i' ‘r e

f)
TEXAS INSTRUMENTS
Improving Man’s Effectiveness Through Electronics
—)
-
B)
Model 990 Computer
TMS 9900 Microprocessor
Assembly Language Programmer’s Guide
MANUAL NO. 943441-9701
ORIGINAL ISSUE 1 JUNE 1974
REVISED 15 OCTOBER 1978
=

Digital Systems Division

(:) Texas Instruments Incorporated 1978
A1l Rights Reserved

The information and/or drawings set forth in this document and all rights in and
to inventions disclosed herein and patents which might be granted thereon disclos-
ing or employing the materials, methods, techniques or apparatus described herein
are the exclusive property of Texas Instruments Incorporated.

INSERT LATEST CHANGED PAGES DESTROY SUPERSEDED PAGES

LIST OF EFFECTIVE PAGES

Note: The portion of the text affected by the changes is

indicated by a vertical bar in the outer margins of
the page.

Model 990 Computer TMS9900 Microprocessor Assembly Language
Programmer’s Guide (943441-9701)

Original Issue e 1 June 1974
Revised e 15 October 1978 (ECN 446281)

Total number of pages in this publication is 366 consisting of the following:

o ROCE ST CROTE e ot
Cover 0 Appendix BDiv 0 Appendix IDiv......... 0
Effective Pages 0 B1-B14 0 F1-12 ... 0. o oL L. 0
fi-xii.. ... L, 0 Appendix CDiv 0 Appendix J Div. 0
L S 0 Cl1-C4............. 0 J1-J-8. L. 0
2-1-2-18. 0 AppendixDDiv 0 Appendix KDiv 0
3-1-3-120. 0 D1-D4............. 0 Kl1-K16............ 0
4-1-420............. 0 Appendix EDiv 0 Appendix LDiv 0
S-1-52. L. 0 E1-E4 0 L1-L8............. 0
6-1-6-14............. 0 Appendix FDiv 0 Alphabetical Index Div. . . .0
7-1-730. 0 F1-F4 0 Index-1 - Index-8.0
81-84.............. 0 Appendix G Div 0 User’s Response 0
9-1-98.............. 0 G1-G2............. 0 BusinessReply 0
10-1-1024........... 0 Appendix HDiv 0 CoverBlank 0
Appendix ADiv 0 H1-H6............. 0 Cover 0

o
{—%\@? 943441-9701

This manual describes the assembly language for the Model 990 Computer and the TMS 9900
microprocessor as implemented by PX9ASM, a one-pass assembler that executes under the Proto-
typing System PX990; by TXMIRA, a two-pass assembler that executes under TX990; by SDSMAC,
a two-pass assembler that executes under Disc Executive DX10; and by the Cross Assembler, a two-
pass assembler that is part of the Cross Support System. Except for a few differences that are
expressed in Appendix L, the TMS 9940 microcomputer uses the same assembly language as the
TMS 9900 microprocessor. However, the assembly language for the TMS 9940 microcomputer can
be implemented only by the TXMIRA and the SDSMAC assemblers.

PREFACE

This manual describes:
® Source statement formats and elements
® Addressing modes
® Assembler directives and pseudo-instructions
® Assembly instructions
® Macro language, supported by SDSMAC
® Assembler output
Appendixes contain:
® The character set
e Instruction tables
® Directive tables
® A macro language summary
® CRU and TILINE examples
® TMS 9940 programming considerations.

This manual assumes that the reader is familiar with the computer architecture and I/O capabilities
as described in the 990 Computer Family Systems Handbook.

The following documents contain additional information related to the assembly language:

Title Part Number
990 Computer Family Systems Handbook 945250-9701
Model 990 Computer Prototyping System 945255-9701

Operation Guide

iii
Texas Instruments Incorporated

943441-9701

Title Part Number
Model 990 Computer DX10 Operating System 946250-9704
Documentation, Volume 4 — Development
Operation
Model 990 Computer DX10 Operating System 9462509703
Documentation, Volume 3 — Application
Programming Guide
Model 990 Computer TX990 Operating 946259-9701
System Programmer’s Guide (Release 2)
Model 990 Computer Cross Support System 945252-9701
User’s Guide
Model 990 Computer TMS 9900 Microprocessor 945420-9701
Cross Support System Installation and Operation
Model 990 Computer Terminal Executive Development 946258-9701
System (TXDS) Programmer’s Guide
DX10 Operating System Production Operation 946250-9702
Guide
TMS 9940 16-Bit Microcomputer Data Manual *

* Available from:
Texas Instruments Incorporated
Microprocessor Marketing
Mail Station 653
P. O. Box 1443
Houston, Texas 77001

v Texas Instruments Incorporated

943441-9701

TABLE OF CONTENTS
Paragraph Title Page

SECTION 1. INTRODUCTION

Assembly Language Definition 1-1
1.2 Assembly Language Applicationo 1-1

SECTION II. GENERAL PROGRAMMING INFORMATION

2.1 Byte Organization L. L L. 2-1
2.2 Word Organization Lo o 2-1
2.3 Transfer Vectors L L L. L Lo 2-2
2.4 Status Register L L e e 22
24.1 Logical Greater Thano oo 24
242 Arithmetic Greater Than 24
243 Equal oL e e e e e e 2-4
2.4.4 Carry . . L L Lo e e e e e e e e e e e 24
2.4.5 Overflow L L e e e e e e e 2-4
2.4.6 Odd Parityo e e 2-5
2.4.7 Extended Operation L. Lo 2-5
24.8 Status Bit Summaryo 0oL Lo oL e e 2-5
2.5 Memory Organization L. Lo 2-5
2.6 Privileged Mode L e .2-10
2.7 Source Statement Format L. L. 2-10
2.7.1 Character Set L L e e e e e 2-11
2.7.2 Label Field L e e e 2-11
2.73 Operation Field Lo 2-11
2.74 Operand Fieldo 2-13
2.7.5 Comment Fieldo 2-13
2.8 Expressions oL L. L L L e e e e e e e 2-13
2.8.1 Well-Defined Expressions L. L0000 2-14
2.8.2 Arithmetic Operatorso e e e e 2-14
2.9 Constants L. L L e e e e e e e 2-15
29.1 Decimal Integer Constants L. Lo Lo o o 2-15
29.2 Hexadecimal Integer Constants 2-15
293 Character Constants oLl L e e e e e 2-15
29.4 Assembly-Time Constants 2-15
2.10 Symbols L L e e e e e e e e 2-15
2.11 Predefined Symbols L L L L L e 2-16
2.12 Terms Lo L e e e e 2-16
2.13 Character Strings L Lo e e e e 2-17

31 General L. L e e e e e e e e e 3-1
3.2 Addressing Modes L L L L L L e e e e 3-1
3.2.1 Workspace Register Addressing, 32
322 Workspace Register Indirect Addressing 32
3.23 Symbolic Memory Addressing L0 32
324 Indexed Memory Addressing L. oo 32
3.2.5 “Workspace Register Indirect Autoincrement Addressing 33

v Texas Instruments /ncorpo}'afed

943441-9701

TABLE OF CONTENTS (Continued)

Paragraph Title) Page
33 Program Counter Relative Addressing 33
34 CRU Bit Addressing e e e e 33
35 Immediate Addressing L. Lo Lo e e 34
3.6 Addressing Summary L L Lo L L Lo e e e e e e e e e 34
3.7 Addressing Formats e e e e e 3-6
3.7.1 Format I - Two Address Instructions 3-6
3.7.2 Format II - Jump Instructions 3-7
3.7.3 Format II - Bit I/O Instructions s e e e e e e e e e e e e 37
3.74 Format III - Logical Instructions 3-8
3.7.5 Format IV - CRU Instructions 3-8
3.7.6 Format V - Register Shift Instructions 39
3.7.7 Format VI - Single Address Instructions 3-10
3.7.8 Format VII - Control Instructions 3-10
3.79 Format VIII - Immediate Instructions 3-11
3.7.10 Format IX - Extended Operation Instruction 3-12
3.7.11 Format IX - Multiply and Divide Instruction 3-12
3.7.12 Format X - Memory Map File Instruction 3-13
3.8 Instruction Descriptions Lo Lo oo 3-13
39 Arithmetic Instructions L ..o 3-15
3.10 Add Words A . . L L L L L e e e e e e 3-15
3.11 Add Bytes AB L L e e 3-16
3.12 Add Immediate Al Lo e e e e 3-17
3.13 Subtract Words S L L Lo Lo e e e 3-18
3.14 Subtract Bytes SB. e e e e e e e e e e e 3-19
3.15 Multiply MPY e e 3-20
3.16 Divide DIV e e 321
3.17 Increment INC L e e 3-23
3.18 Increment By Two INCT 3-24
3.19 Decrement DECo Lo e e 3-25
3.20 Decrement By Two DECT v v v v .. 3-26
3.21 Absolute Value ABS L L L L 327
3.22 Negate NEG e e e e 3-28
3.23 Jump and Branch Instructions oL oL oL oL 3-29
3.24 Branch B e e e 3-30
3.25 Branch and Link BLo 3-31
3.26 Branch and Load Workspace Pointer BLWP 3-32
3.27 Return with Workspace Pointer RTWP 333
3.28 Unconditional Jump JMPo 3-34
3.29 Jump If Logical High JHo o 3-35
3.30 Jump If Logical Low JL L. e 3-36
3.31 Jump If High Or Equal JHE o o oo, 3-37
3.32 Jump If Low Or Equal JLEo oo 3-38
3.33 Jump If Greater Than JGT e e e e 3-39
3.34 Jump If Less Than JLT o 3-40
335 Jump If Equal JEQo e e e 3-41
3.36 Jump If Not Equal JNE L s 342
3.37 Jump On Carry JOC e e e e e e e e e e e 3443
3.38 Jump If No Carry JNC e e e e e e e e 3-44
3.39 Jump If No Overflow JNO o o o o o oo 3-45

vi ‘ Texas Instruments Incorporated

943441-9701

TABLE OF CONTENTS (Continued)

Paragraph Title Page
3.40 Jump If Odd Parity JOPo 3-46
341 Execute X oL L oL e e e 3-47
342 Compare Instructions L. oL .o e e e e e e e e 3-48
343 Compare Words C L Lo e e e e e e e 3-48
3.44 Compare Bytes CB L.l 3-49
3.45 Compare Immediate CI oL Lo 3-50
3.46 Compare Ones Corresponding COC 3-51
347 Compare Zeros Corresponding CZC oo 3-52
3.48 Control and CRU Instructionso 3-53
3.49 Reset RSET o oo e e e e 3-53
3.50 Idle IDLE oo e e e e e e e e e e e e 3-54
3.51 Clock Off CKOF o s i e e e e 3.55
3.52 Clock On CKON o o oo st e e e 3-56
3.53 Load or Restart Execution LREX 3-57
3.54 Set CRUBitto LogicOne SBOo 3-58
3.55 Set CRUBitto Logic ZeroSBZo 3-59
3.56 Test Bit TB o . . .o e e e 3-60
3.57 Load CRU LDCR o e 3-61
3.58 Store CRU STCR o . o 0 o o e e e e e 3-62
3.59 Load and Move Instructionso L oo Lo oL 3-63
3.60 Load Immediate LIo 3-63
3.61 Load Interrupt Mask Immediate LIMI 364
3.62 Load Wotkspace Pointer Immediate LWPI 3-65
3.63 Load Memory Map File LMF 3-66
3.64 Move Word MOV L e e e e e e e 3-68
3.65 Move Byte MOVB e e e e e e e e 3-69
3.66 Swap Bytes SWPB Lo e e e e e e e e 3-70
3.67 Store Status STST oL e e e e e 3-71
3.68 Store Workspace Pointer STWP00 0oL oo 3-72
3.69 Logical Instructions00 0L 0oL e e 372
3.70 AND Immediate ANDI e e e e e e e e e e e 3.73
3.71 OR Immediate ORIo 374
3.72 Exclusive OR XOR o o o Ll e 3475
3.73 Invert INV oL e e 3-76
3.74 Clear CLR o . o o o it et e e e e e e e e e e 377
3.75 SettoOne SETO e e e e e e e e 378
3.76 Set Ones Corresponding SOC oo 3-79
3.77 Set Ones Corresponding, Byte SOCB 3-80
3.78 Set Zeros Corresponding SZC Lo oo 3-81
3.79 Set Zeros Corresponding, Byte SZCB L. .o 3-82
3.80 Workspace Register Shift Instructions00 0oL 3-84
3.81 Shift Right Arithmetic SRAo 3-84
3.82 Shift Left Arithmetic SLA Lo 3-85
3.83 Shift Right Logical SRLo 3-86
3.84 Shift Right Circular SRC e e 3-87
3.85 Extended Operation XOP Lo 3-88
3.86 Long Distance Addressing Instructions oL oL 3-89
3.87 Long Distance Source LDS o Lo 3-89
3.88 Long Distance Destination LDD o000 390

vii Texas Instruments Incorporated

943441-9701

Paragraph

3:89
3.89.1
3.89.2
3.89.3
3.894
3.89.5
3.89.6
3.89.7
3.89.8
3.89.9
3.89.10

4.1
42
42.1
422
423
424
425
426
427
4238
429
4.2.10
4.2.11
4.2.12
43
43.1
432
433
434
435
43.6
4.4
44.1
442
443
444
45
45.1
452
453
4.5.4
46
46.1
46.2

TABLE OF CONTENTS (Continued)

Title Page

Programming Examples 0 ..o 0o 391
ABS Instruction L L. Lo e e e e e e e e 392
Shifting Instructions [393
Incrementing and Decrementingo 395
Subroutines L L L L L L e e e e e e e e e e 3-98
Interrupts L L e e e e e e e 3-103
Extended Operations 3-107
Special Control Instructions 3-110
CRU Input/Output e e e e e e 3-113
TILINE Input/Output e e e e e e e e e e e e e e 3-117
Re-Entrant Programming L. 3-117

SECTION IV. ASSEMBLER DIRECTIVES

Introduction oL L L L Lo e e e e e e e 4-1
Directives that Affect the Location Counter 4-1
Absolute Origin AORG i it i i e e 4-2
Relocatable Origin RORG 4-2
Dummy Origin DORG e 43
Block Starting with Symbol BSS Lo 4-5
Block Ending with Symbol BES 4-5
Word Boundary EVEN o 4-5
Data Segment DSEG 4-6
Data Segment End DEND, 4-7
Common Segment CSEG e e 4-7
Common Segment End CEND, 49
Program Segment PSEGo 49
Program Segment ENDPEND. oo 4-10
Directives that Affect the Assembler Qutput 4-11
Output Options o o e e e e e e e e e e 4-11
Program Identifier IDT, 4-11
Page Title TITL i i i i i i e e e e e e e e e 4-12
List Source LIST o o i i i e e e e e e e e e 4-13
No Source List UNL o i i i i i i i i e e e 4-13
Page Eject PAGE e e 4-13
Directives that Initialize Constants 4-14
Initialize Byte BYTE e e e e 4-14
Initialize Word DATA e e e e 4-14
Initialize Text TEXT o o i i i e e e e 4-15
Define Assembly-Time Constant EQU 4-15
Directives that Provide Linkage Between Programs 4-16
External Definition DEF 4-16
External Reference REF, 4-17
Secondary Extemal Reference SREF 4-17
Force Load LOAD« i i i vttt e e e 4-18
Miscellaneous Directives L L ..o e e e e 4-19
Define Extended Operation DXOP 4-19
Program End ENDo e e e 4-19

viii Texas Instruments Incorporated

943441-9701

TABLE OF CONTENTS (Continued)
Paragraph Title Page

SECTION V. PSEUDO-INSTRUCTIONS

5.1 L 1 ¢ | 5-1
52 No Operation NOP i it e ettt e et et ettt 5-1
53 ReturnRT.............. e e 5-1
SECTION VI. ASSEMBLERS
6.1 General e e e e e e e s 6-1
6.2 Prototyping System Assembler. e 6-1
6.2.1 Terminal Executive Development System Assembler 6-1
6.3 Cross Assembler e e e e e 6-1
64 Program Development System Assembler. i 6-2
64.1 Uses of Parenthesis in Expressions, i 6-3
64.2 Right Shift Operator et e e 6-3
64.3 Logical Operatorsin EXpressionsttt ittt it 64
6.4.4 Relational Operatorsin Expressions i, 6-4
6.4.5 OULPUL OPtionS. . & v vt et it ettt e ettt e et e e e e e e e 6-5
6.4.6 Workspace Pointer. e e 6-6
6.4.7 Copy Source File.ottt et e e e e e 6-6
648 Conditional Assembly Directivesttt 6-7
649 Define Operation.ottt it i et i e 6-10
6.4.10 Transfer Vector. Lo e e e e e e e 6-10
6.4.11 Set Maximum Macro Nesting Level i 6-11
6.4.12 Symbolic Addressing Techniques i 6-12

SECTION VII. MACRO LANGUAGE

7.1 General e e e e e e e e 7-1
7.2 Processing Of Macros . . . v v v it ittt ittt e e e e e e e e e 7-1
7.3 Macro Translator Interface withthe Assembler oL 7-2
7.4 1% 03 (00 51 1 2 7-2
7.5 Macro Languaget e e e e 7-3
7.5.1 1 7-3
7.5.2 I 31T 7-3
7.5.3 Constants and Operators. ot ittt ittt it it e et 7-3
754 Varableso e e e e e e 7-3
755 Model Statements ottt e i e e e e 77
7.5.6 Symbol Attribute Component Keywords. i i 7-8
7.5.7 Parameter Attribute Keywords. e 79
7.5.8 /=3 {1 79
7.59 EMACRO. . .t e e e e e e e 79
7.5.10 SV AR . L e e e e 7-13
7.5.11 BASG L e e e 7-13
7.5.12 SN AME. . .. e e e e e 7-15
7.5.13 BGOTO. . o e e e e e 7-15
7.5.14) 27 € P 7-15
7.5.15 BCALL . oL e e e e 7-16
7.5.16 Y 2 7-16
7.5.17 8] 2 I e 7-17

ix Digital Systems Division

943441-9701

TABLE OF CONTENTS (Continued)

Paragraph Title Page
7.5.18 SENDIF . .t e e e e e e e 7-17
7.5.19 SEN D . .o e e e e e e e e e 7-17
7.6 Assembler Directives to Support Macro Libraries. oo 7-18
7.6.1 LIBOUT DIreCtiVe . & v v vttt e e et e e e et et e et e e et et eeeaeeae e 7-18
7.6.2 LIBIN DITeCHVE . . o ot ittt et e it et ettt ettt e et it enee i e 7-18
763 Macro Library Management. i ittt i it ittt et e 7-19
7.7 Macro EXamplesot e e e e e e e et e 7-20
7.7.1 Macro GOSUB i e e e e e e e e e e e 7-20
7.72 Macro EXIT . . . ottt it e e e e e e e e e e e e e e 7-20
7.73 Macro DD . . . e e e e e e e 7-22
7.7.4 Macro UNIQUE it e e e ettt e et et ettt eesaenn 7-23
7.7.5 Macro GENCMTottt e et e ettt i et 7-24
7.7.6 Macro LOADo e e e e e e e e e 7-24
7.7.7 Macro TABLEottt e e e e e et 7-25
7.7.8 Macro LISTS . .t e e e e e e e e e 7-26

SECTION VIII. RELOCATABILITY AND PROGRAM LINKING

8.1 INtrodUCHION. . . . ittt it et e e e e e e e e 8-1
8.2 Relocation Capability.ttt i i e e e e e e e e 8-1
8.2.1 Relocatability of Source Statement Elements 8-1
83 Program LinKing i it e e e e e e e e, 8-2
8.3.1 External Reference Directives oo i ittt ittt et et et ettt e e 8-2
8.3.2 External Definition Directive. it ittt ittt it et ettt ettt 82
84 Program Identifier Directive i e 8-3
8.5 Linking Program Modules i e e 8-3

SECTION IX. OPERATION OF THE MACRO ASSEMBLER

9.1 General e e e e e e e e e e e 9-1
9.2 Operating the Macro Assembler e e e e e e e e e e e 9-1
9.2.1 Completion Messages v oo vttt ittt ettt e 94
9.2.2 Operating the Assembler in Batch Mode. e e e 94

SECTION X. ASSEMBLER OUTPUT

10.1 INtrodUCtion. . . . ittt e e e e e e 10-1
10.2 Source Listing. . . .o v ot it it i e e e e e 10-1
10.3 Error Messages . o o v vt ittt ettt e e et e e e e e e e e 10-3
10.3.1 PXOASM Error Codes. . . o o v vt ittt ettt e e et et et et et e e e e 10-3
1032 Cross ASSembler v it e e e e e e e e 10-5
10.3.3 SDSMAC Error Messages. . . o v o v v ittt ettt et e e et ee e ittt et 10-5
10.3.4 SDSMAC Warning Messages. « .« ¢ o v v v v vt et eeeeeee e on e eneneeenenenses 10-5
10.3.5 TXMIRA Error Messages. - . . . oottt ittt et et e e et e e et eae e -.10-13
104 Cross Reference Listingo ov v i ittt it ittt ettt e eeeaeeeenn 10-15
10.5 Object Code . . oottt et et i it e e e e e e e 10-15
10.5.1 Object Code Formatottt ittt ettt et 10-16
10.5.2 Machine Language Formatttt 10-20
105.3 Symbol Tableot e e e e e e e e 10-20
1054 Object Code Listing.ottt i e et e e et e 10-20
10.5.5 Procedures for Changing Object Codet tit ettt iee e, 10-22

X Digital Systems Division

[¢]

/]

943441-9701
APPENDIXES
Appendix Title Page
A Character Set oo it e e e e e A-1
B Instruction Tables e e e e B-1
C Program Organization. e C-1
D Hexadecimal Instruction Table. e D-1
E Alphabetical Instruction Table. e E-1
F Assembler Directive Table. F-1
G Macro Language Table e G-1
H CRU Interface EXample ottt e e e e e e e H-1
I TILINE Interface Example e I-1
J Example Program e e e e e J-1
K Numerical Tables.o e e e e K-1
L TMS 9940 Programming Considerations.ottt ittt e e e e L-1
LIST OF ILLUSTRATIONS
Figure Title Page
2-1 Memory Byte L L L e, 2-1
2-2 Memory Word L L Lo 2-1
2-3 Typical Memory Map for Model 990 Computer/TMS 9900 Microprocessor 2-3
24 Status Register, Model 990 Computer TMS 9900 24
2-5 Status Register, Model 990/10 with Map Option 2-4
2-6 Model 990 Computer Workspace 2-8
2-7 Address Development, Model 990/10 Map Option 2-9
2-8 Source Statement Formats 2-12
3-1 Common Workspace Subroutine Example 3-99
32 PC Contents after BL Instruction Execution 3-99
33 Context Switch Subroutine Example 3-100
34 After Execution of BLWP Instruction 3-101
3-5 After Return Using the RTWP Instruction 3-102
3-6 Interrupt Processing Example Lo oo 3-108
3-7 Memory Contents after Interrupt 3-108
3-8 Extend Operation Example 3-110
39 Extended Operation Example after Context Switch 3-111
3-10 Re-entrant Procedure for Process Control 3-118

xi Texas Instruments Incorporated

/]

943441-9701

LIST OF ILLUSTRATIONS (Continued)

Figure Title Page
-1 Macro Assembler Block Diagram 0oL 00000 oo 7-1
9-1 Macro Assembly Stream L L L L Lo e e 9-5
9-2 Macro Assembly Stream for Cards 9-6
10-1 Cross Reference Listing Format 10-15
10-2 Object Code Example Lo e e e e 10-16
10-3 External Reference Example '10-19
104 Machine Instruction Formatso oL, 10-21
10-5 Object Code Listing Format 0. . 10-22
LIST OF TABLES
Table Title Page
2-1 Status Bits Affected by Instructions L. ... 2-6
3-1 Addressing Modes L Lo 0oL L L e e e e e e 3-1
32 Instruction Addressing L . L L. e e e e e e e 3-5
33 Status Bits Tested by Instructions 3-29
34 Interrupt Vector Addresses L. Lo e e e e e 3-104
3-5 Interrupt Mask L L L Lo e e e e e 3-105
3-6 Error Interrupt Logic CRU Bit Assignments 3-107
3-7 XOP Vectors v v v v i e e e e e e e e e e e e e e e e e 3-109
7-1 Variable Qualifiers L. Lo e e e e e 7-5
7-2 Variable Qualifiers for Symbol Components 7-7
7-3 Symbol Attribute Keywordso e 7-8
7-4 Parameter Attribute Keywordso 7-9
9-1 Abnormal Completion Messagest e e e e e e 9-2
9-2 Completion Messages Ll i e e e e e e e e e e e e 94
10-1 Error Codes e e e e e e e e e e e 104
10-2 Cross Assembler Error Messageso e e e 10-7
10-3 SDSMAC Listing Errorso 109
104 TXMIRA Fatal Errors o e e e 10-14
10-5 TXMIRA Nonfatal Errors o v v i vt ot e e e e e e e e 10-14
10-6 Symbol Attributes L. L Lo L L e e e 10-15
10-7 990 Object Tags o v e e e e e e e e e e e e e 10-17
xii Texas Instruments Incorporated

943441-9701

SECTION I
INTRODUCTION

1.1 ASSEMBLY LANGUAGE DEFINITION

An assembly language is a computer-oriented language for writing programs. It consists of
mnemonic instructions and assembler directives. In assembly instructions, the user assigns symbolic
addresses to memory locations and specifies instructions by means of symbolic operation codes
called mnemonic operation codes. The user specifies instruction operands by means of symbolic
addresses, numbers, and expressions consisting of symbolic addresses and numbers. Assem-
bler directives control the process of making a machine language program from the assembly
language program, place data in the program, and assign symbols to values to be used in the
program. Assembler directives that place data in memory locations allow the user to assign
symbolic addresses to those locations.

An assembly language is computer-oriented in that the mnemonic operation codes correspond
directly with machine instructions. The chief advantage an assembly language offers over machine
language is that the symbols of assembly language are easier to use and easier to remember than
the zeros and ones of machine language. Other advantages are the use of expressions as operands
and the use of decimal numbers in expressions and as operands.

1.2 ASSEMBLY LANGUAGE APPLICATION

An assembly language program, called a source program, must be processed by an assembler to
obtain a machine language program that can be executed by the computer. Processing of a
source program is called assembling, because it consists of assembling the binary values that
correspond to the mnemonic operation code with the binary address information to form the
machine language instruction.

To illustrate the place of assembly language in the development of progréms, consider the
following steps in program development:

1. Define the problem.
2. Flowchart the solution to the problem.

3. Code the solution by writing assembly language statements (machine instructions and
assembler directives) that correspond to the steps of the flowchart.

4. Prepare the source program by writing the statements on the medium appropriate to
the installation; i.e., keypunch the statements if a card reader is to be used as input to
the assembler, etc.

5. Execute the assembler to assemble the machine language object code corresponding to
the source program.

6. Debug the resulting object code by loading and executing the object code and by making
corrections indicated by the results of executing the object code.

7. Repeat steps 5 and 6 until no further correction is required.

1-1 Texas /nstruments Incorporated

[¢]
(@ 943441-9701

The use of assembly language in program development relieves the programmer of the tedious
task of writing machine language instructions and keeping track of binary machine addresses
within the program.

1-2 Texas [nstruments Incorporated

[o]
J\@p 434419701

SECTION II

GENERAL PROGRAMMING INFORMATION

2.1 BYTE ORGANIZATION

Memory for the Model 990 Computer/TMS 9900 Microprocessor is addressed using byte
addresses. A byte consists of eight bits of memory, as shown in figure 2-1. The bits may
represent the states of eight independent two-valued quantities, or the configuration of a
character in a code used for input, output, or data transmission. The bits also may represent a
number which is interpreted either as a signed number in the range of -128 through +127 or as
an unsigned number in the range of O through 255. The 990 computers and TMS 9900 micro-
processor implements signed numbers in 2’s complement form.

The most significant bit (MSB) is designated bit 0, and the least significant bit (LSB) is
designated bit 7. A byte instruction may address any byte in memory.

2.2 WORD ORGANIZATION

A word in the memory for the Model 990 Computer/TMS 9900 Microprocessor consists of 16
bits, a byte at an even address and the following byte at an odd address. As shown in figure 2-2,
the most significant bit of a memory word is designated bit 0, and the least significant bit is
designated bit 15. A word may contain a computer instruction in machine language, a memory
address, the bit configurations of two characters, or a number. When a word contains a number,
the number may be interpreted as a signed number in the range of -32,768 through +32,767, or
as an unsigned number in the range of O through 65,535. (Signed numbers are implemented in
2’s complement form.)

Word boundaries are assigned to even-numbered addresses in memory. The even address byte
contains bits 0 through 7 of the word, and the odd address byte contains bits 8 through 15.
When word instructions address an odd byte, the word operand is the memory word consisting
of the addressed byte and the preceding even-numbered byte. This is the memory word that
would be accessed by the odd address minus one. For example, a memory address of 1023
used as a word address would access the same word as memory address 1022,.

NOTE

All instructions must begin on word boundaries. Instructions are
1, 2, or 3 words long.

(MSB) (LsSB)
T T T 1 ™
0o 1 2 3 4 5 6 7

Figure 2-1. Memory Byte

(MsSB) (LsB),
I T L L l 1 I 1 1] R 1 | 1]

(o] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(WORD BOUNDARY)

Figure 2-2. Memory Word

2-1 Texas Instruments Incorporated

[e]

2.3 TRANSFER VECTORS

A transfer vector is a pair of memory addresses in two consecutive words of memory. The first
word contains the address of a 16-word area of memory, called a workspace. The second word
contains the address of a subroutine entry point. The Model 990 Computer/TMS 9900 Micro-
processor uses a transfer vector in a type of transfer of control called a context switch. A
context switch places the contents of the first word of a transfer vector in the Workspace
Pointer (WP) register, making the workspace addressed by that word the active workspace. The
16 words of the active workspace become workspace registers O through 15, which are available
for use as general purpose registers, address registers, or index registers. A context switch places
the contents of the second word of a transfer vector in the Program Counter (PC), causing the
instruction at that address to be executed next.

A context switch transfers control to an interrupt subroutine whenever an interrupt occurs. The
transfer vectors for interrupt levels O through 15 are located in memory locations 0000,

through 003E,4, as shown in figure 2-3. The address of the first byte of the vector for an interrupt
level is the product of the level number times four.

The Model 990 Computer/TMS 9900 Microprocessor supports extended operations implemented
by subroutines. These extended operations are effectively additional instructions that may
perform user-defined functions. Up to 16 extended operations may be implemented. An
extended operation machine instruction results in a context switch to the specified extended
operation subroutine. The transfer vectors for extended operations O through 15 are located in
memory locations 0040,s through O07E,; as shown in figure 2-3. The address of the first byte
of the vector for an extended operation is the hexadecimal sum of the product of the extended
operation number times four, plus 40,.

In the Model 990/10 Computer, an extended operation may be implemented with user-supplied
hardware. When a hardware module is connected for an extended operation, no context switch
occurs for that operation, and the hardware performs the operation. Program execution con-
tinues when the operation has completed.

A context switch using the transfer vector at memory location FFFC,4 transfers control to a
subroutine to load or restart the computer. Execution of an LREX instruction or activation of a
switch on the control panel initiates the context switch.

A context switch to a user subroutine is performed by the BLWP instruction. The transfer vector
is placed at a user defined location in memory.

2.4 STATUS REGISTER

The configuration of the Status Register of the Model 990 Computer and the TMS 9900
Microprocessor is shown in figure 2-4. The configuration of the Status Register of the Model
990/10 Computer with map option is shown in figure 2-5. Bits O through 6 and 12 through 15
are identical, and are the bits that are set and reset by the machine instructions. These bits have
the following meanings:

® L>, bit 0 - Logical greater than
® A>, bit 1 - Arithmetic greater than
® EQ, bit 2 - Equal

® (, bit 3 - Carry

22 Texas Instruments Incorporated

943441-9701

MEMORY
AREA ADDRESS
DEFINITION (HEXADECIMAL.
0000 LEVEL 0 INTERRUPT
TRANSFER VECTOR
INTERRUPTS
VELS 0 THROUGH 7
0004 LEVEL 1 INTERRUPT
(MODEL 990/4) 0 TRANSFER VECTOR
0008
LEVELS 0 THROUGH 15 JL
(MODEL 990/10) £ p
~ M
0o03c LEVEL 15 INTERRUPT
TRANSFER VECTOR
0040 XOP 0 TRANSFER VECTOR
0044 XOP 1 TRANSFER VECTOR
oo4s | A
EXTENDED OPERATIONS ~ ~
0 THROUGH 15
oo7cC XOP 15 TRANSFER VECTOR
GENERAL MEMORY FOR ooso
EXECUTIVE , PROGRAMS ,
AND DATA
GENERAL .J
A MEMORY ~
~ AREA
F7FE
F800
TILINE PERIPHERAL
CONTROL. SPACE
(MODEL 990/10) "L
~ TILINE RS
T
FBFE
PROM FCoo
(MODEL 990/4,990/10) A PROGRAMMER PANEL 4L
N AND LOADER >
FFFA
LOAD OR RESTART FFFC
FUNCTION crrE RESTART TRANSFER VECTOR

(A)132200

Figure 2-3. Typical Memory Map for Model 990 Computer/TMS 9900 Microprocessor

® OV, bit 4 - Overflow

® OP, bit 5 - Odd parity

® X, bit 6 - Extended operation
® Bits 12-15 - Interrupt mask

Two of the reserved bits in the Model 990/4 Status Register are defined for the Status Register of
the Model 990/10. Bit 7, the PR bit, is set to one to inhibit execution of the privileged instructions.
When execution of a privileged instruction is attempted with the PR bit set to one, an illegal
instruction error occurs. Bit 7 must be set to zero-to execute these instructions. An additional
bit, bit 8, the Map File (MF) bit, specifies the memory map file for the memory mapping op-
tion. The memory mapping option provides access to memory addresses outside of the range

23 Texas Instruments-incorporated

943441-9701

8 9 10 11 12 13 14 15

7
777V 7Y 7V 7 T 1
L>|A>|EQ| c|OV|OP| X RESERVED INTERRUPT
DN, MASK

Figure 2-4. Status Register, Model 990 Computer TMS 9900

o 1 2 3 4 5 6 7 8 9 1011 12 13 14 15

T T 1
L>|a>|ea| c Jov|or| x |PR MF/ INTERRUPT
/ MASK

Figure 2-5. Status Register, Model 990/10 With Map Option

of addresses (32K words) of the address portions of instructions. When bit 8 is set to O, the six
mapping registers for map O are active. When bit 8 is set to I, the six mapping registers for
map 1 are active.

2.4.1 LOGICAL GREATER THAN. The logical greater than bit of the Status Register contains
the result of a comparison of words or bytes as unsigned binary numbers. In this comparison,
the most significant bits of words being compared represent 215, and the most significant bits of
bytes being compared represent 27 .

2.4.2 ARITHMETIC GREATER THAN. The arithmetic greater than bit of the Status Register
contains the result of a comparison of words or bytes as two’s complement numbers. In this
comparison, the most significant bits of words or bytes being compared represent the sign of the
number, zero for positive, or one for negative. For positive numbers, the remaining bits represent
the binary value. For negative numbers, the remaining bits represent the two’s complement of
the binary value.

2.4.3 EQUAL. The equal bit of the Status Register is set when the words or bytes being
compared are equal. Whether the comparison is that of unsigned binary numbers or two’s
complement numbers the significance of equality is the same.

2.4.4 CARRY. The carry bit of the Status Register is set by a carry out of the most significant
bit of a word or byte (sign bit) during arithmetic operations. The carry bit is used by the shift
operations to store the last bit shifted out of the workspace register being shifted.

2.4.5 OVERFLOW. The overflow bit of the Status Register is set when the result of an
arithmetic operation is too large or too small to be correctly represented in two’s complement
representation. In addition operations, the overflow bit is set when the most significant bits of
the operands are equal and the most significant bit of the result is not equal to the most
significant bit of the destination operand. In subtraction operations, the overflow bit is set when
the most significant bits of the operands are not equal, and the most significant bit of the result
is not equal to the most significant bit of the destination operand. For a divide operation, the

2-4 Texas Instruments Incorporated

[e]
{@ 943441-9701

overflow bit is set when the most significant sixteen bits of the dividend are greater than or
equal to the divisor. For an arithmetic left shift, the overflow bit is set if the most significant bit
of the workspace register being shifted changes value. For the absolute value and negate
instructions, the overflow bit is set when the source operand is the maximum negative value,
8000, 4.

2.4.6 ODD PARITY. The odd parity bit of the Status Register is set in byte operations when
the parity of the result is odd, and is reset when the parity is even. The parity of a byte is odd
when the number of bits having values of one is odd; when the number of bits having values of
one is even, the parity of the byte is even. The odd parity bit is equal to the least significant bit
of the sum of the bits in the byte.

2.4.7 EXTENDED OPERATION. The extended operation bit of the Status Register is set to
one when a software implemented extended operation is initiated. An extended operation is
initiated by a context switch using the transfer vector for the specified extended operation. After
the WP and PC have been set to the values in the transfer vector, the extended operation bit is
set.

2.4.8 STATUS BIT SUMMARY. Table 2-1 lists the instructions of the Model 990 Computer/
TMS 9900 Microprocessor instruction set and the status bits affected by each instruction. The
effectivity column contains A to indicate applicability to all Model 990 Computers and the
TMS 9900 Microprocessor. The column contains C to indicate applicability to all Model 990
Computers but not to the TMS 9900 Microprocessor. The column contains M to indicate
applicability only to Model 990/10 Computers with mapping option. The interrupt mask is ex-
plained in a subsequent paragraph.

2.5 MEMORY ORGANIZATION

Figure 2-3 shows a generalized memory map applicable to Model 990 Computer/TMS 9900
Microprocessor memories. The area of low-order memory from address O through 7F ;¢ is used
for interrupt and extended operation transfer vectors as previously described. Addresses reserved
for transfer vectors that are not used (interrupt levels 8 through 15 in Model 990/4 computers)
may be used for instructions and/or data. Since many memory configurations are available as
options, the programmer should ascertain the memory configuration for his system.

The area of memory from address 80,¢ through address F7FE 4 is available for workspaces, instruc-
tions, and data. Many users of Model 990 Computers will place an executive (PX990, TX990 or
DX10) in a portion of this area. The remainder of this area (as supplied) is available for
workspaces, instructions, and data for user programs. TMS 9900 users, and Model 990 Computer
users who do not use PX990, or TX990 or DX10 may use the entire area (as supplied).

Various types and sizes of memory are available for the TMS 9900 Microprocessor and the Model
990/4 Computer. Addressing is not necessarily continuous. Addresses may be assigned according
to the needs of an application, omitting addresses as appropriate.

In the Model 990/10 Computer, addresses F800,, through FBFE,s are reserved for TILINE
communication with peripheral devices. These addresses may be assigned to registers in control-
lers for direct memory access devices. Input/Output from or to these devices is performed using
any instruction that may be used to access memory. For 1/O, the address in the instruction must
be the TILINE address assigned to the appropriate register. An example of TILINE interface is
shown in Appendix I.

2.5 Texas Instruments Incorporated

943441-9701

5 T T e A (Y (RO SR S
m__________________
>
© X 1 X X L
O Lo
m__XXX_____________
p~_XXX_____________
D__XXX_____________
E
E A <0 << < <9< 9 <9<< << << < < < <
£
g 2
=g [52] =
> 2 > g v O Qo = 43} m O~ & O @ O L o
2 §5E2Ez2z8CgZad582228%
MM
&
<
MX
@ T T e e e e R T R
2
mP
R = R T T T T T A T R B R B
S
L O X X X X L ==
&
[T T e e e e B R T R R Y R R R
o
BOX X X X X L X X X L M K
DXXXXX___XXX_____XX
DXXXXX___XXX_____XX
b
H < < < < < < < < < < < 00 < < < < <
9
' = o Z =
e) a W O O ¢ LV L LW O
M M — SRR
mAAAMWBu&chmmamQDD
=
2-6 Texas Instruments Incorporated

Pp&/D10d109U/ S{UBWNISU[SDXE [

Table 2-1. Status Bits Affected by Instructions (Continued)

Mnemonic Eff. I> A> EQ C oV orP X Mnemonic Eff. > A> EQ C oV OoP X
LDCR A X X X - - 1 - SBZ A U
LDD M - - - - - = = SETO A P
LDS M - - - = = - = SLA A X X X X X - -
LI A X X X - - - - SoC A X X X - - - =
LIMI A e SOCB A X X X - - X -
LMF M - - - - - - = SRA A X X X X - - -
LREX C - - - - = = = SRC A X X X X - - -
LWPI A e SRL A X X X X - - -
MOV A X X X - - - - STCR A X X X - - 1 -
MOVB A X X X - - X - STST A e —
MPY A - - - = = = = STWP A - - - - - -
NEG A X X X X X - - SWPB A N
ORI A X X X - - - - SZC A X X X - - - -
RSET C - - - - - - = SZCB A X X X - - X -
RTWP A X X X X X X X TB A - - X - - - =
S A X X X X X - - X A 2 2 2 2 2 2 2
SB A X X X X X X - XOP A 2 2 2 2 2 2 2
SBO A - - - = = = = XOR A X X X - - - -

Notes: 1. When an LDCR or STCR instruction transfers eight bits or less, the OP bit is set or reset as in byte instructions. Otherwise
these instructions do not affect the OP bit.

2. The X instruction does not affect any status bit; the instruction executed by the X instruction sets status bits normally
for that instruction. When an XOP instruction is implemented by software, the XOP bit is set, and the subroutine sets
status bits normally.

10L6°1vvEY6

/]

943441-9701

In the Model 990 Computers supplied with the optional front panel/loader ROM, addresses
FC00,6 through FFFB,s are reserved for the Programmed Read Only Memory (PROM) which
contains the programmer panel program and a loader program. When the programmer panel is not
connected, the program transfers control to the loader program. Control passes to the programmer
panel program by a context switch using the transfer vector at address FFFC,.

Any 16-word area of memory may be assigned as a workspace, and becomes the active
workspace when the address of the first word of the area is placed in the WP register. Figure 2-6
shows a workspace, with those registers that have assigned functions identified in the figure.

Memory for the Model 990/10 Computer may contain more than 32K words, but the address
format addresses only 32K words directly. The mapping option is used to address memory locations
outside of the 32K word addressing cdpability. The mapping hardware has three 11-bit limit
registers and three 16-bit bias registers for each of the three map files. The mapped address is a
20-bit address, the sum of the 16-bit processor address and the contents of a bias register extended
to the right with five zeros. The least significant bit (which selects bytes) is ignored. The limit
registers contain the one’s complement of the limits, and determine which bias register is used.
When the 11 most significant bits of the 16-bit address are less than or equal to limit 1, bias
register 1 is used. When the same value is greater than limit 1 and less than or equal to limit 2, bias
register 2 is used. When the same value is greater than limit 2 and less than or equal to limit 3, bias
register 3 is used. When the same value is greater than limit 3, a mapping error interrupt occurs
and memory is not accessed.

MEMORY
WP REGISTER (HE;\(ID\gEEISNSIAL)

———-—-—Dosoo ggb‘;"_’r WR 0
0502 WR 1
0504 WR 2
0506 WR 3
0508 WR 4
050A WR 5
050C WR 6
050E WR 7
0510 WR 8
0512 WR 9
0514 WR 10
oste | EEFECTIVE ADORESS (OF) | we 11
0518 CRU BASE ADDRESS WR 12
051A WP REGISTER CONTENTS WR 13
051C PC CONTENTS WR 14
O051E ST REGISTER CONTENTS WR 15

(A)132201

Figure 2-6. Model 990 Computer Workspace

2-8

Texas Instruments Incorporated

943441-9701

When power is applied, the status register clears, selecting map file O and the limit and bias registers
are set to zero. The limits (one’s complement of limit register contents) are FFFF,4. This results in
all addresses using bias register 1, which contains zero. The result is that all addresses are mapped
into the same addresses. Map file 1 consists of three limit registers and three bias registers, and is in-
tended for application programs. Map file 2 similarly consists of three limit registers and three
bias registers, and is used to map one specified address outside of the current map. The LMF in-
struction loads map files O and 1.

For example, figure 2-7 shows a map file and the comparison of processor addresses to limits.
Figure 2-7 also shows the addition of a bias register to a processor address. The contents of the map
file are chosen in this example so that processor addresses 0000, through 10FF,¢s map to addresses
000000,, through 0010FF,, processor addresses 1100,, through AOFF,, map to addresses
0322E0,, through 03B2DF,, and processor addresses A100,¢ through F7FF;s map to addresses
04A100,¢ through 04F7FF;¢. Processor addresses greater than F7FF 4 result in error interrupts.
This requires that limit register L1 contains 11101111000,, the one’s complement of the 11 most
significant bits of 10FF,,. Similarly, limit register L2 contains 01011111000, (one’s complement
of 11 most significant bits of AOFF,) and limit register L3 contains 00001000000, (one’s com-
plement of the 11 most significant bits of F7FF,4). Bias register Bl contains 0000, bias register
B2 contains 188F,4, and bias register B3 contains 2000, .

MAP FILE
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

L1 t{1f{1]o]l1j1f1]1flo]ololx]x|x]|x]Xx
B1 olofolo]lolo|o]l]o]j]ofo|lo]J]o}jo]o|ofoO
L2 oltfjol1|[t1|1 |11]olofjolx]|x]x]|x]|X
B2 olojo|l1]l1|ofolof1]ofolo]l1]1]1]1
L3 olo|lojo]1]lofofofofjolofXxX]|X]|X|X|X
B3 olo|l1lo|lo]loflofjfolo]l]o]l]o|lo]o}lojo}oO
COMPARISON RESULT
o 1 2 3 4 7 10 11 12 13 14 15
PROCESSOR
ADDRESS IOI OI OI 1| OI
]] [] 1
1] [] 1
|

O =~ Ofun

T LT L[]

ol---

5 [TeT-[]

l 1 I 1]q GREATER THAN

[o] i 2 3 4 5 6 7 8 9 10 11 12 13 14 15

PROCESSOR

ADDRESS ol olol1lololol sl s sl o]]1] 1]n
R

+ 0 1 2 3 4 5 6 7 8 9 1011 1213 1415 | 1 |

i |

B2 IoloTo|1|1|o|o|o[11oroTol1|1||l1ll Loy
1 | | 1

Voot Voo T

T T R A R R A R

= [T T] [D | [| | [| : | !

|] 1 1]] [] 1] [} | 1 [1 1 [} ' 1 i

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

@ Lol [[e[e[[[

(A)132202

Figure 2-7. Address Development Model 990/10 Map Option

2.9 Texas Instruments Incorporated

(o]
@@ 943441-9701

2.6 PRIVILEGED MODE

The Model 990/10 Computer has a privileged mode in which any instruction of the instruction
set may be executed. When the computer is not in the privileged mode, and execution of a
privileged instruction is attempted, the instruction is not executed and an error interrupt occurs.
The privileged instructions perform operating system functions not appropriate in user
programs. The specific instructions are identified in a subsequent section. The computer is placed
in the privileged mode and the map file set to map file O when power is applied, when an interrupt
occurs, and when an XOP instruction is executed.

2.7 SOURCE STATEMENT FORMAT

An assembly language source program consists of source statements which may contain assembler
directives, machine instructions, pseudo-instructions, or comments. Each source statement is a
source record as defined for the source medium; i.e., an 80-column card for punched card input,
or a line of characters terminated by a carriage return for input from the keyboard of a terminal,
such as the Model 733 ASR Data Terminal or a CRT Display Terminal.

The following conventions apply in the syntax definitions for machine instructions and assembler
directives: '

® [tems in capital letters, and special characters, must be entered as shown.
® Items within angle brackets (< >) are defined by the user.

® [Items in lower case letters are classes (generic names) of items.

® Items within brackets ([]) are optional.

® Items within braces (_{ }) are alternative items; one must be entered.

® All ellipsis (...) indicates that the preceding item may be repeated.

® The symbol b represents a blank or space.

The syntax for source statements other than comment statements is defined as follows:
[<label>1® ... opcodeb . .. [<operand>] [,<operand>] ...b...[<comment>]

This syntax definition means that a source statement may have a label, which is defined by the
user. One or more blanks separate the label from the opcode. Mnemonic operation codes,
assembler directives codes, and user-defined operation codes are all included in the generic term
opcode, and any of these may be entered. One or more blanks separate the opcode from the
operand, when an operand is required. Additional operands, when required, are separated by
commas. One or more blanks separate the operand or operands from the comment field.

Comment statements consist of a single field starting with an asterisk (*) in the first character
position followed by any ASCII character including a blank in each succeeding character
position. Comment statements are listed in the source portion of the assembly listing and have
no other effect on the assembly.)

The maximum length of source records is 60 characters. However, only the first 52 characters
will be printed on the Model 733 ASR Data terminal. The last source statement of a source
program is followed by the end-of-record statement for the source medium, i.e., for punched
cards, a card having a slash (/) punched in column 1 and an asterisk (*) punched in column 2.

2-10 Texas Instruments Incorporated

o
%@? 943441-9701

Figure 2-8 shows source statements written on a coding form illustrating alternative methods of
entering statements. The first four statements illustrate the alignment of the label, opcode,
operands, and comments to begin in the same column in each statement. This method promotes
readability, but may be time-consuming on some input devices, particularly data terminals. The
last four statements show the use of horizontal tab characters represented by ¥ to separate the
fields. On the Model 733 ASR Data Terminal, the tab character is entered by holding the CTRL
key while pressing the I key. PX9ASM does not implement this use of }Tl

2.7.1 CHARACTER SET. The assemblers for the Model 990 Computers and the TMS 9900
Microprocessor recognize ASCII characters as follows:

® The alphabet (capital letters only) and space character

® The numerals

® Twenty-two special characters

® Five characters defined for this language, that are undefined as ASCII characters
® The null character

® The tab character

Appendix A contains tables that list all 66 characters and show the ASCII and Hollerith codes
for each.

2.7.2 LABEL FIELD. The label field begins in character position one of the source record and
extends to the first blank. The label field contains a symbol containing up to six characters the
first of which must be alphabetic. Additional characters may be any alphanumeric characters. A
label is optional for machine instructions and for many assembler directives. When the label is
omitted, the first character position must contain a blank. A source statement consisting of only a
label field is a valid statement; it has the effect of assigning the current location to the label. This is
usually equivalent to placing the label in the label field of the following machine instruction or as-
sembler directive. However, when a statement consisting of a label only follows a TEXT or BYTE
directive and is followed by a DATA directive or a machine instruction, the label will not have the
value of a label in the following statement unless the TEXT or BYTE directive left the location
counter on an even (word) location. An EVEN directive following the TEXT or BYTE directive
prevents this problem.

2.7.3 OPERATION FIELD. The operation (opcode) field begins following the blank that ter-
minates the label field, or in the first non-blank character position after the first character
position when the label is omitted. The operation field is terminated by one or more blanks, and

may not extend past character position 60 of the source record. The operation field contains an
opcode, one of the following:

® Mnemonic operation code of a machine instruction
® Assembler directive operation code

® Symbol assigned to an extended operation by a DXOP directive

Pseudo-instruction operation code

211 Texas Instruments Incorporated

(4 84

P8/DI0I02U) SIUSWNIISU) SDX3

LABEL OPER OPERAND COMMENTS
1 6 8 " 13 17 21 25]26 30 35 40 45 50 55 60
* Iclon{vlEn(T{T]0|N]A s|o[u[R]c[e] [s[T]A[T]EIMIEN]TT TFTOTRTMTATT
S|T|AR]T LI 3], [>]2]5 L{o[a[p] [w| [rR] |3
A 5,3 Alp[p| [w[rR[5| [T]o] WR[3
RIT RIE[T[U[RIN] [T]o] [c]alLiL]t|N]c] [P[R]o]G[R]A{M
[Iplalclk]efp] [s|ofulr|c|e| [s|{T|{A|T[E[M]EIN]T] [Flo{R[M[A]T] [uls|i|n]a] [T]A[B]S
siTAR[TIFILT|F[3],[>]2]5(F|L{o[A[D] W] [R] (3
wialals|, [3]#[alo]o] Wr(s| {7]o] [W[R]3
ARTIFIFREF VRN | clalL{L|rin]a] [P[R]ola [R]A[M
e Pe—— camcE Pace
(A)132203 A

Figure 2-8. Source Statement Formats

10L6°T¥VEV6

943441-9701

2.7.4 OPERAND FIELD. The operand field begins following the blank that terminates the
operation field, and may not extend past character position 60 of the source record. The
operand field may contain one or more expressions, terms, or constants, according to the
requirements of the opcode. The operand field is terminated by one or more blanks.

2.7.5 COMMENT FIELD. The comment field begins following the blank that terminates the
operand field, and may extend to the end of the source record if required. The comment field
may contain any ASCII character, including blank. The contents of the comment field are listed
in the source portion of the assembly listing and have no other effect on the assembly.

2.8 EXPRESSIONS

Expressions are used in the operand fields of assembler directives and machine instructions. An
expression is a constant or symbol, or a series of constants, a series of symbols, or a series of
constants and symbols separated by arithmetic operators. Each constant or symbol may be
preceded by a minus sign (unary minus). An expression may contain no embeded blanks, or
symbols that are defined as extended operations. Symbols that are defined as external references
may not be operands of arithmetic operations. For PX9ASM, only one symbol in an expression
may be subsequently defined in the program, and that symbol must not be part of an operand in
a multiplication or division operation within the expression. For the Cross Assembler, TXMIRA,
and SDSMAC, an expression may contain more than one symbol that is not previously defined.
When these symbols are absolute, they may also be operands of multiplication or division opera-
tions within an expression. In all assemblers, an expression that contains a relocatable symbol or
relocatable constant immediately following a multiplication or division operator is an illegal ex-
pression. Also, when the result of evaluating an expression up to a multiplication or division
operator is relocatable, the expression is illegal. An expression in which the number of relocatable
symbols or constants added to the expression exceeds the number of relocatable symbols or con-
stants subtracted from the expression by more than one is an illegal expression.

If NA = Number of relocatable values added and
NS = Number of relocatable values subtracted and

Then if

0 The expression is absolute
NA - NS =< 1 The expression is relocatable
Other than 0 or 1, the expression is illegal

An expression containing relocatable symbols or constants of several different relocation types
(see Section VIII) is absolute if it is absolute with respect to all relocation types. If it is relocatable
with respect to one relocation type and absolute with respect to all other relocation types, then the
expression is relocatable. For example, the expression

RED + BLUE - GREEN + 2

is program-relocatable if BLUE is a program-relocatable symbol and the symbols RED and GREEN
are both data-relocatable. If the symbols RED, BLUE, and GREEN were program-relocatable,
data-relocatable, and common-relocatable, respectively, the expression would be invalid. TXMIRA
and PX9ASM only support program-relocatable symbol.

In TXMIRA, if the current value of an expression is relocatable with respect to one relocation type,

a symbol of another relocation type may not be included until the value of the expression becomes
absolute. For example, the expression

BLUE - GREEN - RED

2-13 Texas Instruments Incorporated

o
@ 943441-9701

would be valid if BLUE and GREEN are of the same relocation type but would be invalid other-
wise.

The following are examples of valid expressiohs:

BLUE+1 The sum of the value of symbol BLUE plus 1.

GREEN+4 The result of subtracting 4 from the value of symbol GREEN.
2*16+RED The sum of the value of symbol RED plus the product of 2 times 16.
440/2-RED The result of dividing 440 by 2 and subtracting the value of symbol

RED from the quotient. RED must be absolute.

2.8.1 WELL-DEFINED EXPRESSIONS. Some assembler directives require well-defined expres-
sions in the operand fields. For an expression to be well-defined, any symbols or assembly-time
constants in the expression must have been previously defined. Also, the evaluation of a
well-defined expression must be absolute, and a well-defined expression may not contain a
character constant.

2.8.2 ARITHMETIC OPERATORS. The arithmetic operators in expressions are as follows:
e +for addition
® - for subtraction
® * for multiplication
® /for signed division

® //for logical right shift (SDSMAC only)

In evaluating an expression, the assembler first negates any constant or symbol preceded by a
unary minus, then performs the arithmetic operations from left to right. The assembler does not
assign precedence to any operation other than unary minus. All operations are integer operations.
The assembler truncates the fraction in division.

For example, the expression 4+5*2 would be evaluated 18, not 14, and the expression 7+1/2
would be evaluated 4, not 7.

The logical right shift operator (//) allows a logical division by a power of two.

Examples:

>8000//1 = >4000 >AAAB//1 =>5555
>FFFF//0 = >FFFF >FFFF//16 = >0000

SDSMAC checks for overflow conditions when arithmetic operations are performed at assembly
time and gives a warning message whenever an overflow occurs, or when the sign of the result is
not as expected in respect to the operands and the operation performed. Examples where a VALUE
TRUNCATED message is given are:

>4000%2 >T7FFF+1 -1*>8000
>8000%2 >8000-1 -2*>8001

2-14 Texas Instruments Incorporated

[e]
{_‘—@; 943441-9701

2.9 CONSTANTS
Constants are used in expressions. The assemblers recognize four types of constants: decimal
integer constants, hexadecimal integer constants, character constants, and assembly-time constants.

2.9.1 DECIMAL INTEGER CONSTANTS. A decimal integer constant is written as a string of
numerals. The range of values of decimal integers is -32,768 to +65,535. Positive decimal integer
constants greater than 32,767 are considered negative when interpreted as two’s complement
values. Operands of arithmetic instructions other than multiply and divide are interpreted as two’s
complement numbers, and all comparisons compare numbers both as signed and unsigned values.

The following are valid decimal constants:

1000 Constant, equal to 1000 or 3E8,,.
-32768 Constant, equal to -32768 or 8000 .
25 Constant, equal to 25, or 19 ;4.

2.9.2 HEXADECIMAL INTEGER CONSTANTS. A hexadecimal integer constant is written as a
string of up to four hexadecimal numerals preceded by a greater than (>) sign. Hexadecimal
numerals include the decimal values O through 9 and the letters A through F.

The following are valid hexadecimal constants:

>78 Constant, equal to 120, or 78,¢.
>F Constant, equal to 15, or Fy¢.
>37AC Constant, equal to 14252 or 37AC .

2.9.3 CHARACTER CONSTANTS. A character constant is written as a string of one or two
characters enclosed in single quotes. For each single quote required within a character constant,
two consecutive single quotes are required to represent the quote. The characters are represented
internally as eight-bit ASCII characters, with the leading bit set to zero. A character constant
consisting only of two single quotes (no character) is valid, and is assigned the value 0000, 4.

The following are valid character constants:

‘AB’ Represented internally as 41424.
‘C Represented internally as 0043,¢.
‘N’ Represented internally as 004E¢.
“D’ Represented internally as 2744 .

