
 

 

Paper 107-29 

Improving Performance: Accessing DB2 Data with SAS 9 
Scott Fadden, IBM, Portland, OR 

ABSTRACT 
 
This paper provides the DBA and SAS user with configuration details on how to obtain peak performance when 
running SAS applications with data from an IBM DB2 Universal Database for Linux, UNIX, and Windows data 
warehouse. We look at how SAS/ACCESS processes relational data and how to improve read, write, and load 
performance. This includes tuning tips and discussion of best practices in designing and tuning a data 
warehouse for use with SAS. The discussion is supported with test results to demonstrate the impact of the 
changes. 

INTRODUCTION 
 
Service level agreements, batch processing windows or breathing down your neck are all good reasons to 
improve the performance of your SAS/DB2 solution. With data growing faster than processor speed we can no 
longer rely on the latest hardware to solve a performance problem. Developing high performance solutions 
involves looking at all areas of data processing. This paper focuses on getting the best data access 
performance for a SAS application that accesses DB2 data. There are three main methods of improving 
solution performance.  
 

• Reduce the data transferred  
• Tune each processing step 
• Parallelize where possible  

 
When optimizing a solution using SAS and DB2 all three of these areas are very important. This paper provides 
examples in each of these areas and explores the impact of SAS and DB2 configuration options by outlining 
different methods of accessing your DB2 database. Examples are given to highlight the performance trade-offs 
of choosing different access methods, SAS 9 application parameters and DB2 8.1 configuration options  It also 
highlights new features in SAS 9 and DB2 V8.1. 
 
Throughout this paper, examples from a test system are used to demonstrate the performance impact of 
SAS/ACCESS tuning options. The test environment consists of SAS 9 and DB2 V8.1 running on a single four 
processor Unix system with 4GB of memory and 40 fibre channel disks. 
  
The performance results in this paper demonstrate the impact of various configuration options. They are not 
intended as a method of comparing dissimilar configurations. Different configurations may yield different results 
(i.e., your mileage may vary). 
 

WHAT IS SAS/ACCESS FOR DB2?  
 
SAS and DB2 communicate via the SAS/ACCESS for DB2 product.  SAS/ACCESS for DB2 is a member of a 
large family of data access products offered by SAS Institute. SAS/ACCESS allows the power and flexibility of 
SAS software to be used for analyzing and presenting data from a DB2 database. Your DB2 database tables 
appear native to the SAS software so you can use SAS features and functionality to perform extracts of 
information without having to learn Structured Query Language (SQL).  
 
SAS/ACCESS for DB2 translates read and write requests from SAS into the appropriate calls for DB2.  The 
result of these calls is to retrieve data in one of the following forms:  as logical views of the DB2 database or 
extracts of data into SAS data set form.    
 
SAS/ACCESS engine functionality ranges from "automatic" behind the scenes operations requiring minimal 
database knowledge to "completely flexible" allowing a DBA to finely tune the data access components of a 
SAS application.  The method you use depends on your infrastructure, database expertise and operational 
goal.  In this paper we examine the translation process from a SAS application to the corresponding SQL 
required to exchange information with DB2.  
 
In the latest version of SAS/ACCESS for DB2 (SAS 9) and DB2 UDB (DB2 V8.1) the joint processing 
capabilities have been greatly expanded.  These new capabilities include: SAS/ACCESS threaded reads and 
expanded load support; DB2 CLI LOAD and improved multi-row fetch performance.  

  SUGI 29   Data Warehousing, Management and Quality



Improving Performance: Accessing DB2 Data with SAS 9 

2 

 

WHAT SOFTWARE IS REQUIRED FOR SAS TO ACCESS MY DB2 DATABASE? 
 
There are many configuration options that provide flexibility in designing a unique SAS/DB2 solution. SAS and 
DB2 may run on the same system or on different systems. Multiple SAS sessions can access a single 
database server or one SAS session can access multiple database servers. SAS and DB2 run on many 
different platforms and the platforms need not be the same for these components to interact.  For example, 
your DB2 data warehouse could be running on AIX and your SAS session on Windows. The test environment 
used for examples in this paper has SAS and DB2 running on the same system. 
 

No modifications to your DB2 database are necessary for the 
addition of SAS/ACCESS.  SAS/ACCESS communicates with 
the database server using the DB2 Call Level Interface (CLI) 
API included in the DB2 client software. Other SAS application 
packages that run on top of Base SAS can be added as needed 
but are not required for running basic SAS applications. 
However your environment is designed, there are a few basic 
software components that are required: DB2 V7.1 or higher, 
Base SAS and SAS/ACCESS for DB2.  

ACCESSING DB2 DATA USING SAS 
 
The previous sections defined SAS/Access for DB2 and what software is required.  This section takes a more 
detailed look at the SAS/ACCESS interface for DB2.  
 
To begin, you need to understand how SAS processes data.  
 
Most SAS analysis procedures require that the input be from one or more preprocessed SAS data sets. Other 
procedures and DATA steps are designed to prepare the data for processing.  As an example, take a look at 
the execution steps of a print procedure.  
 

/*Step 1, Sort the SAS data set */ 
proc sort data=census.hrecs; 
 by state; 
run;  
 
/* Step 2, Print the results */ 
proc print data=census.hrecs(keep=State serialno ); 
 by state; 
run; 

 
In this example we want to print the contents of the hrecs data set sorted by state. To achieve this using a 
SAS data set you run proc sort first to order the data set then proc print to produce the report. In this 
case using SAS/ACCESS to read directly from DB2 can make executing these procedures more efficient.  In 
this example, if your data source were DB2 you would not need to pre-sort the data for proc print. 
SAS/ACCESS automatically generates the SQL order by clause and the database orders the result. This is 
supported through the SAS/ACCESS translation to SQL engine.   
 
