
TEK USERS
MANUAL

r --10 Series
h.~;.ti-User Software
Development
Unit

Please check for change information
at the rear of this manual

Printing JUN 1983
lised AUG 1983

Part No. 070-4730-00
Product Group 61

TNIX
System
Users
Manual

TNIX Version 2

Tektronix
COMMllTHI 1111 'CIIII NCt

LIMITED RIGHTS LEGEND

Software License No.

Contractor: Tektronix, Inc.
Explanation of Limited Rights Data Identification Method
Used: Entire document subject to limited rights.

Those portions of this technical data indicated as limited rights data shall not,
without the written permission of the above Tektronix, be either (a) used,
released or disclosed in whole or in part outside the Customer, (b) used in whole
or in part by the Customer for manufacture or, in the case of computer software
documentation, for preparing the same or similar computer software, or (c) used
by a party other than the Customer, except for: (i) emergency repair or overhaul
work only, by or for the Customer, where the item or process concerned is not
otherwise reasonably available to enable timely performance of the work, provid
ed that the release or disclosure hereof outside the Customer shall be made
subject to a prohibition against further use, release or disclosure; or (ii) release to
a foreign government, as the interest of the United States may require, only for
information or evaluation within such government or for emergency repair or
overhaul work by or for such government under the conditions of (i) above. This
legend, together with the indications of the portions of this data which are subject
to such limitations shall be included on any reproduction hereof which includes
any part of the portions subject to such limitations.

RESTRICTED RIGHTS IN SOFTWARE

The software described in this document is licensed software and subject to
restricted rights. The software may be used with the computer for which or with
which it was acquired. The software may be used with a backup computer if the
computer for which or with which it was acquired is inoperative. The software
may be copied for archive or backup purposes. The software may be modified or
combined with other software, subject to the provision that those portions of the
derivative software incorporating restricted rights software are subject to the
same restricted rights.

Copyright ~ 1983 Tektronix; Inc. All rights reserved. Contents of this publication
may not be reproduced in any form without the written permission of Tektronix,
Inc.

Products of Tektronix, Inc. and its subsidiaries are covered by U.S. and foreign
patents and/or pending patents.

TEKTRONIX, TEK, SCOPE-MOBILE, and 8 are registered trademarks of
Tektronix, Inc. TELEQUIPMENT is a registered trademark of Tektronix U.K.
Limited.

Printed in U.S.A. Specification and price change privileges are reserved.

8560 Series System Users

GUIDE TO DOCUMENTATION

This page shows the manuals you are most likely to use with your 8560 Series system. We
recommend that you acquaint yourself with each of these manuals. (You probably won't read any
manual all the way through, but we do suggest that you acquire a general idea of which informa
tion is contained in which manual.) Section 1 of each manual contains pointers to the rest of the
information in the manual.

This manual explains TNIX, the operating sys
tem of your 8560 Series system, and de
scribes standard 8560 Series features.

This manual tells how to unpack and install
the 8560 Series system. It also explains the
operations to be done by the system
manager-the person responsible for con
necting 8540s and 8550s and maintaining ac
counts, software, and other aspects of a
multi-user system.

The TNIX operating system contains an
online "manual page" of information about
commands. You can show the information on
the terminal screen, or print it on your printer.

This optional accessory manual contains
printed versions of the online manual pages
for standard TNIX commands. You may want
to order this manual if you find yourself print
ing many of the online manual pages.

8560 Series MUSDU
System Users Manual

8560 Series MUSDU
System Manager's

Operation and
Installation Guide

8560 Series
Online Documentation

8560 Series MUSDU
System Reference Manual

4730-1

In addition to the above documentation, you may also be using manuals for other 8500 Series
instruments (8540s and 8550s) or software products. The Learning Guide of the 8560 Series
System Users Manual contains a list of user manuals for many products used with 8560 Series
systems.

8560 Series System Users

ABOUT THIS MANUAL

This manual is your guide to using the 8560 and 8561 Multi-User Software Development Units.
(Unless noted otherwise, all references to the 8560 refer to the 8561 as well.) In this manual, you'll
find an overview of the 8560 system, as well as detailed information on the TNIX operating
system and all standard 8560 features.

This manual is one of several sources of information about your 8560. A companion volume, the
8560 Series System Manager's Guide, shows how to install and check out your 8560 and how to
configure workstations and peripherals around an 8560. If your 8560 system is not installed, refer
to the System Manager's Guide before you go any further. The System Manager's Guide also
shows how to perform system maintenance activities, such as creating user accounts, installing
software, and verifying disk integrity.

An optional 8560 Series System Reference Manual contains a detailed description of each TNIX
command. In addition, you can obtain online information about TNIX commands and other topics.

This System Users Manual is organized as follows:

Section 1. Learning Guide. Describes the 8560 system and helps you get started using the 8560,
the Keyshell interface, and the TNIX operating system. Also describes online help tools.

Section 2. TNIX Operating System. Describes the TNIX file system and command language.

Section 3. Operating Procedures. Describes tasks frequently performed on the 8560 and the
commands that perform those tasks.

Section 4. Shell Programming. Shows how to use the 8560's shell programming language.

Section 5. TNIX Editor. Describes the standard TNIX editor, ed.

Section 6. Maintaining Files. Explains how to use the make utility program to keep program
modules and other files up-to-date.

Section 7. Communication with 8540s and 8550s. Discusses communication between your
8560 and a TEKTRONIX 8540 Integration Unit or 8550 Microcomputer Development Lab.

Section 8. Keyshell. Describes technical information about Keyshell, a program that simplifies
the task of entering TNIX commands.

Section 9. Commands. Contains a brief summary of all standard TNIX commands.

Section 10. Error Messages. Explains error messages that may be issued by TNIX commands.

Section 11. Glossary.

Section 12. Index.

iii

8560 Series System Users

CONTENTS

Page

Section 1 LEARNING GUIDE

Introduction .. 1-1
The 8560 System .. 1-1

During Software Development ... 1-3
During Hardware/Software Integration. .. 1-3
Minimum 8560 Series Configuration. .. 1-5
8560 Options. .. 1-5

Getting Started .. 1-11
Logging In .. 1-11
Using Keyshell .. 1-12
Entering Commands Directly. .. 1-15
Tutorial. .. 1-17

For Continued Learning. .. 1-23

Section 2 TNIX OPERATING SYSTEM

Overview .. 2-1
TNIX File System ... 2-1
TNIX Command Language ... 2-11
Customizing Your TNIX Environment. .. 2-18
Summary ... 2-21

Section 3 OPERATING PROCEDURES

Introduction. .. 3-1
Getting Started .. 3-2
Directory Manipulation .. 3-8
File Manipulation. .. 3-12
Printing and Displaying Files. .. 3-20
File Protection. .. 3-23
Status Information .. 3-25
Communicating with Other Users. .. 3-27
Useful System Operations .. 3-29
Disk Operations .. 3-32

Section 4 SHELL PROGRAMMING

Introduction .4-1
Overview .. 4-1
Program I/O Control .. 4-3
Writing Shell Programs. .. 4-4
Examples. .. 4-29
Debugging Shell Programs .. 4-35
A High-Level Programming Language .. 4-37
Shell Language Reference Summary .. 4-38
Tables .. 4-43

v

vi

Contents-8560 Series System Users

Section 5 THE TNIX EDITOR

Introduction .. 5-1
Basic Tasks .. 5-1
Advanced Topics .. 5-9
Ed Reference Summary .. 5-20

Section 6 MAINTAINING FILES (MAKE)

Introduction .. 6-1
The Make Process '. .. 6-2
The Makefile .. 6-4
Invoking Make. .. 6-11
Applications. .. 6-12
Reference Summary .. 6-14

Section 7 COMMUNICATION WITH 8540S AND 8550S

Introduction. .. 7-1
TERM Mode ... 7-1
System Configurations .. 7-2
Establishing Communication. .. 7-4
Special Considerations .. 7-8
Transferring Files and Programs. 7 -12

Section 8 KEYSHELL

Introduction .. 8-1
Keyshell and Shell Commands .. 8-1
Automatic Keyshell Invocation ... 8-3
Special Keyshell Files .. 8-3
Redrawing the Keyshell Function Key Labels 8-3
Keyshell Command History. .. 8-4

Section 9 STANDARD TNIX COMMANDS

Introduction .. 9-1
Command Index .. 9-1
Notation Conventions .. 9-7
Commands .. 9-7

Section 10 ERROR MESSAGES

Section 11 GLOSSARY

Section 12 INDEX

REV AUG 1983

8560 Series System Users

Section 1
LEARNING GUIDE

Page

Introduction 1-1

The 8560 System. .. 1-1
During Software Development .. 1-3
During Hardware/Software Integration. .. 1-3
Minimum 8560 Series Configuration. .. 1-5
8560 Options. .. 1-5

System Options. .. 1-5
Software Tools 1-7
Integration and Debug Tools. .. 1-8
Summary. .. 1-8

Getting Started. .. 1-11
Notation. 1-11
Logging In .. 1-11
Using Keyshell. .. 1-12

Shifted Function Keys. .. 1-13
Mixing Keyshell Functions with Typed Commands. .. 1-14
Ending Your Keyshell Session ... 1-15

Entering Commands Directly. .. 1-15
General Information. .. 1-15
Selecting the 8540 or 8550 .. 1-15
Online Help Tools .. 1-16
Mistakes in Typing ~ .. 1-16
Stopping a Program 1-16
Logging Out. .. 1-17

Tutorial .. 1-17
Create a File .. 1-17
List a File. .. 1-17
Copy a File .. 1-18
View the Contents of a File. .. 1-18
Rename a File ... 1-19
Explore the File System. .. 1-19
Change Your Current Directory. .. 1-20
Create a Directory. .. 1-20
Use the Pattern-Matching Characters ... 1-21
Send Output to Files Instead of the Terminal. .. 1-22
Summary. .. 1-22

For Continued Learning . .. 1-23

1-i

Contents-8S60 Series System Users

ILLUSTRATIONS

Fig.
No. Page

1-1 Role of 8560 system in product design .. 1-2
1-2 A multi-workstation configuration for the 8560 .. 1-4
1-3 8560 system components. .. 1-6
1-4 An 8560 network. .. 1-9
1-5 Keyshell labels and function keys on TEKTRONIX 4105M terminal 1-13
1-6 A portion of the TNIX file tree ... 1-19

TABLES

Table
No. Page

1-1 Using the 8560: A Guide to Products and Documentation 1-10
1-2 Keyshell Shifted Function Keys. .. 1-14
1-3 Summary of Tutorial 1-22

1-ii

8560 Series System Users

Section 1

LEARNING GUIDE

INTRODUCTION
This Learning Guide provides an overview of the TEKTRONIX 8560 Series Multi-User Software
Development Unit, and helps you get started accomplishing your tasks on the 8560.

NOTE

Unless noted otherwise, all references in this manual to the 8560 also refer to the
8561. In addition, the term u 8560 Series development system" refers to both the 8560
and 8561.

NOTE

This manual assumes that your 8560 has been unpacked, installed, and verified, and
that your system terminal, other peripherals, and workstations have been configured
to communicate with the 8560. If any part of your system is not ready for use, refer to
your 8560 Series System Manager's Guide for instructions. Installation should be
performed only by a qualified service technician.

This section is organized into the following topics:

• The 8560 System. Explains the role of the 8560 in developing microprocessor-based prod
ucts, and describes the minimum 8560 system and available options.

• Getting Started. Includes a tutorial and general information that help you quickly become
proficient at using the 8560 and its Keyshell interface.

• For Continued Learning. Helps you decide where to go for further information on the 8560.

The next few pages provide an overview of the 8560 and describe options available for use with
your 8560. If you'd rather start using the 8560 immediately, skip ahead to the discussion "Getting
Started" later in this section.

THE 8560 SYSTEM
The development of a microprocessor-based product proceeds through three principal phases.
During hardware development, a hardware prototype of the product is designed and construct
ed. During software development, software engineers design and create the program that will
execute on the microprocessor that controls the product. Finally, during hardware/software
integration, the software is executed in the prototype hardware, and the hardware and software
are modified to correct any problems.

1-1

The 8560 System Learning Guide-8560 Series System Users

1-2

Figure 1-1 illustrates this process, and shows how you can use the 8560 and a TEKTRONIX
workstation (such as the 8540 Integration Unit) throughout the software development and
hardware/software integration phases of the design cycle. The following paragraphs provide an
overview of what the 8560 provides during these two phases.

Design and
Build

Prototype

Define Product

I

FINISHED PRODUCT

Design and Code
Software

Edit Source Files

Assemble/Compile
Software

Debug

Fig. 1-1. Role of 8560 system in product design.

8560

8540 or
8550

The 8560, in conjunction with a workstation such as the 8540 or 8550. can be used for tasks
shown within the heavy black box.

4730-2

Learning Guide-8560 Series System Users The 8560 System

During Software Development
The 8560 offers mass storage and an extensive array of modular software development tools,
text processors, and general utilities. The 8560's TNIX operating system enables you to combine
these tools to accomplish whatever task is at hand.1 .

The following paragraphs list some of the capabilities of the TNIX operating system:

• TNIX encourages a team approach to software development. The shared file system pro
vides a common database, but also guarantees individual and group file protection.

• A hierarchical file system makes it easy to organize and share files.

• Team members can communicate over the system, both by electronic mail and by direct
communication from one terminal to another. In addition, the system manager can post a
"message of the day" and can broadcast messages to all current users.

• Program maintenance facilities automatically update complex groups of interdependent pro
gram modules. You save time because you don't have to keep track of interdependent files
and individually compile or assemble them.

• It's easy to create custom tools and make them available to all users on the system or on
your design team.

• The multi-tasking environment allows several commands to execute at once and provides full
line-printer spooling.

• Command input and output can come from files or other commands, as well as from the
terminal. This reduces the need for temporary files, and provides flexibility and convenience
in your interactions with the system.

• Input and output operations are simplified because all devices are treated as "special files".

• Full type-ahead lets you enter several commands without waiting for the first command to
execute.

These features are described in the remaining sections of this manual and in the 8560 Series
System Manager's Guide.

During Hardware/Software Integration
In combination with one or more workstations, the 8560 forms a complete development system.
In order to execute your program, the 8560 must communicate with a workstation such as the
8540 Integration Unit or the 8550 Microcomputer Development Lab. During program execution,
the workstation emulates the functions of the microprocessor for which the program was written.
This allows you to monitor your program in real time as it interacts with prototype hardware, and
to discover any errors that may remain in the software or hardware.

During the integration phase, you will probably use tools' such as the Trigger Trace Analyzer and
Digital Design Lab to monitor and analyze program performance. The 8560 command set includes
data reduction tools that aid in analyzing the data generated by these debugging and analysis
tools.

1 TNIX is a trademark of Tektronix, Inc. TNIX is derived from Western Electric Version 7 of the UNIX operating
system. UNIX is a trademark of Bell Laboratories.

1-3

The 8560 System . Learning Guide-8560 Series System Users

1-4

The 8560 can support up to four terminals or workstations (eight if you have the Eight-User
Upgrade option). The 8561 supports one or two users, and can be upgraded to support four or
eight users. Each terminal or workstation connects to one of the HSI I/O ports on the rear panel
of the 8560. This arrangement gives you access both to TNIX and to the workstation's operating
system-regardless of whether the terminal is attached to the workstation or directly to the 8560.
Figure 1-2 shows one possible multi-workstation configuration for the 8560.

For information on how to configure the 8560 to communicate with workstations, refer to Section
7 of this manual, Communication with 85405 and 85505, and to the 8560 Series System Manag
er's Guide.

Fig. 1-2. A multi-workstation configuration for the 8560.

In this configuration. one terminal communicates directly with the 8560 and serves as a soft
ware development station. Two more terminals communicate with the 8560 through an 8550
and 8540. and serve as hardware/software integration stations. A line printer is also connect
ed.

4730·3

Learning Guide-8560 Series System Users The 8560 System

Minimum 8560 Series Configuration
A minimum 8560 Series configuration consists of an 8560 Series development system and a
terminal. With the minimum system, you can create and maintain files and develop programs.
After installing the appropriate software options, you can compile and assemble programs, create
subroutine libraries, and link program modules into executable load modules.

The 8560 Series development system contains the following components:

• For an 8560, a 35.6-megabyte, fixed Winchester-technology disk drive. For an 8561, a
13.6-megabyte, fixed Winchester-technology disk drive. The disk contains the TNIX operat
ing system, as well as optional software, workspace, and user files.

• A 1-megabyte flexible disk drive. The drive accepts disks that are either single-sided or
double-sided, and either single-density or double-density. The disks supplied with your 8560
are double-sided and double-density. The flexible disk drive serves primarily to transfer pro
grams and to back up files from the fixed disk.

The terminal is a CRT terminal or other RS-232-C compatible I/O device through which you
communicate with the 8560. The terminal must have the full ASCII character set (including lower
case characters) and must run at 300, 600, 1200, 2400, 4800, or 9600 baud. The 8560 performs
best with a TEKTRONIX 4105M or CT8500 terminal.

The terminal can access not only the 8560, but also any workstations that are attached to the
8560. In addition, the system terminal may attach directly to a workstation. For more information
about system configurations, see the Communication with 85405 and 85505 section of this
manual.

8560 Options
Figure 1-3 shows the options available for use with the 8560 system. The following text describes
each option.

System Options

Line Printers. The 8560 accepts two RS-232-C line printers. Workstations attached to the 8560
can also be connected directly to line printers. The TEKTRONIX 4643 Line Printer is designed for
use with the 8560.

Additional Memory. The 8560 comes with a standard 256K bytes of main memory. Optional
256K and 512K memory boards allow you to expand user-available memory. Any combination of
one or two 256K-byte and 512K-byte boards may be used, providing a maximum 1 M byte of
memory.

1-5

The 8560 System Learning Guide-8560 Series System Users

1-6

Line Printers

Additional
Memory

Floating
Point Package

Port Expansion

Terminals

Disk Expansion Units

GPIB Interface Option

Magnetic Tape Units

: * In conjunction with an 8540 or 8550.
Available only with an 8540.

Assemblers

Compilers

Text Editors

Productivity
Tools

Communication
Packages

Fig. 1·3. 8560 system components.

Trigger Trace
Analyzer**

Digital Design Lab * *

4730-4

The optional memory boards are recommended if your 8560 will be used by more than three users
at the same time. Even if your system will not be used by more than three users at once, the
additional memory can be used to improve system performance.

Floating Point Package. This option is an integrated circuit that increases the execution speed of
many software packages. It is required for the optional Native Programming, Text Processing,
and Auxiliary Utilities software packages, discussed later.

Port Expansion. The 8560 comes equipped with an I/O Processor board that controls I/O ports
0-3 on the rear panel. The Eight-User Upgrade option includes a second I/O Processor board that
enables the 8560 to support up to four additional users (ports 4-7).

For the 8561, the standard I/O Processor board controls I/O ports 0-1 on the rear panel. Upgrade
kits enable the 8561 to support either four or eight users.

Disk Expansion Units. The 8560 comes with a standard 35.6-megabyte fixed
Winchester-technology disk drive. You can add up to three additional 35.6-megabyte
TEKTRONIX 8503 Disk Expansion Units.

Learning Guide-8560 Series System Users The 8560 System

The 8561 comes with a 13.6-megabyte disk drive. In order to support any 8503 Disk Expansion
Units, the 8561 must have the Four-User or Eight-User Upgrade option.

GPIB Interface Option. The GPIB Interface option allows you to use a tape drive for backing up
files. The GPIB Interface is designed primarily for use with Dylon Corporation's Series 3 and
Series 9 Magnetic Tape Systems.

Software Tools

Assemblers. An assembler translates assembly language source modules into machine language
object modules. Tektronix provides an assembler for every microprocessor supported by the
8540 Integration Unit. The TEKTRONIX Series B Assemblers are intended for use with the 8560's
TNIX operating system.

Every assembler option includes a linker and library generator. A linker combines object modules
(produced by an assembler or compiler) into a load module, which may be loaded into memory
and executed. A library generator enables you to create and modify libraries of commonly used
routines. When you include calls to library routines in your program, the linker inserts the neces
sary object modules from the library into your load module.

Compilers. A compiler translates a high-level language (such as C or Pascal) into machine lan
guage or assembly language. Tektronix provides 8560 Pascal compilers for the Z8001/Z8002,
68000/68008, and 8086/8088 microprocessors.

Text Editors. In addition to the standard TNIX line-oriented editor (ed), the TEKTRONIX ACE
Screen Editor and Language-Directed Editor (LDE) are available for use on the 8560. Both ACE
and LDE are screen-oriented editors. LDE can check a program for correct syntax, allowing you
to correct errors while you're still in the ed!tor.

Productivity Tools. Three optional command sets are available for the 8560:

The Text Processing Package contains the nroft and trott text processors, a table set-up
program, an indexing command, a spelling error detection command, and several other
capabilities.

The Native Programming Package offers compilers, an assembler, a debugger, archiving and
library maintenance, lexical analysis, program generation, and compiler generation. These tools
support programs that run on the 8560, rather than on an emulator in a workstation.

The Auxiliary Utilities Package consists of numerous commands, ranging from a desk calculator
to a pattern-scanning and processing language to computer-aided instruction about TNIX.

Communication Packages. Communication packages allow the 8560 to exchange data with
other systems. The UNICOM package enables an 8560 to communicate with other TNIX- or
UNIX-based systems. The COMM package enables an 8560 to serve as host to Intel microcom
puter development systems.

1-7

The 8560 System Learning Guide-8S60 Series System Users

1-8

Integration and Debug Tools

Workstations. In combination with a workstation, the 8560 forms a complete development sys
tem, as described earlier in this section. The 8560 can serve as host to the 8540 Integration Unit,
the 8550 Microcomputer Development Lab, and the 8001 and 8002 Microprocessor Labs.

High-Level-Language Debug. In addition to the symbolic debug commands included in
workstation operating systems, TEKTRONIX Pascal Debug (PDB) lets you debug your software
in terms of Pascal statements and data structures instead of assembly-level constructs.

Trigger Trace Analyzer. The Trigger Trace Analyzer is an 8540 option that allows you to monitor
the buses and selected control signals in the prototype hardware while your program executes at
normal speed.

Digital Design Lab. The Digital Design Lab (DDL) is a debugging tool that provides time correla
tion between data generated by the TEKTRONIX Trigger Trace Analyzer (TT A) and the
TEKTRONIX Digital Analysis System (DAS). This allows you to analyze the software events (from
the TT A data) that correspond in time to specific hardware events (from the DAS data).

Summary
Figure 1-4 shows an 8560 configuration that includes several options. Table 1-1 lists a number of
TEKTRONIX products available for use throughout the design cycle, and the manual that de
scribes each product.

Learning Guide-8560 Series System Users

r: .
lr- ··:~~~1r

.L~
f ~~ __
\ 7 {,>/:'////)/

Intel
MDS

Fig. 1-4. An 8560 network.

In this configuration. two 8560s are linked via UNICOM. One of the 8560s supports an Intel
MOS. along with two 8540s. The other 8560 communicates with a TEKTRONIX Digital Analy
sis System (DAS) by means of the Digital Design Lab (DOL).

The 8560 System

4730·5

1-9

The 8560 System Learning Guide-8560 Series System Users

Table 1-1
Using the 8560: A Guide to Products and Documentation

Development Task Product User Manuals

Create and edit design Text Processing 8560 MUSDU Text Processing Package
documents Package Users Manual

Create and edit source ACE Screen Editor 8560 MUSDU ACE Screen Editor Users
code Booklet

Language-Directed 8560 MUSDU Language-Directed Editor
Editor Users Manual

Ed 8560 Series MUSDU System Users
Manual

Assemble/Compile/Link Series B Assembler 8500 Modular MDL Series AssembleF Core
Users Manual for B Series Assemblers
(plus host- and microprocessor-specific
supplements)

Pascal Compiler and In- 8560 MUSDU Pascal xxxx Compiler Users
tegration Control Manual/8500 Modular MDL Series Pascal
System Language Reference Manual

Linker 8500 Modular MDL Series Assembler Core
Users Manual for B Series Assemblers

Make utility program 8560 Series MUSDU System Users
Manual

Debug Pascal Debug 8500 Modular MDL Series Pascal Debug
Users Manual

8540/8550 debug 8540 or 8550 System Users Manual
commands

Digital Design Lab 8560 MUSDU Digital Design Lab System
Users Manual

Trigger Trace Analyzer 8500 Modular MDL Series Trigger Trace
Analyzer Users Manual

1-10

Learning Guide-8560 Series System Users Getting Started

GETTING STARTED
This subsection is intended to help you get started performing useful tasks on the 8560. This
discussion covers the following topics:

• Logging In. Shows how to sign in to the 8560's TNIX operating system.

• Using Keyshell. Describes the Keyshell interface, which allows you to accomplish tasks by
pressing function keys as well as by typing commands.

• Entering Commands Directly. Describes how to enter commands if your terminal does not
support the Keyshell interface, or if you choose not to use Keyshell.

• Tutorial. Introduces you to a basic tool kit of TNIX and commands.

NOTE

The following discussion assumes that your 8560 has been installed and booted, and
that the switches 'and options on your terminal are set appropriately. If this has not
been done, refer to your 8560 Series System Manager's Guide and to your terminal
users manual for instructions.

Notation
This section uses the following notation conventions to illustrate how to enter commands:

• The $ prompt is shown before each command.

• Characters that you type are underlined. TNIX prompts and responses are not underlined.

Logging In
Once your 8560 is booted and your terminal is set appropriately, TNIX displays the login prompt
on your terminal screen:

login:

On some terminals, you may need to press the RETURN key twice or press the BREAK key a few
times in order to get the login prompt.

NOTE

If your terminal is connected to an 8540 Integration Unit or an 8550 Microcomputer
Development Lab, you must turn on the terminal and the workstation before you log in
to TNIX. Once you have booted the 8540 or 8550, enter TERM mode by issuing one of
the following commands:

$ config term [for an 8540)

$ config term t=7 [for an 8550)

These commands enable your terminal to speak directly with the 8560, while still
communicating with your workstation.

1-11

Getting Started Learning Guide-8560 Series System Users

1-12

Before you can communicate with TNIX, you must obtain a TNIX login name from your system
manager. Your manager may also have assigned a password to you. In response to the login
prompt, type your login name in lowercase, then press the RETURN key. For example:

login: smi th

If a password is required, TNIX will ask you for it. For security reasons, TNIX will avoid displaying
the password as you type it.

Once you've logged in, TNIX asks you to indicate what type of terminal you are using. TNIX
should then display a prompt-a dollar sign "$" -signaling that the system is ready to accept
commands. You may also receive a message of the day just before the prompt sign, or you may
be notified that you have mail. (For information on how to read your mail, see the Operating
Procedures section of this manual.)

Your terminal may also display a row of labels near the top or bottom of the screen. If you see
such labels, you can use the Keyshell interface, which lets you accomplish tasks by pressing
function keys as well as by typing commands. If you do not see these labels, skip the following
discussion of Keyshell and go to the heading "Entering Commands Directly" later in this section.

Using Keyshell
Your terminal should now display a row of labels. Each label on the screen represents a task you
can initiate by pressing the corresponding function key. On most terminals, the function keys are
near the top of the keyboard. Figure 1-5 shows the Keyshell display and the function keys on a
TEKTRONIX 4105M terminal.

Try preSSing one of the function keys. A new set of key labels will appear, each representing a
related new task or set of tasks.

Some of the function keys simply move you from one related set of labels to the next, but most
keys build TNIX commands for you and submit them to TNIX for execution as if you had typed
them yourself. The commands. are displayed on the screen as they are built and executed.

Experiment with Keyshell to find out what it can help you do. Keep the following in mind as you
work:

• To return to the previous set of key labels, press the rightmost key (labeled done).

• To cancel a command that Keyshell is building for you, press done-the command will be
erased before it has executed.

• To stop a command that has already started to execute, type a CTRL-C-hold down the
key marked "CTRL" (for "control") and type a "c".

• To get information about a particular TNIX command, press shifted function key 1 for online
help.

Learning Guide-8560 Series System Users Getting Started

I 'R!k.tronix

--II -' --J....J --J ...J ...J -.I.... _ '-- L-

....I --' -' --J -J --J --J --J -.I "-, '-- '---

-oJ ----'....I ...J -' -oJ --JJ,, ~ L.. '-- L-

4730-6

Fig. 1-5. Keyshell labels and function keys on TEKTRONIX 4105M terminal.

Shifted Function Keys
With the unshifted or "lowercase" function keys, the key labels change as you travel through a
"tree" of key labels. However, the shifted or "uppercase" function keys perform functions that are
useful no matter where you are in the tree, and their meanings do not change.

On the 4105M and CT8500 terminals, these keys are labeled by a plastic keyboard overlay
instead of an on-screen display_ On other terminals, the keys may not be labeled. Table 1-2
summarizes the shifted function keys.

1-13

Getting Started Learning Guide-8560 Series System Users

1-14

Table 1-2
Keyshell Shifted Function Keys

Key Label Function

1 Help Gives you access to online information about TNIX commands.

2 Where Am I Shows you which function keys you pressed most recently.

3 Expand Keys Shows the full text of any key labels that are too long for the label area.

4 Explain Key Describes the tasks that the current set of labeled keys can perform.
Labels

5 Redraw Screen Redisplays the function key labels if you have inadvertently erased
them.

6 History Fwd A companion to History Back, this key scrolls through your command
history in the opposite chronological dir~tion.

7 History Back With repeated presses, provides a list, in chronological order, of the
TNIX commands you have typed or issued via function keys. When you
reach a command you want to execute again, press the RETURN key.

S Execute Last Ordinarily, repeats your last command. If you have started to type a
Command new command, this key searches for a previous command that began

similarly and completes the command line with that text.

The command history keys also activate a command history editor. When the history editor is
active, the unshifted function keys are labeled with editing functions that let you change the
command line currently on display. The Keyshell section of this manual describes command
history and the command history editor in more detail.

Mixing Keyshell Functions with Typed Commands
You are always free to enter commands by typing them literally instead of by pressing function
keys. In fact, as you learn more about TNIX you may find that a mixture of the two kinds of
command entry is most efficient for you. For more information about typed commands, read the
following discussion, "Entering Commands Directly".

A few TNIX commands may not work as expected while you're using Keyshell. These exceptions
are described in the Keyshell section of this manual.

Learning Guide-8560 Series System Users Getting Started

Ending Your Keyshell Session
To end your Keyshell session, press done until you arrive at the top level of keys (key 8 will be
labeled exit). Press exit and TNIX will ask whether you want to log out or to use the regular TNIX
command language without Keyshell assistance. Press log out if you want to end your work
session.

If you inadvertently leave Keyshell, type ksh to return.

Entering Commands Directly
The following paragraphs tell how to enter TNIX commands. Read this material if your system
does not support Keyshell, or if you want to type commands while you're using Keyshell. This
material does not describe the TNIX command language. For that information, refer to the tutorial
that follows this subsection, and to the TNIX Operating System and Operating Procedures sec
tions of this manual.

General Information
You may enter a command whenever you see the "$" prompt. The command is not read and
processed by TNIX until you press the RETURN key.

Selecting the 8540 or 8550
If your terminal is attached to the 8560 and you also want to communicate with a workstation,
you must specify the HSI I/O port to which the workstation is attached. To do this, enter the
following commands:

$ IU=n; export IU [for an 8540)

$ stty IU >/dev/ttyn
$ IU=n; export IU

[for an 8550)

In place of n, enter the number of the HSI I/O port (from the 8560's rear panel) to which the 8540
or 8550 is attached.

Do not attempt to communicate with the 8540 or 8550 while they are in LOCAL mode.

1-15

Getting Started Learning Guide-8S60 Series System Users

1-16

Online Help Tools
Two TNIX commands allow you to obtain information about TNIX while you are logged in:

• The man command, followed by a command name, displays an online "manual page" that
describes the command. For instance, man Is displays information about the Is command.

• The index command works like the index of a book. If you type index followed by one or
more keywords, TNIX lists the online manual pages that contain information about that
keyword or combination of keywords. For example, index directory lists the online manual
pages that discuss directories.

Mistakes in Typing
If you notice a typing mistake on a line before you press the RETURN key, there are two ways to
recover:

• The BACKSPACE key erases the last character typed. Successive backspaces will erase all
the way to the beginning of the line, but not beyond. (CTRL-H is identical to a backspace.
Type "h" while holding the CTRL key down.)

• CTRL-U erases all of the characters typed on the current line. If the line is irretrievably
garbled, type CTRL-U and start the line over.

If you don't'notice a mistake until after you've pressed the RETURN key, you can either retype
the command or use CTRL-K, which retypes successive characters of the previous line. For
example, assume you typed pwx instead of pwd (the print working directory command). If you
type CTRL-K twice, the "p" and "w" are retyped for you. You can then type the "d" and press the
RETURN key, and the command will be executed correctly. (Note: CTRL-K does not work when
you are using Keyshell.)

Stopping a Program
You can stop most commands by typing a CTRL-C.

~
When your workstation is in TERM mode, do not toggle the RESTART switch on the
workstation's front panel. If you need to interrupt system operation, type CTRL-C.

If you restart the workstation while it is in TERM mode and workstation commands are still active
on the 8560, then the workstation and the 8560 may not be able to resume communication. If
your system seems to hang after you restart the workstation, you or your system manager must
kill the workstation commands from a different terminal.

Learning Guide-8S60 Series System Users Getting Started

Logging Out
If your terminal is connected directly to the 8560, you can log out by typing the logout command.
You can also type login, which logs you out and prepares the terminal for someone else to log in.
Turning off the terminal mayor may not log you out.

If your terminal is connected to an 8540 or 8550 workstation in TERM mode, log out by typing
config local; logout on the same line. These commands switch the 8540 or 8550 to LOCAL mode
and log you out of TNIX.

Tutorial
The following tutorial shows you how to use a number of common TNIX features and commands.
You can perform these tasks by typing the commands shown or by using the Keyshell function
keys.

Create a File
When you need to create a text file-such as a program, a memo, or a specification-you will
normally use a text editor to enter the text, and will store the text in an 8560 file. (A file is simply a
collection of information stored in the 8560.)

For now, however, we'll use a shortcut to create a file-the TNIX cat command. Cat is ordinarily
used to display the contents of a file or to merge two or more files, but you can also use it to store
text in a file. Try entering the following text:

$ cat >nonsense
As I was standing in the street
As quiet as can be,
A great big ugly man came up
And tied his horse to me.
<CTRL-D>

After you type the CTRL-D, a file called nonsense is created; it contains four lines of text.

List a File
Now use the Is (list) command to verify that the file exists:
$~
nonsense

TNIX displays a list of the files in the current directory, sorted into alphabetical order. Other
variations are possible, however. For example, the command Is -t lists files in the order in which
they were last changed, most recent first.

1-17

Tutorial

1-18

Learning Guide-8560 Series System Users

The use of optional arguments ("flags") that begin with a hyphen (like -t) is a common convention
for TNIX commands. With any command, you can combine flags or options. In general, if a
command accepts flags, they precede any filename arguments. It is important to separate the
various arguments with spaces: Is-t is not the same as Is -t.

The Is command-like many other TNIX commands-has a number of options. For a full descrip
tion of what Is enables you to do, enter man Is.

Copy a File
Now try making a copy of the file nonsense. Enter the following command to create a copy that
contains the same text but is named funnyfile: .

$ cp nonsense funnyfile
$

The only system response is the return of the "$" prompt after the file has been copied. If you
want to verify that the file was copied, enter Is again:

-funnyfile
nonsense

View the Contents of a File
Once you've created a file, you can use one of several commands to view the text that it contains.

The cat command displays on your terminal the contents of all the files named in a list. For
example, to view nonsense, enter

$ cat nonsense

To view both of your files, enter
$ cat nonsense funnyfile

The two files are simply merged end-to-end or concatenated onto the terminal.

The pr (print) command prepares a file to be printed on a line printer, but displays the file on your
terminal. A file processed by pr includes headings with date, time, page number, and file name at
the top of each "page", plus extra lines to skip over the folds in lineprinter paper.

You can send the formatted file to the line printer by piping the output of the pr command to the
Ipr command. (The output of any TNIX command can be automatically sent to another
command.)

$ pr nonsense : Iplr

The pipe symbol ":" sends the formatted file nonsense to line printer 1.

Learning Guide-8560 Series System Users

Rename a File
The TNIX mv command "moves" a file by giving it a new name. Enter the following command to
rename nonsense:

$ mv nonsense serious

The file is now named serious. Enter the Is command again to verify:

funnyfile
serious

~
If you move a file to another one that already exists, the previous contents are lost forever.

Explore the File System
When you first created the file nonsense, how did the system know that there wasn't another
nonsense somewhere else, especially since the person at the next workstation may also be
reading this manual? The answer is that each user has a private directory that contains only the
files that belong to him or her. When you log in, you are "in" that directory, which-logically
enough-is called your "login directory" or HOME directory. ("HOME" is in uppercase letters
because it's an "environment variable". You'll learn more about environment variables in the TNIX
Operating System section of this manual.)

Unless you take speCial action when you create a new file, the file is placed in the directory that
you are currently in; this is normally your own directory, so that the file is unrelated to any other
file of the same name that might exist in someone else's directory.

TNIX organizes all files into a tree, with your files located several levels down from the root
directory at the top of the tree. Figure 1-6 shows a portion of the TNIX file tree. You can move
around this tree and find any file in the system by traveling along the proper set of branches.

(root)

I
usr

I I
yourname hisname :4---login directories

~ ~
yourfile hisfile

4730-7

Fig. 1-6. A portion of the TNIX file tree.

Tutorial

1-19

Tutorial

1-20

Other users can view your files by entering the command
$ cat lusr/yourname/yourfile

Learning Guide-8560 Series System Users

In this example, the file is specified by its "absolute pathname" -/usr/yourname/yourfile. The
absolute path name traces the file's location, beginning with the root directory and ending with the
filename itself. A slash ("!") is used to represent the root directory and to separate components of
the pathname.

You can find out what files your neighbor has by entering
$ Is lusr/hisname

You can make your own copy of one of his files:
$ cp lusr/hisname/hisfile yourfile

Of course, your friend may not want to share his files. He may have altered the protection modes
to deny other users access to his files. See the discussion "File Protection" in the TNIX Operating
Procedures section at this manual for a description of file protection modes and how to set them.

Change Your Current Directory
The cd command moves you to another directory, which may be another user's directory or a
subdirectory that you've created under your login directory. (Again, you can move to another
user's directory only if she or he has not denied you permission to enter the directory.) For
example, the following command moves you to another user's login directory:

$ cd lusr/hername

Now, when you use a filename with a command like cat or pr, the pathname refers to the file in
your friend's directory.

If you forget what directory you are in, type pwd (print working directory) to find out.

Create a Directory
As you continue to generate files, you will probably find it convenient to create a subdirectory to
store related files, rather than keeping them all in one large directory. (It's similar to keeping all
your tax records in an organized filing system, rather than in a shoe box.)

For example, you might create a directory called trivia to store serious and funnyfile:
$ mkdir trivia
$ cd trivia
$ mv lusr/yourname/serious serious
$ mv lusr/yourname/funnyfile funnyfile

(create the directory I
(move to the directory I
(move serious to the current directory I
(move funnyfile to the current directory I

Learning Guide-8560 Series System Users

Use the Pattern-Matching Characters
Enough of funny filenames. Let's assume now that you are writing a complex system specifica
tion. Your document consists of a number of sections and subsections, so you type the document
as a number of files: seet1, seet2, seet3, etc.

There are advantages to a systematic naming convention. You can tell at a glance where a
particular file fits into the whole. And if you need to print the entire document, you don't have to
specify each file name:

$ pr sect1 sect2 sect3 sect4 sect5 sect6 sect7 : Ip1r

Instead, you can use pattern-matching characters to simplify your task. For example:
$ pr sect * : Ip1r

The asterisk "*" matches "anything at all", so this command prints all files whose names begin
with sect. The "*" can appear anywhere in the filename and can occur several times. Thus, rm
sect removes all files that contain the characters sect as any part of their name.

In addition, "*" by itself matches every filename. Thus, pr * displays all the files in the current
directory, and rm * removes all the files in the current directory. (Use this one with caution!)

The asterisk is not the only pattern-matching feature available. Square brackets ([]) match any
single character inside the brackets. Thus, the folowing command prints sections 1, 2, 3, 4, and 7:

$ pr sect (12347 J : Ip1r

A range of consecutive letters or digits can also be abbreviated within brackets, so the following
command also prints sections 1, 2, 3, 4, and 7:

$ pr sect [1-47 J : Ip1r

(Note that the 4 and 7 are not the two-digit number, 47.) Letters can also occur within brackets:
[a-z] matches any character in the range "a" through "z".

Finally, a question mark matches any single character. Thus, Is ? lists all files that have
Single-character names, and Is sect? lists seet1, seet2, and so forth.

You can "turn off" the special meaning of "*", "?", and "[... r by enclosing the entire argument in
single quotes. For example, the command Is '?' lists information about a file named?

The TNIX Operating System section of this manual contains a table that summarizes information
on the pattern-matching characters.

Tutorial

1-21

Tutorial

1-22

Learning Guide-8560 Series System Users

Send Output to Files Instead of the Terminal
Most of the commands you have seen so far produce output on the terminal. For all TNIX
commands, however, a file may replace the terminal for both input and output. For example, Is
displays a list of files on your terminal. But if you type Is >filelist, the list of your files is placed in
the file filelist, which will be created if it does not already exist, or overwritten if it does. The
symbol" >" means "place the output in the following file, rather than on the terminal." Only error
messages will appear on the terminal. You can display this listing by entering cat filelist.

As another example, you can combine several files into one larger file by sending the output of the
cat command to a file:

$ cat filel file2 file3 >filel23

The symbol" > >" operates very much like" > " , except that it appends the information-adds it
to the end of the specified file. That is,

$ cat filel file2 file3 »filel23

concatenates the three files to the end of whatever is already in fife 123, instead of overwriting the
existing contents of file123. As with ">", if file123 does not exist, TNIX creates it for you.

Summary
This tutorial has introduced you to the TNIX file system and TNIX command entry. Table 1-3 lists
the commands and symbols covered in this discussion.

Commands/Symbols

cat

Is

cp

pr

Ip1r

mv

cd

mkdir
I
I

* [] - ?

>

»

Table 1-3
Summary of Tutorial

How Used

Create a file, display a file.

List contents of a directory.

Copy a file.

Format a file for printing.

Send a file to line printer 1.

Rename a file, move a file to a new directory.

Move to another directory.

Create a new directory.

Pipe symbol: connect the output of one command to the input of an-
other command.

Pattern-matching characters.

Send the output of a command to a file rather than to the terminal.

Append the output of a command to a file.

Learning Guide-8560 Series System Users For Continued Learning

FOR CONTINUED LEARNING
This Learning Guide has given you an overview of the 8560 system, and showed you how to get
started using the 8560. The following paragraphs tell you where to get more information on
particular aspects of the 8560 and its TNIX operating system.

The TNIX Operating System
Section 2 of this manual, TNIX Operating System, contains information designed to give you an
understanding of the basics of the TNIX operating system.

Section 3, Operating Procedures, uses a "cookbook" approach to performing tasks on the 8560.
Like Keyshell, this section makes it easy to get your work done without knowing a lot about the
intricacies of the operati,ng system.

Section 11, the qlossary, defines new terms .

. TNIX Command Language
Section 9 of this manual contains an abbreviated dictionary of standard TNIX commands. In
addition, each command is fully described in an online manual page. To view the manual page for
a particular command, enter the man command, followed by the command name. For example,
enter man Is to see the manual page for the Is command.

If you frequently refer to particular manual pages, you may find it worthwhile to print a copy of
them. To print a manual page on line printer 1, enter the following command:

$ man command : pr : Iplr

In place of command, enter the name of the command you want to print.

The optional 8560 Series MUSDU System Reference Manual provides a detailed description of
each TNIX command.

The TNIX Editor
Section 5 of this manual describes the TNIX editor, ed.

System Maintenance
For any multi-user system, it's generally most efficient to designate one person the "system
manager" and make this person responsible for tasks such as installing software and creating
user accounts. The 8560 Series System Manager's Guide describes the tasks that an 8560
system manager needs to perform, and tells how to perform them. This manual also shows how
to install an 8560 and how to add workstations and peripherals.

1-23

For Continued Learning Learning Guide-8560 Series System Users

1-24

Intersystem Communication
If you have any workstations attached to your 8560, you will need to learn more about communi
cation between a terminal, a workstation, and an 8560. Section 7 of this manual, Communication
with 8540s and 8550s, presents general information about communication between an 8560 and
workstations. The 8560 Series System Manager's Guide covers certain hardware and software
configuration procedures that must be performed by the system manager before communication
can take place.

The System Users Manual for your 8540 or 8550 offers additional information about intersystem
communication, dealing especially with the LOCAL mode configuration. In that mode, your termi
nal communicates directly with the workstation, with no mediation from the 8560 TNIX operating
system.

The Emulator Specifics Users Manual for each emulator includes a demonstration run that shows
how to create, assemble, link, and execute a program using the 8560 with either an 8540 or 8550
and an emulator.

Shell Programming
The shell is the program that interprets what you type as commands and argum~nts. The shell
also constitutes a programming language: in addition to the TNIX commands, the shel. program
ming language includes high-level control statements (for and while loops, case and if state
ments), parameters, variables, subroutines, string substitution, and error handling. You can
create your own commands by placing command sequences in files called shell procedures.

Section 2 of this manual, TNIX Operating System, describes general shell capabilities. Section 4,
Shell Programming, explains how to write shell procedures.

Maintaining Files
The make utility program, described in Section 6 of this manual, is a command generator: it
issues commands to maintain and update a set of program files. Whenever any part of a program
is changed, make regenerates the proper files simply and correctly. With moderately complex
programs, this service can be an almost indispensable time-saver and program bug-saver.

You can also use make to update other files and to perform routine tasks such as printing.

8560 Series System Users

Section 2
TNIX OPERATING SYSTEM

Page

Overview. .. 2-1

TNIX File System. .. 2-1
Files and Directories .. 2-1
Path names 2-3

The Current Directory .. 2-3
Pathname Abbreviations .. 2-4
Moving to a New Directory ... , 2-4

Filenames ;.. 2-4
Valid Filenames ... 2-4
Special Characters .. 2-5
Pattern Matching. .. 2-5

Links to a File .. 2-6
File Protection 2-8

Categories of Users .. 2-8
Types of Permission .. 2-9
Finding Out What Permissions Are in Effect. .. 2-9
Changing the Protection Modes .. 2-10

System File Structure .. 2-10

TNIX Command Language .. 2-11
The Shell " .. 2-11
TNIX Command Format ... 2-12
Command Input and Output. .. 2-12

Redirecting Output. .. 2-14
Redirecting Input. .. 2-14
Pipes: Connecting Commands .. 2-14

Command Execution. .. 2-15
Background Mode: Executing Commands Concurrently .. 2-15
Multitasking. .. 2-16

Control Characters .. 2-17

Customizing Your TNIX Environment. .. 2-18
Environment Variables .. 2-18

The . Profile File .. 2-19
Creating Your Own Commands .. 2-19

Create the File. .. 2-19
Execute the File. .. 2-20
Create a Personal Programs Directory. .. 2-20
Sharing Commands. .. 2-20

Summary. .. 2-21

2-i

2-ii

Contents-8560 Series System Users

ILLUSTRATIONS

Fig.
No. Page
2-1 The TNIX file system. 2-2
2-2 A sample directory .. 2-3
2-3 linking and copying a file .. 2-6
2-4 Links to a file: modified sample directory , 2-7
2-5 File protection modes .. 2-1 0
2-6 Redirecting input and output. .. 2-13
2-7 Pipes. .. 2-14

Table
No.
2-1
2-2
2-3
2-4
2-5
2-6

TABLES

Page
Pattern-Matching Characters .. 2-5
Categories of Users for File Protection Modes 2-8
Read, Write, and Execute Permission 2-9
TNIX Directory Hierarchy .. 2-11
Escape to Shell from an Editor. .. 2-16
Control Characters .. 2-17

8560 Series System Users TNIX File System

Section 2

TNIX OPERATING SYSTEM

OVERVIEW
Section 1 of this manual presented a general overview of the 8560 Series system, and showed
you how to log in to TNIX and enter TNIX commands. This section provides an overview of the
TNIX operating system" and includes discussions that explain the TNIX file system and command
language and show how to modify your TNIX environment and create your own commands. This
information should be useful whether you use the Keyshell function keys to enter commands, or
construct and type the commands yourself.

TNIX FILE SYSTEM
This subsection describes the TNIX file system, including the following topics:

• Files and Directories. Defines the terms "files" and "directories", and shows how you can
use directories to logically group your files.

• Pathnames. Describes pathnames, the current directory, and ways to abbreviate
pathnames.

• Filenames. Gives the rules for forming valid filenames, and shows how you can use
"wildcard" characters to abbreviate filenames.

• Links to a File. Shows how you can use the In command to place a file in more than one
directory.

• File Protection. Describes file protection modes and how to use them to control access to
your files.

• System File Structure. Illustrates the standard TNIX directory hierarchy.

Files and Directories
A file is a set of related information that can be referred to collectively by one name. TNIX files are
unstructured, and may be either text files or binary files. A source file, for example, is a text file
that contains the source code for a program or routine.

2-1

TNIX File System TNIX Operating System-8560 Series System Users

2-2

bin

(root)

I
I

etc usr dey tmp lib .. system directories

~
johnr marva .. login directories

~ ~
dir1 pgms '4 subdirectories

~ I
I

I
file1 test.lst test.asm .. files

Fig. 2-1. The TNIX file system.

TNIX stores files in a tree structure, with related files grouped together in a directory. Each user
has a directory under the usr directory, and may create files and subdirectories.

4730-8

In addition to "regular files", TNIX uses special files for each 1/0 device. This means that com
mands can easily take their input from and send their output to devices such as line printers and
storage devices.

A directory is a file that consists of a list of filenames, with a pointer to each file or sUbdirectory
contained within that directory. Directories make it easy to group related files together.

