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2 INTERPOLATING AND SAMPLING SEQUENCES FOR ENTIRE FUNCTIONS

NICOLAS MARCO, XAVIER MASSANEDA, AND JOAQUIM ORTEGA-CERD̀A

ABSTRACT. We characterise interpolating and sampling sequences forthe spaces of entire func-
tions f such thatfe−φ ∈ Lp(C), p ≥ 1 (and some related weighted classes), whereφ is a
subharmonic weight whose Laplacian is a doubling measure. The results are expressed in terms
of some densities adapted to the metric induced by∆φ. They generalise previous results by Seip
for the caseφ(z) = |z|2, and by Berndtsson & Ortega-Cerdà and Ortega-Cerdà & Seipfor the
case when∆φ is bounded above and below.

CONTENTS

1. Introduction 2

2. Subharmonic functions with doubling Laplacian 6

2.1. Doubling measures 6

2.2. Flat weights 13

2.3. Local behaviour and regularisation ofφ 14

2.4. The multiplier 18

3. Basic properties of functions inFp
φ,ω 20

3.1. Pointwise estimates 20
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1. INTRODUCTION

In this paper we provide Beurling-type density conditions for sampling and interpolation in
certain generalised Fock spaces. We consider a rather general situation, with only mild regular-
ity conditions on the possible growth. Letφ be a (nonharmonic) subharmonic function whose
Laplacian∆φ is a doubling measure (see definition and properties in Section 2.1), and letω
denote a flat weight, that is, a positive measurable functionwith slow growth (see details in
Section 2.2). The spaces we deal with are parametrised by an indexp ∈ [1,∞], as follows:

Fp
φ,ω =

{
f ∈ H(C) : ‖f‖pFp

φ,ω
=
∫

C

|f |pe−pφωpρ−2 <∞
}

1 ≤ p <∞,

F∞
φ,ω =

{
f ∈ H(C) : ‖f‖F∞

φ,ω
= sup

z∈C

ω(z)|f(z)|e−φ(z) <∞
}
.

The functionρ−2 is a regularised version of∆φ, as described in [Chr91]. More precisely, if
µ = ∆φ andz ∈ C, thenρφ(z) (or simplyρ(z) if no confusion can arise) denotes the positive
radius such thatµ(D(z, ρ(z)) = 1. Such a radius exists because doubling measures have no mass
on circles.

Canonical examples of the weights considered areφ(z) = |z|β, with β > 0, andω = ρα,
α ∈ R.

Two particular families of spaces seem of special interest.The first one are the usual weighted
Lp-spaces of entire functions, obtained withω = ρ2/p. The second case arises whenω = 1; then
the spacesFp

φ,ω coincide with

{f ∈ H(C) :
∫

C

|f |pe−pφ∆φ <∞}.

Since functionsf in the spacesFp
φ,ω are determined by the growth of|f |, their restriction to a

sequence should be described as well in terms of growth.

Let Λ ⊂ C be a sequence and letv = {vλ}λ∈Λ be an associated sequence of values.
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Definition 1. A sequenceΛ is an interpolating sequence forFp
φ,ω, 1 ≤ p < ∞ (denotedΛ ∈

IntFp
φ,ω), if for every sequence of valuesv such that

‖v‖pℓp
φ,ω

(Λ) =
∑

λ∈Λ

ωp(λ)|vλ|pe−pφ(λ) <∞

there existsf ∈ Fp
φ,ω such thatf |Λ = v.

Also, Λ ∈ IntF∞
φ,ω if for every sequence of valuesv such that

‖v‖ℓ∞
φ,ω

(Λ) = sup
λ∈Λ

ω(λ)|vλ|e−φ(λ) <∞

there existsf ∈ F∞
φ,ω such thatf |Λ = v.

An application of the open mapping theorem shows that whenΛ ∈ IntFp
φ,ω there isM > 0

such that for anyv ∈ ℓpφ,ω(Λ), there existsf ∈ Fp
φ,ω with f |Λ = v and

||f ||Fp
φ,ω

≤M ||v||ℓp
φ,ω

(Λ).(1)

The least possibleM in (1) is called theinterpolating constantof Λ and is denoted byMp
φ,ω(Λ),

orM(Λ) if no confusion is possible.

Definition 2. A sequenceΛ is a sampling sequence forFp
φ,ω, 1 ≤ p < ∞ (denotedΛ ∈

SampFp
φ,ω), if there existsC > 0 such that for everyf ∈ Fp

φ,ω

C−1‖f |Λ‖ℓp
φ,ω

(Λ) ≤ ‖f‖Fp
φ,ω

≤ C‖f |Λ‖ℓp
φ,ω

(Λ).(2)

Also, Λ ∈ SampF∞
φ,ω if there existsC > 0 such that for everyf ∈ F∞

φ,ω

‖f‖F∞

φ,ω
≤ C‖f |Λ‖ℓ∞

φ,ω
(Λ).(3)

The least constantC verifying these inequalities is called thesampling constantof Λ and is
denotedLpφ,ω(Λ), or simplyL(Λ).

The definitions of interpolating and sampling sequences in the spaces defined byL∞ norms
reflect the maximal growth for functions in the space, and arenatural. The definition forp <∞
can be motivated in the following way. Consider for instancethe casep = 2. The estimates of
the normalised Bergman kernelkφ,ω(λ, z) in F2

φ,ω (see Lemma 20) show that〈kφ,ω(λ, ·), f〉 ≃
f(λ)ω(λ)e−φ(λ) for all f ∈ F2

φ,ω. ThusΛ ∈ SampF2
φ,ω if and only if

‖f‖F2
φ,ω

≃
∑

λ∈Λ

|〈kφ,ω(λ, ·), f〉|2 for all f ∈ F2
φ,ω,

that is, if and only if{kφ,ω(λ, ·)}λ∈Λ is a frame inF2
φ,ω. Similarly, Λ ∈ IntF2

φ,ω if and only if
{kφ,ω(λ, ·)}λ∈Λ is a Riesz basis in its closed linear span inF2

φ,ω. These are the standard problems
of interpolation and sampling in Hilbert spaces of functions with reproducing kernels [SS61].
For p 6= 2 the previous definitions give the appropriate notions of interpolation and sampling as
well, in view of the pointwise growth of functions in the spaces (see Lemma 18 and Remark 5).
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Our description of interpolating and sampling sequences isexpressed in terms of certain
Beurling-type densities adapted to the metric induced by∆φ, or more precisely, by its regu-
larisationρ−2(z)dz ⊗ dz̄. Before introducing the densities we need the notion ofρ-separation.

Definition 3. A sequenceΛ is ρ-separatedif there existsδ > 0 such that

|λ− λ′| ≥ δmax(ρ(λ), ρ(λ)) λ 6= λ′,

This is equivalent to saying that the points inΛ are separated by a fixed distance in the metric
above (Lemma 4).

Definition 4. Assume thatΛ is aρ-separated sequence and denoteµ = ∆φ.

Theupper uniform density ofΛ with respect to∆φ is

D+
∆φ(Λ) = lim sup

r→∞
sup
z∈C

#
(
Λ ∩D(z, rρ(z))

)

µ(D(z, rρ(z)))
.

The lower uniform density ofΛ with respect to∆φ is

D−
∆φ(Λ) = lim inf

r→∞
inf
z∈C

#
(
Λ ∩D(z, rρ(z))

)

µ(D(z, rρ(z)))
.

The main theorems are the following. LetΩφ denote the class of flat weights.

Theorem A. A sequenceΛ is sampling forFp
φ,ω, p ∈ [1,∞), ω ∈ Ωφ, if and only ifΛ is a finite

union ofρ-separated sequences containing aρ-separated subsequenceΛ′ such thatD−
∆φ(Λ

′) >
1/2π. A sequenceΛ is sampling forF∞

φ,ω if and only ifΛ contains aρ-separated subsequenceΛ′

such thatD−
∆φ(Λ

′) > 1/2π.

Theorem B. A sequenceΛ is interpolating forFp
φ,ω, p ∈ [1,∞], ω ∈ Ωφ, if and only ifΛ is

ρ-separated andD+
∆φ(Λ) < 1/2π.

In particular, there are no sequences which are simultaneously sampling and interpolating (it
should be mentioned that this is not obtained as a corollary of the theorems; it is actually an
important ingredient of the proofs).

These results generalise previous work, beginning with thepapers by Seip and Seip-Wallstén
[Sei92], [SW92]. They described the interpolating and sampling sequences for the classical
Fock space in terms of the so-called Nyquist densities. In the notation above this corresponds
to φ(z) = |z|2 andω ≡ 1. This was extended in [LS94], [BOC95] and [OCS98] to the case
of entire functionsf such thatfe−φ ∈ Lp(C), whereφ is subharmonic with bounded Laplacian
ε < ∆φ < M . The description was given again in terms of some Nyquist type densities. In these
cases the functionρ is bounded above and below, hence the metricρ−2(z)dz ⊗ dz̄ is equivalent
to the Euclidean metric. In particular,ρ(z) can be replaced by the constant1 in the definition of
the uniform densities.

There are also some partial results in several complex variables. The classical Fock space
has been studied in [MT00] and the weighted scenario in [Lin01]. In this context there exist
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necessary or sufficient density conditions, which do not completely characterise the sampling or
interpolating sequences.

Interpolation problems for other spaces of functions related to these weights have been con-
sidered by Squires and Berenstein and Li (see for instance [Squ83], [BL95] and the references
therein).

The results mentioned above relied on the remarkable work byBeurling [Beu89] and on
Hörmander’s weightedL2-estimates for thē∂ equation [Hör94]. In our proofs we first extend
Beurling’s tools to the context of certain spaces which are non-invariant under translations. We
need as well a Hörmander type theorem giving precise estimates for the∂̄ equation in Banach
norms other thanL2.

The plan of the paper is the following: In Section 2 we study the properties of doubling mea-
sures and introduce the flat weights. Recall that the only assumption on our subharmonic weight
φ is that the measure∆φ is doubling. We will need a regularisation ofφ and the construction
of a multiplier associated toφ (that is, an entire functionf such that|f | approximateseφ), very
much in the spirit of [LM01] and [OC99].

In Section 3 we state and prove some basic properties of functions inFp
φ,ω. The main result in

this section is the following Hörmander type theorem.

Theorem C. Let φ be a subharmonic function such that∆φ is a doubling measure. For any
ω ∈ Ωφ, there is a solutionu to the equation̄∂u = f such that‖ue−φω‖Lp(C) . ‖fe−φωρ‖Lp(C)

for any1 ≤ p ≤ ∞.

We also include the estimates of the Bergman kernel that justify the notion of interpolating and
sampling sequences we have considered. Finally , we study the invariance of our spaces under
some appropriate scaled translations. This leads to the notion of weak limit and the correspond-
ing analysis analogous to Beurling’s.

Section 4 is devoted to some preliminary (but important) properties of interpolating and sam-
pling sequences, including their behaviour under weak limits. The main results in this section
are some inclusion relations between various spaces of interpolating and sampling sequences,
and the fact that there are no sequences which are simultaneously interpolating and sampling for
the same space of functionsFp

φ,ω.

In Section 5 we prove the sufficiency part of Theorem A. We use again an approach similar to
that of Beurling.

Section 6 includes the proof of the necessity part of TheoremA. For this we need once more
Beurling’s analysis, plus the non-existence of sampling and interpolating sequences. We use
some theorems that relate the densities of sampling and interpolating sequences, following the
ideas by Ramanathan and Steger [RS95].

Section 8 is devoted to the proof of the necessity part of Theorem B. We use Ramanathan
and Steger’s theorem plus an original argument that shows that the density inequality is actually
strict.
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Finally, in Section 7 we deal with the sufficiency part of Theorem B. In the course of the proof,
whose main tool is the multiplier, we need to express the density in terms of rectangles instead
of disks. The usual argument of Landau [Lan67] does not work,in view of the inhomogeneity of
our measures. Theorem 42 takes care of this.

A final word on notation:C denotes a finite constant that may change in value from one
occurrence to the next.The expressionf . g means that there is a constantC independent of the
relevant variables such thatf ≤ Cg, andf ≃ g means thatf . g andg . f .

2. SUBHARMONIC FUNCTIONS WITH DOUBLING LAPLACIAN

In this chapter we recap some results on doubling measures and subharmonic functionsφ
whose Laplacian∆φ is doubling. We start with regularity and integrability conditions on dou-
bling measures. Next we show thatφ can be regularised, in the sense that there existsψ sub-
harmonic and regular for which the interpolation and sampling problems forFp

φ,ω andFp
ψ,ω are

equivalent. The final part is dedicated to the construction of the multiplier. A useful application
of this is the existence of holomorphic “peak functions” with controlled growth.

Definition 5. A nonnegative Borel measureµ in C is calleddoublingif there existsC > 0 such
that

µ(D(z, 2r)) ≤ Cµ(D(z, r))

for all z ∈ C andr > 0. We denote byCµ the minimum constantC for which the inequality
holds.

Recall that whenφ is subharmonic∆φ is a nonnegative Borel measure, finite on compact sets.

For convenience we writeDr(z) = D(z, rρ(z)) andD(z) = D1(z). We will write Dr
φ(z)

when we need to stress that the radius depends onφ.

Henceforthdm denotes the Lebesgue measure inC. We also use the measuredσ = dm/ρ2,
which should be thought of as a doubling regularisation of∆φ (see Theorem 14).

2.1. Doubling measures.Throughout this section we assume thatµ is a positive doubling mea-
sure non-identically zero. We begin with a result of Christ [Chr91, Lemma 2.1].

Lemma 1. Letµ be a doubling measure inC. There existsγ > 0 such that for any disksD,D′

of respective radiusr(D) > r(D′) withD ∩D′ 6= ∅:
(
µ(D)

µ(D′)

)γ
.

r(D)

r(D′)
.

(
µ(D)

µ(D′)

)1/γ

.

In particular, the support ofµ has positive Hausdorff dimension.

Remark1. This implies that there existk, ε > 0 such that

rε . µ(Dr(z)) . rk z ∈ C , r > 1.(4)
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Also, applying Lemma 1 and (4) toD(0, |z|) andD(z) we have, forρ(z) ≤ |z|
1

|z|k/γ .
( 1

µ(D(0, |z|))
)1/γ

.
ρ(z)

|z| .
( 1

µ(D(0, |z|))
)γ

.
1

|z|εγ .

On the other hand, if|z| < ρ(z), then0 ∈ D(z). Thus Lemma 1 impliesρ(z) ≃ ρ(0), hence
|z| < C. Therefore, there existη, C0 > 0 andβ ∈ (0, 1) such that

C−1
0 |z|−η ≤ ρ(z) ≤ C0|z|β |z| > 1.(5)

Let us study in more detail the relationship betweenρ(z) andρ(ζ) for variousz, ζ ∈ C. A first
observation is thatρ(z) is a Lipschitz function. More precisely

|ρ(z) − ρ(ζ)| ≤ |z − ζ | z, ζ ∈ C.(6)

To see this there is no loss of generality in assuming thatz, ζ ∈ R, ζ < z andρ(ζ) < ρ(z).
Thenζ − ρ(ζ) < z − ρ(z), since otherwiseD(ζ) ⊂ D(z), contradicting the fact thatµ(D(z)) =
µ(D(ζ)) = 1.

Lemma 2. [Chr91, p.205]. If ζ /∈ D(z) then

ρ(ζ)

ρ(z)
.

(
|z − ζ |
ρ(ζ)

)1−δ

for someδ ∈ (0, 1) depending only on the doubling constantCµ.

As a consequence of Lemma 1 and (5) we have

Corollary 3. For everyr > 1 there existsγ > 0 such that ifζ ∈ B(z, r) then

1

rγ
.
ρ(z)

ρ(ζ)
. rγ.

It will be convenient to express some of the results in terms of the distancedφ induced by the
metricρ−2(z)dz ⊗ dz̄.

Lemma 4. There existsδ ∈ (0, 1) such that for everyr > 0 there existsCr > 0 such that

(a) C−1
r

|z − ζ |
ρ(z)

≤ dφ(z, ζ) ≤ Cr
|z − ζ |
ρ(z)

if |z − ζ | ≤ rρ(z).

(b) C−1
r

(
|z − ζ |
ρ(z)

)δ
≤ dφ(z, ζ) ≤ Cr

(
|z − ζ |
ρ(z)

)2−δ

if |z − ζ | > rρ(z).

This shows, in particular, that a sequenceΛ is ρ-separated if and only if there existsδ > 0
such thatinfλ6=λ′ dφ(λ, λ

′) > δ.

Proof. By definition

dφ(z, ζ) = inf
∫ 1

0
|γ′(t)|ρ−1(γ(t))dt,
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where the infimum is taken over all piecewiseC1 curvesγ : [0, 1] → C with γ(0) = z and
γ(1) = ζ .

The lower inequalities are contained in [Chr91, Lemma 3.1] and its proof.

The upper estimate in case (a) is immediate from Corollary 3.In case (b) takeγ(t) = z +
t(ζ − z) and use Lemma 2; then

dφ(z, ζ) ≤ |ζ − z|
∫ 1

0

dt

ρ(γ(t))
.
∫ 1

0

(t|ζ − z|)1−δ

(ρ(z))2−δ
dt .

