1. Definition of a "simplified form" for a square root $\boldsymbol{\rightarrow}$ The square root of a positive integer is in "simplest form" if the "radicand" has no perfect square
 factor other than one.
2. Have students analyze the following to see if it is true or false: (ALL ARE

TRUE.)

3.

For any numbers "a" and "b," where $\mathbf{a} \geq \mathbf{0}$ and $\mathbf{b} \geq \mathbf{0}, \sqrt{a b}=\sqrt{a} \bullet \sqrt{b} . \circ$

4. Example: Simplify $\rightarrow \sqrt{72}$

The Product Property of Square Roots and prime factorization can be used to simplify radical expressions in which the radicand is not a perfect square.

有72	
$\sqrt{2 \bullet 2 \cdot 2 \cdot 3 \bullet 3}$	Prime factorization
Product Property $\quad \sqrt{2} \cdot \sqrt{2^{2}} \cdot \sqrt{3^{2}}$	
$6 \sqrt{2}$	

5. Example: Simplify $\rightarrow \sqrt{150}$

The Product Property of Square Roots and prime factorization can be used to simplify radical expressions in which the radicand is not a perfect square.

6. When finding the positive square root of an expression containing variables, you must be sure that the result is not negative. Consider that $5^{2}=25$ and $(-5)^{2}=\mathbf{2 5}$. When you find $\sqrt{25}$, however, you want only the "principal square root." Therefore, "absolute values" are used as needed to ensure "nonnegative" results.
$\sqrt{\sqrt{x^{2}}=|x|} \quad \sqrt{x^{3}}=x \sqrt{x} \quad \sqrt{x^{4}}=x^{2} \quad \sqrt{x^{6}}=\left|x^{3}\right|$
7. Point out that to "simplify" a square root with a variable, "absolute value" symbols are necessary when the variable has an "even" exponent and the exponent of its square root is "odd." For example in $\sqrt{x^{4}}=x^{2}$, since " x " is squared in the answer, it will automatically be positive. In $\sqrt{x^{6}}=x^{3}$, in order to guarantee that x^{3} is positive, $\left|x^{3}\right|$ is necessary.

8. Example: Simplify $\rightarrow \sqrt{81 y^{2}}$

The Product Property of Square Roots and prime factorization can be used to simplify radical expressions in which the radicand is not a perfect square.

9. Example: Simplify $\rightarrow \sqrt{200 a^{4} b^{3}}$

The Product Property of Square Roots and prime factorization can be used to simplify radical expressions in which the radicand is not a perfect square.

10. Example: Simplify $\rightarrow \sqrt{10} \bullet \sqrt{20}$

\qquad
Date: \qquad
\qquad

SIMPLIFYING SQUARE ROOTS WORKSHEET

Simplify. Use absolute value symbols when necessary.

1. $\sqrt{8}$

2. $\sqrt{12}$
3. $\sqrt{20}$
4. $\sqrt{24}$
5. $\sqrt{m^{2}}$
6. $\sqrt{y^{6}}$
7. $\sqrt{x^{5}}$
8. $\sqrt{8 a^{3}}$
9. $\sqrt{9 a^{4}}$
10. $\sqrt{4} \bullet \sqrt{9}$
11. $\sqrt{8} \bullet \sqrt{3}$
12. $\sqrt{5} \cdot \sqrt{10}$
13. $\sqrt{11} \cdot \sqrt{11}$
14. $\sqrt{80 a^{2} b^{3}}$
15. $4 \sqrt{5} \cdot 3 \sqrt{15}$

SIMPLIFYING SQUARE ROOTS WORKSHEET KEY

Simplify. Use absolute value symbols when necessary.

1. $\sqrt{8}$
$\sqrt{2 \cdot 2 \cdot 2}$
$\sqrt{2^{2} \cdot 2}$
$2 \sqrt{2}$
2. $\sqrt{12}$

$$
\begin{aligned}
& \sqrt{2 \bullet 2 \cdot 3} \\
& \sqrt{2^{2} \cdot 3} \\
& 2 \sqrt{3}
\end{aligned}
$$

3. $\sqrt{20}$

$$
\begin{aligned}
& \sqrt{2 \bullet 2 \bullet 5} \\
& \sqrt{2^{2} \bullet 5} \\
& 2 \sqrt{5}
\end{aligned}
$$

4. $\sqrt{24}$

$$
\begin{aligned}
& \sqrt{2 \cdot 2 \cdot 2 \bullet 3} \\
& \sqrt{2^{3} \cdot 3} \\
& 2 \sqrt{2 \cdot 3} \\
& 2 \sqrt{6}
\end{aligned}
$$

5. $\sqrt{m^{2}}$

$$
|m|
$$

6. $\sqrt{y^{6}}$

$$
\left|y^{3}\right|
$$

7. $\sqrt{x^{5}}$

$$
\begin{aligned}
& \sqrt{x^{4} \bullet x} \\
& x^{2} \sqrt{x}
\end{aligned}
$$

8. $\sqrt{8 a^{3}}$

$$
\begin{aligned}
& \sqrt{2^{2} \cdot 2 \bullet a^{2} \cdot a} \\
& 2 a \sqrt{2 a}
\end{aligned}
$$