2.9.4 ASSEMBLY-TIME CONSTANTS. An assembly-time constant is written as an expression in
the operand field of an EQU directive, described in a subsequent paragraph. When using TXMIRA
or PX9ASM, any symbol in the expression must have been previously defined. The value of the
label is determined at assembly time, and is considered to be absolute or relocatable according to
the relocatability of the expression, not according to the relocatability of the location counter value.

2.10 SYMBOLS

Symbols are used in the label field, the operator field, and the operand field. A symbol is a
string of alphanumeric characters, (A through Z and O through 9), the first of which must be an
alphabetic character (A through Z), and none of which may be a blank. When more than six
characters are used in a symbol, the assembler prints all the characters, but accepts only the first
six characters for processing. User-defined symbols are valid only during the assembly in which
they are defined. '

2-15 ' Texas Instruments Incorporated

o
{_@] 943441-9701

Symbols used in the label field become symbolic addresses. They are associated with locations in
the program, and must not be used in the label field of other statements. Mnemonic operation
codes and assembler directive names are valid user-defined symbols when placed in the label field.

NOTE

When using SDSMAC, the ‘7 and ‘$° characters are considered
alphabetic.
The DXOP directive defines a symbol to be used in the operator field. Any symbol that is used in

the operand field must be placed in the label field of a statement, or in the operand field of a REF
directive except for a symbol in the operand field of a DXOP directive or a predefined

symbol.

2.11 PREDEFINED SYMBOLS

The predefined symbols are the dollar sign character ($) and the workspace register symbols.
The dollar sign character is used to represent the current location within the program. The
workspace register symbols are as follows:

Symbol Value Symbol Value Symbol Value Symbol Value
RO 0 R4 4 R8 8 R12 12
R1 1 RS 5 R9 9 R13 13
R2 2 R6 6 R10 10 R14 14
R3 3 R7 7 R11 11 R15 15

NOTE
The workspace register symbols (RO, R1...) are normally unde-
fined in PX9ASM and TXMIRA. However, they can be optionally
defined.

The following are examples of valid symbols:

START Assigned the value of the location at which it appears
in the label field.

Al Assigned the value of the location at which it appears
in the label field.

OPERATION OPERAT is assigned the value of the location at which
it appears in the label field.

$ Represents the current location.

2.12 TERMS

Terms are used in the operand fields of machine instructions and an assembler directive. A term
is a decimal or hexadecimal constant, an absolute assembly-time constant, or label having an

absolute value.

216 Texas Instruments Incorporated

o
(_r@? 943441-9701

The following are examples of valid terms:

12 The value is 12, or Cy¢.

>C The value is 12, or Cy.

WR2 Valid if WR2 is defined having an absolute value.
R3 Predefined as a value of 3.

If START were a relocatable symbol, the following statement would not be valid as a term:

WR2 EQU START+4 WR2 would be a relocatable value 4 greater than the
value of START. Not valid as a term, but valid as

a symbol.

2.13 CHARACTER STRINGS
Several assembler directives require character strings in the operand field. A character string is

written as a string of characters enclosed in single quotes. For each single quote in a character
string, two consecutive single quotes are required to represent the required single quote. The
maximum length of the string is defined for each directive that requires a character string. The
characters are represented internally as eight-bit ASCII characters, with the leading bits set to
zeros. Appendix A gives a complete list of valid characters within character strings.

The following are valid character strings:

‘SAMPLE PROGRAM’ Defines a 14-character string
consisting of:
SAMPLEBPROGRAM.

‘PLAN “C” Defines an 8-character string
consisting of:
PLANB®C".

Defines a 37-character string
consisting of the expression
enclosed in single quotes.

‘OPERATOR MESSAGE * PRESS START SWITCH’

2-17/2-18 Texas Instruments Incorporated

943441-9701

SECTION III

ASSEMBLY INSTRUCTIONS

3.1 GENERAL

This section describes the mnemonic instructions of the assembly language for the PX9ASM,
TXMIRA and SDSMAC assemblers, and for the Cross Assember. Detailed assembly instruction
descriptions follow descriptions of the addressing modes used in the assembly language and the

addressing formats of the assembly instructions. The section also includes examples of programming
the various instructions.

3.2 ADDRESSING MODES

One of five addressing modes may be used in the instructions that specify a general address for
the source or destination operand. Table 3-1 lists these modes and shows how each is used in the
assembly language. Each of the modes is described in a subsequent paragraph.

Table 3-1. Addressing Modes

T field value

Addressing Mode (Note 1) Example Note
Workspace Register 0 5

Workspace Register 1 *7

Indirect

Symbolic Memory 2 @LABEL 2,3
Indexed Memory 2 @LABEL(5) 2,4
Workspace Register 3 *T7+

Indirect Autoincrement
Notes:

1. The T field is described in the addressing format descriptions.

2. The instruction requires an additional word for each T field
value of 2. This word contains a memory address.

3. The S or D field is set to zero by the assembler.

4. Workspace register 0 cannot be used for indexing.

3-1 Texas Instruments Incorporated

[e]
{%\[7@ 943441-9701

3.2.1 WORKSPACE REGISTER ADDRESSING. Workspace register addressing specifies a work-
space register that contains the operand. A workspace register address is written as a term having
a value of O through 15.

The following examples show the coding of instructions that have two workspace register
addresses each:

MOV R4,R8 Copy the contents of workspace register 4 into
workspace register 8.

COC RI15,R10 Compare the bits of workspace register 10 that
correspond to the one bits in workspace register
15 to one.

3.2.2 WORKSPACE REGISTER INDIRECT ADDRESSING. Workspace register indirect addres-
sing specifies a workspace register that contains the address of the operand. An indirect workspace
register address is written as a term preceded by an asterisk (*). The following example shows
coding of instructions having workspace register indirect addresses.

A *R7,*R2 Add the contents of the word at the address in
workspace register 7 to the contents of the word
at the address in workspace register 2, and place
the sum in the word at the address in workspace
register 2. :

MOV *R7,R0 Copy the contents of the address in workspace
register 7 into workspace register 0.

3.2.3 SYMBOLIC MEMORY ADDRESSING. Symbolic memory addressing specifies the memory
address that contains the operand. A symbolic memory address is written as an expression preceded
by an at sign (@). The following are coding examples of instructions having symbolic memory

addresses:
S @TABLE1,@LIST4 Subtract the contents of the word at location TABLE1

from the contents of the word at location LIST4, and
place the remainder in the word at location LIST4.

C RO,@STORE Compare the contents of workspace register 0 with
the contents of the word at location STORE.
MOV @12,@>7C Copy the word at address 000C, ¢ into location 007C, .
NOTE

When using SDSMAC, symbols previously defined as having
relocatable values or values greater than 15 need not have the ‘@.

3.2.4 INDEXED MEMORY ADDRESSING. Indexed memory addressing specifies the memory
address that contains the operand. The address is the sum of the contents of a workspace register
and a symbolic address. An indexed memory address is written as an expression preceded by an at

Texas /nstruments Incorporated

[e]
%@ 943441-9701

sign _and followed by a term enclosed in parentheses. The workspace register specified by the term
within the parentheses is the index register. Workspace register O may not be specified as an index
register. the following are examples of coding of instructions having indexed memory addresses:

A @2(R7),R6 Add the contents of the word at the address computed
by adding the contents of workspace register 7 and
2 to the contents of workspace register 6, and place
the sum in workspace register 6.

MOV R7,@LIST4-6(R5) Copy the contents of workspace register 7 into a
word of memory. The address of the word of memory
is the sum of the contents of workspace register 5
and the value of symbol LIST4 minus 6.

3.2.5 WORKSPACE REGISTER INDIRECT AUTO-INCREMENT ADDRESSING. Workspace
register indirect auto-increment addressing specifies a workspace register that contains the address
of the operand. After the address is obtained from the workspace register, the workspace register
is incremented by 1 for a byte instruction or by 2 for a word instruction. The workspace register
increment is one for byte operations and two for word operations. A workspace register auto-
increment address is written as a term preceded by an asterisk and followed by a plus sign (+).
The following are coding examples of instructions having workspace register indirect auto-increment

addresses:

S *R3+,R2 Subtract the contents of the word at the address in
workspace register 3 from the contents of workspace
register 2, place the result in workspace register
2, and increment the address in workspace register
3 by two.

C RS5,*Ré6+ Compare the contents of workspace register 5 with

the contents of the word at the address in workspace
register 6, and increment the address in workspace
register 6 by two.

3.3 PROGRAM COUNTER RELATIVE ADDRESSING

Program counter relative addressing is used by the jump instructions. A program counter relative
address is written as an expression that corresponds to an address at a word boundary. The
assembler evaluates the expression and subtracts the sum of the current location plus two.
One-half of the difference is the value that is placed in the object code. This value must be in
the range of -128 through +127. When the instruction is in relocatable code (that is, when the
location counter is relocatable), the relocation type of the evaluated expression must match the
relocation type of the current location counter. When the instruction is in absolute code, the
expression must be absolute. The following example shows a program counter relative address:

JMP THERE Jumps unconditionally to location THERE.

3.4 CRU BIT ADDRESSING

The CRU bit instructions use a well-defined expression that represents a displacement from the
CRU base address (bits 3 through 14 of workspace register 12). The displacement, in the range
of -128 through +127, is added algebraically to the base address in workspace register 12. The
following are examples of CRU bit instructions having CRU bit addresses:

SBO 8 Sets CRU bit to one at the CRU address 8 greater
than the CRU base address. If workspace register
12 contained 0020,,, CRU bit 24 would be set
by this instruction. (24 = (20,4 /2) + 8)

33 Texas Instruments Incorporated

o
@@ 9434419701

SBZ DTR Sets CRU bit to zero. Assuming that DTR has the
.value 10, and workspace register 12 contains 0040, ,
the instruction sets bit 42 to zero. (42 = (40,4/2) + 10)

3.5 IMMEDIATE ADDRESSING

Immediate instructions use the contents of the word following the instruction word as an
operand of the instruction. The immediate value is an expression, and the value of the expression
is placed in the word following the instruction by the assembler. Those immediate instructions
‘that require two operands have a workspace register address preceding the immediate value. The
following are examples of coding immediate instructions:

LIMI 5 Places 5 in the interrupt mask, enabling interrupt
levels O through 5.
LI R5,>1000 Places 1000, ¢ into workspace register 5.
NOTE

When using SDSMAC, an @ sign may proceed an immediate
operand.

3.6 ADDRESSING SUMMARY

Table 3-2 shows the addressing required for each instruction of the Model 990/TMS 9900
instruction set. The first column lists the instruction mnemonics, and the second column lists the
effectivity of the instruction. This column contains A for those instructions that apply to.the
Model 990/TMS 9900, and C for those instructions that apply to the Model 990 but not to the
TMS 9900. The column contains M for those instructions that apply only to the Model 990
Computers with mapping option. The third and fourth columns specify the required address,
as follows:

® G - General address:
Workspace register address
Indirect workspace register address
Symbolic memory address
Indexed memory address
Indirect workspace register auto-increment address
® WR - Workspace register address
® PC - Program counter relative address
® CRU - CRU bit address

] I - Immediate value

* - The address into which the result is placed, when two operands are required.

3.4 Texas Instruments Incorporated

943441-9701

Table 3-2. Instruction Addressing

First Second First Second

Mnemonic Eff. Operand Operand Mnemonic Eff. Operand Operand

A A G G* LDCR A G Note 1

AB A G G* LDD M G —

ABS A G — LDS M G —

Al A WR* I LI A WR* I

ANDI A WR* I LIMI A I —

B A G — LMF M WR* Note 2

BL A G — LREX C — —

BLWP A G — LWPI A I —

C A G G MOV A G G*

CB A G G MOVB A G G*

CI A WR I MPY A G WR*

CKOF C - — NEG A G —

CKON C - — ORI A WR* I

CLR A G — RSET C — —

CcOoC A G WR RTWP A - -

CZC A G WR S A G G*

DEC A G - SB A G G*

DECT A G — SBO A CRU —

DIV A G . WR* SBZ A CRU —

IDLE C — — SETO A G -

INC A G — SLA A WR* Note 3

INCT A G — SOC A G G*

INV A G — SOCB A G G*

JEQ A PC — SRA A WR* Note 3

JGT A PC —. SRC A WR* Note 3

JH A PC — SRL A WR* Note 3

JHE A PC — STCR A G* Note 1

JL A PC - STST A WR —

JLE A PC — STWP A WR _

JLT A PC — SWPB A G _

JMP A PC - SZC A G G*

INC A PC - SZCB A G G*

JNE A PC — TB A CRU _

JNO A PC — X A G _

Joc A PC — Xop A G Note 4

JOp A PC — XOR A G WR*
Notes:

1. The second operand is the number of bits to be transferred, 0-15, 0 = 16 bits.
2. The second operand specifies a memory map file, O or 1.

3. The second operand is the shift count, 0 - 15. 0 means count is in bits 12 - 15 of workspace
register 0. When count = 0 and bits 12 - 15 of workspace register 0 = 0, count is 16.

4. Second operand specifies the extended operation, 0 - 15. Disposition of result may or may
not be in the first operand address, determined by the user.

3-5 Texas Instruments Incorporated

o
Q]@ 943441-9701

3.7 ADDRESSING FORMATS '
The required addressing previously described relates to the ten addressing formats of the Model
990 Computer/TMS 9900 Microprocessor. These formats are shown and described in the follow-

ing paragraphs.

3.7.1 FORMAT I - TWO ADDRESS INSTRUCTIONS. The operand field of Format I instruc-
tions contains two general addresses separated by a comma. The first address is the source
address; the second is the destination address. The following mnemonic operation codes use

Format I.
A MOV SOC
AB MOVB SOCB
C S SZC
CB SB SZCB

The following example shows a source statement for a Format I instruction:

SUM A @LABELI1,*R7 Adds the contents of the word at location LABELL1 to
the contents of the word at the address in workspace
register 7, and places the sum in the word at the
address in workspace register 7. SUM is the location
in which the instruction is placed.

The assembler assembles Format I instructions as follows:

o t 2 3 4 5 6 7 8 9 10 1112 13 14 15
L T 1 1 T T T 1

OP CODE | B| Ty D Ts s

The bit fields are:

® Op Code - Three bits that define the machine operation.

® B - Byte indicator, 1 for byte instructions, 0 for word instructions.

® T, - Addressing mode (table 3;1) for destination.

® D - Destination workspace register.

® T, - Addressing mode (table 3-1) for source.

® S - Source workspace register.
When T, or T, is equal to 10,, the instruction occupies two words of memory, and the second
word contains a memory address used with S or D, respectively, in developing the effective
address. When both T, and T, are equal to 10,, the instruction occupies three words of

memory. The second word contains the memory address for the source operand, and the third
word contains the memory address for the destination operand.

36 Texas Instruments Incorporated

[e]
% 943441-9701

3.7.2 FORMAT II - JUMP INSTRUCTIONS. Format II instructions use program counter relative
addresses which are coded as expressions that correspond to instruction locations on word
boundaries. The following mnemonic operation codes are Format II jump instructions:

JEQ JLE JNE
JGT JLT INO
JH JMP JOC
JHE INC JOP
JL

The following is an example of a source statement for a Format II jump instruction:

NOW JMP @BEGIN Jumps unconditionally to the instruction at location
BEGIN. The address of location BEGIN must not be
greater than the address of location NOW by more
than 127 words, nor less than the address of location
NOW by more than 128 words.

The assemblers assemble Format II instructions as follows:

0O 1 2 3 4 5 6 7 8 9 10 1112 13 14 15
T T T T T 1 T T T T T]
OP CODE DISPLACEMENT

The bit fields are:
® Op Code - Eight bits that define the machine operation.
® Displacement - Signed displacement value.

The signed displacement value is shifted one bit position to the left and added to the contents of
the PC after the PC has been incremented to the address of the following instruction. In other
words, it is a displacement in words from the sum of the instruction address plus two.

3.7.3 FORMAT II - BIT I/O INSTRUCTIONS. The operand field of Format II CRU bit I/O
instructions contains a well-defined expression. It is a CRU bit address, relative to the contents
-of workspace register 12. The following mnemonic operation codes are Format II CRU bit I/O
instructions:

SBO SBZ TB
The following example shows a source statement for a Format II CRU bit I/O instruction:

SBO 5 Sets a CRU bit to one. If workspace register 12 contains
10,4, CRU bit 13 is set by this instruction.

37 Texas Instruments Incorporated

[e]
J@} 943441-9701

The format assembled for Format II instructions is shown and described in the preceding
paragraph. For CRU bit instructions the signed displacement is shifted one bit position to the
left and added to the contents of workspace register 12. In other words, it is a displacement in
bits from the contents of bits 3 through 14 of workspace register 12.

3.7.4 FORMAT III - LOGICAL INSTRUCTIONS. The operand field of Format III instructions
contains a general address followed by a comma and a workspace register address. The general
address is the source address, and the workspace register address is the destination address. The
following mnemonic operation codes use Format III:

CoC CzZC XOR

The following example shows a source statement for a Format III instruction:

COMP XOR @LABELS8(R3),RS Perform an exclusive OR operation of the contents
: of a memory word and the contents of workspace
register 5, and place the result in workspace
register 5. The address of the memory word is
the sum of the contents of workspace register 3
and the value of symbol LABELS.

The assemblers assemble Format III instructions as follows:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
I LI T I T LI} LB LI
OP CODE D Ts S

The bit fields are:
® Op Code - Six bits that define the machine operation.
® D - Destination workspace register.
® T, - Addressing mode (table 3-1) for source.
® S - Source workspace register.

When T, is equal to 10,, the instruction occupies two words of memory. The second word
contains the memory address for the source operand.

3.7.5 FORMAT IV - CRU INSTRUCTIONS. The operand field of Format IV instructions
contains a general address followed by a comma and a well defined expression. The general address
is the memory address from which or into which bits will be transferred. The CRU address for the
transfer is the contents of bits 3 through 14 of workspace register 12. The term is the number of
bits to be transferred, a value of 0 through 15 (a O value transfers 16 bits). For 8 or fewer bits the
effective address is a byte address. For 9 or more bits the effective address is a word address. The
following mnemonic operation codes use Format IV:

LDCR - STCR

3.8 Texas Instruments Incorporated

o
{@ 43441.9701

The following example shows a source statement for a Format IV instruction:

LDCR *R6+,8 Place 8 bits from the byte of memory at the address
in workspace register 6 into eight consecutive CRU

lines at the CRU base address in workspace register
12.

The assemblers assemble Format IV instructions as follows:

0 1t 2 3 4 5 6 7 8 9 10 1112 13 14 15
T T T | I T T 1
OP CODE c Ts s

The bit fields are:
® Op Code - Six bits that define the machine operation.
® C - Four bits that contain the bit count.
® T, - Addressing mode (table 3-1) for source.
® S - Source workspace register.

When T, is equal to 10,, the instruction occupies two words of memory. The second word
contains the memory address for the source operand.

3.7.6 FORMAT V - REGISTER SHIFT INSTRUCTIONS. The operand field of Format V
instructions contains a workspace register address followed by a comma and a well defined
expression. The contents of the workspace register are shifted a number of bit positions specified by
the term. When the term equals zero, the shift count must be placed in bits 12-15 of workspace
register 0. The following mnemonic operation codes use Format V:

SLA SRC SRL SRA
The following example shows a source statement for a Format V instruction:
SLA R64 Shift contents of workspace register 6 to the
left 4 bit positions, replacing the vacated bits
with zero.

The assemblers assemble Format V instructions as follows:

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
| | l ! | 1 l ! I L
OP CODE c w

The bit fields are:
® Op Code - Eight bits that define the machine operation.
® C - Four bits that contain the shift count.

® W - Workspace register to be shifted.

3.9 Texas Instruments Incorporated

o
@ 9434419701

3.7.7 FORMAT VI - SINGLE ADDRESS INSTRUCTIONS. The operand field of Format VI
instructions contains a general address. The following mnemonic operation codes use Format VI:

ABS CLR INCT NEG
B DEC INV SETO
BL DECT LDD SWPB
BLWP INC LDS X

The following example shows a source statement for a Format VI instruction:

CNT INC R7 Adds one to the contents of workspace register 7,
and places the sum in workspace register 7. CNT is
the location into which the instruction is placed.

The assemblers assemble Format VI instructions as follows:

0 1t 2 3 4 5 6 7 8 9 10 1112 1314 15
1 1T T T T T 711 T T T 1
OP CODE Ts s

The bit fields are:
® Op Code - Ten bits that define the machine operation.
® T, - Addressing mode (table 3-1) for source.
® S - Source workspace register.

When T, is equal to 10,, the instruction occupies two words of memory. The second word
contains the memory address for the source operand.

3.7.8 FORMAT VII - CONTROL INSTRUCTIONS. Format VII 1nstruct10ns require no operand
field. The following operation codes use Format VII:

CKOF IDLE RSET
CKON LREX RTWP
The following example shows a source statement for a Format VII instruction:

RTWP Returns control to the calling program, and restores
the context of the calling program by placing the
contents of workspace registers 13, 14, and 15 into
the WP register, the PC, and the ST register.

The assemblers assemble Format VII instructions as follows:

(o] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T T T T T ™1 1T

OP CODE ojoi}jo of o

3-10 Texas Instruments Incorporated

[e]
{@ 9434419701

The Op Code field contains eleven bits that define the machine operation. The five least
significant bits are zeros.

3.7.9 FORMAT VIII - IMMEDIATE INSTRUCTIONS. The operand field of Format VIII
instructions contains a workspace register address followed by a comma and an expression. The

workspace register is the destination address, and the expression is the immediate operand. The
following mnemonic operation codes use Format VIII:

Al CI ORI

ANDI LI
There are two additional Format VIII instructions that require only an expression in the operand
field. The expression is the immediate operand. The destination is implied in the name of the
instruction. The following mnemonic operation codes use this modified Format VIII:

LIMI LWPI
Another modification of Format VIII requires only a workspace register address in the operand
field. The workspace register address is the destination. The source is implied in the name of the
instruction. The following mnemonic operation codes use this modified Format VIII:

STST STWP

The following are examples of source statement for Format VIII instructions:

ANDI 4,>000F Perform an AND operation on the contents
of workspace register 4 and immediate operand
000F ¢ .

LWPI WRK1 Place the address defined for the symbol WRK

into the WP register.

STWP R4 Place the contents of the WP register into
workspace register 4.

The assemblers assemble Format VIII instructions as follows:

(o] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
! { Ll I T 1 I I I 1 I Al 1

OP CODE ol o w

The bit fields are:

® Op Code - Eleven bits that define the machine operation.
® W - Workspace register operand.

A zero bit separates the two fields. The instructions that have no workspace register operand
place zeros in the W field. The instructions that have immediate operands place the operands in
the word following the word that contains the Op Code; i.e., these instructions occupy two
words each.

3-11 Texas Instruments Incorporated

o
% 943441-9701

3.7.10 FORMAT IX - EXTENDED OPERATION INSTRUCTION. The operand field of a
Format IX Extended Operation instruction contains a general address and a well defined expression.
The general address is the address of the operand for the extended operation. The term specifies the
extended operation to be performed and must be in the range of 0 to 15. The mnemonic operation

code is XOP.
The following example shows a source statement for a Format IX Extended Operation
instruction:

XOP @LABEL(R4),12 Perform extended operation 12 using the address

computed by adding the value of symbol LABEL
to the contents of workspace register 4.

The assemblers assemble Format IX instructions as follows:

O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T T T T | I T 1 1
OP CODE D Ts s

The bit fields are:
® Op Code - Six bits that define the machine operation.
® D - Four bits that define the extended operation.
® T, - Addressing mode (table 3-1) for source.
® S - Source workspace register.

When T, is equal to 10,, the instruction occupies two words of memory. The second word
contains the memory address for the source operand.

3.7.11 FORMAT IX - MULTIPLY AND DIVIDE INSTRUCTIONS. The operand field of
Format IX Multiply and Divide instructions contains a general address followed by a comma and
a workspace register address. The general address is the address of the multiplier or divisor, and
the workspace register address is the address of the workspace register that contains the
multiplicand or dividend. The workspace register address is also the address of the first of two
workspace registers to contain the result. The mnemonic operation codes are MPY and DIV.

The following example shows a source statement for a Format IX Multiply instruction:

MPY @ACC,R9 Multiply the contents of workspace register
9 by the contents of the word at location
.ACC, and place the product in workspace
registers 9 and 10, with the 16 least
significant bits of the product in workspace
register 10.

The assembler assembles Multiply and Divide instructions similarly to the format shown in the
preceding paragraph, except that the D field contains the workspace register operand.

3-12 Texas [nstruments Incorporated

o
(_r@@ 9434419701

3.7.12 FORMAT X - MEMORY MAP FILE INSTRUCTION. This format applies only to the
Model 990 Computer with map option. The operand field of a Format X Memory Map File in-
struction contains a workspace register address followed by a comma and a well defined expression
~which evaluates to either a 0 or a 1. The workspace register address specifies a workspace register
that contains the address of a six-word area of memory that contains the map file data. The term
specifies the map file into which the data is to be loaded. The mnemonic operation code is LMF.

The following example shows a source statement for a Format X Memory Map File instruction:
LMF R4,0 Load memory map file 0 with the six-word
area of memory at the address in workspace

register 4.

The assembler assembles a Format X instruction as follows:

o {t 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T T vV 7 "1 1 1 T L

OP CODE M w

The bit fields are:
® Op Code - Eleven bits that define the machine operation.
® M - A single bit that specifies a memory map file, O or 1.
® W - Workspace register operand.
3.8 INSTRUCTION DESCRIPTIONS
The instruction descriptions in the following paragraphs are divided into the following functional
categories:
® Arithmetic Instructions
® Branch Instructions
® Compare Instructions
® Control and CRU Instructions
® Load and Move Instructions
® Logical Instructions
® Shift Instructions

® Extended Operation Instruction

® Long Distance Addressing Instructions

3-13 Texas Instruments Incorporated

o
Y,@f’) 9434419701

The syntax definition for each instruction is shown, using the conventions described in a
previous paragraph. The generic names used in these definitions are: ,

® ga - General address of source operand

® ga,; - General address of destination operand

® wa - Workspace register address

® iop - Immediate operand

® way, - Destination workspace register address

® disp - Displacement of CRU lines from the CRU base register
® exp - Expression that represents an instruction location.

® cnt - Count of bits for CRU transfer‘

® m - Memory map file

® scnt - Shift count

® op - Number (0-15) of extended operation

Source statements that contain machine instructions use the label field, the operation field, the
operand field, and the comment field. Use of the label field is optional for machine instructions.
When the label field is used, the label is assigned the address of the machine instruction. The
assembler advances the location to a word boundary (even address) before assembling a machine
instruction. The operation (opcode) field contains the mnemonic operation code of the
instruction. The contents of the operand field is defined for each instruction. The use of the
comment field is optional. When the comment field is used, it may contain any ASCII character,
including blank, and has no effect on the assembly process other than to be printed in the
listing.

A description of the operation of the instruction follows the syntax definition. The status bits
affected by the instruction are listed. In the execution results, the following conventions are
used:

e () Indicates “the contents of”’

® —Indicates “replaces”

e |lIndicates the absolute value

The generic names used in the syntax definitions are also used in the execution results.

Application notes are included, referring to a fuller explanation in the programming examples
paragraphs as appropriate.

The Op Code given for each instruction is a four hexadecimal digit number corresponding to an
instruction word in which the address fields contain zeros. Next is the addressing mode. The
instruction formats show the machine language form of the instruction, and use the terminology
previously defined for the addressing formats. :

3-14 Texas Instruments Incorporated

o
{—@@ 9434419701

3.9 ARITHMETIC INSTRUCTIONS
The arithmetic instructions are described in the following paragraphs. The instructions are:

Instruction Mnemonic Paragraph
Add Words A 3.10
Add Bytes AB 3.11
Absolute Value ABS 3.21
Add Immediate Al 3.12
Decrement DEC 3.19
Decrement by Two DECT 3.20
Divide DIV 3.16
Increment INC 3.17
Increment by Two INCT 3.18
Multiply MPY 3.15
Negate NEG 3.22
Subtract Words S 3.13
Subtract Bytes SB 3.14

3.10 ADD WORDS A
Op Code: A000

Addressing mode: Format I

Format:

o 1 2 3,4 5 6 738 9 10 11]12 13 14 15
T LA B T T 1 1
tJol1]o] T4 D s s

Syntax definition:

[<label>]b ... Ab...<ga ><gay >b...[<comment>]
Example:

LABEL A @ADDRI(R2),@ADDR2(R3)

Definition: Add a copy of the source operand (word) to the destination operand (word) and
replace the destination operand with the sum. The AU compares the sum to zero and sets/resets

3-15 Texas Instruments Incorporated

[e]
@ 943441-9701

the status bits to indicate the result of the comparison. When there is a carry out of bit zero, the
carry status bit sets. When there is an overflow (the sum cannot be represented as a 16-bit, two’s
complement value), the overflow status bit sets.

Status bits affected: Logical greater than, arithmetic greater than, equal, carry, and overflow.

(0] 1 2 3 4 5 6 7 8 9 tO0 11 12 13 14 15

T
w>{a>|eal ¢ lov]or / INTERRUPT
x |Pr |MF /7/// TERRL

A A AAA

Execution results: (gay) + (gaq) > (gaq)

Application notes: A is used to add signed integer words. For example, if the address labeled
TABLE contains 3124, and workspace register 5 contains 8,¢, then the instruction

A S5,@TABLE

results in the contents of TABLE changing to 312C,4 and the contents of workspace register 5
not changing. The logical and arithmetic greater than status bits set and the equal, carry, and
overflow status bits reset.

3.11 ADD BYTES AB
Op Code: BO0O

Addressing mode: Format I
Format:

{8 9 10 11§12 13 14 15
| T T 1
1ol 11| T D Ts s

Syntax definition:
[abel>]b ... ABb ... <ga,><ga;>b ... [<comment>]
Example:

LABEL AB 3,2

Definition: Add a copy of the source operand (byte) to the destination operand (byte), and
replace the destination operand with the sum. When the destination operand is addressed in the
workspace register mode, only the leftmost byte (bits 0-7) of the addressed workspace register is
used. The AU compares the sum to zero and sets/resets the status bits to indicate the
results of the comparison. When there is a carry out of the most significant bit of the byte, the
carry status bit sets. When there is an overflow (the sum cannot be represented within a byte as
an 8-bit two’s complement value), the overflow status bit sets. The odd parity bit sets when the
bits in the sum (destination operand) establish odd parity and resets when the bits in the sum
establish even parity.

Status bits affected: Logical greater than, arithmetic greater than, equal, carry, overflow and odd
parity.

3-16 Texas Instruments Incorporated

o
@ 943441-9701

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1,]
> A>ea| ¢ |ov]|opP| x |PR |MF ///l// 'NﬁzggPT

A A A A A

Execution results: (gay) + (gagq) ~ (gaq)

Application notes: AB is used to add signed integer bytes. For example, 'if the contents of
workspace register 3 is 7400,¢, the contents of memory location 2122,, is F318,4, and the
contents of workspace 2 is 2123,¢, then the instruction

AB 3,%2+

changes the contents of memory location 2122 ,s to F38C 4 and the contents of workspgce
register 2 to 2124,,, while the contents of workspace register 3 remain gnchanged. The logical
greater than, overflow, and odd parity status bits set, while the arithmetic greater than, equal,

and carry status bits reset.

3.12 ADD IMMEDIATE Al
Op Code: 0220

Addressing mode: Format VIII

Format:

[0) 1 2 314 5 6 7 8 9 10 11312 13 14 15
L T I
ojofo ojojo 1 ojo}o 1 o] w

Syntax definition:

[<label>]b ... Alb ... <wa><iop>b ... [<comment>]

Example:

LABEL AI 2,7 ADD 7 TO THE CONTENTS OF WSR2

Definition: Add a copy of the immediate operand, the contents of the word following the
instruction word in memory, to the contents of the workspace register specified in the W field
and replace the contents of the workspace register with the results. The AU compares the sum to
zero and sets/resets the status bits to indicate the result of the comparison. When there is a carry
out of bit zero, the carry status bit sets. When there is an overflow (the result cannot be
represented within a word as a two’s complement value), the overflow status bit sets.

Status bits affected: Logical greater than, arithmetic greater than, equal, carry, and overflow.

0 1 2 3 4 5 6 7 8 9 10 11 121314 15

T LI 1
L>IA>lEQ| C jov |oP| X |PR MF7 INTERRUPT
MASK

AAAANA

3-17 Texas Instruments Incorporated

(e}
%@ 943441-9701

Execution results: (wa) + iop - (wa)

Application notes: Use the Al instruction to add an immediate value to the contents of a
workspace register. For example, if workspace register 6 contains a zero, then the instruction

Al 6,>C

changes the contents of workspace register 6 to 000C;¢. The logical greater than and arithmetic
greater than status bits set while the equal, carry, and overflow status bits reset.

3.13 SUBTRACT WORDS S
Op Code: 6000
Addressing mode: Format I

Format:

8 9 10 11,12 13 14 15

T J I 1 1
Ts S

(o]

-

-

o
gl
O =

Syntax definition:

[<label>]v ...Sb...<ga>,<ga;>b ... [<comment>]

Example:

LABEL S 2,3 SUBTRACT THE CONTENTS OF WR2 FROM THE CONTENTS
OF WR3

Definition: Subtract a copy of the source operand from the destination operand and place the
difference in the destination operand. The AU compares the difference to zero and sets/resets
the status bits to indicate the result of the comparison. When there is a carry out of bit zero, the
carry status bit sets. When there is an overflow (the difference cannot be represented within a
word as a two’s complement value), the overflow status bit sets. The source operand remains
unchanged.

Status bits affected: Logical greater than, arithmetic greater than, equal, carry, and overflow.

10 11 12 13 1415

9
f 1 1 1
L>lA>lEQ| c | ovlor| x |PR|MF / 'Nﬁfgy""'

AA AAA

3-18 Texas Instruments Incorporated

[e]
{l@ 943441-9701

Execution results: (gay) - (gag) ~> (gaq)
Application notes: Use the S instruction to subtract signed integer values. For example, if
memory location OLDVAL contains a value of 1225, and memory location NEWVAL contains
a value of 8223,¢, then the instruction

S @OLDVAL,@NEWVAL

results in the contents of NEWVAL changing to 6FFE,,. The logical greater than, arithmetic
greater than, carry, and overflow status bits set while the equal status bit resets.

3.14 SUBTRACT BYTES SB

Op Code: 7000
Addressing mode: Format I

Format:

18 9 10 11312 13 14 15
I v ! I | r 1T T
D S

Syntax definitions:

[<abel>]b ...SBb...<ga,><ga,>b ... [<comment>]

Example:

LABEL SB 2,3 SUBTRACT THE LEFTMOST BYTE OF WSR2 FROM THE
LEFTMOST BYTE OF WSR3

Definition: Subtract a copy of the source operand (byte) from the destination operand (byte)
and replace the destination operand byte with the difference. When the destination operand byte
is addressed in the workspace register mode, only the leftmost byte (bits 0-7) in the workspace
register is used. The AU compares the result byte to zero and sets/resets the status bits
accordingly. When there is a carry out of the most significant bit of the byte, the carry status bit
sets. When there is an overflow (the difference cannot be represented as an 8-bit, two’s
complement value in a byte), the overflow status bit sets. If the result byte establishes odd
parity (an odd number of logic one bits in the byte), the odd parity status bit sets.

Status bits affected: Logical greater than, arithmetic greater than, equal, carry, overflow, and odd
parity.

o1 .2 3 4 5 6 7 8 9 10 11 12 13 14 15

7 1 1
L> INTERRUPT
A>lea|c |ov|or]| X |PR |MF //,///A Hy v

AAAAAA

3-19 Texas Instruments Incorporated

[e]
(_‘—@@ 943441-9701

Execution results: (gay) - (ga,) > (ga4)

Application notes: Use the SB instruction to subtract signed integer bytes. For example, if
workspace register 6 contains the value 121C,;4, memory location 121C;4 contains the value
2331,¢, and workspace register 1 contains the value 1344,,, then the instruction

SB *6+,1
results in the contents of workspace register 6 changing to 121D;¢ and the contents of

workspace register 1 changing to F044,¢. The logical greater than status bit sets while the other
status bits affected by this instruction reset.

3.15 MULTIPLY MPY
Op Code: 3800
Addressing mode: Format IX

Format:

8 9 10 11412 13 14 15
| I T T T
D TS s

Syntax definition:
[<label>]b ... MPYb ... <ga,><way>b ... [<comment>]
Example:

LABEL MPY @ADDR, 3 MULTIPLY (WSR3) BY (ADDR). THE RESULT IS
RIGHT JUSTIFIED IN THE 32-BITS OF WSR3, WSR4.

Definition: Multiply the first word in the destination operand (a consecutive 2-word area in
workspace) by a copy of the source operand and replace the 2-word destination operand with the

the result. The multiplication operation may be graphically represented as follows:

Destination operand workspace registers

WORKSPACE REGISTER (n) WORKSPACE REGISTER (n+1)
(o] 15}]0 15

E—MULTIPLICAND————l
> PRODUCT

X

Source operand
SOURCE OPERAND
ADDRESSABLE MEMORY

(o] 15

‘1——— MULTIPLIER ———————#

3-20 Texas Instruments Incorporated

o
{@’P 943441-9701

The first word of the destination operand shown above is addressed by the contents of the D
field. This word contains the multiplicand (unsigned magnitude value of 16 bits) right-justified
in the workspace register (represented by workspace n above). The 16-bit, unsigned multiplier
is located in the source operand. When the multiplication operation is complete, the product
appears, right-justified in the entire 2-word area addressed by the D field as a 32-bit unsigned
magnitude value. The maximum value of either input operand is FFFF,¢ and the maximum value
of the unsigned product is (168 - 2(16*) + 1) or FFFEQ001 .

If the destination operand is specified as workspace register 15, the first word of the destination
operand is workspace register 15 and the second word of the destination operand is the memory
word immediately following the workspace memory area.

Status bits affected: None

0>1 2 3 4 5 6 7 8 9 10 t1 12 13 14 15

[/ T 1 T
L>|A>|eQ| c |ov |oP| X | PR|MF //,//'/A 'NLEA'\QSR&JPT

Execution results: (gay) * (way). The product (32-bit magnitude) is placed in way and way + 1,
with the most significant half in wag.

Application notes: Use the MPY instruction to perform a magnitude multiplication. For example,
if workspace register 5 contains 001216, workspace register 6 contains 1B3116, and memory
location NEW contains 000516, then the instruction

MPY @NEW,S

changes the contents of workspace register 5 to 000016 and workspace register 6 to 005A 16.
The source operand is unchanged. The status register is not affected by this instruction.

3.16 DIVIDE DIV
Op Code: 3C00
Addressing mode: Format IX

Format:

8 9 101112 13 14 15
1 1 1 I 1 j 1
D Ts S

Syntax definition:
[<label>]b ...DIVb ... <ga,><way>b ... [<comment>]
Example:

LABEL DIV @ADDR(2),3 DIVIDE (WSR3, WSR4) BY (ADDR+(WSR2)) AND
STORE THE INTEGER RESULT IN WSR3 WITH THE
REMAINDER IN WSR4.

3-21 Texas /nstruments [ncorporated

943441-9701

Definition: Divide the destination operand (a consecutive 2-word area of workspace) by a copy
of the source opérand (one word), using integer rules, and place the quotient in the first of the
2-word destination operand area and place the remainder in the second word of that same area.
This division is graphically represented as follows:

Destination operand workspace registers

WORKSPACE REGISTER (n) WORKSPACE REGISTER (n+1)
0 15}o 15
[&————————— RESULTING o} E N
UOTTENT i RESULTING REMAINDER ————
DIVIDEND

Source operand
ADDRESSABLE MEMORY

(0] 15

L DIVISOR ——————n

The first of the destination operand workspace registers, shown above, is addressed by the
contents of the D field. The dividend is located right-justified in this 2-word area. When the
division is complete, the quotient (result) is placed in the first workspace register of the
destination operand (represented by n above) and the remainder is placed in the second word of
the destination operand (represented by n+1 above).

When the source operand is greater than the first word of the destination operand, normal
division occurs. If the source operand is less than or equal to the first word of the destination
operand, normal division will result in a quotient that cannot be represented in a 16-bit word. In
this case, the AU sets the overflow status bit, leaves the destination operand unchanged, and
aborts the division operation.

If the destination operand is specified as workspace register 15, the first word of the destination
operand is workspace register 15 and the second word of the destination operand is the word in
memory immediately following the workspace area.

Status bits affected: Overflow

(0] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 1 1
L>|A>EQ|C {OV |OP| X |PR |[MF / INTERRUPT
A MASK

Execution results: The contents of way and wiq + 1 (32-bit magnitude) are divided by the
contents of ga; and the quotient is placed in way. The remainder is placed in way + 1.

3-22 Texas Instruments Incorporated

[e]
@ 943441-9701

Application notes: Use the DIV instruction to perform a magnitude division. For example, if
workspace register 2 contains a zero and workspace register 3 contains 000C, ¢, and the contents
of LOC is 0005,,, then the instruction

DIV @LOC,2

results in a 0002, in workspace register 2 and a 0002,, in workspace register 3. The overflow
status bit resets. If workspace register 2 contained the value 0005, 4, the magnitude contained in
the destination operand would equal 327,692 and division by the value 5 would result in a
quotient of 65,538, which cannot be represented in a 16-bit word. This attempted division
would set the overflow status bit and the AU would abort the operation.

3.17 INCREMENT INC
Op Code: 0580

Addressing mode: Format VI
Format:

[0) 1 2 3144 5 6 7 8 9 10 11112 13 14 15
! LR L
oOjojojojlo}1 ol]1 1 0 Ts S

Syntax definition:

[<label>]b ...INCb ...<ga,>b ... [<comment>]

Example:

LABEL INC @ADDR(2)+ INCREMENT THE CONTENTS OF THE EFFECTIVE
LOCATION.

Definition: Add one to the source operand and replace the source operand with the result. The
AU compares the sum to zero and sets/resets the status bits to indicate the result of the
comparison. When there is a carry out of bit zero, the carry status bit sets. When there is an
overflow (the sum cannot be represented in a 16-bit, two’s complement value), the overflow
status bit sets.

Status bits affected: Logical greater than, arithmetic greater than, equal, carry, and overflow.

10 11 12 13 14 15

9

/ | 17 T
> INTERRUPT
L>|A>lea|c |ov |or| x |PR |MF A B

AAAAA

3-23 Texas Instruments Incorporated

o
%@ 9434419701

Execution results: (gag) + 1 > (gay)
Application notes: Use the INC instruction to count and index byte arrays, add a value of one
to an addressable memory location, or set flags. For example, if COUNT contains a zero, the
instruction

INC @COUNT
places a 0001, in COUNT and sets the logical greater than and arithmetic greater than status

bits, while the equal, carry, and overflow status bits reset. Refer to a subsequent paragraph for
additional application notes.

3.18 INCREMENT BY TWO INCT

Op Code: 05CO
Addressing mode: Format VI

Format:

o 1 2 3,4 5 6 7 8 9 10 11,12 13 14 15

1 LA
olojojojo]tjoft]r|1] s
Syntax definition:
[<abel>]b ...INCTb ...<ga,>b ... [<comment>]
Example:
LABEL INCT 3 ADD 2 TO THE CONTENTS OF WSR3

Definition: Add a value of two to the source operand and replace the source operand with the
sum. The AU compares the sum to zero and sets/resets the status bits to indicate the result of
the comparison. When there is a carry out of bit zero, the carry status bit sets. When there is an
overflow, (the sum cannot be represented in a 16-bit word as a two’s complement value), the
overflow status bit sets.

Status bits affected: Logical greater than, arithmetic greater than, equal, carry, and overflow.

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

| ! 1 I
L>|a>|{ea| c lov |or| x |PrR MFW / INTERRUPT

AAAAA

Execution results: (gay) + 2 > (ga,)

3-24 Texas Instruments Incorporated

[e]
@ 943441-9701

Use the INCT instruction to count and index word arrays, and add the value of two to an
addressable memory location. For example, if workspace register 5 contains the address
(210044) of the fifteenth word of an array, the instruction

INCT 5
changes workspace register 5 to 2102,¢, which points to the sixteenth word of the array. The

logical greater than and arithmetic greater than status bits are set while the equal, carry, and
overflow status bits are reset. Refer to a subsequent paragraph for additional application notes.

3.19 DECREMENT DEC
Op Code: 0600

Addressing mode: Format VI
Format:

0 1 2 3,4 5 6 7,8 9 10 11,12 13 14 15
LB 1 r 7

Syntax definition:
[<label>]b ...DECb ...<ga,>b ... [<comments>]

Example:

LABEL DEC 2 SUBTRACT 1 FROM THE CONTENTS OF WSR2

Definition: Subtract a value of one from the source operand and replace the source operand with
the result. The AU compares the result to zero and sets/resets the status bits to indicate the
result of the comparison. When there is a carry out of bit zero, the carry status bit sets. When
there is an overflow (the difference cannot be represented in a word as a two’s complement
value), the overflow status bit sets.

Status bits affected: Logical greater than, arithmetic greater than, equal, carry, and overflow.

o) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

L
L>|A>|EQ| ¢ |ov [oP| X [PR [MF INTERRUPT
A MASK

AAAAA

3-25 Texas Instruments Incorporated

[e]
(.I_%\pr 943441-9701

Execution results: (gag) - 1 - (gag)

Application notes: Use the DEC instruction to subtract a value of one from any addressable
operand. The DEC instruction is also useful in counting and indexing byte arrays. For example,
if COUNT contains a value of 1,4, then

DEC @COUNT
results in a value of zero in location COUNT and sets the equal and carry status bits while resetting
the logical greater than, arithmetic greater than, and overflow status bits. The carry bit is always

set except on transition from zero to minus one. Refer to a subsequent paragraph for additional
application notes.

3.20 DECREMENT BY TWO DECT
Op Code: 0640

Addressing mode: Format VI

Format:

0t 2 3,4 5 6 718 9 10 11,12 13 14 15
L 1 LI
ololo]JofJo]1]1]o]lo} 1] T s
Syntax definition:
[<label>]® ... DECTb ... <ga,>b ... [<comment>]
Example:
LABEL DECT @ADDR SUBTRACT 2 FROM THE CONTENTS OF ADDR

Definition: Subtract two from the source operand and replace the source operand with the
result. The AU compares the result to zero and sets/resets the status bits to indicate the result of
the comparison. When there is a carry out of bit zero, the carry status bit sets. When there is an

overflow (the result cannot be represented in a word as a two’s complement value), the overflow
status bit sets.

Status bits affected: Logical greater than, arithmetic greater than, equal, carry, and overflow.

o 1 2 3 4 5 6 7 8 9 10 11 1213 1415

| {
L>|A>|EQl c |ov|oOP] X |PR MF/ INTERRUPT
/ MASK

AAAAA

3-26 Texas Instruments Incorporated

o
@ 943441-9701

Execution results: (gay) - 2 > (ga,)
Application notes: The DECT instruction is useful in counting and indexing word arrays. Also,
use the DECT instruction to subtract a value of two from any addressable operand. For example,
if workspace register PRT (PRT equals 3) contains a value of 2C10,4, then the instruction

DECT PRT
changes the contents of workspace register 3 to 2COE,¢. The logical greater than, arithmetic

greater than and carry status bits set while the equal and overflow status bits reset. Refer to a
subsequent paragraph for additional application notes.

3.21 ABSOLUTE VALUE ABS
Op Code: 0740
Addressing mode: Format VI

Format:

(o] 1 2 3, 4 5 6 7,8 9 10 11,12 13 14 15
T Bl I I

ojojojojof1 1 1 (o} 1 Ts S

Syntax definition:

[<label>]® ... ABSb ... <ga,>b ... [<comment>]

Example:

LABEL ABS *2 REPLACE THE CONTENTS OF THE INDIRECT
ADDRESS OF WSR2 WITH ITS ABSOLUTE VALUE

Definition: Compute the absolute value of the source operand and replace the source operand
with the result. The absolute value is the two’s complement of the source operand when the sign
bit (bit zero) is equal to one. When the sign bit is equal to zero, the source operand is
unchanged. The AU compares the original source operand to zero and sets/resets the status bits
to indicate the results of the comparison.

Status bits affected: Logical greater than, arithmetic greater than, equal, and overflow.

10 11 12 13 14 15

9
777 T T 71
L>A>|EQ]| C |OV]| OP| X |PR |MF / lNIAE:SRI»?PT

A AA A

3-27 Texas Instruments Incorporated

o]
@ 9434419701

Execution results: |(gay)l ~> (gag)

Application notes: Use the ABS instruction to take the absolute value of an operand. For
example, if the third word in array LIST contains the value FF3C,s and workspace register
seven contains the value 4,4, then the instruction ‘

ABS @LIST(7)

changes the contents of the third word in array LIST to 00C4,¢. The logical greater than status
bit sets while the arithmetic greater than and equal status bits reset. The overflow bit is set if the
operand is 8000,¢ ; otherwise, it is reset. Refer to a subsequent paragraph for additional application
notes.

Multiple CPU Systems. Several 990/10 CPUs can be connected together to create a multiple CPU
systems. In these systems, the CPUs must share a common memory. Simultaneous access attempts
to memory by more than one CPU can result in a loss of data. To prevent this conflict, software
“memory busy” flags in memory can be used. When a program desires access to memory, it must
first check the flag to determine if any other program is actively using memory. If memory is not
busy, the program sets the busy flag to lock out other programs and begins its memory transfers.
When the program is finished with memory, it clears the busy flag to allow access to other programs.

However, the busy flag system is not fool proof. If two CPUs check the status of the busy flag in
successive memory cycles, each CPU proceeds as if it has exclusive access to memory. This con-
flict occurs because the first CPU does not set the flag until after the second CPU reads it. All
instructions in the 990 instruction set, except one, allow this problem to occur since they release
memory which executing the instruction (i.e., while checking the state of the busy flag). However,
the ABS instruction maintains control over memory even during execution of the instruction after
the flag has been fetched from memory. This feature prevents other programs from accessing
memory until the first program has evaluated the flag and has had a chance to change it. Therefore,
use the ABS instruction to examine memory busy flags in all memory-sharing applications.

3.22 NEGATE NEG
Op Code: 0500

Addressing mode: Format VI

Format:

O 1 2 3)4 5 6 718 9 10 11412 13 14 15
T T T 1
olojlofolol1fofl1]o]o] = s
Syntax definition:
[label>]b ... NEGbH ...<ga,>b ... [<comment>]
Example:
LABEL NEG 2 REPLACE CONTENTS OF WSR2 WITH ITS
ADDITIVE INVERSE

3-28 Texas Instruments Incorporated

943441-9701

Definition: Replace the source operand with the two’s complement of the source operand. The
AU determines the two’s complement value by inverting all bits of the source operand and
adding one to the resulting word. The AU then compares the result to zero and sets/resets the
status bits to indicate the result of the comparison.

Status bits affected: Logical greater than, arithmetic greater than, equal, and overflow.

Execution results: - (gag) - (ga,)

Application notes: Use the NEG instruction to make the contents of an addressable memory

location its additive inverse. For example, if workspace register 5 contains the value A342,,,
then the instruction

NEG 5

changes the contents of workspace register 5 to SCBE;4. The logical greater than and arithmetic
greater than status bits set while the equal status bit resets. The overflow bit is set if the operand is
8000,4 ; otherwise, it resets.

3.23 JUMP AND BRANCH INSTRUCTIONS '
Branch instructions transfer control either unconditionally, or conditionally according to the

state of one or more status bits of the status register. Table 3-3 lists the conditional branch (jump)
instructions and shows the status bit or bits tested.

Table 3-3. Status Bits Tested by Instructions

Mnemonic L> A> EQ cC 0oV opP Jump if:
JH X - X - - - IL>=1and EQ=0
JL X - X - - - L>=0and EQ=0
JHE X — X - = — L>=10rEQ=1
JLE* X — X - = - L>=00rEQ=1
JGT — X — — - - A>=1
T - X X - - - A>=0and EQ=0
JEQ — — X — - - EQ=1
INE ~ - X - - - EQ=0
Joc - - - X - - C=1
N - - - X - - c=0
INO - - - - X - oV =0
JOP — - - - - X OP=1

* JLE is a logical comparison of jump if low or equal, not the
arithmetic comparison.

For all jump instructions, a displacement of zero results in execution of the next instruction in

sequence. A displacement of -1 results in execution of the same instruction (a single-instruction
loop).

329 Texas Instruments Incorporated

943441-9701

The instructions are:

3.24 BRANCH
Op Code: 0440

Instruction

Branch

Branch and Link
Branch and Load WP
Jump if Equal

Jump if Greater Than
Jump if High or Equal
Jump if Logical High
Jump if Logical Low
Jump if Low or Equal
Jump if Less Than
Unconditional Jump
Jump if No Carry
Jump if Not Equal
Jump if No Overflow
Jump if Odd Parity
Jump On Carry
Return WP

Execute

Addressing mode: Format VI

Format:

Mnemonic

B
BL

BLWP

JEQ
IGT
JHE
JH

JL

JLE
JLT
IMP
INC
INE
INO
JOP
JoC

RTWP

8

9

10 11

Paragraph

324
3.25
3.26
3.35
3.33
3.31
3.29
3.30
332
334
3.28
3.38
3.36
3.39
3.40
3.37
3.27
341

12 13 14 15

Ts

U

T
s

Syntax definition:

[label>]b ...Bb...<ga >b ... [<comment>]

Example:

LABEL B @THERE

TRANSFER CONTROL TO LOCATION THERE

peﬁnitign.' Replace the PC contents with the source address and transfer control to the
instruction at that location.

3-30

1 exas Instruments Incorporated

o]

Status bits affected: None

(0] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1, LI
L>|A>|EQ| c |ov |OP| X |PR MF/ INTERRUPT
MASK

Execution results: ga, —~ (PC)

Application notes: Use the B instruction to transfer control to another section of code.to change
the linear flow of the program. For example, if the contents of workspace register 3 is 21CC, ¢

then the instruction
B *3

causes the word at location 21CC,s to be used as the next instruction, because this value
replaces the contents of the PC when this instruction is executed.

3.25 BRANCH AND LINK BL
Op Code: 0680

Addressing mode: Format VI

Format:
0O 1 2 3;4 5 6 7,8 9 10 1111213 14 15
T | S
ofojololo]1]1]o}l1]o] = s
Syntax definition:
[<label>]b ...BLb ...<ga,>b ... [<comment>]
Example:
LABEL BL @SUBR CALL SUBR AS A COMMON WS SUBROUTINE"

Definition: Place the source address in the program counter, place the address of the instruction
following the BL instruction (in memory) in workspace register 11, and transfer control to the
new PC contents.

Status bits affected: None

(0] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LI i
L>|A>|EQ| c | oV|OP| X |PR MFT///A 'N-‘IZAEARSRI?PT

331 Texas Instruments Incorporated

o
%@ 943441-9701

Execution results: gag ~ (PC);
(old PC) - (Workspace register 11)

Application notes: Use the BL instruction when return linkage is required. For example, if the
instruction

BL @TRAN
occurs at memory location (PC count) 04BC,¢, then this instruction has the effect of placing

memory location TRAN in the PC and placing the value 04C0,, in workspace register 11. Refer
to a subsequent paragraph for additional application notes.

3.26 BRANCH AND LOAD WORKSPACE POINTER BLWP
Op Code: 0400

Addressing mode: Format VI

Format:

0O 1 2 3,4 5 6 7,8 9 10 11412 13 14 15
0000010000T; ';r
Syntax definition:
[<label>]b ... BLWPb ...<ga,>b ... [<comment>]
Example:
LABEL BLWP @VECT BRANCH TO SUBROUTINE AT ADDRESS

(@VECT+2) AND EXECUTE CONTEXT SWITCH

Definition: Place the source operand in the WP and the word immediately following the source
operand in the PC. Place the previous contents of the WP in the new workspace register 13,
place the previous contents of the PC (address of the instruction following BLWP) in the new
workspace register 14, and place the contents of the ST register in the new workspace register
15. When all store operations are complete, the AU transfers control to the new PC.

Status bits affected: None

o 1 2 3 4 5 6 7 8 9 1011 12 13 14 15

T | I
jL>]a>leal c |ov]or| x |PR MF’V INTERRUPT
/ MASK

3-32 7exas Instruments Incorporated

o
j:@p 943441-9701

Execution results: (gag) > (WP)
(ga, +2) > (PC)
(old WP) - (Workspace register 13)
(old PC) - (Workspace register 14)
(ST) = (Workspace register 15)

Application notes: Use the BLWP instruction for linkage to subroutines, program modules, or
other programs that do not necessarily share the calling program workspace. Refer to a
subsequent paragraph for a detailed explanation and example.

3.27 RETURN WITH WORKSPACE POINTER RTWP
Op Code: 0380

Addressing mode: Format VII

Format:

6 1 -2 3)4 5 6 7,8 9 101112 13 14 15

ojojo of o] o 111 1j]ojojo}jo ojojo

Syntax definition:
[<label>]b ... RTWPbh ... [<comment>]

Example.

LABEL RTWP RETURN FROM SUBROUTINE CALLED BY BLWP

Definition: Replace the contents of the WP register with the contents of the current workspace
register 13. Replace the contents of the PC with the contents of the current workspace register
14. Replace the contents of the ST register with the contents of the current workspace register

15. The effect of this instruction is to restore the execution environment that existed prior to an
interrupt, a BLWP instruction, or an XOP instruction.

Model 990/10 Computer: In the Model 990/10 Computer with the Privileged Mode bit (bit 7)
of the ST register set to 1, only bits O through 5 of workspace register 15 are placed in bits 0
through 5 of the ST register. When bit 7 of the ST register is set to 0, the instruction places bits
0-8 and 12-15 of workspace register 15 into bits 0-8 and 12-15 of the ST register.

Model 990/4 Computer: In the Model 990/4 Computer, bits 0-7 and 12-15 of workspace register
15 are placed in bits 0-7 and 12-15 of the ST register.

Status bits affected: Restores all status bits to the value contained in workspace register 15.
0o 1t 2 3 4 5 6 7 8 9 10 11 12 1314 15

/ 1 1)
L> / INTERRUPT
A>| EQl c |ovior| x |PR|MF ////A L.

A A AAAAAAA AAA A

3-33 Texas /nstruments Incorporated

o
{—@fp 9434419701

Execution results: (Workspace register 13) > (WP)
(Workspace register 14) - (PC)
(Workspace register 15) - (ST)

Application notes: Use the RTWP instruction to restore the execution environment after the

completion of execution of an interrupt, a BLWP instruction, or an XOP instruction. Refer to a
subsequent paragraph for additional information.

