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Abstract. Lyapunov’s second or direct method is one of the most widely used
techniques for investigating stability properties of dynamical systems. This
technique makes use of an auxiliary function, called a Lyapunov function, to
ascertain stability properties for a specific system without the need to generate
system solutions. An important question is the converse or reversability of
Lyapunov’s second method; i.e., given a specific stability property does there
exist an appropriate Lyapunov function? We survey some of the available
answers to this question.

1. Introduction. Over the last 100 years, Lyapunov’s second, or direct, method
has arguably been the most widely used technique for analyzing stability properties
of various types of mathematically described dynamical systems, including differ-
ential and difference equations, hybrid differential-difference equations, stochastic
differential equations, and many others. In his original monograph [71], Lyapunov
studied ordinary differential equations and provided two results in particular that
would have wide-ranging impact:

Theorem 1.1. [71, Section 16, Theorem I] If the differential equations of the dis-
turbed motion are such that it is possible to find a definite function V , of which the
derivative V ′ is a function of fixed sign which is opposite to that of V , or reduces
identically to zero, the undisturbed motion is stable.

Theorem 1.2. [71, Section 16, Remark II] If the function V , while satisfying the
conditions of the theorem, admits an infinitely small upper limit, and if its derivative
represents a definite function, we can show that every disturbed motion, sufficiently
near the undisturbed motion, approaches it asymptotically.

For simplicity, “undisturbed motion” can be taken to be an equilibrium point of
a differential equation while “disturbed motion” refers to solutions of a differential
equation originating from a point other than the equilibrium point; i.e., motions
that are initially disturbed or perturbed away from the equilibrium. However, any
non-trivial solution of an ordinary differential equation can be considered where a
desired “reference” solution is the undisturbed motion and the disturbed motion
refers to solutions perturbed away from the reference solution. Similarly, one may
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2 CHRISTOPHER M. KELLETT

consider general attractors whereby a disturbed motion is one that originates outside
the attractor.

The strength of Lyapunov’s second method as encapsulated in Theorems 1.1
and 1.2 is that it is possible to ascertain stability without solving the underlying
differential equation. However, the difficulty of Theorems 1.1 and 1.2 lies in finding
an appropriate function V . Therefore, the converse or existence question arises;
i.e., if an “undisturbed motion” or equilibrium point is stable or asymptotically
stable, does an appropriate function V exist? A related question is: how can such
a function be constructed? The first question is the subject of this survey paper,
while the second is very much the subject of ongoing research.

In addition to their intrinsic mathematical interest, converse Lyapunov theorems
are important in that they indicate which stability properties can always be es-
tablished by an appropriate Lyapunov function. In fact, the study of the converse
question was crucial in discovering that Theorem 1.2 implies more than asymp-
totic stability and, in fact, implies uniform (with respect to initial time) asymptotic
stability. Converse Lyapunov theorems are also a useful tool when considering per-
turbed systems, where the perturbations may be additive to the system equations
[10], [72], time-delays in the system equations [58], or as the result of a linearization
[71]. It was, in fact, this latter concern that motivated Lyapunov to develop his
second method. Finally, in the development of numerical, constructive techniques
for Lyapunov functions, converse Lyapunov theorems provide a gold-standard by
which these techniques can be measured1. For a thorough survey of computational
methods for Lyapunov functions, see [25], which is in the same special issue as this
paper.

This survey is organized as follows. In Section 2 we provide the basic theory of
Lyapunov’s second method. In Section 3 we describe how Lyapunov functions can be
constructed for linear systems via an algebraic approach and in Section 4 we discuss
extensions to linear systems in feedback with static nonlinearities; i.e., so-called
Lur’e systems. In Section 5 we present a constructive technique for autonomous
systems based on solution of a partial differential equation. In the results of both
Section 3 and Section 5, the assumption of asymptotic stability guarantees that
the described techniques yield a Lyapunov function. In Section 6 we trace the
historical development of converse Lyapunov theorems and briefly describe some
of the approaches used. In Section 7 we present some specific converse Lyapunov
theorems for so-calledKL-stability of differential and difference inclusions; a concept
equivalent to uniform global asymptotic stability. In Section 8 we present results
for unstable equilibrium points. Some concluding remarks are contained in Section
9.

2. Lyapunov’s second method. Initially, we will consider dynamical systems
described by ordinary differential equations

ẋ = f(x, t) (1)

where, for simplicity, we assume that f : Rn×R≥0 → R
n is locally Lipschitz in x and

continuous in t so that (local) existence and uniqueness of solutions is guaranteed.

1This is similar to the role played by Shannon’s channel coding theorem in information theory
[98] (see also [22, Section 7.7]). Shannon’s theorem provides a fundamental limit for communication
over a noisy channel by showing that a capacity-achieving channel coding scheme must exist, but
does not constructively provide a coding scheme that achieves that limit. Nonetheless, Shannon’s
limit has been an invaluable idealized goal for information and coding theorists for over 60 years.
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Forward completeness will generally follow from assumed stability properties or the
presence of a Lyapunov function. We denote a solution to (1) from the initial state
x ∈ R

n and initial time t0 ∈ R≥0 at the time t ≥ t0 by φ(t, t0, x). In other words,
φ : R≥0 × R≥0 × R

n → R
n satisfies

d

dt
φ(t, t0, x) = f(φ(t, t0, x), t), (2)

and we write φ ∈ St0(x) where St0(x) denotes the set of solutions from initial time
t0 ∈ R≥0 and initial state x ∈ R

n. As we initially assume uniqueness of solutions
for (1), St0(x) contains a single function. In the sequel when we consider difference
or differential inclusions, or (1) where the righthand side is only continuous, the set
St0(x) will, in general, be larger than merely a singleton. We further assume that
f(0, t) = 0 for all t ≥ t0 so that the origin is an equilibrium point.

Lyapunov precisely defined the notion of stability. However, many types of stabil-
ity are possible in general and the most useful notions, presented below, are largely
due to Chetaev [16], Malkin [72], Massera [75], and Barbashin and Krasovskii [11].

Throughout this survey we will make use of the comparison functions introduced
by Massera [75] and Hahn [32]. The use of such functions simplifies many statements
and proofs in the area of systems theory. To denote the class of positive definite
functions with domain R≥0 we use the notation P (ρ ∈ P); i.e., functions ρ : R≥0 →
R≥0 that are continuous, zero at zero, and strictly positive elsewhere. A function
α : R≥0 → R≥0 is said to be of class-K (α ∈ K) if it is continuous, zero at zero,
and strictly increasing. It is said to be of class-K∞ (α ∈ K∞) if, in addition, it
approaches infinity as its argument approaches infinity. A function σ : R≥0 → R≥0

is said to be of class-L (σ ∈ L) if it is continuous, strictly decreasing, and approaches
zero as its argument approaches infinity. A function β : R≥0×R≥0 → R≥0 is said to
be of class-KL (β ∈ KL) if it is of class-K in its first argument and of class-L in its
second argument. For a more extensive introduction to such comparison functions,
see [42].

In what follows, for a set D ⊂ R
n we denote its boundary by ∂D and its closure

by D. We denote the open ball of radius ε ∈ R>0, centered at the origin, by

Bε := {x ∈ R
n : |x| < ε}

and we write B = B1.

Definition 2.1. The origin is said to be stable for (1) if there exists a neighborhood
of the origin N ⊂ R

n so that for each t0 ∈ R≥0 there exists αt0 ∈ K so that, for all
x ∈ N and all t ≥ t0,

|φ(t, t0, x)| ≤ αt0(|x|). (3)

The origin is said to be uniformly stable for (1) if the function αt0 = α ∈ K can be
chosen independent of the initial time t0 ∈ R≥0.

Definition 2.2. The origin is said to be asymptotically stable for (1) if there exists
a neighborhood of the origin N ⊂ R

n so that for each x ∈ N and t0 ∈ R there
exists σx,t0 ∈ L so that, for all t ≥ t0,

|φ(t, t0, x)| ≤ σx,t0(t− t0). (4)

The origin is said to be equiasymptotically stable for (1) if, for every t0 ∈ R, there
exists a function βt0 ∈ KL so that, for all t ≥ t0,

|φ(t, t0, x)| ≤ βt0(|x|, t− t0), ∀x ∈ N . (5)
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The origin is said to be uniformly asymptotically stable for (1) if the function βt0 =
β ∈ KL can be chosen independent of the initial time t0 ∈ R≥0.

