
Linux® Application Tuning Guide for SGI®

X86-64 Based Systems

007–5646–001

COPYRIGHT
© 2010 SGI. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein. No permission is
granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any manner, in whole or in
part, without the prior written permission of SGI.

LIMITED RIGHTS LEGEND
The software described in this document is "commercial computer software" provided with restricted rights (except as to included
open/free source) as specified in the FAR 52.227-19 and/or the DFAR 227.7202, or successive sections. Use beyond license provisions is
a violation of worldwide intellectual property laws, treaties and conventions. This document is provided with limited rights as defined
in 52.227-14.

TRADEMARKS AND ATTRIBUTIONS
Altix, NUMAlink, OpenMP, Performance Co-Pilot, SGI, the SGI logo, and SHMEM are trademarks or registered trademarks of Silicon
Graphics International Corp. or its subsidiaries in the United States and other countries.

Cray is a registered trademark of Cray, Inc. Dinkumware is a registered trademark of Dinkumware, Ltd. Intel, GuideView, Itanium,
KAP/Pro Toolset, and VTune are trademarks or registered trademarks of Intel Corporation, in the United States and other countries.
Java is a registered trademark of Sun Microsystems, Inc., in the United States and other countries. Linux is a registered trademark of
Linus Torvalds in several countries. Red Hat is a registered trademark of Red Hat, Inc. PostScript is a trademark of Adobe Systems
Incorporated. TotalView and TotalView Technologies are registered trademarks and TVD is a trademark of Rogue Wave Software, Inc.
Windows is a registered trademark of Microsoft Corporation in the United States and/or other countries. All other trademarks are the
property of their respective owners.

Record of Revision

Version Description

001 November 2010
Original publication.

007–5646–001 iii

Contents

About This Document xi

Related Publications . xi

Related Operating System Documentation xi

Hardware Reference Manuals xii

Application Guides . xiii

Conventions . xiv

Obtaining Publications . xiv

Reader Comments . xiv

1. System Overview . 1

Scalable Computing . 1

An Overview of Altix Architecture 2

The Basics of Memory Management 2

2. The SGI Compiling Environment 5

Compiler Overview . 5

Environment Modules . 6

Library Overview . 7

Static Libraries . 7

Dynamic Libraries . 7

C/C++ Libraries . 8

SHMEM Message Passing Libraries 8

Other Compiling Environment Features 9

3. Performance Analysis and Debugging 11

007–5646–001 v

Contents

Determining System Configuration 11

Sources of Performance Problems 16

Profiling with perf . 16

Profiling with PerfSuite . 17

Using VTune for Remote Sampling 17

Other Performance Tools . 18

Debugging Tools . 18

Using the Intel Debugger idb 20

Using ddd . 21

4. Monitoring Tools . 25

System Monitoring Tools . 25

Hardware Inventory and Usage Commands 25

hwinfo(1) Command . 26

topology(1) Command 26

gtopology(1) Command 27

Performance Co-Pilot Monitoring Tools 30

pmshub(1) Command . 31

hubstats(1) Command 32

linkstat-uv(1) Command 32

Other Performance Co-Pilot Monitoring Tools 32

System Usage Commands . 34

Memory Statistics and nodeinfo Command 38

5. Data Placement Tools 41

Data Placement Tools Overview 41

taskset Command . 44

dplace Command . 46

vi 007–5646–001

Linux
®

Application Tuning Guide for SGI
®

X86-64 Based Systems

Using the dplace Command 46

dplace for Compute Thread Placement Troubleshooting Case Study 52

dlook Command . 55

Using the dlook Command 55

omplace Command . 61

numactl Command . 61

Installing NUMA Tools . 62

An Overview of the Advantages Gained by Using Cpusets 62

Linux 2.6 Kernel Support for Cpusets 64

Cpuset Facility Capabilities 64

Initializing Cpusets . 65

How to Determine if Cpusets are Installed 66

Fine-grained Control within Cpusets 66

Cpuset Interaction with Other Placement Mechanism 66

Cpusets and Thread Placement 68

Safe Job Migration and Cpusets 69

Application Performance on Large Altix UV Systems 70

mem_exclusive . 71

mem_spreadpage . 71

mem_hardwall . 71

6. Performance Tuning 73

Single Processor Code Tuning 73

Getting the Correct Results 74

Managing Heap Corruption Problems 75

Using Tuned Code . 75

Determining Tuning Needs 75

007–5646–001 vii

Contents

Using Compiler Options Where Possible 76

Tuning the Cache Performance 79

Managing Memory . 80

Memory Use Strategies . 81

Cache Terminology . 81

Memory Hierarchy Latencies 82

Multiprocessor Code Tuning . 82

Data Decomposition . 83

Parallelizing Your Code . 84

Use MPT . 85

Use OpenMP . 85

OpenMP Nested Parallelism 86

Use Compiler Options . 86

Identifying Parallel Opportunities in Existing Code 87

Fixing False Sharing . 87

Using dplace and taskset 88

Environment Variables for Performance Tuning 88

Understanding Parallel Speedup and Amdahl’s Law 89

Adding CPUs to Shorten Execution Time 90

Understanding Parallel Speedup 90

Understanding Superlinear Speedup 91

Understanding Amdahl’s Law 91

Calculating the Parallel Fraction of a Program 92

Predicting Execution Time with n CPUs 93

Gustafson’s Law . 94

Floating-point Programs Performance 94

MPInside Profiling Tool . 95

viii 007–5646–001

Linux
®

Application Tuning Guide for SGI
®

X86-64 Based Systems

SGI PerfBoost . 96

Perfcatcher . 97

Performance Tuning Running MPI on Altix UV 100 and Altix UV 1000 Systems 97

General Considerations . 98

Job Performance Types . 98

Other ccNUMA Performance Issues 99

7. Flexible File I/O . 101

FFIO Operation . 101

Environment Variables . 102

Simple Examples . 103

Multithreading Considerations 106

Application Examples . 107

Event Tracing . 108

System Information and Issues 108

8. I/O Tuning . 109

Application Placement and I/O Resources 109

Layout of Filesystems and XVM for Multiple RAIDs 110

9. Suggested Shortcuts and Workarounds 111

Determining Process Placement 111

Example Using pthreads . 112

Example Using OpenMP . 114

Combination Example (MPI and OpenMP) 115

Resetting System Limits . 118

Resetting the File Limit Resource Default 119

Resetting the Default Stack Size 120

Resetting Virtual Memory Size 121

007–5646–001 ix

Contents

Avoiding Segmentation Faults 122

Linux Shared Memory Accounting 123

Index . 125

x 007–5646–001

About This Document

This publication mainly provides information about tuning application programs on
the SGI Altix UV series systems running the Linux operating system. Application
programs includes Fortran and C programs written with the Intel-provided compilers
on SGI Linux systems. Some parts of this manual are also applicable to other SGI
X86-64 based systems, such as, the SGI Altix ICE and SGI Altix XE series systems.

This document does not include information about configuring or tuning your
system. For details about those topics, see the SGI Altix UV Systems Linux
Configuration and Operations Guide.

This guide is written for experienced programmers, familiar with Linux commands
and with either the C or Fortran programming languages. The focus in this document
is on achieving the highest possible performance by exploiting the features of your
SGI Altix system. The material assumes that you know the basics of software
engineering and that you are familiar with standard methods and data structures. If
you are new to programming or software design, this guide will not be of use to you.

Related Publications
The following publications provide information that can supplement the information
in this document.

Related Operating System Documentation

The following documents provide information about Linux implementations on SGI
systems:

• SGI Altix UV Systems Linux Configuration and Operations Guide

Provides information on how to perform system configuration and operations for
SGI Altix UV series systems.

• Linux Resource Administration Guide

Provides a reference for people who manage the operation of SGI servers and
contains information needed in the administration of various system resource
management features such as Array Services, Cpusets on Linux, NUMA tools, and
the Cpuset library functions.

007–5646–001 xi

About This Document

• SGI Perfornace Suite 1.0 Start Here

Provides information about the SGI Performance Suite 1.0 release.

• Message Passing Toolkit (MPT) User’s Guide

Describes industry-standard message passing protocol optimized for SGI
computers. Chapter 7, “Run-time Tuning” discusses ways in which the you can
tune the run-time environment to improve the performance of an MPI message
passing application on SGI computers. None of these ways involve application
code changes.

See the release notes which are shipped with your system for a list of other
documents that are available. All books are available on the Tech Pubs Library at
http://docs.sgi.com.

For the latest information about software and documentation in this release, see the
release notes that are in a file named README.TXT that is available in /docs
directory on the CD.

Hardware Reference Manuals

The following documents provide information about Altix system hardware.

• SGI Altix UV 1000 System User’s Guide

Provides an overview of the architecture and describes the major components of
the SGI Altix UV 1000 series systems. It also describes the standard procedures for
powering up and powering down the system, provides basic troubleshooting
information, and includes important safety and regulatory specifications.

• SGI Altix UV 100 System User’s Guide

Provides an overview of the architecture and describes the major components of
the SGI Altix UV 100 series systems. It also describes the standard procedures for
powering up and powering down the system, provides basic troubleshooting
information, and includes important safety and regulatory specifications.

• SGI Altix ICE 8200 Series System Hardware User’s Guide

Provides an overview of the architecture and describes the major components of
the SGI Altix ICE 8200 series systems. It also describes the standard procedures
for powering up and powering down the system, provides basic troubleshooting
information, and includes important safety and regulatory specifications.

xii 007–5646–001

Linux
®

Application Tuning Guide for SGI
®

X86-64 Based Systems

• SGI Altix ICE 8400 Series System Hardware User’s Guide

Provides an overview of the architecture and describes the major components of
the SGI Altix ICE 8400 series systems. It also describes the standard procedures
for powering up and powering down the system, provides basic troubleshooting
information, and includes important safety and regulatory specifications.

Note: SGI has a large number of compute platforms. For a complete list of current
SGI software and hardware manuals, see the SGI Peformance Suite 1.0 Start Here
available at http://docs.sgi.com.

Application Guides

The following documentation is provided for the compilers and performance tools
which run on SGI Linux systems:

• http://sourceware.org/gdb/documentation/

GDB: The GNU Project Debugger website with documentation, such as, Debugging
with GDB, GDB User Manual, and so on.

• http://www.intel.com/cd/software/products/asmo-na/eng/perflib/219780.htm;
documentation for Intel compiler products can be downloaded from this website.

Intel Software Network page with links to Intel documentation, such as, Intel
Professional Edition Compilers, Intel Thread Checker, Intel VTune Performance Analyzer,
and various Intel cluster software solutions.

• Intel provides detailed application tuning information including the Intel Xeon
processor 5500 at this location
http://developer.intel.com/Assets/PDF/manual/248966.pdf.

• Intel provides specific tuning information tutorial for Nehalem (Intel Xeon 5500) at
http://software.intel.com/sites/webinar/tuning-your-application-for-nehalem/.

• http://www.intel.com/cd/software/products/asmo-na/eng/vtune/239144.htm

Intel Software Network page with information specific to Intel VTune Performance
Analyzer including links to documentation.

• Information about the OpenMP Standard can be found at
http://openmp.org/wp/.

The OpenMP API specification for parallel programming website is found here.

007–5646–001 xiii

About This Document

Conventions
The following conventions are used in this documentation:

[] Brackets enclose optional portions of a command or
directive line.

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

... Ellipses indicate that a preceding element can be
repeated.

user input This bold, fixed-space font denotes literal items that the
user enters in interactive sessions. (Output is shown in
nonbold, fixed-space font.)

variable Italic typeface denotes variable entries and words or
concepts being defined.

manpage(x) Man page section identifiers appear in parentheses after
man page names.

Obtaining Publications
You can obtain SGI documentation as follows:

• See the SGI Technical Publications Library at http://docs.sgi.com. Various formats
are available. This library contains the most recent and most comprehensive set of
online books, release notes, man pages, and other information.

• You can view release notes on your system by accessing the README.txt file for
the product. This is usually located in the /usr/share/doc/productname
directory, although file locations may vary.

• You can view man pages by typing man title at a command line.

Reader Comments
If you have comments about the technical accuracy, content, or organization of this
publication, contact SGI. Be sure to include the title and document number of the
publication with your comments. (Online, the document number is located in the

xiv 007–5646–001

Linux
®

Application Tuning Guide for SGI
®

X86-64 Based Systems

front matter of the publication. In printed publications, the document number is
located at the bottom of each page.)

You can contact SGI in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Contact your customer service representative and ask that an incident be filed in
the SGI incident tracking system.

• Send mail to the following address:

SGI
Technical Publications
46600 Landing Parkway
Fremont, CA 94538

SGI values your comments and will respond to them promptly.

007–5646–001 xv

Chapter 1

System Overview

Tuning an application involves making your program run its fastest on the available
hardware. The first step is to make your program run as efficiently as possible on a
single processor system and then consider ways to use parallel processing.

Application tuning is different from system tuning, which involves topics such as
disk partitioning, optimizing memory management, and configuration of the system.
See the SGI Altix UV Systems Linux Configuration and Operations Guide for SGI Altix
UV series systems.

This chapter provides an overview of concepts involved in working in parallel
computing environments.

Scalable Computing
Scalability is computational power that can grow over a large number of CPUs.
Scalability depends on the time between nodes on the system. Latency is the time to
send the first byte between nodes.

A Symmetric Multiprocessor (SMP) is a parallel programming environment in which
all processors have equally fast (symmetric) access to memory. These types of systems
are easy to assemble and have limited scalability due to memory access times.

On an symmetric multiprocessor (SMP) machine, all data is visible from all
processors. NonUniform Memory Access (NUMA) machines also have a shared
address space. In both cases, there is a single shared memory space and a single
operating system instance. However, in an SMP machine, each processor is
functionally identical and has equal time access to every memory address. In
contrast, a NUMA system has a shared address space, but the access time to memory
vary over physical address ranges and between processing elements. The Intel Xeon
7500 series processor (Nehalem i7 architecture) is an example of NUMA architecture.
Each processor has its own memory and can address the memory attached to another
processor through the Quick Path Interconnet (QPI). For more information, see the
system architecture overview in "Data Placement Tools Overview" on page 41.

Another parallel environment is that of arrays, or clusters. Any networked computer
can participate in a cluster. These are highly scalable, easy to assemble, but are often
hard to use. There is no shared memory and there are frequently long latency times.

007–5646–001 1

1: System Overview

Massively Parallel Processors (MPPs) have a distributed memory and can scale to
thousands of processors; they have large memories and large local memory
bandwidth.

Scalable Symmetric Multiprocessors (S2MPs), as in the ccNUMA environment,
combine qualities of SMPs and MPPs. They are logically programmable like an SMP
and have MPP-like scability.

An Overview of Altix Architecture
See the appropriate Altix hardware manual for system architecture overviews. The
SGI Performance Suite 1.0 Start Here lists all the current SGI hardware manuals. The
SGI Tempo System Administrator’s Guide provides system architecure overviews for the
SGI Altix ICE 8200 and SGI Altix ICE 8400 series systems. All books are available on
the Tech Pubs Library at http://docs.sgi.com

The Basics of Memory Management
Virtual memory (VM), also known as virtual addressing, is used to divide a system’s
relatively small amount of physical memory among the potentially larger amount of
logical processes in a program. It does this by dividing physical memory into pages,
and then allocating pages to processes as the pages are needed.

A page is the smallest unit of system memory allocation. Pages are added to a
process when either a page fault occurs or an allocation request is issued. Process size
is measured in pages and two sizes are associated with every process: the total size
and the resident set size (RSS). The number of pages being used in a process and the
process size can be determined by using either the ps(1) or the top(1) command.

Swap space is used for temporarily saving parts of a program when there is not
enough physical memory. The swap space may be on the system drive, on an
optional drive, or allocated to a particular file in a filesystem. To avoid swapping, try
not to overburden memory. Lack of adequate swap space limits the number and the
size of applications that can run simultaneously on the system, and it can limit
system performance. Swapping a program is one of the fastest ways to degrade an
application’s performance.

Linux is a demand paging operating system, using a least-recently-used paging
algorithm. Pages are mapped into physical memory when first referenced and pages
are brought back into memory if swapped out. In a system that uses demand paging,

2 007–5646–001

Linux
®

Application Tuning Guide for SGI
®

X86-64 Based Systems

the operating system copies a disk page into physical memory only if an attemp is
made to access it, that is, a page fault occurs. A page fault handler algorithm does the
necessary action. For more information, see the mmap(2) man page.

007–5646–001 3

Chapter 2

The SGI Compiling Environment

This chapter provides an overview of the SGI compiling environment on the SGI
Altix family of servers and superclusters and covers the following topics:

• "Compiler Overview" on page 5

• "Environment Modules" on page 6

• "Library Overview" on page 7

• "Other Compiling Environment Features" on page 9

The remainder of this book provides more detailed examples of the use of the SGI
compiling environment elements.

Compiler Overview
The Intel Fortran and C/C++ compilers are available from Intel Corporation or can be
ordered from SGI on a reseller basis. The Fortran compiler supports OpenMP 2.0 and
the C/C++ compiler is compatible with gcc and the C99 standard. Both the C/C++
and Fortran Intel compilers support OpenMP 3.0.

In addition, the GNU Fortran and C compilers are available on Altix systems.

The following is the general form of the compiler command line (note that the
Fortran command is used in this example):

% ifort [options] filename.extension

An appropriate filename extension is required for each compiler, according to the
programming language used (Fortran, C, C++, or FORTRAN 77).

Some common compiler options are:

• -o filename: renames the output to filename.

• -g: produces additional symbol information for debugging.

• -O[level]: invokes the compiler at different optimization levels, from 0 to 3.

• -ldirectory_name: looks for include files in directory_name.

007–5646–001 5

2: The SGI Compiling Environment

• -c: compiles without invoking the linker; this options produces an a.o file only.

Many processors do not handle denormalized arithmetic (for gradual underflow) in
hardware. The support of gradual underflow is implementation-dependent. Use the
-ftz option with the Intel compilers to force the flushing of denormalized results to
zero.

Note that frequent gradual underflow arithmetic in a program causes the program to
run very slowly, consuming large amounts of system time (this can be determined
with the time command). In this case, it is best to trace the source of the underflows
and fix the code; gradual underflow is often a source of reduced accuracy anyway..
prctl(1) allows you to query or control certain process behavior. In a program,
prctl tracks where floating point errors occur.

Some applications can generate an excessive number of kernel KERN_WARN "floating
point assist" warning messages. For more information, see the SGI Altix UV Systems
Configuration and Operations Guide.

Environment Modules
A module is a user interface that provides for the dynamic modification of a user’s
environment. By loading a module, a user does not have to change environment
variables in order to access different versions of the compilers, loaders, libraries and
utilities that are installed on the system.

Modules can be used in the SGI compiling environment to customize the
environment. If the use of modules is not available on your system, its installation
and use is highly recommended.

To view which modules are available on your system, use the following command
(for any shell environment):

% module avail

To load modules into your environment (for any shell), use the following commands:

% module load intel-compilers-latest mpt/2.02

% module load scsl/1.6.1.0-sgi402r1

Note: The above commands are for example use only; the actual release numbers
may vary depending on the version of the software you are using. See the release
notes that are distributed with your system for the pertinent release version numbers.

6 007–5646–001

Linux
®

Application Tuning Guide for SGI
®

X86-64 Based Systems

For details about using modules, see the module(1) man page.

Library Overview
Libraries are files that contain one or more object (.o) files. Libraries are used to
simplify local software development by hiding compilation details. Libraries are
sometimes also called archives.

The SGI compiling environment contains several types of libraries; an overview about
each library is provided in this subsection.

Static Libraries

Static libraries are used when calls to the library components are satisfied at link time
by copying text from the library into the executable. To create a static library, use the
ar(1), or an archiver command.

To use a static library, include the library name on the compiler’s command line. If
the library is not in a standard library directory, be sure to use the -L option to
specify the directory and the -l option to specify the library filename.

To build an appplication to have all static versions of standard libraries in the
application binary, use the -static option on the compiler command line.

Dynamic Libraries

Dynamic libraries are linked into the program at run time and when loaded into
memory can be accessed by multiple programs. Dynamic libraries are formed by
creating a Dynamic Shared Object (DSO).

Use the link editor command (ld(1)) to create a dynamic library from a series of
object files or to create a DSO from an existing static library.

To use a dynamic library, include the library on the compiler’s command line. If the
dynamic library is not in one of the standard library directories, use the -rpath
compiler option during linking. You must also set the LD_LIBRARY_PATH
environment variable to the directory where the library is stored before running the
executable.

007–5646–001 7

2: The SGI Compiling Environment

C/C++ Libraries

The following C/C++ libraries are provided with the Intel compiler:

• libguide.a, libguide.so: for support of OpenMP-based programs.

• libsvml.a: short vector math library

• libirc.a: Intel’s support for Profile-Guided Optimizations (PGO) and CPU
dispatch

• libimf.a, libimf.so: Intel’s math library

• libcprts.a, libcprts.so: Dinkumware C++ library

• libunwind.a, libunwind.so: Unwinder library

• libcxa.a, libcxa.so: Intel’s runtime support for C++ features

SHMEM Message Passing Libraries

The SHMEM application programing interface is implemented by the libsma library
and is part of the Message Passing Toolkit (MPT) product on SGI Altix systems. The
SHMEM programming model consists of library routines that provide low-latency,
high-bandwidth communication for use in highly parallelized, scalable programs. The
routines in the SHMEM application programming interface (API) provide a
programming model for exchanging data between cooperating parallel processes. The
resulting programs are similar in style to Message Passing Interface (MPI) programs.
The SHMEM API can be used either alone or in combination with MPI routines in the
same parallel program.

A SHMEM program is SPMD (single program, multiple data) in style. The SHMEM
processes, called processing elements or PEs, all start at the same time, and they all
run the same program. Usually the PEs perform computation on their own
subdomains of the larger problem, and periodically communicate with other PEs to
exchange information on which the next computation phase depends.

The SHMEM routines minimize the overhead associated with data transfer requests,
maximize bandwidth, and minimize data latency. Data latency is the period of time
that starts when a PE initiates a transfer of data and ends when a PE can use the data.

SHMEM routines support remote data transfer through put operations, which transfer
data to a different PE, get operations, which transfer data from a different PE, and
remote pointers, which allow direct references to data objects owned by another PE.

8 007–5646–001

Linux
®

Application Tuning Guide for SGI
®

X86-64 Based Systems

Other operations supported are collective broadcast and reduction, barrier
synchronization, and atomic memory operations. An atomic memory operation is an
atomic read-and-update operation, such as a fetch-and-increment, on a remote or local
data object.

For details about using the SHMEM routines, see the intro_shmem(3) man page or
the Message Passing Toolkit (MPT) User’s Guide.

Other Compiling Environment Features
The SGI compiling environment includes several other products as part of its
distribution:

• idb: the Intel debugger (available if your system is licensed for the Intel
compilers). This is a fully symbolic debugger and supports Fortran, C, and C++
debugging. The Intel® Debugger for Linux is a fully Eclipse graphical user
interface based debug solution. To use the command line debugger (gdb like), you
need to use the idbc command. It works with the following compilers: Intel®

C++ Compilers and Intel® Fortran Compilers gcc, g++, and g77 compilers. The
Intel Debugger can debug both single and multi-threaded applications, serial and
parallel code. For more information, see
http://software.intel.com/en-us/articles/idb-linux/.

• gdb: the GNU project debugger, which supports C, C++ and Modula-2. It also
supports Fortran 95 debugging when the gdbf95 patch is installed.

• ddd: a graphical user interface to gdb and the other debuggers.

• TotalView: a licensed graphical debugger useful in an MPI environment (see
http://www.totalviewtech.com/)

These and other performance analysis tools are discussed in Chapter 3, "Performance
Analysis and Debugging" on page 11.

007–5646–001 9

Chapter 3

Performance Analysis and Debugging

Tuning an application involves determining the source of performance problems and
then rectifying those problems to make your programs run their fastest on the
available hardware. Performance gains usually fall into one of three categories of
measured time:

• User CPU time: time accumulated by a user process when it is attached to a CPU
and is executing.

• Elapsed (wall-clock) time: the amount of time that passes between the start and
the termination of a process.

• System time: the amount of time performing kernel functions like system calls,
sched_yield, for example, or floating point errors.

Any application tuning process involves the following steps:

1. Analyzing and identifying a problem

2. Locating where in the code the problem is

3. Applying an optimization technique

This chapter describes the process of analyzing your code to determine performance
bottlenecks. See Chapter 6, "Performance Tuning" on page 73, for details about tuning
your application for a single processor system and then tuning it for parallel
processing.

Determining System Configuration
One of the first steps in application tuning is to determine the details of the system
that you are running. Depending on your system configuration, different options may
or may not provide good results.

The topology(1) command displays general information about SGI Altix systems,
with a focus on node information. This includes node counts for blades, node IDs,
NASIDs, memory per node, system serial number, partition number, UV Hub

007–5646–001 11

3: Performance Analysis and Debugging

versions, CPU to node mappings, and general CPU information. Example output is,
as follows:

uv44-sys:~ # topology

Serial number: UV-00000044

Partition number: 0

4 Blades

64 CPUs

125.97 Gb Memory Total

Blade ID asic NASID Memory

0 r001i01b00 UVHub 2.0 0 16757488 kB

1 r001i01b01 UVHub 2.0 2 16777216 kB
2 r001i01b02 UVHub 2.0 4 16777216 kB

3 r001i01b03 UVHub 2.0 6 16760832 kB

CPU Blade PhysID CoreID APIC-ID Family Model Speed L1(KiB) L2(KiB) L3(KiB)

0 r001i01b00 00 00 0 6 46 1866 32d/32i 256 18432

1 r001i01b00 00 03 6 6 46 1866 32d/32i 256 18432

2 r001i01b00 00 08 16 6 46 1866 32d/32i 256 18432

3 r001i01b00 00 11 22 6 46 1866 32d/32i 256 18432

4 r001i01b00 01 00 32 6 46 1866 32d/32i 256 18432

5 r001i01b00 01 03 38 6 46 1866 32d/32i 256 18432
6 r001i01b00 01 08 48 6 46 1866 32d/32i 256 18432

7 r001i01b00 01 11 54 6 46 1866 32d/32i 256 18432

8 r001i01b01 02 00 64 6 46 1866 32d/32i 256 18432

9 r001i01b01 02 03 70 6 46 1866 32d/32i 256 18432

10 r001i01b01 02 08 80 6 46 1866 32d/32i 256 18432
11 r001i01b01 02 11 86 6 46 1866 32d/32i 256 18432

12 r001i01b01 03 00 96 6 46 1866 32d/32i 256 18432

13 r001i01b01 03 03 102 6 46 1866 32d/32i 256 18432

14 r001i01b01 03 08 112 6 46 1866 32d/32i 256 18432

15 r001i01b01 03 11 118 6 46 1866 32d/32i 256 18432
16 r001i01b02 04 00 128 6 46 1866 32d/32i 256 18432

...