(
|z − ζ |
ρ(z)

)2−δ

.

�

From now on, givenz ∈ C andr > 0, we denote

B(z, r) = {ζ ∈ C : dφ(z, ζ) < r}.

Doubling measures satisfy certain integrability conditions.

Lemma 5. Letµ be a doubling measure. There existC > 0 andm ∈ N depending onCµ such
that for anyr > 0

(a)
∫

D(z,r)
log
( 2r

|z − ζ |
)
dµ(ζ) ≤ C µ(D(z, r)) z ∈ C.

(b) sup
z∈C

∫

C

dµ(ζ)

1 + dmφ (z, ζ)
<∞ .

Proof. (a) is [Chr91, Lemma 2.3].

(b) According to Lemma 4 it is enough to consider the integralon |z − ζ | ≥ rρ(z). Applying
Fubini’s theorem we see that
∫

ζ /∈Dr(z)

( ρ(z)

|z − ζ |
)m
dµ(ζ) =

∫

ζ /∈Dr(z)
m
∫ ρ(z)/|z−ζ|

0
tm−1dtdµ(ζ)

= m
∫ 1/r

0
tm−1

∫

t<ρ(z)/|z−ζ|<1/r

dµ(ζ)dt ≤ m
∫ 1/r

0
tm−1µ(D1/rt(z)) dt.

Let x0 = log2Cµ, and for a givent denotek(t) = inf{k ∈ N : 1/rt ≤ 2k}. Then

µ(D1/rt(z)) ≤ µ(D2k(t)(z)) ≤ 2x0k(t) ≤
( 2

rt

)x0

,

hence the integral is bounded ifm > x0.

This and Lemma 4(b) show that the result holds form big enough. �

Remark2. It is clear from the proof that

(b’) lim
r→∞

sup
z∈C

∫

ζ /∈B(z,r)

dµ(ζ)

dmφ (z, ζ)
= 0.
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There is a discrete version of the previous Lemma.

Lemma 6. LetΛ be aρ-separated sequence. There existsm ∈ N such that

sup
z∈C

∑

λ∈Λ

1

1 + dmφ (z, λ)
<∞.

Proof. By the separation and Lemma 4, it is enough to see that form big enough

sup
z∈C

∑

λ/∈B(z,r)

( ρ(λ)

|z − λ|
)m

<∞.

Takeδ > 0 such that the balls{B(λ, δ)}λ∈Λ are pairwise disjoint. By Corollary 3
∑

λ/∈B(z,r))

( ρ(λ)

|z − λ|
)m

.
∑

λ/∈B(z,r)

∫

B(λ,δ)

( ρ(ζ)

|z − ζ |
)m
dµ(ζ) .

∫

λ/∈B(z,r)

( ρ(ζ)

|z − ζ |
)m

dµ(ζ).

Lemma 5(b) implies that the integral is bounded. �

For later use, we state a refinement that follows similarly from Remark 2.

Corollary 7. LetΛ be aρ-separated sequence. There existsm ∈ N such that

lim
r→∞

sup
z∈C

∑

λ/∈B(z,r)

1

dmφ (z, λ)
= 0.

We will need to partition the plane in rectangles of constantmass. We do that by adapting a
general result of [Yul85] to our setting (see also [Dra01, Theorem 2.1]).

Theorem 8. Let µ be a positive doubling measure non-identically zero. Thereexists a “parti-
tion” of C in rectanglesRk with sides parallel to the coordinate axis such that:

(a) µ =
∑
k µk, whereµk := µ|Rk satisfyµk(C) = 1.

(b) Rk are quasi-squares: there existse > 1 depending only onCµ such that the ratio of sides
of eachRk lies in the interval[1/e, e].

(c) There existsC < 0 such thatC−1ρ(ak) ≤ diam(Rk) ≤ Cρ(ak), whereak denotes the
centre ofRk.

(d)
⋃
kRk = C and the interiors ofRk are distinct.

Remark3. Dividing the original measure bys ∈ R
+ we obtain a partition ofC into quasi-squares

of masss.

Proof. It is enough to partition the plane in quasi-squares of constant entire mass, because by an
stopping-time argument of [OC99] these can then be split into quasi-squares of mass1.

We construct our partition recursively. We start with a rectangle centred at0 of entire mass,
and with sidelengthsl ≤ L so thatl ≥ L/2 andl1−β ≥ 12

√
2C0, whereβ andC0 are given in

(5) (rectangleABCD in the picture). Consider next a squareQ1 centred at 0 of sidelength3L
(A1B1C1D1 in the picture) and defineR as the quasi-square with verticesABB′A′, whereA′
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andB′ are points on the same side ofQ1 taken so that0 /∈ R. We want to makeR a little bigger,
to make sure that its mass is entire, and we want to do that keeping control on the ratio of sides.
Consider the rectangleABB̃Ã, whereÃ, B̃ are taken with|AÃ| = |BB̃| = 2|AA′|. Denote by
R′ the rectangleA′B′B̃Ã added toR. Forλ ∈ R′,

ρ(λ)

l
≤ 6

√
2ρ(λ)

|λ| ≤ 6
√

2C0

|λ|1−β ≤ 6
√

2C0

l1−β
≤ 1

2
.

Since the sides ofR′ have length bigger or equal thanl we deduce thatR′ contains a disk of
centreλ and radiusρ(λ), hence its mass is at least1. This shows that there exists a rectangleR1

(AA′′B′′B in the picture) of entire mass between the originalR and the “doubled”R′.

We finish the first step of the process by constructing the analogous quasi-squareR2 of entire
mass at the opposite side ofR (CC ′′D′′D in the picture).
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Ã B̃

D′′ C′′

Consider next the rectangleQ2 limited by the segments(A′′B′′), (C ′′D′′), (B1C1), (D1A1)
(the rectangleA2B2C2D2 in the picture). We iterate the process above to each of the rectangles
B′′B2C2C

′′ andD′′D2A2A
′′, thus obtaining two new quasi-squaresR3 = B′′B3C3C

′′ andR4 =
D′′D3A3A

′′ of entire mass.

All in all, we obtain a new quasi-squareQ3 := A3B3C3D3 with ratio of sides lying in[1/2, 2]
which is a disjoint union of 5 quasi-squares of entire mass. From here we repeat the process,
takingQ3 in place of the originalR, and continue recursively to obtain the “partition” ofC. By
construction we have (a), (b) and (d).
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To prove (c) assume thatR is a quasi-square of mass 1, centrea and sidelengthsl,L. HereR ⊂
D(a, L

√
2), henceρ(a) & L & diam(R). Also,D(a, l) ⊂ R anddiam(R) . l . ρ(a). �

Lemmas 1 and 2 give control on how big a discDr(ζ) can be whenζ ∈ DR(z). We will need
another result along the same lines.

Given a doubling measureµ and givenz ∈ C and0 < r < R, consider the associated regions

Fr(z, R) = {ζ : Dr(ζ) ⊂ DR(z)} and Gr(z, R) =
⋃

ζ∈DR(z)

Dr(ζ) .

By definitionFr(z, R) ⊂ DR(z) ⊂ Gr(z, R). Let γ be the constant given by Lemma 1, andε, k
the constants in (4).

Lemma 9. Let r > 0 be fixed. There existsc > 0 such that ifǫ(R) = c(rk/Rε)γ , for all z ∈ C

andR > r we have

(a) Gr(z, R) ⊂ DR+ǫ(R)(z).
(b) DR−ǫ(R)(z) ⊂ Fr(z, R).

Proof. Applying Lemma 1 toDr(ζ) andDR(z), and using (4), we have
(
Rε

rk

)γ
.
Rρ(z)

rρ(ζ)
.

(
Rk

rε

)1/γ

.

(a) If ζ ∈ DR(z) we haveRρ(z) + rρ(ζ) ≤ Rρ(z)(1 + c(rk/Rε)γ) for somec > 0.

(b)Dr(ζ) ⊂ DR(z) when|ζ − z| + rρ(ζ) ≤ Rρ(z). Forζ ∈ DR−ǫ(R)(z)

|ζ − z| + rρ(ζ) ≤ (R − ǫ(R))ρ(z) + c1Rρ(z)
(
rk

Rε

)γ
.

Thus if (R− ǫ(R))ρ(z) + cRρ(z)(rk/Rε)γ ≤ Rρ(z) we haveDR−ǫ(R)(z) ⊂ Fr(z, R). �

Corollary 10. Let{Rk}k be a partition ofC, as in Theorem 8. Define

F (z, R) =
⋃

k:Rk⊂DR(z)

Rk and G(z, R) =
⋃

k:Rk∩DR(z)6=∅

Rk .

There exists a positive functionǫ(R) with limR→∞ ǫ(R)/R = ∞ and such that for allz ∈ C and
R > 0

(a) G(z, R) ⊂ DR+ǫ(R)(z).
(b) DR−ǫ(R)(z) ⊂ F (z, R).

Proof. As the previous Lemma, using Theorem 8(c). �

We finish with a result showing that the measure of a disk cannot be too concentrated near its
border.
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Lemma 11. Let ǫ(r) be a positive function such thatlim
r→∞

ǫ(r)/r = 0. Then

lim
r→∞

µ(Dr+ǫ(r)(z))

µ(Dr(z))
= lim

r→∞

µ(Dr−ǫ(r)(z))

µ(Dr(z))
= 1

uniformly inz ∈ C.

The proof is based in the following projection of the measureµ.

Lemma 12. For everyz ∈ C define the measureνz onR+ by

νz(A) = µ({ζ = z + reiθ : r ∈ A}) A ⊂ R
+.

Thenνz is doubling and there existsK independent ofz such thatCνz ≤ KCµ.

Proof. Givenx ∈ R+ andr > 0 let Ir(x) = (x− r, x+ r) ∩ R+. We want to see that

νz(I
2r(x)) ≤ KCµ νz(I

r(x))

for all z ∈ C, x ∈ R+ andr > 0.

Let Arz(x) = {ζ = z + seiθ : s ≥ 0 , |s − x| < r}. By definitionνz(I2r(x)) = µ(A2r
z (x)).

SplitA2r
z (x) into k := [2π

4r
] sectors

Sj =
{
ζ = z + seiθ : s ≥ 0 , |s− x| < 2r , (j − 1)

2π

k
≤ θ < j

2π

k

}
j = 1, . . . , k.

Beingµ doubling there existsK > 0 such thatµ(Sj) ≤ KCµ µ(S̃j), whereS̃j is half the sector
Sj , i.e.

S̃j =
{
ζ = z + seiθ : s ≥ 0 , |s− x| < r , (j − 1)

2π

k
+

2π

4k
< θ < j

2π

k
− 2π

4k

}
.

Since theS̃j ’s are disjoint and∪jS̃j ⊂ Arz(x), we get

νz(I
2r)(x) = µ(A2r

z (x)) =
k∑

j=1

µ(Sj) ≤ KCµ
k∑

j=1

µ(S̃j) ≤ KCµ µ(Arz(x))

= KCµ νz(I
r(x)).

�

Proof of Lemma 11.It is enough to see that

lim
r→∞

µ(Dr+ǫ(r)(z) \Dr(z))

µ(Dr(z))
= 0

uniformly in z. By definition ofνz we have

µ(Dr+ǫ(r)(z) \Dr(z))

µ(Dr(z))
=
νz
(
(rρ(z), (r + ǫ(r))ρ(z)

)

νz((0, r))
,
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and by the corresponding version of Lemma 1 for doubling measures inR+, and by Lemma 12,
there existsK > 0 independent ofz such that

νz
(
(rρ(z), (r + ǫ(r))ρ(z)

)

νz((0, r))
≤ K

(
ǫ(r)

r

)γ
.

�

Remark4. An analogous result is true if in the definition ofνz we use, instead of a radial pro-
jection with respect toz, a projection associated to quasi-squares of a fixed ratioα ∈ [e−1, e] (e
is the constant of Theorem 8(b)). LetQr

α(z) denote the rectangle with verticesz + r(1 + iα),
z + r(1− iα), z − r(1 + iα) andz − r(1− iα). Givenz ∈ C consider the measureνz in R such
that

νz(I
r(x)) = µ(Qx+r

α (z) \Qx−r
α (z))

on any intervalIr(x). As before, there existsK > 0 independent ofz ∈ C andα ∈ [e−1, e] such
thatνz is doubling withCν ≤ KCµ. Therefore, ifRr

α(z) := Qrρ(z)
α (z),

lim
r→∞

µ(Rr+ǫ(r)
α (z))

µ(Rr
α(z))

= lim
r→∞

µ(Rr+ǫ(r)
α (z))

µ(Rr
α(z))

= 1

uniformly in z.

2.2. Flat weights. In this section we describe the weightsω appearing in the spacesFp
φ,ω.

Definition 6. A positive measurable functionω is called aflat weight forφ if there existsC > 0
such that for allz, ζ ∈ C

| logω(z) − logω(ζ)| ≤ C(1 + log+ dφ(z, ζ)).(7)

The class of flat weights associated toφ will be denoted byΩφ.

Notice that the productωω̂ of two weightsω, ω̂ ∈ Ωφ belongs toΩφ as well. Also, ifω ∈ Ωφ

thenωα ∈ Ωφ, for all α ∈ R.

Besides the obviousω = 1, important examples of flat weights forφ are the functionsω = ρα,
α ∈ R. This is seen applying Lemma 2 and Lemma 4.

Furthermore, the weightsω ∈ Ωφ can be assumed to satisfy

∣∣∣1 − ω(z)

ω(ζ)

∣∣∣ ≤ Cdφ(z, ζ) if dφ(z, ζ) ≤ 1 .(8)

If the original weightω does not satisfy this condition, replace it by the regularisation

ω̃(z) =
1

ρ2(z)

∫

D(z)
ω.
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It is clear, by (7), that there existsC > 0 such thatC−1 ≤ |ω/ω̃| ≤ C, hence the spaces of
functions and sequences associated to the weightsω andω̃ are the same. On the other hand

∣∣∣
ω̃(ζ) − ω̃(z)

ω̃(ζ)

∣∣∣ ≤
∣∣∣

1

ρ2(ζ)

[∫

D(ζ)

ω

ω̃(ζ)
−
∫

D(z)

ω

ω̃(ζ)

]∣∣∣+
∣∣∣

1

ρ2(ζ)
− 1

ρ2(z)

∣∣∣
∫

D(z)

ω

ω̃(ζ)
.

Assuming thatdφ(z, ζ) ≤ 1, from (7), (6) and Lemma 4(a) we deduce that
∣∣∣
ω̃(ζ) − ω̃(z)

ω̃(ζ)

∣∣∣ .
σ[(D(ζ) ∪D(z)) \ (D(ζ) ∩D(z))]

ρ2(ζ)
+

|ρ(z) − ρ(ζ)||ρ(z) + ρ(ζ)|
ρ2(ζ)

.
ρ(z)|ζ − z|
ρ2(ζ)

+
|ζ − z|
ρ(ζ)

. dφ(ζ, z).

2.3. Local behaviour and regularisation ofφ. Let us start with a result comparing the values
of φ in a disk with the value on its centre.

Lemma 13. For everyK > 0 there existsA = A(K) > 0 such that for allz ∈ C

sup
w∈DK(z)

|φ(w) − φ(z) − hz(w)| ≤ A,

wherehz is a harmonic function inDK(z) with hz(z) = 0.

Proof. The proof is as in [OCS98, Lemma 1]. On eachDK(z) decompose

φ(w) = φ(z) + hz(w) +
∫

DK(z)
(G(w, η)−G(z, η)) ∆φ(η),(9)

whereG is the Green function of the discDK(z) andhz is a harmonic function inDK(z) such
thathz(z) = 0. By Lemma 5(a)

sup
z∈C

∫

DK(z)
log

Kρ(z)

|z − η|∆φ(η) <∞

and the result holds. �

We have seen in the previous section thatρφ(z) is Lipschitz (see (6)). Also, because of
Lemma 1,φ is Hölder continuous of some positive order on every bounded subset ofC (see
[Chr91, Lemma 2.8]). More regularity can be attained by taking a suitable weightψ equivalent
to φ.

Theorem 14. Let φ be subharmonic with∆φ doubling. There existψ ∈ C∞(C) subharmonic
andC > 0 such that|ψ−φ| ≤ C, ∆ψ is a doubling measure and∆ψ ≃ 1/ρ2

ψ ≃ 1/ρ2
φ. Moreover

|∇(∆ψ)| . 1/ρ3
φ.

Since the spaces of functions and sequences considered do not change ifφ is replaced byψ,
from now on we will assume thatφ ∈ C∞(C), ∆φ ≃ 1/ρ2 and|∇(∆φ)| . 1/ρ3.

In the proof of this result we will need to partitionC and discretize the measure.
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Lemma 15. Let µ be a positive doubling measure inC. Fix m ∈ N. There existk ∈ N and
C > 0 such that for any partition{Rp}p as in Theorem 8 withµ(Rp) = mk there are points

λ
(p)
1 , . . . , λ

(p)
mk ∈ CRp such that

(a) µp = µ|Rp andνp =
mk∑
j=1

δ
λ
(p)
j

have the same firstm moments.

