
GETTING STARTED
WITH THE iRMX™86

SYSTEM

Order Number: 144349-001

Copyright © 1982 Intel Corporation
I I Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051

REV. REVISION HISTORY PRINT
DATE

-001 Original Issue 3/82

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The Information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no
commitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel's software license, or as defined as
ASPR 7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel
products:

BXP Insite iSBC Multibus
CREDIT Intel iSBX Multimodule

intel Library Manager Plug-A-Bubble
ICE Intelevision MCS PROMPT
iCS InteDec Megachassis RMX/80
im iOSP Micromainframe System 2000
iMMX iRMX Micromap UPI

IA594/3821 6K Dol

PREFACE

Here is the information you will need in order to use the Configured
iRMX 86 Operating System (iRMX 86 PC), a ready-to-use version of Intel's
general, configurable iRMX 86 Operating System. "Ready-to-use" means
that Intel has selected the individual software features and then put
this system software together. In order to do so, we have made some
assumptions about the hardware on which you will run the system, and we
describe this hardware in the manual. The iRMX 86 PC product allows you
to use the Operating System as soon as you have the correct hardware
environment, without going through the configuration process.

READERS AND CONTENTS OF THIS MANUAL

Except for Chapter 5, this manual is written for programmers who will use
the Operating System. Chapter 5 is written for a hardware technician or
engineer who assembles the hardware, if the programmer is not the person
who does this.

Here is how the manual is organized.

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

OVERVIEW. This chapter describes the characteristics
of the Operating System. You will -want- to react-thrs-
chapter to become familiar with iRMX 86 concepts and
terms.

USING THE SYSTEM. This chapter shows how to start up
(bootstrap load) the Operating System, and shows
examples of iRMX 86 Commands.

iRMX 86 COMMANDS. This chapter contains complete
descriptions of the iRMX 86 Commands, arranged
alpabetically.

UDI SYSTEM CALLS. This chapter contains general
information about the Universal Development Interface
(UDI) , followed by descriptions of each UDI System
Call.

PREPARING YOUR HARDWARE. This chapter describes the
hardware required to run the Operating System, and how
to prepare that hardware.

iii

Appendix A

Appendix ~.

Appendix C

WHAT YOU GET

PRE.FACE (cQnt+ll~ed)

'l'bisapp.endix .:J..ist~ the coqe s that tJ:le ilUolX 86
Operating System us.es to indicate exceptional
conditions, such as bar~are failures and mistakes in
howapro~ramuses the system.

This appendix provides a list of"intern.al~· iRMX 86
System Calls. You will not need to use these system
callf;l t.o write alld rUll programs. But the information
in this appendix provides an overview of the services
provided by the iRMX 86 Operatillg System.

This appendix describes how to use the monitor that is
delivered as part of the iRMX 86 PC System.

The iRMX 86 PC Release Package contains:

• The System Diskette, which is lab.eled

Preconfigured iRMX86 Operating System

.--- Thetibrary Diskette, which is labeled

iRMX 86 Interface Libraries

• Four (4) EPROM devices which contain the Monitor and a Bootstrap
Loader (you install these on your iAPX 86 Sill8le Board
Computer)

• This manual

• One Software Problem Report Form

• One Software Registration Card, which you should complete and
return when you receive the package

iv

PREFACE (continued)

RELATED PUBLICATIONS

The following manuals provide additional information that may be helpful
to users of this manual. These manuals are described in Chapter 6.

Manual

Introduction to the iRMX- 86 Operating System

iRMXm 86 Nucleus Reference Manual

iRMX· 86 Basic I/O System Reference Manual

iRMX- 86 Extended I/O System Reference Manual

iRMX- 86 Loader Reference Manual

iRMX- 86 Human Interface Reference Manual

iRMX- 86 Disk Verification Utility Reference Manual

iRMX- 86 System Programmer's Reference Manual

iRMX- 86 Programming Techniques Manual

Guide to Writing Device Drivers for the iRMX- 86 and
iRMX·88 I/O Systems

iRMX- 86 Configuration Guide

iRMX- 86 Installation Guide

EDIT Reference Manual

Guide to Using iRMX· 86 Languages

8086/8087/8088 Macro Assembly Language Reference Manual for
8086-Based Development Systems

8086/8087/8088 Macro Assembler Operating Instructions for
8086-Based Development Systems

PL/M-86 User's Guide for 8086-Based Development Systems

v

Number

9803124

9803122

9803123

143308

143318

9803202

144133

142721

142982

142926

9803126

9803125

143587

143907

121627

121628

121636

PREFACE (continued)

Manual

FORTRAN-86 User's Guide

Pascal-86 User's Guide

iAPX 86,88 Family Utilities User's Guide

Run-Time Support Manual for iAPX 86, 88 Applications

User's Guide for the iSBC@ 957B iAPX 86, 88 Interface and
Execution Package

iSBC@ 86/12A Single Board Computer Hardware Reference Manual

Number

121570

121539

121616

121776

143979

9803074

iSBC8 86/14 and iSBC@ 86/30 Single Board Computer Hardware Reference
Manual 144044

iSBX- 208 Flexible Disk Drive Controller Hardware Reference
Manual

iSBC@ 337 Multimodule- Numeric Data Processor Hardware
Reference Manual

vi

143078

142887

CHAPTER 1
SYSTEM OVERVIEW

CONTENTS

Hardware Environment For the iRMX 86 PC System •••••••••••••••••••••
Language Translators and Utilities •••••••••••••••••••••••••••••••••
Universal Development Interface ••••••••••••••••••••••••••••••••••••
The iRMX 86 File System ••

Hierarchical Naming of Files •••••••••••••••••••••••••••••••••••••
iRMX 86 File Terminology •••
Device Logical Names •••
File Operations From a Terminal ••••••••••••••••••••••••••••••••••
File Operations From Programs ••••••••••••••••••••••••••••••••••••

Files and Directories with the iRMX 86 PC Operating System •••••••••
System Diskette ••

Default Directory ($) ••.•••••••••••••••••••••••••••••••••.•••••
System Directory (SySTEM) ••••••••••••••••••••••••••••••••••••••
Program Directory (PROG) •••••••••••••••••••••••••••••••••••••••
Work Directory (WORK) •.••

Library Diskette ••••••••••••••••••••••.••••••••••••••••••••••••••
Program Loading ••
Bootstrap Loading ••
Moni tor ••
Selective Error Processing •••
Summary ••

CHAPTER 2
USING THE SYSTEM
Starting the System. ...
Invoking iRMX 86 Commands ••

Preposition Parameters •••
Terminal Controls ••
Unequal Number of Files in Input and Output Lists ••••••••••••••••

More Input Files Than Output Files •••••••••••••••••••••••••••••
More Output Files Than Input Files •••••••••••••••••••••••••••••
Saf eguards .•.••..•..•••••.•••..••••••••••..••••••.•........••••

Example Commands •••
How To Set the System Date and Time ••••••••••••••••••••••••••••••
How to Display the Contents of a Directory •••••••••••••••••••••••

Using the DIR Command with No Parameters •••••••••••••••••••••••
Directory Displayed in an Alternate Format •••••••••••••••••••••
Directory Listing of System Directory ••••••••••••••••••••••••••
Directory Listing of SYSTEM/UDI ••••••••••••••••••••••••••••••••

How To Copy Files ••
Creating a New Copy of a File ••••••••••••••••••••••••••••••••••
Copying Multiple Files With One Command ••••••••••••••••••••••••
Copying One File OVER Another ••••••••••••••••••••••••••••••••••

Creating a Directory •••
Displaying The Contents of a File On The Terminal ••••••••••••••••
Giving a File a New Name ••••••••••••••••••••••••••• ~ •••••••••••••
How to Make Copies of Your System Diskette •••••••••••••••••••••••

vii

PAGE

1-2
1-4
1-5
1-5
1-5
1-6
1-7
1-8
1-8
1-9
1-9
1-10
1-10
1-10
1-11
1-11
1-11
1-11
1-12
1-12
1-12

2-2
2-3
2-5
2-6
2-7
2-7
2-8
2-8
2-8
2-8
2-10
2-10
2-12
2-13
2-14
2-14
2-15
2-15
2-16
2-17
2-17
2-18
2-19

CONTENTS (continued)

CHAPTER 3
iRMX 86 COMMANDS
Command Syntax Schematics ••
Command Dictionary •••

ATTACHDEVICE •••
BACKUP .. .
COpy •••
CREATEDIR ••
DATE •••
DEBUG ••
DELETE ••• ••••
DETACHDEVICE •••
D IR ••
DISKVERIFY •••
DOWNCOPY •••
FORMAT •••••• •••
REN~E •••
RESTORE ••
SUBMIT •••••••••••••••••••.••••••••••••••••••••.•••••••• It •••••••••
TIME
UPCOpy •••

CHAPTER 4
UDI SYSTEM CALLS
Us tng the UnI ••

UnI Libraries•.....•..•••...•.•...•..............•.•••..
Include Files ••
Exceptional Conditions •••
Data Types •••

Descriptions of System Calls •••••••••••••••••••••••••••••••••••••••
Memory Management System Calls •••••••••••••••••••••••••••••••••••
File-Handling System Calls •••••••••••••••••••••••••••••••••••••••
Exception-Handling System Calls ••••••••••••••••••••••••••••••••••

System Call Dictionary •••
D Q$ALLOCA TE ••
DQ$ATTACH ••
DQ$CHANGE$EXTENSION ••
DQ$CLOSE ,. ••••••••••••••••••••••••• ••••••••••••••••••••••••
DQ$CREATE ••.•••••••• •••
DQ$DECODE$EXCEPTION ••
DQ$DELETE ••••••••••••••• fI ••
DQ$DETACH •••••••••••••• ••
DQ$EXIT ••
DQ$FREE ••••• ., ••
DQGETARGUMENT ••••••••••••••••••••••..•••••.••.•••.•••••••••••••
DQGETCONNECTION$STATUS •••
DQGETEXCEPTION$HANDLER •• -•
DQ$GE T $5 IZE ••
DQGETSySTEM$ID ••••••••••••••.•••••••••••••••.••••••••••••••••••
DQGETTIME ••••••••••••••• •••••••••••••••• ., ••• ., ••••••••••••••••••

viii

PAGE

3-1
3-3
3-5
3-8
3-15
3-19
3-20
3-21
3-22
3-24
3-25
3-32
3-37
3-40
3-45
3-48
3-55
3-58
3-59

4-2
4-2
4-2
4-2
4-3
4-4
4-4
4-5
4-6
4-7
4-9
4-11
4-12
4-13
4-14
4-15
4-16
4-17
4-18
4-19
4-20
4-22
4-24
4-25
4-26
4-27

CONTENTS (continued)

CHAPTER 4 (continued)
DQ$OPEN ••
DQ $OVERIA Y •••
DQ$READ ••
DQ $REN.AME ••
DQ$SEEK ••
DQ$SPECIAL •••
DQ$SWITCH$BUFFER ••••••••••.•••••••.••••••••••••••••••••••••••••••
DQ$TRAP$EXCEPTION •••••••••.•••.•••••..•••••••••••••••••••••••••••
DQ$TRUNCATE ••
DQ$WRITE •••

Example Program •.•••••••••••••••••.••••••••.•••••••.•••••••••••••••

CHAPTER 5
PREPARING YOUR HARIMARE
The iRMX 86 PC Hardware Environment ••••••••••••••••••••••••••••••••

Single Board Computer ••
Flexible Diskette Controller And Drives ••••••••••••••••••••••••••
Memory •••
Line Printer •••••.•••••.••.•.........•........•..•..••.•..•......
iSBC 957B Package •••••••••..•••.•.•.•••••..••••••••••••.•••••••••

Modifying Boards •••••••••••••••••••.•••••••••••••••••••••••••••••••
Modifying the iSBC 208 Controller ••••••••••••••••••••••••••••••••
Modifying the iSBC 86/l2A Single Board Computer ••••••••••••••••••

Interrupt Level Jumpers ••
Additional Jumpers •••
Parallel Port ••
Switch Settings ••
Devices ••••••••••••••• .•••••••.•••••••••••.••••••••••••••••••••

Modifying the iSBC 86/14 Single Board Computer •••••••••••••••••••
Jumpers ••
Devices ••••••••••••••••••.•••••.•••••••••••••••••••••••••••••••

Modifying the iSBC 86/30 Single Board Computer •••••••••••••••••••
Jumpers ••••••••••••••• ••••.•••.•••.••.••.•••••.••••.•••••••••••
Devices ..•..•.•••••..• .•.••.•.••..•..•...•.•.••.••..•.•••..•...

Convenience Charts •••

CHAPTER 6
DOCUMENTATION
This Manual •.••••••••••••.•....•.•••.••.•••••••••••.•.•••••..••••••
iRMX 86 Manuals ••• •••••
Language Translators and Utilities Manuals •••••••••••••••••••••••••
lIardware Manuals •••••••••••••••••.••.••.•••••••••••••••••••••.•••••

APPENDIX A
iRMX 86 EXCEPTION CODES ••

ix

PAGE

4-28
4-30
4-32
4-34
4-35
4-37
4-39
4-40
4-41
4-42
4-44

5-2
5-2
5-3
5-3
5-3
5-5
5-5
5-6
5-7
5-7
5-7
5-8
5-8
5-9
5-10
5-10
5-11
5-12
5-12
5-13
5-14

6-1
6-1
6-4
6-6

A-I

CONTENTS (continued)

APPENDIX B
iRMX 86 SYSTEM CALLS
Layers of the iRMX 86 System •••••••••••••••••••••••••••••••••••••••
Nucleus System Calls •••
Basic I/O System Calls •••
Extended I/O System Calls ••
Human Interface System Calls •••••••••••••••••••••••••••••••••••••••
System Programmer System Calls •••••••••••••••••••••••••••••••••••••

APPENDIX C
MONITOR COMMANDS
Command Structure ••

Byte and Word Variables ••
Numeric (Real, Integer and BCD) Variables ••••••••••••••••••••••••
Address Specification ••
Multiple Commands on a Single Line •••••••••••••••••••••••••••••••

iAPX 86 and iAPX 88 CPU Registers ••••••••••••••••••••••••••••••••••
NPX Registers ••
Errors •••••••••••••.............•.•••••••.•..••.•.•..•••••.••••.•••
Entering Commands ••
Command Descriptions •••

1-1.
1-2.
1-3.
1-4.
1-5.
2-1.
2-2.
2-3.
2-4.
2-5.
2-6.
2-7.
2-8.
2-9.
2-10.
2-11.
2-12.
2-13.
3-1.
3-2.
3-3.
3-4.
4-1.
5-1.
A-I.
A-2.

FIGURES

iRMX 86 Operating System Layers ••••••••••••••••••••••••••••
iRMX 86 PC Hardware Environment ••••••••••••••••••••••••••••
Memory Layout of iRMX 86 System ••••••••••••••••••••••••••••
Hierarchical File Structure ••••••••••••••••••••••••••••••••
iRMX 86 PC File and Directory Structure ••••••••••••••••••••
Using the iRMX 86 Operating System from a Terminal •••••••••
DATE and TIME Commands •••••••••••••••••••••••••••••••••••••
DIR, Default Format ••
SHORT, ONE-Column Directory Display ••••••••••••••••••••••••
Display of System Directory ••••••••••••••••••••••••••••••••
SYSTEM/UDI Directory •••••••••••••••••••••••••••••••••••••••
Copying a File into the Same Directory •••••••••••••••••••••
Copying Multiple Files with One Command ••••••••••••••••••••
Copying One File OVER Another ••••••••••••••••••••••••••••••
Copying a File TO an Existing File •••••••••••••••••••••••••
Creating a New Directory ••••••••••••••••••••••••••••• ~ •••••
Displaying Contents of a File on a Terminal ••••••••••••••••
Renaming a File ••
EXTENDED Directory Listing Example •••••••••••••••••••••••••
FAST Directory Listing Example •••••••••••••••••••••••••••••
LONG Directory Listing Example •••••••••••••••••••••••••••••
SHORT Directory Listing Example ••••••••••••••••••••••••••••
Chronology of System Calls •••••••••••••••••••••••••••••••••
The iRMX 86 PC Hardware ••••••••••••••••••••••••••••••••••••
Exception Code Ranges ••••••••••••••••••••••••••••••••••••••
iRMX 86 Condition Codes ••••••••••••••••••••••••••••••••••••

x

PAGE

B-1
B-3
B,...5
B-6
B-7
B-8

C-2
C-2
C-3
C-6
C-7
C-8
C-8
C-9
C-9
C-U

1-1
1-2
1-3
1-6
1-9
2-1
2-9
2-11
2-12
2-13
2-14
2-15
2-15
2-16
2-16
2-17
2-18
2-18
3-29
3-29
3-30
3-30
4-5
5-1
A-I
A-2

3-1.
3-2.
4-1.
4-2.
5-1.
5-2.
5-3.
5-4.
5-5.
5-6.
5-7.
5-8.
5-9.
5-10.
5-11.
5-12.
5-13.
5-14.
5-15.
5-16.
A-I.
A-2.
C-1.
C-2.
C-3.
C-4.

CONTENTS (continued)

TABLES

iRMX 86 Command Dictionary •••••••••••••••••••••••••••••••••
Directory Listing Headings •••••••••••••••••••••••••••••••••
System Call Dictionary •••••••••••••••••••••••••••••••••••••
Command Parsing Example ••••••••••••••••••••••••••••••••••••
iSBC 208 Physical Names ••••••••••••••••••••••••••••••••••••
Line Printer Pin Assignments •••••••••••••••••••••••••••••••
lSBC 208 Jumpers •••
Interrupt Jumpers for iSBC 86/12A ••••••••••••••••••••••••••
Other iSBC 86/12A Jumpers ••••••••••••••••••••••••••••••••••
iSBC 86/12A Parallel Port Jumpers ••••••••••••••••••••••••••
iSBC 86/12A Switch 1 •••••••••••••••••••••••••••••••••••••••
iSBC 86/12A Devices ••
Interrupt Jumpers for iSBC 86/14 •••••••••••••••••••••••••••
iSBC 86/14 Parallel Port Jumpers •••••••••••••••••••••••••••
Other iSBC 86/14 Jumpers •••••••••••••••••••••••••••••••••••
iSBC 86/14 On-Board Devices ••••••••••••••••••••••••••••••••
Interrupt Jumpers for iSBC 86/30 •••••••••••••••••••••••••••
iSBC 86/30 Parallel Port Jumpers •••••••••••••••••••••••••••
Other iSBC 86/30 Jumpers •••••••••••••••••••••••••••••••••••
iSBC 86/30 On-Board Devices ••••••••••••••••••••••••••••••••
Exception Code Ranges ••••••••••••••••••••••••••••••••••••••
iRMX 86 Condition Codes ••••••••••••••••••••••••••••••••••••
NPX Data Types •••
iAPX 86, 88 CPU Registers ••••••••••••••••••••••••••••••••••
NPX Registers .••.•.•.•••.......•...•••...••.••••••••..••.•.
Summary of Loader And Monitor Commands •••••••••••••••••••••

xi

PAGE

3-3
3-31
4-7
4-21
5-3
5-4
5-6
5-7
5-6
5-8
5-8
5-9
5-10
5-10
5-11
5-11
5-12
5-12
5-13
5-13
A-I
A-2
C-4
C-8
C-9
C-11

CHAPTER 1. SYSTEM OVERVIEU

The iRMX 86 Operating System manages and extends the resources of iSBC 86
Single Board Computers. Figure 1-1 shows the structure of the Operating
System; the "layers" of the system are described in Appendix B. The
iRMX 86 PC Operating System -- a version of the general, configurable
Operating System -- is specifically designed to allow you to develop and
run programs. The features of the Operating System that are described in
this chapter are:

• Support for language translators and utilities, including a
standard software interface that simplifies addition of software
packages to your system

• The iRMX 86 file system, including file utilities and system
calls to manipulate files

• Mechanisms to bootstrap load the Operating System and to load and
run programs

• Error-handling procedures

Since you will have to prepare the hardware on which the Operating System
runs, the first section describes this hardware environment.

USER APPLICATIONS

Figure 1-1. iRMXM 86 Operating System Layers

1-1

SYSTEM OVERVIEW

HARDWARE ENVIRONMENT FOR THE iRMX 86 PC SYSTEM

The iRMX 86 PC System software is already configured for you. This
section describes the hardware on which you will install the Operating
System. Figure 1-2 shows the hardware, and Figure 1-3 shows a memory
layout. Chapter 5, HOW TO PREPARE YOUR HARDWARE, is a self-contained
guide to setting up this hardware.

INTELLEC®
DEVELOPMENT

SYSTEM

PARALLEL
PORT

2732A EPROMS-----+-i _____ Lllilll
(with Bootstrap Loader

and Monitor)

Backplane with
MULTIBUS"
Connectors

FLEXIBLE DISK CONTROLLER

LINE PRINTER

""-_- CHASSIStPOWER SUPPLY

SYSTEM DISKETTE

VIDEO TERMINAL

Figure 1-2. iRMX- 86 PC Hardware Environment

1-2

SYSTEM OVERV lEW

To use the iRMX 86 PC Operating Systemt you require the following
hardware components:

• an Intel iSBC 86/12At iSBC 86/14 t or iSBC 86/30 Single Board
Computer

• an iSBC 208 diskette controller with at least two drives (you can
connect as many as four drives)

• a video terminal

• an appropriate chassis/power-supply unit

In addition t you can connect either a line printer or an iSBC 957B
package to the parallel port on the computer board. The iSBC 957B
package allows you to connect your system directly to an Intellec
Microprocessor Development System. Neither the line printer nor the
iSBC 957B package is required to run the Operating System.

Figure 1-3 shows a memory layout. The area labelled FREE SPACE is where
your programs and iRMX 86 utilities (the commands described in Chapters 2
and 3) run. The question mark (?) on the drawing indicates that it is
your choice how much free space you have on your system. You will need
about 32K-bytes of free space to run the iRMX 86 commands t and more
memory to run Intel compilers.

ADDRESS
(hex)

FFFFF

FCOOO

?

30000

00000

FREE SPACE
(RAM)

iRMX86
OPERATING SYSTEM

(RAM)

SIZE

} 16K BYTES: on EPROM
devices delivered with
system

Your programs and
system utilities

19K BYTES:
(from system diskette)

Figure 1-3. Memory Layout of iRMXm 86 System

1-3

SYSTEM OVERVIEW

LANGUAGE TRANSLATORS AND UTILITIES

To develop programs you need language translators and utilities that
allow you to compile or assemble programs, link programs together, assign
absolute addresses to programs, create libraries of programs, and convert
absolute object modules to hexadecimal format. Software packages
available from Intel include:

EDIT

ASM86

PLM86

LINK86

LOC86

LIB86

OH86

Pascal-86

FORTRAN-86

The standare iRMX 86 editor.

The 8086/8087/8088 macro assembler.

The PL/M-86 compiler.

The 8086 Linker, which combines individually-compiled
object modules into a single, relocatable object module.

The 8086 Locater, which assigns absolute addresses to
relocatable object modules.

The 8086 Librarian, which creates and maintains object
module libraries.

A program which converts absolute object modules to
hexadecimal format.

A Pascal compiler that is a strict implementation of the
proposed ISO standard. It also provides extensions of
the language for microcomputers.

A FORTRAN compiler that is compatible with existing
FORTRAN-86 code, and also includes new FORTRAN-77
language features.

With these products you can create executable programs that can be
invoked from the terminal. If you are an OEM (original equipment
manufacturer) you can include these languages with your end product.

You can refer to the GUIDE TO USING iRMX 86 LANGUAGES for general
information about invoking language products in an iRMX 86 environment.
For detailed information about the software products listed here, you
should refer to the manuals for the individual products. Chapter 5
contains a list of manuals assoaciated with the iRMX 86 Operating System.

Contact your local Intel sales representative or distributor to order any
of these software packages.

1-4

SYSTEM OVERVIEW

UNIVERSAL DEVELOPMENT INTERFACE

The iRMX 86 PC Operating System supports the Universal Development
Interface (UDI). The UDI provides a standard method for your programs
and for Intel software packages to use Operating System services. The
UDI can be viewed as a "software bus." with the set of UDI system calls
being equivalent to a hardware bus protocol. There are three important
advantages to using UDI software.

• I~IDEPENDENCE FROM OPERATING SYSTEM CHANGES. The set of system
calls for UDI remain stable regardless of changes in the
Operating System, so software that you develop or install on your
system can remain intact.

• PORTABILITY. With the UDI "software bus". a language translator.
utility. or any other software package that uses only UDI system
calls to communicate with the underlying Operating System can be
installed on any operating system that supports UDI.

• INDEPENDENT VENDOR'S SOFTWARE. The UDI standard allows
independent software vendors to provide a variety of programs
that run on the iRMX 86 Operating System.

Chapter 4 describes how to use the UDI system calls that are available on
your iRMX 86 PC Operating System.

THE iRMX 86 FILE SYSTEM

A fundamental function of the iRMX 86 Operating System is to provide a
file system. Programs you write. as well as utilites and language
processors. need to create and delete files; to open. close. read. and
write files; and to perform other file operations. These files exist on
mass storage devices such as flexible diskettes. This section describes
the major characteristics of the iRMX 86 file system.

HIERARCHICAL NAMING OF FILES

People manipulate files with commands invoked from a terminal; programs
manipulate files with system calls. The iRMX 86 Operating System allows
your application system to organize its named files into a tree-like
structure like the one shown in Figure 1-4. This hierarchical structure
consists of files (represented by triangles in the figure) and
directories (represented by rectangles in the figure). This hierarchy
allows data to be grouped logically and accessed with a minimum of
overhead.

1-5

SYSTEM OVERVIEW

_-SOURCE SlM-oeJECT TEST-OBJECT

"-___ ...II = DIRECTORY

~ = DATA FilE

BATCH-1 8ATCH-2

Figure 1-4. Hierarchical File Structure

iRMX 86 FILE TERMINOLOGY

Here are the meanings of terms used to describe the iRMX 86 file system:

• File: In a computer system, a file is simply a collection of
related data known by a single name. Typically, files reside on
secondary storage such as disks. An iRMX 86 file name is the
last component of a pathname that implicitly or explicitly
identifies the volume and directory to which the file belongs.

• Volume: A volume is a secondary storage device, such as a
diskette, hard disk platter, or a bubble memory that you have
formatted to accept files and directories. Before you can use a
new volume, that volume must be formatted by using the Human
Interface FORMAT command (see the FORMAT command description in
Chapter 3).

1-6

SYSTEM OVERVIEW

• Directory: A directory is used to catalog (that is, to logically
group and locate) files and other directories. You do not
directly place information in directories as you do in a file.
Rather, the Operating System maintains the directory information,
adding, deleting, or changing directory entries as you add,
delete, or rename files that are cataloged in the directory.
Like files, directories are identified by pathnames. Files and
directories contained within a particular directory must be on
the same volume as the directory.

• Pathname: Normally, both system calls and commands identify a
file or directory with a pathname. Pathnames can be viewed as
the exact name of a file or directory. A pathname describes one
path through the directory tree, so that it specifies not only
the name of a file or directory, but also the particular
directories and device to which it belongs.

Referring again to Figure 1-4, the name "BILL" is not exact,
because there are two directories named Bill. But the pathname
DEPT1/BILL is valid because it is unique. (Slash (/) characters
separate the elements of a pathname.) The pathname
DEPT1/TOM/TEST-QBJECT is a valid identifier for a file.

• Logical Name: Logical names are used to identify devices, and
are delimited by colons (:); for example, :LP:. You assign
logical names to physical devices with the ATTACHDEVICE command
(see Chapter 3). Logical names that the iRMX 86 PC Operating
System has already assigned to devices are described in the next
section.

The reason logical names are used to identify devices is so that
the same name can be used for a device even if the device is
changed. For example, the iRMX 86 PC System is delivered on a
single-sided, double-density diskette, and it is assumed that at
the first two drives on your system have this characteristic.
But it is possible to add one or two more drives, or to use the
same drives with other physical characteristics (if you do the
latter, you will first have to create a System Diskette in the
new format). In this case you attach each drive (using the
ATTACHDEVICE command) with a physical name appropriate to the
characteristics of the drive. These name are listed in Chapter
5, PREPARING YOUR HARDWARE.

DEVICE LOGICAL NAMES

The logical names for devices that are used with the iRMX 86 PC Operating
System are

:CI: and
:CO:

"Console Input" and "Console Output". Logical devices
that establish the source of commands and the command
destination, respectively. Typically, :CI: is the
terminal keyboard and :CO: is the terminal screen.

1-7

:LP:

:BB:

:AFDO:
:AFDl:

SYSTEM OVERVIEW

"Line Printer". This is the logici'll name for the line
printer.

"Byte-Bucket". This is not an actual physical device.
Anything written to :BB: di$i'lpp~ars, and a read from
:BB: returns an EOF (end-of-file).

Logical names for the iSBC 208 flexible disk drives 0
and 1.

FILE OPERATIONS FROM A TERMINAL

You manipulate iRMX 86 files and directories interactively with programs
run from a terminal; the programs are invoked as single word commands
followed by parameters. The iRMX 86 Operating System provides programs
to perform operations that are usually necessary in a development
system. These include:

• COPY, which copies files

• DIR, which displays the contents of a particular directory

• RENAME, which gives a new name to a file or directory

• CREATEDIR, which creates a new file directory

• SUBMIT, which automatically executes other commands contained in
a file

Chapter 2 describes how to invoke commands and shows examples of some
commands. Chapter 3 describes all of the commands.

FILE OPERATIONS FROM PROGRAMS

Programs must be able to manipulate files. An assembler, for example,
must open and read source files, and it must create and write object
files. Programs that you write will read, write, delete, and otherwise
deal with files. Your programs perform these operations by means of UDI
system calls. In addition to file operations, other Operating System
services are available with UDr system calls. Chapter 4 contains the
information you need to use UDI system calls, including individual
descriptions of each call that is provided with the iRMX 86 PC Operating
System. The chapter ends with a listing of a program that uses many of
the UDI system calls.

1-8

SYSTEM OVERVIEW

FILES AND DIRECTORIES SUPPLIED WITH THE iRMX 86 PC OPERATING SYSTEM

The iRMX 86 PC Package contains two diskettes, a System Diskette, and a
Library Diskette. The identifying labels on the outside of each are
specified in the Preface.

SYSTEM DISKETTE

Figure 1-5 shows the file structure of the iID1X 86 PC System Diskette as
it is delivered from Intel. The elements of this file structure are
explained below.

$

WORK SYSTEM

RMX86

UOI

URXSML. URXCOM. URXLRG.
LIB LIB LIB

UOI.
EXT

PROG

(other)

D DIRECTORY

D. FILE

Figure 1-5. iRMXm 86 PC File and Directory Structure

1-9

SYSTEM OVERVIEW

Default Directory ($)

The uppermost (root) directory on Drive 0 is the default directory. If
you do not specify a directory, the system will assume you are referring
to this one. The root directory of a volume contains all other
directories that are on the volume.

System Directory (SYSTEM)

This directory contains the following directories and files:

• iRMX 86 COMMAND PROGRAMS. When you type an iRMX 86 Command at a
terminal, one of the programs in this directory is loaded and
run. For example, the command "COPY" runs the program of the
same name. Only a few representative command files are shown in
Figure 2-4. There are 17 commands delivered with the system.

• OPERATING SYSTEM. The file RMX86 contains the iR.MX86 PC
Operating System; this is the file that is read in by the
Bootstrap Loader (see BOOTSTRAP LOADING in a later section).

• UDI LIBRARIES. The directory UDI contains three library files
that allow programs to use the UDI system calls. When you use a
language processor like the PL/M-86 compiler to write a program,
you link the resultant object modules to one of these libraries.
This is explained more fully in Chapter 4.

Program Directory (PROG)

You can use this directory for programs that you write, and you can
create other directories within this one to provide a logical grouping of
your files.

The PROG directory has one special characteristic. When you type a
single-word command at a terminal, the iRMX 86 Operating System will
first look for the program file with that name in the default directory,
then in the PROG directory, and finally in the SYSTEM directory. Two
effects of this are:

1. Programs in the PROG directory will be executed as commands when
you simply type the single-word file name. For example, if you
have a program file PROG/UPPER, you can run the program by simply
typing the command UPPER.