3.28 UNCONDITIONAL JUMP JMP
Op Code: 1000
Addressing mode: Format II

Format:

(o] 1 2 3 4 5 6 7 8 9 10 11,412 13 14 15
T 1 1 1 LI

ojojojt1rjojojog}o DISPLACEMENT

Syntax definition:
[<label>]b ...JMPb ... <exp>b ... [<comment>]
Example:

LABEL JMP NXTLBL JUMP TO NXTLBL

Definition: Add the signed displacement in the instruction word to the PC and replace the PC
with the sum.

Status bits affected: None

0 1 2 3 4 5 6 7 8 9 10 111213 14 15
/Y /] INTERRUPT
L>A>Ea|c |ov|or|x |PR|MF A ERRU

Execution results: (PC) + Displacement - (PC)

The PC is incremented to the address of the next instruction prior to execution of an
instruction. The execution results of jump instructions refer to the PC contents after the
contents have been incremented to address the next instruction in sequence. The displacement
(in words) is shifted to the left one bit position to orient the word displacement to the word
address, and added to the PC contents.

3-34 Texas Instruments Incorporated

.

o
{@@ 043441.970

Application notes: Use the JMP instruction to transfer control to another section of the program
module.

3.29 JUMP IF LOGICAL HIGH JH
Op Code: 1B00
Addressing mode: Format II

Format:

o 1 2 314 5 6 7 8 9 10 11312 13 14 15
T T r 17T vr
o} o oj111y1o0 1 1 DISPLACEMENT

Syntax definition:
[<label>]b ...JHb ... <exp>b ... [<comment>]
Example:

LABEL JH CONT IF L> AND NOT EQ SKIP TO CONT

Definition: When the equal status bit is reset and the logical greater than status bit is set, add
the signed displacement in the instruction word to the contents of the PC and replace the PC
with the sum.

Status bits tested:

(o} 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

/ 1 T 1
L>A>lEQ| c |ov|oP| x |PR MF/ INTERRUPT
A MASK

A A

Jump if: L>=1and EQ=0
Status bits affected: None

(o] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

| 1 LI
L>|A>|EQ| C |OV|OP| X | PR{MF INTERRUPT
MASK

3-35 Texas Instruments Incorporated

[e]
ﬁ_‘@p 943441-9701

Execution results: If logical greater than bit is equal to 1 and equal bit is equal to O:
(PC) + Displacement —> (PC).

If logical greater than bit is equal to 0 or equal bit is equal to 1: (PC) > (PC).

Refer to explanation of execution in paragraph 3.28.

Application notes: Use the JH instruction to transfer control when the equal status bit is reset
and the logical status bit is set.

3.30 JUMP IF LOGICAL LOW

Op Code: 1A00

Addressing mode: Format II

JL

Format:
o 1 2 3 5 6 7,8 9 10 11,12 13 14 15
v 1t rF 1 17
olo] o ol 1] o DISPLACEMENT

Syntax definition:
[<[abel>]b ... JLb

Example:

R <exp>to ... [<comment>]

LABEL JL PREVLB

IF L> AND EQ ARE LOW, JUMP TO PREVLB

Definition: When the equal and logical greater than status bits are reset, add the signed
displacement in the instruction word to the PC contents and replace the PC with the sum.

Status bits tested:

o 1 2 4 5 6 7 8 9 10 11 12 13 14 15
/ T] I
INTERRUPT
L>|A>| EQ ov|opr| x |PR MF/| FERRY
A A
Jump if: L1>=0and EQ=0
Status bits affected: None
o 1 2 4 5 6 7 8 9 10 11 12 13 14 15
/7 /) nj-r 'R l!'T
> ERRU
> A>{EQ ov |op| x PR|MF ///// TERRL
3-36 Texas Instruments Incorporated

(o}
{f@) 943441-9701

Execution results: If logical greater than bit and equal bit are equal to 0: (PC) + Displacement ~
(PO).

If logical greater than bit is equal to 1 or equal bit is equal to 1: (PC) - (PC).
Refer to explanation of execution in paragraph 3.28.

Application notes: Use the JL instruction to transfer control when the equal and logical greater
than status bits are reset.

3.31 JUMP IF HIGH OR EQUAL JHE
Op Code: 1400

Addressing mode: -Format II

Format:

o 1 2 3344 5 6 718 9 10 11,12 13 14 15
I ! ! I | | 1
0} 0 O 1 (0] 1 o} o DISPLACEMENT

Syntax definition:
[<label>]b ... JHEb ... <exp>b ... [<comment>]
Example:
LABEL JHE LABEL LOOP HERE UNTIL EQ AND L> ARE RESET

Definition: When the equal status bit or the logical greater than status bit is set, add the signed
displacement in the instruction word to the PC and replace the contents of the PC with the sum.

Status bits tested:

0 1 2 3 4 5 6 7 8 9 to 11 12 13 14 15

T 1
L>|A>| E Cc |oVv’ R / INTERRUPT
Q op| x |Pr |MF /// TERRU

A A

Jump if: L>=1or EQ=1

Status bits affected: None

(o) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I 1 1
MF INTERRUPT
MASK

L>A>|EQ| C |OV|OP| X | PR

3-37 Texas Instruments Incorporated

o
ir@’p 943441-9701

Execution results: 1f logical greater than bit is equal to 1 or equal bit is equal to 1: (PC) +
Displacement - (PC).

If logical greater than bit and equal bit are equal to 0: (PC) - (PC).
Refer to explanation of execution in paragraph 3.28.

Application notes: Use the JHE instruction to transfer control when either the logical greater
than or equal status bit is set.

3.32 JUMP IF LOW OR EQUAL JLE
Op Code: 1200
Addressing mode: Format II

Format:

(0] 1 2 314 5 6 7,8 9 101 1,12 13 14 15
I T 1 1 1 1
ojojojt1jo (o] 1 [} DISPLACEMENT

Syntax definition:
[<label>]b ...JLEb ... <exp>b ... [<comment>]
Example:

LABEL JLE THERE JUMP TO THERE WHEN EQ=1 or L>=0

Definition: When the equal status bit is set or the logical greater than status bit is reset, add the
signed displacement in the instruction word to the contents of the PC and replace the PC with
the sum.

NOTE
JLE is not jump if less than or equal.

Status bits tested:

0 1 2 3 4 5 6 7 8 9 10 11 12 1314 15

‘ 77T T
L> A>lEQl ¢ |o / INTERRUPT
v|op| x |PR |MF ///// TERRL

A A

Jump if: 1>=0o0or EQ=1

3-38 Texas Instruments Incorporated

o
{_@? 943441-9701

Status bits affected: None

() 1 2 3 4 5 6 7 8 9 10 11 1213 14 15

| IR
L>A>lEQ | Cc |ov |oP| X |PR MF/ INTERRUPT
MASK

Execution results: If logical greater than bit is equal to 0 or equal bit is equal to 1: (PC) +
Displacement - (PC).

If logical greater than bit is equal to 1 and equal bit is equal to 0: (PC) » (PC).
Refer to explanation of execution in paragraph 3.28.

Application notes: Use the JLE instruction to transfer control when the equal status bit is set or
the logical greater than status bit is reset.

3.33 JUMP IF GREATER THAN JGT
Op Code: 1500
Addressing mode: Format II

Format:

[¢] 1 2 314 5 6 7 8 9 10 11412 13 14 15
o 1 LI | 1 f
(O3 IO T O I o1 (0] 1 DISPLACEMENT

Syntax definition:
[<label>]b ...JGTb ... <exp>b ... [<comment>]
Example:

LABEL JGT THERE JUMP TO THERE IF A>=1

Definition: When the arithmetic greater than status bit is set, add the signed displacement in the

instruction word to the PC and place the sum in the PC. Transfer control to the new PC
location.

Status bits tested:

(o) 1 2 3 4 5 6 7 8 9 10 11 1213 14 15

T T, | T
L>|A>lEQ| € lov |oP] X |PR MF7 INTERRUPT
MASK

Jump if: A>=1

3-39 Texas /nstruments Incorporated

[e]
(_'—@5} 943441-9701

Status bit affected: None

o 1 2 3 4 5 6 7 8 9 10 11 12 1314 15

| LI I
Vi

Execution results: If arithmetic greater than bit is equal to 1: (PC) + Displacement - (PC).

If arithmetic greater than bit is equal to 0: (PC) - (PC).
Refer to explanation of execution in paragraph 3.28.

Application notes: Transfers control if the arithmetic greater than status bit is set.
3.34 JUMP IF LESS THAN JLT

Op Code: 1100
Addressing mode: Format II

Format:

o 1 2 314 5 6 7,8 9 10 11,12 13 14 15

AL
ojofoj1jojojofr1 DISPLACEMENT

Syntax definition:
[<label>]b ...JLTb ... <<exp>b ...[<comment>]
Example:

LABEL JLT THERE JUMP TO THERE IF A>=0 AND EQ=0

Definition: When the equal and arithmetic greater than status bits are reset, add the signed
displacement in the instruction word to the PC and replace the PC contents with the sum.

Status bits tested.:

10 11 12 13 1415

9
/ 1 | !
INTERRUPT
L>IA>IEQ| C | OV|OP| X |PR|MF / MASK

A A

Jumpif: A>=0and EQ=0

340 Texas Instruments Incorporated

[e]
{“{\ﬁ‘f) 943441-9701

Status bits affected: None

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

/ | | |
INTERRUPT
L>/A>|eal c |ov]or| x |PrR MF//I///// R

Execution results: If arithmetic greater than bit and equal bit are equal to 0: (PC) + Displace-
ment - (PC).

If arithmetic greater than bit is equal to 1 or equal bit is equal to 1: (PC) - (PC).
Refer to explanation of execution in paragraph 3.28.

Application notes: Use the JLT instruction to transfer control when the equal and arithmetic
greater than status bits are reset.

3.35 JUMP IF EQUAL JEQ
Op Code: 1300
Addressing mode: Format II

Format:

0 1 2 3 4 5 6 7 8 9 10 1112 13 14 15
T T 1 T T 1
ololofl1]oflof 1|1 DISPLACEMENT

Syntax definition:

[<label>]b ...JEQb ... <exp>b ... [<comment>]
Example:
LABEL JEQ LOC JUMP TO LOC IF EQ=1

Definition: When the equal status bit is set, transfer control by adding the signed displacement in
the instruction word to the program counter and then place the sum in the PC to transfer
control.

Status bits tested.:

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

/ 1) 1 1
L>|A>EQ| ¢ |ov]oP| x |PR MF/ INTERRUPT
/ MASK

Jump if: EQ-=1

341 Texas Instruments Incorporated

[e]
i@ 943441-9701

Status bits affected: None

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

y | L
INTERRUPT
L>|A>|EQ] c |oVv |OoP| X | PR|MF // MASK

Execution results: 1f equal bit is equal to 1: (PC) + Displacement -~ (PC).

If equal bit is equal to 0: (PC) - (PC).
Refer to explanation of execution in paragraph 3.28.

Application notes: Use the JEQ instruction to transfer control when the equal status bit is set
and to test CRU bits.

3.36 JUMP IF NOT EQUAL JNE
Op Code: 1600
Addressing mode: Format II

Format:

0 1 2 314 5 6 7;8 9 10 11}12 13 14 15
L I L | LR
o} o oj1jo}1 110 DISPLACEMENT

Syntax definition:
[<label>]b ... JNEb ...<exp>b ... [<comment>]
Example:

LABEL JNE LOC2 JUMP TO LOC2 IF EQ=0

Definition: When the equal status bit is reset, add the signed displacement in the instruction
word to the PC and replace the PC with the sum.

Status bits tested:

(o] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

| ! LI |
L>|A>|EQ| C |OV|OP| X | PR|MF INTERRUPT
MASK

Jump if: EQ=0

3-42 Texas /nstruments Incorporated

o
J-_%\lfp 9434419701

Status bits affected: None

o] 1 2 3 4 5 6 7 8 10 11 12 13 14 15

9
/ | | | T
L>|A>|EQ|C {OoV |OP| X |PR |MF INTERRUPT
/ MASK

Execution results: If equal bit is equal to 0: (PC) + Displacement ~ (PC).

If equal bit is equal to 1: (PC) » (PC).
Refer to explanation of execution in paragraph 3.28.

Application notes: Use the JNE instruction to transfer control when the equal status bit is reset.
The JNE instruction is also useful in testing CRU bits.

3.37 JUMP ON CARRY JOC
Op Code: 1800
Addressing mode: Format II

Format:

[0) 1 2 314 5 6 7;]8 9 10 11)12 13 14 15
rr T 7 1T T
o| o o]1 1 0} o} o DISPLACEMENT

Syntax definition:
[<label>1b ...JOCb ... <exp>b ... [<comment>]
Example:

LABEL JOC PROCED IF C=1 SKIP TO PROCED

Definition: When the carry status bit is set, add the signed displacement in the instruction word
to the PC and replace the PC with the sum.

Status bits tested:

0] 1 2 3 4 5 6 7 8 9 10 11 12 1314 15

/ /// T 1 T
INTERRUPT
A MASK

L>lA>| EQ|C |OV|OP| X |PR|M

T

Jump if: C=1

343 Texas Instruments Incorporated

o
{_@2 9434419701

Status bits affected: None

(0] 1 2 3 4 5 6 7 8 10 11 12 13 14 15
LA
INTERRUPT

L>|A>|EQ|C |OV |OP| X |PR MF / MASK

Execution results: If carry bit is equal to 1: (PC) + Displacement - (PC).

If carry bit is equal to 0: (PC) - (PC).

Refer to explanation of execution in paragraph 3.28.

Application notes: Use the JOC instruction to transfer control when the carry status bit is set.
3.38 JUMP IF NO CARRY IJNC

Op Code: 1700

Addressing mode: Format II

Format:

0 1 2 314 5 6 7 8 9 10 11,412 13 14 15

, T T T 11
(o] (o] (o] 1 (o] 1 1 1 DISPLACEMENT

Syntax definition:
[<label>]b ... INCbh ... <<exp>b ... [<comment>]
Example:

LABEL JNC NONE JUMP TO NONE IF C=0

Definition: When the carry status bit is reset, add the signed displacement in the instruction
word to the PC and replace the PC with the sum.

Status bits tested:

o 1 2 3 4 5 6 7 8 111213 14 15
L>|A>lEQ|c |ov]or|x |PR MF/M'NTERRUPT

Jumpif: C=0

3-44 Texas Instruments Incorporated

o
@ 943441-9701

Status bits affected: None

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

/ ! 1 I
INTERRUPT
L>A>|EQ| C |[OV |OP| X |PR MFW/ MASK

Execution results: 1f carry bit is equal to 0: (PC) + Displacement - (PC).

If carry bit is equal to 1: (PC) - (PC).
Refer to explanation of execution in paragraph 3.28.

Application notes: Use the JNC instruction to transfer control when the carry status bit is reset.

3.39 JUMP IF NO OVERFLOW JNO
Op Code: 1900
Addressing mode: Format II

Format:

0O 1 2 3}14 5 6 7|18 9 10 11,12 13 14 15
1 T 1 1 17
olojol1}l1|ofol1 DISPLACEMENT

Syntax definition:

[<label>]b...JNOb ... <exp>b ... [<comment>]

Example:
LABEL JNO NORML JUMP TO NORML IF OV=0

Definition: When the overflow status bit is reset, add the signed displacement in the instruction
word to the PC and replace the PC with the sum.

Status bits tested:

[o] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

| | | |
L>|A>|EQ| C |OV|OP| X | PR|MF INTERRUPT
MASK

Jump if: OV=0

345 Texas /nstruments Incorporated

[e]
@ 943441-9701

Status bits affected: None

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LI
L>]A>|EQ| C |OoV |OP| X | PR |[MF INTERRUPT
’ MASK

Execution results: If overflow bit is equal to 0: (PC) + Displacement - (PC).

If overflow bit is equal to 1: (PC) - (PC).

Refer to explanation of execution in paragraph 3.28.

Application notes: Use the JNO instruction to transfer control when the overflow status bit is reset.
JNO normally transfers control during arithmetic sequences where addition, subtraction, incre-
menting, and decrementing may cause an overflow condition. JNO may also be used following an
SLA (Shift Left Arithmetic) operation. If, during the SLA execution, the sign of the workspace
register being shifted changes (+ to -, - to +), the overflow status bit sets. This feature permits
transfer, after a sign change, to error correction routines or to another functional code sequence.

3.40 JUMP IF ODD PARITY JOP
Op Code: 1C00

Addressing mode: Format II
Format:

o 1 2 3314 5 6 7,8 9 10 11112 13 14 15

1 T 1 1177
ololJo]J]1]l1]1}]olo DISPLACEMENT

Syntax definition:
[<label>]b ...JOPb ... <exp>b ... [<comment>]
Example:

LABEL JOP THERE JUMP TO THERE IF OP=1

Definition: When the odd parity status bit is set, add the signed displacement in the instruction
‘word to the PC and replace the PC with the sum.

Status bits tested.

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

/ ¥ l hj
L>{A>EQ| ¢ lov]|or]| x |PR MF/ INTERRUPT
/ MASK

A

Jump if: OP=1

346 Texas Instruments Incorporated

943441-9701

Status bits affected: None

o 1 2 3 4 5 6 7 8 9 10 11 1213 14 15

7 T 1
INTERRUPT
L>|a>|eal c |ov|opr| x |PR [MF //7/ ITERR

Execution results: If odd parity bit is equal to 1: (PC) + Displacement - (PC).

If odd parity bit is equal to 0: (PC) » (PC).
Refer to explanation of execution in paragraph 3.28.

Application notes: Use the JOP instruction to transfer control when there is odd parity.
Odd parity indicates that there is an odd number of logic one bits in the byte tested. JOP
transfers control if the byte tested contains an odd number (sum) of logic one bits. This
instruction may be used in data transmissions where the parity of the transmitted byte is
used to ensure the validity of the received character at the point of reception.

3.41 EXECUTE X
Op Code: 0480

Addressing mode: Format VI

Format:

o 1 2 3,4 5 6 78 9 10 11,12 13 14 15
! I I I
o]0 ojojop1 ojo}1 (o] Ts S

Syntax definition:
[<label>]b ... Xb ...<ga,>b ... [<comment>]

Example.

LABEL X 2 EXECUTE THE CONTENTS OF WSR2

Definition: Execute the source operand as an instruction. When the source operand is not a
single word instruction, the word or words following the execute instruction are used with the
source operand as a 2-word or 3-word instruction. The source operand, when executed as an
instruction, may affect the contents of the status register. The PC increments by either one, two,
or three words depending upon the source operand. If the executed instruction is a branch, the
branch is taken. If the executed instruction is a jump and if the conditions for a jump (i.e. the

status test indicates a jump) are satisfied, then the jump is taken relative to the location of the
X instruction.

347 Texas Instruments Incorporated

[e]
@ 943441-9701

Status bits affected: None, but substituted instruction affects status bits normally.

(o] 1 2 3 4 5 6 7 8 9 1011 12 13 14 15
| I | LR
L>|A>|EQ| C |oVv|OP| X |PR |MF INTERRUPT
MASK

Execution results: An instruction at ga, is executed instead of the X instruction.

Application notes: Use the X instruction to execute the source operand as an instruction. This is
primarily useful when the instruction to be executed is dependent upon a variable factor. Refer
to a subsequent paragraph for additional application notes.

3.42 COMPARE INSTRUCTIONS

Compare instructions have no effect other than the setting or resetting of appropriate status bits
in the status register. The compare instructions perform both arithmetic and logical comparisons.
The arithmetic comparison is of the two operands as two’s complement values and the logical
comparison is of the two operands as unsigned magnitude values. The instructions are:

Instruction Mnemonic Paragraph
Compare Words C 3.43
Compare Bytes CB 344
Compare Immediate CI 345
Compare Ones Corresponding cocC 3.46
Compare Zeros Corresponding CzZC 3.47

3.43 COMPARE WORDS C
Op Code: 8000

Addressing mode: Format I

Format:

;8 9 10 11,12 13 14 15
T LI T LI
D

L s

Syntax definition:
[<label>]b ... Cb ... <ga,><ga;>b ... [<comment>]

Example:

LABEL C 2,3 COMPARE THE CONTENTS OF WSR2 AND WSR3

348 Texas Instruments /ncorporated

o :
_‘:@ 9434419701

Definition: Compare the source operand (word) with the destination operand (word) and
set/reset the status bits to indicate the results of the comparison. The arithmetic and equal
comparisons compare the operand as signed, two’s complement values. The logical comparison
compares the two operands as unsigned, 16-bit magnitude values.

Status bits affected: Logical greater than, arithmetic greater than, and equal.

(0] 1 2 3 4 5 6 7 8 9 10 11 1213 14 15

[/ L
L>A>|E ov|oP| X | PR / INTERRUPT
ate MF ///// MASK

AA A

Execution results: (gay) : (gay)

Application notes: C compares the two operands as signed, two’s complement values and as
unsigned integers. Some examples are:

Source Destination Logical Arithmetic Equal
FFFF 0000 1 0 0
7FFF 0000 1 1 0
8000 0000 1 0 0
8000 7FFF 1 0 0
7FFF 7FFF 0 0 1
7FFF 8000 0 1 0

3.44 COMPARE BYTES CB
Op Code: 9000
Addressing mode: Format I

Format:

1 8 9 10 11§12 13 14 15
1 LIl L 1 1 1 1
D Ts S

Syntax definition:

[<label>]b ...CBb ... <ga,><gay;>b ... [<comment>]

Example:

LABEL CB 2,3 COMPARE THE LEFTMOST BYTES OF WSR2 AND
WSR3

349 7exas Instruments Incorporated

o
@ 943441-9701

Definition: Compare the source operand (byte) with the destination operand (byte) and set/reset
the status bits according to the result of the comparison. CB uses the same comparison basis as
does C. If the source operand contains an odd number of logic one bits, the odd parity status bit

sets. The operands remain unchanged. If either operand is addressed in the workspace register mode,
the byte addressed is the most significant byte.

Status bits affected: Logical greater than, arithmetic greater than, equal, and odd parity.

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

\ 7 1 T
INTERRUPT
L>A>|EQ| C |ov|oP| X |PR |MF //,//,/A MASK

AAA A

Execution results: (gay) : (gaq)

Application notes: CB compares the two operands as signed, two’s complement values or as
unsigned integers. Some examples are:

Source Destination Logical Arithmetic Equal 0dd Parity
FF 00 1 0 0 0
7F 00 1 1 0 1
80 00 1 0 0 1
80 7F 1 0 0 1
7F 7F 0 0 1 1
7F 80 0 1 0 1

3.45 COMPARE IMMEDIATE CI
Op Code: 0280
Addressing mode: Format VIII

Format:

0O 1 2 3,4 5 6 7,8 9 10 11412 13 14 15
LIRS
ofolojoJojo]1jo]l1]o]lo]o w
Syntax definition:
[<abel>]b ...CIb ... <wa><iop>b ... [<comment>]
Example:
LABEL CI 3,7 COMPARE CONTENTS OF WSR3 TO 7

3-50 Texas Instruments Incorporated

[o]
@p 434419701

Definition: Compare the contents of the specified workspace register with the word in memory
immediately following the instruction. Set/reset the status bits according to the comparison. CI
makes the same type of comparison as does C.

Status bits affected: Logical greater than, arithmetic greater than, and equal.
Execution results: (wa) : iop

Application notes: Use the CI instruction to compare the workspace register to an immediate
operand. For example, if the contents of workspace register 9 is 2183 ,¢, then the instruction

CI 9,>F330

results in the arithmetic greater than status bit set and the logical greater than and equal status
bits reset.

3.46 COMPARE ONES CORRESPONDING COC
Op Code: 2000
Addressing mode: Format III

Format:

18 9 10 11312 13 14 15
| ! U LI
[¢] (o) 1 oj o} o D Ts S

Syntax definition:
[abel>]b ... COCH ... <ga,><way>b ... [<comment>]
Example:

LABEL - COC @MASK, 2 DOES (WSR2) SATISFY MASK?
Definition: When the bits in the destination operand workspace register that correspond to the

logic one bits in the source operand are equal to logic one, set the equal status bit. The source
and destination operands are unchanged.

Status bit affected: Equal
(o} 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LI
L>]|A>|EQ| C |OV {OP| X |PR |[MF INTERRUPT
A MASK

Execution results: Equal bit set if all bits of (wa,) that correspond to the bits of (ga,) that are
equal to 1 are also equal to 1.

3-51 Texas /nstruments Incorporated

o
ﬁj_—@i; 943441-9701

Application notes: Use the COC instruction to test single/multiple bits within a word in a
workspace register. For example, if TESTBI contains the word C102,, and workspace register 8
contains the value E306;¢, then the instruction

cocC @TESTBI,S
results in setting the equal status bit. If workspace register 8 were to contain E301,4, the equal

status bit would reset. Use this instruction to determine if a workspace register has Is in the bit
positions indicated by 1s in a mask.

3.47 COMPARE ZEROS CORRESPONDING CZC
Op Code: 2400

Addressing mode: Format III

Format:

18 9 10 11]12 13 14 15
I 1 T 1 LENDR
o}]o 1 o}l o 1 D Ts S

Syntax definition:
[[abel>]b ...CZCh .. .<ga ><was;>b ... [<comment>]
Example:

LABEL CZC @MASK,?2 DOES (WSR2) SATISFY THE MASK?

Definition: When the bits in the destination operand workspace register that correspond to the
one bits in the source operand are all equal to a logic zero, set the equal status bit. The source
and destination operands are unchanged.

Status bit affected: Equal

o 1 2 3 4 5 6 7 8 9 10 11 1213 1415

LR
L>|A>|EQ]l c |ov]|oOP| X |PR MF/ INTERRUPT
/ MASK

Execution results: Equal bit set if all bits of (way) that correspond to the bits of (ga,) that are
equal to 1 are equal to 0.

3-52 Texas Instruments Incorporated

o
@ 9434419701

Application notes: Use the CZC instruction to test single/multiple bits within a word in a
workspace register. For example, if the memory location labeled TESTBI contains the value
C102,¢, and workspace register 8 contains 2301,¢, then the instruction

CzC @TESTBI, 8

results in the equal status bit reset. If workspace register 8 contained the value 22014, then the
equal status bit would set. Use this instruction to determine if a workspace register has Os in the
positions indicated by Os in a mask.

3.48 CONTROL AND CRU INSTRUCTIONS

Control instructions affect the operation of the Arithmetic Unit (AU) and the associated
portions of the computer or microprocessor. CRU instructions affect the modules connected to
the Communications Register Unit. The instructions are:

Instruction Mnemonic Paragraph
Clock Off CKOF 3.51
Clock On CKON 3.52
Load CRU LDCR 3.57
Idle IDLE 3.50
Load or Restart Execution LREX 3.53
Reset RSET 3.49
Set CRU Bit to Logic One SBO 3.54
Set CRU Bit to Logic Zero SBZ 3.55
Store CRU STCR 3.58
Test Bit TB 3.56

3.49 RESET RSET
Op Code: 0360

Addressing mode: Format VII

Format:

0 1 2 314 5 6 7,8 9 101112 13 14 15

(o] (o] ojot oo 1 1j]o}1 1jojojojojo

Syntax definition:
[<label>]®b ... RSETbH ... [<comment>]
Example.

LABEL RSET START OVER

3-53 7Texas Instruments Incorporated

[e]
%@ 943441-9701

Definition: The RSET instruction clears the interrupt mask, which disables all except level O
interrupts. It also resets all directly connected input/output devices and those CRU devices that
provide for reset in the interface with the CRU. RSET also resets all pending interrupts and
turns the clock off.

TMS 9900 Microprocessor: Provides a signal that an RSET instruction is identified, but performs
no processing. User may implement hardware to perform desired processing when the signal is
present.

Model 990/10 Computer. When Privileged Mode bit (bit 7 of ST register) is set to 0, instruction

executes normally. When Privileged Mode bit is set to 1, an error interrupt occurs when execution
of an RSET instruction is attempted.

Status bits affected: None

(o] 1 2 3 4 S5 6 7 8 9 10 11 1213 14 15

7 T T 1
L>|A>|E INTERRUPT
Q| c |ov|or| X |PR |MF /ﬂ/// Y

Execution results: Clears the interrupt mask, resets directly connected I/O devices, resets the
CRU devices that provide for reset in the interface with the CRU, resets pending interrupts, and
turns the clock off.

Application notes: Use the reset instruction to reset the interrupt mask to zero, turn off the
clock, and (depending on the device and interface) clear any pending interrupt and reset
interface electronics.

3.50 IDLE IDLE
Op Code: 0340

Addressing mode: Format VII

Format:

O 1t 2 3;4 5 6 7 8 9 10 1111213 14 15

ojojojojojoj1 1 ojt1jojojojo}jo}o

Syntax definition:
[<label>]1® ...IDLEb ... [<comment>]
Example.

LABEL IDLE WAIT FOR INTERRUPT

3-54 Texas Instruments Incorporated

o
@ 943441-9701

Definition: Place the computer in the idle state. Note that the PC is incremented prior to the
execution of this instruction and the contents of the PC point to the instruction word in
memory immediately following the IDLE instruction. The computer will remain in the IDLE
state until an interrupt, RESTART, or LOAD occurs.

TMS 9900 Microprocessor: Provides a signal that an IDLE instruction is being executed, and
places the microprocessor in the idle mode. User may implement hardware to perform additional
processing when the signal is present.

Model 990/10 Computer. When Privileged Mode bit (bit 7 of ST register) is set to 0, instruction
executes normally. When Privileged Mode bit is set to 1, an error interrupt occurs when execution
of an IDLE instruction is attempted.

Status bits affected: None

Execution results: Places the computer in the idle mode, suspending program execution until an
interrupt occurs.

Application notes: Use the IDLE instruction to place the computer in the idle state. This
instruction is useful in timing delays using the clock or in waiting for interrupt signals.

3.51 CLOCK OFF CKOF
Op Code: 03CO

Addressing mode: Format VII

Format:

o 1 2 3,4 5 6 7 8 9 10 11412 13 14 15

oOjojojojojoyj1 1 1 1 ojojojojojo

Syntax definition:
[<label>]b ...CKOFb . .. [<comment>]
Example:
STOCK CKOF STOP THE CLOCK

Definition: Stop the line frequency clock (120 Hz). No status bits are changed and the clock
interrupt will not occur as long as the clock is off.

TMS 9900 Microprocessor: Provides a signal that a CKOF instruction is identified, but performs
no processing. User may implement hardware to perform desired processing when signal is
present.

355 Texas Instruments Incorporated

o
(I@ 943441-9701

Model 990/10 Computer: When Privileged Mode bit (bit 7 of ST register) is set to 0, instruction
executes normally. When Privileged Mode bit is set to 1, an error interrupt occurs when execution
of a CKOF instruction is attempted.

990/4 Microcomputer: If a clock interrupt occurs during the execution of a CKOF instruction, the
interrupt can be vectored incorrectly through level 15 instead of through the level to which it is
connected. To avoid this situation, mask the clock interrupt before executing a CKOF instruction.
The following sequence performs that function.

LIMI 0 Mask all interrupts
CKOF Clock off
LIMI n Reset interrupt mask to desired level,n.
This sequence is not required if CKOF is used in the service routine for a clock interrupt because
the clock interrupt causes the interrupt mask to be set to one level below the level of the clock
interrupt.
Status bits affected: None
Execution results: Line frequency clock disabled, and the clock interrupt cleared.
Application notes: Clock applications are described in paragraph 3.89.7.2.
3.52 CLOCK ON CKON
Op Code: 03A0

Addressing mode: Format VII

Format:

o 1 2 3,4 5 6 7,8 9 10 11312 13 14 15

0Ojojojojojo}1 1 1jo0]1 ojojojojo

Syntax definition:

[<label>]b ...CKONb ... [<comment>]

Example:

STRTC CKON START THE CLOCK

Definition: Enable the line frequency clock. If interrupt level five is enabled, an interrupt will
occur every 8.33 ms after the initial interrupt, which may occur from lus to 8.33 ms after the
clock is turned on. Interrupt five may be enabled/disabled by the interrupt mask as necessary.

TMS 9900 Microprocessor: Provides a signal that a CKON instruction is identified, but performs

no processing. User may implement hardware to perform desired processing when signal is
present.

3-56 Texas Instruments Incorporated

(o}
(I@ 943441-9701

Model 990/10 Computer: When Privileged Mode bit (bit 7 of ST register) is set to 0, instruction
executes normally. When Privileged Mode bit is set to 1, an error interrupt occurs when execution
of a CKON instruction is attempted.

Status bits affected: None

(o] 1 2 3 4 5 6 7 8 9 10 11 12 1314 15

7 T 1 T
>l A E o / INTERRUPT

Execution results: Line frequency clock enabled.

Application notes: Clock applications are described in paragraph 3.89.7.2.

3.53 LOAD OR RESTART EXECUTION LREX
Op Code: 03EO

Addressing mode: Format VII

Format:

o 1 2 3}J]4 5 6 7|8 9 10 1112 13 14 15

oOjojojojojoj}1 1 1 1 1fjojojojojo

Syntax definition:
[<label>]b ...LREXb ... [<comment>]

Example:

LABEL LREX START ALL OVER

Definition: Place the contents of location FFFC,, into the WP register and the contents of
location FFFE,4 into the PC. Store the previous contents of the WP register, the PC, and the ST

register into workspace registers 13, 14, and 15, respectively. Set the interrupt mask to O,
disabling all interrupt levels except level O.

TMS 9900 Microprocessor: Provides a signal that an LREX instruction is identified, but performs

no processing. User may implement hardware to perform desired processing when signal is
present.

Model 990/10 Computer: The LREX instruction sets the Privileged Mode bit (bit 7) of the ST
register to 0 in addition to performing the context switch. When the Privileged Mode bit is set
to O prior to execution of an LREX instruction, the instruction executes normally. When the
Privileged Mode bit is set to 1 and execution of an LREX instruction is attempted, an error

interrupt occurs. When the map option is included, the LREX instruction also sets the Map File
bit (bit 8) of the ST register to O.

3-57 Texas Instruments Incorporated

o
%@ 9434419701

Status bits affected: Map File, Privilege, Interrupt Mask

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

e

A A AAAA

L>|A>|EQ| c |ov |OP| X |PR

Execution results: (location FFFC,¢) = (WP)
(location FFFE,;¢) ~ (PC)
(old WP) - (Workspace register 13)
(old PC) -~ (Workspace register 14)
(old ST) - (Workspace register 15)
0 = (Interrupt Mask)

0 — (Map File) Status Register
0 = (Privilege)

Application notes: Use the LREX instruction to perform a context switch using the transfer
vector at location FFFC,s. Typically, the transfer vector transfers control to the front panel
routine in Read Only Memory (ROM). Additional application information is included in a
subsequent paragraph.

3.54 SET CRU BIT TO LOGIC ONE SBO

Op Code: 1D00

Addressing mode: Format II

Format:
0O 1 2 334 5 6 7;8 9 10 11,12 13 14 15
T T T T T
ojoJol1l1l1fol1 DISPLACEMENT
Syntax definition:
[<label>]® ...SBOb ... <disp>b ... [<comment>]
Example:
LABEL SBO 7 SET BIT 7 ON CRU TO ONE

Definition: Set the digital output bit to a logic one on the CRU at the address derived from this
instruction. The derived address is the sum of the user supplied signed displacement and the
contents of workspace register 12, bits 3 through 14. The execution of this instruction does not
affect the status register or the contents of workspace register 12.

Model 990/10 Computer: When the Privileged Mode bit (bit 7) of the ST register is set to 0, the
SBO instruction executes normally. When bit 7 is set to 1 and the effective CRU address is equal
to or greater than EO0O,¢, an error interrupt occurs and the instruction is not executed.

3-58 Texas Instruments Incorporated

o
@ 943441-9701

Status bits affected: None

0 1 2 3 4 S 6 7 8 9 10 11 12 13 14 15
777777 weetmaie
L>A>EQ| C OV|OP | X |PR |MF / MASK

Execution results: CRU bit addressed by the sum of the contents of workspace register 12 +
displacement is set to 1.

Application notes: Use the SBO instruction to set a CRU bit to a logic one. Refer to a subsequent
paragraph for additional application notes.

3.55 SET CRU BIT TO LOGIC ZERO SBZ

Op Code: 1EQ0

Addressing mode: Format II

Format:

0o 1 2 314 5 6 7 8 9 10 113412 13 14 15
LI LI | LI
oj o} o 1 1 1 1 [¢] DISPLACEMENT

Syntax definition:
[<label>]b ...SBZb ... <disp>b ... [<comment>]
Example:

LABEL SBZ 7 SET BIT 7 ON CRU TO ZERO

Definition: Set the digital output bit to a logic zero on the CRU at the address derived from this
instruction. The derived address is the sum of the user supplied signed displacement and the
contents of workspace register 12, bits 3 through 14. The execution of this instruction does not
affect the status register or the contents of workspace register 12.

Model 990/10 Computer: When the Privileged Mode bit (bit 7) of the ST register is set to 0, the
SBZ instruction executes normally. When bit 7 is set to 1 and the effective CRU address is equal to
or greater than E0O,4, an error interrupt occurs and the instruction is not executed.

Status bits affected: None

(o] 1 2 3 4 5 6 7 8 9 to0 11 12 1314 15

| I
L>|A>| EQ| c Jov|oP| X |PR MF'/ INTERRUPT
/ MASK

Execution results: CRU bit addressed by the sum of the contents of workspace register 12 (bits
3-14) + displacement is set to O.

3-59 Texas Instruments Incorporated

o
q‘r@f? 943441-9701

Application notes: Use the SBZ instruction to set a CRU bit to a logic zero. Refer to a
subsequent paragraph for additional application notes.

3.56 TEST BIT TB
Op Code: 1F00

Addressing mode: Format II

Format:

o 1 2 3344 5 6 7,8 9 10 11,12 13 14 15
LI LR R
oOjojo]i1 1 1 1 1 DISPLACEMENT

Syntax definition:
[<label>]b ... TBb ... <disp>b ... [<comment>]
Example:

CHECK TB 7 READ BIT 7 ON CRU AND SET EQUAL STATUS
BIT WITH THE VALUE READ

Definition: Read the digital input bit on the CRU at the address specified by the sum of the
user supplied signed displacement and the contents of workspace register 12, bits 3 through 14
and set the equal status bit to the logic value read. The digital input bit and the contents of
workspace register 12 are unchanged.

Model 990/10 Computer: When the Privileged Mode bit (bit 7) of the ST register is set to 0, the
TB instruction executes normally. When bit 7 is set to 1 and the effective CRU address is equal to
or greater than E00,4, an error interrupt occurs and the instruction is not executed.

Status bit affected: Equal

o] 1 2 3 4 5 6 7 8 9 1011 12 13 14 15

/1 L
L>A>]EQ| c |ov]|oP| X |PR MF/ INTERRUPT
MASK

A

Execution results: Equal bit is set to the value of the CRU bit addressed by the sum of the contents
of workspace register 12 (bits 3-12) + displacement.

Application notes: TB CRU line logic level test transfers the logic level from the indicated CRU line
to the equal status bit without modification. If the CRU line tested is set to a logic one, the equal
status bit sets to a logic one and if the line is zero, sets to a zero. JEQ will then transfer control
when the CRU line is a logic one and will not transfer control when the line is a logic zero. In
addition, JNE will transfer control under the exact opposite conditions.

3-60 Texas Instruments Incorporated

(o]
%@; 943441-9701

3.57 LOAD CRU LDCR
Op Code: 3000

Addressing mode: Format 1V

Format:

18 9 10 11312 13 14 15
LI | ! L I T
c Ts s

Syntax definition:

[abel>]b ...LDCRb ... <ga><cnt>b ... [<comment>]

Example:

WRITE LDCR @BUFF, 15 SEND 15 BITS FROM BUFF TO CRU

Definition: Transfer the number of bits specified in the C field from the source operand to the
CRU. The transfer begins with the least significant bit of the source operand. The CRU address
is contained in bits 3 through 14 of workspace register 12. When the C field contains zero, the
number of bits transferred is 16. If the number of bits to be transferred is from one to eight, the
source operand address is a byte address. If the number of bits to be transferred is from 9 to 16,
the source operand address is a word address. If the source operand address is odd, the address
is truncated to an even address prior to data transfer. When the number of bits transferred is a
byte or less, the source operand is compared to zero and the status bits are set/reset, according
to the results of the comparison. The odd parity status bit sets when the bits in a byte (or less)
to be transferred establish odd parity.

Model 990/10 Computer: When the Privileged Mode bit (bit 7) of the ST register is set to 0, the
LDCR instruction executes normally. When bit 7 is set to 1 and the effective CRU address is equal
to or greater than E00,4, an error interrupt occurs and the instruction is not executed.

Status bits affected: Logical greater than, arithmetic greater than, and equal. When C is less than
9, odd parity is also set or reset. Status is set according to the full word or byte, not just the trans-
ferred bits.

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

/ r 1 1
L>|A>|EQ| c |ov|oP| X | PR MFW lNLE:sR}lEJPT

AAA A

Execution results: Number of bits specified by C are transferred from memory at address gag to
consecutive CRU lines beginning at the address in workspace register 12.

Application notes: Use the LDCR instruction to transfer a specific number of bits from memory
to the CRU at the address contained in bits 3 through 14 of workspace register .12. Refer to a
subsequent paragraph for a detailed example and explanation of the LDCR instruction.

3-61 Texas Instruments Incorporated

(o]
@ 943441-9701

3.58 STORE CRU STCR
Op Code: 3400

Addressing mode: Format IV

Format:
0O 1 2 3,4 5 6 7;8 9 10 11)12 13 14 15
1 ! T | N B
olol1]1lo]1 c Ts s
Syntax definition:
[<label>]b ... STCRb ... <ga,><cnt>b ... [<comment>]
Example:
READ STCR @BUF,9 READ 9 BITS FROM CRU AND STORE AT

LOCATION BUF

Definition: Transfer the number of bits specified in the C field from the CRU to the source
operand. The transfer begins from the CRU address specified in bits 3 through 14 of workspace
register 12 to the least significant bit of the source operand and fills the source operand toward
the most significant bit. When the C field contains a zero, the number of bits to transfer is 16. If
the number of bits to transfer is from one to eight, the source operand address is a byte address.
Any bit in the memory byte not filled by the transfer is reset to a zero. When the number of
bits to transfer is from 9 to 16, the source operand address is a word address. If the source
operand address is odd, the address is truncated to an even address prior to data transfer. If the
transfer does not fill the entire memory word, unfilled bits are reset to zero. When the number
of bits to transfer is a byte or less, the bits transferred are compared to zero and the status bits
set/reset to indicate the results of the comparison. Also, when the bits to be transferred are a
byte or less, the odd parity bit sets when the bits establish odd parity.

Model 990/10 Computer: When the Privileged Mode bit (bit 7) of the ST register is set to 0, the
STCR instruction executes normally. When bit 7 is set to 1 and the effective CRU address is equal
to or greater than E00Q,¢, an error interrupt occurs and the instruction is not executed.

Status bits affected: Logical greater than, arithmetic greater than, and equal. When C is less than
9, odd parity is also set or reset. Status is set according to the full word or byte, not just those
bits transferred.

(o) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T T T 1
L>JA>]EQJC |OV|OP| X |PR MF7 INTERRUPT
A MASK

AAA A

Exepu{ion results: Number of bits specified by C are transferred from consecutive CRU lines
beginning at the address in workspace register 12 to memory at address ga,.

3-62 Texas Instruments Incorporated

943441-9701

Application notes: Use the STCR instruction to transfer a specified number of CRU bits from
the CRU to memory location supplied by the user as the source operand. Note that the CRU
base address must be in workspace register 12 prior to the execution of this instruction. Refer to
a subsequent paragraph for a detailed explanation and examples of the use of the STCR
instruction,

3.59 LOAD AND MOVE INSTRUCTIONS

Load and move instructions permit the user to establish the execution environment and the
execution results. These instructions manipulate data between memory locations and between
hardware registers and memory locations. The instructions are:

Instruction Mnemonic Paragraph
Load Immediate LI 3.60
Load Interrupt Mask Immediate LIMI 3.61
Load Memory Map File LMF 3.63
Load Workspace Pointer Immediate LWPI 3.62
Move Words MOV 3.64
Move Bytes MOVB 3.65
Store Status STST 3.67
Store Workspace Pointer STWP 3.68
Swap Bytes SWPB 3.66

3.60 LOAD IMMEDIATE LI
Op Code: 0200

Addressing mode: Format VIII

Format:
0O 1 2 3,4 5 6 78 9 101112 13 14 15
LR
olojo]Jojojo}lt1tlojolojo]o w
Syntax definition:
[Tabel>]b ... LIb...<wa><iop>b ... [<comment>]
Example:
GETIT LI 3,>17 LOAD WSR3 WITH 17HEX=23

Definition: Place the immediate operand (the word of memory immediately following the instruc-
tion) in the user specified workspace register (W field). The immediate operand is not affected by
the execution of this instruction. The immediate operand is compared to O and the L>, A>, and
EQ status bits are set or reset according to the result of the comparison.

3-63 Texas Instruments Incorporated

o
@ 943441-9701

Status bits affected: Logical greater than, arithmetic greater than, and equal.

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T T T 1
L>(a>ea | c |ovfopP | x PRlMF ////// INTERRIPT
Vi

A A A

Execution results: iop —~ (wa)

Application notes: Use the LI instruction to place an immediate operand in a specified
workspace register. This is useful for initializing a workspace register as a loop counter. For
example, the instruction

L1 7,5

initializes workspace register 7 with the value 0005;,. L> and A> are set while EQ is reset in this
example.

3.61 LOAD INTERRUPT MASK IMMEDIATE LIMI
Op Code: 0300

Addressing mode: Format VIII

Format:

0 1 2 314 5 6 7 8 9 10 11,312 13 14 15

0Ojojojojojoy}1 110 o) 0 0Jjojojoyjo

Syntax definition:

[<label>]b ... LIMIb ... <<op>b ... [<comment>]

Example:
LABEL LIMI 3 MASK LEVEL 3 AND BELOW

Definition: Place the low order four bits (bits 12-15) of the contents of the immediate operand (the
next word after the instruction) in the interrupt mask of the status register. The remaining bits of
the status register (O through 11) are not affected.

Model 990/10 Computer: When Privileged Mode bit (bit 7 of ST register) is set to 0, instruction
executes normally. When Privileged Mode bit is set to 1, an error interrupt occurs when execution
of an LIMI instruction is attempted and the interrupt mask is not loaded.

3-64 Texas Instruments Incorporated

o
@ 9434419701

Status bits affected: Interrupt Mask

0 1 2 3 4 5 6 7 8 9 10 11 1213 14 15

r 1 1
L>A>|EQ| Cc {ov]|oP| X | PR MF/ INTERRUPT
/ MASK

AAAA

Execution results: Places the four least significant bits of iop into the interrupt mask, the four
least significant bits of the ST register.

Application notes: Use the LIMI instruction to initialize the interrupt mask for a particular level
of interrupt to be accepted. For example, the instruction

LIMI 3

sets the interrupt mask to level three and enables interrupts at level 0, 1, 2, and 3.

3.62 LOAD WORKSPACE POINTER IMMEDIATE LWPI
Op Code: 02EO0

Addressing mode: Format VIII

Format:

o 1 2 314 5 6 7 8 9 toO 11]12 13 14 15

ojojojojojoj}1 ol 1 1 1] o] ojojojo

Syntax definition:
[<label>]b ...LWPIb ... <<op>b ... [<comment>]

Example:
NEWWP LWPI 02F2 02F2=NEWWP

peﬁniz‘ion: Replace the contents of the WP with the immediate operand. The immediate operand
is the word of memory immediately following the LWPI instruction.

Status bits affected: None

(o] 1 2 3 4 5 6 7 8 9 10 12 13 14 15
L>A>|EQ]| c | ov|OP| X |PR MF////A lNTEARst'PT

Execution results: iop -~ (WP)

3-65 Texas Instruments Incorporated

o
{_@EP 943441-9701

Application notes: Use the LWPI instruction to initialize or change the WP register to alter the
workspace environment of the program module. The user should use either a BLWP or a LWPI
instruction prior to the use of any workspace register in a program module.

3.63 LOAD MEMORY MAP FILE LMF
Op Code: 0320

Addressing mode: Format IX

Format:

(o] 1 2 33 4 S 6 7 8 9 10 11,12 13 14 15
| S S
ojojl ojJojojoli1]l1iofol1|m w

This instruction is only available on the Model 990/10 Computer with map option.
Syntax definition:
[<[abel>]b...LMFb ... <<wa><m>b ... [<comment>]

Example:

NMAP LMF 3,1 LOAD MAP FILE 1

Definition: Place the contents of a six-word area of memory at the address in the workspace
register specified by wa into the memory map file designated by m.

Status bits affected: None
01 2 3 4 5 6 7 8 9 1011 12 13 14 15

/] e

Execution results: When Privileged Mode bit (bit 7 of ST register) is set to 0: the contents of a
six-word area at address in wa are placed in map file m.

L>|A>|EQ| C |OV]|OP| X |PR |M

T

3-66 Texas /nstruments Incorporated

[e]
%@ 943441-9701

When Privileged Mode bit is set to 1, an error interrupt occurs.

Application notes: Use the LMF instruction to load either map file O or 1 (map file 2 is loaded
by the long distance instructions). The map file is a set of six registers that maps the 32K word
addresses of the AU into the desired addresses of memory having a larger capacity. The six-
word area contains the following:

WORDOO 10 11 15
L1 X X X X X
1 B1
2 L2 X X X X X
3 B2
4 L3 X X X X X
5 B3
(A)132204

Words O, 2, and 4 contain values that are placed in limit registers L1, L2, and L3

To determine values to be placed in the limit registers, the following considerations apply:

® The 11 most significant bits of each memory word are placed in the 11-bit limit
registers.

® The 5 least significant bits may be any value. (They are ignored.)
® The one’s complement of the limit is placed in the memory word, and in the map file.

The values in words 1, 3, and 5 are the 16 most significant bits of the bias register values, and
are placed in registers B1, B2, and B3.

To determine the values to be placed in the six-word memory area, consider the following:
® All addresses from O through limit 1 are contiguous in memory.
® All addresses greater than limit 1, up through limit 2 are contiguous in memory.
® All addresses greater than limit 2, up through limit 3 are contiguous in memory.
® All addresses greater than limit 3 are protected addresses.

® Place the one’s complements of the limit values in words O, 2, and 4.

° Place the 16 most significant bits of the bias address for the lowest group in the second
word.

® Place the 16 most significant bits of the bias address for the next group in the fourth
word.

® Place the 16 most significant bits of the bias address for the highest group in the sixth
word.

3-67 Texas Instruments Incorporated

o
(_r@@ 943441-9701

3.64 MOVE WORD MOV
Op Code: C000
Addressing mode: Format I

Format:

|8 9 10 11}12 13 14 15
L T T T 1
1] 1] oflo] Ty D Ts s

Syntax definition:
[<label>]b ... MOVb ... <ga ><ga;>b ... [<comment>]
Example:

GET MOV @WORD,?2 GET A COPY OF WORD INTO WSR2

Definition: Replace the destination operand with a copy of the source operand. The AU
compares the resulting destination operand to zero and sets/resets the status bits according to the
comparison.

Status bits affected: Logical greater than, arithmetic greater than, and equal.

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

777 77 T 1
L>la> c |o P INTERRUPT
EQ v |oP| x R[MF ///// TERRL

A A A

Execution results: (gag) > (gaq)

Application notes: MOV is used to move 16-bit words as follows:
Memory-to-memory (non register)
Load register (memory-to-register)
Register-to-register

Register-to-memory

3-68 Texas Instruments Incorporated

[e]
@ 943441-9701

MOV may also be used to compare a memory location to zero by the use of

MOV 7,7
JNE TEST

which would move register 7 to itself and compare the contents of register 7 to zero. If the
contents are not equal to zero, the equal status bit is reset and control transfers to TEST.
Another use of MOV, for example, is if workspace register 9 contains 3416,¢ and location
ONES contains FFFF,¢, then

MOV @ONES,9
changes the contents of workspace register 9 to FFFF ¢, while the contents of location ONES is

not changed. For this example, the logical greater than status bit sets and the arithmetic greater
than and equal status bits reset.

3.65 MOVE BYTE MOVB
Op Code: D000

Addressing mode: Format 1

Format:

0 t 2 3;4 5 6 7;8 9 10 11j12 13 14 15
T | B T T 1
1|1 o 1] Ty D Ts S

Syntax definition:

[<label>]b ... MOVBb ... <ga,><ga;>b ... [<comment>]

Example:

NEXT MOVB 2, @BUFF (3) STORE CHARACTER IN EFFECTIVE BUFFER
ADDRESS

Definition: Replace the destination operand (byte) with a copy of the source operand (byte). If
either operand is addressed in the workspace register mode, the byte addressed is the most sig-
nificant byte of the word (bits 0-7) and the least significant byte (bits 8-15) is not affected by
this instruction. The AU compares the destination operand to zero and sets/resets the status bits
to indicate the result of the comparison. The odd parity bit sets when the bits in the destination
operand establish odd parity.

3-69 Texas Instruments Incorporated

o
@ 943441-9701

Status bits affected: Logical greater than, arithmetic greater than, equal, and odd parity.

o] 1 2 3 4 5 6 7 8 9 1011 12 1314 15

I T 1 1
L>|A>lEQ|C |ov]|oP| X |PR MF7 INTERRUPT
/ MASK

AAA A

Execution results: (gag) —>(gay)

Application notes: MOVB is used to move bytes in the same combinations as the MOV instruction
moves words. For example, if memory location 1C14,4 contains a value of 2016, and TEMP is
located at 1C15,¢, and if workspace register 3 contains 542B,¢, then the instruction

MOVB @TEMP,3

Changes the contents of workspace register 3 to 162B;¢. The logical greater than, arithmetic
greater than, and odd parity status bits set while the equal status bit resets.

3.66 SWAP BYTES SWPB

Op Code: 06CO
Addressing mode: Format VI

Format:

0O 1 2 334 5 6 718 9 10 11312 13 14 15
T T T 7T
olofloflolofjt1t|1]o] 1] 1] T s

Syntax definition:
[<label>]b...SWPBb...<ga,>b ... [<comment>]
Example:

SWITCH SWPB 3 BYTE REVERSE WSR3

Defini{im?: Replace the most significant byte (bits 0-7) of the source operand with a copy of the
least significant byte (bits 8-15) of the source operand and replace the least significant byte with
a copy of the most significant byte.

3-70 Texas Instruments Incorporated

o
@ 943441-9701

Status bits affected: None

(o] 1 2 3 4 5 6 7 8 9 10 11 12 1314 15

/ 1 1 T
L> A>| EQ|c |ov]or| x |PR MFW 'NLE.ARSLJPT

Execution results: Exchanges left and right bytes of word (ga,).

Application notes: Use the SWPB instruction to interchange bytes of an operand prior to
executing various byte instructions. For example, if workspace register O contains 2144,, and
memory location 2144, contains the value F312;¢, then the instruction

SWPB *0+

Changes the contents of workspace register 0 to 2146, and the contents of memory location
2144, to 12F3,4. The status register remains unchanged.

3.67 STORE STATUS STST
Op Code: 02CO0

Addressing mode: Format VIII
Format:

o 1 2 3/]4 5 6 7,8 9 10 11312 13 14 15
r 1T T
w

Syntax definition:
[<label>]b ... STSTh ...<<wa>b ... [<comment>]
Example:

LABEL STST 7 STORE STATUS IN WSR7

Definition: Store the status register contents in the specified workspace register.

Status bits affected: None

0o 1 2 3 4 5 6 7 8 9 10 111213 14 15
/ v/ INTERRUPT
L>A>Ea|c |ov|or|x |Pr|MF / SRR

Execution results: (ST) - (wa)

3-71 Texas Instruments Incorporated

o
{_@P 9434419701

Application notes: Use the STST instruction to store the ST register contents when applicable.

3.68 STORE WORKSPACE POINTER STWP
Op Code: 02A0

Addressing mode: Format VIII

Format:

0 1 2 314 5 6 7;8 9 10 11§12 13 14 15
| ! I

ojo oOjojojoj1jo} 1j10}1 (o] w

Syntax definition:
[<label>]b ... STWPb...<wa>b ... [<comment>]
Example:
LABEL STWP 6 STORE WKSP POINTER IN WSR6
Definition: Place a copy of the workspace pointer contents in the specified workspace register.

Status bits affected: None

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Wi

L>A>(EQ| C [OV|OP}| X |PR |M

7

Execution results: (WP) — (wa)

Application notes: Use the STWP instruction to store the contents of the WP register as
applicable.

3.69 LOGICAL INSTRUCTIONS . '
The set of logical instructions permits the user to perform various logical operations on memory

locations and/or workspace registers. The instructions are:

Instruction Mnemonic Paragraph
AND Immediate ANDI 3.70
Clear CLR 3.74
Invert INV 3.73
OR Immediate ORI 3.71

3-72 Texas /nstruments Incorporated

o
{@fp 9434419701

Instruction : Mnemonic Paragraph
Set to One SETO 3.75
Set Ones Corresponding (OR) SOC 3.76
Set Ones Corresponding, Byte (OR) SOCB 3.77
Set Zeros Corresponding SzZC 3.78
Set Zeros Correspanding, Byte SZCB 3.79
Exclusive OR XOR 3.72

3.70 AND IMMEDIATE ANDI
Op Code: 0240

Addressing mode: Format VIII

Format:

o 1 2 314 5 6 78 9 10111112 13 14 15
L
oo 0Ojojojoj1jojo 1 o} o w

Syntax definition:

[<label>]b ... ANDIb . .. <wa><iop>b ... [<comment>]

Example:
LABEL ANDI 3,>FFF0 SET LOWER 4 BITS OF WSR3 TO ZERO

Definition: Perform a bit-by-bit AND operation of the 16 bits in the immediate operand and the
corresponding bits of the workspace register. The immediate operand is the word in memory
immediately following the instruction word. Place the result in the workspace register. The AU
compares the result to zero and sets/resets the status bits according to the results of the comparison.

Status bits affected: Logical greater than, arithmetic greater than, and equal.

(o] 1 2 3 4 5 6 7 8 9 10 11 1213 14 15

LI
L>A>|EQ | ¢ |ov |oP| X |PR MFW INTERRUPT
MASK

AAA

Execution results: (wa) AND iop - (wa)

3-73 Texas Instruments Incorporated

[e]
@ 943441-9701

Application notes: Use the ANDI instruction to perform a logical AND with an immediate
operand and a workspace register. Each bit of the 16-bit word of both operands follows the

truth table

Immediate Workspace AND
Operand Bit Register Bit Result
0 0 0
0 1 0
1 0 0
1 1 1

For example, if workspace register 0 contains D2AB, ¢, the instruction

ANDI 0,>6D03

results in workspace register O changing to 4003 ,¢. This AND operation on a bit-by-bit basis is

0110110100000011 (Immediate operand)
1101001010101011 (Workspace register 0)
0100000000000011 (Workspace register O result)

For this example, the logical greater than and arithmetic greater than status bits set while the
equal status bit resets. ANDI is also useful for masking out bits of a workspace register.