When migrating your SAS code to using SAS/ACCESS make sure 
you remove procedures that do not apply to the database, proc 
sort for example [R].  In the example above if you run proc sort 
against the database it will exit with an error indicating that the 
database table does not work in replace mode. This case would not 
impact performance. If, on the other hand, your sort sends the data 
to a separate database table SAS/ACCESS would execute a 
select with order by statement and insert the results. Database 
tables are not ordered so this would be an unnecessary processing 
step. 

Required software: 
 
   - DB2 V7.1 or higher 
   - The SAS: 
            Base SAS  
            SAS/Access for DB2 

Performance Tip: Porting [R] 
 
If you are migrating code from using a SAS data 
set to using DB2, make sure you remove 
unnecessary procedures like proc sort. Even 
though they are not necessary they will execute 
and take time to process. 

  SUGI 29   Data Warehousing, Management and Quality



Improving Performance: Accessing DB2 Data with SAS 9 

3 

 

DATABASE ACCESS FROM SAS 
 
There are two ways to connect to your DB2 database from SAS. You can define a connection using the 
libname engine or connect directly to the database using the connect statement in the SQL procedure. 
 
When accessing the database using the libname engine SAS translates SAS data access application code to 
SQL. Translation to SQL means that SAS/ACCESS processes the SAS application code and generates the 
appropriate SQL to access the database.  
 
Connecting directly to the database, using the connect statement,  allows you to use explicit SQL pass-
through. Explicit pass-through is a mechanism that allows you to pass unaltered SQL directly to the database 
server. Explicit SQL pass-through is useful for adding database only operations to your SAS application and is 
only accessible using the SQL procedure (proc sql). 
 
Most SAS procedures and DATA steps use the SAS/ACCESS SQL translation engine. Following is an example 
of SAS to SQL translation for the print procedure above. When this same proc print procedure is 
executed using SAS/ACCESS against a DB2 database the request is translated into SQL for processing by 
DB2.  
 

/*SQL Generated or Proc Print */ 
Select “state”,”serialno” 
From hrecs 
Order By State; 

 
This is the SQL generated for the proc print statement only. As mentioned earlier the proc sort would 
not be necessary in this case. There are various reasons for using each type of access. Let’s take a look at a 
few examples of each.  
 

WHEN WOULD YOU USE SAS/ACCESS TRANSLATION TO SQL? 
You should use SAS/ACCESS translation to SQL when: 
• You want to use SAS data access functionality (threaded reads, for example) 
• You are joining data from multiple data sources 
• The application needs to be portable to different relational databases 
• The procedure or data step requires it. (e.g., proc freq, proc summary) 

 

WHEN WOULD YOU USE EXPLICIT SQL PASS-THROUGH? 
Explicit SQL pass-through should be used when: 
• DB2 database processing steps are executed from a SAS application.* 
• You want to use DB2 specific SQL 

 
* Non-SAS processing means that SAS does not need to manipulate the data and all the work is done in the 
DB2 database server.   

USING THE SAS/ACCESS LIBNAME ENGINE 
 
The libname engine is used by SAS 9 to access data libraries (a data source).  SAS uses the relational 
database library to access a DB2 database. The objective in this paper is to examine the relational database 
engine and how it interacts with DB2.  
 
The SAS libname engine allows you to easily modify applications to use different data sources.  You can 
modify a SAS statement that uses a SAS data set, to instead, use a table in your DB2 database simply by 
changing the libname definition. For example, here is a script that accesses a SAS data set named 
mylib.data1 to generate frequency statistics. 
 

/*  Define the directory /sas/mydata  
as a SAS library */ 
libname  mylib data “/sas/mydata”; 
 
/*  Run frequency statistics against  
 the data1 data set */ 
proc freq data=mylib.data1; 
 where state=’01’; 
table state tenure yrbuilt yrmoved msapmsa; 

  SUGI 29   Data Warehousing, Management and Quality



Improving Performance: Accessing DB2 Data with SAS 9 

4 

run; 
 
To run frequency statistics against the data1 table in your DB2 database simply change the libname statement 
to access the database table instead of the SAS dataset: 
 

libname mylib db=DB2 user=me using=password; 
 
Now, when this procedure is executed, SAS/ACCESS generates the proper SQL to retrieve the data from the 
database.  
 

SELECT "STATE", "TENURE", "YRBUILT", "YRMOVED", "MSAPMSA" 
FROM data1 
WHERE state = ‘01’; 

 
Using the libname engine is the easiest way to access DB2 database tables from your SAS application 
because SAS generates the appropriate SQL for you. To better 
understand SAS SQL translation let us take a look at how a 
SAS DATA step is processed by SAS.  
 
In this example the DATA step reads and filters the data from 
the source table source1 and writes the results to the 
database table results1. The result table contains all the 
housing records for state id ‘01’.  
 

libname census db=DB2 user=me 
using=password; 
 
data census.results1; 
 set census.source1; 
 where state = ‘01’; 
run; 

 
SAS begins by opening a connection to the database to retrieve metadata and create the results1 table. 
That connection is then used to read all the rows for state=’01’ from source1. SAS opens a second 
connection to write the rows to the newly created results1 table. If this were a multi-tier configuration the 
data would travel over the network twice. First, the data is sent from the database server to the SAS server, 
then from the SAS server back to the database server. SAS processes the data in this manner to support 
moving data between various sources.  This allows you to read data from one database server and write to the 
results to a different database.  In this example, since a single data source is used and SAS does not need to 
process the data, this operation can be made more efficient [R]. 
 

proc sql; 
  connect to db2 (database=census); 
 
execute(Create Table results1  
like source1) as db2; 
 
execute(Insert Into results1 
Select * 
From source1 
Where state = ‘01’) by db2; 
 
disconnect from db2; 
quit; 

 
In this case, to make this operation more efficient, you can use the explicit SQL pass-through facility of the sql 
procedure. To make this statement explicit create a sql procedure with the necessary SQL statements. 
Connect to the database using the connect statement and wrap the SQL using the execute statement.  
 
