HP 13220

PROCESSOR MODULE

Manual Part No. 13220-91.088
REUTSED
AUG-1.4-81

DATA TERMINAL TECHNICAL INFORMATION

INTRODUCTION

The 02620-60088 Processor PCA performs the terminal logic functions for the $2623 A$ terminal. Its operation is based on the Z80A microprocessor, National Semiconductor 8367 CRT Controller (CRTC), and a prom based microsequenced graphics controller.

The control and $\mathrm{t} / 0$ section of the Processor PCA provides control signals, input/output and data processing functions. The memory section prouides 16 K bytes of dynamic RAM for character display memory, scratch pad memory, data buffers and space for up to six 4 K or gK byte ROMs of which $40 K$ are used for complete terminal operation (4K of ROM optional with integral printer). The Graphic:s memory subsystem contains 16 K words ($16 \mathrm{~K} \times \mathrm{X} 6$) of vector display memory. The Graphics subsystem is responsible for both write and display refresh of the graphics memory. The video rontrol section provides timing signals for driving the sweep circuitry and video logic as wejl as performing direct memory access (DMA) of display data. A detailed description of the operation of each of these sections follows in section 3.0 .
2.0 OPERATING PARAMETERS.

A summary of operating parameters for the Processor Module is contained in tables 1.0 through 4.0

Table a. 0 Physical Parameters

PROCESSOR MODULE

Manual Part No. $13220-91080$
REUTSED
$A \cup G-1.4-81$

Copyright $c 1981$ by HEWLETTMPACKARD
NOTE: This document is part of the 262XX DATA TERMINAL product series Technical Information Package (HP 13220).
1.0
2.0

INTRODUCTION

The 02620-60088 Processor PCA performs the terminal logic functions for the 2623A terminal. Its operation is based on the Z.80A microprocessor, National Semiconductor 8367 CRT Controller (CRTC), and a prombased microsequenced graphics controller.

The control and $I / 0$ section of the Processor PCA provides control signals, input/output and data processing functions. The memory section provides 16 K bytes of dynamic RAM for character display memory, scratch pad memory, data buffers and space for up to six 4K or gK byte ROMs of which $40 K$ are used for complete terminal operation (4K of ROM optional with integral printer). The Graphic:s memory subsystem contains 16 K words ($16 \mathrm{~K} X$ 1.6) of vector display memory. The Graphics subsystem is responsible for both write and display refresh of the graphics memory. The video control section provides timing signals for driving the sweep circuitry and video logic as well as performing direct memory access (DMA) of display data. A detailed description of the operation of each of these sections follows in section 3.0 .

OPERATING PARAMETERS.
A summary of operating parameters for the Processor Module is contained in tables 1.0 through 4.0

Table 1.0 Physical Parameters

Table 2.0 Reliability and Environmental Information


```
I
Environmental: HP Class B
I
I
Restrictions: Type tested at product level i
I
I
I
```



```
I
| FailureRate: 3.71 (percent per 1000 hours) I
I
*)
```

Table 3.0 Power Supply Requirements - Measured
$(\mathrm{At}+1-5 \%$ Unless Otherwise Specified)

Table 4.0 Connector Information

Table 4.0 Connector Information (Cont'd)

Table 4.0 Connector Information

:

Table 4.0 Connector Information (Cont'd)

Refer to block diagrams (figs. $1-3$), schematic diagrams (figs. 21,22,23,24), timing diagrams (figs. 4-14), component layout diagram (fig. 20), and parts list (fig. 25) located in the appendix. The following describes the operation of the five major sections of the Processor PCA; control and $I / 0$, terminal character memory, character video control, graphics controller, and graphics display control and memory.
3.1 CONTROL AND $1 / 0$ SECTION
3.1.1. Clock

A 25.7715 MHz crystal is attached to the CRTC which oscillates at the video dot frequency. This is buffered by the CRTC and again by a $74 L 5244$ (U423) to become DRCX, buffered dot rate clock. This clock is then divided by seven by the 745163 (U3i23) to produce 3.6816 MHz , which is shaped by Q4 and its associated circuitry to produce a symmetrical clock for the Z80A, which has a zero level < 0.450 and a one level 〉 4. 4 V . This clock is also divided by two to produce a 1.8408 MHz clock which the datacomm chip (U424) uses to produce baud rates.
3.1.2

Z80A
The Z80A microprocessor performs the major control and data manipulation functions of the processor PCA. It provides addresses and control signals to read and write data from and to both memory and $1 / 0$ ports. It also responds to two externally generated interrupts, NNMI and NINT, which, when enabled, interrupt current execution and cause the Z80A to branch to its interrupt service routine. The Z80A also responds to bus request signal, NBUSREQ, allowing the CRTC control of the system buses.

At power up (or reset) the z80A begins executing instructions from program memory beginning at address 0000 H . A routine is executed which initializes variables and devices according to information contained in non-volatile memory (CMOS) and performs a self test of ROM and RAM. If an error is detected a series of beeps are issued to the keyboard which indicate the failing ROM or RAM. After inintialization the program enters a major loop responding to inputs from the keyboard and datacomm ports.

Three 74L. S244's (U714, U8i1, U8i4) buffer the address and control lines from the z80A. The 1 of 8 decoder, L911, is used to seperate program memory into six blocks, each $8 K$ bytes long. The addressed ROM is enabled during a memory read by the TNRD and TNMREQ signals or during an instruction fetch by the NMi signal. Since the time to read the data in an instruction fetch is less than that for a memory read, the NMi signal was used to provide an early enable of the Rom allowing it to respond within the required time. ROMs with access times of 350 ns from address or 300 ns from enable are required to run the system at full speed. EPROMs or ROMs with 450 ns access times from address may be used by installing jumper wh and removing jumper wh, which causes the z80A to wait one cycle jonger during instruction fetches. The quad latch USi.7 and associated gating prouides the required wait signal to the Z80A.
3.1.3 I/0 Ports

C.MOS

The Z80A is capable of addressing 256 different input/output ports. I/D addresses from the ZBOA appear on address bits AO-A7 and the accumulator contents appear on bits AB-Ais. I/0 addresses 0-7FH are used to access locations in the nonvolatile CMOS RAM, U92i, where configuration data is stored. Since the CMOS RAM is not fast enough to respond within the $I / 0$ cycle time a wait state is generated (by Ubi7) each time the CMOS RAM is accessed. Diodes CRA-CRG ensure that around 5 volts is always on the CMOS supply pin. Emmitter follower circuit, QS, makes sure that during a power off the CMOS is always disabled before the Z80A buses become undefined and remains so until buses become defined at power on. During power off the battery maintains cmos contents. If power on configuration is to be fixed, the coms RAM may be replaced by an HM7Gis PROM (however it must be realized that the standard read/complement/write test for the CMOS self test would show a CMOS error since the prom cannot be written).

DATACOMM

The SY6551 Asynchronous Communications Interface Adapter performs the parallel to serial conversion, error detection and baud rate generation functions required for serial data communication. It appears to the ZBOA as four read only and four write only ports with address bit TAZ selecting the read/write function. This is done to compensate for the unique timing of the 6500 series devices. The sY655i is selected by the rising edge of SELDCi which is inverted from USiP, the 1 of 8 decoder. The addresses of the SY655i (U72") are A0-A7H.

The status inputs of the sybssi produce undesirable results and therefore are forced to their active low states while the necessary status signals are routed through another port. RS-232 line driver, U623, and receiver, U624, are used to convert from TTL levels to RS-232 levels (t-i2U) and vice versa. Transmitted signals are: send data (SD), terminal ready (TR), request to send (RS) and optional control driver 1 (OCDi). Received gignals are: receive data (RD), data mode (DM), optional control receiver 1 (OCR1), and clear to send (CS).

The datacomm subsystem operates in an asynchronous, full-duplex, point-to-point environment. Characters may be transmitted and received simultaneousiy (full-duplex) with
character flow occurring over random time intervals (asynchronous). To achieve hardware synchronization each character is framed by a start bit and a stop bit (2 stop bits at i10 baud). The addition of the framing bits for transmitted characters and the detection of framing bits for the received characters are done by the SY655i. The parity (for error detection) of the character is selectable (in the datacomm configuration menu) and is also generated and detected by the SY65Si which reports errors (parity, framing, and overrun) to the z80A by means of a status register in the $5 Y 655 i$ which is read when a character is received. The data transmission and reception rates are set by the Z80A in an internal register within the SY655i. Rates are selectable (in the datacomm configuration menu) from is. to 9600 baud.

The datacomm status inputs and outputs provide the necessary control lines to connect the terminal to a host computer via a modem, or to provide direct hardware handshaking between the terminal and host. At powermon the $T R$ and $R S$ lines are activated to indicate that the terminal is ready. Upon receipt of a modem disconnect escape sequence (esc f) the TR line iss brought inactive for about two seconds to disconnect the modem. The presence of a modem connection is detected by DM which causes the indicator "LED" (an asterisk '*') to be displayed on the bottom center of the display. The Cs signal from the host when active allows the terminal to transmit data and goes inactive to halt transmission (the terminal may ignore Cs depending on datacomm configuration). The state of OCDi is controlled by a configuration strap with its default state being low (inactive). This line selects the modem rate for dual speed modems. OCRi is monitored in datacomm self test to detect the presence of the loopback test hood. All modem status lines are active high (tizU).

Upon receipt of a character from datacomm the sy655i generates an interrupt signal (NJNT) to the Z80A. This causes the Z80A to branch to the datacomm interrupt service routine which reads the sy655i status, clearing the interrupt, and if no errors are present, inputs the character and places it inta the datacomm buffer in RAM. Characters for which errors (parity, framing or overrun) are present cause a delete character to be placed in the buffer.

EXTERNAL PRINTER PORT

The SY655i ACIA which is used for datacomm also performs the parallel to serial conversion, error detection, and baud rate generation functions required for the external printer communication. It appears to the Z80A as four read only and four write only ports with address bit TA2 selecting the read/write function. This is done to compensate for the unique timing of the 6500 series devices. The SYGS5i is selected by the rising edge of SELDC2 which is inverted from USi2, the 1 of 8 decoder. The addresses of the SY655i (U72i) are B0-E7H.

The status inputs of the sY655i produce undesirable results and therefore are forced to their active low states while the necessary status signals are routed through another port. RS-232 line driver, U622, and receiver, U62i, are used to convert from TTL levels to RS-232 levels ($+-12 V$ and vice versa. Transmitted signals are: send data (SD), terminal ready (TR), request to send (RS) and optional control driver 2 (OCD2). Received signals are: receive data (RD), data mode (DM), optional control recedver 2 (OCRE), and clear to send (CS).

Although we use the same 6551, the terminal uses it as an output device only. The hardware is set up much like the datacomm. The difference is the external printer port must be poled for internal status while the datacomm drives an interupt line to the Z80A processor telling it status of the internal receive register has changed.

OCR2 and OCD2 are used as a secondary receive ready and a secondary request to send on the external printer port. All other transmit and receive signals are handled similar to that of the datacomm.

TBUS PORTS

The remaining $1 / 0$ ports are buffered to the zgoA data bus by the bidirectional bus driver, UGiG. This was done because of data bus loading. The signal TNRD selects the direction of the driver which is enabled for all $1 / 0$ accesses except CMOS RAM and datacomm.

Usi6 forms the keystatus port located at address 80H. The keystatus port returns the status of 8 keys at a time, which keys are determined by the keyboard/display port (U4i6). Four bits of the key address (column address) are supplied by U4i6 (located at address EBH) and three more from the CRTC scan line outputs (row address). As the row address (scan line count) from the CRTC change, keystates are clocked into the keystatus shift register (a high bit indicating key active) from which they are later read. The column address is incremented (during an NMI) for each of the first sixteen display rows thereby scanning the entire range of keyboard addresses.

The keyboard/display port also enables a counter (U224) which counts horizontal sync: pulses down to a bell frequency. The bell signal is then shaped by Q2 and its associated circuit. The remaining bits of the keyboard/ display port determine whether enhancements will be enabled and latches the signal which determines the blinkrate of blinking characters.

The NNMI (non-maskable interrupt) signal to the z8oA is masked externally by a D flip-flop (half of U42s). Port addresses 88H to 8FH select the NENNMI signal of the port decoder, clocking the latch while address bit TAO is the data jnput. This means that a write to port 88H clears the latch, disabling NMI, while a write to port gif sets the latch enabling NMI.

The system status port, U5is and 4423 , at address $90 H$ allows the Z80A to read the vertical blank signal (UBL.ANK) for synchronizing the software with the hardware. It also provides the inputs for the datacomm status signals discussed above and also monitors the integral printer status.

The integral printer port at address $98 H$ buffers data continuously to the printer bus, the data being latched in the printer when the NPRINTER signal is active. The processor writes data and commands to the printer via $U 3 i s$ and half of U3i4. Printer control is specified by performing a write operation to the printer with address lines TAO and TAi and data lines TDO-TD7 selecting the particular function. Printer status is read back from the printer on the upper half of Uss which is enabled for read operations from the printer port. The presence of the printer is detected by reacing status from the printer and checking data bit TDi. TDi will be low if the printer is not connected due to the pullup resistor Ri. When the printer is connected to the processor J1. pin 11 is pulled low by the printer therby indicating connection.

Each character in the printer is formed by 30 bytes of dot data, each pair of bytes being made up of the dot data needed to form the character if the character cell is scanned horizontally. The first byte in the pajir indicates the state of every other dot while seven bits of the following byte indicate the state of the interstitial dots for the same horizontal scar. Thus fifteen pairs of bytes correspond to fifteen horizontal scars of the character. In this way any character font in a 15 by 15 cell may be created. The printer buffers the data and translates the horizontal dot information into vertical dots for printing. Each 30 bytes of dot data are followed by a print command to print the character. The printer is also able to print in expanded and compressed modes.

The rbus port located at A8H latches two signals to the video section and two for the datacomm section. The NMODEM signal is inverted to provide the clock for the latch (U4i5).

GRAPHICS SUBSYSTEM

The Graphics Controller occupies address port locations Co to FF completing the full range of addressable 1/0. The Z80A processes the necessary vector parameters needed for the graphics controller. The Z.80A downloads to the graphics arithmetic logic unit (AlU) registers these parameters. After the vector has been described by the Z80A, it tells the graphics controller to calculate and draw the described vector into graphics memory. The graphics hardware supports set, clear, compliment and jam pattern drawing modes. See section 3.4 and 3.5 for a full technical report of the graphics subsystem.

3.2

MEMORY SECTION
The Z80A is capable of addressing 65536 (64K) bytes of memory data. The memory map for this processor is shown in the table below.

TABIE 5.0 Terminal Memory Map

3.2 .1
3.2.2

Read-only-memory
As can be seen from the memory map 48 K of address space has been allocated for read-only-memory (ROM). This memory contains the Z80A programs which controls the terminal operation. The ROM space is decoded into six $8 K$ byte blocks by the 74 L 5438 decoder U91.1.

During an instruction (opcode) fetch the ZgoA activates the NMi signal to indicate that an instruction fetch cycle is in process. This signal is used to provide an early enable of the ROM being addressed during an opcode fetch therby allowing the use of ROMs with an ac:cess time on 350 ns from address or 300 ns from enable (note that an opoode fetch is one clock cycle shorter than a memory read operation) without wait states. During a memory read from Rom the

TNMREQ and TNRD signals go active enabling the addressed ROM. Data is required valid approximately 470 ns from address, therefore no wait states are required for memory reads even when using 450 ns EPROMs. Note that data iss placed directly on the z80A data bus without buffering.

Random-access-memory
The RAM subsystem has been designed around the MK4íh-2 (or equivalent) $16 \mathrm{~K} \times 1$ bit dynamic RAMs. The MK4i16-2 has a minimum access time of 150 ns and minimum cycle time of 320 ns . U820-817 and U720-717 supply data bits ZDO-ZD7 respectively to provide the 16 K bytes of RAM data storage.

The RAMs are accessed in three ways: by the z80A for memory read or write accesses, by the Z80A during a refresh cycle and by the CRTC during a DMA (direct-memory-access) cycle. Each of the three is discussed below. Refer to figure 6.0 for RAM timing.

