
THE 121CETM
INTEGRATED INSTRUMENTATION

AND IN-CIRCUIT EMULATION
SYSTEM REFERENCE MANUAL

Copyright 1985, Intel Corporation, All Rights Reserved
Intel Corp., 3065 Bowers Ave., Santa Clara, CA 95051 Order Number: 166302-001

THE FICETM
INTEGRATED INSTRUMENTATION

AND IN-CIRCUIT EMULATION
SYSTEM REFERENCE MANUAL

Order Number: 166302-001

Copyright 1985, Intel CorP9ration, All Rights Reserved
Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051

This equipment generates, uses, and can radiate radio frequency energy and if not installed and used in accordance with
the instruction manual, may cause interference to radio communications. As temporarily permitted by regulation, it has
not been tested for compliance with the limits for Class A Computing Devices pursuant to Subpart J of Part 15 of FCC
rules, which are designed to provide reasonable protection against such interference. Operation of this equipment in a
residential area is likely to cause interference in which case the user, at his own expense, will be required to take whatever
measures may be required to correct the interference.

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. Intel Corporation assumes no responsibility for any errors that may appear in this
document. Intel Corporation makes no commitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other
circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property ofIntel Corporation. Use, duplication or disclosure is subject
to restrictions stated in Intel's software license, or as defined in ASPR 7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without prior written consent of Intel Corporation.

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may appear in this
document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local sales office to obtain the latest specifications before placing your order.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel products:

Above iLBX iPDS ONCE
BITBUS im iPSC OpenNET
COMMputer iMDDX iRMX Plug-A-Bubble
CREDIT iMMX iSBC PROMPT
Data Pipeline Insitc iSBX Promware
GENIUS Intel iSDM QueX
t. intel iSXM QUEST

i intelBOS Library Manager Ripplemode

12lCE Intelevision MCS RMX/80

ICE inte1igcnt Identifier Megachassis RUPI

iCEL inteligent Programming MICROMAINFRAME Seamless

iCS Intellec MULTIBUS SLD

iDBP Intellink MULTICHANNEL UPI

iDIS iOSP MULTIMODULE VLSiCEL

MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered trademark of Mohawk Data
Sciences Corporation.

*MULTIBUS is a patented Intel bus.

Copyright 1985, Intel Corporation, All Rights Reserved

ii

CONTENTS
....................................... imJ ..

Page
Preface .. ix
Revision History .. xiii
Service and Repair Assistance xv

CHAPTER 1 ENCYCLOPEDIA
\ ... 1-7
$ 1-8
ACTIVE. 1-10
ADDRESS. .. 1-12
Address. 1-14
Address protection (80286 probe specific). .. 1-18
Address translation (80286 probe specific) 1-20
APPEND. .. 1-25
ARMREG 1-28
ASM .. 1-34
BASE ... 1-37
BCD .. 1-40
BOOLEAN .. 1-42
Boolean condition .. 1-45
Break specification 1-46
BRKREG .. 1-48
BTHRDY (8086/8088 probe specific) 1-52
BTHRDY (80186/80188 probe specific) ... 1-55
BTHRDY (80286 probe specific) ... 1-57
BUSACT .. 1-59
ByTE ... 1-61
CALLSTACK .. 1-63
CAUSE ... 1-66
CHAR .. 1-68
CI 1-70
CLEAREOL 1-71
CLEAREOS. .. 1-72
CLIPSIN .. 1-73
CLIPS OUT .. 1-74
COENAB (8086/8088 probe specific) ... 1-76
COENAB (80186/80188 probe specific) 1-78
COENAB (80286 probe specific) ... 1-80
CONCAT .. 1-82
Confidence tests. .. 1-83
COREQ (80286 probe specific) 1-88
COUNT ' :: .. 1-90
CPMODE (808618088 probe specific). .. 1-92

iii

Page
CPMODE (80186/80188 probe specific). .. 1-94
CPMODE (80286 probe specific) , .. 1-96
CURHOME. .. 1-98
CURX .. 1-99
CURY ... 1-100
Debug registers. .. 1-101
Debug variable. .. 1-103
DEFINE ... 1-105
80286 Descriptor commands (80286 probe specific). .. 1-107
DIR ... 1-110
DO ... 1-116
DWORD ... 1-117
EDIT ... 1-119
Editors. .. 1-121
ENABLE. .. 1-127
ERROR ... 1-129
EVAL .. 1-131
Event machines ... 1-133
EVTREG .. 1-136
EXIT ... 1-146
Expression. .. 1-147
EXTINT ... 1-163
F2XMl. ... 1-166
8086/8088 Flags (8086/8088 probe specific) .. 1-167
80186/80188 Flags (80186/80188 probe specific) 1-169
80286 Flags (80286 probe specific) ... 1-171
FLDL2E ... 1-174
FLDL2T ... 1-175
FLDLG2 .. 1-176
FLDLN2 .. 1-177
FLDPI .. 1-178
FPATAN ... 1-179
FPTAN .. 1-180
FSQRT .. 1-181
FYL2X .. '.' 1-182
FYL2XPl. ... 1-183
GET87 (8086/8088 probe specific) 1-184
GET87 (80186/80188 probe specific) ... 1-186
GO .. 1-188
GRANULARITY (80286 probe specific) 1-195
HALT ... 1-197
HELP ... 1-198
HOLDIO .. 1-200
I2ICE .. 1-201
IF .. 1-206
INCLUDE ... 1-208
INSTR .. 1-211
INTEGER. .. 1-213

iv Contents

Page
IORDY. .. 1-215
ISTEP ... 1-217
Keywords. 1-219
LIST .. " 1-222
LITERALLY. 1-223
LOAD (8086/8088 and 80186/80188 probe specific) 1-225
LOAD (80286 probe specific). .. 1-227
LONGINT ... 1-230
LONGREAL ... 1-232
LSTEP .. " 1-234
MAP .. 1-236
MAPIO. .. 1-242
Masked constant. .. 1-249
MEMRDY ... 1-250
MENU ... , 1-251
Mtype. .. 1-253
Multitasking (80286 probe specific). 1-263
Name ... 1-266
NAMESCOPE .. 1-268
NUMTOSTR .. 1-270
OFFSETOF .. 1-271
Paging. .. 1-272
Partition. .. 1-274
Pathname .. 1-276
PC RECK (80286 probe specific) 1-278
PHANG (8086/8088 probe specific) .. 1-283
PRANG (80186/80188 probe specific) .. 1-285
PINS .. 1-287
POINTER (8086/8088 and 80186/80188 probe specific) .. 1-290
POINTER (80286 probe specific) .. 1-292
PORT ... 1-294
PRINT. .. 1-296
PROC ... 1-302
Pseudo-variable. 1-305
PSTEP 1-307
PUT .. 1-309
QSTAT (80186/80188 probe specific) 1-312
REAL ... 1-313
8086/8088 Registers (8086/8088 probe specific). 1-315
8087 Registers. 1-317
80186/80188 Registers (80186/80188 probe specific) 1-319
80286 Registers (80286 probe specific) .. 1-323
80287 Registers (80286 probe specific) 1-332
REGS ... 1-335
RELEASEIO ... 1-339
REMOVE .. 1-340
REPEAT. .. 1-342
RESET. .. 1-344

Contents v

Page
RSTEN. .. 1-345
SASM ... 1-346
SAVE ... 1-356
SCTR ... 1-357
SEL286 (80286 probe specific) .. 1-359
SELECTOR .. 1-361
SELECTOR-OF " 1-364
SHORTINT .. 1~365
Software requirements (8086/8088 and 80186/80188 probe specific) 1-367
Software requirements (80286 probe specific). .. 1-369
STACK .. 1-371
STATUS. .. 1-372
Strings .. 1-378
STRLEN 1-380
STRTONUM .. 1-381
SUBSTR. .. 1-382
SYMBOLIC .. 1-383
Symbolic references .. , 1-384
SYSREG .. 1-396
SYSTEM .. " 1-401
System specification .. 1-402
TEMPREAL .. 1-408
TIMEBASE .. 1-411
Trace buffer display (8086/8088 probe specific) .. 1-414
Trace buffer display (80186/80188 probe specific) .. 1-418
Trace buffer display (80286 probe specific). .. 1-421
TRCBUS .. 1-430
TRCREG .. 1-431
TSS (80286 probe specific). .. 1-434
UNIT. .. 1-435
UNITHOLD 1-436
VERSION 1-437
WAIT ... 1-438
WAITSTATE 1-440
WORD .. 1-442
WPORT ... 1-445
WRITE. .. 1-446
XCTR ... 1-450

CHAPTER 2 ERROR MESSAGES

INDEX

vi Contents

TABLES Page
1-1 PICETM Commands Grouped by Function. .. 1-1
1-2 CAUSE Message Variables .. 1-67
1-3 Input Clips Signals and Wire Colors. .. 1-73
1-4 The FICETM System Confidence Tests. .. 1-83
1-5 The 80286 Descriptor Types .. 1-108
1-6 Mnemonics for the 80286 Descriptor Components 1-108
1-7 Components Associated with each Descriptor Type. .. 1-108
1-8 User Program Types with Corresponding FICETM Names. .. 1-112
1-9 Line Editor Keys. .. 1-122
1-10 Screen Editor Main Menu Commands and Functions 1-124
1-11 Constants... 1-149
1-12 User-Defined Variables ... 1-153
1-13 Functions... 1-155
1-14 Definitions of Unary Operators ... 1-157
1-15 Definitions of Binary (Two-Operand) Operators. .. 1-159
1-16 The PICETM Operators in Order of Precedence 1-159
1-17 Basic Mtypes .. 1-254
1-18 Display Formats for Mtypes ... 1-256
1-19 Type Conversion by Combination as Operands 1-257
1-20 Assignment Type Conversions. .. 1-259
1-21 Effects of the PC HECK Pseudo-Variable 1-280
1-22 The 80286 Memory Access Rules , 1-281
1-23 Values Displayed by the PINS Command for the 8086/8088 Probe 1-288
1-24 Values Displayed by the PINS Command for the 80186/80188 Probe 1-288
1-25 Values Displayed by the PINS Command for the 80286 Probe. .. 1-289
1-26 808618088 Register Keywords. .. 1-315
1-27 8087 Register Keywords .. 1-317
1-28 80186/80188 Register Keywords , 1-319
1-29 The 80286 Registers. .. 1-323
1-30 The 80287 Registers. .. 1-332
1-31 Values Displayed by the STATUS Command for the 808618088 Probe 1-373
1-32 Values Displayed by the STATUS Command for the 80186/80188 Probe 1-374
1-33 Values Displayed by the STATUS Command for the 80286 Probe 1-375
1-34 8086/8088 INSTRUCTIONS Mode Access Codes 1-414
1-35 8086/8088 CYCLES Mode Access Codes 1-415
1-36 80186/80188 INSTRUCTIONS Mode Access Codes 1-418
1-37 80186/80188 CYCLES Mode Access Codes 1-419
1-38 Access Code in the Trace Buffer Display 1-421
1-39 Decimal Device Codes for the WAIT Function. .. 1-438

FIGURES
1-1 80286 Virtual Address Translation .. 1-22
1-2 The Descriptor Table Registers and the Descriptor Tables. .. 1-23
1-3 The Segment Register and the Descriptor Tables .. 1-24
1-4 Tree of Legal Syntax 1-31
1-5 8086/8088 Probe READY Timing Requirements when BTHRDY = TRUE 1-53
1-6 Accessing the Procedure Return Stack .. 1-64

Contents vii

FIGURES (continued) Page
1-7 Execution Event Machine in a Sample State. .. 1-134
1-8 System State Machine in a Sample State .. 1-135
1-9 8086/8088 Flags Register Bit Pattern. .. 1-168
1-10 80186/80188 Flags Register Bit Pattern. .. 1-170
1-11 80286 Flags Register Bit Pattern. .. 1-172
1-12 The MSW Bit Pattern. .. 1-172
1-13 Branches of the GO Command Syntax. .. 1-192
1-14 80186/80188 Internal Register Map to FICETM System Keyword Cross-reference 1-321
1-15 Selector Register Bit Pattern .. 1-325
1-16 Updating the TSS by Changing the TR .. 1-327
1-17 The Control Word Bit Pattern. .. 1-331
1-18 The 80287 Status Word Bit Pattern. .. 1-333
1-19 The Tag Word Bit Pattern. .. 1-334
1-20 The 80286 Status Word Bit Pattern .. 1-422

viii Contents

PREFACE
... irnJ ..

The PIC£IM System Reference Manual is the master reference manual in the FICpM publica­
tions library. Refer to this manual for detailed operating information on FICE commands,
topics, and error messages. The PIC£IM System Reference Manual is divided into two chapters:

Chapter I is the command encyclopedia for the FlCE command language. Each command and
topic in the PICE command language is presented in alphabetical order. Each com­
mand entry contains the command syntax, a detailed description of the command,
one or more verified examples, and cross-references to related commands and
topics.

Chapter 2 describes the PICE error codes.

Notational Conventions

Chapter I is a detailed encyclopedia of the PICE system commands and topics in alphabetical
order. Each command entry follows the same format. The following sections briefly describe a
sample command entry.

Encyclopedia Commands and Topics

The two types of encyclopedia entries are topics and commands. The name of the command or
topic discussed in each section is printed in red on the outside corner of each page in that
section. Commands are printed entirely in uppercase letters (e.g., ACTIVE), while only the
first letter of each topic is capitalized (e.g., System specification).

Topic Entries

A topic entry expands a subject or consolidates common command syntax for easy reference.
A topic entry does not follow a pattern.

Command Entries

Most encyclopedia entries are FlCE command keywords. The encyclopedia contains the com­
mands that work with all FICE probe types, as well a~ commands that are probe-specific.

The following example describes the information found in a typical command entry.

ix

COMMAND NAME
Purpose statement

Syntax

The command syntax shows how to construct a legal FlCE command. (Syntax notation is
explained in the following section.)

Where:

This section briefly explains each part of the command, including command options and initial
and legal values.

Default

This section indicates the default value (if any) for the command.

Discussion

The discussion section details how commands are used. It augments the general information
found in the PIC£FM System User's Guide and contains information about why and when com­
mands are most useful.

Examples

Each example uses the command in context. Examples begin with an explanation of how the
command is used, what it is used for, and any assumptions the example makes. User input is
shown in a shaded field, and system output is printed in a special typeface. For example:

*~eMMI:ID
system response

Cross-References

Cross-reference items are commands and topics related to the encyclopedia entry.

x Preface

Syntax Notation

Preface

The following syntax notation is used throughout this manual:

COMMANDS Command keywords appear in all uppercase letters. (You may enter com­
mands in either uppercase or lowercase letters.)

elements Items for which you must substitute a value, expression, file name, etc., are
shown in lowercase letters and italicized.

{ menu} Braces indicate that you must select one and only one of the items in the
enclosed menu.

{menu} * Braces followed by an asterisk (*) indicate that you must select one or more
of the items in the enclosed menu.

[menu] Brackets indicate optional items of which you can select one and only one.

[menu] * Brackets followed by an asterisk (*) indicate optional items of which you can
select more than one item.

punctuation You must enter punctuation other than braces ({ }) and brackets ([]) ex­
actly as shown. For example, you must enter all the punctuation shown in the
following command:

apostrophe

CTRL

illl!III __

If your keyboard has two apostrophes (or single quotes), determine which
one the FICE system accepts in command syntax. Do this by entering one of
them. If the apostrophe you chose is not accepted by the FICE system, the
message line will display "syntax error" .

CTRL denotes the terminal's control key. For example, CTRL-C means
enter C while pressing the control key. (Note: Some keyboards use CNTL
rather than CTRL to indicate the control key.)

xi

NOTE

Entering CTRL-D invokes an internal debugger, used for debug­
ging 8086 software, that runs on the host development system. Do
not use this debugger when the PICE software is running. If you
do epter CTRL-D, enter a G followed by a carriage return to re­
turn to the FICE software.

CTRL-D does not terminate the FICE command line. The G re­
turns you to the same line at the point where you left. For example,
assume you enter CTRL-D after entering EX. After returning to
the FICE software, you can complete the EXIT command by en­
tering IT, as shown in the following example.

*Ex
013A:1SA8 RET
PROCESSING ABORTED
*G
11 -
I2ICE terminated

:SHORT

Related Publications

XII

The following manuals contain additional information on the PICE system and its operating
environment.

PICpM Integrated Instrumentation and In-Circuit Emulation System (data sheet), order num­
ber 210469

PICpM System User's Guide, order number 166298

PSCOPE-86 High-Level Program Debugger User's Guide, order number 121790

AEDITText Editor User's Guide, order number 121756

Preface

REV. REVISION HISTORY DATE

-001 Original Issue. 9/85

xiii/xiv

SERVICE AND REPAIR ASSISTANCE
... irnJ ..

The best possible service for your Intel product is provided by an Intel Customer Engineer.
These trained professionals provide prompt, efficient, on-site installation, preventive mainte­
nance, and corrective maintenance services required to keep your equipment in the best possi­
ble operating condition.

The Intel Customer Engineer provides the service needed through a prepaid service contract or
on an hourly charge basis. For further information, contact your local Intel sales office.

In Phoenix, Arizona, there is a technical information center that will connect you with the
software support group for your particular Intel product.

Telephone (602) 869-INFO (4636)

When the Intel Customer Engineer is not available, contact the Intel Product Service Center.

United States customers can obtain service and repair assistance from Intel Corporation by
contacting the Intel Product Service Center in their local area. Customers outside the United
States should contact their sales source (Intel Sales Office or Authorized Distributor) for serv­
ice information and repair assistance.

Before calling the Product Service Center, have the following information available:

1. The date you received the product.

2. The complete part number of the product (including dash number). On boards, this num­
ber is usually silk-screened onto the board. On other MCSD products, it is usually stamped
on a label.

3. The serial number of the product. On boards, this number is usually stamped on the board.
On other MCSD products, the serial number is usually stamped on a label mounted on the
outside of the chassis.

4. The shipping and billing address.

5. If the Intel Product warranty has expired, a purchase order number is needed for billing
purposes.

6. Be sure to advise the Center personnel of any extended warranty agreements that apply.

Use the following telephone numbers for contacting the Intel Product Service Center:

Western Region:
Midwest Region:
Eastern Region:
International:

(602) 869-4951
(602) 869-4392
(602) 869-4045
(602) 869-4862

Always contact the Product Service Center before returning a product to Intel for repair. You
are given a repair authorization number, shipping instructions, and other important informa-

xv

xvi

tion which helps Intel provide you with fast, efficient service. If you are returning the product
because of damage sustained during shipment, or if the product is out of warranty, a purchase
order is required before Intel can initiate the repair.

If available, use the original factory packaging material when preparing a product for shipment
to the Intel Product Service Center. If the original packaging material is not available, wrap the
product in a cushioning material such as Air Cap SD-240, manufactured by the Sealed Air
Corporation, Hawthorne, N.J. Securely enclose it in a heavy-duty corrugated shipping carton,
mark it "FRAGILE" to ensure careful handling, and ship it to the address specified by the Intel
Product Service Center.

Service and Repair Assistance

1 Encyclopedia
.. imJ ..

This chapter contains the FICETM system commands and topics in alphabetical order. Table 1-1
groups the commands by function.

Table 1-1 PICETM System Commands Grouped by Function

Function Command Description

Address GRANULAITY Determines the block size used for 80286 probe
memory mapping.

SEL286 Determines whether the 80286 probe performs
8086 address translation or 80286 address
translation.

TSS Displays the current task state segment for the
80286 probe when in protected mode.

Arm ARMREG Defines or modifies a debug register that contains
arm, trigger, and disarm or delay sequences.

SYSTEM Sets the initial state of the system arming
functions.

Block COUNT Groups and executes commands a specified
Commands maximum number of times.

DO Groups and executes commands.

IF Groups and conditionally executes commands.

REPEAT Groups and executes commands forever or until
an exit condition is met.

Break BRKREG Defines a register that contains break
specifications.

ENABLE Conditions the unit to accept system-level breaks
and traces.

Coprocessor COENAB Enables or disables coprocessor functions.

COREa Enables or disables external numeric extension
activity for the 80286 probe.

CPMODE Displays or changes the external coprocessor
mode.

GET87 Defines register handling conditions for the 8087
coprocessor.

PHANG Enables and disables system timeout (for the
8086/8088 and 80186/80188 probes) based on
coprocessor activity.

Counter TIMEBASE Sets the counter source and the increment, and
formats the trace buffer timetag.

1-1

Table 1-1 PICETM System Commands Grouped by Function (continued)

Function Command Description

Debug ARMREG Defines or modifies a debug procedure that
Procedures contains arm, trigger, and disarm or debug

sequences.

BRKREG Defines a procedure that contains break
specifications.

EVTREG Defines a procedure that controls the event
machine.

PROC Defines, displays, or executes a debug procedure.

REMOVE Deletes all user program symbols or specified
debug object definitions.

SYSREG Defines a procedure that contains system break
specifications.

TRCREG Defines a procedure that contains user program
tracing specifications.

Directory DIR Displays program symbols and debug objects.

Editor EDIT Invokes the 121CE system editor.

Emulation CAUSE Displays the reason emulation stopped.

EXIT Ends emulation.

GO Starts emulation and controls break and trace
functions.

HALT Breaks emulation from the terminal.

121CE Invokes the 121CE software.

LOAD Copies a program from a file into mapped program
memory.

RESET Reinitializes specified functions of the 121CE
system.

WAIT Suspends command execution during emulation.

Error ERROR Controls the amount of error information
Messages displayed.

Event EVTREG Defines a register that controls the event machine.
Machines SCTA Assigns a value to the system event machine

counter.

XCTR Assigns a value to the execution event machine
counter.

Event EVTREG Defines a register that controls the event machine.
Register

Execution $ Displays or changes the current execution point.
Point NAMESCOPE Displays or sets the current NAMESCOPE for

symbolic references.

Expressions EVAL Calculates and displays the result of an
expression.

1-2 Encyclopedia

Table 1-1 PICETM System Commands Grouped by Function (continued)

Function Command Description

Files APPEND Saves definitions of debug objects to a file.

INCLUDE Retrieves command definitions from a system

LIST Opens or closes a log file.

PUT Creates and saves system file contents from
memory to a file.

SAVE Saves the current memory image to a file.

Functions F2XM1 2"-1 function.

FLDL2E Constant log2(e}.

FLDL2T Constant log2(10}.

FLDLG2 Constant log1o(2}.

FLDLN2 Constant loge(2}.

FLDPI Pi.

FPATAN Partial arctangent.

FPTAN Partial tangent.

FSQRT Square root.

FYL2X Y·log2(x}.

FYL2XP1 Y' log2(x+ 1}.

Help CAUSE Displays the reason emulation stopped.

HELP Provides on-line operating assistance.

MENU Enables and disables the 121CE syntax menu.

1/0 Ports HOLDIO Suspends 1/0 requests to ICE-mapped ports.

PORT Displays or changes the contents of byte-wide 1/0
ports.

RELEASEIO Resumes emulation after the HOLDIO command.

WPORT Displays or changes the contents of word-wide 1/0
ports.

Logic Clips CLiPSIN Displays the current state of the emulation logic
clips.

CLiPSOUT Sets the two output lines on the emulation logic
clips.

Memory Types ADDRESS Displays or changes memory as 16-bit unsigned
values.

ASM Displays memory as assembler mnemonics.

BCD Displays or changes memory as 80-bit packed
decimal values.

BOOLEAN Displays or changes memory as Boolean TRUE or
FALSE values.

BYTE Displays or changes memory as an 8-bit unsigned
value.

CHAR Displays or changes memory as ASCII characters.

Encyclpedia 1-3

Table 1-1 PICETM System Commands Grouped by Function (continued)

Function Command Description

Memory Types DWORD Displays or changes memory as 32-bit unsigned
(continued) values.

EXTINT Displays or changes memory as 64-bit signed
values.

INTEGER Displays or changes memory as 16-bit signed
values.

LONGINT Displays or changes memory as 32-bit signed
values.

LONGREAL Displays or changes memory as 64-bit floating
point values.

MAP Displays or sets physical locations for program
memory.

MAPIO Displays or sets physical locations for 1/0 ports.

POINTER Displays or changes memory as selector:offset
address pointers.

REAL Displays or changes memory as 32-bit floating
point values.

SELECTOR Displays or changes memory as 16-bit unsigned
values.

SHORTINT Displays or changes memory as 8-bit signed
values.

TEMPREAL Displays or changes memory as 80-bit floating
point values.

WORD Displays or changes memory as 16-bit unsigned
values.

Number base BASE Displays or changes the number base.

Pointer OFFSETOF Returns the offset of a pointer value.

POINTER Displays or changes memory as selector:offset
address pointers.

SELECTOROF Returns the selector or segment portion of a
pointer.

Probe BTHRDY Represents the source of the probe processor
Microprocessor READY signal.
Signals PCHECK Requests 121CE protection checking (80286 probe

specific)

PINS Displays the state of selected microprocessor
signals.

QSTAT Selects 80186/80188 probe configuration mode.

RSTEN Enables the prototype to reset the probe
processor.

Registers ARMREG Defines or modifies a debug register that contains
arm, trigger, and disarm or debug sequences.

1-4 Encyclopedia

Thble 1-1 PICETM System Commands Grouped by Function (continued)

Function Command Description

Registers BRKREG Defines a register that contains break
(continued) specifications.

EVTREG Defines a register that controls the event
machines.

REGS Displays selected microprocessor registers in the
current unit.

SYSREG Defines a register that contains system break
specifications.

TRCREG Defines a register that contains user program
tracing specifications.

Single-line SASM Loads memory with assembled mnemonics.
Assembler

Stack CALLSTACK Displays the return address of procedures on the
stack.

STACK Displays elements from the top of the stack.

Status ACTIVE Reports whether a variable exists at the current
execution point.

STATUS Displays the current setting of selected debug
environment conditions.

Stepping ISTEP Single-steps through user programs by
machine-language instructions.

LSTEP Single-steps sequentially through user programs
by high-level language instructions.

PSTEP Single-steps through user programs by high-level
language instructions, treating procedures as one
step.

Strings CONCAT Creates and displays a new string by
concatenating.

INSTR Returns the index of a substring within a given
string.

LITERALLY Defines, modifies, displays, or removes a name
that the 121CE system interprets as a
previously-defined character string.

NUMTOSTR Converts an expression into ASCII code.

STRLEN Returns the number of characters in a string.

STRTONUM Converts a string to a numeric value.

SUBSTR Substring function.

WRITE Displays and formats character strings and
numerical expressions.

Terminal CI Allows a character to be read from the system
Screen terminal.
Control CLEAREOL Clears the screen from the cursor to the end of the

line.

EncycIpedia 1-5

Table 1-1 I2ICETM System Commands Grouped by Function (continued)

Function Command Description

Terminal CLEAREOS Clears the screen from the cursor to the end of the
Screen screen.
Control CURHOME Moves the cursor to the upper left-hand corner of
(continued) the screen.

CURX Displays the column number or moves the cursor
to column x.

CURY Displays the row number or moves the cursor to
rowy.

Paging Controls the terminal display speed.

Time-out BUSACT Allows a system time-out when the processor bus
is inactive for more than one second.

10RDY Allows a system time-out when an 1/0 access
takes more than one second.

MEMRDY Allows a system time-out based on memory
access time.

Trace ENABLE Conditions the unit to accept system-level breaks
and traces.

PRINT Formats and displays the contents of the trace
buffer.

SYMBOLIC Enables or disables trace buffer symbolic display.

TIMEBASE Sets the counter source and the increment and
formats the trace buffer timetag.

TRCBUS Controls the collection of bus information in the
trace buffer.

TRCREG Defines a register that contains user program
tracing specifications.

Unit \ Overrides the current default unit.
Commands UNIT Displays or changes the current default unit.

UNITHOLD Causes the 121CE system to pause while the user
cable is moved.

VERSION Displays host version number and probe version
numbers.

Wait-states WAITSTATE Specifies the number of memory wait-states
inserted by the 121CE system.

1-6 Encyclopedia

Syntax

\

Discussion

o
1
2
3

Overrides the current
default unit

With the unit override command, you can override the default unit number for one command;
it does not change the default unit (use the UNIT command to change the default unit). The
unit override command remains in effect until another backs lash or a carriage return is encoun­
tered in the command.

Block commands are the only PICE commands that cannot be preceded with a backslash. The
unit override command cannot operate on the whole block because a block command contains
other commands, and the backslash operates on only one command.

The unit number (0, 1, 2, 3) is in the current radix.

Example

1. Add the variable var--.2 from unit 1 to the variable var in unit 2 (the default unit):

*l,..If;lrr#2
*15VACv~t+\t.Vl'r···2

Cross-Reference

UNIT

Encyclopedia 1-7

$
Pseudo-variable that displays or
changes the current execution pOint

Syntax

$ [= address]

Where:

$

address

displays the register pair code-segment: instruction­
pointer (CS:IP), which is the current execution point.

changes the current execution point by assigning the $
pseudo-variable an address, in either symbolic or nu­
meric notation.

Discussion

The dollar sign ($) represents the program counter or fetch address of the next instruction. The
dollar sign is a shorthand way of referring to the CS:IP registers.

Use the dollar sign as follows:

•
•
•

to display the current execution point

to change the current execution point

to save the current execution point

If your program used the stack during the previous emulation, changing the execution
point may cause incorrect operation when emulation resumes.

Examples

1-8

1. Display the current execution point:

*$
0200:05BAH
*.d~
0200:05BAH

Encyclopedia

2. Modify the current execution point:

* *

/*Absolute addressing is not recommended; see the */
/*Address entry */

/* Must change registers one at a */
/* time */

3. Save the current execution point as a variable:

Cross-Reference

Address

Encyclopedia 1-9

ACTIVE
Reports whether a program
variable is active at the
current execution point

Syntax

ACTIVE (name)

Where:

name is a program variable name.

Discussion

1-10

A static variable is always active; a dynamic variable is active only when the current execution
point ($) is in the program block that contains the dynamic variable. Use the ACTIVE com­
mand to determine whether dynamic, stack-resident variables (such as parameters) have or
have not been allocated at the current execution point. The ACTIVE command returns TRUE
if the program variable named in name is active in the current program block; otherwise, the
ACTIVE command returns an error message. For example, suppose a PLlM-86 program
contains the following procedure:

avg: PROCEDURE (x, y) REAL;
DECLARE (x, y) REAL;
RETURN (x+y)/2.0;

END avg;

When the execution point is not within this procedure, the variables x and yare not active.

Changing the current execution point (by reassigning $) can cause inactive variables to become
active (and vice versa). Keep in mind that the procedure prologue must be executed before its
dynamic variables are active. Even though the ACTIVE command returns TRUE, if the pro­
logue of a procedure that contains a dynamic variable has not been executed, accessing it
produces undefined results.

The symbolic reference to the variable must be fully qualified unless the variable is within the
current name scope. Changing the name scope does not affect whether a variable is active.
However, changing the name scope can affect the amount of qualification needed to reference
the variable.

When defining breakpoints and trace controls, you can refer to variables that are not active
because the value of the variable is not accessed when defined.

Encyclopedia

Example

1. The following example defines a debug procedure that checks whether a variable is active
before you try to access it.

Note that :util.avg.x is the fully qualified reference to the variable x.

Cross-References

Name
NAMESCOPE

Encyclopedia 1-11

ADDRESS
Displays or changes memory
as 16·bit unsigned values

Syntax

ADDRESS partition [= expression [, expressionj*
= mtype partition

Where:

ADDRESS partition

partition

expression

mtype

displays the contents of memory at that location as an
address in the current base. An address is a 16-bit un­
signed value.

is a single address, an expression that evaluates to a sin­
gle address, or a range of addresses specified as address
TO address or address LENGTH number-af-items.

converts to a 16-bit unsigned value for ADDRESS.

is any of the memory types except ASM. The Mtype
entry in this encyclopedia lists mtypes.

Discussion

The ADDRESS command interprets the contents of memory as 16-bit unsigned values, over­
riding any type associated with the memory contents. Thus, ADDRESS .varl displays the first
word at the address of var 1, regardless of the type of var 1.

The information displayed by the ADDRESS command is identical to that displayed by the
WORD and SELECTOR commands. However, when the memory type WORD is used as a data
type in a program, it is interpreted as a 16-bit unsigned value. Both the ADDRESS and SE­
LECTOR types, in that context, are interpreted as segments of address pointers.

Examples

The following examples assume a hexadecimal base.

1. Display a single value at the current execution point:

*IIlJI:IIIE_
0020: 0004H 2EF A

1-12 Encyclopedia

2. Display several adjacent values:

*DQUqi$b9111.,li
0020: oo04H 2EFA 168E 0000 72BC 2Eoo 1E8E 0002 ooEA 2101 0000 0814 0400 0814
0020: oolEH 0400 0815 0400

3. Set a single value of type ADDRESS:

4. Set several contiguous values:

Display the values set:

*118FtSSSi4Q:414ENG'THS
0040: 0004H 10FA 3045 107F

5. Set a range of locations to the same value (block set):

6. Set a repeating sequence of values:

Display the values set:

*APDFle.sS4Q:4t8NGTH·.ln
0040: oo04H 1234 5678 9ABC DEFo 1234 5678 9ABC DEFo 1234 5678 9ABC DEFO 1234
0040: oolEH 56780040: 0020H 9ABC DEFo

7. Copy a value from one memory location to another:

8. Copy several values (block move):

9. Copy values with type conversion:

*1f)f)FlESS·.40i4#··BYiT'e •••• ~vaf2

An error message is displayed if the type on the right side of the equal sign cannot be
converted to the type on thc left. (Refcr to the Expression entry in this encyclopedia for
rules concerning type conversions.)

Cross-References

Expression
Mtype
Partition

Encyclopedia 1-13

Address
References program locations

Syntax

:module
procedure

.:module 1

.procedure

. variable

#line

[@]/abel

[procedure] * [[.label 1 [
@Iabel
#line

[procedure] * . variable

expression [: expression]

Where:

module

procedure

label

. label

@Iabel

line

variable

expression

1-14

is the name of a module.

is the name of a procedure.

is the name of a program label. Use the @ sign when
referring to a numeric label.

is the name of a program label with the period (.) delim­
iter. Use the period delimiter unless the label is numeric.

is the name of a program label with the at-sign (@) de­
limiter. Use the at-sign delimiter only when the label is a
numeric label.

is a program line number.

is the name of a program variable.

is an expression that evaluates to an absolute address or a
selector or an offset of a virtual address.

Encyclopedia

Discussion

Address continued

is the pointer operator (refer to the Expression entry in
this encyclopedia for more information).

is the dot operator (refer to the Expression entry in this
encyclopedia for more information).

Addresses can be either virtual or absolute. A virtual address is a symbolic reference or a
pointer expression (e.g., selector: offset). An absolute address is a numeric expression (e.g.,
045ABH). Do not mix absolute and virtual addresses in the same expression.

Address specification depends on the number base. For instance, when the base is decimal and
you specify a hexadecimal address, the H override character must appear following both the
segment and offset portions of the expression. Note that address display conventions differ
from address entry requirements. When a pointer address is displayed in hexadecimal, only
one H appears after the entire expression (e.g., 458:0AFH).

A pointer value consists of a 16-bit selector component and a 16-bit offset component. The
selector and offset are used to calculate the effective address. The exact method of calculation
is processor-specific. In the 8086 processor, for example, the selector is shifted left four bits,
then added to the offset to produce the effective address. (See the following section for infor­
mation on 80286 probe addresses.) Regardless of the method, there is exactly one effective
address corresponding to a given selector:offset pair. There are, however, numerous combina­
tions of selectors and offsets that can result in a given effective address.

Several FICE commands require an address value. The following examples show command
syntax containing address entries.

$ = address

NAMESCOPE = address

MAP address LENGTH number-ot-bytes USER

When the system is expecting an address, the entry is converted to a pointer value if necessary.
An expression used as an address is converted to a pointer according to the rules for type
combination and assignment described in the Mtype entry in this encyclopedia.

Addresses for the 80286 Probe

The following subsections explain special aspects of 80286 addressing.

Encyclopedia 1-15

Address continued

Virtual Addresses

Virtual addresses are symbolic addresses, selector: offset pairs, or LDT-selector:selector:offset
triplets (LDT stands for local descriptor table). You must use a virtual address if the pseudo­
variables SEL286 and PC HECK are both TRUE.

The Selector:Offset Pair for the 80286 Probe

When the 80286 probe performs 8086 address translation (SEL286 = FALSE), a virtual ad­
dress is a selector:offset pair. The 80286 probe constructs the physical address by shifting the
selector left by four bits and adding the offset. The physical address can be up to 20 bits long.
If you specified the physical address directly, the address can be up to 24 bits long.

When the 80286 probe performs 80286 address translation (SEL286 = TRUE), the virtual
address is a selector:offset pair or an LDT-selector:selector:offset triplet.

The selector is an offset into either a local descriptor table (LDT) or a global descriptor table
(GDT). It points to a segment descriptor that contains a base address. The addition of this base
address and the offset is the final physical address.

The current LDT is identified by the contents of the local descriptor table register (LDTR).
The LDTR contains the LDT selector, which is an offset into the GDT that points to an LDT
descriptor. The LDT descriptor contains the base address ofthe LDT.

Similarly, the GDT is identified by the contents of the global descriptor register (GDTR).

The LDT-Selector:Selector:Offset Triplet

You can specify the LDT selector as part of the address. Your specification overrides the LDT
selector .currently stored in the LDTR, so that the triplet uses a local descriptor table not
necessarily currently selected by the LDTR.

Absolute Addresses

An absolute address can be up to 24 bits long. You cannot use an absolute address if the
pseudo-variables SEL286 and PCHECK are both TRUE.

Examples

1-16

1. An integer entry assumes that the last hexadecimal digit is the offset. For example:

*$.;o::.201;1;E)
*$
0020:000bH

/*Integer entry*/

/*New address of $ is the integer
converted to a pointer*/

Encyclopedia

2. Symbolic references, pointer expressions (like CS:IP), and POINTER expressions (a
memory type) are already pointers and need no conversion. For example:

*IIYi_I:

*11\lIIIlwl.':
*11r.-j";,_;[

Cross-References

Address protection
Address translation
Expression
PCHECK
SEL286

Encyclopedia

/*Symbolic reference to the beginning of a modu1e*/

/*Symbolic reference to the beginning of a procedure*/

/*Symbolic reference to a program line number*/

/*Pointer expression, no interpretation */

1-17

Address protection
80286 probe specific

The 80286 has two modes of operation: real address mode (sometimes called compatible
mode) and protected mode.

In real address mode, the 80286's operation is similar to the 8086's operation. There is no
virtual memory capability; the physical address space is 1M byte plus 64K. Note that if you try
to access a 24-bit address in real address mode, the FlCE system drops the upper four bits
(i.e., zeros them out).

In protected mode, the 80286 allows multitasking, multi-user, virtual memory systems. The
virtual address space is IG byte per task; the physical address space is 16M bytes.

The 80286 powers up in real address mode at address OFFFFFOH. It enters protected mode
when you set the protection enabled flag (PEF) in the machine status word (MSW) to 1.

Privilege Levels

The current privilege level determines what memory locations (code and data) a task can
access. The 110 privilege level determines at which current privilege level a task must be
executing to execute an 110 instruction. There are four privilege levels: 0,1,2, and 3. Level 0
has the most privilege; level 3 has the least privilege. A task can execute at only one of the four
levels, called the current privilege level (CPL).

Visibility

1-18

A data segment is visible to a task only when the segment's descriptor privilege level (DPL) is
equal to or lower (numerically higher) than the CPL. A protection violation occurs if a user
program tries to access data belonging to a segment of higher (numerically lower) privilege.

Conforming segments can be read from any privilege level. When a conforming segment is
read by tasks of lower (numerically higher) privilege, the CPL remains the same. The con­
forming segment is executed at a lower (numerically higher) privilege level. An executable,
non-conforming segment is visible to a task only when the segmenf~DPL is equal to the CPL.

The access field of a segment descriptor contains the DPL. The code-segment selector contains
the CPL.

The selector pointing to the segment descriptor contains the requested privilege level (RPL).
The RPL restricts individual data accesses. If a selector's RPL is numerically larger than the
CPL, then the 80286 uses the RPL instead of the CPL when determining the visibility of a
segment.

Encyclopedia

t\,ddress protection (80286) continued

Transferring Control

A task can transfer control either directly or through a call gate.

When the task transfers control directly, the new execution address must be at the same privi­
lege level as the old execution address; that is, the DPL of the new code-segment descriptor
must be equal to the CPL.

When the task transfers control through a call gate, the privilege level of the call gate must be
equal to or lower (numerically higher) than the CPL; that is, the DPL of the call gate is equal to
or greater than the CPL.

The new execution address must be at the same or higher (numerically lower) privilege than
the call gate; that is, the DPL of the new code segment descriptor must be equal to or less than
the CPL.

Typically, an application program runs with privilege level 3. When the application program
requires the use of the operating system, it calls a routine of higher (numerically lower) privi­
lege.

Protection Checking

The FICE system's protection checking is distinct from 80286 protection checking, as follows:

•

•

80286 protection checking - the 80286 must be in protected mode. For example, if a user
program running with privilege level 3 tries to access data in a segment of privilege level
2, a protection violation occurs.

FICE protection checking - the FICE system does protection checking when the
PCHECK pseudo-variable is TRUE. FICE protection checking concerns the display and
modification of 80286 registers and memory locations with FICE commands.

When you access registers, the effect of PCHECK depends on whether the 80286 is in real or
protected mode. When you access memory, the effect of PCHECK depends on the setting of
the SEL286 pseudo-variable.

Cross-References

80286 flags
80286 registers
PCHECK
SEL286

Encyclopedia 1-19

Address translation
80286 probe specific

1-20

The 80286 has a virtual address space of 1G byte per task. The 80286 represents a virtual
address as a selector:offset pair. The selector and offset are each 16 bits long. The selector
contains 14 address bits; its other two bits define the requested protection level (RPL). With
the 16 address bits from the offset, the result is a 30-bit virtual address. With 30 bits, you can
address 1 G byte of memory.

The 80286 probe performs either 8086 or 80286 address translation. When the probe performs
8086 address translation, it shifts the selector left by four bits and then adds the offset. The
result is a 20-bit physical address. With 20 bits, you can address 1M byte of memory.

