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Authors’ Note: In this report, the height above bottom of the top-most sensor
of BayShore IV is specified as 440 cm above bed. Subsequent to the generation
of this report, it has been noted that the field log indicated the height above bot-
tom as 499 cm above bed. The 499 cm height has been verified and should be

corrected by the reader on Page 2 and in Figure 1.
July 1993

ii



page 1

Bottom Boundary Layer Stress Measurements with BASS Tripods
Data Report STRESS 1988-89

Thomas F. Grosst
A. J. Williams IITtt

Overview

The Benthic Acoustic Stress Sensor tripods, BASS, are bottom landing
instrument platforms designed to measure the turbulent bottom boundary layers.
The turbulent bottom boundary layer is the turbulent flow in the region from
the sediment bed to 5 to 10 meters above the bottom. Within this region tur-
bulent stress slows the flow from midwater column speeds to zero at the "no-
slip" condition of the sea bed. Boundary shear stress scales sediment erosion
rates and provides boundary friction which affects the full water column
momentum balance. The stress is due to the mean boundary layer shear and
enhanced by wave generated turbulence. Therefore measures of the mean
profile and wave action are needed, as well as a modeling method by which the
bed shear stress can be derived. The Grant, Madsen and Glenn models of
wave-current interaction will be used for this.

The sheared velocity profile is to first order a logarithmic profile described
by U(z)=us/x In z/z,. The shear velocity scale, ua, describes the turbulence
intensity and is used to derive the boundary shear stress T,=pu?. These quan-
tities are measured by obtaining velocity profiles at half hourly intervals
through the bottom 5 meters of the flow.

The wave action is derived by obtaining pressure power spectra every half
hour. From this a peak frequency and pressure variance are obtained. By
using linear wave theory these are related to the near bed wave velocity and
excursion amplitude. The validity of these conversions are checked by com-
parison to velocity variance which is dominated by wave motions.

The BASS tripods provide turbulent bottom boundary layer descriptions
by measuring the velocity at six fixed locations within 5 meters of the bed.
The mean velocity data is used to derive logarithmic profile estimates of u.. In
addition the BASS velocity data, which is sampled at 1.6 Hz, can provide esti-
mates of kinetic energy and the Reynolds stress tensor by averaging velocity
component cross correlations: '

. ., 1 3Omin - —
<u;u j>=m"§o U,'(t)Uj(t)dl - U,UJ

where U;(r) is the original time series data, U; is the average over 30 minutes

1 Skidaway Instimte of Oceanography, Savannsh, GA. 31416. Omnet: Lgross.skio
1+ Woods Hole Oceanographic Institute, Woods Hole, MA. . Omnet: a.williams
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and u’; is the turbulent velocity component.

Da(a- Results

The BASS tripods were deployed twice at the STRESS site, Table 1.
During the first deployment one six BASS tripod was put down at the 90m C3
station, data tape T2000. The second deployment put that same tripod at the
90m site, data tape T2006, and another four BASS tripod at the inner shelf C2
station in 55m, data tape T2005. Calibration zeros were obtained for both tri-
pods after the second deployment. Zeros were obtained by bagging the instru-
ments to prevent flow through the sensors and placing them on the bottom at
the Sausalito dock.

BASS tripods were deployed at the STRESS sites winter 1988-89. Three
data tapes were recovered:

T2000:
Tum on: Nov. 28 18:30 GMT = 332.7708 year day (y.d.)
In water: Nov. 28 21:30 GMT 1988 = 332.8958 y.d.
to Jan. 24 9:30 GMT 1989
90 meter site, Bayshore IV BASS, Clean tripod,
Six BASS pods at 22.6, 53.1, 113.2, 198.9, 259.4, 440 cm above bed.
Two Transmissometers at 46 and 144 cm above bed
Eight thermistors at 40, 65, 113, 204, ...
Pressure sensor 4 cm above bed, serial number 13032
Compass: unknown, not recorded

T2006:

Tum on: Jan. 26 21:00 GMT 1989 = 25.8750 y.d.1989 = 390.8750 y.d.1988
~ to Mar. 18 15:30 GMT, 1989

90 meter site, Bayshore IV BASS, Clean tripod,

Six BASS pods at 22.6, 53.1, 113.2, 198.9, 2594, 440 cm above bed.

Two Transmissometers at 46 and 144 cm above bed

Eight thermistors at 40, 65, 113, 204, ....