To clarify, the difference between asymptotic stability and equiasymptotic sta-
bility lies in the fact that the latter is uniform with respect to the size of the initial
state, while uniform asymptotic stability requires that the stability property is uni-
form with respect to both the size of the initial state and the initial time. One
can also define the property of uniformly attractive where asymptotic stability is
uniform with respect to the initial time but not the initial state; i.e., σx,t0 = σx ∈ L
in (4). However, this property appears to have found limited use and we do not
consider it further.

Note that in the above definitions, the existence condition for the neighborhood
N ⊂ R

n leads to these stability properties sometimes being refered to as local. By
contrast, for an open set G ⊂ R

n fixed a priori and containing the origin, the above
stability properties are said to hold “in the large” if they hold for all x ∈ G. For
example, the origin is said to be asymptotically stable in the large on G ⊂ R

n if for
every x ∈ G and t0 ∈ R there exists σt0 ∈ L so that (4) holds. In the event that
G = R

n, the above stability properties are said to be “global”.
Massera [75, Theorem 7] provided several relationships amongst the above stabil-

ity properties. Of particular interest, uniform stability implies stability and uniform
asymptotic stability implies equiasymptotic stability which, in turn, implies asymp-
totic stability. Furthermore, [75, Theorem 7] demonstrates that if the righthand side
of (1) is periodic in, or independent of, the time t, then the converses hold; i.e., sta-
bility implies uniform stability and asymptotic stability implies uniform asymptotic
stability which, in turn, implies equiasymptotic stability.

The classical definitions for the various stability concepts are given in ε-δ terms
for stability and as a combination of stability and limiting behavior as time ap-
proaches infinity for the asymptotic stability concepts. That these definitions are
equivalent to the comparison function formulations presented above was shown by
Hahn [32].

The following theorem summarizes Lyapunov’s second method as it relates to
(1) and the stability definitions described above; see [32], [58], or [93].

Theorem 2.3. Let V : Rn×R → R≥0 be a continuously differentiable function and
consider the following conditions on V :

(i) Suppose there exists α1 ∈ K so that, for all x ∈ R
n and t ≥ t0

α1(|x|) ≤ V (x, t). (6)

(ii) Suppose there exists a continuous function κ : R≥0 × R≥0 → R≥0 such that
κ(·, t) ∈ K for fixed t ∈ R and κ(s, ·) is continuous, positive, monotone in-
creasing, and unbounded for each fixed s ∈ R≥0. Furthermore, suppose that,
for all x ∈ R

n and t ≥ t0,

κ(|x|, t) ≤ V (x, t). (7)

(iii) Suppose there exists ρ : R≥0 → R≥0 continuous and, for all x ∈ R
n and t ≥ t0

d
dt
V (φ(t, t0, x), t)

∣

∣

t=t0
= ∂

∂t
V +

〈

∂
∂x
V, f(x, t)

〉

≤ −ρ(|x|). (8)

(iv) Suppose there exists α2 ∈ K so that, for all x ∈ R
n and t ≥ t0

V (x, t) ≤ α2(|x|). (9)
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The following statements hold with respect to (1):

(a) If items (i) and (iii) hold, then the origin is stable;
(b) If items (i), (iii), and (iv) hold, then the origin is uniformly stable;
(c) If items (ii) and (iii) hold, then the origin is equiasymptotically stable;
(d) If items (i), (iii), and (iv) hold with ρ ∈ P, then the origin is uniformly asymp-

totically stable;
(e) If items (i), (iii), and (iv) hold with ρ ∈ P and α1, α2 ∈ K∞, then the origin is

uniformly globally asymptotically stable.

We will refer to (8) as the “derivative of V along solutions of (1)” or simply as the
“total derivative of V ”. We note that continuous differentiability of the Lyapunov
function V is not critical to the development of the theory as the key idea is that
the Lyapunov function should decrease along solutions of (1). This property can
be stated without any requirements on the regularity of V , but then may require
explicit knowledge of the solutions. While continuous differentiability leads to the
simple criterion of (8), decrease conditions involving nonsmooth derivatives (such
as Dini derivatives or subgradients) for functions with weaker regularity properties
can be used (see, e.g., [20], [77], [95], and the references therein).

Remark 1. A sufficient condition for (asymptotic) stability in the large on an
open set G ⊂ R

n containing the origin in the above theorem is the requirement that
limx→∂G V (x) = ∞, where, in directions in which G is unbounded this is interpreted
as lim|x|→∞ V (x) = ∞. Define

ω(x) := max

{

|x|,
1

|x|∂G
−

1

|0|∂G

}

where |x|∂G := miny∈∂G |x − y| denotes the closest distance to the boundary of G.
Then, to guarantee in-the-large stability properties, we can replace the lower bound
(6) by

α1(ω(x)) ≤ V (x, t), ∀x ∈ G, t ∈ R≥0

and with the requirement that α1 ∈ K∞. If G = R
n then this implies ω(x) = |x| and

stability in the large coincides with global stability. This property of V is refered
to as radially unbounded (on G) by Hahn [32] and as infinitely large by Barbashin
and Krasovskii [11].

The property of V described in item (iv) was termed decrescent by Hahn [32] and
as an infinitely small upper bound by Lyapunov [71] as in Theorem 1.2, where the
fact that the upper bound is infinitely small clearly only holds near the origin. Note
that if V is continuous, independent of t, and satisfies V (0) = 0, then the decrescent
bounds hold trivially. Hahn refered to the property described in Theorem 2.3.ii as
strongly positive definite [32, Definition 41.5].

The converse question, then, is which of the statements in Theorem 2.3 can be
reversed? For systems described by ordinary differential equations and for stability
properties related to the origin, this question was largely answered by the end of the
1950’s (see Section 6 below). For more general systems and more general stability
properties, research is still ongoing (see Section 7 below). Prior to addressing the
general existence result, we discuss three constructive techniques.

3. Linear systems. For general systems such as (1), finding an explicit closed-form
Lyapunov function is known to be a difficult task. However, for linear systems,
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finding such a Lyapunov function is essentially an algebraic problem. In what
follows, we denote a positive definite symmetric matrix P ∈ R

n×n by P > 0.
The first converse theorem was demonstrated in Lyapunov’s original monograph

for the case of linear systems

ẋ = Ax, x ∈ R
n. (10)

Stated in modern terms, the following is [71, Section 20, Theorem II]:

Theorem 3.1. Given any Q > 0 there exists P > 0 satisfying

ATP + PA = −Q (11)

if and only if the origin is asymptotically stable for (10).

Equation (11) is refered to as the Lyapunov equation and straightforward calcu-
lations show that the quadratic V (x) = xTPx is a Lyapunov function for (10).

A similar result holds for linear discrete time systems described by

x+ = Ax, x ∈ R
n. (12)

The following result is due to Stein [107, Theorem 1] and was first mentioned in a
systems theoretic context in [31] and [39].

Theorem 3.2. Given any Q > 0 there exists P > 0 satisfying

ATPA− P = −Q (13)

if and only if the origin is asymptotically stable for (12).

As in the continuous time case, (13) is called the discrete time Lyapunov equation
(or the Stein equation after [107]) and the quadratic V (x) = xTPx is a Lyapunov
function for (12).

It has proved difficult to generate converse theorems by directly constructing
Lyapunov functions for systems more general than linear time-invariant systems.
This can be seen in the conditions available for linear time-varying systems where
(11) or (13) are replaced by matrix differential or difference equations [2, Theorem
5], [3, Theorem 4.3], for which closed form solutions generally do not exist. General
nonlinear systems, naturally, present an even greater challenge.

4. Lur’e systems. Due to its importance in engineering applications, significant
efforts were made to extend the converse theorems for linear systems described
above to the case of so-called absolute stability; i.e., for asymptotic stability of the
origin for linear systems with a static, memoryless, sector-bounded nonlinearity in
a feedback loop. Such systems have come to be called Lur’e2 systems and can be
written as

ẋ = Ax−Bψ(y)
y = Cx

(14)

where x ∈ R
n, y ∈ R

p, and ψ : Rp → R
p satisfies the sector bound

〈ψ(y), y −Kψ(y)〉 ≥ 0 (15)

for some positive definite symmetric matrix K ∈ R
p×p. Note that, with the above

definitions, the system is assumed to have the same number of inputs as outputs;
i.e., B ∈ R

n×p and C ∈ R
p×n.

2The Cyrillic-to-Latin transliteration of Lurьe has led to four distinct spellings in the western
literature: Lure, Lur’e, Lurie, and Luré.
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The study of such systems was instigated by Lur’e and Postnikov [70] with the
motivation of studying the stability of controlled systems subject to common non-
linear actuators. In particular, the matrix A is assumed to be Hurwitz (i.e., to have
all its eigenvalues in the open left half plane), where this property may have been
imposed by a (linear) feedback control, and the unknown but sector bounded non-
linearity may correspond to the feedback being implemented by an actuator with
unmodeled characteristics such as friction or deadzones.