(b) Λ = {λ(p)
j }p,j is aρ-separated sequence.

Proof. By Lemma 5 of [OC99], there existsk ∈ N such that for all measureµp supported
in a rectangleRp with total massmk, there are pointsσ(p)

1 , . . . σ
(p)
k ∈ Rp such thatµp and

m
∑k
j=1 δσ(p)

j
have the same firstm moments.

In order to get a separated sequence replace eachσkj (p) bym pointsγ(p)
j,l = σ

(p)
j + τ

(p)
j ei2πl/m,

l = 0, . . . , m − 1, lying on a circle aroundσ(p)
j . Since for all polynomialsp of degree less than

m− 1

m p(σ
(p)
j ) =

m−1∑

l=0

p(γ
(p)
j,l ),

the measuresµp and
∑
j,l δγ(p)

j,l

have still the same firstmmoments. We will be done as soon as we

see that theτ (p)
j can be chosen uniformly bounded and so thatΛ = {γ(p)

j,l } is ρ-separated. For this
we use a Besicovitch’s lemma: the family{Rp}p can be split inq families{R1

p}p∈I1, . . . {Rq
p}p∈Iq

such that two rectangles of the same family are far apart, in the sense thatMRl
p ∩MRl

p′ = ∅,

p 6= p′, for some large constantM . For the first family{R1
p}p∈I1, it is easy to chooseτ (p)

j such

that the resulting sequenceΓ1 = {γ(p)
j,l : p ∈ I1; j = 1, . . . , k; l = 0, . . .m − 1} is ρ-separated.

Next we chooseτ (p)
j , p ∈ I2, so thatΓ2 ∩ Γ1 is ρ-separated, whereΓ2 = {γ(p)

j,l : p ∈ I2; j =

1, . . . , k; l = 0, . . . , m− 1}. Choosingτ (p)
j recursively in this way we obtainΛ = Γ1 ∪ . . . ∪ Γq

ρ-separated. �

Proof of Theorem 14.For anyM (to be chosen later) considerk ∈ N as in Lemma 15 and a
partition{Rp}p as in Theorem 8. Take then the sequenceΛ = {λ(p)

j }j,p given by Lemma 15.

Recall thatλ(p)
j ∈ CRp, µ(Rp) = Mk and that the measuresµp andνp = M

k∑
j=1

δ
λ
(p)
j

have the

same firstM moments.

By Theorem 8(c) there existsr > 0 such thatCRp ⊂ Dr(λ
(p)
j ) for any p ∈ N and i ≤ k.

Furthermore, by construction of{Rp}p there existsq ∈ N such that anyz ∈ C lies in at mostq
disksDr(λ

(p)
j ).
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We now regulariseνp by setting

ν̃p =
Mk∑

j=1

X
( |z−λ

(p)
j |

rρ(λ
(p)
j )

)

∫ X
( |z−λ

(p)
j |

rρ(λ
(p)
j )

) ,

whereX is a smooth non-negative cut-off function of one real variable such thatX (t) = 1 if
|t| < 1, X (t) = 0 if |t| > 2 and|X ′| is bounded.

Notice thatν̃p andµp have the firstM moments. Indeed, by the mean value property

∫

C

zldν̃p =
Mk∑

i=1

(λ
(p)
j )l l = 0, . . . ,M − 1.

Defineν̃ =
∞∑
p=1

ν̃p and

ψ(z) = φ(z) +
1

2π

∫

C

log |z − ζ |(ν̃ − ∆φ)(ζ).

We claim thatν̃ is a doubling measure. The proof of this fact is a bit technical and will be
deferred to the end.

By definition ∆ψ = ν̃. Also, ν̃(z) is a sum of at mostq terms of order1/ρ2(λ
(p)
j ), with

z ∈ Dr(λ
(p)
j ). Therefore∆ψ ≃ 1/ρ2

φ and|∇(∆ψ)| . 1/ρ3
φ. In particular

∫

Dφ(z)
∆ψ(ζ) ≃

∫

Dφ(z)

dm(ζ)

ρ2
φ(ζ)

≃ 1,

henceρφ ≃ ρψ.

Let us show next that|ψ − φ| ≤ C for someC > 0.

Let ap denote the centre ofRp. Assumez ∈ Rp0 and letIp0 = {p ∈ N : dφ(ap, ap0) ≤ 10r}.
Remark that forp /∈ Ip0 , ζ ∈ supp(ν̃p) andz ∈ supp(ν̃p0) we havedφ(z, ζ) ≃ dφ(ap, ap0).
Indeed, this follows from

|ζ − ap| ≤ 3rρ(ap) ≤
3

10
|ap − ap0 |,

the analogous estimate for|z − ap0| and Lemma 4. This yields
∫

C

d−Mφ (z, ζ)ν̃p(ζ) .
∫

C

d−Mφ (z, ζ)µp(ζ) z ∈ Ip0 , p /∈ Ip0 .(10)

We split

2π(ψ(z) − φ(z)) =
∑

p∈Ip0

∫

C

log |z − ζ |(ν̃p − µp)(ζ) +
∑

p/∈Ip0

∫

C

log |z − ζ |(ν̃p − µp)(ζ)

and estimate each sum separately.
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Let pM denote theM-th Taylor polynomial oflog(|z−ζ |/ρ(z)). Sinceν̃p−µp have vanishing
moments of order less or equal toM , we can estimate

I1 : =
∣∣∣
∑

p/∈Ip0

∫

C

log |z − ζ |(ν̃p − µp)(ζ)
∣∣∣

=
∣∣∣
∑

p/∈Ip0

∫

C

(log
|z − ζ |
ρ(z)

− pM(ζ))(ν̃p − µp)(ζ)
∣∣∣ ≤

∑

p/∈Ip0

∫

C

( ρ(z)

|z − ζ |
)M

(ν̃p + µp)(ζ).

TakingM big enough and using (10) and Lemmas 4(a) and 5(b),

I1 .
∫

C\Dr(z)

( ρ(z)

|z − ζ |
)M

µ(ζ) .
∫

C\B(z,Cr)

dµ(ζ)

dδMφ (z, ζ)
≤ C.

For the remaining term we use again the moment condition together with the fact that for
p ∈ Ip0 there existsγ such that∪{supp(ν̃p), p ∈ Ip0} ⊂ Dγ

φ(z). Thus

I2 : =
∣∣∣
∑

p∈Ip0

∫

C

log |z − ζ |(ν̃p − µp)(ζ)
∣∣∣ =

∣∣∣
∑

p∈Ip0

∫

C

log
(2γρ(z)

|z − ζ |
)
(ν̃p − µp)(ζ)

∣∣∣

.
∫

Dγ(z)
log
(2γρ(z)

|z − ζ |
)
(ν̃ + µ)(ζ).

By Lemma 5(a) this is finite.

We prove now that̃ν is doubling. We first show that it is doubling for big balls, i.e. there exist
R0 > 0 and a constantC depending only on the doubling constantC∆φ of ∆φ such that for all
R > R0 we havẽν(DR(a)) ≤ Cν̃(DR/2(a)).

As in Corollary 10, define

F (a,R) =
⋃

p:Rp⊂DR(a)

Rp and G(a,R) =
⋃

p:Rp∩DR(a)6=∅

Rp.

Sinceν̃(Rp) ≃ ∫
Rp dσ/ρ

2 ≃ µ(Rp), we see that̃ν(F (a,R)) ≃ µ(F (a,R)) and ν̃(G(a,R)) ≃
µ(G(a,R)). By Corollary 10, alsoDR−ǫ(R)(a) ⊂ F (a,R) andDR+ǫ(R)(a) ⊃ G(a,R). This and
the fact thatµ is doubling yield

ν̃(DR(a)) ≤ ν̃(G(a,R)) ≃ µ(G(a,R)) ≤ µ(DR+ǫ(R)(a)) ≤ C∆φ µ(D1/2(R+ǫ(R))(a)),

and

ν̃(DR/2(a)) ≥ ν̃(F (a,R/2)) ≃ µ(F (a,R/2)) ≥ µ(DR/2−ǫ(R/2)(a)).

Therefore

ν̃(DR(a)) ≤ C∆φ ν̃(D
R/2(a))

µ(D1/2(R+ǫ(R))(a))

µ(DR/2−ǫ(R/2)(a))
.

Lemma 11 shows that the quotient converges to1 asR goes to infinity uniformly ina, so there
existsR0 such that̃ν(DR(a)) ≤ 2C∆φ ν̃(D

R/2(a)) for all R ≥ R0.
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Corollary 3 implies that̃ν ≃ 1/ρ2(a) onDR(a) whenR ≤ R0, so we deduce that̃ν(DR(a)) .
ν̃(DR/2(a)). �

2.4. The multiplier. A basic tool in our approach is the use of the so-called multiplier: an entire
functiong such that|g| ≃ eφ outside a neighbourhood of the zeros ofg.

Theorem 16. Letφ be a subharmonic function such that∆φ is a doubling measure. There exists
an entire functiong such that

(a) The zero-sequenceZ(g) of g is ρφ-separated andsup
z∈C

dφ(z,Z(g)) <∞.

(b) |g(z)| ≃ eφ(z)dφ(z,Z(g)) for all z ∈ C.

The functiong can be chosen so that, moreover, it vanishes on a prescribedz0 ∈ C. We say that
g is a multiplier associated toφ.

Proof. Take a partition{Rp} of C with µ(Rp) = 2πmN and consider the sequenceΛ given by
Lemma 15. For the sake of clarity we writeRp instead ofCRp (C is the constant of Lemma 15).
Note that now{Rp}p is not a partition, although there exists a uniform constantq such that all
points ofC lie in at mostq quasi-squaresRp. As in Lemma 15, denoteµp = (1/2π)µ|Rp and
let νp be the sum of theλ ∈ Λ associated toRp. Recall thatµp andνp have the same firstm
moments.

Let g be a holomorphic function satisfying

log |g| = φ− 1

2π

∫

C

log |z − ζ |(∆φ− 2π
∑

λ∈Λ

δλ),

which exists because the Laplacian of the term at the right hand side is a sum of Dirac masses.
By definitionZ(g) = Λ, and the previous construction ensures that (a) holds.

Let us prove (b). Assume thatz ∈ Rp0 and letIp0 denote the set of indicesp such that
Rp ∩ Rp0 6= ∅. As in the previous proof, split

log |g(z)| − φ(z) = −
∫

C

log |z − ζ |(∆φ
2π

−
∑

λ∈Λ

δλ) = S1(z) + S2(z),

where

S1(z) :=
∑

p/∈Ip0

∫

C

log |z − ζ |(νp − µp)

and

S2(z) :=
∑

p∈Ip0

∫

C

log |z − ζ |(νp − µp).

Again as in the proof of Theorem 14, using the Taylor expansion of log |z − ζ | together with the
moment condition one sees that|S1(z)| is bounded.
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For the second sum notice that there exitsγ > 0 such that∪p∈Ip0Rp ⊂ Dγ(z). Hence, denoting
|z − Λ| = inf

λ∈Λ
|z − λ|, we get

S2(z) =
∑

p∈Ip0

∫

C

log
2γρ(z)

|z − ζ |(µp − νp) ≤
∫

Dγ(z)
log

2γρ(z)

|z − ζ |dµ(ζ)− log
2γρ(z)

|z − Λ|

≤ C2 + log
|z − Λ|
ρ(z)

.

On the other hand, using theρ-separation ofΛ

−S2(z) ≤
∑

p∈Ip0

∑

λ∈Rp

log
2γρ(z)

|z − λ| ≤ log
ρ(z)

|z − Λ| + C(δ) · #
(
Λ ∩ ∪p∈Ip0Rp

)
.

Since#Ip0 is uniformly bounded, this and the estimate ofS1 give:

log
|z − Λ|
ρ(z)

− C ≤ log |g(z)| − φ(z) ≤ log
|z − Λ|
ρ(z)

+ C ′.

The result is then immediate from Lemma 4(a). �

Next we state a useful application of the multiplier. It is a result about peak functions. These
functions attain value1 at a given point and decay very fast away from the point. They are
very useful in the estimates of the Bergman kernel and in the construction of solutions to the
∂̄ equation. Another proof of the following Lemma, using estimates for thē∂-equation, can be
found in an Appendix. This second proof is along the lines of [FS89, Theorem 2.1], where a
related result is proved.

Theorem 17. Takeε > 0, ω ∈ Ωφ andm ∈ N. There existsC > 0 such that for allη ∈ C there
is an entire functionPη withPη(η) = 1 and

|Pη(z)| ≤ Ceε(φ(z)−φ(η))ω(η)

ω(z)

1

1 + dmφ (z, η)
.

Proof. Leth be a multiplier forεφ (constructed as in Theorem 16) with zero sequenceΣ = {σk}k
and such that{η} ∪ Σ is ρ-separated. In particular|h(z)| ≃ eεφ(z)dφ(z,Σ). It follows from the
construction of the multiplier that for eachM ∈ N there existsr > 0 such that#(Σ∩B(λ, r)) &
M for all η ∈ C. Givenσ1, . . . , σM ∈ Σ ∩ B(λ, r) define

Pη(z) = cη
h(z)

(z − σ1) · · · (z − σM)

ρM(η)

eεφ(η)
,

wherecη is chosen so thatPη(η) = 1.

Let us see first that there existsc > 0 independent ofη with c−1 ≤ cη ≤ c. Since|η − σi| ≃
ρ(η), then

1

cη
=

h(η)

(η − σ1) · · · (η − σM )

ρM(η)

eεφ(η)
≃ eεφ(η)dφ(η,Σ)

ρM (η)

ρM (η)

eεφ(η)
= dφ(η,Σ) ≃ 1.
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We split the estimate of|Pη(z)| into several regions. Letε > 0 be such that that the ballsB(σi, ε)
andB(η, ε) are pairwise disjoint. ConsiderK > 0 with ∪Mi=1B(σi, ε) ⊂ B(η,K).

i) z ∈ ⋃Mi=1B(σi, ε). Forz ∈ B(σi, ε) we haveρ(z) ≃ ρ(η) ≃ ρ(σi), dφ(z,Σ) ≃ |z−σi|/ρ(σi)
anddφ(z, σj) & 1, j 6= i. Thus

|Pη(z)| .

∣∣∣∣∣
h(z)

z − σi

∣∣∣∣∣ ρ(η)e
−εφ(η) ≃ eε(φ(z)−φ(η)).

ii) z ∈ B(η,K) \ ⋃Mi=1B(σi, ε). Hereρ(z) ≃ ρ(η) and|z − σi| & ρ(η), so

|Pη(z)| .
eεφ(z)dφ(z,Σ)

ρM(η)

ρM (η)

eεφ(η)
. eε(φ(z)−φ(η)).

iii) z /∈ B(η,K). Heredφ(z, σi) ≃ dφ(z, η), so

|Pη(z)| .
eεφ(z)dφ(z,Σ)

|z − η|M
ρM(η)

eεφ(η)
. eε(φ(z)−φ(η))

( ρ(η)

|z − η|
)M

.

This and Lemma 4(b) solve the caseω = 1.

For arbitraryω ∈ Ωφ there existsγ > 1 such that ifdφ(z, η) ≥ 1 then

d−γφ (z, η) .
ω(η)

ω(z)
. dγφ(z, η).

Thus the result follows from the previous construction taking M big enough and using again
Lemma 4(b). �

3. BASIC PROPERTIES OF FUNCTIONS INFp
φ,ω

Here we study the behaviour of functions inFp
φ,ω and related topics. We prove the estimates

with norms‖ · ‖Fp
φ,ω

on the solutions to thē∂ equation (Theorem C) and provide estimates of

the Bergman Kernel ofF2
φ,ω on the diagonal. We also introduce a scaled translation in the plane

that gives rise to a translated weight and to an isometry between the spaces of functions for the
original and the translated weight. This will be used when studying the properties of weak limits
(Section 3.5).

3.1. Pointwise estimates.Let us first see what is the natural growth of functions inFp
φ,ω. Recall

thatdσ = dm/ρ2.

Lemma 18. Let 1 ≤ p < ∞ andω ∈ Ωφ. For anyr > 0 there existsC > 0 such that for any
f ∈ H(C) andz ∈ C:

(a) |f(z)|pe−pφ(z) ≤ C

ωp(z)

∫

Dr(z)
|f |pe−pφωpdσ.

(b) |∇(|f |e−φ)(z)| ≤ C

ω(z)ρ(z)

(∫

Dr(z)
|f |pe−pφωpdσ

)1/p
.
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(c) If R > r then |f(z)|pe−pφ(z) ≤ CR
ωp(z)

∫

DR(z)\Dr(z)
|f |pe−pφωpdσ.

Proof. Let Hz be a holomorphic function withReHz = hz, wherehz is the harmonic function
in Dr(z) given in Lemma 13.
(a) is proved as in [OCS98, Lemma 1]:

|f(z)|pe−pφ(z) = |f(z)e−Hz(z)|pe−pφ(z)

≤ C

ρ2(z)

∫

Dr(z)
|f(ζ)|pe−p(hz(ζ)+φ(z)) ≃ 1

ωp(z)

∫

Dr(z)
|f |pe−pφωpdσ.