On the test system the original DATA step executed in 33 seconds, the explicit proc sql version executed in 
15 seconds. Changing to explicit processing improved the performance of the operation by 64%. Since all the 
work here can be done by the DB2 database itself, explicit SQL is the most efficient way to process the 
statement.  
 

EXPLICIT PASSTHROUGH VS SQL TRANSLATION  
 

Coding Tip: Accessing long or case 
sensitive table names 
 
If you need to access data from tables that 
are not in all upper case set the libname 
option: PRESERVE_TAB_NAMES=YES. 
This allows you to pass case sensitive or 
long table names to the database. This 
option is also important when accessing 
data using the SAS GUI tools. If you do 
not see the table names using the SAS 
explorer, for example, try setting this 
option.   

  SUGI 29   Data Warehousing, Management and Quality



Improving Performance: Accessing DB2 Data with SAS 9 

5 

So why use explicit SQL instead of SQL translation (also called implicit SQL pass-through) when using proc 
sql?  Explicit SQL is used in this case because an implicit proc sql statement is processed using a similar 
SQL translation engine as a DATA step.  
 
If we pass this same statement as implicit SQL, SAS 
breaks the statement into separate select and insert 
statements. In this example, the performance gain realized 
using explicit SQL resulted from all the processing being 
handled by the database. A general rule of thumb would be: 
If SAS does not need to process it, let the database do the 
work. Explicit SQL is the best way to force this to happen.  
 
When SAS is executing a procedure it is important to understand which operations are done in DB2 and which 
operations the SAS server is processing. 
  

LOADING AND ADDING DATA  
 
SAS provides powerful extraction transformation and load (ETL) capabilities. Therefore, it is often used to load 
data into the database. SAS supports three methods of loading data into DB2: Import, Load and CLI 
Load.  The load options are accessed through the bulk load interface. 
 
If you have a procedure or DATA step that creates a DB2 table from flat file data, for example, using the 
bulkload engine the default load type is IMPORT.  This option is best for small loads because it is easy to use 
and the user requires only insert and select privileges on the table. To enable bulk load using import set the 
option BULKLOAD=yes .  BULKLOAD is a data step and libname option. Which one you choose depends on 
your application. For example, if you want all load operations against a libref to use import you would use the 
libname option. 
 
To load large amounts of data quickly you should use the LOAD or CLILOAD options.  
 
To use the DB2 Load feature, add the BL_REMOTE_FILE DATA step option. The BL_REMOTE_FILE option 
defines a directory for SAS to use as temporary file storage for the load operation. To process a load, SAS 
reads and processes the input data and writes it to a DB2 information exchange format (IXF) file. The 
BULKLOAD facility then loads the IXF file into the database using DB2 Load.  Using the Load option requires 
the BL_REMOTE_FILE directory to have enough space to store the entire load dataset. It also requires the 
directory defined by BL_REMOTE_FILE be accessible to the DB2 server instance. This means it is on the same 
machine as DB2, NFS mounted or otherwise accessible as a file system.  
 
New in DB2 V8.1 and SAS 9 is support for DB2 CLI Load. CLI Load uses the same high performance Load 
interface but allows applications to send the data directly to the database without having to create a temporary 
load file. CLI Load saves processing time because it does not create a temporary file and eliminates the need 
for temporary file system space. CLI Load also allows data to be loaded from a remote system. To enable the 
CLI Load feature using SAS, set the BL_METHOD=CLILOAD DATA step option instead of BL_REMOTE_FILE.  
 
Tests ran comparing the different load options to give you an idea of the performance differences. This test 
executes a DATA step that loads 223,000 rows into a single database table. The following three code examples 
illustrate the DATA step bulk load options for each load method.  
 

/* Method: Import */ 
data HSET(BULKLOAD=YES);  
<…DATA step processing …> 
run; 
 
/* Method: Load */ 
data HSET(BULKLOAD=YES 
 BL_REMOTE_FILE="/tmp”);  
 <…DATA step processing …> 
run; 
 
/* Method: CLI Load */ 
data HSET( BULKLOAD=YES  
     BL_METHOD=CLILOAD );  
 <…DATA step processing …> 
run; 

 
 

Performance Tip: Coding  
 
Let the database do as much work as possible 
if SAS does not need to process the data.  
Explicit SQL is the best way to force this to 
happen.  

  SUGI 29   Data Warehousing, Management and Quality



Improving Performance: Accessing DB2 Data with SAS 9 

6 

Load Method Time 
(seconds) 

Import 76.69  
Load  55.93 
CLI LOAD 49.04 

 
The table shows that by using CLI Load there is a 36 percent performance gain over import in this test. All load 
options require the table does not exist before the load. 

RETRIEVING THE DATA INTO SAS 
 
When reading from a DB2 database with SAS/ACCESS you can control access to partitioned tables, use 
multiple SAS threads to scan the database and utilize CLI multi-row fetch capabilities. SAS 9 and DB2 V8.1 
have great improvements in the read performance of SAS applications. Threaded read is one of these new 
SAS 9 features. Threaded read allows SAS to extract data from DB2 in parallel, which is helpful for faster 
processing of a large or partitioned database. In DB2 V8.1 multi-row fetch has been improved, increasing read 
performance up to 45% over single-row fetch.  
 