Despite the importance of such systems, and the significant effort expended in
trying to derive a converse theorem for absolute stability, a constructive converse
has yet to be found. However, for single-input single-output systems, an existence
result based on a frequency domain condition was provided in three fundamental
papers by Popov [85], Yakubovich [118], and Kalman [37]. The modern form of
this result is called the Popov-Yakubovich-Kalman Lemma or the Positive Real
Lemma (e.g., [60, Lemma D.6] or the thorough discussion in [100, Appendix H]).
It is beyond the scope of this survey to deal with the Popov-Yakubovich-Kalman
Lemma and its significant ramifications3. The extension from single-input single-
output systems to multi-input multi-output systems was provided independently by
Popov [87, Lemma 9.3.1] (also [86]) and Anderson [1].

Theorem 4.1. Suppose that, for (14), A is Hurwitz, (A,B) is controllable, (C,A)
is observable. Let G(s) := C(sI − A)−1B. Suppose the positive definite symmet-
ric matrix K is such that Kψ(y) is the gradient of a positive semidefinite scalar
function; i.e.,

∫

Γ(0,y)

ψT (s)Kds ≥ 0, ∀y ∈ R
p, (16)

where Γ is any smooth curve in R
p connecting 0 and y = Cx. For any η ∈ R>0

such that 1/η is not an eigenvalue of A, if Z(s) := I + (1 + ηs)KG(s) is strictly
positive real, then there exists a positive definite symmetric matrix P so that

V (x) = xTPx+

∫

Γ(0,y)

ψT (s)Kds (17)

is a Lyapunov function.

Note that since Kψ(y) is the gradient of a scalar function, the integral (16) is
path-independent [6, Theorem 10-37].

As in [1], an example K and ψ satisfying the conditions of Theorem 4.1 is when
K is diagonal and the sector-bounded nonlinearities are decoupled so that each of
p nonlinearities only depends on one element of y. Other examples are provided in
[49, Section 10.1].

We observe that Theorem 4.1 is not a converse theorem in the usual sense in that
it does not start from a stability property and then provide a Lyapunov function.
Rather, it starts from the requirement that the transfer function matrix Z(s) be
strictly positive real (see [49, Definition 10.3] for a definition of strict positive re-
alness), which by the Popov-Yakubovich-Kalman Lemma implies solvability of the
matrix equations

PÂ+ ÂTP = −LTL− εP

PB̂ = ĈT − LTW

WTW = D̂ + D̂T

(18)

3The interested reader is directed to [100, Appendix H], [49, Section 10.1], [54], and [99].
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for matrix L, positive definite symmetric matrix P , and constant ε ∈ R>0, where

Â := A, B̂ := B, Ĉ := KC + ηKCA, D̂ := I + ηKCB.

The matrix P from (18) is then the P of the Lur’e-Postnikov Lyapunov function
(17). The lack of a standard converse result highlights the difficulty inherent in
finding Lyapunov functions for general nonlinear systems.

Similar results on absolute stability and Lyapunov functions are available for dis-
crete time systems with the original study of such systems performed in a sampled-
data context by Tsypkin [111], [112]. The discrete time version of the matrix con-
ditions (18) was provided independently by Popov [87, Theorem 10.1.1] and Hitz
and Anderson [33] and is similar to the difference between the Lyapunov equation
(11) and the Stein equation (13):

ÂTPÂ− P = −LTL

ÂTPB̂ = ĈT − LTW

WTW = D̂ + D̂T − B̂TPB̂.

The study of controlled systems, and systems subject to external disturbances,
that is indicated by the structure of (14), was generalized to the notion of dissipativ-
ity [115, 116] and later to input-to-state stability [104, 106], input-output-to-state
stability [59] and measurement-to-error stability [35]. While Lyapunov methods are
of significant importance in these topics, and existence results are available, the
study of such systems is beyond the scope of this survey.

5. Zubov’s method. Zubov [121] presented a method for estimating the domain
of attraction of an autonomous ordinary differential equation

ẋ = f(x) (19)

where f : Rn → R
n is locally Lipschitz and f(0) = 0. In particular, Zubov’s method

constructs a Lyapunov function that guarantees asymptotic stability in the large
on the domain of attraction.

If the origin is uniformly asymptotically stable for (19), then the domain of
attraction D ⊂ R

n for the origin is

D :=
{

x ∈ R
n : lim

t→∞
φ(t, x) = 0

}

. (20)

We observe that D is an open set. For G ⊂ R
n, a function V : G → R is positive

definite if V (0) = 0 and V (x) > 0 for all x ∈ G\{0}.
The following theorem combines [32, Theorem 34.1] and [32, Theorem 51.1].

Theorem 5.1. The origin is asymptotically stable for (19) on a domain of attrac-
tion D ⊂ R

n if and only if there exist functions V, h : Rn → R≥0 satisfying

(i) V is continuous and positive definite in D, 0 ≤ V (x) < 1, and lim|x|→∂D V (x)
= 1;

(ii) h is continuous and positive definite; and
(iii) the following partial differential equation is satisfied

〈

∂
∂x
V (x), f(x)

〉

= −h(x)(1− V (x))
√

1 + |f(x)|2. (21)

In other words, given a uniformly asymptotically stable equilibrium point, it is
always possible to find a Lyapunov function, defined on the domain of attraction,
that satisfies the partial differential equation (21).
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To construct an appropriate Lyapunov function, we start from the characteriza-
tion of uniform asymptotic stability given by α ∈ K∞, σ ∈ L, and

|φ(t, x)| ≤ α(|x|)σ(t), ∀x ∈ D, t ∈ R≥0. (22)

Define

σ†(s) :=

{

σ−1(s) , s ∈ (0, σ(0)]
0 , s ≥ σ(0)

and

ϕ(s) :=

{

s exp(−σ†(s)) , s > 0
0 , s = 0.

(23)

That ϕ ∈ K∞ follows from basic compositional properties of comparison functions;
see [42]. The functions

V (x) := 1− exp

(

−

∫ ∞

0

ϕ(|φ(τ, x)|)dτ

)

, and (24)

h(x) :=
ϕ(|x|)

√

1 + |f(x)|2
(25)

can then be shown to satisfy the necessary properties of Theorem 5.1. See [32,
Theorem 51.1] for a complete proof.

We observe that, by definition, the origin is uniformly asymptotically stable in
the large on its domain of attraction. In Remark 1 we observed that a Lyapunov
function that is radially unbounded on D can be used to conclude in-the-large
stability properties. However, as we see in Zubov’s method, the derived Lyapunov
function approaches the value 1 on the boundary of the domain of attraction. The
critical observation is that this leads to V being proper on the domain of attraction,
where the term proper refers to preimages of compact sets being compact. In other
words, for any compact set [0, c] ⊂ [0, 1), the set defined by V −1([0, c]) must also
be compact in R

n. If V is proper and the time derivative of V along solutions is
negative definite, then trajectories necessarily move from larger (compact) level sets
to smaller (compact) level sets. The radially unbounded on D condition of Remark
1 is a sufficient condition for V to be proper.4

Furthermore, we note that µ(s) := − log(1 − s) maps [0, 1) 7→ [0,∞), is contin-
uously differentiable, and strictly increasing. Consequently, the function W (x) :=
µ(V (x)) will be a Lyapunov function for asymptotic stability of the origin in the
large on D as defined by Barbashin and Krasovskii where limx→∂DW (x) = ∞.
Straightforward manipulations of (24) yield that

W (x) =

∫ ∞

0

ϕ(|φ(τ, x)|)dτ. (26)

We will see this Lyapunov function candidate again in (28) below.
Zubov [121, Theorems 19 and 78] extended the above result to dynamical systems

on metric spaces including time-varying systems and systems described by PDEs
that admit classical solutions, as well as accounting for asymptotic stability of closed
invariant sets as opposed to merely the origin.

While Zubov’s method is not constructive in the same sense that solving the
Lyapunov equation (11) is constructive, the freedom to choose the function h in (21)

4 In order to differentiate between a definition of proper that requires that the inverse of all
compact sets to be compact (i.e., [0, c] ⊂ R≥0) and one that requires that the inverse of compact
sets on the range of the function V to be compact (i.e., [0, c] ⊂ [0, 1) as above), the terminology
proper on its range or semiproper is sometimes used.
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has enabled useful constructions in many cases. See [28], [30] and the references
therein for recent applications and extensions of Zubov’s method.