(b) First let us see that|∂φ/∂ζ − ∂hz/∂ζ| . 1 onDr(z). By (9), if ζ ∈ Dr(z)

|∂φ
∂ζ

(ζ) − ∂hz
∂ζ

(ζ)| =
∣∣∣
∂

∂ζ

∫

Dr(z)
G(ζ, η)∆φ(η)

∣∣∣ ≤
∫

Dr(z)

2rρ(z)

|ζ − η|∆φ(η).

TakeR (depending onr) such thatDr(z) ⊂ DR(ζ). From∆φ ≃ 1/ρ2 we deduce
∫

Dr(z)

2rρ(z)

|ζ − η|∆φ(η) .
1

ρ(ζ)

∫

DR(ζ)

dm(η)

|ζ − η| ≃ 1.

Since|∇(|f |e−φ)| = |f ′ − 2f∂φ/∂z|e−φ, we have

|∇(fe−Hz)(z)| = |f ′(z) − 2f(z)h′z(z)| ≃ |∇(|f |e−φ)(z)|eφ(z).(11)

On the other hand,

|∇(fe−Hz)(z)| .
∣∣∣
∫

|z−ζ|=ρ(z)

f(ζ)e−Hz(ζ)

(z − ζ)2
dζ
∣∣∣≃ 1

ρ2(z)

∫

|z−ζ|=ρ(z)
|f(ζ)|e−hz(ζ)|dζ |.

From (a), for|z − ζ | = ρ(z)

|f(ζ)|e−φ(ζ) .
1

ωp(z)

(∫

Dr(z)
|f |pe−pφωpdσ

)1/p
.

By Lemma 13 we have then

|∇(fe−Hz)(z)| .
1

ω(z)ρ(z)

(∫

Dr(z)
|f |pe−pφωpdσ

)1/p
eφ(z),

which together with (11) concludes the proof.

(c) As (a), using the subharmonicity of|fe−Hz |p. �

Lemma 19. Let1 ≤ p <∞ andω ∈ Ωφ. For any entire functiong with g(λ) = 0 we have

|g′(λ)|e−φ(λ) .
1

ω(λ)ρ(λ)

(∫

D(λ)
|g|pe−pφωpdσ

)1/p

.
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Proof. Lemma 18(c) withr = 1/2 andR = 1 applied to the functiong(z)/(z − λ) yields

|g′(λ)|pe−pφ(λ) .
1

ωp(λ)

∫

D(λ)\D1/2(λ)

|g(z)|p
|z − λ|p e

−pφ(z)ωpdσ

.
1

ωp(λ)ρp(λ)

∫

D(λ)
|g(z)|pe−pφ(z)ωpdσ.

�

3.2. Hörmander type estimates.This section is devoted to the proof of thē∂-estimates of
Theorem C in the introduction.

Theorem C. Let φ be a subharmonic function such that∆φ is a doubling measure. For any
ω ∈ Ωφ, there is a solutionu to the equation̄∂u = f such that‖ue−φω‖Lp(C) . ‖fe−φωρ‖Lp(C)

for any1 ≤ p ≤ ∞.

Proof. By Lemma 18(b), there existsr > 0 such that|Pη(z)| & eε(φ(z)−φ(η)) onDr(η), for all
η ∈ C. Take a sequenceΛ such that{Dr(λ)}λ∈Λ coversC and the disks{Dr/5(λ)}λ∈Λ are
pairwise disjoint, which exist by a standard covering Lemma, see [Mat95, Theorem 2.1]. Let
{χλ} ⊂ C∞

0 be a partition of unity associated to{Dr(λ)}λ.
Decompose the datumf =

∑
fλ, with fλ(z) = f(z)χλ(z). By Theorem 17, for anyλ there

exists an entire functionmλ(z) = Pλ(z)e
−φ(λ) such that

|mλ(z)| . eφ(z) 1

dMφ (z, λ) + 1

ω(λ)

ω(z)
.

The radiusr has been chosen so that|mλ(ζ)| & eφ(ζ) if ζ ∈ Dr(λ). Define

uλ(z) = mλ(z)
1

π

∫

Dr(λ)

fλ(ζ)/mλ(ζ)

ζ − z
dm(ζ).

Clearly ∂̄uλ = fλ, thusu =
∑
λ∈Λ uλ is as a solution tō∂u = f . We must prove the size

estimates. As we have used a linear operator to constructu from the datumf , we only need
to check that‖ue−φω‖L∞ . ‖fe−φωρ‖L∞ and‖ue−φω‖L1 . ‖fe−φωρ‖L1. The estimates for
1 < p <∞ follow then by Marcinkiewicz interpolation theorem.

Assume thatz ∈ Dr(λ) and takeK,K ′ > 0 such thatDK(z) ⊂ DK ′

(λ). Then

|uλ(z)e−φ(z)ω(z)| .
∫

DK(z)

|f(ζ)|e−φ(ζ)ω(ζ)ρ(ζ)

ρ(z)|ζ − z| dm(ζ)

.
∫

DK′ (λ)

|f(ζ)|e−φ(ζ)ω(ζ)ρ(ζ)

ρ(λ)|ζ − z| dm(ζ).
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On the other hand, ifz /∈ DK(λ)

|uλ(z)e−φ(z)ω(z)| . d−Mφ (z, λ)
∫

Dr(λ)

|f(ζ)|e−φ(ζ)

|ζ − z| ω(ζ) dm(ζ)

.
d−Mφ (z, λ)

ρ2(λ)

∫

Dr(λ)
|f(ζ)|e−φ(ζ)ω(ζ)ρ(ζ) dm(ζ).

Therefore, applying Lemma 6

‖ue−φω‖L∞ . ‖fe−φωρ‖L∞ sup
z∈C

(∫

DK(z)

dm(ζ)

ρ(z)|z − ζ | +
∑

λ:z /∈Dr(λ)

d−Mφ (z, λ)
)

. ‖fe−φωρ‖L∞.

In theL1 norm we get

‖ue−φω‖L1 .
∑

λ∈Λ

(∫

z∈Dr(λ)

∫

ζ∈DK′ (λ)

|f(ζ)|e−φ(ζ)ω(ζ)ρ(ζ)

ρ(λ)|ζ − z| dm(ζ) dm(z) +

∫

z /∈Dr(λ)

d−Mφ (z, λ)

ρ(λ)2

∫

Dr(λ)
|f(ζ)|e−φ(ζ)ω(ζ)ρ(ζ) dm(ζ) dm(z)

)
.

Reversing the order of integration we immediately get‖ue−φω‖L1 . ‖fe−φωρ‖L1 . �

3.3. Bergman kernel estimates.Let Kφ,ω(z, ζ) denote the Bergman kernel forF2
φ,ω, i.e, for

anyf ∈ F2
φ,ω

f(z) = 〈Kφ,ω(z, ·), f〉 =
∫

C

Kφ,ω(z, ζ)f(ζ)e−2φ(ζ)ω2(ζ)dσ(ζ).

By definition

Kφ,ω(z, z) =
∫

C

|Kφ,ω(z, ζ)|2e−2φ(ζ)ω2(ζ)dσ(ζ).

Lemma 20. There existsC > 0 such that

C−1(eφ(z)/ω(z))2 ≤ Kφ,ω(z, z) ≤ C(eφ(z)/ω(z))2 z ∈ C.

Proof. We use the identity
√
Kφ,ω(z, z) = sup{|f(z)| : f ∈ F2

φ,ω , ‖f‖F2
φ,ω

≤ 1}.

The estimate
√
Kφ,ω(z, z) . eφ(z)/ω(z) is immediate from Lemma 18(a). In order to prove the

reverse estimate we constructf ∈ F2
φ,ω with ‖f‖F2

φ,ω
≤ 1 and|f(z)| ≥ Ceφ(z)/ω(z), for some

constantC independent ofz.

By Theorem 17, for everym ∈ N there existsPz entire such that

|Pz(ζ)| ≤ Ceφ(ζ)−φ(z)ω(z)

ω(ζ)

1

1 + dmφ (z, ζ)
,
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with C independent ofz. Definefz(ζ) = c0 e
φ(z)/ω(z) Pz(ζ), wherec0 is a positive constant to

be chosen later. Nowfz(z) = c0e
φ(z)/ω(z) and

|fz(ζ)|2e−2φ(ζ)ω2(ζ)ρ−2(ζ) ≤ c0 C

1 + dmφ (z, ζ)
∆φ(ζ),

hence by Lemma 5(b) there existc0 andC independent ofz so that‖fz‖F2
φ,ω

≤ 1. �

Remark5. This argument and Lemma 18(a) show that for anyp ∈ [1,∞]

sup{|f(z)| : f ∈ Fp
φ,ω , ‖f‖Fpφ,ω ≤ 1} ≃ eφ(z)/ω(z).

3.4. Scaled translations and invariance.In this section we introduce the scaled translation and
its main properties.

Givenφ consider the classWφ of subharmonic functionsψ such that

(i) ∆ψ doubling withC∆ψ ≤ C∆φ.
(ii)

∫
Dφ(0) ∆ψ ≃ 1.

(iii) ψ(0) = 0.

An important property ofWφ is that there existsη such that∆ψ(z) . |z|2η for all regular
ψ ∈Wφ. This is a consequence of (5) and the fact that∆ψ ≃ 1/ρ2

ψ.

Fix q > 2η + 1 and consider the kernel

κ(z, ζ) :=
1

2π

[
log |1 − z

ζ
| −Re(Pq(

z

ζ
))χC\D(0,1)(ζ)

]
,

wherePq is the Taylor polynomial of degreeq of log(1 + x) aroundx = 0, and its associated
integral operator

K[f ](z) =
∫

C

κ(z, ζ)f(ζ) dm(ζ).

This operator solves the Poisson equation, that is∆K[f ] = f .

For everyx ∈ C, consider the scaled translation

τx(z) = x+ zρφ(x),

the associated subharmonic function

φx(z) = K[∆(φ ◦ τx)](z) −K[∆(φ ◦ τx)](0),

and the associated weight

ωx(z) = ω(τx(z))/ω(x).

Define alsohx := φ ◦ τx − φx. It is clear thathx is harmonic. Take thenHx holomorphic having
hx as real part and consider the scaled translation operator

T φ,ωx f(z) = f(τx(z))e
−Hx(z)ω(x).

Lemma 21. For everyx ∈ C,
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(a) The subharmonic functionφx belongs toWφ, and the weightωx satisfiesωx(0) = 1 and
ωx ∈ Ωφx .

(b) T φ,ωx is an isometry fromFp
φ,ω to Fp

φx,ωx
, for 1 ≤ p ≤ ∞.

Proof. Note first that from the identity

1 =
∫

Dφx(z)
∆φx =

∫

Dφx(z)
ρ2
φ(x)∆φ(τx(ζ)) =

∫

D(τx(z),ρφx (z)ρφ(x))
∆φ

it follows that

ρφ(τx(z)) = ρφx(z)ρφ(x).(12)

This implies that the mappingτx is actually an isometry betweenC endowed with the distance
dφx andC with dφ, that is

dφx(z, ζ) = dφ(τx(z), τx(ζ)) ∀z, ζ ∈ C.(13)

(a) By definitionφx(0) = 0, and by (12)ρφx(0) = 1. This gives properties (ii) and (iii) ofWφ.

It is also clear that∆φx is doubling andC∆φx = C∆φ, since for anya ∈ C andr > 0
∫

D(a,2r)
∆φx =

∫

D(τx(a),2rρφ(x))
∆φ ≤ C∆φ

∫

D(τx(a),rρφ(x))
∆φ ≤ C∆φ

∫

D(a,r)
∆φx.

Thatωx(0) = 1 andωx(ζ)/ωx(z) = ω(τx(z))/ω(τx(ζ)) follows from the definition. This and
(13) imply thatωx ∈ Ωφx .

(b) Forp <∞ we use the change of variableζ = τx(z) and (12):
∫

C

|T φ,ωx (f)(z)|pe−pφx(z)ωpx(z)
dm(z)

ρ2
φx(z)

=
∫

C

|f(τx(z))|pe−pφ(τx(z))ωp(x)
(ω(τx(z))

ω(x)

)p(ρφ(τx(z))
ρφ(x)

)−2
dm(z)

=
∫

C

|f(ζ)|pe−pφ(ζ)ωp(ζ)
dm(ζ)

ρ2
φ(ζ)

.

The casep = ∞ is straightforward from (12). �

Given a sequenceΛ andx ∈ C let

Λx := (τx)
−1(Λ).

Given a sequenceΛ andz ∈ C, denotenΛ(z, r) = #(Λ ∩D(z, r)), for anyr > 0.

Lemma 22. LetΛ be a sequence inC.

(a) Λ is ρ-separated if and only ifΛx is ρφx-separated.
(b) Λ ∈ IntFp

φ,ω if and only if Λx ∈ IntFp
φx,ωx. Similarly, Λ ∈ SampFp

φ,ω if and only if
Λx ∈ SampFp

φx,ωx. Furthermore, the interpolation and sampling constants remain the
same.

(c) The densities are stable:D+
∆φ(Λ) = D+

∆φx
(Λx), andD−

∆φ(Λ) = D−
∆φx

(Λx).



26 NICOLAS MARCO, XAVIER MASSANEDA, AND JOAQUIM ORTEGA-CERDÀ

Proof. (a) is an immediate consequence of (12).

(b) is a consequence of Lemma 21 and the identity‖f |Λ‖ℓp
φ,ω

(Λ) = ‖T φ,ωx f |Λx‖ℓp
φx,ωx

(Λx).

(c) Define

D∆φ(z, r,Λ) =
nΛ(z, rρ(z))
∫
Dr
φ
(z) ∆φ

.(14)

By a change of variables, it is clear that

D∆φ(z, r,Λ) = D∆φx((τx)
−1(z), r,Λx).

Taking the supremum overz ∈ C and passing to the limsup we get the result for the upper
density. The lower density is dealt with similarly. �

3.5. Weak limits. In this section we study weak limits of sequencesΛ and their properties.

Definition 7. A sequence of closed setsQj converges stronglyto Q, denotedQj → Q if
[Q,Qj ] → 0; here[Q,R] denotes the Fréchet distance betweenQ andR. We say thatQj con-
verges compactwisetoQ, denotedQj ⇀ Q, if for every compact setK we have(Qj∩K)∪∂K →
(Q ∩K) ∪ ∂K.

Definition 8. A set Λ∗ is a weak limitof Λ if there exists a sequence{xn}n∈N in C such that
Λxn ⇀ Λ∗.

Given aρ-separated sequenceΛ, and a sequence{xn}n∈N it is always possible to extract a
subsequence ofΛxnj

such thatΛxnj
⇀ Λ∗ for someΛ∗. We need also a normal family argument

for the translated weights that define the space.

Lemma 23. Let {xn}n∈N be a sequence inC. There exist a subharmonic functionφ∗, a weight
ω∗ ∈ Ωφ∗ and a subsequence{xnk}k such that{φxnk}k, {ωxnk}k and{∆φxnk}k converge uni-
formly on compact sets toφ∗, ω∗ and∆φ∗ respectively. Furthermore,∆φ∗ is a doubling measure
andC∆φ∗ ≤ C∆φ.

Proof. Takeη andq > 2η + 1 as in the definition of the kernelκ (see previous section). Denote
µn = ∆φxn.

Since|∇µn| . ρ−3
φxn

(Theorem 14) andρφxn (0) = 1, for any compact setK there exitsCK > 0

such that|∇µn(z)| ≤ CK . By the Arzelà-Ascoli theorem, we can extract a subsequence{µnk}k
converging uniformly on compact sets ofC to a functionµ∗. It follows immediately that the
measure with densityµ∗ is doubling andCµ∗ ≤ Cµn = C∆φ. Furthermore, this implies that
ρφxn → ρ∗ uniformly on compacts.

Let nowφ∗ = K[µ∗]−K[µ∗](0), and denoteφk := φxnk , µk := µnk . We will show that{φk}k
converges uniformly on compact sets toφ∗.



INTERPOLATING AND SAMPLING SEQUENCES FOR ENTIRE FUNCTIONS 27

By definitionφp(z) = K[µp](z)−K[µp](0), thus we only have to prove thatK[µp] converges
uniformly on compacts set toK[µ∗]. Takez ∈ D(0, R) andt > R. Then

|K[µp](z) −K[µ∗](z)| ≤
∣∣∣∣
∫

C\D(0,t)
κ(z, ζ)(µp(ζ) − µ∗(ζ))dm(ζ)

∣∣∣∣

+

∣∣∣∣
∫

D(0,t)
κ(z, ζ)(µp(ζ) − µ∗(ζ))dm(ζ)

∣∣∣∣.

Let I1 be the first integral. By construction ofκ we have

|κ(z, ζ)| .

(
R

|ζ |
)q
.

Also, (|µp(ζ)|+ |µ∗(ζ)|)dm(ζ) is a doubling measure with doubling constant less thanC∆φ. By
(5) |µp(ζ)| + |µ∗(ζ)| . |ζ |2η, and therefore

I1 .
∫

|ζ|>t

(
R

|ζ |
)q
|ζ |2ηdm(ζ).