When you reset the 80286 microprocessor, the upper four address bits < A23-A20 > remain
high until the code-segment register (CS) is modified. When you set breakpoints, you may
want to specify these address bits as high. Do that by preceding the address with an asterisk
(*).

For example, the following commands set a breakpoint at the same address.

This command specifies a 24-bit absolute address.
(The leading zero is necessary to distinguish the num­
ber from a symbol when the first digit is a letter.)

You can use a 24-bit absolute address in the following
two cases:

When SEL286 = TRUE and PC HECK = FALSE.
When SEL286 = FALSE.

How the FlCE commands access memory does not de­
pend on the setting ofthe protection-enabled flag in the
MSW.

This command specifies a virtual address.

If SEL286 = FALSE, the 286 probe performs 8086 ad­
dress translation. This results in a 20-bit physical ad­
dress. The upper four address bits (< A23-A20 >) are
normally zero. The asterisk forces these bits high. If
SEL286 = TRUE, the 286 probe performs 80286 ad­
dress translation. The result is a 24-bit physical ad­
dress. The asterisk forces the upper four address bits
(< A23-A20 >) high.

When SEL286 = TRUE, you can also represent an ad­
dress as an LDT-selector:selector:offset triplet. The
asterisk forces the upper four address bits « A23-
A20» high.

This command specifies a symbolic address.

Encyclopedia

Assume that the user program defines this symbolic
address as OFFFF:O in real mode. Ordinarily, this
results in the 20-bit physical address FFFFO. Address
bits 23-20 are zero. The asterisk before the symbolic
address forces the upper four address bits « A23-
A20» high. The reset vector for the 80286 is FF­
FFFO.

In 80286 address translation, the selector is itself an offset into either the global descriptor
table (GDT) or a local descriptor table (LDT). There is only one GDT, but there may be
several LDTs. Both the GDT and the LDTs reside within the virtual memory space. Of the 14
address bits in the selector, one bit (the table indicator (TI) bit) selects either the GOT or an
LDT. The other 13 bits represent an offset into the selected table. Note: The GDT cannot be
indexed with a value greater than 255.

The 13-bit offset points to a segment descriptor. The segment descriptor contains access rights,
a base address, and the segment limit. The final physical address is the sum of the base address
from the segment descriptor and the offset from the virtual address. Unlike 8086 translation,
the selector is not shifted left before the addition. The result is a 24-bit physical address. With
24 bits, you can address 16M bytes of memory. The 80286 has a IG-byte virtual address space
and a 16M-byte physical address space.

Figure 1-1 illustrates the 80286 virtual address translation.

The following 80286 registers are involved with address translation:

GDTR
LOTR

CS
DS
ES
SS

Global descriptor table register
Local descriptor table register

Code segment register
Data segment register
Extra segment register
Stack segment register

The GDTR and the LDTR

The GOTR contains the GDT descriptor. The GOT descriptor locates the GOT in memory.
The GOT descriptor contains the GDT's base address and limit. The GOT limit is the range of
addresses above the GDT base address that make up the GOT.

The LDTR selector is an offset into the GDT. This offset points to an LOT descriptor. The
LDT descriptor, an entry in the GDT, contains the LDT's access rights, base address, and
limit.

The LDTR contains an explicit cache. The LOTR selector is 16 bits long, but the register is
actually 64 bits long. The other 48 bits belong to the explicit cache. When you load the selector
portion of the LOTR, the 80286 copies the specified LDT descriptor from the GDT into the
LOTR's explicit cache. Until you change the LOTR selector, the 80286 does not have to access
the GOT for a new LOT descriptor.

Encyclopedia 1-21

Address translation (80286) continued

Figure 1-2 shows the relationship of the two descriptor tables (the GDT and the LDT) and the
two registers (the LDTR and the GDTR).

The Segment Registers

1-22

A segment register identifies a segment descriptor. This segment descriptor is either in the
GDT or in the current LDT. The selector portion of a segment register chooses the GDT or the
LDT and provides an offset into the selected table. The 80286 multiplies this offset by eight. A
descriptor table entry is eight bytes long.

Each of the 80286 segment registers also contains an explicit cache. When you load the selec­
tor portion of a segment register, the 80286 copies the specified segment descriptor from the

GOT

Table index (selector
shifted left 3 bits)

access I base I limit

Table Indicator
Bit~ 0

I selector I offset J
virtual physical ad dress

address I +~ base + offset

+~ I base + offset

Table Indicator
Bit~ 1 LOT

Table index (selector
shifted left 3 bits)

access I I base limit

1609

Figure 1-1 80286 Virtual Address Translation

Encyclopedia

GDT into the explicit cache. Until you change the segment selector, the 80286 does not have to
access a descriptor table for a segment descriptor.

Figure 1-3 shows the relationship of the segment registers and the two descriptor tables (the
GDT and the LDT).

GOT

LOTR I access 1 base 1 limit

I selector I access 1 base J limit J

GOTR I
I base 1 limit J

LOT

access J base 1 limit

1610

Figure 1-2 The Descriptor Table Registers and the Descriptor Tables

Encyclopedia 1-23

Address translation (80286) continued

Cross-References

80286 registers
PCHECK
SEL286

Table index (selector
shifted left 3 bits)

Table Indicator Bit~O

segment register

I selector I access I base I

Table Indicator Bit ~ 1

Table index (selector
shifted left 3 bits)

GOT

access I

limit I
LOT

access I

base I limit

base I limit

1611

Figure 1-3 The Segment Register and the Descriptor Tables

1-24 Encyclopedia

Syntax

APPEND pathname

Where:

DEBUG
ARMREG
BRKREG
EVTREG
SYSREG
TRCREG
PROC
LITERALLY
mtype
name

Saves the definitions of debug
objects from memory to a file

,ARMREG
,BRKREG
,EVTREG
,SYSREG
,TRCREG
,PROC
,LITERALLY
,mtype
,name

APPENDpa~nameDEBUG adds all debug objects currently defined in memory to the
file pathname.

APPEND pathname
debug-abject-type

APPEND pathname
debug-abject-name

pathname

Discussion

adds all debug objects of the specified type (ARM REG,
BRKREG, etc.) to the file pathname.

adds the named debug objects to the file pathname. Pro­
gram memory values are not saved.

is the fully-qualified reference of the file to which you
want to append the debug objects. For further informa­
tion on pathname, see the Pathname entry in the PICETM
System Reference Manual.

The APPEND command saves the definitions of debug procedures, LITERALLYs, debug
memory types, and debug registers to a disk file. The values of debug memory types are not
saved.

The APPEND command does not edit the file; it saves information to an existing file. When
the named file does not exist, APPEND creates it. Additionally, if a debug object already
exists in the APPEND file, both versions are saved but only the most recent definition is
restored (with the INCLUDE command).

Encyclopedia 1-25

APPEND continued

NOTE

Do not repeat keywords in the command. For example, the following command is
incorrect:

Examples

1-26

The following examples assume that the debug objects have been defined and appended to the
file :f2:debug.inc and that the base is hexadecimal. (If you have an IBM PC host, disregard the
symbol ":f2:". If the file is in your current disk directory, append to the file using the com­
mand: APPEND debug.inc DEBUG. If the file is on another drive, replace :f3: with d:, where
d is the letter of the file's disk drive.)