63 r001i01b03 07 11 247 6 46 1866 32d/32i 256 18432

The cpumap(1) command displays logical CPUs and shows relationships between
them in a human-readable format. Aspects displayed include hyperthread
relationships, last level cache sharing, and topological placement. The cpumap

12 007–5646–001

Linux
®

Application Tuning Guide for SGI
®

X86-64 Based Systems

command gets its information from /proc/cpuinfo, the /sys/devices/system
directory structure, and /proc/sgi_uv/topology.

Example output is, as follows:

uv44-sys:~ # cpumap

Mon Oct 18 13:40:26 CDT 2010

uv44-sys.mycompany.com

This an SGI Altix UV

model name : Intel(R) Xeon(R) CPU E7520 @ 1.87GHz
Architecture : x86_64

cpu MHz : 1866.557

cache size : 18432 KB (Last Level)

Total Number of Sockets : 8
Total Number of Cores : 32 (4 per socket)

Hyperthreading : ON

Total Number of Physical Processors : 32

Total Number of Logical Processors : 64 (2 per Phys Processor)

UV Information

HUB Version: UVHub 2.0

Number of Hubs (Blades): 4

Number of connected NUMAlink ports: 12

===

Hub-Processor Mapping

Hub Location Processor Numbers -- HyperThreads in ()

--- ---------- ---------------------------------------

0 r001i01b00 0 1 2 3 4 5 6 7
(32 33 34 35 36 37 38 39)

1 r001i01b01 8 9 10 11 12 13 14 15

(40 41 42 43 44 45 46 47)

2 r001i01b02 16 17 18 19 20 21 22 23

(48 49 50 51 52 53 54 55)
3 r001i01b03 24 25 26 27 28 29 30 31

(56 57 58 59 60 61 62 63)

===

007–5646–001 13

3: Performance Analysis and Debugging

Processor Numbering on Socket(s)

Socket (Logical) Processors

------ -------------------------

0 0 1 2 3 32 33 34 35

1 4 5 6 7 36 37 38 39
2 8 9 10 11 40 41 42 43

3 12 13 14 15 44 45 46 47

4 16 17 18 19 48 49 50 51

5 20 21 22 23 52 53 54 55

6 24 25 26 27 56 57 58 59

7 28 29 30 31 60 61 62 63

===

Sharing of Last Level (3) Caches

Socket (Logical) Processors

------ -------------------------

0 0 1 2 3 32 33 34 35

1 4 5 6 7 36 37 38 39

2 8 9 10 11 40 41 42 43

3 12 13 14 15 44 45 46 47
4 16 17 18 19 48 49 50 51

5 20 21 22 23 52 53 54 55

6 24 25 26 27 56 57 58 59

7 28 29 30 31 60 61 62 63

===

HyperThreading

Shared Processors

(0, 32) (1, 33) (2, 34) (3, 35)

(4, 36) (5, 37) (6, 38) (7, 39)

(8, 40) (9, 41) (10, 42) (11, 43)

(12, 44) (13, 45) (14, 46) (15, 47)

(16, 48) (17, 49) (18, 50) (19, 51)
(20, 52) (21, 53) (22, 54) (23, 55)

(24, 56) (25, 57) (26, 58) (27, 59)

14 007–5646–001

Linux
®

Application Tuning Guide for SGI
®

X86-64 Based Systems

(28, 60) (29, 61) (30, 62) (31, 63)

Use the x86info(1) command to display x86 CPU diagnostics information, as follows:

uv44-sys:~ # x86info
x86info v1.25. Dave Jones 2001-2009

Feedback to .

Found 64 CPUs

--

CPU #1
EFamily: 0 EModel: 2 Family: 6 Model: 46 Stepping: 6

CPU Model: Unknown model.

Processor name string: Intel(R) Xeon(R) CPU E7520 @ 1.87GHz

Type: 0 (Original OEM) Brand: 0 (Unsupported)

Number of cores per physical package=16
Number of logical processors per socket=32

Number of logical processors per core=2

APIC ID: 0x0 Package: 0 Core: 0 SMT ID 0

--

CPU #2
EFamily: 0 EModel: 2 Family: 6 Model: 46 Stepping: 6

CPU Model: Unknown model.

Processor name string: Intel(R) Xeon(R) CPU E7520 @ 1.87GHz

Type: 0 (Original OEM) Brand: 0 (Unsupported)

Number of cores per physical package=16

Number of logical processors per socket=32
Number of logical processors per core=2

APIC ID: 0x6 Package: 0 Core: 0 SMT ID 6

--

CPU #3

EFamily: 0 EModel: 2 Family: 6 Model: 46 Stepping: 6
CPU Model: Unknown model.

Processor name string: Intel(R) Xeon(R) CPU E7520 @ 1.87GHz

Type: 0 (Original OEM) Brand: 0 (Unsupported)

Number of cores per physical package=16

Number of logical processors per socket=32
Number of logical processors per core=2

APIC ID: 0x10 Package: 0 Core: 0 SMT ID 16

--

...

007–5646–001 15

3: Performance Analysis and Debugging

You can also use the uname command, which returns the kernel version and other
machine information. For example:

uv44-sys:~ # uname -a

Linux uv44-sys 2.6.32.13-0.4.1.1559.0.PTF-default #1 SMP 2010-06-15 12:47:25 +0200 x86_64 x86_64 x86_64

For more system information, change directory (cd) to the
/sys/devices/system/node/node0/cpu0/cache directory.

For example:

uv44-sys:/sys/devices/system/node/node0/cpu0/cache # ls

index0 index1 index2 index3

Change directory to index0 and list the contents, as follows:

uv44-sys:/sys/devices/system/node/node0/cpu0/cache/index0 # ls

coherency_line_size level number_of_sets physical_line_partition shared_cpu_list shared_cpu_map size type way

Sources of Performance Problems
There are usually three areas of program execution that can have performance
slowdowns:

• CPU-bound processes: processes that are performing slow operations (such as
sqrt or floating-point divides) or non-pipelined operations such as switching
between add and multiply operations.

• Memory-bound processes: code which uses poor memory strides, occurrences of
page thrashing or cache misses, or poor data placement in NUMA systems.

• I/O-bound processes: processes which are waiting on synchronous I/O, formatted
I/O, or when there is library or system level buffering.

Several profiling tools can help pinpoint where performance slowdowns are
occurring. The following sections describe some of these tools.

Profiling with perf

The perf(1) software provides the performance analysis tools for Linux. Performance
counters for Linux are a kernel-based subsystem that provide a framework for all
things performance analysis. It covers hardware level CPU/performance monitoring

16 007–5646–001

Linux
®

Application Tuning Guide for SGI
®

X86-64 Based Systems

unit (PMU) features and software features, such as, software counters and tracepoints,
as well. To use the perf profiling tools, you need to make sure the perf RPM is
installed.. For more information, see the following man pages: perf-stat(1),
perf-top(1), perf-record(1), perf-report(1), perf-list(1)

Profiling with PerfSuite

“PerfSuite is an easy-to-use collection of tools, utilities, and libraries to support
application software performance analysis on Linux-based systems. It includes
components to assist with a wide variety of performance-related tasks, ranging from
assistance with compiler optimization reports to hardware performance counting,
profiling, and MPI usage summarization. PerfSuite is Open Source software,
approved for licensing under the University of Illinois/NCSA Open Source License
(OSI-approved). You can find out more about PerfSuite at the project web sites,
located at: http://perfsuite.ncsa.uiuc.edu/ or http://perfsuite.sourceforge.net/.”

For NCSA specific information about using PerfSuite tools, see
http://www.ncsa.illinois.edu/UserInfo/Resources/Software/Tools/PerfSuite/.

“psrun is a PerfSuite command-line utility that can be used to gather hardware
performance information on an unmodified executable. It’s a convenient and flexible
way to do quick performance monitoring/measurement.” For more information, see
http://perfsuite.ncsa.uiuc.edu/psrun/.

Using VTune for Remote Sampling
The Intel VTune performance analyzer does remote sampling experiments. The
VTune data collector runs on the Linux system and an accompanying GUI runs on an
IA-32 Windows machine, which is used for analyzing the results. VTune allows you
to perform interactive experiments while connected to the host through its GUI. PTU
(Performance Tuning Utility) is another tool which requires theIntel VTune license.

For details about using VTune, see the following URL:

http://developer.intel.com/software/products/vtune/vpa/

007–5646–001 17

3: Performance Analysis and Debugging

Other Performance Tools
The following performance tools also can be of benefit when you are trying to
optimize your code:

• Guide OpenMP Compiler is an OpenMP implementation for C, C++, and Fortran
from Intel.

• Assure Thread Analyzer from Intel locates programming errors in threaded
applications with no recoding required.

For details about these products, see the following website:

http://developer.intel.com/software/products/threading

Note: These products have not been thoroughly tested on SGI systems. SGI takes no
responsibility for the correct operation of third party products described or their
suitability for any particular purpose.

Debugging Tools
Three debuggers are available to help you analyze your code:

• gdb: the GNU project debugger. This is useful for debugging programs written in
C, C++, and Fortran 95. When compiling with C and C++, include the -g option
on the compiler command line to produce the dwarf2 symbols database used by
gdb.

When using gdb for Fortran debugging, include the -g and -O0 options. Do not
use gdb for Fortran debugging when compiling with -O1 or higher.

The debugger to be used for Fortran 95 codes can be downloaded from
http://sourceforge.net/project/showfiles.php?group_id=56720 . (Note that the
standard gdb compiler does not support Fortran 95 codes.) To verify that you
have the correct version of gdb installed, use the gdb -v command. The output
should appear similar to the following:

GNU gdb 5.1.1 FORTRAN95-20020628 (RC1)

Copyright 2002 Free Software Foundation, Inc.

For a complete list of gdb commands, see the gdb user guide online at
http://sources.redhat.com/gdb/onlinedocs/gdb_toc.html or use the help option.

18 007–5646–001

Linux
®

Application Tuning Guide for SGI
®

X86-64 Based Systems

Note that current instances of gdb do not report ar.ec registers correctly. If you
are debugging rotating, register-based, software-pipelined loops at the assembly
code level, try using idb instead.

• idb: the Intel debugger. This is a fully symbolic debugger for the Linux platform.
The debugger provides extensive support for debugging programs written in C,
C++, FORTRAN 77, and Fortran 90. idb includes a GUI and it supports both Intel
and GNU compilers.

Running idb with the -gdb option on the shell command line provides
gdb(1)-like user commands and debugger output.

• ddd: a GUI to a command line debugger. It supports gdb and idb. For details
about usage, see the following subsection.

• TotalView: a licensed graphical debugger useful in an MPI environment (see
http://www.totalviewtech.com/)

Figure 3-1 on page 20 shows a TotalView sesssion.

007–5646–001 19

3: Performance Analysis and Debugging

Figure 3-1 TotalView Session

Using the Intel Debugger idb

idb is part of the Intel Compiler suite, both Fortran and C/C++. You are asked during
the installation if you want to install it or not. When running idb you get the GUI
interface. When you invoke the idbc command, you get the command line interface.

20 007–5646–001

Linux
®

Application Tuning Guide for SGI
®

X86-64 Based Systems

Figure 3-2 Intel® Debugger GUI

Using ddd

The DataDisplayDebugger ddd(1) tool is a GUI to an arbitrary command line
debugger as shown in Figure 3-3 on page 22. When starting ddd, use the
--debugger option to specify the debugger used (for example, --debugger
"idb"). The default debugger used is gdb.

007–5646–001 21

3: Performance Analysis and Debugging

Figure 3-3 DataDisplayDebugger(ddd)(1)

When the debugger is loaded the DataDisplayDebugger screen appears divided into
panes that show the following information:

• Array inspection

• Source code

• Disassembled code

• A command line window to the debugger engine

These panes can be switched on and off from the View menu.

Some commonly used commands can be found on the menus. In addition, the
following actions can be useful:

22 007–5646–001

Linux
®

Application Tuning Guide for SGI
®

X86-64 Based Systems

• Select an address in the assembly view, click the right mouse button, and select
lookup. The gdb command is executed in the command pane and it shows the
corresponding source line.

• Select a variable in the source pane and click the right mouse button. The current
value is displayed. Arrays are displayed in the array inspection window. You can
print these arrays to PostScript by using the Menu>Print Graph option.

• You can view the contents of the register file, including general, floating-point,
NaT, predicate, and application registers by selecting Registers from the Status
menu. The Status menu also allows you to view stack traces or to switch OpenMP
threads.

007–5646–001 23

Chapter 4

Monitoring Tools

This chapter describes several tools that you can use to monitor system performance.
The tools are divided into two general categories: system monitoring tools and
nonuniform memory access (NUMA) tools.

System monitoring tools include the hwinfo(1), topology(1), top(1) commands and
the Performance Co-Pilot pmchart(1) commmand and other operating system
commands such as the vmstat(1) , iostat(1) command and the sar(1) commands
that can help you determine where system resources are being spent.

The gtopology(1) command displays a 3D scene of the system interconnect using
the output from the topology(1) command.

System Monitoring Tools
You can use system utilities to better understand the usage and limits of your system.
These utilities allow you to observe both overall system performance and
single-performance execution characteristics. This section covers the following topics:

• "Hardware Inventory and Usage Commands" on page 25

• "Performance Co-Pilot Monitoring Tools" on page 30

• "System Usage Commands" on page 34

• "Memory Statistics and nodeinfo Command" on page 38

Hardware Inventory and Usage Commands

This section descibes hardware inventory and usage commands and covers the
following topics:

• "hwinfo(1) Command" on page 26

• "topology(1) Command" on page 26

• "gtopology(1) Command" on page 27

007–5646–001 25

4: Monitoring Tools

hwinfo(1) Command

The hwinfo(8) command is used to probe for the hardware present in the system. It
can be used to generate a system overview log which can be later used for support.
To see the version installed on your system, perform the following command:

% rpm -qf /usr/sbin/hwinfo

hwinfo-12.55-0.3

For more information, see the hwinfo(8) man page.

topology(1) Command

The topology(1) command provides topology information about your system.

Applications programmers can use the topology command to help optimize
execution layout for their applications. For more information, see the topology(1)
man page.

Output from the topology command is similar to the following: (Note that the
following output has been abbreviated.)

uv44-sys:~ # topology

Serial number: UV-00000044
Partition number: 0

4 Blades

64 CPUs

125.97 Gb Memory Total

Blade ID asic NASID Memory

0 r001i01b00 UVHub 2.0 0 16757488 kB

1 r001i01b01 UVHub 2.0 2 16777216 kB

2 r001i01b02 UVHub 2.0 4 16777216 kB

3 r001i01b03 UVHub 2.0 6 16760832 kB

CPU Blade PhysID CoreID APIC-ID Family Model Speed L1(KiB) L2(KiB) L3(KiB)

0 r001i01b00 00 00 0 6 46 1866 32d/32i 256 18432

1 r001i01b00 00 03 6 6 46 1866 32d/32i 256 18432
2 r001i01b00 00 08 16 6 46 1866 32d/32i 256 18432

3 r001i01b00 00 11 22 6 46 1866 32d/32i 256 18432

4 r001i01b00 01 00 32 6 46 1866 32d/32i 256 18432

26 007–5646–001

Linux
®

Application Tuning Guide for SGI
®

X86-64 Based Systems

5 r001i01b00 01 03 38 6 46 1866 32d/32i 256 18432
6 r001i01b00 01 08 48 6 46 1866 32d/32i 256 18432

7 r001i01b00 01 11 54 6 46 1866 32d/32i 256 18432

8 r001i01b01 02 00 64 6 46 1866 32d/32i 256 18432

9 r001i01b01 02 03 70 6 46 1866 32d/32i 256 18432

10 r001i01b01 02 08 80 6 46 1866 32d/32i 256 18432
11 r001i01b01 02 11 86 6 46 1866 32d/32i 256 18432

12 r001i01b01 03 00 96 6 46 1866 32d/32i 256 18432

13 r001i01b01 03 03 102 6 46 1866 32d/32i 256 18432

14 r001i01b01 03 08 112 6 46 1866 32d/32i 256 18432

15 r001i01b01 03 11 118 6 46 1866 32d/32i 256 18432

16 r001i01b02 04 00 128 6 46 1866 32d/32i 256 18432
...

62 r001i01b03 07 08 241 6 46 1866 32d/32i 256 18432

63 r001i01b03 07 11 247 6 46 1866 32d/32i 256 18432

gtopology(1) Command

The gtopology(1) command is included as part of the sgi-pcp package of the SGI
Accelerate, part of SGI Performance Suite software. It displays a 3D scene of the
system interconnect using the output from the topology(1) command. See the man
page for more details.

Figure 4-1 on page 28, shows the ring topology (the eight nodes are shown in pink,
the NUMAlink connections in cyan) of an Altix system with 16 CPUs.

007–5646–001 27

4: Monitoring Tools

Figure 4-1 Ring Topology of an Altix System with 16 CPUs

Figure 4-2 on page 29, shows the fat-tree topology of an Altix system with 32 CPUs.
Again, nodes are the pink cubes. Routers are shown as blue spheres (if all ports are
used) otherwise, yellow.

28 007–5646–001

Linux
®

Application Tuning Guide for SGI
®

X86-64 Based Systems

Figure 4-2 An Altix System with 32 CPUs Fat-tree Topology

Figure 4-3 on page 30, shows an Altix ystem with 512 CPUs. The dual planes of the
fat-tree topology are clearly visible.

007–5646–001 29

4: Monitoring Tools

Figure 4-3 An Altix System with 512 CPUs

Performance Co-Pilot Monitoring Tools

This section describes Performance Co-Pilot monitoring tools and covers the
following topics:

• "pmshub(1) Command" on page 31

• "hubstats(1) Command" on page 32

• "linkstat-uv(1) Command" on page 32

• "Other Performance Co-Pilot Monitoring Tools" on page 32

30 007–5646–001

Linux
®

Application Tuning Guide for SGI
®

X86-64 Based Systems

pmshub(1) Command

Note: The pmshub command is currently not available on Altix UV 100 and Altix UV
1000 series systems.

The pmshub(1) command is an Altix system-specific performance monitoring tool that
displays ccNUMA architecture cacheline traffic, free memory, and CPU usage
statistics on a per-node basis.

Figure 4-4 on page 31, shows a four-node Altix system with eight CPUs. A key
feature of pmshub is the ability to distinguish between local verses remote cacheline
traffic statistics. This greatly helps you to diagnose whether the placement of threads
on the CPUs in your system has been correctly tuned for memory locality (see the
dplace(1) and taskset(1) man pages for information on thread placement.). It also
shows undesirable anomalies such as hot cachelines (for example, due to lock
contention) and other effects such as cacheline "ping-pong". For details about the
intrepretation of each component of the pmshub display, see the pmshub(1) man page.

Figure 4-4 Four Node Altix System with Eight CPUs

007–5646–001 31

4: Monitoring Tools

hubstats(1) Command

The hubstats(1) command is a command line tool for monitoring NUMAlink traffic,
directory cache operations and global reference unit (GRU) traffic statistics on SGI
Altix UV systems. It will not work on any other platform.

Note: Cacheline traffic is currently not working on SGI Altix UV 100 and SGI Altix
UV 1000 series systems.

For more information, see the hubstats(1) man page.

linkstat-uv(1) Command

The linkstat-uv(1) command is a command-line tool for monitoring NUMAlink
traffic and error rates on SGI Altix UV systems. It will not work on any other
platform.This tool shows packets and Mbytes sent/received on each NUMAlink in
the system, as well as error rates. It is useful as a performance monitoring tool, as
well as, a tool for helping you to diagnose and identify faulty hardware. For more
information, see the linkstat-uv(1) man page.

Other Performance Co-Pilot Monitoring Tools

In addition to the Altix specific tools described above, the pcp and pcp-sgi
packages also provide numerous other performance monitoring tools, both graphical
and text-based. It is important to remember that all of the performance metrics
displayed by any of the tools described in this chapter can also be monitored with
other tools such as pmchart(1), pmval(1), pminfo(1) and others. Additionally, the
pmlogger(1) command can be used to capture Performance Co-Pilot archives, which
can then be "replayed" during a retrospective performance analysis.

A very brief description of other Performance Co-Pilot monitoring tools follows. See
the associated man page for each tool for more details.

• pmchart(1) — graphical stripchart tool, chiefly used for investigative performance
analysis.

• pmgsys(1) — graphical tool showing miniature CPU, Disk, Network, LoadAvg
and memory/swap in a miniature display, for example, useful for permanent
residence on your desktop for the servers you care about.

• pmgcluster(1) — pmgsys, but for multiple hosts and thus useful for monitoring
a cluster of hosts or servers.

32 007–5646–001

Linux
®

Application Tuning Guide for SGI
®

X86-64 Based Systems

• clustervis(1) — 3D display showing per-CPU and per-Network performance
for multiple hosts.

• nfsvis(1) — 3D display showing NFS client/server traffic, grouped by NFS
operation type

• nodevis(1) — 3D display showing per-node CPU and memory usage.

• webvis(1) — 3D display showing per-httpd traffic.

• dkvis(1) - 3D display showing per-disk traffic, grouped by controller.

• diskstat(1) — command line tool for monitoring disk traffic.

• topdisk(1) — command line, curses-based tool, for monitoring disk traffic.

• topsys(1) — command line, curses-based tool, for monitoring processes making a
large numbers of system calls or spending a large percentage of their execution
time in system mode using assorted system time measures.

• pmgxvm(1) — miniature graphical display showing XVM volume topology and
performance statistics.

• osvis(1) — 3D display showing assorted kernel and system statistics.

• mpivis(1) — 3D display for monitoring multithreaded MPI applications.

• pmdumptext(1) — command line tool for monitoring multiple performance
metrics with a highly configurable output format. Therefore, it is a useful tools for
scripted monitoring tasks.

• pmval(1) — command line tool, similar to pmdumptext(1), but less flexible.

• pminfo(1) — command line tool, useful for printing raw performance metric
values and associated help text.

• pmprobe(1) — command line tool useful for scripted monitoring tasks.

• pmie(1) — a performance monitoring inference engine. This is a command line
tool with an extraordinarily powerful underlying language. It can also be used as
a system service for monitoring and reporting on all sorts of performance issues of
interest.

• pmieconf(1) — command line tool for creating and customizing "canned"
pmie(1) configurations.

007–5646–001 33

4: Monitoring Tools

• pmlogger(1) — command line tool for capturing Performance Co-Pilot
performance metrics archives for replay with other tools.

• pmlogger_daily(1) and pmlogger_check(1) — cron driven infrastructure for
automated logging with pmlogger(1).

• pmcd(1) — the Performance Co-Pilot metrics collector daemon

• PCPIntro(1) — introduction to Performance Co-Pilot monitoring tools, generic
command line usage and environment variables

• PMAPI(3) — introduction to the Performance Co-Pilot API libraries for developing
new performance monitoring tools

• PMDA(3) — introduction to the Performance Co-Pilot Metrics Domain Agent API,
for developing new Performance Co-Pilot agents

System Usage Commands

Several commands can be used to determine user load, system usage, and active
processes.

To determine the system load, use the uptime(1) command, as follows:

uv44-sys:~ # uptime

3:48pm up 2:50, 5 users, load average: 0.12, 0.25, 0.40

The output displays time of day, time since the last reboot, number of users on the
system, and the average number of processes waiting to run.

To determine who is using the system and for what purpose, use the w(1) command,
as follows:

uv44-sys:~ # w

15:47:48 up 2:49, 5 users, load average: 0.04, 0.27, 0.42

USER TTY LOGIN@ IDLE JCPU PCPU WHAT

root pts/0 13:10 1:41m 0.07s 0.07s -bash

root pts/2 13:31 0.00s 0.14s 0.02s w
boetcher pts/4 14:30 2:13 0.73s 0.73s -csh

root pts/5 14:32 1:14m 0.04s 0.04s -bash

root pts/6 15:09 31:25 0.08s 0.08s -bash

The output from this command shows who is on the system, the duration of user
sessions, processor usage by user, and currently executing user commands.

34 007–5646–001

Linux
®

Application Tuning Guide for SGI
®

X86-64 Based Systems

To determine active processes, use the ps(1) command, which displays a snapshot of
the process table. The ps --A command selects all the processes currently running
on a system as follows:

[user@profit user]# ps -A

PID TTY TIME CMD

1 ? 00:00:06 init

2 ? 00:00:00 migration/0

3 ? 00:00:00 migration/1
4 ? 00:00:00 migration/2

5 ? 00:00:00 migration/3

6 ? 00:00:00 migration/4

...

1086 ? 00:00:00 sshd
1120 ? 00:00:00 xinetd

1138 ? 00:00:05 ntpd

1171 ? 00:00:00 arrayd

1363 ? 00:00:01 amd

1420 ? 00:00:00 crond
1490 ? 00:00:00 xfs

1505 ? 00:00:00 sesdaemon

1535 ? 00:00:01 sesdaemon

1536 ? 00:00:00 sesdaemon

1538 ? 00:00:00 sesdaemon

To monitor running processes, use the top(1) command. This command displays a
sorted list of top CPU utilization processes as shown in Figure 4-5 on page 36.

007–5646–001 35

4: Monitoring Tools

Figure 4-5 Using top(1) to Show Top CPU Utilization processes

The vmstat(1) command reports virtual memory statistics. It reports information
about processes, memory, paging, block IO, traps, and CPU activity. For more
information, see the vmstat(1) man page.

uv44-sys:~ # vmstat

procs -----------memory---------- ---swap-- -----io---- -system-- -----cpu------
r b swpd free buff cache si so bi bo in cs us sy id wa st

0 0 0 130301028 79868 1287576 0 0 1 0 8 7 0 0 100 0 0

The first report produced gives averages since the last reboot. Additional reports give
information on a sampling period of length delay. The process and memory reports
are instantaneous in either case.