This is smaller thanε for t big enough.

Let I2 be the second integral in the estimate above. We have

I2 .
∫

D(0,1)

∣∣∣∣log
∣∣∣
z − ζ

ζ

∣∣∣
∣∣∣∣|µp(ζ) − µ∗(ζ)|dm(ζ) +

∫

D(0,t)\D(0,1)
|Pq(

z

ζ
)‖µp(ζ) − µ∗(ζ)|dm(ζ)

For all z ∈ D(0, R) andζ ∈ D(0, t) \ D(0, 1) we have|Pq(z/ζ)| ≤ C(R, t), hence the uni-
form convergence ofµp implies that forp big enough the second integral here is smaller than
ε. It remains to prove the convergence of the first term. TakeC(t) such that

∫
D(0,t) | log |z −

ζ/ζ‖dm(ζ) ≤ C(t) and choosep big enough so that|µp(ζ) − µ∗(ζ)| ≤ ε/C(t) uniformly on
D(0, t). Then the estimate follows.

We know that the sequence of distance functionsdφxn has a subsequence converging todφ∗
uniformly on compact sets ofC × C, because theρxnk converge uniformly. By construction
ωxn(0) = 1. On the other hand, the definition of flat weight implies that they are equibounded on
any compact. Moreover, the regularity given by (8) makes them equicontinous on compact sets.
We can thus extract again a convergent subsequence. �

Corollary 24. Given a subharmonic functionφwith doubling Laplacian,Λ aρ-separated subse-
quence,ω ∈ Ωφ and{zn}n∈N a sequence of complex numbers, there exist a subharmonic function
φ∗, a ρφ∗-separated sequenceΛ∗, a weightω∗ ∈ Ωφ∗ and a subsequence{xn}n∈N of {zn}n∈N

such thatΛxn ⇀ Λ∗, andφxn → φ∗, ωxn → ω∗ and∆φxn → ∆φ∗ uniformly on compact sets.

We will write (Λxn, φxn, ωxn) → (Λ∗, φ∗, ω∗). The set of all such weak limits will be denoted
byW (Λ, φ, ω).

Let us prove now the stability of the upper and lower densities with respect to weak limits.

Lemma 25. Let Λ be aρ-separated sequence,{xn}n ⊂ C, and assume that(Λxn, φxn, ωxn) →
(Λ∗, φ∗, ω∗). Then
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(a) D+
∆φ(Λ) < 1/2π impliesD+

∆φ∗(Λ
∗) < 1/2π.

(b) D−
∆φ(Λ) > 1/2π impliesD−

∆φ∗(Λ
∗) > 1/2π.

Proof. DenoteΛn = Λxn, φn = φxn andρn = ρxn . By hypothesis{∆φn}n → ∆φ∗ uniformly on
compact sets, and therefore{ρn}n → ρ∗ also uniformly on compact sets. Thus, for anyǫ(r) > 0,

nΛ∗(z, (r − ǫ(r))ρφ∗(z))∫
Dr
φ∗

(z) ∆φ∗
≤ lim inf

n→∞

nΛn(z, rρn(z))∫
Dr
φn

(z) ∆φn
≤

≤ lim sup
n→∞

nΛn(z, rρn(z))∫
Dr
φn

(z) ∆φn
≤ nΛ∗(z, (r + ǫ(r))ρφ∗(z))∫

Dr
φ∗

(z) ∆φ∗
.

(a) SinceD+
∆φ(Λ) < 1/2π, there existε, R0 > 0 such that, ifw = τ−1

xn (z)

nΛn(w, rρn(w))
∫
Dr
φn

(w) ∆φn
=
nΛ(z, rρ(z))
∫
Dr
φ
(z) ∆φ

≤ 1/2π − ε ∀r > R0 , ∀n ∈ N , ∀w ∈ C.

Taking limits asn → ∞ and pickingǫ(r) so thatǫ(r)/r → 0 we see, using Lemma 11, that
D+

∆φ∗(Λ
∗) < 1/2π.

(b) is proved similarly. �

4. PRELIMINARY PROPERTIES OF SAMPLING AND INTERPOLATING SEQUENCES

This section is devoted to prove auxiliary results on interpolating and sampling sequences. A
main result is that there do not exist sequences which are simultaneously sampling and interpo-
lating. We also prove some results on inclusions between spaces of sampling and interpolating
sequences for various weights.

An easy consequence of Lemma 18 is that we only need to deal with ρ-separated sequences.

Lemma 26. LetΛ ⊂ C.

(a) If Λ ∈ IntFp
φ,ω, thenΛ is ρ-separated.

(b) If Λ ∈ SampFp
φ,ω, there exists aρ-separated subsequenceΛ′ ⊂ Λ such thatΛ′ ∈ SampFp

φ,ω.
(c) If p <∞ andΛ ∈ SampFp

φ,ω, thenΛ is a finite union ofρ-separated sequences.
(d) LetΛ ∈ SampFp

φ,ω beρ-separated. There existsr > 0 such thatC = ∪λ∈ΛD
r(λ).

Proof. (a) Assume thatλ, µ ∈ Λ with |λ − µ| ≤ ρ(λ) and takef ∈ Fp
φ,ω such thatf(λ) =

eφ(λ)/ω(λ), f(µ) = 0 and‖f‖Fp
φ,ω

. 1. Then

ω−1(λ) =
∣∣∣|f(λ)|eφ(λ) − |f(µ)|e−φ(µ)

∣∣∣ . |∇(|f |e−φ)(ζ)||µ− λ|.

The result follows then from Lemma 18(b).
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(b) As in the proof of [Beu89, Theorem 2, p. 344], using here Lemma 18(b) instead of Bern-
stein’s theorem, we get

∣∣∣∣∣
1

Lpφ,ω(Λ)
− 1

Lpφ,ω(Λ
′)

∣∣∣∣∣ ≤ C[Λ,Λ′].

(c) It is enough to show that there existsr > 0 andM such that#(Dη(z) ∩ Λ) ≤ M for
all z ∈ C. To this end, consider the functionfz(ζ) = eφ(z)/ω(z)Pz(ζ), wherePz is given
by Theorem 17 (withε = 1 andω = 0). We have‖fz‖Fp

φ,ω
≤ C, and forr small enough

|fz(ζ)| & eφ(ζ)/ω(ζ) in Dr(z). So the left sampling inequality (see (2)) yields

#(Dr(z) ∩ Λ) ≤ ‖fz|Λ‖ℓp
φ,ω

(Λ) ≤ CLpφ,ω(Λ).

(d) It is enough to see that forR big enoughΛ ∩DR(z) 6= ∅ for all z ∈ C.

Takefz as in (c). Letε > 0 be theρ-separation ofΛ. Since

|fz(ζ)|pe−pφ(ζ)ωp(ζ)ρ−2(ζ) .
∆φ(ζ)

1 + dmφ (z, ζ)
,

Lemma 18(a) and Lemma 9 lead to
∑

λ/∈DR(z)

ωp(λ)|fz(λ)|pe−pφ(λ) .
∑

λ/∈DR(z)

∫

Dε(λ)

∆φ(ζ)

1 + dmφ (z, ζ)

.
∫

ζ /∈DR−ǫ(R)(z)

∆φ(ζ)

1 + dmφ (z, ζ)

According to Remark 2 this tends to 0 uniformly inz asR goes to∞. Thus, forR big enough
the sampling inequality gives

1 ≤ C
∑

λ∈Λ∩DR(z)

ωp(λ)|fz(λ)|pe−pφ(λ).

In particularΛ ∩DR(z) 6= ∅, as desired. �

4.1. Weak limits and interpolating and sampling sequences.In this sectionτφx will denote
the scaled translation associated to the weightφ, as described in Section 3.4. The main result is
as follows.

Proposition 27. Let φ a subharmonic function with doubling Laplacian,ω ∈ Ωφ and Λ be a
ρ-separated sequence. Assume(Λ∗, φ∗, ω∗) ∈W (Λ, φ, ω).

(a) If Λ ∈ SampFp
φ,ω thenΛ∗ ∈ SampFp

φ∗,ω∗.

(b) If Λ ∈ IntFp
φ,ω thenΛ∗ ∈ IntFp

φ∗,ω∗.

Proof. (a) We argue by contradiction. Otherwise there existεn > 0 decreasing to zero and
functionsfn ∈ Fp

φ∗,ω∗ such that‖fn‖Fp
φ∗,ω∗

= 1 and‖fn|Λ∗‖ℓp
φ∗,ω∗

(Λ∗) ≤ εn.
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By Corollary 24 there exists a sequence{xj}j∈N in C such that(φj, ωj,Λj) → (φ∗, ω∗,Λ∗),
where we denoteΛj := Λxj , ωj := ωxj andφj := φxj .

For everyn considerRn big enough so that ifDn := DRn
φ∗ (0) then‖fn|Dn‖Fp

φ∗,ω∗
≥ 1 − εn.

SetD̃n := D
R2
n

φ∗ (0).

We claim that there exists a smooth cut-off functionXn such thatXn(ζ) = 1 inDn, Xn(ζ) = 0

in C \ D̃n and|∂̄Xn| ≤ εn/ρφ∗. To see this start with a smoothXn depending linearly on|ζ | on
Rn ≤ |ζ | ≤ R2

n. Then

|∂̄Xn(ζ)| ≤
1

ρφ∗(0)(R2
n − Rn)

.

By Lemma 2ρφ∗(ζ)/ρφ∗(0) ≤ R2(1−δ)
n for someδ ∈ (0, 1). Thus, ifRn is big enough

|∂̄Xn(ζ)| ≤
R2(1−δ)
n

ρφ∗(ζ)(R2
n − Rn)

≤ εn
ρφ∗(ζ)

.

Take nowjn big enough so thatρφjn/ρφ∗ ≤ 2 on D̃n and
∣∣∣‖fn|D̃n‖Fp

φjn ,ωjn

− ‖fn|D̃n‖Fp
φ∗,ω∗

∣∣∣ ≤ εn,
∣∣∣‖fn|Λjn ∩ D̃n‖ℓp

φjn ,ωjn

− ‖fn|Λ∗ ∩ D̃n‖ℓp
φ∗,ω∗

∣∣∣ ≤ εn.

Define gn = fnXn. Then ∂̄gn is supported onCn := {Rn ≤ |ζ | ≤ R2
n} and |∂̄gn(ζ)| ≤

εn|fn(ζ)|/ρφ∗(ζ), so by Theorem 1 there existsun solution to∂̄un = ∂̄gn with

‖un‖Fp
φjn ,ωjn

. ‖∂̄gnρφjn‖Fpφjn ,ωjn . εn‖fn|D̃n‖Fp
φjn ,ωjn

. εn.

The functionGn = gn − un is holomorphic and satisfies

‖Gn‖Fp
φjn ,ωjn

≥ ‖fn|Dn‖Fp
φjn ,ωjn

− ‖un‖Fp
φjn ,ωjn

≥ 1 − Cεn ≃ 1.

We will check now thatGn|Λjn is small. SplitΛjn into Λ̃jn = Λjn ∩ {Dn ∪ (C \ D̃n))} and
Λ̂jn = Λjn \ Λ̃jn. On the one hand

‖Gn|Λ̃jn‖ℓp
φjn ,ωjn

(Λ̃jn )
≤ ‖fn|D̃n ∩ Λ̃jn‖ℓp

φjn ,ωjn
(Λ̃jn )

+ ‖un|Λ̃jn‖ℓp
φjn ,ωjn

(Λ̃jn )
.

From‖un|Λ̃jn‖ℓp
φjn ,ωjn

(Λ̃jn )
≤ ‖un‖Fp

φjn ,ωjn

≤ εn (by Lemma 18 for the casep < ∞, sinceu is

holomorphic inDn ∪ (C \ D̃n )) we deduce that‖Gn|Λ̃jn‖ℓp
φjn ,ωjn

(Λ̃jn )
. εn. On the other hand

‖Gn|Λ̂jn‖ℓp
φjn,ωjn

(Λ̂jn )
. ‖Gn|(D̃n \Dn)‖Fp

φjn ,ωjn

. ‖|fn| + |un||(D̃n \Dn)‖Fp
φjn ,ωjn

. εn.

This together with the above and the fact that the sampling constants ofΛ andΛjn coincide
(Lemma 22(b)) leads to contradiction.
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(b) Assume thatΛ∗ = {λ∗k}k, and letv ∈ ℓpφ,ω(Λ
∗) with ‖v‖ℓp

φ,ω
(Λ∗) ≤ 1. Let alsoΛj = {λjk}k

be such thatΛj → Λ∗ uniformly on compact sets. Forεn decreasing to zero andRn big enough
(to be chosen later) there existsjn such that‖v‖ℓp

φjn
(Λjn∩D

Rn
φ∗

(0)) ≤ 2 and

e−φ
∗

ω∗ρ
−2/p
φ∗

e−φjnω∗
jnρ

−2/p
φjn

≤ 2 on D
R2
n

φ∗ (0).(15)

Since the interpolation constantM(Λj) does not depend onj there existfn ∈ Fp
φjn ,ωjn

with
‖fn‖Fp

φjn ,ωjn

≤ 2M(Λ) and

fn(λ
jn
k ) =




vk if λjnk ∈ DRn

φ∗ (0)

0 otherwise.

We will now use the same technique as in (a) to modifyfn so that it falls inFp
φ∗,ω∗. Take

the cut-off functionXn constructed above, definegn = fnXn and consider a solutionun to
∂̄un = fn∂̄(Xn) such that:

‖un‖Fp
φ∗,ω∗

. ‖fn∂̄(Xn)ρφ∗‖Fp
φ∗,ω∗

. εn‖fn|DR2
n

φ∗ (0)‖Fp
φ∗,ω∗

. εn‖fn‖Fp
φjn ,ωjn

. εn,

‖un‖F∞

φ∗,ω∗
. ‖fn∂̄(Xn)ρφ∗‖F∞

φ∗,ω∗
. εn‖fn‖Fp

φ∗,ω∗
. εn.

According to Theorem C and (15) such a solution always exists.

The entire functionGn = fn∂̄(Xn) − un is Fp
φ∗,ω∗ and‖Gn‖Fp

φ∗,ω∗
≤ CM . By Montel’s

theorem we may assume thatGn converges to a functionG ∈ Fp
φ∗,ω∗. Notice thatGn(λ

jn
k ) =

vk − un(λ
jn
k ) for λjnk ∈ DRn

φ∗ (0), and by theL∞ estimates,|un(λjnk )| tends to zero asn goes to
infinity. ThereforeG interpolatesv. �

Lemma 28. Suppose that for every weak limit(Λ∗, φ∗, ω∗) ∈ W (Λ, φ, ω) the sequenceΛ∗ is a
uniqueness set forF∞

φ∗,ω∗. Then there existsε > 0 such thatΛ is sampling forF∞
(1+ε)φ,ω.

Proof. If this is not the case there existεn > 0 decreasing to 0,fn ∈ F∞
(1+εn)φ,ω andzn ∈ C such

that|fn(zn)|e−(1+εn)φ(zn)ω(zn) = 1, ‖fn‖F∞

(1+εn)φ,ω
≤ 2 and‖fn|Λ‖ℓ∞

(1+εn)φ,ω
(Λ) ≤ εn.

Denoteψn = (1 + εn)φ. LetΛn = (τψnzn )−1(Λ), ωn = ωzn andgn = Tψn,ωnzn fn. Then, denoting
ψn,zn = (1 + εn)φzn , we have|gn(0)| = 1 and‖gn|Λn‖ℓ∞

ψn,zn,ωn
(Λn) = ‖fn|Λ‖ℓ∞

ψn,ωn
(Λ) ≤ εn.

Taking a subsequence if necessary, we can assume thatΛn converges weakly toΛ∗, ψn,zn → φ∗,
ωn → ω∗ uniformly on compact sets andgn → g∗ ∈ F∞

φ∗,ω∗ (by Montel’s Theorem). Sog∗

vanishes onΛ∗ and|g∗(0)| = 1, contradicting the fact thatΛ∗ is a uniqueness sequence. �

Corollary 29. Let φ a subharmonic function with doubling Laplacian, letω ∈ Ωφ and letΛ
be aρ-separated sequence. The sequenceΛ is in SampF∞

φ,ω if and only if for all weak limit
(Λ∗, φ∗, ω∗) ∈W (Λ, φ, ω), the sequenceΛ∗ is a uniqueness set forF∞

φ∗,ω∗.
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4.2. Non-existence of simultaneously sampling and interpolating sequences.An important
result in the proof of Theorems A and B is the following.

Theorem 30. There is no sequenceΛ both sampling and interpolating forFp
φ,ω, p ∈ [1,∞].

