

Dr. Andrew Robinson

Mike Cook

Jonathan Evans

Sean McManus

Raspberry Pi®
Projects

To the kitchen table inventors, and their long-suffering families that have to live with them.
–Andrew Robinson

To Mike Bibby, who was the first editor to give me the opportunity to write regularly about
computers and hardware. His unfailing enthusiasm about all things and his inability to take

anything just on trust are an example to us all. A continuing and valued friend.
–Mike Cook

This edition first published 2014

© 2014 John Wiley & Sons, Ltd.

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to
reuse the copyright material in this book please see our website at www.wiley.com.

The right of the authors to be identified as the authors of this work has been asserted in accordance with the Copyright,
Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the U.K. Copyright,
Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and prod-
uct names used in this book are trade names, service marks, trademarks or registered trademarks of their respective own-
ers. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to
provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that
the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required,
the services of a competent professional should be sought.

Trademarks: Wiley and the John Wiley & Sons, Ltd. logo are trademarks or registered trademarks of John Wiley and
Sons, Ltd. and/ or its affiliates in the United States and/or other countries, and may not be used without written permis-
sion. Raspberry Pi is a trademark of the Raspberry Pi Foundation. All other trademarks are the property of their respective
owners. John Wiley & Sons, Ltd. is not associated with any product or vendor mentioned in the book.

A catalogue record for this book is available from the British Library.

ISBN 978-1-118-55543-9 (paperback); ISBN 978-1-118-55556-9 (ePub); ISBN 978-1-118-55553-8 (ePDF)

Set in Chaparral Pro Regular 10/12.5 by Indianapolis Composition Services

Printed simultaneously in Great Britain and the United States.

http://www.wiley.com

Editorial and Production
VP Consumer and Technology Publishing
Director
Michelle Leete

Associate Director–Book Content
Management
Martin Tribe

Associate Publisher
Chris Webb

Executive Commissioning Editor
Craig Smith

Project Editor
Dana Lesh

Copy Editors
Dana Lesh, Kathryn Duggan

Technical Editor
Genevieve Smith-Nunes

Editorial Manager
Jodi Jensen

Senior Project Editor
Sara Shlaer

Editorial Assistant
Annie Sullivan

Marketing
Associate Marketing Director
Louise Breinholt

Marketing Manager
Lorna Mein

Senior Marketing Executive
Kate Parrett

Marketing Assistant
Polly Thomas

Publisher’s Acknowledgements
Some of the people who helped bring this book to market include the following:

About the Authors
Andrew Robinson is the founder of a successful embedded computing design consultancy
firm based in Manchester. Passionate about education, he runs workshops and training
sessions for all levels of experience, from design engineers to teachers and school children.
His projects with the Raspberry Pi have appeared in the national press and on ITV, Channel
5 and BBC television. He is an Honorary Research Fellow of the University of Manchester,
where previously he completed his Ph.D. in low power-embedded processors.

Andrew can trace his enthusiasm for electronics and computers back to building a working
model lighthouse at the age of five.

Mike Cook, veteran technical author and electronics maker from the U.K., was born in Manchester
and still lives close by. He is best known to the public for a series of over 300 articles which
appeared in The Micro User, Acorn Computing and Acorn User from 1983 to 2000. These were called
the “Body Building Course” and “Run the Risc” and covered the design and build of new gadgets,
interfaces and peripherals for the old (vintage) BBC computer and the RISC PC. He also wrote
numerous reviews, software articles and the readers’ problem page in these magazines.

Mike started work in the late sixties at an industrial electronics company in Oldham. He
went on to take a degree in physical electronics at Newcastle, including a year spent working
at the Admiralty Underwater Weapons establishment at Portland. His post-graduate research
was in sound compression at the University of Salford. He spent over 20 years at Manchester
Metropolitan University (initially Manchester Polytechnic) lecturing in physics, specialising
in computer instrumentation, astronomy and image processing. Later he moved back into
industry where he headed the hardware design team for the pioneering digital terrestrial set
top box, and has been a development manager for security and RFID products.

He now works freelance as an embedded electronics consultant and author. His last book
was The Raspberry Pi For Dummies published by Wiley.

Recently he has been designing even more things in the arena of physical computing, exhibiting
at the U.K. Maker Fairs, Mini Maker Fairs and the prestigious New York World Maker fair.
Mike was the recipient of a Maker of Merit Blue Ribbon at the 2013 Rome Maker Faire.

Jonathan Evans has had a life-long interest in computers and electronics. At the tender
age of 10, he taught himself how to program a computer, and he quickly learned how
computers and electronics could be married for a functionality to keep his siblings out of his
room. He has gone on to become a distinguished IT professional with over 20 years of
experience. His passion for creation and innovation combines perfectly with the Raspberry
Pi phenomenon, and in his spare time he enjoys exploring projects to make the Raspberry Pi
relevant to everyday life. He enjoys sharing his ideas at www.projects.privateeyepi.
com where he continues to explore the endless possibilities of this computing platform.

Sean McManus writes inspiring books and articles about computing. He contributed the chapter
on Minecraft to Raspberry Pi Projects, and his previous books include Raspberry Pi For Dummies
(written with Mike Cook), Scratch Programming in Easy Steps, iPad for the Older and Wiser, Microsoft
Office for the Older and Wiser, and Web Design in Easy Steps. Visit his website at www.sean.co.uk.

http://www.projects.privateeyepi.com
http://www.projects.privateeyepi.com
http://www.sean.co.uk

Contents
Introduction. 1

A History of Making. 1
Consumer Computing . 2
Why Everyone Should Learn About Computing . 2
Enter the Raspberry Pi. 3
About This Book . 4
How to Use This Book . 4
The Future . 6

Part I: Getting Started with the Raspberry Pi
CHAPTER 1
Getting Your Raspberry Pi Up and Running. 9

The Operating System . 10
Connecting Your Raspberry Pi . 16
The Boot Process. 25
Starting the Graphical Desktop. 26
Starting a Terminal under X . 26
Troubleshooting. 26
Let the Fun Begin!. 28

CHAPTER 2
Introductory Software Project: The Insult Generator. 29

Running Your First Python Program. 30
Saving Your Program. 33
Generating an Insult. 36
Insult Your Friends by Name!. 39
Create a Stream of Insults! . 41
Putting It All Together. 45

Part II: Software Projects
CHAPTER 3
Tic-Tac-Toe. 49

Errors . 50
Making a Start. 51
A Two-Player Game . 55
Getting the Computer to Play. 59
Over to You. 70

CHAPTER 4
Here’s the News . 71

Early Teleprompters. 72
The Pi Prompter. 73
What You Need to Do . 73
A Step Closer to a Usable Program. 78
Your Final Pi Prompter Code. 84
The Physical Setup for Your Prompter. 89
Over to You. 92

vi R A S P B E R R Y P I P R O J E C T S

CHAPTER 5
Ping . 93

Early Commercial Products. 94
The Ping Game. 94
Improving the Ping Game. 99
A Single-Player Game. 104
A Two-Player Game . 111
Over to You. 118

CHAPTER 6
Pie Man. 121

The Pie Man Game. 122
Gather Your Resources. 123
Setting the Stage. 127
The Game Action. 133
Drawing the Screen. 141
The Final Function. 144
Over to You. 150

CHAPTER 7
Minecraft Maze Maker. 151

Installing Minecraft . 152
Starting Minecraft. .153
Playing Minecraft. 154
Preparing for Python . 156
Using the Minecraft Module. 156
Over to You. 174

Part III: Hardware Projects
CHAPTER 8
Colour Snap. 177

Implementing the Game. 178
The Software for Testing the Game. 193
The Software for the Game . 196
Over to You. 202

CHAPTER 9
Test Your Reactions . 203

Welcome to the Embedded World!. .204
Obtaining Components. 205
Setting up PiFace Digital . 206
Connecting PiFace Digital. 210
Using the Emulator. 210
Interfacing with Python. 211
The Reaction Timer. 214
What Will You Interface?. 226

viiT A B L E O F C O N T E N T S

CHAPTER 10
The Twittering Toy. 227

Hacking the Toy . 228
Making It Talk. 232
Making It Move. 235
Connecting to Twitter . 239
Putting It All Together. 245
Wrapping Up. 248

CHAPTER 11
Disco Lights. 251

Defining Your Sequence. 252
Getting the Code to Do More. 254
A Small Detour into Theory. 256
Designing the Sequencer. 257
Implementing the Sequencer . 258
The Lights. 265
Using Longer Strip Lights . 268
Making the Lights Move . 269
Designing the Circuit. 270
Building the Circuit. 273
Running the Circuit . 273
Over to You. 274

CHAPTER 12
Door Lock. 275

The System Overview. 276
Safety-Critical Systems. 276
The Door Lock Hardware. 277
The Initial High-Level Software Simulation . 278
The Output Block . 281
The Input Block. 283
The Authentication Block. 284
Unlocking Doors Without Touching . 286
Testing the Program and Fitting the Lock . 292
Networking Multiple Doors . 293
Over to You. 294
The Art of Programming . 295

CHAPTER 13
Home Automation. 297

The Internet Of Things. 298
Project 1: How to Create a Motion Sensor and Door Switch. 298
Project 2: How to Monitor Your Home with a Webcam. 305
Project 3: How to Make a Temperature Gauge. 312
Project 4: How to Send an E-mail Alert. 317

viii R A S P B E R R Y P I P R O J E C T S

Project 5: How to Send an E-mail Using a Wireless Remote . 324
Over to You. 331

CHAPTER 14
Computer-Controlled Slot Car Racing. 333

Obtaining a Slot Car Racer. 334
Hacking Your Slot Car Racer. 334
Getting the Player Input . 336
The Software . 346
The Game. 348
Over to You. 354

CHAPTER 15
Facebook-Enabled Roto-Sketch . 355

The Concept. 356
Rotary Encoder Types . 356
The Encoder Output. 357
Posting to Facebook. 366
The Final Roto-Sketch Program . 369
Creating a Symmetrical Pattern. 375
Over to You. 381

CHAPTER 16
The Pendulum Pi, a Harmonograph . 383

The Concept. 385
The Hall Effect. 385
Enter the Arduino. 387
Putting It Together. 388
Programming the Arduino. 399
Programming the Pi. 412
Using the Pendulum Pi. 418
Over to You. 419

CHAPTER 17
The Techno–Bird Box, a Wildlife Monitor. 421

Building Invisible Light Beam Sensors. 423
Mounting the Sensors . 427
Recording Activity to a File. 431
Processing the Data . 442
Dealing with Sensor Noise. 448
Drawing a Graph. 454
Putting the Nest Box into Service. 458
Over to You. 458
The Possibilities Are Endless. 460

Index. 461

Introduction

WHEN WE’RE YOUNG, making things is second nature – painting a picture, inventing a
game, telling a story, building a rocket from a washing-up liquid bottle that we’re convinced
will fly all the way to the moon. Childhood is all about adventure, discovery – the quest for
something new.

Although these joys don’t fade with age, it can become harder to find space and time for play
and discovery as “real life” takes over. But yet, some of the greatest inventions and discoveries
of history were the result of curious people not being afraid to “have a go”, often tinkering away
in their own homes or garden sheds rather than high-tech well-funded engineering companies.

What’s this got to do with a book on things to do with a Raspberry Pi?

Well, after reading and having a go at some of the projects in this book you might discover
the pleasure of making something with a computer can bring. Computing offers a fantastic
world of new and untapped opportunities for adventure and creativity. It touches so many
areas of our lives (game consoles, set top boxes and smartphones are all computers) that you
can combine it with almost any other passion or hobby.

You’ll see why a sprinkling of computing is beneficial for everyone, and that a moment of
personal creativity on the kitchen table can have a much bigger impact. You’ll also discover
the story behind a particular credit-card sized computer.

A History of Making
World-changing inventions can come from unconventional places.

Orville and Wilbur Wright were two ordinary brothers from Ohio who owned a bicycle shop.
Fascinated with the workings of these simple machines, they became convinced that they
could build a flying machine. And they did. In 1903, they launched the world’s first aero-
plane. Nearly a century later, as HIV/AIDS swept through Africa, Trevor Baylis, an ex-stuntman,
became convinced he could help. He sat in his suburban garden shed and invented an inex-
pensive and durable wind-up radio for use across Africa to spread simple health messages
and undoubtedly prevented many, many deaths. Steve Jobs and Steve Wozniak, the found-
ers of Apple, both learned about electronics and computers from experimenting in their bed-
rooms and family garages. These are just three examples that show the worldwide impact on
millions tinkering at home can have.

R A S P B E R R Y P I P R O J E C T S2

Many inventors can clearly imagine what they want to make, but might not know how to build
it. But, spurred on by the joy of creativity, they teach themselves the skills needed to build what
they could imagine. Wozniak and Jobs developed their skills this way, taking apart existing
appliances, figuring out how they work and putting them back together. Sometimes the appli-
ances would be enhanced by tinkering, and sometimes they’d no longer work at all! But they
weren’t put off; sometimes it was just about discovering how something worked, or the journey
to overcome technical adversity, rather than producing a polished product.

Consumer Computing
It is ironic that the birth of Apple computers was a result of poking around in the innards of
appliances. Nowadays, computers are sold as sleek, refined aluminium caskets of magic, seal-
ing in opportunities to experiment and discover how they actually work. In a continual quest
to add value to their products, manufacturers lure customers with the promise of easy-to-use
products and an effortless user experience with your every need taken care of.

Unfortunately it’s not been a smooth journey. Rarely do modern computer systems do exactly
what users want. How often are we left frustrated by a computer system failing, consoled by
the manufacturer’s line that “that will be fixed in the next update” or “you need to buy the next
version if you want it to do that”? For the technologically fearless, these statements are more
like rallying cries, an excuse to tinker until the computer does what they really want. But these
days, there are few people brave or skilled enough to roll their sleeves up and get inside.

Why Everyone Should Learn About Computing
Computers really are everywhere, pervading every aspect of our lives. As well as the laptop,
desktop and smartphone, just think about the computers behind life support systems and
medical records in our hospitals, in banking and shopping keeping the economy going, in
manufacturing and our food-supply chain. They are key for our communications, powering
digital TV and radio and mobile phone networks, as well as the Internet. With computers so
integral to the functioning of our media, commerce and government, it seems odd that so
many of us are ignorant of how they work.

Given how widespread the reliance on computers is, think how much we could all benefit
from a little bit more understanding. Business leaders and politicians could make more
informed decisions on projects involving computers, and the man-on-the-street would be
less likely to fall prey to online scams or be duped by overimpressive advertising claims about
products. They’d have the skills to make computers work for them to improve their lives.

I see similarities between computing and cooking. Cooking has recipes, which is about fol-
lowing steps. It is about making meals, consisting of sets of dishes. To make an apple pie, you

I N T R O D U C T I O N 3

need to break down the task into manageable elements (making the pastry, coring the apples,
baking for just the right amount of time), all of which add to a complete (and hopefully tasty)
apple pie. This is an example of abstraction, and is key to mastering computing. The problem-
solving and logical-thinking techniques, such as managing abstraction, that are developed in
computing are valuable to other aspects of life.

We teach our children how to cook, not because we want to train them to become profes-
sional chefs, but because we view it as an essential life skill. Without it, we condemn our
children to a lifetime of preheating ready meals, often unfulfilling and expensive. For many
people, learning the basic skills is the start of a lifelong love of cooking. They see it as an out-
let for their creativity, perhaps starting with a recipe and adapting it to make it their own. It’s
a social occupation, a chance to show achievements and discuss techniques, challenges and
adventures around a lively dinner table.

I’d argue that learning to use computers has parallels with learning to cook. Everyone needs
the basic skills. Some may use those skills to go on to become professional programmers, but
I’d hope that for most people it is an opportunity for creativity, as well as a survival skill in
today’s modern environment.

However, given the need for more people to learn more about how computers work and the
reliance on them, it’s also ironic that getting into computing has become more difficult with
modern computers. That is, until a certain credit-card–sized computer came along. . . .

Enter the Raspberry Pi
For most people, beginning to experiment on a £1000 laptop, putting precious data at risk is
a daunting prospect. I’d think twice before putting all my digital photos, my music collection
and my online banking at risk! Games consoles and some phones actively prevent people
from creating their own games and apps, presumably to protect revenue by forcing consumer
to buy manufacturer’s products.

With the desire to share the fun of computing and the need for more people to know how
computers worked, Eben Upton created a small, cheap computer on his kitchen table. With
the help of Dr. Rob Mullins, Professor Alan Mycroft and Jack Lang from Cambridge
University; Pete Lomas, an expert in hardware; and David Braben, the Raspberry Pi
Foundation was born, a charity that set out to promote the study of computer science and
related topics, especially at the school level, and to put the fun back into learning computing.

The Raspberry Pi Foundation aimed to open up the world of computing by creating a hardware
device that was pocket-money affordable, so it was accessible to everyone, and there’d be no
need to worry about experimenting with it. It was unboxed to make it easy to tinker with.

R A S P B E R R Y P I P R O J E C T S4

In 2011, after five years’ intense kitchen-table engineering, the first prototype Raspberry Pi
computers were produced. After a feature about the Raspberry Pi on technology journalist
Rory Cellan-Jones’s blog went viral the Foundation wondered if they were at the early stages
of something bigger than they were expecting.

After some clever engineering to allow the Raspberry Pi to be built cheaply enough to be sold
for $25, an initial batch of 10,000 went on sale on 29th February 2012 at 6 a.m. A few min-
utes later, they had sold out. Eighteen months later, 1.75 million had been sold worldwide.

About This Book
During the development of the Raspberry Pi I’d been working on public engagement projects
at the University of Manchester to encourage more people into computing.

I’d been following the Raspberry Pi from an early stage, and thought it had great potential. Like
thousands of other engineers, I was also very excited by the technology crammed in this tiny
PCB of components. I was also aware that for most people less familiar with computers, the
same PCB wouldn’t be particularly exciting, and perhaps a scary mass of wires, components
and metal. Like the Foundation, I wanted to share the wonder and joy computing could bring.

The big advantage of the Raspberry Pi was that it could be put it in places you couldn’t put a
PC. I wanted the Raspberry Pi to be relevant to what people are interested in. To make it easy
to connect to the Raspberry Pi, I came up with the PiFace Digital interface, developed at
home on the kitchen table in my free evenings and weekends. I’m still amazed when I see
people all over the world posting videos online showing what they’re doing with the
Raspberry Pi and PiFace. I’ve seen children building robots, door-entry systems for the
elderly, games and industrial applications in banks and railway stations.

How to Use This Book
This book aims to answer the question “You’ve got a Raspberry Pi – now what?” and is packed
full of fun Raspberry Pi projects to inspire you.

This book is divided into three parts. There is some progression, but after you’ve got your
Raspberry Pi up and running it should be fairly easy to dip into any of the other chapters. You
can just follow the step-by-step instructions to get results quickly, but don’t be afraid to experi-
ment and make them your own. That’s where the real fun lies! Background information is pro-
vided that will help you learn the skills you will need if you want to extend the projects.

At the end of each chapter, there are ideas and suggestions for extensions, but you will prob-
ably have your own too. We want to see what you create, so share your work with social
media such as Facebook, Twitter and YouTube and tag them with RaspberryPiProjects.

I N T R O D U C T I O N 5

Some code listings are available to download from the companion website at www.wiley.
com/go/raspberrypiprojects if you get really stuck, but part of learning to program is
about typing code in, so not all the code is provided!

Much of the background information is relevant to the classroom, and the book can be used
to supplement teaching the new U.K. computing qualifications. If you’re a teacher, look out
for supporting information that can help students learn through Raspberry Pi projects.

Part I: Getting Started with the Raspberry Pi
This part will take you through plugging together your Raspberry Pi and installing the soft-
ware, plus introduces you to Python:

❍	Chapter 1, “Getting Your Raspberry Pi Up and Running”, covers your first basic steps
in getting your Raspberry Pi running.

❍	Chapter 2, “Introductory Software Project: The Insult Generator”, gets you started pro-
gramming in Python.

Part II: Software Projects
This contains some fun software projects:

❍	Chapter 3, “Tic-Tac-Toe”, has you programming a game of tic-tac-toe, particularly cov-
ering lists and artificial intelligence.

❍	Chapter 4, “Here’s the News”, shows you how to program your own teleprompter.

❍	Chapter 5, “Ping”, covers how to program your own computer Ping-Pong game, describe
movement to a computer, detect collisions and handle the physics of reflection.

❍	Chapter 6, “Pie Man”, shows you how to program your own version of Pac-Man using
animated sprites, layers and transparent pixels.

❍	Chapter 7, “Minecraft Maze Maker”, uses a Python program to build a maze in Minecraft.

Part III: Hardware Projects
This contains some exciting and challenging hardware projects:

❍	Chapter 8, “Colour Snap”, is an introductory hardware project that implements the
game of Snap using different coloured lights and shows you how to safely power LEDs
and use surface mount components.

❍	Chapter 9, “Test Your Reactions”, gets you wiring up simple computer-controlled circuits.

http://www.wiley.com/go/raspberrypiprojects
http://www.wiley.com/go/raspberrypiprojects

R A S P B E R R Y P I P R O J E C T S6

❍	Chapter 10, “The Twittering Toy”, shows you how to make your code talk to Twitter
and gets you hacking household items.

❍	Chapter 11, “Disco Lights”, shows you how to control LED strips and make them dance
in time to music.

❍	Chapter 12, “Door Lock”, covers how to build a computer-controlled door lock con-
trolled by RFID tags and explains computer authentication.

❍	Chapter 13, “Home Automation”, shows you how to create home-automation projects
to make your home environment more intelligent, implementing door switches,
motion sensors, a webcam and e-mail alerts.

❍	Chapter 14, “Computer-Controlled Slot Car Racing”, gets you wiring up a slot car game
and using it to keep score in a two-player multiple choice quiz.

❍	Chapter 15, “Facebook-Enabled Roto-Sketch”, shows you how to use rotary controls to
draw elaborate designs and automatically post them to Flickr and on to Facebook.

❍	Chapter 16, “The Pendulum Pi, a Harmonograph”, shows you how to create a har-
monograph for producing intricate patterns using an Arduino to help the Pi with real-
time data gathering.

❍	Chapter 17, “The Techno–Bird Box, a Wildlife Monitor”, covers how to build a “techno–
bird box” that will monitor the bird activity in your garden.

The Future
Computers are set to be an ever-bigger part of our lives and touch more areas. Systems will be
more complex with more connectivity. In the future your washing machine and other appli-
ances in your home will likely talk to your smartphone. And we’ll all need more computing
skills to master them. New ways of using computers will mean that there will be new areas for
adventure and opportunities to change people’s lives and solve problems in the world.

One word of warning before you begin your adventure: After you start you might never stop!
Electronics and coding can be addictive; who knows what you might go on to make with the
skills you learn from this book.

Building and making is incredibly rewarding and satisfying. We want to get more people of
the world to become producers of technology rather than consumers. The projects in this
book are starting points – but then the real rewards come from making the project your own
and seeing your own ideas become reality.

Welcome to the world of digital making. Are you ready to invent the future?

Part I

Getting Started
with the
Raspberry Pi

Chapter 1  Getting Your Raspberry Pi Up and Running

Chapter 2  Introductory Software Project: The Insult Generator

Chapter 1
Getting Your Raspberry Pi Up
and Running

by Dr. Andrew Robinson

In This Chapter

❍	 What the operating system is for

❍	 How to put the operating system on an SD card for the
Raspberry Pi

❍	 How to connect up your Raspberry Pi

❍	 A bit about the boot process

❍	 Basic troubleshooting if your Raspberry Pi doesn’t start

R A S P B E R R Y P I P R O J E C T S10

THIS CHAPTER IS a beginner’s guide to your first steps with the Raspberry Pi. It goes from
getting it out of the box to getting something on the screen. Even if you already have your
Raspberry Pi up and running, it’s worth a quick skim as you’ll discover how a 21-year-old
student changed the world and a bit about how the operating system for your Raspberry Pi
works. After this chapter, you’ll get into the real fun of creating projects!

The Operating System
The Raspberry Pi primarily uses Linux for its operating system (OS) rather than Microsoft
Windows or OS X (for Apple). An operating system is a program that makes it easier for the
end user to use the underlying hardware. For example, although the processor (the chip at
the centre of the Raspberry Pi that does the work) can do only one thing at a time, the oper-
ating system gives the impression the computer is doing lots of things by rapidly switching
between different tasks. Furthermore, the operating system controls the hardware and hides
the complexity that allows the Raspberry Pi to talk to networks or SD cards.

Linux
Part of the success of the Raspberry Pi is thanks to the enthusiastic community that is behind it.
Linux is a testament to what can be achieved with the support of volunteers around the world.
In 1991, Linus Torvalds began work on an operating system as a hobby while he was a 21-year-
old student at the University of Helsinki. A year later, his hobby operating system for desktop
PCs (80386) was available online under the name Linux. Crucially, the code for the operating
system was available as well. This allowed volunteers around the world to contribute; to check
and correct bugs; to submit additional features; and to adapt and reuse other’s work for their
own projects. If you master the projects in this book and learn more about computing, then who
knows – one of your hobby projects could be as successful as Linus Torvalds’s is.

The popularity of Linux grew, and in addition to its use as a desktop operating system, it is
now used for the majority of web servers, in Android devices and in the majority of the
world’s supercomputers. Most importantly for us, it is used on the Raspberry Pi.

Linux Distributions
Because Linux code is publically available, different organisations have made slight changes to
it and distributed it. This has led to different distributions (versions), including Red Hat, Fedora,
Debian, Arch, Ubuntu and openSUSE. Some companies sell their distributions and provide paid-
for support, whereas others are completely free. Raspbian is based on the Debian distribution
with some customisations for the Raspberry Pi and is what is used in this book.

C H A P T E R 1   G E T T I N G Y O U R R A S P B E R R Y P I U P A N D R U N N I N G 11

The most popular operating system for the Raspberry Pi is Linux. The widescale use of
Linux (just think how many Raspberry Pis there are, not to mention Android phones, web
servers, and so on) shows how much an idea can grow. After you start tinkering with the
Raspberry Pi, one of your ideas might grow to be as big (or bigger) than Torvalds’s or those of
the founders of the Raspberry Pi, and you too will make a real impact on the world. So let’s
get started!

Getting the OS on an SD Card
The Raspberry Pi doesn’t know how to coordinate its hardware without an OS. When it is
powered up, it looks on the SD card to start loading the OS. As such, you’re going to need an
SD card with an OS on it.

You can either buy an SD card that already has an OS on it, or you can copy an OS to your
own SD card with a PC. A premade card is simplest, but more expensive. Creating your own
isn’t too difficult, but it is slightly more involved than just copying a file.

Premade Cards
Premade cards are bundled in kits or available to purchase from element14, RS or
other online stores. A 4GB card should be big enough for getting started and cost less
than £10.

Filesystems
Computer storage like SD cards, USB memory sticks and hard disks essentially contain mil-
lions of separate compartments that store small amounts of data in large grids. The indi-
vidual compartments, called blocks, are addressed by a coordinate system – you can think
of them as a piece of squared paper the size of a sports field. The sports field is partitioned
into areas of blocks that are handled by the operating system to provide filesystems. It is
the OS’s job to manage how data is written to this massive storage area, so that when a
user refers to a file by name, all the tiny blocks of data are fetched and combined in the cor-
rect order. There are different ways in which the blocks are formatted, with different fea-
tures. As such, an identical file will be stored differently on the underlying grid by different
filesystems.

Typically, Microsoft Windows uses FAT or NTFS, OS X uses HFS Plus and Linux uses ext.
Most blank SD cards are formatted as FAT by default. Because the Raspberry Pi runs Linux,
it uses the ext filesystem, which must be set up and populated with files.

R A S P B E R R Y P I P R O J E C T S12

Creating Your Own SD Card
There are two ways to create your own SD card for the Raspberry Pi, using NOOBS or by
transferring an image yourself.

Using NOOBS

New Out Of Box Software (NOOBS) was created for the Raspberry Pi to automate transferring
SD card images. NOOBS boots your Raspberry Pi from a FAT-formatted card and then reparti-
tions and clones the filesystem for you. Using NOOBS should be as simple as formatting a card
on your desktop PC and unzipping NOOBs downloaded from www.raspberrypi.org/
downloads. Some operating systems do not format cards properly, so it is sometimes neces-
sary to download a program to format the card. Although NOOBS can be simple, it doesn’t
always work, and it can be slower. Anyway, it’s more satisfying to use the do-it-yourself
approach.

Transferring an Image Yourself

You need an SD card larger than 2GB to fit the OS on it. A 4GB card is ideal.

Visit www.raspberrypi.org/downloads and follow the links to download the latest ver-
sion of Raspbian. You are looking for a filename containing the word raspbian and a date,
and that ends in .zip. Make a note of the letters and numbers that are shown as SHA-1
checksum. Because of the speed of development, new versions are released frequently, so the
exact name will differ from the one that’s used in the following instructions. The location you

Images
When talking about downloading the OS for the Raspberry Pi, you may hear it called an
image, which may be slightly confusing. It is an image of the underlying storage. (Imagine
an aerial photo of the entire sports field of storage blocks, even the blank ones, rather than
separate files! If you were to print this photo at the same size on another sports field, you’d
have an exact copy of all the files stored on the original one.)

It is possible to store an image as a single file in another filesystem, but this arrangement is
not suitable for a running Raspberry Pi. As such, a Raspberry Pi will not work if you just copy
an image onto a FAT-formatted card. Instead, you must tell your OS that you want to trans-
fer it at the block level, so that every block on your card matches those of the person who
made the image. That way, Linux interprets these underlying blocks on the disk to provide
a filesystem that is identical to the person who made the image.

In summary, filesystem images provide an easy way of cloning an entire filesystem such
that all the files, their permissions, attributes, dates, and so on are identical.

http://www.raspberrypi.org/downloads
http://www.raspberrypi.org/downloads
http://www.raspberrypi.org/downloads

C H A P T E R 1   G E T T I N G Y O U R R A S P B E R R Y P I U P A N D R U N N I N G 13

download the file to may also be slightly different, so you should use your location accord-
ingly when completing the instructions.

The download page has links to other distributions and other operating systems that you can
try later, but for now it’s best to stick with Raspbian because it is reliable, has a good selec-
tion of software for beginners and is consistent with the examples in this book.

Checksums
A checksum is an easy way to check whether data has been corrupted. A checksum is a
mathematical sum that is performed by the supplier of the data. When you receive the data,
you perform the same sum and, in most cases, if the answer is the same, you can be
almost certain that the data is the same, without comparing it bit by bit. Checksums are
used extensively in computing – in network communications, when processing credit cards
and even in barcodes. Although they are not infallible, they make it much easier to be fairly
confident data is correct.

The instructions for creating an SD card are different depending on which OS you’re using.
Refer to the appropriate section for Windows, Linux and OS X.

Creating an SD Card with Windows

It is hard to check checksums in Windows, so the following instructions assume that the
downloaded image file is correct. After the download is complete, follow these steps to
uncompress it and transfer the data to the SD card:

	 1.	 Unzip the downloaded file 2013-07-26-wheezy-raspbian.zip.

	 2.	 Insert an SD card and make a note of the corresponding drive letter (for example, E:).
Make sure that the card does not contain any data you want to save because it will be
completely overwritten.

	 3.	 Go to https://launchpad.net/win32-image-writer and download the binary
version of Win32DiskImager from the Downloads section on the right side of the
web page. Unzip the program.

	 4.	 Start Win32DiskImager.exe as Administrator. Depending on how your system is
set up, this may require you to double-click the program name, or require you to hold
down the Shift key, right-click the program icon and select Run As.

	 5.	 In the Win32DiskImager window, select 2013-07-26-wheezy-raspbian.img.

https://launchpad.net/win32-image-writer

R A S P B E R R Y P I P R O J E C T S14

	 6.	 In the Device drop-down on the right, select the drive letter you noted in step 2 (see
Figure 1-1).

Figure 1-1:
The Win32

DiskImager
window.

	 7.	 Click Write and wait for the imaging process to complete. (This step could take about
15–30 minutes, so be patient.)

	 8.	 Exit Win32DiskImager and eject the SD card that should now contain your OS.

Creating an SD Card with Linux

With Linux, it’s easiest to create the SD card image from the command line, as detailed in the
following steps.

Linux Permissions and sudo
Linux restricts some actions that might cause damage to other users. As such, some com-
mands will not work unless you have the appropriate privileges. On some distributions, you
need to switch to being the user root (the administrator account) before running the com-
mand requiring more privileged access. Other distributions will allow selected users to pre-
fix the command with sudo. The following instructions assume that your user account has
been set up to use sudo. If not, type su in the terminal first to become root.

	 1.	 Start a terminal and use the cd command to change to the directory containing the file
you downloaded (for example, cd Downloads).

	 2.	 Unzip the downloaded file by typing unzip followed by the downloaded filename (for
example, unzip 2013-07-26-wheezy-raspbian.zip).

	 3.	 List the image files in the current directory by typing ls *.img and make sure that
the extracted image file is listed.

C H A P T E R 1   G E T T I N G Y O U R R A S P B E R R Y P I U P A N D R U N N I N G 15

	 4.	 Calculate the checksum to ensure that the downloaded file is not corrupt or hasn’t
been tampered with. To do this, type the following:

sha1sum 2013-07-26-wheezy-raspbian.zip

		 Make sure that the result matches with the SHA-1 checksum given on the http://
raspberrypi.org/download page. Although it is unlikely that they will differ, if
they do, try downloading and unzipping again.

	 5.	 Insert an SD card. Make sure there’s no data on it that you want to save, because it will
be completely overwritten.

	 6.	 Type dmesg and find the device name that Linux uses to refer to the newly inserted card.
It will usually be named sdd, sde, sdf or something similar. Alternatively, it may be in
the form mmcblk0. Use this name wherever you see sdX in the following steps.

	 7.	 If Linux has automounted the card, you need to unmount it first by typing sudo
umount /dev/sdX.

	 8.	 Double-check that you have the correct device by typing sudo fdisk -l /dev/
sdX. Check that the size displayed matches the size of the card that you inserted.

	 9.	 When you are absolutely sure you are referring to the correct card, type the following
(replacing sdX with the name you found in step 6) to copy the image across to the
card. (This step could take about 15–30 minutes, so be patient.)

dd if=2013-07-26-wheezy-raspbian.img of=/dev/sdX

	 10.	 Type sudo sync before removing the card to ensure all the data is written to the card
and is not still being buffered.

Creating an SD Card with OS X

With OS X, it’s easiest to create the SD card image from the command line.

Although the Macintosh normally uses drag and drop for many operations, there is a way to get
“under the hood” to perform unusual operations. Your gateway to doing this is an application
called Terminal. This is usually found in the Utilities folder, within the Applications folder. A quick
way to find it is to hold down the Ô key and press the spacebar. This will open the Spotlight
search window. Type terminal and then press Enter to open the Terminal application.

To create an SD card, follow these steps:

	 1.	 Start a terminal.

	 2.	 Use the cd command to change to the directory containing the file you downloaded. A
quick way to do this is to type cd followed by a space and then drag the folder contain-
ing the file into the Terminal window. This will automatically fill in the rest of the com-
mand with the pathname of that folder. Then press Enter to perform the command.

http://raspberrypi.org/download
http://raspberrypi.org/download

R A S P B E R R Y P I P R O J E C T S16

	 3.	 Unzip the downloaded file by typing unzip followed by the downloaded filename (for
example, unzip 2013-07-26-wheezy-raspbian.zip).

		 You won’t see a progress bar during this process, so you might think the computer has
frozen – but don’t worry. It could take a minute or two before all of the files are
unzipped.

	 4.	 List the image files in the current directory by typing ls *.img and make sure that
the extracted image file is listed.

	 5.	 To make sure everything is fine, you can calculate the checksum for the file; however,
you can omit this step if you want. Calculating the checksum ensures that the down-
loaded file is not corrupt. To do this, type the following:

shasum

2013-07-26-wheezy-raspbian.zip

		 Make sure that the result matches with the SHA-1 checksum on the http://
raspberrypi.org/download page. It is unlikely that they will differ, but if they do,
try downloading and unzipping again.

	 6.	 Type diskutil list to display a list of disks.

	 7.	 Insert an SD card. Make sure that it doesn’t contain any data that you want to save
because it will be completely overwritten.

	 8.	 Run diskutil list again and note the identifier of the new disk that appears (for
example, /dev/disk1). Ignore the entries that end with s followed by a number. Use
the disk identifier wherever diskX appears in the following steps.

	 9.	 Type sudo diskutil unmountdisk /dev/diskX.

	 10.	 Type sudo dd bs=1m if=2013-07-26-wheezy-raspbian.img of=/dev/

diskX. (This step could take about 15–60 minutes, so be patient.)

	 11.	 Type sudo diskutil eject /dev/diskX before removing the card.

Connecting Your Raspberry Pi
Now that you have your OS for your Raspberry Pi, it’s time to plug it together.

Remove the Raspberry Pi from the box and, to make it easier to follow these instructions,
position it the same way around as shown in Figure 1-2 (so the words Raspberry Pi appear the
correct way up).

Plug the USB keyboard into one of the USB sockets, as shown in Figure 1-3.

http://raspberrypi.org/download
http://raspberrypi.org/download

C H A P T E R 1   G E T T I N G Y O U R R A S P B E R R Y P I U P A N D R U N N I N G 17

Figure 1-2:
The Raspberry
Pi, the size of a
credit card and a
miniature
marvel of
engineering.

Figure 1-3:
Inserting the
USB keyboard.

R A S P B E R R Y P I P R O J E C T S18

Older PS/2 keyboards will not work. You’ll have to buy (or borrow) a USB keyboard, but they’re
not expensive.

Plug the mouse in next to the keyboard, as shown in Figure 1-4.

Figure 1-4:
Inserting the
USB mouse.

Connecting a Display
The Raspberry Pi can be connected by HDMI or composite video directly. With the use of an
adapter you can connect it by DVI or VGA. You should use HDMI or DVI whenever possible
because they give a better picture.

Look at the sockets on your display to determine how to connect your Raspberry Pi.

Connecting via HDMI
If your display has an HDMI input, as shown in Figure 1-5, then connect your Pi with an HDMI-
HDMI cable. This is the only type of video connection that can also be used to carry audio from
the Pi to your display. The HDMI socket on the Pi is at the bottom as shown in Figure 1-5.

C H A P T E R 1   G E T T I N G Y O U R R A S P B E R R Y P I U P A N D R U N N I N G 19

Figure 1-5:
HDMI
connection
on the
Raspberry Pi.

Connecting via DVI
If your display has a DVI input as shown in Figure 1-6, you will need an adapter. HDMI and
DVI have very similar electrical signals, so adapters are passive – that is, they don’t contain
any electronics, just two sockets with wires in between. You can buy cables with an HDMI
and DVI connector or adapters as shown in Figure 1-6 for less than £5.

Connecting via VGA
DVI and HDMI both work with digital signals and are only found on newer monitors. Older
monitors with VGA use analogue signals and as such need some sort of electronic circuit to
convert between them. You can buy adapters that convert between HDMI and VGA for
about £20 online. The Pi-View device shown in Figure 1-7 is designed specifically for the
Raspberry Pi and is available through element14.

R A S P B E R R Y P I P R O J E C T S20

Figure 1-6:
HDMI-DVI

adapter.

Figure 1-7:
HDMI-VGA

adapter,
Pi-View.

C H A P T E R 1   G E T T I N G Y O U R R A S P B E R R Y P I U P A N D R U N N I N G 21

Connecting via Composite
If your display only has a connector for composite video, you need a phono-to-phono
cable that plugs in to the yellow connector on the top of the Raspberry Pi as shown in
Figure 1-8. Be aware that composite is an old technology and may produce a poor quality
display.

Connecting to a Network
The Raspberry Pi has an Ethernet socket that allows your Pi to connect to the Internet or
your home network. You can download new software and updates, or browse the web. You
could even run your own web server!

Analogue and Digital
Inside most computers you will find digital signals – that is, signals where it only matters if
they are on or off. Usually there is a difference of a few volts between a signal being on or
off. Data is sent by a code of ons and offs, typically referred to as 1s and 0s. A small change
in voltage due to radio or magnetic interference is usually not large enough to change the
meaning.

Analogue signals tend to only be used in modern computers where they have to connect
with something physical such as a monitor or speakers. An analogue signal typically repre-
sents data as a continuous range of voltages. As such, a small change in voltage means a
different value will be read. This means the data can be changed by electrical interference.

VGA monitors represent different colours with different voltages. Consequently, any inter-
ference will affect what is shown on the screen, and the image is degraded! Small amounts
of interference will have no effect on digital data for HDMI. However, if the interference is
strong enough, then all data will be corrupted and no image will be transmitted.

R A S P B E R R Y P I P R O J E C T S22

Figure 1-8:
Phono

connector for
composite video.

If you will be using a network, connect a network cable on the right side as shown in Figure
1-9. Although the Raspberry Pi uses the network to set its clock and to download updates
and new programs, it will work without a network connection.

Booting the Operating System
You will need an SD card with the OS already installed on it. You can either buy one pre-
installed or follow the instructions earlier in this chapter to make your own.

Insert the SD card in the slot on the underside of the Raspberry Pi, on the left, as shown in
Figure 1-10. Take care to keep the card parallel with the Raspberry Pi when you slide it in or
out so as not to break the edge of the retaining slots (shown in Figure 1-11).

C H A P T E R 1   G E T T I N G Y O U R R A S P B E R R Y P I U P A N D R U N N I N G 23

Figure 1-9:
Network
connection.

Figure 1-10:
Insert the SD
card carefully.

R A S P B E R R Y P I P R O J E C T S24

Figure 1-11:
Take care not to

snap off the
plastic that

keeps the SD
card from

falling out.

Powering Up!

Before connecting power, get into the habit of checking that there is nothing conductive in
contact that could cause a short circuit with your Raspberry Pi. A quick check that there’s
nothing metallic nearby could save you from damaging your Pi!

Plug in the power supply to the bottom left of the Raspberry Pi as shown in Figure 1-12. On
the top-right corner, you should see a green light (labelled PWR) come on and another one
(labelled ACT) flash.

The Raspberry Pi needs a power supply that can supply 5V 700mA (3.5W). Most decent-
quality mobile phone chargers will work fine – many have the output marked on them, so it’s
easy to check. If your power supply can’t deliver enough power, your Raspberry Pi may not
start, or it may freeze when it does something computationally more demanding. For more
information, see the “Troubleshooting” section later in this chapter.

C H A P T E R 1   G E T T I N G Y O U R R A S P B E R R Y P I U P A N D R U N N I N G 25

Figure 1-12:
Insert a micro
USB for power.

The Boot Process
After you’ve connected everything, have a correctly imaged SD card and powered up your
Raspberry Pi, it will quickly flash a colourful square to test the graphics. After a few seconds,
the Raspberry Pi logo will appear in the top-left corner of the screen, and many lines of text
will scroll past.

The text reveals some of the work the OS is doing. You may see messages as the various driv-
ers are loading, such as the keyboard driver, sound driver and network driver. After the driv-
ers have loaded, the OS runs any startup programs and displays the login prompt.

By default, the username is pi, and the password is raspberry.

Type pi and press Enter.

Now type raspberry and press Enter. Linux doesn’t display anything when you type pass-
words, which can be a bit unfamiliar if you are used to other OSes.

R A S P B E R R Y P I P R O J E C T S26

You should see the command-line prompt, where you can type commands and run programs.
In the next section, you’re going to start the program that allows you to use the Raspberry Pi
graphically.

Starting the Graphical Desktop
If you are familiar with Windows or OS X, you are used to a friendly graphical desktop that is
loaded automatically with icons you can click. On the Raspberry Pi, however, in order to show
that a graphical desktop doesn’t have to be integral to a computer, it isn’t loaded automatically.

The X Server
The design of Linux means that the graphical desktop runs on top of the OS as a separate
program called the X server. This opens up additional possibilities, such as controlling one
computer with the display being shown on another computer over a network connection.
This means that you can control the Raspberry Pi without having a monitor plugged into it,
which is useful if you put it in a remote location (see Chapter 13, “Home Automation”).

To start the graphical display on the Raspberry Pi, type startx.

After a few seconds the X server will start, and you will be able to use a graphical desktop. If
you can see the Raspberry Pi logo in the background, then congratulations – you have suc-
cessfully connected your Raspberry Pi! The projects in this book assume that you’re starting
from here, with the desktop displayed.

Starting a Terminal under X
Linux makes greater use of the text-based command line, often known as a terminal. This can
be very powerful and quicker for some tasks than using a mouse. To start a terminal in a
window under X, double-click the LXTerminal icon on the desktop, or select it from the
menu by clicking Accessories and then clicking LXTerminal.

Troubleshooting
Hopefully, you’ll never need this section, but even if you think you’ve followed all the instruc-
tions, you might discover that something doesn’t work. Finding and debugging problems are
important aspects of computing. The general approach is to be logical and eliminate parts

C H A P T E R 1   G E T T I N G Y O U R R A S P B E R R Y P I U P A N D R U N N I N G 27

until you can isolate where the problem is. You’ll see the same principles apply to finding
faults in your programs later in the book. It’s a good idea to simplify to the simplest possible
configuration first – unplug the keyboard, mouse and/or display to see if the Pi shows signs
of life – and then add things one by one. When you are suspicious of what might be at fault,
try borrowing a known working replacement from a friend or try the suspected faulty part in
theirs. This way, you can eliminate parts until the fault is found.

Common Problems
The majority of problems in getting the Raspberry Pi to work are easy to fix. The following
subsections describe some of the issues that you might encounter with the Raspberry Pi and
how to troubleshoot them.

No Lights Come On
If none of the lights come on when you power up your Raspberry Pi, the power supply may not
be providing the required 5V. If you have a meter, you can measure the output as detailed in
the subsection “Power Problems”; if not, try borrowing a friend’s that you know works.

Only the Red Light Comes On
If just the red light comes on, then the Raspberry Pi is getting some power, but it isn’t booting
the OS. Make sure that the SD card is correctly inserted, and then check that it is correctly
imaged. Even if the card is correctly imaged, it may be that the card isn’t compatible with the
Raspberry Pi. If possible, try another card that is known to work, either from a friend or by buy-
ing a premade card. Also check that the power supply is providing enough power.

No Monitor Output
Check that the connector to the monitor hasn’t come loose and that if your monitor has a
choice of inputs that the correct one is selected. Normally, there is a switch on the front that
cycles through the input sources. With some monitors it is necessary to have connected the
monitor to the Raspberry Pi before powering it up. If you are still having trouble, try a differ-
ent monitor and cable.

Intermittent Problems
If the Raspberry Pi freezes or resets, particularly when you do something that demands more
power (such as graphics-intensive work or adding a peripheral), then it’s likely the power
supply isn’t providing enough power.

Power Problems
The Raspberry Pi needs more power than some micro USB power adapters can provide. It is
certainly more than what’s provided by the output of most computer USB ports. As the

R A S P B E R R Y P I P R O J E C T S28

Raspberry Pi does different tasks, the amount of power it needs varies. Consequently, with
some adapters, it may work some of the time, but then stop when it needs more power. Your
power supply should provide a minimum of 700mA at 5V or at least 3.5W. Most power sup-
plies will have a label that details the output power or current it can provide. However, some
power supplies don’t deliver what they claim! If your Raspberry Pi partly works and suddenly
stops working, particularly when you ask it to do something more intensive such as graphics,
then the power supply is probably not up for the job. In some cases it is not the power supply
itself that is at fault, but the cable connecting it to the Raspberry Pi. Some cables can have a
relatively high resistance and so can drop the voltage getting to the computer.

The power adapter also has to supply any peripherals plugged into the Raspberry Pi. If a
peripheral takes too much power, then your Raspberry Pi will stop working. If you know how
to use a multimeter, you can check the voltage supplied by the power supply under load. You
can find information about how to do this in the Raspberry Pi User Guide (Wiley, 2012). If you
measure less than 4.3V at the test points, then it might be worth changing the cable before
you change the power supply. Or you can try using a different adapter.

If You Need More Help
If you’re still struggling with your Raspberry Pi, then you may need other sources of assis-
tance. A major benefit of the huge popularity of the Raspberry Pi is the support offered from
an enthusiastic, helpful community. See if you can find a solution at http://elinux.
org/R-Pi_Troubleshooting, or check the Raspberry Pi forums at www.raspberrypi.
org/forum.

You can often get help in person by attending a user group or local meeting, commonly
referred to as a Raspberry Jam. It’s a worldwide network, so just check http://raspberry
jam.org.uk to find the nearest location.

The Raspberry Pi User Guide also provides suggestions for troubleshooting and configurations
to work with specific hardware.

Let the Fun Begin!
Now that you’ve got your Raspberry Pi powered up, it’s time to start having fun with the
projects. The Insult Generator project in Chapter 2 is a good one to start with because it
introduces how to program the Raspberry Pi in Python – and more importantly, it can be
used to insult your friends and family!

http://elinux.org/R-Pi_Troubleshooting
http://elinux.org/R-Pi_Troubleshooting
http://www.raspberrypi.org/forum
http://www.raspberrypi.org/forum
http://raspberryjam.org.uk
http://raspberryjam.org.uk

Chapter 2
Introductory Software Project :
The Insult Generator

by Dr. Andrew Robinson

In This Chapter

❍	 Writing and running your first Python program

❍	 Storing data to variables

❍	 Holding text in strings

❍	 Printing messages on the screen

❍	 Creating functions

❍	 Getting input from the user

❍	 Conditional behaviour with if statements

❍	 Repetition with loops

R A S P B E R R Y P I P R O J E C T S30

THIS PROJECT IS just a bit of fun for you to get going with your first program. The pro-
gram generates a comedy insult by combining a verb, an adjective and a noun at random. In
other words, you’ll make your highly sophisticated Raspberry Pi display something like “Your
brother is a big old turnip!”

By beginning with something simple, you can start having fun without having to write too
much code, and after you’ve got something running, you can change it to make it more sophis-
ticated. In fact, professional computer programmers often take a similar approach: They write
something simple and test it, and then add more and more features, testing as they go.

It’s also useful to look at sample code, work out what it is doing and then change it to suit
your requirements. Most professional programmers work this way too. Feel free to experi-
ment and customise the projects in the book. Just remember to keep a copy of the original
program so that you can go back to it if your modifications don't work.

This chapter helps to get you started programming the Raspberry Pi and, as such, it has the
most theory. Do stick with it, and at the end of the chapter, you’ll have the knowledge to
make the program your own. There’s a lot in this chapter, but you needn’t do it all in one go;
sometimes it’s better to come back after a break. Programming is no less creative than paint-
ing a picture or knitting, and like these hobbies, you need to spend an hour or two covering
the basics before you can produce a masterpiece!

In this chapter, you will learn how to enter a Python program and run it. You’ll also learn
about various aspects of the Python language.

Running Your First Python Program
Many people use a word processor to produce documents with a computer because it pro-
vides features such as spelling and grammar checkers. However, there is nothing to stop you
from using a simple text editor like Notepad in Windows, TextEdit on an Apple Mac or
LeafPad on the Raspberry Pi. Similarly, when writing code, you can just type it in a text editor,
or you can use an Integrated Development Environment (IDE). Similar to a spell checker in a
word processor, an IDE checks the syntax (to ensure that it will make sense to the computer)
and has other helpful features to make writing code a pleasure!

Just as there are lots of different word processors, there are a number of IDEs for Python.
For the simple example in this chapter, you are going to type your first Python program into
IDLE. IDLE is good for beginners because it is simple and can often be found wherever
Python is installed, including on the Raspberry Pi.

To start IDLE, click the menu in the bottom-left corner of the screen (where the Start button
is in Microsoft Windows), choose Programming, and then click IDLE, as shown in Figure 2-1.

C H A P T E R 2   I N T R O D U C T O R Y S O F T W A R E P R O J E C T: T H E I N S U LT G E N E R AT O R 31

Figure 2-1:
Starting IDLE.

The Raspberry Pi comes with two versions of IDLE. IDLE 3 uses Python version 3.0, which
contains more functionality and has subtle changes to parts of the language. The examples
in this chapter are written for Python 2 (that is, IDLE). If you use the examples in the book
without changing them you’ll receive errors.

You will see the IDLE window appear in interactive mode. In this mode, what you type is
interpreted as soon as you press Return, which is a great way to try out your Python code. To
see how this works, follow these steps:

	 1.	 Type the following code:

print (“Hello World”)

Computers are less forgiving of mistakes than humans, so make sure that you type the code
exactly as it appears in this and other examples in this book.

R A S P B E R R Y P I P R O J E C T S32

	 2.	 Press Return. You should see Python run your first line of code and display the greet-
ing shown in Figure 2-2.

Figure 2-2:
Python says

“Hello World”.

Many programmers write a “Hello World” program whenever they learn a new language. It is
about the simplest program and is a good way to check that it is possible to write some code
and then run it. It dates back to the first tutorials of how to program in the 1970s. There’s even
an equivalent in hardware to “Hello World” that you’ll see in Chapter 9, “Test Your Reactions”.

If you got the result shown in Figure 2-2, then welcome to the club – you’re now a computer
programmer! If not, go back and make sure that you typed the code exactly as shown in the
example (sometimes even the number of spaces matter in Python), because computers need
to be told precisely what to do. This strict rule means that unlike English, a statement can
only be interpreted with one meaning.

C H A P T E R 2   I N T R O D U C T O R Y S O F T W A R E P R O J E C T: T H E I N S U LT G E N E R AT O R 33

Saving Your Program
IDLE allows you to save your code so that you don’t have to re-enter it each time you want to
run it. Just follow these steps:

	 1.	 Create a blank file for your program by selecting New Window from the File menu, as
shown in Figure 2-3.

Figure 2-3:
Creating a new
file.

	 2.	 Enter the following code and then click the Run menu and choose Run Module, or
press F5.

message = “hello world from a saved file”

print (message)

	 3.	 Python displays a message that says, “Source Must Be Saved”, as shown in Figure 2-4.
Click OK.

Source is an abbreviation for source code, which is another way of saying the program you’ve
entered.

R A S P B E R R Y P I P R O J E C T S34

Figure 2-4:
Python

prompts,
“Source Must Be

Saved”.

	 4.	 Type in a filename (for this example, you can just call it hello.py), and then click
Save as shown in Figure 2-5.

	 5.	 After IDLE has saved your code, you will see a message saying RESTART (Python does
this so you know you’re always starting from the same consistent point), and then
your code will run in the Python Shell window, as shown in Figure 2-6. If you’ve made
a mistake, you’ll see an error – correct it and then choose Run Module again.

When you save your code, IDLE adds .py to the end of the filename. This is the file extension
for Python source files (just as Word adds .doc to documents).

C H A P T E R 2   I N T R O D U C T O R Y S O F T W A R E P R O J E C T: T H E I N S U LT G E N E R AT O R 35

Figure 2-5:
The Save As
dialogue box in
IDLE.

Figure 2-6:
IDLE running
Python code
from a file.

R A S P B E R R Y P I P R O J E C T S36

Generating an Insult
Now that you’ve successfully run your first program, it’s time to write something more inter-
esting – in this case, the computer will generate its own message to print. Type the following
code in a new file, save it and then run it:

from random import choice

adjectives = [“wet”, “big”]

nouns = [“turnip”, “dog”]

print (“You are a”)

adjective = choice (adjectives)

print (adjective)

print (choice (nouns))

When you run this program, you should see a message similar to “You are a big turnip” dis-
played. Run the program a few times, and you should see a variety of insults, built at random!

You can use the keyboard shortcut F5 to run the program. However, ensure the editor win-
dow containing your program has focus (is active) by clicking it before pressing F5 so IDLE
knows the correct code to run.

You’ll be changing the program to display a personalised message later in this chapter, but
before you do, it’s worth examining the code more closely. The following subsections describe
what the different lines of the program do.

Looking at how other people’s code works is useful when you’re learning to program, and the
World Wide Web is a good source of many examples.

Variables
Variables are used to store data. Creating a variable is like getting a cardboard box to reserve
some storage space and writing a unique label on it. You put things in the box for storage and
then get them out again later. Whenever you access the box you use its unique label.

Let’s start with something simple to illustrate variables:

message = “hello”

The equals sign means assignment, and tells Python to assign (or store) what is on the right-
hand side in the variable named on the left – in this case, the characters h, e, l, l and o are
stored in the variable named message.

C H A P T E R 2   I N T R O D U C T O R Y S O F T W A R E P R O J E C T: T H E I N S U LT G E N E R AT O R 37

Strings
The “ speech marks (also known as quotation marks in some parts of the world) tell Python
to treat the enclosed characters as a string of letters rather than try to understand the word
as an instruction.

To display text on the screen, you use the print command followed by what you want dis-
played after it – for example:

message = “hello”

print (message)

This will display the contents of the variable message on the screen, which in this case is
hello.

If, on the other hand, you enter the following code:

print (“message”)

The word message will be displayed on the screen, because the speech marks tell Python to
treat text within them as a string of characters and not a variable name.

print is slightly confusing in that it displays characters on the screen and has nothing to do
with sending it to a printer to appear on paper.

Lists
To store multiple pieces of data in Python together, you can use lists. Lists are specified as items
separated by commas within square brackets. Reconsidering the example of the cardboard box, a
list can be considered as a named box with internal dividers to store separate items.

Looking back at the insult generator code, lists of strings are used to store multiple adjectives
and nouns. Because you now know about strings and lists, you can try adding some more words
of your own. Remember to enclose them in quotes (“”) and separate them with a comma.

Functions
A function can be thought of as a little machine that may take an input, perform some sort of
processing on it and then produce an output (called its return value) as shown in Figure 2-7.

R A S P B E R R Y P I P R O J E C T S38

You can create your own functions, or you can use functions that are included in Python or
written by other people. To use a function, you call it by entering its name followed by ().

Figure 2-7:
Functions are

little machines
that process

inputs to
produce an

output.

Functions may take arguments (sometimes called parameters), which are a way of supplying
data to them. Think of them as the raw materials into, or the controls that adjust, the func-
tion machine. Imagine a machine that makes different pasta shapes; its arguments might be
raw pasta and a setting that determines what shape it produces. Arguments can be a variable
(which may change as a program runs) or something hard-coded (written directly into the
program by the programmer and never changed) in the program itself.

You can think of the print command that you used in the preceding code as a function that
displays its parameter on the screen. The arguments to a function are contained in brackets
after the function name.

Structuring Your Programs
Functions are a way to structure programs. Computers and computer programs can quickly
become very complicated. The best way to deal with this is to break things down into simple,
manageable chunks. It’s something we do in everyday life: If you ask someone to make you a
cup of tea, you don’t give them a long list of instructions about filling the kettle with water, turn-
ing it on, waiting for it to boil, adding a tea bag to the teapot, and so on. We don’t think about all
the details – after someone has been told how to make a cup of tea, they don’t need to be told
all the steps each time. It's the equivalent of calling the makeTea() function – you need to
define the steps only once. If you want to pass information like the number of sugars or milk to
add to the tea, you might use arguments – for example, to specify tea with three sugars and
milk, makeTea(3, True).

If we broke every task down to the simplest steps every time, things would become unman-
ageable. Programming computers is just the same – tasks are broken down into manage-
able chunks. Knowing exactly how and where to break a program into chunks comes with
experience, but with this approach, it becomes possible to program a computer to make it
do just about anything.

C H A P T E R 2   I N T R O D U C T O R Y S O F T W A R E P R O J E C T: T H E I N S U LT G E N E R AT O R 39

choice is another function that you have been using, perhaps without realising it. Its argu-
ment is a list of items, and the processing it does is to select one at random. Its output is an
item from the list, which it returns.

If you find yourself writing the same code in multiple parts of a program, or using copy and
paste, you should think about putting the repeated code into your own function.

There are so many functions that if all of them were available at once, it would be over-
whelming to the programmer. Instead, Python contains only a few essential functions by
default, and others have to be imported from packages of functions before they can be used.
choice is an example of a function that needs to be imported from the random package. In
the earlier example, the line import choice from random performs this role. You only
need to import a function once in a program, but you can use it multiple times.

Insult Your Friends by Name!
The programs so far have produced an output, but when run, have not taken any input from
the user. The next example asks the user for a name and then prints a personalised greeting.
To try this out, enter the following code:

name = raw_input(“What is your name?”)

print (“Hello “ + name)

raw_input became the input function in Python 3. If you’re using IDLE 3, remember to
type input wherever you see raw_input in the examples in this book.

The raw_input function (renamed to input in Python 3) takes a message to print as its
argument and returns the data the user entered. In this example, the variable name is
assigned the result of the raw_input function, which is what the user types when the pro-
gram is run.

This example also introduces how to join strings together. Strings are joined together, or
concatenated as a programmer may say, by placing + between the strings. It’s important to
note that because the computer treats strings as just characters and not words, when strings
are concatenated, it does not automatically insert spaces. Therefore it is up to the program-
mer to add any spaces needed. In the preceding example, there is a space after Hello in the
quotes – without this, the computer would print something like HelloFred.

R A S P B E R R Y P I P R O J E C T S40

Help with Functions
When you type a function like choice in IDLE, a tooltip pops up telling you what arguments the
function takes and what it returns. This is a useful quick reference so you don’t have to remember
exactly what parameters a function takes, and it’s easier than looking up the full reference online.

If you press the Ctrl key and the spacebar simultaneously, IDLE will attempt to autocom-
plete what you’ve typed thus far, which is useful if you can’t remember exactly what a func-
tion is called. To try this out, type pri and then press Ctrl + spacebar. You should see a list
of functions with print highlighted, as shown in Figure 2-8. Press the spacebar again to
have IDLE finish off the typing for you.

Figure 2-8:
Autocomplete of

the print
function in

IDLE.

Conditional Behaviour
Computer programs would be very dull if they always executed the same statements.
Luckily, programs can do different things depending on these conditional tests: equal (==),

C H A P T E R 2   I N T R O D U C T O R Y S O F T W A R E P R O J E C T: T H E I N S U LT G E N E R AT O R 41

not equal (!=), less than (<), greater than (>), less than or equal (<=) and greater than or
equal (>=).

In this example, you’ll make your insult generator change what it prints depending on the
age of the user. To achieve this conditional behaviour, you’ll tell the program to do one thing
if something is true, or if not true, do something else. As a quick test of conditional behav-
iour enter the following code in an empty file:

age = 12

if (age < 16):

 print (“young”)

else:

 print (“old”)

Run the program and you should find it prints young. Change the age variable to be larger
than 15 and run the program again. This time it should print old.

Note that these print statements are indented by typically four spaces or a tab from the
beginning of the line. Unlike some other languages, indentation matters in Python. If you
don't get spaces in the right place, either Python gets confused and raises an error, or your
program won't do what you expect! You should always indent code properly.

Create a Stream of Insults!
In the next part of this project, you’re going to change the program to produce multiple
insults, which is a good example of the use of functions. You’re going to define your own
function that you can call whenever you want an insult, and then create a loop that calls the
function multiple times.

Making Your Own Functions
You define functions in Python by writing def (for definition) followed by the name of the
function and the parameters it takes and a colon (:), followed by the indented body of the
function.

As a simple example, enter the following in an interactive Python window to define a simple
function that will print a personalised greeting:

def printHelloUser (username):

 print (“Hello “ + username)

R A S P B E R R Y P I P R O J E C T S42

Note that the body of the code is indented. This shows that it is still part of the function on
the previous line. Also note that there are no spaces in the function names. Including spaces
would confuse the computer, so programmers separate words by using capitals in the middle
(like printHelloUser in the example). Some programmers call this camel case because the
capital letters in the middle of a word are like humps on the back of a camel.

Python doesn’t care what you call your functions, but other programmers will! So if you want
other people to use your code, you should follow conventions.

Now enter the following to call the function you just defined:

printHelloUser(“Fred”)

You’re now ready to use what you’ve learned in this chapter to write a printInsult func-
tion. To begin, enter the following code in an interactive Python window, remembering the
indentation:

from random import choice

def printInsult (username, age):

 adjectives = [“wet”, “big”]

 nouns = [“turnip”, “dog”]

 if (age < 16):

 ageAdjective = “young “

 else:

 ageAdjective = “old “

 print (username + “, you are a “ +

 ageAdjective + choice(adjectives) +

 “ “ + choice(nouns))

Now, whenever you need a personalised insult you can just call printInsult, with your
victim’s name and their age, and it will produce one on demand! So, to insult 10-year-old
Fred, you would write the following code line:

printInsult(“Fred”,10)

And Python would print something like this:

Fred, you are a young wet turnip

C H A P T E R 2   I N T R O D U C T O R Y S O F T W A R E P R O J E C T: T H E I N S U LT G E N E R AT O R 43

Call the printInsult function with the names and ages of some of your friends and
family!

Creating Loops
Loops are great when there’s repetition in a task. To try this out, you’re going to create a
program that loops around a few times, each one producing another insult. You’ll look at two
variations of loops: a for loop and while loop. Both have a test that determines if the code
in the loop body should be run again, or if the program should skip the loop body and con-
tinue. A for loop is typically used as a counting loop, where code needs to be run for a par-
ticular number of times – for example, for six times. A while loop tends to be used while a
condition is true – for example, while a user wants to continue running the program.

for Loop
Type the following code to loop for each item in the adjectives list and print it out:

adjectives = [“wet”, “big”]

for item in adjectives:

 print (item)

The indented code, print (item), is the body of the loop that is repeated on each iteration
(loop). for item in adjectives: sets up the loop and tells Python to loop for each item
in the adjectives variable. On each iteration, the next value from the list is placed in the
item variable.

So, to print “hello world” three times you write this:

for count in [1, 2, 3]:

 print (“loop number “,count)

 print (“hello world”)

You can use commas to separate multiple items for printing.

You can use range instead of typing every number in a list. Type

list(range (10))

R A S P B E R R Y P I P R O J E C T S44

In Python 2 range returns a list. In Python 3 you need to tell it specifically when you want it
to return a list – this is not necessary within a for statement.

Python returns the list of numbers from 0 to 9:

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

You can also give range two arguments – a start and an end – like this:

range (5,15)

You will use a for loop with a range to test the printInsult function. In the same interac-
tive Python window where you defined printInsult(), enter the following code:

for testAge in range (14,18):

 print (“age: “ + str(testAge)

printInsult(“Monty”,testAge)

Python prints the following:

age: 14

Monty, you are a young big turnip

age: 15

Monty, you are a young big dog

age: 16

Monty, you are a old big dog

age: 17

Monty, you are a old wet dog

while Statement
Let’s look at an example while loop. Type the following code and run it. It will loop and keep
printing an insult until you type no.

userAnswer=””

while (userAnswer!=”no”):

 printInsult(“Eric”,20)

 userAnswer = raw_input(“can you take any more?”)

C H A P T E R 2   I N T R O D U C T O R Y S O F T W A R E P R O J E C T: T H E I N S U LT G E N E R AT O R 45

!= means not equal, so the while loop repeats whilst the variable userAnswer is not
equal to no. After printing an insult the code gets input from the user and updates the
userAnswer variable ready for the test before the start of the next loop.

raw_input was renamed input in Python 3.

Consider what the loop would look like if you didn’t create a function – you’d have to include
all the code inside the loop body. This makes the code harder to read, and means you’d have
to retype it in each of these examples!

If your program gets stuck in an infinite loop, a loop that never ends, you can stop your program
by pressing Ctrl + C.

Putting It All Together
You should now have a program that generates a torrent of insults! This chapter has covered
the basics of programming in Python. Look at each line in the examples and see if you under-
stand what each part does. Then, to personalise your program, you could make it produce
different insults depending on the user’s name. For example, you could make it say some-
thing nice only if your name is entered, or you could change the number of insults it gener-
ates depending on the user or their age (such as a younger brother). You could print “really
old” for people over a certain age, or if you’re clever¸ you could use a loop to print an addi-
tional “really ” for every decade someone has been alive.

The main thing is to not be afraid of changing things to see what happens. Just as you can’t
learn to paint without practising, you won’t learn how to program without experimenting.
Throughout this book, there are ideas to change the projects to make them your own and to
make the computer do what you want it to do.

Part II

Software
Projects

Chapter 3  Tic-Tac-Toe

Chapter 4  Here’s the News

Chapter 5  Ping

Chapter 6  Pie Man

Chapter 7  Minecraft Maze Maker

Chapter 3
Tic-Tac-Toe

by Mike Cook

In This Chapter

❍	 Learn more about lists

❍	 Make a list of lists

❍	 Understand what a test harness is

❍	 Get robust user input

❍	 Implement increasingly sophisticated levels of artificial
intelligence

R A S P B E R R Y P I P R O J E C T S50

TIC-TAC-TOE IS BETTER known as noughts and crosses in Europe. So when the 1956
American TV show Tic Tac Dough, which had a theme tune that followed the rhythm of those
words, was transferred to the U.K., they changed the name to Criss Cross Quiz to keep the
same rhythm and because no one in the U.K. knew the game as tic-tac-toe. On U.S. TV the
show was revived in 1978 and in 1980 became one of the first TV shows to have its graphics
generated by a computer. Each square was controlled by one Apple II computer, with the
whole array being controlled by an Altair 8800 computer system. So it is perhaps fitting that
tic-tac-toe should be the subject of this book’s first software project. In fact, I made a noughts
and crosses automatic playing machine simply out of multipole switches and flashlight bulbs
way back in the mid-60s for a school open day.

I am sure that you know how to play tic-tac-toe, but just in case this book reaches places
where it is not a familiar game, I’ll go over how it is played. The game is played on a 3 X 3 grid
formed by drawing two horizontal lines and two vertical lines. Two players in turn mark an
empty square with a cross or a zero. The first player to have three of their marks in a line is
the winner. The line can be horizontal, vertical or diagonal.

Tic-tac-toe is an ideal game for learning how to program because it uses so many concepts that
are useful in computer programming, as well as having the virtue that it can be built up gradu-
ally in a step-by-step manner. This is the way that all projects should be developed, one small
step at a time. Nobody writes a large program and then runs it for the first time, except perhaps
beginners. This is because by writing small and testing, you drastically reduce where any errors
can be. If your first bit has no errors, when you write the next bit, and suddenly there is an
error, then it is almost certain that your error lies in the code you have just written.

Errors
When you write code you can make two sorts of errors: The first sort, known as a syntax error, is
when the computer can’t make sense of the instructions you have given it. Examples of these
types of errors are spelling variable names incorrectly, not adhering to the same uppercase and
lowercase mix in variables and not getting the format of a command correct, such as forgetting
to add a colon. The second sort, known as a logical error, is much harder to spot. These errors are
when the computer does exactly what you told it to do, but what you told it to do was not exactly
what you wanted it to do. Logical errors can be the hardest to find. This often fools beginners
because, when the computer is finished complaining about errors, they expect a program to run
like they thought they wrote it. In this case logical errors are caused by the programmer’s think-
ing more like a human and not enough like a computer. The more experienced you get, the better
you will become at avoiding these errors, but it is human nature that you will never be entirely
free of them; you will just get better at spotting them and tracking them down.

It is important to realise that there is no one correct way to write a program, despite what
some programmers might want to think. The forums are full of raging arguments as to the
best style and technique to use, but do not be intimidated by this. Good code is code that

C H A P T E R 3   T I C - T A C - T O E 51

does what you want it to. Better code is code that does this in a concise, easy-to-understand
way. After that you get some code that is more memory efficient, some that is more efficient
in the number of code lines it uses and others that execute faster. Do not get bogged down by
this; code that takes a 0.25 second to run between user inputs is totally indistinguishable
from code that takes 0.25uS to run. However, context is everything, so code that takes 25
seconds to run will win a lot less friends than 0.25 second code.

Making a Start
In the preceding chapter, “Introductory Software Project: The Insult Generator”, you can see how
you could make a list of words, such as nouns and verbs, for the insult generator. Lists are very
useful, and you will use them many times in programming. In this chapter you will use a list to
represent the tic-tac-toe playing board. Each position in the list represents a square, and the
contents of each position represents the contents of the square. This is shown in Figure 3-1.

Figure 3-1:
The relationship
of the board to
the list.

So the first thing you need to do is write a function that will print out the board on the
Python text console. This is the sort of thing that was done before the widespread use of
graphics windows, and is a lot simpler to cope with. Basically, you need to output each square

R A S P B E R R Y P I P R O J E C T S52

on the board but print on a new line when you have outputted squares 2 or 5. This first pro-
gram is shown in Listing 3-1. Remember, all the code listings for the book can be found at
www.wiley.com/go/raspberrypiprojects.

Listing 3-1  Printing the Simple Tic-Tac-Toe Board
#!/usr/bin/env python
Tic-Tac-Toe 1 - print board

board = [‘O’, ‘X’, ‘ ‘, ‘O’, ‘ ‘, ‘X’, ‘O’, ‘X’, ‘X’]
def printBoard():
 print
 for square in range(0,9):
 print board[square],
 if square == 2 or square == 5 :
 print
 print

if __name__ == ‘__main__’:

 printBoard()

This is a simple for loop that prints out the contents of the board list one at a time. The print
statement ends in a comma that means that it will not go onto a new line. The variable square
will range through all the positions in the list and when it reaches 2 or 5 an extra print state-
ment is executed. This time it is without a comma at the end, so a new line is produced.

A Better Board
Although Listing 3-1 fulfills the desire of printing out the board, it could be improved by add-
ing a grid using some text characters. This is shown in Listing 3-2.

Listing 3-2  Printing a Better Tic-Tac-Toe Board
#!/usr/bin/env python
Tic-Tac-Toe 2 - print a better board

board = [‘O’, ‘X’, ‘ ‘, ‘O’, ‘ ‘, ‘X’, ‘O’, ‘X’, ‘X’]
def printBoard():
 print
 print ‘|’,
 for square in range(0,9):
 print board[square],’|’,
 if square == 2 or square == 5 :
 print
 print ‘- - - - - - -’
 print ‘|’,

C H A P T E R 3   T I C - T A C - T O E 53

 print
 print

if __name__ == ‘__main__’:

 printBoard()

This makes the board look a whole lot better by emphasising the blank squares.

Checking for a Win
Next you need a function that checks if the board shows a win for a player. With an eye on
what is needed later on, you need to write it so that you pass into the function the player’s
symbol that you want to test for. Also you need a list of the squares that constitute a win. In
fact there are eight ways to win, so you need a new concept – a list of lists. To see how this
works, look at Listing 3-3.

Listing 3-3  Checking the Tic-Tac-Toe Board for a Win
#!/usr/bin/env python

Tic-Tac-Toe 3 - check for win

board = [‘O’, ‘X’, ‘ ‘, ‘O’, ‘ ‘, ‘X’, ‘O’, ‘X’, ‘X’]

wins = [[0, 1, 2], [3, 4, 5], [6, 7, 8], [0, 3, 6], [1, ;

4, 7], [2, 5, 8], [0, 4, 8], [2, 4, 6]]

def checkWin(player):

 win = False

 for test in wins :

 print test

 count = 0

 for squares in test :

 if board[squares] == player :

 count +=1

 if count == 3 :

 win = True

 return win

if __name__ == ‘__main__’:

 print ‘Checking board for X’

 if checkWin(‘X’):

 print ‘Game over X wins’

 print ‘Checking board for O’

 if checkWin(‘O’):

 print ‘Game over O wins’

R A S P B E R R Y P I P R O J E C T S54

The list called wins consists of eight items, and each item is a list of three of the square num-
bers that constitute a win. The way you drive this is with the loop variables in the for state-
ments. The first statement

for test in wins :

makes the variable called test take on the value of each of the sublists in turn. Then, when
it comes to the for statement

for squares in test :

which is nested inside the first one, the variable squares will take on the values, in turn, of the
squares that you need to fill with one symbol to get a win. What happens now is that if the
board’s symbol matches the one you are looking for, a count is incremented. If that count
reaches a value of three, the board has a win for that player. The logic variable win is set initially
to false, but if a win is detected, it is changed to true. It is this variable that is returned to the
calling program. The last part of the listing simply exercises the checkWin() function by call-
ing it to check for each playing symbol in turn. For the way the board list is set up, there is a win
for the O player. You can change the board list to have a win for the X player if you like.

More Infrastructure
The last pieces of infrastructure you need are a function to clear the board for a fresh game
and one that checks if any new moves can be made. These are quite simple and are shown in
Listing 3-4.

Listing 3-4  Utility Functions
def wipeBoard() :

 global board

 for square in range(0, len(board)) :

 board[square] = ‘ ‘

def canMove(): # see if move can be made

 move = False

 for square in range(0, len(board)) :

 if board[square] == ‘ ‘:

 move = True

 return move

C H A P T E R 3   T I C - T A C - T O E 55

This just shows the function itself without any test harness. Test harness is the software term
used by software engineers to describe temporary code that exists only to test functions in
isolation. It is an important part of the process of developing a project to be able to test func-
tions in isolation from the rest of the code. This is because you can then feed the function
with all sorts of conditions that might not happen very often when the function is run as
part of the normal code.

The wipeBoard function simply puts spaces in every position in the board. Here the statement

for square in range(0, len(board)) :

generates the loop variable square as just a sequence of numbers. Rather than just put the
last number in the range as 16, you have used the len() function, which works out the
length of the list. This means that it will work with any size board and hence any length list.

You might think the canMove() function is not necessary, but one situation that
checkWin() cannot cope with is when there are no more spaces left on the board – which is
why you need canMove(). Initially the move variable is set to be false. Then it visits each
square on the board; if it sees a blank space, it sets the move variable to true. It doesn’t matter
if this variable is set to be true once or fifteen times, and it is often simpler in programming to
let things run on like this rather than try to stop when you find the first instance of a blank
square.

A Two-Player Game
Now it is time to put the code pieces together and make a program that can run a two-player
game. That is, there are two human players, each taking a turn to enter his or her move. The
computer keeps track of the moves, prints out the board after each move and checks if one
player has won or if it is a draw. There is, however, just one more thing you need to consider
before proceeding.

When representing the board as a list, the elements of the list, as always, start off with the
first item position number of zero. Most noncomputer people are not happy with a number
zero, so as a sop to them you shall be representing the positions on the board as numbers 1
to 9. Therefore, whenever a number is input from a player, the program has to adjust this
number to match the internal representation of the position. True, this involves only adding
or subtracting one from the number, but you need to remember to do this each time a num-
ber is presented to a player. As a reminder of the numbering system the board list is ini-
tialised to represent the number of each square before being wiped prior to beginning the
game. This is shown in the two-player version of the game, shown in Listing 3-5.

R A S P B E R R Y P I P R O J E C T S56

Listing 3-5  Two-Player Tic-Tac-Toe Game
#!/usr/bin/env python

Tic-Tac-Toe 5 - 2 player game

board = [‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’, ‘9’]

wins = [[0, 1, 2], [3, 4, 5], [6, 7, 8], [0, 3, 6],;

 [1, 4, 7], [2, 5, 8], [0, 4, 8], [2, 4, 6]]

def play() :

 printBoard()

 print ‘Tic-Tac-Toe’

 print ‘two players’

 while True :

 wipeBoard()

 player_turn = ‘X’

 while checkWin(swapPlayer(player_turn)) == False ;

 and canMove() == True :

 getMove(player_turn)

 printBoard()

 player_turn = swapPlayer(player_turn)

 if checkWin(swapPlayer(player_turn)):

 print ‘Player’,swapPlayer(player_turn),’wins ;

... New Game’

 else:

 print ‘A draw. ... New game’

def swapPlayer(player):

 if player == ‘X’ :

 player = ‘O’

 else:

 player = ‘X’

 return player

def getMove(player):

 global board

 correct_number = False

 while correct_number == False :

 square = raw_input(‘Square to place the ‘+ player + ‘ ‘)

 try:

 square = int(square)

 except:

 square = -2

 square -= 1 # make input number match internal numbers

 if square >= 0 and square < 10 : # number in range

 if board[square] == ‘ ‘ : # if it is blank

C H A P T E R 3   T I C - T A C - T O E 57

 board[square] = player

 correct_number = True

 else:

 print ‘Square already occupied’

 else :

 print ‘incorrect square try again’

def wipeBoard() :

 global board

 for square in range(0, len(board)) :

 board[square] = ‘ ‘

def printBoard():

 print

 print ‘|’,

 for square in range(0,9):

 print board[square],’|’,

 if square == 2 or square == 5 :

 print

 print ‘- - - - - - -’

 print ‘|’,

 print

 print

def canMove(): # see if move can be made

 move = False

 for square in range(0, len(board)) :

 if board[square] == ‘ ‘:

 move = True

 return move

def checkWin(player):

 win = False

 for test in wins :

 count = 0

 for squares in test :

 if board[squares] == player :

 count +=1

 if count == 3 :

 win = True

 return win

if __name__ == ‘__main__’:

 play()

R A S P B E R R Y P I P R O J E C T S58

This contains three functions you have not seen before – play(), swapPlayer() and
getMove(). Look at the simplest one first, swapPlayer(): All this does is return a player’s
symbol, which is not the symbol passed into it. Although this might seem like a trivial thing
to do, this action is required at many different parts of the code, which is why it warrants
being built into a function.

The getMove() function might look more complex than you might expect. This is because
there is a lot of code designed to make sure that a valid number is entered by the user. If you
could trust the user to enter a valid square number, this would all be unnecessary – but you
can’t, so it is necessary.

Chapter 2 uses the raw_input function but only to input a name; here you want to input a
number. So first you have to check that it is a number that has been entered and then that the
number represents a square that doesn’t already have a symbol in it. Therefore the structure
used in this function is a while loop that keeps repeating until a valid number has been
entered. After getting something from the user you must check that it is a number; this can be
done with the int() function, which turns a text input into a number (an integer in this case).
If this can’t be done because the user has typed in some alphabetical or punctuation characters,
the program will crash and print out an error message, and you don’t want that to happen.
Therefore you use a new function structure try, which allows the program to check if the code
is going to throw an error; if so, the program jumps to the except label, where you set the vari-
able to an out-of-range number so that it can be rejected later on in the function. Then you test
if the variable is within the range of the board. Finally, you check to see if that space is actually
free to take a symbol. Only when this final test is passed do you actually make the move on the
board and set the variable correct_number to true, which stops the while loop from repeat-
ing. Otherwise, a hopefully helpful error message is relayed to the user.

The play() function orchestrates the whole game. First the board is printed out, which, as
mentioned before, contains the square numbering identification information. Then you
enter an endless loop which repeatedly plays a game. It starts off by wiping the board and
setting the first player as X. The individual game is contained in the while loop that keeps
on going until there is a winner or there are no more blank squares to use. The player’s move
is then made and the board printed again, and then you swap the player for the next move.
The code then loops around to the while function, but as you have already swapped the
player in anticipation of the next round, when you call the checkWin() function as part of
the while tests you must call it for the player who has just gone – hence the use of the
swap_player() function in the calling parameter of the checkWin() function. When one
player has won or the free squares have run out, the while loop stops, and the code tests for
a win; if a win is found, the winning player is printed. However, if there is not a win, the
game must have been a draw, so that is printed out. Then a new game is started. When the
users want to quit the game they should press the Ctrl and C keys together.