6. Historical developments. Though the converse question was answered by
Lyapunov in the linear case, the converse of Lyapunov’s second method in the
more general case represented by (1) remained open throughout the early 1900’s.

6.1. Early results - pre-1950. Persidskii [84] provided the first general converse
theorem when he demonstrated that, under the assumption that the origin is a
stable equilibrium point, the function

V (x, t) = min
t0≤τ≤t

|φ(τ, t, x)| (27)

is in fact a Lyapunov function.
In [74], Massera precisely defined stability, asymptotic stability, and equiasymp-

totic stability and compared them via examples as well as by sufficient Lyapunov
function properties that guaranteed them. In the case when (1) is periodic or au-
tonomous, and the origin is asymptotically stable, Massera showed that the semi-
infinite integral

V (x, t) =

∫ ∞

t

α(|φ(τ, t, x)|)dτ (28)

where α : R≥0 → R≥0 is an appropriately chosen continuous function, is in fact a
continuously differentiable Lyapunov function. Furthermore, Massera demonstrated
that if (1) is periodic in t or independent of t then V has this same property.

Massera’s manuscript [74] would have a significant impact on the study of the
converse question. Not only did Massera provide the first converse theorem for
asymptotic stability, but [74] left open the converse question for systems that were
neither periodic nor autonomous (a problem that required the notion of uniform
stability as described below). The question of the existence of a smooth Lyapunov
function remained, as did whether or not the assumption in [74] of continuous
differentiability of the righthand side of (1) was necessary. Finally, the proof tech-
nique used by Massera became the standard approach in much subsequent work. In
particular, most subsequent authors have proposed Lyapunov function candidates
similar to the semi-infinite integral of (28) and, frequently, the choice of the scaling
α is done either directly from, or similar to, that from what is now called “Massera’s
Lemma” [74, p. 716].

Contemporaneously with [74], and using a different proof technique, Barbashin
[10] demonstrated that, for an autonomous system (1), there exists a Lyapunov
function with the same regularity as that of the vector field f .

6.2. Fundamental theory - 1950’s. Malkin [72] recognized that the important,
and more general, property that allowed Massera to derive converse theorems for
periodic and autonomous systems with an asymptotically stable equilibrium point
is that of uniformity with respect to time. Furthermore, Malkin demonstrated that,
as it was originally written in [71, Section 16, Remark 2] (Theorem 1.2 in Sec-
tion 1), Lyapunov’s second method in fact guarantees uniform asymptotic stability.
In particular, the uniformity follows from the assumed decrescent property of the
Lyapunov function

Around the same time, Barbashin and Krasovskii [11] demonstrated that a suf-
ficient condition for (asymptotic) stability in the large on a set G ⊆ R

n is that the
Lyapunov function be radially unbounded on G. Subsequently, following Malkin
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and Massera’s proof techniques, Barbashin and Krasovskii [12] demonstrated that
a radially unbounded (on G) and decrescent Lyapunov function is necessary and
sufficient for uniform (asymptotic) stability in the large (on G) of the origin.

Converse results for stability and uniform stability were initially developed by
Krasovskii [56] and Kurzweil [61]. At the same time, without assuming uniqueness
of solutions, Yoshizawa presented a continuous Lyapunov function assuming sta-
bility of the origin in [119]. Smooth Lyapunov functions for stability and uniform
stability of the origin, without the assumption of unique trajectories, were provided
by Kurzweil and Vrkoc [63].

Almost simultaneously5, Kurzweil [62] and Massera [75] demonstrated that, when
the righthand side of (1) is continuous, if the origin is uniformly globally asymptoti-
cally stable6 then there exists a smooth (infinitely differentiable) Lyapunov function.
While Massera assumed unique solutions to (1), Kurzweil did not7. In order to ac-
commodate the lack of a unique solution, Kurzweil extended Massera’s construction
(28) by taking the supremum over all solutions from the initial condition, x ∈ R

n:

V (x, t) = sup
φ∈S(x)

∫ ∞

t

α(|φ(τ, t, x)|)dτ, (29)

where, as in (28), α : R≥0 → R≥0 is an appropriately chosen continuous function.
The functions defined by (28) and (29) can be shown to be locally Lipschitz, after
which a transfinite smoothing procedure that maintains the desired Lyapunov func-
tion properties, is applied. As in [74], both [75] and [62] show that if the righthand
side of (1) is periodic in t or independent of t, then so is the derived Lyapunov
function. It is worth noting that for (uniform) stability this does not hold; i.e.,
even for systems (1) that are independent of t and that possess a (uniformly) sta-
ble equilibrium point, it is not always possible to find a Lyapunov function that is
independent of t (see [58, p. 46]).

By the end of the 1950’s, answers to most of the converse questions for Theorem
2.3, including its in-the-large variants, had thus been obtained. Subsequent research
focused on more general systems and on more general stability concepts. The one
remaining converse from Theorem 2.3 relates to equiasymptotic stability of the
origin. This converse appears to have been originally derived by Hahn in [32,
Theorem 49.1], where, similar to the above observation on (uniform) stability, even
for systems independent of t it is not always possible to find a Lyapunov function
that is independent of t.

6.3. Extensions and consolidation - the 1960’s. Lyapunov’s second method
was extended to so-called “general dynamical systems”, namely dynamical systems
axiomatically defined based on the attainability sets of differential equations with-
out unique solutions on metric spaces. Research on such systems was initiated by
Barbashin [9] and converse Lyapunov theorems for systems with unique solutions

5Twice in the 1950’s, similar results were submitted almost simultaneously. Similar results
were published by Krasovskii [56] (submitted 12 November 1954) and Kurzweil [61] (submitted
2 December 1954). Again involving Kurzweil, similar results were published by Kurzweil [62]
(submitted 6 July 1955) and Massera [75] (submitted 30 August 1955).

6Kurzweil’s result is actually for uniform asymptotic stability in the large on the domain of
attraction D ⊆ R

n.
7Despite the similar results on the existence of a smooth Lyapunov function, Massera’s as-

sumption of unique solutions allowed a much shorter proof. In fact, [75] grew out of a short course
Massera provided in Varenna, Italy in 1954 and contains a nice survey of many topics in stability
theory.
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were provided by Zubov [121]. The extension to systems without unique solutions
was provided in a series of papers by Roxin [95], [96], and [97], where a distinction
was made between the stability behavior of all solutions and the stability behavior
of at least one solution. As we describe precisely in Definition 7.4 below, these
stability properties are termed strong stability and weak stability, respectively. An
excellent summary of the initial work on general dynamical systems can be found
in [51].

As a particular case of both partial stability [113] and stability with respect to
two measures [82], Hoppensteadt [34] derived a continuously differentiable Lyapunov
function for asymptotic stability of the origin for a parametrized non-autonomous
differential equation where the parameters take values in an unbounded set. Wilson
[117] then extended this by deriving a smooth Lyapunov function under the assump-
tion of uniform asymptotic stability of a closed, but not necessarily bounded, set
and Lakshmikantham and Salvadori [66] provided a continuous Lyapunov function
under the assumption of stability with respect to two measures.

In the 1960’s, five books appeared in English that summarized much of the
available theory on Lyapunov’s second method, including results on the converse
question [31, 58, 121, 120, 32]. Along with the survey papers [5] and [38] and the
very readable [65], these texts made Lyapunov’s methods widely accessible to the
West8. Of particular note, similar to the candidate Lyapunov function he used in
[119], Yoshizawa proved his converse theorems in [120] based on a function defined
as

V (x, t) = sup
φ∈S(x), τ≥t

α(|φ(τ, t, x)|)ecτ (30)

where α ∈ K∞ and c ∈ R>0 are chosen appropriately.
Krasovskii [58], on the other hand, used a different proof technique to that ini-

tially proposed by Massera in [74]. Of particular note is that Krasovskii’s technique
allowed him to derive a converse theorem not just for asymptotic stability, but also
for Lyapunov’s first instability theorem (see Section 8). The core of this technique
rests on what Krasovskii labels “Property A” [58, Definition 4.1]:

Property A: Let {hk}∞k=0 be a monotonically decreasing sequence satis-
fying

h0 = |0|G , lim
k→∞

hk = 0. (31)