Proof. Assume that such sequenceΛ exists. We claim that

sup
λ∗∈Λ

∑

λ∈Λ\λ∗

ρ(λ)ρ(λ∗)

|λ− λ∗|2 <∞.(16)

Let p ∈ [1,∞). Given anyλ∗ ∈ Λ take a functiong such thatg(λ∗) = 1, g(λ) = 0 for λ 6= λ∗

and‖g‖Fp
φ,ω

. e−pφ(λ∗)ωp(λ∗). Suchg exists becauseΛ is interpolating. Consider the function

F (z) =
∑

λ∈Λ\λ∗

ρ(λ)
g(z)(z − λ∗)

(z − λ)(λ∗ − λ)
.

The sampling inequality shows thatF ∈ Fp
φ,ω. Moreover, since|F (λ)| = |g′(λ)|ρ(λ) for all

λ ∈ Λ \ λ∗ andF (λ∗) = 0, we have

‖F‖pFp
φ,ω

.
∑

λ∈Λ\λ∗

|g′(λ)|pρp(λ)e−pφ(λ)ωp(λ).

We use now Lemma 19 and the fact thatΛ is ρ-separated (since it is interpolating):

‖F‖pFp
φ,ω

.
∑

Λ\λ∗

∫

D(λ)
|g|pe−pφωpdσ . ‖g‖pFp

φ,ω
. e−pφ(λ∗)ωp(λ∗).

We want to estimate|F ′(λ∗)|. Using again Lemma 19

|F ′(λ∗)|pe−pφ(λ∗)ωp(λ∗)ρp(λ∗) .
∫

D(λ)
|F |pe−pφωpdσ . e−pφ(λ∗)ωp(λ∗).

Therefore|F ′(λ∗)|ρ(λ∗) . 1. On the other hand

F ′(λ∗) =
∑

λ∈Λ\λ∗

ρ(λ)

|λ− λ∗|2 .

This yields (16). The obvious modifications give (16) in the casep = ∞.

According to Lemma 26(d) there existsr > 0 with C = ∪λ∈ΛD
r(λ). Also, there existsr0 > 0

depending onr such that,
∫

Dr(λ)\Dr0 (λ∗)

dm(z)

1 + |z − λ∗|2 ≤ C(r)
ρ2(λ)

|λ− λ∗|2 ∀λ /∈ Dr0(λ∗).

We may now finish by taking a big diskD(0,M) andλ∗M ∈ D(0,M) in such a way thatρ(λ∗M) ≥
ρ(λ) for all λ ∈ Λ ∩D(0,M). In this case
∫

D(0,M)\Dr0 (λ∗M )

dm(z)

1 + |z − λ∗M |2 .
∑

λ∈Λ
λ/∈Dr0 (λ∗)

∫

Dr(λ)

dm(z)

1 + |z − λ∗M |2 .
∑

λ∈Λ\λ∗
M

ρ(λ)ρ(λ∗M )

|λ− λ∗M |2 < C.

This is a contradiction, sincelimM→∞ ρ(λ∗M)/M = 0 and the left hand side of the previous
inequality tends to∞ asM goes to∞. �
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Corollary 31. Any sequence obtained by deleting a finite number of points ofΛ ∈ SampFp
φ,ω is

still in SampFp
φ,ω.

We want to prove next an analogue for interpolating sequences: adding a finite number of
points to an interpolating sequence gives again an interpolating sequence.

GivenΛ and a pointz define, following [Beu89, p.352–354]

σpφ,ω(z,Λ) := sup
{
|f(z)|e−φ(z)ω(z), ‖f‖Fp

φ,ω
≤ 1, f |Λ ≡ 0

}
.

Notice first that ifΛ is interpolating andz /∈ Λ this is strictly positive. Indeed,Λ is not a
uniqueness sequence, otherwiseΛ would be also sampling, contradicting Theorem 30. Thus
there existsf ∈ Fp

φ,ω, f 6= 0 with f |Λ ≡ 0 and, eventually dividingf by a power of(ζ − z),
f(z) 6= 0. Henceσpφ,ω(z,Λ) > 0.

Lemma 32. Let Λ ∈ IntFp
φ,ω. ThenΛ ∪ {z} ∈ IntFp

φ,ω for all z /∈ Λ. Furthermore, for all
ε > 0 there existsC > 0 such thatdφ(Λ, z) ≥ ε impliesMp

φ,ω(Λ ∪ {z}) ≤ CMp
φ,ω(Λ).

Proof. As in the proof of [Beu89, Lemma 4, p.233], we have

Mp
φ,ω(Λ ∪ {z}) ≤ 1 + 2Mp

φ,ω(Λ)

σpφ,ω(z,Λ)
.

Thus we will be done if we prove that there existsA > 0 such thatdφ(z,Λ) ≥ ε implies
σpφ,ω(z,Λ) ≥ A.

If this is not true, there exists a sequence{zn} ∈ C with dφ(zn,Λ) ≥ ε andσpφ,ω(zn,Λ) ≤ 1/n.
Transferringzn to the origin byτ−1

zn (see Section 21), we get a sequenceΛn := Λzn such that
|λ| ≥ ε for all λ ∈ Λn andσpφn,ωn(0,Λn) ≤ 1/n, whereφn = φzn andωn = ωzn.

Taking a subsequence if necessary, assume that(Λn, φn, ωn) converges to(Λ∗, φ∗, ω∗). By
Proposition 27,Λ∗ ∪ {0} ∈ IntFp

φ∗,ω∗, so there existsf ∈ Fp
φ∗,ω∗ with f |Λ∗ = 0 and|f(0)| = 1.

Arguing as in the proof of Proposition 27 we see that there exist fn ∈ Fp
φn,ω andεn decreasing

to zero such that

‖fn|Λn‖ℓp
φn,ωn

(Λn) ≤ εn, |fn(0)| ≥ c and ‖fn‖Fp
φn,ωn

≤ C.

SinceΛn is interpolating, there exist alsogn ∈ Fp
φn,ωn with

gn|Λn = fn|Λn and ‖gn‖Fp
φn,ωn

≤Mp
φn,ωn(Λn)‖fn|Λn‖ℓp

φn,ωn
(Λn) ≤ εnM(Λ).

Thenhn := fn − gn ∈ Fp
φn,ωn vanishes onΛn and‖hn‖Fp

φn,ωn
≤ 2C, therefore|hn(0)| . 1/n.

On the other hand|gn(0)| . εn and therefore|hn(0)| ≥ c/2, thus contradicting the previous
estimate. �

4.3. Inclusions between various spaces of interpolating sequences. We want to study next
the relationship between the spaces of interpolating sequences for various weights. We will use
the techniques already exploited in [MT00].
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We start with the construction of a sort of peak-functions associated to an interpolating se-
quence. Letδλ

′

λ denote the Kroenecker indicator, i.e.δλ
′

λ = 1 if λ = λ′ andδλ
′

λ = 0 otherwise.

Lemma 33. Let Λ ∈ IntFp
φ,ω, 1 ≤ p ≤ ∞. Givenε > 0 and ω̃ ∈ Ωφ there existm ∈ N, C > 0

and functionsgλ ∈ Fp
(1+ε)φ,ω̃ such that

(a) gλ(λ′) = δλ
′

λ for all λ, λ′ ∈ Λ.
(b) ‖gλ‖Fp

(1+ε)φ,ω̃
≃ ω̃(λ)e−(1+ε)φ(λ).

(c) |gλ(z)| .
ω̃(λ)

ω̃(z)
e(1+ε)(φ(z)−φ(λ)) 1

1 + dmφ (z, λ)
.

(d) For all v ∈ ℓp(1+ε)φ,ω̃(Λ), ‖v‖ℓp
(1+ε)φ,ω̃

(Λ) .
∥∥∥
∑
λ∈Λ vλgλ

∥∥∥
Fp

(1+ε)φ,ω̃

. ‖v‖ℓp
(1+ε)φ,ω̃

(Λ) .

(e) lim
r→∞

sup
λ∈Λ

ep(1+ε)φ(λ)

ω̃p(λ)

∫

C\Dr(λ)

|gλ(z)|pe−p(1+ε)φ(z)ω̃p(z)dσ(z) = 0.

Proof. By hypothesis, there exist functionsfλ ∈ Fp
φ,ω such thatfλ(µ) = δµλ for all λ, µ ∈ Λ

and‖fλ‖Fp
φ,ω

≤ M(Λ)ω(λ)e−φ(λ). Consider the weightsPλ given by Theorem 17 for the weight
ω̃/ω, and definegλ = fλPλ. By construction we have (a) and (c).

(b) Whenp = ∞ we haveω̃(λ)e−(1+ε)φ(λ) = ω̃(λ)e−(1+ε)φ(λ)|gλ(λ)| ≤ ‖gλ‖F∞

(1+ε)φ,ω̃
. The

remaining inequality is immediate from (c).

Let p <∞. On the one hand, Lemma 18(a) gives

ω̃(λ)e−(1+ε)φ(λ) = ω̃(λ)e−(1+ε)φ(λ)|gλ(λ)| .
(∫

D(λ)
|gλ|pe−p(1+ε)φω̃pdσ

)1/p
. ‖gλ‖Fp

(1+ε)φ,ω̃
.

On the other hand, (c) and Lemma 5(b) show that form big enough

∫

C

|gλ|pe−p(1+ε)φω̃pdσ . ω̃p(λ)e−p(1+ε)φ(λ)

[∫

D(λ)
dσ(z) +

∫

C\D(λ)

∆φ(z)

dpmφ (z, λ)

]

. ω̃p(λ)e−p(1+ε)φ(λ)

(d) Denotef =
∑
λ vλgλ. The left inequalities are proved similarly to (b), for

ω̃(λ)e−(1+ε)φ(λ)|vλ| = ω̃(λ)e−(1+ε)φ(λ)|f(λ)|.

Forp = ∞ andv ∈ ℓ∞,
(1+ε)φ,ω̃(Λ) Lemma 6 and (c) yield

ω̃(z)e−(1+ε)φ(z)
(∑

λ∈Λ

|vλ||gλ(z)|
)

. ‖v‖ℓ∞
(1+ε)φ,ω̃

(Λ)

∑

λ∈Λ

1

1 + dmφ (λ, z)
. ‖v‖ℓ∞

(1+ε)φ,ω̃
(Λ).
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Let nowp < ∞. Using the estimate (c) and Jensen’s inequality for convex functions (which
is legitimate thanks to Lemma 6) we have

|f(z)|pe−p(1+ε)φ(z)ω̃p(z)ρ−2(z) .
1

ρ2(z)

[∑

λ∈Λ

ω̃(λ)|vλ|e−(1+ε)φ(λ) 1

1 + dmφ (z, λ)

]p

.
1

ρ2(z)

∑

λ∈Λ

ω̃p(λ)|vλ|pe−p(1+ε)φ(λ) 1

1 + dmφ (z, λ)
.

Now we apply Lemma 5(b) and obtain
∫

C

|f |pe−p(1+ε)φω̃p dσ .
∑

λ∈Λ

ω̃p(λ)|vλ|pe−p(1+ε)φ(λ)
∫

C

∆φ(z)

1 + dmφ (z, λ)
. ‖v‖pℓp

(1+ε)φ,ω̃
(Λ).

(e) This follows from (c) and Remark 2, since

ep(1+ε)φ(λ)

ω̃p(λ)

∫

C\Dr(λ)
|gλ(z)|pe−p(1+ε)φ(z)ω̃p(z)dσ(z) .

∫

C\Dr(λ)

∆φ(z)

dmφ (z, λ)
.

�

Theorem 34. For all ε > 0, 1 ≤ p, p′ ≤ ∞ andω, ω̃ ∈ Ωφ, the following inclusions hold

IntFp
φ,ω ⊂ IntFp′

(1+ε)φ,ω̃.

Proof. It will be enough to prove that for allε > 0, 1 ≤ p ≤ ∞ andω, ω̃ ∈ Ωφ,

(a) IntFp
φ,ω ⊂ IntF∞

(1+ε)φ,ω̃ (b) IntF∞
φ,ω ⊂ Fp

(1+ε)φ,ω̃.

(a) Take the functionsgλ given by Lemma 33. Forv ∈ ℓ∞(1+ε)φ,ω̃(Λ) we consider the interpo-
lating function

f(z) =
∑

λ∈Λ

vλgλ(z)

A direct estimate using Lemma 33(c) yields

ω̃(z)|f(z)|e−(1+ε)φ(z) .
∑

λ∈Λ

1

1 + dmφ (z, λ)
,

which is bounded, by Lemma 6.

(b) Given v ∈ ℓp(1+ε)φ,ω̃(Λ), takef =
∑
λ vλgλ as before and estimate as in the proof of

Lemma 33(d). �

4.4. Inclusions between various spaces of sampling sequences.In this section we want to
prove some inclusions between various spaces of sampling sequences. Unlike in the correspond-
ing result for interpolating sequences, for the spaces of sampling sequences there is a gain, in
the sense that any sampling sequence is actually sampling for a slightly bigger space. This will
allow us to pass from the non-strict to the strict inequalityof Theorem A.
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Theorem 35. LetΛ ∈ SampFp
φ,ω beρ-separated. There existsε > 0 such that for allp′ ∈ [1,∞]

andω̃ ∈ Ωφ, the sequenceΛ ∈ SampFp′

(1+ε)φ,ω̃.

Proof. The proof is divided in three steps.

(a) If Λ ∈ SampFp
φ,ω, thenΛ ∈ SampF∞

φ,ω. We know from Proposition 27 that for all weak
limit (Λ∗, φ∗, ω∗) the sequenceΛ∗ is in SampFp

φ∗,ω∗, and by Lemma 29 it will be enough to see
that all weak limitΛ∗ is a uniqueness set forF∞

φ∗,ω∗.

If this is not the case, there existsf ∈ F∞
φ∗,ω∗ with f |Λ∗ ≡ 0, f 6= 0.

We claim that form large enough

g(z) :=
f(z)

(z − λ∗1) . . . (z − λ∗m)
∈ Fp

φ∗,ω∗ .

It is clear that Lemma 19 gives thep-integrability on∪mj=1D(λ∗j). On the other hand, by
Lemma 18

∫

z /∈∪jD(λ∗j )

|f |pe−pφ∗ω∗pρ−2
φ∗

|z − λ∗1|p . . . |z − λ∗m|p
≤ C

∫

z /∈∪jD(λ∗j )

‖f‖pF∞

φ∗,ω∗
∆φ∗

|z − λ∗1|p . . . |z − λ∗m|p
.

Since∆φ∗ is doubling there existsm such that this integral converges (Lemma 5(b)).

By Corollary 31,Λ∗ \ {λ∗1 . . . λ∗m} ∈ SampFp
φ∗,ω∗. As f vanishes on this sequence we deduce

thatf ≡ 0, which is a contradiction.

(b) If Λ ∈ SampF∞
φ,ω there existsε > 0 such thatΛ ∈ SampF∞

(1+ε)φ,ω. If this is not the case
for any sequence{εn} ց 0 there exist functionsfn ∈ F∞

(1+εn)φ,ω andδn > 0 decreasing to0
with ‖fn|Λ‖ℓ∞

(1+εn)φ,ω
(Λ) ≤ δn and|fn(zn)| = 1.

Let Λn = τ−1
zn (Λ), φn = (1 + εn)φzn, ωn = ωzn and f̃n = T φ,ωzn fn. Then |f̃n(0)| = 1,

‖f̃n|Λn‖ℓ∞
φn,ωn

≤ δn, and there exist a sequenceΛ∗ and functionsφ∗, f ∗, ω∗ such that

(Λn, φn, ωn) → (Λ∗, φ∗, ω∗) ∈W (Λ, φ, ω)

and{fn}n → f ∗ ∈ F∞
φ∗,ω∗ uniformly on compact sets. So we have|f ∗(0)| = 1 andf ∗|Λ∗ = 0,

i.e. Λ∗ is not a uniqueness sequence forF∞
φ∗,ω∗, a contradiction with Lemma 29.

(c) If Λ ∈ SampF∞
(1+ε)φ,ω for someε > 0, thenΛ ∈ SampFp′

φ,ω̃, for all ω̃ ∈ Ωφ, 1 ≤ p′ ≤ ∞.
Consider the spaces

F∞,0
(1+ε)φ,ω = {f ∈ F∞

(1+ε)φ,ω : lim
|z|→∞

ω(z)|f(z)|e−(1+ε)φ(z) = 0},

ℓ∞,0
(1+ε)φ,ω(Λ) = {v ∈ ℓ∞(1+ε)φ,ω : lim

|λ|→∞
ω(z)|vλ|e−(1+ε)φ(λ) = 0}.

There is a sequence of functions{g(z, λ)}λ∈Λ such that for allf ∈ F∞,0
(1+ε)φ,ω

ω(z)e−(1+ε)φ(z)f(z) =
∑

λ∈Λ

ω(λ)e−(1+ε)φ(λ)f(λ) g(z, λ),
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and
∑
λ |g(z, λ)| ≤ K uniformly in z. This is so by a duality argument, because

{f(λ)}λ∈Λ 7→ ω(z)e−(1+ε)φ(z)f(z) with f ∈ F∞,0
(1+ε)φ,ω

is a bounded linear functional from a closed subspace ofℓ∞,0
(1+ε)φ,ω(Λ) whose norm is bounded

independently ofz. This is an argument from [Beu89, p.348–358] (see also [Sei93, p.36]).