Pressure sensor 4 cm above bed, serial number 13032

Compass: 266°, Rotate U to EAST with addition of 90-266-25-16.9=152°

T2005:
Tumn on: Jan. 25 19:00 GMT 1989 = 24.7917 y.d.1989 = 389.7917 y.d. 1988
In water: Jan. 25 22:00 GMT 1989 = 24.9167 y.d.1989
to Mar. 17 22:30 GMT 1989
55 meter site, Glass BASS, LDV tripod,
Four BASS pods at 41.5, 76.5, 111.5, 510. cm above bed.
Two Transmissometers at 50 and 148 cm above bed
Three thermistors at 46, 112 , 510 cm above bed
Pressure sensor 4 cm above bed, serial number 9126
Compass: unknown, compass defective

 January 18, 1990
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Data recorded on each tape:

Month day hour minute
Half hour averages of 1.6 Hz velocities along each of four axes for each pod.
Quality word for each axes of each pod.
Half hour average cross correlations of 1.6 Hz data of pod axes: a’a’, a'b’, a’c’...etc.
Ten minute readings of thermistors and transmissometers
Two minute averages of U and V at one level
Fourier transformations of pressure variance, frequencies (1:40)/307.2s fairly good.
Fourier transformations of velocity component variance, :
frequencies (1:40)/307.2s :problematic.

On the second deployment only (T2006, T2005) the following were added:

Compass
Half hourly pressure. Not averaged, so terribly aliased by surface waves.

Calibrations:

BASS velocities

BASS velocity calibrations involve a gain factor and a zero offset. The
gain factor is only a function of the path length and speed of sound in water,
neither of which are variable, gain = 0.00368 cm/sec /bit. The zero offsets are
due to capacitence variations of the cables. This changes slightly with each
configuration of the tripod. Therefore zero velocities are measured by deploy-
ing the tripod with each pod wrapped in plastic to still the flow. These zero
deployments were done off the dock on March 19, 1989 after the experiment.
The maximum magnitudes of the zero velocities are 3.77 cm/s. One channel
from each pod may be discarded. A large offset zero is an indicator of trouble
and is usually the channel which is discarded. Thus the largest offset zero
which is used is -0.79 cm/s, (pod 3 is generally suspect on both tripods and
will be excluded from the analysis whenever possible). By using these zeros,
velocity vectors are obtained which yield logarithmic profile slope with regres-
sion coefficients in excess of 0.98 indicating confidence of better than 0.2 cm/s
in the mean speed estimates. :

.Table 1 ‘

Zeros (crmysec) for T2000 and T2006 March 19 20:30 GMT
pod #

channel 1 2 3 4 5 6

A 14136 -0.1026 -0.0342 -0.6118 0.4370 -0.7638
B -0.4522 -0.1254 0.0760 -0.4028 0.7410 -0.1520
C 0.7904 -1.2768 -2.6828 09500 0.6194 0.6270
D -0.8816 0.1406 -2.8614 0.4636 -0.7486 0.8816

Zeros for T2005 (cmy/sec) March 19 18:30 GMT

pod # , .
channel 1 2 3 4 5 6
A - 12388 3.7772 -0.8930 04712 ~
B - 0.7714 -1.5352 0.7980 -1.2160 -~
C - 04180 32414 -0.7828 -~ =~

January 18, 1990
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D - 06270 02888 05130 0.1672 -~

Figure 1 shows a few sample profiles. The four symbols for each level
represent speed estimates based on three axes, giving four combinations. The
quality of the zero calibrations is visually represented by the consistency
between estimates of speed.

Transmissometers

The transmissometers directly measure percent transmission, %Tr =
100%*bits/32768. Light attenuation, o=m"}, is derived from:

Tr =Tr,e™
1 Tr,

= 31
¢ l 08 Tr

where 1 is the path length of the light beam and T, is a calibration transmis-
sion at zero light attenuation. T7, is due to clear water attenuation and an unk-
nown effect from plastic spacers we used to reduce the pathlength from 25 cm
to 10 cm. Their attenuation effect has not yet been calibrated. But attenuation
is simply offset a constant amount by 7r,. The preliminary plots use
Tr,=100% Therefore when the transmissometers were working the measures
of light attenuation can be seen to go from a minimum of “4 m~! which is the
offset due to Tr, to maximum values of 30 m~! which represent light attenua-

tion of at least 26 m™L.

Thermistors
Thermistors will be properly calibrated later this Fall. A rough calibration
has been applied: :

T = 25*bits 165535
where bits ranges 0 to 65535 corresponding to 0 to 25 degrees Centigrade.