9. $\sqrt{9 a^{4}}$

$$
\begin{aligned}
& \sqrt{3^{2} \bullet a^{4}} \\
& 3 \mathrm{a}^{2}
\end{aligned}
$$

10. $\sqrt{4} \cdot \sqrt{9}$

$$
2 \cdot 3
$$

6
11. $\sqrt{8} \cdot \sqrt{3}$

$$
\begin{aligned}
& \sqrt{8 \cdot 3} \\
& \sqrt{2^{2} \cdot 2 \cdot 3} \\
& 2 \sqrt{6}
\end{aligned}
$$

12. $\sqrt{5} \cdot \sqrt{10}$

$\sqrt{5 \bullet 10}$
$\sqrt{50}$
$\sqrt{5^{2} \cdot 2}$
$5 \sqrt{2}$

13. $\sqrt{11} \cdot \sqrt{11}$
```
\sqrt{}{1\mp@subsup{1}{}{2}}
```

11
14. $\sqrt{80 a^{2} b^{3}}$

$$
\begin{aligned}
& \sqrt{2 \cdot 2 \cdot 2 \cdot 2 \bullet 5 \cdot a^{2} \cdot b^{2} \cdot b} \\
& \sqrt{2^{4} \cdot 5 \bullet a^{2} \cdot b^{2} \bullet b} \\
& 4|a| b \sqrt{5 b}
\end{aligned}
$$

15. $4 \sqrt{5} \cdot 3 \sqrt{15}$

$$
\begin{aligned}
& 4 \cdot 3 \cdot \sqrt{5} \cdot \sqrt{15} \\
& 12 \cdot \sqrt{75} \\
& 12 \cdot \sqrt{5^{2} \cdot 3} \\
& 12 \cdot 5 \sqrt{3} \\
& 60 \sqrt{3}
\end{aligned}
$$

\qquad
Date: \qquad

SIMPLIFYING SQUARE ROOTS CHECKLIST

1. On question 1 , did the student simplify correctly and use absolute value symbols when necessary?
a. Yes (15 points)
b. Did not use absolute value symbols (10 points)
c. Simplified partially (5 points)
2. On question 2 , did the student simplify correctly and use absolute value symbols when necessary?
a. Yes (15 points)
b. Did not use absolute value symbols (10 points)
c. Simplified partially (5 points)
3. On question 3 , did the student simplify correctly and use absolute value symbols when necessary?
a. Yes (15 points)
b. Did not use absolute value symbols (10 points)
c. Simplified partially (5 points)
4. On question 4 , did the student simplify correctly and use absolute value symbols when necessary?
a. Yes (15 points)
b. Did not use absolute value symbols (10 points)
c. Simplified partially (5 points)
5. On question 5 , did the student simplify correctly and use absolute value symbols when necessary?
a. Yes (15 points)
b. Did not use absolute value symbols (10 points)
c. Simplified partially (5 points)
6. On question 6 , did the student simplify correctly and use absolute value symbols when necessary?
a. Yes (15 points)
b. Did not use absolute value symbols (10 points)
c. Simplified partially (5 points)
7. On question 1 , did the student simplify correctly and use absolute value symbols when necessary?
a. Yes (15 points)
b. Did not use absolute value symbols (10 points)
c. Simplified partially (5 points)
8. On question 8 , did the student simplify correctly and use absolute value symbols when necessary?
a. Yes (15 points)
b. Did not use absolute value symbols (10 points)
c. Simplified partially (5 points)
9. On question 9, did the student simplify correctly and use absolute value symbols when necessary?
a. Yes (15 points)
b. Did not use absolute value symbols (10 points)
c. Simplified partially (5 points)
10. On question 10, did the student simplify correctly and use absolute value symbols when necessary?
a. Yes (15 points)
b. Did not use absolute value symbols (10 points)
c. Simplified partially (5 points)
11. On question 11, did the student simplify correctly and use absolute value symbols when necessary?
a. Yes (15 points)
b. Did not use absolute value symbols (10 points)
c. Simplified partially (5 points)
12. On question 12, did the student simplify correctly and use absolute value symbols when necessary?
a. Yes (15 points)
b. Did not use absolute value symbols (10 points)
c. Simplified partially (5 points)
13. On question 13, did the student simplify correctly and use absolute value symbols when necessary?
a. Yes (15 points)
b. Did not use absolute value symbols (10 points)
c. Simplified partially (5 points)
14. On question 14 , did the student simplify correctly and use absolute value symbols when necessary?
a. Yes (15 points)
b. Did not use absolute value symbols (10 points)
c. Simplified partially (5 points)
15. On question 15 , did the student simplify correctly and use absolute value symbols when necessary?
a. Yes (15 points)
b. Did not use absolute value symbols (10 points)
c. Simplified partially (5 points)

Total Number of Points \qquad