WHAT ARE THE PERFORMANCE IMPACTS OF THESE OPERATIONS? 
 
There are three different SAS tuning parameters that can improve the speed of data transfer from DB2 to SAS: 
READBUFF, DBSLICEPARM and DBSLICE. These parameters correspond to the DB2 functions multi-row 
fetch, mod() and custom where-clause predicates respectively. 

 
Functionality Match-up 

SAS Function DB2 Function 
READBUFF Multi-Row Fetch 
DBSLICEPARM mod() 

DBSLICE Custom where-clause 
predicates 

 
To examine the performance differences between these options frequency statistics were run against a 
database table. To generate frequency information SAS retrieves all the rows in the table. Since the math is not 
complex this a good test of I/O performance between SAS and DB2. 
 
The first test was run using the default read options: single-row fetch and non-threaded read. 
 

libname census db2 db=census user=db2inst1 using=password; 
  
proc freq data=census.hrecs_db  

table state tenure yrbuilt yrmoved msapmsa; 
run; 

 
This test ran in 72.02 seconds.   

READBUFF 
 
Using the default options SAS executes a single thread that reads one row at a time through the DB2 CLI 
interface. Sending one row at a time is not an efficient way to process large result sets. Transfer speed can be 
greatly improved by sending multiple rows in each request. DB2 supports this type of block request in CLI 
using multi-row fetch. SAS/ACCESS supports the DB2 multi-row fetch feature via the libname READBUFF 
option.  READBUFF=100 was added to the libname statement and the test run again.  
 

libname census db2 db=census user=db2inst1 using=password READBUFF=100; 
 
This time the frequency procedure took only 43.33 seconds to process. That is a 40% performance 
improvement over a single row fetch. This procedure was tested with other values of READBUFF. The testing 
indicated that the optimal value for this configuration is somewhere between 200 and 250, which allowed the 
query to run in 40.97 seconds. So from here on READBUFF is left at 200 and the new multi-threaded read 
options are tested using the same procedure.  
 

  SUGI 29   Data Warehousing, Management and Quality



Improving Performance: Accessing DB2 Data with SAS 9 

7 

READBUFF Testing

3000
3500
4000
4500
5000
5500
6000

None 100 200 300

READBUFF Values

R
o

w
s/

S
ec

 
 
 

THREADED READ 
 
SAS 9 introduces a new data retrieval performance option called threaded read. The threaded read option 
works on the divide and conquer theory. It breaks up a single select statement into multiple statements 
allowing parallel fetches of the data from DB2 into SAS. SAS/ACCESS for DB2 supports the DBSLICEPARM 
and DBSLICE threaded read modes.  
 
On a single-partition DB2 system you can use the DBSLICE or DBSLICEPARM option. Testing started using the 
automatic threaded read mode by setting DBSLICEPARM. When you use this option, SAS/ACCESS 
automatically determines a partitioning scheme for reading the data using the mod() database function. The 
freq procedure is tested using dbsliceparm=(all,2) which creates two threads that read data from the 
database.  
 

proc freq data=census.hrecs_db  (dbsliceparm=(all,2)); 
table state tenure yrbuilt yrmoved msapmsa; 
run; 

 
When this statement is executed SAS/ACCESS automatically generates two queries: The first with the 
mod(serialno,2)=0 predicate and the second with the mod(serialno,2)=1 predicate. These queries are 
executed in parallel. Using the DBSLICEPARM option the same statement ran in 36.56 seconds, 10% faster 
than using READBUFF alone.  
 

/* SQL Generated By SAS/Access */ 
 
SELECT  "STATE", "TENURE", "YRBUILT",   "YRMOVED", "MSAPMSA"   
FROM HRECS_DB   
WHERE  
 {FN MOD({FN ABS("SERIALNO")},2)}=0  
OR "SERIALNO" IS NULL ) FOR READ ONLY  
 
SELECT  "STATE", "TENURE", "YRBUILT",   "YRMOVED", "MSAPMSA"   
FROM HRECS_DB   
WHERE  
({FN MOD({FN ABS("SERIALNO")},2)}=1  
OR "SERIALNO" IS NULL ) FOR READ ONLY 

 
Using DBSLICEPARM works well in a single partition database, in a database with multiple partitions the most 
efficient way to retrieve data is directly from each partition.   

Performance Note: READBUFF 
Results 
 
For consistency, the performance 
using READBUFF and no threaded 
read options was tested in the 
multiple partition configuration. The 
results of the READBUFF test were 
the same as the single node so the 
results are comparable. [ 

  SUGI 29   Data Warehousing, Management and Quality



Improving Performance: Accessing DB2 Data with SAS 9 

8 

 
When running a partitioned database you can use the 
DBSLICE threaded read mode to read directly from 
each database partition. DBSLICE allows you to 
define a custom method of partitioning requests by 
defining your own SQL where-clause predicates. To 
demonstrate the DBSLICE threaded read mode a 
two-partition database was set up and tested using 
the DB2 NODENUMBER predicate. When the DBSLICE 
option is specified SAS opens a separate connection 
for each query and retrieves the data. If your 
database partitions are on separate physical nodes, 
you can achieve the best performance by allowing 
allow SAS to open a connection directly to each 
node. To allow direct connections to each node you 
need to create a database alias on the DB2 client 
used by SAS for each node. 
 

-- Catalog a node 
CATALOG TCPIP NODE dbnode1 REMOTE myserver SERVER 70000 
 
-- Catalog a database 
CATALOG DATABASE dbname AT NODE dbnode1 

 
Using a two-logical partition DB2 database on the test server the DBSLICEPARM option was replaced with the 
DBSLICE syntax in the freq  procedure script. Since the test database consists of multiple partitions on a 
single system, we only need to catalog a single node.  The freq procedure  was executed using the DBSLICE 
option along with the NODENUMBER syntax (). 
 
