
intJ
THE 121CETM

INTEGRATED INSTRUMENTATION
AND IN-CIRCUIT EMULATION

SYSTEM USER'S GUIDE

Copyright 1985, Intel Corporation, All Rights Reserved
Intel Corp., 3065 Bowers Ave., Santa Clara, CA 95051 Order Number: 166298-001

THE 121CETM
INTEGRATED INSTRUMENTATION

AND IN-CIRCUIT EMULATION
SYSTEM USER'S GUIDE

Order Number: 166298-001

Copyright 1985, Intel Corporation, All Rights Reserved
Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051

Thb equipment generates, uses, and can radiate radio frequency energy and if not installed and used in accordance with
the instruction manual. may cause interference to radio communications. As temporarily permitted by regulation. it ha~
not been tested It)f compliance with the limits for Class A Computing Devices pursuant to Subpart J of Part 15 of FCC
rules. which are designed to provide reasonable protection against such interference. Operation of this equipment in a
residential area is likely to cause interference in which case the user. at his own expense. will be required to take whatever
measures may be required to correct the interference.

Additional copies of this manual or other Intel literature may he obtained from:

Literature Department
Intel Corporatio'n
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material. including, but not limited to, the implied warranties of
merchantability and litness t()r a particular purpose. Intel Corporation assumes no responsibility for any errors that may appear in this
document. Intel Corporation makes no commitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other
circuit patent licenses arc implied.

Intel sotiw"re products are copyrighted by and shall remain the property of Intel Corporation. Use. duplication or disclosure is subject
to restrictions stated in Intel's software license, or as defined in ASPR 7-104. 9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without prior written consent of Intel Corporation.

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may appear in this
document nor does it make a commitment to update the information contained herein.

Intel retain,.., the right to make changes to these specifications at any time, without notice.

Contact your local sales office to obtain the latest specifications before placing your order.

The following arc trademarks of Intel Corporation and its affiliates and may be used only to identify Intel products:

Above ,LBX iPDS ONCE
SITBUS 1m iPSC Open NET
COMMputer iMDDX iRMX Plug-A-Bubblc
CREDIT iMMX iSBC PROMPT
Data Pipeline Insite iSBX Prllmware
GENIUS Intel iSDM QueX
-' inte l iSXM QUEST

, lJ1leIBOS Library Manager Ripplcmodc

I"ICE
Intekvision MCS RMX/RO

ICE intc1igent Identifier Ml'gacha:-.:-.i~ RUPI

iCEl. intciigent Programming MICROMAINFRAME Seamless

iCS Intcllcl' MUCrIBUS SLD

iDSP Intcllink MUl.TICHANNEl. UPI

iDIS iOSP MULTIMODULE VLSiCEL

MDS is an ordering code only and is nat lIsed as a product name or trademark. MDS" is a registered trademark ofMahawk Data
Sciences Corporation .

• MULTIBUS is a patented Intel bus.

Copyright 1985, Intel Corporation, All Rights Reserved

II

CONTENTS --------------------inter-
Page

Preface .. xi
Revision History .. " xvii
Service Information. .. xix

CHAPTER 1 121CETM SYSTEM OVERVIEW
The Microcomputer Development Process 1-1

Features of a Development System with an Emulator .. 1-1
Generalized Hardware Design Steps. .. 1-2
Generalized Software Design Steps .. 1-2
Hardware/Software Integration ... " 1-3

An Introduction to the FICETM System. • 1-3
The Base Configuration of the FICETM System. .. 1-4
I'ICETM System Options .. 1-6
I'ICETM System Accessories .. 1-7

Hardware Overview. .. 1-8
The Instrumentation Chassis. .. 1-8
The Host Interface Board .. 1-8
The Emulation Base Module ... 1-10
System Interface Cables 1-11
High-Speed Memory. .. 1-11
Optional High-Speed Memory Board. .. 1-11
The Intel Logic Timing Analyzer (iLTA) 1-11
Emulation Personality Modules .. " 1-11

Software Overview .. 1-12
Software Environment. .. 1-12
The FICETM System Command Language. 1-14
The FICETM System Software. 1-15

The FICETM System Host Disk(s). .. 1-15
The FICETM System Error/Help Disk. 1-15
The FICETM System Probe Disks , .. 1-15
The FICETM System Diagnostic Disk .. 1-15
The iLTA Disks .. 1-16
The PSCOPE-86 Disk .. 1-16
The FICETM System Tutorial Disk(s) 1-16

I'ICETM System Specifications 1-17
Host Requirements 1-17
System Performance ... " 1-18
Emulation Clips. .. 1-18
The Target System User Interfaces. 1-19

iii

CHAPTER 2 GUIDE TO THE 12 1CETM SYSTEM TUTORIAL Page
Tutorial Use. .. 2-1

Invoking the Thtorial During Program Debugging .. 2-2
Deactivating the Thtorial .. 2-2
Reactivating the Tutorial. .. 2-2

Tutorial Screens and Structure. .. 2-2
Copies of Selected Tutorial Screens .. 2-4
An Overview of the Tutorial Structure. .. 2-5
List of All Thtorial Screens. .. 2-6
Tutorial Index. .. 2-13

Tutorial Program Listings ... " 2-16
Overview ofthe PLiM Tutorial Program. .. 2-16
PLiM Program Listing for the Two-Bug Version of the Change Maker Program. 2-17
The ASM -86 Listing for the N 0-Bug Version of the Change Maker Program. 2-21

Sample Programs in C, FORTRAN, and Pascal 2-30
A Change Maker Program in C .. 2-31
A Change Maker Program in FORTRAN. .. 2-32
A Change Maker Program in Pascal. .. 2-33

CHAPTER 3 INTRODUCTION TO USING THE FICETM SYSTEM
Invoking I'ICpM Software 3-1
Entering I'ICpM System Commands. .. 3-3

Extending a Command to Another Line .. 3-3
Aborting Commands ... 3-3
Multiple Commands on a Line. .. 3-4
Comments .. 3-4
The Command Line Editor. .. 3-4
The FICpM System Syntax Menu .. 3-4
The FICpM Command History Buffer. .. 3-5
String Handling. .. 3-6
Block Commands .. 3-7

Creating Debug Objects 3-8
Creating a Debug Procedure. .. 3-8
Creating a LITERALLY Definition. .. 3-9
Creating a Debug Register .. 3-9
Creating a Debug Variable .. 3-9

The FICpM Screen Editor 3-10
Inserting Text. .. 3-10
Deleting and Moving Text. .. 3-11
Viewing Text .. 3-11
Overwriting Text. .. 3-11
Editing External Files .. 3-11
Exiting the Screen Editor ... 3-12

File Handling. .. 3-12
LIST Files. .. 3-12
INCLUDE Files: The INCLUDE, PUT, and APPEND Commands. 3-13
The LOAD and SAVE Commands .. 3-14

Memory Types. .. 3-15
Debug Variables ... 3-16

iv Contents

Page
Program Variables and Symbolic Debugging .. 3-16
Program Variables and the FICETM Memory TYpes 3-18

Managing the Memory and I/O Spaces .. 3-18
The PICETM Memory Map .. 3-19
Mapping Input/Output. ... 3-21

Simulating I/O from the Console. .. 3-22
Simulating I/O with a Debug Procedure ... 3-23

The Emulation Clips. .. 3-25
The Clipsin Lines 3-25
The Clipsout Lines 3-25

Emulating a Program. .. 3-26
Preparing a Pascal Program. .. 3-26

Compiling the Source File. .. 3-27
Linking the Object File .. , 3-27
Locating the Link File. .. 3-27
Creating a Submit File 3-27

Getting Ready to Emulate. .. 3-28
Emulating Your Program .. 3-30

Breaking, Tracing, and Arming .. 3-33
The Example. .. 3-33
Emulating a User Program .. 3-34
The Event Machines ... 3-35
The Debug Registers. .. 3-35

Arm Registers. .. 3-36
Break Registers. .. 3-36
System Registers. .. 3-36
Trace Registers 3-37
Event Registers. .. 3-37
Debug Registers Calling Debug Procedures. .. 3-37

Interpreting the Trace Buffer. .. 3-38
The Timetag. .. 3-42
The Pseudo-variable TRCBUS .. 3-42
Trace Buffer Information ... 3-43

Hardware Slipping on a Breakpoint .. 3-43
Even Addresses, Odd Addresses, and Breaking .. 3-44

Word Writes to Even and Odd Addresses. .. 3-44
Byte Writes to Even and Odd Addresses .. 3-47
Word Reads from Even and Odd Addresses. .. 3-48
Byte Reads from Even and Odd Addresses ... 3-51

Moving the User Cable. .. 3-54

CHAPTER 4 THE 121CETM SYSTEM PERSONALITY MODULES (PROBES)
The 8086/8088 Probe .. 4-1

Hardware and Software Considerations for the 8086/8088 Probe. .. 4-2
Address Wrap-Around. .. 4-2
Break Information. .. 4-3
READY Signal Set-Up Time ... 4-4
Request/Grant Line .. 4-4

Contents v

Page
Non-Maskable Interrupt Line ana Interrupt Line. .. 4-4
Non-Maskable Interrupts and Program Stepping. .. 4-4
Synchronization between the Prototype and the Probe .. 4-4
User-Accessible Test Points ... 4-4
Coprocessor Considerations .. 4-6
Inability to Break when RESET Is Asserted 4-6
Getting a User NMI while in Emulation Mode. .. 4-6
Using the FICETM System as a Signal Generator. .. 4-6
IO-MHz 8086 Probe MAX Mode Operation. .. 4-7
Probe MIN Mode Operation. .. 4-7
AddresslData Bus Float .. 4-7

The 80186/80188 Probe .. 4-7
Hardware and Software Considerations for the 80186/80188 Probe. 4-8

Address Wrap-Around .. 4-9
Break Information. .. 4-9
Mapping Considerations for the 80186/80188 Probe 4-10
Synchronization Between the Prototype and the Probe .. 4-11
User-Accessible Test Points. .. 4-11
User Socket .. 4-12

The 80286 Probe .. 4-12
Address Translation : .. 4-13

8086 Address Translation. .. 4- 13
80286 Address Translation .. , 4-14

Multitasking .. 4-16
Interrupts .. 4-17
Address Protection .. 4-17

Real Mode and PCHECK ... 4-18
Protected Mode and PC HECK , 4-18

Memory Mapping for the 80286 Probe .. 4-18
Support for Processor Extensions. .. 4-19
Displaying 80286 Registers and Flags. .. 4-19

Real Mode and PCHECK = TRUE. .. 4-19
Real Mode and PCHECK = FALSE. .. 4-19
Protected Mode and PC HECK = TRUE .. 4-19
Protected Mode and PC HECK = FALSE. .. 4-20

Hardware and Software Considerations for the 80286 Probe. .. 4-20
Hardware Slipping Past a Breakpoint. .. 4-21
High-Address Bits Override. .. 4-22
Issuing a Reset Command When an 80287 Is Present. .. 4-22
Resetting the 80286 Chip and the 80286 Probe. .. 4-24
Timing Differences Between the iAPX 286 and the 80286 Probe 4-24
User Substrate Capacitor and + 5 Volt Source. .. 4-24
Tracing Considerations. • 4-25
User Socket '" .. 4-25
Synchronizing Emulation to an External Event. .. 4-25

vi Contents

Page
Using the Initialization Segment .. 4-25
Reading from and Mapping to Mapped Memory or 110 .. 4-26
Pascal-286 and FORTRAN-286 Array Size 4-26

CHAPTER 5 COPROCESSOR SUPPORT
Mapping Restrictions When Using Coprocessors .. 5-1
The PHANG Pseudo-Variable ... 5-1
The 8087/80287 Numeric Data Processors. .. 5-1

The COENAB Pseudo-Variable. .. 5-2
COENAB and an External Coprocessor. .. 5-3
COENAB and an Internal Coprocessor .. 5-3

The CPMODE Pseudo-Variable .. 5-3
The COREQ Pseudo-Variable .. 5-4
The GET87 Command .. 5-4

CHAPTER 6 MULTIPLE-PROBE SYSTEMS
FICpM System Units .. 6-1
Arming the FICpM System .. 6-2
Asserting the System Break and Trace Lines. .. 6-3
Enabling FICpM System Units ... 6-3
Symbolic Support for Multiple Probes. .. 6-4
Writing Debug Procedures for Multiple Probe Systems. .. 6-5
Synchronization Between Units 6-6

The 8086/8088 and 80186/80188 Probes ... 6-6
The 80286 Probe. .. 6-7

APPENDIX A 121CETM SYSTEM NON-HOST HARDWARE INSTALLATION
The FICpM System Instrumentation Chassis Installation. .. A-I
Emulation Base Module Installation. .. A-4

Buffer Base Assembly Jumpering. .. A-4
Installing Personality Modules and User Cables. .. A-4

Installing the FICpM System 8086/8088 Emulation Personality Module A-4
Installing the 8086/8088 User Cable .. A-lO
Installing the FICpM System 80186/80188 Emulation Personality Module. A-II
Installing the 80186/80188 User Cable .. A-14
Installing the FICpM System 80286 Emulation Personality Module A-16
Installing the 80286 User Cable .. A-16

Installing the Emulation Clips Module ... A-18
Installing the iLTA Logic Timing Analyzer Option. .. A-20
Host Installation Information. .. A-20

APPENDIX B CONFIGURING THE J2ICETM SYSTEM FOR NON-STANDARD
HOST TERMINALS

Creating a CRT File .. B-1
Configuration Commands ... B-2

Contents vii

APPENDIX C (and possibly other host installation appendixes) Page

Glossary

Index

TABLES
1-1 I'ICETM System Hardware Components. .. 1-9
1-2 I'ICETM System Emulation Clips-DC Characteristics. .. 1-19
2-1 Main Tutorial Path Screens. .. 2-10
2-2 Emulation Aid Module (AIDl) Screens. .. 2-11
2-3 I'ICETM Feature Aid Module (AID2) Screens. .. 2-12
3-1 System Parameters Used with I/O Debug Procedures 3-23
4-1 8086/8088 Segment Boundary Increments. .. 4-3
4-2 80186/80188 Segment Boundary Increments. .. 4-10
5-1 Coprocessor Pseudo-Variable Interaction 5-2
A-I 8086/8088 Emulation Personality Module Jumper Configurations A-6
A-2 Jumpering for 8087 Support ... A-7
A-3 Intel Host Installation Appendixes. .. A-21
B-1 The A Configuration Command Values .. B-3
B-2 The AF Configuration Command Values. .. B-4

FIGURES
1-1 Typical Microcomputer Development Process 1-2
1-2 A Basic PICETM System. .. 1-5
1-3 A Maximum Configuration I'ICETM System 1-7
1-4 The I'ICETM System Debugging Capabilities. .. 1-13
2-1 Tutorial Introductory Screen: SCRI .. 2-3
2-2 Tutorial Main Menu: SCR2 2-5
2-3 Menu for the Emulation Aid Modules: AIDI 2-6
2-4 Menu for the FICETM System Feature Modules: AID2 .. 2-7
2-5 Emulation Display for the Screens SCR12 Through SCRI5 2-8
2-6 Tutorial Structure. .. 2-9
3-1 Sample Trace Buffer INSTRUCTIONS Display Showing the Data Write for Instruction

#12. .. 3-39
3-2 Sample Trace Buffer Display in CYCLES Mode Showing Frames

f 006-008 and f OOB .. 3-40
3-3 Sample Trace Buffer Display in INSTRUCTIONS Mode for Emulation with the System

Register EVEN .. 3-45
3-4 Sample Trace Buffer Display in CYCLES Mode for Emulation with the System Register

EVEN ... 3-46
3-5 Sample Trace Buffer Displays in Both Modes for Emulation with the System Register

ODD .. 3-47

viii Contents

FIGURES (continued) Page
3-6 Sample Trace Buffer Displays in Both Modes for Emulation with the System Register

EVENWORD .. 3-50
3-7 Sample Trace Buffer Displays in Both Modes for Emulation Using the Event Register

ODDWORD. .. 3-52
3-8 Sample Trace Buffer Displays in Both Modes for Emulation with the System Register

EVENBYTE .. 3-53
3-9 Sample Trace Buffer Displays in Both Modes for Emulation with the System Register

ODDBYTE .. 3-55
4-1 READY Signal Set-Up Time ... 4-5
4-2 The GDT and the LDT .. 4-15
4-3 80286 Virtual Address Translation. .. 4-16
4-4 The Segment Register and the Descriptor Tables. .. 4-17
4-5 Returning the Probe's Microprocessor to Real Mode .. 4-23
6-1 A Multiple-Probe PICETM System. .. 6-2
A-I Power Cable. .. A-2
A-2 Circuit Breaker on the Rear Panel of the FICETM System Instrumentation Chassis. A-2
A-3 Termination Switches on the Rear Panel of the FICETM System Instrumentation

Chassis. .. A-3
A-4 Instrumentation Chassis Boards. .. A-5
A-5 Jumper Positions on the Map-I/O Board. .. A-5
A-6 Jumper Positions on the Buffer Board. .. A-6
A-7 New Cable Installation for the 8086/8088 Probe A-7
A-8 8086/8088 Emulation Personality Module Installation. .. A-8
A-9 Jumper Positions on the 8086/8088 Personality Board. .. A-9
A-IO 8086/8088 User Cable Dimensions .. A-ll
A-II The Correct Orientation ofthe 8086/8088 User Cable. .. A-12
A-12 80186/80188 and 80286 Emulation Personality Module Installation. A-13
A-13 Jumper Positions on the 80186/80188 Personality Board , A-13
A-14 80186/80188 User Cable Dimensions ... A-14
A-15 Connecting the 80186/80188 User Cable. .. A-15
A-16 80286 User Cable Dimensions. .. A-17
A -17 Assembling the Emulation Clips Module. .. A-18
A - I 8 Instrumentation Chassis Cables .. A -19

Contents ix/x

PREFACE
...................................... imJ ..

This manual introduces Intel's Integrated Instrumentation and In-Circuit Emulation (l'ICETM)
system. It assumes that you are familiar with the architecture of the iAPX 86, iAPX 88, iAPX
186, iAPX 188, and iAPX 286 microprocessors. It also assumes that you are familiar with the
concept of in-circuit emulation.

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Appendix A

Appendix B

Host Installation
Appendixes

Glossary

Index

describes the hardware/software design process and explains how the
FICE system aids this design process. Chapter 1 also provides general
information about the features and components of the FICE system, de
scribes the hardware components of the PICE system, and describes the
PICE system software packages.

provides an overview of the FlCE system on-line tutorial and contains a
listing of the program debugged during the tutorial session.

introduces the user to the FICE system. This chapter reinforces and aug
ments information provided in the on-line tutorial. It explains symbolic
debugging, FICE debug procedures, file handling, the FICE editor, and
the single-line assembler. The chapter also contains a sample program that
illustrates how to get the PICE system up and running; it describes how to
set up and work with the FICE memory and liD maps; and it describes
how to set breakpoints and interpret the trace buffer.

is an overview of how the FICE system operates with the 8086/8088,
80186/80188, and 80286 personality modules (probes). This chapter also
describes special considerations that pertain to each of the probes.

describes the special debugging aids offered by the PICE system for proto
types that use coprocessors and processor extensions.

describes the operation of FICE systems with more than one probe.

explains how to install FICE system hardware, except hardware that is
installed on the host system.

shows how to configure the PICE system to run with non-standard
terminals.

explain how to install the FICE system hardware in the host system and
how to install the PICE system software.

defines specific FlCE system terms used in this manual.

xi

Related Publications

The following manuals contain additional information about thc FlCE system and its operating
environment.

Copies of the publications listed arc available through the Intel Literature Department.

FICETM System Publications Library

The following manuals arc supplied (together with this manual) with the FlCE system; they
contain additional information about the FlCE system and its operating environment. Copies
of the publications listed are also available through the Intel Literature Department, located at
the following address:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051
(800) 548-4725

• FICE'M Integrated Instrumentation and In-Circuit Emulation System (data sheet), order
number 210469.

•

•

This publication provides an overview of the FlCE system. It describes the hardware and
software, provides some general application information, and lists the system specifica
tions. The data sheet is available through Intel sales offices as well as the Intel Literature
Department.

F1CE/A1 Reference Manual. order number 166302.
This manual is the principle reference for the FICE command language. It includes de
scriptions of FlCE commands and FlCE topics that are not probe-specific .

PSCOPE-86 High-Level Program Debugger User:~ Guide, order number 121790
[This manual is only supplied to users with Intel hosts.] The manual describes the opera
tion of PSCOPE-86. a high-level language symbolic debugger. It includes a tutorial and
invocation sections. a command dictionary. an error message listing. and configuration
information for non-Intel terminals.

• AEDIT 7i.'xt ti:iilOr User:~ Guide. order number 121756
This manual describes features and operation of the screen editor that is part of the F1CE
system software.

Reference Publications

The publications in the following sections arc not supplied with the FlCE system.

xii Preface

Hardware Reference Publications

•

•

•

•

•

•

•

•

•

Memory Components Handbook, order number 210830.
This catalog contains data sheets on the memory components manufactured by Intel
Corporation.

Microsystems Components Handbook, order number 230843 (two volumes).
These handbooks contain data sheets on the microprocessor and peripheral products man
ufactured by Intel Corporation.

OEM Systems Handbook, order number 210941.
This catalog contains data sheets on integrated microcomputer systems, single-board com
puters, memory expansion boards, high-speed math boards (including the iSBC® 337
MULTIMODULETM board), peripheral controllers, communications controllers, digital
I/O expansion and signal conditioning boards, industrial control series, and analog I/O
expansion. It also contains data sheets on systems software, such as the iRMXTM operating
system.

Development Systems Handbook, order number 210940.
This catalog contains data sheets on microcomputer development systems (hardware and
software), in-circuit emulators (including the PICE system), network development sys
tems, system design kits, and third-party software.

iAPX 86/88, 186/188 User's Manual, order number 210911.
This manual contains product descriptions and operating instructions for 8-bit and 16-bit
CPUs and support chips in the iAPX 86/88 and 80186/80188 families.

iAPX 186 High Integration 16-Bit Microprocessor (data sheet), order number 210451.
This publication provides an overview of the iAPX 186 microprocessor. It includes chip
pinouts, a functional description, hardware, software, and timing specifications, and an
instruction set summary.

iAPX 286/10 High Performance Microprocessor with Memory Management and Protec
tion (data sheet), order number 210253.
This publication provides an overview of the iAPX 286/10 microprocessor. It includes
chip pinouts, a functional description, chip architecture, hardware and timing specifica
tions, and an instruction set summary.

iAPX 286 Hardware Reference Manual, order number 210760.
This manual is the hardware reference guide for iAPX 286 system designs.

iSBC® 337 MULTlMODULETM Numeric Data Processor Hardware Reference Manual,
order number 142887 .

. This manual contains design and operation information on the iSBC 337 NDP MULTI
MODULE board. The manual includes installation, program interface, operation, and
service information.

Software Reference Publications

• ASM-86 Language Reference Manual, order number 121703.
This manual provides design and operating information about the ASM-86 assembly

Preface xiii

•

•

•

•

•

•

•
•
•
•
•

language. The manual provides an overview of the language, procedures for program
structuring, information about data operation, and an appendix describing the 80186 in
struction set.

iAPX 86/88 Family Utilities User's Guide, order number 121616.
This guide provides a full description of the utility commands that support 86/88 program
development. It is intended for use with any language translator that generates object code
compatible with the utility commands.

8087 Support Library Reference Manual, order number 121725.
This manual provides design and operating information about the library of support utili
ties for the 8087 processor. It provides overviews of the support library, procedures for
program structuring, and information on data operation.

iAPX 286 Programmer's Reference Manual, order number 210498.
This manual describes the iAPX 286 architecture and instruction set.

iAPX 286 Utilities User's Guide, order number 121934.
This guide provides a full description of the utility commands that support 286 program
development. It is intended for use with any language translator that generates object code
compatible with the utility commands.

iAPX 286 Operating Systems Writer's Guide, order number 121960.
This book is written for systems designers, operating system designers, and programmers
using the Intel iAPX 286 microprocessor in its protected, virtual-address mode.

PLlM-86 Programming Manual, order number 980466.
This manual provides programming instructions for PLlM-86. It includes details on ex
pressions and assignments, procedures, variables, and a sample program.

PLlM-86 User's Guide, order number 121636.

PLlM-286 User's Guide, order number 121945.

Pascal-86 User's Guide, order number 121539.

FORTRAN-86 User's Guide, order number 121570.

iC-86 Compiler User's Guide, order number 122085.
These guides provide introductory and overview information on the high-level languages
supported by the PICE system. Each manual provides installation instructions, language
information, compiler operating instructions, and information on interfacing to other soft
ware modules.

Command Syntax

The following syntax notation is used throughout the FICE manual set:

COMMANDS Command keywords appear in all uppercase letters. You must enter com
mands exactly as they appear, except that you may enter them in either
uppercase or lowercase letters.

xiv Preface

elements

{menu}

{menu} *

[menu]

[menu] *

punctuation

apostrophe

CTRL

Preface

Items for which you must substitute a value, expression, file name, etc., are
in lowercase letters and italicized.

Braces indicate that you must select one and only one of the items in the
enclosed menu.

Braces followed by an asterisk (*) indicate that you must select at least one of
the items in the enclosed menu

Brackets indicate optional items of which you can select one and only one.

Brackets followed by an asterisk (*) indicate optional items of which you can
select more than one item.

You must enter punctuation other than braces ({ }) and brackets ([]) ex
actly as shown. For example, you must enter all the punctuation shown in the
following command:

LIST: F1: myprog· 001

If your terminal has two apostrophes (or single quotes), determine which one
the PICE system accepts in command syntax.

CTRL denotes the terminal's control key. For example, CTRL-C means
enter C while pressing the control key.

xv/xvi

REV. REVISION HISTORY DATE

-001 Original Issue. 9/85

xvii/xviii

SERVICE INFORMATION
...................................... imJ ..

The best possible service for your Intel product is provided by Intel Customer Engineers.
These trained professionals provide prompt, efficient, on-site installation, preventive mainte
nance, and corrective maintenance services required to keep your equipment in the best possi
ble operating condition.

Intel Customer Engineers provides the service needed through a prepaid service contract or on
an hourly charge basis. For further information, contact your local Intel sales office.

In Phoenix, Arizona, there is a technical information center that will connect you with the
software support group for your particular Intel product.

Telephone (602) 869-INFO (4636)

When an Intel Customer Engineer is not available, contact the Intel Product Service Center.

United States customers can obtain service and repair assistance from Intel Corporation by
contacting the Intel Product Service Center in their local area. Customers outside the United
States should contact their sales source (Intel Sales Office or Authorized Distributor) for serv
ice information and repair assistance.

Before calling the Product Service Center, have the following information available:

1. The date you received the product.

2. The complete part number of the product (including dash number). On boards, this num
ber is usually silk-screened onto the board. On other MCSD products, it is usually stamped
on a label.

3. The serial number of the product. On boards, this number is usually stamped on the board.
On other MCSD products, the serial number is usually stamped on a label mounted on the
outside of the chassis.

4. The shipping and billing address.

5. If the Intel Product warranty has expired, a purchase order number is needed for billing
purposes.

6. Be sure to advise the Center personnel of any extended warranty agreements that apply.

Use the following telephone numbers for contacting the Intel Product Service Center:

Western Region:
Midwest Region:
Eastern Region:
International:

(602) 869-4951
(602) 869-4392
(602) 869-4045
(602) 869-4862

Always contact the Product Service Center before returning a product to Intel for repair. You
are given a repair authorization number, shipping instructions, and other important

xix

xx

information which helps Intel provide you with fast, efficient service. If you are returning the
product because of damage sustained during shipment, or if the product is out of warranty, a
pilrchase order is required before Intel can initiate the repair.

If available, use the original factory packaging material when preparing a product for shipment
to the Intel Product Service Center. If the original packaging material is not available, wrap the
product in a cushioning material such as Air Cap SD-240, manufactured by the Sealed Air
Corporation, Hawthorne, N.J. Securely enclose it in a heavy-duty corrugated shipping carton,
mark it "FRAGILE" to ensure careful handling, and ship it to the address specified by the Intel
Product Service Center.

Service Information

1 121CETM SYSTEM OVERVIEW
... i~ ..

Intel's Integrated Instrumentation and In-Circuit Emulation (I'ICETM) system offers real-time
hardware and software emulation for designs using the iAPX 86, iAPX 88, iAPX 186, iAPX
188, and iAPX 286 microprocessor systems.

This chapter is an overview of the FlCE system and its operating environment. It contains the
following sections.

• The Microcomputer Development Process-this section reviews the role of an emulator in
the microcomputer development process.

• An Introduction to the I'ICETM System-this section describes the FlCE system configura
tion, options, and accessories.

• Hardware Overview

• Software Overview

• The PICETM System Command Language

• FICETM System Specifications

The Microcomputer Development Process

Designing a product that contains a microcomputer requires close coordination of two separate
but highly dependent design efforts: hardware development and software development. These
two development efforts can be accomplished independently, but it is more efficient to work on
them together. Figure 1-1 illustrates a typical microcomputer development process, using a
development system and an emulator.

Features of a Host Development System with an Emulator

A host development system with an emulator offers the following resources:

• A stand-alone computer

• Development software such as assemblers and compilers

• Prototype hardware interface

• Mapping capability

• Break and trace capability

1-1

PARTS OF THE DEVELOPMENT PROCESS AIDED BY THE MICROCOMPUTER
DEVELOPMENT SYSTEM AND IN·CIRCUIT EMULATOR
r--------------------------l
I I
I I
I 1

I I
I I
I I
I 1

I I
I
I
I
I
I
I
I I
I I L _________________________ ~

Figure 1-1 Typical Microcomputer Development Process

1109

Generalized Hardware Design Steps

Although the complexity of hardware design varies from one design to another, the general
process is the same. The following sequence illustrates the advantage of using a development
system with an emulator.

•

•
•

•

Organize the hardware into logical blocks with well-defined inputs and outputs. Determine
the CPU, RAM, ROM, I/O, board layout, and bus interface requirements.

Build a hardware prototype.

Test the interaction of the prototype hardware with proven software. The user program
resides initially in either the host development system's memory or the emulator's memory.
You can reassign the user program, memory block by memory block, to prototype mem
ory as you verify the code and as prototype memory becomes available.

Test, debug, and verify each prototype module.

Generalized Software Design Steps

1-2

Software design follows a process similar to hardware design as illustrated in the following
sequence.

• Organize the software into logical blocks with well-defined inputs and outputs. Complete
the specifications for the software control logic and integrated system performance.

PICEHI System Overview

• Program the software modules. Desk-check each module as it is completed. Name and
store the software modules as files in the development system's memory. Assemble or
compile the modules. Link and load the combinations that are ready to be tested.

• Emulate the program using an emulator to debug the software.

Hardware/Software Integration

When the hardware and software designs are complete, system integration is already in pro
gress. The usefulness of a development system with an emulator extends into the integration
and test phases.

When an emulator is connected to the prototype system through the microprocessor socket and
emulator hardware probes, the emulator can emulate, test, and trace prototype system
operation.

After testing the prototype, the host development system with an emulator can be used to verify
the product in production test. Test procedures developed for final prototype testing can serve
as the basis for production test routines. The same procedures developed for hardware debug
ging and production test can also be used to troubleshoot and repair failing products at a repair
center.

An Introduction to the I2ICETM System

Intel developed the PICE system to address the requirements of designers who use Intel's iAPX
microprocessors. The PICE system is a second-generation design tool that provides the follow
ing advantages:

• Full-speed, multiple microprocessor emulation

• Real-time emulation support for each of the iAPX microprocessors (86/88, 1861188, and
286)

• Software patching without recompiling or reassembling

• Extensive breakpoint capabilities

• Expanded logic analysis

The PICE system also offers the following features:

• Access to eight signals input from the prototype system and two signals output to the
prototype system using the emulation clips. An additional output line is asserted when the
PICE system breaks emulation, and another is asserted when the FlCE system triggers a
trace.

• An optional Intel Logic Timing Analyzer (iLTA) module which is a general-purpose,
integrated, 16-channel, IOO-MHz logic timing analyzer. With the mass storage provided
by the host development system, you can store an unlimited number of scope displays for
later analysis. Combined with the capabilities of the FICE system, the iLTA extends the
range of development applications. [This option is not available for IBM PC hosts.]

I2ICEnl System Overview \-3

• An optional high-speed (OHS) memory board. The FlCE system provides up to 256K
bytes of additional programmable wait-state RAM for each emulator. With the FICE sys
tem, you can specify zero wait-states for real-time emulation and simulate slow memories
by inserting up to 15' wait states.

• Program memory mapping to high-speed (HS) memory (up to 32K-bytes) on the system
map-I/O board, to OHS memory, or to host development system memory. [There is no
mapping to IBM PC/AT or PC/XT host memory.]

• Multiprocessor debugging. The PICE system can control up to four emulators
simultaneously.

• Coprocessor support, which provides debugging support for the 8087 numeric coproces
sor and the 80287 numeric processor extension.

• Emulation flexibility. The iAPX 86/88 and 1861188 emulation personality modules (also
called probes) each emulates two separate microprocessors. To change microprocessors.
you need only change the personality module CPU chip and jumpers on the buffer and
personality boards.

•

N<YfE

Probe CPU chips must be provided by Intel. All probes use either bond-out chips or
specially tested microprocessors.

Symbolic debugging support for programs written in assembly language, PUM, C,
Pascal, and FORTRAN by both PSCOPE-86 and the PICE system command language.
With the symbolic debugging capabilities you can access variables and memory locations
with user-defined names.

• Two programmable event machines that allow break and trace on simple and complex
event sequences.

• A real-time trace buffer that displays trace information in either a disassembled-instruction
format or a microprocessor bus-cycle format.

The Base Configuration of the 121CETM System

1-4

Figure 1-2 shows a basic single-chassis FICE system. The base configuration is readily ex
pandable to include a number of FICE system options.

The base configuration of the FlCE system contains the following hardware:

• The host interface board, which resides in the host development system and handles com
munication between the host development system and the FICE instrumentation chassis.

• The FlCE instrumentation chassis, which contains the communications board and pro
vides slots for up to four FlCE system boards. The communications board connects to the
host interface board. The chassis slots also hold the map-I/O board and the break/trace
board.

• The map-I/O board, which contains high-speed RAM and the memory map. There are
32K bytes of high-speed RAM available to user programs through the memory map. The

12ICETM System Overview

//7c~~ia?n~V:ol~~n~;~:C:~~!~d~
~~:

>~>-»>~l

<>

12 1CE ™ CHASSIS WITH
EMULATION BASE

SERIES IV
(iNDX)

111111111111111111(!

BUFFER BOX
WITH EMULATION
PERSONALITY
MODULE

•

•

•

•

1160-A

Figure 1-2 A Basic PICETM System

rest of the on-board RAM contains PICE system software that implements probe-specific
commands.

The break/trace board, which contains two programmable event machines that implement
the break and trace specifications.

The emulation clips assembly, which enables the PICE system to assert signals to the
prototype hardware and to read signals from the prototype hardware.

The probe buffer box, which contains the buffer board and the personality board. The
buffer board connects to the break/trace board and the map-I/O board in the instrumenta
tion chassis. The personality board connects to the prototype hardware through the user
cable.

System cables, which connect the instrumentation chassis to the host development system
and to the probe buffer box. The host/instrumentation-chassis cable is either 10 or 40 feet
long.

(2ICETM System Overview 1-5

The base configuration of the FlCE system contains the following software.

•

•

•
•

•

The !'ICE system host software, which implements the non-probe-specific FlCE system
commands. After the PICE system software is loaded, it resides in the host development
system.

The PICE system probe (personality module) software, which implements the probe
specific FlCE system commands. After the probe software is loaded, it resides in the map-
110 board.

The FICE system diagnostic software.

The PSCOPE-86 high-level language software debugger which runs in the host develop
ment system and does not emulate in real-time. It is loaded in place of the FICE system
host software. [PSCOPE-86 is an option for the IBM PC hosts.]

The PICE system tutorial software.

PICETM System Options

1-6

The FICE system is expandable. An FICE system can have up to four instrumentation chassis.
Each chassis can emulate any of the five microprocessors. Each chassis provides up to 256K
bytes of additional zero wait-state memory to user programs, and serves as a logic timing
analyzer while retaining the basic FICE system functions.

Figure 1-3 shows the maximum configuration of an FlCE system.

The l'ICE system options are as follows.

•

•

The optional high-speed (OHS) memory board. This option increases the amount of FlCE
system memory available to user programs through the memory map. Each board adds
128K bytes of zero wait-state memory.

The iLTA has all the features found in a stand-alone logic analyzer. In addition, the iLTA
uses the mass storage and real-time breakpoint facilities of the FICE system. The iLTA
monitors 16 channels at a maximum frequency of 100 MHz. [The iLTA system is not
available for use with the IBM PC hosts.]

The iLTA hardware consists of one board, two probe pods, and test and hook-up accesso
ries. Each instrumentation chassis can contain only one iLTA module, and the iLTA board
must reside in the top slot.

The PICE system enables real-time emulation and debugging of up to four instrumentation
chassis from a single host development system. A unit is composed of an instrumentation
chassis, a probe buffer box, and an emulation clips pod. Each unit can emulate one of the
five iAPX microprocessors. Optional high-speed memory residing in one chassis cannot
be mapped into the emulation environment of another chassis.

PICE"I System Overview

I 'ICE'~ INSTRUMENTATION
CHASSIS WITH EMULATION
BASE MODULES AND
OPTIONAL BOARDS

SERIES IV
iNDX

Figure 1-3 A Maximum Configuration PICETM System

EMULATION
BUFFER BOX
WITH EMULATION
PERSONALITY
MODULES

1161·A

J2ICETM System Accessories

The FICE system accessories are as follows.

•

•
•

An emulation clips assembly that consists of an emulation clips pod, an emulation clips
cable, and an emulation clips terminator.

Two logic probe pods (channels 0-7 and 8-F) that supplement the iLTA pods. Each pod can
be ordered separately.

Two iLTA terminator sets that supplement the terminator sets normally supplied with the
iLTA. A 16-channel terminator set is used to hook-up to 16 separate signals. An 8-channel

PICETM System Overview 1-7

terminator set is used for glitch detection and multi-threshold triggering. Each terminator
set can be ordered separately.

• A microhook set that consists of 40 grabber clips (microhooks) that connect to wires
belonging to the emulation clips terminator or to the iLTA terminators. The microhooks
connect to individual leads of a dual in-line package (DIP). This set supplements the
microhooks supplied with the emulation clips pod and the iLTA.

Hardware Overview

The hardware components of the FlCE system are listed in Table 1-1 and discussed in the
following sections.

The Instrumentation Chassis

The instrumentation chassis encloses a card cage and a backplane with four vacant slots. a
switching power supply. and a communications board. As many as four chassis may be daisy
chained together in a fully-configured FlCE system to allow multiprocessor emulation under
the control of a single host development system.

Both the top and front covers of the instrumentation chassis are easily removed to allow access
to system components. The four-slot card cage holds 12 in. by 12 in. (.30 m by .30 m) boards.
Three fans on the side of the card cage provide cooling.

The internal switching power supply uses line power (110 or 220 VAC) to develop the regulated
DC voltages used by the FlCE system. (The host interface board obtains power from the host
development system.) The power supply has five voltages: + 5VDC (two voltages).
-5.2VDC. + 15VDC. and -15VDC.

The communications board is part of the rear panel of the instrumentation chassis. The board
contains termination switches. rear panel connectors, and interface circuitry. The communica
tions board handles communications with the host development system (using the host inter
face board). The communications board also provides the link between the PICE chassis in
which it resides and other FlCE chassis in the system. In multiple-chassis FlCE systems. the
communications board assigns sequential unit numbers (0 through 3) to each chassis.

The Host Interface Board

1-8

Each FlCE system requires one host interface board. It resides in the host development system
and controls up to four instrumentation chassis. For Intel hosts, the host interface board is a
MULTIBUS@ master board that makes possible direct memory access (DMA) to MULTIBUS
board memory by the FlCE system; for multiple-probe systems, the probes can share common
MULTIBUS memory. IBM PC/AT and PC/XT hosts are provided with a PC-specific interface
board that does not support MULTIBUS mapping.