C H A P T E R 3   T I C - T A C - T O E 59

Getting the Computer to Play
While you now have the computer keeping track of the game, it is not much more than a
glorified piece of paper. The fun starts when you get the computer to generate moves in place
of one of the players. There are many levels you can do this at, ranging from the computer
giving you a poor playing opponent to one of the computer being invincible. Of course, play-
ing a computer at each end of this range is not as much fun as playing one somewhere in the
middle. In this section you will look at several ways you can make the computer an increas-
ingly skillful opponent. Because the behaviour that programs like this exhibit often looks like
there is some intelligence at play, this sort of programming is often known as artificial intel-
ligence, or AI for short. Although I regularly maintain that artificial intelligence is the ability
some students have of passing exams without actually understanding very much.

The Computer As a Five Year Old
In the first level of AI, the computer knows the rules but not much else. It can play the game
but has no strategy and can only make a winning move by chance. To do this, the computer
must gather a list of valid moves and choose one at random. Functions to do this are shown
in Listing 3-6.

Listing 3-6  A Computer Opponent Tic-Tac-Toe Game
#!/usr/bin/env python

Tic-Tac-Toe 6 - play against the computer random move

from random import shuffle

def play() :

 global board

 print ‘Tic-Tac-Toe’

 print ‘play against the computer AI level 0’

 printBoard()

 while True :

 wipeBoard()

 player_turn = ‘X’

 while checkWin(swapPlayer(player_turn),board) == False;

 and canMove() == True :

 if player_turn == ‘X’:

 getMove(player_turn)

 else:

 generateMove()

 printBoard()

 player_turn = swapPlayer(player_turn)

 if checkWin(swapPlayer(player_turn),board):

continued

R A S P B E R R Y P I P R O J E C T S60

Listing 3-6  continued
 print ‘Player’,swapPlayer(player_turn),’wins ;

... New Game’

 else:

 print ‘A draw. ... New game’

def generateMove():

 global board

 moves = list()

 for squares in range(0, len(board)):

 if board[squares] == ‘ ‘ :

 moves.append(squares)

 shuffle(moves)

 board[moves[0]] = ‘O’

 print ‘My move is ‘,moves[0] +1

Note here that I have only shown the first three functions as all the other functions remain
the same. The first thing to spot is the use of the random library

from random import shuffle

This imports the random function shuffle, which you will use to rearrange a list of valid
moves into a random order so that the game played by the computer varies. The play
function is much as before, but where it differs is when it is player O’s move – then the
generateMove() function is called. This function starts off by defining a list called moves,
which at first is empty. Then a for loop visits every square on the board, and if a square is
blank it appends the square’s number to the moves list. The shuffle function is used on
the list to get it into a random order, and, as you are only interested in using one move you
select the first number in that list, the one at position zero. Next, the move is actually made,
and the board is changed. Finally the move number is printed out. Note here that the num-
ber printed out is one more than the square’s number because, as mentioned before, you are
representing the squares for the user as 1 to 9 whereas the computer sees them as 0 to 8.

Teaching the Computer to Recognize a Winning Move
So whereas Listing 3-6 plays an entertaining game, it is all very hit and miss; when you play
it it feels more like miss than hit. Therefore what you want to do is add a bit of strategy to the
computer’s play. It would be good if the computer could spot a move that would cause it to
win. This is quite easily achieved by looking at the results of making the move in each blank
square in turn, and seeing if a win results. As you already have a function that checks for a
win this is not too difficult. Similarly, it would be good if the computer could spot that its
opponent is able to make a winning move and if so then move in that place to block them.

C H A P T E R 3   T I C - T A C - T O E 61

After that you can just let the computer pick a random move like before. The new and
changed functions to do this are shown in Listing 3-7.

Listing 3-7  Computer Opponent Level 1 Tic-Tac-Toe Game
#!/usr/bin/env python
Tic-Tac-Toe 7 - play against the computer AI level 1
def generateMove():
 if canIwin():
 pass
 elif canYouWin():
 pass
 else:
 randomMove()

def randomMove():
 global board
 moves = list()
 for squares in range(0, len(board)):
 if board[squares] == ‘ ‘ :
 moves.append(squares)
 shuffle(moves)
 board[moves[0]] = ‘O’
 print ‘My move is ‘,moves[0] + 1

def canIwin():
 global board
 testBoard = board
 moveMade = False
 for square in range(0, len(board)) :
 if testBoard[square] == ‘ ‘ and moveMade == False:
 testBoard[square] = ‘O’
 if checkWin(‘O’,testBoard):
 board[square] = ‘O’
 moveMade = True
 print ‘My move is ‘,square + 1
 else:
 testBoard[square] = ‘ ‘ # retract move
 return moveMade

def canYouWin():
 global board
 testBoard = board
 moveMade = False

continued

R A S P B E R R Y P I P R O J E C T S62

Listing 3-7  continued
 for square in range(0, len(board)) :
 if testBoard[square] == ‘ ‘ and moveMade == False:
 testBoard[square] = ‘X’
 if checkWin(‘X’,testBoard):
 board[square] = ‘O’
 moveMade = True
 print ‘My move is ‘,square + 1
 else:
 testBoard[square] = ‘ ‘ # retract move
 return moveMade

Again, I am just showing the functions that have changed. This time the generateMove()
function is a little more structured. It first calls the canIwin() function as part of an if
statement; when this returns true there is nothing else you want to do. However, Python will
throw an error if there is no line there, so you must use the dummy statement pass. As its
name implies pass does nothing but tells the computer specifically you want to do nothing
and that you haven’t just made a mistake. However, if the function returns false – that is, it
cannot win – it then calls the canYouWin() function. Note here the elif keyword, a con-
catenation of else if, which means it is an if statement that controls whether the line
following it gets executed. In the event of none of these two functions producing a true
value, the final else calls the randomMove() function, which contains the code you used
last time for generating a valid, but random, move.

The canIwin() function itself first makes a copy of the board, and then visits every square
and puts the O symbol in it. After that, it checks for a win. If this returns as true, that move
is made to the real board, and the moveMade variable is set to true to stop it from making
any more moves. Finally, the move that has just been made is printed out. If the trial move
returns false, the move is retracted by placing a blank in the place where the O was just tried.
If you look now at the canYouWin() function, this is just the opposite; it scans the board,
placing an X in each blank square. If it finds that one of these trial moves will result in a win
for the human opponent, it uses this position to place its O, thus blocking the winning move.
If you examine the code you wrote for those two functions, you will see that they are nearly
identical. When you find this happening it is good to shorten the code by consolidating the
two functions into one. You will see that the main difference is the symbol being used. When
this happens, as a general rule you make the symbol into a variable, enclose one of the func-
tions in a for loop and use the loop index to switch over the variable. This is shown in
Listing 3-8; give it a new, more descriptive name of win_block().

Listing 3-8  Consolidating the Two Win Check Functions
def generateMove():
 if win_block():
 pass

C H A P T E R 3   T I C - T A C - T O E 63

 else:
 randomMove()

def win_block(): #move to win or block
 global board
 testBoard = board
 players = [‘O’,’X’]
 moveMade = False
 for moveTry in players:
 for square in range(0, len(board)) :
 if testBoard[square] == ‘ ‘ and moveMade == False:
 testBoard[square] = moveTry
 if checkWin(moveTry,testBoard):
 board[square] = ‘O’
 moveMade = True
 print ‘My move is ‘,square + 1
 else:
 testBoard[square] = ‘ ‘ # retract move
 return moveMade

You will see that the name is changed, as is the code in the generateMove() function. All
the other functions remain unchanged. The main addition to the function is the extra list
named players, which contains the two symbols to use. Then the extra for loop selects
one of these symbols on each pass by the variable moveTry.

The section “Errors” at the start of this chapter discusses logical errors; developing the win_
block function initially produced one of these errors. When I wrote the first draft of this
function, the loop that changed what symbol was being used was placed on the other side of
the next for loop. This actually appeared to work until I spotted that sometimes the pro-
gram would ignore a winning move in favor of blocking the opponent. It turned out that this
was because each square was being tested first – for the computer’s symbol and then for the
opponent’s. This meant that if the computer found a blocking move first it would choose
that. Therefore, I needed to move the for moveTry statement to its current position so
that all the winning moves were scanned before the blocking moves were looked at.

Adding Some Strategy
At this point the game is being played with a modicum of intelligence but still no strategy. You
need to devise a playing strategy to use. A strong one but by no means the only one is shown in
Figure 3-2, which shows the sort of choices that are made when picking a move. Basically after
checking for a winning or blocking move, if there are corners free, then pick one, or if the centre
is free, pick it; finally, if none of the previous conditions applies, pick one of the sides.

R A S P B E R R Y P I P R O J E C T S64

Figure 3-2:
A flow diagram
of move choice.

C H A P T E R 3   T I C - T A C - T O E 65

Flow diagrams are a bit out of favor nowadays, but as their name implies, they are good for
showing the flow of an algorithm and the decisions that have to be made. One problem is
that it can be much harder, with today’s programming languages and structures, to translate
the flow directly into code. However, for beginners I still feel there is great merit in these
diagrams, especially relatively short flow diagrams. Anything in a diamond requires a deci-
sion, and there are two or more possible changes in the flow depending on that decision.
Now these sorts of statements are fine when you are describing the strategy to another
human being, but when you write code you have to be more specific. The way I have decided
to implement this is to write a function that is given a list of possible moves; the function
will check this list to see if the board is free to take one or more of these moves, and
pick a random move from the list if it is. Most of the logic to do this was used in the
randomMove() function. The new functions to do this are shown in Listing 3-9.

Listing 3-9  An Intelligent Move Strategy
def generateMove():

 if win_block():

 pass

 elif prefMove([0,2,6,8]): # corners

 pass

 elif prefMove([5]): # centre

 pass

 else:

 prefMove([1,3,5,7]) # middle row

def prefMove(moves):

 global board

 moved = False

 move = list()

 for potential in moves:

 if board[potential] == ‘ ‘:

 move.append(potential)

 if len(move) != 0:

 shuffle(move)

 board[move[0]] = ‘O’

 print ‘My move is ‘,move[0] + 1

 moved = True

 return moved

Again I have only shown the functions that have changed. The big change this time is the
prefMove() function. This is passed a list of preferred moves from the generateMoves()
function; notice this is a list, and it is given in square brackets inside the curved brackets.
After the win_block() function is called, a list of all the corners is passed. If that does not

R A S P B E R R Y P I P R O J E C T S66

result in a move, a list of all the centre squares is passed. Of course, there is only one centre
square, so it is a short list, but the important thing is that it is a list, and the same logic can
operate on it all the same. Finally a list of squares in the middle of each row is passed to the
prefMove() function. This works just like the randomMove() function, which is no longer
needed, in that it examines the state of the board for each square in the list, and compiles a
list of free squares – that is, ones without symbols already in them. Then prefMove shuffles
the list and chooses the first element. This produces a good game but one that is possible to
beat if the random moves chosen are not the right ones. Nevertheless, it is fun to play and
good practice in developing the playing strategy even further.

Refining the Computer’s Strategy
Because the game of tic-tac-toe is relatively short, it turns out that the first move the com-
puter makes is vital in its success, so in this next version you refine the move choice for the
first move only. Basically, if the human player opened by playing a corner, the computer
must respond with the opposite corner if it is to prevent the human from winning. As it is,
sometimes this happens by the random choice of corner, but not always. Also, if the human
opens with a middle row square, the response should be an adjacent corner square. The
whole listing, with all the functions in it this time, is shown in Listing 3-10.

Listing 3-10  An Improved Computer Playing Strategy
#!/usr/bin/env python
Tic-Tac-Toe 10 - play against the computer AI level 3
from random import shuffle

board = [‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’, ‘9’]

wins = [[0, 1, 2], [3, 4, 5], [6, 7, 8], [0, 3, 6], ;
[1, 4, 7], [2, 5, 8], [0, 4, 8], [2, 4, 6]]

def play() :
 global board

 print ‘Tic-Tac-Toe’
 print ‘play against the computer AI level 3’
 printBoard()
 while True :
 wipeBoard()
 move = 0
 player_turn = ‘X’

 while checkWin(swapPlayer(player_turn),board) == ;
False and canMove() == True :
 if player_turn == ‘X’:
 getMove(player_turn)
 move +=1

C H A P T E R 3   T I C - T A C - T O E 67

 else:
 generateMove(move)
 printBoard()
 player_turn = swapPlayer(player_turn)
 if checkWin(swapPlayer(player_turn),board):

 print ‘Player’,swapPlayer(player_turn),’wins ;
... New Game’
 else:
 print ‘A draw. ... New game’

def generateMove(move):
 corners = [0, 2, 6, 8]
 opposite = [8, 6, 2, 0]
 side = [1, 3, 5, 7]
 adjacent = [0, 6, 2, 8]
 if move == 1:
 moved = False
 for square in range(0,4):
 if board[corners[square]] == ‘X’:
 moved = prefMove([opposite[square]])
 for square in range(0,4):
 if board[side[square]] == ‘X’:
 moved = prefMove([adjacent[square]])
 if not moved :
 prefMove([0,2,6,8]) # corners
 else:
 if win_block():
 pass
 elif prefMove([0,2,6,8]): # corners
 pass
 elif prefMove([5]): # centre
 pass
 else:
 prefMove([1,3,5,7]) # middle row

def prefMove(moves):
 global board
 moved = False
 move = list()
 for potential in moves:
 if board[potential] == ‘ ‘:
 move.append(potential)
 if len(move) != 0:
 shuffle(move)

continued

R A S P B E R R Y P I P R O J E C T S68

Listing 3-10  continued
 board[move[0]] = ‘O’
 print ‘My move is ‘,move[0] + 1
 moved = True
 return moved

def win_block(): #move to win or block
 global board
 testBoard = board
 players = [‘O’,’X’]
 moveMade = False
 for moveTry in players:
 for square in range(0, len(board)) :
 if testBoard[square] == ‘ ‘ and moveMade == False:
 testBoard[square] = moveTry
 if checkWin(moveTry,testBoard):
 board[square] = ‘O’
 moveMade = True
 print ‘My move is ‘,square + 1
 else:
 testBoard[square] = ‘ ‘ # retract move
 return moveMade

def swapPlayer(player):
 if player == ‘X’ :
 player = ‘O’
 else:
 player = ‘X’
 return player

def getMove(player):
 global board
 correct_number = False
 while correct_number == False :
 square = raw_input(‘Square to place the ‘+ player + ‘ ‘)
 try:
 square = int(square)
 except:
 square = -2

 square -= 1 # make input number ;
match internal representation
 if square >= 0 and square < 10 : # number in range
 if board[square] == ‘ ‘ : # if it is blank
 board[square] = player

C H A P T E R 3   T I C - T A C - T O E 69

 correct_number = True
 else:
 print ‘Square already occupied’
 else :
 print ‘incorrect square try again’

def wipeBoard() :
 global board
 for square in range(0, len(board)) :
 board[square] = ‘ ‘

def printBoard():
 print
 print ‘|’,
 for square in range(0,9):
 print board[square],’|’,
 if square == 2 or square == 5 :
 print
 print ‘- - - - - - -’
 print ‘|’,
 print
 print

def canMove(): # see if move can be made
 move = False
 for square in range(0, len(board)) :
 if board[square] == ‘ ‘:
 move = True
 return move

def checkWin(player,board):
 win = False
 for test in wins :
 count = 0
 for squares in test :
 if board[squares] == player :
 count +=1
 if count == 3 :
 win = True
 return win

if __name__ == ‘__main__’:
 play()

R A S P B E R R Y P I P R O J E C T S70

Here, the only changes from the earlier listings are to the play() and generateMove()
functions, but the program is shown in its entirety. The play() function is changed to keep a
count of the number of moves that have been made, and this number is passed to the generate
Move() function. If the move number is anything other than one, the move-picking strategy is
the same as before. However, if it is the first move the computer has made, it responds in a dif-
ferent way. There are four lists containing the corners and the corresponding opposite corners,
along with the side squares and the corresponding adjacent squares to play in response. Note
that these adjacent squares are also corners, but this is of no importance here. Also, every side
square has two adjacent corner squares, but it doesn’t matter which one is picked. Finally, if the
human player opens with the centre square, the computer just picks one of the corners.

The way this works is that for each move and its response, a list is generated. Then the move
list is stepped through one square at a time, looking for the human player’s symbol in
each square. If it is found, the corresponding element of the response list is passed to the
prefMove() function. As this element is a list whose length is only one, it gets picked.
There is no point writing a new function when an existing function will suffice. The same is
done for the side moves. Note as this only is performed on the first move, there is only one
X symbol to find. This plays a pretty mean game that I think can’t be beaten.

Over to You
Well, it is now over to you; it’s time to add your own improvements and embellishments. You
might want to improve on how the board looks by printing more characters and giving it more
space. On the other hand, you might want it to print quickly and revert to the simpler board
you started with. You might not want to print out the board after each move, but only when
both you and the computer have moved. The numbering of the board is conventional, but per-
haps you want to change this to match the locations of the numbers on the numeric keypad on
your keyboard – that is, if you have one. That would mean the top-left square would be 7, and
lower-right one would be 3. You can change it in the input section simply by using a list as a
lookup table; don’t forget to also use another lookup table to translate when the computer
prints out its move. (A lookup table is a predefined conversion between one number and
another. It is simply a list where the input value is the index of the list and the output value; the
one you want to associate with the input value is the contents of that list element.)

You will notice that the computer is polite, and it always allows you to go first. Look into
making changes to allow the computer to play first. I feel that X should always go first, but
you might look into offering a choice of symbols to the opening player as well. You can try
and change the playing strategy into giving other classes of squares first priority in place of
the corners. If you are more experienced, you might like to look up the minimax algorithm
that computes all possible moves. To do that, you have to use a recursive algorithm, which
involves a function that calls itself. These sorts of things can be very powerful but difficult to
get your head around. Perhaps that is too much at this stage; you might be better off leaving
that until you have finished the book.

Chapter 4
Here ’s the News

by Mike Cook

In This Chapter

❍	 Learn about text rendering

❍	 Make text scrolling smooth

❍	 Test the size of text before it is displayed

❍	 Generate mirror writing

R A S P B E R R Y P I P R O J E C T S72

HAVE YOU EVER tried looking into a camera and delivering a presentation to it? It’s not
easy. The eye movement has to be totally different from giving a live talk to an audience.
With a large audience you can make eye contact with many people around the room to show
that you are addressing them all, but on camera this is different. If you try the same trick, it
looks quite creepy, with your eyes swiveling about all over the place. With a camera you have
to keep your eyes still and look straight into it. Also, you might have to repeat a piece of your
presentation to the camera, so you want to be consistent. This was the problem faced by
early TV shows – getting newsreaders and actors to learn their lines at a much higher rate
than they did back in the theater. The solution they came up with in the 50s was the tele-
prompter – or autocue, depending on what side of the Atlantic you live.

Early Teleprompters
In 1950, there were paper versions of an auto prompter devised by Hubert Schlafly. He
used a paper roll of cues, or prompts, that were placed next to the camera. The technique of
using a through-the-lens system was first devised by Jess Oppenheimer three years later.
Jess was a writer, producer and director on the TV show I Love Lucy, popular worldwide, and
it quickly gained popularity with newsreaders, soap actors and sitcom comedians. The
English comedian Tony Hancock was one of the first in the U.K. to discover the system. After
a night of heavy drinking, a fall gave him a concussion that made it impossible to learn his
lines. He used an autocue, or as he called it an idiot’s board, and never learned a line again.
Sadly, this led to a demise in his performances, even heavier drinking sessions and eventual
suicide. This is a problem I don’t think is attached to this project.

The first teleprompter used rolls of paper with the words handwritten on them. They would
be wound by hand and put to one side of the lens. Then the strip was placed in front of a
closed-circuit TV camera; a monitor and diagonal piece of glass was used, allowing the cam-
era to shoot straight through the glass without seeing the words. This enabled the actor to
read the words reflected in the glass while looking directly into the camera. The monitor was
modified to give a compensating mirror image so the reflection looked the right way around.
This trick relied on the fact that whenever light passes through glass not all of it gets through;
a small amount is reflected from the surface. This is known as the reflective loss of the glass
and is normally about 4%.

With the advent of personal computers in the early 80s, teleprompters entered the digital
age. The first personal computer to be used for this was the Atari 900 in 1982. It was called
the Compu=Prompt and was invented and marketed by Courtney M. Goodin and Laurence B.
Abrams, who continued selling systems for 28 years.

C H A P T E R 4   H E R E ’ S T H E N E W S 73

The Pi Prompter
You could spend a small fortune on a teleprompter; however, it is quite easy to make one
yourself using nothing more than the Raspberry Pi, a sheet of glass and a few fixings. A
rather simplified diagram of what is needed is shown in Figure 4-1.

Figure 4-1:
The Pi Prompter.

In somewhat of a reverse of the normal procedure, I will discuss the practicalities of this
setup last, after you have the Pi producing something to display.

In essence the requirements sound simple: You need to produce large words scrolling slowly and
smoothly up the screen. You need to be able to control the speed of the scroll, and pause it if
required. The final twist is that you have to include an option to turn the words into mirror writ-
ing to compensate for any reflection from the glass, if you have that sort of a physical setup.

So here is an outline of what you need to do: Read words from a file, show them in a window
in large type and scroll them up. Then if you think about it a bit more in-depth, you need to
make sure that the words can fit on one line without overflowing it and breaking in the
middle of a word. This is not quite as easy as you might think.

Like all projects, you don’t tackle this whole task head on all at once; instead, you get bits of
it going first and build up what you want to do slowly. That is what development is all about.
So tackle this in a number of stages.

What You Need to Do
First off, you need to understand how graphics are shown on a screen. Basically what you see
on a TV monitor is a visual representation of an area of computer memory. Each pixel is a

R A S P B E R R Y P I P R O J E C T S74

memory location; the address of that memory corresponds to the position of the pixel on the
screen. The contents of that memory location correspond to the brightness and colour of the
pixel. That computer memory is called the display memory. If you have a program that is pro-
ducing something in a window, that window has its own working memory associated with it,
known here as screen memory. You can then do all your drawing, or setting of memory loca-
tions, in that memory area, and when you are finished, you can transfer the whole of that
into the display memory in one go. Copying blocks of memory from one place to another is
quite efficient in computer-processing terms. This means that the window appears to update
instantly. Another step in sophistication is that you can use a separate piece of memory to
work in, and then transfer that to your working memory in any position in the screen mem-
ory you choose. This is sometimes called a sprite system, but in Pygame software this is known
as a surface. This is illustrated in Figure 4-2.

Figure 4-2:
Pygame’s

graphic memory
model.

You can see that the display memory is the largest, as it is the whole output seen on the TV
monitor. The screen memory corresponds to the window area you have defined for Pygame
to use. Transferring data from the screen memory to the display memory is what is done
with the display update call. You can do many operations to this screen memory, such as
drawing lines, circles and rectangles. If you want to draw some text, however, it is best to do
this in the separate area of memory called a surface. In that memory you can render text,
which means to convert the text into a bitmap or graphic representation of letters. This is
done in the depths of the computer and can involve several different techniques, the easiest

C H A P T E R 4   H E R E ’ S T H E N E W S 75

of which is to use a lookup table that contains a bitmap for each letter in the font you want
to render. If you render into a separate area of memory, you can transfer that memory to any
location in the screen memory by a process Pygame calls blitting.

So armed with this knowledge you can work out a strategy for scrolling words. Render each
line of the display into its own surface memory, and then blit each surface into the screen
memory, one line above the next. The Y coordinate for each line is simply incremented in
steps of the window height divided by the number of lines. Then all the lines fit completely
within the window. If you have another number, a vertical offset, that you subtract from the
calculated Y position, then the display will have each line shown in a slightly different place.
If that offset is changed slightly and the screen redrawn repeatedly, the words will appear to
scroll up the screen. Figure 4-3 shows what is happening.

Figure 4-3:
Scrolling part 1
– the offset
value controlling
the position of
the lines.

You can see the surface memory for each line and how it lines up with the screen. Surface 0 is
entirely below the screen and so gets lost or clipped from the final display. As the offset increases
to half the height of the text surfaces, the top half of Surface 4 and the bottom part of Surface 0

R A S P B E R R Y P I P R O J E C T S76

are clipped, showing only half of the two lines. Finally when the offset is equal to the height of
the text surface, Surface 0 is fully visible, and Surface 4 is totally clipped. So the words have
scrolled one line simply by changing the offset variable at a different value in successive frames.

Okay, that is enough theory for the moment; it’s time to actually implement this in code. This is
not by any means a full, working system, but it allows us to work on this function and get it right
before going on to get closer to what you want. Listing 4-1 contains the initial scrolling code.

Listing 4-1  Scrolling 1
#!/usr/bin/env python

“””

Here is the News

A Raspberry Pi Auto Cue Test 1

“””

import time # for delays

import os, pygame, sys

pygame.init() # initialise graphics interface

os.environ[‘SDL_VIDEO_WINDOW_POS’] = ‘center’

pygame.display.set_caption(“Auto Cue test 1”)

screenWidth = 980

screenHeight =610

screen = pygame.display.set_mode([screenWidth, ;

screenHeight],0,32)

background = pygame.Surface((screenWidth,screenHeight))

segments = 4

segment = 0 # initial start place

textHeight = screenHeight / segments

textSurface = [pygame.Surface((screenWidth, ;

textHeight)) for s in range(0,segments+1)]

define the colours to use for the user interface

cBackground =(0,0,0)

cText = (255,255,255)

background.fill(cBackground) # make background colour

font = pygame.font.Font(None, textHeight)

def main():

 lines = 5

 while True :

 for i in range(0,5):

 setWords(“This is line “+str(lines-i),i)

C H A P T E R 4   H E R E ’ S T H E N E W S 77

 lines += 1

 for offset in range(0, textHeight,4):

 checkForEvent()

 #time.sleep(0.1)

 drawScreen(offset)

def drawScreen(offset) : # draw to the screen

 global segment

 screen.blit(background,[0,0]) # set background colour

 for index in range(0,segments+1):

 segment +=1

 if(segment > segments): # wraparound segment number

 segment = 0

 drawWords(segment,offset)

 pygame.display.update()

def setWords(words,index) :

 textSurface[index] = font.render(words, ;

True, cText, cBackground)

def drawWords(index,offset) :

 textRect = textSurface[index].get_rect()

 textRect.centerx = screenWidth / 2

 textRect.top = screenHeight - (textHeight * ;

index) - offset

 screen.blit(textSurface[index], textRect)

def terminate(): # close down the program

 print (“Closing down please wait”)

 pygame.quit() # close pygame

 sys.exit()

def checkForEvent(): # see if you need to quit

 event = pygame.event.poll()

 if event.type == pygame.QUIT :

 terminate()

 if event.type == pygame.KEYDOWN and ;

event.key == pygame.K_ESCAPE :

 terminate()

if __name__ == ‘__main__’:

 main()

R A S P B E R R Y P I P R O J E C T S78

Although Listing 4-1 is only a partial implementation of what you need, it is a fully working
program, so let’s look more closely at what it does and how it does it. The code starts by load-
ing in modules you need and then initialising the Pygame’s window, which needs to be large
and is going to be where the action takes place. The size is determined by variables, and
although the raw numbers could be typed into the commands where needed, this provides a
one stop shop for any changes in size you might want to make. The variable segments
determines how many lines to have on the display; as a lot of the time there will be lines
clipped, this variable is one less than the total number of surfaces you need to use. The
textSurface list is defined initially as just some blank areas of memory. Then the numbers
determining the colours of the text and the background are defined, which for now are white
text on a black background.

Moving on to the functions terminate() and checkForEvent() – these are what I call
housekeeping functions. They provide an easy way to quit an application using the window’s
close icon or by pressing Esc. Later these functions will be developed to control the applica-
tion. The simplest function is setWords(), which simply renders a line of words in a speci-
fied text surface. Again, later this will be greatly expanded as you cope with real text.

The drawWords() function takes in an index or number to identify what text surface to use,
and an offset. It then gets the rectangle associated with that surface and centers it horizon-
tally, and blits it to the screen memory in a position that depends on the index and the offset
values. This function is used exclusively by the drawScreen() function that places each
text segment, or line, on the screen. This is controlled by the segment variable, which is
constricted to the values between zero and the maximum number of text surfaces you have;
we say this number is “wrapped around”. Note here that segment and segments are two
different variables; segments defines how many you have, and segment defines the first
one to use.

The main() function simply writes five lines of text to each segment and then scrolls a line’s
worth by changing the offset each time. The for loop that does this has an increment of 4 to
give it some decent scroll speed; change that number, and you change the speed of the scroll.
I found that this loop didn’t need slowing down, so the sleep time was commented out. The
result is that this program will scroll forever with the line numbers getting larger. The smaller
the offset increment is, the smoother the scroll, but it is also slower. With a large value here,
the scroll is a lot faster, but it’s more jerky. Fortunately, the Raspberry Pi is just about fast
enough for your purposes here.

A Step Closer to a Usable Program
So now it is time to get a lot closer to what you want to do. First off, you want to make the
scrolling a lot more efficient by not rendering all the text every time you want to scroll a

C H A P T E R 4   H E R E ’ S T H E N E W S 79

whole line. This also makes the selection for the words used on a line easier as you only have
to do it for each line once. The new method of line scrolling is shown in Figure 4-4.

Figure 4-4:
Scrolling
part 2 – how
the lines scroll.

This involves copying the memory in the text surface from one location in the list to the next
up, when the offset has reached the same height as the text surface. However, you have to do
this from the top down, or else you end up with all the text reading the same one line. Then,
new text is rendered into text surface 0. When the copying is complete the offset is set to
zero, and the screen looks exactly as it did before – only a new line is hidden, clipped at the
bottom of the screen, waiting to scroll into view.

The next major improvement in this version is the placing of words onto a line of text so that
they will fit. This is a bit more tricky than it at first sounds because the font used is not a
monospaced font. In a monospaced font all characters occupy the same size box, so it is easy
to know how wide a string of characters will be from the number of them in the string.
However, when you are using a proportional font, as you are here, each character’s width is
variable, depending on the character. That means, for example, a letter I is much narrower
than a letter W. The only way you can see how wide a bunch of words is going to be is if you
render them, and then measure the size. This makes the rendering process a bit more tricky
than before. Basically what you do is to build up the line one word at a time and measure the
resulting text width. If it is less that the width you need, you add another word and measure
again. This continues until you exceed the allotted width, at which point you go with a line
that is one word short of this. In this way you ensure that the maximum number of words
get used to fill the line and no word is split. This process is complicated by the fact that if you
run out of words for one line, you just have to go with the remaining words in the line.

Finally, the words for your news story have to come from somewhere, and in this case it is a
file called, appropriately enough, news.txt. This is just a simple text file you can make with
the Leafpad text processor that is bundled with the Pi’s operating system. The text I used for
testing was the scrolling text used at the start of the first Star Wars film, which I thought was
suitably geeky. You can find the text with a simple Google search if you want to do the same.
The news.txt file should be stored in the same folder as the program.

R A S P B E R R Y P I P R O J E C T S80

To see how these ideas pan out, look at Listing 4-2. This program is a bit more of a test than
the previous one with some debug printout. This results in some rather jerky scrolling, but
that will be fixed when you remove the printout.

Listing 4-2  Scrolling Words
#!/usr/bin/env python

“””

Here is the News

A Raspberry Pi Auto Cue Test 2

“””

import time # for delays

import os, pygame, sys

pygame.init() # initialise graphics interface

os.environ[‘SDL_VIDEO_WINDOW_POS’] = ‘center’

pygame.display.set_caption(“Auto Cue Test 2”)

screenWidth = 980

screenHeight =610

screen = pygame.display.set_mode([screenWidth, ;

screenHeight],0,32)

background = pygame.Surface((screenWidth,screenHeight))

segments = 4

segment = 0 # initial start place

textHeight = screenHeight / segments

textSurface = [pygame.Surface((screenWidth,textHeight));

for s in range(0,segments+1)]

define the colours to use for the user interface

cBackground =(0,0,0)

cText = (255,255,255)

scrollSize = 30

background.fill(cBackground) # make background colour

font = pygame.font.Font(None, textHeight)

numberOfLines = 0

newsLines = list()

def main():

 print”Here is the news”

 getNews()

 lines = 0

 while lines < numberOfLines :

 for i in range(segments, 0, -1): ;

C H A P T E R 4   H E R E ’ S T H E N E W S 81

shuffle up the text boxes

 textSurface[i] = textSurface[i-1]

 lines = setWords(lines,0)

 offset = 0

 while offset < textHeight:

 checkForEvent()

 drawScreen(offset)

 offset += scrollSize

 time.sleep(3.0)

 terminate()

def getNews(): # open news file

 global numberOfLines, newsLines

 nfile = open(“news.txt”,”r”)

 for line in nfile.readlines():

 newsLines.append(line)

 numberOfLines +=1

 nfile.close()

def drawScreen(offset) : # draw to the screen

 global segment

 screen.blit(background,[0,0]) # set background colour

 for index in range(0,segments+1):

 segment +=1

 if(segment > segments): # wraparound segment number

 segment = 0

 drawWords(segment,offset)

 pygame.display.update()

def setWords(index,segment) :

 endOfLine = False

 margin = 30 # total gap for the two sides

 words = newsLines[index].split() ;

get an array of words from the line

 wordsAvailable = len(words)

 wordsToUse = 0

 wordsWidth = 0

 tryLine = “”

 while wordsWidth < screenWidth - ;

margin and wordsAvailable >= wordsToUse + 1:

 tryLine = “”

 wordsToUse += 1

 for test in range(0, wordsToUse):

continued

R A S P B E R R Y P I P R O J E C T S82

Listing 4-2  continued
 tryLine = tryLine + words[test] + “ “

 textSurface[segment] = font.render(tryLine, ;

True, cText, cBackground)

 tryWidth = textSurface[segment].get_rect()

 wordsWidth = tryWidth.right

 print tryLine ,” -> is “,wordsWidth,” pixels wide”

 useLine = “”

 if wordsWidth > screenWidth - margin :;

for the end of a line

 wordsToUse -= 1 # use one less word

 else :

 endOfLine = True

 for test in range(0, wordsToUse): ;

build up the line you want

 useLine = useLine + words[test] + “ “

 textSurface[segment] = font.render(useLine,;

True, cText, cBackground)

 print “Using the line :- “, useLine

 print

 newsLines[index] = newsLines[index][len(useLine) :]

 if endOfLine : # work on the next line next time

 index += 1

 return index

def drawWords(index,offset) :

 textRect = textSurface[index].get_rect()

 textRect.centerx = screenWidth / 2

 textRect.top = screenHeight - (textHeight ;

* index) - offset

 screen.blit(textSurface[index], textRect)

def terminate(): # close down the program

 print (“Closing down please wait”)

 pygame.quit() # close pygame

 sys.exit()

def checkForEvent(): # see if you need to quit

 global scrollSize

 event = pygame.event.poll()

 if event.type == pygame.QUIT :

 terminate()

 if event.type == pygame.KEYDOWN :

C H A P T E R 4   H E R E ’ S T H E N E W S 83

 if event.key == pygame.K_ESCAPE :

 terminate()

 if event.key == pygame.K_DOWN :

 scrollSize -= 1

 if scrollSize == 0:

 scrollsize = 1

 if event.key == pygame.K_UP :

 scrollSize += 1

if __name__ == ‘__main__’:

 main()

Most of the initialisation is the same as before, but now there is a new list defined called
newsLines, which is set to be initially just an empty list. The getNews() function opens up
the news.txt file and copies each line into the newsLines list before closing the file. As it
does this it counts the number of lines in the global variable called, appropriately enough,
numberOfLines.

The main() function is much as before, but it performs the scroll copying described earlier.
Also, the for loop that controlled the offset has been replaced by a while loop, which is to
allow the offset increment scrollSize to be altered on the fly by using the up and down
arrow keys on the keyboard. This is done with a few extra lines in the checkForEvents()
function. The main function is run only as long as there are lines to read from the text file.
When it is finished there is a three-second delay, and the program shuts down.

What has changed substantially is the setWords() function, which previously consisted of
just a single line. Now it is by far the longest function in the program. It starts off by defining
some variables and using the split attribute to decompose the current line of news into a
list of words called, with staggering imagination, words. It is this list that is used to build up,
one word at a time, a trial line. This is done with the while loop defined by the line

while wordsWidth < screenWidth - margin and ;

wordsAvailable >= wordsToUse + 1:

This keeps on adding words to a string and measuring the width of the resulting text surface.
At each stage the line built up so far and its width is printed out so that you can see the prog-
ress. This while loop also keeps tabs on if the words list has actually run out of words. This
loop can finish when you have run out of words or when the width is too wide by one word.
When this loops exits the next line,

if wordsWidth > screenWidth - margin : # for the end of a line

R A S P B E R R Y P I P R O J E C T S84

determines which exit condition caused it to finish. If it was because the resulting text was
too wide, you remove one word from the list; otherwise, you set a variable to indicate that
the end of the line has been reached. Next, you gather the words into the string you will
finally use, and render it, printing it out again so that you can check it. Then those words
need to be removed from the news line so that you don’t use them again. The line

newsLines[index] = newsLines[index][len(useLine) :]

does this. Finally, you check if the line has had all the words extracted from it by looking at
the wordsAvailable variable you set earlier. If it has, the index variable is incremented,
and finally the index variable is returned from the function.

The large initial size of the scrollSize variable, coupled with the printing out of each test
string in the setWords function, ensures that the results look very bad on the screen – due
to rapid scrolling and a pause while the next line is worked out. However, all that will disap-
pear when you remove the test prints in the final version.

Your Final Pi Prompter Code
All that remains to do is add in some controls. These are basically keyboard controls, so code
is added to the checkForEvents() function to set variables in response to key presses.
The controls to add are for pausing/resuming the display, controlling the speed, adjusting
the display to a mirror image and changing the file to use to read in more news. You also
need to make some tweaks to the code to allow these variables to do their work. The final
code is shown in Listing 4-3.

Listing 4-3  The Autocue Listing
#!/usr/bin/env python

“””

Here is the News

A Raspberry Pi Auto Cue

“””

import os, pygame, sys

pygame.init() # initialise graphics interface

os.environ[‘SDL_VIDEO_WINDOW_POS’] = ‘center’

pygame.display.set_caption(“Auto Cue”)

screenWidth = 980

screenHeight =610

screen = pygame.display.set_mode([screenWidth, ;

screenHeight],0,32)

C H A P T E R 4   H E R E ’ S T H E N E W S 85

background = pygame.Surface((screenWidth,screenHeight))

segments = 4

segment = 0 # initial start place

textHeight = screenHeight / segments

textSurface = [pygame.Surface((screenWidth,textHeight)) ;

for s in range(0,segments+1)]

define the colours to use for the user interface

cBackground =(0,0,0)

cText = (255,255,255)

scrollSize = 6

background.fill(cBackground) # make background colour

font = pygame.font.Font(None, textHeight)

numberOfLines = 0

newsLines = list()

fName = “news.txt” # name of file to use

mirror = False

pause = False

anymore = False

def main():

 global anymore

 while True :

 getNews()

 lines = 0

 while lines < numberOfLines :

 for i in range(segments, 0, -1): ;

shuffle up the text boxes

 textSurface[i] = textSurface[i-1]

 lines = setWords(lines,0)

 offset = 0

 while offset < textHeight:

 checkForEvent()

 if not pause :

 drawScreen(offset)

 offset += scrollSize

 anymore = False

 while not anymore :

 checkForEvent()

def getNews(): # open news file

 global numberOfLines, newsLines

continued

R A S P B E R R Y P I P R O J E C T S86

Listing 4-3  continued
 numberOfLines = 0

 newsLines = list()

 nfile = open(fName,”r”)

 for line in nfile.readlines():

 newsLines.append(line)

 numberOfLines +=1

 nfile.close()

def drawScreen(offset) : # draw to the screen

 global segment

 screen.blit(background,[0,0]) # set background colour

 for index in range(0,segments+1):

 segment +=1

 if(segment > segments): # wraparound segment number

 segment = 0

 drawWords(segment,offset)

 pygame.display.update()

def setWords(index,segment) :

 endOfLine = False

 margin = 30 # total gap for the two sides

 words = newsLines[index].split() ;

get an array of words from the line

 wordsAvailable = len(words)

 wordsToUse = 0

 wordsWidth = 0

 tryLine = “”

 while wordsWidth < screenWidth - margin ;

and wordsAvailable >= wordsToUse + 1:

 tryLine = “”

 wordsToUse += 1

 for test in range(0, wordsToUse):

 tryLine = tryLine + words[test] + “ “

 textSurface[segment] = font.render(tryLine, ;

True, cText, cBackground)

 tryWidth = textSurface[segment].get_rect()

 wordsWidth = tryWidth.right

 useLine = “”

 if wordsWidth > screenWidth - margin : ;

for the end of a line

 wordsToUse -= 1 # use one less word

 else :

C H A P T E R 4   H E R E ’ S T H E N E W S 87

 endOfLine = True

 for test in range(0, wordsToUse): ;

build up the line you want

 useLine = useLine + words[test] + “ “

 textSurface[segment] = font.render(useLine, ;

True, cText, cBackground)

 newsLines[index] = newsLines[index][len(useLine) :]

 if endOfLine : # work on the next line next time

 index += 1

 return index

def drawWords(index,offset) :

 textRect = textSurface[index].get_rect()

 textRect.centerx = screenWidth / 2

 textRect.top = screenHeight - (textHeight * ;

index) - offset

 if mirror :

 screen.blit(pygame.transform.flip(;

textSurface[index], True, False), textRect)

 else :

 screen.blit(textSurface[index], textRect)

def terminate(): # close down the program

 print (“Closing down please wait”)

 pygame.quit() # close pygame

 sys.exit()

def checkForEvent(): # see if you need to quit

 global scrollSize, pause, anymore, fName, mirror

 event = pygame.event.poll()

 if event.type == pygame.QUIT :

 terminate()

 if event.type == pygame.KEYDOWN :

 if event.key == pygame.K_ESCAPE :

 terminate()

 if event.key == pygame.K_DOWN :

 scrollSize -= 1

 if scrollSize == 0:

 scrollsize = 1

 if event.key == pygame.K_UP :

 scrollSize += 1

 if event.key == pygame.K_SPACE :

 pause = not pause

continued

R A S P B E R R Y P I P R O J E C T S88

Listing 4-3  continued
 if event.key == pygame.K_m :

 mirror = not mirror

 if event.key == pygame.K_0 :

 anymore = True

 fName = “news.txt”

 if event.key == pygame.K_1 :

 anymore = True

 fName = “news1.txt”

 if event.key == pygame.K_2 :

 anymore = True

 fName = “news2.txt”

 if event.key == pygame.K_3 :

 anymore = True

 fName = “news3.txt”

if __name__ == ‘__main__’:

 main()

Looking at the last thing first, you will see that the checkForEvents() function has been
extended to react to the spacebar, which toggles a variable for pausing the scrolling, and the M
key, which toggles the mirror display. The numeric keys set a variable called anymore to true and
a variable fName to one of four filenames. You can see how this can easily be extended to cover all
the numbers, allowing some degree of keyboard control over what news file is displayed.

In the main() function the updating of the screen and increment of the offset variable are
now dependent on the value of the pause variable, which is controlled by the spacebar. The
whole function is not an infinite loop; when a file has finished being output the code is held
in a while loop until the anymore variable is set to true with perhaps a change in filename
as controlled by the number keys. The getNews() function now zeros the count of the
number of lines and the list of lines themselves. The rest of the function is unchanged.

The setWords()function has the printing removed, which makes it much faster. The
drawWords() function will render the text either normally or flipped around according to
the value of the mirror variable. Note this will only be seen to take effect when the screen is
actively scrolling; if it is paused or the end of the text has been reached, you will not see the
reverse effect until it starts again.

That is about it for the code.

When running Listing 4-3 it is best to have the desktop background set to black and all the
other windows minimised to reduce stray light.

C H A P T E R 4   H E R E ’ S T H E N E W S 89

The Physical Setup for Your Prompter
Now turn your attention to the practical setup. You saw in Figure 4-1 that the basic require-
ment is to have a sheet of glass at 45° to the camera, along with the Raspberry Pi’s monitor
being flat on its back pointing upwards. It helps here to have a small monitor; although you
might think the ideal would be a 13-inch screen, I quite successfully used a 19-inch TV set for
this. This can be physically arranged in many different ways, but perhaps the simplest way is
to utilise a large cardboard box and that old standby, duct tape. You can remove one side of
the box with a sharp hobby knife, but you should leave the corners in for strength. I used
three pieces of 1/4˝ × 1/2˝ strip pine duct taped to the sides and base of the box to act as the
holder for the glass, as shown in Figure 4-5.

Figure 4-5:
The first stage in
building the
autocue.

After that, I slipped a piece of 9 1/4˝ × 7˝ glass from a photo frame behind the wooden strips and
held it on with two small strips of duct tape at the end. Cut a hole in the far end of the box for the
camera lens to poke through. Make sure that there is enough zoom on the camera so that it
doesn’t see the edges of the box. I used some plastic IC tubes to reenforce the corners although
you can use 1/2˝ square strip pine, again with liberal amounts of duct tape. Figure 4-6 shows this.

R A S P B E R R Y P I P R O J E C T S90

Figure 4-6:
The finished

autocue.

Now it’s time to place the box open side down over the monitor and run the program. The
results are shown in Figure 4-7.

You can use normal picture frame glass, and it will give no problems with the size of letters
shown here in Figure 4-7. However, there is a small bit of fuzziness or ghosting due to some
reflections from the other side of the glass. You can see this in a closeup of the autocue, as
shown in Figure 4-8; this was taken with a longer exposure than the photograph in Figure
4-7. You can minimise this double reflection by using as thin a piece of glass as you can get.
Another way to cut it down, and to increase the brightness of the prompt in the bargain, is to
use some half silvered glass, which is sometimes called a two-way mirror. The cheapest way to
get this is to apply some laminate film to the glass – the type used for tinting windows. It
cuts down the light reaching the camera, but you can compensate for that by using stronger
lighting on the subject or a longer exposure/larger aperture on the camera. Make sure that
you get the neutral tinted type; otherwise you will get a colour cast over what you film. You
can get glass like this in various degrees of partial reflectivity. It would have been better if the
inside of the box was sprayed black, but it works acceptably without this.

C H A P T E R 4   H E R E ’ S T H E N E W S 91

Figure 4-7:
The autocue in
action.

Figure 4-8:
A closeup of the
autocue,
showing double
reflections.

R A S P B E R R Y P I P R O J E C T S92

Over to You
It is now over to you to make your own additions and improvements to this project. A simple
improvement would be to make the mirror function work even when the display is not
scrolling. This can easily be done by testing the variables that determine if the display is
scrolling and if not calling the drawScreen function.

One feature not included in the software is an indication of what word or line should be
being said at any time. You can do this in many ways, but the simplest is to make all the text
a slightly less bright shade of grey with the middle line in the display being full white. You
could also experiment with alternative colours or highlighting individual words.

On the system I made, the text would have fitted better on the TV if the display were turned
around by 90°, so you could change the code to do this. Can you think how this would be
done? Hint: There is a pygame.transform.rotate() function in the box.

If you don’t like the system I used to physically make the project, have a look online. There
are numerous suggestions for alternative methods of construction.

On the control side you can use some of the hardware input techniques covered in later
chapters to build your own handheld controller to pause and change the speed of the scroll-
ing. Whatever you do you can say with confidence, “Good evening. Here’s the news”.

Chapter 5
Ping

by Mike Cook

In This Chapter

❍	 Describe movement to a computer

❍	 Display a dynamic game

❍	 Discover one way to detect collisions between on-screen
objects

❍	 Handle the physics of reflection

❍	 Make single-player and two-player versions of the game

R A S P B E R R Y P I P R O J E C T S94

A VERSION OF Ping-Pong, or table tennis, was one of the early electronic games; it was first
produced by Willy Higginbotham in 1958 and used an oscilloscope as a display. This was long
before the advent of microcomputers. You could make a version of the game by using just
logic gates, with no processors involved. I made one back in 1970 that generated its own TV
signal. It was, by today’s standards, a weird hybrid of an analogue and digital circuit – with
the path of the ball being driven by two analogue integrators, and those voltages triggering
comparators against an analogue sawtooth TV time base. By 1975 all the logic had been com-
bined into one chip, the AY-3-8500, making it a much easier circuit to build. It even had a
choice of games which were simple variants on the same theme. This chip appeared in hun-
dreds of products and was the first low-cost home TV console. I even built a console using
this chip as well. A few years after that, home microcomputer systems came along, and table
tennis was one of the first graphics games to be implemented.

Early Commercial Products
On the commercial side, the Magnavox Odyssey, designed by Ralph Baer, was the first game
console to go on sale to the general public. This was first demonstrated in 1968, but was not
commercially available until 1972. It was seen before its launch by Nolan Bushnell, who
cofounded Atari, so he assigned the newly appointed engineer Allan Alcorn to implement the
game as a training exercise. The results were so impressive that Bushnell decided to launch it
as an video arcade game using the name Pong. This name sounded odd to U.K. ears, as it is a
slang word for a very bad smell. Just a few days into the testing of the first prototype in a bar,
the owner rang up to say that the game had stopped working. On investigation they found
that the money had backed up and jammed the mechanism. So the first upgrade was to fit a
bigger coin box – something Bushnell later said he was “happy to live with”. Inevitably
Magnavox and Atari ended up in court, but out-of-court settlements were reached. Pong
then went on to be released as a home TV console.

So the game has a honored place in the history of computing and serves as an interesting
introduction into arcade type games on the Raspberry Pi. You might think that being a game
from the early days of computing it will be simple, and it is, but it is not as simple as you
might hope. The early games were written in Assembler language; with today’s computing
power you can write a table tennis game in a high-level language like Python.

The Ping Game
Basically, what I am calling Ping is a copy of the bat-and-ball game which spawned a whole genera-
tion of computer games. What you are going to implement here are two games, a one-player game
and a two-player game. Figure 5-1 shows the screen display of the two-player game, but they look
very similar. As with all projects, it is best to start implementing features one at a time and build-
ing up the sophistication and complication as you go. However, first you need a bit of theory.

C H A P T E R 5   P I N G 95

Figure 5-1:
The screen
display of the
Ping game.

On-screen Movement
Movement on the computer screen is created by drawing a number of separate pictures in quick
succession with one or more elements moving between each frame. In the case of a ball moving
across the screen, there are two components to the movement: a change in the X coordinate and
a change in the Y coordinate. Whenever you are dealing with changes there is a special word scien-
tists use – delta, which is represented by the Greek letter delta (∆) and just means “change”. So to
describe the path of an object moving in a straight line, all you need is two quantities – ∆X and ∆Y.
On each successive frame ∆X and ∆Y are added to the X and Y coordinates to get the new position
to plot the object. This defines the angle of movement as shown in Figure 5-2.

Figure 5-2:
The movement
angle defined by
the two values
∆X and ∆Y.

R A S P B E R R Y P I P R O J E C T S96

If you want to define the exact angle Θ (angles are always called theta), you can apply the
formula shown in Figure 5-2. However, for this project there is no need to work in terms of
angles, basically because all reflections are from orthogonal surfaces. This means that you are
considering only horizontal or vertical surfaces to reflect from. Take a look at Figure 5-3;
here you see a block bouncing off, or being reflected from, a vertical surface. The angle it is
reflected at is equal to the incoming angle or incident angle. But the point is that you don’t
have to know the actual angle – in fact, you don’t care. All that you need to do is reverse the
sign of ∆X – that is, make it negative. The same goes if the block is approaching the reflecting
surface from the other direction. ∆X will be negative in that case, and all you need to do is to
reverse the sign. If you make a negative number negative, you end up with a positive.

Figure 5-3:
The reflection

from a vertical
surface by

negating ∆X.

I think you can see that exactly the same applies for reflections off a horizontal surface – only
this time it is ∆Y that is negated. So when the time comes to bounce off a surface all that you
need to do is to invert the appropriate delta value.

Detecting Collisions
Now all you need to get some bouncy action is to work out when things collide. This is easy
for humans to spot but can be a bit tricky for a computer. Every object you draw on the
screen will be put there by specifying one or more coordinates. However, that describes only
one point on the object. Take a rectangle, for example: You specify the X and Y coordinates of
the top-left corner and the width and height, as well as the line thickness. When you draw a
line, you specify the X and Y coordinates of the start of the line, and the coordinates of where

C H A P T E R 5   P I N G 97

you want it to finish, along with the line thickness. There are two ways of detecting if these
overlap: The first is to look at what is already drawn on the screen to see if anything is in the
place you are going to draw the next block. The second, and the one you shall use here, is to
compute the extent of the objects and see if there is an overlap. Figure 5-4 shows this calcula-
tion for a rectangle and a line. Note the difference in how the line thickness is handled. For a
line the thickness is built up by drawing in pixels either side of the required line, whereas for
a rectangle the thickness is built up by drawing in pixels inside the rectangle. This is the way
that Pygame handles the graphic coordinates; other systems such as Apple’s QuickTime take
a different approach, with the defined line being in between the pixels and any line thickness
being below and to the right of the line. There are many ways to implement graphics drawing
routines.

Figure 5-4:
Calculating
limits for a
collision.

You will see from Figure 5-4 that the limits set depend on the direction of approach the
object has, so when going from left to right it is different than going from right to left.

The Test Bounce
Armed with this information, you can now get some coding done and set the framework for
your game. Type in the code in Listing 5-1, and it will bounce a square around a window at
high speed.

R A S P B E R R Y P I P R O J E C T S98

Listing 5-1  Bounce Test 1
#!/usr/bin/env python

“””

Bounce

A Raspberry Pi test

“””

import time # for delays

import os, pygame, sys

pygame.init() # initialise graphics interface

os.environ[‘SDL_VIDEO_WINDOW_POS’] = ‘center’

pygame.display.set_caption(“Bounce”)

screenWidth = 400

screenHeight =400

screen = pygame.display.set_mode([screenWidth,;

screenHeight],0,32)

background = pygame.Surface((screenWidth,screenHeight))

define the colours to use for the user interface

cBackground =(255,255,255)

cBlock = (0,0,0)

background.fill(cBackground) # make background colour

dx = 5

dy = 10

def main():

 X = screenWidth / 2

 Y = screenHeight /2

 screen.blit(background,[0,0])

 while True :

 checkForEvent()

 #time.sleep(0.05)

 drawScreen(X,Y)

 X += dx

 Y += dy

 checkBounds(X,Y)

def checkBounds(px,py):

 global dx,dy

 if px > screenWidth-10 or px <0:

 dx = -dx

 if py > screenHeight-10 or py < 0:

 dy = - dy

def drawScreen(px,py) : # draw to the screen

C H A P T E R 5   P I N G 99

 screen.blit(background,[0,0]) # set background colour

 pygame.draw.rect(screen,cBlock, (px, py, 10 ,10), 0)

 pygame.display.update()

def terminate(): # close down the program

 print (“Closing down please wait”)

 pygame.quit() # close pygame

 sys.exit()

def checkForEvent(): # see if you need to quit

 event = pygame.event.poll()

 if event.type == pygame.QUIT :

 terminate()

 if event.type == pygame.KEYDOWN and ;

event.key == pygame.K_ESCAPE :

 terminate()

if __name__ == ‘__main__’:

 main()

You will see that the direction of the block is defined by the two variables dx and dy (for
delta X and delta Y) and is fixed at five pixels in the X direction and ten in the Y direction per
frame. The square is drawn in solid black on a white background.

The main function first of all defines the square in the center of the screen, and goes into an
endless loop in which it checks the keyboard for a quit and draws the screen. Then it updates
the square’s position and checks for any collision between the square and the sides of the
window. Note as the sides of the window are not a drawn line, there is no need to account for
the line thickness here.

In the main loop there is a sleep command, but this is commented out with a #, which
means that it is ignored. Try removing the # and see how much slower the block will move
around. Also experiment with changing the values of dx and dy and see how this changes
both the speed and the angle of trajectory of the block. Finally, have a play with adjusting the
screenWidth and screenHeight variables.

Improving the Ping Game
Well, Listing 5-1 is a good start, but a number of things are not quite right in it. First of all,
the object bouncing about is a square, and although that is true to the original game, you can
do much better these days. So let’s make the object a circle instead of a square. This will

R A S P B E R R Y P I P R O J E C T S100

change the collision calculations because a circle is drawn by defining its center point. Also, if
you rely on simply detecting when the position of the ball is greater than the collision limits
you calculated, you will most times draw the ball actually overlapping the line. This will look
like the ball has penetrated into the reflecting object. It would be much better if, when you
detect a collision, the position of the ball is adjusted to sit on the colliding surface. This is
shown in Figure 5-5; the ball’s position is shown in successive frames, and when the collision
occurs the position of the ball would normally be behind the reflecting object. This does not
look good, so it is hauled back to sit on the line. This has the effect of slowing down the ball
at the point of collision, but you do not perceive this as you are expecting a collision to occur
at the surface and the brain’s expectation overrules anything else.

Figure 5-5:
Snapping the

ball to the
colliding object.

C H A P T E R 5   P I N G 101

To make the bouncing a bit more interesting, a sound should be produced at the moment of
impact, something that did not occur in the first incarnations of the game. Finally, the code
makes the bounding rectangle (the rectangle containing the ball) adjustable from the cursor
keys of the keyboard. All this is added to produce the code in Listing 5-2.

Listing 5-2  The Improved Bounce Code
#!/usr/bin/env python

“””

Bounce with sound

A Raspberry Pi test

“””

import time # for delays

import os, pygame, sys

pygame.init() # initialise graphics interface

pygame.mixer.quit()

pygame.mixer.init(frequency=22050, size=-16, ;

channels=2, buffer=512)

bounceSound = pygame.mixer.Sound(“sounds/bounce.ogg”)

os.environ[‘SDL_VIDEO_WINDOW_POS’] = ‘center’

pygame.display.set_caption(“Bounce2”)

screenWidth = 400

screenHeight =400

screen = pygame.display.set_mode([screenWidth,;

screenHeight],0,32)

background = pygame.Surface((screenWidth,screenHeight))

define the colours to use for the user interface

cBackground =(255,255,255)

cBlock = (0,0,0)

background.fill(cBackground) # make background colour

box = [screenWidth-80,screenHeight-80]

delta = [5,10]

hw = screenWidth / 2

hh = screenHeight /2

position = [hw,hh] # position of the ball

limit = [0, 0, 0, 0] #wall limits

ballRad = 8 # size of the ball

def main():

 global position

 updateBox(0,0) # set up wall limits

continued

R A S P B E R R Y P I P R O J E C T S102

Listing 5-2  continued
 screen.blit(background,[0,0])

 while True :

 checkForEvent()

 time.sleep(0.05)

 drawScreen(position)

 position = moveBall(position)

def moveBall(p):

 global delta

 p[0] += delta[0]

 p[1] += delta[1]

 if p[0] <= limit[0] :

 bounceSound.play()

 delta[0] = -delta[0]

 p[0] = limit[0]

 if p[0] >= limit[1] :

 bounceSound.play()

 delta[0] = -delta[0]

 p[0] = limit[1]

 if p[1] <= limit[2] :

 bounceSound.play()

 delta[1] = - delta[1]

 p[1] = limit[2]

 if p[1] >= limit[3] :

 bounceSound.play()

 delta[1] = - delta[1]

 p[1] = limit[3]

 return p

def drawScreen(p) : # draw to the screen

 screen.blit(background,[0,0]) # set background colour

 pygame.draw.rect(screen,(255,0,0), (hw - ;

(box[0]/2),hh - (box[1]/2),box[0],box[1]), 2)

 pygame.draw.circle(screen,cBlock, (p[0], p[1]),ballRad, 2)

 pygame.display.update()

def updateBox(d,amount):

 global box, limit

 box[d] += amount

 limit[0] = hw - (box[0]/2) +ballRad #leftLimit

 limit[1] = hw + (box[0]/2) -ballRad #rightLimit

 limit[2] = hh - (box[1]/2) + ballRad #topLimit

C H A P T E R 5   P I N G 103

 limit[3] = (hh + (box[1]/2))-ballRad #bottomLimit

def terminate(): # close down the program

 print (“Closing down please wait”)

 pygame.quit() # close pygame

 sys.exit()

def checkForEvent(): # see if you need to quit

 event = pygame.event.poll()

 if event.type == pygame.QUIT :

 terminate()

 if event.type == pygame.KEYDOWN :

 if event.key == pygame.K_ESCAPE :

 terminate()

 if event.key == pygame.K_DOWN : ;

expand / contract the box

 updateBox(1,-2)

 if event.key == pygame.K_UP :

 updateBox(1,2)

 if event.key == pygame.K_LEFT :

 updateBox(0,-2)

 if event.key == pygame.K_RIGHT :

 updateBox(0,2)

if __name__ == ‘__main__’:

 main()

You can see here that not only have the functions’ names changed but the variables defining the
movement and some other parameters also have changed from being separate named variables
to being items in a list. This makes it easer to pass them into and out of functions. A function is
restricted to returning only one item, but by packing lots of variables into a list you get to return
many under the one name. Note that in this code checking for a collision involves only checking
the position of the ball against predefined limits. This eliminates the need to do calculations such
as adjusting for the ball radius every time you want to do a collision check. Precalculating these
limits helps to speed up the overall program and gets the ball moving faster and smoother.

The sound is handled by loading in a bounce sound. Note here though that the initialisation
of the sound does not use the default values but uses

pygame.mixer.init(frequency=22050, size=-16, ;

channels=2, buffer=512)

R A S P B E R R Y P I P R O J E C T S104

This ensures that the sound is produced as soon as possible after the software command is
given. Without this there is an unacceptable delay, which is sometimes called latency. You
need to create a sound file in the .ogg format with a sample rate of 22.05 KHz; call it
bounce.ogg and place it inside a folder called sounds. This sounds folder should be placed
in the same folder as the Python code. A short blip sound will do for now. If you like, you can
look inside the Python games folder at some of the sound files that are there; you can copy
and rename beep.ogg, for example, here. I use the application Audacity for creating sound
files. It is free, and there are versions that run on Windows machines or Macs.

A Single-Player Game
The next step produces a usable single-player game, complete with scoring. The point of a
single-player game is to see how many times you can return the ball from a perfect computer
player. You get three balls, and the number of returns you make from those balls is your score.
If it is the highest one of the session, it is transferred to the left number, and that is the one to
beat next time. There are a few steps in going from the simple bounce around a box to the sin-
gle player, but space in the book restricts me from going through all the intermediate stages.

The chief change is that you no longer need to look at just a single value to detect a collision
because a bat also has a limited length; you need to see if the ball is sailing over the top or under-
neath it. The top and bottom collisions are still the same, though. There are a few shortcuts I
have taken to simplify the detection of a collision with a ball as opposed to a rectangle. Figure 5-6
shows the dimensions of the bat and ball. For the detection of a collision, you can consider just
the bounding box of the circular ball and not worry about the actual geometry of the circle.

Figure 5-6:
Measurements

for the bat
and ball.

C H A P T E R 5   P I N G 105

Now when you consider bat-and-ball collisions you must look at both the X and Y elements of the
coordinates of the bat and ball. Figure 5-7 summarises this by showing both sets of conditions
that have to be met. This is complicated by the fact that whereas the X coordinate of the bat is
fixed, the Y coordinate is going to change with input from the player. Note here that unlike con-
ventional coordinates, Pygame has the Y-axis numbers increase as you move down the screen.

Figure 5-7:
The collision
geometry of the
bat and ball.

The overall structure of the game also needs to be defined. Previously there was just a ball
bouncing around the screen. Now you have to have more code to define the various stages of
the game. Each game consists of three balls, and a rally is the time one ball spends in play.
The score advances each time you hit the ball, and a ball is lost when it collides against the
far-right bounding box. After each ball is lost, the automatic left-hand player serves a new
ball at a randomly chosen speed and direction. This structure needs to be imposed on the
simple game mechanics. Let’s see how all this comes together in Listing 5-3.

Listing 5-3  The Single-Player Ping Game
#!/usr/bin/env python

“””

Ping - Tennis game one player

with score

For the Raspberry Pi

“””

import time # for delays

import os, pygame, sys

import random

pygame.init() # initialise graphics interface

pygame.mixer.quit()

pygame.mixer.init(frequency=22050, size=-16, ;

channels=2, buffer=512)

bounceSound = pygame.mixer.Sound(“sounds/bounce.ogg”)

os.environ[‘SDL_VIDEO_WINDOW_POS’] = ‘center’

continued

R A S P B E R R Y P I P R O J E C T S106

Listing 5-3  continued
pygame.display.set_caption(“Ping 1 player”)

screenWidth = 500

screenHeight =300

screen = pygame.display.set_mode([screenWidth, ;

screenHeight],0,32)

background = pygame.Surface((screenWidth,screenHeight))

textSize = 36

scoreSurface = pygame.Surface((textSize,textSize))

font = pygame.font.Font(None, textSize)

pygame.event.set_allowed(None)

pygame.event.set_allowed([pygame.KEYDOWN,pygame.QUIT])

define the colours to use for the user interface

cBackground =(255,255,255)

cBall = (0,0,0)

background.fill(cBackground) # make background colour

cText = (0,0,0)

box = [screenWidth-10,screenHeight-10]

deltaChoice = [[15,1], [14,1], [13,1], [12,1], ;

[11,1], [10,1], [15,2], [14,2], [13,2], [12,2], [11,2], [10,2]]

maxDelta = 11

delta = deltaChoice[random.randint(0,maxDelta)]

hw = screenWidth / 2

hh = screenHeight /2

ballPosition = [-hw,hh] # position of the ball off-screen

batMargin = 30 # how far in from the wall is the bat

batHeight = 24

batThick = 6

batInc = 20 # bat / key movement

batX = [batMargin, screenWidth - batMargin]

batY = [hh, hh] # initial bat position

limit = [0, 0, 0, 0, 0, 0] #wall limits & bat limits

ballRad = 8 # size of the ball

rally = True

pause = True

score = 0

best = 0 # high score

balls = 3 # number of balls in a turn

ballsLeft = balls

def main():

 global ballPosition, rally, balls, pause, score, best

 updateBox(0,0) # set up wall limits

C H A P T E R 5   P I N G 107

 updateScore()

 screen.blit(background,[0,0])

 while True :

 ballsLeft = balls

 if score > best:

 best = score

 score = 0

 updateScore()

 while ballsLeft > 0:

 ballPosition = waitForServe(ballPosition)

 while rally :

 checkForEvent()

 time.sleep(0.05)

 drawScreen(ballPosition)

 ballPosition = moveBall(ballPosition)

 ballsLeft -= 1

 print “press space for”,balls,”more balls”

 pause = True

 while pause :

 checkForEvent()

def waitForServe(p) :

 global batY, rally, delta

 computerBatDelta = 2

 serveTime = time.time() + 2.0 #automatically serve again

 while time.time() < serveTime :

 checkForEvent()

 drawScreen(p)

 batY[0] += computerBatDelta ;

move bat up and down when waiting

 if batY[0] > limit[3] or batY[0] < limit[2]:

 computerBatDelta = -computerBatDelta

 p[0] = batX[0]

 p[1] = batY[0]

 delta = deltaChoice[random.randint(0,maxDelta)]

 rally = True

 return p

def moveBall(p):

 global delta, batY, rally, score, batThick

 p[0] += delta[0]

 p[1] += delta[1]

continued

R A S P B E R R Y P I P R O J E C T S108

Listing 5-3  continued
 # now test to any interaction

 if p[1] <= limit[2] : # test top

 bounceSound.play()

 delta[1] = - delta[1]

 p[1] = limit[2]

 elif p[1] >= limit[3] : # test bottom

 bounceSound.play()

 delta[1] = - delta[1]

 p[1] = limit[3]

 elif p[0] <= limit[0] : # test missed ball player 1

 p[0] = limit[0]

 rally = False

 print “ missed ball”

 elif p[0] >= limit[1] : # test missed ball player 2

 p[0] = limit[1]

 rally = False

 print “ missed ball”

 # now test left bat limit

 elif p[0] <= limit[4] and p[1] >= batY[0] - ballRad ;

and p[1] <= batY[0] + ballRad + batHeight:

 bounceSound.play()

 p[0] = limit[4]

 delta[0] = random.randint(5,15)

 if random.randint(1,4) > 2 : ;

random change in y direction

 delta[1] = 16 - delta[0]

 else :

 delta[1] = -(16 - delta[0])

 # Test right bat collision

 elif p[0] >= limit[5] and p[1] >= batY[1] - ballRad ;

and p[1] <= batY[1] + ballRad + batHeight:

 bounceSound.play()

 delta[0] = - delta[0]

 p[0] = limit[5]

 score+= 1

 updateScore()

 batY[0] = p[1] - ballRad # make auto opponent follow bat

 #batY[1] = p[1]- ballRad # temporary test for auto player

 return p

def updateScore():

 global score, best, scoreRect, scoreSurface

 scoreSurface = font.render(str(best)+” : “+str(score),;

C H A P T E R 5   P I N G 109

True, cText, cBackground)

 scoreRect = scoreSurface.get_rect()

 scoreRect.centerx = hw

 scoreRect.centery = 24

def drawScreen(p) : # draw to the screen

 global rally

 screen.blit(background,[0,0]) # set background colour

 pygame.draw.rect(screen,(255,0,0), (hw - (box[0]/2),;

hh - (box[1]/2),box[0],box[1]), 4)

 pygame.draw.line(screen,(0,255,0), (batX[0], batY[0]),;

(batX[0], batY[0]+batHeight),batThick)

 pygame.draw.line(screen,(0,255,0), (batX[1], batY[1]),;

(batX[1], batY[1]+batHeight),batThick)

 screen.blit(scoreSurface, scoreRect)

 if rally :

 pygame.draw.circle(screen,cBall, (p[0], p[1]),;

ballRad, 2)

 pygame.display.update()

def updateBox(d,amount):

 global box, limit

 box[d] += amount

 limit[0] = hw - (box[0]/2) +ballRad #leftLimit

 limit[1] = hw + (box[0]/2) -ballRad #rightLimit

 limit[2] = hh - (box[1]/2) + ballRad #topLimit

 limit[3] = (hh + (box[1]/2))-ballRad #bottomLimit

 limit[4] = batX[0] + ballRad + batThick/2 ;

#x Limit ball approaching from the right

 limit[5] = batX[1] - ballRad - batThick/2 ;

#x Limit ball approaching from the left

def terminate(): # close down the program

 print (“Closing down please wait”)

 pygame.quit() # close pygame

 sys.exit()

def checkForEvent(): # see if you need to quit

 global batY, rally, pause

 event = pygame.event.poll()

 if event.type == pygame.QUIT :

 terminate()

 if event.type == pygame.KEYDOWN :

continued

R A S P B E R R Y P I P R O J E C T S110

Listing 5-3  continued
 if event.key == pygame.K_ESCAPE :

 terminate()

 if event.key == pygame.K_DOWN : ;

expand / contract the box

 updateBox(1,-2)

 if event.key == pygame.K_UP :

 updateBox(1,2)

 if event.key == pygame.K_LEFT :

 updateBox(0,-2)

 if event.key == pygame.K_RIGHT :

 updateBox(0,2)

 if event.key == pygame.K_s :

 rally = True

 if event.key == pygame.K_SPACE :

 pause = False

 if event.key == pygame.K_PAGEDOWN :

 if batY[1] < screenHeight - batInc :

 batY[1] += batInc

 if event.key == pygame.K_PAGEUP :

 if batY[1] > batInc :

 batY[1] -= batInc

if __name__ == ‘__main__’:

 main()

There are a lot more changes this time, but hopefully this code is recognisable in structure
from Listing 5-2. The various phases of the program are defined by the Boolean variables
rally and pause, which can be changed from the keyboard, in the checkForEvent()
function, along with the Y position of the bat. I chose to use the Page Up and Page Down
keys for the movement of the bat as they are on the far right of my keyboard.

The updateBox() function has two more limits added to it, that of the ball approaching the
bat from the left or right. The drawScreen() function now draws the two bats and only
draws the ball if the rally variable is true. It also draws a surface bitmap containing the
score. updateScore() is a new function that, as its name implies, changes the surface con-
taining the score and positions the score rectangle. This works just like you saw in Chapter 4,
“Here’s the News”, with the teleprompter.

The moveBall() function has grown some. The list of if statements is now replaced by a
string of elif clauses based on the original if statement. This means that only one of the
sections of code will be executed in each pass. This is because the positional condition for a

C H A P T E R 5   P I N G 111

ball to be off the right side of the screen would also trigger the right ball bat collision, so you
must carefully test for collisions in the correct order to avoid a misidentification of what is
colliding with what. The function takes the first case that is true from the following list:

❍	A collision with the top of the box

❍	A collision with the bottom of the box

❍	A collision with the left edge of the box (missed ball, computer player)

❍	A collision with the right edge of the box (missed ball, human player)

❍	A collision with the left bat

❍	A collision with the right bat

In the event of any of those conditions being met, the code will take the appropriate action.
In the case of the top or bottom walls, the ball’s direction will change appropriately as you
have seen before. If the active player hits the ball, the score will be incremented along with an
elastic collision. If the computer’s bat hits it, a new value of the two delta variables will be
chosen from the list defined at the start of the program. All collisions also cause a bounce
sound to be played. Basically, this function controls the action on the screen. The last line
keeps the computer’s bat in line with the ball. You can also make the player’s bat follow the
ball for testing, but then the game element disappears altogether.

The waitForServe() function is used to restart the rally when the ball has been missed.
Here the computer’s bat moves up and down the screen for two seconds before being served
with a new random set of delta values. In the two-player game described in the next section
of this chapter, this will be expanded.

That leaves us with main() as the only function you have not looked at. As usual, this function
orchestrates the whole program. After a bit of initialisation it enters a while True endless
loop, which initialises the number of balls and score for a game, before entering a while loop
that basically counts down the number of balls in a game. Finally, the third while loop con-
trols the rally and keeps the screen action going until a ball is missed. When it is moveBall()
sets the rally variable to False, and that loop terminates. When all the balls have been
played the final while loop in this function just checks for any events, one of which could be
the spacebar, which sets the pause variable to False and allows another game to be played.

A Two-Player Game
It doesn’t take much to turn this into a two-player game, but there is a subtle change in what the
object of the game is, and that has a few ramifications in the code. In the one-player game the
point was to simply return the ball to the perfect opponent. So there was no need to do anything
about altering the flight of the ball when the player hit it back. In a two-player game, however, you

R A S P B E R R Y P I P R O J E C T S112

not only have to return the ball, but you also have the opportunity of changing the flight of the
ball to make it more difficult for your opponent to return. In a real game of Ping-Pong, this is done
by adding top spin to the ball. In your Ping game you can simulate the same sort of effect by hav-
ing more delta movement in the Y direction, the further from the center of the bat the collision
occurs. This involves a further calculation once the collision has been detected. The other thing
that needs changing is the method of serving. The serve goes to the player who has just lost the
point, and there needs to be a bit of an element of surprise for the opposing player. Therefore, the
serve can be played early by pressing a key, but if the player waits too long, the serve will happen
automatically. All these changes can be seen in Listing 5-4, the two-player game.

Listing 5-4  The Two-Player Game of Ping
#!/usr/bin/env python

“””

Ping - Tennis game two player

with score

For the Raspberry Pi

“””

import time # for delays

import os, pygame, sys

import random

pygame.init() # initialise graphics interface

pygame.mixer.quit()

pygame.mixer.init(frequency=22050, size=-16, ;

channels=2, buffer=512)

bounceSound = pygame.mixer.Sound(“sounds/bounce.ogg”)

outSound = pygame.mixer.Sound(“sounds/out.ogg”)

p0hitSound = pygame.mixer.Sound(“sounds/hit0.ogg”)

p1hitSound = pygame.mixer.Sound(“sounds/hit1.ogg”)

os.environ[‘SDL_VIDEO_WINDOW_POS’] = ‘center’

pygame.display.set_caption(“Ping 2 players”)

screenWidth = 500

screenHeight =300

screen = pygame.display.set_mode([screenWidth,;

screenHeight],0,32)

background = pygame.Surface((screenWidth,screenHeight))

textSize = 36

scoreSurface = pygame.Surface((textSize,textSize))

font = pygame.font.Font(None, textSize)

pygame.event.set_allowed(None)

pygame.event.set_allowed([pygame.KEYDOWN,pygame.QUIT])

define the colours to use for the user interface

C H A P T E R 5   P I N G 113

cBackground =(255,255,255)

cBall = (0,0,0)

background.fill(cBackground) # make background colour

cText = (0,0,0)

box = [screenWidth-10,screenHeight-10]

deltaChoice = [[15,1], [14,1], [13,1], [12,1], [11,1],;

[10,1], [15,2], [14,2], [13,2], [12,2], [11,2], [10,2]]

maxDelta = 11

delta = deltaChoice[random.randint(0,maxDelta)]

hw = screenWidth / 2

hh = screenHeight /2

ballPosition = [-hw,hh] # position of the ball off-screen

batMargin = 30 # how far in from the wall is the bat

batHeight = 24

batThick = 6

batInc = 20 # bat / key movement

batX = [batMargin, screenWidth - batMargin]

batY = [hh, hh] # initial bat position

limit = [0, 0, 0, 0, 0, 0] #wall limits & bat limits

ballRad = 8 # size of the ball

rally = True

pause = True

server = 0 # player to serve

serve =[False,False]

score = [0,0] # players score

balls = 5 # number of balls in a turn

ballsLeft = balls

batMiddle = (ballRad - (batHeight + ballRad))/2

def main():

 global ballPosition, rally, balls, pause, score, server

 updateBox(0,0) # set up wall limits

 updateScore()

 screen.blit(background,[0,0])

 while True :

 ballsLeft = balls

 score = [0,0]

 updateScore()

 while ballsLeft > 0:

 ballPosition = waitForServe(ballPosition,server)

 while rally :

 checkForEvent()

 time.sleep(0.05)

continued

R A S P B E R R Y P I P R O J E C T S114

Listing 5-4  continued
 drawScreen(ballPosition)

 ballPosition = moveBall(ballPosition)

 ballsLeft -= 1

 print “press space for”,balls,”more balls”

 pause = True

 while pause :

 checkForEvent()

def waitForServe(p,player) :

 global batY, rally, delta, serve

 computerBatDelta = 2

 serve[player] = False

 serveTime = time.time() + 4.0 #automatically serve again

 while time.time() < serveTime and serve[player] == False:

 checkForEvent()

 drawScreen(p)

 batY[player] += computerBatDelta ;

move bat up and down when waiting

 if batY[player] > limit[3] or batY[player] < ;

limit[2]:

 computerBatDelta = -computerBatDelta

 p[0] = batX[player]

 p[1] = batY[player]

 delta = deltaChoice[random.randint(0,maxDelta)]

 if player == 1 :

 delta[0] = -delta[0]

 p1hitSound.play()

 else:

 p0hitSound.play()

 rally = True

 return p

def moveBall(p):

 global delta, batY, rally, score, batThick, server

 p[0] += delta[0]

 p[1] += delta[1]

 # now test to any interaction

 if p[1] <= limit[2] : # test top

 bounceSound.play()

 delta[1] = - delta[1]

 p[1] = limit[2]

 elif p[1] >= limit[3] : # test bottom

C H A P T E R 5   P I N G 115

 bounceSound.play()

 delta[1] = - delta[1]

 p[1] = limit[3]

 elif p[0] <= limit[0] : # test missed ball left player

 outSound.play()

 rally = False

 score[1] += 1

 server = 0

 p[0] = hw

 updateScore()

 elif p[0] >= limit[1] : # test missed ball right player

 outSound.play()

 rally = False

 score[0] += 1

 server = 1

 p[0] = hw

 updateScore()

 # Test left bat collision

 elif p[0] < limit[4] and p[1] >= batY[0] - ballRad ;

and p[1] <= batY[0] + ballRad + batHeight:

 batBounce(p[1],batY[0],0)

 p[0] = limit[4]

 # Test right bat collision

 elif p[0] >= limit[5] and p[1] >= batY[1] - ballRad ;

and p[1] <= batY[1] + ballRad + batHeight:

 batBounce(p[1],batY[1],1)

 p[0] = limit[5]

 return p

def batBounce(ball, bat, player) :

 global delta

 point = bat - ball

 delta[1] = int(-14.0 * ((point * 0.05) + 0.6))

 delta[0] = 16 - abs(delta[1])

 if player == 1 :

 delta[0] = -delta[0]

 p1hitSound.play()

 else:

 p0hitSound.play()

def updateScore():

 global scoreRect, scoreSurface

 scoreSurface = font.render(str(score[0])+” : “;

continued

R A S P B E R R Y P I P R O J E C T S116

Listing 5-4  continued
+str(score[1]), True, cText, cBackground)

 scoreRect = scoreSurface.get_rect()

 scoreRect.centerx = hw

 scoreRect.centery = 24

 drawScreen(ballPosition)

def drawScreen(p) : # draw to the screen

 global rally

 screen.blit(background,[0,0]) # set background colour

 pygame.draw.rect(screen,(255,0,0), (hw - (box[0]/2),;

hh - (box[1]/2),box[0],box[1]), 4)

 pygame.draw.line(screen,(0,255,0), (batX[0], batY[0]),;

(batX[0], batY[0]+batHeight),batThick)

 pygame.draw.line(screen,(0,255,0), (batX[1], batY[1]),;

(batX[1], batY[1]+batHeight),batThick)

 screen.blit(scoreSurface, scoreRect)

 if rally :

 pygame.draw.circle(screen,cBall, (p[0], p[1]),;

ballRad, 2)

 pygame.display.update()

def updateBox(d,amount):

 global box, limit

 box[d] += amount

 limit[0] = hw - (box[0]/2) + ballRad #leftLimit

 limit[1] = hw + (box[0]/2) -ballRad #rightLimit

 limit[2] = hh - (box[1]/2) + ballRad #topLimit

 limit[3] = (hh + (box[1]/2))-ballRad #bottomLimit

 limit[4] = batX[0] + ballRad + batThick/2;

#x Limit ball approaching from the right

 limit[5] = batX[1] - ballRad - batThick/2;

#x Limit ball approaching from the left

def terminate(): # close down the program

 print (“Closing down please wait”)

 pygame.quit() # close pygame

 sys.exit()

def checkForEvent(): # see if you need to quit

 global batY, rally, pause, serve

 event = pygame.event.poll()

C H A P T E R 5   P I N G 117

 if event.type == pygame.QUIT :

 terminate()

 if event.type == pygame.KEYDOWN :

 if event.key == pygame.K_ESCAPE :

 terminate()

 if event.key == pygame.K_DOWN : ;

expand / contract the box

 updateBox(1,-2)

 if event.key == pygame.K_UP :

 updateBox(1,2)

 if event.key == pygame.K_LEFT :

 updateBox(0,-2)

 if event.key == pygame.K_RIGHT :

 updateBox(0,2)

 if event.key == pygame.K_s :

 rally = True

 if event.key == pygame.K_SPACE :

 pause = False

 if event.key == pygame.K_q :

 serve[0] = True

 if event.key == pygame.K_HOME :

 serve[1] = True

 if event.key == pygame.K_PAGEDOWN :

 if batY[1] < screenHeight - batInc :

 batY[1] += batInc

 if event.key == pygame.K_PAGEUP :

 if batY[1] > batInc :

 batY[1] -= batInc

 if event.key == pygame.K_z :

 if batY[0] < screenHeight - batInc :

 batY[0] += batInc

 if event.key == pygame.K_a :

 if batY[0] > batInc :

 batY[0] -= batInc

if __name__ == ‘__main__’:

 main()

Here more keyboard keys come into play. The Home key has been added for the right player’s
serve key, along with the bat movement keys of Page Up and Page Down. The A, Q and Z keys
perform the same functions for the left player.