8It is tempting to speculate that the wealth of translated material in the 1960’s was directly due
to the initial accomplishments of the Soviet Union in the space race with the launch of the Sputnik
satellite in October 1957 and Yuri Gagarin’s orbital flight in April 1961. In particular, what appear

to be hasty translations by government departments were made of the 1951 text of Lur’e [69] in
1957 in the United Kingdom by Her Majesty’s Stationery Office, and of the 1956 text of Malkin
[73] in 1959 by the United States Atomic Energy Commission. Other important Soviet texts that
were translated around this time include the 1955 text of Letov [67] (translated 1961), the 1956
text of Chetaev [16] (translated 1961), the 1957 text of Zubov [121] (translated 1964), and the 1959
text of Krasovskii [58] (translated 1963). Furthermore, the preeminent Russian language control
journal published since 1936, Prikladna� Matematika i Mehanika (Prikladnaya Matematika
i Mekhanika), was regularly translated as the Journal of Applied Mathematics and Mechanics
beginning in 1958. While Cold War tensions, and the space race in particular, is likely one driver
behind this rush of translations, a level of translation activity that has not been seen since, it is also
worth noting that the International Federation of Automatic Control was formed in 1957 with a
goal of international scientific exchange and whose first two presidents came from the United States
of America (H. Chestnut, 1957–1959) and the Soviet Union (A. L. Letov, 1959–1961). Historical
narratives are rarely simple.
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Suppose that for every closed bounded region H ⊂ R
n satisfying 0 ∈

H ⊂ G, and for every k > 0 there is a number Tk such that whenever
t0 ≥ Tk, x ∈ G\Bhk

, there exists t ∈ [t0−Tk, t0+Tk] so that φ(t, t0, x) /∈
H\{0}.

In words, for any neighborhood of the origin in G and for a sequence of decreasing
balls (centered at the origin), solutions cannot stay in H indefinitely. Intuitively,
this property is satisfied for both asymptotically stable and unstable equilibria –
though not necessarily for stable equilibria. Krasovskii then demonstrated [58,
Theorem 4.3] that Property A is equivalent to the existence of a function V that is
decrescent and such that its derivative along solutions of (1) is sign-definite. This
provides one of the main technical tools in [58] to derive converse theorems for
asymptotic stability and for instability (see Section 8 below for the latter). An
interesting result, apparently not available elsewhere, is a converse theorem for
equiasymptotic stability of the origin [58, Theorem 10.2] where the total derivative
of the Lyapunov function is negative semidefinite and the supremum of the total
derivative integrates to negative infinity.

6.4. 1970’s onward. In the late 1970s researchers began to examine differential
and difference inclusions. Roxin [94] demonstrated how differential inclusions (also
called contingent equations) give rise to the general dynamical systems of Barbashin
[9], and so the specific results for differential inclusions could be seen as a special
case of Roxin’s results. However, the strength of Lyapunov’s second method has
generally been that one need not generate system trajectories whereas the general
systems approach of Roxin requires knowledge of the attainability function or the
set of solutions. The specialization to difference and differential inclusions allows the
formulation of decrease conditions that depend on the set-valued mapping defining
the inclusion rather than requiring knowledge of solutions.

Meilakhs [76] derived a continuously differentiable Lyapunov function given uni-
form asymptotic stability of the origin for all solutions of a differential inclusion
derived from a parametrized differential equation where the parameters vary over a
closed bounded linearly connected set. Molchanov and Pyatnitskii studied the prob-
lem of absolute stability described in Section 4. In [78] and [79] they formulated the
Lur’e problem as a stability problem for a differential inclusion and demonstrated
the existence of a Lyapunov function of an approximate quadratic form. Similar
to the algebraic criteria of Section 3, in [80] and [81] Molchanov and Pyatnitskii
then derived necessary and sufficient criteria for a Lyapunov function in terms of
solvability of certain matrix equations.

A result on the existence of a so-called control Lyapunov function under the
assumption of asymptotic controllability to the origin was provided by Sontag [103].
This is closely related to the converse question for weak asymptotic stability of the
origin for differential inclusions, which Smirnov answered in [101] and [102] for
differential inclusions described by convex processes. Converse theorems for both
weak and strong stability of time-varying differential inclusions defined on a real
Banach space were provided by Deimling [23, Propositions 14.1 and 14.2].

A converse theorem for uniform global asymptotic stability of a compact set for
a differential inclusion under fairly weak assumptions was provided by Lin et al.
[68] and converse theorems for both uniform global strong and weak asymptotic
stability were provided by Clarke et al. [19] where a particular impediment in the
weak case was identified. We discuss this impediment in Section 7.2.
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The first converse Lyapunov theorems for discrete time systems described by non-
autonomous ordinary difference equations were derived by Gordon [27] for stability
and uniform asymptotic stability of the origin. A converse theorem for strong
uniform global asymptotic stability of a difference inclusion was provided by Jiang
and Wang [36].

Similar to previous results that time-independent or periodic systems yield time-
independent or periodic Lyapunov functions, Rosier [92] demonstrated that for
homogeneous systems with non-unique solutions, an asymptotically stable origin
implies the existence of a smooth homogeneous Lyapunov function.

Converse theorems for both strong and weak stability with respect to two mea-
sures for both differential and difference inclusions were provided by Teel and Praly
[110] and by the author and Teel in [45], [46], [47], and [48]. As these general results
subsume much previous work as special cases, we specifically survey these results
in Section 7.

Recently, Karafyllis and Tsinias [41] and Karafyllis [40] developed converse the-
orems for strong equiasymptotic stability of the origin for differential and difference
inclusions arising from perturbed difference and differential equations. Rather than
equiasymptotic stability they use the terminology non-uniform in time stability.

Also recently, Kloeden and co-authors [52, 53, 29] noted that nonautonomous sys-
tems naturally give rise to nonautonomous invariant sets. This then leads to three
notions of attractor and stability, refered to as pullback, forward, and uniform at-
tractor/stability. Similar to Massera’s result [75, Theorem 7] for systems periodic in,
or independent of, time the definitions of pullback, forward, and uniform attractor
coincide. Appropriate Lyapunov functions were defined and converse results pre-
sented in [29, Theorem 29] for pullback, forward, and uniform attractors/stability of
nonautonomous differential equations, while [53] presents a converse result for pull-
back attraction of a nonautonomous difference equation. The constructions used in
these references are similar to that proposed by Yoshizawa (30).

7. KL-stability with respect to two measures for difference and differen-

tial inclusions. For a set-valued map F (·) we use the notation F : Rn
⇒ R

n to
denote that F (·) maps points in R

n to subsets of Rn. In this section, for comparative
purposes, we present some specific converse theorems for difference inclusions

x+ ∈ F (x) (32)

and differential inclusions

ẋ ∈ F (x) (33)

where F : G ⇒ G for (32) and F : G ⇒ R
n for (33), and where G ⊂ R

n. In an abuse
of notation, in order to avoid unnecessary duplication in the results that follow, we
use t both as t ∈ R≥0 when refering to the continuous time system (33) and t ∈ Z≥0

when refering to the discrete time system (32).
For completeness, we provide here regularity definitions for set-valued maps.

Note that, for sets A,B ⊂ R
n, A+B ⊂ R

n denotes the Minkowski sum.

Definition 7.1. Let O ⊂ R
n be open. The set-valued map F : Rn

⇒ R
n is:

• upper semicontinuous on O if for each x ∈ O and ε > 0 there exists δ > 0
such that for all ξ ∈ O satisfying |x− ξ| < δ we have F (ξ) ⊂ F (x) + Bε;

• continuous on O if, in addition to being upper semicontinuous on O, for each
x ∈ O and ε > 0 there exists δ > 0 such that, for ξ ∈ O satisfying |ξ − x| < δ
we have F (x) ⊂ F (ξ) + Bε; and
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• locally Lipschitz on O if for each x ∈ O there exists a neighborhood U ⊂ O of
x and L > 0 such that x1, x2 ∈ O implies F (x1) ⊂ F (x2) + L|x1 − x2|B.

Note that the concept of upper semicontinuity for a set-valued map is not the
same as that for extended real-valued functions. In fact, for f : Rn → R

n, the
set-valued map x 7→ {f(x)} is upper semicontinuous if and only if the extended
real-valued function x 7→ f(x) is continuous.

The results of this section generally require a common set of assumptions with
regards to the set-valued map defining the difference or differential inclusion.

Definition 7.2. The set-valued map F : G ⇒ G satisfies the discrete time basic
conditions if, on G, it has nonempty and compact values, and is upper semicontin-
uous.

Definition 7.3. The set-valued map F : G ⇒ R
n satisfies the continuous time

basic conditions if, on G, it has nonempty, compact, and convex values, and is
upper semicontinuous.

The continuous time basic conditions are essentially required in order to guar-
antee existence of solutions to the differential inclusion (see [24]). These conditions
also provide certain technical properties on the solution sets. By contrast, solu-
tions to the difference inclusion (32) will exist so long as the mapping is nonempty.
However, the discrete time basic conditions enable certain technical results such as
closeness of solutions properties (see [47]).