Z80A READ/WRITE

A Z8OA access to RAM is initiated by lowering the TNMREQ signal at an address location between COOOH and FFFFH (RAM address range). Prior to TNMREG going low the output of U6i3 would be high causing i's to be shifted through the shift register, USi4, by DRCX. As TNMREG goes low (TNRFSH is high) the output of UGi3 goes low also. As the clock occurs, 0^{\prime} s are shifted through the shift register causing outputs QAQD to go low in turn. This produces the RAM timing sequence as follows: NRAS-strobes in row address, MUX-changes RAM address inputs to column address, NCAS-strobes in column address and activates internal RAM circuitry to access the addressed cell. Data ouput on MDOMD7 is vaild 100 ns from NCAS. When the ZgOA is finished accessing the RAM the TNMREQ signal goes high and $i^{\prime} s$ are shifted through the shift register completing the RAM cycle.

If the $Z 80 A$ is performing a read operation the TNRD line is lowered along with TNMREQ (TNWR remains high). The TNRD signal is gated with the output of U6i3 to enable the transparent latch, U6i8, during the read operation. When the NMUX signal goes high (as MUX goes low) the transparent latch becomes transparent, that is, the outputs follow the inputs, placing the RAM outputs on the ZgoA data bus. The latch outputs are enabled until TNRD and TNMREQ go high again.

For a write operation, the Z80A lowers TNMREQ and places the output data on the data bus. Approximately one Z80A clock later the TNWR line goes low strobing the data into the internal data latch in the RAM. The TNRD signal will be high disabling the transparent latch so RAM outputs will never be on the Z80A data bus. The cycle proceeds as for a read operation with TNMREQ going high, shifting ''s through the shift $^{\prime}$ register to complete the cycie.

Z.80A REFRESH

The nature of dynamic RAMs requires that each row must be accessed every two milliseconds to guarantee the contents of that row are held. The Z80A has a built-in refresh function to provide signals which perform dynamic RAM refresh without requiring extra processor ouerhead. The Z80A maintains a 7 bit memory refresh counter which is incremented following each instruction fetch. While the instruction is being decoded and executed the refresh counter is output on address bits TAOTA' while the TNRFSH and TNMREQ signals are brought low, initiating the RAS-MUX-CAS sequence, refreshing that row. Since the TNRD and TNWR signals remain high during the refresh cycle, the memory contents are unaltered and the transparent latch is not enabled so that the accessed byte does not appear on the bus. CRTC DMA

Twice per video row, on scan lines 6 and 14 (if starting to count from 0), the NBUSREQ signal to the Z8OA is activated to allow the CRTC to perform DMA of enhancement and character data (see section 3.3 for more information on the CRTC). The Z8OA responds to NBUSREQ at the end of the current machine cycle by tristating its address and control lines and activating the NBUSAK line signalling that the bus is available and will remain so until NBUSREQ is raised. The NBUSAK signal is inverted and buffered by u'ili to provide both TBUSAK (active high) and TNBUSAK (active low, buffered). These signals are used to tristate the address and control buffers U8i4, U714 and U8ii and enable the video subsystem for DMA action. TBUSAK enables the CRTC to place the lower is bits of the DMA address on the bus and enables the output of the transparent latch, U6i8, as well as enable the load signal to the shift register, USi4. TNBUSAK enables the upper four bits of the DMA address from USiS onto the bus and takes the recirculating line buffer, U6i9, out of the recirculate mode (see section 3.3 for more information on DMA addressing).

Approximately four character times before the start of the video row the line rate clock (NLRC) output of the CRTC goes high enabling the load signal to the shift register through the oR gate UGi4. The load signal. is derived from the character rate clock, LCGAX, which is delayed three dot times through $U 414$ in order to synchronize the RAM access to the video timing and guarantee sufficient address set up time to the RAMs. The load signal causes RAS CAS shift register, USi4, to be parallel loaded on the next rising edge of DRCX (dot rate clock). Upon loading, the shift register output QD is high and QA is low. THis condition forces the output of U6iz to go low, causing o's to be shifted through the shift register. The next three occurances of DRCX produce the NRASMUX-NCAS sequence, accessing the addressed byte. Data $\dot{i s}$ available 100 ns from NCAS, and, since NMUX is high, is placed directly on the z80A data bus (U6i8 is in transparent mode), and therefore on the line buffer inputs. As the shift register output ad goes low the output of U6i3 is forced high and $i^{\prime} s$ are shifted through the shift register completing the RAM cycle. As MUX goes high again, NMUX goes low causing the data out from the RAM to be latched in the transparent latch, U6i8, where it is held until the next memory access. As L.BCDEL (delayed line buffer clock) goes low the data is clocked into the line buffer U6ig. The CRTC increments the address and the next load signal occurs g dot times from the first, repeating the DMA cycle. In this way 80 sequential bytes of data are fetched from the RAM and loaded into the line buffer during the 80 active video character times of the display.

Note: Although the shaft register load signal is enabled four character times before active video, the CRTC holds the starting address until active video and then increments it during active video. In addition, the data is not clocked into the line buffer until the line buffer clock transitions low during active video.

On the last scan line of a character row, scan line 14, the CRTC lowers the LBRE (line buffer recirculate enable) output, taking line buffers 14620 and 4518 out of the recirculate mode (where the output iss shifted back into the input) thereby allowing data to be clocked into the inputs. During the DMA cycle of scan line i4, as characters are being output from line buffer USi8 to the display, characters for the next row are fetched from memory and loaded into line buffer usi8. At the same time, as enhancement data is shifted out from U620, the data which was previously stored in the temporary line buffer UGig (during the DMA cycle of scan line 6) is shifted into U620. In this way the display data for the next row of characters is loaded into the jine buffers during the last scan line of the previous row as it is being displayed on the screen.

3.3 VIDEO CONTROL SECTION

3.3.1 Guerview

The video control section generates the timing signals required to fetch character and enhancement data from memory and drive the analog sweep circuitry to display that information on the CRT.

The display is divided into 26 rows of 80 character cells each. Each character cell is a rectangle, is dots vertical by nine dots horizontal. Any character to be displayed is produced by selectively lighting the dots of the character cell which shape that character, leaving the others blank. Dots are left blank on either side and on the top and bottom of the character cell to prouide horizontal and vertical separation between normal characters. This is not true of characters which are continuous across the character boundary, such as line drawing characters (used to display forms).

The analog sweep circuitry sweeps the electron beam from left to right and from top to bottom across the display. As the beam is swept horizontally it is turned on to produce a lighted dot and off to blank a dot position. As the beam reaches the end of its scan a horizontal sync signal is sent to the sweep causing the beam to retrace horizontally and begin sweeping again. During this time the beam is also being swept vertically. The combination of these two produces the display raster. As the beam reaches the bottom of the display a vertical sync signal is sent to the sweep causing the beam to retrace from the bottom right to the top left corner. In this manner the CRT display is written 60 times per second (when configured at 60 Hz) or optionally 50 times per second (configured at 50 Hz).

HORIZONTAL TIMING

After the 80 th character position of a scan line the beam is turned off (blanked) and remains so as the horizontal retrace takes place. The beam is enabled again as it reaches the position for the first character of the next scan. This blanking interval is called "horizontal blanking". This blanking allows time for the beam to retrace, settle at the left side and begin tracing again. The portion of the scan where the beam is enabled is known as "active video". The horizontal scan time consists of the 80 character times of active video plus 35 character times of horizontal blanking for a total of $i \leq 5$ character times per scan (i character time $=349$ ns). This produces a horizontal scan frequency of 24.9 KHz .

The horizontal sync signal is activated 16 character times before the last video character of the scan and is active for 7 character times. It is produced in advance of the last character to compensate for the delay in the sweep horizontal centering circuit.

UERTICAL. TIMING

The 26 active video rows of the display each require 15 horizontal scans for a total of 390 active video scans. After the last scan line of the last row is displayed, a vertical blank signal is activated which disables the electron beam during the vertical retrace time. The beam is enabled again on the first scan line of the first row. The duration of the vertical. blank interval depends upon the occurance of the vertical sync signal which triggers the vertical retrace. This vertical sync timing depends in turn on the frequency with which the frame (one entire display) is refreshed. This frame rate may be configured to either 50 or 60 Hz corresponding to the $A C$ line frequencies in foreign countries or the U.S. to eliminate display interference between the power supply and CRT. The following table describes the timing relationships between the vertical blank and vertical sync signals and the frame rate.

TABI. E 6.0 Frame Timing

3.3.2

Display memory addressing
Section 3.2 .2 describes how the CRTC performs DMA to load the line buffers with character and enhancement data for display. Before it performs DMA, the CRTC must be loaded with a starting address (called the row start address). Each time the CRTC is enabled it fetches 80 consecutive bytes of data starting from the row start address and places it into one of the recirculating line buffers.

The ZgoA maintains a table of 24 row start addresses in memory indicating the addresses of the first byte of character data for each of the character rows being displayed. Rows 25 and 26 contain the soft key labels and are always accessed from fixed locations. This table is actually a subset of a larger table which contains row-start addresses for all 48 display rows. The address of the first enhancement byte of a row is the first character byte address offset by 80.

Two scan lines prior to the NBUSREQ signal being activated a nonMaskable interrupt (NMI) is generated which causes the ZgoA to branch to the NMI service routine after completing the current instruction. Part of this service routine writes the row-start address for the next DMA into the rowstart register of the CRTC. The row-start address is written into the CRTC uia the address bus itself. At the same time, bits TAiS and TAiz are written into the $74 L S i 75$ U6iS, which prouides the upper bits of the RAM address for DMA. The Z8OA reads the row start address from the table, adds the 80 byte offset for enhancement data DMA, Masks bits TAis and TAi4 to a 1 and 0 respectively and then writes a $02 H$ to this address. By masking bits TAis and TAi4 the address corresponds to a ROM location, which of course can't be written. These bits are decoded by part of 4517 and 4417 , along with TNMREQ and TNWR to generate the register load signal (U42i pin 38) which latches the address into the CRTC and 475 for use during the next DMA cycle. The data bits ZDO and ZDi select the register to be written to, in this case, the row-start register. The NMI service routine keeps count of the next row to be displayed in order to determine which row start address to send to the CRTC next. Since NMI can be disabled for an indefinate period (for example during a RAM test) it is resynchronized every frame by reading the UBLANK signal through the system status port.

Character display
At any given time the characters for the current row being displayed are held in the recirculating line buffer USi8. The character codes output from this line buffer are resynchronized to the character clock through the octal latch, U4i8, from which they are sent to the character ROM, U4i9. This ROM contains the dot pattern for each scan line of each each possible character code. The standard character set uses the ASCII character code to represent the 128 possible characters in the set. The first 32 characters of the set are the control characters (escape, line feed, carriage return, etc.) while those remaining are the alphanumeric and punctuation characters. These 128 characters are represented in bits $\times 0-X 6$ with $X 7$ being a 0 . These bits along with the scan line count become addresses for the dot data from the character ROM. Therefore, 11 address bits are required, meaning that a 2 K byte ROM may be used to contain the dot data for the standard character set. Bit $X 7$ will then serve as an active low chip select.

By using a $4 K$ byte character ROM, two complete character sets may be displayed. In this case bit X ' selects between the two character sets. Likewise an $8 k$ byte ROM can store four complete, 128 character, character sets. The schematic shows a signal from the enhancement data latch, U520 pin is, which is inverted by UPi8, and sent to U4ig pin 21. This signal is used to address the gK byte character ROM on $4 k$ boundaries. This combined with bit $X 7$ from the character data latch allows selection of any of the four character sets. This uppermost address bit becomes a chip select for 2 K or 4 K character ROMS.

As the character code and scan line count is issued to the character ROM an access time delay is encountered before the dot data is available at the outputs. The character ROM has an access time of 300 ns, therefore one full character time (349 ns) delay is introduced.

As the dot data becomes available out of the character ROM the LUSRX (load video shift register, buffered) signal is brought low which, on the rising edge of DRCX, parallel loads the data from the character ROM into the character shift registers 4319 and 4320 (and U324 as explained later). Since only seven dots per scan line are required for standard characters, seven dots are loaded from the character ROM (low output means dot is lit) into the shift registers. The Mse (most significant bit) output from the character ROM is latched by U222 (on LCGAX clock) and is used to enable the half-shift function (described below). The MSB output of U3ig is connected to the serial input of U320 essentially forming an 8 bit shift register. At the same time that the seven dots are loaded into the shift register a 1 is loaded into the MSB.

The QD output of U320 goes to the character multiplexor, Ui24. This multiplexor selects one of several inputs to gate to the dot stream. For a normal scan (not half-shift) the multiplexor select inputs will be 101 (C input is most significant) selecting the DS input. As the dots are loaded into the shift register the first dot (which is high) appears on the Ds input of the multiplexor and is gated to the dot stream. On each of the next 8 dot rate clocks (DRCX) dot data is shifted one bit position in the shift register and therefore to the D 5 multiplexor input and to the dot stream. Since the serial input of U3ig is tied high, a 1 (blank dot) is shifted into the shift register as the dot data is shifted out. Therefore at the end of the 9 dot cl.ocks comprising the horizontal scan for a standard character, the first and last dots are blanked ($i^{\prime} s$) with the 7 dots from the character ROM in between.

HALFF--SHIFT

To avoid the "stairstep" appearance of characters with long diagonals, a feature known as "half-shift" is implemented which allows and scan line of a character to be delayed by half a dot time. rhis half... shifted scan line, placed between two normal scan lines, fills in the diagonal as shown below.

(no halfoshift)
(with halfoshift)
In the standard character set the MSB output of the character Rom indicates that a scan line is to be halfshifted. This output is latched (by LCGAX) into Uis where it is held for the 9 dots of the character time. The output of U22z is fed to the character multiplexor select input A which, for half-shifted scan lines, selects the DA input (Ui24 pin 15). The QD output of the dot shift register, U3e0, is sent to the JK flip-flop, Uezi, clocked on the falling edge of DRCX, which performs the half-shift of the dot data. The output of this flip-flop goes to the DA input of the character multiplexor. The half-shift fip-flop is preset by LUSRX at the time new dots are loaded into the shift registers.

COPY ETT

Some alternate character sets such as line drawing set or large character set require all nine dots an a scan line to be active. This allows for continuous dots across a character boundary as required for drawing forms, etc. on the display. In order to get nine dots out of eight outputs from the character ROM, a copy bit circuit is activated which copies the MSE output into the first two dots while the remajing seven ROM outputs form the remaining seven dots.

The seven least significant ouputs from the character ROM are loaded into shift registers 4319 and U320 as for standard characters. The most significant output is loaded into both the A and B inputs of shift register 4324 at the same time as the least significant seven bits. Thus, the MSE is "copied" in shift register U324. The remaining dots are brought from the QC output of U320 into the serial inputs of U324 thereby forming a nine bit shift register with U3i.9, U3i9, and U3e0. The QB output from U324 is then fed to the D7 and DG inputs of the character multiplexor which are selected when the select inputs are ifx. Note that the select A input is a don't caresince half-shift cannot be used in these character sets.

The copy bit circuit is activated whenever the $x 7$ output of of the character latch U438 is active. Remember that this bit is activated to select the second character set in a 4 K character Rom or the second and fourth sets in an 8K character ROM. The first 32 character of any of the four posible character sets are reserved for control characters and therefore copy bit is deactivated when these positions are acessed. This condition is decoded by bits $X 5$ or $X 6$ being gated with $X 7$ (Ui23 and U724) to enable copy bit only for the upper 96 characters of the set. The result of this decoding is latched in the D flip-flop, U42s, which allows for the access time of the character ROM. The filip-flop is clocked by the combination of LUSRX and DRCX which are gated together by USes. The output of the copy bit enable lateh is then used to select the copy bit shift register output and gate it to the dot stream.

CURSOR
The generation of the cursor for the display isperformed by a combination of hardware and software. The CRTC activates its cursor output when the address of the character being fetched during a DMA cycle matches the contents of its internal cursor address register. This output is active for all scan lines. The software maintains and updates this register in the CRTC corresponding to the position of the cursor on the display. In order to make the cursor blink the software alternately writes a valid cursor address and then an invlaid one.

The cursor signal, CUR, output from the CRTC is gated with another signal, ULTIME, to produce a cursor signal, NCUR, which is active on the 13 th scan line. UL. TIME is decoded from the scan line count by U3ib and U3i7. This signal also enables the underline enhancement during the 13 th scan line.

In the normal situation, where the cursor does not lie in an underline field, the NCUR signal is propogated thru UGi4 to become NCURSOR which is fed to the select C input of the character multiplexor. This input goes low to activate the cursor which for normal characters unot copy bit) selects the Do or Di inputs which are tied low. This causes the dot stream to be active for the 13 scan line of the character position in which the cursor lies. In effect this OR's the cursor with the character in the c:ell (a non-destructive cursor). If the copy bit circuit is active however, the D2 of DZ inputs of the character multiplexor are selected. These inputs provide the inverted series of dots from the copy bit shift register. In essence this inverts the 13 th scan line of the character when the cursor is active. This is necessary rather than the or'd cursor used above due to the fact that some of the characters may have all dots of the izth scan line lit and the cursor would never be seen.