To execute the request SAS opens two connections to the database server and executes the SQL necessary 
to retrieve data from each partition. 
 

/* SQL Generated By SAS/Access */ 
SELECT  "STATE", "TENURE", "YRBUILT", 
        "YRMOVED", "MSAPMSA"   
FROM HRECS_DB  
WHERE NODENUMBER(serialno)=0  
FOR READ ONLY 
 
SELECT  "STATE", "TENURE", "YRBUILT", 
        "YRMOVED", "MSAPMSA"   
FROM HRECS_DB  
WHERE NODENUMBER(serialno)=1  
FOR READ ONLY 

 
This time the query ran in 35.13 seconds, 14% faster than using the READBUFF option alone. 
 
As you can see, these threaded read options improve data extraction performance. This was a small two-
partition system. As the database size or number of partitions increases, these threaded read options should 
help even more.  
 
Not all operations take advantage of threaded reads. A statement does not qualify for threaded reads if: 

• A BY statement is used 

• The OBS option is specified  

• The FIRSTOBS option is specified  

• The KEY/DBKEY= option is specified  

• There is no valid input column for the mod() function (effects 
DBSLICEPARM). 

• All valid columns for the mod() function are also listed in the where-
clause (effects DBSLICEPARM) 

• If NOTHREADS option is specified  

• The value of DBSLICEPARM option is set to NONE.  
 
If your statement does not qualify for threaded reads and you attempt to enable it then the saslog will contain 
an error, for example, “Threading is disabled due to the ORDER BY clause or the 
FIRSTOBS/OBS option …”.  
 

Performance Tip: Threaded Reads  
For best read performance use the SAS 9 threaded 
read option whenever possible. DBSLICEPARM is the 
automatic threaded read option. 
 
Using DBSLICEPARM=(ALL,2) 
 
ALL: Makes all read-only procedures eligible for 
threaded reads. 
 
2: Starts two read threads. 

  SUGI 29   Data Warehousing, Management and Quality



Improving Performance: Accessing DB2 Data with SAS 9 

9 

PUTTING DATA INTO YOUR DB2 
DATABASE 
 
Read performance is most important when using 
SAS to extract data from DB2 but it is also 
important to tune your applications that add rows 
to the database.  This paper examines two ways 
to improve the performance of inserting data: 
DBCOMMIT and INSERTBUFF. 
 

DBCOMMIT 
 
DBCOMMIT sets the number of rows inserted into the database between transaction commits. To understand 
how this works let’s look at what is happening behind the scenes when inserting a row into the database. 
 
To insert one row into a database table there are many operations that take place behind the scenes to 
complete the transaction. For this example we will focus on the transaction logging requirements of an SQL 
insert operation to demonstrate the impact of the SAS DBCOMMIT option.   
  
The DB2 database transaction log records all modifications to the database to ensure data integrity. During an 
insert operation there are multiple records recorded to the database transaction log. For an insert, the first 
record is the insert itself, followed by the commit record that tells the database the transaction is complete. 
Both of these actions are recorded in the database transaction log in separate log records. For example, if you 
were to insert 1000 rows with each row in its own transaction it would require 2000 (1000 insert and 1000 
commit) transaction log records. If all these inserts were in a single transaction you could insert all the rows 
with 1001 transaction log records (1000 insert and 1 commit).   
 
You can see that there is a considerable difference in the amount of work required to insert the same 1000 
rows depending on how the transaction is structured. By this logic, if you are doing an insert, you want to set 
DBCOMMIT to the total number of rows you need to insert. This requires the least amount of work, right? Not 
quite; as with any performance tuning there are tradeoffs.  
 
For example, if you were to insert 1 million rows in a single transaction, this will work but it requires a lock to be 
held for each row. As the numbers of locks required increases the lock management overhead increases. With 
this in mind you need to tune the value of DBCOMMIT to be large enough to limit commit processing but not so 
large that you encounter long transaction issues (locking, running out of log space, etc). To test insert 
performance a DATA step is used that processes the hrecs table and creates a new hrecs_temp table 
containing all the rows where state = ‘01’.  
 

libname census db2 db=census user=db2inst1 using=password; 
 
data census.hrecs_temp (DBCOMMIT=10000); 
    set census.hrecs; 
    where state = '01'; 
run; 

 
The default for DBCOMMIT is 1000. Testing started at 10 just to see the impact. 
 

DBCOMMIT Time (sec)  
10 397.10 
100 101.13 
1,000 (default) 67.03 
5,000 61.98 
10,000 61.77 

 

Performance Tip: Coding  
 
It is always best to limit the amount of data transferred 
between DB2 and SAS. If you only need a few columns 
for your analysis list the columns you need from the 
source table. In the example above changing 

set census.source1; 
to  

set census.source1 (keep=state puma); 
tells SAS to only retrieve the columns needed. 

  SUGI 29   Data Warehousing, Management and Quality



Improving Performance: Accessing DB2 Data with SAS 9 

10 

DBCOMMIT Testing

0
200
400
600
800

1000
1200
1400
1600

10 100 1,000 5,000 10,000

DBCOMMIT Value

R
o

w
s/

S
ec

 
 
As you can see the default works pretty well. In some situations, like this one, larger values of DBCOMMIT can 
yield up to a 16% performance improvement over the default. This test shows that the best value was between 
1,000 and 5,000 rows per commit.  
 
You can see that at some point, increasing the value 
of DBCOMMIT no longer improves performance 
(Compare 5,000 to 10,000).  
 