PICK"I System Overview

Table 1-1 PICETM System Hardware Components

Instrumentation chassis
Host interface board
Emulation base module

Break/trace board
Map-I/O board
Buffer base assembly

Emulation buffer board
Probe buffer box base
Probe buffer box cable

Emulation clips assembly
Emulation clips pod
Emulation clips cable
Emulation clips terminator
Emulation clips micro hooks

System cables
Ho.:;t/chassis cable (10 or 40 feet)
Internal host cable (not needed for Model 800 and IBM PC hosts)
Inter-chassis cable set (2 or 10 feet)

Inter-chassis communications cable
Inter-chassis break cable

High-speed memory module
Optional high-speed memory board
iLTA module (not available for IBM PC hosts)

iLTA board
External trigger wires
iLTA demonstration card assembly
Logic probe assembly

Logic probe pod, channels 0-7
Logic probe pod, channels 8-F
Terminator set, 16-channel
Terminator set, 8-channel
Microhook set (40 microhooks)

86/88 emulation personality module
Probe buffer cover assembly

Buffer box cover
86/88 personality board
Selected 8086 CPU chip
Selected 8088 CPU chip
User system cable

186/188 emulation personality module
Probe buffer cover assembly

Buffer box cover
186/188 personality board
Selected 80186 CPU chip
Selected 80188 CPU chip
User system cable

286 emulation personality module
Probe buffer cover assembly

Buffer box cover

PICETM System Overview

286 personality board and 286 selHest board
Selected 80286 CPU chip
User system cable

1-9

The Emulation Base Module

110

The emulation hase module provides a generic environment that an emulation personality
module tailors to the microprocessor being emulated. Each instrumentation chassis contains
one emulation base module. A fully-expanded FlCE system contains four instrumcntation
chassis and four emulation hasc modules. each with an emulation personality module. The
emulation base module consists of the following hardware:

•
•
•
•

A mup··!iO map hoard

A hreak/trace board

A hutTer basc assemhly

An emulation elips asscmhly

The map-liO board contains the FlCE mcmory map and memory. The PICE memory consists
of :ilK hytes of user-accessible. zero wait-state RAM. The FlCE system uses 128K bytes of
RAM to store the code for probe-specific commands. The memory map redirects an emulated
microprocessor's memory and I/O port address space to combinations of memory and I/O
helonging to the host development system. the prototype, and the FlCE system.

The hreak/traee hoard uses two programmable event machines (one execution event machine
and one system event machine) to trigger break and trace points. The event machines recognize
complex. multilevel trigger event sequences. The breakltrace board also contains a 1023 by
48-bit trace data buffer.

The huffer base assemhly provides huffers. latches. multiplexers. and a wait-state generator for
the emulation hase module. The buffer hase assembly is incomplete without the appropriate
emulation personality module (probe). The buffer base assembly consists of the following
hardware:

•
•
•

The probe huffer box base

The probe buffer box cable

The emulation buffer board

The emulation buffer board resides in the probe buffer box base. The emulation buffer board
contains the wait-state generator and the fan control circuit for the buffer box. With the wait
statc generator you can simulate slow memories by inserting up to 15 wait-states into memory
accesses. The prohe huffer box cable connects the emulation buffer board to the breakltrace
hoard and the map-IIO hoard in the instrumentation chassis.

The elllulation clips assembly consists of the following hardware:

•
•
•
•

The clllulation clips cablc

The emulation clips pod

The emulation clips terminator

The emulation clips microhooks

!'ICET\! System Ovcnie\\

The emulation clips cable assembly attaches to the break/trace board in the instrumentation
chassis. This assembly enables the monitoring of eight TTL-compatible input signals and the
generation of two TTL-compatible output signals during emulation. The emulation clips as
sembly also provides system break and system trace outputs that aid multi-microprocessor
debugging by enabling the FlCE system to communicate with other FICE systems.

System Interface Cables

A single host/chassis interface cable connects the PICE system to the host interface board.
Each additional instrumentation chassis in the PICE system is linked to the previous instru
mentation chassis with two inter-chassis interface cables (an inter-chassis communication cable
and an inter-chassis break cable). All chassis-to-chassis connection, termination, and chassis
addressing is performed on the communications board of each instrumentation chassis.

High-Speed Memory

The high-speed (RS) memory consists of 32K bytes of programmable wait-state memory and
resides on the map-I/O board.

Optional High-Speed Memory Board

The optional high-speed (ORS) memory board supplements the 32K bytes of high-speed PICE
memory. The ORS memory module is a 12 in. by 12 in. (.30 m by .30 m) board with static
RAM memory components. Each ORS memory board contains l28K bytes of zero wait-state
memory. Each PICE system can contain two ORS memory boards for a total of 256K bytes of
ORS memory.

The Intel Logic Timing Analyzer (iLTA)

The iLTA is a test and measurement module which combines all the features of a stand-alone
logic analyzer with the event machines and storage capabilities of the FICE system. The iLTA
consists of the logic probe assembly, the external trigger wires, the iLTA demonstration card
assembly, and the logic probe assembly. [The iLTA system is not available for IBM PC hosts.]

Emulation Personality Modules

An emulation personality module (also called an emulation probe) configures the PICE emula
tion base module to support a specific microprocessor. Each emulation personality module
consists of the following hardware:

•
•
•
•

The personality board

The probe buffer box cover

The user cable with probe

The selected CPU chip

PICET\I System Overview I-II

In addition to supporting real-time emulation and debugging for the specified microprocessor,
the emulation personality modules also provide debugging support for coprocessors. For ex
ample, the FICE system 8086/8088 and 80186/80188 emulation personality modules provide
debugging support for the 8087 coprocessor. The 80286 emulation personality module pro
vides debugging support for the 80287 numeric processor extension.

Software Overview

The FlCE system software is a versatile and powerful debugging language. The usefulness of
an FlCE system extends throughout the development cycle, beginning with the symbolic de
bugging of prototype software and ending with the final integration of debugged software and
prototype hardware (see Figure 1-4). Typical FICE system functions include setting break
points, controlling trace collection, writing debug procedures, and changing program varia
bles. The I'ICE system software consists of the following:

•

•

•

•

•

•

The FlCE system host software, which resides in the host development system. It imple
ments the FlCE commands that are not probe-specific.

The FICE system probe software, which resides on the map-I/O board in the FICE instru
mcntation chassis. It implements the probe-specific commands.

PSCOPE-86, which is a high-level language symbolic debugger, designed for use with
Pascal-86, PLlM-86, and FORTRAN-86. It is a separate product included with the PICE
system. It runs in the host development system. [PSCOPE-86 is an option for IBM PC
hosts.]

The FlCE system diagnostic software, which checks the PICE system and supplies infor
mation about a failing system.

The optional iLTA software which is integrated with the FlCE system software [not availa
ble for IBM PC hosts]. The iLTA software controls the iLTA, interprets the data collected
and displayed by the iLTA, and runs the FICE system software.

The FlCE tutorial software, which introduces the FICE command language and leads
users through several on-line debugging sessions.

Software Environment

\-\2

The FlCE system software requires that the host operating system provide certain service
routines. For example, the FlCE system file handling commands assume a system service
routine that provides access to the disk drives. The host operating system must run in the 8086
environment.

The software also requires formatted media in the work device. The software creates a workfile
in the work device that contains the user program symbol table. This table is treated as a virtual
symbol table; that is, the entire symbol table need not reside in memory at the same time. This
has different implications depending on what host development system you are using.

J2ICEnl System Overview

SOFTWARE
DEBUGGING

HARDWARE
DEBUGGING

PSCOPE 86
,--------1

16-BIT iAPX I
SOFTWARE DEBUGGING I

I
I
I
I
I

HOST I
DEVELOPMENT I
SYSTEM I

I L ______ ---1

I'ICE'" SYSTEM
1- --- -- -----------1
I 8086/8088 EMULATION I
I 80186/80188 EMULATION I

80286 EMULATION I
I I
I I
I USER I
I
I
I
I
I
I

HOST
DEVELOPMENTI-
SYSTEM

~
I'ICE'"

BUFFER SYSTEM l- f--'
CHASSIS BOX

~------------------~

fICE'" SYSTEM
1s086ffiM~MuLAn~---------1

180186/80188 EMU LATION I
180286 EMULATION I
iLTA I

: EMULATION CLIPS I

r
iLTA PROBE

r :
I
I

I
I
I
I
I HOST

DEVELOPMENT I-
FICE™ BUFFER USER CABLE,

SYSTEM f--I
I

SYSTEM CHASSIS BOX I
I
I L _________________ ~

Figure 1-4 The PICETM System Debugging Capabilities

• Model 800 and InteIlec® Series III development systems

L

~~
USER
PROTOTYPE

1200 A

For the ISIS operating system the default work device is :Fl:. The RUN program stores
the name of the current work device_ You can display the name of the default work device
by entering RUN WORK. You can change the default work device by entering the follow
ing command:

aQNWlalii.vlceiinjm~

For example, RUN WORK :F2: changes the default work device to drive 2_ If you reset the
system, the default work device is still drive 2_

When the Model 800 or the Series III development system is on an NDS-U, you must
assign :F9: to your work device_

FleET\! System Overview 1-13

• Intellec Series IV development system
For the iNDX operating system, the work device must be defined. For example, assume
that you specify a hard disk named WDO for the work device and the directory WORKDIR
to contain the work file. The command is

LlliMI5!tllJ;INI~WQII:E(lI •• ~~I!!i

• IBM PC/XT and PC/AT hosts
For the DOS operating system, the default work device is the current default drive. To
change the work device, use the following SET command:

I~ilt:"'~!!i~i;;':·~~.iie

The PICpM System Command Language

1-14

The FICE system command language consists of commands, pseudo-variables, and functions.

The PICE system commands fall into the following categories:

• Utility commands-these general-purpose commands simplify the debugging process. For
example, use the EVAL command to calculate the nearest source-code line number that
corresponds to the address of an assembly language instruction. Another utility command
is the HELP command which provides on-line help information.

• Environment commands-these commands set up the debugging environment. For exam
ple, use the MAP command to set up a memory map which specifies that the user program
memory references access memory locations in high-speed PICE memory.

• Debug object manipulation commands-debug objects are debug procedures, debug varia
bles, debug registers, and LITERALLY definitions. You can create, modify, and remove
debug objects. Debug objects save keystrokes during a debugging session .

•

•

Emulation commands-you can command the FICE system to begin emulation and break
or trace under certain specified conditions. You can specify these break and trace condi
tions within a debug register or within the emulation command itself .

File handling commands-with these commands you can access disk files. For example,
the LOAD command loads a user program. The LIST command sets up a list file and
records what appears on the development system console. You can also save debug object
definitions in a disk file and load them in later debugging sessions.

• Probe-specific commands-these commands operate on individual probes. For example,
the PINS command displays the state of selected signal lines. The resulting display con
tains different information for different probes.

The PICE system functions return a requested value that depends on the current state of the
environment. For example, the CI function accepts a character value from the console. It is
useful when writing interactive debug procedures. Another PICE system function, ACTIVE,
takes a symbolic user program symbol as an argument and returns a Boolean value. When
TRUE, this value signifies that the user program variable exists. The variable may not exist if
the PICE system is emulating and the current execution point has not yet reached the procedure
that defines the variable.

FICETM System Overview

The FICE system pseudo-variables are system-defined variables that can be used in expres
sions but cannot be removed by the user. For example, the dollar sign ($) pseudo-variable
represents the current execution point. The PC HECK pseudo-variable is a probe-specific
Boolean pseudo-variable. Setting PCHECK to TRUE enables protection checking for the
80286 probe.

The FICETM System Software

The PICE system software consists of the following items:

• Host software

• Error/help software

• Probe software

• Diagnostic software

• Optional iLTA software and confidence tests

• PSCOPE-86 (optional for IBM PC hosts)

• Tutorial software

The 12ICETM System Host Disk(s)

The host software is received on one or two disks. The disks are not system (bootable) disks.
The host software is in the 121CE.86 file for an Intellec development system (for an IBM PC
host, the file is named I2ICE.EXE). The host software file is an object file.

The 12ICETM System Error/Help Disk

The error/help disk is not a system (bootable) disk. It contains the following files:

• I2ICE.OVE-this file contains the error messages.

• 12ICE.OVH-this file contains the HELP messages.

The 12ICETM System Probe Disks

When you invoke the FICE system software, the FICE host software is loaded into host system
memory. The FICE host software then loads the FICE probe software into the FICE instru
mentation chassis memory.

The 12ICE™ System Diagnostic Disk

The diagnostic disk is a single disk, packaged with the probe software.

The 8086/8088 diagnostic disk contains two files: ICT086.86 and ICT086.086. The
ICT086.86 file loads into host memory, and the ICT086.086 file loads into PICE system
memory.

FICETM System Overview 1-15

The 80186/80188 diagnostic disk contains two files: ICTl86.86 and ICTl86.186. The
ICTl86.86 file loads into host memory, and the ICTl86.186 file loads into FICE system
memory.

The 286 diagnostic disk contains two files: ICT286.86 and ICT286.286. The ICT286.86 file
loads into host memory, and the ICT286.286 file loads into FICE system memory.

The iLTA Disks

The iLTA software is on two double-density or three single-density disks packaged with the
iLTA module. They are not system (bootable) disks.

The iLTA host software is provided on one double-density disk or two single-density disks.
When contained on a double-density disk, the iLTA software has the same name as the FlCE
system host software. When contained on two single-density disks, one disk contains a file
called 12ICE.1, and the other contains a file called 12ICE.2.

The remaining disk contains the iLTA confidence tests. These tests reside in an FICE macro
file.

The PSCOPE-86 Disk

The PSCOPE-86 disk is included with every FICE system hosted by an Intel host. PSCOPE-86
software is an option for IBM PC hosts. The contents of the PSCOPE.86 disk for Intel hosts
are as follows:

• PSCOPE.86

• PSCOPE.OVE

• PROCS.MAC

• *.CRT

• DC.*
SAMPLE. *

• READ.ME

the object file.

the error and HELP messages.

math and file handling procedures.

The configuration data required for non-Intel terminals. The default
configuration data are for an Intellec Series III terminal.

Sample programs that correspond to the examples used in the PSCOPE-
86 High-Level Program Debugger User's Guide.

A supplement to the operating information in the PSCOPE-86 High
Level Program Debugger User's Guide.

If you have the DOS version of PSCOPE-86, see the manual PSCOPE-86 High Level Program
Debugger User's Guide for DOS User's for information on PSCOPE-86 files.

The 12ICETM System Tutorial Disk(s)

The FlCE tutorial includes more than 100 files. Depending on your host, it is received on one
or two disks. The files include the following:

• SCR files. Each screen in the tutorial is contained in one file. The files are named SCR
followed by the screen number. For example, the first screen is in file SCRI and the first
screen in module A is in file SCRA!.

1-16 J2ICETM System Overview

• M files. Each module in the tutorial is activated by the commands in its associated M file.
For example, to activate module B, the commands in file M.B are executed.

• 12ICE.MAC file. This 12ICE.MAC file is specially designed for use with the tutorial.
When PICE software is activated, after the host and probe software is loaded, the 12ICE
.MAC file is executed. It causes the host system to ask users whether they want to use the
tutorial.

• T.MAC file. This file is loaded when users answer "Yes" to the question displayed by the
12ICE.MAC file. The T.MAC file contains LITERALLY definitions needed to control
display of the tutorial screens. It also contains definitions for several debug objects used
during the tutorial .

• Source and object code files. A number of source and object code files are included. They
all are versions of a change making program that is debugged during the tutorial.

FICETM System Specifications

The following sections describe the PICE system specifications. The PIC£TM Data Sheet con
tains additional system specifications, including the following:

• Physical characteristics

• Electrical characteristics

• Environmental requirements

Host Requirements

The host development systems that support the PICE system are the Model 800, the
Intellec® Series III, the Intellec Series IV, and the IBM PC/XT and PC/AT. The specifications
in the following sections assume a stand-alone configuration.

The Model 800 must have the following configuration:

• A system console

• Two double-density disk drives

• The iSBC® 064A memory board

• The iSBC 012B memory board

• The RPB-86 or RPC-86 board

The Model 800 does not support the iLTA.

PICETM System Overview 1-17

NOTE

References to the Model 800 assume that it has been upgraded to a Series III.

The Intellec Series III must have the following configuration:

• An integral system console

• Two double-density disk drives

• The iSBC 012B memory board

• An expansion chassis (MDS-201)

The III-820 board must be installed before the iLTA can run on an Intellec Series III.

The Intellec Series IV must have the following configuration:

• An integral system console

• A hard disk-this can be the integral 5.25 in., 10M-byte Winchester disk drive or a 32M
byte peripheral Winchester disk drive

• The iSBC 012B memory board

• A 5.25 in., double-density disk drive

The IBM PC/XT and PC/AT must have the following configuration:

• 2A at 5VDC available for the FICE host interface board

• A hard disk

• At least 512K bytes of RAM (of which 384K bytes must be available for the FICE
software)

• The ability to read 5 1/4 in., double-density disks (48 tpi)

•
•
•

PC-DOS version 3.0 or later

An open card slot (excluding slot J8 on the PC XT) for the FlCE-to-PC interface board

110 address space 120 - 13F (hexadecimal) available for the FICE system

System Performance

Mappable zero wait-state memory: Minimum 32K-bytes

Trace buffer: 1023 x 48 bits

Virtual symbol table: The number of user program symbols is limited only by
available disk space.

1-18 FICETM System Overview

Emulation Clips

The emulation clipsin lines are sampled once every bus cycle when the address bits become
valid on the address bus. During emulation, the PICE system records the value of these lines in
the trace buffer, once every execution cycle. Because not all clips data is stored, a clips value
can cause a break, and its data will not appear in the trace buffer. Table 1-2 lists the DC
characteristics of the emulation clipsin lines.

Table 1-2 PICETM System Emulation Clips-DC Characteristics

Input Voltage Input Current Output Current

Low High Low High Low High

V'L V'H I'L I'H IOL IOH
V V uA uA mA mA

clipsout lines 33atO.7V 4.8 at 2.0 V

SYSBREAK 38atO.7V 1.0 at 2.0 V
SYSTRACE

clipsin lines 1.05 2.5 50 50

The Target System User Interfaces

The three target system interfaces are the 8086/8088 probe, the 80186/80188 probe, and the
80286 probe.

Consult the FICpM data sheet for the latest probe electrical characteristics and for the timing
differences between the probe and the corresponding chip.

I2ICETM System Overview 1-1911-20

2 GUIDE TO THE 121CETM
SYSTEM TUTORIAL --------------------inter-

To quickly learn how to use the FICpM commands and features, it is recommended that you
use the FICE tutorial. The tutorial is the quickest way to become acquainted with the wide
variety of FICE commands. Intel recommends that new users complete the main path of the
tutorial (and many of the tutorial aid modules) before they proceed to debug their own
programs.

The installation appendix for your host software explains how to install the tutorial software.

This chapter supplements the on-line PICE tutorial. It includes the following sections:

• Tutorial Use-This section explains how to use the tutorial, how to deactivate it, and how to
reactivate it.

• Tutorial Screens and Structure-This section reproduces two screens from the tutorial. It
also lists all the tutorial screens, shows a sample emulation session, provides a diagram of
the tutorial flow, and provides a subject index of the tutorial.

• Tutorial Program Listings-This section provides a list file of the PLiM sample program
used in the tutorial. It also includes an assembly language listing that is generated by using
the CODE option while assembling the PLiM program .

• Sample Programs in C, FORTRAN, and Pascal-This section provides sample source
code in C, Pascal, and FORTRAN. (The source code is also on the tutorial disk.) These
programs are not for use with the FICE tutorial. They are for users who have learned
PICE commands and wish to experiment with the commands while emulating programs in
one or more of these other high-level languages.

Tutorial Use

The FlCE tutorial is easy to access. Each time the user invokes the PICE software, the user's
host terminal will display the following question:

DO YOU WANT TO USE THE I2ICE TUTORIAL? (Y OR N)

2-1

Invoking the Tutorial During Program Debugging

If you invoke the FlCE software without invoking the tutorial, and later you wish to review
information in one or more of the tutorial screens, you can invoke the tutorial by entering the
following command.

The pathname provides the location of the PICE software. See the Pathname entry in the
PICE'M System Reference Manual.

Deactivating the Tutorial

After you have become familiar with PICE commands, you may wish to deactivate the
tutorial-that is, you may wish to eliminate the screen that asks whether you want to use the
tutorial. To deactivate the tutorial, you must either delete or rename the I2ICE.MAC file.

Reactivating the Tutorial

To reactivate the tutorial, select your situation from the following two possibilities:

• You Now Use Your Own I2ICE.MAC File. If you created your own I2ICE.MAC file after
you deactivated the tutorial I2ICE.MAC file, use operating system commands to do one of
the following:

- Revise your I2ICE.MAC file. Locate the I2ICE.MAC file supplied with the tutorial.
Append it to your 12ICE.MAC file. Examine the appended commands to ensure that
they do not conflict with the commands you created.

- Rename your I2ICE.MAC file. Rename your 12ICE.MAC file so that you can use it
later. If you previously renamed the tutorial I2ICE.MAC file, rename it again to
I2ICE.MAC. If you previously deleted the tutorial I2ICE.MAC file, copy the
I2ICE.MAC file from the master tutorial disk to the disk or directory that has the PICE
software.

• You Do Not Use Your Own I2ICE.MAC File. If no file named I2ICE.MAC exists, use
operating system commands to restore the tutorial I2ICE.MAC file. Do one of the
following:

- If you previously renamed the tutorial I2ICE.MAC file, rename it again to
I2ICE.MAC.

- If you deleted I2ICE.MAC from the disk or directory that has the FICE software, copy
the I2ICE.MAC file from the master tutorial disk to the disk or directory that has the
PICE software.

Tutorial Screens and Structure

2-2

After you have loaded the FlCE and tutorial software (as specified in the software installation
appendix for your host), screen I of the tutorial will be displayed (see Figure 2-1).

Guide to the I2ICETM System Tutorial

I2ICE Tutorial (Version x.y.)
Copyright 1985, Intel Corporation

Welcome to the I2ICE system. This tutorial will
teach you how to use the powerful capabilities of
this advanced development tool·

SCR1: WELCOME TO I2ICE
M Go to main menu
N Next screen
P Previous screen
Q Quit tutorial
R Rewri te SCR1

Note the box to the right. This box appears in each SCR# = Screen desired
screen· It provides the name and number of each
screen. It also describes keys that enable you to
move to other tutorial screens or to exi t from the
tutorial.

M <RETURN> Calls up the main menu (not relevant for this screen).
N <RETURN> Calls up the next screen in tutorial.
P <RETURN> Calls up previous screen (not relevant for this screen).
Q <RETURN> Exits the tutorial.
R <RETURN> Rewrites the current screen.

SCR* <RETURN> Calls up the screen number specified.

Type N <RETURN> or n <RETURN> to continue. (You can enter I2ICE commands in
uppercase or lowercase.) Use the RUBOUT key to correct errors when entering
an I2ICE command·

*

Figure 2-1 Tutorial Introductory Screen: SCRI

The tutorial is divided into a main path that has more than 45 screens, and two sets of aid
screens. The main path introduces you to many of the FICE commands as it leads you through
several emulation and debugging sessions. One set of aid screens elaborates on topics briefly
mentioned in the main path. The other set of aid screens explains some of the FICE system
features.

The FICE tutorial screens are created with FICE commands. This means that when you use the
tutorial, you are also using FICE software. As a consequence, whenever the cursor appears
next to the FICE prompt (*), you can enter any FlCE commands you wish. Once you enter the
FICE commands recommended on a particular tutorial screen, you need not immediately ad
vance to the next screen. Instead, you can experiment with commands to ensure that you
understand the concepts presented in the tutorial screen. Then, when you are ready for the next
screen, you can call it up by typing N (for Next screen) followed by the <RETURN> (or
< Enter>) key.

Guide to the I2ICETM System Tutorial 2-3

NOTE

I. For Intel hosts. commands are entered with the < RETURN> key. For IBM PC
hosts. usc the < Enter> key.

2. On Series III hosts. pressing < CTRL > and D at the same time produces an asterisk
prompt (*). but this prompt is not for FlCE software: it is the prompt for a develop
ment system debugger. Type G < RETURN> to return to FlCE software.

This section provides a variety of information on the tutorial structure and contents. The main
subsections and their topics are the following:

• Copies of Selected Tutorial Screens

• An Overview of the Tutorial Stucture

• List of All Tutorial Screens

• Tutorial Index

Copies of Selected Tutorial Screens

2-4

For your convenience, five tutorial screens are shown in the following subsections:

Figure 2- I Tutorial Introductory Screen: SCR!

Figure 2-2 Tutorial Main Menu: SCR2

Figure 2-3 Menu for the Emulation Aid Modules: AID!

Figure 2-4 Menu for the I'ICET" System Feature Aid Modules: AID2

Figure 2-5 Emulation Display for Screens SCR!2 through SCR15

Figure 2-1 shows the first tutorial screen for an Intellec system. This screen should appear after
you have loaded FICE tutorial software as specified in the software installation appendix for
your host.

Figure 2-2 shows the main tutorial menu. (See Figures 2-3 and 2-4 for the two tutorial aid
module menus.)

Some topics that are briefly introduced in the main tutorial path are explained further in emula
tion aid modules. Figure 2-3 shows the menu for the emulation aid modules. To display this
menu on your screen. type the following (for IBM PC hosts, use < Enter> for
<RETURN»:

AID1.·<RETURN>

Figure 2-4 shows the modules included in the FlCE tutorial that describe FlCE features. To
display this menu on your screen, type the following (for IBM PC hosts, use < Enter> for
<RETURN»:

AID2 <RETURN>

Guide.to the 12ICET" System Tutorial

S(R2: MAIN MENU
The main purpose of this tutorial is to help you
learn the I2I(E command language and to show you
how to conduct an emulation session. There are
three groups of tutorial screens: main path screens
(48), emulation aid screens (44), and I2I(E

M
N
P
Q
R

Go to main menu
Next screen
Previous screen
Quit tutorial
Rewrite S(R2

feature aid screens (26). S(R# = Screen desired

The emulation aid screens offer supplementary information on main-path
emulation topics; the 12ICE feature aid screens describe special features of the
121[E system. Each of the three groups of screens is organized into modules--a
module includes screens on the same topic. Typing the module name accomplishes
two tasks: it sets the prerequisi tes for starting the module and it displays the
first screen in that module· Select a menu item now·

MOD1 <RETURN> Main Path: Basic Emulation Skills Module
MOD2 <RETURN> Main Path: Intermediate Emulation Ski lls Module
MOD3 <RETURN> Main Path: Advanced Emulation Ski lls Module
AID1 <RETURN> Menu for Emulation Aid Modules
AID2 <RETURN> Menu for I2I(E Feature Aid Modules
------See the I2I(E System User' s Gu i de for in format i on on the tutor i a 1------

*

Figure 2-2 Tutorial Main Menu: SCR2

Screens SCR12 through SCR15 explain the input/output display that occurs in the first emula
tion session. Because the complete emulation display is long and somewhat complex, the
tutorial user is asked to enter commands that interrupt the display so that individual portions of
the display can be explained. Figure 2-5 shows how the display would appear if it were not
interrupted. (The emulation display is longer than one screen; Figure 2-5 extends the screen
size to show the entire display.)

An Overview of the Tutorial Structure

Figure 2-6 provides an overview of the tutorial structure. On the left are the three main-path
modules and their associated screens. In the center· are the emulation aid modules. Arrows
indicate the main path screens that reference the emulation aid modules. On the right are the
feature aid modules.

Guide to the PICETM System Tutorial 2-5

A1Dl: EMULATION AID MODULES MENU
Listed below are the modules that contain
addi tional information on I21CE emuhtion
topics. Typing the module name sets the
prerequisi tes for starting the module and
displays the first screen in that module.

MOD_A <RETURN> HELP Screens
MOD_B <RETURN> Syntax Menu
MOD_C <RETURN> Line Edi tor
MOD_D <RETURN> HistoryBuffer
MOD_E <RETURN> 12ICE PRO(s
MOD_F <RETURN> LITERALLY
MOD_G <RETURN> 121(E Keywords

AID1: EMULATION AID MENU
M Go to main menu
N Next screen
P = Previous screen
Q = Quit tutorial
R = Rewri te A1Dl
SCR# = Screen desired

MOD_H <RETURN> Monitoring and Tracing Program Execution
MOD_J <RETURN> Assembly Language Patches
MOD....:K <RETURN> I2I(E Error Messages
MOD_L <RETURN> Using Registers for Breaking
MOD_M <RETURN> Using the 121(E Scrl!len Edi tor
MOD_N <RETURN> Screen Control
MOD_P '<RETURN> Nonsymbolic Memory Access

Select a menu item.

*

Figure 2-3 Menu for the Emulation Aid Modules: AID!

List of All Tutorial Screens

2-6

Tables 2-1, 2-2, and 2-3 list all the tutorial screens, as follows:

Table 2-1 Main Tutorial Path Screens

Table 2-2 Emulation Aid Module (AIDl) Screens

Table 2-3 PICETM System Feature Aid Module (AID2) Screens

Each module is a major division of the tutorial. The modules can be entered in two ways:
typing the module name or typing the name of the first screen in the module .

• Typing the module name. Each module has a name (e.g., MODI, MOD--.A). Typing the
module name loads the first screen in the module and sets up any prerequisites needed to
carry out the steps in the module. (For example, if the module assumes that the first 2K
bytes of memory is mapped to high-speed memory (HS), typing the module name maps 2K
bytes to HS and loads the first screen in the module.)

Guide to the JlICETM System Tutorial

AIJ>2: 121CE FEATURES MENU
Listed below are the modules that contain
information on 121CE features· Typing the module
name sets the prerequisites for starting the
module and displays the first screen in that
module.

AID2: AID FEATURES MENU
M Go to main menu
N Next screen
P Previous screen
Q Qui t tutorial
R Rewrite AID2
SCR# = Screen desired

MOD_V <RETURN>
MOD_W <RETURN>
MOD_X <RETURN>
MOD_ Y <RETURN>
MOD_Z <RETURN>

Connecting 121CE Uni t to Prototype
Special Features of 121CE Probes
Using Mul tiple 12ICE Probes
PSCOPE-!!b: An Overview
Intel Logic Timing Analyzer (iLTA)

Select a menu item.

*

NOTE: The tutorial for IBM hosts does not have MODJ.

•

Figure 2-4 Menu for tbe I2ICETM Feature Modules: AlD2

Typing the screen name. Each screen has a name (e.g., SCR3, SCRA!). You can display
any screen by simply typing its name; however, if you enter a module using the name of the
first screen in the module (rather than the module name), you will not set prerequisites for
that module. (Note that not all modules have prerequisites.)

Guide to the PICETM System Tutorial 2-7

2-8

SCREEN OUTPUT

?UNIT 0 PORT oo02H OUTPUT BYTE oooAH
?UNIT 0 PORT oo02H OUTPUT BYTE oooDH
?UNIT 0 PORT DD02H OUTPUT BYTE 00 SOH
?UNIT 0 PORT DoD2H OUTPUT BYTE Oob1H
?UNIT 0 PORT DDD2H OUTPUT BYTE OOb9H
?UNIT 0 PORT 0002H OUTPUT BYTE Oob4H
?UNIT 0 PORT 0002H OUTPUT BYTE o02oH
?UNIT 0 PORT OOD2H OUTPUT BYTE o03DH
?UNIT 0 PORT oo02H OUTPUT BYTE o02oH
?UNIT 0 PORT oOolH REQUESTS BYTE INPUT (ENTER VALUE): 31
?UNIT 0 PORT 0002H OUTPUT BYTE o031H
?UNIT 0 PORT oOolH REQUESTS BYTE INPUT (ENTER VALUE): 3S
?UNIT 0 PORT oo02H OUTPUT BYTE o03SH
?UNIT 0 PORT ooOlH REQUESTS BYTE lNPUT (ENTER VALUE): 30
?UNIT 0 PORT oo02H OUTPUT BYTE 0030H
?UNIT 0 PORT ooOlH REQUESTS BYTE INPUT (ENTER VALUE): oD
?UNIT 0 PORT oo02H OUTPUT BYTE OOoAH
?UNIT 0 PORT oo02H OUTPUT BYTE OOoDH
?UNIT 0 PORT 0002H OUTPUT BYTE 00 SOH
?UNIT 0 PORT 0002H OUTPUT BYTE 0072H
?UNIT 0 PORT 0002H OUTPUT BYTE 00b9H
?UNIT 0 PORT 0002H OUTPUT BYTE 00b3H
?UNIT 0 PORT 0002H OUTPUT BYTE 00b5H
?UNIT 0 PORT oo02H OUTPUT BYTE o02oH
?UNIT 0 PORT 0002H OUTPUT BYTE o03DH
?UNIT 0 PORT 0002H OUTPUT BYTE 0020H
?UNIT 0 PORT ooOlH REQUESTS BYTE INPUT (ENTER VALUE) : 31
?UNIT 0 PORT oo02H OUTPUT BYTE 0031H
?UNIT 0 PORT oOolH REQUESTS BYTE INPUT (ENTER VALUE): 30
?UNIT 0 PORT oo02H OUTPUT BYTE 0030H
?UNIT 0 PORT OOD1H REQUESTS BYTE INPUT (ENTER VALUE): 38
?UNIT D PORT DDD2H OUTPUT BYTE D038H
?UNIT 0 PORT 00D1H REQUESTS BYTE INPUT (ENTER VALUE): DD
?UNIT 0 PORT oD02H OUTPUT BYTE oooAH
?UNIT 0 PORT oD02H OUTPUT BYTE OooDH
?UNIT 0 PORT oo02H OUTPUT BYTE DooAH
?UNIT D PORT oo02H OUTPUT BYTE OooDH
?UNIT 0 PORT D002H OUTPUT BYTE D04EH
?UNIT D PORT 0002H OUTPUT BYTE DobFH
?UNIT 0 PORT oDD2H OUTPUT BYTE D020H
?UNIT 0 PORT oD02H OUTPUT BYTE Dob3H
?UNIT 0 PORT oo02H OUTPUT BYTE 00b8H
?UNIT D PORT oo02H OUTPUT BYTE 00b1H
?UNIT 0 PORT oo02H OUTPUT BYTE OobEH
?UNIT 0 PORT oD02H OUTPUT BYTE oob 7H
?UNIT 0 PORT oo02H OUTPUT BYTE oOb5H
?Probe 0 stopped at : CMAKER#3 because of bus not acti ve

Bus address = ob02F4 Trace Buffer Overflow

Figure 2-5 Emulation Display for Screens SCR12 Through SCR15

TRANSLATION

line feed
carriage return
P
a

d
space

space
1
Echoes the 1
5
Echoes the 5
o
Echoes the 0
Carriage return
Line Feed
Carriage return
P

e
space

space
1
Echoes the 1
o
Echoes the 0
8
Echoes the 8
Carriage return
Line feed
Carriage return
Line feed
Carriage return

N
o
space
c
h
a

9
e

Guide to the FICETM System Tutorial

BASIC

SCR3

M001

SCR19

TOTAL = 17

MOD2

INTERMEDIATE

SCR20

SCR33

TOTAL = 14

MOD3

ADVANCED

SCR34

SCR48

TOTAL - 15

SCR7

SCRS

SeRtO

SCR1S

SCR40

SCR46

SCR47 _ --

NOTE: EACH MODULE CAN Be ENTERED
WITHOUT COMPLETING
PREVIOUS MODULES. TO LOAD
ALL PREREQUISITES, TYPE
MOD II OR MOO LETTER
INSTEAD OF seR #

Figure 2-6 Tutorial Structure

Guide to the PICETM System Tutorial

2139

2-9

Table 2-1 Main Tutorial Path Screens

Module Screen Screen
Name Name Title Topic

SCR1 Welcome to 121CE (These screens are reproduced
SCR2 Main Menu in Figures 2-1 through 2-4.)
AID1 Emulation Aid Menu
AID2 Aid Features Menu

MOD1 SCR3 Introduction In this module, you work with
SCR4 Memory Mapping the MAP and.MAPIO commands, learn

Basic SCR5 Memory Allocation how to interpret 121CE output,
Emulation SCR6 Map Choices and find the first program bug.
Skills SCR? MAPIO

SCR8 110 Allocation
SCR9 LOAD
SCR10 Save Address
SCR11 Output Line
SCR12 HOLDIO/HALT
SCR13 Paid Request
SCR14 Input Paid
SCR15 Price Request
SCR16 Bug Found
SCR1? Variable Values
SCR18 Addresses
SCR19 Module 1 End

MOD2 SCR20 loproc In this module, you learn how to
SCR21 Go with loproc improve the screen display using a

Inter- SCR22 WAIT procedure (PROC) written with 121CE
mediate SCR23 Change commands. Then you use a high-level
Emulation SCR24 Value patch to fix the bug discovered in
Skills SCR25 NAMESCOPE Module 1.

SCR26 Breakpoint
SCR2? Bug#1
SCR28 Bug Explained
SCR29 121CETRACE
SCR30 Fix Errors
SCR31 Hi-level Patch
SCR32 Bug1 PROC
SCR33 GO WITH Patch

MOD3 SCR34 Module 3 Intro In this modle, you learn some
SCR35 Specifying BREAK advanced debugging techniques using

Advanced SCR36 BREAK a "a" arm, break, and system
Emulation SCR3? System Spec specifications.
Skills SCR38 Arming at "1"

SCR39 Rearming
SCR40 Ascii_digit
SCR41 Decimal_digit 1
SCR42 Decimal_digit 2
SCR43 Decimal_Digit 3
SCR44 Array[5]
SCR45 BYTE
SCR46 Bug 2 Found
SCR4? Fix Source Code
SCR48 Main Path End

~-10 Guide to the PICETM System Tutorial

Table 2-2 Emulation Aid Module (AIDt) Screens

Module Screen Screen
Name Name Title Topic

MOD-A SCRA1 HELP Screens (Reference SCR7)

MOD_B SCRB1 Syntax MENU 1 (Reference SCRS)
SCRB2 Syntax MENU 2

MOD_C SCRC1 Line Editor (Reference SCR10)

MOD_D SCRD1 History Buffer (Reference SCR1S)

MOD_E SCRE1 PROCs1 These screens explain how to
SCRE2 PROCs2 DEFINE an 121CE procedure.

121CE SCRE3 PROCs3
PROCs SCRE4 PROCs4 (Reference SCR20)

MOD_F SCRF1 LITERAllY, MENU (Reference SCR25)

MOD_G SCRG1 121CE Keywords (Reference SCR27)

MOD_H SCRH1 Module H Intro These screens explain single-
SCRH2 lSTEP stepping and the 121CE

Monitoring SCRH3 PSTEP trace capability.
and Ti"acing SCRH4 ISTEP
Program SCRH5 TRACE Data
Execution SCRH6 GO TRACE TO

SCRH7 TRACE Registers
SCRHS CYCLES Mode (Reference SCR29)

MOD_J SCRJ1 Module J Intro These screens explain patching
Assembly SCRJ2 The Patch with assembly language.
Language SCRJ3 Patch Error
Patches SCRJ4 Rerun Patch

SCRJ5 Patch Works (Reference SCR33)

MOD_K SCRK1 Error Info 1 These screens explain the five
Error SCRK2 Error Info 2 types of 121CE system errors.
Messages SCRK3 Error Info 3 (Reference SCR40)

MOD_l SCRl1 BRKREG 1 These screens explain breaking
SCRl2 BRKREG 2 with break, system, or event

Using SCRl3 BRKREG 3 registers.
Registers SCRl4 BRKREG 4
for SCRl5 BRKREG 5
Breaking SCRl6 BRKREG 6

SCRl7 BRKREG 7
SCRlS BRKREG S
SCRl9 BRKREG9 (Reference SCR46)

MOD_M SCRM1 Screen Editor 1 These screens explain the 121CE
USing the SCRM2 Screen Editor 2 editor AEDIT commands.
PICE SCRM3 Screen Editor 3
Screen SCRM4 Screen Editor 4
Editor SCRM5 Screen Editor 5 (Reference SCR47)

MOD_N SCRN1 Module N Intro These screens explain how to
Screen SCRN2 Screen Control control cursor movement.
Control SCRN3 WRITE (Reference AID1)

Guide to the J2ICETM System Tutorial 2-11

Table 2-2 Emulation Aid Module (AIDI) Screens (continued)

Module Screen Screen
Name Name Title Topic

MOD_P SCRP1 Module P Intro These screens explain how to
SCRP2 Number Base display and set memory values

Non-Symbolic SCRP3 Memory Types 1 using the memory type of your
Memory SCRP4 Memory Types 2 choice.
Access SCRP5 Memory Types 3

SCRP6 Setting Memory 1
SCRP7 Setting Memory 2
SCRP8 Setting Memory 3 (Reference SCR45)

Table 2-3 PICETM Feature Aid Module (AID2) Screens

Module Screen Screen
Name Name Title Topic

MOD_V SCRV1 Module V Intro Module V tells how to
Connecting SCRV2 Pseudo Variables connect user hardware.
an PICE SCRV3 User Cable
Unit to SCRV4 Emulation Clips 1
Prototype SCRV5 Emulation Clips 2

MOD_W SCRW1 Probe REGS Module W explains the
SCRW2 Alter REGS three 121CE probes.

Special SCRW3 HELP REGS
Features of SCRW4 PINS & STATUS
PICE SCRW5 Probe Status
Probes SCRW6 End Probes

MOD_X SCRX1 Multiple Probes Module X briefly explains
SCRX2 UNIT Commands how to use up to four probes

Using SCRX3 UNIT LOAD on one host development
Multiple SCRX4 BREAKITRACE system.
PICE SCRX5 Multi-probe
Probes SCRX6 Multi-probe TRACE

SCRX7 Multi-probe WAIT

MOD_Y SCRY1 PSCOPE-86 Intro Module Y introduces the PSCOPE
SCRY2 PSCOPE Loading software debugger.