3.71 OR IMMEDIATE ORI
Op Code: 0260

Addressing mode: Format VIII

Format:
0O 1 2 314 5 6 7] 8 9 10 11(12 13 14 15
LRI
olo]J]ololojo]l1folol1l1]o0 w
Syntax definition:
[<abel>]b...O0RIb...<<wa><iop>b ... [<comment>]
Example:
LABEL ORI 3,>F000 SET HIGH ORDER 4 BITS OF WSR3 TO ONES

Definition: Perform an OR operation of the 16-bit immediate operand and the corresponding
bits of the workspace register. The immediate operand is the memory word immediately following
the ORI instruction. Place the result in the workspace register. The AU compares the result to
zero and sets/resets the status bits to indicate the result of the comparison.

3-74 Texas Instruments Incorporated

943441-9701

Status bits affected: Logical greater than, arithmetic greater than, and equal.

(o] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

L>|A>lE fo) M INTERRUPT
Qj C V]|OP|] X |PR F////A MASK

A A A

Execution results: (wa) OR iop - (wa)

Application notes: Use the ORI instruction to perform a logical OR with the immediate operand
and a specified workspace register. Each bit of the 16-bit word of both operands is OR’d using
the truth table

Immediate Workspace OR
Operand Register Result
0 0 0
1 0 1
0 1 1
1 1 1

For example, if workspace register 5 contains D2AB, ¢, then the instruction
ORI 5,>6D03
results in workspace register 5 changing to FFAB,¢ . This OR operation on a bit-by-bit basis is

0110110100000011 (Immediate operand)
1101001010101011 (Workspace register 5)

1111111110101011 (Workspace register 5 result)

For this example, the logical greater than status bit sets, and the arithmetic greater than and
equal status bits reset.

3.72 EXCLUSIVE OR XOR
Op Code: 2800

Addressing mode: Format III

Format:

18 9 10 11]12 13 14 15
T | 1 T T 170
D Ts S

3-75 Texas /nstruments Incorporated

o
{@ 9434419701

Syntax definition:

[<label>]b ... XORb ... <ga,><wa;>b ... [<comment>]

Example:

LABEL XOR @WORD, 3 EXCLUSIVE OR THE CONTENTS OF WORD
AND WSB

Definition: Perform a bit-by-bit exclusive OR of the source and destination operands, and replace
the destination operand with the result. This exclusive OR is accomplished by setting the bits in
the resultant destination operand to a logic one when the corresponding bits of the two operands
are not equal. The bits in the resultant destination operand are reset to zero when the
corresponding bits of the two operands are equal. The AU compares the resultant destination
operand to zero and sets/resets the status bits to indicate the result of the comparison.

Status bits affected: Logical greater than, arithmetic greater than, and equal.
(o] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

| I I I 1
L>|A>|EQ| C |OV|OP| X | PR|MF INTERRUPT
MASK

Execution results: (gay) XOR (way) - (way)

(i.e. [(gay) AND NOT (wa,)] OR [(wa,) AND NOT (ga;)] > (wa,)

Application notes: Use the XOR instruction to perform an exclusive OR on two word operands.
For example, if workspace register 2 contains D2AA ;s and location CHANGE contains the value
6D03, ¢, then the instruction

XOR @CHANGE,2

results in the contents of workspace register 2 changing to BFA9,,. Location CHANGE remains
6D03,4. This is shown as

0110110100000011 (Source operand)
1101001010101010 (Destination operand)

1011111110101001 (Destination operand result)

For this example, the logical greater than status bit sets while the arithmetic greater than and
equal status bits reset.

3.73 INVERT INV
Op Code: 0540

Addressing mode: Format VI

3-76 Texas Instruments Incorporated

[¢]
{@ 9434419701

Format:

o 1 2 3,4 5 6 7,8 9 10 11312 13 14 15
T f LI |
ojojojojojpi1joj}1t o]1 Ts S

Syntax definition:

[<label>1b ...INVb...<ga>b ... [<comment>]

Example:

COMPL INV @BUFF(2) REPLACE BUFFER WORD WITH ONEs COMPLEMENT
OF DATA

Definition: Replace the source operand with the one’s complement of the source operand. The
one’s complement is equivalent to changing each zero in the source operand to a logic one and
each logic one in the source operand to a logic zero. The AU compares the result to zero and
sets/resets the status bits to indicate the result of the comparison.

Status bits affected: Logical greater than, arithmetic greater than, and equal.

o] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T 1 I
L>|A>|EQ| c |ov]|OP| X |PR MF/ INTERRUPT
/ MASK

AAA

Execution results: The one’s complement of (ga,) is placed in (gay).

Application notes: INV changes each logic zero in the source operand to-a logic one and each
logic one to a logic zero. For example, if workspace register 11 contains A54B,¢, then the

instruction

INV 11

changes the contents of workspace register 11 to 5AB4,¢. The logical greater than and
arithmetic greater than status bits set and the equal status bit resets.

3.74 CLEAR CLR
Op Code: 04CO

Addressing mode: Format VI

3-77 Texas Instruments Incorporated

o
@ 943441-9701

Format:

o 1 2 3]4 5 6 738 9 10 1112 13 14 15
v T
ololojojo}j1jojoj1t 1 Ts S

Syntax definition:

[<label>]b ...CLRb ... <ga >b ... [<comment>]

Example:
PRELM CLR @BUFF(2) CLEAR EFFECTIVE BUFFER ADDRESS

Definition: Replace the source operand with a full, 16-bit word of zeros.

Status bits affected: None

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T, 1 |
L>(A>lEQ | C oV |OP| X |PR MF/////// INIAE.SQ#PT

Execution results: 0 — (ga,)

Application notes: Use the CLR instruction to set a full, 16-bit, memory addressable word to
zero. For example, if workspace register 11 contains the value 2001, then the instruction

CLR *>B

results in the contents of memory location 2000,¢ being set to 0. Workspace register 11 and the
status register are unchanged.

3.75 SET TO ONE SETO
Op Code: 0700

Addressing mode: Format VI
Format:

O 1 2 34 5 6 7;8 9 10 11412 13 14 15
T T 1 1
ojolojJo]lol1l1l1]lo]lo]| T s

3-78 Texas Instruments Incorporated

(o}
%’_@; 943441-9701

Syntax definition:

[<label>]b ... SETOb». .. <gas>b ... [<comment>]

Example:

LABEL SETO 3 SET WSR3 TO -1
Definition: Replace the source operand with a 16-bit word logic one value.
Status bits affected: None

(0] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T e

L>A>|EQ | C |oV|OP| X | PR

Execution results: FFFF,6 — (gay)

Application notes: Use the SETO instruction to initialize an addressable memory to a -1 value.
For example, the instruction

SETO 3

initializes workspace register 3 to a value of FFFF,,. The contents of the status register is
unchanged. This is a useful means of setting flag words.

3.76 SET ONES CORRESPONDING SOC
Op Code: EO00

Addressing mode: Format I
Format:

;1 8 9 10 11312 13 14 15
T LI 1 LB
D

Syntax definition:

[<label>]b ... SOCh ... <ga, >,<gay;>b ...[<comment>]

Example:

LABEL SOC 3,2 OR WSR3 INTO WSR2

3-79 Texas Instruments Incorporated

[e]
@ 943441-9701

Definition: Set to a logic one the bits in the destination operand that correspond to any logic
one bit in the source operand. Leave unchanged the bits in the destination operand that are in
the same bit positions as the logic zero bits in the source operand. The changed destination
operand replaces the original destination operand. This operation is an OR of the two operands.
The AU compares the result to zero and sets/resets the status bits to indicate the result of the
comparison.

Status bits affected: Logical greater than, arithmetic greater than, and equal.

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

//l | 1 |
INTERRUPT
L>A>EQ| ¢ |ov|oP| x |PR |MF / MACK

A AA

Execution results: Bits of (gay) corresponding to bits of (ga,) equal to 1 are set to 1.

Application notes: Use the SOC instruction to OR the 16-bit contents of two operands. For
example, if workspace register 3 contains FF00,4 and location NEW contains AAAA4 , then the
instruction

SOC 3,@NEW

changes the contents of location NEW to FFAA, while the contents of work space register 3 is
unchanged. This is shown as

1111111100000000 (Source operand)
1010101010101010 (Destination operand)

1111111110101010 (Destination operand result)

For this example, the logical greater than status bit sets and the arithmetic greater than and
equal status bits reset.

3.77 SET ONES CORRESPONDING, BYTE SOCB
Op Code: F000

Addressing mode: Format I

Format:

0O 1 2 3;4 5 6 7,8 9 10 11,12 13 14 15
T | T T T 1
1111 1y D TS s

Syntax definition:

[<label>]b ...SOCBb ... <ga,>,<ga;>b ... [<comment>]

Example:

LABEL SOCB 3,@DET OR WSR3 INTO BYTE AT LOCATION DET

3-80 Texas Instruments Incorporated

943441-9701

Definition: Set to a logic one the bits in the destination operand byte that correspond to any
logic one in the source operand byte. Leave unchanged the bits in the destination operand that
are in the same bit positions as the logic zero bits in the source operand byte. The changed
destination operand byte replaces the original destination operand byte. This operation is an OR
of the two operand bytes. The AU compares the resulting destination operand byte to zero and
sets/resets the status bits to indicate the results of the comparison. The odd parity status bit sets
when the bits in the resulting byte establish odd parity.

Status bits affected: Logical greater than, arithmetic greater than, equal, and odd parity.

o 1t 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T 1 1
L>A>lEQ| c |ov [oP| X |PR MFW/ INIAEESR#PT

AAA A

Execution results: Bits of (gay) corresponding to bits of (ga,) equal to 1 are set to 1.

(i-e. (gay) OR (gay) > (gay))

Application notes: Use the SOCB instruction to OR two byte operands. For example, if
workspace register 5 contains the value FO13;4 and workspace register 8 contains the value
AA24,¢ , then the instruction

SOCB 5,8

changes the contents of workspace register 8 to FA24,,, while the contents of workspace
register 5 is unchanged. This is shown as

1111000000010011 (Source operand)

1010101000100100 (Destination operand)

1111101000100100 (Destination operand result)
(Unchanged)

For this example, the logical greater than status bit sets while the arithmetic greater than, equal,
and odd parity status bits reset.

3.78 SET ZEROS CORRESPONDING SZC

Op Code: 4000
Addressing mode: Format I

Format:

o 1 2 314 5 6 738 9 10 1111213 14 15
T T v I T I LI

ol1lo]o]| Ty D Ts s

3-81 Texas Instruments Incorporated

o
@ 943441-9701

Syntax definition:

[<label>]b ... SZCb ... <ga,><ga;>b ... [<comment>]

Example:
LABEL SZC @MASK,?2 RESET BITS OF WSR2 INDICATED BY MASK

Definition: Set to a logic zero the bits in the destination operand that correspond to the bit
positions equal to a logic one in the source operand. This operation is effectively an AND
operation of the one’s complement of the source operand and the destination operand. The AU
compares the resulting destination operand to zero and sets/resets the status bits to indicate the
results of the comparison.

Status bits affected: Logical greater than, arithmetic greater than, and equal.

0 1 2 3 4 5 6 7 8 9 10 11 1213 14 15

7 77 T T
L>|A>|EQ| C Jov |OP| X |PR MF7 INTERRUPT
MASK

A A A

Execution results: Bits of (gay) corresponding to bits of (ga,) equal to 1 are set to O.
(i.e. [NOT (ga,) AND (ga,)] = (ga,))
Application notes: Use the SZC instruction to turn off flag bits or AND the contents of the

one’s complement of the source operand and the destination operand. For example, if workspace
register 5 contains 6D03,4 and workspace register 3 contains D2AA ¢ , then the instruction

SzC 5,3

changes the contents of workspace register 3 to 92A8,, while the contents of workspace register
S remain unchanged. This is shown as

0110110100000011 (Source operand)
1101001010101010 (Destination operand)
1001001010101000 (Destination operand result)

For this example, the logical greater than status bit sets while the arithmetic greater than and
equal status bits reset.

3.79 SET ZEROS CORRESPONDING, BYTE SZCB
Op Code: 5000

Addressing mode: Format I

3-82 Texas /nstruments Incorporated

o
{@ 943441-9701

Format:

o 1 2 3 4 S 6 718 9 10 11312 13 14 15
T T T Y 1T T

ol 1] o]l 1| W™ D Ts s

Syntax definition:

[<label>]b ... SZCBb ... <ga,>,<ga;>b ... [<comment>]

Example:

LABEL SZCB @MASK, @CHAR RESET BITS OF CHAR INDICATED BY MASK

Definition: Set to a logic zero the bits in the destination operand byte that correspond to the bit
positions equal to a logic one in the source operand byte. This operation is effectively an AND
operation of the one’s complement of the source operand byte and the destination operand byte.
The AU compares the resulting destination operation byte to zero and sets/resets the status bits
to indicate the result of the comparison. The odd parity status bit sets when the bits in the
resulting destination operand byte establish odd parity. When the destination operand is
addressed in the workspace register mode, the least significant byte (bits 8-15) is unchanged.

Status bits affected: Logical greater than, arithmetic greater than, equal, and odd parity.
(o] 1 2 3 4 5 6 7 8 10 11 12 13 1415

9
7 T
INTERRUPT
L>la>(ea|c | ov|or| x [Pr|MF / /] "Rk
A AA A

Execution results: Bits of (gay) corresponding to bits of (gas) equal to 1 are set to 0.

(i.e. [NOT (ga,) AND (ga;)] = (g24))

Application notes: The SZCB instruction is used for the same applications as SZC except bytes
are used instead of words. For example, if location BITS contains the value FO18,4, and location
TESTVA contains the value AA24,¢, then

SZCB @BITS,@TESTVA

changes the contents of TESTVA to 0A24,, while BITS remains unchanged. This is shown as

1111000000011000 (Source operand)
1010101000100100 (Destination operand)

0000101000100100 (Destination operand result)
(Unchanged)

3-83 Texas Instruments Incorporated

o
{_@; 943441-9701

.For this example, the logical greater than and arithmetic greater than status bits set while the
equal and odd parity status bits reset.

3.80 WORKSPACE REGISTER SHIFT INSTRUCTIONS
Workspace register shift instructions permit the shifting of the contents of a specified workspace
register from one to sixteen bits. The shifting instructions are:

Instruction

Shift Right Arithmetic
Shift Right Logical
Shift Left Arithmetic
Shift Right Circular

Mnemonic

SRA
SRL
SLA
SRC

Paragraph

3.81
3.83
3.82
3.84

For each of these instructions, if the shift count in the instruction is zero, the shift count is
taken from workspace register 0, bits 12 through 15.If the four bits of workspace register O are
equal to zero, the shift count is 16 bit positions. The value of the last bit shifted out of the
workspace register is placed in the carry bit of the ST register. The result is compared to zero
and the results of the comparison are shown in the logical greater than, arithmetic greater than,
and equal bits (bits O through 2) in the ST register. If a shift count greater than 15 is supplied,
the assembler fills in the four-bit field with the least significant four bits of the shift count.
SDSMAC gives a warning message when this occurs.

3.81 SHIFT RIGHT ARITHMETIC SRA

Op Code: 0800
Addressing mode: Format V

Format

718

9 10 11

12 13 14 15

e
-

1 LI
w

Syntax definition:

[<label>]b ... SRAb ... <<wa><scnt>b ... [<comment>]

Example:

LABEL SRA 2,3

SHIFT WSR2 RIGHT THREE BIT LOCATIONS

Definition: Shift the contents of the specified workspace register to the right for the specified
number of bit positions, filling vacated bit positions with the sign bit.

Status bits affected: Logical greater than, arithmetic greater than, equal, and carry.

0O 1t 2 3 4 5 6 7 8 9 10 11 1213 14 15
y | T

L>A>|EQ| Cc {ov]|oP| X | PRIM INTERRUPT
F A MASK

AAAA

3-84

Texas /nstruments Incorporated

o
%,—'IS\QPP 9434419701

Execution results: Shift the bits of (wa) to the right, extending the sign bit to fill vacated bit
positions. When SCNT is greater than 0, shift the number of bit positions specified by
SCNT. If SCNT is equal to O, shift the number of bit positions contained in the four least
significant bits of workspace register 0. When SCNT and the four least significant blts of
workspace register O both contain 0, shift 16 bit positions.

Application notes: An example of an arithmetic right shift is: If workspace register 5 contains
the value 8224 ¢ , and workspace register O contains the value F326,¢ , then the instruction

SRA 5,0

changes the contents of workspace register 5 to FEO08,c. The logical greater than and carry
status bits set while the arithmetic greater than and equal status bits reset. Additional examples

are shown in a subsequent paragraph.

3.82 SHIFT LEFT ARITHMETIC SLA
Op Code: 0AQ00

Addressing mode: Format V

Format:

o 1 2 3,4 5 6 7,8 9 10 11 12 13 14 15
L LI
(o] cjlojJo]J1jo]1 (o] Cc w

Syntax definition:

[<label>]b ... SLAb ... <wa>,<scnt>b ... [<comment>]
Example:

LABEL SLA 2,1 SHIFT WSR2 LEFT ONE BIT LOCATION

Definition: Shift the contents of the specified workspace register to the left for the specified
number of bit positions while filling the vacated bit positions with logic zero values. Note that
the overflow status bit sets when the sign of the word changes during the shifting operation.

Status bits affected: Logical greater than, arithmetic greater than, equal, carry, and overflow.

(o] 1 2 3 4 5 6 7 8 9 10 11 1213 14 15

| L
L>A>]EQ| C |OoV |OP| X |PR|MF 77//// INTERRUPT
MASK

AAAAA

3-85 Texas Instruments Incorporated

o
{—@fp 9434419701

Execution results: Shift the bits of (wa) to the left, filling the vacated bit positions with zeros.
When SCNT is greater than 0, shift the number of bit positions specified by SCNT. If SCNT is
equal to 0, shift the number of bit positions contained in the four least significant bits of
workspace register 0. When SCNT and the four least significant bits of workspace register 0 both
contain 0, shift 16 bit positions.

Application notes: An example of an arithmetic left shift is: If workspace register 10 contains
the value 13574 , then the instruction

SLA 10,5

changes the contents of workspace register 10 to 6AEQ;s . The logical greater than, arithmetic
greater than, and overflow status bits set while the equal and carry status bits reset. Refer to a
subsequent paragraph for additional examples.

3.83 SHIFT RIGHT LOGICAL SRL
Op Code: 0900

Addressing mode: Format V

Format:

o 1 2 314 5 6 7 8 9 10 1112 13 14 15
ot LI
ojojojoj1jojoy}1 (o4 w

Syntax definition:
[<label>]b ... SRLb ... <wa><scnt>b . .. [<comment>]
Example:

LABEL SRL 3,7 SHIFT WSR3 RIGHT SEVEN BIT LOCATIONS

Definition: Shift the contents of the specified workspace register to the right for the specified
number of bits while filling the vacated bit positions with logic zero values.

Status bits affected: Logical greater than, arithmetic greater than, equal, and carry.

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 | I |
L>|a>|ea | c lovior| x |Pr MF/ //2'/ N RRIPT
/

A AAA

Execution results: Shift the bits of (wa) to the right, filling the vacated bit positions with zeros.
When SCNT is greater than 0, shift the number of bit positions specified by SCNT. If SCNT is
equal to 0, shift the number of bit positions contained in the four least significant bits of
workspace register 0. When SCNT and the four least significant bits of workspace register O
both contain 0, shift 16 bit positions.

3-86 Texas Instruments Incorporated

o
{[@’p 943441-9701

Application notes: An example of a logical right shift is: If workspace register zero contains the
value FFEF ¢ , then the instruction

SRL 0,3

Changes the contents of workspace register O to 1FFD;q . The logical greater than, arithmetic
greater than and carry status bits set while the equal status bit resets. Additional examples are
shown in a subsequent paragraph.

3.84 SHIFT RIGHT CIRCULAR SRC
Op Code: 0B0OO

Addressing mode: Format V

Format:

o 1 2 314 5 6 7 8 9 10 11412 13 14 15
LEN | I 1 LA
ojojo 0 1 o] 1 1 c w

Syntax definition:
[<label>]b ... SRCbh ... <wa><scnt>b ... [<comment>]
Example:

LABEL SRC 7,16-3 SHIFT CIRC WSR7 3 BIT LOCATIONS LEFT

Definition: Shift the specified workspace register to the right for the specified number of bit
positions while filling vacated bit positions with the bit shifted out of position 15.

Status bits affected: Logical greater than, arithmetic greater than, equal, and carry.

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

77 /7 1 1

L>A>lEQ]| c |ov]|oP| X | PR INTERRUPT
Q v |oP MF / TERRL

Execution results: Shift the bits of (wa) to the right, filling the vacated bit positions with the bits
shifted out at the right. When SCNT is greater than 0, shift the number of bit positions specified
by SCNT. If SCNT is equal to 0, shift the number of bit positions contained in the four least
significant bits of workspace register 0. When SCNT and the four least significant bits of work-
space register O both contain 0, shift 16 bit positions.

3-87 Texas Instruments Incorporated

o .
%‘_@Fp 943441-9701

Application notes: An example of a circular right shift is: If workspace register 2 contains the
value FFEF ¢ , then the instruction

SRC 2,7
changes the contents of workspace register 2 to DFFF 4. The logical greater than and carry status
bits set while the arithmetic greater than and equal status bits reset. Shift left circular is not imple-

mented since SRC can perform the same function: SLC x,n = SRC x,16-n. Refer to a subsequent
paragraph for additional application notes.

3.85 EXTENDED OPERATION XOP
Op Code: 2C00

Addressing mode: Format IX

Format:

o 1 2 34 5 6 7,8 9 10 11412 13 14 15
| L) ! T | T 71
ojoj 1o} 1}]1 D Ts S

Syntax definition:

[<label>]b ... XOPb ... <ga,><op>b....[<comment>]

Example:

LABEL XOP @BUFF(4),12 DO XOP12 ON WORD OF BUFFER SPECIFIED
BY WSR4

Definition: The op field specifies the extended operation transfer vector in memory. The two
memory words at that location contain the WP contents and PC contents for the software
implemented XOP instruction subroutine. The memory location for these two words is derived
by multiplying the op field contents by four and adding the product to 0040,,. Note that the
two memory words at this location must contain the necessary WP and PC values prior to the
XOP instruction execution for software implemented instructions.

The effective address of the source operand is placed in workspace register 11 of the XOP
workspace. The WP contents are placed in workspace register 13 of the XOP workspace. The PC
contents are placed in workspace register 14 of the XOP workspace. The ST contents are placed
in workspace register 15 of the XOP workspace. The ST contents are placed in workspace
register 15 of the XOP workspace. Control is transferred to the new PC address and the software
implemented XOP is executed. (XOP execution of software implemented XOP instruction is
similar to an interrupt trap execution.)

3-88 Texas Instruments Incorporated

o
(’@ 943441-9701

Model 990/10 Computer: An extended operation may be alternatively implemented by
user-supplied hardware. When hardware is connected for the specified operation no context
switch occurs, and the hardware performs the operation. When a Model 990/10 Computer
performs a software-implemented extended operation, the Privileged Mode bit is set to 0. When
the map option is included, the Map File bit is set to O also.

Status bits affected: Extended operation

(o] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

7 T 1T
INTERRUPT
L>A>l EQ| c |OV|OP| X |PR MF///// MASK

A A A

Execution results: ga_—> (workspace register 11)
(0040, + (0p)*4) ~ (WP)
(00424 + (op)*4) - (PC)
(WP) - (workspace register 13)
(PC) —» (workspace register 14)
(ST) > (workspace register 15)
0~ ST8
0—ST7 } 990/10
1~ ST6

Application notes: Refer to a subsequent paragraph for a detailed example of the execution of a
software implemented XOP instruction.

3.86 LONG DISTANCE ADDRESSING INSTRUCTIONS
The long distance addressing instructions are available in the Model 990/10 Computer with the

map option. These instructions enable accesses outside of the current memory map for a single
address. The instructions are:

Instruction Mnemonic Paragraph
Long Distance Source LDS 3.87
Long Distance Destination LDD 3.88

3.87 LONG DISTANCE SOURCE LDS
Op Code: 0780
Addressing mode: Format VI

Format:

o 1 2 3,4 5 6 7,8 9 10 11,12 13 14 15

1 | LI
ojojojo]jo}1 1 1 110 Ts S

3-89 Texas Instruments Incorporated

o
%@ 9434419701

Syntax definition:

[<label>]b ...LDSb ...<ga,>b ... [<comment>]

Example:

LABEL LDS @SIXWD PREPARE TO USE LONG DISTANCE SOURCE

Definition: Place the contents of a six-word area of memory into map file 2, and use map file 2
in developing the source address of the next instruction. The instruction places the contents of
the six-word memory area at the effective address of the source operand in map file 2 in all
cases; the map file is not used when the source address of the following instruction i.s a
workspace register address, or when the following instruction is a B, BL, or BLWP instruction.
The instruction inhibits all interrupts until the following instruction is executed.

Status bits affected: None.

(o] 1 2 3 4 5 6 7 8 9 10 11 1213 14 15

/ I LI
INTERRUPT
w>{a>|ea| ¢ |ov|or| x |Pr|MF / TERRL

Execution results: When Privileged Mode bit (bit 7 of ST register) is set to 0: The contents of a
six-word area at address ga, are placed in map file 2, and the source address of the following
instruction is mapped with map file 2. (If T of the following instruction is equal to 0, or if
following instruction is B, BL, or BLWP instruction, new map is not used.)

When Privileged Mode bit is set to 1: Error interrupt.

Application notes: Use the LDS instruction in the Privileged Mode to access an address outside
of the current map. The contents of the six-word area are placed in the L1, L2, L3, B1, B2, and
B3 registers of map file 2 as shown in paragraph 3.63. The address to which the map file applies
is the source address of the next instruction. Placing an LDS instruction prior to an instruction
that has no destination operand, or an instruction having a workspace register address for the
destination operand does not result in an access outside of the current map.

3.88 LONG DISTANCE DESTINATION LDD

Op Code: 07CO

Addressing mode: Format VI
Format:
0O 1t 2 3,4 5 6 7,8 9 10 11,12 13 14 15

{ 1 1 |
0Opojojojo}1 1 1 1 1 Ts S

3-90 Texas /nstruments Incorporated

943441-9701

Syntax definition:

[<label>]b ...LDDb ...<ga,>b ... [<comment>]

Example:
LABEL LDD @SIXWD PREPARE TO STORE LONG DISTANCE

Definition: Place the contents of a six-word area of memory into map file 2, and use map file 2
in developing the destination address of the next instruction. The instruction places the contents
of the six-word memory area at the effective address of the source operand in map file 2 in all
cases; the map file is not used when the following instruction has no destination operand, or
when the destination address has a workspace register address. The instruction inhibits all
interrupts until the following instruction is executed.

Status bits affected: None.

(0] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T 1
L>(A>| ea| c|ov]|or| x |PrR MF/ INTERRUPT
/i MASK

Execution results: When Privileged Mode bit (bit 7 of ST register) is set to 0: the contents of a
six-word area at address gag are placed in map file 2, and the destination address of the following
instruction is mapped with map file 2. (If T4 of the following instruction is equal to O, or if the
destination address is a workspace register address, the new map is not used.)

When Privileged Mode bit is set to 1: Error interrupt.

Application notes: Use the LDD instruction in the Privileged Mode to access an address outside
of the current map. The contents of the six-word area are placed in the L1, L2, L3, B1, B2, and
B3 registers of map file 2 as shown in paragraph 3.63. The address to which the map file applies
is the destination address of the next instruction. Placing an LDD instruction prior to an
instruction that has no destination operand, or an instruction having a workspace register address
for the destination operand does not result in an access outside of the current map.

3.89 PROGRAMMING EXAMPLES

The remaining paragraphs of this section describe programming examples that supplement the appli-
cation notes in the instruction descriptions. Programming examples are only included for those
instructions for which the application notes require additional explanation.

391 Texas Instruments Incorporated

943441-9701

3.89.1 ABS INSTRUCTION. Since the ABS instruction compares the operand to zero prior to any
modification of the operand, the ABS instruction may be used to test a switch, The following
example program illustrates this use of the instruction. A word of memory at location SWITCH
is used to indicate whether or not a subroutine at location SUBR is being executed. Subroutine
SUBR is used: by several programs, but only one may use it at a time. When the subroutine is in
use, location SWITCH contains one, and other programs may not transfer control to location
SUBR. When control returns from the subroutine, location SWITCH is set to -1, making subroutine
SUBR available again.

The first instruction would be used in the initialization portion, to make the subroutine available
initially. The four instructions at location TEST would be included in each program that calls
the subroutine. These instructions branch to location CALL when location SWITCH contains -1,
setting location SWITCH to +1 after testing its value. Any attempt to access the subroutine before
its completion results in the program entering a delay mode, retesting following each delay interval.

A BL instruction at location CALL transfers control to the subroutine, and stores the address of
the SETO instruction in workspace register 11. When the subroutine returns control, the SETO
instruction sets location SWITCH to -1, so that the next time any calling program tests the location,
a transfer to the subroutine occurs. The code is as follows.

SETO @SWITCH INITIALIZES SWITCH NEGATIVE!
TEST ABS @SWITCH TEST SWITCH?

JLT CALL IF NEGATIVE, TRANSFER3

XOP @IMDLY,15 IF NOT, WAIT®

IMP TEST TEST AGAIN
CALL BL @SUBR USE SUBROUTINE

SETO @SWITCH RESET SWITCHS
SUBR SUBROUTINE ENTRY

B *11 SUBROUTINE RETURN
SWITCH DATA 0 STORAGE AREA FOR SWITCH
TIMDLY DATA >200,10 TIME DELAY SUPERVISOR

CALL BLOCK
NOTE

1. Set SWITCH to all ones, making it negative.

2. If SWITCH negative, set to positive value to prevent
subsequent entry.

3. If value in SWITCH was negative, the JLT instruction
transfers control.

4. Supervisor call pointing to data block defining time delay request.
Used to wait for a time period before retesting SWITCH. While in

3.92 Texas Instruments Incorporated

[e]
@ 9434419701

a time delay, other programs can be executed, thus leaving SUBR
available for use. Time Delay Supervisor calls are supported by the
DX10 and TX990 Operating Systems. Reference either the DX10
Operating System Programmer’s Guide or the TX990 Operating
System Programmer’s Guide.

5. Upon return, reset SWITCH to negative value to permit future use.

3.89.2 SHIFTING INSTRUCTIONS. There are 4 shifting instructions available with the Model
990 Computer that permit the user to shift the contents of a specified workspace register from
one to sixteen consecutive bit positions.

The four shifting instructions are:
® Shift Left Arithmetic (SLA)
® Shift Right Arithmetic (SRA)
o Shift Right Circular (SRC)
® Shift Right Logical (SRL).

3.89.2.1 Shift Left Arithmetic. This shifting instruction shifts the indicated workspace register a
specified number of bits to the left. For example, the instruction

SLA 5,1

would shift the contents of register five one bit to the left. The carry status bit contains the value
shifted out of bit position zero and the jump instructions JOC and JNC permit the user to test the
shifted bit. The overflow status bit sets when the sign of the contents of the register being shifted
changes during the shift operation. If register five contained

0100111100000111
before the above instruction, the results of the instruction execution would be
1001111000001110

and the.carry status bit would contain a zero and the overflow status bit would set because the con-
tents changed from positive to negative (bit zero equal to zero changed to equal to one). If this shift
sign change is important, the user could insert a JNO instruction to test the overflow condition. If
there is no overflow, control transfers to the normal program sequence. Otherwise, the next instruc-
tion is then executed.

It is possible to construct double-length shifts with the SLA instruction, which could shift two or
more words in a workspace. The following code will shift two consecutive workspace registers.

® Assumptions:
1. The contents of workspace registers 1 and 2 are shifted one bit position.
2. Additional code could be included to execute the code once for each bit shift re-
quired, when shifts of more than one bit position are required. The additional code

must include a means of testing that the desired number of shifts are performed.

3. Additional code tests for overflow from workspace register 1, to branch to an error
routine at location ERR when overflow occurs.

3-93 Texas Instruments Incorporated

(e}
{@ 943441-9701

® Code:

SLA 1,1 SHIFT W1 ONE BIT

JoC ERR

SLA 2,1 SHIFT W2 ONE BIT

INC EXIT TRANSFER IF NO CARRY

INC 1 TRANSFER BIT FROM W2 to W1
EXIT INC 1 CONTINUE WITH PROGRAM
ERR NOP

3.89.2.2 Shift Right Arithmetic. This shifting instruction shifts the contents of a workspace
register right a specified number of bits and extends the sign bit (bit zero) at the logic level that
existed prior to the shift. The carry status bit contains the last bit shifted out of bit 15 of the
workspace register. For example, the instruction

SRA 53

would shift the contents of workspace register five three bits to the right. If workspace register
five contained

1100000011110000

prior to the shift, the results of this instruction would be
1111100000011110

and the carry status bit would contain a logic zero for the last shifted bit.

3.89.2.3 Shift Right Circular. The SRC instruction shifts the contents of a workspace register a
specified number of bits to the right and transfers the bits shifted off the right end of the
workspace into the left end of the workspace register. The carry status bit contains the last bit
shifted out of bit 15 of the workspace register. For example, the instruction

SRC 6,5

would shift the contents of register six, five bits to the right and transfer the five bits shifted off
the right end to the first five bits of workspace register six. For this example, if workspace register
six contained

1100110011110101
before this instruction was executed, workspace register six would contain
1010111001100111

and the carry status bit would contain a logic one from the last bit shifted in workspace register
SiX.

3-94 Texas Instruments Incorporated

[e]
@ 943441-9701

3.89.2.4 Shift Right Logical. The SRL instruction shifts the contents of a special workspace
register to the right for a specified number of bits and fills the vacated bit positions on the left end
of the workspace with zeros. The carry status bit contains the last bit shifted out of bit 15 of the
workspace register. For example, the instruction.

SRL 5,8

would shift the contents of workspace register five eight bits to the right and would fill the first
eight bits of the word with zeros. If the workspace register contained

1000100011111000
prior to the SRL instruction, the contents of workspace register five would be
0000000010001000

and the carry status bit would contain a logic one for the last bit shifted off the right end of
workspace register five.

3.89.3 INCREMENTING AND DECREMENTING. There are two decrement and two increment
instructions that may be used for various types of control when passing through a loop, indexing
through an array, or operating within a group of instructions.

The four incrementing and decrementing instructions available for use with the 990 Computer
are:

® Decrement (DEC)

° Decrement By Two (DECT)
® Increment (INC)

® Increment By Two (INCT).

The increment and decrement instructions are useful for indexing byte arrays and for counting
byte operations. The increment and decrement by two instructions are useful for indexing word
arrays and for counting word operations. The following paragraphs provide some examples of
these operations.

3.89.3.1 Increment Instruction Example. Since the INC instruction is useful in byte operations,
an example problem searches a character array for a character with odd parity. The last character
contains zero to terminate the search. Begin the search at the lowest address of the array and
maintain an index in a workspace register. The character array for this example is called Al (also
the relocatable address of the array). The code for a solution to this problem is:

SETO 1 SET COUNTER INDEX TO -1
SEARCH INC 1 INCREMENT INDEX

MOVB @A1(1),2 GET CHARACTER

JOP ODDP JUMP IF FOUND

JNE SEARCH CONTINUE SEARCH IF NOT ZERO

ODDP

3.95 Texas /nstruments Incorporated

o]
J\@? 5434419701

3.89.3.2 Decrement Instruction Example. To illustrate the use of a DEC instruction in a byte
array, this example problem inverts a byte array and places the results in another array of the
same size. This example inverts a 26-character array called Al and places the results in array A2.
The contents of Al are defined with a data TEXT statement to be as follows:

Al TEXT ‘ABCDEFGHIJKLMNOPQRSTUVWXYZ’
Array A2 is defined with the BSS statement as follows:

A2 BSS 26

The sample code for the solution is:

LI 5,26 COUNTER AND INDEX FOR Al
LI 4,A2 ADDRESS OF A2
INVRT MOVB @A1(5),*4+ INVERT ARRAY!
DEC 5 REDUCE COUNTER
JGT INVRT CONTINUE IF NOT COMPLETE
NOTE

1. @AI1(5) addresses elements of array Al in descending order as
workspace register five is decremented. *4+ addresses array
A2 in ascending order as workspace register four is
incremented.

Array A2 would contain the following as a result of executing this sequence of code:

A2 ZYXWVUTSRQPONMLKIJIHGFEDCBA

Even though the result of this sequence of code is trivial, the example use of the MOVB
instruction, with indexing by workspace register five, and the result incrementally placed into A2
with the auto-increment function can be useful in other applications.

The JGT instruction used to terminate the loop allows workspace register 5 to serve both as a
counter and as an index register.

A special quality of the DEC instruction allows the programmer to simulate a jump greater than or
equal to zero instruction. Since DEC always sets the carry status bit except when changing from
zero to minus one, it can be used in conjunction with a JOC instruction to form a JGE loop. The
example below performs the same function as the preceding example:

Al TEXT ‘ABCDEFGHIJKLMNOPQRSTUVWXYZ’

A2 BSS 26
LI 5,25 COUNTER AND INDEX FOR Alf
LI 4,A2 ADDRESS OF A2

INVRT MOVB @AI1(5),*4+ INVERT ARRAY
DEC 5 REDUCE COUNTER

JOC INVRT CONTINUE IF NOT COMPLETE

3-96 Texas Instruments Incorporated

(o]
{@ 0434419701

TNOTE

Since the use of JOC makes the loop execute when the counter is
zero, the counter is initialized to 25 rather than 26 as in the preced-
ing example.

3.89.3.3 Decrement By Two Instruction Example. To illustrate the use of a DECT instruction
in processing word arrays, the example problem adds the elements of a word array to the
elements of another word array and places the results in the second array. The contents of the
two arrays are initialized as follows:

Al DATA 500,300,800,1000,1200,498,650,3,27,0
A2 DATA 36,192,517,29,315,807,290,40,130,1320

The sample code that adds the two arrays is as follows:

LI 4,20 INITIALIZE COUNTER!
SUMS A @A1-2(4),@A2-2(4) ADD ARRAYS?
DECT 4 DECREMENT COUNTER BY TWO
JGT SUMS REPEAT ADDITION
NOTE

Addressing of the two arrays through the use of the @ sign is
indexed by the counter, which is decremented after each
addition.

The contents of the A2 array after the addition process is as follows:

A2 536,492,1317,1029,1515,1305,940,43,157,1320

There is another method by which this addition process may be accomplished. This method is
shown in the following code:

LI 4,10 INITIALIZE COUNTER!
LI 5,A1-2 LOAD ADDRESS OF A12
LI 6,A2-2 LOAD ADDRESS OF A22
SUMS A *5+,%6+ ADD ARRAYS3
DEC 4 DECREMENT COUNTER
JGT SUMS REPEAT ADDITION#*
NOTE

1. Counter preset to 10 (the number of elements in the array).

2. This address will be incremented each time an addition takes
place. The increment is via the auto-increment function (+).

3. The * indicates that the contents of the register is to be used
as an address and the + indicates that it will be automatically
incremented by two each time the instruction is executed.

397 Texas Instruments Incorporated

o
%@ 943441-9701

4. Workspace register four will only be greater than zero for ten
executions of the DEC instruction and control will be
transferred to SUMS nine times after the initial execution.

The contents of array A2 are the same for this method as for the first.

3.89.4 SUBROUTINES. There are two types of subroutine linkage available with the Model 990
Computer. One type uses the same set of workspace registers that the calling routine uses, and is
called a common workspace subroutine. The BL instruction stores the contents of the program
counter and transfers control to the subroutine. Another type is called a context switch
subroutine. The BLWP instruction stores the contents of the WP register, the program counter,
and the status register. The instruction makes the subroutine workspace active and transfers
control to the subroutine.

3.89.4.1 Common Workspace Subroutine Example. Figure 3-1 shows an example of memory .
contents prior to a BL call to a subroutine. The contents of workspace register 11 is not
important to the main routine. When the BL instruction is executed, the CPU stores the contents
of the PC in workspace register 11 of the main routine and transfers control to the instruction
located at the address indicated by the operand of the BL instruction. This type of subroutine
uses the main program workspace. Figure 3-2 shows the memory contents after the call to the
subroutine with the BL instruction.

When the instruction at location 11304¢ is executed (BL @RAD), the present contents of the
PC, which point to the next instruction, are saved in workspace register 11. WR11 would then
contain an address of 1134, . The PC is then loaded with the address of label RAD, which is
address 2220, . This example subroutine returns to the main program with a branch to the
address in WR11 (B *11).

3.89.4.2 Context Switch Subroutine Example. Figure 3-3 shows the example memory contents
prior to the call to the subroutine. The contents of workspace registers 13, 14, and 15 are not
significant. When the BLWP instruction is executed at location 0300, there is a context switch
from the main program to the subroutine. The context switch then places the main program PC,
WP, and ST register contents in workspace registers 13, 14, and 15 of the subroutine. This saves
the environment of the main program for return. The operand of the BLWP instruction specifies
that the address vector for the context switch is in workspace registers 5 and 6. The address in
workspace register 5 is placed in the WP register and the address in workspace register 6 is placed
in the PC.

After the instruction at location 0300 is executed, the memory contents are shown in figure 3-4.
This illustration shows the subroutine in control, with the WP pointing to the subroutine
workspace and the PC pointing to the first instruction of the subroutine. The contents of the
status register are not reset prior to the execution of the first instruction of the subroutine, so
the status indicated will actually be the status of the main program execution. A subroutine may
then execute in accordance with the status of the main program.

This example subroutine contains a RTWP return from the subroutine. The results of executing
the RTWP instruction are shown in figure 3-5. Control is transferred to the main program at the
instruction following the BLWP to the subroutine. The status register is restored from workspace
register 15 and the workspace pointer points to the workspace of the main program.

3-98 Texas Instruments Incorporated

943441-9701

MEMORY MEMORY
ADDRESS
HARDWARE (#0100 MAIN PROGRAM WORKSPACE (WRO)
REGISTERS |
3 :U ceee :L’
WP 0100 - - T ol i
(WR11)
:" soee N
PC 1134 -0 - o
' 1020 4 MAIN PROGRAM ,«L
R
or [EXECUTION I a0 BL @RAD
STATUS lemi13a A, JNE FIX
ﬁhl :
: T
2220 RADess
SUBROUTINE AREA
o

L.
d

(A)128615A

Figure 3-1. Common Workspace Subroutine Example

MEMORY MEMORY
ADDRESS
HARDWARE #0100 (WRO)
REGISTER |
~N A
WP 0100 —— Y% e ~
1134 (WR11)
n" e o o
PC 2220 - - - W °
| 1020 2L MAIN PROGRAM
, 4
‘ EXECUTION | 1130 BL_@RAD
ST | 1134 JNE FIX
STATUS ’ ~,
|

—0

L o= 2220 RAD

SUBROUTINE AREA

B *11

~loavavala—atoa

M RGaIale

(A)128616A

Figure 3-2. PC Contents after BL Instruction Execution

3.99 Texas Instruments Incorporated

[e]
%@ 943441-9701

MEMORY

MEMORY
ADDRESS ? ?
|-.Oloo (WRO)
|
' :" oo o 0 2;
|
| 0220 (WRS5)
|
! 0700 (WRS)
|
l :: o0 o0 ::
: 0220 (WR0)S
|
| ~ cees -
HARDWARE |
REGISTERS _: WR1D)S
WP o100 - WR14)S
(WR15)S
pc | 0302 - -
r- —: nf; ® 0o o0 ATJ
| ozeo,L MAIN PROGRAM AREA '_L
ST EXECUTING | :
)
STATUS I 0300 BLWP 5
Lgwo302 :
L] B
L]
(WRn) =WORKSPACE REGISTER '}' . W“v
OF MAIN PROGRAM
START
(WRn)S = WORKSPACE REGISTER 0700 |)
OF SUBROUTINE SUBROUTINE AREA A
L] ’!u

RTWP

A

(A)132205

Figure 3-3. Context Switch Subroutine Example

When the calling program’s workspace contains data for the subroutine, this data may be
obtained by using the indexed memory address mode indexed by workspace register 13. The
address used is equal to two times the number of the workspace register that contains the
desired data. The following instruction is an example:

MOV @10(13),R10

3.89.4.3 Passing Data to Subroutines. When a subroutine is entered with a context switch (BLWP)
data may be passed using either the contents of workspace register 13 or 14 of the subroutine
workspace. Workspace register 13 contains the memory address of the calling program’s workspace.
The calling program’s workspace may contain data to be passed to the subroutine. Workspace
register 14 contains the memory address of the next memory location following the BLWP in-
struction. This location and following locations may contain data to be passed to the subroutine.

3-100 Texas Instruments Incorporated

o]
{@b} 943441-9701

MEMORY
MEMOR
ADDRESS ? Y
0100 (WRO0)
~ coce q:
0220 (WR5)
0700 (WRS6)
~N ~N
Lo 2 ﬂv
40220 (WRO0)S
|
~ ~
HARDWARE : ~ coee A
REGISTERS |
| 0100 (WR13)S
WP 0220 - — —
0302 (WR14)S
EXECUTING STATUS (WR15)sS
PC 0700 —— — 5 ~

MAIN PROGRAM AREA
(]

I WV
| oze0q,
|
o7 EXECUTING | :
STATUS | 0300 BLWP 5
|)
|
|
' T

e

SUBROUTINE AREA
L]

(]
RTWP

(A)128618A e

I-—>o7oo’l‘ START o6 oo

b T
149

Figure 34. After Execution of BLWP Instruction

The contents of workspace register 5 of the calling progfam’s workspace (bytes 10 and 11
relative to the workspace address) are placed in workspace register 10 of the subroutine
workspace. This method of data access by subroutines is appropriate for re-entrant procedures.

The following example shows passing of data to a subroutine by placing the data following the
BLWP instruction:

BLWP @SUB SUBROUTINE CALL
DATA \%! DATA
DATA V2 DATA
DATA V3 DATA

JEQ ERROR RETURN FROM SUBROUTINE, TEST
. FOR ERROR (Subroutine sets the
EQUAL status bit to one for error.)

3-101 Texas Instruments Incorporated

(o]
{—@-‘p 943441-9701

MEMORY
MEMORY
ADDRESS ? é
r 80100 (WRO)
I Pa ~
' "5 [XX N ,.:
l 0220 (WR5)
HARDWARE I
REGISTERS | 0700 (WRS6)
WP 0100 t"“" ~ ceee Y
N 0200 (WR0)S
N
— - A
PC 0302 ‘K -l \\ AB eeee 2:
~ |\ N
I~ - 0100 (WR13)S
or [EXECUTING] | ~
—
I T~
| EXECUTING STATUS (WR15)S
~ ~
' ”5 XY} ﬁ:
|
0263. MAIN PROGRAM AREA ~
| A o AY)
I r’ . =~
[]
[]
' 0300 BLWP 5
0302 : |
la ° v
(2} . N
0700 S;TART e oo
LA o la
AV SUBROUTINE AREA ~
[)
[
[)
RTWP

Figure 3-5. After Return Using the RTWP Instruction

(A)132206
SUB DATA
SUBWS BSS
SUBPRG MOV
MOV
MOV
RTWP

SUBWS,SUBPRG

32

*14+,1
*14+2
*14+3

ENTRY POINT FOR SUB
AND SUB WRKSPCE

FETCH V1 PLACED IN WRI1
FETCH V2 PLACED IN WR2
FETCH V3 PLACED IN WR3

RETURN FROM SUBROUTINE

3-102

Texas Instruments Incorporated

o]
(_'_@E; 943441-9701

The three MOV instructions retrieve the variables from the main program module and place them
in workspace registers one, two, and three of the subroutine.

When the BLWP instruction is executed, the main program module status is stored in workspace
register 15 of the subroutine. If the subroutine returns with a RTWP instruction, this status is
placed in the status register after the RTWP instruction is executed. The subroutine may alter
the status register .contents prior to executing the RTWP instruction. The calling program can
then test the appropriate bit of the status word, the equal bit in this example, with jump
instructions.

A BL instruction can also be used to pass parameters to a subroutine. When using this instruction,
the originating PC value is placed in workspace register 11. Therefore, the subroutine must fetch the
parameters relative to the contents of workspace register 11 rather than the contents of workspace
register 14 as in the BLWP example. The following example demonstrates parameter passing with
a BL instruction:

BL @SUBR BRANCH TO SUBROUTINE

DATA PARMI1,PARM2 PASSED PARAMETERS STORED IN NEXT TWO
MEMORY WORDS

JEQ ERROR TEST FOR ERROR (Subroutine sets the Equal
status bit to one for error)

SUBR EQU $

MOV *R11+,R0O GET VALUE OF FIRST PARAMETER AND PUT
IN WRO
MOV *R11+,R1 GET VALUE OF SECOND PARAMETER AND PUT

IN WRI1 (R11 is incremented past the locations of
the two data words and now indicates the address of
the next instruction in main program)

B *11

3.89.5 INTERRUPTS. Either eight (990/4, TMS 9900) or sixteen (990/10) priority vectored in-
terrupt levels are implemented in the Model 990 Computer. The contents of the interrupt mask
in the status register define the interrupt level. Low-order memory, address as O through 3F, is
reserved for transfer vectors used by the interrupts (table 3-4). When an interrupt request at an
enabled level occurs, the contents of the transfer vector corresponding to the level are used to enter
a subroutine to serve the interrupt.

The reserved memory locations are shown on the memory map (figure 2-3). Two memory words
are reserved for each interrupt level. The first of the two words for a given level contains an
address that is placed in the WP when the interrupt is requested and enabled. The second contains
the entry point of the interrupt subroutine for that level; its contents are placed in the PC. If an
executive is in use, it places the transfer vectors for pre-defined interrupts and for devices supported
by the executive in the reserved memory locations. The user need not be concerned with transfer
vectors for interrupts except for programs that do not execute under an executive or for external
devices not supported by the executive. Similarly, the executive includes interrupt subroutines
for pre-defined interrupts and for supported devices. The user must supply interrupt subroutines
when the executive is not used and for devices that are not supported by the executive.

3-103 Texas Instruments Incorporated

943441-9701

Memory Address

0000
0002
0004
0006
0008
000A
000C
000E
0010
0012
0014

0016
0018
001A
001C

001E
0020
0022
0024
0026
0028
002A
002C
002E
0030
0032
0034
0036
0038
003A
003C

003E

Interrupt Vector

“ A R W WD NN == O O

N O N »n

O O 0 00 2

O e S T e e e T
“wv A PpA W W N = = O O

15

Table 3-4. Interrupt Vector Addresses
Vector Contents

WP address for interrupt O
PC address for interrupt O
WP address for interrupt 1
PC address for interrupt 1
WP address for interrupt 2
PC address for interrupt 2
WP address for interrupt 3
PC address for interrupt 3
WP address for interrupt 4
PC address for interrupt 4
WP address for interrupt 5

PC address for interrupt 5
WP address for interrupt 6
PC address for interrupt 6
WP address for interrupt 7

PC address for interrupt 7
WP address for interrupt 8
PC address for interrupt 8
WP address for interrupt 9
PC address for interrupt 9
WP address for interrupt 10
PC address for interrupt 10
WP address for interrupt 11
PC address for interrupt 11
WP address for interrupt 12
PC address for interrupt 12
WP address for interrupt 13
PC address for interrupt 13
WP address for interrupt 14
PC address for interrupt 14
WP address for interrupt 15

PC address for interrupt 15

Typical Assignment

Power On
Power Failing
Error

External Device
External Device

External Device or
Line Frequency Clock

External Device

External Device or Line
Frequency Clock (990/4)

External Device
External Device
External Device
External Device
External Device
Externél Devicg
External Device

External Device o
Frequency Clock (990/ 10)

3.89.5.1 General Interrupt Structure. The interrupt levels, numbered O through 15, determine -
the interrupt priority. Level O has the highest priority and level 15 the lowest. The contents of
the interrupt mask, bits 12 through 15 of the ST register, determine the enabled interrupt levels.
Table 3-5 shows the interrupt levels enabled by the contents of the interrupt mask. Note that
level O cannot be disabled since the level contained in the mask is always enabled.

3-104

Texas /nstruments Incorporated

943441-9701

Table 3-5. Interrupt Mask

Status Register Mask Set
By Interrupt

Bits 12-15 Interrupt Levels Enabled Level
0 0 0,1

1 0,1 2

2 0,1,2 3

3 0,1,2,3 4

4 0,1,2,3,4 5

5 0,1,2,3,4,5 6

6 0,1,2,3,4,5,6 7

7 0,1,2,3,4,5,6,7 8

8 0,1,2,3,4,5,6,7,8 9

9 0,1,2,3,4,5,6,7,8,9 10

A 0,1,2,3,4,5,6,7,8,9,10 11

B 0,1,2,3,4,5,6,7,8,9,10, 11 12

C 0,1,2,3,4,5,6,7,8,9,10,11, 12 13

D 0,1,2,3,4,5,6,7,8,9,10,11, 12,13 14

E 0,1,2,3,4,5,6,7,8,9,10,11, 12,13, 14 15

F 0,1,2,3,4,5,6,7,8,9,10,11, 12,13, 14,15 -

3.89.5.2 Interrupt Sequence. The level of the highest priority pending interrupt request is
continually compared with the interrupt mask contents. When the level of the pending request is
equal to or less than the mask contents (equal or higher priority) the interrupt is taken after the
currently executing instruction has completed.

The workspace defined for the interrupt subroutine becomes active and the entry point is placed
in the program counter. The CPU also stores the previous contents of the WP register in the new
workspace register 13, the previous contents of the program counter in the new workspace
register 14, and the contents of the ST register in the new workspace register 15. This preserves
the program environment existing when the interrupt is taken. No additional interrupt is taken
until the first instruction of the interrupt subroutine is completed. Thereafter, interrupts of
higher priority can interrupt processing of the current interrupt.

After storing the ST register contents, the CPU subtracts one from the level of the interrupt
taken and places the result in the interrupt mask, disabling the current interrupt level, and
leaving only higher priority levels enabled. Should a higher priority level interrupt be taken, and
the original interrupt request remain active when the return from the higher priority level
interrupt subroutine occurs, the original interrupt remains disabled and is not taken again.
Control returns to the interrupt subroutine at the point at which the higher priority interrupt
occurred.

3-105 Texas Instruments Incorporated

o
q_r@p 943441-9701

3.89.5.3 Pre-Defined Interrupts. Level O is pre-defined as the power on interrupt in the TMS 9900
Microprocessor and all Model 990 Computers. The other pre-defined levels vary in the Model 990
Computers. Refer to the Model 990 Computer Hardware Reference Manual for the levels that are
pre-detined in each model. The total number of levels is 8 in the 990/4 Computer and is 16 in the
Model 990/10 or TMS 9900 Microprocessor. The available interrupt levels that are not pre-defined
are available for assignment to devices on the CRU, or on the CRU and the TILINE in the case of
the Model 990/10. Several interrupt lines may be combined at one level. Any interrupt request
must remain active until the interrupt is taken, and must be reset before the interrupt subroutine
is completed.

3.89.5.4 CPU Error Interrupt. A CPU error interrupt is defined as an interrupt level two. On the
990/4 Computer, two errors cause a CPU error interrupt: a memory parity error or a memory
protection violation. Either an SBO or SBZ instruction to bit 12 of the Programmer’s panel base
address clears a memory parity error interrupt. The base address is selected by placing a 1FEQ,4
in register 12.

If the optional write-protect hardware is installed, a CPU interrupt may be caused by a write-
protect violation as well as a memory parity error. To determine which condition caused the
interrupt, the bit at CRU base address 1FAO,4 can be sensed. If the bit is zero, a parity error
has occurred and can be cleared as previously described. If it is a one, a write-protect error has
occurred. This error is cleared by setting any of the sixteen bits at CRU base address 1FAQ,¢4 to
a one.

On the 990/10 Computer, any one of five conditions can cause a CPU error interrupt. Table 3-6
contains a list of these conditions. To isolate the cause of the error, read the CRU Error Register.
The CRU register is addressed by placing a 1FCO,¢ in register 12. An individual error is cleared by
addressing the appropriate CRU bits as listed in table 3-6. The memory mapping error is cleared by
addressing bit 4 at the CRU base address 1FAQ,q,, the CRU base address used to control the
mapping hardware. Either the SBZ or SBO instruction is used to clear the interrupts. To allow
software compatability, the memory parity error interrupt in the 990/10 can also be cleared in
the manner described for the 990/4.

3.89.5.5 Interrupt Processing Example. Refer to figure 3-6 for the following discussion. Prior to
the example interrupt (eight for this example), the PC contains 1022 for the executing program,
the WP contains 780 for the executing program workspace, and the ST register contains the
executing program status. At this point, the example external interrupt, number eight, occurs
and there is a context switch from the executing program to the interrupt subroutine. The two
words of memory required for external interrupt eight are found in memory locations 0020 and
0022. Figure 3-6 shows that these two words of memory contain 0270 and 0290, respectively,
for the WP and PC that are to be used by the interrupt subroutine.

At the point of interrupt, the CPU transfers the present WP, PC, and ST register contents to the
interrupt routine workspace in workspace registers 13, 14 and 15, respectively. Once these are
stored, the CPU transfers the interrupt subroutine WP and PC into the WP and PC registers.

When these actions are completed, the contents of memory and the registers are as shown in
figure 3-7.

After the completion of the interrupt subroutine, the CPU restores the executing program WP,
PC, and ST registers. Completion of the interrupt subroutine occurs when the RTWP instruction
in the interrupt subroutine is executed.

3-106 Texas Instruments Incorporated

943441-9701

3.89.6 EXTENDED OPERATIONS. Extended operation instructions permit the extension of the
existing instruction set to include additional instructions. In the TMS 9900 Microprocessor and
the Model 990/4 Computer, these additional instructions are implemented by software routines.
In the Model 990/10 Computer, the instructions may be implemented by user-supplied hardware
or software routines. Interface between a user program and the standard TI executives is imple-
mented as XOP 15.

Memory locations 0040, through 007E ;4 are used for XOP vectors for software implemented
XOPs. Vector contents are user supplied WP and PC addresses for the XOP routine workspace
and starting address. Table 3-7 contains the addresses and contents of the 16 XOP vectors. Note

e that these vectors must be supplied and loaded prior to the XOP instruction execution.