Pressure FFT calibrations

The Fourier transform of the pressure signal is calibrated with conversions
of measured bits to meters of salt water and the various scaling factors con-
tained in the Fourier transform and its gain adjustments. Ultimately the sum-
mation over the components of a Fourier transform give the variance of the sig-
nal: .

freq=1_
of = L5 p2
2n Jreqg=0
Where P2 are the squared magnitudes of the pressure spectra. These are writ-
ten to tape in minimal form and are called "fftbits>". The gain and FFT cali-
brations reduce to:

G2(bits) = o= X fFtbits?120

2n freq
The final conversion is from bits to meters of salt water. The ParoScientific
pressure signal is a count given as a 3 byte number, C. The count is converted
into a period, T, by inverting the frequency found by the product of count and

January 18, 1990
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sampling rate:

1 . .
= —e microseconds

(C*rate)
The pressure is given by the equation:
P = AQ-T,/T)-B(1-T,T)

Where A, B and T, are calibration coefficients with units of PSIA, PSIA and
microseconds, respectively. The conversion of PSIA to meters of salt is
achieved with: 68.947 millibar = 1. psi; 1 millibar = (1.0197)! cm water or 1
millibar = (1.0197* 1.02813)"! cm standard salt water; 1 atmosphere = 1013.3
millibar. So:

p = (P*68.947-1013.3)/(1.02813* 1.0197) cm

A few pressure numbers in counts from data tape t2006 where the depth
should be approximately 90 meters are (016471, 01646c, 01648b)hex = (91263,
91244, 91275)decimal. If rate = .4 these numbers give about 73 meters. The
slope of the curve is -47.636 bits/meter salt water. Fig 1 is the calibration
curve of meters salt water to counts recorded, or bits. Uncertainity in this cali-
bration is due to my most recent calibration factors for the pressure sensors
being from 1982. :

Although the full calibration for ParoScientific pressure sensors is non-
linear the range of fluctuations about the mean of “90 meters is very nearly
linear. The slope is very near -50 bits/meter salt water. The full calibration
conversion is

cP(meters?) = 2l Y. (ff tits /50bits Imeter )220
T freq

Derived quantities:

The four components of the velocity vector measured by a BASS pod are
rotated into threc component Cartesian velocity vectors:

A
U
w.

where A is the rotation matrix which takes the four components of a BASS pod
into the three Cartesian components. A may be defined five ways. Four
matrices are based on combinations of just three axes at a time. The fifth is the
average of the other four methods:

|1 01
Ag=—]0 -1 0 1
2105 05 05 05

A rotation to put the U,V,W vector into a North,East,Up coordinate sys-
tem is based on the compass reading. The compass is measured in the pressure
case of the BASS. The velocity vector begins in coordinates with U aligned
with the A-C axis. The angle of the A-C axis with the compass case for the
Clean tripod is 180° + 15°. U will be turned into East so that is another 90°.

January 18, 1990
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Magnetic declination at the STRESS- area is -16.9° in 1988-9. The compass
angle measured for T2006 was 266°. The total rotation is therefore 6 = 90° -
(266° +195° ) - 16.9° = 332°. This angle rotation is around the Z axis:

East cos@ sin® O U
W

North| = |-sin® cos® Of*
Up '

The ten components of the cross correlations of the four axis of the BASS

pod are rotated into the six unique components of the Reynolds stress tensor.

0 0 1

_ aa’ ba’ c’a’ dda
uu uv uw ) ab’ by C’b' &b’ oaT
w vw vw|=A al Cl bl c’ cl o dc A

uw yw ww L ar d bd cd dd
~ Futher rotations are applied to put i;4; into streamline coordinates.

A least squares fit of the logarithmic velocity profile equation,
U(z) = us/x In(z/2,), yields the shear stress velocity scale, us, the roughness
length scale, z,, and the regression coefficient, R2 Only the current meters
below 2 meters were used as the velocity profile deviates from logarithmic
above that level.

Linear wave theory can be applied to solve for the near bed wave orbital
velocity, u,, near bed wave induced particle excursion distance, a;, and the
surface wave amplitude, h, given the near bottom pressure variance, Gp (meters
=P/ p g), and the wave frequency, f, obtained from the spectra.

=L
k-21t\[g_8

o =2nf

h =20p cosh(kd)

The wave velocity u, will be the major contribution to the kinetic energy or
the trace of the Reynolds stress tensor. If this is true then

g% = WU+ +w'W = -4—ub2.

January 18, 1990



day 351.9 u* =0.5908 zo =0.3487 12 =0.9842 page 7

T L] ¥

103 v

Lt L 1iit

LB AL BLAAAL

102

L] TV TrrmT
.
(]

10 l ""

z cm above bed
A Y

LR AAL
LY
.
[T

T
.
A )
J

0L

M RALLL
*
.

Y

J
1.t 0 Leitil

10 ' : —
0 2 4 6 8 10

STRESS Nov-Jan 1989 BASS T2000 speed cm/s

[
[ 3%

day 345.6 u*=0.6673 zo =2.044 12=0.9989

103 =y Y T T y T T Y T T =
102} |
- C 3
3 [ ]
[
> u .
o R -
c
E - i
Q
N ’
10! '."’ E
k- -
loo 1 1 2 L A 2 " . "
0 1 2 3 4 5 6 7 8 9 10

STRESS Nov-Jan 1989 BASS T2
. Nov-Jan S T2000 speed cnys
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