PSCOPE-86 SCRY3 PSCOPE Editor

MOD_Z SCRZ1 iLTA Intro Module Z introduces the
Intel Logic SCRZ2 Install iLTA Intel Logic Timing Analyzer.
Timing SCRZ3 Trigger Setup
Analyzer- SCRZ4 Timing Display
iLTA SCRZ5 State Display

2-12 Guide to the PICETM System Tutorial

Tutorial Index

The following index correlates PICE tutorial screen suffixes with tutorial topics and PICE
commands. To display any screen cited in the index, add the tutorial screen prefix SCR to the
suffix and type < RETURN> (or < Enter>). For example, if the index entry of interest is
K1, type SCRK1 <RETURN> (or <Enter» to display the screen.

Subject Screen SuffIX

ACTIVE 41
Address pointer 45
AEDIT M1
ARM 38, 39
Arm specifications 35,38
Array subscripts 44,45
Arrow keys C1
ASM 31,14, K1

Backslash X3
BASE PI, P2
Break emulation 25
Breakpoint 26
Break register 30,31,32
Break specifications 34,35,36
BRKREG L1 through L9
Bug 1 27
Bug 2 46
BYTE 47

CLEAREOL K2
CLEAREOS K2,K3
CLIPS 13, V4, V5
CLIPSIN V4
CLIPSOUT V5
COENAB W5
CS:IP 10
CTRL-E HI, H3
CTRLkeys CI
CURHOME K3
CURX Nl
CURY N1
CYCLES H4 through H8

DEFINE 10,25, E1, F1
DIR L3
Dollar sign 10, H3
Down arrow D1

EDIT M1 through M5
ENABLE X5

Guide to the PICETM System Tutorial 2-13

2-14

Subject

Error info
ESC key
Event specifications

FLAGS
Fully qualified reference

GO
GO FROM
GO TIL
GO/TRACE
GO USING

HELP
HELP REGS
History buffer

I'ICE keywords
iLTA
INCLUDE
INSTRUCTIONS
ISTEP

LENGTH
Line editor
Line numbers
LITERALLY
LOAD
LSTEP

MAP
MAPIO
Memory access
Memory types
MENU
Menu screens
Monitoring and Tracing
Multiple probes

NAMESCOPE
NEWEST
NOLIST

OLDEST
Output

*00 not type the SCR prefix for AIDI and AID2

Screen Suffix

Kl, K2, K3
Y3
37

W2.
17,26,40,43

12
14,15,16,21,25,33,42, H6
35,37,42
H6
33

7, Ai. V2, Y2
W3
18,22, DI

17, 29,GI
Z 1 through Z5
20,E3
H4,H5,H6
H3, H4

5,8,21,45
10, Cl
26
25,Fl
9,34,47, X3,
HI, H2

4,5,6
7,8,20,21
PI through P8
P3 through P5
8, Bl, B2
2, AIDi. AID2*
HI
X 1 through X7

25
see OLDEST
E3

H4,H5
11,37,38,39

Guide to the J2ICETM System· Tutorial

Subject

Patch, assembly-language
Patch, high-level
PINS
POINTER
PORTDATA
PRINT
Probes
Probe status
PROCs
Prototype hardware
PSCOPE-86
Pseudo-variables
PSTEP
PUT

Rearming
REGS
REMOVE
RESET BREAK
RESETMAPIO

SASM
SAVE
Screen control
Screen editor
STATUS
Symbols
Syntax menu
SYSBREAKlN
SYSTEM ARM
System specifications
SYSTRACE
SYSTRIG

Tab key
Trace
Trace buffer
TRCBUS
TRCREG
TRIG
Thtorial menu

UNIT
UNITHOLD
Up arrow

Guide to the I2ICETM System Thtorial

Screen SuffIX

33,11 through J5
30,31
W4
10
20
H4 through H8
WI through W6
W5
20,30,31,32, El through E4
VI through V5
YI, Y2, Y3
V2
H3
E3

39
WI, W2
E3
32,34, H6
8

11, J2
P6
NI, N2, N3
47, MI through M5
V2, W4
18
BI
X5,X6
X5
35,36,37
Xl, X4, X6
Xl, X4, X5

BI
29, H5, H6, X4
16,29, H4, H6
H7,H8
H7
38,39
2

11, X2, X3, WI
V3
18,22, Dl

2-15

Subject

Variable address
Variable values

WAIT
WRITE

Screen Suffix

18
17,23,24

22,23, 33, X7
E2, M4, N3

Tutorial Program Listings

The FlCE tutorial disk has source programs in PUM, C, FORTRAN, and Pascal. However,
the tutorial is designed to only be used with the PUM program. The C, FORTRAN, and Pascal
programs are included on the tutorial disk for convenience. After you learn FlCE commands,
you may wish to experiment with the commands while emulating the sample C, FORTRAN, or
Pascal programs. See the sample programs in C, FORTRAN, and Pascal in this chapter to
learn more about them. This section focuses only on the PUM program (and its equivalent
ASM program).

This part has three main sections:

• Overview of the PUM Tutorial Program

• PUM Program Listing for the Two-bug Version of the Change Maker Program

• The ASM-86 Listing for the No-bug Version of the Change Maker Program

Overview of the PL/M Tutorial Program

2-16

The program used for the tutorial debug session is written in PUM. It is a change making
program. The user is first asked to enter an integer amount (cents) for the money paid; then,
the user is asked to enter an integer amount (cents) for the purchase price. The program
calculates the change in dollars and coins, and prints out a listing of the change.

The tutorial disk contains six files associated with the PUM tutorial program. All ofthese files
begin with the prefix CMKER.

There are three versions of the PUM program in absolute code. To make the debugging
session realistic, the initial version of the PUM program contains two errors that do not affect
compilation, but show up at run time. A second version has one of the errors corrected, and the
third version is error-free. The names of the three versions are as follows:

CMKER2.ABS
CMKERl.ABS
CMKERO.ABS

absolute code with two bugs
absolute code with one bug
absolute code with no bugs

Guide to the PICETM System Tutorial

There are two versions of the PUM program in source code-the code in each version is the
same but the comments are different. These two versions are used in the tutorial for two
tutorial sessions that introduce the PICE screen editor. In the sessions, users are asked to edit
the PLiM source code to correct the two bugs detected during emulation. The names of the two
source code files are as follows:

CMKER2.S1 Source code with two bugs. This code is used in editing session 1.

CMKER2.S2 Also source code with two bugs. This version is used in editing
session 2.

In addition to the three absolute code CMKER files and the two source code CMKER files, the
tutorial disk also contains the following CMKER list file:

CMKERO.LST A list file that includes the assembly code.

This file is supplied for your convenience. It is not used during the tutorial.

PL/M Program Listing for the Two-Bug Version of the
Change Maker Program

1
2

3 1
4 2

The tutorial refers to the list file in this section; the listing is for the CMKER program version
with two bugs. (The two bugs are marked in the listing.)

The program was compiled using OPTIMIZE(O). Compile options are explained in the PLlM-
86 Programming Manual (order number 121636).

Cmaker:DO;
DECLARE

TRUE literally 'OFFH' ,
FALSE literally '0' ,
I N_PORT literally '1 ' ,
OUT _PORT literally' 2' ,
ILcr (2) BYTE DATA (OAH, ODH), 1* Line feed, return *1
paid text (*) BYTE DATA (7, 'Paid = '), 1* Facilitates user *1
purchased_text (*) BYTE DATA (8, 'Price = '), 1* interaction *1
coins WORD,
change WORD,
dollars WORD,
quarters WORD,
nickels WORD,
dimes WORD,
pennies WORD,
paid WORD,
purchased WORD;

read: PROCEDURE BYTE; 1* Reads port 1 input from an ASCII *1
DECLARE 1* keyboard and stores 1 byte at a *1

Guide to the I2ICETM System Tutorial 2-17

char BYTE; 1* time; also writes an input byte to *1
1* an output port *1

5 2 char = INPUT(in_port);
6 2 IF char = ODH THEN
7 2 CALL write (@ILcr, 1);
8 2 CALL write (@char, 1);
9 2 RETURN char;

10 2 END read;
11 2 write: PROCEDURE (texLptr, texLcnt); 1* Write texLcnt characters *1
12 2 DECLARE 1* at text.-ptr to output port *1

texLptr POINTER,
texLcnt WORD,
texLBASED texLptr (1) BYTE,
iWORD;

13 2 DO i = 0 TO texLcnt - 1;
14 3 OUTPUT(ouLport) = text(i);
15 3 END;
16 2 END write;

17 1 write_decimal: PROCEDURE (value); 1* Store digits in *1
18 2 DECLARE 1* stack-like array *1

value WORD,
iWORD,
digiLstack(5) BYTE, 1* 0 .. 4 *1
stlLtop WORD;

19 2 stlLtop = 5;
20 2 DO WHILE value> 0;
21 3 digiLstack(stlLtop : = stlLtop - 1) '" value MOD 1 0;
22 3 value = value/10;
23 3 END;

24 2 DO i = stlLtop TO 5; 1* BUG 5 should be 4 *1
25 3 CALL converLdecimal_digit(digiLstack(i»;
26 3 END;
27 2 END write_decimal;

28 1 convert_decimal_digit: PROCEDURE (decimal_digit); 1* To ASCII *1
29 2 DECLARE

decimal_digit BYTE,
ascii_digit BYTE;

30 2 ascii_digit = decimal_digit + '0'; 1* Character '0' is 30H *1
31 2 CALL write(@ascLdigit, 1);
32 2 END converLdecimal_digit;
33 1 prinLcoin: PROCEDURE (texLptr, value); 1* Formats writing of change *1
34 2 DECLARE

texLptr POINTER, 1* Tells where *1
value WORD, 1* Tells what *1

2-18 Guide to the PICETM System Tutorial

text BASED texLptr STRUCTURE (cnt BYTE, string(l) BYTE),
1* Pointer location can change with the program *1

texLcnt BYTE;

35 2 IF value = 0 THEN
36 2 RETURN;
37 2 CALL write (@(' '),2); 1* Insert 2 blanks *1
38 2 CALL write_decimal(value); 1* Value of change *1
39 2 texLcnt = text.cnt;
40 2 IF value = 1 THEN
41 2 texLcnt = texLcnt - 1 ; 1* Dollars = dollar, etc. *1
42 2 CALL write(@text,string, texLcnt);
43 2 CALL write (@ILcr, 2); 1* Next line *1
44 2 END prinLcoin;

45 payment PROCEDURE; 1* Formats writing change *1
46 2 DECLARE

Ltext (*) BYTE DATA (8, ' dollars'), 1* (*) is an implicit *1
q_text (*) BYTE DATA (9, ' quarters'), 1* dimension specifier *1
n_text (*) BYTE DATA (8, ' nickels'),
d_text (*) BYTE DATA (6, ' dimes'),
p_text (*) BYTE DATA (8, ' pennies'),
pLtext(*) BYTE DATA (7, ' penny');

47 2 IF (dollars OR quarters dR dimes OR nickels OR pennies) = 0 THEN
48 2 CALL write(@('Nochange'), 9);
49 2 ELSE

DO;
50 3 CALL write (@('Change = '), 15);
51 3 CALL write (@ILcr, 2);
52 3 CALL prinLcoin(@s_text, dollars);
53 3 CALL prinLcoin(@q_text, quarters);
54 3 CALL prinLcoin(@d_text, dimes);
55 3 CALL prinLcoin(@n_text, nickels);
56 3 IF pennies = 1 THEN
57 3 CALL prinLcoin(@p1_text, pennies);
58 3 ELSE

CALL prinLcoin(@p_text, pennies);
59 3 END;
60 2 END payment;

61 geUnput: PROCEDURE (texLptr) WORD; 1* Converts ASCII code *1
62 2 DECLARE 1* to decimal value *1

texLptr POINTER,
value_ptr POINTER,
value WORD,
char BYTE,
noLdone BYTE,
text BASED texLptr STRUCTURE (cnt BYTE, string(l) BYTE);

Guide to the PICETM System Tutorial 2-19

63 2 CALL write(@text.string, text.cnt):
64 2 value = 0;
65 2 noLdone = TRUE;
66 2 DO WHILE noLdone; 1* Flag *1
67 3 char = read;
68 3 IF (char> = '0') AND (char < = '9') THEN 1* Keyboard entry can *1
69 3 DO; 1* be 0 through 9 *1

1* Translate the ASCII hex character to the decimal value *1
70 4 value = value + char - '0'; 1* BUG value=value*10 *1
71 4 value = value 110; 1* BUG = value + char-' 0' *1
72 4 END:
73 3 ELSE

not_done = false;
74 2 END;
75 2 RETURN value;
76 2 END geUnput;

77 begin;: 1* Mainline *1
7R 1 DO;
7q 2 CALL write (@ILcr, 2); 1* Get amount paid *1
60 2 po.!~ - ~p.t inoutl (1i) paid_text);
81 2 purchased = geLinput(@purchased_text); 1* and purchase price *1
82 2 CALL write (@ILcr, 2);
83 2 change = paid - purchased; 1* Figure change *1
84 2 dollars = change 1100; 1* How many dollars? *1
85 2 coins = change MOD 100; 1* Are there coins? *1
86 2 quarters = coins/25; 1* How many quarters *1
87 2 coins = coins MOD 25; 1* etc. *1
88 2 dimes = coins/10;
89 2 coins = coins MOD 10;
90 2 nickels = coins/5;
91 2 pennies = coins MOD 5;
92 2 IF paid < purchased THEN
93 2 CALL write(@('NO CHEATING! '),12);
94 2 ELSE

CALL payment;
95 2 END;
96 HALT;
97 END;

2-20 Guide to the J2ICETM System Tutorial

The ASM-86 Listing for the NO-Bug Version of the
Change Maker Program

0008
0009

OODB
0000

00E1
00E6
00E8

OOEB
OOEE
OOEF
OOFO
00F3
00F4

00F7
OOFA
OOFB
OOFC
OOFF
0100

0103
0107
0108

The ASM-86 language listing for the change maker program was obtained by compiling the
corrected version of the PUM program using the CODE option. It is recommended that the
compilation be done using OPfIMIZE(O) when debugging. In the assembly listing, notice the
statement numbers at the right. The numbers reference the lines in the PUM program list file.
On the tutorial disk, this list file of corrected code is called CMKERO.LST.

Note that the compiler was invoked by the following command:

ASSEMBLY LISTING OF OBJECT CODE

READ PROC NEAR
55 PUSH BP
8BEC MOV BP,SP

E401 IN 1H
88061EOO MOV CHAR,AL

803E1EOOOD CMP CHAR,ODH
7403 JZ $+5H
E90COO JMP @1

B80000 MOV AX,OFFSET(LF _CR)
1E PUSH OS
50 PUSH AX
B80100 MOV AX,1H
50 PUSH AX
E81200 CALL WRITE

@1:
B81EOO MOV AX,OFFSET(CHAR)
1E PUSH OS
50 PUSH AX
B80100 MOV AX,1H
50 PUSH AX
E80600 CALL WRITE

8A061EOO MOV AL,CHAR
50 POP BP
C3 RET

READ ENDP

WRITE PROC NEAR

; STATEMENT # 3

; STATEMENT # 5

; STATEMENT # 6

; STATEMENT # 7

; 1
;2

;3

; STATEMENT # 8

; 1
;2

;3

; STATEMENT # 9

; STATEMENT # 10

; STATEMENT # 11

Guide to the PICETM System Tutorial 2-21

ASSEMBLY LISTING OF OBJECT CODE (continued)

0109 55 PUSH BP
010A 8BEC MOV Bp,SP

; STATEMENT # 13
010C C70612000000 MOV I,OH

@2:
0112 8B4604 MOV AX,[BP).TEXT _CNT
0115 48 DEC AX
0116 3B061200 CMP AX,I
011A 7303 JAE $+5H
011C E91AOO JMP @3

; STATEMENT # 14
011F C45E06 LES BX,[BP). TEXT _PTR
0122 8B361200 MOV SI,I
0126 268AOO MOV AL, ES: [BX). TEXT[SI)
0129 E602 OUT 2H

; STATEMENT # 15
012B 8B061200 MOV AX,I
012F 40 INC AX
0130 89061200 MOV I,AX
0134 7403 JZ $+5H
0136 E9D9FF JMP @2

@3:
; STATEMENT # 16

0139 5D POP BP
013A C20600 RET 6H

WRITE ENDP
; STATEMENT # 17

WRITE_DECIMAL PROC NEAR
013D 55 PUSH BP
013E 8BEC MOV BP,SP

; STATEMENT # 19
0140 C70616000500 MOV STICTOp,5H

; STATEMENT # 20
@4:

0146 837E0400 CMP [BP).VALUE,OH
014A 7503 JNZ $+5H
014C E92900 JMP @5

; STATEMENT # 21
014F 8B061600 MOV AX,STICTOP
0153 48 DEC AX
0154 89061600 MOV STICTOp,AX
0158 50 PUSH AX ; 1
0159 8B4604 MOV AX,[BP).VALUE
015C B90AOO MOV CX,OAH
015F 3102 XOR DX,DX
0161 F7F1 DIV CX

2-22 Guide to the J2ICEnl System Tutorial

ASSEM8LY LISTING OF 08JECT CODE (continued)

0163 58 POP 8X ; 1
0164 88971FOO MOV DIGIT _STACK[8X],DL

; STATEMENT # 22
0168 884604 MOV AX,[8P].VALUE
0168 890AOO MOV CX,OAH
016E 3102 XOR DX,DX
0170 F7F1 DIV CX
0172 894604 MOV [8P].VALUE,AX

; STATEMENT # 23
0175 E9CEFF JMP @4

@5:
; STATEMENT # 24

0178 88061600 MOV AX,STI<-. TOP
017C 89061400 MOV I,AX

@6:
0180 813E14000400 CMP I,4H
0186 7603 J8E $+5H
0188 E91900 JMP @7

; STATEMENT # 25
0188 881E1400 MOV 8X,1
018F FF871FOO PUSH DIGIT_STACK[8X]; 1
0193 E81200 CALL CONVERT _DECIMALDIGIT

; STATEMENT # 26
0196 88061400 MOV AX,I
019A 40 INC AX
0198 89061400 MOV I,AX
019F 7403 JZ $+5H
01A1 E9DCFF JMP @6

@7:
; STATEMENT # 27

01A4 5D POP 8P
01A5 C20200 RET 2H

WRITE_DECIMAl. ENDP
; STATEMENT # 28

CONVERT _DECIMALDIGIT PROC NEAR
01A8 55 PUSH 8P
01A9 88EC MOV 8p,SP

; STATEMENT # 30
01A8 8A4604 MOV AL,[8P].DECIMALDIGIT
01AE 80C030 ADD AL,30H
0181 88062400 MOV ASCILDIGIT,AL

; STATEMENT # 31
0185 882400 MOV AX,OFFSET(ASCII_DIGIT)
0188 1E PUSH DS ; 1
0189 50 PUSH AX ;2
018A 880100 MOV AX,1H
018D 50 PUSH AX ;3

Guide to the PICETM System Tutorial 2-23

ASSEMBLY LISTING OF OBJECT CODE (continued)

01BE E848FF CALL WRITE
; STATEMENT # 32

01C1 5D POP BP
01C2 C20200 RET 2H

CONVERT _DECIMAL_DIG IT ENDP
; STATEMENT # 33

PRINT_COIN PROC NEAR
01C5 55 PUSH BP
01C6 8BEC MOV BP,SP

; STATEMENT # 35
01C8 837E0400 CMP [BP).VALUE,OH
01CC 7403 JZ $+5H
01CE E90400 JMP @8

; STATEMENT # 36
01D1 5D POP BP
0102 C20600 RET 6H

; STATEMENT # 37
@8:

0105 B84600 MOV AX,OFFSET(@@LONG$CONSTANT$0046H)
0108 1E PUSH DS ; 1
0109 50 PUSH AX ;2
01DA B80200 MOV AX,2H
010D 50 PUSH AX ;3
010E E828FF CALL WRITE

; STATEMENT # 38
01E1 FF7604 PUSH [BP).VALUE; 1
01E4 E856FF CALL WRITE_DECIMAL

; STATEMENT # 39
01E7 C45E06 LES BX,[BP).TEXT _PTR
01EA 268A07 MOV AL,ES:TEXT[BX)
01ED 88062500 MOV TEXT _CNT,AL

; STATEMENT # 40
01F1 817E040100 CMP [BP).VALUE,1 H
01F6 7403 JZ $+5H
01F8 E90AOO JMP @9

; STATEMENT # 41
01FB 8A062500 MOV AL,TEXT _CNT
01FF FEC8 DEC AL
0201 88062500 MOV TEXT _CNT,AL

; STATEMENT # 42
@9:

0205 C45E06 LES BX,[BP).TEXT _PTR
0208 8D4701 LEA AX,TEXT[BX + 1 H)
020B 06 PUSH ES ; 1
020C 50 PUSH AX ;2
020D 8A062500 MOV AL,TEXT _CNT
0211 B400 MOV AH,OH

2-24 Guide to the PICETM System Thtorial

ASSEM8LY LISTING OF 08JECT CODE (continued)

0213 50 PUSH AX. ;3
0214 E8F2FE CALL WRITE

; STATEMENT # 43
0217 880000 MOV AX,OFFSET(LF _CR)
021A 1E PUSH DS ; 1
0218 50 PUSH AX ;2
021C 880200 MOV AX,2H
021F 50 PUSH AX ;3
0220 E8E6FE CALL WRITE

; STATEMENT # 44
0223 5D POP 8P
0224 C20600 RET 6H

PRINT_COIN ENDP
; STATEMENT # 45

PAYMENT PROC NEAR
0227 55 PUSH 8P
0228 88EC MOV 8p,SP

; STATEMENT # 47
022A 88060400 MOV AX,DOLLARS
022E 08060600 OR AX,QUARTERS
0232 08060AOO OR AX,DIMES
0236 08060800 OR AX,NICKELS
023A 08060COO OR AX,PENNIES
023E 7403 JZ $+5H
0240 E90FOO JMP @10

; STATEMENT # 48
0243 884800 MOV AX.,OFFSET(@@LONG$CONSTANT$0048H)
0246 1E PUSH DS ; 1
0247 50 PUSH AX ;2
0248 880900 MOV AX,9H
0248 50 PUSH AX ;3
024C E88AFE CALL WRITE
024F E96EOO JMP @11

; STATEMENT # 49
@10:

; STATEMENT # 50
0252 885100 MOV AX,OFFSET(@@LONG$CONSTANT$0051 H)
0255 1E PUSH DS ; 1
0256 50 PUSH AX. ;2
0257 880900 MOV AX.,9H
025A 50 PUSH AX ;3
0258 E8A8FE CALL WRITE

; STATEMENT # 51
025E 880000 MOV AX,OFFSET(LF _CR)
0261 1E PUSH DS ; 1
0262 50 PUSH AX ;2
0263 880200 MOV AX,2H

Guide to the PICETM System Tutorial 2-25

2-26 Guide to the PICETM System Tutorial

ASSEMBLY LISTING OF OBJECT CODE (continued)

; STATEMENT # 59
@13:

; STATEMENT # 60
@11:

02CO 50 POP BP
02C1 C3 RET

PAYMENT ENOP
; STATEMENT # 61

GET_INPUT PROC NEAR
02C2 55 PUSH BP
02C3 8BEC MOV BP,SP

; STATEMENT # 63
02C5 C45E04 LES BX,[BP].TEXT _PTR
02C8 804701 LEA AX,TEXT[BX + 1 H]
02CB 06 PUSH ES ; 1
02CC 50 PUSH AX ;2
02CO C45E04 LES BX,[BP].TEXT _PTR
0200 268A07 MOV AL,ES:TEXT[BX]
0203 B400 MOV AH,OH
0205 50 PUSH AX ;3
0206 E830FE CALL WRITE

; STATEMENT # 64
0209 C7061 COOOOOO MOV VALUE,OH

; STATEMENT # 65
020F C6062700FF MOV NOT _OONE,OFFH

; STATEMENT # 66
@14:

02E4 8A062700 MOV AL,NOT_OONE
02E8 0008 RCR AL,1
02EA 7203 JB $+5H
02EC E94EOO JMP @15

; STATEMENT # 67
02EF E8E6FO CALL READ
02F2 88062600 MOV CHAR,AL

; STATEMENT # 68
02F6 803E260030 CMP CHAR,30H
02FB BOFF MOV AL,OFFH
02FO 7301 JAE $+3H
02FF 40 INC AX
0300 803E260039 CMP CHAR,39H
0305 B1FF MOV CL,OFFH
0307 7601 JBE $+3H
0309 41 INC CX
030A 22C1 AND AL,CL
030C 0008 RCR AL,1
030E 7203 JB $+5H
0310 E92200 JMP @16

Guide to the PICETM System Tutorial 2-27

ASSEMBLY LISTING OF OBJECT CODE (continued)

; STATEMENT # 70
0313 8B061 COO MOV AX,VALUE
0317 B90AOO MOV CX,OAH
031A F7E1 MUL CX
031C 89061 COO MOV VALUE,AX

; STATEMENT # 71
0320 8A062600 MOV AL,CHAR
0324 B400 MOV AH,OH
0326 03061 COO ADD AX,VALUE
032A 81E83000 SUB AX,30H
032E 89061 COO MOV VALUE,AX
0332 E90500 JMP @17

; STATEMENT # 73
@16:

0335 C606270000 MOV NOT _DONE,OH
; STATEMENT # 74

@17:
033A E9A7FF JMP @14

@15:
; STATEMENT # 75

033D 8B061COO MOV AX,VALUE
0341 5D POP BP
0342 C20400 RET 4H

; STATEMENT # 76
GET_INPUT ENDP

; STATEMENT # 77
0000 8BEC MOV Bp,SP
0002 FB STI

BEGIN:
; STATEMENT # 79

0003 B80000 MOV AX,OFFSET(LF _CR)
0006 1E PUSH DS ; 1
0007 50 PUSH AX ;2
0008 B80200 MOV AX,2H
OOOB 50 PUSH AX ;3
OOOC E8FAOO CALL WRITE

; STATEMENT # 80
OOOF B80200 MOV AX,OFFSET(PAID_ TEXT)
0012 1E PUSH DS ; 1
0013 50 PUSH AX ;2
0014 E8AB02 CALL GET_INPUT
0017 89060EOO MOV PAID,AX

; STATEMENT # 81
001B B80AOO MOV AX,OFFSET(PURCHASED_ TEXT)
001E 1E PUSH DS ; 1
001F 50 PUSH AX ;2

2-28 Guide to the IlICETM System Tutorial

ASSEMBLY LISTING OF OBJECT CODE (continued)

0091 3102 XOR DX,DX
0093 F7F1 DIV CX
0095 89160000 MOV COINS,DX

; STATEMENT # 90
0099 8B060000 MOV AX,COINS
009D B90500 MOV CX,5H
OOAO 3102 XOR DX,DX
00A2 F7F1 DIV CX
00A4 89060800 MOV NICKELS,AX

; STATEMENT # 91
00A8 8B060000 MOV AX,COINS
OOAC B90500 MOV CX,5H
OOAF 3102 XOR DX,DX
00B1 F7F1 DIV CX
00B3 89160COO MOV PENNIES,DX

; STATEMENT # 92
00B7 8B060EOO MOV AX,PAID
OOBB 3B061000 CMP AX,PURCHASED
OOBF 7203 JB $+5H
00C1 E90FOO JMP @18

; STATEMENT # 93
00C4 B85AOO MOV AX,OFFSET(@@LONG$CONSTANT$005AH)
00C7 1E PUSH DS ; 1
00C8 50 PUSH AX ;2
00C9 B80COO MOV AX,OCH
OOCC 50 PUSH AX ;3
OOCD E83900 CALL WRITE
0000 E90300 JMP @19

; STATEMENT # 94
@18:

00D3 E85101 CALL PAYMENT
; STATEMENT # 95

@19:
; STATEMENT # 96

0006 FB STI
0007 F4 HLT

; STATEMENT # 97

Sample Programs in C, FORTRAN, and Pascal

2-30

On the tutorial disk are source code files for change maker programs written in C
(CMAKR.C), FORTRAN (CMAKR.FOR), and Pascal (CMAKR.PAS). Though similar to the
PUM change maker program used in the PICE tutorial, the C, FORTRAN, and Pascal pro
grams are provided only as examples and cannot be used with this tutorial.

Guide to the PICETM System Tutorial

Before emulating these programs with the system, they must be compiled, linked, located, and
memory mapped in the FICE system. You will also have to add I/O routines if you want to
simulate user interaction.

A Change Maker Program in C

To debug a C program using the FlCE system, use C86 V2.0 or higher. Load the absolute code
and then type, "go til :main module name" so that all symbolic information becomes available.
Then, because the C compiler adds an underscore to the tail of every symbolic name, when
entering a symbol name, use the underscore (i.e., symbolname_).

I * The Changemaker Program

* * This program is written in C-86.

* * The program is designed to function as a simple change maker. * Amount paid and price are part of the program. The program
* calculates change distribution.
*1

main()

{
int dollars, quarters, dimes, nickels, pennies, remainder;
float amLpaid, price, total_change;
intresponse = 'y';

1* INITIALIZE PRICE AND AMT TENDERED *1

price = 9.49;
amLpaid = 10.00;
total_change = amLpaid - price;

1* FIGURE OUT COIN DISTRIBUTION *1

remainder = totaLchange * 100;

dollars = remainder/100;
remainder = remainder % 100;

quarters = remainder 1 25;
remainder = remainder % 25;

Guide to the PICETM System Tutorial 2-31

}
} 1* END *1

dimes = remainder 110;
remainder = remainder % 10;

nickels = remainder I 5;
remainder = remainder % 5;

pennies = remainder;

A Change Maker Program in FORTRAN

2-32

* The Changemaker Program

* * This program assumes an amount paid for an item
* of an assumed value and computes the change due and * how to make that change in U. S. currency.

* program CMAKER

real*4 price, amLpaid, change, coins
integer*4 dollars, quarters, dimes, nickels, pennies

******* CALCULATE CHANGE

price = 46.33
amounLpaid = 50.00
change = amLpaid - price

******* FIGURE BILL AND COIN DISTRIBUTION

change = change * 100.0
dollars = change I 100
coins = MOD (change, 100.0)
quarters = coins I 25
coins = MOD (cains 125.0)
dimes = coins 110
coins = MOD (coins, 10.0)
nickels = coins 15
coins = MOD (coins, 5.0)

******* CORRECTION FACTOR FOR REAL NUMBER ANOMALIES

coins = coins + 0.1
pennies = coins

stop
end

Guide to the PleETM System Tutorial

A Change Maker Program in Pascal

PROGRAM cmaker (INPUT, OUTPUT);

(* This Pascal program is non-interactive. It contains a purchase price
(* and an amount paid, and puts the change in the memory location of the
(* variables.

VAR
purchase
paid
change
coins
dollars
quarters
dimes
nickels
pennies

INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;

PROCEDURE init (* variables will be global *);

BEGIN
purchase o· ,
paid 0;
change '- 0;
coins O· ,
dollars o· ,
quarters 0;
dimes O· ,
nickels o· ,
pennies 0

END;

PROCEDURE getinput (* purchase, paid *);

BEGIN
paid: = 150;
purchase: = 108

END;

Guide to the PICETM System Tutorial 2-33

2-34

PROCEDURE payout; (* how many dollars, quarters, etc, *)

BEGIN
dollars change DIV
coins change MOD
quarters ,- coins DIV
coins coins MOD
dimes coins DIV
coins ,- coins MOD
nickels ' - coins DIV
pennies coins MOD

END;

BEGIN (* mainline *)
init (* clear memory *);
getinput (* user interaction *);
change: = paid - purchase;
payout (* put amount in memory *)

END,

100;
100;
25;
25;
10;
10;
5' ,
5

Guide to the PICETM System Tutorial

3 INTRODUCTION TO USING
THE 121CETM SYSTEM --------------------inter-

In the installation appendix for your host software, you are encouraged to install the FICE
tutorial software so that you can quickly learn FICE commands and features. The information
in this chapter provides more detail on many of the topics covered in the tutorial.

The main sections of the chapter are the following:

• Invoking the FICE Software

•

•

•
•

•
•
•
•

Entering FICE System Commands. This section describes command entry, the command
line editor, the syntax menu, the command history buffer, string handling, and block
commands.

Creating Debug Objects. This section describes how to create PROCs, LITERALLY defi
nitions, and debug registers.

The FlCE Screen Editor

File Handling. This section explains the file handling commands LIST, INCLUDE, PUT,
APPEND, and SAVE.

Memory Types

Managing the Memory and I/O Spaces

The Emulation Clips

Emulating a Program

• Breaking, Tracing, and Arming

• Hardware Slipping on a Breakpoint

•
•

Even Addresses, Odd Addresses, and Breaking

Moving the User Cable

Invoking the 121CETM Software

The host development system can be an Intellec Series III, a Model 800 upgraded to a Series
III, an Intellec Series IV, or an IBM PC/XT or PCI AT. The Intellec Series III and the Model
800 use the ISIS operating system, the Series IV uses the iNDX operating system, and the IBM
PC hosts use the DOS operating system PC DOS (version 3.0 or greater).

3-1

3-2

NOTE

Version 1.8 of the FICE software requires that your host development system be
configured with at least 512K bytes of mass memory.

• Series III

Invoke the FlCE software by entering the following command (which assumes that the
FlCE software is on drive 0):

-IOfillll.

• Series IV

Invoke the PICE software by entering its filename, as follows.

>IIIIE~86

• IBM PC/XT or IBM PC/AT

Invoke the FICE software by entering the following command. (The prompt shown in the
example assumes that you have set your PC prompt using the command PROMPf =
PG. It is further assumed that the PICE software is installed on the hard disk in the
directory ICEDIR, as recommended in the installation appendix for the IBM PC hosts.)

C: \ICEDIR>12JIE

If your system disk contains a file called 12ICE.CRT, the PICE system obtains the character
definitions for the system console from this file. If your system disk does not contain a file
called I2ICE.CRT, the FICE system assumes an Intel or IBM PC terminal.

If your system disk contains a macro file called I2ICE.MAC, the FICE system executes the
PICE commands in that file upon invocation. (The FICE tutorial software includes an
I2ICE.MAC file that controls tutorial file loading.) The following example is a typical
I2ICE.MAC file:

1 * set default number base * 1
1* define LITERALLYs *1

If this macro file is present when you invoke the FICE software, the default radix is set to
hexadecimal, and some LITERALLYs are predefined.

If your system disk contains CRT and MAC files, but you do not want to use them, you must
specifically exclude them in the invocation command, as follows (for a Series III standalone
host):

Introduction to Using the PleETM System

If you rename any of the PICE files and you want them to be used as the default files during
invocation, you must rename them all. For example, if you want MY FILE for a name, you
must change 12ICE.CRT to MYFILE.CRT, 12ICE.MAC to MYFILE.MAC, 12ICE.OYE to
MYFILE.OYE, 12ICE.OYH to MYFILE.OYH, and the probe file 12ICE.086 (for the 86/88
probe) to MYFILE.086. Then you would invoke FlCE software with the following command:

For more information on the 12ICE command, see the 12ICE entry in the PICETM System
Reference Manual.

Entering FICETM System Commands

The following subsections describe command entry.

Extending a Command to Another Line

Commands that exceed 80 characters continue invisibly. The 80th character displays as an
exclamation point (!). To extend a command to another line, enter an ampersand (&) followed
by a carriage return and complete the command on the next line. Text that appears between the
ampersand and the carriage return is interpreted as a comment.

The following example shows a command that extends over more than one line. Note that the
ampersand causes the next line to have a double prompt (* *).

The ampersand is necessary in the previous example because CALL oun is an optional
clause.

You may omit the ampersand if the command needs more syntactic information to be complete.
If you enter a carriage return and the command is incomplete, the FICE system prompts for
more information. The following example shows an incomplete command and the PICE
prompt for more information.

Aborting Commands

Abort a command by entering CTRL-C (for IBM PC hosts, use CTRL-Break). Note that the
CTRL-C has no effect on emulation. Emulation continues until a breakpoint is reached or until
you enter a HALT command.

Introduction to Using the PICETM System 3-3

Multiple Commands On a Line

To enter more than one command on a line, separate each command with a semicolon (;). The
following example shows two commands on the same line.

Comments

Enclose a comment within a slash-asterisk combination. The symbol 1* begins the comment,
and the symbol *1 ends the comment. The following example illustrates a comment.

1* Emulate until quarters is modified *1

The Command Line Editor

The command line editor controls various keys that enable you to edit command lines.

Use the right and left arrow keys to move the cursor to the desired location within the com
mand line before entering the correction. Pressing the HOME key after pressing the left arrow
key moves the cursor to the beginning of the line. Pressing the HOME key after pressing the
right arrow key moves the cursor to the end of the line. The up arrow key restores the previous
line from the history buffer for editing. The down arrow key moves to the next line in the
history buffer.

Use the RUBOUT key to delete the character to the left of the cursor. (For the IBM PC hosts,
use the left arrow key at the top of the keyboard-above the < Enter> key-to perform the
rubout function.) To delete other characters on the command line, use the following control
characters:

CTRL-A Deletes the line to the right of the cursor, including the character at the
cursor position.

CTRL-F Deletes the character at the cursor position; adjusts line spacing.

CTRL-X Deletes the line to the left of the cursor, including the character at the cursor
position, and adjusts line spacing.

CTRL-Z Deletes the entire line.

For more information on the command line editor, see the Editors entry in the PICFM System
Reference Manual. Note that you can also edit commands using the FICE screen editor.

The FICETM System Syntax Menu

3-4

The FICE syntax menu lists your options when you enter FICE commands. If you follow its
choices, you cannot construct a syntactically incorrectFICE command, although it may be
semantically incorrect.

Introduction to Using the PICETM System

When you invoke the FICE software, the first line of the menu appears on the bottom of the
screen. Call up subsequent lines by pressing the TAB key. The menu is circular in one direc
tion. Press TAB enough times, and you come back to where you started. You cannot reverse the
menu.

Each line contains a list of choices. The keywords are shown in uppercase letters. The menu
also contains lowercase entries enclosed in angle brackets. These represent user-defined names
or a set of FICE keywords. For example, < variable> represents the name of a debug variable
or a program variable; < mtype > represents one of the keywords identirying an FlCE mem
ory type, such as INTEGER or REAL.

Your choice need not appear on the screen when you enter it. If you enter a space after you
enter your choice, the menu displays the next level. As shown in the following example, when
you enter the keyword DEFINE and follow it with a space, the new menu displayed is

---- more ----
GLOBAL BRKREG TRCREG EVTREG ARMREG SYSREG PROC LITERALL Y

Press the TAB key to see the rest of the menu.

---- more ---
< mtype >

Pressing the TAB key again returns you to the first line.

You can return to higher menu levels. If, after you entered the space, you press the RUB OUT
key or the left-arrow key, the menu returns to the top level, the one from which you chose
DEFINE.

The PICE menu recognizes LITERALLY definitions. If you have a LITERALLY name called
def representing DEFINE, entering def followed by a space displays the DEFINE menu and
also automatically expands the LITERALLY name.

You can disable the menu display with the MENU command. (Note that disabling the menu
display also disables automatic LITERALLY expansion.) The following command turns off
the menu display:

You can also switch the menu display (and the automatic LITERALLY expansion feature) on
and off by entering CTRL-V.

The following command turns on the menu display:

The PICETM Command History Buffer

The PICE system stores commands in a 400-character, last-in first-out buffer. Using the his
tory buffer, you do not need to enter a previous command to re-execute it or change it. Scroll
through the buffer by pressing the up arrow key until you reach the command you want, and

Introduction to Using the PICETM System 3-5

use the line-editing functions to modify the command. Entering a carriage return (or, for IBM
PC hosts, using the < Enter> key) executes that command. The new version becomes the
latest entry in the command buffer. The old version is still in its original place in the buffer.

String Handling

3-6

A string has memory type CHAR. Use the DEFINE command to define a string. For example,
define the string called A as the character 5.

To add I to the string A, use the string name in an expression. The following example assumes
a hexadecimal number base.

*Aiif1
36

The answer is 36 because the ASCII value of 5 is 35 (hexadecimal). This example illustrates
memory type conversion. The string A is memory type CHAR, and the constant 1 is memory
type DWORD. The answer (the constant 36) has memory type DWORD.

The CONCAT function concatenates strings. The following example defines a string called B
and concatenates it with string A.

The NUMTOSTR function temporarily treats a number as a string. The following example
concatenates the string B with the string derived from the debug variable four.

412

The SUBSTR function picks out a portion of a string. The following debug procedure steps
through a user program and displays all the MOV instructions. When a memory location is
disassembled, the opcode field is a four-character field starting at position 20H.

0021:0045H
:CMAKER#13
0021:0049H
0021:004CH
0021:0057H

890EOEOO

88C1
8E6400
89161000

MOV WORD PTR OOOEH, CX

MOV AX,CX
MOV SI,0064H ; +100T
MOV WORD PTR 0010H, DX

Introduction to Using the PICETM System

The INSTR function searches a string for a substring and returns the index on which the
substring begins. As shown in the following example, the index is always in decimal.

*mlil1B(il.~c~gJl!J~l~~~~(~It1ji)
11

For more information on string commands, see the string command entries in the J2IC£lM
System Reference Manual.