For systems that do not give rise to unique solutions there are two natural sta-
bility notions that were identified by Roxin [95]. The first is the property that all
solutions must satisfy a desired stability estimate while the second is the property
that at least one solution must satisfy a desired stability estimate. Roxin termed
these properties “strong stability” and “weak stability”, respectively.

In the framework of difference and differential inclusions, the subsequent results
subsume many commonly encountered system models including ordinary difference
and differential equations, such systems with discontinuous righthand sides, and
controlled or perturbed systems. To further extend the reach of these results, we can
consider a generalization of uniform global asymptotic stability that was introduced
by Movchan [82] refered to as stability with respect to two measures or stability
with respect to two metrics.

Definition 7.4. Let ωi : G → R≥0, i = 1, 2, be continuous functions. We say
that (32) (or (33)) is strongly KL-stable with respect to (ω1, ω2) if ((33) is forward
complete and) there exists β ∈ KL such that for every initial condition x ∈ G all
solutions φ ∈ S(x) satisfy

ω1(φ(t, x)) ≤ β(ω2(x), t), ∀t ∈ Z≥0 (∀t ∈ R≥0). (34)

We say that (32) (or (33)) is weakly KL-stable with respect to (ω1, ω2) if the above
property holds for at least one solution φ ∈ S(x).

Note that, in some sense, both “stability with respect to two measures” and “sta-
bility with respect to two metrics” are unsatisfactory terminology as the functions
ωi are neither measures nor metrics in the usual mathematical sense of measure or
metric. Nonetheless, the usage has become standard and we will use the terminology
“stability with respect to two measures”.

Observe that forward completeness is only explicitly required for continuous time
strong KL-stability with respect to two measures as this is not guaranteed a priori
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by the stability estimate. Forward completeness of difference inclusions is guaran-
teed by virtue of the set-valued mapping taking points in G to subsets of G. Finally,
in the case of continuous time weak KL-stability, since we are not necessarily inter-
ested in the behavior of all solutions, it may in fact be the case that some solutions
cannot be continued for all time.

KL-stability with respect to two measures is a generalization of uniform asymp-
totic stability of the origin in the large on G. This is the case where ω1(x) = ω2(x) =
|x| and, hence, when additionally G = R

n, we see that KL-stability with respect to
(| · |, | · |) is, in fact, uniform global asymptotic stability of the origin. Additionally,
this stability property also encompasses uniform asymptotic stability of a closed
set A ⊂ G by taking ω1(x) = ω2(x) = |x|A where |x|A = miny∈A |x − y|. Many
other examples, such as output stability and stability of a particular trajectory are
possible.

As a particular example, it is possible to deal with non-autonomous systems (1)
as autonomous systems by the technique of state augmentation; that is, consider
states x = (z, t) ∈ R

n × R≥0 and

ż = f(z, t)
ṫ = 1.

(35)

Then uniform global asymptotic stability of the origin is equivalent to KL-stability
with respect to (ω, ω) where ω(z, t) = |z| for all (z, t) ∈ R

n × R≥0. A similar
approach can be taken for systems (1) parametrized by a parameter vector, θ ∈ R

m,

where the system equations can be augmented by θ̇ = 0. Note that a limitation
of this technique is that it is necessary to impose regularity conditions on the t or
θ-dependence of f than are strictly required.

As another example, consider the second order system

ẋ1 = x2 + (1− x21 − x22)x1
ẋ2 = −x1 + (1− x21 − x22)x2.

(36)

This system has the origin as an unstable equilibrium point and the unit circle as
a uniformly asymptotically stable periodic orbit. For x ∈ G = R

2\{0}, define the
function

ω(x) :=

{

1−|x|
|x| , x ∈ B\{0}

|x| − 1, x ∈ R
2\B.

(37)

Then (36) is KL-stable with respect to (ω, ω) which captures the system behav-
ior both in terms of the unstable equilibrium as well as the asymptotically stable
periodic orbit.

7.1. Converse theorems for strong KL-stability. In the context of differential
equations with unique solutions, Massera observed that certain stability properties,
namely equiasymptotic stability and uniform asymptotic stability, have an inher-
ent robustness property in that the set of solutions is an open set [75, Theorem
8]. In other words, near any solution that satisfies an equiasymptotic or uniform
asymptotic stability estimate, there are other solutions that also satisfy that es-
timate. In the case of strong KL-stability with respect to two measures for both
difference and differential inclusions, as a first step towards various converse theo-
rems, we make a connection between robust stability and the existence of a smooth
Lyapunov function. Then, to complete a converse Lyapunov theorem, we present
various conditions that guarantee robust stability.
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For both difference and differential inclusions we define robust stability in terms
of stability of a perturbed inclusion. Define

A :=

{

x ∈ G : sup
t∈T,φ∈S(x)

ω1(φ(t, x)) = 0

}

where T = Z≥0 for (32) and T = R≥0 for (33). For continuous functions σ, δ : G →
R≥0, such that σ(x), δ(x) > 0, for all x ∈ G\A, and

{x}+ σ(x)B ⊂ G, {x}+ δ(x)B ⊂ G

we define the perturbed inclusions

x+ ∈ Fσ(x) :=
{

v ∈ R
n : v ∈ {η}+ σ(η)Bn, η ∈ F

(

x+ σ(x)Bn

)}

, and (38)

ẋ ∈ Fδ(x) := coF
(

{x}+ δ(x)B
)

+ δ(x)B. (39)

Note that since differential inclusions deal with infinitesimals it is possible to define
the inner and outer perturbations of (39) on the basis of the same point x ∈ G. This
is in contrast to the perturbed difference inclusion (38) where the outer perturbation
needs to be a superset of the set-valued map applied to the inner perturbation. Also
note that it is necessary to take the closed convex hull in (39) to ensure that Fδ

satisfies the continuous time basic conditions.
If (38), respectively (39), is KL-stable with respect to (ω1, ω2) then we say that

(32), respectively (33), is robustly KL-stable with respect to (ω1, ω2).

Theorem 7.5. [47, Theorem 2.7] Let F : G ⇒ G satisfy the discrete time basic
conditions on G. The difference inclusion (32) is robustly KL-stable with respect
to (ω1, ω2) if and only if there exists a smooth Lyapunov function with respect to
(ω1, ω2) on G; i.e., a smooth function V : G → R≥0 and α1, α2 ∈ K∞ such that for
all x ∈ G

α1(ω1(x)) ≤ V (x) ≤ α2(ω2(x)) (40)

max
f∈F (x)

V (f) ≤ V (x)e−1 (41)

where e−1 is the exponential function evaluated at −1.

Theorem 7.6. [110, Theorem 1] Let F : G ⇒ R
n satisfy the basic conditions on G.

The differential inclusion (33) is robustly KL-stable with respect to (ω1, ω2) if and
only if (33) is forward complete on G and there exists a smooth Lyapunov function
with respect to (ω1, ω2) on G; i.e., a smooth function V : G → R≥0 and α1, α2 ∈ K∞

such that for all x ∈ G

α1(ω1(x)) ≤ V (x) ≤ α2(ω2(x)) (42)

max
w∈F (x)

〈

∂
∂x
V (x), w

〉

≤ −V (x). (43)

Observe that forward completeness is explicitly required for differential inclusions
whereas this is guaranteed for difference inclusions by virtue of the fact that the
set-valued map takes points in G to subsets of G; i.e., by definition, solutions to (32)
cannot escape G. Demonstrating forward completeness for differential inclusions
can be accomplished via Lyapunov methods [4].

The decrease conditions (41) and (43) guarantee that the Lyapunov functions
decrease exponentially along solutions of (32) and (33), respectively, where the
constant e−1 is chosen to mirror the exponential decrease implied by (43). Given
any Lyapunov function that does not decrease exponentially, it is always possible to
find a nonlinear scaling such that the nonlinear scaling of the Lyapunov function is
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also a Lyapunov function and decreases exponentially. It is important to note that
this does not imply that system solutions decrease exponentially. In fact, a sufficient
condition for the exponential decrease of solutions (i.e., exponential stability) is that
the decrease condition (43) is satisfied and that the upper and lower bounds (42)
be quadratic.