» Table 3-6. Error Interrupt Logic CRU Bit Assignments

R Input Bit Output Bit Error Condition

;E 11 Memory Mapping Error
12 12 Error from TILINE memory (parity/error correcting)
’ 13 13 Illegal Operation

14 14 Privileged instruction fetch with privileged mode off
15 15 TILINE timeout

When the program module contains an XOP instruction that is software implemented, the AU
locates the XOP WP and PC words in the XOP reserved memory locations and loads the WP and
PC. When the WP and PC are loaded, the AU transfers control to the XOP instruction set through
a context switch. When the context switch is complete, the XOP workspace contains the calling
routine return data in WRs 13, 14, and 15.

The XOP instruction passes one operand to the XOP (input to the XOP routine in
. workspace register 11 of the XOP workspace). At the completion of the software XOP, the XOP

routine should return to the calling routine with an RTWP instruction that will restore the
: execution environment of the calling routine to that in existence at the call to the XOP.

An example of a software implemented XOP, shown in figure 3-8, causes XOP number two to be
executed on the data stored at the address contained in workspace register 1 of the calling
program module. Prior to the execution of the XOP, the PC contains the address of the XOP *1,
2 instruction and the WP contains the address of the calling program workspace. At this point,
{ the PC increments by two, to 922, and the XOP is executed. This execution is a context switch
in which the XOP routine gains control of the execution sequence. Note that workspace register 1
of the calling program module contains the data address for the operand that is passed to the XOP
routine. '

After the context switch is complete and the XOP subroutine is in control (figure 3-9), the PC
contains the starting address of the XOP subroutine and the WP contains the address of the XOP
subroutine workspace. Workspace register 11 of the XOP subroutine contains the effective
address of the data to be used as an operand. Workspace registers 13, 14, and 15 contain the
return control information, which is used to return control to the main program module when
the XOP subroutine completes execution.

3-107 Texas Instruments Incorporated

943441-9701

MEMORY MEMORY
ADDRESS é
0020 0270
0022 0290
:; eeo e ::
HARDWARE
REGISTERS
0270 INTERRUPT SUBROUTINE
WP 0780 .‘
I WORKSPACE
: 0290 INTERRUPT SUBROUTINE '
PC 1024 E
}-ll :S Yy} ’,V *
| | ol
| Lemo780
| EXECUTING PROGRAM
sT | ExecuTInG sTaTUs || WORKSPACE
|
|
: 0800 EXECUTING PROGRAM
|
|
1 1022 INC 1
l_gw 1024
NOTE IERET AT, A
THE IN
TAKEN UNTIL THE INSTRUCTION AT EXECUTING PROGRAM
ADDRESS 1022 HAS COMPLETED, DATA
~, Yo
P
(A)132207
Figure 3-6. Interrupt Processing Example
MEMORY MEMORY
ADDRESS
0020 0270
0022 7 0290
Z)
7
i / AL
\/ L] L] L] []
A / Y
HARDWARE 7 /
0270 WRO
REGISTERS :' INTERRUPT ()
L SUBROUTINE
270 /A A
wp | o y A A
WORKSPACE
0780 (WR13)
pc | o290 -
| 1024 (WR14)
' EXECUTING STATUS)
ST | INTERRUPT STATUS | G (WR15)
| ﬁ: e o o o :LF;
NOTE: INTERRUPT MASK = 0110 :
le»0290 INTERRUPT SUBROUTINE
M
L]
L]
RTWP
(A)128621A e

Figure 3-7. Memory Contents After Interrupt

3-108 Texas Instruments Incorporated

943441-9701

Memory Address

0040
0042
0044
0046
0048
004 A
004C
004E
0050
0052
0054
0056
0058
00SA
005C
005SE
0060
0062
0064
0066
0068
006A
006C
006E
0070
0072
0074
0076
0078
007A
007C
007E

Table 3-7. XOP Vectors

XOP Number

—_— = O O

O O 00 00 N N O O \»i i B A W W NN

L e e e e e e e T S S S
LN B R WWND N = = O O

Vector Contents

WP address for XOP workspace
PC address for XOP routine
WP address for XOP workspace
PC address for XOP routine
WP address for XOP workspace
PC address for XOP routine
WP address for XOP workspace
PC address for XOP routine
WP address for XOP workspace
PC address for XOP routine
WP address for XOP workspace
PC address for XOP routine
WP address for XOP workspace
PC address for XOP routine
WP address for XOP workspace
PC address for XOP routine
WP address for XOP workspace
PC address for XOP routine
WP address for XOP workspace
PC address for XOP routine
WP address for XOP workspace
PC address for XOP routine
WP address for XOP workspace
PC address for XOP routine
WP address for XOP workspace
PC address for XOP routine
WP address for XOP workspace
PC address for XOP routine
WP address for XOP workspace
PC address for XOP routine
WP address for XOP workspace
PC address for XOP routine

Texas Instruments Incorporated

943441-9701

MEMORY

ADDRESS MEMORY
0048 0220
004A 0240
XOP 3-15
N Y
HARDWARE
REGISTERS
0220 XOP WORKSPACE
WP 0700 —-l
0240 XOP SUBROUTINE
| ~N ~
"/
PC 0922 | "r N
! |
PROBLEM PROGRAM
0700
] l. WORKSPACE (WR0)
ST XXIY) '
0750
|
I A i
| ¥ *
|
| PROBLEM PROGRAM
| 0750 DATA
| 0800 PROBLEM PROGRAM
I 0920 XOP *1,2
L-—ogzz
(A)132208

Figure 3-8. Extended Operation Example

3.89.7 SPECIAL CONTROL INSTRUCTIONS. There are five special control instructions that
permit the programmer to control the state of the execution process of the 990 Computer.

These instructions are:

Instruction Mnemonic
Load or Restart Execution LREX
Clock On and Clock Off CKON/CKOF
Reset RSET
Execute X
Idle IDLE
- CAUTION

In Model 990/4 Computers, executing any of these instructions
except Execute in a program executing under an executive may

3-110 Texas Instruments Incorporated

943441-9701

MEMORY

(o]
ADDRESS MEMORY

0048 | 0220
004A 0240
ba ~
~ AF
HARDWARE r—--ozzo XOP WORKSPACE
" REGISTERS |
| 0750 (WR11)
WP I 0220 I,l
(WR12)
0700 (WR13)
PC [0240 I-I
0922 (WR14)
EXECUTION STATUS (WR15)

[————

o[]

-+ e 0240 XqP SUBROUTINE 2
.

.
RTWP

“e»0700 | CALLING PROGRAM WORKSPACE

L.O750 CALLING PROGRAM DATA

0800 { CALLING PROGRAM

0920 | XOP *1,2
L= 0922 RETURN FROM XOP)

(A)128623B

Figure 3-9. Extended Operation Example after Context Switch ,

drastically interfere with the executive’s operation. Executives
running in a Model 990/10 Computer allow program execution
only in a nonpriviledged mode. Attempting to execute these instruc-
tions in a nonprivileged mode generates a error/interrupt.

In the TMS 9900 Microprocessor, only the Execute instruction applications apply. The other
instructions perform no processing in the microprocessor, but may be implemented in the users
hardware to perform any desired functions.

3.89.7.1 LREX Applications. The LREX instruction may be used to activate any desired
function by placing a transfer vector for that function in addresses FFFC,s and FFFE¢ and
placing a subroutine and workspace to perform that function in the locations specified in the
transfer vector. Typically, these locations are ROM locations, and the LREX instruction activates
a programmer’s panel and loader function. Other functions could be performed either by using
different ROM’s in these locations, or by using RAM in these locations and loading the desired
data into the locations.

The LREX instruction is not implemented in the TMS 9900 Microprocessor, and is a Privileged
Mode instruction in the Model 990/10 Computer.

3.89.7.2 CKON/CKOF Applications. These two instructions are used to turn on and turn off
the clock, respectively. Through the use of these two instructions, the programmer may use the
clock for timing operations. As an example, the clock may be used to time-out I/O procedures
by turning the clock on, counting the clock interrupts until the desired time is passed, and turning
the clock off. This is possible only if the interrupt level for the real time clock has previously
been enabled. :

3-111 Texas Instruments Incorporated

o
@ 943441-9701

The clock interrupt is normally attached to level 5, or optionally at level 7 on the 990/4 Computer
or level 15 on the 990/10 Computer. The interrupt is normally cleared in the Clock Interrupt Ser-
vice Routine with a CKOF/CKON instruction sequence.

The RSET instruction also clears an interrupt.

When a program executes under an executive, the executive uses the clock for timing various
executive and user program functions. Executing either a CKON or a CKOF instruction interferes
with normal operation of the executive. I/O timeout is part of the support provided by the
executive, and is not a user function. Refer to the user’s guide for the appropriate executive for
methods of timing user program functions supported by that executive. -

The CKON and CKOF instructions are not implemented on the TMS 9900 Microprocessor, and-
are Privileged Mode instructions in the Model 990/10 Computer with map option.

3.89.7.3 RSET Applications. RSET is primarily used to initialize the state of the computer and has
the effect of clearing any pending interrupts. This instruction is useful at the start of a program to
clear the state in existence so that the new application will not be adversely affected by the prev1ous
state of the computer.

When a program executes under an executive, the executive processes internal interrupts and
external interrupts for supported devices. Execution of an RSET instruction interferes with
normal operation of the executive. Refer to the user’s guide for the appropriate executive for
permissable changes in the enabled interrupt level.

The RSET instruction is not implemented in the TMS 9900 Microprocessor, and is a Privileged
Mode instruction in the Model 990/10 with map option.

3.89.7.4 X Applications. The execute instruction may be used to execute an instruction that is
not in sequence without transferring control to the desired instruction. One useful application is
to execute one of a table of instructions, selecting the desired instruction by using an index into
the table of instructions. The computed value of the index determines which 1nstruct10n is
executed.

A table of shift instructions is an example of the use of the X instruction. Place the following
instructions at location TBLE:

TBLE SLA R6,3 SHIFT WORKSPACE REGISTER 6
SLA R7,3 SHIFT WORKSPACE REGISTER 7

SLA RS 3 SHIFT WORKSPACE REGISTER 8
TABEND EQU $

A character is placed in the most significant byte of workspace register 5 to select the workspace
register to be shifted to the left 3 bit positions. ASCII characters A, B, and C specify shifting
workspace registers 6, 7, and 8, respectively. Other characters are ignored. The following code
performs the selection of the shift desired:

SRL R5,8 MOVE TO LOWER BYTE
Al RS, A’ SUBTRACT TABLE BIAS
JLT NOSHFT ILLEGAL
SLA R5,1 MAKE IT A WORD INDEX
CI R5, TABEND - TBLE
JGT NOSHFT ILLEGAL
X @TBLE(RS)

NOSHFT EQU $

3-112 Texas Instruments Incorporated

e

o .
@2 943441-9701

When using the X instruction, if the substituted instruction contains a T, field or a T4 field that
results in a two word instruction, the computer accesses the word following the X instruction as
the second word, not the word following the substituted instruction. When the substituted
instruction is a jump instruction with a displacement, the displacement must be computed from
the X instruction, not from the substituted instruction.

3.89.8 CRU INPUT/OUTPUT. The communications register unit (CRU) performs single and
multiple bit programmed input/output in the Model 990 Computer. All input consists of reading
CRU line logic levels into memory and output consists of setting CRU output lines to bit values
from a word or byte of memory. The CRU provides a maximum of 4096 input and output lines
that may be individually selected by a 12-bit address. The 12-bit address is located in bits 3
through 14 of workspace register 12 and is the base address for all CRU communications.

When a program executes under an executive, I/O to supported devices is provided through the
use of I/O supervisor calls. For these CRU devices, it is not necessary to use the instructions
described in the following paragraphs. Refer to the appropriate user’s guide for information on
the use of the I/O supervisor call to the desired device under that executive.

3.89.8.1 CRU I/O Instructions. There are five instructions for communications with CRU lines.
They are:

L SBO - Set CRU Bit To One. This instruction sets a CRU output line to a logic one. If the
device on the CRU line is a data module, SBO results in zero volts at the data module
terminal corresponding to the addressed bit.

® SBZ - Set CRU Bit To Zero. This instruction sets a CRU output line to a logic zero. If the
device on the CRU line is a data module, SBZ results in a float (no signal applied) at
the data module terminal corresponding to the addressed bit.

L TB - Test CRU Bit. This instruction reads the digital input bit and sets the equal status bit
(bit 2) to the value of the digital input bit.

NOTE

The CRU address of the SBO, SBZ, and TB instructions is
determined as follows:

Bits 3-14 of workspace register 12 equal the CRU base
address
+

The user supplied displacement in the instruction with
sign bit extended

Effective CRU address

® LDCR - Load Communications Register. This instruction transfers the number of bits
(1-16) specified by the C field of the instruction onto the CRU from the source operand.
When less than nine bits are specified, the source operand address is a byte address.
When more than eight bits are specified, the source operand is a word address. The CRU
address is the address of the first CRU digital output affected. The CRU address is de-
termined by the contents of workspace register 12, bits 3 through 14.

3-113 Texas Instruments Incorporated

o
%‘_@; 943441-9701

® STCR - Store Communications Register. This instruction transfers the number of bits
specified by the C field of the instruction from the CRU to the source operand. When
less than nine bits are specified, the source operand address is a byte address. When
there are nine or more bits specified, the source operand address is a word address. The
CRU address is determined by workspace register 12, bits 3 through 14.

3.89.8.2 SBO Example. Assume that a control device that turns on a motor when the computer
sets a one on CRU line 10F,4, and that workspace register 12 contains 0200,4, making the base
address in bits 3 through 14 equal to 100,¢. The following instruction sets CRU line 10F,¢ to one:

SBO 15

If a data module were connected as the CRU device, the instruction would place zero volts on
output line 15 of the module without affecting other lines.

3.89.8.3 SBZ Example. Assume that a control device that shuts off a valve when the computer
sets a zero on a CRU line is connected to CRU line 2, and that workspace register 12 contains
zero. The following instructions sets CRU line 2 to zero:

SBZ 2

If a data module were connected as the CRU device, output line 2 of that module would float at
a voltage determined by the characteristics of the control device. No other CRU line would be
affected by the instruction.

3.89.8.4 TB Example. Assume that workspace register 12 contains 0140,,, making the base
address in bits 3 through 14 equal to AO,¢. The following instructions would test the input on
CRU line A4,s and execute the instructions beginning at location RUN when the CRU line is
set to one. When the CRU line is set to zero, execute the instructions beginning at location

WAIT:
TB 4 TEST CRU LINE 4
JEQ RUN IF ON, GO TO RUN
WAIT . IF OFF, CONTINUE
RUN

The TB instruction sets the logic level of the Equal bit of the ST register to the level on line 4
of the CRU device.

3.89.8.5 LDCR Example. Assume that a 913 CRT Display Terminal is connected to the CRU
and that the base address in workspace register 12 is set to CRU line 48,5. The following
instructions display a character in an even address at location TOM on the screen of the CRT.
Output CRU lines 40,4 through 47,, must be set to the bit configuration of the character, which
requires that the base address in bits 3 through 14 of workspace register 12 be modified. The
instructions are:

Al R12,16 MODIFY BASE ADDRESS BY 8
LDCR @TOM,8 TRANSFER CHARACTER
Al R12,16 RESTORE BASE ADDRESS

3-114 Texas Instruments Incorporated

o
%@ 943441-9701

The operand required in the first instruction is -16 because the least significant bit of workspace
register 12 is not included in the base address. The base address must be decremented by 8, so
16 must be subtracted. The following diagram shows the transfer of data, which places the
character in the proper register of the CRT controller. The Write Data Strobe line, CRU output
line 48,4, must be set to actually display the character.

O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

MEMORY CRU LINES
ADDRESS| ¢ ¢ 1 1 0 1 0 0 X X X X X X X Xl 3¢
TOM]
& | O 40
| © 41
& 1 42
L] 0 43
. 1 44
) 1 45
| o 46
& 0 47
X = NOT USED
(A)132209 Jb—"~ 48

If the LDCR instruction were changed as follows:
LDCR @TOM,9
there would be a transfer of 9 bits beginning with the least significant bit of address TOM to

nine CRU lines, 40,¢ through 48,¢. Setting bit 48, to either a value of O or 1 causes the
character to be displayed on the screen. The following diagram shows the data transfer:

O t 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CRU LINES
MEMORY
ADDR_F()SSXXXXXXXIO!O!O‘I - . 3F

1 40

1 41

1 1
L =
e

L—__’ 1 42

-
:.
-
-
-
-

(o] 43

1 44

) 45

1 46

0 47
1 48

X=NOT USED

(A)132210 49

3-115 Texas Instruments Incorporated

943441-9701

3.89.8.6 STCR Example. The last Al instruction of the LDCR example in the preceding
paragraph left the base address in workspace register 12 set for a keyboard input operation. The
following instruction places the seven bits of the keyboard character into the seven least
significant bits of the byte at the address in workspace register 2:

STCR *R2,7 READ CHARACTER

The STCR instruction stores the bits as shown in the following diagram:

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T T T T T T T T T T T T CRU LINES
[oiolroloxxxxxxxx"'\N
[} o a8
1 49
o 4A
| ° |
1 4B
1 ac
—
o 4D
1 4E
X NOT USED BIT 0'IS SET TO ZERO P N
(A)132211

If the STCR instruction were changed to:
STCR *R12,0

sixteen bits would be transferred from the CRU lines specified by workspace register 12 to the
address that is specified by the contents of workspace register 2. The transfer of data is shown in
the following diagram:

0O 1 2 3 4 5 6 7 8 9 10 1112 13 14 15

T T T rrr T
1t 1 1+ 1. 0 0 0 1t 1T 1 0 0 0 1 1 1

CRU LINES

48

49

4A

48

4c

4D

4E

4F

e fe [[

50

(<]

51

o

52

53

54

55

56

57

(A)132212

(L1

L 58

The keyboard character is placed in the least significant byte.

3-116 Texas Instruments Incorporated

[e]
@ 943441-9701

3.89.9 TILINE INPUT/OUTPUT. (990/10 ONLY). The set of machine instructions that com-
municate with the memory may be used to communicate with devices connected to the TILINE,
as illustrated in appendix I. To communicate with the TILINE device, these instructions must be
coded with the TILINE addresses for the device. The hardware supplies the five most significant
bits, each having the value of one, to convert the upper 1024 memory byte addresses to TILINE
addresses. The actual TILINE addresses for a device and the significance of data transferred to
these addresses are device dependent.

The Disc Executive DX10 supports I/O to the available disc units. The user programs that execute
under DXIO use the I/O supervisor call to perform I/O to the disc. Refer to the user’s guide for the
appropriate executive for a description of the 1/O supervisor call and for a list of supported devices.

3.89.10 RE-ENTRANT PROGRAMMING. Re-entrant programming is a technique that allows
the same program code to be used for several different applications while maintaining the integrity
of the data used with each application. The common program code and its associated constants
are stored in one area in memory. Each function that uses that code is then assigned a unique
workspace and data area so that as it executes the common code, its variable data is developed
without affecting the variable data associated with any of the other functions that use the program.
With this arrangement one function can execute the common code routine and be interrupted in
the middle of the routine by another function that also uses the same routine. The second function
then uses the routine for its purpose and returns control to the first function so that it can
proceed from the point of interruption without returning to the start of the routine. Re-entrant
programming of this type lends itself well to servicing similar peripheral devices that interface
with the computer at different priority levels. The following characteristics apply to a re-entrant
procedure:

® The procedure does not contain data except data common to all tasks.

® The pfocedure does not alter the contents of any word in the procedure whether that
word contains data or an instruction.

® Data that is unique to one or more tasks is in the data division for the task and is
either in a workspace or is indirectly addressed.

A very important application of a re-entrant procedure is one that controls a process using
several sets of identical control devices through identical sets of CRU lines. Each task using the
re-entrant procedure addresses a unique set of control devices that controls a set of equipment to
perform the same process concurrently. The workspace for each task contains the CRU base
address in workspace register 12 for the set of control devices for the task. The procedure
addresses a control device by a displacement from the base address. For each task, the base address
in workspace register 12 of its workspace controls the proper device. Figure 3-10 shows a procedure
common to sixteen tasks, each of which uses an identical set of CRU lines at different CRU base
addresses.

3-117 Texas /nstruments Incorporated

943441-9701

MEMORY

TASK A —T 8

WR12 200 \ CRU

100
DATA EQUIPMENT
FOR TASK A

TASK B — 8

118
SHARED /
PROCEDURE EQUIPMENT

WR12 230 FOR TASK B

DATA

Iy 200

EQUIPMENT
FOR TASK F

TASK F —

WR12 400

DATA

(A)132213A

Figure 3-10. Re-entrant Procedure for Process Control

The following is an example of re-entrant code. The following assumptions apply:

® Workspace register 14 contains the address of a word that contains the size of a buffer,
in bytes.

® Workspace register 9 contains the start address of that buffer.

® Label NOTFND is the location that contains the first instruction of a routine that is to
be executed if the buffer does not contain a carriage return character.

® Label FOUND is the location of the first instruction of a routine that is to be
executed when the buffer contains a carriage return.

3-118 Texas Instruments Incorporated

o
{@ 943441-9701

The re-entrant code is as follows:

ENTER MOV *14,3 GET BUFFER SIZE

MOV 9,8 GET START ADDRESS

A 3,8 POINT TO END OF BUFFER
LOOK C 9,8 CHECK FOR END

JH NOTFND BRANCH AT END

CB *9+,@CARRET CHECK CHARACTER

JNE LOOK BRANCH WHEN NOT FOUND
FOUND CHARACTER FOUND

CARRET BYTE >D

The code is re-entrant because it is not altered during execution of the code. Also, when
execution resumes following an interruption, the workspace for the code again becomes active,
and contains the correct values for resuming the execution as if execution had not be
interrupted.

Another possible version of the same code is as follows:

ENTER MOV *14,@ADDLOC
MOV 9,8
Al 8,5-§

ADDLOC EQU §-2

LOOK C 9,8
JH NOTFND
CB *9+,@CARRET
JNE LOOK

FOUND

CARRET BYTE >D

The code performs the same function by storing the buffer length in the word that contains the
immediate operand of an Al instruction. As long as only one task using this code is active, there
would be no problem. However, if one task is interrupted after storing a value in ADDLOC and
before executing the Al instruction, and another task executes the code, the size of the buffer
for the first task is lost. The code is not re-entrant because it alters data within itself.

3-119/3-120 Texas Instruments Incorporated

[e]
@ 943441-9701

SECTION IV
ASSEMBLER DIRECTIVES

4.1 INTRODUCTION
Assembler directives and machine instructions in source programs supply data to be included in
the program and control of the assembly process. The Model 990 Computer Assemblers support
a number of directives in the following categories:

4.2 DIRECTIVES THAT AFFECT THE LOCATION COUNTER

Directives that affect the Location Counter

Directives that affect the assembler output

Directives that initialize constants

Directives that provide linkage between programs

Miscellaneous directives.

As an assembler reads the source statements of a program, a component of the assembler called
the location counter advances to correspond to the memory locations assigned to the resulting
object code. The first nine of the assembler directives listed below initialize the location counter
and define the value as relocatable, absolute, or dummy. The last three directives advance the
location counter to provide a block or an area of memory for the object code to follow. The word
boundary directive also ensures a word boundary (even address). The directives are:

Absolute Origin
Relocatable Origin
Dummy Origin

Data Segment

Data Segment End
Common Segment
Common Segment End
Program Segment

Program Segment End
Block Starting With Symbol
Block Ending With Symbol

Word Boundary

Texas Instruments Incorporated

o
@@ 9434419701

® Data Segment

NOTE

The following are not supported by the PX9ASM.

® Data Segment End

® Common Segment

® Common Segment End

® Program Segment

® Program Segment End
4.2.1 ABSOLUTE ORIGIN AORG
Syntax definition:

[<label>]b ... AORGbH ... <<wd-exp>b ... [<comment>]
AORG places a value in the location counter and defines the succeeding locations as absolute.
Use of the label field is optional. When a label is used, it is assigned the value that the directive
places in the location counter. The operation field contains AORG. The operand field contains a
well-defined expression (wd-exp). The assembler places the value of the well-defined expression

in the location counter. Use of the comment field is optional. When no AORG directive is
entered, no absolute addresses are included in the object program.

The following example shows an AORG directive:
AORG >1000+X

Symbol X must be absolute and must have been previously defined. If X has a value of 6, the
location counter is set to 1006, by this directive. Had a label been included, the label would
have been assigned the value 1006, .

4.2.2 RELOCATABLE ORIGIN RORG

Syntax definition:
[<label>] b...RORG b. . .[<exp>] b. . .[<comment>]

RORG places a value in the location counter; if encountered in absolute code, it also defines suc-
ceeding locations as program-relocatable. When a label is used, it is assigned the value that the
directive places into the location counter. The operation field contains RORG, and the operand
field is optional. The comment field may be used only when the operand field is used.

Texas Instruments Incorporated

o
@ 943441-9701

When the operand field is not used, the length of the program segment, data segment, or specific
common segment of a program replaces the value of the location counter. For a given relocation
type X, the length of the X-relocatable segment at any time during an assembly is either of the
following values:

® The maximum value the location counter has ever attained as a result of the assembly of
any preceding block of X-relocatable code.

° Zero, if no X-relocatable code has been previously assembled.

Clearly, since the location counter begins at zero, the length of a segment and the “next available”
address within that segment are identical.

If the RORG directive appears in absolute- or program-relocatable code and the operand field is
not used, the location counter value is replaced by the current length of the program segment of
that program. If the directive appears in data-relocatable code without an operand, the location
counter value is replaced by the length of the data segment. Likewise, in common-relocatable code,
the RORG directive without an operand causes the length of the appropriate common segment to
be loaded into the location counter.

When the operand field is used, the operand must be an absolute or relocatable expression (exp)
that contains only previously defined symbols. If the directive is encountered in absolute code, a
relocatable operand must be program-relocatable; in relocatable code, the relocation type of the
operand must match that of the current location counter. When it appears in absolute code, the
RORG directive changes the location counter to program-relocatable and replaces its value with
the operand value. In relocatable code, the operand value replaces the current location counter
value, and the relocation type of the location counter remains unchanged.

The following example shows an RORG directive:
RORG $-20 OVERLAY TEN WORDS

The $ symbol refers to the location following the preceding relocatable location of the program.
This has the effect of backing up the location counter ten words. The instructions and directives
following the RORG directive replace the ten previously assembled words of relocatable code,
permitting correcting of the program without removing source records. Had a label been
included, the label would have been assigned the value placed in the location counter.

An example of a.-RORG directive with no operand field is as follows:

SEG2 RORG
The_ .location counter contents depend upon preceding source statements. Assume that after
defining data for a program, which occupied 44,4 bytes, an AORG directive initiated an absolute
block of code. The absolute block is followed by the RORG directive in the above example. This
places 0044, in the location counter and defines the location counter as relocatable. Symbol

SEG?2 is a relocatable value, 0044;,. The RORG directive in the above example would have no
effect except at the end of an absolute block or a dummy block, described in the next paragraph.

4.2.3 DUMMY ORIGIN DORG
Syntax definition:

[<label>]b ... DORGH . .. <exp>b ... [<comment>]

43 Texas Instruments Incorporated

[e]
% 943441-9701

DORG places a value in the location counter and defines the succeeding locations as a dummy
block or section. When assembling a dummy section, the assembler does not generate object
code, but operates normally in all other respects. The result is that the symbols that describe the
layout of the dummy section are available to the assembler during assembly of the remainder of
the program. The label is assigned the value that the directive places in the location counter. The
operation field contains DORG. The operand field contains an expression (exp), which may be
either absolute or relocatable. Any symbol in the expression must have been previously defined.
When the operand is absolute, the location counter contents are absolute; when the operand is
relocatable, the location counter contents are relocatable.

The following example shows a DORG directive:

DORG O

The effect of this directive is to cause the assembler to assign values relative to the start of the
dummy section to the labels within the dummy section. It is assumed that the code
corresponding to the dummy section is assembled in another program module.

The example directive would be appropriate in the executable portion (procedure division) of a
disc-resident task that is common to more than one task, and which executes under the disc
executive. The dummy section of the procedure should contain the directives of the data division,
and the executable portion of the module (following a RORG directive) should use the labels of
the dummy section as indexed addresses. In this manner, the data is available to the procedure
regardless of the memory area into which the data is loaded.

The DORG directive may also be used with data-relocatable or common-relocatable operands to
specify dummy data or common segments. The following example illustrates this usage:

CSEG ‘COMI”’

DORG § “$” HAS A COMMON-RELOCATABLE VALUE

LABI DATA $

MASK DATA >F000

CEND
SZC @MASK,@LABI(R3)
In the example, no object code is generated to initialize the common segment, COM1, but all

common-relocatable labels describing the structure of the common block (including LABI and
MASK) are available for use throughout the program.

44 Texas Instruments Incorporated

(o]
{@? 9434419701

4.2.4 BLOCK STARTING WITH SYMBOL BSS
Syntax definition:
[<label>]b ...BSSb ... <wd-exp>b ... [<comment>]

BSS advances the location counter by the value of the well-defined expression (wd-exp) in
the operand field. Use of the label field is optional. When a label is used, it is assigned the
value of the location of the first byte in the block. The operation field contains BSS. The
operand field contains a well-defined expression that represents the number of bytes to be added
to the location counter. The comment field is optional.

The following example shows a BSS directive:
BUFF1 BSS 80 CARD INPUT BUFFER
This directive reserves an 80-byte buffer at location BUFF1.

4.2.5 BLOCK ENDING WITH SYMBOL BES
Syntax definition:
[<label>1b ...BESb ... <wd-exp>b ... [<comment>]

BES advances the location counter according to the value in the operand field, and assigns the
new location counter value to the symbol in the label field, when there is a symbol in the label
field. Use of the label field is optional. The label is assigned the value of the location following
the block when the label is entered. The operation field contains BES. The operand field contains
a well-defined expression that represents the number of bytes to be added to the location counter.
The comment field is optional.

The following example shows a BES directive:

BUFF2 BES >10

The directive reserves a 16-byte buffer. Had the location counter contained 100,, when the
assembler processed this directive, BUFF2 would have been assigned the value 110;4.

4.2.6 WORD BOUNDARY EVEN
Syntax definition:
[<label>]b ... EVENDb ... [<comment>]

EVEN places the location counter on the next word boundary (even) byte address. When the
location counter is already on'a word boundary, the location counter is not altered. Use of the
label field is optional. When a label is used, the value in the location counter before processing
the directive is assigned to the label. The operation field contains EVEN. The operand field is
not used, and the comment field is optional.

The following example shows an EVEN directive:

WRF1 EVEN WORKSPACE REGISTER FILE ONE

45 Texas Instruments Incorporated

[e]
e@ 943441-9701

The directive assigns the location counter address to label WRF1, and assures that the location
counter contains a word boundary address. Use of an EVEN directive preceding or following a
machine instruction or a DATA directive is redundant. The assembler advances the location
counter to an even address when it processes a machine instruction or a DATA directive.

4.2.7 DATA SEGMENT DSEG
Syntax definition:

[<label>] b...DSEG b. . .[<comment>]

NOTE
This directive does not apply to the PX9ASM assembler.

DSEG places a value in the location counter and defines succeeding locations as data-relocatable.
Use of the label field is optional. When a label is used, it is assigned the data-relocatable value that
the directive places in the location counter. The operation field contains DSEG. The operand field
is not used, and the comment field is optional. Either of the following values is placed in the loca-
tion counter:

® The maximum value the location counter has ever attained as a result of the assembly
of any preceding block of data-relocatable code

® Zero,if no data-relocatable code has been previously assembled.

The DSEG directive defines the beginning of a block of data-relocatable code. The block is normally
terminated with a DEND directive (see paragraph 4.2.8). If several such blocks appear throughout
the program, they together comprise the data segment of the program. The entire data segment may
be relocated independently of the program segment at link edit time and therefore provides a
convenient means of separating modifiable data from executable code.

In addition to the DEND directive, the following directives will properly terminate the definition
of a block of data-relocatable code: PSEG, CSEG, AORG, and END. The PSEG directive, like
DEND, indicates that succeeding locations are program-relocatable. The CSEG and AORG directives
effectively terminate the data segment by beginning a common segment or absolute segment,
respectively. The END directive terminates the data segment as well as the program.

The following example illustrates the use of both the DSEG and the DEND directives.

RAM DSEG START OF DATA AREA

<Data-relocatable code>

ERAM DEND
LRAM EQU ERAM-RAM

The block of code between the DSEG and DEND directives is data-relocatable. RAM is the sym-

bolic address of the first word of this block; ERAM is the data-relocatable byte address of the
location following the code block. The value of the symbol LRAM is the length in bytes of the
block.

4-6 Texas Instruments Incorporated

[e]
@ 943441-9701

4.2.8 DATA SEGMENT END DEND
Syntax definition:
[<label>] b....DEND b. . .[<comment>
NOTE
This directive does not apply to the PX9ASM assembler.

DEND terminates the definition of a block of data-relocatable code by placing a value in the loca-
tion counter and defining succeeding locations as program-relocatable. Use of the label field is
optional. When a label is used, it is assigned the value of the location counter prior to modification.
The operation field contains DEND. The operand field is not used, and the comment field is

optional. Either of the following values is placed in the location counter as a result of this directive:

® The maximum value the location counter has ever attained as a result of the assembly
of any preceding block of program-relocatable code.

® Zero, if no program-relocatable code has been previously assembled.
If encountered in common-relocatable or program-relocatable code, this directive functions as

a CEND or PEND (and a warning message is issued); like CEND and PEND, it is invalid when used
in absolute code. The following example illustrates the use of both DSEG and DEND directive.

RAM DSEG START OF DATA AREA
<Data-relocatable code>

ERAM i)END

LRAM EQU ERAM-RAM
429 COMMON SEGMENT CSEG
Syntax description:

[<label>] b...CSEGb. . .[‘<string>’] b. . .[<comment>]

NOTE
This directive does not apply to the PX9ASM assembler.

CSEG places a value in the location counter and defines succeeding locations as common-relocatable
(i.e., relocatable with respect to a common segment). Use of the label field is optional. When a
label is used, it is assigned the value that the directive places in the location counter. The operation

field contains CSEG, and the operand field is optional. The comment field may be used only when
the operand field is used.

4-7 Texas Instruments Incorporated

[e]
%@ 943441-9701

If the operand field is not used, the CSEG directive defines the beginning of (or continuation of)
the “blank common” segment of the program. When the operand field is used, it must contain a
character string of up to six characters, enclosed in quotes. (If the string is longer than six char-
acters, the assembler prints a truncation error message and retains the first six characters of the
string.) If this string has not previously appeared as the operand of a CSEG directive, the assembler
associates a new relocation type with the operand, sets the location counter to zero, and defines
succeeding locations as relocatable with respect to the new relocatable type. When the operand
string has been previously used in a CSEG, the succeeding code represents a continuation of that
particular common segment associated with the operand. The location counter is restored to the
maximum value it previously attained during the assembly of any portion of the particular common
segment.

The following directives will properly terminate the definition of a block of common-relocatable
code: CEND, PSEG, DSEG, AORG, and END. The block is normally terminated with a CEND
directive (see paragraph 4.2.10). The PSEG directive, like CEND, indicates that succeeding locations
are program-relocatable. The DSEG and AORG directives effectively terminate the common seg-
ment by beginning a data segment or absolute segment. The END directive terminates the common
segment as well as the program.

The CSEG directive permits the construction and definition of independently relocatable seg-
ments of data which several programs may access or reference at execution time. The segments
are the assembly language counterparts of FORTRAN blank COMMON and labeled COMMON,
and in fact permit assembly language programs to communicate with FORTRAN programs which
use COMMON. Information placed in the object code by the assembler permits the linkage editor
to relocate all common segments independently and to make appropriate adjustments to all ad-
dresses which reference locations within common segments. Locations within a particular common
segment may be referenced by several different programs if each contains a CSEG directive with
the same operand or no operand._

The following example illustrates the use of both the CSEG and the CEND directives:
COMI1A CSEG ‘ONE’

<Common-relocatable code, type ‘ONE’ >

CEND
COM2A CSEG ‘TWO’

<Common-relocatable code, type ‘TWO’>

COM2B CEND
COMI1C CSEG ‘ONE’

<Common-relocatable code, type ‘ONE’ >

COMIB CEND

4-8 Texas /nstruments Incorporated

[e]
@ 943441-9701

COM1L DATA COMI1B-COMI1A LENGTH OF SEGMENT ‘ONE’
COM2L DATA COM2B-COM2A LENGTH OF SEGMENT ‘TWO’

The three blocks of code between the CSEG and. CEND directives are common-relocatable. The
first and third blocks are relocatable with respect to one common relocation type; the second is
relocatable with respect to another. The first and third blocks comprise the common segment
‘ONE’, and the value of the symbol COMI1L is the length in bytes of this segment. The symbol
COM?2A is the symbolic address of the first word of common segment ‘TWO’; COM2B is -the
common-relocatable (type ‘TWO’) byte address of the location following segment. (Note that
the symbols COM2B and COMIC are of different relocation types and possibly different values.)
The value of the symbol COM2L is the length in bytes of common segment ‘TWO’.

4.2.10 COMMON SEGMENT END CEND
Syntax definition:
[<label>] b...CEND b. . .[<comment>]
NOTE

This directive does not apply to the PX9ASM assembler.

CEND terminates the definition of a block of common-relocatable code by placing a value in the
location counter and defining succeeding locations as program-relocatable. Use of the label field is
optional. When a label is used, it is assigned the value of the location counter prior to modification.
The operation field contains CEND. The operand field is not used, and the comment field is
optional. Either of the following values is placed in the location counter as a result of this directive:

® The maximum value the location counter has ever attained as a result of the assembly
of any preceding block of program-relocatable code.

® Zero, if no program-relocatable code has been previously assembled.
If encountered in common- or program-relocatable code, this directive functions as a DEND or
PEND (and a warning message is issued); like DEND and PEND, it is invalid when used in absolute
code. See paragraph 4.2.9 for an example of the use of the CEND directive.
4.2.11 PROGRAM SEGMENT PSEG
Syntax definition:

[<label>] b.. .PSEG b. . .[<comment>]

NOTE
This directive does not apply to the PX9ASM assembler.

PSEG places a value in the location counter and defines succeeding locations as program-relocatable.
When a label is used, it is assigned the value that the directive places in the location counter. The
operation field contains PSEG. The operand field is not used and the comment field is optional.
Either of the following values is placed in the location counter:

® The maximum value the location counter has Zever attained as a result of the assembly of
any preceding block of program-relocatable code.

® Zero, if no program-relocatable code has been previously assembled.

4-9 Texas Instruments Incorporated

o
@ 943441-9701

'ljhe PSEG directive is provided as the program-segment counterpart to the DSEG and CSEG direc-
tives. Together, the three directives provide a consistent method of defining the various types of
relocatable segments. The following sequences of directives are functionally identical:

DSEG DSEG

<i)ata-relocatable code> <i)ata-relocatable code>
DEND .

CSEG ' CSEG

<éommon-relocatable code> <éommon—relocatable code>
CEND | .

PSEG PSEG

<Program-relocatable code> <i’rogram-relocatable code>
PEND

END END

4.2.12 PROGRAM SEGMENT END PEND
Syntax definition:
[<label>] b...PEND b. . .[<comment>]
NOTE

This directive does not apply to the PX9ASM assembler.

The PEND directive is provided as the program-segment counterpart to the DEND and CEND direc-
tives. Like those directives, it places a value in the location counter and defines succeeding locations
as program-relocatable (however, since PEND properly appears only in program-relocatable code,
the relocation type of succeeding locations remains unchanged.) Use of the label field is optional.
When a label is used, it is assigned the value of the location counter prior to modification. The
operation field contains PEND. The operand field is not used, and the comment field is optional.
The value placed in the location counter by this directive is simply the maximum value ever attained
by the location counter as a result of the assembly of all preceding program-relocatable code.
If encountered in data- or common relocatable code, this directive functions as a DEND or CEND
(and a warning message is issued), like DEND and CEND, it is invalid when used in absolute code.
See paragraph 4.2.11 for an example of the use of the PEND directive.

4-10 Texas Instruments Incorporated

o
{@5} 943441-9701

4.3 DIRECTIVES THAT AFFECT THE ASSEMBLER OUTPUT
This category includes the directive that specifies optional output for the Cross Assembler and
the directive that supplies a program identifier in the object code. In addition four directives
affect the source listing. The directives in this category are:

® OQutput Options

® Program Identifier

® Page Title

® List Source

® No Source List

® Page Eject
4.3.1 OUTPUT OPTIONS. This directive does not apply to the PX9ASM or TXMIRA assembler.
Syntax definition:

b...OPTION®D ... <keyword>[,<keyword>] -. .. b ... [<comment>]
OPTION specifies output and list options to the assembler. No label is entered with the OPTION
directive. The operation field contains OPTION. The operand field contains one or more
keywords to specify the desired options. The comment field is optional.
The keywords supported by the Cross Assembler and SDSMAC, and their meanings are as follows:

° XREF - Print a cross reference listing at the end of the source and object listing.

° OBJ - Print a hexadecimal listing of the object code at the end of the source and object
listing or the cross reference listing (not supported by SDSMAC).

° SYMT - Output a symbol table in the object code that contains all symbols in the program.

Additional keywords are supported by SDSMAC, as described in Section VI.
The following example shows an OPTION directive:
OPTION XREF,SYMT

The directive in the example specifies the printing of a cross reference listing and the output of a
symbol table with the object code.

4.3.2 PROGRAM IDENTIFIER IDT

Syntax definition:

[<label>]1b...IDTh... ‘string>b ... [<comment>]

4-11 Texas Instruments Incorporated

&

IDT assigns a name to the program. An IDT directive must precede any machine instruction or
assembler directive that results in object code. Use of the label field is optional. When a label is
used, the current value of the location counter is assigned to the label. The operation field
contains IDT. The operand field contains the program name (string), a character string of up to
eight characters. When a character string of more than eight characters is entered, the assembler
prints a truncation error message, and retains the first eight characters as the program name. The
comment field is optional.

The following example shows an IDT directive:

IDT ‘CONVERT’

The directive assigns the name CONVERT to the program to be assembled. The program name is
printed in the source listing as the operand of the IDT directive, but does not appear in the page
heading of the source listing. The program name is placed in the object code, but serves no
purpose during the assembly.

NOTE

Although SDSMAC will accept lower case letters and special
characters within the quotes, ROM loaders, etc., will not. Therefore
only upper case letters and numerals are recommended.

4.3.3 PAGETITLE TITL
Syntax definition:

[<Label>]b...TITLb. .. ‘<string>b [<comment>]

TITL supplies a title to be printed in the heading of each page of the source listing. When a title
is desired in the heading of the first page of the source listing, a TITL directive must be the first
source statement submitted to the assembler. This directive is not printed in the source listing.
Use of the label field is optional. When a label is used, the current value of the location
counter is assigned to the label. The operation field contains TITL. The operand field contains
the title (string), a character string of up to 50 characters. When more than 50 characters are
entered, the assembler retains the first 50 characters as the title, and prints a truncation error
message. The comment field is optional; the assembler does not print the comment, but does
increment the line counter.

The following example shows a TITL directive:

TITL “**REPORT GENERATOR**

This directive causes the title **REPORT GENERATOR** to be printed in the page headings of
the source listing. When a TITL directive is the first source statement in a program, the title is
printed on all pages until another TITL directive is processed. Otherwise, the title is printed on
the next page after the directive is processed, and on subsequent pages until another TITL
directive is processed.

NOTE
The maximum source record length is 60 characters. If a full 50-

character title is desired, the operand field must be started at or
before column 11 of the source record.

4-12 Texas Instruments Incorporated

o
{@; 943441-9701

4.3.4 LIST SOURCE LIST
Syntax definition:
[<label>]b ... LISTbH ... [<comment>]

LIST restores printing of the source listing. This directive is required only when a No Source List
directive is in effect, to cause thé assembler to resume listing. This directive is not printed in the
source listing, but the line counter increments. Use of the label field is optional. When a label is
used, the current value of the location counter is assigned to the label. The operation field contains
LIST. The operand field is not used. Use of the comment field is optional, but the assembler does
not print the comment.

The following example shows a LIST directive:
LIST
The directive causes the source listing to be resumed with the next source statement.
4.3.5 NO SOURCE LIST UNL
Syntax definition:
[<label>]® ... UNLb. .. [<comment>]

UNL inhibits printing of the source listing. The UNL directive is not printed in the source listing,
but the line counter increments. Use of the label field is optional. When a label is used, the current
value of the location counter is assigned to the label. The operation field contains UNL. The oper-
and field is not used. Use of the comment field is optional, but the assembler does not print the
comment.

The following example shows a UNL directive:
UNL

The directive inhibits printing of the source listing. Use of the UNL directive to inhibit printing
reduces assembly time and the size of the source listing.

4.3.6 PAGE EJECT PAGE
Syntax definition:
[<label>1®...PAGEb. .. [<comment>]

PAGE causes the assembler to continue the source program listing on a new page. The PAGE
directive is not printed in the source listing, but the line counter increments. Use of the label
field is optional. When a label is used, the current value of the location counter is assigned to
the label. The operation field contains PAGE. The operand field is not used. Use of the comment
field is optional, but the assembler does not print the comment.

The following example shows a PAGE directive:
PAGE
The directive causes the assembler to begin a new page of the source listing. The next source state-

ment is the first statement listed on the new page. Use of the page directive to begin new pages of
the source listing at the logical divisions of the program improves documentation of the program.

4-13 Texas Instruments Incorporated

o
('@ 9434419701

4.4 DIRECTIVES THAT INITIALIZE CONSTANTS

This category includes directives that place values in successive bytes or words of the object
code, and a directive that places characters of text in the object code to be displayed or printed.
It also includes a directive that initializes a constant for use during the assembly process. The

directives are:

® Initialize Byte

® [Initialize Word

® [Initialize Text

® Define Assembly-Time Constant
4.4.1 INITIALIZE BYTE BYTE
Syntax definition:

[<label>]b ...BYTEb ... <exp>[,<exp>] ...b ... [<comment>]
BYTE places one or more values in one or more successive bytes of memory. Use of the label
field is optional. When a label is used, the location at which the assembler places the first byte is
assigned to the label. The operation field contains BYTE. The operand field contains one or
more expressions separated by commas. The expressions must contain no external references.
‘The assembler evaluates each expression and places the value in a byte as an eight-bit two’s comple-
ment number. When truncation is required, the assembler prints a truncation error message and
places the rightmost portion of the value in the byte. The comment field is optional.
The following example shows a BYTE directive:

KONS BYTE >F+1,-1,'D-=",0,'AB’AA’

The directive initializes five bytes, starting with a byte at location KONS. The contents of the
resulting bytes is 00010000, 11111111, 00000111, 00000000, and 00000001.

4.4.2 INITIALIZE WORD DATA
Syntax definition:

[<label>]b ... DATAb . . . <exp>[,<exp>] ...b ... [<comment>]
DATA places one or more values in one or more successive words of memory. The assembler
advances the location counter to a word boundary (even) address. Use of the label field is
optional. When a label is used, the location at which the assembler places the first word is
assigned to the label. The operation field contains DATA. The operand field contains one or

more expressions separated by commas. The assembler evaluates each expression and places the
value in a word as a sixteen-bit two’s complement number. The comment field is optional.

The following example shows a DATA directive:

KONS1 DATA 3200,1+‘AB’-‘AF’ >F4A0,‘A’

4-14 Texas Instruments Incorporated

[e]
(_‘@?} 9434419701

The directive initializes five words, starting with a word at location KONS1. The contents of the
resulting words are 0C80,4, 4143,,, BEBA,s, F4A0,4, and 0041,¢. Had the location counter
contents been 010F,4 prior to processing this directive, the value assigned to KONS1 would be
011046.

4.4.3 INITIALIZE TEXT TEXT
Syntax definition:
[<label>]b ... TEXTb .. [-]‘<string>"b . . . [<comment>]

TEXT places one or more characters in successive bytes of memory. The assembler negates the
last character of the string when the string is preceded by a minus (-) sign (unary minus). Use of
the label field is optional. When a label is used, the location at which the assembler places the
first character is assigned to the label. The operation field contains TEXT. The operand field
contains a character string of up to 52 characters, which may be preceded by a unary minus
sign. The comment field is optional.

The following example shows a TEXT directive:

MSG1 TEXT ‘EXAMPLE’ MESSAGE HEADING
The directive places the eight-bit ASCII representations of the characters in successive bytes.
When the location counter is on an even address, the result, in hexadecimal representation, is
4558, 414D, 504C, and 45XX. XX represents the contents of the rightmost byte of the fourth
word, which are determined by the next source statement. The label MSG1 is assigned the value
of the first byte address in which 45 is placed. Another example, showing the use of a unary
minus, is as follows:

MSG2 TEXT —NUMBER’
When the location counter is on an even address, the result, in hexadecimal representation, is

4ESS, 4D42, and 45AE. The label MSG2 is assigned the value of the byte address in which 4E is
placed.

NOTE

PX9ASM prints only the first character in a text string.

4.4.4 DEFINE ASSEMBLY-TIME CONSTANT EQU
Syntax definition:

<label>b ... EQUb ... <exp>b ... [<comment>]

NOTE

<exp> may not be a REF’d symbol. TXMIRA does not allow
forward references in the <exp>.

4-15 Texas Instruments Incorporated

o]
@ 943441-9701

EQU assigns a value to a symbol. The label field contains the symbol. The operation field
contains EQU. The operand field contains an expression in which all symbols have been
previously defined. Use of the comment field is optional.

The following example shows an EQU directive:
SUM EQU 5 WORKSPACE REGISTER 5

The directive assigns an absolute value to the symbol SUM, making SUM available to use as a
workspace register address. Another example of an EQU directive is:

TIME EQU HOURS

The directive assigns the value of previously defined symbol HOURS to symbol TIME. When
HOURS appears in the label field of a machine instruction in a relocatable block of the program,
the value is a relocatable value. The two symbols may be used interchangeably. SYMBOLS in the
operand field need not have been previously defined when using SDSMAC.

4.5 DIRECTIVES THAT PROVIDE LINKAGE BETWEEN PROGRAMS

This category consists of two directives that enable program modules to be assembled separately
and integrated into an executable program. One directive places one or more symbols defined in
the module into the object code, making them available for linking. The other directive places
symbols used in the module but defined in another module into the object code, allowing them
to be linked. The directives are:

® External Definition

® External Reference

® Secondary Reference

® Force Load
4.5.1 EXTERNAL DEFINITION DEF
Syntax definition:

[<label>]b ... DEFb ... <symbol>[,<symbol>] ...b ... [<comment>]
DEF makes one or more symbols available to other programs for reference. The use of the label
field is optional. When a label is used, the current value of the location counter is assigned to the
label. The operation field contains DEF. The operand field contains one or more symbols,
separated by commas, to be defined in the program being assembled. The comment field is
optional. '
The following example shows a DEF directive:

DEF ENTER,ANS

The directive causes the assembler to include symbols ENTER and ANS in the object code so
that these symbols are available to other programs. When the DEF directive does not precede the

4-16 Texas Instruments Incorporated

[e]
{;@P 943441-9701

source statements that contain the symbols, the assembler identifies the symbols as multiply
defined symbols.

4.5.2 EXTERNAL REFERENCE REF
Syntax definition:
[<label>]1b ... REFb ... <symbol>[,<symbol>] ...b ... [<comment>]

REF provides access to one or more symbols defined in other programs. The use of the label field is
optional. When a label is used, the current value of the location counter is assigned to the label.
The operation field contains REF. The operand field contains one or more symbols, separated by
commas, to be used in the operand field of a subsequent source statement. The comment field is
optional.

The following example shows a REF directive:
REF ARGI1,ARG2

The directive causes the assembler to include symbols ARG1 and ARG?2 in the object code so that
the corresponding addresses may be obtained from other programs. The Prototyping System Assem-
bler, PX9ASM, requires that a REF directive precede the first use of a REF’d symbol.

If a sumbol is listed in the REF statement then a corresponding symbol must also be present in a
DEF statement in another source module. If a one-to-one matching of symbols does not occur then
an error occurs at Link Edit time. The system will generate a summary list of all “unresolved
references”’.

NOTE

If a symbol in the operand field of an REF directive is the first
operand of a DATA directive, the assembler places the value of
the symbol at location 0 of the routine. If that routine is loaded
at absolute location 0, the symbol will not be linked correctly.
Use of the symbol at other locations will be correctly linked.

4.5.3 SECONDARY EXTERNAL REFERENCE SREF
Syntax definition:

[<label>]b ... SREF ... <symbol>,[<symbol>] ... b... [<comment>]

SREF provides access to one or more symbols defined in other programs. The use of the label field
is optional. When a label is used, the current value of the location counter is assigned to the label.
The operation field contains SREF. The operand field contains one or more symbols, separated by
commas, to be used in the operand field of a subsequent source statement. The comment field is
optional.

The following example shows a REF directive:
SREF ARGI1,ARG2

The directive causes the Link Editor to include symbols ARG1 and ARG?2 in the object code so that
the corresponding addresses may be obtained from other programs.

SREF unlike REF does not require a symbol to have a corresponding symbol listed in a DEF state-
ment of another source module. But the symbol will be an unresolved reference.

4-17 ‘ Texas Instruments Incorporated

o
([_@? 9434419701

NOTE

SREF is supported by SDSMAC and TXMIRA only.

4.54 FORCELOAD LOAD
Syntax definition:
[<label>]b ... LOADb. .. <symbol> [,<symbol>]...b ... [<comment>]

The LOAD directive is like a REF, but the symbol does not need to be used in the module con-
taining the LOAD. The symbol used in the LOAD must be DEFed in some other module. LOADs
are used with SREFs. If a one-to-one matching of LOAD-SREF pairs and DEF symbols does not
occur, then unresolved references will occur during link editing.

The following example shows the use of the SREF and the LOAD directives:

A1l A2 A3

LOADC, D LOAD C LOAD E, F

SREFC, D, E, F

DATA C
DATA D
DATA E
DATA F

DEF C DEF D DEF E DEF F

Modules A1l uses a branch table in module B to get one of the modules C, D, E, or F. Module Al
knows which of the modules C, D, E, and F it will need. Module B has SREF for C, D, E, and F.
Module C has a DEF for C. Module D has a DEF for D. Module E has a DEF for E. Module F has
a DEF for F. Module Al has a LOAD for one or more of modules C, D, E, and F as needed.

The LOAD and SREF directives permit module B to be written to handle the most involved case
and still be linked together without unneeded modules, since A1 only has LOAD directives for
the modules it needs.

When a link edit is performed, automatic symbol resolution will pull in the modules appearing in
a LOAD directive. (See Section 2.5.1 of the Model 990 Computer Link Editor Reference Manual,
part number 949617-9701 for more details on automatic symbol resolution.)

4-18 Texas Instruments Incorporated

(o]
{_%\'[’]@ 943441-9701

If the link control file included Al and A2, modules C and D would be pulled in, while modules E
and F would not be pulled in. If the link control file included A3, modules E and F would be pulled
in, while modules C and D would not be pulled in. If the link control file included A2, module C
would be pulled in, while modules D, E, and F would not be pulled in.

4.6 MISCELLANEOUS DIRECTIVES _ o
This category includes a directive that defines a symbol for an extended operation, and a directive

that terminates a source program. The directives are:
® Define Extended Operation
® Program End
4.6.1 DEFINE EXTENDED OPERATION DXOP
Syntax definition:

[<label>]b ...DXOPb ... <symbol><term>b ... [<comment>]

DXOP assigns a symbol to be used in the operator field to specify an extended operation. The
use of the label field is optional. When a label is used, the current value in the location counter
is assigned to the label. The operation field contains DXOP. The operand field contains a symbol
followed by a comma and a term. The symbol assigned to an extended operation must not be
used in the label or operand field of any other statement. The assembler assigns the symbol to
an extended operation specified by the term, which must have a value in the range of 0 to 15.
The comment field is optional.

The following example shows a DXOP directive:
DXOP DADD,13

The directive defines DADD as extended operation 13. When the assembler recognizes the
symbol DADD in the operator field, it assembles an XOP instruction that specifies extended
operation 13. The following example shows the use of the symbol DADD in a source statement:

DADD @LABEL1(4)

The assembler places the operand field contents in the T and S fields of an XOP instruction,
and places 13 in the D field.

4.6.2 PROGRAM END END
Syntax definition:
[<label>]b ... ENDb ... [<symbol>]b ... [<comment>]

END terminates the assembly. The last source statement of a program is the END directive.
When any source statements follow the END directive, they are ignored. Use of the label field is
optional. When a label is used, the current value in the location counter is assigned to the
symbol. The operation field contains END. Use of the operand field is optional. When the
operand field is used, it contains a program relocatable or absolute symbol that specifies the entry
point of the program. When the operand field is not used, no entry point is placed in the object
code. The comment field may be used only when the operand field is used.

4-19 Texas Instruments Incorporated

o
(_‘@@ 943441-9701

- The following example shows an END directive:

END START

The directive causes the assembler to terminate the assembly of this program. The assembler also
places the value of START in the object code as an entry point.
When a program executes in a stand-alone mode, and is loaded by the ROM loader, it must

supply an entry point to the loader. When no operand is included in the END directive, and that
program is loaded by the ROM loader, the loader transfers control to the entry point of the

loader, and attempts to load another object program.

g'l"ﬁ &T '\Ef C,*?’g g% c,;v f Ly ;i ¢

R

[N
X
i#
4
=

/ f
Folvinier T < e
& @{smmr LS e |

B

i

4-20 Texas Instruments Incorporated

o
@ 943441-9701

SECTION V

PSEUDO-INSTRUCTIONS

5.1 GENERAL

A pseudo-instruction is a convenient way to code an operation that is actually performed by a
machine instruction with a specific operand. The Model 990 Computer Assembly Language
includes two pseudo-instructions. The pseudo-instructions are:

® No Operation

L Return
5.2 NO OPERATION NOP
Syntax definition:

[<label>]b ... NOPb ... [<comment>]
NOP places a machine instruction in the object code which has no effect on execution of the
program other than execution time. Use of the label field is optional. When the label field is
used, the label is assigned the location of the instruction. The operation field contains NOP. The
operand field is not used. Use of the comment field is optional.
Enter the NOP pseudo-instruction as shown in the following example:

MOD NOP
Location MOD contains a NOP pseudo-instruction when the program is loaded. Another
instruction may be placed in location MOD during execution to implement a program option.
The assembler supplies the same object code as if the source statement had contained the
following:

MOD JMP §+2
5.3 RETURN RT
Syntax definition:

[<label>]b ... RTh ... [<comment>]
RT places a machine instruction in the object code to return control to a calling routine from a
subroutine. Use of the label field is optional. When the label field is used, the label is assigned
the location of the instruction. The operation field contains RT. The operand field is not used.
Use of the comment field is optional.

Enter the RT pseudo-instruction as shown in the following example:

RT

5-1 Texas /nstruments Incorporated

o
J@Q 43441.9701

The assembler supplies the same object code as if the source statement had contained the
following:

B *11

When control is transferred to a subroutine by execution of a BL instruction, the link to the
calling routine is stored in workspace register 11. An RT pseudo-instruction returns control to
the instruction following the BL instruction in the calling routine.