The iostat(1) command is used for monitoring system input/output device loading
by observing the time the devices are active in relation to their average transfer rates.

36 007–5646–001

Linux
®

Application Tuning Guide for SGI
®

X86-64 Based Systems

The iostat command generates reports that can be used to change system
configuration to better balance the input/output load between physical disks. For
more information, see the iostat(1) man page.

uv44-sys:~ # iostat

Linux 2.6.32.13-0.4.1.1559.0.PTF-default (uv44-sys) 10/18/2010 _x86_64_

avg-cpu: %user %nice %system %iowait %steal %idle

0.18 0.00 0.04 0.02 0.00 99.77

Device: tps Blk_read/s Blk_wrtn/s Blk_read Blk_wrtn

sda 3.02 72.80 16.28 722432 161576

sdb 0.01 0.34 0.00 3419 0

The sar(1) command writes to standard output the contents of selected cumulative
activity counters in the operating system. The accounting system, based on the values
in the count and interval parameters, writes information the specified number of
times spaced at the specified intervals in seconds. For more information, see the
sar(1) man page.

uv44-sys:~ # sar

Linux 2.6.32.13-0.4.1.1559.0.PTF-default (uv44-sys) 10/18/2010 _x86_64_

12:58:47 PM LINUX RESTART

01:00:01 PM CPU %user %nice %system %iowait %steal %idle

01:10:01 PM all 0.00 0.00 0.01 0.01 0.00 99.99
01:20:01 PM all 0.00 0.00 0.00 0.00 0.00 99.99

01:30:01 PM all 0.00 0.00 0.01 0.00 0.00 99.99

01:40:01 PM all 0.02 0.00 0.01 0.01 0.00 99.96

01:50:01 PM all 0.03 0.00 0.01 0.02 0.00 99.94

02:00:01 PM all 0.12 0.00 0.01 0.01 0.00 99.86
02:10:01 PM all 0.01 0.00 0.01 0.00 0.00 99.98

02:20:01 PM all 0.76 0.00 0.04 0.00 0.00 99.20

02:30:01 PM all 0.28 0.00 0.01 0.00 0.00 99.71

02:40:01 PM all 0.27 0.00 0.14 0.05 0.00 99.54

02:50:01 PM all 0.00 0.00 0.01 0.00 0.00 99.99

03:00:01 PM all 0.00 0.00 0.01 0.03 0.00 99.96
03:10:01 PM all 0.20 0.00 0.03 0.01 0.00 99.76

03:20:01 PM all 0.02 0.00 0.01 0.01 0.00 99.96

007–5646–001 37

4: Monitoring Tools

03:30:01 PM all 0.15 0.00 0.08 0.00 0.00 99.77
03:40:01 PM all 1.03 0.00 0.10 0.08 0.00 98.79

Average: all 0.18 0.00 0.03 0.02 0.00 99.77

Memory Statistics and nodeinfo Command

nodeinfo(1) is a tool for monitoring per-node NUMA memory statistics on SGI Altix
and Altix UV systems. The nodeinfo tool reads
/sys/devices/system/node/*/meminfo and
/sys/devices/system/node/*/numastat on the local system to gather NUMA
memory statistics.

Sample memory statistic from the nodeinfo(1) command are, as follows:

uv44-sys:~ # nodeinfo

Memory Statistics Tue Oct 26 12:01:58 2010

uv44-sys

------------------------- Per Node KB -------------------------------- ------ Preferred Alloc ------- -- Loc/

node Total Free Used Dirty Anon Slab hit miss foreign interlv local

0 16757488 16277084 480404 52 34284 36288 20724 0 0 0 20720

1 16777216 16433988 343228 68 6772 17708 4477 0 0 0 3381

2 16777216 16438568 338648 76 6908 12620 1804 0 0 0 709

3 16760832 16429844 330988 56 2820 16836 1802 0 0 0 708

4 16777216 16444408 332808 88 10124 13588 1517 0 0 0 417

5 16760832 16430300 330532 72 1956 17304 4546 0 0 0 3453

6 16777216 16430788 346428 36 3236 15292 3961 0 0 0 2864

7 16760832 16435532 325300 44 1220 14800 3971 0 0 0 2877

TOT 134148848 131320512 2828336 492 67320 144436 42802 0 0 0 35129

Press "h" for help

From an interactive nodeinfo session, enter h for a help statement:

Display memory statistics by node.

q quit

+ Increase starting node number. Used only if more nodes than will

fit in the current window.
- Decrease starting node number. Used only if more nodes than will

fit in the current window.

b Start output with node 0.

e Show highest node number.

k show sizes in KB.
m show sizes in MB.

38 007–5646–001

Linux
®

Application Tuning Guide for SGI
®

X86-64 Based Systems

p show sizes in pages.
t Change refresh rate.

A Show/Hide memory policy stats.

H Show/Hide hugepage info.

L Show/Hide LRU Queue stats.

Field definitions:

hit - page was allocated on the preferred node

miss - preferred node was full. Allocation occurred on THIS node

by a process running on another node that was full

foreign - Preferred node was full. Had to allocate somewhere
else.

interlv - allocation was for interleaved policy

local - page allocated on THIS node by a process running on THIS node
remote - page allocated on THIS node by a process running on ANOTHER node

(press any key to exit from help screen)

For more information on using nodeinfo to view memory consumption on the
nodes assigned to your job, see "Other ccNUMA Performance Issues" on page 99.

007–5646–001 39

Chapter 5

Data Placement Tools

This chapter describes data placement tools you can use on an SGI Altix system. It
covers the following topics:

• "Data Placement Tools Overview" on page 41

• "taskset Command" on page 44

• "dplace Command" on page 46

• "dlook Command" on page 55

• "omplace Command" on page 61

• "numactl Command" on page 61

• "Installing NUMA Tools" on page 62

• "An Overview of the Advantages Gained by Using Cpusets" on page 62

Data Placement Tools Overview
On an symmetric multiprocessor (SMP) machine, all data is visible from all
processors. NonUniform Memory Access (NUMA) machines also have a shared
address space. In both cases, there is a single shared memory space and a single
operating system instance. However, in an SMP machine, each processor is
functionally identical and has equal time access to every memory address. In
contrast, a NUMA system has a shared address space, but the access time to memory
vary over physical address ranges and between processing elements. The Intel Xeon
7500 series processor (Nehalem i7 architecture) is an example of NUMA architecture.
Each processor has its own memory and can address the memory attached to another
processor through the Quick Path Interconnect (QPI).

The Altix UV 1000 series is a family of multiprocessor distributed shared memory
(DSM) computer systems that initially scale from 32 to 4,096 Intel processor cores as a
cache-coherent single system image (SSI). The Altix UV 100 series is a family of
multiprocessor distributed shared memory (DSM) computer systems that initially
scale from 16 to 768 Intel processor cores as a cache-coherent SSI.

007–5646–001 41

5: Data Placement Tools

In both Altix UV series systems, there are two levels of NUMA: intranode managed
by the QPI and internode managed through the HUB ASIC and NUMAlink 5.

For cc-NUMA systems like the Altix UV 100 or Altix UV 1000, there is a performance
penalty to access remote memory versus local memory. Because the Linux operating
system has a tendency to migrate processes, the importance of using a placement tool
becomes more apparent. Various data placement tools are described in this section.

For a detailed overview of Altix UV system architecture, see the SGI Altix UV 100
System User’s Guide or SGI Altix UV 1000 System User’s Guide

Special optimization applies to SGI Altix systems to exploit multiple paths to
memory, as follows:

• By default, all pages are allocated with a “first touch” policy.

• The initialization loop, if executed serially, will get pages from single node.

• In the parallel loop, multiple processors will access that one memory.

So, perform initialization in parallel, such that each processor initializes data that it is
likely to access later for calculation.

Figure 5-1 on page 43, shows how to code to get good data placement.

42 007–5646–001

Linux
®

Application Tuning Guide for SGI
®

X86-64 Based Systems

Figure 5-1 Coding to Get Good Data Placement

Placement facilities include cpusets, taskset(1), and dplace(1), all built upon
CpuMemSets API:

• cpusets — Named subsets of system cpus/memories, used extensively in batch
environments.

• taskset and dplace — Avoid poor data locality caused by process or thread
drift from CPU to CPU.

– taskset restricts execution to the listed set of CPUs (see the taskset -c
--cpu-list option); however, processes are still free to move among listed
CPUs.

– dplace binds processes to specified CPUs in round-robin fashion; once
pinned, they do not migrate. Use this for high performance and reproducibility
of parallel codes.

007–5646–001 43

5: Data Placement Tools

For more information on CpuMemSets and cpusets, see chapter 4, “CPU Memory Sets
and Scheduling” and chapter 5, “Cpuset System”, respectively, in the Linux Resource
Administration Guide.

taskset Command
The taskset(1) command retrieves or sets a CPU affinity of a process, as follows:

taskset [options] mask command [arg]...

taskset [options] -p [mask] pid

The taskset command is used to set or retrieve the CPU affinity of a running
process given its PID or to launch a new command with a given CPU affinity. CPU
affinity is a scheduler property that "bonds" a process to a given set of CPUs on the
system. The Linux scheduler will honor the given CPU affinity and the process will
not run on any other CPUs. Note that the Linux scheduler also supports natural CPU
affinity; the scheduler attempts to keep processes on the same CPU as long as
practical for performance reasons. Therefore, forcing a specific CPU affinity is useful
only in certain applications.

The CPU affinity is represented as a bitmask, with the lowest order bit corresponding
to the first logical CPU and the highest order bit corresponding to the last logical
CPU. Not all CPUs may exist on a given system but a mask may specify more CPUs
than are present. A retrieved mask will reflect only the bits that correspond to CPUs
physically on the system. If an invalid mask is given (that is, one that corresponds to
no valid CPUs on the current system) an error is returned. The masks are typically
given in hexadecimal. For example:

0x00000001 is processor #0

0x00000003 is processors #0 and #1

0xFFFFFFFF is all processors (#0 through #31)

When taskset returns, it is guaranteed that the given program has been scheduled
to a legal CPU.

The taskset command does not pin a task to a specific CPU. It only restricts a task
so that it does not run on any CPU that is not in the cpulist. For example, if you
use taskset to launch an application that forks multiple tasks, it is possible that
multiple tasks will initially be assigned to the same CPU even though there are idle
CPUs that are in the cpulist. Scheduler load balancing software will eventually
distribute the tasks so that CPU bound tasks run on different CPUs. However, the

44 007–5646–001

Linux
®

Application Tuning Guide for SGI
®

X86-64 Based Systems

exact placement is not predictable and can vary from run-to-run. After the tasks are
evenly distributed (assuming that happens), nothing prevents tasks from jumping to
different CPUs. This can affect memory latency since pages that were node-local
before the jump may be remote after the jump.

If you are running an MPI application, SGI recommends that you do not use the
taskset command. The taskset command can pin the MPI shepherd process
(which is a waste of a CPU) and then putting the remaining working MPI rank on
one of the CPUs that already had some other rank running on it. Instead of taskset,
SGI recommends using the dplace(1) (see "dplace Command" on page 46) or the
environment variable MPI_DSM_CPULIST. The following example assumes a job
running on eight CPUs. For example:

mpirun -np 8 dplace -s1 -c10,11,16-21 myMPIapplication ...

To set MPI_DSM_CPULIST variable, perform a command similar to the following:

setenv MPI_DSM_CPULIST 10,11,16-21 mpirun -np 8 myMPIapplication ...

If they are using a batch scheduler that creates and destroys cpusets dynamically, you
should use MPI_DSM_DISTRIBUTE environment variable instead of either
MPI_DSM_CPULIST environment variable or the dplace command.

For more detailed information, see the taskset(1) man page.

To run an executable on CPU 1 (the cpumask for CPU 1 is 0x2), perform the following:

taskset 0x2 executable name

To move pid 14057 to CPU 0 (the cpumask for cpu 0 is 0x1), perform the following:

taskset -p 0x1 14057

To run an MPI Abaqus/Std job on an Altix system with eight CPUs, perform the
following:

taskset -c 8-15 ./runme < /dev/null &

The stdin is redirected to /dev/null to avoid a SIGTTIN signal for MPT
applications.

007–5646–001 45

5: Data Placement Tools

The following example uses the taskset command to lock a given process to a
particular CPU (CPU5) and then uses the profile(1) command to profile it. It then
shows how to use taskset to move the process to another CPU (CPU3).

taskset -p -c 5 16269

pid 16269’s current affinity list: 0-15

pid 16269’s new affinity list: 5

taskset -p 16269 -c 3

pid 16269’s current affinity list: 5
pid 16269’s new affinity list: 3

dplace Command
You can use the dplace(1) command to bind a related set of processes to specific
CPUs or nodes to prevent process migration. This can improve the performance of
your application since it increases the percentage of memory accesses that are local.

Using the dplace Command

The dplace command allows you to control the placement of a process onto
specified CPUs, as follows:

dplace [-e] [-c cpu_numbers] [-s skip_count] [-n process_name] \

[-x skip_mask] [-r [l|b|t]] [-o log_file] [-v 1|2] \

command [command-args]

dplace [-p placement_file] [-o log_file] command [command-args]
dplace [-q] [-qq] [-qqq]

Scheduling and memory placement policies for the process are set up according to
dplace command line arguments.

By default, memory is allocated to a process on the node on which the process is
executing. If a process moves from node to node while it running, a higher
percentage of memory references are made to remote nodes. Because remote accesses
typically have higher access times, process performance can be diminished. CPU
instruction pipelines also have to be reloaded.

46 007–5646–001

Linux
®

Application Tuning Guide for SGI
®

X86-64 Based Systems

You can use the dplace command to bind a related set of processes to specific CPUs
or nodes to prevent process migrations. In some cases, this improves performance
since a higher percentage of memory accesses are made to local nodes.

Processes always execute within a CpuMemSet. The CpuMemSet specifies the CPUs
on which a process can execute. By default, processes usually execute in a
CpuMemSet that contains all the CPUs in the system (for detailed information on
CpusMemSets, see the Linux Resource Administration Guide).

The dplace command invokes an SGI kernel hook (module called numatools) to
create a placement container consisting of all the CPUs (or a or a subset of CPUs) of a
cpuset. The dplace process is placed in this container and by default is bound to the
first CPU of the cpuset associated with the container. Then dplace invokes exec to
execute the command.

The command executes within this placement container and remains bound to the
first CPU of the container. As the command forks child processes, they inherit the
container and are bound to the next available CPU of the container.

If you do not specify a placement file, dplace binds processes sequentially in a
round-robin fashion to CPUs of the placement container. For example, if the current
cpuset consists of physical CPUs 2, 3, 8, and 9, the first process launched by dplace
is bound to CPU 2. The first child process forked by this process is bound to CPU 3,
the next process (regardless of whether it is forked by parent or child) to 8, and so on.
If more processes are forked than there are CPUs in the cpuset, binding starts over
with the first CPU in the cpuset.

For more information on dplace(1) and examples of how to use the command, see
the dplace(1) man page.

The dplace(1) command accepts the following options:

• -c cpu_numbers: Specified as a list of cpus, optionally strided cpu ranges, or a
striding pattern. Example: "-c 1", "-c 2-4", "-c 1,4-8,3", "-c 2-8:3", "-c
CS", "-c BT". The specification "-c 2-4" is equivalent to "-c 2,3,4" and "-c
2-8:3" is equivalent to 2,5,8. Ranges may also be specified in reverse order: "-c
12-8" is equivalent to 12,11,10,9,8. CPU numbers are NOT physical cpu
numbers. They are logical cpu number that are relative to the cpus that are in the
set of allowed cpus as specified by the current cpuset. A cpu value of "x" (or "*"),
in the argument list for -c option, indicates that binding should not be done for
that process."x" should be used only if the -e option is also used. Cpu numbers
start at 0. For striding patterns any subset of the characters (B)lade, (S)ocket,
(C)ore, (T)hread may be used and their ordering specifies the nesting of the

007–5646–001 47

5: Data Placement Tools

iteration. For example "SC" means to iterate all the cores in a socket before moving
to the next CPU socket, while "CB" means to pin to the first core of each blade,
then the second core of every blade, etc. For best results, use the -e option when
using stride patterns. If the -c option is not specified, all cpus of the current
cpuset are available. The command itself (which is exec’d by dplace) is the first
process to be placed by the -c cpu_numbers.

• -e: Exact placement. As processes are created, they are bound to cpus in the exact
order that the cpus are specified in the cpu list. Cpu numbers may appear
multiple times in the list. A cpu value of "x" indicates that binding should not be
done for that process. If the end of the list is reached, binding starts over at the
beginning of the list.

• -o: Write a trace file to Write a trace file to <log file> that decribes the placement
actions that were made for each fork, exec, and so on. Each line contains a
timestamp, process id:thread number, cpu that task was executing on, taskname |
placement action. Works with version 2 only.

• -s skip_count: Skips the first skip_count processes before starting to place
processes onto CPUs. This option is useful if the first skip_count processes are
“shepherd" processes that are used only for launching the application. If
skip_count is not specified, a default value of 0 is used.

• -n process_name: Only processes named process_name are placed. Other processes
are ignored and are not explicitly bound to CPUs.

The process_name argument is the basename of the executable.

• -r: Specifies that text should be replicated on the node or nodes where the
application is running. In some cases, replication will improve performance by
reducing the need to make offnode memory references for code. The replication
option applies to all programs placed by the dplace command. See the dplace(5)
man page for additional information on text replication. The replication options
are a string of one or more of the following characters:

l Replicate library text

b Replicate binary (a.out) text

t Thread round-robin option

• -x skip_mask: Provides the ability to skip placement of processes. The skip_mask
argument is a bitmask. If bit N of skip_mask is set, then the N+1th process that
is forked is not placed. For example, setting the mask to 6 prevents the second
and third processes from being placed. The first process (the process named by
the command) will be assigned to the first CPU. The second and third processes

48 007–5646–001

Linux
®

Application Tuning Guide for SGI
®

X86-64 Based Systems

are not placed. The fourth process is assigned to the second CPU, and so on. This
option is useful for certain classes of threaded applications that spawn a few
helper processes that typically do not use much CPU time.

Note: OpenMP with Intel applications should be placed using the -x option
with a skip_mask of 2 (-x2). This could change in future versions of OpenMP.
For applications compiled using the Native Posix Thread Library (NPTL), use the
-x2 option.

• -v: Provides the ability to run in version 1 or version 2 compatibility mode if the
kernel support is available. If not specified, version 2 compatibility is selected. See
COMPATIBILITY section of the dplace(1) man page for more details. Note:
version 1 requires kernel support for PAGG.

• -p placement_file: Specifies a placement file that contains additional directives that
are used to control process placement.

• command [command-args]: Specifies the command you want to place and its
arguments.

• -q: Lists the global count of the number of active processes that have been placed
(by dplace) on each CPU in the current cpuset. Note that CPU numbers are
logical CPU numbers within the cpuset, not physical CPU numbers. If specified
twice, lists the current dplace jobs that are running. If specified three times, lists
the current dplace jobs and the tasks that are in each job.

Example 5-1 Using the dplace command with MPI Programs

You can use the dplace command to improve placement of MPI programs on
NUMA systems and verify placement of certain data structures of a long running
MPI program by running a command such as the following:

mpirun -np 64 /usr/bin/dplace -s1 -c 0-63 ./a.out

You can then use the dlook(1) command to verify placement of certain data structures
of a long running MPI program by using the dlook command in another window on
one of the slave thread PIDs to verify placement. For more information on using the
dlook command, see "dlook Command" on page 55 and the dlook(1) man page.

007–5646–001 49

5: Data Placement Tools

Example 5-2 Using dplace command with OpenMP Programs

To run an OpenMP program on logical CPUs 4 through 7 within the current cpuset,
perform the following:

%efc -o prog -openmp -O3 program.f
%setenv OMP_NUM_THREADS 4
%dplace -x6 -c4-7 ./prog

The dplace(1) command has a static load balancing feature so that you do not
necessarily have to supply a CPU list. To place prog1 on logical CPUs 0 through 3
and prog2 on logical CPUs 4 through 7, perform the following:

%setenv OMP_NUM_THREADS 4
%dplace -x6 ./prog1 &
%dplace -x6 ./prog2 &

You can use the dplace -q command to display the static load information.

Example 5-3 Using the dplace command with Linux commands

The following examples assume that the command is executed from a shell running
in a cpuset consisting of physical CPUs 8 through 15.

Command Run Location

dplace -c2 date Runs the date command on physical CPU 10.

dplace make linux Runs gcc and related processes on physical CPUs 8
through 15.

dplace -c0-4,6
make linux

Runs gcc and related processes on physical CPUs 8
through 12 or 14.

taskset 4,5,6,7
dplace app

The taskset command restricts execution to physical
CPUs 12 through 15. The dplace command
sequentially binds processes to CPUs 12 through 15.

To use the dplace command accurately, you should know how your placed tasks are
being created in terms of the fork, exec, and pthread_create calls. Determine
whether each of these worker calls are an MPI rank task or are they groups of
pthreads created by rank tasks? Here is an example of two MPI ranks, each creating
three threads:

cat <<EOF > placefile
firsttask cpu=0

50 007–5646–001

Linux
®

Application Tuning Guide for SGI
®

X86-64 Based Systems

exec name=mpiapp cpu=1
fork name=mpiapp cpu=4-8:4 exact

thread name=mpiapp oncpu=4 cpu=5-7 exact thread name=mpiapp oncpu=8

cpu=9-11 exact EOF

mpirun is placed on cpu 0 in this example # the root mpiapp is
placed on cpu 1 in this example

or, if your version of dplace supports the "cpurel=" option:

firsttask cpu=0

fork name=mpiapp cpu=4-8:4 exact

thread name=mpiapp oncpu=4 cpurel=1-3 exact

create 2 rank tasks, each will pthread_create 3 more # ranks will be

on 4 and 8

thread children on 5,6,7 9,10,11
dplace -p placefile mpirun -np 2 ~cpw/bin/mpiapp -P 3 -l

exit

You can use the debugger to determine if it is working. It should show two MPI rank
applications, each with three pthreads, as follows:

>> pthreads | grep mpiapp

px *(task_struct *)e00002343c528000 17769 17769 17763 0 mpiapp
member task: e000013817540000 17795 17769 17763 0 5 mpiapp

member task: e000013473aa8000 17796 17769 17763 0 6 mpiapp

member task: e000013817c68000 17798 17769 17763 0 mpiapp

px *(task_struct *)e0000234704f0000 17770 17770 17763 0 mpiapp

member task: e000023466ed8000 17794 17770 17763 0 9 mpiapp
member task: e00002384cce0000 17797 17770 17763 0 mpiapp

member task: e00002342c448000 17799 17770 17763 0 mpiapp

And you can use the debugger, to see a root application, the parent of the two MPI
rank applications, as follows:

>> ps | grep mpiapp

0xe00000340b300000 1139 17763 17729 1 0xc800000 - mpiapp

0xe00002343c528000 1139 17769 17763 0 0xc800040 - mpiapp

0xe0000234704f0000 1139 17770 17763 0 0xc800040 8 mpiapp

007–5646–001 51

5: Data Placement Tools

Placed as specified:

>> oncpus e00002343c528000 e000013817540000 e000013473aa8000
>> e000013817c68000 e0

000234704f0000 e000023466ed8000 e00002384cce0000 e00002342c448000

task: 0xe00002343c528000 mpiapp cpus_allowed: 4

task: 0xe000013817540000 mpiapp cpus_allowed: 5

task: 0xe000013473aa8000 mpiapp cpus_allowed: 6

task: 0xe000013817c68000 mpiapp cpus_allowed: 7
task: 0xe0000234704f0000 mpiapp cpus_allowed: 8

task: 0xe000023466ed8000 mpiapp cpus_allowed: 9

task: 0xe00002384cce0000 mpiapp cpus_allowed: 10

task: 0xe00002342c448000 mpiapp cpus_allowed: 11

dplace for Compute Thread Placement Troubleshooting Case Study

This section describes common reasons why compute threads do not end up on
unique processors when using commands such a dplace(1) or profile.pl (see
"Profiling with PerfSuite" on page 17).

In the example that follows, a user used the dplace -s1 -c0-15 command to bind
16 processes to run on 0-15 CPUs. However, output from the top(1) command shows
only 13 CPUs running with CPUs 13, 14, and 15 still idle and CPUs 0, 1 and 2 are
shared with 6 processes.