Block Commands

A block command begins with one of the following keywords:

COUNT
DO
IF
REPEAT

A block command contains one or more PICE commands and terminates with END. All PICE
commands except EDIT, INCLUDE, HELP, and LOAD can be included within a block
command.

The DO block executes all commands. The IF, REPEAT, and COUNT blocks permit test
conditions that determine which commands are executed. The IF block conditionally selects a
group of commands. The REPEAT command executes a group of commands indefinitely or
until an exit condition occurs. The COUNT command is similar to the REPEAT command but
enables you to specify the maximum number oftimes the command group is executed.

A period (.) before the asterisk prompt indicates that the PICE system recognizes the begin
ning of a block command and has not yet detected the end. The following example shows a
block command that steps through five assembly language instructions, beginning at the cur
rent execution point, and evaluates the source-code statement number for each instruction.

The FICE system executes a block command when you press the carriage return after the END
of the outermost block.

Introduction to Using the J2ICETM System 3-7

Creating Debug Objects

Debug objects are uniquely-named, user-created software constructs that the I'ICE system uses
to manage the debugging environment. The four types of debug objects are debug procedures,
LITERALLY definitions, debug registers, and debug variables.

Debug procedures are user-named groups of FlCE commands. Execute them
just as you would an I'ICE command.

LITERALLY definitions enable you to substitute shorthand names for previously
defined character strings. LITERALLYs save keystrokes.

Debug registers are user-named software registers that hold arm, break, sys
tem, and trace specifications.

Debug variables are user-defined variables used with PICE commands. While
program variables are stored in program memory, debug var
iables are stored in FICE system memory.

Creating a Debug Procedure

3-8

The following example uses the DEFINE command to define a debug procedure. The FICE
commands are enclosed within a DO-END block.

The keyword PROC identifies the definition as a debug procedure. The PICE commands that
make up the debug procedure must be enclosed within a DO-END block. When you follow the
DO with a carriage return, the PICE system returns a prompt that represents the command
nesting level. The single period signifies that the PICE system is waiting for only one END.

The following example shows more than one nesting level.

*DEFINEPAOCfl"o,eyi;ifi.
· *IF %O==aTHEN
· . *POATOATA~1o.0~
· . *ELSE.IF%O 4T .. IN
· . . *POATDATA."",75T
... *ENO
· .*ENO
.*END

*

Introduction to Using the PICETM System

Creating a LITERALLY Definition

The following example uses the DEFINE command to create a LITERALLY definition.

Now def can be used in place of DEFINE. The character string to the right of the equal sign
can be up to 254 characters long.

You can also use a LITERALLY definition to replace a command line as shown in the follow
ing example.

When you enter mp followed by a carriage return, the FICE system executes all the commands
in the character string. If you store this LITERALLY definition in the 12ICE.MAC file, it is
executed immediately after invocation. Note that this LITERALLY definition takes advantage
of the previous example by using def instead of DEFINE. In your 12ICE.MAC file, the LIT
ERALLY definition of def must precede that of mp. This example also shows that multiple
commands on the same line must be separated by semicolons (;).

Creating a Debug Register

Use the following syntax to define arm, break, event, system, and trace registers. The
ARMREG, BRKREG, EVTREG, SYSREG, and TRCREG entries in the PlCFM System Ref
erence Manual describe these registers in detail.

ARMREG name = arm-specification

BRKREG name = break-specification
[CALL debug-procedure-name]

EVTREG name = DO event-specification
[CALL debug-procedure-name]

DERNE END

SYSTRlG
SYSREG name = SYSARM system-specification

SYSDARM
[CALL debug-procedure-name]

TRCREG name = trace-specification

Creating a Debug Variable

The syntax for defining a debug variable is as follows:

DEFINE mtype name [= value]

Introduction to Using the J2ICETM System 3-9

An mtype is one of the FlCE memory types. (See the memory types section in this chapter for
more information on memory types and on creating debug variables.) If you do not set the
debug variable equal to a value, the PICE system assumes zero.

The FICETM Screen Editor

The screen editor has all the features of the AEDIT V 1.0 editor. It is menu-driven and, when
invoked (with the EDIT command or the ESC key), displays the edit menu at the bottom of the
screen. The main menu is displayed on three screens; press the TAB key to advance to the next
screen. The following screens show the main menu prompt lines.

Again Block Delete Execute Find -find Get --more--

Hex Insert Jump Macro Other Quit Replace --more--

?replace Set Tag View Xchange --more--

Choose a menu item by pressing the key representing its first letter. Several of the screen
editor commands prompt for additional information or display sub-menus. The following sec
tions describe some of the FlCE system screen editor commands. The AEDIT manual (order
number 121756) describes all the screen editor commands in detail and gives examples.

Inserting Text

3-10

To begin inserting text when you are in the screen editor, position the cursor, then press the I
key. The menu prompts

[insert]

Introduction to Using the FICEDI System

What you enter is inserted into the buffer at the cursor position. Return to the main menu by
pressing the ESC key or by entering CTRL-C. (Note that CTRL-C deletes all the text you
inserted.)

Deleting and Moving Text

The FICE screen editor uses the same control characters as the line editor. To delete a character
or line, use the CTRL-A, CTRL-F, CTRL-X, or CTRL-Z key.

To delete or move a block of text, use the screen editor temporary buffer. First delimit the text
that you want loaded into the temporary buffer by moving the cursor to the start of the block
and pressing the B key. Pressing the B key sets the first delimiter for the temporary buffer and
displays the buffer menu as shown in the following example:

Buffer Delete Find -find Jump Put

The first delimited character appears as an at sign (@).

Pressing the D key deletes the delimited text from the screen and copies it into the temporary
buffer. Pressing the B key copies the delimited text into the buffer without deleting it from the
screen. The system editor then returns you to the main menu.

To move the deleted or copied text elsewhere in the edited text, first move the cursor to the
desired position. Then press G (for Get) and either the ESC key or the RETURN (or, for IBM
PC hosts, Enter) key.

Viewing Text

The View command is useful when the file you are editing is longer than one screen. Pressing
the V key rewrites the screen display with the line containing the cursor in the middle of the
screen (unless the cursor is so near the beginning or end of the text that the line cannot be
centered).

Overwriting Text

To begin overwriting text, position the cursor and press the X key. The bottom line now reads
as follows:

[exchange]

When you enter a character, it replaces the character at the cursor position, and the cursor
moves to the next position. Return to the main menu by pressing the ESC key or by entering
CTRL-C. (Note that CTRL-C deletes all the changes you made.)

Editing External Files

With the screen editor you can edit development system files without returning to the !'ICE
command line. The Editors entry in the PICF7M System Reference Manual describes external
file editing in detail.

Introduction to Using the FICETM System 3-11

Exiting the Screen Editor

To exit the screen editor, return to the main menu and press the Q key. If you were editing a
debug procedure, the bottom line displays the following quit menu:

Abort Execute Init Write

If you were editing an external file, the bottom line displays the following quit menu:

Abort Execute eXit Init Update Write

The Abort sub-command returns to the FlCE command line, and all changes (if any)
are lost.

The Execute sub-command returns to the FICE command line and executes the edited
command or debug procedure.

The eXit sub-command incorporates all changes and returns to the FICE command
line.

- The Init sub-command enables you to start another editing session without returning to
the PICE command line.

The Update sub-command incorporates all changes without returning to the FICE
command line.

The Write sub-command prompts for an output file without returning to the FlCE
command line.

For an on-line demonstration of the command and screen editors, see the corresponding mod
ules in the PICE tutorial.

File Handling

The next three subsections describe list files, include files, and the LOAD and SAVE
commands.

List Files

3-12

List files record the console interactions of a debug session. The LIST command syntax is as
follows:

LIST pathname

A typical pathname for a standalone Series III host is :Fl :lst.OOI. This represents a file on disk
drive 1 whose file name is Ist.OOl. (See the Pathname entry in the FICETM System Reference
Manual for more information onpathname.) After you enter the LIST command, all console

Introduction to Using the PIeEn! System

activity is written to that file. You can stop recording in the list file by entering the NOLIST
command. You can restart listing, but if you use the same pathname, you are prompted as
follows: Overwrite existing file? (y or [nl). If you do not want to overwrite the existing list file,
answer "n" and re-enter the LIST command using another file name for the new list file.

Include Files: The INCLUDE, PUT, and APPEND Commands

Include files are text files that contain PICE commands. You can construct them with a text
editor, or you can use the PUT and APPEND commands.

The PUT command creates an include file. If the file already exists, you are prompted with the
following message: Overwrite existing file? (y or [nl). The syntax for the PUT command is as
follows:

PUT pathname

DEBUG
ARMREG
BRKREG
EVTREG
SYSREG
TRCREG
PROC
LITERALLY
mtype
name

,ARMREG
,BRKREG
,EVTREG
,SYSREG
,TRCREG
,PROC
,LITERALLY
,mtype
,name

The keyword DEBUG writes the definitions of all currently defined debug objects to the
specified include file. You can also write all debug registers of the specified type, all debug
procedures, all LITERALLY definitions, or all debug variables of the specified memory type.
In addition, you can specify only the debug objects you want saved.

The following command saves the definitions of all debug variables of type BYTE, the debug
objects named even and odd, and all debug procedures to the current directory on an IBM PC
host.

When you enter the PUT command and if the file name already exists on the disk, you are
asked by the PICE system whether you want to overwrite an existing file. If you do not want to
overwrite the existing file, change the file name. You can add to the include file rather than
writing over it by using the APPEND command. The syntax is the same as that for PUT.

To retrieve the debug object definitions stored in the include file, use the INCLUDE command.
For example, to include the standalone Series III file :Fl :deb.OOl:, enter the following:

Introduction to Using the PICETM System 3-l3

After you enter the INCLUDE command, the PICE system displays the contents of the speci
fied include file on the console screen. You can suppress that display with the NOLIST option,
as in the following standalone Series ill example:

The LOAD and SAVE Commands

3-14

Program files must contain absolute code. All memory references must be resolved. The PICE
system will not accept load-time locatable files. Construct program files by compiling (or
assembling) your source code (use the DEBUG option), linking the compiled (or assembled)
file, and locating the linked file.

The following syntax is for the LOAD command:

LOAD pathname [NOCODE] [NOSYMBOLS] [NOLINES] [APPEND]

For example, if you are using a Series ill host system to load the program file called cmaker.86
from disk drive 1 into program memory, enter the following:

There must be enough unguarded program memory to contain the program file. These mem
ory locations must be mapped to the physical locations expected by the program file. (See the
memory mapping section of this chapter for information on mapping.)

Because the FICE system does not clear memory before each load, you can load multiple files
by issuing successive LOAD commands. The user program symbol table resides in host mem
ory, and it is cleared by the LOAD command. After successive loads, the FICE system only
retains the symbol table from the last load. If you use the APPEND option, however, the
symbol table retains program symbols from any previous loads.

The LOAD command can also be used to load files into memory that were created with the
SAVE command. The SAVE command saves the contents of a specified memory partition to the
file specified by a pathname. The memory image is saved in 8086 OMF format.

Use SAVE to save assembly-level patches for future debugging sessions or to save modified
data table values that improve performance of the software being debugged.

Introduction to Using the I2ICE1M System

Memory Types

A debug variable always has one of the following FICE memory types associated with it.

ADDRESS

ASM

BCD

BOOLEAN

BYTE

CHAR

DWORD

EXTINT

INTEGER

LONGINT

LONGREAL

POINTER

REAL

SELECTOR

SHORTINT

TEMPREAL

WORD

l6-bit unsigned number

Assembly language mnemonic, read-only

80-bit packed binary coded decimal number

8 bits, but only the least significant bit (LSB) has meaning (TRUE
has LSB = 1; FALSE has LSB = 0)

8-bit unsigned number

8-bit ASCII value

32-bit unsigned number

64-bit signed decimal number

16-bit signed decimal number

32-bit signed decimal number

64-bit floating point decimal number

For the 8086/8088 and 80186/80188 probes, 32-bit selector:offset
pair

For the 80286 probe in real address mode, 32-bit selector: offset pair

For the 80286 probe in protected mode, 48-bit LDT-selector:
segment-selector:offset triplet

32-bit floating point number

16-bit unsigned number

8-bit signed decimal number

80-bit floating point decimal number

16-bit unsigned number

Thc FICE system does not distinguish between ADDRESS, SELECTOR, and WORD. For
more information on FlCE memory types, see the Mtype entry in the FIC£IM System Reference
Manual.

A program variable always has the type defined by the user program. Use PICE memory types
to determine how you read the program variable from memory.

Introduction to Using the FlCETM System 3-15

Debug Variables

A debug variable is defined with an FICE command during a debugging session. With certain
restrictions, you can assign debug variables of one type equal to debug variables of another
type as shown in the following example:

In this example, the FICE system pads the value in ans with leading zeros to complete the word
occupied by answer.

The following example uses signed integers. The debug variable small is an 8-bit signed inte
ger; its type is SHORTINT. The debug variable large is a 16-bit signed integer; its type is
INTEGER.

The FICE system sign-extends the value of small to complete the word occupied by large.

Some conversions are illegal. For example, you cannot set a debug variable of type CHAR (an
8-bit ASCII value) equal to any of the signed types.

ERROR #69
Invalid type conversion

Program Variables and Symbolic Debugging

3-16

When you first load a program, the execution point is at the beginning of the main module's
prologue. The prologue clears interrupts, loads the stack segment register, the stack pointer,
and the data segment register, then jumps to the beginning of your program. The first instruc
tion of your program begins statement #1. The locater puts this prologue at the beginning of
your code. Before you can access a program variable symbolically, you must execute the
prologue and enter your program.

You can take a look at the prologue by applying the ASM memory template, as shown in the
following example:

0020:0006H
0020:0007H

FA
2E8E160000

ClI
MOV SS, CS: WORD PTR OOOOH

I*ISTEP*I
I*ISTEP*I

Introduction to Using the PICETr.:' System

0020:000CH
0020:000FH
0020:0014H
0020:0019H
:CMAKER#l
0021:000AH

BCA001
2E8E1E0200
EAOA002100
90 NOP

8BEC

MOV SP,OlAOH; +416T
MOV DS, CS: WORD PTR 0002H
JMP (#1) 0021H: OOOAH

MOV BP,SP

You can execute the next instruction (using the ISTEP command) as well as display it. Apply
the ASM memory template to the execution point and enter the command ISTEP.

*,ASM$;J$&e
0020: 0006H FA ClI

You can then re-execute this command by entering a CTRL-E (hold down the CTRL key and
press the E key). The screen displays the command again.

*lill!ilri,fllll
0020:0007H 2E8E160000 MOV SS, CS: WORD PTR OOOOH

If you enter CTRL-E again, the screen displays the next instruction.

*Ai$.$~ISI,EI
0020:000FH 2E8E1E0200 MOV DS, CS: WORD PTR 0002H

The second and third ISTEP commands each executed two instructions. The next instruction to
be executed is MOV BP,SP because the 8086 architecture excutes two instructions if you
single-step through an instruction that is a move into a segment register. No interrupt, not even
a non-maskable interrupt, can occur between these two instructions. After you entered CTRL
E, you would see the next instruction.

*1$.'1;1$118
:CMAKER#1
0021:000AH 8BEC MOV BP,SP

Now your program has begun execution. To display a program variable named coinrelease,
enter its name:

*:Qmer;ulnl!elease
+1

To modify coinrelease, set it to another value as in the following example:

o
Note that cmaker.coinrelease is the fully-qualified reference to coinrelease. A fully-qualified
reference to a symbol includes the module name and the names of all procedures that enclose
the symbol from outer-most to inner-most. Because a fully-qualified reference completely

Introduction to Using the PICETM System 3-17

identifies the symbol, such a reference is always valid. A partially-qualified reference omits
the module name and one or more of the outer procedure names. A partially-qualified refer
ence is valid only if the current execution point is inside the outer-most procedure referenced.

Program Variables and the FICETM Memory Types

The PICE memory types are templates for reading and writing program memory. You can read
and write program memory by specifying just the program variable's symbolic name, which
reads the program variable as its program-defined type.

If coinrelease is defined by the user program as a WORD, you can nevertheless read coin
release as an integer. Apply the PICE memory template over program memory, as shown in the
following example:

*INII.I~cointijeaD
003E:0004H +1

The user program type for coinrelease would remain WORD.

You can also assign values with a memory template. The following example sets coinrelease
to 0:

You can use a debug variable without the period. The debug variable is a value, and the PICE
memory template command uses that value as the address. The debug variable's value rather
than its address becomes the operand. The value of a POINTER variable named begin (which,
it is assumed, has been set to the beginning program address) is 0020:0006H. Applying the
WORD template to begin tells you that memory location 0020:0006H contains FA, and 0020:
0007H contains 2E.

*WI"'.IbQgltl
0020:000bH 2EFA

Managing the Memory and 1/0 Spaces

3-\8

This section explains how to set up the memory map and the 110 map and how to read and write
memory locations.

Introduction to Using the PICETM System

The FICETM Memory Map

The user program must be absolute code, and every memory reference must have a unique
physical address. The FlCE memory map determines where this memory space physically
resides. You can split up the memory space among the following:

USER The prototype hardware contains the memory.

HS The FICE system contains the memory. It resides on the map-II0 board in
the FlCE instrumentation chassis. There are 32K bytes of high-speed
(HS) memory available on the map-IIO board.

OHS The PICE system contains the memory. It resides in optional high-speed
(OHS) memory. Each OHS board provides 128K bytes of high-speed
memory. You can install one or two OHS boards.

MB The host development system contains the memory. It resides on memory
boards within the host chassis. The MB stands for the MULTIBUS bus.
[IBM PC hosts cannot use the MB option.]

GUARDED The memory does not reside anywhere. An attempt to access guarded
memory results in an error.

In addition to providing access to as much as 32K bytes of HS memory, 256K bytes of OHS
memory, and all MB memory not used by the PICE system in the host development system, the
FICE system also allows mapping 110 to the development system console or to an FICE debug
procedure. The MB memory can be mapped in named or unnamed blocks. When named
blocks are used, the same physical MB memory can be accessed as dual port memory by
multiple probes in a multiprobe enivronment. (LOCK is supported.) In a single probe environ
ment, the same memory can be mapped to multiple addresses in the same probe.

Both HS and OHS memory are zero-wait-state memory. This means that a user program does
not take longer to access either HS or OHS memory than it does to access user memory. The
FICE emulation is real-time. However, with the WAITSTATE command you can insert up to 15
wait-states into memory 'accesses. In this way, you can emulate slow memories.

In most designs today, hardware and software development take place in parallel. For example,
if your software is ready for prototype memory, but the hardware is not yet available, use HS or
OHS memory.

Running your prototype software completely within FlCE memory may also help you distin
guish between hardware and software problems. Later in the design, after you have verified
your code and prototype memory becomes available, you can map your software to prototype
memory, memory block by memory block.

You can view or set the memory map using the MAP command. All program memory is
initially guarded, as shown in the following example.

*MIFI
MAP OK LENGTH 1024K GUARDED

Introduction to USing the PICETM System 3-19

3-20

To change the memory map, specify a memory partition and a physical location for program
memory. For example, to map the first 32K bytes of program memory to HS memory, enter the
following command:

A partition is a range of addresses. The partition OK LENGTH 32K represents a starting
address of 0 and a range of blocks 32K bytes long. You can also represent a partition with
starting and ending addresses, using the keyword TO instead of LENGTH. For example, you
could map the first 32K bytes of program memory to HS memory by entering the following
command:

The MAP command shows the result.

* MAP
MAP OK LENGTH 32K HS
MAP 32K LENGTH 992K GUARDED

The MAP command also enables you to assign the two attributes READ and WRITE to mem
ory partitions.

READ designates the partition as read-only. If you are simulating prototype ROM in
HS RAM, you may want to designate that partition as read-only.

WRITE suppresses read-after-write verification. Read-after-write verification means
that the PICE system follows a write tomemory with a read from the same
location and verifies the result. Normally, the PICE system performs a read
after-write verification when you load a user program and when you write
memory from the console. You would not want a read-after-write verification
if it would change the state of the I/O device.

NOTE

In one instance the PICE system reads after a write even when the
partition is designated as WRITE. With the memory template com
mands (described later in this chapter) you can read and write pro
gram memory and interpret the data as one of the PICE memory
types. When writing iterative data, the command repeats a data pat
tern over a memory partition. For example, when you enter the fol
lowing command:

*."11i; ••)S~.rtlii;t;4Q1IitlZ:#·.···';,a

Introduction to Using the FleETM System

After the command is executed, program memory values are the
following:

Address Value at that address

. start 1

. start + 1 2

. start + 2 1

. start + 3 2

. start +4 1

. start + 5 2

. start + 6 1

The algorithmn used by the FICE system reads from program mem
ory, even though you designated the partition as WRITE with the
MAP command.

Regardless of the memory or 1/0 maps, if the BTHRDY pseudo-variable equals TRUE the
target system must return a valid READY signal for each bus cycle (except HALT and SHUT
DOWN) that the processor initiates. Otherwise, a time-out will occur if one or more of the
time-out pseudo-variables are enabled (time-outs are enabled by default). The time-out
pseudo-variables are the following:

• BUSACT allows a system time-out when the processor bus is inactive for more than one
second.

• 10RDY allows a system time-out when an 110 access takes more than one second.

• MEMRDY allows a system time-out when memory access time is longer than one second.

• PHANG allows a system time-out when coprocessor memory accesses exceed one second
(8086/8088 and 80186/80188 probes only).

Erratic operation can occur if READY violates the setup or hold requirements or is asserted at
the wrong time during a bus cycle. If the time-out pseudo-variables are disabled and the target
system does not provide READY, the FICE HALT command will not return the probe to
interrogation mode; return to interrogation mode by entering the RESET UNIT command.

Mapping Input/Output

The MAPIO command displays or changes the FICE 1/0 map. If you display the 110 map right
after invoking PICE software, you will see all 110 ports mapped to USER, as shown in the
following example:

*fIIIJI
MAPIO 0 LENGTH 10000H USER

The 1/0 map determines the source of input data and the destination of output data. You can
map 110 ports to USER or ICE. The prototype hardware reads or writes I/O ports mapped to
USER.

All bus cycles (memory reads and writes, interrupt acknowledges, 110 reads and writes, and
halt cycles) initiated by the processor in the FICE system are active in the target system

Introduction to Using the PICETM System 3-21

regardless of where memory or 110 is mapped. When memory or 110 is mapped to MB, OHS,
or HS memory or ICE 110, the data is written to both MB, OHS, or HS memory or ICE 110 and
the target system. The data is read from both the target system and MB, OHS, or HS memory
or ICE 110. However, the data from MB, OHS, or HS memory or ICE 110 is used, and the data
from the target system is ignored. This feature enables you to use the PICE system as a signal
generator to debug hardware problems in target systems without relying on the data integrity of
the hardware system.

The FICE system has 64K byte-wide ports or 32K word-wide ports available. You can only
map 1/0 ports in blocks of 64 bytes. If you specify a partition that does not fall on a 64-byte
boundary, the FICE system expands the partition to the next higher boundary.

For example, to map the first 64 ports to ICE, enter the following:

The T specifies 64 as a decimal number (64T has the same value as 40H). Now look at the 110
map.

*11111.
MAPIO OOOOOH LENGTH 00040H ICE
MAPIO 0004DH LENGTH OFFCOH

You could also have specified the 1/0 partition with a starting and an ending address. The
following example produces the same result:

Simulatiug 1/0 from the Console

3-22

To simulate 110 from the console, map one or more 1/0 partitions to ICE. When the user
program requests input, the console displays a message requesting an input. Respond by enter
ing the input value at the console keyboard. For example, if the first 1/0 partition is mapped to
ICE and the user program requests a word from port 2, then the console displays the following
message:

? UNIT 0 P OR T 2 H R E QUE S T S W 0 R DIN P U:r (E N T E R V A L U E)

Enter the desired value in the space provided and follow it with a carriage return (or, for mM
PC hosts, < Enter>). The FICE system reads the value in the current number base.

When the user program writes an 110 port, the console displays the result. For example, if the
first 110 partition is mapped to ICE and the user program writes port 2 with the value 1
expressed as a word, the console displays the following:

?UNIT 0 PORT 0002H OUTPUT WORD 0001H

The FICE system displays output in hexadecimal regardless of the current number base.

Introduction to Using the J2ICETM System

Simulating 110 with a Debug Procedure

Input

A debug procedure is a named group of FlCE commands. To simulate I/O using a debug
procedure, map one or more I/O partitions to ICE and follow the keyword ICE with the name
of a previously-defined debug procedure, as follows:

When the user program requests input, the FlCE system calls the specified debug procedure,
and that procedure supplies the value. Use the fallowing commands to define a debug proce
dure called money that supplies 100 when the program reads port 2 and 65 when the program
reads port 4:

The percent sign (%) identifies a system parameter passed to the debug procedure. Table 3-1
lists the system parameters used with I/O debug procedures.

Table 3-1 Systf''TI Parameters Used with I/O Debug Procedures

System
Parameter Description

%0 The port number.

%1 TRUE for a read and FALSE for a write.

%2 TRUE for a byte-port access; FALSE for a word-port access.

To map the first I/O partition to ICE(money), enter the following:

MAPIO 000 DOH LENGTH oo04oH ICE MONEY
MAPIO oo04oH LENGTH oo08oH USER

If you run the example program cmaker.86 in Chapter 2, the console does not prompt for
input. Instead, the input is supplied by the debug procedure money.

Introduction to Using the PICETM System 3-23

Output

3-24

When the user program writes an I/O port which belongs to an I/O partition mapped to ICE
(money), the debug procedure money handles the output. The program cmaker.86 writes to
port 64. To change the I/O map so that port 64 is mapped to money, enter the following
command:

The debug procedure must write the output value to the console or store the output value in a
debug variable.

The following example is a modification of money that reads 100 from port 2, reads 65 from
port 4, and writes to the console.

To store the output in the previously-defined debug variable answer instead of writing it to the
console, replace WRITE PORTDATA with answer = PORTDATA.

If the user program is writing a word-wide port, then answer should be of type WORD. A
debug variable of type WORD is treated as a 16-bit unsigned integer. Define the type WORD
debug variable answer as follows:

If the user program is writing a byte-wide port, then the debug variable should be of type
BYTE. A debug variable of type BYTE is treated as an 8-bit unsigned integer. Define the type
BYTE debug variable ans as follows:

The next example is a modification of the debug procedure money that stores the output value
in answer if the write is to a word-wide port and in ans if the write is to a byte-wide port.

Introduction to Using the PICETM System

The Emulation Clips

The emulation clips pod has eight input signals and four output signals. Note that these lines
are TTL inputs and outputs.

The Clipsin Lines

Applications for the clipsin lines are setting up the PICE system to trigger on a hardware event
(the assertion of a signal or signals by the prototype) and using the FICE system to inspect the
state of user signals. For example, to break emulation if a prototype signal goes high (becomes
1) when an over temperature condition exists, connect that signal to clipsin O. Then, enter the
following FICE command:

The following example displays the current setting of the clipsin lines:

*lEH

Interpret the result in the following way:

line number

value

7

o
6

o
5 4

o

When a clipsin line is disconnected, it returns zero.

The Clipsout Lines

3 2 o
o

You can set and read the last value written to the two clipsout lines with the CLIPSOUT
command. The following example sets clipsoutl to 0 and clipsoutO to 1:

BINARY

Introduction to Using the PICETM System 3-25

The two clipsout lines that can be set by users with the CLIPSOUT command are zero by
default. The other two clipsout lines are the system break and trace lines. An armed FICE
system asserts the system break line when it encounters a breakpoint. An FICE system, armed
or not, always asserts the system trace line when it collects trace data.

The SYS BREAK! and SYS TRACE! clips output lines are provided to enable users to connect
to devices that are not part of your FICE system.

Emulating a Program

This section contains a sample Pascal program that illustrates how to get the PICE system up
and running. The sample program is a procedure in a larger program that controls an auto
matic change making and coin release mechanism.

The steps shown are compiling, linking, and locating the program, invoking the FlCE system,
loading the located program for emulation, setting a breakpoint, and resuming emulation.

Preparing a Pascal Program

3-26

The program reads in the amount tendered (the variable paid) and the amount of the purchase
(the variable purchase). It determines whether the resulting change contains any coins. If so,
the program sets the variable coinrelease to 1. Then, the program writes coinrelease to I/O port
64T (40H).

Use a text editor to construct a file containing the following Pascal source code.

PROGRAM cmaker;

VAR cOins,change
coinrelease, paid, purchase

BEGIN
INWRD(2,paid);
INWRD(2,purchase);

change: = paid-purchase;
coins: = change MOD 100;

IF coins> a THEN
coin release : = 1

ELSE coinrelease : = 0;

OUTWRD(64,coinrelease);
END.

:INTEGER;
:WORD;

Introduction to Using the PICETM System

Call the file cmaker.SRC and write it on the disk mounted on drive O. The file's pathname is
: FO:cmaker. SRC.

Compiling the Source File

This example assumes that the Pascal compiler is on disk drive I of a Series III development
system and that the source file is on disk drive O. The resulting object file is on disk drive O.

-RUN··:F'I·;P"SC8$¢maket.SFtC·.·DEeUG)(ReF
SERIES-III Pascal-86, Vx.y
PARSE(O), ANALYZE(O), XREF, OBJECT

COMPILA TION OF cmaker COMPLETED, 0 ERRORS DETECTED
END OF PASCAL-86 COMPILATION

Linking the Object File

This example assumes that the linker, library files, and resulting link file are on disk drive I.

»
> >t K
SERIES III 8086 LINKER, Vx.y

Locating the Link File

This example assumes that the locater, linker, run-time library, and source file are on disk drive
I. Note that the PICE system does not accept load-time-Iocatable code.

-FtUN ••• :F'I .• zI...CJC8.S·.cmaker:bNKm··cmaker,86
SERIES III LOCATER, Vx.y

Creating a SUBMIT File

The following submit file named lnkloc links and locates an object file and assumes that the
linker, the run-time library files, and the locater are on disk drive I and that the object file is on
disk drive O. Execute the submit file by entering the SUBMIT command. Note that the %0
parameter passes the root name of the object file named cmaker.

RUN
:Fl:LINK86 %O.OBJ, &

:Fl:P86RNO.LIB, :Fl:P86RN1.LIB, &
:Fl:EH87.LIB, :Fl:E8087.LIB, :Fl:E8087, &
: Fl: RTNULL. LIB TO %0· LNK

: Fl: LOC86 %0. LNK TO %0. TOl
EXIT

Introduction to Using the FICETM System 3-27

-SIJBfJll;'f·:F1drj:~cmahr)
-RUN
ISIS-II RUN 8086, Vx.y
>: F1: LINK86 cmaker. OBJ, &
» : F1: P86RNO. LIB, : F1: P86RN1· LIB, &
» :F1:EH87.LIB, :F1:E8087.LIB, :F1:E8087, &
> >;j';1:FlTNUIiiL;~;Ll •. ':.;G~rLlNK
SERIES-III 8086 LINKER, Vx.y
COPYRIGHT 19xx, INTEL CORPORATION
>·:Fl·:L.0C8s·.cmatceM':".·.' •• 2Rl
SERIES-III 8086 LINKER, Vx.y
COPYRIGHT 19xx, INTEL CORPORATION
>exll'
-.. FO~SU8MlTRlSTQRI·:F1:' •• C4_;~;f:)

Getting Ready to Emulate

3-28

Before starting emulation, you must invoke the FICE software, set up the memory and liD
maps, and load the program file.

Invoke the FICE softWare on the Series III by entering the following command:

This example assumes that you have a Series III with a system disk in drive 0 that contains host
code, probe code, the error file, the help file, and the RUN program. For information on how
to iristall and invoke software on your host system, see the· appendix in this manual that ex
plains software installation for your host. For more information on the use of the I2ICE com
mand, see the I2ICE entry in the FICEJM System Reference Manual.

The host development system's console responds with the following sign-on message:

SERIES III 12ICE Vx.y
Copyright 1984,1985 INTEL CORPORATION
86 Probe Version Vx.y
*

The asterisk (*) is the FICE prompt.

Introduction to Using the FICETM System

The PICE software provides a menu at the bottom of the screen that shows all the commands
and parameters you can enter at a particular command level. The following menu is the first
menu you see after invoking the FlCE software:

---- more ---- Use [TAB] to cycle through prompts when "more" appears.
APPEND ARMREG BASE BRKREG CALLSTACK CAUSE CLEAREOL CLEAREOS

In most cases, the complete menu will not fit on one line. To see more of the menu, press the
TAB key.

---- more ----
CLIPSIN CLIPSOUT COUNT CURHOME DEFINE DIR DISABLE EDIT ENABLE

The PICE menu is circular. Press TAB enough times. and you will return to the first line of the
menu.

Use the MENU command to suppress the menu display. Enter MENU = 0 to suppress menu
display and MENU = 1 to display the menu. CTRL-V also changes the menu display mode.
(Note that the MENU and CTRL-V commands also control automatic expansion of LITER
ALLY definitions; thus, the menu display and the automatic expansion are both on together or
off together.)

Now look at the FICE memory map.

*'.' MAP OK LENGTH 1024K GUARDED

Use the MAP command to direct memory references to high-speed memory (HS). Use the
MAPIO command to transfer I/O data values between the first 128 I/O ports to the host
development system's console and the FICE probe.

* *
Confirm this by looking at the map again (note that 80 hexadecimal is 128 decimal).

d41R
MAP OK LENGTH 32K HS
MAP 32K LENGTH 992K GUARDED
*M~eJf)
MAPIO OOOOOH LENGTH 00080H ICE
MAPIO 00080H LENGTH OFF 80H USER

Load the program file by entering the following command (the example assumes that the
program file is located in drive 1):

Introduction to Using the PICETM System 3-29

Emulating Your Program

3-30

First display the FICE pseudo-variable $, which represents the current execution point.

*$
0020:0006H

The address 20:6 is where LOC86 placed the beginning of your program. This address is
easier to remember if you give it a name (such as begin) by defining a debug variable, as
follows.

To begin emulation, enter the GO command.

*GO

The console requests a value for paid, then a value for purchase. Enter 75 for each. Note that
the FICE system default radix is decimal.

? UNIT 0 PO R TODD 2 H R E QUE S T S W 0 R DIN P U T(EN T E R V A L U E) :15
?UNIT 0 PORT 0002H REQUESTS WORD INPUT (ENTER VALUE> :75

The console displays the output written by the program to 110 port 40H (64T), in this case a 0
because you paid the exact amount of your purchase.

?UNIT 0 PORT 0040H OUTPUT WORD 0

Finally, emulation halts because of bus inactivity.

?Probe 0 stopped at location 0027:016EH because of bus not active
Bus address = 0203DE Trace Buffer Overflow

To resume emulation, you must return the execution point to the beginning of the program.

*$;;begJn

For the next emulation, create a debug register that enables you to break when the program
writes coinrelease. to instruct the FICE system to break at coinrelease, you must give the fully
qualified reference to the address of coinre1ease (. :cmaker.coinre1ease). Define the debug
register (called cwrite) and begin emulation as follows:

*06FIN6SYSREGeYltite ·=WRI:TE.AT;:cmal(er;oOil1relea$e
*GO USINGcwdte

The console displays a request for the value of paid and purchase. Enter SO for paid and 75 for
purchase.

?UNIT 0 PORT 0002H REQUESTS WORD INPUT (ENTER VALUE> :80
?UNIT 0 PORT 0002H REQUESTS WORD INPUT (ENTER VALUE) :75 * Pro beD s top p e d at: (M A K E R # 11 bee a use 0 f b u.s b rea k

Break register is (WRITE Trace Buffer Overflow

Introduction to Using the PICETM System

The break occurs. The program has not yet completed execution. It has already set coinrelease
(presumably to 1 because this time you have a nickel corning), but it has not yet written coin
release to the output port. You can display the value stored in coinrelease symbolically.

*;IQ,llil:B,IRI.'
+1

You can also display both the value and address of coinrelease by applying the WORD memory
template.

Now use the disassembly command ASM to find the current execution point and the instruction
stored there.

*l1li'$,
:cmaker#ll
0021:0054H A10400 MOV AX, WORD PTR 0004H

The closest source code line to the current execution point (the address of the next instruction
to be executed) is statement #11 in the module called cmaker. The current execution point is
0021 :OO54H. The hexadecimal content of this memory location is A 10400, which represents
the following instruction:

MOV AX, WORD PTR 0004H

This instruction loads the 16-bit accumulator AX with the contents of memory location 0004H.

Now resume emulation with the GO command.

*E
?UNIT 0 PORT 0040H OUTPUT WORD 0001H
?Probe 0 stopped at location 0027: 016EH because of bus not active

Bus address = 0203DE

During this session you defined two debug objects: a debug variable named begin and a debug
register named cwrite. Look at the debug objects with the DIR command.

*_:1."". BEGIN
(WRITE

Introduction to Using the PICETM System

pointer 0020:000bH
sysreg

3-31

3-32

To save the definitions of the debug objects for future use, write them to a file named deb.OOI
with the PUT command. (This example assumes that you will be writing to drive :FI:. For
information on how to specify directories and drives on the Series IV or on an IBM PC host,
see the Pathname entry in the FICF7M System Reference Manual.)

Enter the EXIT command to return to the host development operating system.

You cannot use the EXIT command in two cases:

• If any probe has any memory mapped to MULTIBUS (MB) memory (reset MAP by
entering RESET MAP before exiting).

• If any of 110 memory is mapped to ICE while any probe is emulating (reset MAPIO by
entering RESET MAPIO before exiting).

The following example shows how to put your prototype into emulation, exit FICE software,
and then return without losing the program.

* ?
121([terminated
-auliltaJ~aE$;rAa;r

Although you exited and re-invoked the FICE software without interrupting the emulation of
the user program, you did lose your program's symbol table. The following example shows
reloading just the symbol table and line numbers by issuing the. LOAD command with the
NOCODE option.

Introduction to Using the PICETM System

Breaking, Tracing, and Arming

This section explains how to set breakpoints and how to control and interpret the trace buffer,

The Example

The sample program used in this section is an expansion of the program used in previous
section, This version first reads the amount tendered (paid) and the amount of the purchase
(purchase), The program then calculates the number of quarters, dimes, nickels, and pennies
needed and sends each result to a different 1/0 port, The list file produced by the PLM86
compiler is as follows:

Source File: CMAKER.SRC
Object File: CMAKER.OBJ
Controls Specified: XREF, DEBUG,

STMT LINE NESTING SOURCE TEXT: CMAKER.SRC
1 1 0 0 PROGRAM CMAKER;

2 3 0 0 VAR coins, change :INTEGER;
3 4 0 0 quarters,nickels,dimes,pennies :INTEGER;
4 5 0 0 paid, purchase :WORD;

5 7 0 0 PROCEDURE payment;
6 8 1 0 BEGIN
6 9 1 1 OUTWRD(70,quarters);
7 10 1 1 OUTWRD(72,dimes);
8 11 1 1 OUTWRD(74,nickels);
9 12 1 1 OUTWRD(76,pennies)

END;

10 15 0 0 BEGIN
10 16 0 1 INWRD(2,paid);
11 17 0 1 I NWRD(4,purchase);

12 19 0 1 change ,- paid - purchase;
13 20 0 1 coins ,- change MOD 100; ,-

14 21 0 1 quarters ,- coins DIV 25; ,-
15 22 0 1 coins ,- coins MOD 25; ,-
16 23 0 1 dimes ,- coins DIV 10; ,-

17 24 0 1 coins ,- coins MOD 10;
18 25 0 1 nickels := coins DIV 5;
19 26 0 1 pennies ,- coins MOD 5;

20 28 0 payment;
21 29 0 END,

Introduction to Using the PICETM System 3-33

Emulating a User Program

3-34

The previous section explained that you begin emulation by using the command GO. By de
fault, GO starts emulation from the current execution point and with the last specifications that
were given with the GO command.

GO FOREVER is the default condition. The GO FOREVER command causes emulation to
proceed without any breakpoint, trace, or arm specifications. Unless the following time-out
pseudo-variables are enabled (which is their default condition), GO FOREVER causes emula
tion to continue until you enter the HALT command.

BUSACT allows a system time-out when the processor bus is inactive for more than
one second.

IORDY allows a system time-out when an 110 access takes more than one second.

MEMRDY allows a system time-out when memory access time is longer than one
second.

PHANG allows a system time-out when coprocessor memory accesses exceed one
second (8086/8088 and 80186/80188 probes only).

These and the other pseudo-variables displayed by the STATUS command control the emula
tion environment. Refer to the STATUS entry in the PIC£IM System Reference Manual for
information on the STATUS command and the pseudo-variables.

The GO specifications include breakpoint, trace, and arm specifications. You can include these
specifications within the GO command itself, or you can store them in debug registers for use
in later emulations.

A breakpoint specification specifies a condition that causes a break to occur. (For more infor
mation on what kinds of break specification conditions can be selected, see the GO entry in the
PIC£IM System Reference Manual.) For example, the following command specifies a break
point when statement #11 of the user program cmaker.86 is executed.