2. If you have a program named, for example, "COpY" in the PROG
directory, when you type "COpY" the system runs your program
rather than the COpy program supplied by Intel.

If a program file is contained in a directory other than one of these
three ($, PROG, or SYSTEM), you can still run the program by typing its
complete pathname.

1-10

SYSTEM OVERVIEW

Work Directory (WORK)

Compilers, interpreters, editors, linkers, and other development
utilities need to create temporary files while they are running. This
directory is specifically provided for that use.

LIBRARY DISKETTE

Besides the System Diskette, you receive another diskette with the
iRMX 86 PC product, labelled "iRMX 86 Interface Libraries." This
diskette contains:

• Libraries that you need if you use iRMX 86 System Calls not
described in Chapter 4 (these calls are listed in Appendix B).

• Files of symbolic names for exception codes (listed in Appendix
A).

• Files of external declarations associated with each layer of the
Operating System (the layers are briefly described in Appendix B).

The Library Diskette is not required for normal program development. If
you use these files, you will probably need one or more of the manuals
listed in Chapter 6.

PROGRAM LOADING

Bringing programs into memory (loading) from the disk is one of the basic
services provided by the iRMX 86 Operating System; you load and run
language processors, utilities, and the programs you write. Typically,
you load programs by simply typing the single-word name of a program file
at a terminal, sometimes followed by other information needed by the
program when it begins executing.

BOOTSTRAP LOADING

To get the iRMX 86 PC Operating System into the computer from disk, the
system is bootstrap loaded. This process is described in Chapter 2. The
Bootstrap Loader is in the set of EPROM devices delivered with the
iRMX 86 PC Package.

1-11

SYSTEM OVERVIEW

MONITOR

Your iRMX 86 PC System is delivered with a Monitor. Like the Bootstrap
Loader, the Monitor is in EPROM devices you receive with the iRMX 86 PC
Package. It can be used to examine memory, set breakpoints, and (with a
hardware package available separately) to communicate between your system
and an Intellec Development System.

Monitor commands are described in Appendix C.

SELECTIVE ERROR PROCESSING

When a program issues an iRMX 86 system call, the results may be other
than what the programmer expected. For example, a program might request
memory that is not available, or it might use an invalid parameter. The
iRMX 86 PC Operating System contains a default exception handler that
will terminate a program if such a condition occurs; the default
exception handler will identify the problem by displaying on the console
terminal one of the exception codes listed in Appendix A.

If you want to provide your own exception handler, rather than using the
default exception handler, the Operating System provides a mechanism for
transferring control to your exception handler. The system calls used to
write an exception handler are described in Chapter 4, UnI SYSTEM CALLS.

SUMMARY

The iRMX 86 Operating System is a flexible operating system that is used
for many types of systems. This chapter has discussed only those
features that directly relate to using the Configured iRMX 86 Operating
System for program development. For more complete discussions of iR}cr 86
Operating System features, refer to the INTRODUCTION TO THE iRMX 86
OPERATING SYSTEM.

1-12

CHAPTER 2. USING THE SYSTEM

You communicate with the iRMX 86 Operating System by using commands
entered at a terminal keyboard (Figure 2-1); the Operating System
communicates with you by displaying messages on the terminal screen.
This chapter describes the process of using the Operating System, showing
some examples of iRMX 86 commands and system responses. Chapter 3
describes all of the commands that Intel provides with the iRMX 86 PC
Operating System.

Figure 2-1. Using The iRMX- 86 Operating System From A Terminal

2-1

USING THE SYSTEM

The chapter is organized as follows:

• STARTING mE SYSTEM. A section showing how to start (bootstrap
load) the system.

• INVOKING iRMX 86 COMMANDS. General information including
definition of terms used to describe individual commands.

• EXAMPLE COMMANDS. A section showing examples of iRMX 86
commands. most of which manipulate files.

STARTING THE SYSTEM

Once you have prepared your iAPX 86,88-based hardware, as described in
Chapter 5, you can bootstrap load ("boot") the Operating System.
Bootstrap loading is the process of reading the iRMX 86 Operating System
in from a disk and giving it control of the processor. Here is how to
boot the system.

1. Turn on power to the disk drive, processor, and terminal.

2 Insert a copy of the System Diskette into Disk Drive O. (You
should make a copy of the diskette that you receive from Intel,
and use the copy rather than the original diskette. How to do so
is explained at the end of this chapter.)

3. When the terminal shows a series of .. *.. (asterisk) characters,
respond by typing an upper-case "U". (The system continues
sending asterisks to the screen until you type a "U." The "u" is
not echoed on the screen.)

4. The terminal shows a message identifying the Monitor, followed on
the next line by a prompt of (period):

iAPX 86, 88 Monitor, Vl.0

5. You respond by typing the single character "B" (upper- or
lower-case) followed by a carriage return (CR).

6. Now the Bootstrap Loader reads the Operating System into memory
from your diskette, and passes control to it. (This takes about
one-half minute.)

7. The Operating System displays a message identifying itself,
followed on the next line by a prompt of "-" (hyphen):

iRMX 86 PC Vl.0: user = WORLD

At this point the system is loaded and you can enter any iRMX 86 command.

2-2

USING THE SYSTEM

If your system has a button connected to the RESET line on the iSBC 86
board, you can use it to re-boot: after hitting RESET the system will
begin displaying astericks (*) on the screen, and you continue from step
3 above.

The command DEBUG can be used to get to the Monitor, and from the Monitor
you can also re-boot the system.. See the descrption of DEBUG in Chapter
3, and the Monitor commands described in Appendix C.

CAUTION

To prevent destroying data on your
diskettes while re-booting, wait at
least 2 seconds before you RESET the
computer.

INVOKING iRMX 86 COMMANDS

This section describes procedures and defines terms that apply to iRMX 86
commands. Examples of actual commands are shown in the next section, and
additional information about individual commands is in Chapter 3.

When you enter a command at the console keyboard, the Operating System
loads the associated program file and executes the program. After the
command has been executed, the Operating System displays a status message
that confirms the effect of the command.

The Operating System displays error messages if you attempt an invalid
operation (e.g., trying to access a file that doesn't exist) or if some
error is encountered while the command is being executed (such as a
hardware failure). These error messages are defined as part of
individual command descriptions in Chapter 3.

2-3

USING THE SYSTEM

An example command is:

-COpy first, second TO third, fourth QUERY

A carri~ge return terminates each command, and a LINE-FEED key has the
same effect. From here on we will assume a carriage return is the
terminator. The general structure of a command is shown next.

command-name inpath-list preposition outpath-list parameters

where:

command-name

inpath-list

preposition

outpath-list

parameters

Name of the program file to be executed. After the
command is entered, the Operating System loads the
program file into memory from the diskette and
executes the command. In the example, the command
name is:

COpy

One or more pathnames of files to be used as input
during command execution. Multiple pathnames in an
input file list must be separated by commas. You can
type spaces (blanks) between pathnames. In the
example, the inpath-list is:

first, second

A word that tells the executing command how you want
the output handled. The four prepositions used in
iRMX 86 commands are TO, OVER, AFTER, and AS. In the
example the preposition is:

TO

One or more pathnames for the files that receive the
output or are changed in some way. As with the
inpath-list, multiple files names must be separated by
commas, and embedded spaces are optional. In the
example, the outpath-list is:

second, third

Most commands have have a default form, but also offer
one or more optional ways that the system can execute
the command. You specify options with one or more
parameters at the end of a command. Individual
descriptions of commands in Chapter 3 define the
effect of parameters. In the previous example, the
parameter is:

QUERY

2-4

USING THE SYSTEM

You can also continue a command beyond one line, and you can add comments
at the end of a command:

continuation
mark

comment

If you need to type a command that is so long it
cannot be typed on one line, you can continue it by
typing an ampersand (&) character and carriage
return. The system prompts with two asterisks (**) on
the next line, and you can then continue the command.

You can continue the command for as many lines as are
necessary. A carriage return key without an ampersand
ends the command line. A command line can have a up
to 255 characters, including punctuation, embedded
blanks, continuation mark, comments, and carriage
return.

A semicolon (;) character causes the system to ignore
anything typed between the semicolon and the
succeeding carriage return. You can also type
comments between a continuation mark (&) and the
carriage return. A common use of comments is in
SUBMIT files (see the SUBMIT command in Chapter 3).

You can type all elements of a command in uppercase characters, lowercase
characters, or a mix of both. For example, you can create a new file
with the pathname ''MY/TEST'' and then specify the file as "my/test" in
subsequent file accesses.

PREPOSITION PARAMETERS

Most file management commands recognize three prepositions: TO, OVER, and
AFTER. (The preposition AS is used in the ATTACHDEVICE command and is
explained with that command in Chapter 3.) The prepositions have the
following meaning:

TO Causes the command to send the output to new files;
that is, to files that do not already exist in the·
specified directory. If the output file does exist,
the command will display the following message on the
console screen:

pathname, already exists, DELETE?

In general, you can reply "Y" (for yes) if you accept
destroying the output file contents. Usually any
other character means "no", but there are some
exceptions to this. Check individual command
de&criptions in Chapter 3.

2-5

OVER.

AFTER

TERMINAL CONTROLS

USING THE SYSTEM

Causes the command to replace the contents of files
specified in the outpath-list with the contents of the
input files, destroying the contents of the output
files. For example:

-COpy samp1,samp2 OVER out1,out2

copies the data from file samp1 over the present
contents of file out1, and copies the data of samp2
over the contents of file out2. If either out1 or
out2 did not exist, the file would be created.
Neither input file changes.

Causes a command to append the contents of one or more
files to the end of new or existing files. For
example:

-COpy in1,in2 AFTER destl,dest2

causes the contents of file in1 to be written to the
end of the contents of destl, and the contents of in2
to be added to the end of dest2. (Neither in1 or in2
change in any way.)

Certain keys at the terminal have special effects on the Operating
System. These are listed and described here.

CTRL/c

CTRL/o

NOTE

In this manual, CONTROL key functions
are designated as follows:

CTRL/character

where CTRL specifies the CONTROL key,
and character is an alphabetic
character key. Depress the CTRL key
while striking the letter key.

Tells the iRMX 86 Operating System to abort the currently
executing program.

Suppresses terminal output, or restores output to normal
mode if output is already suppressed. Typically this is
used to ignore ("throwaway") data being sent to a
terminal.

2-6

CTRL/s
CTRL/q

CTRL/r

CTRL/x

CTRL/z

RUBOUT

USING THE SYSTEM

Suspends and resumes output to the terminal. Unlike
using CTRL/o, output is not ignored; the system stops
sending output to the terminal until you press CTRL/q.
When you press CTRL/q, you see the remaining output.

Repeats the current line so that you can modify it before
the command is executed. If the line is empty, the
system echoes the previous command so that you can
re-execute it.

This is used to delete a currently displayed command line
and allows you to start the command again. The Operating
System will echo a pound sign (#) at the point where you
strike CTRL/x, and then move the screen cursor to the
beginning of the next line.

This an End-of-File character for the Console Input
device; if you use it, it should be entered as the first
character in a new line.

Permits simple editing on the current line. Each time
the RUBOUT key is pressed, the last displayed character
is deleted with the cursor moving backward one space.
You continue pressing the RUB OUT key until you reach the
character to be corrected.

In Chapter 4, the description of DQ$SPECIAL includes a definition of
"transparent mode" input from the :CI: device, in which characters
described here do not have their normal effect.

UNEQUAL NUMBER OF FILES IN INPUT AND OUTPUT LISTS

Several iRMX 86 commands require that you specify a preposition parameter
in the command. That is, you must enter a TO, OVER, or AFTER preposition
as one of the command parameters. Usually you specify a one-for-one match
between the number of input files and number of output files. (This is a
requirement for the command RENAME.) But the following sections explain
what happens when the number of files specified in the inpath-list does not
equal the number of files in the outpath-list.

More Input Files Than Output Files

In a command (other than RENAME), if you specify more pathnames in the
inpath-list than in the outpath-list, the remaining input files are
automatically appended to the end of the last specified output file,
regardless of the preposition you specified. For instance, assume that in
a COpy command you specify the following file names in the input and output
parameters:

COpy a,b,c TO d,e

2-7

USING THE SYSTEM

When the Operating System executes the command, file "a" is copied to. file
"d", file "b" is copied to "e", and file "c" is appended to the end of file
"e" as follows:

a TO d
b TO e
c AFTER e

More Output Files than Input Files

If you specify more file names in the outpath-list than in the inpath-list,
the excess output file names are ignored, again regardless of the
preposition you specify. For example, assume that in a command you specify
the following file names in the input and output parameters:

COpy a,b TO d,e,f,g

When the command is executed, file "a" is be matched with file "d", file
"b" copied to file "eu, and files "f" and "g" are ignored,. as follows:

a TO d
b TO e

Safeguards

A mismatch between the number of input files and output files is probably
accidental. The iRMX 86 Operating System attempts to execute commands
without destroying the integrity of your files. When the Operating System
encounters a command that is subject to ambiguous interpretation or could
result in the accidental destruction of an existing file, the command
displays a message and prompts you to confirm or cancel the operation.

EXAMPLE COMMANDS

This section shows some examples of iRMX 86 commands. These examples are
deliberately few and simple. The examples demonstrate some representative
commands so that you can see how to invoke a command and how to specify
command parameters. Once you are familiar with the process of invoking
commands with some typical pathnames and parameters, refer to the complete
descriptions of commands in Chapter 3 (many of which also include examples).

HOW TO SET THE SYSTEM DATE AND TIME

Two of the easiest commands to use are DATE and TIME. They are shown first
because it is good practice to set the system date and time immediately
after the system has been bootstrap loaded. Figure 2-2 shows how to use
both commands.

2-8

USING THE SYSTEM

In Figure 2-2, you see the message displayed after the Operating System has
been booted, followed by a hyphen prompt (-). This is exactly where we
left the system in the first section of this chapter, STARTING THE SYSTEM.
The DATE command typed in response to the first prompt displays an
arbitrary date that indicates it has not been set since the system was
booted.

NOTE

In examples of terminal dialogue,
commands that you type are shown in
THIS TYPEFACE.

Messages displayed by the system are
shown in THIS TYPEFACE.

The first examples show a full screen,
but later illustrations show only the
lower portion of the screen.
Illustrations are not proportional to
an actual video screen.

iRMX 86 PC Vl.O
-DATE
DATE: 1 JAN 78
-DATE 1UEB 82
DATE: 14 FEB 82
-DATE

-DATE: 14 FEB 82
-TIME
TIME: 00:00:00
- TIME 9:12:05
TIME: 09: 12 :05
-TIME
TIME 09:12:11

user = WORLD

Figure 2-2. DATE And TIME Commands

2-9

USING THE SYSTEM

The fourth line in the Figure 2-2 shows the date being set to Valentines
Day of 1982. The system then responds by verifying the new date. The
next line illustrates that any time DATE is typed without specifying a
date, the current date is displayed.

The next lines show the same sequence for the TIME command. The system
first responds by displaying the system time as

00:00:00

Next the time is set to 12 minutes and 5 seconds after 9 AM, and the
system verifies it on the next line. Finally, the TIME command re-typed
shows the updated time.

If you don't set the system time or date, the iRMX 86 Operating System
will not maintain the system clock. Two results of this are:

1. Whenever you interogate the system to determine the time-of-day
-- whether by commands as shown here, or with a programmed system
call as shown in Chapter 4 -- the time will remain fixed at
zero-hour:zero-minute:zero-second.

2. When you display the contents of a directory, the line showing
the date and time will not be shown. (Displaying directories is
the subject of the next few examples.)

HOW TO DISPLAY THE CONTENTS OF A DIRECTORY

Frequently you need to see what files -- and other directories -- are
catalogued in a particular directory. This is the function of the DIR
command, and a few examples are shown here.

Using the DIR Command with no Parameters

Figure 2-3 shows the effect of typing the DIR command with no pathname or
parameters. The system displays:

o The current date and time, followed on the next line by

o A message identifying the directory, followed on the next line by

o the name of each file and directory.

2-10

USING THE SYSTEM

-OIR
14 FEB 82 08:02:31
DIRECTORY OF $ ON VOLUME 144446
SYSTEM PROG WORK

Figure 2-3. DIRt Default Format

NOTE

These examples of the DIR command
assume that you are using an exact copy
of the iRMX 86 PC System Diskette, that
it is in Drive 0, and that no files or
directories have been added or
deleted. (Figure 1-5 shows the
contents of this diskette.)

If you do not specify any other parameters in a DIR command, only the
names of the directory entries are displayed. In the example in Figure
2-3, you cannot tell the size of each entry, or whether it is a directory
or a file. By specifying an optional display format with a DIR command,
you can see these and other characteristics of the directory entries.
DIR offers you a variety of display options, one of which is shown in the
next example.

The VOLUME number 144446 is the name by which the system knows the
particular diskette on which the directory is located. This name or
number may vary; it is established when a disk is initialized (see the
FORMAT command in Chapter 3).

2-11

USING THE SYSTEM

If you do not specify a device, the system will assume that you are using
Disk Drive 0 (zero). This is known as the default system dev~ce. The
uppermost (root) directory on Drive 0 is the default directory ($); this
is true regardless .of what diskette you have in that drive. If a file or
directory is on drive 0, you do not usually have to specify the drive (an
exception is shown later). If a file or directory is in the default
directory you don't have to specify a directory name.

Directory Displayed in an Alternate Format

Figure 2-3 again shows the contents of the default directory, but with
the parameters SHORT and ONE. With optional parameters, you can control
the physical format (ONE specifies that only one entry be on a line) and
the type of information displayed (SHORT displays more infomation than in
the previous example).

-OIR :AFDO: SHORT ONE
14 FEB 82 08:04:52
DIRECTORY OF :AFDO:

NAME AT
SYSTEM DR
PROG DR
WORK DR

3 FILES

ON VOLUME 144446
ACC BLKS LENGTH
DLAC 2 304
DLAC 0 0
DLAC 0 0

2 BLKS 304 BYTES

Figure 2-4. SHORT,ONE-Column Directory Display

Figure 2-4 shows, in addition to the names of each entry:

• Whether the entry is a file or directory (AT column, where DR
means directory)

• The access rights (ACC column)

• The number of blocks and number of bytes (BLKS and LENGTH)

• A summary of everything in the directory

2-12

USING THE SYSTEM

One further comment about Figure 2-4; the drive (:AFDO:) is specified
even though it is the default system device. This is because if the
command had been typed without the drive number -- DIR SHORT ONE -- the
Operating System would have looked for a directory named SHORT. Youmay
wonder what happens when you type a command that the Operating System
cannot interpret correctly. In this case, the system would not have
found a directory with the name SHORT, and would have displayed the error
message:

SHORT, file does not exist

In this case, if there had been a directory named SHORT within the
default directory, the DIR command would have displayed its contents.

Directory Listing of SYSTEM Directory

Figure 2-5 shows the directory named SYSTEM, using the default listing
format (no parameters).

-DiRSYSTEM
14 FEB 82 08:05:01
DIRECTORY OF SYSTEM
CREATEDIR BACKUP
DISKVERIFY DIR
ATTACHDEVICE DOWNCOPY
DETACHDEVICE UPCOPY

ON VOLUME 144446
COPY RMX86
DELETE RENA~E
FORMAT TIME
UDI DEBUG

SUBmT
RESTORE
DATE

Figure 2-5. Display of System Directory

2-13

USING THE SYSTEM

Directory Listing of SYSTEM/UDI

In Figure 2-5, note the entry HUDI". This is the directory containing
the UDI library files. The next example, Figure 2-6, displays this
directory in the default style (no parameters specified) and then in a
SHORT, ONE-column style.

-DIR syslem/udi
14 FEB 82 08:09:12
DIRECTORY OF system/udi ON VOLUME 144446
UDI.EXT URXCOM.LIB URXSr1L.LlB URXLRG.LIB

- DIR system/udi SHORT ONE
14 FEB 82 08:09:32
DIRECTORY OF system/udi

NAME AT
UDI.EXT
URXCOM.LIB
URXS~1L.LIB
URXLRG.LlB

4 FILES

Figure 2-6.

ON VOLUME 144446
ACC BLKS LENGTH
[)RAU 14 3426
IlRAU 140 35682
[)RAU 142 36118
DRAU 141 35888

437 BLKS

SYSTEM/UDI Directory

Note that each entry is a file, as indicated by the blank entry under AT.
Also, the name of the directory was typed in lower case; the effect was
the same as if it had been typed in upper case.

HOW TO COPY FILES

The next few examples show how the COPY command is used to duplicate
files. For these examples, assume that a file named FIRST exists on
diskette :AFDO: in the default directory.

2-14

USING THE SYSTEM

Creating a New Copy of a File

Figure 2-7 shows how to create a single copy of a file in the same
directory.

-COpy FIRST TO SECOND
FIRST copied TO SECOND

Figure 2-7. Copying a File Into the Same Directory

Copying Multiple Files With One Command

It is possible to copy more than one file with a single copy command.
Figure 2-8 shows how to create copies of the files FIRST and SECOND.

-COPY FIRST. SECOND TO THIRD. FOURTH
FIRST copied TO THIRD
SECOND copied TO FOURTH

Figure 2-8. Copying Multiple Files With One Command

2-15

USING THE SYSTEM

Copying One File OVER Another

You can copy the contents of one file into another. The preposition OVER
tells the system to destroy the current contents of the file specified in
the outpath-list and copy the contents of the file specified in the
inpath-list into the file. This is shown in Figure 2-9.

-COPY FIRST OVER SECOND
FIRST copied OVER SECOND

Figure 2-9. Copying One File OVER Another

Using the OVER preposition explicitly deletes the contents of a file.
Using the preposition TO can have the same effect, but with one
difference. If you use the TO preposition to copy a file into a file
that already exists, the system displays a message asking if you actually
want to destroy the contents of the existing file (as shown in Figure
2-10).

-COpy FIRST TO SECOND
SECOND, already exists, DELETE? N

Figure 2-10. Copying a File TO an Existing File

2-16

USING THE SYSTEM

In the example in Figure 2-10, the reply to the query "DELETE?" is "N",
which tells the system not to destroy the file. The operation was
cancelled. If the reply to "DELETE?" had been "Y", the contents of
SECOND would have been destroyed and the contents of FIRST copied into
the new file SECOND.

CREATING A DIRECTORY

The CREATEDIR creates new directories. For example, you can create a
directory within your default directory ($) and then copy files into that
directory. This is shown in Figure 2-11.

- CREATEDIR NEW
NEW, di rectorY created
- COpy FIRST TO NEW/FIRST
FIRST copied TO I~EW/FIRST

Figure 2-11. Creating A New Directory

DISPLAYING THE CONTENTS OF A FILE AT THE TERMINAL

You can view the contents of a file at the console terminal (:CO:) using
the COpy command. The file should contain string data (like the output
of an editor) rather than binary data (like the object file from a
compiler). Displaying a binary file will produce a meaningless display,
although it will not affect the file.

The Operating System assumes "TO :CO:" if you do not specify either a
preposition or outpath-list with a COpy command. Figure 2-12 shows the
command to display the contents of the file SECOND.

2-17

USING THE SYSTEM

- COPY SECOND
This string is in an example file
that illustrates the use of
iRt1X 86 COllll1ands.
The file contains four lines including this one.
SECOND copied TO :CO:

Figure 2-12. Displaying Contents of a File on a Terminal

GIVING A FILE A NEW NAME

The Operating System provides the RENAME command to rename a file. You
can use the COpy and DELETE commands to accomplish the same thing.
However, the COpy command actually moves the contents of the file being
copied and leaves the original file intact. The RENAME command leaves
the file intact, but changes the pathname. Figure 2-13 shows the RENAME
command used to rename THIRD.

-RENAME THIRD TO FIFTH
THIRD renamed TO FIFTH

Figure 2-13. Renaming a File

Both files and directories can be renamed. If a directory is renamed,
any files or directories cataloged under that directory will
automatically have new pathnames. You should note this if programs you
have written use files in the directory.

The OVER preposition is valid in a RENAME command, and its effect is
explained in Chapter 3.

2-18

USING THE SYSTEM

HOW TO MAKE COPIES OF YOUR SYSTEM DISKETTE

You should make a copy of the System Diskette that you received with the
iRMX 86 PC package. Listed below are the steps necessary to do so. We
assume that you have only two disk drives on you system, and that you
have read about the BACKUP, RESTORE, and FORMAT commands in Chapter 3.

To make a new Sytem Diskette:

1. Format two new diskettes, one as a PHYSICAL volume, and one as a
NAMED volume. (BACKUP writes to a PHYSICAL-formatted diskette,
and RESTORE copies from this diskette to a NAMED volume.) Both
diskettes can be formatted in Drive 1.

2. Using BACKUP, write the System Diskette contents onto the
diskette that you formatted as a PHYSICAL volume. One of the
parameters to BACKUP is pathname; you should specify only the
volume (:AFDO:).

3. Run RESTORE. When the RESTORE program prompts for the volume to
be mounted, remove the system diskette from Drive 0, insert the
volume that you formatted as a NAMED volume into Drive 0, and
type Y. When invoking RESTORE, again specify :AFDO: as the
pathname.

4. When RESTORE completes, you should be able to re-boot from the
new diskette. Save both the diskette you received from Intel and
the diskette which BACKUP wrote.

NOTE

When formatting your diskette, specify
an interleave factor of seven (7)
rather than the FORMAT command default
value of five (5). The reason is that
an interleave factor of five will
result in a much slower boostrap
process: nearly two minutes rather than
about one-half minute.

2-19

CHAPTER 3. iRMX"'86 COMMANDS

The commands described in this chapter are supplied by Intel. You can
use the commands to perform a number of highly convenient file management
functions. When you invoke a command,

1. You type the command name and parameters (e.g., "COpy FIRST TO
SECOND").

2. The the Operating System loads the the appropriate command file
(for example, SYSTEM/COPY) and executes the program.

3. The program executes the command the way that you specify in the
command line.

These commands are part of the iRMX 86 Human Interface (one layer in the
Operating System), so the Human Interface is mentioned occasionally in
descriptions of individual commands. The commands exist as program files
in the SYSTEM directory. When you type a command on the terminal, the
Operating System looks for the file having that name in the default
directory ($), then in the PROG directory,then in the SYSTEM directory.

These commands are presented in alphabetical sequence without regard for
functional organization. A functional grouping of the commands is given
in the Human Interface Command Dictionary in Table 3-1 for fast reference.

COMMAND SYNTAX SCHEMATICS

The syntax for each command described in this chapter is presented by
means of a "railroad track" schematic, with syntactic elements scattered
along the track. Your entrance to any given schematic is always from
left to right, beginning with some command name entry.

Elements shown in uppercase characters must be typed in a command line
exactly as shown in the command schematics except that you can type them
either in uppercase or lowercase characters. Elements shown in lowercase
characters are generic terms, which means that you supply the specific
item, such as the pathname for a file. The example that follows shows
the possible paths through a railroad track schematic. Notice that the
main track goes through required elements in a given command.

"Railroad sidings" go through optional parameter elements. In some
cases, you have a choice of going through one of several possible sidings
before returning to the main track. If the main track itself divides
into two separate tra~ks, you select one parameter or the other but not
both.

3-1

iRMX- 86 COMMANDS

(START)

In this example:

• A is a required element.

• Either B or C is required but not both.

• D, E, or F are all optional but only one can be selected.

• G is required.

You can abbreviate command parameters instead of typing the entire
parameter. To abbreviate a parameter, type as many characters as are
required to make the parameter name unique. For example, the
ATTACHDEVICE command has two parameters, NAMED, and PHYSICAL; you can
abbreviate NAMED to N and PHYSICAL to P.

You cannot abbreviate either the command name or the prepositions (TO,
OVER, AFTER, AS).

3-2

Command

ATTACHDEVICE

BACKUP

COpy

CREATEDIR

DELETE

DETACHDEVICE

DIR

DISKVERIFY

DOWNCOPY

FORMAT

RENAME

RESTORE

UP COpy

iRMX- 86 COMMANDS

Table 3-1. iRMX- 86 Command Dictionary

Synopsis

File and Volume Management Commands

Attaches a new physical device to the system
and adds its logical name to the root job's

Page

object directory. 3-5

Copies named files to a backup volume. 3-8

Creates new data files, or copies files to other
pathnames. 3-15

Creates one or more new directories. 3-18

Deletes data files and empty directories from a
volume on secondary storage. 3-22

Removes a physical device from system use and
deletes its logical name from the root job's
object directory. 3-24

Lists a directory's filenames (and optionally,
file attributes). 3-25

Verifies the data structures of named and
physical volumes.

Copies files and directories from an iRMX 86
volume mounted on a secondary storage device to
an ISIS-II secondary storage device.

Formats an iRMX 86 volume.

Renames files or directories.

Copies files from a backup volume to a named
volume.

Copies files and directories from an ISIS-II
secondary storage device to an iRMX 86 volume
mounted on a secondary storage device.

3-3

3-32

3-37

3-40

3-45

3-48

3-59

iRMXlII 86 COMMANDS

Table 3-1. iRMXlII 86 Command Dictionary (continued)

Command Synopsis Page

General Utility Commands

DATE Sets or resets the system date, or displays the
current date. 3-20

DEBUG Transfers control to the iSBC 957A/B package to
debug an iRMX 86 application program. 3-21

SUBMIT Reads, loads, and executes a string of commands
from secondary storage instead of the keyboard. 3-55

TIME Sets or resets the system clock, or displays the
current system time. 3-58

3-4

ATTACHDE

iRMX- 86 COMMANDS

ATTACHDEVICE

This command makes a physical device known to the system by a logical
name. After the device is attached, it is accessed by commands and system
calls with the logical name you specify.

The format of the command is as follows:

INPUT PARAMETERS

physical
name

AS

: logical. name:

NAMED

PHYSICAL

Physical name of the device to be attached to the
system. These physical nameS were defined for
your Operating System when the system was
configured.

Preposition; required for the command

This is the name that you assign to the device; it
must be delimited with colons (:), and can be a
maximum of 12 characters long including colons.
After the device is attached with the ATTACHDEVICE
command, any command or program code that accesses
the device must specify the logical name.

Specifies that the volume mounted on the device is
already formatted for NAMED files. Examples of
named-file volumes are diskettes or hard disk
platters. If neither NAMED nor PHYSICAL are
specified, NAMED is the default. See the FORMAT
command in this chapter for a further description
of NAMED files.

Specifies that the volume mounted on the logical
device is already formatted as a single, large
file. An example is a line printer. See the
FORMAT command in this chapter for a further
description of PHYSICAL volumes.

3-5

ATTACHDEVICE

iRMX'" 86 COMMANDS

DESCRIPTION

A physical device must be attached to the system before it can be
accessed; the device will be know by the logical name you assign. When
you boot your iRMX 86 PC Operating System, the Operating System
automatically attaches certain devices. These devices and logical names
are listed in Chapter 1.

The most frequent use of the ATTACHDEVICE command is to attach a new
device, such as a new disk drive or a line printer. For example, if you
add a third disk drive to your system, you could attach it with the
command

ATTACHDEVICE AFD2 AS :AFD2:

The logical name :AFDl: could just as well be :DISK3:, or any other name
you wish to assign. The physical name AFD2 must be a name the Operating
System has defined. The physical names for iRMX 86 PC disk drives are
listed in a table in Chapter 5, PREPARING YOUR HARDWARE. The iRMX 86 PC
Operating System has already assigned when the system is booted are
listed in Chapter 1. (See the DETACHDEVICE command in this chapter for a
description of how to detach a device from the system.)

When the attachment is completed, the ATTACHDEVICE command displays the
following message:

physical name, attached as logical name

where "physical name" and "logical name" will be as specified in the
ATTACHDEVICE command.

ERROR MESSAGES

logical name, device already attached

The specified physical device is already attached. ATTACHDEVICE does not
attach the device.

device name, device does not exist

The physical device you specified is not a name the Operating System
recognizes. ATTACHDEVICE does not attach the device.

logical name, invalid logical name

The logical name specification is not enclosed with colons, contains
unmatched colons, is longer than 12 characters, or contains invalid
characters. ATTACHDEVlCE does not attach the device.

3-6

iRMXM 86 COMMANDS

logical name, logical name already exists

The specified logical name is already used to attach a device.
ATTACHDEVICE does not attach the device.

physical device, may not be attached as a (NAMED or PHYSICAL)

The NAMED or PHYSICAL specification in the command is not allowed for
that physical device; for example, defining a line printer as a NAMED
volume. ATTACHDEVICE does not attach the device.