R A S P B E R R Y P I P R O J E C T S118

The updateBox() and drawScreen() functions are unchanged, but the updateScore()
function has been altered to accommodate the score of both players. The moveBall() function
has been enhanced to include top and bottom limits for the left player’s bat, and for both players
a new function batBounce() is called when a collision is detected. More on this shortly.

The waitForServe() function now includes code to allow either player to serve the ball, and
there is a longer time before an automatic serve, along with a separate serve sound for each
player. There are also a few changes to global variables, adding one to indicate who is serving.

So back to the batBounce() function. This performs two functions – the first to determine
the ball’s return velocity vector and the second to play a sound dependent on the player striking
the ball. As the code is written this is the same as the serve sound, but it could be changed.

The major new feature in this function is in determining how far along the bat the collision
occurred. This basically is a floating-point number between -1 and +1, with zero being
returned if it is plumb center. After you have gotten this fraction it needs to be multiplied by
the number that corresponds to the maximum Y velocity you want if the ball just grazes the
top or bottom of the bat. In the code I have used a value of 14. Then to keep the overall speed
of the ball constant, the X velocity is the maximum velocity you want it to be if there is a
dead center hit minus any Y component of the speed. This is all done in the two lines

delta[1] = int(-14.0 * ((point * 0.05) + 0.6))

delta[0] = 16 - abs(delta[1])

Note how the floating-point calculation is converted to an integer before assigning it to the
delta global variable. This keeps the delta values as integers, as operations on integers are
much faster to perform for the computer.

The final bit of fun is the sound effects. What I did was scour the Internet looking for tennis
sounds and found some interesting examples of famous tennis players’ grunts as they hit the
ball. Using Audacity, I clipped out the short hit/grunt noise and saved it as an .ogg format file.
I found a line judge’s “out” call, along with some real bounce sounds. These sounds enhance the
playing of the game tremendously, especially because there is also some crowd noise. However,
for that retro 70s sound, you can’t beat simple tonal bleeps; the choice is yours.

Over to You
Well, that is the end of my bit, but it is not the end of this project. There are many changes,
enhancements and improvements you can make. This applies to both the single- and two-
player version of the game. The simplest involves changing the colours: You might want

C H A P T E R 5   P I N G 119

green grass, for example, or filled coloured balls or bats. You could even draw a picture with a
painting package or photo-editing package to act as the background, or you might want to
include a net or white lines on the court. You could have different sounds for a serve and a
return, which is easy because they are called up in different places in the code. You can
upgrade the sounds in the single-player game to match what you did in the two-player game.

You might want to change things like the number of balls in a game or even the scoring to make
it more like a real game of tennis, with a player winning a game only when he or she is two
points ahead. You can even use the real tennis terms of advantage and deuce in the score box.

I have deliberately left in the code that alters the bounding box from the cursor keys. How
about a variation of the game that allows the serving player to alter the size of the court as
the serve takes place? Or how about a court that automatically shrinks as the rally gets lon-
ger? Basically, the whole game is one of anticipating where the ball will end up, and by chang-
ing the court size only slightly, you can make it more difficult to judge as you don’t have any
previous experience to go on.

It is only a small step from this game to making a “knock the bricks out of a wall” game with
all the variants that can bring. It’s within your grasp to do this now if you understand the
basics of what was done here.

Chapter 6
Pie Man

by Mike Cook

In This Chapter

❍	 Learn to use animated sprites

❍	 Detect pixels previously drawn on the screen

❍	 Devise artificial intelligence algorithms

❍	 Use screen layers and transparent pixels

❍	 Discover how to detect colliding rectangles

R A S P B E R R Y P I P R O J E C T S122

ONE OF THE early great hits of computer gaming was Pac-Man, although I don’t think many
people had any idea about why it had this name. In the Japanese language there is a tradition
of having words that sound like the spirit of what they convey. These are often two identical
words said together. In the west the closest we have to that is the concept of onomatopoeia,
but it is not quite what giongo and gitaigo is all about, although it is close. Two examples of this
are pyonpyon, which is about hopping/skipping, and niyaniya, which is about a grin/smirk. As
you can see there is not much sound associated with these, but if there was, those terms are
what they would sound like. There is one such word, pakupaku, which is the sound of biting,
chomping or eating – in other words, “the munchies” – and it is this phrase that gave the name
to Pac-Man. How fitting, then, that my version of this game also has an eating connotation;
only this time, the tables are turned, and it is the pie that does the eating.

There have been many variants of this basic game over the years, but some things are con-
stant over different versions, such as the chomping “man” consuming pills distributed in a
maze and being pursued by ghosts. Occasionally the tables can be turned on the ghosts by
the consumption of a “power pill”; then it is the man that is lethal to the ghosts. (How you
could actually kill a ghost, something already dead, is never quite explained.) This situation
when the man can kill the ghost is known as a power play. The graphics in the game can range
from simple to a stylistic complex 3D rendering, and the sound effects range from bleeps to
a horror show. There are optional add-on bonus score items to eat often in the form of fruit,
but mainly it is about eating the pills and avoiding the ghosts.

The Pie Man Game
In the preceding chapter, “Ping”, the Ping-Pong game was basically constructed with the tech-
nique of having a model of the action in the computer, and the graphics were generated from this
model. So variables held the position of the bats, balls and walls, and you set the game going by
changing some of these variables and making them interact, and then drawing the result. In this
chapter I will show you the other way of making a game, which is in effect the exact opposite. The
technique you will use for the Pie Man game involves not knowing in advance the location of
anything; things are discovered from frame to frame by examining the pixels in the surrounding
locality. This requires a whole bunch of new techniques that need to be learned. In many profes-
sional games a mixture of these two methods are used. So, to begin at the end, Figure 6-1 shows
a screen dump of the final game, but there is a lot of work to do before you can get there.

Most chapters in this book show you how to build up software by getting increasingly complex
and adding more features. However, if I were to take that approach in this chapter, it would prob-
ably double the size of the book. This is because each step involves a large piece of code, most of it
very similar to the previous piece. So instead I will approach this program in chunks, with each
chunk consisting of a number of functions. I will explain what is going on in these functions and
talk about the techniques used and difficulties encountered. Each listing needs to be typed into
the same file, and there is little that needs to be in any specific order, so let’s get to it.

C H A P T E R 6   P I E M A N 123

Figure 6-1:
The finished Pie
Man game.

Gather Your Resources
Before you start writing any code there are a number of resources you need to construct or to
gather. These are the sound effects and the graphic sprites, or small images, of the playing
pieces. These are known as sprites because early in computing history they were separate
entities with their own dedicated hardware memory that could be set to be displayed any-
where on the screen by simply setting an X and Y register. Nowadays they are always defined
in software and the display position controlled by what address in memory you transfer
them to, but the name has stuck. Getting these sprites “right” will greatly simplify the code
that is needed. First and foremost is the Pie Man himself. It is vital that the sprite used for
this be square and not rectangular. At first I made a rectangular Pie Man, but I ran into all
sorts of problems with changing direction. The code that tested for the walls on a turn got
very complex, and even then it would occasionally fail, causing the Pie Man to walk through
a wall. The next thing to worry about is the actual size of the sprite; I settled on a size of 48
pixels square, which in turn governs the size between the walls. Finally, the maximum step
size was chosen to be 8, which is a compromise between the speed of the game and the
smoothness of the animation. There are a lot of things to calculate between each step, so
having it too small will result in a slow game. The step size also governs the thickness of the
walls that you need, but more on this when you look at the movement sections of the code.

R A S P B E R R Y P I P R O J E C T S124

The Sounds
I found a good source of free sound effects at the Freesound website, www.freesound.org. You
need to register in order to download sounds, but that is simple enough. Freesound has a good
search engine to narrow down your choice of sounds, and you can hear them directly from your
browser without having to download them first. Table 6-1 shows what sounds you need.

Table 6-1  Sounds Required
Filename Action

eatPill.ogg Pie Man eats a pill.

powerPill.ogg Pie Man eats a power pill.

ghostDie.ogg Pie Man kills a ghost.

pieDie.ogg A ghost kills Pie Man.

pieStart.ogg Fanfare to indicate that you can start playing.

Note here that the sound files are all in the .ogg format. I downloaded suitable files and
used Audacity to trim them, so there was a minimum delay before the sound actually started,
and there were no long silence at the end. Also, Audacity can convert them into mono files
and save them in the .ogg format that Python on the Raspberry Pi handles with ease. Note
that the Raspberry Pi can also handle WAV files, but I have found that it handles only some
files, and I can’t track down what the offending parameters or variations are. When you have
these files put them in a folder called sounds inside your working folder.

The Players
For the sprite I took the image of the racing pie slice used in Chapter 14, “Computer-
Controlled Slot Car Racing”, and made it square with a graphics package. I used Photoshop
Elements for this, but most graphics programs will allow you to resize an image; however, to
make it square, you have to remember to untick the Preserve Aspect Ratio box. Then with a
copy of this image, using the Select tool, I carefully removed the pastry lid of the pie slice and
pasted it back onto the pie at an angle. Make sure that the background is set to transparent,
and save it as a .png file. This gives the two basic images for your Pie Man, shown in Figure
6-2. Make sure that both images are the same size (48 pixels square) and that they are aligned
so that when you show one and then the other only the lid moves. Well, if you allow a pixel
or two of misalignment in the Y direction, then Pie Man, when it is chomping stationary
against a wall, does look like its motor is revving up and down, but don’t overdo it.

http://www.freesound.org/

C H A P T E R 6   P I E M A N 125

Figure 6-2:
The two basic
Pie Man sprites.

Now with those two basic sprites, make copies of each pointing in the four directions. You can do
this by using the Rotate function or the Flip Horizontally and Vertically function of your graphics
package. When you have done this give them the names shown in Figure 6-3. Figure 6-3 also
shows how you are going to use the sprites in the code. The numbers from zero to seven point at
a different image, with the least significant bit of the number determining if the lid is open or
closed, and the two most significant bits determining the direction Pie Man is pointing.

Next you need to consider the ghosts. I used six steps in the animation sprites for the ghosts.
Basically the only change that happens from sprite to sprite is the position of the eyes and the
ripple of the “skirt” at the bottom. In the game these are run in a shuffling loop – that is, they are
used in the order 1 to 6 and then back from 6 to 1. In this way you don’t have to worry about any
discontinuities between sprites 1 and 6. You need three sets of ghost sprites, one set being blue
and the others red and orange, or two other colours. This is easy in Photoshop. First I selected
the eyes, and then inverted the selection so that the eyes were the only things not selected. Then
I used the Change Hue function to change the ghost colour. Finally, you need a set of ghosts for
the ghost dying sequence. I used a set of eight ghosts, all derived from the first blue ghost. I took
the first ghost and shifted it down about three pixels, and carried on doing that in successive
ghost sprites until the eyes reached the bottom of frame. Then I added more and more transpar-
ent pixels to the last few ghosts to give a fading-away effect. I went back to the first “sinking”
ghosts and added a few transparent pixels to the body, putting more transparent pixels in subse-
quent frames. When played back this gave a nice dissolving effect. In order for the filenames to
match up to the programs, the ghost’s names are made from g for ghost, a number for the num-
ber in the sequence and finally a letter indicating the colour. These are shown in Figure 6-4. The
dying ghost sequence is shown in Figure 6-5; these sprites are named similarly with a d for die as
the last letter. Note that all the sprites should have a transparent background and they need to
be put into a folder called pies, alongside the sounds folder.

R A S P B E R R Y P I P R O J E C T S126

Figure 6-3:
All the Pie Man

sprites.

C H A P T E R 6   P I E M A N 127

Figure 6-4:
All the ghosts.

Figure 6-5:
The ghost dying
sequence.

Setting the Stage
Now with all the players in place, it is time to construct the stage for the action of your game.
The trick in making the game play at a reasonable speed is to try and cut down on the number
of drawing operations you have to make at each step. Basically the whole screen needs to be
redrawn between steps; however, doing this with a set of draw commands would take too much
time. To cut down on the amount of work needed, you can construct the game with three lay-
ers, or bitmaps. The lowest is the background layer, which contains all the walls of the maze and
needs to be drawn only once. The next layer up contains the pills; after they are drawn you need
to alter this layer only when a pill is eaten. Finally, the top layer is the screen, where Pie Man
and the ghosts will be plotted. So redrawing the screen consists of copying or blitting the back-
ground layer into the screen layer, blitting the pill layer into the screen layer and finally blitting

R A S P B E R R Y P I P R O J E C T S128

the sprites of Pie Man and the ghosts into the screen layer. Although blitting involves transfer-
ring a lot of data from one place to another, it is relatively quick and efficient because it is coded
in a low-level machine code that can be executed quickly. One thing you must ensure, however,
is that the pill layer’s background is transparent so that it does not obscure the walls in the
background layer. In Pygame this is done by telling the system that one colour should be
treated as being transparent. This is known as the color key. Figure 6-6 shows the arrangement
of the layers. Notice that the screen layer is wider than the background or the pills layer because
first of all, you need to have room for the score and lives-left indicator and second, you need the
extra space to cope with the tunnel from one side of the screen to the other.

Figure 6-6:
Screen drawing

planes.

Now it is time for your first chunk of code – basically the functions that set up the back-
ground layer. As mentioned before, all these listings need to go into one file, so set up a file
called pieMan.py in the same folder as the sound and graphics resources and type in the
code in Listing 6-1.

Listing 6-1  Setting Up the Background
def setupBackground():

 walkIncrement = 8

C H A P T E R 6   P I E M A N 129

 screen.fill(cBackground)

 background.fill(cBackground) # make background colour

 #screen bounding box

 pygame.draw.rect(background,(0,0,255), (0,0,;

 800,screenHeight),walkIncrement*2)

 block1(70,70, walkIncrement)

 block1(230,70, walkIncrement)

 block1(634,70, walkIncrement)

 block1(468,70, walkIncrement)

 block2(70,178, walkIncrement)

 block2(634,178, walkIncrement)

 block3(314,178, walkIncrement)

 block3(314,412, walkIncrement)

 block3(314,520, walkIncrement)

 pygame.draw.line(background, blue, (playWidth/2, 0),;

(playWidth/2,100),walkIncrement) # centre bar

 pygame.draw.line(background, blue, (0, 280),;

(155, 280),walkIncrement)#tunnel 1 left top

 pygame.draw.line(background, blue, (playWidth-155, 280),;

(playWidth, 280),walkIncrement) # tunnel 1 right top

 pygame.draw.line(background, blue, (0, 344),(155,;

 344),walkIncrement)#tunnel 1 left bottom

 pygame.draw.line(background, blue, (playWidth-155, 344),;

(playWidth, 344),walkIncrement) # tunnel 1 right bottom

 pygame.draw.rect(background, cBackground, (0,285, ;

walkIncrement+1, 8 + pieMan),0) # clear tunnel sides

 pygame.draw.rect(background, cBackground, (playWidth-;

walkIncrement,285, walkIncrement, 8 + pieMan),0)

 pygame.draw.line(background, blue, (245, 178),(245,;

 288),walkIncrement)

 pygame.draw.line(background, blue, (555, 178),(555,;

 288),walkIncrement)

 pygame.draw.line(background, blue, (245, 258),(260,;

 258),walkIncrement)

 pygame.draw.line(background, blue, (540, 258),(555,;

 258),walkIncrement)

 pygame.draw.line(background, blue, (245, 350),(245,;

 380),walkIncrement)

 pygame.draw.line(background, blue, (555, 350),(555,;

continued

R A S P B E R R Y P I P R O J E C T S130

Listing 6-1  continued
 380),walkIncrement)

 pygame.draw.rect(background, blue, (314,290, 172,;

 64),walkIncrement) # ghost box

 pygame.draw.rect(background, cBackground, (370, 291,;

 60,walkIncrement-2),walkIncrement-2) #ghost door

 pygame.draw.line(background, blue, (70, 574),(260,;

 574),walkIncrement)

 pygame.draw.line(background, blue, (540, 574),(730,;

 574),walkIncrement)

 pygame.draw.rect(background,blue, (0,498, 70, 20),;

walkIncrement) # left side block

 pygame.draw.line(background, blue, (140, 438),(140,;

 518),walkIncrement)

 pygame.draw.line(background, blue, (70, 438),(140,;

 438),walkIncrement)

 pygame.draw.line(background, blue, (208, 574),(208,;

 504),walkIncrement)

 pygame.draw.rect(background,blue, (730,498, 70,;

 20),walkIncrement) # right side block

 pygame.draw.line(background, blue, (660, 438),(660,;

 518),walkIncrement)

 pygame.draw.line(background, blue, (730, 438),(660,;

 438),walkIncrement)

 pygame.draw.line(background, blue, (592, 574),(592,;

 504),walkIncrement)

 pygame.draw.rect(background,blue, (70,350, 35,28),;

walkIncrement) # under tunnel bump

 pygame.draw.rect(background,blue, (702,350, 35, ;

28),walkIncrement) # under tunnel bump

 pygame.draw.line(background, blue, (208, 435),(257,;

 435),walkIncrement)

 pygame.draw.line(background, blue, (592, 435),(543,;

 435),walkIncrement)

 drawWords(“ SCORE”,1,1)

 drawWords(“ LIVES”,1,250)

 drawWords(“ HIGH”,screenOffset+playWidth,1)

 drawWords(“ SCORE”,screenOffset+playWidth,textHeight)

 drawWords(str(hiScore),screenOffset+playWidth,textHeight*2)

 drawPills()

def block1(x,y, inc):

C H A P T E R 6   P I E M A N 131

 global background

 pygame.draw.rect(background,blue, (x,y, 96, 48),inc)

def block2(x,y,inc):

 global background

 pygame.draw.rect(background,blue, (x,y, 96, 24),inc)

def block3(x,y, inc):

 global background

 pygame.draw.rect(background,blue, (x,y, 172, 24),inc)

 pygame.draw.line(background, blue, (x+86, y+24),(x+86, ;

y+54),inc)

def drawWords(words,x,y) :

 textSurface = pygame.Surface((screenOffset,textHeight))

 textRect = textSurface.get_rect()

 textRect.left = x

 textRect.top = y

 pygame.draw.rect(screen,cBackground, (x, y, ;

screenOffset, textHeight), 0)

 textSurface = font.render(words, True, cText, cBackground)

 screen.blit(textSurface, textRect)

Remember, you won’t be able to run Listing 6-1 yet as the global variables haven’t been set
up, but it is worth examining the code to see what it does. Basically it sets up the background
layer by drawing the walls. The thickness of the walls is set by the variable walkIncrement
to make them thick enough to make their detection simple. This is basically a large number
of draw commands that are, from a programming point of view, quite tedious. The only
slightly interesting points are the use of black rectangles to create a hole in the walls for the
tunnel from one side of the screen to the other, and to create a thinning of the wall in the
ghost box to allow the ghosts to exit. It is not all background, however, and the drawWords
function is used to set up the display on each side of the playing area. The screenOffset
variable is used to adjust the X coordinates between the background layer and the wider
screen layer. A bit more interesting is the next chunk of code shown in Listing 6-2.

Listing 6-2  Drawing the Pills
def drawPills():

 pillsLayer.fill((1,0,0)) # make transparent layer

 pillsLayer.set_colorkey((1,0,0),0)

 # basic grid of pills

 pillX = [142, 218, 295, 384, 463, 534, 614, 698, 777, 865]

 pillY = [32, 92, 149, 186, 239, 311, 372, 409, 469, ;

continued

R A S P B E R R Y P I P R O J E C T S132

Listing 6-2  continued
537, 600]

 powerPills = [(0,4), (9,4), (0,8), (9,8)]

 # places in the grid where pills are not placed

 pillExclude = [(1,1), (3,1), (6,1), (8,1), (1,3), (4,3),;

(5,3), (8,3), (4,5), (5,5), (4,7), (5,7), (4,9), (5,9)]

 pillShift = [(1,8),(1,9),(2,8),(2,9),(7,8),(7,9),(8,8),;

(8,9)]

 for X in range(0,10):

 if X > 5 :

 pillShiftOffset = -20

 else:

 pillShiftOffset = 20

 for Y in range(0,11):

 if not((X,Y) in pillExclude):

 if(X,Y) in pillShift:

 offset = screenOffset + pillShiftOffset

 else:

 offset = screenOffset

 pygame.draw.rect(pillsLayer,(255,255,0), ;

(pillX[X]- offset,pillY[Y], 10,10),0)

 if (X,Y) in powerPills:

 pygame.draw.rect(pillsLayer,(0,255,255), ;

(pillX[X]- offset-4,pillY[Y]-4,18,18),0)

 pygame.draw.rect(pillsLayer,(255,255,0), ;

(pillX[X]- offset,pillY[Y], 10,10),0)

This function sets up the pills layer and is called every time this layer needs to be refreshed,
such as at the start of the game and when all the pills have been eaten. Whereas Listing 6-1
is a simple brute-force set of draw instructions, Listing 6-2 is a bit more subtle. The pills are
mainly on a regular grid, so this lends itself to being programmed in an algorithmic way.
However, not all the pills in the grid are drawn because some would be over walls or inside
boxes. Similarly, some pills need to be dawn slightly off the grid to fit into the walls. This
brings into play a new Python function – that of testing if any item in one list is contained in
another list. The coordinates of the grid of pills is defined by the pillX and pillY lists, the
coordinates pairs of the pills not to plot are in the pillExclude list and similarly the coor-
dinates pairs of the offset pills are in the pillShift list. Two nested for loops generate the
sequence of coordinates, and the line

if not((X,Y) in pillExclude)

C H A P T E R 6   P I E M A N 133

checks whether those coordinates are contained in the exclusion list. That is quite a lot of func-
tionality in a single statement and would be quite hard to code in another language. Finally, the
power pills are simply contained in another list, and they have a large square in a different colour
drawn around them. In fact, this did not look good when I drew a box around the existing pixel,
so the code draws the large solid square first and then the small yellow pill square on top of that.

The Game Action
Now let’s look at the action part of the program, which will move the sprite in a specific direc-
tion unless it is blocked by a wall. This is not quite as simple as it might sound. The position of
a sprite, Pie Man or ghost, is the point where you will plot it on the screen, which is in fact the
top-left corner of the sprite and, depending on what direction the sprite is moving, will depend
on where you have to check to see if it can move. Figure 6-7 shows this for Pie Man moving
both left and right. Note that the distance away from the plot position depends on the direc-
tion. When Pie Man is moving to the left the place to test is only the move increment away
from the plotted position, whereas when he is moving to the right the length of the image
needs to be added to the walk increment and then subtracted from the plot position. That is
only for the X coordinate; the Y coordinate needs to be scanned over the height of the image to
see if a part of a wall is blocking the progress. Note the pixels to test are not contiguous, but
every four pixels – that is, half the maximum walk increment. This reduces the number of pix-
els that need testing and thus speeds up the process. A similar process must be gone through
when checking up and down movement. The functions in Listing 6-3 do this.

Figure 6-7:
Detecting a wall.

R A S P B E R R Y P I P R O J E C T S134

Listing 6-3  Making a Move
def makeStep(p,direction, increment):

 global moved

 moved = False

 if direction == 6:

 if wallH(p,p[1]+pieMan+increment):

 p[1] += increment

 moved = True

 else:

 while wallH(p,p[1]+pieMan+1):

 p[1] +=1 # pull into bottom

 elif direction == 4:

 if wallH(p,p[1]-increment):

 p[1] -= increment

 moved = True

 else :

 while wallH(p,p[1]-1):

 p[1] -= 1 # pull into top

 elif direction == 2:

 if wallV(p,p[0]+pieMan+increment):

 p[0] += increment

 moved = True

 else :

 while wallV(p,p[0]+pieMan+1):

 p[0] += 1 # pull in to left side

 if p[0] > screenOffset + playWidth:

leaving the screen

 p[0] = screenOffset - pieMan

 moved = True

 elif direction == 0:

 if wallV(p,p[0]-increment):

 p[0] -= increment

 moved = True

 else :

 while wallV(p,p[0]-1):

 p[0] -= 1 # pull in to side

 if p[0] < screenOffset - pieMan:

leaving the screen

 p[0] = screenOffset + playWidth

 moved = True

C H A P T E R 6   P I E M A N 135

 return p

def wallV(p,os):

 clear = True

 for pix in range(0,pieMan,4) :

 if screen.get_at((os,p[1]+pix)) == blue:

 clear = False

 return clear

def wallH(p,os):

 clear = True

 for pix in range(0,pieMan,4) :

 if screen.get_at((p[0]+pix, os)) == blue:

 clear = False

 return clear

def wallHt2(p,ox,oy,r): #test for turning

 clear = True

 for pix in range(0,r,4) :

 if screen.get_at((p[0]+pix+ox, p[1]+oy)) == blue:

 clear = False

 return clear

There are four functions here. The main one, makeStep, takes three parameters: The first, p,
is a list containing the X and Y coordinates of the plot position, and the others are the direc-
tion and how far you need to go in that direction. This function has different code depending
on the required direction, but the purpose of the code is the same. It is saying, “Is the space
in front of the sprite enough to move the required distance?”, and if so, it lets the sprite
move. If not, it pulls in the sprite one pixel at a time until it is up against the obstacle. When
that has been done the new position of the sprite is returned.

The three functions following this simply scan the pixels the required distance away to see if it is
clear, where clear means not blue, the colour of the walls. Note that the exact colour is specified;
you could draw something that was only one bit different from the full blue you are looking for,
which would look identical, but you would be able to walk through it. Also, notice that it is the
screen layer that is being tested; there is nothing to stop you from testing the background layer
if you want to. In that way you could have an identical colour on the pills layer of the screen layer
that would not act as an obstacle. Note there is also a global variable called move that is set if a
step has been taken successfully, which is used later on for the ghost movements.

There is an additional test for directions 0 and 2 to cope with Pie Man exiting on one side of
the screen and entering on the other. In early computers this was a pure consequence of the

R A S P B E R R Y P I P R O J E C T S136

hardware; the way the memory was scanned meant that if you exceeded the coordinates, the
sprite would wrap around and be displayed on the other side of the screen. These days, with
a windowed environment, you have to do that effect in code.

Eating the Pills
Next turn your attention to the consumption of the pills, which is a bit different from the
detection of the walls. Basically you need to know if Pie Man is over a pill – put simply, you
need to look at the pixel colour in the pill layer. As the pill is 10 pixels square, you need not look
at any pixel within 10 of the boundary of the sprite. Then if you take a look over a horizontal
line and vertical line at the center of the sprite and find any pixel that is yellow, you know the
sprite is completely over a pill. Just as with checking for a wall, there is no need to look at every
pixel on these lines – just every four. Note that there will be four small blind spots where the
corner of a pill can be and still not be detected, but in practice this is not a problem because you
will detect it on the next munch or step. Figure 6-8 shows the geometry of this situation.

Figure 6-8:
Detecting a pill.

Detecting a power pill can in principle be done in the same way, but in practice I found that
this was quite time-consuming and slowed the game down noticeably. Therefore, I had to
come up with a more efficient way to do this. Basically if the scan for a pill has not detected

C H A P T E R 6   P I E M A N 137

one, there is no point in scanning for a power pill. If you make a note of where the last pill
pixel was found, you can search close to that for the surrounding colour that indicates a
power pill. The two functions involved with pill eating are shown in Listing 6-4.

Listing 6-4  Eating the Pills
def eat(p):

 global eaten, ghostPos, ghostRelease, gNumber

 if pillEat(p):

 eatSound.play()

 # wipe the pill area

 pygame.draw.rect(pillsLayer,(1,0,0), (p[0]- ;

screenOffset, p[1], pieMan,pieMan),0)

 updateScore(3)

 eaten += 1

 if eaten >= 96:

 eaten = 0

 drawPills()

 ghostPos = copy.deepcopy(ghostInitalPos) ;

return ghosts to base

 gNumber = 0

 ghostRelease = time.time()+ 5.0 ;

time for first ghost

 pygame.display.update()

def pillEat(p): # test if you are over a pill

 global ppCount

 fpx = 0

 fpy = 0

 pill = False

 ppColour = (0,255,255,255)

 if p[0] > screenOffset and p[0] < rightLimit :

 piy = p[1]+24

 for pix in range(p[0]+10,p[0]+38,9):

 if pillsLayer.get_at((pix-screenOffset, piy));

 == pillColour:

 pill = True

 fpx = pix - screenOffset

 pix = p[0]+24

 for piy in range(p[1]+10,p[1]+38,9):

 if pillsLayer.get_at((pix-screenOffset, piy));

 == pillColour:

 pill = True

 fpy = piy

continued

R A S P B E R R Y P I P R O J E C T S138

Listing 6-4  continued
 if pill: #you have a pill is it a power pill?

 ppill = False

 if fpx != 0:

 for pix in range(fpx,fpx+12,2):

 if pillsLayer.get_at((pix, p[1]+24)) == ppColour:

 ppill = True

 if fpy !=0:

 for piy in range(fpy,fpy+12,2):

 if pillsLayer.get_at((pix-screenOffset, piy));

 == ppColour:

 ppill = True

 if ppill:

 #print” we have a power pill”

 ppSound.play()

 updateScore(40)

 ppCount = 0 # start off power play

 return pill

There are two functions here. The second, pillEat, deals with the pill detection in the manner
already discussed. It returns a Boolean variable showing if it has detected a pill and also clears a
global variable (ppCount) if a power pill has been found. The finding of the power pill also trig-
gers the power pill sound as well as giving the score a bonus. The first function, eat, takes in a
position list and calls the pillEat function as part of an if statement. When a pill is detected,
the sound is played, and the score is updated as you might expect, but also the pill has to be
removed from the display. This is done by simply drawing a rectangle covering the whole of the
sprite in the pills layer of the colour that you have set to represent transparency. This wipes it
from view. There is a count kept of how many pills have been consumed, and when this reaches
the maximum number, 96, the ghosts are sent back to their box, and the pills are redrawn again
on the pill layer. The line that resets the ghosts contains something you will have not seen before:

ghostPos = copy.deepcopy(ghostInitalPos) # return ghosts to base

This is what is known as a deep copy. When copying lists just putting

ghostPos = ghostInitalPos

will make the two lists the same object; that is, if you change one, the other will also be changed.
When the deep copy is used every individual element in the list is transferred to each individual
element in the other list. Also, when drawing a new lot of pills the global variable ghostRelease
is set, which controls when the ghosts can come out of their box, but more on this later when
you look at the main function.

C H A P T E R 6   P I E M A N 139

Death of a Pie Man – or a Ghost
Next, you look at the situation in which a ghost and Pie Man collide, which results in a death;
however, whose death it is depends on the mode. If the power play is in force, the ghost dies.
Otherwise, the ghost kills Pie Man. He is turned into a ghost because he is killed, and that
ghost then dies. This conveniently allows you to use the same animated sequence for any
sort of death. This is the only part of the game that relies on knowing where the objects are
rather than looking at the screen pixels. This is done by creating a rectangle for Pie Man and
the two ghosts, moving that rectangle to match the current playing position and then calling
the collide-rectangle function in Pygame, which returns a logic value of true if the two rect-
angles overlap in any way. The functions that do this are shown in Listing 6-5.

Listing 6-5  Detecting a Touch
def kill(p,g1,g2): # see if man and ghosts are touching

 global ghostPos, lives, position, ghostRelease, gNumber

 playRect = pygame.Rect(0,0,pieMan,pieMan)

 g1Rect = pygame.Rect(0,0,pieMan,pieMan)

 g2Rect = pygame.Rect(0,0,pieMan,pieMan)

 playRect = playRect.move(p[0],p[1])

 g1Rect = g1Rect.move(g1[0],g1[1])

 g2Rect = g2Rect.move(g2[0],g2[1])

 if playRect.colliderect(g1Rect):

 if powerPlay:

 ghostDieSound.play()

 updateScore(150)

 ghostDisolve(g1)

 ghostPos[0]=[526,298]

 if playRect.colliderect(g2Rect):

 if powerPlay:

 ghostDieSound.play()

 updateScore(260)

 ghostDisolve(g2)

 ghostPos[1]=[422,298]

 if (playRect.colliderect(g1Rect) or playRect.colliderect;

(g2Rect)) and not powerPlay:

 pieDieSound.play()

 ghostDisolve(p)

 time.sleep(0.4)

 lives -= 1

 updateLives()

 ghostPos = copy.deepcopy(ghostInitalPos) ;

return ghosts to base

 position = [screenOffset +pieIncrement*2, ;

continued

R A S P B E R R Y P I P R O J E C T S140

Listing 6-5  continued
pieIncrement + 2] # position of the pieman

 ghostRelease = time.time()+ 5.0 ;

time for subsequent ghosts

 gNumber = 0

def ghostDisolve(p):

 for i in range(0,8):

 pygame.draw.rect(screen, cBackground, (p[0],p[1], ;

pieMan, pieMan),0)

 screen.blit(ghostdPicture[i],[p[0],p[1]])

 pygame.display.update()

 time.sleep(0.1)

These two functions do the job of detection. After the rectangles have been created and
moved to the correct position the two ghosts are checked to see if Pie Man has caught up
with them. If this is true and the global variable powerPlay indicates that a power play is in
force, the ghost is killed, the die sound is triggered, the score is updated, the death animation
function ghostDisolve is called and the ghost is returned to its box. Note that the two
ghosts are worth different amounts in the score. However, if a power play is not in force and
one of the ghosts has struck a mortal blow to the brave Pie Man, then it is he who dies. One is
subtracted from his total number of lives, the lives display is updated and the players are set
back to their initial starting points. The ghostDisolve function simply draws successive
ghost pictures on the screen. The sleep time controls the speed of this short animation, and
makes it large for a slower, lingering death – or at least lasts as long as your dying sound effect.

The Hunting Pack
Now it is time to look at the control of the ghosts. They must be set to chase Pie Man but run
away when there is a power play in force. You need to write something that will determine
the movement of the ghosts. Some of this work is done in the main function, but there is
one function that hunts you down, getNewDir, which is shown in Listing 6-6.

Listing 6-6  Finding a Way to You
def getNewDir(g):

 deltax = ghostPos[g][0] - position[0]

 deltay = ghostPos[g][1] - position[1]

 #print deltax,deltay

 if abs(deltax) > abs(deltay) and abs(deltax)> pieMan:

 if deltax < 0:

 nd = 2

 else:

C H A P T E R 6   P I E M A N 141

 nd = 0

 else:

 if deltay < 0:

 nd = 6

 else:

 nd = 4

 if powerPlay: # reverse direction

 nd ^= 0x2

 return nd

Here the function getNewDir takes in the ghost number and first works out the delta, or dif-
ference, between Pie Man and the selected ghost. This could be a positive or negative value
depending on what side of the ghost Pie Man is on. Therefore, when you test these delta values,
you need to discard the sign information and just look at the absolute magnitude, which is
done with the abs function. The code then sets the direction number to be in the direction of
the largest delta. The last few lines of this function check if there is a power play in force, and if
there is, it reverses the direction. This is done in a rather clever way. If you refer back to Figure
6-3 and the numbers associated with direction and if you look at bit 1 of the number (remem-
ber you start numbering bits from zero, so bit 1 is the middle bit of the three), you will see that
for any given direction number, if bit 1 is inverted, the direction is changed to the opposite
direction. So by using the exclusive OR operation, ^, you can reverse the direction number no
matter what it is. This clever code line saves you from writing many lines of if tests.

Drawing the Screen
The functions for updating the screen are quite short because most of the heavy lifting has already
been done, which is fortunate as this needs to be done every step. This is shown in Listing 6-7.

Listing 6-7  Drawing the Screen
def drawScreen(p,g1p,g2p) : # draw to the screen

 screen.blit(background,[screenOffset,0]) # draw background

 screen.blit(pillsLayer,[screenOffset,0]) # draw pills

 screen.blit(piPicture[pieDirection ^ step],[p[0],p[1]])

 if powerPlay:

 screen.blit(ghostbPicture[gStep],[g1p[0],g1p[1]])

 screen.blit(ghostbPicture[gStep],[g2p[0],g2p[1]])

 else :

 screen.blit(ghost1Picture[gStep],[g1p[0],g1p[1]])

 screen.blit(ghost2Picture[gStep],[g2p[0],g2p[1]])

 # blank out exit tunnels

 pygame.draw.rect(screen, cBackground, (0,285, ;

continued

R A S P B E R R Y P I P R O J E C T S142

Listing 6-7  continued
screenOffset, 12 + pieMan),0)

 pygame.draw.rect(screen, cBackground, (playWidth + ;

screenOffset,285, screenOffset, 12 + pieMan),0)

 pygame.display.update()

def updateLives():

 for pie in range(0,maxLives) :

 screen.blit(piPicture[2],[25,348+pie*80])

 if pie >=lives:

 y = 396 + (pie * 80)

 pygame.draw.line(screen,(255,255,0),(25,y),;

(25+pieMan, y-pieMan),8)

def updateScore(toAdd):

 global score

 score += toAdd

 drawWords(str(score),1,textHeight)

This is quite simple to follow. First the background is blited into the screen and then the pills
layer, followed by the picture of Pie Man. Note here that all the sprites are held in an array,
and the one chosen is given by the direction number along with the animation bit, which is
toggled by the variable step. This simple method ensures that the sprite chosen is in the
correct direction and alternates with the pie lid open and closed. This gives a nice chomping
effect. Next the two ghosts are drawn. During a power play they are the blue versions; other-
wise, they are the red and orange ones. The individual ghost sprite used is determined by the
global variable gStep and is altered in the main function, along with Pie Man’s step vari-
able. Finally, the ends of the tunnels are blanked out in case Pie Man is making a trip through
them, which makes it look like he is disappearing through the tunnel. The two other func-
tions also update the screen but are called only occasionally. The updateLives function
draws a number of Pie Man images on the left of the screen and draws a thick strikethrough
line across one if that life has been spent. The updateScore function simply takes in a
number, adds it to the total score and then draws that score on the screen.

Before you reach the main function that brings it all together and defines the game you must
add the usual housekeeping functions. These are shown in Listing 6-8.

Listing 6-8  Housekeeping Functions
def terminate(): # close down the program

 print (“Closing down please wait”)

 pygame.quit() # close pygame

C H A P T E R 6   P I E M A N 143

 sys.exit()

def checkForEvent(): # see if you need to quit

 global pieDirection, position, start, ppCount

 event = pygame.event.poll()

 if event.type == pygame.KEYDOWN :

 start = True

 if event.key == pygame.K_ESCAPE :

 terminate()

 if event.key == pygame.K_DOWN :

 if pieDirection == 0 or pieDirection == 2: #check under

 if wallHt2(position,0,pieMan + 1,pieMan):

 pieDirection = 6

 else :

 pieDirection = 6

 if event.key == pygame.K_UP :

 pieDirection = 4

 if event.key == pygame.K_RIGHT :

 pieDirection = 2

 if event.key == pygame.K_LEFT :

 pieDirection = 0

 if event.key == pygame.K_p : # cheat - power up at will

 ppCount = 0

 elif event.type == pygame.QUIT :

 terminate()

if __name__ == ‘__main__’:

 main()

Unlike the other listings, which can be placed anywhere in the file you are building up, Listing 6-8
has to be at the end – or at least the last line in this listing must be the last line in your file. There
is the terminate function that shuts things down when you press the Esc key or close the
Pygame window, which is the same for many programs in this book. It is the checkForEvent
function that actually provides the user with the controls to play the game – namely, the cursor
keys. These mainly look at keyboard events and control the direction of Pie Man through the
global variable pieDirection. Primarily, the key simply changes the direction number, but in
the case of Pie Man going horizontally and wanting to turn down, an extra check of the wall
underneath Pie Man must be made to avoid its walking through a wall. Putting the check here
means you don’t have to do it in the normal direction checks that have to be done on every step;
you need to do this only on a turn in the downward direction from a left- or right-moving situa-
tion. Note as soon as any key is pressed a global variable start is set to be true. This is used at the

R A S P B E R R Y P I P R O J E C T S144

start of the game on the first key press. Finally, there is a hidden cheat key, much in keeping with
early computer games. Of course, because this is typed in a listing, it’s not that “hidden”, anyway:
By pressing the P key, you can enter a power play at any time, so if the ghost is about to get you,
you can quickly turn the tables. It is easy to remove these two lines for competition play.

The Final Function
Now you are in a position to put it all together and define how the game actually plays.
Basically, there are two nested loops: The outer one runs forever and plays game after game,
whereas the inner one runs for only as long as there are lives left. The main function sets up
all the parameters for a game, and then the inner loop generates the moves and evaluates the
results by calling functions you have already typed in. So go ahead and enter the code in
Listing 6-9 into your file. You need to place Listing 6-9 at the top of your file because it
defines all the global variables and sets up the sounds, sprites and windows.

Listing 6-9  The Global Variables and main Function
#!/usr/bin/env python

“””

Pie Man

A Raspberry Pi Game

“””

import time # for delays

import os, pygame, sys

import random, copy

pygame.init() # initialise graphics interface

pygame.mixer.quit()

pygame.mixer.init(frequency=22050, size=-16, channels=2, ;

buffer=512)

eatSound = pygame.mixer.Sound(“sounds/eatPill.ogg”)

ppSound = pygame.mixer.Sound(“sounds/powerPill.ogg”)

ghostDieSound = pygame.mixer.Sound(“sounds/ghostDie.ogg”)

pieDieSound = pygame.mixer.Sound(“sounds/pieDie.ogg”)

pieStartSound = pygame.mixer.Sound(“sounds/pieStart.ogg”)

os.environ[‘SDL_VIDEO_WINDOW_POS’] = ‘center’

pygame.display.set_caption(“Pie Man”)

pygame.event.set_allowed(None)

pygame.event.set_allowed([pygame.KEYDOWN,pygame.QUIT])

textHeight = 36

font = pygame.font.Font(None, textHeight)

screenWidth = 1000

C H A P T E R 6   P I E M A N 145

screenHeight =636

playWidth = 800

screenOffset = (screenWidth - playWidth) / 2

screen = pygame.display.set_mode([screenWidth,screenHeight],;

0,32)

background = pygame.Surface((playWidth,screenHeight))

pillsLayer = pygame.Surface((playWidth,screenHeight))

picName = [“pie1left”, “pie2left”, “pie1right”, ;

“pie2right”, “pie1up”, “pie2up”, “pie1down”, “pie2down”]

piPicture = [pygame.image.load(“pies/”+picName[frame];

+”.png”).convert_alpha() for frame in range(0,8)]

ghost2Picture = [pygame.image.load(“pies/g”+str(frame);

+”o.png”).convert_alpha() for frame in range(1,7)]

ghost1Picture = [pygame.image.load(“pies/g”+str(frame);

+”r.png”).convert_alpha() for frame in range(1,7)]

ghostbPicture = [pygame.image.load(“pies/g”+str(frame);

+”b.png”).convert_alpha() for frame in range(1,7)]

ghostdPicture = [pygame.image.load(“pies/g”+str(frame);

+”d.png”).convert_alpha() for frame in range(1,9)]

define the colours to use for the user interface

cBackground =(0,0,0)

cText = (255,255,255)

cBlock = (0,0,0)

blue = (0,0,255,255)

pillColour =(255,255,0,255)

box = [screenWidth-100,screenHeight-40]

hw = screenWidth / 2

hh = screenHeight /2

pieIncrement = 8 # speed of pie man

pieDirection = 2

step = 0 # changing image of pie

gStep = 0 # changing image of ghost

gIncrement = 1

score = 0

hiScore = 0

eaten = 0 # number of pills eaten

ppill = False

maxLives = 3

lives = maxLives

pieMan = 48 # size in pixels each side of the pie man

continued

R A S P B E R R Y P I P R O J E C T S146

Listing 6-9  continued
rightLimit = playWidth+screenOffset-pieMan

position = [screenOffset +pieIncrement*2,pieIncrement+2] ;

position of the pieman

ghostInitalPos = [[526,298], [422,298]]

ghostPos = copy.deepcopy(ghostInitalPos)

ghostRelease = time.time()

gNumber = 0

ghostDirection = [0, 2]

moved = True # see if something is blocked

start = False

powerPlay = False

ppCount = 90

def main():

 global position, step, gStep, gIncrement, ghostPos, ;

moved, ghostRelease, pieDirection

 global score, ghostDirection, cBackground, hiScore, ;

lives, eaten, gNumber, start, ppCount, powerPlay

 while True:

 score = 0

 eaten = 0

 lives = maxLives

 pieDirection = 2

 setupBackground()

 updateLives()

 ghostPos = copy.deepcopy(ghostInitalPos) ;

return ghosts to base

 position = [screenOffset +pieIncrement*2, ;

pieIncrement+2] # position of the pieman

 drawScreen(position,ghostPos[0],ghostPos[1])

 gNumber = 0

 ppCount = 90

 start = False

 pieStartSound.play()

 while not start: # wait for a key

 checkForEvent()

 ghostRelease = time.time()+ 4.0 # time for first ghost

 while lives > 0:

 checkForEvent()

 if ppCount < 80: # sets length of ;

time for power play

 if ppCount >70 and ppCount < 75: ;

flash just before end

C H A P T E R 6   P I E M A N 147

 powerPlay=False

 else:

 powerPlay=True

 else:

 powerPlay=False

 drawScreen(position,ghostPos[0],ghostPos[1])

 kill(position,ghostPos[0],ghostPos[1])

#collision check

 eat(position)

 position = makeStep(position,pieDirection, ;

pieIncrement)

 # move ghosts

 if powerPlay :

 ghostInc = 4

 else:

 ghostInc = 8

 if time.time() > ghostRelease:

 if gNumber < 2:

 ghostRelease = time.time()+ 5.0 ;

time for subsequent ghosts

 gNumber += 1

 for i in range(0,gNumber):

 new = getNewDir(i)

 ghostPos[i] = makeStep(ghostPos[i],new, ghostInc)

 if not moved:

 ghostPos[i] = makeStep(ghostPos[i], ;

ghostDirection[i], ghostInc)

 while not moved:

 ghostDirection[i] = random.randint(0,3)<<1

 ghostPos[i] = makeStep(ghostPos[i], ;

ghostDirection[i], ghostInc)

 else:

 ghostDirection[i] = new

 step ^= 1 # toggle pie animation

 ppCount +=1 # increment power play count

 gStep +=gIncrement

 if gStep == 5 or gStep == 0:

 gIncrement = -gIncrement

 # game over

 if score > hiScore : # new high score flash it

 hiScore = score

 for i in range (0,15):

continued

R A S P B E R R Y P I P R O J E C T S148

Listing 6-9  continued
 cBackground = ((i & 1)*255, ((i>>1) & 1)*255,;

((i>>2) & 1)*255)

 drawWords(str(hiScore),screenOffset+playWidth, ;

textHeight*2)

 pygame.display.update()

 time.sleep(0.2)

 cBackground = (0,0,0)

 drawWords(str(hiScore),screenOffset+playWidth,textHeight*2)

 pygame.display.update()

 time.sleep(2.0)

There is a lot going on here, so let’s walk through it. Listing 6-9 starts off by initialising the
sound, the window and the drawing planes – all stuff you have seen before. The lines

pygame.event.set_allowed(None)

pygame.event.set_allowed([pygame.KEYDOWN,pygame.QUIT])

restrict the number and type of events that can be generated. This is important because the
event buffer can be filled up with mouse-movement events and other things you are not
interested in. As these events are checked only once per step, it could make the game seem
insensitive to the control keys. Next, the following lines associate each Pie Man sprite with
the correct image number that is shown in Figure 6-3:

picName = [“pie1left”, “pie2left”, “pie1right”, ;

“pie2right”, “pie1up”, “pie2up”, “pie1down”, “pie2down”]

piPicture = [pygame.image.load(“pies/”+picName[frame];

+”.png”).convert_alpha() for frame in range(0,8)]

This works by first generating a list of image names and then using that list to load in the
image files into the piPicture list, with the index number matching the image number
that you want. Then come a whole slew of variable definitions that control the game.

The Game Begins
The main function is where it all happens. The part between the first two while statements
sets up the game by initialising a lot of variables; you can’t rely on the values they got in the
global definitions because these will have changed by the time you play the second game. The
second while statement pauses the program at this point until a key is pressed. You will
remember that any key press event sets the variable start to true. So when it is the game
proper starts. The first thing that happens is the variable ghostRelease is set to the current
time plus 4 seconds, which means the player has four seconds of hassle-free pill munching.

C H A P T E R 6   P I E M A N 149

The next section of code checks the value of the ppCount variable, which times the power
play. The way it works is that the variable is incremented every step and, depending on the
total, sets or clears the power play flag called powerPlay. This is set initially to be 90, so
there is no power play at the start. However, this allows you to use a simple mechanism for
starting a period of power play; you simply have to set the ppCount variable to zero, and it
will start. The code also defines a period near the end of the power play when the ghosts will
flash briefly. After that section of code the drawScreen function is called, and the positions
of Pie Man and the ghosts are plotted. The following section of the code sees if there is a kill,
or ghost/Pie Man collision, checks if Pie Man has eaten a pill and then updates Pie Man’s
position by calling the makeStep function.

The Ghost Chase
Next comes the movement of the ghosts. First of all, the ghost speed is altered depending on if
there is a power play in force. After all, there is little point in being able to kill a ghost if it can out-
run you, or at least match your speed. In normal play the ghosts can move as fast as you can,
which means errors you make in steering Pie Man will accumulate, so the ghosts will eventually
catch you. If you want the ghosts to be able to move faster than Pie Man, don’t increase the speed
of the ghosts here; instead reduce the step size of Pie Man using the pieIncrement variable.
After that, and providing the ghostRelease time has been exceeded, the moves for the ghosts
are calculated by calling the getNewDir function and trying to move in that direction. If this
move is blocked, an attempt is made to move in the previous direction. If this is blocked, a series
of random directions are tried until one is found that is not blocked. It is this algorithm that gives
the ghosts their movement, and it is interesting to see the emergent behaviour that this gener-
ates. Note that the gNumber variable is used to release the ghosts one at a time at set intervals.

The next section of code deals mainly with housekeeping. The step variable is toggled to dis-
play alternating lid-open and lid-closed images. The ppCount variable is incremented to time
the power play period, and the gStep variable is changed up and down to define the ghost
sprite to use. And that is it, until the game ends by reducing the number of lives left to zero.

The Game Ends
The final part of the main function deals with what happens at the end of a game. First off, it
checks to see if a new high score has been reached, and if it has, it flashes the new score with
a number of changing colour backgrounds. The time between the flashes is controlled by the
time.sleep statement. Then after another delay the whole thing starts again.

This is a long piece of code, so the odds are stacked against you for typing it in right the first
time. However, if you have worked through the previous chapters, your debugging skills
should be quite good by now. The main things to watch out for are getting the indentation
correct and getting the case of the characters right; an uppercase X, for example, can look
very close to a lowercase x in some fonts.

R A S P B E R R Y P I P R O J E C T S150

Using the four cursor keys for playing is quite good as you can concentrate on the screen
action without needing to look at the keys. However, when you first play you may be a little
frustrated as you might find that your Pie Man doesn’t want to make a turn. This is because
the whole of the sprite has to fit into the opening before you can move through it. Just a
single pixel blocking the way is enough to prevent any movement. When this happens I have
found it best to do a quick turn to one side, then do an about turn and then have another go
at making the turn. You will get better the more you play.

Over to You
What you have here is just the start; there are more things you can add to make the game
even better. How about keeping a permanent record of the high score? You can write it out
to a file in the terminate function and read it in at the start of the main function. Better
still, how about a whole table of high scores with names alongside them? There is room on
the right side of the screen to do that. See Chapter 8, “Colour Snap”, for hints on how to add
a high-score table. Additionally, you have the opportunity to add another sound effect for
when a new high score is made. There are also several other places in the game where you can
add sound effects, such as when restarting after losing a life and when the game ends alto-
gether. You could add a continuous music soundtrack to play all the time, which is simple to
do; you just need the normal command to play the sound but put a -1 in the brackets of the
call – then the sound loops continuously.

You can add bonus fruit, like so many games of this type. There is room in the lower left of the
screen to show the fruit in waiting. For the more adventurous, you could add some extra code
that makes Pie Man wriggle into gaps that he is not initially exactly lined up to fit in. Perhaps
the biggest challenge would be to change the behaviour of the ghosts. You might want to have
an initial phase in which a ghost can escape from the top of the ghost box no matter where the
Pie Man is. Or you can put an exit in the lower part of the ghost box. You could even have each
ghost performing a different strategy to hunt. What about using more ghosts? You can also
make the ghosts flash more than once toward the end of the power play period.

One other thing you could do is make a level editor. As you have seen, the background consists of
many drawing commands; well, you could do this in a separate program and produce an image file
of the background. Then, in the game-playing program in place of the drawing, you could simply
have an instruction that loads the image file into the background layer. You can also have another
file for the pills layer; then when all the pills are eaten you can load in another, different layout.

There is really a lot more you can do, but whatever you do, keep on munching.

Chapter 7
Minecraft Maze Maker

by Sean McManus

In This Chapter

❍	 Installing Minecraft

❍	 Exploring the Minecraft world

❍	 Manipulating the Minecraft world in Python

❍	 Generating a random Minecraft maze in Python

R A S P B E R R Y P I P R O J E C T S152

MINECRAFT APPEALS TO the Lego fan in everyone. It enables you to build immersive 3D
worlds from blocks of materials, and it’s fired up imaginations to the extent that an esti-
mated 20 million copies have been sold across platforms including the PC and Xbox.

An early development version of Minecraft is available for the Raspberry Pi. It features only
the creative mode, where you can build things peacefully without the threat of monster
attacks or starvation, but it has one neat twist: You can program it using multiple languages,
including Python. This means that you can build a grand palace without having to manually
place every block, and can write programs that can invent original new structures for you to
roam around and explore, as you’ll see in this chapter.

This project uses a Python program to build a maze in Minecraft. Each time you run the pro-
gram, it will build a new maze for you, and you can control how big you want it to be and
which materials you want it to be made of. During the course of this project, you’ll learn how
to place and remove blocks in Minecraft using Python, so you’ll have the skills to write your
own programs that supercharge your construction work.

At the time of writing, Minecraft: Pi Edition is alpha software, which means that it’s a very
early test version (less well developed than a beta version). I had only a couple of minor
issues with it: The window and its content were strangely aligned using a screen resolution of
1024 x 768 (so I switched to 1280 x 1024), and the cursor misbehaved when I maximised the
window. Nevertheless, I recommend that you always back up any important data on your
Raspberry Pi when you use any alpha software, just in case something goes wrong.

The easiest way to back up files on your Raspberry Pi is to connect a USB storage device and
use the File Manager in the desktop environment to copy them across.

You can download the code for this chapter from my website at www.sean.co.uk.

Installing Minecraft
Although Minecraft is distributed commercially on other platforms, the Raspberry Pi alpha
version is free to download. To use it, you’ll need to have the Raspbian Wheezy version of
Linux on your Raspberry Pi. It’s the operating system version recommended by the Raspberry
Pi Foundation, and you can install it using the New Out of Box Software (NOOBS) image
available through the Downloads section at www.raspberrypi.org. For help with install-
ing the operating system, see Chapter 1, “Getting Your Raspberry Pi Up and Running”.

http://www.sean.co.uk
http://www.raspberrypi.org/

C H A P T E R 7   M I N E C R A F T M A Z E M A K E R 153

To install Minecraft, follow these steps:

	 1.	 Make sure that your Raspberry Pi is connected to the Internet. You’ll be downloading
Minecraft over your web connection.

	 2.	 Start your Raspberry Pi, type startx and press Enter to go into the desktop environment.

	 3. 	Double-click the Midori icon on the desktop or use the Programs menu in the bottom
left to start your browser.

	 4.	 Visit http://pi.minecraft.net and click the link to download Minecraft. When
prompted, click Save As to check that you’re saving into your pi folder. In the file
browser, it should be highlighted in your Places on the left. Click the Save button.
Close Midori. (You don’t need it any more.)

	 5.	 Double-click the LXTerminal icon on the desktop to open a terminal session.

	 6.	 Enter the command tar -zxvf minecraft-pi-0.1.1.tar.gz to uncompress
the file you downloaded. Linux is case sensitive, so make sure that you type everything
in lowercase. The last bit of that command is the name of the file you just downloaded,
so it is likely to change as new versions of Minecraft are released, especially the num-
bers near the end of it. You need to type only the first few letters of the filename and
then press the Tab key to have it automatically completed for you, though. As the files
are uncompressed, you’ll see a list of them on-screen. You can see the files in your pi
directory by typing in ls.

	 7.	 Enter the command cd mcpi to go into the folder containing the uncompressed
Minecraft files.

	 8.	 Type in ./minecraft-pi and press Enter to start Minecraft.

If all has gone according to plan, you should see the Minecraft title screen appear.

Starting Minecraft
After you’ve installed Minecraft, the next time you want to play you can start it by going into
the desktop environment (step 2 in the installation instructions in the section “Installing
Minecraft”), opening a terminal session (step 5), and typing in the commands cd mcpi and
./minecraft-pi. It won’t work if you try to run Minecraft from the command line with-
out first going into the desktop environment.

If you close your LXTerminal window, you’ll close your Minecraft session immediately too, so
try to ignore that window that doesn’t look as if it’s doing anything. It is!

http://pi.minecraft.net

R A S P B E R R Y P I P R O J E C T S154

Playing Minecraft
When you start Minecraft on the Raspberry Pi, the title screen gives you two options:

❍	Start Game: This is the option you’ll be using in this chapter to generate your own
game world to explore. You can also use this option to choose a previously generated
world to revisit, when you replay Minecraft later. To choose between the different
worlds, click and drag them left and right to position your chosen one in the middle,
and then click it to open it.

❍	Join Game: This option is used if you want to join other players in a game on a local
network. It’s outside the scope of this chapter, but can enable collaborative or com-
petitive play in a Minecraft world.

Click Start Game, and then click Create New, and Minecraft will generate a new world for
you, with its own distinctive terrain of mountains, forests and oceans. When it’s finished,
you’ll see a first-person view of it (see Figure 7-1).

Figure 7-1:
Minecraft on

the Pi.

You can change your perspective to show the player’s character in the game. Press the Esc
key to open the game menu, and then click the icon beside the speaker icon in the top left to
change the perspective.

C H A P T E R 7   M I N E C R A F T M A Z E M A K E R 155

When you’ve finished playing, you can quit the game by pressing the Esc key to open the
game menu.

Moving Around
Minecraft is easiest to play using two hands, one on the mouse and one on the keyboard. Use
the mouse to look around you and change your direction, sliding it left and right to turn
sideways, and forwards and backwards on the desk to look up and down. To move, you use
the keys W and S for forwards and backwards, and A and D to take a sidestep left and right.
Those keys form a cluster on the keyboard, which makes it easy to switch between them.

You character will automatically jump onto low blocks if you walk into them, but you can
deliberately jump by pressing the spacebar.

For the best view of your world, take to the skies by double-tapping the spacebar. When
you’re flying, hold the spacebar to go higher, and the left Shift key to go lower. Double-tap
the spacebar to stop flying and drop to the ground. There’s no health or danger in this edition
of Minecraft, so you can freefall as far as you like.

Making and Breaking Things
To break blocks in your world, use your mouse to aim your crosshair at the block you want to
destroy and click and hold the left mouse button. Some blocks are easier to break than oth-
ers. There’s a limit as to how far away you can be, so move closer if you can’t see chips flying
off the blocks as you attempt to smash them.

The panel at the bottom of the window shows the blocks you can place in the world (refer to
Figure 7-1). You choose between them using the scroll wheel on your mouse, or by pressing
a number between 1 and 8 to pick one (from left to right). Press E to open your full inven-
tory, and you can use the movement keys (W, A, S, D) to navigate around it and Enter to
choose a block, or simply click your chosen block with the mouse.

To position a block, right-click where you would like to place it. You can put a block on top of
another one only if you can see the top of it, so you might need to fly to make tall structures.

You can build towers and rise into the air on them by looking down and repeatedly jumping and
placing a block under you.

Although Python makes it much easier to build things, I recommend that you spend some
time familiarising yourself with how players experience the world. In particular, it’s worth
experimenting with how blocks interact with each other. Stone blocks will float in the air

R A S P B E R R Y P I P R O J E C T S156

unsupported, but sand blocks will fall to the ground. Cacti can’t be planted in grass, but can
be placed on top of sand. If you chip away at the banks of a lake, the water will flow to fill the
space you made. You can’t place water and lava source blocks within the game, although you
can program them using Python and they can cascade down and cover a wide area. When
they come into contact with each other, water sometimes cools lava into stone.

Preparing for Python
One of the peculiarities of Minecraft is that it takes control of your mouse, so you have to
press Tab to stop it from doing that if you want to use any other programs on your desktop.
To start using the mouse in Minecraft again, click the Minecraft window. You’ll soon become
used to pressing Tab before you try to do any programming. Press Tab now to leave Minecraft
running, but bring the mouse cursor back into the desktop.

To make your Minecraft programs, you’re going to use IDLE, so double-click its icon on the
desktop to start it. You might have to click the top of the Minecraft window and drag it out
of the way first.

One of the first things you’ll notice is that Minecraft sits on top of other windows, and your
IDLE window might well be underneath it, so a certain amount of reorganisation is neces-
sary. To move a window, you click and drag the title bar at the top of it, and you click and
drag the edges or corners of a window to resize it. I recommend that you arrange your win-
dows so that you can see them all at once. On my reasonably standard size monitor, I have
room for Minecraft in the top left, a small box for the Python shell in the top right, and the
window I’m writing my program in the bottom half of the screen. I don’t recommend resiz-
ing the Minecraft window: In the version I’m running, the mouse controls became unrespon-
sive when I did that. You can ignore (but not close) the LXTerminal window.

Using the Minecraft Module
You’re now ready to write your first Python program for Minecraft, which will send a mes-
sage to the chat feature in the game.

From the Python shell, click the File menu and choose New to open your programming win-
dow. Enter the following in the window, use the File menu to save it in your pi directory and
press F5 to run it. You must have a Minecraft game session running for this to work.

import sys, random

sys.path.append(“./mcpi/api/python/mcpi”)

import minecraft

mc = minecraft.Minecraft.create()

mc.postToChat(“Welcome to Minecraft Maze!”)

C H A P T E R 7   M I N E C R A F T M A Z E M A K E R 157

The first line imports the sys and random modules. The random module you’ll need later to
build a random maze as you develop this program. Use the sys module straight away to tell
IDLE where it can find the Minecraft Python module, which enables you to pass commands
to Minecraft to carry out. After telling IDLE where it is, you import the module.

To issue Python commands to Minecraft, you use minecraft.Minecraft.create()
and then add the command at the end. For example, to put a greeting in the chat window,
you might use the following:

minecraft.Minecraft.create().postToChat(“Welcome to ;

Minecraft Maze!”)

That soon gets hard to read, so in the previous program, you set up mc so that you can use it
as an abbreviation for minecraft.Minecraft.create(). As a result, you can use the
shorter line that you see in the program to post a message.

If your code isn’t working, pay particular attention to the case. Python is case sensitive, so
you have to use upper- and lowercase exactly as shown here. Look out for the camel case in
postToChat, and the capital M in minecraft.Minecraft.create().

Understanding Coordinates in Minecraft
As you might expect, everything in the Minecraft world has a map coordinate. Three axes are
required to describe a position in the game world:

❍	x: This axis runs parallel to the ground. The values run from -127.7 to 127.7.

❍	y: This axis runs vertically and could be described as the height. You can fly at least as
high as 500, but you can’t see the ground from higher than about 70, so there’s not
much point. Sea level is 0. You can break blocks to tunnel under the sea too. I made it
down to about -70 before I fell out of the world and died. This is the only way I’ve seen
that you can die in Minecraft on the Pi.

❍	z: This is the other axis parallel to the ground. The values run from -127.7 to 127.7.

I put them in that order deliberately because that’s the order that Minecraft uses. If, like me,
you often use x and y to refer to positions in 2D, such as points on the screen, it takes a short
while to get your head around the fact that y represents height. Most of the time in this
chapter, you’ll be using the x and z coordinates to describe a wall’s position (which differs
depending on the wall), and the y coordinate to describe its height (which doesn’t).

R A S P B E R R Y P I P R O J E C T S158

As you move in the game, you can see the player’s coordinates in the top left of the Minecraft
window change. If you try to move outside the game world, you hit a wall of sky that you
can’t penetrate, like in the Truman Show (except that he had a door).

Repositioning the Player
You can move your character to any position in the Minecraft world, using this command:

mc.player.setTilePos(x, y, z)

For example, to parachute into the middle of the world, use

mc.player.setTilePos(0, 100, 0)

You don’t have to put this command into a program and run it. If you’ve already run the program
to set up the Minecraft module, you can type commands to move the player and add blocks
in the Python shell.

Assuming that you are not in flying mode, you’ll drop from the sky into the middle of the
world. If you are in flying mode, click the Minecraft window and double-tap the spacebar to
turn it off and start your descent.

You can put the player anywhere in the game world, and sometimes that means they’ll
appear in the middle of a mountain or another structure, where they can’t move. If that hap-
pens, reposition the player using code. Putting them somewhere high is usually a reasonably
safe bet because they can fall to the highest ground from there.

Adding Blocks
To add a block to the world, you use this command:

mc.setBlock(x, y, z, blockTypeId)

blockTypeId is a number that represents the material of the block you’re adding. You can
find a full list of materials at www.minecraftwiki.net/wiki/Data_values_(Pocket_
Edition). (Take the number from the Dec column in the table on that page. You want the
decimal number, rather than the hexadecimal one.) Any number from 0 to 108 is valid, and
a few higher numbers are as well. Table 7-1 shows some of the materials you might find most
useful for this project and for experimentation.

http://www.minecraftwiki.net/wiki/Data_values_(Pocket_Edition)
http://www.minecraftwiki.net/wiki/Data_values_(Pocket_Edition)

C H A P T E R 7   M I N E C R A F T M A Z E M A K E R 159

Table 7-1  Materials in Minecraft: Pi Edition
blockTypeId Block Type

0 Air

1 Stone

2 Grass

3 Dirt

5 Wooden plank

8 Water

10 Lava

12 Sand

20 Glass brick

24 Sandstone

41 Gold brick

45 Brick

47 Bookshelf

53 Wooden stairs

57 Diamond block

64 Wooden door

81 Cactus

If you use the water and lava blocks, you could flood your world, so create a new world to
experiment with.

There is another command you can use to create a large cuboid shape built of blocks of the
same material. To use it, you provide the coordinates of two opposite corners, and the mate-
rial you’d like to fill the space with, like this:

mc.setBlocks(x1, y1, z1, x2, y2, z2, blockTypeId)

You can quickly build a brick shelter by making a large cuboid of brick, and then putting a
cuboid of air inside it. Air replaces any other block, effectively deleting it from the world.
Here’s an example:

mc.setBlocks(0, 0, 0, 10, 5, 7, 45) #brick

mc.setBlocks(1, 0, 1, 9, 5, 6, 0) #air

R A S P B E R R Y P I P R O J E C T S160

These lines build a shelter that is 10 × 7 blocks in floor space, and 5 blocks high, starting at
coordinate 0, 0, 0. The walls have a thickness of 1 block because you fill the space from 1 to 9
on the x axis, 1 to 6 on the z axis, and 0 to 5 on the vertical axis with air, leaving 1 block of
brick from the original cuboid intact on four sides, and the roof open.

Remember that the # symbol represents a comment that’s just there as a reminder for you.
The computer ignores anything on the same line after the #.

Although players can have coordinate positions with decimal portions (such as 1.7), when
you place a block, its position is rounded down to the nearest whole number.

Stopping the Player from Changing the World
I know you wouldn’t cheat, but there’s no fun in a maze that you might accidentally just hack
your way through, is there? To stop players from being able to destroy or place blocks in the
world, use the following:

mc.setting(“world.immutable”,True)

The word immutable is often used in programming, and just means “unchangeable”.

Setting the Maze Parameters
Now that you know how to place blocks in the world and use the air block to remove them
again, you’re ready to start making the maze program. In this program, you’ll use a number
of constants to keep track of important information about the maze. Constants are just vari-
ables which you decide not to change the values of as the program is running, so their values
are always the same. It’s conventional to use uppercase for the names of constants to signal
your intent to others reading the program, and to remind yourself that you’re not supposed
to be letting the program change these values. Replacing numbers in your program with con-
stants makes it easier to customise your program later, but also makes it much easier to read
your program and understand what different numbers represent.

Variable names are case sensitive, so Python would think SIZE and size were two different
variables. You’d be mad to use both in the same program, though!

The program starts by setting up these constants:

SIZE = 10

HEIGHT = 2

C H A P T E R 7   M I N E C R A F T M A Z E M A K E R 161

MAZE_X = 0

GROUND = 0

MAZE_Z = 0

MAZE_MATERIAL = 1 #stone

GROUND_MATERIAL = 2 #grass

CEILING = False

To build the maze, you will start with a grid of walls with one-block spaces (or cells) between
them, which looks a bit like a potato waffle (see Figure 7-2). Each cell starts with four walls,
and the program knocks walls down to create paths between them and build the maze. The
maze is square, and its SIZE is measured in cells. A maze with a SIZE of 10 will have 10 cells
in the x and z dimensions, but will occupy double that space in the Minecraft world (that is,
20 blocks by 20 blocks) because there is a one-block wall between each cell. This will become
clearer as you start to build the maze. I’ve tried mazes as big as 40, but they take some time
to build and ages to explore. 10 is big enough for now. The program will stop with an error if
there isn’t enough room for all of the maze in your world.

The HEIGHT is how many blocks tall the maze walls are. I chose 2 because a value of 1 means
that the player can just walk over the maze. (The player automatically steps up onto blocks 1
unit high.) Higher values obscure any mountains in the distance that can otherwise give a
nice visual hint to the player.

The constants MAZE_X, GROUND and MAZE_Z are used for the starting coordinates of the
maze. The MAZE_MATERIAL is stone (1), and the GROUND_MATERIAL is grass (2). I’ve added
an option for a ceiling, to stop players from just flying out of the top of the maze, but I’ve
turned it off for now so that you can freely explore the maze as you’re building it.

A maze of bookshelves (MAZE_MATERIAL=47) looks great!

Laying the Foundations
One of the first things you need to do is make sure that you’re building on solid land. Because
Minecraft worlds are dynamically generated, you might find that you’re building a maze
inside a mountain or in the sea, otherwise.

As well as the area the maze will occupy, you’ll clear an area of 10 blocks all the way around
it, so the players can approach it easily and walk around the outside of it. First you clear the
area by filling it with air blocks, which will wipe out anything else in that space.

R A S P B E R R Y P I P R O J E C T S162

Figure 7-2:
The starter grid.

The maze occupies a ground space measured in blocks from MAZE_X to MAZE_X+(SIZE*2),
and from MAZE_Z to MAZE_Z+(SIZE*2). The number of blocks is twice the number of cells
(SIZE) because each cell has a wall on its right and below it. The middle of the maze in the
Minecraft world is MAZE_X+SIZE, MAZE_Z+SIZE.

You need to clear 10 blocks further in each direction. The following code clears everything as
high as 150 above the ground level of the maze to stop the risk of any remaining mountain
blocks falling from the sky into the maze and lays the floor:

mc.setBlocks(MAZE_X-10, GROUND, MAZE_Z-10, ;

MAZE_X+(SIZE*2)+10, GROUND+150, MAZE_Z+(SIZE*2)+10, 0)

C H A P T E R 7   M I N E C R A F T M A Z E M A K E R 163

mc.setBlocks(MAZE_X-10, GROUND, MAZE_Z-10, MAZE_X+;

(SIZE*2)+10, GROUND, MAZE_Z+(SIZE*2)+10, GROUND_MATERIAL)

I recommend adding a block to indicate the starting corner of the maze (where MAZE_X and
MAZE_Z are). You will find it useful when writing and debugging the program because it will
enable you to tell which way around the maze is as you fly around it. To do so, use the following:

mc.setBlock(MAZE_X, GROUND+HEIGHT+1, MAZE_Z, MAZE_MATERIAL)

Put your player character above the middle of the maze, too, so you can watch it being built
by looking down, as follows. If you’re not flying, you’ll fall onto the maze wall, but you can
just fly up again.

mc.player.setTilePos(MAZE_X+SIZE, GROUND+25, MAZE_Z+SIZE)

Placing the Maze Walls
To make the potato waffle-like grid, use the following code:

for line in range(0, (SIZE+1)*2, 2):

 mc.setBlocks(MAZE_X+line, GROUND+1, MAZE_Z, ;

MAZE_X+line, GROUND+HEIGHT, MAZE_Z+(SIZE*2), MAZE_MATERIAL)

 mc.setBlocks(MAZE_X, GROUND+1, MAZE_Z+line, ;

MAZE_X+(SIZE*2), GROUND+HEIGHT, MAZE_Z+line, MAZE_MATERIAL)

The for loop gives the variable line the values of even numbers starting at 0 and finishing at
SIZE*2, in turn. You have to add 1 to SIZE before doubling it because the range function
doesn’t include the last number in the sequence. If you use range(1, 10), for example, you
get the numbers 1 to 9. The number 2 at the end of the range function is the step size, so it
adds 2 each time it goes around the loop, and only gives you the even numbers. That means you
leave a gap for the cell between each wall. Each time around the loop, it uses cuboids to draw
two walls that stretch across the maze from edge to edge in the x and z dimensions. It doesn’t
matter that the same block is set twice where those lines intersect. You build the wall starting
at GROUND+1, so the grass is still underneath when you knock down the walls to make paths.

Don’t forget the colon at the end of the for statement, and that the next two lines should each
be indented to tell Python that they belong to the loop.

You should now have a grid that looks like Figure 7-3.

R A S P B E R R Y P I P R O J E C T S164

Figure 7-3:
Your grid in

Minecraft.

Understanding the Maze Algorithm
Before you dig into the code that turns your waffle into a maze, let me tell you how it works.
You’re going to make what’s known as a “perfect maze” (that’s a technical term, not me brag-
ging). That means there are no loops in it, and no parts of the maze you can’t get into. There
is only one path between any two points in the maze.

Here’s how the program works:

	 1.	 You start with the “waffle” you’ve built, with every cell having all four walls.

	 2.	 You pick a random cell in the maze to start at.

	 3.	 You look at your current cell’s neighbours, and make a list of all those that have all four
walls intact. These are the cells that have not yet been visited.

	 4.	 If you found some unvisited neighbours, you pick one at random, knock down the
wall between it and your current cell, and then move into that cell, making it your cur-
rent cell.

	 5.	 If your current cell has no unvisited neighbours, you go back one cell in the path you’ve
taken, and make that your current cell.

	 6.	 You repeat steps 3 to 5 until you’ve visited every cell.

C H A P T E R 7   M I N E C R A F T M A Z E M A K E R 165

Setting Up the Variables and Lists
To implement this algorithm, you’ll use the following variables:

❍	numberOfCells: This is the total number of cells in the maze, which will be
SIZE*SIZE. (* is the symbol for multiplication.)

❍	numberOfVisitedCells: This keeps track of how many cells you’ve visited so far.
When this is the same as the numberOfCells, every cell has been visited and had a
wall demolished, and is therefore reachable. The maze is finished.

❍	xposition: This remembers your x position as you move through the maze generating
it. It’s measured in cells, and starts as a random number between 1 and the maze SIZE.

❍	zposition: This remembers your z position as you move through the maze generat-
ing it, also measured in cells, and also starting as a random number.

❍	cellsVisitedList[]: This is a list that stores the path you’ve taken, so the pro-
gram can retrace its steps. When you set it up, you put your starting position into it
using the append() list method.

❍	playerx and playerz: These are used to remember the starting position, so you can
put the player there when the maze has been built.

When an algorithm like this is implemented (it’s called a depth-first maze generation algo-
rithm), it often requires a list or similar data structure to be used to store the locations of
walls. You don’t need that because you have actual walls in Minecraft you can look at. The
game world stores your maze, if you like.

The following code lines set up your starting variables:

numberOfCells = SIZE*SIZE

numberOfVisitedCells = 1

cellsVisitedList = []

xposition = random.randint(1, SIZE)

zposition = random.randint(1, SIZE)

playerx = xposition

playerz = zposition

cellsVisitedList.append((xposition, zposition))

Creating the Functions
There are a number of basic functions you will need for your program:

❍	realx(x) and realz(z): These convert coordinates in the maze (measured in cells)
into coordinates in the Minecraft world (measured in blocks, and offset from the
maze’s starting position).

R A S P B E R R Y P I P R O J E C T S166

❍	showMaker(x,z) and hideMaker(x,z): These functions use a gold block to show
which cell the program has reached as it builds the maze. It’s fun to watch from above,
and is useful while building and debugging the program.

❍	demolish(realx,realz): This knocks down a wall in the maze, and takes a real
coordinate in the Minecraft world as its parameters.

❍	testAllWalls(cellx, cellz): This checks whether the four walls on a cell are
intact. If all of them are, it returns True. Otherwise, it returns False. It uses the com-
mand mc.getBlock(x, y, z), which tells you the blockTypeId at a particular
location. You use two equals signs, as usual, to test whether a block in a wall position is
the same as the MAZE_MATERIAL, which means that there’s a wall there.

Add these function definitions at the start of your program, after where you set up the
Minecraft module:

def realx(x):

 return MAZE_X+(x*2)-1

def realz(z):

 return MAZE_Z+(z*2)-1

def showMaker(x, z):

 mc.setBlock(realx(x), GROUND+1, realz(z), 41) # 41=gold

def hideMaker(x, z):

 mc.setBlock(realx(x), GROUND+1, realz(z), 0)

def demolish(realx, realz):

 mc.setBlocks(realx, GROUND+1, realz, realx, ;

HEIGHT+GROUND, realz, 0)

def testAllWalls(cellx, cellz):

 if mc.getBlock(realx(cellx)+1, GROUND+1, ;

realz(cellz))==MAZE_MATERIAL and mc.getBlock;

(realx(cellx)-1, GROUND+1, realz(cellz))==MAZE_MATERIAL ;

and mc.getBlock(realx(cellx), GROUND+1, realz(cellz)+1)== ;

MAZE_MATERIAL and mc.getBlock(realx(cellx), GROUND+1, ;

realz(cellz)-1)==MAZE_MATERIAL:

 return True

 else:

 return False

C H A P T E R 7   M I N E C R A F T M A Z E M A K E R 167

If you have an error, check for missing colons at the end of your def and if statements.

Creating the Main Loop
Your maze algorithm runs until you’ve visited every cell, so it starts with the following statement:

while numberOfVisitedCells < numberOfCells:

You need to test whether your current cell’s neighbour cells have all their walls intact. To do
that, you check each direction in turn, using the testAllWalls(x, z) function. When you
find a cell with all the walls intact, you add its direction to the list possibleDirections[]
using the append() list method. This implements step 3 in the algorithm (remember it’s all
indented underneath the while statement):

possibleDirections = []

if testAllWalls(xposition-1, zposition):

 possibleDirections.append(“left”)

if testAllWalls(xposition+1, zposition):

 possibleDirections.append(“right”)

if testAllWalls(xposition, zposition-1):

 possibleDirections.append(“up”)

if testAllWalls(xposition, zposition+1):

 possibleDirections.append(“down”)

The values of up, down, left and right are somewhat arbitrary in 3D space, but I’ve used
them because they’re easy to understand. If you fly into the air and look down on the maze
as it’s being generated and you have the block identifying the starting corner of the maze
(MAZE_X, MAZE_Z) in the top left, these directions will look correct to you.

Incidentally, you might have noticed that there’s no check for whether these cell positions
are inside the maze borders. What happens if you look for a cell off the left edge of the maze,
or off the bottom edge? No problem. The program implementation automatically respects
the borders of the maze because when it looks at “cells” outside the borders, they don’t have
all four walls (their only wall is the maze’s border), so they are never visited.

R A S P B E R R Y P I P R O J E C T S168

Step 4 in the algorithm is to pick a random direction if you found any unvisited neighbours,
knock down the wall in that direction and move into that cell. To decide whether you found
any possible directions, you check the length of the possibleDirections list and act if it
is not equal to 0 (!=0). All of this should be indented under the while loop. If you get lost
in the indenting, consult the full code in Listing 7-1 near the end of this chapter.

Before you start moving your position, you hide the gold brick that shows where you are in
the maze:

hideMaker(xposition, zposition)

if len(possibleDirections)!=0:

 directionChosen=random.choice(possibleDirections)

 if directionChosen==”left”:

 demolish(realx(xposition)-1, realz(zposition))

 xposition -= 1

 if directionChosen==”right”:

 demolish(realx(xposition)+1, realz(zposition))

 xposition += 1

 if directionChosen==”up”:

 demolish(realx(xposition), realz(zposition)-1)

 zposition -= 1

 if directionChosen==”down”:

 demolish(realx(xposition), realz(zposition)+1)

 zposition += 1

After you’ve moved into a new cell, you need to increase your tally of cells visited by one, and
add the new cell to the list that stores the path taken. This is also a good time to show the
gold block in the cell to highlight how the maze is being built:

numberOfVisitedCells += 1

cellsVisitedList.append((xposition, zposition))

showMaker(xposition, zposition)

The way you’ve stored the list of cells visited deserves some explanation. You’ve put the
xposition and zposition in parentheses, which are used to indicate a tuple. A tuple is a
data sequence, a bit like a list, with a key difference being that you can’t change its values.

C H A P T E R 7   M I N E C R A F T M A Z E M A K E R 169

(It’s immutable.) So cellsVisitedList is a list that contains tuples, which in turn contain
pairs of x and z coordinates. You can use the Python shell to take a look inside this list. Here’s
an example from one run of the program, showing a path taken through the maze:

>>> print cellsVisitedList

[(6, 6,), (6, 7), (6, 8), (5, 8), (4, 8), (3, 8), (3, 7)]

For step 5 in the algorithm, you go back to the previous position in the path if your cell has
no unvisited neighbours. This involves taking the last position out of the list. There’s a list
method called pop() you can use to do that. It takes the last item from a list and deletes it
from that list. In your program, you put it into a variable called retrace, which then stores
a tuple for the x and z positions in the maze. As with a list, you can use index numbers to
access the individual elements in a tuple. The index numbers start at 0, so retrace[0] will
hold your previous x position, and retrace[1] will hold your previous z position. Here’s
the code, including a line to show the gold block in its new position:

else: # do this when there are no unvisited neighbours

 retrace = cellsVisitedList.pop()

 xposition = retrace[0]

 zposition = retrace[1]

 showMaker(xposition, zposition)

Note that your else statement should be in line with the if statement it’s paired with, in
this case the one that tests whether you found any possible directions to move in.

Step 6 in the algorithm has already been implemented because the while loop will keep
repeating the indented code underneath it until every cell has been visited.