*tlJS'mEIU<l.
I byte

1* List existing debug objects to the terminal *1
5

J byte 10
K byte 1B
SUM integer +344
P pointer 0020:0012H
X_VALUE . word FFCO
BAS E_A D DR. 1 i t era 11 y 'BYTE 1000H: OH'
WHERE • proc
* ~~~Ft!lQ;J~~~;P:99;."¢.·QI5'V(.l
1. Create and append additional debug objects to an existing file.

1* Create debug objects *1

Another way to save s_factor and r_factor is as follows:

Encyclopedia

2. Restore and list the debug objects from the file.

Cross-References

ARM REG
BRKREG
EVTREG
LITERALLY
Mtype
Name
Pathname
PROC
SYSREG
TRCREG

Encyclopedia 1-27

ARM REG
Defines or modifies a debug register that
contains arm, trigger, and disarm
sequences or delay sequences

Syntax

{

ARM cond [DISARM cond] TRIG t-cond }

DEFINE ARMREG name = [ARM cond] TRIG t-cond AFTER {INSTRUCTION count }
OCCURRENCE count

Where:

DEFINE ARM REG name

ARM cond

t-cond

cond

DISARM cond

1-28

creates a debug break register called name. Follow the
equal sign (=) with an arm, trigger, disarm, or delay
specification to define the break criteria.

allows triggering. ARM condition must precede TRIG
and DISARM.

is one of the following:

I SYSTRIG I [system-specification]
SYSARM
SYSDARM

break-specification
break-register-name [,break-register-name] *
system-register-name [,system-register-name] *

is one of the following:

system-specification
break-specification
break-register-name [,break-register-name] *
system-register-name [,system-register-name] *

prevents triggering. The DISARM cond must be pre­
ceded with an ARM condo When the DISARM cond is
met, the PICE system searches for the ARM condition
again.

Encyclopedia

Encyclopedia

TRIG t-cond

AFTER

SYSTRIG

SYSARM

SYSDARM

system-specification

break-specification

break-register-name
system-register-name

count

INSTRUCTION count

OCCURRENCE count

ARM REG continued

triggers a break when TRIG t-cond and ARM cond (if
present) are true. When no ARM cond is specified, the
FICE system immediately searches for the TRIG t-cond.

qualifies the trigger condition with a delay factor. Trig­
gers without an AFTER cond define break conditions.
Triggers with an AFTER cond define break conditions
after a delay. The AFTER and DISARM clauses are mu­
tually exclusive.

triggers any enabled FICE units and performs the pro­
grammed action when the system-specification is met.
Refer to the ENABLE entry in this encyclopedia for a
description of the unit enabling process.

arms FICE units that are enabled when the system­
specification is met, which can then respond to the sys­
tem trigger line (SYSTRIG).

disarms any FICE units that are enabled when the
system-specification is met, which then cannot respond
to the system trigger line (SYSTRIG).

is a bus address, bus data, logic clip information, the
buffer full condition, or probe processor status. Com­
plete system-specification syntax is in the System speci­
fication entry in this encyclopedia.

is a numeric or symbolic address (line number, module
name, label, or a list of addresses). Complete break­
specification syntax is in the Break specification entry in
this encyclopedia.

refers to previously defined registers of type BRKREG
orSYSREG.

is a number or expression that evaluates to a positive
whole number in the current base.

breaks emulation after the specified number of machine
language instructions have been executed following the
trigger.

breaks emulation after the specified number of trigger
conditions are met.

1-29

ARM REG continued

Discussion

The ARMREG command sets conditional breakpoints that allow breaking within windows. A
break window is opened when an arm condition is encountered and closed when a disarm
condition is encountered. There are two ways to stop emulation based on arming sequences.
One way is using the GO command; the other is using a debug register called ARMREG (arm
register) in the GO command.

Consider using ARMREGs in three cases:

•

•

•

Use ARM REG to trigger. Used this way, ARMREG operation is identical to BRKREG or
SYSREG operation.

Use ARMREG to ARM a trigger. With ARMREG you can selectively trigger only after an
arm qualification is met. Furthermore, you can disarm the trigger. This way, trigger events
are screened. The probe recognizes the trigger condition only when armed.

Use ARMREG to trigger after a delay. The effect of a trigger is specified in the TRIG
clause. Arming the system, disarming the system, or triggering a break in emulation arc
examples of a trigger effect. There are two ways to delay the effect of a trigger. You can
tell the FICE system how many instructions to execute after the trigger point before acti­
vating the trigger effect. Alternatively, you can tell the FICE system how many triggers
must occur before the trigger effect.

You can optionally enclose ARMREG specifications in a DO/END block.

How to Specify an ARMREG

Figure 1-4 simplifies the syntax diagram by showing a tree of legal syntax combinations.

Triggering

Counting

1-30

Triggering (controlled by TRIG) causes a defined action, such as an emulation break, to occur.

With the AFTER clause you can count events. Events can be the number of instructions exe­
cuted after the trigger point or the number of occurrences of the trigger condition. The count
sequence begins at the first trigger. The break occurs when the count is satisfied.

Encyclopedia

Manipulating ARMREGs

Manipulate an ARMREG by referring to it by name. You can manipulate ARM REGs in the
following ways:

• Create an ARMREG with the DEFINE command

• Delete an ARMREG from memory with the REMOVE command

• List ARMREG names with the DIR command

• Save (or restore) an ARMREGs to (or from) a file with the PUT, APPEND, or INCLUDE
commands

• Display an ARMREG with the command ARMREG

• Execute an ARMREG with the GO USING command

• Modify an ARMREG with the editor

DEFINE ARMREG nam<i!

1358

Figure 1-4 Tree of Legal Syntax

Encyclopedia 1-31

ARMREG continued

NOfE

Defining new break specifications using an old ARMREG name destroys the old defini­
tion in memory. An error results if you try to assign the name of an ARMREG to any
other type of debug object in memory.

Retrieving a saved ARMREG that has the same name as an existing ARMREG over­
writes the one in memory.

An error results when you try to retrieve a saved ARMREG from a file that has the same
name as any other debug object in memory.

Using ARMREGs with Multiple Units

The keywords SYSTRlG, SYSARM, and SYSDARM indicate actions caused by arm registers.
Other units in the FICE system must be enabled to respond to a system action. Refer to the
ENABLE and SYSTEM entries in this encyclopedia for details.

Limitations on Arm Specifications in the GO Command

Arm registers can contain any number of specifications. The GO command's ability to execute
the specifications is, however, limited by the number of word recognizers available.

Word Recognizers

Word recognizers are the programmable portion of the internal execution state machine that
compares user match specifications with conditions on the bus it monitors. When the match
occurs, the state machine halts emulation. Refer to the Event machines entry in this encyclope­
dia for details.

Word recognizer use is governed internally. You cannot know precisely how many word recog­
nizers are used in any given specification. A good rule of thumb is that one- or two-range
(partition) specifications or four-location specifications are the upper limit.

The FICE system reports an error when the word recognizer limit is exceeded. You can either
simplify the specification or use the DEFINE EVTREG construct.

Restrictions

1-32

The following restrictions apply when using more than one unit:

•
•

Only one unit is allowed to control system arming (SYSARM and SYSDARM).

SYSARM, SYSDARM, and SYSTRlG cannot be used with SYSTRACE on the same unit.

Encyclopedia

Example

1. The following example shows how to trigger a break by specifying an ARM REG that
contains an arm, trigger, and disarm sequence.

The source code contains procedures A, B, and C that access utility procedure X. A
problem is discovered when procedure B calls utility X. To trap this particular bug, select
the arm register to conditionally break emulation.

The arm register constructed arms the trigger to the current probe when procedure B is
addressed and disarms the trigger whenever the probe addresses any other procedure. The
break is triggered by any call to utility procedure X from procedure B. Note that the PICE
system interprets symbolic references to procedures or modules as partitions.

1!1~;d1Rq~~'.ii.~i~1
: mod_a #120

Probe 0 stopped at : mod_a #120+3 because of execute break
Break register is XTEST

Cross-References

Break specification
ENABLE
Event machines
Name
SYSTEM
System specification

Encyclopedia 1-33

ASM
Displays memory as assembler
mnemonics

Syntax

ASM partition

Where:

partition is a single address, an expression that evaluates to a sin­
gle address, or a range of addresses specified as address
1D address or address LENGTH number-oJ-instruc­
tions.

Discussion

1-34

The format of the display depends on the number of addresses referenced. A single address
reference displays the first instruction at that address. A range of addresses, specified as
address 1D address, displays all instructions that start within the range. An instruction is
displayed if its first byte is within the partition, even if subsequent bytes are outside. To specify
an exact number of instructions to be displayed, use the form address LENGTH number-oj
instructions. When partition is a symbolic reference to a procedure, ASM disassembles the
entire procedure.

Disassembled instructions and comments appear on the terminal in columns. They are, from
left to right: address, hexadecimal object values, opcode mnemonics, and operands (if any).
Comments appended to the operands provide additional information, such as the types of
jumps, calls, and returns, the address of a branch relative to the current execution point ($).
and the decimal equivalents of hexadecimal values. Refer to the example section of this com­
mand for a sample display.

The disassembly includes symbols and module and line number information when the follow­
ing three conditions are satisfied:

• If SYMBOLIC = TRUE (refer to the SYMBOLIC pseudo-variable entry in this encyclope­
dia for details) .

• If the segment and offset values can be determined from the address.

• If the symbol table contains an exact match to the beginning of an instruction in the
partition.

When an absolute address is used to specify the partition, the disassembly begins without line
number information. If a jump or call instruction is subsequently encountered and the disas­
sembler can determine the true segment and offset values, then the display includes module and
line number identification.

Encyclopedia

.ASM

Examples

1. Display a single instruction:

* ASNIIii
DD2D:DDDbH FA ell

2. The following example shows the disassembly of several instructions. It shows the format
used by the disassembler for absolute addresses. It also shows the addition of module and
line number information after a CALL instruction has allowed the disassembler to identify
segment and offset values within the range of available line numbers.

Encyclopedia

*$
0020:0006H
*A$M2oeH12ENGTHaOT

000206H FA
000207H 2E8E160000
00020CH BC2000
00020FH 2E8E1E0200
000214H EAOA002100
000219H AA
00021AH 8BEC
00021CH FB
00021DH B80COO
000220H 89060800
000224H 8C1EOAOO
000228H B11E
00022AH 51
00022BH B92700
00022EH 51
00022FH 1E
000230H 50
000231H E81700

:TEST2#2
0021:0024H 55
0021:0025H 8BEC

#4
0021:0027H 817E040100
0021:002CH 7403
0021:002EH E90600

#5
0021:0031H C7060EOOOOOO

#6
0021:0037H 5D
0021:0038H C20200

CLI
MOV
MOV
MOV
JMP
STOS
MOV
STI
MOV
MOV
MOV
MOV
PUSH
MOV
PUSH
PUSH
PUSH
CALL

PUSH
MOV

CMP

SS,CS:WORD PTR OOOOH
SP,0020H i+32T
DS,CS:WORD PTR 0002H
0021H:000AH

ES: BYTE PTR [DI]
BP,SP

AX,OOOCH i+12T
WORD PTR 0008H,AX
WORD PTR OOOAH,DS
CL,lEH i+30T

CX
CX,0027H i+39T

CX
DS
AX
(TEST2PROClA=001BH

BP
BP,SP

WORD PTR [BP+04H],1
JZ (#5lA=0031H i $+5
JMP (#6lA=0037H i $+9

MOV WORD PTR OOOEH,O

POP BP
RET 2 NEAR

$+26

1-35

ASM continued

Cross-References

1-36

Address
Partition
SYMBOLIC

Encyclopedia

Syntax

BJ.\S
A pseudo-variable that display

or changes the number base

BASE [= {expreSSion } [
base-name

Where:

BASE

expression

base-name

Default

DECIMAL

Discussion

displays the current number base. The default base is
decimal.

changes the default BASE. The expression must evalu­
ate to 2, 10, or 16.

changes the default base. Names available are BINARY,
DECIMAL, and HEX.

The BASE pseudo-variable controls the default number base for terminal input and output. You
can use BASE as follows:

• To display the default base (e.g., BASE) .

• To change to a new base (e.g., BASE = 2 or BASE = BINARY).

• As a variable in expressions (e.g., variable=BASE). The type of the BASE pseudo­
variable is BYTE.

When you change the base using an expression, if the expression does not evaluate to 2, 10, or
16 (decimal), the number base does not change and an error results. Unless otherwise speci­
fied, all expressions are evaluated in the current base. To override the current base, use an
explicit suffix: Y for binary, T for decimal, H for hexadecimal.

Encyclopedia 1-37

BASE continued

NOTE

The BASE variable is always global. When the number base is changed by executing the
BASE command, the change happens immediately, even if the change command is
within a debug procedure definition, a block command, or in a command line with
multiple commands.

Examples

1-38

1. Display the current base:

*8111
DECIMAL

2. Change to binary radix:

or

or

*BISEii#2iI
*
*BIII;';;101
*
*BIIIIIJNIR
*

3. Change to decimal radix:

*BIIS I joll

* or
*IISE;.;;·.oSIIMIIll
*

4. Change to hexadecimal radix:

or

or

*IIIS;';;lllJi
*
*IIIII.JI"
*
* liSE ii# BII
*

5. Use BASE in an expression:

Encyclopedia

6. The following example shows a command block in which the numbers will be in base two.
The block saves the current BASE, switches to BINARY radix for the commands, and then
restores the previous BASE.

*
/* Commands using binary numbers */

Cross-Reference

Expression

Encyclopedia 1-39

BCD
Displays or changes memory as
aD-bit packed decimal values

Syntax

BCD partition [= expression [, expression] *
= mtype partition

Where:

BCD partition

partition

expression

mtype

displays the location specified in partition as a binary
coded decimal number in decimal.

is a single address, an expression that evaluates to a sin­
gle address, or a range of addresses specified as address
ro address or address LENGTH number-oj-items.

converts to an 80-bit packed decimal value for BCD.

is any memory type except POINTER, BOOLEAN,
CHAR, and ASM.

Discussion

The BCD (binary coded decimal) command interprets the contents of memory as signed 80-bit
packed decimal values, overriding any type associated with the memory contents. Thus, BCD
. var 1 displays the 80-bit packed decimal value that begins at the address of varl, regardless of
the type of varl .

Examples

1-40

The following examples assume a decimal base. An H is required after both the segment and
the offset to specify hexadecimal addresses when the base is decimal.

1. Display a single value:

*s~a$
0020:0004H +7322000016943560

2. Display several adjacent values:

*·a.' •• WIa"'.!tlB·S
0020:0004H +7322000016943560
0020:000EH +15040008140400081
0020:0022H +12040008140400081

+2101015000022494
+817040008170400

Encyclopedia

3. Set a single value oftype BCD:

4. Set several contiguous values:

Display the values set:

*IB.QI!'t~.iIiIl!iNG1J1i2
0040:0004H -1234567890

s. Set a range oflocations to the same value (block set):

6. Set a repeating sequence of values:

Display the values set:

*IIIIQI\U4illiIUG1J1ii
0040:0004H +1111111111
0040:0018H +1111111111
0040:002CH +1111111111

7. Copy a value from one memory location to another:

8. Copy several values (block move):

9. Copy values with type conversion:

BCD continued

+1000000000

-2222222222
-2222222222
-2222222222

An error message is displayed if the type on the right side of the equal sign cannot be
converted to the type on the left. (Refer to the Expression entry in this encyclopedia for the
rules concerning type conversions.)

Cross-References

Expression
Mtype
Partition

Encyclopedia 1-41

BOOLEAN
Displays or changes memory as
Boolean TRUE or FALSE values

Syntax

BOOLEAN partition [= expression [, expression]'
= mtype partition

Where:

BOOLEAN partition

partition

expression

mtype

displays the location specified in partition as a Boolean
value (TRUE or FALSE).

is a single address, an expression that evaluates to a sin­
gle address, or a range of addresses specified as address
TO address or address LENGTH number-oj-items.

converts to a TRUE or FALSE value. Only the least sig­
nificant bit (LSB) of the result is tested. If the LSB is 1,
the BOOLEAN value is TRUE; if the LSB is 0, the
BOOLEAN v'llue is FALSE.

is any of the memory types except POINTER, CHAR,
and ASM.

Discussion

The BOOLEAN command interprets the contents of memory as TRUE or FALSE values,
overriding any type associated with the memory contents. Thus, BOOLEAN .var1 displays
TRUE or FALSE, depending on the LSB of the byte at the address of the program variable
varl, regardless of the type of varl.

Examples

1-42

The following examples assume a hexadecimal base.

1. Display a single value:

*lJll.f4IINi$
0020: DDD4H TRUE

Encyclopedia

2. Display several consecutive values:

*8_t:e.~N$rl;.fENGTH1
0020: 0004H FALSE FALSE FALSE FALSE FALSE TRUE TRUE

3. Set a single value of type BOOLEAN:

4. Set several contiguous values:

Display the values set:

*8c)c)I;.E~N40:4I;.ENGTH.3T
0040: 0004H TRUE FALSE FALSE

5. Set a range ofJocations to the same value (block set):

6. Set a repeating sequence of values:

Display the values set:

*8C)()l;.fEAN 40:·4 LE.NGTH.10T
0040: 0004H TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE
TRUE FALSE

7. Copy a value from one memory location to another:

8. Copy several values (block move):

9. Copy a value with type conversion:

An error message is displayed if the type on the right side of the equal sign cannot be converted
to the type on the left. (Refer to the Expression entry in this encyclopedia for the rules concern­
ing type conversions.)

Encyclopedia 1-43

BOOLEAN continued

Cross-References

1-44

Expression
Mtype
Partition

Encyclopedia

A condition that evaluates to a
Boolean value

A Boolean condition is either a value of type BOOLEAN (TRUE or FALSE) or an expression
that uses one of the following relational operators:

equal to

> greater than

< less than

> = greater than or equal to

< = less than or equal to

< > not equal to

Encyclopedia 1-45

Break specification
Defines a break specification

Syntax

[OUTSIDE] partition [,[OUTSIDE] partition] *

Where:

partition

OUTSIDE

is a single address, an expression that evaluates to a sin­
gle address, or a range of addresses specified as address
10 address or address LENGTH number-oj-items.

An address can be virtual or absolute. The value of
LENGTH is interpreted as the number of bytes, regard­
less of the memory type at that location. (Refer to the
Address and Partition entries in this encyclopedia for
more details.)

tells the FICE system to recognize only addresses that
are not in the partition (a logical NCYf function).

Discussion

The term break-specification has a special meaning in the syntax of the PICE system com­
mands. The execution control commands (i.e., GO, BRKREG, ARMREG, TRCREG, and
EVTREG) use this term in their syntax definitions.

Examples

1-46

The following examples show four ways to set a break specification in the GO command or a
register.

1. A module and procedure name as a single address:

:initmod.initio

2. A module, line number, and procedure name in a list:

:initmod #5, :initmod.initio

3. A partition of virtual addresses using the 10 form:

21 :OA7 TO 21 :000

4. An exclusive partition of virtual addresses using the LENGTH form:

OUTSIDE 21:11 LENGTH 20

Encyclopedia

Cross-References

Address
Partition

Encyclopedia 1-47

BRKREG
Defines a register that contains
break specifications

Syntax

DEFINE BRKREG name = break-specification [,break-specification) * [CALL dproc)

Where:

DEFINE BRKREG name
= break-specification

name

break-specification

CALL dproc

Discussion

creates a debug break register called name. Following
the equal sign (=) with a break-specification defines the
break criteria.

is the name of the debug procedure called when the
break-specification is met.

is the address of an executable statement expressed ei­
ther numerically (e.g., 0465H) or symbolically (e.g., a
line number). (The Break specification entry in this en­
cyclopedia describes the syntax in detail.)

calls the debug procedure named when the break­
specification is met. The debug procedure must return
TRUE (meaning a break is to occur) or FALSE (mean­
ing emulation will continue without breaking).

Break specifications stop emulation when the target line of code is executed. You can stop
emulation using break specifications in two ways. One way is to specify the breakpoint in the
GO command; the other is to use a debug register called a BRKREG (break register) in the GO
command (with the USING option).

Manipulating BRKREGs

Manipulate a BRKREG by referring to its name. You can manipulate BRKREGs in the follow­
ing ways:

• Create a BRKREG with the DEFINE command

• Delete a BRKREG from memory with the REMOVE command

• List BRKREG names with the DIR command

• Save a BRKREG on file with the PUT or APPEND commands

1-48 Encyclopedia

•
•
•
•
•

Restore a BRKREG from a file with the INCLUDE command

Display a BRKREG with the BRKREG command

Execute a BRKREG with the GO USING command

Use a BRKREG as part of the DEFINE ARM REG specification

Modify a BRKREG with the editor

Because BRKREGs are referred to by name, you can reuse break specifications without re­
entering them. The GO command allows BRKREG lists. By defining BRKREGs, you can
switch breakpoints in a GO statement by changing BRKREG names.

NOTE

Defining new break specifications using an old BRKREG name destroys the old defini­
tion in memory. An error results if you try to assign a BRKREG name to any other
debug object in memory.

Restoring a saved BRKREG that has the same name as an existing BRKREG overwrites
the one in memory.

An error occurs when you try to restore a saved BRKREG that has the same name as any
other debug object in memory.

You can optionally enclose BRKREG specifications in a DO/END block.

Using the Optional Call

When a trigger occurs because of a BRKREG that includes a CALL, the CALL transfers
control to the named debug procedure. This debug procedure must return a Boolean value
(TRUE or FALSE) to the BRKREG. If it returns TRUE, emulation stops and the break mes­
sage is printed. If it returns FALSE, emulation resumes. A CALL does not execute in real­
time.

Emulation halts if a Boolean value is not returned or there is an error in the called debug
procedure. An error message indicates that the halt was not caused by a normal execution
break.

Restrictions

A BRKREG may contain any number of specifications. The GO command's ability to execute
these specifications, however, is limited by the number of word recognizers available.

Encyclopedia 1-49

BRKREG continued

Word recognizers are the programmable portion of the internal execution state machine that
compares user match specifications with conditions on the bus it monitors. When a match
occurs, the state machine halts emulation. Refer to the Event machines entry in this encyclo­
pedia for details.

Word recognizer use is governed internally. You cannot know precisely how many word recog­
nizers are used in any given specification. A good rule of thumb is that one- or two-range
(partition) specifications or four-location specifications are the upper limit. The FICE system
indicates when the word recognizer limit is exceeded.

Example

1-50

1. The following example defines a procedure, a character variable, and a BRKREG. The
procedure is named QUERY. The procedure QUERY is called from a BRKREG named
THIS~OUND. The procedure QUERY displays the value of the current probe proces­
sor's registers and flags and asks if the user wants to stop emulation. Entering Y returns a
TRUE to the calling BRKREG and stops emulation.

*llllli~,.,gll'lligi[~rlqll
----- REGISTERS FOR UNIT 0000 ----
AX=4 BX=63A CX=O
CS=5588 DS=188 SS=104
IP=46C7 BP=634 SP=624
DI=3A2
FLAGS: ZFL PFL
Do you want to break?1'

I*Screen message *1
I*Accept terminal *1

l*input*1

I*Test and return Boolean value*1

1* Call query at the
symbolic addr "helpentry"*1

1* Return true to BRKREG *1

DX=2
ES=o
SI=83o

Probe 0 stopped at :helpentry #3 because of execution break
Break reg i ster is THIS_ROUND

Encyclopedia

Cross-References

Break specification
Event machines
Name

Encyclopedia 1-51

BTHRDY
8086/8088 probe specific

A pseudo-variable that determines the
source of the probe processor READY signal

Syntax

BTHRDY = FALSE [
=TRUE

= boolean-expression

Where:

BTHRDY

TRUE

FALSE

boolean-expression

displays the current setting.

uses the logical AND of the prototype READY signal
and the PICE system READY signal to determine the
number of wait-states.

uses READY that depends on current mapping. For ex­
ample, if memory is mapped to USER, the user proto­
type supplies READY; if memory is mapped to HS, then
the FICE system supplies READY.

is any expression in which the low-order bit evaluates to
o (false) or I (true).

Default

FALSE

Discussion

1-52

The BTHRDY pseudo-variable controls the source of the READY signal used by the probe's
microprocessor while emulating. The possible sources of READY are the following:

• Target system hardware (USER) memory

• High-speed (HS) memory

• Optional high-speed (OHS) memory

• MULTIBUS® (MB) memory [not supported on IBM PC hosts]

• Target system hardware (USER) I/O

• MULTIBUS I/O

Encyclopedia

If BTHRDY = TRUE and memory is mapped to HS, OHS, or MB memory, the probe's micro­
processor waits for both the target system READY and READY from mapped HS, OHS, or
MB memory to become valid. (When you are executing from HS or OHS memory, the probe's
microprocessor matches actual target execution speed.) The target system must provide a valid
READY signal. See Figure 1-5 for timing requirements when BTHRDY is TRUE. Note that
the target system must meet these requirements even if memory and 110 are mapped to USER.

If BTHRDY = FALSE and memory is mapped to HS, OHS, or MB memory, target system
READY is ignored for those addresses in the range of mapped memory. With this feature you
can use the probe as a signal generator for debugging the target system.

Use caution when BTHRDY = FALSE and memory is not mapped to USER. The microproces­
sor bus cycles in the target system are not terminated by the target system READY but by the
READY provided to the probe's microprocessor by the corresponding mapped memory. To
prevent bus contention between the target system and the emulator when BTHRDY = FALSE,
ensure that the number of wait-states requested by the target system is less than or equal to the
number of wait-states specified in the WAITSTATE command.

READY TIMING FOR BTHRDY = TRUE

elK

READY
(8086/8088
Input)

,
)0---y---"

--f'pt----- -
1404

Figure 1-6 Ready Signal Set-up Time with BTHRDY
Enabled

Figure 1-5 8086/8088 Probe READY Timing Requirements when BTHRDY = TRUE

Encyclopedia 1-53

BTHRDV (8086/8088) continued

The following example illustrates bus contention when BTHRDY = FALSE, the target system
inserts two wait-states but WAITSTATE = 0, and memory is mapped to HS or OHS. Given
these conditions, when a program is executed that causes a read cycle followed by a write
cycle, the following events occur:

• PICE memory returns the data, terminates the cycle in zero wait-states, and starts the write
cycle before the target system terminates the read cycle.

• The target system drives read data onto the data bus at the same time the probe is driving
write data onto the data bus.

Examples

1-54

1. Display the current setting:

*­FALSE
2. Enable the prototype READY signal:

3. Use BTHRDY as a variable:

Encyclopedia

Syntax

=TRUE
= FALSE

Pseudo-variable that controls the source
of the probe microprocessor's READY

BTHRDY [
= boolean-expression

Where:

BTHRDY

TRUE

FALSE

boolean-expression

Default

FALSE

Discussion

displays the current setting.

uses the logical AND of the prototype READY signal
and the PICE system READY signal to determine the
number of wait-states.

uses READY that depends on current mapping. For ex­
ample, if memory is mapped to USER, the user proto­
type supplies READY; if memory is mapped to HS, then
the FlCE system supplies READY.

is any expression in which the low-order bit evaluates to
o (false) or 1 (true).

The BTHRDY pseudo-variable controls the source of the READY signal used by the probe's
microprocessor while emulating. The possible sources of READY are the following:

• Target system hardware (USER) memory

• High-speed (HS) memory

• Optional high-speed (OHS) memory

• MULTlBUS (MB) memory [not supported on IBM PC hosts]

• Target system hardware (USER) I/O

• MULTIBUS I/O

Encyclopedia \-55

BTHRDY (80186/80188) continued

1-56

BTHRDY has no effect when memory or I/O is mapped to USER; the target system must
provide a valid READY signal.

If BTHRDY = TRUE and memory is mapped to HS, OHS, or MB memory, the probe's micro­
processor waits for both the target system READY and READY from mapped HS, OHS, or
MB memory to become valid. The target system must provide a valid READY signal.

If BTHRDY = FALSE and memory is mapped to HS, OHS, or MB memory, the target system
READY is ignored for those addresses in the range of mapped memory. With this feature you
can use your probe as a signal generator for debugging the target system.

Use caution when BTHRDY = FALSE. The microprocessor bus cycles in the target system are
terminated by target system READY and not by the READY provided to the probe's micropro­
cessor by the mapped memory. To prevent bus contention between the target system and the
emulator when BTHRDY = FALSE, ensure that the number of wait-states requested by the
target system is less than or equal to the number of wait-states specified in the WAITSTATE
command. If the number of wait-states requested is greater than the number specified in the
WAITSTATE command, you can still prevent contention by ensuring the following:

• The target system must not initiate bus cycles for addresses mapped to FlCE system
memory.

• The target system must not drive the data bus during a read cycle to an address mapped to
the FICE system. '

The following example illustrates bus contention when BTHRDY = FALSE, the target system
inserts two wait-states but WAITSTATE = 0, and memory is mapped to HS or OHS. Given
these conditions, when a program is executed which causes a read cycle followed by a write
cycle, the FICE memory returns the data, terminates the cycle in zero wait-states, and starts
the write cycle before the target system terminates the read cycle. The target system drives
read data onto the data bus at the same time the probe is driving write data onto the data bus.

Encyclopedia

Syntax

BTHRDY [
=TRUE
= FALSE
= boolean-expression

Pseudo-variable that controls the source
of the probe microprocessor's READY

Where:

Default

BTHRDY

TRUE

FALSE

boolean-expression

displays the current setting.

uses both prototype READY and prCE system READY
to determine the number of wait-states, unless memory
or I/O is mapped to USER. When memory or I/O is
mapped to user, BTHRDY has no effect (i.e., the target
system READY is used).

uses READY that depends on current mapping. For ex­
ample, if memory is mapped to USER, the user proto­
type supplies READY; if memory is mapped to HS, then
the FlCE system supplies READY.

is any expression in which the low-order bit evaluates to
o (false) or 1 (true).

TRUE

Discussion

The BTHRDY pseudo-variable controls the source of the READY signal used by the probe's
microprocessor while emulating. The possible sources of READY are the following:

• Target system hardware (USER) memory

•
•
•
•
•

Encyclopedia

High-speed (HS) memory

Optional high-speed (OHS) memory

MULTIBUS (MB) memory [not supported on IBM PC hosts]

Target system hardware (USER) I/O

MULTIBUS I/O

1-57

BTHRDY (80286) continued

1-58

BTHRDY has no effect when memory or 110 is mapped to USER; the target system must
provide a valid READY signal.

If BTHRDY = TRUE and memory is mapped to HS, OHS, or MB memory, the probe's micro­
processor waits for both the target system READY and READY from mapped HS, OHS, or
MB memory to become valid. The target system must provide a valid READY signal.

If BTHRDY = FALSE and memory is mapped to HS, OHS, or MB memory, target system
READY is ignored for those addresses in the range of mapped memory. With this feature you
can use your probe as a signal generator for debugging the target system.

Use caution when BTHRDY = FALSE. The microprocessor bus cycles in the target system are
terminated by target system READY and not by the READY provided to the probe's micropro­
cessor by the mapped memory. To prevent bus contention between the target system and the
emulator when BTHRDY = FALSE, ensure that the number of wait-states requested by the
target system is less than or equal to the number of wait-states specified in the WAITSTATE
command. If the number of wait-states requested is greater than the number specified in the
WAITSTATE command, you can still prevent contention by ensuring the following:

•

•

The target system does not initiate bus cycles for addresses mapped to FICE system mem­
ory (unless the preceding WAITSTATE condition is true) .

The target system does not drive the data bus during a read cycle to an address mapped to
the PICE system.

The following example iIIustrates bus contention when BTHRDY = FALSE, the target system
inserts two wait-states but WAITSTATE = 0, and memory is mapped to HS or OHS. Given
these conditions, when a program is executed which causes a read cycle followed by a write
cycle, the FlCE memory returns the data, terminates the cycle in zero wait-states, and starts
the write cycle before the target system terminates the read cycle. The target system drives
read data onto the data bus at the same time the probe is driving write data onto the data bus.

Encyclopedia

Syntax

=TRUE
= FALSE

A pseudo-variable that allows a system
time-out when the microprocessor bus

is inactive for more than one second.

BUSACT [
= boolean-expression

Where:

BUSACT

TRUE

FALSE

boolean-expression

Default

TRUE

Discussion

displays the current setting (TRUE or FALSE).

enables bus inactive time-outs.

disables bus inactive time-outs.

is any expression in which the low-order bit evaluates to
o (false) or I (true).

When BUSACT = TRUE, a time-out occurs when the processor bus is inactive for more than
one second. A time-out causes emulation to break.

Examples

I. Display the current setting:

*ILJslo;r;
TRUE

2. Disable the time-out:

Encyclopedia 1-59

BUSACT continued

3. Use BUSACT as a variable:

1-60 Encyclopedia

Syntax

BYTE partition [= expression [, expression]"
= mtype partition

Displays or changes memory
as an 8-bit unsigned value

Where:

BYTE partition

partition

expression

mtype

Discussion

displays the location specified in partition as a byte
value in the current base.

is a single address, an expression that evaluates to a sin­
gle address, or a range of addresses specified as address
TO address or address LENGTH number-oj-items.

converts to an 8-bit unsigned value.

is any memory-type except ASM.

The BYTE command interprets the contents of memory as 8-bit unsigned values, overriding
any type associated with the memory contents. Thus, BYTE. varl displays the first byte at the
address of var I, regardless of the type of varl .

The display includes the corresponding ASCII characters enclosed in apostrophes ('). Non­
printing characters are displayed as periods (.).

Examples

The following examples assume the base is hexadecimal.

I. Display a single value:

*~;I
0020: oo04H FA

2. Display several contiguous values:

*lmlliftJErtltfl:s'_
0020: oo04H FA 2E 8E 16 00 00 BC 72

Encyclopedia 1-61

BYTE continued

3. Set a single value of type BYTE:

4. Set several contiguous values:

Display the values set:

*1&lil;4BIIIIHS
0040: 0004H 41 42 43

5. Set a range of locations to the same value (block set):

6. Set a repeating sequence of values:

Display the values set:

*11111I;4141111IQI
0040: 0004H 12 34 56 12 34 56 12 34 56 12

7. Copy a value from one memory location to another:

8. Copy several values (block move):

9. Copy values with type conversion:

, ABC'

'.4V.4V.4V.'

An error message is displayed if the type on the right side of the equal sign cannot be converted
to the type on the left. (See the Expression entry in this encyclopedia for the rules concerning
type conversions.)

Cross-References

1-62

Expression
Mtype
Partition

Encyclopedia

Syntax

CALLSTACK [n)

Displays the names of procedures
on the stack

Where:

CALLSTACK

n

displays the names of the procedures on the stack in or­
der of call (from top to bottom). An asterisk (*) before
an element indicates the current debug cursor location.

is a number or expression that evaluates to the position
of a procedure in the stack. If n is negative, the FICE
system displays the return addresses of the earliest pro­
cedures (those on the bottom of the stack). If n is posi­
tive, the FlCE system displays the return addresses of
the latest procedures (those on the top ofthe stack). Fig­
ure 1-6 illustrates positive and negative n.

Discussion

With the CALLS TACK command you can view the dynamic, run-time nesting of the program
as opposed to static, lexical nesting. After calls to a procedure, the stack contains the return
addresses in order from earliest to most recent. Figure 1-6 illustrates the precedence of proce­
dures in the return stack.

Encyclopedia

NOTE

The CALLS TACK command does not operate correctly if the nesting sequence includes
a procedure written in assembly language.

The CALLSTACK command does not operate correctly if the last executable statement
of the main module calls a procedure. The top-level return address must not be within a
procedure.

1-63

CAllSTACK continued

1-64

The display format is as follows:

:module-name[.procedure-name] [+ offset]

If the return address is within a procedure, the procedure-name is displayed. The offset in
bytes is displayed in the current number base.

The FICE system makes certain assumptions about the stack at any given time. Chang­
ing the execution point, stack segment, or stack pointer may invalidate these assump­
tions.

.!l

1

2

3

4

5

6

Procedure
Return Stack

Procedure 5

Procedure 4

Procedure 3

Procedure 2

Procedure 1

--

Main Program

-6

-5

-4

-3

-2

-1

1376

Figure 1-6 Accessing the Procedure Return Stack

Encyclopedia

Example

1. In this example, when the RETURN at the end of the current procedure is encountered,
execution resumes at the address represented by (:tca.prologue + 6). The next RETURN
after that returns to (:tca. main + 22).

*OltitiSflOI<
0013: 0081H : tca. pro 1 ogue+6
0021: 003AH : tca. mai n+22

Cross-Reference

Expression

Encyclopedia 1-65

CAUSE
Displays the reason emulation stopped

Syntax

CAUSE

Discussion

With the CAUSE command you can display the reason for the last emulation halt. The CAUSE
message describes the location and reason for the break. The message contains the debug
register that caused the break, value of the clips, and trace buffer overflow (if applicable). The
message has the following format:

PROBE P stopped at address because of cause
[BUS ADDRESS = absolute address]

[Break register is name] [Clips = ee] [Trace Buffer Overflow]

The FICE system fills in the underlined items as described in Table 1-2.

CAUSE is useful when using the ISTEP, LSTEP, PSTEP, and WAIT commands because they
do not display a break message unless an error occurs or a breakpoint is stepped through. The
message is the same one that the FICE system prints when emulation stops because of a
programmed breakpoint.

Example

1. The following example displays the reason emulation stopped:

*11111
Probe 0 stopped at : (MAKER# 10 because of guarded access

Bus address=008274

Cross-Reference

Expression

1-66 Encyclopedia

Table 1-2 CAUSE Message Variables

Item Description

p Unit number (0-3).

address The value of CS:IP where the unit stopped emulation, displayed in pointer or
symbolic notation. (Refer to the Expression entry in this encyclopedia for
notation examples.)

cause One of the following reasons:

bus break 110 not ready
bus not active memory not ready
coprocessor memory violation no user clock
coprocessor on bus over temperature
execute break personality board
guarded access system break
halt write to ROM
host 110 access

[...] Brackets indicate that the 121CE system displays this information only if it is
available.

absolute Contents of the address bus in absolute format.
address The number of significant bits is probe-specific.

name When a debug register specification causes the break, the 121CE system
displays its name.

cc A two-place hexadecimal number representing the value of the eight input
logic clips.

Encyclopedia 1-67

CHAR
Displays or changes memory
as ASCII characters

Syntax

CHAR partition [= expression [, expression] *
= mtype partition

Where:

CHAR partition

partition

expression

mtype

displays the location specified in panitian as an ASCII
character value.

is a single address, an expression that evaluates to a sin­
gle address, or a range of addresses specified as address
TO address or address LENGTH number-afitems.

converts to an ASCII byte value.

is one of the following valid types for assignment to
CHAR: BYTE, WORD, DWORD, ADDRESS, SELEC­
TOR, CHAR, and ASM.

Discussion

The CHAR command interprets the contents of memory as 8-bit ASCII characters, overriding
any type associated with the memory contents. Thus, CHAR. varl displays the first byte at the
address of varl as an ASCII character, regardless of the type of varl. Non-printing characters
and values outside the range of ASCII characters are displayed as periods (.).

Examples

1-68

I. Display a single character:

*1111;$
0020:0004H 'A'

2. Display several adjacent characters:

*16IS$lliil\l~16all
0020:0004H 'A· •• ·• ·r········ ·1·······'

Encyclopedia

3. Assign a single value of type CHAR:

*111~1!!I~I.I~
4. Assign several adjacent values of type CHAR:

Display the values set:

*lllllg!pllf1lII11
0040:0004H 'qwerty'

5. Assign several repeating values:

Display the values set:

*eH~Btemp~EtltlliIll12li
0040:0004 'GRGRGRGRGRGR'

Cross-References

Expression
Mtype
Partition

Encyclopedia 1-69

CI
A function that reads
from the system terminal

Syntax

CI

Discussion

With the CI (console input) function you can read one character from the system terminal. The
terminal pauses until the character is entered. No prompt is displayed while the system is
waiting for the CI character, and the entered character is not echoed to the screen. No carriagc
return is required after the character has been keyed in.

Example

1-70

1. This example defines a procedure, a character variable, and a BRKREG. The proccdurc is
named "query". It is called from a BRKREG named "this_round". Query displays the
value of the current probe processor's registers and flags and asks if the user wants to stop
emulation. A Y response returns a TRUE to the calling BRKREG and finishes thc break.

----- REGISTERS FOR UNIT 0000 ----
AX=4 BX=63A CX=O
CS=5588 DS=188 SS=104
IP=46C7 BP=634 SP=624
DI=3A2
FLAGS: ZFL PFL

/*Screen message */
/*Accept terminal input*/

/*Test and return Boolean */

/* Call query at */
/*symbolic addr "helpentry"*/

DX=2
ES=o
SI=83o

Do you want to break?'li /*ReturntruetoBRKREG*/
Probe 0 stopped at : helpentry#3 because of execution break

Break register is THIS_ROUND /*Probebreakmessage*/

Encyclopedia

Syntax

CLEAREOL

Clears screen from cursor
to end of line

Discussion

The CLEAREOL command clears the screen display from the cursor's location after the com­
mand is entered to the end of the line.

Examples

1. Clear the second line. The following CLEAREOL command clears the second line, be­
cause "CLEAREOL" is entered on the first line and then the RETURN (or Enter) key
moves the cursor to the second line before CLEAREOL is executed.

* <lURfJoME

*CL:EA.REQL:

/*Moves cursor to upper left-hand corner of screen*/

/*Clears the second line*/

2. Clear the first line. The following CLEAREOL command clears the first line, because the
RETURN (or Enter) that completes the command line moves the cursor to the next line,
after which the cursor is moved to the first line by CURHOME--then "CLEAREOL" is
executed.

Encyclopedia 1-71

CLEAREOS
Clears screen from cursor
to end of screen

Syntax

CLEAREOS

Discussion

The CLEAREOS command clears the screen display from the cursor's location after the com­
mand is entered to the end of the screen.

Examples

1-72

1. Clear the screen from the second line. The following CLEAREOS command clears the
screen beginning at the second line, because "CLEAREOS" is entered on the first line and
then the RETURN (or Enter) key moves the cursor to the second line before CLEAREOL
is executed:

/*moves cursor to upper left-hand corner of screen*/
/*clears entire screen*/

2. Clear the screen from the first line. The following CLEAREOS command clears the
screen beginning at the first line, because the RETURN (or Enter) that completes the
command line moves the cursor to the next line, after which the cursor is moved to the first
line by CURHOME--then "CLEAREOS" is executed.

Encyclopedia

Syntax

CUPSIN

Discussion

Displays current state of
emulator logic clips

The CLIPSIN command displays the current state of the eight input signals on the emulator
logic clips in hexadecimal format. Each signal line on the clip pod is numbered. The number of
the signal corresponds to the bit number in the byte returned. Table 1-3 lists the colors of the
wires corresponding to the input signals.

Table 1-3 Input Clips Signals and Wire Colors

Signal Wire Color

CLIP IN 0 Brown LSB

CLIP IN 1 Red

CLIP IN 2 Orange

CLIP IN 3 Yellow

CLIP IN 4 Green

CLIP IN 5 Blue

CLIP IN 6 Violet

CLIP IN 7 White MSB

Example

1. Display the input clips in hexadecimal:

Cross-References

System specification

FICE timing information is provided in the FlCE data sheet.

Encyclopedia 1-73

CLIPSOUT
Displays and sets the two
output lines on the
emulator logic clips

Syntax

CLiPSOUT [= expression)

Where:

CLiPSOUT

expression

Default

00

Discussion

displays the current state of clipsout 0 and 1 on the emu­
lator logic clips probe.

evaluates to a binary 00, 01, 10, or 11. The first digit
represents CLIPSOUT 1, and the second digit repre­
sents CLIPSOUT O. A 0 equals low, and a 1 equals high.
The initial value is 00.

The CLIPSOUT command controls two of the four output lines (clipsout 0 and 1) on the
emulator logic clips probe. The other two lines, SYS BREAK/ and SYS TRACE/, are con­
nected to the user prototype for breaking and tracing in a multiple unit configuration.

By specifying a number, the controlled lines send a TTL voltage level signal as soon as you
press the RETURN (or Enter) key. The signals remain until changed with the CLIPSOUT
command or until you perform a power-on reset. The FICE system displays the CLIPS OUT
display in binary, regardless of the setting of BASE.

Example

1. Set CLIPSOUT 0 to TTL low and CLIPS OUT 1 to TTL high; then display the result.

10Y

1-74 Encyclopedia

CUPSOUT continued

Cross-References

Expression
System specification

Encyclopedia 1-75

COENAB
8086/8088 probe specific

Pseudo-variable that enables or
disables coprocessor functions

Syntax

COENAB [

Where:

COENAB

TRUE

FALSE

=TRUE
= FALSE
= boolean-expression

displays the current setting.

enables the coprocessor.

disables the coprocessor.

boolean-expression is any expression in which the low-order bit evaluates to
o (false) or 1 (true).

Default Value

TRUE

Note that the default value for COENAB is FALSE if the user system's RQ/GT line is tied low
(i.e., a shorted signal).

Discussion

1-76

The coprocessor enable (COENAB) pseudo-variable enables or disables an external coproces­
sor. When COENAB = TRUE, the 8086/8088 probe recognizes RQ/GT (MAX mode) or
HOLD/HLDA (MIN mode) signals.

When using the coprocessor, you must set the COENAB command before emulation begins.
Coprocessor enable remains set until you change it with the COENAB command. Resets to the
probe processor and the 8087 device do not affect the setting of COENAB, but the RESET ICE
command returns to the default, COENAB = TRUE.

NllE

RESET ICE does not reset an external coprocessor; it does reset an internal
coprocessor.

Encyclopedia

Although an internal coprocessor operates when COENAB is FALSE, the FICE system does
not acknowledge trace data, register information, and coprocessor-related breaks when
COENAB is FALSE. You can use the 8087 emulator software regardless of the setting of
COENAB.

When you use an external coprocessor that is not enabled, any coprocessor instruction exe­
cuted causes the FICE probe to wait indefinitely (hang) for an acknowledge. To correct the
hang, manually reset the target coprocessor first and then the probe.

An internal 8087 uses RQ/GTl, leaving RQ/GTO available for an external coprocessor. If there
is no internal 8087, both RQ/GTO and RQ/GTl are available for 8087 coprocessors.

Examples

1. Display the current setting of the external coprocessor:

*~Q.Nls.
TRUE

2. Disable an external coprocessor circuit:

Cross-Reference

Expression

Encyclopedia 1-77

COENAB
80186/80188 probe specific

Pseudo-variable that enables
or disables coprocessor functions

Syntax

COENAB [

Where:

COENAB

TRUE

FALSE

=TRUE
= FALSE
= boolean-expression

displays the current setting.

enables the coprocessor.

disables the coprocessor.

boolean-expression is any expression in which the low-order bit evaluates to
o (false) or 1 (true).

Default Value

TRUE