008A : E$CONTROL, too many device names

You tried to attach more than one physical device with a single
ATTACHDEVICE command. ATTACHDEVICE does not attach a device.

logical name, volume is not a named volume

ATfACHDEVICE

ATTACHDEVICE attempted to attach a device as a named device and
discovered a physical volume on the device. However, ATTACHDEVICE does
attach the device.

logical name, volume not formatted

ATTACHDEVICE attempted to attach a device as a named device and
encountered an I/O error while searching for the volume's root
directory. However, ATTACHDEVICE does attach the device.

logical name, volume not mounted

The specified device does not contain a volume; i.e., the diskette is not
in the drive. However, ATTACHDEVICE does attach the device.

logical name, exception code

ATTACHDEVICE was unable to attach the specified device. This message
lists the iRMX 86 exception code encountered. iRMX 86 exception codes
are listed in Appendix A.

3-7

BACKUP

BACKUP

This command saves files in a named volume by copying them to a physical
volume which serves as a backup volume. Later, you can use the RESTORE
command (described later in this chapter) to retrieve these files and
copy them to named volumes.

The format of this command is as follows:

INPUT PARAMETERS

pathname

'dd mmm yy'

Pathname of a file on the source volume. BACKUP
saves files from the branch of the file tree that
begins with the specified file. If you specify
the logical name of the device only, BACKUP saves
files beginning with the root directory of the
volume.

Date parameter that BACKUP uses, in conjunction
with the time parameter, to determine which files
to save. BACKUP saves only those files that have
been modified since the specified date and time.
You must enclose the date parameter in single
quotes. The individual fields of this parameter
are:

dd Two-digit number that specifies the day of
the month.

mmm Three-character abbreviation for the
month, as follows:

JAN
FEB
MAR

APR
MAY
JUN

JUL
AUG
SEP

OCT
NOV
DEC

yy TWo-digit number that specifies the year.

If you omit this parameter but specify the time
parameter, the date defaults to the current
system date. If you omit both the date and time
parameters, the date defaults to 1 JAN 78.

3-8

INPUT PARAMETERS (continued)

hh:mm:ss

QUERY

OUTPUT PARAMETER

:backup device:

Time parameter that BACKUP uses, in conjunction
with the date parameter, to determine which files
to save. BACKUP saves only those files that have
been modified since the specified date and time.
The individual fields of this parameter are:

hh Hours specified as 0-24.

mm Minutes specified as 0-59.

ss Seconds specified as 0-59.

If you omit this parameter, the time defaults to
00:00:00.

Causes the Human Interface to prompt for
permission to save each file. The Human Interface
prompts with one of the following queries:

pathname, BACKUP data file?

or

pathname, BACKUP directory?

Enter one of the following responses to the query:

Entry

Y or y

E or e

R or r

Any other
character

Action

Save the file.

Exit from the BACKUP command.

Continue saving files without
further query.

If data file, do not save the
file; if directory file, do not
save the directory or any file in
that portion of the directory
tree. Query for the next file, if
any.

Logical name of the device to which BACKUP copies
the files.

3-9

BACKUP

BACKUP

DESCRIPTION

BACKUP is a utility which saves named files on backup volumes, such as
diskettes. BACKUP saves the following information for each file:

• File name

• Access list

• Extension data

• User ID of the file owner

• File granularity

• Contents of the file

You can copy this information back to a named file by using the RESTORE
utility, described later in this chapter.

Before a volume can be used as a backup volume, the volume must be
formatted. Although BACKUP will accept both physical and named volumes,
it is recommended that you supply freshly-formatted physical volumes or
old backup volumes for this purpose. BACKUP issues a message before
continuing if the backup volume you supply is anything other than a
freshly-formatted physical volume. When BACKUP copies files to the
backup volume, it overwrites any information that currently exists on the
volume.

In order for BACKUP save files from a named volume, you must have read
access to the files and to the directories that contain them.

You can limit the files which BACKUP processes in the following ways:

• If you specify a complete directory name instead of just the
device's logical name in the invocation line, BACKUP limits its
processing to the specified directory and all subdirectories.

• If you specify the date and time parameters, BACKUP processes
only those files modified since the specified time.

• If you specify the QUERY parameter, BACKUP asks permission before
saving each file. If you deny permission for BACKUP to save a
data file, BACKUP skips the file and continues with the next
file. If you deny permission for BACKUP to save a directory
file, BACKUP skips the directory and all files contained in the
directory or its subdirectories.

When you enter the BACKUP command, BACKUP displays the following sign-on
message:

iRMX 86 DISK BACKUP UTILITY, Vx.x

where Vx.x is the version number of the utility. It then prompts you for
a backup volume.

3-10

DESCRIPTION (continued)

Whenever BACKUP requires a new backup volume, it displays the following
message:

backup device, mount backup volume Hnn, enter Y to continue:

where backup device indicates the logical name of the backup device and
nn the number of the requested volume. (BACKUP in some cases displays
additional information to indicate problems with the current volume.) In
response to this message, place a volume in the backup device and enter
one of the following:

Entry

Y, y, R or r

E or e

Any other
character

Action

Continue the backup process.

Exit from the BACKUP command.

Invalid entry; reprompt for entry.

BACKUP continues prompting for a backup volume until you supply one that
it can access.

If the backup volume you supply is not a freshly-formatted physical
volume, but one that BACKUP can access (such as a named volume, a
previously-used backup volume, or a physical volume containing data),
BACKUP informs you of this with one of the following messages:

backup device, not a physical volume, enter Y to overwrite:

or

backup deVice, backup volume Hnn, date, enter Y to overwrite:

where backup device is the logical name of the backup device, nn is the
volume number of the backup volume, and date is the date on which the
previous backup was performed. In response to these messages, enter one
of the following:

Entry

Y, y, R, or r

E or e

Any other
character

Action

Use the volume as a backup volume, overwriting the
information currently stored on the volum~.

Exit from the BACKUP command.

Reprompt for another volume.

3-11

BACKUP

BACKUP

DESCRIPTION (continued)

As BACKUP saves each file in the source volume, it displays the following
message at the Human Interface console output device (:CO:):

pathname, SAVED

If your backup volume becomes full and you supply additional backup
volumes, you should write the numbers of the backup volumes on the volume
labels. Later, when you later restore files to a named volume with the
RESTORE utility, you must supply the backup volumes in order.

ERROR MESSAGES

backup device, backup volume linn, date, enter Y to overwrite:

The backup volume you supplied already contains backup information.
BACKUP lists the logical name of the backup device, the volume number, and
the date on which the original backup occurred. It overwrites this volume
if you enter Y, y, R, or r.

backup device, cannot attach volume
backup device, exception code

backup device, mount backup volume linn, enter Y to continue:

BACKUP cannot access the backup volume. This could be oecause there is no
volume in the backup device, the volume is write protected, or because of
a hardware problem with the device. The second line of the message
indicates the iRMX 86 exception code encountered. BACKUP continues to
issue this message until you supply a volume that BACKUP can access.

pathname, exception code, cannot back up file

For some reason BACKUP could not copy a file from the named volume,
possibly because you do not have read access to the file or because there
is a faulty area on the named volume. The message lists the pathname of
the file and the exception code encountered. BACKUP copies as much of the
file as possible and continues with the next file.

backup device, error writing volume label
backup device, exception code

backup device, mount backup volume linn, enter Y to continue:

When BACKUP attempted to write a label on the backup volume, it
encountered an error condition, possibly because of a faulty area on the
volume, or because the volume is not formatted. The second line of the
message indicates the iRMX 86 exception code encountered. BACKUP
reprompts for a different backup volume.

3-12

ERROR MESSAGES (continued)

pathname, file does not exist

The pathname you specified as input to BACKUP does not represent an
existing file or device.

backup device, invalid backup device

The logical name you specified for the backup device was not a logical
name for a device.

exception code, invalid DATE or TIME

For either the DATE or TIME parameter, you entered a value that is out of
range (such as 31 FEB 81 or 26:03:62). The message lists the exception
code encountered as a result of this entry.

backup device, invalid logical name

The logical name you specified for the backup device contains unmatched
colons, is longer than 12 characters, contains invalid characters, or
does not exist.

backup device, not a physical volume, enter Y to overwrite:

The backup volume you supplied was formatted as a named volume or
contained some other information. BACKUP will overwrite this volume if
you enter Y, y, R, or r.

output specification missing

You did not supply the logical name of the backup device when you entered
the BACKUP command.

keyword, too many values

You entered too many values with either the DATE or TIME parameters. The
keyword portion of the message indicates the parameter that is in error.

keyword, unrecognized control

You entered one of the optional parameters of the form "keyword=value,"
but the keyword was not DATE, TIME, or QUERY.

3-13

BA(;KlJl"

BACKUP

ERROR MESSAGES (continued)

backup device, volume not formatted

backup device, mount backup volume Hnn, enter Y to continue:

The backup volume you supplied was not formatted. BACKUP continues to
issue this message until you supply a formatted backup volume.

backup device, write error on backup volume
backup device, exception code

BACKUP encountered an error condition when writing information to the
backup volume. The second line of the message lists the exception code
encountered. This error is probably the result of a faulty area on the
volume.

pathname, exception code

The pathname you specified as input to BACKUP is in error. This error
could occur if you specify the same logical name that you specified for
the backup device. It could also occur if you specify an invalid or
nonexistent path component. This message displays the exception code
that results from this error.

3-14

COpy

This command reads data from the specified input source or sources and
writes the output to the specified destination file or files.

The format of the command is as follows:

inpalh-lisl

INPUT PARA}lliTERS

inpath-list

QUERY

J----i--< oulpalh-lisl

One or more pathnames for the files to be copied.
Multiple pathnames must be separated by commas.
Separating blanks are optional. To copy files on
a one-for-one basis, you must specify the same
number of files in the inpath-list as in the
outpath-list.

Causes the Human Interface to prompt for
permission to copy each file. Depending upon the
specified preposition (TO, OVER, or AFTER), the
Human Interface prompts with one of the following
queries:

pathname, copy TO out-pathname?

pathname, copy OVER out-pathname?

pathname, copy AFTER out-pathname?

Enter one of the following (followed by a carriage
return) in response to the query:

Entry
Y or y
E or e
R or r

Any other
character

Action
Copy the file.
Exit from COpy command
Continue copying files without
further query.
Do not copy this file; go to the
next file in the input list.

3-15

COpy

OUTPUT PARAMETERS

TO

OWR

AFTER

outpath-list

DESCRIPTION

Writes the listed input files to named new
output files. The specified output file or
files should not already exist; if they do, COpy
will request permission to delete the existing
files before it executes the copy operation for
that file. If more input files than output
files are listed, the remaining input files will
be appended to the end of the last listed output
file.

Writes the listed input files over (replaces)
the existing output files on a one-for-one
basis, regardless of file size. If an output
file does not already exist, its corresponding
input file is written to a new file with the
listed output file name. If more input files
than output files are listed, the remaining
input files will be appended to the end of the
last listed output file.

Appends the input file or files to the current
data in the existing output file or files. If
the output file does not already exist, all
listed input files will be concatenated into a
new file with the listed output file name.

One or more pathnames for the output files.
Multiple pathnames must be separated by commas.
Separating blanks are optional. If the
preposition and output parameter defaults are
exercised in the command line, the output will
go to the user's console screen (TO :CO:).

COpy is a powerful and versatile command with a wide range of file
handling applications (See Chapter 2 for examples). Implementation
depends upon your selection of a preposition and your input file and
output file specification in the command line. The following are some
of the COpy command's features:

• Create new files (TO preposition).

• Copy over existing files or create new files (OWR preposition).

• Add data to the end of existing files (AFTER preposition).

• Copy a list of files to another list of files on a one-for-one
basis.

• Concatenate two or more files into a single output file.

3-16

DESCRIPTION (continued)

As each file is copied, the COpy command displays one of the following
messages, as appropriate:

pathname, copied TO out-pathname

pathname, copied OVER out-pathname

pathname, copied AFTER out-pathname

If you do not specify a preposition or output file, TO :CO: is the
default output. The Human Interface normally expects all listed output
files to be new files when the TO preposition is used; however, it is
prepared to deal with existing files. If an existing output file name
is encountered during a copy operation using TO, the Human Interface
displays the the following message:

pathname, already exists, DELETE?

Enter Y or y if you wish to delete the existing file. The COpy command
will delete the file.

Enter any other character if you do not wish to delete the existing
file. The COPY command will pass over the corresponding input file
without copying it, and will attempt to copy the next listed input file
to its corresponding output file.

If more input files than output files are specified, the remainder of
the input files will be appended to the end of the last listed ouput
file. As each file is appended, the following message is displayed on
the console screen:

pathname, copied AFTER out-file

If there are fewer input filenames than output filenames specified in
the COpy command (regardless of the preposition), the output files
remaining after the last valid copy operation will be ignored.

You cannot successfully use COpy to copy a directory to a data file or
to another directory. Although a directory can be copied, the
attributes of the directory are lost. That is, the directory can no
longer be used as a directory. However, a file listed under one
directory can be copied to another directory. For example:

copy samp/test/a to :fl:/alpha/beta

would copy the A data file to a different volume, directory, and
filename, where the new file's pathname would be :fl:/alpha/beta.

3-17

COpy

CREATEDIR

CREATEDIR

This command creates one or more iRMX 86 user directories.

The format is as follows:

INPUT PARAMETER

inpath-list

DESCRIPTION

One or more pathnames of the iRMX 86 directories
to be created. Multiple pathnames must be
separated by commas. Embedded blanks between
commas and pathnames are optional.

A created iRMX 86 directory allows all access functions; that is, you can
read/write, delete, list, add, and change the contents of the directory
you created with CREATEDIR.

The following message is displayed if a directory is successfully created:

directory-name, directory created

You can create new directories that are subordinate to other directories.
For example:

createdir ab/dc/ef/GH

would cause the newly-created directory GH to be nested within existing
directory EF, which in turn, is nested within directory DC, and so on.

It is suggested that you use uppercase letters when you enter a new
directory name in a CREATEDIR command, and use lowercase letters when you
create a new data filename in a COpy command. You can then easily
distinguish between directory names and filenames in a directory listing.

You can check the contents of the directory at any time by using the DIR
command to list the directory (see the DIR command in this chapter).

ERROR MESSAGES

directory name, invalid file type

3-18

ERROR MESSAGES (continued)

You attempted to create a directory using a data file as part of the new
directory's pathname; only other directory names are allowed in the
pathname for a new directory.

directory-name, directory already exists

The specified pathname of the directory to be created already exists.

3-19

CREATEDIR

DATE

This command sets a new system date or displays the current date.

The format is as follows:

INPUT PARAMETERS

dd

mmm

yy

DESCRIPTION

Two-digit number that specifies the day of the month.

Three-character abbreviation for the specified
month, as follows:

JAN
FEB
MAR

APR
MAY
JUN

JUL
AUG
SEP

OCT
NOV
DEC

Two-digit number that specifies the year.

The dd, mmm, and yy entries are separated by single blanks.

If no new date is specified in the DATE command, the current date is
displayed.

If one of the date entries in the parameter string is set, all three must
be; there are no default settings for individual entries within the
parameter string.

If you request the system date on a non-timing system, the following
message will be displayed:

00:00:00

See also the TIME command in this chapter if you wish to set the system
clock in conjunction with setting the date.

ERROR MESSAGES

Errors in a date entry, such as syntax errors or a number out of range
(i.eo, 31 FEB 81), cause the following error message to be displayed:

illegal date

If this occurs» reenter the DATE command with the correct syntax.

3-20

DEBUG

This command allows you to debug your iRMX 86 application jobs if your
system is configured with the iSBC 957A/B package.

INPUT PARAMETERS

command pathname

parameter string

DESCRIPTION

Pathname of the file containing the application
program to be debugged.

String of required, optional, and default
parameters that can be used in the command line to
load and execute the application program.

DEBUG loads your specified application program into main memory and
transfers control to the iSBC 957A/B package. You can then use the iSBC
957A/B package to single-step, display registers, and set breakpoints
within the program. Refer to the appropriate iSBC 957A or iSBC 957B
user's guide for a complete description of the iSBC 957A/B functions.

When DEBUG executes, the 957A/B package runs with its interrupts
disabled. Therefore, the time-keeping function is also disabled, with
the following consequences:

• Impacts the ability of the Nucleus to execute time-out tasks that
have provided time limits to system calls, such as RECEIVE$UNITS
and RECEIVE$MESSAGE.

• Impacts the ability of the Basic I/O System to keep track of the
time-of-day and write its data structures to secondary storage.

The 957A/B package cannot tolerate interrupts while the single-stepping
command is being used. Single-stepping will be affected if:

• Tasks are using non-zero time-out values in system calls such as
RECEIVE$UNITS and RECEIVE$MESSAGE.

• Time-of-day is configured in the Basic I/O System.

• Non-zero update timeout values are specified in the Basic I/O
System's Device Unit Information Blocks (DUIB).

The alternative to single-stepping is to use breakpoints.

3-21

DEBUG

DELETE

DELETE

This command removes data files and empty directories from secondary
storage.

The format is as follows:

INPUT PARAMETERS

inpath-list

QUERY

DESCRIPTION

One or more pathnames for the files or empty
directories to be deleted. Multiple pathname
entries must be separated by commas. Separating
blanks are optional.

Causes the DELETE command to ask for your
permission to delete each file in the list. Prior
to deleting a file, the DELETE command displays
the following query:

pathname, DELETE?

Enter one of the following, followed by a carraige
return, in response to the query:

Entry

Y or y

E or e

R or r

Any other
character

Action

Delete the file.

Exit from DELETE command.

Continue deleting without further
query.

Do not delete file;
query for next file in sequence.

The DELETE command allows you to release unused secondary storage space
for new uses by removing empty directories and unneeded data files. If a
file to be deleted is currently attached, it will be marked for deletion
and deleted when the file is detached.

The following message is displayed as each file is deleted or marked for
deletion:

pathname, deleted

3-22

ERROR MESSAGES

pathname, DELETE access required

You do not have permission to delete a specified file.

pathname, does not exist

The specified file was not found (e.g., a syntax error in a pathname or
the file is located in some other directory). The DELETE command will
attempt to delete each succeeding file specified in the filename-list
after it has encountered an error in a file name.

pathname, directory not empty

Non-empty directories may not be deleted. You attempted to delete a
directory that still lists filenames or other directory names.

If you still wish to delete the directory, you must first delete all its
contents. For example, if you wished to delete a directory named ALPHA
that contained a data file with the pathname ALPHA/BETA/SAMP, you would
enter the following command:

delete alpha/beta/samp,alpha/beta,alpha

which would delete all files cataloged in ALPHA before the directory
itself was deleted.

3-23

DELETE

DET ACHDEYICE

DETACHDEVICE

This command detaches the specified logical device.

INPUT PARAMETER

:logical name:

DESCRIPTION

Logical name of the physical device that is to be
deleted from the root job's object directory.

The DETACHDEVICE command allows you to detach a device without having to
reconfigure the system. After a device is detached, no volume mounted on
that device is accessible for system use. For a description of formatted
volumes (NAMED or PHYSICAL), see the FORMAT command description in this
chapter.

When the device is detached and its logical name has been deleted from
the root job's object directory, the DETACHDEVICE command will display
the following message:

logical-name, detached

ERROR MESSAGE

NOTE

Using the DETACHDEVICE command to
detach the device containing your Human
Interface commands causes loss of
access to Human Interface functions
until the system is restarted.

illegal logical name

Either there is a syntax error in the logical name specification or the
logical name does not exist in the root job's object directory.

3-24

DIR

This command lists the names and attributes of files contained in a given
directory, including data filenames and directory names.

The format of the command is as follows:

INPUT PARAMETERS

inpath-list

EXTENDED

LONG

One or more pathnames of the directories to be
listed. Multiple directory pathname entries must
be separated by commas. Separating blanks are
optional. If no pathname is specified, the user's
default directory is listed.

Lists all available information for each data file
or directory file in the directory. The first
line for each file will be the same as for the
LONG form. The second line will contain the last
access date, creation date, and the accessor
list. The listing will be in a double-column
format (see Figure 3-1 at the end of this command
description).

Lists file information in a one-line format (see
Figure 3-2 at the end of this command description).

3-25

"DIR

INPUT PARAMETERS (continued)

FAST

SHORT

ONE

QUERY

OUTPUT PARAMETERS

TO

OVER

AFTER

out-pathname

Lists only the filenames and directory names in
the directory. The output format will be five,
columns of filenames unless you also specify the
ONE parameter (see Figure 3-3 at the end of this
command description). If no listing format is
specified, FAST is the default.

Lists the file information in a two-column format
(see Figure 3-4 at the end of this command
description) •

Lists the output of a FAST or SHORT listing in
sing1e-co1umn format. ONE is the default number
of columns for EXTENDED or LONG listings.

Causes the DIR command to prompt you for
permission to list a directory by issuing the
following message:

pathname, DIR?

Enter one of the following (followed by a carriage
return) in response to the query:

Entry

Y or y

E or e

R or r

Any other
character

Action

List the directory.

Exit from DIR command.

Continue listing directories without
further query.

Do not list directory; query for the
next directory, if any.

Copies the directory listing to the specified
destination data file. If no TO/OVER/AFTER
preposition is specified, TO :CO: is the default.

Copies the directory listing to the specified
output file and writes over (replaces) the
previous contents.

Appends the directory listing to the current
contents of the specified output file.

Pathname of the file to receive the directory
listing. If the parameter is omitted, the default
destination is the user's console screen (TO :CO:).

3-26

DESCRIPTION

The amount of information listed for each file depends upon what
listing format you specify (EXTENDED, FAST, LONG, or SHORT) in the
DIR command. An example of each type of listing format is provided
at the end of the DIR command description in Figures 3-1 through 3-4
respectively. An explanation of the illustrated headings is provided
in Table 3-2 following the figures.

If you want to list the default user directory but also wish to
specify a listing format other than FAST, use the default directory
name explicitely. For example:

dir $ extended

would display a listing of the user directory in the EXTENDED
format. Note that the default directory is a configuration option.

ERROR MESSAGES

pathname, is not a directory

A pathname exists but is not a directory.

pathname, directory does not exist

The pathname does not exist, either as a directory or as a data file.

pathname, directory LIST access required

You do not have list access to the directory.

DIR COMMAND EXAMPLES

The examples that follow show how a directory's files are listed when you
use your configured system's default prefix in a directory's pathname.
In the examples, directory names are enclosed in triangles; data file
names are enclosed in rectangles.

Assume you have the following directory structure for your files:

3-27

DIR

DIR

DIR COMMAND EXAMPLES (continued)

bb

If your root dir~ctory was Q, then the following files would be
listed in response to the DIR pathname entry examples in the
following "Pathname" column:

Pathname Files Listed

omitted A, f
f not allowed because f is a data file
A bb, CB, d
A/d not allowed because d is a data file
A/CB e, f
A/CB/e not allowed because e is a data file

DIR LISTING FORMATS

Figures 3-1, 3-2, 3-3, and 3-4 show output examples for EXTENDED, FAST,
LONG, and SHORT listing formats respectively. Table 3-2 defines the
displayed column headings.

11 MAR 80 06:30:30
DIRECTORY OF sys ON myvol

NAME
ed

idisk

AT ACC
DR

DR DLAC

BLKS
200

5

LENGTH
30185

CREATION:
LAST ACC:

39
CREATION:
LAST ACC:

GRAN
VOL FIL OWNER LAST MOD

16 3 Beck 20 NOV 79
20 APR 78 ACCESSORS ACC
7.5 NOV 79 Engineers R

Techs 1J

Iii 1 WORLD 12 DEC 79
15 NOV 78 ACCESSORS ACC
10 .JAN 80

submitplmab MA DRAU 11 1057 24 2 BACKWORDPLMCOM Iii JUN 79
CREATION: 20 APR 78 ACCESSORS ACC
LAST ACC: 20 JAN 80 PYE-WACKET AU

TOGAN R
longlongnamess D U

CHAOTICGOOD U 123456789 1234567890 12345 123 Chopin 01
CREATION: 16 NOV 79 ACCESSORS
LAST ACC: 20 FEB 80 Clerics

MAGIC-USERS
Thieves
FIGHTERS

LAWFULEVIL 0 73 9081 24 15 saveyourhat
CREATION: 15 NOV 79 ACCESSORS
LAST ACC: as MAR 80 l,oJORLD

5 FILES 1839 BLOCKS 1200453 BYTES

Figure 3-1. EXTENDED Directory Listing Example

11 MAR 80 04:25:40
DIRECTORY OF alpha ON mvol

fname1 fname2 fname3 fname4
fname6 f name 7 fname8 f name 9
fnamell

fname5
f name 1 0

Figure 3-2. FAST Directory Listing Example

3-29

04

DEC 79
ACC
RA

U
D
ORAU

clAN 80
ACe
RAU

DIR

DIR

DIR LISTING FORMATS (continued)

11 JAN 80 06 :·30: 30
DIRECTORY OF sys ON myvol

GRAN
NAME AT ACC BLI<S LENGTH VOL FIL OWNER LAST MOD
ed DR 200 30185 If') 3 BECK 20 NOV 79
idisk DR DLAC 5 39 Ie; 1 WORLD 12 DEC 79
LEMONADEIT MA D 105 13074 1)4 2 malagi l() MAR 77
credit DR 263 32967 128 6 WORLD 17 NOV 79
SUBMITAGAINPLM MA DRAI] 11 1057 24 2 BACKWORDPLMCOM 16 JUN 79
type DR LA 4 366 11) 1 PASCAL 15 DEC 79
CHAOTICGOOD U 123456789 1234567890 12345 123 CHOPIN 01 DEC 79
LAWFULEVIL D 73 9081 24 15 saveyourpet 04 JAN 80

8 FILES 1839 BLOCKS 1200453 BYTES

Figure 3-3. LONG Directory Listing Example

11 MAll 80: 04: 25: 50
DIRECTORY OF sys ON myvol

NAME AT ACC BLKS LENGTH NAME AT ACC BLKS LENGTH
append R 40 1425 attrib DRAU 38 4682
COpy MA DRAU fi5 8042 CREDIT.HAZ R 263 33017
dcopy DRAU 62 7718 DELETE A 37 4506
REFERENCE DR L 5 10 DATA DR DLAC 1 4
DUMP D 22 2568 ED DR 200 30185
idisk DR DLAC 5 39
LEMONADEIT MA D 12345fi789 1234567890
CREDIT DR 263 32967 RENAME AU 21 2487
submit$plm MA DRAU 11 057 TYPE DR LA 4 3e;1)
CHAOTICGOOD U 13293 115l()40 lawfulevil D 73 9081

18 FILES 1839 BLOCKS 1200453 BYTES

Figure 3-4. SHORT Directory Listing Example

3-30

Heading

NAME:

AT:

ACC:

BLKS:

LENGTH:

VOL:

FIL:

OWNER:

LAST MOD:

LAST ACC:

CREATION:

ACCESSORS:

ACC:

Table 3-2. Directory Listing Headings

Meaning

I 14-character file NAME
I

File ATtribute, where:
DR = Directory (if the ATtribute field is blank, the

file is a data file)

File ACCess rights, where:

Directories:

DLAC

DRAU

Other Files: E

Delete
List
Add
Change

Update
Append
Read
Delete

Nine-digit number (five digits on SHORT listing) giving the
volume-granularity units allocated to the file. On the
SHORT form, if the number of digits exceeds five, the file
is displayed in the nine-digit form (see the LEMONADEIT
file in Figure 3-4).

10-digit number (7 digits on SHORT listing) giving the
length of the file in bytes. On the SHORT form, if the
number of digits exceeds 7, the file is displayed in the
10-digit form (see the LEMONADIT file in Figure 3-4).

Five-digit number giving the volume granularity in bytes.

Three-digit number giving the granularity of the file in
volume-granularity units.

14-character, alphanumeric owner name.

Date of last file modification.

Date of last file access.

Date of file creation.

Heading for list of 14-character accessor names.

Heading for access rights of file accessors. The format of
this field is identical to ACC above.

3-31

DIR

DISKVERIFY

DISKVERIFY

This command invokes the disk verification utility which verifies the
data structures of iRMK 86 physical and named volumes. This utility can
also be used to reconstruct portions of the volume and perform absolute
editing on the volume. The format of the DISKVERIFY command is as
follows:

I NPUT PARAMETERS

:logical-name:

VERIFY or V

Logical name of the secondary storage device
containing the volume.

Performs a verification of the volume. If you
specify this parameter and omit the options, the
utility performs the NAMED verification.

If you specify this parameter, the utility
performs the verification function and returns
control to you at the Human Interface level. You
can then enter any Human Interface command.

If you omit this parameter, the utility displays a
sign-on message and the utility prompt (*). You
can then enter individual disk verification
commands. These commands are described in the
iRMK 86 DISK VERIFICATION UTILITY REFERENCE MANUAL.

3-32

INPUT PARAMETERS (continued)

NAMEDI or Nl

NAMED2 or N2

NAMED or N

PHYSICAL

ALL

OUTPUT PARAMETERS

TO

OVER

AFTER

VERIFY option that applies to named volumes only.
This option checks the fnodes of the volume to
ensure that they match the directories in terms of
file type and file heirarchy. This option also
checks the information in each fnode to ensure
that it is consistent. As a result of this
option, DISKVERIFY displays a list of all files on
the volume that are in error, with information
about each file. Refer to the iRMX 86 DISK
VERIFICATION UTILITY REFERENCE MANUAL for more
information.

VERIFY option that applies to named volumes only.
This option checks the allocation of fnodes on the
volume, checks the allocation of space on the
volume, and verifies that the fnodes point to the
correct locations on the volume. Refer to the
iRMX 86 DISK VERIFICATION UTILITY REFERENCE MANUAL
for more information.

VERIFY option that performs both the NAMEDI and
NAMED2 verification functions on a named volume.
If you omit the VERIFY option, NAMED is the
default option.

VERIFY option that applies to both named and
physical volumes. This option reads all blocks on
the volume and checks for I/O errors.

VERIFY option that applies to both named and
physical volumes. For named volumes, this option
performs both the NAMED and PHYSICAL verification
functions. For physical volumes, this option
performs the PHYSICAL verification function.

Copies the output from the disk verification
utility to the specified file. If no preposition
is specified, TO :CO: is the default.

Copies the output from the disk verification
utility over the specified file.

Appends the output from the disk verification
utility to the end of the specified file.

3-33

DISKVERIFY

DISKVERIFY

OUTPUT P~lliTERS (continued)

outpath

DESCRIPTION

Pathname of the file to receive the output from
the disk verification utility. If you omit this
parameter and the TO/OVER/AFTER preposition, the
utility copies the output to the console screen
(TO :CO:). You cannot direct the output to a file
on the volume being verified. If you attempt
this, the utility returns an E$NOT_CONNECTED error
message.

When you enter the DISKVERIFY command, the utility responds by displaying
the following line:

iRMX 86 DISK VERIFY UTILITY, Vx.x

where Vx.x is the version number of the utility. If you specify the
VERIFY or V parameter in the DISKVERIFY command, the utility performs a
verification of the volume and copies the verification information to the
console (or to the file specified by the outpath parameter). Refer to
the iRMX 86 DISK VERIFICATION UTILITY REFERENCE MANUAL for a description
of the verification output. After generating the verification output,
the utility returns control to the Human Interface, which prompts you for
more Human Interface commands. The following is an example of such a
DISKVERIFY command:

-DISKVERIFY :Fl: VERIFY NAMED2
iRMX 86 DISK VERIFY UTILITY, Vx.x
DEVICE NAME = Fl : DEVICE SIZE = 0003E900 BLOCK SIZE = 0080

'NAMED2' VERIFICATION

BIT MAPS O.K.

However, if you omit the VERIFY (or V) parameter from the DISKVERIFY
command, the utility does not return control to the Human Interface.
Instead, it issues an asterisk (*) as a prompt and waits for you to enter
individual DISKVERIFY commands. The following is an example of such a
DISKVERIFY command:

-DISKVERIFY :Fl:

*
After you receive the asterisk prompt, you can enter any of the
DISKVERIFY commands listed in the iRMX 86 DISK VERIFICATION UTILITY
REFERENCE MANUAL.