DOT STRETCH

The dots are inverted by Uis 4 , the character multiplexor, to provide an active high dot stream output. This dot stream is then passed through Q3 and its associated circuitry which performs a "dot stretch" function. This dot stretch is used to provide an elongated active dot which has a more pleasant appearance when displayed. It essentially "fattens up" the dots composing a character. The switching time of the transistor from saturation to cutoff is dependent upon the parasitic. collector to base capacitance and the external capacitor ci4. This capacitance limits the switching speed, essentially stretching the amount of time the transistor is active (in saturation). Capacitor Ci.7 is included to compensate for parasitic base to emitter capacitance. Note that an inversion is introduced by this dot stretch circuit.

After being stretched, the dot stream is gated through Ui22 where it picks up the underline enhancement and then is sent to the enhancement multiplexor where graphics video and the remaining enhancements are added before sending the information to the analog sweep circuitry.

Enhancement Display

A onewto-one correspondence exists between each byte of character data and each byte of enhancement data held in recirculating line buffers USi8 and U6z0 respectively. As a byte of character data is sent to the character ROM its corresponding enhancement byte is sent to the enhancement section where it is decoded and recombined with the dot stream in the enhancement multiplexor, Uizo.

Of the eight available bits in the enhancement byte, only seven are used. Four of these, ENO-EN3, select the blink, inverse, underline and halforight attributes which may be selected in any combination. Bit ENA is the set enhancement bit which, when high, causes the current enhancement to be latched and held until another enhancement is set or until the end of the current row. Bit ENS is the end-of-1ine bit which causes the display to be from the current character to the end of the row. In this way, to clear the display, end-of-ijine is set in the first character postion of each row. Eit ENG as described above forms the most signjficant address bit for an $8 K$ byte character ROM.

As a character is latched into 4418 , six of the seven enhancement bits are latched into the hex latch, 4520 . The set enhancement bit is latched at the same time (by LCGAX) into U222. At this time EN6 is fed to the character ROM to provide the character ROM address selection for its corresponding character. The attribute bits, ENO-ENZ, output from US20 are then sent to the 74LSi63, USi9. In this mode, with the count enable inputs P and T grounded, it acts as a latch with a synchronous load and clear. This latch provides the additional character time delay to compensate for the character ROM access time. If the set enhancement bit, EN4, is set, the output, U222 pin 3, will go low as the bit is latched. This activates the load input of USig causing the attributes to be loaded on the next character clock (when the character ROM outputs are loaded into the shift register).

UIDEO ATTRIBUTES

The blink attribute output (USig pin 14) is gated with the biinkrate signal from the $\mathrm{I} / 0$ section, which alternates high and low to produce the active low NBLINK signal. When active the NBLINK signal allows only the cursor to be displayed, blanking the character. In this way, the blinking characters are alternately displayed and blanked. The inverse bit simply selects the inverted dot stream (ALPHA) or cursor signals.

The underline signal, ULINE, under normal conditions (when cursor is not active) simply causes the dot stream to be turned on during scan line i3. This is accomplished by gating the ULINE signal with ULTIME and using the results to force US己只in 3 high, thereby activating the dot stream. A problem exists, however, when we want to position the cursor at a character position where underline is active. We can no longer merely "OR" in the cursor into the dot stream because it lies on the same scan line as the underline and therefore would never be seen. What is done instead is that when both are active (NCUR is low and ULINE is high), neither the cursor nor underline appear on the display. This essentially disables the underline at the cursor position on the display producing a blinking hole in the underline. The NCUR signal is sent into U6íi pin 9 which, when active, prevents the underline signal from being gated into the dot stream. At the same time the ULINE signal is sent into U6i4 pin 9 disabling the NCURSOR signal which normally generates the cursor. Thus, both are disabled.

The last attribute, halfbright, selects which of the video inputs on the analog sweep board will receive the dot information. When the halforight attribute is activated the dot information is inhibited from the NFULLERT output (which gives full intensity characters), Uaig pin 13, by pulling Uai8 pin 13 low , and is enabled through Uai8 pin 8 which sends the active low dot information on NHALFERT to the sweep.

END-OF-LTNE

The remaining enhancement bit, ENS, performs the end-of-1ine function. When set, this bit causes the display to be blanked from the current character position to the end of the row. This eliminates the need to clear both character and enhancement data in order to clear the display. After being latched in USa0 the end-of-ine signal is gated through U2i8 and US2S to lower the clear input of U519 (pin 1). This causes the enhancements to be cleared at the next character ciock (when character ROM outputs are loaded into the shift registers). At the same time that USig is cleared, the endof-line signal is latched into U321. The Q' output (U321 pin 8) is sent back to the preset input to hold the flip-flop in the cleared state for the rest of the scan line. At the end of the scan line the NLRCX (inverted line rate clock) clears the flip-flop (clear overrides preset). At the same time the Q^{\prime} output, NEOLDEL, is gated through Uizz to activate the BLANK signal.

This signal blanks the display by deselecting the alpha input, only allowing the cursor signal to be gated to the sweep. The cursor signal is allowed since it is necessary to be able to position the cursor even in a blanked field. The Q NOT output, U32i pin 8 , is gated to the clear input of USis in order to hold the enhancement latch in the cleared state.

The horizontal blank signal causes the dot stream to be disabled (blanked) after the 80 th character of a row and holds it in the blanked state until the first character of the next row. This signal is obtained by latching the LECX (line buffer clock) signal in Uaze pin 13 and adding a one character delay in U222 pin 5 . The LECX signal is active high at the rising edge of LCCAX during the 80 active video characters. HELANK is then gated through USi7 to activate BLANK and disable NCUR. VELANK and DISPOFF also blank the display in a simjlar fashion.

The last part of the video section to consider is the enhancement off circuit which allows the enhancement latches to be disabled. The Z. 80 A sets the ENHOFF signal, output from U416, which is latched by the RECIRC signal into U32i. The q output (U32i pin 5) is gated through USos to clear USig while the Q' output (U32i pin 6) clears Usia. The RECIRC signal goes low to take the line buffers out of the recirculate mode as they are loaded during scan line 14 . This means that the ENHOFF bit is always latched at the start of a new row. The software can then change ENHOFF during an NMI service routine to disable enhancement display on the next row.

3.4 GRAPHICS SUBSYSTEM

The Graphics Subsystem is a complete entity apart from the alphanumerics portion of the terminal. The Z80A sees the the graphics hardware as a read and write $I / 0$ port. The hardware consists of a graphics controller, ALU, write and read display circuitry, and $16 k$ Words (16K X 16) display of memory. Graphics uideo is multiplexed with the character video just before the sweep circuitry sees it. To draw a vector, the $280 A$ download vector parameters describing the point to point location in which the vector is to be drawn. From there the graphics controller takes over and calculates the addresses of each dot position which makes up the line path of the vector. Each dot is stored into the graphics memory one dot at a time. After a vector has been drawn the graphics controller set a status flag at a port location telling the Z80A the controller is done drawing. At this point the z80A can go ahead and download vector paramemeters of another line to be drawn.

Vector Algorithym
If we use Cartisian coordinates in the positive right half plane, we can define an algorithym that will give us a incremented line path:

$$
\begin{aligned}
& \text { Delta } X=X \text { old }-X \text { new } \\
& \text { Delta } Y=Y \text { old }-Y \text { new }
\end{aligned}
$$

The unconditional direction is the direction in which the position is aways incremented. If Delta X was greater than Delta Y it would make sense to increment the X direction for every iteration and let the Y be incremented if it is needed. This makes the Y direction conditional because it is dependant on the X position for it's incrementation.

The following algorithym assumes:
Delta X is greater than or equal to Delta Y is greater than or equal to 0 .

This says that the X direction is always the unconditional direction and the Y direction is the conditional.

The conditional direction as the direction that is dependent on an error term "e" which checks if the conditional direction has exceeded the unconditional directions unit length. If it has, it is then incremented and the error checking is repeated until the path of the vector length is completed.

The error term is described as follows:
$e=($ DeIta $Y /$ Delta X) - 0.5
By following the preceeding algorithym we can determine when to increment the unconditional and conditional directions.

START ${ }^{\text {P }}$	is e>0	(checks to see if the conditional direction should be incremented)
	if not true \rightarrow go	to COND
	$Y=Y+1$	(increment the conditional direction)
	$e=e-1$	(reinitialize the error term)
	$x=x+1$	(increment the unconditional direction)
	go to START	
COND $>$	$x=x+1$	(increment the unconditional direction)
	$e=e+$ (Delta Y	/ Delta X)
		(add slope differential to error term as an increment for unconditional unit length detection)
	go to START	

end
This algorithym has two problems, it has a divide in it'soperation which can be slow or hard for our microprocessor to do and it only describes a line from 0 to 45 degrees.

To get rid of the divive function, we multipling the error term by a constant, 2 Delta X. We can do the same algorithym but now with adds, subtracts and multiply by 2 's which is easy for a microprocessor to do by shifting one bit space.

To be able to draw in all the quadrants we must define three more variables. Fy being able to specify the X and Y increment as posjitive and or negative, we can draw a vector in any four quadrants from 0 to 45 degrees with respect to the specified quadrant. The third variable needed is a check to see which direction is unconditional . This determines which octant in a given quadrant to draw in.

Octant flag = absIDelta XI - absIDelta YI
If the sign of the results is negative, we know the Y direction is greater so it is the unconditional direction.

```
The vector length or the number of dots to be drawn is determined by
the unconditional direction's value. Since it is this direction that
is incremented every iteration, the integer value of the Delta will be
it's length.
The resulting algorithym is the one that is used. Please refer to the
flow chart figure 3.0.
Note: The error terms are now called discriminants.
START> is OCTANT FLAG < 0
        yes, then increment }Y\mathrm{ with Yinc:
        no, then increment }X\mathrm{ with Xinc
        is DISCRIMINANT < 0
        yes, then increment DISCRIMINANT WITH D.i
                        GO TO START
        no, then increment DISCRIMINANT with D2
                        and increment the conditional direction
                with it's increment
                GO TO START
Di and D2 are incremental discriminants used for slope detection and
error term reinitialization, respectively.
    Initial Discriminant = - | Delta X I + 2 | Delta Y I
        DI = 2 I Delta Y I
    D2 = 2 I Delta Y I - 2 I Delta X |
```


	I/O PORT
	ADDRESS (HEX)
1	CE
1	CF
	D 0
1	D1
1	DA
1	
1	DE
1	
	=
	DC
1	
	=: $:=:=:=:=:=:=$
1	DD
1	
	: $=:=:=:=:=:=:=:=$
	DE
1	DF
1	
	: $=:=:=:=:=:=0$
I	E1
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
	:=:=:=:=:=:=:=:=:=:=:=
	tinued

$11 / 0$ PORT	1 DESCRIPTIUN
Ec	1 Read Status- Craphics controller
1	1 status
1 1	1
1 -	1 Bit 7 > Busy Flag
$1 \times$	Bit 0) Vertical Blank time
1	1 (write to clear)
E4	1 Write to Pattern Register-
1	1 writes 8 bit pattern to the
1	1 pattern register and also sets
1 1	1 scale of the pattern. I
E8	\| Write Drawing Flags-
1 -	1 Bit 7) set to Draw Vector
$1 \sim$	1 Eit 1 > low to set or clear
1	1 memory
I	1 Bit 0 > Low to inhibit pattern 1
Fl	1 Read Vector Data-reads MSB of specifiedl
1	1 Graphics Word I
Fi.	1 Read Vector Data-reads LSB of specifiedl
i	Craphics Word I

Graphics Controller and ALU
The Graphics Controller and ALU are responsible for receiving and executing vector parameters downloaded by the z80A. Before a vector cian be written into graphics memory, the $Z 80 A, k n o w i n g X$ and Y start and end points, must calculate the dot count, descriminants, mode and etc. Which describes the vector fully. These parameter are then downloaded through the graphics bus transceiver, U4i0, to the proper address locations in ram (U21, U33, and US3). The address of these rams are multiplexed by USE and selects between the Z80A addresses or the graphics controller addresses. When the graphics controller is not busy it allow the 280 A the address the rams. The port decoding is done with U82 and U7i monitoring addresses co thru FF and the NIO request signal to enable the various ports in the graphics $1 / 0$.

After downloading the vector parameters to the ram (address locations Co through DF), the Z80A writes to port Ei to set the mode and scale. Port Ei is decoded by 494 pin 8 and the data is latched by $449 . \quad$ See Graphics $1 / 0$ allocation for bit assignment of this port.

If the vector is to be drawn with pattern, a write to port E4 will load pattern and scale (previously defined at port Ef.) into the shift register U48.

While all the parameter are being set up by the Z80A, the Prom Based Microsequenced Craphics Controller is in a wait loop waiting for the Z80A to set the draw bit telling it to go ahead and draw the vector.

The internal bus is 16 bites wide of which the lower byte ROR7-RORO, contains ALU ram addresses or program jump locations and the upper byte ROR15--RORE, containing the ALU intructions. The instructions are decoded by U4i into simple add, store and jump signals.

This architecture iss basically pipelined having the program counters U3i and U32 address the two program proms 442 and U22 ciocking the instructions and address locations to two octal latches u23 and 1443 .

After the 280 A done sending vector parameters it writes to port E.8 which consists of three d flipwflops USi, and U6i, setting the draw bit to a 1.

The controller is monitoring this bit through the demux U62, while it is in it's wait loop. Upon receiving this bit the program counters, U3i and U32, begin to step through the micro code of the proms. The prom code then executes the vector ajgorithym described in section 3.4.1.

The proms, Ue2 and 1542 , are 32×8 bits and contain the following microwcode:

	I PROGRAM 1 ADDRESS	1 INSTRUCTION 1 CODE (J42)	I ADDRESS 1 (U22)	1 OPERATION
PON	100 H	160 H	100 H	IPower On, Flag resets lcontroller into wait
WAIT				
	102 H	1884	00 H	lload YaddrB > Yaddra
	103 H	184 H	1 1iH	1.oad Xaddre > XaddrA
		$1:=0=0$	$1 \quad 2 \mathrm{TH}$	
	105 H	184 H	133 H	
	106 H	188 H	88H	l $10 \mathrm{ad} \mathrm{OctFgE}>$ OctFgA
DLOUP	107 H	1888	I DIH	ITest Carry Xaddr, Ouflol
	$\text { i } 08 H$	103 H	1 ODH	IJump on Carry to dotc 1
	1 OAH	103 H	10 DH	IJump on Carry to DOTC
	1 OEH	120 H	101 H	IStore X address
DOTC	$10 \mathrm{DH}$			IAdd to DotC, increment I
		103 H	100 OH	IJump on Carry to PON ।
	1 OFH	188 H	1 FBH	ITest sign of OrtFg

continued

The Graphics controller steps through the micro-code and uses the Alu to check for Carry and Sign Bit for conditional jumps. Referencing the micro-code the first operation done is to download the starting Y address, starting X address, Dot Count, Initial Descriminant, and the Octant Flag. This is copied to the same address locations from register B (U2i, U33, US3) to register A (U64, U44, U24). By doing this we can use register A as the update register, and register B for the incremental value to be added to register A.

The next step is to check to see if both the X and Y starting addresses are within the write address range of ther graphics memory. This is done by addressing the X or Y address from register A and adding it to the overflow constant EOOH from register B. Remember that the ALU only has i2 bit resolution and we are checking to see if the X or Y value is Larger than 5i2R (9 bits). By adding EOOH to it and getting a carry, we know it is out of the addresable space of the memory. The additions are done through 3 -bit full adders (1554,434, Ui4) and are latched by 3 4-bit latches (US5, U3S, USS) using the inverted outputs. This is done because the ram outputs and operation of the AL.U is complimented. The Carry and Sign bits are latched by U63, a D fip-flop.

The controller then increments the dot count and checks to see if it is done drawing the vector. In this algorithym the dot count determines the vector length.

The next step is to test the detant Flag to see which direction is unconditional.

The unconditional direction is then incremented and then the Descriminant is checked for sign. If negative, the program jumps to an instruction to add the incremental Descriminant Di to the exsisting Descriminant then jumps back to the X and Y overflow check at the begining and starts the algorithym all over again. If the sign is positive then it knows to increment the conditional direction. The addition of the incremental Descriminant D2, to the exsisting Descriminant is done. An unconditional jump back to the overflow check is then executed.