In order to compare the Lyapunov function given by (42)-(43) and that in The-
orem 2.3 we briefly examine (35). For uniform global asymptotic stability of the
origin we observed that, for all x = (z, t) ∈ R

n × R≥0, ω1(x) = ω2(x) = |z|.
Therefore, for (35), (42) is

α1(|z|) ≤ V (z, t) ≤ α2(|z|)

which is precisely items (i) and (iv) of Theorem 2.3. Furthermore, (43) is

max
w=[f(z,t)T 1]T

〈

[

∂V
∂z

T ∂V
∂t

]T

, w

〉

= ∂V
∂z

T
f(z, t) + ∂V

∂t
≤ −V (x) ≤ −α1(|z|)

which is precisely item (iii) of Theorem 2.3 where ρ = α1 ∈ K∞. Therefore, item
(e) of Theorem 2.3 implies that z = 0 is uniformly globally asymptotically stable
for (35).

It remains an open question for both difference and differential inclusions as to
whether or not KL-stability with respect to (ω1, ω2) is generally robust. However,
sufficient conditions for robustness have been demonstrated in several special cases.
Many of these conditions are similar between discrete and continuous time. One
such condition is related to the regularity of the set-valued map.

Theorem 7.7. [47, Theorem 2.10] Let F : G ⇒ G satisfy the discrete time basic
conditions on G and be continuous on an open set containing G\A. If (32) is
strongly KL-stable with respect to (ω1, ω2) on G, then it is robustly KL-stable with
respect to (ω1, ω2) on G.

Theorem 7.8. [110, Theorem 2] Let F : G ⇒ R
n satisfy the continuous time basic

conditions on G and be locally Lipschitz on an open set containing G\A. If (33) is
strongly KL-stable with respect to (ω1, ω2) on G, then it is robustly KL-stable with
respect to (ω1, ω2) on G.

Note that Theorems 7.6 and 7.8 imply the existence of a Lyapunov function on
R

2\{0} for (36) with respect to the measurement function of (37). Such a Lyapunov
function is closely related to Conley’s complete Lyapunov functions [21] which are
defined on the entire space.

Other sufficient conditions for robust KL-stability of difference and differential
inclusions have been provided in [47], [48], and [110]. In particular, for a compact
attractor A ⊂ R

n, when ω1 = ω2 = ω is a proper indicator function9 for A on
its domain of attraction D ⊂ R

n, the basic conditions are sufficient to guarantee
robustness; i.e., the extra regularity of Theorems 7.7 and 7.8 is not required. An
additional sufficient condition for robustness in the case of a single measurement
function is related to how solutions behave in reverse time; see [48, Theorem 4] and
[110, Theorem 3]. Finally, for difference inclusions where the set-valued mapping
has no specific regularity requirement but is compact and nonempty, the existence
of a continuous Lyapunov function as described in Theorem 7.5 is sufficient to
guarantee robust KL-stability of (32) (see [47, Theorem 2.8]).

9A proper indicator for A on D is a continuous function ω : Rn → R≥0 such that ω(x) = 0 for

x ∈ A, ω(x) > 0 for x ∈ D\A, and limx→∂D ω(x) = c for some c ∈ R>0 ∪∞.
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In concluding our discussion on converse theorems for strong KL-stability with
respect to two measures, we mention that results similar to those described above are
available in the framework of hybrid systems that are defined by both difference and
differential inclusions and particular rules about when solutions evolve according to
the difference inclusion (32) or the differential inclusion (33); see [14], [15], and [26,
Section 7.5].

7.2. Converse theorems for weak KL-stability. As described above, there are
many cases in which strong KL-stability with respect to two measures is in fact
robust and, consequently, several converse Lyapunov theorems are possible. Fewer
results have been obtained in the case of weak KL-stability with respect to two
measures. In fact, currently available results are limited to the case where both
measurement functions are given by the distance to a closed (possibly unbounded)
set A ⊂ R

n; i.e., ω1(x) = ω2(x) = |x|A. In part, this is due to the fact that
the currently available proofs depend on the measures being the same and on the
measures satisfying the triangle inequality.

Theorem 7.9. [45, Theorem 6] Suppose F : Rn
⇒ R

n satisfies the discrete time
basic conditions, is continuous on R

n\A, and that (32) is weakly KL-stable with
respect to (| · |A, | · |A). Then there exists a weak discrete time Lyapunov function;
that is, a smooth function V : Rn → R≥0 and α1, α2 ∈ K∞ such that, for all x ∈ R

n

α1(|x|A) ≤ V (x) ≤ α2(|x|A), and (44)

min
f∈F (x)

V (f) ≤ V (x)e−1. (45)

The following theorem first appeared in [43] and requires the following assump-
tion:

Assumption 1. For each r ∈ R>0 there exists Mr ∈ R>0 such that |x|A ≤ r
implies supw∈F (x) |w| ≤Mr.

Theorem 7.10. [46, Theorem 2.1] Suppose F : Rn
⇒ R

n satisfies the continuous
time basic conditions, is locally Lipschitz on R

n\A, satisfies Assumption 1, and
that (33) is weakly KL-stable with respect to (| · |A, | · |A). Then there exists a weak
continuous time Lyapunov function; that is, a locally Lipschitz function V : Rn →
R≥0 and α1, α2 ∈ K∞ such that, for all x ∈ R

n

α1(|x|A) ≤ V (x) ≤ α2(|x|A), and (46)

min
w∈F (x)

DV (x;w) ≤ −V (x), (47)

where DV (x;w) denotes the Dini derivative at x ∈ R
n in the direction w ∈ F (x).

Independent to [43] and [46], using techniques from optimal control, Rifford [90],
under similar assumptions to those in Theorem 7.10 plus a linear growth condition
on the set-valued map, derived a locally Lipschitz weak continuous time Lyapunov
function for weak uniform asymptotic stability of a compact set.

There is an interesting contrast between the continuous time case of Theorem 7.10
where a locally Lipschitz Lyapunov function is obtained, versus the other presented
cases for strong stability in continuous time and both weak and strong stability
in discrete time, where smooth Lyapunov functions are obtained. In fact, Clarke
et al. [19] demonstrated that, in general, it is not possible to find a smooth weak
continuous time Lyapunov function for weak asymptotic stability of (33). However,
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they provided a necessary condition in the form of a restriction on the set-valued
map satisfying a covering condition near the origin for such a smooth Lyapunov
function.

Theorem 7.11. [19, Theorem 6.1] Suppose F : Rn
⇒ R

n satisfies the continuous
time basic conditions and there exists a continuously differentiable weak Lyapunov
function; i.e., a continuously differentiable function V : Rn → R≥0 and functions
α1, α2 ∈ K∞ such that, for all x ∈ R

n

α1(|x|) ≤ V (x) ≤ α2(|x|), and (48)

min
w∈F (x)

〈

∂
∂x
V (x), w

〉

≤ −V (x). (49)

Then, for any γ ∈ R>0 there exists ∆ ∈ R>0 such that

B∆ ⊂ F (Bγ) := ∪x∈Bγ
F (x). (50)

A simple example demonstrates that, in the case of continuous time weak KL-
stability, even if the above covering condition is satisfied, a continuously differen-
tiable weak Lyapunov function may fail to exist. Consider a system defined on R

2

by
ẋ ∈ B, x ∈ R

2. (51)

It is straightforward to see that A :=
{

(x1, x2) ∈ R
2 : x21 + x22 = 1

}

is weakly KL-
stable with respect to (| · |A, | · |A) for (51). Suppose it were possible to find a
continuously differentiable function V : Rn → R≥0 and α1, α2 ∈ K∞ so that

α1(|x|A) ≤ V (x) ≤ α2(|x|A), and (52)

min
w∈B

〈

∂
∂x
V (x), w

〉

≤ −V (x). (53)

The above implies that ∂
∂x
V (x) 6= 0 for all x ∈ R

2\A. On the other hand, since V

is continuously differentiable, it obtains its minimum and maximum on B. Equa-
tion (52) implies that V obtains its minimum everywhere on the boundary of B.
Consequently, V must obtain its maximum on the interior of B, contradicting that
∂
∂x
V (x) 6= 0 for all x ∈ R

2\A. Hence, a continuously differentiable weak Lyapunov
function cannot exist for (51).

The covering condition of Theorem 7.11 is related to a similar covering condition
derived by Brockett [13] in the context of designing continuous feedback stabilizers
for controlled differential equations. An example of a system that does not satisfy
this covering condition is a tricycle that needs to be steered to the origin where
there are clearly initial configurations that require a discontinuous decision to be
made in terms of turning the handlebars left or right. This example belongs to the
general class of systems refered to as nonholonomic systems.

Such discontinuous feedback stabilizers suffer from a lack of robustness. In par-
ticular, for the initial configurations of the tricycle where a discontinuous decision
must be made, arbitrarily small errors in measuring the configuration can lead to
a so-called chattering phenomenon near the point of discontinuity and the system
therefore never approaches the origin (see [105] for an extended discussion). Given
the connections between smooth Lyapunov functions and robustness, it is not sur-
prising then that a smooth Lyapunov function is not possible for weak asymptotic
stability of (33).