Adding a Ceiling
Personally, I think it’s more fun to leave the ceiling open and be free to fly up and marvel at
your maze, and drop into it at any point. If you wanted to build a game around your maze,
though, and stop people from cheating, you can add a ceiling using the following code. Just
change the variable CEILING to True at the start of the program. I’ve made the ceiling out
of glass bricks, so it doesn’t get too dark in there:

if CEILING == True:

 mc.setBlocks(MAZE_X, GROUND+HEIGHT+1, MAZE_Z, ;

MAZE_X+(SIZE*2), GROUND+HEIGHT+1, MAZE_Z+(SIZE*2), 20)

R A S P B E R R Y P I P R O J E C T S170

Positioning the Player
Finally, let’s place the player at the random position where you started generating the maze.
You could put the player anywhere, but this seems as good a place as any, and it uses random
numbers you have already generated:

mc.player.setTilePos(realx(playerx), GROUND+1, realz(playerz))

Now you’re ready to play! Figure 7-4 shows the maze from the inside.

Figure 7-4:
Finding your

way around
the maze.

The Final Code
Listing 7-1 shows the final and complete code.

Listing 7-1  The Minecraft Maze Maker
#!/usr/bin/env python

"""

Minecraft Maze Maker

By Sean McManus

From Raspberry Pi Projects

C H A P T E R 7   M I N E C R A F T M A Z E M A K E R 171

"""

import sys, random

sys.path.append("./mcpi/api/python/mcpi")

import minecraft

mc = minecraft.Minecraft.create()

mc.postToChat("Welcome to Minecraft Maze!")

def realx(x):

 return MAZE_X+(x*2)-1

def realz(z):

 return MAZE_Z+(z*2)-1

def showMaker(x, z):

 mc.setBlock(realx(x), GROUND+1, realz(z), 41) # 41=gold

def hideMaker(x, z):

 mc.setBlock(realx(x), GROUND+1, realz(z), 0)

def demolish(realx, realz):

 mc.setBlocks(realx, GROUND+1, realz, realx,;

HEIGHT+GROUND, realz, 0)

def testAllWalls(cellx, cellz):

 if mc.getBlock(realx(cellx)+1, GROUND+1, ;

realz(cellz))==MAZE_MATERIAL and mc.getBlock;

(realx(cellx)-1, GROUND+1, realz(cellz))==MAZE_MATERIAL ;

and mc.getBlock(realx(cellx), GROUND+1, realz(cellz)+1)==;

MAZE_MATERIAL and mc.getBlock(realx(cellx), GROUND+1, ;

realz(cellz)-1)==MAZE_MATERIAL:

 return True

 else:

 return False

mc.setting("world_immutable", True)

Configure your maze here

SIZE = 10

HEIGHT = 2

MAZE_X = 0

continued

R A S P B E R R Y P I P R O J E C T S172

Listing 7-1  continued
GROUND = 0

MAZE_Z = 0

MAZE_MATERIAL = 1 # 1=stone

GROUND_MATERIAL = 2 # 2=grass

CEILING = False

mc.setBlocks(MAZE_X-10, GROUND, MAZE_Z-10, MAZE_X+;

(SIZE*2)+10, GROUND+150, MAZE_Z+(SIZE*2)+10, 0) # air

mc.setBlocks(MAZE_X-10, GROUND, MAZE_Z-10, MAZE_X+;

(SIZE*2)+10, GROUND, MAZE_Z+(SIZE*2)+10, GROUND_MATERIAL)

lay the ground

mc.setBlock(MAZE_X, GROUND+HEIGHT+1, MAZE_Z, MAZE_MATERIAL)

origin marker

mc.player.setTilePos(MAZE_X+SIZE, GROUND+25, MAZE_Z+SIZE)

move player above middle of maze

mc.postToChat("Now building your maze...")

build grid of walls

for line in range(0, (SIZE+1)*2, 2):

 mc.setBlocks(MAZE_X+line, GROUND+1, MAZE_Z, ;

MAZE_X+line, GROUND+HEIGHT, MAZE_Z+(SIZE*2), MAZE_MATERIAL)

 mc.setBlocks(MAZE_X, GROUND+1, MAZE_Z+line, MAZE_X+;

(SIZE*2), GROUND+HEIGHT, MAZE_Z+line, MAZE_MATERIAL)

setup of variables for creating maze

numberOfCells = SIZE*SIZE

numberOfVisitedCells = 1 # 1 for the one you start in

cellsVisitedList = []

xposition = random.randint(1, SIZE)

zposition = random.randint(1, SIZE)

playerx = xposition

playerz = zposition

showMaker(xposition, zposition)

cellsVisitedList.append((xposition, zposition))

C H A P T E R 7   M I N E C R A F T M A Z E M A K E R 173

 while numberOfVisitedCells < numberOfCells:

 possibleDirections = []

 if testAllWalls(xposition-1, zposition):

 possibleDirections.append("left")

 if testAllWalls(xposition+1, zposition):

 possibleDirections.append("right")

 if testAllWalls(xposition, zposition-1):

 possibleDirections.append("up")

 if testAllWalls(xposition, zposition+1):

 possibleDirections.append("down")

 hideMaker(xposition, zposition)

 if len(possibleDirections)!=0:

 directionChosen=random.choice(possibleDirections)

 #knock down wall between cell in direction chosen

 if directionChosen=="left":

 demolish(realx(xposition)-1, realz(zposition))

 xposition -= 1

 if directionChosen=="right":

 demolish(realx(xposition)+1, realz(zposition))

 xposition += 1

 if directionChosen=="up":

 demolish(realx(xposition), realz(zposition)-1)

 zposition -= 1

 if directionChosen=="down":

 demolish(realx(xposition), realz(zposition)+1)

 zposition += 1

 numberOfVisitedCells += 1

 cellsVisitedList.append((xposition, zposition))

 showMaker(xposition, zposition)

continued

R A S P B E R R Y P I P R O J E C T S174

Listing 7-1  continued

 else: # do this when there are no unvisited neighbours

 retrace = cellsVisitedList.pop()

 xposition = retrace[0]

 zposition = retrace[1]

 showMaker(xposition, zposition)

if CEILING == True:

 mc.setBlocks(MAZE_X, GROUND+HEIGHT+1, MAZE_Z, ;

MAZE_X+(SIZE*2), GROUND+HEIGHT+1, MAZE_Z+(SIZE*2), 20)

mc.postToChat("Your maze is ready!")

mc.postToChat("Happy exploring!")

mc.player.setTilePos(realx(playerx), GROUND+1, realz(playerz))

Over to You
When the maze is built, the gold brick is left showing, so you could try to solve the maze to
find the brick. You could also plant other objectives in the maze, and time how long it takes
the player to find them. The mc.player.getTilePos() command checks where the
player is in the Minecraft world, and gives you a result in the form x, y, z. Code to create a
timer can be found in Chapter 9, “Test Your Reactions”.

You could add an entrance and exit in a random position in the border of the maze, so the
goal is to travel from one side to the other. You could make huge mazes more playable by
adding landmarks. (Try using different wall materials, or putting blocks on top of some
walls.) After the maze has been generated, you could knock out random walls, so there are
some shortcuts through the maze. Or maybe just replace them with glass blocks, to provide
a tantalising glimpse into another corridor. What about a multistorey maze, with stairs
between the levels? The possibilities are . . . ahem! . . . amazing.

Part III

Hardware
Projects

Chapter 8  Colour Snap

Chapter 9  Test Your Reactions

Chapter 10  The Twittering Toy

Chapter 11  Disco Lights

Chapter 12  Door Lock

Chapter 13  Home Automation

Chapter 14  Computer-Controlled Slot Car Racing

Chapter 15  Facebook-Enabled Roto-Sketch

Chapter 16  The Pendulum Pi, a Harmonograph

Chapter 17  The Techno–Bird Box, a Wildlife Monitor

Chapter 8
Colour Snap

by Mike Cook

In This Chapter

❍	 Make your first interactive game hardware

❍	 Power an LED safely

❍	 Use surface mount components

❍	 Make boxes simply

❍	 Implement a high-score table

R A S P B E R R Y P I P R O J E C T S178

THE GAME IN this chapter is just the thing to get going on your first hardware project.
There does not seem to be an end to the sorts of things you can do with LEDs and switches.
All the projects I have ever worked on, even highly complex transmodulation systems con-
sisting of 8000+ components, have started with an engineer making an LED flash. By adding
a bit of imagination you can make something unique with LEDs, and this project is, as far as
I know, totally unique. It is a colour snap game.

I am sure that most children have played the card game snap in one form or other either with
special cards or a regular pack. The procedure is simple: The pack is divided into two, and the
cards are laid face up on the table by alternate players. When two of the same cards are
turned up the first player to shout “SNAP!” wins all the cards, but if you shout “SNAP!” and
the cards do not match, your opponent gets them. The player to lose all his cards is the loser.

You can implement this as a hardware game in many ways, but the one I have chosen here is
to use a coloured light. The light flashes on and off, and each time it comes on, it is normally
a different colour from the last time. However, occasionally it will be the same colour as the
previous one, and that is the cue for the players to claim a snap by pushing a button. There
are no arguments over who pressed first; the computer has split second timing. Also, at the
same time the computer shouts out, “SNAP!” in one of two voices, depending on which
player was fastest to press the button.

Implementing the Game
So how are you going to implement this game? You need two switches and a source of con-
trollable coloured light. You could use the push switches that are already on the PiFace board,
but to make a decent job of the project you will take them off the board into a separate box.
(For more information on setting up PiFace, see Chapter 9, “Test Your Reactions”.) For the
source of changing colour, you are going to use three LEDs. An LED, or light emitting diode, is
a cheap and easy-to-drive source of light, so most hardware projects have at least a few.
Moreover, LEDs come in a rich variety of colours. There is however a rather special form of
LED which is known as an RGB LED. Basically this is three LEDs in one package: red, green
and blue. Using these you can mix up an almost infinite number of colours. So to start off,
let’s see how to drive an LED from the PiFace board.

The Theory
Unlike with a flashlight bulb, you can’t connect an LED directly to a source of power. Well,
you can, but it will end up burning out. This is because LEDs have a special form of electrical
characteristic: They are a nonlinear device. What this means is that unlike other components,
such as resistors, the current through LEDs is not directly proportional to the voltage across
them. They have an effective resistance that switches sharply depending on the voltage
across them. Figure 8-1 shows the graph of voltage against current for a typical LED. You will

C H A P T E R 8   C O L O U R S N A P 179

see that at low voltages there is little or no current through them. As the voltage rises there
is little change in current until a sort of threshold is reached, and then a small increase in
voltage gives a large increase in current. This threshold, or breakpoint, is known as the forward
voltage drop, and you need to run an LED at this voltage. This is not done by supplying a volt-
age of “just the right value” for various reasons – the two main ones being that producing
this right voltage takes some complex electronics and the value that is “right” changes with
the temperature and the age of the device.

Figure 8-1:
The voltage
against current
relationship for
an LED.

What you have to do is to arrange for a constant current through the device. For low-current
LEDs, which is what you will be using here, it is simplest to use a resistor to simply limit the
current. Most LEDs work with currents of up to a maximum of 20mA, so that is normally the
target to aim for, although the more current you have, the brighter the LED will shine. Figure
8-2 shows a resistor and LED connected to a 5V power source.

R A S P B E R R Y P I P R O J E C T S180

Figure 8-2:
How to use

an LED.

You want to have 20mA flowing through the LED, and when you do there will be a voltage of
3.2V across the LED. This voltage is said to be dropped across the LED. So first off, how do you
know the voltage dropped will be 3.2V? Well, you look it up in the LED’s data sheet. If you
haven’t got a data sheet, you guess because the voltage drop of an LED is determined mainly
by the material it is made of and the material determines the colour. So most LEDs with the
same colour have the same sort of voltage drop; 3.2V is typical for a green one and the newer
type of blue LEDs. Red LEDs have a much lower drop of typically 1.8V. So look at Figure 8-2:
If there is 3.2V across the LED, there has to be 5 - 3.2 = 1.8V across the resistor. If you know

C H A P T E R 8   C O L O U R S N A P 181

the voltage across a resistor and you know what current you want to have flowing through it,
you can calculate the resistance it has to have in Ohms by using Ohm’s law in the form of
Resistance equals Voltage over Current, or

R = E / I

E is the voltage in volts, and I is the current in amps. So if you want to have 20mA flowing
through the LED, which means 20mA flowing through the resistor as well because these two
components are in series, which means the same current flows through both of them, you
plug those figures into the formula to get the following:

R = 1.8 / 0.02 = 90 Ohms (also stated as 90R)

Unfortunately, you can’t get a 90R resistor because you can get only certain standard values,
but the value closest to 90R is 91R, so you can use that. If you plug that value back into
Ohm’s law, you will see that your actual current is

I = E / R = 1.8 / 91 = 19.78mA (which is almost spot on)

So let’s see what happens if the forward voltage drop changes slightly. How will that affect
the current? You can plug some different values into the equation, as shown in the graph in
Figure 8-3. You can see that the current through the LED doesn’t vary dramatically with
small changes in forward voltage like it does when you drive the LED with a fixed voltage.
The resistor has acted to minimise variations and stabilise the operating current.

To allow the PiFace board to control an LED, all you need to do is to connect the resistor not to
ground but to the PiFace’s output. These outputs are what is known current sinks; that is, they
allow current to flow through them to ground, or not, depending on the logic level set by the
Raspberry Pi. This means that you can turn the LED on or off by setting the output high or low.
When you set the PiFace output high, that makes the current sink through the output buffers
and thus allows current to flow through the LED, thus allowing the LED to emit light. What
you are going to do for this project is not to have one resistor to sink the current through but to
have two. If you arrange the currents the resistors provide carefully, you can get three different
brightness levels from one LED. This means having one resistor supply twice the current of the
other to give a current of one unit, or two units or three units of current, where three units of
current is less than or equal to the maximum working current.

In practice, the eye has a nonlinear response to brightness, so although you might increase
the current in equal steps and the light output from the LED changes in equal steps, we do
not perceive it as being in equal steps. In fact, the brighter something gets, the less a fixed
step in brightness appears to make it change; this is a logarithmic law.

R A S P B E R R Y P I P R O J E C T S182

Figure 8-3:
Voltage drop

against current
for an LED and
resistor circuit.

To make your game, you are going to apply that design to an RGB LED – that is the three
colours built into one package. This means that the sources of light are close together and it
is easy to get them to mix or blend together. Red, green and blue are the three primary
colours, although don’t tell the art department. To be more precise, they are the additive
primary colours; that is, when light is added in various amounts in these colours you can
make any other colour. When dealing with paint you are restricting the colours it will reflect,
which is known as subtractive colour mixing. The subtractive primary colours are yellow,
magenta and cyan, although they are often inaccurately referred to as yellow, red and blue.

The final design for the game, as far as the electronics is concerned, is shown in Figure 8-4. It
consists of an RGB LED with two resistors on the cathode of each colour. The anodes of all
three LEDs are connected to +5V. Many RGB LEDs have these connected together inside the
chip and bring out only one anode connection; these are known, not unsurprisingly, as com-
mon anode LEDs. The other type you can get is where the cathodes are common. As you might
guess, these are called common cathode LEDs and are not the type you want for this project.

The other part of the game is the player switches, which are simply wired between the
PiFace’s input connections and ground. When they are pressed the input bit reads as a logic
zero. This goes to a logic one when they are released.

C H A P T E R 8   C O L O U R S N A P 183

Figure 8-4:
The schematic
for the colour
snap game.

The construction of the game has two aspects – electrical and mechanical. The electrical is the
wiring, resistors, switches and LEDs, and the mechanical is the box and light diffuser. There
are many ways of making each aspect; here I will discuss two ways to make the electrical part.

It all hinges on the sort of LED and resistor you use. Traditionally, components have been
what is known as through-hole components. That is, they have wires, leads or legs that push
though holes in a board and are soldered to a copper laminate on the other side of the board.
These components are big and bulky and thus are easy to handle. The newer sort of compo-
nents are known as surface mount because they are simply soldered onto the surface of a cop-
per laminate. They are small – some say too small – so they reduce the size of the circuit.
Also, surface mount LEDs offer flatter and more even illumination than a through-hole part.

Let’s look at the through-hole method of construction first (although I recommend the sur-
face mount instead). Figure 8-5 shows the LED layout using through-hole components. This
is built on a small piece of strip board, sometimes known as veroboard. You might come
across this being called BusBoard Prototype System, Vectorbord, Circbord, or breadboard but not
solderless breadboard.

R A S P B E R R Y P I P R O J E C T S184

Figure 8-5:
Circuit layout

using
through-hole
components.

A piece of strip board 0.8˝ long and 1.6˝ high will suffice, although you can use a bigger size.
The dotted lines represent the copper strip on the other side of the board. You will not see
them; this is what engineers call hidden detail. There are no tracks to cut, so it is nice and
simple. Make sure that the LED is the right way around; note that all the legs are of different
length and that the longest one is the anode, as marked in Figure 8-5. Just to make sure, you
can test the LED with a multimeter set to resistance. Put the red lead of your meter on the
anode, and then by putting the black lead on each of the other legs in turn, you should see a
faint glow in the LED for each colour. Make sure that the leads of the LED are bent close to
the body so that they align with the hole spacing. Then push the LED down as close as you
can to the board, so the LED sits as low as possible. If you have a water-clear package, you can
improve the diffusion by lightly sanding the LED with as fine a sandpaper as you can get.
This makes the resulting colours blend a lot better.

C H A P T E R 8   C O L O U R S N A P 185

However, for a much better result, you can use surface mount components. Not only will
this be smaller, but the light output also will be flatter and more even, producing a much bet-
ter distributed level of colour. Surface mount can be a bit scary, but it is not as difficult as you
might think. Despite the fact that the RGB LED I used is not the right pitch for the strip
board, you can easily make it fit using a scalpel or sharp knife.

Start off with a piece of 0.7˝ by 0.5˝ strip board with the strips running vertically, as shown in
Figure 8-6. There are some shaded parts in Figure 8-6 that show the area where you are going
to remove the copper. There are two types of cuts you need to make – from the hole to the
edge of the strip and between holes. The first is the easiest; simply put the point of the knife
in the hole and put the blade at an angle touching the side of the track. With a rotary wrist
movement, cut the copper. This will leave a flake of copper standing up. Remove this by
repeating the action from the other direction, and remove the copper. You need to do this on
both sides of the hole to break the connection.

Figure 8-6:
Cutting out
some of the
copper on a strip
board to make
the LED fit.

There are five holes to cut like this. The next cut is to remove a strip of copper between the
holes. Start with your blade in the hole and score down to the next hole. Repeat this for the
other side of the hole. Then use the blade and lift out the copper between the two score
marks. This sounds complex when written down, but it is actually quite easy to do. In the end
you will have split one of the 0.1˝ copper strips into two 0.05˝ spaced strips.

R A S P B E R R Y P I P R O J E C T S186

Next you need add the components. Figure 8-7 shows how they are arranged. You need a fine
pair of tweezers and a magnifying glass. Take the 5050 LED and make sure that the polarity
mark is at the top. It marks the three anodes; if you are not sure, use the multimeter test tech-
nique described earlier. The critical point is to line things up so that the left-most two anode
connections connect to different strips of the half strip you have cut out. Now remove the LED
and just put the smallest dab of solder on the strip board where the left cathode connection is
going to be. Now with your iron in one hand and the tweezers with the LED in the other, align
the LED again and touch the iron on the solder. Position the LED flat on the board and then
remove the iron. Keep the LED still while the solder sets. Now check that it is aligned correctly.
If not, reapply the iron and straighten it with the tweezers. Only when you are sure that it is
positioned correctly apply solder to the other connections. The anodes should be joined
together by applying sufficient solder so that the two tracks are bridged.

Figure 8-7:
Circuit layout
using surface

mount
components.

Now you need to add the resistors. You could use through hole at this point, but you might
as well go for surface mount. A surface mount resistor should sit nicely between the tracks of
0.1˝ pitch strips. Note how surface mount resistors are labeled. They use three numbers: The
first two are actual numbers, and the third one says how many zeros there are. So a resistor
marked “471” is 470 ohms. There are two sizes that will do this: The larger is known as 0806,
and the smaller as 0604; either size will do. (I used the smaller resistor size.) A photograph of

C H A P T E R 8   C O L O U R S N A P 187

the final layout is shown in Figure 8-8. For a prediffuser you can either sand the surface of
the LED or glue a small piece of translucent plastic over the top of it.

Figure 8-8:
A photograph
of the surface
mount circuit
layout.

This LED board, however you make it, will require fixing to a base. You can either use hot melt
glue or a larger piece of strip board and drill some holes for fixing. Finally there is the matter of the
player switches. I have found that the tactile switches made by NKK are rather good-looking and
not too expensive. They come in a round or rectangular style with a variety of coloured tops. For
this project I used the JF15SP1C with a red top and the JF15SP1G with the blue top. Of course,
you can use any other type of switch you like, as long as it is a momentary push-to-make type.
Many switches like this have four connections, and the ones on each side are electrically joined;
when the button is pressed one side electrically connects to the other. To prevent confusion about
which side is which, I have developed a neat trick: Always connect the wires to two opposite cor-
ners and leave the other two unconnected, so you will always have the correct connections.

Creating the Box
The mechanical construction of the box is vital to the final look and feel of the project. Don’t be
tempted to skimp here if you want a top-notch result. You can make or buy a box, but by far the
most satisfactory choice is to make one. There are many construction techniques you can use as

R A S P B E R R Y P I P R O J E C T S188

well. With the advent of fab labs and hackspaces, many ordinary people have access to laser
cutters, and they can make a very neat job. However, I want to show you a simple but effective
method of box construction using only small hand tools and low-cost materials.

You can make the box from 6 mm (1/4˝) plywood. Start by simply cutting out two rectangles 92
mm (3 5/8˝) by 180 mm (7˝). Then clamp them together, and making sure that they are square,
drill a 3 mm (1/8˝) hole 10 mm in from each corner. After you drill the first hole remove the
clamp and put a nut and bolt to temporary hold the two pieces together while you drill the next
hole. Use a nut and bolt for the second hole as well to keep the pieces together while you drill
the last two holes. This ensures that your holes line up. You can then use hexagonal tapped
spacers to hold the two sheets apart. Make the sides from four lengths of strip pine. The exact
height of the strip pine depends on the construction method you used to make the LED board.
If you used the surface mount technique, you can make your box nice and thin, using 5 mm
strip pine. However, if you used a through-hole LED, you need to use 12 mm strip pine. This is
because you want the LED at the same level or slightly below the lid of the box to get good cov-
erage of light on the diffuser. Glue the four pieces of strip pine to the base, and make sure that
they are level with the edge of the base. This sandwich arrangement is shown in Figure 8-9.

Figure 8-9:
How to put your

box together.

Mark out four holes for each switch and drill them at 0.8 mm. When fitting the switches,
solder some thin wires to the connections in the opposite corners, thread the wires through
the holes and push them into place. It should hold simply by the fit, but you can add a blob
of glue at the switch center first. Don’t do it yet, though, until the box is finished and painted.

To act as the diffuser and place to see the colour, I used a half table tennis ball. You can cut one
in half using various methods, but I found the best way is by using a hot wire cutter of the type

C H A P T E R 8   C O L O U R S N A P 189

sold in hobby shops for cutting expanded polystyrene. Clamp the cutter so that the wire is
horizontal to the table, and put the ball in the hole of a stick tape reel to stop it from moving.
Then adjust the height of the wire so that it comes as close as possible to the center of the ball,
and slide the ball through the wire. Keep your fingers out of the way – that wire is hot! (The clue
is in the name – hot wire cutter.) You now have enough half balls to make two games.

Table tennis balls are a standard size of 40 mm, so you need to cut a 40 mm hole in the
middle of the top of the box. You can do this easily with a saw drill. Then you have to fix the
half ball into this hole. What I did was to take a small square of 1 mm thick styrene sheet,
trace a pencil line around the ball and cut out the hole with a scalpel (see Figure 8-10). Then
using model airplane glue, I attached the ball to the sheet, as shown in Figure 8-11.

Figure 8-10:
The half ball
ready to be
glued into the
supporting base.

It is time to paint the box. I decided to make mine a two-tone finish to emphasise the two
player’s sides. First give the top and sides of the box a coat of wood primer. Then lightly sand it
down and apply the top coat. I used a water-based enamel paint sold in hobby shops. I bought
two pots, black and white, and used black for the sides and then mixed a portion of black and
white together to make a light grey. I masked off half the top along the middle with painter’s
tape and painted the other half grey. I removed the tape while the paint was still wet. When the

R A S P B E R R Y P I P R O J E C T S190

paint dried, I mixed a little more black with the grey I had made for the first half, masked the
join and painted the other side – and again removed the tape while the paint was still wet. This
produced a very pleasing effect, and the colours show up well against a grey background.

Figure 8-11:
The ball and

supporting base
resting on the

underside of the
box’s lid.

It’s time to put it all together! Figure 8-12 shows the view with the lid off.

Mount the LED board in the center of the base with either two screws as shown here or a spot of
glue. You can glue the diffuser table tennis board and its sheet through the hole in the lid. The
wires from the switches can go to the LED board as well. (They are kept tidy by small spots of hot
melt glue.) Finally, make the connections out to the PiFace board using a length of 10-way flat
ribbon cable. Just cut a slot in the top of a side piece to allow the cable to sit just under the lid
when it is screwed on. The ribbon cable has a red stripe on one wire that is useful as a marker. It
doesn’t matter what order the wires are in as long as you know what wire to connect to what
terminal on the PiFace module. I used the sequence shown in Figure 8-13. As the two switches
are around the other side of the board, I extended those two wires by soldering an extra length
on and putting some heat shrink sleeving over the joint to insulate it. You can make the sleeving
shrink by applying a hot hair dryer to it. The finished unit is shown in Figure 8-14.

C H A P T E R 8   C O L O U R S N A P 191

Figure 8-12:
The box with its
lid off.

Figure 8-13:
The wire
connections to
the PiFace
board.

R A S P B E R R Y P I P R O J E C T S192

Figure 8-14:
The finished box

for the game.

C H A P T E R 8   C O L O U R S N A P 193

The Software for Testing the Game
All that you need now is the software to bring your game to life, but before you write that let’s
write some software to test the hardware. It is vital that before you delve into the complexities of
making anything work you have confidence that the hardware is working properly. Therefore, it is
common when working on a project to write some simple software to exercise the hardware. Then
you have the confidence that if the project doesn’t do what you expect it to in the end, it is the
software that is wrong, not the hardware. Although Figure 8-4, earlier, showed the schematic of
the hardware, how that hardware looks to a programmer is totally different. Figure 8-15 shows
that. You can see here that there is a byte that represents the output to the PiFace module. The
top two bits are shown as X, which means that you don’t care what state they are in. The other
bytes are shown in groups of two, each group controlling the intensity of one of the LED colours.

Figure 8-15:
This top byte
shows the
output to
PiFace.

R A S P B E R R Y P I P R O J E C T S194

Although it might be tempting to write a program that cycles through all the colours, what
you actually want to see is if each colour works at each of its intensities. It is also helpful to
know that the switches are working as well. The test program is shown in Listing 8-1.

Listing 8-1  Colour Snap Hardware Test
#!/usr/bin/env python

“””

Colour Snap test

“””

import time # for delays

import piface.pfio as pfio # piface library

pfio.init() # initialise piface

def main():

 print”Testing the colour snap hardware Ctrl C to quit”

 print”showing the three intensity levels for each colour”

 print”& showing buttons pressed”

 while True:

 for led in range(0,6,2) :

 for c in range(1,4) :

 pfio.write_output(c << led) # turn on the colour

 time.sleep(.5)

 switchState = pfio.read_input() & 3

 if switchState & 1 :

 print “blue button held down”

 if switchState & 2 :

 print “red button held down”

 pfio.write_output(0) # turn off the light

 time.sleep(0.8)

if __name__ == ‘__main__’:

 main()

Listing 8-1 is simply a loop that turns on each colour at the three intensities in turn. This is
done with two for loops. The first uses the variable led as an index and counts up in two, so
it gives you the bit position of the first of the two control bits for each colour of LED in turn.
The next for loop generates the numbers 1 to 3 in a variable called c (for “colour”). Then you
combine these two numbers by shifting c to the left by the led number. That gives the bit
pattern you need to write out to the PiFace board to light only one LED at a specific level.
When you run this you should see the red colour first in three intensities, the green colour in

C H A P T E R 8   C O L O U R S N A P 195

three intensities and finally the blue colour in three intensities. If you don’t see this, check
the wiring, soldering and PiFace connections.

The colour changing the state of the input switches is checked, and a message is printed out
if a button is held down. You will notice there is some bit manipulation code in this part that
you might not have come across before – the use of the bitwise AND operation; in Python and
many other languages the symbol to do this is the ampersand (&). Basically, an AND opera-
tion is used to selectively zero bits so that you are left with just the bits you are interested in.
The AND operation is performed between two numbers or bit patterns; one is called the sub-
ject and the other the mask, although these names are arbitrary. The AND rules are simple:
There will be a logic one in the result if there is a logic one in that bit position in both the
subject AND the mask. So if you have a zero in the mask, you have a zero in the result; if you
have a one in the mask, you will have that position in the result, depending on what the bit
was in the subject. In effect you use it for selectively clearing bits. So the line

switchState = pfio.read_input() & 3

sets the variable switchState to whatever is on the two least significant bits of the PiFace
input connectors. The 3 is the mask that is zeroing out all the other bits except bits zero and
one. If you write the number 3 in binary, you will see that it looks like 0000011, with ones in
the positions you are interested in. To test a bit, you can use another AND operation; the line

if switchState & 1 :

takes the switchState variable and ANDs it with 1 (or in binary, 00000001). If the result of
doing this is a zero, the if operator sees a false; with any other result, it sees a true. So there
is no need, for example, to say in this line

if (switchState & 1) == True :

although the result would be the same. The same augment applies to looking at the switch on
bit 1: You simply AND the switchState variable with the number 2 (or in binary, 00000010).

Now go on and succumb to the temptation of showing all the colours just for fun. The simpli-
fied program in Listing 8-2 does this.

Listing 8-2  Colour Snap Hardware Test 2
#!/usr/bin/env python

“””

Colour Snap test 2

continued

R A S P B E R R Y P I P R O J E C T S196

Listing 8-2  continued
“””

import time # for delays

import piface.pfio as pfio # piface library

pfio.init() # initialise piface

def main():

 print”Testing the colour snap hardware Ctrl C to quit”

 print”showing all the colours”

 while True :

 for c in range(1,63) :

 pfio.write_output(c) # turn on the colour

 time.sleep(.5)

 pfio.write_output(0) # turn off the light

 time.sleep(0.8)

 print “repeating sequence”

if __name__ == ‘__main__’:

 main()

If you find that colours such as yellow look a little mottled, try a bit more prediffusion of the
LED – either sand it some more or find a bit of more textured translucent plastic to put over
it. The colours seen on the table tennis ball should be smooth and even.

The Software for the Game
Now on to the full game! There are many ways this game could be programmed to play, so
what I give here is just one implementation. It is important, when writing any piece of soft-
ware, to have the numbers that define it stored in a variable name at the start of the code so
that it can be easily changed with an edit in only one line. The way this is set up is that there
are two players and the program asks for their names first. It looks up their score in the high-
score table and makes an entry for them if they are not in it already. There are three rounds,
and the player that wins a round by correctly pressing the Snap button is awarded points
based on the difficulty level of the game. At the end of the game, a winner is announced, and
the points acquired in the game are transferred to the high-score table. After the names have
been inputted, you are asked to enter a difficulty level, which is a number from one to three
and refers to how much a colour can change from one presentation to the next. In the easiest
level, the colours displayed are only the primary and secondary colours, so it is simple to
distinguish one from the other. In the middle level, any colour can be chosen from the 63

C H A P T E R 8   C O L O U R S N A P 197

possible colours; however, because these are picked at random, most of the time they are
very different colours. In the advanced level, only one bit in the colour is changed from one
presentation to the next, so this means that there is a good chance of getting a slightly differ-
ent colour, fooling you into thinking it is the same as the previous one. If you press the Snap
button and it is not snap, points are deducted.

All the sounds the game produces are stored in a folder called sounds. They are all .ogg
format sounds and are mainly self-explanatory. There are two “snap” sounds (one for each
player), a success and fail sound called applause and doh and finally a “tick” sound. This sound
should be very short and is played just before a new colour is displayed.

The inner workings of the game might surprise you as you might think that this way of doing
things is counterintuitive. However, it is actually simpler to program the game this way. First
of all, a random number function makes a number from 3 to 10 to control how many colour
presentations there will be before a match. There is a new colour function whose job is to
generate a colour that is different from the last one according to an algorithm chosen by the
difficulty level. The program goes on presenting these colours until the number of presenta-
tions has been reached; then the last colour is simply repeated. If no player sees the matching
colour, the process repeats. You could have the program penalise both players if this hap-
pens, but that is not how I have written this code. The full listing is shown in Listing 8-3.

Listing 8-3  The Colour Snap Game
#!/usr/bin/env python

“””

Colour Snap

“””

import time # for delays

import piface.pfio as pfio # piface library

import sys

import os

import random

import pygame

from pygame.locals import *

import shelve

pygame.init()

pygame.mixer.quit()

pygame.mixer.init()

pfio.init() # initialise piface

snapSound1 = pygame.mixer.Sound(“sounds/snap1.ogg”)

snapSound2 = pygame.mixer.Sound(“sounds/snap2.ogg”)

continued

R A S P B E R R Y P I P R O J E C T S198

Listing 8-3  continued
tickSound = pygame.mixer.Sound(“sounds/tick.ogg”)

applauseSound = pygame.mixer.Sound(“sounds/applause.ogg”)

dohSound = pygame.mixer.Sound(“sounds/doh.ogg”)

easyCols = [0x3, 0xC, 0xF, 0x30, 0x33, 0x3C, 0x3F]

intCols = [0x3, 0xC, 0xF, 0x30, 0x33, 0x3C, 0x3F,

 0x1, 0x4, 0x5, 0x10, 0x11, 0x14, 0x15]

colours = [easyCols, intCols]

level = 2 # 0 = easest level 2 = hardset

playerName = [“no player”, “Blue player”,”Red Player”]

countToMatch = 0

roundToPlay = 1 # current round number

maxRound = 5 # number of rounds to play

redScore = 0

blueScore = 0

def main():

 global level

 print”Colour Snap, ctrl C to quit”

 show_table()

 playerName[1] = raw_input(“Enter the name ;

of the player using the blue button “)

 p1Score = set_table(playerName[1], 0); ;

#make sure player is in database

 print “The score for”,playerName[1],”so far is “,p1Score

 playerName[2] = raw_input(“Enter the name of the ;

player using the red button “)

 p2Score = set_table(playerName[2], 0); ;

#make sure player is in database

 print “The score for”,playerName[2],”so far is “,p2Score

 il = raw_input (“Enter a difficulty level 1 Easy ;

to 3 Hard “)

 level = int(il)-1

 #make sure the level is within range

 if level>2:

 level=2

 if level < 0:

 level = 0

 lc = random.randint(0,63) # the last colour shown

 while roundToPlay <= maxRound :

 print “Round “,roundToPlay, “ of “,maxRound

 countToMatch = random.randint(3, 10)

C H A P T E R 8   C O L O U R S N A P 199

 while countToMatch !=0 : ;

do this until you get a match

 countToMatch -= 1

 if countToMatch != 0 : ;

#don’t generate a new colour on last turn

 c = newColour(lc);

 tickSound.play()

 time.sleep(0.5)

 pfio.write_output(c) # turn on the colour

 checkInput(0.8, c, lc)

 pfio.write_output(0) # turn off the light

 checkInput(0.9, c, lc)

 lc = c # record the last colour

 print “End of the game”

 if blueScore == redScore:

 print”It is a DRAW!!! “

 else:

 win = 2

 if blueScore > redScore:

 win = 1

 print”The winner is “,playerName[win]

 p1Score += blueScore

 set_table(playerName[1], p1Score);

 p2Score += redScore

 set_table(playerName[2], p2Score);

 print”Updating high score table”

 show_table()

 # end of main function

def newColour(lastColour):

 nc = lastColour

 if level == 2 : # hardest

 nc ^= 1 << random.randint(0,5) ;

change by only a single bit

 else:

 while nc == lastColour : ;

repeat until you find a new colour

 nc = colours[level][random.randint;

(0,len(colours[level])-1)]

 return nc

def checkInput(delay, c, lc) : # has someone pressed a button

continued

R A S P B E R R Y P I P R O J E C T S200

Listing 8-3  continued
 nextTime = time.time() + delay

 buttonPress = 0

 while nextTime > time.time() and buttonPress == 0 :

 buttonPress = pfio.read_input() & 3

 if buttonPress != 0 :

 if buttonPress & 1 :

 snapSound1.play()

 else :

 snapSound2.play()

 checkResult(buttonPress, c, lc)

 while buttonPress !=0 : ;

hold until button is released

 buttonPress = pfio.read_input() & 3

def checkResult(player, newColour, lastColour) :

 global countToMatch, roundToPlay, blueScore, ;

redScore, level

 pfio.write_output(0) # turn off the light

 time.sleep(0.8)

 count = 0 # minimum number of flashes

 print playerName[player],

 if lastColour == newColour :

 print”yes”

 applauseSound.play()

 roundToPlay += 1

 # add successful player score

 if player == 1 :

 blueScore += level +1

 else:

 redScore += level +1

 else :

 print “sorry not snap”

 dohSound.play()

 # penalise wrong press

 if player == 1 :

 blueScore -= 1 * (level +1)

 else:

 redScore -= 1 * (level +1)

 while player !=0 or count < 6: ;

#until button is released or 6 flashes

C H A P T E R 8   C O L O U R S N A P 201

 pfio.write_output(lastColour)

 time.sleep(0.3)

 pfio.write_output(newColour)

 time.sleep(0.3)

 player = pfio.read_input() & 3

 count +=1

 pfio.write_output(0) # turn off the light

 time.sleep(2)

 countToMatch = random.randint(3, 10)

def set_table(name, score):

 scoreTable = shelve.open(‘score_table.snap’)

 if not name in scoreTable:

 scoreTable[name] = score

 elif score > scoreTable[name]:

 scoreTable[name] = score

 else :

 score = scoreTable[name]

 scoreTable.close()

 return score

def show_table():

 print

 print “The current high scores are”

 scoreTable = shelve.open(‘score_table.snap’)

 highscores = scoreTable.items()

 highscores.sort(key=lambda elem: elem[1], reverse=True)

 for entry in highscores:

 print entry[0], “has a score of”,entry[1]

 scoreTable.close()

 print

if __name__ == ‘__main__’:

 main()

First off, you will see that you use the pygame module, but you are using that only for the
generation of sound. The main function starts off by asking for all the user input and then
enters an outer while loop that plays all the rounds. This is followed by another while loop
that does the actual playing of the round; this calls up the generation of the colours and the
checking of the user input in addition to playing the appropriate sound. At the end of all the
rounds, one player is declared the winner, and the updated high-score table is displayed.

R A S P B E R R Y P I P R O J E C T S202

In order to implement the high-score table, I have used the shelve module, which is a use-
ful module that handles most of the work in making a persistent database. Basically, it main-
tains a dictionary and stores its entries in an unsorted manner. It is a simple enough matter
to transfer this to a list, and sort the list before displaying it. When you run this code for the
first time a file containing the high-score table will be generated; subsequently, the file will be
used. If you want to start afresh, simply delete this file.

Generating the next colour is done in the newColour function. For the two simplest levels,
it simply picks a colour from a list defined at the start of the code as easyCols and intCols.
However, if the game is running at the most complex level, a random bit is toggled or
changed. This function generates a number with only a single bit set in it by shifting a one a
random number of places to the left; it then uses the exclusive or function, or XOR, to change
that bit in the colour number.

The checkInput function does two jobs: First it acts as a delay, and while it is delaying it
constantly checks to see if a button has been pressed. If a button has been pressed, it triggers
the snap sound and calls the checkResult function to see if the call is correct. If the snap is
correct, an applause sound is played, along with a printout of the successful player’s name;
otherwise, a fail sound is played, and the incorrect player’s score is decremented. Then the
last two colours are alternated; you will see them flash if they are different.

Over to You
The first thing you can customise are the sounds, especially the snap sounds. It is great to
have those said by a person you actually recognise. You could change colours in the colour
list. You could even add an extra resistor to two of the LEDs to get an even wider range of
subtle colour variations.

You could make the scoring more sophisticated so that instead of simply storing the score of
a player, you also stored the number of rounds he or she has played and sorted the list on the
ratio of score-to-rounds played.

Chapter 9
Test Your React ions

by Dr. Andrew Robinson

In This Chapter

❍	 Getting started interfacing hardware with the Raspberry Pi

❍	 Working with basic electronic circuits

❍	 Getting started with electronic components, including
transistors and resistors

❍	 Wiring up a switch and an LED

R A S P B E R R Y P I P R O J E C T S204

THINK YOU’VE GOT fast fingers? Find out in this chapter as take your first steps in hard-
ware interfacing to build a reaction timer. You’ll program the Raspberry Pi to wait a random
time before turning on a light and starting a timer. The timer will stop when you press a button.

Welcome to the Embedded World!
For some people the idea that computers aren’t always big black or beige boxes on desks is a
surprise, but in reality the majority of computers in the world are embedded in devices.
Think about your washing machine – to wash your clothes it needs to coordinate turning the
water on, keeping it heated to the right temperature, agitating your clothes by periodically
spinning the drum, and emptying the water. It might repeat some of these steps multiple
times during a wash, and has different cycles for different types of fabric. You might not have
realised it’s a computer program. It takes inputs from switches to select the wash and sen-
sors that measure water temperature, and has outputs that heat the water and lock the door
shut, and motors to turn the drum and open and close valves to let water in and out.

Take a moment to consider the number of appliances and gadgets that need to measure
inputs, do some processing to reach a decision and then control an output in response.

A modern kitchen is crammed with computers that watch over and automate our appliances
to save us effort. Computers aren’t just embedded in practical products either; they’re in
electronic toys and entertainment devices. After working through this chapter and the other
examples in this book you’ll be on your way to designing your own embedded systems to
make your life easier, or entertain you.

Before you get too carried away connecting things up it’s worth considering a couple of warn-
ings that will protect you and your electronic components.

Good Practice
Electricity can be dangerous, so it is important to use it safely. The muscles in your body are
controlled by tiny electrical signals, and these can be affected if electricity flows through your
body. Your heart is a muscle that can be stopped by an electric shock.

The flow of electricity can cause heating, which will either cause burns to your body (some-
times deep within tissue) or can cause a fire.

Electricity can kill! Only experiment with low voltages and currents, and never work with
mains. If you are ever in doubt, then you should check with someone suitably qualified.

C H A P T E R 9   T E S T Y O U R R E A C T I O N S 205

Hardware is less forgiving than software; if you make a mistake with code, you might get an
error, the program might crash, or in rare cases you might cause your Raspberry Pi to reset.
If you make a mistake in hardware, then you can cause permanent damage. As such, hard-
ware engineers tend to check and double-check their work before applying the power!

When experimenting you should beware of short-circuiting your projects. Make sure that
nothing conductive touches your circuit. Tools, metal watchstraps and jewellery, unused
wires, spare components and tin foil have all been known to damage circuits – keep your
working area clear of anything you don’t need and make sure that nothing metallic can acci-
dentally touch your Raspberry Pi or circuit.

Static Discharge
You may have felt a small electric shock due to static sometimes. This occurs when a charge
builds up and then discharges to a conductor, which you feel as a small shock. If you are hold-
ing a component when this happens, that large voltage will flow through the component and
may damage it. Other objects such as plastic can become charged too and then discharge
through a component. As such, you should take care to avoid this static discharge through
components or circuits. In industry, conductive work surfaces and wrist straps are earthed to
prevent static buildup. This may be an extreme solution for a hobby; you can discharge your-
self by touching something earthed like a water tap, and avoid working on surfaces that are
prone to picking up static charge like plastics – for example, avoid working on nylon carpets
or plastic bags.

You may have noticed components are supplied in antistatic bags, or static-dissipative bags or
static-barrier bags. These bags are made from special plastic designed to protect the contents
from being zapped by static discharges and conduct any charge away. Beware that some of
these bags can be slightly conductive and so may interact with your powered-up circuit.

Obtaining Components
Another difference with hardware is that you can’t download everything you need from the
Internet! However, you can do the next best thing and order parts online. There are a num-
ber of online electronics retailers that supply parts, including the two worldwide distributors
of the Raspberry Pi, element14/Premier Farnell/Newark and RS Components. Pimoroni,
SparkFun, SK Pang, Cool Components, Adafruit and other web stores have a smaller range
but cater well to electronic hobbyists.

Maplin Electronics and Radio Shack have shops on the high street with a smaller selection of
parts.

R A S P B E R R Y P I P R O J E C T S206

An Interface Board
Although the Raspberry Pi has a general purpose input/output (GPIO) connector that you
can connect to directly, as a beginner, it is easier to use an add-on board. An interface board
can offer some protection to your Pi against burning out if you get your wires crossed!

PiFace Digital
This chapter uses the PiFace Digital interface because it is very easy to use. PiFace Digital has
eight LEDs on it so that you can start controlling hardware without any electronics knowl-
edge. Later in this chapter you’ll connect your own LEDs and switches to PiFace Digital with
the screw terminals. Hopefully you’ll go on to use more advanced boards, and eventually you
may want to design an interface board of your own!

In computing, digital refers to things that can either be on or off – there’s no in between. In contrast,
analogue devices have many points between their maximum and minimum values. A button is
digital in that it is either on or off. A temperature is an example of something that is analogue.

Setting up PiFace Digital
PiFace Digital communicates using Serial Peripheral Interface (SPI) bus. It’s a standard means
of connecting peripheral devices to microprocessors. Before you use PiFace Digital with the
Raspberry Pi you need to install some software.

SPI
SPI consists of four wires to communicate data from a master (the microprocessor) to a slave
device (the peripheral). Data is sent serially (that is, the voltage on a wire is switched on and
off to communicate a binary number) over time using four wires as shown in Figure 9-1.

Figure 9-1:
Example SPI

transaction: The
microprocessor

sends data
11011101, and

the device sends
11110011.

C H A P T E R 9   T E S T Y O U R R E A C T I O N S 207

Installing PiFace Digital Software
Chapter 1, “Getting Your Raspberry Pi Up and Running”, mentions drivers that the operating
system loads. These make it easy for programmers to write code to interact with hardware
devices. Rather than bloat the operating system with drivers for every possible type of hard-
ware, Linux has driver modules. These are loaded separately when needed. As PiFace Digital
talks over SPI you need to ensure that the SPI driver is loaded so the Raspberry Pi hardware
sends the correct electrical signals on the expansion pins. You will also need to install a
Python library that makes the SPI driver easy to use from your Python code.

It is possible to install PiFace Digital software on Raspbian as a Debian package with one
command. However, in the future you might need to install software that isn’t packaged, or
perhaps want to use PiFace Digital on a different distribution that doesn’t use Debian pack-
ages. As such the following steps show how to manually install software from the source.

Loading the SPI Driver Module
Check to see if the SPI driver is loaded. Type lsmod to list all modules. If it is loaded, you will
see the following line. Don’t worry about the numbers on the right; it is the module name
spi_bcm2708 which is important.

spi_bcm2708 4401 0

If it is not listed, you need to enable the module. Although the driver module is included,
Linux “blacklists” some modules so they are not loaded. To un-blacklist the module, edit the
file /etc/modprobe.d/raspi-blacklist.conf. You can insert a # in front of the line blacklist
spi-bcm2708 to comment it out, or delete the line completely. Use your favourite editor to
edit the file, such as leafpad, nano or vi. For example, you use nano by typing the following:

sudo nano /etc/modprobe.d/raspi-blacklist.conf

❍	One wire is used for data from the master to the slave (named master output
slave input [MOSI]).

❍	Data going to the master from the slave is sent on another wire (named master
input slave output [MISO]).

❍	The serial clock (SCK) wire is used to synchronise the master and slave so they
know when a valid value is being sent (that is, that MISO and MOSI have
momentarily stopped changing).

❍	The slave select wire, or sometimes called chip select (SS or CS), selects between
multiple slave devices connected to the same MOSI, MISO and SCK wires.

R A S P B E R R Y P I P R O J E C T S208

Enter # at the start of the line blacklist spi-bcm2708 like so:

#blacklist spi-bcm2708

Save the file. If using the nano editor, press Ctrl + X and then confirm that you want to save
the file before exiting.

Commenting out is a way of making the computer ignore what is on that line. It works by
turning the line into a comment. Comments are text intended for the user and not interpreted
by the computer.

It is better to comment a line out rather than delete it as it makes it easier to restore later by
uncommenting (that is, removing the comment marker). Python also uses # for comments, so
you can temporarily remove a line of code by putting a # at the start of the line.

Restart the Raspberry Pi by typing sudo reboot.

After reboot log in and type lsmod again, and you should see spi_bcm2708 listed. Programs
send a message over the SPI bus by writing characters to a special file. Type ls -la /dev/
spi* to check whether the special file exists. If you’re successful, Linux will show at least one
file. If you receive a message such as No such file or directory, you need to check
that the SPI driver module is functioning correctly.

Installing Python Modules
With the spi_bcm2708 module loaded, Linux can talk SPI to peripherals. The next step is to
install programs that will make the driver easier to use and send the correct messages over the
SPI bus to control the hardware:

	 1.	 Make sure that the Raspberry Pi is up to date. Because the Raspberry Pi will check the
Internet for updates, you need to make sure that your Raspberry Pi is online. Then
type sudo apt-get update.

		 Wait until Linux downloads and updates files, which can typically take a couple of minutes.

	 2.	 Install the necessary packages by typing sudo apt-get install python-dev
python-gtk2-dev git.

		 Linux will list any other programs necessary and tell you how much additional disk
space is required. Confirm that you want to continue by typing Y and pressing enter.
After a few minutes the programs will be installed.

C H A P T E R 9   T E S T Y O U R R E A C T I O N S 209

	 3.	 Type cd to return to your home directory and then get the latest software to control
PiFace by typing the following:

		 git clone https://github.com/thomasmacpherson/piface.git

		 This will copy the latest PiFace code and examples into your home directory. Type ls
piface to list the contents of the directory that have just been downloaded.

Git and Source Code Management
Git is a source code management (SCM) system that keeps track of different versions of
files. SCMs are necessary when multiple people work on the same project. Imagine if two
people were working on a project and changed the same file at the same time. Without
SCM the first person’s changes might get overwritten by the second. SCMs instead help
manage the process and can merge both contributions. They also keep previous versions
(like wikis do) so it’s possible to go back.

Git was initially developed by Linus Torvalds for collaborative development of the Linux
operating system but then used by many other projects. There are other SCMs such as
SVN, CVS and Mercurial, which provide similar functions.

GitHub (http://github.com) is a website that hosts projects using Git. It’s designed for
social coding, so everyone can suggest changes and contribute to improving a project. As
the Raspberry Pi has such a strong community, there are many projects on GitHub (includ-
ing the code for Linux itself) for the Raspberry Pi that everyone can contribute to.

GitHub offers free accounts and tutorials so as you become a more proficient coder, you
might as well try using source code management for your project. It can be really useful if
you start working with a friend or want to go back to a previous version of your code.

	 4.	 So that all users of the Raspberry Pi can use the SPI bus, you need to change the per-
missions on the /dev/spi* files. PiFace Digital provides a handy script to set SPI per-
missions. Run the script by typing

		 sudo piface/scripts/spidev-setup

	 5.	 Restart by typing

		 sudo reboot

		 Lastly, you need to install the Python modules that will make it easy to send the cor-
rect messages on the SPI bus.

	 6.	 Log in again and type cd to get back to the home directory.

R A S P B E R R Y P I P R O J E C T S210

	 7.	 Change the directory to the piface directory and then the python directory by typing
cd piface/python.

	 8.	 Install the Python module that talks to PiFace Digital by typing sudo python

setup.py install. After a few minutes the necessary files will be installed, and you
will be ready to start testing with real hardware.

	 9.	 Finally, shut down the Pi and remove the power before connecting the PiFace interface
by typing sudo halt.

It is useful to know how to install software manually, but if in the future you want to install PiFace
Digital with one command, instructions are provided at www.piface.org.uk.

Connecting PiFace Digital
Disconnect the power before connecting or disconnecting anything to or from the Raspberry
Pi. This ensures that you don’t accidentally short anything and is generally safer. Position
PiFace Digital so it lines up with the edges of the Raspberry Pi and check that all 26 pins of
the expansion port line up with the holes in the connector. Gently push the PiFace interface
down, making sure that you don’t push sideways to bend the pins. If it is correctly lined up,
it should slide smoothly. Connect the power, log in and start X, as described in Chapter 1.

Using the Emulator
This book mentions the importance of regular testing and checking that subsystems work before
moving on. This is a great excuse for turning some lights on and off. There’s something satisfying
about seeing a computer responding to you, lighting a light, obeying your command! Next you
will use the PiFace emulator to check that your Raspberry Pi can talk to your PiFace Digital.

Start the emulator by typing piface/scripts/piface-emulator in a Terminal window.
The emulator window will appear as shown in Figure 9-2.

As you want to manually control the outputs, in the PiFace Emulator window click Override
Enable.

Toggle Output Pin 1 on by clicking it. The PiFace interface will click as the relay turns on, and
the corresponding LED will illuminate. Notice the graphic on-screen updates to show the
LED being on, the contacts have changed over on the relay and the first output pin is on.

Try turning multiple output pins on, and notice how the on-screen display updates. Try the
All On, All Off and Flip buttons to discover what they do.

http://www.piface.org.uk

C H A P T E R 9   T E S T Y O U R R E A C T I O N S 211

Figure 9-2:
The PiFace
Emulator.

When you are finished flashing lights and trying the various options close the emulator.
You’re now ready to program your Raspberry Pi to take control!

Interfacing with Python
You first meet the Hello World program in Chapter 2, “Introductory Software Project: The
Insult Generator”. The hardware equivalent of Hello World is flashing a light, which similarly,
although not exciting in itself, is the first step in getting a computer to start controlling the
world. After you’ve mastered this, there’s no limit to what you can start controlling!

Turning a Light On
First, write the code to turn an LED on:

	 1.	 Double-click IDLE to begin entering code interactively.

R A S P B E R R Y P I P R O J E C T S212

	 2.	 Type the following:

		 import piface.pfio as pfio

		 pfio.init()

		 pfio.digital_write(0,1)

	 3.	 The first LED should be lit.

Chapter 2 mentions that there are two versions of Python – Python 2 and Python 3. Similarly
there are two versions of IDLE; IDLE (used in this book) that corresponds to the Python 2
command python and IDLE3 that corresponds to Python 3.

The import statement tells Python to use the piface.pfio module so it can talk to the
PiFace interface. You must call pfio.init() to check the connection and reset the PiFace
hardware. The digital_write(outputpin,value) function takes outputpin, which
selects the LED, and value, which determines if it is turned on. So digital_write(0,1)
sets the first LED to have the value 1 (on). This function will be familiar if you have ever pro-
grammed the Arduino.

Computers start counting at 0 as this makes some operations and calculations more efficient.
You should see why as you learn more about computers and programming.

Flashing a Light On and Off
Next, you’re going to write a program that flashes the LED with a timer:

	 1.	 Create a new window in IDLE by going to the File menu and clicking New Window.

	 2.	 Type the following:

		 from time import sleep

		 import piface.pfio as pfio

		 pfio.init()

		 while(True):

		 pfio.digital_write(0,1)

		 sleep(1)

		 pfio.digital_write(0,1)

		 sleep(1)

C H A P T E R 9   T E S T Y O U R R E A C T I O N S 213

	 3.	 Go to the Run menu and choose Run Module (or press F5).

	 4.	 Click OK when Python displays the message Source Must Be Saved.

	 5.	 Enter a filename and then click Save.

	 6.	 You will see a message saying RESTART, and then Python should run your code. If an
error message appears, go back and correct your code and try running it again.

You’ve now written the hardware equivalent of Hello World – an LED that flashes. The next
examples will show how to make the Raspberry Pi respond to the world, as you will learn how
to read inputs.

As an extension, you could try flashing a more complex pattern – change the rate the LED
flashes at or try flashing multiple LEDs.

Reading a Switch
For a computer to respond to its environment, it needs to be able to read inputs. First you
will use the graphical emulator to display the status of the inputs.

Showing Input Status Graphically
In the emulator, click the Keep Inputs Updated check box as shown in Figure 9-3. The inter-
val sets how often the inputs are read; for most cases, it is fine to leave it on 500ms.

Figure 9-3:
Enable the Keep
Inputs Updated
check box to
show the status
of inputs.

Test the input by pressing one of the buttons on the bottom left of PiFace. As shown in Figure
9-4, the on-screen representation changes to indicate the switch that has been pressed.

Figure 9-4:
The status of
inputs are
shown in the
emulator.

You can close the emulator for now by clicking the cross in the top-right corner of the window.

R A S P B E R R Y P I P R O J E C T S214

Reading Inputs with Code
As you saw earlier, you can control outputs using the function digital_write. Logically,
as you might expect, to get the value of inputs, you use the digital_read function. Let’s
write a simple example:

	 1.	 Type the following Python code interactively:

		 import piface.pfio as pfio

		 pfio.init()

		 pfio.digital_read(0)

		 Python prints 0.

	 2.	 Hold down button number S1 and type pfio.digital_read(0) again.

		 Python prints 1.

	 3.	 Now read the next button along (S2). Type pfio.digital_read(1). Notice how
the argument of the function specifies which input to read.

You have seen how easy it is to read an input. Next, you are going to combine turning a light
on and reading an input to build a reaction timer.

The Reaction Timer
Now is the time to find out if you’ve got fast fingers by building a reaction timer game.

Type the following code in a new window and then save it as reactionTimer.py:

from time import sleep, time
from random import uniform
import piface.pfio as pfio
#Initialise the interface
pfio.init()
print “press button one when the light comes on”
#Sleep for a random period between 3 and 10 seconds
sleep(uniform(3,10))
#Turn LED on
pfio.digital_write(0,1)
#Record the current time
startTime = time()
#Wait while button is not pressed
while(pfio.digital_read(0)==0):
 continue #continue round the loop
#Button must have been pressed as we’ve left loop
#Read time now
stopTime = time()

C H A P T E R 9   T E S T Y O U R R E A C T I O N S 215

#Time taken is difference between times
elapsedTime = stopTime-startTime
#Display the time taken. str is required to convert
#elapsedTime into a string for printing
print “Your reaction time was: “ + str(elapsedTime)
#Turn LED off when finished
pfio.digital_write(1,0)

Run the code by pressing F5 from IDLE.

All the lights will go out. Wait until the LED comes on and then press button 0 as fast as you
can. The program will print your reaction time.

Next, you’ll see if your reactions are any faster with a big red button as you wire up a simple
circuit.

Meet PiFace Digital’s Connections
The PiFace Digital interface makes it very easy to wire up simple digital circuits so that you
can connect your Raspberry Pi to switches and actuators like lights or motors in the real
world. Figure 9-5 labels the connectors on PiFace Digital.

Figure 9-5:
PiFace Digital’s
connectors.

R A S P B E R R Y P I P R O J E C T S216

Electrical Circuits
Modern computers work with electricity, so to interface with them, you need to understand
the basics of how it behaves.

Electricity is the flow of tiny particles, called electrons, that carry a charge. Think of elec-
trons as always wanting to get home; for example, with a battery, the electrons want to get
back into the other terminal. As the electrons move through components in a circuit on their
way home they do work. This work might be to emit light in an LED or move a motor
around. If the electrons do not flow, no work is done (and the LED does not shine). Figure
9-6 shows three circuits, but only one has a path for electrons to leave the power source,
pass through a component to do work and return home again!

Electronics is all about controlling electrons’ journeys! In many cases it is about making or
breaking a complete path for electrons to flow.

In describing circuits, there are a few terms that you may come across:

❍	Voltage – this is, in electrical terms, how “strongly” the electrons are pulled
home – that is, how much work they can do while they flow through the circuit.
Think of it a bit like a water wheel and a reservoir. The greater the distance the
water falls, the more work it can do turning the water wheel as it flows past.
Voltage describes the work that can be done and is measured in volts – for
example, an AA battery has a voltage of 1.5V between its terminals. If another
one is connected end to end, then there is greater potential to do work, a volt-
age of 3V.

❍	Ground, or 0V (or sometimes referred to as negative) – a reference point to
measure voltage from. If a point in a circuit is at ground, then it is at 0V, and no
work can be done. With the water example, if the water is on the ground, it
can’t fall any further so can’t be harnessed to do any work.

❍	Resistance – how easily the electrons can flow. Different substances allow
electrons to flow with different degrees of ease. Conductors, such as metals,
have a low resistance and make it easy for the electrons to flow. Insulators,
such as plastics, have high resistances, which make it hard for electrons to
flow. Different materials resist the flow of electrons by different amounts. Even
water has a fairly low resistance, so it will allow electricity to flow through it,
which is why you shouldn’t use your Raspberry Pi in the bath!

You can think of these like this: Voltage describes the potential to do work (analogous to the
height of water), and current describes the rate electricity follows (the rate of flow of water
passing a point). Resistance describes how easily electricity flows through a material – volt-
age, resistance and current are interrelated – without a voltage existing between two points,

C H A P T E R 9   T E S T Y O U R R E A C T I O N S 217

no current will flow. The resistance between the two points affects how much current will
flow. If you want to know more, look up Ohm’s law online.

Figure 9-6:
Electricity needs
a complete
circuit to flow
and do work.

R A S P B E R R Y P I P R O J E C T S218

Inputs
The screw terminals next to the on-board switches are used to connect external switches.
There are eight inputs, numbered 0-7 from the outside of the board to the middle, followed
by a connection to ground. PiFace Digital will register an input if there is an electrical con-
nection between the input terminal and ground – that is, there is a path for electrons to flow.

Relays
When you turn either of the first two outputs on you should notice that PiFace clicks. This sound
is as the contacts in the relay (the large rectangular components) change over. A relay can by
thought of as a computer-controlled switch. You’ll use relays in Chapter 10, “The Twittering Toy”.

Outputs
As well as controlling the on-board LEDs and relays, PiFace Digital has “open-collector” out-
puts that can be used to control circuits. You can connect to these outputs with the screw
terminals next to the LEDs.

The term open collector describes how the output transistor is connected. Transistors are the
switches at the heart of computers – there are tens of millions of transistors in the processor
at the heart of the Raspberry Pi. Luckily they’re only tens of nanometres (a nanometre is a
thousand millionth of a metre – you could fit 2000 transistors across the width of a human
hair) in size. Although transistors behave in a similar way to switches and relays, the direc-
tion current flows through them affects how they behave, which needs to be considered
when connecting to them.

There are different types of transistors, which allow current to flow in different ways. For
simplicity this chapter just uses examples of the type NPN.

Open-collector outputs can just sink current. That is, they allow current to flow to ground;
they are not a source for current. This means that circuits have to be wired up from a power
source, through the component being controlled, through the transistor and then to ground.
Figure 9-7 shows a typical setup. Remember, current has to flow for electricity to do work, so
until the transistor turns on and allows current to flow to ground the LED will not come on.
The transistors on PiFace already have the connection to ground wired up.

C H A P T E R 9   T E S T Y O U R R E A C T I O N S 219

Figure 9-7:
How to wire up
an open-
collector output.

Connecting a Switch and an LED
Enough theory! It’s time to wire up the components. For the example, you’re using a switch
that incorporates an LED, but you could use a separate LED and switch. You will wire them
up as shown in Figure 9-8.

R A S P B E R R Y P I P R O J E C T S220

Figure 9-8:
Wiring up

the LED and
switch to the
Raspberry Pi.

Making Connections
There are a variety of ways to join wires and components together. Figures 9-9 through 9-12
show different ways of making connections. Important considerations are that the joint is
secure and that you have a good connection; otherwise, the joint will create a high resis-
tance or come apart.

C H A P T E R 9   T E S T Y O U R R E A C T I O N S 221

❍	Wires can be twisted together (as shown in Figure 9-9) – this is a quick and
easy method, but not very secure. Wrapping insulation tape helps to hold things
more securely and prevents other connections from shorting.

Figure 9-9:
Twisting wires.

❍	Screw connectors (in some forms, sometimes called choc-bloc) (see Figure
9-10) – these hold wires together under a screw. They’re quick, easy and fairly
secure, but are quite bulky.

Figure 9-10:
Screwing
terminals.

continued

R A S P B E R R Y P I P R O J E C T S222

continued

❍	Breadboard, sometimes called binboard (see Figure 9-11) – is great for experiment-
ing. Breadboard has rows of strips of metal that grip and connect wires. Components
can be inserted directly into the breadboard, which makes it good for prototyping
circuits. Wires are only loosely gripped so they can be pulled out – good for reuse,
but not very secure or permanent. Some cheaper breadboards suffer from poor
connectors.

Figure 9-11:
Using a

breadboard.

❍	Solder (shown in Figure 9-12) – this is the most permanent way of making con-
nections. Solder is a mixture of metals and is heated with a soldering iron until
it melts and joins the connectors together. It’s also possible to re-melt solder to
separate connectors, although this is not always easy without damaging the
components. Solder will also only join certain types of metals – for example, it
won’t stick to aluminium. Soldering can be a bit tricky at first; it takes a bit of
practise to apply just the right amount of heat in the right place to avoid melting
insulation, damaging sensitive components or burning your fingers! It’s best to
practise to join some scrap components and wire as your first few attempts
might be unsuccessful.

It’s best to become familiar with all methods of making connections; then you can use
whichever method is most appropriate at the time. And, if nothing else, learning how to
solder with molten metal can be fun!

C H A P T E R 9   T E S T Y O U R R E A C T I O N S 223

Cut four lengths of wire 20cm long and strip about 7mm of the insulation off each end. If
you are using stranded wire (that is, there isn’t a single core, inside the insulation, but lots of
fine strands), twist the strands together with your fingertips.

You can “tin” the wires with a soldering iron. This prevents metal whiskers sticking out that can
accidentally short, causing undesired connections. To tin wires, twist them together, then run along
the metal from the insulation to the tip with a soldering iron on the top and solder on the bottom.
Try and get the speed right so just enough solder flows to bind all the strands together.

Connect a Switch
Connect one switch to an input terminal (such as input 0) and the other to the ground (0V)
terminal as shown in Figure 9-13. Start the emulator up to show the state of the inputs.
Press the button and check that the input is registered. If nothing happens, check your wir-
ing. Note that as pins 0-3 are wired in parallel to the switches, the terminal and correspond-
ing switch indicate together.

Figure 9-12:
Soldering.

R A S P B E R R Y P I P R O J E C T S224

Figure 9-13:
Wiring up a

switch.

C H A P T E R 9   T E S T Y O U R R E A C T I O N S 225

Connect an LED
You will connect the LED to the open-collector outputs. Remember open-collector outputs
cannot supply current; they are essentially a switch that connects the terminal to ground.
You'll create a circuit where the current will flow from the 5V terminal, through a resistor (to
limit the current so the LED is not damaged) and through an LED and into the output termi-
nal. When the output terminal is turned on it allows current to flow to ground, completing
the circuit and illuminating the LED. Remember LEDs only work if current flows through
them one way, so it matters which lead you connect to positive. For most LEDs the longer leg
indicates the anode, which should be connected to the resistor and then the 5V terminal. A
complete circuit diagram is available on the book's website (www.wiley.com/go/
raspberrypiprojects).

Some switches with built-in LEDs can safely work at 5V so you do not need a resistor.
However, most normal LEDs would be damaged by a voltage of over 2V. If you are using a
normal LED, you need to put about a 330Ω resistor in series with the LED. Chapter 8 has
more information about using resistors with LEDs. Connect the longer leg of the LED and
resistor together and then connect the other leg of the resistor to the 5V terminal. Now is a
good time to check if the LED will work. Briefly touch the other lead of the LED, called the
cathode, to GND. You should see the LED glow. If not, check your wiring and make sure that
you have identified the anode and cathode correctly. (You shouldn’t have damaged the LED
if you got the polarity wrong.)

When you know the circuit works, disconnect from the ground and then connect to the tran-
sistor via one of the output terminals – such as output 0. When the transistor is turned on,
it will allow the current to flow to ground and complete the circuit, so the LED will illumi-
nate. Turn the output on from the emulator and check that it lights.

Playing with the Reaction Timer
Now that you have connected an LED and switch, rerun the reaction timer program. Again
the LED should light after a random time, and the switch should stop the timer. Now that
you know your wiring and circuit works, you can really start to have fun – try different out-
put devices, wire up a buzzer instead of the LED and see if your reactions to sound are
quicker. You could perhaps mount a feather on a motor and test your reaction to touch. You
might find this reaction to be quicker. This is because the inputs (nerves in the skin) can send
a message to the outputs (muscles) without going through a complicated processing system
(your brain) – the principles of computing apply to lots of other systems too! Experiment
with different input switches too – you could attach a switch to different parts of your body
and see if they respond as fast as your hand.

Have a go at making your own switch! Instead of a pre-made switch, you could wire up pieces
of aluminium foil as the contacts and detect when they are connected. Maybe you could

R A S P B E R R Y P I P R O J E C T S226

make a pressure pad for your foot, or have pieces of foil taped to your knees and complete
the circuit by bringing them together.

Connect up multiple switches and LEDs and modify the code to make a game. You could have
a different score for each button, or deduct points if you press the wrong button at the wrong
time. You could build your own game like whack-a-mole.

When you become more experienced at coding, if you are really adventurous, you could create
a network version and play against a friend over the Internet.

What Will You Interface?
Computing becomes more interesting when it is connected to the world. Interfacing allows
computers to sense and manipulate the world through inputs and outputs. Most computers
sense the world by detecting a voltage on an input pin, and affect the world by allowing a cur-
rent to flow through an actuator such as an LED or motor. Relays can be considered as an
equivalent to switches, whereas open-collector outputs have to be wired up in a particular way.

With a basic understanding of electricity and the right sensors and actuators you can make the
world a smarter place. As computers become more sophisticated we can build even smarter
solutions. In the future, you might build a robot that would listen for your commands. Although
that may seem complicated to program, as you have seen, computing is about breaking a chal-
lenge down into lots of simple parts, and then each little part becomes solvable.

Chapter 10
The Twitter ing Toy

by Dr. Andrew Robinson

In This Chapter

❍	 Make a soft toy read out tweets and move

❍	 Learn about text-to-speech

❍	 Discover object-orientated programming

❍	 Gain experience building Python modules

❍	 Access Twitter from your program

R A S P B E R R Y P I P R O J E C T S228

IN THIS CHAPTER you’ll make use of the Twitter library to bring a soft toy to life. At the end
of this chapter, you can have your very own animatronic chicken that waddles and moves its
beak as it reads aloud tweets from a particular user or containing a certain hash tag.

This project illustrates that one of the joys of the Raspberry Pi is the ease of reusing existing
code. Programmers strive for efficiency (some people call it laziness) and aim to never type
the same thing twice. What’s even better is never having to write the code in the first place
and using someone else’s!

This chapter will cover how to hack a toy to connect it to the Raspberry Pi and how to install
a Python module to talk to Twitter and interact with an external program (in this case a text-
to-speech engine) from Python.

Hacking the Toy
You are going to take an animated toy and “hack” it so the Raspberry Pi can control its movement.
You’ll do this by wiring one of the relays on the PiFace interface to replace the toy’s on-off switch.

The word hack in regard to computing has become associated with illegal activity. In this sense,
hacking is bad and not something to engage in. However, to programmers, a hack is a way to
make something work, particularly when reusing something or repurposing it in a clever way.

There are many animatronic and robotic toys available online and in novelty shops. It’s easy
to modify the simple toys that have just a basic on-off switch. Before hacking your toy, it’s
worth considering what happens if something goes wrong – it’s best not to hack an expen-
sive toy or one you’re particularly fond of, just in case you struggle to put it back together
again. You may wish to build your own toy from components instead.

Building the Chicken
I chose to build a twittering chicken around the Head and Mouth Mechanism shown in Figure
10-1 from Rapid Electronics (www.rapidonline.com/Education/Head-and-mouth-
mechanism-60675). The mechanism contains a battery case, a motor, gears and a switch. On
this web page, you’ll find a free data sheet with a fabric pattern for making the chicken cover (as
well as for a bird and a whale with other mechanisms).

Yellow fur for the body and red felt for the wattle and comb can be purchased from a local
fabric shop, and a local craft shop or market is an ideal hunting ground for suitable materials
like stick-on eyes. What’s great about building your own toy is the opportunity for customisa-
tion – feel free to experiment. It shouldn’t be too hard to modify the chicken pattern into the
Linux mascot “tux the penguin”. You could share your pattern online for other people too.

http://www.rapidonline.com/Education/Head-and-mouth-mechanism-60675
http://www.rapidonline.com/Education/Head-and-mouth-mechanism-60675

C H A P T E R 1 0   T H E T W I T T E R I N G T O Y 229

Figure 10-1:
A naked
chicken – the
mechanism that
makes the toy
move.

Wiring
You will connect the relay in parallel with the switch. This allows the relay to override the
switch to turn the toy on.

Open the case by removing the four screws as shown in Figure 10-2, taking care not to lose
any bits or move parts too far out of alignment.

An important skill of hacking is remembering how you take something apart so you can put it
all back together. You could try filming it with a camera phone or similar, so you can play it back
to see which part goes where.

R A S P B E R R Y P I P R O J E C T S230

Figure 10-2:
Removing the

case of the
movement

mechanism.

Series and Parallel Circuits
Series and parallel are two names to classify how components in a circuit are connected. In
series, as the name suggests, the electric current flows through all the components in a
series, one after another. As such, if you have switches wired in series, then all of them
have to be closed for the current to flow. Breaking one of them will break the circuit.

In parallel, the flow of electricity splits and so closing any switch wired in parallel will allow
the current to flow. This is because electricity tends to take the path of least resistance,
which in parallel circuits will be through any closed switch. For the toy, the closed PiFace
Digital relay contacts will bypass the toy's open switch.

C H A P T E R 1 0   T H E T W I T T E R I N G T O Y 231

Try and identify how the wires are connected to form the circuit. Find the terminals on the
power switch. These may be covered with glue, but this can be carefully peeled or scraped
away. In many cases, there will be only two wires going to the switch; if there are more, then
the wiring is more complex, and it may be better to hack a different model if you cannot eas-
ily identify how the circuit works.

Attach another wire to each of the wires already connected to the terminals as shown in Figure
10-3. A soldering iron is the most secure way to do this, but you could also twist the wire onto
the terminal and secure with tape. Briefly, touch the free ends of the wires you just joined
together to check that your model moves. Find an appropriate hole to pass them through to the
outside of the model, taking care that they don’t catch on any moving parts. Adding a blob of
glue or tying a loose knot on the inside will relieve some of the strain on the connections.

Figure 10-3:
Add wires
(shown as white
in the figure) in
parallel to the
switch and add a
knot to stop it
from pulling
through.

R A S P B E R R Y P I P R O J E C T S232

It is now time to reassemble your toy and the time when you discover how much attention
you were paying when you took it apart! All things being well, your toy should go back
together looking no worse after its surgery, as shown in Figure 10-4, and you shouldn’t have
any parts left over. Briefly touch the wires together again to make sure that your toy still
comes to life.

Figure 10-4:
Toy post-surgery

showing no ill
effects. Touch

the wires
together to

make the toy
move.

Making It Talk
You’ll use the espeak text-to-speech (TTS) program to read aloud the tweets.

C H A P T E R 1 0   T H E T W I T T E R I N G T O Y 233

Install espeak by typing the following in a terminal:

sudo apt-get install espeak

Plug in some speakers and then test that TTS works by typing this in a terminal:

espeak “hello world from espeak”

How TTS Works
A TTS engine typically works by splitting the words into syllables and then synthesising the
word by concatenating (combining) corresponding sounds. In most TTS engines, the com-
puter has no understanding of the words, so the output is monotone. However, TTS is an
exciting area of research in computer science, attempting to make it sound more human.
Latest research efforts include modelling the human voice box to generate more realistic
sounds on virtual vocal chords, and another project to try and understand what is being said
to vary pitch, delivery speed and rhythm.

After you’ve followed the instructions below to install espeak, you can see more about
what espeak is doing if you run it with -X. For example, from a terminal run espeak -X
“hello world”.

Uses of TTS
TTS is used when a visual display isn’t appropriate. This includes assistive technology for
people with visual impairments or when it is not possible to look at a screen, a satnav or
automatic telephone exchanges.

If the computer is required to say just a few hundred different words, then for better quality,
an actor will record the separate words, with the computer forming sentences and playing
back a sequence of clips separated by short pauses. In some applications, there are too
many different words to have a recording of each one, so the computer will generate them
from syllables. In the case of a satnav, it’s a lot of work recording the name of every road
and every place. Some words will be frequently used so they may be recorded, and a mix-
ture of synthesized TTS and recorded may be used. You might like to try putting your own
voice in the soft toy by recording a set of words and writing a program that plays them back.
See the “More Ideas” section at the end of this chapter.

R A S P B E R R Y P I P R O J E C T S234

If you cannot hear sound, you may need to change how audio is routed. The Raspberry Pi can
output sound via the HDMI cable or the audio jack socket. It will try to automatically select the
correct one, but that doesn’t always work with some displays. To switch it by hand, type sudo
amixer cset numid=3 n, where n is 0 for automatic, 1 for audio jack and 2 for HDMI.

Using Espeak in Python
The next step is to call the espeak program from Python. Because you might want other pro-
grams that you write in the future to use espeak, you’ll create a module for it. It’s worth
studying how the module works because it shows how you can run another program from
Python, which can be very useful. Enter the following code into espeak.py:

import subprocess

def say(words):

 #Speaks words via espeak text to speech engine

 devnull = open(“/dev/null”, “w”)

 subprocess.call([

 “espeak”,

 “-v”, “en-rp”, # english received pronunciation

 words],

 stderr=devnull)

Let’s take a brief tour of the code. The first line imports the subprocess module that allows
other programs to be called. Put simply, a program running on a computer is called a process,
so if it wants to run another program, then (similar to calling a function) it creates another
subprocess with a call.

def defines the say function that is passed a string of words to say. Next, the file /dev/
null is opened for writing. On Linux, /dev/null is a special file that throws away anything
written to it. It’s a really good way of ignoring any output produced. In this case, it’s used to
hide any error messages produced by espeak. If you replaced /dev/null with a real file-
name, then any error message would be saved there instead.

Finally, the subprocess.call function calls the program “espeak” with an array of argu-
ments to pass to it. In this case, if the words argument contained hello, it would be the
same as typing the following:

espeak -v en-rp hello

C H A P T E R 1 0   T H E T W I T T E R I N G T O Y 235

This shows that multiple arguments can be passed to a command. The -v en-rp is used to
specify how espeak sounds. It can be fun to play around with different pronunciations, or
even languages.

Testing the Espeak module
Now is a good time to check the Python module you’ve just created. Enter the following into
the file try_espeak.py:

#!/usr/bin/env python

try_espeak.py

Show use of espeak.py

import espeak as talker

def main():

 talker.say(“Hello World”)

if __name__ == ‘__main__’:

 main()

Run try_espeak.py and check that you hear “Hello World” from the speakers.

Try espeak with different pronunciation options, such as American or caricatures of British
accents such as Northern, West Midlands or Scottish. The codes needed are described in the
espeak documentation at http://espeak.sourceforge.net/languages.html. You
could add another argument to the say function in Python and pass information to set the
accent. If you are really adventurous, you could try passing pitch, speed and voice arguments,
and you’ll get some very silly sounding voices.

Making It Move
The next step is to turn on the motors of the toy to make the mouth move while it is speak-
ing. To control the motors, you’ll use PiFace Digital. You should have set up PiFace Digital as
specified in Chapter 9, “Test Your Reactions”. Because there are LEDs on the board, these will
indicate that the outputs are active so you can test the code before connecting the chicken.
Create a new file named chicken.py and enter the following:

import piface.pfio as pfio

import espeak as talker

VERBOSE_MODE = True

class Chicken():

http://espeak.sourceforge.net/languages.html

R A S P B E R R Y P I P R O J E C T S236

 #The wobbling/talking chicken

 def __init__(self, pfio, pin):

 pfio.init()

 self.pfio = pfio

 self.relay_pin = pin

 def start_wobble(self):

 #Starts wobbling the chicken

 self.pfio.digital_write(self.relay_pin,1)

 if VERBOSE_MODE:

 print “Chicken has started wobbling.”

 def stop_wobble(self):

 #Stops wobbling the chicken

 self.pfio.digital_write(self.relay_pin,0)

 if VERBOSE_MODE:

 print “Chicken has stopped wobbling.”

 def say(self, text_to_say):

 #Makes the chicken say something

 if VERBOSE_MODE:

 print “Chicken says: %s” % text_to_say

 talker.say(text_to_say)

def test_chicken():

 #create a sample Chicken object called tweetyPi

 tweetyPi = Chicken(pfio,1)

 tweetyPi.start_wobble()

 tweetyPi.say(“hello world”)

 tweetyPi.stop_wobble()

if __name__ == ‘__main__’:

 test_chicken()

With a speaker connected, run the preceding script and check that it works. You should hear
the relay click (and see the corresponding LED illuminate) on the PiFace interface, the sound
“hello world” come from the speaker and then the relay click off again.

Looking back at the code, you should notice a couple of points. The line VERBOSE_MODE =
True is an example of a constant. It is set by the programmer and then never changes – in other
words, it remains constant. In this case, it provides an easy way to turn on and off debugging
information in one place. With it turned on, you’ll receive messages saying when the chicken

C H A P T E R 1 0   T H E T W I T T E R I N G T O Y 237

should start moving and stop. Without these messages, if the chicken wasn’t moving, you
wouldn’t know if the problem was with this module, or whether the problem was elsewhere.

Being able to see what is going on in a program is very important when debugging. Computer
scientists describe it has having good visibility. One way to achieve this is to have print
statements at key points in a program so as it executes you can follow its progress and the state
of data. It’s very common for a program to not work perfectly the first time, so designing it to make
it easy to debug can save time in the long run, particularly when you might add a new feature later.

Creating Classes
The file chicken.py makes uses a particular style of programming called object-orientated
programming (OOP). You don’t need to worry too much if you don’t understand the code at
the moment; there are more examples of OOP in other chapters in the book.

OOP is a handy way to group code and data together. Think about any object in the real world:
It has characteristics, also called attributes, and it has things that can be done to it. For example,
a balloon’s attributes include its colour and if it is inflated. Actions that can be done to it include
blowing it up or popping it. You may have a room full of different balloons, but they can all be
considered to share the same set of attributes and actions (even though the value of the attri-
bute, like the colour, might be different). As such, they are all the same class of object.

In OOP, the programmer designs his or her own classes of objects, which have a set of attri-
butes and functions. In chicken.py, the Chicken class of the object is defined by class
Chicken():. The next indented block defines the methods (another name for functions) of
the class. There are methods to start and stop the chicken from moving and one to make it
speak. The __init__ method is a special method that is called when an object is created. In
this case, it calls the pfio initialisation method (to initialise the PiFace interface) and sets up
the object’s attributes. This can be handy, as you can use your object without worrying about
what you need to do to initialise things first. So far, the program has only created a class for
the chicken. It hasn’t created an actual object, merely a description of what a Chicken object
will be like. It’s a bit like creating a cookie cutter – you’ve defined what shape the cookies will
be, but you’ve not actually created any cookies yet.

Creating Objects
A Chicken object is created in the test_chicken function. It is outside the class defini-
tion (and therefore not part of the Chicken class) because it’s not within the indented block.
The statement tweetyPi = Chicken(pfio,0) creates a new Chicken object called
tweetyPi. The arguments are used to pass in the PiFace Digital interface and identify which
pin the motor is connected to.