All jumps, conditional or unconditional, is done by preloading the program address counters U3j. and U32 with the jump location if the conditions are met. If a jump occurs, the instruction decoder must be inhibited from executing a false instruction (this is because it take two clocks to execute an instruction). USi inhibits an instruction cycle by monitoring $\mathbf{U 6 2}$ pin 7 for a jump load signal.

After each iteration through the program loop, if the X and Y addresses are valid, they will be stored in temporary registers 425 , 445 , and U6!5. Both the X and the Y addresses are 9 bits in length. Upon storage of the Y address a dot request flag is set in hardware to tell the write state machine a valid dot address was caculated. U67 sets this dot request. The state machine U75, is responsible for getting the dot written into the display memory at the address specified by the dot address of the ALU. The ALU addresses the display memory as follows:

```
    X addr (U25+U65) Y addr (U45+U65)
```


S) 1011121314151617181 S) 1011121314151617181

** $=$ bit in the word location to be written to.

Note: Each word is 16 bits 50 the lower 4 bits of the ALU X address is used to select the coresponding bit in that word.

The Word address is then multiplexed and used to address all 16 dynamic ram in the display memory of the specific word location in which one of it's i6 bit is to be written to.

The multiplexors U2G and $U 46$ multiplex the word address of the ALU.
This completes the description of the primary functions of the Graphics Controller and ALU.
4.5.1

GRAPHICS DISPLAY AND MEMORY
The display circuitry is responsible for the accessing of graphics memory for raster scan video imformation. The display hardware consists of a RAS, MUX, and CAS generator for the graphics ram, display counters, display memory ($16 \mathrm{~K} X \mathrm{X}$ 16), and display related hardware sync circuitry.

Craphics Dot Clock Syncronization
The display resolution of the graphics is 5i2 $\times 390$. If we use the same dot frequency of the alphanumerics (25.77 MHz), the graphics display would occupy a small portion of active video. Also the scaler aspect ratio would be off. By dividing the 25.77 MHz clock down 1.5 times, we will have a 17.181 Mhz graphics clock.

For every three alpha dots in the X direction, you will have two dots of graphics. This also made it posible to have a correct aspect ratio with respect to the dot resolution.

By using two time shifted divive by three 16.66% duty cycle clocks (U97, U89, U87, U98) we can "or" the two together and form a 17.181 MHz 33.33% duty cycle graphics clock. U88 "or's" these two signal together and forms G Clk.

The $2 / 3$ clock or $1 / 2$ divider is created in hardware by a D flip-flop (U89) and 4 bit syncronous counter (U97).

Reference figure 12.0 Graphics Dot Syncronization.
On the first NLCGAX signal, the counter U97 loads a binary 7 into it registers on the positive edge of DRCX, the 25.77 MHz dot clock. On the next negative edge of DRCX U89 is Clocked. What is clocked through is the signal on 497.14 which is a 0 , which makes U89.6 a "i" since the output is off of Q NOT. This set up U87 for the next rising edge of DRCX when U87 will output a 1 for the 19.4 ns high time of DRCX. On
the next negative edge of DRCX, 489.6 is clocked jow disabling U87 until the 4 clock edges where this is repeated. This is on of the two 1/3 dividers. On the following positive edge after U89.6 goes low, U97.i1 goes low enabling 498 for the next negative edge of DRCX when another 19.4 nS high time from 498.1 will occur. On the next rising edge U97.ii goes high disabling 498 . 498 generate the second $1 / 3$ divider only time shifted by 38.8 ns (one DRCX time). These two clocks are then "or'd" by 488 to form the graphics dot rate ciock G CLK.
4.5.2 Graphics Display

The display memory is bit-mapped and is accessed 16 bits at a time (words). Each sixteen bits constitutes a graphics word. Therefore the display raster consists of 32 words by 390 lines of graphics dot imformation. (32 words $X 36$ bits $=512$ dots in the X direction.)

The display counter Ui7, U57, U56, U37, and U47 are used for addressing the graphics ram for every word access. At Start of Frame when all the counters are reset signifing the top of screen scan for the first line of video, a ram access of the first word of the first line of video is done.

The word address is incremented for the next word address of the first scan line which another word access is done for shifting out continuously with the previous word as video graphics data.

The counters are clocked and another word access is done. This is repeated for every scan line until the hardware receives another Start of Frame signal which occurs every frame time.

Addressing consist of 14 bits in which the lower 5 bits are the word count and the remaining 9 bits are the line count. As in the ALU addressing, this is mutiplexed by U36 and Ui6 for display accesses. Since the address counters are syncronously incremented, each address tells which word is being fetched.

Line 0 address	$\begin{aligned} & \text { Tword } \\ & 00000000000000 \end{aligned}$	$\begin{aligned} & \text { Iword } 1 \\ & 00000000000001 \end{aligned}$	$\begin{aligned} & 1 . . . \text { word } 32 \\ & 000000000111111 \end{aligned}$
Line 1 address	Iword 0 0000000010000	Iword 1 00000000100001	$\begin{array}{r} 1 \ldots \text { word } 32 \\ 000000001111111 \end{array}$

The reference clock called DIS CYC is a ciock divided by ib from the G CLK (graphics dot clock 17.181 MHz). This clock is from U'76.íi.

U76, $477, \quad 478, ~ U 79$ control theras, mux and c:as signals for display writes or reads into graphics memory.

Reference figure $1 \mathbf{1 . 0}$ for display memory timing.
When the DIS CYC clock is low for 8 G CLK cycles the display hardware allows a ras, mux and cas for a display word fetch at the address on the display counters Ui7, U57, U56, U37 and U47.

The signal DLOD from U7i0.6 loads the two 8 bit shiftregister (Uig, U29) of the word accessed. On the next G CLK the first bit of that word is shifted out as serial graphics video to the video multiplexor.

Display Counters

The Row and Column address control is done by using a 4 bit counter U76 as a reference. After a Start of frame, U76, which is clocked by G CLK, starts to up count. The lower three bit are used to select the demultiplexor U77 which controls the D fip-fiops U78 and U79 which create the GNRAS, GMUX, and GCAS.

The fourth bit is the divide by 16 signal that is referenced as DIS CYC. So for every 16 G CLK's, or dot times, we can have two ras and cas cycles of graphics memory. Since one display word fetch is if bits long and it only takes 8 dot times to access and latch the word, the remaining 8 dot times for which another ras and cas cycle can be done is allocated for memory writes, since during this time we are still shifting out the 16 bits as video imformation.

At the end of the count (16) the carry bit 476.15 enables the word counters Ui7 and US' which is clocked to the next word address of that display scan line. There is only one ras and cas cycle per 16 dot times for display accesses and only one ras and cascycle per i6 dot times for memory writes during one dIS CYC period. The memory cycle for writes is controled by the Write State Machine which enables the ras and $\mathfrak{c} a \mathrm{~s}$ generator U77 during the second 8 dot times of the DIS CYC signal.

See Write State Machine section 4.5.7.
After every 16 dot times or G CLK's the Word counters are ciocked. At word $3\{$ (the 32 nd Word) 456 the $J-K$ fip-flop toggles and a binary 2.1 (for word 2i) is preloaded into the word counters UiF and US7. This will count to word $3 i$ again for horizontal retrace time which is is. word times. A two dot time delay is needed to sync with the analog sweep frequency. This is implemented by U66 a 4bit shift register. It delays 1076 from counting for two dot times at the end of every line. Also during retrace the ras and cas for display addressing is inhibited by U88. 1,2 being both low at this time. At the end of word 31 of retrace, U56.5 toggles high and clocks the line counters U37, U47 and U56 to the next line address.

The signal CRLANK goes active high during retrace and inhibits lading of the video shift registers. This is repeated every scan line until another Start of Frame signal comes again.

Start of Frame
The Start of Frame (SOF) signal is responsible for syncing the graphics display to the character display of the terminal. It's two main functions are reseting the display counter when the scan line is at the top of the screen and to start the graphics video sixteen graphics dot times before start of character video. Since the graphics dot time is $2 / 3$ that of the character dot time, 480 graphics dots will oceupy 720 character dots on the same line of video.
(720 character dots $\times 2 / 3=480$ graphics dots)
If we have $5 i 2$ graphics dots per scan line, there will be a 32 graphics dot overlap on top of the character display. To symmetrically center the two, the SOF must tell the display circuitry to start the graphics video 16 graphics dot times (or one word time) before character data appears on the screen. This will leave i6 graphics dots after the character data has ended making the graphics centered with the character display.
 operation, Vsync goes active low during vertical retrace and goes inactive high 6 scan lines before the first line of video (7th line).

Counter U8io is the SOF line counter which is clocked by LRCX, line rate cloc: . As NUSYNC goes low line counter U8io preloads 9H into it's registers. When $9 H$ preloads on the nexted clock from LRCX, $Q d$ (U8s.0.11) is set to a 1. As NUSYNC goes high the p and T inputs to U8i0 are enabled by U87. 6 going high. The counter then counts the next 6 LRCX clocks which on the 6th a carry wiil appear on U8io. is. This is an enable signal to the character counter U89 and 499 . The character counters are held off until horizontal retrace time. This is when NL. RCX is high. To start the graphics video at the right time, SOFC (U99.15) must occur two character dot times into the - 5 character position of the first line of video.

Reference figure 13.0 Start of Frame Timing.

After 489 and 499 count 30 character times in retrace on the 30 th clock SOFC (U99.15) goes active. U89 and 499 are clocked by NLCGAX which is the the character rate c:lock. SOFC signal is clocked through to U79. 8 as SOF by the SOF CLK (U91.12). SOF resets not only the display counters but also the the GOF circuitry itself. When SOF occurs U8i0 is asyncronously reseted causing U8io.i.i low which disables the P and T inputs of U8io.

This disables the carry (U8i0.15) which disables the T input to U99 which in turn disables the SOFC signal. This all occurs before the next SOF CLK so on the preceeding SOF CLK the SOF signal will go inactive. The graphics hardware takes io graphics dot times to fetch and load the video shift registers (Ui9, U29) before the the first video bit is shifted out. This puts the graphics video bit 24 character dot times before the first character or $i 6$ graphics dot times (24 $\times 2 / 3=16$ graphics dot times).

Since each graphics line is syncronous with each character line, Sof only occur at each frame interval.
4.5.4 Graphics Drawing Modes

There are for drawing modes implimented in the hardware. They are:
CLEAR MODE: Writes $0^{\prime} s$ into memory along the vector path.

SET MODE: Writes $i^{\prime} s$ into memory along the vector path.

COMPLIMENT MODE : COMPliments the memory along the vector path.

JAM-PATTERN MODE: : Writes the pattern data into memory along the vector path.

The bits MODEO and MODE: from the lateh 1449 select what mode in which the vector is to be drawn. The graphics ram data demultiplexor USio, selects what is to be written into the graphics ram from what these two control bits are set to.

MODE1	MODE O	MOCIE
0	0	CLEAR
0	1	SET
1	0	COMPLIMENT
1	1	JAMMPATTERN

The scale register (U59) and pattern register (1488) controls the way all data is written into graphics memory in all four modes. In the first three modes, clear, set and compliment, the pattern register is used as a write mask by controling the WRITE CONTROL signal with the pattern data through US8. When it is in jam-pattern mode, the pattern register is used as the actaul data to be written into the graphics ram.

The scale register (US9) controls when the data in the pattern register is clocked out. A small example on how this works can be shown as follows:

Let's define, as the Z80A would, a scale of 2 , and a pattern of 55 H . Upon writting $5 S H$ to port E4 the pattern register, the scale value is also preloaded into 459 . For a scale of 2 , a 1110 binary would be preloaded.

SCALE $=1$'s compliment of (scale - 1)
In this example scale $=2-1=1$, the 1 's compliment of 1 in four bits is 1410B. If it was 4, scale $=4-1=3$, i^{\prime} s compliment is if00B.

The Write State Machine, explained in section 4.s.7, clocks the scale and pattern registers on every dot memory cycle. With the scale set at 2, and the pattern set with 55 H , the first dot written into ram will be a "1" since in the pattern 55 H the first bit is a "1".

The Write State Machine will clock the scale register but not the pattern register because the carry bit from U59.is not being set keeps the pattern register from clocking. Now the carry bit U59.is is set to a "i" fram the incremented preloaded count of iifob to ilisB.

On the next dot write the pattern register still has a "i" on the output and this will be written again into the graphics ram. The scale register now allows the pattern register to clock to the next data bit which is a "0". The previous "i" is recirculated back into the last bit position. At the same time the pattern register is clocked, the scale is again preloaded back into the scale register usg and this is repeated until. the vector path drawn jis completed.

By having a scale of 2 , we delay the shifting of the pattern register by 2 dot write into memory making the pattern drawn twice per bit giving the effect of making the pattern twice as large.

Remember this is used both as a write mask and data depending on which mode you are in.

Display Write State Machine
The primary function of the Write State Machine (U75) is to execute, upon receiving a DOT REQ, a write sequence into graphics memory the correct dot data of the vector that is currently being drawn. It is also responsible for the current scale and pattern data of that vector.

Reference figures 9.0 and is.0.
Upon receiving a DOT REQ from the ALU the Write State Machine, which is clocked by DIS CYC, clocks the request through on the first negative edge of DIS CYC. A this time a display word fetch for sereen refresh is executed and takes up the next 8 graphics dot times. On the rising edge of DIS CYC, M DOT goes low (U8S.3) since the DOT REQ was clocked through to U75.5. M DOT is the signal that enables the GNRAS and GNCAS signals during a memory read-write time (a memory read-write time is when the DIS CYC clock is high for 8 graphics dot times) and uses the Allu adresses to read or write dot imformation of the graphics ram. M DOT enable a ram access by allowing U86.3 to be high and enabling 477 to do a GNRAS and GNCAS when the DIS CYC signal is high.

A word access is then done using the dot address of the ALU. When the word becomes valid, all 16 bits of that word is latched into to 8 bit latches U28 and Uis by the signal NALOD.

By latching the word location in which the actual dot address is at we can now modify it, in the case of compliment mode, by addressing the actual bit we are looking at. This is done by using the lower 4 bit of the ALU x address DBITO-DBITB. Using a demultiplexor with a complimented output (U39), the bit that is to be complimented is selected and feed back to USio the graphics ram data demultiplexor as the complimented data to be written back into the graphics ram at the same Alul address location on the next memory cycle.

NOTE: This reading and latching of the word at the Alu dot address is not necessary for clear, set, or jam-pattern modes since the dot data is or has been predefined. The hardware does it anyway.

This complete the first part of two memory cycles that occur for every DOT REQ form the Al.U.

After the memory read cycle is done, DIS CYC goes low and a display memory word fetch for the next display word on the current scan line is executed. What also occurs is the clocking of the Write State Machine. This makes GNWRITE (U75.7) go low which disables the clocking of the word latches (Ui8, U28) through 483 and enables the graphics ram write selector U3i0. U6i0.8 which is low, because Drs CYC is low, will enable U3io when DIS CYC goes high again for the memory write cycle time.

When this occurs $43 i 0$ selects 1 of the 8 write lines to both banks of graphics ram. DByTO-DBIT2 select which one of 8 rams are written to, and DEITZ controls which bank of 8 (Uiio-Uiif or UZiO-U2i7) gets the CNRAS and CNCAS strobe signals. This allows only one bit of the word address specified by the AlU address to be written too. The ram data c:ould have been 0 (clear), 1 (set) complimented (data latched and complimented through U39.6), or pattern from the pattern shift register 148.

The negative edge of the current DIS CYC signal will clear the Write State Machine and leave it idle until another DOT REQ comes. Also the pattern register (U48) (if allowed) and the scale counter (59) is clocked. This sets up the hardware for the next DOT REQ.

The Write State Machine after receiving a DOT REQ executes a read and write cycle faster than the ALU can calculate a new dot address. Therefore there is no handshaking with the ALU.

Also occuring at the end of the write cycle is a signal generated from U"7.7 that goes through 483.6 to create a signal called Dot CIR. This clears the DOT REQ latch U67.
4.5.7 1 (s Dot Inhibit

The purpose of this hardware feature is to inhibit the first memory write of the vector being drawn. Since the first dot address of the current vector is the last address written to from the previous vector makes the first pixel position has already been written.

As an example, if we were in compliment mode, the first bit of every vector in a chain would be recomplimented. By inhibiting the first dot write, the first bit in every vector would only be complimented once.