5-2 Texas Instruments Incorporated

o
{%\z@ o43441.9701

SECTION VI

ASSEMBLERS

6.1 GENERAL

Four assemblers process the Model 990 Computer Assembly Language. These four assemblers
are described in this section. In addition, this section describes the extended capabilities of the
Program Development System Assembler SDSMAC.

6.2 PROTOTYPING SYSTEM ASSEMBLER
The Prototyping System Assembler PX9ASM is a one-pass assembler that executes in a
Model 990 Computer under the PX990 Executive, and is a part of the Prototyping System and
the 733 ASR Program Development System. PX9ASM assembles object code for the TMS 9900
Microprocessor and the Model 990 Computer.

A one-pass assembler reads the source statements of a program one time only. The assembler
maintains a location counter as it reads the statements, and assigns a location counter value to a
label (symbol in the label field). The assembler builds a symbol table using these symbols and
the assigned values. The assembler also evaluates the expression in the operand field using the
values in the symbol table for any symbols in the expression. Then the assembler assembles the
appropriate object code according to the operation codes and the values of the operands.
Because the source statements are read only once, there must be limitations on the use of a
symbol in operand fields prior to the statement that has the symbol in the label field (forward
reference).

PX9ASM supports the assembly language as previously described. The limitations on the use of
forward references in PX9ASM are included in the description of expressions in a preceding
paragraph. PX9ASM provides a listing of the source and object code, and the machine language
object code.

6.2.1 TERMINAL EXECUTIVE DEVELOPMENT SYSTEM ASSEMBLER. The terminal execu-
tive development system assembler TXMIRA is a two-pass assembler that executes in a Model 990
computer as part of the terminal executive development system, running under the TX990 execu-
tive.

TXMIRA reads the source statements of a program twice. On the first pass, the assembler maintains
a location counter and builds a symbol table. For the second pass, the source statements are read in
again after rewinding the input file. During the second pass, the assembler generates the object code
using the source statements and the symbol table data developed during the first pass.

The TXMIRA assembler supports the assembly language as previously described. Because it is a two-
pass assembler, the restrictions on forward references are relaxed. The TXMIRA assembler option-
ally produces a list of the source and object code, and the symbol table, and predefines registers.

6.3 CROSS ASSEMBLER

The Cross Assembler is a two-pass cross assembler that assembles object code for the TMS 9900
Microprocessor and Model 990 Computers. The Cross Assembler executes on an IBM System
3X0, and is available on several nationwide timesharing services.

6-1 Texas Instruments Incorporated

943441-9701

A two-pass assembler reads the source statements of a program two times. The first time (first
pass), the assembler maintains the location counter and builds a symbol table similar to those in
a one-pass assembler. The two-pass assembler also copies the source statements for reading during
the second pass, but does not assemble any object code. During the second pass, the assembler
reads the copy of the source statements, and assembles the object code using the operation codes
and the symbol table completed during the first pass.

The Cross Assembler also supports the assembly language as previously described. The restrictions
on forward references are not as great for PX9ASM, because it is a two-pass assembler. These restric-
tions are included in the descriptions of expressions in a preceding paragraph. The Cross Assembler
produces a listing of the source and object code, and the machine language object code. Optionally,
the Cross Assembler prints a Cross Reference listing of the symbols in the program, and a listing of
the object code. Also, optionally, the Cross Assembler includes the symbols used in the program
and their values with the object code.

Finally, the Cross Assembler supports additional directives which permit the programmer to distin-
guish between program segment, data segment, and common segments. Program segment is the
relocatable code normally generated by all three assemblers. Data segment is relocatable code which
normally includes only modifiable storage. Common segments correspond to the blank common
and labeled common blocks of a FORTRAN program.

6.4 PROGRAM DEVELOPMENT SYSTEM ASSEMBLER

The Program Development System Assembler SDSMAC is a two-pass assembler that assembles
object code for the Model 990 Computer and the TMS 9900 Microprocessor. SDSMAC executes
on a Model 990 Computer under the DX10 Disc Executive and is a part of the Program Develop-
ment System,

The only restrictions on forward references are instances in which the value of the symbol affects
the location counter.

SDSMAC supplies the additional capability of Macro-instructions or MACROs. A macro is a user-
defined set of assembly language source statements. Macro definitions assign a name to the macro
and define the source statements of the macro. The macro name may then be used in the operation
field of a source statement of the program to cause the assembler to insert the pre-defined source
statements and assemble them along with the other source statements of the program. The macro

capability of SDSMAC allows the user to:
® Define macros to specify frequently used sequences of source code.

® Define macros for problem-oriented sequences of instructions to provide a means of
programming that may be more meaningful to users who are not computer-oriented.

Macros are defined in a macro language consisting of eleven verbs described in Section VII. In
addition to the macro language SDSMAC supports a number of extended capabilities described in
subsequent paragraphs of this section.

SDSMAC supports the assembly language as described previously, and produces the source and
object code listing and machine language object code that the other assemblers produce. The
output options (cross reference listing, object code listing, and symbol table output) of the Cross
Assembler are also available with SDSMAC. In addition, the user may suppress all printed output
of SDSMAC or request SDSMAC to only produce a copy of the expanded source program.

6-2 Texas Instruments Incorporated

o
@ 9434419701

In addition to the macro capability, SDSMAC supports the following capabilities beyond those of
PX9ASM, TXMIRA and the Cross Assembler:

® Use of parentheses in expressions

® An additional arithmetic operator (°//*) to perform right shifts
® [ogical operators in expressions

® Relational operators in expressions

® Six additional output options

® Workspace pointer directive

® Copy source file directive

® Conditional Assembly Directives

® Define operation directive

® Transfer vector pseudo-instruction

] Define maximum macro level

The capabilities, and the use of symbolic addresses with SDSMAC are described in the following
paragraphs.

6.4.1 USE OF PARENTHESES IN EXPRESSIONS. SDSMAC supports the use of parentheses in
expressions to alter the order of evaluation of the expression. Nesting of pairs of parentheses within
expressions is also supported. When parentheses are used, the portion of the expression within the
innermost parentheses is evaluated first. Then the portion of the expression within the next-inner-
most pair is evaluated. When evaluation of the portions of the expression within all parentheses has
been completed, the evaluation is completed from left to right. Evaluation of portions of an
expression within parentheses at the same nesting level may be considered to be simultaneous.

For example, the use of parentheses in the expression LAB1 + ((4+3)*7) would result in the
addition of 4 and 3. The result, 7, would be multiplied by 7, giving 49. The complete evaluation
would be the value of LAB1 plus 49. Without parentheses, 4 would have been added to the value of
LABI1, and 3 would have been added to the sum. The sum of the second addition would have been

multiplied by 7 if LAB1 had an absolute value. If LABI1 had a relocatable value, the expression
would have been illegal without the parentheses.

6.4.2 RIGHT SHIFT OPERATOR. In addition to the standard arithmetic operators used in
expressions (add, subtract, multiply, divide), SDSMAC supports the operator // (double slash)
to perform right shifts. The operator is used in the expression as follows:

<operand> [/ <shift count>

The operand may be an immediate value, a previously defined symbol, or a forward referenced
symbol. The expression can not be relocatable. The precedence of this operator follows the normal
left-to-right precedence unless the expression is modified by parentheses.

Texas Instruments Incorporated

o
@ 943441-9701

6.4.3 LOGICAL OPERATORS IN EXPRESSIONS. SDSMAC supports logical operations in
expressions, which are the bit-by bit logical operations between the values of the symbols and/or
constants. The logical operators are as follows:

® & for AND

® && for exclusive OR

e ++for OR

® # for NOT (logical complement)

The order of evaluation of expressions that contain logical operators is similar to that of
expressions that contain only arithmetic operators. Like the unary minus, the logical complement
takes precedence over other operations regardless of position, except as altered by parentheses.

The following are examples of expressions that contain logical operators:

BLUE&&255 Specifies the result of an exclusive OR
operation between the bits of the
value of symbol BLUE and the bits of

constant value 255.

GREEN++15 Specifies the result of an OR
operation between the bits of the
value of symbol GREEN and the
bits of constant value 15.

REDÿ Specifies the result of an AND
operation between the bits of the
value of symbol RED and the
inversion of the bits of
constant value 255.

REDÿ++(BLUE&255) AND the value of BLUE
with the constant 255. AND
the value of RED with the 1’s
complement of 255. OR the
two AND results to get the
value of the expression.

6.4.4 RELATIONAL OPERATORS IN EXPRESSIONS. SDSMAC supports six relational
operators that represent the relationship between the two constants and/or symbols, the result of
comparing the constants and/or symbols. When the relationship corresponding to the operator
exists (is true), the value of the combination is 1. When the relationship corresponding to the
operator does not exist (is not true), the value of the combination is 0. The result may be used
as an arithmetic value or as a logical value. The relational operators are as follows:

® = for equal
® < for less than

® > for greater than

64 Texas Instruments Incorporated

o
(‘:@2 943441-9701

® <= for less than or equal

® >= for greater than or equal

[]
H
I

for not equal.
NOTE

The greater than character (>) is also used to identify hexadecimal
constants. The context determines the meaning of the greater than
character in each statement.

The following are examples of expressions that contain relational operators:

BLUE#=GREEN Compares the value of symbol BLUE
to the value of symbol GREEN.
When the values are not equal,
the combination has a value of
one. When the values are equal,
the combination has a value of
Zero.

WHITE<BLACK Compares the value of symbol
WHITE to the value of symbol
BLACK. When the value of WHITE
is less than the value of BLACK, the
combination has a value of one.
Otherwise, the value of the com-
bination is zero.

RED*(GREEN=0) Compares the value of symbol GREEN
to zero. When GREEN equals zero, the
value of symbol RED is multiplied
by 1, and the value of the
expression is that of symbol
RED. When GREEN is not equal to
zero, the multiplier is zero, and
the value of the expression is zero.

BLUE>=RED Compares the value of symbol BLUE
to the value of symbol RED. When
BLUE is greater than or equal to
RED, the combination is equal
to one. When BLUE is less than
RED, the combination is equal
to zero.

6.4.5 OUTPUT OPTIONS. SDSMAC supports six options in addition to those listed in the
description of the OPTION directive. The additional options are specified by entering keywords in
an OPTION directive. The additional keywords and their meanings are as follows:

® NOLIST - Suppress printing of any listing. Overrides other directives and keywords.

® TUNLST - Limit the listing for text directives to a single line.

6-5 Texas Instruments Incorporated

(o]
{@ 943441-9701

o DUNLST - Limit the listing for data directives to a single line.

BUNLST - Limit the listing for byte directives to a single line.

® MUNLST - Limit the listing for a macro expansion to a single line.

e FUNL - Overrides unlist directives.
6.4.6 WORKSPACE POINTER. Only SDSMAC supports this directive. WPNT
Syntax definition:

[<label>]b ... WPNTh . .. <label>b ... [<comment>]

WPNT defines the current workspace to the assembler. WPNT generates no object code. The user
must provide a machine instruction to actually place the value in the workspace register. The
symbol in the label field, when used, must represent a word (even) address and must have been
previously defined. The operation field contains WPNT. The operand field contains the label
assigned to the workspace. The comment field is optional.

The following example shows a WPNT directive:

WPNT WORK
The directive in the example is appropriate when the workspace at location WORK is the active
workspace. The assembler stores the value of label WORK as the current workspace address, and
from this information identifies symbolic addresses as workspace registers when the symbolic
addresses have values greater than WORK by 15 or less. The assembler also recognizes WORK or

a label equal to WORK as workspace register 0. Symbolic addresses having values outside this
range are considered to be symbolic memory addresses.

6.4.7 COPY SOURCE FILE. Only SDSMAC supports this directive. COPY
Syntax definition:

[<label>]b ... COPYb ... <file name>b ... [<comment>]
COPY changes the source input for the assembler. Use of the label field is optional. The
operation field contains COPY. The operand field contains a file name from which the source
statements are to be read. The file name may be:

® An access name recognized by DX10 operating system.

® A synonym form of an access name.

The comment field is optional.

The following example shows a COPY directive:

COPY .SFILE

6-6 Texas Instruments Incorporated

o
%@ 943441-9701

The directive in the example causes the assembler to take its source statements from a file
SFILE. At the end-of-file of SFILE, the assembler resumes taking source statements from the file
or device from which it was taking source statements when the COPY directive was processed. A
COPY directive may be placed in a file being copied, which results in nested copying of files.

6.4.8 CONDITIONAL ASSEMBLY DIRECTIVES. Only SDSMAC supports these directives.

Syntax definition:
[<label>] b .. ASMIFb . . <wd-exp>b . .. [<comment>]

Assembly language statements
b... ASMELSH. . [<comment>]
Assembly language statements

b... ASMENDbD. . [<comment>]

Three directives, 'ASMIF, ASMELS and ASMEND, furnish conditional assembly capability in
SDSMAC. The three function as IF-THEN-ELSE brackets for blocks of assembly language
statements. When the expression in the operand field of an ASMIF evaluates to a non-zero (or true)
value, the block of statements enclosed by either ASMIF-ASMEND or ASMIF - ASMELS is
assembled. If the block is terminated by ASMELS, the block enclosed by ASMELS - ASMEND is
not assembled. When the expression on an ASMIF evaluates to zero (or false), the block of state-
ments immediately following ASMIF is not assembled. If an alternate ASMELS block occurs, it
is assembled. Statements not assembled are treated as comments. The ASMIF expression must be
well defined when it is encountered.

WARNING

ASMIF, ASMELS and ASMEND may not appear as macro model
statements. ASMIF - ASMELS - ASMEND constructs may be nested.

The following example shows the use of conditional assembly.

6-7 Texas Instruments Incorporated

943441-9701

SLEMAC D4FETE +E

fix)

x]
i
-
iy
ey
il
T

FRGE G&El1

=

THIZ IS AWM EXAMFLE OF A USE OF COMDITIOMAL ASSEMELY
TO IMCLUDE YARIOUS LEWELS OF DEBUG IMFORMATION,

A OSYMEOL IS5 DEFIMED WMHICH IMDICATES THIS LEWEL
B~ MO DEBRUG
5 - EMTREY SERIT SHORT DUMPS
18- THE ABOVE. OUTER LOOF SHORT DUMFS, EMTRYSESIT
LOMG DUMPS
1%—= ALL THE ABIVE & IMMER LOOF SHORT [UMPS

X FEEEEFE ¥ ¥

ix]
-
xx]
i
=
o]

Do DERUG B 4z
: A WALLE OF 42 FOR DEBUG WILL GIVE THE FIRST 3 LEVELS
OF DERUG THFORMATION

*

1:_-3!)
|§} bix}
¥ %

Lt

FEF SRETDMF. LMGLMP
PROGRAM ENTEY FOINT
DEF EMTEY

T T
oo
l.P]
XX

0
-
UKD

=

=

4

EMTEY

A

HSMIF/DEBUG IF DEBEUG=6., SKIF THIZ BLOCKE
AZMIF DEBLG:S *
BL LNGDMP ENTRY FOINT SHORT DUMF o+

ERx I x]
By ea
P IR Y
(e]

I
AX
I E

bx]
=

AZMELS *

EBL ZRTLMF ENTEY POIMT LOMG DUMF *

HEMEND #*

HEMEMD BRI R SR SR AR TR
BEEd 1ok MO Rl RE CSAVE RETURM ADDRESS

™
1ot il

ICODED

T T T

x]
*

OUTER LOOF
LAEBEL.L
I RS, =186

,,.
B

TMMER LIJOF
LABELEZ
LI Fd. g

DDODE D

ASMIF DEBUGH=1%5
EL SRETOMF IMHER LOOF SHORET DUMFP
A MERD
B DEC R4
: e JGT LAEBELZ

R U T IE A I or Y I
o i T R

*

o DD E

é +
51 ASMIF DEBLUG:=18
£ i Bl SETLMP OUTER LLOOF SHORT DUMF

DI

!

=i 1Ty
bocie o]

Dy
T T

i

i
o
™~

ASMEMD
DEC RS
JET LAEELL

T Oy

AU I R s B
=T
h
:n facx]
oy i

CCODE

i T
()

l_"
-
12
(R

T in

EWIT POIMT

6-8 Texas Instruments Incorporated

943441-9701

ShEMA

SATETE #E @0 AL Z6

ASMIF DEEBLG
ASMIF DERUGES
Bl LHGOAF

FSMELS
BL SRTDMP
ASMEMNE:
FISMEMD
B #RE
EHD

FARGE @862

IF DEBUG=E, SKIF THIS BLOCK®
£
EWTT LOMG DUMF #*

Ed
EXIT SHORT DUMP "
ES
B R SR SRS B SR R R R
CRETURM THROWGH SAVED REGISTER

Texas Instruments Incorporated

o
@ 943441-9701

- 6.4.9 DEFINE OPERATION. Only SDSMAC supports this directive. DFOP DFOP
Syntax definition:
[<labe>]b ... DFOPb . . . <symbol>,< operation>b ... [<comment>]

DFOP defines a synonym for an operation. Use of the label field is optional. The operation field
contains DFOP. The operand field contains a symbol which is the synonym for an operation,
and the operation, which may be the mnemonic operation code of a machine instruction, a
macro name, or the symbol of a previous DFOP or DXOP directive. The comment field is
optional.

The following example shows a DFOP directive:
DFOP LD MOV

The directive in the example defines LD for a synonym for the MOV machine instruction. The
LD symbol might be more meaningful where the source is a symbolic memory location and the
destination is a workspace register. The machine code for the MOV instruction is assembled
whenever either symbol appears in the operation field of a source statement. A single symbol
may appear in more than one DFOP directive in the same assembly, and an operation symbol
may appear in the label field of a DFOP directive. When an operation symbol appears as the
defined symbol of a DFOP directive, the corresponding operation is not available unless it had
appeared in the operand field of a previous DFOP directive. The effect of a group of DFOP
directives is shown in the following example:

DFOP HOLD, LWPI HOLD DEFINED TO BE LWPI
DFOP LWPILSOMMAC LWPI REDEFINED AS MACRO SOMMAC
DFOP SAVE,HOLD SAVE DEFINED AS HOLD (LWPI)

DFOP HOLD,BLWP HOLD REDEFINED AS BLWP

DFOP LWPI,SAVE LWPI RESTORED

The first pair of DFOP directives substitutes macro SOMMAC for the LWPI machine instruction,
which may be specified by the symbol HOLD. The second pair of DFOP directives changes the
symbol by which the LWPI machine instruction is specified to SAVE, and the symbol by which
the BLWP instruction is specified to HOLD. The last DFOP directive restores the symbol LWPI
to the LWPI machine instruction.

6.4.10 TRANSFER VECTOR. Only SDSMAC supports this pseudo-instruction. XVEC
Syntax definition:

<label>b ... XVECH ... <wp address>[,<subr address>]b . .. [<comment>]

6-10 Texas Instruments Incorporated

[e]
(@ 943441-9701

The XVEC pseudo-instruction is a means of coding the transfer vector for a subroutine.
XVEC places a set of assembler directives in the source code to provide a transfer vector
for a BLWP instruction. XVEC also provides a WPNT directive to define the newly active
workspace to the assembler. The label field contains the label of the resulting transfer vector.
The operation field contains XVEC. The operand field contains the label (wp address) of the
workspace that becomes active when the BLWP instruction is executed. Optionally, the wp
address may be followed by a comma and the label (subr address) of the first instruction to be
executed in the subroutine. When the second operand is omitted, the assembler assumes that the
first instruction to be executed follows the transfer vector. The use of the comment field is
optional.

Enter the XVEC pseudo-instruction as shown in the following example:
SUBRA XVEC WKSPA,ENTRYA

Transfer of control to a subroutine at location ENTRYA with a workspace at location WKSPA
becoming the active workspace is coded as follows:

BLWP SUBRA

The resulting object code and assembler processing is the same as would result from the
following directives:

SUBRA DATA WKSPA
DATA ENTRYA
WPNT WKSPA

Alternatively, the XVEC pseudo-instruction may be entered as follows:
SUBRA XVEC WKSPA
In this case, the executable code of the subroutine must immediately follow the XVEC

pseudo-instruction. The resulting object code and assembler processing is the same as would
result from the following directives:

SUBRA DATA WKSPA
DATA $+2
WPNT WKSPA

NOTE
No executable code that requires a different active workspace than

that of the subroutine may be entered between the XVEC pseudo-
instruction and the subroutine entry address.

6.4.11 SET MAXIMUM MACRO NESTING LEVEL. Only SDSMAC supports this directive.
Syntax definition:
[<label>]b... SETMNLb. . . <exp>b. .. [<comment>]

The SETMNL directive allows the programmer to change the maximum macro nesting stack level
as required. SDSMAC maintains a count of the number of levels of macro nesting and declares an

6-11 Texas Instruments Incorporated

[e]

error if this count exceeds the maximum number allowed. The default maximum is sixteen. The
SETMNL directive may be used to set the allowed maximum to greater or less than sixteen.

6.4.12 SYMBOLIC ADDRESSING TECHNIQUES. SDSMAC processes symbolic memory
addresses differently than the other assemblers so that the user may:

® Use the symbolic memory address of a workspace register to address the workspace
register.

® Omit the @ character to identify a symbolic memory address.

When SDSMAC processes a symbol as an operand of a machine instruction, it compares the value
of the symbol to the address of the current workspace. When the value is equal to the workspace
address, or is greater by 15 or less, the symbol represents a workspace and SDSMAC assembles a
workspace register address. Otherwise SDSMAC assembles a symbolic memory address. A WPNT
directive or an LWPI instruction supplies the address of the current workspace to the assembler.

Without this capability, two symbols are frequently assigned to the same address. The following
example illustrates this type of coding:

SUM EQU 0 ASSIGN SUM FOR WORKSPACE REGISTER 0
QUAN EQU 1 ASSIGN QUAN FOR WORKSPACE REGISTER 1
WS1 DATA 0 WORKSPACE REGISTER 0
QUANT DATA O WORKSPACE REGISTER 1

5 WORKSPACE REGISTER 2

FIVE DATA

MOV @FIVE,@QUANT INITIALIZE QUANTITY

BLWP @SUBI BRANCH TO SUBROUTINE
SUBI DATA WSl TRANSFER VECTOR
DATA ENTI FOR SUBROUTINE
ENT1 A QUAN,SUM ADD QUAN TO SUM

The two initial EQU directives assign meaningful labels to be used as workspace register addresses in
the subroutine. The labels of the DATA statements are required to access the same memory
locations in the main program, when another workspace is active. The following code would
produce the same object code when assembled on SDSMAC:

SUM DATA 0 WORKSPACE REGISTER 0

QUAN DATA 0 WORKSPACE REGISTER 1

FIVE DATA 5 WORKSPACE REGISTER 2
MOV FIVE,QUAN INITIALIZE QUANTITY

BLWP SUB1 BRANCH TO SUBROUTINE

6-12 Texas Instruments Incorporated

o
{@ 9434419701

SUBI1 XVEC SUM TRANSFER VECTOR FOR SUBROUTINE
ENT]1 A QUAN,SUM ADD QUAN TO SUM

The MOV instruction in the main program results in symbolic memory addresses for both operands.
The BLWP instruction uses transfer vector SUB1, provided by the XVEC directive labelled SUBI.
The XVEC directive also provides a WPNT directive that identifies SUM as the address of the
current workspace. The A instruction uses the symbol QUAN (as used in the MOV instruction) but
results in a workspace register address, because QUAN is now workspace register 1.

SDSMAC is compatible with the other assemblers, however, because the code of the first example
would be correctly assembled on SDSMAC.

In assemblers other than SDSMAC, a @ character is required, to denote the “indexed” mode of
addressing where the instruction is defined as having a generalized address as an operand. When
using SDSMAC, the @ character is considered redundant if

— all symbols in the expression have been previously defined and the resulting values of
the expression is greater than 15, or

— another @ character prefaces the expression.

The following notations for the MOV instruction in the previous example would generate the same
object and result in an error-free assembly:

MOV @FIVE, @QQUAN
MOV FIVE, QUAN
MOV @@FIVE, @@QUAN
NOTE
When the @ is omitted from a symbolic expression, the symbol must
be defined before its use. If the symbol is not first defined, a register
reference is assumed. If later the symbol is defined as a memory re-

ference, an ‘OPERAND CONFLICT PASS1/PASS2’ error is gen-
erated.

6-13/6-14 Texas Instruments Incorporated

943441-9701

SECTION VII

MACRO LANGUAGE

7.1 GENERAL

The SDSMAC assembler supports a macro defining language used in programs. A macro definition is
a set of source statements (machine instructions and assembler directives) specified by a macro call
in a source program. When the assembler processes a macro call it substitutes the predefined source
statements of the macro definition for the macro call source statement, and assembles the sub-
stituted statements as if they had been included in the source program. MACRO definitions may
be placed in a MACRO library for use in a subsequent assembly. This section describes the macro
language, the verbs used to define macros, and the MACRO library directives.

7.2 PROCESSING OF MACROS

Figure 7-1 illustrates the data paths between the basic assembler, the macro translator (consisting of
the Statement Classify, Macro Define, and Macro Expander modules) and the Macro library. The
Statement Classify module processes all source statements to detect macro language statements and
macro calls, and ignoring non-macro language statements. A special macro language statement,
$MACRO, identifies the beginning of a macro definition, and $END identifies the end of a macro
definition. Statements that occur between these two statements constitute a macro definition, and
are passed to the Macro Define module. The module writes them in the Macro library in an encoded
form. The Macro Define module also supplies to the Statement Classify module the macro name.

MACRO ENCODED
EXPANDER - —— MACRO
|
|
|
- STATEMENT MACRO
CLASSIFY — DEFINE
—
PRIMARY
INPUT
(SOURCE
PROGRAM)
ASSEMBLER
(A)132254

Figure 7-1. Macro Assembler Block Diagram

71 Texas Instruments Incorporated

943441-9701

The Statement classify module recognizes a macro call by the macro name in the operation field.
The statement classify module then passes the name to the macro expander module. The macro
expander module assesses the desired macro definition. The macro call is expanded as specified in
the macro definitions. The source statement that results from this expansion is used as input by the
Statement Classify module.

During the expansion of a macro call, a macro language statement may call another macro, or a
resulting source statement may be a macro call. A nesting of Macro’s calls can occur in the
expansion of one Macro call. The macro processor suspends processing of the current macro,
processes the new macro, then resumes processing the original macro at the point of interruption.
The macro translator allows a macro to be a recursive.

7.3 MACRO TRANSLATOR INTERFACE WITH THE ASSEMBLER

Expansion of a macro call may be varied according to the contents of the assembler symbol table
(AST) and may result in alteration of the contents of the AST. The AST contains an entry for each
symbol identified in the source program. The entry in the AST is divided into a number of
components. The value of the symbol is stored as the value component (is a binary value used in
computations). The segment component contains the location counter segment number of the
symbol, and the attributes of this symbol are stored in the attribute component as a group of bits
each of which represents an attribute of the symbol. The string component is null unless the macro
translator places a string of characters in it. The length component contains the number of
characters in the string component. An eight-bit user attribute field allows special attributes to be
defined for a symbol. In this section, the symbol table entry components are referred to as symbol
components.

Using keywords, a macro definition may access any component of any symbol in the AST. Symbols
that are operands of the macro call may be used in the definition without any further declarations.
Other symbols used in the Macro definitions must be explicitly declared before use.

A set of macro language statements beginning with a MACRO statement and ending with a SEND
statement is a macro definition. The $MACRO statement includes a macro name that is used as the
operation field. Macro definitions may appear anywhere in a program prior to macro calls that
activate the definitions and may be unique to a program or shared by many programs.

The LIBIN directive makes it easy to incorporate a library of previously encoded macro definitions
in every program. These definitions become a part of the source program but they are used only
when a macro is called in the source program.

A macro definition need only be as sophisticated as its application requires. The macro definition
simply redefine an instruction, supply one or more fixed operands for commonly used instructions,
contain one or more calls for other macros, or call itself recursively. The statements in a macro
definition may access AST symbol components to specify processing of a macro or alter the con-
tents of the AST. To prevent the assembler from getting into an infinite loop, the maximum nesting
level for macros is sixteen. However, the SETMNL directive may be used to change the established
maximum as required.

7.4 MACRO LIBRARY

A MACRO library is a DX10 directory and each member file of the directory contains a MACRO
definition. Two assembler directives, LIBIN and LIBOUT, identify MACRO libraries for input and
output, respectively. In addition, a system MACRO library may be input via the assembler input
parameters.

The purpose of a MACRO library is to reduce execution time and memory oye.rh'ead associated
with using MACROs. Execution time is reduced by encoding the MACRO definitions only once

72 Texas Instruments Incorporated

o
(@ 943441-9701

and making them available for subsequent assembler runs. Memory requirements are reduced since
MACRO definitions not under expansion reside only in the directory on disc.

7.5 MACRO LANGUAGE ELEMENTS

The elements of the macro language are labels, strings, constant operators, variables, variable quali-
fiers, keywords, and verbs. A macro definition consists of statements containing macro language
verbs and model statements. A model statement can be constructed from some of the elements
and results in an assembly language source statement. The elements of the macro language and
model statements are explained fully in the following sections.

7.5.1 LABELS. A macro language label consists of one or two characters. The first must be an
alphabetic character (A...Z) optionally followed by an alphanumeric character (A...Z, 0...9). Macro
language labels are used to determine the sequence of processing of statements in a macro definition
when the statements are not to be processed in order and have no significance in the actual
assembly language. The following are examples of valid macro language labels:

Il MAC

7.5.2 STRINGS. The literal strings of the macro language consist of one or more characters
enclosed in single quotes, and are identical to the character strings used in the assembly language.

An example is ‘ONE’.
Another example is ‘b’ (a blank).

7.5.3 CONSTANTS AND OPERATORS.:.Constants for the macro language are defined the same as
constants for the assembly language. The arithmetic operators of the assembly language applys also
to the macro language. The logical operators and the relational operators of SDSMAC also apply to
the macro language.

The macro language permits concatenation of macro variable components with literal strings,
characters of model statements and other macro variables. Concatenation is indicated by writing
character strings in juxtaposition with string mode references to MACRO variables.

7.5.4 VARIABLES. A macro definition may include variables, which are represented in the same
manner as symbols in the assembler symbol table, with the restriction that they may be a maximum
of two characters in length.

VA P4 SC F2 A Z
NOTE

Macro variables are strictly local; they are available only to the macro
which defines them. Access to symbols in the AST is through the
symbol components.

7.5.4.1 Parameters. A parameter is a variable that is an operand of the expanded macro call and is
declared in the $SMACRO statement at the beginning of the macro definition. The sequence of
parameters in the operand field of the SMACRO statement corresponds to the sequence of operands
in the operand field of the macro instruction,

7-3 Digital Systems Division

o]
(_I_@} 9434419701

7.5.4.2 Macro Symbol Table. The macro translator maintains a macro symbol table (MST) similar
to the symbol table of the assembler, and each entry consists of the string, value, length, and
attributes of a variable or parameter. The Macro Expander module places parameters in the MST as
it processes a macro call, and places variables in the MST as it processes the macro language state-
ments that declare variables.

The string component contains a character string assigned to the macro variable or parameter by the
macro expander. The value component contains the binary equivalent of the string component if
the string component is an integer. The value component can also contain the value of the symbol if
the string component is a symbol in the AST.

The length component contains the number of characters in the string component. The attribute
components of the MST is similar to the attribute component of the AST entry in that it is a bit
vector, the bits of which correspond to the attributes of the variable or parameter.

The Macro Expander comprehends the addressing modes of the assembler language. The value
components contains a binary value which can be interpreted if the operand is a valid integer
expression of any assembler addressing mode.

For example, the statement:
ADD $MACRO AU, AD

identifies a macro, ADD, having parameters AU and AD.

A macro call to activate that macro definition could be coded as follows:
ADD NUM, *3

The MST would now contain parameters AU and AD, and string component of parameter AU
would be ‘NUM’. The value component would be the value of the symbol NUM, and the attribute
component would indicate that the parameter is supplied in a macro call. The length component
would be 3. The string component of parameter AD would be “*3°. The value component would be
3 expressed as a binary number, and the length component would be 2. The attribute component
would indicate that the parameter is an indirect workspace register address appearing in the macro
call.

Another macro call for the same macro could be coded as follows:
ADD VAL(5), SUM

The components of the parameters AU and AD would now correspond to the operands of this
instruction. The string component of parameter AU would be ‘VAL(5)’. The value component
would be 5 (the index register number), and the length component would be 6. The attribute
component would indicate that parameter AU is an indexed memory address appearing in the
macro call instruction.

The string component of parameter AD would be ‘SUM’, and the value component vyou}d be the
value of SUM. The length component would be 3, and the attribute component would indicate that
parameter AD appears in the macro call.

7-4 Texas Instruments Incorporated

943441-9701

Each component of a macro variable may be accessed individually. Reference to a variable is made
in either binary mode or string mode. In the binary mode, the referenced macro variable component
is treated as a signed sixteen-bit integer. Binary mode access is made by writing the variable name
and component. Thus, the binary mode value of the length component of AD would be the sixteen
bit integer, 3. A reference to the string component of a macro variable in binary mode is, by defini-
tion, the sixteen-bit integer value of the ASCII representation of the first two characters of the
string. The binary mode value of the string component of AD is > 5255, which is the ASCII repre-
sentation for ‘SU’.

String mode access of macro variable components is signified by enclosing the variable in colon
characters (:); for example, :AD:.

NOTE

Colons are always used in pairs to enclose a variable name.

The string mode value of a component, other than the string component, is the decimal character
string whose value is the binary value of the component. In the previous example, the string mode
value of the length component of AD would be the character string ‘3. If the value of SUM were
> 28, then the string mode value of the value component of AD would be the character string ‘40’,
which is the decimal equivalent of > 28. Since the string component of a macro variable is a string,
the string mode value of a string component is the entire string.

7.5.4.3 Variable Qualifiers. The components of a parameter or variable may be specified, using the
specific names as shown in table 7-1. The variable name is followed by a period (.) and the single
letter qualifier. The following examples show qualified variables:

AU.S String component of variable AU.
In the first example of the macro call for a macro ‘ADD’, AU.S equals the binary
equivalent for ‘NU’, or > 4ESS5. If a colon (:) has indicated the string mode, the
string component is ‘NUM’ (:AU.S: = ‘NUM’).

AU.A Attribute component of variable AU.
This component may be accessed by use of logical operators and keywords.

AUV Value component of variable AU.
In the first example of the macro call for a macro ‘ADD’, this would be the value
of the symbol ‘NUM’ in the AST.

AU.L Length component of variable AU.
In the first example fo the macro call for a macro ‘ADD’, AU.L = 3.

Table 7-1. Variable Qualifiers

Qualifier Meaning
S The string component of the variable
A The attribute component of the variable.
\" The value component of the variable.
L The length component of the variable

7.5 Texas Instruments Incorporated

(o]
(@ 943441-9701

Except in an $ASG statement (described in a subsequent paragraph), an unqualified variable means
the string component of the variable. In the two following examples, the concatenated strings are

equivalent:
:CT.S: B WAY Variable CT qualified.
:CT: b WAY Variable CT unqualified.

When the string component of a variable is a symbol in the AST, the additional qualifiers of
table 7-2 may be used to access the symbol components of that symbol. The symbol components of
the parameters of macro instructions and the symbol value of an AST symbol are accessible directly.
To access the other components of a symbol which has not been passed as a parameter in the macro
definition, the symbol must be assigned as a string component of a macro variable and the symbol
component qualifiers of table 7-2 applied to that variable. The following are examples of qualified
variables that specify symbol componets of string components of variables:

B.SS String component of symbol that is the string component of variable B. This is null
unless a macro instruction has caused a string to be associated with by using a $ASG
statement.

G2.SV Value component of the symbol that is the string component of variable G2. If G2.S
has been defined as ‘MASK’, a statement MASK EQU> FF has been encountered in
the assembly language source when G2.SV = > FF. In string mode, :G2.SV: = ‘255°,

NO.SA Attribute component of the symbol that is the string component of variable NO.
This component may be accessed by use of logical operators and keywords, as
described later.

V2.SL Length component.of the symbol that is the string component of macro variable V2.
If a string has been assigned to the symbol which is V2.5, then V2.SL is the length
of that string.

NV.SU User attribute component of symbol that is the string component of variable NV.
This component is zero except when a macro instruction has been issued to set bits
in the component with a $ASG macro verb. This component is 8 bits long and may
be used as desired. :

LM.SG Segment component of symbol that is the string component of variable LM.

Concatenation is especially useful when a previously defined string is augmented with additional
characters. The string ‘ONE’ could be represented by a qualified variable such as CT.S. In that
case, concatenation expressed as follows:

:CT.S: ‘BWAY’
would provide the same result as writing
‘ONE BWAY’
If the qualified variable CT.S represented ‘TWO?’, the result of the concatenation in the example

would be ‘TWO WAY’. Strings and qualified variables may be concatenated as required and the
variable need not be first. Components of variables that are represented by a binary value (e.g.,

7-6 Texas Instruments Incorporated

943441-9701

CT.V and CT.L) are converted to their ASCII decimal equivalent before concatenation.
For example:

:CT.S:bWAYb’ :CT.L:
is expanded as

ONE WAY 3

since the length component of the variable CT is three.

Table 7-2. Variable Qualifiers for Symbol Components
Qualifier Meaning

SS String component of a symbol that is the
string component of a variable.

SV Value component of a symbol that is the
string component of a variable.

SA Attribute component of a symbol that is
the string component of a variable.

SL Length component of a symbol that is the
string component of a variable.

SU User attribute component of a symbol that
is the string component of a variable.

SG Segment component of a symbol that is
the string component of a variable.

7.5.5 MODEL STATEMENTS. As mentioned earlier, a macro definition consists of statements
that contain macro language verbs, and model statements. A model statement always results in an
assembly language source statement and may consist only of an assembly language statement, or
portions of an assembly language statement combined with string mode qualified variable
components using the colon operator (:). In any case, the resulting source statement must be a legal
assembler language statement or errors will result. The following examples show model statements:

MOVB R6,R7 This model statement is itself an assembly language
source statement that contains a machine instruc-

tion.

:P7.S:bbbSOCHbH:P2.S; R8bbb:V4.S: This model statement begins with the string com-
ponent of variable P7. Three blanks, SOC, and three
more blanks are concatenated to the string. The
string component of variable P2 is concatenated to
the result, to which, R8 and three blanks are conca-
tenated. A final concatenation places the string com-
ponent of variable V4 in the model statement. The
result is an assembly language machine instruction
having the label and comment fields and part of the
operand field supplied as string components.

77 Texas Instruments Incorporated

943441-9701

:MS.S: This model statement is the string component of
variable MS. Preceeding statements in the macro
definition must place a valid assembly language
source statement in the string component to pre-
vent assembly errors.

CAUTION

Conditional assembly directives may not appear as operations in a
model statement. Comments supplied in model statement may not
contain periods (.), since SDSMAC scans comments in the same way
as model statements and improper use of punctuation may cause
syntax errors.

7.5.6 SYMBOL ATTRIBUTE COMPONENT KEYWORDS. The macro language recognizes key-
words to specify the attributes of assembler symbols and macro parameters. Each keyword
represents a bit position within a word that contains all attributes of the symbol or parameter. A
keyword may be used with a logical operator and the attribute component ot test or set a specific
attribute of a symbol or parameter.

The keywords listed in table 7-3 may be used with a logical operator and the symbol attribute com-
ponents (.SA) to test or set the corresponding attribute component in both the AST or MST. The
following example shows an expression that uses a symbol attribute component keyword:

P5.SA&SSTR This is the result of an AND operation between the
attribute component of the symbol that is the string
component of variable P5 and a bit vector correspon-
ding to keyword $STR. The expression has a nonzero
value when the contents of the string component of
P5 is not null; otherwise, the expression has a value of
0.

Another example shows an expression that uses a symbol attribute keyword:

CT.SA++$SREL This is the result of an OR operation between the
attribute component of the symbol in the string
component of variable CT and the bit correspond-
ing to keyword SREL. The value of the expression
is that of the attribute component showing the sym-
bol as relocatable.

Table 7-3. Symbol Attribute Keywords

Keyword Meaning

$REL Symbol is relocatable.

$REF Symbol is an operand of an REF directive.
$DEF Symbol is an operand of a DEF directive.
$STR Symbol has been assigned a component string.
$VAL Symbol has been assigned a value.

SMAC Symbol is defined as a macro name,

$UNDF Symbol is not defined.

7-8 , Digital Systems Division

9434419701

7.5.7 PARAMETER ATTRIBUTE KEYWORDS. The keywords listed in table 7-4 may be used
with a logical operator and the macro symbol attribute component to test or set the corresponding
attribute in the MST attribute component. These attribute keywords may be used to test or set
attributes of both parameters and variables in the MST. The following examples show expressions
that use parameter attribute component keywords:

P6.A&SPCALL This is the result of an AND operation between the
attribute component of variable P6 and the bit vec-
tor corresponding to keyword $SPCALL. The
expression has a nonzero value when variable P6 is
a parameter supplied in a macro call. Otherwise
the value of the expression is zero.

RA.A++$PSYM This is the result of an OR operation between the
' attribute component of variable RA and the bit
vector corresponding to keyword $PSYM. The
value of the expression is that of the parameter
attribute component showing the parameter as a
symbolic memory address.

Table 7-4. Parameter Attribute Keywords

Keyword Meaning

$PCALL Parameter appears as a macro-instruction operand.

$POPL Parameter is an operand list. The value component contains
the number of operands in the list.

$PNDX Parameter is an indexed memory address. The value
component contains the index register number.

$PIND Parameter is an indirect workspace register address.

SPATO Parameter is an indirect autoincrement address.

$PSYM Parameter is a symbolic memory address.

7.5.8 VERBS. The macro language supports eleven verbs that are used in macro language state-
ments. Any statement in a macro definition that does not contain a macro language verb in the
operation field is processed as a model statement. The verbs and the statements named after all
verbs are described in the following paragraphs.

7.5.9 SMACRO.
Syntax definition:

<macro name>b . .. SMACROb . . . [<parm>][,<parm>] ... b ... [<comment>]

7.9 Texas Instruments Incorporated

o]
{_@PP 943441-9701

The SMACRO statement must be the first statement of a macro definition, assigns a name to the
macro and declares the parameters for the macro. The macro name consists of from one to six
alphanumeric characters, the first of which must be alphabetic. Each < parm > is a parameter for
the definition, as previously described in paragraph 7.5.4.1. The operand field may contain as many
parameters as the size of the field allows, and must contain all parameters used in the macro defini-
tion.

The macro definition is used in the expansion of macro calls that have the macro name as an oper-
ation code. The syntax for a call is as follows:

<operand> } [{ <operand> }]
, .. b, .. [<comment>]
[<label>]b. . . macto name>b. . [{<operand list>] <operand list>

When the label field contains a label, the label is assigned to the location of the first object or
dummy object code of the expanded macro instruction. The macro name specifies the macro defini-
tion to be used. Each operand may be any expression or address type recognized by the assembler
or a character string enclosed in quotes. Alternatively, an operand list may be used. An operand
list is a group of operands enclosed in parentheses and separated by commas (when two or more

operands are in the list) and is processed as a set after removal of the outer parentheses during
macro expansion.

Operands (or operand lists) may be nested in parentheses in the macro call for use within macro
definitions.

For example:
ONE $MACRO P1, P2
specifies 2 parameters.
A call such as
ONE PARI1, PAR2
will result in
‘PAR1’ being associated with P1 and ‘PAR2’ being associated with P2.
However, a call such as
ONE PARI1, (PAR21, PAR22)
will result in

‘PAR1’ being associated with P1 and ‘PAR21, PAR22’ being associated with P2.

7-10 Texas Instruments Incorporated

o
Q]@ 9434419701

Now if :P2: or :P2.S: is used as an operand in a model statement, it has the effect of being two
operands (i.e., matching two parameters in the macro definition).

Processing of each macro call in a source program causes the Macro Expander to associate the
first parameter in the SMACRO statement with the first operand or operand list on the macro
call line and the second parameter with the second operand or operand list, etc. Each parameter
receiving a value has the SPCALL attribute set. When the macro definition has more parameters
specified than the number of operands in the macro call, the $PCALL attribute is not set for the
excess parameters. The $PCALL attribute is also not set if an operand is null, i.e., the call line
has two adjacent commas or an operand list of zero operands. Expansion of the macro can be con-
ditioned on the number of operands by testing this attribute, SPCALL.

For example, a macro definition containing
AMAC $MACRO P1, P2, P3

when called by

AMAC ABI1, AB2
sets SPCALL in parameters P1 and P2 but not for P3.
Similarly,

AMAC XY1,,XY3

causes $PCALL to be set for P1 and P3 but not for P2.

When the macro instruction has more operands than the number of parameters in the $MACRO
statement, the excess operands are combined with the operand or operand list corresponding to the
last parameter to form an operand list (or a longer operand list). For example, with the macro state-
ment shown, the operands of the two macro calls in the following code would be assigned to the
parameters in the same way:

ONE EQU 9

TWO EQU 43

THREE EQU 86

FIX SMACRO P1,P2 MACRO FIX
FIX ONE,TWO,THREE = MACRO-INSTRUCTION
FIX ONE,(TWO,THREE) MACRO-INSTRUCTION

711 Texas Instruments Incorporated

[e]
i’_@@ 943441-9701

Parameter assignments:

P1.S = ONE
P1.A = §PCALL
P1.L = 3

P1.V = 9

P2.S
P2.A
P2.L
P2V

]

TWO,THREE

$PCALL,$POPL

9

2 (number of operands in the list)

Another example of a parameter assignment in a macro statement is as follows:

EQU
EQU
DATA
DATA
EQU
EQU
EQU
EQU
EQU
$MACRO

TOTMmYuQw e

g -
>
=
=

PARM

Parameter assignments:

7
15
17
63
95
47
58
101
119

P1,P2,P3,P4,P5,P6,P7,P8,P9

A,.B,0),C,(D),(E)(F),(G,(H,1)),*R7+

P1.S = A P2.S = (no string)
P1.A = $PCALL P2.A = (zeroes)
P1.L = 1 P2.L = 0
P1.V = 7 P2.V = 0
P3.S = B P4.S = (no string)
P3.A = $PCALL P4.A = §$POPL
P3.L = 1 P4.L = 0
P3.V = 15 P4.V = 0
P5.S = C P6.S = D
P5S.A = §$PCALL P6.A = $PCALL,$POPL
P5S.L = 1 P6.L = 1
P5.V = 0 P6.V = 1
P7.S = (BE)(F) P8.S = G,H))
P7.A = $PCALL,$PNDX P8.A = $PCALL,$POPL
P7.L = 6 P8.L = 7
P7.V = 47 P8.V = 2
7-12 Texas Instruments Incorporated

o
@ 943441-9701

P9.S = *R7+
P9.A = $PCALL,SPATO
P9.L = 4
Po.V = 7
7.510 $VAR.

Syntax definition:

b...$VARD ... <var>[<var>]...b...[<comment>]

The $VAR statement declares the variables for a macro definition. The $VAR statement is required
only if the macro definition contains one or more variables other than parameters. More than one
$VAR statement may be included and each $VAR statement may declare more than one variable.
Each <var> in the operand is a variable as previously described.

The following is an example of a $VAR statement:

SVAR ACT,V3 THREE VARIABLES FOR A MACRO

The example declares variables A, CT, and V3. A, CT, and V3 must not have been declared as
parameters. The $VAR statement does not assign values to any components of the variables.
$VAR statements may appear anywhere in the macro definition to which they apply, except
that each variable must be declared before the first statement that uses the variable. It is logical
to place $VAR statements immediately following the SMACRO statement.

7.5.11 S$ASG

Syntax definition:

<expression>

b...$ASGh... {
<string>

} BTOb var b . . . [<comment>]

The $ASG statement assigns values to the components of a variable. Variables that are not param-
eters have no values for components until values are assigned using $ASG statements. Components
previously assigned to parameters or to variables by $ASG statements may be assigned new values
with $ASG statements.

The expression operand may be any expression valid to the assembler, and may contain binary
mode variable references and the keywords in tables 7-3 and 7-4.

NOTE

The binary mode value of a string component or symbol string
component used in an expression is the binary value of the first
two characters of the string.

Thus, if GP.S has the string ‘LAST’, the value used for GP.S in an expression is the <string™> hexa-
decimal number >4C41 which is the ASCII representation for LA.

7-13 Texas Instruments Incorporated

a2

A string may be one or more characters enclosed in single quotes or the concatenation of a literal

with the string mode value of a qualified variable. The <VAR> may be either an unqualified
variable or a qualified variable.

When the operands are both unqualified variables, all components are transfered to target variables.
When the source variable is qualified or is a quoted string and the destination variable is unqualified,
an error results. When the destination variable is qualified, only the specified component receives
the corresponding component of the expression or string, with the exception that when a string is
assigned to the string component of a variable or symbol, the length component of that variable or
symbol is set to the number of characters in the assigned string. If the attribute component of the
target variable is to be changed, only those attributes which can be tested using keywords are
changed. Other attributes maintained by SDSMAC may or may not be changed, as appropriate.

NOTE

A qualified variable that specifies the length component is illegal
as the target in a $ASG statement. Also, a qualified variable that
specifies the attribute component or the value component of a
macro variable which was declared to be a macro language label
(for the purpose of a $GOTO) is illegal as the target in a $ASG
statement.

The following examples show the use of the $ASG statement:

$ASG P3 TO V3 Assign all the components of variable P3 to vari-
able V3.
$ASG :P3.S:‘ES’ TO P3.S Concatenate string ‘ES’ to the string component of

variable P3, and set the string component to the
result. Also set the length component to a new
value, 2 greater than the previous value.

$ASG CT.A++$PSYM TO CT.A Set the bit in the attribute component of variable
CT to indicate the symbolic address attribute.

Variables P3, V3, and CT must have previously declared, either as parameters in a SMACRO state-
ment or as variables in a $VAR statement.

The $ASG statement may be used to modify symbol components, as shown in the following
examples. Assume that P3.V = 6 and P3.S = SUB.

$ASG ‘TEN’ TO G.S Assigns ‘TEN’ as the string component of variable G.
When ‘TEN’ is a label in the AST, this statement
allows the use of symbol component qualifiers to
modify the components of symbol TEN.

$ASG P3.VTO G.SV Sets the value component of the symbol in the string
component of variable G to the value component of
variable P3. In this case, the value component of TEN
is set to 6.

7-14 Digital Systems Division

o
e‘—@? 943441-9701

$ASG ‘A’:P3.S: ‘S°’TO G.SS Concatenates string ‘A’, the string component of var-
iable P3 and string S and places the result in the string
component of the symbol in the string component of
variable G. Also sets the length component of the
same symbol. Thus, the string component of TEN is
ASUBS5 and length component is 5.

7.5.12 SNAME.
Syntax definition:
<label>b. . .$NAMED. . .[<comment>]
The $NAME statement associates a macro language label with a macro language statement. When
a label is required for branching within a macro definition it must be provided by a SNAME state-

ment. The SNAME statement performs no processing in the expansion of a macro instruction.

The following example shows a $SNAME statement:

AB SNAME BRANCH TO THIS POINT A $GOTO statement with AB as an operand
branches to this point.

$ASG P3 TO V3 Expansion of the macro instruction continues
with the $ASG statement.

7.5.13 $GOTO.
Syntax definition:
b...8GOTOb. . <label>b. . .[<comment>]

The $GOTO statement branches within a macro definition, either to'a $NAME statement or to an
$END statement. The label is a macro language label of either type of statement.

The following example shows a $GOTO statement:

$GOTO AB Branch to a SNAME statement having the label AB and execute the
following statement, or to an $END statement having the label AB.

7.5.14 SEXIT.
Syntax definition:
b. . .$EXITh. . .[<comment>]

The $EXIT statement terminates processing of the macro expansion. The SEXIT statement has the
same effect as a $GOTO statement with the label of the SEND statement as the operand.

715 Texas Instruments Incorporated

o
% 943441-9701

7.5.15 $CALL.
Syntax definition:
b...SCALLb. . .<macro name>b. . .[<comment>]

The $CALL statement initiates processing of the macro definition named in the operand field. The
operands passed to the macro being expanded are mapped to the parameters of the macro specified
in the $CALL statement. When the Macro Expander executes a $END statement or a $EXIT state-
ment in the called macro, processing returns to the statement following the $CALL statement in
the calling macro.

The following is an example of a SCALL statement:

$CALL CONV Activates the macro definition CONV. The parameters of the calling
macro are passed as the operands of the macro CONV.

7.5.16 SIF.
Syntax definition:
b.. .8IFb. . .<expression>b. . .[<comment>]

The $IF statement provides conditional processing in a macro definition. An $IF statement is
followed by a block of macro language statements terminated by an $ELSE statement or an
$ENDIF statement. When the $ELSE statement is used, the $ELSE statement is followed by
another block of macro language statements terminated by an $ENDIF statement. When the ex-
pression in the $IF statement has a nonzero value, the block of statements following the $IF
statement is processed. When the expression in the $IF statement has a zero value, the block of
statements following the $IF statement is skipped. When the $ELSE statement is used, and the
expression in the $IF statement has a nonzero value, the block of statements following the SELSE
statement and terminated by the $ENDIF statement is skipped. Thus, the condition of the $IF
statement may determine whether or not a block of statements is processed, or which of two
blocks of statements is processed. Furthermore, a block may consist of zero or more statements.

The expression may be any expression as defined for the $ASG statement and may include quali-
fied variables and keywords. The expression defines the condition for the $IF statement.

NOTE

The expression is always performed in binary mode. Specifically,
the relational operators (<, >, =, #=, etc.) operate only on the binary
mode value of the macro variable. This has the effect that compari-
sons of two character strings may be done only on the initial two
character positions.

7.16 Texas Instruments Incorporated

o
{@} 9434419701

The following examples show conditional processing in macro definition:

$1F KY.SV Process the statements of Block A when the value compo-
nent of the symbol in the string component of variable KY
BLOCK A contains a nonzero value. Process the statements of Block B
) when the component contains zero. After processing either
SELSE block of statements, continue processing at the statement
following the SENDIF statement.
BLOCK B

SENDIF
$IF T.A&SPCALL=0 Process the statements of Block A when the attribute
. component of parameter T indicates that parameter T
BLOCK A was not supplied in the macro instruction. If param-
. eter T was supplied, do not process the statements of
SENDIF Block A. Continue processing at the statement fol-
lowing the SENDIF statements in either case.
$IF T.L=5 Process the statement of Block A when the length
component of variable T is equal to 5. If the length
BLOCK A component of variable is not equal to 5, do not
. process the statements of Block A. Continue pro-
$ENDIF cessing at the statement following the $ENDIF
statement.

7.5.17 SELSE
Syntax definition:
b...$8ELSEb. ... [<comment>]

The $ELSE statement begins an alternate block to be processed if the proceding $IF expression was
false.

7.5.18 SENDIF
Syntax definition:
b. . .SENDIF%b. . .[<comment>>]

The SENDIF statement terminates conditional processing initiated by an $IF statement in a macro
definition. Examples of SENDIF statements and their use are shown in a preceding paragraph.

7.5.19 SEND
Syntax definition:
[<label>]®.. .$ENDb. . .<macro name>b. . .[<comment>]
The $END statement marks the end of the group of statements of the macro definition named in

the operand. When executed, the SEND statement terminates the processing of the macro defini-
tion. The label may be used in a $GOTO statement to terminate processing of the macro definition.

7-17 Texas Instruments Incorporated

(o]
{—@? 943441-9701

The following is an example of an $END statement:

$END FIX Terminates the definition of macro FIX

7.6 ASSEMBLER DIRECTIVES TO SUPPORT MACRO LIBRARIES

Two directives have been added to support the use of libraries of macros in SDSMAC. These two
directives are LIBOUT, which is used to build or add to a library of macro definitions, and LIBIN,
which is used to “‘recall” a previously built macro library.

7.6.1 LIBOUT DIRECTIVE.
Format:
b...LIBOUTb. . <LIBRARY-ACCESS-NAME>

The LIBOUT directive declares a MACRO library where MACRO definitions are written during an
assembly. The library must have been previously created by a CFDIR (create file directory) utility
command. MACRO definitions appearing in the assembler input stream following a LIBOUT
directive are written to the specified library upon successful translation. MACRO definitions
appearing prior to the first LIBOUT directive remain in memory and are not written to any library.
Multiple LIBOUT directives may appear in a single assembly. Each successive output library super-
cedes its predecessor so that only one output library is in effect at a time, the same library specified
on multiple LIBOUT directives. Furthermore, a library may be used for both input and output
simultaneously. MACRO definitions are written to the library using the replace option which will
redefine any MACRO with the same library name. Hence, a macro library may be maintained
(updated) without difficulty.

In addition to MACRO definitions, a sub-directory of the MACRO library with the name DSDFX$§
contains the result of DXOP and DFOP directives and MACRO names which redefine an assembly

language instruction, directive, or peudo-instruction appearing within the span of the current
LIBOUT directive.

The MACRO definitions, DXOPs and DFOPs are written to the library completely replacing any
prior definitions of the symbols on that MACRO library. For example, if a MACRO library con-
tained a MACRO definition for the symbol ‘LOCK’ and a subsequent assembly encounters a
‘DFOP LOCK, ABS’ statement while a LIBOUT directive to that library is in effect, the MACRO
library will result in containing information that ‘LOCK’ is another name for the instruction ‘ABS’.
The MACRO definition which existed on the library previously will have been deleted.

7.6.2 LIBIN DIRECTIVE.
Format:
b.. .LIBINb.(. <LIBRARY-ACCESS-NAME>

The LIBIN directive declares a MACRO library to be used in the current assembly. The library
must have been previously created and must contain only MACRO definitions and DFOP and

7-18 Texas Instruments Incorporated

[}
{@F} 943441-9701

DXOP directives previously encoded during another assembly (by use of the LIBOUT directive).
Multiple LIBIN directives may appear in a single assembly. When the LIBIN directive is encountered
the library directory is examined for any redefinition of assembler instructions and their existence
flagged. No further use is made of the MACRO library until an undefined operation is encountered.
At that time, the MACRO library is searched for a possible MACRO definition of the operation.
In the case of multiple MACRO libraries, the search order is inverse to the order of presentation,
i.e., the last MACRO library is searched first. The system MACRO library specified in the SCI XMA
command is always searched last.

7.6.3 MACRO LIBRARY MANAGEMENT. The MACRO library may be listed, added to, deleted
from, and replicated using a combination of utility commands provided by the operating system
and the MACRO assembler LIBIN and LIBOUT directives.