R A S P B E R R Y P I P R O J E C T S238

Imagine if you had multiple chickens, one connected to each of the relays on PiFace. You
could create two chickens by typing the following:

tweetyPi1 = Chicken(pfio,0)

tweetyPi2 = Chicken(pfio,1)

Now, if you wanted to start them both wobbling you could type this:

tweetyPi1.start_wobble()

tweetyPi2.start_wobble()

By using objects, you can use the same function for each chicken. You don’t have to worry
about which pin they are connected to after you’ve created the object because the object
stores it for you. This is an example of why using OOP can be advantageous.

OOP can be tricky to understand at first, but it should become clearer as you see more exam-
ples. For now, you can ignore the details, accept that it works and hide it in the chicken mod-
ule, in the same way you use other modules without knowing what is inside them. Believe it
or not, professional programmers do this too – as long as the interface to a module is clear
(that is, the functions it provides are clearly documented), it doesn’t matter if they don’t fully
understand how it works!

Breaking Up Your Code
Chapter 2, “Introductory Software Project: The Insult Generator”, talks about splitting pro-
grams up into functions and how important it is to structure your code in computing.

In this example, separate files are used for modules to help structure the program. Classes
also help by grouping related data and functions together.

As you will see, what may have sounded like a daunting task of making a Twitter-enabled
soft toy move and talk becomes manageable when tackled in smaller chunks. You also
tested each chunk so it’s easier to see where a problem is. Similarly, as you become more
experienced, you’ll be able to take almost any big and seemingly hard problem, and split it
up into little steps. Why not try it? Think of a project you want to do, and then think how you
can split it up into smaller parts. Hopefully, as you complete the projects in this book, you’ll
learn the skills necessary to implement each of these little parts, and you’ll be able to build
almost anything!

C H A P T E R 1 0   T H E T W I T T E R I N G T O Y 239

Testing As You Go
If you wrote a huge program and tried to run it, chances are it wouldn’t work the first time.
You’d then have to go through all of it trying to find where the problem was. Instead, it is
better to test as you go, checking each component before moving on to the next. Python
provides a good means to do this. Toward the end of the file are the following lines:

if __name__ == ‘__main__’:

 test_chicken()

This code calls the test_chicken() function if the file is being run by itself, but doesn’t
call the function if it is imported as a module. As such, it’s a good way of writing code that
will test the behaviour of a module. As you learn more about programming, you will under-
stand the importance of testing and which tools and techniques can help.

Surrounding or starting a word with __ in Python (and some other languages) indicates a
special meaning. As such, it’s better not to start and end your own variables and functions this
way unless you really know what you’re doing!

Connecting to Twitter
The python-twitter module makes it very easy to read from Twitter. Unfortunately the
module isn’t prepackaged for Debian Linux. Luckily it’s not too difficult to build it from source
and doing so will give you good experience that will come in handy if you need to install another
module in the future. You’ll also see what it’s like to use someone else’s module, which will be
an advantage if you write modules that you want other people to reuse. You’ll discover that it is
just as important to write good documentation as it is to write good code.

Building and Installing Python Modules
The module’s home page http://code.google.com/p/python-twitter contains a
summary of how to build the module. If you’ve never built a module before, you’re better off
following the more detailed steps in this chapter.

The website lists and links to dependencies; these are other modules that must be built first.
python-twitter requires simplejson, httplib2 and python-oauth2 to be installed.
Step-by-step installation instructions are provided in this chapter.

http://code.google.com/p/python-twitter

R A S P B E R R Y P I P R O J E C T S240

It’s possible to download files from the command line in Linux without using a web browser.
There are two main programs to choose from: either curl or wget. Both provide similar
functionality, so deciding which one to use comes down to personal preference and/or
availability. wget is used for the examples in this chapter.

simplejson
Clicking the http://cheeseshop.python.org/pypi/simplejson link redirects you
to http://pypi.python.org/pypi/simplejson.

Note that the version numbers may be different as the library is updated, in which case, you
should replace simplejson-3.3.0.tar.gz with whatever filename you have downloaded.

From a terminal, type the following (all on one line) to download the code:

wget http://pypi.python.org/packages/source/s/simplejson/

simplejson-3.3.0.tar.gz

The tar.gz file extension tells you that the file is zipped to save space and is a tar archive. A
tar archive is often used in Linux as it provides a convenient way to package multiple files
and preserve file permissions and other attributes. It is possible to unzip the file and then
untar a file as separate operations, but because so many tar archives are compressed, it is
possible to do it in a single action. To unzip and untar the compressed archive, type the fol-
lowing on the command line:

tar xvf simplejson-3.0.7.tar.gz

As the command executes, it lists the files as they are expanded (unpacked) from the archive.

Using tar
You can create your own zipped archives by typing the following:

tar czvf <archivename.tar.gz> <list of files and directories>

Tar has many different options, but in most cases czvf, xvf or tvf will be sufficient. t,c
and x mean test (list the contents of an archive), compress and expand an archive, respec-
tively. v indicates that tar should be verbose and list the files as it expands them. f is used
to specify the filename of the archive.

http://cheeseshop.python.org/pypi/simplejson
http://pypi.python.org/pypi/simplejson

C H A P T E R 1 0   T H E T W I T T E R I N G T O Y 241

Change into the newly expanded directory by typing the following in a terminal:

cd simplejson-3.3.7

On Linux, most software that is supplied as source code shares a similar installation process
of extract, build and install. Many Python modules follow this same pattern. Because a mali-
cious user could insert a module that would cause harm, you need to use sudo to provide
enough access privileges to install the module. Type the following to install the package:

python setup.py build

sudo python setup.py install

After the module has installed, return to the parent directory by typing the following:

cd ..

httplib2
Follow the same procedure to install the httplib2 package from http://code.google.
com/p/httplib2. In a terminal, type the following:

wget http://httplib2.googlecode.com/files/httplib2-0.8.tar.gz

tar xvf httplib2-0.8.tar.gz

cd httplib2-0.8

python setup.py build

sudo python setup.py install

cd ..

python-oauth2
python-oauth2 is hosted on GitHub at http://github.com/simplegeo/python-
oauth2, so you obtain it through git rather than wget. In a terminal, type the following:

git clone “http://github.com/simplegeo/python-oauth2”

cd python-oauth2

python setup.py build

sudo python setup.py install

cd ..

http://code.google.com/p/httplib2
http://code.google.com/p/httplib2
http://github.com/simplegeo/python-oauth2
http://github.com/simplegeo/python-oauth2
http://github.com/simplegeo/python-oauth2

R A S P B E R R Y P I P R O J E C T S242

The final step is to install the python-twitter module:

wget “http://python-twitter.googlecode.com/files/;

python-twitter-0.8.2.tar.gz”

tar xvf python-twitter-0.8.2.tar.gz

cd python-twitter-0.8.2

python setup.py build

sudo python setup.py install

cd ..

If you have IDLE open, close all the windows and restart it so it can access the newly installed
modules.

Talking to Twitter
Twitter requires programs that access it automatically to send authentication information
with requests. This allows Twitter to prevent abuse by blocking programs that put too much
load on its servers. Your program will authenticate itself to Twitter by sending secret tokens.

Getting Access Tokens for Twitter
You will need to get four pieces of information by signing into the developers’ part of Twitter.
This section explains how to get a consumer_key, consumer_secret, access_token_
key and access_token_secret. The names sound confusing, but all they are is a secret
code that will identify you and your program to Twitter.

Visit https://dev.twitter.com/apps/new and log in. (You will need to sign up to
Twitter if you don’t have an account.) If you’re not old enough to have your own Twitter
account you could ask a parent, guardian or teacher to do this for you.

Enter the name of your application, a brief description and a website. If you don’t have a
website you could enter www.example.com as a placeholder. Read the terms and click to
indicate your acceptance of the terms. Fill in the CAPTCHA and then click Create Your
Twitter Application. You may need to enter a different name for your application if it is
already in use; you could try prefixing it with your Twitter username.

Upon success, scroll down and click Create My Access Token. Wait up to a minute and reload
the page.

Make a note of the Consumer Key and Consumer Secret entries from the OAuth section, and
Access Token and Access Token Secret from the Your Access Token section because you will
need to include these in your program.

https://dev.twitter.com/apps/new

C H A P T E R 1 0   T H E T W I T T E R I N G T O Y 243

Writing Code to Talk to Twitter
With the Python modules installed, it is time to write the code that will talk to Twitter.
Create a new file named twitter_tag_listen.py, containing the following code:

#!/usr/bin/env python

#twitter_tag_listen.py

#listens for new tweets containing a search term

import time

import sys

import twitter

DEFAULT_SEARCH_TERM = “chicken” #what we search twitter for

TIME_DELAY = 30 # seconds between each status check

def main():

#replace values for consumer_key, consumer_secret,

#access_token_key and access_token_secret with the values

#you made a note of from the Twitter website.

 api = twitter.Api(consumer_key=’xxxxxxcxK9I3g’,;

consumer_secret=’xxxxxfLBmh0gqHohRdkEH891B2XCv00’,;

access_token_key=’xxxxx25-Dw8foMCfNec2Gff72qxxxxxwMwomXYo’,;

access_token_secret=’xxxxxxjIuFb88dI’)

 previous_status = twitter.Status()

 # has user passed command line argument?

 if len(sys.argv) > 1:

 search_term = sys.argv[1]

 else:

 search_term = DEFAULT_SEARCH_TERM

 #alternative form of print statement to display contents ;

 of a variable

 print “Listening to tweets containing the word ‘%s’.”;

 % search_term

 while True:

 # grab the first tweet containing the ;

 search_term

 current_status = api.GetSearch(term=search_term,;

 count=1)[0]

R A S P B E R R Y P I P R O J E C T S244

 if current_status.id != previous_status.id:

 #if the result we get from twitter is

 #different from what we got last time,

 # we know there’s a new tweet

 print current_status

 previous_status = current_status

 # wait for a short while before checking again

 time.sleep(TIME_DELAY)

if __name__ == “__main__”:

 main()

Run the code to test it. Obviously, you need to be connected to the Internet for it to work.
The program should print the latest tweets that contain the word chicken. Press Ctrl + C to
stop the program.

You are nearly ready to add in the code that controls the toy, but before you do, it is worth
looking at how the code works.

By now you should be recognising statements in the program. First you import three mod-
ules that you need. The Time module provides the sleep() function that creates the delay
between each time you check Twitter. The Sys module provides a way to get command-line
arguments. Next constants are defined before the main function begins.

The Twitter module is written in OOP style, so you create a Twitter api object with the fol-
lowing statement:

api = twitter.Api(consumer_key=’xxxxxxcxK9I3g’,;

consumer_secret=’xxxxxfLBmh0gqHohRdkEH891B2XCv00’, ;

access_token_key=’xxxxx25-Dw8foMCfNec2Gff72qxxxxxwMwomXYo’,;

access_token_secret=’xxxxxxjIuFb88dI’)

You check if any command-line arguments were used by checking the length (that is, the
number of items) in sys.argv. If there’s at least one, then you set the search_term to be
the first argument:

has user passed command line argument?

if len(sys.argv) > 1:

C H A P T E R 1 0   T H E T W I T T E R I N G T O Y 245

 search_term = sys.argv[1]

else:

 search_term = DEFAULT_SEARCH_TERM

Command-Line Options and Arguments
When you run a Python program from the command line, you can follow it with a list of
arguments. This provides an easy way to pass data into a program at startup and is typically
used to pass names of files or configuration options. For many programs, if you run it with
just the –h option, it will display simple help and summarise the options and arguments
available. To try this with espeak, type the following from a terminal to display a summary
of command-line options:

espeak -h

In the twitter_tag_listen.py example, because your program only takes one argu-
ment, you read it from the list held by sys.argv. However, as you begin to master Python
and your programs get more complicated, you may wish to use the argparse module that
splits up the arguments and can automate generating usage information.

Finally, you enter the main loop – a block of code that will keep going around in a loop, run-
ning again and again. This is a while loop, which is discussed in Chapter 2.

In this program you use the condition True, to make it loop indefinitely. To stop the pro-
gram, press Ctrl + C. In Linux, this keyboard combination sends a message from the operat-
ing system to interrupt the program, which in most cases will terminate it (cause it to stop
running).

With all the components written and tested, it’s the moment of truth: Will they work
together?

Putting It All Together
Connect the wires from your toy to the common and normally open relay contact terminals
on PiFace Digital as shown in Figure 10-5. The code example in this chapter uses relay 0,
which is the bottom two terminals nearest to JP3 and the Raspberry Pi expansion pins. You
can use the manual override button in the emulator as described in Chapter 9 to check that
the toy moves when the relay is turned on.

R A S P B E R R Y P I P R O J E C T S246

Figure 10-5:
Wiring the toy

up to the
normally open
relay contacts.

Update the twitter_tag_listen.py code to control the hardware and speak as follows:

	 1.	 Import your chicken and piface.pfio modules.

	 2.	 Create a Chicken object called chick and pass in the number of the output pins wired
up to the toy.

	 3.	 Instead of printing a tweet, add three statements to start the chick wobbling, say the
tweet and then stop the chick from wobbling.

The code for twitter_tag_listen.py is shown in full in Listing 10-1, with the necessary
updates in bold.

Listing 10-1  twitter_tag_listen.py

#!/usr/bin/env python

#twitter_tag_listen.py

#listens for new tweets containing a search term

#and then wobbles a chicken

import time

import sys

import twitter

import chicken

C H A P T E R 1 0   T H E T W I T T E R I N G T O Y 247

import piface.pfio as pfio

DEFAULT_SEARCH_TERM = “chicken” #what we search twitter for

TIME_DELAY = 30 # seconds between each status check

def main():

 api = twitter.Api(consumer_key=’xxxxxxcxK9I3g’,;

consumer_secret=’xxxxxfLBmh0gqHohRdkEH891B2XCv00’,;

access_token_key=’xxxxx25-Dw8foMCfNec2Gff72qxxxxxwMwomXYo’,;

access_token_secret=’xxxxxxjIuFb88dI’)

 previous_status = twitter.Status()

 chick = chicken.Chicken(pfio,0)

 # has user passed command line argument?

 if len(sys.argv) > 1:

 search_term = sys.argv[1]

 else:

 search_term = DEFAULT_SEARCH_TERM

 #alternative form of print statement to display contents ;

 of a variable

 print “Listening to tweets containing the word ;

‘%s’.” % search_term

 while True:

 # grab the first tweet containing the

 # search_term

 current_status = api.GetSearch(term=;

search_term, count=1)[0]

 # if the status is different

 # then pass it to the chick.say function

 if current_status.id != previous_status.id:

 chick.start_wobble()

 chick.say(current_status.text)

 chick.stop_wobble()

 previous_status = current_status

 # wait for a short while before checking again

 time.sleep(TIME_DELAY)

if __name__ == “__main__”:

 main()

R A S P B E R R Y P I P R O J E C T S248

Try it! Run the code and you should have an animated, talking toy that responds to Twitter.
Don’t forget you can make the file executable by running the following in a terminal:

chmod a+x twitter_tag_listen.py

Try out different search terms by passing in arguments. For example, type the following in a
terminal to search for the hash tag RaspberryPi:

./twitter_tag_listen.py “#raspberrypi”

Note that you have to enclose the tag in quotes. This tells the command line to ignore the
special meaning that # has, and to pass it through to your program as part of the argument.
It's the same principle as putting strings in quotes in Python.

Wrapping Up
By now you should have your own animatronic, twittering soft toy. You’ve also seen the
advantages of breaking a program up into manageable parts and reusing other people’s code.
Becoming a programmer is sometimes like being a plumber – it’s about connecting up func-
tions, with data flowing between them. If you’re struggling with your own program design,
try splitting it up into a set of smaller problems, and keep splitting until all the problems are
really simple to code. Not only is it less daunting at the design stage, but by testing stage-by-
stage, it’s harder for bugs to hide and easier for you to find them. When writing functions,
you’ve seen the need for good observability for testing and debugging – that is, you can see what
is going on inside them so you can check that they work and fix them when they don’t!

You’ve also seen the need for good documentation. If other people are going to reuse your
code, then they need clear instructions about how to install the program, what other mod-
ules it depends on and what arguments each function takes and does.

Practically, you’ve also learned about using tar and untar for packaging up sets of files and
how to build and install Python modules.

There are lots of ways you can customise the twittering soft toy; why not try some of the
following suggestions? Don’t forget to film what you make, upload it to YouTube and tag it with
Raspberry Pi Projects Book.

C H A P T E R 1 0   T H E T W I T T E R I N G T O Y 249

More Ideas
There are many things you can do with your own toy. Here are some suggestions:

❍	Try changing the arguments passed to espeak. (Don’t forget that –h will give you a list
of options.) For example, you could try

•	Different languages

•	Different voices, both male and female

•	Changing pitch

•	Changing speed

	 Here’s an example of how you could change espeak.py:

import subprocess

DEFAULT_PITCH = 50 # 0-99

DEFAULT_SPEED = 160 # words per min

def say(words, pitch=None, speed=None):

 if not pitch:

 pitch = DEFAULT_PITCH

 if not speed:

 speed = DEFAULT_SPEED

 devnull = open("/dev/null", "w")

 try:

 subprocess.call([

 "espeak",

 "-v", "en-rp", # english received pronunciation

 "-p", str(pitch),

 "-s", str(speed),

 words],

 stderr=devnull)

❍	You could change the speech parameters depending on who is talking or the content of
the tweet.

R A S P B E R R Y P I P R O J E C T S250

❍	You could connect multiple soft toys, each with different voices, and have a conversa-
tion. (Hint: Create chick0 = chicken.Chicken(pfio,0) and chick1 =

chicken.Chicken(pfio,1) and then wire a different chicken up to each relay.)

❍	You could control more motors in your soft toy and make it dance if it detects certain
hash tags.

❍	If you’re really adventurous, you could replace the espeak.py module completely
with a module that splits simple phrases up into words and plays a sound recording of
yourself saying each of the words for a more natural sound. Chapter 17, “The Techno–
Bird Box, a Wildlife Monitor”, uses the split function, and Chapter 5, “Ping”, shows
how to play sounds.

Chapter 11
Disco Lights

by Mike Cook

In This Chapter

❍	 Using individual bits in variables to define individual LEDs

❍	 Connecting external LEDs to your PiFace board

❍	 Writing a Python program user interface that looks like
any windowed application

❍	 Customising the user interface to use your own choice of
colours

❍	 Getting input from music

R A S P B E R R Y P I P R O J E C T S252

IN MY YOUTH, during the late 60s, I answered an advertisement in the Manchester Evening
News for someone to turn lights on and off in time to the music in an Ashton-under-Lyne night
club. I went to the interview that Friday evening, which consisted of their showing me the light-
ing control rig and saying I had to be there by 7:30 p.m. on Saturday and Sunday. To be honest,
I didn’t fancy five hours of switching lights on and off for just £1.00, so I arrived the following
evening on my Lambretta with a rucksack full of electronics. I had a large multiway switch used
in telephone exchanges called a uniselector (you can still get these on eBay), which was wired
up to make an on/off control of five circuits. I started hacking the lighting panel, and before
long, I had five coloured spotlights flashing away while I put my feet up.

These days, you cannot go hacking about with mains like that – health and safety would have
a fit. And with the Raspberry Pi, you have the opportunity to do something a lot more sophis-
ticated. So in this chapter, you are going to see how to control those disco lights, and change
the pattern with a click of a mouse. Not only that, but you will see how to drive the light
sequence from the beat of the music.

In this chapter, you’ll learn how to write a Python program to define a sequence of lights.
You’ll also learn about various aspects of electronics and control.

Defining Your Sequence
So far in this book, you have written programs that interact through the Python console.
Now you are going to produce a proper desktop application. This would be quite a daunting
prospect if it were not for the help that you can get from a Python package that does a lot of
the under-the-hood hard work for you. This just leaves you to specify exactly what things
should look like. This package also integrates the windows style selected for your whole desk-
top, so the result looks consistent with other applications.

This package is called pygame and comes preloaded in most Raspberry Pi distributions. It
consists of a number of functions to create and update windows, draw in the windows, regis-
ter a mouse click and read the keyboard. It will also handle sound and music, but you will not
be looking at that function this time.

Start IDLE, and select a new window. For a start let’s look at Listing 11-1, a very basic piece
of code to open a window and close it down.

Listing 11-1  Windows1 Test Program
#!/usr/bin/env python

“””

Window1 to open up a window on the desktop

“””

C H A P T E R 1 1   D I S C O L I G H T S 253

import os, pygame, sys

pygame.init() # initialise graphics interface

os.environ[‘SDL_VIDEO_WINDOW_POS’] = ‘center’

pygame.display.set_caption(“Test Window 1”)

screen = pygame.display.set_mode([788,250],0,32)

def main():

 while True :

 checkForEvent()

def terminate(): # close down the program

 print (“Closing down please wait”)

 pygame.quit()

 sys.exit()

def checkForEvent(): # see if we need to quit or

 # look at the mouse

 #print “checking for quit”

 event = pygame.event.poll()

 if event.type == pygame.QUIT :

 terminate()

 elif event.type == pygame.KEYDOWN and event.key == ;

pygame.K_ESCAPE :

 terminate()

if __name__ == ‘__main__’:

 main()

When you run this, you should get just a black window in the middle of the screen. It won’t
do much, but it is a real window. You can drag it around the screen, and clicking the mini-
mise icon at the top-right corner will fold up the window and put it on the task bar at the
bottom of the screen. Clicking the close cross will quit the program as will pressing the Esc
key. When the program quits, you will get a message printed out in blue in the console win-
dow along with several lines of red debug information telling you where the program quit.

If you look at the anatomy of the program, you will see things are quite simple. The first few
lines tell pygame to create a window, of a certain size, with a certain title and put it in the
middle of the screen. The main part of the program is an infinite loop that constantly checks
to see if an event has occurred.

In programming terms, an event is something happening, which is normally how user inter-
action gets input to the program. You are looking for a close event or a key up event on the

R A S P B E R R Y P I P R O J E C T S254

Esc key. A close event is either the user clicking the close cross on the window or the operating
system telling the program to quit because it is going to shut down. If your program sees any
of those events, it calls a terminate function that prints out a message. Then it quits
pygame to release any memory it grabbed, and it exits to the operating system.

Getting the Code to Do More
Well, that was not very exciting, was it? Let’s get the code to do a little more. Take a look at
Listing 11-2.

Listing 11-2  Windows2 Test Program
#!/usr/bin/env python

“””

Window2 to open up a window on the desktop, draw something in it

 and read the mouse position upon a click

“””

import piface.pfio as pfio # piface library

import os, pygame, sys

pygame.init() # initialise graphics interface

pfio.init() # initialise pfio

os.environ[‘SDL_VIDEO_WINDOW_POS’] = ‘center’

pygame.display.set_caption(“LED controll”)

screen = pygame.display.set_mode([190,160],0,32)

box = False

def main():

 drawBox(box)

 while True :

 checkForEvent()

def drawBox(state):

 boxNum = 0

 # first draw the box

 # - fill colour depends on sequence bit state

 if state :

 pygame.draw.rect(screen,(255,0,0), ;

(50, 70, 40,40), 0)

 else :

 pygame.draw.rect(screen,(180,180,180),

 (50, 70, 40,40), 0)

C H A P T E R 1 1   D I S C O L I G H T S 255

 #now draw the outline of the box

 pygame.draw.rect(screen,(0,0,180),(50, 70, 40,40), 3)

 pygame.display.update() # refresh the screen

 pfio.write_output(state)

def mouseGet() : # see where we have clicked

 global box

 x,y = pygame.mouse.get_pos()

 print “The mouse has been clicked at “,x,y

 if x in range(50,90) and y in range(50,110) :

 box = not box # toggle the state of the box

 drawBox(box)

def terminate(): # close down the program

 print (“Closing down please wait”)

 pygame.quit()

 sys.exit()

def checkForEvent(): # see if we need to quit

 # or look at the mouse

 #print “checking for quit”

 event = pygame.event.poll()

 if event.type == pygame.QUIT :

 terminate()

 elif event.type == pygame.MOUSEBUTTONDOWN :

 mouseGet()

 elif event.type == pygame.KEYDOWN and event.key == ;

pygame.K_ESCAPE :

 terminate()

if __name__ == ‘__main__’:

 main()

When you run this, you will get a much smaller window on the desktop with a single square
in it. Click in the square, and four things will happen. First the square will turn from grey to
red, and then you will hear the relay on the PiFace board come on and see one of the LEDs
come on. Finally you will see the position of the mouse when it was clicked printed out in
window coordinates. That means that the coordinate value will be the same when clicking
the same spot within the window, irrespective of where that window is positioned on the
screen. Let’s see what’s been done here.

This time you add in the call to import the piface library, which is going to control the relay and
lights. You set a variable called box to be false, which is called a logic or Boolean value and can only

R A S P B E R R Y P I P R O J E C T S256

take on one of two values. You can call these values one and zero or true and false. The main func-
tion calls a drawBox function and then enters an endless loop that simply checks the events.

Take a closer look at the drawBox function. It takes in a variable, called state, that defines
what colour the box is going to be. It is tested and you use the draw rectangle command from
pygame. At first this looks complex, with lots of parameters or numbers in it, but it is quite
simple. The first parameter in the command tells where you are going to draw the rectangle, in
this case in an area called screen you defined at the start of the program. The next three num-
bers define the colour you will use in red, green and blue values – these are in brackets because
they are one entity that could be replaced by a suitable variable later on called a tuple. Next you
have four values bracketed as a tuple that define the X and Y coordinates of the rectangle, fol-
lowed by how wide and how high to draw it. The final value tells the computer how wide a pen
to draw this with. A zero is a special case and fills in the whole rectangle. Finally after drawing
the rectangle, you have to tell the computer to update what is being shown on the screen.

This way of working means that no matter how complicated or time consuming it is to draw,
the user always sees the screen change in a flash. The technical name for this is double buffer-
ing because one buffer, or area of memory, is being used to display the picture, and the other
is being used to construct the next picture. The display update call copies the construction
buffer into the display buffer. Note that at this point the display and construction buffers
both contain the same thing. Finally in this function the variable state is written out to the
PiFace board. As this Boolean variable can only be a zero or a one, then the least significant
LED is turned on or off, and all the other LEDs are turned off.

The last thing to look at in this program is the mouseGet function, which is called by the
checkForEvent function when it detects a mouse button down event. The mouseGet
function first recovers the coordinates of the mouse pointer when it was clicked. Then the
compound if statement checks if both the x and y fall within the coordinates of the box. If
it does, then you toggle or invert the state of the variable box and then call the function that
draws it and writes to the outputs.

So with a mouse click, you can control a light.

A Small Detour into Theory
Now you’ve got a program that doesn’t just act like a real window application; you can click
in the window and control an output. However, before you can go on to looking at a com-
plete sequencer you need to look a little bit about how the LEDs on the PiFace board are
related to the value you write to the interface.

The basic unit of storage in a computer is the byte. A byte consists of eight bits, each bit being
a separate logic level. Rather than think in bit terms, it is easier if you group these bits and

C H A P T E R 1 1   D I S C O L I G H T S 257

consider storage in terms of bytes. However, as you will see you sometimes want to manipu-
late individual bits in that byte. In the last program you saw that a Boolean variable could
only have one of two possible values; however it takes a byte to store that one variable, so all
the other bits in it are wasted. If you take a byte, you can store the state of eight LEDs in it.
The relationship between the byte, the bits and the LEDs is shown in Figure 11-1.

Figure 11-1:
The relationship
between bits
and bytes.

So by using a byte variable to store the state of all eight LEDs you can then use a list of these
variable to store a sequence of LED patterns. To output each pattern all you have to do is to
write out the next variable in the list to the PiFace board.

Designing the Sequencer
Now that you have all the elements in place you can begin to think about how you want this
to look and operate. This is called top-down design because you start with a top-level view of
what you want the software to look like.

I envisaged a grid of squares, each one representing an LED and its position in the sequence.
A column of eight squares would represent the states of the LEDs at any instance in the
sequence. A marker under the column will indicate what LEDs are being lit at any time. A
mouse click in one of these squares will toggle the LED.

In order to help set up the sequence there should be some control buttons, one to clear or
turn off all the LEDs in all sequence positions, and another to toggle or invert all the LEDs.
There should be control buttons to determine the speed of the sequence and finally one to
select where to take the trigger to advance the sequence from. This last point is important if

R A S P B E R R Y P I P R O J E C T S258

you want to synchronise the changing of the lights to the beat of the music. The sequence
can either be stepped at a regular rate determined by the speed controls, or locked into the
beat of the music. This last feature will require a little bit of extra hardware and is optional –
you can skip it for now and add it later if you like.

Finally it would be good if all the colours used in the sequence software were customisable;
that is, it should be easy to change by changing a single value at one point of the code only.
This means that whenever you use a colour you do not hard code it in by putting the colour
numbers into a function call, but rather use a variable to define that colour. Those variables
for all the colours should be grouped in one place in the code for easy access.

Implementing the Sequencer
After designing the sequencer from the top down, when it comes to implementing the design
it is better to write the code in what is known as a bottom-up implementation. That means
starting at the lowest possible function and working your way up. Of course, if you just look
at the finished code, you don’t see that. I started by taking the window test program and
writing the functions that showed the columns representing the LEDs in the sequence. Then
I expanded it so that I could click on each LED to turn the box on or off. Next came the con-
trols to clear and invert, followed by the step indicator. This was followed by the speed con-
trols, and at this point I added the code to actually output something to the LEDs. Finally the
auto/external step control was added and the code tidied up. This might not be the sequence
of building up a program that first springs to the mind of a beginner, but the idea is to do a
little coding and then test. So you are always looking to do something that can be instantly
tested, even if it means writing the odd line of code that is not going to make it in the final
mix. It also means that if something goes wrong with the test you know you have just writ-
ten the code with the error in it.

Listing 11-3 shows the sequencer application.

Listing 11-3  The Sequencer Application
#!/usr/bin/env python

“””

Disco LED sequence display on the PiFace board

“””

import time # for delays

import piface.pfio as pfio # piface library

import os, pygame, sys

pfio.init() # initialise pfio

pygame.init() # initialise graphics interface

C H A P T E R 1 1   D I S C O L I G H T S 259

os.environ[‘SDL_VIDEO_WINDOW_POS’] = ‘center’

pygame.display.set_caption(“LED sequence controller”)

screen = pygame.display.set_mode([788,250],0,32)

background = pygame.Surface((788,250))

define the colours to use for the user interface

cBackground =(255,255,255)

cLEDon = (255,0,0)

cLEDoff = (128,128,128)

cOutline = (255,128,0)

cText = (0,0,0)

cTextBack = (220,220,220)

cStepBlock = (0,255,255)

background.fill(cBackground) # make background colour

font = pygame.font.Font(None, 28)

seq = [1 << (temp & 0x7) for temp in range (0,32)]

 # initial sequence

timeInc = 0.3

stepInt = True # getting the step signal from inside the Pi

step = 0 # start point in sequence

nextTime = time.time()

lastSwitch = 0

def main():

 setupScreen()

 while True :

 checkForEvent()

 checkStep()

def checkStep() :

 global step, nextTime, lastSwitch

 if stepInt :

 # if we are getting the step command from the internal timer

 if time.time() > nextTime :

 # is it time to do a next step

 updateSeq(step)

 step += 1

 if step >31 :

 step = 0

 nextTime = time.time() + timeInc

 else: # if not look at lowest switch

continued

R A S P B E R R Y P I P R O J E C T S260

Listing 11-3  continued
 switchState = pfio.read_input() & 1

 if switchState != lastSwitch and ;

lastSwitch == 0:

 updateSeq(step)

 step += 1

 if step >31 :

 step = 0

 lastSwitch = switchState

def updateSeq(n) :

 pygame.draw.rect(screen,cBackground, ;

(10, 202,768 ,10), 0) # blank out track

 pygame.draw.rect(screen,cStepBlock, ;

(14 + n * 24, 202,10 ,10), 0) # draw new position

 pygame.display.update()

 pfio.write_output(seq[n])

def setupScreen() : # initialise the screen

 screen.blit(background,[0,0]) # set background colour

 drawControl(10,58,”Clear”)

 drawControl(86,62,”Invert”)

 drawControl(168,68,”Faster”)

 drawControl(250,74,”Slower”)

 drawControl(350,132,”Auto Step”)

 for x in range(0,32) :

 drawCol(x,seq[x])

 pygame.display.update()

def drawControl(xPos,xLen,name) :

 pygame.draw.rect(screen,cTextBack, ;

(xPos, 216, xLen,32), 0)

 pygame.draw.rect(screen,cOutline, ;

(xPos, 216, xLen,32), 2)

 text = font.render(name, True, cText, cTextBack)

 textRect = text.get_rect()

 textRect.topleft = xPos+4, 220

 screen.blit(text, textRect)

def drawCol(x,value):

 boxNum = 0

 x = 10 + x*24

C H A P T E R 1 1   D I S C O L I G H T S 261

 y = 10

 for bit in range(0,8):

 # first draw the box –

 # fill colour depends on sequence bit state

 if ((value >> boxNum) & 1) != 1 :

 pygame.draw.rect(screen,cLEDoff, ;

(x, y + 24*boxNum, 20,20), 0)

 else :

 pygame.draw.rect(screen,cLEDon, ;

(x, y + 24*boxNum, 20,20), 0)

 #now draw the outline of the box

 pygame.draw.rect(screen,cOutline, ;

(x, y + 24*boxNum, 20,20), 2)

 boxNum +=1

def mouseGet() : # see where we have

 # clicked and take the appropriate action

 global timeInc, stepInt

 x,y = pygame.mouse.get_pos()

 if y in range(10, 202) and x in range(10, 778) :

 bit = (y -10) / 24

 byte = (x- 10) / 24

 seq[byte] ^= 1 << bit

 drawCol(byte,seq[byte])

 pygame.display.update()

 elif y in range(216,248) :

 if x in range(10,58) : # the clear control

 for a in range(0,32):

 seq[a] = 0

 drawCol(a,seq[a])

 pygame.display.update()

 if x in range(86,148) : # the invert control

 for a in range(0,32):

 seq[a] ^= 0xff

 drawCol(a,seq[a])

 pygame.display.update()

 if x in range(168,236) : # the faster control

 timeInc -= 0.05

 if timeInc <= 0 :

 timeInc = 0.05

 if x in range(250,324) : # the slower control

 timeInc += 0.05

 if x in range(350,482) :

continued

R A S P B E R R Y P I P R O J E C T S262

Listing 11-3  continued
 # the step source control

 stepInt = not stepInt

 if stepInt :

 drawControl(350,132,;

“Auto Step”)

 else:

 drawControl(350,132,;

“External Step”)

 pygame.display.update()

 else:

 #print “mouse “,x,y

def terminate(): # close down the program

 print (“Closing down please wait”)

 pfio.deinit() # close the pfio

 pygame.quit()

 sys.exit()

def checkForEvent():

 # see if we need to quit or look at the mouse

 #print “checking for quit”

 event = pygame.event.poll()

 if event.type == pygame.QUIT :

 terminate()

 elif event.type == pygame.MOUSEBUTTONDOWN :

 mouseGet()

 elif event.type == pygame.KEYDOWN and ;

event.key == pygame.K_ESCAPE :

 terminate()

if __name__ == ‘__main__’:

 main()

So let’s walk through the major sections of the code. It starts off by importing the required
libraries and then initialising them and the program’s window. Next comes the section where
you can customise the colours for the program. I found a black background looks best when
you are using the program but a white background looks a lot better when viewed in a book.
The next section defines the few global variables needed by the program.

The main function is simple, just four lines: Set up the screen, and then loop forever check-
ing for events to quit or mouse clicks to change what is happening. Finally check if you need
to advance the sequence. This sequence advance function follows next, although as you
know, the order of the function definitions is not important.

C H A P T E R 1 1   D I S C O L I G H T S 263

The checkStep function first looks at the variable that defines where the trigger to the next
step is coming from. If this is from the internal timer, the time now is compared to when the
next step should occur, and if it is time, the updateSeq function is called, and the step
variable is incremented and tested to see if it has not gone over the maximum number of
steps. If it has then the step variable is reset to zero. This is known as wrapping around the
counter. Finally the time for the next change is set up by adding the time now to the time
increment variable. If the system is set up so that the sequence is advanced on a hardware
input then that input is looked at to see if it is different from last time. This indicates a level
change or an edge has been detected, and if the input level is now high, it is time to advance
the sequence in the same way as before. One line that might puzzle beginners is this:

switchState = pfio.read_input() & 1

What the & operator does is to perform a bitwise AND operation between what is read and the
number 1. The result of this is that the variable switchState just contains the least signifi-
cant bit of the byte that is read from the PiFace board’s input lines. This means you can
advance the sequence from the lowest switch or the music by attaching the special beat fol-
lowing circuit to it. I will describe that circuit later in this chapter.

The updateSeq function basically does two jobs; first it updates the position of the sequence
indicator square by drawing a long thin rectangle in the background colour to erase the old
square, and then drawing a new one. Finally it outputs the next pattern in the sequence with
the following line:

pfio.write_output(seq[n])

This takes the list called seq and extracts the value that is next in the list given by the vari-
able in the square braces and then writes it out to the PiFace board. This single line is what
actually does the turning on and off of the lights; everything else just supports this one line.

The setUpScreen function simply calls other functions that draw the basic framework of
the screen. So after wiping out everything in the screen buffer and setting it to the back-
ground colour there are five calls to draw control boxes. This call takes the parameters of the
words in the box, its location in the x axis and the width of the box. Finally the drawCol, or
draw column, function is called in a loop 32 times, one for each step in the sequencer. The
two parameters it takes is what step in the sequence it is and what bit pattern it is to set it at.

Drawing text under the pygame module is a bit complex. First you have to define your font,
which was done at the start of the code; the None parameter is the name of the default font file,
and the number used is the font size. You then have to render the font into a bitmap, which is
a little bit of a screen buffer that contains only the font characters you want. You then define a

R A S P B E R R Y P I P R O J E C T S264

rectangle that encompasses the whole of this small bitmap. Then you have to position this
rectangle to the correct part of the screen. Finally you transfer that small screen buffer to the
main one with the screen_blit call giving it the parameters of the screen buffer and where
you want it put. See if you can follow those steps in the drawControl function.

The drawCol function draws a column of boxes, with one colour if that corresponds to a lit
LED in the sequence or another colour if it is unlit. In order to do this you have to separate
out all the bits from the sequence value. This is done by this line:

if ((value >> boxNum) & 1) != 1 :

What is happening here is that the variable called value is shifted to the left a number of
times, defined by what box you are drawing. The AND operation then separates out just the
least significant bit of this, as you saw before, and then makes the decision of what to draw
based on this bit.

Finally the mouseGet function does all the work of dealing with clicks. First it gets the loca-
tion of the mouse and checks to see if it is in the range of out array of LEDs in the sequence.
If it is, it works out what byte or value this location represents in the sequence and what bit
within that byte it is. Then this line toggles the bit:

seq[byte] ^= 1 << bit

It will look a bit odd and so calls for some explanation. The right side of the equals sign makes a
number with a one in the bit position that you want to change. This is done by taking the value
1 and shifting it to the left the number of times you calculated when you worked out what bit
was clicked. The equals sign is preceded by a caret symbol ^ and means the exclusive OR opera-
tion. So this number you have created by shifting is exclusive ORed with the value of the sequence
at this point, and it is then put back into the sequence list. It is a shorthand way of saying this:

seq[byte] = seg[byte] ^ (1 << bit)

When you exclusive OR, or XOR as it is sometimes called, two numbers, the result is that you
set bits that are only set to a logic one in one of the numbers and you invert the bits that are
a set to a logic one in both numbers. So doing this operation simply inverts the bit corre-
sponding to the bit you have clicked. You can then go and draw the whole column; again you
update the screen image when you have finished all the drawing.

Next, the mouseGet function looks to see if the mouse has been clicked in any of the control
boxes. If it has, it does the appropriate action. Clearing the sequence writes zero in every value
in the sequence, while inverting applies an exclusive OR operation to all the bits in every value.

C H A P T E R 1 1   D I S C O L I G H T S 265

The number 0xff is simply a byte with all bits set to one. This notation is called hexadecimal and
believe it or not is simpler to think about than decimal when it comes to creating bit patterns.
The faster and slower control boxes change the value to add to the nextTime variable. There
are also some checks which stop the value from going below zero. Finally the last control
changes the variable that determines where the sequence advance is coming from. In order to
inform you where the advance trigger is coming from the text in this control box is changed
when you click it. Figure 11-2 shows the sequencer as it appears on the screen.

Figure 11-2:
The sequencer
application.

Notice the structure of the code. There is a data structure in a list called seq; it is the values
in this list that control what is displayed on the screen, and what is output to the lights. Any
changes are made to this list, and then the list is used to change the display as well as provid-
ing the output. Note that the screen display is not used to hold data – only reflect it. This is
an important principle and is used whenever you try and write a nontrivial piece of code.

The Lights
The next step is to control some lights rather than the LEDs that are on the PiFace board.
While these LEDs are good for testing they are not going to be very impressive in a disco.

The buffer on the PiFace board is capable of switching voltages up to 40V with currents up to
half an amp. Now although it can do this on any output, it cannot do this on all the outputs
at the same time. That is, there is a collective sum total of current the buffer can switch with-
out getting too hot; this is about 650mA. This works out at about 80mA per output if you are
to allow for all outputs to be on at once. What you are going to do is drive an LED strip off
each output by using a 12V external power supply. There are two types of LED strips, those
that have electronics embedded along the strip so that you can control individual lights in
the strip, and those where the whole strip lights up at the same time when you apply voltage
to it. You are going to use the latter type, which fortunately is cheaper as well.

These LED strips can be cut up at a point every third light, and every three lights consumes
20mA. Therefore you can tailor the amount of current drawn by simply cutting the appropri-
ate length of strip. Some places sell these by the meter and others by the group of three. The

R A S P B E R R Y P I P R O J E C T S266

absolutely cheapest place to get them is from the Far East through eBay, although the quality
you get can be a bit hit and miss. There will be plenty of stockists that carry them in your
home country.

In this project you have two options when it comes to powering these strips. The first is
where the length of strip is restricted to 12 LEDs – that is about 130mm. The second is where
you can power a strip length up to 0.7 of a meter, but more on that later. First you will look
at the 130mm option.

Before you start you will have to configure the PiFace board by removing some of the links. This
involves removing jumpers JP4, JP5, JP6 and JP7; this disconnects the internal 5V supply
from the PiFace board’s output devices and disables the relays. See Figure 11-3 for the position
of these on the PiFace board. It is important you do this before connecting anything else up.

Figure 11-3:
PiFace jumpers.

Now the LED strips come in different colours. Normally these are white, red, green, blue and
amber, so no doubt you will be wanting some of each. You need to cut up each strip you want to
light into smaller strips of 12 LEDs. Figure 11-4 shows you where to cut; you will need a sharp
hobby knife or better still a scalpel. Every nine LEDs there is a copper soldering area; however this
will not appear on the end of every strip of twelve lights. Not to worry – it is very easy to scrape
the green solder mask off the board with a scalpel. If you don’t fancy that, you can always use the
solder areas in the middle of the strips. You will end up with eight strips all the same length, but
you might want a good mix of colours; the white ones do produce the most light however.

C H A P T E R 1 1   D I S C O L I G H T S 267

Figure 11-4:
Where to cut the
LED strip.

Then, you wire them up so that the positive for each strip is wired to the positive of your 12V
power supply. The LED strips are marked with a + and - on the strips at every soldering area.
The negative for each strip goes into a separate input of the PiFace board, and finally the
right-most connector on the input strip is connected to the negative wire of your power sup-
ply. This is shown in Figure 11-5, and it is vital that you get the positive and negative wires
from your power supply the right way around. Check this before wiring the strips to the
PiFace board. When you have wired up the strip’s positive leads to the positive of the power
supply, just take the negative lead from the strip and touch it against the negative lead of the
power supply; if all is well the strip should light.

Now remove the power and touch the two negative wires again just to discharge the power
supply before wiring it up to the PiFace board. Then attach the PiFace board to the Raspberry
Pi and boot it up, plug in the 12V power supply and run the software. A note of caution:
Never connect anything to the Raspberry Pi when it is powered up; it is easy to have an acci-
dent, and you can damage things with incomplete or partial wiring.

R A S P B E R R Y P I P R O J E C T S268

Figure 11-5:
Wiring the LED

strip to the
PiFace board.

Using Longer Strip Lights
Now what about the longer strip light I mentioned at the start of the last section? You can
draw up to 450mA from each of the outputs from the PiFace board so you can have longer
strips of LEDs. This amount of current will drive 66 LEDs or 22 groups of three – this is a
strip of 0.7 meters long. However, the down side is that you can’t have more than one LED
strip lit at any one time. With the existing software it is too easy to make a mistake and set
two or more LEDs to come on in each column, but with the changing of just one line in the
code you can make the software act as a safety watch dog and only allow one strip light to be
on at any one time. The line is in the mouseGet function six lines in, and it is one that has
been discussed already:

seq[byte] ^= 1 << bit

C H A P T E R 1 1   D I S C O L I G H T S 269

Now take that line and change it to

seq[byte] = (seq[byte] & (1 << bit)) ^ (1 << bit)

You might also want to change the title of the window and the colour scheme at the start so
you can distinguish between the two programs. Also, save it under a different name. What
this line now does is clear out the sequence value for all bits except the bit you have clicked,
and then it toggles that bit. So if any other bit has been set in that step, it is cleared, and the
bit you have clicked is toggled. This prevents you from setting more than one strip to be lit at
any one time. However, there is still a slight danger because if you click the invert control, all
the outputs but one will be on. To be on the safe side you should remove the following line
(10 lines down from the one you just changed):

seq[a] ^= 0xff

To tidy up the screen display you should remove the call to drawControl that sets up the
invert control in the setupScreen function. You don’t have to buy a strip 0.7 meter long; if
you want, you can join strips together if you cannot buy them in the length you want.

Now all you need to do is mount your light strips in some way – maybe a display board above
the decks, or hanging down from the ceiling. I mounted the eight strips on an 8 × 10-inch
piece of MDF painted black. I arranged them in a fan shape over half a circle. This would
stand up nicely under my monitor. The display is startlingly different depending on what you
put in front of the LEDs. If you use nothing, they are very raw but do shed a lot of light. A
thin styrene sheet of 0.5mm or less thickness acts as a good diffuser if placed close to the
LEDs. However, if you set it just a few inches in front of them, the diffusion is much greater,
and you no longer see the individual lights but bars of colour. Finally another good diffuser is
a few layers of clear bubble wrap, the round bubbles in it nicely complementing the individ-
ual round LEDs. Your imagination, design skill and venue will allow you to put these strips,
be they short or long, into many a pleasing configuration. However, if you want to cover the
dance floor with them, you will have to install them behind acrylic sheets to prevent their
being stamped on.

Making the Lights Move
Now so far you have looked at stepping the sequence along using the internal timers or an
external push button, and if that is as far as you want to take this project, then fine. However,
the next step is to have the music drive the change in sequence. Unfortunately this may not
work as well as you might be expecting, but you can make a good stab at things relatively easily.

R A S P B E R R Y P I P R O J E C T S270

An audio signal, the sort that comes out of an MP3 player or from record decks, is a very
complex waveform, consisting of lots of very rapid changes. The speed of the rapid changes
carry the frequency content information of sound. The size of the waveform – that is, over
what range of voltage values they cover – is the amplitude or loudness information. However,
the amplitude is varying rapidly to convey the frequencies. What you need to do is to isolate
the loudness factor – that is, to measure just the size of the peak of the waveform, but it is
not quite as simple as that. With a loud sound you get a large positive value and a symmetri-
cally large negative one, so in order to get a measure of loudness you have to ignore the nega-
tive value and hold the positive value at its peak. Such a circuit is possible and is called, rather
unsurprisingly, a peak detector.

Now the beat of music is normally carried in the low frequencies. There are electronic circuits
that will separate or filter a mishmash of frequencies so that only a specific range of frequen-
cies get through. The two simplest type are known as high pass and low pass. In a low-pass
filter only the low frequencies can pass through it. Exactly how low is low depends on what is
known as the filter’s break frequency. This is defined as the frequency where the output is cut
down by half compared with the input. By correct choice of components you can make this
break frequency any value that you want. Most of the low frequencies in music are between
200Hz and 30Hz – any lower and you tend to feel it more than hear it. So to get at the beat
of the music you must filter it with a low-pass filter at a break frequency of 200Hz. The key to
filters is the capacitor component, which acts a bit like a frequency dependent resistor. The
higher the frequency, the lower its resistance is to AC signals or its capacitive reactance.

The final piece in the jigsaw is called a comparator, which compares two voltages and gives a
logic one output if one output is higher than the other or a logic zero if it is lower. By varying
one voltage with a control knob or potentiometer and feeding a varying signal into the other,
you can trigger a digital input when the varying voltage exceeds that set by the knob. If you
feed the output of a peak detector into this you can, by turning the knob, set the level that
will trigger the sequencer to advance to the next step.

Designing the Circuit
So to implement all that you need a couple of components called operational amplifiers, or op
amps for short. These are very simple on the outside but quite complex on the inside. Basically
there are two inputs marked + and – with a single output. The way it works is that the output
is equal to the difference in voltage between the two inputs multiplied by a big number called
the open loop gain, which is typically 100,000. So you might think that if you put one volt into
the amplifier, you will get 100,000 volts out. Well, you would if you powered it with a 100,000

C H A P T E R 1 1   D I S C O L I G H T S 271

volt power supply and you could find an op amp that would work at that level. What happens
in practice is that the output will only go as high as the power supply. Also the open loop gain
is too high to be useful most of the time, and so when you design a circuit that you want to
use as an amplifier some negative feedback is applied, as shown in Figure 11-6. Don’t con-
fuse this with positive feedback, sometimes known just as feedback or howl around, when an
amplifier’s output is fed into an input, like a microphone picking up the amplified sound.

Figure 11-6:
A non-inverting
amplifier.

Negative feedback means feeding a proportion of the output back into the – (negative) input so
that the input in effect gets turned down. Consider the circuit in Figure 11-6 and assume that
there is zero volts on Vin, and also zero volts on the output. Also imagine that the two resistors
have the same value. Now suddenly Vin is changed to 1V so the difference between the two
inputs is also 1V. So the output sets off to amplify this difference into 100,000V. However, as
the output rises to one volt then the voltage on the negative input will have risen to half a volt,
because the two resistors act as a potential divider and feed half the voltage of the output back
into the negative input. At this stage the difference between the two voltages is only half a volt,
so the output tries to amplify this by 100,000 to give an output of 50,000V. But the higher the
voltage gets on the output the more of it is fed back to the negative input. Eventually a balance
point is reached when the voltage on the two inputs is exactly the same, and so the amplifier’s
output will not get any higher. This balance point, in this case, happens when the output is
exactly twice the input, so in effect the whole circuit has a gain of 2. You can make the gain
anything you want, within reason, by simply altering the ratio of the two resistors. So if you
feed a tenth of the output back into the negative input, you will have a gain of 10. The actual
formula for calculating the gain is shown in Figure 11-6.

So armed with that information you can set about to design the beat extracting circuit whose
schematic is shown in Figure 11-7.

R A S P B E R R Y P I P R O J E C T S272

Figure 11-7:
The schematic of

the beat driver.

This uses two op amps which conveniently come in one package. The signal passes through
C1 to remove any DC component and then into a pot so that you can set the level into the
amplifier. This first op amp is configured just like the previous example as a non-inverting
amplifier, only this time there is a capacitor across the feedback resistor. This means that for
low frequencies the gain is determined by the value of resistor R2. But as the frequency
increases, the capacitive reactance of the capacitor shorts out the feedback resistor to lower
the gain. So in this section you have combined a low-pass filter with an amplifier.

The output of this amplifier is passed through a diode. This is a component that will only let
electricity flow in one direction, in this case from the amplifier into capacitor C3. So as the
waveform goes up and down rapidly it will start to charge up C3; it only gets more charge
when the output of the first amplifier exceeds the voltage on C3 so this capacitor remembers
the peak voltage of the audio signal. That is all well and good but you need some way of for-
getting a peak signal that happened some time ago, and so R3 discharges the capacitor at a
slower rate. The result is that the voltage on C3 represents the peaks of the signal or, as we
say, it is an envelope follower. The value of R3 determines how quickly the envelope decays.

This envelope voltage is fed into the second op amp. Here you have no feedback, and you just
use the open loop gain. The negative input is fed by a voltage set by a knob or pot VR2; this is
a threshold voltage. If the envelope voltage is above this, then the output goes crashing up to
the supply rail of 5V. If, however, the envelope voltage is below this threshold, then the out-
put gets put firmly at zero volts or ground. This digital signal is too big to be fed into the
PiFace board so it needs cutting down with R4 and D2 to make it a 3.3V signal suitable to
dive the sequencer. D2 is a special sort of diode known as a zener diode; it starts to conduct at
a set voltage. You can get these diodes that conduct at all sorts of voltages; you want one here
to conduct at 3.3V or, as it is often written, 3V3. The ground is shown by the hatched symbol
at the end of R1. All the points with this symbol must be connected together.

C H A P T E R 1 1   D I S C O L I G H T S 273

Building the Circuit
So what you need to do as the final step is construct this circuit. I much prefer making cir-
cuits on strip board and not solderless breadboard. The problem with breadboard is that it
can make poor or intermittent contact which means that you could appear to have wired it
up correctly but it is not. Therefore you can waste a lot of time just jiggling the components
around hoping this will make it work. A small piece of veroboard or prototyping strip board
is all you need. You can also use sockets for the integrated circuits, which means you can
reuse them or replace them if they are damaged. The physical layout of the circuit is shown in
Figure 11-8.

Figure 11-8:
The physical
layout of the
beat driver
circuit.

This shows the view of the board looking from the top or component side. The dotted lines
indicate the copper strips on the underside of the board.

Running the Circuit
After you have built the circuit you need to attach it to your audio input and wire the output,
5V and ground into the PiFace board. Adjust the threshold knob until it is at the mid-point,
and boot up your Raspberry Pi. Then run the sequence program and switch to the external
step. Start off the music and adjust the volume until you start to see the sequence advance.
If it won’t turn up far enough, you might have to increase the value of R2; try changing it to
470K. Then adjust the threshold until you see the sequence pick up the beat of the music.
You might have to go back and adjust the volume. It works better on some types of music
than others.

R A S P B E R R Y P I P R O J E C T S274

Over to You
Well, that comes to the end of my bit but not of your bit. You can extend and improve this in
many ways. You can use transistors or FETs to drive longer LED strips and have many of
them on all the time. You can extend the software to save your sequence in a file. Then make
it so you can save different patterns in different files. You can implement a shift function
where you can concatenate several sequences to make a much longer one and even display an
extended sequence by drawing the new pattern when the old one is done. Better yet you
could have the display scrolling. Or make the window bigger and the boxes smaller to fit
more steps in.

You can add some software that keeps the sequence kicking over if you have switched to an
external input and have not had a trigger for a certain amount of time. You could add a small
delay after an external trigger to stop them from happening too rapidly. You can add an extra
control button to set the sequence to a random pattern.

On the hardware side, you might have noticed that the dynamic range of some music makes
it drop out of the trigger zone. There are special amplifiers called gated compressors; they are
made so that things like walkie-talkies have a constant audio signal into the transmitter. The
gain of the amplifier is adjusted automatically to keep the output constant. The SSM2165 is
one example of such an amplifier.

You might want to replace the envelope follower’s discharge resistor with a pot, something
like 220K. Finally you might want to adjust the filter capacitor, or even have a more sophisti-
cated second or fourth order filter on the input. However, whatever you do, keep on dancing.

Chapter 12
Door Lock

by Dr. Andrew Robinson

In This Chapter

❍	 Learn about computer security

❍	 Create a door lock controlled by RFID tags

❍	 Extend your knowledge of OOP

❍	 Discover more about computer authentication

❍	 Use Python’s dictionary object to store key/value pairs

R A S P B E R R Y P I P R O J E C T S276

I’M FOREVER FORGETTING things – usually important documents. Luckily with com-
puters and the cloud, I can go online and access my documents whenever and wherever I
need to. Unfortunately, I can’t download physical objects, such as a door key, particularly
when the door has swung shut behind me. Luckily, the Raspberry Pi can come to the rescue.

In this chapter you’ll build a computer-controlled door lock that will unlock the door when
you prove to it who you are. You’ll take advantage of the general-purpose nature of the
Raspberry Pi, so you can extend it to have a range of different ways of unlocking your door.
This chapter shows you how use an RFID reader, but you could go on to modify it to unlock
using your mobile phone; lucky for me, as I’m just as bad at remembering passwords as keys.

If you don’t have a door lock, you can instead use the Raspberry Pi to activate and deactivate
an alarm – it won’t physically prevent entry, but it can warn you that someone has been in
your room without permission.

There’s a bit of an art to designing computer programs, and hopefully, after this chapter
you’ll also appreciate the need to design things modularly – that is, in a way that allows
chunks to be easily switched out for another one. You’ll also see that it can be easier to design
with a simple block, get the system working and then go back later to make it more compli-
cated. In this chapter you’ll see how to break the task down into separate aspects, and then
switch out one block and switch in another.

The System Overview
When starting work on a new system, computer scientists will often sketch out a system
diagram showing how the main components will work together – it would be far too compli-
cated to try and design everything all at once.

Figure 12-1 shows the system diagram for the door lock. It shows how the system needs to
get input (this could be from a code pad) and check whether the input is valid, and if it is,
then it unlocks the door. You should recognise that Figure 12-1 maps well to the familiar
“input, process, output” of computers.

Figure 12-1:
The system

diagram of the
door lock.

Safety-Critical Systems
This project also introduces an important aspect in computing, that of safety-critical systems. If
your desktop computer crashes, you might lose hours of work, which probably at worst is just

C H A P T E R 1 2   D O O R L O C K 277

frustrating. If a computer flying a plane malfunctions, it may lead to death or serious damage.
This is a safety-critical system, in which computers can cause harm if they do not function correctly.
There are particular tools, techniques and standards that apply to try to safeguard the public. This
is relevant to the project at hand because you should make sure that you have a manual override
for the door lock – because you don’t want to be locked in a room by your Raspberry Pi. Typically,
most electric door lock systems can also be opened with a mechanical key.

Furthermore, just as a mechanical lock can be picked, computers can be hacked, so it’s impor-
tant to be aware of how secure your system and code are. You don’t want someone opening
your door because you didn’t design your program properly.

Don’t rely on your Raspberry Pi keeping your house secure unless you know what you’re
doing. Also, have a manual override, so you don’t get locked in, or out!

How Are Computers Hacked?
Most hacking incidents work by sending the computer data it is not expecting – too much
or the wrong format perhaps. In the C language, if the programmer is not careful, the pro-
gram will continue to accept input, which will overflow from the area of memory that had
been put aside for it. Think of this like filling in a form and going off the end of one line and
continuing onto the next. Sometimes the extra input data can overwrite something else in
the program. Programs are just a series of instructions the computer obeys that are held in
memory, and these instructions can be overwritten. If the attacker sends the right data, it’s
possible to change the instructions to make the program do something else.

This particular type of attack is called a buffer overflow – the buffer being the area reserved for
input data. Luckily, Python manages the size of its buffers for you, so this shouldn’t happen.
You should still be careful, and whenever you take input from a user expect the unexpected!

The Door Lock Hardware
You need a door lock that the Raspberry Pi can control through an electric signal. There are
two main types:

❍	Electromagnetic locks – Use an electric current to create a magnetic field to hold the
door shut. When the current is switched off the field collapses, and there is nothing to
hold the door shut. Typically, a flat metal plate is attached to the door that is held by
the electromagnet attached to the frame.

R A S P B E R R Y P I P R O J E C T S278

❍	Electromechanical keepers (as shown in Figure 12-2) – Tend to work in conjunction with
traditional locks. They are typically fitted to the doorframe and accept the bolt from the
door. A small spring holds a plate in place that stops the bolt from escaping. If a voltage
is applied to a small coil, the keeper allows the bolt to pull out and the door to open.
When the current stops flowing, the bolt will be captured again when the door is closed.

Figure 12-2:
An

electromechanical
keeper door

lock.

Clearly, the Raspberry Pi needs to produce a different signal for each type of lock – the elec-
tromagnetic lock needs a voltage continually applied to keep the door shut, whereas the elec-
tromechanical keeper needs voltage supplied only to open the door. You will use a relay on
PiFace Digital to control the door lock, and because it has a changeover contact, you can use
the same software to control both types of locks – you just need different wiring.

At this stage it’s also worth thinking about the default state of the outputs. What happens if
the Raspberry Pi crashes; would the door stay locked, or would it open? This too will be con-
sidered when wiring up the lock.

The Initial High-Level Software Simulation
If you tried to write your entire door-lock controller all at once, chances are it wouldn’t work
the first time. Furthermore, with lots of code, there would be many places for bugs to hide.

C H A P T E R 1 2   D O O R L O C K 279

Instead you should limit the number of places to look by writing something very simple, and
testing it. Only then should you add more complexity, step by step. Also, before working
with pesky real-world hardware that makes it harder to see what’s going on (and so harder to
find bugs) you’ll first simulate the hardware in software.

Figure 12-1, earlier, identified the major blocks needed for your door controller system. The first
step is to implement it in Python. Enter Listing 12-1 in a new file called door_controller.py.

Listing 12-1  The Initial Code for the Door Controller
#!/usr/bin/env python

“””Door Lock: System to control an electric door lock

class AuthToken:

 def __init__(self, id, secret):

 self.id=id

 self.secret=secret

class TestDoorController:

 def send_open_pulse(self):

 print “unlock the door”

class BasicAuthenticator:

 id = “Andrew”

 secretPassword = “1234”

 def check(self,token):

 print “checking input of ‘” + token.id + “’, ;

password: “ + token.secret + “, against secret password ;

‘” + self.secretPassword +”’”

 result = (token.secret == self.secretPassword) & ;

(token.id == self.id)

 print “authentication is: “ + str(result)

 return result

class TestInput:

 def getInput(self):

 print “checking for input”

 authToken = AuthToken(“Andrew”,”1234”)

 return authToken

def main():

 authInput = TestInput()

continued

R A S P B E R R Y P I P R O J E C T S280

Listing 12-1  continued
 authenticator = BasicAuthenticator()

 doorController = TestDoorController()

if(authenticator.check(authInput.getInput())):

 doorController.send_open_pulse()

if __name__ == ‘__main__’:

 main()

Run the program in Listing 12-1, and you’ll see it print the following messages that describe
what is happening in that part of the program. Note that at the moment the test data is hard
coded into the program so it is not interactive, but it shows how the blocks work together.

checking for input

checking input for ‘Andrew’, password: 1234 against ;

secret password ‘1234’

authentication is: True

unlock, wait and relock

Change the value returned by the getInput() function to something other than 1234 and
rerun the program. Check that you don’t see the message about unlocking the door.

By now, much of the code should be familiar as functions, if statements, variables, print
statements and delays are covered in earlier chapters. Not covered so far are the keywords
class and self, which are concerned with object-orientated programming, or OOP for
short. In this example OOP is used as a means to break the task into manageable objects that
represent the blocks in your system diagram. Later in the chapter you’ll swap out one object
for another, which makes it very easy to modify your programs, and reuse objects in other
projects. You’ll learn more about OOP later in the section “Testing the Program and Fitting
the Lock”.

Your simulated system may not appear very exciting at the moment, but building up a sys-
tem with firm foundations can save hours of debugging later. The next steps are to start
expanding the blocks that actually take input and control the door.

C H A P T E R 1 2   D O O R L O C K 281

The Output Block
Having a simple system complete means that you don’t always have to start coding “at the
beginning” of a system – that is, you don’t have to complete the getting-input stage first.
Instead, you can write the code that controls the door (which is much more fun!).

If you don’t have a door lock, you can still follow along by wiring up an LED instead of the lock
to show when the door would be locked.

Connecting the Door Control Circuit
You want the door to stay locked even if the Raspberry Pi crashes, yet in the case of the elec-
tromagnetic lock, a current needs to flow to hold the door shut. This functionality is provided
by a changeover relay on the PiFace Digital interface.

Wire the door lock up as shown in Figure 12-3 or Figure 12-4. You will need an appropriate
power supply for your lock. You can buy plug-in power adapters for a range of voltages.
Check the voltage and current required by your lock. Connect your lock to either the nor-
mally open or normally closed contacts, depending on whether it needs current to unlock the
door, or hold the door locked.

Figure 12-3:
The door lock
circuit diagram
for an
electromagnetic
lock.

R A S P B E R R Y P I P R O J E C T S282

Figure 12-4:
The door lock

circuit diagram
for an electro-

mechanical
keeper.

A Reminder About Relays
Relays are switches that are operated electrically. They have contacts that are moved by
passing an electric current through a coil of wire. Relays are available with different configu-
rations of contacts. The relays you will use here are changeover, or sometimes called dou-
ble throw. This means that with no current flowing through the coil, the centre contact is
connected to one pin on the relay. When current flows the centre contact changes-over and
becomes connected to the other pin.

In line with a test-as-you-go strategy, now is a good time to check whether you have control
of the door lock. Connect up the power supply for the door lock and use the PiFace emulator
(as described in Chapter 9, “Test Your Reactions”) to check the lock holds and releases when
you change output 0.

C H A P T E R 1 2   D O O R L O C K 283

Programming the Door Control Block
With the door lock connected to the interface, it is time to write the software. The function
of the door controller is to send a short signal to unlock the door. You will edit the
TestDoorController class.

Open the file door_controller.py and edit the code to add the following lines.

Add these statements to the beginning of the program:

import piface.pfio as piface

from time import sleep

Add this before the main function:

class DoorControllerPiFace:

 def send_open_pulse(self):

 piface.digital_write(0,1)

 sleep(5)

 piface.digital_write(0,0)

Update the main function to make use of this class. Change

doorController = TestDoorController()

to

doorController = DoorControllerPiFace()

Run the entire program, and check that instead of printing unlock the door, the door
lock is released for five seconds and then locks again.

Now that you’ve successfully built and tested the output stage, it’s time to get the input from
the user when he or she wants to open the door.

The Input Block
Continuing with the theme of keeping things simple at first, you will start with the input
block asking the user to type a password on a standard USB keyboard.

R A S P B E R R Y P I P R O J E C T S284

Getting Input
Edit the door_controller.py code by adding the following class:

class KeyboardInput:

 def getInput(self):

 print “checking for input”

 id = raw_input(“please enter your name: “)

 password = raw_input(“please enter your password: “)

 authToken = AuthToken(id,password)

 return authToken

You need to tell the program to use this class to get input rather than the TestInput class.
Change the line

authInput = TestInput()

to

authInput = KeyboardInput()

Check that the code works; the door should open only if you type the name Andrew and the
password 1234.

The next step is to implement the authentication block.

The Authentication Block
Authentication is about checking that someone is who he or she claims to be. You will proba-
bly use authentication systems many times a day. For example, you need to authenticate
yourself to use websites such as Facebook and Twitter.

The class you have written so far to do authentication is very simple; it checks to see if the
string passed to it matches a hard-coded value. This has a number of drawbacks, including
the following:

❍	If anyone looks at the source code, it is possible for him or her to read your password.

❍	Changing the password requires you to edit the source code.

A better solution is to store the password information separately, which is what you will do
next.

C H A P T E R 1 2   D O O R L O C K 285

Storing Secrets in a File
One of the simplest ways to store data is in a flat file. This is nothing more than a list of
entries in a basic text file. To read a username and password pair of values from a file, change
the door_controller.py code by adding the following FileAuthenticator class
before the main function:

class FileAuthenticator:

 filename = “secrets.txt”

 def readFile(self):

 �secrets = open(self.filename, ‘r’)

 print “reading from file”

 for line in secrets:

 line = line.rstrip(‘\n’)

 self.id, self.secretPassword = line.split(‘,’)

 def check(self,token):

 self.readFile()

 print “checking input of ‘” + token.id + “’, ;

password: “ + token.secret + “, against secret password ;

‘” + self.secretPassword +”’”

 result = (token.secret == self.secretPassword) & ;

(token.id == self.id)

 print “authentication is: “ + str(result)

 return result

Now tell the main part of the program to use the new FileAuthenticator class instead of
BasicAuthenticator. Change the line

Authenticator = BasicAuthenticator()

to

Authenticator = FileAuthenticator()

The file secrets.txt will hold the your secret authentication information. Use a text edi-
tor to create the file secrets.txt in the same folder as your program file and add the fol-
lowing sample line:

Andrew,9876

R A S P B E R R Y P I P R O J E C T S286

Run your program and enter your name as Andrew and the password as 1234. You will see
the following output:

checking for input

please enter your name: Andrew

please enter your password: 1234

reading from file

checking input of ‘Andrew’, password: 1234, against ;

secret password ‘9876’

authentication is: False

Notice how the password 9876 is read from the file. Add more usernames and passwords
(commas separated) to the file secrets.txt, one per line. Test the program with different user-
names and passwords to check that the door opens when it should, and more importantly,
that it doesn’t when it shouldn’t! For the full code listing, go to the book’s website at www.
wiley.com/go/raspberrypiprojects.

It is tempting to think that your program works when it gives the behaviour you want – such
as in the case of the door lock, if the door is unlocked when the correct password is entered.
However, it is just as important to test programs for other cases; for the door lock example,
you need to test that the door isn’t opened if the incorrect password is entered. In industry,
testing is very important, and programmers aim for high levels of code coverage – that is, that
much of the code has been tested. This may mean running the program with a wide range of
sample inputs.

Unlocking Doors Without Touching
You may have seen door locks for which you can wave a card or plastic fob against a reader.
These work using radio frequency identification (RFID) technology. The Raspberry Pi makes it
easy to incorporate an RFID reader into your door lock.

You will need to buy a USB RFID reader and matching tags, similar to those shown in Figure
12-5. Although these are available from the major component distributors, you may find
online auction sites to be cheaper. USB RFID readers can appear in different ways to the
computer – for example, as an HID USB device (which sends input as if it were a keyboard
typing in characters from the tag) or as a serial port. The USB RFID reader used in this chap-
ter is an HID USB device as it is simplest to program. You could use a USB serial RFID reader,
but you would have to modify the code yourself.

http://www.wiley.com/WileyCDA/WileyTitle/productCd-1118555430.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-1118555430.html

C H A P T E R 1 2   D O O R L O C K 287

Figure 12-5:
An RFID reader
and tags.

There are two main frequencies used by RFID systems, 13.56MHz and 125kHz. These
frequencies are incompatible with each other, so whichever reader you get make sure that
you buy matching tags. 13.56MHz is more commonly found in industrial systems, so with a
13.56MHz reader you may find that you can use a staff/student ID badge, or even a biometric
passport or prepaid travel card. Near field communications (NFC) on some smartphones also
use 13.56MHz tags.

There are different levels of security offered by RFID with the cost of increased complexity,
and more expensive hardware. As this is your first RFID system, it is best to start with the
simple version of RFID, which offers a basic level of security (comparable with the cheaper
commercial systems). As you become a more accomplished programmer, you could upgrade
to a more sophisticated system.

Connecting the RFID Reader
In this subsection you will check if your RFID reader works with your Raspberry Pi and read your
first RFID tag. As the Raspberry Pi has only two USB ports, you will need to use a USB hub or

R A S P B E R R Y P I P R O J E C T S288

unplug the mouse before plugging in additional USB devices. Linux is designed so that it can be
used without a mouse from the command line. Follow these steps to test the reader from a com-
mand line:

	 1.	 If you are running a graphical X environment, choose Logout from the program menu.
You will be returned to the command line.

	 2.	 Unplug your mouse and plug in the RFID reader into the USB port.

	 3.	 Start the text-based editor nano (or your preferred text-based text editor) by typing
nano on the command line.

	 4.	 Bring an RFID tag near to the reader. It should bleep, and you will see a string of char-
acters are typed to the screen. Bring a different tag near to the reader and check that a
different string of characters is displayed on the next line.

Remember that whenever you present a tag to your reader it will type its serial number
wherever the cursor is, followed by a new line. So don’t present a tag when you’re in the
middle of typing something else!

	 5.	 Now is a good time to create the data file that will contain the tags that you want to
grant access to open the door. Still in nano, add the name of the person who will be
given the tag followed by the ID from the tag separated by a comma. There should be a
separate line for each tag. Save the file by typing Ctrl + X, followed by Y to confirm that
you want to save the buffer, followed by the filename tag.txt and then Enter. Your
tags and reader may produce codes that look slightly different, but the file should look
similar to this:

Andrew,1c477cd5

Mike,54bfc314b

If your RFID reader does not send any data, check that it works with your tags with a desktop
computer. To check that the Raspberry Pi has recognised your USB reader, type dmesg into a
terminal shortly after plugging it in and look for a reference to RFID and USB HID.

Experiment with reading other items containing RFID tags, such as ID cards, payment
cards, travel passes and biometric passports. If successful, you should notice that a string of
characters is printed.

C H A P T E R 1 2   D O O R L O C K 289

How RFID works
RFID works by exchanging messages between a reader and tag by radio waves. RFID tags
consist of an aerial (a loop of wire), a capacitor to store electricity and a small silicon chip.
The silicon chip is actually a small computer processor! This demonstrates just how small
computers have become and how they are everywhere!

An ingenious feature of the system is that the tags do not need their own power source to
transmit. They can receive their energy by radio waves from the reader when they are first
placed nearby. The radio waves also contain a message from the reader that it wants to read
the tag. The tag stores the energy and uses it to compute a response and then transmit it
back to the reader. In the simple case this message is a fixed number, but more sophisticated
tags contain read/writable nonvolatile memory (memory that stores state even without power)
to store data. In the most sophisticated tags, their computer processor performs a calculation
in the tag. This allows the tag to perform challenge-response authentication.

Challenge-Response Authentication
One problem with authentication is the threat of replay attacks – that is, that an attacker
may copy the secret reply given to a system. An example of this might be watching a user
type in a password, and then typing it in to impersonate that user. A solution is never to
reveal the secret information. This may seem impossible at first, but can be implemented if
a challenge is set that can be achieved only if the subject possesses the secret information.
In everyday life you might want to know if someone knows the same secret you do but
don’t want to reveal the secret to him or her. In this situation you find a question that a per-
son can only answer if he or she knows the secret, yet the two of you don’t actually share
the secret itself. In computing this is known as challenge-response authentication.

The more sophisticated RFID tags have a processor to answer questions posed by the
reader. In this case the question is usually numbers that the tag has to do a sum with
together with the secret number it is storing. If the tag transmits the correct number back,
the reader is sure that the tag knows the secret. The next time the tag is presented to the
reader a different challenge will be issued, which makes it very difficult to copy the tag.

R A S P B E R R Y P I P R O J E C T S290

Using the RFID Reader in Python
You will need to write a new input block and an authentication block for the RFID tag reader.

The RFID Input Block
As the RFID reader inputs data from tags as if it had been typed on a keyboard, you will use
the raw_input function in Python. Add the following code (before the main function) to
get input from the RFID reader to your door_controller.py program:

class RfidInput:

 def getInput(self):

 print “waiting for tag”

 tag = raw_input()

 return AuthToken(None,tag)

The RFID Authentication Block
The RFID authentication block looks up the value from the tag to see if it is valid. It does this
by checking if it is in the tags.txt file you created earlier. Add the following code to the
door_controller.py program so that you can check if the value read from the tag is
valid:

class RfidFileAuthenticator:

 filename = “tags.txt”

 tags = dict()

 def __init__(self):

 self.readFile()

 def readFile(self):

 secrets = open(self.filename, ‘r’)

 print “reading from “ + self.filename + “ file”

 for line in secrets:

 line = line.rstrip(‘\n’)

 id, tag = line.split(‘,’)

 self.tags[tag] = id

 def check(self,token):

 print “checking if “ + token.secret + “ is valid”

 if token.secret in self.tags:

 print “tag found belonging to: “ + ;

self.tags[token.secret]

 return True

 else: “tag not found”

 print

 return False

C H A P T E R 1 2   D O O R L O C K 291

You will notice that the RfidFileAuthenticator class uses a dict – a dictionary. A dic-
tionary in Python is a way of storing a set of values that have a unique identifier. The unique
identifier is called the key. A value is stored with its associated key. For example, the follow-
ing example creates a dictionary stored in the variable ages and then associates the value 21
with the key jim and 43 with the key tony:

ages = dict()

ages[“jim”] = 21

ages[“tony”] = 43

The following code looks up the value for the key jim in the ages dictionary:

print ages[“jim”]

This prints the value 21.

Open up an interactive Python session and try it yourself. Create a dictionary, add some key-
value pairs and then retrieve them.

In the RfidFileAuthenticator class a dictionary is used to store who has which RFID
tag. The RFID tag is used as the key (which is unique), and the name of the tag owner is
stored as the associated value. The dictionary is populated by reading each line in the file in a
for loop when the object is initialised.

self.tags[tag] = id

The check function checks if the tag that has been read is present in the dictionary with the
following line:

if token.secret in self.tags:

If the key is present, the associated value is looked up so that the name of the owner can be
printed.

Other languages may call a dictionary an associative array, a hash, a hash table or key/value
pairings, but they all have similar functionality. They are very useful in computing.

R A S P B E R R Y P I P R O J E C T S292

Putting It All Together
With the new input and authentication blocks written, the next step is to use them in the
main function.

Update the main function to use the new classes by changing the authInput and
authenticator variable initialisations to

authInput = RfidInput()

authenticator = RfidFileAuthenticator()

Run the program and bring a tag that is listed in tags.txt near the reader. The program will
print

reading from tags.txt file

waiting for tag

1c477cd5

checking if 1c477cd5 is valid

tag found belonging to: Andrew

unlock, wait and relock

Rerun the program and check that a tag that is not listed in tags.txt doesn’t open the
door. If your program works successfully, you need to add a while loop to the main func-
tion so that you do not have to keep running it each time a tag is presented. Do this by wrap-
ping the if statement with an unconditional while loop, as shown here:

while(True):

 if(authenticator.check(authInput.getInput())):

 doorController.send_open_pulse()

Testing the Program and Fitting the Lock
Now is the time to test the complete program. Run the program and check that the electric
door lock is locked. Wave a valid tag at the reader and check that the door lock unlocks for a
few seconds and then relocks. Wave the valid tag again to check whether the sequence is
repeated. Finally, use an invalid tag and make sure that the door doesn’t open.

If the system appears to work, it’s time to fit the electric lock to the door and the tag reader.
You should secure the wiring running to the door lock; otherwise, an attacker could tamper
with it to unlock it. As mentioned earlier, it’s a good idea to be able to manually unlock the

C H A P T E R 1 2   D O O R L O C K 293

door if you have an error in your program that means it fails to unlock the door! If your
Raspberry Pi is on the inside of your door, it can be useful to have remote access to it so that
you can stop or edit your program. Look up how to SSH into your Raspberry Pi online for
more information.

Object-Orientated Programming
You have seen how easy it is to swap blocks out with OOP. OOP allows programmers to
structure their code by creating and using objects as they may do with real-world objects.

Think of a real-world object – it has a set of properties (characteristics, such as its colour)
and a set of things that you can ask it to do. As an example, think of a balloon – there is data
about the balloon, properties that it has – for example, it may have the colour red and be
inflated. There are actions you can cause the balloon to do, such as inflate or pop. These
actions may affect the balloon’s properties; causing a balloon to pop will cause its is
Inflated property to change from true to false.

The key thing to notice about OOP is that it organises functions and variables together. In
the door lock example the variable tags is only useful to the RFID authentication part of the
program, so it is part of the RfidFileAuthenticator class. The alternative would be to
have all the variables together, which would be more confusing as you would not know
which part of the program needed them. If you were working as a part of a team on a pro-
gram, OOP would provide a way to split the code into fairly independent parts that can be
worked on separately and eventually assembled.

OOP is there to help you write programs by providing a framework for structure. Objects
can be swapped out as you have seen. You can also build more complex objects from com-
ponent objects, just as you can in the real world. As you become more advanced, you can
learn about another feature of OOP, inheritance, which enables you to create child objects
that inherit the behaviour and variables of their parents, but with additions.

You don’t have to write in an OOP style, but using it can be a great help. In the code lock
example it allows you to change behaviour by swapping an object in one line. This is only easy
because the OOP helps manage abstraction, breaking a problem into manageable parts.

Networking Multiple Doors
Now that you have one door lock working it’s time to think about expansion. Imagine in the
future that you have lots of door locks, and want to allow access to some of the doors to
other users. With the current system you would have to visit each door controller and set the
same password. It might also be hard to keep track of who has access to each door.

R A S P B E R R Y P I P R O J E C T S294

Do not confuse a user directory with a filesystem directory – although they use the same
word, they are separate unrelated concepts.

A better solution would be to keep all the information stored in one place, on a central server.
With this approach, when a user requests access to a resource (that is, he or she wants to
open the door) his or her credentials are sent to the directory server over the network, which
grants access or not. A similar process is used online to allow users to log in to other websites
using their Twitter or Facebook accounts.

Authentication and Directories in Industry
The standard way to share and store authentication information is the lightweight directory
access protocol (LDAP). Its history can be traced back to the 1980s around the time of the birth
of the Internet. Nowadays it is the basis for Active Directory, the system used for network user
management on Microsoft Windows. Linux supports running LDAP servers and user logon
through open-source implementations of LDAP. The main version for Raspbian is OpenLDAP.

If you own multiple Raspberry Pis, you could network them and manage who can log in to
them centrally. You could perhaps manage a classroom of Raspberry Pis for a school this way.
There would be no difference between this setup and the way large institutions such as
banks, universities or offices manage all their machines and users. There are tutorials online
that show how to set up an OpenLDAP server and client specifically on Raspberry Pis.

In your door lock program, because the authentication is separated into a class, you can eas-
ily replace it with a network version that would look the user’s input up in a directory or
other authentication service. You could even replace it with code that sends the user’s input
to validate against Facebook. Clearly putting a Raspberry Pi next to every door in your house
starts becoming expensive, but there are a number of other fun ways you can expand the
project which do not require additional hardware.

Over to You
This project, like all the others in this book, has many opportunities for extensions. Why not
try swapping out one or more input, authentication and output blocks to implement some of
the following:

❍	You could have the lock greet the user and announce that access has been granted.
Make use of the code for text-to-speech in Chapter 10, “The Twittering Toy”.

C H A P T E R 1 2   D O O R L O C K 295

❍	Write a log of who is granted access so that you know who enters your room. You could
reuse the code from Chapter 17, “The Techno–Bird Box, a Wildlife Monitor”. A varia-
tion on this would be to send an e-mail or tweet when access was granted or attempted.
You could trigger the Raspberry Pi camera too to record a photograph of a person try-
ing to gain access. Using the other outputs on PiFace Digital, you could trigger an elec-
tric water pistol to deter unauthenticated access.

❍	The authentication block could be extended so that access was granted only at certain
times of day.

❍	If you’re familiar with web programming, you could set up a web server on the
Raspberry Pi and unlock your door by sending a password via a web page on your
smartphone.

❍	You could experiment with different input devices, such as a biometric scanner if you
can afford one. Barcode and magstripe readers are more affordable alternatives.