In fact, if the dataset were large enough performance 
would probably decrease with extremely high values 
of DBCOMMIT. Now that DBCOMMIT is tuned let’s 
take a look at another parameter that impacts insert 
performance: INSERTBUFF. 
 

INSERTBUFF 
 
INSERTBUFF is another tunable parameter that affects the performance of SAS inserting rows into a DB2 
table. INSERTBUFF enables CLI insert buffering similar to read buffering (using READBUFF) but for inserts. It 
tells the CLI client how many rows to send to the DB2 server in each request. To enable insert buffering you 
need to set the libname option INSERTBUFF.   
 

libname census db2 db=census user=db2inst1 using=password; 
 
data census.hrecs_temp (INSERTBUFF=10 DBCOMMIT=5000); 
    set census.hrecs; 
    where state = '01'; 
run; 

 
INSERTBUFF is an integer ranging from 1 to 2,147,483,648. Different values of INSERTBUFF were tested to 
see what impact it would have on the preceding DATA step.   
 

INSERTBUFF  Time 
(sec) 

1 61.77 
5 60.64 
10 60.22 
25 60.36 
50 60.36 
100 60.86 

 
Increasing the value of INSERTBUFF from 1 to 25 improved the performance only 2.7% over the tuned 
DBCOMMIT environment . Increasing the value over 25 did not have a significant impact on performance.  So 
why use INSERTBUFF? As mentioned earlier, parameters effect various environments differently.  To show 
these differences the same test was run with SAS and DB2 running on separate servers using a TCP/IP 
connection instead of a local shared memory connection.  
 
 

Performance Tip: Tuning  
 
Start with DBCOMMIT between 1,000 and 5,000 
and tune from there. 

Performance Tip: PROC APPEND  
 
You can use  proc append to add data to an 
existing table.  The append procedure uses the 
same insert process as the previous DATA step 
so the same tuning rules apply.  

  SUGI 29   Data Warehousing, Management and Quality



Improving Performance: Accessing DB2 Data with SAS 9 

11 

INSERTBUFF  TCP/IP Time (sec) 

1 150.75 

5 109.05 

10 104.52 

25 99.35 

50 98.23 

100 98.11 

 
In this case increasing the value of INSERTBUFF from 1 to 25 had a significant impact, improving performance 
51% over the default.  These results show that when you are running in a local (shared memory) configuration 
INSERTBUFF has little impact on performance and you may want to tune DBCOMMIT. On the other hand 
when you are connecting from a separate server INSERTBUFF can have a significant impact on performance.  
 
Notice that good values of INSERTBUFF are about 10 times smaller than good values for READBUFF. You 
should keep this in mind when you are tuning your system.  
 

FUNCTION PUSHDOWN 
 
You have seen that SAS/ACCESS can push down where-clause processing and join operations to DB2.  
SAS/ACCESS can also push down function processing. If the database supports the function you request, 
SAS can pass that function processing to the database. To enable the most functions to be pushed down to 
DB2 set the SQL_FUNCTIONS=all libname option.  

 
Applying these functions in the 
database can improve analysis 
performance. Each aggregate (vector) 
function (examples: AVG, SUM) that 
DB2 processes means fewer rows of 
data are passed to the SAS server.  
Processing non-aggregate (scalar) 
functions (ABS, UPCASE etc…) can 
take advantage of DB2 parallel 
processing.   
 
SAS will push down operations to the database that limit the number of rows returned. For example, if you have 
a simple query that does a select with an absolute value (abs) function. The function will be applied in SAS 
because applying it at the database does not limit the number of rows returned to SAS.  
 

Proc SQL Statement: 
 
Create table census.FUNCTABLE as 
select   
 abs(RHHINC) as sumcol 
from  census.hrecs_test2; 
 
Generated SQL: 
 
SELECT "RHHINC" 
FROM "HRECS_TEST2" FOR READ ONLY 

 
On the other hand, if the query included a limiting function( in this case a distinct clause was added), the 
operation will be pushed down to the database. 
 

Proc SQL Statement: 
 
create table census.FUNCTABLE as 
select   
 distinct abs(RHHINC) as sumcol 
from  census.hrecs_test2; 
 
Generated SQL: 
 
select  
  distinct {fn ABS("HRECS_TEST2"."RHHINC")} as sumcol  
 from "HRECS_TEST2" 

ABS FLOOR LOWCASE (LCASE) 

ARCOS (ACOS) LOG UPCASE (UCASE) 

ARSIN (ASIN) LOG10 SUM 

ATAN SIGN COUNT 

CEILING SIN AVG 

COS SQRT MIN 

EXP TAN MAX 

  SUGI 29   Data Warehousing, Management and Quality



Improving Performance: Accessing DB2 Data with SAS 9 

12 

 
Note that when you a create table containing a derived column (i.e. calling a function to generate a value) in the 
database you must name the derived column using a column alias.   
 
To take further advantage of single-pass processing you can add a view to your data in DB2. Views in DB2 
allow you to join tables, transform variables (generate ranks for a variable, for example) and group results in a 
single pass of the data. You can further prepare the data before SAS processing by creating a Materialized 
Query Table (MQT) or by applying Multidimensional Clustering (MDC) to your table. 
 

THE DBA CORNER 

HOW DOES SAS USE MY DATABASE? 
 
To a DB2 DBA, SAS is another consumer of database resources. This section highlights a few topics of 
interest to the DB2 DBA. It looks at the way SAS connects to the database and how it uses other database 
resources. Included are some debugging tips for SAS applications in a SAS/ACCESS Interface for DB2 
environment.  
 