Discussion

1-78

The coprocessor enable (COENAB) pseudo-variable enables or disables an external coproccs­
sor. When COENAB = TRUE, the 80186/80188 probe recognizes its HOLDIHLDA lines.

When using a coprocessor, you must set COENAB to TRUE before emulation begins. Copro­
cessor enable remains set until it is changed with the COENAB command. Resets to the probe
processor do not affect the setting of COENAB, but the RESET ICE command returns to the
default, COENAB = TRUE.

When you use an external coprocessor that is not enabled, any coprocessor instruction exe­
cuted causes the FICE probe to wait indefinitely (hang) for an acknowledge. To correct the
hang, manually reset the target coprocessor first and then the probe.

Encyclopedia

Examples

1. Display the current setting of the external coprocessor:

*CQiN~.
TRUE

2. Disable an external coprocessor circuit:

Cross-Reference

Expression

Encyclopedia 1-79

COENAB
80286 probe specific
Pseudo-variable that enables or
disables coprocessor functions (HOLD,HLDA)

Syntax

COENAB [

Where:

COENAB

TRUE

FALSE

=TRUE
= FALSE
= boolean-expression

displays the current setting.

indicates that an external coprocessor such as thc
ADM A 82258 is enabled. If CPMODE is 1, the 80286
probe recognizes the HOLD and HLDA lines only dur­
ing emulation. If CPMODE is 2, the 80286 probe recog­
nizes the HOLD and HLDA lines during both emulation
and interrogation.

indicates that an external coprocessor is disabled. Thc
80286 probe does not recognize HOLD and HLDA lines
at any time.

boolean-expression is any expression in which the low-order bit evaluates to
o (false) or I (true).

Default Value

FALSE

Discussion

1-80

The COENAB pseudo-variable enables or disables an external coprocessor. It determines
whether the 80286 probe recognizes its HOLD and HLDA lines. (The FICE pseudo-variable
COREQ controls the PEREQ and PEACK lines.)

When you set COENAB to FALSE, any coprocessor bus request causes the coprocessor to wait
indefinitely for an acknowledge (i.e., the FlCE system may hang). If this happens, first reset
the external coprocessor and then the probe (with the RESET UNIT or RESET ICE com­
mand).

Encyclopedia

Resetting the probe microprocessor (activating its RESET pin or entering the RESET UNIT
command) does not change the setting of COENAB. The RESET ICE command returns
COENAB to FALSE.

Examples

1. Display the current setting of the external coprocessor:

*malf4l1l
TRUE

2. Disable an external coprocessor:

Cross-References

CPMODE
Expression

Encyclopedia 1-81

CONCAT
A function that creates and displays
a new string by concatenation

Syntax

CONCAT (string-reference [, string-reference] *)

Where:

string-reference is characters enclosed in apostrophes, a string expres­
sion using CONCAT, NUMTOSTR, or SUBSTR func­
tions, or a reference to a CHAR type debug variable.

Discussion

The CON CAT command builds strings by concatenating all or parts of old strings to form a
new string.

The CONCAT command is used two ways: to display a new message without saving it and to
display and save the new message. When the CONCAT command is entered at the prompt, it
displays the new message.

Examples

1. Concatenate two strings, the predefined character string msg I and the literal string
'PROC1':

2. Concatenate two strings inside a debug variable definition.

Now executing TEST PROCEDURE

Cross-Reference

Strings

1-82 Encyclopedia

Confidence tests
A series of tests that checks

121CE hardware

Before running the confidence tests, load the appropriate confidence test diskette and plug the
user cable into the loopback socket. If you are testing an emulation clips module, connect the
logic clips as shown in the FICETM System User's Guide.

See the following EXAMPLES section for information on invoking the confidence tests.

NOTE

The 80186/80188 self-test logic (test 20) does not test the following seven pins:

VCC (two pins)
TMROUT 0 and 1 (two pins)
HOLD (one pin)
HLDA (one pin)
BHE (one pin)

NOTE

The 80286 self-test logic (test 20) does not test the following pins:

RESET
INTR
CAP

READY
HOLD
Vcc

PEREQ
HLDA
Vss

Table 1-4 lists the confidence tests.

Table 1-4 The PICETM System Confidence Tests

Test Number Test Name

OOOOH Interface map RAM [test ignored by IBM PC hosts]
0OO1H ACK time-out
0OO2H System configuration
0OO3H ICE-LINK data paths
0OO4H Slushware RAM
0OO5H Probe initialization
0OO6H Probe 10
0OO7H Probe start
0OO8H Probe address/data
0OO9H Host/probe communications
OOOAH Slushware loader
OOOBH Communications exerciser
OOOCH Probe CPU instruction set
OOOOH Memory map RAM

Encyclopedia

NMI
ERR

1-83

Confidence tests continued
Table 1-4 The FICETM System Confidence Tests (continued)

Test Number Test Name

OOOEH I/O map RAM
OOOFH High-speed memory map RAM

0010H High-speed RAM
0011H Probe memory time-out
0012H Probe I/O time-out
0013H Probe bus time-out
0014H MULTIBUS DMA [test ignored by IBM PC hosts)
0015H MULTIBUS DMA exerciser [test ignored by IBM PC hosts]
0016H Software interrupt
0017H High-speed memory emulation
0018H MULTIBUS emulation [test ignored by IBM PC hosts)
0019H Single step
001AH 8086/8088 and 80186/80188: Hardware stack pointer

80286: Hardware register dump area
001BH Wait-state generator
001CH Host disk mapping
001DH Host I/O mapping
001EH Guarded access mapping
001FH Read-only mapping

0020H Probe self-test
0021H 8086/8088: 8087 execution

80186/80188: Internal timer interrupt
80286: Execution state machine RAM

0022H 8086/8088 and 80186/80188: Execution state machine RAM
80286: Execution word recognizer RAM

0023H 8086/8088 and 80186/80188: Execution word recognizer RAM;
80286: Execution word recognizer decoding

0024H 8086/8088 and 80186/80188: Execution word recognizer decoding;
80286: Bus state machine

0025H 8086/8088 and 80186/80188: Bus state machine RAM
80286: Bus word recognizer RAM

0026H 8086/8088 and 80186/80188: Bus word recognizer RAM
80286: Bus word recognizer decoding

0027H 8086/8088 and 80186/80188: Bus word recognizer decoding;
80286: Execution breakpoint

0028H 8086/8088 and 80186/80188: Execution breakpoint
80286: Bus breakpoint

0029H 8086/8088 and 80186/80188: Bus breakpoint
80286: Execution bus breakpoint

002AH 8086/8088 and 80186/80188: Execution bus breakpoint
80286: Trace counter

002BH 8086/8088 and 80186/80188: Trace counter
80286: Trace on/off

002CH 8086/8088 and 80186/80188: Trace on/off
80286: Trace buffer RAM part 1

002DH 8086/8088 and 80186/80188: Trace buffer RAM part 1
80286: Trace buffer RAM part 2

002EH 8086/8088 and 80186/80188: Trace buffer RAM part 2
80286: Trace buffer RAM part 3

002FH 8086/8088 and 80186/80188: Trace buffer RAM part 3
80286: Execution delay counter

1-84 Encyclopedia

Thble 1-4 The PICETM System Confidence Tests (continued)

Test Number Test Name

0030H 8086/8088 and 80186/80188: Execution delay counter
80286: Bus delay counter

0031H 8086/8088 and 80186/80188: Bus delay counter
80286: Time tag counter

0032H 8086/8088 and 80186/80188: Time-tag counter
80286: System bus

0033H 8086/8088 and 80186/80188: System bus
80286: Logic clips

0034H 8086/8088: Coprocessor word recognition
80186/80188: Status word recognition
80286: Local reset

0035H 8086/8088 and 80186/80188: Logic clips
0036H 808618088 and 80186/80188: Optional high speed memory
0037H 808618088 and 80186/80188: Verify slushware

80286: Optional high speed memory
0038H 8086/8088 and 80186/80188: User interface exerciser'
0039H 808618088 and 80186/80188: User emulation'
003AH 808618088 and 80186/80188: Host-probe utilities

* The user interface exerciser test and user emulation test assume that the target system has
RAM at addresses 0 to 221 H.

Examples

The following subsections provide examples for running confidence for the 808618088,
80186/80188, and 80286 probes.

Confidence Tests for the 808618088 Probe

The following examples assume that the the 8086/8088 diagnostic disk is in drive 1 (or for the
IBM PC, drive A) and that you want to run the 8086/8088 confidence tests on FICE unit 2.

I. Run the diagnostic tests on the Intellec® Series III:

Encyclopedia

-.AON:F'1:leJiOB62
121CE 086 Confidence Tests Vx. y
C opyri 9 h t 1984, In tel Cor p 0 rat ion
>i1DEST

1-85

Confidence tests continued

Run the diagnostic tests on the Intellec Series IV:

>(l:it'61g.,;fm1111I.~.~
I2IC[086 Conf idence Tests Vx. y
Copyr:ight 1984, Intel Corporation
>111181

Run the diagnostic tests on an IBM PC host. (The prompts shown in the example assume
that you have set your PC prompt using the command PROMPT = PG.)

C:\
A:\
I2IC[086 Confidence Tests Vx. y
Copyright 1984, Intel Corporation
>lTESlT

2. Generate a summary of any tests that failed:

3. Return to the host operating system by entering

Confidence Tests for the 80186/80188 Probe

1-86

The following examples assume that the 80186/80188 diagnostic diskette is in drive I (or drive
A on an IBM PC host) and that you want to run the 80186/80188 confidence tests on unit 2.

4. Run the diagnostic tests on the Intellec Series III:

-aUNl:1t1t:JI!l1862
I2IC[186 Confidence Tests Vx. y
Copyright 1984, Intel Corporation
>llIslT

Run the diagnostic tests on the Intellec Series IV:

lj646Q9~fm~ZIGli111IBI2
I2IC[186 Confidence Tests Vx.y
C ()pYr:i g h t 19 8 4, I n tel Cor p 0 rat ion
>lTEs)f'

Run the diagnostic tests on an IBM PC host. (The prompts shown in the example assume
that you have set the prompt using the command PROMPT = PG.)

(:\
A:\
I2IC[186 Conf idence Tests Vx. y
Cop yri g h t 1984, In tel Cor p 0 rat ion
>iliE81E

Encyclopedia

5. Generate a summary of any tests that failed:

6. Return to the host operating system:

>DJ·

Confidence Tests for the 80286 Probe

The following examples assume that the 80286 diagnostic diskette is in drive I (or drive A on
an IBM PC host) and that you want to run the 80286 confidence tests on unit 2.

7. Run the diagnostic tests on the Intellec Series III:

- alll:~1f;1~12.6~8.62
I2IC[286 Confidence Tests Vx. y
Copyright 1984, Intel Corporation
> ''EfESm

Run the diagnostic tests on the Intellec Series IV:

7jfI161IllDDjfll~12n;ni2
I2IC[286 Conf i dence Tests Vx. y
Copyright 1984, Intel Corporation
>'EESm

Run the diagnostic tests on an IBM PC host. (The prompts shown in the example assume
that you have set your PC prompt using the command PROMPT = PG.)

C: \ >
A: \ >
I2IC[286 Conf idence Tests Vx. y
CgpYCight 1984, Intel Corporation
>mESm

8. Generate a summary of any tests that failed:

9. Return to the host operating system.

Cross-Reference

The PIC£TM System User's Guide has a more information about the PICE confidence tests.

Encyclopedia 1-87

COREQ
80286 probe specific

Pseudo-variable that enables or disables
an external numeric extension (PEREQ, PEACK)

Syntax

COREQ [
=TRUE
= FALSE
= boolean-expression

Where:

COREQ

TRUE

FALSE

boolean-expression

displays the current setting.

indicates that an external numeric extension such as the
80287 is enabled. When CPMODE is 1, the 80286
probe recognizes the PEREQ and PEACK lines only
during emulation. When CPMODE is 2, the 80286
probe recognizes the PEREQ and PEACK lines during
both emulation and interrogation.

indicates that an external numeric extension is disabled.
The 80286 probe does not recognize the PEREQ and
PEACK lines at any time.

is any expression in which the low order bit evaluates to
o (false) or 1 (true).

Default Value

FALSE

Discussion

1-88

The PICE pseudo-variable COREQ enables or disables an external numeric extension. It deter­
mines whether the 80286 probe recognizes its PEREQ and PEACK lines. (The COENAB
pseudo-variable controls the HOLD and HLDA lines.)

When you set COREQ to FALSE, any processor extension data transfer request causes the
processor extension to wait indefinitely for an acknowledgement. Under certain conditions
when COREQ is TRUE and CPMODE is 1, the probe may also hang. When this happens, first
reset the external coprocessor, and then reset the probe (with the RESET command).

Encyclopedia

COREQ (80286) continued

Resetting the probe microprocessor (activating its RESET pin or entering the RESET UNIT
command) with the RESET UNIT command does not change the setting of COREQ. The
RESET ICE command returns COREQ to FALSE.

Example

1. Disable a numeric processor extension.

Cross-References

80287 registers
COENAB
CPMODE

Encyclopedia 1-89

COUNT
Groups and executes commands a
specified maximum number of times

Syntax

COUNT expression

PICE commands

[WHILE boolean-condition
UNTIL boolean-condition

END[COUNT)

Where:

COUNT expression

PICE commands

WHILE boolean-condition

U NTI L boolean-condition

END[COUNT)

specifies the maximum number of times the COUNT
command loop executes. The expression must evaluate
to a positive whole number, less than or equal to 65535T
in the current base.

executes until the test condition(s) is (are) met or the
terminal count is reached. All FICE commands are legal
except HELP, LOAD, EDIT, and INCLUDE.

executes the COUNT loop while boolean-condition is
true. Execution halts when the WHILE condition is false
or the terminal count is reached.

halts COUNT loop execution when boolean-condition is
true (unless the terminal count is reached first).

terminates the COUNT block. The optional COUNT
keyword labels the block type.

Discussion

1-90

Unless it is within a procedure definition, a COUNT block is executed immediately after you
enter the END statement.

COUNT blocks not containing WHILE or UNTIL clauses are executed at least once. COUNT
blocks containing WHILE or UNTIL exit whenever the test condition is satisfied or the count
value is reached.

Encyclopedia

COUNT continued

Example

1. The following example shows COUNT used to provide a count from 0 to 4 .

. *I?

.. *~*b+J
*END
o
1
2
3
4

*
Cross-References

Boolean condition
Expression

Encyclopedia 1-91

CPMODE
8086/8088 probe specific

Pseudo-variable that displays or changes
the mode of external coprocessor operation

Syntax

CPMODE I =1
=2
= expression that evaluates to 1 or 2

Where:

CPMODE

2

displays the current setting.

is 1 or an expression that evaluates to 1. Mode I allows
handshaking during emulation only.

is 2 or an expression that evaluates to 2. Mode 2 allows
handshaking during both emulation and interrogation.

Default Value

Discussion

Model

1-92

Select the external coprocessor mode with the CPMODE command before emulation begins.

When CPMODE is 1, the 8086/8088 probe recognizes RQ/GT (MAX mode) or HOLDI
HLDA (MIN mode) signals only during emulation.

Mode 1 operation assumes that emulation resumes from the last breakpoint. When this is not
the case (e.g., when you use GO FROM), clear the external coprocessor of any pending
requests by resetting it. You must reset the external coprocessor because the 8086/8088 probe
stores a request from the 8087 coprocessor until the 8086/8088 probe enters emulation, at
which time the request is honored.

Encyclopedia

Mode 2

When CPMODE is 2, the 8086/8088 probe recognizes coprocessor requests at any time. The
USER memory is not protected from unauthorized access by the coprocessor. Registers are
available for examination and modification.

NOTE

CPMODE operates only on the external coprocessor. It has no effect on the internal
8087 coprocessor.

Cross-References

8086/8088 registers
COENAB

Encyclopedia 1-93

CPMODE
80186/80188 specific

Pseudo-variable that displays or
changes the mode of external
coprocessor operation

Syntax

=1
CPMODE =2

Where:

CPMODE

2

= expression that evaluates to 1 or 2

displays the current setting.

is loran expression that evaluates to 1. Mode 1 allows
handshaking during emulation only.

is 2 or an expression that evaluates to 2. Mode 2 allows
handshaking during both emulation and interrogation.

Default Value

Discussion

Mode 1

1-94

Select external coprocessor mode with the CPMODE command before emulation begins.

NOTE

The 80186/80188 probe can have only an external coprocessor; it cannot have an inter­
nal coprocessor.

When CPMODE is 1, the 80186/80188 probe recognizes HOLD/HLDA signals only during
emulation.

Mode 1 operation assumes that emulation resumes from the last breakpoint. When this is not
the case (e.g., when you use GO FROM), clear the external coprocessor of any pending
requests by resetting it.

Encyclopedia

Mode 2

When CPMODE is 2, the 80186/80188 probe recognizes coprocessor requests at any time
(even while not emulating). The USER memory is not protected from unauthorized access by
the coprocessor.

Cross-References

80186/80188 registers
COENAB

Encyclopedia 1-95

CPMODE
80286 probe specific

Pseudo-variable that displays or changes the mode
of coprocessor (and processor extension) operation

Syntax

CPMODE I
Where:

CPMODE

2

=1
=2
= expression that evaluates to 1 or 2

displays the current setting.

is 1 or an expression that evaluates to 1. Mode 1 indi­
cates that the coprocessor operates only during emula­
tion.

is 2 or an expression that evaluates to 2. Mode 2 indi­
cates that the coprocessor operates during both emula­
tion and interrogation.

Default Value

2

Discussion

1-96

When CPMODE is 1, the COENAB and COREQ pseudo-variables have meaning only during
emulation. When CPMODE is 1 and COENAB is TRUE, the 80286 probe recognizes the
HOLD and HLDA signals only during emulation. When CPMODE is 1 and COREQ is
TRUE, the 80286 probe recognizes the the PEREQ and PEACK signals only during emula­
tion.

Mode 1 operation assumes that emulation resumes from the last breakpoint. When emulation
resumes from a different location (for example, after you use the GO FROM command), reset
the coprocessor to clear any pending requests.

When CPMODE is 2, the COENAB and COREQ pseudo-variables have meaning during both
emulation and interrogation. When CPMODE is 2 and COENAB is TRUE, the 80286 probe
recognizes the HOLD and HLDA signals during emulation and interrogation. When

Encyclopedia

CPMODE is 2 and COREQ is TRUE, the 80286 probe recognizes the the PEREQ and PEACK
signals during emulation and interrogation,

To access 80287 registers with FICE pseudo-variables, CPMODE must be 2 and the 80286
probe must not be emulating.

Cross-References

80287 registers
COENAB
COREQ

Encyclopedia 1-97

CURHOME
Moves cursor to the top left corner
of the display screen

Syntax

CURHOME

Discussion

The CURHOME command moves the cursor to the top left comer of the display screen (coor­
dinates (0,0».

1-98 Encyclopedia

Syntax

CURX [=expression]

Where:

CURX

expression

Discussion

A pseudo-variable that displays
the column number or moves

the cursor to column X

displays the number of column X in the current base.

moves the CRT cursor from its current position to the
indicated column. The expression must be in the range
from 0 to the maximum number of columns on your
CRT.

The CURX command is typically used with the CURY command to position the cursor on the
display screen. Any information written to the screen, after the cursor is moved, is written
from the new cursor location. Any characters previously displayed at that location are deleted
from the screen as the new characters are written over the old.

Example

1. This example shows cursor movement after the CURX command:

Cross-Reference

CURY
Expression

Encyclopedia

*

1-99

CURY
A pseudo-variable that displays
the row number or
moves the cursor to row Y

Syntax

CURY [= expression]

Where:

CURY

expression

Discussion

displays the number of the Y row in the current base.

moves the CRT's cursor from its previous position to thc
indicated row. The expression must be in the range from
o to the maximum number of rows on your CRT.

The CURY command is usually used with the CURX command to position the cursor on the
display screen. Any information written to the screen, after the cursor is moved, is written
from the new cursor location. Any characters previously displayed at that location are deleted
from the screen as the new characters are written over the old.

Example

1. This example shows cursor movement (from the first row to the fifth) in the Y direction.

*
Cross-Reference

1-100

CURX
Expression

Encyclopedia

Displays debug register contents

Syntax

debug-register name

Where:

debug-register

name

Discussion

is one of the following keywords:

ARMREG
BRKREG
EVTREG
SYSREG
TRCREG

is the name of a previously defined debug register.

Debug registers contain breakpoint or trace specifications or both.

You can manipulate debug registers in the following ways:

• Create a debug register with the DEFINE command

• Delete a debug register from memory with the REMOVE command

• List debug register names with the DIR command

• Save a debug register to a file with the PUT or APPEND commands

• Retrieve a debug register from a file with the INCLUDE command

• Display a debug register by entering its keyword and name

• Execute a debug register with the GO USING command

• Modify a detmg register with the editor

Example

1. This example displays the contents of the ARMREG named trigger_one.

*_.11l1li.61
DEFINE ARMREG TRIGGER_ONE=TRIG CLIPS OXXXXXXX1Y AFTER
OCCURRENCE 5

Encyclopedia 1-101

Debug registers continued

Cross-Reference

Name

1-102 Encyclopedia

Syntax (three forms)

1. Define a debug variable:

Defines, modifies, or
displays a debug variable

DEFINE [GLOBAL] mtype debug-variable-name [= expression]

If you do not enter expression, type CHAR is initially null, type BOOLEAN is initially
FALSE, and all other memory types (mtypes) are initially O.

2. Modify a debug variable:

debug-variable-name = expression

3. Display a debug variable:

debug-variable-name

Where:

DEFINE mtype debug-variable-name
[= expression]

GLOBAL

mtype

debug-variable-name

expression

Discussion

creates a single value of the specified mem­
ory type in host memory space.

defines variables as global rather than local
to any block.

can be any memory type. (See the Mtype
entry in this encyclopedia for a complete
list.)

displays the value of the named debug vari­
able.

can be any valid combination of values and
operations.

Debug variables can be local or global. Local variables are known only in their enclosing block
and are only visible when that block is executing. Global variables can be accessed at any time.

Encyclopedia 1-103

Debug variable continued

Debug variables are global by being defined outside of a block or by being declared GLOBAL.
Local variables are removed automatically after a block has been executed. Global variables
are deleted with the REMOVE command.

Debug variables can be defined without a value being assigned. Values are forced to the correct
type if possible.

You can change a debug variable by either reassigning its name to a new value or editing the
definition.

Examples

1. Define and display a single debug variable:

o

5

/*Definition of byte b, no value assigned*/
/*Command to display b*/

2. Modify and display a previously defined debug variable:

11

Cross-References

1-104

Expression
Mtype

Encyclopedia

Defines a debug object

Syntax (four forms)

1. To define a LITERALLY expression:

DEFINE LITERALLY literally-name = 'character-string'

2. To define a debug procedure:

DEFINE PROC debug-procedure-name = DO

121CE commands

END

3. To define a debug register:

DEFINE

ARM REG arm-register-name = arm-specification

BRKREG break-register-name = break-specification
[CALL debug-procedure-name]

EVTREG event-register-name = DO event-specification
[CALL debug-procedure-name]
END

[
SYSTRIG [

SYSREG system-register-name = SYSARM system-specification
SYSDARM

[CALL debug-procedure-name]

TRCREG trace-register-name = trace-specification

4. To define a debug variable:

DEFINE [GLOBAL] mtype debug-variable-name [= expression]

Encyclopedia 1-105

DEFINE continued

Discussion

With the DEFINE command you can create LITERALLY definitions, debug procedures, de­
bug registers, and debug variables. Defining debug objects prevents you from having to re­
enter them each time you use them. The LITERALLY entry explains how to replace a
character string with a specified name. The PROC entry describes defining debug procedures.
The ARMREG, BRKREG, EVTREG, SYSREG, and TRCREG entries discuss defining arm,
break, event, system, and trace registers, respectively. The Debug variable entry shows how to
define debug variables.

Cross-References

1-106

ARMREG
Break specification
BRKREG
Debug variable
EVTREG
Expression
LITERALLY
Mtype
Name
PROC
SYSREG
System specification
TRCREG

Encyclopedia

Syntax

Display descriptors:

{
dtable (indeX)}
dtable[.ALL)
DT (selector)

Alter descriptors:

Display and alter 80286 descriptors

{
dtable(indeX).component [= expression)L
DT{selector).component [= expression) J

Where:

dtable

index

ALL

DT

selector

component

expression

Encyclopedia

represents one of the three descriptor tables. The LDT is
the current task's local descriptor table. The GDT is the
global descriptor table. The IDT is the interrupt descrip­
tor table.

is a number that identifies a descriptor within the de­
scriptor table chosen by dtable. The first table entry is 0;
the second is 1, etc. Note that index is an index and not a
selector value.

specifies that all entries in the specified descriptor table
are displayed.

identifies the following argument as a selector.

is a 16-bit value that identifies the descriptor table (the
TI bit) and the offset into the table.

identifies a descriptor field. Not all components apply to
every type of descriptor.

resolves to a number to be loaded into the specified de­
scriptor or descriptor field.

1-107

80286 Descriptor commands continued

Discussion

Table 1-5 lists abbreviations for the 80286 descriptor types. Table 1-6 lists the mnemonics that
represent the different descriptor components. Table 1-7 lists the descriptor type associated
with each component.

Table 1-5 The 80286 Descriptor Types

Abbreviation Description Residence

CALLG Call gate GOT, LOT
OSEG Oata segment GOT, LOT
OTABLE Oescriptor table GOT
ESEG Executable segment GOT. LOT
INTG I nterrupt gate lOT
TASKG Task gate GOT, LOT, lOT
TRAPG Trap gate lOT
TSS Task state segment GOT

Table 1-6 Mnemonics for the 80286 Descriptor Components

Mnemonic Description Size

BASE Segment or table 24-bit address 3 bytes
LIMIT Segment or table 16-bit length 1 word
WCNT Word count for gates 5 bits
SSEL Segment selector 1 word
SOFF Segment offset 1 word
IR Reserved by Intel 1 word
OPL Oescriptor privilege level 2 bits
EO Expand down (for stack) 1 bit
W Writable segment 1 bit
A Accessed 1 bit
C Conforming 1 bit
R Readable 1 bit
P Present 1 bit
B Busy task 1 bit

Table 1-7 Components Associated with each Descriptor Type

Component Mnemonics
Descriptor type

BASE LIMIT WCNT SSEL SOFF IR DPL ED W A C R P A

Oata segment X X X X X X X X
Executable segment X X X X X X X X
Call gate X X X X X X
Trap gate X X X X X
Interrupt gate X X X X X
Task gate X X X X
Task state segment X X X X X X
Oescriptor table X X X X X

1-108 Encyclopedia

To display a single descriptor table entry do one of the following.

1. Enter the name of the descriptor table with the entry number in parentheses.

2. Enter DT for descriptor table and put a 16-bit selector value in parentheses. The selector
identifies either the LDT or the GDT.

An error message results if you specify an entry beyond the range of the descriptor table. If the
entry is within range but you have identified an invalid descriptor, the entry displays in non­
decoded form.

To display all the entries in a descriptor table, enter the mnemonic for the descriptor. All
entries that identify present objects are displayed. If you append the optional ALL, all entries
(even those identifying non-present objects) are displayed.

To set a descriptor table entry to a particular value, first identify the entry and the component
you want to change. Then, set that component equal to an expression.

You can change the type of a descriptor by identifying the descriptor entry and setting it equal
to one of the descriptor types in Table 1-5.

Examples

1. Display the fourth entry in the LDT:

*Ilill("
LDT (3) DSEG BASE=FF0250 LIMIT=FFF9 P=l DPL=3 ED=l W=l A=O SR=OOOO (SS)

2. Display all the descriptor entries in the LDT:

*UO"l'iAU;
LDT (1T) DSEG BASE=000140 LIMIT=00A7 P=1 DPL=O ED=O W=1 A=O SR=OOOO
LDT (2T) DSEG BASE=000220 LIMIT=0024 P=1 DPL=3 ED=O W=1 A=O SR=OOOO (SS)
LDT (3T> DSEG BASE=FF0250 LIMIT=FFF9 P=1 DPL=3 ED=1 W=1 A=O SR=OOOO (DS) (ES)
LDT (4T) ESEG BASE=000250 LIMIT=0014 P=1 DPL=3 (=0 R=O A=O SR=OOOO «(S)

3. Set the LIMIT field ofLDT(2) to OOFF:

Encyclopedia 1-109

DIR
Displays program symbols and
debug object names

Syntax

DEBUG [mtype]

[DEBUG] [dtype]

DIR PUBLICS
[:module-name]

MODULE

SYMBOLS

Where:

1-110

DIR

DEBUG [mtype]

DEBUG dtype

mtype

dtype

PUBLICS [mtype]
PUBLICS [stype]

mtype
stype

displays the symbols for the current module as deter­
mined by NAMESCOPE.

displays the names of all debug objects. If you specify
mtype, only debug variables of that type are displayed.

displays all the entries of the specified debug type.

is one of the memory types: BYTE, WORD, DWORD,
ADDRESS, SELECTOR, SHORTINT, INTEGER,
LONGINT, EXTINT, REAL, LONGREAL, TEM­
PREAL, BCD, POINTER, BOOLEAN, or CHAR.
When any of these keywords is used as an option to the
DIR command, the FICE system only lists the mtypes in
the current module.

is one of the debug object types: PROC, LITERALLY,
BRKREG, TRCREG, ARMREG, SYSREG, or EV­
TREG. Debug objects that are debug variables must be
preceded by the DEBUG keyword to distinguish them
from program variables.

displays symbols with the PUBLICS attribute for all
modules. If mtype or stype is used, only symbols of that
type are displayed. (Note that the stype LINE is not a
valid PUBLICS type.)

Encyclopedia

[:module-name] [mtype]
[:module-name] [stype]

stype

MODULE

SYMBOLS

Discussion

displays the symbols for the named module. When
:module-name is omitted, the current module is as­
sumed. If mtype or stype is used, only symbols of that
type within the module are displayed.

is one of the special user program types: PROCEDURE,
LINE, LABEL, FILE, ARRAY, RECORD, SET, or
MODULE.

displays the names of all modules currently loaded.

displays the names of all program symbols.

When symbols from a module are displayed, indentation shows the scope of each symbol. The
order of items displayed is undefined.

The FICE system recognizes FICE memory types and certain user program types. The FICE
system may use different names for these types than the user program. Table 1-8 shows these
differences.

Encyclopedia I-lll

DIR continued

Table 1-8 User Program Types with Corresponding PICETM Name

ASM86 Corresponding 121CETM Name

BYTE BYTE
DWORD POINTER
QWORD LONG REAL
STRUC RECORD
STRUCARRAY ARRAY OF RECORD
TBYTE TEMPREAL
WORD WORD

PL/M·86 Corresponding 121CETM Name

BYTE BYTE
DWORD DWORD
INTEGER INTEGER
POINTER ADDRESS (small module)
POINTER POINTER (large module)
REAL REAL
SELECTOR SELECTOR
STRUCTURE RECORD
STRUCTURE ARRAY ARRAY OF RECORD
WORD WORD

Pascal·86 Corresponding 121CETM Name

ARRAY ARRAY
BOOLEAN BOOLEAN
CHAR CHAR
FILE FILE
INTEGER INTEGER
LONGINT LONGINT
LONGREAL LONGREAL
REAL REAL
RECORD RECORD
SET SET
TEMPREAL TEMPREAL
WORD WORD

FORTRAN·86 Corresponding 121CETM Name

CHARACTER*1 CHAR
INTEGER*1 SHORTINT
INTEGER*2 INTEGER
INTEGER*4 LONGINT
LOGICAL*1 BOOLEAN
LOGICAL*2 WORD
LOGICAL*4 DWORD
REAL*4 REAL
REAL*S LONGREAL
REAL *TEMPREAL TEMPREAL

1-112 Encyclopedia

Examples

1. The following example displays the symbols in the current module. Note that the type
designations are normally aligned. Indentation indicates the nesting level of that object.

Encyclopedia

*Gls$IMltlll$
DIR of : PLM MODULE
MEMORY array[?] of byte
PLM_BYTE byte
PLM_WORD word
PLM_INTEGER integer
PLM_REAL real
PLM_DWORD • dword
PLM_POINTER address
PLM_BASED_BYTE byte BASED
PLM_BASED_WORD word BASED
PLM_BASED_INTEGER integer BASED
PLM_BASED_REAL. real BASED
PLM_BASED_DWORD dword BASED
ANOTHER_BYTE •• byte
ANOTHER_WORD word
ANOTHER_INTEGER integer
ANOTHER_REAL real
ANOTHER_DWORD • dword
ANOTHER_POINTER address
ANOTHER_BASED_BYTE byte BASED
ANOTHER_BASED_WORD word BASED
ANOTHER_BASED_INTEGER integer BASED
ANOTHER_BASED_REAL • rea 1 BASED
ANOTHER_BASED_DWORD dword BASED
ANY_SELECTOR • •• selector
PLM_BYTE_ARRAY •. array[10] of byte
PLM_WORD_ARRAY •• array[10] of word
PLM_INTEGER_ARRAY array[10] of integer
PLM_REAL_ARRAY array[10] or rea 1
PLM_STRUCTURE • record

STRO_BYTE. • •• • byte
STRO_WORD. • •• • word
STRO_INTEGER. • • • integer
S T R 0 _R E A L. • . • . • rea 1
STRO_BYTE_ARRAY • array[10] of byte
STRO_WORD_ARRAY •• array[10] of word
STRO_INTEGER_ARRAY array[10] of integer
STRO_REAL_ARRAY array[10] of real
PLM_STRUCTURE_ARRAY array[10] of record

1-113

DIR continued

byte STR1_BYTE
STR1_WORD
STR1_INTEGER
STR1_REAL. .
STR1_BYTE_ARRAY
STR1_WORD_ARRAY
STR1_INTEGER_ARRAY
S T R l_R E A L_A R RAY

2. Display the public symbols:

*1.,11111 ••
DIR of PUBLICS
WCONN

word
integer
real
array[10]
array[10]
array[10]
array[10]

word

of byte
of word
of integer
of real

RCONN
MEMORY WRITER
ERRCHK . . .
SYSTEMSTACK

word
procedure
procedure
<null type>

3. Display the line numbers in the current module:

.liC·11B:CfiiCDIUIGIRI
#1 #19 #29 #39 #40 #41 #42
#46 #47 #48 #49 #50 #51 #52
#59 #60 #61 #62 #63 #64 #65

4. Display all debug object names:

*IlBI&I.
bbb byte
xxx word
LIT literally'literally'
WOR literally'word'
BYT literally'byte'
DEF literally'define'

#43 #44
#53 #54
#66 #67

#45
#55
#68

1-114 Encyclopedia

5. Display the directory of the module SORT, the current module:

*lll:I::"I,m;
DIR of :SORT

iill[) ••••••••••• label
iilS[) • • • • • • • • • • • • label
SORT ARRAY • • • • • • • • • ARRAYTYPE (array[l[)[)) of integer)
CURRENTMAX •••••••• INDEXTYPE (subrange of byte)
CONTROLWORD •••••••• word

GETVALUES •••••..•• procedure
iil22 • • • • • • • • • • • • label
iil4[) • • • • • • • • • • • • label
INDEX ••••••••••• INDEXTYPE (subrange of byte) stack relative
NEST_l •••••••••• procedure

iil21 • •• • ••••••• label
iil3[) .•...•••• -••• label

SORTVALUES ••.•..••• procedure
LEFT •••••••••••• INDEXTYPE (subrange of byte) stack relative
RIGHT ••••••••••• INDEXTYPE (subrange of byte) stack relative
iil2[) •••••••••••• label
TEMP ••••••••..•• integer stack relative
SENTINEL •••••••.•• integer stack relative
J ••••••••••••• INDEXTYPE (subrange of byte) stack relative
I ••••••••••••• INDEXTYPE (subrange of byte) stack relative

PUTVALUES ••••••••• procedure
INDEX ••••••••••• INDEXTYPE (subrange of byte) stack relative

Cross-Reference

Mtype

Encyclopedia 1-115

DO
Groups and executes commands

Syntax

DO
[f2/CE commands) *

END

Where:

DO ... END

FICE commands

executes one or more commands in a block.

is all PICE commands except LOAD, EDIT, IN­
CLUDE, and HELP.

Discussion

The DO block is executed immediately after you enter END.

Debug variables are local only when defined in DO-END blocks. Use the GLOBAL option on
the DEFINE command to define global debug objects within a DO-END block. LITERALLY
definitions, debug procedures, and break and trace registers are always global.

Example

1-116

1. The following example shows how to access the values stored in an array by defining a
local debug variable to serve as an index. Typically, this block would be defined in a debug
procedure for reuse.

+67
+34
+9
+8
+21
+2
+4
+7

Encyclopedia

Syntax

Displays or changes memory
as 32-bit unsigned values

DWO R D artition [= expression. [: expression I * 1
p = mtype partition

Where:

DWORD partition

partition

expression

mtype

Discussion

displays the location specified in partition as a double
word in the current base.

is a single address or a range of addresses specified as
address m address or address LENGTH number-of­
items.

converts to a 32-bit unsigned value for DWORD.

is any of the memory types except ASM.

The DWORD (double word) command interprets the contents of memory as 32-bit unsigned
values, overriding any type associated with the memory contents. Thus, DWORD 40:4 displays
the first two words at the address of var 1, regardless of the type of var 1.

Examples

All the following examples assume a hexadecimal number base.

1. Display the current execution point as a double word:

*mWOAm$
0020:0004H168E2EFA

2. Display several adjacent values:

*IWORI1)$J.ilEI<iifiHS
0020: 0004H 168E2EF A 168(0000 1E8E2EOO 0(EA0002 EF002100

3. Set a single value of type DWORD:

Encyclopedia 1-117

DWORD continued

Display the value set:

*1 •• 11110;1
0040:0004H00009876

4. Set a series of adjacent values:

DispJay the values set:

*mWClRD.40!4tteNGI113
0040: 0004H 000012345555555500000089

5. Set a range of locations to the same value (block set):

6. Set a repeating sequence of values:

Display the values set:

*aWl>iIIO:.litelllla
0040: 0014 OOOOOOOA 12345678 00004567 OOOOOOOA 1234567890909090

Note that the sixth value is not affected by the command since a length of five was
specified.

7. Copy a value from one memory location to another:

8. Copy several values (block move):

9. Copy values with type conversion:

If the type on the right of the equal sign cannot be converted to the type on the left, an error
message results. (Refer to the Expression entry in this encyclopedia for type conversion
rules.)

Cross-References

1-118

Expression
Mtype
Partition

Encyclopedia

Invokes the 121CE system editor

Syntax

{

<ESC key>
debug-procedure-name

EDIT ~ebug-register-name
literally-name
GO

Where:

< ESC key>

EDIT

debug-procedure-name

literally-name

debug-register-name

GO

Discussion

invokes the FICE screen editor if pressed while entering
a command. Pressing the ESC key in response to the
FICE prompt (*) places the last command group in the
screen editor for editing.

invokes the PICE screen editor and creates an empty edit
buffer. You cannot invoke the EDIT command from in­
side a block or procedure.

displays the definition of the named debug procedure for
editing.

displays the definition of the named literal for editing.

displays the definition of the named debug register for
editing.

displays the GO command for editing. (The FROM
clause of the GO command is not saved.)

With the EDIT command you can create or modify previously defined debug objects. The
Editors entry in this encyclopedia explains the menu-driven screen editor invoked by the EDIT
command, including examples.

The FICE system editor has all the features of the AEDIT V1.0 editor. The AEDIT Text Editor
User's Guide (order number 121756) describes AEDIT.

Encyclopedia 1-119

EDIT continued

Cross-References

1-120

Editors
GO
Name

AEDIT Text Editor User's Guide (order number 121756)

Encyclopedia

The FleE system has
a system editor and

a line editor

The two editors available when you run the PICE software are the line editor and the mcnu­
driven screen editor (A EDIT V1.0). The line editor (an input line processor) uses the control
(CTRL) key in combination with other keys to perform editing functions. The menu-driven
screen editor is invoked by the ESC key or the EDIT command.

When to Use the Editors

Use the line editor to alter commands either before pressing the carriage return or for com­
mands in the history buffer. Use the menu-driven screen editor when creating or modifying
debug objects or development system files.

NOTE

You cannot edit debug variables by typing EDIT debug-variable-name, but you can re­
define debug variables (using the DEFINE command described in this encyclopedia).

The Line Editor

The PICE input line processor stores all command entries in a buffer until you press RETURN
(or Enter). You can edit a command line either before pressing RETURN (or Enter) or when it
is in the history buffer, thus by-passing the menu-driven screen editor.

The line editor uses the directional arrows and the CTRL key (in combination with other keys)
to alter command lines.

While in line editor mode, you can press RETURN (or Enter) regardless of the position of the
cursor without losing the line to the right of the cursor.

The keys that have special line editing functions are listed in Table 1-9.

Encyclopcdia 1-121

Editors continued

Table 1-9 Line Editor Keys

Key Name Function

RUBOUT (or +- Deletes the character to the left of the cursor.
on an IBM PC)

CTRL-A Deletes the part of the line beginning at the cursor and continuing to the
end of the line.

CTRL-C Cancels the command in progress.

CTRL-E Re-executes the last command.

CTRL-F Deletes the character at the cursor and adjusts spacing.

CTRL-X Deletes the part of the line to the left of the cursor and closes the space.

CTRL-Z Deletes the current line.

ESC Enters the screen editor.

Left Arrow Moves the cursor left one character.

Right Arrow Moves the cursor right one character.

Up Arrow Restores the previous line from the history buffer for editing.

Down Arrow Moves to the next line in the history buffer.

HOME Magnifies the effect of the last arrow key. Causes jumps to the
beginning or end of the current line when used with the right or left
arrow.

The Screen Editor

1-122

The menu-driven screen editor has the features of the AEDIT Vl.O editor and provides func­
tions, such as block moves, not available using the line editor. Screen editing is necessary when
editing debug procedures, debug registers, LITERALLYs, or development system files (e.g.,
source and listing files). Note that you cannot invoke EDIT within an INCLUDE, SUBMIT, or
block command.

If you make an error while defining a debug object, you must press the ESC key before
entering anything else. Unless immediately recalled for editing, the debug object defini­
tion is lost.

Encyclopedia

Using the ESC Key Versus EDIT Invocations

Both the ESC key and EDIT command invoke the same edit function. Use the EDIT command
to create or modify previously-defined debug objects or development system files. Use the
ESC key to display and modify the text of the last command sequence entered. This sequence
includes all text entered since the last prompt was displayed.

Menu Contents

When invoked, the screen editor displays the edit menu at the bottom of the screen. Entering
the first letter of a keyword from a menu invokes that function. The editing field at the top of
the display is either blank or contains the requested command text. The following screens show
the main menu prompt lines, and Table 1-10 lists each main menu item's function.

-------------------------------~
Again Block Delete Execute Find -find Get --more--

Hex Insert Jump Macro Other Quit Replace --more--

?replace Set Tag View Xchange --more--

The Main Menu Screens

Encyclopedia 1-123

Editors continued
Table 1-10 Screen Editor Main Menu Commands and Functions

Command or Key Function

RUBOUT Deletes the character to the left of the cursor.

CTRL-A Deletes that part of the line beginning at the cursor and
continuing to the end of the line.

CTRL-BREAK For IBM PC hosts, cancels the command in progress.

CTRL-C For non-IBM PC hosts, cancels the command in progress.

CTRL-F Deletes the character at the cursor and adjusts spacing.

CTRL-U Restores characters deleted by the last CTRL-A, CTRL-X, or
CTRL-Z to the current cursor position.

CTRL-X Deletes the line to the left of the cursor and closes the
space.

CTRL-Z Deletes the current line.

Up Arrow Moves the cursor up one row in the same column.

Down Arrow Moves the cursor down one row in the same column.

Left Arrow Moves the cursor left one character.

Right Arrow Moves the cursor right one character.

HOME Key Magnifies the effect of the last arrow key and causes jumps
to the beginning or end of the current line when used with
the right or left arrow.

Up Arrow and HOME' Displays the previous page.

Down Arrow and HOME' Displays the next page.

RETURN Moves the cursor to the beginning of the next line.

ESC Terminates the edit command in progress and returns to the
main menu.

TAB Displays the next screen of menu prompts.

A (Again) Repeats the last command.

B (Block) Delimits a section of text that can be deleted, copied, or
moved.

D (Delete) Delimits a section of text that can be deleted, copied, or
moved.

E (Execute) Executes the specified macro file.

F (Find) Searches forward from the current cursor position for a
specified string.

- (-find) Searches backward from the current cursor position for the
specified string.

G (Get) Restores the contents of a block buffer or external file to the
current cursor position.

H (Hex) Converts ASCII characters to hexadecimal values and
hexadecimal values to ASCII characters.

I (Insert) Inserts text at the current cursor position.

, Pressed consecutively

1-124 Encyclopedia

Table 1-10 Screen Editor Main Menu Commands and Functions (continued)

Command or Key Function

J (Jump) Moves the cursor to a location specified in text by the TAG
command, to the start or end of the file, or to a line or
column.

M (Macro) Creates, retrieves, and lists macro files of EDIT commands.

a (Other) Switches between the primary and secondary buffers.

o (Ouit) Ends the editing session.

R (Replace) Searches for a specified string and replaces it with a new
string or deletes it if found.

? (?replace) Searches for a specified string and queries before deleting it
or replacing it with a new string.

S (Set) Sets switches that control automatic carriage return, back-up
files, case significance, indents, displaying lines longer than
80 characters, tabs, displaying text when finding or replacing
strings, tabs, and the view row.

T(Tag) Specifies locations in a file to which you can jump (using the
Jump command).

V (View) Moves the cursor to the specified row.

X (Xchange) Replaces characters on a one-far-one basis by typing over
them.

Several of the screen-editor commands prompt for additional information or display sub­
menus. The AEDIT manual (order number 121756) describes all the screen editor commands
in detail and gives examples.

File Editing

One very useful screen-editor feature is the ability to edit development system files without
exiting the PICE software. To edit another file, enter Q at the end the current editing session
and then enter I to get the Init sub-menu. The Init sub-menu prompts for the name of the file to
be edited. The file name must be a fully-qualified reference if the file resides on another drive
(e.g., :F I :myfile). If you did not specify an output file before editing the external file (when
the editor prompted enter [file [TO file]]), use Quit and then Write to save any changes. The
Write sub-menu prompts for the name of the output file. Your changes will be lost if you do not
specify an output file.

In addition to Write, the Quit command offers the eXit and Execute options. The eXit com­
mand updates the file you just edited and returns you to the PICE command level. The Execute
command returns you to the FICE command level and executes the file you just edited.

Encyclopedia 1-125

Editors continued

You can also put an external file into the editor using the Get command. The Get command
inserts the entire file at the current cursor position. After making your changes, delimit the text
to be returned to the external file using the Block command (to retain the copy in the current
file) or the Delete command (to delete the copy in the current file). Then use the Put command
to return the delimited text to an external file. Note that the block buffer containing the delim­
ited text has a fixed maximum size of 2K bytes. Use the Quit/Write commands to save larger
files.

Displaying Text

The screen editor displays up to 79 characters per line. In lines exceeding 79 characters, the
last (80th) character is displayed as an exclamation point (!) to indicate that text overflows the
screen display width. (Use the Set command to movc the Icft margin so that you can view
characters beyond column 79.)

The editor displays tabs and unprintable characters differently from the FICE system. Unprint­
able characters are displayed as question marks (?) in the editor. The PICE system does not
support tabs. They are displayed as single spaces.

NOTE

Editing appears on the terminal screen only. Editing sessions cannot be recorded in list
files.

Cross-References

1-126

DEFINE
EDIT

The FICE system tutorial has modules that introduce the FlCE screen editor and line editor.

Encyclopedia

Syntax

{ ENABLE}
DISABLE

Where:

ENABLE

DISABLE

SYSBREAKIN

SYSTRACEIN

Defaults

{ SYSBREAKIN}
SYSTRACEIN

ENAB E
Conditions the unit to accept

system level breaks and traces

causes the system trace or system break condition on the
current unit to be recognized.

prevents the FICE system from recognizing the current
unit's system trace or system break condition.

indicates that the system break input is to be enabled or
disabled. A system break is caused by SYSTRlG with
the system armed.

indicates that the system trace input is to be enabled or
disabled.

SYSBREAKIN ENABLED
SYSTRACEIN ENABLED

Discussion

The ENABLE/DISABLE commands refer to input signals to the probe. When the current
probe is enabled, it can break or trace based on input from other probes or inputs from the Intel
logic timing analyzer (iLTA). You cannot configure the iLTA to break or trace on probe condi­
tions. Refer to the iLTA Reference Manual (order number 163257) for the specific commands.

The system must be armed using the SYSTEM command or by the GO command using an
EVTREG or SYSREG with the SYSARM option. The system break or trace conditions are
activated the same way (with SYSTRlG or SYSTRACE).

You can enter any combination of enables and disables. When you enable any unit's SYSTRA­
CEIN, that probe gathers trace data while any probe is asserting trace. When you enable any
unit's SYSBREAKIN, that probe breaks when any unit asserts SYSTRIG.

Encyclopedia 1-127

ENABLE continued

To ensure that the iLTA is ready to trace emulation, specify the LAGO command before you
specify the GO command (which starts probe emulation).

Cross-Reference

SYSREG

1-128 Encyclopedia

Syntax

=TRUE
= FALSE

A pseudo-variable that controls
the display of error information

ERROR [
= boolean-expression

Where:

ERROR

TRUE

FALSE

boolean-expression

Default

TRUE

Discussion

displays the current setting (TRUE or FALSE).

tells the FICE system to search the disk-resident error
file for the text of error messages to be displayed.

tells the FICE system to display "Error Message Inhib­
ited" and the error number. No file search occurs.

is any expression in which the low-order bit evaluates to