TNIX creates and maintains all files in a inverted tree structure, with the root dir~t6ly at-the top
of the tree. Figure 2-1 illustrates the TNIX file structure. For information on the sys"ffiin direc\:>ries,
see the discussion "System File Structure" later in this section. '

When you log in, TNIX places you in your "HOME directory" or "login directory", /usr/yourname.
Until you create subdirectories, all your files are placed in your HOME directory. Just as TNIX
organizes the system files into several directories, you will probably find it practical to create a
separate directory for each of your major projects and areas of interest. Figure 2-2 shows how
one user has arranged his files. User joeb has created (with the mkdir command) three main
directories: projl, proj2, and letters. Under projl, he has created a file (docs) and a subdirectory
(paspgm). Proj21ikewise contains a file and a subdirectory (asmpgm). The letters directory con
tains only files.

TNIX Operating System-8560 Series System Users TNIX File System

I
paspgm

I
main. po
main.ps
mod1.po
mod1.ps
mod2.po
mod2.ps

proj1

I
I

docs
I

asmpgm

I
prog.asm
prog.obj
sUb.asm
sub.obj

(root).

I
usr

I

T
proj2

I
I

docs

Fig. 2-2. A sample directory.

I
letters

I
mom
president
billcollect

User joeb has three main directories, each containing one or more files or subdirectories.

Path names

4730-9

A pathname specifies a unique name for each file or directory on the system. Pathnames may be
either absolute or relative.

An absolute pathname (or full pathname) specifies a path from the root directory, and shows each
of the file's "ancestors". A slash (/) is used to represent the root directory and to separate each
part of the pathname. In Fig. 2-2, the absolute path name for the file main.ps is
/usr/joeb/proj1/paspgm/main.ps. Note that joeb has two files called docs; however, their absolute
path names are unique.

A relative pathname specifies a path from the current directory to another directory or file. Since a
relative path name starts from the current directory rather than from root, the path name begins
with the name of the next descending file or directory, rather than with the "J" character. For
example, when joeb is in his proj1 directory, the relative path name of main.ps is paspgm/main.ps.

A pathname may also be a simple filename. For example, when joeb is in the the letters directory,
the relative pathname of the file president is simply the filename: president.

The Current Directory. As you move around the file tree, the directory you are "in" at any given
time is the current directory or working directory. The pwd (print working directory) command
displays the absolute pathname of the current directory.

2-3

TNIX File System TNIX Operating System-8560 Series System Users

2-4

Pathname Abbreviations. TNIX provides two abbreviations for frequently-used pathnames:

• A period (.) refers to the current directory.

• Two periods (..) refer to the current directory's parent-the directory's immediate ancestor in
the file tree.

Moving to a New Directory. The cd (change directory) command moves you around in the file
tree. Assume that joeb (Fig. 2-2) logs in and decides to use cd to practice moving around his file
tree.

S E:!£
lusr/joeb
$ cd letters
$ cd •• /proj2
$ cd lusr/joeb/projl
$ cd paspgm
$ cd ••
$ cd

[he starts in his HOME directory]
[moves to /usr/joeb/letters]
[moves to /usr/joeb/proj2]
[moves to /usr/joeb/proj1]
[moves to /usr/joeb/projl/paspgm]
[moves to its parent directory, /usr/joeb/projl]
[and returns to his HOME directory]

(These examples illustrate various ways of constructing pathnames; they don't nece.sarily show
the most efficient ways to move around the file tree.)

Filenames
This subsection tells how to choose valid filenames (including how to use "special characters" in
filenames), and shows how you can use "wildcard" characters to specify a file or group of files.

Valid Filenames
The following rules apply to filenames:

• A filename can be any length; however, TNIX stores only the first 14 characters.

• Uppercase and lowercase letters are distinct.

• A filename should not contain spaces, tabs, slashes, or control characters (such as CTRL-C).

• A filename that begins with a period is not displayed by most forms of the Is command, but is
displayed by Is -a.

The following are valid TNIX filenames:
PasM (different from "pasm")
.utility
S.p
averylongfilename (truncated to "averylongfilen")

TNIX Operating System-8560 Series System Users TNIX File System

Special Characters
The following characters have a particular meaning to TNIX, and may cause problems if used in a
filename:

/ \ & ?
$ * >

<] (

You can disable the special significance of these characters by one of the following methods:

• The backslash (\) disables any special character.

• Double quotes (" ... ") disable all special characters except the following:

$ \"

• Single quotes (" .. .') disable all special characters except a single quote.

Pattern Matching
The Learning Guide section of this manual briefly discussed TNIX's "wildcard" characters, which
you can use to match one or more characters in a filename.- Table 2-1 summarizes the TNIX
wildcard characters; the following paragraphs show some examples.

Character

?

*
[x .. y]

[x-y]

Table 2-1
Pattern-Matching Characters

How UsedB

Matches any single character.

Matches any string of 0 or more characters, excluding "/".

Matches anyone character in the set specified by x .. y.

Matches any character in the range x-yo

a A period (.) at the beginning of a filename must be explicitly matched.

Examples. Assume that the current directory contains the following files:
main.asm
main.pl
main.po
main.ps
mod1.po
mod1.ps
mod2.ps
mod3.ps

2-5

TNIX File System TNIX Operating System-8560 Series System Users

2-6

You can use the echo command to see what patterns are matched by the wildcard characters.
(Echo merely displays its arguments after they have been preprocessed by the shell.) Here are
some examples:

echo main.p? Echoes main.pl, main.po, main.ps.

echo *.ps Echoes main.ps, mod1.ps, mod2.ps, mOd3.ps.

echo mOd[1-2]* Echoes mod1.po, mod1.ps, mod2.ps.

echo main.p[m .. z] Echoes main.po and main.ps.

echo * Echoes all files in the current directory.

Links to a File
The In command enables a file to appear in more than one directory, possibly under more than
one filename. Unlike cp, which creates a physical copy of the file, In merely creates a new path to
the file, as shown in Fig. 2-3. Linking thus saves disk space.

You can use linking in several ways:

• To share files with other users. Any change to the file is reflected in each "version" of the file,
because all "versions" are in fact the same file. Linking thus ensures that each user has an
up-to-date version of the shared file.

• To back up important files. All links to a file have equal status, and a file is removed only
when all links to the file have been removed. If you accidently delete a file, any other links to
the file still remain, and the file itself is not deleted.

Linking Copying

pathname1

·1
file

1
vPathname1

·1 1
file pathname2 pathname2 file

~pathname3
pathname3

·1
file

1
4730-10

Fig. 2-3. Linking and copying a file.

Linking saves file space, because only one copy of the fife exists.

TNIX Operating System-8S60 Series System Users TNIX File System

Example
Let's assume that user joeb (from Fig. 2-2) decides to create a backup directory (projecfs.bak)
and add links from that directory to main.ps and prog.asm. Starting from his home directory, joeb
first creates the new directory and moves to it:

$ mkdir projects.bak
$ cd projects.bak

He then links to the two files, and lists the directory contents to verify the results. (Note that he
uses the " .. " abbreviation in the path name when he enters the In command.)

$ In •• /projl/paspgm/main.ps
$ In •. /proj2/asmpgm/prog.asm
$~
main.ps
prog.asm

The absolute path names for the resulting links are /usr/joeb/projecfs.bak/main.ps and
/usr/joeb/projecfs.bak/prog.asm. Figure 2-4 shows the new directory structure.

(root)

I
usr

I
joeb

I
I

proj1 proj2 projects.bak

I I
asmtgm ______ ~o~c~ - -_-___ :.i~fful

main.po ____ - - - - - ___ - - -

::;:~~1~:~ - - - - :::!~~;~~.~ --

I

docs paspgm

mod1.ps sUb.asm
mod2.po sub.obj
mod2.ps

Fig. 2-4. Links to a file: modified sample directory.

I
letters

I
mom
president
billcollect

4730-11

The new directory projects.bak contains links to files in the paspgm and asmpgm directories.

2-7

TNIX File System TNIX Operating System-8560 Series System Users

2-8

Number of Links
The listing produced by the II command shows the number of links to a file. In the following
example, each file has two links to it:

$ E!:£
lusr/joeb/projects.bak
$ 11
-rw-r--r-- f2l j oeb
-rw-r--r--~jOeb

682 Feb 11 08:17 main.ps
220 Feb 11 08:25 prog.asm

Restrictions
You may not link to a directory. Also, you may not link across filesystems. (Filesystems are
important only when you have one or more Disk Expansion Units installed. See the Glossary of
this manual for a definition of filesystems.)

File Protection
TNIX has file protection modes that allow you to specify who can access your files and directo
ries. By setting the protection modes, you can share files with other users, or protect files from
access by other users. The following paragraphs describe the file protection modes.

Categories of Users
You can control access for three categories of users, as shown in Table 2-2.

Table 2-2
Categories of Users for File Protection Modes

Category Abbreviation Description

User u File's owner

Group g Members of the owner's group

Other 0 Other users: anyone on the system

When the system manager creates an account for a new user, he or she may assign the user to a
group. For example, if several users are designing a microprocessor-controlled razor, the system
manager might create a group called razor and assign each team member to this group. By
setting the group protection modes, each group member can allow other members to access his
or her files.

TNIX Operating System-a560 Series System Users TNIX File System

The jete/group file lists the groups that exist on your system (along with the members of each
group). For information on how to create a group, refer to the 8560 Series System Manager's
Guide.

Types of Permission
You can specify three types of permission-read, write, and execute. Table 2-3 shows what the
given permission allows you to. do.

Table 2-3
Read, Write, and Execute Permission

Permission File Directory

Read Permits you to read the file. Permits you to list the contents of the
directory.

Write Permits you to create or modify the Permits you to create or remove a file in the
file. directory, link to a file in the directory, re-

move the directory.

Execute Permits you to invoke the file as if Permits you to move around in the directo-
it were a command. ry, read the files in the directory.

Finding Out What Permissions Are in Effect
The listing produced by the II command shows the current protection modes for files and directo
ries. Figure 2-5 illustrates an II listing.

• The first column of the listing indicates whether the file is a directory ("d"), a regular file (" - H),
a character-type special file ("c"), a block-type special file ("b"), or a multiplexed special file
("m"). (These terms are defined in the Glossary of this manual.)

• The next three columns show whether the file's owner has read ("r"), write ("w"), and execute
("x") permission, respectively. A letter indicates that the owner has that type of access
permission. A minus sign (-) indicates that the permission has been denied.

• The second three columns list group permissions.

• The final three columns list the permissions for other users on the system.

2-9

TNIX File System TNIX Operating System-a560 Series System Users

2-10

IIrorer
drwxrwxr-x 1 susanj

-rw-r--r-- 1 susanj

ITT
ler

group

user

file

104 Aug 30 14:27 pascal.dir

816 Aug 30 17:04 mainmod.ps

Fig. 2-5. File protection modes.

r = read
w = write
x = execute
- = permission not granted

The output from the II command shows the current protection modes. Pascal.dir is a directory
that anyone may read, and that the owner and other members of the owner's group may write
into. Mainmod.ps is a file that €arl' be read by anyone on the system, can be written to on~
the owner, and is not executable.

Changing the Protection Modes

4730-12

The protection modes shown in Fig. 2-5 are the TNIX default modes for a directory and a file. You
can use the chmod (CHange MODes) command to change protection modes. (Only a file's owner
or a superuser-someone logged into the root account-can change a file's protection modes.)
For more information, refer to the heading "File Protection" in the Operating Procedures section
of this manual, or enter man chmod.

System File Structure
Figure 2-1, earlier in this section, illustrated the system file tree. Table 2-4 lists the TNIX system
directories, which are contained in the top level of the TNIX directory hierarchy. For information on
the format of a particular system file, enter the man command plus the filename. For example,
man group displays information about the /etc/group file.

TNIX Operating System-8560 Series System Users TNIX Command Language

Table 2-4
TNIX Directory Hierarchy

Directory Contains Examples

/bin Frequently used commands dscSO, mail, make, sort

/etc Essential data group, mount, termcap
Superuser commands getty, passwd

/usr User files johnr, joeb, marya
/usr/bin Less frequently used commands ace

/dev Peripheral devices8 hsiO, tty1

/tmp Temporary files

/Iib Auxiliary files, usually TNIX commands;
runtime support libraries

a Each peripheral device (such as a line printer, terminal, or disk drive) is considered a file, and has an entry in the
dev directory.

TNIX COMMAND LANGUAGE
The TNIX shell is a program that interprets commands and oversees their execution. The follow
ing paragraphs briefly describe features of the shell that enable you to redirect the input and
output of commands, connect the output of one command with the input of a second command,
and execute commands concurrently. This subsection also describes TNIX command format and
control characters. The Shell Programming section of this manual contains information on ad
vanced features of the shell, and shows how to use the shell's programming language.

The Shell
When you log in to TN IX, the TNIX command interpreter-the shell-issues a prompt (generally a
"$"), and waits for you to enter commands. When you enter a command, the shell acts as a
command interpreter: it divides the command line into strings of characters, expands any
pattern-matching characters, then executes the specified commands.

2-11

TNIX Command Language TNIX Operating System-8560 Series System Users

2-12

TNIX Command Format
A TNIX command consists of one or more "words", separated by blanks. The first word must be
the name of an executable file (either a command or an executable command file that you've
created). The shell passes the remaining "words" as flags and arguments to the command.

A flag (or option) is a single character preceded by a hyphen; flags may be concatenated. An
argument is a valid TNIX filename or string. For example, the following command deletes the
contents of the directory oldfiles. The "r" and "i" are flags; "oldfiles" is an argument:

$ rm -ri oldtiles

Flags and arguments are collectively termed "parameters".

Two or more commands may appear on the same line, separated by a semicolon. For example:
$ cd eddir Is

The spaces before and after the semicolon are not required; they are used here for readability.

The shell does not interpret an input line until you press the RETURN key.

Command Input and Output
Ordinarily, the shell sends the output of a command to a file called the "standard output" file,
which is generally assigned to your terminal. Similarly, the shell expects input for commands to
come from the "standard input" file, also the terminal. However, as Fig. 2-6 shows, the shell can
also reassign the input and output of each program, file, command, or device:

• The output from your terminal, from a file, or from a program or command can be connected
to a program's input.

• A program's output can be sent to your terminal, to a file, to another program's or com
mand's input, or to any combination of these.

• Error messages from a program or command can be sent to your terminal, to a file, to
another program's input, or to any combination of these. The file can be the same file to
which the program's output is connected.

The following paragraphs show how you can reassign the standard input and output files to other
files and devices, and how you can use "pipes" to connect the output of one command directly
with the input to another command.

TNIX Operating System-a560 Series System Users TNIX Command Language

file

program
output

program
error

output

program

Fig. 2-6. Redirecting input and output.

TNIX commands normally take their input from and send their output to the terminal. However,
you can reassign standard input, standard output, and standard error to other files and de
vices.

4730·13

2-13

TNIX Command Language TNIX Operating System-8560 Series System Users

2-14

Redirecting Output
The ">" (right angle bracket) lets you redirect output to a file other than the standard output file.
For example, the following command counts the number of lines in a file and stores the results in
a file called linecount rather than displaying them on the screen:

$ we -1 longfile >lineeount

If linecount does not exist, it is created. If it does exist, its contents are overwritten.

To append the results to an existing file, use "»":
$ we -1 longfile »lineeount

Redirecting Input
The" <" (left angle bracket) redirects standard input. For example, the mail command usually
takes its input from standard input: the text you type in after the mail command is sent to the
specified user. However, you can also use an editor to create a file, and then mail that file. The
following example mails a file called reminder to user jackf:

$ mail Jaekf <reminder

Pipes: Connecting Commands
The pipe operator ":" connects the output of one command to the input of another, as shown in
Fig. 2-7.

The following example uses a pipe to determine the number of users on the system.
$ who : we -1

First, the who command generates a list of aI/ current users. The list is not displayed on your
terminal, however, but is fed into the we command, which (with the -I option) counts the number
of lines of input from who. In order to accomplish this task without using pipes, you'd have to
create a temporary file:

$ who >temp
$ we <temp
$ rm temp

command1 "i$t-_in_p_u_t -l .. ~I ___ co_m_m_a_n_d_2

4730-14

Fig. 2-7. Pipes.

TNIX Operating System-8S60 Series System Users TNIX Command Language

Pipes and I/O redirection can be combined. Thus, the following command saves the results of the
previous example in a file:

$ who : we -1 >whocount

Pipes can also link any number of commands. The following command prints a sorted list of users
who are currently logged on:

$ who : sort : 1p1r

Command Execution
The following paragraphs describe how to execute commands concurrently, and how to interrupt
one program or command to perform other system tasks.

Background Mode: Executing Commands Concurrently
Ordinarily, when you enter a command, you have to wait until the command finishes executing
before entering another command. When you place a command in background mode, however,
the shell prompt returns immediately. You can enter additional commands, which will execute
concurrently with the original command.

The "&" operator at the end of a command line places the comma~d in background mode. The
following example assembles a program in the background:

$ 8sm sub.obJ sub.8sm1 sub.8sm 2>errors &
1427
$

This example also redirects the error output ("2>") to a file called errors. (The "2" is the file
descriptor for the standard error file.) Ordinarily, error messages are displayed on the system
terminal ("standard error"). By redirecting the error display to a file, you ensure that error displays
won't interrupt whatever you're doing at the terminal.

When a background process begins execution, the system displays a process ID number that
identifies the command. (In the previous example, the process ID number is 1427.) You can use
this process I D number to monitor the progress of a background job (by entering the ps com
mand), or to abort a background job. The following command aborts the assembly example:

$ kill 1427

Another way to abort a background command is to enter kill 0, which terminates all your currently
executing commands.

Your background commands are terminated when you log out. However, you can use the nohup
("no hangup") command to continue execution of the commands when you log out. For example:

$ nohup 8sm sub.obJ sub.8sm1 sub.8sm 2>errors &

2-15

TNIX Command Language TNIX Operating System-8SS0 Series System User.s

2-16

Concurrently Executing a List of Commands. You can also place a list of commands in the
background, to be executed concurrently. For example:

$ 1
> cd
> nroff -ms status.weeklO >weeklO.lpr
> Iplr weeklO.lpr
> echo Status report is printed
>j!

This command performs the following actions:

1. temporarily changes the current directory (until the ")" is reached) to the HOME directory;

2. formats a status report with the optional nroff text formatter;

3. prints the formatted status report; and

4. displays a message on your terminal telling you that the status report has been formatted
and printed.

While the document is formatting and printing, you can continue to enter commands.

Multitasking
TNIX provides several ways to suspend what you're doing and start another system activity. The
following paragraphs describe two examples.

Escape from an Editor. You can temporarily escape to the shell from an editor without terminat
ing the edit session. Table 2-5 shows how to escape to the shell from the standard TNIX editor
(ed), from the optional TEKTRONIX ACE Screen Editor (ACE), and from the optional TEKTRONIX
Language-Directed Editor (LDE).

Table 2·5
Escape to Shell from an Editor

Editor Escape for One Command Escape for Several Commands

ed, ACE !command<CR> Ish
commands
CTRL-D

LDE command<CTRL-X> a sh <CTRL-X> a

commands
CTRL-D

a For terminals other than the TEKTRONIX 4105M terminal, use the key(s) configured for Execute System
Command.

TNIX Operating System-8560 Series System Users TNIX Command Language

Switch Users. The su (switch user) command lets you temporarily use someone else's terminal
while he or she is logged on. You start by entering su and your login name:

$ su yourname
password:
$

<CTRL-D>

[enter your password)

[do the work you need to do)

(then return the terminal to the original user)

After you've entered the su command line and supplied your password, the system recognizes
you as the current user, but does not change the current directory or user name, and does not
execute your .profile file (which is executed when you log in). If you have redefined the $ prompt,
for example, you will see the "$" rather than your own prompt string.

The CTRL-D returns th~ terminal to the original user.

Control Characters
Table 2-6 lists the TNIX control characters that you are likely to use in your interactions with the
shell.

Character

CTRL-C

CTRL-D

CTRL-H

CTRL-K

CTRL-Q

CTRL-R

CTRL-S

CTRL-U

How Used

Table 2-6
Control Characters

Interrupt command or program execution

Terminate terminal input; terminate the current shell 8

Backspace: delete input character

Retype successive characters of the previous line

Resume output display

Reprint input line

Suspend output display

Delete input line

a If the current shell is not a subshell, you will receive a message telling you to type "logout" to log out.

2-17

Customizing TNIX TNIX Operating System-aS60 Series System Users

2-18

CUSTOMIZING YOUR TNIX ENVIRONMENT
There are several ways in which you can customize TNIX to suit your programming needs:

• You can set "environment variables" and place them in a .profile file where they will be set
automatically each time you log in.

• You can write your own commands (by using the shell programming language or by combin
ing existing commands into an executable file).

Environment Variables
Environment variables provide information to the shell and to certain commands. The Shell Pro
gramming section of this manual presents detailed information about environment variables and
other shell variables. The following paragraphs discuss the most frequently used environment
variables and tell how to set them.

HOME Specifies the default directory for the cd command. If you have not assigned a value to
HOME, its value is your login directory, /usr/yourname.

IU An integer in the range 0-7 which specifies the 8560 HSI I/O Port to which you have
connected an 8540 Integration Unit or 8550 Microcomputer Development Lab.

PATH Specifies a list of directories (each preceded by a colon) that the shell will search for
commands, and the order in which it will search them. If PATH is not set, the shell
searches the current directory, then /bin and /usr/bin.

TERM The name by which your terminal type is known to TNIX. Terminal type names are listed
in the /etc/termcap file.

uP The name by which a target microprocessor is known to TNIX. The uP variable must be
set before you use any 8560 compiler or assembler.

PS1 The primary shell prompt string. Defaults to "$".

To set an environment variable, you first assign it a value, then use the export command to make
the variable available to all subshells. Here are some examples:

$ HOME=/usr/jones/mainprogram/specs; export HOME

$ PATH=:/usrlsmith/bin:/bin:/usr/bin; export PATH

$ TERM=4105; export TERM

$ uP=68000; export uP

$ PSI=·command: .; export PSI

TNIX Operating System-8S60 Series System Users Customizing TNIX

You can also assign values to several variables, then export all of them at once:
$ TERM=4l05; uP=68000; export TERM uP

When you use an environment variable in a command line, you must preface it with a "$". For
example:

$ cd $HOME/filel

You can use the echo command to display the value of an environment variable. For instance:
$ echo $TERM
4105

The set command displays the values of all your environment variables.

The .Profile File
When you set an environment variable from the shell, the definition is valid only for the current
login session. However, if you place the definition in your .profile file, it will become part of your
TNIX environment whenever you log in.

The .profile file is a file in your HOME directory that is executed each time you log in. Because the
filename is preceded by a period, the file is not listed by most forms of the Is command. However,
the file is listed by Is -a, and can be modified using any 8560 text editor. For an example of how
to modify your . profile, see the procedure "Invoking Commands Automatically Upon Login" in the
Operating Procedures section of this manual.

Creating Your Own Commands
Each TNIX command is an executable file. The following paragraphs show how you can create
your own commands by placing one or more commands in a file and then executing the file. This
discussion also describes how to create a personal programs directory to contain any commands
you create, and how to share your commands with other users.

To take an example, let's say that you frequently assemble the same file. To avoid having to
repeatedly type the full assembler invocation, you decide to place the assembler invocation line in
an executable file called myasm. You can then invoke the assembler simply by executing your file.

Create the File
Using any 8560 editor, create a file named myasm and place the asm command line in it:

$ 85m sub.obJ sub.8sml sub.8sm 2>errors &

2-19

Customizing TNIX TNIX Operating System-8560 Series System Users

2-20

Execute the File
There are several ways to execute the file:

1. Enter a period followed by the filename:
$ • myasm

You must use this method if your command will change your current "environment" -for
example, if it will change the current directory or initialize or alter any environment variables.

2. Use the sh command:
$ sh myasm

This form of execution is especially useful when you want to pass parameters to the com
mand. For example, the following command executes a file called run with the shell's -x
execution trace option set:

$ sh -x run

(The Shell Programming section of this manual contains further information on how to pass
parameters to a command or program.)

3. Change the protection modes to make the file executable, then execute the file by typing the
filename:

$ chmod u +x myasm
$ myasm

Create a Personal Programs Directory
TNIX stores commands in the system's bin and /usr/bin directories. It's a good idea to create a
directory called bin in your HOME directory and place any commands you create in that directory.
You will also need to tell the shell to check this directory when it looks for command names. To do
this, add the following lines to your .profile file:

PATH=-:/usr/yourname/bin$PATH
export PATH

These two lines tell the shell to look for commands first in the current directory, then in your bin
directory, then in the standard TNIX command directories (/bin and /usr/bin).

Sharing Commands
You can also make your command available to other users on the system. First, make your file
executable by other users:

$ chmod o+x myasm

TNIX Operating System-8SS0 Series System Users Customizing TNIX

Other users can now execute the file by typing its full pathname (/usr/yourname/bin/myasm) or by
linking to the command. You can also place the command in the system's /usr/bin directory. This
enables other users to execute the command by simply typing the command name.

You must have superuser status to place the command in the /usr/bin directory. If you do not
have superuser status, ask your system manager to put the command in /usr/bin.

SUMMARY
This section has provided an overview of the TNIX operating system and shown you the basic
steps involved in creating your own commands. Continue on to the next two sections for more
information about these topics.

• Section 3, Operating Procedures, shows the commands that you enter to perform many
common system tasks.

• Section 4, Shell Programming, describes the shell programming language.

2-21

8560 Series System Users

Section 3
OPERATING PROCEDURES

Page

Introduction 3-1

Getting Started. .. 3-2
Powering Up the 8560 .. 3-2
Logging In .. 3-2
Logging In Through an 8540. .. 3-3
Logging In Through an 8550. .. 3-3
Selecting the 8540 or 8550 .. 3-4
Invoking Commands Automatically Upon Login. .. 3-4
Re-initializing Your Default .profile ... 3-5
Changing Your Password ... 3-5
Selecting a Target Processor .. 3-6
Changing Your Terminal's Baud Rate .. 3-7
Logging Out .. 3-7
Logging Out Through an 8540 or an 8550 .. 3-7
Powering Down the 8560 .. 3-8

Directory Manipulation .. 3-8
Creating a Directory. .. 3-8
Displaying the Name of the Current Directory . • 3-9
Displaying the Contents of a Directory. .. 3-9
Moving to Another Directory. .. 3-10
Deleting an Empty Directory .. 3-10
Deleting a Directory and the Files Within It. .. 3-11
Duplicating a Directory .. 3-11

File Manipulation .. 3-12
Creating a File .. 3-12
Renaming or Moving a File .. 3-13
Duplicating a File '. .. 3-13
Creating a Link to a File .. 3-14
Deleting a File .. 3-15
Deleting All Files from a Directory. .. 3-15
Concatenating Two or More Files. .. 3-16
Counting the Lines of a File " .. 3-16
Searching for a Specific File .. 3-17
Searching for a Pattern in a File .. 3-17
Performing the Same Operation for Several Files 3-18
Identifying and Removing Unused Files .. 3-19

3-i

3·ii

Contents-8560 Series System Users

Page

Printing and Displaying Files .. 3-20
Displaying a File On Your Terminal. .. 3-20
Displaying a File a Screenful at a Time. .. 3-20
Displaying a File with Line Numbers. .. 3-20
Printing a File. .. 3-21
Printing a File with Line Numbers. .. 3-21
Checking the Print Queue .. 3-21
Removing a File from the Print Queue .. 3-22

File Protection .. 3-23
Protecting a File from Other Users ... 3-23
Write-Protecting a File from Other Users .. 3-23
Adding Read and Execute Permission to Other Users. .. 3-24

Status Information. .. 3-25
Determining Who Is On the System .. 3-25
Determining Who is Logged in on a Terminal. .. 3-25
Determining the Date and Time ; 3-25
Determining What the System Is Doing .. 3-26

Communicating with Other Users. .. 3-27
Sending Mail to Another User. .. 3-27
Receiving and Viewing Mail ~ .. 3-28
Writing to Another User's Terminal. .. 3-28

Useful System Operations .. 3-29
Executing a Background Program 3-29
Aborting a Background Program ... 3-30
Redirecting Output into Another Program 3-30
Checking Disk Usage ... 3-31
Downloading a Program to an 8540 .. 3-31

Disk Operations. .. 3-32
Archiving Files to a Flexible Disk. .. 3-32
Adding Files to an Existing Archive on a Flexible Disk. .. 3-33
Retrieving Files from a Flexible Disk Archive .. 3-33
Deleting Files from a Flexible Disk Archive. .. 3-34
Listing the Files in an Archive on Your Terminal. 3-34
Transferring Files to an 8550 Flexible Disk. .. 3-35
Transferring Files from an 8550 Flexible Disk. .. 3-36

8560 Series System Users

Section 3

OPERATING PROCEDURES

INTRODUCTION
This section presents some procedures to help you use your 8560. Most of the concepts and
terms required to perform these procedures were discussed in the previous section of this man
ual, TNIX Operating System. If you encounter unfamiliar terms as you go through the procedures,
refer to the Glossary of this manual.

Unless otherwise noted, you can perform these procedures while using Keyshell. All procedures
can be performed through the shell.

The procedures in this section are presented in the following format:

Description:

A summary of the action(s) performed by the procedure.

Procedure:
The information entered or displayed at the system terminal. Words appearing in bold are param
eters that you select. Words within brackets [] are for your information only; do not enter them.
Remember to press the RETURN key after each command.

Parameters:

A description of the values you supply.

Comments:
Additional information.

Example:
One or more demonstrations of correct entry format.

See also:
References to related procedures, manuals, and online information.

3-1

Getting Started Operating Procedures-8560 Series System Users

3-2

GETTING STARTED

Powering Up the 8560
Description:
This procedure describes how to power up the 8560. Your 8560 system must be configured as
described in the 8560 Series System Manager's Guide.

Procedure:

1. Power up the system console and any other peripherals.

2. Turn on the AC power switch on the 8560 back panel, then turn on the DC power switch on
the front panel. The TNIX operating system boots automatically from the hard disk. The
flexible disk drive must be open.

3. TNIX displays a welcome message and asks whether you want it to check the file system.
Type y. The check takes several minutes.

4. TNIX asks you to enter the current date. Your answer should include the time, for example,
30-aug-83 9:20.

5. TNIX asks if you want to remain "single user". Type n unless you are performing system
maintenance activities.

6. TNIX displays the login prompt.

See also:

• Logging In

Logging In
Description:
This procedure logs you in to the TNIX operating system.

Procedure:
login: username
password: password [not echoed)

Parameters:
username-The sequence of characters that defines your user account on the system. The user
name (or "login name") allows the system to distinguish you from other users. User names are
public information.
password-The sequence of ASCII characters you must enter to establish that you are author
ized to use the account. Passwords are non-public information: the system stores only an
encrypted copy.

Comments:
If your account has no password, none will be requested. If you do not yet have a login name, talk
to your system manager about getting an account.

Operating Procedures-8560 Series System Users Getting Started

If you have just turned on or connected your terminal and your first login attempt fails, try again.

You can log in from another account by typing login; the old,account will be automatically logged
out, and you will be prompted for your password.

Logging In Through an 8540,
Description:
This procedure shows you how to log in to the 8560 through an 8540. The 8560 must be powered
up and running the TNIX operating system. Refer to the 8560 Series System Manager's Guide for
information on how to configure your 8560 and 8540.

Procedure:
[Boot up the 8540.]

[If the terminal does not display a prompt, the 8540 has probably booted up in TERM mode.]

[If the terminal displays a > prompt, the 8540 has booted up in LOCAL mode. Enter the following
command line to' enter TERM mode:]

> config term

[Now log in to TNIX.]

Logging In Through an 8550
Description:
This procedure logs you into the 8560 from an 8550. The 8560 must be powered up and running
the TNIX operating system. The 8550 and 8560 communicate via a line that runs from the DTE
jack (J1 01) on the 8301 to an HSI I/O jack on the 8560. The HSI I/O jack must be jumpered for
RS-232-C communication.
Procedure:
> config term t = 7

[From another terminal, enter the following command:]

$ stty IU >/dev/ttyn
[You can now log in to TNIX on the terminal that is connected to the 8550.]

Parameters:
n-A number between 0 and 7 (inclusive) which specifies the 8560 HSI I/O port that the 8550 is
connected to (on the 8560's rear panel).

3-3

Getting Started Operating Procedures-8560 Series System Users

3-4

Comments:
If your system manager has modified the system's /etc/ttys file to include a line such as "1cttyn"
for your port number, you can establish communication with the 8560 by simply typing the config
term t=7 command. Refer to the 8560 Series System Manager's Guide for information on how to
modify the /etc/ttys file.

Selecting the 8540 or 8550
Description:

This procedure selects an attached 8540 or 8550 when your terminal is connected directly to the
8560 and not to an 8540 or 8550.

Procedure:
$ IU=n; export IU

Parameters:
n-A number between 0 and 7 (inclusive) which specifies the 8560 HSI I/O port that connects to
the 8540 or 8550.

Example:
$ IU =3; export IU

This example tells the 8560 that I/O port number 3 is connected to either an 8540 or 8550. The
terminal you are using can now issue commands to the 8540 or 8550 as if it were connected to
the 8540 or the 8550.

Invoking Commands Automatically Upon Login
Description:
This procedure shows how to modify your .profile file, a file of commands that is automatically
executed each time you log in.

Procedure:
[Edit the .profile file (in your login directory) and add any desired commands to it.]

Example:

Assume that you've added the following commands to your .profile file:
PSI =·yes? •
echo Number of users is: ~ho : wc -1'
PATH=:$HOME/.bin:/bin:/usr/bin
export PSI, PATH

This example performs several functions each time you log in.

The first line sets your prompt string (PS1) to yes?

Operating Procedures-8560 Series System Users Getting Started

The second line tells you how many users are currently logged in (including yourself).

The third line sets the PATH environment variable, which tells the system where to search for
command names. TNIX will first search in a directory called /.bin in your home directory, then in
the system's /bin directory, and finally in the system's /usr/bin directory. (TNIX commands are
stored in /bin and /usr/bin.) Only after searching these three directories will TNIX respond that a
command was not found. This allows you to have a private set of commands (executable files) in
your home directory.

The final line makes the definitions of PS 1 and PATH available to the login shell and all subshells.

See also:

• Re-initializing Your Default .profile

• Section 2 of this manual, TNIX Operating System

Re-initializing Your Default .profile
Description:

If you accidentally garbled your .profile file, you can use this procedure to restore the file to its
original state.

Procedure:

$ cp /usr/lib/default.profile /usr/yourname/.profile

Parameters:
Yourname-Your login name.

~
This procedure overwrites your existing .profile file.

Changing Your Password
Description:
This procedure changes your password.

Procedure:
$ passwd

[The system asks for your current password, then for the new password.]

3-5

Getting Started Operating Procedures-8S60 Series System Users

3-6

Comments:
A password longer than six characters is more secure than a shorter password. If you enter a
password of less than six characters, the passwd command will ask for a longer one. If you
continue to respond with a short password, it will be accepted.

Example:
$ passwd
Changing password for johnd
Old password: friedegg (not echoed)
New password: scramble (not echoed)
Retype new password: scramble (not echoed)

This example changes johnd's password from friedegg to scramble.

Selecting a Target Processor
Description:
This procedure selects the target microprocessor for emulation on the 8540 or 8550, and identi
fies the selected processor on the 8560 by assigning a value to the TNIX variable uP.

Procedure:
$ sel target
$ uP=target; export uP

Parameters:
target-The name of the target microprocessor. The name may differ slightly from the more
common name of the microprocessor. For more information, see the Emulator Specifics manual
for your emulator.

Comments:
The first command (sel) is necessary only if you are communicating through an 8540 or 8550 to
the 8560. The second command (setting and exporting the uP variable) is necessary only if your
8560 has chip-specific software.

You may want to add these commands to your .profile file. That way, they will be executed each
time you log in.

Example:
$ sel 68000
$ uP=68000; export uP

This example selects the 68000 microprocessor.

See also:

• Invoking Commands Automatically Upon Login

Operating Procedures-8560 Series System Users Getting Started

Changing Your Terminal's Baud Rate
Description:
This procedure changes the terminal's baud rate. This procedure has no effect if your terminal is
connected to an 8540 or 8550.

Procedure:
$ stty baudrate
[Now, set your terminal to this baud rate.]

Parameters:

baudrate-The desired baud rate for your terminal: 300, 600, 1200,2400,4800, or 9600.

Comments:
The stty command tells the system that your terminal will communicate at a particular baud rate.
The system will now expect to receive that baud rate from your terminal. Therefore, before you do
anything else, you must reset the baud rate on your terminal. Refer to the manufacturer's manual
for your terminal for details.

Logging Out
Description:

This procedure allows you to exit from the current shell and to terminate contact with the system.

Procedure:
$ logout

Comments:
The logout command terminates the current shell. If that shell was a subshell, you will still be
logged in. If it was the login shell, you are logged out, and the system will respond with a login
prompt.

Logging Out Through an 8540 or an 8550
Description:

This procedure logs out from the 8560 and terminates communication between the 8560 and the
8540 or 8550 to which your terminal is connected.

Procedure:
$ config local; logout

3-7

Directory Manipulation Operating Procedures-aS60 Series System Users

3-8

Powering Down the 8560
Description:
This procedure describes how to power down the 8560. You must be a superuser (logged into the
root account) to perform this procedure.

Procedure:
[First, remove the flexible disks from any 8550s connected to the 8560. Turn off all power to the
8540s and 8550s connected to the 8560. Make sure all users are logged off the 8560.]

shutdown

[TNIX asks you to wait while it shuts itself down. When TNIX gives you permission, remove the
flexible disk from the 8560 (if there is one in the drive). Then turn off the DC power switch on the
8560 front panel and the AC power switch on the 8560 back panel.]

~
Be sure to issue the shutdown command before you power down the system. It, for
any reason, you cannot issue a shutdown command, you must issue a sync command
while logged in to the root account, and kill any user processes. Failure to issue the
shutdown or sync commands could scramble the file system.

DIRECTORY MANIPULATION

Creating a Directory
Description:
This procedure creates a new directory.

Procedure:
$. mkdir directory

Parameters:
directory-The pathname of the directory to be created.

Comments:
An empty directory is created at a location in the file tree specified by the pathname.

Example:
$ mkdir /usr/jpgetty/income

This example creates the directory income in the directory jpgetty.

Operating Procedures-8560 Series System Users Directory Manipulation

Displaying the Name of the Current Directory
Description:
This procedure displays the path name of the current directory.

Procedure:

$ pwd

Example:

$ pwd
lusr/francisd/goldenhind/world

This example tells you that your current directory is world. The entire pathname of the directory is
displayed, to distinguish it from any other directory you may have called world.

Displaying the Contents of a Directory
Description:
This procedure lists the files in the specified directory.

Procedure:
$ Is directory

Parameters:
directory-The pathname of the directory you want to list. If you do not specify a directory, the
contents of the current directory are listed.

Comments:

The Is command has a number of options that allow you to specify what information will be listed.
For an explanation of these options, enter the command man Is.

Example: .
$ Is
cycle.asm
cycle.obj
d45.asm
restart.asm
restart.back
restart.dxfv
spin.asm
u3.asm

This example lists the files in the current directory.

3-9

Directory Manipulation Operating Procedures-8S60 Series System Users

3-10

Moving to Another Directory
Description:
This procedure moves you to another directory, which becomes the current directory.

Procedure:
$ cd directory

Parameters:
directory-The pathname of the directory you want to move to. If you do not specify a directory,
cd moves you to your home directory (/usr/yourname).

Example:
$ cd ••

This example moves you to the current directory's parent directory.
$ cd lusrlsmith/programs/games

This example moves you to a directory named games, which is a subdirectory of Smith's pro
grams directory.

See also:

• Section 2 of this manual, TNIX Operating System

Deleting an Empty Directory
Description:
This procedure removes an empty directory.

Procedure:
$ rmdir directory

Parameters:
directory-The pathname of the directory to be deleted.

Comments:
If the directory contains any files or subdirectories, the message "directoryname not empty" is
displayed.

Examples:
$ rmdir emptydir

See also:

• Deleting All Files from a Directory

Operating Procedures-a560 Series System Users Directory Manipulation

Deleting a Directory and the Files Within It
Description:
This procedure removes a file tree and all its subtrees, querying you before each deletion.

Procedure:
$ rm -ir directory

Parameters:
directory-The path name of the directory that you want to remove.

Comments:
A file is destroyed only if you remove (unlink) the file from the only directory that it resides in.

If you omit the -i flag, TNIX removes the files without querying you.

Example:
$ rm -ir files
files/filel: y

files/file2: y

files/file3: y

files/morefiles: y

files/morefiles/filel: y

files/morefiles/file4: y
files/morefiles/file6: y

files/morefiles: y

files: y

This example removes the directory files and its contents. (Note that there are two distinct file1
files in two distinct directories.)

The system queries you before it removes each file from the directory. Type y to remove the file.
Any response that begins with a character other than y will not remove the file.

The first time the system queries files/morefiles:, it is asking you whether to search the directory
morefiles. After you have removed filet, fi/e4, and file6 within the morefiles directory, the system
asks you whether or not to remove the directory itself. You may remove the directory only if it is
empty.

Duplicating a Directory
Description:
This procedure creates a duplicate copy of a directory and all its subdirectories and files (Le., an
entire file tree).

Procedure:
$ cp directory1 directory2

3-11

File Manipulation Operating Procedures-8560 Series System Users

3-12

Parameters:
directory1-The pathname of the directory to be copied.
directory2-The pathname of the directory that will be the copy.

Comments:
If directory2 does not exist, it is created and will contain a copy of the contents of directory1. If
directory2 does exist, the copy of directory1 becomes a subtree of directory2.

Directory2 must not be contained within the directory1 subtree.

Example:
$ cp old tree newtree

FILE MANIPULATION

Creating a File
Description:
TRis procedure uses the TNIX Editor to create a new file.

Procedure:
$ ed file
?file
a

[Enter text.)

[the ed command to append text)

w [save the file)

nnnn red displays the number of characters in the file when it writes to the disk.]

q [quit)

Parameters:
file-The pathname of the file to be created.

Comments:
Tektronix offers two optional, screen-oriented editors for use on the 8560: the ACE Screen Editor
and the Language-Directed Editor.

Operating Procedures-8560 Series System Users

Example:
$ ed newfile
?newfile
a
Yesterday upon the stair
I met a man who wasn't there.

w

53
q

This example creates the file newfile and appends two lines to the empty file.

See also:

• Section 5 of this manual, TNIX Editor

Renaming or Moving a File
Description:
This procedure moves or renames a file or directory.

Procedure:
$ mv pathname1 pathname2

Parameters:
pathname1-The file to be moved or renamed.
pathname2-The new name or location of the file.

Example:
$ mv lusr/joe/directoryl/oldname lusr/joe/directory2/newname

The file old name is moved from directory1 to directory2, and is renamed newname.

Duplicating a File
Description:
This procedure creates a duplicate copy of a file.

Procedure:
$ cp pathname1 pathname2

Parameters:
pathname1-The original file.

- pathname2-The new copy of the file.

File Manipulation

3-13

File Manipulation Operating Procedures-8S60 Series System Users

3-14

Comments:
If the new file pathname2 already exists, it will be destroyed.

Example:
$ cp lusr/mikem/directoryl/origfi1e copyfi1e

This example copies the file origfile from directory1 into the current directory. The new file is
named copyfile.

Creating a Link to a File
Description:
This procedure creates a new path to an existing file. The name of the file in the new directory
does not have to be the same as in the old directory.

Procedure:
$ In pathname 1 pathname2

Parameters:
pathname1-The pathname of an existing file.
pathname2-The pathname that represents a path to the file through a second directory.

• If pathname2 is a simple filename, the file referred to by pathname1 is linked to an entry
called pathname2 in the current directory.

• If pathname2 is a full pathname, the file will be placed in the appropriate directory.

• If pathname2 is not specified, the file will be entered in the current directory with the
same name as the last part of pathname1.

Comments:
Creating a link to a file is often preferable to copying a file: it saves disk space, and updating one
version of the file updates all "copies" of that file. Links are often made to executable files. Links
cannot be made across filesystems.

Example:
$ 1n lusr/georgew/auto/steerage/1inkage

This example creates a file called linkage in the current directory. This file is linked to the file
/usr/george/auto/steerage/linkage.

$ 1n lusr/barrym/trajectory/resistance friction

This example creates a link between a file called friction in the current directory and barrym's file
resistance.

Operating Procedures-8560 Series System Users File Manipulation

Deleting a File
Description:
This procedure removes a file from a directory.

Procedure:
$ rm file

Parameters:
file-The pathname(s) of the file or files to be removed.

Comments:
The file is destroyed only if you remove (unlink) the file from the only directory that it resides in. To
determine the number of links to a file, enter Is -I filename.

Example:
$ rm lusr/emersonj/trash

This example removes the file trash from emersonj's directory.

$ rm myfile yourfile ourfile

This example removes three files from the current directory.

$ rm ·file

This example removes from the current directory all files that end with the word "file" (for exam
ple, myfile, yourfile, ourfile).

Deleting All Files from a Directory
Description:
This procedure deletes all files from the specified directory. The directory itself is not removed.
You are not queried before the files are removed.

Procedure:
$ cd directory
$rm *
Parameters:
directory-The directory containing the files you want to remove.

Comments:
A file is destroyed only if you remove (unlink) the file from the only directory that it resides in.

See also:

• Deleting an Empty Directory

3-15

File Manipulation Operating Procedures-8560 Series System Users

3-16

Concatenating Two or More Files
Description:
This procedure concatenates two or more files (Le., merges them end-to-end).

Procedure:
$ cat infile1 intileN ... >outfile

Parameters:
infile1-The pathname of the first file to concatenate.
infileN-The pathname of the next file to concatenate.
outfile-The pathname of the file created by the concatenation.

~
If you attempt to concatenate a file to itself (for example, cat file.ps > file.ps), the file
will be destroyed.

Example:
$ cat startflle mlddleflle endflle >1fholethlng

This example merges three files and places the results in a new file, wholething.

$ eat mores tuff »o1dfile

This example appends (») the contents of mores tuff to the file oldfile.

Counting the Lines of a File
Description:
This procedure counts the number of lines in a file.

Procedure:
$ wc -I file

Parameters:
file-The pathname of the file whose lines you want to count.

Comments:
The -I flag of the wc command counts the number of lines in a file; other forms of wc count the
number of characters and words in a file. For more information, enter man we.

Example:
$ we -1 prog1 prog2 prog3

742 prog1
38 prog2

519 prog3
1299 total

Operating Procedures-8560 Series System Users File Manipulation

Searching for a Specific File
Description:
This procedure searches through a specified file tree for a file, and displays the pathname of the
file.

Procedure:
$ find directory -name filename -print

Parameters:
directory-The directory to be searched.
filename-The file or directory that you want to find.

Example:
$ find. -name pilot· -print
lusr/drewl/mktg/pilot.demo
lusr/drewl/traffic/pilot.air

This example searches the current directory (".") and its subdirectories and displays the
pathname(s) of each file that starts with pilot.

Searching for a Pattern in a File
Description:
This procedure searches for a pattern in a file and prints the lines that contain the pattern.

Procedure:
$ grep -ny 'pattern' file

Parameters:
pattern-A pattern as defined for the TNIX Editor. Within the pattern, the following characters
have special meanings to the grep command:

... $ • [I •

Because many characters have special meaning to the TNIX shell, it's a good idea to enclose the
pattern in single quotes to prevent the shell from interpreting it.

file-The pathname of the file you want to search for the pattern.

Comments:
The -n argument tells grep to display the line number at which the pattern was found. The -y
argument specifies that the pattern may include uppercase letters.

Lines longer than 256 characters are truncated.

3-17

File Manipulation
Operating Procedures-8560 Series System Users

3-18

Example:

$ grep -yn oddresult numcrunch.ps

This example searches for the pattern oddresult in the file numcrunch.ps.

See also:

• Section 5 of this manual, TNIX Editor

Performing the Same Operation for Several Files
Description:
This procedure performs the same operation repeatedly on a number of files. This procedure uses
a multi-line shell command and thus should not be entered while you're using Keyshell.

Procedure:
$ for i in file1 file2 ...
> do
> $i-command-line
> done
$

Parameters:
file1, file2-The pathnames of the files that the command will affect.
$i-command-line-A command line that is ordinary in every respect, except that the filename or
path name in the line is "$i".

Comments:
To perform this procedure while you're using Keyshell, enter the sh command as the first line of
the procedure, and type CTRL-D on a separate line when the procedure is finished.

Example:
$ for i in dirl/*
> do
> In $i dir2
> done
$

This example links all files in dir1 to dir2.

See also:

• Section 4 of this manual, Shell Programming

Operating Procedures-8560 Series System Users File Manipulation

Identifying and Removing Unused Files
Description:
This procedure identifies files that have not been accessed recently, then lets you remove them.

Procedure:
$ Is -altur directory

$ rm file file ...

Parameters:
directory-The pathname of the directory that you want to examine.
file-The pathname{s) of the file{s) you want to remove.

Comments:
The sorted list of files begins with the least recently accessed file, and proceeds to the most
recently accessed.

The file is destroyed only if you remove (unlink) the file from .the only directory that it resides in.

See also:

• For an explanation of the flags for the Is command, enter man Is.

Example:
$ ls -altur
total 38
-rw------- 1 bethb
-rw------- 1 bethb
-rw------- 1 bethb
-rw------- 1 bethb
-rw------- 1 bethb
-rw------- 1 bethb
-rw------- 1 bethb
-rw------- 1 bethb
-rw------- 1 bethb
$ rm file3 f3 f6 f4
$ ls -altur
total 17
-rw------- 1 bethb
-rw------- 1 bethb
-rw------- 1 bethb
-rw------- 1 bethb
-rw------- 1 bethb

3107 Feb
482 Jul

3107 Jul
2465 Jul
1501 Jul

964 Aug
196 Nov

4608 Nov
1501 Nov

482 Jul
1501 Jul

196 Nov
4608 Nov
1501 Nov

2 15:08 file3
9 10:40 file2

10 10:41 f3
10 10:41 f6
30 15:57 fO

8 14:03 f4
9 08:17 filel
9 10:47 f5

19 10:48 fileO

9 10:40 file2
30 15:57 fO

9 08:17 filel
9 10:47 f5

19 10:48 fileO

This example examines the current directory and deletes files that have not been recently
accessed. Even though file2 and fO were not accessed recently, they were important enough to
keep, so they were not deleted.