CONNECTIONS 
 
Each SAS client opens multiple connections to the database server. When a SAS session is started a single 
data connection is opened to the database. This connection is used for most communication from SAS to DB2. 
If the SAS application requires metadata from the DB2 catalogs, executing proc datasets for example, a 
second, utility connection is created. This utility connection is designed to allow SAS to collect this information 
without interfering with the original data connection. It also allows these utility operations to exist in a separate 
transactional context. By default, these two connections remain active until the SAS session is completed or 
the libname reference or database connection (opened using the connect statement) is explicitly closed. 
Other connections may be opened automatically during a SAS 
session. These connections are closed when the operation for 
which they were opened is completed. For example, if you read 
from one table and write to a new table, SAS opens two 
connections: The original connection to retrieve the data and a 
connection to write the data into the new table. In this example the 
connection used to write the data will be closed when that DATA 
step is completed. 
 
You can control how connections are managed in SAS/ACCESS 
using the CONNECTION= libname option. The default connection 
mode is SHAREDREAD, which means all read operations in a single SAS session use a common connection for 
reading data. If you need to limit the total number of connections opened to the database you can use the 
SHARED option. The shared mode uses one connection per SAS session for all data operations except the 
utility connection. This limits each SAS client to two connections: one data connection (read and write) and one 
utility connection. By default the utility connection stays around for the duration of the session.  
 
There are many different connection modes including: SHAREDREAD, UNIQUE, SHARED, GLOBALREAD, 
GLOBAL. In this section the SHAREDREAD, UNIQUE and SHARED options are used to test the performance 
implications of sharing connections.    
 
The append procedure was used to measure the impact of different connection options. Connection testing 
was done with SAS and DB2 running on separate systems because connection impact is more apparent when 
using TCP/IP instead of local shared memory. 
  
The first test executes a proc append  which reads from one table and appends the results to another table 
in the same database. Proc append is used to allow testing in a mixed read/write environment. 
 

libname census db2 db=census user=user1 using=password CONNECTION=UNIQUE; 
 
proc append BASE=census.append1 data=census.hrecsca;  
run; 

 
This test consisted of executing proc append in three different connection modes: SHAREDREAD (default), 
SHARED and UNIQUE. SHAREDREAD means that each SAS session gets one connection for all read 
operations and separate connections for each write operation. SHARED opens one connection for each SAS 
session for reads and writes. In UNIQUE mode a separate connection is opened for each read and write 
operation. The table to the right shows the results of this test. 

NOTE: Threaded Reads 
Threaded read operations do not abide 
by the CONNECTION settings. This 
means that even if CONNECTION is set 
to SHAREDREAD (which is the default) 
a single operation using 
DBSLICEPARM, for instance, will open 
multiple connections to the database. 

  SUGI 29   Data Warehousing, Management and Quality



Improving Performance: Accessing DB2 Data with SAS 9 

13 

 
As you can see in this case using a SHARED read mode is 
241% slower than the other two connection options. In other 
words before using SHARED you should test the impact on your 
workload. If your environment is more read oriented, for 
example, using SHARED may not have as large an impact. In a 
read/write environment if your goal is to use fewer connections 
you may try scheduling the jobs to limit concurrent access 
instead of sharing connections.  

 

RESOURCE CONSUMPTION 
 
DBAs are always interested in understanding what impact an application has on the database.  SAS workloads 
can vary greatly depending on your environment, but here are a few places to start evaluating your situation:  
 

• Each SAS user is the equivalent of a single database Decision Support (DS) user. Tune the same for 
SAS as you would for an equivalent number of generic DS users.  

 
• Tune to the workload. Just like any other DS application, understanding the customer requirements 

can help you to improve system performance. For example, if there is a demand for quarterly or 
monthly data, using a Multidimensional Clustering (MDC) table for the data may be appropriate.  

 
• SAS is a decision support tool; if you need data from an operational data store consider the impact 

on your other applications. To offload some of the work you may consider creating a data mart to 
provide data to your SAS customers.  

 
• In most environments the SAS server is located on a separate system from your database. Business 

analysis often requires many rows to be retrieved from the database. Plan to provide the fastest 
network connection possible between these systems to provide the greatest throughput.  

 
• As with any workload keep your database statistics up to date using runstats.  This enables the 

optimizer generate the optimal access plan.  
 

RULES OF THUMB  
• Try to pass as much where-clause and join processing as you can to DB2.  
 
• Return only the rows and columns you need. Whenever possible do not use a “select * …” from 

your SAS application. Provide a list of the necessary columns, using keep=(var1, var2…), for 
example. To limit the number of rows returned include any appropriate filters in the where-clause. 

 
• Provide Multidimensional Clustering (MDC) tables or Materialized Query Tables (MQT) where 

appropriate to provide precompiled results for faster access to data. 
 

• Use SAS threaded read (DBSLICEPARM, DBSLICE) and multi-row fetch (READBUFF) operations 
whenever possible.  

 
• When loading data with SAS use the bulk load method CLI Load.  

 

DEBUGGING 
 
To see what SQL commands SAS is passing to the database, enable the sastrace option. For example, here 
is the syntax to trace SAS/ACCESS SQL calls to DB2:  
 

options sastrace “,,,d” sastraceloc=saslog; 
 
Applying a “d” in the fourth column of the sastrace options tells SAS to report SQL sent to the database. For 
example this SAS data Step: 
 

data census.hrecs_temp  
    (keep=YEAR RECTYPE SERIALNO STATE); 
 keep YEAR RECTYPE SERIALNO STATE; 
 set census.hrecs_db; 
 where state=1; 

Connection Mode Time (seconds) 

SHAREDREAD 38.35 

SHARED 130.90 

UNIQUE 39.24 

  SUGI 29   Data Warehousing, Management and Quality



Improving Performance: Accessing DB2 Data with SAS 9 

14 

run; 
 
Is logged as (the SQL commands are highlighted): 
 