o (false) or I (true).

Setting ERROR to FALSE speeds up PICE system operation by eliminating the disk search.
Because the HELP file also contains the text of error messages, you can enter the HELP
command when you want expanded error information.

Examples

I . Display the current setting:

Encyclopedia

*6.FlFl(.iFl
TRUE

1-129

ERROR continued

2. Display an error message:

ERROR #24
Cannot perform symbol table request. No user program loaded.

3. Suppress error messages by setting ERROR to FALSE:

ERROR #24
<Error message inhibited>

4. Use ERROR as a variable:

Error messages are disabled.

*
Cross-Reference

HELP

1-130 Encyclopedia

Syntax

EVAL {expreSSion}
address

Where:

EVAL expression
EVAL address

LINE

PROCEDURE

SYMBOL

Discussion

LINE
PROCEDURE
SYMBOL

Calculates and displays
the result of an expression

is any valid combination of values and operations.

evaluates the expression as a line number reference.

evaluates the expression as a procedure reference.

evaluates the expression as a symbolic reference (label
or variable). Specify only pointer values in address
when using SYMBOL.

If you do not specify an option (LINE, PROCEDURE, or SYMBOL), the value of the expres­
sion is displayed. Most results are displayed in all bases (binary, decimal, and hexadecimal)
and in ASCII. If the ASCII interpretation is a non-printing character, a period (.) is displayed.
Results of types POINTER, unsigned values bigger than DWORD, signed values bigger than
LONGINT, and strings longer than two characters are displayed as bytes in hexadecimal.

If you specify LINE, the display has the form :module#line-number. If the expression does not
evaluate to an exact match with a line number, the system displays the line number's address
that is closest to, but lower than, the value of the expression and adds + offset, the difference in
bytes. The offset is displayed in the current base.

If you specify PROCEDURE, the display has the form :module.procedure-name for exact
matches and adds + offset for inexact matches, as described for LINE.

If you specify SYMBOL, the display is a fully qualified reference to the matching user symbol,
with an offset for inexact matches.

Encyclopedia 1-131

EVAL continued

NOTE

If no symbol table information is available, the display for the LINE, PROCEDURE, or
SYMBOL options gives the offset from the beginning of the current module.

If the object's address of the requested type (LINE, PROCEDURE, or SYMBOL) is
less than the expression, the message < UNKNOWN> is displayed.

The SYMBOL display accesses program variables (i.e., data symbols) and labels, but
not procedure names.

Examples

1. Display the result of a numeric calculation:

*1.1l~$.I~al
100011100011111Y 18207T 471FH '. G .. '

2. Display the line number corresponding to an absolute address:

*SI~IiiI*Q.iQf!'llIl!1IiiJHI
:MOD1#51

3. Display the location in a procedure corresponding to a line number in a module:

*11~Ji,;tM<1lf)ll$lD5II.Ellle
:MOD1.SET_SCAN+24

4. Display a data location as a program symbol:

*ElIAE..OSiSI.S¥MBGIii
:TCA.BIG_ARRAY+014

Cross-References

1-132

Address
Expression

Encyclopedia

Monitors processor events

The PICE system contains two state machines that work in parallel to monitor processor
events: the execution event machine (XEM) monitors instruction execution and the system
event machine (SEM) monitors processor bus activity (fetches, reads, and writes), address and
data lines, and logic clip signal lines.

You can access these state machines in two ways. One way is to use the GO command or debug
registers to set conditions for break and trace. The FICE system translates these conditions for
appropriate event-machine testing. The second way is to manually load the event machines
using an EVTREG. By programming an EVTREG, you can set up complex break and trace
conditions.

Each state machine has four states (SO through S3). Each state represents a control branch that
can detect match conditions (e.g., break or trace), initiate actions, or branch to a new state.

State S3 sets up a communication link between the two event machines. Break or trace condi­
tions that must match execution instructions and system action require communication between
the two event machines. While either state machine is in state S3, the Boolean variable for that
machine (i.e., XLINK is the Boolean variable for the XEM and SLINK is the Boolean variable
for the SEM) is set to TRUE, and the XEM and SEM can communicate. Thus, decisions can
be made in one machine based on the condition of the other.

Each event machine has an event counter input. Counters permit conditionally delayed triggers
to be programmed. For example, the counter can be used to detect the fifth occurrence of an
event, to count bus cycles, or to count the number of instructions after a trigger.

Word recognizers are the programmable portion of the internal execution state machine that
compares user match specifications with conditions on the bus it monitors. When the match
occurs, the state machine halts. emulation. Refer to the Event machines entry in this encyclope­
dia for details.

The XEM state machine, shown in Figure 1-7, gathers 24 lines of execution address informa­
tion from the FICE bus through the word recognizers. Additional information about the
counter and the state of the SEM is merged with the XEM information. This merging causes
the event machine to either remain in the same state or change states, then increment the
counter, and halt emulation and trace collection.

The SEM, shown in Figure 1-8, monitors bus address and data, logic clips, and probe proces­
sor status through its word recognizers. Additionally, it monitors the state of the execution
event machine (XLINK) and the trace buffer full-condition.

A match with any of these inputs can activate the same actions as the execution event machine.
Event matching can also activate system arm, system disarm, system trigger, and system trace.

Encyclopedia 1-133

Event machines continued

System Machine Status (SLINK)

Counter

WORD RECOGNIZER

State Transition r------v

Increment

Break
'----... Trace

1359

Figure 1-7 Execution Event Machine in a Sample State

Trace Buffer Full

When you start emulation (using thte GO or ISTEP commands), trace data is collected into a
1024-frame buffer. The buffer signals the event machine when it is full and about to be over­
written. You can use EVTREG or SYSREG to detect the buffer full condition. You can use
buffer full detection to break emulation or switch to a state that has no trace specification (e.g.,
trace off).

Programming Restrictions

1-134

Normally, you can emulate with up to four break specifications in anyone named break regis­
ter, although this number can be lower in some cases. Where the break is a range (partition),
for instance, more than the available number of word recognizers may be required to validate
the match condition.

Encyclopedia

Logic
Clips

8

Execution Machine Status (XLlNK)

System Armed

Counter

Processor
Status

8

continued

Bus Bus
Data Address

" t"
WORD RECOGNIZER

State Transition
r------,t/

Increment

Break
'-------lI~ Trace

L-____ ~ System Arm

System Disarm
System Trigger
System Trace

1360

Figure 1-8 System State Machine in a Sample State

Cross-References

Event machines
EVTREG
GO

Encyclopedia 1-135

EVTREG
Defines a register that controls
the event machines

Syntax

1-136

For clarity, this command format differs from the usual format of the entries in this encyclope­
dia. The following skeleton syntax illustrates how the entire command appears. Detailed sub­
stitution lists follow. You should read the Event machines entry in this encyclopedia before
using the DEFINE EVTREG command.

Skeleton Syntax:

DEFINE EVTREG name = DO

{

XEM execution-event- [
program-block

SEM system-event- [
program-block

END

SEM system-event­
program-block

XEM execution-event­
program-block

[CALL dproc]

The skeleton example illustrates the syntax for the two event machines (the execution event
machine and the system event machine) and the way they can be nested. Each event machine is
controlled by a program block. The program block syntax varies, depending on which event
machine you are programming.

The command entered at the terminal might look like the following:

The following detailed syntax diagrams describe the two machines separately. Machines are
either defined individually or combined according to the format shown in the skeleton syntax.

Encyclopedia

1. Syntax to define a register to control the execution event machine:

DEFINE EVTREG name = DO

{
state-# X-it-blOCk}

XEM CTR = count * [CALL dproc]
START = state-#

END

Where:

state-#

x-if-block

is one of the following:

SO
S1
S2
S3

is one ofthe following:

[IF x-condition THEN x-action

l ALWAYS x-action

ORIF x-condition THEN x-action
ELSEIF x-condition THEN x-action
ELSE x-action
BUT ALWAYS x-action

x-condition is

x-action is

Encyclopedia

{
break-specificatiOn} [{break-specificatiOn} [
[NO] ENDCNT WITH [NO] ENDCNT
[NO] SLINK [NO] SLINK

{
GOTO state#l
BREAK
TRACE
INCREMENT

{
GOTO state#l

AND BREAK
TRACE
INCREMENT

1-137

EVTREG continued

2. Syntax to define a register to control the system event machine:

DEFINE EVTREG name = DO

{
state-# S-if-bIOCk}

SEM CTR = count * [CALL dproc)
START = state-#

END

Where:

state-#

1-138

is one of the following:

s-if-block

SO
S1
S2
S3

{

IF s-condition THEN s-action

ALWAYS s-action

s-condition is

{
system-speCificatiOn}
[NO) ENDCNT
[NO) XLiNK

is one of the following:

ORIF s-condition THEN s-action
ELSEIF s-condition THEN s-action
ELSE s-action
BUT ALWAYS s-action

{
system-speCificatiOn}

[WITH] [NO] ENDCNT
[NO] XLiNK

Encyclopedia

s-action is

GOTO state#
BREAK
TRACE
INCREMENT
SYSTRIG
SYSTRACE
SYSARM
SYSDARM

AND

GOTO state#
BREAK
TRACE
INCREMENT
SYSTRIG
SYSTRACE
SYSARM
SYSDARM

You must enclose the contents of each EVTREG debug register in a DO-END block. With
other debug registers, using the DO-END block is optional. Either or both of the event ma­
chines (XEM or SEM) may be programmed in anyone EVTREG. You can activate only one
EVTREG at a time with the GO command.

Syntax for the execution-event-program-block or system-event-program-block defines which
event rnachine is being programmed, counter and start state initialization, and state numbers
with their corresponding IF blocks.

The conditions the IF block tests include execution-events (addresses) and system-events (ad­
dresses, data, clips, and trace buffer full), depending on which event machine is specified. The
actions the IF block causes when the condition for the XEM is matched include state changes,
breaks, traces, and counter increments. The SEM adds system triggers, system arms, system
disarms, and system traces.

The following paragraphs describe each keyword and variable and their legal values and
defaults.

XEM

SEM

state-#

Encyclopedia

defines the execution event machine. The execution
event machiTlc recognizes break conditions for break
specifications, the state of the XEM counter, and the
state of the system event machine (SLINK).

defines the system event machine. It recognizes break
conditions for bus data, bus addresses, logic clips, trace
buffer full, processor status, the state of its counter, and
the state of the execution event machine (XLINK).

is the state number and is either SO, Sl, S2, or S3. S3 is
the state that provides the link to the other event machine
(see x-event and s-event).

1-139

EVTREG continued

1-140

CTR=count

START = state-#

ALWAYS actions

if-block

ORIF condition
THEN action

ELSEIF condition
THEN action

ELSE action

BUT ALWAYS action

x-condition

sets up the event machine event counter. The count must
evaluate to an unsigned integer, JIlaximum sizc 64K
bytes. You can omit the event machine counters and set
them externally using the SCTR or XCTR commands.

indicates the state where execution is to begin. If you do
not specify start-#, SO is the default.

causes all actions specified to occur (when you do not
specify conditional clauses).

is either the x-if-block or the s-if-block. While the syntax
for each machine looks alike at this level, each machine
has different conditions it can recognize and actions it
can perform. The difference in syntax accents the differ­
ences between the two event machines. The if-block
msut be preceded by a state number.

The ifblock is a conditional control block. When the IF
condition is satisfied, the THEN action is performed. If
the initial IF condition is FALSE, then the following
lines are evaluated in order and executed when true. The
conditions and actions that you can specify in an if-block
vary with the event machine.

is an inclusive clause. If one or more ORIF clauses are
true, including the preceding IF or ELSEIF clause, all
true ORIFs produce actions. The first GOTO specified
takes precedence in case of contention.

is an exclusive clause. IF more an one ELSEIF clause is
true, incuding the IF clause, only the first true condi­
tional clause, including any immediately following
TRUE ORIF clauses, produces actions.

is evaluated when none of the other care TRUE.

causes all actions specified in that state to occur uncon­
ditionally.

can be stated singly or ANDed togeth6r using the op­
tional WITH keyword. They are break specifications
that include a single address, a list of addresses or parti­
tions, the state of the event counter in the execution
event machine, or the state of the system evcnt machine
(SLINK).

Encyclopedia

s-condition

x-action

Encyclopedia

The SLINK execution condition is true when the system
event machine (SEM) is in state 3. With this option the
SEM can arm the execution event machine (XEM).

The [NO]ENDCNT execution condition tests whether
the associated event machine counter is equal to the
counter value set (CTR, XCTR, or SCTR).

can be stated singly or ANDed together using the op­
tional WITH keyword. An s-condition includes any
system-specification, such as bus data, bus address, clips
and buffer full, the state of the event counter in the sys­
tem event machine, or the state of the execution event
machine (XLINK).

The system-specification syntax, because of its length
and because other debug registers share the same for­
mat, is detailed in the System specification entry in this
encyclopedia.

The XLINK system condition is true when the execution
event machine (XEM) is in state 3. This option lets the
XEM arm the system event machine (SEM).

The [NO]ENDCNT system condition tests whether the
associated event machine counter is equal to the counter
value set (CTR, XCTR, or SCTR).

can be listed singly or ANDed together using the AND
keyword. An x-action is the result of an event in the
execution event machine being recognized as true.

GOTO state-#

BREAK

TRACE

INCREMENT

transfers control to a new state.

causes the probe to break emulation.

causes the emulator to trace while
the associated conditional clause is
true.

adds one to the counter, in the cur­
rent base.

1-141

EVTREG continued

s-action

CALL dproc

can be listed singly or ANDed together using the AND
keyword. An s-action is the result of an event in the
system event machine being recognized as true.

GOTO state-#

BREAK

TRACE

INCREMENT

SYSTRIG

SYSTRACE

SYSARM

SYSDARM

transfers control to a new state.

causes the probe to halt emulation.

causes the emulator to trace while
the associated conditional clause is
true.

adds one to the counter, in the cur­
rent base.

causes a system trigger to be sent to
all enabled units.

causes conditional trace collection
as a result of any enabled unit's trig­
ger.

causes a system arm to be sent to all
enabled units.

causes a system disarm to be sent to
all enabled units.

The ANDed lists require parentheses.

calls the debug procedure named when a GO USING
evtreg-name causes an emulation break.

Discussion

1-142

Event machine control is an automatic process in the high-level break and trace control com­
mands (e.g., GO USING brkreg-name). By using event registers, you can control the event
machines directly. Regardless of how they are specified, all breaks and traces occur through
the event machine hardware.

Encyclopedia

When to Use EVTREGs

Consider using event registers in the following situations:

•

•
•

When a GO command exceeds the number of break specifications the system can handle.
The FICE system reports an error when this happens.

When the complexity of the statement exceeds the capabilities of other debug registers.

When you need both the counting features of an ARM REG and multiple arm and disarm
features of a SYSREG in one statement.

Specifying EVTREGs

The body of the syntax of the event-program-block (pictured in the skeleton diagram) is essen­
tially an IF-THEN-ELSE control structure. It adds state numbers, similar to line numbers or
labels, to transfer control from state to state.

Because the number of word recognizers is limited, you can specify only a finite number of
break criteria. Notice that omitting the condition preceding the optional keyword WITH in the
IF block statement lets you use additional word recognizers.

For example:

This example is missing the condition between the ORIF and WITH keywords. It is syntacti­
cally legal. The PICE system inserts the address specification following the IF. This form is
also legal in the GO command. (See the GO entry for details.)

Manipulating EVTREGs

Manipulate an EVTREG by referring to its name. You can manipulate EVTREGs in the fol­
lowing ways:

• Create an EVTREG with the DEFINE command

• Delete an EVTREG from memory with the REMOVE command

• List EVTREG names with the DIR command

• Save an EVTREG on file with the PUT or APPEND commands

• Retrieve an EVTREG from a file with the INCLUDE command

Encyclopedia 1-143

EVTREG continued

• Display an EVTREG with the EVTREG command

• Execute an EVTREG with the GO USING command

• Modify an EVTREG with the editor

NOTE

Defining new break and trace specifications using an old EVTREG name destroys the
old definition in memory. An error occurs if you try to assign an EVTREG name to any
other debug object in memory.

Restoring a saved EVTREG that has the same name as an EVTREG in memory over­
writes the latter.

An error results when you try to restore a saved EVTREG that has the same name as any
other debug object in memory.

Using the Optional Call

1-144

When emulation halts because an EVTREG included a CALL, the CALL transfers control to
the named debug procedure. This debug procedure must return a Boolean value (TRUE or
FALSE) to the EVTREG. If TRUE is returned, emulation stops. If FALSE is returned, emula­
tion continues.

NOTE

Emulation halts if a Boolean value is not returned or there is an error in the called debug
procedure. An error message indicates that the halt was not caused by a normal execu­
tion break.

Encyclopedia

Examples

1. The following example illustrates how the same specification can be made using one
EVTREG rather than two other debug registers. Both versions catch an event when execu­
tion takes place in .proc_a and a data value (0123H) is written to .adr_a.

The same specific_ation using EVTREG is as follows:

2. The following example illustrates an event machine program that causes a break at line 68.
Furthermore, a break only occurs if line 68 is executed after lines 32, 44, and 56 are
executed (in order) and line 125 is not executed.

Cross-References

Break specification
Event machines
GO
System specification

Encyclopedia 1-145

EXIT
Terminates the debug session and
returns control to the host
operating system

Syntax

EXIT

Discussion

1-146

The EXIT command closes all open files, tenninates the debug session, and returns to the host
operating system.

You cannot use the EXIT command in two cases:

• If any probe has any memory mapped to the MULTIBUS (MB) memory. (To exit in this
case, reset MAP by entering RESET MAP before entering EXIT). [Note that MULTIBUS
memory mapping is not available on IBM PC hosts.]

• If any of I/O memory is mapped to FICE while any probe is emulating. (To exit in this
case, reset MAPIO by entering RESET MAPIO before entering EXIT.)

Encyclopedia

Syntax

One or more numbers, variables,
pseudo-variables, or functions

separated by operators

[unary-op] operand [binary-op [unary-op] operand] *

Where:

unary-op

operand

binary-op

Discussion

(unary operator) acts on a single operand (Table 1-14
defines unary operators).

can be a constant, a variable, a pseudo-variable, a func­
tion, or a sUb-expression. Some operands are user­
defined; others are system-defined.

(binary operator) acts on two operands. The result is a
single operand (Table 1-15 defines binary operators).

An expression is a combination of operands and operators. Evaluating an expression applies
the operators to the operands until a single result is obtained. This section explains how to
display the result of an expression, tells how expressions are evaluated, and describes the
operands and operators that are valid in PICE system expressions.

Evaluating Expressions

An expression entered as a command is evaluated directly. The result is displayed in the current
base. For example, assuming the default base is DECIMAL:

*S57t%S1
18207

You can also use the EVAL command and the WRITE command to display the result of an
expression. However, the examples in this section use direct evaluation.

You can use the contents of a programming location read as an mtype in an expression (mtypes
are described in the Mtype entry in this encyclopedia).

Encyclopedia 1-147

Expression continued

To evaluate an expression, the system scans the expression iteratively from left to right, one
iteration for each operator in the expression. The series of scans ends when either of two
conditions occurs:

• Nothing remains except a single numeric result

• A syntax error, type combination error, or other error occurs

On each iteration, the scan identifies the operator that must be applied next. This operator can
be unary (requires one operand) or binary (requires two operands). The next operator is always
the left-most operator with the highest precedence that is enclosed in the inner-most pair of
parentheses. (Precedence rules are discussed later in this section.)

If the next operator is unary, its operand must be adjacent to it and of a proper type. If so, the
operator is applied to produce a numeric result. If not, an error results. The operation may
change the type of the operand.

If the next operator is binary, its two operands must be of proper types. The operation then
produces a numeric result. If not, an error results. The operation may change the types of the
uperands. (Refer to the Mtype entry in this encyclopedia for the rules of type combination and
conversion.)

An error occurs if the next operator does not have the required number of operands. Spaces are
allowed between operators and operands.

A pair of parentheses is unnecessary when it contains a single result. For example, (7) is the
same as 7.

After an operation is performed, the numeric result becomes an operand for the next scan.
Parentheses are cleared before the next scan begins.

Operands

The following sections summarize the classes of operands that the system accepts. The four
classes of operands are constants, variables, functions, and sub-expressions. Within each class,
some operands are user-defined and others are built-in (that is, the form is defined by the PICE
system). An expression can be a single operand without any operators.

Constants

1-148

Constants do not change value during execution. Table 1-11 summarizes the user-defined and
built-in constants. Subsequent sections give additional information on constants.

Encyclopedia

Table 1-11 Constants

Constant Description

USER-DEFINED CONSTANTS

unsigned integer constants Interpreted in current base, stored as a double word
(DWORD).

signed integer constants Interpreted in current base, stored as a long integer
(LONGINT).

real number constants Always decimal, stored as a temporary real number
(TEMPREAL).

string constants ASCII characters (maximum 254), enclosed in
delimiters (').
You can use one-character strings as operands with
arithmetic operators.

BUILT-IN CONSTANTS

TRUE Boolean value TRUE.

FALSE Boolean value FALSE.

FLDPI pi, type TEMPREAL;
value 3.14159265358979324E + 00000.

FLDL2T log2(1 0), type TEMPREAL;
value 3.32192809488736235E + 00000.

FLDL2E log2(e), type TEMPREAL;
value 1.44269504088896341 E + 00000.

FLDLG2 log10(2), type TEMPREAL;
value 3.01 029995663981195E - 00001.

FLDLN2 loge(2), type TEMPREAL;
value 6.93147180559945309E -00001.

Unsigned-Integer Constants

An unsigned integer contains one or more valid digits and (optionally) a character indicating
the number base. If you omit the number base character, the digits are interpreted in the current
number base. The valid digits and characters for binary, decimal, and hexadecimal number
bases are as follows:

Encyclopedia

Base

BINARY
DECIMAL
HEX

Valid Digits Number Base Character

0,1 Y
o through 9 T
o through 9, A through F H

1-149

Expression continued

NaTE
To avoid confusion with variables and symbols, a hexadecimal number must not have a
letter as the first digit. For this reason, a hexadecimal number requires a leading 0; for
example, use OAB6H instead of AB6H.

Integers of the form nK are valid constants, where n is an unsigned decimal integer, and K is
1024.

Examples of unsigned integers (decimal base) are as follows:

*~.;;
1

* ~Q~1Q1i1~1i
183

* 11S11
15

*OI'rAM
3962

*14~
65536

Unsigned integers belong to the unsigned class of basic program types.

Signed-Integer Constants

1-150

A signed integer includes unary plus or minus. For example:

* 4\·1:1
+10

*#j1S~1Ii
-157

Signed integers of 8, 16, and 32 bits belong to the signed class of program types. Signed
integers with 64 bits use an 8087 coprocessor or 8087 emulator and belong to the 8087 class of
program types.

Encyclopedia

Real-Number Constants

Real numbers have the following general format:

[sign][numeran * [.numeran * [E[sign][numera/*]]

Real numbers are always decimal. The sign, plus or minus, is optionally included. The numer­
als are the decimal numerals 0 through 9. The decimal point can be anywhere in the sequence
of numerals. The following two examples show how to enter a real number at the terminal and
shows the FICE system's evaluation of that number.

*tJ~1
1·00000000000000000[-1

* 1.3'!JS;I2'19 -
1·23456789000000000[+4

The exponent (E) form is also called scientific notation for real numbers. No space is permitted
before the E. For example:

*1'3:33."
4.33370000000000000[+5

*:;;:,;144515\#5
1.04450000000000000[-5

NOTE

When you use the E-form, a decimal point is required to distinguish them from hexadec­
imal integers of the form nnnnEnnnn. Numerals are required both on the left and on the
right of the decimal point.

All real numbers are stored as TEMPREALs (10 bytes) and must be in the range of TEM­
PREALs. Real numbers require the 8087 coprocessor and belong to the 8087 class of program
types.

Encyclopedia 1-151

Expression continued

Strings

A string contains up to 254 characters enclosed in apostrophes ('). An apostrophe within a
string is entered as a double apostrophe (' '). The value of a string is its ASCII representation,
with a byte for each corresponding character. You can use one-character strings as operands for
arithmetic operators. For example:

*ri_el~
abcdef

*'t,~~i§
c%

102
1* A one-character string used as an operand *1

You can also use string functions such as CONCAT and SUBSTR in expressions. String func­
tions are included in Table 1-13.

Built-in Constants

Built-in constants are of two types, BOOLEAN and TEMPREAL.

The BOOLEAN constants are true (representing the value 1) and false (representing 0). Be­
cause only the least significant bit of a value is used in a BOOLEAN type context, these
constants provide the expected Boolean logic. The BOOLEAN constants are useful for setting
up variables in the FICE system. For example:

*lIellll~;l#.llle

*1.II .. S\il\fAl,;11

The TEMPREAL constants (FLDPI, FLD2T, FLD2E, FLDLG2, FLDLN2) correspond to
8087 constant instructions. For example:

1.53624E+5

Variables

1-152

Variables store values that can change during execution or by user command. The name of the
variable represents the current value. Table 1-12 summarizes the user-defined variables recog­
nized by the PICE system.

Encyclopedia

Table 1-12 User-Defined Variables

Variable Definition

procedure reference Returns the address of the first executable (machine)
instruction in the procedure.

line number reference Returns the address of the first executable instruction in the
line.

label reference Returns the address of the first executable instruction in the
labeled statement.

program variable Returns the contents of the data variable.

debug variable Returns the contents of the debug variable.

User-defined variables include symbolic references to program addresses and variables and
debug variables defined during the debug session.

Symbolic References

Symbolic references to program addresses include procedure names, line numbers, and labels
and represent the address of the first executable instruction within the procedure, line, or
labeled statement, respectively. For example:

*~m.ltUpatsei'
0100:0F30H

*;mOi::l2if523
OOOO:0100H

/* Procedure reference */

/* Line number reference */

/ * Label reference * /

The name of a variable in the user program represents the current value (contents) of the
variable. For example:

Encyclopedia

*~i1q~~~.p'l~f~!;I't'~f~~I~qp~l
15

*litl.Llii'.Qm~item·
12

/* Simple variable */

/* Array variable */

/* Field in a structure or record * /

1-153

Expression continued

Debug Variables

Debug variables are defined by the user within the debug session to hold temporary values. To
refer to a debug variable in an expression, enter the name of the variable.

The following example shows a command block in which most of the numbers are to be in
binary. The block saves the current base by defining a debug variable TEMPRADIX, switches
to binary radix for the commands, then restores the previous base by naming TEMPRADIX in
the assignment command. (Note that the variable TEMPRADIX is local to the block and is
removed automatically after the block finishes executing.)

/* Commands using binary numbers */

Functions

1-154

You call a function by naming the function and specifying any required parameters. The func­
tion returns a value to the place in the expression or command from which it was called. Table
1-13 summarizes the available functions.

User-defined functions are debug procedures that include the RETURN command. An error
occurs if the debug procedure does not have a RETURN command when it is used as a func­
tion. The following is an example of a debug procedure that uses RETURN.

* *m; /* User enters N */
FALSE

The built-in functions are the mathematical, general-purpose, and string functions and are
summarized in Table 1-13. For example:

*
FALSE *-,,,. 3~162'27766D 16837933

* ••• ;'.).1.111.
cd

Encyclopedia

Table 1-13 Functions

Function Description

USER-DEFINED FUNCTIONS

debug procedure call A debug procedure must have a RETURN
statement in its definition to be used as a function.
The call then returns the expression specified in
the RETURN command.

BUILT-IN FUNCTIONS

Mathematical Functions

FPTAN (x) Partial tangent (x is converted to TEMPREAL).

FPATAN (x,Y) Partial arctangent (x and yare converted to
TEMPREAL).

FSQRT(x) Square root (x is converted to TEMPREAL).

F2XM1 (x) 2x -1 (x is converted to TEMPREAL).

FYL2X(x, y) y * 1092(x) (x and yare converted to TEMPREAL).

FYL2XP1 (x, y) y * 1092(X + 1) (x and yare converted to
TEMPREAL).

General-purpose Functions

ACTIVE (symbolic-reference) Returns TRUE if the symbolic reference is active
at the current execution point (i.e., is a static
object or a dynamic object with space allocated to
it); otherwise, returns FALSE.

CI Enables you to enter a single character from the
terminal and returns that character as the operand
value.

OFFSETOF (pointer) Returns the offset portion of the pointer.

SELECTOROF (pointer) Returns the selector (segment) portion of the
pOinter.

PTR (partition, mtype, unit) Returns a pointer to the partition of the type and
unit specified.

String Functions

string-reference The reference can be characters enclosed in
apostrophes, a string expression using CONCAT
or SUBSTR, or a reference to a CHAR type debug
variable.

STRLEN (string-reference) Returns the number of characters in the string.

CONCAT (string-reference Creates a new string by concatenating the strings
[, string-reference 1 *) referenced.

Encyclopedia 1-155

Expression continued

Thble 1-13 Functions (continued)

Function Description

SUBSTR (string-reference, Returns the substring of (maximum) length length
start, length) starting at the character indexed by start (string

indexes begin at 1).

STRTONUM (string-reference) Returns the numeric value of the string, based on
the ASCII code. The type of the result depends on
the context.

NUMTOSTR (expression) Converts the expression into its ASCII
representation.

INSTR (stringref1, Searches for stringref2 within stringref1 and
stringref2 [, startD returns the index of the first character of

stringref2. The optional start defines where to
begin the search in stringref1.

Sub-expressions

A sub-expression is an expression enclosed in parentheses. Parentheses override the prece­
dence of the operators. An expression inside parentheses is evaluated first, thus becoming an
operand for the rest of the expression outside the parentheses. When parentheses are nested,
the sub-expression in the inner-most pair of parentheses is evaluated first. For example:

Operators

1-156

Expressions can use a variety of operators. Unary operators act on a single operand; binary
operators combine two operands.

Encyclopedia

Unary Operators

Table 1-14 summarizes the unary operators; the following paragraphs provide details.

Table 1-14 Definitions of Unary Operators

Operator Operation

" A double quotation mark must precede symbolic references (forcing look-up
of the reference in the user symbol table) when the symbol name duplicates a
keyword or debug variable name.

The dot operator returns the address (type POINTER) of a symbolic
reference to a user program variable. Without the dot operator, a reference to
a program variable returns the memory contents of the variable.

+ Unary plus denotes a positive number.

- Unary minus denotes a negative number and converts an unsigned value to a
2's complement signed value.

NOT NOT is the 1 's complement.

Double-Quote Operator

You must use the double-quote operator (") when a user program symbol duplicates an FICE
keyword. (See the Keywords entry in this encyclopedia for a list of FICE keywords.) The
double-quote operator forces the system to use the symbol defined in your program for the
reference. The following example command causes an error because exit is an FICE system
keyword.

But use of the double-quote operator makes possible the desired reference. For example:

Dot Operator

The dot operator placed before a symbolic reference to a program variable, returns the address
of the variable as a POINTER value. For example, if your program has a variable named
COUNTER of type BYTE, then the following command returns the BYTE content of the
variable.

Encyclopedia

*OQunlet'
12

1-157

Expression continued

But the variable preceded by the dot operator returns the memory address of the variable. For
example:

*;cOlnlif
oFE8:oo14H

Unary Plus and Minus

The unary plus (+) causes the operand to be treated as a signed integer rather than unsigned
number. For example:

1 +255 =256

+ 1 + (+ 255) = + 256

The unary minus (-) reverses the sign of its operand. If the operand is an unsigned type,
unary minus converts the operand to a signed integer, using the 2's complement. Examples:

*i4ii
-546378923

-1.00000000000000000

* #'5,!!*,t·$
-50

Nor Operator

The Nor operator returns the l's complement of its operand. For example:

*.n!IIIIIII§f!llitll
TRUE

The operand must be unsigned or Boolean; Nor is invalid with any other mtype.

Binary Operators

1-158

The sign determines the value with which the PICE system calculates in binary arithmetic. A
binary operator working on two signed constants does signed arithmetic. A binary operator
working on two unsigned constants does unsigned arithmetic. Table 1-15 summarizes the bi­
nary operators. The Mtype entry in this encyclopedia lists the rules for type conversions. The
following examples illustrate binary operators:

-5.0000

Encyclopedia

Table 1-15 Definitions of Binary (Two-Operand) Operators

Operator Function

Pointer

Creates a pointer (selector:ofiset) from two operands

Arithmetic

* Multi plication

1 Division

MOD Modulo reduction (remainder after division)

+ Addition

- Subtraction

Relational

- - Equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

<> Not equal to

Logical

AND Bit-wise AND

OR Bit-wise inclusive OR

XOR Bit-wise exclusive OR

Table 1-16 shows the relative precedence of the unary and binary operators.

Encyclopedia

Table 1-16 The PICETM System Operators in Order of Precedence

Precedence" Operators

1 " .,
2
3 unary +, -
4 *, I, MOD
5 binary +, -
6 NOT
7 AND
8 OR,XOR

* 1 = highest precedence
(evaluated first), 8 = lowest
precedence.

1-159

Expression continued

Pointer Operator

The pointer operator (:) creates a pointer out of two 16-bit values. A pointer has the following
format:

selector:offset

where selector and offset can be any type except BOOLEAN. For example:

*OOOOlt12341
0000:1234H
*~$~Ifi
FFFF:OOOOH

Arithmetic Operators

1-160

The binary arithmetic operations in order of precedence are multiplication, division, modulo
reduction, addition, and subtraction.

The multiplication operator (*) returns the product of its operands. For example:

* 1.25663706143591730[+1

The division operator (I) returns the quotient of its two operands. If both operands are integers
(signed or unsigned) the result is the integer part of the quotient (i.e., integer division for
integer operands). If either operand is real, the result is also real.

For example:

* if: 512
+2
*5~OII~o
2.5
*It.llltl
1.57079632679489662

Encyclopedia

The MOD operator returns the remainder after division of its two operands. With integer
operands, MOD returns an integer; with real operands, MOD returns the fractional quotient.
For example:

*~UM~13
1
*tREIPilfJIIIS
1.41592653589793239[-1

The addition operator (+) returns the sum of its two operators; the subtraction operator (-)
returns the difference. For example:

*11.5
0014:FFFFH

2.4634000015258791[+2

Note that addition and subtraction have lower precedence than multiplication and division. For
example:

14

Relational Operators

The relational operators (included in Table 1-15) compare two operands. If the comparison
holds, the operation returns TRUE (1). If not, it returns FALSE (0). For example:

*1:?!:m.~;~I'~'.III.n F ALs[.........

Logical Operators

The logical operators arc AND, OR, and XOR (exclusive OR). Operands other than Boolean
and unsigned types are invalid with logical operators.

Logical operations performed on relational expressions evaluate to a Boolean value. For exam­
ple:

Encyclopedia 1-161

Expression continued

Logical operations performed on unsigned expressions return bit-by-bit values. For example:

Examples

The following examples assume a decimal base.

1. Arithmetic expression:

*II.!(!'III
385

2. Using real constants and variables:

* * 1.53623880760540889E+5

3. Logical operator with a function call:

Cross-References

1-162

EVAL
Keywords
Masked constant
Mtype
Strings
WRITE

Encyclopedia

Syntax

Displays or changes memory as
64-bit signed values

EXTINT partition [= expression [. expression] *
= mtype partition

Where:

EXTINT partition

partition

expression

mtype

Discussion

displays the location specified in partition as an ex­
tended integer in decimal.

is a single address or a range of addresses specified as
address TO address or address LENGTH number-of­
items.

converts to a 64-bit signed value for EXTINT.

is any of the memory types except ASM.

The EXTINT command interprets the contents of memory as 64-bit signed values, overriding
any type associated with the memory contents. Thus, entering EXTINT . var 1 displays the
extended integer that begins at the address of var 1, regardless of the type of varl. If the most
significant nibble of the unsigned data comprising the EXTINT is 8 through F, it is interpreted
as a negative number and displayed in the 2 's complement form of the unsigned data.

Note that the FICE system always displays values for signed-integer memory types as decimal
numbers, regardless of the selected number base.

Examples

In the following examples, the number base is hexadecimal and $ refers to the current execu­
tion point.

1. Display a single value:

Encyclopedia

*~$Jf!I$$
0020:0006H +1673000016443179

1-163

EXTINT continued

1-164

2. Display consecutive values:

*111111;11 ••• 1
0020:0006H +1673000016443179 +0335000217812900
0020:0016H -1374227610993400

3. Set a single value of type EXTINT:

4. Set adjacent values:

Display the values set (you can set memory locations to signed integer values using a
hexadecimal base, but the PICE system displays the values in decimal):

*11;il; R;. 11.111 3
0040:0004H +7 +81985529216486895
0040:0014H +4779

5. Set a range oflocations to a single value:

6. Set a repeating sequence of values:

7. Copy a value from one memory location to another:

The destination is the memory location left of the equal sign; the source is on the right.

8. Copy several values (block move):

9. Copy values with type conversion:

Encyclopedia

An error messages is displayed if the type on the right side of the equal sign cannot be
converted to the type on the left. (Refer to the Expression entry in this encyclopedia for the
rules concerning type conversions.)

Cross-References

Expression
Mtype
Partition

Encyclopedia 1-165

1
2X -1 function

Syntax

F2XM1 (x)

Where:

F2XM1 (x)

x

represents the function 2x - 1.

is a number or expression that evaluates to a number (0
< x < 0.05).

Discussion

The F2XM1 function is identical to the 8087 instruction.

The parameter (x) is converted to type TEMPREAL, and the result is TEMPREAL.

You can use the F2XM1 function anywhere an expression is valid.

NOfE

If x is outside the range 0 :::; x :::; 0.5, F2XM1 produces an undefined result without
signaling an exception.

Example

1. Calculate the 2x - 1 function for x = .25:

*lr~M~(o;g$)
1.89207115002721067E-1

Cross-Reference

Expression

1-166 Encyclopedia

Displays or modifies 8086/8088 flags

Syntax

J ~tAGS 1 [= expression] l ~~86/8088-flag J
Where:

FLAGS

expression

FL

FH

8086/8088-flag

Discussion

displays the 8086/8088 flags register.

is an expression (ofthe correct data type) used to set flag
values.

displays the lower (least significant) byte of the 80861
8088 flags register.

displays the upper (most significant) byte of the 80861
8088 flags register.

displays the current value of a flag and is one of the
keywords shown in Figure 1-9.

Display flag values by entering their keywords or by entering the keyword FLAGS. Flag values
are displayed as Boolean values. The REGS command displays the flag mnemonic of all flags
set to 1. If no flags are set, the word "none" is displayed.

You can modify individual flags in two ways. One way is to enter the word FLAGS (or FL or
FH) ORed or ANDed with the proper bit pattern. The other way is to assign a value to the
individual flag. The flag is set according to the value of the least significant bit (LSB) in
expression.

Encyclopedia 1-167

8086/8088 Flags continued

The FLAGS Register

Bit Keyword Description 121CETM System Memory Type

15

12
11
10

9
8
7
6
5
4
3
2
1
o

OFL
DFL
IFL
TFL
SFL
ZFL
XX
AFL
XX
PFL
XX
CFL

Don't care

Overflow flag BOOLEAN
Direction flag BOOLEAN
Interrupt flag BOOLEAN
Trap flag BOOLEAN
Sign flag BOOLEAN
Zero flag BOOLEAN
Don't care
Auxiliary flag BOOLEAN
Don't care
Parity flag BOOLEAN
Don't care
Carry flag BOOLEAN

Figure 1-9 8086/8088 Flags Register Bit Pattern

Example

1. Display the value of the zero flag and set the trap flag: ..
TRUE

TRUE

Cross-Reference

Expression

1-168

1597

1* Set the trap flag *1

Encyclopedia

Displays or modifies 80186/80188 flags

Syntax

J ~tAGS 1 [= expression] l ;~186/80188-flag J
Where:

FLAGS

expression

FL

FH

80 186/80 188-flag

Discussion

displays the current value of the 80186/80188 flags reg­
ister.

is an expression (of the correct data type) used to set flag
values.

displays the lower (least significant) byte of the 80186/
80188 flags register.

displays the upper (most significant) byte of the 80186/
80188 flags register.

displays the current value of a flag and is one of the
keywords shown in Figure 1-10.

Display flag values by entering their individual keywords or by entering the keyword FLAGS.
Flag values are displayed as Boolean values. The REGS command displays the flag mnemonic
of all flags set to 1; if no flags are set, the word "none" is displayed.

You can modify individual flags in two ways. One way is to enter the word FLAGS ORed or
ANDed with the proper bit pattern (only the least significant 16 bits of expression are used).
The other way is to assign a Boolean value to the individual flag.

Example

I. The following example shows two ways to set the trap flag.

Encyclopedia

*f\yf
*1iFC

/*Set the trap flag */

1-169

80186/80188 flags continued

The FLAGS Register

Bit Keyword

15

12
11
10

9
8
7
6
5
4
3
2
1
o

OFL
DFL
IFL
TFL
SFL
ZFL
XX
AFL
XX
PFL
XX
CFL

Description

Don't care

Overflow flag
Direction flag
Interrupt flag
Trap flag
Sign flag
Zero flag
Don't care
Auxiliary flag
Don't care
Parity flag
Don't care
Carry flag

I2ICETM System Memory Type

BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN

BOOLEAN

BOOLEAN

BOOLEAN

1598

Figure 1-10 80186/80188 Flags Register Bit Pattern

Cross-Reference

Expression

1-170 Encyclopedia

Displays or modifies 80286 flags

Syntax

f ~tAGS 1 [= expression] l ;~286-flag J
{ ~O~~6-flag } [= expression]

Where:

FLAGS

MSW

FL

FH

80286-flag

expression

Encyclopedia

displays the current value of the 80286 flags register
(see Figure 1-11).

displays the current value of the 80286 machine status
word (MSW) register (see Figure 1-12).

displays the lower (least significant) byte of the 80286
flags register.

displays the upper (most significant) byte of the 80286
flags register.

displays the current value of a flag and is one of the
keywords shown in Figures 1-11 and 1-12. The flags
may belong to the 80286 flags register or to the 80286
machine status word (MSW). Figure 1-11 shows the bit
pattern of the FLAGS register. Figure 1-12 shows the bit
pattern of the MSW.

is an expression (of the correct data type) used to set flag
values.

1-171

80286 flags continued

The FLAGS Register Description FICETM System
Memory Type

Bit 15 14 13 1 2 11 10 8 6 5 4 o
Keyword l X 1 NFL I IOPl

'----

I OFL I DFL IIFL 1 TFL 1 SFL 1 ZFL I X 1 AFL 1 X 1 PFL I X 1 CFL J

I I L Carry flag BOOLEAN
Don't care
Parity flag BOOLEAN
Don't care
Auxiliary flag BOOLEAN
Don't care
Zero flag BOOLEAN
Sign flag BOOLEAN
Trap flag BOOLEAN
Interrupt flag BOOLEAN
Direction flag BOOLEAN
Overflow flag BOOLEAN
1/0 privilege level BYTE
Nested task flag BOOLEAN
Don't care

1600

Figure 1-11 80286 Flags Register Bit Pattern

TheMSW Description FICF" System
Memory Type

Bit 15 4 3 2 1 0
,-------------------------------------.-~--~--~~

Keywo,d 1,--' _________ ---. __________ '_-L-ITTs-FJ"'---EMrF~l'-M..,p-F--'l-PTE-'F I

L Protection enabled BOOLEAN
flag

1-172

*Additional information:

Monitor processor BOOLEAN
L- extension flag*

Processor BOOLEAN
'--_____ extension flag"

'--_______ Task switch flag BOOLEAN
'--____________________ Aill's

Setting both the EMF bit and the MPF bit high will cause the 121CE system to fail to break emulation. Entering the RESET UNIT command
will stop emulation in this case.

1601

Figure 1-12 The MSW Bit Pattern

Encyclopedia

Discussion

Display flag values by entering their individual keywords or by entering the keyword FLAGS.
Flag values are displayed as Boolean values. The REGS command displays the flag mnemonic
of all flags set to 1; if no flags are set, the word "none" is displayed.

You can modify individual flags in two ways. One way is to enter the word FLAGS ORed or
ANDed with the proper bit pattern (only the least significant 16 bits of expression are used).
The other way is to assign a Boolean value to the individual flag.

A task switch always sets the task-switch flag (TSF). A task switch performed with a CALL or
an INT instruction also sets the nested task flag (NFL). A task switch performed with a JMP
instruction leaves the NFL unchanged.

Examples

1. Set the trap flag (TFL) to TRUE.

TRUE

2. Another way to set the trap flag to TRUE:

TRUE

Cross-References

Expression
Multitasking
80286 registers
REGS

Encyclopedia 1-173

FLDL2E
Constant 1092(e)

Syntax

FLDL2E

Where:

FLDL2E

Discussion

is the constant logz<e), type TEMPREAL, value
1.44269504088896341. The value (e) is the base of the
natural logarithm.

The constant FLDL2E is identical to the 8087 constant instruction. You can use it anywhere an
expression is valid.

Example

*lm.,rR
1.44269504088896341
,..11_11.'
5.33797165128916461

Cross-Reference

Expression

1-174 Encyclopedia

Syntax

FLDL2T

Where:

FLDL2T

Discussion

Constant 109,(10)

is the constant log2(1O), type TEMPREAL, value
3.32192809488736235.

The constant FLDL2T is identical to the 8087 constant instruction. You can use it anywhere an
expression is valid.

Example

* P;f.!;t:'1cal'l
3.32192809488736235

Cross-Reference

Expression

Encyclopedia 1-175

FLDLG2
Constant 10910(2)

Syntax

FLDLG2

Where:

FLDLG2

Discussion

is the constant log 10(2) , type TEMPREAL, value
5601 029995663981195E - 1.

The constant FLDLG2 is identical to the 8087 constant instruction. You can use it anywhere an
expression is valid.

Example *-3.01029995663981195E-1

Cross-Reference

Expression

1-176 Encyclopedia

Syntax

FLDLN2

Where:

FLDLN2

Discussion

Constant 109.2