❍	If you are feeling really ambitious, you could find code online to do image recognition
and use the Raspberry Pi camera. OpenCV is a useful library.

❍	Another ambitious extension would be to use Asterisk or Twilio to unlock the door
when you dial a telephone number or send a text.

❍	You could be really creative and come up with your own authentication method.

The Art of Programming
This chapter should have shown you an important feature about computer programs – that
they change. Requirements change during the life of a program, which means parts need to
be swapped out or rewritten. Part of the art of programming is structuring code so that it is
easy to maintain later, particularly when you start working with other programmers.

Managing software development is difficult; for more information about how large, compli-
cated programs are written in industry, search online for “extreme programming” or “agile
methodologies” such as “scrum”.

Programmers may talk about refactoring. Refactoring is basically the matter of tidying up
code to improve its structure without changing its behaviour. It requires discipline, but makes
maintaining code easier in the long term.

You should have seen that a good approach is to build a simple system with limited features
that works, and then add more features later. The goal is to write code in such a way that
you’re always fairly close to having a program that runs, even if parts of it are massively

R A S P B E R R Y P I P R O J E C T S296

simplified, rather than have an unmanageable mass of uncompleted features, which show no
sign of working!

Most importantly, to master writing code takes practise. So, if you haven’t already, get your
Raspberry Pi working for you. As you’ve seen in this chapter, if you’re forever forgetting your
keys, the Raspberry Pi can provide a solution. Why not create a new gadget to solve a prob-
lem for you or your friends?

Chapter 13
Home Automation

by Jonathan Evans

In This Chapter

❍	 Interface the following sensors to the Raspberry Pi: door
switch, motion sensor and temperature gauge

❍	 Create e-mail alerts that can be used with each project in
this chapter

❍	 Convert a webcam into a surveillance camera that records
footage and takes pictures when motion is detected

❍	 Control the Raspberry Pi using a radio frequency remote
key fob

R A S P B E R R Y P I P R O J E C T S298

IN THIS CHAPTER you will be creating some home-automation projects to make your
home environment more intelligent and provide you with the foundational knowledge to
further the automation of your home. A key part of home automation is being able to inter-
face with sensors. This is something that the Raspberry Pi is very good at. There has been a
recent explosion of cheap and reliable sensors available to the DIY enthusiast, and combined
with the small form factor of the Pi, its high processing power, network connectivity and low
cost, it makes the Raspberry Pi an ideal platform for the DIY home-automation enthusiast.

Home automation can be distilled into three categories: control, alert and monitor. During
the course of this chapter, you will create five projects covering each of these categories.

In this chapter you will not be making use of PiFace, which is used in other chapters in this
book. You will interface directly with the GPIO ports of the Raspberry Pi using male-to-
female jumper wires (described later). If you have to remove your PiFace, remember to
always power down the Raspberry Pi before disconnecting (or connecting) anything to the
GPIO headers.

The Internet Of Things
The Internet Of Things (IOT) describes the rapidly expanding phenomenon of connecting
things to the Internet. Network connectivity and IP addresses are no longer just used to con-
nect computers. Increasingly we are seeing everyday appliances and sensors connecting to a
network, providing us with real-time information from, and control over, those devices. The
IOT is an emerging technology, so as it matures and interoperability standards are developed
it will become easier and cheaper to connect devices to the IOT which will have a positive
impact on home owners wanting to automate their environment. Again the Raspberry Pi has
a role to play in connecting devices cheaply to a network. As you work through this chapter
you will be contributing to the rapidly expanding network of things connected to the IOT.

Project 1: How to Create a Motion Sensor
and Door Switch
In your first home-automation project you will create a motion sensor and door switch.
Motion sensors and door switches allow you not only to create alarms or alerts, but also to
monitor flow and movement throughout your home. Using the information created by these
sensors, you can apply rules and actions using Python. For example, you could turn off a light
in a room if motion is not detected for a period of time, or send an e-mail alert to yourself if

C H A P T E R 1 3   H O M E A U T O M A T I O N 299

your garage door is open for a period of time. So by combining sensors, rules and actions, you
can create a more intelligent home environment.

A door switch contains a reed switch (see Figure 13-1) that is triggered when the two pieces
come apart. One piece is attached to the door and the other to the door frame. One of the
two halves contains a magnet and the other a reed switch that is held closed when the mag-
net is near. When the two come apart the magnetic field loses its strength, and the switch is
broken. This type of switch is closed when the pieces are together and open when they come
apart. So when the door is closed current flows through the switch, and when the door is
open the current is broken. This type of switch is called normally open. The motion sensor,
sometimes known as a passive infrared (PIR) sensor (see Figure 13-2), is packaged with an
integrated circuit and a lens that will focus the moving objects for the sensor. A motion sen-
sor is also normally open, so both of the sensors interact with the Raspberry Pi through the
GPIO port in the same manner, which makes the software for both identical. You will be
writing some Python script to monitor the sensors and produce an action when either sensor
is triggered. In this tutorial you will trigger a message to the screen, but you could take any
number of other actions as explained before.

Figure 13-1:
A door switch.

R A S P B E R R Y P I P R O J E C T S300

Figure 13-2:
A motion

sensor.

Table 13-1 shows what you need.

Table 13-1  What You Will Need
QTY Item Description

1 Door switch Can be obtained from a home security outlet or online.

1 Motion sensor Usually 5V-12V with three terminals, +VE, GND and 3.3V
Pi-friendly output.

2 10kΩ resistors Brown, black, red, gold.

2 1kΩ resistors Brown, black, orange, gold.

C H A P T E R 1 3   H O M E A U T O M A T I O N 301

QTY Item Description

1 Solderless breadboard A prototyping board for which parts and wires can be connected
by clipping them into the board. It is used for prototyping elec-
tronics without having to solder parts together.

3, 5 Jumper wires Male to male for breadboard connections, male to female for con-
necting the breadboard to the GPIO pins. Jumper wires usually
come in packs of various quantities, colours and sizes. Although you
need only 8 for this project, having 20 to 30 of each should see you
through most projects. Any size will do for this project, but shorter
male to male (10 cm) and longer male to female (20 cm) are best.

Construction
You are going to be using the Raspberry Pi GPIO ports to interface with the sensors. GPIO
ports can be configured for input or output. In this case you are going to use them for input
as you are collecting data from an external sensor. A GPIO port can have three different
states: high (positive), low (ground) or floating (either). For you to be able to accurately
determine the state of the GPIO pin, you need to tie it either to positive or negative (ground).
You do this using what is known as a pull-up or pull-down resistor. When the GPIO is con-
nected to a positive current the GPIO pin’s value is high. When it is connect to ground it is
low. Figure 13-3 shows a pull-up resistor (10kΩ) that connects the GPIO to positive when
the switch is open. However, when the switch closes there is a lower resistance path to
ground, and the GPIO state will go low. Figure 13-4 shows a pull-down resistor (10kΩ) con-
necting the GPIO pin to ground, making it low. When the switch is pressed there is a lower
resistance to positive, which changes the GPIO state to high. The 1kΩ resistor is there to
protect the GPIO pin from a short circuit when the switch is pressed.

Always double-check your circuits before powering on the Raspberry Pi. You can very easily
damage the Raspberry Pi by not protecting the GPIO pins with resistors. Be especially careful
of the 5V pins, which if connected to a GPIO pin will cause permanent damage.

In your project you want a closed circuit (low state) when the door is closed or when there is
no motion and a high state when the door is opened or motion is detected, so you want a
pull-up resistor to set the GPIO high in an alarm state. You will therefore base your circuitry
on the diagram in Figure 13-3.

R A S P B E R R Y P I P R O J E C T S302

Figure 13-3:
A circuit

showing a
pull-up resistor.

Figure 13-4:
A circuit

showing a
pull-down

resistor.

C H A P T E R 1 3   H O M E A U T O M A T I O N 303

The PIR sensor has three coloured wires: ground, positive and alarm. The colours and pin
positions may differ, depending on which one you buy, so be sure to check the data sheet of
your PIR. The alarm pin is an open collector, meaning you will need to connect a pull-up resis-
tor on the alarm pin (see Chapter 9, “Test Your Reactions”, for details on open collectors).

In Figure 13-5 you can see the circuit diagram with all the components, and in Figure 13-6
there is the breadboard prototype diagram.

Figure 13-5:
A circuit
diagram for the
door switch and
motion sensor
connected to
two GPIO pins
on the
Raspberry Pi.

Software
The software will print to the screen whenever motion is detected or the door sensor is trig-
gered. You want to print to the screen only once per event, so you will use variables (motion
and door) to keep track of when you are in an alarm state and prevent the trigger reoccur-
ring for the same event. If you were logging these events to a database, or taking another
action such as switching on a light or sending an e-mail alert, you would use this method
to prevent multiple actions being created for the same event. The code is provided in
Listing 13-1.

R A S P B E R R Y P I P R O J E C T S304

Figure 13-6:
The breadboard

layout of the
reed switch and

motion sensor
connected to the

Raspberry Pi.

Listing 13-1  Home Automation Using Motion Detection
#!/usr/bin/env python

“””

Home Automation using motion detection

For the Raspberry Pi

“””

import RPi.GPIO as GPIO

import time

GPIO.setmode(GPIO.BOARD)

GPIO.setup(13, GPIO.IN)

GPIO.setup(15, GPIO.IN)

def main():

 motion = False

 door = False

 while True:

C H A P T E R 1 3   H O M E A U T O M A T I O N 305

 if GPIO.input(13):

 if motion == False: print “Motion Detected”

 motion = True

 else:

 motion = False

 if GPIO.input(15):

 if door == False: print “Door Opened”

 door = True

 else:

 door = False

 time.sleep(.3)

if __name__ == “__main__”:

 main()

Project 2: How to Monitor Your Home
with a Webcam
Webcams have been around for quite some time, but when you combine one with the small
form factor of the Raspberry Pi you can put surveillance easily anywhere in the home with-
out having to run cables back to a recorder or PC. In this project you will construct a webcam
surveillance monitor that will

❍	Stream real-time video to a browser

❍	Create e-mail alerts when motion is detected

❍	Create stills and video files when motion is detected

You can use this to increase the security of your home but also for other purposes, such as
keeping an eye on the kids around the house, knowing whether you left the garage door open
or receiving alerts and be able to see when someone walks through the front door. Table 13-2
shows what you need.

R A S P B E R R Y P I P R O J E C T S306

Table 13-2  What You Will Need
QTY Item Description

1 Webcam Most webcams will work, but a good frame rate (30 fps), autofocus
and screen resolution (640 x 480) are webcam features that will all
add to the quality of the picture.

Network connection to
the Raspberry Pi

A network connection is needed for the video streaming. You will
most likely want a Wi-Fi connection so that you can place your
webcam where you need it. Configuring a USB Wi-Fi device for
your Raspberry Pi is beyond the scope of this tutorial; however,
there are a number of online resources available on how to do this.
If you have an Ethernet network point, that will work fine too.

An Internet connection
for your Raspberry Pi

You will need this to install the webcam software.

Visit this website to check for compatibility of your webcam, or any other hardware, with the
Raspberry Pi: http://elinux.org/RPi_USB_Webcams.

Construction
The USB webcam plugs into the USB port of the Raspberry Pi, and the Raspberry Pi is con-
nected to your home network either via Wi-Fi or network cable. You need to be connected to
the Internet at the time you install the webcam software, but you do not need an Internet
connection for the webcam to store video footage or to stream on your home network. The
video footage is stored directly on the Raspberry Pi and is streamed to a predefined port. If
you don’t know what a port is, don’t worry; it’s like a television channel that the Raspberry Pi
will broadcast to. You will use a browser to tune into that channel (port) to view the live
video stream. You will be able to view the video using any browser-enabled device (PC, tablet,
smartphone) connected to your home network. You will not be able to view the video foot-
age from the Internet without opening up the port on your router. Your router will typically
only allow traffic from the Internet to pass through port 80, which is used for Internet brows-
ing and e-mail. However, you can configure your router to open up the port you choose for
video surveillance. I’ll explain that in more detail later in the “How to View the Webcam over
the Internet” subsection of this project.

You will most likely want to run your Raspberry Pi headless (without a TV, keyboard and
mouse attached). If you are not familiar with how to do this, I advise you to do some research
and become comfortable with accessing your Raspberry Pi remotely. It is not difficult; you
just need to know the IP address of your Raspberry Pi and then unplug the TV, keyboard and
mouse and access it using a remote access SSH application such as Putty.

http://elinux.org/RPi_USB_Webcams

C H A P T E R 1 3   H O M E A U T O M A T I O N 307

You can find the IP address of your Raspberry Pi by typing

/sbin/ifconfig | less

The output will look something like this:

wlan0 Link encap:Ethernet HWaddr d8:eb:97:18:16:ef

inet addr: 192.168.0.2 Bcast:192.168.0.255 Mask:255.255.255.0

Your IP address is the number provided after inet addr:, which in this case is 192.168.0.2.

Software
You will be using a great piece of open-source software to do all of this called Motion. Motion
was founded by Jeroen Vreeken and has since had over 100 people contribute to the code. At
the time of this writing, Motion is being maintained by Kenneth Lavrsen and Angel
Carpintero at www.lavrsen.dk/foswiki/bin/view/Motion/WebHome. Installing
Motion requires that you run a command from the command prompt on your Raspberry Pi.
Unless you are familiar with assigning permissions in Linux, I recommend that you use the
root user and not the standard user for this project.

You can create the root user by typing

sudo passwd root

The system will prompt you for a password twice. After that is complete log in to your
Raspberry Pi using root as the username and the new password you just set.

After you are logged in as the root user, your command prompt should look like this:

root@raspberrypi:~#

If you have not done so recently, you should make sure that your Raspberry Pi is up to date
by typing

sudo apt-get update

sudo apt-get upgrade

These updates will take some time to complete. You are now ready to install Motion. At the
command prompt type

sudo apt-get install motion

http://www.lavrsen.dk/foswiki/bin/view/Motion/WebHome

R A S P B E R R Y P I P R O J E C T S308

The install process is automatic and should complete in a few minutes (depending on your
Internet connection speed). After this is complete you are ready do to some configuration. In
order to configure Motion, you will need to be able to edit a file in Linux. If you are familiar
with editing in Linux, you can use your favorite editor; otherwise, you will be using a very
simple text editor called nano. Table 13-3 shows the commands you will use for editing. You
can refer to this table as needed.

Table 13-3  Nano Editing Commands
Action Command

Start editing a file called filename nano filename

Navigate Use the up, down, left and right keys.

Exit and save Ctrl + X, followed by Y, followed by pressing the Enter key.

Exit without saving Ctrl + X, followed by N.

Search for text Ctrl + W, followed by entering the text that you want to
search for, followed by pressing the Enter key. To search again
for the same text, press Ctrl + W, followed by the Enter key.

The installation process will have placed a configuration file in the /etc/motion directory.
Edit the configuration file by typing the following at the command prompt:

nano /etc/motion/motion.conf

A screen similar to Figure 13-7 will appear.

Figure 13-7:
The

configuration
file for Motion.

C H A P T E R 1 3   H O M E A U T O M A T I O N 309

The first configuration you want to change will make Motion run in daemon mode, which
will make sure that it is always running in the background. This means if you log off from
your Raspberry Pi, the webcam will still run as long as it is plugged into power. You will see a
setting called daemon close to the top of the configuration file. Change the setting from off to
on. Then continue to make the configuration changes in Table 13-4.

Table 13-4  Motion Configuration Changes
Configuration New Value Comment

framerate 30

threshold 500

gap 10

max_mpeg_time 30

output_normal center

ffmpeg_video_codec msmpeg4 For viewing video footage in Windows; other-
wise choose your preferred codec.

target_dir /home You can choose any other directory where you
want your video footage to be stored.

webcam_motion on

webcam_maxrate 30

webcam_port 8085 Or any other port.

webcam_localhost off

Save the file and exit (Ctrl + X, Y, Enter) to complete editing the configuration. After you’re
back at the command prompt you need to restart Motion so that the new configuration can
take effect. You do this by typing the following:

service motion stop

motion

If your webcam has an activity light on it, you should have noticed it come on. Check that it
is working by doing a directory listing of the /home directory (type dir /home) and see if
there are .avi and .jpg files being written. It is configured so that it will store video foot-
age only when motion is detected, and it will store a maximum of 30 seconds of footage per
file. You probably noticed when you were editing the configuration that this application is
highly configurable and can be changed to suit your needs. Next you will test that the real-
time video streaming is working.

Open a browser other than Internet Explorer on a PC, tablet or smartphone connected to
your home network. (Internet Explorer does not support MJPEG streaming, so you need to

R A S P B E R R Y P I P R O J E C T S310

use another browser such as Chrome, Firefox or Safari.) Now type the IP address and port of
your Raspberry Pi. For example, type something like this:

http://192.168.0.2:8085

The real-time webcam video will now appear in the browser.

In order to view the video and picture files that have been saved in the /home directory, you
have a number of options. I recommend connecting remotely to the Raspberry Pi using an
FTP client (such as FileZilla) and then either copying the footage to a PC or executing the file
directly through FileZilla (which actually copies the file across to the PC, runs it and then
destroys the local copy).

How to Send an E-Mail When Motion Is Detected
One of the great features of Motion is the ability to run a Python script when movement is
detected. Later in this chapter, there is a project describing how to send an e-mail. (See the
section “Project 4: How to Send an E-mail Alert”.) You can use the code from that project to
have an e-mail sent to you when movement is detected on your webcam. You can do this by
editing the configuration file and looking for a configuration called on_event_start,
which can be configured as follows:

on_event_start sudo python /home/sendemail.py ‘Webcam ;

motion detected’

This configuration tells Motion to execute the sendemail.py script when movement is
detected. The content of sendemail.py is located in the section “Project 4: How to Send an
E-mail Alert” later in this chapter. You can also learn how to attach a file to an e-mail in that
project, which allows you to e-mail a picture from the webcam when movement is detected.
For this there is another configuration called on_picture_save. Set this configuration as
follows:

on_picture_save sudo python /home/emailphoto.py ‘Webcam ;

picture attached’ %f

This configuration tells Motion to execute the emailphoto.py script, which is located in
the /home directory, when movement is detected. Additionally, it passes a parameter (%f)
to the script of the filename of the picture that the webcam took at the time the movement
was detected. Motion will replace %f with the filename of the picture it took.

Both of these scripts are listed in project 4 of this chapter.

C H A P T E R 1 3   H O M E A U T O M A T I O N 311

Remember, of course, to restart Motion after any configuration change by typing the following:

service motion stop

motion

How to View the Webcam over the Internet
This subsection comes with a big security warning. If you open up your Raspberry Pi to the
Internet, anyone on the Internet can see your webcam. They will of course need to know your
IP address and port, so you do have some measure of safety, albeit fairly weak. Internet hack-
ers look for open ports, so it won’t be long before they figure out that there is a video stream
on that port.

So if you are still reading this, this is how to make your webcam visible from the Internet. In a
typical home installation there is a router that connects all the PCs and Wi-Fi devices in the house
to the Internet. You need to configure your router to allow the video stream through the port you
configured earlier in this project. Getting access to your router requires that you know how to do
this, and may require that you contact your Internet service provider (ISP) or cable company. You
will need to know the IP address of your router. Many routers use the 192.168.0.1 or
192.168.1.1 address as a default. Type your router IP address into a browser. This will take you
to a login page where you need to log in to the router with the username and password for the
router. It is beyond the scope of this chapter to provide you with detailed instructions for this part
as there are many different routers, each with their own configuration applications. Look for “port
range forwarding” or “port forwarding” settings, often under a “Gaming” menu. (Gamers need to
open a port to be able to participate in peer-to-peer games over the Internet.) Add a new entry
called rpi-web. FromPort=8085, ToPort=8085, IpAddress=(Raspberry Pi IP
address). Take note of the Internet IP address of the router under the Gateway settings of the
router. This is the address that has been assigned to you by your ISP, and you will use this address
to access from the Internet. Now type http://InternetIPAddress:8085 into a browser
connected to the Internet. This should take you to your webcam video stream. From time to time
your ISP may recycle IP addresses, so you will need to repeat the earlier steps to determine your
new IP address. Alternatively, most ISPs will sell you a static IP address.

Your webcam is now accessible to anyone accessing the Internet who knows your Internet
address and port number. It’s a good idea to install a firewall on your Raspberry Pi to protect
your computer from port scanners and other malicious programs. A firewall is basically a set of
rules that limits or blocks incoming or outgoing web requests. One more thing you may want to
protect against is Internet users attempting to access your SSH account by trying a dictionary
attack against your password. There is a handy utility called Fail2Ban that monitors your log
files for failed login attempts and temporarily blocks offending users. Detailed instructions on
these precautions are beyond the scope of this book.

R A S P B E R R Y P I P R O J E C T S312

Project 3: How to Make a Temperature Gauge
In this project you are going to be using a DS18B20 sensor to detect the temperature and
display it on the screen. You will also write some Python code to monitor temperature and
send an e-mail alert if the temperature exceeds a predefined threshold. The sensor returns a
Celsius value, so you will also have some optional Python code to do a Fahrenheit conversion
if that is your preference. Table 13-5 shows what you will need.

Table 13-5 What You Will Need
QTY Item Description

1 DS18B20 This sensor looks like a transistor but is actually a highly accurate
1 wire temperature sensor.

1 4.7kΩ resistor A pull-up resistor.

1 Solderless breadboard A prototyping board for which parts and wires can be connected by
clipping them into the board. It is used for prototyping electronics
without having to solder parts together.

3, 3 Jumper wires Male to male for breadboard connections, male to female for con-
necting the breadboard to the GPIO pins. Jumper wires usually
come in packs of various quantities, colours and sizes. Although
you need only 6 for this project, having 20 to 30 of each should see
you through most projects. Any size will do for this project, but
shorter male to male (10 cm) and longer male to female (20 cm)
are best.

Construction
The circuitry for this sensor is very easy to build. Besides the power and ground connections
all you need to do is connect the 4.7Ωk pull-up resistor between the signal and power as
shown in Figures 13-8 and 13-9. It is important to use pin 7 for the sensor connection. The
software you will use to interface with the DS18B20 is hard-coded for pin 7, so you cannot
use another pin for this sensor.

Software
Luckily the software required to interface with the DS18B20 has already been written and is
built into your Raspberry Pi kernel. You will be using an application called Modprobe to
retrieve the temperature value.

At the Raspberry Pi command prompt type the following two commands:

sudo modprobe w1-gpio

sudo modprobe w1-therm

C H A P T E R 1 3   H O M E A U T O M A T I O N 313

Figure 13-8:
A wiring
diagram for a
DS18B20
temperature
sensor
connected to a
Raspberry Pi.

Figure 13-9:
A breadboard
diagram for a
DS18B20
temperature
sensor
connected to a
Raspberry Pi.

R A S P B E R R Y P I P R O J E C T S314

One of the nice features of the DS18B20 sensor is it has a unique number that allows you to
use multiple sensors and uniquely identify the temperature of each sensor. The preceding
command interfaces with the sensor and retrieves the temperature, which it then writes to a
new directory on the Raspberry Pi. This directory can be found in /sys/bus/w1/devices/.
In order to check if this file was created, you can do a directory listing by typing the following
command:

ls /sys/bus/w1/devices/

You should see a directory that correlates to the unique number of your sensor. Every sensor
has a unique number, so it won’t be the same as my file, but it will be similar to this:

28-0000040be5b6

If you don’t see a directory with lots of numbers and letters like this one, then do the following:

❍	Check your circuit wiring.

❍	Make sure that you have the correct resistor. (This is very important – yellow, violet,
red, gold.)

❍	Feel the temperature gauge with your finger. If it feels hot, you have it wired back to
front.

If you do see the new directory, navigate into it and view the contents of the w1_slave file,
which will contain the temperature value. (Remember to replace my number with yours.)

cd /sys/bus/w1/devices/28-0000040be5b6

nano w1_slave

You will now see the contents of the w1_slave file, which contains the temperature data in
Celsius. In my example (see Figure 13-10), the temperature is 20.812 degrees Celsius. Press
Ctrl + X, followed by N, to exit.

Now that you have completed testing your circuit and have the sensor working, you will
write some Python code to automate the preceding and print the temperature to the screen,
as shown in Listing 13-2.

C H A P T E R 1 3   H O M E A U T O M A T I O N 315

Figure 13-10:
The temperature
shown in the
w1_slave
file that was
created by
Modprobe.

Listing 13-2  Temperature Check
#!/usr/bin/env python

“””

Home Automation: temperature check

For the Raspberry Pi

“””

import subprocess

import time

def fileexists(filename):

 try:

 with open(filename): pass

 except IOError:

 return False

 return True

def GetTemperature():

 #set this variable to true if you want a Fahrenheit

 #temperature

 Fahrenheit = False

 #These two lines call the modprobe application to get the

 #temperature from the sensor

continued

R A S P B E R R Y P I P R O J E C T S316

Listing 13-2  continued
 subprocess.call([‘modprobe’, ‘w1-gpio’])

 subprocess.call([‘modprobe’, ‘w1-therm’])

 #Open the file that you viewed earlier so that Python can

 #see what is in it. Replace the serial number with

 #your own number

 filename = “/sys/bus/w1/devices/28-0000040be5b6/w1_slave”

 if (fileexists(filename)):

 tfile = open(filename)

 else:

 return 0

 # Read the w1_slave file into memory

 text = tfile.read()

 # Close the file

 tfile.close()

 # You are interested in the second line so this code will

 # put the second line into the secondline variable

 secondline = text.split(“\n”)[1]

 # You are interested in the 10th word on the second line

 temperaturedata = secondline.split(“ “)[9]

 # You are interested in the number of the 10 word so

 # you discard the first two letters “t=” and convert

 # the remaining number $

 temperature = float(temperaturedata[2:])

 # Divide the value by 1000 to get the decimal in the

 # right place

 temperature = temperature / 1000

 temp = float(temperature)

 # Do the Farenheit conversion if required

 if Fahrenheit:

 temp=temp*1.8+32

 temp = round(temp,2)

 return(temp)

def main():

 # This is the main routine of the program

 print “The temperature is “ + str(GetTemperature())

if __name__ == “__main__”:

 main()

Lastly, let’s create some code that will monitor the temperature and send an e-mail when the
temperature exceeds a particular value. You will use the SendEmail function from the

C H A P T E R 1 3   H O M E A U T O M A T I O N 317

e-mail project (project 4 in this chapter). Using the program you created to print the tem-
perature to the screen, replace the main routine with the code in Listing 13-3.

Listing 13-3  Temperature Alert
This is the main routine of the program

 tempind=False

 while True:

 temperature=GetTemperature()

 if temperature > 25 and tempind==False:

 #Use the SendEmail routine from the

 #e-mail project

 SendEmail(“The temperature is “+ ;

str(temperature))

 tempind=True;

 else:

 #This will ensure you only receive one e-mail

 #once the temperature is above 25

 #This variable is set back to false when the

 #temperature is less than or equal to 25

 tempind=False;

 #Fetch the temperature every 10 seconds

 time.sleep(10)

Project 4: How to Send an E-mail Alert
The sensors play an important role in monitoring your home but are not much use without hav-
ing an action associated with them. An e-mail alert is a useful type of action as you can pack as
much information as want into the body of the e-mail and send it to a smartphone. Other useful
alerts (not detailed in this chapter) are a flashing LED, an LCD display and a buzzer or siren, which
are all easily achievable tasks with a Raspberry Pi. Another useful tool for home automation, but
also beyond the scope of this chapter, is a web page and a database. You can log sensor data to a
database and design web pages to represent that data to you so that you can monitor your home.

What You Will Need
This project is all software based and can be used in conjunction with all the other projects in the
chapter. All you will need is your Raspberry Pi, an editor and some Python code that I will provide.

Software
In order to send an e-mail from your Raspberry Pi, you need to send it from an e-mail server. You
need to know your e-mail account details. There are three pieces of information you will need:

R A S P B E R R Y P I P R O J E C T S318

❍	The URL or IP address of the e-mail SMTP server

❍	Your username

❍	Your password

If you do not have these, you can use a Gmail or Yahoo! account. You will be creating a
Python program called sendemail.py that will send a plain-text e-mail. The program
accepts two command-line parameters. A command-line parameter is a value that you pass to
the program. In this case you are passing the e-mail content as a parameter, as follows:

sudo python sendemail.py “Web cam motion detected”

sudo is a command telling the operating system to use super user rights when executing the
command. Python tells the operating system to run some Python script. sendemail.py is
the Python script you want to execute, and “Web cam motion detected” is the param-
eter you are passing into the sendemail.py program.

Create a file called sendemail.py that contains the code in Listing 13-4. Go through each
line of code and ensure that you have filled in the details specified in the code comments.

Listing 13-4  Send E-mail
#!/usr/bin/env python

“””

Home Automation: send e-mail

For the Raspberry Pi

“””

import sys

import smtplib

from email.mime.text import MIMEText

import time

def SendEmail(MessageText):

 #enter the e-mail account username between the quotes

 smtp_user = “”

 #enter the e-mail account password between the quotes

 smtp_pass = “”

 #sys.argv[1] is the 1st parameter that is passed to

 #this program and it contains the text for the body

C H A P T E R 1 3   H O M E A U T O M A T I O N 319

 #of the e-mail

 msg = MIMEText(MessageText)

 #enter the target e-mail address between the quotes

 msg[‘To’] = “”

 #enter the e-mail account username between the quotes

 msg[‘From’] = “”

 #enter the message subject between the quotes

 msg[‘Subject’] = “”

 #enter the SMTP server URL or IP Address between the quotes

 s = smtplib.SMTP(“”)

 s.login(smtp_user,smtp_pass)

 s.sendmail(msg[‘From’], msg[‘To’], msg.as_string())

 s.quit()

def main():

 SendEmail(sys.argv[1])

if __name__ == “__main__”:

 main()

Most e-mail servers use e-mail encryption, so there are two variations of the code in Listing
13-4, depending on which type of encryption is being used – transport layer security (TLS) or
SMTP SSL encryption. You can find out what encryption is being used from your ISP, or
through trial and error. If you have a Gmail or Yahoo! account, I have included details on how
to send e-mails from their e-mail servers (providing you have an e-mail address with them).

Transport Layer Security
The code in Listing 13-5 will send an e-mail using TLS encryption.

Listing 13-5  Send E-mail Using TLS Encryption
#!/usr/bin/env python

“””

Home Automation: send e-mail using TLS encryption

For the Raspberry Pi

continued

R A S P B E R R Y P I P R O J E C T S320

Listing 13-5  continued
“””

import sys

import smtplib

from email.mime.text import MIMEText

def SendEmail(MessageText):

 #enter the e-mail account username between the quotes

 smtp_user = “”

 #enter the e-mail account password between the quotes

 smtp_pass = “”

 #sys.argv[1] is the 1st parameter that is passed to

 #this program and it contains the text for the body

 #of the e-mail

 msg = MIMEText(MessageText)

 #enter the target e-mail address between the quotes

 msg[‘To’] = “”

 #enter the e-mail account username between the quotes

 msg[‘From’] = “”

 #enter the message subject between the quotes

 msg[‘Subject’] = “”

 #enter the SMTP server URL or IP Address between the quotes

 s = smtplib.SMTP(“”,587)

 s.ehlo()

 s.starttls()

 s.ehlo()

 s.login(smtp_user,smtp_pass)

 s.sendmail(msg[‘From’], msg[‘To’], msg.as_string())

 s.quit()

def main():

 SendEmail(sys.argv[1])

if __name__ == “__main__”:

 main()

C H A P T E R 1 3   H O M E A U T O M A T I O N 321

SMTP SSL Encryption
The code in Listing 13-6 will send an e-mail using SMTP SSL encryption.

Listing 13-6  Send E-mail Using SSL
#!/usr/bin/env python

“””

Home Automation: send e-mail using SSL encryption

For the Raspberry Pi

“””

import sys

import smtplib

from email.mime.text import MIMEText

def SendEmail(MessageText):

 #enter the e-mail account username between the quotes

 smtp_user = “”

 #enter the e-mail account password between the quotes

 smtp_pass = “”

 #sys.argv[1] is the 1st parameter that is passed to

 #this program and it contains the text for the body

 #of the e-mail

 msg = MIMEText(MessageText)

 #enter the target e-mail address between the quotes

 msg[‘To’] = “”

 #enter the e-mail account username between the quotes

 msg[‘From’] = “”

 #enter the message subject between the quotes

 msg[‘Subject’] = “”

 #enter the SMTP server URL or IP Address between the quotes

continued

R A S P B E R R Y P I P R O J E C T S322

Listing 13-6  continued
 s = smtplib.SMTP_SSL(“”, 465)

 s.login(smtp_user,smtp_pass)

 s.sendmail(msg[‘From’], msg[‘To’], msg.as_string())

 s.quit()

def main():

 SendEmail (sys.argv[1])

if __name__ == “__main__”:

 main()

Sending E-mail Using a Gmail or Yahoo! Account
If you have a Gmail or Yahoo! account, you use your e-mail address as the e-mail account and
the e-mail password as the e-mail account password. Gmail uses SSL, so edit the SSL encryp-
tion code (in Listing 13-6) with the following SMTP server details:

smtp.gmail.com

Yahoo! uses TLS, so edit the TLS encryption code (in Listing 13-5) with the following as the
SMTP server details:

smtp.mail.yahoo.com

How to Attach a File to an E-mail
In the section “Project 2: How to Monitor Your Home with a Webcam”, a command was
introduced that enabled you to send a photograph attachment when the webcam detected
motion. The code in Listing 13-7 will allow you to do it. You will build on the sendemail.
py program you created earlier (in Listing 13-4) by adding a new parameter to pass the file-
name of the photo you want to attach to the e-mail. Remember to update this program with
the code depending on the type of encryption you require as explained earlier. In this exam-
ple I’ve assumed SSL encryption. The emailphoto.py program accepts two parameters: the
first for the message text and the second for the filename of the photo you want to send. For
example, you will run this program using the following command:

sudo python sendemail.py ‘Webcam motion detected’, ;

‘/home/photo.jpg’

C H A P T E R 1 3   H O M E A U T O M A T I O N 323

Listing 13-7 is the code for emailphoto.py that will attach a photograph to the e-mail. I
have created a function called emailphoto because it is used in other programs within this
chapter.

Listing 13-7  Send E-mail with a Photo Attachment
#!/usr/bin/env python

“””

Home Automation: sends an e-mail with a photograph attachment

For the Raspberry Pi

“””

import sys

import smtplib

from email.mime.text import MIMEText

from email.mime.application import MIMEApplication

from email.mime.multipart import MIMEMultipart

def emailphoto(msgtext, afilename):

 #enter the e-mail account username between the quotes

 smtp_user = “”

 #enter the e-mail account password between the quotes

 smtp_pass = “”

 msg = MIMEMultipart()

 #enter the target e-mail address between the quotes

 msg[‘To’] = “”

 #enter the e-mail account username between the quotes

 msg[‘From’] = “”

 #enter the message subject between the quotes

 msg[‘Subject’] = “”

 #That is what you see if don’t have an e-mail reader:

 msg.preamble = ‘Multipart message.\n’

 #sys.argv[1] is the 1st parameter that is passed to this

 #and it contains the text for the body of the e-mail

 part = MIMEText(msgtext)

 msg.attach(part)

continued

R A S P B E R R Y P I P R O J E C T S324

Listing 13-7  continued

 #The next 3 lines attach the photo using the filename

 #passed in as the second parameter to this program

 part = MIMEApplication(open(afilename,”rb”).read())

 part.add_header(‘Content-Disposition’, ‘attachment’, ;

filename=afilename)

 msg.attach(part)

 #enter the SMTP server URL or IP Address between the quotes

 s = smtplib.SMTP_SSL(“”, 465)

 s.login(smtp_user,smtp_pass)

 s.sendmail(msg[‘From’], msg[‘To’], msg.as_string())

 s.quit()

def main():

 emailphoto(sys.argv[1], sys.argv[2])

if __name__ == “__main__”:

 main()

Project 5: How to Send an E-mail
Using a Wireless Remote
In this project you will use a wireless remote to send a signal to the Raspberry Pi to check the
status of the sensors that you have built in the other projects in this chapter and then send
yourself an e-mail report of all the sensors in the house. This is an example of the control
category of home automation. The e-mail will contain the temperature, status of door
switches and motion sensors and a picture of the last motion detected by the webcam. Other
typical uses of a wireless remote in home automation are switching lights on and off (particu-
larly external lights), switching or sounding an alarm system, opening and closing a garage
door and automating blinds and curtains. As you get access to more home-automation sen-
sors and controllers within your home you can use what you learn in this chapter to add
remote control to those devices. Table 13-6 shows what you need.

C H A P T E R 1 3   H O M E A U T O M A T I O N 325

Table 13-6  What You Will Need
QTY Item Description

1 Wireless remote kit This is shown later in Figure 13-11. There are a number of kits
available on the market that consist of a key-fob remote and a
receiver. The receivers are usually 5V-10V and have four digital
outputs. The key fobs vary from one button to four buttons. There
are different kinds of receivers (momentary, toggle and latch).
You are using a momentary receiver here (explained further later).

1 5V power supply Although this is not mandatory because the Raspberry Pi does
have a 5V power supply, I recommend a separate power supply for
the receiver. It is best to not overload the Raspberry Pi, and I have
found that the current required by this RF receiver exceeds that
of the Raspberry Pi, which affects the distance you can get
between the key fob and the receiver. An old cell phone power
supply should work (5V 700mA). Be sure to check the voltage and
current of both input and output in the data sheet of the receiver
you purchase. The output signal voltage should be 5V.

1 PN2222A transistor Switching NPN bipolar transistor 40V/.6A.

1 10kΩ resistor Brown, black, red, gold.

2 1kΩ resistors Brown, black, orange, gold.

1 Solderless breadboard A prototyping board for which parts and wires can be connected
by clipping them into the board. It is used for prototyping elec-
tronics without having to solder parts together.

3, 4 Jumper wires Male to male for breadboard connections, male to female for con-
necting the breadboard to the GPIO pins. Jumper wires usually come
in packs of various quantities, colours and sizes. Although you need
only 7 for this project, having 20 to 30 of each should see you
through most projects. Any size will do for this project, but shorter
male to male (10 cm) and longer male to female (20 cm) are best.

Construction
Radio frequency circuits are complex and not worth building yourself when they are readily
available prebuilt for a minimal cost (as shown in Figure 13-11). As discussed earlier, there
are different types of radio frequency circuits available on the market (momentary, latch and
toggle) that all work slightly differently. A momentary receiver’s digital output will remain on
as long as the key-fob button is pressed. The latch receiver will ensure that only one output
pin is on at any one time. For example, if you press button A, digital output A will go on. If
you press B, A will go off, and B will go on – and so on. A latching receiver digital output goes
on when a button is pressed in and out, and off when the same button is pressed in and out.
In this project you will use a momentary receiver, but you can use any type and adjust the
Python code to suit the type of the receiver.

R A S P B E R R Y P I P R O J E C T S326

Figure 13-11:
A wireless

remote kit.

This is the first time in this chapter you have used a transistor. Although transistors have
many uses, one of the lesser-known uses is the capability of a bipolar transistor to switch
things off and on. With the flat surface facing you, the PN2222 transistor has three pins
from left to right: the emitter, the base and the collector. When voltage is applied to the base
the transistor allows the current to flow through the emitter (source) to the collector (drain).
You will construct a switch similar to what you did in the section “Project 1: How to Create a
Motion Sensor and Door Switch”, but instead of a door switch you will use the transistor to
switch the Raspberry Pi GPIO when the wireless receiver receives a signal. The reason you do
not connect the receiver directly to the GPIO pin is that it has an external 5V supply and will
damage the GPIO pin, which has a 3V maximum.

Be extremely careful when working with circuits (especially 5V) that connect to the GPIO pins
as they are not protected and you can very easily cause permanent damage to your Raspberry
Pi. Double-check the wiring before powering on the Raspberry Pi and the external power
supply.

C H A P T E R 1 3   H O M E A U T O M A T I O N 327

Figure 13-12 is the circuit diagram, and Figure 13-13 is the breadboard layout diagram.
Depending on which key-fob receiver you have, you may need to alter the receiver pin con-
nections. In this example pin 1 is ground, pin 2 is 5V and pin 3 is data. The other pins are
usually allocated to additional key-fob buttons or a receiver aerial. Before you buy a kit refer
to the data sheet of the receiver to check the pin configuration and check the output voltage.

Figure 13-12:
A circuit
diagram for the
wireless receiver
connected to a
Raspberry Pi.

R A S P B E R R Y P I P R O J E C T S328

Figure 13-13:
A breadboard
layout for the

wireless receiver
connected to a

Raspberry Pi.

Software
The program in Listing 13-8 will loop and wait until the key-fob button is pressed. When it is
pressed it will poll the door switch, motion detector and temperature sensor and get the latest
picture created by the webcam. You then send an e-mail using the sendemail.py program
you created in Listing 13-4. The status of all the sensors is in the body of the text, and the latest
webcam photo is attached to the e-mail. Every time you press the key fob, an e-mail will be sent.

Listing 13-8  Send E-mail Using a Wireless Remote
#!/usr/bin/env python
“””
Home Automation: send e-mail using wireless remote
For the Raspberry Pi
“””

import os, glob, time, operator
import RPi.GPIO as GPIO
import time
import sys
import smtplib
from email.mime.text import MIMEText
from email.mime.application import MIMEApplication

from email.mime.multipart import MIMEMultipart

C H A P T E R 1 3   H O M E A U T O M A T I O N 329

from time import gmtime, strftime

def get_latest_photo(files):
 lt = operator.lt
 if not files:
 return None
 now = time.time()
 latest = files[0], now - os.path.getctime(files[0])
 for f in files[1:]:
 age = now - os.path.getctime(f)
 if lt(age, latest[1]):
 latest = f, age
 return latest[0]

def emailphoto(msgtext, afilename):
 #enter the e-mail account username between the quotes
 smtp_user = “”

 #enter the e-mail account password between the quotes
 smtp_pass = “”
 msg = MIMEMultipart()

 #enter the target e-mail address between the quotes
 msg[‘To’] = “”

 #enter the e-mail account username between the quotes
 msg[‘From’] = “”

 #enter the message subject between the quotes
 msg[‘Subject’] = “”

 # That is what u see if don’t have an e-mail reader:
 msg.preamble = ‘Multipart message.\n’

 #sys.argv[1] is the 1st parameter that is passed to this
 #and it contains the text for the body of the e-mail
 part = MIMEText(msgtext)
 msg.attach(part)

 #The next 3 lines attach the photo using the filename
 #passed in as the second parameter to this program
 part = MIMEApplication(open(afilename,”rb”).read())
 part.add_header(‘Content-Disposition’, ‘attachment’,;
filename=afilename)

continued

R A S P B E R R Y P I P R O J E C T S330

Listing 13-8  continued
 msg.attach(part)

 #enter the SMTP server URL or IP Address between the quotes
 s = smtplib.SMTP_SSL(“”, 465)
 s.login(smtp_user,smtp_pass)
 s.sendmail(msg[‘From’], msg[‘To’], msg.as_string())
 s.quit()

def sendreport():
 msgtext = “This is a sensor status report for “ +;
strftime(“%Y-%m-%d %H:%M:%S”, gmtime()) + “\n”

 if GPIO.input(13) == True:
 msgtext = msgtext + “Status of door switch is :;
Door open\n”

 else:
 msgtext = msgtext + “Status of door switch is :;
Door closed\n”

 if GPIO.input(15) == True:
 msgtext = msgtext + “Status of motion detector ;
is : No motion\n”

 else:
 msgtext = msgtext + “Status of motion detector ;
is : Motion detected\n”

 # Use the GetTemperature routine we
 # created in the temperature project
 Temperature = GetTemperature()
 msgtext = msgtext + “The temperature is :;
“+str(Temperature)+”\n”

 # Change this to your path where the
 # web cam pictures are stored.
 # *.jpg means all JPEG files
 photopath = “/home/*.jpg”
 files = glob.glob(photopath)
 latestphoto = get_latest_photo(files)
 msgtext = msgtext + ‘Latest photo:’ + latestphoto + “; is
attached to this e-mail\n”;

 # Send e-mail using the emailphoto()
 # function we created in the e-mail

C H A P T E R 1 3   H O M E A U T O M A T I O N 331

 # project
 emailphoto(msgtext, latestphoto)
 print “Report has been sent.”

#main program
def main():
 GPIO.setmode(GPIO.BOARD)
 GPIO.setup(16, GPIO.IN) #RF Remote Receiver
 GPIO.setup(13, GPIO.IN) #Door switch
 GPIO.setup(15, GPIO.IN) #Motion sensor

 rfkey = False

 while True:
 if GPIO.input(16) == False: #RF key-fob key pressed
 if rfkey == False:
 rfkey = True
 sendreport()
 else:
 rfkey = False

 time.sleep(.3)

if __name__ == “__main__”:
 main()

Over to You
Over the course of this chapter, you learned how to interface with sensors that give you informa-
tion about your home (movement, temperature, video and pictures). You acted on this informa-
tion by creating e-mail alerts, and in the last project I introduced an element of remote control.
You now have the building blocks for your next home automation project. Here are some ideas:

❍	Place a door switch on a dog flap and send an e-mail every time your dog enters or
leaves the house.

❍	Detect when your garage door has been open for more than 10 minutes.

❍	Switch off a light when no motion is detected for a period of time.

These projects, plus many more, are now well within your reach.

Chapter 14
Computer-Control led
S lot Car Racing

by Mike Cook

In This Chapter

❍	 Learn how to use your Raspberry Pi to enable and disable a
slot car set

❍	 See how to make your own illuminated joystick pad

❍	 Discover how to use an external text file as a question bank

❍	 Understand the interactions between the software and
hardware

R A S P B E R R Y P I P R O J E C T S334

THIS PROJECT IS a rather different twist on the multiple-choice quiz theme. Not only does
it have a novel way of inputting answers, but it also has a rather novel way of keeping the score.

The idea is that you are going to hack into a slot car game and allow the Raspberry Pi to control
when the game can be played. Then players can drive their cars for three seconds at a time, if
they are the first to answer a question correctly. If they get the question wrong, their opponent
gets the time. The game continues until one player crosses the finishing line after completing a
set number of laps. The questions come from a plain text file and can be added to, or the subject
of them changed. They are multiple-choice questions with four possible answers, and players
indicate their answer by moving a special joystick button. The successful player’s joystick but-
ton will light up green, whereas the other player’s button will light up red.

Obtaining a Slot Car Racer
So how are you going to implement this game? First you need a slot car racing game. These
come in all sorts of shapes and sizes, from sleek Formula One racing cars to heavy trucks and
even grannies on Zimmer frames. In essence they are very similar: It’s a race between two
players. Mostly they are set up so that if you go too fast at the corners, the vehicle will come
off the track, so it is not just a matter of running the cars at top speed all the time. Normally
the track is some form of figure eight, so the track length can be made the same for both
players. Sometimes the two vehicles cross at the same level, giving opportunities for crashes,
and other times the tracks go over and under each other. Although there are very expensive
racing games, some can be had cheaply in thrift shops or second-hand stores.

Hacking Your Slot Car Racer
You need to hack into your slot car racer, and, as there are lots of different types of them, I can’t
be too prescriptive about what you need to do. However, from the electrical point of view, it is
basically all the same. What you are going to do is to wire a PiFace relay in series with each hand
controller. This will involve cutting one of the two wires coming from the controller, and con-
necting each end of your cut wire into the NO and common relay connections. NO stands for
normally open – this connection is only connected to the common line when the relay is ener-
gised; when the relay is not energised, that is the normal state – no electrical connection is
made. Figure 14-1 shows how you can do this using a screw connection block. These are the
type you use for electrical wiring around the house. They come in various sizes, and the size you
want is the smallest, which is often marked something like 3 Amps. A sharp hobby knife can
slice the two wires apart, and then you can cut one of them; it doesn’t matter which one. You
should cut back the insulation and then, following the diagram, attach each end to two of the
connector blocks. Take the other end and run wires off to the PiFace board. Do the same for the
other controller. When you want to play with your slot car game normally you simply replace
the long wires trailing back to the PiFace board with a simple link. Do this close to the track
connections so that you have the maximum length of wire on the hand controllers.

C H A P T E R 1 4   C O M P U T E R - C O N T R O L L E D S L O T C A R R A C I N G 335

Figure 14-1:
Hacking into
your slot car
racing game.

Sometimes the wires coming from the hand controller are all bundled into one cable, so it is
impossible to cut just one wire. If this is the case, you will have to cut both of them and join the
other wire back up again. This sort of thing is shown in Figure 14-2. In this case the wire consists
of an inner conductor and an outer braided wire sheath. Strip back the outer sheath and make
sure that no thin strands of wire are shorting out to the other wire. Use insulation tape or heat
shrink sleeving to insulate the sheath. Then wire it up as shown in Figure 14-2. Note that this
diagram is for one controller; you will have to duplicate this for the other player’s controller.

Figure 14-2:
Hacking into
your slot car
racing game if
you can’t cut
just a single
wire.

Testing Your Slot Car Racer Hack
Now you need to test the slot car hack. Power up your slot car racing game as normal and run
the program in Listing 14-1.

R A S P B E R R Y P I P R O J E C T S336

Listing 14-1  Slot Car Racer Hack Test
#!/usr/bin/env python
“””
Slot Racer Hack tester on the PiFace board
“””

import piface.pfio as pfio # piface library
pfio.init() # initialise pfio

def main():
 lastInput =0
 print “Slot Racer Hack test press the two input ;
switches”
 print “on the PiFace board to change who is racing”
 print “Ctrl - C to quit”
 while True :
 buttons = pfio.read_input()
 if (buttons & 1) ==1 and buttons != lastInput:
 print “player 1 racing”
 pfio.write_output(0x01)
 if (buttons & 2) ==2 and buttons != lastInput:
 print “player 2 racing”
 pfio.write_output(0x02)
 lastInput = buttons

if __name__ == ‘__main__’:
 main()

You will see it is a very simple program that just energised each of the relays depending on if
you press one of two buttons on the end of the PiFace board. A message is printed to say
which player is racing each time it changes. Make sure that the players are the right way
around and that you can play when the console message says you can. If you find the control
is the wrong way around – that is, when it says you can play you can’t and when it says you
can’t you can – then you may have mixed up the NO and the NC relay connections. NC
stands for normally closed – there is a connection between the common line and this one
when the relay is not energised. If you don’t hear the relay clicking at all but do see the two
lower LEDs come on and off, then check that the links JP5 and JP6 are made.

Getting the Player Input
Next you need to find a way to input the players’ answers. You could just arrange a row of four
switches for each player along with red and green LEDs. In fact the schematic in Figure 14-3
can be implemented in exactly that way. However, at this stage in the game you can be a lot
more adventurous than that, so I am going to show you how to make an illuminated switch
joystick using that same schematic. Not only is this useful for this project, but you also can use
the joystick on other projects in this book, replacing a keyboard input. In Chapter 8, “Colour

C H A P T E R 1 4   C O M P U T E R - C O N T R O L L E D S L O T C A R R A C I N G 337

Snap”, the colour snap project shows you how useful half table tennis balls are at acting as a
light diffuser. Well, now they are back, and this time they are even more useful. You are going
to mount four tactile button switches on a board, and, in each of the corners, have foam pads
that are slightly taller than the switches. Then, if you put the board switch side down, you can
click each switch in turn by simply pushing the board in that direction. The feel of the switch is
down to the rigidity of the foam pads you use. On the track side of the board, you mount a red/
green LED and cover the board in a half table tennis ball. Let’s see how to do that in detail.

Figure 14-3:
A schematic of
the joystick
button
controller.

The LED needs to be a bright one: Look for one with at least 60 mcd on the red, and 40 mcd
on the green at 20mA – brighter if you can get it; otherwise the switch could look a bit washed
out. I found 90 mcd red and 45 mcd green, which looked good.

Making the Joystick Buttons
Take a small piece of strip board 17 holes long, and 16 strips wide. I like to take the corners off the
board to give it an octagonal shape, just to make it look neater and ensure that the corners don’t
snag on the base. Cut the tracks on the back of the board where the dark marks are on Figure
14-4. Make sure that you count the tracks and holes carefully. Then solder a surface mount red/
green LED at the centre of the board, as shown between the two tracks and two track cuts. Make
sure that the orientation mark on the LED is correctly aligned. There are two types of surface
mount LEDs that you can get. One has the LEDs pinned out to the package in parallel; that is, the
two anodes are on one side and the two cathodes on the other. This is sometimes known as a
parallel LED pinout. The other way is known as antiparallel, where one anode and one cathode are
together at each end; these normally have a bar or some other marker, often green, denoting the
cathode. Make sure that you know which you are using. I have designed the board so that the
tracks you need to cut are the same for both versions. However, the links on the component side
are different for each LED type. When the LED is in place solder the two surface mount resistors
as shown between the cut marks. If you haven’t got surface mount resistors, then one-eighth
watt, or one-tenth watt, resistors should be small enough to mount on the tracks.

R A S P B E R R Y P I P R O J E C T S338

Figure 14-4:
The track side of

the joystick
button

controller board.

Now turn the board over and mount and solder the four tack buttons. This is shown in Figure
14-5 for an antiparallel LED package and Figure 14-6 for a parallel LED package. The differ-
ences are minor but important. The switches’ contacts should be either side of the cut tracks as
you insert them through the board. Note that in these figures, the copper strips are shown as

C H A P T E R 1 4   C O M P U T E R - C O N T R O L L E D S L O T C A R R A C I N G 339

hidden detail dotted lines, and the cut tracks are also shown as shaded. This is for ease of orien-
tation, although you won’t actually see this when you look at the board for real. The solid lines
are tinned copper links; these can be the scrap from cutting the legs of components or simply
stripped-back solid core wire. The foam pads can be glued on using impact adhesive; you can cut
them out from some packing material. Finally, a strip of 8-way ribbon cable is soldered to the
board to make the connections, and spots of hot melt glue make sure that the wires do not foul
the switches or pads. A photograph of this is shown in Figure 14-7; note that it is a photograph
of the antiparallel LED version of the joystick so it corresponds to Figure 14-5. At this point
you should test the board as described later in the subsection “Joystick Testing”. In that way
you can correct any mistakes before too much gluing is done. However, I will first continue the
building narrative as the finished article needs testing as well.

Figure 14-5:
The joystick
button
controller
components for
antiparallel LED.

R A S P B E R R Y P I P R O J E C T S340

Figure 14-6:
The joystick

button
controller

components for
parallel LED.

Boxing It Up
Now for the box to put it in. I used the plywood layer technique described in Chapter 8 to make
a box 116 mm (4 5/8") by 92 mm (3 3/4"), but the dimensions are not too critical. I made the
sides from 12 mm by 5 mm strip pine, and I fastened together the top and bottom with 10 mm
M3 spacers or tapped pillars. The holes in the bottom sheet were countersunk, and in the centre
of the top I used a saw drill to make a 40 mm hole. I gave it a coat of primer and then painted.
Each radial direction was painted a colour to match the software in the game – blue up, green
down, red right and yellow left. The spaces in between were painted grey. Figure 14-8 shows the
box taped up with painter’s tape, ready to receive the grey paint layer. Remove the tape while
the paint is still wet, and then when it has dried mask off the grey areas and paint in the colours.

C H A P T E R 1 4   C O M P U T E R - C O N T R O L L E D S L O T C A R R A C I N G 341

Figure 14-7: A
photograph of
the joystick
button
controller
components for
antiparallel LED.

Figure 14-8:
The joystick
button box
masked up
before painting.

R A S P B E R R Y P I P R O J E C T S342

To make sure that the top of the board is flush with the top of the hole, I mounted the board on a
piece of 4 mm acrylic by gluing the foam pads with impact adhesive. Figure 14-9 shows a side view
of this arrangement; note how the buttons are not in direct contact with the acrylic. I filed a slot
in the side of the box to allow the ribbon cable to come through, as shown in Figure 14-10.

Figure 14-9:
A side view of

the joystick
button

controller
button switches.

Figure 14-10:
The joystick

button
controller slot
for connecting

ribbon cable.

C H A P T E R 1 4   C O M P U T E R - C O N T R O L L E D S L O T C A R R A C I N G 343

Next is the most important part: You have to glue the acrylic in the correct place in the
board. Make sure that the copper strips are parallel with the box edge and that the LED is in
the centre of the hole when the lid is on. Then hold the board through the hole and remove
the lid of the box. Add some hot melt glue to the corners of the acrylic sheet without moving
it. What makes this difficult is the wire that is wanting to twist the orientation of the board.
Bend the wire to your will. Figure 14-11 shows the board with the hole correctly aligned.

Figure 14-11:
The joystick
button
controller
aligned under
the central hole.

Finally, fix the ribbon cable to the slot in the top side with a bit more hot melt glue. When it
has finally tested correctly you can glue the half table tennis ball by dropping it through the
hole as shown in Figure 14-12. When this has dried remove the lid and add a fillet of glue
neatly round the whole of the ball. Just remember you need two of these joysticks; the con-
nections to the PiFace board for the second player’s joystick button are shown in Figures
14-5 and 14-6 in brackets.

Joystick Testing
Just as with the slot car hack, you need to test your joystick buttons using a simple program
before you try anything fancy with it. The test program is shown in Listing 14-2.

R A S P B E R R Y P I P R O J E C T S344

Figure 14-12:
The complete

joystick button
controller.

Listing 14-2  Testing the Joystick Buttons
#!/usr/bin/env python

“””

Joystick button tester on the PiFace board

“””

import piface.pfio as pfio # piface library

pfio.init() # initialise pfio

positions = [“nothing”, “north (blue)”, “west (yellow)”, ;

“north west”, “east (red)”,”north east”,”east & west??”, ;

“big north”, “south (green)”, “north & south??”, “south ;

west”, “big west”, “south east”, “big east”, “big south”, ;

“all on”]

def main():

 lastInput =0

C H A P T E R 1 4   C O M P U T E R - C O N T R O L L E D S L O T C A R R A C I N G 345

 print “Joystick test press the joystick button”

 print “Ctrl - C to quit”

 while True :

 buttons = pfio.read_input()

 if buttons != lastInput and buttons != 0:

 print “bits are”,hex(buttons)

 print “player 1”,positions[buttons & 0xf]

 print “player 2”,positions[buttons >> 4]

 print “ “

 leds = (buttons & 0xC) | ((buttons >> 2) & 0x30)

 pfio.write_output(leds)

 lastInput = buttons

if __name__ == ‘__main__’:

 main()

When you first run this you will get the introductory message. Then any press on the joystick
will print out the bit pattern, in hex, read from the PiFace inputs, and followed by a message
telling you the state of each player’s buttons. These are displayed as the points of the compass
with the colours used in the slot car racing game in brackets. If you press in the east or south
direction, the red or green LED comes on and stays on until there is a change in either button.

The program is quite simple. First the inputs are polled as fast as possible, and then an if state-
ment is used to see if the input has changed since the last time it was looked at and also that the
input has a nonzero value. This ensures that you get only one message per key press and you don’t
get a message when the key is released. The bit pattern is then printed in hex, and the joystick
button positions for each player are printed out. These position messages are held in a list called
positions, and there is an entry for each of the possible 16 different combinations. Player 1 has
the four least significant bits of the input, and a simple bitwise AND operation just leaves player 1’s
input bits to use to look up what to print. For player 2 the top four bits in the input are shifted
down to the bottom four bits so that the same lookup table list can be used. Finally a bit pattern
is calculated to see what LEDs to light. This takes bits 6 and 7 and shifts them into the position of
bits 4 and 5. Then this is merged with bits 2 and 3 to give the output you need.

Notice that there are some positions with question marks; it is quite hard for example to press
both east and west without pressing either north or south – it is easier without the table tennis
ball attached, but that is not something you want to require when using the joystick button in
an application. These intermediate positions have to be included in the positions list because
you have to cater for all combinations, physically possible or not. There are also positions such
as a “big south”, which is one where east, west and south are all being pressed at one time. One
thing you might notice when testing some positions is that you get two messages such as one
saying south followed by another saying south west. This is because it is almost impossible to

R A S P B E R R Y P I P R O J E C T S346

press two buttons simultaneously; one goes down first followed by the other and so there is a
message for each. This is something to consider when using the joysticks in your own game.

The Software
After you have all the hardware prepared you are ready to put together the software support
for this project. This consists of two files, a question bank and a screen background logo. You
need at least one file containing the questions and answers; later on you might extend this to
more question banks, but for a start let’s look at just one file. You need a simple text file, just
like those you can create with Leafpad. Place one question per line, with the question first,
followed by the correct answer, and followed by three incorrect answers. Separate all the sec-
tions with commas including the last answer. You will see that there is a space between the
end of the last word and the comma, which allows the spacing in the box to look right. Listing
14-3 is a sample of the file format with just a few questions on the subject of IT. You should
save it under the name questions.txt.

Listing 14-3  Sample Questions
How many bits in a byte? , 8 , 10 , 4 , 16 ,

Which company did Bill Gates start? , Microsoft , Apple , Google ,

Facebook ,

What is the largest? , Terabyte , Gigabyte , Megabyte , Kilobyte ,

Which country owns the WWW suffix .de? , Germany , France , Denmark

, Dominica ,

What is the command to list files in Windows? , dir , ls , cat ,

files ,

What does UNIX stand for? , Nothing , UNIt eXchange , The creators

name , UNidentified Integrated eXchange ,

Which of the following is an operating system? , Linux , Bantex ,

Hopex , Bandx ,

What computer language uses the tags <body> and <meta/>? , HTML ,

Java , Python , Scratch ,

What does DBMS stand for? , Database management system , Database

migration statistics , Database management statistics , Database

migration statistics ,

Who invented the web? , Tim Berners-Lee , Alan Turing , Clive

Sinclair , Stephen Hawking ,

What was the forerunner to the Internet called? , ARPANET , SKYNET

, OUTERNET , FASTNET ,

What does LAN stand for? , Local Area Network , Legitimate Access

Network , Local Access Network , Legitimate Area Network ,

What was the first stored-program computer called? , The Baby , The

Infant , The Newborn , The Tiny ,

C H A P T E R 1 4   C O M P U T E R - C O N T R O L L E D S L O T C A R R A C I N G 347

What is another name for a CPU? , Processor , Disk drive , Memory ,

Thinker ,

What is Magnetic Ink Character Recognition often used on? , Cheques

, Bar codes , QRC , Laundry ,

Which of these is a mobile operating system? , Android , Windows

Vista , OS X , RISCOS ,

What are the tiny points of colour on your monitor called? , Pixels

, Pacsels , Points , Pica ,

What does WYSIWYG stand for? , What you see is what you get , What

you see is where you go , What you see is what you give , What

you seek is where you go ,

Where the question overruns a single line in this listing, you should type it in all on one line
when you create the file.

The other thing you need to prepare is the background screen logo. I made mine in Gimp, but
you can use any graphics drawing program. The image size needs to be 555 pixels by 540
pixels and should mirror the joystick buttons in some way. Figure 14-13 shows the program
running, and you can see the background logo underneath the multiple-choice boxes. The file
should be called racingLogo.png and be in the same directory as the game code and the ques-
tions file. However, the program will cope without its being present, but it’s not so colourful.

Figure 14-13:
The game in
progress.

R A S P B E R R Y P I P R O J E C T S348

The Game
Now you can get down to the game itself, which is shown in Listing 14-4.

Listing 14-4  The Slot Car Racing Game
#!/usr/bin/env python

“””

Slot Racer on the PiFace board

“””

import time # for delays

import piface.pfio as pfio # piface library

import random

import os, pygame, sys

pfio.init() # initialise pfio

pygame.init() # initialise graphics interface

os.environ[‘SDL_VIDEO_WINDOW_POS’] = ‘center’

pygame.display.set_caption(“SlotRacer”)

screen = pygame.display.set_mode([980,610],0,32)

background = pygame.Surface((980,610))

piSurface = pygame.Surface((555,540))

define the colours to use for the user interface

cBackground =(255,255,255)

cLEDon = (255,0,0)

cLEDoff = (128,128,128)

cOutline = (255,128,0)

cText = (0,0,0)

cTextBack = (220,220,220)

altcText = (255,255,255)

altcTextBack = (180,180,180)

cStepBlock = (0,255,255)

cope with not having the picture of the racing pi

try:

 piPicture = ;

pygame.image.load(“racingLogo.png”).convert_alpha()

 piSurface.blit(piPicture,[0,0])

except:

 piSurface.fill((220,220,220)) # make just a grey area

Set up questions

qfile = open(“questions.txt”,”r”)

questions = list()

C H A P T E R 1 4   C O M P U T E R - C O N T R O L L E D S L O T C A R R A C I N G 349

numberOfQuestions = 0

for line in qfile.readlines():

 questions.append(line)

 numberOfQuestions +=1

qfile.close()

random.shuffle(questions)

placeX = [490,490,355,625,490, 150, 800]

placeY = [20, 110, 305, 305, 510, 80 ,80]

aPos = [-1,-1,-1,-1]

single = [0, 1, 2, 0, 3, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0]

background.fill(cBackground) # make background colour

font = pygame.font.Font(None, 28)

seq = [1 << (temp & 0x7) for temp in range (0,32)]

initial sequence

timeInc = 0.3

stepInt = True # getting the step signal from inside the Pi

step = 0 # start point in sequence

nextTime = time.time()

answer = “answer”

answerPos = -1

def main():

 ask =0

 while True :

 while pfio.read_input() != 0:

 checkForEvent() # wait until switch is released

 setupScreen(ask)

 checkInput()

 ask += 1

 if ask >= numberOfQuestions :

 ask = 0

 random.shuffle(questions)

def checkInput():

 buttonsInput = 0

 while buttonsInput == 0:

 buttonsInput = pfio.read_input()

 checkForEvent()

 if buttonsInput >= 0x10 :

 first = “ player 2 “

 second = “ player 1 “

continued

R A S P B E R R Y P I P R O J E C T S350

Listing 14-4  continued
 buttonsInput = buttonsInput >> 4

 bits = 0x26

 else:

 first = “ player 1 “

 second = “ player 2 “

 bits = 0x19

 #print hex(buttonsInput), single[buttonsInput] , answerPos

 if single[buttonsInput] == answerPos:

 drawWords(“Correct”+first+”wins”, 5, False)

 drawWords(first+”to race for 3 seconds”, 6, False)

 pfio.write_output(bits)

 else:

 drawWords(“Wrong”+first+”loses”, 5, False)

 drawWords(second+”to race for 3 seconds”, 6, False)

 pfio.write_output(bits ^ 0x3f)

 correct()

 pfio.write_output(0)

 correct() # keep on flashing for a bit

def scramble():

 global aPos

 aPos = [-1,-1,-1,-1]

 for p in range(0,4):

 match = True

 while match:

 match = False

 candidate = random.randint(1,4)

 for i in range(0,4):

 if aPos[i] == candidate:

 match = True

 aPos[p] = candidate

def setupScreen(question) : # initialise the screen

 global answer, answerPos

 screen.blit(background,[0,0]) # set background colour

 screen.blit(piSurface,[210,50])

 pygame.display.update()

 time.sleep(2.0) # delay while the players settle down

 q = questions[question].split(“,”)

 scramble()

 drawWords(q[0],0, False)

C H A P T E R 1 4   C O M P U T E R - C O N T R O L L E D S L O T C A R R A C I N G 351

 drawWords(q[1],aPos[0], False)

 drawWords(q[2],aPos[1], False)

 drawWords(q[3],aPos[2], False)

 drawWords(q[4],aPos[3], False)

 pygame.display.update()

 answer = q[1]

 answerPos = aPos[0]

def drawWords(words,pos,inv) :

 if inv :

 text = font.render(words, True, altcText, ;

altcTextBack)

 else :

 text = font.render(words, True, cText, cTextBack)

 textRect = text.get_rect()

 if pos == 2 :

 textRect.right = placeX[2]

 elif pos == 3:

 textRect.left = placeX[3]

 else:

 textRect.centerx = placeX[pos]

 textRect.top = placeY[pos]

 pygame.draw.rect(screen,cTextBack, textRect, 0)

 screen.blit(text, textRect)

 pygame.draw.rect(screen,cOutline, textRect, 2)

def correct() :

 nextTime = 0

 for flash in range(0,10) :

 while time.time() < nextTime :

 pass

 if flash & 1:

 drawWords(answer,answerPos, False)

 else :

 drawWords(answer,answerPos, True)

 pygame.display.update()

 nextTime = time.time() + 0.3

def terminate(): # close down the program

 print (“Closing down please wait”)

 pfio.deinit() # close the pfio

 pygame.quit() # close pygame

continued

R A S P B E R R Y P I P R O J E C T S352

Listing 14-4  continued
 sys.exit()

see if we need to quit or look at the mouse

def checkForEvent():

 event = pygame.event.poll()

 if event.type == pygame.QUIT :

 terminate()

 elif event.type == pygame.MOUSEBUTTONDOWN :

 pass

 #print pygame.mouse.get_pos()

 elif event.type == pygame.KEYDOWN and event.key == ;

pygame.K_ESCAPE :

 terminate()

if __name__ == ‘__main__’:

 main()

The program starts with a lot of initialisation for screens, colours and variables. Then the ques-
tion file is opened, and all the lines are read into a list, called, appropriately enough, questions.
The lines are counted, and then the order of the questions is shuffled so it is different every
time. After that are some variables that define where things are going to appear on the screen:
the question, the four answers, the player who is correct message and the player who gets to
race message. It is convenient having them all in one place for when you want to tinker with
the screen layout. What’s left is a useful development tool in this code, one that prints out the
position of the pointer when you click the mouse. This is useful for knowing where to place
things. If you want to use it, just remove the # in front of the print .mouse.get_pos
instruction. Finally, the list called single has the conversion lookup table required to trans-
late between the button press, and the answer number it signifies.

The main function is, as always, the heart of the program and controls the top-level flow. You
can see that it is mainly one endless loop asking the questions one at a time in the list. The
first thing it does is hold the program in a loop until all buttons are released. Then the screen
is set up with the question on it, and the checkInput function holds until an answer is
entered and the winning player rewarded. When all the questions have been asked, the ques-
tion number is set back to the beginning, and the list of questions is shuffled again. This is
because the end of the game is defined by a player’s racing car completing the required num-
ber of laps; the Raspberry Pi knows nothing of this. That is why it is important to have a
decent number of questions in the question file so that the game does not get too repetitive.

C H A P T E R 1 4   C O M P U T E R - C O N T R O L L E D S L O T C A R R A C I N G 353

The setUpScreen function does just that – it puts everything onto the screen. First off it
clears the screen and then puts up the background picture. Then there is a small delay for the
players to prepare themselves, and the components of the question are separated out into
distinct variables in a list as delimited by the commas. Next you need to put the answers in
random positions. Although in the question file the correct answer is always the first one, it
would be a bit of a dead giveaway if the correct answer always appeared in the same place on
the screen, so the game has to scramble the positions. This is done by creating a list called
aPos, short for answer position, that holds numbers 1 to 4 to show where each one is to be
displayed. This is done in a function called, surprisingly enough, scramble. The way this is
done is by generating a random number between 1 and 4 and then checking through the list
to see if that number appears already. The first time around it doesn’t appear, so it is stored
in the first position. Next a candidate for the second position is generated, and the list
searched to see if it has used it before. If it has, it generates more random numbers, and con-
tinues doing so until it finds one that hasn’t been used before. This is done for all four posi-
tions. Although it might sound a bit silly to do this for the last position, you can simply use
the same code as you did before. This is sort of like the instruction to throw a six before
continuing, which is found in some simple board games. However, as the computer is very
fast it will eventually come up with the missing number before a noticeable time has passed.

So having got the list of where to put each answer, the setUpScreen function continues by
drawing the question and answer on the screen. It does this by calling up the drawWords
function, which takes in three variables – the text to draw, the position number to draw it in
and a logic input that determines if the text is to be rendered in the alternate text colour or
not. You will see at the end of this section how that feature is used when the program flashes
the correct answer in response to an incorrect one. The position number is used to access the
global lists placeX and placeY defined at the start of the code. Normally this position
defines the centre of the text rectangle but in the case of positions 2 and 3, the X position
defines an end of the text rectangle. This is so that those answers can be placed close to the
central graphic and the variable length text box can extend in either direction from that posi-
tion. Then the text background rectangle is drawn, the text over the top of it and finally an
outlined rectangle drawn on the top of that.

Back in the setUpScreen function, you make a note of what the correct answer is and what
position it is in. You will use that later when it comes to flashing the correct answer.

After setting up the question on the screen you need to check for the answer coming in, see
if it is correct and take the appropriate action. All this is done in the checkInput function.
This starts with a loop that checks the input and looks for any pygame events such as quit.
As soon as a player button press is detected the code works out which player has pressed first
by looking at the input bit pattern as a number. Because you have arranged all the buttons
for one player to occupy four consecutive bits, this test is easy. If the number is greater or
equal to the hex value 0x10, player two has pressed first; otherwise it is player one. The next

R A S P B E R R Y P I P R O J E C T S354

bit of code initially assumes that the first player to press is correct, and the bit patterns that
are going to turn on the red and green LEDs on the two joysticks and enable the Slot Car
game are set up. Then the response is evaluated to see if it is correct. This is done by using the
list called single to convert or look up the four button press bits into a screen answer posi-
tion, which is then compared to the answer position that was previously noted. If it matches,
the initial assumption is correct – that is, the player to respond first got it right; however, if
it doesn’t match, you need to invert the bits defining the LEDs and relay with an exclusive OR
operation ^ using a mask of 0x3f. Also, the results display needs to be changed.

With the results displayed and Slot Car game enabled, the correct function is called. This
flashes the correct answer by alternately writing it in the normal text colour, or the alternate
text colour. This is done at 0.3 second intervals defined in the last line of the function for ten
times as defined in the second line of the function, giving a total of three seconds. Changing
any one of these two lines will change this three-second time. When this function returns to
the checkInput function all the PiFace outputs are turned off. This disables the racing car
and turns off the LEDs. Then the correct function is called again. This keeps on flashing the
correct answer for a further three seconds.

Over to You
Well, there you have the game as I wrote it. Now it is over to you to make it better or more
suit what you want it to do. You can change the racing car time; three seconds might not
seem very long, but I have found it is about right. However, with a bigger track to control you
might want it to be longer, or with a smaller track you might want it to be shorter.

Then there are the questions. You can add many more questions to the file, but you might want
to have more than one set of questions of differing difficulty or on different subjects. You can
arrange that the user types in the name of the question bank file first. Better yet, you can give
the user a list of filenames and get him or her to type in the appropriate number. If you use the
right sort of file list command, you can list all the .txt files in the directory so that you simply
need to add another file to the directory for it to be automatically included in the list.

Finally, think about sound effects. You have seen in many of the programs in previous chap-
ters that there are sound effects, and they are quite easy to add too. How about a car roaring
noise when the game is enabled? Or you could add a blip to indicate when a question is up on
the screen ready to be answered. Or you could add a correct and incorrect noise of applause
and sighs, respectively. The choice is yours. Race away!

Chapter 15
Facebook-Enabled Roto-Sketch

by Mike Cook

In This Chapter

❍	 Learn about rotary shaft encoders

❍	 Use rotary shaft encoders to control a drawing program

❍	 See how to make Python draw a picture

❍	 Discover how to interface to a tilt sensor

❍	 Learn how to automatically load image files to Flickr and
Facebook

R A S P B E R R Y P I P R O J E C T S356

HERE IS AN idea I bet nobody has thought of before: Use two rotary controls to steer the
path of a point on the screen. Where the point has been, it leaves a trail so you can sketch a
picture using two knobs mounted on a box. In a crazy twist, how about if the picture was
erased when you turned the box upside down and gave it a shake. Way out? I know, but it
might just catch on, especially when you can post your artistic efforts straight to Facebook
for all your friends to see.

The Concept
Well, maybe I have been beaten to a patent on this idea, but it is an interesting project from
many angles – not the least of which is the requirement for a rotary control. In the old days
of analogue, most rotary controls were potentiometers, or pots as they are called for short.
These were potential dividers where a fixed resistance had a tap off point or wiper, controlled
by a rotary knob or a slider control. The rotary type tended to have a travel of somewhere
between 180 and 270 degrees; there were some special continuous rotary types, but they
were made mainly for servo motor positioning control and were quite expensive. What is
more, there was a dead spot where the wiper had to wrap round from one side of the fixed
resistor to the other. An extra complication in using this sort of control with a computer is
the fact that the pot produced a changing voltage output, and this has to be digitised with an
analogue to digital converter (A/D) before a computer could make any use of it.

Although it is perfectly possible to build an A/D, it is often much simpler to keep everything
in the digital domain. So, in modern designs where you want a continuously rotating control,
a component is used called a rotary shaft encoder. These come in many different implementa-
tions, but by far the cheapest is the switched type. Another type is an optical encoder where
the rotary movement is detected by something interrupting a beam of visible or infrared
light. Optical encoders were widely used in the old type of computer mouse, the ones that
had a ball in the base. A much newer type of rotary encoder utilises magnetic sensing to
detect changes, which is covered in much more detail in the next chapter, “The Pendulum Pi,
a Harmonograph”.

Rotary Encoder Types
The switched rotary encoder is at the heart of this project, and you have the choice of several
different types. Perhaps the most distinguishing feature is whether the encoder has detents
or not. A detent is a mechanical stop on a rotary spindle that divides the rotation into a set
number of increments. When you twist an encoder with detents you feel multiple clicks as
you twist. This is ideal for a control because you get a good positive feedback of its movement
and when you release the control it stays where it is.

C H A P T E R 1 5   F A C E B O O K - E N A B L E D R O T O - S K E T C H 357

By far the most common type of encoder is known as the incremental type, which gives an
indication of the fact that the control has been moved and in what direction it has been
moved. Encoders are often classified by how many steps there are in one rotation. For
switched encoders this is normally between 8 and 16 clicks per rotation. Some encoders also
incorporate a central switch into the rotary control that is activated by pushing down.
Applications for these types of controls include menu selection, volume control and switch-
ing through a large set of values. The point is that the controls themselves provide very little
feedback on the exact angle they are at, leaving it to the application hardware and software to
provide it in an appropriate manner.

The Encoder Output
In order to use an encoder in any project you have to make sense of the signal it produces.
There are two signal lines from each encoder and a common line. The signals are either con-
nected to the common line or not by the internal switch, and normally the common line is
connected to ground. The signals therefore are simply on and off, but they are phase shifted
by 90 degrees from each other; the technical term for the signals is a quadrature output. Take
a closer look at these in Figure 15-1. The two signals are normally called Ø0 and Ø1 although
they are sometimes called A and B. This sort of diagram is called a timing diagram, time from
left to right, logic level up and down. This shows what happens when you rotate the shaft
clockwise. Looking at the two signals you will see there are four different combinations of
high and low from the switch; each stable region between the transitions is marked with a
letter on the diagram. One very important thing to notice is that only one of the outputs
changes at any time; this sort of sequence is known as a Gray code after its inventor Frank
Gray, and is used so there is never any confusion over what is being indicated, or if there is it
is only between adjacent regions. Underneath the timing diagram is a list of each stable state
of the output switches for clockwise and anticlockwise rotation. So you will see that you can’t
tell very much from just looking at the outputs of the switch; you need to know a bit about
the history – that is, what state they were in before.

This is all well and good but you have to take another thing into consideration, and that is
contact bounce. When any mechanical contact makes or breaks it does not do it cleanly; that
is, the transition from on to off is not a nice simple signal as is drawn on timing diagrams.
Imagine dropping a table tennis ball onto a hard table; the ball doesn’t just hit the table and
stop, but it bounces in a sequence of ever shorter bounces. The same thing happens to
switches, and if the computer were to look at the switch often enough it would see a series of
rapid on/off changes; this is known as contact bounce and affects all mechanical switches to a
greater or lesser extent. The duration of the bounces might be 20 to 200 mS or even longer in
some cases. Most of the time this is not a problem because the rest of the code ensures that
the switch is not looked at so frequently, but in some cases it is important, especially ones
where the code is doing little between looking at a switch.

R A S P B E R R Y P I P R O J E C T S358

Figure 15-1:
The logic output

of a rotary
encoder.

C H A P T E R 1 5   F A C E B O O K - E N A B L E D R O T O - S K E T C H 359

For example, imagine you just want to count how many times a button is pressed; simple
code to do this will often fail due to contact bounce. It will appear to record more pushes
than you make. The switch needs what is called debouncing, reminiscent of Tigger in Winnie
the Pooh. For the simple example of just counting button pushes, a delay of 20 mS after a
push is detected is normally enough to sort things out. However, contact bounce in rotary
encoders can lead to problems of adding extra steps or getting the software monitoring it so
mixed up that it thinks it is being turned in the opposite direction. As the shaft is sometimes
being rotated quite rapidly, using a delay is inappropriate, so you have to consider something
else to give a clean output. Fortunately the nature of the Gray code allows you to reject
bounces.

For any given state of the outputs of a rotary encoder, there are three possible states it could
change to next: one for clockwise rotation, one for anticlockwise rotation and one where it
can’t possibly go but might due to contact bounce. This last state is an error state. Figure
15-2 summarises each current state of the encoder and the three states that could follow. So
when you read an encoder, and knowing the last state, if you come across an error state then
all you do is ignore the reading. That is, do not update the last state with the new reading and
do not indicate a step movement. Otherwise you can indicate that a clockwise or anticlock-
wise motion has taken place and update the last state with the new reading.

Well, you would think that covers it all, but there is one last curveball you have to cope with –
and that is detents. There are two types of rotary shaft encoders with detents, and this is where
the detents are placed in the switch output sequence. Figure 15-3 shows the two methods that
are used. The first one has the detent in position A – that is, between the clicks the switch goes
through all the transitions available. The order in which these transitions occur tells you if the
click was a clockwise or anticlockwise click. The second scheme has a detent in every other posi-
tion so it comes to rest with either both signals high or both low, but again the transition
between these states tells you the direction. I have not seen an encoder with detents in every
position, so, if they do exist, they are rare. Encoders made by the company Alps tend to have
one detent per sequence, and those made by Bourns tend to have two. In this project I used
Bourns encoders although it is simple enough to use Alps.

A rotary encoder needs quite a bit of looking after from the software point of view, and there
are two ways to do this: with interrupts or polling. Interrupts are where the action of the
switch causes the computer to interrupt what it is doing and call a special interrupt service
routine which will handle the change. This is by far the best way of doing things, but unfor-
tunately doing this under Linux is tricky and not very effective. It can be done but often the
interrupts come too frequently for it to cope. The other way is polling, which is looking at the
switches as quickly as possible in the code. This is an acceptable solution for this application
as the code spends most of its time waiting for movement from the encoder and the visual
feedback is such that a missing click or two during rapid rotation is not very important.

R A S P B E R R Y P I P R O J E C T S360

Figure 15-2:
The logic

sequence of the
rotary encoder.

C H A P T E R 1 5   F A C E B O O K - E N A B L E D R O T O - S K E T C H 361

Figure 15-3:
The two types of
detents for
rotary encoders.