Consider nowf ∈ Fp
φ,ω̃ ⊂ F∞,0

φ,ω̃ . Givenz ∈ C take the functionPz of Theorem 17, with
weightω/ω̃ ∈ Ωφ. ThenfPz ∈ F∞,0

(1+ε)φ,ω, and by the representation above

ω(z)e−(1+ε)φ(z)f(z) =
∑

λ∈Λ

ω(λ)e−(1+ε)φ(λ)f(λ) Pz(λ)g(z, λ).

Hence

ω(z)|f(z)|e−φ(z) .
∑

λ∈Λ

ω(λ)|f(λ)|e−φ(λ)|Pz(λ)|eε(φ(z)−φ(λ))|g(z, λ)|

.
ω(z)

ω̃(z)

∑

λ∈Λ

ω̃(λ)|f(λ)|e−φ(λ) |g(z, λ)|
1 + dmφ (z, λ)

.

The casep = ∞ is clear, so assume thatp < ∞. Since
∑
λ |g(z, λ)| ≤ K, we may apply

Jensen’s inequality and obtain

ω̃p(z)|f(z)|pe−pφ(z)ρ−2(z) . ρ−2(z)
∑

λ∈Λ

ω̃p(λ)|f(λ)|pe−pφ(λ) |g(z, λ)|
1 + dmpφ (z, λ)

.

Now integrate, use that|g(z, λ)| ≤ K and apply Lemma 5(b) to finally obtain the sampling
inequality

∫

C

|f(z)|pe−pφ(z)ω̃p(z)dσ(z) .
∑

λ∈Λ

ω̃p(λ)|f(λ)|pe−pφ(λ).

�

4.5. Nets. We finish this section by giving useful examples of interpolating and sampling se-
quences.

Lemma 36. Let f be the multiplier associated toφ, as constructed in the proof of Theorem 16,
and letΛ = Z(f). ThenD+

∆φ(Λ) = D−
∆φ(Λ) = 1/2π. We say thatΛ is a netassociated toφ.

Proof. The construction off is made with quasi-squaresRp of µ(Rp) = 2πmN andmN asso-
ciated points in a dilatedCRp that made upΛ. Thus, forz ∈ C andt > 0:

n(z, tρ(z)) ≥ mN#{p : CRp ⊂ Dt(z)} =
1

2π
µ(

⋃

p:CRp⊂Dt(z)

Rp),

n(z, tρ(z)) ≤ mN#{p : CRp ∩Dt(z) 6= ∅} =
1

2π
µ(

⋃

p:CRp∩Dt(z)6=∅

Rp).
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By Corollary 10,

Dt−ǫ(t)(z) ⊂
⋃

p:CRp⊂Dt(z)

Rp ⊂ Dt(z) ⊂
⋃

p:CRp∩Dt(z)6=∅

Rp ⊂ Dt+ǫ(t)(z),

whence
1

2π
µ(Dt−ǫ(t)(z)) ≤ n(z, tρ(z)) ≤ 1

2π
µ(Dt+ǫ(t)(z)).

The result is then an application of Lemma 11. �

Lemma 37. LetΛ be a net associated toφ. ThenΛ ∈ IntFp
(1+ε)φ,ω andΛ ∈ SampFp

(1−ε)φ,ω for
all ε > 0, 1 ≤ p ≤ ∞ andω ∈ Ωφ.

Proof. By Theorems 34 and 35, it is enough to consider the caseω = ρ.

Let f be a multiplier associated toφ such thatΛ = Z(f).

Let us start by proving thatΛ is interpolating. By Theorem 34 it is enough to prove that
Λ ∈ IntFp

(1+ε)φ,ρ for all ε > 0. For eachλ ∈ Λ define

gλ(z) =
f(z)

z − λ

1

f ′(λ)
.

We want to see that these functions play a similar role to the peak-functions of Lemma 33.
Clearly gλ(λ′) = δλ

′

λ . The growth condition of the multiplier gives|f ′(λ)| ≃ eφ(λ)/ρ(λ), and
then

ρ(z)|gλ(z)|e−φ(z) .
|z − Λ|
|z − λ|

1

|f ′(λ)| . ρ(λ)e−φ(λ).

Hence‖gλ‖F∞

φ,ρ
. ρ(λ)e−φ(λ).

As seen in the proof of Theorem 34 this is enough to construct,for anyε > 0, an interpolation
operator forFp

(1+ε)φ,ρ.

Let us see next thatΛ ∈ SampFp
(1−ε)φ,ω. By Theorem 35 it is enough to consider the case

p = ∞ andω = 1, and by Corollary 29 it will be enough to see that every weak limit (Λ∗, (1 −
ε)φ∗, ω∗) ∈W (Λ, (1 − ε)φ, ω) is a uniqueness sequence forF∞

(1−ε)φ∗,1.

Let (Λzn , φzn, ωzn) → (Λ∗, φ∗, ω∗) and letfzn be the corresponding multipliers, withZ(fzn) =
Λzn and|fzn(z)| ≃ eφzn (z)dφzn (z,Λzn). By Montel’s theorem let{fzn}n → f ∗ with Z(f ∗) = Λ∗

and|f ∗(z)| ≃ eφ
∗(z)dφ∗(z,Λ

∗), i.e,f ∗ is a multiplier forφ∗.

Consider also a multiplierg associated toεφ∗. In particular|g(z)| ≃ eεφ
∗(z)dφ∗(z,Z(g)). In

order to see thatΛ∗ is a uniqueness sequence assume thath ∈ F∞
(1−ε)φ∗,1 andh|Λ∗ = 0. Then

hg ∈ F∞
φ∗,1, by construction. On the other hand, the functionF := hg/f ∗ is entire, becauseh

vanishes onΛ∗. It is also bounded whenz is far fromΛ∗, since|hg| . eφ
∗

and|f ∗| & eφ
∗

. By the
maximum principleF is bounded globally, and by Liouville’s theorem there exists c ∈ C such
thathg = cf ∗. Sinceg vanishes in some points outsideΛ∗ we havec = 0, henceh ≡ 0. �
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5. SUFFICIENT CONDITIONS FOR SAMPLING

We prove here the sufficiency part of Theorem A. Assume thatD−
∆φ(Λ) > 1/2π. By Lemma 26

we can assume thatΛ is ρ-separated, and according to Theorem 35 it will be enough to prove
thatΛ ∈ F∞

φ,ω. By Corollary 29 this will be done as soon as we show that everyweak limitΛ∗ is
a uniqueness sequence forF∞

φ∗,ω∗.

Recall the notationnΛ(z, r) = #[Λ ∩D(z, r)].

Assume thus that we havef ∈ F∞
φ∗,ω∗ with f |Λ∗ ≡ 0 and‖f‖F∞

φ∗,ω∗
= 1. There is no loss of

generality in assuming thatf(0) 6= 0. Applying Jensen’s formula tof onDφ∗(0)

∫ rρφ∗(0)

0

nΛ∗(0, t)

t
dt =

1

2π

∫ 2π

0
log |f(rρφ∗(0)eiθ)|dθ − log |f(0)|

≤ 1

2π

∫ 2π

0
(φ∗(rρφ∗(0)eiθ) − logω∗(rρφ∗(0)eiθ))dθ − log |f(0)|

=
[ 1

2π

∫ 2π

0
φ∗(rρφ∗(0)eiθ)dθ − φ∗(0)

]
+
[
logω∗(0) − 1

2π

∫ 2π

0
logω∗(rρφ∗(0)eiθ)dθ

]

+ φ∗(0) − logω∗(0) − log |f(0)|.
By definition of flat weight and by Lemma 4,ω∗(rρφ∗(0)eiθ)/ω∗(0) . rγ for someγ > 0. Then,
Green’s identity yields

∫ rρφ∗(0)

0

nΛ∗(0, t)

t
dt ≤ 1

2π

∫

D(0,rρφ∗(0))
log

rρφ∗(0)

|ζ | ∆φ∗(ζ) + O(log r)

=
1

2π

∫ rρφ∗(0)

0
∆φ∗(D(0, t))

dt

t
+ O(log r),

for all r big enough. This contradicts the hypothesis, which impliesin particular that for some
ε > 0 and allt big enoughnΛ∗(0, t) ≥ (1/2π + ε)∆φ∗(D(0, t)).

6. NECESSARY CONDITIONS FOR SAMPLING

This section contains the proof of the necessity part of Theorem A. By Lemma 26(b) and
Theorem 35 it will be enough to prove the following result.

Theorem 38. LetΛ beρ-separated. IfΛ ∈ SampF2
φ,ω thenD−

∆φ(Λ) ≥ 1/2π.

We use a result comparing the densities between interpolating and sampling sequences, as in
[RS95]. We do that by adapting Lemma 4 in [OCS98] to our setting.

Lemma 39. Let ε > 0. AssumeI ∈ IntF2
(1−ε)φ,ω andS ∈ SampF2

φ,ω is ρ-separated. There
exists a positive functionǫ(R) such that lim

R→∞
ǫ(R)/R = 0 and for everyǫ > 0 there isR0 > 0

with

(1 − ǫ) nI(z, Rρ(z)) ≤ nS(z, (R + ǫ(R))ρ(z)) z ∈ C.
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Proof. The proof is as in [OCS98, Lemma 4] with minor modifications, so we keep it short.

According to our definition, ifS is sampling then{k(z, s) = Kφ,α(z, s)e
−φ(s)ω(s)}s∈S is a

frame inF2
φ,ω (Kφ,ω denotes the Bergman kernel, as in Section 3.3). That is, forf ∈ F2

φ,ω

‖f‖2
F2
φ,ω

≃
∑

s∈S

| 〈k(z, s), f(z)〉 |2.

A consequence is that

f(z) =
∑

s∈S

〈k(ξ, s), f(ξ)〉k̃(z, s) =
∑

s∈S

f(s)e−φ(s)ω(s)k̃(z, s),

wherek̃(z, s) is the dual frame ofk(z, s).

Consider also the functionsgi given by Lemma 33 for the weight(1 − ε)φ. Lemma 33(d)
implies that the normalised functionsκ(i, z) := gi(z)e

φ(i)/ω(i) form a Riesz basis in the closed
linear spanH of {κ(i, z)}i∈I in F2

φ,ω.

Givenz ∈ C andR, r > 0 (R much bigger thatr) consider the following two finite dimen-
sional subspaces ofF2

φ,ω:

WS = < k̃(ξ, s) : s ∈ S ∩DR+r(z) >

WI = < κ(ξ, i) : i ∈ I ∩DR(z) > .

Let PS andPI denote the orthogonal projections ofF2
φ,ω on WS andWI respectively. We

estimate the trace of the operatorT = PIPS in two different ways. To begin with

tr(T ) ≤ rankWS ≤ #{S ∩DR+r(z)}.

On the other hand

tr(T ) =
∑

i∈I∩DR(z)

〈T (κ(ξ, i)), PIκ
∗(ξ, i)〉,

where{κ∗(ξ, i)} is the dual basis ofκ(ξ, i) in H. Using thatPI andPS are projections one
deduces that

tr(T ) ≥ #{i ∈ I ∩DR(z)}
(
1 − sup

i
|〈PS(κ(ξ, i)) − κ(ξ, i), κ∗(ξ, i)〉|

)
.

Since‖κ(ξ, i)‖F2
φ,ω

≃ 1, also‖κ∗(ξ, i)‖F2
φ,ω

≃ 1. Thus we will be done as soon as we show that
‖PS(κ(ξ, i)) − κ(ξ, i)‖F2

φ,ω
≤ ε for a suitabler ≃ ǫ(R).

We have

‖PS(κ(ξ, i)) − κ(ξ, i)‖2
F2
φ,ω

.
∑

s/∈DR+r(z)

|〈k̃(ξ, s), κ(ξ, i)〉|2 =
∑

s/∈DR+r(z)

∣∣∣κ(s, i)e−φ(s)ω(s)
∣∣∣
2
.
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SinceS is ρ-separated, there existsη > 0 such that the disksDη(s) are pairwise disjoint.
Using Lemma 18(a) we get, for somec > 0 depending onφ andη

‖PS(κ(ξ, i)) − κ(ξ, i)‖2
F2
φ,ω

.
∫

⋃
s/∈DR+r(z)

Dη(s)

|κ(ζ, i)|2e−2φ(ζ)ω2(ζ)dσ(ζ).

Applying Lemma 9 withrk = Rτ andτ so that0 < (ε − τ)γ < 1, we see that there exist
δ ∈ (0, 1), c > 0 and a functionǫ(R) = cR1−δ such that

⋃

s/∈DR+cǫ(R)(z)

Dη(s) ⊂ C \Dεǫ(R)(i).

Finally, forR is big enough Lemma 33(e) yields

‖PS(k(ξ, i)) − κ(ξ, i)‖2
F2
φ,ω

.
∫

C\Dεǫ(R)(i)
|κ(ξ, i)|2e−2φ(ξ)ω2(ξ)dσ(ξ) . ǫ.

�

Proof of Theorem 38.Given ε > 0 consider a netI associated to(1 − 2ε)φ. By Lemma 36
I ∈ IntF2,α

(1−ε)φ, and by Lemma 37D+
∆φ(I) = D+

∆φ(I) = (1 − 2ε)/2π. Apply now Lemma 39:
there existR0 andǫ(R) such that forR > R0

nΛ(z, Rρ(z)) ≥ (1 − ε) nI(z, (R− ǫ(R))ρ(z)) ≥ (1 − ε)3

2π
µ(DR−δ(R)(z)),

whereδ(R) = R − ǫ(R) − ǫ(R − ǫ(R)). This estimate together with Lemma 11 finish the
proof. �

7. SUFFICIENT CONDITIONS FOR INTERPOLATION

Taking into account Theorem 34 and Lemma 37, in order to provethe sufficiency part of
Theorem B it is enough to prove the following.

Theorem 40. If Λ is ρ-separated andD+
∆φ(Λ) < 1/2π there existε > 0 and a sequenceΣ such

thatΛ ∪ Σ is aρ-separated net associated to(1 − ε)φ.

In the proof of this result we need to express the density condition in terms of the quasi-squares
appearing in Theorem 8. this will be done in Theorem 42; before we need some preliminaries.

Denoteφr = e−rφ.

Lemma 41. Let

Ir(ζ) =
∫

|z−ζ|<ρφr(z)/r

r2 dm(z)

πρ2
φr(z)

.

Thensup
ζ∈C

|Ir(ζ) − 1| < 1/r.
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Proof. We estimateIr using the change of variablew = (z − ζ)/ρφr(z), whose Jacobian is

ρ−2
φr (z)

∣∣∣∣1 −
〈∇ρφr(z), z − ζ〉

ρφr(z)

∣∣∣∣.

From (6) it follows that|∇ρφr | ≤ 1, hence the Jacobian is bounded above byρ−2
φr (z)(1 + 1/r)

and below byρ−2
φr (z)(1 − 1/r). Then

1 − 1

r

∫

|w|≤1/r

r2

π
(1 − 1

r
) dm(w) ≤ Ir(ζ) ≤

∫

|w|≤1/r

r2

π
(1 +

1

r
) dm(w) = 1 +

1

r
.

�

It follows immediately from (4) that there exist0 < ε < m such that

tερφ . ρφ/t . tmρφ.

This implies, witht = er,

lim
r→∞

ρφr(z)

rρφ(z)
= ∞(17)

uniformly in z ∈ C.

LetRs
α(z) denote the rectangle with verticesz+sρ(z)(1+iα), z+sρ(z)(1−iα), z−sρ(z)(1+

iα) andz − sρ(z)(1 − iα), whereα ∈ [e−1, e] ande is the constant of Theorem 8(b).

Theorem 42. Letµ = ∆φ and letν be a positive measure such that

ν(Dr
φ(z)) ≤ (1 − ε)µ(Dr

φ(z)) ∀r ≥ r0, ∀z ∈ C.(18)

There existss0 > 0 such that for anyα ∈ [e−1, e]

ν(Rs
α(z)) ≤ (1 − ε

2
)µ(Rs

α(z)) ∀s ≥ s0, ∀z ∈ C.

Proof. Fix r big enough so thatρφr/r > r0ρφ and(1+ 1/r)(1− ε) < (1− 1/r)(1− 3ε/4). This
can be done because of (17). By hypothesis

ν(D
1/r
φr (z)) ≤ (1 − ε) µ(D

1/r
φr (z)) ∀z ∈ C,

and ifs is much bigger thanr we get
∫

z∈Rαs (w)

r2

πρ2
φr(z)

ν(D
1/r
φr (z)) dm(z) ≤ (1 − ε)

∫

z∈Rαs (w)

r2

πρ2
φr(z)

µ(D
1/r
φr (z)) dm(z).

Denote

Ωr(ζ) = {z ∈ C, |z − ζ | < ρφr(z)/r}
Fr(w, s) = {ζ ∈ C, Ωr(ζ) ⊂ Rs

α(w)}
Gr(w, s) =

⋃

ζ∈Rsα(w)

Ωr(ζ).
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Reversing the order of integration and using the previous Lemma we deduce that

ν(Fr(w, s)) ≤ (1 − 3

4
ε) µ(Gr(w, s)).