is the constant loge(2), type TEMPREAL, value
6.93147180559945309E -I.

The constant FLDLN2 is identical to the 8087 constant instruction. You can use it anywhere an
expression is valid.

Example

*1111.1.
6.93147180559945309E-1

Cross-Reference

Expression

Encyclopedia 1-177

FLDPI
Mathematical constant pi

Syntax

FLDPI

Where:

FLDPI is the constant pi, type TEMPREAL, value
3.14159265358979324.

Discussion

The constant FLDPI is identical to the 8087 constant instruction. You can use it anywhere an
expression is valid.

Examples

1. The following debug procedure calculates the circumference of a circle. The radius of the
circle is passed to the procedure as a parameter (indicated by %0), and the value of the
circumference is passed back with a RETURN command.

*1~~!lli'I~II,'.f~"'!~ill
. *llmUf!l"{~{O;~Fl4a~'i*r!Y40
.*Et<lD

2. The following example shows a call to the previous debug procedure using the radius
24,450T.

*~ •• ijIQ(~IU$I~)
1.53623880760540889E+5

Cross-Reference

Expression

1-178 Encyclopedia

Partial arctangent function

Syntax

FPATAN (x,Y)

Where:

FPATAN (x,Y) is the partial arctan (y/x) function (angle in radians) (0
< y < x < 00).

Discussion

The FPATAN function is identical to the 8087 partial arctangent instruction. The result is type
TEMPREAL.

The value x is converted to TEMPREAL before thc function is applied.

You can use the FPATAN function anywhere an Expression is valid.

NOTE

If x or y is outside the range 0 < y < x < 00, FPATAN produces an undefined result
without signaling an exception.

Example

* ~1"1"11~~1~)
4.63647b09000806116E-1

Cross-Reference

Expression

Encyclopedia 1-179

FPTAN
Partial tangent function

Syntax

FPTAN (x)

Where:

FPTAN (x) is the partial tangent function of an angle. The argument
x is the angle in radians and (0 =:; x =:; 1l'/4).

Discussion

The FPATAN function is identical to the 8087 partial tangent instruction.

The argument x is converted to type TEMPREAL before the function is applied. The result is
type TEMPREAL.

You can use FPTAN anywhere an expression is valid.

NarE

If x is outside the range 0 =:; x =:; 1l'/4, FPTAN produces an undefined result without
signaling an exception.

Example

1. Calculate and display the partial tangent of .5T:

Cross-Reference

Expression

1-180 Encyclopedia

Syntax

FSQRT (x)

Where:

FSQRT

x

Discussion

FSQRT
Square root function

is the square root function.

is a number or expression that evaluates to a number (0
::; x ::; + 00).

The square root function is identical to the 8087 square root instruction.

The parameter x is converted to type TEMPREAL, and the result is TEMPREAL.

You can use the function FSQRT anywhere an expression is valid.

Example

1. Calculate and display the square root of lOT:

*_111.
3.16227766016837933

Cross-Reference

Expression

Encyclopedia 1-181

FYL2X
Y * I092(X) function

Syntax

FYL2X (x, y)

Where:

FYL2X

x

y

is the function y * log2(x).

is a number or expression that evaluates to a number (0
<x<+oo).

is a number or expression that evaluates to a number
(-00 <y<+oo).

Discussion

The FYL2X function is identical to the 8087 log instruction.

The parameters x and yare converted to TEMPREAL before the function is applied, and the
result is type TEMPREAL.

You can use FYL2X anywhere an expression}s valid.

Examples

1. Calculate and display the FYL2X function of 4 T and 1 T: *_1.1.
2.00000000000000000

2. Calculate and display the FYL2X function of38.7T, 23.34T:

*_I[&'Wt, ••
1.23101267173739499E+2

Cross-Reference

Expression

1-182 Encyclopedia

y * I092(X + 1) function

Syntax

FYL2XP1 (x, y)

Where:

FYL2XP1 is the function y * loglx + 1).

x is a number or expression that evaluates to a number (0
< Ixl < (1-(V2)/2).

y is a number or expression that evaluates to a number
(-oo<y<+oo).

Discussion

The FYL2XPI function is identical to the 8087 log instruction.

The parameters x and yare converted to TEMPREAL before the function is applied and the
result is type TEMPREAL.

You can use FYL2XPI anywhere an expression is valid.

Example

1. Calculate and display the FYL2XP 1 function for .1 T and 1 T. *-... I:ttt:tttl 1.37503523749934908E-1

Cross-Reference

Expression

Encyclopedia 1-183

GET87
8086/8088 probe specific

Defines register handling conditions
for the 8087 coprocessor

Syntax

GET87 [(address)]

Where:

GET87

address

tells the PICE system that an 8087 coprocessor is
present.

describes the starting address of a llO-byte buffer area
in user-mapped memory; address must be lOH or
greater. The PICE system uses this area to save and re­
store the register contents of the external 8087 coproces­
sor when entering and exiting emulation. Use address
with the external coprocessor only.

Discussion

1-184

Enter the GET87 command before starting emulation to tell the PICE system that an 8087
coprocessor is present. When emulation breaks, the PICE system preserves the values of the
8087 registers by saving them in memory. This makes all 8087 register data available to you for
display and modification. You cannot display or modify the 8087 registers if you have not
entered the GET87 command. When emulation resumes, the registers are restored to the 8087
coprocessor. The GET87 command does not affect the operation of either internal or external
8087's during emulation.

Note that you need enter the GET87 command only once before emulation begins. However, if
the specified llO-byte buffer changes status and no longer starts at IOH or greater, enter the
GET87 command again to set up the new buffer area.

The FICE system determines the memory area in which to save registers by first determining
the location ofthe user 8087 coprocessor. External 8087's save registers in user memory, while
internal 8087's save registers in reserved system memory. The FICE system looks for the 8087
coprocessor and responds in one of three ways:

•
•
•

If an external 8087 is present, the FICE system uses it.

If no internal 8087 is present, the FICE system assumes an external 8087.

If no external 8087 is present, the PICE probe hangs.

When using an internal 8087 coprocessor, user memory is not altered and the optional address
is not required; address input is ignored.

Encyclopedia

When using an external 8087, you must identify a llO-byte buffer in user mapped memory
using the address option. This area is used as an intermediate buffer in saving and restoring the
8087 register data. The original contents of this buffer are preserved between save and restore
operations.

Example

1. Set up the FICE system to recognize an external 8087 coprocessor:

/* BREAK MESSAGE */
*~iEl
+4.0293200090000000[-12

Cross-Reference

Address

Encyclopedia 1-185

GET87
80186/80188 probe specific

Defines register handling conditions
for the 808? coprocessor

Syntax

GET8? (address)

Where:

GET8?

address

tells the PICE system that an 8087 coprocessor is
present.

describes the starting address of a llO-byte buffer area
in user-mapped read/write memory; address must be
greater than lOH. The FICE system uses this area to
save and restore the register contents of the external
8087 coprocessor upon entering and exiting emulation.
After restoring 8087 coprocessor register contents, the
FICE system restores user memory to its previous
contents.

Discussion

1-186

Enter the GET87 command before emulation begins to tell the FICE system that an 8087
coprocessor is present. When emulation breaks, the FICE system preserves the values of the
8087 registers by saving them in memory. This makes all 8087 register data available to you for
display and modification. You cannot display or modify the 8087 registers if you have not
entered the GET87 command. When emulation resumes, the registers are restored to the 8087
coprocessor. The GET87 command does not affect the operation of the external 8087 copro­
cessor during emulation.

Note that you need enter the GET87 command only once before emulation begins. However, if
the specified llO-byte buffer changes status and the starting address is no longer greater than
IOH, enter the GET87 command again to set up a new buffer area.

The FICE system responds in one of two ways to a GET87 command.

• If an external 8087 is present and the GET87 command is entered, the FICE system uses
the external 8087.

• If no external 8087 is present and the GET87 command is entered, the FICE system hangs.

Encyclopedia

Example

1. Set up the FlCE system to recognize an external 8087 coprocessor:

* /* BREAK MESSAGE */
*.$110
+4.0293200090000000E-12

Cross-Reference

Address

Encyclopedia 1-187

GO
Starts emulation and controls
break and trace functions

Syntax

1-188

GO [FROM address] [go-til-spec 1 [go-trace-spec}
go-using-spec

Where go-tit-spec is one of the following:

FOREVER
TIL break-spec

SYSARM system-spec
SYSDARM system-spec
SYSTRIG system-spec
arm-spec
[DO] evt-spec END /*see note*/

TIL BOTH (break-spec) AND (system-spec)

Where go-using-spec is one of the following:

FOREVER
USING evtreg-name

BRKREG
SYSREG
armreg-name
brkregs
sysregs

/*see note*/

USING BOTH (brkregs) AND (sysregs)

Where go-trace-spec is one of the following:

TRACE {trcreg-name [,trcreg-name]*}
trace-spec

trace-spec is

[break-spec 1
[SYSTRACE] system-spec

Encyclopedia

NOTE

You cannot use the TRACE option with evt-spec. You can use the TRACE option with
evtreg-name.

Where:

GO

FROM address

FOREVER

TIL

break-spec

system-spec

Encyclopedia

starts emulation from the current execution point
(CS:IP) without altering break or trace specifications.
The FICE system's initial condition is to GO FOREVER
and to always collect trace.

changes the current execution point to the address speci­
fied.

Changing the execution point can invalidate the
stack.

If the FROM location is not the first byte of a
machine language instruction, the FlCE system
may execute an incorrect data item as an opcode.

clears all active break specifications and starts emula­
tion. GO FOREVER is the initial condition.

specifies break or trace conditions (or both) without reg­
isters. The PICE probe remembers these conditions un­
til you either execute a GO FOREVER, specify a new
break or trace condition, or issue a RESET BREAK.

is a numeric or symbolic address (line number, module
name, label, or a list of addresses). break-spec syntax
appears under the Break specification entry in this ency­
clopedia.

is a bus address, bus data, logic clip information, the
buffer full condition, or probe processor status. system­
spec syntax appears under the System specification en­
try in this encyclopedia.

1-189

GO continued

1-190

arm-spec is replaced by the following syntax:

{

ARM cond [DISARM cono'] TRIG t-cono'

INSTRUCTION count
[ARM cond] TRIG t-cond AFTER {OCCURRENCE count

evt-spec

TIL BOTH (break-spec)
AND (system-spec)

USING

evtreg-name

BRKREG

SYSREG

The ARMREG entry in this encyclopedia contains de­
tails on arm-spec.

is replaced by the following syntax:

{
state-# X-it-blOCk}

XEM CTR = count
START = state-#

{
state-# s-it-bIOCk}

SEM CTR = count
START = state-#

The EVTREG entry in this encyclopedia contains details
on evt-spec.

combines a logically ORed list of execution addresses
with a logically ORed list of system specifications. The
combination is logically ANDed. break-spec must pre­
cede system-spec.

specifies break or trace conditions or both using
previously-defined break and trace registers. The FICE
probe remembers these conditions until you either exe­
cute a GO FOREVER, specify a new break or trace con­
dition, or issue a RESET BREAK.

causes the FlCE probe to break or trace (or both) based
on conditions specified in the named event register.

causes the FICE probe to respond to all BRKREGs cur­
rently defined in memory.

causes the FICE probe to respond to all SYSREGs cur­
rently defined in memory.

Encyclopedia

armreg-name

brkregs

sysregs

GO USING BOTH (brkregs)
AND (sysregs)

TRACE

trcreg-name

SYSTRACE

Discussion

causes the FICE system to break based on conditions
specified in the named arm register.

causes the FICE probe to break based on conditions
specified in one or more named break registers. The
fonn is as follows:

brkreg-name [,brkreg-namej*

causes the PICE probe to break based on conditions
specified in one or more named system registers. The
form is as follows:

sysreg-name [,sysreg-name] *

combines a logically ORed list of brkregs with a logi­
cally ORed list of sysregs. The combination is logically
ANDed. The brkregs must precede the sysregs. For sim­
plicity and accuracy, use only one BRKREG and
SYSREG.

infonns the FICE system that a trace specification fol­
lows.

causes the PICE system to collect traces based on condi­
tions specified in the named trace register. You can spec­
ify the contents of trace registers directly in the GO
command. (The TRCREG command specifies syntax.)

specifies that when the system-spec is met, any FICE
units properly enabled are triggered and traced accord­
ing to the defined criteria. Do not specify SYSTRACE
on any unit which also has SYSARM, SYSDARM, or
SYSTRIG specified.

This section explains when to choose one fonn of the GO command over another. The choice is
based on the type of condition specified, the type of action the FICE system is to take, and
whether the condition specification is to be reused.

The types of conditions specified to the PICE system are break specifications and system
specifications. The types of actions the FICE system is to take are breaking emulation, halting
trace collection, triggering, arming, and disarming. The Execution with Breakpoints section
describes these features.

Encyclopedia 1-191

GO continued

Use a debug register to save a condition specification for a later debug session. Debug registers
are saved and recalled by name. The Execution with Debug Registers section describes this
feature.

Note that you can edit the most recent GO command by entering EDIT Go.

Using the GO Syntax

Figure 1-13 illustrates the branches of the GO command syntax. If you specify GO without
options, the last go-til-spec or go-using-spec is used.

While a probe is emulating, you cannot issue a command that requires a probe, such as GO or
ISTEP. During emulation, the PICE system replaces the asterisk prompt (*) with a question
mark prompt (?) to remind you that the current probe is emulating.

When using SYSTRACE in a multiprobe environment with various probe frequencies, the
slower probes may miss the system trace event for one instruction. Therefore, specify a range
of addresses, such as one of the following:

SYSTRACE AT OUTSIDE address-start LENGTH 50
SYSTRACE AT XOX11OXY

Execution without Breakpoints

To start emulation without setting breakpoints, use the FOREVER option, which executes your
program through its normal end. The FlCE system automatically collects trace information
unless otherwise directed. Stop emulation before the end of the program by entering CTRL-C.
For IBM PC hosts, use CTRL-Break instead of CTRL-C.

Execution with Breakpoints

1-192

To conditionally break emulation, use the GO TIL or the GO USING option. Emulation also
stops when aborted by CTRL-C (or by CTRL-Break, for IBM PC hosts) or when an error
occurs.

I

GO [F"Oj .dd~l

I
FOREVER TIL USING

1361

Figure 1-13 Branches of the GO Command Syntax

Encyclopedia

With the TIL construct you can specify break conditions directly on the GO command line.
Use the TIL construct for simple break conditions that require few keystrokes and which will
be used only once.

The USING construct requires defined debug registers. Use the USING construct when the
break condition exceeds one line or when the break condition will be used more than once.

NOTE

When using the 8086/8088 probe, you must not specify an execution break on an in­
struction that accesses memory locations 08H to OBH.

Execution with Debug Registers

Consider using debug registers when breakpoints and trace conditions are complex and will be
reused. By putting conditions into debug registers you can identify specifications by name so
that changing conditions is simplified, in addition to saving re-entry time.

The keywords for the five debug register types are BRKREG, SYSREG, ARMREG, EV­
TREG, and TRCREG. Each register type permits only certain kinds of conditions. Refer to
each debug register type's keyword in this encyclopedia for details.

Examples

I. The following example shows a simple GO command. The current FICE probe starts
execution from the current contents of CS:IP (e.g., the last breakpoint).

2. The following example specifies a starting address in the GO command.

3. The following example shows two ways to specify a break at location 12:26 and begin trace
collection from locations 12:8 to 12:18.

or

Encyclopedia

* De:FINe:·TRCRe:G.trac~...;;.;it·"'.12;8TO.1.2:18 * GO·TIL12:aS··TIilACe:lrae. ···.·.···.11

1-193

GO continued

4. The following example shows two ways to specify a break at locations 2 or 4.

or

5. The following example shows two ways to specify a combined BRKREG and SYSREG
specification. Both versions cause a break where execution takes place in .proc_b, and a
data value (0123H) is written to .adr_b.

or

Cross-References

1-194

ARMREG
Break specification
BRKREG
Debug registers
DEFINE
EVTREG
Name
SYSREG
System specification
TRCREG

Encyclopedia

Syntax

Default Value

lK

Discussion

Determines the block size
used for memory mapping

You can map 1024 blocks of memory in either lK-byte blocks or 16K-byte blocks. When
GRANULARITY = lK, only the lower megabyte of memory is mappable. When GRANU­
LARITY = 16K, the entire address space is available. Before you can change the GRANU­
LARITY, program memory must be mapped to all USER or all GUARDED.

The FICE system always maps to OHS in 16K-byte blocks, even if GRANULARITY is lK.

GRANULARITY Is lK

The memory map behaves differently for memory mapped to HS, MB, OHS, or GUARDED
and for memory mapped to USER.

Memory Mapped to HS, MB, OHS, or GUARDED

When you map to HS, MB, or GUARDED and the granularity is lK, the 80286 probe ignores
the upper four address bits « A23-A20 >). Consequently, an address wrap-around occurs,
and each physical memory location has 16 physical addresses. For example, if you map the lK­
byte block from physical address OK to physical address lK -1 to HS, you are actually map­
ping the following 16 blocks to the same RAM:

Encyclopedia

Oto lK-l
1M to lM+lK-l
2M to 2M + lK - 1
3M to 3M + lK - 1
4M to 4M + lK - 1

1-195

GRANULARITY (80286) continued

SMto SM+ 1K-1
6M to 6M + 1K-1
7M to 7M + 1K-1
8M to 8M + 1K-1
9M to 9M + 1K - 1

10M to 10M + 1K-1
11M to 11M+ 1K-1
12M to 12M + 1K-1
13M to 13M + 1K-1
14M to 14M+ 1K-1
ISM to lSM+ 1K-1

Memory Mapped to USER

USER memory decodes an address according to USER's own decode logic.

GRANULARITY Is 16K

When the granularity is 16K, there is no wrap-around. The memory map is as specified.

NOTE

If you use the RESTART option with the I2ICE command, the granularity will be reset
to 1K if it previously was set to 16K. The probe hardware retains the 16K mapping
boundaries set up previously, but the map display will be based on 1K granularity.

Example

1. Set the granularity to 16K:

16K GRANULARITY

1-196 Encyclopedia

Breaks emulation from the terminal

Syntax

HALT [unit-number[,unit-number] *
ALL

Where:

unit-number is the number of the unit you want to stop (0, 1,2, or 3)
or an expression that evaluates to 0, 1,2, or 3.

ALL stops all emulating units.

Discussion

The HALT command stops program emulation. Entering HALT aborts execution from the
terminal without altering break or trace specifications. Restarting from HALT begins execu­
tion without disrupting the emulating program. Use the GO command to resume execution.

NOTE

CTRL-C (or CTRL-Break, for IBM PC hosts) has no effect on emulating programs.

Example

?l!i,lCit
*Probe 0 stopped at location 0027:00AEH because of halt

Encyclopedia 1-197

HELP
Provides on-line operating assistance

Syntax

HELP[unit-name]

Where:

HELP

unit-name

debug-topic

En

E

n

debug-topic
En
E
n

displays the list of HELP information available.

refers to the various FICE chassis, each containing a
probe or a logic analyzer or both. Probes are designated
P86, P186, or P286. The logic analyzer is designated
PLTA. The default unit-name is the current unit.

is one of the help topics shown in the following Example
section. Entering HELP debug-topic displays informa­
tion for that topic.

displays the expanded error message number n. The ex­
istence of extended messages is indicated by a [*l sym­
bol following the error. The n must be a decimal
number.

requests the extended error message for the last error.
Do not specify a unit-name option with this command.
Specifying E causes the PICE system to default to the
unit where the error was generated. An error occurs if
you specify any unit-name.

displays error message number n without the expanded
text. The n must be a decimal number.

Discussion

1-198

When the error message display is suppressed with the ERROR command, use the HELP
command to display the text of selected error messages. You cannot use the HELP command
within any block structure, a REPEAT, DO-END, COUNT, IF, or debug procedure (PROC).

See the Paging entry in this encyclopedia for information on how to control text movement on
the screen during the display of HELP information.

Encyclopedia

Example

1. Display the list of available help information.

*KEldP

HELP is avai lable for:

ACTIVE APPEND ARMREG ASM BACKSLASH BASE
BCD BOOLEAN BRKREG BTHRDY BUSACT BYTE
CALLSTACK CAUSE CI COENAB COMMENTS CONSTRUCTS
COUNT CPMODE CURHOME CURX CURY DEBUG
DEFINE DESCRIPTOR DIR DISPLAY DO DWORD
EDIT ERROR EVAL EVTREG EXIT EXPRESSION
GET87 GO HALT HELP HOLDIO IF
INCLUDE INTEGER INVOCATION IORDY ISTEP KEYS
LABEL LINES LIST LITERALL Y LOAD LONGINT
LONGREAL MACRO MAP MAPIO MEMRDY MENU
MODIFY MODULE MTYPE NAMESCOPE OFFSETOF OPERATOR
PAGING PARTITION PATHNAME PCHECK PHANG PINS
PORT PORTDATA PRINT PROC PSEUDO~VAR PUT
REALS REFERENCE REGISTERS REGS186 REGS286 REGS86
RELEASEIO REMOVE REPEAT RESET RETURN RSTEN
SASM SAVE SELECTOR SELECTOROF SHORTINT STATUS
STRING SYSREG TIMEBASE TRCBUS TRCREG TYPES
UNIT UNITHOLD VARIABLE VERSION WAIT WORD
WPORT WRITE LA LAACQMODE LAAUXMEM LABEGIN
LACH LACLKQ LACNTR LACOMPARE LACURSOR LAEND
LAFIND LAGO LAHALT LAICELINE LAMAINMEM LAOCCURQ
LAPRETRIG LAREF LARESET LASAVE LASTATUS LATHRESH
LATIME LATIMEBASE LATMODE LATRACE LATRANSFER LATRIGWR
LAVAR LAWR

Cross-Reference

Paging

Encyclopedia 1-199

HOlDIO
Suspends 1/0 requests to ICE-mapped ports

Syntax

HOLDIO

Discussion

The HOLDIO command suspends I/O requests to ports mapped to ICE, thus allowing you to
enter FICE commands. All probe-related commands are invalid when the HOLDIO command
is active. Resume emulation by entering the RELEASEIO command.

NOO'E

Use the HOLDIO command in only one circumstance: after the FICE system requests
input. If you enter HOLDIO at any other time, the system returns a syntax error.

Example

I . Suspend I/O requests:

?UNIT 0 PORT 2H REQUESTS WORD INPUT (ENTER VALUE) :FI(>1ll01(>
?

Cross-Reference

RELEASEIO

1-200 Encyclopedia

Syntax

Invokes the 121CE
system software

121CE [CRT [(pathname)] I [MACRO [(pathname)] I [SUBMIT
NOCRT NOMACRO NOSUBMIT

[RESTART]

I P086 (pathname) I
[VSTBUFFER (number)] [HELP (pathname)] [ERROR (pathname)] P186 (pathname)

Where:

121CE

CRT [(pathname)]

pathname

NOCRT

Encyclopedia

P286 (pathname)

loads the FICE software from drive 0 and the default
programs 12ICE.CRT and 12ICE.MAC on the system
disk. 12ICE also selects the files 12ICE.OVE and
12ICE.OVH if they are on drive O.

specifies a CRT file containing the character definitions
for terminals other than the Series III or IV development
systems or the IBM PC hosts. CRT, with an optional
pathname, causes the FICE system to load the specified
file. A fatal error occurs if no CRT file is found. Speci­
fying CRT without a pathname loads the file
12ICE.CRT. If you do not have a Series III, Series IV, or
IBM PC host, the default is CRT without a pathname.
(For these hosts there is no CRT file and the CRT option
is not needed when you use the 12ICE command.) The
abbreviation for CRT is CR.

describes the location of files on peripheral devices to
the FICE system. How this information is specified de­
pends on the host system you are using. Refer to the
Pathname entry in this encyclopedia for more informa­
tion on pathname.

prevents the FICE system from loading the 12ICE.CRT
file. Specify NOCRT when you use a Series III or IV or
IBM PC terminal and you happen to have a CRT file in
your directory. The abbreviation for NOCRT is NOCR.

1-201

1-202

121CE continued

MACRO [(pathname)]

NOMACRO

SUBMIT

NOSUBMIT

RESTART

specifies a file containing PICE commands to be dis­
played and executed during initialization. The abbrevia­
tion for MACRO is MR.

The MACRO option, with an optional pathname, causes
the PICE system to load the specified file. A fatal error
occurs if no MACRO file is found. Specifying MACRO
without a pathname loads the file 12ICE.MAC.

The default is MACRO without apathname.

prevents the PICE system from loading the 12ICE.MAC
file. The abbreviation for NOMACRO is NOMR.

specifies that the 12ICE program will be used in batch
load mode. Using SUBMIT disables the EDIT com­
mand and passes all line-editing and command echoing
functions to the operating system. You can abbreviate
SUBMIT to SM. If a file is loaded using the operating
system SUBMIT program and the SUBMIT option in
this invocation is not specified, each command is echoed
to the terminal twice.

prohibits using the SUBMIT files to load jobs to the op­
erating system. The default is NOSUBMIT. You can ab­
breviate NOSUBMIT to NOSM.

reloads the host development system portion of the
FICE software. It does not affect the probe, and so it
preserves the state of the probe's hardware.

NOTE

For the 80286 probe, if you use the RESTART option with the 12ICE command, the
granularity will be reset to lK if it previously was set to 16K. The probe hardware
retains the 16K mapping boundaries set up previously, but the map display will be based
on lK granularity.

VSTBUFFER (number)

number

specifies the amount of physical memory to be used by
the virtual symbol table. The virtual symbol table can
range from 5K bytes to 61K bytes. The default is 5K
bytes. The larger the resident portion of the virtual sym­
bol table, the less time the FICE system spends manipu­
lating the virtual symbol table. Increasing the buffer size
uses more memory but improves performance. The ab­
breviation for VSTBUFFER is VSTB.

specifies the number of Kbytes in physical memory re­
served by the virtual symbol table. The minimum is 5,
and the maximum is 61.

Encyclopedia

HELP (pathname)

ERROR (pathname)

P086 (pathname)

P186 (pathname)

P286 (pathname)

selects the PICE help text file. If you do not use this
option, the FICE system looks for a file called
12ICE.OVH on the same device that 12ICE.86 resides.

selects the PICE error text file. If you do not use this
option, the PICE system looks for a file called
12ICE.OVE on the same device that 12ICE.86 resides.

selects the file containing PICE 8086/8088 probe soft­
ware. If you do not use this option, the FICE system
looks for a file called I2ICE.086 on the same device
that 12ICE.86 resides.

selects the file containing PICE 80186/80188 probe
software. If you do not use this option, the PICE system
looks for a file called I2ICE.186 on the same device that
12ICE.86 resides.

selects the file containing FICE 80286 probe software.
If you do not use this option, the PICE system looks for
a file called I2ICE.286 on the same device that
12ICE.86 resides.

Discussion

The 12ICE command invokes the I'ICE software. (For detailed instructions on loading and
executing PICE software, see the PICpM System User's Guide.) Because the 12ICE command
is for use with the host operating system and is not an PICE command, you cannot specify it
once the FICE software is running. The FICE software runs in the 8086 environment. When
using an Intellec Series III development system with the ISIS operating system, you must
invoke the RUN program before invoking the PICE software.

If the FICE software is loaded into a system configured for the 8086/8088 probe, the FICE
software checks the user pins. If an unusual state exists (such as a pin held low), the system
displays a message advising you to check pin status by entering the PINS command. You must
reset the hardware to reflect the following pin values:

8086/8088 probe in MIN mode:

RESET = 1 NMI = 0 HOLD = 0 HLDACK = 0 INTR = 1

8086/8088 probe in MAX mode:

RESET = 1 NMI = 0 RQ/GTO = 1 RQ/GT 1 = I INTR = 0

Encyclopedia 1-203

121CE continued

The file containing the FICE host software is called 12ICE.86 (or, for IBM PC hosts,
12ICE.EXE); you invoke the software by entering its file name. The other FICE files are as
follows:

12ICE.OYE
12ICE.OYH
12ICE.086
I2ICE.186
12ICE.286

The FICE error text file.
The FICE help text file.
The FICE 8086/8088 probe software.
The FICE 1861188 probe software.
The FICE 286 probe software.

When you invoke I2ICE.86 (or 12ICE.EXE), the FICE system assumes that these files exist on
the same device as 12ICE.86 (or 12ICE.EXE). You need the probe software for only the probe
or probes attached to the host development system.

If you rename I2ICE.86 (or I2ICE.EXE), then you must invoke the software by entering the
new name. If you do rename I2ICE.86 (or I2ICE.EXE) and want the PICE system to use the
default pathnames, rename all the other FlCE files. For example, if you rename I2ICE.86 (or
I2ICE.EXE) to MYFILE.86 (or MYFILE.EXE), the FICE system looks for a HELP file
called MYFILE.OYH.

With the options on the invocation line you can override the default pathnames and specify the
name and location of each FICE file. For example, if the invocation line contains P186
(:Fl :PROBE.186), the FICE system assumes that the 80186/80188 probe software is in a file
called PROBE. 186 on :Fl:.

All the PICE files must be valid. For example, if the invocation line contains HELP (:F2:MY­
HELP), the file MYHELP must really be the FlCE help file.

Instead of entering the options on the command line, you can construct a configuration file
called I2ICE.CFG. If the disk from which you invoke the host software contains a configura­
tion file, the FICE system uses that file. (If there are conflicts between the configuration file
and the invocation line, the system uses the information on the invocation line.) The configura­
tion file is a text tile; it uses the same syntax as the invocation line. The following example is a
typical configuration file for using FICE software that is on floppy disks (i.e., not on a hard
disk):

Examples

1. Run the FlCE software on the Series III.

1-204 Encyclopedia

2. Run the FICE software on the Series IV and specify that the PICE system load the submit
file.

3. Run the FlCE software from the current directory on an IBM PC host. (The prompts
shown in the example assume that you have set your PC prompt using the command PRO­
MPT = PG. It is also assumed that you initially loaded your FICE software into the
directory ICEDlR.)

C\ICEDIR >J:lce

Cross-Reference

EXIT
Path name

PICFM System User's Guide, Installation Instructions

Encyclopedia 1-205

IF
Groups and conditionally
executes commands

Syntax

IF boolean-condition THEN

[FICE commands] *

[ELSE [f2/CE commands]*]

END[IF]

Where:

I F boolean-condition
THEN FICE commands

ELSE FICE commands

executes the THEN FeE commands when boolean­
condition is true. The boolean-condition specifies a con­
ditional test whose result evaluates to a TRUE (LSB = 1)
or a FALSE (LSB = 0). All FICE commands are legal
except LOAD, EDIT, HELP, and INCLUDE.

executes the ELSE clause when the IF boolean­
condition is false.

Discussion

1-206

An IF block is executed immediately after you enter its END statement.

NOTE

Debug objects are local only in memory type definitions and DO-END blocks. Literals,
debug procedures, and all break and trace registers are always global.

Encyclopedia

Example

1. Create a debug procedure containing an IF block. The debug procedure returns TRUE if
the number passed as a parameter (indicated by %0) is evenly divisible by three.

true
* ~1~Jiii!@'~~)
false

Cross-Reference

Boolean condition

Encyclopedia 1-207

INCLUDE
Retrieves command definitions
from a system file

Syntax

INCLUDE pathname [NOLlST]

Where:

INCLUDE pathname

pathname

NOLIST

loads and displays the entire command file into the de­
velopment system in a form usable by the PICE system.

is the fully-qualified reference to the file you want to
include. For information on pathname, see the
Pathname entry in the FICETM System Reference
Manual.

suppresses the listing of the included file to the terminal.

Discussion

The INCLUDE command retrieves a command file and executes it.

You can create command files in two ways: Create a file using the screen editor (refer to the
Editors entry) or save definitions created during a debug session to a file with the PUT or
APPEND commands.

INCLUDE has the following restrictions:

• You can nest INCLUDE commands (limited by available memory), but they must be the
last item on a command line.

• An INCLUDE command cannot appear in block structures (i.e., REPEAT, COUNT, IF,
DO-END, or a debug procedure).

Examples

1-208

1. The following example shows how to retrieve a sequence of PICE commands stored in a
file named setup.tes. This is useful when creating debug objects in one session that are
required in another session.

Encyclopedia

This example shows one way to reset a circuit connected to the user prototype hardware.
By including the previously developed debug procedures to perform this task, debug ob­
jects are restored. (If you have an IBM PC host, disregard the symbol ":f3:". If the file
that you wish to INCLUDE is in your current disk directory, you would use the command:
INCLUDE setup.tes. If the file is on another drive, replace :f3: with d:, where d is the
letter of the file's disk drive.)

/* Retrieve and display a file created with the editor */

/*Invoke the peripheral reset procedure */

2. When a long file is created, you may not want to see it listed to the screen when it is
included. The following example shows how the NOLIST option suppresses display. (If
you have an IBM PC host, disregard the symbol ": f3: " .)

Encyclopedia

* * Peripheral reset

*

/*Invoke the peripheral reset procedure */

1-209

INCLUDE continued

3. The following example shows how to confirm what debug objects are included when the
NOLIST option is specified. The DIR command displays the debug objects in the symbol
table after including the procedure from example 1. (If you have an IBM PC host, disre­
gard the symbol" :f3:".)

* IO_8 SE 1 i tera 11 y 'DaDDDh'
COMMAND literally '+2'
I 0 _D A TAl i t era 11 y , + 4 '
RESET _10 proc
*reetilliJlb
Peripheral reset

*
Cross-References

1-210

APPEND
Editors
Pathname
PUT

Encyclopedia

Syntax

Function that returns the index
of a substring within a given string

INSTR (string-reference 1, string-reference2 [, start])

Where:

string-reference

start

can be characters enclosed in apostrophes, a string ex­
pression using CON CAT, NUMTOSTR, or SUBSTR
functions, or a reference to a CHAR type debug
variable.

defines where to begin the search in string-reference].
The start is an index number or an expression that evalu­
ates to an index number from 1 through 254 in the cur­
rent base.

Discussion

The INSTR function searches for string-reference2 within string-reference] and returns the
index (in decimal) of the first character of string-reference2.

Examples

1. Return the decimal index of the first occurrence of the substring 'def':

*lJI.I$rJ;t'<5~t>qd~f.';'d~fi)
4

2. Define a string variable "longmsg". Find the index of the first instance of the substring
, Add'. To locate the substring 'Add' at the beginning of the second sentence, skip the
first instance of this substring by including an index (which is 10).

Encyclopedia

* DeFIN~~H~~~(JOgin~;;=~ * * 'e<ddr~s~e:s<;oarEJ invaUd .. <Addtesses> 1624K areaJ$QinvaJid.'
* INSrB(lQfl9ft)S9;' Add ')
1
*.N$'t$(tqng~$g;·.r"<ltf',·.·19)
29

1-211

INSTR continued

Notice the continuation character (&). It enables you to continue a command to the next line.

Cross-Reference

Strings

1-212 Encyclopedia

Syntax

Displays or changes memory
as 16-bit signed values

INTEGER partition [= expression [, expression)*
= mtype partition

Where:

INTEGER partition displays the value of the memory location specified in
partition as a decimal integer.

partition

expression

mtype

Discussion

is a single address, an expression that evaluates to a sin­
gle address, or a range of addresses specified as address
ill address or address LENGTH number-oj-items.

converts to a 16-bit signed value for INTEGER.

is any of the memory types except ASM.

The INTEGER command interprets the contents of memory as 16-bit signed values, overriding
any type associated with the memory contents. Thus, INTEGER. varl displays the integer that
begins at the address of var 1, regardless of the type of var 1. If the most significant nibble of the
unsigned data comprising the integer is 8 through F, the value is interpreted as a negative
number and displayed as the 2 's complement form of the unsigned data.

Note that the PICE system always displays values for signed-integer memory types as decimal
numbers, regardless of the selected number base.

Examples

The number base is hexadecimal in the following examples.

1. Display a single value.

*t.J?IJ?I_
0020:000bH +3473

2. Display several adjacent values:

*iNit'SGSR$.• ·eSNG1TlifoO
0020:0006H +3473 0
297 +4779
0020:001CH 0 0

Encyclopedia

o 0 -12187 -30293 +17767 +

o -14113 +18508 +20841 +24135

1-213

continued

3. Set a single value of type INTEGER:

4. Set several adjacent values:

Display the values set (you can set memory locations to signed integer values using a
hexadecimal base, but the FICE system displays the values in decimal):

*INTE.GE.R4Q;04.t.Ef,I.GTH3
0040:0004H +1234 -21555

5. Set a range of locations to the same value (block set):

6. Set a repeating sequence of values:

7. Copy a value from one memory location to another:

8. Copy several values (block move):

9. Copy values with type conversion:

+3

An error message is displayed if the type on the right side of the equal sign cannot be
converted to the type on the left. (Refer to the Expression entry in this encyclopedia for the
rules concerning type conversions.)

Cross-Reference

1-214

Expression
Mtype
Partition

Encyclopedia

Syntax

A pseudo-variable that allows
a system time-out when an I/O access

takes more than one second.

[
=TRUE

10RDY = FALSE
= boolean-expression

Where:

10RDY

TRUE

FALSE

boolean-expression

Default

TRUE

Discussion

(110 ready) with no options displays the current setting
(TRUE or FALSE).

enables processor I/O time-outs.

disables I/O time-outs.

is any expression in which the low-order bit evaluates to
o (false) or 1 (true).

When IORDY = TRUE, a time-out occurs if an I/O access during emulation takes longer than
one second. A time-out breaks emulation.

Examples

I. Display the current setting of IORDY:

*11111
TRUE

2. Disable the IORDY time-out:

Encyclopedia 1-215

IORDY

3. Use IORDY as a variable:

1-216 Encyclopedia

Syntax

ISTEP [increment] [FROM address]

Single-steps through machine
language instructions

in user programs

Where:

ISTEP

increment

FROM address

executes by machine language instruction.

is an unsigned integer expression in the current base
specifying the number of steps to take. The default in­
crement is 1. The maximum increment value is 65,535T.

specifies a starting address where ISTEPs are to begin.
The default start address is the current execution point
($). (The Address entry in this encyclopedia contains
more information on addresses.)

Discussion

The ISTEP command single-steps through machine language instructions. An ISTEP com­
mand executes one instruction and halts. Break messages are not displayed. Use the CAUSE
command to display break messages. Use the ASM command to display the current machine
language instruction.

Encyclopedia

NOTE

When you use the 8086/8088 probe, the instruction being single-stepped must not access
locations 4 through OBH. Stepping through a POPF or IRET instruction may clear the
trap flag (TF) if the instruction is programmed that way. To enable single-stepping
without clearing the TF, define the event register and procedure, as shown in the follow­
ing example. Because ISTEP uses the hardware break facility, it may slide through an
instruction.

Any NMIs are ignored when stepping using the 8086/8088 probe.

When any of the probes is used, stepping through an instruction that alters a segment
register executes two instructions.

1-217

ISTEP continued

Example

1. Step and display the probe processor's registers at each line in the program:

Cross-References

1-218

Address
Expression
LSTEP
PSTEP

Encyclopedia

Discussion

Terms used as commands, command options
or as part of the 121CE system software

This entry explains PICE system keywords and symbols that are reserved by the FICE system
software.

Keywords

Following is a list of keywords for the FICE system software. If any of these keywords is used
as a debug symbol, the I2ICE software will respond with a syntax error message. However, if a
keyword has been used as a program variable or label, there is a way to use it in a debug
session: Precede the keyword with a double quote (").

For example, in the tutorial PLiM program, there is a variable named char. On the list of
keywords, you will find char. To use this variable in a debug session, enter" char.

NOTE: If you have iLTA software, LA keywords will also result in an error message
when used as debug symbols. See the iLTA Logic Timing Analyzer Reference Manual
(order number 163257) for the iLTA keywords that begin with the "LA" prefix.

ACTIVE BOTH CLIPS IN DEFINE
ADDRESS BP CLIPSOUT DFL
ADR BREAK COENAB DH
AFL BRKREG CONCAT DI
AFTER BTHRDY COREQ DIR
AH BUFBREAK COUNT DISABLE
AL BUSACT CPMODE DISARM
ALL BUT CS DL
ALWAYS BX CSAR' DMAOI
AND BYTE CSBAS2 DMAll
APPEND CALL CSCTRLI DO
ARM CALLSTACK CSLIM2 DS
ARMREG CAUSE CSSEL' DSAR2
ARRAY CFL CTR DSBAS2
ASM CH CURHOME DSLIM2
AT CHAR CURX DSSEL'
AX CI CURY DWORD
BASE CL CX DX
BCD CLEAR CYCLES EDIT
BH CLEAREOL DATA ELSE
BL CLEAREOS DBG ELSEIF
BOOLEAN CLIPS DEBUG ENABLE

1 80186/80188 only; 2 80286 only

Encyclopedia 1-219

Keywords continued

END GOlD LONGREAL PUT
ENDCNT GRANULARITY LSTEP QSTAT
END COUNT GUARDED MAP READ
ENDREPEAT HALT MAPIO REAL
ENUMERATION HELP MB RECORD
ERROR HOLDIO MEMRDY REGS
ES HPORT MOD RELEASEIO
ESAR' (reserved for Intel) MODULE RELREGI
ESBAS2 HS MS REMOVE
ESLIM' IBYTE MSW2 REPEAT
ESSEU (reserved for Intel) NAMESCOPE RESET
EVAL ICE NEWEST RETURN
EVTREG IDT' NEXT RSTEN
EXIT IDTBAS' NFU SO
EXTINT IDTLIM' NO Sl
FALSE IF NOCODE S2
FCS' IFL NOCR S3
FCW INCLUDE NOLINES SASM
FDA INCREMENT NOLIST SAVE
FDOFF' INPUT NOSYMBOLS SCREEN
FDSEU INSTR NOT SCTR
FETCH INSTRUCTION NP SEL286
FIA INTEGER NS SELECTOR
FILE INTRIN NUMTOSTR SELECTOROF
FIO (reserved for Intel) OCCURRENCE SEM
FIp2 INTRPTI OFFSETOF SET
FLAGS IOPU OFL SFL
FLD2E IORDY OHS SHORTINT
FLDL2T IP OLDEST SI
FLDLG2 IS OR SLINK
FLDLN2 ISTEP ORIF SP
FLDPI LABEL OUTPUT SS
FOREVER LAST OUTSIDE SSAR'
FPATAN LDT2 PC HECK SSBAS2
FPTAN LDTAR2 PFL SSLIM'
FSQRT LDTBAS2 PHANG SSSEU
FSW LDTLIM' PINS STO
FTW LDTSEU POINTER STl
FULLBUF LENGTH PORT ST2
FYL2X LEVELS PORT--..ADDRESS~ASE ST3
FYL2XPl LINE (reserved for Intel) ST4
GDT' LINK PORTDATA ST5
GDTBAS2 LIST PRINT ST6
GDTLIM' LITCI PROC ST7
GET87 LITERALLY PROCEDURE STACK
GLOBAL LOAD PSTEP START
GO LONGINT PUBLICS STATUS

I 80186/80188 only; 2 80286 only

1-220 Encyclopedia

STRLEN
STRWNUM
SUBSTR
SYMBOL
SYMBOLIC
SYMBOLS
SYSARM
SYSBEAKIN
SYSDARM
SYSREG
SYSTEM
SYSTRACE
SYSTRACEIN
SYSTRIG

1 80186/80188 only
2 80286 only

Delimiters

TAG
TEMPREAL
TFL
THEN
TIL
TIMEBASE
TIROl
TIMER1'
TIMER2'
W
TR2
TRACE
TRAR2

TRBAS2
TRCBUS
TRCREG
TRIG
TRLIM2
TRSEU
TRUE
TSS
UNIT
UNITHOLD
UNTIL
US
USER

USING
VERSION
WAIT
WAITSTATE
WHILE
WITH
WORD
WPORT
WRITE
XCTR
XEM
XLINK
XOR
ZFL

The following delimiters cannot be included as part of debug symbols.

& % * +
< > <= >=

&
1

\

Characters that can be used are the question mark (?), an underscore(_), and an at symbol
(@). The dollar sign ($) is permitted, but ignored.

A double quote (") is used if a program variable is also an I'ICE keyword. Precede the variable
with a " when using it in a debug session.

Encyclopedia 1-221

LIST
Opens or closes a list file

Syntax

{ LIST pathname}
NOLIST

Where:

LIST

LIST pathname

pathname

NOLIST

displays the pathname of the current list file.

opens a list file named pathname.

is the fully-qualified reference to the file you want for a
list file (e.g., :fl:listing). The file is created if it does
not exist; if it already exists, the question "Overwrite
existing file? (y or [nD" is displayed.

closes the open list file.

Discussion

A list file is an PICE utility file. Typically, a list file is used as a debug session log. All
interactions between the PICE system and the terminal (except edits) are recorded in an open
LIST file.

You can open only one list file at a time. Close list files by issuing the NOLIST command or by
terminating the debug session.

Example

1. Open a list file named AUGI.84 (if you have an IBM PC host, disregard the symbol
":F2:"):

*llliI!~f!2;IQI~~I~

Cross-Reference

Pathname

1-222 Encyclopedia

Syntax

Defines, modifies, displays, or removes a
name that the 121CE system interprets as a

previously-defined character string

DEFINE LITERALLY literally-name = 'character-string'

Where:

DEFINE LITERALLY literally-name
= 'character-string'

Discussion

replaces literally-name with the string in
, character-string' whenever literally-name is
invoked.

LITERALLY definitions are special debug objects with character strings as values. They are
similar to PLiM LITERALLY definitions.

When you enter a command that has a LITERALLY name in it, as soon as you press the space
bar after the name, the name is automatically expanded on the screen. If you wish to disable
this automatic expansion feature, use the following command:

(This command also deletes the syntax menu at the bottom of the screen.) To re-enable the
automatic expansion feature (and to reactivate the syntax menu display), enter MENU = 1. You
can also use CTRL-V to toggle off and on the automatic expansion feature (and the menu).

When the FICE scanner sees a LITERALLY name in a debug object such as a PROC, the
scanner replaces that name with the character string value that defines it. However, if the
command containing the LITERALLY name is echoed to the terminal, the terminal displays
the LITERALLY name rather than the defined character string.

With LITERALLY definitions, you can abbreviate keywords or complete commands, which
can have up to 254 characters. With LITERALLY definitions you can also create mnemonics,
such as substituting "temp_controLreg" for the command PORT(40H).

LITERALLY definitions are always global. They must not duplicate a keyword.

Encyclopedia 1-223

LITERAllY continued

Examples

1. Create LITERALLY definitions:

2. Display LITERALLY definitions:

* '11.
DEFINE LITERALLY len='length'

3. Display the directory of LITERALLY definitions:

4. Edit LITERALLY definitions:

5. Delete the LITERALLY definition for LEN:

6. Delete all LITERALLY definitions:

Cross-References

1-224

Keywords
Name
Strings

Encyclopedia

Syntax

Copies an object from a file
into mapped memory

LOAD pathname [NOCODE] [NOLINES] [NOSYMBOLS] [APPEND]

Where:

LOAD pathname

pathname

NOCODE

NOLINES

NOSYMBOLS

APPEND

Discussion

copies the object file (including code, line numbers, and
symbols, if present) from the designated file into
mapped memory.

is the fully-qualified reference to the file you want to
load.

ignores content records (the code and data) when load­
ing; just the symbol table information is loaded.

ignores debug line number information when loading.

ignores debug symbol table information when loading.

allows multiple symbolic loads without purging the sym­
bol table.

Before loading, you must link and locate your program. The PICE system accepts only abso­
lute object files, not run-time locatable (RTL) object files or load-time locatable (LTL) object
files.

If the load file contains a start address, that address is loaded into the CS:IP registers. If the
address is not present (as will always be the case when a file has been stored using the SAVE
command), a warning message is displayed. Other segment registers may be initialized, de­
pending on the programming language used to create the load file.

You can load all of a file or part of a file by selecting LOAD command options. You can
combine the options in any order. If you do not specify any options, all symbol table and line
number information present in the file is loaded into mapped program memory. The DEBUG
control on the assembler or compiler causes program symbol and debug information to be
included in the object file.

Encyclopedia 1-225

lOAD (8086/8088 and 80186/801 8S) continued

When loading a translated file into memory, the FICE system first determines which probe is
active.

NillE

You must map memory (using the MAP command) before loading your program.

You cannot use the LOAD command in block structures (i.e., REPEAT, COUNT, IF, DO­
END, or debug procedures).

Examples

1. Load an object file. (If you have an IBM PC host, disregard the symbol ":f1:"; assume the
file is in your current hard disk directory. To load the file, you would use the command:
LOAD prog01.186.)

* "'(;)'ll.;'~;Pt~gO:~~1.§
*
The PICE system returns the * prompt when loading is complete.

2. Load an object file with code only, suppressing symbols and line numbers. (If you have an
IBM PC host, disregard the symbol ":f3:".)

*Il.QA:Q •••• ;f$:llani'~8(i.···NQ$¥MBIL$tiI,ILIN.S
*

3. Load program symbols and line numbers only (no code). (If you have an IBM PC host,
disregard the symbol ":f1:".)

*lilII:Q:fi'r:eomUb;a$mNI~le

*
Cross-References

1-226

MAP
MAPIO
Pathname
SAVE

Encyclopedia

Syntax

Copies an object file from disk
into mapped memory

LOAD pathname [NOCODE] [NOLINES] [NOSYMBOLS] [SEL286] [APPEND]