3-19

Printing, Displaying Files Operating Procedures-8560 Series System Users

3-20

PRINTING AND DISPLAYING FILES

Displaying a File On Your Terminal
Description:
This procedure displays a file on your terminal.

Procedure:
$ cat file

Parameters:
file-The pathname of the file to be displayed.

Comments:
To temporarily stop the display, type CTRL-S. To restart the display, type CTRL-Q. To kill the
display, type CTRL-C.

Displaying a File a Screenful at a Time
Description:
This procedure displays a file on your terminal a screenful at a time. Press the space .bar to
advance to the next screenful.

Procedure:
$ more file

Parameters:
file-The pathname of the file to be displayed.

Displaying a File with Line Numbers
Description:
This procedure displays a file on your terminal with line numbers.

Procedure:
$ pr -nt file

Parameters:
file-The pathname of the file to be displayed.

Example:
$ pr -nt /usr/carls/cosmos

This example displays the file cosmos, with line numbers, on your terminal.

Operating Procedures-8560 Series System Users

Printing a File
Description:
This procedure prints a file on the line printer.

Procedure:
$ IpNr file

Parameters:
N-The line printer number.
file-The path name of the file to be printed on the line printer.

Example:
$ lplr bl.a5m

This example prints the file b 1.asm on line printer 1 .

$ pr filel file2 : Ip2r

Printing, Displaying Files

This example paginates the two files and sends the results through a pipe (:) to line printer 2.

Printing a File with Line Numbers
Description:
This procedure prints a file with line numbers.

Procedure:
$ pr -n file: IpNr

Parameters:
file-The pathname of the file to be printed on the lineprinter.
N-The line printer number.

Example:
$ pr -n lusr/fredericz/words : lplr

This example prints the file words, with line numbers, on line printer 1.

Checking the Print Queue
Description:
This procedure lists the files that are waiting to be printed.

Procedure:
$ Is -I /usr/spool/lp*

3-21

Printing, Displaying Files Operating Procedures-8560 Series System Users

3-22

Example:
$ Is -1 lusrispool/lp*

lusrispool/lpl:
total 0

lusrlspool/lp2:
total 83
-rw-r--r-- 1 barneyr 58 Jun 12 07:45 dfA15931
-rw-rw-rw- 2 barneyr 29792 Jun 10 19:01 IfA15931
-rwsr-xr-x 2 daemon 11536 May 14 14:54 lock

The print queue contains barneyr's file, as well as an initial banner. The "daemon" is a process
that executes independently and performs system maintenance tasks.

Removing a File from the Print Queue
Description:
This procedure shows how to remove a file from the print queue.

Procedure:

$ Is -I /usr/spool/lp*

$ rm /usr/spool/lpN/fileid

Parameters:

N-The number of the line printer queue containing the file that you want to remove.
fileid-The identification number of the file to be removed.

Example:
$ Is -1 lusrispool/lp*

lusrispool/lpl:
total 0

lusrlspool/1p2:
total 83
-rw-r--r-- 1 billk
-rw-rw-rw- 2 billk
-rwsr-xr-x 2 daemon

58 Jun 12 07:45 dfA15931
29792 Jun 10 19:01 lfA15931
11536 May 14 14:54 lock

$ rm lusrlspool/lp2/*A15931

This example removes from the print queue the file (If A 15931) that was submitted by user billk.
The preceding header file (dfA 15931) is also removed.

Operating Procedures-8560 Series System Users File Protection

FILE PROTECTION

Protecting a File from Other Users
Description:
This procedure protects a file from access by all other users.

Procedure:
$ chmod go-rwx path name

Parameters:
pathname-The file or directory whose protection status you are changing.

Comments:
Only the owner of a file or the superuser may change its protection status.

For an explanation of the TNIX protection modes, refer to the TNIX Operating System section of
this manual.

Example:
$ Is -1 personnel
-rwxrwxrwx 1 tomp 127 Oct 11 16:47 personnel
$ chmod go-rwx personnel
$ Is -1 personnel
-rwx------ 1 tomp 127 Oct 11 16:47 personnel

This example prevents other users from reading, writing to, or executing tomp's personnel file.
The Is command verifies that the protection status was changed correctly.·

See also:

• Online information: enter man chmod

Write-Protecting a File from Other Users
Description:
This procedure protects a file from being written to by any other users.

Procedure:
$ chmod go-w path name

Parameters:
pathname-The file or directory whose protection status you are changing.

Comments:
Only the owner of a file or the superuser may change its protection status.

3-23

File Protection Operating Procedures-8560 Series System Users

3-24

For an explanation of the TNIX protection modes, refer to the TNIX Operating System section of
this manual.

Example:
$ Is -1 mb50file
-rwxrwxrwx 1 maryr
$ chmod go-w mb50file
$ Is -1 mb50file
-rwxr-xr-x 1 maryr

273 Dec 14 14:21 mb50file

273 Dec 14 14:21 mb50file

This example removes write permission from everyone but the user (owner) of the file, maryr.

See also:

• Online information: enter man chmod

Adding Read and Execltte Permission to Other Users
Description:
This procedure enables all other users to read and execute a file.

Procedure:
$ chmod go+rx pathname

Parameters:
pathname-The file or directory whose protection status you are changing.

Comments:

Only the owner of a file or the superuser may change its protection status.

For an explanation of the TNIX protection modes, refer to the TNIX Operating System section of
this manual.

Example:
$ Is -1 teamwork
-rwx------ 1 johnf
chmod go+rx teamwork
Is -1 teamwork
-rwxr-xr-x 1 johnf

461 Apr 21 13:21 teamwork

461 Apr 21 13121 teamwork

This example adds read and execute permission to everyone but the user (owner) of the file,
johnf, who already has full permission.

See also:

• Online information: enter man chmod

Operating Procedures-8560 Series System Users Status Information

STATUS INFORMATION

Determining Who Is On the System
Description:
This procedure displays a list of who is currently logged in, what terminal each user is on, and
when each user logged in.

Procedure:
$ who

Example:
$ who
happy ttyl Jul 1 09:04
doc tty2 Jul 1 04:56
dopey tty3 Jul 1 08:51
grumpy tty5 Ju1 1 08:14

See also:

• Online information: enter man ps

Determining Who is Logged in on a Terminal
Description:

This procedure shows who is logged in on the terminal at which the command is entered. The
terminal number and the time the user logged in are also shown.

Procedure:
$ who am i

Example:
$ who am i
corleaw tty5 Aug 5 15:27

Determining the Date and Time
Description:
This procedure displays the current date and time.

Procedure:
$ date

Example:
$ date
Mon Apr 20 14:42:21 PDT 1981

3-25

Status Information Operating Procedures-8S60 Series System Users

3-26

Determining What the System Is DOing
Description:
This procedure displays a status line for each TNIX command that is currently executing or
waiting for execution.

Procedure:
$ ps -ax

Comments:
The state of the system may undergo changes even as the ps command is executing. Therefore.
this "picture" of the system is only approximate.

Example:
$ ps -ax

PID TTY TIME CMD
0 ? 1404:51 swapper
1 ? 8:38 /etc/init

47 ? 8:32 /etc/update
50 ? 1:38 /etc/cron
89 ? 0:00 /etc/init
96 ? 0:00 /etc/init

8360 ? 0:00 /etc/init
8566 ? 0:00 /etc/init

11937 ? 0:00 /etc/inlt

27349 ? 0:00 /etc/init
26348 console 0:04 -sh
26525 1 0:04 -sh
28144 1 0:13 ps -ax
26109 2 0:07 -sh
27823 2 0:03 watch Ip?
28145 2 0:00 sleep 15

9982 3 0:05 -sh
25198 4 0:00 - w (get ty)
27709 5 0:00 - w (getty)
21096 6 0:11 -ah
28148 6 0:00 cat foo
27507 7 0:00 - w (getty)

The listing shows the process 10 number (PIO). the number of the terminal that the process
originated from (TTY). the cumulative execution time of the process (TI M E). and an approximation
of the process command line (CMO).

See also:
• Online information: enter man ps.

Operating Procedures-8560 Series System Users Communicating with Users

COMMUNICATING WITH OTHER USERS

Sending Mail to Another User
Description:
This procedure mails a message to another user.

Procedure:
$ mail usernames
message ... <CR>

message ... <CR>
/\0
$

Parameters:
usernames-The login names of the users to whom you want to send mail. If you include your
own login name, you will be sent a copy of the letter.
message-The letter you want to send.

Comments:
The mail command puts a header at the beginning of the letter showing the addressee, the
sender, and the date. After you finish typing the letter, enter CTRL-O to send it.

Example:
$ mail horatioa
Have you received the software package from Data-mung yet?
When you do, please send me a summary.
!"D

$

This example sends mail to horatioa.

$ mail gregg cletterfile

This example sends the contents of letterfile (in the current directory) to gregg.

$ mail ricks
Tuesday reminders: project meeting at 9am,
code walk-through at 10:30,
pick up kids at 4:30
"D

$

In this example, ricks sends himself mail to remind himself of the day's commitments.

3-27

Communicating with Users Operating Procedures-8S60 Series System Users

3-28

Receiving and Viewing Mail
Description:
This procedure shows you how to view your mail.

Procedure:
[When mail is in your inbox, the following message appears:] You have mail.

[To read your mail, you type:]
$ mail

Example:
You have mail.
$ mail
From charlesd Tue Feb 17 12:35:00 1981
Have you received the software package from Data-mung yet?
When you do, please send me a summary.

? d

This example receives mail from another user. When the question mark prompt appears, type d
to return to the TNIX shell.

Writing to Another User's Terminal
Description:
This procedure allows you to communicate from your terminal with another user.

Procedure:
$ write username
message ... <CR>

message ... <CR>
1\0

Parameters:
username-The user to whom you want to send a message.
message-The text you want to send. Each line of text is sent to your correspondent when you
type the <CR>.

Comments:
The other user must also use the write command to respond.

Operating Procedures-8560 Series System Users Useful System Operations

Example:
User harryw (on terminal tty2) initiates a conversation with walterp (on tty4).
Here is how the communication appears on Harry's terminal:

$ write walterp
What time are you going to lunch today?
Message from walterp tty4 at 11:45 •••
I'm going as soon as I finish up here--about 30 minutes.
EOF

Here is how the communication appears to Walter:
$
Message from harryw tty2 at 11:45 •••
What time are you going to lunch today?
write harryw
I'm going as soon as I finish up here--about 30 minutes.
AD
EOF

USEFUL SYSTEM OPERATIONS

Executing a Background Program
Description:

This procedure places a command in background mode, thus allowing you to continue with other
system tasks while the command is being executed.

Procedure:
$ command &

Parameters:
command-The command to be executed.

Comments:

The & operator places the job in background mode. The system displays the process ID number
(which you can use to monitor or kill the process), then returns the prompt, indicating that you can
enter other commands while the original process is executing.

Example:

$ pas -1 bigmodule.ps >bigmodule.pl &
65
$

This example compiles a Pascal program in background mode. The process ID number is 65.

3-29

Useful System Operations Operating Procedures-8560 Series System Users

3-30

Aborting a Background Program
Description:
This procedure terminates a background program.

Procedure:
$ kill -9 PID

Parameters:
PID-The process 10 number.

Comments:
The ps command displays the process 10 number. You can specify the most recently started
background job by typing "$!" rather than the process 10 number.

Example:
$ kill -9 $!

This example kills the most recently started background job.
$ ps

PID TTY
4061 4
4438 4
4491 4
4503 4

$ kill -9 4491
4491 Killed
$ ps

PID TTY
4061 4
4438 4
4522 4

TIME CMD
0:04 ps
0:02 -sh
0:00 sleep 300
0:00 -sh

TIME CMD
0:04 ps
0:03 -sh
0:00 -sh

This example terminates the process identified as PIO 4491.

Redirecting Output into Another Program
Description:
This procedure pipes the standard output of one procedure into the standard input of another
procedure.

Procedure:
$ process 1 : process2

Parameters:
process1-The process whose output is directed to the pipe.
process2-The process that will accept the information flowing through the pipe as standard
input.

Operating Procedures-8560 Series System Users Useful System Operations

Example:

$ who : grep cynthiat
cynthiat tty4 Nov 6 08:10

This example checks to see if cynthiat is logged in, and tells you that she logged in on terminal 4
at 8:10 AM on November 6th.

The who command generates information about all users currently logged in, and directs it to the
grep command as standard input. The grep command then looks for the string "cynthiat" and
displays any lines containing that string.

Checking Disk Usage
Description:
This procedure lists the number of blocks used by each file or subdirectory in a directory.

Procedure:
$ du directory

Parameters:
directory-The pathname of the directory for which you want the disk usage information. If you
do not specify a directory, disk usage information is provided for the current directory.

Example:
$ du lusr/marilynw
218 lusr/marilynw/corr
128 lusr/marilynw/c
28 lusr/marilynw/bin
546 lusr/marilynw/stress
444 lusr/marilynw/pressure/shell
996 lusr/marilynw/testcase
224 lusr/marilynw/air.raid
18 lusr/mari1ynw/.bin
284 lusr/marilynw/.bak
1896 lusr/marilynw

This example lists the number of disk blocks (by directory) used by marilynw.

Downloading a Program to an 8540
Description:
This procedure downloads an executable program from the 8560 to the 8540.

Procedure:
$ 10 <8560.file

3-31

Disk Operations Operatihg Procedures-8560 Series System Users

3-32

Parameters:
8560.file-The 8560 file to be downloaded. The file must be a load file produced by a
TEKTRONIX assembler, compiler, or linker.

Comments:
The 8560 file contains information that tells the 8560 where to load the code into 8540 program
memory.

Example:
$ 1 0 <t est. 10

The file test./o is an 8560 file containing a program that will be downloaded into 8540 program
memory. The file also contains the location in 8540 program memory where test.lo is to be
loaded.

See also:
• Logging in Through an 8540

DISK OPERATIONS

Archiving Files to a Flexible Disk
Description:
This procedure creates an archive on a flexible disk and copies files to it.

Procedure:
[Place a formatted disk in the 8560 Flexible Disk Drive.]

$ fbr -c name-list

Parameters:
name-list-A list of files or directories to be archived.

Comments:
Files are recognized by string comparison. Thus, the file lion does not match the file
/usr/marlinp/lion, even if /usr/marlinp is the current directory. It is recommended that you specify
filenames within the current directory (rather than using full pathnames).

E3
This command initializes the flexible disk before it archives the designated files and
directories. Therefore, al/ previous information on the flexible disk is destroyed.

Example:
$ fbr ~ 68000 research.dir 8086

This example initializes a flexible disk, and archives two files and one directory (with its contents).
All three are in the current directory.

Operating Procedures-8560 Series System Users Disk Operations

Adding Files to an Existing Archive on a Flexible Disk
Description:
This procedure adds files to a previously created archive.

Procedure:
$ fbr -uv name-list

Parameters:
name-list-A list of files or directories to be archived.

Comments:
Files are recognized by string comparison. Thus, the file thews does not match the file
/usr/clarkk/thews, even if /usr/clarkk is the current directory. It is recommended that you specify
filenames in the current directory (rather than using full pathnames).

A file is updated in the archive only if the file was modified since it was last archived.

Example:
$ fbr -uv directoryl prog2.asm

This example updates the archived copy of all files in the directory directory 1, and the file
prog2.asm.

Retrieving Files from a Flexible Disk Archive
Description:
This procedure retrieves files stored on a flexible disk archive.

Procedure:
$ fbr -vx name-list

Parameters:
name-list-The list of directories or files you want to retrieve from the archive and place into your
directory.

Comments:
If you do not specify a file or directory, the entire contents of the archive are retrieved.

When files are retrieved from the archive, they retain the name on the archive. For instance, if an
entry is named /usr/dickglrobin on the disk, it will always be retrieved with the name
/usr/dickg/robin no matter what the current directory is.

Files are recognized by string comparison. Thus, the file robin does not match the file
/usr/dickg/robin even if /usr/dickg is the current directory.

3-33

Disk Operations Operating Procedures-8560 Series System Users

3-34

Example:
$ fbr -vx dir4

. This example restores the directory dir4.

Deleting Files from a Flexible Disk Archive
Description:
This procedure deletes files from a flexible disk archive.

Procedure:
$ fbr -vd archived-names

Parameters:
archived-names-The names of the files or directories to be deleted from the archive.

Comments:
Files are recognized by string comparison. Thus, the file sheriff does not match the file
/usr/mattd/sheriff, even if /usr/mattd is the current directory.

Example:
$ fbr -vd filel

This example deletes file 1 from the archive.

Listing the Files in an Archive on Your Terminal
Description:
This procedure lists the contents of a flexible disk archive on your 8560 system terminal.

Procedure:
$ fbr -tv

Operating Procedures-8560 Series System Users Disk Operations

Example:
$ fbr -tv
·directory of /usr/brad1/px·
created Ju1 20 17:40:38 by brad1 ,abstract
modified Ju1 20 17:48:35

mode uid gid size modified

drwxrwxrwx brad1 abstract o Ju1 20 17:39:42
-rw-r--r-- brad1 abstract 252 Nov 5 09:22:51
-rw-r--r-- brad1 abstract 465 Mar 9 11:14:54
-rwxrwxrwx brad1 abstract 2380 Oct 17 07:52:15
-rw-r--r-- brad1 abstract 4955 Jan 28 10:43:10
-rwxrwxrwx brad1 abstract 402 Aug 11 09:21:48
-rw-r--r-- brad1 abstract 4790 Aug 11 09:17:52
-rwxrwxrwx brad1 abstract 2380 Oct 17 07:52:15
-rw-r--r-- brad1 abstract 3174 Oct 17 07:51:24
-rw-rw-rw- brad1 abstract 4480 Oct 17 07:52:50

10 files used
13 files free
67 blocks free

Transferring Files to an 8550 Flexible Disk
Description:

fb1k name

7 .
8 Makefi1e
9 conso1e.c

11 format
28 px.c
43 pxboot
44 pxboot.s
11 pxfmt
54 pxfmt.c
67 pxfmt.s

This procedure copies 8560 files stored on the hard disk to an 8550 flexible disk inserted into an
8560.

Procedure:
$ dsc50 -w 8560source 8550dest

Parameters:
8560source-The 8560 file(s) or directory you want to transfer to an 8550 flexible disk. If you
specify a directory, all the files in that directory are copied, but not the subdirectories.
8550dest-The path name of the 8550 file that you are writing to. If only one 8560 file is being
transferred, this will be the name of a file on the 8550 flexible disk. (If this file already exists, it will
be overwritten.) If more than one 8560 file or if an 8560 directory is being transferred, the destina
tion must be a directory name.

Comments:
Because the 8560 has only one flexible disk drive, you may omit the prefix /VOUvolume-name
when specifying the 8550 file.

Example:
$ dsc50 -w swan lake

This example copies the 8560 file, swan, into the 8550 file, lake in the current directory.

3-35

Disk Operations Operating Procedures-8S60 Series System Users

3-36

$ dsc50 -w lusr/georgh/mess lusr/petrt/nutcrkr Icomp

This example copies the two 8560 files /usr/georgh/mess and /usr/petrt/nutcrkr into the 8550
directory compo

$ dsc50 -w lusr/johans Icomp

This example copies the files in the 8560 directory /usr/johans to the 8550 directory compo Any
subdirectories in /usr/johans are not copied.

Transferring Files from an 8550 Flexible Disk
Description:
This procedure copies files to the 8560 hard disk from an 8550 flexible disk inserted into the 8560.

Procedure:
$ dsc50 -x 8550source 8560dest

Parameters:
8550source-The file(s) or directory you want to copy from an 8550 flexible disk. If you specify a
directory, all the files in that directory are copied, but not the subdirectories.
8560dest-The pathname of the 8560 file that you are writing to. If only one 8550 file is being
transferred, this will be the name of a file on the 8560. (If this file already exists, it will be
overwritten.) If more than one 8550 file .or if an 8550 directory is being transferred, the destination
must be a directory name.

Comments:
Because the 8560 has only one flexible disk drive, you may omit the prefix /VOUvolume-name
when specifying the 8550 file.

Example:
$ dsc50 -x lake swan

This example copies the 8550 file, lake, into the 8560 file, swan.

$ dsc50 -x lusr/comp/mess lusr/georgh

This example copies the 8550 file /usr/comp/mess into the 8560 directory /usr/georgh.

$ dsc50 -x Icomp lusr/johans

This example copies the files in the 8550 directory comp to the 8560 directory /usr/johans. Any
subdirectories in comp are not copied.

8560 Series System Users

Section 4
SHELL PROGRAMMING

Page

Introduction 4-1

Overview. .. 4-1
An Interactive Command Interpreter ... 4-2

How to Execute the TNIX Shell. .. 4-2
The Shell Controls a Program's Input and Output 4-2

A Programming Language .. 4-2

Program 1/0 Control. . ; .. 4-3

Writing Shell Programs .. 4-4
How to Specify a Different Name For a TNIX Command 4-5
How to Change the Way a Command Executes .. 4-6
Making Routine Tasks Easier to Do ... 4-6
Shell Variables .. 4-7

Valid Names for Shell Variables .. 4-7
Substituting a Variable's Value For Its Name 4-8
Assigning Values to Variables .. 4-9
Concatenating Shell Variables. .. 4-10
Assigning a Command's Output to a Variable ; 4-10
Assigning Default Values to Variables .. 4-10
Global and Local Variables. .. 4-12
The Default Shell Environment Variables 4-12
Standard, Automatically Updated Shell Variables. .. 4-13
Interpreting Command Line Arguments in Shell Programs. .. 4-14

Structured Statements .. 4-16
IF Statements .. 4-16

The TRUE and FALSE Commands ... 4-18
The TEST Command-Evaluating Boolean Expressions ' 4-18

CASE Statements .. 4-20
WHILE Statements ... 4-21
UNTIL Statements. .. 4-22

Forever Loops .. 4-22
FOR Statements ... 4-23

Data Input-The READ Statement .. 4-25
Data Output-The ECHO Command. .. 4-26
Error Handling. .. 4-27
How the Shell Parses Command Line Arguments. .. 4-28
Quoting-Overriding the Interpretation of Special Characters. .. 4-29

4-i

4-ii

Contents-8S60 Series System Users

Page

Examples .. 4-29
An Example-The Search Command. .. 4-30
An Example-The Touch Command .. 4-30
An Example-A Modified Remove Command .. 4-32
An Example-A Skeleton Shell Program. .. 4-33
An Example-A Delay Program. .. 4-35

Debugging Shell Programs. .. 4-35
Execution Trace .. 4-35
Log Files .. 4-36
Setting the Exit Status of a Program. .. 4-36

A High-Level Programming Language. .. 4-37
Using TNIX Commands as Subroutines 4-37

Shell Language Reference Summary. .. 4-38

Tables . .. '.' 4-43

ILLUSTRATIONS

Fig.
No. Page

4-1 The search command .. 4-30
4-2 The touch command .. 4-31
4-3 A modified remove command .. 4-32
4-4 A skeleton shell program .. 4-33
4-5 A delay program .. 4-35

TABLES

Table
No. Page

4-1 Valid and Invalid Variable Names ... 4-8
4-2 Some TNIX Signals ... 4-28
'4-3 Commonly Used Shell Variables. .. 4-43
4-4 Shell Metacharacters and Reserved Words. .. 4-44
4-5 Shell Grammar 4-45

8560 Series System Users

Section 4

SHELL PROGRAMMING

INTRODUCTION
This section is your reference guide to the TNIX shell-the interface between you, the TNIX
operating system, and the programs that TNIX executes. This section describes the programming
features of the TNIX shell, with emphasis on how you can customize your programming environ
ment to your own special needs.

This section will not teach you how to program-to best utilize the information presented in this
section, you should be familiar with a high-level programming language such as Pascal or C. Also,
you should be familiar with the information presented in the Learning Guide and the TNIX Operat
ing System sections.

In this section, we'll look at the command shortcuts that are available with the shell. We'll start
with a long command line, look at how that command line can be turned into a simple shell
program, then look at how that shell program can be made more versatile. Throughout this
process, we'll look at ways to customize a shell program, including:

• how to manipulate shell variables,

• how to pass parameters to programs,

• how to print messages from a shell program,

• how to use the shell's structured statements: the conditional case and if statements, and the
repetitive for, while, and until statements."

Finally, we'll look at:

• how the shell parses command lines,

• how to override the shell's treatment of special characters (such as * and :),

• some high-level concepts used by the shell, and

• a language reference summary of the shell programming language.

OVERVIEW
This overview describes the general capabilities of the TNIX shell. If you're interested in how to
write a shell program, turn to the discussion on "Writing Shell Programs".

4-1

Overview Shell Programming-8560 Series System Users

4-2

An Interactive Command Interpreter
The shell is an interactive command interpreter-it mediates communication between you and the
TNIX operating system. When you type a command, then press the RETURN key, the shell
analyzes the line that you typed, making any appropriate transformations (such as expanding a
two-character variable name to a 60-character pathname), then executes the proper command(s).
If necessary, the shell prompts you for additional input.

For an discussion of the interactive features of the shell, see the latter part of the TNIX Operating
System section.

How to Execute the TNIX Shell
When you log in, TNIX executes the sh (shell) program for you. The shell then executes the
commands located in the .profile file in your HOME directory. (The HOME directory is described in
the discussion of "The Default Shell Environment Variables", later in this section.)

You can modify the way in which you communicate with TNIX by replacing the shell with a
different command interpreter, such as the TEKTRONIX Keyshell interface. One way to do this is
to add the command that executes the different command interpreter to your .profile file.

If you're using a command interpreter other than the shell but would like to use the TNIX shell,
you can execute the shell from that command interpreter by typing sh. That's because the TNIX
shell is a program.

The Shell Controls a Program's Input and Output
The shell controls the source and destination of a program's input and output. The TNIX Operat
ing System section showed you how to use a file as input to a program, and how to send a
program's output to a file. Later in this section, in the "Program I/O Control" discl5Ssion, we'll look
at different ways to manipulate a program's input and output.

A Programming Language
The shell is also a programming language. Its program statements help to simplify routine tasks,
for example, continually ringing the bell on your terminal when a large compilation completes.
These program statements include:

• if,

• case,

• while loops,

• until loops,

• for loops,

• read (data input), and

• error trapping statements

Shell Programming-8S60 Series System Users Program 1/0 Control

The shell also supplies:

• string-valued variables,

• variable substitution,

• global and local variable designations,

• boolean operations on variables,

• prameter passing between the shell and any programs (including other shells) that the shell
executes, and

• c<?ncurrent program execution.

In the following discussions, we'll look at ways to use these features of the TNIX shell when
writing shell programs. Before we do that, we'll look at the types of program I/O control available
with the shell.

PROGRAM I/O CONTROL
The following paragraphs summarize information about how the shell redirects a program's input
and output.

Normally, the I/O redirection symbols < and> represent file descriptors 0 and 1 (standard input
and output), respectively. However, by preceding the symbol with a digit, you can make it stand
for any file descriptor-not just 0 and 1.
For example,

••• 2 >file

directs the standard error output (file descriptor 2) to file.

> file Directs standard output to file, which is created if it does not already exist. Filename
pattern matching and shell command line parsing does not take place, so that, for
example,

»file

<me

echo Hello there! >*.message

creates the file * . message.

Directs standard output to file. If file exists, the output is appended to the end of file;
otherwise file is created.

Takes standard input from me.

< < word Takes standard input from the lines between, but not including, the initial string
specified in word, and a subsequent line consisting only of the string specified in
word. If you don't want the shell to interpret any special characters, for example, $
and " enclose word in apostrophe (') characters.

4-3

Writing Shell Programs Shell Programming-8560 Series System Users

4-4

The shell assigns the file descriptors 0, 1, and 2 to the standard input, standard output, and
standard error output, respectively. The following paragraphs show how you can use these file
descriptors to manipulate a program's input and output.

>&n Duplicates file descriptor n using the TNIX system call dup, and uses the result as the
standard output. For example,

$ cc newton.c >logfi1e 2>errors

sends the standard output to the logfile file and the standard error output to the errors
file.

$ cc newton.c >logfi1e 2>&1

merges the standard error output with the standard output, sending the result to the
logfile file.

<&n Duplicates file descriptor n using the TNIX system call dup, and uses the result as the
standard input.

< & - Closes the standard input.

> & - Closes the standard output.

WRITING SHELL PROGRAMS
Shell programs are simple to write. You'll find that a shell program with a simple mnemonic name
can save you a lot of tedious typing, or can save you the time it takes to look up a certain
command's syntax.

A shell program consists of any sequence of commands that you can enter from your terminal. To
create a shell program,

1. store these commands in a file, then

2. make the file executable with the chmod +x command. For example, to make the reminder
file executable, type:

$ chmod +x reminder

3. next, store this file in your personal programs directory .

. (For information on how to set up a personal programs directory, see the TNIX Operating System
section.)

Whenever you want to execute the commands stored in the reminder file, type:
$ reminder

The shell will execute the commands in the reminder file, as if you had typed them from your
terminal.

In the following paragraphs, we'll look how you can use shell programs to simplify some of your
everyday tasks.

Shell Programming-8560 Series System Users
Writing Shell Programs

How to Specify a Different Name for a TNIX Command

How to Specify a Different Name For a TNIX Command
With the TNIX shell, you can use different names for the same command. Since TNIX commands
names tend to be short and cryptic, you may want to use a command name that is easier to
remember. For example, the command that changes the name of a file is called my. What if you
want a command called rename that performs the same function that my does? There are two
ways to do this:

1. You can create a link between the TNIX command that performs a specific function and the
command name that you want to use for that function. First, determine where the specific
TNIX command is located. (Most TNIX commands are located in either the /bin or /usr/bin
directories). Next, use the In command to link the TNIX command to your command name.
For example, if your personal programs directory is /usr//azarus/ong/bin, and you want TNIX
to execute the my command (located in /bin) whenever you type rename, type the following
command:

$ In Ihin/mv lusr/lazaruslong/hin/rename

Now, when you type, for example,
$ rename list list.old

the shell executes the following command:
mv list list.old

2. If you get an error message of the sort
Ihin/mv: Cross-device link

after typing the In command, then the TNIX command that you want to link to is not on the
same filesystem as your account, and the above procedure won't work. An alternative is to
create an executable file that contains the text

case $# in
0) TNIX-command;;
•) TNIX-command • $@" "
esac

where TN/X-command is the name of the TNIX command that you want executed when you
type your custom command name. (The shell replaces "$@", a shell variable, with the
command line parameters to the command that you enter, and $# with the number of
command line arguments. We'll look at how to use the "$@" and $# shell variables in the
"Shell Variables" discussion, later in this section. We'll also discuss the case statement in
the "CASE Statements" discussion, later in this section.)

To call the mv command "rename", create an executable file called rename that contains the
command lines

case $# in

0) mv "
•) mv • $ @" "

esac

then place this file in your personal programs directory.

4-5

Writing Shell Programs
How to Change the Way a Command Executes

4-6

Shell Programming-8560 Series System Users

How to Change the Way a Command Executes
If you don't like the default method in which a command executes, you can create your own
version of that command.

First, make sure that the shell always checks your personal programs directory before checking
the /bin and /usr/bin directories for a command to execute. For example, if your personal pro
grams directory is /usr/lazaruslong/bin, your .profile file (in your HOME directory) should contain
the following line:

PATH=:$HOME/bin:$PATH; export PATH

(PATH is a shell environment variable, described in "The Default Shell Environment Variables"
discussion, later in this section.)

Next, create an executable shell program with the same name as the TNIX command, using the
format:

case $# in
0) TNIX-command-pathname command-options "
*) TNIX-command-pathname command-options .$~ ,.

esac

Here, TNIX-command-pathname is the pathname of the TNIX command and command-options
are the default command options that you define. To see how this works, let's look at an
example.

Suppose you want the rm command to ask you whether or not you want it to delete each file
before it actually deletes that file (this is the rm -i command). To do this, create an executable file
called rm that contains the command lines

case $# in
0) Ibin/rm -i ••
*) Ibin/rm -i .$~ ••

esac

Then place this file in your personal programs directory. Now, if you type
$ rm list.o

the shell executes
Ibin/rm -i list.o

Making Routine Tasks Easier to Do
Earlier in this section, we saw that the shell can execute commands stored in a file, just as if you
sat there and entered those commands from your terminal. This is one of the most powerful
features of the TNIX shell. In the following paragraphs, we'll look at ways to create a shell
program called "compile", located in your personal programs directory, that executes the
command:

CC -0 mover mover.c moverl.o mover2.0 mover3.0

Shell Programming-8560 Series System Users
Writing Shell Programs

Making Routine Tasks Easier to Do

(This command uses the optional C compiler, available with the 8560 Series Native Programming
Package.) The simplest approach is the one we've outlined above: create a file called compile that
contains the above command line, then make it executable with the chmod +x command:

$ chmod +x compile

Now, any time that you want to execute the command
cc -0 mover mover.c moverl.o mover2.0 mover3.0

all you have to do is type
$ compile

Now suppose that you want to embellish the compile command that you've just created. For
example, you may want to:

• supply it with certain command line options,

• have it check to see whether or not certain files exist before invoking the C compiler (with
cc),

• execute certain commands if the compiler locates any errors, etc.

In the following discussions, we'll look at how to use the shell's structured statements (for, while,
until, if, and case) and string-valued variables (and the various operations on these string-valued
variables) to turn the compile command into a more versatile, more powerful command.

First, we'll look at how to use the shell's string-valued variables, then at how to use the shell's
structured statements. We'll also see how to debug shell programs and how to create log files.

Shell Variables
You can use shell variables to:

• determine the number and values of command line arguments supplied to shell programs,

• input data into shell programs,

• generate unique filenames,

• abbreviate directory names and path names,

• determine whether or not a program that was executed terminated properly,

• control the default directories that TNIX expects commands to be located in, and

• store information about your programming environment, including the type of terminal that
you are using, and the target microprocessor that you are working with.

Valid Names for Shell Variables
Variable names begin with a letter or an underscore character, and consist of letters, digits, and
underscores. Table 4-1 shows examples of valid and invalid variable names.

4-7

Writing Shell Programs
Shell Variables Shell Programming-8560 Series System Users

4-8

Table 4-1
Valid and Invalid Variable Names

Valid

Temp_Name
_another
day10

Invalid

Temp-Name
another. one
10day

Invalid Because

illegal character (-)
illegal character (.)
begins with a number

Substituting a Variable's Value For Its Name
To substitute a variable's value for its name, precede the name with a $. Let's look at the echo
command to see how this works.

The echo command prints its command line arguments, for example,
$ eeho Hello there!
Hello there!

If you assign the words "Hello there!" to a variable called "message" by typing
$ message=-Hello there!-

you can use the echo command to print the value of the "message" variable:
$ echo $message

Hello there!

Or, you can assign the path name /usr/lazaruslong/first.book/chapter1 to the variable called "c1"
by typing:

$ cl=/usr/lazaruslong/first.book/chapterl

Now, typing
$ cd $cl

is equivalent to typing
$ cd lusr/lazaruslong/first.book/chapterl

An alternate notation is used when a variable name is followed by a letter, number, or underscore.
In this case, you enclose the variable name within "{ }" characters, to differentiate the variable
name from the character that follows. The following example shows how the" { }" characters are
used:

$ tmpa=/tmp/tempfile
$ tmp =/tmpl temp
$ echo $tmpa
Itmp/tempfile
$ echo $(tmp)a
Itmp/tempa

Note that the value of the variable $ {tmp } a is "/tmp/tempa" I whereas the value of the variable
tmpa is "/tmp/tempfile".

Shell Programming-8560 Series System Users
Writing Shell Programs

Shell Variables

Assigning Values to Variables
There are two ways to assign values to variables:

1. You can type the variable name followed by an equals sign (=) and the value of the variable.
For example:

$ TempFile=a.tmp ListFile=a.list LogFile=a.log

NOTE

Do not put any spaces between the variable name, the equals sign, and the variable's
value.

2. You can use the read statement to input values to variables, for example:
$ read TempFile ListFile LogFile

a.tmp a.list a.log [this is on a new line)

This example performs the variable assignments as in step 1. If you specify more words in
the input line than variables in the read statement, the extra words are assigned to the last
variable in the read statement. To see how this works, let's look at an example:

$ read a b
this is a line of text
$ echo $a
this
$ echo $b
is a line of text

You can assign a null value to a variable by typing a space, tab, or newline character after the
equals sign (=) character, for example:

$ flags= files= printers=

(You enter a newline character by pressing the RETURN key.) In this example, the variables
"flags", "files", and "printers" are assigned null values.

If you want to assign text that contains one or more space, tab, or newline characters, or any of
the shell's special characters to a variable, you should enclose the text to be assigned to the
variable within apostrophe (') characters. For example, to assign the two lines

This line contains the ., -, ?, and newline characters
and this second line contains the (and J characters

to the variable "message", type:
$ message='This line contains the·, ,?, and newline characters
> and this second line contains the (and J characters'

If you want to assign an apostrophe to a variable, enclose it in quotation (") marks. For example,
to assign the line

That won't do!

to the variable "message", type:
$ message=-That won't do!-

A note about using quotation (") marks and apostrophe (') characters: the shell does not substi
tute a value for a variable name, or a command's output for a command enclosed in accent grave
(') characters, if the variable or accent grave-enclosed command is enclosed in apostrophe (')
characters. However, variable and/or command substitution will occur if a variable or accent
grave-enclosed command is enclosed in quotation (") marks.

4-9

Writing Shell Programs
Shell Variables Shell Programming-8560 Series System Users

4-10

Concatenating Shell Variables
You can concatenate strings or variables onto an existing variable. For example, suppose the
value of the PATH variable is ":/bin :/usr/bin", and you want to concatenate the string
":/usr/lazaruslong/bin" onto the beginning of the PATH variable. To do this, type:

$ PATH=:/usr/lazaruslong/bin$PATH

Or, you can concatenate the string ":/usr/lazaruslong/bin" onto the end of the PATH variable by
typing:

$ PATH=$PATH:/usr/lazaruslong/bin

Similarly, to concatenate the value of the "c" variable onto the beginning of the "a" variable, type:
$ a=ca

Or, you can concatenate the value of the "c" variable onto the end of the "a" variable by typing:
$ a =ac

Assigning a Command's Output to a Variable
You can assign a command's output to a shell variable by enclosing the command within accent
grave (') characters. For example, suppose you are working in a directory with a long pathname.
After working in another directory, you want to be able to return to this directory, without typing
the entire pathname of the directory. The following example show.s how to assign the name of the
current directory to the "cur" variable:

lusr/lazaruslong/newprojects/magicwand/source
$ cur='pwd'
$ echo $cur
lusr/lazaruslong/newprojects/magicwand/source

Now, whenever you type
$ cd $cur

the following command is executed:
$ cd lusr/lazaruslong/newprojects/magicwand/source

Assigning Default Values to Variables
You can assign a default value to a shell variable. Normally, if a shell variable is not set, the null
string is its default value. However, there are other ways to assign default values to variables,
depending on whether or not a variable has been previously assigned a value (including the null
value).

Shell Programming-8560 Series System Users
Writing Shell Programs

Shell variables

One common use for default variable assignments is in shell programs, where the presence or
absence of certain command line arguments determines what commands will be executed by the
shell program. For example, earlier in this section, we described a compile command that exe
cutes the command

cc -0 mover mover.c moverl.o mover2.0 mover3.0

whenever you type
$ compile

Because you probably compile other programs than just mover, you can make your compile
command more useful by changing the text of the compile command so that the word "mover" is
replaced by the first command line argument that you supply. (The "Interpreting Command Line
Arguments in Shell Programs" discussion, later in this section, shows how to do this.) In the
following paragraphs, we'll look at the different ways to specify default values for shell variables.
We'll use the following notation:

• X is the variable to be assigned a value

• varname is the name of the variable being tested for a default value

• value can be text, another variable, the output of a list of commands enclosed in accent
grave (') characters, or any combination of these.

-X=${ varname-value} Assigns value to X if varname has not been assigned any value; other
wise, assign the value of varname to X.

X=${ varname= value} Assigns value to varname if varname has not been assigned any value,
then assigns the value of varname to X.

X = $ { varname+ value} AsAssigns value to X if varname has been assigned a value; otherwise,
does not assign a value to X.

X=${ varname?value} Assigns value to X if varname has been assigned a value. Otherwise,
prints value or the message "varname: parameter not set" if value is
not specified.

Examples. The command
$ a=$ (d-$c)

assigns the value of "d" to variable "a" if "d" is set; otherwise, it assigns the value of "c" (if any) to
variable "a". For example,

$ Defaul tFlag =-x
$ flag=$(InputFlag-$DefaultFlag}

assigns the value of the "DefaultFlag" variable (-x) to the variable "flag" only if the "lnputFlag"
variable has not been set. Note that the null value will be assigned to the "flag" variable if the
"lnputFlag" variable has been set to the null value.

Alternatively, the default value for the "flag" variable can be set with
$ flag=$ (InputFlag--x)

which assigns the value -x to the "flag" variable if the "lnputFlag" variable is not set.

4-11

Writing Shell Programs
Shell Variables Shell Programming-8560 Series System Users

4-12

If you want to print the error message "lnputFlag: variable isn't set!" instead of assigning a
default value to the "lnputFlag" variable, you can type:

$ flag =$ (InputFlag? ·variable isn' t set!·)

If you don't supply a message, as in
$ flag=$ {InputFlag? }

the default message is
InputFlag: parameter not set

Global and Local Variables
You can use the export command to make the value of a shell variable available to any program
that the shell executes. If you don't use the export command, a variable's value remains local to
the shell and is not accessed by any programs that the shell executes.

For example, if you are using the TEKTRONIX Language-Directed Editor (LDE), you use the
export command to set and specify as global a TERM variable before executing LDE. The follow
ing command sets the TERM variable to "4105", then makes it a global variable with the export
command:

$ TERM=4105; export TERM

Global variables can be reset by programs executed by the shell, but will revert to their original
values when the executing program terminates.

The Default Shell Environment Variables
Certain shell variables are set each time you log into TNIX. These variables are called environ
ment variables, because they control how the shell functions.

Here is a list of the standard shell environment variables that are set each time you log in:

HOME The shell assigns your HOME or login directory to this variable. When you type a cd
command with no parameters, the shell executes a cd $HOME command. Your login
directory is specified in the sixth field in the /etc/passwd file. (Fields are separated by
a colon.) For example, to find out what lazaruslong's login directory is, type:

$ fgrep lazaruslong letc/passwd
lazaruslong:MMwYQYpdkxTMQ:276:175::/usr/lazaruslong: , I I

this is lazaruslong's HOME directory

In general, if your login directory is /usr/lazaruslong, the default value of the variable
HOME is:

HOME=/usr/lazaruslong

Shell Programming-8560 Series System Users
Writing Shell Programs

Shell variables

IFS

PATH

The internal field separator. The shell separates arguments to programs (that is, it
parses the command line) based on the characters assigned to this variable. Normal
ly, the ASCII space, tab, and newline (octal 12) characters are assigned to this
variable.

When you ask the shell to execute a program, the shell looks for that program in the
directories specified by the value of the PATH variable. If the value of the PATH
variable starts. with a colon, then the first field specifies a null value, which corre
sponds to the current directory. (The colon (:) character separates each directory
name.) The default value is:

PATH=:/bin:/usr/bin

In this case, the shell looks for commands to execute in your current directory (be
cause the PATH variable begins with the colon character), then in the /bin directory,
then in the /usr/bin directory. The shell prints an error message if it cannot find the
command that you want to execute.

PS1 The shell's primary prompt string, usually set to "$ ". The following line changes your
prompt to "Type something! ":

$ PSI=wType something! w; export PSI

PS2 The shell's secondary prompt string, usually set to "> ". The shell displays this
prompt when it needs more information before it can execute a command, for exam
ple, when a command extends over two or more lines. The following line changes
your secondary prompt to "Keep typing! ":

$ PS2=wKeep typing! w; export PS2

Standard, Automatically Updated Shell Variables
Certain shell variables are automatically updated each time the shell executes a command. These
variables are described in the following paragraphs.

$? The shell assigns the exit status of the last command executed to the $? variable.
This command may have been running in the background. Most commands return a
zero exit status if they terminate successfully; otherwise, they return a non-zero exit
status. The exit status returned by a command is used by the if, until, and while
statements to determine which parts of the statement to execute. (These statements
are described in the "Structured Statements" discussion, later in this section.) For
further information, see the "Setting the Exit Status of a Program" discussion, later in
this section ..

$# The number of command line arguments or pOSitional parameters, in decimal.

$$ The process number, in decimal, of the currently executing shell. Since each existing
process has a unique process number, this string can be used to generate unique
temporary filenames. For example, the statement

TempFiIe=/tmp/ex.$$

generates the unique filename /tmp/ex.N, where N is some decimal number.

4-13

Writing Shell Programs
Shell Variables Shell Programming-aS60 Series System Users

4-14

$! The process number, in decimal, of the last process run in the background.

$- The current shell execution parameters, such as -x and -v.

Interpreting Command Line Arguments in Shell Programs
One way to make a shell program more versatile is to allow it to access its command line
arguments. A shell program can access its command line arguments, or positional parameters, as
the values of the variables shown in the following list:

$# The number of argumsnts to the program

$0 The name of the program

$1, $2, ... , $n The first argument to the program, the second argument to the program, and so
on

"$*" All arguments to the program are interpreted as one string. Thus, "$*" (the quota
tion marks are required) is equivalent to:

·$1 $2 $3 $4 ••••

"$@" All command line arguments are passed to another command without checking for
argument separators. Thus, "$@" (the quotation marks are required) is equivalent
to:

For example, assume that a program called delete contains the line

When you type
$ delete ml.o m2.o m3.o

the shell executes the command
rm ·ml.o m2.o m3.o·

attempting to delete a Single file called "m1.o m2.o m3.o".

To pass command line arguments to a program, use the "$@" notation instead of the "$*"
notation. The following examples show why.

Let's assume that a program called delete contains the line
rm "$@"

When you type
$ delete ml.o m2.o

the shell executes the command
rm ml.o m2.o

Shell Programming-8560 Series System Users
Writing Shell Programs

Shell Variables

On the other hand, when you type
$ delete -funny file- ml.o m2.0

the shell executes the command
rm -funny file- ml.o m2.0

attempting to delete the files mt.o, m2.o, and funny file, whose filename contains a space charac
ter. (You can't do this with the "$*" notation.)

You may want a shell program to transform its command line arguments in some manner. (Figure
4-4, later in this section, shows an instance where a shell program transforms its command line
arguments.) There are two ways to change the values and number of command line parameters
within a shell program:

• The shift command assigns the values of $2 to $1, $3 to $2, and so on, and decrements the
$# variable (the number of command line arguments) by one.

• The set command resets both the number (the value of $#) and values ($1, $2, ... , $n) of the
command line arguments. The following example shows how to do this:

$ set one two three
$ echo $1 $2 $3 $#
one two three 3

An Example. Earlier in this section, we described the compile command, a shell program con-
taining the following text: .

cc -0 mover mover.c moverl.o mover2.0 mover3.0

We also saw that you can specify default values for command line arguments to a shell program.
(The command line arguments are accessed as the values of the $1, $2, ... , $n variables, where
$1 is the first command line argument, $2 the second command line argument, and so on.) Now
let's use these techniques to make the compile command more versatile.

For example, you can substitute $ { 1} (the value of the first command line argument to compile)
for the word "mover" in the text of compile:

cc -0 $(l) ${l).c ${1)1.0 ${1)2.0 ${1)3.0

Then, whenever the compile command is executed, ${1} is replaced by the first command line
argument to compile. Thus,

$ compile lister

executes the command

cc -0 lister lister.c listerl.o lister2.0 lister3.0

However, you've lost the ability to execute the command
cc -0 mover mover.c moverl.o mover2.0 mover3.0

by simply typing
$ compile

4-15

Writing Shell Programs
Structured Statements Shell Programming-8560 Series System Users

4-16

To remedy this problem, you can substitute ${ 1-mover} for the word "mover". Now, if no com
mand line argument is supplied to compile, ${1-mover} is replaced by the word "mover":

cc -0 $ {l-mover } $ {l-mover }.c ${l-mover}l.o ${1-mover}2.0 $ (l-mover }3.0

Now, when you type
$ compile

the command
cc -0 mover mover.c moverl.o mover2.0 mover3.0

is executed. However, if you type

$ compile lister

the command
cc -0 lister lister.c listerl.o lister2.0 lister3.0

is executed. In the following discussion of conditional and repetitive program statements, you'll
see ways to make the compile program even more versatile.

Structured Statements
The shell allows you to use the following conditional, repetitive, and data input program
statements:

• conditional statements: case and if statements

• repetitive statements: for, while, and until statements

• data input statements: the read statement

A conditional statement executes no more than one of its component statements, based on the
results of a conditional test. The shell's conditional constructs are IF and CASE.

A repetitive statement specifies that a list of commands in the body of the statement may be
executed repeatedly. The shell's repetitive constructs are FOR, WHILE, and UNTIL.

The following pages describe each of these constructs, and shows ways to use them in shell
programs.

IF Statements
An if statement may be in one of the following formats:

(1) if command-listl
then command-list2
fi

(2) if command-listl
then command-list2
else command-list3
fi

Shell Programming-8560 Series System Users
Writing Shell Programs

"Structured Statements

(3) if command-listl
then if command-list2

then if command-list3
then command-list4
else command-list5
fi

else command-list6
fi

else command-list7
fi

(4) if command-listl
then command-list2
else if command-list3

then command-list4
else if command-list5

then command-list6
else command-list7
ti

fi
fi

(5) if command-listl
then command-list2
elit command-list3

then command-list4
elit command-list5

then command-list6
else command-list7

£,i

In each of the above formats, command-list represents a list of one or more commands. if the last
command in the command-list following the if statement returns a true value (zero exit status), the
$? shell variable is set to zero and the command-list following the then statement is executed.
Otherwise, the command-list following the else statement (if there is an else statement) is exe
cuted. The reserved word fi terminates the if statement.

As formats 3 and 4 demonstrate, the command-list can include additional if statements of the
type shown in formats 1 and 2.

Format 5 is equivalent to format 4.

A final note regarding the if construction. The sequence
if command-listl
then command-list2
fi

may be written
command-listl U: (command-list2)

4-17

Writing Shell Programs
Structured Statements Shell Programming-8560 Series System Users

4-18

Conversely, the sequence
if command-listl
then true
else command-list2
fi

may be written
command-listl :: (command-list2)

In each case, the exit status of the last simple command executed in command-list1 determines
whether or not command-list2 is executed.