263 processes: 225 sleeping, 18 running, 3 zombie, 17 stopped

CPU states: cpu user nice system irq softirq iowait idle

total 1265.6% 0.0% 28.8% 0.0% 11.2% 0.0% 291.2%

cpu00 100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

cpu01 90.1% 0.0% 0.0% 0.0% 9.7% 0.0% 0.0%

cpu02 99.9% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

cpu03 99.9% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

cpu04 100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

cpu05 100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

52 007–5646–001

Linux
®

Application Tuning Guide for SGI
®

X86-64 Based Systems

cpu06 100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

cpu07 88.4% 0.0% 10.6% 0.0% 0.8% 0.0% 0.0%

cpu08 100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

cpu09 99.9% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

cpu10 99.9% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

cpu11 88.1% 0.0% 11.2% 0.0% 0.6% 0.0% 0.0%

cpu12 99.7% 0.0% 0.2% 0.0% 0.0% 0.0% 0.0%

cpu13 0.0% 0.0% 2.5% 0.0% 0.0% 0.0% 97.4%

cpu14 0.8% 0.0% 1.6% 0.0% 0.0% 0.0% 97.5%

cpu15 0.0% 0.0% 2.4% 0.0% 0.0% 0.0% 97.5%

Mem: 60134432k av, 15746912k used, 44387520k free, 0k shrd,

672k buff

351024k active, 13594288k inactive

Swap: 2559968k av, 0k used, 2559968k free

2652128k cached

PID USER PRI NI SIZE RSS SHARE STAT %CPU %MEM TIME CPU COMMAND

7653 ccao 25 0 115G 586M 114G R 99.9 0.9 0:08 3 mocassin

7656 ccao 25 0 115G 586M 114G R 99.9 0.9 0:08 6 mocassin

7654 ccao 25 0 115G 586M 114G R 99.8 0.9 0:08 4 mocassin

7655 ccao 25 0 115G 586M 114G R 99.8 0.9 0:08 5 mocassin

7658 ccao 25 0 115G 586M 114G R 99.8 0.9 0:08 8 mocassin

7659 ccao 25 0 115G 586M 114G R 99.8 0.9 0:08 9 mocassin

007–5646–001 53

5: Data Placement Tools

7660 ccao 25 0 115G 586M 114G R 99.8 0.9 0:08 10 mocassin

7662 ccao 25 0 115G 586M 114G R 99.7 0.9 0:08 12 mocassin

7657 ccao 25 0 115G 586M 114G R 88.5 0.9 0:07 7 mocassin

7661 ccao 25 0 115G 586M 114G R 88.3 0.9 0:07 11 mocassin

7649 ccao 25 0 115G 586M 114G R 55.2 0.9 0:04 2 mocassin

7651 ccao 25 0 115G 586M 114G R 54.1 0.9 0:03 1 mocassin

7650 ccao 25 0 115G 586M 114G R 50.0 0.9 0:04 0 mocassin

7647 ccao 25 0 115G 586M 114G R 49.8 0.9 0:03 0 mocassin

7652 ccao 25 0 115G 586M 114G R 44.7 0.9 0:04 2 mocassin

7648 ccao 25 0 115G 586M 114G R 35.9 0.9 0:03 1 mocassin

An application can start some threads executing for a very short time yet the threads
still have taken a token in the CPU list. Then, when the compute threads are finally
started, the list is exhausted and restarts from the beginning. Consequently, some
threads end up sharing the same CPU. To bypass this, try to eliminate the "ghost"
thread creation, as follows:

• Check for a call to the "system" function. This is often responsible for the
placement failure due to unexpected thread creation.

• When all the compute processes have the same name, you can do this by issuing a
command, such as the following:

dplace -c0-15 -n compute-process-name ...

• You can also run dplace -e -c0-32 on 16 CPUs to understand the pattern of
the thread creation. If by chance, this pattern is the same from one run to the
other (unfortunately race between thread creation often occurs), you can find the
right flag to dplace. For example, if you want to run on CPU 0-3, with dplace
-e -C0-16 and you see that threads are always placed on CPU 0, 1, 5, and 6,
then dplace -e -c0,1,x,x,x,2,3 or dplace -x24 -c0-3 (24 =11000, place
the 2 first and skip 3 before placing) should place your threads correctly.

54 007–5646–001

Linux
®

Application Tuning Guide for SGI
®

X86-64 Based Systems

dlook Command
You can use dlook(1) to find out where in memory the operating system is placing
your application’s pages and how much system and user CPU time it is consuming.

Using the dlook Command

The dlook(1) command allows you to display the memory map and CPU usage for a
specified process as follows:

dlook [-a] [-p] [-h] [-l] [-n] [-o outfile] [-s secs] command [command-args]
dlook [-a] [-p] [-h] [-l] [-n] [-o outfile] [-s secs] pid

For each page in the virtual address space of the process, dlook(1) prints the
following information:

• The object that owns the page, such as a file, SYSV shared memory, a device
driver, and so on.

• The type of page, such as random access memory (RAM), FETCHOP, IOSPACE,
and so on.

• If the page type is RAM memory, the following information is displayed:

– Memory attributes, such as, SHARED, DIRTY, and so on

– The node on which the page is located

– The physical address of the page (optional)

• Optionally, the dlook(1) command also prints the amount of user and system
CPU time that the process has executed on each physical CPU in the system.

Two forms of the dlook(1) command are provided. In one form, dlook prints
information about an existing process that is identified by a process ID (PID). To use
this form of the command, you must be the owner of the process or be running with
root privilege. In the other form, you use dlook on a command you are launching
and thus are the owner.

The dlook(1) command accepts the following options:

• -a: Shows the physical addresses of each page in the address space.

• -h: Explicitly lists holes in the address space.

007–5646–001 55

5: Data Placement Tools

• -l: Shows libraries.

• -p: Show raw hardware page table entries.

• -o: Outputs to file name (outfile). If not specified, output is written to stdout.

• -s: Specifies a sample interval in seconds. Information about the process is
displayed every second (secs) of CPU usage by the process.

An example for the sleep process with a PID of 4702 is as follows:

Note: The output has been abbreviated to shorten the example and bold headings
added for easier reading.

dlook 4702

Peek: sleep

Pid: 4702 Thu Aug 22 10:45:34 2002

Cputime by cpu (in seconds):
user system

TOTAL 0.002 0.033

cpu1 0.002 0.033

Process memory map:
2000000000000000-2000000000030000 r-xp 0000000000000000 04:03 4479 /lib/ld-2.2.4.so

[2000000000000000-200000000002c000] 11 pages on node 1 MEMORY|SHARED

2000000000030000-200000000003c000 rw-p 0000000000000000 00:00 0

[2000000000030000-200000000003c000] 3 pages on node 0 MEMORY|DIRTY

...

2000000000128000-2000000000370000 r-xp 0000000000000000 04:03 4672 /lib/libc-2.2.4.so

[2000000000128000-2000000000164000] 15 pages on node 1 MEMORY|SHARED

[2000000000174000-2000000000188000] 5 pages on node 2 MEMORY|SHARED
[2000000000188000-2000000000190000] 2 pages on node 1 MEMORY|SHARED

[200000000019c000-20000000001a8000] 3 pages on node 1 MEMORY|SHARED

[20000000001c8000-20000000001d0000] 2 pages on node 1 MEMORY|SHARED

[20000000001fc000-2000000000204000] 2 pages on node 1 MEMORY|SHARED

[200000000020c000-2000000000230000] 9 pages on node 1 MEMORY|SHARED
[200000000026c000-2000000000270000] 1 page on node 1 MEMORY|SHARED

56 007–5646–001

Linux
®

Application Tuning Guide for SGI
®

X86-64 Based Systems

[2000000000284000-2000000000288000] 1 page on node 1 MEMORY|SHARED
[20000000002b4000-20000000002b8000] 1 page on node 1 MEMORY|SHARED

[20000000002c4000-20000000002c8000] 1 page on node 1 MEMORY|SHARED

[20000000002d0000-20000000002d8000] 2 pages on node 1 MEMORY|SHARED

[20000000002dc000-20000000002e0000] 1 page on node 1 MEMORY|SHARED

[2000000000340000-2000000000344000] 1 page on node 1 MEMORY|SHARED
[200000000034c000-2000000000358000] 3 pages on node 2 MEMORY|SHARED

....

20000000003c8000-20000000003d0000 rw-p 0000000000000000 00:00 0

[20000000003c8000-20000000003d0000] 2 pages on node 0 MEMORY|DIRTY

The dlook command gives the name of the process (Peek: sleep), the process ID,
and time and date it was invoked. It provides total user and system CPU time in
seconds for the process.

Under the heading Process memory map, the dlook command prints information
about a process from the /proc/pid/cpu and /proc/pid/maps files. On the left, it
shows the memory segment with the offsets below in decimal. In the middle of the
output page, it shows the type of access, time of execution, the PID, and the object
that owns the memory (in this case, /lib/ld-2.2.4.so). The characters s or p
indicate whether the page is mapped as sharable (s) with other processes or is private
(p). The right side of the output page shows the number of pages of memory
consumed and on which nodes the pages reside. A page is 16, 384 bytes. Dirty
memory means that the memory has been modified by a user.

In the second form of the dlook command, you specify a command and optional
command arguments. The dlook command issues an exec call on the command and
passes the command arguments. When the process terminates, dlook prints
information about the process, as shown in the following example:

dlook date

Thu Aug 22 10:39:20 CDT 2002

Exit: date

Pid: 4680 Thu Aug 22 10:39:20 2002

Process memory map:

2000000000030000-200000000003c000 rw-p 0000000000000000 00:00 0

007–5646–001 57

5: Data Placement Tools

[2000000000030000-200000000003c000] 3 pages on node 3 MEMORY|DIRTY

20000000002dc000-20000000002e4000 rw-p 0000000000000000 00:00 0

[20000000002dc000-20000000002e4000] 2 pages on node 3 MEMORY|DIRTY

2000000000324000-2000000000334000 rw-p 0000000000000000 00:00 0
[2000000000324000-2000000000328000] 1 page on node 3 MEMORY|DIRTY

4000000000000000-400000000000c000 r-xp 0000000000000000 04:03 9657220 /bin/date

[4000000000000000-400000000000c000] 3 pages on node 1 MEMORY|SHARED

6000000000008000-6000000000010000 rw-p 0000000000008000 04:03 9657220 /bin/date
[600000000000c000-6000000000010000] 1 page on node 3 MEMORY|DIRTY

6000000000010000-6000000000014000 rwxp 0000000000000000 00:00 0

[6000000000010000-6000000000014000] 1 page on node 3 MEMORY|DIRTY

60000fff80000000-60000fff80004000 rw-p 0000000000000000 00:00 0

[60000fff80000000-60000fff80004000] 1 page on node 3 MEMORY|DIRTY

60000fffffff4000-60000fffffffc000 rwxp ffffffffffffc000 00:00 0

[60000fffffff4000-60000fffffffc000] 2 pages on node 3 MEMORY|DIRTY

If you use the dlook command with the -s secs option, the information is sampled at
regular internals. The output for the command dlook -s 5 sleep 50 is as follows:

Exit: sleep
Pid: 5617 Thu Aug 22 11:16:05 2002

Process memory map:

2000000000030000-200000000003c000 rw-p 0000000000000000 00:00 0
[2000000000030000-200000000003c000] 3 pages on node 3 MEMORY|DIRTY

2000000000134000-2000000000140000 rw-p 0000000000000000 00:00 0

20000000003a4000-20000000003a8000 rw-p 0000000000000000 00:00 0
[20000000003a4000-20000000003a8000] 1 page on node 3 MEMORY|DIRTY

20000000003e0000-20000000003ec000 rw-p 0000000000000000 00:00 0

[20000000003e0000-20000000003ec000] 3 pages on node 3 MEMORY|DIRTY

58 007–5646–001

Linux
®

Application Tuning Guide for SGI
®

X86-64 Based Systems

4000000000000000-4000000000008000 r-xp 0000000000000000 04:03 9657225 /bin/sleep
[4000000000000000-4000000000008000] 2 pages on node 3 MEMORY|SHARED

6000000000004000-6000000000008000 rw-p 0000000000004000 04:03 9657225 /bin/sleep

[6000000000004000-6000000000008000] 1 page on node 3 MEMORY|DIRTY

6000000000008000-600000000000c000 rwxp 0000000000000000 00:00 0

[6000000000008000-600000000000c000] 1 page on node 3 MEMORY|DIRTY

60000fff80000000-60000fff80004000 rw-p 0000000000000000 00:00 0

[60000fff80000000-60000fff80004000] 1 page on node 3 MEMORY|DIRTY

60000fffffff4000-60000fffffffc000 rwxp ffffffffffffc000 00:00 0

[60000fffffff4000-60000fffffffc000] 2 pages on node 3 MEMORY|DIRTY

You can run a Message Passing Interface (MPI) job using the mpirun command and
print the memory map for each thread, or redirect the ouput to a file, as follows:

Note: The output has been abbreviated to shorten the example and bold headings
added for easier reading.

mpirun -np 8 dlook -o dlook.out ft.C.8

Contents of dlook.out:

Exit: ft.C.8

Pid: 2306 Fri Aug 30 14:33:37 2002

Process memory map:

2000000000030000-200000000003c000 rw-p 0000000000000000 00:00 0

[2000000000030000-2000000000034000] 1 page on node 21 MEMORY|DIRTY

[2000000000034000-200000000003c000] 2 pages on node 12 MEMORY|DIRTY|SHARED

2000000000044000-2000000000060000 rw-p 0000000000000000 00:00 0

[2000000000044000-2000000000050000] 3 pages on node 12 MEMORY|DIRTY|SHARED

...

Exit: ft.C.8

Pid: 2310 Fri Aug 30 14:33:37 2002

007–5646–001 59

5: Data Placement Tools

Process memory map:

2000000000030000-200000000003c000 rw-p 0000000000000000 00:00 0

[2000000000030000-2000000000034000] 1 page on node 25 MEMORY|DIRTY

[2000000000034000-200000000003c000] 2 pages on node 12 MEMORY|DIRTY|SHARED

2000000000044000-2000000000060000 rw-p 0000000000000000 00:00 0

[2000000000044000-2000000000050000] 3 pages on node 12 MEMORY|DIRTY|SHARED

[2000000000050000-2000000000054000] 1 page on node 25 MEMORY|DIRTY

...

Exit: ft.C.8

Pid: 2307 Fri Aug 30 14:33:37 2002

Process memory map:

2000000000030000-200000000003c000 rw-p 0000000000000000 00:00 0

[2000000000030000-2000000000034000] 1 page on node 30 MEMORY|DIRTY

[2000000000034000-200000000003c000] 2 pages on node 12 MEMORY|DIRTY|SHARED

2000000000044000-2000000000060000 rw-p 0000000000000000 00:00 0

[2000000000044000-2000000000050000] 3 pages on node 12 MEMORY|DIRTY|SHARED

[2000000000050000-2000000000054000] 1 page on node 30 MEMORY|DIRTY

...

Exit: ft.C.8

Pid: 2308 Fri Aug 30 14:33:37 2002

Process memory map:

2000000000030000-200000000003c000 rw-p 0000000000000000 00:00 0

[2000000000030000-2000000000034000] 1 page on node 0 MEMORY|DIRTY

[2000000000034000-200000000003c000] 2 pages on node 12 MEMORY|DIRTY|SHARED

2000000000044000-2000000000060000 rw-p 0000000000000000 00:00 0

[2000000000044000-2000000000050000] 3 pages on node 12 MEMORY|DIRTY|SHARED

[2000000000050000-2000000000054000] 1 page on node 0 MEMORY|DIRTY

60 007–5646–001

Linux
®

Application Tuning Guide for SGI
®

X86-64 Based Systems

...

For more information on the dlook command, see the dlook man page.

omplace Command
The omplace(1) command is a tool for controlling the placement of MPI processes
and OpenMP threads.

The omplace command causes the successive threads in a hybrid MPI/OpenMP job
to be placed on unique CPUs. The CPUs are assigned in order from the effective CPU
list within the containing cpuset.

This command is a wrapper script for dplace(1) that can be used with MPI,
OpenMP, pthreads, and hybrid MPI/OpenMP and MPI/pthreads codes. It generates
the proper dplace placement file syntax automatically. It also supports some unique
options like block-strided CPU lists.

The CPU placement is performed by dynamically generating a placement file and
invoking dplace with the MPI job launch. For example, the threads in a 2-process
MPI program with 2 threads per process would be placed, as follows:

rank 0 thread 0 on CPU 0

rank 0 thread 1 on CPU 1

rank 1 thread 0 on CPU 2

rank 1 thread 1 on CPU 3

For more information, see the omplace(1) man page and “Run-Time Tuning” chapter
in the Message Passing Toolkit (MPT) User’s Guide.

numactl Command
The numactl(8) command runs processes with a specific NUMA scheduling or
memory placement policy. The policy is set for command and inherited by all of its
children. In addition it can set persistent policy for shared memory segments or files.
For more information, see the numactl(8) man page.

007–5646–001 61

5: Data Placement Tools

Installing NUMA Tools
To use the dlook(1), dplace(1), and topology(1) commands, you must load the
numatools kernel module. Perform the following steps:

1. To configure numatools kernel module to be started automatically during
system startup, use the chkconfig(8) command as follows:

chkconfig --add numatools

2. To turn on numatools, enter the following command:

/etc/rc.d/init.d/numatools start

This step will be done automatically for subsequent system reboots when
numatools are configured on by using the chkconfig(8) utility.

The following steps are required to disable numatools:

1. To turn off numatools, enter the following:

/etc/rc.d/init.d/numatools stop

2. To stop numatools from initiating after a system reboot, use the chkconfig(8)
command as follows:

chkconfig --del numatools

An Overview of the Advantages Gained by Using Cpusets
The cpuset facility is primarily a workload manager tool permitting a system
administrator to restrict the number of processor and memory resources that a
process or set of processes may use. A cpuset defines a list of CPUs and memory
nodes. A process contained in a cpuset may only execute on the CPUs in that cpuset
and may only allocate memory on the memory nodes in that cpuset. Essentially,
cpusets provide you with a CPU and memory containers or “soft partitions” within
which you can run sets of related tasks. Using cpusets on an SGI Altix UV system
improves cache locality and memory access times and can substantially improve an
application’s performance and runtime repeatability. Restraining all other jobs from
using any of the CPUs or memory resources assigned to a critical job minimizes
interference from other jobs on the system. For example, Message Passing Interface
(MPI) jobs frequently consist of a number of threads that communicate using message
passing interfaces. All threads need to be executing at the same time. If a single
thread loses a CPU, all threads stop making forward progress and spin at a barrier.

62 007–5646–001

Linux
®

Application Tuning Guide for SGI
®

X86-64 Based Systems

Cpusets can eliminate the need for a gang scheduler, provide isolation of one such job
from other tasks on a system, and facilitate providing equal resources to each thread
in a job. This results in both optimum and repeatable performance.

In addition to their traditional use to control the placement of jobs on the CPUs and
memory nodes of a system, cpusets also provide a convenient mechanism to control
the use of Hyper-Threading Technology.

Cpusets are represented in a hierarchical virtual file system. Cpusets can be nested
and they have file-like permissions.

The sched_setaffinity, mbind, and set_mempolicy system calls allow you to
specify the CPU and memory placement for individual tasks. On smaller or
limited-use systems, these calls may be sufficient.

The kernel cpuset facility provides additional support for system-wide management
of CPU and memory resources by related sets of tasks. It provides a hierarchical
structure to the resources, with filesystem-like namespace and permissions, and
support for guaranteed exclusive use of resources.

You can have a boot cpuset running the traditional daemon and server tasks and a
second cpuset to hold interactive telnet, rlogin and/or secure shell (SSH) user
sessions called the user cpuset.

Creating a user cpuset provides additional isolation between interactive user login
sessions and essential system tasks. For example, a user process in the user cpuset
consuming excessive CPU or memory resources will not seriously impact essential
system services in the boot cpuset.

This section covers the following topics:

• "Linux 2.6 Kernel Support for Cpusets" on page 64

• "Cpuset Facility Capabilities" on page 64

• "Initializing Cpusets" on page 65

• "How to Determine if Cpusets are Installed" on page 66

• "Fine-grained Control within Cpusets" on page 66

• "Cpuset Interaction with Other Placement Mechanism" on page 66

• "Cpusets and Thread Placement" on page 68

• "Safe Job Migration and Cpusets" on page 69

007–5646–001 63

5: Data Placement Tools

Linux 2.6 Kernel Support for Cpusets

The Linux 2.6 kernel provides the following support for cpusets:

• Each task has a link to a cpuset structure that specifies the CPUs and memory
nodes available for its use.

• Hooks in the sched_setaffinity system call, used for CPU placement, and in
the mbind system call, used for memory placement, ensure that any requested
CPU or memory node is available in that task’s cpuset.

• All tasks sharing the same placement constraints reference the same cpuset.

• Kernel cpusets are arranged in a hierarchical virtual file system, reflecting the
possible nesting of "soft partitions".

• The kernel task scheduler is constrained to only schedule a task on the CPUs in
that task’s cpuset.

• The kernel memory allocation mechanism is constrained to only allocate physical
memory to a task from the memory nodes in that task’s cpuset.

• The kernel memory allocation mechanism provides an economical, per-cpuset
metric of the aggregate memory pressure of the tasks in a cpuset. Memory pressure
is defined as the frequency of requests for a free memory page that is not easily
satisfied by an available free page.

• The kernel memory allocation mechanism provides an option that allows you to
request that memory pages used for file I/O (the kernel page cache) and
associated kernel data structures for file inodes and directories be evenly spread
across all the memory nodes in a cpuset. Otherwise, they are preferentially
allocated on whatever memory node that the task first accessed the memory page.

• You can control the memory migration facility in the kernel using per-cpuset files.
When the memory nodes allowed to a task by cpusets changes, any memory
pages no longer allowed on that node may be migrated to nodes now allowed.
For more information, see "Safe Job Migration and Cpusets" on page 69.

Cpuset Facility Capabilities

A cpuset constrains the jobs (set of related tasks) running in it to a subset of the
system’s memory and CPUs. The cpuset facility allows you and your system service
software to do the following:

64 007–5646–001

Linux
®

Application Tuning Guide for SGI
®

X86-64 Based Systems

• Create and delete named cpusets.

• Decide which CPUs and memory nodes are available to a cpuset.

• Attach a task to a particular cpuset.

• Identify all tasks sharing the same cpuset.

• Exclude any other cpuset from overlapping a given cpuset, thereby, giving the
tasks running in that cpuset exclusive use of those CPUs and memory nodes.

• Perform bulk operations on all tasks associated with a cpuset, such as varying the
resources available to that cpuset or hibernating those tasks in temporary favor of
some other job.

• Perform sub-partitioning of system resources using hierarchical permissions and
resource management.

Initializing Cpusets

The kernel, at system boot time, initializes one cpuset, the root cpuset, containing the
entire system’s CPUs and memory nodes. Subsequent user space operations can
create additional cpusets.

Mounting the cpuset virtual file system (VFS) at /dev/cpuset exposes the kernel
mechanism to user space. This VFS allows for nested resource allocations and the
associated hierarchical permission model.

You can initialize and perform other cpuset operations, using any of the these three
mechanisms, as follows:

• You can create, change, or query cpusets by using shell commands on
/dev/cpuset, such as echo(1), cat(1), mkdir(1), or ls(1).

• You can use the cpuset(1) command line utility to create or destroy cpusets or to
retrieve information about existing cpusets and to attach processes to existing
cpusets.

• You can use the libcpuset C programming application programming interface
(API) functions to query or change them from within your application. You can
find information about libcpuset at
/usr/share/doc/packages/libcpuset/libcpuset.html.

007–5646–001 65

5: Data Placement Tools

How to Determine if Cpusets are Installed

You can issue several commands to determine whether cpusets are installed on your
system, as follows:

1. Use the grep(1) command to search the/proc/filesystems for cpusets, as
follows:

% grep cpuset /proc/filesystems

nodev cpuset

2. Determine if cpuset tasks file is present on your system by changing directory
to /dev/cpuset and listing the content of the directory, as follows:

% cd /dev/cpuset

Directory: /dev/cpuset

% ls

cpu_exclusive cpus mem_exclusive mems notify_on_release

pagecache_list pagecache_local slabcache_local tasks

3. If the /dev/cpuset/tasks file is not present on your system, it means the
cpuset file system is not mounted (usually, it is automatically mounted when the
system was booted). As root, you can mount the cpuset file system, as follows:

% mount -t cpuset cpuset /dev/cpuset

Fine-grained Control within Cpusets

Within a single cpuset, use facilities such as taskset(1), dplace(1), first-touch
memory placement, pthreads, sched_setaffinity and mbind to manage processor
and memory placement to a more fine-grained level.

The user–level bitmask library supports convenient manipulation of multiword
bitmasks useful for CPUs and memory nodes. This bitmask library is required by and
designed to work with the cpuset library. You can find information on the bitmask
library on your system at
/usr/share/doc/packages/libbitmask/libbitmask.html.

Cpuset Interaction with Other Placement Mechanism

The Linux 2.6 kernel supports additional processor and memory placement
mechanisms, as follows:

66 007–5646–001

Linux
®

Application Tuning Guide for SGI
®

X86-64 Based Systems

Note: Use the uname(1) command to print out system information to make sure you
are running the Linux 2.6.x sn2 kernel, as follows:

% uname -r -s

Linux 2.6.27.19-5-default

• The sched_setaffinity(2) and sched_getaffinity(2) system calls set and
get the CPU affinity mask of a process. This determines the set of CPUs on which
the process is eligible to run. The taskset(1) command provides a command line
utility for manipulating the CPU affinity mask of a process using these system
calls. For more information, see the appropriate man page.

• The set_mempolicy system call sets the NUMA memory policy of the current
process to policy. A NUMA machine has different memory controllers with
different distances to specific CPUs. The memory policy defines in which node
memory is allocated for the process.

The get_mempolicy(2) system retrieves the NUMA policy of the calling process
or of a memory address, depending on the setting of flags. The numactl(8)
command provides a command line utility for manipulating the NUMA memory
policy of a process using these system calls.

• The mbind(2) system call sets the NUMA memory policy for the pages in a
specific range of a task’s virtual address space.

Cpusets are designed to interact cleanly with other placement mechanisms. For
example, a batch manager can use cpusets to control the CPU and memory placement
of various jobs; while within each job, these other kernel mechanisms are used to
manage placement in more detail. It is possible for a batch manager to change a job’s
cpuset placement while preserving the internal CPU affinity and NUMA memory
placement policy, without requiring any special coding or awareness by the affected
job.

Most jobs initialize their placement early in their timeslot, and jobs are rarely
migrated until they have been running for a while. As long a batch manager does not
try to migrate a job at the same time as it is adjusting its own CPU or memory
placement, there is little risk of interaction between cpusets and other kernel
placement mechanisms.

The CPU and memory node placement constraints imposed by cpusets always
override those of these other mechanisms.

007–5646–001 67

5: Data Placement Tools

Calls to the sched_setaffinity(2) system call automatically mask off CPUs that
are not allowed by the affected task’s cpuset. If a request results in all the CPUs being
masked off, the call fails with errno set to EINVAL. If some of the requested CPUs are
allowed by the task’s cpuset, the call proceeds as if only the allowed CPUs were
requested. The unallowed CPUs are silently ignored. If a task is moved to a different
cpuset, or if the CPUs of a cpuset are changed, the CPU affinity of the affected task or
tasks is lost. If a batch manager needs to preserve the CPU affinity of the tasks in a
job that is being moved, it should use the sched_setaffinity(2) and
sched_getaffinity(2) calls to save and restore each affected task’s CPU affinity
across the move, relative to the cpuset. The cpu_set_t mask data type supported by
the C library for use with the CPU affinity calls is different from the libbitmask
bitmasks used by libcpuset, so some coding will be required to convert between
the two, in order to calculate and preserve cpuset relative CPU affinity.