The $1^{\prime} s$ Dot Inhibit bit is latched from a Z80A port write to U67. After the Write State Machine (U75) completes the first read and write cycle the signal DOT CLR is generated. This clears the i's Dot Inhibit latch so the remaining dot writes are not inhibited.
4.5.8 Graphics Raster Dump

The Z80A can indirectly access the graphics memory to retreive video word imformation to dump to the internal dot printer. To accomplish this without disturbing the existing memory we use the $i^{\prime} s$ Dot Inhibit feature.

Ey writing a dot vector to any i6 dots of the word location wanted and setting the $i^{\prime} s$ Dot Inhibit on the Alu gives only one DOT REQ at the specified address but is inhibited by the hardware $i^{\prime} s$ Dot Inhibit leaving the graphics memory unchanged. What we accomplished was to latch the word in $U 18$ and U28 which con be read back by the z80A through port assignments $F 0$ and $F 1$ (hex).

The Z80A reads 35 words in the Y direction and sends 15 bytes of the word to the printer after buffering the remaining 15 bytes. Then this is sent to the printer to be printed. The X direction is incremented 16 and 15 more words in the Y direction are read. This iss continued until all display words are read and printed. This is all done by writing 1 dot vectors then reading them back from the graphic:s hardware.
5.0

Clossary of Signal Names
This section lists the signal names used on the schematic drawings, figures 21.0 to 24.0 , along with a brief description of their use. Note: an ' N ' prefix generally indicates an active low signal, otherwise the signal is active high; a 'T' prefix or an ' X ' suffix indicate that the signal is buffered.

1. 84 MHZ		The 1. 84 MHz datacomm chip clock
3.68 MHZ	-	The 3.68 MiHz Z80A clock
61 HZ	-	Sets the video frame rate, $10 \mathrm{w}=50 \mathrm{~Hz}$
ADD	-	signal used to latched output of adder in the graphics ALU
ADDR COUUNT	-	enables the word counters in the graphics display cijecuitry.
ALPHA	-	uideo dot stream after dot stretch
BATT + or BATT..	\cdots	connection to the battery + (or -) terminal for cmos backup during power off
EELLL.	-	output signal to drive the keyboard bell
EIA 0-3	-	buffered internal Al..U address to the ALU static: ram.
ELIANK	-	inhibits the ALPHA dot stream from being sent to the sweep circuitry
ELILNKRATE	-	alternates at the blinkrate for blinking character attribute
CARRY	-	carry bit in the Allu graphics hardware used for overflow checks
CE:		detects presence of loopback hood
CLRSTMEM	\cdots	```clear or set graphic:s memory by setting low a write to all graphic:s occurs.```
Cs	-	clear-to-send from host computer
CTR CL.K	-	A 4.2 MHz clock dirived from dividing the 17.181 MHz G CLK by 4 to run the graphics controder

crs	-	TTL level clear-to-send
CUR	\cdots	cursor output from CRTC
DEITO-DEITE\%	\cdots	AlU addressing bits after being latched
DISERQ	\cdots	inhibit DMA
DIS CYC	-	A divide by 16 reference from G Cl. for display timing purposes
DISD	-	the inverse of the dis cyc clock
DL..OD	\cdots	display load signal to the graphics video shift registers
DOT CLR	-	clears the DOT REQ after a memory cycie of the graphics ram is completed
DOT I.NH	-	$i^{\prime} s$ dot inhibit signal set in hardware
DOT REQ	-	dot request from the ALU telling the hardware a valid dot address is ready
DISPOFF	\cdots	blank entire display
DM	-	detec: modem connection
DRCX	\cdots	dot rateclock
DSR	\cdots	TTL Level detert modem connection
ENO-EN7	-	enhancement data bits from line buffer
ENHOFFF	-	inhibit enhancements
ENNMI	-	clock for NMI Mask lateh
EOL.	\cdots	graphic:s end of line
FLACS	-	signal to reset graphics controler
GELLANK	-	graphics horizontal blank signal
C CLEK		177.181 MHz graphics dot clock
cmux	-	select signal to change from row to column address of the graphics ram
CiNCAS	\cdots	graphics inolumn address strobe

GNRAS	-	graphics row address strabe
CNWRITE:	\cdots	graphics clock for scale and pattern registers
GUIDEO	\cdots	graphics serial video data
GWR ITE	-	pre-enables the graphics write decoder
HEL ANK	-	Morizontaj blank signal
ICH	-	TTL Level detect datacomm test hood
100-10\%	-	interal data bus for graphics subsystem
INVERSE	-	select inverse video attribute
Jump	-	ALU hardware signal for a jump instruc... tion to another address location
KEEYO-KEYG	-	keyboard row/column scan outputs
L.ECDEL..	-	delayed line buffer clock
L. BCX	\cdots	line buffer clock
L.CGADEL.	-	delayed latch character generator address
LCCCAX	-	latch character generator address
L. $100-\mathrm{L}$ O7	-	latched graphics video data
LUAD C.	-	data for graphics word counters
LUSRX	-	load video shift register
MDO-MD'7	\cdots	RAM data outputs
MEMO MEMG	-	graphics ram address lines
MODEO-MODE1 MUX	--	graphics mode select bits selects between row and cloumn address for dynamic Ram
NELLINK	--	select blink attribute
NBUSREQ	--	request bus control for DMA
NCAS	-	column address strobe for RAM

NCMOSREG	\cdots	enable CMOS for read/write
NCUR	-	one line cursor signal
NDCLI.K	-	two graphics dot cjock delay signal
NURSOR	-	cursor active without underline
NENNMI	-	select NMI latch
NEOLDEL.	-	end-of-1ine signal
NFULLI.ERT	--	normal intensity video output
NHALIFBRT	-	half-intensity video output
NHSYNC	-	horizontal synchronization
NINT	-	datacomm interrupt
NHOG	\cdots	1/0 enable for the graphics subsystem
NKEYACT	\cdots	key active (depressed) on keyboard
NKEYDISP	-	select (clock) keyboard/display latch
NKEEYTAT	\cdots	enable keystatus port
NL..RCX	-	line rate clock
NL...SB	\cdots	graphics port decode to write into the LSE of the ALU static ram
NMi.	--	opcode fetch machine cycle
NMODEEM	--	select (clock) modem/display latch
NMSN	-	graphics port decode to write into the MSN of the ALU statice ram
NMUX	-	clock RAM output latch
NNM 1	-	non-maskable interrupt (video)
NPFAIL	-	power fail signal from power supply

NPRINTER	--	printer select signal
NRAS	-	row address strobe for dynamic RAMs
NRESETA	--	power-on reset, driver A
NRESETE	-	power-on reset, driver B
NRUD	-	graphics port decode for reading of graphics uideo data
NSELDC.	\cdots	datacomm port select
NSF	...	graphics port decode to set flags
NSP	-	graphicss port decode for scale preset
NGR	\cdots	graphics port decode for status read
NSYSSTAT	-	system status port select
OCDI	--	optional control driver 1 , datacomm
OCR 1	-	optional control receiver 1, datacomm
PAT INH	-	inhibit the pattern register in graphics
PINT	-	printer interrupt status
PULLup	-	common pullup resistor
R1)	-	receive data, datacomm
REEIRC	-	line buffer recirculate enable
RESET	\cdots	printer reset signal
RETRACE LOAD	-	loads signal for graphics word display
ROROMROR15	\cdots	graphics controler address lines
$R S$	\cdots	request to send, datacomm
50-5is	\cdots	Allu added data
SCL. --SCL 3	-	scale bits for the graphics hardware
50)	\cdots	send data, datacomm
SELIDC	-	datacomm chip select

SIGN	-	ALU signal to check sign of the addition
50	-	signal ground, datacomm
SHIELLD	-	shield (earth) ground, datacomm
SMEMO --SMEEMS	--	ROMO-ROMS chip enable
SUF	-	graphics start of frame
SOFC	\cdots	carry bit that initates SOF
STORE X	-	graphicss instruction to store the X address
STORE Y	-	graphics instruction to store the Y address
TAOMTAS	---	address bits 0-15
TESUSAK	-	bus acknowledge, Z80A tristate
TD0-T107	-	buffered data bus
TNBUSAK	-	active low bus acknowledge
TNMREG	\cdots	Z.80A memory request
TNRD	-	memory or $\mathrm{I} / 0 \mathrm{read}$ select
TNRFSH	-	dynamic RAM refresh active
TNWR	\cdots	memory or I/O write select
TR	-	terminal ready, datac:omm
UI... I.NE	-	select underline attribute
ULTTME:	-	active on scan line 13, indicates scan line for underline or cursor display
UEL.ANK	\cdots	vertical blank signal
USYNC	-	vertical synchronization signal
WRITE CONTROL	\cdots	enabless write decoder of the graphics ram
WR ITE ENABLEE	-	enable the write decoder to the graphics ram
X0…x7	\cdots	character" code address to character ROM
ZEHLANK	-	hardware flag set by the Z80A to stop graphics video from being displayed
200-7.107	-	Z.80A data bus

FIGURE 1.0 PROCESSOR BLOCK DIAGRAM

FIGURE 2.0 GRAPHICS SUBSYSTEM BLOCK DIAGRAM

Figure 2

Figure 3
Graphics Microcode Flow Char AUG-14-81.

FIGURE 4.0 Z80A I/O TIMING

FIGURE 8.0 VIDEO CHARACTER TIMING

FIGURE 9.0 GRAPHICS MAJOR TIMING

FIGURE 10.0 GRAPHICS ALU TIMING

Figure 10

Figure 11
Giraphics Display and Memory Timing

FIGURE 15.0 COMPONENT LAYYUUT

Replaceable Parts

Reference Designation	HP Part Number	$\begin{aligned} & C \\ & D \end{aligned}$	Oty		Description	Mfr Code	Mfr Part Number
	02620-60088	0	1	PROCESSOR-PCA	2623A	28480	02620-60088
C1	0160-4554	7	66	CAPACITOR-FXD	. 01UF +-20X 50UdC CER	28480	0160-4554
62	0160-4554	7		CAPACITOR-FXD	. 01UF +-20\% 50UDC CER	28480	0160-4554
C:3	0160-4554	7		CAPACITOR-FXD	. D1UF +-20\% 50UDC CER	28480	0160-4554
c.4	0160-4554	7		CAPACITOR-FXD	. 01uF +-20\% 50VDC CER	28480	0160-4554
c5	0160-4554	7		CAPACITOR-FXD	. 01UF +-20\% 50UDC CER	28480	0160-4554
C6	0160-4557	0	29	CAPACITOR-FXD	. 1UF +-20x 50UDC CER	16299	CAC04X7R $104 \mathrm{M050A}$
${ }_{6} \mathbf{C}$	0160-4557	0		CAPACITOR-FXD	. 1UF +-20\% 50UDC CER	16299	CACO4X7R104M050A
CB	0160-4557	0		CAPACITOR-FXD	. 1UF +-20x 50UDC CER	16299	CAC04X7R104M050A
c9 C10	0160-4557	0		CAPACITOR-FXD	. 1UF +-20\% 50UDC CER	16299	CACO 4X7R $104 \mathrm{MO50A}$
C10	0160-4557	0		CAPACITOR-FXD	. IUF +-20\% 50VDC CER	16299	CAC04X7R 104 M 050 A
511	0160-4554	7		CAPACITOR-FXD	. B1UF +-20\% 50UDC CER	28480	0160-4554
C12	0160-4554	7		CAPACITOR-FXD	. $014 \mathrm{UF}+-20 \%$ 50UDC CER	28480	0160-4554
C13	0160-4554	7		CAPACITOR-FXD	. 01 UF +-20\% SOUDC CER	28480	0160-4554
C14	0160-4787	8	2	CAPACITOR-FXD	22PF +-5\% 100 UDC CER 0+-30	28480	$0160-4787$
C15	0180-1701	2	1	CAPACITOR-FXD	6. BUF+-20x SUDC TA	56289	150D6B5X0006A2
${ }^{\text {C1 }} 16$	0160-4557	0		CAPACITOR-FXD	.1UF +-20\% SOUDC CER	16299	CACO4X7R104M050A
${ }^{1} 17$	0160-4801	7	2	CAPACITOR-FXD	$100 \mathrm{PF}+-5 \% 100 \cup D C$ CER	28480	0160-4801
C18	01.60-4554	7		CAPACITOR-FXD	. $014 \mathrm{~F}+$ +20\% 50UDC CER	28480	0160-4554
${ }^{1} 19$	0160-4554	7		CAPACITOR-FXD	. O1UF +-20\% SOUDC CER	28480	0160-4554
cat	01.60-4554	7		CAPACITOR-FXD	. $014 \mathrm{~F}+-20 \%$ 50UDC CER	28480	0160-4554
C21	0160-4554	7		CAPACITOR-FXD	.01UF +-20\% SOUDC CER	28480	0160-4554
Caz	01160-4557	0		CAPACITOR-FXD	. 1UF +-20X 50UDC CER	16299	CAC04X7R $104 \mathrm{MO50A}$
C 23	0160-4557	0		CAPACITOR-FXD	. 1UF +-20\% 50UDC CER	16299	CACO4X7R104M050A
$\mathrm{Ca4}$	01160-4557	0		CAPACITOR-FXD	. 1UF +-20\% 50UDC CER	16299	CAC04X7R $104 \mathrm{MO50A}$
c25	01160-4557	0		CAPACITOR-FXD	. 1UF +-20\% 50UDC CER	16299	CAC04X7R $104 \mathrm{M050A}$
C 26	$0180-2879$	7	5	CAPACITOR-FXD	22UF+50-10\% 25UDC AL	28480	0180-2879
C27	01160-4557	0		CAPACITOR-FXD	. 1UF +-20X 50UDC CER	16299	CAC04X7R104M050A
C 28	01.60-4557	0		CAPACITOR-FXD	. 1UF +-20\% 50UDC CER	16299	CACO4X7R 10441050 A
C29	01160-4557	0		CAPACITOR-FXD	. 1UF +-20\% 50UDC CER	16299	CACO4X7R $104 \mathrm{MO50A}$
c30	01.60-4557	0		CAPACITOR-FXD	. 1UF +-20\% SOUDC CER	16299	CAC04X7R 104M050A
C31	01180-2879	7		CAPACITOR-FXD	22UF+50-10\% 25UDC AI.	28480	0180-2879
C32	01.60-4554	7		CAPACITOR-FXD	. O1UF +-20\% 50UDC CER	29480	0160-4554
C33	0160-4554	7		CAPACITOR-FXD	. $011 \mathrm{JF}+-20 \% 50 \cup D C$ CER	28480	0160-4554
c34 +35	0160-4554	7		CAPACITOR-FXD	. 01UF +-20\% 50UDC CER	28480	0160-4554
c35	0160-4554	7		CAPACITOR -FXD	. D1UF +-20\% 50UDC CER	28480	0160-4554
C.36	0160-4554			CAPACITOR-FXD	. $014 \mathrm{~F}+-20 \%$ 50UDC CER	28480	0160-4554
c37	01.60-4554	7		CAPACITOR-FXD	. 011UF +-20\% SOUDC CER	28480	0160-4554
C 38	0160-4554	7		CAPACITOR-FXD	. 01 UF +-20\% 50UDC CER	28480	0160-4554
c39	0160-4557	0		CAPACITOR-FXD	. $1 \mathrm{UF}+\cdots 20 \% 50 \cup D C$ CER	16299	CAC04X7R104M050A
C.40	0160-4557	0		CAPACITOR-FXD	.1UF +-20x 50VdC CER	16.299	CAC04X7R $104 \mathrm{MO50A}$
	0160-4557	0		CAPACITOR-FXD	. 1UF +-20\% 50UDC CER	16299	CACO4X7R104M050A
C42	0160-4557	0		CAPACITOR-FXD	. 1UF +-20x $50 \cup D C$ CER	16299	CAC04X7R $104 \mathrm{MOS0A}$
C.43	0160-4554	7		CAPACITOR - FXD	. 01UF +-20\% 50UDC CER	28480	0160-4554
C44	0160-4554	7		CAPACITOR-FXD	.01UF +-20\% 50UDC CER	28480	0160-4554
C45	0160-4554	7		CAPACITITR-FXD	. 01UF +-20\% 50UDC CER	28480	0160-4554
C.46	01.60-4554			CAPACITOR-FXD	. $014 \mathrm{UF}+-20 \chi$ SOUDC CER	28480	0160-4554
C47	0160-4554	7		CAPACITOR - FXD	. 01UF +-20\% SOUDC CER	28480	0160-4554
C48	01.60-4554	7		CAPACITOR-FXD	. $014 \mathrm{~F}+-20 \%$ SOUDC CER	28480	0160-4554
C49	0160-4801	7		CAPACITOR FXD	$100 \mathrm{PF}+-5 \% 100 \cup D C$ CER	28480	0160-4801
C550	0160-45.54	7		CAPACITOR-FXD	. 01 UF +-20Z 50UDC CER	28480	0160-4554
C51	01.60-4554	7		CAPACITIT - FKd	.01UF +-20\% 50UDC CER	28480	0160-4554
CSO	01.60-45554	7		CAPACITOR-FXD	. 01UF +-20\% 50UDC CER	28480	0160-4554
c53	01.60-4554	7		CAPACITOR-FXD	.01UF +-20\% 50UDC CER	28480	0160-4554
C54	$0160-4554$ $0160-4554$	7		CAPACITOR-FXD	. 01UF +-20\% 50UDC CER	28480	0160-4554
c55	0160-4554	7		CAPACITOR-FXD	.01JF +-20\% 50UDC CER	28480	0160-4554
C5. 6	0160-4554	7		CAPACITOR-FXD	. 01UF +-20X 50UDC CER	28480	0160-4554
C57	01.60-4554	7		CAPACITOR - FXD	. 014 L +-20\% 50UDC CER	28480	0160-4554
¢58	0160-4554	7		CAPACITOR-FXD	. 01 UF +-20\% 50UDC CER	28480	0160-4554
c59	0160-3335	0	18	CAPACITOR-FXD	470PF +-10\% 100UDC CER	28480	0160-3335
c60	0160-45554	7		CAPACITOR-FXD	. 01 UF +-20\% 50UDC CER	28480	0160-4554
c61	0160-4557	0		CAPACITOR-FXD	. 1UF +-20X 50UDC CER	16299	CAC04×7R104M050A
662	0160-4557	-		CAPACI TOR-FXD	, 1UF +-20\% 50UDC CER	16299	CAC04X7R $104 \mathrm{MO50A}$
C63	0160-3335	0		CAPACITIR -FXD	470PF +-10\% 100UDC CER	28480	0160-3335
c64	0160-3335	0		CAPACITOR-FXD	470PF +-10\% 100UDC CER	28480	0160-3335
C65	0160-4787	8		CAPACITOR-FXD	22PF +-5\% 10 QUDC CER 0+-30	28480	0160-4787
C66	0160-3335	0		CAPACITOR-FXD	470PF +-10\% 100UDC CER	28480	0160-3335
C67	0160-3335	0		CAPACITOR FXD	470PF +-10\% 100UDC CER	28480	01ヶ0-3335
C 68	0160-3335	0		CAPACITOR-FXD	470PF +-10\% 100VDC CER	28480	0160-3335
c69	0160-3335	0		CAPACITIR - FXD	470PF +-10X 100 UDC CER	28480	0160-3335
c70	0160-3335	-		CAPACITOR-FXD	470PF +-10\% 100UDC. CER	28480	0160-3335