The TRUE and FALSE Commands. The true command returns a true value {zero exit status};
the false command returns a false value {non-zero exit status}. Thus, the statement

if true
then echo Hello!
else echo Goodbye!
fi

always executes the echo Hello! command, whereas the statement
if false
then echo Hello!
else echo Goodbye!
fi

always executes the echo Goodbye! command.

The TEST Command-Evaluating Boolean Expressions. Many programming languages allow
statements of the form

if a_certain_boolean_condition_is_satisfied
then execute_some_commands
else execute_some_other_commands

Although the TNIX shell does not perform boolean evaluations, you can use the TNIX test com
mand in conjunction with the shell's structured statements to perform the same sort of boolean
evaluation.

The test command evaluates a boolean expression, then returns a true value {zero exit status} if
the value of the expression is true, or a false value {non-zero exit status} if the value of expression
is false. The test command returns a false value {non-zero exit status} if you do not specify an
expression for test to evaluate.

The following arguments are used to construct the expression for test.

-r file true if the file exists and is readable.

-w file true if the file exists and is writeable.

-f file true if the file exists and is not a directory.

-d file true if the file exists and is a directory.

Shell Programming-8560 Series System Users
Writing Shell Programs

"Structured Statements

-s file

-t number

-z string

-n string

true if the file exists and has a size greater than zero.

true if the open file with file descriptor number (1 by default) is associated
with a terminal device.

true if the length of string is zero.

true if the length of string is non-zero.

string1 = string2 true if the values of string1 and string2 are equal.

string 1 ! = string2 true if the values of string1 and string2 are not equal.

string

n1-eq n2

true if string is not the null string.

true if the integers n 1 and n2 are algebraically equal. Any of the compari
sons -ne (not equal), -gt (greater than), -ge (greater than or equal to), -It
(less than); or -Ie (less than or equal to) may be used in place of -eq.

These arguments may be combined with the following operators:

unary not operator (unary negation)

-a binary and operator

-0 binary or operator

(expression) used to group statements together.

You can use the if statement in conjunction with the test command to test for the existence of a
file. In the following shell program, the test statement controls the output:

if test -r logfile -a -f logfile
then cat logfile
elif test -f logfile

fi

then echo -logfile is not readable!
elif test -d logfile

then echo -logfile is a directory!
else echo -logfile does not exist!-

This example

• prints the logfile file, if that file exists and is readable; or

• prints a message saying that logfile exists but is not readable; or

• prints a message saying that logfile is a directory; or

• prints a message saying that logfile doesn't exist.

4-19

Writing Shell Programs
Structured Statements Shell Programming-8S60 Series System Users

4-20

CASE Statements
A case statement may be in either of the following formats:

(1) case index-value in

esac

case-label-Iistl) command-list1;;
case-label-Iist2) command-list2;;

(2) case index-value in

esac

case-1abel-1ist1) command-list1;;
case-label-Iist2) command-list2;;

*} command-listN;;

The case statement evaluates the value of the index-value (or case index), then executes the
command-list whose case label matches the value of the case index. A case label can consist of
any list of characters; however, the shell's pattern-matching characters will be interpreted by the
shell as part of a regular expression.

The reserved W'Ord esac terminates the case statement.

The case-label-list consists of one or more case labels, separated by : characters, and separated
from the command-list by a close parenthesis) character.

Since the * shell metacharacter matches any list of characters, the
.) command-list;;

part of a case statement functions as an "otherwise" expression. The command-list associated
with the * case label is executed if the value of the case index does not appear in any of the
preceding case-label-lists. If it is used, this statement must be the last case label in the case
statement.

To override the shell's processing of special pattern-matching characters such as * and [, pre
cede these characters with a "\" character. (See the "Quoting-Overriding the Interpretation of
Special Characters" discussion, later in this section, for further information.) In the following
example, the first case label matches a case index (the value of the "i" variable) equal to 7, the
second case label matches any single-character case index, and the last case label matches any
case index not matched by the preceding case labels:

case $1 in

esac

\?) command-listl;;
? } command-list2;;
.) command-list3;;

You can use the case statement to check that you've typed a certain number of command line
arguments and print an error message if you haven't. For example, you can write the compile
command, developed earlier in this section, in the following form:

case $# in

esac

0:1) cc -0 $ (I-mover) $ (I-mover }.c $ (I-mover }l.o $ (I-mover }2.0 $ (I-mover }3.0;;
.) echo ·syntax: $0 (program-name]· ;;

Shell Programming-8560 Series System Users
Writing Shell Programs

"Structured Statements

When you type
$ compile lister

the $# variable is set to "1" (the shell sets the $# variable to the number of command line
arguments), and the program executes the command:

cc -0 lister lister.c listerl.o lister2.0 lister3.0

On the other hand, if you type
$ compile

the $# variable is set to "0", and the program executes the command:
cc -0 mover mover.c moverl.o mover2.0 mover3.0

If the number of command line arguments supplied to compile is other than zero or one, the
following message is printed:

syntax: compile (program-name I

WHILE Statements
A while statement has the following format:

while command-listl
do

command-list2
done

The while statement evaluates the exit status of the last command executed in command-list1,
then executes command-list2 if the last command in command-listl returns a true value (zero exit
status). This process is repeated as long as the last command in command-list1 returns a true
value (zero exit status).

The reserved word do separates command-list1 from the body of the while statement,
command-list2.

The reserved word done terminates the while statement.

Example. In the following while statement, the number of times that command-list is executed is
determined by the number of command line arguments. If there are five command line arguments,
then command-list is executed five times.

while test $# -gt 0

do

done

command-list
shift

: are there more than 0 arguments?

I decrement $# by 1 and
rename $2 to $1, $3 to $2, etc.

(The test $# -gt 0 command returns a true value, or zero exit status, so long as the arithmetic
value of $# is greater than a, that is, so long as there is at least one positional parameter.)

4-21

Writing Shell Programs
Structured Statements Shell Programming-8560 Series System Users

4-22

UNTIL Statements
An until statement has the following format:

until command-listl
do

command-list2
done

The until statement evaluates the exit status of the last command executed in command-list1,
and repeats the execution of command-list2 as long as the last command in command-list1
returns a false value (non-zero exit status).

The reserved word do separates command-fist1 from the body of the until statement,
command-list2.

The reserved word done terminates the while statement.

Note that the until statement differs significantly from the way in which a repeat/until statement
is executed in Pascal. In Pascal, the body of the repeat/until statement is executed first, so that it
is always executed at least once. In the shell, however, the body of the until statement
(command-list2) is executed only if the last command in command-list1 returns a false value
(non-zero exit status), so it's possible that the body of the shell's until statement may not be
executed.

One use for the until statement is to wait until some external event occurs, then-when that
event occurs-execute one or more commands. For example,

until test -f logfile
do

sleep 300
done
echo 'file: logfile has arrived!-

executes a sleep 300 command (pause for 300 seconds) until/ogfile exists, at which time it will
print the message:

file: logfile has arrived!

Each time through the until statement, a five-minute pause (or sleep) precedes the next repetition
of test. (Presumably, another process will eventually create the file.)

Forever Loops. A forever loop is a program statement that executes the body of the statement
continuously, until some external event (such as typing a CTRL-C) aborts the program statement.
You can use the true command with the while statement to execute a forever loop. For example,
the following command continuously executes the ps command followed by a sleep 60
command:

while true
do

ps
sleep 60

done

Shell Programming-8560 Series System Users
Writing Shell Programs

'Structured Statements

You could perform the same function by using the false command with the until statement:
until false
do

ps
sleep 60

done

FOR Statements
A for statement executes a statement repeatedly while a progression of values is assigned to a
control variable in the statement.

A for statement may be in one of the following formats:
(1) for control-variable in vall val2 •••

do
command-list

done

(2) for control-variable
do

command-list
done

The reserved word in precedes the list of values that are assigned in sequence to control-variable.
The reserved word do precedes command-list (the body of the for statement). The reserved word
done terminates the for statement.

In the first format, the for statement assigns vall to control-variable, executes command-list, then
assigns val2 to control-variable and again executes command-list, repeating this process until the
entire list of values following the reserved word in has been exhausted.

The second format is equivalent to:
for control-variable in .$~
do

command-list
done

In this form of the for statement, command-list is executed once for each command line argu
ment, with each command line argument assigned in turn to control-variable.

4-23

Writing She" Programs
Structured Statements Shell Programming-8560 Series System Users

4-24

The following rules apply to for statements:

• If the reserved word in is included in the for statements, the reserved word do must be
preceded by a newline or semicolon.

• The reserved word done must be preceded by a rJewline or semicolon.

• The control-variable is set to the words va/1, val2, ... , in turn, with the command-list execut
ing once for each value. The current value of this variable is available within the command-list
as $control-variable.

• If "in va/1 val2 ... " is omitted, then the loop executes once for each command line argument
(positional parameter); that is, the shell assumes:

for control-variable in .$~

• The command-list is a sequence of one or more simple commands separated and terminated
by a newline or semicolon.

Let's look at an example of a shell program that uses a for loop. The program create contains the
following text:

for i do >$i; done

If you type:
$ create alpha beta

two files, alpha and beta, are created as empty files. (The notation, ">file", may be used by itself
to create or clear the contents of a file.)

The following example prints the first ten lines of each file in a directory, asking you to press the
RETURN key between files:

for i in •
do

head -10 $i
echo -n ·Press RETURN to continue: •
read x

done

The following examples perform the above function in a slightly different manner, illustrating
different aspects of the shell:

(1) for i in 'Is'
head -10 $i
echo -n ·Press RETURN to continue: •
read x

done

(2) set·
for i

do
head -10 $i
echo -n ·Press RETURN to continue: •
read x

done

Shell Programming-8560 Series System Users
Writing Shell Programs

"Structured Statements

The for statement is also used for iterative processes, such as repeating a certain command ten
times. The following example prints the message "time to go home" on your terminal once a
minute, for ten minutes:

for i in 1 2 3 4 5 6 7 8 9 10
do

done

echo time to go home
sleep 60 : pause for 60 seconds

Here's another example of for statements. The shell program arguments contains the text:
flags= files=
for i
do

case $i in

esac
done

- .) f 1 a g s =. $ f 1 a g s $ i·; ;
.) f i 1 e s =. $ f i 1 e s $ i·; ;

echo ·$0: $flags Stiles·

This program shows one of the methods commonly used to build a command line within a shell
program. Here's how this program works:

The for statement executes the case statement once for each command line argument. (Each
command line argument is assigned in sequence, for each iteration of the for loop, to the "i"
variable, the value of which then becomes the case index for the case statement.) If the first
character of a command line argument is the - character, that argument is concatenated onto the
end of the "flag" variable, preceded by a space. Otherwise, the command line argument is concat
enated onto the end of the "files" variable, preceded by a space. For example, if you type

$ arguments -a -b listfile logf{le

the $0 variable is set to the name of the program (arguments), the "flag" variable is set to " -a
-b", the "files" variable is set to " listfile logfile", and the arguments program prints

arguments: -a -b listfile logfile

Data Input-The READ Statement
The read statement reads one line from the standard input. The following example shows how
the read statement is used:

$ read x
this is the line being read into the ·x· variable
$ echo $x
this is the line being read into the ·x· variable

The read statement can also be used to assign several variables at once:
$ read x y z
this is the line being read
$ echo $x
this
$ echo $y
is
$ echo $z
the line being read

4-25

Writing Shell Programs
Data Input-The READ Statement Shell Programming-8560 Series System Users

4-26

A while or until statement can be combined with a case statement to verify that a proper
response has been typed. In the following examples, the "Thank you" message is printed only
when you type a word that starts with the letters "y", "Y", "n", or "N". The following example
shows how to use a while statement to accomplish this:

while

do

done

echo -n ·Please type yes or no: •
read x
case $x in

esac

[yYnN J *) false;;
*) true;;

echo You did not type a proper response

echo Thank you

The following example shows how to use an until statement to accomplish the same thing:
until

do

done

echo -n ·Please type yes or no: •
read x
case $x in

[yYnN J *) true;;
*) false;;

esac

echo You did not type a proper response

echo Thank you

The following example shows how to assign individual lines from a file to the variable "x", one line
at a time. Each line in file is available for processing by command-list as the value of the variable
"x". (This loop terminates after the last line of file is read into the "x" variable.)

cat file :
while read x
do

command-list
done

Data Output-The ECHO Command
The echo command prints its arguments to the standard input. Throughout this section, we've
looked at how to use the echo command to display a variable's value, and to print messages
from a shell program. In the preceding discussion, "Data Input-The READ Statement", we saw
how to use the echo statement, along with the read, until, case and while statements, to ask a
user to enter some data.

The echo command can also be used to print the shell's special characters:
$ echo 'Here is an asterisk (*), question mark (?). newline
> and bracket (I) character'
Here is an asterisk (*). question mark (?). newline
and bracket (I) character

Shell Programming-8560 Series System Users
Writing Shell Programs

Error l1andling

For additional information on using the echo command to print the shell's special characters, see
the "Quoting-Overriding the Interpretation of Special Characters" discussion, later in this
section.

Error Handling
In the previous paragraphs, we looked at how to handle erroneous input. Sometimes, you want to
make sure that a certain program is not halted while executing, or that certain temporary files are
removed when a program finishes executing. The trap statement is used in these situations.

The trap statement may be in one of the following formats:
(1) trap ·command-list· signall signa12 signal3

(2) trap·· signall signal2 signal3

(3) trap signall signal2 signal3

If the first argument to trap is a list of one or more commands, as in format 1, then these
commands are executed whenever one of the specified signals is received by the shell. (A signal is
an integer in the range 0-15; these signals are listed in Table 4-2.)

If command-list is the null string, as in format 2, the list of signals specified in this form of the
statement is ignored by the shell. (This is one way to make sure that a shell program doesn't halt
when you type a CTRL-C or CTRL-D.)

If command-list is not specified, as in format 3, then any signals that were previously specified in a
trap statement are reset to their initial values (when the current shell process was originally
invoked).

For example, to make sure that a program continues executing even if you turn your terminal off
or type a CTRL-C or CTRL-D, place a trap statement with a null first argument, and signals 1 and
2 for the second and third arguments, at the beginning of the program. (Signal 1 corresponds to
the hangup signal, generated when you type a CTRL-D or when you turn your terminal off; signal
2 corresponds to the interrupt signal, generated when you type a CTRL-C.) Here's an example:

trap •• 1 2
for i in 1 2 3
do

done

echo $i
sleep 5

In this example, the for statement sets the "i" variable to 1, then to 2, then 3. Each time the for
statement assigns a value to "i", it executes the echo command, which prints the value of "i",
then pauses for 5 seconds. The trap statement ensures that you won't halt the for loop by typing
a CTRL-C or CTRL-D, or by turning your terminal off.

4-27

Writing Shell Programs
How the Shell Parses Command Line Arguments

4-28

Shell Programming-8S60 Series System Users

If a shell program creates temporary files, the program should delete these files before it finishes
executing. The following example shows how to do this:

TempFi1e=/tmp/EX$$
trap -rm -f $TempFi1e*; exit- 0 1 2 13 15
rm -f $TempFi1e
for i
do

grep $i 1istfi1e » $TempFi1e
done
sort $TempFi1e

Signal Number

0

1

2

3

9

13

14

15

Name

Table 4-2
Some TNIX Signals

Normal program termination

Hangup

Interrupt

Quit

Unstoppable kill

Error when writing to a pipe

Alarm clock

Software termination a

a Produced by the kill command

How the Shell Parses Command Line Arguments
The shell uses the characters assigned to the I FS variable to parse command line arguments.
Normally, the ASCII space, tab, and newline (octal 12) characters are interpreted as command
argument separators. The shell also uses the newline and semicolon characters to separate
command lines. To pass a single argument that contains one or more of these characters to a
command, you can:

• enclose the argument in apostrophe (') characters; or

• enclose the argument in quotation (") marks; or

• "escape" the special character by preceding it with a backslash (\) character.

If you inadvertently create a file whose filename contains a special character, such as a space or
asterisk character, and you want to remove that file, you can enclose the filename in apostrophe
characters. For example, to delete a file whose name is "a *file", type:

$ rm -i 'a *fi1e'

(Use the -i command option so that rm will ask you if you really want to delete the file.)

Shell Programming-8560 Series System Users Examples

You can supply a null argument to a command by typing two quotation marks, one directly after
the other, for the null argument. For example, to specify null arguments as the first two arguments
to the 8sm command, type:

$ asm •••• light.asm

In the following discussion, we'll describe when to use quotation (") marks, and apostrophe (') and
backslash (\) characters.

Quoting-Overriding the Interpretation of Special Characters
Certain characters, such as

-?:4:;$ "·{}()IJ><\/

have special meanings when interpreted by the shell. There are three ways to override the shell's
interpretation of special characters:

\ char A single character char is interpreted literally by the shell when it is preceded by a
"\" character. Here's an example:

$ echo \.

'text' Text is passed without any interpretation, for example:
echo '$ ••• '

Text is passed as one argument to a command, but the shell interprets the special
characters $ and '. To override the shell's interpretation of special characters
enclosed in quotation (") marks, precede each special character with a "\" charac
ter. For example, the command

$ echo ·$PATH 'Is '.

passes the value of the PATH variable and the output of the Is command to the
echo command as one command line argument. However, the command

$echo •••

passes the * character, unaltered, as a command line argument to echo, as
shown.

EXAMPLES
The following paragraphs describe some shell programming examples that use the techniques
discussed in this section. If you don't understand a specific example, read over the related discus
sion in this section.

4-29

Examples Shell Programming-8560 Series System Users

4-30

An Example-The Search Command
Suppose you want to find every file in a specific directory hierarchy that contains a specific .
sequence of characters. The search program shown in Figure 4-1 performs this task.

case S# in
1) find 'pwd' -type f -name '*-SP '* -print;;
2) cd Sl

find 'pwd' -type f -name '*-S2- '* -print ;;
*) echo -syntax: SO [initial directory) filename- ••

esac

Fig. 4-1. The search command.

When you type
S search asm

the $# variable is set to "1", and the following command is executed:
find 'pwd' -type f -name '*-asm- '* -print

When you type
S search /usr asm

the $# variable is set to "2", and the following command is executed:
cd /usr
find /usr -type f -name '*-asm-'* -print

If you type the search command with no arguments or with three or more arguments, the follow
ing message is displayed:

syntax: search (initial directory) filename

An Example-The Touch Command
The touch command, which updates the "last modified" time for a list of files, illustrates the use of
if, case, and for statements. Figure 4-2 shows the text of the touch command.

Shell Programming-8560 Series System Users Examples

flag=
for i

do
case -Si- in

esac
done

-a) flag=-a ••
*) if test -f -Si-

then In -Si- junkSS
rm junkSS

elif test -Sflag
then >- Si-
else echo -file Si does not exist-

fi ••

Fig. 4-2. The touch command.

Here is a line-by-line explanation of the code:

flag=

for i. .. do

-a} flag=-a

*
if test -f $i

then In $i ...

elif test...

then >$1

else echo ...

The "flag" variable is initially set equal to the null string. It will be used to
indicate whether the -a flag is set. The -a flag in this program forces files to be
created if they do not already exist. Otherwise, if the file does not exist, an error
message appears.

The loop executes once for each filename or flag given as an argument to
touch.

If the -a argument is given with touch, then "flag" is set equal to the non-null
string -a.

touch treats all arguments other than -a as filenames.

Returns true (zero exit status) if the file named by the value of "i" exists and is
not a directory.

The In and rm commands establish a link to the file and then remove it, thereby
changing the "last modified" date for the file.

Returns true (zero exit status) if "flag" is not the null string; so, if the file did not
exist, and if "flag" does not equal the null string (that is, if the -a flag did
accompany touch} ...

... create the file by assigning it to the standard output.

If the file did not exist, and "flag" equals the null string (because -a was not
given), then print a message.

4-31

Examples Shell Programming-8560 Series System Users

4-32

An Example-A Modified Remove Command
This example shows a program that interactively deletes files and allows you to recover a file after
deleting it.

Figure 4-3 shows the text of the delete command.

if test! -d -SHOME/backup
then mkdir SHOME/backup-
fi

for i
do

if test -f -Si-
then In -Si- -SHOME/backup 2>/dev/null ..

In -Si- -HOME/backup/SiSS-
echo -n delete
rm -i -Si-

fi
done

Fig. 4-3. A modified remove command.

When you execute this program, it first checks for a directory called backup in your HOME
directory. If backup does not exist, this program creates it. It then creates a link between the file
that you intend to delete and the backup directory. If it can't link the specified file to the backup
directory because a file by the same name already exists in that directory, then any error mes
sages generated by In are discarded (with the 2>/dev/null error redirection syntax), and the
specified file is linked to the backup. directory by creating a new filename consisting of the file's
name concatenated with a random number supplied by the $$ variable. Finally, the program asks
if you want to delete the specified file. If you type "y", the file is deleted.

If you want to recover a file, look in the backup directory for that file, then copy it to the correct di
rectory. Periodically, delete all files in the backup directory.

If you want all files in the backup directory deleted each time you log out from TNIX, you can place
the following lines in a file called bye, in your personal programs directory:

cd SHOME/backup
(nohup rm -ir· • >/dev/null 2>IH 8:) >/dev/null
logout

then type
s~

instead of
S logout

each time you want to log out.

Shell Programming-a560 Series System Users Examples

An Example-A Skeleton Shell Program
Figure 4-4 shows an example of a general-purpose shell program. Most shell programs can be
written using this program as a starting point. To use this program:

1. Add the flags that you want this program to recognize to the "arglist" variable.

2. Modify the case statement so that it recognizes the proper flags for this program. The
sample -f flag shows how to make this program recognize successive arguments, such as
"-f /dev/rhd1". The sample -t flag shows how to make one flag stand for several flags.

3. At the end of the figure, where it says "Now execute the program", add the commands that
you want this program to execute. The "options" variable contains the list of options that the
case statement recognized. The "files" variable contains the list of filenames that the case
statement identified.

< < \!
Skeleton Shell Program
Purpose--use as a general shell program.
If the "debug" variable is set to a non-null value before this program

I is executed, then the "-x" trace execution option is turned on.
I There are three ways to invoke this program with the "-x" option set.

1) sh -x progra~name arguments_list
2) debug=true program_name arguments_list
3) debug=true; export debug; program_name argument_list

test "$debug" && set -x
I Initialize variables.
: Set up any temporary files, then remove them when this program exits.
temp_file="/tmp/ 'basename $ {HOME }'$$"
: The' I-f) I-t) I-u) I options are only example, and should be changed or
I removed from the $arg_list variable definition.
files = options = pipe = program_name =oasename $0'
a r g_l i s t =" I ?) I -?) I -) I - f I I - t) I -u I I f i 1 elf i 1 e 2 • • .)"
how_to_use ="

standard input and/or a list of files can be specified:
cat filel : $program_name
$program_name <filel
cat filel : $program_name - file2 file3
$program-name - file2 file3 <filel
$program-name filel file2 file3"

Reset command line arguments--transforms "-ftu" to --f -t -u"
set - 'echo "$@" : sed -e '

: MARK
s/\(-IA-Za-z) \)\(IA-Za-z) \)/\1 -\2/
t MARK I'

test "$debug" && set -x
I Read command line arguments, save them in the $command_line

variable, initialize the list of options, and
initialize the list of filenames.

I The -f, -t, and -u case labels are examples, and should be changed or
deleted as necessary.

command_line="$·"
while

test $# -gt 0

Fig. 4-4. A skeleton shell program. (Part 1 of 2)

4-33

Examples

4-34

do
in
pipe =true ••
echo -syntax:
exit 0 ..
echo -syntax:
exit 0 ..

-f) options=-$options -f
shift
options=-$options $1-
continue ;;

- t) 0 P t ion s =- $ 0 P t ion s - t b 1 - col - ;;
-u) options=-$options -T4105- ;;

Shell Programming-8560 Series System Users

-*) echo -bad option: $1; syntax: $program-name $arg_list-

done

esac
shift

exi t 1 ;;
*) if test! -r -$1-

then

else

fi ;;

echo -file $1 cannot be read!
exit 1

I Reset the command line to its original state
set - $command_line
test -$debug- && set -x
if test -z -$files- -a -z -$pipe- -a -t 0
then

fi

trap -

echo -No input files!
exit 1

trap II 0 1 2 3 13 15
rm -f $ (temp_file)*

trap 0 1 2 3 13 15
exit 0

- 0 1 2 13 15
: If no files are specified, then start writing the standard input to the

file named by the $temp_file variable.
if test -$pipe- = -true- -0 ! -t 0
then

fi

files=-$temp_file $files
cat > $temp_file <&0-

Now execute the program. Replace the following lines with the commands
that you want executed. The following lines show what the

I $command_line, $options, and $files variables will be set to.
echo the command line used is $command_line
echo the options used are $options
echo the files used are $files

Fig. 4-4. A skeleton shell program. (Part 2 of 2)

Shell Programming-8560 Series System Users
Debugging Shell Programs

Execution Trace

An Example-A Delay Program
Figure 4-5 shows a shell program that allows delayed execution of a specific command.

Executes command $1 after -sleeping- for $2 hours.
$3 minutes. and $4 seconds ($3 and $4 are optional).
Optional flag prefix allows -nice- value. which lowers the execution
priority of the command.

case $1 in

esac
if
then

fi
if
then

fi

-) n ice =- n ice -
shift ;;

- .)
*)

test

n ice =- n ice $1-
shift ••
nice= ;;

-$#" -It -2-

echo -usage: ·~asename $0' command hours [minutes [secondsl I- >&2
exit 99

test
echo -can't wait longer than 17 hours- >&2
exit 1

trap 1 2 3 15
sleep 'expr $2 '* 3600 + $ {3-D} '* 60 + $ {4-0}'
exec $nice sh -c $1
2 >&1 &

Fig. 4-5. A delay program.

DEBUGGING SHELL PROGRAMS
The first step in debugging a shell program is to check that variables are being set and evaluated
properly, and that all program statements, such as case and for, are complete. In addition, the
echo, set -Y, and set -x commands are useful for evaluating variables and tracing the execution
of a program. The following paragraphs discuss these and other tools such as log files and setting
a program's exit status.

Execution Trace
There are two ways to trace the execution of a shell program:

• executing the program as an argument to the sh -x command, and

• by placing the set -x command at the beginning of the program.

Each command causes the shell to print each command that it executes. For example:
$ sh -x compile lister

This command line makes the shell print each command in the compile program, as it executes
that command.

4-35

Debugging Shell Programs
Setting the Exit Status of a l>rogram Shell Programming-8560 Series System Users

4-36

If you want to observe the exact command that the shell executes, after it has expanded the *,
[...], and? special characters, and performed variable and command substitution, set the -x shell
execution parameter for the current shell by typing:

$ set -x

This command enables the -x execution parameter for the currently executing shell. For example,
if you have set the -x parameter for the current shell, and you type the Is * command, this is
what you would see:

+15 a.out mover.c moverl.c mover2.c mover3.c
a.out mover.c moverl.c mover2.c

To disable the -x setting for the current shell, type:
$ set -

Log Files

mover3.c

Another help in debugging is the log file, which shows the commands executed by a shell pro
gram. To create a log file, use the sh -x command to execute the shell program, and direct both
the standard output and standard error output to a file.

For example, to create a log file that shows all of the commands executed by compile, type:
$ sh -x compile >logtile 2>&1

In the following paragraphs, we'll look at how you can set the exit status of a shell and a C
program. (The optional C compiler is supplied with the Native Programming Package.)

Setting the Exit Status of a Program
When you write a program that will be executed by the TNIX shell, you should" set the exit status
of the program so that useful information about how the program executed and terminated is
available to the shell. The shell assigns the exit status value to the $? shell variable when the
program finishes executing. Generally, the shell's program statements expect a program's exit
status to be set to:

o Tells the shell that the program executed properly, that is, no errors occurred
during execution; or

a non-zero Tells the shell what sort of error occurred during program execution.
value

Shell Programming-8560 Series System Users A High-Level Language

For example, the diff program sets the $? exit status variable to one of three states:

o Indicates that there are no differences between the two files that diff analyzed.

1 Indicates that there are differences between the two files that diff analyzed.

2 Indicates that an error occurred during program execution.

For example, in a shell program, the statement exit 1 sets the exit status of that program to 1.

In a C program, the statement exit(1); sets the exit status of that program to 1. Be sure to place
the statement # include <stdio.h> at the beginning of your C program if you use the exit
program statement.

A HIGH-LEVEL PROGRAMMING LANGUAGoE
The following paragraphs discuss how the shell functions as a high-level programming language.
A high-level language typically divides a program into two parts: the main part of the program,
which oversees and controls execution of other parts of the program, and subroutines or func
tions which carry out the actions specified in the main part of the program. In the following
paragraphs, we will apply this analogy to our discussion of the TNIX shell.

Using TNIX Commands as Subroutines
When you are working with TNIX, you are generally performing a specific task. This task can
entail anything from reading your computer mail, playing a computer game, or writing a weekly
status report to acquiring data from a laboratory instrument. Here's an analogy between a task
that you are performing when you are working in the shell and a task that a program performs.

• When you type one or more command lines in order to perform a task, you are using the shell
to direct the execution of your task. Similarly, the program statements in the main part of the
program direct the execution of a program's task.

• When the shell executes a specific command, such as Is or rm, that command is usually
executed as a subroutine called from the shell-execution control is temporarily transferred
to that command. Similarly, statements in the main part of a program may call specific
subroutines, temporarily transferring execution control to the called subroutine.

• When the command finishes executing, execution control returns to the shell. Similarly, when
a subroutine called by the main portion of a program finishes executing, execution control is
transferred back to the main portion of the program.

Because the shell is a program, a new shell program can be executed, or called, from the current
ly executing shell. Thus, recursive execution of the shell is possible. When you finish working in
the shell that you have just executed, program control returns to the calling shell. Each new shell
program is known as a subshell, or an "instance" of the shell.

4-37

Language Reference Shell Programming-8560 Series System Users

4-38

SHELL LANGUAGE REFERENCE SUMMARY
Some commands that you type, such as newgrp and cd, are part of the TNIX shell. Thus, you will
not find a program called newgrp, just as you will not find a program called for. These commands,
and the shell's reserved words, are summarized in the following paragraphs.

break [n] Exits from the enclosing for, while, or until loop. If you specify n, then exits
from the nth enclosing loop.

case variable-name in [pattern[: pattern]. ..]) command-list;;] ... esac
Executes the first command-list where the value of variable-name matches
the series of characters specified by pattern.

cd [new-directory] Changes the current directory to the directory specified by the HOME shell
variable. If you specify new-directory, changes to that directory.

continue [n] Resumes execution at the next iteration of the enclosing for, while, or until
loop. If you specify n, then resumes execution at the nth enclosing loop.

do Begins the body of the for, while, and until statements.

done Terminates the for, while, and until statements.

esac Terminates the case statement.

eval [shell-commands]

exec [commandJ

exit [n]

Executes shell-commands in the current shell, that is, as if you had typed
shell-commands from the keyboard. Suppose you have a file called set. vars
that contains the following lines:
a=$HOME/projects/laserweapon/source
b=$HOME/projects/laserweapon/object
c=SHOME/projects/laserweapon/documents
export abc

Now, instead of typing the shell commands listed in set.vars each time you
want to set these variables, you can use the following command line to set
these variables:

$ ~val 'cat set. vars '

Executes command in place of the current shell. .If you type exec Is right
after you log in, the Is command is executed, then you are logged out. If you
type exec Is while you executing a subshell, the Is command is executed,
then you are logged out of the subshell.

Exits from the currently executing shell program, and sets the shell $? exit
status variable to n. If you do not specify n, $? is set to the exit status of the
last program executed within the currently executing shell program.

Shell Programming-8560 Series System Users Language Reference

export [variable-list]

fi

Specifies that all shell variables named in variable-list are global variables;
that is, the values assigned to these variables are available to any programs
called by the current shell. Here is an example:

$ export TERM TERMCAP IU uP

If you do not specify variable-list, the names of variables that have been
exported in the current shell are printed.

Terminates the if statement.

for variable-name [in value-list;] do command-list; done

login [username]

newgrp groupname

This is the shell's for statement. The for loop executes command-list once
for each argument in value-list.

Logs username into TNIX, replacing the current shell with the login shell for
username. This command is equivalent to typing:

login: username

The login command executes the command specified in the seventh field of
a user's entry in the /etc/passwdfile when the user logs in. If a command is
not specified in the user's entry in the /etc/passwd file, /bin/sh (the TNIX
shell) is executed.

Changes the default group. Your user name must appear in the same line as
groupname in the jete/group file. Since this command is equivalent to
typing:

$ exec newgrp groupname
you will be logged out if you specify an invalid groupname. If you want to
temporarily log into a different group, then return to your original group, you
can type the following commands:

$ sh [work in a new shelll
$ newgrp groupname

(when you finish working in this new group ... 1
$ AD (type a CTRL-D)

(you are now logged into the original group)

read [variable-list] Reads one line from the standard input, assigning each blank- or
tab-separated word to each variable in variable-list. If you specify more
words in the input line than variables in variable-list, the extra words are
assigned to the last variable in the list. To see how this works, let's look at
an example:

$ read abc d
this is a line of text
$ set
a =thi s
b=is
c=a
d =1 in e 0 f t ext
$

4-39

Language Reference Shell Programming-8560 Series System Users

4-40

readonly [variable-list]
Variables specified in variable-list may not be altered. If you do not specify a
variable-list, all readonly variable names are printed.

set [-ceiknpstuvx [positional parameters]]
Sets specific parameters for the current shell. These parameters are valid
for both the set command and for the sh command. If you do not specify
pOSitional parameters or a specific option, prints the values of all currently
set shell variables. Here's an example:

HOME=/usr/1azarus1ong
IFS=

PATH=:/usr/1azarus1ong/my programs:/bin:/usr/bin:/usr/games
PS1=$
PS2=>

To find out which shell parameters are currently set, type:
$ echo $-

Use positional parameters to assign values to the $1, $2, $3, etc. shell
positional parameters. For example, if the current directory contains the
files init.c, io.c, and main.c, and you want to assign these file names to the
$1, $2, etc. shell positional parameters and then list the values of these
parameters, type:
$~
$a=O
$ for i

> a='expr 1 + $a'
> echo '$'$a = $i
> done
$1 = ini t. c
$2 = io. c
$3 = main. c

Here's a short definition of each parameter available with the set command:

-c string

-e

Commands are read from string. (The string should be en
closed in quotation (") marks if it extends over more than one
line.)

Exits from the current shell if any command generates a non
zero exit status ($1 not equal to 0). (You will be logged out if
you type set -e while in a login shell.)

Shell Programming-8560 Series System Users

-i

-k

-n

-s

-t

-u

-v

Language Reference

If the -i flag is. present or if the shell input and output are
attached to a terminal, then the currently executing shell is
interactive. In this case the terminate signal is ignored (so
that the command

$ kill 0

does not kill an interactive shell) and the interrupt signal (re
ceived by the shell when you type a CTRL-C) is caught and
ignored.

Places all variable assignments that are contained on the
same line as a command to be executed in that command's
environment. Usually, the variable assignments following a
command (on the same line as that command) are passed
literally, as parameters, to the command. The -k argument
allows you to place the variable assignment at any point on a
command line. For example, you can execute the compile
command by typing:

$ compile debug =true

In this command line, the "debug" variable is set to "true"
then passed to the compile program, but its value in the
current shell is not altered. Compare this to the following
command line:

$ debug=true; export debug; compile

In this command line, the "debug" variable is set to "true"
then passed to the compile program, and its value in the
current shell is not altered.

Reads but does not execute commands. Be careful-if you
type set -n, the shell will not execute any commands that
you type-you will have to type a CTRL-D to resume normal
operations.

If the -s flag is present or if no arguments remain, then com
mands are read from the standard input. Shell output is writ
ten to file descriptor 2, the standard error output.

Reads and executes one command, then exits. If you type
set -t, you will be logged out of the shell you are currently
executing.

Sets the $? exit status variable to 1 if you attempt to access
a shell variable that has not been set.

Displays shell input lines as they are read.

4-41

Language Reference Shell Programming-8560 Series System Users

4-42

-x Prints both commands and parameters as they are execut
ed. Shell metacharacters are expanded, as appropriate,
showing you the actual command that was executed.

Turns off the -v and -x options.

sh [-ceiknpstuvx [program-name] [program-parameters]]
Executes

shift

times

program-name program-parameters

in a subshell, with the execution parameters for the subshell specified by
one or more of the -ceiknpstuvx options. The shell's execution parameters
are defined in the above description of the set command.

Renames the shell positional parameters $2, $3, etc. to $1, $2, etc.

Prints the accumulated user and system times for processes run from the
shell.

trap [command-list] [signal1] [signal2j ...

umask [n]

If the the first argument to trap is a list of one or more commands, then
these commands (command-list) are executed whenever one of the speci
fied signals is received by the shell. (A signal is an integer in the range
0-15; these signals are listed in Table 4-2, earlier in this section.)

If command-list is the null string, the list of signals specified in this form of
the statement is ignored by the shell. (This is one way to make sure that a
CTRL-C or CTRL-D doesn't halt a shell program at the wrong time.)

If command-list is not specified, then any signals that were previously speci
fied in a trap statement are reset to their initial values (when the current
shell process was originally invoked).

For example, to make a program ignore the hangup signal (1), generated
when you type a CTRL-D, and the interrupt signal, generated when type a
CTRL-C, place the following command at the beginning of your shell
program:
trap •• 1 2

Specifies the default read/write/execute privileges, in octal, for each new file
that you create. For example, to create all files so that only you can
read/write/execute them, but no one else can, type:

$ umask 077

Note that the octal value is the complement of the file mode values specified
with the chmod command. If you do not specify n, umask displays the
current default file creation modes.

until control-list ;do command-list; done
Executes the commands in control-list, then the command-list, until the last
command in control-list returns a true value (zero exit status).

Shell Programming-8560 Series System Users

wait [process ID] Waits for one or more processes specified by process ID to finish executing.
If you do not specify process ID, then all currently active child processes
(created when the current shell executes a fork system call) are waited for.
The $? exit status shell variable is set to the exit status of the process
waited for.

while control-list ;do command-list; done

TABLES

Executes the commands in control-list, then the command-list, until the last
command in control-list returns a false value (non-zero exit status).

The following tables summarize the information presented in this section. Table 4-3 shows some
commonly used shell variables. Table 4-4 lists the shell metacharacters and reserved words.
Table 4-5 summarizes the shell grammar.

Variable Name

$#
$0
$1-$n
"$@"
"$*"
$?
$!
$-
$$
HOME
IFS
IU
KSH
MAIL
MORE
PATH
PS1
PS2
TERM

TERMCAP

uP

Table 4-3
Commonly Used Shell Variables

Description

Number of positional parameters
Name of the program being executed
Positional parameters 1,2, ... , n
Same as "$1" "$2" "$3" ... "$n"
Same as "$1 $2 $3 ... $n"
Exit status of the last-executed program
Decimal process number of last-executed background command
Currently set shell flags
Decimal process number of the currently executing shell
The HOME directory, also the default argument to cd
Internal field separator-characters used to delimit shell arguments
HSI I/O port currently connected to an 8540 IU or 8550 MDL
Default command line options for the TEKTRONIX Keyshell interface
Pathname of the directory that incoming mail is stored in
Default command line options for the more command
List of directories to search for executable commands
Primary shell prompt, usually set to "$ "
Primary shell prompt, usually set to "> "
Terminal-type variable, describes the capabilities of the terminal that you
are using
Pathname for the terminal description database file. The value of the TERM
variable specifies an entry in this database file
Current target microprocessor

Tables

4-43

Tables Shell Programming-8560 Series System Users

Table 4-4
Shell Metacharacters and Reserved Words

Type Syntax Description

SYNTACTIC I Pipe symbol-connects the output of one command to the I

SYMBOLS input of another command
&& Execute following command if preceding command returns

true, that is, sets the $? exit status variable to zero .. Execute following command if preceding command returns ..
false, that is, sets the $? exit status variable to zero

, Command separator -separates commands typed on the
same line

.. case delimiter -terminates a case label and associated com-"
mand list in a case statement statement

& Background commands-executes the preceding command
or parenthesis-enclosed command list concurrently

(...) Command grouping-parenthesis-enclosed commands are
executed in a separate shell process

< Redirect input from a file or file descriptor
« Redirect input from the following text
> Redirect output to a file or file descriptor
» Redirect output, appending to an existing file

PATTERNS * Match any character, including the null character, other than
the slash "/" character

? Match any single character
[...] Match anyone of the enclosed characters or range of

characters

SUBSTITUTION ${ ... } Substitute shell variable
I I Substitute command output ...

QUOTING \ Overrides the shell's interpretation of the next character
, ,

Overrides the shell's interpretation of the enclosed characters, ...
except for the apostrophe (') character

" " Overrides the shell's interpretation of the enclosed characters ...
except for the quotation (") mark, dollar sign ($), accent grave
('), and backslash (\) characters

RESERVED if then else elif fi
WORDS case in esac

for while until do done
{ }

4-44

Shell Programming-8560 Series System Users

Type

item

word

name

simple-command

command

pipe

andor

command-list

input-output

file

case-part

pattern

Defined As

word
input-output
name=value

Table 4-5
Shell Grammar

a sequence of non-blank characters

a sequence of letters, digits, or underscores starting with a letter or un-
derscore character

item
simple-command item

simple-command
command-list
(command-list)
for name do command-list done
for name in word ... do command-list done
while command-list do command-list done
until command-list do command-list done
ease word in case-part ... esae
if command-list then command-list else-part fi

command
pipe: command

pipe
andor && pipe
andor :: pipe

andor
command-list
command-list&
command-list; andor
command-list& andor

> file
<file
»file
«word

word
&digit
&-

pattern) command-list;;

word

pattern: word

Tables

4-45

Tables

Type

else-part

empty

digit

4-46

Defined As

Table 4-5 (Cant)
Shell Grammar

Shell Programming-8560 Series System Users

elif command-list then command-list else-part
else command-list
empty

0123456789

8560 Series System Users

Section 5
THE TNIX EDITOR

Page

Introduction 5-1

Basic Tasks .. 5-1
Starting the Editor. .. 5-1
Manipulating Text ... 5-2
Manipulating Files '.' .. 5-6
Exiting from the Editor ... 5-7
Summary of Basic Tasks ... 5-7

Advanced Topics. .. 5-9
More Ed Commands. .. 5-9
Global Commands. .. 5-12
More on Addressing .. 5-13
Regular Expressions. .. 5-14
Invocation ' ... 5-17
Supporting Tools. .. 5-18

Grep ... 5-18
Editing Scripts .. 5-19
Sed .. 5-19

Ed Reference Summary .. 5-20

TABLES

Table
No. Page

5-1 Ed Basic Editing Tasks ... 5-8
5-2 Ed Commands in Relation to the Current Line. .. 5-14
5-3 Ed Command Quick-Reference. .. 5-21
5-4 Search and Regular Expression Quick-Reference .. 5-23

5-i

8560 Series System Users

Section 5

THE TNIX EDITOR

INTRODUCTION
The TNIX text editor ed is a line-oriented editor that allows you to create any text-program
code, command files, or correspondence. Usually, you will enter the text, correct or modify it, and
store it in a file for immediate or future use.

This section presents the following topics:

• Basic tasks. Contains the few ed commands with which you can accomplish most editing
tasks.

• Advanced topics. Contains more ed commands, plus further explanations of features such
as line addressing and context searching. Also describes ed invocation in detail.

• Reference summary. Contains tables that summarize ed commands and features.

BASIC TASKS
Most editing tasks can be accomplished using only a few ed commands. This subsection shows
how to invoke the editor, manipulate text and files, and exit from ed, using a few basic com
mands. Additional ed commands can increase your speed and productivity while editing, and are
presented in the following subsection, "Advanced Topics".

Starting the Editor
To edit your file with ed, enter:

$ ed yourf ile

(For information about other ways of invoking ed, see the discussion "Invocation", in the following
subsection, "Advanced Topics".

If this is the first time you've edited yourfile, ed responds with a question mark and the filename:
$ ed yourfile
?yourfile

5-1

Basic Tasks
Manipulating Text TNIX Editor-8S60 Series System Users

5-2

The question mark is ed's feedback, which you will receive whenever ed can't open a file or finish
a command (in this case, yourfile is new, so ed couldn't open it).

If yourfile already exists, ed responds with the number of characters in the file:
$ ed your! ile
216

After you have entered ed, ed silently waits for commands. Ed commands are entered at the
beginning of a line, usually one command per line. (The p, I, 9, and v commands may appear on a
line with another command; these commands are explained later.)

Once you've entered ed, all the editing you do affects only a copy of the file you're working on.
This copy is known as the editing "buffer". Ed also remembers the last file given to the ed
command as the "current file".

No changes are made to the file you're working on until you enter a w (write) command. When you
do want to save editing changes, issue a w. At that point, the contents of the editing buffer are
sent to the current file, and the actual file is changed.

Set the Prompt Character. Ed does not display a prompt character unless you define one. You
can have ed prompt you for commands (which helps you identify the insert and command modes
more easily) by defining a prompt character with the P command. The prompt character appears
whenever ed is in command mode. There are two ways to set a prompt character: you can enter
the -p option when invoking ed, and the prompt character is an asterisk. For example:

$ ed -p testfi1e
385

You can establish a different ed prompt character by using the P command. For example, to set
the prompt character to >, enter

p>

Manipulating Text
The following pages describe the commands most often used to manipulate text during an aver
age editing session-commands for adding text, deleting text, substituting, and moving around in
the file. The basic commands for manipulating text are:

n
1

a
d

p
Itextl
s
u

address of a line-placed before commands
insert
append
delete
print
search for text
substitute
undo

TNIX Editor-8560 Series System Users
Basic Tasks

Manipulating Text

Address a Line. Ed is a line-oriented editor; that is, for any given command, ed has to know
which line to operate on. You can find out what line you're on by entering a period and an equals
sign:

• =

(Ed does not routinely display line numbers).

You can specify lines in four basic ways:

1. By entering nothing before the command. The command then affects the "current line" (last
line operated on by an ed command). You can find out the number of the current line at any
time by typing a period and an equals sign.

2. By entering a number before the command. The command then affects the line in the file with
that number. You may also enter two numbers with a comma in between. The command then
affects the range of lines from the first number to the second number, inclusive.

3. By entering a search command. The command following the search then affects the next line
in the file that contains the search item. The item may contain a sequence of literal characters
or a sequence of special characters that define a more general pattern. (See the discussion
under" Advanced Topics" for more information on searching and search patterns).

4. By entering special address characters which e~ recognizes as addresses. The address
characters are:

+

$
1,$

(period) the current line
the next line in the file
the previous line in the file
the last line in the file
all lines in the file (first to last, inclusive)

Typing RETURN prints the next line and is a handy way to step through the buffer. Typing a
"-" prints the previous line, and can step you backward through the buffer.

The following are some examples of giving an address to the d (delete) command:
d

3d
3,58d
INow is/d

deletes the current line
deletes 'line number 3
deletes lines 3 through 58, inclusive
deletes the next line in the file that contains

the words "Now is"

In this section, the letter n represents an addressed line in the file, whether the address is derived
from no specified address, a number, a range of numbers, a search string, or a special character.

For more information on addressing, refer to the heading "Addressing", under "Advanced
Topics".

5-3

Basic Tasks
Manipulating Text TNIX Editor-8560 Series System Users

5-4

Add Text (Insert and Append). The i command (insert) adds new text above the line. For
example, to add text above the current line, enter:

i
Now is the time
for all good

(period)

Your file will now contain the text you typed, but not the initial i command or the final period.

Similarly, the a command (append) adds new text below the addressed line. For example, the
following command sequence adds the new text "if not why not" after line 45 in the file:

45a
if not why not

Both the i and a commands place you in "insert mode" while you are adding text. You may leave
insert mode and return to command mode by entering a period at the beginning of a new line.

Delete Text. The d command deletes the addressed line or lines from the file. The following are
some examples of the d command:

d
3d
3,58d

deletes the current line
deletes line number 3
deletes lines 3 through 58, inclusive

Print Text. The p command displays the addressed lines on the terminal. The following are some
examples of the p command:

p
1,6p
l,$p

prints the current line
prints the first six lines in the file
prints all the lines in the file

Search for a String. If you know the word or phrase you want to edit, but you don't know the
number of the line that contains that word or phrase, you can find the line by using a search
command (also known as "context searching"). For example, the following command searches for
and prints the next line that contains the word "speling":

/spelingl
features could include a speling checker, or other tools

If "speling" is found, ed prints the line in which it was found (but not the line number), and that line
becomes the current line.

Forward searches start at the line after the current line, proceed to the end of the file, wrap
around to line 1, then proceed to the current line before giving up. If the item is not found, ed
prints its question mark for feedback.

You can search for any combination of letters, numbers, or other characters. You may also use a
search wherever you would use any other address, in front of a command. The command would
then operate on the line found by the search, if any. The following are examples of using search
strings as addresses:

I (mainline /
II040/d

finds and prints line containing "I mainline"
deletes line containing the number "1040"

TNIX Editor-8560 Series System Users
Basic Tasks

Manipulating Text

You may also form search strings that match patterns of characters, not just literal characters.
Such a string, containing special pattern-matching characters, is known as a "regular expres
sion". For more on regular expressions, refer to "Advanced Topics" in this section.

Substitute Text. The s command (substitute) allows you to change individual characters within a
line or a group of lines. This way, you can correct spelling errors or typing mistakes without
reentering the entire line.

For example, assume the current line contains
features could include a speling checker, or other tools

The following sequence corrects the misspelled word and prints the new current line:
s/speling/spellingl
p
features could include a spelling checker, or other tools

You may also append the p command to the s command:
s/speling/spelling/p
features could include a spelling checker, or other tools

The general form of the substitute command is
ns/search/replacel

where n is any addressed line or range of lines, search is the string of characters to be discarded,
and rep/ace is the string of char,gcters to be used instead. If you omit the address, the current line
is assumed. If you omit the search string, ed uses the most recent search string:

Ispelingl
sllmisspelling/p

searches for next line containing "speling"
substitutes "misspelling" for remembered "speling"

If you give a range of addresses to the s command, the command will make the substitution on
the first occurrence of the search item in each addressed line. (To make a substitution for every
occurrence in the line, see the 9 (global) command).