3-34

ERROR MESSAGES

logical name, 0045 : E$LOG_NAME_NEXIST

You specified a nonexistent logical name in either the :logical name:
parameter or the out path parameter.

8042 : E$NOT_CONNECTION

You attempted to direct output to a file on the volume being verified.

command line error

You made a syntax error when entering the command.

device size inconsistent
size in volume label = value 1 : computed size value2

When the disk verification utility computed the size of the volume, the
size it computed did not match the information recorded in the iRMX 86
volume label. It is likely that the volume label contains invalid or
corrupted information. This error is not a fatal error, but it is an
indication that further error conditions may result during the
verification session. You may have to reformat the volume or use the
disk verification utility to modify the volume label. Refer to the iRMX
86 DISK VERIFICATION UTILITY REFERENCE MANUAL for more information about
the disk verification utility commands.

logical name, illegal logical name

The logical name you specified was not surrounded by colons (:).

not a named disk

You tried to perform a NAMED, NAMEDl, or NAMED2 verification on a
physical volume.

verify-function argument error

The VERIFY option you specified is not valid.

The NAMEDl, NAMED 2 , and PHYSICAL verification options can also produce
error messages. Refer to the iRMX 86 DISK VERIFICATION UTILITY REFERENCE
MANUAL for more information about these messages.

3-35

DISKVERIFY

IJISKVEIUFY

EXAMPLE

The following connnand performs both named and physical verification of a
named volume.

-D :rSKVERIFY : 11 : mIFY .. AI,;l.

DEVICE NAME == F1

'NAMEDl i VERIFICATION

'NAMED2' VERIFICATION

BIT MAPS O.K.

'PHYSICAL' VERIFICATION

NO ERRORS

DEVICE StZE = OOOlE900 BLK SIZE == 0080

DOWNCOPY

This command copies files from a volume on an iRMX 86 secondary storage
device to a volume on an ISIS-II secondary storage device via the
iSBC 957A/B Interface and Execution package. The format is as follows:

inpath-list

INPUT PARAMETERS

inpath-list

QUERY

I----(TO l--_
)--J--<. outpath-list

One or more iRMX 86 pathnames for files, separated
by commas, that are to be copied to ISIS-II
secondary storage. Separating blanks between
pathnames are optional. The files may be copied
in the listed sequence either on a one-for-one
basis or concatenated into one or more files.

Causes the Human Interface to prompt for
permission to copy each iRMX 86 file to the listed
ISIS-II destination file. Depending on which
preposition you specify (TO, OVER, or AFTER), the
Human Interface prompts with one of the following
queries:

pathname, copy down TO out-pathname?

pathname, copy down OVER out-pathname?

pathname, copy down AFTER out-pathname?

Enter one of the following in response to the
query:

Entry

Y or y

E or e

R or r

Any other
character

3-37

Action

Copy the file.

Exit from the DOWNCOPY command.

Continue copying files without
further query.

Do not copy this file; query
for the next file in sequence.

DOWN COPY

DOWNCOPY

OUTPUT PARAMETERS

TO

OVER

AFTER

outfile-list

DESCRIPTION

Reads iRMX 86 files and copies them TO new ISIS-II
files in the listed sequence. The specified
output files should not already exist in the
ISIS-II directory when the TO parameter is used.
If a named output file does exist, Drn~COPY will
display the following message:

filename, already exists, delete?

Enter a Y or y if you wish to delete the existing
file. Enter any other character if you do not
wish the existing file to be deleted.

If no preposition is specified, TO :CO: (ISIS-II
console screen) is the default. If more input
files than output files are specified, the
remaining input files will be appended to the end
of the last listed ISIS-II file.

Reads the listed iRMX 86 input files and copies
them OVER the existing ISIS-II destination files
in the listed sequence. If more input files than
output files are listed, the remaining input files
will be appended to the end of the last listed
ISIS-II file.

Reads the listed iRMX 86 input files and copies
them AFTER the end of data on the existing ISIS-II
destination files in the listed sequence.

One or more ISIS-II filenames for the output
files. Multiple filenames must be separated by
commas. Separating blanks are optional. If the
preposition and output file defaults are used in
the command line, the output will go to the
ISIS-II console screen.

The DOWNCOPY command cannot be used to copy directories from an iRMX 86
system to an ISIS-II system; only files can be copied.

Before you enter a DOWNCOPY command on the iRMX 86 console keyboard, you
must have your target system connected to a development system with the
957A/B package, and the package must be running. The ISIS-II copies of
the files will have all ISIS-II file attributes turned off.

As each file in the input list is copied, one of the following messages
will be displayed on the Human Interface console output device (:CO:), as
appropriate:

3-38

DESCRIPTION (continued)

pathname, copied down TO out-filename

pathname, copied down OVER out-filename

pathname, copied down AFTER out-filename

3-39

DOWN COpy

FORMAT

FORMAT

This command formats or reformats a volume on an iRMX 86 secondary
storage device, such as a diskette, hard disk, or bubble memory.

The format is as follows:

INPUT PARAMETERS

:logical-name:

volume-name

FNODES=num

GRANULARITY=num

Logical name of the physical device-unit to be
formatted. The logical name must be preceded and
followed by colons without embedded blanks between
the logical name and volume name.

Six-character, alphanumeric ASCII name, without
embedded blanks, to be assigned to the volume.
(See the definition for a "volume" in Chapter 1.)

Defines the maximum decimal number of files that
may be created on a NAMED volume. (This parameter
is not meaningful when formatting a PHYSICAL
volume and will be ignored if specified for such
volumes.) The range is 7 through 32,767 fnodes,
although the maximum number of fnodes you can
define depends on the settings of the GRANULARITY
and EXTENSIONSIZE parameters (as explained in the
"Description" portion of this command write-up).
If not specified, the default is 50 fnodes.

Volume granularity; the minimum number of bytes to
be allocated for each increment of file size on a
NAMED volume. (This parameter is not meaningful
for PHYSICAL volumes, and will be ignored if
specified for such volumes.) The specified
decimal number is placed in the header of the
volume and becomes the default file granularity
when a file is created on the volume.

3-40

INPUT PARAMETERS

GRANULARITY=num (continued)

The range is 1 through 65,535 (decimal) bytes,
although the maximum allowable volume granularity
depends on the settings of the FNODES and
EXTENSIONSIZE parameters (as explained in the
"Description" portion of this write-up). If not
specified, the default granularity is the device
granualarity. Once the volume granularity is
defined, it applies to every file created on that
volume.

EXTENSIONSIZE=num Size, in bytes, of the extension data portion of
each file descriptor node (fnode). (This
para~eter is not meaningful for PHYSICAL volumes,
and will be ignored if specified for such
volumes.) The range is 0 through 65,448
(decimal), although the maximum allowable
extension size depends on the settings of the
FNODES and GRANULARITY parameters (as explained in
the "Description" portion of this write-up). If
not specified, the default extension size is 3
bytes.

INTERLEAVE=num Interleave factor for a NAMED or PHYSICAL volume.
If not specified, the default value is 5, which is
the optimum interleave factor for an iSBC 204
bootstrap load. See the interleave discussion
under "Description" in this command write-up.

NAMED The volume can store only named files; that is,
the volume can hold many files (up to the number
of fnodes allocated), each of which can be
accessed by its pathname. A diskette or hard disk
surface are examples of devices that would be
formatted for named files. If neither NAMED nor
PHYSICAL is specified, the volume is formatted for
the type of files specified when you attached the
device (with the ATTACHDEVICE command).

PHYSICAL The volume can be used only as a single, physical
file. The GRANULARITY and FNODES parameters are
not meaningful when PHYSICAL is specified for the
volume. If neither NAMED nor PHYSICAL is
specified, the volume is formatted for the type of
files specified when you attached the device (with
the ATTACHDEVICE command).

3-41

FORMAT

FORMAT

DESCRIPTION

Every physical device-unit used for secondary storage must be formatted
before it can be used for storing and then accessing its files. For
example, every time you mount a previously unused diskette into a drive,
you must enter a FORMAT command to format that diskette as a new volume
before you can create, store and access files on it.

Once a volume is formatted, its name becomes a volume identifier when you
list the root directory for the volume, and the name will appear in the
directory's heading. Although the Human Interface uses the volume name
in its own internal processing when you access the volume, you do not
need to specify the volume name in any subsequent command after the
volume is formatted; only the logical name of the secondary storage
device on which the volume is currently mounted needs to be specified.

The number of fnodes on a volume defines the number of files that can
exist on the volume. You can specify this number with with the FNODES
parameter. Each fnode is a data structure that contains information
about a file. Each time you create a file on the volume, the Operating
System records information about the file in an unused fnode. Later, it
uses the fnode in order to determine the location of the file on the
volume.

Each fnode contains a field that stores extension data for its associated
file. An operating system extension can access and modify this extension
data by invoking the AGETEXTENSION$DATA and A$SET$EXTENSION$DATA system
calls (refer to the iRMX 86 SYSTEM PROGRAMMER'S REFERENCE MANUAL for more
information). When you format a volume, you can use the EXTENSIONSIZE
parameter to set the size of the extension data field in each fnode.
Although you can specify any size from 0 to 65,448 bytes, the Human
Interface requires all fnodes to have at least 2 bytes of extension data.

The default volume granularity is always the granularity of the physical
device for the volume. For example, if the default granularity for a
device is 128 bytes of secondary storage, the I/O System will
automatically allocate 128 bytes of permanent storage to each new file
you create on that volume, regardless of whether or not a file requires a
full 128 bytes. If the size of a file exceeds 128 bytes, the I/O System
will allocate still another full block of 128 bytes, and so on, until the
volume is full.

Although the FNODES, GRANULARITY, and EXTENSIONSIZE parameters have
maximum values which are listed in the parameter descriptions, the
combination of these three parameters must also satisfy the following
formula:

(87 + EXTENSIONSIZE) x FNODES / GRANULARITY ~ 65535

where all numbers are decimal. FORMAT displays an error message if the
combination of parameter values exceeds the limit.

3-42

DESCRIPTION (continued)

As stated previously, the interleave factor applies to volumes formatted
either for NAMED or PHYSICAL files. The interleave specification
maximizes access speed for the files on a given volume, depending on the
intent of volume and the device configuration. For example, an
interleave factor of 5 for a flexible disk drive means that, for each
file, the I/O System will read every fifth sector on the diskette,
starting with an index of 1 (other, hard disk systems may be different,
depending on your configuration). Therefore, the I/O System does not
need to wait for the disk to make a complete revolution before it
accesses the next sector; the next sector by an increment of 5 is ready
to be accessed for read/ write by the time the previously accessed sector
has been processed.

The FORMAT command displays the following message when volume formatting
is completed:

volume (vol-name) will be formatted as a NAMED/PHYSICAL volume
granularity = number
interleave = number
numberfnodes = number
extensionsize = number

where:

vol-name

NAMED/PHYSICAL

number

ERROR MESSAGES

The volume name specified in the FORMAT command.

Either NAMED or PHYSICAL will be displayed in the
message, depending on the command specification.

Default or specifically defined in the command.

If a device cannot be detached for formatting, the following message is
displayed on the user console:

logical-name, can't detach device

which means that the volume does not exist, the volume is busy, or the
device on which the volume is mounted is not currently attached to the
system.

If the device cannot be attached for formatting, or it cannot be
re-attached (e.g., restored to its original configuration prior to
formatting) after formatting takes place, the following message is
displayed on the user console:

device-name, can't attach device

3-43

FO~T

.t'UKMAT

ERROR MESSAGES (continued)

The following error message is displayed if you attempt to format
something that is not a physical device:

logical-name, is not a device connection

The following error message is displayed if you specify a volume name
containing more than six ASCII characters or if you specify a logical
device name:

vol-name, illegal name

The following error message is displayed if you specify an out-of-range
number for any of the FNODES, GRANULARITY, EXTENSIONSIZE, or INTERLEAVE
parameters:

number, illegal number

The following message is displayed if the values you specify for fnode
size, granularity, and extension data size cause the formula listed in
the "Description" section to exceed its limit.

vol-name, fnode file size exceeds 65535 volume blocks

3-44

RENAME

This command allows you to change the pathname of one or more data files
or directories. RENAME is effective across directory boundaries on the
same volume. The format is as follows:

INPUT PARAMETERS

inpath-list

QUERY

OUTPUT PARAMETERS

TO

oulpalh-lisl

One or more pathnames, separated by commas, of
files or directories that are to be renamed.
Blanks between pathnames are optional separators.

Causes the Human Interface to prompt for
permission to rename each pathname in the input
list by issuing the following message:

oldname, RENAME?

Enter one of the following (followed by a carraige
return) in response to the query:

Entry

Y or y

E or e

R or r

Any other
character

Action

Rename the file.

Exit from RENAME command.

Continue renaming without further
query •

Do not rename file; query for the next
file in sequence.

Moves the data to the new pathnames in the output
list. A new pathname in the output list should
not already exist. If, in fact, a new pathname
does already exist, RENAME displays the following
warning message when the pre-existing pathname is
encountered:

pathname, already exists, DELETE?

3-45

RENAME

RENAME

OUTPUT PARAMETERS

TO (continued)

OVER

outpath-list

DESCRIPTION

Enter a "Y" or "y" if you wish the pre-existing
pathname and its contents to be written over by the
new name specification. The pre-existing pathname
and its contents will be deleted.

Enter any other character if you do not wish the
pre-existing file to be deleted. Renaming of the
specified file will not take place and the RENAME
command will attempt to rename the next pathname in
the list sequence.

Changes each old pathname in a list to the
corresponding new pathname, even if the new pathname
already exists. The old pathname is deleted from
secondary storage. OVER cannot be used to rename a
non-empty directory over another non-empty
directory.

List of new pathnames. Multiple pathnames must be
separated by commas. Separating blanks are optional.

The primary distinction between the RENAME command and the COPY command is
that, as a RENAiffi command is executed, it releases the pathnames in the
listed input files for new uses without having to perform any further
operation on the files.

Although RENAME can be used to rename an existing directory pathname TO a
new pathname, it cannot be used to rename an existing directory OVER
another existing directory. For example:

-rename ALPHA to DELTA allowed
-rename ALPHA over BETA not allowed (unless BETA is empty)
-rename ALPHA/sampl over BETA/testl allowed

CAUTION

Note that changing the name of a
directory also changes the path of all
files listed under that directory. All
subsequent accesses to those files must
specify the new pathnames for the files.

As each file in a pathname list is renamed, the RENA}IE command displays
one of the following messages, as appropriate:

old-pathname, renamed TO new-pathname
or

old-pathname, renamed OVER new-pathname

3-46

ERROR MESSAGES

There must be a one-for-one correspondence between the oldname and
newname lists in the RENAME command. A missing element in either list
causes RENAME to display the following message:

unmatched path name lists

If your system is configured with user-designed access limitations, you
must have at least delete access to old pathnames and add-entry access to
the destination directory to use the RENAME command.

If you are not allowed delete access on your system, the following
message is displayed when you attempt to use the OVER preposition in a
RENAME command:

o ld-pathname , DELETE access required

If you are not allowed add-entry access on your system, the following
message is displayed when you attempt to use the TO preposition in a
RENAME command:

new-pathname, directory ADD ENTRY access required

If the RENAME command encounters an error in the renaming of a file, it
will attempt to continue renaming each succeeding file in sequence.

Use of the AFTER preposition is not valid for the RENAME command, and an
attempt to use it causes the following message to be displayed:

AFTER preposition, TO or OVER preposition expected

Note that the RENAME command is the only Human Interface file handling
command that cannot be used across volume boundaries; that is, you cannot
use the RENAME command to rename a file or move data from a volume
located on one secondary storage device to a volume located on another
secondary storage device (e.g., from one diskette to another). An
attempt to do so causes the following error message:

0005: E$CONTEXT

Use the COpy command or a combination of COPY and DELETE commands if you
wish to rename files or move data across volume boundaries.

3-47

RENAME

RESTORE

RESTORE

This command restores files to a named volume by copying them from a
backup volume.

The format of this command is as follows:

INPUT PARAMETERS

:backup device:

QUERY

pathname

Logical name of the backup device from which
RESTORE restores files.

Causes the Human Interface to prompt for
permission to restore each file. The Human
Interface prompts with one of the following
queries:

pathname, RESTORE data file?

or

pathname, RESTORE directory?

Enter one of the following responses to the query:

Entry

Y or y

E or e

R or r

Any other
character

3-48

Action

Restore the file.

Exit from the RESTORE command.

Continue restoring files without
further query.

If data file, do not restore the
file; if directory file, do not
restore the directory or any
file in that portion of the
directory tree. Query for the
next file, if any.

OUTPUT PARAMETE:RS

TO

OVE:R

pathname

DESCRIPTION

:Restores the files from the backup volume .to new
files .onthe named volume. if the files do not
already exist on the named volume. However, if a
file being restored already exists on the named
volume, :RESTO:RE prompts for permission to restore
the file.

:Restores the files from the backup volume over
(replaces) the files on the named volume. If a
file does not exist on the named volume, :RESTO:RE
creates a new file .on the named volume.

Pathname of a file which receives the r~stored
files (you must specify a directory pathname when
restoring more than one file). If you specify a
logieal name for a device,:RESTO:REplacestbe
files under the root directory for that device.
However, the device must contain a volume
formatted as a named volume. If you wish to
restore files to the directory in which they
originated, you should specify the same pathname
parameter as you usedwithth~ BACKUP command.

RESTO:RE is a utility which copies files from backup volumes (where the
BACKUP command originally saved them) to named volumes. :RESTO:RE copies
the files to any directory you specify, maintaining the hierarchical
relationships between thebacked-,up files.

When :RESTO:RE copies files, it copies only those files for which you are
the owner. For these files, it restores the following information:

• File name

• Access list

• Extension data

• File granularity

• Contents of the file

RESTO:RE changes the creation, last modification, and last access dates of
the file to the current date.

Each backup volume which is used as input to the RESTO:RE command must
contain files placed there by the BACKUP command. In addition, if the
backup operation required multiple backup volumes, you must restore these
volumes in the same order as they were backed up.

3-49

RFSTORE

RESTORE

DESCRIPTION (continued)

The output volume which receives the restored files must be a named
volume. You must have sufficient access rights to the files in that
volume to allow RESTORE to perform all necessary operations. In order
for RESTORE to create new files on a named volume, you must have add
entry access to directories on that volume. In order for RESTORE to
restore files over existing files, you must have add entry and change
entry access to directories in that volume and delete, append, and update
access to data files.

When you enter the RESTORE command, RESTORE displays the following
sign-on message:

iRMX 86 DISK RESTORE UTILITY Vx.x

where Vx.x is the version number of the utility. Then it prompts you for
a backup volume.

Whenever RESTORE requires a new backup volume, it issues the following
message:

backup device, mount backup volume Inn, enter Y to continue:

where backup device indicates the logical name of the backup device and
nn the number of the requested volume. (RESTORE in some cases displays
additional information to indicate problems with the current volume.) In
response to this message, place the backup volume in the backup device
(make sure that the volume number is correct if the backup operation
involved multiple volumes). Enter one of the following:

Entry

Y, y, R, or r

E or e

Any other
character

Action

Continue the restore process.

Exit from the RESTORE command.

Invalid entry; reprompt for entry.

RESTORE continues prompting you until you supply the correct backup
volume.

As it restores each file, RESTORE displays the following message at the
Human Interface console output device (:CO:):

pathname, RESTORED

However, if a file with the same pathname already exists during a restore
operation using the TO preposition, RESTORE displays the following
message:

pathname, already exists, DELETE?

3-50

DESCRIPTION (continued)

Enter one of the following in response to the query:

Entry

Y or y

E or e

R or r

Any other
character

ERROR MESSAGES

Action

Delete the file and replace it with the one from
the backup volume.

Exit from the RESTORE command.

Delete the file, replace it with the one from the
backup volume, and continue restoring files
without further queries.

Do not restore the file; go on to the next file.

pathname, ADD ENTRY or UPDATE access required

RESTORE could not restore a file, either because you did not have add
entry access to the file's parent directory or because you did not have
update access to the file. RESTORE continues with the next file.

backup device, backup volume Hnn, date, mounted
backup device, backup volume Hnn, date, required

backup device, mount backup volume Hnn, enter Y to continue:

RESTORE cannot continue because the backup volume you supplied is not the
one that RESTORE expected. Either you supplied a volume out of order or
you supplied a volume from a different backup session. RESTORE reprompts
for the correct backup volume.

backup device, cannot attach volume
backup device, exception code

backup device, mount backup volume Hnn, enter Y to continue:

RESTORE cannot access the backup volume. This could be because there is
no volume in the backup device, the volume is write protected, or because
of a hardware problem with the device. The second line of the message
indicates the iRMX 86 exception code encountered. RESTORE continues to
issue this message until you supply a volume that RESTORE can access.

3-51

RESTORE

ERROR MESSAGES (continued)

pathname, DELETE access required

RESTORE could not restore a file because you did not have delete access
to the file. RESTORE continues with the next file.

pathname, exception code, error during BACKUP, file not restored

When the BACKUP utility saved files, it encountered an error when
attempting to save the file indicated by this pathname. RESTORE is
unable to restore this file. The message lists the iRMX 86 exception
code encountered.

pathname, exception code, error during BACKUP, restore incomplete

When the BACKUP utility saved the files, it encountered an error when
attempting to save the file indicated by this pathname. RESTORE restores
as much of the file as possible to the named volume. The message lists
the iRMX 86 exception code encountered.

backup device, error reading backup volume
backup device, exception code

RESTORE tried to read the backup volume but encountered an error
condition, possibly because of a faulty area on the volume. The second
line of the message indicates the iRMX 86 exception code encountered.

pathname, exception code, error writing output file, restore incomplete

RESTORE encountered an error while writing a file to the named volume.
This message lists the iRMX 86 exception code encountered. RESTORE
writes as much of the file as possible to the named volume.

pathname, extension data not completely restored, nn bytes required

The amount of space available on the named volume for extension data is
not sufficient to contain all the extension data associated with the
specified file. The value nn indicates the number of bytes required to
contain all the extension data. This message indicates that the named
volume on which RESTORE is restoring files is formatted differently than
the named volume which originally contained the files. RESTORE restores
as much of the extension data as possible. To ensure that you restore
all the extension data from the backup volume, you should restore the
files to a volume formatted with an extension size set equal to the
largest value reported in any message of this kind. Refer to the
description of the FORMAT command for information about setting the
extension size.

3-52

ERROR MESSAGES (continued)

pathname, file does not exist

The pathname you specified as input to RESTORE does not represent an
existing file or device.

pathname, file not restored

For some reason, RESTORE was unable to restore a file from the backup
volume. RESTORE continues with the next file. Another message usually
precedes this message to indicate the reason for not restoring the file.

backup device, invalid logical name

The logical name you specified for the backup device contains unmatched
colons, is longer than 12 ~haracters, contains invalid characters, or
does not exist.

backup device, not a backup volume

backup device, mount backup volume #nn, enter Y to continue:

The volume you supplied on the backup device was not a backup volume.
RESTORE continues to issue this message until you supply a backup volume.

backup device, not a valid backup device

The logical name you specified for the backup device was not a logical
name for a device.

output specification missing

You did not specify a pathname to indicate the destination of the
restored files.

pathname, READ access required

You do not have read access to a file on the backup volume; therefore
RESTORE cannot restore the file.

keyword, too many values

You specified too many values after the TO or OVER parameter.

3-53

RESTORE

RESTORE

ERROR MESSAGES (continued)

keyword, unrecognized control

You entered an invalid optional parameter. The keyword portion of the
message indicates the parameter that is in error.

pathname, exception code

The pathname you specified as input to RESTORE is in error. This error
could occur if you specify an invalid or nonexistent path component.
This message displays the exception code that results from this error.

3-54

SUBMIT

This command reads and executes a set of commands from a file in
secondary storage instead of from the console keyboard. To use the
SUBMIT command you must first create a data file that defines the command
sequence and formal parameters (if any).

The format of the command is as follows:

INPUT PARAMETERS

pathname

parameter-list

OUTPUT PARAMETERS

TO

pathname

Name of the file from which the commands will be
read. This file may contain nested SUBMIT files.

Actual parameters that are to replace the formal
parameters in the SUBMIT file. You must surround
this parameter list with parentheses. You can
specify as many as 10 parameters, separated by
commas, in the SUBMIT command. If you omit a
parameter, you must reserve its position by
entering a comma. If a parameter contains a
comma, space, or parenthesis, you must enclose the
parameter in single quotes. The sum of all
characters in the parameter list must not exceed
512 characters.

Causes the output from each command in the SUBMIT
file to be written to the specified new file
instead of the console screen. If the listed
output file already exists, the SUBMIT command
will display the following message:

pathname, already exists DELETE?

Enter a Y or y if you wish the existing output
file to be deleted. Enter any other character if
you do not wish the existing file to be deleted.
A response other than Y or y causes the SUBMIT
command to be terminated and you will be prompted
for a new command entry.

3-55

SUBMIT

SUBMIT

OUTPUT PARAMETERS (continued)

OVER

AFTER

outpath-list

DESCRIPTION

Causes the output for each command in the SUBMIT
file to be written over the specified existing
file instead of the console screen.

Causes the output from each command in the SUBMIT
file to be written to the end of an existing file
instead of the console screen.

Pathnames of one or more files to receive the
processed output from each command executed from
the SUBMIT file. If no preposition or output file
is specified, TO :CO: is the default.

Any program that reads its commands from the console keyboard can be
executed from a SUBMIT file. If another SUBMIT command is itself used in
a SUBMIT file, it causes another SUBMIT file to be invoked. You can nest
SUBMIT files to any level of nesting until memory is exhausted. When one
nested SUBMIT file completes execution, it returns control to the next
higher level of SUBMIT file.

When you create a SUBMIT file, you indicate formal parameters by
specifying the characters %n, where n ranges from 0 through 9. When
SUBMIT executes the file, it replaces the formal parameters with the
actual parameters listed in the SUBMIT command (the first parameter
replaces all instances of %0, the second parameter replaces all instances
of %1, and so forth). If the actual parameter is surrounded by quotes,
SUBMIT removes the quotes before performing the substitution. If there
is no actual parameter that corresponds to a formal parameter, SUBMIT
replaces the formal parameter with a null string.

When you specify a preposition and output file in a SUBMIT command, only
your SUBMIT command entry will be echoed on the console screen; the
individual command entries in the submit file are not displayed on the
screen as they are loaded and executed.

The SUBMIT command will display the following message when all commands
in the submit file have been executed:

END SUBMIT pathname

3-56

EXAMPLE

This example shows a SUBMIT file that uses formal parameters and the
command that you can enter to invoke this SUBMIT file. The SUBMIT file,
which resides on file :Fl:PROGRAM, contains the following lines:

ATTACHDEVICE Fl AS %0
CREATEDIR %0/ %1
UPCOpy :Fl:%2 TO %0%1/%2

The SUBMIT file contains three formal parameters, indicated by %0, %1,
and %2. The %0 indicates the logical name of an iRMX 86 device; the %1
indicates the name of a directory on that device; the %2 indicates the
name of a file which will be copied from an ISIS-II disk to the iRMX 86
device.

The SUBMIT command used to invoke this file is as follows:

-SUBMIT :Fl:PROGRAM (:Fl:, PROG, FILEl)

The command sequence created and executed by SUBMIT is shown as it would
be echoed on the console output device.

-ATTACHDEVICE Fl AS :Fl:
Fl, attached as :Fl:
-CREATEDIR :Fl:/PROG
:Fl:PROG, directory created
-UPCOPY :Fl:FILEI TO :Fl:PROG/FILEI
:Fl:FILEI upcopied TO :Fl:PROG/FILEI
END SUBMIT :Fl:PROGRAM

3-57

SUBMIT

TIME

This command sets the system clock. If no new time is entered, the TIME
command causes the current system time to be displayed.

The format is as follows:

~I--.... r----------.... --
~

INPUT PARAMETERS

hh: Hours specified as 0 through 24.

mm: Minutes specified as 0 through 59.

ss Seconds specified as 0 through 59.

DESCRIPTION

If one of the time entries in the parameter string is set, all three must
be; there are no default settings for individual items in the parameter
string.

If you request the time-of-day and the system clock has not been set, the
TIME command displays the following message:

00:00:00

See also the DATE command in this chapter if you wish to set the date in
conjunction with the system clock.

An invalid time or an out-of-range entry for the TIME command causes the
following error message to be displayed:

illegal time

3-58

UPCOpy

This command copies files from a volume on ISIS-II secondary storage to a
volume on iRMX 86 secondary storage via the iSBC 957A/B Interface and
Execution package.

inpath-list

INPUT PARAMETERS

inpath-list

QUERY

1'----(TO ~-_

)--1_-(outpath-list

List of one or more filenames of the ISIS-II files
that are to be copied to iRMX 86 secondary
storage, either on a one-for-one basis or
concatenated into one or more iRMX 86 output files.

Causes the Human Interface to prompt for
permission to copy each ISIS-II file to the listed
iRMX 86 output file. Depending on which
preposition you specify (TO, OVER, or AFTER), the
Human Interface prompts with one of the following
queries:

filename, copy up TO out-pathname?

filename, copy up OVER out-pathname?

filename, copy up AFTER out-pathname?

Enter one of the following (followed by a carriage
return) in response to the query:

Entry

Y or y

E or e

R or r

Any other
character

Action

Copy the file.

Exit from the UPCOPY command.

Continue copying files without
further query.

Do not copy this file; go to
the next file in sequence.

3-59

UPCOpy

UPCOpy

OUTPUT PARAMETERS

TO

OVER

AFTER

outpath-list

DESCRIPTION

Copies the ISIS-II file or files TO a new iRMX 86
file or files in the listed sequence. The output
file or files should not already exist when the TO
preposition is used. If no preposition is
specified, TO :CO: is the default. If more input
files than output files are specified in the
command line, the remaining input files will be
appended to the end of the last listed output file.

Copies the listed ISIS-II input file or files OVER
existing iRMX 86 destination files in the listed
sequence. If more input files than output files
are listed in the command line, the remaining
input files will be appended to the end of the
last listed output file.

Appends the listed ISIS-II input file or files
AFTER the end-of-data on an existing iRMX 86
output file or files in the listed sequence.

One or more pathnames of the iRMX 86 destination
files. Multiple pathnames muxt be separated by
commas. Separating blanks are optional. If the
preposition and output parameter defaults are used
in the command line, the output will go to the
iRMX 86 console screen.

Before you enter an UPCOPY command on the iRMX 86 console keyboard, you
must have your target system connected to a development system with the
957A/B package and the package must be running. The iRMX 86 copies of
the files will have WORLD access; that is, all iRMX 86 system users can
peform read, write, and delete operations on the files without
restriction.

As each ISIS-II file in the input list is copied, the Human Interface
will display one of the following messages on the iRMX 86 console screen,
as appropriate:

filename, copied up TO out-pathname

filename, copied up OVER out-pathname

filename, copied up AFTER out-pathname

3-60

CHAPTER 4. UDI SYSTEM CALLS

Your programs request iRMX 86 PC Operating System services through the
Universal Development Interface (UDI) system calls. This chapter
describes the set of system calls that are available to iRMX 86 PC
programs. Although the iRMX 86 Operating System can recognize many other
system calls, (these are listed in Appendix B) you can perform all normal
operations with UDI calls. This is a design characteristic of the UDI;
it forms a "membrane" through which your programs send requests to the
Operating System, and through which the Operating System returns
information to programs.

This chapter contains these four sections:

• USING THE UDI. This section outlines general programming
considerations for using the Universal Development Interface.
For example, this section explains how to use UDI libraries and
how to deal with errors in programs.

• TYPES OF UDI SYSTEM CALLS. This section explains certain
concepts about UDI File Management and Memory Management system
calls. For example, the concept of a file connection is
explained here.

• DESCRIPTIONS OF SYSTEM CALLS. Here is the heart of this
chapter. Each UDIsystem call is described in detail, with an
explanation of how the call is invoked. The calls are arranged
alphabetically for quick reference. At the beginning of this
section you will find a System Call Dictionary: a brief listing
of system calls arranged into these functional groupings:

Memory Management

File Handling

Program Control

Exception Handling

Utility and Command Parsing

• EXAMPLE PROGRAM: At the end of this chapter is the listing of a
PL/M-86 program that uses a representative sample of UDI system
calls.