Similar to CPU affinity, calls to modify a task’s NUMA memory policy silently mask
off requested memory nodes outside the task’s allowed cpuset, and will fail if that
results in requested an empty set of memory nodes. Unlike CPU affinity, the NUMA
memory policy system calls to not support one task querying or modifying another
task’s policy. So the kernel automatically handles preserving cpuset relative NUMA
memory policy when either a task is attached to a different cpuset, or a cpusets mems
value setting is changed. If the old and new mems value sets have the same size, the
cpuset relative offset of affected NUMA memory policies is preserved. If the new
mems value is smaller, the old mems value relative offsets are folded onto the new
mems value, modulo the size of the new mems. If the new mems value is larger, then
just the first N nodes are used, where N is the size of the old mems value.

Cpusets and Thread Placement

If your job uses the placement mechanisms described in "Cpuset Interaction with
Other Placement Mechanism" on page 66 and operates under the control of a batch
manager, you cannot guarantee that a migration will preserve placement done using
the mechanisms. These placement mechanisms use system wide numbering of CPUs
and memory nodes, not cpuset relative numbering and the job might be migrated
without its knowledge while it is trying to adjust its placement. That is, between the
point where an application computes the CPU or memory node on which it wants to
place a thread and the point where it issues the sched_setaffinity(2), mbind(2)
or set_mempolicy(2) call to direct such a placement, the thread might be migrated
to a different cpuset, or its cpuset changed to different CPUs or memory nodes,
invalidating the CPU or memory node number it just computed.

68 007–5646–001

Linux
®

Application Tuning Guide for SGI
®

X86-64 Based Systems

The libcpuset library provides the following mechanisms to support cpuset relative
thread placement that is robust even if the job is being migrated using a batch
scheduler.

If your job needs to pin a thread to a single CPU, you can use the convenient
cpuset_pin function. This is the most common case.

If your job needs to implement some other variation of placement, such as to specific
memory nodes, or to more than one CPU, you can use the following functions to
safely guard such code from placement changes caused by job migration, as follows:

• cpuset_get_placement

• cpuset_equal_placement

• cpuset_free_placement

Safe Job Migration and Cpusets

Jobs that make use of cpuset aware thread pinning described in "Cpusets and Thread
Placement" on page 68 can be safely migrated to a different cpuset or have the CPUs
or memory nodes of the cpuset safely changed without destroying the per-thread
placement done within the job.

Procedure 5-1 Safe Job Migration Between Cpusets

To safely migrate a job to a different cpuset, perform the following steps:

1. Suspend the tasks in the job by sending their process group a SIGSTOP signal.

2. Use the cpuset_init_pidlist function and related pidlist functions to
determine the list of tasks in the job.

3. Use sched_getaffinity(2) to query the CPU affinity of each task in the job.

4. Create a new cpuset, under a temporary name, with the new desired CPU and
memory placement.

5. Invoke cpuset_migrate_all function to move the job’s tasks from the old
cpuset to the new cpuset.

6. Use cpuset_delete to delete the old cpuset.

7. Use rename(2) on the /dev/cpuset based path of the new temporary cpuset to
rename that cpuset to the to the old cpuset name.

007–5646–001 69

5: Data Placement Tools

8. Convert the results of the previous sched_getaffinity(2) calls to the new
cpuset placement, preserving cpuset relative offset by using the
cpuset_c_rel_to_sys_cpu and related functions.

9. Use sched_setaffinity(2) to reestablish the per-task CPU binding of each
thread in the job.

10. Resume the tasks in the job by sending their process group a SIGCONT signal.

The sched_getaffinity(2) and sched_setaffinity(2) C library calls are limited
by C library internals to systems with 1024 CPUs or less. To write code that will work
on larger systems, you should use the syscall(2) indirect system call wrapper to
directly invoke the underlying system call, bypassing the C library API for these calls.

The suspend and resume operation are required in order to keep tasks in the job from
changing their per thread CPU placement between steps three and six. The kernel
automatically migrates the per-thread memory node placement during step four. This
is necessary, because there is no way for one task to modify the NUMA memory
placement policy of another task. The kernel does not automatically migrate the
per-thread CPU placement, as this can be handled by the user level process doing the
migration.

Migrating a job from a larger cpuset (more CPUs or nodes) to a smaller cpuset will
lose placement information and subsequently moving that cpuset back to a larger
cpuset will not recover that information. This loss of CPU affinity can be avoided as
described above, using sched_getaffinity(2) and sched_setaffinity(2) to
save and restore the placement (affinity) across such a pair of moves. This loss of
NUMA memory placement information cannot be avoided because one task (the one
doing the migration) cannot save nor restore the NUMA memory placement policy of
another. So if a batch manager wants to migrate jobs without causing them to lose
their mbind(2) or set_mempolicy(2) placement, it should only migrate to cpusets
with at least as many memory nodes as the original cpuset.

For detailed information about using cpusets, see The “Cpusets on Linux” chapter in
the Linux Resource Administration Guide at at http://docs.sgi.com.

Application Performance on Large Altix UV Systems

This section describes cpuset settings you should pay particular attention to when
running applications on large SGI Altix UV 1000 series systems.

70 007–5646–001

Linux
®

Application Tuning Guide for SGI
®

X86-64 Based Systems

mem_exclusive

Flag (0 or 1). If set (1), the cpuset has exclusive use of its memory nodes (no sibling
or cousin may overlap). Also if set (1), the cpuset is a hardwall cpuset. See
“Hardwall” section in the cpuset(7) man page for more information. By default, this
is off (0). Newly created cpusets also initially default this to off (0).

mem_spreadpage

Flag (0 or 1). If set (1), pages in the kernel page cache (file-system buffers) are
uniformly spread across the cpuset. By default, this is off (0) in the top cpuset, and
inherited from the parent cpuset in newly created cpusets. See the “Memory Spread”
section in the cpuset(7) man page for more information.

mem_hardwall

Flag (0 or 1). If set (1), the cpuset is a Hardwall cpuset. See “Hardwall” section in the
cpuset(7) man page for more information. Unlike mem_exclusive, there is no
constraint on whether cpusets marked mem_hardwall may have overlapping
memory nodes with sibling or cousin cpusets. By default, this is off (0). Newly
created cpusets also initially default this to off (0).

007–5646–001 71

Chapter 6

Performance Tuning

After analyzing your code to determine where performance bottlenecks are occurring,
you can turn your attention to making your programs run their fastest. One way to
do this is to use multiple CPUs in parallel processing mode. However, this should be
the last step. The first step is to make your program run as efficiently as possible on a
single processor system and then consider ways to use parallel processing.

This chapter describes the process of tuning your application for a single processor
system, and then tuning it for parallel processing in the following sections:

• "Single Processor Code Tuning"

• "Multiprocessor Code Tuning" on page 82

It also describes how to improve the performance of floating-point programs and MPI
applications on SGI Altix UV series systems.

• "Floating-point Programs Performance" on page 94

• "MPInside Profiling Tool" on page 95

• "SGI PerfBoost" on page 96

• "Perfcatcher" on page 97

• "Performance Tuning Running MPI on Altix UV 100 and Altix UV 1000 Systems"
on page 97

Intel provides detailed application tuning information including the Intel Xeon
processor 5500 at this location
http://developer.intel.com/Assets/PDF/manual/248966.pdf and specific tuning
information tutorial for Nehalem (Intel Xeon 5500) at
http://software.intel.com/sites/webinar/tuning-your-application-for-nehalem/.

Single Processor Code Tuning
Several basic steps are used to tune performance of single-processor code:

• Get the expected answers and then tune performance. For details, see "Getting the
Correct Results" on page 74.

007–5646–001 73

6: Performance Tuning

• Use existing tuned code, such as that found in math libraries and scientific library
packages. For details, see "Using Tuned Code" on page 75.

• Determine what needs tuning. For details, see "Determining Tuning Needs" on
page 75.

• Use the compiler to do the work. For details, see "Using Compiler Options Where
Possible" on page 76.

• Consider tuning cache performance. For details, see "Tuning the Cache
Performance" on page 79.

• Set environment variables to enable higher-performance memory management
mode. For details, see "Managing Memory" on page 80.

Getting the Correct Results

One of the first steps in performance tuning is to verify that the correct answers are
being obtained. Once the correct answers are obtained, tuning can be done. You can
verify answers by initially disabling specific optimizations and limiting default
optimizations. This can be accomplished by using specific compiler options and by
using debugging tools.

The following compiler options emphasize tracing and porting over performance:

• -O: the -O0 option disables all optimization. The default is -O2.

• -g: the -g option preserves symbols for debugging. In the past, using -g
automatically put down the optimization level. In Intel compiler today, you can
use -O3 with -g.

• -fp-model: the -fp-model option lets you specify the compiler rules for: -
Value safety - floating-point (FP) expression evaluation - FPU environment access -
Precise FP exceptions - FP contractions. Default is -fp-model fast=1. Note that
-mp option is an old flag replaced by -fp-model.

• -r:, -i: the -r8 and -i8 options set default real, integer, and logical sizes to 8
bytes, which are useful for porting codes from Cray, Inc. systems. This explicitly
declares intrinsic and external library functions.

Some debugging tools can also be used to verify that correct answers are being
obtained. See "Debugging Tools" on page 18 for more details.

74 007–5646–001

Linux
®

Application Tuning Guide for SGI
®

X86-64 Based Systems

Managing Heap Corruption Problems

You can use environment variables to check for heap corruption problems in
programs that use glibc malloc/free dynamic memory management routines.

Set the MALLOC_CHECK_ environment variable to 1 to print diagnostic messages or to
2 to abort immediately when heap corruption is detected.

Overruns and underruns are circumstances where an access to an array is outside the
declared boundary of the array. Underruns and overruns cannot be simultaneously
detected. The default behavior is to place inaccessible pages immediately after
allocated memory.

Using Tuned Code

Where possible, use code that has already been tuned for optimum hardware
performance.

The following mathematical functions should be used where possible to help obtain
best results:

• MKL: Intel’s Math Kernel Library. This library includes BLAS, LAPACK, and FFT
routines.

• VML: the Vector Math Library, available as part of the MKL package
(libmkl_vml_itp.so).

• Standard Math library

Standard math library functions are provided with the Intel compiler’s libimf.a
file. If the -lm option is specified, glibc libm routines are linked in first.

Documentation is available for MKL and VML, as follows:
http://intel.com/software/products/perflib/index.htm?iid=ipp_home+software_libraries&
.

Determining Tuning Needs

Use the following tools to determine what points in your code might benefit from
tuning:

• time: Use this command to obtain an overview of user, system, and elapsed time.

007–5646–001 75

6: Performance Tuning

• gprof: Use this tool to obtain an execution profile of your program (a pcsamp
profile). Use the -p compiler option to enable gprof use.

• VTune: This Intel performance monitoring tool is a Linux-server, Windows-client
application. It supports remote sampling on all Itanium and Linux systems.

• psrun is a PerfSuite (see http://perfsuite.ncsa.uiuc.edu/) command-line utility
that allows you to take performance measurements of unmodified executables.
psrun takes as input a configuration XML document that describes the desired
measurement.

For information about other performance analysis tools, see Chapter 3, "Performance
Analysis and Debugging" on page 11.

Using Compiler Options Where Possible

Several compiler options can be used to optimize performance. For a short summary
of ifort or icc options, use the -help option on the compiler command line. Use
the -dryrun option to show the driver tool commands that ifort or icc generate.
This option does not actually compile.

Use the following options to help tune performance:

• -ftz: Flushes underflow to zero to avoid kernel traps. Enabled by default at -O3
optimization.

• -fno-alias: Assumes no pointer aliasing. Pointer aliasing can create uncertainty
about the possibility that two unrelated names might refer to the identical
memory; because of this uncertainty, the compiler will assume that any two
pointers can point to the same location in memory. This can remove optimization
opportunities, particularly for loops.

Other aliasing options include -ansi_alias and -fno_fnalias. Note that
incorrect alias assertions may generate incorrect code.

• -ip: Generates single file, interprocedural optimization; -ipo generates multifile,
interprocedural optimization.

Most compiler optimizations work within a single procedure (like a function or a
subroutine) at a time. This intra-procedural focus restricts optimization
possibilities because a compiler is forced to make worst-case assumptions about
the possible effects of a procedure. By using inter-procedural analysis, more than

76 007–5646–001

Linux
®

Application Tuning Guide for SGI
®

X86-64 Based Systems

a single procedure is analyzed at once and code is optimized. It performs two
passes through the code and requires more compile time.

• -O3: Enables -O2 optimizations plus more aggressive optimizations, including
loop transformation and prefetching. Loop transformation are found in a
transformation file created by the compiler; you can examine this file to see what
suggested changes have been made to loops. Prefetch instructions allow data to be
moved into the cache before their use. A prefetch instruction is similar to a load
instruction.

Note that Level 3 optimization may not improve performance for all programs.

• -opt_report: Generates an optimization report and places it in the file specified
in -opt_report_file.

• -override_limits: This is an undocumented option that sometimes allows the
compiler to continue optimizing when it has hit an internal limit.

• -prof_gen and -prof_use: Generates and uses profiling information. These
options require a three-step compilation process:

1. Compile with proper instrumentation using -prof_gen.

2. Run the program on one or more training datasets.

3. Compile with -prof_use, which uses the profile information from the
training run.

• -S: Compiles and generates an assembly listing in the .s files and does not link.
The assembly listing can be used in conjunction with the output generated by the
-opt_report option to try to determine how well the compiler is optimizing
loops.

• -vec-report: For information specific to the vectorizer. Intel Xeon 7500 series
processors can perform short vector operations which provides a powerful
performance boost.

• -fast: equivalent to writing: -ipo -O3 -no-prec-div -static -xHos

• -xHost: Can generate instructions for the highest instruction set and processor
available on the compilation host.

• Specific processor architecture to compile for: -xSSE4.2 for Nehalem EP/EX
Useful if compiling in a different system than an Altix UV.

007–5646–001 77

6: Performance Tuning

• -xSSE4.2: Can generate Intel® SSE4 Efficient Accelerated String and Text
Processing instructions supported by Intel® Core i7 processors. Can generate Intel®

SSE4 Vectorizing Compiler and Media Accelerator, Intel® SSSE3, SSE3, SSE2, and
SSE instructions and it can optimize for the Intel® CoreTM processor family. Another
important feature of new Intel compilers is the Source Checker, which is enabled
using the flag -diag -enable + options The source checker is a compiler feature
that provides advanced diagnostics based on detailed analysis of source code. It
performs static global analysis to find errors in software that go undetected by the
compiler itself. general source code analysis tool that provides an additional
diagnostic capability to help you debug your programs. You can use source code
analysis options to detect potential errors in your compiled code including

Specific processor architecture to compile for: -xSSE4.2 for Nehalem EP/EX Useful
if compiling in a different system than an Altix UV.

-xSSE4.2: Can generate Intel® SSE4 Efficient Accelerated String and Text Processing
instructions supported by Intel® Core i7 processors. Can generate Intel® SSE4
Vectorizing Compiler and Media Accelerator, Intel® SSSE3, SSE3, SSE2, and SSE
instructions and it can optimize for the Intel® Core?TM processor family. Another
important feature of new Intel compilers is the Source Checker, which is enabled
using the flag -diag-enable + options The source checker is a compiler feature that
provides advanced diagnostics based on detailed analysis of source code. It performs
static global analysis to find errors in software that go undetected by the compiler
itself. general source code analysis tool that provides an additional diagnostic
capability to help you debug your programs. You can use source code analysis
options to detect potential errors in your compiled code including the following:

• Incorrect usage of OpenMP directives

• Inconsistent object declarations in different program units

• Boundary violations

• Uninitialized memory

• Memory corruptions

• Memory Leaks

• Incorrect usage of pointers and allocatable arrays

• Dead code and redundant executions

• Typographical errors or uninitialized variables

78 007–5646–001

Linux
®

Application Tuning Guide for SGI
®

X86-64 Based Systems

• Dangerous usage of unchecked input

Source checker analysis performs a general overview check of a program for all
possible values simultaneously. This is in contrast to run-time checking tools that
execute a program with a fixed set of values for input variables; such checking tools
cannot easily check all edge effects. By not using a fixed set of input values, the
source checker analysis can check for all possible corner cases. In fact, you do not
need to run the program for Source Checker, the analysis is performed at compilation
time. Only requirement is a successful compilation. Important caveat: Limitations of
Source Checker Analysis: Since the source checker does not perform full
interpretation of analyzed programs, it can generate so called false-positive messages.
This is a fundamental difference between the compiler and source checker generated
errors; in the case of the source checker, you decide whether the generated error is
legitimate and needs to be fixed.

Tuning the Cache Performance

The processor cache stores recently-used information in a place where it can be
accessed extremely fast. For more information, see "Cache Terminology" on page 81.

There are several actions you can take to help tune cache performance:

• Avoid large power-of-2 (and multiples thereof) strides and dimensions that cause
cache thrashing. Cache thrashing occurs when multiple memory accesses require
use of the same cache line. This can lead to an unnecessary number of cache
misses.

To prevent cache thrashing, redimension your vectors so that the size is not a
power of two. Space the vectors out in memory so that concurrently accessed
elements map to different locations in the cache. When working with
two-dimensional arrays, make the leading dimension an odd number; for
multidimensional arrays, change two or more dimensions to an odd number.

Consider the following example: a cache in the hierarchy has a size of 256 KB (or
65536 4—byte words). A Fortran program contains the following loop:

real data(655360,24)

...

do i=1,23

do j=1,655360
diff=diff+data(j,i)-data(j,i+1)

enddo

007–5646–001 79

6: Performance Tuning

enddo

The two accesses to data are separated in memory by 655360*4 bytes, which is a
simple multiple of the cache size; they consequently load to the same location in
the cache. Because both data items cannot simultaneously coexist in that cache
location, a pattern of replace on reload occurs that considerably reduces
performance.

• Use a memory stride of 1 wherever possible. A loop over an array should access
array elements from adjacent memory addresses. When the loop iterates through
memory by consecutive word addresses, it uses every word of every cache line in
sequence and does not return to a cache line after finishing it.

If memory strides other than 1 are used, cache lines could be loaded multiple
times if an array is too large to be held in memory at one time.

• Cache bank conflicts can occur if there are two accesses to the same 16-byte-wide
bank at the same time. Try different padding of arrays if the output from the
pfmon -e L2_OZQ_CANCELS1_BANK_CONF command and the output from the
pfmon -e CPU_CYCLES command shows a high number of bank conflicts
relative to total CPU cycles.

A maximum of four performance monitoring events can be counted
simultaneously.

• Group together data that is used at the same time and do not use vectors in your
code, if possible. If elements that are used in one loop iteration are contiguous in
memory, it can reduce traffic to the cache and fewer cache lines will be fetched for
each iteration of the loop.

• Try to avoid the use of temporary arrays and minimize data copies.

Managing Memory

Nonuniform memory access (NUMA) uses hardware with memory and peripherals
distributed among many CPUs. This allows scalability for a shared memory system
but a side effect is the time it takes for a CPU to access a memory location. Because
memory access times are nonuniform, program optimization is not always
straightforward.

Codes that frequently allocate and deallocate memory through glibc malloc/free
calls may accrue significant system time due to memory management overhead. By

80 007–5646–001

Linux
®

Application Tuning Guide for SGI
®

X86-64 Based Systems

default, glibc strives for system-wide memory efficiency at the expense of
performance.

In compilers up to and including version 7.1.x, to enable the higher-performance
memory management mode, set the following environment variables:

% setenv MALLOC_TRIM_THRESHOLD_ -1

% setenv MALLOC_MMAP_MAX_ 0

Because allocations in ifort using the malloc intrinsic use the glibc malloc
internally, these environment variables are also applicable in Fortran codes using, for
example, Cray pointers with malloc/free. But they do not work for Fortran 90
allocatable arrays, which are managed directly through Fortran library calls and
placed in the stack instead of the heap. The example, above, applies only to the csh
shell and the tcsh shell.

Memory Use Strategies

This section describes some general memory use strategies, as follows:

• Register reuse: do a lot of work on the same data before working on new data

• Cache reuse: the program is much more efficient if all of the data and instructions
fit in cache; if not, try to use what is in cache a lot before using anything that is
not in cache.

• Data locality: try to access data that is near each other in memory before data that
is far.

• I/O efficiency: do a bunch of I/O all at once rather than a little bit at a time; do
not mix calculations and I/O.

Cache Terminology

Cache line is the minimum unit of transfer from next-higher cache into this one. Cache
hit is reference to a cache line which is present in the cache. Cache miss is reference to
a cache line which is not present in this cache level and must be retrieved from a
higher cache (or memory or swap space). Hit time is the time to access the upper level
of the memory hierarchy, which includes the time needed to determine whether the
access is a hit or a miss. Miss penalty is the time to replace a block in the upper level
with the corresponding block from the lower level, plus the time to deliver this block

007–5646–001 81

6: Performance Tuning

to the processor. The time to access the next level in the hierarchy is the major
component of the miss penalty.

Memory Hierarchy Latencies

Programmers tend to think of memory as a flat, random access storage device. It is
critical to understand that memory is a hierarchy to get good performance. Memory
latency differs within the hierarchy. Performance is affected by where the data
resides. Registers: 0 cycles latency (cycle = 1/freq) L1 cache: 1 cycle L2 cache: 5-6
cycles L3 cache: 12-17 cycles Main memory: 130-1000+ cycles. CPUs which are
waiting for memory are not doing useful work. Software should be "hierarchy-aware"
to achieve best performance:

• Perform as many operations as possible on data in registers

• Perform as many operations as possible on data in the cache(s)

• Keep data uses spatially and temporally local

• Consider temporal locality and spatial locality

Memory hierarchies take advantage of temporal locality by keeping more recently
accessed data items closer to the processor. Memory hierarchies take advantage of
spatial locality by moving contiguous words in memory to upper levels of the
hierarchy.

Multiprocessor Code Tuning
Before beginning any multiprocessor tuning, first perform single processor tuning.
This can often obtain good results in multiprocessor codes also. For details, see
"Single Processor Code Tuning" on page 73.

Multiprocessor tuning consists of the following major steps:

• Determine what parts of your code can be parallelized. For background
information, see "Data Decomposition" on page 83.

• Choose the parallelization methodology for your code. For details, see
"Parallelizing Your Code" on page 84.

• Analyze your code to make sure it is parallelizing properly. For details, see
Chapter 3, "Performance Analysis and Debugging" on page 11.

82 007–5646–001

Linux
®

Application Tuning Guide for SGI
®

X86-64 Based Systems

• Check to determine if false sharing exists. False sharing refers to OpenMP, not
MPI. For details, see "Fixing False Sharing" on page 87.

• Tune for data placement. For details, see "Using dplace and taskset" on page
88.

• Use environment variables to assist with tuning. For details, see "Environment
Variables for Performance Tuning" on page 88.

Data Decomposition

In order to efficiently use multiple processors on a system, tasks have to be found
that can be performed at the same time. There are two basic methods of defining
these tasks:

• Functional parallelism

Functional parallelism is achieved when different processors perform different
functions. This is a known approach for programmers trained in modular
programming. Disadvantages to this approach include the difficulties of defining
functions as the number of processors grow and finding functions that use an
equivalent amount of CPU power. This approach may also require large amounts
of synchronization and data movement.

• Data parallelism

Data parallelism is achieved when different processors perform the same function
on different parts of the data. This approach takes advantage of the large
cumulative memory. One requirement of this approach, though, is that the
problem domain be decomposed. There are two steps in data parallelism:

1. Data decomposition

Data decomposition is breaking up the data and mapping data to processors.
Data can be broken up explicitly by the programmer by using message
passing (with MPI) and data passing (using the SHMEM library routines) or
can be done implicitly using compiler-based MP directives to find parallelism
in implicitly decomposed data.

There are advantages and disadvantages to implicit and explicit data
decomposition:

– Implicit decomposition advantages: No data resizing is needed; all
synchonization is handled by the compiler; the source code is easier to

007–5646–001 83

6: Performance Tuning

develop and is portable to other systems with OpenMP or High
Performance Fortran (HPF) support.

– Implicit decomposition disadvantages: The data communication is hidden
by the user

– Explicit decomposition advantages: The programmer has full control over
insertion of communication and synchronization calls; the source code is
portable to other systems; code performance can be better than implicitly
parallelized codes.

– Explicit decomposition disadvantages: Harder to program; the source
code is harder to read and the code is longer (typically 40% more).

2. The final step is to divide the work among processors.

Parallelizing Your Code

The first step in multiprocessor performance tuning is to choose the parallelization
methodology that you want to use for tuning. This section discusses those options in
more detail.

You should first determine the amount of code that is parallelized. Use the following
formula to calculate the amount of code that is parallelized:

p=N(T(1)-T(N)) / T(1)(N-1)

In this equation, T(1) is the time the code runs on a single CPU and T(N) is the time it
runs on N CPUs. Speedup is defined as T(1)/T(N).

If speedup/N is less than 50% (that is, N>(2-p)/(1-p)), stop using more CPUs and tune
for better scalability.

CPU activity can be displayed with the top or vmstat commands or accessed by
using the Performance Co-Pilot tools (for example, pmval
kernel.percpu.cpu.user) or by using the Performance Co-Pilot visualization
tools pmchart.

Next you should focus on a parallelization methodology, as discussed in the
following subsections.

84 007–5646–001

Linux
®

Application Tuning Guide for SGI
®

X86-64 Based Systems

Use MPT

You can use the Message Passing Interface (MPI) from the SGI Message Passing
Toolkit (MPT). MPI is optimized and more scalable for SGI Altix series systems than
generic MPI libraries. It takes advantage of the SGI Altix architecture and SGI Linux
NUMA features. MPT is included with the SGI MPI, part of the SGI Performance
Suite software.

Use the -lmpi compiler option to use MPI. For a list of environment variables that
are supported, see the mpi man page.

MPIO_DIRECT_READ and MPIO_DIRECT_WRITE are supported under Linux for local
XFS filesystems in SGI MPT version 1.6.1 and beyond.