The following are examples using the s command:
Nowxx is the original line
s Ixxl I deletes the two extra "x"s
32s/hte/thel changes "hte" to "the" in line 32
l,$s/file-name/filenamel

changes the first occurrence of "file-name" in each
line of the file to "filename"

Undo. The u command (undo) restores the current line to the state it was in before the last
substitution. The following sequence shows an example:

p
features will be available at the first release
s/will/will not/p
features will not be available at the first release
u
p
features will be available at the first release

Undo works only if the last line substituted is the current line.

5-5

Basic Tasks
Manipulating Files TNIX Editor-8560 Series System Users

5-6

Manipulating Files
The basic commands for manipulating files are:

e
r
w

edit another file
read the contents of a file into the file being edited
write the contents of file being edited to another file

Edit Another File. Once you are already in ed, you can use the e command to bring in another file
for editing.

~
If you have text already in the buffer, it will be lost by the e command. If you want to
save the text already being edited, make sure you write it (w command) into a file
before using the e command.

For example, the following command brings file test2 into the buffer for editing:
e test2

test2 then becomes the current file. (You can find the name of the current file at any time by
entering the f command).

Read Text from Another "File. The r command reads the contents of a file into the editing buffer.
An address may be given to the r command, in which case the new file is read in below the given
address. With the e command, the old contents of the buffer are not lost or overwritten. The
following are examples of using the r command:

r myfile
32r bplate
Ihere/r txt

adds contents of myfile at the end of the file being edited
adds contents of bplate after line 32
adds contents of txt after next line that contains the word "here"

Write to a File. The w command writes the contents of the editing buffer to the named file. An
address or range of addresses may be given to the w command. If a single address is given, that
line is written. If a range of addresses is given, all lines in the range are written.

The following are examples of using the w command:
w

w myfile
l,32w bplate

writes all lines in buffer to the current file
writes all lines in buffer to the file myfile
writes lines 1-32 to the file bplate

After writing out the specified lines, ed responds with the number of characters written.

TNIX Editor-8560 Series System Users
Basic Tasks
Summary of Basic Tasks

Exiting from the Editor
To end a typical editing session, you save the results of your editing (write to the current file) and
exit from the editor. The commands you use when quitting the editor are:

w
q

write (save) to current file (optional)
exit from ed

You use both wand q, in that order, to save the results of your edit session and return to TNIX.

If you haven't issued a w command since your last editing command and you try to quit, ed
responds with a question mark to remind you to write first. If you don't want to save the changes
you've made, enter q again to exit from the editor (ed only reminds once).

Summary of Basic Tasks
In summary, a basic editing session takes the following form:

$ ed myfile

[number of characters in myfile]

[editing commands]

w

[number of characters written]
q

$

5-7

Basic Tasks
Summary of Basic Tasks TNIX Editor-8560 Series System Users

5-8

Table 5-1 summarizes the ed commands used to perform basic editing tasks.

Table 5-1
Ed Basic Editing Tasks

Task Command Usage Result

Invoking Ed ed file Invokes ed on file.

P[x] Sets prompt character to x.

Manipulating Text n command Addresses a line-ed command is done on line
n. n can be nothing (the current line), a single line
number (3), a range of line numbers (3,58), or a
search string (/string/).

ni Inserts text before line addressed by n.
text ...

na Appends text after line addressed by n.
text ...

nd Deletes line(s) addressed by n.

np Prints line(s) addressed by n.

/string/ Searches for next occurrence of string and
prints line. String may be a regular expression.

n s/ search/ replace/ Substitutes replace for first search in lines ad-
dressed by n.

u Undoes last substitution, if that line is current
line.

Manipulating Files e file Brings file into the buffer for editing. Destroys
previous contents of buffer (if any).

n r file Appends file after line addressed by n.

n w file Writes lines addressed by n to file.

Exiting from Ed w Writes to current file (saves changes).

q Exits from ed.

The previous discussion showed you the basic ed commands to accomplish ordinary tasks. The
following subsection presents information you will need to make maximum use of ed's
capabilities.

TNIX Editor-8560 Series System Users
Advanced Topics

More Ed Commands

ADVANCED TOPICS
This subsection presents the following topics:

• additional ed commands, error messages, and interrupted commands.

• global commands (commands that operate on the entire file).

• more information on addressing.

• a discussion of regular expressions and their uses.

• a description of optional ways to invoke ed.

• software tools that support ed.

More Ed Commands
The following paragraphs briefly explain ed commands that were not included In the "Basic
Tasks" discussion. Each command entry includes a descriptive phrase and examples. For more
detailed information on all ed commands, refer to Table 5-3 at the end of this section, or type man
ed for online information that describes the editor.

This subsection discusses the following ed commands:
c
m
t

j

k
1

?
/I

??

!sh

change text
move text
transfer (copy) text
join lines
mark a line, for addressing that line
list (print) lines, including characters that are normally not displayed
search backward
repeat last forward search
repeat last backward search
execute a single TNIX command
execute a sequence of TNIX commands (enter CTRL-O to return to ed)

Change Text. The c command changes the text of the addressed lines. Like the i and a com
mands, c puts you in insert mode while you enter new text, and you terminate insert mode by
entering a period at the beginning of a new line. The following are examples of using the c
command:

c
Now

9,/now/c

if not

+c

how now

changes current line to "Now"

changes all lines from line 9 to the next line
that contains the word "now", to the text "if not"

changes next line to "how now"

5-9

Advanced Topics
More Ed Commands TNIX Editor-8560 Series System Users

5-10

Move Text. The m command moves the addressed lines to a new place in the file. Some exam
ples are:

m32
5,25m200

moves current line to right after line 32
moves lines 5-25, inclusive, to right after line 200

Copy Text. The t command copies (transfers) the addressed lines to a new place in the file. Some
examples are:

t32
5,25t200

copies current line to right after line 32
copies lines 5-25, inclusive, to right after line 200

Join Lines. The j command joins the addressed lines (removes newlines). Some examples are:
j joins current line with next line
- , • j joins previous line and current line
1 ,3 j joins lines 1-3 (removes two newlines)

Ed also lets you split a single line into two or more shorter lines by "substituting a newline". For
example, to break a line between "x" and "y", enter:

s/xy/x \

yl

The "\" at the end of the first line makes the newline no longer special. That is, ed no longer takes
the newline as signaling the end of the s command, but reads it as a literal newline to be included
in the substituted text.

Mark Text. The k command puts an invisible mark at the specified line, so you can later address
that line by its mark name. Marks are useful for "cutting and pasting" tasks-they allow you to
move or copy blocks of text, without having to keep track of specific line numbers. A mark
remains associated with a line only while you are in the editor, or until you delete the line or mark a
different line with that mark name. Mark names are single characters.

Some e-xamples of setting marks with the k command:
ka
IMajor/kb
lOOka
200kb
300kc

marks current line with mark a
marks next line containing "Major" with mark b
marks line 100 with mark a
marks line 200 with mark b
marks line 300 with mark c

Some examples of using marks are:
'a
, a, 'bp

, a, 'bm$

., 'atO

'a, 'bt'c

goes to mark a
prints lines from mark a to mark b
moves lines from mark a to mark b to the end of the file
copies (transfers) lines from current line (period) to mark a,

to the beginning of the file
copies (transfers) lines from mark a to mark b after mark c

TNIX Editor-8560 Series System Users
Advanced Topics

More Ed Commands

Print Text. The I command displays the contents of the editing buffer, including characters that
are normally non-printing, such as control characters. Any characters that are normally non-print
ing are represented by a backslash followed by the octal representation of that character. For
example:

p
(rings a bell)

1

\07

if the p command results in just a bell ring,
the line probably contains a bell character

shows the octal representation of the "bell" character

Search Backward. In addition to forward searches, ed can also search backwards in the file. For
example:

?Somehow? searches for previous occurrence of "Somehow"
(next occurrence, backward)

Repeat Searches. Ed provides several shorthand notations for repeating searches, so you don't
have to reenter the search command:

1/

??
repeats last forward search
repeats last backward search

Semicolon. In ed, the semicolon ";" is used to separate two searches in an address, when two
search strings are used to specify a range of lines. (If you use a comma, each search string prints
its line, and the first found line is not remembered.) For example:

/ab/;/bc/p
/thing/;//
O;/thing/

prints the range of lines from "ab" to "bc"
finds and prints the second occurrence of "thing"
finds and prints the first occurrence of "thing"

Executing Other TN IX Commands. Sometimes you may want to execute one or more TNIX
commands without leaving ed. You may do this with the I and Ish commands, also known as
"escaping to the shell":

!command
Ish

executes command, then returns to ed
executes TNIX commands until CTRL·D is entered,

then returns to ed

When the single shell command (!) is finished, or when you enter CTRL-D to get out of the new
shell (!sh), ed prints an exclamation point to tell you it is ready to accept more ed commands.

The following are some examples of using "shell escapes":
!date
Wed Aug 30

! mail j oeb
Break any time now.
<CTRL-D>

Ish
S cp filel file2
S rm temp·
S <CTRL-D> !

shows current date, then returns to ed

sends a quick note to joeb., then returns
to ed

copies and removes some files, then returns
to ed

5-11

Advanced Topics
Global Commands TNIX Editor-8560 Series System Users

5-12

Error Messages
Ed's message, when it doesn't understand or cannot finish a command, is

?

With some exceptions, you cannot receive any more error information, but once you are familiar
with the editor, errors become obvious as soon as the question mark appears. Here are some
situations where you might receive a question mark:

after a search ed couldn't find the object being searched for

after an e command ed couldn't open the file-it may be new, or you may not have ac
cess to it

after a q (quit) command you have not done a w since your last command

after any command command may be misspelled or have wrong syntax

Interrupting the Editor
If you enter CTRL-C while ed is executing a command, the command is interrupted and ed
restores the file as much as possible to what it was before the command began. However, some
changes are irrevocable-if you are reading or writing a file or making substitutions or deleting
lines, these will be stopped in some clean but unpredictable state. The current line mayor may not
be changed.

In the case of the p command, the current line is not changed until the printing is done. For
example, if you enter the command to print the whole file on the screen

l,$p

and enter CTRL-C when you see an interesting line, that line is not necessarily the new current
line. The current line is left where it was when the p command got underway, because the p
command was interrupted before it could finish.

Global Commands
The 9 command (global) executes one or more ed commands on all lines in the current file that
match a given string. For example:

g/peling/p
g/peling/s//pelling/gp

prints all lines that contain "peling"
substitutes for every occurrence of "peling"

on every line, then prints each corrected line

The initial "g" in a global search means "search throughout the entire file for the following string,
but operate only on the first instance on each line". The concluding "g" means "operate on each
instance on a line". The concluding "p" prints every changed line when an initial "g" is used, but
prints only the last changed line if "1,$" is used.

TNIX Editor-8560 Series System Users
Advanced Topics

Addressing

The v command is similar to "9", except that commands execute on every line that does not
match the string following v.

The following are examples of global commands:
/ s t ring / searches for next occurrence of "string" and prints

the line
g / s t ring / p searches for and prints every line that contains

"string"
v / s t ring / p searches for and prints every line that does not

contain "string"
g / s t r 1/ s / / s t r 2/ p searches for every line that contains "str1",

substitutes "str2" for first occurrence of
"str1" on each line, and prints each altered line

g/strl/s/ /str2/gp same as preceding, except substitutes "str2"
for every occurrence of "str1" on each line

1 • $ s / s t r 1/ s t r 2/ gp same as preceding, except prints only the
last line substituted. Issues error

, message if "str1" not found

Multiline Global Commands. Sometimes you want to globally execute more than one command.
In that case, enter each command on its own line, with a backslash at the end of each line except
the last. For example, to change "x" to "y" and "a" to "b" on all lines that contain the word "thing",
enter:

g/thing/s/x/y/\
s/a/bl

It is also possible to execute a, C, and i commands under a global command; as with other
multi-line constructions, all you need to do is to add a backslash at the end of each line except the
last.

More on Addressing

Address Arithmetic. You can save typing when specifying lines by using "-" and "+" alone as
line numbers. ,,-" is a command to move up one line in the file, while" +" moves down (forward)
one line. You can string several minus (or plus) signs together to move backward (or forward) that
many lines. In addition, "+" and "-" can be combined with searches using "/ .. J" and "?.?", and
with "$".

Some examples:
moves up three lines

- 3 moves up three lines
- •• s I ba dIg 0 0 d I changes "bad" to "good" on the previous line

and on the current line
Ithing/-- finds the line containing "thing", and positions

you two lines before it

5-13

Advanced Topics
Regular Expressions TNIX Editor-8560 Series System Users

5-14

Current Line. You may want to know how a command will affect the current line without actually
executing the command. For a complete listing of how a command will affect the current line, see
Table 5-2.

Table 5-2
Ed Commands in Relation to the Current Line

Command Sets Current Line To

a append last line input; if no input, last addressed line

c change last line input; if no input, line after last line deleted, or $

d delete line after last line deleted, or $

e edit last line of buffer

i insert last line input; if no input, line before addressed line

j join resulting line

I list last line listed

m move new location of last line moved

p print last line printed

r read last line read

Istrl search last line matching search str

s substitute last line substituted

t transfer last line of copy

u undo unchanged

w write unchanged

I escape to shell unchanged

Regular Expressions
When searching for items within your file, you may form search strings that will match patterns of
characters, not just literal characters. Such a string, containing special pattern-matching charac
ters, is known as a "regular expression". Regular expressions are used in other software tools
besides ed, such as grep and sed.

TNIX Editor-8560 Series System Users
Advanced Topics

Regular Expressions

The following is a list of the special characters used in forming regular expressions:
1\ Matches the search item only if the item occurs at the

beginning of a line
$ Matches the search item only if the item occurs at the end

of a line
(period) Matches any single character
Matches 0 or more characters (repetition character)

[] Matches anyone of the characters within the brackets
8: Used only on the right side of a substitution,

where it means "whatever was matched on the left side"
\ (\) Encloses or tags part of the search item for later use

in the replacement item
\1 Used only on the right side of a substitution,

where it means "item enclosed in first pair of \(\) in
left side". \2, \3, etc. are also available

The backslash "\" removes the special significance of these pattern-matching characters (includ
ing a backslash itself). If' you need to use one of the special characters in a substitute command,
you can remove its special meaning by preceding it with the backslash. For example, to change a
group of three periods to a semicolon, enter:

51 \. \. \.1;1

If BACKSPACE and CTRL-U are the character-erase and line-kill characters on your terminal, you
have to type a backslash before entering a BACKSPACE or CTRL-U in commands to ed if you
want the BACKSPACE and CTRL-U characters to be taken literally.

NOTE

When you are adding text with a or i or c (that is. when you are in insert mode). ed
accepts the special characters literal/y. You should not combine them with backslashes
unless you really want the backslashes to appear in your text.

The following paragraphs briefly discuss each of the special characters used in regular expres
sions. Table 5-4 at the end of this section summarizes special characters in regular expressions.

/\ (match at beginning of line). The caret in a search string tells ed to find the following string
only if it occurs at the beginning of a line. Used this way, the caret must be the first character of
the regular expression.

For example:
I "meansl
Imeans AI

finds "means" only if "means" occurs at beginning of line
finds literal string "means'"

$ (match at end of line). The dollar sign in a search string for a substitute command tells ed to
find the string only if it occurs at the end of a line. Used this way, the dollar sign must be the last
character of the regular expression.

Imeans$1
I$meansl

matches "means" only if "means" occurs at end of line
matches literal string "$means"

5-15

Advanced Topics
Regular Expressions TNIX Editor-8560 Series System Users

5-16

• (match any character). A period in a search string matches any single character. If you want to
search for a literal period, precede it with a backslash. For example:

1.1
I \. I

matches any character
matches a literal period

* (match zero or more characters). The asterisk in a search string matches zero or more
instances of the character immediately before the asterisk. Again, if you want to search for a
literal asterisk, precede it with a backslash. For example:

I. * I
Ix-*I
I \ * I
I * I

matches any characters at all, no matter how many
matches zero or more minus signs after an x
matches a literal asterisk
won't match anything-improper syntax for a search item

Because the asterisk and its preceding character allowed to go ahead and operate even on zero
matches, some substitutions can have unexpected results. For example:

abc
~/x*I-/p

-abc

s/x*I-/gp
-a-b-c-

original line
matches zero occurrences of x as first character

in the line, so a minus is substituted for the
first zero instance

matches zero occurrences for every character in the line,
so a minus is substituted for every zero instance

[] (match characters in a class). The square brackets tell ed to match a character if it is part of
the class of characters defined within the brackets. Any characters can appear within the square
brackets, and none is special. Even the backslash loses its significance.

The following are examples of using classes of characters:
1[0-911

/l 0-9 I * I
/la-zll
/la-zl *1

/l A-Z 1/
/l • [I I

/l-+*\/I

matches a single digit
matches zero or more digits
matches a single lowercase letter
matches zero or more lowercase letters
matches a single uppercase letter
matches a period or a left bracket
matches anyone of arithmetic symbols - + * I

To include a "]" within the brackets, make it the first character after the left bracket. To include a
hyphen "-" in brackets, make it either the first or last character.

An initial caret within square brackets means "all characters except the following characters". For
example,

["0-9 I

stands for "any character except a digit".

\(\) (tag part of a search item). You can use the backslash-parentheses within a search item to
"tag" the enclosed part. Later, the tagged pieces can be used as replacement parts.

In the left side of a substitution, \(and \) surround the matched item to be tagged. In the right side
of a substitution, \1 refers to the first tagged item, \2 refers to the second tagged item, and so on.

TNIX Editor-8560 Series System Users
Advanced Topics

Regular Expressions

The following example converts a text file containing both first and last names to a file containing
last names only, using a global search and substitution with regular expression characters (includ
ing backslash-parentheses).

Doe, John original lines
Queue, Suzy
g / 1\ \ (I 1\, J • \). • / s / / \1 / p changes original lines to last names only
Doe
Queue

Here is a breakdown of the global search and substitution, presenting the characters of the global
command in the order in which they appear:

g/
1\

\ (

I 1\, I •
\ }

sl!
\l

/

P

Invocation

for each line in the file, search for,
at the beginning of a line,
and tag,
a string of zero or more characters that are not commas (last names)
end the tag
match the rest of the line
end the global search item
substitute for that entire searched item (original line)
the tagged piece (last name only)
end the substitution
and print the changed line

The usual way to invoke ed is to enter an ed command with a file to edit:
$ ed intro.ms
?

However, there are more ways to invoke ed. The following paragraphs discuss ed's invocation
options.

Syntax for Ed Command
The formal syntax for the ed command is:

ed [-cpx] [file]

-c Suppresses the printing of character counts by the ed commands e (edit), r (read),
and w (write).

-p Causes ed to turn on its prompt character (*).

-x Used only with the x command of the optional 8560 Series MUSDU Native Program
ming Package. If -x is present, an x command is simulated first to handle an
encrypted file.

5-17

Advanced Topics
Supporting Tools TNIX Editor-8560 Series System Users

5-18

Examples
$ ad -p main.ps
25546

$ ed -cp main.ps

$ ed -c main.ps

Supporting Tools

Invokes ed on file main.ps, turning
on the asterisk as the prompt character.

Invokes ed on file main.ps,
suppressing the printing of the number of
characters in main.ps.

Invokes ed on file main.ps,
suppressing the printing of the number of
characters in main.ps,
and not displaying a prompt character.
Ed silently waits for commands.

TNIX offers several tools and techniques that support the editor. Once you know ed, these tools
are easy to use, because they are all based on the editor. The following psragraphs contain some
examples of these tools.

Grep
Sometimes you want to find all occurrences of a word or pattern in a set of files. To edit each file
separately can become time-consuming, and may be impossible because of size limits in ed.

The grep command provides a tool for this task. "grep" comes from the generic ed global
command:

g/re/p (global/regular expression/print)

Grep searches through a set of files and prints every line that contains the specified pattern. The
following example prints lines containing the word "thing" in file1, file2, etc:

$ grep 'thing' filel file2 file3 file4

Grep also shows the filename in which the line was found, so you can edit it later.

The grep search pattern can be any pattern permissible in ed, because grep and ed use the
same mechanism for pattern searching. It is wise to enclose the pattern in the single quotes ' .. .',
because some characters also mean something special to the TNIX shell. If you do not quote the
regular expression, the shell may try to interpret the characters as TNIX commands before grep
can process them.

To find lines that don't contain a pattern, use the -v option of grep. For example, to find all lines
that do not contain "thing", enter:

$ grep -v 'thing' filel file2

As another example, the following command displays all lines that contain "x" but not lOy":
$ grep x file ••• : grep -v y

Grep has many options; for additional information, type man grep.

TNIX Editor-8560 Series System Users
Advanced Topics

Supporting Tools

Editing Scripts
If you must perform repeated editing operations on a set of files, the easiest way is to make up a
"script", a file that contains the operations you want to perform. You can then apply this script to
each file in turn. For example, suppose you want to change every "file" to "FILE", and every
"Tnix" to "TNIX" in a large number of files. Then put into a file called "script", the lines

g/file/s//FILE/g
g/Tnix/s//TNIX/g
w
q

There are two ways to invoke ed on the files using the commands in the "script":
$ ed filel < script

or

$ ed file2 < script

$ for i in filel file2
> doe d $ i <s C rip t
> done
$

Sed
Sed ("stream editor") is a version of the editor with restricted capabilities but which can process
input files of unlimited size. Sed copies its input to its output, applying one or more editing
commands to each line of input. It handles input too large for ed , and performs conditional testing
and branching.

Sed is available only in the optional 8560 Series MUSDU Native Programming Package. For more
information, refer to the Native Programming Package User's Manual.

5-19

Ed Reference Summary TNIX Editor-8560 Series System Users

5-20

ED REFERENCE SUMMARY
Table 5-3 summarizes each ed command. The tables in this subsection use the following
notation:

Boldface

Italic

Brackets []

n

characters are entered literally.

characters represent parameters for you to enter.

surround optional parts of the command.

represents an address: a line, range of lines, search string, mark, or special
address character.

Line addresses represented by n have the following formal syntax:

$
number

letter
Iforwardl
?backward?

t
starting

place

[{ ± } [number]]

1
offset

In the absence of a starting-place, "the current line" is assumed. In the absence of an offset, 1 is
assumed. For example:

?here?-2

addresses the second line before the first occurrence of "here", searching backwards.

Table 5-4 summarizes searches and regular expressions in ed.

As additional reference, you will find an alphabetical list of ed commands in the online manual
page by entering the command man ed.

TNIX Editor-8560 Series System Users Ed Reference Summary

Table 5-3
Ed Command Quick Reference

Task Command and Usage Result

Create Text a na Appends text below line n.
text

i ni Inserts text above line n.
text

Change Text c nc Changes text of line(s) n.
text

d nd Deletes line(s) n.

s nsl str1! str2! Substitutes str2 for str1 in line(s) addressed
by n.

u u Undoes substitution on last line substituted, if
that line is current line.

Search I Istringl Searches forward for next occurrence of
string in file, prints line if found.

II II Repeats last forward search.

? ?string? Searches backward for previous occurrence
of string in file, prints line if found.

?? ?1 Repeats last backward search.

Move Text m nmd Moves (appends) line(s) addressed by n to
destination line d.

t ntd Transfers (copies and appends) line(s) to des-
tination line d.

j nj Joins addressed range of lines or, if no lines
are addressed, joins current line with follow-
ing line.

Print Text I nI Lists addressed lines.

p np Prints addressed lines.

5-21

Ed Reference Summary TNIX Editor-8560 Series System Users

Table 5-3 (Cont)
Ed Command Quick Reference

Task Command and Usage Result

Manipulate Files e e [file] Edits a new file-loses old contents of buffer.

E E [file] Edits a new file-loses old contents of buffer.
No warning if you haven't written (saved) old
contents first.

f f Prints current filename.

f f file Changes current filename to file.

r nr [file] Reads (appends) file at addressed line.

w rrw [file] Writes addressed lines to file. Default is entire
contents of buffer.

W nW [file] Writes (appends) addressed lines to file. De-
fault is entire contents of buffer.

Miscellaneous P Px Sets prompt character to x.

k nka Marks addressed line with symbol a. This line
now may be addressed as 'a.

9 ngl expr/ cmds Global commands: within range of lines ad-
dressed by n, executes cmds on each line
containing expr. cmds are any ed commands
except 9 or v. expr is any regular expression.

v nv/ expr/ cmds Global commands: within range of lines ad-
dressed by n, executes cmds on each line not
containing expr. cmds are any ed commands
except 9 or v. expr is any regular expression.

x x key Uses key to encrypt and· decrypt files when
using W, r, and e commands.
Used only with the crypt command of the Na-
tive Programming Package.

= n= Returns number of addressed line.

I !command Escapes to TNIX shell and executes
command.

Ish Ish Escapes to a new TNIX shell and executes
TNIX commands until CTRL-D is entered.

Exit from Ed q q Exits from ed.

Q Q Exits from ed. No warning if you haven't writ-
ten (saved) first.

5-22

TNIX Editor-8560 Series System Users Ed Reference Summary

Table 5-4
Search and Regular Expression Quick-Reference

Command Result

Searches /string/ Searches for first occurrence of string, beginning at ". + 1 " .

?string? Searches backwards for first occurrence of string, beginning at
".-1" .

g/string/ Searches for every line containing string.

v/string/ Searches for every line not containing string.

Regular (period) Matches any single character.
Expressions

\ Removes the special significance of the following character (ex-
cept "(", ")", or a digit).

[chars] Matches if the character found is in the set of chars.

1\ Matches at the beginning of the line.

$ Matches at the end of the line.

* Matches a sequence of 0 or more occurrences of the preceding
character.

& Used on the right side of a substitution command, "&" matches
the string on the left side.

\(\) 8ackslash-parentheses surround an identifiable part of the
search string (left side) in a substitution. On right side of the
substitution, \1 represents item in first pair of backslash paren-
theses, \2 represents item in second pair, etc.

5-23

8560 Series System Users

Section 6
MAINTAINING FILES (MAKE)

Page

Introduction ... 6-1

The Make Process. .. 6-2
An Example. .. 6-2
Terminology. .. 6-3

The Makefile .. 6-4
Entries .. 6-5

Commands. .. 6-6
Comments. .. 6-7
Macros ... 6-7
Suffix Rules. .. 6-9

Invoking Make .. 6-11

Applications. .. 6-12

Reference Summary .. 6-14

ILLUSTRATIONS

Fig.
No. Page

6-1 Relationships between files in a software program .. 6-2
6-2 Makefile for example software program 6-3
6-3 The parts of a makefile '.' 6-4

TABLES

Table
No. Page

6-1 Make Special Characters .. 6-14
6-2 Make Reserved Words. .. 6-15

6-i

8560 Series System Users

Section 6

MAINTAINING FILES (MAKE)

INTRODUCTION
When software programs are broken down into small, manageable files, a change to any of those
files usually means that other files need to be updated before you can get a clean new version. If
you maintain the project by hand, every change requires that you reprocess all the files (which is
wasteful and time-consuming), or that you identify only the files that need redoing and do those
(which is error-prone and time-consuming).

The TNIX make utility program eases the task of updating and maintaining files. Make can
automatically find out which files are affected by a change, and do whatever is necessary to
update those files: compile, assemble, link, install, etc. Make can also perform housecleaning
tasks: remove temporary files, run test scripts, print listings, change the "last modified" date of
files, archive, and so on.

Make needs to be told what files affect other files, and what to do if a file is out of date. You do
this just once by creating a "makefile" (also known as a description file). The makefile spells out
which files "depend on" other files, which commands update a file, and other information (such as
how to generate files according to your suffix conventions).

Once you have created the makefile for a set of files, the simple command make updates all
affected files. You never again have to manually compile, assemble, or link. (You can also run a
make command in the background.)

This section presents the following topiCS:

• The Make Process. Shows the steps involved in using make, an example of a set of files,
and a makefile that simplifies maintenance of the files.

• The Makefile. Explains the parts of a makefile.

• Invoking Make. Explains how to invoke the TNIX make program.

• Applications. Shows examples of using make to maintain listings and archives.

• Reference Summary. Contains tables summarizing make features and special characters.

6-1

The Make Process Maintaining Files-8560 Series System Users

6-2

THE MAKE PROCESS
The make process includes the following steps:

1. Collect the files that depend on each other, or that are interrelated, into a single directory. (By
default, make looks in the current directory for any files it needs and places in it any files it
creates.)

2. Using a text editor, create a makefile in that same directory. You can name the makefile
"makefile" or a name of your own choosing (make automatically looks for a file named
"makefile").

3. Whenever you need a clean version of any of the files, such as after an editing session, issue
the single command

$ make

4. (Optional) You may reedit the makefile if you change the names of your files, or if you change
the commands needed to update the files.

An Example
Suppose you have a program called ezsoftware. For this program to be up-to-date, six other files
must also be up-to-date:

three assembler source files-main.asm, sub 1.asm, and sub2.asm
assembled object files-main.obj, sub1.obj, and sub2.obj

Figure 6-1 shows how these files are related.

main.asm sub1.asm sub2.asm

main.obj sub1.obj sub2.obj

ezsoftware

Fig. 6·1. Relationships between files in a software program.

In this example, program ezsoftware depends on the current versions of files main.obj.
subl.obj. and sub2.obj. Those three files depend on the current versions of files main.asm.
sub l.asm, and sub2.asm. The make program provides automatic, programmable updating of
all the files.

4730·15

Maintaining Files-8560 Series System Users The Make Process

Figure 6-2 shows a makefile that defines which files in the example in Figure 6-1 depend on which
other files, and provides information necessary to update these files.

makefile for example software project
ezsoftware : main.obj subl.obj sub2.obj

link -0 ezsoftware -0 main.obj subl.obj sub2.obj
command to update ezsoftware if object files
have been changed

main.obj : main.asm
asm main.obj " main.asm # command to update main.obj

if main.asm has been changed
subl.obj : subl.asm

asm subl.obj " subl.asm # command to update subl.obj
if subl.asm has been changed

sub2.obj : sub2.asm
asm sub2.obj " sub2.asm # command to update sub2.obj

if sub2.asm has been changed

Fig. 6-2. Makefile for example software program.

This makefile defines which files affect other files, and tells make how to update the files. For
example, the program ezsoftware depends on main.obj, subl.obj, and sub2.obj. To make
program ezsoftware completely current, the three object files are linked together if any of them
is more recent than the program.

The makefile for the example software project specifies four "targets", or objects to be "made":
the program ezsoftware and the object files main.obj, sub1.obj, and sub2.obj. Each of the four
targets has its own "entry" in the makefile, with each entry containing the name of the target, the
list of files the target depends on, and the commands needed to update that target.

In this example, if only the file main.asm has been changed, then the make command produces
the following:

$ make
asm main.obj main.asm
link -0 ezsoftware -0 main.obj subl.obj sub2.obj

Terminology
The following paragraphs describe terms used throughout this section.

Target. The file to be updated (e.g., a new program) or the action to be taken (e.g., installing or
printing). The main function of make is updating various targets.

Makefile (or Description File). A text file that tells make which files are out of date with respect
to each other, and what to do to make the files current.

6-3

The Makefile Maintaining Files-8S60 Series System Users

6-4

Dependency. A file that a target depends on.

Dependency Line. The line in a makefile that associates a target(s) with its dependency(ies).
Targets are to the left of the colon(s), dependencies to the right.

Dependency List. The list of files on which a target depends.

Entry. A fragment of a makefile that contains the target, its dependencies, and the commands to
update the tru:§et.

Suffix Rules. A special type of entry in a makefile that tells make the general method to trans
form files of one suffix to files of another suffix. (For example, to produce an .obj file from an .a5m
file, use the asm command).

THE MAKE FILE
A makefile contains four kinds of text: entries, which are required, and three kinds of optional
information: comments, macros, and suffix rules. The following pages discuss each of these parts
of a makefile.

Figure 6-3 shows the contents of a makefile that includes each possible part.

macro definitions
SOURCES = main.asm subl.asm sub2.asm
OBJECTS = main.obj subl.obj sub2.obj
suffix rule
.SUFFIXES : .obj .asm
.asm.obj :

asm $*.obj , , $<
entries (two entries in this makefile)
program a $(OBJECTS)

link -0 ezsoftware -0 $(OBJECTS)
modules: $(SOURCES)

Fig. 6·3. The parts of a makefile.

Makefiles must contain entries, and may also contain macros, comments, and suffix rules. The
optional parts can increase the makefile's clarity and flexibility.

Maintaining Files-8560 Series System Users The Makefile

Entries
The makefile must have an entry in order for make to work. An entry consists of a dependency
line and zero or more command lines. In Fig. 6-3, the following fragment is an entry:

program: $(OBJECTS)
link -0 ezsoftware -0 $(OBJECTS)

dependency line
command line

The dependency line contains one or more targets, one or two colons, and zero or more depen
dencies. Both targets and dependencies are strings of letters, digits, periods, and slashes.

The command line immediately follows a dependency line and begins with a tab. More than one
command line may follow a dependency line, but each command line must begin with a tab. The
format for an entire entry looks like this:

targetl target2 : depl dep2 dep3
< tab > commandl
< tab > command2
target3 : dep4 dep5
< tab > commands

When any line in an entry becomes too long, you can continue it by usinga backslash: if the last
character of a line is a backslash, then make interprets the backslash, newline, and following
blanks and tabs as a single blank separating successive words.

Use of Colons in Dependency Lines
A single colon requires that the target appear in only one entry. A double colon shows that the
target appears in more than one entry. A target must not appear on both a single-colon and a
double-colon line.

For example, the following entries are incorrect, because target2 occurs in two different entries:
targetl target2 : depl dep2

commandl
target2 : dep3

command2

One way to fix this is by consolidating the dependency and command lines with a single colon:
targetl target2 I depl dep2 dep3

commandl
command2

The disadvantage of this approach is that make executes the commands if target1 is out of date
with respect to dep3, even though target1 does not really depend on dep3 ..

A better way to fix this is to use the double colon syntax:
targetl target2 :: depl dep2

commandl

target2 I: dep3
command2

6-5

The Makefile Maintaining Files-8560 Series System Users

6-6

This way, if dep3 was modified more recently than target2, then make will execute command2
but not command1. For an example of double-colon use, see "Applications", later in this section.

Targets That Are Not Files
A makefile target ne~d not be a file at all. Sometimes you may want to construct a makefile so
that you can enter commands such as:

$ make install

Make automatically carries out any commands following the name of a target if there is no file of
that name. For example, the following makefile entry copies resultfile into a command directory,
/bin:

install: resultfile
cp resultfile Ibin

If there is no actual file named install, every make install command copies the file anyway, after
creating an up-to-date version of resultfile. (The commands for updating resultfile must also be
present in the makefile.)

Commands
Make can execute any TNIX command. However, you must access shell variables from within a
makefile with two dollar signs ($$) instead of the usual one (see "Macros", later in this section).

Commands need not occupy separate lines. You may combine commands into a single line
(commands separated by semicolons), or append a command to a dependency line, following a
semicolon:

targetl : depl dep2; commandl

Details of TNIX Command Execution under the Control of Make. Command lines are executed
one at a time, each in its own shell.

In make, some "special" shell commands-such as cd-don't work across newlines. Assume
you have this entry in your makefile:

targetl : depl dep2
cd newdir
Is

The Is command does not list the contents of newdir, but instead lists the directory you were in
before the cd command.

Make executes each command line within an entirely new shell, unrelated to previous shells.
Because the effect of special shell commands (like cd) is restricted to the invoking instance of the
shell, a special shell command on one line (one side of a newline) does not affect other command
lines (the other side of a newline).

Maintaining Files-8560 Series System Users The Makefile

To get around this newline problem, use a semicolon. In the following example, the Is command
does list the contents of newdir, because the Is command is on the same line as the cd
command:

targetl : depl dep2
cd newdir; Is

Echoing of TNIX Commands. Make displays each command line on the terminal as the com
mand executes. To suppress this echoing throughout a makefile, place the pseudo-target,
".SILENT:", somewhere in the makefile. To suppress echoing for a single command, make the
first character of the command ,,@".

Error Handling. A TNIX command executing abnormally (returning a non-zero exit status) causes
make itself to terminate. To suppress this automatic termination throughout the makefile, put the
pseudo-target" .IGNORE:" somewhere in the makefile. To suppress the automatic termination for
a single command, start the command line with a hyphen (following the usual tab).

Similarly, the interrupt and quit signals coming from a TNIX command cause the current target to
be deleted. This ensures a clean state for make when you run it again. You can protect the target
from deletion by making it depend on the pseudo-file, ".PRECIOUS", like this:

target : depl dep2 .PRECIOUS

NOTE

Your assembler may return non-zero exit status, causing make to quit-but only after
the assembler has already created a defective output file with the current date on it.
This leaves the appearance that the assembler's output file was correctly updated. If
your assembler sends error messages to the terminal during execution of make, re
move the output files:

$ rm objfile listfile

Comments
The pound sign starts a comment: characters from a pound sign (#) to the end of a line in a
makefile are ignored. Make also ignores blank lines in makefiles. In Fig. 6-3, the line" # macro
definitions" is a comment.

Macros
You can use macros to simplify your makefile. For example, if your makefile has several different
entries in a makefile that depend on the same set of files, you can define a macro to equal that set
of files and refer to the macro name when making the entries. That way, if you have to change
anything in the set of files, you need to edit only the single macro definition line instead of all the
entries that use the set of files.

6-7

The Makefile Maintaining Files-8560 Series System Users

6-8

A macro is a string variable, and has the form "string1 = string2". In Fig. 6-3, the following line is
a macro definition:

SOURCES = main.asm sUbl.asm sub2.asm

The following are valid macro definitions:
ASSEMBLER=/bin/asm
abe = filel file2
LIBES =

(The last definition assigns the null string to "UBES", so that you can later pass a value to that
macro when invoking make. For an example, see" Assigning Values to Macros When Invoking
Make", later in this section.) Make does not expand the filename pattern-matching characters,
"*", "?", and "[...]" in macro definitions.

To invoke a macro, precede its name with a dollar sign. A macro name longer than one character
must be placed within parentheses (or braces) when invoked.

The following fragment of a makefile defines and invokes two macros, OBJECTS and UBES.
When a make command is issued, the three object files are linked with the library file:

OBJECTS = x.obj y.obj z.obj
LIBES = lib.mise
prog : $(OBJECTS)

link -0 prog -0 $(OBJECTS) $(LIBES)

Literal Dollar Sign. To specify a literal dollar sign in a makefile, use $$. For example, if you need
to access the value of a shell variable from within a makefile, use "$$" in place of the single dollar
sign that normally precedes a shell variable name. (The makefile command line "echo $$HOME"
echoes the name of your login directory.)

Assigning Values to Macros when Invoking Make. You may also define macros on the make
invocation line:

$ make -name = string2-

Such macros override definitions in the makefile. For example, assume a makefile contains the
following entry:

TESTER = stdtest
test : x

$ (TESTER) x

The make command invocation
$ make -TESTER = newtest-

executes the command
newtest x

Maintaining Files-8560 Series System Users The Makefile

Internal Macros. Make defines macros of its own, whose values may change as make executes.
Two of these macros are useful in writing makefile entries:

$7 The list of file names found to be more recently modified than the target currently being
"made". This string is a subset of the names on which the target depends.

$@ The name of the file being "made" -the current target.

The following makefile entry illustrates these internal macros:
program: $(OBJECTS)

link -0 $(OBJECTS) -0 $@
filel.po : $(SOURCES)

pr $?

Make expands "$@" in this example into "program" -the target of the link command. The
command line "pr $?" prints the outdated source files from the dependency list for target file1.po.

The other macros internal to make are relevant in the definition of suffix rules. They are summa
rized in Table 6-1 at the end of this section.

Suffix Rules

Suffix Rules. Suffix rules tell make the general method to transform files of one suffix to files of
another suffix. Two of make's internal macros are used in setting up suffix rules:

$ < The name of the file used to invoke a suffix rule.

$* The prefix shared by the target and the files on which it depends.

In Fig. 6-3, the following lines are a "suffix rule" that tell make how to generate an .objfi!e from an
.85m file:

.SUFFIXES : .obj .a5m

.a5m.obj :
a5m $·.obj , , $<

Make has a set of default suffix rules, which are described at the end of this section. To avoid
suffix rule conflicts, add the following line to your makefile:

.SUFFIXES :

This clears any previously defined suffixes. To create new suffix rules, simply add a second
".SUFFIXES :" entry containing the new suffixes.

A blank must appear between each suffix in the suffix list, but must not appear between
suffix-pairs or as a target on a dependency line.

6-9

The Makefile Maintaining Files-8560 Series System Users

6-10

The order of the suffixes is significant.

• When listing the suffixes after the" .SUFFIXES :" entry, list the output suffix first, and source
suffix last.

• When specifying the pair of suffixes as the target in a dependency line, list the suffix of the
source first, and the suffix of the output second.

Sample Suffix Rules. If you have an 8560/8086 Pascal compiler and an 8500 Modular MOL
Series assembler, then the following makefile fragment is an example of a valid suffix rule:

• SUFFIXES # delete eXisting rules
• SUFFIXES .po .ps .obj .asm

PASFLAGS= # put in your compiler flags
ASMFLAG= # put in your assembler flags

.ps.po :
pas $ (PASFLAGS) $<

.asm.obj :
asm $*.obj $(ASMFLAG) $<

Note that the PASFLAGS and ASMFLAG macros are left null so that you can assign non-null
values to these macros when invoking make. For example,

$ make ·PASFLAGS= -1 -sa prog

causes the Pascal compiler to send a source listing to standard output, and suppresses the
compiler optimizer. If you use different flags at different times, it is convenient to put only the most
common requirements into suffix rules.

Maintaining Files-8560 Series System Users Invoking Make

INVOKING MAKE
The following paragraphs describe the TNIX make command.

SYNTAX

make [-iknrst] ["macro=stringl [-f file] ... [target] ...

PARAMETERS

none When make is entered with no parameters, it searches for a file named Makefile
or makefile in the current directory, and executes commands according to that
file.

-i (Ignore) Equivalent to the special entry" .IGNORE:". Ignores errors from TNIX
commands in the makefile. .

-k (Kill work on current entry). When a command has not completed as expected,
abandons work on the current entry, but continues on branches that do not
depend on the current entry.

-n (No work) Traces and prints, but does not execute the commands needed to
update the targets.

-r (Clear suffixes) Equivalent to an initial special entry" .SUFFIXES:" with no list.
Clears any previously defined suffixes.

-s (Silent) Equivalent to the special entry ".SILENT:". Suppresses echoing of TNIX
commands in the makefile.

-t (Touch) Updates the modified date of targets, without executing any
commands.

macro = string Insert string wherever macro is invoked within the specified makefile. Overrides
definition of macro within the makefile.

-f file Executes commands from the specified file rather than the default name
makefile or Makefile. More than one -f option may appear.

target The name of the file (target) to be updated or modified, or the action to be
taken. If no target is given, make uses the first target in the current makefile.

6-11

Applications Maintaining Files-8560 Series System Users

6-12

EXPLANATION

Make executes commands in makefile to update one or more target files.

Make updates or creates a target if

1. that target depends on files that have been modified since the target was last modified, or

2. if the target does not exist (for example, if the target is not specifically a file).

EXAMPLES

$ make -n ezsoftware

Prints out, but does not execute (-n), the commands needed to produce an up-to-date version of
the target ezsoftware. The default makefile name makefile is assumed.

$ nohup make -s &

Runs make in the background, working on the first target in the default makefile named makefile
or Makefile, and suppressing (-s) the echoing of any commands executed from the makefile. The
command nohup makes sure that make continues executing even if you log out.

$ make program -f newmakefile

Runs make to update file program, using file named newmakefile as the makefile.

APPLICA TIONS
Make can provide many services besides assembling, compiling, or linking files. The following
examples show how make can maintain printed listings and archives.

Maintaining Printed Listings. The following makefile entry maintains up-to-date printed listings:
print: filel file2 ••• filen

pr $1 # print only those files that have been changed
since the last update of the file print.

touch print # The TNIX touch command creates a file,
or updates its -last modified- time.

In this example print is simply a file name. But the TNIX file system keeps track of it along with all
other files, so that its "last modified" time can be used as a marker against which to determine the
change status of other files.

Maintaining Archives. The TNIX libgen command consolidates groups of files into single archive
or library files. For example,

libgen -h lib -r filel -r file2

replaces filet and file2 in the lib library with new versions found in filet and file2. By using make
and libgen together, you can easily update files and incorporate them into an archive.

Maintaining Files-8560 Series System Users Applications

Assume, for example, that you have a lib file and a number of Pascal source files, filet.ps, file2.ps,
etc. If you are willing to keep all the object files in the file system after they are copied into lib, then
the following fragment will do:

lib: filel.po file2.po •••
libgen -h lib -r $?

filel.po : filel.ps
pas filel.ps

file2.po : file2.ps
pas file2.ps

Make compiles each source file that is outdated, and copies the new version into lib. There are
now two copies of each object file: one in lib and one in a .po file. If you do not wish to keep the
extra object files, you can use the double-colon syntax (see "The Makefile", earlier in this section):

lib:: filel.po
pas filel.ps
libgen -h lib -r filel.po
rm f ilel. obj

lib :: file2.po
pas file2.ps
libgen -h lib -r file2.po
rm file2.po

Once a source file is compiled and the object file copied into lib, the object file is removed from the
file system.

6-13

Reference Summary Maintaining Files-8560 Series System Users

REFERENCE SUMMARY
Table 6-1 shows the characters that have special meaning to make.

Table 6-1
Make Special Characters

Special
Character Function

Starts a comment. Anything on the rest of the line in a makefile is ignored by
make.

Separates the parts of a dependency line: names to the left of the colon are
targets, names to the right of the colon are the files on which the target
depends, or dependencies.

.. One of the targets (names to the left of the double colon in a dependency ..
line) appears in more than that one dependency line.

$@ The name of the file being "made" -the current target.

$* Used in suffix definitions. When make invokes a suffix rule, "$*" stands for
the ~sename shared by the file used to invoke the suffix rule and the file to
be created by the suffix rule.

$< Used in suffix definitions. Refers to the name of the file used to invoke the
suffix rule.

$? The list of dependency files that have been changed more recently than the
target (the file currently being "made").

- Placed before a command in an entry. Causes make to ignore the exit
status of that command. "-" and "@" can appear together, in either order.

@ Placed before a command in an entry. Causes that command to run without
echoing. "-" and "@" can appear together, in either order.

6-14

Maintaining Files-8560 Series System Users Reference Summary

Table 6-2 shows the reserved words (pseudo-targets) that have special meaning to make.

Table 6-2
Make Reserved Words

Reserved Word Function

.DEFAULT If a file must be "made" but there are no explicit commands or relevant
suffix rules given, then make will execute the commands associated with
the pseudo-target" .DEFAULT:" .

.IGNORE Errors returned by TNIX commands are ignored .

. PRECIOUS In case of error, the current target is not deleted from the file system. This
entry follows the colon (or double-colon) on a dependency line .

. SILENT Command lines are not echoed before execution. Applies to all commands
in the makefile .

. SUFFIXES Adds the following suffixes to the list of make's default suffix rules. This
entry without any following suffixes clears the current suffix list.

Default Suffix Rules
The default suffix rules apply to the software development tools in the optional 8560 Series
MUSDU Native Programming Package. You need to be aware of these rules, even if your system
does not have this package, so that you can avoid conflicts between your own filename suffixes
and the default suffix rules.

Following are the default suffix rules for make:
.SUFFIXES: .out .0 .c .f .e .r .y .yr .ye .1 .s
YACC=yacc
YACCR =yac c -r
YACCE=yacc -e
YFLAGS =
LEX=lex
LFLAGS =
CC=cc
AS=as -
CFLAGS =
RC=f77
RFLAGS=
EC =f77
EFLAGS =
FFLAGS =

6-15

Reference Summary Maintaining Files-8560 Series System Users

6-16

LOADLIBES =
• e. 0 :

$ (CC) $ (CFLAGS) -e $ <
.e.o .r.o .f.o :

.s.o

.y.o :

.yr.o

.ye.o

.1.0

.y. e

.1.e

.yr.r

.ye.e

$(EC) $(RFLAGS) $(EFLAGS) $(FFLAGS) -e $<

$ (AS) -0 $@ $ <

$ (YACC) $(YFLAGS) $<
$(ec) $ (CFLAGS) -e y.tab.e
rm y.tab.e
mv y.tab.o $@

$ (YACCR) $(YFLAGS) $<
$ (RC) $ (RFLAGS) -e y.tab.r
rm y.tab.r
mv y.tab.o $@

$ (YACCE) $(YFLAGS) $<
$ (EC) $ (RFLAGS) -e y.tab.e
rm y.tab.e
mv y.tab.o $@

$ (LEX) $ (LFLAGS) $<
$ (CC) $ (CFLAGS) -e 1ex.yy.e
rm 1ex.yy.e
mv 1ex.yy.o $@

$(YACC) $(YFLAGS) $<
mv y.tab.e $@

$ (LEX) $ <
mv 1ex.yy.e $@
:
$ (YACCR) $ (YFLAGS) $<
mv y.tab.r $@

$(YACCE) $ (YFLAGS) $<
mv y.tab.e $@

.s.out .e.out .o.out :
$ (CC) $ (CFLAGS) $ < $ (LOADLIBES) -0 $@

.f.out .r.out .e.out :
$(EC) $(EFLAGS) $(RFLAGS) $(FFLAGS) $< $ (LOADLIBES) -0 $@
-rm $·.0

.y.out :
$(YACC) $(YFLAGS) $<
$(CC) $(CFLAGS) y.tab.e $(LOADLIBES) -ly -0 $@
rm y.tab.e

.1.out :
$ (LEX) $ <
$(CC) $(CFLAGS) 1ex.yy.e $ (LOADLIBES) -11 -0 $@

rm 1ex.yy.c

8560 Series System Users

Section 7
COMMUNICATION WITH 8540S AND 8550S

Page

Introduction 7-1

TERM Mode ... 7-1
COM Interface. .. 7-2

System Configurations .. 7-2

Establishing Communication ... 7-4
Configuration A: Terminal-8540-8560 .. 7-5
Configuration B: Terminal-8550-8560 .. 7-6
Configuration C: Terminal-8560-8540 .. 7-6
Configuration D: Terminal-8560-8550 .. 7-7
Terminating Communication ... 7-8
Communication Errors ; .. 7-8

Special Considerations. .. 7-8
Precautions .. 7-9
Command Prefixes .. 7-10
Command Files .. 7 -10
Service Calls and I/O Channels ... 7-11

Transferring Files and Programs .. 7 -12

ILLUSTRATIONS

Fig.
No. Page

7 -1 TERM mode operation in configurations A and B .. 7-3
7-2 TERM mode operation in configurations C and D ~. 7-4
7-3 TERM mode interconnection diagram for configurations A and B 7-5
7-4 TERM mode interconnection diagram for configurations C and D 7-7

7-i

8560 Series System Users

Section 7

COMMUNICATION WITH 8540S AND 8550S

INTRODUCTION
This section explains how to use your 8560 with a TEKTRONIX 8540 Integration Unit or 8550
Microcomputer Development Lab. (Throughout this section, the term "workstation" refers to an
8540 or 8550.)