4-1

UDI SYSTEM CALLS

USING THE UDI

This section contains information about:

• UDI Libraries and INCLUDE files

• Exceptional conditions such as hardware errors

• Special data types referred to in descriptions of UDI system calls

UDI LIBRARIES

To execute a program which uses UDI system calls, you must link the
program to one of three iRMX 86 UDI libraries. These libraries are
called URXLRG.LIB, URXSML.LIB, and URXCOM.LIB. If your program
corresponds to the LARGE or MEDIUM models of segmentation, link it to
URXLRG.LIB. If your program corresponds to the SMALL or COMPACT models
of segmentation, link it to URXSML.LIB or URXCOM.LIB, respectively.
These libraries are in the UDI directory under the directory SYSTEM. The
pathname for the COMPACT library, for example, is SYSTEM/UDI/URXCOM.LIB.

The iRMX 86 PROGRAMMING TECHNIQUES manual discusses selecting a model of
segmentation. While these models deal with the PL/M 86 language, they
apply to assembly language as well. In contrast, Pascal-86 and
FORTRAN-86 require the large library.

INCLUDE FILES

You must declare each UDI procedure used in your PL~-86 programs as an
EXTERNAL procedure. These declarations are contained in a single file
named SYSTEM/UDI/UDI.EXT. You INCLUDE this file with a PL~-86 program
that makes UDI system calls. You can edit this file to delete references
that you don't use in your programs.

EXCEPTIONAL CONDITIONS

Every UDI call except DQ$EXIT returns a condition code which specifies
the status of the call. Each condition code has a unique numeric value,
and an associated mnemonic by which it is known. For example, the code
indicating that there were no errors or unusual conditions has the
numeric value zero (0) and the name E$OK. Any code other than E$OK
returned from a system call means there was an exceptional condition.
Exception codes are classified as:

• Environmental Exceptions. These are generally caused by
conditions outside the control of a program; for example, device
errors or insufficient memory.

4-2

UDI SYSTEM CALLS

• Programmer Errors •
(for example, "bad
"range check", and
Extension are also

These are typically caused by coding errors
parameter"), but "divide-by-zero", "overflow",
errors detected by the 8087 Numeric Processor
classified as avoidable.

When an error is detected, the normal (default) system action is to
display on the console terminal an error message, and terminate the
program. However, you may establish your own routine to handle
exceptions by using the UDI system calls DQ$TRAP$EXCEPTION and
DQ$DECODE$EXCEPTION.

Appendix A contains a list of exception codes that the iRMX 86 Operating
System can return, with the numeric value, mnemonic, and meaning of each
code.

DATA TYPES

The following data types are referred to in the descriptions of system
calls:

BYTE

WORD

STRING

TOKEN

POINTER

An 8-bit item.

A two-byte item.

A sequence of bytes, the first of which contains the
length (in bytes) of the remaining portion of the
string. A length of zero indicates a null string.

A WORD passed between a program and the Operating System
to represent an object; for example, a CONNECTION is a
token used in File Management System calls to represent a
file. In PL/M-86:

DECLARE TOKEN LITERALLY 'WORD';

Equivalent to PL/M-86 type POINTER. It is two bytes
under the small model of segmentation; four bytes in
other cases.

CONNECTION A token used to manipulate iRMX 86 files. In PL/M-86:

SELECTOR

DECLARE CONNECTION LITERALLY 'WORD';

Equivalent to the PL/M-86 type SELECTOR; a 16-bit
iAPX 86,88 paragraph number (the base portion of a
four-byte pointer).

4-3

UDI SYSTEM CALLS

DESCRIPTIONS OF SYSTEM CALLS

This section contains descriptions of each UDI system call. The calls
are arranged alphabetically. Before the first system call description, a
System Call Dictionary (Table 4~1) shows the calls arranged in functional
groups, with a short description of each call and the page number of the
description.

Every system call description contains the following information in the
order listed here:

• The name of the system call.

• A brief summary of the function of the call.

• The form of the call as it is invoked from a PL/M-86 program,
with symbolic names for each parameter. (Calling sequences show
formal parameters in lower case.)

• Definition of input and output parameters.

• A complete explanation of the system call, including any
information you will need to use the system call.

NOTE

The first system call described,
DQ$ALLOCATE, also includes an actual
(as opposed to formal) PL/M-86
invocation of the system call and an
ASM-86 calling sequence. These are
included only once because they are
typical of all system calls.

MEMORY MANAGEMENT SYSTEM CALLS

When the iRMX 86 Operating System loads and runs a program, the program
is allocated a specific amount of memory. The portion of memory not
occupied by loaded code and data -- the free space pool --is available to
programs dynamically, i.e., while the program is running. The Operating
System manages memory as segments of the size a program requests.

Your programs can use the UDI system calls DQ$ALLOCATE, and DQ$FREE,
respectively, to get a memory segment from the pool, and to return the
segment to the pool. You can use the call DQGETSIZE to receive
information about an allocated memory segment.

4-4

UDI SYSTEM CALLS

FILE-HANDLING SYSTEM CALLS

About one-half of UDI system calls are used to manipulate files. Figure
4-1 shows the chronological relationship between the most frequently used
file-handling system calls.

ATTACH

rl READ WRITE
OPEN - SEEK ~ CLOSE - DETACH - DELETE

r TRUNCATE

Q ~ f CREATE

Figure 4-1. Chronology Of System Calls

The iRMX 86 Operating System distinguishes between:

• Establishing the association between a program and a data file

• Operating on the data file

The association between a program and a data file is a connection, and is
represented in your programs by a token of type CONNECTION.

Your programs establish a connection by using the system calls DQ$ATTACH
or DQ$CREATE and break the connection with DQ$DETACH. When your program
establishes a connection via DQ$ATTACH or DQ$CREATE, it receives a
CONNECTION token from the operating system. You use this token in all
further communications with the operating system to identify the file.

You use the procedure DQ$OPEN to prepare an established connection for
input/output operations. You perform the actual input or output
operations with DQ$READ and DQ$WRITE. You can move the file pointer with
the DQ$SEEK call. When input/output is finished, you close the file
connection with DQ$CLOSE. Note that you open and close connections, not
files. Closing a file connection frees buffer space. Once a connection
is established, it may be opened and closed as often as necessary.

DQDETACH is the call that eliminates a connection, and DQ$DELETE deletes
a file. If a file ha& connections attached when a program issues
DQ$DELETE, the Operating System will mark for deletion the file. That
is, the file is not actually deleted until all connections are detached.

4-5

UDI SYSTEM CALLS

EXCEPTION-HANDLING SYSTEM CALLS

When an exceptional condition occurs while the iRMX 86 Operating System
is running a user program, the default exception handler (part of the
Operating System) will terminate the program and display a message on the
terminal identifying the exception code. You can write a program to
handle exception codes, rather than using the default exception handler.
In this case, the Operating System will not terminate your program, but
will pass control to your exception handler. Three system calls are used
to define and use your own exception handler:

• DQ$TRAP$EXCEPTION, which is used to identify an exception handler
that you provide.

• DQGETEXCEPTION$HANDLER, which is an informative system call
returning the address of the current exception. handler: either
the default system handler, or one you specify with
DQ$TRAP$EXCEPTION

• DQ$DECODE$EXCEPTION, which converts an exception numeric code
into its equivalent mnemonic.

Before your exception handler gets control, the iRMX 86 Operating System
does the following:

1. Pushes the condition code onto the stack.

2. Pushes the number of the parameter that caused the exception onto
the stack (1 for the first parameter, 2 for the second, etc.).

3. Pushes a word onto the stack (reserved for future use).

4. Pushes a word for the 8087 Numeric Processor Extension onto the
stack.

5. Initiates a long call to the exception handler.

If the condition was not caused by an erroneous parameter, the
responsible parameter number is zero. If the exception code is E$NDP,
the fourth item pushed onto the stack is the 8087 status word, and 8087
exceptions have been cleared.

Programs compiled under the SMALL model of segmentation cannot have an
alternate exception handler, but must use the default system exception
handler. This is because the exception handler must have a LONG POINTER,
which is not available with SMALL segmentation.

4-6

SYSTEM CALL

DQ$ALLOCATE

DQ$FREE

DQGETSIZE

UDI SYSTEM CALLS

Table 4-1. SYSTEM CALL DICTIONARY

FUNCTION PERFORMED

MEMORY MANAGEMENT CALLS

Creates a segment of a specified size for use
by the application.

Returns the specified segment to the system.

Returns the size of the specified segment.

FILE-HANDLING CALLS

PAGE

4-9

4-11

4-25

DQ$ATTACH Creates a connection to a specified file. 4-11

DQ$CHANGE$EX -
TENSION Changes the extension of a file name. 4-12

DQ$CLOSE Closes the specified file connection. 4-13

DQ$CREATE Creates a file for use by the application. 4-14

DQ$DELETE Deletes a file. 4-16

DQ$DETACH Closes a file and deletes its connection. 4-17

DQGETCON-
NECTION$STATUS Returns status of a file connection. 4-22

DQ$OPEN Opens a file for a particular type of access. 4-28

DQ$READ Reads the next sequence of bytes from a file. 4-32

DQ$RENAME Renames the specified file. 4-34

DQ$SEEK Moves the current position pointer of a file. 4-35

DQ$SPECIAL Sets terminal line-edit/tranparent mode. 4-37

DQ$TRUNCATE Truncates a file to the specified length. 4-41

DQ$WRITE Writes a sequence of bytes to a file. 4-42

4-7

UDI SYSTEM CALLS

Table 4-1. SYSTEM CALL DICTIONARY (continued)

SYSTEM CALL

DQ$EXIT

DQ$OVERLAY

DQ$DE
CODE$EXCEPTION

DQGETEXCEPT
ION$HANDLER

FUNCTION .PERFORMED

PROGRAM CONTROL

Exits from the current application job.

Causes the specified overlay to be loaded.

EXCEPTION-HANDLING CALLS

Returns a short description of a
specified error code.

Returns a POINTER to the address of the
program currently being used to process
errors.

DQ$TRAP$EXCEPTION Identifies a custom exception processing

PAGE

4-18

4-30

4-15

4-24

program for a particular type of error. 4-40

DQGETARGUMENT

DQ$GE T$SYS
TEM$ID

DQGETTIME

UTILITY AND COMMAND PARSING

Returns the next argument from the
character string used to invoke the
application program.

Returns the name of the underlying
operating system supporting the UDI.

Returns the current time of day as kept
by the underlying operating system.

DQ$SWITCH$BUFFER Selects a new buffer from which to process
commands.

4-8

4-20

4-26

4-27

4-39

DQ$ALLOCATE

DQ$ALLOCATE requests a memory segment from the free memory pool.

base$addr DQ$ALLOCATE (size, except$ptr);

INPUT PARAMETER

size

OUTPUT PARAMETERS

base$addr

except$ptr

DESCRIPTION

A WORD which,

• if not zero, contains the size, in bytes, of the
requested segment. If the size parameter is not a
multiple of 16, it will be rounded up to the nearest
multiple of 16.

• if zero, indicates that the size of the request is
65536 (64K) bytes.

A SELECTOR in which the Operating System places the
base address of the memory segment. If the request
fails because the memory requested is not available,
this argument will be OFFFFH, and the system will
return an E$MEM exception code.

A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix A.

The DQ$ALLOCATE system call is used to request additional memory. You may
use this call for dynamically creating buffer space.

EXAMPLE CALL PROCEDURES

These examples are included only for DQ$ALLOCATE. Their form is typical
of all system calls.

4-9

EXAMPLE CALL PROCEDURES (continued)

Both examples request 128 (decimal) bytes of memory~ and point to a word
named "ERR" for receiving the condition code).

Example PL/M-86 Calling Sequence

DECLARE ARRAY BASE WORD,
ERR WORD;

ARRAYBASE = DQ$ALLOCATE (128, @ERR);

Example ASM86 Calling Sequence

MOV
PUSH
LEA
PUSH
PUSH
CALL
MOV

AX,128
AX
AX,ERR

first parameter

DS second parameter
AX
DQALLOCATE
ARRAYBASE,AX ; returned value

This example is applicable to programs assembled according to the COMPACT,
MEDIUM, and LARGE models of segmentation. For the SMALL model, you would
not push the segment register before each parameter.

4-10

The DQ$ATTACH system call creates a connection to an existing file.

connection = DQ$ATTACH (path$ptr, except$ptr);

INPUT PARAMETER

path$ptr

OUTPUT PARAMETERS

connection

except$ptr

DESCRIPTION

A POINTER to a STRING containing the pathname for the
file to be attached.

A WORD in which the iRMX 86 Operating System will
place the CONNECTION to the file.

A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix A.

This system call allows a program to obtain a connection to any file.
Attaching a file that is already attached is valid. A connection to the
existing file is made, and all prior connections remain established.

It is not a valid operation to attach :CO: or :LP:; if you do so the
Operating System will return the exception code E$SUPPORT.

4-11

DQS;\TT ;\('11

CHANGE$EXTENSION

DQ$CHANGE$EXTENSION changes or adds the extension at the end of a file
name.

CALL DQ$CHANGE$EXTENSION (path$ptr, extension$ptr, except$ptr);

INPUT PARAMETERS

path$ptr A POINTER to a STRING that specifies the path for the
file to be renamed.

extension$ptr A POINTER to a series of three bytes containing the
characters that are to be added to the pathname. This
is not a STRING. You must include three bytes, even
if some are blank.

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix A.

This system call is used to change a file name extension, or add an
extension. For example: :AFD1:FILE.SRC can be changed to :AFDl:FILE.OBJ
by a compiler when the compiler creates a file in which the object file
is written.

The three character extension may not contain delimiters recognized by
DQGETARGUMENT but may contain trailing blanks. If the first character
addressed by extension$ptr is a space, the system call will delete any
prior extension (including the preceding period).

4-12

DQ$CLOSE waits for completion of I/O operations taking place on the file
(if any), empties output buffers, and frees any buffers associated with
the CONNECTION.

CALL DQ$CLOSE (connection, except$ptr);

INPUT PARAMETER

connection

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A WORD containing a token for a file CONNECTION that
is currently open.

A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix A.

The DQ$CLOSE system call closes a connection that has been opened by the
DQ$OPEN system call. It performs the following steps:

1. It waits until all currently running I/O operations for the file
are completed.

2. It ensures that any information in a partially filled output
buffer is written to the file.

3. It releases any buffers associated with the file.

4. It closes the connection to the file. The connection is stil
valid, and can be re-opened if necessary.

Access Control

The Operating System performs no access checking before closing the
connection.

4-13

DQ$CLOSE

DQS(RL-\TE

DQ$CREATE creates a new file and establishes a connection to that file.

connection = DQ$CREATE (path$ptr, except$ptr);

INPUT PARAMETER

path$ptr

OUTPUT PARAMETERS

connection

except$ptr

DESCRIPTION

A POINTER to a STRING that specifies the path of the
file to be created.

A WORD in which the Operating System places a
CONNECTION to the newly created file.

A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix A.

This call creates a new file with the name you specify and returns the
CONNECTION to your program. If a file of the same name already exists it
is truncated (the data is destroyed).

To prevent accidentally destroying a file, issue DQ$ATTACH before issuing
DQ$CREATE. If the file does not exist, you receive an exception code of
E$FNEXIST upon return from DQ$ATTACH.

4-14

DQSDECODESEX(EPTIO:\

DQ$DECODE$EXCEPTION translates an exception code into an ASCII string.

CALL DQ$DECODE$EXCEPTION (except$code, buff$ptr, except$ptr);

INPUT PARAMETER

except$code

OUTPUT PARAMETERS

buff$ptr

except$ptr

DESCRIPTION

A WORD that contains the numeric exception code that
is to be interpreted.

A POINTER to a buffer (at least 81 bytes long) in
which the system will return a STRING.

A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix A.

Your program provides the Operating System with the numeric value of an
exception code, and the iRMX 86 Operating System returns the mnemonic and
hex value of this code. For example, if you pass DQ$DECODE$EXCEPTION a
value of 2 in except$code, the system will return the following string:

0002: E$MEM

The hex values and mnemonics for exception codes are listed in Appendix A.

4-15

.LETE

DQ$DELETE eliminates an existing file.

CALL DQ$DELETE (path$ptr, except$ptr);

INPUT PARAMETER

path$ptr

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A POINTER to a STRING that specifies the pathname of
the file to be deleted.

A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix A.

A program can use this system call to delete a file. This system call
will mark for deletion the specified file. This means that the system
may actually postpone deletion if there are other connections to the file
and delete the file only when all connections are closed and detached.

4-16

DQ$DETACH breaks the connection established by DQ$ATTACH or DQ$CREATE.

CALL DQ$DETACH (connection, except$ptr);

INPUT PARAMETER

connection

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A WORD containing a token for the file CONNECTION to
be deleted.

A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix A.

This system call deletes a file CONNECTION. If the CONNECTION is open,
the DQ$DETACH system call automatically closes it first (see DQ$CLOSE).
DQ$DETACH will also delete the file if it has been marked for deletion
and this is the last CONNECTION to the file.

4-17

DQ$DETACH

DQ$EXIT

DQ$EXIT returns control from your program to the Operating System.

CALL DQ$EXIT (end$code);

INPUT PARAMETERS

end$code

DESCRIPTION

A WORD containing the encoded reason for termination
of the program. You must include this code, but
currently the iRMX 86 Operating System does not check
this value. The standard codes are:

VALUE

o
1
2
3
4

INTERPRETATION

Termination was normal.
Warning messages were issued.
Errors were detected.
Fatal errors were detected.
The job was aborted.

DQ$EXIT terminates a program. All connections are detached, all files
are closed, and any memory allocated to the program with DQ$ALLOCATE is
returned to the memory pool.

Calling DQ$EXIT cannot result in an exception code.

4-18

DQ$FREE returns to the Operating System a segment of memory acquired
earlier by DQ$ALLOCATE.

CALL DQ$FREE (base$addr, except$ptr);

INPUT PARAMETER

base$addr

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A SELECTOR containing the base address of the segment
that is to be deleted. This is the base address
SELECTOR returned to your program by DQ$ALLOCATE.

A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix A.

The DQ$FREE system call returns the specified segment to the memory pool
from which it was allocated.

4-19

DQ$FREE

DQSGETSARGUMENT

The DQGETARGUMENT system call is used to return successive arguments
from a command line.

delimit$char

INPUT PARAMETER

argument$ptr

OUTPUT PARAMETERS

delimit$char

except$ptr

DESCRIPTION

DQGETARGUMENT (argument$ptr, except$ptr);

A POINTER to a buffer in which the system will return
the argument string. The length of the string (in
bytes) is stored in the first byte of this area. The
buffer must be at least 81 bytes long.

This is a single BYTE in which the system returns the
delimiter character.

A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix A.

GET$ARGUMENT is called to get successive arguments from a command line.
The command line may be the same one that invoked the program containing
this call. But if the UDI system call DQ$SWITCR$BUFFER is called before
DQGETARGUMENT, the command line can be anywhere that you specify.

A delimiter is returned only if the exception code is zero. The
following delimiters are recognized by the iRMX 86 Operating System:

,)(=II!$% \+- ><-

as well as a space (), the grave accent ('), and any characters with
hexadecimal values between 0 and 20R.

The Operating System will strip out ampersands (&) and semi-colons (;).

4-20

DQGETARGUMENT

Before your program runs, the Operating System Command Line Interpreter
(CLI) pre-edits the command line to remove comments and continuation
characters. The Operating System also makes the following changes to the
command line:

• Multiple adjacent blanks separating two arguments are treated as
one blank. One or more blanks adjacent to any other delimiter
are removed. A tab is treated as a blank and returned as a blank.

• Lower case characters are converted to upper case unless part of
a quoted string.

• Strings enclosed within a matching pair of single or double
quotes are considered literals. The enclosing quotes are not
returned as part of the argument.

EXAMPLE

The following example illustrates the arguments and delimiters
returned by successive calls to DQGETARGUMENT. The ARGUMENT LENGTH
value is in the first byte of the string returned, the contents of each
string is listed in the column ARGUMENT VALUE, and the delimiter returned
in the byte delimit$char is in the column DELIMITER.

Note that the last delimiter for each example is a carriage return (CR);
this is how a program determines that there are no more arguments in the
command line.

Table 4-2. Command Parsing Example

PLM86 LINKER.PLM PRINT(:LP:) NOLIST

ARGUMENT
LENGTH VALUE

8 PLM86
10 LINKER.PIM

5 PRINT
4 :LP:
6 NOLIST

4-21

DELIMITER

(space)
(space)

(
)
CR

DQSGETSCOl"l"ECTION$STATUS

The DQGETCONNECTION$STATUS system call returns information about a file.

CALL DQGETCONNECTION$STATUS (connection, info$ptr, except$ptr);

INPUT PARAMETER

connection

OUTPUT PARAMETERS

info$ptr

A WORD containing a token for the CONNECTION whose
status is desired.

A POINTER to a structure in which the Operating System
will place the status information. The structure of
info$ptr should be:

DECLARE INFO STRUCTURE
(OPEN
ACCESS
SEEK
FILEPTRLOW
FILEPTRHIGH

BYTE,
BYTE,
BYTE,
WORD,
WORD);

These fields are interpreted as follows:

OPEN 1 if connection is open, otherwise 2.

ACCESS Access privileges of the connection. The
right is granted if the corresponding bit is
set.

BIT ACCESS

0 delete
1 read
2 write
3 update (read and wr,.te)

4-22

info$ptr (continued)

SEEK

FILEPTRHIGH
FILEPTRLOW

DQSGETSCONNECTIONSSTATUS

Types of seek supported.

VALUE
o
3

MEANING
no seek allowed
seek forward and backward

Values of 1 and 2 are not meaningful to the
iRMX 86 Operating System.

These two items together form a 4-byte unsigned
integer that indicates the current position in
the file. The position is expressed as the
number of bytes from the beginning of the
file, the first byte being byte 0 (zero).
This field is undefined if the file is not
open or if backward seek is not supported by
the device (for example, the printer cannot be
rewound).

except'$ptr A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix A.

DESCRIPTION

DQGETCONNECTION$STATUS is used to obtain information about a file
CONNECTION. For example, you can use the system call if your program has
performed a number of read or write operations and it is necessary to
determine where the file pointer is now located.

4-23

DQGETEXCEPTION$HANDIJER

DQGETEXCEPTION$HANDLER returns the address of the current exception
handler.

CALL DQGETEXCEPTION (address$ptr, except$ptr);

OUTPUT PARAMETERS

address$ptr

except$ptr

DESCRIPTION

A POINTER to a four-byte area that the Operating
System fills with a long pointer to the entry point of
the current exception handler. A long pointer has the
form:

DECLARE LONG$P STRUCTURE
(LONG$OFFSET WORD,

LONG$BASE WORD);

A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix A.

DQGETEXCEPTION$HANDLER is an informative system call that returns to
your program the address of the current exception handler. This is the
address specified in the last call to DQ$TRAP$EXCEPTION, if it has been
called, otherwise the value returned is the address of the system default
exception handler.

This routine always returns a four-byte pointer, even if called from a
program compiled under the SMALL model of segmentation.

DQGETEXCEPTION$HANDLER is used in conjunction with DQ$TRAP$EXCEPTION
and DQ$DECODE$EXCEPTION. See the descriptions of these calls for more
information.

DQGETSIZE returns the size of an allocated memory segment.

size = DQGETSIZE (base$addr, except$ptr);

INPUT PARAMETER

base$addr

OUTPUT PARAMETERS

size

except$ptr

DESCRIPTION

A SELECTOR containing the base address of a block of
memory that was allocated with the DQ$ALLOCATE call.
This is the same address that is returned by
DQ$ALLOCATE when the segment was allocated.

A WORD which the Operating System sets as follows·:

• if not zero, contains the size, in bytes, of the
segment identified by the base$addr parameter

• if zero, indicates that the size of the segment
is 65536 (64K) bytes.

A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix A.

The GET$SIZE system call returns the size, in bytes, of a segment. You
identify the segment of memory with a base address SELECTOR that is
returned by the DQ$ALLOCATE system call when the segment is allocated.

The size of the segment may not be exactly what you requested with the
DQ$ALLOCATE call. The Operating System allocates memory in 16-byte
paragraphs. If you request a segment whose size is not a multiple of 16,
the system increases the size to the next 16-byte boundary. This larger
size is reflected in the size returned by DQGETSIZE.

4-25

DQGETSIZE

DQSC, E I $~ \ '" rE\1:~ID

DQ$GE T$SYSTKM$ID returns a string that identifies the operat.ing system.

I CALE.. llQGETSYSTEM$ID (id$ptr,. exeept:$ptr);

OUTPUT PARAMETERS

id$ptr

except$ptr

DESCRIPTION

POINTER: to a 21-byte buffer in which the Operating
System will place a STRING identifying the Operating
System.

A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix A.

This system call returns the following STRING:

iRMX 86

4-26

I

DQGETTIME returns the current date and time in character format.

I CALL DQGETTIIIE (lm£f$ptr. e=ept$ptr);

OUTPUT PAllAMETEltS

buff$ptr

except$ptr

DESCRIPTION

A POINTER to a buffer in which the Operati.. 'System
returns the current date and ;tim.e. The .st:nactureof
the buffer should be:

DECLARE DT STlWCTURE
(DATE (8) RTE,
TIME (8) BYTE);

A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix A.

This system. call returns the current date and time, each as a series of
bytes. DATE has the form MM/DD/YY for m.onth, day, and year. The two
slashes (/) are in the third and sixth bytes. For example, the date
January 15th of 1982 would be returned as:

01/15/82

TIME has the form HH:MM:SS for hours, minutes, and seconds, with
separating colons (:). The value for hours ranges from 0 through 23.
For example, the time 20 seconds past 3:12 PM would be returned as:

15:12:20

4-27

DQ$Gf Tlo,l I\1t

The DQ$OPEN system call is used to inform the Operating System how your
program is going to access a filet and to identify the buffers you will
use.

CALL DQ$OPEN (connectiont accesS t num$buf t except$ptr);

INPUT PARAMETERS

connection

access

num$buf

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A WORD containing a token for the file CONNECTION to
be opened.

A BYTE telling how your program is going to use the
CONNECTION. You should set the BYTE as follows:

Value

1
2
3

Meaning

Read only
Write only
Update (both reading and writing)

A BYTE containing the number of buffers that you want
the Operating System to allocate for this connection.

A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix A.

This system call prepares a connection for read, write t and seek
commands. Your program can have up to twenty connections open at one
time, if there is sufficient memory.

4-28

DESCRIPTION (continued)

DQ$OPEN:

1. Creates the number of buffers requested.

2. Sets the connection's file pointer to zero. This is the pointer
that tells the Operating System where in the file to perform an
operation.

3. Starts reading ahead if num$buf is greater than zero and the
access parameter is "Read only" or "Update."

Selecting Access Rights

The system will not allow your program to read using a connection open
for writing only, nor to write using a connection open for reading only.
If you are not certain how the connection will be used, specify both
reading and writing.

Selecting the Number of Buffers

The process of deciding how many buffers to allocate is based on three
considerations -- compatibility, memory, and performance.

COMPATIBILITY. If you expect to run your program on other systems using
UDI, you should use no more than two buffers.

MEMORY. The amount of memory used for buffers is directly proportional
to the number of buffers. So you can save memory by using fewer buffers.

PERFORMANCE. The performance consideration is more complex. Up to a
certain point, the more buffers you allocate, the faster your program can
run. The actual break-even point, the point where more buffers don't
improve performance, depends on many variables. Be aware that in order
to overlap I/O with computation, you must specify at least two buffers.
If performance is not at all important and memory is, use zero buffers.

Specifying zero buffers means that no buffering should occur; each
DQ$READ or DQ$WRITE should result in a physical I/O operation.
Interactive programs should open :CI: and :CO: with num$buf set to zero
to eliminate buffering.

If you normally seek before doing a read or write, num$buf should be 1.

4-29

DQSOPEN

DQSO\ un -',

TheDQ$OVEBLAY system call is invoked by a root module to load an overlay
module.

I CALL DQ$OVERLAY (naae$ptr. except$ptr);

INPUT PARAMETER

name$ptr

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A POINTER to a STRING that contains the name of an
overlay module. The name must be in upper-case.

A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix A.

This system call is invoked by a root module whenever the root module
wishes to load an overlay module.

If your assembly language or PL/M-86 programs use the DQ$OVERLAY
procedure, you should take care to ensure that you link the UDI library
to your program correctly. The iAPX 86, 88 FAMILY UTILITIES USER'S GUIDE
contains an example of linking an overlay program. This example lists a
two-step link process, as follows:

1. Link the root and each of the overlays separately, specifying the
OVERLAY control, but not the BIND control, in each LINK86 command.

2. Link all the output modules together in one module, specifying
the BIND control, but not the OVERLAY control.

This is the same process that you should use when linking your iRMX 86
overlay programs. However, you must ensure that you link the entire UDI
library to the root portion of the program and not to any of the
overlays. To do this, use the INCLUDE control to include the UDI
externals file (SYSTEM!UDI/UDI.EXT) with the assembly or compilation of
the root portion of the program. By including this file with the root,
you make external references to all UDI routines from that root. Then

4-30

DQSOVERLAY

DESCRIPTION (continued)

when you link the root to the UDI library, LINK86 pulls in all of the UDI
routines, not just the ones called in the root. Since you are linking
the UDI library to the root only, this prevents you from having
unsatisfied external references when you link the root to the overlays.

For example, suppose your program consists of three files, ROOT.OBJ,
OVlA.OBJ, and OV2A.OBJ, the root and overlay files, respectively. You
have compiled these program modules with the PL/M-86 compiler and
included the UDI externals file UDI.EXT with the compilation of the
root. Assuming that LINK86 resides on the default logical device in the
default directory, and that the object files reside in the directory
PROG, the following LINK86 commands will link the overlay program and
produce an executable module. This happens in two steps.

1. The first three LINK86 commands separately link the root and
overlay portions of the program. The root portion of the program
is linked to the UDI library (underlined entries are your
commands).

-LINK86 PROG/ROOT.OBJ, &
**SYSTEM/UDI/URXLRG.LIB OVERLAY

iRMX 86 8086 LINKER Vx. y

-LINK86 PROG/OVlA.OBJ OVERLAY(OVERLAYl)

iRMX 86 8086 LINKER Vx.y

-LINK86 PROG/OV2A.OBJ OVERLAY(OVERLAY2)

2. The next LINK86 command links together in one module all the
output modules produced in the first step.

-LINK86 PROG/ROOT.LNK, &
**PROG/OVlA.LNK, &
**PROG!OV2A.LNK &
**TO PROGRAM! BIND MEMPOOL(+2000H)

4-31

The DQ$READmoves a number of bytes from a file to a buffer. Your
calling program must specify the connection, the number of bytes, and the
buffer to receive the information.

bytes$read

INPUT PARAMETERS

connection

buff$ptr

bytes$max

OUTPUT PARAMETERS

bytes$read

except$ptr

DESCRIPTION

DQ$READ (connection, buff$ptr, bytes$max,
except$ptr);

A WORD containing a token for the connection to the
file. This connection must be open for reading or for
both reading and writing, and the file pointer of the
connection must point to the first byte to be read.

A POINTER to a buffer that will receive the data that
the Operating System reads from the file.

A WORD containing the maximum number of bytes you
expect to read from the file.

A WORD containing the actual number of bytes read.
This number is always equal to or less than the
bytes$max.

A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix A.

This system call reads a collection of contiguous bytes from the file
associated with the connection. These bytes are placed in a buffer
specified by the calling program.

4-32

DESCRIPTION (continued)

The Buffer

The buff$ptr parameter tells the Operating System where to place the
bytes after they are read. This is. a buffer you create, and if it is not
long enough, the Operating System overwrites the area beyond the buffer.

Number of Bytes Read

The number of bytes that your program requests is the maximum number of
bytes that the Operating System places in the buffer. However, there are
two circumstances under which the system reads fewer bytes.

• First, if the Operating System detects an end of file before
reading the number of bytes requested, it will return only those
bytes preceding the end of file. The bytes$read parameter can be
less than the bytes$desired parameter, and no exceptional
condition will be indicated.

• Second, if an exceptional condition does occur during the reading
operation, information in the buffer and the value of the
bytes$read parameter are meaningless.