It is clear thatFr(w, s) ⊂ Rs
α(w) ⊂ Gr(w, s). Similarly to the proof of Lemma 9, there exists

ǫ(s) such thatRs−ǫ(s)
α (w) ⊂ Fr(w, s) andGr(w, s) ⊂ Rs+ǫ(s)

α (w).

By Remark 4

lim
s→∞

µ(Rs+ǫ(s)
α (w))

µ(R
s−ǫ(s)
α (w))

= 1

uniformly in z, and therefore there existss0 such that fors > s0

ν(Rs−ǫ(s)
α (w)) ≤ (1 − 3

4
ε) µ(Gr(w, s)) ≤ (1 − 3

4
ε) µ(Rs+ǫ(s)

α (w))

≤ (1 − ε

2
) µ(Rs−ǫ(s)

α (w)).

�

Proof of Theorem 40.Take an entire functiong vanishing exactly onΛ. We will construct a
sequenceΣ and an entire functionh such that for someε > 0,

(i) Λ ∪ Σ is ρ-separated.
(ii) h vanishes exactly onΣ.

(iii) For any τ > 0, | log |h(z)| − (1 − ε)φ(z) + log |g(z)|| ≤ Cτ if Dτ(z) ∩ (Λ ∪ Σ) = ∅.

Accepting this we reach the result by takingf = gh. This is so because the separateness of
Λ ∪ Σ and (iii) imply thatf is a multiplier for(1 − ε)φ. �

Construction ofΣ andh. To avoid the repetition of the factors2π and1 − ε, denote hereµ =
(1 − ε)∆φ/2π. Let

µ̃ = µ−
∑

λ∈Λ

δλ =
1

2π
∆
(
(1 − ε)φ− log |g|

)
.

Following Theorem 8 and the Remark thereafter, givenn,M ∈ N we can take a system of quasi-
squares{Rk}k such that, denotingµk = µ|Rk , we haveµ =

∑
k µk andµk(C) = Mn. Then

µ̃ =
∑
k µ̃k, being

µ̃k = µk −
∑

λ∈Λ∩Rk

δλ.

By hypothesis there existsε > 0 such thatD∆φ(Λ) < 1/2π − 4ε. Therefore, there existsr0 > 0
such that

µ̃(Dr(z)) ≥ 3εµ(Dr(z)) for all z ∈ C, r ≥ r0.

Also, Theorem 42 implies that forM ≥ m/(2ε) andn big enough:

Mn ≥ µ̃(Rk) ≥ 2εµ(Rk) = 2εMn ≥ mn.



44 NICOLAS MARCO, XAVIER MASSANEDA, AND JOAQUIM ORTEGA-CERDÀ

Let µ̃(Rk) = mkn, with m ≤ mk ≤ M . Notice thatmk ∈ N, sinceµ(Rk) ∈ N. Applying
Lemma 15 we obtain a sequenceΣ made of pointsσk1 , . . . , σ

k
mkn

∈ CRk so that the firstm

moments of the measuresνk = µ̃k −
mkn∑
j=1

δσkj vanish. Furthermore, it is clear that we can choose

theτkj in the proof of Lemma 15 so thatΛ ∪ Σ is ρ-separated.

Let

ν =
∑

k

νk =
1

2π
∆((1 − ε)φ− log |g|) −

∑

σ∈Σ

δσ.

In order to prove (iii) considerv = (1 − ε)φ− log |g| − w, where

w(z) =
∫

C

log |z − ζ | dν(ζ).

Since

∆v = 2π
∑

σ∈Σ

δσ,

there existsh entire (vanishing exactly onΣ) such thatlog |h| = v.

We need to estimate|w(z)| when |z − Λ ∪ Σ| ≥ τρ(z). Givenz ∈ C, let k0 ∈ N be such
thatz ∈ Rk0 . By Theorem 8(c), there existsr0 > 0 independent ofz such thatRk0 ⊂ Dr0(z) ⊂
CRk0 . We have

w(z) =
∫

C

log |z − ζ |dν(ζ) =
∫

C

log |z − ζ |dνk0(ζ) +
∑

k:k 6=k0

∫

C

log |z − ζ |dνk(ζ),

and we estimate the two terms separately.

LetC > 0 be the constant of Lemma 15. Since the firstm moments ofνk0 vanish,
∣∣∣∣
∫

C

log |z − ζ |dνk0(ζ)
∣∣∣∣ =

∣∣∣∣
∫

C

log
|z − ζ |
r0ρ(z)

dνk0(ζ)

∣∣∣∣ .
∣∣∣∣
∫

CRk0

log
r0ρ(z)

|z − ζ |dµ(ζ)

∣∣∣∣+K| log τ |

.
∫

Dcr0 (z)
log

cr0ρ(z)

|z − ζ | dµ(ζ) +K| log τ | ≤ Cτ .

The other integral is estimated using the moment condition for eachνk, as in the estimate of
I1 in Theorem 14. �

8. NECESSARY CONDITIONS FOR INTERPOLATION

Let us start by proving the non-strict density inequality. By Theorem 34, it is enough to
consider the casep = 2.

Theorem 43. If Λ ∈ IntF2
φ,ω thenD+

∆φ(Λ) ≤ 1/2π.



INTERPOLATING AND SAMPLING SEQUENCES FOR ENTIRE FUNCTIONS 45

Proof. Givenε > 0, take a netS associated to(1 + 2ε)φ, as described in Lemma 36. Lemma 37
implies thatS ∈ SampF2

(1+ε)φ,ω, and by Lemma 39, there existsR0 > 0 such that

nΛ(z, Rρ(z)) ≤ (1 + ε) nS(z, (R + ǫ(R))ρ(z)) z ∈ C , R ≥ R0.

SinceS is a net of density(1 + 2ε)/2π, the radiusR0 can be taken so that forR ≥ R0

nS(z, (R + ǫ(R))ρ(z)) ≤ 1 + 3ε

2π
µ(DR+ǫ(R)(z)).

This and Corollary 10 give the result. �

Let us see now that the inequality is strict.

Proof of the necessity part in Theorem B.Assume thatΛ ∈ IntFp
φ,ω. We know thatD+

∆φ(Λ) ≤
1/2π. In order to see thatD+

∆φ(Λ) < 1/2π consider, givenε > 0, a netΣ associated to2εφ such
thatZ := Λ ∪ Σ is ρ-separated.

Lemma 44. DenoteZ = {zk}k. For everym ∈ N andε > 0 there existC > 0 and functions
fk ∈ F∞

φ,ω such that

(a) fk(zk) = 1.
(b) fk(zj) = 0 for all zj ∈ D1/ε(zk).

(c) |fk(z)| ≤ CM(Λ)eφ(z)−φ(zk)ω(zk)

ω(z)

1

1 + dmφ (z, zk)
.

(d) ‖fk‖φ,∞ ≤ CM(Λ)e−φ(zk)ω(zk).

Proof. Assume first thatzk = λk ∈ Λ. By hypothesis there existsgk ∈ Fp
φ,ω ⊂ F∞

φ,ω with
gk(λk) = 1, g(λj) = 0, and‖gk‖F∞

φ,ω
≤ M(Λ)e−φ(λk)ω(λk). SinceΛ plus a finite number of

points is still inIntFp
φ,ω (Lemma 32), we can takegk so that moreovergk(σj) = 0 if |λk − σj | ≤

1/ερ(λk) andgk(cj) = 0, j = 1, . . . ,M , wherecj = λk + 2δρ(λk)e
j 2πi
M andδ > 0 is taken so

that the balls{B(λ, 10δ)}λ are pairwise disjoint.

By construction of the nets there existsC independent ofz andε such that#Σ∩D1/ε(z) ≤ C
for anyΣ net of densityε/π.

Define then

fk(z) = (2δ)−M
gk(z)

(z − c1) · · · (z − cM)
ρM(zk).

It is clear thatfk ∈ F∞
φ,ω satisfies (a) and (b).

Forz /∈ ∪Mj=1D
δ(cj),

|fk(z)| ≤ C|gk(z)|
( ρ(zk)

|z − zk|
)M ≤ CM(Λ)eφ(z)−φ(zk)ω(zk)

ω(z)

( ρ(zk)

|z − zk|
)M

,

and the estimate follows from Lemma 4.
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Forz ∈ Dδ(cj) we have

|fk(z)| ≤ C
∣∣∣
gk(z)

z − cj

∣∣∣ρ(zk).

Estimating like in (iii) in the proof of Theorem 17 we get|fk(z)| ≤ CM(Λ)eφ(z)−φ(zn), as
desired.

In casezk = σk ∈ Σ, use again thatΛ plus one point isF2
φ,ω-interpolating and start with

gk ∈ F2
φ,ω ⊂ F∞

φ,ω such thatgk(σk) = 1, gk(λj) = 0 for all j. Then proceed as before. �

Lemma 45. Z ∈ IntF∞
φ,ω.

Proof. Givenv = {vk}k ∈ ℓ∞,α
φ (Z) consider the pseudo-extension

E(v)(z) =
∞∑

k=1

vkfk(z).

Let us see first thatE(v) ∈ F∞
φ,ω. By (c) above and Lemma 6 we see that for anyz ∈ C

ω(z)e−φ(z)|E(v)(z)| .
∞∑

k=1

ω(zk)|vk|e−φ(zk)
1

1 + dMφ (z, zk)
. ‖v‖ℓ∞,α

φ
(Z).

Let R denote the restriction operator fromF∞
φ,ω to ℓ∞φ,ω(Z). In order to see thatZ is in

IntF∞
(1+ε)φ,ω it will be enough to prove that‖RE − I‖op < 1, since then(RE)−1 = I +

∑∞
k=1(RE − I)k converges andE(RE)−1 defines an inverse toR.

By Lemma 44(b) and (c)

‖RE(v) − v‖ℓ∞
φ,ω

(Z) =
∥∥∥∥
{ ∑

k:k 6=j

vkfk(zj)
}
j∈N

∥∥∥∥
ℓ∞
φ,ω

(Z)

≤ sup
j∈N

ω(zj)e
−φ(zj)

∑

k:zj /∈D1/ε(zk)

|vk||fk(zj)| ≤ CM(Λ)‖v‖ℓ∞
φ,ω

(Z)

∑

k:zj /∈D1/ε(zk)

1

dmφ (zj, zk)

By Lemma 4 and Corollary 7, ifm is big andε is small enough we have

‖RE(v) − v‖ℓ∞φ,ω(Z) ≤ 1/2 ‖v‖ℓ∞φ,ω(Z),

thus‖RE − I‖op < 1/2, as desired. �

By this Lemma and the results above we haveD+
∆φ(Z) ≤ 1/2π, i.e for all δ > 0 there exists

R0 such that for allz ∈ C andR > R0

nΛ(z, Rρ(z)) + nΣ(z, Rρ(z)) ≤ (1/2π + δ)µ(DR(z)).

By Lemma 36,D−
∆φ(Σ) = ε/π, thus for allδ > 0 there existsR0 such that for allR > R0

nΣ(z, Rρ(z)) ≥ (ε/π − δ)µ(DR(z)) z ∈ C .
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This shows that forδ > 0 andR big enough

nΛ(z, Rρ(z)) ≤ (
1 − 2ε

2π
+ 2δ) µ(DR(z)) z ∈ C,

henceD+
∆φ(Λ) < 1/2π. �

APPENDIX. ALTERNATIVE CONSTRUCTION OF PEAK FUNCTIONS.

As seen at the end of the proof of Theorem 33, it is enough to consider the caseω = ρ. Also,
it will be enough to prove that for anyφ there existC, δ > 0 such that for allη ∈ C there isPη
holomorphic withPη(η) = 1 and

|Pη(z)| ≤ Ceφ(z)−φ(η) min
{
1,
( ρ(η)

|z − η|
)δ}

,

since then we can apply this toεδ/m φ(z), take them-th power and use Lemma 4 to conclude.

We claim that there existshη holomorphic withhη(η) = 0, h′η(η) = 1 and |hη(z)| .

eφ(z)−φ(η)ρ2(η)/ρ(z).

Once this is proved we takewη(z) = hη(z)/(z − η) and use Lemma 2 to deduce that

|Pη(z)| . eφ(z)−φ(η) ρ(η)

|z − η|
( |z − η|
ρ(η)

)1−δ
= eφ(z)−φ(η)

( ρ(η)

|z − η|
)δ

z /∈ D(η).

In order to construct the functionhη define first

F (z) = (z − η)X
( |z − η|2
ρ2(η)

)
eHη(z),

whereHη is a holomorphic function such thatReHη = hη (see Lemma 13) andX is a smooth
cut-off function withX ≡ 1 for |ζ | < 1, X ≡ 0 for |ζ | ≥ 2 and|X ′| bounded.

Notice that by construction and by Lemma 13, we have

ρ(z)|F (z)|e−φ(z) . ρ2(η)e−φ(η).

Lemma 46. There existsu solution to∂̄u = ∂̄F such thatu(η) = ∂u(η) = 0 and‖u‖F∞

φ,ρ
≤

Cρ2(η)e−φ(η)

Once this is proved we takehη = F − u and we are done.

Proof. First we show that there exists a solutionu as in the statement but satisfying an analo-
gousL2 estimate instead of theL∞ one. We use Hörmander’s theorem [Hör94]: for everyψ
subharmonic inC there exists a solutionu to ∂̄u = ∂̄F such that

∫

C

|u|2e−2ψ ≤ C
∫

C

|∂̄F |2e
−2ψ

∆ψ
.



48 NICOLAS MARCO, XAVIER MASSANEDA, AND JOAQUIM ORTEGA-CERDÀ

Defineψ = φ+ 2v, where

v(z) = log |z − η| − 1

µ(Ds(η))

∫

Ds(η)
log |z − ζ |∆φ(ζ)dm(ζ).

Takes so thatµ(Ds(η)) = 8π. By the doubling condition there existsc depending only on the
doubling constantC∆φ such thats ≤ c. Then

∆ψ ≥ ∆φ− 4π

µ(Ds(η))
∆φ =

1

2
∆φ ≃ ρ−2.

By constructionv is bounded above. Notice also that there existsC > 0 (independent ofη)
such that−v(z) ≤ C for all z ∈ supp(∂̄F ). Since|∂̄F | . ehη , we deduce from Hörmander’s
estimate and Lemma 13 that

‖u‖F2
φ,ρ

≤
∫

C

|u|2e−2ψ ≤ C
∫

D2(η)\D(η)
e2hηe−2ψρ2 . ρ4(η)e−2φ(η).

On the other hand

e−2ψ(z) ≃ |z − η|−4 for |z − η| ≤ ǫρ(η),

thus necessarilyu(η) = ∂u(η) = 0.

Let us see now thatu satisfies also theL∞ estimate. For anyz ∈ supp(∂̄F ) define

U(ζ) =
Kρ(z)

ρ2(η)e−φ(η)
u(ζ),

whereK > 0 will be chosen later on. Then
∫

D(z)
|U(ζ)|2e−2φ(ζ) ≤ ρ2(z)

ρ4(η)e−2φ(η)
‖u‖2

L2(e−φ) . ρ2(z).

Also, sinceρ(ζ) ≃ ρ(η) on supp(∂̄F ), we have

ρ(z) sup
ζ∈D(z)

|∂̄U(ζ)|e−φ(ζ) = sup
ζ∈D(z)

Kρ2(z)

ρ2(η)e−φ(η)
|∂̄F (ζ)|e−φ(ζ) . 1.

We chooseK (independent ofz) so that

(a)
1

ρ2(z)

∫

D(z)
|U(ζ)|2e−2φ(ζ) ≤ 1 ,

(b) ρ(z) sup
ζ∈D(z)

|∂̄U(ζ)|e−φ(ζ) ≤ 1.

We will be done as soon as we prove that

|U(z)|e−φ(z) ≤ C.

This is consequence of [Ber97, Lemma 3.1] applied to the function V (ζ) = u(ρ(z)ζ + z).
Definingφz(ζ) = φ(ρ(z)ζ + z) and changing to the variablew = ρ(z)ζ + z we see that

∫

D

|V (ζ)|2e−2φz(ζ)dm(ζ) =
∫

D(z)
|U(w)|2e−2φ(w)dm(w)

ρ2(z)
≤ 1
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and

sup
ζ∈D

|∂̄V (ζ)|2e−2φz(ζ) = sup
w∈D(η)

|∂̄U(w)|2e−2φ(w)ρ(z) ≤ 1.

Thus, by [Ber97, Lemma 3.1]|V (0)|2e−φz(0) ≤ Ce−aφz , where

aφz = sup{ψ(0) : ψ ≤ 0 ,∆ψ = ∆φη}.
Definingv so thatψ(z) = v(ρ(z)ζ + z) we see that

aφz = sup{v(z) : v ≤ 0 : ∆v = ∆φ}.
The functionv(w) = φ(w)−hz(w)−φ(z)−A is negative inD(z) if A is big enough (Lemma 13)
andv(z) = −A. Henceaφz ≥ −A and|U(z)|2e−2φ(z) = |V (0)|2e−2φz(0) ≤ CeA, as desired. �
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