A trace specification specifies a combination of one or more events that activate trace collec
tion. (For more information on what kinds of trace specification conditions can be selected, see
the GO entry in the PIC£IM System Reference Manual.) Normally the PICE system collects
trace data during emulation. However, when you include a trace specification, tracing only
occurs when the trace specification is satisfied. For example, the following command activates
tracing whenever the procedure payment is executed.

Introduction to Using the PICETM System

An arm specification specifies both a breakpoint and an arm window. The arm window deter
mines when the FICE system can recognize the breakpoint. (For more information on what
kinds of arm specification conditions can be selected, see the GO entry in the PICETM System
Reference Manual.) For example, the following command opens the arm window only when
the procedure payment is executing. If the program variable quarters is read and the arm
window is open, a break occurs.

The Event Machines

The PICE system contains two event machines: the execution event machine (XEM) and the
system event machine (SEM). When you set breakpoint, trace, and arm specifications, you are
programming one or both of these event machines.

An execution event is the execution of an instruction. You specify an execution event as an
address or range of addresses. The execution event occurs when the microprocessor is ready to
execute the instruction that came from the address or address range. Execution begins when
the first byte of the instruction is taken from the instruction queue.

A system event describes activity on the microprocessor address lines, the microprocessor data
lines, the microprocessor status lines, or the clips input lines. The FICE system can read the
state of the clips input lines and break, trace, or arm on their values.

You can program the event machines directly if you need to specify a complex event. Each
event machine has four states (SO through S3). Each state represents a control branch that can
detect match conditions (e.g., break or trace), initiate actions, or branch to a new state. State
S3 sets up a communication link between the two event machines so that decisions can be made
in one machine based on the condition of the other.

In addition, each event machine has a counter that you can set and conditionally increment.
Then, you can change the event machine's state if the counter is equal to the set value. (For
more information on the event machines, see the Event machines entry in the PICETM System
Reference Manual.)

The Debug Registers

A debug register is a software register that you create and name with an FICE command. The
five types of debug registers are arm (ARMREG), break (BRKREG), system (SYSREG),
trace (TRCREG), and event (EVTREG). You can define any number of each type, edit them,
emulate with them, and write them to a disk file for later debug sessions. (Detailed information
on each register type is given in the corresponding entry in the PICETM System Reference
Manual.)

Introduction to Using the I2ICETM System 3-35

Arm Registers

Arm registers set conditional breakpoints that enable breaking within windows. A break win
dow is opened when an arm condition is encountered and closed when a disarm condition is
encountered. For example, you can define an arm register to open the arm window when your
program is executing the procedure payment. If your program reads the variable quarters while
the arm window is open, a break occurs. The following example defines an arm register called
arml.

*OEPINEAf!iMAIGarm '"
* *AAM:cmaker.pa~;melil1
* * DfSAAM DEa~~r.p~~.,nt * * Tf!iIGREA i;:cm!llk~f~q.rter$
**END

To emulate with this arm register, enter the following GO command:

Break Registers

Break registers stop emulation when the target line of code is executed. For example, define a
break register called break I that breaks when your program begins to execute either statement
#15 or statement #19.

To emulate with this break register, enter the following GO command:

System Registers

3-36

System registers define breaks on operand access, operand data, logic clips, system breaks,
and coprocessor cycles. For example, define a system register called sysl that breaks when
your program reads the variable quarters.

To emulate with this system register, enter the following GO command:

Introdnction to Using the PICETM System

Trace Registers

Trace registers specify under what conditions trace information is collected. For example,
define a trace register called tracel that causes the FICE system to begin collecting trace
information when your program begins executing statement #12 and to stop collecting trace
information at statement #13.

To emulate with this trace register, enter the GO command:

Note that with a trace register, you must use the TRACE option of the GO command and not
the USING option of the GO command.

Event Registers

Event registers control the event machines directly. For example, define an event register
called qwriteinpay.

* *
*
* ** **IND

To emulate with this event register, enter the following GO command:

Debug Registers Calling Debug Procedures

One advantage to using debug registers is that you can store them in a file for use in later debug
sessions. Another advantage is the ability to automatically execute a debug procedure when the
specification in the debug register is satisfied. For example, the debug register qwriteinpay
executes the debug procedure query when the event specification is satisfied. This debug
procedure must return a TRUE or FALSE value. If the value is TRUE, a break occurs, and the
FICE system enters interrogation mode. If the value is FALSE, a break occurs, but the FICE
system restarts emulation and does not enter interrogation mode.

Introduction to Using the PICETM System 3-37

Interpreting the Trace Buffer

3-38

The trace buffer contains trace information and consists of 1023 48-bit frames. Using the
PRINT command, you can display the trace buffer as either disassembled instructions (IN
STRUCTIONS mode) or as execution and bus cycles (CYCLES mode).

This section contains an example of a trace display. To obtain the trace display, compile, link,
and locate the Pascal program listed in the Example section in this chapter. Call the resulting
program file cmaker.86.

The following commands load the example program, set the debug variable begin to $, and
start emulation. A break occurs when statement #6 begins executing. Tracing starts when
statement #12 begins executing and ends when statement #15 begins executing. The example
shows that the user entered 80 and 75 when prompted for input.

?UNIT 0 PORT 2H REQUESTS WORD INPUT (ENTER VALUE) :11:
?UNIT 0 PORT 4H REQUESTS WORD INPUT (ENTER VALUE> :&
*Probe 0 stopped at : CMAKER#6 + 3 because of execute break

The INSTRUCTIONS trace display shown in Figure 3-1 assumes that the PICE system is
running the 8086/8088 probe.

The Pascal statement #12 is the following:

change: = paid-purchase;

This high-level-language statement consists of three assembly language instructions. The first
instruction reads a word from memory and places that word in the CX register. This is the
access of the program variable paid. The second instruction subtracts the contents of the regis
ter AX from the contents of CX and places the answer in CX. CX now contains the program
variable change. The third instruction writes change to memory.

Note that the data write belonging to statement #12 occurs during the execution of statement #
13. The 8086 architecture provides for an execution unit and a bus interface unit. These two
units operate independently of each other. The 8086 microprocessor realizes that the MOV
instruction is finished except for a memory access. The execution unit takes the next instruc
tion off the queue while the bus interface unit writes to memory.

Figure 3-2 displays the trace buffer in CYCLES mode. The trace buffer contains the same
trace data as the previous example. The only difference is that the data is now displayed in
CYCLES mode rather than INSTRUCTIONS mode.

The first frame (f 000) is an execution cycle. The execution address is 00024F. This frame
shows the execution of the following instruction:

MOV eX,WORD PTR 0012H

Introduction to Using the I2ICETM System

*PRINl'tN$l'RUCTION$AUU
FRAME ADR BYTE MNEMONICS OPERANDS UNIT 0
:CMAKER#12
000 o021:oo3FH
004 o021:oo43H
006 o021:oo4SH
:CMAKER#13

M 8BoE12oo
M 2BC8

890E04oo

ooA o021:oo49H 8BC1

MOV CX, WORD PTR o012H
SUB CX,AX
MOV WORD PTR oo04H, CX ------,

MOVAX,CX
oo0444H-DW-000SH~·---------------------------------J

DOC o021:oo4BH
ODE o021:oo4CH
010 o021:oo4FH
013 o021:ooS1H
014 o021:ooS3H
018 o021:ooS7H
:CMAKER#14

99
BE6400
F7FE
oBD2
7D02
891606D6

o1D o021:ooSBH 8BC2
oo0446H-DW-000SH

o1F o021:ooSDH 99
021 o021:ooSEH B91900
023 o021:oo61H F7F9
026 o021:oo63H A30Eoo
:CMAKER#1S
028 o021:oo66H A10600

oo044EH-DW-0000H

CWD
MOV SI, o064H ; + 100T
IDIV SI
OR DX,DX
JGE $+00D4H ; A=DDS7H
MOV WORD PTR DD6D6H, DX

MOV AX,DX

CWD
MOV CX, DD19H ; +2ST
IDIV CX
MOV WORD PTR DDDEH, AX

MOV AX, WORD PTR DDD6H
DDD446H-DR-DDDSH

Figure 3-1 Sample Trace Buffer INSTRUCTIONS Display Showing the Data Write
for Instruction #12

When displayed in INSTRUCTIONS mode, the trace buffer shows this instruction's address as
a selector:offset pair, 0021 :OO3F. The 8086 microprocessor calculates the 20-bit address by
shifting the selector left four bits and adding the offset as shown in the following example:

00210
+ 003F
0024F

Figure 3-2 shows this calculation in the margin.

The next frame (f 001) is a bus cycle. The symbol DW identifies it as a write to the data
segment. (DW is an access code. The access codes are probe-specific and are defined in the
entry entitled Trace buffer display in the PICFM System Reference Manual.) The data is 004B
(75 in decimal). This is the write of the program variable purchase. It is the write associated
with the previous Pascal statement: INWRD(4,purchase).

Introduction to Using the PICETM System 3-39

/
.. 0021:003FH

00210
+ 003F

0024F
*PRlrt:rC¥GtsALL
EXEC ADR~BUS ADR DATA STATUS CLIPS FRAME TIME LEVEL UNIT 0
x 00024F b d s c fOOD 0.0 nanosecs 0
x b 000450 d 004B s OODE DW c fOOl
x b 000254 d 89C8 s 00D4 CF c f 002
x b 000452 d 0050 s DODD DR c f 003
x 000253 b d s c f 004 3.0 microsecs 0
x b 000256 d 040E s 00D4 CF c f DDS
x 000255 b d s c f 006 3.6 microsecs 0
x b 000258 d 8BOO s 00D4 CF c f 007
x b 00025A d 99C1 s 00D4 CF c f 008
x b 00025C d 64BE s 00D4 CF c f 009
x 000259 b d s c f OOA 6.8microsecs 0
x b 000444 d ODDS s DO DE DW c f OOB
x 00025B b d s c f DOC 7.2 microsecs 0
x b 00025E d F700 s 00D4 CF c f DOD
x 00025C b d s c f DOE 8.2 microsecs 0
x b 000260 d OBFE s 00D4 CF c f OOF
x 00025F b d s c f 010 9.0 microsecs 0
x b 000262 d 7DD2 s 00D4 CF c f 011
x b 000264 d 0302 s 00D4. CF c f 012
x 000261 b d s c f 013 42.0 microsecs 0
x 000263 b d s c f 014 42.6 microsecs 0
x b 000266 d 89D6 s 00D4 CF c f 015
x b 000268 d 0616 s 00D4 CF c f 016
EXEC ADR BUS ADR DATA STATUS CLIPS FRAME TIME LEVEL UNIT 0
x b 000267 d 89D6 s 00D4 CF c f 017
x 000267 b d s c f 018 46.2 microsecs 0
x b 000268 d 0616 s 00D4 CF c f 019
x b 00026A d 8BOO s 00D4 CF c f 01A
x b 00026C d 99C2 s 00D4 CF c f 01B
x b 00026E d 19B9 s 00D4 CF c f 01C
x 00026B b d s c f D1D 50.2 microsecs 0
x b 000446 d ODDS s OODE DW c f OlE
x 00026D b d s c f 01F 50.6 microsecs 0
x b 000270 d F700 s 00D4 CF c f 020
x 00026E b d s c f 021 51.6 microsecs 0
x b 000272 d A3F9 s 00D4 CF c f 022
x 000271 b d s c f 023 52.4 microsecs 0
x b 000274 d OOOE s 00D4 CF c f 024
x b 000276 d 06Al s 00D4 CF c f 025
x 000273 b d s c f 026 85.4 microsecs 0
x b 000278 d 9900 s 00D4 CF c f 027
x 000276 b d s c f 028 87.6 microsecs 0
x b 00044E d DODD s OODE DW c f 029
x b 00027A d F9F7 s 00D4 CF c f 02A
x b 000446 d ODDS s DODD DR c f 02B

Figure 3-2 Sample Trace Buffer Display in CYCLES Mode Showing
Frames f 006-008 and f OOB

3-40 Introduction to Using the PICETM System

The next frame (f002) is a fetch from the code segment. The data is 89C8. The C8 belongs to
statement #12's second instruction, SUB CX,AX. The 89 begins statement #12's third instruc
tion, MOV WORD PTR 0004H,CX.

The next frame (f 003) is a data read. The data is 0050 (80 in decimal). This is the read of the
program variable paid. Note that this read does not appear in the trace buffer when the buffer
is displayed in INSTRUCTIONS mode because the first entry in the trace buffer is an execu
tion cycle. The trace buffer was not active when the probe fetched that instruction. Hence, the
FICE system must go to memory to disassemble the instruction (which is what the M signifies
in INSTRUCTIONS mode). When the FICE system goes to memory, it does not use any of the
trace buffer for disassembly until the next execution cycle. The read would be visible if the
trace were started early enough to allow the trace buffer to record the fetch of the instruction
that does the read.

The next frame (f 004) is an execution cycle. This is the execution of the instruction SUB
CX,AX

Frame OOB (underlined in Figure 3-2) is the data write focused on in Figure 3-1. This frame is
the data write performed by the instruction MOV WORD PTR OOOEH, CX. Its execution
frame is f 006 (also underlined in Figure 3-2). The previous trace display listed the instruc
tion's logical execution address as 0021 :0049. This trace display shows 259, the corresponding
physical address.

Notice the two code fetches occurring in frames 007 and 008. (In Figure 3-2, the bus address
and data for these two frames are high-lighted.) In f 007 the microprocessor reads 8BOO from
memory. In f008 the microprocessor reads 99Cl. iAPX microprocessors store the least signif
icant byte of a word in the lower address. To see how memory looks, use the following BYTE
command.

000258H 00 88 (1 99

258 259 25A 258

When the iAPX microprocessor reads a word from memory, the byte at the even address
travels on the lower half of the data bus, and the byte at the odd address travels on the upper
half. When the iAPX microprocessor reads the word at 258, the data bus looks like the
following:

015 08107 po

88 00

Introduction to Using th~ I2ICETM System 3-41

When the iAPX microprocessor reads the word at 25A, the data bus looks like the following:

015 08107 00

99 C1

The lower byte on the data bus < D7 -DO> enters the instruction queue before the upper byte
< D15-D8 >. The following example illustrates the queue:

From address Data bus Queue

258 <07~00> (top) 00
259 <015-08> 88 MOVAX,CX
25A <07-00> C1
258 <015-08> (bottom) 99 CWO

The word 8BCl represents the instruction MOV AX,CX, the first instruction of statement
:cmaker#13. The byte 99 represents the instruction CWD, the second instruction of statement
:cmaker#13.

The trace buffer normally collects both execution cycles and bus cycles. It overflows after
1023 frames have been collected. When the trace bli:ffer overflows, it shifts all the frames
toward frame O. The old frame 0 is lost. The 1023rd frame is always the latest frame.

The Timetag

In the CYLES mode display, the column. labeled TIME shows the execution time. Frame 0
always begins at time O.

The f1ICE system contains a free-running counter that returns to zero after 2K (2048) counts.
The time increment for each count is set by the TIMEBASE pseudo-variable. Its default is 200
nanoseconds. The largest value you can set TIMEBASE to is 6 milliseconds: TIMEBASE must
be a multiple of 100 nanoseconds.

When the FICE system begins tracing, the value of this free-running counter goes directly into
the trace buffer. The f1ICE system, however, offsets the value so that frame 0 always begins at
timeO.

If you interrupt the trace, the FICE system starts another clock that runs until tracing resumes.
If a wrap-around occurs (i.e., the counter reaches 2048), the FICE system sets the level flag.
When you resume tracing, the LEVEL column is incremented by one (regardless of how many
wrap-arounds occurred), and the TIME column is reset to 0.0. You will have lost time calibra
tion because you do not know how many wrap-arounds occurred while the trace was inter
rupted. Note that these difficulties caused by wrap-around can be avoided by setting
TIMEBASE to a higher value. .

The Pseudo-Variable TRCBUS

3-42

If you are not interested in bus activity and you want to collect more execution cycles before
overflowing, set the FICE pseudo-variable TRCBUS to FALSE. Its default is TRUE.

Introduction to Using the PI(:ETM System

Trace Buffer Information

For more information on the trace buffer, see the entries PRINT and Trace buffer display in the
PICEl" System Reference Manual.

Hardware Slipping On a Breakpoint
Because emulation is in real time, for the 8086/8088 and 80186/80188 probes you cannot
break exactly where you specified. To break: on the execution of an instruction, the FICE
system must first recognize that the instruction is executing. (The 80286 probe has a special
feature that prevents hardware slipping.)

The following exampl~ illustrates hardware slipping.

*-. ',II!IO!iUl'" ··ICS "l •• lrar.".i'*_il'.II'la Jl1!Wi\U!BlQluj, .. II' J .. "',, ... t '" .' ... L..AM .. .
?UNIT 0 PORT 2H REQUESTS WORD INPUT (ENTER VALUE) : 80
?UNIT 0 PORT 4H REQUESTS WORD INPUT (ENTER VALUE) : 75
Probe 0 stopped at : CMAKER#13 + 3 because of execute break

The FICE system is designed to break right after the execution of the specified instruction, and
specifying statement #13 specifies the first assembly language instruction making up statement
#13. The FICE system informs you that the probe stopped three bytes past the beginning of
statement #13. The trace buffer gives you more information.

FRAME ADR BYTE
:CMAKER#12
DOD DD21:DD3FH
004 DD21:DD4;3H
DDb DD21:DD45H
:CMAKER#13

M 8BDE12DD
M 2BC8

89DED4DD

DDA DD21:DD49H 8BCl
DDD444H-DW-DDD5H

DOC DD21:DD4BH 99

MNEMONICS OPERANDS UNIT 0

MOV CX, WORD PTR DD12H
SUB CX,AX
MOV WORD PTR DD04H, CX

MOV AX,CX

CWD

The FICE system slipped three bytes. The first two bytes make up the instruction MOV
AX,CX. These are bytes :CMAKER#13 + 0 and :CMAKER#13 + 1. The next byte
(:CMAKER#13 +2) is the instruction CWD. Execution will resume at :CMAKER#13 +3.

Introduction to Using the PICETM System 3-43

Even Addresses, Odd Addresses, and Breaking

The iAPX architecture causes a word written to an even address to appear on the data bus once
in the nonnal order (high byte, low byte). A word written to an odd address appears on the data
bus twice in reversed order (low byte, high byte) because of the standard 86 architecture. Note
this when you specify a breakpoint to occur when the data bus contains a certain value ..

When you write a byte to an even address, the byte appears on the lower eight bits of the data
bus. When you write a byte to an odd address, the byte appears on the upper eight bits of the
data bus.

The examples in this section assume the 8086/8088 probe.

Word Writes to Even and Odd Addresses

3-44

First verify that the base is hexadecimal and load the register AX with ABI2H, as follows.

* B"'IE#iIICI",Wlllli
HEX
*\~~~i"il.
*~X
AB12

The next example fIlls a section of memory with a number of NOPs and a MOV instruction.
The first BYTE command loads the NOPs. The second BYTE command loads the MOV
instruction. This MOV instruction moves the value from AX to the even address, OFCOO.

I*These are the NOPs*1

o084ooH A300FC MOV WORD PTR oFCOOH, AX

The next example starts emulation and breaks when a word is written on the data bus whose
upper byte is AB.

Probe 0 stopped at location 0800: o40SH because of bus break
Break register is EVEN Trace Buffer Overflow

The following example looks at the last five instructions in the trace buffer (see Figure 3-3).
Notice the MOV instruction and the data write of AB12 (the data write is underlined in
Figure 3-3).

Introduction to Using the PICETM System

*IR'N!I11N.BIBJ~NI:~m!1
FRAME ADR BYTE
3F5 0083FEH 90
3F6 0083FFH 90
3F8 008403H A300FC
3FA 008403H 90

00FCOOH-DW-AB12H
3FC 008404H 90

MNEMONICS OPERANDS
NOP
NOP
MOV WORD PTR OFCOOH, AX
NOP

NOP

Figure 3-3 Sample Trace Buffer Display in INSTRUCTIONS Mode
for Emulation with the System Register EVEN

The next example looks at the last 16 cycles in the trace buffer (see Figure 3-4).

UNIT 0

The following example modifies the MOV instruction so that the write is to the odd address
OFC01H.

A301FC MOV WORD PTR oFC01H, AX

The following example defines a system register called odd. This register specifies a break
when the data bus contains the value 12ABH.

* Probe 0 stopped at location 0800: o404H because of bus break
Break register is ODD Trace Buffer Overflow

The following example looks at the trace buffer in INSTRUCTIONS mode and then in CY
CLES mode (see Figure 3-5). Note that because you have written to an odd address, two write
cycles occurred and the bytes on the bus are reversed.

Introduction to Using the PICETM System 3-45

* PRINT CVCL.f!S NEWEST lOW
EXEC ADR BUS ADR DATA STATUS CLIPS FRAME TIME LEVEL UNIT 0
x 0083FA b d s c f 3EF 402.6 microsecs 0
x b 0083FE d 9090 s 0054 CF c f 3FO
x 0083FB b d s c f 3F1 403.2 microsecs 0
x 0083FC b d s c f 3F2 403.8 microsecs 0
x 0083FD b d s c f 3F3 404.2 microsecs 0
x b 008400 d 00A3 s 0054 CF c f 3F4
x 0083FE b d s c f 3FS 405.0 microsecs 0
x 0083FF b d s c f 3F6 405.6 microsecs 0
x b 008402 d 90FC s 0054 CF c f 3F7
x 008400 b d s c f 3F8 406.2 microsecs 0
x b 008404 d 9090 s 0054 CF c f 3F9
x 008403 b d s c f 3FA 408.4 microsecs 0
x b OOFCOO d AB12 s DOSE DW c f 3FB
x 008404 b d s c f 3FC 409.0 m i crosecs 0
x b 008406 d 9090 s 0054 CF c f 3FD
x b 008408 d 9090 s 0054 CF c f 3FE

Figure 3-4 Sample Trace Buffer Display in CYCLES Mode for

3-46

Emulation with the System Register EVEN

The following list summarizes how to handle breaks on word writes to even and odd addresses.

Assume that word AB12 will be
written to the even address FCOO.

FCOO
FCOl
FC02
FC03

12
AB
90
90

One memory write occurs. The
data bus contains AB 12 .

To break when the word AB12 is
written to an even address:

Assume that word AB12 will be
written to the odd address FCO!.

FCOO
FCOI
FC02
FC03

90
12
AB

Two memory writes occur. The
data bus contains 12AB each time.

To break when the word AB12 is
written to an odd address:

*D~lRt~
**WRI

Introduction to Using the PICETM System

*PJIIfN!t:'~j __ ;$
FRAME ADR BYTE MNEMONICS OPERANDS UNIT 0
3F3 0083FDH 90 NOP
3F5 0083FEH 90 NOP
3F6 0083FFH 90 NOP
3F8 008400H A301FC MOV WORD PTR OFC01H,AX

00FC01H-DW-12ABH ~ 8086 writes the 12.

3FB 008403H 90 NOP
00FC02H-DW-12ABH .. 8086 writes the AB.

* *PBmi'4YCLU;NIWE$;'r!,m
EXEC ADR BUS ADR DATA STATUS CLIPS FRAME TIME LEVEL UNIT 0
x 0083FA b d s c f 3EF 402.4 microsecs 0
x b 0083FE d 9090 s 0054 CF c f 3FO
x 0083FB b d s c f 3Fl 403.0 microsecs 0
x 0083FC b d s c f 3F2 403.6 microsecs 0
x 0083FD b d s c f 3F3 404.2 microsecs 0
x b 008400 d 01A3 s 0054 CF c f 3F4
x 0083FE b d s c f 3F5 404.8 microsecs 0
x 0083FF b d s c f 3F6 405.4 microsecs 0
x b 008402 d 90FC s 0054 CF c f 3F7
x 008400 b d s c f 3F8 406.0 microsecs 0
x b 008404 d 9090 s 0054 CF c f 3F9
x b OOFCOl d 12AB s 005E DW c f 3FA
x 008403 b d s c f 3FB 409.0 microsecs 0
x b 00FC02 d 12AB s 005E DW c f 3FC
x b 008406 d 9090 s 0054 CF c f 3FD
x b 008408 d 9090 s 0054 CF c f 3FE

Figure 3-5 Sample Trace Buffer Displays in Both Modes for
Emulation with the System Register ODD

Byte Writes to Even and Odd Addresses

The following example uses a BYTE PfR instead of a WORD PfR in the MOV instruction,
puts AB12 into AX, and writes AL (which contains 12) to memory instead of AX.

When you write to an even address, the data bus contains ABI2. When you write to an odd
address, the data bus contains 12AB.

Introduction to Using the PICETM System 3-47

The following list summarizes how to handle breaks on byte writes to even and odd addresses.

Assume that byte 12 is written
to the even address FCOO.

FCOO 12
FCOl 90
FC02 90
FC03 90

One memory write occurs. The
data bus contains ABI2.

To break when the byte 12 is read:

* DEFtNI!~Y~REB.:ve"byte::=
* *WRI1EATiOFCOOlS:O.lX'12

Assume that byte 12 is written
to the odd address FCO I.

FCOO 90
FCOI 12
FC02 90
FC03 90

One memory access occurs. The
data bus contains 12AB.

To break when the byte AB is read:

Word Reads From Even and Odd Addresses

3-48

Assume that you want to break when the user program reads a particular word from memory
and that the word ABI2 is stored at an even address. The word ABI2 appears once on the data
lines. Assume that the even address is FCOO and that memory looks as follows:

FCOO 12
FCOI AB
FC02 34
FC03 56

The following example fills HS memory with NOPs.

' •• 4V'

The following example uses the single-line assembler to put the MOV instruction in memory
offset 33K. The MOV instruction reads the word at FCOO into AX.

*SASM33K= 'MOVAX,WOR.Df)FOQO'
008400H 880bOOFC

Introduction to Using the PICETM System

Note that the 8086 assembler (ASM-86) reads the instruction as MOV AX, WORD PfR
OFCOO. The FICE single-line assembler does not recognize the assembler operator PfR. In
this case, what is a correct form for the FICE single-line assembler is an incorrect form for
ASM-86. The following example checks the entry using the ASM memory template.

* AS,IIIIi!33i(
o084ooH 8B06ooFC MOV AX, WORD PTR oFCooH

Notice that the PfR operator appears when the instruction is disassembled.

The following example sets the accumulator to 0 and displays its value.

*,~X~iQ~AX:
0000

The following example defines a system register that causes a break when the program reads
the word ABl2 from FCOO.

The following example shows emulation starting from 32K using the system register
even word.

*~f)·;;.f)M,·$'~K'JllSlllG'~Dti~d
*Probe 0 stopped at location 0800: 0405H because of bus break

Break register is EVENWORD Trace Buffer Overflow

The following example checks AX to see whether it received the word.

*~x
AB12

The following example looks at the trace buffer in INSTRUCTIONS mode and then in CYLES
mode (see Figure 3-6). Note that the word ABl2 appears on the data bus once.

Memory remains the same after the last example. The following example uses the single-line
assembler to modify the MOV instruction to read a word from the address FCOI. This word is
34AB. The most significant byte, 34, is at FC02, and the least significant byte, AB, is at FCOI.

*S..lSM3$'1~~l\II •• ;:wm.I:QI.~!
008400H 8B0601FC
*1111;1$'$'1,'
008400H 8B0601FC MOV AX, WORD PTR OFC01H

Introduction to Using the PICETM System 3-49

*PRlNTJNStRUeTlQNfUilfiWh1t'$
FRAME ADR BYTE MNEMONICS OPERANDS UNIT 0
3F4 o083FDH 90 NOP
3F6 o083FEH 90 NOP
3F7 o083FFH 90 NOP
3F9 o084ooH 8B06ooFC MOV AX,WORD PTR oFCooH

00FCooH-DR-AB12H
3FD o08404H 90 NOP
*
* PAINT CYCLES NEWEST 10
EXEC ADR BUS ADR DATA STATUS CLIPS FRAME TIME LEVEL UNIT 0
x b o083FC d 9090 s 0054 CF c f 3EF
x oD83FA b d s c f 3Fo 403.2 microsecs 0
x b o083FE d 9090 s 0054 CF c f 3F1
x o083FB b d s c f 3F2 403.8 microsecs 0
x o083FC b d s c f 3F3 404.4 microsecs 0
x o083FD b d s c f 3F4 405.0 microsecs 0
x b 008400 d o68B s 0054 CF c f 3F5
x o083FE b d s c f 3F6 405.6 microsecs 0
x o083FF b d s c f 3F7 406.2 microsecs 0
x b 008402 d FCoo s 0054 CF c f 3F8
x 008400 b d s c f 3F9 406.8 microsecs 0
x b 008404 d 9090 s 0054 CF c f 3FA
x b 008406 d 9090 s 0054' CF c f 3FB
x b ooFCoo d AB12 s o05D DR c f 3FC
x 008404 b d s c f 3FD 409.8 microsecs 0
x b 008408 d 9090 s 0054 CF c f 3FE

Figure 3-6 Sample Trace Buffer Displays in Both Modes for
Emulation with the System Register EVENWORD

Because the word is at an odd address, there are two memory accesses. In the first access, the
least significant byte, AB, appears on the upper data lines. In the second access, the most
significant byte, 34, appears on the lower data lines. The following example defines an event
register that causes a break when those two conditions occur.

3-50

** ** ** **af)
The following example sets AX to O.

*AX"'O;AX
0000

Introduction to Using the PICETM System

The following example starts emulation from 32K using the event register.

*_;;_IIN"[_i __
Probe 0 stopped at location 0800: 0405H because of bus break

Break register is ODDWORD Trace Buffer Overflow

The following example checks AX to see whether the register received the word and then prints
the trace buffer in INSTRUCTIONS and CYCLES modes (see Figure 3-7).

The following list summarizes how to handle breaks on word reads from even and odd
addresses.

Assume that word AB12 is stored at
the even address FCOO.

FCOO 12
FCOI AB
FC02 34
FC03 56

One memory access occurs. The
data bus contains AB12.

To break when the word AB12 is read:

Assume that word 34AB is stored
at the odd address FCO 1.

FCOO 12
FCOI AB
FC02 34
FC03 56

Two memory accesses occur. The
data bus contains 12AB, then 5634

To break when the word 34AB is read:

**
**
** **-

Byte Reads From Even and Odd Addresses

Memory remained unchanged after the last example. The following example modifies the
MOV instruction so that it reads a byte from FCOO into AL. The memory offset FCOO contains
12. It appears once on the lower data lines.

* __ 1IItCli11tllml ••• i_1'
008400H 8A0600FC
*lAISMJaa
008400H 8A0600FC MOV AL, BYTE PTR OFCOOH

Introduction to Using the I2ICETM System 3-51

*AX
34AB
* PRINT INSTRlJCTIONS NEWEST 5
FRAME ADR BYTE MNEMONICS OPERANDS UNIT 0
3F3 0083FDH 90 NOP
3F5 0083FEH 90 NOP
3F6 0083FFH 90 NOP
3F8 008400H 8B0601FC MOV AX,WORD PTR OFC01H

00FC01H-DR-AB12H 00FC02H-DR-5634H
3FD 008404H 90 NOP
*
*PRtNT CYCLESNEWE$Tl0
EXEC ADR BUS ADR DATA STATUS CLIPS FRAME TIME LEVEL UNIT 0
x 0083FA b d s c f 3EF 402.6microsecs 0
x b 0083FE d 9090 s 0054 CF c f 3FO
x 0083FB b d s c f 3F1 403.2microsecs 0
x 0083FC b d s c f 3F2 403.8microsecs 0
x 0083FD b d s c f 3F3 404.4 microsecs 0
x b 008400 d 068B s 0054 CF c f 3F4
x 0083FE b d s c f 3F5 405.0 microsecs 0
x 0083FF b d s c f 3F6 405.6microsecs 0
x b 008402 d FCOl s 0054 CF c f 3F7
x 008400 b d s c f 3F8 406.2 microsecs 0
x b 008404 d 9090 s 0054 CF c f 3F9
x b 008406 d 9090 s 0054 CF c f 3FA
x b 00FC01 d AB12 s 005D DR c f 3FB
x b 00FC02 d 5634 s 005D DR c f 3FC
x 008404 b d s c f 3FD 410.0 microsecs 0
x b 008408 d 9090 s 0054 CF c f 3FE

Figure 3-7 Sample Trace Buffer Displays in Both Modes for
Emulation Using the Even Register ODDWORD

The following example sets AX to 0 and then defines a system register that causes a break
when the data bus contains 12 on the lower lines. The X's represent don't-care bits.

3-52

*AX.=O
*O~f:If1fI~
**AEAD/~

•. ~ .. ~~~ ..• ~
Oxx12

Introduction to Using the FleETM System

The following example starts emulation with this system register, displays AX, and displays
the trace buffer in both INSTRUCTIONS and CYCLES mode (see Figure 3-8). Note that AX's
least significant byte has the correct value.

The following example modifies the MOV instruction to read the byte from the odd address
OFCO!. That byte is AB.

*$~$Ma3Kii!inM(»)l~L.ii.¥;rIQF"Cn)l!
008400H 8AOb01FC
*'A'$M!;331<
008400H 8AOb01FC MOV AL, BYTE PTR OFC01H

*qQFiR()M,$~I(t.!§'NGe~i1t!Ytl!!
*Probe 0 stopped at location 0800: 0405H because of bus break

Break register is EVENBYTE Trace Buffer Overflow
*i\X
0012

* *Pf\INTINS:tAUCT.IOI\ISNeWSST.1$
FRAME ADR BYTE
3F4 0083FDH 90
3F6 0083FEH 90
3F7 0083FFH 90
3F9 008400H 8A0600FC

00FCOOH-DR-AB12H
3FD 008404H 90
*
*PRIN;tCYCLI!;SiNeWES1"ilO
EXEC ADR BUS ADR DATA
x b 0083FC d 9090 s
x 0083FA b d s
x b 0083FE d 9090 s
x 0083FB b d s
x 0083FC b d s
x 0083FD b d s
x b 008400 d 068A s
x 0083FE b d s
x 0083FF b d s
x b 008402 d FCOO s
x 008400 b d s
x b 008404 d 9090 s
x b 008406 d 9090 s
x b OOFCOO d AB12 s

STATUS
0054 CF

0054 CF

0054 CF

0054 CF

0054 CF
0054 CF
005D DR

MNEMONICS OPERANDS
NOP
NOP
NOP
MOV AL,BYTE PTR OFCOOH

NOP

CLIPS FRAME TIME
c f 3EF
c f 3EO 403.0 microsecs
c f 3F1
c f 3F2 403.6 micro sees
c f 3F3 404.2 microsecs
c f 3F4 404.8 microsecs
c f 3F5
c f 3F6 405.4 microsecs
c f 3F7 406.0 mi crosecs
c f 3F8
c f 3F9 406.6 microsecs
c f 3FA
c f 3FB
c f 3FC

LEVEL

0

0
0
0

0
0

0

x 008404 b d s c f 3FD 409.6microsecs 0
x b 008408 d 9090 s 0054 CF c f 3FE

Figure 3-8 Sample Trace Buffer Displays in Both Modes for
Emulation with the System Register EVENBYTE

Introduction to Using the PICETM System

UNIT 0

UNIT 0

3-53

There is one memory access. The byte appears on the upper data lines. The following example
defines a system register that causes a break when that condition occurs, sets AX to 0, begins
emulation, and displays the trace buffer in both INSTRUCTIONS and CYCLES mode (see
Figure 3-9).

The following list summarizes how to handle breaks on byte reads from even and odd
addresses.

Assume that byte 12 is stored at
the even address FCOO.

FCOO
FCOI
FC02
FC03

12
AB
34
56

One memory access occurs. The
data bus contains ABI2.

To break when the byte 12 is read:

*DEP'~E$~$Fif; * *RE:AO:A1l0PC

Moving the User Cable

Assume that byte AB is stored at
the odd address FCO 1 .

FCOO
FCOI
FC02
FC03

12
AB
34
56

One memory access occurs. The
data bus contains ABI2.

To break when the byte AB is read:

If you remove the user cable while the PICE system is running, the probe's microprocessor
loses its system clock. This may require reloading the PICE software. At times, however, you
may need to remove the user cable, such as when you transfer the user cable from the proto
type system to the buffer box.

Use the UNITHOLD command before removing the user cable. Once the user cable is in
place, enter any character to continue operation, as shown in the following example:

*UNfTHOLD
Enter any character to release probes --

The UNITHOLD command's effect on the probe hardware is probe-specific as follows:

8086/8088 probe causes a 3-state condition for all signal lines except ALE.

80186/80188 probe causes a 3-state condition for all signal lines except RESET and
CLK.

80286 probe causes a 3-state condition for all signal lines except ground.

3-54 Introduction to Using the PICETM System

*PEFlfJjl;:~YS~t;;.~9q<ltlyt.·.F
* *READATOFC01J$OASXX
*AX"O
*GQFRQI\II$~~"SJNGO(Ii:I~
*Probe 0 stopped at location 0800: 0405H because of bus break

Break register is ODDBYTE Trace Buffer Overflow

* *PRllllm.·.ttsTa"eTIONS.NEWEST5
FRAME ADR BYTE
3F4 0083FDH 90
3F6 0083FEH 90
3F7 0083FFH 90
3F9 008400H 8A0601FC

00FC01H-DR-AB12H

3FD 008404H 90
*
*PaINTC¥CUESNeWEST10
EXEC ADR BUS ADR DATA
x b 0083FC d 9090 s
x 0083FA b d s
x b 0083FE d 9090 s
x 0083FB b d s
x 0083FC b d s
x 0083FD b d s
x b 008400 d 068A s
x 0083FE b d s
x 0083FF b d s
x b 008402 d FC01 s
x 008400 b d s
x b 008404 d 9090 s
x b 008406 d 9090 s
x b 00FC01 d AB12 s
x 008404 b d s
x b 008408 d 9090 s

STATUS
0054 CF

0054 CF

0054 CF

0054 CF

0054 CF
0054 CF
005D DR

0054 CF

MNEMONICS OPERANDS
NOP
NOP
NOP
MOV AL, BYTE PTR OFC01H

NOP

CLIPS FRAME TIME
c f 3EF
c f 3EO 403.2 microsecs
c f 3F1
c f 3F2 403.8 m i crosecs
c f 3F3 404.4 microsecs
c f 3F4 405.0 m i crosecs
c f 3F5
c f 3F6 405.6 micro sees
c f 3F7 406.2 microsecs
c f 3F8
c f 3F9 406.8 microsecs
c f 3FA
c f 3FB
c f 3FC
c f 3FD 409.8 microsecs
c f 3FE

Figure 3-9 Sample Trace Buffer Displays in Both Modes for
Emulation with the System Register ODDBYTE

Introduction to Using the PICETM System

UNIT 0

LEVEL UNIT 0

0

0
0
0

0
0

0

0

3-55/3-56

4 THE 121CETM SYSTEM
PERSONALITY MODULES (PROBES)

...................................... imJ ..

This chapter introduces the three PICE personality modules. (The personality modules are also
referred to as probes). The 8086/8088 probe emulates the 8086 and the 8088 microprocessors.
The 80186/80188 probe emulates the 80186 and the 80188 microprocessors. The 80286 probe
emulates the 80286 microprocessor.

In this chapter, a separate main section is devoted to each of the probes. Within each main
section, there is a subsection that explains special considerations that apply to the probe.

The 808618088 Probe

The 8086 and 8088 microprocessors feature a large segmented memory space, a versatile
instruction set, and instruction pipelining. The iAPX family includes the 8087 coprocessor,
which optimizes numeric processing.

With the FlCE pseudo-variables you can display and modify 8086/8088 registers symbolically.
The following example loads the word ABl2 into the AX register.

AB12

The following example displays the high and low bytes of the AX register.

*I'H
AB *-12

You can use the Boolean operators AND, OR, and XOR with these registers. The following
example sets the trap flag in the FLAGS register while retaining the setting of any previous
flags.

Alternatively, the following example sets the Boolean pseudo-variable representing the trap
flag to TR DE.

The PICE system also provides pseudo-variables to display and modify 8087 registers. Refer
to Chapter 5 for more information about manipulating 8087 registers.

4-1

Hardware and Software Considerations for the 8086/8088 Probe

This section describes the unique characteristics of the 8086/8088 probe. You should be aware
of these characteristics when designing prototype hardware and software and when emulating
your prototype.

Separate subsections are provided on the following topics:

• Address Wrap-around

• Break Information

•

Slipping Past Instruction Breakpoints

Slipping Past Breakpoints on Combined Instructions

Breaking in the Middle of an Instruction

READY Signal Set-Up Time

• Request/Grant Line

•
•

Non-Maskable Interrupt Line and Interrupt Line

Non-Maskable Interrupts and Program Stepping

• Synchronization between the Prototype and the Probe

• User-Accessible Test Points

The SYNC START/ Test Point

The 87 INT Test Point

• Coprocessor Considerations

• Inability to Break When RESET Is Asserted

• Getting a User NMI While in Emulation Mode

•
•

Using the FICETM System as a Signal Generator

lO-MHz 8086 Probe MAX Mode Operation

• Probe MIN ModeOpetation

• AddresslData Bus Float

Address Wrap-Around

4-2

The 8086/8088 microprocessor represents a virtual memory address as a selector:offset pair.
The selector and the offset are each 16 bits long. The 8086/8088 microprocessor then trans
lates that virtual address into a 20-bit physical address. A memory address in the break/trace
board is 20 bits long.