Access Control

If the connection is not opened for reading or both reading and writing,
the Operating System returns an exceptional condition.

4-33

DQ$RJ£AlJ

The DQ$RENAME system call changes the pathname of a file.

CALL DQ$RENAME (path$ptr, new$path$ptr, except$ptr);

INPUT PARAMETERS

path$ptr

new$path$ptr

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A POINTER to a STRING that specifies the pathname for
the file to be renamed.

A POINTER to a STRING that specifies the new path for
the file. This path cannot refer to an existing file.

A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix A.

This system call allows your programs to change the pathname for a file
or a directory. Be aware that when you rename a directory, you are
changing the pathnames of all files contained in the directory. When you
rename a file to which a connection exists (this is valid) the connection
to the renamed file remains established.

Your program can change any aspect of the pathname so long as the file or
directory remains on the same vo·lume.

4-34

DQ$SEEK changes the file position pointer.

CALL DQ$SEEK (connection, mode, hi$move$count, lo$move$count,
except$ptr) ;

INPUT PARAMETERS

connection

hi$move$count
lo$move$count

mode

A WORD containing a token for an open connection whose
file pointer you wish to move.

These two WORDS combine to form a 32-bit integer
that tells the Operating System how many bytes to move
the file pointer.

A BYTE containing a value that controls the nature of
the movement of the file pointer. Any of the
following values are valid:

Mode

1

2

3

4

Meaning

Move the pointer backward by the specified
move count. If the move count is large enough
to position the pointer past the beginning of
the file, set the pointer to the first byte
(position zero).

Set the pointer to the position specified by
the move .count. Position zero is the first
position in the file. Moving the pointer
beyond the end of the file is valid.

Move the file pointer forward by the specified
move count. Moving the pointer beyond the end
of file is valid.

First move the pointer to the end of the file
and then move it backward by the specified
move count. If the specified move count would
position the pointer beyond the front of the
file, set the pointer to the first byte in the
file (position zero).

4-35

DQ$SEEK

DQSSEEK

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix A.

When performing random I/O, your programs must use this system call to
position the file pointer before using the DQ$READ, DQ$TRUNCATE, or
DQ$WRITE system calls. The location of the file pointer tells the
Operating System where in the file to begin reading, truncating, or
writing information. If your program is performing sequential I/O on a
file, they do not need to use this system call.

As mentioned previously, it is legitimate to position the file pointer
beyond the end of file. If your program does this and then invokes the
DQ$READ system call, the Operating System behaves as though the read
operation began at the end of file.

Also, it is possible to invoke the DQ$WRITE system call with the file
pointer beyond the end of the file. If your program does this, the
Operating System attempts to expand the file. Be aware that if you
expand your file in this manner, the expanded portion of the file will
contain undefined information.

4-36

DQ$SPECIAL specifies whether line editing is to be performed by the
Operating System on console input.

CALL DQ$SPECIAL (mode, conn$ptr, except$ptr);

INPUT PARAMETERS

mode

conn$ptr

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A BYTE used to change the mode of terminal input. The
values are:

• Transparent 1

• Line editing (default)

• Transparent 3

Each of these types is explained in the description.

A POINTER to a token for the CONNECTION to the file.
The CONNECTION must be a connection to :CI:
established by DQ$ATTACH.

A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix A.

This system call is used to change the technique by which your program
receives input from a console input device. The default mode is line
editing, but by using DQ$SPECIAL you can change from line editing to one
of the transparent modes, or back to line editing.

The meanings of the type parameter are as follows.

4-37

DQ$SPECIAL

DQSSPECIAL

DESCRIPTION (continued)

Value

1

1 2

3

Meaning

Transparent 1. Interactive programs often need to obtain
characters from the console exactly as they are typed.
This is made possible by transparent mode. In transparent
mode, all characters are placed in the buffer specified by
the call to DQ$READ. (The only exception are CTRL/C,
which will terminate the program, and CTRL/D, which has no
effect on the system.) The Operating System returns
control to the calling program when the number of
characters typed equals the number of characters specified
in the DQ$READ system call.
Line editing. This means that the console operator has
the opportunity to correct typing errors. Data from the
console is not actually returned by a call to DQ$READ
until the operator types a carriage return. The Operating
System removes editing characters (such as the backspace)
from the input, and also adds a line feed to the final
carriage return if buffer space permits.

Transparent 3. This is nearly the same as Transparent 1
mode, except that in Tranparent 3 mode the Operating
System returns control to your program immediately after
the DQ$READ call, whether or not any characters have
actually been typed since the last DQ$READ. If no
characters have been typed, this will be indicated by the
bytes$read parameter of the DQ$READ call. Characters that
are typed between successive calls to read the terminal
are held in a special Operating System buffer called the
"type-ahead" buffer.

4-38

DQ$SWITCHSB t" Ft'ER

DQ$SWITCH$BUFFER is used with DQGETARGUMENT to get arguments from a
command line contained within your program.

offset = DQ$SWITCH$BUFFER (buff$ptr, except$ptr)j

INPUT PARAMETERS

buff$ptr

OUTPUT PARAMETERS

offset

except$ptr

DESCRIPTION

A POINTER to a STRING containing the text to be parsed.

A WORD that the Operating System sets equal to the
number of bytes from the beginning of the buffer to
first character in the next argument in the buffer.

A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix A.

DQ$SWITCH$BUFFER is used to point to a command line other than the line
that invoked this program. Typically, you will first call
DQ$SWITCH$BUFFER, and then make a series of calls to DQGETARGUMENT.
Each call to DQGETARGUMENT fetchs an argument from the line pointed to
by buff$ptr.

DQ$SWITCH$BUFFER can also be used as an informative system call if you
need to know the location of the next argument in the line. If you call
DQ$SWITCH$BUFFER without changing buff$ptr, the value returned in offset
is the number of bytes from the beginning of the command line to the
first character in the next argument.

The parameter offset will be zero (0) upon return from the first call to
DQ$ SWI TCH$BUFFER.

4-39

.XCEPTION

DQ$TRAP$EXCEPTION substitutes an alternate exception handler for the
default exception handler provided by the operating system.

CALL DQ$TRAP$EXCEPTION (address$ptr, except$ptr);

INPUT PARAMETERS

address$ptr

OUTPUT PARAMETER

except$ptr

DESCRIPTION

the address of a four-byte area containing a long
pointer to the entry point of the alternate exception
handler. A long pointer has the form:

DECLARE LONG$P STRUCTURE
(LONG$OFFSET WORD,
LONG$BASE WORD);

A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix A.

DQ$TRAP$EXCEPTION is used to inform the Operating System that when an
exceptional condition occurs, the Operating System is to pass control to
your exception handler. An exceptional condition is defined as a return
from a system call with a condition code other than E$OK (see Appendix A
for exception code meanings).

See the section EXCEPTION-HANDLING SYSTEM CALLS at the beginning of this
chapter for an explanation of the conditions of the stack when your
exception handler receives control.

4-40

DQ$TRlJNCATE

DQ$TRUNCATE removes information from the position of the file pointer to
the end of the file.

CALL DQ$TRUNCATE (connection, except$ptr);

INPUT PARAMETER

connection

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A WORD containing a token for a CONNECTION to the
named data file that is to be truncated. The file
pointer of this CONNECTION tells the Operating System
where to truncate the file. The BYTE indicated by the
pointer is the first byte to be dropped from the file.

A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix A.

This system call truncates a file at the current setting of the file
pointer and frees all space beyond the pointer. If the pointer is at or
beyond the end of file, no truncation will be performed. Unless the file
pointer is already where you want it, your program should use the DQ$SEEK
system call to position the pointer before using the DQ$TRUNCATE system
call.

The CONNECTION should have write, or read and write access rights,
establi.shed when the connection is opened.

4-41

DQ$'\'RITE

The DQ$WRITE system call moves a collection of bytes from a buffer into a
file.

CALL DQ$WRITE (connection, buff$ptr, count, except$ptr;

INPUT PARAMETERS

connection

buff$ptr

count

OUTPUT PARAMETERS

except$ptr

DESCRIPTION

A WORD containing a token for the CONNECTION to the
file in which the information is to be written.

A POINTER to a collection of contiguous bytes that are
to be written to the specified file.

A WORD containing the number of bytes to be written
from the buffer to the file.

A POINTER to a WORD where the system places the
condition code. Condition codes are described in
Appendix A.

This system call causes the Operating System to write the specified
number of bytes from the buffer to the file.

Access Control

In order to write information into a file. The file must be open for
writing, or for reading and writing (update access). Whenever your
program attempts to write over information in a file via a connection
that does not have update access, the Operating System does not write any
data to the file but returns an exception code. The description of
DQ$OPEN explains how access is established.

4-42

DESCRIPTION (continued)

Number of Bytes Written

Occasionally, the Operating System writes fewer bytes than requested by
the calling program. This happens under two circumstances. The first
circumstance is when the Operating System encounters an I/O error (E$IO
exception code is returned).

The second circumstance is when the volume to which your program is
writing becomes full. The Operating System informs your program of this
condition by returning an E$SPACE exception code.

Where the Bytes Are Written

The Operating System writes the bytes starting at the location specified
by the connection's file pointer. (The pointer indicates where the first
byte is to be written.) The pointer is updated as the bytes are
written. After the writing operation is completed, the file pointer
points to the byte immediately following the last byte written.

If your program must reposition the file pointer before writing, it can
do so by using the DQ$SEEK system call.

4-43

DQ$WRITE

UDr SYSTEM CALLS

EXAMPLE PROGRAM

This program provides an example of UDI system calls.

$compact
$optimize(3)
/ *
* Program UPPER

*
*
*
*
*
*
*
*
*

This program demonstrates the use of UPI file handling:
and command line parsing system calls. The program reads an input
file of characters, and converts all lower-case alphabetic
characters to upper-case. The converted date is written to a
second file.

UPPER expects the command line that invokes it to be of the form:

UPPER infile [TO outfile] *
*
* (If "TO outfile" is not specified, :CO: is assumed.)
*
*1

upper: DO;

$include(system/udi/udi.ext) 1* This file is described at the beginning
of the chapter *1

DECLARE
CR
LF
E$OI<

DECLARE
co$conn

LITERALLY 'ODR',
LITERALLY 'OAR',
LITERALLY '0';

WORD;

4-44

EXAMPLE PROGRAM (continued)

$subtitle('check$exception')

1*•.. ,••.........•.•................................
* Procedure to check an exception code. If the exception code is
* not E$OK, print a ~essage and exit.
* ..•..........•............
*1

check$exception: PROCEDURE(exception, info$p) REENTRANT;
DECLARE

exception WORD,
info$p POINTER,
info BASED info$p STRUCTURE(

count BYTE,
char(l) BYTE),

exc$buf STRUCTURE (
count BYTE,
char(80) BYTE),

dummy WORD;

IF exception <> E$OK THEN
DO;

END;

CALL dq$decode$exception(exception, @exc$buf, @dummy);

CALL dq$write(co$conn, @exc$buf.char, exc$buf.count,
@dummy);

CALL dq$write(co$conn, @(': '), 2, @dummy);

CALL dq$write(co$conn, @info.char, info. count , @dummy);

CALL dq$write(co$conn, @(CR, LF), 2, @dummy);

CALL dq$exit(3);

END check$exception;

UDI SYSTEM CALLS

EXAMPLE PROGRAM (continued)

$subtitle('Main')
1*•..
*

--- MAIN PROGRAM --

* *' ••
*/

*/

DECLARE st WORD;

DECLARE
in$name(50)
out$name(50)
in$conn
out$conn
delim

DECLARE
buffer(1024)
in$bp
in$char
next char
in$count
n$write
i

BYTE,
BYTE,
WORD,
WORD,
BYTE;

BYTE,
POINTER,
BASED in$bp BYTE,

BASED in$bp (2) BYTE,
WORD,

WORD,
WORD;

/ *
* Create a connection to :CO: (console output)
*' •••

co$conn = dq$create(@(4, ':CO:'), @st);

CALL dq$open(co$conn, 2, 0, @st);

1* . ..•..................
* Ignore the name of the program
* .. . '.
*/

delim = dqgetargument(@buffer, @st);
CALL check$exception(st, 0);
IF delim = CR THEN

CALL dq$exi teO);

4-46

UDI SYSTEM CALLS

EXAMPLE PROGRAM (continued)

/ *
* Attach the input file, and open it.
* ..•...•.......•..••.
*/

delim = dqgetargument(@in$name, @st);
CALL check$exception(st, 0);

in$conn = dq$attach(@in$name, @st);
CALL check$exception(st, @in$name);

CALL dq$open(in$conn, 1, 2, @st);
CALL check$exception(st, @in$name);

/* •.•.•.•••••..•...•.••.....••.•.•••.......•••.••.••.•.•.••..•••.•••
* Make ready the output file
*
*/

IF delim <> CR THEN

ELSE

DO;

END;

delim = dqgetargument(@buffer, @st);
CALL check$exception(st, 0);
IF (delim = CR) OR

(buffer(O) <> 2) OR
(buffer(1) <> 'T') OR
(buffer(2) <> '0') THEN

DO;

END;

CALL dq$write(co$conn, @('Invalid output file',
CR, LF), 21, @st);

CALL dq$exit(3);

delim = dqgetargument(@out$name, @st);
CALL check$exception(st, 0);

out$conn = dq$create(@out$name, @st);
CALL check$exception(st, @out$name);

CALL dq$open(out$conn, 2, 2, @st);
CALL check$exception(st, @out$name);

out$conn = co$conn;

4-47

UDI SYSTEM CALLS

EXAMPLE PROGRAM (continued)

1* •• ••••••••••••••
* Read from input, convert, and write to output
*•.......................•.......•.......... II •••••••••••
*/

DO WHILE 1;
in$count = dq$read(in$conn, @buffer, size(buffer), @st);
CALL check$exception(st, @in$name);
IF in$count = 0 THEN

GOTO endoffile;

DO i=O TO in$count-1;
IF (buffer(i))= 'a') AND (buffer(i) <= 'z') THEN

buffer(i) = buffer(i) + 'A'-'a';
END;

CALL dq$write(out$conn, @buffer, in$count, @st);
CALL check$exception(st, @out$name);

END;
endoff He:

/* ~
* Close input and output files and exit •........ ' .. '
*/

CALL dq$close(in$conn, @st);
CALL check$exception(st, @ln$name);

CALLdq$close(out$conn, @st);
CALL check$exception(st, @out$name);

CALL dq$exit(O);

END upper;

4 ... 48

CHAPTER 5. PREPARING YOUR HARDWARE

This chapter describes how to prepare the hardware devices on which the
iRMX 86 PC Operating System runs, (see Figure 5-1). The iRMX 86 PC
product is a version of the iRMX 86 Operating System that has been
prepared by Intel to run in the hardware environment described here.

INTELLEC'"'
DEVELOPMENT

SYSTEM

PARALLEL
PORT

2732A EPROMS -----r-+-----.III
with Bootstrap Loader

and Monitor)

FLEXIBLE DISK CONTROLLER

LINE PRINTER

" ___ CHASSIS/POWER SUPPLY

SYSTEM DISKETTE

VIDEO TERMINAL

Figure 5-1. The iRMxm 86 PC Hardware

5-1

PREPARING YOUR HAROO'ARE

This chapter is: organiz.ed as follows:

• THE iRMX 86 PC HARDWARE ENVIRONMENT. A section describing
hardware on which the iRMX 86 PC will run.

• MODIFYING BOARDS. A section describing how to modify your
iAPX 86-based Single Board Computer, and how to modify the
iSBC 2:08 Disk Controller board.

• CONVENIENCE CHARTS. To make the process of preparing your
hardware easier, we have included (for each board described in
this chapter) a single-page condensed summary of modifications
required for that board. This is so that you can remove the page
and refer to it as you actually install required jumpers and
devices. These charts are the last four pages (two physical
pages) in this chapter.

THE iRMX 86 PC HAROO'ARE ENVIRONMENT

The iR~~ 86 PC Operating System runs on the following hardware
components (shown in Figure 5-1):

• An Intel iSBC 86 processor board.

• An iSBC 208 Flexible Disk Drive Controller with at least two
drives (you can connect as many as four drives).

• A video terminal connected to the computer board serial port.
The software assumes that this terminal is RS232C-compatible, and
set to 9600 baud full-duplex, with no parity checking (the
computer ignores parity from the terminal, and sets the parity
bit to zero (0) on data to the terminal.

• An appropriate chassis/power-supply unit with a
Multibus-compatible backplane.

In addition, you can also have either a line printer or an iSBC 957B
package (they both use the same parallel port on the computer board).
The iSBC 957B package allows you to connect your system directly to an
Intellec Microcomputer Development System. Neither the line printer nor
the iSBC 957B package is required to run the Operating System.

SINGLE BOARD COMPUTER

The iRMX 86 PC Operating System runs on any of these Single Board
Computers: iSBC 86/l2A, iSBC 86/14, or iSBC 86/30.

5-2

PREPARING YOUR HARDWARE

FLEXIBLE DISKETTE CONTROLLER AND DRIVES

The iSBC 208 Controller will handle up to four drives. Two drives are
required to run the iRMX 86 PC System. The iSBC 208 Controller will
accept drives and diskettes of many recording formats: single- and
double-density, single- and double-sided, and sector sizes of 128, 256,
and 1024 bytes. The diskettes are soft-sectored, which means that you
must format new diskettes using the FORMAT command described in
Chapter 3. The iRMX 86 PC System is delivered on double-density,
single-sided diskettes having 256 bytes-per-sector.

Physical names that must be used with the iSBC 208 Controller for various
disk characteristics and drives are listed in Table 5-1. Although only
drive number 0 is listed for each type, the controller and the iRMX 86 PC
Operating System support up to four drives (for example, AFDO, AFD1,
AFD2, and AFD3). You specify these names when using the iRMX 86 PC
Command ATTACHDEVICE described in Chapter 3.

Table 5-1. iSBC® 208 Physical Names

Device Device Bytes per
Names Type Sides Density Sector

AFO 208 Shugart SA800 1 Single 128
AFDO 208 Shugart SA800 1 Double 256
AFDDO 208 Shugart SA850 2 Double 256
AFDXO 208 Shugart SAS50 2 Double 1024

MEMORY

The iRMX 86 PC Operating System requires at least 192K bytes of memory to
run. In addition, you will need memory sufficient to run your programs,
system utilities, and language processors. Some memory is on-board the
iSBC 86 Single Board Computer, with the remainder on one or more memory
boards. On-board memory may include a RAM expansion module; with a RAM
expansion module the iSBC 86/30 has enough memory to run the Operating
System.

LINE PRINTER

You can use any line printer that recognizes the Centronics signal/pin
standard. The line printer is connected to the parallel port on the
processor board you use.

5-3

PREPARING YOUR HARDWARE

Table 5-2 shows the signals tha.t are present on pins at the:

• 50-Pin iSBC Connector: The Single Board Computer parallel port
connector (Jl).

• 50-Pin Edge Connector: A standard 50-pin edge connector used as
a cable-end; mates to the iSBC Connector described in 1.

• 30-Pin Connector: The Centronics-standard plug and connector at
the line printer.

Table 5-2. Line Printer Pin Assignments

50-Pin
iSBC

50-Pin
Edge

Connector Connector

24 23
26 25
28 27
30 29
34 33
36 35
38 37
40 39
42 41
44 43
46 45
48 47

NOTES:
iSBC Connector:

Edge Connector:

-- CENTRONICS-Standard --
30-Pin
Connector Signal

1 Character strobe
13 SLCT (Select)
12 Paper Out
10 ACKNOWLEDGE from

9 Data Bit 7
8 Data Bit 6
7 Data Bit 5
6 Data Bit 4
5 Data Bit 3
4 Data Bit 2
3 Data Bit 1
2 Data Bit a

to printer

printer

All odd pin numbers are grounded.

All even-numbered pins grounded.

Centronics LP Connector: Pins 19-29 Protective grounds
Pin 16 Logic Ground
Pin 17 Chassis Ground

5-4

PREPARING YOUR HARDWARE

iSBC 957B PACKAGE

You can use the parallel port for copying files to and from an Intellec
Development System using an iSBC 957B hardware/software package. This
chapter describes changes to your Single Board Computer required to
support the iSBC 957B package. Refer to the USER'S GUIDE FOR THE
iSBC 957B iAPX 86, 88 INTERFACE AND EXECUTION PACKAGE for information
about how to connect your system to a Development System.

MODIFYING BOARDS

This section describes how to modify your Single Board Computer, and the
iSBC 208 Disk Controller Board. There is a section devoted to each of
the following:

• iSBC 208 Flexible Diskette Controller

• iSBC 86/12A Single Board Computer

• iSBC 86/14 Single Board Computer

• iSBC 86/30 Single Board Computer

In discussions of how to modify boards, the term "modify" means
installing non-standard jumpers, and installing components on the board
(such as the EPROMs that come as part of the iRMX 86 PC System). The
discussions in this chapter assume: that you have a hardware reference
manual for the board you are modifying, and that boards you modify have
only the factory-installed jumpering in place.

To modify a Single Board Computer to support the iRMX 86 PC Operating
System, you must know:

• Whether you are using the parallel port for a line printer or for
an iSBC 957B package.

• Whether your board has an iSBC 337 Multimodule Numeric Data
Processor ("NDP").

• Whether you are using a RAM expansion module on your Single Board
Computer.

• Whether you are using serial bus priority resolution (the factory
default in all cases) or parallel priority resolution.

The instructions that follow note when a particular jumper or dev.ice i.s
affected by these variables.

Comments describing the effect of jumpers are very brief; more complete
descriptions are in the appropriate hardware reference manual.

5-5

PREPARING YOUR HARDWARE

MODIFYING THE iSBC 208 CONTROLLER

Regardless which Single Board Computer you are using for your system, the
iSBC208 Disk Controller is jumpered the same way. The jumpers are shown
in Table 5-3.

Remove Jumper

E45-E49

E77-E78

NOTES:

Table 5-3. iSBC@ 208 Jumpers

Add Jumper

E79-E84

E41-E45

Function/Description

Interrupt level 5

16-bit I/O address decoding.

Only if parallel bus priority resolution
is used. (Factory sends board with this
jumper removed, for serial bus priority
resolution) •

The iSBC 208 16-bit I/O base address is OOOOH (default).

The controller comes from the factory supporting 8-inch flexible
diskettes. The Operating System requires 8-inch diskettes.

The controller is documented in the iSBX 208 FLEXIBLE DISK DRIVE
CONTROLLER HARDWARE REFERENCE MANUAL.

5-6

PREPARING YOUR HARDWARE

MODIFYING THE iSBC 86/12A SINGLE BOARD COMPUTER

The following tables list the modifications necessary to support the
iRMX 86 PC Operating System with an iSBC 86/12A Microcomputer.

Interrupt Level Jumpers

Table 5-4 summarizes jumpers that establish interrupt levels.

Table 5-4. Interrupt Jumpers for iSBC@ 86/12A

Add Jumper Function/Description

E8l-El Interrupt Level 0, iSBC 337 (1)
E72-E89 Level 1, Non-Maskable Interrupt
E80-E84 Level 1, Line Printer
E79-E83 Level 2, System Clock (2)
E68-E76 Level 5, iSBC 208 (2)
E75-E82 Level 6, Terminal Driver (Read)
E74-E90 Level 7, Terminal Driver (Write)

NOTES:
(1) This jumper is for an iSBC 86/12A with PWA number of

l42977-XXX. If an older version of an iSBC 86/l2A is used,
refer to the iSBC 337 MULTIMODULE NUMERIC DATA PROCESSOR
HARDWARE REFERENCE MANUAL.

(2) Factory-installed jumpers.

Additional Jumpers

Table 5-5 summarizes additional jumpering of the iSBC 86/12A.

Table 5-5. Other iSBC~ 86/l2A Jumpers

Remove Jumper Add Jumper Function/Description

E51-E52 Clear To Send signal capability
El25-El26 E127-E128 Set dual-port RAM address

El2-E2l Only if iSBC 337 is not used
E97-E98 E97-E99 Required by Monitor EPROMs

E5-E6 Unpopulated memory or port time-out
El51-El52 Only for parallel priority resolution

5-7

PREPARING YOUR HARDWARE

Parallel Port

Table 5-6 summarizes jumper setting for the iSBC 86/12A Parallel Port,
which can be used for either a line printer or an iSBC 957B package.

Table 5-6. iSBC® 86/12A Parallel Port Jumpers

iSBC 957B Line Printer

Remove Add Remove Add
Jumper Jumper Jumper Jumper

E13-E14 E13-E27 E13-E14 E22-E32
E19-E20 E14-E30 E32-E33
E21-E25 E18-E31
E26-E27 E20-E33
E30-E31 E25-E31
E32-E33

Switch Settings

Table 5-7 Shows the settings for each position (segment) of Switch 1.

Table 5-7. iSBC® 86/12A Switch 1

Position Setting Position Setting

1 ON 5 OFF
2 (1) 6 OFF
3 OFF 7 ON
4 OFF 8 OFF

NOTE: (1) Switch 2 must be OFF if you are using an iSBC 300 RAM
Expansion Module, otherwise ON.

5-8

PREPARING YOUR HARDWARE

Devices

Table 5-8 describes the devices that must be installed on your
iSBC 86/12A Board.

Table 5-8. iSBC® 86/12A Devices

Device Part Number Socket

2732A EPROM 144447-001 A28
2732A EPROM 144448-001 A29
2732A EPROM 144449-001 A46
2732A EPROM 144450-001 A47
iSBC 902 Resistor packs 4500645-01 A10, A12, A13
7438 IC 100908-001 All (1)
Status Adapter 1002129 All (2)

NOTES:
(1) If parallel port is used for line printer.
(2) If parallel port is used for iSBC 957B package.

The iSBC 86/1ZA is documented in the iSBC® 86/1ZA Single Board Computer
Hardware Reference Manual (Order Number 9803074).

5-9

PREPARING YOUR HARrMARE

MODIFYING THE iSBC 86/14 SINGLE BOARD COMPUTER

The following tables list modifications necessary to support the
iRMX 86 PC Operating System with an iSBC 86/14 Single Board Computer.

Jumpers

Table 5-9 summarizes jumpers that establish interrupt level jumpers~
Table 5-10 summarizes parallel port jumpers, and Table 5-11 shows all
other jumpers that must be installed on the iSBC 86/14 Board.

Table 5-9. Interrupt Jumpers for iSBC@ 86/14

Remove Jumper Add Jumper Function/Description

E165-E166 Interrupt Level 0, iSBC 337
E144-E145 E145-E149 Level 1, No n-Maskable Interrupt

E132-E164 Level 1, Line Printer
E147-E158 Level 2, System Clock
E151-E152 Level 5, iSBC 208
E153-E155 Level 6, Terminal Driver (Read)
E134-E154 Level 7, Terminal Driver (Write)

NOTE: (1) Factory-installed jumpers.

Table 5-10. iSBC@ 86/14 Parallel Port Jumpers

If iSBC 957B is used If Line Printer is used

Remove Add Remove Add
Jumper Jumper Jumper Jumper

E44-E53 E44-E59 E44-E53 E60-E63
E45-E54 E45-E50 E51-E60
E46-E55 E45-E54
E48-E57 E46-E51
E50-E59 E48-E53
E51-E60 E50-E52
E52-E61

5-10

(1)
(1)

PREPARING YOUR HARDWARE

Table 5-11. Other iSBC® 86/14 Jumpers

Remove Jumper Add Jumper

E219-E225

E26-E27
E33-E34

E76-E77

E61-E62

E36-E37
E124-E125

E111-E112 E112-E113

E210-E211

E1l9-E120
E23O-E231
E232-E233

Function/Description

Clear To Send signal capability.
Set dual-port RAM address
Only if iSBC 337 is not used.
Enable Non-Maskable Interrupt
Non-bus vector interrupt
Selects 5MHz clock (1)
Selects 2732-type EPROM
2732 EPROM address range
If RAM Expansion Module is used
If RAM expansion module not used
Dual-port Ram Addressing---
For parallel priority resolution

NOTE: (1) 5 MHz required if iSBC 337 NDP is used.

Devices

Table 5-12 describes the devices that must be installed on your
iSBC 86/14 Board.

Table 5-12. iSBC® 86/14 On-Board Devices

Device Part Number Socket

2732A EPROM 144447-001 U57
2732A EPROM 144448-001 U58
2732A EPROM 144449-001 U39
2732A EPROM 144450-001 U40
902 Resistor Packs 4500645-01 U18, U20, U21
7438 IC 100908-001 U19 If Line Printer used
Status Adapter 1002129 U19 If iSBC 957B used

The iSBC 86/14 Single Board Computer is documented in the iSBC® 86/14 AND
iSBC® 86/30 SINGLE BOARD COMPUTER HARDWARE REFERENCE MANUAL.

S-ll

PREPARING YOUR HARDWARE

MODIFYING THE iSBC 86/30 SINGLE BOARD COMPUTER

The fo.llo.wing tables list modifications necessary to. support the
iRMX 86 PC Operating System with an iSBC 86/30 Single Bo.ard Computer.

Jumpers

Table 5-13 summarizes jumpers that establish interrupt level jumpers,
Table 5-14 summarizes parallel Po.rt jumpers, and Table 5-15 summarizes
all o.ther jumpers that must be installed o.n yo.ur iSBC 86/30 Board.

Table 5-13. Interrupt Jumpers fo.r iSBC® 86/30

Remo.ve Jumper Add Jumper Functio.n/Descriptio.n

E165-E166 Interrupt Level 0, iSBC 337
E144-E145 E145-E149 Level 1, No.n-Maskable Interrupt

E132-E164 Level 1, Line Printer
E147-E158 Level 2, System Clo.ck (1)
E151-E152 Level 5, iSBC 208 (1)
E153-E155 Level 6, Terminal Driver (Read)
E134-EI54 Level 7, Terminal Driver (Write)

NOTE: (1) Facto.ry-installed jumpers.

Table 5-14. iSBC® 86/30 Parallel Port Jumpers

If iSBC 957B is used If Line Printer is used

Remo.ve Add Remo.ve Add
Jumper Jumper Jumper Jumper

E44-E53 E44-E59 E44-E53 E60-E63
E45-E54 E45-E50 E51-E60
E46-E55 E45-E54
E48-E57 E46-E51
E50-E59 E48-E53
E51-E60 E50-E52
E52-E6l

5-12

PREPARING YOUR HARDWARE

Table 5-15. Other iSBC@ 86/30 Jumpers

Remove Jumper Add Jumper Function/Description

E76-E77 Clear To Send signal capability.
E219-E225 Set dual-port RAM address

E61-E62 Only if iSBC 337 is not used.
E26-E27 Enable Non~askable Interrupt
E33-E34 Non-bus vector interrupt

E36-E37 Selects SMHz clock (1)
E124-E125 Selects 2732-type EPROM

E1ll-El12 E112-El13 2732 EPROM address range
E1l9-E120 If RAM Expansion Module is used
E232-E233 If RAM expansion module not used

E210-E2l! For parallel priority resolution

NOTE: (1) 5 MHz required if iSBC 337 NDP is used.

Devices

Table 5-16 describes the devices that must be installed.

Table 5-16. iSBC@ 86/30 On-Board Devices

Device Part Number Socket

2732A EPROM 144447-001 U57
2732A EPROM 144448-001 U58
2732A EPROM 144449-001 U39
2732A EPROM 144450-001 U40
902 Resistor Packs 4500645-01 U18, U20, U21
7438 IC 100908-001 U19 If Line Printer used
Status Adapter 1002129 U19 If iSBC 957B used

The iSBC 86/30 Single Board Computer is documented in the iSBC@ 86/14 AND
iSBC@ 86/30 SINGLE BOARD COMPUTER HARDWARE REFERENCE MANUAL.

5-13

PREPARING YOUR HARDWARE

CONVENIENCE CHARTS

The next four pages are printed for your convenience in working with the
the boards that you must modify. You are invited to remove these pages
and use them as work guides. There is one page each for the following
boards::

• iSBC 86/12A Single Board Computer

• iSBC 86/14 Single Board ~omputer

• iSBC 86/30 Single Board Computer

• iSBC 208 Flexible Disk Controller

The iSBC 208 page also includes the Centronics-to-parallel port
information, in case you must connect a line printer to one of the
computers.