This section includes the following topics:

• TERM Mode. Explains TERM mode, the mode of communication between an 8560 and a
workstation. Also explains the COM interface.

• System Configurations. Explains the ways in which your 8560, terminal, and workstation
may be interconnected, and how commands and other information are passed back and forth
in each configuration.

• Establishing Communication. Summarizes the steps in establishing and terminating TERM
mode communication between the 8560 and the workstation in each configuration.

• Special Considerations. Explains how TERM mode affects certain workstation operations.

• Transferring Files and Programs .. Provides procedures for transferring files and object code
between the 8560 and the workstation.

NOTE

This section does not cover certain hardware and software configuration procedures
that must be performed by the system manager before TERM mode communication
can take place. These procedures are described in the 8560 Series System Manag
er's Guide.

TERM MODE
TERM mode is the recommended method of communication between the 8560 and a
workstation. TERM mode enables you to use the resources of your 8560 and your workstation
simultaneously.

In TERM mode, you enter workstation commands (to perform software-hardware integration and
hardware debugging) as if they were 8560 commands. The 8560 recognizes the workstation
commands and passes them on to the workstation for processing. The workstation performs the
requested function and responds to the 8560. The results of the command are then available for
further processing.

7-1

System Configurations 8540s and 8550s-8560 Series System Users

7-2

For example, the workstation command
$ d 0 Off

dumps the contents of program memory locations O-OFF to your terminal. In TERM mode, you
may enter this command as if you were communicating only with the workstation. You can also
use the TNIX shell's ability to redirect the input and output of commands, and perform complex
command files ("shell programs"). For example, the command

$ d 0 Off : Iplr

dumps the contents of locations O-OFF to the lineprinter, while
$ d 0 Off >dumpfile

writes the contents of locations O-OFF into the file dump file.

COM Interface
In addition to TERM mode, the 8540 and 8550 can also communicate with an 8560 through the
COM command. (COM Interface software is standard with the 8550, optional with the 8540.)

By means of the TNIX commands mload and uload, the 8560 can act as host to an 8540 or 8550
running the COM command. However, since TERM mode is the preferred mode of communication
between an 8540 or 8550 and an 8560, COM is not discussed in this section. For more informa
tion about using COM, refer to the online manual pages for mload and uload, and to the System
Users Manual for your workstation. The 8560 Series System Manager's Guide gives instructions
for using COM to establish 8560-workstation communications via modems.

SYSTEM CONFIGURATIONS
In TERM mode, your 8560 operates in one or more of the following configurations:

A. A terminal connected to an 8540, which is in turn connected to the 8560.

B. A terminal connected to an 8550, which is in turn connected to the 8560.

C. A terminal connected to the 8560, which is in turn connected to an 8540.

D. A terminal connected to the 8560, which is in turn connected to an 8550.

Each configuration is referred to by the letter A, B, C, or D throughout the rest of the section.

In configurations A and B, the workstation is physically connected between the 8560 and the
terminal, but is transparent to you. It is as though your terminal was connected directly to the
8560. Figure 7-1 shows how information is passed in configurations A and B.

8540s and 8550s-8560 Series System Users System Configurations

Terminal workstation 8560
(8540/8550)

command 1
:-- .::::::--::.::=: ::-:---:::-:-::::::<::>:.::::.:-:-_:::-:-- :-"-

-_::;J

I I
-v

~ response 5
'([::::::-::-_::::::.::::.:.::-::::--::-::-:-:-::;::-::. :::::::::.::. :-::::':-::-_::::-:::::::::-:::>".:::-=:- .:<>
"'S'

::.::

workstation
......... 2 command

:-:::< .,

..,,3 file I/O (if needed)
roo...

:":-~

~ v
workstation

4 response
A.

J
V'

(3940·12)4730·16

Fig. 7-1. TERM mode operation in configurations A and B.

In configurations A and B, when you enter a workstation command at your terminal, the
following steps occur:

1. The 8560 reads the command and recognizes it as a workstation command.

2. The command is sent to the workstation, where it is actually executed.

3. Any file I/O is sent between the 8560 and the workstation.

4. The command output is sent back to the 8560 ...

5. . .. and then to the terminal.

In configurations C and 0, the terminal and workstation are each connected separately to the
8560. Here, you must specify the workstation on which you want the workstation commands
executed before you start sending commands to it. Figure 7-2 shows how information is passed
in configurations C and o.

In configurations C and 0, you can control more than one workstation from the same terminal by
specifying which of the eight HSI I/O ports a given workstation is attached to. For example, to
begin directing commands to an 8540 connected to HSI I/O port 4, you would enter the following
line:

$ IU =4; export IU

7-3

Establishing Communication 8540s and 8550s-8560 Series System Users

7-4

Terminal 8560 workstation
(8540/8550)

command ~
'.';C'

:ce' .• "" --.......

AI response 5
It"'C <

~

workstation
2 command

.: :. ...•..
"

.... :.: ::.: "':.\:;> ...

3 file I/O (if needed)

,,~: .•. : •..• .'.: •. :.:':'. . ·:····· .• ·:··:-:>.:S .1)')
~

workstation
,"",,4 response

<:"">' ;Co'
~

(3940-13)4730-17

Fig. 7-2. TERM mode operation in configurations C and D.

In configurations C and D, when you enter a workstation command at your terminal, the
following steps occur:

1 _ The 8560 reads the command and recognizes it as a workstation command.

2. The command is sent to the workstation, where it is actually executed.

3. Any file I/O is sent between the 8560 and the workstation.

4. The command output is sent back to the 8560 ...

5. ... and then to the terminal.

ESTABLISHING COMMUNICATION
This subsection shows how to establish TERM mode communication between the 8560 and the
workstation in each of the four previously defined configurations.

8540s and 8550s-8560 Series System Users Establishing Communication

Configuration A: Terminal-8540-8560
The following tasks must be performed before you can use TERM mode in configuration A:

1. The terminal, 8560, and 8540 must be properly interconnected, as shown in Fig. 7-3. Notice
that the cable from the 8560 connects to the "HSI" port on the 8540. This task should be
performed by the system manager during the system configuration process, as described in
the 8560 Series System Managers Guide.

2. The 8560 HSI I/O port that connects to the 8540 must be properly configured for TERM
mode communication. This task should be performed by the system manager during the
system configuration process, as described in the 8560 Series System Managers Guide.

3. Start up the 8540 and enter the command config term. You may then log in to TNIX as you
would through any other terminal. (You may have to press the RETURN key or the BREAK
key a few times to obtain the TNIX login prompt.)

Terminal workstation 8560
(8540/8550)

HSI Cable - -HSIPort HSII/O
(8540)

- Port !!

Terminal Terminal
Cable Port OR

(RS-232-C)

RS-232-C Cable
DTE Port --

(8550)

Fig. 7-3. TERM mode interconnection diagram for configurations A and B.

Before you can use TERM mode, the 8560's HSI port must be properly configured by qualified
servicing personnel for TERM mode communication with the 8540 or 8550. Instructions are
provided in the 8560 Series System Manager's Guide.

(3940-14)4730-18

7-5

Establishing Communication 8540s and 8550s-8560 Series System Users

7-6

Configuration B: Terminal-8550-8560
The following tasks must be performed before you can use TERM mode in configuration B:

1. The terminal, 8560, and 8550 must be properly interconnected, as shown in Fig. 7-3. Notice
that the cable from the 8560 connects to the "DTE" port on the 8550. This task should be
performed by the system manager during the system configuration process, as described in
the 8560 Series System Managers Guide.

2. The 8560 HSI I/O port that connects to the 8550 must be properly configured for TERM
mode communication. This task should be performed by the system manager during the
system configuration process, as described in the 8560 Series System Managers Guide.

3. Start up the 8550 and enter the command config term t=7. You may then log in to TNIX as
you would through any other terminal. (You may have to press the RETURN key or the
BREAK key a few times to obtain the TNIX login prompt.)

Configuration C: Terminal-8560-8540
The following tasks must be performed before you can use TERM mode in configuration C:

1. The terminal, 8560, and workstation must be properly interconnected, as shown in Fig. 7-4.
Notice that the cable from the 8560 connects to the "HSI" port on the 8540. This task should
be performed by the system manager during the system configuration process, as described
in the 8560 Series System Managers Guide.

2. The 8560 HSI I/O port that connects to the 8540 must be properly configured for TERM
mode communication. This task should be performed by the system manager during the
system configuration process, as described in the 8560 Series System Managers Guide.

3. Log in to TNIX at the terminal and enter the following line (in place of n, type the number of
the HSI I/O port that the 8540 is connected to):

$ IU =n; export IU

Before the 8540 can accept commands from the 8560, the 8540 must be in TERM mode. If
there is no terminal attached to the 8540, you will want to configure the 8540 to enter TERM
mode automatically every time you start it up. To do so, temporarily attach a terminal to the
8540 and enter the following commands, which place the config term command in the
8540's STARTUP string:

> STARTUP='config term'
.> permstr -d STARTUP

> permstr STARTUP

8540s and 8550s-8560 Series System Users Establishing Communication

Terminal 8560 workstation
(8540/8550)

HSI Cable -HSII/O HSIPort

Port !!! (8540)

Terminal _ HSII/O
Cable Port n OR

(RS-232-C)

RS-232-C Cable

- OTE Port
(8550)

(3940-15)4 730-19

Fig. 7-4. TERM mode interconnection diagram for configurations C and O.

Before you can use TERM mode, the 8560'5 HSI port must be properly configured by qualified
servicing personnel for TERM mode communication with the 8540 or 8550. Instructions are
provided in the the 8560 Series System Manager's Guide.

Configuration D: Terminal-8560-8550
The following tasks must be performed before you can use TERM mode in configuration 0:

1. The terminal, 8560, and 8550 must be properly interconnected, as shown in Fig. 7-4. Notice
that the cable from the 8560 connects to the "DTE" port on the 8550. This task should be
performed by the system manager during the system configuration process, as described in
the 8560 Series System Managers Guide.

2. The 8560 HSI I/O port that connects to the 8550 must be properly configured for TERM
mode communication. This task should be performed by the system manager during the
system configuration process, as described in the 8560 Series System Managers Guide.

7-7

Special Considerations 85405 and 85505-8560 Series System Users

7-8

3. Log in to TNIX at the terminal and enter the following lines (in place of n, type the number of
the HSI I/O port that the 8550 is connected to):

$ stty IU >/dev/ttyn
$ IU=n; export IU

. Before the 8550 can accept commands from the 8560, the 8550 must be placed in TERM
mode with the command config term t=7. If there is no terminal attached to the 8550, you
will want to configure your DOS/50 system disk to place the 8550 in TERM mode automati
cally every time you start it up. To do so, temporarily attach a terminal to the 8550 and create
a file called STARTUP that contains the following line:

contig term t=l

Make sure that this file resides in the root directory of the DOS/50 system disk.

Terminating Communication
Logging out from TNIX does not take the workstation out of TERM mode. In configurations C and
o (in which the terminal is attached to the 8560), you may want to leave the workstation in TERM
mode so that someone at another terminal can use it. In configurations A and 8, if you want to log
out and return the workstation to LOCAL mode, enter the following command line:

$ contig local; logout

The config command tells the workstation to stop passing commands to the 8560, and the
logout command tells the 8560 to stop accepting commands. Notice that these two commands
must be entered exactly as shown if they are to have the desired effect.

Communication Errors
In configurations C and 0, the error message "/dev/hsin-I/O error" indicates that the 8560
attempted unsuccessfully to issue a command to a workstation through HSII/O port n. You may
receive this message for any of the following reasons:

• The workstation is not properly properly connected to the 8560.

• The HSI I/O port to which the workstation is attached is configured incorrectly.

• The workstation is not in TERM mode, or the config command was somehow incompatible
with the configuration of the 8560's HSI I/O port.

• The IU shell variable is set incorrectly.

• You inadvertently entered a workstation command and there is no place to send it.

SPECIAL CONSIDERATIONS
This subsection presents miscellaneous information about TERM mode operation.

85405 and 85505-8560 Series System Users Special Considerations

Precautions
In TERM mode, TNIX processes every line that you enter. As a result, a command that is accept
able to a workstation in LOCAL mode may have to be altered in order to be processed the same
way in TERM mode.

Lowercase Command Names
In TERM mode, workstation commands must be entered in lowercase. All other command ele
ments may be entered in uppercase or lowercase, as permitted by the workstation.

Commas as Delimiters
TNIX does not recognize the comma as a delimiter. For example, in the following workstation
command, the commas represent a null first parameter.

> SVC" 100 200.

If you enter this command in TERM mode, TNIX attempts to execute a command whose name is
svc" 100. However, if you insert a space after the command name, TNIX will recognize the
command name svc, and pass the command to the workstation:

$ svc ,,100 200

In LOCAL mode, both commands are equivalent.

Special Characters
Certain characters that have special meanings to the TNIX shell must be made to appear
non-special, so that the shell does not perform unwanted transformations on the command line.
For example, if you enter the command

$ p 100 -a ·some text·

the shell will strip out the quote marks, and the following (erroneous) line will be sent to the
workstation:

P 100 -a some text

To avoid this problem, "escape" any special characters with backslashes:
$ p 100 -a '·some text ,.

Refer to the Shell Programming section of this manual for a summary of shell punctuation.

7-9

Special Considerations 85405 and 85505-8560 Series System Users

7-10

Redirection of Standard Input and Output
Like TNIX, OS/40 and DOS/50 allow you to redirect standard I/O by using the symbols ">" and
"<". For example, in LOCAL mode, the following command dumps memory locations O-OFF to
the workstation's line printer:

> d 0 Ofr >LPT

In TERM mode, however, the TNIX shell interprets the ">LPT" construct before the command is
passed to the workstation. If you enter this command in TERM mode, TNIX sends the command
d 0 Off to the workstation and stores the output in an 8560 file called LPT. If you want to direct
the output to the workstation's printer in TERM mode, you must use a backs lash to hide the ">"
symbol from the shell:

$ d 0 Off hLPT

To direct the output to the 8560's printer, you enter:
$ d 0 Ofr : lpir

Command Prefixes "8540" and "8550"
When a workstation command has the same name as a TNIX command, you must use "8540" or
"8550" to prefix the workstation command name. For example, in TERM mode the as command
invokes the assembler in the optional Native Programming Package. To use the workstation's as
(ASsign) command, you must use the "8540" or "8550" prefix:

$ 8540 as I eONO

At the time of this printing, the following other workstation command names conflict with TNIX
command names:

format, asm, link, libgen, ehex, and Istr

You can also prefix a command line with the word "8540" or "8550", to send the entire command
line to the workstation. For example, the command

$ 8550 model setup

sends the command mode1 setup to the workstation, presumably invoking an 8550 command file
by that name.

NOTE

The "8540" or "8550" command prefix does not prevent the command line from being
processed by the TNIX shell before it is sent to the workstation.

Command Files
As noted previously, you can use a command line such as

$ 8550 cmdfilename parmI parm2

to execute a command file on the 8550 in TERM mode. Such a file is executed by the 8550 as if
the 8550 were in LOCAL mode. The file must contain only DOS/50 commands-the 8550 cannot
send TNIX commands back up to the 8560.

8540s and 8550s-8560 Series System Users Special Considerations

On the other hand, a command file ("shell program") on the 8560 may contain a mixture of TNIX
commands and workstation commands. For example, the command file

for i in 0 1000 2000
do

d $1 $1 -+Off
done

executes the following workstation commands:
d 0 O-+Off
d 1000 1000 -+Off
d 2000 2000 -+Off

If a workstation command fails, the error code is returned as the command's "exit status", which
can be used by subsequent commands in the shell program. (Refer to the Shell Programming
section of this manual for more details. Error codes are explained in the Error Messages sections
of the 8540 and 8550 System Users Manuals.)

Service Calls and I/O Channels
A program that is running on the emulator in the 8540 or the 8550 can access files by means of
service calls (SVCs). You can also use workstation commands such as as and cl to open and
close I/O channels that are used by these service calls.

On the 8540, any reference to a filename (other than a standard device name such as CONI or
LPT) in a service call or OS/40 command is assumed to refer to a file on the 8560. (Such
references are valid only when the 8540 is in TERM mode.) For example, the following command
assigns channel 5 to the 8560 file myfile:

$ 8540 as 5 myf11e

The 8550, on the other hand, has its own file system. Any reference to a filename in an 8550
service call or command must refer to a file on the 8550. The only way the 8550 can access files
on the 8560 is through the standard input, standard output, and standard error channels.

Standard I/O Channels
Workstation I/O channels 8, 9, and 10 are assigned to standard input, standard output, and
standard error, respectively. In TERM mode, CONI is equivalent to channel 8, and CONO is
equivalent to channel 9. For example, if you enter the command

$ g >logfile

the 8560 file logfile captures any text written to channel 9 or to CONO by the program, as well as
any output resulting from the tra (TRAce) command or other debugging utilities. Output to logfile
ends when program execution stops for any reason.

7-11

Transferring Files and Programs 85405 and 85505-8560 Series System Users

7-12

TRANSFERRING FILES AND PROGRAMS
The following paragraphs show how to transfer files and object code between an 8560 and a
workstation in TERM mode.

Downloading a Program from an 8560 to an 8540 or 8550
The following command copies a program from a file named tnix.to on the 8560 into the
workstation's program/prototype memory:

$ 10 <tnix .10

The tnix.lo file must be in TEKTRONIX A or B Series load module format, as produced by a
TEKTRONIX assembler or linker, or by the 8540/8550 SAV command.

Uploading a Program from an 8540 or 8550 to an 8560
The following command saves the contents of the workstation's program/prototype memory
locations 0-1 FF and 1000-2FFF into an 8560 file called tnix.sav, in TEKTRONIX B Series load
module format. The transfer address in tnix.sav is set to 100 (hexadecimal).

$ sav -1 a Iff 1000 2fff 100 >tnix.sav

This code can be loaded back into memory using the previous "Downloading" procedure.

Downloading a File from an 8560 to an 8550
The following command copies an 8560 file called tnix.file to the 8550 and gives it the name
dos.file:

$ con -b ctnix.fi1e \>dos.file

If tnix.file is a text file, be sure to omit the -b parameter so that each TNIX end-of-line character
(linefeed) is converted to a DOS/50 end-of-line character (carriage return).

Uploading a File from an 8550 to an 8560
The following command copies an 8550 file called dos.file to the 8560 and gives it the name
tnix.file.

$ con -b dos.file >tnix.fi1e

If dos.fite is a text file, be sure to omit the -b parameter so that each DOS/50 end-of-line charac
ter (carriage return) is converted to a TNIX end-of-line character (Iinefeed).

8560 Series System Users

Section 8
KEYSHELL

Page

Introduction 8-1

Keyshell and Shell Commands. .. 8-1
Multi-Line Shell Commands 8-1
Terminal Settings .. 8-2
Retyping Commands. .. 8-2
"Full-Screen" Commands ... 8-2
Logging Out. .. 8-3

Automatic Keyshell Invocation. .. 8-3

Special Keyshell Files. .. 8-3

Redrawing the Keyshell Function Key Labels 8-3

Keyshell Command History. .. 8-4
Editing Your Command History ... 8-4
Saving Key History. .. 8-5

Table
No.

8-1
8-2

REV AUG 1983

TABLES

Page

Command Editing Function Keys .. 8-4
Other Command Editing Keys. .. 8-5

8-i

8560 Series System Users

Section 8

KEYSHELL

INTRODUCTION
Keyshell, introduced in the Learning Guide section of this manual, is an interface to TNIX that
enables you to enter commands by pressing function keys as well as by typing the commands
literally. Although Keyshell is mostly self-explanatory, experienced TNIX programmers may want
to learn about some advanced Keyshell features and about interactions between Keyshell and the
regular TNIX command interpreter (the shell).

This section discusses the following topics:

• The interaction between Keyshell and shell commands.

• The automatic invocation of Keyshell at login via the ksh command.

• Special Keyshell files.

• How to redraw the Keyshell display.

• The use of the Keyshell command history mechanism, with details about command line
editing.

KEYSHELL AND SHELL COMMANDS
You can enter most shell commands as usual while using Keyshell. There are, however, a few
exceptions.

Multi-Line Shell Commands
You must precede interactive, multi-line shell commands with "sh". That is, you must execute
them as subshells. For example:

$ for i in ed1.c ed2.c ed3.c
> do
> wc -1 $i
> done
$ <CTRL-D>

The CTRL-D returns you to the parent shell so that you can resume normal use of Keyshell. All
shell commands that use the "case", "while", and "for" constructs must be handled in this way.

REV AUG 1983 8-1

Command History Keyshell-8560 Series System Users

8-2

You need to use this technique only with shell commands you enter interactively; you can always
run shell command files (shell programs) as usual. Note, however, that Keyshell reserves certain
names for itself. Do not create shell programs with these names:

exit save
fs shiftkey
history unsave
memused version
newexp

Terminal Settings
Keyshell requires that TNIX terminal communication settings remain constant. Therefore, do not
alter tty (terminal) characteristics while Keyshell is active. For example, do not use the sHy (set
tty) command while you are using Keyshell.

Similarly, when you are communicating with an 8540 or 8550 in TERM mode, using the con fig
command to enter LOCAL mode disables Keyshell.

Retyping Commands
Keyshell does not allow you to use CTRL-K to retype successive characters of the previous
command. However, it provides several other ways to repeat and edit commands. See "Keyshell
Command History" in this section for details.

"Full-Screen" Commands
Some programs need to use the entire terminal screen, including the area normally reserved for
Keyshell function key labels. The ACE and LDE editors, for example, both need to use the full
screen. To invoke such a program explicitly while you are in Keyshell, precede the program's
name with the special Keyshell command fs ("full screen").

For example, to invoke ACE, type:
$ fs ace

The fs command allows ace to use the full screen, then redraws the function key labels after ace
exits.

See "Redrawing the Function Key Labels" in this section for more information about using fs.

REV AUG 1983

Keyshell-8560 Series System Users Command History

Logging Out
When Keyshell is invoked automatically, as it usually is, the logout command exits Keyshell and
logs you out from TNIX. However, when you invoke ksh explicitly (the next subsection tells you
how), you must leave Keyshell before you can log out.

You can always leave Keyshell and return to unassisted communication with the TNIX shell by
pressing the exit key on the Keyshell top level or by typing the Keyshell command exit.

AUTOMATIC KEYSHELL INVOCATION
The program ksh provides the Keyshell interface. Ordinarily, ksh is invoked automatically when
you log in. This happens because the login command executes a command file in your login
directory named .profile, which contains the ksh command. You can prevent this automatic invo
cation of ksh by modifying the copy of .profile in your home directory. Comments in .profile (lines
beginning with ": ") explain which lines invoke ksh.

For instructions about how to invoke ksh explicitly, type man ksh. The online manual page
explains the ksh command options that enable you to control the display of key numbers on the
screen and other Keyshell characteristics.

SPECIAL KEYSHELL FILES
Keyshell uses a set of files called scripts that determine what happens when you press function
keys. These scripts and some other special-purpose files are in your home directory. Like .profHe,
they have names beginning with"." and thus are not ordinarily listed by Is. Do not remove or alter
these files. If you accidentally change or delete one of them, ksh will send you error messages
saying that a script is missing or erroneous. If this happens, ask your system manager to rebuild
your scripts with the setuser command.

REDRAWING THE KEYSHELL FUNCTION KEY LABELS
If you accidentally erase the Keyshell on-screen function key labels, you can usually redraw them
by pressing shifted function key 5 (labeled Redraw Screen on the plastic keyboard overlay).

If the Redraw Screen key does not completely restore the display, use the Keyshell fs command
like this:

The fs command always repaints the entire label display.

REV AUG 1983 8-3

Command History Keyshell-8560 Series System Users

8-4

KEYSHELL COMMAND HISTORY
Keyshell stores two kinds of "command history" information about the commands you enter:

• Key history. Keyshell saves command arguments such as filenames that you type in re
sponse to Keyshell prompts. They are displayed as function key labels when it might be
appropriate to use them again in the same context.

• A command history list. You can use the shifted function keys History Fwd and History
Back to retrieve and execute commands that you have typed or issued via function keys.

The following subsection explains how Keyshell lets you edit your command history list.

Editing Your Command History
The shifted function keys History Fwd and History Back, in addition to scrolling through the
commands you have issued, activate a command history editor that enables you to alter the
command line currently on display.

While the history editor is active, your screen displays the message "Command Editor", and the
unshifted function keys take on editing functions with new on-screen labels. Table 8-1 describes
the keys and their editing functions.

Table 8-1
Command Editing Function Keys

Key Label Function

1 ins. char Inserts a space at the cursor.

2 del. char Deletes the character at the cursor.
--

3 .ins. mode Inserts subsequent characters at the current cursor position. Press
any function key to leave insert mode.

4 del. word Deletes. one word to the right of the cursor.

5 new word If the cursor is on a non-blank character, this key deletes the word
to the right and activates insert mode.
If the cursor is on a space surrounded by non-blank characters, this
key inserts a space and leaves the cursor in insert mode before the
space.
If the cursor is on a space surrounded by other spaces, new word
has the same effect as ins. mode.

6 transpose Exchanges the character at the cursor with the character to its
right.

7 undo Returns the command to its original (pre-edit) state.

8 done Exits the history editor, erasing the command line.

Other keys also perform special command-editing functions while the command line editor is
active. Table 8-2 lists those keys.

REV AUG 1983

Keyshell-8560 Series System Users Command History

Table 8-2
Other Command Editing Keys

Key Command Editing Function

CTRL-U Moves the cursor to the leftmost character of the command on display.

CTRL-W Moves the cursor left one word. A word is a series of non-blank characters.

BACKSPACE Moves the cursor left one character without deleting the intervening
character.

RUBOUT Replaces the character at the cursor position with a space, and moves the
cursor right one character.

Space Ordinarily, moves the cursor right one character. If you are in insert mode,
the space bar inserts spaces.

TAB Moves the cursor one word to the right.

RETURN Executes the current command line.

Saving Key History
When you exit Keyshell, Keyshell asks you whether you want to save the key history accumulated
during the current session. If you answer "yes", Keyshell stores the key history in a set of
"session files". In later Keyshell sessions, the preserved key history is restored for further use.

Note that session files save the command argument information from key labels; they do not
preserve the command history accessed by the shifted function keys History Fwd and History
Back.

ADD AUG 1983 8-5

8560 Series System Users

Section 9
STANDARD TNIX COMMANDS

Page

Introduction .. 9-1

Command Index. .. 9-1

Notation Conventions .. 9-7

Commands. .. 9-7

9-i

8560 Series System Users

Section 9

STANDARD TNIX COMMANDS

INTRODUCTION
This section provides a brief description of most standard TNIX commands. The following Com
mand Index lists the commands by function. The remainder of this section lists the commands
alphabetically. For a complete description of any of these commands, enter the man command
plus the command name. For example, man cd displays information about the cd command.

For information about any command that is not in the standard TNIX command set, use the man
command to view the online manual page. You can also refer to the user's manual for the optional
product that includes the command.

COMMAND INDEX

File and Directory Manipulation
cd Change working directory 9-8

cp Copy files 9-1 0

ed Invoke the standard TNIX text editor 9-13

In Create a link to a file 9-19

Is List contents of directory 9-20

mkdir Create a directory 9-23

mv Move or rename a file or directory 9-24

pwd Display name of current (working) directory 9-26

rm Remove (unlink) a file 9-26

rmdir Remove (unlink) a directory 9-26

tail Display the last lines of a file 9-31

9-1

Index Commands-8560 Series System Users

Showing Files
cat Concatenate and print 9-8

Ip1r,lp2r Send to line printer 9-20

Is List contents of directory 9-20

more Display a screenful at a time 9-23

pr Format a file 9-25

File Processing
cmp Compare two files 9-9

comm Select or reject lines common to two sorted files 9-1 0

diff Display differences between files 9-11

egrep Search a file for a pattern 9-16

fgrep Search a file for a pattern 9-16

find Find files 9-15

grep Search a file for a pattern 9-16

make Maintain files 9-22

sort Sort or merge files 9-28

tee Send output to a file and to standard output at the same time 9-31

touch Update last modified date of a file 9-33

tr Translate characters 9-33

uniq Report repeated lines in a file 9-34

wc Count words, lines, or characters in a file 9-35

9-2

Commands-8560 Series System Users

Program Development
8540 Run commands on an 8540 9-7

8550

8sm

atobobj

libgen

link

Istr

Run commands on an 8550 9-7

Invoke Tektronix Series B Assembler 9-7

Convert object code from Series A Assembler format to Series B Assembler
format 9-8

Invoke library generator 9-18

Link object modules 9-19

Produce linker listing 9-21

Protection and Access
chgrp Change group 9-8

chmod Change mode: add or remove read, write, execute permission 9-8

chown Change owner 9-8

login Sign on 9-20

newgrp Log in to a new group 9-24

passwd Change login password 9-25

su Switch user temporarily 9-31

Communication
mail Send mail to or receive mail from other users 9-21

mesg Permit or deny messages 9-23

who Find out who is on the system 9-35

write Send a message to another user's terminal 9-35

Index

9-3

Index

9-4

Status
date

df

du

ps

statgpib

tty

Help
help

index

man

Commands-8560 Series System Users

Show or set the date 9-10

Show number of free blocks on disk 9-11

Summarize disk usage 9-13

Show status of commands currently executing 9-26

Display GPIB status information 9-29

Display terminal name 9-34

Find out how to use online information 9-17

List online manual pages available on a specific topic 9-17

Display online manual pages about a command or topic 9-22

Terminal and Device Setup
settape Set GPIB tape drive characteristics 9-27

sip Set line printer characteristics 9-28

stty Set terminal options 9-29

tset Set terminal settings and environment variables 9-33

Data Transfer
dsc50 Perform DOS/50 functions on an 8550 disk 9-11

fbr Backup and restore files 9-15

format Write disk format 9-16

mload Upload/download TEKHEX files 9-23

od Display file in octal format (octal dump) 9-24

uload Upload/download unformatted data 9-34

Commands-aSS~ Series System Users

TNIX Command Language
du Summarize disk usage 9-13

echo Display arguments after they've been processed by the shell 9-13

expr Evaluate arguments as an expression 9-14

false Provide truth values 9-14

kill Stop a currently-running command or process 9-17

ksh Invoke Keyshell interface 9-18

nice Run a command at low priority 9-24

nohup Run a command at low priority, even if logged out 9-24

sh Invoke a shell 9-27

sleep Suspend execution for an interval 9-28

sync Execute sync system call 9-31

test Evaluate an expression (used to test conditions) 9-32

time Time a command 9-32

true Provide truth values 9-33

wait Await completion of process 9-35

System Manager Commands
(These system maintenance commands are discussed in the 8560 Series MUSDU System Man
ager's Guide.)

cvt Examine or alter kernel

dump Backup files or file system

format Formats a hard disk or flexible disk

mkboot Copy a boot block to the hard disk in standalone mode

mkfs Construct a filesystem

restor Restore files from backup

syschk Check and optionally repair the file system

Index

9-5

Index Commands-8560 Series System Users

9-6

Special Keys
CTRL-C Interrupt command or program execution

CTRL-O Signal the end of input (as in mail) or terminate the current subshell

CTRL-H Delete input character

CTRL-K Restore last line entered, one character for each CTRL-K

CTRL-Q Resume output

CTRL-R Reprint input line

CTRL-S Suspend output

CTRL-U Delete input line

BACKSPACE Delete input character

TNIX Environment Variables
IU Currently selected port number connected to 8540 Integration Unit or 8550

MOL

uP Currently selected target microprocessor

HOME Your login directory

PATH Sequence of directories in which sh looks for commands

TERM Currently selected terminal type

TERMCAP Current definition of terminal capabilities

KSH Current invocation flags and options for ksh command

MORE Current invocation flags and options for more command

MAIL Path name of incoming mail

PS1 Primary sh prompt string

PS2 Secondary sh prompt string

Commands-8560 Series System Users

NOTATION CONVENTIONS
The following conventions are used in this section:

1. Boldface items are required.

2. Underlined or italicized items represent parameters for you to enter.

3. Brackets [] enclose optional items.

4. Stacked items show that you may choose no more than one of the stacked items.

5. Trailing dots indicate that additional parameters may be entered.

COMMANDS

8540 and 8550
8540 commandline
8550 commandline

Sends the specified command line to the 8540 or. 8550.

8sm
8sm objectfile listfile sourcefile 1 [sourcefile2 ...]

Invokes the TEKTRONIX Series B Assembler to translate source code into object code. To
assemble for a specific microprocessor, you must set the "uP" shell variable equal to the name of
the microprocessor. For example, to use the 8085 microprocessor with the 8sm command:

$ uP=8085; export uP

The proper assembler must be installed on your system in order for the 8sm command to work.

objectfile The file to receive the object code generated by the assembler.

listfile The file to receive the listing generated by the assembler.

sourcefile One or more files that contain the source code to be assembled by 8sm.

8sm

9-7

chgrp

9-8

Commands-8560 Series System Users

atobobj
atobobj [-0 outfile] infile

Reads an object module (in Series A format) from input object file infile, converts the object
module into Series 8 format, then writes the converted object module into an output object file.

-ooutfile

infile

cat

Specifies the filename of the output object file.

If you omit outfile, the output object file is given the same name as infile, except
that the filename has the two characters ".8" appended to it. In this case, the
input filename may not be longer than 12 characters; otherwise, truncation will
occur when the characters ".8" are appended.

The filename of the input object file (contains an object module in Series A
format).

cat [-u] [file] ...

Displays each file in sequence on the standard output. If a file argument is not given, or if the
argument is '-', cat reads from the standard input. Output is buffered in 512-byte blocks unless
the standard output is a terminal.

-u Output is not buffered in 512-byte blocks.

cd
cd [directory J

Directory becomes the new working directory. You must have execute (search) permission in
directory.

chgrp
chgrp group file ...

Chgrp changes the group-ID of file(s) to group. The group may be either a decimal group-ID or a
group name found in the group-ID file.

Commands-8560 Series System Users

chmod
chmod who±permissions [, who±permissions] ... file ...

Changes the mode (access permission) of file according to the given person and permissions. For
a description of what each permission allows you to do, see the TNIX Operating System section
of this manual. (You may also specify absolute permission using octal numbers. For information
about absolute permission, enter man chmod.)

who

permissions

chown

The person or people whose permissions you are altering.
u user (you)
g group
o others (not you or your group)
a . all (you, group, other)

The kirtd of permission you are adding or removing.
r read permission (+ r = add)

(-r = remove)
w write permission (+ w = add)

(-w = remove)
x execute permission (+ x = add)

(-x ~ remove)

chown owner file ...

Changes the owner of file(s) to owner. The owner may be either a decimal user-ID or a login name
found in the password file.

cmp
cmp [-Is] file1 file2

Compares the two files. If file1 is '-', the standard input is read.

-I

-s

Prints the byte number (decimal) and the differing bytes (octal) for each
difference.

Generates return codes only.

cmp

9-9

date

9-10

Commands-8560 Series System Users

comm
comm [-123] file1 file2

Reads filet and file2, which should be ordered in ASCII collating sequence, and produces a three
column output: lines only in file 1 ; lines only in file2; and lines in both files. The filename "-" refers
to standard input. Flags 1, 2, or 3 suppress printing of the corresponding column.

cp
cp filet file2
cp file... directory
cp directoryt directory2

Copies file 1 onto file2. The mode and owner of file2 are preserved if the file already existed; the
mode of the source file is used otherwise. The second form copies one or more files into the
directory; each file keeps its original filename. The third form copies the subtree with the root at
directory1 to directory2. Directory2 must not be in the directoryt subtree.

date
date [dd-mmm-yy] [hh:mm[:ss]] [-t SSS] [-d DOD] [[-w [hh:mm]] [-e [hh:mmJJ]
date [[yy]mmddhhmm[.ss]] [-t SSS] [-d DOD] [[-w [hh:mm]] [-e [hh:mm]JJ

With no argument, displays the current date and time. With an argument, sets the current date
and time. The arguments are:

dd

mmm

mm

yy

hh

ss

-t SSS

-d DDD

-w hh:mm

-e hh:mm

The day number in the month.

The lowercase first three letters of the month.

The month number or minute number.

The last two digits of the year.

The hour number (24 hour system).

The (optional) second number.

Sets the system standard time-zone string. If this string is not set or is nUll, the
system will print out GMT (Greenwich Mean Time) +/- HH for the time-zone,
where HH represents hours west of GMT.

Sets the system daylight time-zone string. If this string is null or was never set,
the system assumes that there is no daylight savings time.

Sets the hours and minutes west of Greenwich Mean Time that the time-zone
strings represent if you are west of the Prime Meridian.

Sets the hours and minutes east of Greenwich Mean Time that the time-zone
strings represent if you are east of the Prime Meridian.

Commands-8560 Series System Users

df
df [filesystem] ...

Displays the number of free blocks available for file allocation on the filesystem(s). If no file system
is specified, the free space on each filesystem listed in the file /etc/checklist is printed. (If
/etc/checklist cannot be read by df, the /dev/rhdO filesystem will be used.)

diff
diff [-befh] file 1 file2

Compares two files and displays lines that are different. A filename of "-" refers to standard input.
If file 1 (file2) is a directory, then a file in that directory whose filename is the same as the filename
of file2 (file1) is used.

-b

-e

-f

-h

dsc50

Ignores trailing blanks (spaces and tabs); other strings of blanks are compared
equal.

Produces a script of a, c, and d commands for the editor ed, which will recreate
file2 from file 1.

Produces a similar script to that produced by -e, not useful with ed, in the
opposite order.

Does a fast, simplified job. It works only when changed stretches are short and
well separated, but does work on files of unlimited length.

dsc50 [-mwdxtls] [-epbrvq] [-c path] [-0 owner] [-n name] [-a n] [-f disk] [source ... dest]

Performs many DOS/50 functions on an 8550 disk. The operation to perform can be specified as
a command line option, or in an interactive mode. Dsc50 defaults to interactive mode. An opera
tion is specified by one of the following letters.

-m

-w

-d

Makes a new DOS/50 volume. Similar to -w, except that the 8550 disk is
initialized (without being physically formatted) prior to copying the file(s).

Write. Copies the TNIX source file(s) to the 8550 destfile/directory. A source file
name of "-" refers to standard input.

Deletes the 8550 source files.

dsc50

9-11

dsc50

-x

-t

-I

-s

-c path

-0 owner

-n name

-a n

-f disk

-e

-p

-b

-r

-v

-q

9-12

Commands-8S60 Series System Users

Extract. Copies the 8550 sourcefile(s) to the TNIX destfile/directory. A destfile
name of "-" refers to standard output.

Table of contents. Displays a directory listing of the source file(s). If no source is
specified, the current directory is used.

Links the existing 8550 source file(s) to the 8550 dest file/directory.

Displays the setup (the current state of all options) in the form of a dsc50
command. Useful only in interactive mode.

Changes the current 8550 directory to path. This will be the directory relative to
which all 8550 pathnames not beginning with a slash (/) are interpreted.

Specifies the owner name to be given to anything created on the 8550 disk
(files, directories, or the entire volume). The default owner is "NO.NAME".

Specifies the volume name to be given to the 8550 disk when it is created by
the -m operation. The default name is "NO.NAME".

Specifies the number (amount) of file slots to be ~reated on the 8550 disk by the
-m operation. The default is 256 slots.

Specifies a file to use as the 8550 disk instead of the default device, /dev/rfdO.

Exits. Terminates interactive mode after executing the given operation. Ignored
if not in interactive mode.

Prompt. Displays a "-" prompt for each command. Ignored if not in interactive
mode. The default is no prompt.

Binary transfer. Because the "end of line" character is different for TNIX and
DOS/50 text files, some character translation must occur when a text file is
copied to or from the disk. This translation is performed by dsc50 on all files
unless the -b option is specified.

Specifies recursive action.

Verbose. Displays the name of each file it treats preceded by the operation
name.

Query. Pauses before treating each file, types the operation name and the file
name (as with -v), and awaits your response before proceeding.

Commands-8560 Series System Users

du

du [=:] [file 1 ...

Displays the number of blocks contained in all files (directories) within each specified directory or
file. If file is missing, the current. directory is used. If all arguments are missing, information is
displayed about each directory only.

-a Displays information about each file.

-s Displays only the grand total of each file or directory.

echo
echo [-n] [arg] ...

Echo displays its arguments after they have been processed by the shell. Arguments are separat
ed by blanks and terminated by a newline.

-n

ed

No newline is added to the output. This flag must precede all other arguments in
order to be recognised.

ed [-cpx] [file]

Invokes ed, the standard TNIX text editor. (Ed is described in Section 5 of this manual.)

-c

-p

-x

Suppresses the printing of character counts bye, r, and w commands.

Turn on prompt character (*).

Used only with the crypt command of the optional 8560 Series MUSDU Native
Programming Package. An x command is simulated first to handle an encrypted
file.

ed

9-13

false

9-14

Commands-8560 Series System Users

expr
expr expression

Evaluates arguments as an expression and displays the result on the standard output. Each
operator or operand of the expression is a separate argument. The operators and keywords are
listed below. The list is in order of increasing precedence, with equal precedence operators
grouped.

expr: expr

expr& expr

expr relop expr

expr + expr

expr- expr

expr * expr

expr / expr

expr % expr

expr: expr

(expr)

false
false

Yields the first expr if it is neither null nor '0', otherwise yields the second
expr.

Yields the first expr if neither expr is null or '0', otherwise yields '0'.

Relop (relational operator) is < < = = ! = > = or >. Yields '1' if the
indicated comparison is true, '0' if false. The comparison is numeric if both
expr are integers, otherwise lexicographic.

Adds the arguments.

Subtracts the arguments.

Multiplies the arguments.

Divides the arguments.

Remainder of the arguments.

The matching operator compares the first argument (which is a string) with
the second argument which is a regular expression whose syntax is the
same as that of ed. The \(... \) pattern symbols can be used to select a
portion of the first argument. Otherwise, the matching operator yields the
number of characters matched ('0' on failure).

Parentheses for grouping.

Sets exit status to non-zero.

Commands-8560 Series System Users

fbr
fbr - { cruxtd} [-viw] [-I comment] [-m directory] [-f archive] [-] [file] ...

Saves and restores directories and files on a floppy disk archive, preserving multiple links to the
same file.

-c

-r

-u

-x

-t

-d

-v

-i

-w

-I

-m directory

-f archive

find

Creates a new archive.

Replace. The named files are written on the archive.

Updates the archive.

Extracts the named files from the archive to the file system.

Table .of Contents. Lists the names of the specified files.

Deletes the named files from the archive.

Verbose. Displays the function name and the filename.

Notes errors reading the archive, but takes no action.·

Displays the function name and the file name (as with v), and awaits your
response.

Allows you to add a label (comment).

Prepends directory to all files operated on.

Uses archive, rather than the floppy disk, as the archive.

find pathname ... expression

Recursively descends the directory hierarchy for each pathname in the pathname list, seeking
files that match an expression written using the syntax given below.

-name filename

-perm onum

-type x

-links n

-user uname

True if the filename argument matches the current file name.

True if the file permission flags (bits 0777) exactly match the octal number
onum.

True if the type of the file is x, where x is b, c, d or f for block special file,
character special file, directory or plain file.

True if the file has n links.

True if the file belongs to the user uname (login name or numeric user ID).

find

9-15

grep

9-16

-group gname

-size n

-inum n

-atime n

-mtime n

-exec command

-ok command

-print

-newer file

format
format [-s]

Commands-8S60 Series System Users

True if the file belongs to group gname (group name or numeric group 10).

True if the file is n blocks long (512 bytes per block).

True if the file has inode number n.

True if the file has been accessed in n days.

True if the file has been modified in n days.

True if the executed command returns a zero value as exit status.

Like -exec except that the generated command is written on the standard
output, then the standard input is read and the command executed only
upon response y.

Always true; causes the current. pathname to be printed.

True if the current file has been modified more recently than the argument
file.

Writes the appropriate formatting information to prepare a flexible disk for subsequent data
storage.

-s Formats the disk single density.

grep
grep [-vclnbshy] ... U -e] expression] [file] ...
egrep [-vclnbsh] ... [-f file] [[-e] expression] [file] ...
fgrep [-vclnbshx] ... [-f file] [string] [file]

Commands of the grep family search the input files (standard input default) for lines that match
expression or string. Grep search items are limited regular expressions in the style of ed. Egrep
search items are extended regular expressions. Fgrep is fast and compact; its search items are
literal strings (contain no regular-expression characters).

-v Displays all lines except those that match.

-c Displays only a count of matching lines.

Commands-8560 Series System Users

-I

-n

-b

-s

-h

-y

-e expression

-f file

-x

help
help

Displays the names of files with matching lines (once), separated by
newlines.

Display includes the line number in the file that contains the match.

Display includes the block number on which each line was found.

Displays only an exit status.

Display does not include filename headers with output lines.

Lowercase letters in the pattern will also match uppercase letters in the
input (grep only).

Same as a simple expression argument, but useful when the expression
begins with a "-".

Takes the regular expression (egrep) or string list (fgrep) from file.

(Exact) Displays only lines that match in their entirety (fgrep only).

Displays information about TNIX online manual pages.

index
index keyword ...

Shows a list of names of online manual pages that contain pertinent information about the
keyword or combination of keywords.

kill
kill [-signal] processid ...

Terminates (with signal 15) the specified processes. If a signal number preceded by "-" is given as
the first argument, that signal is sent instead of terminate. Enter man signal for more information
on signals.

kill

9-17

libgen

9-18

Commands-8560 Series System Users

ksh
ksh [-CcFf]

Invokes the Keyshell interface to TNIX.

-c or -C

-f or -F

libgen

Compact. Removes or adds 2 lines from the label area of the Keyshell display,
depending on the current setting of the KSH environment variable.

Function keys. Removes or adds or a line to the Keyshell display that asso
ciates a number with the label for each function key, depending on the current
setting of the KSH environment variable.

libgen [-c commandfile] [-d modulename) [-h string) [-i filespec) [-I) [-n filespec) [-0 filespec)
[-r filespec) [-v) [-x modulename [filespec))

The Library Generator (libgen) is a general-purpose utility program used to create and maintain
object module libraries for use with the linker.

-c commandfile Invokes a libgen command file containing a series of libgen command options.

-d modulename Deletes library module(s).

-h string Specifies the header for the new library.

-i filespec Inserts new module(s) into the library.

-I Specifies listing options.

-n filespec Designates a new library file.

-0 filespec Specifies an old library file.

-r filespec Replaces old module(s) with new modules(s).

-v Specifies a detailed listing.

-x modulename [filespec]
Extracts (copies) a module to an object file.

Commands-8560 Series System Users

link
link [-CDLOcdmorstx] [parameters J

Link merges one or more independently assembled object files into a load file, suitable for loading
into memory.

-C

-D

-L

-0

-c

-d

-m

-0

-r

-s

-t

-x

In

Class definition command-assigns classname to section(s).

Define symbol command-defines a global symbol at link time.

Locate command option-locates class/section to a specified memory area.

Object file command option-specifies object module, library, and linked load
files to be linked by link.

Command file command option-invokes a linker command file.

Debug command option-triggers debug information.

Memory map command option-defines a memory map configuration.

Output load file command option-designates the output file for the linked
code.

Relink command option-triggers relink information.

Symfile (global symbol file) command option-specifies symfile(s) to be,linked.

Type command option-specifies relocation type of named class{es) or
section{s).

Transfer address command option-specifies load module transfer address.

In name 1 [name2]

Ln creates a link to an existing file name 1. If name2is given, the link has that name; otherwise it is
placed in the current directory and its name is the last component of name 1.

In

9-19

Is, If, II, Ir, Ix Commands-8560 Series System Users

9-20

login
login [user name]

If login is invoked without an argument, it asks for a user name, and, if appropriate, a password.
Echoing is turned off (if possible) while you type the password, so it will not appear on the written
record of the session. A helpful message is displayed after three unsuccessful attempts to log in.

Ip1r and Ip2r
Ip1r [-cmr] [file] .. .
Ip2r [-cmr] [file] .. .

Queues files for printing on line printer 1 (lp1 r) or 2 (lp2r). If no files are named, or if the file" -" is
encountered, the standard input is read.

-c Copies the file, to insulate against changes that may happen before printing.

-m Report by mail when printing is complete.

-r Deletes the file once it has been queued.

Is, If, II, Ir, Ix
Is [directory] .. .
If [directory] .. .
II [directory] .. .
Ir [directory] .. .
Ix [directory] .. .

For each directory, Is and the related listing commands II, If, Ir, Ix list the contents of the directory.

There are many more ways to list the contents of directories. For full information, enter man Is.
The output is sorted alphabetically by default.

Is

If

II

Ir

Ix

Lists contents in short format, multi-column, names sorted alphabetically down
the columns.

Marks directories with a trailing /, executable files with a trailing *, regular files
with no mark.

Lists contents in long format, giving access permissions, number of links, own
er, size in bytes, and time of last modification for each file in directory.

Lists directory, also recursively lists any subdirectories encountered.

Lists in multi-column format, names sorted alphabetically across rows.

Commands-8560 Series System Users

Istr
Istr [-ghnosuv] [file ...]

Lstr prints the symbol table of each object module in the argument list. If an argument is a library,
a listing for each object file in the library is produced.

-g Prints only global (external) symbols.

-h Prints the header in a library inserted with the libgen -h switch.

-n Sorts numerically rather than alphabetically.