To list or replicate a MACRO library, use the utility commands provided by the operating system.
To add to an existing MACRO library or change an existing MACRO definition, DFOP, or DXOP,
use only the LIBOUT directive provided by the MACRO assembler. Do not use utility commands
for copying files to copy a MACRO definition to another MACRO library.
To delete MACRO definitions, DFOPs, and DXOPs, use the utility commands provided by the
operating system to delete files. In the following examples assume that a MACRO library with
the name
. SYSTEM. MACROS
is present.
a. If the result of the DFOP
DFOP T, TEXT
is to be deleted, then use the delete file utility command to delete the file:
.SYSTEM. MACROS. DSDFX$. T
b. If the result of the DXOP
DXOP SVC,15 -

is to be deleted, use the delete file utility command to delete the following file in the
same manner as above:

. SYSTEM. MACROS. D$DFXS$. SVC

c. If a MACRO definition for ‘CALL’ is to be deleted, use the delete file utility command
to delete the following file:

. SYSTEM. MACROS. CALL

d. If a MACRO definition is to be deleted which redefines an assembly language instruc-
tion, directive, or pseudo-instruction, then two files must be deleted. If the MACRO
name were ‘TEXT’ then delete:

. SYSTEM. MACROS. TEXT
. SYSTEM. MACROS. D$DFXS$. TEXT

7-19 Texas Instruments Incorporated

o
{—@@ 943441-9701

If only one of these is deleted either an “invalid opcode” assembly error will result or
the intended macro will not have been used.

7.7 MACRO EXAMPLES :

Macros may simply substitute a machine instruction for a macro instruction, or they may include
conditional processing, access the assembler symbol table, and employ recursion. Several examples
of macro definitions are described in the following paragraphs.

7.7.1 MACRO GOSUB. Macro GOSUB is an example of a macro that substitutes a machine
instruction for the macro instruction. The macro definition consists of three macro language state-
ments, one of which is a model statement, as follows:

GOSUB $MACRO AS Defines macro GOSUB and declares a param-
eter, AD.
BL :AD.S: A model statement that results in a BL in-

struction with the string component of the
parameter as operand.

$END GOSUB Terminates macro GOSUB.
The syntax of the macro instruction for the GOSUB macro is defined as follows:

[<label>]b. . .GOSUBb. . .<address>b. . .[<comment>]

When a label is used, it is effectively the label of the resulting BL machine instruction. The address
may be any address form that is valid for a BL instruction. When a comment is used, it applies
to the macro instruction. For example, the following macro instruction is valid for the GOSUB
macro:

GOSUB @SUBR

The statement in the example results in a machine instruction to branch and link to a subroutine
at location SUBR, as follows:

BL @SUBR

Another example shows the macro instruction that could be used if the subroutine address were
in workspace register 8 and had a label.

NEXIT GOSUB *RS8
The resulting instruction would be:

NEXIT BL *R8

7.7.2 MACRO EXIT. Macro EXIT is an example of a macro that supplies an assembler directive
the first time the macro is executed, and a machine instruction each successive time. The macro
requires an EQU directive to be placed in the source program prior to calling the macro, and the

definition consists of nine macro language statements, including two model statements. The defini-
tion is as follows:

720 Texas Instruments Incorporated

(o}
J_—@ 943441-9701

EXIT $MACRO Defines macro EXIT with no parameters.
$VAR L Defines variable L.
$ASG ‘F1I’TO L.S Assign F1 to the string component of variable

L to allow access to symbol F1 in assembler
symbol table.

XOP @TERM,15 Model statement — places an XOP machine
instruction in source program.

SIF L.SV If the value component of symbol F1 is a
nonzero value, perform the next two state-
ments and terminate the macro. Otherwise,
terminate the macro.

TERM BYTE 16 Model statement — places a byte directive
referenced by the XOP instruction following
the XOP instruction.

$ASG 0TO L.SV Set the value component of symbol F1 to
zero. Any further calls to macro EXIT will
omit the preceding model statement and its

statement.
SENDIF Defines the end of conditional processing.
$END End of macro definition.
F1 EQU 1 Defines F1 with a value of 1. This is not part

of the macro definition, but is a source state-
ment. It must precede the first macro call
for macro EXIT, and may precede the
definition.
The syntax of the macro instruction for the EXIT macro is defined as follows:
[<label>]®.. .EXIT

When a lable is used it is effectively the label of the XOP machine instruction resulting from macro.
The first time the macro is called, the following source statements are placed in program:

XOP @TERM,15
TERM BYTE 16
Subsequent calls for the macro result in the following:

XOP @TERM,15

7.21 Texas Instruments Incorporated

o
%__@? 943441-9701

7.7.3 MACRO ID. Macro ID is an example of a macro having a default value. The macro supplies
two DATA directives to the source program. The macro consists of nine macro language statements,
four of which are model statements. The definition is as follows:

ID $MACRO WS,PC Defines ID with parameters WS and PC.

DATA ‘WS.S: Model statement — places a DATA directive
with the string of the first parameter as the
operand in the source program.

SIF PC.A&SPCALL Tests for presence of parameter PC.

DATA :PC.S:,15 Model statement — places a DATA directive
in the source program. The first operand is
the string of the second parameter, and the
second operand is 15. This statement is pro-
cessed if the second parameter is present.

$ELSE Start of alternate portion of definition.

DATA START,15 Model statement — places a DATA directive
in the source program. The first operand is
label START, and the second operand is 15.
This statement is processed if the second
parameter is omitted.

START Model statement — places a label START in

the source program. This statement is pro-
cessed if the second parameter is omitted.

$ENDIF End of conditional processing.

$SEND End of macro.
This macro could be used to place a three-word vector at the beginning of a program. The first
word could be the workspace address, the second, the entry point, and the third, the value 15 to
be placed in the SR register. The first operand of the macro mstruction would be the workspace
address, and the second operand would be the entry point. When the executable code immediately
follows the vector, and the entry point is the first word of executable code, the second param-
eter may be omitted. The syntax definition of the macro instruction for macro ID is as follows:

<label>b. . .IDb. . .<addres§>[,<address>] b. . .[<comment>] |

The label becomes the label of the three-word vector, and the addresses may be expressions or
symbols.

The following is an example of a macro instruction for macro ID:
PROGI1 ID WORK1,BEGIN
The resulting source code would be:
PROG1 DATA WORK1
DATA BEGIN,15

7-22 Texas Instruments Incorporated

943441-9701

When the entry point immediately follows the macro instruction, the macro instruction could be
coded as follows:

PROG2 ID WORK?2

This would result in the following source code:
PROG DATA WORK?2
DATA START,15
START

This form of the macro instruction imposes two restrictions on the source program. The source
program may not use the label START and may not call macro ID more than once. The user may
prevent problems with labels supplied in macros by reserving certain characters for use in macro-
generated labels. A macro definition may maintain a count of the number of times it is called, and
use this count in each label generated by the macro.

7.7.4 MACRO UNIQUE
0001 IDT ‘UNIQUE’

0003 * THIS EXAMPLE DEMONSTRATES A METHOD FOR CREATING UNIQUE
0004 * LABELS USING THE MACRO LANGUAGE. EACH CALL OF THE MACRO
0005 * GENERATES A UNIQUE LABEL OF THE FORM ‘U, ,xxx’ WHERE‘xxx’
0006 * IS A NUMBER

0007 LABEL $MACRO

0008 * DECLARE A VARIABLE TO USE IN THE MACRO

0009 $VARL

0010 * ASSIGN THE CHARACTER STRING OF A SYMBOL THAT WILL HOLD
0011 * A COUNTER VALUE AND THE LAST LABEL GENERATED

0012 $ASG ‘U;;;;7 TOLS

0013 * INCREMENT THE SYMBOL VALUE OF ‘U;;;;” TO OBTAIN THE

0014 * LABEL VALUE

0015 SASG L. SV+1 TO L.SV

0016 * CREATE THE LABEL AND SAVE IN THE SYMBOL STRING COMPONENT
0017 * GENERATE THE LABEL IN THE NEXT LABEL FIELD. NOTE THAT
0018 * MODEL STATEMENT STARTS IN COLUMN 1

0019 U;;:LSV:

0020 $END

0021 *

0022 * NOW GENERATE SOME LABELS

0023 *

0024 LABEL

*0001 0000 U;;l
0025 0000 0000 DATAOQ, 1

0002 0001
0026 LABEL
*0001 0004 U;;2
0027 LABEL

*0001 0004 U;;3
0028 0004 0004 DATA 4
0029 END
NO ERRORS

7-23 Texas Instruments Incorporated

[¢]
("_@? 943441-9701

7.7.5 MACRO GENCMT. Macro GENCMT is an example showing how to implement both
those comments which appear in the macro definition only, and those comments which appear in
the expansion of the macro. When this macro is called, the statement in line six generates a

comment.

0001 IDT ‘GENCMT’
0002 GENCMT $MACRO
0003 $VARYV
0004 *THIS IS A MACRO DEFINITION COMMENT
0005 $ASG “*’ TO V.S
0006 :V.S: THIS IS A MACRO EXPANSION COMMENT
0007 $END
0008 GENCMT

*0001 *THIS IS A MACRO EXPANSION COMMENT
0009 0000 0000 DATA 0,1

0002 0001

0010 GENCMT

*0001 *THIS IS A MACRO EXPANSION COMMENT
0011 GENCMT

*0001 *THIS IS A MACRO EXPANSION COMMENT
0012 0004 0004 LABEL DATA 4
0013 END

7.7.6 MACRO LOAD.

0001 IDT ‘LOAD’

0002 *

0003 * GENERALIZED LOAD IMMEDIATE MACRO

0004 *

0005 * THIS MACRO DEMONSTRATES USE OF THE MACRO
0006 * SYMBOL ATTRIBUTES $PSYM, $PNDX, $PATO, $PIND.
0007 *

0008 * OPERANDS: D (DESTINATION) MAY BE REGISTER,
0009 * INDIRECT, SYMBOLIC,
0010 * OR AUTO-INC.

0011 * V (VALUE) SHOULD BE LITERAL VALUE.
0012 *

0013 *

0014 * IF THE FIRST OPERAND IS NOT A REGISTER, IT
0015 * WILL BE MOVED INTO THE SCRATCH REGISTER
0016 * BEFORE PERFORMING THE LOAD. THE SCRATCH
0017 * REGISTER IS ASSUMED TO BE RO.

0018 *

0019 *

0020 * THIS SYMBOL DEFINITION OR’S TOGETHER ALL
0021 * ADDRESSING MODES BUT ‘REGISTER’.

0022 *

0023 001E COMPLX EQU $PATO++$PSYM++$PNDX++$PIND

0024 * -

0025 * THIS MACRO WILL MASK OUT THE REGULAR ‘LI’
0026 * INSTRUCTION, SO THE ‘DFOP’ FOR ‘LT’ IS

0027 * USED TO DEFINE A SYNONYM FOR THE ‘LI’

0028 * INSTRUCTION.

0029 *

7-24 Texas Instruments Incorporated

o
{@ 943441-9701

0030
0031
0032
0033
0034
0035
0036
0037
0038
0039 0000
0040
*0001 0002
0004
*0002 0006
0041
*0001 0008
000A
0042
*0001 000C
000E
*0002 0010
0012
0043
*0001 0014
0016
*0002 0018
001A
0044
0045
0046
0047
0048
0049
0050
*0001 001C
001E

0000

0200
0019
C540

020C
0004

0200
0010
CB40
000C

0200

006F
C800
0000’

0200
006F

DFOP LIS$,LI
LI $MACRO D,V
$IF D.A&COMPLX
LI$ RO,:V:
MOV RO,:D:
$ELSE
LI$:D::V:
$ENDIF
$SEND
LOC DATAO
LI *R5,25
LI$ RO0,25

MOV RO,*RS
LI R12,4
LIS RI124

LI 12(R13),16
LIS RO,16

MOV RO,12(R13)

LI @LOC,111
LI$ RO,111

MOV R0,@LOC

*

* NOTE THAT THE FOLLOWING CASE DOES NOT
* GENERATE THE DESIRED CODE. TO CORRECTLY
* DETECT MEMORY LOCATION REFERENCES, LABELS
* SHOULD HAVE ‘@ SIGNS PRECEEDING THEM.
*
LI LOC,111
LI$ LOC,111

*xkkkxkkr REGISTER REQUIRED

0051

END

0001 ERRORS, LAST ERROR AT 0050

7.7.7 MACRO TABLE.

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011

IDT ‘TABLE’

*

* THIS MACRO DEMONSTRATES RECURSIVE PROCESSING
*

* WHEN MORE OPERANDS ARE PASSED TO A MACRO

* THAN WERE INCLUDED IN THE DEFINITION, ALL THE

* SURPLUS OPERANDS ARE ASSIGNED (WITH THE

* COMMAS BETWEEN THEM) TO THE LAST PARAMETER.

* THIS IS A USEFUL FEATURE WHEN RECURSIVE PRO-

* CESSING IS NEEDED.

*

7-25 Texas Instruments Incorporated

(o]
%@ 9434419701

0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
*0001
0031
*0001
*0001
*0001
*0001
0032
*0001
*0001
*0001
*0001
*0001
0033
*0001
*0001
0034
NO ERRORS

0000

0002

0004

0006

7.7.8 MACRO LISTS.

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011

0000

0100

O000F

O000F

1111

* THE EXPECTED OPERAND FOR THE ‘OR’ MACRO IS A
* LIST OF BIT PATTERNS 16 BITS IN WIDTH. THIS
* MACRO USES RECURSION TO ‘OR’ THE BITS
* TOGETHER. ‘TEMP’ IS A SYMBOL USED BY THE
* MACRO.
®
TEMP EQU 0
OR $MACRO A,B
$VART
$ASG ‘TEMP’ TO T.S
$ASG A.V+HT.SVTO T.SV
$IF B.A&SPCALL
OR :B.S:
$ELSE
DATA :T.SV:
$ASGOTOT.SV
SENDIF
$END
OR >100
DATA 256
OR 1,2,4,8
OR2,4,8
OR 4,8
OR 8
DATA 15
OR1,1,2,4,8
OR1,2,4,8
OR 2,4, 8
OR 4,8
OR 8
DATA 15
OR >11,>1100
OR >1100
DATA 4369
END

IDT ‘LISTS’
*
* THE PREORD AND ENDORD MACROS DEMONSTRATE
* RECURSION AND LIST PROCESSING.

*
*

*INPUTS: A PARENTHESIZED EXPRESSION OF
* THE FOLLOWING FORM:

*

* A,0OPC

*

7-26 Texas Instruments Incorporated

(o]
@ 943441-9701

0012 * A= PARENTHESIZED EXPRESSION
0013 * OP= OPERATION

0014 * (MULTIPLICATION IS REPRESENTED
0015 * AS A NULL PARAMETER, SIMILAR
0016 * TO ITS REPRESENTATION IN
0017 * ALGEBRAIC EXPRESSIONS)
0018 * B= PARENTHESIZED EXPRESSION
0019 *

0020 * OUTPUTS: UNPARENTHESIZED EXPRESSION IN
0021 * PREORDER (PREORD), OR ENDORDER
0022 * (ENDORD).

0023 kkckskokckskckskoskskskskskskskskkskskskskskskskskskok

0024 * PREORDER MACRO DEFINITION

0025 *

0026 PREORD $MACRO A,0OP,B

0027 $VAR C VARIABLE TOHOLD‘*’ FOR COMMENTS.
0028 *

0029 * PRINT THE OPERATION

0030 *

0031 $ASG “** TOC.S

0032 $IF OP.A&SPCALL=0

0033 $ASG ‘** TO OP.S

0034 $ENDIF

0035 :C: :0OP:

0036 *

0037 * PRINT THE FIRST OPERAND

0038 *

0039 $IF A.A&$SPOPL

0040 PREORD :A:

0041 $ELSE

0042 :C: A

0043 $ENDIF

0044 *

0045 * PRINT THE SECOND OPERAND

0046 *

0047 $IF B.A&SPOPL

0048 PREORD :B:

0049 $ELSE

0050 :C: :B:

0051 $ENDIF

0052 $END o ,

0054 * ENDORDER MACRO DEFINITION

0055 *

0056 ENDORD $MACRO A,OP,B

0057 SVARCVARIABLE TOHOLD ‘*’ FOR COMMENTS.
0058 $ASG “** TO C.S

0059 *

0060 * PRINT THE FIRST OPERAND

0061 *

0062 $IF A A&SPOPL

0063 ENDORD :A:

0064 $ELSE

727 Texas Instruments Incorporated

o]
@ 9434419701

0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
*0001
*0002
*0003
0087
*0001
*0002
*0003
0088
*0001
*0002
*0001
*0002
*0003
*0003
*0001
*0002
*0003
*0001
*0002
*0003
0089
*0001
*0001
*0002
*0003
*0002
*0001
*0002
*0001
*0002
*0003

:C: A
$ENDIF

*

* PRINT THE SECOND OPERAND
%
$IF B.A&$SPOPL
ENDORD :B:
SELSE
:C: :B:
$ENDIF

*

* PRINT THE OPERATION
%
$IF OP.A&$SPCALL=0 THEN
$ASG “** TO OP.S
$ENDIF
:C: :OP:
$END

*

* SAMPLE MACRO CALLS

*

PREORD A, /, B

*/

* A

*B

ENDORD A, /, B

* A

*B

d|

PREORD (A, +9 B)9,(6; /: (2, T B))
* %

PREORD A, +,B

* 4

* A

*B

*/
*6

PREORD 6, /, (2, —, B)

PREORD 2, —, B

*

>3
* B
ENDORD (A, +, B),, (6, /, (2, —, B))

ENDORD A, +, B

* A

* B

*+
ENDORD 6, /, (2, —, B)

ENDORD 2, —, B

7-28 Texas Instruments Incorporated

(o]
%@ 943441-9701

*0003 *
*0003 *

0090 PREORD ((X, +, Y),/, (X, —, Y)), — (1, /, Z)
*0001 *
*0002 PREORD (X, +, Y), /, (X, —, Y)
*0001 */
*0002 PREORD X, +, Y
*0001 * +
*0002 * X
*0003 *Y
*0003 PREORD X, —, Y
*0001 *
*0002 * X
*0003 *Y
*0003 PREORD 1, /,Z
*0001 */
*0002 *1
*0003 *Z

0091 ENDORD ((X, +,Y), /, (X, - Y)), — (1, /, Z)
*0001 ENDORD (X, +, Y), /, (X, —, Y)
*0001 ENDORD X, +, Y
*0001 * X
*0002 *Y
*0003 * +
*0002 ENDORD X, —, Y
*0001 * X
*0002 *Y
*0003 -
*0003 * |
*0002 ENDORD 1, /, Z
*0001 *]
*0002 *Z
*0003 */
*0003 —

THE FOLLOWING SYMBOLS ARE UNDEFINED

B

Y
Z
NO ERRORS

7-29/7-30 Texas Instruments Incorporated

o
@ 943441-9701

SECTION VIII

RELOCATABILITY AND PROGRAM LINKING

8.1 INTRODUCTION

The assemblers for the Model 990 Computers and the TMS 9900 Microprocessor supply both
absolute and relocatable object code that may be linked as required to form executable programs
from separately assembled modules. This section contains guidelines to assist the user in taking
full advantage of these capabilities.

8.2 RELOCATION CAPABILITY

Relocatable code includes information that allows a loader to place the code in any available area of
memory. This allows the most efficient use of available memory, and is required for disk-resident
programs executed under DX10. Absolute code must be loaded into a specified area of memory.
Absolute code is appropriate for code that must be placed in dedicated areas of memory, and may
be used for memory-resident programs executing under operating systems.

Object code generated by an assembly is a representation of machine language instructions, ad-
dresses, and data comprising the assembled program. The code may include absolute segments
and program-relocatable segments. If SDSMAC, the Cross Assembler or TXMIRA is used, the code
may include a data-relocatable segment and numerous common-relocatable segments. In assembly
language source programs, symbolic references to locations within a relocatable segment are called
relocatable addresses. These addresses are represented in the object code as displacements from the
beginning of a specified segment. A program-relocatable address, for example, is a displacement into
the program segment. At load time, all program-relocatable addresses are adjusted by a value
equal to the load address. SDSMAC, the Cross Assembler, and TXMIRA support additional types of
relocatability-data relocatability and common-relocatability. Data-relocatable addresses are re-
presented by a displacement into the data segment. There may be several types of common-
relocatable addresses in the same program, since distinct common segments may be relocated
independently of each other. A subsequent section of this manual describes the representation of
these relocatable addresses in the object code.

8.2.1 RELOCATABILITY OF SOURCE STATEMENT ELEMENTS. Elements of source state-
ments are expressions, constants, symbols, and terms. Terms are absolute in all cases; the other
elements may be either absolute or relocatable.

The relocatability of an expression is a function of the relocatability of the symbols and constants
that make up the expression. An expression is relocatable when the number of relocatable symbols
or constants added to the expression is one greater than the number of relocatable symbols or
constants subtracted from the expression. (All other valid expressions are absolute.) When the first
symbol or constant is unsigned, it is considered to be added to the expression. When a unary minus
follows an addition operator in an expression, the effective operation is subtraction. When a unary
minus follows a subtraction operator, the effective operation is addition. For example, when all
symbols in the following expressions are relocatable, the expressions are relocatable:

LABEL+1
LABEL+TABLE+-INC

-LABEL+TABLE+INC

8-1 Texas Instruments Incorporated

o
{_@9 943441-9701

Decimal, hexadecimal, and character constants are absolute. Assembly-time constants defined by
absolute expressions are absolute, and assembly-time constants defined by relocatable expressions
are relocatable.

Any symbol that appears in the label field of a source statement other than an EQU directive is
absolute when the statement is in an absolute block of the program. Any symbol that appears in
the label field of a source statement other than an EQU directive is relocatable when the
statement is in a relocatable block of the program.

The relocatability of expressions having logical and relational operators (SDSMAC only) follows
similar rules to those for expressions containing only arithmetic operators. The result of a logical
operation between a relocatable constant or symbol and an absolute constant or symbol is
relocatable. A logical operation between two relocatable elements of an expression is invalid.
Relational operators result in an absolute value, 0 or 1. The relation is the assembly-time relation
and ignores the effect of relocation on relocatable values.

To summarize, a location is either absolute or relocatable. The location may contain either
absolute or relocatable values. The example program in Appendix J includes absolute locations
with relocatable contents and relocatable locations with absolute contents.

8.3 PROGRAM LINKING

Since the assembler includes directives that generate the information required to link program
modules, it is not necessary to assemble an entire program in the same assembly. A long program
may be divided into separately assembled modules to avoid a long assembly or to reduce the
symbol table size. Also, modules common to several programs may be combined as required. A
linking loader links the programs as it loads them, so that the loaded program functions as if it
has been assembled in a single assembly. Alternatively, program modules may be linked by the
Link Editor to form a linked object module that may be stored on a library and/or loaded as
required. The following paragraphs define the linking information that must be included in a

program module.

8.3.1 EXTERNAL REFERENCE DIRECTIVES. Each symbol from another program module must
be placed in the operand field of an REF or SREF directive in the program module that requires the
symbol. When the modules are to be linked by the linking loader, the IDT character string of each
program module that defines one or more of these symbols must also be placed in the operand field
of an REF directive within one of the program modules being linked. The first module may contain
an REF directive that contains the IDT character strings of all modules to be linked. When the
modules are to be linked by the Link Editor, IDT character strings need not be placed in REF
directive operand fields.

8.3.2 EXTERNAL DEFINITION DIRECTIVE. Each symbol defined in a program module and re-
quired by one or more other program modules must be placed in the operand field of a DEF
directive.

8-2 Texas Instruments Incorporated

o
%}\i@ 943441-9701

8.4 PROGRAM IDENTIFIER DIRECTIVE
Program modules that are to be linked by the Link Editor should include an IDT directive. The
module names in the character strings of the IDT directives should be unique.

Program modules that are to be linked by the linking loader must meet the following
requirements:

® Subsequent program modules after the first module must include an IDT directive.

® The first six characters of the IDT character string must be unique with respect to the
other IDT character strings submitted to the loader during the loading operation.

8.5 LINKING PROGRAM MODULES

The linking loader builds a list of symbols from REF directives as it loads the program modules.
The loader matches symbols from DEF directives to the symbols in the reference list. The loader
also matches the first six characters of IDT character strings with symbols in the reference list.

When object code for several program modules is on the same cassette, and -a program that
requires only some of these modules is being loaded, the loader ignores those program modules
whose IDT character strings do not appear in the reference list of the loader. This allows
program modules from several cassettes to be loaded without requiring the user to locate the
required modules on the cassettes. However, it requires that all referencing modules precede the
modules they reference in the sequence in which the loader loads the modules.

The Link Editor matches symbols from REF directives and symbols from DEF directives in a
similar manner within a program phase. The Editor follows linking commands to determine the
modules to be linked, and does not match IDT character strings with REF directive operands.
Refer to Sections 4.5.3 and 4.5.4 for linking commands generatable from the assembler.

8-3/8-4 Texas Instruments Incorporated

o
(,r@? 9434419701

SECTION IX
OPERATION OF THE MACRO ASSEMBLER
9.1 GENERAL
The 990 Macro Assembler executes under the DX10 operating system. The Macro Assembler has

the following features:

® Assembles the 72 instructions of the instruction set for the Model 990/10 with map
option.

® Supports 31 assembler directives, 11 in addition to those supported by other assemblers.

® Supports three pseudo-instructions, one in addition to those supported by other
assemblers.

® Supports use of parentheses in expressions.

° Supports logical operators in expressions.

® Supports relational operators in expressions.

o Supports a logical division operator.

° Supports additional output options.

° Supports a powerful macro language.
The Macro Assembler is defined in detail in Section VII of this document.
9.2 OPERATING THE MACRO ASSEMBLER
The Macro Assembler is executed by the DX10 System Command Interpreter (SCI) and may run
in either of two modes:

1. Background

2. Batch Background.
To execute the Macro Assembler in background mode, enter the SCI command XMA.
The XMA command prompts for the following parameters:

SOURCE ACCESS NAME: <access name>
OBJECT ACCESS NAME: <access name>
LIST ACCESS NAME: <access name>
ERROR ACCESS NAME: <access name>
OPTIONS: <keyword list>

MACRO LIBRARY PATHNAME: <directory access name>

9.1 Texas Instruments Incorporated

943441-9701

SOURCE ACCESS NAME specifies the input file or device containing the assembly language code
to be assembled. No default is allowed for this parameter.

OBJECT ACCESS NAME specifies the output file or device to which the object code is to be
written. If this parameter is null, no object output is produced. This is useful for preliminary
assemblies to check for errors; since the assembler produces no output, it operates faster.

LIST ACCESS NAME specifies the file or device to which the assembly listing is to be written.
If DUMY is entered, no assembly listing is produced.

ERROR ACCESS NAME specifies the output file to which assembly errors are written. This file
may be viewed by entering the SFC (Show File) SCI command. If the ERROR ACCESS NAME is
null, or if it is the same as the listing file, then errors will be displayed on the terminal by the SBS
(Show Background Status) SCI command. If the device DUMY is specified, no error listing is
produced.

The error file contains a complete list of any source records which caused assembly errors along
with the errors. If a condition is sensed which prevents the assembler from continuing, a message is
written to the error file as to what has occurred. Then the user must enter the SBS (Show Back-
ground Status) SCI command to view the error messages output by the assembler. Table 9-1 con-
tains a list of these abnormal completion messages and possible causes.

Table 9-1. Abnormal Completion Messages

Messagé Cause and Recovery
I/O Errors
SOURCE FILE I/O ERROR, CODE = XXXX The codes are defined in the
- OBJECT FILE I/O ERROR, CODE = XXXX DX10 Operating System
LIST FILE I/O ERROR, CODE = XXXX Production Operations Guide,
TEMP FILE I/O ERROR, CODE = XXXX Manual Number 945250-9702.
Assembler Bugs

ATTEMPT TO POP EMPTY STACK — SDSMAC BUG \
DIRECTIVE EXPECTED — SDSMAC BUG
UNEXPECTED END OF PARSE — SDSMAC BUG
ERROR MAPPING PARSE — SDSMAC BUG
INVALID OPERATION ENCOUNTERED — SDSMAC

NO OP CODE — SDSMAC BUG Call a Texas Instruments
INVALID LISTING ERROR ENCOUNTERED > representative.
SYMBOL TABLE ERROR

MACRO EXPANSION ERROR

BUG — INVALID SDSLIB COMMAND ID
UNKNOWN ERROR PASSED, CODE = XXXX
END ACTION TAKEN BY MACRO ASSEMBLER /

9.2 Texas Instruments Incorporated

@ 943441-9701

OPTIONS specifies any (or all) of the following options:
XREF— prints a cross reference listing at the end of the listing file.

SYMT-— includes a symbol table with the output object code. This option must be spec-
ified to allow fully symbolic debugging.

TUNLIST— Text statement unlist.
BUNLST- Byte statement unlist.

DUNLST— Data statement unlist.
MUNLST - Macro expansion unlist.

FUNL- Overrides unlist directives.

TEXT, BYTE, and DATA statements and Macro usage often expand to pro-
duce multiple lines of code. If these options are selected, the statements appear

in the listing but the expansion does not. For example, the source statement
TEXT ‘ABCDEF’ produces the listing:

41 TEXT ‘ABCDEF’
42 |

43

44

45

46

With the TUNLST option specified, only the line
41 TEXT ‘ABCDEF’
s produced in the listing.
NOLIST— Suppresses all listing output, except to the error file.

Any of the Option Key words may be abbreviated; for example, any of the following may be used
for the TUNLST option:

T

TU

TUN
TUNL
TUNLS
TUNLST

To select more than one option, enter a list of keywords separated by commas. The keywords may
appear in any order. To select all the options one could enter the line: .

OPTIONS: X,S,T,B,D.M

The options specified for this parameter are in addition to any options specified by “OPTION”
directives in the source.

MACRO LIBRARY PATHNAME specifies a directory containing macro definitions for this
assembly. This pathname specification is equivalent to specifying the same pathname in a LIBIN
directive, except that this pathname becomes the system macro library and is retained through the

9.3 Texas Instruments Incorporated

943441-9701

stacked assemblies. This pathname is printed on the cover sheet of the first module only. If this
parameter is not specified, no macro library is used.

921 COMPLETION MESSAGES. A completion message is displayed on the terminal at the first
available time after the macro assembler has terminated. Table 9-2 contains these messages.

Table 9-2. Completion Messages
Message Possible Causes and Recovery

MEMORY REQUIRED EXCEEDS SYSTEM CAPACITY a) Program is too large — break into several
assembly, modules, take out some of the
macros or use the LIBIN capability,
decrease the number of symbol definitions.

b) A macro containing an infinite loop or
infinite recursion is being expanded —
check all macros.

c) The assembler itself is in a loop infinitely
allocating memory — call a TI representa-
tive.

MACRO ASSEMBLY COMPLETE, XXXX ERRORS,YYYY WARNINGS

ERROR FILE ERROR The error access name specified when using the
XMA command can not be accessed. Verify that
the file can be created and is not currently open
for another program. If a null input was entered
for this parameter, then there is an SCI problem.

TCA ERROR The assembly was unable to access the param-
eters specified in the XMA command. There is
an SCI problem.

ABNORMAL COMPLETION A condition was sensed which caused the

assembler to abort. Display the error file to get
more information and use table 9-1 to under-
stand its contents.

UNABLE TO LOAD OVERLAY . Macro assembler has been denied access to its

overlay file. Check that global luno S10 is
assigned to a program file.

9.2.2 OPERATING THE ASSEMBLER IN BATCH MODE. Operating the Macro Assembler in
batch mode requires two steps:

1. Prepare the batch command stream.
2. Execute Batch using the XB command.

The Batch command stream for macro assembly is pictured in figure 9-1.

9-4 Texas Instruments Incorporated

(e}
{@9 943441-9701

.DATA .MYFILE

IDT XXXX

XXXX

XXXX

XXXX

END

.EOD

XMA S=.MYFILE, L=LPO1

Q

Figure 9-1. Macro Assembly Stream
Any sequential media (cards, cassette, magnetic tape, or sequential file) may be used for the batch
stream.
The parameters for records in a Macro Assembly batch stream are the following:
1. .DATA record. This record has the form:
.DATA <file name>

The file name must be the name of the sequential file to which the input source is to be
copied.

2. .EOD record. This record has the form:
.EOD

No parameters are required. This card signifies the end of data to be copied.

NOTE

If the source file already exists, or is to come from a source other
than the batch stream then the sequence:

.DATA
<Source>
.EOD
should be omitted from the batch stream.

3. XMA record. This record, in addition to specifying macro assembly, also supplies the
parameters required by the Macro Assembler. Parameters are supplied in the following

format:
<keyword or keyword abbreviation> = value.

For example, to specify a source file .MYFILE, the following characters may be used:

SOURCE = MYFILE

9.5 Texas Instruments Incorporated

]
@ 943441-9701

Keywords may be abbreviated. Any unambiguous intial segment is acceptable. For
example:

S =MYDISC.MYFILE
means the same thing as:
SOURCE = MYDISC.MYFILE

But O = MYDISC.MYFILEO is not acceptable since O could mean OBJECT ACCESS
NAME or OPTIONS.

When a keyword takes a list as input, the list should be enclosed in parenthesis:
OPTIONS = (X,T,U)
Each keyword string must be separated from other keyword strings by a comma. For
example, the following record assembles a source file named .SOURCE, producing an
object file .OBJECT, a listing file .LIST, and reporting errors to .ERR; the options
selected are cross reference (XREF) and symbol table (SYMT); no macro library is to
be used:
XMA S = .SOURCE, OB = .OBJECT, L = .LIST, E = .ERR, OP = (X,S)
The only required parameters are SOURCE and LISTING. Other parameters may take
defaults as indicated in the paragraph on background processing except that the batch
listing file replaces the terminal local file as a default output file.
When a card reader is used, use Macro Assembly Stream as shown in figure 9-2.
To execute in batch mode enter the SCI command XB. XB requires two parameters.
INPUT ACCESS NAME: <sequential device or sequential file name>
LISTING ACCESS NAME: <file or device name>

The INPUT ACCESS NAME specifies the batch stream source. The LISTING ACCESS NAME
specifies a listing file or device.

Batch mode operation of SCI is defined in detail in the DXI10 Operating System Production
Operation Guide, manual number 946250-9702.
[a
y4

r-x-
y.4
["SOURCE CARD

(XMA S=CROI

Figure 9-2. Macro Assembly Stream for Cards

9:6 Texas Instruments Incorporated

o

When the macro assembler is executed in batch mode, the condition codes returned by the
assembler may be checked. The synonym $$CC contains this condition code. The values returned
are as follows:

0- no errors
4xxx- assembly errors. The least significant three digits contain the error count.
CO000 - the assembly aborted.

For more information about condition codes, see DX10 Operating System Release 3 Reference
Manual, Volume V.

9-7/9-8 Texas Instruments /ncorporated

[e]
%@ 943441-9701

SECTION X

ASSEMBLER OUTPUT

10.1 INTRODUCTION

All assemblers from Model 990 Computer and TMS 9900 Microprocessor print source listings.
Optionally, the Cross Assembler and SDSMAC print a cross-reference listing and include a symbol
table in the object file. Optionally, TXMIRA produces a sorted symbol table list with a facility for
cross-reference. Cross assembler prints an object listing. All assemblers produce an object file.
Optionally, the Cross Assembler prints an object file listing.

10.2 SOURCE LISTING

The source listings show the source statements and the resulting object code. The formats of the
listings printed by all the assemblers are similar. A typical listing is shown with the example pro-
gram in Appendix J.

SDSMAC produces a cover sheet as the first output in the listing. This cover page contains a table
which provides a record of the files and devices used during the assembly process. An example of
this output is as follows:

SDSMAC 3.2.0 78.274 11:26:51 MONDAY, OCT 17, 1977.

ACCESS NAMES TABLE PAGE 0001
SOURCE ACCESS NAME = .SUSAN.SRC.TEST1

OBJECT ACCESS NAME =

LISTING ACCESS NAME = .SUSAN.LIST.TEST1

ERROR ACCESS NAME =

OPTIONS = XR, SY, TU, MU

MACRO LIBRARY PATHNAME = .SDSMAC.MACRODEF

LINE KEY NAME
0001 LI .SDSMAC.MACRODEF
=>. SDSMAC.MACRODEF
0001 LO MACROS
=>.SDSMAC.MACRODEF
0002 A DSC.SYSTEM.TABLES.DOR
=>DS01. SYSTEM.TABLES.DOR
0003 LI .SDSMAC.MACRODEF
=>.SDSMAC.MACRODEF

The output has two sections:
® A listing of the parameters that were passed to the assembler via SCL

® A list of access names encountered during the first pass of the assembly.

10-1 Texas Instruments Incorporated

a2

.In the first section, any parameters which had no value are left blank. The fields in the second
section are labeled as follows:

LINE - This field contains the record number in which the access name was encountered.
KEY - This field contains one of the following:

LI- indicating a LIBIN usage,

LO - indicating a LIBOUT usage,

one character - indicating a copy file to be given this character as a key.

NAME - This field contains two access names. The first name is an image of the name on
the source record. The second name, appearing after the =>, is the result of synonym
substitution on the first name.

Each page of the source listing has a title line at the top of the page. Any title supplied by a
TITL directive is printed on this line, and a page number is printed to the right of the title area.
The printer skips a line below the title line, and prints a line for each source statement listed.
The line for each source statement contains a source statement number, a location counter value,
object code assembled, and the source statement as entered. When a source statement results in
more than one word of object code, the assembler prints the location counter value and object
code on a separate line following the source statement for each additional word of object code.
The source listing lines for a machine instruction source statement are shown in the following
example:

0018 0156 C820 MOV @INIT+3,@3
0158 012B°
015A 0003

The source statement number, 0018 in the example, is a four-digit decimal number. Source
records are numbered in the order in which they are entered, whether they are listed or not. The
TITL, LIST, UNL, and PAGE directives are not listed, and source records between a UNL
directive and a LIST directive are not listed. The difference between source record numbers
printed indicates how many source records are not listed.

The next field on a line of the listing contains the location counter value, a hexadecimal value.
In the example, 0156 is the location counter value. No all directives affect the location counter,
and those that do not affect the location counter leave this field blank. Specifically, of the
directives that the assembler lists, the IDT, REF, DEF, DXOP, EQU, SREF, LOAD, and END
directives leave the location counter field blank.

The third field normally contains a single blank. However, SDSMAC places a dash in this field when
warning errors are detected.

The fourth field contains the hexadecimal representation of the object code placed in the location
by the Assembler, C820 in the example. The apostrophe following the fourth field of the second
line in the example indicates that the contents, 012B, is program-relocatable. A quote () in this
location would indicate that the location is data-relocatable, while a plus (+) would indicate that
the label INIT is relocatable with respect to a common segment. All machine instructions and the -
BYTE, DATA, and TEXT directives use this field for object code. The EQU directive places the
value corresponding to the label in the object code field.

102 Texas /nstruments Incorporated

o]
{@ 9434419701

In listings printed by PX9ASM, the fourth field may contain two or four hyphens (-) instead of
hexadecimal digits. This occurs when a forward reference determines the values of these digits.

Later, when the forward reference is defined, the assembler prints an additional line in the listing
following the statement that defines the forward reference. This line contains the location being
resolved, two asterisks (**), and the contents. An error-free listing will include such a line for
each location previously printed with hyphens as the contents. The listings printed by the other
assemblers do not contain this type of information because all references are either resolved or
identified as undefined before the listings are printed.

The fifth field contains the first 60 characters of source statement as supplied to the assembler.
Spacing in this field is determined by the spacing in the source statement. The four fields of source
statements will be aligned in the listing only when they are aligned in the same character positions
in the source statements or when tab characters are used.

The machine instruction used in the example specifies the symbolic memory addressing mode for
both operands. This causes the instruction to occupy three words of memory, and three lines of
the listing. The object code corresponds to the operands in the order in which they appear in the
source statement.

10.3 ERROR MESSAGES
The error codes and messages placed in the source listing by the various assemblers are described
in the following paragraphs.

10.3.1 PX9ASM ERROR CODES. PX9ASM prints the following error message on the next lines
of the listing when it detects an error:

**ERR N - STMT XXXX LAST ERR - STMT XXXX

N is an error code as shown in table 10-1. XXXX is a decimal statement number. The first state-
ment number identifies the current error; the second statement number identifies the preceding
error.

Error message for undefined symbols are printed at the end of the assembly. When a statement
allows a forward reference, the reference is not undefined until PX9ASM recognizes an END
statement without having recognized a statement defining the symbol. Error messages may be
printed at any point, from the lines immediately following the statement in error to lines follow-
ing the END statement.

The assembler can accommodate a minimum of 150 symbols in a 4K memory allocation. When
the assembler is unable to continue because the area of memory available for symbols and forward
references has been filled, the assembler prints the following message:

** ABORT **

The user may -divide the program into two or more modules and assemble them separately.
Considerations for properly linking these modules are described in Section VIII. Alternatively, the
user may shorten the symbols in the program and reassemble. Since shorter symbols use less space
in the symbol table, a symbol table of a given size may contain more shorter symbols.

Following the last statement or error message, the assembler prints undefined symbols, if there
are any, one symbol per line. The undefined symbol may correspond to one of several error codes,
or may be a symbol in a DEF directive that does not appear in the label field of a statement:

UNDEF SYMBL
LOC XXXX
YYYYYY

10-3 Texas Instruments Incorporated

943441-9701

Code

NNNN ERRORS

Table 10-1. PX9ASM Error Codes

Description

Undefined symbol. A symbol in the operand field of the statement
corresponding to the error location does not appear in the label
field of a source statement, or in the operand field of a REF
directive.

Syntax error. The statement corresponding to the error location
contains a syntax error.

Illegal external reference. The statement corresponding to the error
location contains an external reference (and an arithmetic
operator) in an expression or an external reference to be placed in
a field smaller than 16 bits.

Truncation error. The statement corresponding to the error
location contains a number that is too large or a character string
that is too long. The number may be the result of evaluating

an expression. Relocatability of a term or expression may be in
error.

Multiply defined symbol. A symbol in the statement corresponding
to the error location has been previously referenced or defined.

Unrecognizable operator. Contents of the operator field of the
statement corresponding to the error location is not a mnemonic
operation code, a directive, or a name defined as an extended
operation.

Illegal forward reference. A symbol in the statement corresponding
to the error location that should have been previously defined is
not previously defined.

Illegal term. A term has an illegal value less than zero or greater
than 15.

XXXX is the hexadecimal address of the location that referenced an undefined symbol; YYYYYY
is the symbol name of an undefined symbol.

At the end of the listing is an error summary, as follows:

LAST ERROR - STMT XXXX

NNNN is the count of errors in the assembly. The second line identifies the last error detected in
the assembly. The second lines of the error messages link the error messages so that the user may
begin at the error summary message and readily locate all error messages. In an error-free assembly,
the final message is:

0000 ERRORS ENCOUNTERED

10-4 Texas Instruments Incorporated

(o]
e‘—@?p 9434419701

10.3.2 CROSS ASSEMBLER. The Cross Assembler prints the following error message on
successive lines of the listing when they detect errors:

NN *** error description ***
LAST ERROR ON STATEMENT XXXX

NN is the error code, and the error description is the brief description shown in table 10-2. The
second line identifies the statement in which the previous error was detected.

At the end of the listing is an error summary, as follows:
NNNN ERRORS
LAST ERROR ON STATEMENT XXXX

NNNN is the count of errors in the assembly. The second line identifies the last error detected in
the assembly. The second lines of the error messages link the error messages so that the user may
begin at the error summary message and readily locate all error messages. In an error-free assembly,
the final message is: ‘

NO ERRORS IN THIS ASSEMBLY

10.3.3 SDSMAC ERROR MESSAGES. SDSMAC prints the following error message on successive
lines of the listing when a error is detected:

% error description
LAST ERROR ON STATEMENT XXXX

The error description is the brief description shown in table 10-3. The second line identifies the
statement in which the previous error was detected.

At the end of the listing is an error summary, as follows:
NNNN ERRORS,LAST ERROR ON STATEMENT XXXX, YYYY WARNINGS

NNNN is the count of errors in the assembly. XXXX identifies the last error detected in the
assembly. YYYY is the count of the warnings in the assembly. The second lines of the error
messages link the error messages so that the user may begin at the error summary message and
readily locate all error messages. In an error-free assembly, the final message is:

NO ERRORS, NO WARNINGS OR NO ERRORS, XXXX WARNINGS

10.3.4 SDSMAC WARNING MESSAGES. Several errors detected by SDSMAC (such as arith-
metic overflow while evaluating expressions) are considered to be only warning errors. The pro-
grammer should examine the code generated when warning messages occur, since the results may or
may not be the code expected. Warning error messages are wirtten only to the error file and not
included in the listing. However, a dash is placed in column eleven of the listing where the warning
error occurred. Warning messages do not include an indication of a previous warning or error.

10-5 Texas Instruments Incorporated

943441-9701

The following program listing and error file demonstrate the output of error messages and warnings.

WARNING

The dash in column 11 is the only warning indication printed in .the
program listing. If the error file is assigned to a dummy device,
corresponding warning messages will be lost.

0001 1oT “WARN "
Q002 #
0003 #* THE NEXT LINE WILL GENERATE BOTH WARMING
0004 #* AND ERROR MESSAGES
Q005 #*
0006 0000-0004° MXLINK XVEC WFOQO, P
0002 7BC4
#dxwwn UNDEFINED SYMBOL
Q007 0000 CSEG AR
0003 0000 1234 DATA 1234
0007 0002 ZEND
0010 #*
0011 0004 WFOO BSs 32
o012 *
0013 # THE NEXT LINE WILL GENERTE MULTIFLE WARNING MESSAGES
0014 3*
Q015 0024-0002 "GOGETT DATA FE001#2, 27000%#7, >5001 #3
Q024 1000
Q023 000
Q014 ¥*
0017 * THE NEXT LINE WILL GENERATE A SINGLE WARNING MESSAGE
001s 3*
0019 002A~ DEND
0020 #*
0021 #* THE NEXT LINE WILL GENERATE A SINGLE ERROR MESSAGE
0022 3#*
Q023 002A 1000 JMFP @WFOO
#ERREREE DISPLACEMENT TOO RIG
LAST ERROR AT 0006
0024 0000~ END MXLINE

THE FOLLOWING SYMBOLS ARE LINDEF INED

FC

Q002 ERRORS

» LAST ERROR AT 0023, 0007 WARNINGS

0004 0000-0004“ MXLINK XVEC WFOO,PC
0002 7BC4

F 33 3 3 36 3¢ 3¢ 3¢
3636 3 336 3 3¢ 3 3¢

WORKSPACE ADDRESS NOT FREVIOUSLY DEFINED
UNDEFINED SYMBOL

0015 0024-0002 “GOGETT DATA FEBOOL#Z, 2700087, 33001 #3

0024

1000

0028 0003

iR HE VALLE TRUNCATED

FRFE#EHHHE VALUE TRUNCATED

R RRRE VALUE TRUNCATED

i aRE SYMBOL TRUNCATED

FrEguuanr INVALID CHARACTER IN SYMBOL- BLANE, USED
Q019 002A- DEND

iR RRIE CPEND” ASSLUMED

Q023 002A 1000 JMF RWFOO0

®akanransr DISPLACEMENT TOO BIG

THE FOLLOWING SYMBOLS ARE UNDEF INED

FC

0002 ERRORS,

LAST ERROR AT 0023, 0007 WARNINGS

10-6 Texas Instruments Incorporated

943441-9701

Table 10-2. Cross Assembler Error Messages

Error Messages

A MAXIMUM OF 64 COMMON BLOCKS ARE ALLOWED

ASSEMBLER ERROR 01

ASSEMBLER ERROR 02

COMMON BLOCK NAME IS MULTIPLY DEFINED

CROSS REFERENCE TABLE FULL

DIVIDING BY ZERO

EXCESSIVE NUMBER OF OPERANDS

INCORRECT PAIRING OF PARENTHESES

INCORRECT USE OF EXTERNAL REFERENCE

INCORRECT USE OF RELOCATABLE SYMBOLS

INVALID IDT NAME

INVALID LABEL

INVALID OPCODE

INVALID OPERAND IN COLUMN XX—

Explanation or Possible Cause

Indicates an internal assembler error. Contact
a TI representative.

Same as above.

The symbol appears as the name of more than one
distinct common block.

Too many operands were found.
Verify that there is a)’ for every ‘(.

A REF’D or DEF’D symbol is not permitted in
this context i.e., an expression cannot contain
a REF’D symbol.

May indicate invalid use of a relocatable symbol
in arithmetic.

The symbol used on the ‘IDT’ card is not
permitted as an ‘IDT’ name.

The label may contain invalid characters or be
too long.

The second field of the source record contained
an entry that is not a defined instruction,
directive, pseudo-op, or DXOP.

This message precedes the next seven errors. It
identifies the card column containing the symbol
in question.

10-7

Texas Instruments Incorporated

9434419701

Table 10-2. Cross Assembler Error Messages (Continued)

Error Messages

LABEL PREVIOUSLY DEFINED

LABEL TRUNCATED

MISSING OPERAND

OPERATOR STACK OVERFLOW
REGISTER 0 IS INVALID INDEX REGISTER
RELOCATABLE TABLE FULL

SYMBOL TABLE FULL

SYMBOL TRUNCATED

SYNTAX ERROR IN EXPRESSION

UNDEFINED SYMBOL

VALUE TRUNCATED

Explanation or Possible Cause

The symbol appears more than once in the label
field of the source.

The maximum length of a label is six characters.

On instructions having a fixed number of
operands, too few appeared before encountering
a blank. On instructions having a variable number
of operands, a comma may have been encountered
with no operand following it.

The expression was too large in terms of operators.

There are too many symbols for this assembly.
Break up the program if possible.

The maximum length for a symbol is six
characters.

a) Unbalanced parentheses.

b) Illegal symbols or operators.

¢) Invalid operations on relocatable symbols.

a) A symbol is used which did not appear in
the label field of a source record.

b) The use requires definition in the first pass
and is undefined when the assembler first
encounters it.

The result of expression evaluation was too large.

'10-8

Texas Instruments Incorporated

943441-9701

Table 10-3. SDSMAC Listing Errors

Error Message Possible Causes

$MACRO invalid within macro definition. a) The SEND verb belonging to the previous macro
was missing.
b) A $MACRO verb was unintentionally included.

Absolute value required.

Blank missing.

‘CEND’ assumed. A waming (Note 1).
Close (°)’) missing.

Comma missing.

Conditional assembly nesting error. An if-then-else construct is in error. Conditions which
could cause this are:
a) Missing ASMEND’S
b) Surplus ASMELS’S
¢) Surplus ASMEND’S

‘DEND’ assumed. A warning.

Directory open error. Check that any synonyms are valid and that no other
processor is currently writing to the MACRO Library.

Directo‘ry read error. An I/O error was encountered while trying to read a
MACRO Library Directory. Verify that no other pro-
cessor is currently writing to that MACRO Library.

Directory required. The access name specified is not an existing directory.
Verify that all synonyms are correct and that the MACRO
Library does indeed exist; it can not be auto-created.

Directory write error. Verify that no other processor is currently writing to
that MACRO Library.
Displacement too big. An instruction requiring an operand with a fixed upper

limit was encountered which overflowed this limit.
An example is the ‘JMP’ instruction, whose single operand
must evaluate to within >7F words distance from the
current program counter.

‘DSEG’ assumed. This is a warning that the following two statements
have the same result:

CSEG ‘$DATA’
DSEG

10-9 Texas Instruments Incorporated

943441-9701

Table 10-3. SDSMAC Listing Errors (Continued)

Error Message Possible Cause

Duplicate definition. a) The symbol appears more than once in the label
field of the source.
b) The symbol appears as an operand of a REF state-
ment as well as in the label field of the source.
¢) An attempt was made to define a macro variable or
macro language label which was previously defined
in the macro.

Error expanding call. The symbol in the operand field of the $CALL statement
is not a defined Macro.

Error on copy open. The access name specified as the operand of copy
directive can not be opened. Check that the synonyms
are correct and that the file is not currently being
written to by another processor.

Expression syntax error. a) Unbalanced parentheses.
b) Invalid operations on relocatable symbols.

Indirect (*) missing.

Invalid $ASG variable. a) An attempt was made to change the length com-
ponent of a variable. _

b) An attempt was made to change the attribute com-

ponent or the value component of a macro variable

which was declared as a macro language variable.

Invalid character in symbol — blank used. A warming (Note 1). The legal characters to be used in
symbols under SDSMAC are A-Z, 0-9, ¢;, and *$”.

Invalid CRU or shift value. A warning (Note 1).

Invalid directive in absolute code. The directives PEND, DEND, CEND have no meaning
in absolute code.

Invalid expression. May indicate invalid use of a relocatable symbol in
arithmetic.

Invalid macro variable. The target variable specified on a $ASG or $GOTO

verb is not a valid target variable.

Invalid model statement. A macro symbol in a model statement must be followed
with either a colon operator (:) or end-of-record.

Invalid opcode. . The second field of the source record contained an
entry that is not a defined instruction, directive,
pseudo-op, DXOP, DFOP, or Macro name.

10-10 - Texas Instruments Incorporated

943441-9701

Table 10-3. SDSMAC Listing Errors. (Continued)

Error Message Possible Cause

Invalid option. A waming (Note 1). The only legal options are:

XREF
SYMT
NOLIST
MUNLST"
TUNLST
BUNLST
DUNLST
FUNL
(or suitable abbreviation).

Invalid relocation type. Only PSEG relocatable or absolute symbols are allowed
as the operand of an ‘END’ statement.

Invalid use of conditional assembly. A conditional assembly directive may not appear as a
model statement.

Invalid $ASG expression. The expression is not present.
Invalid $ASG variable. The target variable is not present or is not a symbol.
Invalid $IF expression. The expression either is not present or does not evaluate

to an integer value.

Label required. $NAME statements must begin with a label of maximum
length 2. $MACRO statements must begin with a label
of maximum length 6.

Macro definition discarded due to errors. An error was detected during the assembly of the macro
definition. Use of the macro name in succeeding lines
will cause error messages.

Macro expansion error. Indicates an internal assembler error. Contact a TI
representative.
MACRO Library read error. A ‘LIBIN’ was in effect and the statement was a Macro

in a specifitd MACRO Library, but an I/O error was
encountered when reading it.

MACRO Library write error. The current ‘LIBOUT’ Library could not be used at
completion of a Macro definition. Check that the Macro
is not currently being written by another processor.

Macro symbol truncated. A waming (Note 1). The maximum length for a macro
symbol is two characters. The following are legal macro
symbols: A, A.S, B2.SV.

The following are illegal macro symbols: CNT, CNT.A,
PM2.SL.

10-11 Texas Instruments Incorporated

943441-9701

Table 10-3. SDSMAC Listing Errors (Continued)

Error Message Possible Cause

Max macro nesting stack depth overflow. a) A macro calls itself recursively more than the allowed
maximum number of times.
b) More levels of macro calling have been used than
the allowed maximum.

Memory exceeded. The program counter overflowed the value >FFFF.

Model statement truncated. A warning (Note 1). When expanded, the model statement
’ exceeded 80 characters in length.

Operand conflict PASS1/PASS2. The assembler defaults currently undefined symbols
to register uses in the first pass if that symbol is used
in an ambiguous way. If during the second pass it is
discovered that the symbol was not a register use, this
error will result. An example is:

BL SUB

SUB EbU $

If this has been coded as follows, no ambiguity would
have existed due to the explicit “@” sign:

BL @SUB
SUB EQU $
Operand missing. v On instructions having a fixed number of operands,

too few appeared before encountering a blank. On
instructions having a variable number of operands, such
as ‘DATA’, a comma may have been encountered with
no operand following it. An expression extending beyond
the 60th column could cause this problem.

‘PEND’ assumed. A warning.

REF’D symbol in expression. Due to the object code format of the 990 computer,
REF’D symbols may not appear within an expression.

Register required.

String required.

String truncated. A warning (Note 1). Check the syntax for the directive
in question to determine the maximum length for the
string.

10-12 Texas Instruments Incorporated

943441-9701

Table 10-3. SDSMAC Listing Errors (Continued)

Error Message

Symbol truncated.

Symbol required.
Symbol used in both REF and DEF.
Syntax error.

‘TO’ missing.

Undefined macro variable.

Undefined symbol.

Valid op code required.

Value truncated.

Workspace address not previously defined.

$IF — $SELSE — $ENDIF construct
in error.

$MACRO invalid within Macro definition.

Possible Cause

A warning (Note 1). The maximum length for a symbol is
six characters.

This is a conflicting, duplicate definition.

‘TO’ is a required part of the syntax for the $ASG Macro
verb.

The target variable specified on a $ASG or $GOTO verb
is undefined.

a) A symbol is used which did not appear in the label
field of a source record.

b) The use requires definition in the first pass and is
undefined when the assembler first encounters it.

The defining symbol (i.e., the second operand) is not a
valid instruction or directive.

A waming (Note 1). Overflow is checked after every
operation in an arithmetic expression. This may result
in several truncations in one expression.

The operand field must have been previously defined.
Note that the WPNT directive (or implied WPNT) is
ignored. Any previous WPNT is also ignored from this
point on.

Possible errors are:

a) Surplus $ELSEs
b) Surplus SENDIFs
¢) Missing SENDIFs,

NOTE 1

Warnings are defined by a dash (—) in column 11 of the assembled program

listing.

10.3.5 TXMIRA ERROR MESSAGES. The TXMIRA assembler processes fatal errors and non-
fatal errors. The fatal errors cause the run to abort with the appropriate error message printed on
the LOG. The error messages are shown in table 10-4.

The nonfatal errors are shown in table 10-5 and do not cause the run to abort. An error message is
printed following the statement containing the error. The format of the printout is as follows:

10-13 Texas Instruments Incorporated

o

U 943441-9701

##%%xQYNTAX ERROR - RCD nnnn

where nnnn is the source record number

If there are any undefined symbols in an assembly, the undefined symbols are listed at the end of
the run under the following heading:

THE FOLLOWING SYMBOLS ARE UNDEFINED:

NOTE: If listing is not selected, than all error messages go to default listing device.

Table 10-4. TXMIRA Fatal Errors

SYMBOL TABLE OVERFLOW
CANT GET COMMON

CANT GET MEMORY

nn* - ILLEGAL PATHNAME

nn* -I/O ERROR - | L | LISTING

0O} OBIJECT
S | SOURCE
NO END CARD FOUND

*nn is a system returned error code.