As shown in Table 4-1, the difference between the way the 8086/8088 microprocessor and the
break/trace board handle memory addresses causes discrepancies when wrap-arounds occur.

The J2ICETM System Personality Modules (Probes)

Table 4-1 8086/8088 Segment Boundary Increments

8086/8088 Break/Trace
Microprocessor Board

Starting address O:FFFFH OFFFFH

Address incremented by 1 O:OOOOH 10000H
(next sequential address) (wrap-around) (no wrap-around)

Wrap-arounds do not affect bus information, but they can make break and trace information
hard to follow. Address wrap-arounds can occur only when the offset is incremented past
FFFF. This is not a recommended practice for any 8086/8088 application.

Break Information

A break normally occurs immediately after the target instruction executes. The following sec
tions describe the three cases when a break is not recognized until one or more instructions
after the breakpoint.

Slipping Past Instruction Breakpoints

A break sometimes slips past the specified breakpoint because the probe emulates at full proc
essor speed and FICE probe hardware cannot always break on the exact instruction specified.
In general, the greater the number of cycles required to execute an instruction, the lower the
chances of slipping. The newest trace frame contains the last instruction executed. The break
message contains the address of the next instruction to be executed.

Slipping Past Breakpoints on Combined Instructions

Although you can specify a breakpoint between parts of combined instructions, the FlCE
hardware never sees it. The following combined instructions cause slipping:

• Repeat prefixes

• LOCK prefixes

• Segment override prefixes

• MaY to a segment register

• POP a segment register

• FWAIT prefix on an 8087 instruction

Breaking in the Middle of an Instruction

In two cases the FICE probe can break in the middle of an instruction: WAIT and repeated
string instructions. These instructions contain primitive operations or wait test cycles which
can be recognized, incorrectly, as a breakpoint.

The I2ICETM System Personality Modules (Probes) 4-3

READY Signal Set-Up Time

The BTHRDY (both READY) pseudo-variable ANDs the user's processor READY signal with
the 8086/8088 probe's ready signal. When BTHRDY is TRUE, the 8086/8088 probe's READY
signal must be set up .3 nanoseconds before the rising edge of T2, as shown in Figure 4-1.

If the probe processor's READY signal is not set up .3 nanoseconds before the rising edge of
T2, the signal is missed and the result of the logical AND is false. This causes an additional
wait-state in a normally not-READY system and no wait-states in a normally READY system.
Set-up time is normal when BTHRDY is FALSE.

Request/Grant Line

The internal 8087 coprocessor uses the requestlgrant (RQ/GTl) line. You cannot connect bus
masters in a daisy chain on the RQIGTI line when you use an internal 8087.

Non-Maskable Interrupt Line and Interrupt Line

If a non-maskable interrupt (NMI) and an interrupt (INTR) are asserted at the same time, the
PICE system starts to service the INTR first. This results in additional latency while the stack
operations and interrupt acknowledge cycles occur. The NMI is serviced after the INTR vector
and initial stack activity are complete. The INTR service is completed after the NMI is
serviced.

Non-Maskable Interrupts and Program Stepping

The 8086/8088 probe ignores NMIs when stepping through a user program with the ISTEP
command. The following GO command, which steps through 10 consecutive break locations,
enables you to step through programs while recognizing NMls.

OOUNTtO.
SO···'flLO)()()()(

Synchronization between the Prototype and the Probe

When the probe is executing code from high-speed (HS) memory but the user prototype ex
pects memory with a different access time in the same address space, the user's bus control
logic can get out of synchronization with the probe. A solution is to set the BTHRDY pseudo
variable to TRUE.

If the user prototype expects slow memory. another solution is to insert an appropriate number
of wait-states into the HS memory accesses.

User-Accessible Test Points

The top of the buffer box has two user-accessible user test points. They are labeled SYNC
STARTI and 87 INT.

The J2ICEnl System Personality Modules (Probes)

eLK

READY
(8086/8088
Input)

The SYNC START/ Test Point

T,

,
, , ,
I

, I

X;l--- -""--<I-_-J

-~r:------
Figure 4-1 Ready Signal Set-Up Time

1404

The SYNC START/ test point is a TTL input that is normally high. When SYNC START/ is
low and the probe enters emulation, READY is held low, and the probe undergoes a READY
hang after the first instruction fetch. You can cause this hang by holding SYNC START/ low.

To synchronize the probes in a mUlti-probe system, first set MEMRDY to FALSE in each
probe. This prevents a memory time-out from occurring during the first instruction fetch.
Then, keep SYNC START/ on each probe low. Ensure that SYNC START/ for each probe
goes high at the same time. This raises READY, gets rid of the READY hang, and ensures that
each probe enters emulation at the same time.

A typical application is to connect all the SYNC START/ test points to one of the c1ipsout lines.
This allows you to control the state of the SYNC START/ signal from the FICE console with
the CLIPS OUT command.

NOTE

If, while SYNC START/ is low, a coprocessor requests the address and data buses, the
probe's microprocessor will not acknowledge that request until you raise SYNC
START/. This is important if the coprocessor is performing a time-critical operation.

You may also find SYNC START/ useful in a single probe system because it gives you hard
ware control over when the probe enters emulation. SYNC START/ must be high for emula
tion to begin.

The 87 INT Test Point

The 87 INT test point is a TTL output. An internal 8087 coprocessor asserts this signal. When
high, this signal indicates that an unmasked exception has occurred during internal 8087 in
struction execution when 8087 interrupts are enabled.

The J2ICETM System Personality Modules (Probes) 4-5

Coprocessor Considerations

When using a coprocessor with the 8086/8088 probe, be aware of the following:

•

•

•

•

•

•

During emulation, a two-clock delay prec.edes each RQ, GT, and release pulse in MAX
mode and each HOLD and HLDA assertion in MIN mode. During emulation, a user's RQ
and release pulse will not be seen by the probe processor until two clock cycles after they
have occurred.

Normal MIN mode coprocessor protocol requires that HLDA become inactive before
asserting thc next hold.

You can choose to run the external coprocessor only during emulation or during both
emulation and interrogation. (The CPMODE pseudo-variable selects coprocessor mode.)
When the coprocessor runs during interrogation mode, it may have as much as a one
microsecond delay in addition to the two-clock delay ..

The PICE ~em ignores a coproce~r when the probe is in the reset state. If a coproces
sor asserts RQ during this time, the RQ/GT sequence may get out of synchronization. The
probe is reset while the I'ICE host software loads I'ICE probe software.

When the CPMODE pseudo-variable is 1 (coprocessor activity in emulation mode only)
and the PICE system is in interrogation mode, the 8086/8088 probe latches any pending
coprocessor requests. If you do not want these pending requests honored, you must reset
the external coprocessor and then the 8086/8088 probe (with the RESET UNIT
command).

Coprocessor activity is not traced when the 8086/8088 probe is in MIN mode.

Inability to Break When RESET Is Asserted

If a break occurs while RESET is high, the PICE system does not recognize the break. The
break does not occur even "fter RESET goes low. You must reset the PICE system with the
RESET UNIT command to exit this condition.

Getting a User NMI while in Emulation Mode

If a user NMI arrives while the PICE system is in interrogation mode, that user NMI is not
serviced. Rather, it is latched by the I'ICE system and will be serviced when emulation is
resumed. If you do not wish to service these latched NMIs, they can be cleared with a RESET
UNIT or a UNrrHOLD command before resuming emulation with the GO command.

Using the HCEHI System as a Signal Generator

4-6

You can use the 8086/8088 probe as a signal generator by connecting it to prototype hardware
and mapping both memory and I/O to the emulator's internal resources. In this mode, all the
control signals, status lines, address lines, and write data lines are valid even though the proto
type hardware may not function correctly. The emulator runs by accessing correct data from
the emulator resources and ignoring data from the prototype system. This enables you to
perform microprocessor functions that the current prototype hardware does not support.

The J2ICETM System Personality Modules (Probes)

to-MHz 8086 Probe MAX Mode Operation

For the 8086 probe running at 10 MHz and in MAX mode, the user must supply a clock with a
minimum low time of 60 nanoseconds. Less clock low time may cause a wrong address to be
latched by ALE. If you wish to use less clock low time, delay ALE in the user system by an
amount of time greater than or equal to the difference between 60 nanoseconds and the reduced
clock low time that you are using. This can be done by adding a buffer to ALE in the user
system.

Probe MIN Mode Operation

When performing consecutive reads to program memory, the DTiR: line of the probe micropro
cessor (at the end of the user cable) goes high for a short time between reads. The 8086/8088
microprocessors keep DT/Rlow between consecutive reads. When performing consecutive lID
cycles (i.e., word liD to an odd address), the MIlO line goes high for a short time during T4.
The 8086/8088 microprocessors keep MIlO low between consecutive liD cycles.

Address/Data Bus Float

The addressldata (AD) bus is floated during T4 as follows:

Read cycle The AD bus is floated in T4 as long as MRDC is active in T4.
INTA cycle The AD bus is floated in T4 as long as INTA is active in T4.
Write cycle The AD bus is never floated in T4.

NOTE

Proper use of the DEN and DT/R signals result in the normal operation (i.e., no bus
contention) of both the emulator and the prototype hardware.

The 80186/80188 Probe

The 80186 and 80188 microprocessors extend the capabilities of the 8086 and 8088 micropro
cessors and are upwardly compatible with iAPX 86 and 88 software. They add instructions for
fast index calculation, subroutine linkage, liD data transfers, and program error detection.

The 80186 integrates a number of the most common iAPX 86 components onto a single chip.
These include two independent high-speed DMA channels, a programmable interrupt control
ler, three programmable 16-bit timers, chip selects, peripheral chip-select logic, a programma
ble wait-state generator, a clock generator, and a local bus controller.

The 80186/80188 contains four interrupt pins. The PICE system assumes that these pins are
configured either as all inputs (for fully nested mode) or as two inputs and two outputs (for
cascade mode and special fully-nested mode). The outputs are interrupt-acknowledge signals,
one for each of the remaining interrupt input lines.

The 80186/80188 has another alternate signal set. During reset, the 80186/80188 samples RDI
QSMD to determine whether it will run in standard or queue status mo~ln queue status
mode, the 80186/80188 provides queue status signals in place of ALE and WR.

The PICETM System Personality Modules (Probes) 4-7

The FICE pseudo-variable QSTAT determines whether the 80186 probe runs in standard or
queue status mode. The default is FALSE.

QSTAT = TRUE The 80186 probe runs in queue status mode.

QSTAT = FALSE The 80 186 probe runs in standard mode.

With the FlCE pseudo-variables you can display and modify 80186/80188 registers and flags.
The following example displays the OX register.

*[)X
AB12

Some 80186/80188 registers are represented as offsets into an internal register map. The fol
lowing example displays the lower memory chip select (LMCS) register.

*CSCTRL(2)
38

The 80186/80188 probe provides debugging support for the 8087 coprocessor. The 8087 must
be an external coprocessor, and the prototype must contain the 82188 coprocessor interface
chip. Refer to Chapter 5 for more information about manipulating 8087 registers.

A coprocessor memory violation' can occur if a HOLO/HLOA sequence occurs and the SO-S2
lines present a non-idle state with a non-USER mapped address on the bus. To prevent the
coprocessor memory violation, all memory should be mapped to USER.

Hardware and Software Considerations for the 80186/80188 Probe

4-8

This section describes the unique characteristics of the 80186/80188 probe. You should be
aware ofthese characteristics when you design prototype hardware and software and when you
emulate your prototype.

Separate subsections are provided on the following topics:

• Address Wrap-around

• Break Information

Slipping Past Instruction Breakpoints

Slipping Past Breakpoints on Combined Instructions

Breaking in the Middle of an Instruction

•
•

Mapping Considerations for the 80186/80188 Probe

Synchronization between the Prototype and the Probe,

• User-accessible Test Points

• User Socket

• ALE Pulse Stretching

The PICEHI System Personality Modules (Probes)

Address Wrap-Around

The 80186/80188 microprocessor represents a memory address as a selector:offset pair. The
selector and the offset are each 16 bits long. A memory address in the break/trace board is a
20-bit address.

As shown in Table 4-2, the difference in memory address lengths causes discrepancies when
wrap-arounds occur.

Wrap-arounds do not affect bus information, but they can make break and trace information
hard to follow. Avoid wrap-arounds by not executing instructions near segment boundaries.

Break Information

A break normally occurs immediately after the target instruction executes. The following sec
tions describe the three cases where a break is not recognized until one or more instructions
after the breakpoint.

Slipping Past Instruction Breakpoints

A break sometimes slips past the specified breakpoint because the probe emulates at full proc
essor speed and FICE probe hardware cannot always break on the exact instruction specified.

An extra instruction is executed when the number of bytes in the target instruction and the
number of cycles required to execute that instruction match. For instance, a two-byte instruc
tion that executes in two bus cycles causes the FICE probe to slip. Other combinations of
instruction bytes and bus cycles can also cause a breakpoint to slip. In general, the greater the
number of cycles required to execute an instruction, the lower the chances of slipping.

The newest trace frame contains the last instruction executed. The break message contains the
address of the next instruction to be executed.

Slipping Past Breakpoints on Combined Instructions

Although you can specify a breakpoint between parts of combined instructions, the FICE
hardware never detects it. The following combined instructions cause slipping:

• Repeat prefixes

• LOCK prefixes

• Segment override prefixes

• MOV to a segment register

• POP a segment register

Breaking in the Middle of an Instruction

In two cases the FlCE probe can break in the middle of an instruction: with the WAIT com
mand and with repeated string command instructions. These commands contain wait test cycles
or primitive operations that can be recognized, incorrectly, as a breakpoint.

The 12ICETM System Personality Modules (Probes) 4-9

Table 4-2 80186/80188 Segment Boundary Increments

80186/80188 Break/Trace
Microprocessor Board

Starting address O:FFFFH OFFFFH

Address incremented by 1 O:OOOOH 10000H
(next sequential address) (wrap-around) (no wrap-around)

Mapping Considerations for the 80186/80188 Probe

4-10

The FICE system can get out of synchronization with the 80186/80188 probe when the proto
type system borrows slow memory or 110 from the PICE system and the user program directs
the 80186/80188 microprocessor (through the probe) to ignore external READY (refer to the
Chip Select/Ready Generation Logic specification in the chip literature). Consequently, data
presented at the wrong time is incorrect.

Use extreme caution when mapping memory and 110 locations to any PICE system
resource if your program ignores external READY s.

Take the following precautions if the 80186/80188 microprocessor has been programmed to
ignore external READYs:

• Do not map 110 addresses programmed to ignore external READYs to ICE.

• Do not map memory ranges programmed to ignore external READYs to MULTIBUS
(MB) memory.

• Use high-speed (HS) or optional high-speed (OHS) memory in a memory range that ig
nores external READYs only if WAITS TATE = O.

User program references to an 80186/80188 internal peripheral control register cause
the 80186/80188 FlCE probe processor to complete bus cycles without wait-states and
with external READY ignored, even when the 80186/80188 FICE probe has wait-states
set. If locations that ignore external READY s are not mapped to USER or HS, the
system may hang.

The PleETM System Personality Modules (Probes)

Programming 80186/80188 internal peripheral control registers can enable the 801861
80188 probe processor to complete bus cycles with an internally generated READY
signal while ignoring external READY. Bus cycles may be terminated with less wait
states than allowed with external READY or set by the 80186/80188 probe. The system
may hang if locations that ignore external READY are not mapped to memory with the
corresponding number of wait-states.

Synchronization Between the Prototype and the Probe

When the probe is executing code from HS memory, but the user prototype expects this mem
ory to exhibit different access time, the user's bus control logic can get out of synchronization
with the probe. One solution is to set the BTHRDY pseudo-variable to TRUE.

If the user prototype expects slow memory, another solution is to insert an appropriate number
of wait-states into the HS memory accesses.

User-Accessible Test Points

The top of the buffer box has two user-accessible user test points, one labeled SYNC STARTI
and the other TP.

The TP test point is an output that is active high when the probe is emulating.

SYNC STARTI is a TTL input. The SYNC STARTI test point is normally high. When SYNC
STARTI is low and the probe enters emulation, READY is low and the probe undergoes a
READY hang when fetching the first instruction. You can cause this hang by holding SYNC
STARTI low.

NOTE

SYNC STARTI has no effect if the address of the first instruction fetch is within a range
that has been programmed through the peripheral control registers to ignore external
READY.

To synchronize the probes in a multi-probe system, first set MEMRDY to FALSE in each
probe. This prevents a memory time-out from occurring during the first instruction fetch.
Then, keep SYNC STARTI low on each probe. Ensure that SYNC STARTI for each probe
goes high at the same time. This raises READY, eliminates the READY hang, and ensures that
each probe enters emulation at the same time.

NOTE

If, while SYNC STARTI is low, a coprocessor asserts HOLD, the probe's microproces
sor will not assert HLDA until you raise SYNC START/. This is important if the copro
cessor is performing a time-critical operation.

The PICETM System Personality Modules (Probes) 4-11

NOfE

If the probe's microprocessor is waiting for READY from the user prototype, that
READY must still be there when SYNC STARTI goes high. When the prototype asserts
its READY, the prototype must not assume that the probe's microprocessor receives that
READY after a set time. Rather, the prototype must hold the READY asserted until it
has determined that the probe's microprocessor has acknowledged the READY.

SYNC STARTI is also useful in a single-probe system because it gives you hardware control
over when the probe enters emulation. SYNC STARTI must be high for emulation to begin.

User Socket

Your prototype system contains a socket into which you will connect the user cable. Intel
recommends using the Textoo1l3M socket 268-S400. See Appendix A for instructions on con
necting the 80186/80188 probe to the user prototype system.

ALE Pulse Stretching

The 80186/80188 probe generates ALE before Tl. It accomplishes this by decoding the status
lines during T4 and Ti . Note that generating the ALE pulse during an idle state can produce a
stretched ALE pulse for the entire period when idles states are being generated.

For example, A DIV instruction can last longer than 80 idle clock cycles. The corresponding
ALE pulse for the instruction following the division will be greater than 80 clock cycles.

In most cases, the long ALE pulse does not cause a problem in a user prototype system. If,
however, your prototype system uses the rising edge of ALE to trigger a sequence of events or
to generate logic signals, a problem can arise. The triggered logic or event will be distorted in
length or time.

The 80286 Probe

4-12

The 80286 features multitasking, a large address space with four levels of protection, and
high-speed compatibility with previous Intel iAPX microprocessors.

The 80286 runs in either real mode or protected mode. In real. mode, the 80286 acts like an
8086. It can address up to 1M byte plus 64K of physical address space. In protected mode, the
80286 can address up to I G byte of virtual memory per task and up to 16M bytes of physical
memory.

When running in real address mode, programs developed for the iAPX 86 and iAPX 88
require minimal modification. The advantage is that these programs run up to six times faster
than on the 8086. When running in protected mode, iAPX86 and iAPX 88 programs may
require slight modifications.

The J2ICETM System Personality Modules (Probes)

This section contains the following subsections that provide information on the 80286 micro
processor and the 80286 probe.

• Address Translation

8086 Address Translation

80286 Address Translation

• Multitasking

• Interrupts

• Address Protection

Real Mode and PCHECK

Protected Mode and PCHECK

• Memory Mapping for the 80286 Probe

• Support for Processor Extensions

• Displaying 80286 Registers and Flags

Real Mode and PCHECK = TRUE

Real Mode and PCHECK = FALSE

Protected Mode and PCHECK = TRUE

Protected Mode and PCHECK = FALSE

• Hardware and Software Considerations for the 80286 Probe

Address Translation

The 80286 probe performs 8086 address translation or 80286 address translation. When the
80286 probe is emulating in real mode, it performs 8086 translation. When the 80286 probe is
emulating in protected mode, it performs 80286 translation. When the probe is not emulating,
the PICE pseudo-variable SEL286 determines what address translation takes place.

SEL286 = TRUE 80286 address translation takes place.

SEL286 = FALSE 8086 address translation takes place.

When you load a program fIle that is in 80286 object module format (OMF), the PICE system
automatically sets SEL286 to TRUE. When you load a program file that is in 8086 OMF, the
PICE system sets SEL286 to FALSE.

8086 Address Translation

A virtual address is represented as a selector:offset pair. The selector and the offset are each 16
bits long. Each can be an expression. The selector:offset pair is of memory type POINTER.

The I2ICETM System Personality Modules (Probes) 4-13

The FICE system forms a physical address by shifting the selector value left by four bits and
then adding the offset. The result is a 20-bit real address. With 20 bits, you can address 1M
byte of memory.

If you specify a physical address, you can use 24 bits even though the 8086/8088 microproces
sor addresses 1M byte of memory. With a 24-bit physical address, the FICE system can
address 16M bytes in program memory. If you specify a pointer address, the FICE system
constructs a 20-bit physical address.

80286 Address Translation

4-14

A virtual address is represented as a selector: offset pair. The selector and the offset are each 16
bits long. Of the 16 selector bits, 14 contain address information. The other two bits contain
protection information. The complete virtual address contains 30 address bits. With 30 bits,
you can address 1 G byte of memory.

The 80286 address translation uses the global descriptor table (GDT) and the local descriptor
table (LDT) to construct a physical address. There is only one GDT, but many possible LDTs.
Both kinds of tables reside within the virtual memory space.

NOTE

The GDT cannot be indexed with a value greater than 255.

The global table descriptor register (GDTR) contains a GDT descriptor. This GDT descriptor
contains the base address of the GDT. The local table descriptor register (LDTR) contains an
LDT selector that is an offset into the GDT and points to an LDT descriptor.

The LDTR contains an explicit cache. When you load the selector part of the LDTR (called
RLDT), the 80286 loads the LDT descriptor (pointed to by RLDT) into the LDTR cache. The
LDTR is actually 64 bits long, 16 for the selector and 48 for the explicit cache.

Figure 4-2 shows the relationship of the two descriptor tables (the GDT and the LDT) and the
two registers (the LDTR and the GDTR).

Of the 14 address bits in the virtual address's selector, one bit identifies either the LDT or the
GDT, and the other 13 represent an index into the selected table. This index points to a segment
descriptor in the descriptor table. The segment descriptor contains access rights, a base ad
dress, and the segment limit. The final physical address is the sum of this base address and the
virtual address's offset.

Figure 4-3 illustrates 80286 virtual address translation.

When programming the 80286, you can either specify the selector explicity or use a segment
register. The 80286 contains four segment registers. Each segment register contains a selector
and an explicit cache. When you load a segment register with a selector, the 80286 also loads
the explicit cache with the segment descriptor. A segment register is 64 bits long, 16 for the
selector and 48 for the explicit cache. As long as the selector does not change, the 80286 does
not have to access a descriptor table.

The FICETM System Personality Modules (Probes)

(THE LOT DESCRIPTOR MUST RESIDE IN THE GOT.)

GLOBALDT

TABLE INDICATOR BIT=O
ACCESSI BASE I LIMIT

LDTR I
I SELECTOR I ACCESS I BASE I LIMIT I

GDTRI

I BASE I LIMIT I
1468

Figure 4-2 The GDT and the LDT

Figure 4-4 shows the relationship of the two descriptor tables (the GDT and the LDT) and the
two registers (the LDTR and the GDTR).

When using FlCE commands, you can represent an 80286 virtual address symbolically or by
specifying the selector and offset. You can optionally include an LDT selector, as illustrated in
the following syntax.

[expression-for-LO T-selector: Jexpression-for-selector:expression-for-offset

The brackets around the expression-for-WT-selector indicate that it is optional. If you leave
out the expression-for-WT-selector, the PICE system assumes the selector in the current
LDTR.

The LDT-selector:selector:offset triplet is of memory type POINTER. Debug variables de
fined as a triplet are displayed as a triplet. Debug variables defined as a selector: offset pair are
displayed as a pair.

When you apply the POINTER memory template to program memory locations, these loca
tions are displayed as selector: offset pairs.

The final physical address is limited to 24 bits. With 24 bits, you can address 16M bytes of
memory. The virtual address is still 30 bits. The 80286 has a virtual memory space larger than
its physical memory space. A bit in the segment descriptor (part of the access field) identifies
whether the virtual address currently exists in physical memory.

For more information on 80286 addressing, see the entries for Address, Address protection,
and Address translation in the PICF7M System Reference Manual.

The PICETM System Personality Modules (Probes) 4-15

TABLE INDICATOR
BIT=O

I SELECTOR I OFFSET I

TABLE INDICATOR
BIT=l

GLOBAL DT

ACCESS I BASE I LIMIT

+=

+=

LOCALDT

PHYSICAL ADDRESS

OFFSET I I BASE+

PHYSICAL ADDRESS

I BASE+ OFFSET

ACCESS l BASE I LIMIT

1469

Figure 4-3 80286 Virtual Address Translation

Multitasking

4-16

The 80286 provides built-in multitasking support. A task switch operation saves the entire
80286 execution state (registers, address space, and a link to the previous task), loads a new
execution state, and begins execution on the new task. This operation makes use of a task-state
segment.

The GDT contains a task-state segment descriptor (TSSD). In addition to the base address of
the task-state segment (TSS), the TSSD contains an access field and a limit field. The task
register (TR) contains a task selector (an offset into the GDT) that points to the TSSD.

The following syntax displays the TSS.

TSS [(expression-for-selector)]

The TSS command without an operand displays the task-state segment whose task selector is in
TR. You can override the selector currently stored in the TR by including a selector with the

The PICETM System Personality Modules (Probes)

GLOBALDT

TABLE INDICATOR BIT=O
ACCESS I BASE I LIMIT

SEGMENT REGISTER

l SELECTOR I ACCESS I BASE I LIMIT I
LOCALDT

ACCESS I BASE I LIMIT

TABLE INDICATOR BIT=1

1470
Figure 4-4 The Segment Register and the Descriptor Tables

TSS command. The FICE system returns an error if you choose a selector beyond the range of
the GDT or one that points to an entry in the GDT that is not a TSSD.

Interrupts

The 80286 contains an interrupt descriptor table (IDT) that defines up to 256 interrupts. The
interrupt descriptor table register (IDTR) contains the base address and the limit of the IDT.
The relationship between the IDT and the IDTR is the same as the relationship between the
GDT and the GDTR.

Address Protection

The LDT descriptors and the segment descriptors contain access bits. Two of these bits identify
the descriptor protection level (the D PL). There are four protection levels: 0, 1, 2, 3. Level 0
has the most privilege, 3 the least.

The PICETM System Personality Modules (Probes) 4-17

The FICE pseudo-variable PCHECK detennines whether the FICE system operates with
80286 protection checking on or off. The default for PC HECK is TRUE.

PCHECK = TRUE

PC HECK = FALSE

the FICE system observes the 80286 protection rules when view
ing and modifying 80286 registers and accepting memory
addresses.

the FlCE system ignores the 80286 protection rules as much as
possible.

Real Mode and PCHECK

When the 8086 is in real mode and PCHECK is TRUE, you can neither display nor alter the
segment caches, the LDTR, the GDTR, the TR, and the IDTR. When the 8086 is in real mode
and PC HECK is FALSE, you can display and alter the segment caches, the LDTR, the GDTR,
the TR, and the IDTR.

Protected Mode and PCHECK

When the user program executes in protected mode and PCHECK is FALSE, the PICE system
ignores the 80286 protection rules when loading the 80286 registers and accessing memory.
You can display and alter the segment caches, the LDTR, the GDTR, the TR, and the IDTR.

When the user program executes in protected mode and PCHECK is TRUE, the FICE system
obeys the 80286 protection rules when loading the 80286 registers. You can display but not
alter the segment caches, the LDTR, the GDTR, the TR, and the IDTR. You must use a virtual
address to access memory. The FICEsystem obeys the 80286 protection rules.

For more information on address protection and PC HECK, see the Address protection and
PC HECK entries in the PIC£1'M System Reference Manual.

Memory Mapping for the 80286 Probe

4-18

The FlCE system with an 80286 probe supports the standard FICE memory mapping features
plus the GRANULARITY pseudo-variable.

With the 8086/8088 and the 80186/80188 probes, you must map HS and MB memory in
blocks of 1K bytes. If you try to map a block of less than 1K bytes, the FICE system rounds up
to the nearest 1K-byte block and prints a message telling you that it rounded the value. With the
80286 probe, however, you can map 1024 blocks of memory in either 1K blocks or 16K
blocks. When GRANULARITY = 1K, the upper four address bits are ignored by mapping
logic; thus, only the lower megabyte of memory is mappable. When GRANULARITY =
16K, the entire address space is available. Choose the block size by setting the GRANULAR
ITY pseudo-variable. To change the granularity, you must have all program memory mapped to
either USER or GUARDED.

The FICE system always maps OHS memory in blocks of 16K, even if GRANULARITY
is lK.

The PICETM System Personality Modules (Probes)

Support for Processor Extensions

The FlCE system with an 80286 probe supports the 80287 numeric processor extension with
debugging commands. With the FICE pseudo-variables you can display and modify 80287
registers in much the same way you display and modify 8087 registers with the 8086/8088
probe.

The 80287 requires the PEREQ and PEACK lines. The COREQ pseudo-variable determines
whether the 80286 probe recognizes its PEREQ and PEACK pins.

Displaying 80286 Registers and Flags

You can access 80286 registers and flags with PICE pseudo-variables. This section uses the
local descriptor table register as an example. The format of this register is as follows:

selector I access I base I limit

You can access each field separately with the following pseudo-varibles.

LDTSEL
LDTAR
LDTBAS
LDTLIM

The selector field
The access rights field
The base address field
The limit field

These pseudo-variables operate differently depending on the operating mode (real or protected
mode) and the setting of the PCHECK pseudo-variable. Similar pseudo-variables exist for the
other 80286 registers.

Real Mode and PCHECK = TRUE

When the 80286 probe is in real mode and PCHECK is TRUE, you cannot display or modify
any of the LDTR fields. The LDTR has no meaning in real mode.

Real Mode and PCHECK = FALSE

When the 80286 probe is in real mode and PCHECK is FALSE, you can display and modify
each LDTR field. The LDT has no meaning in real mode, but you can access it with FICE
commands. Changing the selector field with the LDT pseudo-variable causes the 80286 probe
to update the LDTR's explicit cache. Changing the selector field with LDTSEL does not cause
the 80286 probe to update the LDTR's explicit cache.

Protected Mode and PCHECK = TRUE

When the 80286 probe is in protected mode and PCHECK is TRUE, you can display each
LDTR field. The LDT has meaning when the 80286 is in protected mode. You cannot modify

The FICETM System Personality Modules (Probes) 4-19

the LDTR fields directly. Changing the selector field with the LDT pseudo-variable causes the
80286 probe to update the LDTR's explicit cache.

Protected Mode and PCHECK = FALSE

When the 80286 probe is in protected mode and PC HECK is FALSE, you can display and
modify each LDTR field. The LDT has meaning when the 80286 is in protected mode. Chang
ing the selector field with the LDT pseudo-variable causes the 80286 probe to update the
LDTR's explicit cache. Changing the selector field with LDTSEL does not cause the 80286
probe to update the LDTR's explicit cache.

Hardware and Software Considerations for the 80286 Probe

4-20

This section describes the unique characteristics of the 80286 probe. You should be aware of
these characteristics when designing prototype hardware and software and when emulating
your prototype. Separate subsections are provided on the following topics:

• Hardware Slipping Past a Breakpoint

• High-Address Bits Override

• Issuing a RESET Command when an 80287 Is Present

The RESET UNIT Command

The RESET REGs Command

The RESET ICE Command

• Resetting the 80286 Chip and the 80286 Probe

• Timing Differences between iAPX 286 and the PICETM 80286 Probe

• User Substrate Capicator and + 5 Volt Source

• Tracing Considerations

• User Socket

• Synchronizing Emulation to an External Event

• U sing the Initialization Segment

• Reading from and Mapping to Mapped Memory or I/O

• Pascal-286 and FORTRAN-286 array size

The FICETM System Personality Modules (Probes)

Hardware Slipping Past a Breakpoint

The are several considerations to note regarding breakpoint slipping:

• Hardware slipping beyond an execution breakpoint occurs in one instance. If the instruc
tion immediately preceding the instruction that causes the break results in an exception that
occurs late in the execution cycle, the break may occur after the first instruction in the
exception handling routine rather than after the expected instruction. You see a break at an
incorrect address. The trace buffer, however, will reveal the path taken by the
microprocessor .

• The 80286 probe can only break on instruction boundaries. Therefore, when the PICE
system recognizes a data breakpoint, the currently executing instruction must complete
before a break can occur.

• When the PICE system is emulating and a breakpoint is encountered, the trace information
may include information about the next instruction after the specified break. This can be
verified by examining the CS:IP registers. These registers will disagree with the last in
struction in the trace buffer. The trace information is incorrect; the processor actually does
break in accord with the criteria specified in the pre-emulation session.

• Unlike the 8086/8088 and 80186/80188 probes, the 80286 probe does not slip beyond a
breakpoint. However, it may break prematurely if an execution breakpoint is set to occur
on the instruction after a HLT instruction is executed. The break occurs at the completion
of the specified instruction .

• Do not set a breakpoint on the instruction after a HLT instruction because the message
displaying the cause of the break will be invalid if time-outs are enabled.

High-Address Bits Override

When you reset the 80286 microprocessor, the upper four address bits < A23-A20 > remain
high until the code-segment register (CS) is modified. When you set breakpoints, you may
want to specify these address bits as high. Do that by preceding the address with an asterisk
(*).

For example, the following commands set a breakpoint at the same address.

This command specifies a 24-bit absolute address. (The
leading zero is necessary to distinguish the number from a
symbol when the first digit is a letter.)

You can use a 24-bit absolute address in the following two
cases:

When SEL286 = TRUE and PCHECK = FALSE
When SEL286 = FALSE

How the FICE commands access memory does not de
pend on the setting of the protection-enabled flag in the
MSW.

The I2ICETM System Personality Modules (Probes) 4-21

This command specifies a virtual address.

If SEL286 = FALSE, the 80286 probe performs 8086
address translation. This results in a 20-bit physical ad
dress. The upper four address bits « A23-A20 » are
normally zero. The asterisk forces these bits high. If
SEL286 = TRUE, the 80286 probe performs 80286
address translation. The result is a 24-bit physical ad
dress. The asterisk forces the upper four address bits
(< A23-A20 >) high.

When SEL286 = TRUE, you can also represent an ad
dress as an LDT-selector:selector:offset triplet. The aster
isk forces the upper four address bits « A23-A20 >)
high.

*GOTfL*RlSS\.:JlEC'T'C).R This command specifies a symbolic address.

Assume that the user program defines this symbolic ad
dress as OFFFF:O in real mode. Ordinarily, this results in
the 20-bit physical address FFFFO. Address bits 23-20
are zero. The asterisk before the symbolic address forces
the upper four address bits (< A23-A20 >) high. The re
set vector for the 80286 is FFFFFO.

Issuing a RESET Command When an 80287 Is Present

Each of the following FICE commands activates the RESET pin on the probe's
microprocessor:

RESET UNIT
RESET REGS
RESET ICE

RESET REGS and RESET ICE always return the probe's microprocessor to real mode. Under
certain circumstances (as explained in the next section), RESET UNIT may also return the
probe's microprocessor to real mode.

None of these commands resets the 80287 numeric processor extension. Consequently, none of
them returns the 80287 to real mode.

Running your prototype with the 80286 and 80287 in different address modes will result in
invalid address translation. To return the 80287 to real mode, assert its RESET line. This must
be performed by prototype hardware.

The RESET UNIT Command

4-22

When you break emulation, the FICE system copies the probe's registers into a register buffer.
When issued from interrogation mode (from the * prompt), the FlCE command RESET
UNIT resets the probe's microprocessor but does not affect the register copies. When you

The I2ICETM System Personality Modules (Probes)

resume emulation, the PICE system reloads the probe's registers with the values in the register
buffer. Consequently, a RESET UNIT issued from interrogation mode does not appear to have
any effect on a user program.

When issued from interrogation mode, a RESET UNIT does not return the probe's micropro
cessor to real mode.

When issued from emulation mode (from the? prompt), a RESET UNIT causes a break and
returns the registers and their copies to the values they had just before the probe began
emulating.

Figure 4-5 shows returning the probe's microprocessor to real mode.

Interrogation Mode Emulation Mode
GO

PEF=O--------------~.~

.. PEF=1

?RESET UNIT
PEF=O~ .. ~------------~,

1613

Figure 4-5 Returning the Probe's Microprocessor to Real Mode

The RESET REGS Command

The FICE command RESET REGS asserts the RESET pin on the probe's microprocessor. The
RESET REGS command also clears the segment registers, clears the MSW, and loads the
CS:IP with the reset vector. It does this both for the probe's actual registers and for their copies
in the register buffer. Hence, entering the RESET REGS command returns the probe micro
processor to real mode.

The RESET ICE Command

The PICE command RESET ICE asserts the RESET pin on the probe's microprocessor and
reloads probe software. The RESET ICE command also clears the segment registers, resets the
pseudo-variables displayed by the STATUS command (BTHRDY, BUSACT, COENAB,
COREQ, CPMODE, IORDY, MEMRDY, PCHECK, RSTEN, SEL286, TRCBUS) to their
default values, clears the MSW, and loads the CS:IP with the reset vector. It does this for the
probe's actual registers and for their copies in the register buffer. Hence, entering the RESET
ICE command returns the probe microprocessor to real mode.

The PICETM System Personality Modules (Probes) 4-23

The RESET ICE command also returns the AX, BX, CX, and DX registers, the stack and base
pointers, and the source and destination indexes to the same values that the 80286 registers
have after reset.

Resetting the 80286 Chip and the 80286 Probe

The system clock provides the fundamental timing for the 80286 system. It is divided by two
inside the 80286 microprocessor to generate the processor clock (PCLK). The 80286 probe
also generates a signal called PCLK, as may the target system. The 80286 microprocessor's
internal divide-by-two circuitry can be synchronized to an external clock generator by a low-to
high transition on the RESET input to the 80286 microprocessor. Asynchronous PCLK phas
ing may cause bus contention between the target system and the FICE system. The following
three conditions can cause the phase of PCLK in the 80286 probe to differ from PCLK in the
target system.

•

•

•

Reset from the host (RESET ICE command, RESET UNIT command, UNIT HOLD com
mand, and when an auto reset is requested).

User hardware reset while the probe is in interrogation mode or when the RSTEN pseudo
variable is FALSE.

User system power-on reset.

If PCLK synchronization is a problem, use one of the following solutions.

• Design the PCLK generation circuit in the user system to be synchronized with status bits
rather than RESET. (The 82284 clock generator uses the status lines SO and S I to synchro
nize its PCLK output.)

• Before starting a debug session, enter emualtion and then reset the target system to syn
chronize the PCLKs. The PCLKs will remain synchronous until a RESET UNIT com
mand, a RESET ICE command, or a target system reset with the probe in interrogation
mode. If one of these conditions occurs, enter emulation and reset the target system to
restore synchronization.

When the 80286 probe is reset, the address and data buses are in a 3-state condition for the full
duration of the reset.

Timing Differences Between the iAPX 286 and the 80286 Probe

There are timing differences between the ways that the PICE 80286 probe and the 80286 chip
handle RESET and HOLD/HLDA. See the FICE data sheet for an explanation of these
differences.

User Substrate Capacitor and + 5 Volt Source

The prototype hardware need not supply a substrate capacitor or + 5 volts to the 80286 probe.

4-24 The PICETM System Personality Modules (Probes)

Tracing Considerations

If the 80286 probe releases the memory bus to a coprocessor (the ADMA 82258), it does not
record that coprocessor's bus activity in the trace buffer. Because the 80287 processor exten
sion uses the memory protection capabilities of the 80286, the 80286 probe does record 80287
instruction execution and bus activity in the trace buffer.

Cascade interrupt addresses are not recorded in the trace buffer. Connect the chips module to
the bus in the target system if you need this data.

User Socket

Your prototype system contains a socket into which you will connect the user cable. Intel
recommends using the Textoo1l3M socket 268-5400. See Appendix A for instructions on con
necting the 80286 probe to the user-prototype system.

Synchronizing Emulation to an External Event

The top of the buffer box has a user-accessible test point labeled SYNC START/. SYNC
START/ is useful because it gives you hardware control over when the probe enters emulation.

The SYNC START/ test point is a TTL input that is pulled up with a lK resistor. The SYNC
START/ input is normally high. When SYNC START/ is driven low and the GO command is
executed, the probe treats SYNC START/ as an auxiliary hold input (HLDA will not be acti
vated). HOLD is asserted and the 80286 no longer has access to the address and data buses.

To synchronize the probes in a multiple-probe system, first set the BUSACT and MEMRDY
pseudo-variables to FALSE in each probe. This prevents a bus time-out from occurring when
the 80286 microprocessor loses control of the address and data buses. Then, keep SYNC
START/ on each probe low and ensure that SYNC START/ for each probe goes high at the
same time. This lowers HOLD (de-asserts it) and returns the address and data buses to the
80286 microprocessor, allowing emulation to proceed. In this way you can ensure that each
probe enters emulation at the same time.