R A S P B E R R Y P I P R O J E C T S362

Just one more thing you need to look at before you can start making your control box, and that
is the detector that allows you to erase the drawing when you turn the control box upside
down. For this the simplest thing to use is a tilt switch. In the old days this was made with
mercury sloshing about in a tube that made an electrical contact with two wires mounted in the
end of the tube. Now, however, the use of mercury is frowned upon, and it is even banned in
certain classes of electronic equipment although you can still buy mercury tilt switches as a
component. Although those are undoubtedly the best form of tilt switch, for this project a low-
cost alternative will do quite nicely. This consists of a very small ball bearing sealed in a tube
with contacts at one end; as the ball rolls to the end it shorts out the contacts. The problem with
this sort of switch is that occasionally sometimes the ball fails to short out the contacts, but all
that means in this context is that you need to shake it to bash the ball into the contacts.

Now that you know about all the parts you need, it is time to put them together in a control
box. Figure 15-4 shows the schematic of the control box. Basically the two encoders have three
connections, and the centre is connected to ground as is one side of the tilt switch. Then all the
other wires go to input pins on the PiFace board. Remember the inputs are numbers 0 to 7 –
not 1 to 8. The encoders occupy the top four bits with the tilt switch being connected to the
next one down, input 3. Note that inputs 2, 1 and 0 are not used in this project. I built this in a
low-cost, ready-made black plastic box and wired it up with a length of ribbon cable stripped
back to six connectors. I cut a small notch in the wall of the box to allow the ribbon cable to pass
through when the lid was screwed on. This is shown in Figure 15-5. Finally the lid was screwed
on and became the base of the unit, and four small self-adhesive feet of felt pads were attached
and two knobs attached to the shafts. The final unit is shown in Figure 15-6.

Figure 15-4:
The schematic

for the
roto-sketch
control box.

C H A P T E R 1 5   F A C E B O O K - E N A B L E D R O T O - S K E T C H 363

Figure 15-5:
The wiring for
the roto-sketch
control box.

Figure 15-6:
The finished
roto-sketch
control box!

R A S P B E R R Y P I P R O J E C T S364

It is time to test what you have; as usual, a short piece of code whose only function is to test
the hardware is given in Listing 15-1.

Listing 15-1  Roto-Sketch Control Box Test 1
#!/usr/bin/env python

“””

Rotary Encoder input test 1 - raw inputs

encoders wired to inputs 6 & 7 and 4 & 5

“””

import piface.pfio as pfio # piface library

pfio.init() # initialise piface

print “Single encoder input test Ctrl C to quit”

print “Displays raw input from encoder”

lastEncoder = -1

display = [“00”,”01”,”10”,”11”]

while True:

 encoder = pfio.read_input() & 0xF8

 if lastEncoder != encoder:

 enc2 = (encoder >> 4) & 0x03

 enc1 = (encoder >> 6)

 print display[enc1],” “,display[enc2],

 if encoder & 0x08 != 0 :

 print “ box inverted”

 else :

 print “ “

 lastEncoder = encoder

You can see that this code is a bit fancy in the way it displays the input values. Rather than just
have the raw number or even a bit pattern, I have used a list called display to show the bit
pattern in a clear way. You can print it out in binary, but you get a 0b before the number, which
makes it a bit difficult to read. As it is you will get the bit pattern printed out each time there is
a change in the input. You can easily see what sort of detent encoder you have by noting the
transitions between clicks. As the tilt switch is activated you will see a message telling you the
box is inverted. The first pattern printed out is what you will be using for the X movement.

Next, you’ll try to do something with those numbers that are being returned. This is a bit
more tricky than you might at first think. The program in Listing 15-2 takes just one of the
encoders and keeps track of the clicks.

C H A P T E R 1 5   F A C E B O O K - E N A B L E D R O T O - S K E T C H 365

Listing 15-2  Rotary Encoder Testing
#!/usr/bin/env python

“””

Rotary Encoder input test 2 - show count

encoder wired to inputs 6 & 7

“””

import piface.pfio as pfio # piface library

pfio.init() # initialise piface

print “Single encoder input test Ctrl C to quit”

print “Displays accumulated count for X control”

lastEncoder = pfio.read_input() & 0xC0

count = 0

while True:

 encoder = pfio.read_input() & 0xC0

 if lastEncoder != encoder and (lastEncoder == 0 or ;

lastEncoder == 0xC0):

 if (lastEncoder == 0 and encoder == 0x80) or ;

(lastEncoder == 0xC0 and encoder == 0x40) :

 count -=1

 if (lastEncoder == 0xC0 and encoder == 0x80) or ;

(lastEncoder == 0 and encoder == 0x40) :

 count +=1

 print count

 lastEncoder = encoder

When you study the listing you will see that what happens here is that once the encoder is read,
the values are passed into an if statement that looks for the condition of the last encoder read-
ing being in one of the two detent positions, and the current reading not being the same as the
last reading. In other words the encoder has just moved from its rest position. Now you see in
what direction it has turned by looking at the current reading in conjunction with the last read-
ing. There are two possible readings for an anticlockwise motion depending on the previous
reading; if either of these two conditions is met then a count is decremented. Similarly for a
clockwise movement there are two possible previous and current combinations indicating a
click. Notice that the position is printed out independently of either clockwise or anticlockwise
rotation being detected. This means that if you see two numbers the same printed out consecu-
tively, then there has been a contact bounce reading that has resulted in an error which has
been ignored. You will notice that the values compared with those from the encoder are hard
coded. That is, they refer only to that one encoder wired in the top two bits of the input. In
order to make things more efficient you can shift the bits you are interested in into the lowest
two bits and use the same code for reading both encoders.

R A S P B E R R Y P I P R O J E C T S366

Posting to Facebook
Now you want to be able to post your creations to Facebook, and it is not as easy as you
might think. This part has perhaps taken up more hours to get right than anything else in
this book. Facebook does allow picture posting to happen remotely, but you have to register
with them as a developer and you have to have a server that will run your app. Although this
is fine for purveyors of mobile apps and the like, it has a few downsides for the individual.
You end up needing to pay for the app hosting and creating a unique name for yourself. Also,
the fact that you need to create the app in another language is offputting for beginners. It
also would not be good for Facebook to have all of you readers create your own apps just for
your own personal use. All in all this is much more complicated than it should be.

Using Flickr
Whereas Facebook is difficult to post to, Flickr makes it some what easier to upload pictures
and, as an added bonus, you can link your Flickr account to Facebook – so two for the price
of one. However, it is not all plain sailing, and it is not as simple as it could be. One way to
post a picture is to e-mail your pictures to Flickr, to a unique address you can find on your
Settings page. This is easy to automate, but unfortunately pictures posted like this never
seem to be transferred onto your Facebook timeline. This problem stumped not only the
online forum of experts but also Flickr’s help desk. It turns out that this is actually a bug in
the Flickr web code which might be fixed by the time you read this, but I can’t rely on that
when writing a book – it has to work now.

Pictures posted from a browser however are linked to Facebook, so what is required is to have
some way of doing that automatically from the Pi. The answer I came up with was to use the
folders2flickr package found at http://code.google.com/p/folders2flickr/
source/checkout, which is actually a subversion repository for the code. Subversion is a
revision control software system that is used in professional circles; it keeps track of develop-
ers working on a small subset of files for a large project. It maintains a backup system so that
any earlier version of code can be reverted to at any time. This is very handy because a com-
mon occurrence, when many developers are working on a large program, is that someone will
make a change that will break the code in an area he or she is not working on, and therefore
will not see. Subversion allows the developers to rapidly backtrack and revert to a previously
working project. To get at the source code for the folders2flickr package, all you need to
do is to use the desktop to go to the directory that you are working with for this chapter; I
suggest you name it sketch as it will eventually contain the code to drive the roto-sketch
hardware. Then from the Tools menu select the Open Current Directory in Terminal option.
This will cause a Terminal window to appear. Type this into it:

svn checkout http://folders2flickr.googlecode.com/svn/trunk/

folders2flickr-read-only

http://code.google.com/p/folders2flickr/source/checkout
http://code.google.com/p/folders2flickr/source/checkout

C H A P T E R 1 5   F A C E B O O K - E N A B L E D R O T O - S K E T C H 367

Type the preceding all on one line, and it will download a zip file of the package’s source code.
Then type

unzip folders2flickr-read-only

to unzip the source code files. Then go back to the desktop and change the name of the
resulting directory to just folders2flickr. Now you have to edit a file in this directory
called uploadr.ini so that it works the way you need it to. Double-click it to open up a text
editor and change the line

imagedir=d:\pictures

to read

imagedir=roto-sketch

This sets the directory that contains the files to be uploaded to Flickr. Then edit the visibility
parameters to read

public = 1

friend = 0

family = 0

This is needed because only publicly visible files are passed on to Facebook, never family or
friends. Save this file in your sketch directory – not in the folders2flickr directory
where it came from. At this stage it is best if you authenticate the package with your Flickr
account, so make sure that you have a directory called roto-sketch in your sketch direc-
tory and that it contains a small image. Now make sure that you are connected to the
Internet, get a command line in the sketch directory and then run the package by typing

python folders2flickr/uploadr.py

It is important you do this and not get your command line in the folders2flickr direc-
tory because this package has a bit of an issue with where it puts things and doing it this way
will make it work when you get to running the final program. However, this is where things
could get tricky because you will be asked if you have authenticated this program yet.
Whatever you do at this stage do not answer this question yet. What will happen is that a
browser window will pop up. I say “pop”, but this rather exaggerates the speed; it will rather
ooze up as opposed to pop. When I tried this, the browser Dillo popped up and then refused
to do anything. I had to arrange for the browser Midori to pop up instead by deleting the

R A S P B E R R Y P I P R O J E C T S368

Dillo browser. When it does you wait and wait, until the window opens and the Flickr login
page appears. Even then you have to wait for something to finish. The trick is to keep an eye
on the CPU usage block in the bottom right-hand corner; when this stops showing solid
green you can then type your username and password and log in. Two more pages will follow
asking you if it is correct that you want to authorise the use of this package. Only when the
page telling you to close the page has finished loading and you have closed the page can you
then go and answer that question on the Python console with an affirmative Y for yes. Then
the contents of your roto-sketch directory will be transferred to Flickr.

When you look at your sketch folder after this you will see that there have been some files
created by this process – an error log, a debug log and a file called history. This history file is
used to make sure only images that were placed in the roto-sketch directory since the last
upload are uploaded and not all of them again. If you turn on the Show Hidden option in the
View menu you will also see a file called .flickrToken; this information is used so that you
don’t have to go through the authorisation process each time you run the uploader. If you are
curious, you can double-click the file and see what the token looks like. However don’t alter
it or delete the file, or you will have to go through the whole authorisation rigmarole again.
You should now go to Flickr and check that the image has arrived. At the same time you can
go to the Settings page and click the option to connect Flickr to Facebook. You will then have
to go to Facebook and set the permissions as to whom you want to see these postings from
Yahoo!. (By default it is just you.) This is found in the App Center icon on the left side; click
Your Apps, and use the Yahoo one. Click Yahoo to change the settings.

A word of caution: It can take up to an hour after posting on Flickr for the pictures to appear
on Facebook. If they still don’t appear, Flickr recommends disconnecting the Facebook link,
waiting a few minutes and then connecting it again. I have had to do this once.

Part of the problem I found with the setup was the poor wording of the instructions that
were printed out during the authorisation phase. I think it would be much better if the
getAuthKey function, in the uploadr.py file, were replaced by the code in Listing 15-3.

Listing 15-3  Replacement getAuthKey Function
“””

Checks to see if the user has authenticated this application

“””

def getAuthKey(self):

 d = {

 api.frob : FLICKR[api.frob],

 api.perms : “delete”

 }

 sig = self.signCall(d)

C H A P T E R 1 5   F A C E B O O K - E N A B L E D R O T O - S K E T C H 369

 url = self.urlGen(api.auth, d, sig)

 ans = “”

 try:

 webbrowser.open(url)

 print “You need to allow this program to access ;

your Flickr site.”

 print “A web browser should pop open with instructions.”

 print “When you have authenticated this application ;

type Y”

 print “If you failed or don’t want to then type N”

 ans = raw_input(“Sucess? (Y/N): “)

 except:

 print str(sys.exc_info())

 if (ans.lower() == “n”):

 print “Please try again”

 sys.exit()

The action of the function is the same, but the user instructions are much more clear.

The Final Roto-Sketch Program
With all the pieces of infrastructure in place you now come to the final program which brings
this all together. The Roto-Sketch program is shown in Listing 15-4.

Listing 15-4  The Roto-Sketch Program
#!/usr/bin/env python

“””

Rotary Encoder Roto-sketch

encoder 1 wired to inputs 6 & 7

encoder 2 wired to inputs 4 & 5

Tilt switch wired to input 3

“””

import colorsys

from smbus import SMBus

import os, sys, pygame

from pygame.locals import *

import piface.pfio as pfio # piface library

import subprocess

pfio.init() # initialise piface

continued

R A S P B E R R Y P I P R O J E C T S370

Listing 15-4  continued
pygame.init() # initialise pygame

pygame.event.set_allowed(None)

pygame.event.set_allowed([pygame.KEYDOWN, pygame.QUIT,;

pygame.MOUSEBUTTONDOWN])

os.environ[‘SDL_VIDEO_WINDOW_POS’] = ‘center’

pygame.display.set_caption(“Roto-Sketch”)

screen = pygame.display.set_mode([512,512],0,32)

lastEncoder = [0,0]

current_reading = [256,256]

last_reading = [256,256,256,256]

defines initial starting position

col = (0,0,0)

colCursor = (128,128,128)

background = (255, 255, 255) # screen background colour

picture = 1 # picture number

fileName =”name”

lastPort = -1

def main():

 global current_reading, last_reading

 print “Roto-sketch the keys are:-”

 print “R, G, B, Y, M, P, K (black), W to select colour”

 print “Space bar for wipe screen”

 print “L - for Line to saved point, C for Circle centre on ;

save point”

 print “S to save current point for future line and ;

circle commands”

 print “Home key to save sketch to file”

 print “# to post on Flickr and Facebook”

 blank_screen()

 while(True): # do forever

 readEncoders()

 pygame.draw.rect(screen,col,(last_reading[0],;

last_reading[1],2,2),0)

 pygame.draw.line(screen,col,(last_reading[0],;

last_reading[1]),(current_reading[0],current_reading[1]),2)

 pygame.draw.rect(screen,colCursor,(current_reading[0],;

current_reading[1],2,2),0)

 last_reading[0] = current_reading[0]

save this position for drawing from for next time

 last_reading[1] = current_reading[1]

C H A P T E R 1 5   F A C E B O O K - E N A B L E D R O T O - S K E T C H 371

 pygame.display.update()

#end of main loop

Function definitions

read two encoder with alternating 00 11 detent

def readEncoders() : #exit when one has moved

 global current_reading, lastPort

 moved = False

 inc = 8

 while not moved :

 checkForQuit()

 port = pfio.read_input()

 portP = (port & 0xc0) >> 6

 lastPortP = (lastPort & 0xc0) >> 6

 for axis in range(0,2) :

 if lastPortP != portP and (lastPortP == 0 or ;

lastPortP == 0x3) :

 if (lastPortP == 0 and portP == 0x2) or ;

(lastPortP == 0x3 and portP == 0x1):

 current_reading[axis] -= inc

 moved = True

 if (lastPortP == 0x3 and portP == 0x2) or ;

(lastPortP == 0 and portP == 0x1):

 current_reading[axis] += inc

 moved = True

 portP = (port & 0x30) >> 4

 lastPortP = (lastPort &0x30) >> 4

 if port &0x8 :

 blank_screen()

 lastPort = port

def blank_screen():

 screen.fill(background) # blank screen

 pygame.display.update()

def terminate():

 print “Closing down please wait”

 pfio.deinit()

 pygame.quit()

continued

R A S P B E R R Y P I P R O J E C T S372

Listing 15-4  continued
 sys.exit()

def checkForQuit():

 global col, picture, last_reading, fileName

 event = pygame.event.poll()

 if event.type == pygame.QUIT :

 terminate()

 elif event.type == pygame.KEYDOWN :

get a key and do something

 if event.key == pygame.K_ESCAPE :

 terminate()

 if event.key == K_SPACE or event.key == K_DELETE:

 blank_screen()

 if event.key == K_r : # draw in red

 col = (255, 0, 0)

 if event.key == K_g : # draw in green

 col = (0, 255, 0)

 if event.key == K_b : # draw in blue

 col = (0, 0, 255)

 if event.key == K_y : # draw in yellow

 col = (255, 255, 0)

 if event.key == K_m : # draw in magenta

 col = (255, 0, 255)

 if event.key == K_p : # draw in peacock blue

 col = (0, 255, 255)

 if event.key == K_w : # draw in white

 col = (255, 255, 255)

 if event.key == K_k : # draw in blacK

 col = (0, 0, 0)

 if event.key == K_s : # save current point

 last_reading[2] = last_reading[0] # save X

 last_reading[3] = last_reading[1] # save Y

 if event.key == K_l : # draw a line to saved point

 pygame.draw.line(screen,col,(last_reading[2],;

last_reading[3]),(last_reading[0],last_reading[1]),2)

 pygame.display.update()

 if event.key == K_c : # draw a circle

 try :

 r = ((last_reading[0] - last_reading[2])**2 ;

+ (last_reading[1] - last_reading[3])**2) ** (0.5)

 pygame.draw.circle(screen,col,;

(last_reading[0],last_reading[1]),int(r),2)

C H A P T E R 1 5   F A C E B O O K - E N A B L E D R O T O - S K E T C H 373

 pygame.display.update()

 except:

 pass

 if event.key == K_HASH :

#Save folder to Flickr / Facebook

 print “sending folder to Flickr”

 subprocess.check_output(“python ;

folders2flickr/uploadr.py”,shell=True)

 print “done”

 if event.key == K_HOME : # save a picture

 print “save sketch to file”

 if picture == 1 : # first time to save this session

 fileName = raw_input(“Enter file name ;

for this session “)

 try:

 pygame.image.save(screen,;

‘roto-sketch/’+fileName+str(picture)+’.png’)

 except:

 os.system(‘mkdir roto-sketch’)

 pygame.image.save(screen,;

‘roto-sketch/’+fileName+str(picture)+’.png’)

 print “saving sketch as “,;

‘roto-sketch/’+fileName+str(picture)+’.png’

 picture +=1;

if __name__ == ‘__main__’:

 main()

It is possible that you could get an error on the line

from smbus import SMBus

If you do then you will need to install smbus, which is easily done by typing

apt-get install python-smbus

on a command line.

The code might look complex, but it consists of a few simple functions – some of which you
have already looked at when you considered the rotary controls. It starts off in the normal
fashion by importing the modules it will need, and setting up some global variables. Then it

R A S P B E R R Y P I P R O J E C T S374

prints out some simple user instructions about the keys. Basically there are a group of keys
that will change the colour of the drawing track, a key to wipe the screen in case you have not
got a tilt switch fitted, some keys that control what is drawn and finally two keys to save the
images and post them to Flickr – and hence to Facebook.

The main function after the instructions are printed out is a simple endless loop of reading
the encoders and then drawing the lines when that function returns with an updated read-
ing. The readEncoders function is basically what is in Listing 15-2 only for two encoders.
It keeps looking at the input port and makes the decisions based on what it sees. This func-
tion can do this for both encoders by using a for loop and shifting the reading for the X
encoder into the least two significant bits and then shifting the Y encoder into the least sig-
nificant bit for the second trip through the loop. When a movement is detected the logic
variable move is set to true and the function returns to do the plotting on the screen. The tilt
switch is also monitored, and the screen is wiped if it is found to be upside down. The incre-
ment value is set at 8; that is, it moves 8 screen pixels per click, but you can make it a smaller
value if you want finer control over the movement of the plotting point. When this function
returns, the values in the current reading list have been updated, and the program draws a
line between the current point and the last point. The current point is replaced with a grey
square to allow you to see where you are, in the same way that mechanical versions of this
program had a current point that you could just see. This allows you, in theory at least, to
retrace over a line to start off somewhere new. So before the program draws a line this cursor
square has to be erased and put back in the new position after the line is drawn. That is why
there are three drawing commands where you might be expecting only one. The current read-
ings are copied into last-reading variables before the screen is updated.

The checkForQuit function looks at not only quit events but also key events. These drive
the settings of the program. For example, the current drawing colour can be changed by
pressing a key; all the primary and secondary colours are available as well as black and white.
Note that for black you have to press the K key because the B key is already taken with
switching to blue. The spacebar or Delete key simply calls the blank_screen function.

The later part of the checkForQuit function performs the neat special effects of the pro-
gram. First the L key will draw a line between the current point and a previously saved point.
Next the C key will draw a circle centred on the current point with a radius given by the dis-
tance to the saved point. Finally the S key will save the current point as the set point for
those two previous commands. The circle drawing has to be in a try structure to prevent the
program from crashing when the current point is the same as the saved point. These circles
and lines give the drawings a lot more interest than the random scribblings that is often
made with these sorts of toys.

The saving and transfer keys are the Home key and the hash key. The Home key saves the
current screen into the roto-sketch folder as a PNG picture file. When you press this for

C H A P T E R 1 5   F A C E B O O K - E N A B L E D R O T O - S K E T C H 375

the first time after the program starts you are asked for a name to prefix the picture file. You
have to click the Python shell console window to give it the focus and type in a name. The
program will then use that name for all subsequent screen saves and append a number on
the end of each new file. After you have entered the name, you should click back on the
sketch window so that it can process subsequent keys. If there is not a roto-sketch direc-
tory, one will be created. Now when you press the Home key again, the filename is printed
out, but there is no need to enter anything; it uses the name you gave it last time plus an
incrementing number. The hash key (#) transfers the new images in the roto-sketch
folder out to Flickr, which can take from 10 seconds to just over a minute depending on the
state of your Internet connection and traffic at the Flickr site.

Many interesting patterns can be drawn with this machine, a few of which are shown in
Figure 15-7. You can save the pattern as you go, seeing it get increasingly complex.

Figure 15-7:
Some of the
pattern effects
you can achieve.

Creating a Symmetrical Pattern
Consider one extra variant – symmetry. The output can be made more interesting by the use
of reflections to generate a symmetrical pattern rather like a kaleidoscope. There are two
ways you can do this: The first is by rotation of the points used to draw the pattern, and the
second is by copying what is actually drawn and placing it in several places on the screen. At

R A S P B E R R Y P I P R O J E C T S376

first this might sound like it would produce the same results – and it does for a limited
amount of drawing – but the results of the two can look very different. This is because if you
draw on a small segment and your drawing extends outside the bounds of the segment, you
will not see any lines. However, if you are rotating the drawing points, then drawing outside
the segment will be seen in the other segments. This fundamentally changes how things look
with regard to reflections. Rotation of a point is easy; you just have to apply the following
formula to the X and Y coordinates of the point to get the new point X' and Y':

X’ = X Cos θ - Y Sin θ
Y’ = X Sin θ + Y Cos θ

θ is the angle of rotation about the origin. So to get the origin in the centre of the screen, you
have to subtract half the width from the reading values. You can use a loop to repeatedly do
this for as much repeating as you want. I will leave that with you to do as an exercise. What I
will give you here is an example of the second, more interesting, reflection kaleidoscope-style
of symmetry. This plots the picture into an off-screen buffer, and then makes up the screen
by repeating this buffer in a reflected and inverted manner to give a four-fold symmetrical
pattern. This new variant is shown in Listing 15-5.

Listing 15-5  Kilido-Sketch
#!/usr/bin/env python

“””

Rotary Encoder Kilido-sketch

Four fold symmetry

encoder 1 wired to inputs 6 & 7

encoder 2 wired to inputs 4 & 5

Tilt switch wired to input 3

“””

import colorsys

from smbus import SMBus

import os, sys, pygame

from pygame.locals import *

import piface.pfio as pfio # piface library

import subprocess

pfio.init() # initialise piface

pygame.init() # initialise pygame

pygame.event.set_allowed(None)

pygame.event.set_allowed([pygame.KEYDOWN, pygame.QUIT, ;

pygame.MOUSEBUTTONDOWN])

C H A P T E R 1 5   F A C E B O O K - E N A B L E D R O T O - S K E T C H 377

os.environ[‘SDL_VIDEO_WINDOW_POS’] = ‘center’

pygame.display.set_caption(“Klido-Sketch”)

segSize = 350

screen = pygame.display.set_mode([segSize*2,segSize*2],0,32)

segment = pygame.Surface((segSize,segSize))

lastEncoder = [0,0]

current_reading = [128,128]

last_reading = [128,128,128,128]

defines initial starting position

col = (0,0,0)

colCursor = (128,128,128)

background = (255, 255, 255) # screen background colour

picture = 1 # picture number

fileName =”name”

lastPort = -1

def main():

 global current_reading, last_reading

 print “Kilido-sketch the keys are:-”

 print “R, G, B, Y, M, P, K (black), W to select colour”

 print “Space bar for wipe screen”

 print “L - for Line to saved point, C for Circle centre on ;

save point”

 print “S to save current point for future line and ;

circle commands”

 print “Home key to save sketch to file”

 print “# to post on Flickr and Facebook”

 blank_screen()

 while(True): # do forever

 readEncoders()

 pygame.draw.rect(segment,col,(last_reading[0],;

last_reading[1],2,2),0)

 pygame.draw.line(segment,col,(last_reading[0],;

last_reading[1]),(current_reading[0],current_reading[1]),2)

 pygame.draw.rect(segment,colCursor,;

(current_reading[0],current_reading[1],2,2),0)

 last_reading[0] = current_reading[0]

save this position for drawing from for next time

 last_reading[1] = current_reading[1]

 screenUpdate()

def screenUpdate():

continued

R A S P B E R R Y P I P R O J E C T S378

Listing 15-5  continued
 segRect = pygame.Surface.get_rect(segment)

 screen.blit(segment, segRect)

 segRect.topleft = segSize,0

 screen.blit(pygame.transform.flip(segment, True, ;

False), segRect)

 segRect.topleft = 0,segSize

 screen.blit(pygame.transform.flip(segment, False, ;

True), segRect)

 segRect.topleft = segSize,segSize

 screen.blit(pygame.transform.flip(segment, True, ;

True), segRect)

 pygame.display.update()

#end of main loop

Function definitions

read two encoder with alternating 00 11 detent

def readEncoders() : #exit when one has moved

 global current_reading, lastPort

 moved = False

 inc = 6

 while not moved :

 checkForQuit()

 port = pfio.read_input()

 portP = (port & 0xc0) >> 6

 lastPortP = (lastPort & 0xc0) >> 6

 for axis in range(0,2) :

 if lastPortP != portP and (lastPortP == 0 or ;

lastPortP == 0x3) :

 if (lastPortP == 0 and portP == 0x2) or ;

(lastPortP == 0x3 and portP == 0x1):

 current_reading[axis] -= inc

 if current_reading[axis] < 0:

restrain to segment

 current_reading[axis] += inc

 moved = True

 if (lastPortP == 0x3 and portP == 0x2) or ;

(lastPortP == 0 and portP == 0x1):

 current_reading[axis] += inc

 if current_reading[axis] > segSize:

restrain to segment

 current_reading[axis] -= inc

C H A P T E R 1 5   F A C E B O O K - E N A B L E D R O T O - S K E T C H 379

 moved = True

 portP = (port & 0x30) >> 4

 lastPortP = (lastPort &0x30) >> 4

 if port &0x8 :

 blank_screen()

 lastPort = port

def blank_screen():

 screen.fill(background) # blank screen

 segment.fill(background)

 pygame.display.update()

def terminate():

 print “Closing down please wait”

 pfio.deinit()

 pygame.quit()

 sys.exit()

def checkForQuit():

 global col, picture, last_reading, fileName

 event = pygame.event.poll()

 if event.type == pygame.QUIT :

 terminate()

 elif event.type == pygame.KEYDOWN :

get a key and do something

 if event.key == pygame.K_ESCAPE :

 terminate()

 if event.key == K_SPACE or event.key == K_DELETE:

 blank_screen()

 if event.key == K_r : # draw in red

 col = (255, 0, 0)

 if event.key == K_g : # draw in green

 col = (0, 255, 0)

 if event.key == K_b : # draw in blue

 col = (0, 0, 255)

 if event.key == K_y : # draw in yellow

 col = (255, 255, 0)

 if event.key == K_m : # draw in magenta

 col = (255, 0, 255)

 if event.key == K_p : # draw in peacock blue

 col = (0, 255, 255)

 if event.key == K_w : # draw in white

 col = (255, 255, 255)

continued

R A S P B E R R Y P I P R O J E C T S380

Listing 15-5  continued
 if event.key == K_k : # draw in blacK

 col = (0, 0, 0)

 if event.key == K_s : # save current point

 last_reading[2] = last_reading[0] # save X

 last_reading[3] = last_reading[1] # save Y

 if event.key == K_l : # draw a line to saved point

 pygame.draw.line(segment,col,(last_reading[2],;

last_reading[3]),(last_reading[0],last_reading[1]),2)

 screenUpdate()

 if event.key == K_c : # draw a circle

 try :

 r = ((last_reading[0] - last_reading[2]);

2 + (last_reading[1] - last_reading[3])2) ** (0.5)

 pygame.draw.circle(segment,col,;

(last_reading[0],last_reading[1]),int(r),2)

 screenUpdate()

 except:

 pass

 if event.key == K_HASH :

#Save folder to Flickr / Facebook

 print “sending folder to Flickr”

 subprocess.check_output(“python ;

folders2flickr/uploadr.py”,shell=True)

 print “done”

 if event.key == K_HOME : # save a picture

 print “save sketch to file”

 if picture == 1 : # first time to save this session

 fileName = raw_input(“Enter file name ;

for this session “)

 try:

 pygame.image.save(screen, ;

‘roto-sketch/’+fileName+str(picture)+’.png’)

 except:

 os.system(‘mkdir roto-sketch’)

 pygame.image.save(screen, ;

‘roto-sketch/’+fileName+str(picture)+’.png’)

 print “saving sketch as “,;

‘roto-sketch/’+fileName+str(picture)+’.png’

 picture +=1;

if __name__ == ‘__main__’:

 main()

C H A P T E R 1 5   F A C E B O O K - E N A B L E D R O T O - S K E T C H 381

The bulk of the code is the same. Where it differs is that drawing is done in a memory area
called segment. When it comes to updating the screen, this segment is drawn four times
on the screen in each quadrant of the screen. Each time it is drawn it is flipped either hori-
zontally or vertically to show mirror symmetry in each quadrant. The variable segSize at
the start of the code makes it easy to define any size of square window you like for your sys-
tem. The results of a few tests are shown in Figure 15-8.

Figure 15-8:
Some drawings
with four-fold
symmetry.

Over to You
Improvements you could make include a stealth mode in which the drawing point is moved
without leaving a trail or cutting through existing drawings. For that you have to look at the
pixel at the drawing point and redraw the colour over the old grey square. Another thing you
could try is to alter the way the circle is drawn with the set point defining the centre and the
current point the radius. You can have the two modes available on different keys.

That last program had four-fold symmetry. Consider what it would take to produce five-, six-
or any number fold symmetry. Four-fold is easy because the segments you draw in are
square, and you just used the flip transformation on the segment for each screen quadrant.
However, Pygame has a rotate function that you could apply many times to build up the
screen. The point is that the shape of the segment you want to plot is not rectangular but
triangular. What you would have to do is to draw in a rectangular segment and then mask it
by drawing two triangles on either side of the wanted triangle and filling them with transpar-
ent pixels to get a triangular segment. Then you have to rotate that and fill in the screen. This
is one of those projects that you will not get right the first time – and serendipity or happy
accident might give you something even more interesting that you were trying to create.

R A S P B E R R Y P I P R O J E C T S382

If you want to look more at the automatic postings, look at the code at https://github.
com/ept/uploadr.py. This is an earlier version of the folders2flickr code used in
this chapter. However, it has some differences you could find useful. You can use the same
Flickr secret and API key numbers used in folders2flickr; there is no need to apply for
your own. This can be set up as a task that runs in the background; every minute it looks at
the designated folder to see if there is anything new that needs uploading. This can be a use-
ful computerwide utility.

As to the rotary encoders themselves – see if you can incorporate them as a controller for the
games in Chapters 5, “Ping”, and 6, “Pie Man”. Continuous rotation can be useful in a lot of
control situations. The tilt switch also could be used to make a tilting joystick controller if
you had four of them.

https://github.com/ept/uploadr.py
https://github.com/ept/uploadr.py

Chapter 16
The Pendulum Pi ,
a Harmonograph

by Mike Cook

In This Chapter

❍	 Learn how to read serial data on the Raspberry Pi

❍	 See how an Arduino and a Raspberry Pi can work together

❍	 Discover how to measure angles contactlessly

❍	 Find the beauty in harmonics

R A S P B E R R Y P I P R O J E C T S384

THIS PROJECT IS definitely the hardest in the whole book. It will push your mechanical and
electronic building skills possibly to the limit. It will also open up a whole new way of getting
data to your Raspberry Pi. It is a unique project, at least in the way it has been realised, and best
of all – it provokes the reaction “what the . . .” from people seeing it for the first time.

The idea of a harmonograph is not new. It is a mechanical device that started to appear in the
mid-nineteenth century and was at the peak of its popularity in the 1890s. It is a mechanical
arrangement of pendulums that is used to create complex and detailed patterns by directly
drawing them on paper. These things are big, and can be huge, but by using the power of the
Raspberry Pi you can make one of a modest size. An example of a pattern produced by this
project is shown in Figure 16-1.

Figure 16-1:
A harmonograph
pattern from the

Pendulum Pi.

C H A P T E R 1 6   T H E P E N D U L U M P I , A H A R M O N O G R A P H 385

The Concept
The type of patterns a harmonograph produces are called Lissajous figures, which are much
beloved of electronic engineers. In fact the first lab I did as an undergraduate student was to
apply two signals from separate signal generators to the X and Y deflection circuits of a cath-
ode ray oscilloscope to obtain them. I sneakily got a third signal generator and applied it to
the intensity of the beam, a Z axis modulation, and thoroughly confused the supervising
lecturer. However, Lissajous figures are only one simple example of the sort of pattern you
can get from a harmonograph. In a harmonograph you can have multiple signals defining
each axis, and the slow decay of the amplitude of the swing adds greatly to the complexity of
the pattern. So how are you going to computerise this mechanical device? Well the secret lies
in being able to measure rapidly the angle of a pendulum. In the last chapter, “Facebook-
Enabled Roto-Sketch”, you saw how the rotary shaft encoder could be used to measure the
position of a shaft, but the type used there has detents, and requires a relatively large amount
of energy to turn. You can get optical shaft encoders with very little friction, but for any great
resolution these are horrendously expensive. To the rescue comes a new chip which offers
the possibility of a totally friction-free method of measurement – the Hall effect absolute
rotary shaft encoder.

The idea is to use four pendulums to create your drawing, and a shaft encoder on each will
measure the angle of each pendulum’s swing at any instant of time. Then the Raspberry Pi
will plot the information in a window as it comes in, and you will see the picture being plot-
ted in real time. The size of the swing, along with the period of and phase of each pendulum,
will alter the picture you produce. You will be able to set the initial swing conditions and alter
the length of the pendulums to produce an almost infinite variety of pictures.

The Hall Effect
A Hall effect device is one that uses the influence of a magnetic field on a flow of electrons. It
was discovered by Edwin Hall in 1879 but has been widely exploited only in the last 30 years
or so with the advent of semiconductors. Basically if current is flowing along a conductor,
there will be no potential difference on either side of that conductor. However, if a magnetic
field is applied upward through the sample perpendicular to the current flow, then the elec-
trons will initially be deflected by the field toward the side of the conductor. They will build
up there, with a corresponding number of holes (positive charge) on the other side. This will
continue until they build up an electric field that completely balances the force of the mag-
netic field. Then the electrons can continue traveling in a straight line through the conduc-
tor. This is shown in Figure 16-2. So by measuring this voltage across the conductor you can
measure the strength of the magnetic field up through the conductor. This is used in all sorts
of devices such as contactless switches, contactless current measurement, the electronic
compass and angle measurement.

http://en.wikipedia.org/wiki/Edwin_Hall

R A S P B E R R Y P I P R O J E C T S386

Figure 16-2:
How the Hall
effect works.

Now an important word in the description “Hall effect absolute rotary shaft encoder” is the
word absolute. Many rotary encoders, such as the one used in the last chapter, are only rela-
tive encoders – that is, you get a signal only to say something has changed by one notch or
increment. With an absolute encoder you get multiple output bits to indicate the actual
angle. If you thought optical incremental encoders were expensive, then optical absolute
encoders are off the scale of expensive. Fortunately the Hall effect version is relatively cheap.
The one I have chosen to use is the AS5040, which will operate over the full 360 degrees and
return a 10 bit value. That is, it returns a number between 0 and 1023 for one rotation. This
means that it produces a resolution of 0.35 of a degree. It does this by having four Hall effect
sensors inside the chip and working out the angle from the relative readings they give. It
requires a rather special sort of magnet that is cylindrical and diametrically magnetised.
Normally a cylindrical magnet will have a north pole at one end and a south pole at the other.
However, when it is diametrically magnetised, there is a north and south pole at each end.
Think of this as being two bar magnets glued together and shaped into a cylinder. Fortunately,
this type of magnet is easy enough to get.

You have to arrange the magnet on the end of the shaft to be just about 1 mm above the
chip. The general arrangement of the chip and magnet are shown in Figure 16-3. This chip is
capable of all sorts of outputs, but for this project you are simply going to use the access to
the internal registers using the SPI interface pins.

C H A P T E R 1 6   T H E P E N D U L U M P I , A H A R M O N O G R A P H 387

Figure 16-3:
The Hall effect
sensors in the
AS5040.

Enter the Arduino
Now there is one snag with using the Raspberry Pi running Linux with this project, and that
is the data from the pendulums is coming out in a constant stream, and, as you know, Linux
has a habit of popping out for a cup of tea every now and again. If you were to let this hap-
pen, you would have discontinuities in the data, and subsequently, the pattern would look
broken up. This is where the Raspberry Pi could do with a little help in reading the data from
the sensor, and putting it in a queue or buffer so the Python code can take it out and plot it,
without having to worry about when that code is suspended while Linux is doing housekeep-
ing. So here is where the Arduino comes in.

The Arduino is a very popular embedded processor, similar in some respects to the one in the
Raspberry Pi. However, it is much, much slower, and has a very small amount of memory –
but the Arduino has the advantage of not running an operating system at all. This means
that if you program it to do one thing it does it without interruption at a regular rate. What
you are going to do is use the Arduino to gather the data from the pendulums, do a bit of
processing on it and then send it into the USB serial buffer of the Raspberry Pi. Then this
buffer is emptied by the Python program, and the points are plotted on the screen.

The Arduino is programmed in C++, but anyone with any experience in C will be able to write
a program for it straight off. It is designed to be used by beginners and nontechnical art
users, so it is quite easy to use. It comes with its own integrated development environment
(IDE) which is a multiplatform program, and you can run it on the Raspberry Pi, on a laptop

R A S P B E R R Y P I P R O J E C T S388

or on a desktop machine. There are almost a bewildering variety of Arduinos, but the vanilla
one at the time of writing is the Arduino Uno, so that is the one I suggest that you use.

Putting It Together
After you have all the components in place you can start to put them together. The first thing to
do is to get the pendulums made. In my version of the harmonograph I have used four pendu-
lums that can be combined in a number of ways to produce the final drawing. In place of the
complex arrangement of weights and counterbalances and gimbals used in conventional har-
monographs, you just want four simple pendulums of differing lengths. It is the ratio of the
pendulum’s periods that gives the fundamental class of the pattern, and integer ratios look best.
So with that in mind I calculated some pendulum lengths to produce a fundamental frequency
of swing along with twice and three times swing harmonics. These are set out in Table 16-1.

Table 16-1  Length of Pendulum for Various Harmonics
Harmonic Normalise Length Real Length

Fundamental 7.96 796 mm

2 1.91 191 mm

3 1 100 mm

The practical size of the third harmonic pendulum basically governed the size I needed for the
fundamental or longest pendulum. You can make the pendulums covering more harmonics if
you like, but you will see that they rapidly get quite big. For example, if you want to cover four
harmonics, with the shortest pendulum at 100 mm, then the longest pendulum needs to be
3180 mm. The mass of the pendulum does not affect the frequency of swing, but it will affect
how long it will swing. In effect it is the damping factor; in other words, the more the mass, the
longer it takes for the friction in the bearings to stop the swinging. Getting sufficient mass into
short pendulums is tricky; it is easier for longer ones. In fact the equations assume that all the
mass of a pendulum is concentrated at the end of the rod or string. What happens in practice
with a distributed mass is that the effective length becomes the centre of mass of the pendulum.
This means in practice the pendulums have to be slightly longer than the theoretical length.

A trip around a national chain of DIY stores brought some rectangular metal tubing and solid
bar to my attention, and it looked as if that would do the job for the pendulums. So then I
had to design a frame to mount them on. For this I used 1 1/2" by 3/4" by 1/8" and 1 1/14"
by 1/2" by 1/8" aluminum channels, referred to as the large channel and small channel, respec-
tively. This has the great advantage that the small channel is a tight fit inside the large one,
which makes the design a bit easier. I didn’t find that the DIY stores had this size in stock, so
I had to order it online. The idea is to make two U-shaped frames and bolt them together
with four lengths of aluminum channel. This is shown in Figures 16-4 and 16-5.

C H A P T E R 1 6   T H E P E N D U L U M P I , A H A R M O N O G R A P H 389

Figure 16-4:
The front view
of the pendulum
frame.

Figure 16-5:
The top view of
the pendulum
frame.

The angled channel fits flush over the far end of the cross channels, but you need to cut out a
small notch out of one side of it as shown in Figure 16-6. The fixings for these angled pieces are
not nuts and bolts because there is no room for a nut in the cross channel. Therefore, I had to cut

R A S P B E R R Y P I P R O J E C T S390

a thread into the hole in the cross channel. For the M3 fixings I used, this meant drilling a 2.5 mm
hole and running an M3 tap through it. The aluminum is 1/8" thick, so it takes a thread nicely –
but remember that it is only aluminum, so don’t tighten it up too much, or you might strip the
thread. When cutting thread with a tap, once it is going, always turn it one turn in and then half a
turn out. This cuts off the swarf and stops the hole from jamming up. Use a drop of oil when cut-
ting a thread to make the tap last longer. If you are in your local DIY store and ask where the taps
are, and are directed to the plumbing section, then find a store that knows what it is selling.

Figure 16-6:
The notch

needed on one
side of each

angled channel.

Remember when fixing the aluminum channel together you always need two fixing points per
side – one is not enough. The bottom channels of each arm of the frame drop onto four 2' 8"
dowel rods, which in turn are set into a floor or bench mounting frame shown in Figure 16-7. I
bolted the pieces together with M6 nuts and bolts and fixed a 10" by 3" by 1 1/2" block in the
middle of the long side with glue and screws from the underside. I drilled in four 1" holes using
a saw drill so that the dowels could be slotted in place. Cut off the dowels at 45 degrees at the
top so that they slip under the angled aluminum channel, and a hole through the vertical chan-
nel and dowel allows a bolt and wing nut to fasten it into place. Study the finished structure
shown in Figure 16-8 to get the idea of what you need to build. The frame on the base is approx-
imately 3' by 1' 4", and contrasting bright colours for the paint can give it more of a fun look.

C H A P T E R 1 6   T H E P E N D U L U M P I , A H A R M O N O G R A P H 391

Figure 16-7:
The base frame.

R A S P B E R R Y P I P R O J E C T S392

Figure 16-8:
The whole
pendulum
assembly.

The pendulums themselves are attached to M6 threaded rod, which goes through the sides of
the aluminum channel. As shown in Figure 16-9, two lock nuts secure one end; it then passes
through a bearing with a nut securing it, and the pendulum is secured to this with another
nut. Finally the other end of the channel has a nut on one side of the bearing, with a lock nut
on the outside. I drilled out this lock nut’s internal nylon washer and glued in the diametri-
cally magnetised magnet. It is vital that this magnet have its face as square as possible to the
rod because this will affect the accuracy of readings that you get.

C H A P T E R 1 6   T H E P E N D U L U M P I , A H A R M O N O G R A P H 393

Figure 16-9:
Fixing the
pendulum to the
threaded rod
and channel.

The magnets are extremely powerful and can be prone to damage. Never let them fly together,
no matter how tempting it is. This is because they come together with such force that they
will shatter and small pieces will chip off them. This can happen the very first time they come
together. Another thing is that strong magnets can pick up iron filings in a workshop. You need to
remove those to get a uniform magnetic field. I have found the best way is to use blue tack – the
sort of putty used for fixing posters to a wall. Use this to mop up a magnet of filings and then
throw the piece away. Better still – do not let filings get onto the magnet in the first place.

Smooth Swinging
The bearings I used were the type MR126 sealed, which are quite low cost and are widely used
in the construction of 3D printers, inline skates and tools. They have a 6 mm hole for the
threaded rod and are 12 mm in diameter. I drilled each side of the channel with a 12 mm drill
and used a vice to push the bearings into the hole. This produced a nice interference fit. At first
this appeared to work well, but as the threaded rod was tightened up I noticed that there were
sections of the rotation that appeared stiff. So in order to exactly align them I filed one hole so
that it was slightly larger, allowing a very small amount of slack all around, and then I tightened

R A S P B E R R Y P I P R O J E C T S394

up the threaded rod and applied epoxy to secure the second bearing (the one not carrying the
magnet) in place. In this way I got an exact fit, and the threaded rods would turn on the bear-
ings without any noticeable stiff spots. The pendulum itself is a 12 mm square steel tube, 4"
long from the centre of the hole. The area of the tube above the hole needs to be rounded off
with a file to prevent it from catching on the top of the aluminum channel. There are two holes
at the end of the tube; these should be drilled and tapped with an M3 thread. Although there is
not much to thread as the walls of the tube are so thin, this is compensated for by the material
being steel; still, overtightening might cause the thread to strip.

I gave two of the four pendulums, numbers 2 and 4, a solid core of steel by filing down two
edges of some 12 mm square steel rod so that it slides inside the tube. Then I marked the posi-
tion of the tapped holes on the solid rod, drilled out 3.5 mm clearance holes and finally applied
some epoxy to hold them in place. You could do that with the other two pendulums as well, but
there is little point as these are going to eventually be much longer. The idea is that the basic
length of the pendulum is the third harmonic; then there are two sizes of extension rod you can
use to get the second harmonic and the fundamental. These are shown in Figure 16-10. The
short extensions have a solid square completely contained in the tube, whereas the long exten-
sion has the solid rod protruding from the end and the choice of a number of holes along the
square tube to attach it, giving you some variability on the length of this largest pendulum. Use
positions 1 and 3 for the long pendulum extensions and positions 2 and 4 for the short ones.

Figure 16-10:
The pendulum

sections.

C H A P T E R 1 6   T H E P E N D U L U M P I , A H A R M O N O G R A P H 395

When sliding the rod up the tube it is a bit hard to spot the tapped hole through the clearance
hole. So I painted around the tapped hole with white paint so that it could be easily seen
through the clearance hole and lined up correctly.

Electronics
Next, you come to the electronics, which fortunately are not too complex – just the sensor
chip, some decoupling capacitors, two resistors and an LED. The AS5040 rotation sensor can
be used from either a 3V3 or 5V supply; I used the 5V supply because that gave the correct
voltage level of logic signals for the Arduino I used. A schematic of the sensing board is
shown in Figure 16-11. You need to build four of these. The capacitors should be of the
ceramic type and mounted as close to the chip as possible. The LED is a red/green common
cathode, which will allow you to have three colours: red, green and orange. These are used to
indicate if the pendulum is being used to gather data and what axis it is controlling.

Figure 16-11:
A schematic of
one sensor
board.

R A S P B E R R Y P I P R O J E C T S396

The only difficulty with this circuit is that the AS5040 is in a 16 pin SSOP package, with a
0.65 mm lead pitch. This is impossible to solder directly onto strip board, but fortunately
adaptor boards are available quite cheaply. I used a board designed for an SSOP28 chip, and
it converts the fine pitch to normal 0.1" pitch used on strip board. (Its full name is an SSOP28
to DIP28 0.65 mm pitch adapter transfer board, and I got it from Hong Kong through eBay.)
It covers more chip leads than you need, so just solder it in the centre with three blank con-
nections on each side. This then should be attached to some strip board by soldering solid
copper wires through the holes you want connections to. Make sure that the adaptor board
is as close as possible to the strip board. Then mount the strip board on the side of each alu-
minum channel so that the magnet is exactly over the centre of the chip. Separate the pillars
by an odd number of strips on the strip board so that the pillar mounting holes are equally
spaced from the centre of the bearing/magnet position. To get the distance between the
magnet and sensor correct, I used a 10 mm M3 tapped pillar, a nut and two M3 washers and
got the spacing between the magnet and chip to be 1 mm. Fortunately there is an electronic
way of telling if the magnetic strength is in the correct range; you will see about this later in
the chapter when you look at the data that comes from this sensor. The physical arrange-
ment is shown in Figures 16-12 and 16-13.

Figure 16-12:
The mounted
sensor board
showing the

chip.

C H A P T E R 1 6   T H E P E N D U L U M P I , A H A R M O N O G R A P H 397

Figure 16-13:
The mounting of
a sensor board.

Now all that remains is to wire up the sensor modules to the Arduino. The wiring for this is
shown in Figure 16-14. The sensors are wired up in a daisy chain configuration with the data
from the farthest sensor passing through all the others before it gets to the Arduino. It is com-
mon to have multiple sensors wired like this, and it eliminates the need for having a data select
line for each chip. I placed a single white LED on the Arduino to indicate if there are any prob-
lems with the data from the chips. I drew this module wiring to make the wiring clear; however,
in practice I wired it up in a star configuration. That means that the wires are taken directly
from each sensor module to the Arduino and not chained, from one sensor board to the next.
This ensures that any problems with grounding loops and power distribution are minimised.

Mount the Arduino on pillars on top the pendulum frame as shown in Figure 16-15. Solder
the wires to small pieces of copper strip board to which you should solder pin connectors for
attaching to the pin headers on the Arduino. Mount the white error LED onto one of these
strips close to pin A5. The wiring of the whole thing is shown in Figure 16-16. I used cable
ties to make the wiring look neat.

R A S P B E R R Y P I P R O J E C T S398

Figure 16-14:
A schematic of

the sensor
modules’ inter-

connections.

Figure 16-15:
The Arduino

mounted on top
of the frame.

C H A P T E R 1 6   T H E P E N D U L U M P I , A H A R M O N O G R A P H 399

Figure 16-16:
The complete
system
wired up.

Programming the Arduino
Next you have to be able to program the Arduino. To do this you need to use the Arduino
IDE. You have a choice of either doing this on your laptop or desktop computer or loading a
version into the Raspberry Pi. Using a PC or Mac is much faster than using the Pi, but I have
successfully used the Raspberry Pi to program the Arduino. I will show you how to use the
Raspberry Pi here.

To install it is simple enough: From a command line just type

$ sudo apt-get update

$ sudo apt-get install arduino

Depending on your Internet access speed this could take 20 minutes or more as you have to
download the Java code that supports it. Note that this code might take up more space than you
would like; you will be informed of the size before you commit to the download. After it is down-
loaded start up the desktop and open the File Manager window. Navigate to /usr/bin and
double-click the arduino file. A pop-up window will invite you to do various options; click
Execute. Plug in your Arduino Uno directly to one of the Raspberry Pi’s USB sockets. I have found

R A S P B E R R Y P I P R O J E C T S400

that although once programmed the Arduino will work happily through a hub, at the time of writ-
ing, the Arduino IDE implementation will not work correctly if it is connected through a hub.
Next go to the Tools menu. Choose the Serial Port option and click /dev/ttyACM0. Your
Arduino is now connected. Check that the Uno board is selected by clicking Tools ➪ Board.

Now you need to test that everything is working, so type in Listing 16-1.

Listing 16-1  Arduino Blink
// Blink

void setup(){

 pinMode(13, OUTPUT);

}

void loop(){

 digitalWrite(13, HIGH);

 delay(700);

 digitalWrite(13, LOW);

 delay(700);

}

Now click the right-pointing arrow to upload the blink program into the Arduino. When it
has finished uploading the orange LED with a letter L next to it will steadily blink. Click the
down-pointing arrow at the top of the IDE window and save your file under the name blink.
This will automatically generate a sketchbook folder in your home directory. In the Arduino
world the program that runs on an Arduino is known as a sketch.

There are example programs built into the IDE you can look at under File ➪ Examples. After you
have the blink sketch in the sketchbook folder you can start the Arduino IDE at any time by
double-clicking any of the .ino files in this folder. For now you have only one called blink.ino.

I would encourage you to download and study the data sheet of the AS5040 encoder – it
contains a lot more information than you could ever need – but the point is it shows you the
full capability of the chip; you are only using a part of its capabilities here. It talks to the out-
side world using a protocol known as serial protocol interface (SPI), which is a loosely defined
protocol that has a lot of subtle differences and variations – so much so that this chip is not
quite compatible with the hardware SPI interface of the Arduino, so you will have to write a
program to manipulate the SPI lines specifically. This sort of technique is known as bit bang-
ing. Figure 16-17 shows the way the interface works. Basically a chip select line is brought
low, and then the clock line is made to go up and down – and every time it goes up a new bit
of data is placed on the chip’s output. In order for this data to be stable, the Arduino should
read the data bit when it places the clock high. As the data appears one bit at a time on the
chip’s output the bit banging code must shift it into a variable one bit at a time to make up all

C H A P T E R 1 6   T H E P E N D U L U M P I , A H A R M O N O G R A P H 401

16 bits of the full data. Because you have four of these chips daisy chained together, you
must do this four times with a different variable being used to shift the reading each time.

Figure 16-17:
The timing
diagram for the
AS5040
interface.

This is not a book about C or programming the Arduino, so if you are not familiar with them,
just treat this section as a black box, the way you treat Python libraries – that is to say you know
they work and how to interact with them but you don’t know the details of what they do.

After you install the Arduino IDE and program a flashing LED sketch it is time to test out the
sensors and LEDs. It is always good to write something simple to check out the hardware
before trying to make it do too much. So type the code in Listing 16-2 into the Arduino IDE.

Listing 16-2  Hardware Test Code

/* Harmonograph reading four rotary encoder

and test out the LEDs

By Mike Cook Feb-April 2013

Bit banging the SPI

*/

// define SPI pins

#define CS_ENC 10

continued

R A S P B E R R Y P I P R O J E C T S402

Listing 16-2  continued
#define CK_ENC 13

#define MISO_ENC 12

#define MOSI_ENC 11

long int time;

byte npRead = 4; // number of detectors to read

float th [] = {0.0, 0.0, 0.0, 0.0 }; // angle reading

int dig1 [] = { 0, 0, 0, 0};

int dig2 [] = { 0, 0, 0, 0};

byte ledRed [] = {2, 4, 6, 8}; // pins controlling red

byte ledGreen [] = {3, 5, 7, 9}; // pins controlling green

int count =1; // LED test pattern

int error = 1; // error LED test count

void setup(){

 Serial.begin(9600);

 pinMode(CS_ENC, OUTPUT);

 digitalWrite(CS_ENC, HIGH);

 pinMode(CK_ENC, OUTPUT);

 digitalWrite(CK_ENC, HIGH); // set clock high

 pinMode(MOSI_ENC, OUTPUT);

 digitalWrite(MOSI_ENC, LOW);

 pinMode(MISO_ENC, INPUT);

 pinMode(A5, OUTPUT);

 for(int i=0; i<4; i++){ // set up LEDs

 pinMode(ledRed[i], OUTPUT);

 digitalWrite(ledRed[i], LOW);

 pinMode(ledGreen[i], OUTPUT);

 digitalWrite(ledGreen[i], LOW);

 }

 time = millis() + 2000; // reading every 2 seconds

}

void loop(){

 if(millis() > time){ // only take reading every 2 seconds

 time = millis() + 1000;

 encRead(); // read in all sensors

 for(int i =0; i<npRead; i++){ // print them out

 Serial.print(th[i]); // angle

 Serial.print(“ -> “);

 Serial.print(dig1[i],HEX); // ready

 Serial.print(“ -> “);

C H A P T E R 1 6   T H E P E N D U L U M P I , A H A R M O N O G R A P H 403

 Serial.println(dig2[i], HEX); // magnetic strength

 }

 count = count << 1;

 if(count > 0xff) count = 1;

 upDateLEDs(count);

 error++ ;

 digitalWrite(A5, error & 1); // flash error LED

 Serial.println(“ “);

 }

}

void upDateLEDs(int n){ // MS nibble red - LS nibble green

 ledsOff();

 for(int i = 0; i<4; i++){

 if((n & 1) != 0) digitalWrite(ledGreen[i],HIGH);

 n = n >> 1;

 }

 for(int i = 0; i<4; i++){

 if((n & 1) != 0) digitalWrite(ledRed[i],HIGH);

 n = n >> 1;

 }

}

void ledsOff(){

 for(int i=0; i<4; i++){

 digitalWrite(ledRed[i], LOW);

 digitalWrite(ledGreen[i], LOW);

 }

}

void encRead(){ // reads two bytes from each encoder

 int hallReading; // to hold 16 bits from sensor

 digitalWrite(CS_ENC, LOW); // enable encoders

 for(int i = 0; i<npRead; i++){ // read in each sensor

 delayMicroseconds(50);

 digitalWrite(CK_ENC, LOW); // clock low

 delayMicroseconds(50);

 for(int i=0;i<16;i++){

// read in all bits for one sensor

 hallReading = hallReading << 1;

 digitalWrite(CK_ENC, HIGH); // clock high

 delayMicroseconds(50);

continued

R A S P B E R R Y P I P R O J E C T S404

Listing 16-2  continued
 hallReading = hallReading | digitalRead(MISO_ENC);

 digitalWrite(CK_ENC, LOW); // clock low

 delayMicroseconds(50);

 } // all bits in

 digitalWrite(CK_ENC, HIGH); // clock high

 delayMicroseconds(50);

 th[i] = ((hallReading>> 6) & 0x3ff); // the angle data

 dig1[i] = (hallReading & 0x3f) >> 3;

// the magnetic field

 dig2[i] = (hallReading & 0x6)>>1;

// ready and error bits

 }

 digitalWrite(CS_ENC, HIGH); // remove chip enable

}

Now before you run this save it under the name Encoder_read. Then click the tick icon to see
if it compiles correctly; any simple mistakes will be highlighted. Correct those and save again.
When you can get it to compile without errors click the upload icon to transfer it to the Arduino.
This could take up to ten minutes. Only when you have done this should you disconnect the
Arduino, plug in the sensor hardware and reconnect the Arduino to the Raspberry Pi.

This sketch reads the sensors and flashes the LEDs in turn at a rate of about two seconds. It
prints out the results to the serial port. You can see these results on the serial port terminal
program built into the Arduino IDE. Simply click the icon that looks like a magnifying glass
in the top-right corner. You will see four groups of numbers, each line being one sensor. The
first number is the angle data, followed by the conversion error flags and finally the magnetic
indicators. The numbers are separated by an ➪ symbol.

What you are initially looking for is that the second two numbers are 4 and 0, indicating that
they are error free, and the first number changes as you move the pendulum. If this is what
you see, then it is time to make the adjustments to the pendulums. There is a wraparound
point at some place in the rotation where the data goes from 1023 back to zero. You want
this point to be outside the permitted swing angle. I adjusted each pendulum’s magnet posi-
tion by putting the pendulum assembly on its back and just having the short stubs on the
pendulums. Then I slackened the nut holding the pendulum to the threaded rod and twisted
the rod so that the reading was within 64 of 256 for the pendulum horizontal to one side and
within 64 of 768 when moved to the other side. This means that when the pendulums are
hanging straight down the reading should be close to 512. The exact value does not matter
but write down what it is for each pendulum because you are going to use it in the real sketch
so that you get a zero angle reading when the pendulum is hanging straight down.

C H A P T E R 1 6   T H E P E N D U L U M P I , A H A R M O N O G R A P H 405

The Final Arduino Code
Now it is time to program the Arduino for the real job. The Harmo Arduino code is designed
to send data to the Raspberry Pi only when it is asked to start. The Pi sends commands to the
Arduino that consist of just a single letter. These are Start Sending, Stop Sending and instruc-
tions on how to process the pendulum data. So type the code in Listing 16-3 into the Arduino
IDE and save it under the name Harmo.

Listing 16-3  The Harmo Arduino Code
/* Harmonograph reading four rotary encoder

By Mike Cook Feb-April 2013

Bit banging the SPI

Sending out to serial port as two 10 bit values split into two

5 bit values with the top two bits used to identify the byte

Serial data flow and configuration control

*/

#define CS_ENC 10

#define CK_ENC 13

#define MISO_ENC 12

#define MOSI_ENC 11

// constants for scaling the output

#define OFFSET 400.0 // centre of the display

#define H_OFFSET 200.0 // half offset

#define RANGE 540.0 // range +/- of co-ordinates

#define H_RANGE 270.0

// half the x range when using two pendulums

long int interval, timeToSample;

float th [] = {0.0, 0.0, 0.0, 0.0 }; // angle reading

// change the line below to your own measurements

int offset[] = {521, 510, 380, 477}; // offsets at zero degrees

int reading[4]; // holding for raw readings

boolean active = false, calabrate = false;

byte np = 2; // number of pendulums to output

byte npRead = 4; // number of detectors to read

byte ledRed [] = {2, 4, 6, 8}; // pins controlling red

byte ledGreen [] = {3, 5, 7, 9}; // pins controlling green

void setup(){

 Serial.begin(115200);

 pinMode(CS_ENC, OUTPUT);

continued

R A S P B E R R Y P I P R O J E C T S406

Listing 16-3  continued
 digitalWrite(CS_ENC, HIGH);

 pinMode(CK_ENC, OUTPUT);

 digitalWrite(CK_ENC, HIGH); // set clock high

 pinMode(MOSI_ENC, OUTPUT);

 digitalWrite(MOSI_ENC, LOW);

 pinMode(MISO_ENC, INPUT);

 interval = 20; // time between samples

 timeToSample = millis() + interval;

 for(int i = 0; i<4; i++){ // initialise indicator LEDs

 pinMode(ledRed[i], OUTPUT);

 pinMode(ledGreen[i], OUTPUT);

 }

 upDateLEDs(np);

 delay(100); // allow sensor to power up

 pinMode(A5,OUTPUT);

 digitalWrite(A5,LOW);

 if(calabrate){

 encRead(); // get offset

 calabrate = false; // calibration done

 }

}

void loop(){

 if(millis() >= timeToSample && active) {

// send data if we should

 digitalWrite(13, HIGH);

 timeToSample = millis() + interval;

 encRead();

 sendData();

 digitalWrite(13,LOW);

 }

 else {

 if(Serial.available() != 0) {

// switch on / off sample sending

 char rx = Serial.read();

 switch (rx) {

 case’G’: // Go - start sending samples

 active = true;

 break;

 case’S’: // Stop - stop sending samples

 active = false;

 break;

 case ‘2’:

C H A P T E R 1 6   T H E P E N D U L U M P I , A H A R M O N O G R A P H 407

// make samples from sensors 1 for X and 3 for Y

 upDateLEDs(0x45);

 np = 2;

 break;

 case ‘3’: // samples from sensors 1 & 2 for X and 3 for Y

 upDateLEDs(0x47);

 np = 3;

 break;

 case ‘4’:

// samples from sensors 1 & 2 for X and 3 & 4 for Y

 upDateLEDs(0xcf);

 np = 4;

 break;

 case ‘5’:

 upDateLEDs(0x8a);

 np = 5; // make samples from sensors 2 for X and 4 for Y

 break;

 case ‘6’:

// make samples from sensor 1 for X and 3 & 4 for Y

 upDateLEDs(0xCD);

 np = 6;

 break;

 }

 }

 }

}

void encRead(){ // reads two bytes from each encoder

 int hallReading = 0;

 digitalWrite(CS_ENC, LOW); // enable encoder

 for(int i = 0; i<npRead; i++){

 delayMicroseconds(10);

 digitalWrite(CK_ENC, LOW); // clock low

 delayMicroseconds(10);

 hallReading = 0;

 for(int i=0;i<16;i++){ // read in all four bits

 hallReading = hallReading << 1;

 digitalWrite(CK_ENC, HIGH); // clock high

 delayMicroseconds(10);

 hallReading = hallReading | digitalRead(MISO_ENC);

 digitalWrite(CK_ENC, LOW); // clock low

 delayMicroseconds(10);

continued

R A S P B E R R Y P I P R O J E C T S408

Listing 16-3  continued
 } // all bits in

 digitalWrite(CK_ENC, HIGH); // clock high

 delayMicroseconds(10);

 reading[i] = hallReading;

 }

 digitalWrite(CS_ENC, HIGH); // remove chip enable

 // all data in now process the data

 int errorLEDs = 0;

 for(int i=0; i<npRead; i++){

 th[i] = ((reading[i] >> 6) & 0x3ff) - offset[i];

//angle data

 th[i] = th[i] * 0.006135; // convert into radians

 if((reading[i] & 0x6) != 0) errorLEDs++;

// shows an error

 }

 if(errorLEDs != 0) digitalWrite(A5,HIGH);

 else digitalWrite(A5,LOW); // drive error LED

}

void upDateLEDs(int n){ // MS nibble red - LS nibble green

 ledsOff();

 for(int i = 0; i<4; i++){

 if((n & 1) != 0) digitalWrite(ledGreen[i],HIGH);

 n = n >> 1;

 }

 for(int i = 0; i<4; i++){

 if((n & 1) != 0) digitalWrite(ledRed[i],HIGH);

 n = n >> 1;

 }

}

void ledsOff(){

 for(int i=0; i<4; i++){

 digitalWrite(ledRed[i], LOW);

 digitalWrite(ledGreen[i], LOW);

 }

}

void sendData() { // send X Y points to plot

 int s1,s2;

 byte t;

 // pendulums 1 and 3 are short and so have a wider range

C H A P T E R 1 6   T H E P E N D U L U M P I , A H A R M O N O G R A P H 409

 switch(np) {

 case 2: // from two pendulums

 s1 = OFFSET + (RANGE * sin(th[0]));

 s2 = OFFSET + (RANGE * sin(th[2]));

 break;

 case 3: // from three pendulums

 s1 = OFFSET + (H_RANGE * sin(th[0])) + ;

(H_OFFSET * sin(th[1]));

 s2 = OFFSET + (RANGE * sin(th[2]));

 break;

 case 4: // from four pendulums

 s1 = OFFSET + (H_RANGE * sin(th[0])) + ;

(H_OFFSET * sin(th[1]));

 s2 = OFFSET + (H_RANGE * sin(th[2])) + ;

(H_OFFSET * sin(th[3]));

 break;

 case 5: // from other two pendulums

 s1 = OFFSET + (OFFSET * sin(th[1]));

 s2 = OFFSET + (OFFSET * sin(th[3]));

 case 6: // from three pendulums

 s1 = OFFSET + (RANGE * sin(th[0]));

 s2 = OFFSET + (H_RANGE * sin(th[2]) + ;

(H_OFFSET * sin(th[3])));

 break;

 }

 // split up the data into 4 bytes, tag top

 // two MS bits and send

 t = (s1 >> 5) & 0x1f; // MSB first

 Serial.write(t);

 t = (s1 & 0x1f) | 0x40; // LSB plus top index bits

 Serial.write(t);

 t = ((s2 >> 5) & 0x1f)| 0x80; // MSB plus top index bit

 Serial.write(t);

 t = (s2 & 0x1f) | 0xC0; // LSB plus top index bits

 Serial.write(t);

}

The first thing to note is that the line

int offset[] = {521, 510, 380, 477}; // offsets at zero degrees

should be changed to the readings you took with the previous sketch when the pendulums were
hanging down. It is impossible that you will have the same readings here for your construction.

R A S P B E R R Y P I P R O J E C T S410

One important thing to note is the way the data is sent to the Raspberry Pi. In order to mini-
mise the number of bytes sent, you send only the X and Y coordinates that need to be plotted.
However, you can’t just send the bytes because you then have no way of knowing which was
which at the receiving end. If one was missed, then the whole thing would be out of sequence,
and the data would be corrupted. There are two ways around this problem: The first is to send
data in packets – send the data and add a header to it. The header should be a unique value that
does not appear in the data. The receiving side keeps fishing bytes out of its buffer until it sees
this header byte; then it has a good chance of knowing that the next few bytes are in the order
they are sent. This is fine especially for larger amounts of data, but you have to ensure a unique
value for the start of packet indicator, and that often means restricting the data to something
like a string representation, which is inefficient. Here, the approach I have used is to tag each
individual byte, which works because you are trying to send two 10-bit data values and there
are plenty of spare bits if you divide the data up correctly. Figure 16-18 shows what I have
done. Basically each coordinate is split up into two 5-bit fields, and the top two bits of each field
have a unique bit pattern to identify them. Therefore the receiving side can identify if the bits
come in in the right order and verify that none have been dropped. This was important, espe-
cially during development, because initially the Raspberry Pi’s buffer was filling up to overflow-
ing and data was being lost. Therefore I knew I had to do something to alleviate the problem;
more on that when you see the Python code in the section “Programming the Pi”.

Figure 16-18:
Splitting up the
data to tag each

byte.

C H A P T E R 1 6   T H E P E N D U L U M P I , A H A R M O N O G R A P H 411

The other main point is the code that looks at the serial port to see if the Raspberry Pi has
sent any data back. You will see that all that happens is that variables are set, but these vari-
ables affect the program flow later on, specifically in the sendData() function. This func-
tion converts the angles you measure from each pendulum into the distance to plot on the
screen. Using the simple sin rule of geometry shown in Figure 16-19, you can calculate the
distance from the centre of the swing.

Figure 16-19:
Generating a
displacement
from an angle.

The actual length of the pendulum is substituted by a value of half the number of pixels you
want to cover, and when you have two pendulums you use half that value and add them up.
In the sketch you will see that this is not quite the case with the values of the constant

R A S P B E R R Y P I P R O J E C T S412

RANGE; this is because the large pendulums do not swing as much as the small ones, so there
is a bit of an amplification factor to make a slightly bigger display. When two pendulums are
used, the displacement distance at any time is simply the two pendulum readings added
together. As they swing back and forth you need to add a fixed offset so that the swing will
be in the centre of the window when you plot it on the Raspberry Pi. You will see in the
sendData() function the angle data from each pendulum can be combined in a number of
different ways depending on what commands have been received. Then finally the data is
split up, tagged and sent out of the serial port to the Raspberry Pi.

Programming the Pi
Finally you have come to the point where you want to take the data streaming in from the
pendulums and plot them onto the screen to see what patterns they make. The first thing a
program has to do is to establish communication with the Arduino. When you plug an
Arduino into the USB port it can potentially appear on one of two ports, so you have to try
both of them. You want to send the data as fast as possible, so use the Arduino’s top speed of
115200 baud. Then you have to open a Pygame window and command the Arduino to start
sending data by sending it the letter G for “go”, down the serial port. The full listing of the
Python program to do this is shown in Listing 16-4.

Listing 16-4  The Pendulum Pi Plotting Program
import piface.pfio as pfio # piface library

#!/usr/bin/env python

“””

Harmonograph plotter

Data comes from pendulums attached to an arduino and feeding

into the Pi through the USB serial port

version 2 with reduced byte transfer count

“””

import time # for delays

import os, pygame, sys

from pygame.locals import *

import serial

try:

 ser = serial.Serial(‘/dev/ttyACM0’,115200, timeout=2)

except:

 ser = serial.Serial(‘/dev/ttyACM1’,115200, timeout=2)

pygame.init() # initialise graphics interface

C H A P T E R 1 6   T H E P E N D U L U M P I , A H A R M O N O G R A P H 413

os.environ[‘SDL_VIDEO_WINDOW_POS’] = ‘center’

pygame.display.set_caption(“Harmonograph”)

screen = pygame.display.set_mode([800,800],0,32)

background = pygame.Surface((800,800))

cBackground =(255,255,255)

background.fill(cBackground) # make background colour

col = (0,0,0) # drawing colour

reading = [0, 0, 0, 0]

lastX = 0

lastY = 0

picture = 1 # picture number

nextTime = time.time()

timeInc = 0.2 # update screen every half a second

fileName = “harmo”

running = False

def main():

 openPort()

 getData()

 drawData() # to get the starting positions

 blank_screen()

 while True :

 checkForQuit()

 getData()

 drawData()

def drawData():

 global readings, nextTime, lastX, lastY

 x = reading[0]

 y = reading[1]

 pygame.draw.line(screen,col,(lastX,lastY),(x,y),1)

 lastX = x

 lastY = y

 # see if it is time to update the screen

 if time.time() > nextTime :

 pygame.display.update()

 nextTime = time.time() + timeInc

def openPort():

 global running

continued

R A S P B E R R Y P I P R O J E C T S414

Listing 16-4  continued
 ser.flushInput()

 # tell the arduino to start sending

 running = True

 ser.write(‘3’)

 ser.write(‘G’)

def checkInput(b):

see if the bytes have been received in the correct order

 correct = True

 for i in range(0,4):

 #print i,” - “ # ,hex(ord(b[i]))

 if (ord(b[i]) >> 6) != i :

 correct = False

 return correct

def getData():

 global reading, running

 if running :

 a = ser.read(4)

 if checkInput(a) :

 reading[0] = ((ord(a[0]) & 0x1f)<< 5) | ;

(ord(a[1]) &0x1f)

 reading[1] = ((ord(a[2]) & 0x1f)<<5) | ;

(ord(a[3]) &0x1f)

 #print reading[0],” - “,reading[1]

 else:

 correct = False

 while correct == False : # resynchronise

 print “lost sync “,ser.inWaiting()

 b = ser.read(1)

 t = a[1] + a[2] + a[3] + b[0]

 a = t

 correct = checkInput(a)

def blank_screen():

 screen.fill((255,255,255)) # blank screen

 pygame.display.update()

def terminate(): # close down the program

 print (“Closing down please wait”)

 # tell the arduino to stop sending

C H A P T E R 1 6   T H E P E N D U L U M P I , A H A R M O N O G R A P H 415

 ser.write(‘S’)

 ser.close()

 pygame.quit()

 sys.exit()

def checkForQuit():

 global col, picture, fileName, running

 event = pygame.event.poll()

 if event.type == pygame.QUIT :

 terminate()

 elif event.type == pygame.KEYDOWN :

get a key and do something

 if event.key == pygame.K_ESCAPE :

 terminate()

 if event.key == K_SPACE or event.key == K_DELETE:

 blank_screen()

 if event.key == K_r :

 col = (255, 0, 0)

 if event.key == K_g :

 col = (0, 255, 0)

 if event.key == K_b :

 col = (0, 0, 255)

 if event.key == K_y :

 col = (255, 255, 0)

 if event.key == K_m :

 col = (255, 0, 255)

 if event.key == K_c :

 col = (0, 255, 255)

 if event.key == K_w :

 col = (255, 255, 255)

 if event.key == K_k :

 col = (0, 0, 0)

 if event.key == K_s : # see the size of the buffer

 print ser.inWaiting()

 if event.key == K_2 :

 ser.write(‘2’) # data from two pendulums

 if event.key == K_3 :

 ser.write(‘3’) # data from three pendulums

 if event.key == K_4 :

 ser.write(‘4’) # data from four pendulums

 if event.key == K_5 :

 ser.write(‘5’) # data from alternate two pendulums

continued

R A S P B E R R Y P I P R O J E C T S416

Listing 16-4  continued
 if event.key == K_6 :

 ser.write(‘6’)

data from alternate three pendulums

 if event.key == K_h :

 ser.write(‘S’) # stop arduino from sending

 running = False

 if event.key == K_j :

 ser.write(‘G’) # start arduino sending

 running = True

 if event.key == K_HOME :

 ser.write(‘S’) # stop arduino from sending

 print “save sketch to file”

 if picture == 1 : # first time to save this session

 fileName = raw_input(“Enter file name ;

for this session “)

 try:

 pygame.image.save(screen,’harmo/’+;

fileName+str(picture)+’.png’)

 except:

 os.system(‘mkdir harmo’)

 pygame.image.save(screen,’harmo/’+;

fileName+str(picture)+’.png’)

 print “saving sketch as “,’harmo/’+;

fileName+str(picture)+’.png’

 picture +=1;

 ser.write(‘G’) # start arduino sending

if __name__ == ‘__main__’:

 main()

If you get an error at the line

import serial

Then you will have to install it by typing

sudo apt-get python-serial

C H A P T E R 1 6   T H E P E N D U L U M P I , A H A R M O N O G R A P H 417

The main function is quite simple: It opens the serial port and then gets one point of data,
plots it and wipes the screen. This primes the last coordinate positions so that the drawing
starts at the current point. Then there is a simple infinite loop that checks for any quit or
keyboard inputs, and then gets another pair of points and plots them. The getData() func-
tion simply reads four bytes from the serial port, and the checkInput() function is called
as part of an if statement. This returns true or false depending whether the input bytes
have the correct tag bits on them. If they are okay, the bytes are unpacked into a reading
variable; if not then a message is printed out, and bytes are read in one at a time in an attempt
to resynchronise the data stream.

Drawing the data on the screen is quite simple and handled by the drawData() function. A line
is drawn between this new pair of points and the last set. Now at this point you might expect to
update the screen. However, when I tried this it took too long, and the data backed up in the buf-
fer leading it to overflow and thus fail. So I came up with the compromise that the actual screen
would only be updated every 0.2 of a second. This is done by using the timer module to see if it is
time to update the screen. This results in a slightly jerky drawing, but it is not too disturbing to
look at. As a result, in normal circumstances, the buffer is nearly always empty. However, when
the operating system times out the program, the buffer is big enough to cope, and the display is
not disturbed. You can see the display very rapidly catch up when the program returns.

The other main part of the program is the checkForQuit() function. This checks for the
Esc key or the window close click as normal, but it also checks to see if any keyboard key has
been pressed. These are used for various functions, as summarised in Table 16-2.

Table 16-2  Keyboard Functions
Key Function

R Plot in red

G Plot in green

B Plot in blue

C Plot in cyan

Y Plot in yellow

M Plot in magenta

W Plot in white

K Plot in black

Spacebar Wipe the screen

S See the number of bytes waiting in the buffer

H Halt the sending of data from the Arduino

continued

R A S P B E R R Y P I P R O J E C T S418

Table 16-2  continued
Key Function

J Start sending data from the Arduino

Home Save the screen as a PNG file

2 Data from pendulums 1 for X and 3 for Y

3 Data from pendulums 1 & 2 for X and 3 for Y

4 Data from pendulums 1 & 2 for X and 3 & 4 for Y

5 Data from pendulums 2 for X and 4 for Y

6 Data from pendulums 1 for X and 3 & 4 for Y

Using the Pendulum Pi
To finish off, here are a few notes on using the Pendulum Pi. To get a feel of what is going on,
start off with a simple two pendulum by pressing the 2 key. Now swing the two long pendu-
lums at positions 1 and 3 exactly together or as we say, “in phase”; you will see a diagonal line
at about 45 degrees being drawn. Now make them swing exactly opposed to each other –
that is, 180 degrees apart – and you will see the same diagonal line but drawn in the opposite
direction. Finally, get them at 90 degrees apart, let one go and release the second when the
first is at the bottom of its swing. What you should then see is a circle. Of course you will not
get it exactly spot on so what you will actually see is an elongated ellipse instead of a straight
line and a fat ellipse instead of a circle. You might want to try some fine adjustment on the
pendulums’ length to get them to swing exactly at the same rate. As the two drift out of
phase you will see the same shapes being traced slightly shifted. This is where it starts getting
interesting as pleasing patterns are built up.

Also as the swing decays, the excursions will get smaller, and the pattern being drawn will
slowly get smaller. This also adds interest to the pictures drawn. Now switch to a three pen-
dulum setup, and see how the second pendulum modifies the swing plotted. I have found it
best if you release the pendulums from a height rather than pushing them. Also, don’t just
swing them the maximum amount they will go; often less is more. You will also find some
energy is transferring from one pendulum to another, which also adds to the variety of pat-
terns you can get. There are many patterns you can generate from just one setup. Figure
16-20 shows some of the patterns I have managed to generate in a few sessions. To save a
picture, press the Home key on the keyboard. You will then be asked for a session name in
the Python console. Odds are you will have to click the console window to give it focus while
you type in the base name. After you have done this for the first time any further screen
saves use the same filename with an increasing number tacked on. These are stored in a
folder called harmo, so make sure that you create one first.

C H A P T E R 1 6   T H E P E N D U L U M P I , A H A R M O N O G R A P H 419

Figure 16-20:
Some of the
patterns
generated with
this project.

Over to You
I think the best patterns are achieved when the long and short pendulums are an integer
harmonic of each other, so you might want to change the way the long pendulum’s length is
adjusted to get a finer degree of control over it. You could write some software to measure
the period of the pendulum to allow you to adjust the period even more accurately.

You could make the frame higher so that you could use longer pendulums and get higher
ratios of swing. A pendulum of just over three meters might be pushing how much space you
have in a domestic environment, however.

You could add the automatic Facebook posting of the pictures as shown in the last chapter.

One enhancement that would involve changing the Arduino software is to use one of the
pendulums to send information that changes the colour of the trace in a gradual way. That
would produce smoothly changing multicolour traces – although you might want to try that
idea purely in the Python software based on the number of samples received. You can explore
the difference between RGB colour space and HSV colour space in the colour changing.

R A S P B E R R Y P I P R O J E C T S420

One radical change you could do is to generate the swings purely in software using the same
algorithm, either in the Arduino or the Raspberry Pi. This will allow you to produce patterns
with a high swing ratio that otherwise would require very long pendulums. However, you will
have to model the swing decay, and you won’t get the energy transfer effects – so in my opin-
ion, it is not nearly as much fun as swinging them and seeing what you get.

Chapter 17
The Techno–Bird Box,
a Wildl i fe Monitor

by Dr. Andrew Robinson

In This Chapter

❍	 Build a light beam

❍	 Get the current time and format it

❍	 Store data to a file

❍	 Implement a state machine

❍	 Filter out noise

❍	 Draw a graph in Python

R A S P B E R R Y P I P R O J E C T S422

HAVE YOU EVER wondered what the birds in your garden get up to when you’re not watch-
ing? Thanks to the Raspberry Pi, with a couple of taps on a smartphone you can monitor the
bird activity in your garden from anywhere in the world.

In this project, you will build a “techno–bird box” that will keep an eye on the comings and
goings of our feathered friends, recording when they enter and leave a nest box.

You can go on to program your Raspberry Pi to do a range of things when it detects a bird.
You might want to make it send a message by SMS, Twitter or e-mail or trigger a camera to
take a picture. You could log the activity and use it to draw a graph such as the one shown in
Figure 17-1.

Figure 17-1:
Bird activity

shown against
temperature.

You might want to combine this with other data to find out more about bird behaviour. Are
they busier in the evening or early morning? Are your birds more active than your friends’
birds? You could store weather data and then see if temperature, rainfall and wind speed
make a difference.

C H A P T E R 1 7   T H E T E C H N O – B I R D B O X , A W I L D L I F E M O N I T O R 423

Alternatively, you could adapt the sensors to monitor small mammals, and perhaps use it to
photograph rodents, or even keep an eye on your pet hamster.