Replaceable Parts

Reference Designation	HP Part Number	C	Qty	Description	Mfr Code	Mfr Part Number
C71	0160-3335	0		CAPACITOR -FXD 470PF +-10\% 100 ODC CER	28480	0160-3335
c.72	0160-3335	0		CAPACITOR-FXD 470PF +-10X $100 \cup \mathrm{DC}$ CER	28480	0160-3335
c73	0160-3335	0		CAPACITOR-FXD 47OPF +-10\% 100UDC CER	28480	0160-3335
C74	0160-4554	7		CAPACITOR-FXD . 014 F +-20X 50UDC CER	28490	0160-4554
c75	0160-4554	7		CAPACITOR-FXD . $014 \mathrm{~F}+-20 \% 50 \cup D C$ CER	28480	0160-4554
C76	0160-4554	7		CAPACITOR-FXD . $014 \mathrm{UF}+-20 \%$ 50UDC CER	28480	0160-4554
c77	0160-4554	7		CAPACITOR-FXD .01UF +-20\% SOUDC CER	28480	0160-4554
c78	0160-4554	7		CAPACITOR-FXD , 01UF +-20\% 50UDC CER	28480	0160-4554
C79	0160-4554	7		CAPACITOR-FXD .01UF +-20X 50UDC CER	28480	0160-4554
C80	0160-4554	7		CAPACITOR-FXD , 01UF +-20\% 50VDC CER	28480	0160-4554
C81	0160-4554	7		CAPACTTOR-FXD .01UF +-20\% 50UDC CER	28480	0160-4554
C82	0160-4554	7		CAPACITOR-FXD . $014 \mathrm{~F}+\cdots 20 \%$ 50UDC CER	28480	0160-4554
$\mathrm{C83}$	0160-4557	0		CAPACITOR-FXD . 1UF + - $20 \% 50 \mathrm{UDC}$ CER	16299	CACO 4X7R104M050A
C84	0160-4557	0		CAPACITOR -FXD 1 1UF +-20\% SOUDC CER	16299	CAC04X7R104M050A
c85	0160-3335	0		CAPACITOR-FXD 470PF +-10\% 100UDC CER	28480	0160-3335
C86	0160-3335	0		CAPACITOR-FXD 470PF +-10\% 100VDC CER	28480	0160-3335
c87	0160-3335	0		CAPACITDR-FXD 470PF +-10\% 100UDC CER	28480	0160-3335
C88	0160-3335	0		CAPACITOR-FXD 470PF +-10\% 100UDC CER	28480	0160-3335
c89	0160-4554	7		CAPACITOR-FXD . D1UF +-20\% 50VDC CER	28480	0160-4554
C.90	0160-4554	7		CAPACITOR-FXD . 014 F +-20X 50UDC CER	28480	0160-4554
691	0160-4554	7		CAPACITTOR-FXD . D1UF +-20\% 50UDC CER	28480	0160-45554
c92	0160-4554	7		CAPACITTR-FXD . $01 \mathrm{UF}+-20 \%$ 50UDC CER	28480	0160-4554
C93	0160-4554	7		CAPACITOR-FXD . 01UF +-20\% 50UDC CER	23480	0160-4554
C94	0160-4554	7		CAPACITOR-FXD . 014 F +-20\% SOUDC CER	28480	0160-4554
C95	0160-4554	7		CAPACITOR -FXD , 01UF +-20\% 50UDC CER	23480	0160-4554
C96	0160-4554	7		CAPACITOR-FXD .01UF +-20\% SOUDC. CER	28480	0160-4554
C97	0160-4554	7		CAPACITOR-FXD , 01UF +-20\% 50UDC CER	28480	0160-4554
C98	0160-4557	0		CAPACITOR-FXD . $14 F+-20 \%$ 50VDC CER	16299	CACO4X7R104M050A
c99	0160-4557	0		CAPACITOR-FXD , 11JF +-20\% 50UDC CER	16299	CAC04X7R104M050A
C100	0160-4557	0		CAPACITDR-FXD . IUF +-20\% SOUDC CER	16299	CAC04X7R104M850A
C101	0160-4557	0		CAPACITOR-FXD.1UF +-20\% 50UDC CER	16299	CACO4X7R104M050A
C102	0160-4554	7		CAPACITOR -FXD . $014 \mathrm{~F}+-20 \%$ SOUDC CER	28480	0160-4554
C103	0160-4554	7		CAPACITOR-FXD , O1UF +-20\% 50UDC CER	28480	0160-4554
C104	0160-4554	7		CAPACITOR-FXD . 014 L +-20\% SOVDC CER	29480	0160-4554
C. 105	0160-4554	7		CAPACITOR-FXD .01UF +-20\% SOVDC CER	29480	0160-4554
C106	0160-4554	7		CAPACITOR-FXD . 014 L +-20\% SRUDC CER	28480	0160-4554
C107	0160-4554	7		CAPACITOR -FXD , D1UF +-20X SOUDC CER	28480	0160-4554
C108	0160-4554	7		CAPACITOR-FXD . $014 \mathrm{~F}+$ +-20\% SOUDC CER	28480	0160-4554
C109	0160-4554	7		CAPACITOR - FXD , D1UF +-20\% SOUDC CER	28480	0160-4554
C110	0160-4557	0		CAPACITOR-FXD. 1UF +-20\% 50UDC CER	16299	CAC04X7R104M050A
c111	0160-4557	0		CAPACITOR-FXD. $14 \mathrm{~F}+-20 \%$ SOUDC CER	16299	CACO4X7R104M050A
C112	0160-3335	0		CAPACITTOR-FXD 470PF +-10\% 100UDC CER	29480	0160-3335
C113	0160-3335	,		CAPACITIR --FXD 470PF +-10\% 100UDC CER	28480	0160-3335
C114	0160-4554	7		CAPACITOR-FXD . $014 \mathrm{~F}+-20 \%$ 50UDC CER	28480	0160-4554
C115	0160-4557	0		CAPACITOR - FXD , 1uF +-20\% SOUDC CER	16299	CAC04X7R104M050A
C116	0160-3335	0		CAPACITOR-FXD 470PF +-10\% 100UDC CER	29480	0160-3335
C117	0160-4554	7		CAPACITOR-FXD . D1UF +--20\% 50UDC CER	28480	0160-4554
C118	0180-2879	7		CAPACITOR-FXD 22UF+50-10\% 25UDC AL.	28480	0180-2879
C119	0180-2879	7			28480	0180-2879
C120	0180-2879	7		CAPACITOR-FXD 22UF+50-10\% 25VDC AL	28480	0180-2879
C121	0160-4554	7		CAPACITID-FXD .01UF +-20\% SOUDC CER	28480	0160-4554
${ }_{6} 122$	0160-4554	7		CAPACITTRR-FXD . $014 \mathrm{UF}+-20 \%$ SOUDC CER	28480	0160-4554
C123	0160-4554	7		CAPACITITR -FXD . D1UF +-20X 50UDC CER	28480	0160-4554
CR1	1901-0050	3	9	DIODE-SWITCHING 80 C 200MA 2NS DO-35	28480	1901-0050
CR2	1901-0050	3		DIDDE-SWITCHING BOU 200MA 2 NS DO-35	28480	1901-0050
CR3	1901-0050	3		DIODE-SWITCHING GOV 200MA 2NS DO-35	29480	1901-0050
CR4	1901-0050	3		DIDDE-SWITCHING GOU 200MA 2NS DO-35	28480	1901-0050
CR5	1901-0050	3		DIODE-SWITCHING GOV 200MA 2NS DO-35	28480	1901-0050
CR6	1901-0050	3		DJODE-SWITCHING EOU 200MA 2NS DO-35	28480	1901-0050
CR7	1901-0050	3		DIODE-SWITCHING 80V 200 MA 2NS DO-35	28480	1901-0050
CR8	1902-0952	6	1	DIODE--ZNR 5.645% DO-35 PD=.4W TC=+.046\%	28480	1902-0952
CR9	1902-0976	4	5	DIODE-ZNR 14.5U PD $=5 \mathrm{~W}$ T $\mathrm{TC}=+$, 088\% \quad IR $=5 \mathrm{SUA}$	11961	1.5SE 18 C
CR10	1902-0976	4		DIODE --ZNR 14.5U PD $=5 \mathrm{~W}$ T $\mathrm{T}=+.088 \% \quad \mathrm{IR}=5 \mathrm{U} \mathrm{A}$	11961	1.5SE13C
CR11	1902-0976	4		DIODE-ZNR 14.5U PD=5W TC=+, 088\% IR $=511 \mathrm{~A}$	11961	1.5SE 18 C
CR12	1902-0976	4		DIODE-ZNR 14.5U PD=5W TC=+,088\% IR=5UA	11961	$1.5 S E 1 \mathrm{ec}$
CR 13	1902-0976	4		DIODE-ZNR 14.5U PD=5W TC=+, 088\% IR =5UA	11961	1.5SE18C
CR14	1901-0050	3		DIIDE-SWITCHING BOU 200MA 2NS DO-35	28480	1901-0050
CR 15	1901-0050	3		DIODE-SWITCHING BOU 200MA 2NS DO-35	28480	1901-0050
CR16	1902-0041	4	1	DIDDE-ZNR 5.11U 5\% DO-35 PD=.4W	28480	1902-0041
51	1251-5500	9	2	CONNECTOR 2S-PIN M POST TYPE	28480	1251-5500
J2	1251-5521	4	1	CONNECTID 9 -PIN M POST TYPE	28480	1251-5521
J3	1251-5520	3	1	CONNECTOR 7-PIN M POST TYPE	28480	1251-5520
J4	1251-5499	5	1	CONNECTOR 16-PIN M POST TYPE	28480	1251-5499
J5	1251-5500	9		CONNECTOR 26-PIN M POST TYPE	28480	1251-5500