Where:

LOAD

pathname

NOCODE

NOLINES

NOSYMBOLS

SEL286

APPEND

Default Value

loads an object file into mapped memory. The program
file must be absolute code, not load-time-locatable code.

is the fully-qualified reference to the file you want to
load.

prevents loading of the code and data.

prevents loading line numbers.

prevents loading the symbols.

loads a file that is in 8086 object module format (OMF)
when you want the program's addresses interpreted as
80286 selector: offset pairs.

The selector of an 80286 address is an index into either
the LDT or the GDT. If the file is an 8086 OMF and the
SEL286 option is not present, the FICE system obtains
the base address of the segment by shifting the selector
left by four bits.

adds the symbol table of the current LOAD to the sym­
bol table of the previous LOAD.

By default the FICE system loads code, data, line numbers, and the symbol table. By default
the symbol table of the current load overwrites the symbol table of the previous load.

The FICE host software has two loaders: the 8086 loader and the 80286 loader. When you load
a file that is in 8086 OMF, the FICE host software uses the 8086 loader. When you load a file
that is in 80286 OMF, the PICE host software uses the 80286 loader. You need not specify what
OMF the file is in.

Encyclopedia 1-227

LOAD (80286) continued

Discussion

The LOAD command loads a file from disk into mapped memory. Memory must be mapped to
the physical locations expected by the file. The PICE system expects absolute code, not load­
time locatable code.

Refer to the Using the Initialization Segment section (in the Probes chapter of the PIC£l"M
System User's Guide) for additional information on loading, including loading the initialization
segment with the 8086 loader.

Constructing a Program File

Construct a program file by compiling (or assembling) the source file, binding the object file,
and building the bound file. 1b compile the source file, use one of the following compilers:

PLlM-86
PLlM-286
PASCAL-86
PASCAL-286
ASM-86
ASM-286
FORTRAN-86
FORTRAN-286
C-286

Version 2.1 or greater
Version 2.5 or greater
Version 2.0 or greater
Version 3. 1 or greater
Version 1. 1 or greater
Version 1. 1 or greater
Version 1. 1 or greater
Version 3.0 or greater
Version 3.0 or greater

Include the DEBUG and TYPE options with the compiler or assembler. To bind the resulting
object file, use BIND286 (version 3.0 or greater) with the NOLOAD option. To build the
resulting bound file, use BUILD286 (version 3.0 or greater) with the BOaTLOAD option.

Mapping Program Memory

You must have sufficient mapped memory to contain the object file. The physical locations
expected by the object file must be mapped to existing memory.

The SEL286 Pseudo-Variable and the SEL286 LOAD Option

1-228

The SEL286 pseudo-variable determines whether the FICE system performs 8086 address
translation (SEL286 is FALSE) or 80286 address translation (SEL286 is TRUE). When you
load an 8086 OMF, the SEL286 pseudo-variable becomes FALSE. When you load an 80286
OMF, the SEL286 pseudo-variable becomes TRUE.

The SEL286 option of the LOAD command is distinct from the SEL286 pseudo-variable. Use
the SEL286 option to load a file in 8086 OMF and have its addresses interpreted as 80286
addresses during the load. The selector:offset pairs in the 8086 OMF must point to valid
descriptors in a local or global descriptor table (which must be already set up).

Encyclopedia

LOAD (80286) continued

When you load an 8086 OMF and specify the SEL286 option, the FlCE system sets the
SEL286 pseudo-variable to TRUE. Setting the SEL286 variable to TRUE after loading an
8086 OMF without including the SEL286 option is insufficient because 80286 address transla­
tion must occur during the load.

The Protection Enabled Flag

The LOAD command affects the protection enabled flag (PEF) in the MSW. If the program file
is an 80286 OMF, PEF becomes 1, and the loader is in protected mode. If the program file is
an 8086 OMF, PEF becomes 0, and the loader is in real mode.

Initial Values for Registers

When you load a program file that is an 80286 OMF, the 80286 registers attain the values
specified by the ~0286 builder.

Example

1. Load only the code from an object file on disk drive 1 into mapped memory. (If you have
an mM PC host, disregard the symbol ": F 1 : "; assume the file is in your current disk
directory. To load the file, you would use the command: LOAD cmaker.286 NOLINES
NOSYMBOLS.)

*L.~i:tlffiJIIl:.te:DIIIH._R.I_ltS

Cross-References

Pathname
PCHECK
SEL286
SAVE

Encyclopedia 1-229

LONGINT
Displays or changes memory
as 32-bit signed values

Syntax

LONGINT partition [= expression [, expression] *
= mtype partition

Where:

LONGINT partition

partition

expression

mtype

displays the value of the location specified by partition
as a long integer in decimal.

is a single address, an expression that evaluates to a sin­
gle address, or a range of addresses specified as address
1D address or address LENGTH number-oj-items.

converts to a 32-bit signed value for LONGINT.

is any of the memory types except ASM.

Discussion

The LONGINT (long integer) command interprets the contents of memory as 32-bit signed
values, overriding any type associated with the memory contents. Thus LONGINT .var1 dis­
plays the 32-bit integer that begins at the address of varl, regardless of the type of varl.

If the most significant nibble of any LONGINT is 8 through F, it is interpreted as a negative
number and the value displayed is the 2's complement form of the unsigned data.

You cannot use LONGINT in a block structure (Le., REPEAT, COUNT, IF, DO-END, or
debug procedures).

Note that the FICE system always displays values for signed-integer memory types as decimal
numbers, regardless of the selected number base.

Examples

1-230

Hexadecimal is assumed in the following examples.

1. Display a single value:

Encyclopedia

2. Display several adjacent values:

*L" ... II.II •• 15
0020:0006H +16855312 +16667999 +12321330 +02340002-10333700

3. Set a single value of type LONGINT:

4. Set several adjacent values:

Display the values set (you can set memory locations to signed integer values using a
hexadecimal base, but the FlCE system displays the values in decimal):

* 1111:11 ... 11111
0040:0004H +305419896 +43981 +3

5. Set a range oflocations to the same value (block set):

6. Set a repeating sequence of values:

7. Copy a value from one memory location to another:

8. Copy several values (block move):

Cross-Refer.ences

Expression
Mtype
Partition

Encyclopedia 1-231

LONGREAL
Displays or changes memory
as 64-bit floating-point values

Syntax

LONGREAL artition [= expression.f: expreSSionl*]
p = mtype partItIOn

Where:

LONGREAL partition

partition

expression

mtype

displays the memory location specified by partition as a
long real number in scientific format.

is a single address, an expression that evaluates to a sin­
gle address, or a range of addresses specified as address
TO address or address LENGTH number-ofitems.

converts to a 64-bit floating-point value for LONG­
REAL.

is any of the memory types except ASM.

Discussion

The LONG REAL command interprets the contents of memory as 64-bit floating-point decimal
values, overriding any type associated with the memory contents. Thus, LONGREAL . varl
displays the 64-bit floating-point value that begins at the address of varl, regardless of the type
of varl.

Examples

1-232

The following examples show the PICE system responses in decimal because all real numbers
are displayed in decimal, regardless of the base of the input information.

1. Display a single value:

*tie>:~$~llilti$
0020:0006H +3.365797667020075E -199

Encyclopedia

2. Display several adjacent values:

*E0NGREAL$t.iENGITFH8
0020:0006H +3.36579766702DD75E -199 +1.85929134653633E -246
002D:DD16H -7.27184994732136E +214

3. Set a single value of type LONGREAL:

4. Set several adjacent values:

Display the values set:

*1411110141.;.1141111113
0040:0004H +1.21212121212121E +151.20000000000000E -4
0040:0014H -1.20000000000000E +4

5. Set a range oflocations to the same value:

6. Set a repeating sequence of values:

7. Copy a value from one memory location to another:

8. Copy several values (block move):

Cross-References

Expression
Mtype
Partition

Encyclopedia 1-233

LSTEP
Single-steps through user programs by
high-level language instructions

Syntax

LSTEP [increment] [FROM address]

Where:

LSTEP

increment

FROM address

executes by numbered high-level language statements.

is an unsigned integer expression in the current base
specifying the number of steps to take. The default in­
crement is 1. The maximum increment value is 65,535T.

specifies a starting address where LSTEP is to begin.
The default start address is the current execution point
($). (The Address entry in this encyclopedia contains
more information on addresses.)

Discussion

1-234

The LSTEP command single-steps through user programs by numbered high-level language
statements. The LSTEP command executes the next consecutive statement and halts. Break
messages are not displayed. Use the CAUSE command to display break messages.

After LSTEP executes a line, it displays a message of the following form:

[:modu/e-name#/ine-number]

NffiE

When you use the 8086/8088 probe, the instruction being single-stepped must not access
locations 4 through OBH. Stepping through a POPF or IRET instruction may clear the
trap flag (TF) if the instruction is programmed that way. To enable single-stepping
without clearing the TF, define the event register and procedure, as shown in the follow­
ing example. Because LSTEP uses the hardware break facility, it may slide through an
instruction.

Any NMIs are ignored during single-stepping using the 8086/8088 probe.

When you use any of the probes, stepping through an instruction that alters a segment
register executes two instructions.

Encyclopedia

Cross-References

Address
Expression
ISTEP
PSTEP

Encyclopedia 1-235

MAP
Displays or sets physical locations
for program memory

Syntax

MAP [partition] HS {

GUARDED
USER READ

WRITE

Where:

MAP

partition

GUARDED

USER

HS

MB [(name)]

1-236

MB [(name)]
OHS

with no options, displays the current memory map.

is a single address, an expression that evaluates to a sin­
gle address, or a range of addresses. The range is speci­
fied as either address TO address or address LENGTH
number-oj-bytes. The partition is in multiples of lK
bytes (e.g., 2K = 2048 bytes).

reports attempts to access memory in the location speci­
fied by partition. Initially, all program memory is
GUARDED.

directs memory references to your prototype hardware.
If you are using an 8087 or 80287 external coprocessor,
you must map all of program memory to USER. If you
are using an 8089 external coprocessor, you must map
all memory that the 8089 accesses to USER.

directs memory references to high-speed memory on the
MAP board in lK-byte blocks.

directs memory references to the MULTIBUS expansion
memory in the host development system. [The IBM PC
hosts cannot map to ME.] The name option allows more
than one partition of addresses to be mapped to the same
physical memory (shared memory). The name can be
one to six characters long.

Encyclopedia

OHS

READ

WRITE

Discussion

continued

directs memory references to the optional high-speed
memory board (in the instrumentation chassis) in 16K­
byte blocks.

specifies that partition is read only. Emulation breaks if
a write occurs.

suppresses the normal read-after-write verification on
program loads and memory writes from the terminal.

The FICE system uses a memory map to direct processor address space to physical memory
locations and to control access to mapped program memory during emulation. Because all
memory is initially guarded, you must map memory before loading programs. The MAP
command displays or changes the map. The partition option specifies the size of the map,
while the other options specify the locations and whether they are READ or WRITE.

Specifying the Number of Blocks to be Mapped

The memory map size is described to the FICE system in blocks using the partition option.
The high-speed memory board is mapped in lK-byte blocks, and the optional high-speed
memory board is mapped in 16K-byte blocks. Exceeding the size of available memory causes
an error, and nothing is mapped.

Addresses specified in partition must begin on a block boundary. When the starting address
does not begin on a block boundary or the last location in the range does not fill a whole block,
the PICE system automatically expands the map to the next boundary and reports the expan­
sion.

The partition has two forms, a TO form and a LENGTH form. The TO form maps memory
from a starting address TO an ending address. The LENGTH form maps memory starting
from an address for the specified number of bytes. If you omit pm1ition, the entire address
space is mapped to the location specified.

Mapping Blocks to Guarded Memory

Initially, all blocks in the map are guarded. If the program accesses guarded memory during
emulation, a break occurs after completion of the current instruction. Note that the access does
occur. An error occurs if guarded memory is accessed from the terminal. You can reset all of
the blocks to guarded with the MAP or RESET MAP command.

Encyclopedia 1-237

Mapping to the User System

When mapping occurs, no check is made to ensure that the amount of memory installed in the
prototype matches the map. However, the system normally performs a read-after-write verifi­
cation during program load. When your system memory is ROM or PROM, use the READ
option to avoid an error message on program load.

NOTE

To perform real math Dperations, you must map memory to your system when using a
coprocessor on the system bus.

Your system receives both the read or write signals from memory and the data for writes
generated by the probe processor, regardless of the map. The map determines the source
of data for reads. When mapped to USER, data for reads is accepted through the chip
interface connector. Otherwise, user data is ignored.

Mapping to High-speed Probe Memory

Each probe contains 32K bytes of mappable high-speed memory. You can map probe memory
to any location in IK increments. Probe memory must not overlap any other memory space.

Mapping to MULTIBUS® Memory in the Development System

1-238

[NOTE: Mapping to MULTIBUS memory is not available for IBM PC hosts.]

The MULTIBUS (MB) expansion memory must reside on the same physical bus as the FICE
interface board. Wait-states are automatically inserted when MULTIBUS memory occurs since
all MULTIBUS activity must arbitrate for control of the bus.

The name option assigns a temporary name to the portion of user memory mapped to MULTI­
BUS memory. To enable two or more blocks to share the same area of MULTIBUS memory,
map all blocks to MB with the same name for all. The partition sizes of shared blocks must
match.

Unlike other types of memory, MULTIBUS expansion memory has one mapping restriction.
Usually, any block of mapped memory can be remapped by entering the MAP command again
with a new partition. When memory has been mapped to MB, there are only two ways to
change it: reset the entire map or remap the entire MB area. Remapping just a portion of MB
memory produces an error. An example is provided in the following Example section.

Encyclopedia

MAP

Mapping to Optional High-speed Memory

The instrumentation chassis has extra slots for up to two optional 128K-byte high-speed (zero
wait state) memory boards. If the optional memory is installed in the chassis, you can map
program memory to it in 16K-byte blocks on 16K-byte boundaries.

When changing the map, a new partition can partially overlap a partition previously mapped to
optional high-speed memory. However, the boundary (start or end) of the new partition that
falls within the partition previously mapped to optional high-speed memory must be on a 16K­
byte boundary.

Read and Write Controls on the MAP Command

The READ control on the MAP command designates the mapped partition as read-only (write­
protected during emulation). Without this control, program memory can be both read and
written. Emulation breaks if a read-only address is written (the write is executed anyway). The
break occurs after completing the instruction that produced the write.

The WRITE control suppresses any reads, such as the read-after-write verification. The
READ option is useful for memory blocks that are ROM or memory-mapped 110. The WRITE
option is useful if memory is write-only memory.

Normally, the system verifies program memory at two times:

• During program loads

• When you change memory from the terminal

You can use READ and WRITE controls with any of the physical memories available to the
map.

Lock Prefix on Instructions

Instructions with a bus lock prefix are supported during emulation when the program memory
is mapped to the MULTffiUS memory. When program memory is mapped to USER, the
LOCK pin on the user plug is active during locked instructions.

Restrictions

Note that if your prototype system is connected to the FICE system, 110 data always goes out to
your prototype system, whether the 110 ports are mapped to USER or FICE. Mapping to the
FICE system only prevents the FICE system from receiving user system input. Thus, you
should disconnect your system if your prototype system must not respond to FICE system
output.

Encyclopedia 1-239

MAP continued

Examples

1-240

1. Display the current memory map:

*MD
MAP OK LENGTH 32K HS
MAP 32K LENGTH 992K GUARDED

2. Map to USER prototype memory:

*"IiIJllle.
*"II!II ••• ;II;_

3. Three ways to restore memory to the guarded state:

* •• 11111 .. ; •• 1

*_1_'-1

/* Maps all blocks */

/* Maps four 1K-byte blocks */

/* Guards 2 blocks * /

/* Sets all blocks to GUARDED */

/* Another way to set all blocks to GUARDED */

4. Map all blocks to probe memory:

/* Map lowest 32K addresses */

5. Map to MULTIBUS memory in the development system [not available with IBM PC
hosts]:

6. Map two program address spaces to the same area of MULTIBUS memory, using the name
COMMON [not available with IBM PC hosts]:

7. Map to an optional high-speed 128K-byte memory board:

8. Designate a partition of memory as read-only:

Encyclopedia

9. Designate a partition of memory as write-only:

10. Memory, once mapped to MULTIBUS memory, cannot be partially remapped. The follow­
ing example shows this error condition [not relevant for IBM PC hosts]:

SEVERE ERROR #265:
Illegal map change.

To remap MULTIBUS memory, all the MB blocks must be remapped as shown:

/* Valid map change */

II. The following example shows how the PICE system adjusts partitions to match block
boundaries. All memory is initially guarded. The partition entered is less than a complete
lK-byte block. The PICE system adjusts the boundary upward to completely enclose the
partition requested.

* * I*Display the current map settings *1
MAP OK LENGTH 0124K GUARDED
*Yl.p,mlQH$ I*Partition not on a lK-byte

boundary *1
WA~.NING: Map address boundaries changed to match hardware
*YA.P I*Display the lK-byte boundary change*1
MAP OK LENGTH 1K HS
MAP 1K LENGTH 1023K GUARDED

Cross-References

Name
Partition

Encyclopedia 1-241

MAPIO
Displays or sets physical
locations for 1/0 ports

Syntax

MAPIO [[partition] [USER
ICE [(debug-procedure-name)]

Where:

MAPIO

partition

USER

ICE

ICE [(debug-procedure-name)]

displays the current map of 110 port address
blocks. One block is 64 bytes.

is an entry specifying a range of addresses with
one of the following forms:

port-address to port-address

port-address LENGTH number-ot-bytes

Omitting panition maps all 64K bytes of 110
space.

transfers data values between the user's prototype
system and the FICE probe.

transfers 110 data values between the terminal,
not the prototype system, and the FICE probe.

calls the named procedure when 1/0 accesses oc­
cur. The 110 data values are transferred between
the FICE probe and the debug procedure de­
signed to simulate the prototype 110 operation.

Discussion

1-242

The FICE system uses the 110 port map to control input to and output from peripherals. With
the MAPIO command you can display or change the 110 port map. All mapped 110 data is
displayed on the host system terminal.

Encyclopedia

Mapping by Blocks

The I/O port addresses are mapped in blocks using the MAPIO command, as program memory
is mapped in blocks using the MAP command. There are 64K bytes of I/O space, divided into
lK-byte blocks. Each block is 64 bytes long.

If an address partition is specified that is not on one of the 64-byte block boundaries, the
system expands the partition to the next block boundary and displays the following message:

WARNING: MAPIO address boundaries changed to match hardware

I/O Simulation Using the Terminal

The ICE option causes 110 requests to appear on the terminal. When input data is required, the
following message is displayed:

UNIT n PORT mH REQUESTS type INPUT (ENTER VALUE)

Where:

n is the unit number.

mH is the port number in hexadecimal.

type is BYTE or WORD.

Enter either the desired data values or the command HOLDIo. Data values cannot be expres­
sions.

You can halt emulation during an I/O operation to enter FICE commands. Any commands
except PORT and WPORT are valid. When you enter HOLDIO, emulation and I/O requests
for that unit are suspended so that you can enter FICE commands. To resume emulation and the
flow of I/O request~, enter the command RELEASEIO. If the I/O requests for that unit have not
been suspended, entering RELEASEIO causes the input request to be repeated.

If you enter information incorrectly, the following message is returned:

Input options are a number or HOLDIO
UNIT n PORT mH REQUESTS type INPUT (ENTER VALUE)

Encyclopedia 1-243

MAPIO continued

When output data values are returned, they are displayed in the following format:

UNIT n PORT mH OUTPUT type val ue

Where:

value

PORT

UNIT

is the numerical value (hexadecimal) of the output data.

is the port number displayed in hexadecimal.

is the unit number displayed in decimal.

I/O Simulation Using an I/O Debug Procedure

1-244

An 110 procedure is a special case of debug procedures. It is created, displayed, modified, and
removed in exactly the same way that all debug procedures are (see the entry for PROC in this
encyclopedia). However, to be useful, an 110 procedure should simulate your system's handling
ofIlO data.

If you specify an I/O debug procedure name in the ICE option of the MAPIO command, I/O
requests within the specified partition generate a call to the debug procedure of that name.
When the debug procedure is invoked in this context, its parameters are set to identify the form
of the I/O request as follows:

Parameter Interpretation

%0 port number

% 1 Boolean value: TRUE if read requested; FALSE if write requested

%2 Boolean value: TRUE for byte port access, FALSE for word port access

Within the I/O debug procedure, use the built-in pseudo-variable PORTDATA to read and
write the I/O port. The PORTDATA pseudo-variable is only valid when used inside a proce­
dure that is executed as a result of an I/O access. Any other use results in an error.

When the procedure simulates input (the unit wants to read data from the procedure), the
procedure must have a statement with the following syntax:

PORTDATA = port-value

Encyclopedia

MAPIO

Where:

port-value is a positive whole number of type byte or word, de­
pending on the size of your port.

If the procedure supplies more than one value, the system returns the following message:

Too many values supplied. Kept the last one·

When the procedure simulates output (the current unit wants to write data to the procedure),
the procedure can either receive the data in a variable or write it to the tenninal. The syntax for
writing to a variable is as follows:

variable = PORTDATA

The syntax for writing data values to the terminal is as follows:

WRITE PORTDATA

An error message is returned and the I/O request is handled on the terminal if a procedure
exists and any of the following errors occur while emulating:

•
•
•
•

An error occurs while the procedure is being executed

The unit wants to read data and the procedure supplies no data

The procedure tries to write data when the unit requests a read

The procedure tries to read data when the unit requests a write

An error that occurs while executing a PORT or WPORT command in the procedure is not
recoverable. In this case, an error message is displayed followed by the prompt (*).

Restrictions

Note that if your target system is connected to the PICE system, I/O data always goes out to
your system, whether the I/O ports are mapped to USER or the FICE system. Mapping to the
PICE system only prevents the FICE system from receiving your system input. Thus, you
should disconnect the user (target) system if you do not want it responding to the FICE system
output.

Encyclopedia 1-245

MAPIO continued

Examples

1-246

1. Display 110 port mapping:

*-MAPIO 0000: ooooH LENGTH 00000400 ICE
MAPIO 0040: ooooH LENGTH ooooFCoo USER

2. The following examples (2a through 2c) simulate data input using the tenninal. The exam­
ples are taken from the following disassembled program, which is a loop requiring input to
port 22H.

ooooooH 90 NOP
ooooolH E522 IN AX,22H; +35T
oooo03H 90 NOP
oooo04H EBFA JMP A=ooooH; $-4
oooo06H 90 NOP
a. * __ i:l_1l1

*UNIT 0 PORT 22H REQUESTS WORD INPUT (ENTER VALUE) *1·.·'.;
*Probe 0 stopped at 0000: 0000 because of execute break

NOTE

After the GO command in example 2a, the only user input was '7 a66h ' .

Confirm that the port values entered are now in register AX:

b. Using HOLDIO and RELEASEIO:

*BiI_1 __
*UNIT 0 PORT 22H REQUESTS WORD INPUT (ENTER VALUE)
*UNIT 0 PORT 22H REQUESTS WORD INPUT (ENTER VALUE)
_11111 / HOLDIO pennits command entry */
11oo1111ooo10ooy 26504T 6788H '. g •• '
ltDi[ifIIIW
*UNIT 0 PORT 22H REQUESTS WORD INPUT (ENTER VALUE) *11_

Encyclopedia

c. System response to incorrect input:

*G0 FA01i1 0:0 TIL. 3
UNIT 0 PORT 22H REQUESTS WORD INPUT (ENTER VALUE)*5;f6
Input options are a number or HOLDIO

No expressions are allowed.

UNIT 0 PORT 22H REQUESTS WORD INPUT (ENTER VALUE) *aaab
Input options are a number or HOLDIO

Hexadecimal values must have a leading zero.

3. The following example demonstrates data output from the terminal. The data output is
required by the following program, which asks for data output from port 23H. Assume
that AL is initialized.

* OT * °NGTHJi
ooooooH 90
ooooolH E623
oooo03H 90
oooo04H EBFA
oooo06H 90

*G0FR01i10!J'1L.3

NOP
OUT 23H,AL
NOP
JMP A=ooooH; $-4
NOP

UNIT 0 PORT 23H OUTPUT BYTE *5$ I*User input is 55*1
Probe 0 stopped at 0000: 0004 because of execute break
*AL I*Display AL register*1
55

4. The following examples show how to use the ICE debug-procedure-name option, which
involves creating a procedure that simulates your system I/O operation.

Encyclopedia

a. This procedure (mapioproc) simulates data output from a port and writes the data to
the screen. It is called whenever the user writes data to a port (or wport) within the
mapped area.

16T
Adco·mapiOproco.'!=·Wal!J'E.··P0R!J'DAtA 1* Define the debug

procedure * 1
1* Map I/O to ICE with a debug

*P0AT(t3)i=#1234
34

procedure call * 1
1* Execute the debug procedure by accessing the byte port *1

1-247

MAPIO continued

The PORT command accepts only byte inputs.

ll.;;,::::,;',III.!:!:I:':t 1 Execute the debug procedure by accessing the word port */
DBA
1C

Data in from WPORT(47) is displayed on two lines because the port is on an odd boundary.

b. This procedure (inputproc) is called whenever a program asks for input from one of
the ports mapped to ICE:

c. This program is a loop that requires input from port 12H. It is used to test procedure
inputproc:

*'111'111; __ •
ooooooH 90
ooooolH E512
oooo03H 90
oooo04H EBFA
oooo06H 90

NOP
IN AX,12H; +18T
NOP
JMP A=ooooH; $-4
NOP

Run the program and halt it when the emulation prompt appears:

Probe 0 stopped at 0000: 0003 because of hal t

~.

Cross-References

1-248

Name
Partition
PROC

Encyclopedia

Masked constant
A number with don't-care bits

for match conditions in
break and trace controls

Masked constants are used as patterns for matching addresses and data values in break and
trace controls. The X bits in the masked constant are don't-care bits; these bits match both 0
and 1 in the address or data value to be matched.

Only binary and hexadecimal masked constants are allowed. All masked constants are stored
internally as 32-bit values.

If you omit Y or H for the base of the number, the number is interpreted in the current default
base. (An error occurs if the digits are not valid in the current base.)

Examples

1. A binary masked constant that accepts either 0 or I for the lower eight bits:

2. A hexadecimal masked constant that accepts any number (O-F) for the lower byte:

Encyclopedia 1-249

MEMRDY
A pseudo-variable that allows
a system time-out based
on memory access time

Syntax

[
=TRUE [

MEMRDY = FALSE
= boolean-expression

Where:

MEMRDY

TRUE

FALSE

boolean-expression

Discussion

displays the current setting (TRUE or FALSE).

lets a time-out occur when memory access time during
emulation exceeds one second. The default value is
TRUE.

disables memory time-outs.

is any expression in which the low-order bit evaluates to
o (false) or 1 (true).

The FlCE system senses the READY line of the probe processor. A time-out occurs if this line
is high for more than one second and MEMRDY is TRUE. A time-out halts emulation.

Example

1. Use MEMRDY as a variable:

1-250 Encyclopedia

Enables and disables the FICE
system menu display

Syntax

MENU [:;:~SEE [
= boolean-expression

Where:

MENU

TRUE

FALSE

displays the setting, either TRUE or FALSE.

enables the menu display. TRUE is the default.

disables the menu display.

boolean-expression is an expression in which the low-order bit evaluates to 0
(false) or 1 (true).

Discussion

With the MENU command you can enable or disable the PICE menu display at the bottom of
the terminal screen. The PICE menu is a syntax directory on the bottom of the screen. The
syntax directory aids in construction of syntactically correct commands. Note, however, that
you can construct a syntactically correct command that is semantically incorrect.

When MENU = TRUE, the menu displays all the tokens you can enter at the current cursor
position. As you advance the cursor to the next token (with a space or other delimiter), the
menu is updated to show the legal tokens at the new position. Often all the available tokens do
not fit on one line. In that case, press the TAB key to display the other choices.

If you enter a token not on the current token list, the PICE system returns a syntax error.

You must be in command mode to enter the MENU command, but you can change the menu
mode at any time by pressing CTRL-V.

Example

1. The following example shows the first menu display after entering the PICE command:

---- more ---- Use [TAB) to cycle through prompts when "more" appears.
APPEND ARMREG BASE BRKREG CALLST ACK CAUSE CLEAREOL CLEAREOS

Encyclopedia 1-251

MENU continued

Pressing the TAB key advances to the following menu display:

---- more ----
CLIPSIN CLIPSOUT COUNT CURHOME DEFINE DIR DISABLE EDIT ENABLE

1-252 Encyclopedia

Syntax (List of Keywords)

ADDRESS

Default

ASM
BCD
BOOLEAN
BYTE
CHAR
DWORD
EXTINT
INTEGER
LONGINT
LONGREAL
POINTER
REAL
SELECTOR
SHORTINT
TEMPREAL
WORD

BYTE

Discussion

Mtype
Basic program memory types

used in commands and displays

The FICE command language assumes that every object in memory has a type. Many com­
mands involve explicit references to memory types, and displays also depend on the type of the
value. Type BYTE is the default when no type is specified.

This section describes the available memory types. The discussion includes the keywords used
to specify types, the formats for displaying various types, and the rules for converting one type
to another.

Encyclopedia

NOTE

Although every object in memory has a type, debug objects cannot be accessed using the
memory type keywords.

1-253

Mtype continued

Types and Type Classes

1-254

Table 1-17 lists the program types with their basic definitions. The table also classifies the
types by common attributes. The following sections provide more detailed information on
mtypes.

Table 1-17 Basic Mtypes

Type Keyword Definition

UNSIGNED BYTE 8-bit unsigned quantity.

WORD 16-bit unsigned quantity'.

ADDRESS 16-bit unsigned quantity'.

SELECTOR 16-bit unsigned quantity'.

DWORD 32-bit unsigned quantity.

SIGNED SHORTINT 8-bit signed quantity.

INTEGER 16-bit signed quantity.

LONGINT 32-bit signed quantity.

87 REAL 32-bit floating-point number.

EXTINT 64-bit signed quantity.

LONG REAL 64-bit floating-point number.

TEMPREAL 80-bit floating-point number.

BCD 80-bit packed decimal number.

POINTER POINTER 32-bit quantity, consisting of a segment selector
component and an offset component. Each component
is a 16-bit WORD.

BOOLEAN" BOOLEAN TRUE (LSB = 1) or FALSE (LSB = 0).

CHARACTER CHAR 8-bit ASCII value.

ASM Assembly language mnemonic; ASM is a read-only
type .

• The 121CE system does not distinguish between these types. The difference is significant
only in your program.
The Boolean type is determined by the least significant bit (LSB) of the byte.

Encyclopedia

Unsigned Types

The unsigned types are BYTE, WORD, ADDRESS, SELECTOR, and DWORD. ADDRESS
and SELECTOR are synonyms for WORD and are included for compatibility with high-level
languages that support these types.

Signed Types

87 Types

The signed types are SHORTINT, INTEGER, and LONGINT. Internally, these types have a
leading sign bit; they use the 2's complement for negative values. When signed types are used
in expressions, they are converted internally to LONGINT.

The 87 types are BCD, EXTINT, REAL, LONGREAL, and TEMPREAL. These types use
either the 87 coprocessor or internal FlCE 87 emulator software. The internal representations
of these types are described in the iAPX-86,88 User's Manual. The 87 types used in expres­
sions are converted to TEMPREAL.

Pointer Type

Objects of type POINTER are used in address calculations. The method of calculation is
processor -specific.

Boolean Type

Boolean objects have one of two values, TRUE or FALSE. When the Boolean mtype is applied
to memory, the contents of memory are treated as bytes. If the low-order bit of a byte is ai, the
Boolean value is TRUE. If the low-order bit is a 0, the Boolean value is FALSE.

Character Types

The character types are CHAR and ASM. Type CHAR consists of bytes containing the ASCII
representation of characters. Type ASM produces a string of characters, the disassembly of the
instructions coded in memory. The format of the disassembly depends on the processor. ASM
is a read-only type; you cannot define a variable of type ASM, nor can you assign a new value
to an object of type ASM. You can use type ASM as a source value. For example:

Encyclopedia 1-255

Mtype continued

Displaying Mtypes

Table 1-18 summarizes the formats used to display objects of the various types. Refer to the
EXAMPLE section for sample displays of each type.

Table 1-18 Display Formats for Mtypes

Typet Display

BYTE Displayed in the current base.

WORD Displayed in the current base.

DWORD Displayed in the current base.

ADDRESS Displayed as a WORD.

SELECTOR Displayed as a WORD.

SHORTINT Displayed in decimal, has leading + or -.

INTEGER Displayed in decimal, has leading + or -.

LONGINT Displayed in decimal, has leading + or -.

EXTINT Displayed in decimal, has leading + or -.

REAL Displayed in scientific format.

LONGREAL Displayed in scientific format.

TEMPREAL Displayed in scientific format.

BCD Displayed in decimal, has leading + or -.

POINTER Treats the object as a pair of words. Displayed in the form nnnn:nnnnH in
hexadecimal.

BOOLEAN Treats the object as a byte. If the low order bit is 0, FALSE is displayed. If
the low order bit is 1, TRUE is displayed.

CHAR Treats the object as an ASCII character string. The display is a quoted
string. A non-printing character is indicated by a period (.).

ASM Displayed as mnemonics (disassembled code) for active processor type.

Type Conversions

The FICE system handles conversions between types. Type conversions are necessary when
types are combined within an expression and when a value of one type is assigned to a variable
of another type. The following paragraphs contain the rules for type conversions.

Type Conversions in Expressions

1-256

You can combine objects of two different types using a binary (two-operand) operator such
as + , *, or AND. The type of the result depends on the types of the operands and the operator
used. Table 1-19 summarizes the valid combinations and results.

Encyclopedia

continu~d

The binary operators are grouped into four classes: arithmetic, logical, relational, and pointer.
Within each class, Table 1-19 shows what types you can combine with that class of operator
and the type of the result. The table also shows the valid unary (one-operand) operations on
typed objects and the types of the results.

NOTE

Table 1-19 shows the only valid type combinations within expressions. An error results
from any combination not shown in the table.

Table 1-19 Type Conversion by Combination as Operands

Operator Operands Result

Arithmetic Unsigned and Unsigned DWORD
(+, -, *, /, MOD) Signed and Unsigned LONGINT

Signed and Signed LONGINT
87 and Unsigned TEMPREAL
87 and Signed TEMPREAL
87 and 87 TEMPREAL
Pointer and Unsigned (+, - only) POINTER*
Pointer and Signed (+, - only) POINTER*
Pointer and 87 (+, - only) POINTER*
Pointer and Pointer (- only) DWORD
Character and Unsigned DWORD**

Logical Unsigned and Unsigned DWORD
(AND, OR, XOR) Signed and Unsigned LONGINT

Signed and Signed LONGINT
Boolean and Unsigned BOOLEAN
Boolean and Signed BOOLEAN
Boolean and Boolean BOOLEAN
Character and Unsigned DWORD**

*The operations only affect the offset portion of the pointer.

* *You can use only one-character strings with binary operators.

Encyclopedia 1-257

Mtype continued

Thble 1-19 Type Conversion by Combination as Operands (continued)

Operator Operands Result

Relational Unsigned and Unsigned BOOLEAN
(==,>=,<=, Signed and Unsigned BOOLEAN

>, <, <» Signed and Signed BOOLEAN
87 and Unsigned BOOLEAN
87 and Signed BOOLEAN
87 and 87 BOOLEAN
Pointer and Unsigned BOOLEAN
Pointer and Signed BOOLEAN
Pointer and 87 BOOLEAN
Pointer and Pointer BOOLEAN
Boolean and Unsigned BOOLEAN
Boolean and Signed BOOLEAN
Boolean and 87 BOOLEAN
Boolean and Boolean BOOLEAN
Character and Unsigned BOOLEAN""
Character and Character BOOLEAN

Pointer (:) Unsigned and Unsigned POINTER
Signed and Unsigned POINTER
Signed and Signed POINTER
87 and Unsigned POINTER
87 and Signed POINTER
87 and 87 POINTER
Character and Unsigned POINTER""

Unary
+,- Unsigned LONGINT
+,- Signed LONGINT
+,- 87 TEMPREAL
NOT Unsigned DWORD
NOT Boolean BOOLEAN

Symbolic reference POINTER

"The operations only affect the offset portion of the pointer.

""You can use only one-character strings with binary operators.

Type Conversion by Assignment

1-258

Type conversion also occurs when a value of one type is assigned to an object of a different
type. For example:

Table 1-20 shows the valid conversions by assignment, including the internal conversion path
when applicable. Table 1-20 also indicates invalid combinations.

Encyclopedia

NafE

Conversions also occur when a particular type is required by the syntax (e.g., in
COUNT expression, expression is converted to a word).

Table 1-20 Assignment Type Conversions*

To TypeT2

From TypeT1
Unsigned Signed 87

Unsigned

(BYTE, WORD, Convert to Zero fill to Zero fill to
DWORD, ADDRESS, DWORD, DWORD, DWORD, convert
SELECTOR) truncate to T2 truncate to T2 to TEMPREAL,

convert to T2

Signed

(SHORTINT, Sign extend Sign extend Convert to
INTEGER, to LONGINT, LONGINT, TEMPREAL,
LONGINT truncate to T2 truncate to T2 convert to T2

87

(EXTINT, BCD, Convert to Convert to Extend to
REAL, LONGREAL, TEMPREAL, TEMPREAL, TEMPREAL,
TEMPREAL; then to then to EXTINT, convert to T2
87 required) EXTlNT, truncate to T2

truncate to T2

Pointer

(POINTER) Convert Convert INVALID
pointer to pointer to
absolute absolute
(DWORD), (DWORD)
truncate to T2 Truncate to T2

Boolean

(BOOLEAN) INVALID INVALID INVALID

Character

(CHAR, ASM) Make first INVALID INVALID
character a
byte, zero-
fill to T2

"The value of type T1 is assigned to a variable of type T2 (Le., mtype T2 = mtype T1).

Encyclopedia 1-259

Mtype continued

Table 1-20 Assignment Type Conversions* (continued)

To TypeT2

From Type T1
Pointer Boolean Character

Unsigned

(BYTE, WORD, Zero fill to IF LSB(T1)= 1 Convert T2 to
DWORD, ADDRESS, DWORD, then T2 = TRUE one-character
SELECTOR) convert to else T2 = FALSE string

pOinter (may
be illegal
operation with
some units,
e.g., 286)

Signed

(SHORTINT, INVALID IF LSB(T1) = 1 INVALID
INTEGER, then T2 = TRUE
LONGINT else T2 = FALSE

87

(EXTINT, BCD, INVALID IF LSB(T1) = 1 INVALID
REAL, LONGREAL, then T2 = TRUE
TEMPREAL; else T2 = FALSE
87 coprocessor
required)

Pointer

(POINTER) No conversion INVALID INVALID
necessary

Boolean

BOOLEAN INVALID No conversion INVALID
necessary

Character

(CHAR, ASM) INVALID INVALID No conversion
necessary

*The value of type T1 is assigned to a variable of type T2 (i.e., mtype T2 = mtype T1).

Examples

1-260

The following examples list the displays produced by single objects of each type. The displays
assume that the contents of the 10 bytes starting at the current execution point ($) are FA, 2E,
8E, 16, 00, 00, Be, 72, 00, and 2E (hexadecimal). The default base for the displays is as­
sumed to be decimal.

1. *I&e$.
0020: 0004H 26

Encyclopedia

2. *_1
0020:012026

3. *l1li1111
0020: 0004H 12026

4. *11J;I~lSft$
0020: 0004H 12026

5. *lgllI
0020:0004H378416890

6. *SHBIIIII$
0020: 0004H -6

7. *.iJIEfill$
0020:0004H +

8. *l1IfiImiJlI
0020:0004H +378416890

9. *11*.1*$
0020:0004H +2674830804922

10. *11114,$
0020:0004H +2.297E-25

11. *ll.lIfilllll.$,
0020:0004H +4.77963297498010E+244

12. *lllltlllil
Ob20~00b4H +0.12802463921721103E-1386

13. *.~t:),$
0020:0004H +7322000016943560

14. *11;"111$
0020:0004H 168E:2EFAH

15. *lIll4lliJ$
0020: 0004H FALSE

16. *~lrlfti,1
0020: 0004H ' ,

17. *IIM$
0020:0004H FA

Encyclopedia

ell

1-261

Mtype continued

Cross-References

1-262

ADDRESS
ASM
BCD
BOOLEAN
BYTE
CHAR
DWORD
EXTINT
INTEGER
LONGINT
LONGREAL
POINTER
REAL
SELECTOR
SHORTINT
TEMPREAL
WORD

Encyclopedia

The 80286 supports multitasking with a built-in, task-switch operation. When a task switch
occurs, the 80286 saves the entire execution state in a task state segment, loads a new execution
state, and begins executing the new task. Each task has its own virtual address space.

The Task State Segment and Address Protection

The user program switches to another task by transferring execution control to a task-state
segment. The new task is called the incoming task; the old task is called the outgoing task. The
user program can transfer control in two ways: directly or through a task gate.

When the user program transfers control to a task state segment directly, the task state segment
must be at the same or lower (numerically higher) privilege level than the outgoing task; that
is, the DPL of the task state segment descriptor (TSSD) must be equal to or greater than the
outgoing task's CPL.

When the user program transfers control to a task state segment through a task gate, the task
gate must be at the same or lower (numerically higher) privilege than the outgoing task; that is,
the DPL of the task gate must be equal to or greater than the outgoing task's CPL. In addition,
the task-state segment pointed to by the task gate must be at an equal or higher (numerically
lower) privilege level than the task gate; that is, the DPL of the task state segment descriptor
must be equal to or less than the DPL of the task gate.

Note that the destination offset field of the task gate is not used in a task switch.

These protection rules are not concerned with the privilege level of the incoming task (i.e., the
incoming task's CPL). To determine the incoming task's CPL, look at the CS selector stored in
the task state segment. This CS selector points to a CS descriptor the DPL of which is the CPL
of the incoming task.

Task Switching

A user program switches tasks by executing ajump (IMP), call (CALL), or software-interrupt
(INT) instruction. With the jump and call instructions, the new address points to either a task
state segment descriptor or a task gate. With the software interrupt instruction, the interrupt
type identifies a task gate in the interrupt descriptor table (IDT).

A task switch may also occur as the result of an external interrupt (an external device asserts
INTR or NMI). The interrupt controller supplies an 8-bit vector that, when multiplied by 4, is
an offset into the IDT. If the IDT entry is a task gate, a task switch occurs.

The task state segment descriptor (TSSD) contains the base address of the task state segment.
The TSSD also identifies the task state segment as available or busy. The task busy flag belongs
to the access byte of the TSSD. The TSSDs must reside in the global descriptor table (GDT).

The task gate contains a selector that points to the TSSD. A task gate may reside in the GDT,
the LDT, or the IDT.

Encyclopedia 1-263

Multitasking (80286) continued

1-264

The task register (TR) contains a selector that points to a TSSD in the GDT. When you load the
TR with a selector, the 80286 automatically copies this TSSD into the TR's explicit cache. The
TR contains the selector of the currently executing task. The TR's explicit cache contains the
TSSD of the currently executing task.

The nested task flag (NFL) resides in the FLAGS word. When 0, NFL indicates that the
primary task is executing (i.e., no task switch has occurred). When 1, the NFL indicates that a
task switch has occurred.

The task-switch flag (TSF) resides in the machine status word (MSW). When 1, the TSF
indicates that a task switch has occurred and that the current processor extension context may
belong to a previous task.

The actions of the JMP, CALL, and INT instructions are as follows.

JMP

CALL

INT

Saves all registers in the outgoing task state segment.
Loads the TR with the selector for the TSSD of the incoming task.
Loads all registers from the incoming task state segment.
Marks the incoming task state segment busy.
Marks the outgoing task state segment not busy.
Sets the TSF to 1.
Clears the NFL of the incoming task.
Leaves the NFL of the outgoing task alone.

Saves all registers in the outgoing task state segment.
Loads TR with the selector for the TSSD of the incoming task.
Loads all registers from the incoming task state segment.
Leaves the outgoing task state segment marked busy.
Marks the incoming task state segment busy.
Sets the TSF to 1.
Leaves the NFL of the outgoing task alone.
Sets the NFL of the incoming task to 1.

Saves all registers in the outgoing task state segment.
Loads TR with the selector for the TSSD of the incoming task.
Loads all registers from the incoming task state segment.
Leaves the outgoing task state segment marked busy.
Marks the incoming task state segment busy.
Sets the TSF to 1.
Leaves the NFL of the outgoing task alone.
Sets the NFL of the incoming task to 1.

Encyclopedia

The user program returns from a task with the IRET instruction. If the nested task flag of the
outgoing task is 1, the 80286 performs a task switch return. If the NFL of the outgoing task is
0, the 80286 performs a normal interrupt return. The actions of the IRET instruction is as
follows:

IRET

Cross-References

80286 registers
TSS

Encyclopedia

Saves all registers in the outgoing task state segment.
Loads TR with the selector for the TSSD of the incoming task.
Loads all registers from the incoming task state segment.
Marks the outgoing task state segment not busy.
Clears the NFL of the outgoing task.
Leaves the NFL of the incoming task alone.

1-265

Name
Rules for creating and
using names in commands

Syntax

first-character [following-character] *

Where:

first-character

following-character

is any alphabetical character (a-z), an underscore (_), a
question mark (?), or an at sign (@).

is any alphabetical character (a-z), an underscore (_),
an at sign (@), a dollar sign ($), a question mark (?), or
the numbers 0-9. The first 40 characters are significant.
The maximum length is 255 characters.

Discussion

Names are either keywords that are predefined by the FICE system, symbols created by you in
programs, or symbols created by you in FICE commands while debugging those programs. All
names currently in memory reside in the virtual symbol table. Refer to the PICE"M System
User's Guide for details. With the FICE system you can create and change debug object names
and manipulate user program symbol names when required.

This section explains how the FlCE system uses debug object names and user program names.

Creating PICE™ System Names

\-266

Some FICE commands use name to label debug objects. When name is included in FICE
command syntax, replace name with any alpha-numeric name you want, according to the
syntax rules in the preceding Syntax section and the semantic rules that follow. The following
FICE system naming rules are similar to most high-level language rules.

•

•

•

Uppercase and lowercase letters are equivalent. Thus, varl and VARI are the same name.
The first 40 characters in a name are significant. If a program symbol has more than 40
characters, the extra characters are ignored when the symbol is read in from the object file.

You can use the dollar sign to break up symbol names. The dollar sign is ignored by the
system when it is combined with other letters or numerals. Thus, the FICE system recog­
nizes PROCONE and PROC$ONE as the same name. A dollar sign in a name is different
from the dollar sign pseudo-variable that signifies the current execution point.

The underscore is significant. PROCTWO and PROC_TWO are different names.

Encyclopedia

How the 12ICETM System Uses Program Names

The PICE system uses translator-generated names as symbols. Labels, procedure names, and