Table 10-5. TXMIRA Nonfatal Errors

##ik% SYNTAX ERROR - RCD nnnnf

**xx% [LEGAL EXTERNAL REF. RCD nnnnf
##ik% VALUE TRUNCATION - RCD nnnnt
*%%%% MULTIPLY DEFINED SYM. - RCD nnnnt
**#%% INVALID OPERATOR - RCD nnnnf
***%% [LLEGAL FORWARD REF. - RCD nnnnt
##kx% JLLEGAL TERM - RCD nnnnf

##k%% JLLEGAL REGISTER - RCD nnnnf
#x%%% GYMBOL TRUNCATION - RCD nnnnf
Hokh gk UNDEFINED SYMBOL - RCD nnnnt
#k*k% COMMON TABLE OVERFLOW - RCD nnnnt
##%%%x PEND ASSUMED - RCD nnnnt

*#kxk PEND ASSUMED - RCD nnnnt

**%%%% CEND ASSUMED - RCD nnnnft

+nnnn is the source record in which the error was
detected.

10-14 Digital Systems Division

(o]
%._'15\[,]@ 943441-9701

10.4 CROSS REFERENCE LISTING

The Cross Assembler and SDSMAC each print an optional cross reference listing following the
source listing. The format of the listing is shown in figure 10-1. In the left column, the assembler
prints each symbol defined or referenced in the assembly. In the second column, the attributes of
the symbol are indicated as a list of single characters. The characters that appear in the second
column, and their meanings, are listed in table 10-6. The third column contains a four-digit hexade-
cimal number, the value assigned to the symbol. The number of the statement that defines the
symbol appears in the fourth column, unless the symbol is undefined. For undefined symbols, the
fourth column contains UNDF. The right column contains a list of the numbers of statements that
reference the symbol, or the words NOT REFERENCED, as applicable. For SDSMAC these fields
are left blank if the symbol is undefined or never used.

CROSS REFERENCE

LABEL VALUE DEFN REFERENCES

ADDT 01A8' 325 314

ADSR 01A0' 316 342 343 348 349
GT 0006 997 NOT REFERENCED

Figure 10-1. Cross Reference Listing Format

Table 10-6. Symbol Attributes

Applicability
Cross
Character Meaning Assembler SDSMAC TXMIRA
A Absolute X
R External Reference (REF) X X X
D External Definition (DEF) X X X
X Extended Operation (XOP) X X X
U Undefined X X X
0 Defined Operation (DFOP) X
M Macro name X
S Secondary Reference (SREF) X X
L Force Load (LOAD) X X

10.5 OBIJECT CODE

The assemblers produce object code that may be linked to other object code modules or programs
and loaded into the Model 990 computer, or may be loaded into the computer directly. References
to the “loader” apply to a link editor, linking loader, or loader depending on the assembler being
used. Object code consists of records containing up to 71 ASCII characters each. The format,
described in the next paragraph, permits correction using a keyboard device. Re-assembly to correct
errors is unnecessary. An example of output code is shown in figure 10-2.

10-15 Texas Instruments Incorporated

(o]
@ 943441-9701

10.5.1 OBJECT CODE FORMAT. The object record consists of a number of tag characters, each
followed by one to three fields as defined in table 10-7. The first character of a record is the first
tag character, which tells the loader which field or fields follows the tag. The next tag character
follows the end of the field or fields associated with the preceding tag character. When the
assembler has no more data for the record, the assembler writes the tag character 7 followed by the
check sum field, and the tag character F, which requires no fields. The assembler then fills the rest
of the record with blanks and a sequence number, and begins a new record with the appropriate tag

character.

00000SAMPROG 90040C0O000A0020RC0ADEONOZ20042C0020R0024BCEIBCONSHTFELSF
AOD22E0241B0000RCB41RONORR0220ANNCACO0SEZCO0OAZEO2ENCOOZISBOSO0EOF OF 7F1DEF
AOODEBCORNCO0CABO4C3IBCIA0COOCCBCIAOCO0DORCO7P2B0O221B3RCOANOECRISE1TFISLIF
ARONEERO900R06CIAR00EAB1 1 02A00F2B0S43B1 1FER2C20C0032BC1 01 ROB44BEN447F 1REF
AD100BDDAAR0O003B0282C00RERT 1EDROI407FE3F :

c00CceENO10C 7FCRBF

(A)132255
Figure 10-2. Object Code Example

Tag character 0 is followed by tvs{o fields. Field 1 contains the number of bytes of program-
re?locatable code, and field 2 contains the program identifier assigned to the program by an IDT
f:hrective. When no IDT directive is entered, the field contains blanks. The loader uses the program
identifier to identify the program, and the number of bytes of program-relocatable code to deter-
mine the load bias for the next module or program. SDSMAC, TXMIRA, and the Cross Assembler
place a single tag character O at the beginning of each program. PX9ASM is unable to determine
the value for Field 1 until the entire module has been assembled, so PX9ASM places a tag character
0 followed by a zero field and the program identifier at the beginning of the object code file. At
the end of the file, PX9ASM places another tag character zero followed- by the number of bytes
of relocatable code and eight blanks.

The tag character M, used only when data or common segments are defined in the program
(SDSMAC or TXMIRA), is followed by three fields. Field 1 contains the length, in bytes, of data-
or common-relocatable code, Field 2 contains the data or common segment identifier, and Field 3
contains a “common number’. The identifier is a six-character field containing the name $DATAb
for data segments and $BLANK for blank common segments. If a named common segment appears
in the program, an M tag will appear in the object code with an identifier field corresponding to
the operand in the defining CSEG directive(s). Field 3 of the M tag consists of a four-character
hexadecimal number defining a unique common number to be used by other tags which reference
or initialize data of that particular segment. For data segments, this common number is always
zero. For common segments (including blank common), the common numbers are assigned in
increasing order beginning at 1 and ending with the number of different common segments. The
maximum number of common segments that a program may contain is 125.

Tag characters 1 and 2 are used with entry addresses. Tag character 1 is used when the entry address
is absolute. Tag character 2 is used when the entry address is relocatable. Field 1 contains the entry
address in hexadecimal. One of these tags may appear at the end of the object code file. The assoc-
iated field is used by the loader to determine the entry point at which execution starts when the
loading is complete.

Tag characters 3, 4 and X are used for external references. Tag character 3 is used when the last
appearance of the symbol in Field 2 of the tag is in program-relocatable code. Tag character 4 is
used when the last appearance of the symbol is in absolute code. The X tag is used when the last

10-16 Texas Instruments Incorporated

/]

943441-9701

appearance of the symbol in Field 2 is in data- or common-relocatable code (SDSMAC or
TXMIRA). Field 3 of the X tag gives the common numbers. Field 1 of the tag characters contains
the location of the last appearance of the symbol. The symbol in Field 2 is the external reference.
Both fields are used by the linking loader to provide the desired linking to the external reference.

For each external reference in a program, there is a tag character in the object code with a location
or an absolute zero, and the symbol that is referenced. When Field 1 of the tag character contains
absolute zero, no location in the program requires the address that corresponds to the reference.
When Field 1 of the tag character contains a location, the address corresponding to the reference
is placed by the loader in the location specified and the location’s previous value is used to point
to the next location or, if it contains absolute zero, to discontinue linking.

Table 10-7. 990 Object Tags

Tag Field 1 Field 2 Field 3 Note
0 PSEG Length Program ID (8) 1
1 Absolute Address - — 2
2 P-R Address - — 2
3 P-R Address of Chain Symbol (6) - 6
4 Absolute Address of Chain Symbol (6) - 6
5 P-R Address Symbol (6) - 5
6 Absolute Value Symbol (6) 5
7 Value — — *
8 Any Value - - wk
9 Absolute Address — — 3
A P-R Address — -
B Absolute Value — —
C P-R Address — - 4
D Absolute Address - — wkx
F Unused - - ko
G P-R Address Symbol (6) - 7
H Absolute Value Symbol (6) — 7
I P-R Address Program ID (8)
J D-R/C-R Address Symbol (6) Common # 7
M DSEG Length $ Data 0000 1
M Blank Common Length $ Blank 0001 1
M CSEG Length Common Name (6) Common # 1
N C-R Address 4
P C-R Address Common Name # - 3
S D-R Address — — 3
T D-R Address — - 4
U 0000 Symbol (6) - 8
\% P-R Address of Chain Symbol (6) 9

10-17 Texas Instruments Incorporated

943441-9701

Table 10-7. 990 Object Tags (Continued)

Tag Field 1 Field 2 Field 3 Note
X D-R/C-R Address of Chain 6
w D-R/C-R Address Symbol (6) Common # 5
Note: 8 Force External Link
Ref
1 Module Definition 9 Secondary External Reference
; e * Checksum
2 Entry Point Definition
*ok Ignore Checksum
3 Load Address)
4 Data *ok* Load Bias
5 External Definitions ##x% End of Record
6 External References
7 Symbol Definitions Note: PX9ASM or TXMIRA supports only tags O through F. ’

Figure 10-3 illustrates the chain of the external reference EXTR. The object code contains the
following tag and fields:

4COOEEXTR

At location COOQE, the address COOA points to the preceding appearance of the reference. The chain
includes both absolute and relocatable addresses and consists of absolute addresses COOE, CO0A,
C006, and C002, relocatable addresses 029E, 029A, and 0298, absolute addresses BOOE, BOOA,
B006, and B002, and relocatable addresses 0290 and 028E. Each location points to the preceding
appearance, except for location 028E, which contains zero. The zero identifies location 028E as
the first appearance of EXTR, the end of the chain.

10-18 Texas Instruments Incorporated

943441-9701

=
ps
.".'."4

jeTaTuln

EBOOQO
B
azTE RBOO4
B s
OZT9 BOOS
B4
DA EGOT
EOOE
z41 LAY
Gz D000
D245 Q00
[Y b
nyed: ¥2 CoON4g
05
Oz47 OO
ZO0R
D74 COOC
CODE
(A)132256

oz

QOO0

DZEE ¢

TEEO

nEEG

EOOA
TEAO

Evhny

CEzED

BOOE

OZDE

ZEED

OZD

Pt i
AR

DIVES

G420

COnT

NZZZ
IOV~
TELO
TO0S

&

DEMONSTRATE EXTERNAL. REFERENCE LINEING

REF
RIORG
MOV
XOR

ARG

LIOCR

BLWF

Al

MFY

RORG

Moy

XOR

ADRIG
LIDCR
ELWF

Al

MFY

EXTE

REXTH,

REXTR, =

REXTR,

REXTR,

REXTR, =

REXTR

2, EXTR

REXTR,

REXTR

REXTR

ot

=
<

Figure 10-3. External Reference Example

Tag characters 5, 6, and W are used for external definitions. Tag character 5 is used when the
location is program-relocatable. Tag character 6 is used when the location is absolute. Tag character
W is used when the location is data- or common-relocatable (SDSMAC or TXMIRA). The fields
are used by the loader to provide the desired linking to the external definition. Field 2 contains
the symbol of the external definition. Field 3 of tag character W contains the common number.

Tag character 7 precedes the checksum, which is an error detection word. The checksum is formed
as the record is being written. It is the two’s complement of the sum of the 8-bit ASCII values of
the characters of the record from the first tag of the record through the checksum tag, 7.

Tag characers 9, A, S, and P are used with load addresses for data that follows. Tag character 9 is
used when the load address is absolute. Tag character A is used when the load address is program-
relocatable. Tag character S is used when the load address is data-relocatable; and tag character P
is used when the load address is common-relocatable (SDSMAC or TXMIRA). Field 1 contains the

10-19

Texas Instruments Incorporated

. <
@ 943441-9701

address at which the following data word is to be loaded. A load address is required for a data word
that is to be placed in memory at some address other than the next address. The load address is
used by the loader. Field 2 of tag character P contains the common number.

Tag characters B, C, T, and N are used with data words. Tag character B is used when the data is
absolute, e.g., an instruction word or a word that contains text characters or absolute constants.
Tag character C is used for a word that contains a program-relocatable address. Tag character T
is used for a word that contains a data-relocatable address and tag character N is used for a word
that contains a common-relocatable address (SDSMAC or TXMIRA). Field 1 contains the data
word. The loader places the data word in the memory location specified in the preceding load
address field or in the memory location that follows the preceding data word. Field 2 of tag char-
acter N contains the common number.

Tag characters G, H, and J are used when the symbol table option is specified with SDSMAC or
the Cross Assembler. Tag character G is used when the location or value of the symbol is program-
relocatable, and tag character H is used when the location or value of the symbol is absolute. Tag
character J is used when the location or value of the symbol is data- or common-relocatable
(SDSMAC and TXMIRA). Field 1 contains the location or value of the symbol, and Field 2 contains
the symbol to which the location is assigned. Field 3 of tag character J contains the common
number.

Tag character U is generated by the LOAD directive. The symbol specified is treated as if it were the
value specified in an INCLUDE command to the loader. Field 1 contains zeros. Field 2 contains the
symbol for which the loader will search for a definition. Refer to the LOAD directive for further

information.

Tag character V specifies a program-relocatable address for a secondary external reference. Field 1
contains the location of the last appearance of the symbol. Field 2 contains the symbol.

Tag character 8 is used to ignore the checksum. Field 1 contains the checksum to be ignored.

Tag character D is used to specify a load bias. Field 1 contains the absolute address which will be
used by the loader to relocate the symbols when loaded. The link editor does not accept the D
tag. Tag character D is described in detail in a subsequent paragraph.

Tag character F indicates the end of record. It may be followed by blanks.

The last record of an object module has a colon (:) in the first character position of the record,
followed by blanks or a time and data identifying stamp.

10.5.2 MACHINE LANGUAGE FORMAT. Some of the data words preceded by tag character B
represent machine instructions. Comparing the source listing with the object code fields identifies
the data words that represent machine instructions. Figure 10-4 shows the manner in which the
bits of the machine instructions relate to the operands in the source statements for each format
of machine instructions.

10.5.3 SYMBOL TABLE. When the SYMT option is specified (SDSMAC and Cross Assembler
only), the symbol table is included in the object code file. One entry, using tag character G or H
as appropriate, is supplied for each symbol defined in the assembly.

10.5.4 OBJECT CODE LISTING. When the OBJ option is specified (Cross Assembler), the
assembler prints the object code following the source code listing. When the cross reference listing
is also specified, the object listing follows the cross reference listing. The object code shown in
figure 10-2 is shown in the object code listing format in figure 10-5. Notice that blanks have been
inserted for clarity, and a sequence number included at the right.

10-20 Texas Instruments Incorporatea

943441-9701

FORMAT 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
I
1 1 1 X
1 1 0 X jwys|) D Ts s
1 o] 1 X
L, ix 0 0 1 X X X
i &
v 0 0 1 1 0 X NUM
Vi [o) o] 0 [¢] 0 1 X X X X
I (0] o] 0 1 X X X X DISP
\ (o] o 0o (o] 1 (0] X X COUNT REG
Vil
0 0 o] o] 0 o] 1 0 X X X (o] REG
vii (o] o 0 (o] 0 o] 1 1 X X X o0 0 0 [0} [}
X 0 0 (o} 0 (o] 0 1 1 0 0 1 E] [REG 1
(A)132257
X IS A BIT OF THE OPERATION CODE THAT IS EITHER O OR 1 ACCORDING TO THE

SPECIFIC INSTRUCTION IN THE FORMAT

W/B IS A BIT OF THE OPERATION CODE THAT IS 0 IN INSTRUCTIONS THAT OPERATE ON
WORDS , AND 1 IN INSTRUCTIONS THAT OPERATE ON BYTES

T IS A PAIR OF BITS THAT SPECIFY THE ADDRESSING MODE OF THE DESTINATION
OPERAND, AS FOLLOWS

00 = WORKSPACE REGISTER ADDRESSING

01 = WORKSPACE REGISTER INDIRECT ADDRESSING
10 = SYMBOLIC MEMORY ADDRESSING WHEN D = 0o
10 = INDEXED MEMORY ADDRESSING WHEN D £ o

11 WORKSPACE REGISTER INDIRECT AUTOINCREMENT ADDRESSING

IS THE WORKSPACE REGISTER FOR THE DESTINATION OPERAND

TS IS A PAIR OF BITS THAT SPECIFY THE ADDRESSING MODE OF THE SOURCE OPERAND
AS SHOWN FOR TD

S IS THE WORKSPACE REGISTER FOR THE SOURCE OPERAND

NUM IS THE NUMBER OF BITS TO BE TRANSFERRED

DISP IS A TWO S COMPLEMENT NUMBER THAT REPRESENTS A DISPLACEMENT

REG IS A WORKSPACE REGISTER ADDRESS

COUNT IS A SHIFT COUNT
M IS A MAP REGISTER FILE NUMBER (0 OR 1)

Figure 10-4. Machine Instruction Formats

10-21 Texas Instruments Incorporated

9434419701

OBJECT FILE LISTING

-0 O000SAMPROG 9 0040 C 0000 A 0020 B CO6D B 0NN2 9 0042 C 0020 A 0024 B C81B C 002A

A 0028 B 0241 B 0000 B CB41 B 0002 B 0380 A 0OCA C 0052 C 00A2 B 02E0 C 0032 B 0200 ; ggég ; FIDE F 838;
A 00D6 B COAD C OOCA B 04C3 B C160 C 00CC B CIA0 C 00DO B CO72 B 0281 B 3A00 A OOEC B 0221 7 F151 F 0003
A OOEE B 0900 B 06C1 A ODEA B 1102 A 00F2 B 0453 B 11FS B 2C20 C 0032 B C101 B 0B44 B E044 7 FI8E F 0004
A 0100 B DD66 B 0003 B 0282 C 00A2 B 11ED B 0340 7 F832 F

2 00CE 0 010C 7 FCAB F 8882

Figure 10-5. Object Code Listing Format

10.5.5 PROCEDURES FOR CHANGING OBJECT CODE. To correct the object code without
reassembling a program, change the object code by changing or adding one or more records. One
additional tag character is recognized by the loader to permit specifying a load point. The additional
tag character, D, may be used in object records changed or added manually.

Tag character D is followed by a load bias (offset) value. The loader uses this value instead of
the load bias computed by the loader itself. The loader adds the load bias to all relocatable entry
addresses, external references, external definitions, load addresses, and data. The effect of the D
tag character is to specify the area of memory into which the loader loads the program. The tag
character D and the associated field must be placed ahead of the object code generated by the

assembler.

Correction of the object code may require only changing a character or a word in an object code
record. The user may duplicate the record up to the character or word in error, replace the incorrect
data with the correct data, and duplicate the remainder of the record up to the 7 tag character.
Because the changes the user has made will cause a checksum error when the checksum is verified
as the record is loaded, the user must change the 7 tag character to 8.

When more extensive changes are required, the user may write an additional object code record
or records. Begin each record with a tag character 9, A, S, or P. followed by an absolute load address
or a relocatable load address. This may be an address into which an existing object code record
places a different value. The new value on the new record will override the other value when the
new record follows the other record in the loading sequence. Follow the load address with a tag
character B, C, T, or N and an absolute data word or a relocatable data word. Additional data
words preceded by appropriate tag characters may follow. When additional data is to be placed
at a non-sequential address, write another load address tag character followed by the load address
and data words preceded by tag characters. When the record is full, or all changes have been written,
write tag character F to end the record.

When additional memory locations are loaded as a result of changes, the user must change Field 1
of tag character 0 which contains the number of bytes of relocatable code. For example, when the
object file written by the assembler contained 1000,, bytes of relocatable code, and the user has
added 8 bytes in a new object record, additional memory locations will be loaded. The user must
find the O tag character in the object code file and change the value following the tag character
from 1000 to 1008 he must also change the 7 tag character to 8 in that record.

When added records place corrected data in locations previously loaded, the added records must
follow the incorrect records. The loader processes the records as they are read from the object
medium, and the last record that affects a given memory location determines the contents of
that location at execution time.

10-22 Texas Instruments Incorporated

(o]
i‘—@@ 943441-9701

The object code records that contain the external definition fields, the external reference fields,
the entry address field, and the final program start field must follow all other object records. An
additional field or record may be added to include reference to a program identifier. The tag
character is 4, and the hexadecimal field contains zeros. The second field contains the first six
characters of the IDT character string. External definitions may be added using tag character 5
or 6 followed by the relocatable or absolute address, respectively. The second field contains the
defined symbol, filled to the right with blanks when the symbol contains less than six characters.

10-23/10-24 Texas /nstruments Incorporated

[o]
{@@ 43441.9701

APPENDIX A

CHARACTER SET

Texas Instruments Incorporated

943441-9701

APPENDIX A
CHARACTER SET

All of the 990 assemblers recognize the ASCII characters listed in table A-1. The table includes
both the ASCII code for each character, represented as a hexadecimal value and as a decimal value,
and the corresponding Hollerith code. The assemblers also recognize the five special characters
shown in table A-2. The Macro Assembler, SDSMAC, will accept the characters shown in table A-3
if they occur within quoted strings or in comment fields.

The device service routine for the card reader accepts (and stores in the calling program’s buffer)
all the characters shown in tables A-1, A-2, and A-3, as well as the special characters shown in
table A-4. Although not accepted by the 990 assemblers, other programs may recognize the
characters shown in table A-4 and perform appropriate action.

Table A-1. Character Set

Hexadecimal Decimal Hollerith
Value Value Character Code
20 32 Space Blank
21 33 ! 12-8-7

22 34 « 8-7

23 35 # 8-3

24 36 $ 11-8-3
25 37 % 0-8-4
26 38 & 12

27 39 ¢ 8-5

28 40 (12-8-5
29 41) 11-8-5
2A 42 * 11-84
2B 43 + 12-8-6
2C 44 , 0-8-3
2D 45 - 11

2E 46 . 12-8-3
2F 47 / 0-1

30 48 0 0

31 49 1 1

32 50 2 2

33 51 3 3

34 52 4 4

35 53 5 5

36 54 6 6

37 55 7 7

38 56 8 8

39 57 9 9

3A 58 : 8-2

3B 59 ; 11-8-6
3C 60 < 12-8-4

A-1 Texas Instruments Incorporated

943441-9701

Table A-1. Character Set (Continued)

Hexadecimal Decimal Hollerith
Value Value Character Code

3D 61 = 8-6

3E 62 > 0-8-6

3F 63 ? 0-8-7

40 64 @ 8-4

41 65 A 12-1

42 66 B 12-2

43 67 C 12-3

44 68 D 12-4

45 69 E 12-5

46 70 F 12-6

47 71 G 12-7

48 72 H 12-8

49 73 I 129

4A 74 J 11-1

4B 75 K 11-2

4C 76 L 11-3

4D 77 M 114

4E 78 N 11-5

4F 79 0] 11-6

50 80 P 11-7

51 81 Q 11-8

52 82 R 119

53 83 S 0-2

54 84 T 0-3

55 85 0) 0-4

56 86 \% 0-5

57 87 W 0-6

58 88 X 0-7

59 89 Y 0-8

S5A 90 Z 09

Table A-2. Additional Special Characters
Hexadecimal Decimal Hollerith Model 29
Value Value Character Code Keypunch Character

5B 91 [12-2-8 ¢
5C 92 \ 0-2-8 0-2-8
5D 93] 11-2-8 !
SE 94 A 11-7-8 T1(logical NOT)
SF 95 - 0-5-8 — (underscore)

A-2 Texas Instruments Incorporated

943441-9701

Table A-3. Additional Special Characters Recognized by SDSMAC

Hexadecimal Decimal Hollerith

Value Value Character Code
60 96 \ 8-1
61 97 a 12-0-1
62 98 b 12-0-2
63 99 c 12-0-3
64 100 d 12-0-4
65 101 e 12-0-5
66 102 f 12-0-6
67 103 g 12-0-7
68 104 h 12-0-8
69 105 i 12-0-9
6A 106 j 12-11-1
6B 107 k 12-11-2
6C 108 1 12-11-3
6D 109 m 12-114
6E 110 n 12-11-5
6F 111 0 12-11-6
70 112 p 12-11-7
71 113 q 12-11-8
72 114 T 12-11-9
73 115 s 11-0-2
74 116 t 11-0-3
75 117 u 11-04
76 118 v 11-0-5
77 119 w 11-0-6
78 120 X 11-0-7
79 121 y 11-0-8
7A 122 VA 11-0-9
7B 123 4 12-0
7C 124 | 12-11
7D 125 } 11-0
7E 126 ~ 11-0-1

Table A-4. Additional Characters Recognized by the Card Reader Device Service Routine

Hexadecimal Decimal Hollerith

Value Value Character Code
00 0 NUL 12-09-8-1
01 1 SOH 12-9-1
02 2 STX 12-9-2
03 3 ETX 12-9-3
04 4 EOT 9-7
05 5 ENQ 0-9-8-5
06 6 ACK 0-9-8-6
07 7 BEL 0-9-8-7
08 8 BS 11-9-6
09 9 HT 12-9-5
0A 10 LF 0-9-5

A-3 Texas Instruments Incorporated

/]

943441-9701

Table A-4. Additional Characters Recognized by the Card Reader Device Service Routine (Continued)

Hexadecimal
Value

0B
0C
0D
OE
OF
10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
IF
7F

Decimal
Value

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
127

Character

VT
FF
CR
SO
SI
DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC
FS
GS
RS
US
DEL

Hollerith
Code

12-9-8-3
12-9-84
12-9-8-5
12-9-8-6
12-9-8-7
12-11-9-8-1
11-9-1
1192
11-9-3
9-84
9-8-5
9-2
0-9-6
11-9-8
11-9-8-1
9-8-7
0-9-7
11-9-84
11-9-8-5
11-9-8-6
11-9-8-7
12-9-7

A4

Texas Instruments Incorporated

o
{@f’] 943441-9701

APPENDIX B

INSTRUCTION TABLES

Texas Instruments Incorporared

(¢]
{‘@@ 943441-9701

APPENDIX B
INSTRUCTION TABLES

The source formats for the machine instructions are summarized in eight tables. Refer to
Section III for descriptions of the machine instructions. Arithmetic instructions are listed in
table B-1, and branch instructions are listed in table B-2. Table B-3 lists compare instructions and
table B-4 lists control and CRU instructions. Load and move instructions are listed in table B-5,
and logical instructions are listed in table B-6. Workspace register shift instructions are listed in
table B-7, and the extended operation instruction is listed in table B-8. Long distance addressing
instructions are listed in table B-9.
The pseudo-instructions are listed in table B-10.
The following symbols are used in tables B-1 through B-10.

G, G1, G2 - A general address in one of the five modes described in Section III.

R - A workspace register address.

S - A symbolic memory address (a label or an expression that contains a label or $)

E - An expression, with the additional limitation that the expression must not contain a
symbol that is not previously defined.

I - An immediate value, which is an expression.

T - A term.

M - Memory map file, O or 1.

(,) - The contents of the address within parentheses.

- - “replaces”

: - “is compared to”
The following example shows the use of the symbols in the source format column:

XOR G,R
The source format entry means that the mnemonic operation code XOR requires a general
addréss and a workspace register address separated by a comma. In the effect column, the
symbols are used as in the following example:

(G) XOR (R) ~ (R)
This means that the result of an exclusive OR of the contents of the general address with the
contents of the workspace register replaces the contents of the workspace register. In the status

bits test column, the symbols are used as in the following example:

(R):0

B-1 Texas Instruments Incorporated

‘ o
%@ 9434419701

This means that the result placed in the workspace register is compared to zero and the status
bits contain the result of this comparison.

B-2 Texas /nstruments Incorporated

943441-9701

Table B-1. Arithmetic Instructions

Status Bits Status Bits Format

Instruction Format Effect Opcode Affected Test Number
Add words A G1, G2 (G1)+(G2)>(G2) A000 0-4 (G2):0 I
Add bytes AB G1, G2 (G1)+(G2)>(G2) B000 0-5 (G2) :0 I
Absolute value ABS G Absolute (G)~(G) 0740 0-2,4 Note 1 VI
Add immediate ~ AI R, I (R)+I=(R) 0220 0-4 (R) :0 VIII
Decrement DEC G (G)-1-(G) 0600 0-4 G) :0 VI
Decrement by 2 DECT G (G)-2~(G) 0640 0-4 G) :0 VI
Divide DIV G,R Note 2 3C00 4 Note 3 IX
Increment INC G (G)*+1~(G) 0580 0-4 G):0 \Z!
Increment by 2 INCT G (G)+2-(G) 05C0 0-4 G) :0 VI
Multiply MPY G,R Note 4 3800 None IX
Negate NEG G «(G)>>(G) 0500 0-2,4 G):0 VI
Subtract SGI1, G2 (G2)<(G1)~(G2) 6000 0-4 (G2) :0 I
Subtract Bytes SB G1, G2 (G2)(G1)~>(G2) 7000 0-5 (G2) :0 1
NOTES:
1. The original value of G is compared to zero.

2. The contents of register R and the next consecutive register (32-bit magnitude) are divided by G (16-bit mag-
nitude). The quotient (16-bit magnitude) is placed in R and the remainder is placed R+1. If R=15, the remainder
is placed in the location immediately following the workspace.

3. If the divisor is less than or equal to the left half of the dividend, the divide instruction is aborted and overflow
status bit (bit 4) is set.

4. (G)is multiplied by (R). The result (32-bit magnitude) is placed in R and R+1. R contains the most significant
half of the result. If R=15, the least significant half of the result if placed in the location immediately following
the workspace.

B-3 Texas Instruments Incorporated

SFo

943441-9701

Table B-2. Branch Instructions

Format
Instruction Format Effect Necessary Status Opcode Number
Branch BG G~ (PC) Unconditional 0440 VI
Branch and Link BL G G~ (PC) Unconditional 0680 VI
(PC) » (R11)
Branch and Link WP BLWP G Note 1 Unconditional 0400 VI
Jump If Equal JEQS S - (PC) Bit 2 =1 1300 II
Jump If High or Equal JHE S S = (PC) BitOorBit2 =1 1400 II
Jump If Greater Than JGT S S = (PC) Bitl1=1 1500 1I
Jump If Logical High JHS S = (PC) Bit 0 = 1 and 1B00 II
Bit2=0
Jump If Logical Low JLS S = (PC) Bit 0 = 0 and 1A00 II
Bit2=0
Jump If Less or Equal JLE S S = (PC) Bit 1 = 0 and 1200 II
Bit2 =1
Jump If Less Than JLT S S = (PC) Bit 1 = 0 and 1100 II
Bit2=0
Unconditional Jump JMP S S = (PC) Unconditional 1000 II
Jump If No Carry JNC S S - (PC) Bit3=0 1700 II
Jump If Not Equal JNE S S = (PC) Bit2=0 1600 II
Jump If No Overflow JNO S S - (PC) Bit4=10 1900 II
Jump If Odd Parity JOP S S = (PC) Bit 5 =1 1C00 II
Jump On Carry Joc s S - (PC) Bit3=1 1800 II
Return WP RTWP Note 2 Unconditional 0380 VI
Execute XG Note 3 Unconditional 0480 VI
NOTES:
1. BLWP is explained in detail in paragraph 8.2. It can be summarized as follows:
(G) ~ (WP) (old PC) - (R14)
(G +2)~ (PO (ST) » (R195)

(original WP) - (R13)
2. RTWP is explained in detail in paragraph 8.2. It can be summarized as follows:

(R13) ~ (WP)

(R14) > (PC)
(R15) > (ST)

3. Aninstruction at address G is executed as if it were located in memory where the Execute instruction
resides. Observe that if the instruction executed is not a single word instruction, the word following the
Execute instruction is used (i.e., if symbolic memory addressing or indexed addressing is required, the
symbol value must be in the word following the Execute instruction). The Execute instruction does not
affect-the status bits but the instruction executed will set the status bits appropriately.

B4 Texas Instruments Incorporated

943441-9701

Table B-3. Compare Instructions

Status Bits Status Bits Format

Instruction Format Opcode Affected Test Number
Compare Words C G1,G2 8000 0-2 (G1) «(G2) 1
Compare Bytes CB G1, G2 9000 02,5 (G1) :(G2) I
Compare Immediate CIR, I 0280 0-2 (R) 1 VIII
Compare Ones COCG,R 2000 2 Note 1 1II
Corresponding
Compare Zeros CZC G,R 2400 2 Note 2 III
Corresponding
NOTES:

General: Compare instructions have no effect other than setting status bits. Note that the two’s complement
representation negative numbers are logically greater than positive numbers, and that negative num-
bers of small magnitude are logically greater than negative numbers of larger magnitude.

1. The bits in the destination operand that correspond to bits equal to one in the source operand are com-
pared to one. If the corresponding bits are equal to one, status bit 2 is set to 1. Otherwise the status bit
isset to 0.

2. The bits in the destination operand that correspond to bits equal to one in the source operand are com-
pared to zero. If the corresponding bits are equal to zero, status bit 2 is set to 1. Otherwise the status bit
isset to 0.

B-5 Texas Instruments Incorporated

943441-9701

Table B-4. Control and CRU Instructions

: Status Bits Status Bits Format

Instruction Format Effect Opcode Affected Test Number
Clock Off (Note 12) CKOF Note 1 03Co None vl
Clock On (Note 12) CKON Note 2 03A0 None viI
Load Communication LDCRG,T Note 3 3000 0-2,5 (G) :0 v
Register
Idle (Note 12) IDLE Note 4 0340 None VII
Load ROM and Execute LREX Note 6 03E0 None VII

(Note 12)
Reset 1/0 (Note 12) RSET Note 5 0360 0-5 Note 7 VII
Set Bit to One SBO E Note 8 1D00 None I
Set Bit to Zero SBZ E Note 9 1E00 None II
Store Communication STCRG, T Note 10 3400 0-2,5 G) :0 v
Register
Test Bit TB E 1F00 2 Note 11 I
NOTES:

1. Disables 120 Hz clock.

2. Enables 120 Hz clock. If interrupt level 5 is enabled, an interrupt occurs every 8.33 ms. Interrupt address
is 144¢.

3. Transfers consecutive data bits from the byte address specified by G to the CRU. The number of bits to be
transferred is specified by T. The CRU address is the contents of R12 of the current workspace. The least
significant bit of the byte address specified by G is placed in the CRU bit addressed by R12. See illustration,
Memory CRU Transfer (Note 9).

4. Places the computer in the idle state. An interrupt or start signal causes the computer to resume execution
at the instruction following the IDLE instruction.

5. Disables all interrupts. Resets all directly connected I/O devices.

6. Places contents of FFFC 4 into WP register, and contents of FFFE ¢ into PC.
7. Setsbits 0 - 5 to zero.

8. Sets CRU bit at address in R12 + E to one.

9. Sets CRU bit at address in R12 + E to zero.

B6 Texas Instruments Incorporated

943441-9701

Table B-4. Control and CRU Instructions (Continued)

NOTES

10. Transfers consecutive data bits from the CRU to the byte address specified by G. The number of bits transferred
is specified by T. The CRU address is the contents of R12 of the current workspace. The CRU bit addressed by
R12 is placed in the least significant bit of the byte addressed by G. See Memory - CRU Transfer illustration.

11. Tests CRU bit at address in R12 + E. Set status bit 2 to the value of the CRU bit.

12. Does not apply to TMS 9900.

o
N
o

‘ 7 MEMORY 1

- .
>

(A)128444

Memory - CRU Transfer

B-7 Texas Instruments Incorporated

I

943441-9701

Table B-5. Load and Move Instructions

Status Bits Status Bits Format

Instruction Format Effect Opcode Affected Test Format
Load Immediate LIR,I I+ (R) 0200 0-2 I:0 VIII
Load Interrupt Mask LIMII Note 1 0300 None VIII
Load Memory Map File LMF RM Notes 4, 5 0320 None X
Load Workspace Pointer LWPI I I - (WP) 02E0 None VIII
Move Words MOV Gl1, G2 (G1) »> (G2) C000 0-2 (G2) :0 I
Move Bytes MOVB G1, G2 (G1) ~> (G2) D000 0-2,5 (G2) :0 I
Store Status STST R (ST) -~ (R) 02C0 None VIII
Store WP STWP R (WP) -~ (R) 02A0 None VII
Swap Bytes SWPB G Note 3 06CO None VI
NOTES:
1. Places the least-significant 4 bits of the immediate value I in the interrupt mask.

2. Loads the 256 words of the ROM program into the first 256 words of memory. Places the contents of the
memory pair at address O into WP and PC and starts execution.

3. Interchanges bits O - 7 with bits 8 - 15 of word at address specified by G.
4. Place the contents of a six-word area at the address in R into memory map file M.

5. 990/10 with mapping only.

Texas Instruments Incorporated

943441-9701

Table B-6. Logical Instructions

Status Bits Status Bits Format

Instruction Format Effect Opcode Affected Test Number
AND Immediate ANDI R, I (R) AND I - (R) 0240 0-2 (R) :0 VIII
Clear CLR G 0-(G) 04C0 None VI
Invert Bits INV G Note 1 0540 0-2 G) 0 VI
OR Immediate ORI R, I (R) ORI~ (R) 0260 0-2 (R) :0 VIII
Set to Ones SETO G >FFFF - (G) 0700 None VI
Set Ones Corresponding SOC G1,G2 Note 2 E000 0-2 (G2) :0 I
Set Ones Corresponding SOCB G1, G2 Note 2 F000 0-2,5 (G2) :0 I
Bytes
Set Zeros Corresponding SZC G1,G2 Note 3 4000 0-2 (G2) :0 I
Set Zeros Corresponding SZCB G1, G2 Note 3 5000 0-2,5 (G2) :0 I
Bytes
Exclusive OR XOR G, R (G) XOR (R) = (R) 2800 0-2 (R) :0 11
NOTES:
1. Places one’s complement of contents of location G in location G.

2. Sets bits to one in G2 that correspond to bits equal to one in G1. (G1) OR (G2) > (G2).

—

1 11000 0
1 10101 1

Q0
™)

11111111
10101010

000 0
010 0
111111111010 0

1 G2 (result)

3. Sets bits to zero in G2 that correspond to bits equal to one in G1. (INV (G1)) AND (G2) ~ (G2).

1111111100000000 Gl
1010101010101010 G2
0000000010101010 G2 (result)

B-9 Texas Instruments Incorporated

943441-9701

Table B-7. Workspace Register Shift Instructions

Value Placed in Vacated Bit Position on Format

Instruction Format Each Shift Opcode Number
Shift Right Arithmetic SRAR,C Original value of leftmost bit 0800 \%
Shift Right Logical SRL R, C Logical zero 0900 %
Shift Left Arithmetic SLAR, C Logical zero (Note 1) 0A00 \%
Shift Right Circular SRC R, C Rightmost bit moves to leftmost bit 0B0O \'%

NOTES:
General: If C is zero, the 4 least-significant bits of RO contain the shift value. If the 4 least-significant bits of RO
equal O, shift 16 positions. Otherwise shift C positions. The value of the last bit shifted out of the register

is placed in status bit 3. The shifted value is compared to zero-setting status bits O - 2.

1. If the sign of the value in R changes during shift, sets status bit 4.

B-10 Texas Instruments Incorporated

943441-9701

Table B-8. Extended Operation Instruction

Status Bits Status Bits Format
Instruction Format Effect Opcode Affected Test Number
Extended Operation XOP G, T Note 1 2C00 6 Note 2 IX

NOTES:
1. T specifies the extended operation, O - 15, to be executed.

2. Sets status bit 6 to one when extended operation is software implemented, and to zero when extended operation
is hardware implemented.

B-11 Texas Instruments Incorporated

943441-9701

Table B-9. Long Distance Addressing Instructions (990/10 with mapping only)

Status Bits Status Bits Format
Instruction Format Effect Opcode Affected Test Number
Long Distance Source LDS G Note 1 0780 None VI
Long Distance LDD G Note 2 07CO0 None VI
NOTES:
1. Places the contents of a six-word area of memory at G into memory map file 2, to use for source address of

following instruction.

2. Places the contents of a six-word area of memory at G into memory map file 2, to use for destination address
of following instruction.

B-12 Texas Instruments Incorporated

o

/]

943441-9701

Table B-10. Pseudo-Instructions

Equivalent
Instruction Instruction
NOP JMP § +2
RT B *11
XVEC DATA, DATA, WPNT

Note: 1. Applies to SDSMAC only.

Opcode
1000
045B

N.A.
(Note 1)

B-13/B-14

Texas /nstruments Incorporated

(o]
J‘@(p 943441-9701

APPENDIX C

PROGRAM ORGANIZATION

Texas [nstruments Incorporated

943441-9701

APPENDIX C

PROGRAM ORGANIZATION

C.1 PROGRAM AREAS

There are three types of areas in a program for the Model 990 Computer. These are the
procedure, the workspace, and the data areas. The procedure area contains the computer
instructions. The workspace area contains program linkage, high activity data, and addresses. As
many workspaces as convenient may be allocated for a program. Data areas may be allocated as
required.

The three previously described hardware registers - WP, PC, and ST - control program execution.
The workspace pointer contains the address of the first word of a 16-word area of memory
called the workspace. Note that the program workspace may be changed by changing the
contents of the WP register. The PC contains the address of the next instruction to execute. The
status register contains condition bits set by instructions already performed and the interrupt
level mask. These three registers then, completely control and define the context of a program.

The general environment of the 990 Computer is shown in figure C-1. This arrangement of
workspace, procedure, and data is the simplest approach to 990 programming. However, though
many application programs may be written in this manner, a more segregated approach, with
possibly several workspaces, data areas, and connected simple procedures, would provide
increased flexibility and applicability.

Most of the programs execute in the environment provided by a resident executive. The areas
may be combined in a single task, or the workspace and data areas may be combined in the data
division of the task. The procedure area becomes the procedure division of the task in that case.
Some of the available executives support writing a procedure division to be used with several
data divisions to form tasks that perform the same functions on several sets of data. Refer to the
user’s guide of the appropriate executive for information about the environment it provides for
user programs.

C.2 PROCEDURE

A procedure is the main body of a program and contains computer instructions. It is the action
part of a program. Procedures could be coded to solve an equation, run a motor, determine
status of a process, or condition a set of data that is to be processed by another procedure.
Procedures in the Model 990 Computer may have workspaces and data as an integral part of the
coding or may use workspaces and data passed from another procedure.

C.3 WORKSPACE

The Model 990 Computer uses workspaces that may be anywhere in memory and that consist of
sixteen consecutive memory words. A context switch due to an interrupt, an XOP instruction, or
a BLWP instruction changes the active workspace. A return from the subroutine provided for
either of these context switches using an RTWP instruction restores the original workspace.
Execution of an LWPI instruction makes a specified workspace active without changing the PC
contents. When the data division is separate from the procedure division, any workspace that
contains data that is unique to the task represented by the data division should be a part of the
data division.

C-1 Texas Instruments Incorporated

943441-9701

MEM ORY
MEMORY
ADDRESS MEMORY
HARDWARE REGISTERS
USE
WP 0100 -— — — —8 0100 ' WRO
0102 WR1
PC 0220 - = 0104 WR2
|
| A A
la
ST | o s
|
[otic WR14
|
| ONE WRI15:
| ~N ~,
| i g
! 0200 PROGRAM
| :J :u
I 021El” (INSTRUCTION IN EXECUTION) [MPROCEDURE
L —» 0220] (NEXT INSTRUCTION) AREA
CONTAINING
~ "
N ASMACHINE
04C0 INSTRUCTIONS
~
Y A
1000 PROGRAM
ﬂL "U
(g V]
nz;[DATA AREA
(A)128614
Figure C-1. Model 990 Computer Programming Environment
C.4 DATA

Data for a procedure may appear in many forms. In assembly language, there are three directives
available to the programmer to initialize data within a program module. These directives are:

DATA - Initializes one or more consecutive words of memory to specific values that
are input on this statement. ‘

BYTE - Initializes one or more consecutive bytes of memory as does the DATA
statement, except that bytes are initialized.

TEXT - Initializes a textual string of characters in consecutive bytes of memory. The
characters are represented in USASCII code.

C-2 * Texas Instruments Incorporated

(o]
{—@? 943441-9701

Also, data input from the data terminal or device attached to the CRU or TILINE is available to
procedures in the 990 Computer.

The available executives for the Model 990 Computer support the user programs by executing
supervisor calls to perform input and output operations, data conversions, and other functions.
The user provides data in required formats for supervisor call blocks that define the supervisor
call, and for other data blocks as appropriate. The assembler directives described previously may
be used to provide this data. Details of the data requirements for interface with an executive are
described in the user’s guide for the executive.

C-3/C4 Texas Instruments Incorporated

o
{"@’; 943441-9701

APPENDIX D

HEXADECIMAL INSTRUCTION TABLE

Texas Instruments Incorporated

943441-9701

APPENDIX D

HEXADECIMAL INSTRUCTION TABLE

Hexadecimal Mnemonic
Operation Operation 7
Code Code Name Format Paragraph
0200 LI Load Immediate VIII 3.60
0220 Al Add Immediate VIII 3.12
0240 ANDI AND Immediate VIII 3.70
0260 ORI OR Immediate VIII 3.71
0280 CI Compare Immediate VIII 3.45
02A0 STWP Store Workspace Pointer VI 3.68
02C0 STST Store Status VIII 3.67
02EQ LWPI Load Workspace Pointer VIII 3.62
Immediate
0300 LIMI Load Interrupt Mask VI 3.61
Immediate
0320 LMF (Note 1) Load Memory Map File X 3.63
0340 IDLE (Note 2) Computer Idle VII 3.50
0360 RSET (Note 2) Computer Reset VII 3.49
0380 RTWP Return From Interrupt VI 3.27
Subroutine
03A0 CKON (Note 2) Clock On VII 3.52
03CO0 CKOF (Note 2) Clock Off VII 3.51
03EO0 LREX (Note 2) Load ROM and Execute VIL 3.53
0400 BLWP Branch And Load Workspace VI 3.26
Pointer
0440 B Branch VI 3.24
0480 X Execute VI 341
04CO0 CLR Clear Operand VI 3.74
0500 NEG Negate VI 322
0540 INV Invert VI 3.73
0580 INC Increment By One \Y 3.17
05CO INCT Increment By Two VI 3.18
0600 DEC Decrement By One VI 3.14
0640 DECT Decrement By Two VI 3.20
0680 BL Branch and Link VI 325
06C0O SWPB Swap Bytes \%Y 8 3.66
0700 SETO Set Ones VI 3.75

Notes 1. 990/10 with mapping only.
2. Does not apply to TMS 9900

D-1 Texas Instruments Incorporated

943441-9701

HEXADECIMAL INSTRUCTION TABLE (Continued)

Hexadecimal Mnemonic
Operation Operation
Code Code Name Format Paragraph
0740 ABS Absolute Value VI 3.21
0780 LDS (Note 1) Long Distance Source VI 3.87
07Co LDD (Note 1) Long Distance Destination « VI 3.88
0800 SRA Shift Right Arithmetic \% 3.81
0900 SRL Shift Right Logical \% 3.83
0A00 SLA Shift Left Arithmetic v 3.82
0BOO SRC Shift Right Circular \Y 3.84
1000 JMP Jump Unconditional I 3.28
1100 JLT Jump Less Than II 3.34
1200 JLE Jump Low Or Equal II 3.32
1300 JEQ Jump Equal II 3.35
1400 JHE Jump High Or Equal 11 3.31
1500 JGT Jump Greater Than II 3.33
1600 INE Jump Not Equal I . - 3.36
1700 IJNC Jump No Carry II 3.38
1800 Joc Jump On Carry II 3.37
1900 JNO Jump No Overflow II 3.39
1A00 JL ~ Jump Low II 3.30
1BOO JH Jump High 1I 3.29
1C00 Jop Jump Odd Parity II 3.40
1D00 SBO Set Bit To One I 3.54
1E00 SBZ Set Bit To Zero II 3.55
1F00 B Test Bit II 3.56
2000 CcoC Compare Ones Corresponding I 3.46
2400 CZC Compare Zeros Corresponding III 3.47
2800 XOR Exclusive OR 1111 3.72
2C00 XOop Extended Operation IX 3.85
3000 LDCR Load Communication v 3.57
Register
3400 STCR Store Communication v 3.58
Register

13800 MPY Multiply IX 3.15
3C00 DIV Divide IX 3.16

Note 1. 990/10 with mapping only.

D2 Texas Instruments Incorporatéed

943441-9701

HEXADECIMAL INSTRUCTION TABLE (Continued)

Hexadecimal Mnemonic
Operation Operation
Code Code Name Format Paragraph
4000 SZC Set Zeros Corresponding, I 3.78
Word
5000 SZCB Set Zeros Corresponding, I 3.79
Byte
6000 S Subtract Word I 3.13
7000 SB Subtract Byte I 3.14
8000 C Compare Words I 3.43
9000 CB Compare Bytes I 3.44
A000 A Add Words I 3.10
B00O AB Add Bytes I 3.11
C000 MOV Move Word I 3.64
D000 MOVB Move Byte I 3.65
EO00 SOC Set Ones Corresponding, I 3.76
Word
FO00 SOCB Set Ones Corresponding, I 3.77
Byte

d
D-3/D-4 Texas Instruments Incorporateée

o
{—@@ 9434419701

APPENDIX E

ALPHABETICAL INSTRUCTION TABLE

Texas Instruments Incorporated

943441-9701

APPENDIX E

ALPHABETICAL INSTRUCTION TABLE

Mnemonic Hexadecimal
Operation Operation Name Format Paragraph
Code Code
A A000 Add Words I 3.10
AB B00O Add Bytes I 3.1
ABS 0740 Absolute Value VI 321
Al 0220 Add Immediate VIII 3.12
ANDI 0240 AND Immediate VIII 3.70
B 0440 Branch VI 324
BL 0680 Branch and Link VI 3.25
BLWP 0400 Branch and Load Workspace VI 3.26
Pointer
C 8000 Compare Words I 343
CB 9000 Compare Bytes I 344
CI 0280 Compare Immediate VIII 345
CKOF (Note 2) 03CO Clock Off VII 3.51
CKON (Note 2) 03A0 Clock On VI 3.52
CLR 04C0 Clear Operand VI 3.74
cocC 2000 Compare Ones Corresponding 11 3.46
CZC 2400 Compare Zeros Corresponding 111 347
DEC 0600 Decrement By One VI 3.19
DECT 0640 Decrement By Two VI 3.20
DIV 3C00 Divide IX 3.16
IDLE (Note 2) 0340 Computer Idle Vil 3.50
INC 0580 Increment By One VI 3.17
INCT 05C0o Increment By Two VI 3.18
INV 0540 Invert VI 3.23
JEQ 1300 Jump Equal I 3.35
JGT 1500 Jump Greater Than I 3.33
JH 1B00 Jump High II 329
JHE 1400 Jump High Or Equal I 331
JL 1A00 Jump Low 11 330
JLE 1200 Jump Low Or Equal II 3.32
JLT 1100 Jump Less Than 11 3.34
JMP 1000 Jump Unconditional I 3.28

Notes 1. 990/10 with mapping only.
2. Does not apply to TMS 9900.

E-1 Texas Instruments Incorporated

943441-9701

ALPHABETICAL INSTRUCTION Table (Continued)

Mnemonic Hexadecimal
Operation Operation Name Format Paragraph
Code Code
INC 1700 Jump No Carry I 3.38
JNE 1600 Jump Not Equal 11 3.36
JNO 1900 Jump No Overflow I 3.39
JOoC 1800 Jump On Carry 1 3.37
JOP 1C00 Jump Odd Parity I 3.40
LDCR 3000 Load Communication Register 1\Y 3.57
LDD (Note 1) 07CO Long Distance Destination \2 3.88
LDS (Note 1) 0780 Long Distance Source VI 3.87
LI 0200 Load Immediate Vil : 3.60
LIMI 0300 Load Interrupt Mask Vil 3.61
Immediate
LMF (Note 1) 0320 Load Memory Map File X 3.63
LREX (Note 2) 03EQ Load cr Restart Execution VIl 353
LWPI 02E0 Load Workspace Pointer VI 3.62
Immediate
MOV C000 Move Word ! 3.64
MOVB D000 Move Byte [3.65
MPY 3800 Multiply IX 3.15
NEG 0500 Negate VI 322
ORI 0260 OR Immediate VIl 3.71
RSET (Note 2) 0360 Computer Reset Vil 349
RTWP 0380 Return From Interrupt Vil 327
Subroutine
S 6000 Subtract Word I 3.13
SB 7000 Subtract Byte I 3.14
SBO 1D00 Set Bit To One 11 3.54
SBZ 1E00 Set Bit To Zero I 355
SETO 0700 Set Ones Vi 3.5
SLA 0A00 Shift Left Arithmetic \Y 3.82
Mo E000 Set Ones Corresponding, I 3.76
Word
SOCB FO00 Set Ones Corresponding, I 3.77
Byte

Notes 1. 990/10 with mapping option only.
2. Does not apply to TMS 9900.

E-2 Texas /nstruments Incorporated

943441-9701

ALPHABETICAL INSTRUCTION TABLE (Continued)

Mnemonic Hexadecimal

Operation Operation Name Format Paragraph
Code Code
SRA 0800 Shift Right Arithmetic \Y% 3.81
SRC 0B0O Shift Right Circular \% 3.84
SRL 0900 Shift Right Logical \ 3.83
STCR 3400 Store Communication Register v 3.58
STST 02CO0 Store Status VIII 3.67
STWP 02A0 Store Workspace Pointer VIII 3.68
SWPB 06CO0 Swap Bytes VI 3.66
SzC 4000 Set Zeros Corresponding, Word | 3.78
SZCB 5000 Set Zeros Corresponding, Byte I 3.79
TB 1F00 Test Bit 11 3.56
X 0480 Execute VI 3.41
XOP 2C00 Extended Operation IX 3.85
XOR 2800 Exclusive OR 11 3.72

E-3/E4 Texas Instruments Incorporated

o
{f_—i[]@ 943441-9701

APPENDIX F

ASSEMBLER DIRECTIVE TABLE

Texas Instruments Incorporated

o]
%@ 943441.9701

APPENDIX F
ASSEMBLER DIRECTIVE TABLE

The assembler directives for the Model 990 Assembly Language are listed in table F-1. All
directives may include a comment field following the operand field. Those directives that do not
require an operand field may have a comment field following the operator field. Those directives
that have optional operand fields (RORG and END) may have comment fields only when they
have operand fields.
The following symbols and conventions are used in defining the syntax of assembler directives:

® Angle brackets (< >) enclose items supplied by the user

® Brackets ([]) enclose optional items

® An ellipsis (...) indicates that the preceding item may be repeated

® Braces ({ }) enclose two or more items of which one must be chosen.
The following words are used in defining the items used in assembler directives:

® symbol -

® label - a symbol used in the label field

® string - a character string of a length defined for each directive

® expr - an expression

® wd expr - well-defined expression

) term

® operation - mnemonic operation code, macro name, or previously defined operation or
extended operation

F-1 Texas Instruments Incorporated

o

943441-9701

Directive

Output Options
Page Title

Program Identifier
Copy Source File
External Definition
External Reference
Secondary Reference
Force Load
Absolute Origin
Relocatable Origin
Dummy Origin
Workspace Pointer
Block Starting
with Symbol
Block Ending

with Symbol
Initialize Word
Initialize Text
Define Extended
Operation

Define Operation
Define Assembly-
Time Constant
Word Boundary
No Source List
List Source

Page Eject
Initialize Byte
Program End
Program Segment

Program Segment End
Data Segment

Data Segment End
Common Segment
Common Segment
END

Assemble if

Assemble else
Assemble end

Table F-1. Assembler Directives

Syntax

OPTION <keyword>[,<keyword>] ...
[<label>] TITL <string>

[<label>] IDT <string>

[<label>] COPY <file name>

[<label>] DEF <symbol>[,<symbol>] ...
[<label>] REF <symbol>[,<symbol>] ...
[<label>] SREF <symbol>[,<symbol>] ...
[<label>] LOAD<symbol>[,<symbol>]

[<label>] AORG <wd expr>
[<label>] RORG [<expr>]
[<label>] DORG <expr>
[<label>] WPNT <label>
[<label>] BSS <wd expr>

[<label>] BES <wd expr>

. [<label>] DATA <expr>[, <expr>] ...

[<label>] TEXT [-] <string>
[<label>] DXOP <symbol>, <term>

[<label>] DFOP <symbol>, <operation>
<label> EQU <expr>

[<label>] EVEN
[<label>] UNL
[<label>] LIST
[<label>] PAGE

[<label>] BYTE <wd expr>[,<wd expr>] ...

[<label>] END [<symbol>]
[<label>] PSEG

[<label>>] PEND

[<label>] DSEG

[<label>] DEND
[<label>] CSEG [<string>]
[<label>] CEND

[<label>>] END [Symbol]
[<label>] ASMIF <expr>

[<label>] ASMELS
[<label>] ASMEND

Force Word

Boundary

NA
NA
NA
NA
NA
NA
NA
NA
No
No
No
NA
No

No

Yes
No
NA

NA
NA

Yes
NA
NA
NA
No

NA
Yes

Yes
Yes
Yes
Yes
Yes
NA
NA

NA
NA

Note

5

Applicability

Cross & SDSMAC
All

All

SDSMAC

All

All

SDSMAC, TXMIRA
SDSMAC, TXMIRA
All

All

All

SDSMAC

All

All

All
All
All

SDSMAC
Al

All

All

All

All

All

All

Cross & SDSMAC,
TXMIRA

Cross & SDSMAC,
TXMIRA

Cross & SDSMAC,
TXMIRA

Cross & SDSMAC,
TXMIRA

Cross & SDSMAC,
TXMIRA

Cross & SDSMAC,
TXMIRA

All

SDSMAC
SDSMAC
SDSMAC

Change 1

Texas Instruments Incorporated

934441-9701

NOTES

1. The expression must be relocatable.

The minus sign causes the assembler to negate the rightmost character.
Symbols in expressions must have been previously defined.

Symbol must have been previously defined.

Keywords are XREF, OBJ, SYMT, NOLIST, TUNLST, DUNLST,
BUNLST, and MUNLST.

F-3/F-4 Texas Instruments Incorporated

o
@ 943441-9701

APPENDIX G

MACRO LANGUAGE TABLE

Texas Instruments Incorporated

943441-9701

APPENDIX G
MACRO LANGUAGE TABLE

The syntax of the statements that contain the Macro Language verbs is shown in the following
table.

Statement Syntax

Macro <macro name>b. . .SMACROb. . .[<parm>]. . b. . .[<comment>]

Variable b. . .8VARbD. . <var>[<var>]. . b. . .[<comment>]
<expression>

Assign b. . .SASGb. .. {) BTOb <var>b. .. [<comment>]

<string>

Name <label>b. . .SNAMEb. . .[<comment>]

Go to b. . .SGOTOb. . .<label>b. . .[<comment>]

Exit b. . .SEXITH. . .[<comment>]

Call b. . .SCALLb. . .<macro name>b. . .[<comment>]

If b. . .$IFb. . <expression>b. . .[<comment>]

Else b. . .$ELSEb. . .[<comment>]

End if b. . .SENDIFb. . .[<comment>]

End <label>b. . .$ENDb. . .<macro name>b. . .[<comment>]

MACRO Variable Components

Qualifier Meaning
S The string component of the variable.
A The attribute component of the variable.
\" The value component of the variable. .
L The length component of the variable.

Symbol Components

Qualifier Meaning
SS String component of a<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>