Replaceable Parts

Reference Designation	HP Part Number	$\left\lvert\, \begin{aligned} & \mathrm{C} \\ & \mathrm{D} \end{aligned}\right.$	Oty	Description	Mfr Code	Mfr Part Number
J6	1251-5546	3	1	CONNECTOR 34-PIN M POST TYPE	28480	1251-5546
Q1	1853-0281	9	1	TRANSISTOR PNP 2N2907A SI TO-18 PD $=400 \mathrm{MW}$	04713	2N2907A
Q2	1854-0467	5	2	TRANSISTOR NPN 2N4401 SI TO-92 PD=310MW	03508	2N4401
Q3	1854-0019	3	1	TRANSISTOR NPN SI TO-18 PD=360MW	28480	1854-0019
Q4 0.5	18553-0036	2 5	1	TRANSISTOR PNP SI PD=310MW FT $=250 \mathrm{MHZ}$ TRANSISTOR NPN $2 N 4401$ SI TO-92 PD $=310 \mathrm{MH}$	28480	185,3-0036
Q5	1854-0467	5		TRANSISTOR NPN 2N4401 SI TO-92 PD=310MW	03508	2N4401
R1	1810-0275	1	3	NETWORK-RES 10-SIP1. OK OHM $\times 9$	01121	2104102
R2	0683-1025	9	28	RESISTOR $1 \mathrm{~K} 5 \mathrm{5} \mathrm{\%}$. 25 W FC TC $=-400 /+600$	01121	CB1025
83	0683-1025	9		RESISTOR $1 \mathrm{~K} 5 \%$. 25 W FC TC $=-400 /+600$	01121	CB1 025
R4	0683-1025	9		RESISTOR $1 \mathrm{~K} 5 \%$, 25W FC TC $=-400 /+600$	01121	CB1025
R5	0683-1035	1	4	RESISTOR 10K 5%. 25W FC TC $=-400 /+700$	01121	CB1035
R6	0683-1025	9		RESISTOR 1K 53%, 25W FC TC $=-400 /+600$	01121	CB1025
R7	0683-4715	0	6	RESISTOR 470 5\% , 25W FC TC $=-400 /+600$	01121	C84715
Rg	06883-4705	8	15	RESISTOR 47 5%, 25 W FC TC $=-400 /+500$	01121	CB4705
R9 R10	0683-1515	2	3	RESISTOR 1505%, 25W FC TC $=-400 /+600$	01121	C81515
R10	0683-1025	9		RESISTOR 1K 5\% . 25 W FC TC=-400/+600	01121	CB1 025
R11	0683-4715	0		RESISTOR 470 5\% .25W FC TC $=-400 /+600$	01121	CB4715
R12	0683-1015	7	2	RESISTOR 1005%. 25 W FC TC $=-400 /+500$	01121	CB1015
R13	0683-1025	9		RESISTOR 1 K 5 SK . 25 W FC TC $=-400 \%+600$	01121	CB1025
R14	0683-4715	0		RESISTOR 470 5\% . 25 W FCC TC $=-400 /+600$	01121	CB4715
R15	0683-1025	9		RESISTOR $1 \mathrm{~K} 5 \%$. 25 W FC $\mathrm{T} C=-400 /+600$	01121	CB1025
R16	0683-2205	9	8	RESISTOR 2235%. 25 W FC TC $=-400 /+500$	01121	CB2205
k 17	0683-2205	9		RESISTOR 22 53%, 25W FC TC $=-400 \%+500$	01121	C82205
R18	0683-2205	9		RESISTOR 22 5\% .25W FC TC $=-400 \%+500$	01121	C82205
R 19	0683-2205	9		RESISTOR 22 5%. 25W FC TC $=-400 \%+500$	01121	C82205
R20	0683-2205	9		RESISTOR 22.53 , 25W FC TC $=-400 /+500$	01121	CB2205
R21	0683-2205	9		RESISTOR 2253%. 25 W FC TC $=-400 /+500$	01121	C82205
R22	0683-2.205	9		RESISTOR 225%, 25W FC TC $=-400 /+500$	01121	CB2205
R25	0683-1025	9		RESISTOR $1 \mathrm{~K} 5 \%$.25W FC TC $=-400 /+600$	01121	C81025
R26 R27	0683-1025	9		RESISTOR 1K 5%, 25W FC TC $=-400 \%+600$	01121	CB1025
R27	0683-1025	9		RESISTOR $1 \mathrm{~K} 5 \%$, 25W FC TC $=-400 /+600$	01121	C81025
Re8	0683-1025	9		RESISTOR $1 \mathrm{~K} 5 \mathrm{5} \mathrm{\%}$. 25W FC TC $=-400 /+600$	01121	CB1 025
R29	0683-1515	2		RESISTDR 1505%. 25W FC TC $=-400 /+600$	01121	CB1515
R30	0683-1025	9		RESISTOR $1 \mathrm{~K} 5 \mathrm{EF} \%$, 25W FC TC $=-400 /+600$	01121	CB1025
R31	1810-0275	1		NETWORK-RES 100 - SIP 1 , OK OHM X 9	01121	2104102
R32	0683-4705	8		RESISTOR 475%. 25 W FC TC $=-400 /+500$	01121	CB4705
R33	0683-4705	8		RESISTOR 475%, 25W FC TC $=-400 /+500$	01121	C84705
R34	0683-4705	8		RESISTOR 475%. 25 W FC TC $=-400 \%+500$	01121	CB4705
R35	0683-4705	8		RESISTOR 475%. 25 W FC TC $=-400 /+500$	01121	CB4705
R36	0683-1515	2		RESISTOR 1505%. 25 W FC TC $=-400 /+600$	01121	CB1515
837	0683-1015	7		RESISTOR 1005%. 25 WW FC TC $=-400 /+500$	01121	C81015
R38	0683-2205	9		RESISTOR 225%, 25W FC TC $=-400 /+500$	01121	c8e205
R39	0683-4715	0		RESISTOR 470 5%. 25W FC TC $=-400 /+600$	01121	CB4715
R40	0683-1025	9		RESISTOR 1 K 5 SK , 25 W FC TC $=-400 /+600$	01121	CR1 025
R41	0683-1025	9		RESISTOR $1 \mathrm{~K} 5 \%$. 25 W FC TC $=-400 \%+600$	01121	CB1025
R42	0683-1025	9		RESISTOR $1 \mathrm{~K} 5 \%$. 25 W FC TC $=-400 /+600$	01121	CB1025
R44	0683-1035	1		RESISTOR $10 \mathrm{~K} 5 \%$, 25W FC TC $=-400 /+700$	01121	CH1035
R51	0683-1025	9		RESISTOR $1 \mathrm{~K} 5 \%$. 25 W FC TC: $=-400 \%+600$	01121	CB1025
R5S	0683-1025	9		RESISTOR $1 \mathrm{~K} 5 \mathrm{5} \mathrm{\%}$. 25 W FC TC $=-400 /+600$	01121	CB1025
$\mathrm{REF}^{\mathrm{R}}$	0683-1025	9		RESISTOR $1 \mathrm{~K} 5 \mathrm{E} \%$. 2SW FC TC $=-400 /+600$	01121	CB1025
R54	0683-1025	9		RESISTOR $1 \mathrm{~K} 5 \mathrm{5} \%$. 25 W FC TC $=-400 /+600$	01121	CE1025
RE5	0683-4735		1	RESISTOR 47K 5\% . 25 W FC TC $=-400 /+800$	01121	CB4735
$R 56$	0683-1025	9		RESISTOR $1 \mathrm{~K} 5 \%$. 25W FC TC $=-400 \%+600$	01121	CB1025
R5\%	0683-1025	9		RESISTOR $1 \mathrm{~K} 5 \%$, 25W FC TC $=-400 /+600$	01121	CB1025
R58	0683-4725	${ }_{2}^{2}$	1	RESISTOR 4.7k 5%. 2.5 WW FC TC $=-400 /+700$	01121	C64725
RE9	0683-1025	9		RESISTOR IK 5%. 2 SW FC TC $=-400 /+600$	01121	CH1025
R61	0683-5615	1	1	RESISTDR 5605%. 25 W FC TC $=-400 \%+600$	01121	CB5615
R62	0686-2215	7	1	RESISTOR 220 5%. 5 W CC TC, $=0+529$	01121	EB2215
R63	0683-1025	9		RESISTOR $1 \mathrm{~K} 5 \%$, 25W FC TC $=-400 /+600$	01121	C81025
R64	0683-4715	-		RESISTOR 4705%. 25 W FC TC $=-400 /+600$	01121	CB4715
R65	0683-4715	0		RESTSTOR 470 5\% .25W FC TC $=-400 \%+600$	01121	CB4715
R66	0683-1025	9		RESISTOR $1 \mathrm{~K} 5 \mathrm{5} \%$. 25W FC TC $=-400 /+600$	01121	C81025
R 68	0683-1025	9		RESISTOR $1 \mathrm{~K} 5 \mathrm{~K} \%$, 25W FC TC $=-400 /+600$	01121	CB1025
$R 69$	0683-1025	9		RESISTOR 1K 5%, 25W FC TC $=-400 /+600$	01121	C81025
R70	0683-1025	9		RESISTDR $1 \mathrm{~K} 5 \mathrm{~F} \%$, 25W FC TC $=-400 \%+600$	01121	C81025
R'71	0683-1035	1		RESISTOR 10K 5\% .25W FC TC: $=-400 /+700$	01121	CB1035
R72	1810-0275	1		NETWORK-RES 10-5TP1. OK OHM X 9	01121	2104102
R73	0683-4705	8		RESISTOR 475 5\% , 25W FC TC $=-400 /+500$	01121	CB4705
R74	0683-4705	8		RESISTOR 475%, 25W FC TC $=-400 /+500$	01121	C84705
R75	0683-4705	8		RESISTOR 47 5\% 25W FC TC $=-400 /+500$	01121	C.B4705
R76	0683-4705	8		RESISTOR 475%, 25W FC TC $=-400 /+500$	01121	CB4705
R77	0683-4705	8		RESISTOR 47 5\% .25W FC TC $=-400 /+500$	01121	C84705
R78	0683-4705	8		RESISTDR 475%, 25W FC TC $=-400 /+500$	01121	084705
R79	0683-4705	8		RESISTIR $475 \% .25 W$ FC TC. $=-400 /+500$	01121	C84705
R80	0683-4705	8		RESISTIR 475%, 25W FC TC $=-400 /+500$	01121	C84705
R81	0683-4705	8		RESISTOR 475%.25W FC TC $=-400 /+500$	01121	CB4705

Replaceable Parts

Reference Designation	HP Part Number	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	Oty	Description	Mfr Code	Mfr Part Number
R82	0683-4705	8		RESISTOR 475%. 2SW FC $12=-400 /+500$	01121	C84705
R83	06,83-1035	1		RESISTOR $10 \mathrm{~K} 5 \%$, 25W FC TC $=-400 /+700$	01121	CR1035
R84	0683-1025	9		RESISTOR $1 \mathrm{~K} 5 \%$, 2SW FC TC $=-400 /+600$	01121	CP1025
TP1-						
TP19	0360-0124	3	19	CONNECTOR-SGL CONT PIN , 04-IN-BSC-SZ RND	28480	036000124
414	1820-1441	6	3	IC ADDR TTL lis bin full addr 4-BIT	01295	SN74LS283N
415	1820-1445	0	3	IC LCH TTL LS 4 -bit	01295	SN741 5375N
416	1820-1438	1	7	IC MUXR/DATA-SEL TTL L 5 2-T0-1-LINE QUAD	01295	SN74LS257AN
417	1920-1432	5	6	IC CNTR TTL LS Bin SYNCHRO POS-EDGE-TRIG	01295	SN74L.S163AN
418	1820-1997	7	3	IC FF TTL LS D-TYPE POS-EDGE-TRIG PRL-IN	01295	SN74L.5374N
419	1820-1457	4	2	IC SHF-RGTR TTL S D-TYPE PRL-IN PRL-OUT	01295	SN74S299n
421	1816-0724	7	6	IC TTL S 64-EIT STAT RAM 35-NS 3-5	01295	SN74S189N
U22	1916-1472	4	1	IC TTL S 256-BIT ROM 50-NS 3-5	34371	HM3-7603-5 PROGRAMMED
$1 \mathrm{J23}$	1820-1858	9	5	IC FF TTL LS D-TYPE OCTL	01295	SN74L5377N
U24	1816-0724	7		IC TTL S 64-BIT STAT RAM 35-NS 3-S	01295	SN74S189N
1425	1820-1858	9		IC FF TTL LS do-type octl	01295	SN74LS377N
U26	1820-1438	1		IC MUXR/DATA-SEL TTL LS 2 -TO-1-LINE QUAD	01295	SN74LS257AN
428	1820-1112	8	7	IC FF TTL LS D TYPE POS-EDSE-TRIG	01295	SN74L.S74AN
428	1820-1997	7		IC FF TTL LS D-TYPE POS-EDGE-TRIG PRI-IN	01295	SN74LS374N
U29	182.0-1457	4		IC SHF-RGTR TTL. 5 D-TYPE PRL-IN PRL-DUT	01295	SN745299N
431	1820-1432	5		IC CNTR TTL LS BIN SYNCHRO POS-EDGE-TRIG	01295	SN74LS163AN
432	1820-1432	5		IC CNTR TTL LS SiN SYNCHRO POS-EDGE-TRIG	01295	SN74L.S163AN
433	1816-0724	7		IC TTL S 64-EIT STAT RAM 35-NS 3-S	01295	SN745189N
1334	1820-1441	6		IC ADDR TTL LS GIN FULL ADDR 4-BIT	01295	SN74LS283N
U35	1920-1445	0		IC LCH THL LS 4 -bit	01295	SN741.S375N
436	1820-1438	1		IC MUXR/DATA SEL TTL LS $2 \cdots-10-1 \cdots$ LINE RUAD	01295	SN7 4LS257AN
437	1820-1430	3		IC CNTR TTL LS BIN SYNCHRO POS-EDGE-TRIG	01295	SNT41-S161AN
438	1820-2024	3	7	IC DRUR TTL LS LINE DRUR DCTL	01295	SN74L.S244N
1439 441	$1820-1298$ $1820-1240$	3	1 2	IC MUXR/DATA-SEL TTL LS 8 -TG-1-LINE IC DCDR TTL 3 -TO-8-INE 3-INP	01295 01295	SN74LS251N SN74S138N
441	1820-1240	3	2	IC DCDR TTL 5 3-TO-8-LINE 3-INP	01295	SN74S13BN
442	1816-1471	3 0	1	IC TTL S 256-BTT ROM 50-NG 3-S	34371	HM3 7 7603-5 PROGRAMMED
143	1820-1858	9		IC FF TTL LS D-TYPE DCTL	01295	SN74LS377N
444	1816-0724	7		IC. TTL S 64-BIT STAT RAM $35-\mathrm{NS} 3$ 3-S	01295	SN74S189N
445	1820-1858	9		IC FF TTL LS D...TYPE OCTL..	01295	SN74LS377N
446	1820-1438	1		IC. MUXR/DATA-SEL. TTL L. 2 --to-1-LINE QUAD	01295	SN741.S257AN
147	1820-1430	3		IC CNTR TTL LS GIN SYNChro pos-eddeetrig	01295	SN741-5161AN
448	1820-1987	5	2	IC SHF-RGTR TTL LS COM CLLEAR STOR 8- bit	01295	SN741.S299N
449	1820-1858	9		IC FF TTL LS D-TYPE OCTL	01295	SN74LS377N
U5 1	1820-1112	8		IC FF TTL LS D-TYPE POS-EDGE-TRIG	01295	
1152	1820-1438	1		IC MUXR/DATA-SEL. TTL L.S 2-TO-1-LINE QUAD	01295	SN741.S257AN
U53	1816-0724	7		IC TTL S 64-BIT STAT RAM 35-NS 3-S	01295	SN74S189N
454	1820-1441	6		IC ADDR TTL LS BIN FULL ADDR 4-BIT	01295	SN74LS283N
U55	1820-1445	0		IC LCH TTL LS 4 - BIT	01295	SN741.S375N
457	1820-1432	5		IC CNTR TTL LS EIN SYNCHRO POS-EDGE-TRIG	01295	SN741.S163AN
บ58	1820-1322	2	3	IC GATE TTL S Nor quad 2-INP	01295	SN74S02N
1459	1820-1432	5		IC CNTR TTL LS BIN SYNCHRO POS EDGE --TRIG	01295	SN74LS163AN
461	1820-1112	8		IC. FF TTL LS D-TYPE POS-EDGE-TRIG	01295	SN74LS74AN
462	1820-1244	7	1	IC muxr/data-sel til. ls 4-T0-1-LINE dual	81295	SN74LS153N
	1820-1112	8		IC. FF TTL LS D-TYPE POS-EDGE-TRIG	01295	SN74ISS74AN
164	1816-0724	7		IC TTL 5 64-BIT STAT RAM 35-NS 3-5	01295	SN74S189N
465	1820-1112	8		IL. FF TTL LS D-TYPE POS-EDGE-TRIG	01295	SN741.574AN
466	1820-1212	9	1	IC FFFTTL LS J K NEGEDGE-TRIG	01295	SN74L.S112AN
466	1820-1303	9	5	IC SHF-RGTR TTL S R-S PRL-IN PRL-OUT	01295	SN74S195N
467	1820-1112	8		IC FF TTL LS D-TYPE POS-EDGE-TRIG	01295	SN74L.S74AN
168	1820-1199	1	4	IC INU TTL LS HEX 1-INP	01295	SN741.S04N
469	1820-1449	4	5	IC GATE TTL S OR QUAD 2-INP	01295	SN74S323N
471	1820-1199	1		IC. INU TTL LS HEX 1-INP	01295	SN741.S04N
1.173	1820-1449	4		IC GATE TTL 5 DR QUAD 2 -INP	01295	SN74S32N
474	$1820-1367$ $1820-0629$	5	3	IC GATE TTL S AND QUAD $2 \cdots$ INP	01295	SN74S08N
475	1820-0629	0	2	IC FF TTL S J-K NEG-EDGE-TRIG	01295	SN74S112N
476	1820-1453	0	4	IC CNTR ttl s bin synchro pos-edgeetrig	01295	SN74S163N
477	1820-1240	3		IC DCDR TTL S 3-TO-B-LINE 3-INP	01295	SN74S138N
U78	1820-0693	8	7	IC FF TTL S D-TYPE POS-EDGE-TRIG	01295	SN74S74N
479	1820-0693	8		IC FFF TTL S D-TYPE POS-EDCE-TRIG	01295	SN74574N
UE1	1820-2024	3		IC DRUR TTL Lis Line drur octl	01295	SN741.S244N
U82	1820-1201	6	4	IC Gate ttl lis and quad z-inp	01295	SNTALSOBN
U83	1820-1208	3	3	IC GATE TTL LS OR QUAD $2 \cdots$ INP	01295	SN741. S32N
U84	1820-1199	1		IC INU TTL LS HEX I-INP	01295	SNT4LS04N
485	1820-0681	4	5	IC GATE TTL S NAND QUAD 2-INP	01295	SN74S00N
486	1820-0681	4		IC GATE TTL 5 NAND QUAD 2-INP	01295	SN74500N
U97	1820-1367	5		IC GATE TTL 5 AND QUAD 2-INP	01295	SN74S08N
U88	1820-1449	4		IC GATE TTL 5 DR QUAD 2 -INP	01295	SN74S32N
489	1820-0693	8		IC FF TTL S D-TYPE POS-EDGE-TRIG	01295	SN74S74N
491	1820-1202	7	3	IL. GATE TTL LS NAND TPL 3-INP	01295	SNT4LS10N
U94	1820-1202	7		IC GATE TTL LS NAND TPL 3-INP	01295	SNTMLSION