MPI provides the MPI-2 standard MPI I/O functions that provide file read and write
capabilities. A number of environment variables are available to tune MPI I/O
performance. See the mpi_io(3) man page for a description of these environment
variables.

Performance tuning for MPI applications is described in more detail in Chapter 6 of
the Message Passing Toolkit (MPT) User’s Guide.

Use OpenMP

OpenMP is a shared memory multiprocessing API, which standardizes existing
practice. It is scalable for fine or coarse grain parallelism with an emphasis on
performance. It exploits the strengths of shared memory and is directive-based. The
OpenMP implementation also contains library calls and environment variables.

To use OpenMP directives with C, C++, or Fortran codes, you can use the following
compiler options:

• ifort -openmp or icc -openmp: These options use the OpenMP front-end that
is built into the Intel compilers. The resulting executable file makes calls to
libguide.so, which is the OpenMP run-time library provided by Intel.

• guide: An alternate command to invoke the Intel compilers to use OpenMP code.
Use guidec (in place of ifort), guideefc (in place of ifort), or guidec++ to
translate code with OpenMP directives into code with calls to libguide. See
"Other Performance Tools" on page 18 for details.

The -openmp option to ifort is the long-term OpenMP compiler for Linux
provided by Intel. However, if you have performance problems with this option,
using guide might provide improved performance.

007–5646–001 85

6: Performance Tuning

For details about OpenMP usage see the OpenMP standard, available at
http://www.openmp.org/specs.

OpenMP Nested Parallelism

This section describes OpenMP nested parallelism. For additional information, see the
dplace(1) man page.

Here is a simple example for OpenMP nested parallelism with 2 "top" threads and 4
"bottom" threads that are called master/nested below:

% cat place_nested

firsttask cpu=0

thread name=a.out oncpu=0 cpu=4 noplace=1 exact onetime thread name=a.out oncpu=0

cpu=1-3 exact thread name=a.out oncpu=4 cpu=5-7 exact

% dplace -p place_nested a.out
Master thread 0 running on cpu 0

Master thread 1 running on cpu 4

Nested thread 0 of master 0 gets task 0 on cpu 0 Nested thread 1 of master 0 gets task 1 on cpu 1

Nested thread 2 of master 0 gets task 2 on cpu 2 Nested thread 3 of master 0 gets task 3 on cpu 3

Nested thread 0 of master 1 gets task 0 on cpu 4 Nested thread 1 of master 1 gets task 1 on cpu 5

Nested thread 2 of master 1 gets task 2 on cpu 6 Nested thread 3 of master 1 gets task 3 on cpu 7

Use Compiler Options

Use the compiler to invoke automatic parallelization. Use the -parallel and
-par_report option to the efc or icc compiler. These options show which loops
were parallelized and the reasons why some loops were not parallelized. If a source
file contains many loops, it might be necessary to add the -override_limits flag
to enable automatic parallelization. The code generated by -parallel is based on
the OpenMP API; the standard OpenMP environment variables and Intel extensions
apply.

There are some limitations to automatic parallelization:

• For Fortran codes, only DO loops are analyzed

• For C/C++ codes, only for loops using explicit array notation or those using
pointer increment notation are analyzed. In addition, for loops using pointer
arithmetic notation are not analyzed nor are while or do/while loops. The
compiler also does not check for blocks of code that can be run in parallel.

86 007–5646–001

Linux
®

Application Tuning Guide for SGI
®

X86-64 Based Systems

Identifying Parallel Opportunities in Existing Code

Another parallelization optimization technique is to identify loops that have a
potential for parallelism, such as the following:

• Loops without data dependencies; a data dependency conflict occurs when a loop
has results from one loop pass that are needed in future passes of the same loop.

• Loops witih data dependencies because of temporary variables, reductions, nested
loops, or function calls or subroutines.

Loops that do not have a potential for parallelism are those with premature exits, too
few iterations, or those where the programming effort to avoid data dependencies is
too great.

Fixing False Sharing

If the parallel version of your program is slower than the serial version, false sharing
might be occurring. False sharing occurs when two or more data items that appear
not to be accessed by different threads in a shared memory application correspond to
the same cache line in the processor data caches. If two threads executing on different
CPUs modify the same cache line, the cache line cannot remain resident and correct
in both CPUs, and the hardware must move the cache line through the memory
subsystem to retain coherency. This causes performance degradation and reduction in
the scalability of the application. If the data items are only read, not written, the
cache line remains in a shared state on all of the CPUs concerned. False sharing can
occur when different threads modify adjacent elements in a shared array. When two
CPUs share the same cache line of an array and the cache is decomposed, the
boundaries of the chunks split at the chache line.

You can use the following methods to verify that false sharing is happening:

• Use the performance monitor to look at output from pfmon and the
BUS_MEM_READ_BRIL_SELF and BUS_RD_INVAL_ALL_HITM events.

• Use pfmon to check DEAR events to track common cache lines.

• Use the Performance Co-Pilot pmshub utility to monitor cache traffic and CPU
utilization. You can also use the shubstats(1) tool to monitor Altix cache and
directory traffic.

If false sharing is a problem, try the following solutions:

007–5646–001 87

6: Performance Tuning

• Use the hardware counter to run a profile that monitors storage to shared cache
lines. This will show the location of the problem.

• Revise data structures or algorithms.

• Check shared data, static variables, common blocks, and private and public
variables in shared objects.

• Use critical regions to identify the part of the code that has the problem.

Using dplace and taskset

The dplace command binds processes to specified CPUs in a round-robin fashion.
Once bound to a process, they do not migrate. dplace numbering is done in the
context of the current CPU memory set. See Chapter 4, "Monitoring Tools" on page 25
for details about dplace.

The taskset command restricts execution to the listed set of CPUs; however,
processes are still free to move among listed CPUs.

Environment Variables for Performance Tuning

You can use several different environment variables to assist in performance tuning.
For details about environment variables used to control the behavior of MPI, see the
mpi(1) man page.

Several OpenMP environment variables can affect the actions of the OpenMP library.
For example, some environment variables control the behavior of threads in the
application when they have no work to perform or are waiting for other threads to
arrive at a synchronization semantic; other variables can specify how the OpenMP
library schedules iterations of a loop across threads. The following environment
variables are part of the OpenMP standard:

• OMP_NUM_THREADS (The default is the number of CPUs in the system.)

• OMP_SCHEDULE (The default is static.)

• OMP_DYNAMIC (The default is false.)

• OMP_NESTED (The default is false.)

In addition to the preceding environment variables, Intel provides several OpenMP
extensions, two of which are provided through the use of the KMP_LIBRARY variable.

88 007–5646–001

Linux
®

Application Tuning Guide for SGI
®

X86-64 Based Systems

The KMP_LIBRARY variable sets the run-time execution mode, as follows:

• If set to serial, single-processor execution is used.

• If set to throughput, CPUs yield to other processes when waiting for work. This
is the default and is intended to provide good overall system performance in a
multiuser environment.

• If set to turnaround, worker threads do not yield while waiting for work. Setting
KMP_LIBRARY to turnaround may improve the performance of benchmarks run
on dedicated systems, where multiple users are not contending for CPU resources.

If your program gets a segmentation fault immediately upon execution, you may
need to increase KMP_STACKSIZE. This is the private stack size for threads. The
default is 4 MB. You may also need to increase your shell stacksize limit.

Understanding Parallel Speedup and Amdahl’s Law
There are two ways to obtain the use of multiple CPUs. You can take a conventional
program in C, C++, or Fortran, and have the compiler find the parallelism that is
implicit in the code.

You can write your source code to use explicit parallelism, stating in the source code
which parts of the program are to execute asynchronously, and how the parts are to
coordinate with each other.

When your program runs on more than one CPU, its total run time should be less.
But how much less? What are the limits on the speedup? That is, if you apply 16
CPUs to the program, should it finish in 1/16th the elapsed time?

This section covers the following topics:

• "Adding CPUs to Shorten Execution Time" on page 90

• "Understanding Parallel Speedup" on page 90

• "Understanding Amdahl’s Law" on page 91

• "Calculating the Parallel Fraction of a Program" on page 92

• "Predicting Execution Time with n CPUs" on page 93

007–5646–001 89

6: Performance Tuning

Adding CPUs to Shorten Execution Time

You can distribute the work your program does over multiple CPUs. However, there
is always some part of the program’s logic that has to be executed serially, by a single
CPU. This sets the lower limit on program run time.

Suppose there is one loop in which the program spends 50% of the execution time. If
you can divide the iterations of this loop so that half of them are done in one CPU
while the other half are done at the same time in a different CPU, the whole loop can
be finished in half the time. The result: a 25% reduction in program execution time.

The mathematical treatment of these ideas is called Amdahl’s law, for computer
pioneer Gene Amdahl, who formalized it. There are two basic limits to the speedup
you can achieve by parallel execution:

• The fraction of the program that can be run in parallel, p, is never 100%.

• Because of hardware constraints, after a certain point, there is less and less benefit
from each added CPU.

Tuning for parallel execution comes down to doing the best that you are able to do
within these two limits. You strive to increase the parallel fraction, p, because in some
cases even a small change in p (from 0.8 to 0.85, for example) makes a dramatic
change in the effectiveness of added CPUs.

Then you work to ensure that each added CPU does a full CPU’s work, and does not
interfere with the work of other CPUs. In the SGI Altix architectures this means:

• Spreading the workload equally among the CPUs

• Eliminating false sharing and other types of memory contention between CPUs

• Making sure that the data used by each CPU are located in a memory near that
CPU’s node

Understanding Parallel Speedup

If half the iterations of a DO-loop are performed on one CPU, and the other half run at
the same time on a second CPU, the whole DO-loop should complete in half the time.
For example, consider the typical C loop in Example 6-1.

90 007–5646–001

Linux
®

Application Tuning Guide for SGI
®

X86-64 Based Systems

Example 6-1 Typical C Loop

for (j=0; j<MAX; ++j) {

z[j] = a[j]*b[j];

}

The compiler can automatically distribute such a loop over n CPUs (with n decided at
run time based on the available hardware), so that each CPU performs MAX/n
iterations.

The speedup gained from applying n CPUs, Speedup(n), is the ratio of the one-CPU
execution time to the n-CPU execution time: Speedup(n) = T(1) � T(n). If you measure
the one-CPU execution time of a program at 100 seconds, and the program runs in 60
seconds with two CPUs, Speedup(2) = 100 � 60 = 1.67.

This number captures the improvement from adding hardware. T(n) ought to be less
than T(1); if it is not, adding CPUs has made the program slower, and something is
wrong! So Speedup(n) should be a number greater than 1.0, and the greater it is, the
better. Intuitively you might hope that the speedup would be equal to the number of
CPUs (twice as many CPUs, half the time) but this ideal can seldom be achieved.

Understanding Superlinear Speedup

You expect Speedup(n) to be less than n, reflecting the fact that not all parts of a
program benefit from parallel execution. However, it is possible, in rare situations, for
Speedup(n) to be larger than n. When the program has been sped up by more than the
increase of CPUs it is known as superlinear speedup.

A superlinear speedup does not really result from parallel execution. It comes about
because each CPU is now working on a smaller set of memory. The problem data
handled by any one CPU fits better in cache, so each CPU executes faster than the
single CPU could do. A superlinear speedup is welcome, but it indicates that the
sequential program was being held back by cache effects.

Understanding Amdahl’s Law

There are always parts of a program that you cannot make parallel, where code must
run serially. For example, consider the DO-loop. Some amount of code is devoted to
setting up the loop, allocating the work between CPUs. This housekeeping must be
done serially. Then comes parallel execution of the loop body, with all CPUs running
concurrently. At the end of the loop comes more housekeeping that must be done

007–5646–001 91

6: Performance Tuning

serially; for example, if n does not divide MAX evenly, one CPU must execute the few
iterations that are left over.

The serial parts of the program cannot be speeded up by concurrency. Let p be the
fraction of the program’s code that can be made parallel (p is always a fraction less
than 1.0.) The remaining fraction (1–p) of the code must run serially. In practical
cases, p ranges from 0.2 to 0.99.

The potential speedup for a program is proportional to p divided by the CPUs you can
apply, plus the remaining serial part, 1-p. As an equation, this appears as Example 6-2.

Example 6-2 Amdahl’s law: Speedup(n) Given p

1
Speedup(n) = -----------

(p/n)+(1-p)

Suppose p = 0.8; then Speedup(2) = 1 / (0.4 + 0.2) = 1.67, and Speedup(4)= 1 / (0.2 +
0.2) = 2.5. The maximum possible speedup (if you could apply an infinite number of
CPUs) would be 1 / (1-p). The fraction p has a strong effect on the possible speedup.

The reward for parallelization is small unless p is substantial (at least 0.8); or to put
the point another way, the reward for increasing p is great no matter how many CPUs
you have. The more CPUs you have, the more benefit you get from increasing p.
Using only four CPUs, you need only p= 0.75 to get half the ideal speedup. With
eight CPUs, you need p= 0.85 to get half the ideal speedup.

Tthere is a slightly more sofisticated version of Amdahl’s law which includes
communication overhead, showing also that if the program has no serial part that as
we increase the number of cores the amount of computation per core diminishes and
the communication overhead (unless there is not communication and we have trivial
parallelization) increases, also diminishing the efficiency of the code and the speedup.
The equation is: Speedup(n) = n/(1+ a*(n-1) + n*(tc/ts)) Where: n: number of
processes a: the fraction of the given task not dividable into concurrent subtasks ts:
time to execute the task in a single processor tc: communication overhead If a=0 and
tc=0 (no serial part and no communications) like in a trivial parallelization program,
you will get linear speedup.

Calculating the Parallel Fraction of a Program

You do not have to guess at the value of p for a given program. Measure the
execution times T(1) and T(2) to calculate a measured Speedup(2) = T(1) / T(2). The

92 007–5646–001

Linux
®

Application Tuning Guide for SGI
®

X86-64 Based Systems

Amdahl’s law equation can be rearranged to yield p when Speedup (2) is known, as in
Example 6-3.

Example 6-3 Amdahl’s law: p Given Speedup(2)

2 SpeedUp(2) - 1

p = --- * --------------

1 SpeedUp(2)

Suppose you measure T(1) = 188 seconds and T(2) = 104 seconds.

SpeedUp(2) = 188/104 = 1.81

p = 2 * ((1.81-1)/1.81) = 2*(0.81/1.81) = 0.895

In some cases, the Speedup(2) = T(1)/T(2) is a value greater than 2; in other words, a
superlinear speedup ("Understanding Superlinear Speedup" on page 91). When this
occurs, the formula in Example 6-3 returns a value of p greater than 1.0, which is
clearly not useful. In this case you need to calculate p from two other more realistic
timings, for example T(2) and T(3). The general formula for p is shown in Example
6-4, where n and m are the two CPU counts whose speedups are known, n>m.

Example 6-4 Amdahl’s Law: p Given Speedup(n) and Speedup(m)

Speedup(n) - Speedup(m)
p = ---

(1 - 1/n)*Speedup(n) - (1 - 1/m)*Speedup(m)

Predicting Execution Time with n CPUs

You can use the calculated value of p to extrapolate the potential speedup with higher
numbers of CPUs. The following example shows the expected time with four CPUs,
if p=0.895 and T(1)=188 seconds:

Speedup(4)= 1/((0.895/4)+(1-0.895)) = 3.04

T(4)= T(1)/Speedup(4) = 188/3.04 = 61.8

The calculation can be made routine using the computer by creating a script that
automates the calculations and extrapolates run times.

These calculations are independent of most programming issues such as language,
library, or programming model. They are not independent of hardware issues,
because Amdahl’s law assumes that all CPUs are equal. At some level of parallelism,
adding a CPU no longer affects run time in a linear way. For example, on some

007–5646–001 93

6: Performance Tuning

architectures, cache-friendly codes scale closely with Amdahl’s law up to the
maximum number of CPUs, but scaling of memory intensive applications slows as
the system bus approaches saturation. When the bus bandwidth limit is reached, the
actual speedup is less than predicted.

Gustafson’s Law
Gustafson’s law proposes that programmers set the size of problems to use the
available equipment to solve problems within a practical fixed time. Therefore, if
faster (more parallel) equipment is available, larger problems can be solved in the
same time. Amdahl’s law is based on fixed workload or fixed problem size. It implies
that the sequential part of a program does not change with respect to machine size
(for example, the number of processors). However, the parallel part is evenly
distributed by n processors. The impact of Gustafson’s law was to shift research goals
to select or reformulate problems so that solving a larger problem in the same amount
of time would be possible. In particular, the law redefines efficiency as a need to
minimize the sequential part of a program, even if it increases the total amount of
computation. The bottom line is that by running larger problems, it is hoped that the
bulk of the calculation will increase faster than the serial part of the program,
allowing for better scaling. There is a slightly more sofisticated version of Amdahl’s
law which includes communication overhead, showing also that if the program has
no serial part that as we increase the number of cores the amount of computation per
core diminishes and the communication overhead (unless there is not communication
and you have trivial parallelization) increases, also diminishing the efficiency of the
code and the speedup. The equation is:

Speedup(n) = n/(1+ a*(n-1) + n*(tc/ts))

Where: n: number of processes a: the fraction of the given task not dividable into
concurrent subtasks ts: time to execute the task in a single processor tc:
communication overhead If a=0 and tc=0 (no serial part and no communications)
like in a trivial parallelization program, you will get linear speedup.

Floating-point Programs Performance
Certain floating-point programs experience slowdowns due to excessive floating point
traps called Floating-Point Software Assist (FPSWA).

94 007–5646–001

Linux
®

Application Tuning Guide for SGI
®

X86-64 Based Systems

This happens when the hardware cannot complete a floating point operation and
requests help (emulation) from software. This happens, for instance, with denormals
numbers.

The symptoms are a slower than normal execution, FPSWA message in the system log
(run dmesg). The average cost of a FPSWA fault is quite high around 1000
cycles/fault.

By default, the kernel prints a message similar to the following in the system log:

foo(7716): floating-point assist fault at ip 40000000000200e1

isr 0000020000000008

The kernel throttles the message in order to avoid flooding the console.

It is possible to control the behavior of the kernel on FPSWA faults using the
prctl(1) command. In particular, it is possible to get a signal delivered at the first
FPSWA. It is also possible to silence the console message.

MPInside Profiling Tool
MPInside(3) is an MPI profiling tool which provides valuable information on
optimizing your MPI application. It helps you determine where the MPI
Send/Receive pairs are not executed synchronously. With non-synchronized
Send/Receive, the MPI communications can be very slow, independent of the power
of the underlying MPI library/hardware engine. For most MPI applications, the MPI
communication times are more accountable to the lack of synchronizations of these
Send/Receive pair than to the MPI/hardware engine. MPInside, among other
valuable functions, measures this non-synchronized time for all the MPI ranks
involved in the application, for all the MPI function activated. It allows you to tell at
what actual speed the MPI engine did such communications, for example, the ratio
Bytes received / (time of the MPI function minus the synchronization time). It
provides this latter information, accumulated per CPU a well as in a CPUxCPU
matrix. In addition, MPInside automatically and precisely reports the timing
described above on a branch basis. A branch is an MPI function with all its ancestors
in the calling sequence. MPInside provides the routine name and the source file line
number for all the routines defining a branch. All branches are put in relation with
the other CPU branches that had a Send/receive partnership with them. For any
CPU, any Received branch performed by that CPU has partners. A partner set is
described by four numbers: the Sending rank number, the Sending CPU branch
identification, the percentage of time accounted to this partnership in regard to the

007–5646–001 95

6: Performance Tuning

total execution wait time of this Received branch and the percentage of time this last
was to account to lack of synchronization. Even if the MPI/hardware engine
performance may also be accountable to the non synchronized communications, most
of it is accountable to the application itself and therefore is the developer’s
responsibility. MPInside tells you where and how much such non synchronized
communication occurred in the application.

To load the MPInside module into your environment (for any shell), use the following
command:

% module load MPInside/3.1

For details about using software modules, see the module(1) man page.

For more information on using MPInside, see the following documents located in the
MPInside software module:

• mpinside_3.1_ref_manual.pdf

MPInside 3.1 Reference Manual describes how to use the MPI profiling tool.

• MPInside_window_how_to.pdf

HOW TO select a window of observation with MPInside slide set

• MPInside.3

The MPInside(3) man page describes how to use MPInside

SGI PerfBoost
SGI PerfBoost uses a wrapper library to run applications compiled against other MPI
implementations under the SGI Message Passing Toolkit (MPT) product on SGI
platforms. The PerfBoost software allows you to run SGI MPT which is a version of
MPI optimized for SGI large, shared-memory systems and can take advantage of the
Altix UV Hub. For more information, see "Performance Tuning Running MPI on Altix
UV 100 and Altix UV 1000 Systems" on page 97 and Chapter 6, “PerfBoost” in the
Message Passing Toolkit (MPT) User’s Guide available on the Tech Pubs Library at
http://docs.sgi.com.

96 007–5646–001

Linux
®

Application Tuning Guide for SGI
®

X86-64 Based Systems

Perfcatcher
The simple-to-use Perfcatcher tool uses a wrapper library to return MPI and SHMEM
function profiling information. Some analysis is done, and information like percent
CPU time, total time spent per function, message size, and load imbalance are
reported. See the perfcatch(1) man page and Chapter 8, “MPI Performance
Profiling” in the Message Passing Toolkit (MPT) User’s Guide available on the Tech Pubs
Library at http://docs.sgi.com.

Performance Tuning Running MPI on Altix UV 100 and Altix UV 1000
Systems

The SGI Altix UV 100 and Altix UV 1000 series systems are scalable nonuniform
memory access (NUMA) systems that support a single Linux image of thousands of
processors distributed over many sockets and SGI Altix UV Hub application-specific
integrated circuits (ASICs). The UV Hub is the heart of the SGI Altix UV 1000 or
Altix UV 100 system compute blade. Each "processor" is a hyperthread on a
particular core within a particular socket. Each Altix UV Hub normally connects to
two sockets. All communication between the sockets and the UV Hub uses Intel
QuickPath Interconnect (QPI) channels. The Altix UV Hub has four NUMAlink 5
ports that connect with the NUMAlink 5 interconnect fabric. The UV Hub acts as a
crossbar between the processors, local SDRAM memory, and the network interface.
The Hub ASIC enables any processor in the single-system image (SSI) to access the
memory of all processors in the SSI. For more information on the SGI Altix UV hub,
Altix UV compute blades, QPI, and NUMAlink 5, see the SGI Altix UV 1000 System
User’s Guide or the SGI Altix UV 100 System User’s Guide, respectively.

When MPI communicates between processes, two transfer methods are possible on an
Altix UV system:

• By use of shared memory

• By use of the global reference unit (GRU), part of the Altix UV Hub ASIC

MPI chooses the method depending on internal heuristics, the type of MPI
communication that is involved, and some user-tunable variables. When using the
GRU to transfer data and messages, the MPI library uses the GRU resources it
allocates via the GRU resource allocator, which divides up the available GRU
resources. It fairly allocates buffer space and control blocks between the logical
processors being used by the MPI job.

007–5646–001 97

6: Performance Tuning

General Considerations

Running MPI jobs optimally on Altix UV systems is not very difficult. It is best to pin
MPI processes to CPUs and isolate multiple MPI jobs onto different sets of sockets
and Hubs, and this is usually achieved by configuring a batch scheduler to create a
cpuset for every MPI job. MPI pins its processes to the sequential list of logical
processors within the containing cpuset by default, but you can control and alter the
pinning pattern using MPI_DSM_CPULIST. See the MPI_DSM_CPULIST discussion in
the Message Passing Toolkit (MPT) User’s Guide, and the omplace(1) and dplace(1)
man pages.

Job Performance Types

The MPI library chooses buffer sizes and communication algorithms in an attempt to
deliver the best performance automatically to a wide variety of MPI applications.
However, applications have different performance profiles and bottlenecks, and so
user tuning may be of help in improving performance. Here are some application
performance types and ways that MPI performance may be improved for them:

• Odd HyperThreads are idle.

Most high performance computing MPI programs run best using only one
HyperThread per core. When an Altix UV system has multiple HyperThreads per
core, logical CPUs are numbered such that odd HyperThreads are the high half of
the logical CPU numbers. Therefore, the task of scheduling only on the even
HyperThreads may be accomplished by scheduling MPI jobs as if only half the
full number exist, leaving the high logical CPUs idle.You can use the cpumap(1)
command to determine if cores have multiple HyperThreads on your Altix UV
system. The output tells the number of physical and logical processors and if
Hyperthreading is ON or OFF and how shared processors are paired (towards the
bottom of the command’s output).

If an MPI job uses only half of the available logical CPUs, set
GRU_RESOURCE_FACTOR to 2 so that the MPI processes can utilize all the
available GRU resources on a Hub rather than reserving some of them for the idle
HyperThreads. For more information about GRU resource tuning, see the
gru_resource(3) man page.

• MPI large message bandwidth is important.

MPI can improve the bandwidth of large messages if MPI_GRU_CBS is set to 0.
This favors large message bandwidth at the cost of suppressing asynchronous MPI

98 007–5646–001

Linux
®

Application Tuning Guide for SGI
®

X86-64 Based Systems

message delivery. In addition, some programs transfer large messages via the
MPI_Send function. To switch on the use of unbuffered, single copy transport in
these cases you can set MPI_BUFFER_MAX to 0. See the MPI(1) man page for more
details.

• MPI small or near messages are very frequent.

For small fabric hop counts, shared memory message delivery is faster than GRU
messages. To deliver all messages within an Altix UV host via shared memory, set
MPI_SHARED_NEIGHBORHOOD to "host". See the MPI(1) man page for more
details.

Other ccNUMA Performance Issues

MPI application processes normally perform best if their local memory is allocated on
the socket assigned to execute it. This cannot happen if memory on that socket is
exhausted by the application or by other system consumption, for example, file buffer
cache. Use the nodeinfo(1) command to view memory consumption on the nodes
assigned to your job and use bcfree(1) to clear out excessive file buffer cache. PBS
Professional batch scheduler installations can be configured to issue
bcfreecommands in the job prologue. For more information, see PBS Professional
documentation and the bcfree(1) man page.

For detailed information on MPI application tuning, see the Message Passing Toolkit
(MPT) User’s Guide.