5-14

iSBC® 86/12A

PREPARING YOUR HARDWARE

Table 5-17. iSBC® 86/12A Jumpers (Condensed)

I Remove Add Function/
Jumper Jumper Description

E81-E1 Interrupt Level 0, iSBC 337 (1)
E72-E89 Levell, Non-Maskab1e Interrupt
E80-E84 Level 1, Line Printer
E79-E83 Level 2, System Clock (factory-installed jumper)
E68-E76 Level 5, iSBC 208 (factory-installed jumper)
E75-E82 Level 6, Terminal Driver (Read)
E74-E90 Level 7, Terminal Driver (Write)

E51-E52 C1ear-To-Send signal capability.
E125-E126 E127-E128 Set dual-port RAM address
E97-E98 E97-E99 Required for Monitor in EPROMs

E12-E21 Only if iSBC 337 is not used.
E5-E6 Unpopulated memory or port time-out

E151-E152 Only for parallel priority resolution

E13-E14 E13-E27 If parallel port is used for 957B
E19-E20 E14-E30
E21-E25 E18-E31
E26-E27 E20-E33
E30-E31 E25-E31
E32-E33

E13-E14 E22-E32 If parallel port is used for line printer
E32-E33

1) Applies only to iSBC 86/12A with PWA of 142977-XXX

Table 5-18. iSBC® 86/12A Devices (Condensed)

Device Part Number Socket

2732A EPROM 144447-001 A28
2732A EPROM 144448-001 A29
2732A EPROM 144449-001 A46
2732A EPROM 144450-001 A47
902 Resistor Packs 4500645-001 A10, A12, Al3
7438 IC 100908 All Parallel port used for line printer
Status Adapter 1002129 All Parallel port used for iSBC 957B

Table 5-19. iSBC® 86/12A Switch 1 (Condensed)

Segment Setting Segment Setting

1 ON 5 OFF
2 OFF (*) 6 OFF * If iSBC 300 RAM expansion module is
3 OFF 7 ON not used, this position ON
4 OFF 8 OFF

5-15

iSB~ 86/14

PREPARING YOUR HARDWARE

Table 5-20. iSBC@ 86/14 Jumpers (Condensed)

Remove Add Function/
Jumper Jumper Description

E165-E166 Interrupt Level 0, iSBC 337
E144-E145 E145-E149 Level I, Non-Maskab1e Interrupt

E132-E164 Level I, Line Printer
E147-E158 Level 2, System Clock (factory-installed jumper)
E151-E152 Level 5, iSBC 208 (factory-installed jumper)
E153-E155 Level 6, Terminal Driver (Read)
E134-E154 Level 7, Terminal Driver (Write)
E76-E77 C1ear-To-Send signal capability

E219-E225 Set dual-port RAM address
E26-E27 Enable Non-Maskab1e Interrupt
E33-E34 Non-bus vector interrupt

E61-E62 If iSBC 337 is not used.
E36-E37 Selects 5MHz clock (required if iSBC 337 ~ used)
E124-E125 Selects 2732-type EPROM

E111-E112 E112-E113 EPROM address range
E21O-E211 Only for parallel priority resolution

E119-E120 86/14 with iSBC 300A RAM expansion module
E232-E233

E230-E231 86/14 without RAM expansion module
E232-E233

E44-E53 E44-E59 If parallel port is used for 957B
E45-E54 E45-E50
E46-E55 E45-E54
E48-E57 E46-E51
E5O-E59 E48-E53
E51-E60 E50-E52
E52-E61

E44-E53 E6o-E63 If parallel port is used for line printer
E51-E60

Table 5-21. iSBC~ 86/14 Devices (Condensed)

Device Part Number Socket

2732A EPROM 144447-001 U57
2732A EPROM 144448-001 U58
2732A EPROM 144449-001 U39
2732A EPROM 144450-001 U40
902 Resistor Packs 4500645-01 U18, U20, U21
7438 IC 100908-001 U19 If parallel port used for Line Printer
Status Adapter 1002129 U19 If parallel port used for iSBC 957B

5-16

iSBC® 86/30

PREPARING YOUR HARIMARE

Table 5-22. iSBCe 86/30 Jumpers (Condensed)

Remove Add Function/
Jumper Jumper Description

E165-E166 Interrupt Level 0, iSBC 337
E144-E145 E145-E149 Level 1, Non-Maskable Interrupt

E132-E164 Level 1, Line Printer
E147-E158 Level 2, System Clock (factory-installed jumper)
E151-E152 Level 5, iSBC 208 (factory-installed jumper)
E153-E155 Level 6, Terminal Driver (Read)
E134-E154 Level 7, Terminal Driver (Write)
E76-E77 Clear-To-Send signal capability

E219-E225 Set dual-port RAM address
E26-E27 Enable Non-Maskable Interrupt
E33-E34 Non-bus vector interrupt

E61-E62 If iSBC 337 is not used.
E36-E37 Selects SMHz clock (required with iSBC 337)
E124-E125 Selects 2732-type EPROM

E111-E112 E112-E113 EPROM address range
E210-E211 Only for parallel priority resolution

E119-E120 86/30 !!!!!. iSBC 304 RAM expansion module

E232-E233 86/30 without RAM expansion module

E44-E53 E44-n9 If parallel port is used for 957B
E45-E54 E45-E50
E46-E55 E45-E54
E48-E57 E46-E51
E5O-E59 E48-E53
E51-E60 E50-E52
E52-E61

E44-E53 E6o-E63 If parallel port is used for line printer
E51-E60

Table 5-23. iSBCe 86/30 Devices (Condensed)

Device Part Number Socket

2732A EPROM 144447-001 U57
2732A EPROM 144448-001 U58
2732A EPROM 144449-001 U39
2732A EPROM 144450-001 U40
902 Resistor Packs 4500645-01 U18, U20, U21
7438 IC 100908-001 U19 If parallel port used for Line Printer
Status Adapter 1002129 U19 If parallel port used for iSBC 957B

5-17

iSBC® 208 DISK CONTROLLER

PREPARING YOUR HARDWARE

Table 5-24. iSBC@ 208 Jumpers (Condensed)

Remove Jumper Add Jumper Function/Description

E79-E84 Interrupt level 5

E45-E49 E41-E45 16-bit I/O address decoding.

E77-E78 Only if parallel bus priority resolution
is used. (Factory sends board with this
jumper removed, for serial bus priority
resolution).

lINE PRINTER SIGNALS

Table 5-25. Line Printer Pin Assignments (Condensed)

50-Pin 50-Pin -- CENTRONICS-Standard --
iSBC Edge 30-Pin
Connector Connector Connector Signal

24 23 1 Character strobe to printer
26 25 13 SLCT (Select)
28 27 12 Paper Out
30 29 10 ACKNOWLEDGE from printer
34 33 9 Data Bit 7
36 35 8 Data Bit 6
38 37 7 Data Bit 5
40 39 6 Data Bit 4
42 41 5 Data Bit 3
44 43 4 Data Bit 2
46 45 3 Data Bit 1
48 47 2 Data Bit 0

GROUNDS:

iSBC Connector: All odd pin numbers are grounded.
Edge Connector: All even-numbered pins grounded.
Centronics LP Connector: Pins 19-29 Protective grounds

Pin 16 Logic Ground
Pin 17 Chassis Ground

5-18

CHAPTER 6. DOCUMENTATION

This chapter lists and briefly describes documentation that applies to
the iRMX 86 PC Operating System. We have included descriptions of
iRMX 86 software manuals, as well as manuals describing hardware that can
be used with the iRMX 86 PC product.

THIS MANUAL

The GETTING STARTED WITH THE iRMX 86 SYSTEM is designed to be a
self-contained summary of the information you need to use the iRMX 86 PC
Operating System. Much of the information in this manual is repeated in
other manuals described here.

iRMX 86 MANUALS

These are the manuals that document the iRMX 86 Operating System.

• INTRODUCTION TO THE iRMX/86 OPERATING SYSTEM (Order Number:
9803124)

This manual is designed to introduce engineers and managers to
the iRMX 86 Operating System. It describes how the iRMX 86
Operating System can help you develop your application system in
less time and at less expense.

• iRMX 86 NUCLEUS REFERENCE MANUAL (Order Number: 9803122)

This manual documents the Nucleus, the central portion of the
iRMX 86 Operating System required by all application systems. It
provides overview information, discusses the functions of the
Nucleus in detail, and contains detailed descriptions of the
system calls available to application programmers.

• iRMX 86 BASIC I/O SYSTEM REFERENCE MANUAL (Order Number: 9803123)

This manual describes the Basic I/O System, a layer of the iRMX
86 Operating System that provides flexible I/O features that are
useful in a broad range of applications. It contains some
introductory and overview material as well as detailed
descriptions of the system calls available to application
programmers.

6-1

DOCUMENTATION

• iRMX 86 EXTENDED I/O SYSTEM REFERENCE MANUAL (Order Number:
143308)

This manual describes the Extended I/O System. a layer of the
iRMX 86 Operating System that provides easy-to-use,
more-automatic I/O features. It contains some introductory and
overview material as well as detailed d.escriptions of the system
calls available to application programm~s.

• iRMX 86 LOADER REFERENCE MANUAL (Order Number: 143318)

This manual describes the two loaders available with the iRMX 86
Operating System: the Bootstrap Loader and the Application
Loader. It contains some introductory and overview material as
well as detailed descriptions of the system calls available with
the Application Loader.

• iRMX 86 HUMAN INTERFACE REFERENCE MANUAL (Order Number: 9803202)

This manual documents the Human Interface, the layer of the iRMX
86 Operating System that provides an interactive interface
between the user and the application system. It provides
introductory and overview information, describes the commands
available with the Human Interface (the same commands described
in Chapter 3 of the manual you are reading), discusses the
process of creating your own commands, and describes Human
Interface system calls.

• iRMX 86 DISK VERIFICATION UTILITY REFERENCE MANUAL (Order Number:
144133)

This manual documents the Disk Verification Utility. The
DISKVERIFY command (see Chapter 3 of the manual you are reading)
invokes this utility. The DISK VERIFICATION UTILITY REFERENCE
MANUAL provides more in-depth information, including detailed
descriptions of the structure of iRMX 86 files.

• iRMX 86 SYSTEM PROGRAMMER'S REFERENCE MANUAL (Order Number:
142721)

This manual documents advanced features of the iRMX 86 Operating
System normally used by system programmers. The manual includes
discussions of regions, attaching I/O devices, and creating user
objects. It contains detailed descriptions of those system calls
normally reserved for system programmers.

6-2

DOCUMENTATION

• iRMX 86 PROGRAMMING TECHNIQUES MANUAL (Order Number: 142982)

This manual provides a number of programming techniques that can
reduce the amount of time you spend designing and implementing
your iRMX 86-based application system. It includes discussions
on PL/M-86 size controls, interface procedures, INCLUDE files,
timer routines, assembly language programming. job communication,
configuration, deadlock, terminal I/O, and stack sizes.

• GUIDE TO WRITING DEVICE DRIVERS FOR THE iRMX 86 AND iRMX 88 I/O
SYSTEMS (Order Number: 142926)

For the programmer who is using the configurable iRMX 86
Operating System, this manual shows how to incorporate a custom
driver into the system. This applies to devices for which the
iRMX 86 Operating System does not already supply device drivers.

• iRMX 86 CONFIGURATION GUIDE (Order Number: 9803126)

Again, for the programmer who is using the configurable iRMX 86
Operating System, this manual describes how to define the
characteristics of iRMX 86 layers that are appropriate a
particular application.

• iRMX 86 INSTALLATION GUIDE (Order Number: 9803125)

This manual contains hardware information for the configurable
iRMX 86 Operating System (equivalent to the hardware information
in this manual) and a description of the iRMX 86 Patching Utility_

6-3

DOCUMENTATION

LANGUAGE TRANSLATORS AND UTILITIES MANUALS

The following manuals document the language products that can be used
with your iR}fX 86 PC Operating System.

• EDIT REFERENCE MANUAL (Order Number: 143587)

This manual documents EDIT, an iRMX 86-based text editor. It
contains introductory and tutorial material as well as detailed
descriptions of all EDIT commands.

• GUIDE TO USING iRMX 86 LANGUAGES (Order Number: 143907)

This manual provides an overview of the language products that
run in an iRMX 86 environment. It shows how to invoke the
products from the Human Interface and lists the invocation
controls for each product. It then refers you to other language
and utilities manuals for detailed information about the
products. You should read this manual before you read the other
language and utilities manuals, because this manual provides
information that you need to run the language products in an iRMX
86 environment. It also identifies portions of the other manuals
that do not apply to the iR}{X 86 versions of the language
products.

• 8086/8087/8088 MACRO ASSEMBLY LANGUAGE REFERENCE MANUAL FOR
8086-BASED DEVELOPMENT SYSTEMS (Order Number: 121627)

This manual documents the 8086/8087/8088 macro assembly language,
ASM86. It describes the assembly language instructions and the
macro processing language.

• 8086/8087/8088 MACRO ASSEMBLER DPERATING INSTRUCTIONS FOR
8086-BASED DEVELOPMENT SYSTEMS (Order Number 121628)

This manual describes how to invoke the assembler, and how to
link assembly language programs with PL/M-86 programs.

• PL/M-86 USER'S GUIDE FOR 8086-BASED DEVELOPMENT SYSTEMS (Order
Number: 121636)

This manual describes the PL/M-86 language and use of the PL/M-86
compiler. It describes language statements, discusses compiler
invocation, and documents each compiler control.

6-4

DOCUMENTATION

• iAPX 86,88 FAMILY UTILITIES USER'S GUIDE FOR 8086-BASED
DEVELOPMENT SYSTEMS (Order Number: 121616)

This manual contains descriptions of the program development
utilities:

• LINK86 , which links 8086 object modules together and resolves
global references between modules

• LOC86, which changes 8086 relocatable object modules into
absolute modules

• LIB86, a utility that creates and maintains object libraries

• OH86, which converts 8086 absolute object modules to
hexadecimal format

• Pascal-86 USER'S GUIDE (Order Number: 121539)

This manual describes the Pascal language and the use of the
Pascal-86 compiler. It provides complete descriptions of all
Pascal language statements, discusses compiler invocation, and
documents each of the compiler controls. The Pascal-86 compiler
is a strict implementation of the proposed ISO standard that also
provides extensions of the language oriented toward
microcomputers.

• FORTRAN-86 USER'S GUIDE (Order Number: 121570)

This manual describes the FORTRAN language and the use of the
FORTRAN-86 compiler. It provides complete descriptions of all
FORTRAN language statements, discusses compiler invocation, and
documents each of the compiler controls. This FORTRAN-86
compiler produces code that is compatible with existing
FORTRAN-86 code and includes many new features of the FORTRAN-77
standard.

• RUN-TIME SUPPORT MANUAL FOR iAPX 86, 88 APPLICATIONS (Order
Number: 121776)

This manual describes the run-time aids that Intel offers for the
iAPX 86, 88 family of processors. This is the basic reference
manual for the Universal Development Interface used with Intel
Operating Systems.

6-5

DOCUHENTATION

• USER'S GUIDE FOR THE iSBC957B iAPX 86, 88 INTERFACE AND
EXECUTION PACKAGE (Order Number 143979)

This manual provides general information, interfacing
instructions, and programming information for the iSBC 957B
loader and monitor. It provides detailed descriptions of the
loader and monitor commands and describes how to connect an Intel
development system to an iAPX 86~based boards. It also contains
configuration information, which may be of little importance to
you since the monitor is already configured and available in PROM
as part of the iRMX 86 PC package.

HARDWARE MANUALS

These manuals document hardware that you can use with your iRMX 86 PC
Operating System.

COMPUTERS

The computers that you can use for your iRMX 86 PC Operating System are
described in these two manuals.

• iSBC 86/12A SINGLE BOARD COMPUTER HARDWARE REFERENCE HANUAL
(Order Number: 9803074) and

• iSBC 86/14 and iSBC 86/30 SINGLE BOARD COMPUTER HARDWATE
REFERENCE MANUAL (Order Number: 144044)

These two manuals describe, for each computer, principles of
operation, programming considerations, and how to incorporate
iSBC Multimodule units (like on-board RAM and and the 8087
Numeric Processor Extenmsion).

DISK CONTROLLER

• iSBX 208 FLEXIBLE DISK CONTROLLER HARDWARE REFERENCE MANUAL
(Order Number: 143078)

The manual describes specifications, jumper configurations,
programming considerations, and principles of operation of the
iSBX 208 Flexible Disk Controller board.

6-6

DOCUMENTATION

MEMORY BOARDS

• iSBC 016A/032A/064A/028A/056A RAM MEMORY BOARD !LARDWARE REFERENCE
MANUAL (Order Number: 143572)

This manual describes specifications, jumper configurations,
programming considerations, and principles of operation of
iSBC 056A RAM memory boards.

CHASSIS/POWER SUPPLY

• iSBC 680/681 MULTISTORE USER SYSTEM PACKAGE HARDWARE REFERENCE
MANUAL (Order Number: 162432)

This manual provides information about the iSBC 680-series
module, which is a chassis containing a power supply and Multibus
card cage in which you can install your Intel iSBC boards.

You can order any manual described in this chapter from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

6-7

APPENDIX A. iRMX'" 86 EXCEPTION CODES

This appendix contains the exception codes that are generated by the
iRMX 86 Operating System. Exception codes are any condition codes other
than E$OK, the normal code. Exception codes are classed as either
"Environmental Conditions" or "Programmer Errors", although the latter
includes certain hardware errors.

The values of these exception codes fall into ranges based on the layer
which first detects the condition. Table A-I lists the layers and their
respective ranges, with numeric values expressed in hexadecimal notation.

Table A-I. Exception Code Ranges

Layer Environmental Programming

Nucleus 0 to IFH 8000 to 801FH

Basic I/O System 20 to 3FH 8020 to 803FH

Extended I/O System 40 to 5FH 8040 to 805FH

Application Loader 60 to 7FH 8060 to 807FH

Human Interface 80 to AFH 8080 to 80AFH

Universal Development CO to DFH 80CO to 80DFH
Interface

Reserved 130 to 14FH 8130 to 814FH

A-I

iRMX'" 86 EXCEPTION CODES

Table A-2 below shows the value of each code, the associated mnemonic,
and a descriptive meaning. In addition, the table shows the the 1ayer(s)
of the system that could generate the code, in case you wish to refer the
the appropriate manual. Since certain system calls in the iRMX 86
Operating System are considered to be System Programmer calls and are
documented in the iRMX 86 System Programmer Reference Manual, this manual
is also mentioned.

Hex. Mnemonic
Value

Table A-2. iRMX'" 86 Condition Codes

Manuals
N BEL II

Meaning

OH E$OK * * * * * No exceptional conditions (normal)

N
B
E

IH

2H

3H

4H

5H

6H

Environmental Conditions

E$TlME * * * * *

E$MEM * * * * *

E$BUSY S

E$LIMIT * * * * *

E$CONTEXT * * * * *

E$EXIST * * * * *

Nucleus Reference Manual
Basic I/O System Ref Manual
Extended I/O Sys Ref Manual

A time limit (possibly a limit of
zero time) expired without a task's
request being satisfied.

Insufficient available memory to
satisfy a task's request.

Another task currently has access to
data protected by a region.

A task attempted an operation which,
if it had been successful, would have
violated a Nucleus-enforced limit.

A system call was issued out of
proper context.

A token parameter has a value which
is not the token of an existing
object.

L Loader Reference Manual
H Human Interface Reference Manual
S System Programmer's Ref Manual

A-2

iRMXm 86 EXCEPTION CODES

Table A-2. iRMXM 86 Condition Codes (continued)

Hex. Mnemonic Manuals
N BEL H

Meaning
Value

Environmental Conditions (continued)

N
B
E

7H

8H

9H

OAH

20H

21H

22H

23H

24H

25H

26H

27H

28H

29H

E$STATE

ENOTCON
FIGURED

E$INTER
RUPT$SAT
URATION

E$INTER
RUPT$
OVERFLOW

E$FEXIST

E$FNEXIST

E$DEVFD

E$SUPPORT

E$EMPTY$
ENTRY

EDIREND

E$FACCESS

E$FTYPE

E$SHARE

E$SPACE

*

* * * * *

*

*

* *
* * * *

* * *

* * * *

* *

* *

* * * *

* * *
* * * *

* *

Nucleus Reference Manual
Basic 1/0 System Ref Manual
Extended 1/0 Sys Ref Manual

A task attempted an operation which
would have caused an impossible
transition of a task's state.

This system call is not part of the
present configuration.

An interrupt task has accummulated the
maximum allowable amount of
SIGNAL$INTERRUPT requests.

An interrupt task has accummulated
more than the maximum allowable amount
of SIGNAL$INTERRUPT requests.

File already exists.

File does not exist.

Device and file driver are
incompatible.

Combination of parameters not
supported.

The specified slot in a directory
file is empty.

The specified slot is beyond the end
of a directory file.

File access not granted.

Incompatible file type.

Improper file sharing requested.

No space left.

L
H
S

A-3

Loader Reference Manual
Human Interface Reference Manual
System Programmer's Ref Manual

Hex.
Value

2AH

2BH

2CH

2DH

2EH

400

41H

42H

44H

45H

60H

6lH

N
B
E

62H

iRMX- 86 EXCEPTION CODES

Table A-2. iRMX- 86 Condition Codes (continued)

Mnemonic Manuals
N BEL H

Meaning

Environmental Conditions (continued)

E$IDDR

E$IO

E$FLUSHING

E$ILLVOL

EDEVOFF
LINE

E$PREFIX$
SYNTAX

E$CANNOT$
CLOSE

E$IOHEM

E$MEDIA

ELOGNAME
NEXIST

EABSADD
RESS

EBADGROUP

EBAD
HEADER

S

* *

* * * *

* * * *

*
*

* *

*

* *

* *

* *

*

* *

* *

Nucleus Reference Manual
Basic I/O System Ref Manual
Extended I/O Sys Ref Manual

Invalid device driver request.

An I/O error occured.

Connection specified in call was
deleted before the operation was
completed.

Invalidly named volume.

The device being accessed if now
offline.

The specified path starts with a colon
(:) but does not contain a second,
matching colon.

The Extended I/O System was not able
to transfer remaining data in buffers
to output device.

The Basic I/O System has insufficient
memory to process a request.

The device containing a specified
file is not online.

The Extended I/O System was unable
to find a specified logical name in
the object directories that it checks.

An absolute object program was loaded
into system protected memory area.

Illegal group component in the a
group definition record.

Illegal header record in the object
file.

L Loader Reference Manual
H Human Interface Reference Manual
S System Programmer's Ref Manual

A-4

iRMxm 86 EXCEPTION CODES

Table A-2. iRMXlII 86 Condition Codes (continued)

Hex. Mnemonic Manuals
N BEL H

Meaning
Value

Environmental Conditions (continued)

N
B
E

63H

64H

65H

66H

67H

68H

69H

6AH

6BH

6CH

6DH

6EH

6FH

EBADSEG
MENT

E$CHECKSUM

E$EOF

E$FIXUP

ENOLOADER
$MEM

ENOMEM

ERECFMT

EREC
LENGTH

ERECTYPE

ENOSTART

EJOBSIZE

E$OVLY

E$LOADER
$ SUPPORT

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *
* *

*

* *

Nucleus Reference Manual
Basic I/O System Ref Manual
Extended I/O Sys Ref Manual

Illegal segment definition record.

A checksum error occurred while
reading an object record.

Unexpected end of file encountered
while reading object records.

Illegal fixup record in the object
file.

Insufficient memory to satisfy
loader dynamic memory requirements.

Insufficient memory to create PIC/LTL
segments.

Illegal record format encountered.

Record length of an object record
exceeds configured loader-buffer size.

Illegal record type encountered in
the object file.

Start address not found.

Maximum job-size specified is less
than the memory requirement specified
in the object file.

Overlay name does not match with any
of the overlay module names.

The object file being loaded requires
features not supported by the
configured loader.

L
H
S

A-5

Loader Reference Manual
Human Interface Reference Manual
System Programmer's Ref Manual

Hex.
Value

BOH

8IH

82H

83

85H

87H

89H

8BH

8000H

800IH

8002H

iRMXm 86 EXCEPTION CODES

Table A-2. iRMXm 86 Condition Codes (continued)

Mnemonic Manuals
N BEL H

Meaning

Environmental Conditions (continued)

E$LITERAL

E$STRING$
BUFFER

E$SEPARA
TOR

E$CONTINUED

E$LIST

E$PREPOSI
TION

E$CONTROL$C

E$EXTRA$SO

*

*

*

*

*

*

*

*

The parse buffer contains a literal
with no closing quote.

The string to be returned as the
parameter name exceeds the size of
the buffer the user provided in the
call.

The parse buffer contains a command
separator.

The parse buffer contains a
continuation character.

The last value of the value list is
missing.

The same preposition as on the the
command line was indicated, but can
not be used.

The user typed CONTROL-C while the
command was being loaded.

There were no more input pathnames
although the output pathname list was
not empty.

Programmer Errors

E$ZERO$- *
DIVIDE

E$OVER-FLOW *

E$TYPE * * * * *

A task attempted to divide by zero.

An overflow interrupt occurred.

A token parameter referred to an
existing object that is"not of the
required type.

N

B
E

Nucleus Reference Manual
Basic I/O System Ref Manual
Extended I/O Sys Ref Manual

L
H
S

Loader Reference Manual
Human Interface Reference Manual
System Programmer's Ref Manual

L-___ ,~_

A-6

iRMXm 86 EXCEPTION CODES

Table A-2. iRMXm 86 Condition Codes (continued)

Hex. Mnemonic
Value

Manuals
N BEL H

Meaning

Programmer Errors (continued)

8003H

8004H

8006H

8007H

8020H

802lH

8022H

8040H

8041H

8042H

8060H

8080H

8083H

8084H

E$BOUNDS

E$PARAM

E$ARRAY$
BOUNDS

ENDP
ERROR

E$IFDR

E$NOUSER

ENOPREFIX

ENOT
PREFIX

ENOT
DEVICE

ENOTCON
NECTION

EJOBPARAM

E$PARSE$
TABLES

E$DEFAULT$SO

E$STRING

*

* * * * *

* *
*

*

* *

* *

* *

*

*

*

*

*
*

* *

*

*

*

N
B
E

Nucleus Reference Manual
Basic I/O System Ref Manual
Extended I/O Sys Ref Manual

A task attempted to access beyond the
end of a segment.

A parameter which is neither a token
nor an offset has an invalid value.

Array overflow detected by hardware
or language processor.

8087 (Numeric Data Processor) error.

Invalid file driver request.

No default user.

No default prefix.

Specified object is not a device
connection or file connection.

A token parameter referred to an
existing object that is not, but
should be, a device connection.

A token parameter referred to an
existing object that is not. but
should be, a file connection.

The maximum job-size specified is
less than the minimum job-size.

There is an error in the interal
parse tables.

The default output name STRING is
invalid.

The pathname to be returned exceeds
255 characters in length.

L
H
S

A-7

Loader Reference Manual
Human Interface Reference Hanual
System Programmer's Ref Manual

APPENDIX B. iRMXlII 86 SYSTEM CALLS

This chapter describes the system calls that the iRMX 86 Operating System
recognizes. If you wish to use any of these calls with the iRMX 86 PC
System, you must to obtain the manual that describes the system call
(manuals are listed in Chapter 6) and you must link your programs to the
appropriate library on the Library Diskette supplied with the iRMX 86 PC
System. This Appendix lists the iRMX 86 System calls and briefly
describes each call. The first section describes each layer of the
Operating System.

LAYERS OF THE iRMX 86 SYSTEM

The Configurable iRMX 86 Operating System consists of a number of
layers. The Operating System can be configured to include or exclude
certain layers (the Nucleus is always included) and to include or exclude
optional features. (The configuration process has already been
accomplished for users of the iRMX 86 PC Operating System.)
The layers of the iRMX 86 Operating System are:

Nucleus

Basic I/O
System

The Nucleus is the core of the iRMX 86 Operating System
and is required by every application system. It
provides facilities that perform processor management
and scheduling, interrupt management, memory management,
object control, and error management. Refer to the
iRMX 86 NUCLEUS REFERENCE MANUAL and the iRMX 86 SYSTEM
PROGRAMMER'S REFERENCE MANUAL for detailed information
about the Nucleus.

The Basic I/O System provides an extensive
facility for device-independent I/O. It supplies all
file drivers and a number of device drivers. It
implements an asynchronous interface to I/O operations,
allowing tasks explicitly to overlap I/O functions with
other operations. Refer to the iRMX 86 BASIC I/O SYSTEM
REFERENCE MANUAL and the iRMX 86 SYSTEM PROGRAMMER'S
REFERENCE MANUAL for more information.

Extended I/O The Extended I/O System provides a higher-level
SysEem interface to files than the Basic I/O System provides.

The Extended I/O System provides a simple, synchronous
interface to I/O operations, one which automatically
performs read-ahead and write-behind buffering. This
synchronous interface also allows tasks to use logical
names to refer to files. All of the UDI File Management
system calls (see Chapter 4 of this manual) are
accomplished by the Extended I/O System.

B-1

Application
Loader

Bootstrap
Loader

Human
Interface

iRMX- 86 SYSTEM CALLS

Refer to the iRMX 86 EXTENDED I/O SYSTEM REFERENCE
MANUAL and the. iRMX 86 SYSTEM PROGRAMMER'S REFERENCE
MANUAL for more information.

The Application Loader provides a simple
mechanism for loading application code and data files
from I/O devices into system memory. It can load
absolute code into fixed locations, relocatable code
into dynamically-allocated memory locations, and it can
load files containing overlays.

The Bootstrap Loader provides a means of loading
the Operating System into system memory from an I/O
device. It can also load a file you specified at the
terminal. The Bootstrap Loader is in the EPROMs
supplied with your iRMX 86 PC System.

The Human Interface is the uppermost layer of the
iRMX 86 Operating System. It is an interactive
interface between you and the application system. Using
the Human Interface, you can invoke a program from the
terminal by specifying the name of the file that
contains the program. A set of programs, the Human
Interface Commands, are supplied with the Operating
System. These are the commands documented in Chapter 3
of this manual.

The Human Interface also provides a number of system
calls that the application program can invoke to access
Human Interface services. Refer to the iRMX 86 HUMAN
INTERFACE REFERENCE MANUAL for more information.

B-2.

iRMXm 86 SYSTEM CALLS

NUCLEUS SYSTEM CALLS

The Nucleus system calls are listed here.

ACCEPT$CONTROL

CATALOG$OBJECT

CREATE$JOB

CREATE$MAILBOX

CREATE$SEGMENT

CREATE$SEMAPHORE

C REATE$T ASK

DELETE$JOB

DELETE$MAILBOX

DELETE$SEGMENT

Gains control of a region only if the region is
immediately available.

Enters a name and token for an object into the
object directory of a job.

Creates an environment for a number of tasks and
other objects, as well as creating an initial
task and its stack.

Creates a mailbox with queues for waiting tasks
and objects with FIFO or PRIQRITY dicipline.

Dynamically allocates a specified number of
16-byte paragraphs.

Creates a semaphore for synchronizing access to
resources.

Creates a task with the specified priority and
stack area.

Deletes a Job and all the objects currently
defined within its bounds only if that Job does
itself not contain any other jobs. All memory
used is returned to the containing job.

Deletes a mailbox.

Deletes the specified segment by deallocating
the memory.

DELETE$SEMAPHORE Deletes a semaphore.

DELETE$TASK Deletes a task from the system, and removes it
from any queues in which it may be waiting.

DISABLE Disables the hardware from accepting interrupts
at or below a specified level.

ENABLE Enables the hardware to accept interrupts from a
specified level.

EXIT$INTERRUPT Used by an interrupt handler to relinquish
control of the System.

GET$LEVEL Returns the number of the highest priority
interrupt level currently being processed.

GET$POOL$ATTRIBUTES Returns attributes such as the minimum and
maximum, as well as current size of the memory
in the environment of the calling task's job.

B-3

GFIT$PRIORI TY

GET$SIZE

GE T$TASK$TQKENS

GET$TYPE

LOOKUP $OBJE CT

OFFSPRING

RECEIVE$MESSAGE

RECEIVE$UNITS

RESET$INTERRUPT

RESUME$TASK

SEND$CONTROL

SEND$MESSAGE

SEND$UNITS

SET$INTERRUPT

SET$POOL$MIN

iRMX- 8n SYSTEM CALLS

Obtains the current priority of a specified task.