-0 Prepends file or library element name to each output line rather than only once.

-s Appen,ds the length of sections to their output lines.

-u Prints only undefined symbols.

-v Prints the version number of Istr.

mail
mail username ...
mail [-rqp] [-f file]

Mail with no argument displays your mail, message-by-message, in last-in, first-out order.

-r

-q

-p

-f file

Displays the contents of the mailbox in first-in, first-out order.

Causes mail to exit after interrupts without changing the mailbox, rather than
just stopping printing of the current letter. '

Prints contents of the mailbox without questions.

Displays the given file as if it was the mail file. For each message, mail reads a
line from the standard input to direct disposition of the message.

Once you have invoked mail, you can use the following mail commands to process your mes
sages as you read them:

RETURN Goes on to next message.

d Deletes message and goes on to the next.

p Prints message again.

Goes back to previous message.

mail

9-21

man

9-22

Commands-8560 Series System Users

s [file] ... Saves the message in the named files (,mbox' default).

w [file] ... Saves the message, without a header, in the named files (,mbox' default).

m [username] ... Mails the message to the named user names (yourself is default).

CTRL-D Puts unexamined mail back in the mailbox and stops.

q Same as CTRL-D.

x Exits, without changing the mailbox file.

! command Escapes to the shell to do command.

? Prints a summary of mail commands.

make
make [-ikntrs][-f makefile][file] ...

Make executes commands in makefile to update one or more target files. The default is to use the
script in a file named makefile in the current directory (or Makefile if makefile does not exist).

-i

-k

-n

-t

-r

-s

-f makefile

man
man title ...

Equivalent to the special entry I .IGNORE:' .

When a command returns nonzero status, abandons work on the current entry,
but continues on branches that do not depend on the current entry.

Traces and prints, but does not execute the commands needed to update the
targets.

Touches, i.e. updates the modified date of targets, without executing any
commands.

Equivalent to an initial special entry '.SUFFIXES:' with no list.

Equivalent to the special entry '.S I LENT: ' .

The given file is used as the script rather than makefile or Makefile. If makefile is
"-", the standard input is used as the script. More than one -f option may
appear.

Man displays the online manual page named title, showing a screenful at a time.

Commands-8560 Series System Users

mesg
mesg [-ny]

Reports the current state of message permission.

-n Prevents other users from communicating with you via write.

-y Allows other users to communicate with you via write.

mkdir
mkdir dirname ...

Creates the specified directory in absolute mode 0777 (readable,· writeable, searchable by
everyone).

mload

mload [-p cc ... c] name [-dS]
-us

Provides the host-side protocol for formatted data transfers to or from TNIX.

-u

-d

-p cC ... c

-s

more
more [-d]

Specifies upload

Specifies download (the default).

An optional prompt, corresponding to the P= parameter on the TEKDOS
COMM command.

Slows down the transfer. A slowed transfer is required by TEKDOS on the
8002.

Limits lines of output coming to the screen to one screenful at a time.

-d Prompts with the message "Hit space to continue, Rubout to abort" at the end
of each screenful.

more

9-23

od

9-24

Commands-8560 Series System Users

mv
my file 1 file2
my file... directory
my directory 1 directory2

Moves (changes the name of) file1 to file2. In the second form, one or more files are moved to the
directory; they retain their original filenames. In the third form, the subtree rooted at directory1 is
moved to directory2.

newgrp
newgrp group

Temporarily changes your group identification.

nice
nice [-number] command
nohup command

Nice executes command with low scheduling priority. Nohup executes command even if you
logout or terminate a command from your terminal. The priority for nohup is incremented by 5.

-number

od

Increments the priority by number up to 20 (higher numbers mean lower priori- .
ties). Number defaults to 10.

od [-bcdox] [-s offset[.][b]] [-e offset[.][b]] [file]

Od dumps file in one or more formats as selected by the flags. Defaults to -0.

-b

-c

-d

-0

Interprets bytes in octal.

Interprets bytes in ASCII. Certain non-graphic characters appear as C escapes:
null=\O, backspace=\b, formfeed=\f, newline=\n, return=\r, tab=\t; oth
ers appear as 3-digit octal numbers.

Interprets words in decimal.

Interprets words in octal.

Commands-8SS0 Series System Users

-x

-s offset

-e offset

passwd
passwd [name]

Interprets words in hex.

Specifies the offset in the file where dumping is to commence. This argument is
normally interpreted as octal bytes. If"." is appended, the offset is interpreted in
decimal. If "b" is appended, the offset is interpreted in blocks of 512 bytes.

Same as -s, but specifies where dumping is to end. Default is dumping until
end-of-file.

Changes or installs a password associated with the user name (your own name by default).

pr
pr [-ntm] [-h header] [-c n] [-p n] [-w n] [-I n] [-s c] [file] ...

Produces a listing, formatted for the printer, of one or more files. The output is separated into
pages headed by a date, the name of the file or a specified header, and the page number. If there
are no file arguments, pr prints its standard input.

n

-t

-m

-h header

-c n

-p n

-w n

-I n

-s c

Adds line numbers.

Does not print the 5-line header or the 5-line trailer normally supplied for each
page.

Prints all files simultaneously, each in one column.

Uses header as the page header.

Produces n-column output.

Begins printing with page n.

For multi-column output, sets the width of the page to n characters instead of
the default 72.

Sets the length of the page to be n lines instead of the default 66.

Separates columns by the single character c instead of by the appropriate
amount of white space.

pr

9-25

rmdir

9-26

Commands-8560 Series System Users

ps
pS [-axl]

Displays information about active commands (processes).

-a

-x

-I

pwd
pwd

Displays information about all processes rather than only one's own processes.

Also displays information about processes not necessarily connected with a
terminal.

Produces a long listing. The short (default) listing contains the process 10, termi
nal number, cumulative execution time of the process and an approximation of
the command line. For an explanation of the long listing, enter man ps.

Displays the pathname of the working (current) directory.

rm
rm [-fri] file ...

Removes the entries for one or more file(s) from a directory.

-f

-r

-i

rmdir
rmdir dir ...

Forces a file with no write permission to be deleted without question.

Recursively deletes the contents of the specified directory, including the directo
ry itself.

Interactive: asks whether to delete each file, and, under -r whether to examine
each directory.

Removes entries for the named directories, which must be empty.

Commands-8S60 Series System Users

settape

settape name ... [-q) [~~J

Prepares the specified magnetic tape device for use and displays the device's characteristics.

Settape always resets all the system characteristics to their default values (which are contained
in the /etc/gpib/dev file). Settape modifies the operational characteristics only when you specify
-n or -r.

name

-q

-n

-r

sh

The complete pathname of the magnetic tape device. The pathname must al
ways begin with /dev/. If you include more than one name, the -n, -q, and -r
options apply to each device. Settape checks each name before modifying any
characteristics, to be sure that name specifies a GPIB-compatible device.

Quiet:' settape does not print out device characteristics.

Specifies that name does not rewind the tape when closed. The -n and -r
options are mutually exclusive.

Specifies that name rewinds the tape when closed. The -r and -n options are
mutually exclusive.

sh [-csientuvx] [arg] ...

Executes commands read from a terminal or a file.

-c string

-s

-i

-e

-n

-t

-u

Commands are read from string.

If the -s flag is present or if no arguments remain, then commands are read
from the standard input. Shell output is written to file descriptor 2 (standard
output).

If the -i flag is present or if the shell input and output are attached to a terminal,
then this shell is interactive.

If non-interactive, the shell exits immediately if a command fails.

Reads commands but does not execute them.

Exits after reading and executing one command.

Treats unset variables as an error when substituting.

sh

9-27

sort

9-28

-v

-x

sleep
sleep time

Commands-8560 Series System Users

Displays shell input lines as they are read.

Displays commands and their arguments as they are executed.

Disables the -x and -v options.

Suspends execution for time seconds.

sip
sip printer options ...

Modifies the output characteristics of printer according to options, exiting with a status of 2 if the
command was invoked improperly, 1 if some other problem occurred, or 0 if all went well. Printer
is the special file for the desired printer (e.g. /dev/lp1).

nl

-nl

I=string

tabs

-tabs

sort

The attached printer processes newlines-slp performs no newline processing.

The attached printer does not process newlines-slp replaces newline with
carriage return/linefeed on output.

Replaces newline on output with string.

The attached printer processes tabs-sip performs no tab processing.

The attached printer does not process tabs-sip replaces tabs with the appro
priate number of spaces on output.

sort [-bdfinrcmu] [-t c] [+ pos 1 [-pos2]] ... [-0 file] [- T directory] [file] ...

Sorts lines of all the named files together and writes the result on the standard output.

-b

-d

-f

-i

Ignores leading blanks (spaces and tabs) in field comparisons.

'Dictionary' order: only letters, digits and blanks are significant in comparisons.

Folds uppercase letters onto lowercase.

Ignores characters outside the ASCII range 040-0176 in nonnumeric
comparisons.

Commands-8SS0 Series System Users

-n

-r

-c

-m

-u

-t c

-0 file

- T directory

statgpib

An initial numeric string, consisting of optional blanks, optional minus sign, and
zero or more digits with optional decimal point, is sorted by arithmetic value.

Reverse the sense of comparisons.

Checks that the input file is sorted according to the ordering rules; gives no
output unless the file is out of sort.

Merges two already sorted input files.

Suppresses all but one in each set of equal lines. Ignored bytes and bytes
outside keys are omitted from this comparison.

'Tab character' separating fields is c.

Specifies the name of an output file to use instead of the standard output. This
file may be the same as one of the inputs.

Specifies the directory in which temporary files should be placed.

statgpib [device ...]

Displays the status of GPIB-compatible devices on the system.

device

stty [option] ...

The complete pathname of a GPIB-compatible device. The pathname must al
ways begin with /dev/. You may specify several devices with one statgpib
command.

Sets certain 110 options on the current output terminal. With no argument, it reports the current
settings of the options. An appended "in refers to input, an "on refers to output.

f

even{io}

odd{io}

nopar{io}

Forces the specified change to occur even if the terminal characteristic
table has been changed.

Even parity on input, output

Odd parity on input, output

No parity(O) on input, output

stty

9-29

stty

9-30

mark{io}

data{io}

nocare{io}

raw

-raw

cooked

cbreak

-cbreak

-nl

nl

echo

-echo

aresm

-aresm

xonxof

-xonxof

-tabs

tabs

ek

erase c

kill c

Commands-8560 Series System Users

Mark parity(1) on input, output

Data on input,output (8th bit is not stripped)

Don't-care parity on input, output

Raw mode input (no erase, kill, interrupt, quit, EOT; parity bit passed
back)

Negates raw mode

Same as '-raw'

Makes each character available to read as received; no erase and kill

Makes characters available to read only when newline is received

Allows carriage return for newline, and output CR-LF for carriage return or
newline

Accepts only newline to end lines

Echoes every character typed

Does not echo characters

Turns on auto resume, which causes any input to resume the output if it
has been suspended.

Turns off auto resume.

Turns on XON/XOF flagging on input.

Turns off XON/XOF flagging on input.

Replaces tabs by spaces when printing

Preserves tabs

Resets erase and kill characters back to normal AH and AU

Sets erase character to c. C can be of the form I A X' which is interpreted
as a 'control X'.

Sets kill character to c.

300 600 1200 2400 4800 9600
Sets terminal baud rate to the number given, if possible.

IU Specifies that an Integration Unit (IU) is connected to the port.

Commands-aS60 Series System Users

su
SU [username]

Requests the password of the specified user name. If it is given, su changes to that username and
invokes the shell without changing the current directory or the user environment. Entering
CTRL-D returns to the previous shell and username.

sync
sync

Executes the sync system call.

tail
tail [-rlbc][-s number][-e number][file]

Copies the named file to the standard output beginning at a deSignated place.

-r Prints lines in reversed order.

-I Number is in number of lines.

-b Number is in number of 512-byte blocks.

-c Number is in number of characters.

-s number Prints beginning at number units from the start of the file. Units defaults to lines.

-e number Prints beginning at number units from the end of the file. Units defaults to lines.

tee
tee [-is] [file] ...

Makes a copy of the standard input to files.

-i Interrupts are ignored.

-a Output is appended to the files rather than overwriting the files.

tee

9-31

time

9-32

Commands-8560 Series System Users

test
test expr

Evaluates the expression expr, and if its value is true then returns zero exit status. If the value of
expr turns out to be false, a non zero exit status is returned. The following elements are used to
construct the expr.

-r file

-w file

-f file

-d file

-s file

-t [fildes]

-z s1

-n s1

s1 = s2

s1 != s2

s1

n1 -eq n2

-a

-0

(expr)

time
time command

True if the file exists and is readable.

True if the file exists and is writable.

True if the file exists and is not a directory.

True if the file exists and is a directory.

True if the file exists and has a size greater than zero.

True if the open file whose file descriptor number is fildes (1 by default) is
associated with a terminal device.

True if the length of string 51 is zero.

True if the length of the string 51 is nonzero.

True if the strings 51 and 52 are equal.

True if the strings 51 and 52 are not equal.

True if 51 is not the null string.

True if the integers n 1 and n2 are algebraically equal. Any of the comparisons
-ne, -gt, -ge, -It, or -Ie may be used in place of -eq.

Unary negation operator

Binary and operator

Binary or operator

Parentheses for grouping.

The given command is executed; after it is complete, time prints the elapsed time during the
command, the time spent in the system, and the time spent in execution of the command.

Commands-8560 Series System Users

touch
touch [-c] file ...

Attempts to set the modified date of each file.

-c Does not create a file.

tr
tr [-cds] [string1] [string2]

Copies the standard input to the standard output with substitution or deletion of selected
characters.

-c

-d

-s

true
true
false

Complements the set of characters in string1 with respect to the universe of
characters whose ASCII codes are 01 through 0377 octal.

Deletes all input characters in string 1.

Squeezes all strings of repeated output characters that are in string2.

True sets exit status to zero. False sets exit status to non-zero.

tset
tset [-sQ] [?]type

Sets characteristics according to your terminal type: delays, baud rates, erase and kill characters,
and so on. Enter man tset for more options to this command.

-s

-0

?

type

Executes TNIX environment variable aSSignments and exports the variables.

Suppresses messages about the current settings of erase and kill characters.

If a question mark appears just before the name for the terminal, you are que
ried as to whether you really want that type of terminal. Enter RETURN if type is
correct; otherwise, enter another name.

The name for your terminal, as used in the file /etc/termcap.

tset

9-33

uniq

9-34

tty
tty

Commands-aS60 Series System Users

Displays the path name of your terminal.

uload

uload [=~] [-p ce ... c] [-s nn] file

Uload provides the host-side protocol for unformatted text transfers to or from TNIX.

d

u

-p cC ... c

-s nn

uniq

Specifies download (the default).

Specifies upload.

An optional prompt, corresponding to the P= parameter on the TEKDOS
COMM command.

Slows down the transfer by padding each line with nulls, where nn specifies the
number of nulls to send. A slower transfer is needed for the 8002A.

uniq [-udc [+ n] [-n]] [inputfile [outputfile]]

Reads the input file and compares adjacent lines.

-u

-d

-c

-n

n

Outputs only the lines that are not repeated in the original file.

Writes one copy of only the repeated lines.

Supersedes -u and -d and generates an output report in default style but with
each line preceded by a count of the number of times it occurred.

The first n fields (together with any blanks before each) are ignored. A field is
defined as a string of non-space, non-tab characters separated by tabs and
spaces from its neighbors.

The first n characters are ignored. Fields are skipped before characters.

Commands-8560 Series System Users

wait
wait

Waits until all background processes have completed, then reports on abnormal terminations.

we
we [-Iwe] [file] ...

Counts lines, words and characters in the named files, or in the standard input if no filename
appears.

-I

-w

-c

who
who [file]
who [am I]

Count~ lines only.

Counts words only.

Counts characters only.

With no argument, lists the login name, terminal name, and login time for each current TNIX user.

file file is examined.

who am I tells who you are logged in as.

write
write user [ttyname]·

Copies lines from your terminal to that of another user. If you want to write to a user who is
logged in more than once, you can use the ttyname argument to indicate the appropriate terminal
name. Permission to write may be denied or granted by use of the mesg command. If the
character"!" is found at the beginning of a line, write calls the shell to execute the rest of the line
as a command. You terminate your messages by entering CTRL-D.

write

9-35

8560 Series System Users

Section 10

ERROR MESSAGES

This section contains error messages and their explanations. These errors may be encountered
when using the commands found in the standard package of the TNIX operating system com
mands. (Optional command packages may generate other error messages.)

The error messages are divided into two lists:

• Shell Error Messages are error messages that may occur while you are using any TNIX
command.

• Keyshell Error Messages are those error messages that may occur only while you are using
the Keyshell user interface.

If you encounter unfamiliar terms in the error message explanations, refer to the Glossary and the
Index sections of this manual.

SHELL ERROR MESSAGES

'filename' and 'filename' are identical. Issued by my. Mv will not move a file to itself.

'filename' does not exist. The path name given was faulty, or the file does not exist.

'filename' exists. The file being moved to or created already exists.

'filename' is a directory. Issued by In and mv. An attempt was made to operate on a directory as
if it were a file.

'filename' is not a device or regular file. Issued by dsc50 and fbr. The file specified as the
DOS/50 or archive disk is of the wrong file type, such as a directory.

'filename' is not an object module. Make attempted to load a file that is not an object module.

'filename' not changed. You attempted to remove a file that you do not have write access to, so
rm did not remove the file. Occurs when using the -r option of rm.

'filename' not in archive. The specified file does not exist or was not found on the flexible disk
that fbr is operating upon.

10-1

Shell Error Messages . Error Messages-8S60 Series System Users

10-2

'filename' not removed. Rm attempted to remove a file that (1) does not exist, (2) has a parent
directory that cannot be written to, (3) is currently being executed, or (4) is itself a directory.

'string' busy; try again in a minute. Your mail box file (mbox by default), which is used to receive
your mail, is currently being copied to. Wait until it is done and then try the mail command again.

'string' not remade because of errors. A program was not constructed because of errors in the
make description file.

'username' logged more than once writing to 'tty number'. Issued by write. The person you are
writing to is logged in on more than one terminal. Write tells you which terminal it is going to write
to.

'username' not logged in. Issued by write. The person you are attempting to write to is not
logged in.

) missing. An unmatched parenthesis was found in the command string.

] missing. An unmatched bracket was found in the command string.

abort after en' tries. Mload retries n times; if errors occur repeatedly in the transmission n times,
the transmission is terminated.

alarm call. An alarm system call was sent from one process to a process that did not have a
corresponding signal system call to receive the alarm. The receiving process terminates.

arg count. You specified the wrong number of arguments to a command.

arg list too long. You specified an argument list longer than 5120 bytes to a command.

argument expected. An argument was not found where it was expected in a command syntax.

argument too large. The value of an argument is too big.

argument too long. Issued by grep. The length of an argument string is greater than 256
characters.

bad address. The system encountered a hardware fault in attempting to access the arguments of
a system call.

bad character 'char' (octal 'number'), line en'. Make has read an illegal character in a makefile.

Error Messages-8560 Series System Users Shell Error Messages

bad directory <filename >. An attempt was made by du to change the current directory to " .. "
(the parent directory) within this directory.

bad directory tree. Issued by find. An attempt to change directories failed.

bad file number. Either a file descriptor does not refer to an open file, or a read (write) system call
is made to a file that is open only for writing (reading).

bad free block 'block no'. Issued by df. One of the block numbers in the list of free blocks is out
of range. The file system needs to be repaired with stand-alone syschk. See your 8560 system
manager.

bad free count, b='block no.'. Issued by df. An incorrect number of free blocks was encoun
tered. The file system needs to be repaired with stand-alone syschk. See your 8560 system
manager.

bad number. Issued by sh. A string that is supposed to convert to a number could not be
converted.

bad starting directory. Issued by find. You attempted to start searching at a location that (1) is
not a directory, (2) you do not have read or execute access to, or (3) does not exist.

bad status < filename >. The stat system call, executed automatically by the find or du
command, indicates that filename does not exist.

bad substitution. The shell encountered an illegal argument when it attempted to expand an
expression.

bad system call. A call to the system failed.

bad trap. Issued by sh. The system call signal, used in a process, received a signal from another
process, but the signal number received was illegal.

block device required. A block I/O file was required, but a non-I/O file (not an I/O device) or an
I/O file (indicating an I/O device) that cannot perform block I/O, was specified.

broken pipe. An attempt was made to write to a pipe without another process to receive the
pipe's output. This condition normally generates a signal; the error is returned if the receiving
process's Signal system call did not catch the sent signal.

bus error. An attempt was made to address out-of-bounds memory.

can check only 1 file. An attempt was made to use sort -c on more than one file at a time.

10-3

Shell Error Messages Error Messages-8S60 Series System Users

10-4

cannot access 'filename'. The file does not exist or exists in a directory which is not accessible
to you.

cannot append to 'filename'. Mail failed while attempting to open (using the standard subroutine
(open) the mail file for appending.

cannot archive a link to the archive, 'filename'. Fbr prohibits attempts to archive a file into
itself. The file either does not exist or is not a directory. .

cannot change directory to /dev. Ps attempted to change to the dev directory, but the attempt
failed. Enter man chdir for information on the chdir system call.

cannot change DOS/50 directory to 'filename'. Issued by dsc50. You cannot change to the
given DOS/50 directory because it either does not exist or it is not a directory.

cannot change mode. The mesg command tried to change the write access bit on a terminal to
permit message sending. You do not have write access to the terminal.

cannot change mode on 'filename'. Issued by chmod and mesg. An attempt was made to
change the mode of a file which you did not own.

cannot change owner on 'filename'. If the user restoring files from a fbr disk is a superuser
(logged in as "root"), fbr attempts to restore the files to their original owners. This message
indicates that the attempt to restore the files to their original owners failed.

cannot chdir(). While du was traversing a tree, a call to the system call chdir returned an error.

cannot copy file to itself. The source file and the destination file Alust be different for the cp
command.

cannot copy from 'filename'. The file you want to copy from is read-protected.

cannot copy multiple files to a non-directory. Cp cannot copy multiple files to a single file. If you
wish. to concatenate several files, use cat.

cannot copy to 'filename'. The file you want to copy to is write-protected.

cannot create 'filename'. There are six possible causes for this error: (1) A needed directory
cannot be searched (you lack execute permission), (2) the file does not exist and the directory
cannot be written to, (3) the file is a directory, (4) the file exists but cannot be written to, (5) there
are already too many files open or (6) the passwd or diff commands attempted to create a
temporary file in a directory that did not exist (probably /usr/tmp or /tmp).

Error Messages-8SS0 Series System Users Shell Error Messages

cannot create proc for remote. In an attempt to mail a letter to another TNIX system, mail was
unable to call uux, the utility that handles remote mail. The creation of the process to execute uux
failed. Enter m~n fork for information on the creation of processes.

cannot create process, try again. My tried to create a process when there was temporarily no
room to create any more processes. Try the command again.

cannot exec cpo Issued by my. The invocation of cp (automatically done by my) to copy files
failed. Contact your Tektronix field service representative.

cannot exec mkdir. Issued by dsc50 and fbr. The program could not invoke mkdir. Contact your
Tektronix field service representative.

cannot execute. Your c;lttempt to execute a program failed. The file may not be executable, or
you may not have permission to execute the file.

cannot extend a contiguous file. Issued by dsc50. The specified file's allocation type is "contig
uous," meaning that its data must occupy adjacent blocks on the disk. The allocation for a
contiguous file cannot be changed.

cannot find daemon. files left in spooling dir. The line printer daemon, an internal program,
terminated. This daemon program takes care of the line printer queue, selecting the files to print.
Try to print the file again.

cannot find diffh. A file is too big for the diff command. The diffh command, automatically called
to handle these larger files, is not installed or is not in a standard location. Contact your Tektronix
field service representative.

cannot find groupna~e 'string'. The specified group was not found in the group file.

cannot find rmdir. Issued by rm. The rmdir command is not installed or is not in a standard
location. Contact your Tektronix field service representative.

cannot find username 'string'. The specified user name was not found in the password file.

cannot find your tty. The write command called the system call ttyname to find some information
about your terminal, and ttyname returned null. Enter man ttyname for more information.

cannot generate key. The crypt command called the system call read to read in the key (pass
word) from the command line, but the read failed.

cannot get current DOS/50 directory. Issued by dsc50. Due to corruption of your DOS/50 disk,
your current location on the disk cannot be converted into a legal pathname.

10-5

Shell Error Messages Error Messages-8560 Series System Users

10-6

cannot get disk size. Issued by syschk. A call to the system call ioct/ to find the size of a file
system failed, probably because the wrong device (special file) is being checked (for instance, the
special file /dev/hdO instead of /dev/rhdU).

cannot link 'filename'. Mkdir failed to create a directory. Mkdir functions by creating a link
between the" .. " file in the new directory, and the parent directory of the new directory. This link
failed. Enter man In for more inform"ation.

cannot link 'filename1' to 'filename2'. Either the files are on different devices, or there can be no
more links to that file, or you do not have write access to the directory that will contain the new
link.

cannot load 'command'. Make failed to invoke a command. Check your make file.

cannot locate parent. When mv called the system call stat to determine some information about
the parent of the current directory, the stat call failed.

cannot locate temp. Sort attempted to create a temporary file under /usr/tmp or /tmp, but could
not find those directories. .

cannot make directory 'filename'. You do not have write permission in current directory, or the
file already exists and is write-protected.

cannot make pipe. Issued by sh. There were already too many files open when the pipe was
attempted; and thus the shell could not open another input or output file. Wait until some of your
open files are closed and then issue the command again.

cannot mount 'filename'. Issued by dsc50. The specified file is not in DOS/50 format.

cannot move a directory into itself. Issued by mv. A directory cannot become one of its own
subtrees.

cannot move bad block 'block number' to bad block i-node. Issued by syschk. The bad block
i-node (an internal data structure) cannot be extended to accommodate the specified bad block.
Make sure that there are enough free blocks left on the file system.

cannot move bad blocks-cannot get bad block i-node. Near the end of the process of repair
ing a file system, syschk allocates all bad blocks to an i-node (an internal data structure) reserved
for that purpose. This error message appears if the bad-block i-node cannot be read.

cannot move directories across devices. Issued by mv. Links between files in different logical
devices are not allowed.

cannot open 'filename'. Either the file cannot be found, or you do not have read permission.

Error Messages-8560 Series System Users Shell Error Messages

cannot open 'filename' for writing. Issued by mail and uload. Either the file cannot be found, or
you do not have write permission.

cannot overwrite 'filename'. Issued by cpo You do not have write permission for the file that you
are trying to copy to.

cannot read 'filename'. You do not have read permission for the file.

cannot read from non-8560 standard-in. A dsc50 extract operation was specified, but a hyphen
(-) was specified as the DOS/50 source file.

cannot recreate passwd file. Passwd failed to recreate the /etc/passwdfile. To recreate the file,
passwd must have write access to the directory /etc.

cannot remove 'filename'. Lpr failed to remove the file when the -r option was used, or you tried
to use rm to remove the " .. " directory.

cannot remove directory 'filename'. Issued by dsc50. An attempt to delete a DOS/50 directory
failed, probably because the directory was not empty.

cannot rename 'filename'. Issued by Ipr and mv. You do not have write permission on the
directory that contains the file you tried to rename.

cannot reopen 'filename' for reading. Issued by mail and dsc50. An attempt was made to open
a file that was already open.

cannot re-read 'filename'. Mail failed in an attempt to re-open a file for reading. Enter man
fopen for more information.

cannot rewrite 'filename'. Mail failed to open the file for writing.

cannot seek on 'filename'. Issued by od. The call to the standard subroutine fseek (used by the
od command) failed. Enter man fseek for more information.

cannot send to 'username'. The person you are sending mail to is probably not set up to receive
mail.

cannot shift. A shift shell command failed, possibly because there were too few arguments on
the command line.

cannot spare block 'block number'. Issued by syschk. The specified bad block could not be
replaced with a good disk block. A bad block may have already been replaced on the spare sector
in the bad block's track.

10-7

Shell Error Messages Error Messages-8S60 Series System Users

10-8

cannot touch 'filename'. Issued by make or touch. You cannot either open, read, or write to the
file.

cannot unlink 'filename'. You do not have write permission for the file or for the directory that
contains the file.

cannot update times on 'filename'. Fbr failed in an attempt to restore the modification and
access times of the files.

cannot use wildcards when adding to archive. When performing any operation except extract
ing, fbr accepts filename expressions of the form acceptable to the shell. With the 'extract'
operation, however, wildcard characters (also called metacharacters) are not allowed.

cannot write to non-8560 standard-out. Issued by dsc50. A replace or update command was
given, but a hyphen (-) was specified as the DOS/50 destination file.

command terminated abnormally. Issued by time. The program you were timing exited with a
non-zero status. Enter man exit for more information.

copy file 'filename' is too large. A file copied by the Ipr command must be no larger than
204,800 bytes.

core dumped. The system detected a program failure. A core dump (the contents of the main
memory segment that contained the program) is placed in a file called core. The core dump is the
binary executable code at the time the program failed.

corrupted archive: bad archive label. The archive label (the part of the fbr disk that describes
how the rest of the disk is organized) is incorrect. This usually indicates that the data has been
improperly overwritten.

corrupted archive: bad directory checksum. A checksum is calculated for all directory informa
tion on a fbr disk. This message usually indicates that the data has been improperly overwritten.

corrupted archive: files partially overlap. The allocation on the fbr disk is no longer correct.
This usually indicates that the data has been improperly overwritten.

could not create special file 'filename'. Issued by cpo A special file is a device and cannot be
copied.

cross-device link. You may not link to a file that is in a file system on another logical device.

description file error. The make description file contained an error. Refer to the Maintaining Files
section of this manual for information on the make command.

Error Messages-8560 Series System Users Shell Error Messages

directory 'filename' is unreadable. The files in this directory were not copied because you do
not have read access for the directory.

directory rename only. Issued by my. The directory cannot be moved; it can only be renamed in
place. This error may occur if the protection modes of the receiving directory will not permit write
access.

don't know how to make 'program name'. Issued by make. Your makefile does not contain
sufficient information to make your program.

DOS/50 file already exists. Issued by dsc50. An existing DOS/50 file was mentioned in an
inappropriate context, such as linking.

DOS/50 file too fragmented. Issued by dsc50. The specified DOS/50 file cannot be extended
because the DOS/50 disk free space is too fragmented. Delete some DOS/50 files or copy your
files to a fresh DOS/50 disk.

DOS/50 permission denied. An attempt was made to access a DOS/50 file in a way forbidden by
dsc50.

EMT trap. A program you invoked issued an illegal EMT assembly language trap instruction.

EOF on 'filename'. This message indicates an unexpected end-of-file while reading a file.

* * * Error code 'decimal number'. An error occurred during execution of the make command.

error writing control file. An error occurred while the Ipr command was attempting to write to a
control file it was using.

exec format error. A request was made to execute an object file which, although it has the
appropriate permission, does not start with a valid format. Enter man a.out for more information
on the standard executable file used by TNIX.

extra flag '-(char)'. An incorrect option was entered. That is, an option which has no meaning to
the current command, or a correct option entered twice.

extra string argument. An extra filename was specified in a dsc50 command.

fatal read error on 'filename'. A read error occurred on syschk's temporary file.

fatal seek error on 'filename'. An I/O error occurred on syschk's temporary file. An Iseek
system call failed.

fatal short read on 'filename'. An I/O error occurred on syschk's temporary file. An Iseek
system call failed.

10-9

Shell Error Messages Error Messages-aS60 Series System Users

10-10

fatal short write on 'filename'. An I/O error occurred on syschk's temporary file. An Iseek
system call failed.

fatal write error on 'filename'. An I/O error occurred on syschk's temporary file. An Iseek
system call failed.

file 'filename' is empty. An I/O error occurred on syschk's temporary file. The file you have sent
to the printer is empty.

file changed after being used. A file used by make changed while make was running.

file exists. An existing file was mentioned in an inappropriate context. For example, an attempt to
form a link (with In) to a file that already exists can produce this message.

file table overflow. No more files can be opened until one or more files have been closed.

file too large. A file exceeded the maximum size (roughly 1000 megabytes).

files too big, try -h. The files you are trying to compare are too large for diff. Try using the -h
option.

floating exception. Your program performed some floating point arithmetic operations that
caused a floating point error.

hangup. Issued by sh. The hangup signal was issued to a process, but the process was not
prepared to catch it. Enter man signal for more information.

I/O error. A physical I/O error occurred during a read or write system call. This error may occur on
a system call following the one that actually caused the error.

ignoring standalone flag 'option'. A command option was selected that is not available in the
command version of syschk. Use the stand-alone syschk.

Illegal DOS/50 file descriptor. An internal dsc50 error occurred. Contact your Tektronix field
service representative.

Illegal DOS/50 filename. Issued by dsc50. The specified DOS/50 filename contained characters
not allowed by DOS/50.

Illegal DOS/50 seek. An internal dsc50 error occurred. Contact your Tektronix field service
representative.

illegal instruction. A program attempted to execute an illegal assembly language instruction,·
such as trying to execute data. Check your source code.

Error Messages-8560 Series System Users Shell Error Messages

illegal io. An attempt was made to write to a write-protected device.

illegal seek. An Iseek system call was issued to a pipe or to a device that does not implement
seek operations. Enter man seek for more information.

incomplete -'option' option. Issued by Ipr. This option requires additional information.

incomplete statement. Issued by find. Check your statement syntax.

inconsistent rules lines for 'string'. Check your make file. Refer to the Maintaining Files section
in this manual.

input 'filename' is output. Your file will be destroyed if you use the cat command to move the file
into itself.

input not tty. Issued by tty. The file you identified as a terminal device is not really a terminal
device.

interrupted system call. An asynchronous signal (such as interrupt or quit), which you have
elected to receive with a signal system call, occurred during the execution of another system call.
If execution is resumed after processing the signal, it will appear as if the interrupted system call
returned this error condition.

invalid argument. This error may be caused by using an unknown signal number with the signal
system call, by reading or writing a file for which the system call Iseek has generated a negative
pointer, or by math functions. Enter man signal or man Iseek for more information.

invalid command. Mail was given an invalid mail command.

Invalid DOS/50 parameter. An internal dscSO error occurred. Contact your Tektronix field ser
vice representative.

invalid mode. Issued by chmod. You are trying to change the file to an invalid protection mode.
Enter man chmod for information on protection modes.

invalid user id. Lpr cannot find the user 10 in the /etc/passwd file.

lOT trap. A program you invoked issued an illegal assembly language lOT trap instruction. Check
your source code.

Is a DOS/50 directory. Issued by dscSO. A directory was specified where a DOS/50 file should
have been specified.

Is a non-empty DOS/50 directory. Issued by dscSO. An attempt was made to remove a DOS/50
directory that was not empty.

10-11

Shell Error Messages Error Messages-8S60 Series System Users

10-12

is not an identifier. Issued by sh. An identifier was expected.

is read only. The file or device cannot be written to or executed, only read.

jackpot, you may have an unnecessary change recorded. The diff command made an error
and said that there was a difference between two files when there was no difference.

keynotes: ... If you receive an error message beginning with "keynotes:", refer to the Keyshell
Error Messages later in this section.

kill: 'process IO'-No such process. You attempted to use the kill command to terminate a
process that does not exist.

killed. Issued by sh. One of your processes was terminated.

kpp: •.• If you receive an error message beginning with "kpp:", refer to the Keyshell Error Mes
sages later in this section.

ksh: ... If you receive an error message beginning with "ksh:", refer to the Keyshell Error Mes
sages later in this section.

line not in TEKHEX. Issued by mload. In a data transfer, a line was encountered that was not in
TEKH EX format.

line too long. A line was read that was too large for dscSO's internal buffer.

load terminated. Issued by mload. The data transler stopped prematurely.

mail saved in 'filename'. Your mail was saved in the specified filename. (Trns is an-inJormational
message, rather than an error.)

memory fault. Your program tried to access non-existent memory or memory outside of the
program's fragment.

mismatch-password unchanged. Issued by passwd. The second time you typed your pass
word was different from the first.

misSing conjunction. You made an error in the find command syntax.

missing destination directory. Issued by dscSO. The destination directory does not exist or is a
file.

missing flag argument. A required option was omitted from the command line.

Error Messages-8SS0 Series System Users Shell Error Messages

missing number. An option was encountered which requires the next argument to be numeric,
but the numeric argument was missing.

missing process 10 argument. The kill command must specify a process ID.

missing string. A option was encountered which requires the next argument to be a string, but
the string argument was missing.

missing string argument. The command requires a string argument.

missing time argument. The number of seconds to the sleep command needs to be specified.

more than one mutually exclusive flag chosen. At least two conflicting options were specified,
or the same option appeared more than once in a command line.

mount device busy. An attempt was made to mount a device that was already mounted, or an
attempt was made to unmount a device on which there is an active file (open file, current directo
ry, mounted-on file, active text segment).

multiple rules lines for 'string'. Issued by make. More than one rule is applicable for updating
the file.

name too long. Issued by mv, dsc50, syschk, and fbr. A pathname was encountered that was
too large to fit in the program's internal buffer.

no children. Issued by the system call wait. The process executing the program containing the
wait call either has no child processes, or a wait call has already been issued for all the process's
child processes.

no more processes. Issued by the system call fork, while attempting to create a new process.
Either the system's process table (an internal data structure) is full, or you may not create any
more processes.

no namelist. Ps did not find the name list (symbol table) in the files it searched.

no room for columns. Issued by pro There is not enough room on the paper for the number of
columns you wish to print.

no shell. Issued by commands that execute a new shell, (such as newgrp and su) when the exec
call, used to start the execution, fails.

no space. Issued by shell. Your shell has run out of memory. Try the command again when some
of the current processes have terminated.

10-13

Shell Error Messages Error Messages-8560 Series System Users

10-14

no space left on device. During a write to a data file, it was found that there is no free space on
the device that contained the file.

No space left on volume. Issued by dsc50. There is not enough free space on your DOS/50 disk.
Delete some files or use a fresh DOS/50 disk.

no such device. An attempt was made to apply an inappropriate system call to a device (such as
reading a write-only device).

no such device or address. I/O was attempted to a special file that does not exist or has an
invalid device designation.

No such DOS/50 file or directory. Issued by dsc50. The specified file does not exist on the
DOS/50 disk.

no such file or directory. A directory or a file in a path name does not exist.

no such group. Issued by newgrp. You may have misspelled the group name you are trying to
refer to, or the group may not exist.

no such process. The process whose ID number was given to the signal or ptrace system call
does not exist, or is already terminated.

no such tty. Issued by write. The /dev/ttyN special file you specified (where N is an integer) does
not exist.

no suffix list. Make needs a list of suffixes to form its rules. Check your makefile. Refer to the
Maintaining Files section in this manual.

no write access to 'filename'. You do not have write access to the file. Use the Is -I command to
check the mode of the file you are trying to access. Enter man chmod for more information.

non-numeric argument. Issued by expr. An expression contained a non-numeric argument. En
ter man expr for more information.

not a directory. A file other than a directory was specified where a directory is required; for
example, a file in a pathname or a file as an argument to the system call chdir.

Not a DOS/50 directory. Issued by dsc50. A DOS/50 file was specified in a context where a
DOS/50 directory is required.

Not a DOS/50 volume. Issued by dsc50. The disk to be used as your DOS/50 disk does not have
a DOS/50 disk structure. Use the -m option to initialize the DOS/50 disk before writing.

Error Messages-8560 Series System Users Shell Error Messages

not a tty. Issued by tty. The device you specified was not a terminal.

not a typewriter. The file specified in stty or getty is not a terminal or one of the other devices to
which these commands apply.

not enough contiguous space on archive. The free space on the fbr disk is too fragmented to
store the desired files. Recreate the disk or delete some files to free larger chunks of the fbr disk.

not enough core. During the system calls exec or break, a program asks for more memory than
the system is able to supply. This is not a temporary condition; the maximum memory size is
constant. The error may also occur if the arrangement of text, data, and stack segments requires
too many segmentation registers (used by TNIX for memory partitioning).

not enough memory. Issued by syschk and dsc50. The program could not allocate as much
memory as it requires for its internal buffers. The task you are asking the command to perform
may be too large for it to handle. If this error persists, contact your Tektronix field service
representative.

not found. Issued by sh. The command was not in any of the directories in your PATH shell
variable. Refer to the TNIX Operating System section of this manual for more information on the
PATH variable.

not on that tty. Issued by write. The person you were writing to is not logged in on the terminal
that you specified.

not owner. Typically, this error indicates an attempt to modify a file in a way allowed only to its
owner or superuser. This error is also returned when a user attempts to perform tasks that are
restricted to the superuser.

null name. Issued by mail. You need to enter the user name of the person you are sending to.

offset is greater than file size. Issued by od. The starting offset to begin dumping the file is set
beyond the end of the file.

only one flag allowed with value argo One of the options entered on the command line must
match with a corresponding string or number argument one to one. An attempt was made to
group such an option with other options.

operand follows operand. Issued by find. Enter man find for more information on the correct
syntax.

out of buffers getting block 'block number'. Issued by syschk and dsc50. The program's
internal cache of block buffers is exhausted. The task you are asking the command to perform
may be too large for it to handle. If this error perSists, contact your Tektronix field service
representative.

10-15

Shell Error Messages Error Messages-8560 Series System Users

10-16

out of free archive directory entries. The pool of file slots on the fbr disk has been exhausted.
Delete some files from the fbr disk to make room.

out of memory. Ls tried to allocate some memory, but the request failed.

out of memory extracting 'filename'. Issued by fbr. Too much space is required to store the
names of all the files to operate on.

out of memory recording links to 'filename'. Issued by fbr. Too much space is required to store
the names of all the fUes to operate on. Split the desired operation into several smaller fbr
commands.

out of memory storing the name 'filename'. Issued by fbr. Too much space is required to store
the names of all the files to operate on. Split the desired operation into several smaller fbr
commands.

parameter not set. A parameter required by a shell command has not been set.

parsing error. Issued by find. Enter man find for more information on the correct syntax.

password unchanged. You made a mistake while trying to change your password. Try again.

permission denied. An attempt was made to access a file in a way forbidden by the protection
system. See the TNIX Operating System section of this manual for information about the file
protection system.

phase error. 'filename' changed size. The specified file's size increased or decreased between
the time that fbr anocated space for it and the time that its data was to be copied.

phase error. Cannot access 'filename'. Fbr makes two passes at the files to be operated on.
This error means that some aspect of a file changed between the two passes. This particular
message indicates that the specified file was deleted or otherwise made inaccessible.

phase error. Cannot open 'filename'. See the error message phase error. Cannot access
'filename '.

please use a longer password. Issued by passwd. A longer password is required.

please use at least one non-numeric character. The passwd program requires at least one
letter or special character in your password.

read error 'block no'. Issued by df. An read error occurred while reading the specified files. Try
again.

Error Messages-8560 Series System Users Shell Error Messages

read error in ' .. '. Issued by pwd. A read error occurred while determining the pathname to the
current directory.

read error on 'filename'. Issued by syschk and dsc50. A read error occurred while reading the
specified file.

read-only file system. An attempt was made to modify a file or directory on a device mounted as
read-only.

Regular expression error. Issued by expr and grep. There is something wrong with the regular
expression you typed. See the TNIX Editor section of this manual for information on regular
expressions.

regular expression too. long. Issued by egrep. A regular expression was longer than 350 lines.

Relblk out of range (disk corrupt). Issued by dsc50. The specified file contains blocks that are
not within the range of valid blocks on the DOS/50 disk. Delete the DOS/50 file.

Remove 'filename' 'octal number' mode? The rm command issues this message when the file
was not removed because of the protection mode. Enter man chmod for more information. Type
"y" to remove the file.

repairs not allowed on mounted file system 'filename'. Issued by syschk. The command
version of syschk does not repair file systems (the -m option). Use the stand-alone syschk.

restricted. You attempted to perform an operation restricted to the superuser.

result too large. The value of a function cannot be represented within machine precision.

seek error on 'filename'. An Iseek system call failed. The offset parameter may be out of
bounds.

short read on 'filename'. Issued by dsc50, syschk, and fbr. Fewer bytes were read than were
requested; this is an I/O error. Enter man read for more information on the system call.

short write on 'filename'. Issued bydsc50, syschk, and fbr. Fewer bytes were written than were
requested: this is an I/O error. Enter man write for more information on the system call.

signal 16. Signal number 16 was received by the signal system call. If this message is issued,
there was no process to catch this signal after it was sent. Check your source code.

sorry. Issued by newgrp, su, and passwd. You did not provide the necessary validation informa
tion to perform the desired task.

10-17

Shell Error Messages Error Messages-8560 Series System Users

10-18

sorry, path names including ' •. ' aren't allowed. Issued by my. It is illegal to move a directory
using ' . .' in one of the pathnames.

spare sector in use. Issued by syschk. Each track of the fixed disk has one extra sector, used to
replace one bad block. This message appears when syschk attempts to replace a second bad
block on a track.

starting offset is greater than ending point. Od was told to begin dumping after the point it was
told to stop dumping.

stray pms accept interrupt. The stand-alone syschk encountered a disk controller interrupt
when one was not expected. Contact your Tektronix field service representative.

stray pms complete interrupt. The stand-alone syschk encountered a disk controller interrupt
when it did not expect one. Contact your Tektronix field service representative.

stray pms utility interrupt. The stand-alone syschk encountered a disk controller interrupt when
it did not expect one. Contact your Tektronix field service representative.

syntax error. An error was encountered while a command (such as egrep or expr) was attempt
ing to parse an expression.

target name too long. Issued by mv. The name of the file into which you are moving a file
exceeds 100 characters.

Temp file disappeared!. Issued by passwd. The temp file that passwd uses somehow got
removed.

temporary file busy-try again. Passwd uses a common temporary file when it is logging some
one in. This message indicates that the file is being used.

terminated. The shell issues this informational message to confirm that one of your processes
was terminated.

*** Termination code 'decimal number'. Issued by make. The error code that was returned
caused make to halt.

text busy. See the error message text file busy.

text file busy. Issued by sh. An attempt was made either to execute a shareable read-only
program that is currently open for writing (or reading), or to open for writing a shareable read-only
program that is being executed.

timeout opening his tty. Issued by write. The terminal may not be plugged in or'turned on.

Error Messages-8560 Series System Users Shell Error Messages

tnix: bn="block number" er="errnum {,errnum ... }". Issued by the 8560's PMS Controller.
"Block number" is the block number on which the error occurred. "Errnum" is the error number,
as defined in Table 11-1 at the end of this section.

tnix: err on dey "devnum". Issued by the 8560's PMS Controller. "Oevnum" is the major/minor
device number of the device on which the error occurred. See Table 11-2 at the end of this section
for a cross-reference listing of devices and major/minor device numbers.

tnix: error 2 on HSI device "devnum". Issued by the 8560's lOP or PMS Controller. You tried to
use a tty port as an HSI port. "Oevnum" is the major/minor device number of the device on which
the error occurred. See Table 11-2 at the end of this section for a cross-reference listing of
devices and major/minor device numbers.

tnix: error 4 on hsi device "devnum". Issued by the 8560's lOP or PMS Controller. Too much
data is being sent out an HSI port. "Oevnum" is the major/minor device number of the device on
which the error occurred. See Table 11-2 at the end of this section for a cross-reference listing of
devices and major/minor device numbers.

tnix: error 5 on hsi device "devnum". Issued by the 8560's lOP or PMS Controller. Not enough
data is being sent out an HSI port. "Oevnum" is the major/minor device number of the device on
which the error occurred. See Table 11-2 at the end of this section for a cross-reference listing of
devices and major/minor device numbers.

tnix: error 6 on hsi device "devnum". Issued by the 8560's lOP or PMS Controller. A transfer of
data over an HSI port was not successful after many attempts. "Oevnum" is the major/minor
device number of the device on which the error occurred. See Table 11-2 at the end of this section
for a cross-reference listing of devices and major/minor device numbers.

tnix: panic: Several error messages begin with tnix: panic:. These error messages will some
times be issued before a system crash. Enter man crash for explanation of specific messages.

too big. Ouring the system calls exec or break, a program asks for more memory than the system
is able to supply. This is not a temporary condition; the maximum core size is constant. The error
may also occur if the arrangement of text, data, and stack segments requires too many segmen
tation registers (used by TNIX for memory partitioning).

too many '('so Issued by expr. Unmatched parenthesis in the expression.

too many command lines for 'string'. Issued by make. 'String' occurs on two dependency lines
in your makefile, each with an associated command-list. If you need to retain two separate
command-lists, use make's double-colon syntax. Refer to the Maintaining Files section of this
manual.

too many copy files; 'filename' not copied. Issued by Ipr. You attempted to print too many files
at once.

10-19

Shell Error Messages Error Messages-8560 Series System Users

10-20

Too many DOS/50 directory levels. The specified pathname is at a deeper level in your DOS/50
disk than dsc50 can traverse. Try changing your current DOS/50 directory to a directory nearer
to the file you are working on.

Too many DOS/50 links. Issued by dsc50. The specified operation would result in more links to a
given DOS/50 file than can be represented.

too many files. Ls cannot handle more than 1024 files.

too many keys. Sort cannot sort more than 10 keys.

too many links. You attempted to make more than 32767 links to a file.

Too many open DOS/50 files. Issued by dsc50. Try specifying fewer DOS/50 files in the
operation.

too many open files. The default limit is 20 open files per process.

trace/BPT trap. Issued by sh. An erroneous BPT (breakpoint) assembly language instruction was
executed. Check your source code.

transfer aborted. Issued by mload. An abort line was encountered in the data.

tty not accessible. Issued by mesg. Your /dev/tty file was not found. Enter man stat for more
information.

unknown error. Issued by the perror standard subroutine. The error number parameter specified
in the p9rror call does not correspond to any errors in the perror list.

unknown group 'string'. Issued by chgrp. The group specified is not listed in the system
groupname file. Use the correct group name.

unknown operator. Issued by test. Check your test syntax.

unknown option 'character'. Issued by mail. You tried to use an option that does not exist.

volume too small after initializing. Issued by dsc50. The DOS/50 disk is physically too small to
contain the desired number of file slots. Use the -a option during disk initialization (-m) to request
a smaller number of file slots.

write error. A physical I/O error occurred during a write system call. This error may occur on a
system call following the one that actually caused the error.