TRACE: Using EXTENDED FETCH for file HRECS_DB on connection 0 476 1372784097 
rtmdoit 0 DATASTEP 
 
TRACE: SQL stmt prepared on statement 0, connection 0 is: 
  SELECT * 
  FROM HRECS_DB FOR READ ONLY 477 1372784097 rtmdoit 0 DATASTEP 
 
TRACE: DESCRIBE on statement 0, connection 0. 478 1372784097 rtmdoit 0 
DATASTEP 
622  data census.hrecs_temp (keep=YEAR RECTYPE SERIALNO STATE); 
623          keep YEAR RECTYPE SERIALNO STATE; 
624          set census.hrecs_db; 
625          where state=1; 
626  run; 
 
TRACE: Using FETCH for file HRECS_TEMP on connection 1 479 1372784097 
rtmdoit 0 DATASTEP 
TRACE: Successful connection made, connection id 2 480 1372784097 
rtmdoit 0 DATASTEP 
TRACE: Database/data source: census 481 1372784098 rtmdoit 0 DATASTEP 
TRACE: USER=DB2INST1, PASS=XXXXXXX 482 1372784098 rtmdoit 0 DATASTEP 
TRACE: AUTOCOMMIT is NO for connection 2 483 1372784098 rtmdoit 0 
DATASTEP 
TRACE: Using FETCH for file HRECS_TEMP on connection 2 484 1372784098 
rtmdoit 0 DATASTEP 
NOTE: SAS variable labels, formats, and lengths are not written to DBMS 
      tables. 
 
TRACE: SQL stmt execute on connection 2: 
   CREATE TABLE HRECS_TEMP 

(YEAR DATE,RECTYPE VARCHAR(1),SERIALNO  
 

Hint: To find SQL information search 
the log for “SQL”. 

 

 
Sastrace displays the processing details of the SAS script.  The log includes the exact SQL commands that are 
submitted to the database. The example above executes a DATA step that SAS translates into the following 
SQL statements. 

 
SELECT *  FROM HRECS_DB; 
 
CREATE TABLE HRECS_TEMP 
(YEAR DATE,RECTYPE VARCHAR(1),SERIALNO NUMERIC(11,0),STATE NUMERIC(11,0)); 
 
SELECT 
"YEAR", "RECTYPE", "SERIALNO", "SAMPLE", "DIVISION", "STATE", "PUMA", 
"AMORTG2", "AMRTAMT2", "ACNDOFEE", "AMOBLHME"  FROM HRECS_DB   
WHERE  ("STATE" = 1 ); 
 
INSERT INTO HRECS_TEMP 
(YEAR,RECTYPE,SERIALNO,STATE)   
VALUES ( ? , ? , ? , ? ); 

 
Using DB2 you can see what SAS/ACCESS is requesting on the database by enabling CLI trace. The DB2 CLI 
trace feature is useful for debugging SAS/ACCESS interaction with DB2. There are two ways to enable CLI 
trace: the DB2 Command Line Processor (CLP) command,  “update cli cfg” or edit the 
sqllib/cfg/db2cli.ini file.  To enable tracing using “update cli” enter 
 

db2 UPDATE CLI config FOR common USING trace 1 
 
Then  

  SUGI 29   Data Warehousing, Management and Quality



Improving Performance: Accessing DB2 Data with SAS 9 

15 

 
db2 UPDATE CLI config FOR SECTION common USING TraceFileName /tmp/mytracefile 

 
If you choose to edit the db2cli.ini file directly add trace and TraceFileName in the common section  
 

[COMMON] 
trace=1 
TraceFileName=/tmp/mytracefile 
TraceFlush=1 

 
When you enable CLI tracing DB2 begins tracing all CLI statements executed on the server. DB2 will continue 
to trace CLI commands until you disable CLI tracing by setting trace to 0. Be careful: if this is a busy server 
you could collect huge amounts of output. It is best to run CLI trace on a test server running a single SAS 
session, if possible.  
 
The saslog and DB2 log (sqllib/db2dump/sqdb2diag.log) are also useful places to look for information when you 
are troubleshooting. 
 

CONCLUSION 
 
The following is a brief summary of how the topics covered fit into the three main tuning categories:  
 
1. Reduce the data transferred 

• Use predicates to limit the number of rows returned 
• Select only the columns you need  
• Precompile some information using database views or Materialized Query Table (MQT) 

2. Tune each processing step by using 
• READBUFF to improve read performance 
• INSERTBUFF and DBCOMMIT to improve write performance 
• Bulk load for loading large data 
• Saslog to analyze your SAS application 

3. Parallelize where possible  
• Use DBSLICEPARM or DBSLICE for reading data   
• Utilize DB2 parallel data access 

 
SAS 9 and DB2 V8.1 provide expanded functionality and performance over earlier version in SAS BULKLOAD, 
and Threaded Read and DB2 multi-row fetch and CLI Load performance. This paper has illustrated how tuning 
your SAS applications, using these new features, can greatly improve performance. 

  SUGI 29   Data Warehousing, Management and Quality



Improving Performance: Accessing DB2 Data with SAS 9 

16 

CONTACT INFORMATION 
 
Your comments and questions are valued and encouraged.  Contact the author at: 
 

Scott Fadden 
IBM  
DB2 Data Management Software 
sfadden@us.ibm.com 
 

Additional information is available at ibm.com/db2 and www.sas.com 
 
SAS, SAS/ACCCESS and all other SAS Institute Inc. product or service names are registered trademarks or 
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.   
 
DB2 is a registered trademark of IBM in the USA and other countries.  
 
Other brand and product names are trademarks of their respective companies. 

  SUGI 29   Data Warehousing, Management and Quality


	SUGI 29 Proceedings Table of Contents