Returns the size (in bytes) of a segment.

Gets the token for the calling task or
associated ocbjects within its environment.

Returns a code for the type of object refered to
by the spec.ified token.

Returns a token for the object with the
specified name found in the object: directory of
the specified job.

Provides a. list of all the current Jobs created
by the spec.ified job.

Attempts to receive an object from a specified
mailbox. The calling task may choose to wait
for a specified number of system time units if
no object is available.

Attempts to gain a specified number of units
from a semaphore. If the units are not
immediately available. the calling task may
choose to wait.

Disables an interrupt level. and cancels the
assignment of the interrupt handler for that
level. If an interrupt task was assigned. it is
deleted.

Resumes a task. If the task had been suspended
multiple times. the suspension depth is reduced
by one. and it remains suspended.

Relinquishes control of a region.

Sends an object to a specified mailbox. If a
task is waiting. the object is passed to the
appropriate task according to the queuing
discipline. If no task is waiting, the object
is queued at the mailbox.

Increases a semaphore counter by the specified
number of units.

Assigns an interrupt handler and, if desired. an
interrupt task to the specified interrupt
level. Usually the calling task becomes the
interrupt task.

Dynamically changes the minimum memory
requirements of the job environment containing
the calling task.

B-4

SET$PRIORITY

SIGNAL$INTERRUPT

SLEEP

SUSPEND$TASK

UNCATALOG$OBJECT

WAIT$INTERRUPT

BASIC 1/0 SYSTEM CALLS

iRMX'" 86 SYSTEM CALLS

Dynamically alters the priority of the specified
task.

Used by an interrupt handler to signal the
associated interrupt task that an interrupt has
occured.

Causes a task to enter the ASLEEP state for a
specified number of system time units.

Suspends the operation of a task. If the task
is already suspended, its suspension depth is
increased by one.

Removes an object and its name from a job's
object directory.

Used by an interrupt task to SLEEP until the
associated interrupt handler signals the
occurence of an interrupt.

These are ·the Basic 1/0 System calls.

A$ATTACH$FILE Creates a connection to an existing file and
returns its token identifier.

A$CHANGE$ACCESS Changes the types of accesses permitted to the
specified user(s) for a specific file.

A$CLOSE Closes the connection to the specified file so
that it may be used again, or so that the type
of access may be changed.

A$CREATE$DlRECTORY Creates a Named File used to store the names and
locations of other named files, and returns a
token identifier for the connection to the new
file.

A$CREATE$FILE Creates a data file with the specified access
rights, and returns a token identifier for the
connection to the new file.

A$DELETE$CONNECTION Deletes the connection to the specified file.

AGETFILE$STATUS Returns the current status of a specified file.

A$OPEN Opens a file for either read, write, or update
access.

A$READ Reads a number of bytes from the current
position in a specified file.

B-5

A$SEEK

A$WRITE

EXTENDED I/O SYSTEM CALLS

iRMX· 86 SYSTEM CALLS

Moves the current data pointer of a named or
physical file.

Writes a number of bytes at the current
position in a file.

These are the Extended I/O System calls.

CREATEIOJOB

EXITIOJOB

S$ATTACH$FILE

S$CATALOG$GONNECTION

S$CHANGE$ACCESS

S$CLOSE

S$CREATE$DlRECTORY

S $CREATE$F ILE

S$CREATE$ I O$JOB

S$DELETE$CONNECTION

Creates an I/O job with one task.

Sends a message to a previously designated
mailbox and deletes the calling task.

Creates a connection to an existing file.

Creates a logical name for a connection by
cataloging the connection in the object
directory of a specific job.

Changes the access list for a named file.

Closes an open connection to a named,
physical or stream file.

Creates a new directory file.

Creates a new physical, stream, or named
data file. It cannot create a named
directory file.

Creates an I/O job containing one task.

Deletes a file connection. It cannot delete
a device connection.

S$DELETE$FILE Deletes a stream, physical, or named file.

S$EXIT$IO$JOB Sends a message to a previously designated
mailbox and deletes the calling task.

SGETC ONNECTION$ STATUS Provides status information about file and
device connections.

SGETFILE$STATUS

S$LOOK$UP$CONNECTION

Allows a task to obtain information about a
physical, stream, or named file.

Searches through an I/O job's local, global,
and root object directories to find the
connection associated with a logical name.

B-6

iRMXlII 86 SYSTEM CALLS

S$OPEN

S$READ$MOVE

S$RENAME$FILE

S$SEEK

S$SPECIAL

S$TRUNCATE$FILE

S$UNCATALOG$CONNECTION

S$WRITE$MOVE

HUMAN INTERFACE SYSTEM CALLS

Opens a connection to a named.
physical,or stream file.

Reads a number of bytes from a file to
a buffer.

Changes the path of a named file. It
cannot be used for stream or physical
files.

Moves the file pointer.

Allows your task to perform functions
that are peculiar to a specific device.

Removes information from the end of a
named data file.

Deletes a logical name from the object
directory of a specific job.

Writes a collection of bytes from a
buffer to a file.

These are the Human Interface System Calls.

C$CREATE$COMMAND$CONNECTION Create a command connection and return
a token.

C$DELETE$COMMAND$CONNECTION Delete a specific command connection.

C$FORMAT$EXCEPTION Format a default message into a user
buffer for a given exception code.

CGETCHAR Get a character from the command line.

CGETINPUT$CONNECTION Return an EIOS connection for the
specified input file.

CGETINPUT$PATHNAME Parse the command line return a
pathname that will identify the
Standard Input file.

CGETOUTPUT$CONNECTION Return an ErOS connection for the
specified output file.

CGETOUTPUT$PATHNAME Parse the command line and return a
pathname that will identify the
Standard Output file.

B-7

iRMX· 86 SYSTEM CALLS

CGETPARAMETER

C$SEND$CO$RESPONSE

C,$SEND$COMMAND

C$SEND$EO$RESPONSE

CSETCONTROL$C

CSETPARSE$BUFFER

SYSTEM PROGRAMMER SYSTEM CALLS

Parse the command line for the next
parameter and return it as a keyword name
and a value.

Send a message to the command output (CO)
and read a response from the command input
(CI).

Concatenate command lines into the data
structure created by CREATE$COt-1-
MAND$CONNECTION and then execute command.

Send a message to the error output device
(EO) and return a response from the error
input device (EI).

Change calling program's CONTROL C
semaphore to the specified semaphore.

Parse a buffer other than the current
command line.

These system calls are considered System Programmer calls because of
their global effect on the system.

AGETEXTENSION$DATA

A$PHYSICAL$ATTACH$DEVICE

A$PHYSICAL$DETACH$DEVICE

ASETEXTENSION$DATA

ACCEPT$CONTROL

ALTER$COMPOS ITE

CREATE$COMPOSITE

CREATE$EXTENSION

CREATE$REGION

CREATE$USER

Returns from the I/O System extension data
stored with a file.

Attaches a device to the Basic I/O System.

Detaches a device from the Basic I/O
System.

Sets the extension data for a file from
the I/O System.

Requests access to data protected by a
region only if access is immediately
available.

Alters the component list of a composite
object.

Creates a composite object.

Creates a new extension object type.

Creates a region.

Creates a user object.

B-8

iRMX'" 86 SYSTEM CALLS

DELETE$COMPOSITE Deletes a composite object.

DELETE$EXTENSION Deletes an extension type.

DELETE$REGION Deletes a region.

DELETE$USER Deletes a specified user object.

DISABLE$DELETION Increases the deletion disabling depth of an
object by one.

ENABLE$DELETION Decreases the deletion disabling depth of an
object by one.

FORCE$DELETE Forces the deletion of an object even if the
object has had its deletion disabled once.

INSPECT$COMPOSITE Returns a list of the component object tokens
contained in a composite object.

INSPECT$USER Returns a list of the ID's in a user object.

LOGlCAL$ATTACH$DEVICE Attaches a device to the Extended I/O System.

LOGICAL$DETACH$DEVICE Detaches a device from the Extended I/O
System.

RECEIVE$CONTROL Requests eventual access to data protected by
a region.

SEND$CONTROL

SET$O S$EXTENS ION

SET$PRIORITY

SET$TIME

SIGNAL$EXCEPTION

Relinquishes access to data protected by a
region.

Allocates and deallocates extension entries
in the interrupt vector table.

Changes the priority of a task dynamically.

Sets the time and the date.

Signals the occurrence of an exceptional
condition.

B-9

APPENDIX C. MONITOR COMMANDS

The iRMX 86 PC Operating System includes the iSBC 957B Monitor, which
resides in EPROM on the processor board. This appendix describes the
Monitor commands, which allow you to do such things as:

• Set breakpoints in programs

• Single-step through your programs

• Examine and modify registers and memory

• Perform I/O via 8086 input and output ports

• Move and compare blocks of memory

Also, by connecting your hardware to an Intel Microcomputer Development
System (using the iSBC 957B package), you can use the monitor from the
Development System. Chapter 5, PREPARING YOUR HARDWARE, describes the
jumpering and devices required on your Single Board Computer to support
this feature. The USER'S GUIDE FOR THE iSBC 957B iAPX 86, 88 INTERFACE
AND EXECUTION PACKAGE describes the iSBC 957B package.

You can get to the monitor in any of these ways:

• By booting the system (as described in Chapter 2), and when the
period (.) prompt is displayed, the Monitor is ready to accept
commands.

• By using the Human Interface DEBUG command, specifying a program
file. This loads a program into memory and gives control to the
monitor, permitting you to examine the program in detail. The
DEBUG command is described in Chapter 3.

• By pressing a button connected to the nonmaskable interrupt of
your Single Board Computer. This interrupts the application
system and gives control to the monitor, which prompts with a
period (.) and waits for your entry.

CAUTION

To prevent destroying data on your
diskettes, wait at least 2 seconds
after your last iRMX 86 command before
you interrupt the computer.

In this chapter, the 8087 Numeric Processor Extension is referred to as
"NPX."

~l

MONITOR COMMANDS

COMMAND STRUCTURE

Responses to the monitor's command-level prompt are line-oriented, as
opposed to the more traditional character-oriented monitor input. This
allows for command-line editing capabilities.

Each monitor command includes a key letter, which is suggestive of the
function of the command, such as D for displaying memory and S for
substituting memory. Some commands have one or more additional letters
which specify variations of the general function.

Following the key letter or letters of a command are zero or more
arguments. The arguments can be addresses, data, register names,
strings, or punctuation symbols dpending on the command.

In the remainder of this manual, the following syntax conventions are
used:

[A]
[AJ*

{AlB}
<cr>

indicates that "A" is optional
indicates zero or more optional iterations of "A"
indicates that "B" is a variable
indicates "A" or "B"
indicates a carriage return

Variables in commands include numbers, registers, expressions, and
addresses. The BYTE and WORD variables are defined in the following
sections.

BYTE AND WORD VARIABLES

<dec digit>::= {OI1121314151617181 9}
<hex digit>::= {<dec digit>IAIBICIDIEIF}
<dec number>::= {<dec digit><dec number>l<dec digit>}
<hex number>::= {<hex digit><hex number> I <hex digit>}
<number>::= {<hex number> I <dec number>T}
<register>::= {AXIBXICXIDXISPIBPISIIDIICSIDSISSIESIIPIFL}
<term>::= {<number>l<register>}
<expr>::= {<term> I <expr> {+I-} <term>}
<addr>::= {[<expr>:J<expr>}
<range>::= {<addr>l<addr>#<number>}

The range of byte values is OO-OFFH. Larger numbers can be entered but
only the last two digits are significant because the number is evaluated
modulo 256. The range of word values is OOOO-OFFFFH. LargeT numbers can
be entered, but only the last four hex digits are significant because the
number is evaluated modulo 65536. Leading zeros can be omitted for both
types of values.

Byte and word values are assumed to be in hexadecimal. However, decimal
values can be entered if they end with a "T". The trailing "H" that
sometimes indicates hexadecimal is not allowed for byte or word values.

C-2

MONITOR COMMANDS

When word values are displayed, the contents of the high byte of the
address location is displayed, followed by the contents of the low byte
of the address location. Similarly, when entering word values, the high
byte is followed by the low byte. If necessary, leading zeros are
appended to the value by the monitor. Assume, for example, that the byte
values C4, 26, F2, and 3D are in consecutive locations beginning at
246B:26. A display of those locations in bytes looks like:

246B:0026 C4 26 F2 3D

while the corresponding display in words looks like:

246B:0026 26C4 3DF2

NUMERIC (REAL, INTEGER AND BCD) VARIABLES

<sign>::= [{+I-}]
<npx dec number>::= <sign><dec number>
<npx hex number>::= <hex number>H
<scientific number>::= {<npx dec number>[.<dec number>] I

<sign>.<dec number>} [E<npx dec number>]
<int number>::= {<npx dec number> I <npx hex number>}
<BCD number>::= {<npx dec number>l<npx hex number>}
<real number>::= {<scientific number> I <npx dec number> I <hex number>R}
<npx register>::= {CWISWITWIOPIDP}
<npx stack register>::= ST[({011121314151617})]

Numeric variables refer to the data types supported by the 8087 Numeric
Processor Extension (NPX). There are three types of numeric variables:
integer, packed binary coded decimal (BCD), and real. Of these three
basic types, the integer and real types have three sub-types. All seven
numeric data types are described in Table C-l. For the remainder of this
manual, the seven numeric variables are referred to as "NPX data types."

See the 8086 FAMILY USER'S MANUAL NUMERICS SUPPLEMENT for more details on
the NPX data types. Also, note the section on "Constants" in the
8086/8087/8088 MACRO ASSEMBLY LANGUAGE REFERENCE MANUAL. For other NPX
related details, refer to the Application Note, Getting Started With the
Numeric Data Processor.

C-3

MONITOR COMMANDS

TableC-l. NPX Data Types

Significant
Explicit Digits Approxi1l1ate Range

Data Type Suffix Bits (Decimal) (Decimal)

Word integer H 16 4 -32,768 < X < +32,767
..

Short integer H 32 10 -2xl0 9 < X < +2xl09

Long integer H 64 19 -9xl018 < X < +9xl018

Packed decimal H 80 18 -99 •• 99 < X < +99 •• 99(18 digits)

Short real* R 32 6-7 8.43xl0-37 < IXI < 3.37xl038

Long real* R 64 15-16 4.19xl0-307 < IXI < 1.67xl0308

Temporary real R 80 19 3.4xl0-4929 < IXI < 1.2xl04929

* The short and long real data types correspond to the single and double
precision data types defined in other Intel numeric products.

The suffixes used when entering the NPX data types differ from the
suffixes for word and byte variables. If the no suffix is given when
entering an NPX data type, the number is assumed to be a decimal number.
A decimal number is defined for the real NPX data types as a value
entered as a scientific number. This allows values like 4, 1.2, -1.2,
-.3, -.3E-44, -1.56E-999 or 5.67E55 to be entered. A decimal number is
defined for the integer and BCD NPX data types as a value entered as a
scientific number that will evaluate to an integer value. This allows
numbers like 12, -12, 4E2 or 4.0El to be entered but won't allow the
entry of numbers like 1.2, -1.2 or -1.56E-999. In the valid cases, the
monitor will place the hexadecimal equivalent of the input decimal number
into iAPX 86, 88 memory. However, if an integer or BCD number is entered
with its explicit suffix ''H'' or a real number is entered with its
explicit suffix "R", the monitor places the number, as it is entered at
the console, into iAPX 86, 88 memory. In this case explicit signs
(+ or -) are not allowed, the hexadecimal number, entered at the console,
indicates the sign of the number in the sign bit, the most significant
bit.

C-4

MONITOR COMMANDS

WhenNPX data types are displayed, the address of the data type is
displayed and then the value is displayed in hexadecimal form. The
number is then displayed as the equivalent decimal number if it has an
equivalent decimal value. For example, the long real number 11223344, is
displayed in form:

1111: 0 4165682600000000R 11223344

The long integer, 11223344, is displayed in the form:

1111:0 000000000OAB4130H 11223344

The BCD number, 11223344, is displayed in the form:

1111:0 00000000000011223344T 11223344

In the remainder of this manual this display form is referred to as "NPX
number format". If the memory value is a special bit pattern identifying
non-numeric values like Not-A-Number (NAN) or Infinity, the address and
the hexadecimal number are displayed and then the meaning is shown as NAN
or Infinity instead of the decimal value. Examples of these displays
using a long real number are:

0080:0000
0080: 0008

FFFFOOOOOOOOOOOOR
7FFOOOOOOOOOOOOOR

-NAN
+Infinity

Special cases of numeric values are also identified. A negative zero is
dislayed as -0. Pseudo zeroes (zero fraction with non-zero exponent) are
shown as OEexp, where exp is the base 10 power equivalent of the binary
exponent in the number. Numbers which are not normalized (I bit is zero)
are displayed with their hexadecimal value and a IIBit" value which is a
count of how many leading zeroes existed in the number. This "Bit" value
indicates how many times the fractional part of the number must be
shifted to the left to normalize it. An example of this display using a
temporary real number is:

0080:000 3FFF199999999999999AR .2 UNNORM 3 BITS

Decimal values can be displayed in any of four different formats. The
format used depends on the range of the number and its value. Numbers
which are exact integers and fit in the field size of 16 digits are
displayed as integers with no trailing decimal point or O. An example of
this display using a long real number is:

0080: 0000 43118B54F22AEBOOR 1234567890123456

Values which appear as integers, within the limits of the field size, but
are not exact integers are displayed as XXXXX.O. The.O suffix indicates
that the value is close to an integer but not exactly. An example of
this display using a ~ong real number is:

0080:0000 42DC12218377DE46R 123456789012345.0

C-5

MONITOR COMMANDS

If the magnitude of a number is greater than or equal to 0.1
than 10**<field size), the number is displayed as XXXX.XXX.
of this display using a long real number is:

0080:0000 41D26480B487E69BR 1234567890.12345

and is less
An example

Finally, very large or very small numbers are displayed in scientific
number format X.XXXXXEexp. An example of this display using a long real
number is:

0080:0000 492C2916217B84B7R 3. 14E+44

Trailing zeroes after the decimal point are also suppressed.

When NPX data types are displayed, the most-significant byte of the
memory address (in hexadeximal notation) is displayed in the leftmost
position, followed by bytes of decreasing significance with the least
significant byte in the right most position. Similarly, when entering
NPX data types in hexadecimal or decimal, the first digit entered has the
greatest significance and successive digits entered have decreasing
significance. If less than the NPX data type's number of significant
digits is entered, the monitor will append leading zeros. When entering
a value for an NPX date type in scientific number format, the number is
converted to its hexadecimal equivalent and is then stored in iAPX 86, 88
memory in that format.

ADDRESS SPECIFICATION

A complete address argument consists of a base and an offset separated by
a colon (:). If the optional base portion is omitted, the contents of
the iAPX 86, 88 CS register are used as a default base, except as noted
in the command descriptions that follow. If an entire address is
omitted, but an address is needed in the command, the contents of the CS
and IP registers are used, respectively, as base and offset, except as
noted in the command description.

There are two ways of denoting a range of addresses. One way is to list
both the starting and ending addresses, with an exclamation point between
them. An example is 30:46D ! 30:4FE. The other way is to list the
starting address and the length in bytes, with a pound sign (#) between
them. An example equivalent to the earlier one is 30:46D # 92.

If the ending address in a range lacks an explicit base part, the base of
the starting address is assumed. The ending address may not contain a
base part which differs from the base part of the starting address.

The largest count or the maximum number of bytes specified by a range is
OFFFFh. When a range is expected and neither an ending address nor a
length is specified, the range is taken to be a single byte.

C-6

MONITOR COMMANDS

MULTIPLE COMMANDS ON A SINGLE LINE

There are two mechanisms for putting more than one command on a command
line. First, separate commands may be in the same command line if they
are separated by semicolons (j). Second, by enclosing a command in angle
brackets «command» and by placing a decimal repetition factor ahead of
the first bracket, you can specify that the command be repeated the
desired number of times. A repetition factor of n says "do this command
n times." For example,

5 (12 (G, CS:3B7) ; D DS:4A)

is a valid command line that is built from the commands G, CS:3B7 and D
DS:4A. The command G, CS:3B7 is repeated 12 times, then the D DS:4A is
performed once. This entire sequence is repeated 5 times so the G,
CS:3B7 command is repeated at total of 60 times while the D DS:4A command
is repeated a total of only 5 times. Note that this use of angle
brackets is NOT the same as the use of angle brackets in the syntax
definition.

Closely related to repetition, but differing, is continuation. By
putting a decimal continuation factor, n, immediately ahead of a
command's key letter or letters, you are directing the monitor to lido
this command for n items at a time." For example, the command D 200:14
directs the monitor to display the byte at address 200:14, while 20D
200:14 causes the display of 20 consecutive bytes, beginning at address
200:14. In contrast, 20 <D 200:14) causes the byte at 200:14 to be
displayed 20 times.

NOTE

Both repetition and continuation
factors are written as positive decimal
integers with no "T" suffix. The range
of these factors is 1 through 65,535.
In any other part of a command using
byte or word variables, however,
decimal integers must have a "T"
suffix, such as 127T.

C-7

MONITOR COMMANDS

iAPX 86 AND iAPX 88 CPU REGISTERS

The iAPX 86 and iAPX 88 CPUs include the 14 registers listed in Table
C-2. The abbreviations used in the table are those used in the command
syntax.

Table C-2. iAPX 86, 88 CPU Registers

Register Name Abbreviation

Accumulator AX
Base BX
Count CX
Data DX
Stack Pointer SP
Base Pointer BP
Source Index SI
Destination Index DI
Code Segment CS
Data Segment DS
Stack Segment SS
Extra Segment ES
Instruction Pointer IP
Flag FL

NPX REGISTERS

The NPX includes the eight 80-bit individually-addressable stack
registers plus the status word, control word, tag word, instruction
pointer, data pointer and instruction opcode field listed in Table C-3.
The abbreviations used in the table are those used in the command
syntax. Note that the NPX instruction pointer listed in Table C-3 is not
the iAPX 86, 88 instruction pointer. The monitor contains no command to
modify the NPX instruction pointer.

C-8

MONITOR COMMANDS

Table C-3. NPX Registers

Register Name Abbreviation

NPX State N
Status Word SW
Control Word CW
Tag Word TW
Instruction Pointer IP
Data Pointer DP
Instruction Opcode OP
Stack Register 0 St(O)

· · · · · •
Stack Register 7 St(7)

ERRORS

Each line input to the monitor is checked for validity. If the command
is invalid or impossib+e to execute t an explanatory error message is
displayed. If the command line containing the error consists of multiple
commands, any valid commands prior to the error are executed.

Three error messages - "Bad EMDS Connection", "Bad Patch Byte=hex
number", and XISIS Abort" - are all indicative of hardware problems. To
recover, check your hardware, restart monitor, and try again.

ENTERING COMMANDS

The monitor's command line editor responds to input as follows:

• Digits, upper and lower
keyboard characters are
printed on the console.
indistinguishable to the
monitor in upper case.

case letters, and all other standard
accepted into the command line and are

Upper and lower case letters are
monitor, all display is done by the

• RUB OUT deletes the most recently entered character (with
backspace, space, backspace) from both the command line and the
display. An attempt to rubout the prompt causes a beep to be
sounded.

C-9

MONITOR COMMANDS

• CNTRL/C directs the monitor to abort its current command and
issue a prompt. However, if your program is running and is in a
loop, CNTRL/C has no effect.

• CNTRL/R displays at the console the current command line. If the
console terminal is in transparent mode, however, control-R has
no effect.

• CNTRL/X deletes the current command line and displays a pound
sign (II).

• CNTRL/S causes the console output to be suspended at the current
cursor position. No output is lost by this command.

• CNTRL/Q causes the console output, suspended by Control-S, to be
resumed beginning at the current cursor position.

• CARRIAGE RETURN (CR) signals the completion of the command line,
which is then read and acted upon.

• Other characters have no effect. Spaces may be included anywhere
in the command line except within lexical elements.

• NPX data types may be entered only on the substitute ("S") or
"XST(n)" command line and may appear in no other command line.

Command lines may be up to 255 characters in length. An attempt to
exceed this limit will be unsuccessful and will cause the terminal to
beep.

C-IO

MONITOR COMMANDS

COMMAND DESCRIPTIONS

The Monitor commands are summarized in Table C-4.

Table C-4. Summary of Loader And Monitor Commands

COMMAND FUNCTION AND SYNTAX

L Load

G Go

R Load and Go

T Upload

N Single Step

X Examine

D Display

S Substitute

M Move

F Find

C Compare

Loads an absolute object file from Intellec into iAPX
86, 88 memory. L <filename> <cr>

Transfers control of the CPU to the user program.
G [<start-addr>][, <break-addr>l<range>]<cr>

Loads an absolute object file from Intellec into iAPX
86, 88 memory and begins execution.
R<filename><cr>

Loads a block of iAPX 86, 88 memory into an Intellec
file.
T<range> , <filename> [, <start-addr>]<cr>

Displays and executes one instruction at a time.
[<cont>] N [0] [P] [Q] [<start-addr>][,]<cr>

Displays or modifies iAPX 86, 88 or NPX registers.
X[<reg> [=<expr>] l<cr>
X{NI [<npx register>[=<hex number>]] I
[<npx stack register>[=<real number>]]}<cr>

Displays contents of a memory block.
[<cont>] D [{WIIISIILIITISRILRITRIX}] [<range>][,]<cr>

Displays/modifies memory locations.
[<cont>] S [W]<addr>[=<expr>][/<expr>]*[,]<cr>
[<cont>] S [{IISIILI}] <addr>[=<int number>]

[/<int number>J*],[<cr>
[<cont>] S [{SRILRITR}]<addr>[=<real number>]

[/<real number>]*[,]<cr>
[<cont>] S [T]<addr)[=<BCD number>] [/<BCD

number>J*[,]<cr>

Moves the contents of a memory block.
M<range> , <dest-addr><cr>

Searches a memory block for a constant.
F<range> , <data><cr>

Compares two memory blocks.
C<range> , <dest-addr><cr>

C-ll

MONITOR COMMANDS

Table C-4. Summary of Loader And Monitor Commands (continued)

COMMAND FUNCTION AND SYNTAX

I Input

o Output

P Print

E Exit

* Comment

B Bootstrap

Inputs and displays data from input port.
[repeat] I [W]<port-addr><cr>

Outputs data to output port.
[repeat] 0 [W]<port-addr> , <data> <cr>

Prints values or literals.
P [{TISIQ}][{<addr>l<expr>l<literal>}] [,

{<addr>l<expr>l<literal>}]*<cr>

Exits the loader program and returns to ISIS-II.
E<cr>

Rest of line is a comment.
* <comment><cr>

Bootstraps code from iRMX 86 or 88 file compatible
peripherals.
B[<pathname>]

C-12

INDEX

Underscored entries are primary references.

$ (default directory) 1-10
:AFDO: and :AFD1: 1-8
:BB: (Byte Bucket) 1-8
:CI: (Console Input device) 1-7
:CO: (Console Output device) 1-7
:LP: (Line Printer) 1-8

abbreviations for command parameters 3-2
Application Loader B-2
ASM86 1-4
ATTACHDEVICE 3-5 to 3-7, 5-3

BACKUP 2-19, 3-8 to 3-14
Basic I/O System B-2
Bootstrap Loader 2-2, B-2
bootstrap loading 1-11, 2-2
BYTE 4-3

comment (command) 2-5
CONNECTION 4-3, 4-5
continuation mark (command) 2-5
CONTROL keys 2-6
COpy command 2-14 to 2-17, 2-18, 3-15 to 3-17
copying system diskette 2-19
CREATEDIR 2-17, 3-18 to 3-19

DATE command 2-8 to 2-10, 3-20
DEBUG 3-21
DELETE 3-22 to 3-23
DETACHDEVICE 3-24
DIR command 2-12 to 2-14, 3-25 to 3-31
directory 1-7
DISKVERIFY 3-32 to 3-36
documentation 6-1 to 6-7
DOWNCOPY 3-37 to 3-39

EDIT 1-4
EPROMs iv, 5-1, 5-9, 5-11, 5-13
exception codes 4-2, A-I to A-7
exception handlers 1-12
exception-handling system calls 4-6
Extended I/O System B-2

file 1-6
file handling system calls 4-5
file operations from a program 1-8

Index-1

INDEX (continued)

file operations from terminal 1-8, 2-1
file system 1-5
FORMAT 2-19, 3-40 to 3-44, 5-3
FORTRAN 1-4

hardware 1-2
heirarchical file structure 1-5
Human Interface 3-1, B-2

INCLUDE files (iRMX 86) 1-11
INCLUDE files (UDI) 4-2
inpath-list (command) 2-4
interleave factors 2-19, 3-41, 3-43
invoking commands 2-3 to 2-18
iRMX 86 Operating System 1-1
iRMX 86 PC Operating System 1-1
iRMX 86 PC Release Package iv
iSBC· 208 Flexible Diskette Controller 1-3, 5-3, 5-6, 5~18
iSBC· 337 Numeric Processor Extension 5-5
iSBC· 86/12A Single Board Computer 1-3, 5-7 to 5-9, 5-15

• iSBC 86/14 Single Board Computer 1-3, 5-10 to 5-11, 5-16
iSBC· 86/30 Single Board Computer 1-3, 5-12 to 5-13, 5-17
iSBC· 957B package 1-3

layers of iRMX 86 Operating System 1-1
LIB86 1-4
Library Diskette iv, 1-11
line printer 1-3, 5-4, 5-18
line printer signals (Centronics) 5-4, 5-18
LINK86 1-4
LOC86 1-4
logical name 1-7

manuals 6-1 to 6-7
memory 1-3
memory-management system calls 4-4
monitor 1-12, C-1 to C-12

Nucleus layer B-1
outpath-list (command) 2-4
overlays 4-30 to 4-31
parameters (command) 2-4
parsing 4-20 to 4-21
Pascas 1 1-4
pathname 1-7
PL/M-86 1-4
POINTER 4-3
PROG (program directory) 1-10
program (example) 4-44 to 4-48
program loading 1-11
proposition (command) 2-4, 2-5

RENAME command 2-18, 3-45 to 3-47
RESTORE 2-19, 3-48 to 3-54

Index-2

INDEX (continued)

segment 4-4, 4-9 to 4-10, 4-11
SELECTOR 4-3
SHORT parameter in DIR command 2-14, 3-25
special characters 4-20
STRING 4-3
SUBMIT 3-55 to 3-57
syntax diagrams 3-1 to 3-2
SYSTEM (system directory) 1-10
system call dictionary 4-7 to 4-8
system calls (iRMX 86) B-1 to B-9
system calls (UDI) 4-1 to 4-48
System Diskette iv, 1-9

TIME command 2-8 to 2-10, 3-58
TOKEN 4-3
transparent mode (terminal input) 4-37 to 4-38

UDr 1-5, 4-1 to 4-48
UDI system calls 4-9 to 4-48
Universal Development Interface (UDI) 1-5, 4-1 to 4-48
UPCOPY 3-59 to 3-60

video terminal 1-3
volume 1-6

WORD 4-3
WORK (work directory) 1-10

Index-3

REQUEST FOR READER'S COMMENTS

Getting Started with
the iRM)(TM86 System

144349-001

Intel Corporation attempts to provide documents that meet the needs of all Intel product users. This form lets
you participate directly in the documentation process.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of this
document.

1. Please specify by page any errors you found in this manual.

2. Does the document cover the information you expected or required? Please make suggestions for
improvement.

3. Is this the right type of document for your needs? Is it at the right level? What other types of documents are
needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating. _____ __

NAME ___ DATE __________ __

TITLE

COMPANY NAME/DEPARTMENT __ __

ADDRESS __ __

CITY ___ STATE ___ ZIP CODE ___ __

Please check here if you require a written reply. 0

WE'D LIKE YOUR COMMENTS ...

This document is one of a series describing Intel products. Your comments on the back of this form
will help us produce better manuals. Each reply will be carefully reviewed by the responsible
person. All comments and suggestions become the property of Intel Oorporation.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 79 BEAVERTON, OR

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
5200 N.E. Elam Young Pkwy.
Hillsboro, Oregon 97123

O.M.S. Technical Publications

'""'
NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

intJ
INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