Error Messages-8560 Series System Users Shell Error Messages

write error on 'filename'. Issued by dsc50, syschk, and fbr. A write error occurred while writing
to the specified file. Try the command again.

write error on copy of 'filename'. A write error occurred while Ipr was copying your print file. Try
the command again.

KEYSHELL ERROR MESSAGES
The following error messages are issued only by the three programs that interact to provide the
Keyshell interface: keynotes, kpp, and ksh.

keynotes: bad index value for 'number' in file 'name'. The file containing Explain Key Labels
information contains an error. Ask your system manager to rebuild your ksh files with the setuser
command. If that does not correct the problem, ask the system manager to reinstall TNIX. Con
tact your Tektronix service representative if the error persists after TNIX has been isntalled again.

keynotes: bad line count 'count' for index 'number' in file 'name'. The file containing Explain
Key Labels information contains an error. Ask your system manager to rebuild your ksh files with
the setuser command. If that does not correct the problem, ask the system manager to reinstall
TNIX. Contact your Tektronix service representative if the error persists after TNIX has been
installed again.

keynotes: environment variable TERM is not defined. The environment variable TERM has not
been set to the name of your terminal. The command file .profile should do this when you log in; it
may be miSSing or damaged. Ask your system manager for help in examining and perhaps
replacing your .profile.

keynotes: file 'name' corrupted. The file containing Explain Key Labels information has been
damaged. Ask your system manager to check the integrity of the system disk. Once disk integrity
has been verified, ask your system manager to rebuild your ksh files with the setuser command.
If that does not correct the problem, ask the system manager to reinstall TNIX. Contact your
Tektronix service representative if the error perSists after TNIX has been installed again.

keynotes: missing arguments. The keynotes program was invoked incorrectly by ksh. Reinstall
TNIX. Contact your Tektronix service representative if the error persists after you have installed
TNIX again.

keynotes: 'name' not a keynotes file .. There are two possibilities: 1) ksh was invoked incorrect
ly in your login command file .profile. Ask your system manager for help in replacing .profile. 2)
The file containing ksh Explain Key Labels information was altered. Ask your system manager to
rebuild your ksh files with the setuser command. If that does not correct the problem, ask the
system manager to reinstall TNIX. Contact your Tektronix service representative if the error
persists after TNIX has been installed again.

REV AUG 1983 10-21

Shell Error Messages Error Messages-8560 Series System Users

10-22

keynotes: no termcap entry for 'term'. The terminal data base file /etc/termcap lacks a descrip
tion of your terminal. Ask your system manager to verify that the TERM environment variable is
set properly by the login command file .profile when you log in. If it is, then this message means
that the Keyshell interface is not available for your terminal.

keynotes: no information for 'name' in file 'name'. There is no Explain Keys information for the
current set of keys.

keynotes: 'termname' screen too narrow. Your terminal is not suitable for displaying Explain
Key Labels information.

kpp: •.• Error messages beginning "kpp:" result from errors in building customized ksh session
files. Usually, one of the necessary files is missing or contains erroneous information. If you

. receive such an error message, ask your system manager to rebuild your ksh files with the
setuser command. If that does not correct the problem, ask the system manager to reinstall
TNIX. Contact your Tektronix service representative if the error perSists after TNIX has been
installed again.

ksh: can't access tty driver. Indicates that ksh could not access a TNIX tty (terminal) device
driver. Reinstall TNIX. Contact your Tektronix service representative if the error persists after
TNIX has been installed again.

ksh: can't find 'main'. The session file used by ksh lacks a "main" block. Ask your system
manager to rebuild your ksh files with the setuser command. If that does not correct the problem,
ask the system manager to reinstall TNIX. Contact your Tektronix service representative if the
error perSists after TNIX has been installed again.

ksh: can't open session file 'name'. The session file needed by ksh is nonexistent or inaccessi
ble. Ask your system manager to rebuild your ksh files with the setuser command. If that does
not correct the problem, ask the system manager to reinstall TNIX. Contact your Tektronix
service representative if the error persists after TNIX has been installed again.

ksh: can't run two background processes. The session file used by ksh contains erroneous
instructions. Ask your system manager to rebuild your ksh files with the setuser command. If that
does not correct the problem, ask the system manager to reinstall TNIX. Contact your Tektronix
service representative if the error persists after TNIX has been installed again.

ksh: control character in argument on line 'n' of session file 'name'. The session file used by
ksh contains an error. Ask your system manager to rebuild your ksh files with the setuser
command. If that does not correct the problem, ask the system manager to reinstall TNIX. Con
tact your Tektronix service representative if the error perSists after TNIX has been installed again.

ksh: environment variable TERM is not defined. Ksh has found that the environment variable
TERM has not been set to the name of your terminal. The command file .profile should be doing
this when you log in; it may be missing or damaged. Ask your system manager for help in
examining and perhaps replacing your copy of .profile.

REV AUG 1983

Error Messages-8560 Series System Users Shell Error Messages

ksh: extraneous argument on line 'n' of session file 'name'. The session file used by ksh
contains an error. Ask your system manager to rebuild your ksh files with the setuser command.
If that does not correct the problem, ask the system manager to reinstall TNIX. Contact your
Tektronix service representative if the error persists after TNIX has been installed again.

ksh: internal buffer overflow. This message usually results from building a very long command
line. Try to accomplish the task using several shorter commands.

ksh: interrupted. Ksh was interrupted by a quit signal. Type ksh to invoke ksh again.

ksh: illegal argument on line 'n' of session file 'name'. The session file used by ksh contains an
error. Ask your system manager to rebuild your ksh files with the setuser command. If that does
not correct the problem, ask the system manager to reinstall TNIX. Contact your Tektronix
service representative if the error persists after TNIX has been installed again.

ksh: illegal delimiter on line 'n' of session file 'name'. The session file used by ksh contains an
error. Ask your system 'manager to rebuild your ksh files with the setuser command. If that does
not corect the problem, ask the system manager to reinstall TNIX. Contact your Tektronix service
representative if the error persists after TNIX has been installed again.

ksh: 'main' didn't close. The session file used by ksh contains an error. Ask your system
manager to rebuild your ksh files with the setuser command. If that does not correct the problem,
ask the system manager to reinstall TNIX. Contact your Tektronix service representative if the
error perSists after TNIX has been installed again.

ksh: missing argument on line 'n' of session file 'name'. The session file used by ksh contains
an error. Ask your system manager to rebuild your ksh files with the setuser command. If that
does not correct the problem, ask the system manager to reinstall TNIX. Contact your Tektronix
service representative if the error persists after TNIX hs been installed again.

ksh: no session file. The session file used by ksh is missing. Ask your system manager to rebuild
your ksh files with the setuser command. If that does not correct' the problem, ask the system
manager to reinstall TNIX. Contact your Tektronix service representative if the error persists after
TNIX has been installed again.

ksh: no term cap for 'term'. The terminal data base file /etc/termcap lacks a description of your
terminal. Ask your system manager to verify that the TERM environment variable is set properly
by the login command file .profile when you log in. If it is, then this message means that the
Keyshell interface is not available for your terminal.

ksh: out of memory space. If this message appears when you first log in, contact your Tektronix
service representative. If it appears after you have been using ksh for a while, it indicates that
there is no more room to accumulate command history. You may continue, but new commands
will not be saved in your history list. Use the exit key to leave ksh, then type ksh to invoke it again
and empty your history list. '

REV AUG 1983 10-23

Reference Tables Error Messages-8S60 Series System Users

10-24

ksh: redefinition of 'symbol' on line 'n' of session file 'name'. The session file used by ksh
contains an error. Ask your system manager to rebuild your ksh files with the setuser command.
If that does not correct the problem, ask the system manager to reinstall TNIX. Contact your
Tektronix service representative if the error persists after TNIX has been installed again.

ksh: system error - can't fork. Not enough TNIX process slots were available for ksh to use. Try
the same task again later.

ksh: 'term' is not an acceptable terminal. Your terminal is not suitable for use with ksh.

ksh: 'term' missing capability 'xx'. Indicates that your terminal lacks one of the capabilities
needed to run ksh.

ksh: unexpected end-of-file on line 'n' of session file 'name'. The session file used by ksh
ended prematurely. Ask your system manager to rebuild your ksh files with the setuser com
mand. If that does not correct the problem, ask the system manager to reinstall TNIX. Contact
your Tektronix service representative if the error persists after TNIX has been installed again.

ksh: unknown action on line 'n' of session file 'name'. The session file used by ksh contains an
error. As your system manager to rebuild your ksh files with the setuser command. If that does
not correct the problem, ask the system manager to reinstall TNIX. Contact your Tektronix
service representative if the error persists after TNIX has been installed again.

REFERENCE TABLES
Table 10-1 explains "errnum" in the tnix: bn=-block number" er=-errnum {,errnum ... J" shell
error message. Table 1 0-2 explains the "devnum" in several of the shell error messages beginning
with tnix:.

REV AUG 1983

Error Messages-8S60 Series System Users

Error Number

01
02
03
05
10
11
12
21
22
23
24
25
26
27
30
31
33
34
35
36
37
41
42
43
44
45
46
47
51
52
53
54
55
56
57
124
141
142
143
144

Table 10-1
PMS Controller Error Number Definitions

Explanation

8560 address impossibly large
Odd 8560 address
Odd byte count
Invalid device number
Invalid command code
Utility command issued to hard disk
Align command issued to hard disk
Drive not ready
No track zero signal detected
Data overrun error
ID field error in the Cyclic Redundancy Checksum
Bad cylinder address in I D field
Wrong cylinder address encountered in ID field
Bad I D fields
Missing data field address mark
Missing ID field address mark
Attempt to access sector beyond end of track
Invalid flexible cylinder address
Direct memory access timeout on disk read
Write protected diskette
Direct memory access timeout on disk write
Invalid hard disk command
Invalid parameter byte
Drive not busy
Drive fault
Illegal head or cylinder address
Sector not found
Data error
Timeout error
Hard disk positioner error
Drive fault during write
Hard disk performed retry after read/write error
Direct memory access timeout during hard· disk read
Error correcting code performed
Direct memory access timeout during hard disk write
Flexible disk block number too large
No spare sector on specified track
Spare sector command did not select hard disk
Hard disk access timeout
Hard disk block number too large

Reference Tables

10-25

Reference Tables

Device

aux1
aux2
console
fdO
hdO
hsiO
hsi1
hsi2
hsi3
hsi4
hsi5
hsi6
hsi7
hsixO
hsix1
hsix2
hsix3
hsix4
hsix5

10-26

Table 10-2
Major/Minor Device Numbers

Major/Minor Device

5/0 hsix6
5/1 hsix7
0/8 kmem
0/4 Ip1
0/0 Ip2
1/0 mem
1/1 null
1/2 rfdO
1/3 rhdO
1/4 swap
1/5 tty
1/6 ttyO
1/7 tty1

1/16 tty2
1/17 tty3
1/18 tty4
1/19 tty5
1/20 tty6
1/21 , tty7

Error Messages-8S60 Series System Users

Major/Minor

1/22
1/23
2/1
5/0
5/1
2/0
2/2
3/4
3/0
0/0
4/0
0/8
0/9
0/10
0/11
0/12
0/13
0/14
0/15

8560 Series System Users

Section 11

GLOSSARY

Ancestor. See parent.

Argument. A name or expression in a TNIX command line that supplies information to the com
mand, command file, or program to be executed.

Background Execution. The process of executing a list of one or more commands
concurrently-without waiting for these commands to finish executing-by placing an ampersand
(&) character at the end of a command line.

Bad Block. A block of disk space that is no longer usable due to physical damage. A bad block is
not allocated once it has been marked by the TNIX syschk command.

Blank Interpretation. The process of parsing a shell command line into its constituent arguments.
Variable and command substitutions are performed before the command line arguments are
separated into individual arguments. The shell variable IFS defines characters that the shell uses
to separate command line arguments.

Block Special File. A software device driver that transfers data to/from an I/O device in units of
blocks.

Block. (1) Any 512-byte segment of disk space, memory, data, or program code. (2) In Tekhex
protocol, any message up to 255 bytes in length.

Category C. Optional software supplied by Tektronix, for which Tektronix makes no warranty,
express or implied, that the software is suitable for a specific purpose or that it performs any
specific function correctly. Category C software includes:

• Optional Text Processing Package

• Optional Native Programming Package

• Optional Auxiliary Utilities Package

Character Special File. A software device driver that transfers data character-by-character to or
from an I/O device (such as a terminal).

Child. The process created when an executing process creates another concurrently executing
process with the fork TNIX system call. (The originating process is called the parent process.)

11-1

11-2

Glossary-8560 Series System Users

COM Interface. A communications interface similar to TERM mode, but more restrictive. With the
COM interface, communicates with the 8560 primarily for the purpose of transferring object code
and files. The COM interface is most useful for communicating with the 8001 and 8002A (which
do not support TERM mode). See the Communication with 85405 and 85505 section of this
manual for a brief description of the COM interface.

Command File. A file that contains commands to be processed by the TNIX shell or by a system
program such as the linker, the library generator, or the ACE editor.

Command Substitution. A feature of the TNIX shell that replaces one or more commands en
closed in accent grave characters (') with the output from those commands, supplying the output
of the accent-grave-enclosed characters as a command line argument to a command.

Control Character. A character whose ASCII code is in the hexadecimal range 00 to 1 F, or 7F.
Some control characters are entered by pressing special keys, such as TAB, ESC, or RETURN.
Others are entered by sHnultaneously pressing the CTRL key and some other key.

Cooked Device. A software device driver that allows the system to process transferred data.

Current Directory. The directory that you are currently accessing. The current directory is used
as a starting place when a full path name (a name that begins with "/") is not given. The current
directory is sometimes referred to as the working directory.

Daemon. An independently executing process that asynchronously performs periodic system
maintenance tasks, such as printing files from a spool directory. (A spool directory contains files
that are queued, waiting to be printed on the line printer.)

Default. A predefined value for a command parameter, used when no value for the parameter is
explicitly specified.

Descendant. File F is termed a descendant of directory 0 if:

• 0 contains F, or

• a descendant of 0 contains F.

Device. (1) A piece of computer hardware. (2) An instrument attached to the 8560 that is used for
data entry, storage, and display. For device I/O, TNIX treats devices as special files. Thus, you
can direct a program's output to a special file the same way you would direct that program's
output to a regular file. All special files are located in the /dev directory. See logical device.

Device Number. See major device number.

Directory. A file that contains only pOinters (called links) to other files. A file that is pointed to by a
directory is said to reside in the directory; every file resides in at least one directory. Similarly, a
directory is said to contain each file that the directory points to. The mkdir command creates a
new directory.

Glossary-8560 Series System Users

DOS/50. The operating system of the 8550 Microcomputer Development System.

Download. To transfer data from a host such as the 8560 to a microcomputer development
system (such as the 8540).

Environment. A set of string-valued parameters maintained by the shell. These parameters can
be accessed by programs executed by the shell. The environment consists of:

• the current directory,

• your user name,

• your group name,

• the default shell variables HOME, IFS, PATH, PS1, PS2, and

• any shell variables that you have defined and "exported" with the shell's export command.

Execute Permission. The ability to execute a file or search a directory. Permission is regulated by
mode bits, whic~ can be set with the chmod command.

File. The fundamental unit of data storage used by the TNIX operating system. A file is a collec
tion of logically related information that is stored on a backup tape, a flexible disk, or a fixed disk
drive. TNIX does not assign any specific structure to a file.

File Descriptor. An integer in the range 0-20 that is returned by a creat, dup, open, or pipe
TNIX system call. The file descriptor, instead of a filename, is used as a parameter to TNIX
system calls that access open files. These TNIX system calls include close, ioetl, Iseek, read,
fstat, and write. The file descriptors 0, 1, and 2 are assigned to standard input, standard output,
and standard error, respectively.

File Tree. A directory and all its descendants.

Filename. A sequence of 1 to 14 characters that specifies a file. The "/" and the null character
cannot be used in a filename. You should also avoid using control characters, blank, newline, tab,
or the following special characters in filenames:

&"";:?!-$*<>[]()\

Filesystem. A complete directory hierarchy that may extend over one or more fixed disk drives.
The "root" filesystem is the "/" filesystem-other filesystems are mounted on directories within
the root filesystem. Each filesystem has a maximum number of files that may be created on it.
Files may not be linked across filesystems.

Filter. A program such as grep or tr that accepts data from standard input, performs some
transformation upon the data, and writes the data to standard output.

11-3

11-4

Glossary-8560 Series System Users

Fork. A system call that creates a new (child) process that executes concurrently with the calling,
or parent, process. The child process inherits the open files of the parent and executes concur
rent�y with the parent. To avoid concurrent execution of the child and parent process, the parent
process can execute the wait TNIX system call, which causes it to pause until the child process
terminates.

Group. Groups provide a simple method for restricting read/write/execute privileges for specific
collections of files and directories to a subset of the users on a specific machine. Each group is
assigned a specific entry in the jete/group file; users who have access to that group are listed in
that group's entry in the jete/group file.

Group 10. The numerical identification of a user as a member of a group of users working on
related information.

Groupname. The alphanumeric name of a group.

Host. A computer system (such as the 8560) that is used to prepare and maintain programs that
are tested and debugged on a workstation such as the 8540.

I-node. An entry in a TNIX data structure that describes:

• the physical location of a file on a fixed disk,

• the ownership and protection modes of a file,

• the last access date of a file, and

• the number of filenames associated with a file.

I/O Redirection. The ability of the TNIX shell to take the source and destination of a program's
input and output from files other than standard input and standard output.

K. 1024 bytes (400 hexadecimal).

Kernel. The main memory-resident part of the TNIX operating system.

Keyshell. An interface to TNIX that enables you to enter commands by pressing function keys as
well as typing the commands literally.

Library. A collection of object modules that usually contains commonly used subroutines.

Link. (1) A pOinter from a directory to a file. The In command allows you to create multiple
pOinters or links to a single file. (2) To merge object modules into a load module using the linker.

Linker. The system program that combines object modules into a single executable load module.
The Tektronix Linker is described in the 8500 Modular MDL Series Assembler Core Users Manual
for B Series Assemblers.

Glossary-8560 Series System Users

Logical Device. See special file.

Log In. To sign into the TNIX operating system.

Login Name. The name by which the system recognizes a particular user at login. A login name is
typically 1 to 8 lowercase letters. The login name is also referred to as the username.

Major Device Number. An entry in a TNIX data structure that specifies the type of software
device driver used to perform a data transfer operation. Each type of I/O device (Le., a fixed disk
drive or a terminal) uses the same software device driver, and therefore has the same major
device number. Individual devices of each type are specified by the minor device number.

Make. Described in Section 6 of this manual, the make program can be used to perform the
clerical tasks associated, with updating and maintaining interrelated program modules. With mod
erately complex programs, this can be an almost indispensable time-saver and program
bug-saver.

Man. A TNIX command that provides access to online information. For example, man cd displays
information about the cd command.

Metacharacter. A character used to match specific patterns of characters. Metacharacters are
used by the TNIX shell, ed, sed, grep, awk, and a number of other programs. For example, the
TNIX shell substitutes any filenames that match the pattern of characters represented by the
series of one or more metacharacters. Regular expressions (described later in this Glossary) are
defined by a series of metacharacters.

Minor Device Number. An entry in a TNIX data structure that specifies the physical device to be
accessed for a data transfer operation. For example, if there are two line printers connected to
your system, TNIX would use the major device number to select the software device driver for the
printer, and the minor device number (internally) to specify which printer to transfer data to.

Mode Bits. The 12 protection bits associated with a file. The first 9 bits specify read, write, and
execute access for the owner, members of the owner's group, and remaining users. The last 3
bits specify that the program set the group/user ID on execution, and that the program remains in
main memory for a minimum amount of time (use this mode for heavily used programs, such as
Is). Use the chmod command to change a file's mode bits, and the shell's umask command to set
the default file creation mode bits.

Mount. To associate a physical device (such as an 8503 Disk Expansion Unit) with a directory in
the file tree. The data stored on the device is then accessible as subcomponents of the tree. See
your 8560 Series System Manager's Guide for more information.

Multiplexed Special File. A special file that allows multiple communication paths between one or
more executing processes.

11-5

11-6

· Glossary-8560 Series System Users

Newline. The newline character is the ASCII LF (octal 12) character, and is used to separate lines
in TNIX files. You can enter a newline character into a file by pressing the LlNEFEEO or RETURN
key on your terminal.

OS/40. The operating system of the 8540 Integration Unit.

Parameter. A name or expression in a TNIX command line that supplies information to the
command, command file, or program to be executed.

Parent. (1) The directory that contains a specific directory or file. For example, /usr/gandalf is the
parent directory of /usr/gandalf/projects. (2) The originating process when an executing process
creates another concurrently executing process with the TNIX system call fork. (The newly creat
ed process is called the child process.)

Password. The private sequence of characters that allows you to be identified to the system by
your username. Each username may have an associated password, initially assigned by the
system manager. You can change your password with the passwd command. Passwords are
stored in an encrypted format in the /etc/password file.

Pathname. A sequence of directory names separated by slashes and ending in a filename, that
defines a path to a file. For example, /usr/tektronix!myprog is a pathname for the file myprog in

:-:i~ectory tektronix. If /usr/tektronix is the cu,:e;!t directory, myprog is a synonym for
.. ~';.'./. -:.ronix/myprog.

Permission. See execute permission, read perrnissiofl, and write permission, in this Glossary.

Pipe. A communication channel used to transfer data between two executing programs. Pipes
may be established from the shell using the 'T' character.

Pipeline. A sequence of one or more commands separated by":". The standard output of each
command except the last is connected by a pipe to the standard input of the next command.

Process. An independently executing program with its own current directory, open files, user 10,
group 10, and other process-specific information. Each process has its own memory for stacks,
variables, and program information.

Process 10. A number in the range 1-30000 that uniquely identifies an executing process to
TNIX.

Profile. (1) A file named .profile in your HOME directory that contains a list of commands execut
ed by the TNIX shell when you first log into TNIX. (2) To obtain an execution trace of a program as
an aid in debugging the program.

Prompt. The character that a program displays to tell you that it is waiting for input. The TNIX
shell has three default prompt characters: "$", .. > ", and" #" .

Glossary-BS60 Series System Users

Queue. (1) To place files to be printed or processes to be executed into a waiting line. (2) The
waiting line itself. Files are said to be "spooled" or "queued" when they are in a print queue.

Raw Device. A software device driver that transfers data without any processing by the system.

Read Permission. The ability to read from a file or list the contents of a directory. Permission is
regulated by mode bits, and can be set with the chmod command.

Regular Expression. A series of one or more characters· used to match specific patterns of
characters. Regular expressions are used by the TNIX shell, ed, sed,grep, awk, and a number of
other programs. Regular expression syntax varies from program to program. Be sure to consult
the documentation for regular expression syntax for a specific program.

Regular File. Any file th,at is not a directory or a special file.

Root Directory. The directory (represented by "r) at the top (root) of the TNIX file tree. Except for
the root directory itself, all files are descendants of the root directory.

Shell. A command interpreter that serves as an interface between you and the TNIX operating
system. (See the TNIX Operating System section of this manual.)

Shell Procedure. A shell program. The Shell Programming section of this manual describes the
shell programming language.

Shell Variable. Any command argument in a shell command line whose first character is a "$".
Before executing the command specified in the command line, the TNIX shell replaces the speci
fied shell variable with that variable's value.

Slave Computer. A microcomputer development system (such as the 8540) that is connected to
a host computer (such as the 8560).

Special File. An entry in a directory, usually the /dev directory. Each special file is associated with
a software device driver, and read, write, open, and close operations on a special file are actually
performed by the associated software device. The TNIX operating system handles I/O to devices
as if they were part of the file system. (See block special file, character special file, and
multiplexed special file in this Glossary.)

Standard Error. A file descriptor (2) that is used by the TNIX shell to display error messages or _
other information that should not be intermingled with standard output. Normally sent to your
terminal, the standard error output can be redirected to other files or devices.

Standard Input. A file descriptor (0) that is used by the TNIX shell to supply input to a program.
Standard input is usually your terminal, but may be redefined with the <, < <, or: characters.

11-7

11-8

Glossary-8560 Series System Users

Standard Output. A file descriptor (1) that is used by the TNIX shell to display output from a
program. Standard output is usually your system terminal, but may be redefined with the>, > >,
or : characters.

String. A series of one or more ASCII characters.

Subdevice Number. See minor device number.

Subshell. A shell process created by a parent shell process. A subshell inherits the parent shell's
environment, which includes the current directory, group ID, and variable settings, but may rede-
fine its environment. .

Superuser. Any user logged into the "root" account, usually to perform some system mainte
nance operation (such as file system backup, restore, or repair). See the 8560 Series System
Manager's Guide for further information.

NOTE

Normal file protection does not apply to the superuser. Some system calls are also
restricted for use only by the superuser.

System Call. An operating system service routine executed directly by the TNIX operating sys
tem. System calls are entered directly via software interrupts (traps) as rather than by the typical
subroutine calling sequence.

System Manager. The person responsible for system operations such as system backups and
restores, and software installation. The system manager usually logs into the "root" account in
order to perform these operations. See the 8560 Series System Manager's Guide for further
information.

Tekhex. Tektronix Hexadecimal Format: a format for representing the contents of a block of
memory as an ASCII sequence of hexadecimal digits. An extended version of Tekhex supports
16-bit microprocessors and symboli~ debug. (Refer to the 8540 or 8550 System Users Manual.)

TERM Mode. A mode of communication between an 8560 and an 8540 (or 8550), in which
workstation commands can be entered just as if they were TNIX commands. The 8560 recog
nizes the workstation commands and passes them to the 8540 (or 8550). See the Communication
with 85405 and 85505 section of this manual for a detailed description of the TERM mode
interface.

TNIX. The operating system of the 8560 Series Multi-User Software Development Unit.

Tree. A data structure. The TNIX filesystem structure is referred to as a file tree, because the
data structure used by the TNIX filesystem is an inverted tree structure.

GJossary-8560 Series System Users

Un mount. To dissociate a physical device from a position in a file tree. The data stored on the
device can no longer be accessed as subcomponents of the tree.

Unlink. To delete a pOinter to a file from a directory. A file is destroyed when its last link is
removed.

Upload. To transfer data from a workstation such as the 8540 or 8550 to a host, in this case, the
8560.

Username. The name by which the system recognizes a particular user at login. A username is
typically 1 to 8 lowercase letters. The username is also referred to as the login name.

Wildcard Character. See metacharacter.

Word. A sequence of non-blank characters.

Working Directory. The directory that you are currently accessing. The working directory is used
as a starting place when a full path name (a name that begins with "/") is not given. The working
directory is sometimes referred to as the current directory.

Write Permission. The ability to write to a file or to create and delete files in a directory. Permis
sion is regulated by mode bits, and can be set with the chmod command.

- ;.

11-9

8560 Series System Users

&, 2-15, 5-29
*,1-21,2-6
.2-4,5-3
.. 2-4
; 2-12, 5-11
',2-5,4-28
",2-5,4-28
[], 1-21,2-5,5-16
{ }, 4-8
:, 2-14, 3-30
<,2-14
>,1-22,2-14
»,1-22,2-14
«,4-3
?, 1-21, 2-5, 5-11
$, 1-12, 5-15, 6-8, 6-14
\, 2-5, 4-29, 5-23
.DEFAULT,6-15
.IGNORE, 6-7
';RECIOUS, 6-7
-;profile file, 2-19, 3-4
.SILENT, 6-7
.SUFFIXES, 6-15

8503 Disk Expansion Unit, 1-6
8540 command, 9-7
8540 command prefix, 7-1 0
8540 Integration Unit, 1-3

downloading a file to, 3-31
selecting, 1-15,3-4
See a/so COM interface, TERM mode

8550 command, 9-7
8550 command prefix, 7-10
8550 Microcomputer Development Lab, 1-3

downloading a file to, 3-31
selecting, 1-15, 3-4
See a/so COM interface, TERM mode

8560 Multi-User Software Development Unit:
in product development life cycle, 1-1 thru 1-4
installation, 1-1
minimum system, 1-5
number of users supported, 1-4, 1-6
options, 1-5 thru 1-10
powering down, 3-8
powering up, 3-2

Section 12

INDEX

8561, 1-1
number of users supported, 1-4, 1-6

A

a.command, in the editor, 5-4
absolute pathname, 2-3
access permissions, 2-9, 9-9
ACE Screen Editor, 1-7

escape to the shell from, 2-16
adding text, in the editor, 5-4
addressing, in the editor, 5-3, 5-13
ampersand (&), 2-15

in the editor, 5-23
appending, 1-22

in the editor, 5-4
archived files, 3-32 thru 3-36
archives, maintaining with make, 6-12
arguments, 2-12, 4-14 thru 4-16, 4-28
arguments program example, 4-25
asm command, 9-7
assembler, exit status of, with make, 6-7
assemblers, 1-7
asterisk, 1-21, 2-5

in the editor, 5-23
atobobj command, 9-8
Auxiliary Utilities Package, 1-7

B

background execution, 2-15, 3-29
backslash, 2-5, 4-29

in make, 6-5
in the editor, 5-15, 5-23

backspace, 1-16
entering literally in text, 5-15

bad block, 11-1
baud rate, 1-5,3-7
bin directory, 2-11, 2-20
blank interpretation, 11-1
block, 11-1
block special file, 11-1
boolean evaluation, in the shell, 4-18
braces { 1, 4-8
brackets [], 1-21, 2-5

in the editor, 5-16
break, shell reserved word, 4-38

12-1

c
c command, in the editor, 5-19
caret, in the editor 5-16
case statement, 4-20, 4-38
cat command, 1-18,3-15,3-20,9-8

creating a file with, 1-17
category C, 11-1
cd command, 1-20, 3-10, 9-8

as shell reserved word, 4-38
default directory for, 2-18
examples, 2-4

changing directories. See cd command
changing text, in the editor, 5-9
changing the last modified date of a file (touch command),
9-33

changing users without logging out (su command), 2-17,
9-31

character special file, 11-1
chgrp command, 9-8
child, 11-1
chmod command, 2-20, 3-23, 9-9
chown command, 9-9
cmp command, 9-9
COM interface, 7-2
comm command, 9-10
comma (,), in TERM mode, 7-9
command:

editor, in Keyshell, 8-3
execution, 2-15
files. See Shell programs

in TERM mode, 7-10
format, 2-12
history, in Keyshell, 8-2 thru 8-4
input and output, 2-12
interpreter. See Shell
line interpretation, in the shell, 4-14, 4-28
line macros, in make, 6-7
names, multiple names for one command, 4-5
prefixes, in TERM mode, 7-10

commands, Section 9
creating your own, 2-19 thru 2-20
directories searched for (PATH), 2-18
placing two or more on a line, 2-12
typing while in Keyshell, 1-14

comments, in make, 6-7
compare files for uniqueness (uniq command), 9-34
comparing files (cmp command), 9-9
compile command example, 4-6, 4-11, 4-15
compilers, 1-7
con command, 7-12
concatenation of files, 1-18, 3-16
concurrent execution. See background execution
config command, 1-11, 1-17,3-3,3-7
connecting two commands (pipes), 2-14, 3-30
continue, shell reserved word, 4-38
control characters, 2-17

in filenames, 2-4

12-2

Index-8560 Series System Users

convert object code from Series A format to Series B. See
atobobj command

copying a file or directory, 3-11, 9-10
copying or moving text, in the editor, 5-10
correcting mistakes in typing, 1-16
counting lines, words, or characters in a file (wc command),
3-16, 9-35

cp command, 1-18,3-11,9-10
compared to In command, 2-6

creating a directory (mkdir command), 3-8, 9-23
creating a file, 3-12

using the cat command, 1-17
creating a link to a file (In command), 9-19
creating your own commands, 2-19 thru 2-21
CTRL characters, 2-17
CTRL-C, 1-16

in Keyshell, 1-12
in the editor, 5-12

CTRL-D:
in sending mail, 3-27
with write command, 3-28

CTRL-H,1-16
CTRL-K,1-16

in Keyshell, 8-2
CTRL-Q,3-20
CTRL-S, 3-20
CTRL-U, 1-16

entering literally in text, 5-15
current directory, 2-3, 3-9
current line, in the editor, 5-14

o
d command, in the editor, 5-21
data lID, in the shell, 4-25
date command, 3-25, 9-10
debugging shell programs, 4-35 thru 4-37
default command execution, modifying, 4-6
delay program example, 4-35
delete command example, 4-32
deleting a directory, 3-1 0
deleting a file, 3-15
deleting text, in the editor, 5-4
dev directory, 2-11
-device, 11-2

numbers, 10-26, 11-5
df command, 9-11
diff command, 9-11
directories searched by TNIX for commands (PATH), 2-18
directory, 1-19

copying, 3-11, 9-10
creating, 3-8, 9-23
deleting, 3-10, 9-26
displaying name of, 3-9, 9-26
displaying contents of, 3-9, 9-20
moving to, 2-4, 3-10, 9-8

disk drives, 1-5

Index-8S60 Series System Users

ltc".

disk expansion units, 1-6
disk operations, 3-32 thru 3-36
disk usage, 3-31
displaying:

a directory, 3-9
a file, 3-20 ,
differing lines from two files (diff command), 9-11
mail,3-28
message permission (mesg command), 9-23
online information (man command), 9-22
pathname of current directory (pwd command), 9-26
status of commands or processes (ps command), 9-26
text, in the editor, 5-4
the last part of a file (tail command), 9-31
the number of blocks used by files (du command), 3-31,
9-13

the number of free blocks on disk (df command), 9-11
values of TNIX arguments (echo command), 9-.13
who is logged in (who command), '9-35
See a/so Printing

do, shell reserved word, 4-38
dollar sign, 1-12

in make, 6-8, 6-9, 6-14
in the editor, 5-15

done, shell reserved word, 4-38
DOS/50 functions (dsc50 command), 3-35, 9-8
double-colon syntax, in make, 6-5, 6-13
dsc50 command, 3-33, 9-8
du command, 3-31, 9-13
dumping memory "in octal (od command), 9-24
dup system call, 4-4
duplicating a file, 3-13

E

e command, in the editor, 5-6
E command, in the editor, 5-22
echo command, 2-6, 4-8, 4-26, 9-13
ed, 3-12, 9-13, Section 5

current line in, 5-14
editing scripts, 5-19
errors in, 5-12
exiting, 5-7
invoking, 5-22
quick reference, 5-20 thru 5-23
See a/so the specific command or task

editors available for 8560, 1-7
egrep command, 9-16
environment variables, 2-18, 4-12, 4-43
error

handling in make, 6-7
handling in the shell, 4-27
messages, in editor, 5-12
messages, redirecting, 2-15

esac, shell reserved word, 4-38

escape to the shell from an editor, 2-16, 5-11
etc directory, 2-11
eval, shell reserved word, 4-38
evaluating expressions (test command), 9-32
evaluating TNIX expressions (expr command), 9-14
exec, shell reserved word, 4-38
executing:

a file, 2-20
commands by a shell (sh command), 9-27
commands upon login, 3-4
the shell, 4-2

execution trace, in the shell, 4-35
exit, shell reserved word, 4-38
exit status, 4-36, 9-32

in make, 6-7
exiting from ed, 5-7
export command, 2-18, 3-4, 4-39
expr command, 9-14

F

r command, in the editor, 5-22
false command, 4-18,9-14
fbr command, 3-32 thru 3-35, 9-15
fgrep command, 9-16
fi, shell reserved word, 4-40
file descriptors, 4-3, 11-3
file names. See Filenames
file protection, 2-8 thru 2-10, 3-23
file system, 2-1 thru 2-11
tHe tree, 1-19, 11-3
filenames, 2-4
files:

concatenating, 3-16
copying, 3-13, 9-10, 9-33
counting lines in, 3-16, 9-35
creating, 1-17, 3-12. See a/so ed
deleting, 3-15
displaying, 3-20, 9-8
downloading to a workstation, 7-12
editing, Section 5
executable, 2-19, 2-20
links to, 2-6 thru 2-8, 3-14
listing, 1-17, 9-20
moving, 1-19
performing the same operation on several, 3-18
printing and displaying, 3-20, 3-21
protecting, 2-8 thru 2-10, 3-23, 3-24, 9-9
removing unused, 3-19
searching for a file in a file tree, 3-17, 9-15
searching for text in a file, 3-17, 5-4, 5-14 thru 5-17, 9-16
transferring to/from a disk, 3-32 thru 3-36
uploading from a workstation, 7-12

filesystem, 11-3
filter, 11-3
find command, 3-17, 9-15

12-3

flags, 1-18,2-12
-flexible disk drive, 1-5
/ \oating point package, 1-6
floppy disk file transfers (fbr command), 3-32 thru 3-35, 9-15
for statement, 3-18, 4-23, 4-39
forever loops, 4-22
fork, 11-4
format command, 9-16
formatting a file for lineprinter (pr command), 1-18, 9-25
function keys, shifted (in Keyshell), 1-14

G

g (in file protection), 2-8
g command, in the editor, 5-12
generate module libraries (libgen command), 9-18
global commands, in the editor, 5-12
GPIB Interface Option, 1-7
grammar, shell, 4-45
grep command, 3-17, 5-18, 9-16
group, 2-8, 9-8, 9-24
group identification (newgrp command), 9-24, 11-4

H

help command, 9-17
'~OME directory, 1-19,2-2
/,OME environment variable, 2-18, 4-12
host protocol for formatted data transfers (mload
command), 9-23

i command, in the editor, 5-4
i-node, 11-4
I/O redirection, 1-22, 2-12 thru 2-15, 4-3, 4-4

in TERM mode, 7-10
if statement, 4-16 thru 4-18
I FS environment variable, 4-13
index command, 1-16, 9-17
input to shell programs, 4-25, 4-26
input validation, 4-20, 4-26
installation, 1-1
integration, 1-3, 1-8
intersystem communication. See COM interface, TERM
mode

invoking commands automatically upon login. See .profile
file

invoking the editor (ed command), 5-1, 5-17, 5-18, 9-13
invoking the shell (sh command), 4-2, 9-27
iteration, in the shell. See Case statement, If statement
IU environment variable, 1-15, 2-18

12-4

Index-8560 Series System Users

J-K

j command, in the editor, 5-10
k command, in the editor, 5-10
kernel, 11-4
keys, special, 9-6
Keyshell, 1-12 thru 1-15, Section 8

and terminal settings, 8-2
command history, 8-2, 8-3

saving, 8-4
error messages, 10-21 thru 10-24
interaction with shell commands, 8-1
invocation of, 8-2, 9-18

kill command, 2-15, 3-30, 9-17
ksh command, 9-18

L

I command, in the editor 5-11
Language-Directed Editor, 1-7

escaping to the shell from, 2-16
large files, how to edit, 5-19
If command, 9-20
lib directory, 2-11
libgen command, 9-18
line addressing. See Addressing
line printers, 1-5

setting characteristics of (sip command), 9-28
See a/so Printing a file

link command, 9-19
linker listing (Istr command), 9-21
links to a file, 2-6, 3-14

determining how many, 2-8
listing a file, 1-17, 9-20
II command, 9-20

explanation of display, 2-8, 2-10
In command, 2-6, 3-14, 9-19 .

compared to cp, 2-6
10 command, 3-31, 7-12
load file (link command), 9-19
LOCAL mode, 1-15, 1-17,7-9
log files, in the shell, 4-36
logging in, 1-11, 3-2, 9-20

through a workstation, 3-3
logging out, 1-17, 3-7

from Keyshell, 1-15, 8-2
through a workstation, 3-7

logical device, 11-5
login, as shell reserved word, 4-39
login directory, 1-19
Ip1 r, Ip2r commands, 9-20
Ir command, 9-20
Is command, 1-17,3-9,9-20
Istr command, 9-21
Ix command, 9-20

Index-8560 Series System Users

M

command. in the editor. 5-10
-<nacros. in make. 6-7 thru 6-9

defining at invocation. 6-11
magnetic tape units. 1-7

settape command. 9-27
mailing messages to other users (mail command). 3-27 thru
3-28.9-21

make, Section 6
examples of use. 6-12
invocation. 6-11. 9-22
makefile. 6-4 thru 6-10
reserved words. 6-15
special characters. 6-14
suffix rules. 6-9. 6-15

man command. 1-16. 9-22
manuals for specific products. 1-10
marking text, in the editor. 5-10
memory options. 1-5
merged output. standard and error. 4-4
mesg command. 9-23
metacharacters. See Special characters
microprocessor. specifying. 2-18
minus sign. in editor. 5-13
mistakes in command line. how to correct. 1-16

in Keyshell. 1-12
mkdir command. 3-8. 9-23
mload command. 9-23
~ore command. 3-20. 9-23

.~ving or renaming files (mv command). 1-19. 3-13. 9-24
-rilultiplexed special file. 11-5

N

Native Programming Package. 1-7
newgrp command. 4-39, 9-24
nice command. 9-24
nohup command. 2-15. 9-24
notation conventions. 1-11

for TNIX commands. 9-7

o
o (in file protection). 2-8
od command. 9-24
online information. 1-16. 9-17. 9-22
online manual pages. printing. 1-23
output from shell programs. 4-26
output redirection. See 110 redirection
owner of a file. 2-8. 9-9

p

P command. in the editor. 5-2
. P command. in the editor, 5-4

passwd command. 3-5. 9-25
password, 1-12. 3-2, 3-5
PATH environment variable, 2-18. 3-4. 4-13

how to modify. 2-20
pathnames. 2-3
pattern-matching characters. 1-,21. 2-5

in the editor. 5-15
pattern searching (grep command). 3-1'7,5-l8'. 9~J6"
pausing during execution (sleep' command). '9-28
period (.) ,

as directory abbreviatiort· 2~4
before a filename. 2-4:' .
in the editor. 5-3. 5-16

permission m0ges.2~9!, ?:-20,' 3~2~thhL:E24:.,.9-9
personal programs' directory. ,2~20 , . ."

See a/so bin directory -.
PID. 2-15. 3-30
pipes. 2-14. 3-30

example of use with grep command. 5-18
plus sign. in editor. 5-13
port ·expansion option. 1-6
pound sign. in make, 6-7
powering down the 8560. 3~8
powering up the 8560. 3-1
pr command. 1-18, 3-20. 9-25
preparing a flexible disk for data storage (f6rmat comm'and).
9-16 .' " ;

print queue. 3-21
printing:

a file. 1-19. 3-20. 9-25
with line numbers, 3-21

a manual page. 1-23
See a/so Displaying

process 10. 2-15. 3-30
profile file. 2-19. 3-4
prompt character, 1-12

in the editor. 5-2
prompt string. 2-18. 3-4. 4-13
protecting a file. 2-8 thru 2-10. 3-23
ps command. 3-26. 9-26
PS 1 environment variable. 2-18. 3-4, 4-13
PS2 environment variable. 4-13
pwd command. 3-9. 9-26

Q-R

question mark. 1-21. 2-5. 5-11
'quotation marks. 2-5. 4-28
quoting special characters. 2-5. 4-28
r command. in the editor. 5-6

12-5

read statement, shell, 4-9, 4-25, 4-39
reading text from another file, in the editor, 5-6
readonly, shell reserved word, 4-40
receiving mail, 3-28
redirecting error display, 2-15, 4-3, 4-4
redirecting I/O, 1-22, 2-12 thru 2-14
regular expressions, 5-14 thru 5-17
relative pathname, 2-3
removing a directory, 3-10, 9-26
removing a file, 3-15, 9-26
renaming a command, 4-5
renaming a file, 1-19, 9-24
reserved words, in make; 6-,15 . r,' ;

reserved words, in the shell, 4-44
RESTART switch, in TERM mode, 1-16
RETURN,1-15
rm command, 3-11, 3-15, 3-22, 9-26

example of modifying the execution of, 4-32
rmdir command, 3-10, 9-26
root directory, 1-19
running a command slower in background mode- (nice
command), 9-24

s
s command, in the editor, 5-5
sav command, 7-12
saving output in a file (tee command), 9-31
search command example, 4-30
searching:

backward in a file, 5-11
for a file in a file tree (find command), 3-17, 9-15
for text, in the editor, 5-3, 5-11, 5-15, 9-16

sed command, 5·q9~:
selecting the 8540 or 8550, 1-15, 3-4
semicolon (;), 2-12, 5-11
sending:

a message to another terminal (write command), 9-35
commands to 8540 or 8550,7-3,.9-7 J

mail,3-27
service calls, in TERM mode, 7-11
session files, 8-4
set command, 4-15, 4-40
settape command, 9-27
sh command, 4-2, 4-42, 9-27
sharing commands, 2-20
sharing files, 2-6
shell,2-11

command files. See Shell programs
command line parsing, 4-28
escaping to, from an editor, 2-16, 5-11

12-6

executing, 4-2
grammar, 4-45

Index-8560 Series System Users

language reference, 4-38 thru 4-43
programs, 2-19 thru 2-21, Section 7
setting parameters for (set command), 4-40
s~eleton shell program, 4-33
speCial shell commands, in make, 6-6
variables, 4-7 thru 4-15, 4-43

, - See a/so environment variables
,shift,shell reserved word, 4-42
shifted function keys in Keyshell, 1-14
signals, 4-28
,single-colon syntax, in make, 6-5
skeleton shell program, 4-33
slash'(I), 2-3
,sleep command, 9-28
slp.command,9-28
software options, 1-7
sorting lines of files (sort command), 9-28
special characters:

in make, 6-14
in TERM mode, 7-9
in the editor, 5-15, 5-23
in the shell 1-21, 2-5, 4-29, 4-44
See a/so Control characters

speCial files, 2-11
See also block special file, character special file,
multiplexed special file

standard error, 2-15, 4-3
standard input, 2-12, 4-3

closing, 4-4
in TERM mode, 7-10

standard output, 2-12, 4-3
closing, 4-4
in-TERM mode, 7-10

statgpib command, 9-29
status of commands (ps command), 3-26, 9-26
status of GPIB-compatible devices (statgpib command),
9-29

stream editor, 5-19
; string comparison in fbr command, 3-32, 3-33, 3-34
structured statements, in the shell, 4-16

See a/so Case statement, If statement, etc.
stty command, 3-3, 3-7, 9-29
su command, 2-17, 9-31
subroutines, using TNIX commands as, 4-37
substituting text, in the editor, 5-5
suffix rules, in make, 6-9, 6-15
switching users (su command), 2-17, 9-31
sync command, 9-31
system date and time, 3-25
system file structure, 2-11
system manager, 1-23

Index-BS60 Series System Users

T __
r _.'

"'\ ~';'';';~iand, in the editor, 5-10
tail command, 9-31
tee command, 9-31
TERM environment variable, 2-18
TERM mode, 3-3, Section 7

command execution in, 7-9 thru 7-11
communication errors, 7-8
establishing communication, 1-11, 7-4 thru 7-7
restarting in, 1-16
special considerations, 7-9
terminating communication, 7-8
transferring files and programs in, 7-12

terminal, 1-5
baud rate, 1-5,3-7
characteristics, setting (tset command), 9-33
options, setting (stty command), 9-29
pathname (tty command), 9-34

terminating 'a command or process (kill command), 2-15,
9-17

test command, 4-18, 9-32
Text Processing Package, 1-7
times, shell reserved word, 4-42
timing the duration of commands (time command), 9-32
TNIX:

commands, classified list of, 9-1 thru 9-5
editor, section 5
file system, 2-1 thru 2-11

'-(-,Y!-fpr\(ew, 1-3
. (0.1ch 'vommand, 9-33

tr command, 9-33
trace, execution, in 'shell programs, 4-35
transferring files (~OS/50) to/from a flexible disk, 3-35
translate characters (tr command), 9-33
trap statement, 4-27, 4-42
true command, 4-18, 9-33
tset command, 9-33
tty command, 9-34
turning off the 8560, 3-8
turning on the 8560, 3-2

type-ahead, 1-3
typing mistakes, how to correct, 1-16

u-v
u (in file protection), 2-8
u command, in the editor, 5-5
uload command, 9-34
umask, shell reserved word, 4-42
undoing substitutions, in the editor, 5-5
unformatted data transfers (uload command)~ 9--3'4
uniq command, 9-34
unlinking a file, 3-15
'until statement, 4-22, 4-42
uP environment variable, 2-18
username, 3-2

, usr directory, 2-11
usr/bin directory, 2-18, 2-20
v command, in the editor,'5-13
variables, in the shell, 4-7 thru 4-14

w-z
w command, in the editor, 5-6
wait command, 4-43, 9-35
wc command, 3-16, 9-35
while statement, 4-21, 4-43
who am i command, 3-25
who command, 3-25, 9-35
wildcard characters. See Special characters
Winchester disk drive, 1-5
workstation, communication with, 1-11,1-15, Section '7'

command names, 7-9, 7-10
establishing communication with,
See a/so COM interface, TERM mode

write command, 3-28, 9-35" . ;,' ,,:
writing text to a file, in the editor, :5-6.~' ,

12-7

MANUAL CHANGE INFORNlAT19N
At Tektronix, we continually strive to keep up with Jatest.~I~~tr()rii9.d~velopm~nts

by adding circuit and component improvements to ourJn~.trument~ ~ss()Orl asthey
are developed and tested.

Sometimes, due to printing and shipping rt~qu.jr~rn~.~t~~!.wf?~.can't get these
changes immediately into printed manuals. Hence,.yolJr,:ma.nu~L may contain I:'!ew
change information on following pages. . .,. . ..

A single change may affect several sections. Since.tQe,C,h~,ng~ infq.r.mation sheets
are carried in the manual until all changes ar~o pe.rm:aneotly. en~ered, some
duplication may occur. If no such change pages appe~r)oJI6~ing this page,your
manual is correct as printed. . . .

	0001
	0002
	001
	002
	003
	004
	005
	006
	01-001
	01-002
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	01-18
	01-19
	01-20
	01-21
	01-22
	01-23
	01-24
	02-001
	02-002
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	03-001
	03-002
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	03-33
	03-34
	03-35
	03-36
	04-001
	04-002
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	04-36
	04-37
	04-38
	04-39
	04-40
	04-41
	04-42
	04-43
	04-44
	04-45
	04-46
	05-001
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	06-001
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	07-001
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	08-001
	08-01
	08-02
	08-03
	08-04
	08-05
	09-001
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	09-27
	09-28
	09-29
	09-30
	09-31
	09-32
	09-33
	09-34
	09-35
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	A-00