Replaceable Parts

Reference Designation	HP Part Number	C	Oty	Description	Mfr Code	Mfr Part Number
495	1820-1202	7		IC GATE TTL LS NAND TPL 3-INP	01295	SN74LSI0N
496	1820-0683	6	5	IC INU TTL 5 HEX 1-INP	01295	SN74S04N
497	1820-1453	0		IC CNTR TTL S EIN SYNCHRD POS-EDGE-TRIG	01295	SN74S163N
498	1820-1322	2		IC GATE TTL S NOR QUAD 2-INP	01295	SN74S02N
499	1820-1453	0		IC CNTR TTL S BIN SYNChRO POS-EDGE-TRIG	01295	SN74S163N
4110	5081-2705	3	24	16 K RAM	28480	5081-2705
11111	5081-2705	3		16 K RAM	28480	5081-2705
4112	5081-2705	3		16 K RAM	28480	5081-2705
U113	5081-2705	3		16 K RAM	28480	5081-2705
U114	5081-2705	3		16 K RAM	28480	5081-2705
13115	5081-2705	3		16 K RAM	28480	5081-2705
4116	5081-2705	3		16 K RAM	28480	5081-2705
4117	5081-2705	3		16 K RAM	28480	5081-2705
4118 4120	1820-0693	8		IC FF TTL S D-TYPE POS-EDGE-TRIG	01295	SN74S74N
4120	1820-1319	7	2	IC MUXR/DATA-SEL. TTL S 8-T0-1-LINE 8-INP	01295	SN74S151N
U122	1820-0681	4		IC GATE TTL $¢$ NAND QUAD 2-INP	01295	SN74500N
4123	1820-1208	3		IC GATE TTL LS OR QUAD 2-INP	01295	SNT4LS32N
4124	1820-1319	7		IC MUXR/DATA-SEL TTL S 8-T0-1-LINE 8-INP	01295	SN74S151N
U210	5081-2705	3		16 K RAM	28480	5081-2705
U2.11	5081-2705	3		16 K RAM	28480	5081-2705
U212	5081-2705	3		16 K RAM	28480	5081-2705
U213	5081-2705	3		16 K RAM	28480	5081-2705
U214	5081-2705	3		16 K RAM	28480	5081-2705
U215	5081-2705	3		16 K RAM	28480	5081-2705
13216	5081-2705	3		16 K RAM	28480	5081-2705
U217	5081-2705	3		16K RAM	28480	5081-2705
4218	1820-1197	9	3	IC GATE TTL LIS NAND QUAD 2-INP	01295	SN74LSODN
บe20	1820-0683	6		IC INU TTL S HEX 1-INP	01295	SN74S04N
1221	1820-0629	0		IC FF TTL 5 J-K NEG-EDSE-TRIG	01295	SN74S112N
บ222	1820-1195	7	4	IC FF TTL LS d-TYPE POS-EDGE-TRIG COM	01295	SN74LS175N
U223	1820-0618	7	1	IC EFR TTL NOIN-INU HEX	01295	SN7417N
U224	1820-1989	7	1	IC CNTR TTL LS BIN DUAL 4 - BIT	07263	74L.s393PC
U310	1820-1216	3	3	IC DCDR TTL LS 3-TO-8-L.INE 3-INP	01295	SNT4LSESBN
U311	1820-1201	6		IC GATE TTL LS AND QUAD 2-INP	01295	SN74LS08N
4312	1820-1449	4		IC GATE TTL S DR QUAD 2-INP	0.1295	SN74S32N
U313	1820-1201	6		IC GATE TTL LS AND QUAD $2-I N P$	01295	5N74LS08N
4314	1820-1917	1	2	IC EFR TTL L.S LINE DRUR OCTL	01295	SN74LS240N
4315	1820-1917	1		IC GFR TTL LS LINE DRUR OCTL	01295	SN74LS240N
U316	1820-1195	7		IC FF TTL LS D-TYPE POS-EDGE-TRTG COM	01295	SN74L.S175N
0317	1820-1144	6	1	IC GATE TTL LS NOR QUAD 2-INP	01295	SN74LS02N
4318	1820-1199	1		TC INU TTL LE; HEX 1-INP	01295	SN74LS04N
4319	1820-1303	9		IC SHF-RGTR TTL S R-S PRL-IN PRL-OUT	01295	SN74S195N
4320	1820-1303	9		IC SHF-RGTR TTL S R-S PRL--IN PRL-DUT	01295	SN74S195N
U321	1820-1112	8		IC FF TTL LS D-TYPE POS-EDGE-TRIG	01295	SN74LS74AN
13322	1820-0681	4		IC GATE TTL 5 NAND QUAD 2-INP	01295	SN74S00N
U323	1820-1453	0		IC CNTR TTL Si bin synchro pos-Edgee-trig	01295	SN74S163N
1.324	1820-1303	9		IC SHF-RGTR TTL S R-S PRL-IN PRL-DUT	01295	SN74S195N
1410	1820-2075	4	2	IC MISC TTL L.S	01295	SN741.5245N
11411	1820-1197	9		IC GATE TTL LIS NAND QUAD 2-INP	01295	SNT4LSOON
± 412	1920-1322	2		IC GATE TTL $S_{\text {S }}$ NOR QUAD $2 \cdots$--INP	01295	SN74S02N
1.1413	1820-0681	4		IC GATE TTL S NAND QUAD 2-INP	01295	SN74500N
4414	1820-1076	3	1	IC FF TTL S I--TYPE POS-EDGE-TRIG CLIEAR	01295	SN74S174N
13415	1820-1196	8	2	IC FF TTL LS D--TYPE POS-EDGE-TRIG COM	01295	SN74LS174N
14416	1820-1997	7		IC FF TTL LS D-TYPE POS-EDGE-TRIG PRL-IN	01295	SN74L.S374N
14417	1820-1197	9		IC GATE TTL L.S NAND RUAD 2-INP	01295	SN74LSOON
4418	1920-1730	6	1	IC FF TTL LS d-TYPE POS-EDGE-TRIG COM	01295	SN741.s273N
0421	1820-2373	5	1	IC--NAT B367 CRT C	28480	1820-2373
4423	1820-2024	3		IC DRUR TTL L.S LINE DRUR OCTL	01295	SN74LS244N
1424	1820-0693	8		IC FF TTL S D-TYPE POS-EDGE-TRIG	01295	SN74S74N
1.1425	1820-0693	8		IC FF TTL S D-TYPE PDS-EDGE-TRIG	01295	SN74S74N
4510	1820-1238	9	1	IC MUXR/DATA-SEL TTL LS 4-TD-1-LINE DUAL	01295	SN74LS253N
W511	1820-0683	6		IC INU TTL S HEX 1-INP	01295	SN74S04N
U512	1820-1216	3		IC DCDR TTL LIS 3-TO-B-LINE 3-INP	01295	SN74LS138N
4513	1920-0683	6		IC INU TTL 5 HEX 1-INP	01295	SN74S64N
U514	1820-1303	9		IC SHF-RGTR TTL S R-S PRI--IN PRL-DUT	01295	SN74S195N
U515	1820-2024	3		IC DRUR TTL LIS LINE DRUR OCTL	01295	SN74LS244N
US16	1820-1987	5		IC SHF-RGTR TTL İS CDM CLEAR STOR B-EIT	01295	SN74LS299N
4517	1820-1206	1	2	IC GATE TTL LSS NOR TPL 3 -INP	01295	SN74LSE7N
U518	1820-2416	7	3	IC SHF-RGTR NMMOS SERTAL-IN SERIAL-OUT	27014	MM5035P
U519	1820-1432	5		IC CNTR TTL L.S BIN SYNCHRO POS-EDGE-TRIG	01295	SN74LSIG3AN
4520	1820-1196	8		IC FF TTL LS dotype pos-Edge-trig com	01295	SN74LS174N
4525	1820-1206	1		IC GATE TTL L.S NOR TPL 3 -INP	01295	SN74LS27N
4610	1820-1367	5		IC GATE TTL $\$$ AND QUAD 2--INP	01295	SN74S08N
1611	1820-0685	8	1	IC GATE TTL S NAND TPL 3 -INP	01295	SN74S10N
U612	1820-1208	3		IC GATE TTL L.S DR QUAD 2-INP	01295	SN74LS32N

Replaceable Parts

Reference Designation	HP Part Number	$\begin{aligned} & \mathrm{C} \\ & \mathrm{D} \end{aligned}$	Qty	Description	Mfr Code	Mfr Part Number
0613	1820-0691	6	1	IC GATE TTL S AND-OR-INU	01295	SN74S64N
U614	1820-1449	4		IC GATE TTL S OR QUAD $2 \cdots$ INP	01295	SN74S32N
4615	182.0-1195	7		IC FF TTL LS d-TYPE PDS-EDGE-TRIG COM	01295	SN74LS175N
4616	1820-2075	4		IC MISC TTL LS	01295	SN741.S24SN
U617	1820-1195	7		IC FF TTL L.S D-TYPE POS-EDGE-TRIG COM	01295	SN74LS175N
4618	1820-2102	8	1	IC LCH TTL LS D-TYPE DCTL.	01295	SN741.5373N
4619	1820-2416	7		IC SHF-RGTR NMOS SERIAL-IN SERIAL-OUT	27014	MM5035P
4620	1820-2416	7		IC SHF-RGTR NMOS SERIAL-IN SERIAL-OUT	27014	MM5035p
4621	1820-0990	8	2	IC RCUR DTL NAND LIINE QUAD	01295	SN75189AJ
0622	1820-0509	5	2	IC DRUR DTL LINE DRUR QUAD	04713	MC1488L
4623	1820-0509	5		IC DRUR DTL LINE DRUR QUAD	04713	MC1488L
4624	1820-0990	8		IC RCUR DTL NAND LINE QUAD	01295	SN75189AJ
4625	1820-0683	6		IC INU TTL 5 HEX 1-INP	01295	SN74S04N
U710	1820-0693	8		IC FF TTL S D-TYPE POS-EDGE-TRIG	01295	SN74S74N
4711	1820-1416	5	1	IC SCHMITT-TRIG TTL L.S INU HEX 1-INP	01295	SN74LS14N
U712	1820-2298	3	1	IC-z80A CPU	28480	1820-2298
4714	1820-2024	3		IC DRUR TTL I.S LINE DRUR OCTL	01295	SN74L.S244N
4715	1820-1438	1		IC MUXR/DATA-SEI. TTL LS $2-\mathrm{TO-1-LINE}$ quad	01295	SN74L.s257AN
4717	5081-2705	3		16 K RAM	28480	5081-2705
U718	5081-2705	3		16 K RAM	28480	5081-2705
U719	5081-2705	3		16 K RAM	28480	5081-2705
4720	5081-2705	3		16 K RAM	28490	5081-2705
U721	1820-2577	1	2	IC-SYP 6551 ACJA	28480	1820-2577
U722	1820-2577	1		IC-SYP 6551 ACIA	28480	1820-2577
U724	1820-1201	6		IC GATE TTL L.S AND QUAD 2-InP	01295	SN74L.S0EN
4810	1820-1430	3		IC CNTR TTL LS BIN SYNCHRO POS-EDGE--TRIG	01295	SN74L.S161AN
4811	1820-2024	3		IC DRUR TTL LIS LINE DRUR DCTL	01295	SN74L. S244N
4814 815	$1820-2024$ $1820-1438$	3		IC DRUR TTL LS LINE DRUR OCTL	01295	SN74LS244N
1815	1820-1438	1			01295	SN74L_s257AN
4917	5081-2705	3		16 K RAM	28490	5081-2705
4818	5081-2705	3		16 K RAM	23480	5081-2705
4819	5081-2705	3		16 K RAM	28480	5081-2705
U820	5081-2705	3		16 K RAM	28480	5081-2705
4911	1820-1216	3		IC DCDR TTL LS 3-TO-8-LINE: 3-INP	01295	SN74LS138N
U921	1818-0708	1	1	IC CMOS 1024 (1K) STAT RAM 650-NS 3 S	50545	UPD51011.C
we	8159-0005	0	2	RESTSTOR-ZERD OHMS 22 awg lead dia	29480	8159-0005
WS	8159-0005	0		RESISTOR-ZERD OHMS 22 AWG lead dia	28480	8159-0005
Xu22	1200-0607	0	26	SOCKET-IC. 16-CONT DIP DIP-SLDR	28480	1200-0607
XU42	1200-0607	0		SOCKET-IC 16-CDNT DIP DIP SLDR	28480	1200-06.07
XU110	1200-0607	0		SOCKET-IC 16-CONT DIP DIP --SLDR	28480	1200-0607
XU111	1200-0607	0		SOCKET-IC 16-CONT DIP DIP SLDR	28480	1200-0607
Xulit	1200-0607	0		SOCKET-IC 16-CONT DIP DIP-SL.DR	28480	1200-0607
XU113	1200-0607	0		SOCKET-IC 16 COLST DIP DIP --SLDR	28480	1200-0607
XU114	1200-0607	0		SOCKET-IC, 16-CONT DIP DIP-SLDR	28480	1200-0607
X X 1115	1200-0607	0		SOCKET-IC 16 CONT DIP DIP--SLDR	28480	1200-0607
XU116	1200-0607	0		SOCKET-IC 16-CONT DIP DIP-SIDR	28480	1280-0607
XU117	1200-0607	0		SOCKET-IC 16 CONT DIP DIP-.-SLDR	28480	1200-0607
XU210	1200-0607	0		SOCKET-IC: 16-CONT DIP DIP--SLDR	28480	1200-0607
XL2211	1200-0607	0		SOCKET-IC 16 CONT DIP DIP--SL.DR	28480	1200-0607
XU212	1200-0607	0		SOCKET-IC 16-CONT DIP DIP-SLDR	28480	1200-0607
Xu213	12000607	0		SOCKET-IC 16-CONT DIP DIP--SLDR	28480	1200-0607
XU214	1200-0607	0		SOCKET-IC. 16-CONT DIP DIP--SLDR	28480	1200-0607
Xu215	1200-0607	0		SOCKET-IC 16-CONT DIP DIP-SLDR	28480	1200-0607
XU216	1200-0607	0		SOCKET-IC, 16-CONT DIP DIP--SLDR	28480	1200-0607
XU217	1200-0607	0		SOCKET-IC 16-CONT DIP DIP--SLDR	28480	1200-0607
X $\times 1.1419$	1200-0541	7	7	SOCKET-IC 24-CONT DIP DIP-SLDR	28480	1200-0541
XU421	1200-0654	7	2	SOCKET-IC 40 CONT DIP DIP- SLDR	28480	1200-0654
Xu518	1200-0639	8	3	SOCKET-IC. 20-CONT DIP DIP-SLDR	28480	1200-0639
XU619	1200-0639	8		SOCKET-IC 20--CONT DIP DIP--SLDR	28480	1200-0639
X 1.1620	1200-0639	8		SOCKET-IC $20-C O N T$ DIP DIP-SL.DR	28480	1200-0639
XU621	1200-0638	7	4	SOCKET-IC 14-CONT DIP DIP--SLDR	28480	1200-0638
$\times 1.1622$	1200-0638	7		SOCKET-IC 14-CONT DIP DIP-SLDR	28480	1200-0638
XU623	1200-0638	7		SOCKET-IC 14-CONT DIP DIP-SL.DR	$2 \mathrm{B480}$	1200-0638
XU624	1200-0638	7		SOCKET-IC 14-CONT DIP DIP--SLDR	28480	1200-0638
XU712	1200-0654	7		SOCKET-IC 40 CONT DIP DIP --SLDR	28480	1200-0654
X 41517	1200-0607	0		SOCKET-IC 16-CONT DIP DIP-SLDR	28480	1200-0607
XU718	1200-0607	0		SOCKET-IC 16 CONT DIP DIP-SLDR	28480	1200-0607
X 1.1719	1200-0607	0		SOCKET-IC 16-CONT DIP DIP-SI.DR	28480	1200-0607
XU720	1200-0607	0		SOCKET-IC 16-CDNT DIP DIP--SLDR	28480	1200-0607
X $\times 1.1721$	1200-0567	1	2	SOCKET-IC 28-CONT DIP DIP-SLDR	28480	1200-0567
Xu722	1200-0567	1		SOCKET-IC 28-CONT DIP DIP--SLDR	28480	1200-0567
XU817	1200-0607	0		SOCKET-IC 16-CONT DIP DIP-SLDR	28480	1200-0607
Xu818	1200-0607			SOCKET-IC 16 CONT DIP DIP-SLDR	28480	1200-0607
XU819	1200-0607	0		SOCKET-IC 16-CONT DIP DIP--SLDR	29480	1200-0607
X1J820	1200-0607	0		SOCKET-IC 16-CONT DIP DIP-SLDR	28480	1200-0607
XU912	1200-0541	1		SOCKET-IC, 24-CONT DIP DIP-SLDR	29480	1200-0541
XU912	1200-0612	7	1	SOCKET-IC 22-CONT DIP DIP-SLDR	28480	1200-0612

Replaceable Parts