In this project, you will detect bird activity with a pair of infrared light beams that are broken
when a bird enters or leaves the nest box. One beam is mounted just inside the nest box, and
the other is mounted just outside. You will write code that determines bird direction based
on the order the beams are broken and unbroken. This chapter introduces some fairly
advanced background information, which will help you understand how you can build your
own projects in the future. However, if you just want to build a techno–bird box, you can just
follow the steps and type in the complete program listing.

Building Invisible Light Beam Sensors
The first step is to build the light sensors. Light beam sensors offer a way of detecting objects
without making physical contact. You could use them in another project that detects other
animals or for one of the suggestions in the “Over to You” section at the end of this chapter.

Remote Monitoring
Computers and technology are playing an increasing role in monitoring our wildlife.
Zoological Society London (ZSL) is using Raspberry Pis in Africa to save rhinos from poach-
ers. They are using the computational power of the Raspberry Pi to analyse images to
detect poacher activity and raise an alert over a satellite data connection. They’re also
deploying Raspberry Pis in the sea to monitor sharks.

I used a similar setup to the one in this chapter to collect information about blue tits for the
BBC Springwatch programme; for details you can go to the blog at www.bbc.co.uk/
blogs/natureuk/posts/Raspberry-Pi-bird-box.

Using computers as data loggers to make measurements is not new, but the increase in
computing power means monitoring can be more sophisticated. Better digital communica-
tions mean that it’s easy to collect data from around the world in real time. The falling cost
of hardware is opening up the opportunity to gather massive data sets. If more people get
involved in citizen science, and collect and contribute data through the Internet, new scien-
tific discoveries can be made. Technology has made it easier for everyone to become a
scientist, with the potential to be a part of the next earth-shattering discovery.

http://www.bbc.co.uk/blogs/natureuk/posts/Raspberry-Pi-bird-box
http://www.bbc.co.uk/blogs/natureuk/posts/Raspberry-Pi-bird-box

R A S P B E R R Y P I P R O J E C T S424

The light beam sensors are based on of a pair of components – an emitter and a detector. In
order to measure the speed or direction an object (in this case a bird) is moving, you will need
to build two pairs.

The Required Parts
It’s quite easy to build your own light beam detectors; parts are readily available for less than £1.

There is a range of many different LEDs and phototransistors that all work in a similar way.
They’re available from the typical electronics suppliers online. Although it’s possible to sub-
stitute parts, I have tested only the following components. Because you are wiring up elec-
tronics to the Raspberry Pi, I suggest that you use PiFace Digital to provide additional
protection, and enough current to drive the emitters. You will need

❍	2 IR LEDs, such as part number OSRAM - SFH484-2 - INFRARED EMITTER, 5MM,
880NM

❍	2 IR photodetectors, such as part number QSE113 - INFRARED PHOTOTRANSISTOR

❍	2 1k ohm resistors

❍	2 330 ohm resistors

❍	Wire

Wiring Up the Emitter
The emitters are made using an infrared LED. Infrared LEDs are much the same as normal
LEDs, but they emit infrared light rather than the typical red, yellow, blue and so on LEDs you
might see on electronic devices. Here’s a reminder of things to consider when using LEDs:

❍	LEDs work only one way around, so you need to ensure that the correct leg is con-
nected to a +ive (positive) power supply.

❍	LEDs can be damaged by too much voltage, so you may need a resistor in series.

For most LEDs, the longer lead of the LED (called the anode) should be connected to the
power supply. However, if you have the SFH484-2 IR LED, the longer lead is the cathode and
should be connected to 0V (also sometimes called ground, negative or -ive).

Connect the anode of the LED to the 330 ohm resistor. Connect the other side of the resistor
to the power supply as shown in Figure 17-2.

C H A P T E R 1 7   T H E T E C H N O – B I R D B O X , A W I L D L I F E M O N I T O R 425

Figure 17-2:
IR SFH484-2 IR
LED emitter
wiring.

Wiring Up the Detector
The detector is made from a phototransistor, which allows current to flow when light falls on
it. It must be connected the correct way around, or it may be damaged, and it should also
have a resistor in series to limit the current. Phototransistors have pins labelled emitter and
collector. When illuminated, current flows into the collector and out of the emitter.

Take care to identify the legs of the phototransistors. Lay the flat side of the phototransistor
on your desk, with its legs facing you. The leg on the left is the emitter, and the leg on the
right the collector (see Figure 17-3). If you are not using a QSE113 phototransistor, check
the data sheet for your device.

R A S P B E R R Y P I P R O J E C T S426

Figure 17-3:
Identifying the

emitter (left)
and collector
(right) legs of

the QSE113
phototransistor.

Wire the emitter of the phototransistor to ground. Connect the collector to one side of a 1k
ohm resistor. Connect the other side of the resistor to the input pin, as shown in Figure 17-4.

Testing the Sensors
It’s easier to check that your sensors are working before you attach them to the bird box!
Start the PiFace Digital emulator (as described in Chapter 9, “Test Your Reactions”) and make
sure that Update Inputs is selected. Point the IR LED at the phototransistor. The appropriate
input should indicate that it is turned on. As you stop the light falling on the detector, you
should notice that the corresponding input is no longer turned on.

C H A P T E R 1 7   T H E T E C H N O – B I R D B O X , A W I L D L I F E M O N I T O R 427

Figure 17-4:
IR
phototransistor
detector wiring.

If the circuit doesn’t work, check the wiring. Use a multimeter set on resistance to check the
resistance of the joints – it should read a few ohms at the most. It’s also worth checking that
the polarity is correct – that you’ve connected the IR LED and the phototransistor the right
way around. Some digital cameras are sensitive to IR, so you might be able to use one to “see”
if the LED is emitting IR light.

After you’ve checked that your sensors work, it’s time to mount them in your bird box.

Mounting the Sensors
You could build your own bird box from plans (such as those that are available online) or buy
a ready-made one from a garden centre or elsewhere. Either way, you will need to mount the
emitters and detectors near the entrance hole.

It is important not to create a perch for predators near the entrance to the nest box, or they
could attack the birds in your box. With this in mind, so that the front face around the
entrance remains flat, and to provide some protection to the electronics, it’s best to sand-
wich the sensors in layers of plywood.

R A S P B E R R Y P I P R O J E C T S428

An example layout of the three different layers of plywood is shown in Figure 17-5. You will
need one front piece and a set of beam A and beam B pieces for each beam.

Figure 17-5:
Cutting plans

for plywood
sheets.

Ensure that you use exterior- or marine-grade plywood, as these grades are suitable for use
outside. Other grades may disintegrate, potentially while birds are nesting! Also if you use
glue, ensure that it’s waterproof, and nontoxic!

To hold the sensors, cut five pieces of plywood the same size as the front of your nest box.
Cut a hole in all five, the same size and in the same place as the nest box opening. Check that
they all align with the front of your box, and then put one piece of plywood aside. This will
become the new front of the box.

You need to cut a slot for the sensors in the four remaining pieces of plywood. Draw a hori-
zontal line across the middle of the entrance hole where the beam will be. Mark out 3 mm
above and below the line to define a slot where the light beams will be.

It’s better to have the slots horizontal so that they don’t fill up with feathers, dirt, muck and
such as the birds enter and leave the nest.

C H A P T E R 1 7   T H E T E C H N O – B I R D B O X , A W I L D L I F E M O N I T O R 429

With the four pieces of plywood together, cut outward from the entrance hole, 30 mm along
the marked-out slots, as shown in Figure 17-6. Check that the IR emitter and IR receiver will
fit at the end of the slots. If necessary, enlarge the end of the slots so that they fit.

Figure 17-6:
A closeup of
the IR LED
emitter and
phototransistor
receiver in the
slot near the
hole for the nest
entrance.

Decide how you will route your wires and where they will come out from the plywood sand-
wich. It is usually best that they come out from the bottom to avoid water getting in. If you
cut slots going to the emitter and receiver on the same piece of wood, you will end up with a
separate piece, which is tricky to align. Instead, cut a narrow slot for cables from the outside
to the emitter on two pieces of wood (refer to Figure 17-5, beam part A), and on the other
piece of wood cut a slot to the receiver (refer to Figure 17-5, beam part B).

Glue beam part A and beam part B together with the sensors fitted and the wires running
down the slots. Repeat this for the second beam. Test that both the beams work and then
fasten the two beams together and attach the front piece of plywood.

Check that the entrance to the nest box remains unrestricted by the five pieces of plywood.
Also check that there is nothing sharp sticking out that could injure the birds, and then
mount the pieces of plywood in place on the front of the nest box with either glue or screws.

R A S P B E R R Y P I P R O J E C T S430

Protecting Your Raspberry Pi from the Elements
Now is a good time to think where you will house the Raspberry Pi. Although the Raspberry
Pi is fairly robust, it’s better to protect it from extremes of temperature or humidity. You
have a couple of options:

❍	Mount the Raspberry Pi near the bird box and run a long wire to supply it with power
and transmit data back via Wi-Fi or Ethernet.

❍	Have your Raspberry Pi inside a building and run long wires from it to the LEDs and
phototransistors in your bird box.

You may find a compromise is best, perhaps with your Raspberry Pi in a shed or outbuilding,
with medium-length wires running to your nest, and a data connection via Wi-Fi to your
broadband router.

If you mount your Raspberry Pi outside, you should use a waterproof box. You can buy these
boxes from most electrical distributors or hardware stores. These enclosures typically have a rub-
ber gasket to make a waterproof seal with the lid. If you buy a box that has an IP rating of IP66,
you can be pretty sure that your Raspberry Pi will remain dry from water from the outside.

Often electronic product packaging contains sachets of silica gel to protect the item from humidity
during transit. Put a couple of these sachets in with your Raspberry Pi to keep the humidity in the
enclosure under control. You can revitalise silica gel by gently warming it to dry it out.

IP Rating
Enclosures may be given an IP rating that describes how much protection they give to their
contents. The IP rating consists of two numbers: The first digit indicates the protection
against solid objects, such as tools, fingers and dust, and the second digit describes the
protection against liquids. The higher the numbers, the greater the protection offered and
the less that can enter the enclosure. For liquids, 1 ranges from protection from vertically
dripping water, 5 for protection from jets and 8 for continuous immersion in water.

If the manufacturer wants to provide a rating for only one digit, X is used for the other. For
example, an enclosure may be rated IPX6, meaning that it is protected against powerful
water jets, but nothing is claimed about the protection from solids.

If you’ve built a project with your Raspberry Pi and need to protect it, the IP rating is a good
way of knowing if a manufacturer’s box will be up to the job.

C H A P T E R 1 7   T H E T E C H N O – B I R D B O X , A W I L D L I F E M O N I T O R 431

Recording Activity to a File
Now that you have your Raspberry Pi able to detect when the light beams are broken and
unbroken, it is time to write a program to record this information. Ultimately you are inter-
ested in the direction that the birds are traveling in, which is deduced from the order the
beams are broken and unbroken.

Real Time or Post-Process?
The Raspberry Pi is more than capable of running a program that can process the beam break
information to determine bird direction in real time – in other words, as it happens. However,
for this application it is better to record the raw sensor readings and process the data later.
This approach means that information is not thrown away.

If you processed the beam break information and just recorded if a bird left or entered the
nest box, you would limit your options for future analysis. For example, what if you later
decided that you were interested in the speed the bird entered and left the nest? If you store
the time of every instance of a beam’s breaking and unbreaking, you can process it later to
determine direction, and you can calculate the speed. If you stored only direction informa-
tion, this information about speed could not be calculated later.

Furthermore, as you will see later in the “Dealing with Sensor Noise” section, you will need to
filter out noise from the sensors, and at a later stage you might develop a more sophisticated
filter to process the raw data.

If you wrote a program to process the beam break data in real time and there was an error in
it, you would have lost valuable information about your birds. Before deciding to store the
unprocessed data, it’s worth doing a quick calculation to predict how much data the bird-
logging program would produce. If a bird visited every minute, for 18 hours a day there
would be 1080 (60*18) events per day. Assuming the nesting period is at most 60 days, this
is 64800 (60*1080) events. If each visit results in 10 sensor events (due to noise) and each
takes 30 bytes to store, the total storage required is 19440000 (64800*30*10) bytes, or about
20 megabytes. Because there is plenty of low-cost storage available with a Raspberry Pi on a
cheap SD card, it is better to write a very simple program to store the raw beam break data
that can be analysed offline later.

R A S P B E R R Y P I P R O J E C T S432

Information and Data
When you are considering logging events it’s worth thinking about the information you are
storing. Sometimes storage space is limited, or the cost of remotely transmitting data is
high. The power available to the computer might be limited, or the computer might be in a
hostile environment, so the data is at risk of corruption.

When logging data you may need to consider compression, encryption and error detection
and correction.

How much information does a piece of data contain? How do you measure information, for
example, and how much information does a web page contain? Is there more information
on the Internet than contained in the DNA that describes you? How much can you com-
press a file? Information theory is a branch of computer science concerned with storing and
processing information and data and provides an answer for many of these questions. It can
lead to some deep philosophical discussions and mind-blowing concepts. Do you need to
read every page of this book to get all the information from it?

Computing is all about taking data in, processing it and outputting it. As such it follows that
information theory, which is all about how data is stored and processed, is important to
computer science.

Thinking about information theory leads to some fascinating questions – how much infor-
mation is contained in an English sentence? Text speak shows that it is possible to com-
municate without needing all the words and letters in a sentence.

When you are collecting data with computers, maybe in a bird box in your garden, maybe in the
middle of Africa or maybe on a satellite in a distant part of the solar system, information theory
provides tools and reasoning to ensure that the valuable research information gets back safely.

Compression and Checksums
Think of the information stored on a CD. If the CD is slightly scratched, it still plays with no
loss of sound quality. If it becomes more scratched, there comes a point when it will not
play. Effectively, there is an amount of data that can be lost from a CD without mattering;
so this data must be redundant in terms of the information the CD contains. Information is
useful in calculating the amount of extra data needed for error correction on CDs and in
communication links, such as radio, which may be unreliable.

Now think about converting an audio file from a CD to an MP3 file. Most people cannot tell
the difference between playing a CD and an MP3 file, yet the MP3 file size (the amount of
data) will be typically a tenth of the size. Nine tenths of the data has apparently been thrown

C H A P T E R 1 7   T H E T E C H N O – B I R D B O X , A W I L D L I F E M O N I T O R 433

The Complete Logging Program
The program in Listing 17-1 records the time, which sensor triggered and whether it was
broken or unbroken in file.

Listing 17-1  recordBird.py

#!/usr/bin/env python

import piface.pfio as p

import datetime

p.init()

#Define the inputs/output pin number that

#the beams are connected to.

INNER_BEAM = 0

OUTER_BEAM = 1

#keeps track of the last state the beam was in

continued

away! This is an example of lossy compression. It takes advantage of assumptions of how
the audio data will be interpreted in our brains – for example, if a quiet and a loud sound are
played together, the quiet sound isn’t heard, and therefore there is no value to the ear in the
data representing it.

If you wanted to record birdsong in your bird box, then without audio compression you
would quickly run out of storage space on the SD card. Lossy compression isn’t suitable for
all applications; for example, you wouldn’t want to throw away data about bird visits.
Instead, lossless compression would be more appropriate.

Lossless compression represents data in a more efficient format. For example, if you had a
list of numbers 2,0,0,0,0,0,1, instead of sending each 0 you could encode the list as 2,5x0,1.
Zip compression is an example of this form of compression (and is used to make the
Raspbian OS download smaller).

If you needed to transfer your bird data remotely, over a mobile phone connection, then you
might use zip to make the file smaller, or you might consider doing some other processing
(to get rid of noisy readings) to send just the information you need.

In some cases you want to know that the data hasn’t been corrupted. In this case you might
add redundant data so that you can detect or even correct any errors. MD5 checksums that
represent the contents of a long file with a short sequence of characters are an example of
this. You came across MD5 checksums in Chapter 1, “Getting Your Raspberry Pi Up and
Running”, to detect if the Raspbian OS download had been corrupted.

R A S P B E R R Y P I P R O J E C T S434

Listing 17-1  continued
#used to know if a new event has occurred

innerBeamStateWasBroken = False

outerBeamStateWasBroken = False

#function to return the current time, formatted as

e.g. 13 Jun 2013 16:07:30 572

def getFormattedTime():

 now = datetime.datetime.now()

 return now.strftime(“%d %b %Y %H:%M:%S. “) + ;

str(int(round(now.microsecond/1000.0)))

#generate and record an event to file

def logEvent(sensor, state):

 logFile.write(str(sensor) + “,” + str(state) + ;

“,” + getFormattedTime() + “\n”)

#turn on IR LED emitters

p.digital_write(INNER_BEAM_EMITTER,1)

p.digital_write(OUTER_BEAM_EMITTER,1)

#open a file for appending, do not buffer

logFile = open(‘birdlog.txt’, ‘a’, 0)

#indicate the point the program started in the log

logFile.write(“###starting up at:” + getFormattedTime() + “\n”)

#main loop of the code

while (True):

 #read the current state of the beam

 innerBeamIsBroken = (p.digital_read(INNER_BEAM) == 0)

 outerBeamIsBroken = (p.digital_read(OUTER_BEAM) == 0)

 ##handle Inner Beam

 # if the beam has become broken, that is if the beam

 # was not broken before but is now,

 # then record that the beam was broken and log to file

 if (not innerBeamStateWasBroken and innerBeamIsBroken):

 innerBeamStateWasBroken = True

 logEvent(0,1)

 #print “inner beam has been broken”

C H A P T E R 1 7   T H E T E C H N O – B I R D B O X , A W I L D L I F E M O N I T O R 435

 # this detects when the beam has become un-broken again.

 # That is when the beam was broken and it is not broken

 # any longer. When this occurs, record the new state and

 # log it to file

 if (innerBeamStateWasBroken and not innerBeamIsBroken):

 innerBeamStateWasBroken = False

 logEvent(0,0)

 #print “inner beam has been un-broken”

 ##handle Outer Beam, with same structure as inner

 if (not outerBeamStateWasBroken and outerBeamIsBroken):

 outerBeamStateWasBroken = True

 logEvent(1,1)

 #print “outer beam has been broken”

 if (outerBeamStateWasBroken and not outerBeamIsBroken):

 outerBeamStateWasBroken = False

 logEvent(1,0)

 #print “outer beam has been un-broken”

The structure of Python programs should be familiar to you by now, but it is worth consider-
ing new concepts introduced and reinforcing others.

Constants
Some languages (such as C) have constants to hold values that do not change over the lifetime
of a program. They allow programmers to define the value of a constant in one place and then
refer to it throughout the program. If the programmer updates the program, the value needs to
be changed in only one place. This is easier than searching through the code looking for all
instances of the value to change. In Listing 17-1 the pin number of the PiFace interface that is
connected to the beams is defined in INNER_BEAM and OUTER_BEAM. As such, if the circuit is
changed, the value needs to be updated in only one place in the program. This is part of pro-
gram design for the future. It takes into consideration that the beams may be connected to
other pins and so makes it easy for them to be changed in one place at the top of the program.

Unlike other programming languages, Python does not really have constants. However, the
convention is to use variables with all uppercase names instead.

Detecting Changes of State
The variables innerBeamStateWasBroken and outerBeamStateWasBroken are ini-
tialised to False. These variables are used to detect if the state of the input pin has changed,
so the event of a beam changing can be recorded.

R A S P B E R R Y P I P R O J E C T S436

Formatting the Current Time
The function getFormattedTime() is used to get the current time and format it. Looking
inside the function, you’ll see that the variable now gets a datetime.datetime object con-
taining the current date and time:

now = datetime.datetime.now()

The method strftime is called with an argument that specifies how the current time is
formatted:

return now.strftime(“%d %b %Y %H:%M:%S. “) + ;

str(int(round(now.microsecond/1000.0)))

The format argument provides a template of codes in a string. When the program runs, the
codes in Table 17-1 are replaced by different parts of the date and time stored by the object.

Table 17-1  Date-Formatting Codes
Code Meaning English Example

%a Shortened weekday name Mon

%A Full weekday name Monday

%b Shortened month name Mar

%B Full month name March

%d Day of the month 14

%H Hour (24-hour clock) as a decimal number 18

%I Hour (12-hour clock) as a decimal number 6

%m Month as decimal number 03

%M Minute 15

%p AM or PM (or local equivalent description) PM

%S Second 12

%y Two-digit year 13

%Y Four-digit year 2013

%% Use to display a single % sign %

Different places around the world have different conventions; for example, the 14th of March in the
U.K. would be written as 14/03, but in the U.S. as 03/14. Linux locale sets the various settings like
these that are unique to a particular place in the world. For example, it also defines the currency
used, default paper size and keyboard layout. strftime uses your locale setting to determine
what %p displays. It also uses it to make %c format the date and time appropriately for you.

C H A P T E R 1 7   T H E T E C H N O – B I R D B O X , A W I L D L I F E M O N I T O R 437

Why not try it yourself in an interactive Python session? Type the following

import datetime

datetime.datetime.now().strftime(“Today is: %A %d %B %Y. ;

The time is: %I:%M:%S %p”)

Create a format string to format the time and date so that if now was 6:15 p.m. on the 14th of
March, it would be displayed as 1815 2013-03-14.

There are other codes too. Find out what %j does.

You will notice that there is no code to display the time in milliseconds. As the time between
beams breaking and unbreaking can be less than a second, a way to format the time in milli-
seconds needs to be created by the programmer.

The datetime.datetime object has the attribute microsecond. Because there are 1000
microseconds in a millisecond, this number is divided by 1000, rounded to the nearest whole
number by the int and round functions and then converted to a string and concatenated to
the end of the formatted date/time.

Writing to a File
The logEvent function is called to record an event to a file. You will see later that in the
program initialisation a file object called logFile is created:

#generate and record an event to file

def logEvent(sensor, state):

 logFile.write(str(sensor) + “,” + str(state) + ;

“,” + getFormattedTime() + “\n”)

The logEvent function builds the string to be written to the file and then passes it to the
write function of the logFile object. Which beam and how it changed are passed as argu-
ments to the function and stored separated by commas. The end of the string written is an
“\n”, which is a special character code to create a new line in Linux.

The code for a new line varies across operating systems. Files in Microsoft Windows require
the code “\r\n” instead of just “\n”.

R A S P B E R R Y P I P R O J E C T S438

Initialisation
After the function definitions come the statements that set things up for the main part of
the program. The IR LED emitters are controlled by the outputs of PiFace Digital, so they
need to be turned on. This is done with the digital_write function that sets a pin to
value 1, that is, turn on. INNER_BEAM and OUTER_BEAM specify the pin numbers the IR
LEDs are connected to:

#turn on IR LED emitters

p.digital_write(INNER_BEAM,1)

p.digital_write(OUTER_BEAM,1)

Working with Files
Before a Python program (and programs written in most other languages) can write data to a
file it needs to open it first. Python does this with the open function, which takes a filename,
mode and buffer length as arguments and returns a file object. The file object provides an
easy way of keeping track of the file that has been opened.

It is worth studying the open function in more detail, looking at the example in the program:

#open a file for appending, do not buffer

logFile = open(‘birdlog.txt’, ‘a’, 0)

The function returns a file object that is stored in the logFile variable. This variable is used
in your logEvent function to identify which file the data about the event is to be written to.

Opening Files – Filename

The first argument of the function, ‘birdlog.txt’, is the name of the file that will be
opened. It is relative to where the program was run from. This means that birdlog.txt will
be opened in the same directory where the command was issued to run your program. If you
wanted to create the file somewhere else in the filesystem, you would need to give the appro-
priate file path.

Linux File Paths
Linux, like most operating systems, has a hierarchical filesystem; that is, it has a tree type struc-
ture with files in directories (sometimes called folders), directories within other directories and
so on. It provides a means to describe the location of a file within the tree of directories as a file
path. The top of the tree is the root, where it is not possible to have directories above it.

C H A P T E R 1 7   T H E T E C H N O – B I R D B O X , A W I L D L I F E M O N I T O R 439

The path to a particular file may be given relative to another location in the filesystem or the
full path from the root of the tree.

For example, in a terminal type pwd to show the current directory. By default this is usually
your home directory. Type ls to list the files and directories you have in this directory. To
get to know how file paths work in Linux, it’s time for a quick tour:

Linux refers to the root of the tree by starting paths with a forward slash (/). Change to the
root of the tree by typing cd /.

Type ls to show the contents.

Type cd etc to move into the etc subdirectory that contains the configuration files for
Linux. Type pwd to show the path. Linux will print /etc, indicating that you are in the etc
directory under the root of the tree. Now move into the network settings subdirectory by
typing cd network. Type pwd again. Linux will print /etc/network, indicating that you
are in the network subdirectory of the etc subdirectory of root.

From this you should be able to see that directories are separated with slashes, and that a
path starting with / is relative to the root.

Linux users get their own directory to store their files in, which Linux calls a user’s home
directory.

Type cd ~ to change to your home directory. Type ls and you will see your files. Type pwd
and you will see that your home directory’s full path is /home/pi.

Type cd .. and you will move up into the parent directory. Type pwd and you will see you are
now at /home. Type cd ../ and you will now be at the root. Type pwd and you will see you
are at /. Type cd ../ again and you will still be at the root as you can’t go any higher!

Here is a summary of what you’ve just seen:

❍	/ – refers to the root, the topmost point of the filesystem, independent of your
current position.

❍	./ – refers to the current directory, that is the directory you are in.

❍	../ – refers to the current parent directory, that is the directory that is containing
your current directory.

❍	~/ – refers to your home directory.

❍	~username – refers to the home directory of username.

After you’ve mastered file paths you can use them within your programs to specify files
anywhere in the filesystem. Remember, pwd, cd and ls are useful commands to run in a
terminal when you are moving around the filesystem and to check file paths.

R A S P B E R R Y P I P R O J E C T S440

Opening Files – Mode

The second argument, ‘a’, specifies the mode the file is opened with. In this program you
want to append to the file – in other words, add to the contents already there. (If the file
doesn’t exist in the first place, it is created.) If you wanted to replace a file, then you should
use the write mode with an argument of ‘w’. In other programs you might want to read
from a file without changing it, and in this case you should open a file with a mode of ‘r’.

In summary, files can be opened in three different modes:

❍	r – read. The file is read only, so you know you will not change the contents.

❍	w – write. The file is cleared and started from the beginning.

❍	a – append. The file can be added to.

Opening Files – Buffer Size

The third argument of the open function is the size of the file buffer – that is, the number of
characters that will be grouped together before transferring them from memory onto the
computer’s permanent storage. For logging birds, it is sensible to have a buffer size of 0 so
that the data is written to the SD card as soon as possible. That way, if the power fails before
the buffer has been written out to the SD card, the least amount of data is lost.

Buffering
Buffering is a way to work more efficiently. For example, most people do not put the wash-
ing machine on for individual items of clothing; instead they collect their clothes together in
batches. This is because it takes about the same amount of time and energy to do a batch
of washing as it does for an individual item.

In the case of computers, writing characters to disk is similar; writing a few characters to a
file takes about the same time as writing a single character. As such, the computer collects
characters together in a buffer in memory, and then writes them out (called flushing) when
it is full. Of course, if the power is interrupted before the computer has flushed the buffer,
the data is lost.

C H A P T E R 1 7   T H E T E C H N O – B I R D B O X , A W I L D L I F E M O N I T O R 441

Writing an Initial Timestamp

The first thing written to the file when the program starts up is a timestamp:

#indicate the point the program started in the log

logFile.write(“###starting up at:” + getFormattedTime() + “\n”)

This makes it easier to look at the logs to check when a program started running. If the clock
is set incorrectly on the Raspberry Pi and you know the real time you started the program
logging, you can use the date recorded in the file to calculate the offset to correct the times
recorded for the bird activity.

The Main Loop
The main part of the program is a while loop that repeats forever. On each loop, it looks at the
current state of the light beams by reading the PiFace Digital inputs as shown in the following:

while (True):

 #read the current state of the beam

 innerBeamIsBroken = (p.digital_read(INNER_BEAM) == 0)

 outerBeamIsBroken = (p.digital_read(OUTER_BEAM) == 0)

Next are two pairs of if statements, one for each beam. The purpose of these statements is
to see if the state of the beam is different from the last time it was checked. This is done by
comparing the state of the beam that has been read into the variable innerBeamIsBroken
with the state previously recorded in the variable innerBeamStateWasBroken. If there is
a change, innerBeamStateWasBroken is updated, and the logEvent function is called to
record it to the file:

if (not innerBeamStateWasBroken and innerBeamIsBroken):

 innerBeamStateWasBroken = True

 logEvent(0,1)

if (innerBeamStateWasBroken and not innerBeamIsBroken):

 innerBeamStateWasBroken = False

 logEvent(0,0)

 #print “inner beam has been un-broken”

Testing the Program
You should be familiar with the notion of testing your programs as you write them.
Uncomment the print statements in the code to indicate when the beams are broken and

R A S P B E R R Y P I P R O J E C T S442

unbroken and run the program. Use a Ping-Pong ball or other object to break and unbreak
the light beams to check that your program prints the correct corresponding messages.

Press Ctrl + C to exit the program and check the events have been logged to the birdlog.
txt file. You can quickly look at the contents of a file in Linux by using the more command.
From the command line, type

more birdlog.txt

###starting up at:13 Jun 2013 16:07:29.425

0,1,13 Jun 2013 16:07:30.496

1,1,13 Jun 2013 16:07:30.572

0,0,13 Jun 2013 16:07:30.792

1,0,13 Jun 2013 16:07:30.961

Check that your file looks similar to entries shown here. If so, it is time to write another pro-
gram that will analyse the log file to translate the raw sensor data to bird actions.

You can download a sample log file from www.wiley.com/go/raspberrypiprojects.

Processing the Data
After you have the data of when the sensors break and unbreak it is time to write a program
to interpret this to know whether a bird is entering or leaving the nest box. To do so, you will
write a program that reads in the log file and processes it with a state machine. You will also
see that it is necessary to filter out noise.

Think about a bird entering the box, and how the sensors will record it. Here is the list of events:

	 1.	 The outer beam breaks.

	 2.	 The inner beam breaks.

	 3.	 The outer beam clears.

	 4.	 The inner beam clears.

When a bird leaves the nest box, the order will be as follows:

	 1.	 The inner beam breaks.

	 2.	 The outer beam breaks.

http://www.wiley.com/go/raspberrypiprojects

C H A P T E R 1 7   T H E T E C H N O – B I R D B O X , A W I L D L I F E M O N I T O R 443

	 3.	 The inner beam clears.

	 4.	 The outer beam clears.

To interpret the sensor data, you need to write a program that looks for these orders of
events. However, birds don’t just fly in and out of their nest boxes; they also might pop just
their heads out, have a look around and then pop back into the box.

This bobbing out of heads has sensors in this sequence:

	 1.	 The inner beam breaks.

	 2.	 The outer beam breaks.

	 3.	 The outer beam clears.

	 4.	 The inner beam clears.

When a mother bird is tending her young, she may stand in the nest box entrance and pop
her head into the box. It may be clearer to represent this number of sequences in a diagram,
as shown in Figure 17-7. The next task is to write a program to implement this diagram,
which you will see is best done with a state machine.

Building a State Machine
Diagrams similar to Figure 17-7 that show the transition (movement) between sequences of
states occur frequently in computer science, and as such there are standard techniques to
implement one in code. State machines (sometimes called more fully, finite state machines or
FSMs) consist of states and conditions that govern when there is a change from one state to
another.

In the diagram in Figure 17-7, each circle is a state, with the transitions (movement) between
states represented by arrows and labelled with the event that causes the transition. The
arrow from the block dot shows the starting state.

State machines are implemented in programs with a variable to hold the current state and a
loop. The loop contains a series of if statements that determine when there should be a
change from one state to the next. On each iteration of the loop, all the conditions that allow
the leaving of the current state are tested, and if satisfied the current state is updated,
together with any necessary actions required for the transition.

R A S P B E R R Y P I P R O J E C T S444

Figure 17-7:
A state diagram

for birds
entering, leaving

and bobbing
their heads.

C H A P T E R 1 7   T H E T E C H N O – B I R D B O X , A W I L D L I F E M O N I T O R 445

The Basic Analysis Program
To implement the state machine, enter the Python code in Listing 17-2 into a new file,
analyseBirdDataBasic.py.

Listing 17-2  analyseBirdDataBasic.py

#!/usr/bin/env python

import sys

import datetime

#print a debug message if debugging is turned on

def debug(msg):

 if DEBUG:

 print msg

state=”IDLE”

#Constants

INNER_BEAM = 0

OUTER_BEAM = 1

BROKEN = 0

UNBROKEN = 1

DEBUG = True

outwardTimes = []

loop over every line that is being piped into the program

for line in sys.stdin:

 #ignore lines beginning#

 if line.startswith('#'):continue

 # remove the new line character

 line = line.rstrip(‘\n’)

 #split the text at each comma. This creates

 #the event array, with three items

 event = line.split(‘,’)

 #store the first item in the sensor variable -- this

 #is which beam (inner or outer)

 sensor = int(event[0])

 #store the type of the event in the eventType

 #variable -- this is if the beam broke or unbroke

 eventType = int(event[1])

continued

R A S P B E R R Y P I P R O J E C T S446

Listing 17-2  continued
 # convert the text representation of the time into

 #a datetime object in eventTime variable

 eventTime = datetime.datetime.strptime(event[2],;

“%d %b %Y %H:%M:%S.%f”)

 debug (“RawEvent:”+line+”, Current STATE:”+state)

 #Main state machine

 #The idle state is waiting for either the outside

 #or inside beam to be broken.

 if (state == “IDLE”):

 # the inside sensor has been broken

 if ((sensor==INNER_BEAM) and (eventType==BROKEN)):

 debug (“on way out”)

 state = “OUTWARD_BOUND”

 if ((sensor==OUTER_BEAM) and (eventType==BROKEN)):

 debug (“on way in”)

 state = “INWARD_BOUND”

 # the bird has started leaving. Check to see if

 # it bobs back or breaks the next sensor

 elif (state == “OUTWARD_BOUND”):

 # if bird puts head back in box return to IDLE

 if ((sensor==INNER_BEAM) and (eventType==UNBROKEN)):

 debug (“inside bob back”)

 state = “IDLE”

 # bird continues and breaks the OUTER_BEAM

 elif ((sensor==OUTER_BEAM) and (eventType==BROKEN)):

 debug (“outward”)

 # bird is still going out, wait for the inner

 # beam to clear

 state = “WAITING_OUTWARD_I_CLEAR”

 ##the bird is still in the entrance hole, blocking

 ##both beams

 elif (state == “WAITING_OUTWARD_I_CLEAR”):

 if (diffTime.seconds < 5):

 # bird is very nearly out, waiting for the

 # outside beam to clear now

 if ((sensor==INNER_BEAM) and (eventType==UNBROKEN)):

 debug (“inside cleared, waiting for outside ;

to clear”)

C H A P T E R 1 7   T H E T E C H N O – B I R D B O X , A W I L D L I F E M O N I T O R 447

 state = “WAITING_OUTWARD_O_CLEAR”

 elif (state == “WAITING_OUTWARD_O_CLEAR”):

 if ((sensor==OUTER_BEAM) and (eventType==UNBROKEN)):

 debug (str(eventTime)+" BIRD has left")

 outwardTimes.append(date2num(eventTime))

 state = "IDLE"

#set of states for bird coming in

 elif (state == "INWARD_BOUND"):

 if ((sensor==OUTER_BEAM) and (eventType==UNBROKEN)):

 debug ("outside bob out")

 state = "IDLE"

 elif ((sensor==INNER_BEAM) and (eventType==BREAK)):

 debug ("inward")

 state = "WAITING_INWARD_O_CLEAR"

 elif (state == "WAITING_INWARD_O_CLEAR"):

 if ((sensor==OUTER_BEAM) and (eventType==UNBROKEN)):

 debug ("outside cleared, waiting for inside to clear")

 state = "WAITING_INWARD_I_CLEAR"

 elif (state == "WAITING_INWARD_I_CLEAR"):

 if ((sensor==INNER_BEAM) and (eventType==UNBROKEN)):

 state == "IDLE"

 debug (str(eventTime)+" BIRD has returned")

 # if we end up in any other state, then we generate an error

 else:

 debug ("error")

 raise ValueError, "unexpected input block state: "+state

The main part of the program in Listing 17-2 is performed by the for loop which reads
stdin, line by line:

for line in sys.stdin

Each loop iteration processes another line of the file. First the line is split at each comma and
placed into separate variables. The datetime.datetime.strptime function is the oppo-
site of the strftime function, converting a string-formatted time into a date object that
Python can process.

The variables are tested by the if statements in the state machine to determine if a state
transition should be made. If it is detected that a bird has left, then the time it left is appended
into the outwardTimes array. You will use this array to draw a graph of activity.

R A S P B E R R Y P I P R O J E C T S448

To test the analysis program, use the cat program to pipe the contents of your birddata.
txt file into your Python program by typing the following in a terminal:

cat birddata.txt | python analyseBirdDataBasic.py

With DEBUG=1 set, the program will go through the state machine, process the sensor log
entries and print a description of what it thinks the bird is doing.

Dealing with Sensor Noise
In everyday life, someone may say that an environment is too noisy for him or her to hear
properly. Noise is the sound that is unwanted and getting in the way of what the listener

Standard Streams
Linux supports standard streams, a mechanism to allow the output of one program to be
fed into another one. This allows very powerful combinations of programs to be connected
together on the command line to process data. There are three standard streams:

❍	Standard in (stdin) – Used for input.

❍	Standard out (stdout) – Used for output.

❍	Standard error (stderr) – Another sort of output, reserved for reporting error
messages.

Essentially standard streams can be thought of as special files. One program will write to its
stdout stream, which can be piped (think of the commands as stages in a pipeline) to the
stdin stream of another. This program reads from its stdin to receive the data. If no
other program is specified, by default stdin will be taken from the keyboard, and stdout
will be displayed on the screen in the terminal.

The | character is used to indicate that the output of one program should be piped into
another. For an example of how pipes work, imagine that you want to sort the list of the
files in your home directory in reverse order. The command ls lists the contents of a direc-
tory to stdout. The sort command takes input from stdin, orders it and sends it to
stdout. The -r argument tells sort to reverse the ordering. So, to reverse sort a list of
contents of a directory, in a terminal type

ls | sort -r

****sort uniq wget cat grep >

C H A P T E R 1 7   T H E T E C H N O – B I R D B O X , A W I L D L I F E M O N I T O R 449

wants to hear. In computing the term noise is used to describe data that is not wanted and
gets in the way. Your light beams are noisy sensors, not in that they make a sound, but that
they generate data that’s not meaningful information. The noise occurs because an object
passing through the beam may cause it to break and unbreak a few times. Think of a bird
passing through the nest box entrance – as well as its body breaking the beam, its tail may
wag up and down, additionally breaking the beam as it leaves.

You could run the program again and test it with your finger. As you move it away from the
central beam in the hole it may trigger multiple beam break and unbreak events. If the soft-
ware considered every time a beam broke to be a bird leaving the nest, it would record a
higher number than the actual number of bird visits.

Filtering Out Noise
You may be familiar with the reduction of audio noise through the use of filters; you might
turn the treble down to remove a high-pitched hiss. Similarly, in computing, data can be fil-
tered to remove noise.

Looking at logs, you should notice that the additional beam break events are usually very
short. In comparison, the time taken for a bird to leave the nest box, turn around and come
back is a lot slower. Because the time that events occurred is recorded, this information can
be used to filter out breaks and unbreaks that happen in quick succession.

The world is full of unknowns that computers have to try and make sense of: Did a bird really
leave, or did its tail cause a second beam break to be recorded? Has some dirt been caught in
the sensor? You can make your analysis program very complicated by modeling as many pos-
sible explanations of sensor readings. In industry sensor models may consider probability to
best determine what is happening.

Filtering Contact Bounce
Filtering is used more often than you might think in computers. Inputs from mechanical
switches, such as key presses on the keyboard, are filtered to remove contact bounce.
Contact bounce happens when a switch is opened or closed and the metal contacts of the
switch bounce off each other as they leave or come together. This bouncing action causes
a number of pulses to be sent to the computer. Because, in the case of a keyboard, a user
wouldn’t want multiple key presses to be registered, the signal is filtered. Typically, this fil-
tering creates a short period when the signal is ignored, which gives the contacts enough
time to settle.

R A S P B E R R Y P I P R O J E C T S450

The Analysis Program with Noise Filtering
Listing 17-3 shows the modified basic analysis program to include the concept of time. It is
shown in full here.

Listing 17-3  analyseBirdDataFiltered.py

#!/usr/bin/env python

import sys

import datetime

#print a debug message on if debugging is turned on

def debug(msg):

 if DEBUG:

 print msg

state=”INIT”

#Constants

INNER_BEAM = 0

OUTER_BEAM = 1

BROKEN = 0

UNBROKEN = 1

DEBUG = True

timestamp of event from previously processed event

lastEventTime = 0

outwardTimes=[]

loop over every line that is being piped into the program

for line in sys.stdin:

 #ignore lines beginning #

 if line.startswith('#'):continue

 # remove the new line character

 line = line.rstrip(‘\n’)

 #split the text at each comma. This creates the event

 #array, with three items

C H A P T E R 1 7   T H E T E C H N O – B I R D B O X , A W I L D L I F E M O N I T O R 451

 event = line.split(‘,’)

 #store the first item in the sensor variable – this

 #is which beam (inner or outer)

 sensor = int(event[0])

 #store the type of the event in the eventType

 #variable -- this is if the beam broke or unbroke

 eventType = int(event[1])

 # convert the text representation of the time into

 #a datetime object in eventTime variable

 eventTime = datetime.datetime.strptime(event[2],;

“%d %b %Y %H:%M:%S.%f”)

 debug (“RawEvent:”+line+”, Current STATE:”+state)

 #Main state machine

 #INITIALISATION, runs the first time around the loop

 if (state == “INIT”):

 lastEventTime = eventTime

 state = “IDLE”

 #calculate the time since the last event took place

 diffTime = eventTime - lastEventTime

 #to recover state, if the last event was greater than

 #30 seconds ago, treat it as independent and reset the

 #state machine to IDLE.

 #since the idle state of the box is both sensors

 #unbroken, waiting for an entry or exit to start

 if (diffTime.seconds > 30):

 if (state != “IDLE”):

 debug (“TIMEOUT - statemachine reset”)

 state = “IDLE”

 #The idle state is waiting for either the outside or

 #inside beam to be broken.

 if (state == “IDLE”):

 # the inside sensor has been broken

continued

R A S P B E R R Y P I P R O J E C T S452

Listing 17-3  continued
 if ((sensor==INNER_BEAM) and (eventType==BROKEN)):

 debug (“on way out”)

 state = “OUTWARD_BOUND”

 #record when the inner beam was broken

 outTime = eventTime

 if ((sensor==OUTER_BEAM) and (eventType==BROKEN)):

 debug (“on way in”)

 state = “INWARD_BOUND”

 ## the bird has started leaving. Check to see if it

 ##bobs back or breaks the next sensor

 elif (state == “OUTWARD_BOUND”):

 # check that this event is within 5 seconds of the last

 if (diffTime.seconds < 5):

 # if bird puts head back in box return to IDLE

 if ((sensor==INNER_BEAM) and (eventType==UNBROKEN)):

 debug (“inside bob back”)

 state = “IDLE”

 # bird continues and breaks the OUTER_BEAM

 elif ((sensor==OUTER_BEAM) and (eventType==BROKEN)):

 debug (“outward”)

 # bird is still going out, wait for the inner

 # beam to clear

 state = “WAITING_OUTWARD_I_CLEAR”

 ##the bird is still in the entrance hole, blocking

 ##both beams

 elif (state == “WAITING_OUTWARD_I_CLEAR”):

 if (diffTime.seconds < 5):

 # bird is very nearly out, waiting for the

 # outside beam to clear now

 if ((sensor==INNER_BEAM) and (eventType==UNBROKEN)):

 debug (“inside cleared, waiting for outside;

 to clear”)

 state = “WAITING_OUTWARD_O_CLEAR”

 else:

 debug (“timeout on waiting outward I Clear”)

 state= “IDLE”

 elif (state == “WAITING_OUTWARD_O_CLEAR”):

C H A P T E R 1 7   T H E T E C H N O – B I R D B O X , A W I L D L I F E M O N I T O R 453

 if (diffTime.seconds < 5):

 if ((sensor==OUTER_BEAM) and (eventType==UNBROKEN)):

 debug (str(eventTime)+” BIRD has left”)

 outwardTimes.append(date2num(eventTime))

state = “IDLE”

 if ((sensor==INNER_BEAM) and (eventType==BROKEN)):

 debug (“inside has broken again -- ;

waiting for it to clear again”)

 state = “WAITING_OUTWARD_NOISE_CLEAR”

 else:

 debug (“timeout on waiting outward O Clear”)

 state= “IDLE”

 elif (state == “WAITING_OUTWARD_NOISE_CLEAR”):

 if (diffTime.seconds < 5):

 if ((sensor==INNER_BEAM) and (eventType==UNBROKEN)):

 debug (“inside cleared again, waiting for;

 outside to clear”)

 state = “WAITING_OUTWARD_O_CLEAR”

 else:

 debug (“timeout on waiting outward noise Clear”)

 state= “IDLE”

#set of states for bird coming in

 elif (state == “INWARD_BOUND”):

 if (diffTime.seconds < 5):

 if ((sensor==OUTER_BEAM) and (eventType==UNBROKEN)):

 debug (“outside bob out”)

 state = “IDLE”

 elif ((sensor==INNER_BEAM) and (eventType==BROKEN)):

 debug (“inward”)

 state = “WAITING_INWARD_O_CLEAR”

 elif (state == “WAITING_INWARD_O_CLEAR”):

 if (diffTime.seconds < 5):

 if ((sensor==OUTER_BEAM) and (eventType==UNBROKEN)):

 debug (“outside cleared, waiting for inside;

 to clear”)

continued

R A S P B E R R Y P I P R O J E C T S454

Listing 17-3  continued
 state = “WAITING_INWARD_I_CLEAR”

 else:

 debug (“timeout on waiting inward O Clear”)

 state= “IDLE”

 elif (state == “WAITING_INWARD_I_CLEAR”):

 if (diffTime.seconds < 5):

 if ((sensor==INNER_BEAM) and (eventType==UNBROKEN)):

 state == “IDLE”

 debug (str(eventTime)+” BIRD has returned”)

 state = “IDLE”

 else:

 debug (“timeout on waiting inward I Clear”)

 state= “IDLE”

 # if we end up in any other state, then we generate

 # an error

 else:

 debug (“error”)

 raise ValueError, “unexpected input block state: “+state

 #independent of state

 #update the lastEventTime to be the value from this loop

 #for next iteration of loop

 lastEventTime = eventTime

Ensure that debugging is turned on (check that DEBUG=1 is set) and run the program by typ-
ing the following:

cat birddata.txt | python analyseBirdDataFiltered.py

Python will print the states of the state machine as it processes your bird data. The next step
is to visualise this data so that you can see trends about your bird behaviour.

Drawing a Graph
You may be familiar with using a spreadsheet to draw charts or graphs. LibreOffice is a free
office suite that runs on the Raspberry Pi. It contains the spreadsheet program Calc, which is
largely compatible with Microsoft Excel and Google Docs Spreadsheets. The most appropriate

C H A P T E R 1 7   T H E T E C H N O – B I R D B O X , A W I L D L I F E M O N I T O R 455

representation of bird activity is a histogram showing the frequency of bird visits. Although it
is possible to produce a histogram with Microsoft Excel using the Data Analysis add-in, it is a
manual process with multiple steps.

Python can programmatically create graphs with a module called matplotlib. The numpy
module is also useful for mathematical and statistical operations. To install the modules, on
the command line type the following:

sudo apt-get install python-matplotlib python-numpy

Create a new Python file called drawgraph.py in the same directory as analyse
BirdDataFiltered.py and enter the code in Listing 17-4.

Listing 17-4  drawgraph.py

import numpy

import matplotlib

import math

matplotlib.use(‘PDF’)

from matplotlib import pyplot

from matplotlib.dates import DateFormatter, DayLocator,;

 HourLocator

from matplotlib.dates import date2num, num2date

def plotDatehist(dates, binCount, title=None,;

 intervalSize=None):

 #create histogram

 (hist, bin_edges) = numpy.histogram(dates, binCount)

 #calculate width of each bin

 width = bin_edges[1] - bin_edges[0]

 #initialise chart drawing

 fig = pyplot.figure()

 #create the object for the chart

 ax = fig.add_subplot(111)

 #draw a bar chart, starting at the first data point, data

 #for bars will be held in hist variable.

 #the width of the bars is the width you calculated of the

 #binss. The colour of the bar will be orange

 ax.bar(bin_edges[:-1], hist, width=width,;

continued

R A S P B E R R Y P I P R O J E C T S456

Listing 17-4  continued
 facecolor=’orange’)

 #label the y axis

 ax.set_ylabel(‘visit rate per ‘ + str(intervalSize/60);

 + “mins”)

 #label x axis

 ax.set_xlabel(‘Time’)

 #add title if one specified

 if title:

 ax.set_title(title)

 # format the x axis

 # see: http://matplotlib.org/examples/api/date_demo.html

 # for more info

 ax.xaxis.set_major_locator(DayLocator())

 # format major tick boxes as Day of month/Month Hour:Min

 ax.xaxis.set_major_formatter(DateFormatter(‘%d/%m %H:%M’))

 ax.xaxis.set_minor_formatter(DateFormatter(‘%H’))

 #uncomment the set_minor_locator function to put minor

 #lines for every hour

 #if the logging has run for some time, then there are

 #too many to display!

 #ax.xaxis.set_minor_locator(HourLocator())

 # format the coords box, which is displayed when mouse

 # is over graph

 ax.format_xdata = DateFormatter(‘%d %H:%M’)

 ax.grid(True)

 fig.autofmt_xdate()

 return fig

def drawGraph(events,filename):

 #determine the number of bins (bars) on the graph by

 #splitting the time the data spans by a time interval.

 #calclulate the time spanned by the data

 latestReading = num2date(max(events))

 earliestReading = num2date(min(events))

 dateRange = latestReading - earliestReading

http://matplotlib.org/examples/api/date_demo.html

C H A P T E R 1 7   T H E T E C H N O – B I R D B O X , A W I L D L I F E M O N I T O R 457

 numberOfSeconds = dateRange.seconds + dateRange.days *;

 24 * 3600

 #chop the data up into roughly 20 min intervals (in seconds)

 intervalSize = 20*60

 #calculate how many intervals are there in numberOfSeconds

 #round up so there is always at least one

 histogramBins = math.ceil(float(numberOfSeconds)/;

float(intervalSize))

 #draw the graph

 fig = plotDatehist(events, bins=histogramBins, title=;

“Bird Box Activity”, intervalSize=intervalSize)

 #save the graph to a file

 pyplot.savefig(filename)

The code contains two functions, drawGraph and plotDatehist. drawGraph sets up the
parameters for drawing the chart. It calculates the number of bins (bars) for the histogram. It
then calls the plotDatehist function, which actually creates the graph.

plotDatehist uses the histogram function from the numpy library to gather the visits
together into time periods which correspond to the bins for the histogram. The histogram
function takes the array of data (in this case the times when the nest box was visited) and the
number of bins it should be split into. It returns both the number of items in each bin and the
highest and lowest points for each bin. The function sets up the layout of where the charts will
be drawn. In this case subplot(111) states that one chart will be drawn. The line

ax.bar(bin_edges[:-1], hist, width=width, facecolor=’orange’)

draws the bar chart.

The remainder of plotDatehist function sets up the axes – setting labels and grid lines.
Finally, the graph is saved to file as a PDF.

To draw graphs from the analysis program, edit the file analyseBirdDataFiltered.py
and make the following additions:

	 1.	 At the start of the file, add

		 import drawgraph

R A S P B E R R Y P I P R O J E C T S458

	 2.	 On the last line add the following line, which will call your graph-drawing function:

		 drawgraph.drawGraph(outwardTimes, “birdGraph.pdf”)

	 3.	 Finally, test that your program produces a graph by running it:

		 cat birddata.txt | python analyseBirdDataFiltered.py

Your program should produce a PDF with a chart showing bird activity. You can view the
PDF on the Raspberry Pi with the command xpdf. If xpdf is not installed, install it with
apt-get as follows:

apt-get install xpdf

To view the chart on the Raspberry Pi with the graphical environment running (type startx
if it is not), into a terminal type

xpdf birdGraph.pdf

Putting the Nest Box into Service
With all the code written and tested, it is time to get your Raspberry Pi in service gathering
real data on wildlife. Before deploying you need to remove the test data by deleting the
birddata.txt file. To delete a file from the command line, you can type rm filename.

Mount the Raspberry Pi and nest box securely and start the recordBird.py logging pro-
gram running. You can check for bird activity by looking for entries in the birddata.txt
log file with the more command.

Hopefully you’ll see some activity, after which you can analyse the data by running the
analyseBirdDataFiltered.py program.

Over to You
With your nest box gathering valuable information about the habits of the birds in your gar-
den, it is worth considering how you can take things further. Some of these suggestions are
simple to implement; you can reuse code from other chapters of the book. Others are more
involved and will require further research.

C H A P T E R 1 7   T H E T E C H N O – B I R D B O X , A W I L D L I F E M O N I T O R 459

You could extend the logging program to send a tweet when one of the sensors was broken
so that you knew it was worth watching the box. A good starting point would be to modify
the code from Chapter 10, “The Twittering Toy”. Look online for further documentation
about the Twitter API – the PostUpdate function can help. Here’s a hint:

api.PostUpdate(‘Bird Activity detected!’)

A development of this would be to take a photo or short sequence of video when the beam is
broken. You can execute raspistill or raspivid from Python to control the Raspberry
Pi camera. Chapter 10 shows how to call an external process. Look on the Raspberry Pi
forums or search Google for more information about controlling the camera.

If you don’t have a bird nest box, you could fit the sensors to a bird feeder, or to the entrance
of a box on the floor containing bait to capture rodents coming in and going out.

Sharing Your Data with Others
How does your bird data compare with the data collected by other people?

You could share your photos or activity graphs by uploading them to a web server, perhaps
over FTP or ssh if you are familiar with these. If you use Google Sites or WordPress, there are
APIs available to transfer images. You could look at Chapter 15, “Facebook-Enabled Roto-
Sketch” and use that as a basis to publish to Facebook.

You could set your Raspberry Pi up to be a wireless access point, run its own web server and
check on your birds from your smartphone.

If you are really feeling adventurous, why not write a web application that stores bird activity
data and plots it on a graph, or as an overlay on Google Maps? You would have to design your
own API that would allow Raspberry Pis to submit their data.

Adding More Sensors
You could interface your Raspberry Pi to more sensors. The Raspberry Pi bird box used on
Springwatch also recorded data from a weather station. This allowed trends in bird activity to
be linked to changes in the weather conditions. You could also add more instrumentation to
the nest box, perhaps recording the temperature and humidity inside. Search online for
information about interfacing analogue sensors to the Raspberry Pi.

R A S P B E R R Y P I P R O J E C T S460

The Possibilities Are Endless
As you can see, the possibilities for extending this, like the other projects, are endless. The
aim of this book is to have put you on the road to discover how exciting computing can be,
while building really fun projects. You may not have understood every piece of code at first,
but in computing this is not uncommon for experts! Sometimes you may need to spend
some time playing with the code, copying bits out, changing it, experimenting to find out
how it works. The background information in the chapters will hopefully give an introduc-
tion to the basics, which you can use to know how to modify the projects to make them your
own. Treat it a bit like a cookbook where you reuse techniques from recipes in your own
dishes.

You never stop learning with computing; technology will continue to change, but the under-
lying principles remain more constant. If you learn these principles, you can apply them to
the latest technology and know where to find reference documentation. Sometimes part of
the challenge is knowing what the jargon means, hopefully some of which this book has
demystified.

Computing touches nearly every part of modern life. You can use it as a springboard into
virtually any field. Computing changes the world. And often it starts with an idea and some
code written by one or two people. Think how mobile phones, digital cameras, MP3 players,
Facebook and Twitter affect millions of people. Anita Borg, Steve Furber, Bill Gates, Steve
Jobs, Martha Lane Fox, Sophie Wilson and Mark Zuckerberg – contemporary famous names
in the field of computing – all started with an idea. You and your invention can be part of it.
It’s over to you, what are you going to create? How will you change the world?

Index

A
Abrams, Laurence B. (inventor), 72
ACT (light), 24
Active Directory, 294
Adafruit (online store), 205
adapters, 18, 19, 20, 27–28, 281
advantage (Ping game score), 119
Alcorn, Allan (inventor), 94
algorithm, depth-first maze generation, 165
ampersand (&), 195
amplifiers, 270–272, 274
analogue, 19, 21, 206
anodes, 182, 184, 186, 225, 337, 424
answer position, 353, 354
antiparallel, 337, 338, 339, 341
append to the file, 440
Apple, 1, 2, 10, 30
Apple’s QuickTime, 97
Arch (Linux distribution), 10
Arduino, 212, 387–388, 397–412
arguments, 38, 245, 436
Assembler (language), 94
assignment, 36
associative array, 291
Atari, 72, 94
attributes, 237, 240
Audacity (application), 104, 124
authentication, 242, 284, 285, 289, 292, 293,

294–295
autocomplete, 40
autocue, 72, 89, 90, 91

B
Baer, Ralph (inventor), 94
Baylis, Trevor (inventor), 1
BBC Springwatch programme, 423
beat driver circuit/schematic, 272, 273
binboard, 222
bins (bars), 459
bipolar transistor, 325, 326

bits, 125, 141, 195, 256, 257, 264, 269, 345,
353, 354, 362, 365, 374, 386, 410, 417, 462

blitting, 75, 127–128
blocks, 11, 12
body, of function, 41, 42
Boolean, 110, 138, 255, 256, 257
boot process, 25–26
Borg, Anita (inventor), 462
bottom-up implementation, 258
Braben, David (cofounder Raspberry Pi

Foundation), 3
breadboard, 183, 222
breadboard diagram/layouts, 304, 313, 328
break frequency, 270
breakpoint, 179
browsers, 310
buffer overflow, 277
buffering, 256, 440
BusBoard Prototype System, 183
Bushnell, Nolan (inventor), 94
bytes, 193, 256, 257, 410, 417

C
C language, 277, 435
C++ language, 387
Calc (spreadsheet program), 456
calling functions, 38, 144
camel case, 42, 157
camera, 461
caret symbol (^), 264
Carpintero, Angel (Motion software maintainer),

307
cathode, 182, 225, 337, 395, 424
Cellan-Jones, Rory (journalist), 4
challenge-response authentication, 289
checksums, 12–13, 432–433
chip select (SS or CS), 207, 400
choc-bloc, 221
Circbord, 183
circuit diagrams, 281, 282, 302, 303, 327

R A S P B E R R Y P I P R O J E C T S462

classes, creating, 237
clear, 135
close event, 253–254
code

analyseBirdDataBasic.py code,
445–449

analyseBirdDataFiltered.py code,
452–456

Arduino blink code, 400
autocue listing code (Pi Prompter), 84–88
bounce code improved (Ping), 101–103
bounce text 1 code (Ping), 98–99
breaking up, 238
Colour Snap game code, 197–201
Colour Snap hardware test code, 194
Colour Snap hardware test 2 code, 195–196
date-formatting codes, 436
detecting a touch code (Pie Man), 139–140
door_controller.py code, 284, 285
drawgraph.py code, 457–459
drawing the pills code (Pie Man game),

131–132
drawing the screen code (Pie Man game),

141–142
eating the pills code (Pie Man game),

137–138
finding a way to you code (Pie Man), 140–141
folders2flickr code, 383
global variables and main function code (Pie

Man game), 144–148
good code and better code, 50–51
Gray code, 357, 359
hardware test code (Pendulum Pi project),

401–404
harmo Arduino code, 405–409
home automation using motion detection

code, 304–305
housekeeping functions code (Pie Man game),

142–143
Java code, 399
kilido-sketch code, 376–380
looking at other people’s when learning, 36
making a move code (Pie Man game),

134–135
Minecraft maze maker code, 170–174
Pendulum Pi plotting program code, 412–416
reading inputs with, 214

recordBird.py code, 433–435
replacement getAuthKey function code,

368–369
rotary encoder testing code, 365
roto-sketch control box test 1 code, 364
roto-sketch program code, 369–373
sample questions code, 346–347
scrolling code (Pi Prompter), 76–77, 80–83
secret code (twittering chicken), 242
send e-mail code, 318–319
send e-mail using wireless remote code,

328–331
send e-mail with photo attachment code, 323
Sequencer Application code, 258–262
setting up background code (Pie Man game),

128–131
single-player Ping game code, 105–110
slot car racer hack test code, 336
slot car racing game code, 348–352
source code/source, 33
temperature alert code, 317
temperature check code, 315–316
testing joystick buttons code, 344–345
twitter_tag_listen.py code,

246–247
two-player Ping game code, 112–117
Windows 1 Test Program code, 252–253
Windows 2 Test Program code, 254–255
writing of to talk to Twitter, 243

code listings, website for, 52, 286
colon (:), 41, 50, 163, 167
color key, 128
Colour Snap game

circuit layout using through-hole
components, 184

circuit layouts, 186, 187
creating the box, 187–192
customising, 202
implementing, 178
schematic, 183
software for game, 196–202
software for testing of, 193–196
theory about, 178–187

comedy insults, 30, 36–41
command-line options, 245
command-line parameter, 318
comments, 208

I N D E X 463

common anode LEDs, 182
common cathode LEDs, 182
common problems, 27–28
comparator, 270
complete circuit, 217
components, obtaining, 205–206
composite, connecting via, 21
compression, 432–433
Compu=Prompt, 72
computer storage, 11
computer-controlled slot car racing project. See

Slot Car Racing Game project
computers, majority of as embedded in

devices, 204
concatenated, 39, 274, 437
connecting display, 18–21
connections, of wires and components, 220–223
constants, 435
contact bounce, 357, 359, 365, 451
Cool Components (online store), 205
Criss Cross Quiz (TV show), 50
current, 216
current sinks, 181
CVS (source code management), 209

D
daemon mode, 309
data, working with, 432–433
Debian (Linux distribution), 10, 207, 239
debouncing, 359
deep copy, 138
delta (Δ), 95, 111
depth-first maze generation algorithm, 165
desktop application, production of, 252
detectors, 270, 328, 362, 424, 425–427
detent, 356, 359, 364, 365
deuce (Ping game score), 119
dictionary, 291
digital devices, 206
digital signals, 19, 21
directories, 294
Disco Lights project

building circuit, 273
customising, 274
defining sequence, 252
designing circuit, 270–272
designing sequencer, 257–258
getting code to do more, 254–256

implementing sequencer, 258–265
LED strips, 265–269
making lights move, 269–270
running circuit, 273–274
theory about, 256–257

display memory, 74
displays, connecting, 18–21
documentation

for espeak, 235
importance of, 239, 248

Door Lock project
authentication block, 284–286
customising, 294–295
hardware, 277–278
initial high-level software simulation,

278–280
input block, 283–284
networking multiple doors, 293–294
output block, 280–283
putting it all together, 292
safety-critical systems, 276–277
system overview, 276
testing program and fitting lock, 292–293
unlocking doors without touching, 286–291

Door Switch project, 298–305
double buffering, 256
double throw, 282
dropped across (voltage), 180
DVI, connecting via, 19, 20

E
eBay, 252, 266, 396
electrical circuits, 216–217
electricity, 204–205, 216
electromagnetic locks, 277
electromechanical keepers, 278
electronics, 216
electrons, 216
element 14/Premier Farnell/Newark

(distributor), 11, 19, 205
E-mail Alert project

attaching file to e-mail, 322
materials needed, 317
sending e-mail, 322
SMTP SSL encryption, 319, 321–322
software, 317–324
transport layer security (TLS), 319–320, 322

R A S P B E R R Y P I P R O J E C T S464

e-mail encryption, 319
E-mail Using Wireless Remote project

construction, 325–328
materials needed, 325
overview, 324
software, 328–331

emitters, 326, 424–425, 426, 429, 438
emulator (PiFace), 210–211, 213, 223, 225, 245,

282, 426
encryption, 319, 321–322, 432
equals sign (=), 36, 264
errors, logical/syntax, 50
espeak text-to-speech (TTS) program, 232–235
event, defined, 253

F
Facebook, sharing Techno-Bird Box project data

on, 461
Facebook-Enabled Roto-Sketch project. See Roto-

Sketch project
Fail2Ban utility, 311
FAT (filesystem), 11, 12
Fedora (Linux distribution), 10
feedback, 271
file buffer, 440
file paths, 438–439
files

backing up, 152
creating new, 33
writing to/working with/opening, 437–440

filesystem directory, 294
filesystems, 11, 12, 439
FileZilla, 310
finite state machines (FSMs), 443
firewall, 311
flat file, 285
Flickr, 366–368
flow diagrams, 64, 65
flushing, 440
folders, 438
forums, 28
forward voltage drop, 179, 181
four-fold symmetry, 381
Fox, Martha Lane (inventor), 462
FSMs (finite state machines), 443
FTP client, 310, 461
functions, 37–45
Furber, Steve (inventor), 462

G
gated compressors, 274
Gates, Bill (inventor), 462
ghosts, 125, 127, 133
giongo, 122
Git (source code management), 209
gitaigo, 122
GitHub, 209, 241
Gmail account, 318, 319, 322
good visibility, 237
Goodin, Courtney M. (inventor), 72
Google Docs Spreadsheets, 456
Google Maps, 461
Google Sites, 461
graph, drawing, 456–460
graphic memory model (Pygame), 74
graphical desktop, starting, 26
Gray, Frank (inventor), 357
Gray code, 357, 359
ground (OV), 216, 301, 424

H
hack, 228, 277
Hall, Edwin (inventor), 385
Hall effect device, 385
Hancock, Tony (comedian), 72
hard-coded, 38
hardware, safety in working with, 204–205
harmonograph project, 384
hash key (#), 374, 375
hash tags, 248, 250
hash/hash table (dictionary), 291
HDMI, 18–19, 20
head and mouth mechanism, 228
Hello World, 31–33, 211, 235, 236
Here’s the News project. See Pi Prompter project
hexadecimal notation, 265
hidden detail, 184
Higginbotham, Willy (inventor), 94
high-pass filter, 270
home automation projects

customising, 331
Door Switch project, 298–305
E-mail Alert project, 317–324
E-mail Using Wireless Remote project,

324–331
Motion Sensor project, 298–305

I N D E X 465

Temperature Gauge project, 312–317
Webcam project, 305–311

hot wire cutter, 189
housekeeping functions, 78
howl around, 271

I
I Love Lucy (TV show), 72
IDE (integrated development environment), 30,

387, 399, 400
idiot’s board, 72
IDLE, 30–34, 40, 156, 212, 252
images, 12–13
immutable, 160
incomplete circuit, 217
incremental type of encoder, 357
infinite loop, 45
information theory, 432
inheritance, 293
inputs, 218
Insult Generator project

create stream of insults, 41–45
generating an insult, 36–39
insult friends by name, 39–41
putting it all together, 45
running your first Python program, 30–32
saving your program, 33–35

integrated development environment (IDE), 30,
387, 399, 400

interfacing, 226
Internet Explorer, 309
InternetOfThings (IOT), 298
interrupts, 359
IP address, 307, 310, 311, 318
IP rating, 430

J
Java code, 399
Jobs, Steve (inventor), 1, 2, 462
joystick, 334, 336–337, 339, 343–346, 354
joystick button controller, 337–344
jumper wires, 301, 312, 325

K
Keep Inputs Updated check box, 213
key, 291

keyboard shortcuts, 36, 58, 245
keyboards, 16, 17, 18, 45
key-fob button, 325, 327, 328
key/value pairings, 291

L
Lang, Jack (cofounder Raspberry Pi

Foundation), 3
large channel, 388
latency, 104
Lavrsen, Kenneth (Motion software maintainer),

307
LDAP (lightweight directory access protocol), 294
LeafPad, 30, 79, 346
LED strips, 265–269
LEDs (light emitting diodes)

Colour Snap game, 178–187, 193, 194,
196, 202

Disco Lights project, 255–257, 264–269
home automation projects, 317
Pendulum Pi project, 395, 397, 400, 401, 404
on PiFace Digital, 206
Slot Car Racing Game project, 336–341, 343,

345, 354
Techno-Bird Box project, 424–427, 429,

430, 438
Test Your Reactions project, 210, 212–215,

218–220, 225–226
Twittering Toy project, 235, 236

Lego, 152
LibreOffice, 456
light beam sensors, 423–427
lightweight directory access protocol (LDAP), 294
Linux

creating SD card with, 14–15
as designed to be used without mouse, 288
file paths, 438–439
filesystem, 11
images, 12
overview, 10–11
permissions, 14
Raspbian Wheezy version, 152
support for running LDAP servers, 294
X server, 26

Lissajous figures, 385
lists, 37, 51

R A S P B E R R Y P I P R O J E C T S466

log file sample, 442
logic, 255
logical errors, 50
Lomas, Pete (cofounder Raspberry Pi

Foundation), 3
lookup table, 70
loops, 43
lossless compression, 433
lossy compression, 433
low-pass filter, 270
LXTerminal window, 153, 156

M
M3 fixings, 390
Macintosh, 15, 30
Magnavox Odyssey, 94
Maplin Electronics (store), 205
master input slave output (MISO), 207
master output slave input (MOSI), 207
Mercurial (source code management), 209
Microsoft Excel, 456, 457
Microsoft Windows, 11, 294, 437
Minecraft Maze Maker project

customising, 174
installing, 152–153
playing, 154–156
preparing for Python, 156
starting, 153
using Minecraft module, 156–174

MISO (master input slave output), 207
MJPEG streaming, 309
Modprobe application, 312
MOSI (master output slave input), 207
motion detector, 328
Motion Sensor project, 298–305
Motion software, 307–311
mouse, 18
MP3 files, 432
Mullins, Rob (cofounder Raspberry Pi

Foundation), 3
multiple-choice quiz, 334, 347
music, for defining sequence of lights, 273
Mycroft, Alan (cofounder Raspberry Pi

Foundation), 3

N
nano editing commands, 308
nanometre, 218
near field communications (NFC), 287
negative (voltage), 216, 301, 424
networks, connecting to, 21–22
niyaniya, 122
noise, 450–451
non-inverting amplifier, 271
nonlinear device, 178
nonvolatile memory, 289
NOOBS (New Out Of Box Software), 12, 152
normally closed (NC), 299, 336
normally open (NO), 334
Notepad, 30
noughts and crosses, 50
number symbol (#), 160, 208, 248

O
object-orientated programming (OOP), 237, 238,

244, 280, 293
objects, creating, 237–238
observability for testing and debugging, 248
on-screen movement, 95–96
open collector, 218, 303
open loop gain, 270
OpenLDAP, 294
openSUSE (Linux distribution), 10
operating system (OS), 10, 11, 12, 22–26, 152
operational amplifiers (op amps), 270
Oppenheimer, Jess (inventor), 72
OS X, 11, 15
outputs, 218

P
Pac-Man, 122
pakupaku, 122
parallel circuits, 230
parallel LED pinout, 337
parameters, 38
passive infrared (PIR) sensor, 299, 303
passwords, 25, 283–286, 289, 293, 307, 311,

318, 322, 368
pattern effects (Roto-Sketch project), 375
peak detector, 270
Pendulum Pi project

I N D E X 467

Arduino, 387–388
concept, 385
customising, 419–420
Hall effect, 385–387
pendulum frame views, 389
programming Arduino, 399–412
programming the Pi, 412–418
putting it together, 388–399
using, 418–419

perfect maze, 164
permissions, Linux, 14
phono-to-phono cable, 21, 22
Photoshop Elements, 124
Pi Prompter project

customising, 92
final code, 84–88
overview, 73–78
physical setup, 89–91
step closer to usable program, 78–84

Pie Man game
customising, 150
death of a Pie Man or a ghost, 139
drawing the screen, 141–144
eating the pills, 136–139
final function, 144–148
game action, 133–141
game begins, 148–149
game ends, 149–150
gathering resources for, 123–127
ghost chase, 149
overview, 122–123
players, 124–127
setting the stage, 127–133
sounds, 124

PiFace, 4
PiFace Digital, 206–211, 215–219, 235
PiFace jumpers, 266
pills (Pie Man game), 132, 136–138
Pimorini (online store), 205
Ping game

customising, 118–119
improving, 99–104
overview, 94–99
single-player game, 104–111
two-player game, 111–118

PIR (passive infrared) sensor, 299, 303
Pi-View device, 19, 20

polling, 359
Pong, 94
potentiometers (pots), 356
power pills, 122, 124, 133, 136, 137, 138
power play, 122
powering up, 24–25
premade cards, 11
problems, common, 27–28
process, 234
programming, art of, 295–296
programs, structuring, 38
pronunciation options, 235
pull-down resistor, 293, 301, 302
pull-up resistor, 293, 301, 302, 312
PWR (green light), 24
Pygame, 74, 97, 128, 139, 412
pyonpyon, 122
Python, 30, 32, 41, 62, 94, 132, 152, 156, 157,

208, 211–214, 234–235, 239–242, 252, 277,
291, 435, 438

Q
quadrature output, 357
QuickTime, 97
quotation marks (“), 37

R
radio frequency circuits, 325
radio frequency identification (RFID) technology,

286, 289
Radio Shack (store), 205
rally, 105
Rapid Electronics (online store), 228
Raspberry Jam, 28
Raspberry Pi computer, 3–4
Raspberry Pi Foundation, cofounders, 3
Raspberry Pi User Guide, 28
Raspbian (Linux distribution), 10, 12, 13,

207, 294
Raspbian Wheezy version, 152
reaction timer, 204, 214–226
real time, 431
receivers, 325–328, 429
Red Hat (Linux distribution), 10
reed switch, 299
refactoring, 295–296

R A S P B E R R Y P I P R O J E C T S468

relays, 218, 282
remote monitoring, 423
render text, 74
replay attacks, 289
resistance, 216
resistors, 293, 301, 302, 312, 325, 424
RFID reader, 276, 286, 287–288, 290–292
RFID tags, 279, 288, 289, 291
RFID (radio frequency identification) technology,

286, 289
root, 14
rotary encoder, 386
rotary encoder types, 356–357
rotary shaft encoder, 356
Roto-Sketch project

concept, 356
control box, 363
creating symmetrical pattern, 375–381
customising, 381–382
encoder output, 357–365
final program, 369–375
four-fold symmetry, 381
pattern effects, 375
posting to Facebook, 366–369
rotary encoder types, 356–357
using Flickr, 366

router, 306, 311, 430
RS/RS Components, 11, 205

S
safety-critical systems, 276–277
schematics

beat driver, 272
Colour Snap game, 183
joystick button controller, 337
roto-sketch control box, 362
sensor board (Pendulum Pi project), 395
sensor modules’ interconnections (Pendulum

Pi project), 398
Schlafly, Hubert (inventor), 72
SCK (serial clock) wire, 207
SCM (source code management), 209
screen memory, 74
screw connectors, 221
SD cards, 11, 12–16, 23, 24, 440

sensors, 298, 423–427. See also Techno-Bird Box
project

sequencer. See Disco Lights project
serial clock (SCK) wire, 207
serial protocol interface (SPI), 206, 207, 400
series circuits, 230
short circuit, 217
SK Pang (online store), 205
slave select wire, 207
Slot Car Racing Game project

boxing it up, 340–343
customising, 354
game, 348–354
getting player input, 336–346
hacking slot car racer, 334–335
joystick testing, 343–345
obtaining slot car racer, 334
software, 346–347
testing hack, 335–336

small channel, 388
SMTP SSL encryption, 319, 321–322
solder, 222–223
solderless breadboard, 301, 312, 325
sounds

audio signal for defining sequence of
lights, 270

Pie Man game, 124
relay click, 236
success and fail (Colour Snap), 197
in Twittering Toy project, 234

source code management (SCM), 209
source code/source, 33
SparkFun (online store), 205
SPI (serial protocol interface), 206, 207, 400
sprite system, 74
sprites, 123, 125, 126, 133
standard streams, 450
Star Wars (film), 79
state diagram, for birds entering, leaving and

bobbing heads, 444
state machines, 443–444
static discharge, 205
strings, 37
subtractive colour mixing, 182
subversion, 366
surface, 74
surface mount, 183, 185, 186, 187, 188, 337

I N D E X 469

SVN (source code management), 209
switches

connecting of to LED, 219–225
reading of, 213–214
relays as, 282
wired in series, 230

syntax errors, 50

T
tar archive, 240
Techno-Bird Box project

adding more sensors, 461
building invisible light beam sensors,

423–427
customising, 460–462
dealing with sensor noise, 450–456
drawing graph, 456–460
endless possibilities with, 462
mounting sensors, 427–431
overview, 422–423
processing data, 442–450
putting nest box into service, 460
recording activity to file, 431–442
sharing data with others, 461

teleprompters, 72
Temperature Gauge project, 312–317
terminal, starting of under X, 26
test bounce, 97–98
test harness, 55
Test Your Reactions project, 214–226
test-as-you-go strategy, 282
TextEdit (Macintosh), 30
text-to-speech (TTS), 232, 233
theta (Θ), 96
through-hole components, 183
Tic Tac Dough (TV show), 50
Tic-Tac-Toe project

customising, 70
getting computer to play, as five year old,

59–70
making a start, 51–55
two-player game, 55–58

timestamp, 441
timing diagram, 357, 401
top-down design, 257
Torvalds, Linus (inventor), 10, 209

transistors, 218, 274, 325, 326, 424, 425
transition (movement), 443
transport layer security (TLS), 319–320, 322
troubleshooting, 26–28
TTS (text-to-speech), 232, 233
tuple, 168, 169, 256
Twitter, 228, 232, 239, 242–245, 461
Twittering Toy project

building, 228–229
connecting of to Twitter, 239
creating classes, 237
creating objects, 237–238
customising, 248–250
making it move, 235–237
making it talk, 232–235
putting it all together, 245–248
testing, 239
wiring, 229–232
wrapping up, 248–250

two-way mirror, 90

U
Ubuntu (Linux distribution), 10
underscore (_), 239
University of Manchester, 4
Upton, Eben (inventor), 3
user directory, 294
usernames, 25, 242, 258, 285, 286, 307, 311,

318, 439

V
variable names, 160
variables, 36
Vectorbord, 183
VGA, connecting via, 19–20
visibility, good, 237
voltage, 216
Vreeken, Jeroen (inventor), 307

W
Webcam project, 305–311
wildlife monitor. See Techno-Bird Box project
Wilson, Sophie (inventor), 462
wireless remote kit, 325, 326
wiring diagram, 313
WordPress, 461

R A S P B E R R Y P I P R O J E C T S470

Wozniak, Steve (inventor), 1, 2
wrapping around the counter, 263
Wright, Orville (inventor), 1
Wright, Wilbur (inventor), 1

X
X server, 26
Xbox, 152

Y
Yahoo! account, 318, 319, 322
YouTube, 248

Z
zener diode, 272
zipped archives, 240
Zoological Society London (ZSL), 423
Zuckerberg, Mark (inventor), 462

	About the Authors
	Contents
	Introduction
	A History of Making
	Consumer Computing
	Why Everyone Should Learn About Computing
	Enter the Raspberry Pi
	About This Book
	How to Use This Book
	The Future

	Part I: Getting Started with the Raspberry Pi
	Chapter 1: Getting Your Raspberry Pi Up and Running
	The Operating System
	Connecting Your Raspberry Pi
	The Boot Process
	Starting the Graphical Desktop
	Starting a Terminal under X
	Troubleshooting
	Let the Fun Begin!

	Chapter 2: Introductory Software Project: The Insult Generator
	Running Your First Python Program
	Saving Your Program
	Generating an Insult
	Insult Your Friends by Name!
	Create a Stream of Insults!
	Putting It All Together

	Part II: Software Projects
	Chapter 3: Tic-Tac-Toe
	Errors
	Making a Start
	A Two-Player Game
	Getting the Computer to Play
	Over to You

	Chapter 4: Here’s the News
	Early Teleprompters
	The Pi Prompter
	What You Need to Do
	A Step Closer to a Usable Program
	Your Final Pi Prompter Code
	The Physical Setup for Your Prompter
	Over to You

	Chapter 5: Ping
	Early Commercial Products
	The Ping Game
	Improving the Ping Game
	A Single-Player Game
	A Two-Player Game
	Over to You

	Chapter 6: Pie Man
	The Pie Man Game
	Gather Your Resources
	Setting the Stage
	The Game Action
	Drawing the Screen
	The Final Function
	Over to You

	Chapter 7: Minecraft Maze Maker
	Installing Minecraft
	Starting Minecraft
	Playing Minecraft
	Preparing for Python
	Using the Minecraft Module
	Over to You

	Part III: Hardware Projects
	Chapter 8: Colour Snap
	Implementing the Game
	The Software for Testing the Game
	The Software for the Game
	Over to You

	Chapter 9: Test Your Reactions
	Welcome to the Embedded World!
	Obtaining Components
	Setting up PiFace Digital
	Connecting PiFace Digital
	Using the Emulator
	Interfacing with Python
	The Reaction Timer
	What Will You Interface?

	Chapter 10: The Twittering Toy
	Hacking the Toy
	Making It Talk
	Making It Move
	Connecting to Twitter
	Putting It All Together
	Wrapping Up

	Chapter 11: Disco Lights
	Defining Your Sequence
	Getting the Code to Do More
	A Small Detour into Theory
	Designing the Sequencer
	Implementing the Sequencer
	The Lights
	Using Longer Strip Lights
	Making the Lights Move
	Designing the Circuit
	Building the Circuit
	Running the Circuit
	Over to You

	Chapter 12: Door Lock
	The System Overview
	Safety-Critical Systems
	The Door Lock Hardware
	The Initial High-Level Software Simulation
	The Output Block
	The Input Block
	The Authentication Block
	Unlocking Doors Without Touching
	Testing the Program and Fitting the Lock
	Networking Multiple Doors
	Over to You
	The Art of Programming

	Chapter 13: Home Automation
	The Internet Of Things
	Project 1: How to Create a Motion Sensor and Door Switch
	Project 2: How to Monitor Your Home with a Webcam
	Project 3: How to Make a Temperature Gauge
	Project 4: How to Send an E-mail Alert
	Project 5: How to Send an E-mail Using a Wireless Remote
	Over to You

	Chapter 14: Computer-Controlled Slot Car Racing
	Obtaining a Slot Car Racer
	Hacking Your Slot Car Racer
	Getting the Player Input
	The Software
	The Game
	Over to You

	Chapter 15: Facebook-Enabled Roto-Sketch
	The Concept
	Rotary Encoder Types
	The Encoder Output
	Posting to Facebook
	The Final Roto-Sketch Program
	Creating a Symmetrical Pattern
	Over to You

	Chapter 16: The Pendulum Pi, a Harmonograph
	The Concept
	The Hall Effect
	Enter the Arduino
	Putting It Together
	Programming the Arduino
	Programming the Pi
	Using the Pendulum Pi
	Over to You

	Chapter 17: The Techno–Bird Box, a Wildlife Monitor
	Building Invisible Light Beam Sensors
	Mounting the Sensors
	Recording Activity to a File
	Processing the Data
	Dealing with Sensor Noise
	Drawing a Graph
	Putting the Nest Box into Service
	Over to You
	The Possibilities Are Endless

	Index