However, having made that observation, it is perhaps surprising that a smooth
weak discrete time Lyapunov function is possible for weak asymptotic stability of
(32). This stems from the fact that a sampled-data or discrete time implementation
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can circumvent the lack of robustness just described. In the tricycle example, a
decision is made near the point of discontinuity and that decision is adhered to
for a set period of time. This moves the system far enough away from the point
of discontinuity that the aforementioned chattering phenomenon does not occur,
where there is clearly a relationship between how large the measurement errors are
and how long the set period of time is. In some generality, the construction of
robust discontinuous feedback stabilizers was dealt with in [17], [18], [44], [46], and
[91].

8. Instability theorems. In addition to the stability considerations so far de-
scribed, Lyapunov proposed using similar energy-inspired functions for the study of
instability. In intuitive terms, if the system energy is described by a positive func-
tion with a minimum at the origin, then stability, or asymptotic stability, follows
from the system energy not increasing, or decreasing, respectively. This is clearly
captured by the Lyapunov functions discussed in previous sections. In the case of
instability, one sufficient condition has the system energy (as described by a Lya-
punov function) increasing in a neighborhood of the equilibrium point. However,
this can be refined to allow that the system energy is increasing for points arbitrar-
ily close to the equilibrium point, but not necessarily in an entire neighborhood.
This is the underlying premise of Chetaev’s refinement to Lyapunov’s instability
theorems. We first present the three instability theorems and then describe their
converses. The material in this section is drawn from [58] and [32].

An unstable equilibrium is one that is not stable.

Definition 8.1. The origin is unstable for (1) if, for any sufficiently small ε > 0
there exist sequences {xk}∞k=0 and {tk}∞k=0 such that xk ∈ R

n\{0} for all k, xk → 0
as k → ∞, tk > t0 for all k, and

|φ(tk, t0, xk)| ≥ ε, ∀k.

Note that an equilibrium point can be both unstable and attractive; i.e., systems
exist such that solutions from initial conditions arbitrarily close to the origin leave
every small neighborhood of the origin but eventually approach the origin (see [32,
Section 40]).

Definition 8.2. Let G ⊂ R
n contain the origin. We say that the origin is unstable

in the region G for (1) if, for every open, bounded set H ⊂ R
n satisfying 0 ∈ H and

H ⊂ G, and for every t0 ∈ R≥0 there exists a sequence of points {xk}∞k=0 satisfying
xk ∈ H , limk→∞ xk = 0, and φ(t, t0, xk) /∈ H for some t > t0.

In Lyapunov’s First Theorem on Instability [71, Section 16, Theorem II] Lya-
punov demonstrated that if a sign-definite function is such that, in a neighborhood
containing the origin, its time derivative along solutions of (1) is also sign-definite
and of the same sign as the function itself, then the origin is unstable.

Theorem 8.3 (Lyapunov’s First Theorem on Instability). Let G ⊂ R
n contain a

neighborhood of the origin. Suppose the function V : G × R≥0 → R is continuously
differentiable, is such that the derivative of V along solutions of (1) is positive
definite, and that there exists α ∈ K such that V (x, t) ≤ α(|x|) for all (x, t) ∈
G × R≥0. If for every ε > 0 and t0 ≥ 0 there exists a T ≥ t0 such that, for all
|x| ≤ ε, x 6= 0, V (x, t) > 0 for all t ≥ T , then the origin is unstable.

It is possible to obtain a converse to Theorem 8.3 if the origin is unstable in the
region G and G satisfies Property A (see [58, Theorem 6.1]).
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In Lyapunov’s second theorem on instability, [71, Section 16, Theorem III], an
extra degree of freedom is allowed in the form of a second function in the decrease
condition.

Theorem 8.4 (Lyapunov’s Second Theorem on Instability). Let G ⊂ R
n contain a

neighborhood of the origin. Suppose W : G × R≥0 → R≥0. Suppose V : G × R≥0 →
R≥0 is continuously differentiable, that there exists an L > 0 such that |V (x, t)| ≤ L
for all (x, t) ∈ G × R≥0, and the derivative of V along solutions of (1) satisfies

dV

dt
= λV +W (54)

for some λ > 0. Furthermore, if W (x, t) = 0 for all (x, t) ∈ G×R≥0 assume that for
every ε > 0 and t0 ≥ 0 there exists a T ≥ t0 such that, for all |x| ≤ ε, V (x, t) > 0
for all t ≥ T . Then the origin is unstable.

It is possible to derive a converse to Theorem 8.4 without the requirement that
the region G satisfy Property A (see [58, Theorem 7.2]).

Finally, Chetaev [16, Theorem, p. 27] revised the above to only require the func-
tion V to be sign definite in a region containing the origin rather than in a neigh-
borhood containing the origin.

Theorem 8.5 (Chetaev’s Theorem). Suppose V : Rn × R≥0 → R is continuously
differentiable. If there exists ε > 0 such that, for all |x| ≤ ε, the derivative of V
along solutions of (1) satisfies dV/dt > 0 on the region where V (x, t) > 0 then the
origin is unstable.

The first converse theorems for the above instability theorems were derived by
Krasovskii in the case of autonomous systems [55]. General converses for the insta-
bility theorems were derived independently10 by Vrkoč [114] and Krasovskii [57].

It is possible to derive a result that is slightly stronger than the direct converse
to Theorem 8.5. To do this, we require the following definition.

Definition 8.6. Let H ⊂ R
n be a bounded sub-domain of G that contains the

origin and satisfies H ⊂ G. A set I(t0) ⊂ H , depending on the initial time t0, is
called the domain of instability in H for t = t0 if for each x ∈ I(t0) there exists a
finite time t∗ ∈ [t0,∞) so that φ(t∗, t0, x) /∈ H .

Note that the domain of instability is an open set in R
n.

The following converse of Theorem 8.5 includes the result that the region where
the function V is positive coincides with the region of instability.

Theorem 8.7. [58, Theorem 7.1] Let the origin be unstable in the region G and let
H ⊂ R

n be a bounded region satisfying 0 ∈ H ⊂ G. Then there exists a function
V : G × R≥0 → R such that

1. If x ∈ H is in the region V (x, t) > 0 for all t ≥ t0 then the function dV/dt is
positive definite;

2. The function V is bounded and continuous in the region H and the partial
derivatives ∂V/∂t and ∂V/∂xi are bounded uniformly in time; and

3. For every value of t = t0 the region of instability I(t0) coincides with the
region V (x, t) > 0.

10Vrkoč’s manuscript [114] was submitted on 7 January 1955 while Krasovskii’s manuscript
[57] was submitted on 3 May 1955.
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As in the results of Kurzweil and Massera on uniform asymptotic stability, if (1)
is periodic in t or independent of t, then the function of Theorem 8.7 can also be
chosen to be periodic in t or independent of t, respectively (see [58, p. 43]).

We note that [121, Theorem 79] extends Lyapunov’s second theorem on instabil-
ity to dynamical systems defined on metric spaces.

9. Concluding remarks. As we have seen, the converse question for Lyapunov’s
second method has been successfully answered in a wide variety of contexts. The
study of the converse question has helped to clarify not only the relationship between
different stability concepts, but has helped to identify useful stability concepts as in
the case of the important role played by uniformity in various stability definitions.
The answers have proved important in the study of robustness to various system
perturbations such as persistent disturbances, time delays, and in the role that
sampled-data controllers can play in providing robust feedback.

Of necessity, we have restricted our attention to certain specific topics, specifically
converse theorems for (uniform asymptotic) stability of differential and difference
inclusions, where the results for differential and difference equations can be recov-
ered as special cases. However, a contributing factor in the success and popularity
of Lyapunov’s second method has been its applicability in many different contexts
and, in many of those contexts, converse results are also available. For example,
Lyapunov’s second method can be extended to the notion of Lagrange stability
[8]. An approach to almost global asymptotic stability, refered to as a “dual” to
Lyapunov’s second method, was presented in [88] with a converse theorem in [89].
So-called complete Lyapunov functions for dynamical systems with multiple equi-
libria have been defined in [21] with converse theorems provided in [21, Chapter
2, Section 6.4] and [83]. Lyapunov’s second method has also been adapted to the
study of stochastic systems with converse theorems available for stochastic differ-
ential equations [64], [50, Theorem 5.4, p. 153], discrete-time multivalued systems
[108], [109], and random dynamical systems for asymptotic stability of random
compact sets [7].
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