Because SYNC START/ gives you hardware control over when the probe enters emulation, it
is also useful in a single-probe system.

Using the Initialization Segment

The 80286 addresses memory with 24 address lines. After a reset, the 80286 is in real mode
and the most significant four bits of the address is high. The 80286 then addresses a 64K-byte
segment (called the initialization segment) at the top of the 16M-byte physical address space.
After the first long jump (which modifies the CS register), the most significant four bits go
low.

The result is that right after a reset, the 80286 temporarily has access to memory locations in
addition to the 1M byte provided in real mode.

The PICETM System Personality Modules (Probes) 4-25

A problem arises if you try to load the initialization segment with the FICE system 8086 loader
(your program is an 8086 OMF). Protected-mode users should construct 80286 OMFs and
hence use the 80286 loader.

If you still need to load the initialization segment with the 8086 loader, one method is to first
map the initialization segment to where you want the initialization code to reside. Then load the
initialization code into HS memory mapped within the lower 1M byte. Move your initialization
code with the BYTE command. The following example assumes that your initialization code
takes up no more than IK byte.

Another method is as follows. If the granularity is IK, you can load the initialization segment
by mapping the 64K-byte segment at the top of the 1M-byte address space to HS and then
entering the LOAD command. When the granularity is IK, the FlCE memory map has address
wrap-around. Each physical memory location responds to 16 different addresses. If you map
the 64K-byte segment from 1M - I to 1M - 64K to HS, you are also mapping the 64K-byte
segment from 16M -I to 16M -64K (the initialization segment) to HS, the 64K-byte segment
from 15M -I to 15M - 64K to HS, etc., to the same physical locations.

Reading from and Mapping to Mapped Memory or 1/0

When you map memory to HS or MB memory or when you map 110 ports to ICE, the bus to
the prototype is also active.

For example, assume that you map the first 32K bytes of memory to HS. When you read from
one of these memory locations, you also read from user memory. The FlCE system, however,
ignores the read data. When you write to one of these memory locations, you write to both the
HS location and the USER location. Even though the memory locations are mapped to FICE
memory, the user memory corresponding to those locations does not remain unchanged.

The same holds true for 110 ports. If you write to an 110 port mapped to ICE, the write data
appears on the screen or as an PICE variable in a debug procedure as well as at the user 1/0
port (if it exists).

Pascal-286 and FORTRAN-286 Array Size

4-26

The FICE system does not support Pascal-286 and FORTRAN-286 array size greater than
64K.

The 12ICETM System Personality Modules (Probes)

5 COPROCESSOR SUPPORT --------------------inter-
A coprocessor is a microprocessor that enhances the functions of the CPU.

The 8087 and 80287 numeric data processors (NDP) perform arithmetic and comparison oper
ations on a variety of numeric data types as well as executing numerous built-in transcendental
functions.

The 8089 inputloutput processor (lOP) performs input and output operations for the CPU. An
lOP combines the attributes of a CPU with those of a flexible DMA controller.

The distinction is sometimes made between a coprocessor and a processor extension. A copro
cessor can gain control of the memory and data buses, plus it uses the HOLD and HLDA
signals. A processor extension uses the PEREQ and PEACK signals. That makes the 80287 a
numeric processor extension, while the 8087 and 8089 are coprocessors.

Mapping Restrictions When Using Coprocessors

When the 8087 is used as an external coprocessor (with the 808618088 and 80186/80188
probes), memory accessed by the external 8087 must be mapped to USER. For the 8089, all
program memory accessed by the 8089 must be mapped to USER.

The PHANG Pseudo-Variable

Use the PHANG pseudo-variable to detect 808618088 and 80186/80188 coprocessor hangs
(the PHANG pseudo-variable is not supported on the 80286 probe). Setting PHANG to TRUE
causes a system time-out when the coprocessor has been granted the bus and remains inactive
for longer than one second. The default is TRUE.

The 8087180287 Numeric Data Processors

The 8086/8088 and the 80186/80188 probes provide debugging support for a prototype system
containing the 8087. The 8086/8088 probe supports an 8087 as an internal or an external
coprocessor; the 80186/80188 supports an 8087 as an external coprocessor. When an 8087 is
used with the 80186/80188 probe, it requires the 82188 coprocessor interface chip.

The 80286 probe processor provides debugging support for a prototype system containing the
80287.

5-1

The FlCE commands provide access to the 8087's and 80287's stack, status registers,and
flags. The FlCE system's disassembly and trace features extend to 8087 and 80287 instructions
and data types.

How the FlCE system treats the 8087 depends on the two pseudo-variables COENAB and
CPMODE and on the GET87 command. How the PICE system treats the 80287 depends on
the pseudo-variables CPMODE and COREQ.

The following sections introduce the COENAB, CPMODE, and COREQ pseudo-variables and
the GET87 command. Table 5-1 summarizes the interactions between the COENAB,
CPMODE, and COREQ pseudo-variables. The following subsections describe further the use
of the COENAB and CPMODE commands. See also the PIC£lM System Reference Manual
(and the section in Chapter 4 of this manual entitled "Issuing a RESET Command when an
80287 Is Present") for further information on the coprocessor commands.

Table 5-1 Coprocessor Pseudo-variable Interaction

CPMODE = 1 CPMODE = 2

COREO = T PEREO/PEACK are recognized PEREO/PEACK are recognized
only during emulation. during both emulation and

interrogation.

COREO = F PEREO/PEACK off. PEREO/PEACK off.

--COENAB = T HOLD/HLDA or RO/GT are HOLD/HLDA or RO/GT are
recognized only during recognized during both emulation
emulation. and interrogation.

COENAB = F HOLD/HLDA or RO/GT off. HOLD/HLDA or RO/GT off.

The COENAB Pseudo-Variable

5-2

The coprocessor enable (COENAB) pseudo-variable enables or disables an external coproces
sor. The COENAB pseudo-variable has the value TRUE or FALSE. Setting COENAB to
TRUE enables an external coprocessor, and the probes respond in the following ways.

8086/8088 probe recognizes its request/grant lines (MAX mode) or hold/hold ac
knowledge lines (MIN mode).

80186/80188 probe recognizes its hold/hold acknowledge lines.

80286 probe recognizes its hold/hold acknowledge lines.

Setting COENAB to FALSE disables an external coprocessor, and the probes ignore their
request/grant or hold/hold acknowledge lines.

Coprocessor Support

For the 8086/8088 and 80186/80188 probes, COENAB's default value is TRUE. For the
80286 probe, COENAB's default value is FALSE. Note that, for the 8086/8088 and 80186/
80188 probes, when the FICE software is invoked, it checks the request/grant or hold/hold
acknowledge lines before the COENAB pseudo-variable's default value is set.

COENAB and an External Coprocessor

For an 8086/8088 or 80186/80188 probe, if COENAB is FALSE and your program contains a
coprocessor instruction, the FICE system will hang. The coprocessor does not run, but the
coprocessor instruction still causes the FICE probe to wait for an acknowledgement. If the
FICE system hangs in this way, recover by resetting first the coprocessor (with the hardware
reset button) and then the probe (with the RESET UNIT command).

COENAB and an Internal Coprocessor

If you use an internal coprocessor with your 8086/8088 probe, always set COENAB to TRUE.
If COENAB is FALSE, the internal coprocessor still runs, but the coprocessor may get out of
synchronization with the probe.

The CPMODE Pseudo-Variable

Use the CPMODE pseudo-variable to select external coprocessor modes before starting emu
lation; CPMODE has no effect on an internal coprocessor. The CPMODE pseudo-variable has
the value 1 or 2. For the 8086/8088 and 80186/80188 probes, the default is 1. For the 80286
probe, the default is 2.

When CPMODE is 1 and COENAB is TRUE, the probe's microprocessor recognizes its
request/grant or hold/hold acknowledge lines only during emulation. For the 8086/8088 and
80186/80188 probes, if a request is issued while the probe is not emulating, the request is
stored and the grant occurs as soon as emulation begins. When CPMODE is 2 and COENAB is
TRUE, the probe's microprocessor recognizes its request/grant or hold/hold acknowledge
lines at any time.

For the 8086/8088 and 80186/80188 probes, CPMODE also determines how the FICE system
treats modifications to the 8087 registers made while the FICE system is in interrogation
mode. After you enter the GET87 command, the PICE system maintains copies of the 8087
registers in a register buffer. When you read and write 8087 registers, you read and write the
copies in this buffer.

If you resume emulation after modifYing one or more 8087 registers and CPMODE is 2, the
FICE system loads the actual 8087 registers with the modified values from the register buffer
(which is external emulation memory). If you resume emulation after modifYing 8087 registers
and CPMODE is 1, the FICE system does not load the actual 8087 registers with the modified
values from the register buffer. Emulation resumes with the old values.

Coprocessor Support 5-3

The COREQ Pseudo-Variable

The COREQ pseudo-variable enables or disables an external numeric extension and is specific
to the 80286 probe. When COREQ = TRUE,. the 80286 probe recognizes its PEREQ and
PEACK lines. Setting COREQ = FALSE disables the external numeric extension, and the
80286 probes does not recognized the PEREQ and PEACK lines.

The GET87 Command

5-4

The GET87 command is specific to the 8086/8088 and 80186/80188 probes. You must enter
the GET87 command to tell the PICE system that an 8087 coprocessor is present. The 8087
must be enabled (COENAB must be TRUE) for the PICE system to execute the GET87
command.

The following restrictions apply when you use the GET87 command with an external
coprocessor:

• The probe must not be emulating and CPMODE must be 2.

• Include with the GET87 command the starting address of a 11O-byte buffer. The FICE
system uses this area as an intermediate buffer in saving and restoring the 8087 register
data. The original contents of this buffer are preserved between save and restore opera
tions. User's data is restored in the buffer after the GET87 command is entered. This
buffer must be mapped to USER and not specified as read-only.

The following restrictions apply when using the GET87 command with an internal coprocessor
(8086/8088 probe only):

• The probe must not be emulating. The value of CPMODE is not significant.

• Do not include an address with the GET87 command. The PICE system uses reserved
system memory rather than USER memory for the register buffer. If you do include an
address, the PICE system ignores it.

• The FlCE system always loads the actual 8087 registers with the values from the buffer
when you resume emulation after modifying one or more 8087 registers.

Coprocessor Support

6 MULTIPLE-PROBE SYSTEMS -------------------inter-
This chapter describes the operation of a multiple-probe FICE system. It introduces the FICE
commands that control the system break and trace lines and explains how to arm the FICE
system, assert the system break and trace lines, enable a unit, and write debug procedures for
use with multiple probes

FICETM System Units

Up to four FlCE chassis may be daisy-chained together in an FlCE system. Each chassis is
called a unit and has a unit number from 0 to 3. Each unit may have its own probe and can
communicate with one or more prototype systems and with any other unit.

By default, the current unit is the unit closest to the host that has a probe attached. (An FICE
chassis may have the iLTA without a probe.) The unit numbers increase as you move away
from the host. The next chassis is unit 1, then unit 2, and finally unit 3.

The FICE system commands operate on the current unit. The following example changes the
current unit with the UNIT pseudo-variable.

You can temporarily change the current unit for the duration of a command with a backslash.
The following example displays the modules on unit 1 and on unit 0 (the current unit).

Units communicate using the system break (SYSTRIG) and system trace lines (SYSTRACE).
When the SYSTRIG line enters a unit, it becomes the local signal SYSBREAKIN. When the
SYSTRACE line enters a unit, it becomes the local signal SYSTRACEIN. Figure 6-1 illus
trates the system break and trace lines in a multiple-probe configuration.

For a unit to assert SYSTRIG, the FlCE system must first be armed. The PICE system does
not need to be armed to assert SYSTRACE. For a unit to recognize an assertion of either of the
system lines (allow SYSBREAKIN or SYSTRACEIN to be asserted), that unit must be
enabled.

6-1

~r------ SYSr'G ---------,

II I -- I I '-----r--- I I
r--,-- l

HOST SYSBREAKI~ kYSBREAKI~ ISYSBREAKIJ ~YSBREAKIN
DEVELOPMENT

SYSTEM SVSTRACEIN ~ SYSTRACEIN - - SYSTRACEIN - ~ SYSTRACEIN

UNITO UNIT 1 UNIT2 UNIT 3

SYSTRACE 1471

Figure 6-1 A Multiple-Probe PICETM System

Arming the FICETM System

6-2

The FlCE system is armed by default. You can arm and disarm the FlCE system with the
following:

•
•

•

The SYSTEM ARM/DISARM command.

An event specification-you can specify the keyword SYSARM in an event register or in
the GO command.

A system specification-you can specify the keyword SYSARM in a system register or in
the GO command.

You cannot arm and disarm the system with a break specification. You arm the !'ICE system,
not individual probes. When the system is armed, all probes are armed.

The following example shows how to disarm the PICE system with the SYSTEM ARM/
DISARM command.

*SYSTEMOISARM

The following example shows how to arm the PICE system with a system specification that is
stored in a system register called armO.

Before beginning emulation with an event or system specification that arms the FlCE system,
disarm the system with the SYSTEM DISARM command.

Arming the FlCE system is not the same as arming a breakpoint. To arm a breakpoint, use an
arm specification. Include the arm specification in an arm register or as part of the GO com
mand. Refer to Chapter 3 for a discussion of arm specifications and arm registers.

Multiple-Probe Systems

Asserting the System Break and Trace Lines

You can assert the system break line with an event specification or a system specification. You
can specify the keyword SYSTRIG (for asserting the system break line) or the keyword
SYSTRACE (for asserting the system trace line) in an event register, system register, or in the
GO command.

You can assert the system trace line with a trace specification. You can specify the keyword
SYSTRACE in a trace register or as part of the GO command.

The following example shows how to assert the system trigger line with a system specification.
This system specification is stored in a system register called trig 1.

The emulating unit asserts the system trigger line when the user program begins to execute
statement #22. Whether asserting the system trigger line causes a unit to break depends on
whether the unit is enabled. If the system trigger line is asserted, then any unit that has its
system break line enabled will break.

When you use SYSTRACE in a multiprobe environment with various probe frequencies, the
slower probes may miss the system trace event for one instruction. Therefore, specify a range
of addresses, such as one of the following:

SYSTRACE AT OUTSIDE address-start LENGTH 50

SYSTRACE AT XOXllOXY

Enabling FICETM System Units

By default, each unit is enabled for both the system break line and the system trace line. You
can enable and disable each line separately. First set the current unit to the unit you want
enabled and then enter the ENABLE command. The following example shows how to enable
the system break line for unit 1.

The local signal corresponding to SYSTRIG is SYSBREAKIN.

The previous example changed the current unit to 1. The current unit remains 1 until you
explicitly change it back. With the backslash, you can change the current unit only for the
duration ofthe command.

Multiple-Probe Systems 6-3

The following .:xampk deals with two units. Unit 0 arms the system when its program executes
statement # I ~, l' nit I triggers the system when its program executes statement #22. Unit o and
unit I r('cllgnizL' the system trigger line and break when it is asserted.

*IJEFUIIE

Symbolic Support for Multiple Probes

6A

The FlCE system provides symbolic support for each of its probes in a multiple-probe system.
You can refer to program variables by name in each unit. The program symbol table resides in
the host development system.

The following example loads unit 0 with a program called progO and unit I with a program
called prog I .

Assume that progO contains a program variable called pvarO and that progl contains a program
variable called pvarl. The following example sets pvarO equal to pvarl.

The following example shows that if the current unit is 0, you need specity only the \ 1, not
the \0.

1 * current unit is 0*1

If the current unit is I, you must specify both the \0 and the \ 1 or verity that the first variable
belongs to the current unit. For cxample, whcn the FICE system sees the following
assignment:

the FlCE system looks for both program variables on unit O. The following two assignments
are equivalent.

*UNJT
001
*\~:Pto9();pVarO' =0~;~r()~~.~"atl * :prClg1.pv~rl.··,;\Q:prpgQ:pvaro

Multiple-Probe Systems

The following example illustrates inter-probe communication. Assume that unit 0 and unit 1
are emulating a program (progO for unit 0 and progl for unit I) and that you want unit 0 to
break when unit 1 writes a variable called pvarl. You do not want unit 1 to break.

*
*
* * *

Writing Debug Procedures for Multiple Probe Systems

Debug procedures that handle multiple probe systems must know which probes are emulating.
The WAIT function returns the unit number of the probe breaking emulation. Once the break
has occurred and if no probe is emulating, the WAIT function returns the value 255T.

The following example assumes that probe 0 and probe I are both emulating. Probe 0 breaks.
WAIT then returns the value O. WAIT continues to return 0 until probe I breaks. WAIT returns
the value 1 when probe 1 breaks; once the break has occurred, WAIT returns the value 255T
because no probe is emulating.

Note that the prompt is determined by the current unit. The prompt is ? when the current unit is
emulating. When unit 0 breaks, the FICE system returns its unit number.

o
*Wllj]':

When the probe (unit I) breaks, the PICE system returns its unit number. Entering WAIT
returns the value 255, indicating that emulation is not occurring.

1
*Wltifi
255

The following debug procedure sets the current unit to 0, then sends unit 0 into emulation. Unit
o will emulate until the user program writes location 0031 :OOIOH. The procedure then sets the
current unit to 1 and waits until unit 0 breaks before sending unit 1 into emulation.

Multiple-Probe Systems 6-5

WAIT is also useful in single-probe systems when, for example, the program runs for a long
time before breaking. The following debug procedure starts emulation, waits until the break,
and then prints out the microprocessor registers.

· *
· *

· *
· *

Iqriij
TEAT

Without the REPEAT loop, the PICE system would try to execute the REGS command during
emulation and return an error message.

The CAUSE command displays the reason for the last emulation break. The CAUSE message
lists the location and reason for the break along with the unit number, the debug register that
caused the break, the value of the chips, and trace buffer overflow (if applicable). The follow
ing example displays the reason emulation stopped.

*OA,!;;fse
Probe 0 stopped at : CMAKER#10 because of guarded access

Bus address = 008274

Synchronization Between Units

Some applications require that different probes begin emulating at the same time. If you start
two probes emulating by changing the unit number and entering the GO command, the first
probe begins emulating before the second. To synchronize the probes, you need to use the
SYNC START/ test point available through a small opening in the side of the probe buffer box.
This test point is an input to the probe.

The 808618088 and 80186/80188 Probes

SYNC START/ is normally high. When SYNC START/ is low and the probe enters emulation,
READY is low, and the probe undergoes a READY hang when fetching the first instruction.
You can cause this hang by holding SYNC START/ low.

To synchronize the probes in a multiple-probe system, first set the MEMRDY pseudo-variable
to FALSE in each probe. This prevents a memory time-out from occurring during the first
instruction fetch. Then, keep SYNC START/ on each probe low. Ensure that SYNC START/
for each probe goes high at the same time by connecting each SYNC START/ test point to one

Multiple-Probe Systems

of the two clipsout lines. These are output from the FICE system and are initially low. Then,
enter the GO command for each probe. Each probe hangs after the first instruction fetch.
Then, set the clipsout line. to 1. All the probes enter emulation simultaneously.

The 80286 Probe

SYNC START/ is normally high. When SYNC START/ is low and the probe enters emulation,
the probe treats SYNC START/ as an auxiliary hold input (HLDA will not be activated).
HOLD is asserted and the 80286 no longer has access to the address and data buses.

To synchronize the probes in a multiple-probe system, first set the BUSACT and MEMRDY
pseudo-variables to FALSE in each probe. This prevents a bus time-out from occurring when
the 80286 microprocessor loses control of the address and data buses. Then, keep SYNC
START/ on each probe low and ensure that SYNC START/ for each probe goes high at the
same time. This lowers HOLD (de-asserts it) and returns the address and data buses to the
80286 microprocessor, allowing emulation to proceed. In this way you can ensure that each
probe enters emulation at the same time.

Multiple-Probe Systems 6-7/6-8

A 121CETM SYSTEM NON·HOST
HARDWARE INSTALLATION -------------------int:er-

The hardware installation procedure for the PICE system depends on the host development
system, the number of FlCE chassis in the system, and the system options. Begin installation
of your FlCE system using the installation instructions in this appendix. The appendix has
sections on the following host-independent topics.

• Installing the FICE instrumentation chassis

• Installing the emulation base module

• Installing personality modules and user cables

• Installing the emulation clips module

• Installing the iLTA logic timing analyzer option

• Host installation information

The 12 1CETM System Instrumentation Chassis Installation

Refer to Figures A-I, A-2, and A-3 when installing the instrumentation chassis. Perform the
following steps for each instrumentation chassis in your PICE system.

1. Unpack the chassis and set it in the desired location.

Provide at least six inches (15 centimeters) of clearance on all sides to ensure proper
cooling.

2. Set the line voltage switch to the appropriate value for your area: 120 for 90-132 VAC
operation or 240 for 180-264 VAC operation. (Use a small screwdriver as a lever.)

I WARNING I
Changing the power cord involves hazardous voltages and currents. Only qualified
personnel should change the power cord.

A-I

NEUTRAL: WHITE
----'===I:~!!lV (OR LIGHT BLUE)

POWER: BLACK
(OR BROWN)

GROUND: GREEN
........ ..;:;;;::::\.,~~ (OR GREEN WITH

YELLOW STRIPE)

1149

Figure A-I Power Cable

3. If the system location is in an area where the power outlets do not match the power plug on
the instrumentation chassis power cord, remove the power plug and install the appropriate
power connector.

Refer to Figure A-I when installing a new power connector.

Do not connect the PICE system to the power outlet yet.

1927

Figure A-2 Circuit Breaker on the Rear Panel of the PICETM System Instrumentation Chassis

A-2 FICEnl System Non-Host Hardware Installation

o

o

o

ICE·LINKIN C __ p"
C5 J2 ~r----"C"'E."'''N'''''"",OU''-' --'p" !

O==ON==O=O=O=O
I S1 $2 $3 54 55 I

TERMI~ATlON
SWITCHES

LAST OR ONLY UNIT _ ON POSITION
ALL OTHER UNITS - OFF POSTION

o

o

o

o o

o 1150

Figure A-3 Thrmination Switches on the Rear Panel of the PICETM System
Instrumentation Chassis

To avoid overloading the line circuit, ensure that each PICE instrumentation chassis
is on a separate line circuit and that the host development system is on a separate
line circuit.

The PICE chassis draws a maximum of 12 amps at 90-132 V and 6 amps
at 180-264 V. A Series III development system with two double-density disk
drives and an expansion chassis draws a maximum of approximately 1O.S amps at
90-132 V.

4. Verify that the circuit breaker CBl (see Figure A-2) on the instrumentation chassis rear
panel is OFF. Connect the line cord to an appropriate power outlet.

S. For single-chassis FICE systems, ensure that all five termination switches are ON (up) (see
Figure A-3).

For multiple-chassis FICE systems, ensure that the last (the highest-numbered) instrumen
tation chassis has all five termination switches ON (up). All other chassis in a multiple
chassis PICE system must have all termination switches OFF (down) (see Figure A-3).

6. Remove the front panel from the instrumentation chassis and set it aside.

Remove the foam packing behind the front panel (and save it for future storage and
shipment). Powering up the FICE instrumentation chassis without removing the
foam will damage the equipment.

I2ICETM System Non-Host Hardware Installation A-3

Emulation Base Module Installation

The emulation base module consists of a break/trace board, a map-I/O board, the buffer base
assembly, and an emulation clips module. The breakltrace board, the map-I/O board, and the
buffer base assembly are already installed. Figure A-4 shows the location of the break/trace
board and the map-I/O board in the FICE instrumentation chassis.

For your reference, the map-I/O board is jumpered at EI-E2 and E3-E4 (see Figure A-5).

In this section one installation task is described: checking buffer box jumpering.

Buffer Base Assembly Jumpering

Ensure that the buffer board is jumpered correctly (see Figure A-6).

E5-E6 For 16-bit emulation (8086, 80186, or 80286 microprocessors).

E4-E5 For 8-bit emulation (8088 or 80188 microprocessors).

If you have a mUltiple-chassis system, check the jumpering for each buffer board supplied.

Installing Personality Modules and User Cables

There are three kinds of personality modules (also called probes): the 8086/8088 probe, the
80186/80188 probe, and the 80286 probe. Separate subsections are provided to explain instal
lation of each probe type and each probe user cable.

Installing the 121CETM System 8086/8088 Emulation Personality Module

A-4

The 8086/8088 emulation personality module consists of the 8086/8088 personality board, the
user cable, and the buffer box cover. The 8086/8088 emulation personality module connects to
the buffer base assembly and configures the generic portion of the FICE system to emulate a
specific processor.

The emulation personality board contains jumper selections that define the level of 8087 sup
port. The coprocessor is internal when an iSBC 337 MULTIMODULETM board is installed on
the 8086/8088 emulation personality board. When the FICE system is running with an internal
coprocessor, the LED on the buffer box labeled 8087 lights up. The coprocessor is external
when an iSBC 337 MULTIMODULE board is installed in the user system.

In Tables A-I and A-2, the jumpers appearing in bold type indicate the default jumper configu
ration for the 8086/8088 emulation personality board. Refer to Tables A-I and A-2 and Fig
ures A-7, A-8, and A-9 when installing the 8086/8088 emulation personality module. Many of
the steps described here may have already been performed; you need only verify them.

1. Two ribbon cables are included with the 8086/8088 personality module. Use these cables
to replace the two interconnect cables attached to the 8086/8088 probe buffer board (the
probe buffer board is shipped with the emulation base module). The new ribbon cables
minimize cross talk. Use Figure A-7 together with the following text to replace the cables.

J2ICETM System Non-Host Hardware Installation

(7A1P1)
J1

LOGIC TIMING
ANALYZER
BOARD

HIGH-SPEED

/

MEMORYBOARD

BREAK, TRACE

/

BOARD

(W5P1)
J1

Figure A-4 Instrumentation Chassis Boards

E1-E2 }
E3-E4

JUMPERED FOR NORMAL OPERATION.

Figure A-5 Jumper Positions on the Map-I/O Board

PICETM System Non-Host Hardware Installation

MAP-I/O

. /BOARD

1201

A-5

A-6

FOR THE 80861
8088 PROBE,
THESE CABLES
MUST BE
REPLACED. SEE
THE 8086/8088
PROBE
INSTALLATION
SECTION.

Figure A-6 Jumper Positions on the Buffer Board

Table A-I 8086/8088 Emulation Personality Module Jumper Configurations

8086 8088 8088 Piggyback Board

Jumper MAXIMIN MIN MAX Normal" 8086/88 MIN 8086/88 MAX

W3 E8-E9 E7-E8 E7-E8
W4 E12-E13
WS E14-E15
W6 E16-E17 E17-E18 E17-E18
W8 E22-E23 E23-E24 E23-E24
W9 E26-E27 E2S-E26 E26-E27
W11 E10-E11
W12 E55-E56 ES6-ES7 ES6-ES7

E2-E1 E2-E3
ES-E4 ES-E6

• Do not change these jumper configurations.

PICETM System Non-Host Hardware Installation

Coprocessor

internal
coprocessor

no internal
coprocessor

PROBE BUFFER
BOARD

J6

Table A-2 Jumpering for 8087 Support

Location of
User Plug

user system

loopback

user system
loopback

NMI Source

from user system
from 8087 INTR
none
from 8087 INTR

from user system
none

PROBE BUFFER
BOARD

W1

E1-E2
E1-E2
E1-E2
E1-E2

E2-E3
E2-E3

PERSONALITY
BOARD

Jumpers

W7

E19-E20
E20-E21
E19-E20
E20-E21

E19-E20
E19·E20

Figure A·7 New Cable Installation for the 8086/8088 Probe

PICETM System Non-Host Hardware Installation

W10

E28-E29
E28-E29
E28-E29
E28-E29

E29-E30
E29·E30

2109

A-7

A-S

W7

P2

P3

\

P4

P5

PROBE BUFFER CABLE

Figure A-8 8086/8088 Emulation Personality Module Installation

1615·8

The two cables that you will replace connect the two halves of the probe buffer box. One
half of the buffer box contains the probe buffer board (the words "PROBE BUFFER" are
silk-screened on it); this half of the buffer box is shipped with the emulation base module.
The other half of the buffer box contains the personality board (the words "8618 PERSON
ALITY" are silk-screened on it); this half of the buffer box is shipped with the 8086/8088
personality module. Jack numbers specified in the following instructions are also silk
screened on the boards.

a) Remove the existing cables connected to J5 and J6 of the probe buffer board.

b) Locate the bag containing the translucent ribbon cables. Each cable is marked with the
number 165199-00 1.

c) Insert one of the new translucent cables at J6 on the probe buffer board, aligning the
red stripe on the cable with pin 1 of the J6 connector (pin numbers are also silk
screened on the boards).

IMPORTANT

Ensure that the side of the cable connector from which the cable emerges faces
away from the buffer box edge (see Figure A -7).

FICETM System Non-Host Hardware Installation

d) Bend the other end of the cable so that you can insert it at 12 of the personality board.

e) Repeat steps 3 and 4 for the second cable, connecting the cable from J5 of the probe
buffer to 11 of the personality board.

2. Ensure that plug W8P2 of the user cable is connected to 13 of the personality board.
Ensure that plug W8P3 of the user cable is connected to J4 of the personality board (see
Figure A-8).

3. Remove any unnecessary slack. Secure the user cable to the buffer box cover.

4. Refer to Tables A-I and A-2 and Figure A-9 and install the indicated jumpers on the
personality board.

1203

Figure A-9 Jumper Positions on the 8086/8088 Personality Board

PICETM System Non-Host Hardware Installation A-9

5. If your emulator configuration calls for an 8087 processor used as an internal coprocessor,
perform the following steps to install the iSBC 337 MULTIMODULE board in the U52
socke~ of the personality board. See Figure A-9.

a. Remove the 8086 or 8088 microprocessor from the socket at U52.

b. Stack three 40-pin sockets (packaged in an accessory kit) in the existing socket at U52.

c. Stack three single-pin sockets in the existing socket at E53.

d. Stack the remaining three single-pin sockets in the existing socket at E54.

e. Install the microprocessor in the PI socket ofthe iSBC 337 MULTIMODULE board.

f. Install the iSBC 337 MULTIMODULE board in sockets U52, E53, and E54.

6. Install the supplied processor chip (8086 or 8088) for your emulator configuration in the
U52 socket of the personality board (or PI socket of the iSBC 337 MULTIMODULE
board). This CPU chip is specially selected to work in PICE systems.

NOTE

The microprocessors supplied with the probes are special PICE components. To
avoid timing problems, do not use standard production microprocessors with the
PICE system.

7. Connect the two halves of the buffer box and secure with two screws, lockwashers, and
washers.

The 8086/8088 personality board contains a 74F244 IC installed in a socket at location U30
that causes a 3.2 mA input current (IlL) on the CLK user pin. This load may be excessive in
some user applications.

If loading on the CLK pin is critical for applications of 8 MHz and below, replace the 74F244
IC (at location U30 of the 8086/8088 personality board) with the 74S244 packaged with the
8088 microprocessor. This change reduces the input current (IlL) from 3.2 mA to 0.8 mAo In
applications between 8 MHz and 10 MHz, the 74F244 IC must remain installed in U30.

Installing the 8086/8088 User Cable

A-tO

When you are first learning about the PICE system, you will want to have the user cable looped
back to the top of the buffer box for use with the PICE tutorial. Later, when you are ready to
connect your probe to your prototype hardware (also called target hardware), return to this
section for information on connecting the user cable to prototype hardware.

Figure A-lO shows the 8086/8088 user cable and gives its length and the height of the user
plug.

To guard against electrical noise problems, the two ground pins (1 and 20) on the 8086/8088
probe are connected. The connection is at the end of the user cable in the microprocessor
carrier. When connecting the user cable to prototype hardware or to the top of the buffer box,
take care that pin 1 is in the correct position. Damage may result if the cable is connected

IZICETM Systtml NOll-Host Hardware Installation

I-
------,

BUFFER
BOX

10.9"1

PIN 1

1211

Figure A-lO 8086/8088 User Cable Dimensions

incorrectly (see Figure A-ll). On some versions a dot identifies the position on the buffer box
socket that is intended to contain pin 1 of the user cable. Connect the cable to the top of the
buffer box now; note the following caution before you make the connection.

Connecting the user cable to the top of the buffer box in the wrong orientation shorts
+ 5V to ground on the personality board. Connecting the user cable to prototype hard
ware in the wrong orientation shorts + 5V on the prototype to ground on the personality
board. Refer to Figure A-II for the correct orientation of the user cable.

When you want to connect your user cable to prototype hardware, you must determine whether
sufficient room exists for placement of the user cable. If the prototype hardware resides in a
card cage with a minimum inter-board separation of 0.56 inches (the MULTIBUS card cage),
the slot above the prototype board must remain empty to allow access for the 8086/8088 user
cable.

If you have multiple FlCE chassis, install the emulation clips on the other chassis.

This completes installation of the 8086/8088 probe. If you have no other personality modules
to install, go now to the emulation clips installation section that follows the section on installing
the 80286 user cable.

Installing the 121CETM System 80186/80188 Emulation Personality Module

The 80186/80188 emulation personality module consists of the 80186/80188 personality
board, the user cable, and the buffer box cover. The 80186/80188 emulation personality mod
ule connects to the buffer base assembly and configures the generic portion of the FICE system
to emulate a specific processor. Refer to Figures A-12 and A-13 when installing the 80186/
80188 personality module. Many of the steps described here may have already been per
formed; you need only verify them.

1. Connect the ribbon cable from J5 of the buffer board to 11 of the personality board (see
Figure A-12).

FleET" System Non-Host Hardware Installation A-ll

A-12

PIN 20-----.

1210

Figure A-ll The Correct Orientation of the 8086/8088 User Cable

2. Connect the ribbon cable from J6 of the buffer board to 12 of the personality board (see
Figure A-12).

3. Install the indicated jumpers for the emulator configuration (see Figure A-13):

E17-E18 for 16-bit emulation (80186)
E16-E17 for 8-bit emulation (80188)

4. Verify that the proper microprocessor chip (80186 or 80188) for the emulator configura
tion is in the U19 socket of the personality board. Note that this is a bond-out chip available
only from Intel. The U 19 socket is on the personality board; the PGA socket on top of the
buffer box is reserved for the user cable in loopback mode.

The microprocessors supplied with the probes are special FICE components. To
avoid problems and potential damage, do not use standard production microproces
sors with the FlCE system.

5. Connect the two halves of the buffer box and secure with two screws, lockwashers, and
washers.

J2ICEnl System Non-Host Hardware Installation

P2

USER CABLE

W7

P4

PS

------PROBE BUFFER CABLE

1615·C

Figure A-12 80186/80188 and 80286 Emulation Personality Module Installation

E17 -E18 for l6-bit emulation (SOlS6)
E16·E17 for 8·bit emulation (80188)

Figure A-13 Jumper Positions on the 80186/80188 Personality Board

12ICETM System Non-Host Hardware Installation

1204

A-13

Installing the 80186/80188 User Cable

A-I ..

When you are first learning about the PICE system, you will want to have the user cable looped
back to the top of the buffer box for use with the PICE tutorial. Later, when you are ready to
connect your probe to your prototype hardware (also called target hardware), return to this
section for information on connecting the user cable to prototype hardware.

Figure A-14 shows the 80186/80188 user cable and its pertinent dimensions.

Prepare now to connect the user cable to the top of the buffer box. You must orient the user
socket on the prototype board so that pin I is toward the edge connectors and on the right when
facing the front of the card cage (see Figure A-14). Read the directions in the following caution
note.

When you connect the user cable to the socket assembly, be careful not to damage the
tab by pin I. Install the user cable as follows (see Figure A-IS):

I. Carefully place the user cable in place while observing that the pin 1 tab is not
damaged by the end of the cable.

2. Slide the retaining clip in place.

3. Turn the retaining bail to secure the user cable in place.

BUFFER
BOX

1-----12.9"' -------1

D~~PIN1
EDGE
CONNECTORS

+-

I ____ :::--. ___ ~,....-"-;:;~::::~·- PIN 1

(I U 1 °4~a~~I~!IiIi~IIiIll!~IiHO~';2",
HORSE SHOE LID J' ~"' 11111 II T tJ TEXTOOLl3M SOCKET

18 MILS ';;;;;;7;;;
PGA CHIP CARRIER

Figure A-14 80186/80188 User Cable Dimensions

1214

PICK'" System Non-Host Hardware Installation

USER
CABLE

SOCKET
__ ASSEMBLY

Figure A-IS Connecting the 80186/80188 User Cable

When you want to connect your user cable to prototype hardware, you must determine whether
sufficient room exists for placement of the user cable. If the prototype hardware resides in a
card cage with a minimum inter-board separation of 0.56 inches (the MULTffiUS card cage),
the slot above the prototype board must remain empty to allow access for the 80186/80188 user
cable.

NOI'E

When you use the 80186/80188 or 80286 probe, Intel recommends that the prototype
contain the Textoo1l3M socket 268-5400.

If you have multiple PICE chassis, install the emulation clips on the other chassis.

This completes installation of the 80186/80188 probe. If you have no other personality mod
ules to install, go now to the emulation clips installation section that follows the section on
installing the 80286 user cable.

FICETMSystem Non-Host Hardware Installation A-15

Installing the FICETM System 80286 Emulation Personality Module

The 80286 emulation personality module consists of the two 80286 personality boards, the
user and ground clip cables, and the 80286 buffer box cover. The 80286 emulation personality
module connects to the buffer base assembly and configures the generic portion of the FlCE
system to emulate a specific processor. Refer to Figure A-12 when installing the 80286 emula
tion personality module. Many of the steps described here may have already been performed;
you need only verify them.

I. Connect the ribbon cable from 15 of the buffer board to 1 I of the personality board (see
Figure A-12).

2. Connect the ribbon cable from 16 of the buffer board to 12 of the personality board (see
Figure A-12).

3. Ensure that plugs P2 and P3 of the user cable are connected to 14 of the personality board.
Ensure that plugs P4 and P5 of the user cable are connected to 13 of the personality board
(see Figure A-12).

4. Connect the two halves of the buffer box and secure with two screws, lockwashers, and
washers.

5. Install the printed circuit board (PCB) located at the end of the user cable into the loopback
socket assembly that protrudes from the module assembly plastic. Do not remove the
socket loopback assembly from the module assembly.

Do not install anything except the user cable in the loopback socket.

Installing the 80286 User Cable

A-16

When you are first learning about the FICE system, you will want to have the user cable looped
back to the top of the buffer box for use with the FICE tutorial. Later, when you are ready to
connect your probe to your prototype hardware (also called target hardware), return to this
section for information on connecting the user cable to prototype hardware.

Figure A-16 shows the 80286 user cable and its pertinent dimensions.

Connect the cable to the top of the buffer box now.

When you want to connect your user cable to your prototype hardware, consider whether
enough room is available for the user cable. If the prototype hardware resides in a card cage
with a minimum inter-board separation of 0.56 inches (the MULTIBUS card cage), the slot
above the prototype board may need to remain empty to allow access for the 80286 user cable.

The slot above the prototype need not be empty if the user socket on the prototype has pin I
toward the edge connectors and on the right when facing the front of the card cage (the A

PIeEn! System Non-Host Hardware Installation

• A ORIENTATION DOES NOT REQUIRE EXTRA SLOT

• B ORIENTATION REQUIRES EXTRA SLOT

BUFFER
BOX

12.9"

HORSE SHOE LID

~
PIN 1

PIN 1

g PIN 1
<l-

EDGE

-~ CONNECTORS
<1--

~ PIN 1

1!l

~
i i!llllllllllllH 0.32"

~"III'jIIIIIT
TEXTOOLl3M SOCKET

.1 B MILS 'iiii;;l'll}'
PGA CHIP CARRIER

Figure 1\-16 80286 User Cable Dimensions 1215

orientation). The slot ahove the prototype must he empty if pin I of the user socket is in any
other position (the B orientations) hecause the B orientations re4uire additional room for a
hend in the cahle (see Figure A-16).

The A and B orientation cautions do not take into account the pin-grid-array (PGA) socket
plugged into the leadless-chip-carrier (LCC) socket at the end of the user cahle. This socket
adds 0.116 inches. If you retain the PGA socket at the end of the cable, even the A orientation
may re4uire an empty slot.

NOTE

When you use the 80186/80188 or 80286 prohe, Intel recommends that the prototype
contain the Textool/3M socket 268-5400.

This completes installation of the 80286 probe. If you have no other personality modules to
install, go now to the emulation clips installation section.

FICET\! System Non-Host Hardware Installation A-17

Installing the Emulation Clips Module

A-18

After your personality modules are installed, perform the following steps to install the emula
tion clips module.

I. Connect the terminator assembly to the emulation clips module (P2 to 12) (see Figure
A-I7).

2. Install as many microhooks as needed for the system on the wires of the terminator assem
bly (see Figure A-17).

3. Feed the WSPI end of the emulation clips cable through the external strain relief, then
through the left-hand slot at the lower front of the instrumentation chassis, through the
internal strain relief, and connect WSPI to jack 11 on the breakltrace board (see Figures
A-4 and A-IS).