007–5646–001 99

Chapter 7

Flexible File I/O

Flexible File I/O (FFIO) provides a mechanism for improving the file I/O
performance of existing applications without having to resort to source code changes,
that is, the current executable remains unchanged. Knowledge of source code is not
required, but some knowledge of how the source and the application software work
can help you better interpret and optimize FFIO results. To take advantage of FFIO,
all you need to do is to set some environment variables before running your
application. This chapter covers the following topics:

• "FFIO Operation" on page 101

• "Environment Variables" on page 102

• "Simple Examples" on page 103

• "Multithreading Considerations" on page 106

• "Application Examples " on page 107

• "Event Tracing " on page 108

• "System Information and Issues " on page 108

FFIO Operation
The FFIO subsystem allows you to define one or more additional I/O buffer caches
for specific files to augment the Linux kernel I/O buffer cache. The FFIO subsystem
then manages this buffer cache for you. In order to accomplish this, FFIO intercepts
standard I/O calls like open, read, and write, and replaces them with FFIO equivalent
routines. These routines route I/O requests through the FFIO subsystem which
utilizes the user defined FFIO buffer cache. FFIO can bypass the Linux kernel I/O
buffer cache by communicating with the disk subsystem via direct I/O. This gives
you precise control over cache I/O characteristics and allows for more efficient I/O
requests. For example, doing direct I/O in large chunks (say 16 megabytes) allows the
FFIO cache to amortize disk access. All file buffering occurs in user space when FFIO
is used with direct I/O enabled. This differs from the Linux buffer cache mechanism
which requires a context switch in order to buffer data in kernel memory. Avoiding
this kind of overhead, helps FFIO to scale efficiently. Another important distinction is
that FFIO allows you to create an I/O buffer cache dedicated to a specific application.

007–5646–001 101

7: Flexible File I/O

The Linux kernel, on the other hand, has to manage all the jobs on the entire system
with a single I/O buffer cache. As a result, FFIO typically outperforms the Linux
kernel buffer cache when it comes to I/O intensive throughput.

Environment Variables
There are only two environment variables that you need to set in order to use FFIO.
They are LD_PRELOAD and FF_IO_OPTS.

In order to enable FFIO to trap standard I/O calls, you must set the LD_PRELOAD
environment variable.

For SGI Altix systems, perform the following:

setenv LD_PRELOAD /usr/lib64/libFFIO.so

The LD_PRELOAD software is a Linux feature that instructs the linker to preload the
indicated shared libraries. In this case, libFFIO.so is preloaded and provides the
routines which replace the standard I/O calls. An application that is not dynamically
linked with the glibc library will not work with FFIO, since the standard I/O calls
will not be intercepted. To disable FFIO, perform the following:

unsetenv LD_PRELOAD

The FFIO buffer cache is managed by the FF_IO_OPTS environment variable. The
syntax for setting this variable can be quite complex. A simple method for defining
this variable is, as follows:

setenv FF_IO_OPTS ’<string>(eie.direct.mbytes:<size>:<num>:<lead>:<share>:<stride>:0)’

You can use the following parameters with the FF_IO_OPTS environment variable:

<string> Matches the names of files that can use the buffer cache.

<size> Number of 4k blocks in each page of the I/O buffer
cache.

<num> Number of pages in the I/O buffer cache.

<lead> The maximum number of "read ahead" pages.

<share> A value of 1 means a shared cache, 0 means private

102 007–5646–001

Linux
®

Application Tuning Guide for SGI
®

X86-64 Based Systems

<stride> Note that the number after the stride parameter is
always 0.

The following example shows a command that creates a shared buffer cache of 128
pages where each page is 16 megabytes (that is, 4096*4k). The cache has a lead of six
pages and uses a stride of one, as follows:

setenv FF_IO_OPTS ’test*(eie.direct.mbytes:4096:128:6:1:1:0)’

Each time the application opens a file, the FFIO code checks the file name to see if it
matches the string supplied by FF_IO_OPTS. The file’s path name is not considered
when checking for a match against the string. So in the example supplied above, file
names like /tmp/test16 and /var/tmp/testit would both be a match.

More complicated usages of FF_IO_OPTS are built upon this simpler version. For
example, multiple types of file names can share the same cache, as follows:

setenv FF_IO_OPTS ’output* test*(eie.direct.mbytes:4096:128:6:1:1:0)’

Multiple caches may also be specified with FF_IO_OPTS. In the example that follows,
files of the form output* and test* share a 128 page cache of 16 megabyte pages.
The file special42 has a 256 page private cache of 32 megabyte pages, as follows:

setenv FF_IO_OPTS ’output* test*(eie.direct.mbytes:4096:128:6:1:1:0) special42(eie.direct.mbytes:8192:25

Additional parameters can be added to FF_IO_OPTS to create feedback that is sent to
standard output. Examples of doing this diagnostic output will be presented in the
following section.

Simple Examples
This section walks you through some simple examples using FFIO.

Assume that LD_PRELOAD is set for the correct library and FF_IO_OPTS is defined,
as follows:

setenv FF_IO_OPTS ’test*(eie.direct.mbytes:4096:128:6:1:1:0)’

This example uses a small C program called fio that reads four megabyte chunks
from a file for 100 iterations. When the program runs it produces output, as follows:

./fio -n 100 /build/testit
Reading 4194304 bytes 100 times to /build/testit

Total time = 7.383761

007–5646–001 103

7: Flexible File I/O

Throughput = 56.804439 MB/sec

It can be difficult to tell what FFIO may or may not be doing even with a simple
program such as shown above. A summary of the FFIO operations that occurred can
be directed to standard output by making a simple addition to FF_IO_OPTS, as
follows:

setenv FF_IO_OPTS ’test*(eie.direct.mbytes:4096:128:6:1:1:0, event.summary.mbytes.notrace)’

This new setting for FF_IO_OPTS generates the following summary on standard
output when the program is run:

./fio -n 100 /build/testit

Reading 4194304 bytes 100 times to /build/testit

Total time = 7.383761
Throughput = 56.804439 MB/sec

event_close(testit) eie <-->syscall (496 mbytes)/(8.72 s)= 56.85 mbytes/s

oflags=0x0000000000004042=RDWR+CREAT+DIRECT

sector size =4096(bytes)
cblks =0 cbits =0x0000000000000000

current file size =512 mbytes high water file size =512 mbytes

function times wall all mbytes mbytes min max avg

called time hidden requested delivered request request request

open 1 0.00
read 2 0.61 32 32 16 16 16

reada 29 0.01 0 464 464 16 16 16

fcntl

recall

reada 29 8.11
other 5 0.00

flush 1 0.00

close 1 0.00

Two synchronous reads of 16 megabytes each were issued (for a total of 32
megabytes) and 29 asynchronous reads (reada) were also issued (for a total of 464
megabytes). Additional diagnostic information can be generated by specifying the
.diag modifier, as follows:

setenv FF_IO_OPTS ’test*(eie.direct.diag.mbytes:4096:128:6:1:1:0)’

104 007–5646–001

Linux
®

Application Tuning Guide for SGI
®

X86-64 Based Systems

The .diag modifier may also be used in conjunction with .event.summary, the
two operate independently from one another, as follows:

setenv FF_IO_OPTS ’test*(eie.diag.direct.mbytes:4096:128:6:1:1:0, event.summary.mbytes.notrace)’

An example of the diagnostic output generated when just the .diag modifier is used
is, as follows:

./fio -n 100 /build/testit

Reading 4194304 bytes 100 times to /build/testit

Total time = 7.383761

Throughput = 56.804439 MB/sec

eie_close EIE final stats for file /build/testit

eie_close Used shared eie cache 1

eie_close 128 mem pages of 4096 blocks (4096 sectors), max_lead = 6 pages

eie_close advance reads used/started : 23/29 79.31% (1.78 seconds wasted)

eie_close write hits/total : 0/0 0.00%
eie_close read hits/total : 98/100 98.00%

eie_close mbytes transferred parent --> eie --> child sync async

eie_close 0 0 0 0

eie_close 400 496 2 29 (0,0)

eie_close parent <-- eie <-- child

eie_close EIE stats for Shared cache 1

eie_close 128 mem pages of 4096 blocks

eie_close advance reads used/started : 23/29 79.31% (0.00 seconds wasted)

eie_close write hits/total : 0/0 0.00%

eie_close read hits/total : 98/100 98.00%
eie_close mbytes transferred parent --> eie --> child sync async

eie_close 0 0 0

eie_close 400 496 2 29 (0,0)

Information is listed for both the file and the cache. An mbytes transferred
example is shown below:

eie_close mbytes transferred parent --> eie --> child sync async

eie_close 0 0 0
eie_close 400 496 2 29 (0

The last two lines are for write and read operations, respectively. Only for very simple
I/O patterns, the difference between (parent –> eie) and (eie –> child) read statistics

007–5646–001 105

7: Flexible File I/O

can be explained by the number of read aheads. For random reads of a large file over
a long period of time, this is not the case. All write operations count as async.

Multithreading Considerations
FFIO will work with applications that use MPI for parallel processing. An MPI job
assigns each thread a number or rank. The master thread has rank 0, while the
remaining threads (called slave threads) have ranks from 1 to N-l where N is the total
number of threads in the MPI job. It is important to consider that the threads
comprising an MPI job do not (necessarily) have access to each others address space.
As a result, there is no way for the different MPI threads to share the same FFIO
cache. By default, each thread defines a separate FFIO cache based on the parameters
defined by FF_IO_OPTS.

Having each MPI thread define a separate FFIO cache based on a single environment
variable (FF_IO_OPTS) can waste a lot of memory. Fortunately, FFIO provides a
mechanism that allows the user to specify a different FFIO cache for each MPI thread
via the following environment variables:

setenv FF_IO_OPTS_RANK0 ’result*(eie.direct.mbytes:4096:512:6:1:1:0)’

setenv FF_IO_OPTS_RANK1 ’output*(eie.direct.mbytes:1024:128:6:1:1:0)’
setenv FF_IO_OPTS_RANK2 ’input*(eie.direct.mbytes:2048:64:6:1:1:0)’

.

.

.

setenv FF_IO_OPTS_RANKN-1 ... (N = number of threads).

Each rank environment variable is set using the exact same syntax as FF_IO_OPTS
and each defines a distinct cache for the corresponding MPI rank. If the cache is
designated shared, all files within the same ranking thread will use the same cache.
FFIO works with SGI MPI, HP MPI, and LAM MPI. In order to work with MPI
applications, FFIO needs to determine the rank of callers by invoking the
mpi_comm_rank_() MPI library routine . Therefore, FFIO needs to determine the
location of the MPI library used by the application. This is accomplished by having
the user set one (and only one) of the following environment variables:

setenv SGI_MPI /usr/lib # ia64 only

or

setenv LAM_MPI *see below

or

setenv HP_MPI *see below

106 007–5646–001

Linux
®

Application Tuning Guide for SGI
®

X86-64 Based Systems

*LAM and HP MPIs are usually distributed via a third party application. The preci

paths to the LAM and the HP MPI libraries are application dependent. Please refe

application installation guide to find the correct path.

In order to use the rank functionality, both the MPI and FF_IO_OPTS_RANK0
environment variables must be set. If either variable is not set, then the MPI threads
all use FF_IO_OPTS. If both the MPI and the FF_IO_OPTS_RANK0 variables are
defined but, for example, FF_IO_OPTS_RANK2 is undefined, all rank 2 files would
generate a no match with FFIO. This means that none of the rank 2 files would be
cached by FFIO (in this case things DO NOT default to FF_IO_OPTS).

Fortran and C/C++ applications that use the pthreads interface will create threads
that share the same address space. These threads can all make use of the single FFIO
cache defined by FF_IO_OPTS.

Application Examples
FFIO has been deployed successfully with several HPC applications such as Nastran
and Abaqus. In a recent customer benchmark, an eight-way Abaqus throughput job
ran approximately twice as fast when FFIO was used. The FFIO cache used 16
megabyte pages (that is, page_size = 4096) and the cache size was 8.0 gigabytes. As
a rule of thumb, it was determined that setting the FFIO cache size to roughly 10-15%
of the disk space required by Abaqus yielded reasonable I/O performance. For this
benchmark, the FF_IO_OPTS environment variable was defined by:

setenv FF_IO_OPTS ’*.fct *.opr* *.ord *.fil *.mdl* *.stt* *.res *.sst *.hdx *.odb* *.023

.nck *.sct *.lop *.ngr *.elm *.ptn* *.stp* *.eig *.lnz* *.mass *.inp* *.scn* *.ddm
.dat fort*(eie.direct.nodiag.mbytes:4096:512:6:1:1:0,event.summary.mbytes.notrace)’

For the MPI version of Abaqus, different caches were specified for each MPI rank, as
follows:

setenv FF_IO_OPTS_RANK0 ’*.fct *.opr* *.ord *.fil *.mdl* *.stt* *.res *.sst *.hdx *.odb* *.023

.nck *.sct *.lop *.ngr *.ptn* *.stp* *.elm *.eig *.lnz* *.mass *.inp *.scn* *.ddm

.dat fort*(eie.direct.nodiag.mbytes:4096:512:6:1:1:0,event.summary.mbytes.notrace)’

setenv FF_IO_OPTS_RANK1 ’*.fct *.opr* *.ord *.fil *.mdl* *.stt* *.res *.sst *.hdx *.odb* *.023
.nck *.sct *.lop *.ngr *.ptn* *.stp* *.elm *.eig *.lnz* *.mass *.inp *.scn* *.ddm

.dat fort*(eie.direct.nodiag.mbytes:4096:16:6:1:1:0,event.summary.mbytes.notrace)’

007–5646–001 107

7: Flexible File I/O

setenv FF_IO_OPTS_RANK2 ’*.fct *.opr* *.ord *.fil *.mdl* *.stt* *.res *.sst *.hdx *.odb* *.023
.nck *.sct *.lop *.ngr *.ptn* *.stp* *.elm *.eig *.lnz* *.mass *.inp *.scn* *.ddm

.dat fort*(eie.direct.nodiag.mbytes:4096:16:6:1:1:0,event.summary.mbytes.notrace)’

setenv FF_IO_OPTS_RANK3 ’*.fct *.opr* *.ord *.fil *.mdl* *.stt* *.res *.sst *.hdx *.odb* *.023

.nck *.sct *.lop *.ngr *.ptn* *.stp* *.elm *.eig *.lnz* *.mass *.inp *.scn* *.ddm
.dat fort*(eie.direct.nodiag.mbytes:4096:16:6:1:1:0,event.summary.mbytes.notrace)’

Event Tracing
By specifying the .trace option as part of the event parameter the user can enable
the event tracing feature in FFIO, as follows:

setenv FF_IO_OPTS ’test*(eie.direct.mbytes:4096:128:6:1:1:0, event.summary.mbytes.trace)’

This option generates files of the form ffio.events.pid for each process that is
part of the application. By default, event files are placed in /tmp but this destination
can be changed by setting the FFIO_TMPDIR environment variable. These files
contain time stamped events for files using the FFIO cache and can be used to trace
I/O activity (for example, I/O sizes and offsets).

System Information and Issues
Applications written in C, C++, and Fortran are supported. C and C++ applications
can be built with either the Intel or gcc compiler. Only Fortran codes built with the
Intel compiler will work.

The following restrictions on FFIO must also be observed:

• The FFIO implementation of pread/pwrite is not correct (the file offset
advances).

• Do not use FFIO to do I/O on a socket.

• Do not link your application with the librt asynchronous I/O library.

• Calls that operate on files in /proc, /etc, and /dev are not intercepted by FFIO.

• Calls that operate on stdin, stdout, and stderr are not intercepted by FFIO.

• FFIO is not intended for generic I/O applications such as vi, cp, or mv, and so on.

108 007–5646–001

Chapter 8

I/O Tuning

This chapter describes tuning information that you can use to improve I/O
throughput and latency.

Application Placement and I/O Resources
It is useful to place an application on the same node as its I/O resource. For graphics
applications, for example, this can improve performance up to 30 percent.

For example, for an Altix UV system with the following devices:

gfxtopology

Serial number: UV-00000021

Partition number: 0
8 Blades

248 CPUs

283.70 Gb Memory Total

5 I/O Risers

Blade Location NASID PCI Address X Server Display Device
--

0 r001i01b08 0 0000:05:00.0 - Matrox Pilot

4 r001i01b12 8 0001:02:01.0 - SGI Scalable Graphics C

6 r001i01b14 12 0003:07:00.0 Layout0.0 nVidia Quadro FX 5800

0003:08:00.0 Layout0.1 nVidia Quadro FX 5800
7 r001i01b15 14 0004:03:00.0 Layout0.2 nVidia Quadro FX 5800

For example, to run an OpenGL graphics program, such as glxgears(1), on the third
graphics processing unit using numactl(8), perform the following command:

% numactl -N 14 -m 14 /usr/bin/glxgears -display :0.2

This example assumes the X server was started with :0 == Layout0.

You could also use the dplace(1) command to place the application, see "dplace
Command" on page 46.

007–5646–001 109

8: I/O Tuning

Layout of Filesystems and XVM for Multiple RAIDs
There can be latency spikes in response from a RAID and such a spikes can in effect
slow down all of the RAIDs as one I/O completion waits for all of the striped pieces
to complete.

These latency spikes impact on throughput may be to stall all the I/O or to delay a
few I/Os while others continue. It depends on how the I/O is striped across the
devices. If the volumes are constructed as stripes to span all devices, and the I/Os are
sized to be full stripes, the I/Os will stall, since every I/O has to touch every device.
If the I/Os can be completed by touching a subset of the devices, then those that do
not touch a high latency device can continue at full speed, while the stalled I/Os can
complete and catch up later.

In large storage configurations, it is possible to lay out the volumes to maximize the
opportunity for the I/Os to proceed in parallel, masking most of the effect of a few
instances of high latency.

There are at least three classes of events that cause high latency I/O operations, as
follows:

• Transient disk delays - one disk pauses

• Slow disks

• Transient RAID controller delays

The first two events affect a single logical unit number (LUN). The third event affects
all the LUNs on a controller. The first and third events appear to happen at random.
The second event is repeatable.

110 007–5646–001

Chapter 9

Suggested Shortcuts and Workarounds

This chapter contains suggested workarounds and shortcuts that you can use on your
SGI Altix system. It covers the following topics:

• "Determining Process Placement" on page 111

• "Resetting System Limits" on page 118

• "Linux Shared Memory Accounting" on page 123

Determining Process Placement
This section describes methods that can be used to determine where different
processes are running. This can help you understand your application structure and
help you decide if there are obvious placement issues.

There are some set-up steps to follow before determining process placement (note that
all examples use the C shell):

1. Set up an alias as in this example, changing guest to your username:

% pu

% alias pu "ps -edaf|grep guest"

The pu command shows current processes.

2. Create the .toprc preferences file in your login directory to set the appropriate
top options. If you prefer to use the top defaults, delete the .toprc file.

% cat <<EOF>> $HOME/.toprc

YEAbcDgHIjklMnoTP|qrsuzV{FWX

2mlt

EOF

3. Inspect all processes and determine which CPU is in use and create an alias file for
this procedure. The CPU number is shown in the first column of the top output:

% top -b -n 1 | sort -n | more

% alias top1 "top -b -n 1 | sort -n "

007–5646–001 111

9: Suggested Shortcuts and Workarounds

Use the following variation to produce output with column headings:

% alias top1 "top -b -n 1 | head -4 | tail -1;top -b -n 1 | sort -n"

4. View your files (replacing guest with your username):

% top -b -n 1 | sort -n | grep guest

Use the following variation to produce output with column headings:

% top -b -n 1 | head -4 | tail -1;top -b -n 1 | sort -n grep guest

Example Using pthreads

The following example demonstrates a simple usage with a program name of th. It
sets the number of desired OpenMP threads and runs the program. Notice the
process hierarchy as shown by the PID and the PPID columns. The command usage
is the following, where n is the number of threads:

% th n

% th 4

% pu

UID PID PPID C STIME TTY TIME CMD

root 13784 13779 0 12:41 pts/3 00:00:00 login --

guest1

guest1 13785 13784 0 12:41 pts/3 00:00:00 -csh

guest1 15062 13785 0 15:23 pts/3 00:00:00 th 4 <-- Main thread
guest1 15063 15062 0 15:23 pts/3 00:00:00 th 4 <-- daemon thread

guest1 15064 15063 99 15:23 pts/3 00:00:10 th 4 <-- worker thread 1

guest1 15065 15063 99 15:23 pts/3 00:00:10 th 4 <-- worker thread 2

guest1 15066 15063 99 15:23 pts/3 00:00:10 th 4 <-- worker thread 3

guest1 15067 15063 99 15:23 pts/3 00:00:10 th 4 <-- worker thread 4

guest1 15068 13857 0 15:23 pts/5 00:00:00 ps -aef
guest1 15069 13857 0 15:23 pts/5 00:00:00 grep guest1

% top -b -n 1 | sort -n | grep guest1

LC %CPU PID USER PRI NI SIZE RSS SHARE STAT %MEM TIME COMMAND
3 0.0 15072 guest1 16 0 3488 1536 3328 S 0.0 0:00 grep

5 0.0 13785 guest1 15 0 5872 3664 4592 S 0.0 0:00 csh

5 0.0 15062 guest1 16 0 15824 2080 4384 S 0.0 0:00 th

5 0.0 15063 guest1 15 0 15824 2080 4384 S 0.0 0:00 th

112 007–5646–001

Linux
®

Application Tuning Guide for SGI
®

X86-64 Based Systems

5 99.8 15064 guest1 25 0 15824 2080 4384 R 0.0 0:14 th
7 0.0 13826 guest1 18 0 5824 3552 5632 S 0.0 0:00 csh

10 99.9 15066 guest1 25 0 15824 2080 4384 R 0.0 0:14 th

11 99.9 15067 guest1 25 0 15824 2080 4384 R 0.0 0:14 th

13 99.9 15065 guest1 25 0 15824 2080 4384 R 0.0 0:14 th

15 0.0 13857 guest1 15 0 5840 3584 5648 S 0.0 0:00 csh
15 0.0 15071 guest1 16 0 70048 1600 69840 S 0.0 0:00 ort

15 1.5 15070 guest1 15 0 5056 2832 4288 R 0.0 0:00top

Now skip the Main and daemon processes and place the rest:

% usr/bin/dplace -s 2 -c 4-7 th 4

% pu

UID PID PPID C STIME TTY TIME CMD
root 13784 13779 0 12:41 pts/3 00:00:00 login --

guest1

guest1 13785 13784 0 12:41 pts/3 00:00:00 -csh

guest1 15083 13785 0 15:25 pts/3 00:00:00 th 4

guest1 15084 15083 0 15:25 pts/3 00:00:00 th 4
guest1 15085 15084 99 15:25 pts/3 00:00:19 th 4

guest1 15086 15084 99 15:25 pts/3 00:00:19 th 4

guest1 15087 15084 99 15:25 pts/3 00:00:19 th 4

guest1 15088 15084 99 15:25 pts/3 00:00:19 th 4

guest1 15091 13857 0 15:25 pts/5 00:00:00 ps -aef

guest1 15092 13857 0 15:25 pts/5 00:00:00 grep guest1

% top -b -n 1 | sort -n | grep guest1

LC %CPU PID USER PRI NI SIZE RSS SHARE STAT %MEM TIME COMMAND

4 99.9 15085 guest1 25 0 15856 2096 6496 R 0.0 0:24 th
5 99.8 15086 guest1 25 0 15856 2096 6496 R 0.0 0:24 th

6 99.9 15087 guest1 25 0 15856 2096 6496 R 0.0 0:24 th

7 99.9 15088 guest1 25 0 15856 2096 6496 R 0.0 0:24 th

8 0.0 15095 guest1 16 0 3488 1536 3328 S 0.0 0:00 grep

12 0.0 13785 guest1 15 0 5872 3664 4592 S 0.0 0:00 csh
12 0.0 15083 guest1 16 0 15856 2096 6496 S 0.0 0:00 th

12 0.0 15084 guest1 15 0 15856 2096 6496 S 0.0 0:00 th

15 0.0 15094 guest1 16 0 70048 1600 69840 S 0.0 0:00 sort

15 1.6 15093 guest1 15 0 5056 2832 4288 R 0.0 0:00 top

007–5646–001 113

9: Suggested Shortcuts and Workarounds

Example Using OpenMP

The following example demonstrates a simple OpenMP usage with a program name
of md. Set the desired number of OpenMP threads and run the program, as shown
below:

% alias pu "ps -edaf | grep guest1

% setenv OMP_NUM_THREADS 4

% md

The following output is created:

% pu

UID PID PPID C STIME TTY TIME CMD
root 21550 21535 0 21:48 pts/0 00:00:00 login -- guest1

guest1 21551 21550 0 21:48 pts/0 00:00:00 -csh

guest1 22183 21551 77 22:39 pts/0 00:00:03 md <-- parent / main

guest1 22184 22183 0 22:39 pts/0 00:00:00 md <-- daemon

guest1 22185 22184 0 22:39 pts/0 00:00:00 md <-- daemon helper
guest1 22186 22184 99 22:39 pts/0 00:00:03 md <-- thread 1

guest1 22187 22184 94 22:39 pts/0 00:00:03 md <-- thread 2

guest1 22188 22184 85 22:39 pts/0 00:00:03 md <-- thread 3

guest1 22189 21956 0 22:39 pts/1 00:00:00 ps -aef

guest1 22190 21956 0 22:39 pts/1 00:00:00 grep guest1

% top -b -n 1 | sort -n | grep guest1

LC %CPU PID USER PRI NI SIZE RSS SHARE STAT %MEM TIME COMMAND

2 0.0 22192 guest1 16 0 70048 1600 69840 S 0.0 0:00 sort

2 0.0 22193 guest1 16 0 3488 1536 3328 S 0.0 0:00 grep
2 1.6 22191 guest1 15 0 5056 2832 4288 R 0.0 0:00 top

4 98.0 22186 guest1 26 0 26432 2704 4272 R 0.0 0:11 md

8 0.0 22185 guest1 15 0 26432 2704 4272 S 0.0 0:00 md

8 87.6 22188 guest1 25 0 26432 2704 4272 R 0.0 0:10 md

9 0.0 21551 guest1 15 0 5872 3648 4560 S 0.0 0:00 csh
9 0.0 22184 guest1 15 0 26432 2704 4272 S 0.0 0:00 md

9 99.9 22183 guest1 39 0 26432 2704 4272 R 0.0 0:11 md

14 98.7 22187 guest1 39 0 26432 2704 4272 R 0.0 0:11 md

From the notation on the right of the pu list, you can see the -x 6 pattern.

114 007–5646–001

Linux
®

Application Tuning Guide for SGI
®

X86-64 Based Systems

place 1, skip 2 of them, place 3 more [0 1 1 0 0 0]
now, reverse the bit order and create the dplace -x mask

[0 0 0 1 1 0] --> [0x06] --> decimal 6

dplace does not currently process hex notation for this bit mask)

The following example confirms that a simple dplace placement works correctly:

% setenv OMP_NUM_THREADS 4

% /usr/bin/dplace -x 6 -c 4-7 md

% pu

UID PID PPID C STIME TTY TIME CMD
root 21550 21535 0 21:48 pts/0 00:00:00 login -- guest1

guest1 21551 21550 0 21:48 pts/0 00:00:00 -csh

guest1 22219 21551 93 22:45 pts/0 00:00:05 md

guest1 22220 22219 0 22:45 pts/0 00:00:00 md

guest1 22221 22220 0 22:45 pts/0 00:00:00 md
guest1 22222 22220 93 22:45 pts/0 00:00:05 md

guest1 22223 22220 93 22:45 pts/0 00:00:05 md

guest1 22224 22220 90 22:45 pts/0 00:00:05 md

guest1 22225 21956 0 22:45 pts/1 00:00:00 ps -aef

guest1 22226 21956 0 22:45 pts/1 00:00:00 grep guest1

% top -b -n 1 | sort -n | grep guest1

LC %CPU PID USER PRI NI SIZE RSS SHARE STAT %MEM TIME COMMAND

2 0.0 22228 guest1 16 0 70048 1600 69840 S 0.0 0:00 sort

2 0.0 22229 guest1 16 0 3488 1536 3328 S 0.0 0:00 grep
2 1.6 22227 guest1 15 0 5056 2832 4288 R 0.0 0:00 top

4 0.0 22220 guest1 15 0 28496 2736 21728 S 0.0 0:00 md

4 99.9 22219 guest1 39 0 28496 2736 21728 R 0.0 0:12 md

5 99.9 22222 guest1 25 0 28496 2736 21728 R 0.0 0:11 md

6 99.9 22223 guest1 39 0 28496 2736 21728 R 0.0 0:11 md
7 99.9 22224 guest1 39 0 28496 2736 21728 R 0.0 0:11 md

9 0.0 21551 guest1 15 0 5872 3648 4560 S 0.0 0:00 csh

15 0.0 22221 guest1 15 0 28496 2736 21728 S 0.0 0:00 md

Combination Example (MPI and OpenMP)

For this example, explicit placement using the dplace -e -c command is used to
achieve the desired placement. If an x is used in one of the CPU positions, dplace
does not explicitly place that process.

007–5646–001 115

9: Suggested Shortcuts and Workarounds

If running without a cpuset, the x processes run on any available CPU.

If running with a cpuset, you have to renumber the CPU numbers to refer to “logical”
CPUs (0 ... n) within the cpuset, regardless of which physical CPUs are in the
cpuset. When running in a cpuset, the unplaced processes are constrained to the set
of CPUs within the cpuset.

For details about cpuset usage, see the Linux Resource Administration Guide.

The following example shows a “hybrid” MPI and OpenMP job with two MPI
processes, each with two OpenMP threads and no cpusets:

% setenv OMP_NUM_THREADS 2

% efc -O2 -o hybrid hybrid.f -lmpi -openmp

% mpirun -v -np 2 /usr/bin/dplace -e -c x,8,9,x,x,x,x,10,11 hybrid

if using cpusets ...

we need to reorder cpus to logical within the 8-15 set [0-7]

% cpuset -q omp -A mpirun -v -np 2 /usr/bin/dplace -e -c x,0,1,x,x,x,x,2,3,4,5,6,7 hybrid

We need a table of options for these pairs. "x" means don’t

care. See the dplace man page for more info about the -e option.
examples at end

-np OMP_NUM_THREADS /usr/bin/dplace -e -c <as shown> a.out

--- --------------- ---------------------------------------

2 2 x,0,1,x,x,x,x,2,3
2 3 x,0,1,x,x,x,x,2,3,4,5

2 4 x,0,1,x,x,x,x,2,3,4,5,6,7

4 2 x,0,1,2,3,x,x,x,x,x,x,x,x,4,5,6,7

4 3
x,0,1,2,3,x,x,x,x,x,x,x,x,4,5,6,7,8,9,10,11

4 4

x,0,1,2,3,x,x,x,x,x,x,x,x,4,5,6,7,8,9,10,11,12,13,14,15

Notes: 0 <- 1 -> <- 2 -> <- 3 -> <------ 4

------------------>

116 007–5646–001

Linux
®

Application Tuning Guide for SGI
®

X86-64 Based Systems

Notes:
0. mpi daemon process

1. mpi child procs, one per np

2. omp daemon procs, one per np

3. omp daemon helper procs, one per np

4. omp thread procs, (OMP_NUM_THREADS - 1) per np

Example - -np 2 and OMP_NUM_THREADS 2

% setenv OMP_NUM_THREADS 2
% efc -O2 -o hybrid hybrid.f -lmpi -openmp

% mpirun -v -np 2 /usr/bin/dplace -e -c x,8,9,x,x,x,x,10,11 hybrid

% pu

UID PID PPID C STIME TTY TIME CMD

root 21550 21535 0 Mar17 pts/0 00:00:00 login -- guest1

guest1 21551 21550 0 Mar17 pts/0 00:00:00 -csh

guest1 23391 21551 0 00:32 pts/0 00:00:00 mpirun -v -np 2

/usr/bin/dplace

guest1 23394 23391 2 00:32 pts/0 00:00:00 hybrid <-- mpi daemon

guest1 23401 23394 99 00:32 pts/0 00:00:03 hybrid <-- mpi child 1

guest1 23402 23394 99 00:32 pts/0 00:00:03 hybrid <-- mpi child 2

guest1 23403 23402 0 00:32 pts/0 00:00:00 hybrid <-- omp daemon 2
guest1 23404 23401 0 00:32 pts/0 00:00:00 hybrid <-- omp daemon 1

guest1 23405 23404 0 00:32 pts/0 00:00:00 hybrid <-- omp daemon hlpr 1

guest1 23406 23403 0 00:32 pts/0 00:00:00 hybrid <-- omp daemon hlpr 2

guest1 23407 23403 99 00:32 pts/0 00:00:03 hybrid <-- omp thread 2-1

guest1 23408 23404 99 00:32 pts/0 00:00:03 hybrid <-- omp thread 1-1
guest1 23409 21956 0 00:32 pts/1 00:00:00 ps -aef

guest1 23410 21956 0 00:32 pts/1 00:00:00 grep guest1

% top -b -n 1 | sort -n | grep guest1

LC %CPU PID USER PRI NI SIZE RSS SHARE STAT %MEM TIME COMMAND
0 0.0 21551 guest1 15 0 5904 3712 4592 S 0.0 0:00 csh

0 0.0 23394 guest1 15 0 883M 9456 882M S 0.1 0:00 hybrid

007–5646–001 117

9: Suggested Shortcuts and Workarounds

4 0.0 21956 guest1 15 0 5856 3616 5664 S 0.0 0:00 csh
4 0.0 23412 guest1 16 0 70048 1600 69840 S 0.0 0:00 sort

4 1.6 23411 guest1 15 0 5056 2832 4288 R 0.0 0:00 top

5 0.0 23413 guest1 16 0 3488 1536 3328 S 0.0 0:00 grep

8 0.0 22005 guest1 15 0 5840 3584 5648 S 0.0 0:00 csh

8 0.0 23404 guest1 15 0 894M 10M 889M S 0.1 0:00 hybrid
8 99.9 23401 guest1 39 0 894M 10M 889M R 0.1 0:09 hybrid

9 0.0 23403 guest1 15 0 894M 10M 894M S 0.1 0:00 hybrid

9 99.9 23402 guest1 25 0 894M 10M 894M R 0.1 0:09 hybrid

10 99.9 23407 guest1 25 0 894M 10M 894M R 0.1 0:09 hybrid

11 99.9 23408 guest1 25 0 894M 10M 889M R 0.1 0:09 hybrid

12 0.0 23391 guest1 15 0 5072 2928 4400 S 0.0 0:00 mpirun
12 0.0 23406 guest1 15 0 894M 10M 894M S 0.1 0:00 hybrid

14 0.0 23405 guest1 15 0 894M 10M 889M S 0.1 0:00 hybrid

Resetting System Limits
To regulate these limits on a per-user basis (for applications that do not rely on
limit.h), the limits.conf file can be modified. System limits that can be
modified include maximum file size, maximum number of open files, maximum stack
size, and so on. You can view this file is, as follows:

[user@machine user]# cat /etc/security/limits.conf

/etc/security/limits.conf
#

#Each line describes a limit for a user in the form:

#

#

#Where:

can be:
- an user name

- a group name, with @group syntax

- the wildcard *, for default entry

#

can have the two values:
- "soft" for enforcing the soft limits

- "hard" for enforcing hard limits

#

can be one of the following:

- core - limits the core file size (KB)

118 007–5646–001

Linux
®

Application Tuning Guide for SGI
®

X86-64 Based Systems

- data - max data size (KB)
- fsize - maximum filesize (KB)

- memlock - max locked-in-memory address space (KB)

- nofile - max number of open files

- rss - max resident set size (KB)

- stack - max stack size (KB)
- cpu - max CPU time (MIN)

- nproc - max number of processes

- as - address space limit

- maxlogins - max number of logins for this user

- priority - the priority to run user process with

- locks - max number of file locks the user can hold
#

#

#* soft core 0

#* hard rss 10000
#@student hard nproc 20

#@faculty soft nproc 20

#@faculty hard nproc 50

#ftp hard nproc 0

#@student - maxlogins 4

End of file

For instructions on how to change these limits, see "Resetting the File Limit Resource
Default" on page 119.

Resetting the File Limit Resource Default

Several large user applications use the value set in the limit.h file as a hard limit
on file descriptors and that value is noted at compile time. Therefore, some
applications may need to be recompiled in order to take advantage of the SGI Altix
system hardware.

To regulate these limits on a per-user basis (for applications that do not rely on
limit.h), the limits.conf file can be modified. This allows the administrator to
set the allowed number of open files per user and per group. This also requires a
one-line change to the /etc/pam.d/login file.

Follow this procedure to execute these changes:

007–5646–001 119

9: Suggested Shortcuts and Workarounds

1. Add the following line to /etc/pam.d/login:

session required /lib/security/pam_limits.so

2. Add the following line to /etc/security/limits.conf, where username is the
user’s login and limit is the new value for the file limit resource:

[username] hard nofile [limit]

The following command shows the new limit:

ulimit -H -n

Because of the large number of file descriptors that that some applications require,
such as MPI jobs, you might need to increase the system-wide limit on the number of
open files on your Altix system. The default value for the file limit resource is 1024.
The default 1024 file descriptors allows for approximately 199 MPI processes per
host.You can increase the file descriptor value to 8196 to allow for more than 512 MPI
processes per host by adding adding the following lines to the
/etc/security/limits.conf file:

* soft nofile 8196

* hard nofile 8196

Resetting the Default Stack Size

Some applications will not run well on an Altix system with a small stack size. To set
a higher stack limit, follow the instructions in "Resetting the File Limit Resource
Default" on page 119 and add the following lines to the
/etc/security/limits.conf file:

* soft stack 300000

* hard stack unlimited

This sets a soft stack size limit of 300000 KB and an unlimited hard stack size for all
users (and all processes).

Another method that does not require root privilege relies on the fact that many MPI
implementation use ssh, rsh, or some sort of login shell to start the MPI rank
processes. If you merely need to bump up the soft limit, you can modify your shell’s

120 007–5646–001

Linux
®

Application Tuning Guide for SGI
®

X86-64 Based Systems

startup script. For example, if your login shell is bash then add something like the
following to your .bashrc file:

% ulimit -s 300000

Note that SGI MPT MPI allows you to set your stack size limit larger with the
ulimit or limit shell command before launching an MPI program with mpirun(1)
or mpiexec_mpt(1). MPT will propagate the stack limit setting to all MPI processes
in the job.

For more information on defaul settings, also see "Resetting the File Limit Resource
Default" on page 119.

Resetting Virtual Memory Size

The virtual memory parameter vmemoryuse determines the amount of virtual
memory available to your application. If you are running with csh, use csh
commands, such as, the following:

limit
limit vmemoryuse 7128960

limit vmemoryuse unlimited

The following MPI program fails with a memory-mapping error because of a virtual
memory parameter vmemoryuse value set too low:

% limit vmemoryuse 7128960

% mpirun -v -np 4 ./program
MPI: libxmpi.so ’SGI MPI 4.9 MPT 1.14 07/18/06 08:43:15’

MPI: libmpi.so ’SGI MPI 4.9 MPT 1.14 07/18/06 08:41:05’

MPI: MPI_MSGS_MAX = 524288

MPI: MPI_BUFS_PER_PROC= 32

mmap failed (memmap_base) for 504972 pages (8273461248

bytes) Killed n

The program now succeeds when virtual memory is unlimited:

% limit vmemoryuse unlimited

% mpirun -v -np 4 ./program

007–5646–001 121

9: Suggested Shortcuts and Workarounds

MPI: libxmpi.so ’SGI MPI 4.9 MPT 1.14 07/18/06 08:43:15’
MPI: libmpi.so ’SGI MPI 4.9 MPT 1.14 07/18/06 08:41:05’

MPI: MPI_MSGS_MAX = 524288

MPI: MPI_BUFS_PER_PROC= 32

HELLO WORLD from Processor 0

HELLO WORLD from Processor 2

HELLO WORLD from Processor 1

HELLO WORLD from Processor 3

If you are running with bash, use bash commands, such as, the following:

ulimit -a
ulimit -v 7128960

ulimit -v unlimited

Avoiding Segmentation Faults

The default stack size in the Linux operating system is 8MB (8192 kbytes). You need
to be increase this value to avoid "Segmentation Faults” errors.

You can use the ulimit -a command to view the stack size, as follows:

uv44-sys:~ # ulimit -a

core file size (blocks, -c) unlimited

data seg size (kbytes, -d) unlimited

file size (blocks, -f) unlimited

pending signals (-i) 204800

max locked memory (kbytes, -l) unlimited

max memory size (kbytes, -m) unlimited

open files (-n) 16384

pipe size (512 bytes, -p) 8

122 007–5646–001

Linux
®

Application Tuning Guide for SGI
®

X86-64 Based Systems

POSIX message queues (bytes, -q) 819200

stack size (kbytes, -s) 8192

cpu time (seconds, -t) unlimited

max user processes (-u) 204800

virtual memory (kbytes, -v) unlimited

file locks (-x) unlimited

To change the value, perform a command similar to the following:

uv44-sys:~ # ulimit -s 300000

There is a similar variable for OpenMP programs. If you get a segmentation fault right
away while running a program parallelized with OpenMP, a good idea is to increase
the KMP_STACKSIZE to a larger size. The default size in Intel Compilers is 4MB.

For example, to increase it to 64MB in csh shell perform the following:

setenv KMP_STACKSIZE 64M

in bash:

export KMP_STACKSIZE=64M

Linux Shared Memory Accounting
The Linux operating system does not calculate memory utilization in a manner that is
useful for certain applications in situations where regions are shared among multiple
processes. This can lead to over-reporting of memory and to processes being killed by
schedulers erroneously detecting memory quota violation.

The get_weighted_memory_size function weighs shared memory regions by the
number of processes using the regions. Thus, if 100 processes are each sharing a total
of 10GB of memory, the weighted memory calculation shows 100MB of memory
shared per process, rather than 10GB for each process.

Because this function applies mostly to applications with large shared-memory
requirements, it is located in the SGI NUMA tools package and made available in the

007–5646–001 123

9: Suggested Shortcuts and Workarounds

libmemacct library available from a new package called memacct. The library
function makes a call to the numatools kernel module, which returns the weighted
sum back to the library, and then returns back to the application.

The usage statement for the memacct call is, as follows:

cc ... -lmemacct

#include <sys/types.h>

extern int get_weighted_memory_size(pid_t pid);

The syntax of the memacct call is, as follows:

int *get_weighted_memory_size(pid_t pid);

Returns the weighted memory (RSS) size for a pid, in bytes. This weights the size of
shared regions by the number of processes accessing it. Return -1 when an error
occurs and set errno, as follows:

ESRCH Process pid was not found.

ENOSYS The function is not implemented. Check if numatools
kernel package is up-to-date.

Normally, the following errors should not occur:

ENOENT Can not open /proc/numatools device file.

EPERM No read permission on /proc/numatools device file.

ENOTTY Inappropriate ioctl operation on /proc/numatools
device file.

EFAULT Invalid arguments. The ioctl() operation performed
by the function failed with invalid arguments.

For more information, see the memacct(3) man page.

124 007–5646–001

Index

A

Altix UV Hub, 97
Amdahl’s law, 89

execution time given n and p, 93
parallel fraction p, 92
parallel fraction p given speedup(n), 92
speedup(n) given p, 92
superlinear speedup, 91

application placement and I/O resources, 109
application tuning process, 11
automatic parallelization

limitations, 86
avoiding segmentation faults, 122

C

cache bank conflicts, 80
Cache coherent non-uniform memory access

(ccNUMA) systems, 99
cache performance, 79
cacheline traffic and CPU utilization, 31
ccNUMA

See also "cache coherent non-uniform memory
access", 99

cluster environment, 2
commands

dlook, 55
dplace, 46
topology, 26

common compiler options, 5
compiler command line, 5
compiler libaries

C/C++, 8
dynamic libraries, 7
message passing, 8

overview, 7
compiler libraries

static libraries, 7
compiler options

tracing and porting, 74
compiler options for tuning, 76
compiling environment, 5

compiler overview, 5
debugger overview, 9
libraries, 7
modules, 6

CPU utilization, 31
CPU-bound processes, 16
Cpuset Facility

advantages, 62
cpuset

definition, 62
determine if cpusets are installed, 66

overview, 62
systems calls

mbind, 63
sched_setaffinity, 63
set_mempolicy, 63

D

data decomposition, 83
data dependency, 87
data parallelism, 83
data placement tools, 41

cpusets, 43
dplace, 43
overview, 41
taskset, 43

debugger overview, 9
debuggers, 18

007–5646–001 125

Index

gdb, 9
idb, 9
TotalView, 9

denormalized arithmetic, 6
determining parallel code amount, 84
determining tuning needs

tools used, 75
dlook command, 55
dplace command, 46

E

Environment variables, 88
explicit data decomposition, 83

F

False sharing, 87
file limit resources

resetting, 119
Flexible File I/O (FFIO), 106

environment variables to set, 102
operation, 101
overview, 101
simple examples, 103

floating-point programs, 95
Floating-Point Software Assist, 95
FPSWA

See "Floating-Point Software Assist", 95
functional parallelism, 83

G

gdb tool, 18
Global reference unit (GRU), 97
GNU debugger, 18
gtopology command, 27
Gustafson’s law, 94

H

hwinfo command, 26

I

I/O tuning
application placement, 109
layout of filesystems, 110

I/O-bound processes, 16
idb tool, 19
implicit data decomposition, 83
iostat command, 37

L

latency, 1
layout of filesystems, 110
limits

system, 118
linkstat command, 32
Linux shared memory accounting, 123

M

memory accounting, 123
memory management, 2, 80
memory page, 2
memory strides, 80
memory-bound processes, 16
Message Passing Toolkit

for parallelization, 85
modules, 6

command examples, 6
MPI on Altix UV systems, 97

general considerations, 98
job performance types, 98
other ccNUMA performance issues, 99

126 007–5646–001

Linux
®

Application Tuning Guide for SGI
®

X86-64 Based Systems

MPI profiling, 95
MPInside profiling tool, 95
MPP definition, 2

N

NUMA Tools
command

dlook, 55
dplace, 46

installing, 62

O

OpenMP, 85
environment variables, 88
Guide OpenMP Compiler, 18

P

parallel execution
Amdahl’s law, 89
parallel fraction p, 92

parallel speedup, 90
parallelization

automatic, 86
using MPI, 85
using OpenMP, 85

perf tool, 17
Perfcatcher, 97
performance

Assure Thread Analyzer, 18
Guide OpenMP Compiler, 18
VTune, 17

performance analysis, 11
Performance Co-Pilot monitoring tools, 30

hubstats, 32
linkstat, 32
Other Performance Co-Pilot monitoring tools, 32

pmshub, 31
performance gains

types of, 11
performance problems

sources, 16
PerfSuite script, 17
pmshub command, 31
process placement, 111

MPI and OpenMP, 115
set-up, 111
using OpenMP, 114
using pthreads, 112

profiling
MPI, 95
perf, 17
PerfSuite, 17

ps command, 35

R

resetting default system stack size, 120
resetting file limit resources, 119
resetting system limit resources, 118
resetting virtual memory size, 121
resident set size, 2

S

sar command, 37
scalable computing, 1
segmentation faults, 122
SGI PerfBoost, 96
SHMEM, 8
shortening execution time, 90
shubstats command, 32
SMP definition, 1
stack size

resetting, 120
superlinear speedup, 91

007–5646–001 127

Index

swap space, 2
system

overview, 1
system configuration, 11
system limit resources

resetting, 118
system limits

address space limit, 119
core file siz, 119
CPU time, 119
data size, 119
file locks, 119
file size, 119
locked-in-memory address space, 119
number of logins, 119
number of open files, 119
number of processes, 119
priority of user process, 119
resetting, 118
resident set size, 119
stack size, 119

system monitoring tools, 25
command

hwinfo, 26
topology, 26

system usage commands, 34
iostat, 37
ps, 35
sar, 37
top, 36
uptime, 34
vmstat, 36
w, 35

T

taskset command, 44
tools

Assure Thread Analyzer, 18
Guide OpenMP Compiler, 18
perf, 17

PerfSuite, 17
VTune, 17

top command, 36
topology command, 26
tuning

cache performance, 79
debugging tools

idb, 19
dplace, 88
environment variables, 88
false sharing, 87
heap corruption, 75
managing memory, 81
multiprocessor code, 82
parallelization, 84
profiling

perf, 17
PerfSuite script, 17
VTune analyzer, 17

single processor code, 73
using compiler options, 76
using dplace, 88
using math functions, 75
using taskset, 88
verifying correct results, 74

U

uname command, 16
unflow arithmetic

effects of, 6
uptime command, 34

V

virtual addressing, 2
virtual memory, 2
vmstat command, 36
VTune performance analyzer, 17

128 007–5646–001

Linux
®

Application Tuning Guide for SGI
®

X86-64 Based Systems

W

w command, 35

007–5646–001 129

	Table of Contents
	About This Document
	Related Publications
	Conventions
	Obtaining Publications
	Reader Comments

	1. System Overview
	Scalable Computing
	An Overview of Altix Architecture
	The Basics of Memory Management

	2. The SGI Compiling Environment
	Compiler Overview
	Environment Modules
	Library Overview
	Static Libraries
	Dynamic Libraries
	C/C++ Libraries
	SHMEM Message Passing Libraries

	Other Compiling Environment Features

	3. Performance Analysis and Debugging
	Determining System Configuration
	Sources of Performance Problems
	Profiling with perf
	Profiling with PerfSuite

	Using VT une for Remote Sampling
	Other Performance Tools
	Debugging Tools
	Using the Intel Debugger idb
	Using ddd

	4. Monitoring Tools
	System Monitoring Tools
	Hardware Inventory and Usage Commands
	Performance Co-Pilot Monitoring Tools
	System Usage Commands
	Memory Statistics and nodeinfo Command

	5. Data Placement Tools
	Data Placement Tools Overview
	taskset Command
	dplace Command
	Using the dplace Command
	dplace for Compute Thread Placement Troubleshooting Case Study

	dlook Command
	Using the dlook Command

	omplace Command
	numactl Command
	Installing NUMA Tools
	An Overview of the Advantages Gained by Using Cpusets
	Linux 2.6 Kernel Support for Cpusets
	Cpuset Facility Capabilities
	Initializing Cpusets
	How to Determine if Cpusets are Installed
	Fine-grained Control within Cpusets
	Cpuset Interaction with Other Placement Mechanism
	Cpusets and Thread Placement
	Safe Job Migration and Cpusets
	Application Performance on Large Altix UV Systems

	6. Performance Tuning
	Single Processor Code Tuning
	Getting the Correct Results
	Managing Heap Corruption Problems
	Using Tuned Code
	Determining Tuning Needs
	Using Compiler Options Where Possible
	Tuning the Cache Performance
	Managing Memory

	Multiprocessor Code Tuning
	Data Decomposition
	Parallelizing Your Code
	Fixing False Sharing
	Using dplace and taskset
	Environment Variables for Performance Tuning

	Understanding Parallel Speedup and Amdahl's Law
	Adding CPUs to Shorten Execution Time
	Understanding Parallel Speedup
	Understanding Amdahl's Law
	Calculating the Parallel Fraction of a Program
	Predicting Execution Time with n CPUs

	Gustafson's Law
	Floating-point Programs Performance
	MPInside Profiling Tool
	SGI PerfBoost
	Perfcatcher
	Performance Tuning Running MPI on Altix UV 100 and Altix UV 1000 Systems
	General Considerations
	Job Performance Types
	Other ccNUMA Performance Issues

	7. Flexible File I/O
	FFIO Operation
	Environment Variables
	Simple Examples
	Multithreading Considerations
	Application Examples
	Event Tracing
	System Information and Issues

	8. I/O Tuning
	Application Placement and I/O Resources
	Layout of Filesystems and XVM for Multiple RAIDs

	9. Suggested Shortcuts and W orkarounds
	Determining Process Placement
	Example Using pthreads
	Example Using OpenMP
	Combination Example (MPI and OpenMP)

	Resetting System Limits
	Resetting the File Limit Resource Default
	Resetting the Default Stack Size
	Resetting Virtual Memory Size
	Avoiding Segmentation Faults

	Linux Shared Memory Accounting

	Index