If you have multiple FlCE chassis, install the emulation clips on the other chassis.

This completes installation of the emulation clips module. If you have the iLTA logical timing
analyzer option, go to the next section. If you do not have this option, remove any unnecessary
slack from the probe cables and any other chassis cables. Secure the cables to the bottom of the
instrumentation chassis with the supplied cable clamps; then skip the next section and go to the
Host Installation section.

EMULATION
CLIP

Figure A-17 Assembling the Emulation Clips Module

1958

PICETM System Non-Host Hardware Installation

a Ion Chassis Cables Figure A-1S Instrument t'

FleETM Syst N em on-H tH os ardware Installation A-19

Installing the ilTA logic Timing Analyzer Option

Each instrumentation chassis can have only one iLTA module. IThe iLTA option is not available
for Model 800 or IBM PC hosts. I Refer to Figures A-4 and A-18 when you install the iLTA
module.

I. Install the iLTA board in the top slot of the FICE instrumentation chassis.

The iLTA board must be installed in the top slot to ensure proper cooling.

2. Route thc two iLTA probc cables through the external strain relief on the bottom of the
instrumentation chassis and then through the cable slots at the front of the instrumentation
chassis base. Route both iLTA probe cables through the left-hand cable slot (together with
thc emulation clips module cable-see Figure A-18).

3. Connect the 7 A I P I connector of the channel 0-7 probe cable to jack 1 I of the iLTA board
(see Figures A-4 and A-18).

4. Connect the 8A I P I connector of the channel 8-F probe cable to jack 12 of the iLTA board
(see Figures A-4 and A-18).

5. Remove any unnecessary slack from the probe cables and any other chassis cables. Secure
the cables to the bottom of the instrumentation chassis with the supplied cable clamps.

6. Connect a terminator assembly on the end of each of the iLTA probes.

7. Install the microhooks needed for the system on the wires of the terminator assembly.

NOTE

With an iLTA unit installed, there may be some degradation of ESD and AC line
noise immunity.

Host Installation Information

A-20

You have now completed the installation of host-independent portions of the overall FlCE
system installation process. Next you must install host-dependent portions.

If your host system has a non-standard terminal, go now to Appendix B for information on
configuring your terminal.

If you have an IBM PC host, refer now to Appendix C. If you have an Intel host you did not
receive the Appendix C for IBM PC hosts. Instead, you received Appendixes C through G that
concern Intel hosts. Table A-3 shows to which appendix (or appendixes) owners of Intel hosts
should now refer.

FICET" System NOli-Host Hardware Installation

Table A-3 Intel Host Installation Appendixes

Hardware Installation Software Installation
Your Host Appendix Appendix

Model BOO C F

Stand-alone Series III D E

Series III on a Network D F

Series IV G G

I'ICKI \I System Non-Host Hardware Installation A-21/A-22

B CONFIGURING THE 121CETM SYSTEM
FOR NON·STANDARD HOST TERMINALS -------------------inl:er-

The FICE system is designed to run on either an Intel host development system with a standard
Intel CRT or on an IBM PC/AT or PC/XT with a standard terminal. The codes expected from
the terminal or sent to the terminal are those used by standard Intel or IBM terminals.

You must configure a non-standard terminal for use with the FICE system. Do this by creating
a CRT file that contains configuration commands that change the terminal codes to those
expected by FICE software.

If your terminal is one commonly used with Intel equipment, check The AEDIT User's Guide
(order number 121756) for the listings of some commonly used CRT configuration files.

Include the CRT configuration file when you invoke FICE software. If you name the file
12ICE.CRT, PICE software automatically configures the terminal to its specifications. Other
wise, you must specify the file in the invocation line. For example, the following command for
a stand-alone Series III host invokes FlCE software and configures the terminal according to
the specifications in the CRT file, 15 lOT. CRT.

Creating a CRT File

Check the user's manual that comes with the terminal for the codes expected and generated by
the terminal. To create a CRT file, compare the terminal's behavior with the following PICE
software expectations:

• ASCII codes 20H through 7EH display some symbol requiring a one-column space. The
carriage return (ODH), linefeed (OAH), and backspace (08H) perform their usual
functions.

• There are cursor key output codes and CRT cursor move input codes for the cursor func
tions down, home, left, right, and up. There are also cursor key input codes for clear
screen, clear rest of screen, and clear line.

• The home position is the upper left corner .

•
•

The terminal accepts a blank-out code that blanks out the contents of the screen .

The CRT has 22 to 25 lines.

• The screen scrolls. When the cursor is on the bottom line of the screen and you press
RETURN (or Enter) or the line wraps around from the right margin, the top screen line is
deleted and the screen rolls up one line.

B-1

• The FICE software automatically generates a linefeed each time the carriage return is
entered. The terminal sho!lld not generate a linefeed with a carriage return. In some termi
nals. this function can be switched on and off.

Configuration Commands

B-2

Configuration commands modify the environment and the communication link between FlCE
software and the keyboard and the screen. There are two types of configuration commands.
The A command modifies the way data is presented on the screen. The AF command modifies
the codes to and from the terminal.

The format of the A command is as follows:

Acode = value

Where:

A is the command name.

code represents a single character specifying which parameter is to be changed.

value is a hexadecimal number except for the number of lines shown on the display.

The following examples use the A command.

A\I;;;'22 changes the number of lines on the screen to 22.

ASi#7 changes the keyboard BREAK character to CTRL-G (which has a hexadeci
mal value of 07).

The format of the AF command is as follows:

AFcode = value

Where:

AF

code

value

is the command name.

is a two-character string specifying the function to be changed.

depends on which code is specified. Every character entered after the equal
sign is interpreted as part of the value, including spaces.

The following examples use the AF command.

AFMOi#OA specifies that the code required to move the cursor down the screen is a
single linefeed (OAR).

AFERiI'; specifies that the terminal being used does not have an erase-rest-of
screen code.

Table B-1 lists the valid codes and their values for the A configuration. Table B-2 lists the AF
configuration command values.

Configuring the PICETM System for Non-Standard Host Terminals

Table B-1 The A Configuration Command Values

Series III
&IBM PC· Series IV

Acode Defaults Defaults Description

A8 1B 18 ESCAPE - a new value should be assigned for
terminals that require the ESCAPE key for control
sequences.

AO 0 20 The offset value to be added to the row and
column numbers following the cursor control
sequence of the AF command AFAC. The value
must be entered as a single hexadecimal byte.
The setting has no effect until cursor addressing
mode is set with AFAC.

AR 7F* 7F RUBOUT - deletes the character to the left of the
cursor.

AV 25 25 The number of lines displayed on each screen.
The possible values are 22, 23, 24, or 25. Screens
smalier than 25 lines have a smaller command
area; the text area remains the same at 20 lines. It
is entered as a decimal value.

AW T* F T (true) indicates that the terminal generates a
carriage return and linefeed if a character is
printed in column 80 (a wrapping terminal).

F (false) indicates that the terminal is not a
wrapping terminal.

AX T F Cursor addressing format. The cursor address is
an ordered pair of (x,y) coordinates. The format
can be (column,row) or(row,column).

T sets the format as (column,row).
F sets the format as (row,column).

"The defaults for the IBM PC/AT and PC/XT are the same as those for the Series III, with two exceptions. The
IBM PC default values for AR and AWare as follows:

AR = 08
AW = F

Configuring the PICETM System for Non-Standard Host Terminals B-3

B-4

Table D-2 The AF Configuration Command Values

Series III
&IBM PC' Series IV

AFcode Defaults Defaults Description

The setting has no effect until cursor addressing
mode is set with the AF command, AFAC.

AFAC 00' 1 B19 Code used as the cursor movement command
by the terminal. When the command is given,
the coordinates of the new cursor address follow
the code. The coordinates are given in the order
specified by the AX command and with the
offset specified by the AO command.

AFBK 20 20 Code that blanks out a single screen location.

AFCD 1C 88 Cursor down code.

AFCH 10 81 Cursor home code.

AFCL 1F 89 Cursor left code.

AFCR 14 8A Cursor right code.

AFCU 1E 87 Cursor up code.

AFDL (null)' (null) Delete line code. Used to speed up the display
on the Hazeltine 1510 and similar terminals.

AFEK 1B4B (null) Code to erase the entire line.

AFEL (null) 1 B11 Code to erase the rest of the line following the
cursor.

AFER 1B4A 1 B10 Code to erase the rest of the screen following
the cursor.

AFES 1B45 1B05 Code to erase the whole screen.

AFIG (null) (null) A byte to be ignored whenever it is received from
the keyboard as input. If AFIG is set to 00, all
bytes are accepted from the keyboard. This
character is needed on terminals that have
multiple character key codes for UP and DOWN,
such as the Hazeltine 1510. AFIG should be set
to the lead-in (tilde), and UP and DOWN should
be set to the second letter of the cursor up or
down key code. This avoids problems caused by
lack of a typehead buffer.

'The defaults for the IBM PC/AT and PC/XT are the same as those for the Series III, with three exceptions.
THe IBM PC default values for AFAC, AFDL, and AFIL are as follows:

AFAC = 1B47
AFDL = 1B49
AFIL = 1B4C

Configuring the PICETM System for Non-Standard Host Terminals

Thble B-2 The AF Configuration Command Values (continued)

Series III
& IBM PC· SerleslV

AFcode Defaults Defaults Description

AFIL (nUll)· (null) Insert line code. Used for reverse scrolling.

AFM8 00 00 Code to move the cursor to the beginning of the
line.

AFMO 1C 1802 Code to move the cursor down.

AFMH 10 1808 Code to move the cursor to the home position.

AFML 1F 1804 Code to move the cursor to the left.

AFMR 14 1803 Code to move the cursor to the right.

AFMU 1E 1801 Code to move the cursor up.

AFTM 16 16 CTRL-V - this command is unique to 121CE
systems. It sets the control character that
enables you to turn the menu display on and off.

AFXA 1 1 CTRL-A - delete right.

AFXF 6 80 CTRL-F - character delete.

AFXU 15 15 CTRL-U - undo command.

AFXX 18 18 CTRL-X - delete left.

AFXZ 1A 82 CTRL-Z - clear line.

·The defaults for the IBM PC/AT and PC/XT are the same as those for the Series III, with three exceptions.
THe IBM PC default values for AFAC, AFDL, and AFIL are as follows:

AFAC = 1847
AFDL = 1B49
AFIL = 1B4C

Configuring the 12ICETM System for Non-Standard Host Terminals B-S/B-6

GLOSSARY
................................... RJ ..

Address

Arm

Binary Operator

Breakpoint

Emulation

Event

Event Machines

Execution

Expression

An address is an unsigned value that corresponds to a location in pro
gram memory. The PICE system recognizes absolute addresses, virtual
addresses, and symbolic references to addresses.

The arm condition is an optional part of a break/trace sequence in the
PICE system. A set of arm conditions can be used to ensure that a
system break is not possible until all required qualifying conditions are
satisfied.

A binary operator acts on two operands to create a single operand. In
addition to the normal Boolean, relational, and arithmetic binary opera
tors, the PICE system also recognizes a pointer operator (:) that creates
an address pointer using two 16-bit values.

Breakpoints are specific points in a sequence of events or in the flow of
a program that are used to stop emulation.

The PICE system is in emulation when a user program is running.

An event in the PICE system is any condition that can be described with
PICE command syntax. Typical events are the execution of an instruc
tion or the accessing of a memory location. The PICE command lan
guage uses events to describe conditions that specify such functions as
breaking emulation and enabling trace collection.

The event machines implement single or multiple event recognition and
cause a trigger when all defined event conditions are recognized.

There are two types of execution in the PICE system: PICE command
execution and user program execution. PICE command execution is
complete when the prompt (* or ?) is returned at the system console.
User program execution is under control of the PICE system and is
complete when the user program encounters a break or the HALT com
mand is issued.

A series of operands and operators that yields a numeric, Boolean, or
string value.

Glossary-l

Glossary-2

Forcing Character

"

History Buffer

Interrogation Mode

Keywords

Map

Partition

Probe

Probe
Microprocessor

Pseudo-variable

Real time

Strings

Symbolic
References

Syntax

The forcing character in the FICE command syntax is the double-quote
(") unary operator. When the forcing character precedes a keyword, the
PICE system interprets the keyword as a user program symbol.

A buffer that stores recent commands. The commands can be recalled
usingtheup-arrow key.

The FlCE system is in interrogation mode whenever it is not in emula
tion mode, that is, it is in interrogation mode whenever the asterisk
prompt (*) appears. In emulation mode, the prompt is a question mark
(?).

Keywords have reserved definitions within the FICE command lan
guage. See the Keywords entry in the PICE"M System Reference
Manual.

The FICE system uses a memory map to direct processor address space
to physical memory locations and to control access to mapped program
memory during emulation.

A partition in PICE command syntax is a range of addresses.

Probe refers to the emulation personality module of the FlCE system.
The probe consists of the hardware and software required to make the
PICE system emulate a particular processor in the prototype system.

The probe microprocessor is the CPU chip installed in the emulation
personality module of the FICE system. For example, using the sup
plied 8088 CPU as the probe processor, the emulation personality mod
ule is tailored to emulate 8088 processors.

A pseudo-variable is an PICE-system-defined variable that cannot be
removed by the user.

The term real time in FICE system emulation means that the prototype
processor is operating at the design speed and no extra wait-states are
added for mapped memory accesses.

In the FICE command language, a string is one or more characters
enclosed in apostrophes (single quotes). Strings are stored as 8-bit
ASCII values.

In the FICE command language, symbolic references are user-defined
strings that correspond to program addresses or to variables.

The FlCE command syntax is a formal set of rules that defines the
requirements for command entry.

Glossary

Syntax Menu

Tracing

U nary Operator

Unit

Glossary

A menu at the bottom of the screen that indicates what command ele
ments are legal during command entry.

The PICE system keeps a record of trace information each time it
enters emulation.

A unary operator is an operator that acts on a single operand. The PICE
system recognizes the NOT, +, -, 1/, and. unary operators.

Each configured chassis in the PICE system is a unit of that system.

Glossary-3/Glossary-4

INDEX
-~"""""""""""""""""""".irnJ"

$ pseudo-variable, 3-30
* high-address-bits override, 4-21
* prompt, 2-3, 3-3, 3-28
+ 5-volt source and user substrate capacitor, 80286 probe, 4-24
\ (backslash) command, 6-1, 6-3
lO-MHz 8086 probe MAX mode operation, 4-7
87 INT test point, 4-5
8086 environment, 1-12
8086/8088 personality board jumper positions, A-9
8086/8088 personality module (probe): 4-1

considerations, 4-8
installation, A-4
jumper configurations, A-6
user cable dimensions, A-ll
user cable installation, A-lO

8087 coprocessor: 4-4, 4-5, 4-6, 5-1
installation, A-lO
support, jumpering for, A-lO
test point, 4-5

8089 I/O processor, 5-1
80186/80188 personality board jumper positions, A-13
80186/80188 personality module (probe): 4-7

considerations, 4-8
installation, A-II
user cable dimensions, A-14
user cable installation, A-14

80286 microprocessor/80286 probe reset, 4-23
80286 personality module (probe): 4-12

80287 numeric processor extension, 4-19, 5-1
address protection, 4-17
address translation, 4-13
considerations, 4-20
global descriptor table (GDT), 4-14, 4-16
interrupts, 4-17
installation, A-16
local descriptor table (LDT), 4-14, 4-17
memory mapping, 4-18, 4-26
multitasking, 4-16
registers and flags, 4-19
task-state segment, 4-16
virtual address translation, 4-14
user cable dimensions, A-17
user cable installation, A-16

Index Index-l

Index-2

80286/8086:
address translation, 4-21, 4-22
loader, 4-25

80287 numeric processor extension, 4-19, 4-22, 5-1
82188 coprocessor interface chip, 5-1

Aborting commands, 3-3
Access codes, 3-39
Accessories of the PICE system, 1-7
Address/data (AD) bus float, 8086/8088 probe, 4-7
ADDRESS memory type, 3-15
Address:

even and odd, 3-44 thru 3-55
protection, 80286 probe, 4-17
translation, 80286 and 8086, 4-13, 4-21, 4-22
wrap-around, 8086/8088 probe, 4-2
wrap-around, 80286 probe, 4-26

AEDIT Vl.O editor, 3-10
ALE:

pulse stretching, 80186/80188 probe, 4-12
signal, 8086/8088 probe, 4-7

APPEND command, 3-13
Arm:

registers, 3-36
specifications, 3-35
windows, 3-35, 3-36

Arming the PICE system, 6-2
ARM REG command, 3-9, 3-35, 3-36
ASM memory template, 3-15 thru 3-17

Base configuration of the PICE system, 1-4 thru 1-6
BCD memory template, 3-15
Block commands, 3-7
BOOLEAN memory template, 3-15
Break:

and trace lines, 3-26, 6-1, 6-3
registers, 3-36
windows, 3-36

Breakltrace board, 1-5, 1-10, A-4
Breaking: 3-34 thru 3-37

and the RESET signal, 8086/8088 probe, 4-6
in the middle of an instruction:

8086/8088 probe, 4-3
80186/80188 probe, 4-9

on even and odd addresses, 3-44 thru 3-55
Breakpoint slipping: 3-43,4-3,4-9,4-20,4-21

8086/8088 probe, 4-3
80186/80188 probe, 4-9
80286 probe, 4-20, 4-21

Index

Index

Breakpoint specifications, 3-34
BRKREG command, 3-9, 3-35, 3-36
BTHRDY pseudo-variable: 3-21

8086/8088 probe, 4-4
80186/80188 probe, 4-11

Buffer base assembly: 1-10, A-4
jumpering, A-4

Buffer board, 1-5, 1-10
Buffer, command history, 3-5
Bus float (data/address), 8086/8088 probe, 4-7
Bus inactive time-out, 3-34
BUSACT pseudo-variable: 3-21, 3-34, 6-7

80286 probe, 4-25
BYTE memory template, 3-15
Byte:

reads from even and odd addresses, 3-51
writes from even and odd addresses, 3-47

Byte-wide ports, 3-22, 3-24

Cable, internal host installation, see Intel host hardware installation appendix
Cables, system interface, 1-11
Cascade interrupt address, 80286 probe, 4-24
CAUSE command, 6-6
CHAR memory template, 3-15
Checkout and installation, see appendixes
Clips emulation, 3-25
Clipsin lines, 3-25
CLIPS OUT command: 3-25

8086/8088 probe, 4-5
Clipsout lines: 3-25

8086/8088 probe, 4-5
Clock low time, 8086/8088 probe, 4-7
Clock, processor (PCLK), 80286 probe, 4-23, 4-24
CNTL-C, see CTRL-C
CNTL-V, see CTRL-V
COENAB pseudo-variable, 5-2, 5-3
Command:

history buffer, 3-5
entry,3-3
language of the PICE system, 1-14
menu, 3-4
nesting level, 3-8
repetition, 3-17
syntax, xiv

Commenting commands, 3-4
Communicating between probes, 6-5
Communication board, 1-4, 1-8
Compiling a source file, 3-27
CONCAT function, 3-6

Index-3

Index-4

Concatenating strings, 3-6
Confidence tests: see host hardware installation appendix

commands, see host hardware installation appendix
messages and flags, see host hardware installation appendix

Configuration commands, B-2
Configuration file, see software installation appendix
Configuration of the PICE system, 1-4
Configuring the PICE system for non-standard host terminals, B-1
Continuing commands to another line, 3-3
Conventions, syntax, xiv
Converting memory types, 3-6
Coprocessor: A-4

8086/8088 probe, 4-4, 4-6
80286 probe, 4-24
hangs, 5-1, 5-3
inactive time-out, 5-1
interface chip, 5-1
memory access time-out, 3-34, 5-1
support, 5-1

COREQ pseudo-variable, 4-19, 5-2, 5-4
COUNT block command, 3-7
CPMODE pseudo-variable: 5-2, 5-3, 5-4

8086/8088 probe, 4-6
CRT file: 3-2

creation, B-1
CTRL-C,3-3
CTRL-V, 3-5, 3-29
Current execution point, 3-30
Current unit, 6-1, 6-3

Dataladdress bus float, 8086/8088 probe, 4-7
DC characteristics of the emulation clips, 1-19
DEBUG flag, confidence test, see host hardware installation appendix
Debug:

object manipulation commands, 1-14
objects, 3-8, 3-31, 3-32
procedures, 3-8, 3-23, 3-37, 6-5
registers, 3-8, 3-9, 3-30, 3-35, 3-37
variables, 3-8, 3-9, 3-16

Debugging, 3-16
DEFINE command, 3-6, 3-8, 3-9, 3-16, 3-36 thru 3-52, 6-3
DEN signal, 8086/8088 probe, 4-7
Designing hardware, 1-2
Designing software, 1-2
Development process, microcomputer, 1-1
Diagnostic:

disks, 1-15
messages and flags, see host hardware installation appendix
software, see host hardware installation appendix

Index

Index

DIR command, 3-31
DO-END block, 3-7, 3-8
DOS operating system, 1-14
DT/R signal, 8086/8088 probe, 4-7
DWORD memory template, 3-15

EDIT command, 3-10
Editing external files, 3-11
Editors, 3-4, 3-10
Emulating programs, 3-28, 3-30, 3-34
Emulation:

base module, 1-10
base module installation, A-4

break, reason for, 6-6
buffer board, 1-10
clips, 1-05, 1-7,3-25
clips assembly, I-II
clips module installation, A-18
commands, 1-14
mode, 8086/8088 probe, 4-6
mode, 80286 probe, 4-23

Emulation personality modules (probes), I-II
Emulation personality module installation:

8086/8088 probe, A-4
80186/80188 probe, A-ll
80286 probe, A-16

Enabling PICE units, 6-3
Environment commands, 1-14
ERRONLY flags, see host hardware installation appendix
Errorlhelp disk, 1-15
ESC key used to invoke the screen editor, 3-10
Even addresses: 3-41

breaking, 3-44
byte reads, 3-51
byte writes, 3-47
word reads, 3-48
word writes, 3-44

Event:
machines, 1-4, 1-10,3-35,3-37
registers, 3-37
specifications, 6-2

Execution event machine (XEM), 3-35
Execution point, 3-30
EXIT command, 3-32
Exiting the PICE system, 3-32
Extending a command to another line, 3-3
External coprocessors, 5-1, 5-3, 5-4
External file editing, 3-11
EXTINT memory type, 3-15

Index-5

Index-6

File:
editing, external, 3-11
handling, 3-12
handling commands, 1-14

Final hardware checkout, see host hardware installation appendix
Flags and registers, 80286 probe, 4-19
Fully qualified references, 3-17
Functions, 1-14

GET87 command, 5-2, 5-3, 5-4
Global descriptor table (GDT) for the 80286 probe, 4-14, 4-16, 4-17
GO command, 3-30 thru 3-32, 3-34, 3-44 thru 3-53, 6-2, 6-3
GRANULARITY pseudo-variable, 80286 probe, 4-18, 4-26
Guarded memory, 3-19, 4-18

HALT command, 3-3, 3-21
Hang condition, 80186/80188 probe, 4-10, 4-11
Hangs, coprocessor, 5-3
Hardware:

base configuration, 1-4
components, 1-8
design, 1-2
installation, see appendixes
overview, 1-8
slipping on a breakpoint, 3-43, 4-20, 4-21
slipping past a breakpoint, 80286 probe, 4-20

Hardware/software integration, 1-3
High-address-bits override, 80286 probe, 4-21
High-speed (HS) memory: 1-11, 3-19, 4-18

8086/8088 probe, 4-4
History buffer, 3-5
HOLD/HLDA signal:

8086/8088 probe, 4-6
80286 probe, 4-25

Host installation information, A-20
Host interface board: 1-4, 1-8

installation, see host hardware installation appendix
Host requirements for supporting the FICE system, 1-17
Host software, 1-6, 1-12, 1-15

disks, 1-15

FICE system:
accessories, 1-7
and microcomputer development, 1-1
base configuration, 1-4
command language, 1-14
command menu, 3-4
hangs, 80186/80188 probe, 4-10, 4-11
installation and checkout, see appendixes

Index

Index

introduction, 1-3
options, 1-6
software installation, see software installation appendix
software invocation, 1-1, 3-28
specifications, 1-17
tutorial, 1-16,2-1

IBM PC/XT and PC/AT:
confidence tests, see ffiM installation appendix
configuration requirements, 1-18
memory requirements, see IBM installation appendix
operating system, 1-14
software installation, see ffiM installation appendix

IF block command, 3-7
INCLUDE command, 3-13
Including files, 3-13
Index of tutorial topics, 2-13
iNDX operating system, 1-14
Initialization segment, 80286 probe, 4-25
Installation and checkout, see appendixes
Installation:

8086/8088 probe, A-4
8086/8088 probe user cable, A-lO
80186/80188 probe, A-11
80186180188 probe user cable, A-14
80286 probe, A-16
80286 probe user cable, A-16
host information, A-20
piggy-back board on 8086/8088 probe, A-10

INSTR function, 3-7
Instrumentation chassis: 1-4, 1-8, A-I

installation, A-I
INTA signal, 8086/8088 probe, 4-7
INTEGER memory template, 3-15
Integrating hardware and software, 1-3
Intel Logic Timing Analyzer (iLTA): 1-3, 1-6, 1-11

disks, 1-16
Intellec Series III:

confidence tests, see Series III hardware installation appendix
configuration requirements, 1-18
internal host cable, see Series III hardware installation appendix
memory requirements, see Series III hardware installation appendix
operating system, 1-13
software installation, see software installation appendix

Intellec Series IV:
confidence tests, see Series IV hardware installation appendix
configuration requirements, 1-18
internal host cable, see Series IV hardware installation appendix
memory requirements, see Series IV hardware installation appendix
operating system, 1-14

Index-7

Index-8

software installation, see software installation appendix
Interface cables, 1-11
Interface chip, 5-1
Internal coprocessors, 5-1, 5-3, 5-4
Internal host cable installation, see Intel host hardware installation appendix
Inter-probe communication, 6-5
Interrogation mode:

80286 probe, 4-22
8086/8088 probe, 4-6

Interrupt line (INTR), 8086/8088 probe, 4-4
Interrupts, 80286 probe, 4-17
Invoking the PICE system software, 3-1, 3-28
110 access time-out, 3-34
110 mapping: 3-21, 3-29

80286 probe, 4-26
110 simulation:

from the console, 3-22
with a debug procedure, 3-23

I/O space management, 3-19
IORDY pseudo-variable, 3-21, 3-34
ISIS operating system, 1-13
ISTEP command: 3-17

8086/8088 probe, 4-4

Jumper configurations on the 8086/8088 personality module, A-6
Jumper positions:

on the 8086/8088 personality board, A-9
on the 80186/80188 personality board, A-13

Jumpering for 8087 support, 8086/8088 probe, A-7

Line editor, 3-4
Link file locating, 3-27
Linking the object file, 3-27
LIST command, 3-12
List files, 3-12
LITERALLYs, 3-5, 3-9
LOAD command, 3-14, 3-16, 3-29, 3-32, 3-38, 6-4
Loader, 80286/8086,4-25, 4-26
Loading programs, 3-29, 3-32
Local descriptor table (LDT) for the 80286 probe, 4-14, 4-19
Locating the link file, 3-27
Log files, see List files
Logic probe pods, 1-7
LONGINT memory template, 3-15
LONGREAL memory template, 3-15

Macro files, 3-2, 3-9
Manuals, PICE system, xii
MAP command, 3-19 thru 3-21,3-29,3-38,3-44,3-48

Index

Index

Map-IIO board, 1-4, 1-10
MAPIO command, 3-21 thru 3-24,3-29
Mapping considerations, 80186/80188 probe, 4-10
Mapping 1/0: 3-21 thru 3-24, 3-29

80286 probe, 4-26
Mapping memory: 3-19, 3-29

80286 probe, 4-18, 4-26
MAX mode, 808618088 probe, 4-6, 4-7
Memory access time-out, 3-34
Memory management, 3-19
Memory mapping: 3-19

80186/80188 probe, 4-10
80286 probe, 4-18, 4-26

Memory requirements, see host hardware installation appendix
Memory type conversion, 3-6
Memory types, 3-15, 3-18
MEMRDY pseudo-variable: 3-21, 3-34, 6-7

80186/80188 probe, 4-11
80286 probe, 4-25

Menu, 3-29
MENU command, 3-5, 3-29
Microcomputer development process, 1-1
Microhook, 1-7
MIN mode, 8086/8088 probe, 4-6, 4-7
MIlO signal, 8086/8088 probe, 4-7
Model 800:

confidence tests, see Model 800 hardware installation appendix
configuration requirements, 1-17
host/chassis cable, see Model 800 hardware installation appendix
memory requirements, see Model 800 hardware installation appendix
operating system, 1-13
software installation, see software installation appendix

MRI5{; signal, 8086/8088 probe, 4-7
Mtypes, 3-15, 3-18
MULTIBUS (MB) memory, 1-8,3-19,4-18
MUltiple commands on a line, 3-4, 3-9
Multiple-unit FICE system, 1-6
Multi-probe systems, 6-1
Multitasking, 80286 probe, 4-16

NDS-II, loading and running FICE system software on, see software installation appendix
Nesting level of commands, 3-8
Non-maskable interrupt (NMI), 8086/8088 probe, 4-4, 4-6
Non-maskable interrupt (NMI) line, 8086/8088 probe, 4-4
Non-standard terminal configuration, B-1
Numeric processor extension, 80286 probe, 4-22
NUMlOSTR function, 3-6

Object file linking, 3-27
Odd addresses: 3-41

Index-9

Index-lO

breaking, 3-44
byte reads, 3-51
byte writes, 3-47
word reads, 3-48
word writes, 3-44

OHS memory, see optional high-speed memory
Operating systems, 1-12
Optional high-speed (OHS) memory, 1-11, 3-19, 4-18
Options of the FlCE system, 1-6

Partially qualified references, 3-18
Pathname, 3-12
PC HECK pseudo-variable: 4-17, 4-19, 4-20

80286 probe, 4-21
Performance, FICE system, 1-18
Personality board, 1-5
Personality module installation

8086/8088 probe, A-4
80186/80188 probe, A-11
80286 probe, A-16

Personality module jumper positions, 80186/80188 probe, A-13
PHANG pseudo-variable, 3-21, 3-34, 5-1
Piggyback board installation, 808618088 probe, A-lO
POINTER memory template, 3-15, 4-13, 4-15
PRINT command, 3-38 thru 3-55
Probe: 4-1

buffer box, 1-5
disks, 1-15
electrical characteristics, 1-19
hangs, 80186/80188 probe, 4-10, 4-11
installation, 8086/8088 probe, A-4
installation, 80186/80188 probe, A-11
installation, 80286 probe, A-16
jumper positions, 80186/80188 probe, A-13
MIN mode operation, 808618088 probe, 4-7
software, 1-12

Probe-specific commands, 1-14
PROC command, 3-8
Processor clock (PCLK), 80286 probe, 4-23, 4-24
Program:

emulation, 3-30, 3-34
files, 3-14
loading, 3-29
prologue, 3-16
stepping, 8086/8088 probe, 4-4
variables, 3-16, 3-17, 3-18

Prologue of program, 3-16
Prompt (*) for FICE system software, 2-3, 3-3, 3-28
Prototypelprobe synchronization:

Index

Index

8086/8088 probe, 4-4
80186/80188 probe, 4-11

PSCOPE-86:
disk, 1-16
software, 1-6

Pseudo-variables, 1-15
Publications, PICE system, xii
Pulse stretching, ALE (80186/80188 probe), 4-12
PUT command, 3-13, 3-32

QSTAT pseudo-variable, 4-8

Read-after-write verification, 3-20
Read-only memory, 3-20
READY hang, 6-6
READY signal: 3-21

set-up time, 8086/8088 probe, 4-4
80186/80188 probe, 4-10 thru 4-12

REAL memory template, 3-15
Real mode, 80286 probe, 4-22
Re-executing commands, 3-17
Registers and flags, 80286 probe, 4-19
Registers:

ARMREG, 3-36
BRKREG, 3-36
EVTREG, 3-37
SYSREG, 3-36
TRCREG, 3-37

Related publications, xii
Removing the user cable, 3-54
Renaming PICE system files, 3-3
Repair and service assistance, xix
REPEAT block command, 3-7
Request! grant:

line, 8086/8088 probe, 4-4
signal, 8086/8088 probe, 4-6

RESET:
command, 80286 probe, 4-22
ICE command, 80286 probe, 4-23
REGS command, 80286 probe, 4-23
signal, 8086/8088 probe, 4-6
UNIT command, 3-21
UNIT command, 80286 probe, 4-22

Resetting the 80286 microprocessor and the 80286 probe, 4-23
Returning to host development operating system, 3-32

Sample Pascal program, 3-26, 3-33
Sample programs in C, FORTRAN, and Pascal, 2-30
SASM command, 3-48, 3-49, 3-51, 3-53

Index-II

Index-12

SAVE command, 3-14
Saving debug object definitions, 3-32
Screen editor, 3-10
Segment boundary increments:

8086/8088 probe, 4-3
80186/80188 probe, 4-10

SEL286 pseudo-variable, 80286 probe, 4-13, 4-21,4-22
SELECTOR memory template, 3-15
Selector:selector:offset triplet, 80286 probe, 4-22
SEM,3-35
Series III, see Intellec Series III
Series IV, see Intellec Series IV
Service and repair assistance, xix
Set-up time for the READY signal, 8086/8088 probe, 4-4
SHORTINT memory type, 3-15
Signal generator: 3-22

8086/8088 probe, 4-6
Signals:

ALE, 8086/8088 probe, 4-7
DEN, 8086/8088 probe, 4-7
DT/R, 8086/8088 probe, 4-7
HOLD/HLDA, 8086/8088 probe, 4-6
HOLD/HLDA, 80186/80188 probe, 4-11
HOLD/HLDA, 80286 probe, 4-25
INTA, 8086/8088 probe, 4-7
MilO, 8086/8088 probe, 4-7
MRDC, 8086/8088 probe, 4-7
R/GT, 8086/8088 probe, 4-6
READY, 8086/8088 probe, 4-4
READY, 80186/80188 probe, 4-10 thru 4-12

Simulating 110:
from the console, 3-22
with a debug procedure, 3-23

Single-line assembler, 3-48, 3-49, 3-51, 3-53
Slipping on a breakpoint, 3-43, 4-20
Slipping past breakpoints:

80286 probe, 4-20, 4-21
on combined instructions, 808618088 probe, 4-3
on combined instructions, 80186/80188 probe, 4-9

Slipping past instruction breakpoints:
808618088 probe, 4-3
80186/80188 probe, 4-9

Software:
base configuration, 1-6
design, 1-2
environment, 1-12
installation, see software installation appendix
invocation, 3-1, 3-28
overview, 1-12

Index

Index

packaging, 1-15
Software/hardware integration, 1-3
Source file compilation, 3-27
Specifications, FICE system, 1-17
STATUS command, 80286 probe, 4-23
Stepping through user programs, 8086/8088 probe, 4-4
String handling, 3-6
Submit file, 3-27
SUBSTR function, 3-6
Substrings, 3-6
Symbolic:

debugging, 3-16
display, 3-31
support for multiple probes, 6-4

SYNC START test point: 6-6, 6-7
80186/80188 probe, 4-11,4-12
80286 probe, 4-25
8086/8088 probe, 4-5

Synchronization between units, 6-6, 6-7
Synchronizing emulation to an external event, 80286 probe, 4-25
Synchronizing the prototype and the probe:

8086/8088 probe, 4-4
80186/80188 probe, 4-11

Syntax conventions, xiv
SYSBREAKIN signal, 6-1, 6-3
SYSREG command, 3-30, 3-36
SYSTEM ARM/DISARM command, 6-2
System:

break and trace lines, 3-26, 6-1, 6-2
cables installation, see host hardware installation appendix
event machine (SEM), 3-35
hangs, 80186/80188 probe, 4-10, 4-11
interface cables, 1-11
performance, 1-18
registers, 3-36
specifications, 1-17, 6-2

SYSTRACE line, 6-1 thru 6-3
SYSTRACEIN signal, 6-1
SYSTRIG line, 6-1 thru 6-3

Thsk -state segment, 80286 probe, 4-16
TEMPREAL memory template, 3-15
Terminal configuration for non-standard terminals, B-1
Test point, user-accessible:

8086/8088 probe, 4-4
80286 probe, 4-25
80186/80188 probe, 4-11

Textooll3M socket:
80186/80188 probe, 4-12

Index-13

Index-14

80286 probe, 4-25
TIMEBASE pseudo-variable, 3-42
Time-out pseudo-variables, 3-34, 5-1
Time-outs: MEMRDY, 80186/80188 probe, 4-11
Timetags, 3-42
Timing differences between 80286 probe and 80286 chip, 4-24
Timing differences between probes and chips, 1-19
TP test point, 80186/80188 probe, 4-11
Trace:

and break lines, 3-26, 6-1, 6-2
buffer, 2-5, 3-38, 3-42
buffer display, 808618088 probe, 4-6
interruption, 3-42
registers, 3 -3 7
specifications, 3-34, 6-3

Tracing: 3-34, 3-38
considerations, 80286 probe, 4-21, 4-24

TRCBUS pseudo-variable, 3-42
TRCREG command, 3-37
TSS command, 4-16
Tutorial: 1-16,2-1

deactivating, 2-2
disks, 1-16
emulation aid module screens, 2-11
feature aid module screens, 2-12
invoking during program debugging, 2-2
main-path screens, 2-10
menus, 2-4
PUM program listing, 2-16
program listings, 2-16
reactivating, 2-2
structure, 2-2
topic index, 2-13

UNIT pseudo-variable, 6-1
UNITHOLD command, 3-54
User cable:

80186/80188 probe, 4-12, A-14
dimensions:

808618088 probe, A-II
80186/80188 probe, A-14
80286 probe, A-17

installation:
808618088 probe, A-lO
80186/80188 probe, A-14
80286 probe, A-16

orientation, 808618088 probe, A-12
removal, 3-54

User clock loading, 8086/8088 probe, A-I0

Index

Index

User memory, 3-19, 4-18, 5-1
User plug, 8086/8088 probe, A-lO
User socket:

80186/80188 probe, 4-12, A-14
80286 probe, 4-25

User substrate capacitor and + 5-volt source, 80286 probe, 4-24
User-accessible test points:

8086/8088 probe, 4-4
80186/80188 probe, 4-11
80286 probe, 4-25

Utility commands, 1-14

Variables, 3-16 thru 3-18
Virtual address translation for the 80286 probe, 4-13, 4-14
Virtual addresses, 80286 probe, 4-21

WAIT function, 6-5
WAITSTATE command: 3-19

80186/80188 probe, 4-10
Wait-state generator, 1-10
Wait-states, 1-4
Wait-states, 80186/80188 probe, 4-10
Wait-states, 808618088 probe, 4-4
Windows, 3-35, 3-36
WORD memory template, 3-15, 3-31
Word:

reads from even and odd addresses, 3-48
writes to even and odd addresses, 3-44

Word-wide ports, 3-22
Wrap-around addresses:

8086/8088 probe, 4-2
80186/80188 probe, 4-9
80286 probe, 4-26

WRITE command, 3-46, 3-48

XEM,3-35

Index-lS/lndex-16

WE'D LIKE YOUR OPINION
I

PICETM System
User's Guide

166298-001

I Please use this form to help us evaluate the effectiveness of this manual and improve the quality of future
: documents

.
I To order publications, contact the Intel Literature Department (see page ii of this manual).
I

Fill in the squares below with a rating of 1 through 10:

POOR

2 3

D Readability

D Technical depth

D Technical accuracy

4

AVERAGE

5 6

D Usefulness of material for your needs

D Comprehensibility of material

D OVERALL QUALITY OF TillS MANUAL

7

If you gave a 4 or less (in any category), please explain here:

What suggestions would you have for improving this manual:

* * * ATTENTION * * *

EXCELLENT

8 9 10

Receive 50% off on the next Intel publication you buy. Send us your comments, and we'll
send you a 50%-off certificate.

;-.

. If you would like us to call you for more specifics about this book, provide the following information.
: Please print clearly.

Namc __ _

Phone Number (_______ , __ _

Addrcss __ ___

, Thanks for taking the time to fill out thi!;i form.

WE'D LIKE YOUR COMMENTS . ..

This document is one of a series describing Intel products. Your com
ments on the back of this form will help us produce better manuals.
Each reply will be carefully reviewed by the responsible person. All
comments and suggestions become the property of Intel Corporation.

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO. 79 BEAVERTON, OR 95051

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
5200 N.E. Elam Young Pkwy.
Hillsboro, OR 97124-6497

DSHO Technical Publications

NO POSTAGE
NECESSARY

IF MAILED
INTHE

UNITED STATES

-n+_I®
II I 'ell

INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987·8080

Printed in U.S.A.

Instrumentation

084313K11185/0SPS/AO

	0001
	0002
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	3-49
	3-50
	3-51
	3-52
	3-53
	3-54
	3-55
	3-56
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	5-01
	5-02
	5-03
	5-04
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	G-01
	G-02
	G-03
	G-04
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10
	I-11
	I-12
	I-13
	I-14
	I-15
	I-16
	replyA
	replyB
	xBack