modules names are all symbols.

In particular, Pascal and FORTRAN compilers use decimal numbers as labels. The PICE
system appends a leading at sign (@) to Pascal and FORTRAN labels, to convert them to
names. Thus if your Pascal or FORTRAN program has a label 12, refer to this label as @12.

How Names Appear in the Symbol Table

When a name is referenced in a command, the system looks up the name in the virtual symbol
table to determine whether it is a keyword, a debug object, or program symbol. The tables are
searched in order, with keywords first, debug objects next, and program symbols last.

Keywords are predefined and cannot be changed or removed. (See the Keywords entry in this
encyclopedia for a list of the FICE system keywords.)

You define the names of debug objects (debug variables, literals, debug registers, and debug
procedures). The system does not permit a debug object to have the same name as a keyword.

Program symbols are loaded with the program code. No checking is done, so a program
symbol may duplicate a keyword or debug object name. The double-quote operator (") forces
the system to look in the program symbol table for a reference. Therefore, a symbolic refer­
ence must include the double-quote operator when the symbol name duplicates a keyword or
debug symbol name. (Refer to the Symbolic reference entry in this encyclopedia for more
information on the double-quote operator.)

Cross-References

Keywords
Symbolic References

Encyclopedia 1-267

NAMESCOPE
Displays or sets the current
NAMESCOPE for symbolic references

Syntax

NAMESCOPE [= address)

Where:

NAMESCOPE

address

displays the reference address (pointer) that determines
the set of visible program objects.

changes the reference address. The address evaluates to
type POINTER.

Discussion

1-268

The NAMES COPE pseudo-variable is a pointer to an address in your program. The FICE
system uses the NAMESCOPE address as a reference point to determine the amount of qualifi­
cation required to identify an object in the program.

A fully-qualified reference to a symbol includes the module name and the names of all proce­
dures that enclose the symbol in order from outer-most to inner-most. Since a fully-qualified
reference completely identifies the symbol, such a reference is always valid.

A partially-qualified reference omits the module name and one or more of the outer procedure
names. The system looks up a partially qualified reference as follows:

1. The inner-most program block enclosing the NAMES COPE address is determined, and
the symbols defined in that block are checked.

2. If the symbol is not found, the next enclosing block is searched. This procedure is repeated
until the symbol is found or until the search fails in the outer-most block, the module
enclosing the NAMESCOPE address.

When you load a program, the NAMESCOPE pseudo-variable is set to the address of the
prologue of the main module. The NAMESCOPE pseudo-variable changes in three cases:

• When it is set with the NAMESCOPE command.

• When a program is reloaded, the NAMESCOPE pseudo-variable is setto the new main
module address.

• When a break is executed, the NAMES COPE pseudo-variable is changed to the execution
point ($).

When you set NAMESCOPE to an mtype value other than POINTER, that value becomes
NAMESCOPE's selector; NAMESCOPE's offset becomes zero.

Encyclopedia

NOTE

The NAMESCOPE command does not work with ASM86.

Examples

The following examples assume that the user program has two modules with enclosed proce­
dures and variables, structured as follows:

adder (MODULE)
operand_count (PROCEDURE)

number_of_ops (BYTE VARIABLE)
error_check (PROCEDURE)

error_number (BYTE VARIABLE)
display_character (MODULE)

char_check (PROCEDURE)
char_count (BYTE VARIABLE)

output_char (PROCEDURE)

1. Access the variable number_of_ops from the adder module:

2. Access the variable char_count in a different module. You need a fully qualified refer­
ence, which includes the module name and all enclosing procedure names.

*:glcpl@i\ggil~J~~iFm@~(~I~~~~I@~Rltij
26

3. To allow a short (partially-qualified) reference to char_count, change NAMESCOPE as
shown.

26

4. Display the NAMESCOPE pseudo-variable's current location as a POINTER value. Sym­
bols are displayed if available.

*fj*Me$~'le
0100:001AH:display_character

Cross-References

$
Address

Encyclopedia 1-269

NUMTOSTR
A function that converts an
expression into ASCII code

Syntax

NUMTOSTR (expression)

Where:

NUMTOSTR

Example

converts expression into its ASCn representation. The
conversion is displayed on the terminal but does not alter
memory. The current number base is used for conver­
sion.

1. Display the variable VARI as an ASCn string.

5.31360000000000000E+2

Cross-Reference

Expression

1-270 Encyclopedia

Syntax

OFFSETOF (pointer)

Where:

pointer

Discussion

OFF'SETOF
A function that returns the

offset of a pointer value

is any program variable, debug variable, function, or
expression of mtype POINTER.

A pointer contains seiector (segment) and offset values used to calculate an address. The
OFFSE1OF function returns the offset portion of a pointer.

Examples

1. Display the segment offset of the pointer value 200:100:

2. Display the segment offset of the pointer value for CS:IP:

*IIIIIJItlJD-
* lFC4:345DH
*;nam6'it'~
345D

Cross-References

Address
POINTER

Encyclopedia 1-271

Paging
Controls terminal display speed

Syntax

F
P
L

CTRL-S
CTRL-NumLock

CTRL-Q
Any key

Where:

F

p

L

CTRL-S

CTRL-NumLock

CTRL-Q

Any key

Default

F

1-272

(fast) is the default. New data is written to the screen
continuously.

(page) writes one screen full of data to the terminal at a
time.

(line) writes a single line to the terminal at a time.

(stop) halts terminal display on a Series III host.

halts the terminal display on an IDM PC host.

resumes the terminal display halted by CTRL-S on a
Series III host.

resumes the terminal display halted by CTRL-NumLock
on an IDM PC host.

Encyclopedia

Discussion

Some PICE commands (such as HELP and WRITE) display more information than will fit on
a single screen. With these screen display controls you can halt information before it scrolls off
the screen. When a long display is in fast (F) mode, entering P (page mode) halts a full screen
of information.

The screen display controls F, P, and L are effective only when the FICE system is displaying
to the screen. The CTRL-S and CTRL-Q work all the time. If you enter CTRL-S when the
FICE system expects a command, the PICE system will neither accept commands nor echo
characters until you enter CTRL-Q.

NOTE

The Series IV host does not recognize CTRL-S and CTRL-Q.

Encyclopedia 1-273

Partition
An address or a range
of addresses

Syntax

{
address }
address TO address
address LENGTH number-ot-items

Where:

number-ot-items is a number or an expression that evaluates to a positive
integer.

Discussion

1-274

A partition is a single address or a range of addresses. Whenever a range of addresses is
required instead of a single address, it is specified with either the m or LENGTH keywords in
the form shown in the syntax.

The m keyword assumes byte addresses. For example:

I*returns 10 bytes starting at address 0:0*1

I*returns 10 bytes in the form of five words*1

Note that in the form address m address the two addresses must both be either virtual ad­
dresses (i.e., aa: bb) or absolute addresses (i.e., nnn). If they are absolute addresses, the first
address must be less than the second, and the difference between the two addresses must be no
more than 65,536. If they are both virtual addresses, the selector values for both addresses
must be equal. If the second address offset is less than the first address offset, the selector
boundary wraps around (if wrap-arounds are legal on a particular host).

The LENGTH keyword sets the range depending on the memory type of the number-oj-items.
For example:

*S'V1tlit)il$i1\ilGlfWl0

*.VV(l)FlIl> •• OI1E1\iISTflIflt)

I*returns 10 bytes starting at address 0:0*1

I*returns 10 words or 20 bytes starting at address 0:0*1

The expression number-oj-items multiplied by LENGTH (of the type in bytes) must evaluate to
65,536 or less.

Encyclopedia

NOTE

MAP partition adjusts the range to fit the granularity of the map.

Cross-Reference

Address
Expression

Encyclopedia 1-275

Pathname
Specifies the name and
location of a file

Syntax

Series III Hosts

{
[:device:]fiJename}
: device: [filename]

Series IV Hosts

Idirectory[ldirectory] * !filename

1-276

Where:

device

filename

directory

IBM PC Hosts

is a device such as a disk drive, line printer, or teletype
output port on which the file filename does, or will, re­
side. Typical values for device are as follows:

Fn - disk drive number (0 :5 n :5 9T)
LP - line printer
TO - teletype output port

is the name of the file. The filename can contain up to
six alphanumeric characters, plus a three-number exten­
sion (e.g., myprog.003).

is the name of a directory.

[device: \][directory\] * filename

Where:

device

directory

filename

is a hard disk or floppy disk drive. Values for device are
A, B, C, D, etc.

is the name of a directory.

is the name of a file. The filename can contain up to
eight alphanumeric characters, plus up to a three­
number or three-letter extension (such as MY­
PROG.002).

Encyclopedia

Pathname continued

NOfE

The PC/AT and PC/XT support directory-path searching as defined by the PATH and
SET commands. When you use an ISIS pathname (Le., :Fn:), you must set :Fn: to a PC
pathname with the SET command.

Examples

1. The following example opens a list file called Ist.OOI on disk drive 1 (on a Series III):

2. The following example opens a list file called LOG.OOI in a directory called ICEDIR on
disk drive A.

3. The following example echoes the terminal display to a line printer:

Encyclopedia 1-277

PCHECK
80286 probe specific

Pseudo-variable that requests
121CE system protection checking

Syntax

[
=TRUE [

PCHECK = FALSE
= boolean-expression

Where:

PCHECK

TRUE

FALSE

boolean-expression

displays the current setting (TRUE or FALSE).

indicates that FICE commands can display and alter
only those parts of the prototype system that would nor­
mally be accessible when using an 80286 probe in pro­
tected mode.

indicates that the 80286 probe ignores protection rules.

is any expression in which the low-order bit evaluates to
o (false) or 1 (true).

Default Value

TRUE

Discussion

The PCHECK pseudo-variable determines whether the FICE system operates with FICE pro­
tection checking on or off. It affects how FICE commands access registers and memory loca­
tions.

Memory and register access are also affected by the SEL286 pseudo-variable and the MSW.
The SEL286 pseudo-variable determines whether the FICE system performs 8086 or 80286
address translation. The PEF in the machine status word (MSW) determines whether the
80286 is in real or protected mode.

Accessing Registers

1-278

How FICE commands can access 80286 registers depends on the setting of PC HECK and
whether the 80286 is in real mode (PEF = 0) or protected mode (PEF = 1).

Encyclopedia

PCHECK (80286) continued

Real Mode, PCHECK = TRUE

The PICE commands display and alter the 8086 registers and the MSW. The REGS command
does not display the LDTR, the GDTR, the TR, the IDTR, or the explicit caches of any of the
registers.

Real Mode, PCHECK = FALSE

The FICE commands display and alter the 80286 registers. The REGS command displays only
the 8086 registers and the MSW. Loading the selector part of a register can, however, change
its explicit cache. You can modify the MSW and the explicit caches directly.

Protected Mode, PCHECK = TRUE

The PICE commands display and alter the 80286 registers. The REGS command displays the
80286 registers but does not display the explicit caches.

Modifying the selector part of a register causes the 80286 probe to automatically modify that
register's explicit cache. For example, if you change the selector value in the LDTR, the 80286
probe automatically loads the new LDT descriptor into the LDTR's explicit cache. You cannot
change the MSW or the explicit caches directly.

The PICE system performs validity checking of register assignments. For example, you cannot
load the task register with a selector whose table indicator bit does not select the global de­
scriptor table and point to a task state segment descriptor. Nor can you load a segment register
with a descriptor that does not point to a segment descriptor.

Protected Mode, PCHECK = FALSE

The FICE commands display and alter the 80286 registers. The REGS command displays the
80286 registers along with their explicit caches.

Modifying the selector part of a register causes the 80286 probe to automatically modify that
register'S explicit cache. The PICE system does not perform validity checking of register
assignments. Table 1-21 summarizes how the PCHECK pseudo-variable affects register
access.

Encyclopedia 1-279

PCHECK (80286) continued

Table 1-21 Effects of the PCHECK Pseudo-Variable

R Displayed by the REGS command.
A Displayed and altered by name using the REGS command.
0 Displayed by name only.
S Modifying this register also modifies its explicit cache.

Protected Protected
Real Mode Real Mode Mode Mode

Length PCHECK= PCHECK= PCHECK= PCHECK=
Name (Bytes) TRUE FALSE TRUE FALSE

AX 2 RA RA RARA
AL 1 A A A A
AH 1 A A A A
BX 2 RA RA RA RA
BL 1 A A A A
BH 1 A A A A
CX 2 RA RA RA RA
CL 1 A A A A
CH 1 A A A A
DX 2 RA RA RA RA
DL 1 A A A A
DH 1 A A A A
SP 2 RA RA RA RA
BP 2 RA RA RA RA
SI 2' RA RA RA RA
DI 2 RA RA RA RA
IP 2 RA RA RA RA
FLAGS 2 RA RA RA RA
FL 1 A A A A
CS 2 RAS RA RAS AS
CSBAS 4 A 0 RA
CSLlM 2 A 0 RA
CSAR 1 A 0 RA
CSSEL 2 A OR A
DS 2 RAS RAS RAS AS
DSBAS 4 A 0 RA
DSLIM 2 A 0 RA
DSAR 1 A 0 RA
DSSEL 2 A 0 RA
SS 2 RAS RAS RAS AS
SSBAS 4 A 0 RA
SSLIM 2 A 0 RA
SSAR 1 A 0 RA
SSSEL 2 A OR A
ES 2 RAS RAS RAS AS
ESBAS 4 A 0 RA
ESLIM 2 A 0 RA
ESAR 1 A 0 RA

1-280 Encyclopedia

Table 1-21 Effects of the PCHECK Pseudo-Variable (continued)

R Displayed by the REGS command.
A Displayed and altered by name using the REGS command.
0 Displayed by name only.
S Modifying this register also modifies its explicit cache.

Protected Protected
Real Mode Real Mode Mode Mode

Length PCHECK= PCHECK= PCHECK= PCHECK=
Name (Bytes) TRUE FALSE TRUE FALSE

ESSEL 2 A 0 RA
MSW 2 RA RA RO RA
LDT 2 AS RAS AS
LDTSEL 2 A 0 RA
LDTBAS 4 A 0 RA
LDTLlM 2 A 0 RA
LDTAR 1 A 0 RA
GDTBAS 4 A 0 RA
GDTLlM 2 A OR A
IDTBAS 4 A 0 RA
IDTLlM 2 A 0 RA
TR 2 AS RAS AS
TRSEL 2 A 0 RA
TRBAS 4 A 0 RA
TRLlM 2 A 0 RA
TRAR 1 A 0 RA

Encyclopedia 1-281

PCHECK (80286) continued

Accessing Memory

How FlCE commands access program memory depends on the setting of the SEL286 and
PCHECK pseudo-variables. It does not depend on whether the 80286 probe is in protected or
real mode.

Table 1-22 explains the 80286 memory access rules.

Table 1-22 The 80286 Memory Access Rules

SEL286 PCHECK Memory Access

TRUE TRUE Use a virtual address, specifying both the selector and offset. As
part of the virtual address, you can also specify the LOT selector
(the offset into the GOT).

TRUE FALSE Use a 24-bit absolute address or a virtual address. The 80286
probe performs 80286 address translation. The virtual address
must contain the selector and the offset. It may also contain the
LOT selector (the offset into the GOT).

FALSE TRUE Use a 24-bit absolute address or a virtual address. The virtual
FALSE address contains the selector and the offset. The 80286 probe

performs 8086 address translation. Because SEL286 is FALSE,
the 12 1CE system ignores the LOT selector.

Cross-References

1-282

80286 registers
Address protection
SEL286

Encyclopedia

Syntax

PHANG

Where:

PHANG

TRUE

FALSE

PHANG
8086/8083 ~mbe specific

A pseudo-variable that enables
or disables system time-out based

on coprocessor activity

=TRUE I
= FALSE
= boolean-expression

displays the setting of the coprocessor time-out func­
tion.

reports a time-out if a coprocessor memory access ex­
ceeds one second.

prevents coprocessor time-outs.

boolean-expression is any expression in which the low-order bit evaluates to
o (false) or 1 (true).

Default Value

TRUE

Discussion

If enabled, the PHANG (coprocessor hang) command reports when memory accesses made by
either the internal or external coprocessor exceed one second. The FICE system displays a
message when time-outs occur. Enter the PHANG command at the beginning of each emula­
tion session; it remains in affect until changed or reset.

If a hang occurs while the coprocessor has the bus, you must reset the FlCE probe processor to
regain control. Reset the PICE probe processor by manually resetting any external coproces­
sors first, then reset the PICE probe processor by entering the FlCE RESET UNIT command.

Encyclopedia 1-283

PHANG (8086/8088) continued

Examples

1. Display the current setting:

2. Change the current setting:

1-284 Encyclopedia

Syntax

PHANG = FALSE

PHANG
80 dj 86/80188 probe specific

A pseudo-variable that enables
or disables system time-out based

on coprocessor activity

I =TRUE

= boolean-expression

Where:

PHANG

TRUE

FALSE

boolean-expression

Default

TRUE

Discussion

displays the setting of the coprocessor time-out func­
tion.

reports a time-out if a coprocessor memory access ex­
ceeds one second.

prevents coprocessor time-outs.

is any expression in which the low-order bit evaluates to
o (false) or 1 (true).

If enabled, the PRANG (coprocessor hang) command reports when memory accesses made by
the external coprocessor exceed one second. The PICE system displays a message when time­
outs occur. Enter the PRANG command at the beginning of each emulation session; it remains
in affect until changed or reset.

When the coprocessor takes control of the bus because of a hang, you must reset the PICE
probe processor to regain control. Reset the PICE probe processor by manually resetting any
external coprocessors before you enter the PICE RESET UNIT command. If the RSTEN
command is enabled, the prototype resets the probe processor (but not any external
coprocessors) .

Encyclopedia 1-285

PHANG (80186/80188) continued

Example

1-286

1. Display the current setting:

*1,HMrrG
TRUE

2. Change the current setting:

Encyclopedia

Syntax

Displays the state of selected
microprocessor signals

PINS [unit-number[,unit-number] *
ALL

Where:

unit-number

ALL

is the number of the unit for which you want the pin
states displayed (0, 1, 2, or 3) or an expression that eval­
uates to 0, 1,2, or 3.

displays the pin states for all units.

Discussion

The PINS command displays the state of signal lines on the current probe. Each display varies
according to the processor type and mode.

Note that the PINS command displays only the current status of the lines. It does not show
pending non-maskable interrupts (NMIs), interrupts (INTRs), or requests/grants (RQs/GTs) if
any of these pulsed signals have occurred. The PINS command shows when a signal is in a
perpetually errant state (i. e., a shorted signal).

Encyclopedia 1-287

PINS continued

1-288

Tables 1-23, 1-24, and 1-25 show the values displayed by the PINS commands for the 80861
8088 probe, the 80186/80188 probe, and the 80286 probe, respectively.

Table 1-23 Values Displayed by the PINS Command for the 808618088 Probe

Pin Definition

HLDACK Acknowledges receiving the HOLD signal.

HOLD Indicates that another master is requesting a local bus HOLD.

INTR Is an interrupt request.

MN/MXI Indicates minimum (1) or maximum (0) mode.

NMI Is a non·maskable interrupt.

READY Is the acknowledgement from the addressed memory or 1/0 device that it will
complete the data transfer.

RESET Causes the processor to immediately terminate its present activity.

RQ/GTOI, Are used by other local bus masters to force the processor to release the
RQ/GT11 local bus at the end of the processor's current bus cycle.

TESTI Is examined by the wait-for-test instruction.

Table 1-24 Values Displayed by the PINS Command for the 80186/80188 Probe

Pin Definition

AREADY Is asynchronous READY.

HOLD Indicates that another master is requesting a local bus HOLD.

INTRO, Is an interrupt request.
INTR1,
INTR2,
INTR3

NMI Is a non-maskable interrupt.

RESETI Causes the processor to immediately terminate its present activity.

SREADY Is synchronous ready.

TEST! Is examined by the wait-for-test instruction.

Encyclopedia

Table 1-25 Values Displayed by the PINS Command for the 80286 Probe

Pin Definition

RST User reset (active high).

NMI Non-maskable interrupt (active high).

RDYI Ready (active low).

ERRI Error (active law).

BSYI Busy (active low).

INT Interrupt (active high).

PREQ Processor extension request (active high).

HOLD Hold (active high).

Examples

1. Display the current value of the pins using the 8086/8088 FICE probe in MIN mode:

PINS FOR UNIT 00
RESET=1 NMI=o HOLD=o
TEST=o READY=o MN/MX=1

HLDACK=o
INTR=1

2. Display the current value of the pins using the 8086/8088 FICE probe in MAX mode:

PINS FOR UNIT 00
RESET=1 NMI=o RQ/GTo=1
TEST=1 READY=1 MN/MX=o

RQ/GT1=1
INTR=o

3. Display the current value of the pins using the 80186/80188 FICE probe:

*PINS
PINS FOR UNIT 00

TEST/=1 NMI=o AREADY=1 SREADY=o RESET/=o
INTo=o INT1=0 HOLD=o
INT2=0 INT3=0

Thc slash (I) indicates that the preceding signal is active low.

4. Display the current value of the pins using the 80286 FICE probe:

PINS FOR UNIT 0000
RST=o NMI=o RDY/=o ER/=1 BSY/=1 INT=o PREQ=1 HOLD=o

EncycIo~dia 1-289

POINTER
8086/8088 probe specific
80186/80188 probe specific

Displays or changes memory
as selector:offset
address pOinters

Syntax

POINTER partition [= expression [, expression]"
= mtype partition

Where:

POINTER partition

partition

expression

mtype

displays the memory location described by partition as a
hexadecimal pointer.

is a single address or a range of addresses specified as
address 1D address or address LENGTH number-of­
items.

converts to type POINTER.

is any of the memory types except ASM.

Discussion

The POINTER command interprets the contents of memory as selector:offset values, overrid­
ing any type associated with the memory contents. Selector and offset are 16 unsigned bits
each. Thus, POINTER .varl displays the pointer value formed from the four bytes that begin
at the address of var 1, regardless of the type of var 1.

When a pointer value is assigned, the system assumes that the least significant digit is the offset
and the four digits adjacent to it are the code segment. Thus, a maximum of five digits are
valid. However, when a pointer type is assigned to data that already exists in memory, all digits
are valid.

Example

1-290

1. Display a single value:

*_'1$
0020:0004H168E:2EFAH

Encyclopedia

2. Display several adjacent values:

'.IlIlEB"$U:ElIGTa!S
020: 0006H 168E: 2EF AH 16BC: OOOOH 1E8E: 2EDOH OCEA: 0002H EFOO: 2100H

3. Assign a single value:

o04o:ooo4H4567:ooo8

4. Assign several adjacent values:

0040: oo04H 0012: oo03H 0000: oo02H 1234: oo05H 2345: oo06H

Cross-Reference

Expression
Mtype
Partition

Encyclopedia 1-291

POINTER
80286 probe specific
Displays or changes memory as
selector:offset address pOinters

Syntax

POINTER partition
DEFINE POINTER debug-variable-name = address

Where:

POINTER partition displays the specified partition in program mem­
ory as selector:offset pairs.

DEFINE POINTER defines an PICE debug variable whose memory
debug-variable-name = address type is POINTER.

Discussion

For the 80286 probe, a debug variable of mtype POINTER is a selector:offset pair or an LDT
selector: selector: offset triplet. Program memory always displays as se1ector:offset pairs. De­
bug variables can be defined as either selector:offset pairs or LDT selector:selector:offset
triplets.

Displaying Program Memory

The mtype POINTER reads memory as follows:

Address +0
Address + 1
Address +2
Address + 3

Least significant byte of the offset
Most significant byte of the offset
Least significant byte of the selector
Most significant byte of the selector

Defining a Debug Variable

1-292

For the 80286 probe, you can define a debug variable of mtype POINTER as one of the
following:

• An absolute address - the absolute address can be up to 24 bits long .

• A selector: offset pair - this is a virtual address. The selector and offset each can be up to 16
bits long.

Encyclopedia

PO! (80286) continued

• An LDT selector: selector: pair triplet - each member ofthe triplet can be up to 16 bits long.
The LDT selector provides an offset into the global descriptor table. It overrides the
current selector stored in the LDT register.

Example

1. Define a debug variable called begin.

*. l)IiOOIN'tiFlbegin#¥30i,aQO.6

* 0030:0200:0006H

Cross-References

Address
Address translation
Mtype
Name
Partition

Encyclopedia 1-293

PORT
A pseudo-variable that displays
or changes the contents
of byte-wide I/O ports

Syntax

PORT(port-number) [= data]

Where:

PORT(port-number)

data

Discussion

displays the contents of the user port specified by port­
number in the current base. The port-number is a num­
ber or an expression that evaluates to a number in the
current base, ranging from OOOOH to OFFFFH.

is any byte of data entered in the current base. Using this
option writes the data to the specified I/O port.

The PORT pseudo-variable displays the contents of 110 ports only when 110 ports are mapped
to USER; PORT does not display I/O port contents when I/O ports are mapped to ICE. (The
MAPIO command sets the location of 110 ports.)

If you try to write data longer than one byte (e.g., a word) using the PORT pseudo-variable,
only the last byte is used. Use the WPORT command for word-length data.

Examples

1. Read an 110 port:

~~"iORT 2H REQUESTS BYTE INPUT (ENTER VALUE>

2. Write to an 110 port:

*,.. ••• 1
UNIT 0 PORT 2H OUTPUT BYTE 32H

To read that port:

1-294 Encyclopedia

Cross-References

Expression
WPORT

Encyclopedia

PORT continued

1-295

PRINT
Formats and displays the contents
of the trace buffer.

Syntax

[CYCLES
PRINT INSTRUCTIONS

Where:

PRINT

CYCLES

INSTRUCTIONS

1-296

CLEAR
ALL
partition
LEVELS
TAG expression

OLDEST [expression]
NEWEST [expression]
N EXT expression
LAST expression

ADR expression
DATA expression
STATUS expression
CLIPS expression

displays the next element in the trace buffer. The default
display mode is INSTRUCTIONS.

displays the trace buffer in bus cycles. Trace buffer dis­
play is processor specific. Once set, CYCLES display
mode remains in effect until you enter the PRINT IN­
sTRucTIoNs command.

displays the trace buffer in disassembled mnemonics.
Trace buffer display is processor specific. INSTRUC­
TIONS is the default display mode. It remains in effect
until you enter the PRINT CYCLES command. If the
SYMBOLIC pseudo-variable is set to TRUE (the default
value), then the display will include symbolic informa­
tion.

Encyclopedia

Encyclopedia

CLEAR

ALL

partition

LEVELS

TAG expression

OLDEST/NEWEST
expression

PRINT continued
erases the trace buffer. You can also clear the trace
buffer by entering PRINT CYCLES CLEAR or PRINT
INSTRUCTIONS CLEAR or by issuing a GO com­
mand with new break or trace information. A prompt is
displayed if you try to print a cleared buffer.

displays the entire current contents of the trace buffer in
the current default mode (CYCLES or INSTRUC­
TIONS). The trace buffer has 1023 usable frames. The
oldest frame is number zero.

specifies the range of frames to be printed. The syntax
for partition is as follows:

[start-frame TO end-frame
start-frame LENGTH number-of-frames

Refer to the Partition entry in this encyclopedia for de­
tails.

displays the frame numbers at which time marker (time­
tag) discontinuities occur. The newest trace data are at
level o. When a discontinuity occurs, the level number is
changed. This indicates that timing information is no
longer accurate. Refer to the TIMEBASE entry in this
encyclopedia for more information on discontinuity.

searches the trace buffer for the tag value specified by
expression and displays it in the trace buffer. Tag is a
time marker (timetag) in the trace buffer. Tags are dis­
played in the TIME field of the CYCLES display. The
next nearest tag value is displayed if the tag specified is
not found.

You can specify tag in NS (nanoseconds), US (microsec­
onds), or MS (milliseconds).

displays the trace buffer from oldest to newest. The
trace buffer is numbered from 0-1023 frames. The old­
est frame is 0; the newest frame is 1023 (when the buffer
is full). One frame is displayed if you do not specify
expression.

1-297

PRINT continued

NEXT/LAST
expression

expression

displays the next or last expression frames relative to the
current trace buffer pointer. The trace buffer pointer al­
ways points to the last frame displayed. If you did not
enter a PRINT command since the last break, last is the
newest frame.

is the number of frames, in the current base, you want to
display. One frame is displayed if you do not specify
expression.

ADR/DATAlSTATUS/CLIPS searches the trace buffer for the item (e.g., ADR) with
expression the value specified by expression. The search wraps

around the trace buffer up to the current frame position.
If found, the item is displayed. If not found, an error
message is displayed. The ADR (address) option
searches both the execution address and bus address
frames.

Discussion

1-298

Trace data is stored in the trace buffer. Control trace collection with the trace register com­
mands, GO, and TRCBUS, each discussed in this encyclopedia. The information in the trace
buffer determines the amount and type of information displayed. The PRINT command dis­
plays the trace buffer of the current unit.

When emulating with trace on, the trace buffer is filled with frame numbers, addresses, proc­
essor status, clips information, and timetags. The PRINT command additionally generates
disassembled instructions, symbolic program information (e. g., line numbers), level numbers,
and the unit number. (Symbolic information is collected in the trace buffer if the SYMBOLIC
pseudo-variable is set to TRUE. TRUE is SYMBOLIC's default value.) Display the contents of
the trace buffer by using the PRINT command.

You can concatenate trace buffer data. Append new trace data by emulating with the trace
buffer on, halting, and resuming emulation using the same break criteria. Concatenation pre­
vents overwriting trace data so you can compare related emulation results. Changing the break
criteria between emulations clears the trace buffer.

The trace buffer is displayed in either of two formats: INSTRUCTIONS or CYCLES. You can
compare trace data in the two formats by frame number and timetag.

Encyclopedia

Displaying Trace in Instructions Mode

The INSTRUCTIONS mode displays the frame number, execution address, disassembled in­
struction, mnemonic, symbols, and unit number.

Two trace collection commands affect the INSTRUCTIONS trace data. Setting TRCBUS true
(the default value) packs 1023 frames of execution address information into the trace buffer.
Setting SYMBOLIC true (the default value) includes your source code symbols in the trace
buffer.

The ADR column contains interspersed bus or execution addresses. Up to four bus cycles per
line are displayed in the following format:

Bus address - Access code - Data

The two-character access code represents the origin of the PICE trace data. The first character
represents the access type, and the second character represents processor activities.

Occasionally, an extra character appears in the trace display. An M (for memory) may appear
before the instruction address. When an M appears, it means that the PICE system could not
disassemble an instruction from the contents of the trace buffer. Instead, the contents of mem­
ory are used that may have been changed since trace was collected. Additionally, a question
mark (?) may appear in the mnemonic column. When a question mark appears, it means that
there is no mnemonic equivalent for the contents of that location.

Displaying Trace in Cycles Mode

The CYCLES mode displays the execution address, bus address, bus data, processor status,
clip information, frame number, timetag, level, and unit number. In this display, the execution
and bus addresses are separate columns. Bus addresses, bus data, and status always appear on
the same line. They represent the current probe's processor bus activity. The execution­
addresses line also contains clips, timetag, and level information. The clips column is blank
when the input clips are not connected.

Bus status is a 16-bit hexadecimal code followed by the two-character access code. The access
codes are probe-specific and are defined in the Trace buffer display entries in this encyclope­
dia. When displaying collected trace, only the least significant eight bits are used.

The PICE system has a free-running counter that counts to 2048 before wrapping around to O.
(Use the TIMEBASE pseudo-variable discussed in the TIMEBASE entry in this encyclopedia
to set the time increment.) When the PICE system starts tracing, the value of the counter goes
to the trace buffer, and the TIME column displays execution time. Frame 0 always starts at
time 0.0.

Encyclopedia 1-299

PRINT continued

If you interrupt the trace, the FICE system starts another clock that runs until tracing resumes.
If a wrap-around occurs (Le., the counter reaches 2048), the PICE system sets the level flag.
When you resume tracing, the LEVEL column is incremented by one (regardless of how many
wrap-arounds occurred), and the TIME column is reset to 0.0. Note that you may have lost
time calibration because you do not know how many wrap-arounds occurred while the trace
was interrupted.

Examples

1. The following example shows a sample 8086/8088 probe trace buffer displayed in IN­
STRUCTIONS mode.

* TrtNS;J;SQ'();J;.QI\J$
FRAME ADR BYTE MNEMONICS OPERANDS UNIT 0
001 oo0204H FA ClI
002 oo0205H 2E8E16oooo MOV SS,CS:WORD PTR ooooH
008 oo02oAH BC7200 MOV SP,0072H ;+1141
ooA oo02oDH 2E8E1E2EBC MOV DS,CS:WORD PTR oBC2EH
010 oo0212H EAooo1210oo JMP o021H:oloOH
015 oo0310H 8BEC MOV BP,SP
017 oo0312H FB STI
018 oo0313H 2E8D608oo lEA AX,CS:WORD PTR oo08H
OLD oo0318H DE PUSH CS
020 oo0319H 50 PUSH AX

oo0390H-SW-0021H
023 oo031AH 9A34oo3Aoo CAll o03AH:0034H

oo038EH-SW-0008H oo03BCH-SW-0021H
028 oo03D4H lE PUSH DS

oo038AH-SW-oloFH
o2B oo03D5H 55 PUSH BP

oo0388H-SW-0032H
o2E oo03D6H 8BEC MOV SP,SP

oo0386H-SW-0072H
030 oo03D8H 8EDEoAH MOV DS,[BP+oAH]

oo0390H-SR-0021H
035 oo03DBH 8B5EoB MOV BX,[BP+oBH]

oo038EH-SR-0008H
038 oo03DEH BFoooO MOV DI,o
o3A 0003E1H BACEOo MOV DX,oOCEH ;+2061

1-300 Encyclopedia

PRINT continued

2. The following example shows a sample 8086/8088 probe trace buffer in unit 0 displayed in
CYCLES mode.

*PRINTC;YCCES
EXEC ADR 8US ADR
x b 000202
x 000202 b
x b 000204
x 000204 b
x b 000206
x b 000208
x b 000200
x 000200 b
x b 000202

Cross-References

Expression
Partition
SYMBOLIC
TIMEBASE
Trace buffer display

Encyclopedia

DATA
d C388 s
d s
d FAE2 s
d s
d F8E8 s
d Eo01 s
d C103 s
d s
d C388 s

STATUS
0054 F

0054 F

0054 F
0054 F
0054 F

0054 F

CLIPS FRAME TIME LEVEL UNIT 0
c fOOD
c 02 f 001 0.0 nanosecs 0
c f 002
c 02 f 003 0.8 microsecs 0
c f 004
c f 005
c f 006
c 83 f 007 4.4 microsecs 0
c f 008

1-301

PRoe
Defines, displays, or executes
a debug procedure

Syntax

[DEFINE) PROC debug-procedure-name [DO
PICE commands *

END)

Where:

PROC debug-procedure-name displays the definition of the named
procedure.

DEFINE PROC debug-procedure-name DO defines a debug procedure.
PICE commands

END

Discussion

The following sections explain how to use debug procedures.

DefIning and Executing Procedures

1-302

With procedures you can use several commands in a block structure and declare local varia­
bles. However, the procedure can be several nested blocks. The only limit on the size of
procedures is the amount of memory space available.

Although a debug procedure is not executed until its name is invoked, the PICE system checks
the syntax when the procedure is defined and determines the types of all referenced objects.
Changing the type or definition of an object in the procedure before it is executed can cause
errors when the procedure is executed.

Procedures can be defined within other procedures. The inner procedure is not visible to the
FlCE system until the outer procedure is executed. Once procedures become visible to the
system, they are always global, even when nested inside other procedures.

NOTE

You must define debug objects before they can be referenced by a debug procedure.

Delete debug procedures with the REMOVE command.

Encyclopedia

PRoe continued

Returning Values from Procedures

Use the RETURN function to return procedure values. The syntax of the RETURN function is
as follows:

RETURN [expression]

An error occurs when a procedure expects a return value and does not receive one. The
expression must be a Boolean value or an expression that evaluates to a Boolean value. Omit­
ting expression halts execution of that procedure after the RETURN.

Passing Parameters in Procedures

Use the percent sign (%) in the PROC definition to tell the PICE system that you will furnish
parameters when you invoke the debug procedure.

%NP

%number

%(expression)

Examples

A predefined system parameter equal to the number of
parameters passed in the debug procedure.

A parameter number that selects that parameter from the
list following the debug procedure invocation. Numbers
range consecutively from 0 to 99.

Used instead of number but requires parentheses. Must
evaluate to a number between 0 and 99.

1. Define and execute a simple procedure that averages three parameters.

Encyclopedia

* * 5

1-303

PRoe continued

2. Define, display, and execute a more complex averaging procedure. Data is supplied by the
parameter list.

* *RRl1>'C:Mr
define proc AVER=do
define integer SUM=O
def ine byte I=O
count %NP
SUM=SUM+%(I)
I=I+1
endcount
return SUM / %NP
end
*_;I~I~R!gj
+10
*11II1~I;rj.;

/* Define the debug procedure */

/* Initialize variables */
/* Count is equal to the total number of parameters * /

/* Add I to the sum */
/* Increment I */

/* Return the average of all the parameters */

/* Display the debug procedure definition*/

/* Execute the debug procedure */

+2
*.II.;fI._I.ji.ill~~~!~'I~!1
* +5

/* Average integers */

*;g5filtllS!REUf.i##i~~1 •••
* /* Average real numbers. The result is truncated because SUM is an integer */
+2

Cross-Reference

Name

1-304 Encyclopedia

Pseudo-variable
A system-defined variable

Pseudo-variables are a cross between commands and variables. Like commands, pseudo­
variables initiate operations. For instance, ports are not only displayed with the PORT pseudo­
variable but also read or written. Like variables, pseudo-variables are named, have a value, can
be assigned and displayed, and can be used in expressions, as shown in the following command
line using the RSTEN pseudo-variable:

Pseudo-variables are predefined by the FlCE system and cannot be removed. Their value
range is also predefined and can only be changed within that range.

The FICE pseudo-variables are the following:

Encyclopedia

$
BASE
BTHRDY (probe specific)
BUSACT
COENAB (probe specific)
COREQ (80286 probe specific)
CPMODE (probe specific)
CURX
CURY
ERROR
GRANULARITY (80286 probe specific)
IORDY
MEMRDY
NAMESCOPE
PC HECK (80286 probe specific)
PHANG (8086/8088 and 80186/80188 probe specific)
PORT
QSTAT (80186/80188 probe specific)
RSTEN
SCTR
SEL286 (80286 probe specific)
SYMBOLIC
TIMEBASE
TRCBUS
UNIT
WAITSTATE
WPORT
XCTR

1-305

Pseudo-variable continued

1-306

The 8086/8088 flags and registers, the 8087 registers, the 80186/80188 flags and registers, the
80286 flags and registers, and the 80287 registers are all pseudo-variables and are listed in
their respective entries in this encyclopedia.

Encyclopedia

Syntax

PSTE
Single-steps through user programs
by high-level language instructions

PSTEP [increment) [FROM address)

Where:

PSTEP

increment

FROM address

Discussion

executes by numbered high-level language statements.

is an unsigned integer expression in the current base
specifying the number of steps to take. The default in­
crement is 1. The maximum increment value is 65,535T.

specifies a starting address where PSTEP is to begin.
The default start address is the current execution point
($). (The Address entry in this encyclopedia contains
more information on addresses.)

The PSTEP command single-steps through user programs by high-level language statements.
The PSTEP command executes the next consecutive statement and halts. If the next consecu­
tive statement is a direct call to a procedure, the PSTEP command treats the procedure call and
the statements in the called procedure as a single instruction. The PSTEP command handles
indirect calls as multiple instructions.

Break messages are not displayed. Use the CAUSE command to display break messages.

After PSTEP executes a line, it displays a message of the following form:

[: module-name#line-number)

Encyclopedia 1-307

PSTEP continued

NOTE

When you use any of the probes, stepping through an instruction that alters a segment
register executes two instructions.

When you use the 8086/8088 probe, the instruction being single-stepped must not access
locations 4 through OBH. Stepping through a POPF or IRET instructions may clear the
trap flag (TF) if the instruction is programmed that way. To enable single-stepping
without clearing the TF, define the event register and procedure, as shown in the follow­
ing example. Because PSTEP uses the hardware break facility, it may slide through an
instruction.

Any NMIs are ignored when you step using the 8086/8088 probe.

Cross-References

1-308

Address
Expression
ISTEP
LSTEP

Encyclopedia

Syntax

PUT pathname

Where:

pathname

mtype

name

Discussion

DEBUG
ARM REG
BRKREG
EVTREG
SYSREG
TRCREG
PRGC
LITERALLY
mtype
name

PUT
Creates and saves system file

contents from memory to file

,ARMREG
,BRKREG
,EVTREG
,SYSREG
,TRCREG
,PRGC
,LITERALLY
,mtype
,name

is the fully-qualified reference to the fIle into which you
want to save debug objects. See the pathname entry in
this encyclopedia.

is one of the memory types defined in the Mtype entry in
this encyclopedia.

is the name of a debug object to be created and saved.

The PUT command saves the definitions of debug procedures, LITERALLY definitions, de­
bug memory types, and debug registers to a disk fIle. The values of debug memory types are
not saved.

The PUT command creates a fIle to which it saves debug definitions. When the named fIle
exists, the question "Overwrite existing fIle? (y or [nD" is displayed.

By using the DEBUG option, all debug objects"are saved. If you specify ARMREG, BRKREG,
EVTREG, SYSREG, TRCREG, PROC, or LITERALLY, the PUT command saves all debug
objects of that type. If you use just the name of a debug object, only that one is saved.

A PUT file can reside on any suitable random-access device.

Encyclopedia 1-309

PUT continued

NUfE

Do not repeat keywords in the command. For example, the following PUT command is
incorrect:

Examples

1-310

1. Create and PUT debug objects to an existing file. (If you have an mM PC host, disregard
the symbol" :f2: ','; assume the file is in your current hard disk directory. To PUT the file,
you would use the command: PUT debug.inc)

/* Create debug objects */

Another way to save s_factor and r_factor is as follows:

2. Restore and list the debug objects from the file:

Encyclopedia

Cross-References

ARMREG
BRKREG
EVTREG
LITERALLY
Mtype
Name
Pathname
PROC
SYSREG
TRCREG

Encyclopedia

PUT contiru..Ied

1-311

QSTAT
80186/80188 probe specific

A pseudo-variable that selects
the probe configuration mode

Syntax

QSTAT = FALSE [
=TRUE

= boolean-expression

Where:

QSTAT

TRUE

FALSE

boolean-expression

displays the current setting.

selects the queue status signal line configuration: QSO,
QSl, and QSMD.

selects the standard signal line configuration: ALE,
WR, and RD.

is any expression in which the low-order bit evaluates to
o (false) or 1 (true).

Default Value

FALSE

Discussion

1-312

The QSTAT command determines which signal set the 80186/80188 PICE probe emulates.
The QSTAT configuration remains in affect until you change it with the QSTAT command.

NOTE

If your microprocessor is configured for queue status signal line, you must set the
QSTAT command to TRUE before using the PICE system.

Encyclopedia

Syntax

REAL partition

Where:

REAL partition

partition

expression

mtype

Discussion

= expression [, expression] *
= mtype partition

Displays or changes memory
as 32-bit floating-point values

displays the contents of memory specified by partition
as a real number in scientific notation.

is a single address, an expression that evaluates to a sin­
gle address, or a range of addresses specified as address
TO address or address LENGTH number-oJ-items.

converts to a 32-bit floating-point value for REAL.

is any of the memory types except ASM.

The REAL command interprets the contents of memory as 32-bit floating-point values, over­
riding any type associated with the memory contents. Thus, REAL . varl displays the 32-bit
floating-point decimal value that begins at the address of varl, regardless of the type of varl.

Examples

In the following examples, the FICE system responses to the commands are shown in decimal
because all real numbers are displayed in decimal, regardless of the base of the input informa­
tion.

1. Display a single value:

*AEAt$
0020:0006H +2·29701E-25

2. Display several adjacent values:

* AeAt$t..ENQl"H.4
0020:0006H +2.29710E-25 +3.03730E-25 +1.50539E -20 +3·60534E-31

Encyclopedia 1-313

REAL continued

3. Set a single value of type REAL:

4. Set several adjacent values:

Display the values set:

*_1 -.\1
0040:0004H 1.23457E+8

5. Set a range of locations to the same value:

6. Set a repeating sequence of values:

+1.23000E+2 -9.00000E+3

7. Copy a value from one memory location to another:

8. Copy several values (block move):

9. Copy values with type conversion:

An error message is displayed if the type on the right side of the equal sign cannot be
converted to the type on the left. (Refer to the Expression entry in this encyclopedia for the
rules concerning type conversions.)

Cross-References

1-314

Expression
Mtype
Partition

Encyclopedia

Syntax

Displays or modifies 8086/8088
register values

BOB6lBOBB-register [= expression]

Where:

BOB6lBOBB-register

expression

displays the current value of the 8086/8088 register and
is one of the keywords in Table 1-26.

is an expression of the correct data type used to set a
register value.

Table 1-26 8086/8088 Register Keywords

Register Keyword Description Data Type

Data Registers AX Accumulator register pair WORD
AH Accumulator high byte BYTE
AL Accumulator low byte BYTE
BX B register pair WORD
BH B register high byte BYTE
BL B register low byte BYTE
CX C register pair WORD
CH C register high byte BYTE
CL C register low byte BYTE
DX D register pair WORD
DH D register high byte BYTE
DL D register low byte BYTE

Pointer/Index SI Source index WORD
Registers DI Destination index WORD

BP Base pointer WORD
SP Stack pointer WORD

Segment Registers CS Code segment WORD
DS Data segment WORD
ES Extra segment WORD
SS Stack segment WORD

Instruction Pointer IP Instruction pointer WORD

Encyclopedia 1-315

8086/8088 Registers continued

Discussion

Use the 8086/8088 register keywords to display or change register values. You can display
registers singly (using the keywords listed in Table 1-26) or in groups (using the REGS com­
mand). All registers are displayed in the current radix.

Example

Display and change 8086/8088 registers:
*ft·SOS

REGISTERS FOR PROBE 0000
AX=0004 BX=063A
CS=5588 DS=0188
IP=46C7 BP=0634
DI=03A2
FLAGS: ZFL PFL
dtH
DOH
*C$
5588H
*fl?~;;i46e9
*lP
46C9H

Cross-Reference

Expression

1-316

CX=OOOO
SS=0104
SP=0624

DX=0002
ES=oooo
SI=083o

Encyclopedia

Syntax

BOB7-register [= expression]

8087 Registers
Displays or modifies
8087 register values

Where:

BOB 7-register

expression

8087 Register
Keyword

STO
ST1
ST2
ST3
ST4
ST5
ST6
ST7
FSW
FCW
FIA
FDA
FlO
FTW

displays the current value of the register and is one of
the keywords in Table 1-27.

is an expression of the correct data type used to set a
register value.

Table 1-27 8087 Register Keywords

Description Data Type

Internal stack register 0 TEMPREAL
Internal stack register. 1 TEMPREAL
Internal stack register 2 TEMPREAL
Internal stack register 3 TEMPREAL
I nternal stack register 4 TEMPREAL
Internal stack register 5 TEMPREAL
Internal stack register 6 TEMPREAL
Internal stack register 7 TEMPREAL
Status word WORD
Control word WORD
Instruction address DWORD
Data address DWORD
Instruction WORD
Tag Word WORD

Discussion

The 8087 register keywords display or change register values. Entering any keyword alone
displays the current value of that register.

Encyclopedia

NffiE

Coprocessor registers can be displayed or modified only when the coprocessor is in
mode 2 (refer to the CPMODE entry in this encyclopedia) and the probe is not emulat­
ing. You must enter the GET87 command before accessing coprocessor registers.

1-317

8087 Registers continued

Examples

1. Display the ST4 register:

*114
+2.3596874320856382E+00001

2. Change the STO register:

3. Change the data address:

4. Display the instruction opcode in hexadecimal:

* * OOA

Cross-References

1-318

CPMODE
Expression

Encyclopedia

Syntax

80186/80 188-register [= expression I

186/80188 Registers
88 probe

Displays or modifies
80186/80188 register values

Where:

Encyclopedia

80186/80188-register

expression

displays the current value of the 80186/80188 register
and is one of the register keywords listed in Table 1-28.

is an expression (of the correct data type) used to set
register values.

Table 1-28 80186/80188 Register Keywords

Register Keyword Description

Data Registers AX Accumulator register pair
AH Accumulator high byte
AL Accumulator low byte
BX B register pair
BH B register high byte
BL B register low byte
CX C register pair
CH C register high byte
CL C register low byte
DX D register pair
DH D register high byte
DL D register low byte

Pointer/Index Registers 81 Source index
DI Destination index
BP Base pointer
8P Stack pointer

Segment Registers CS Code segment
DS Data segment
ES Extra segment
SS Stack segment

Instruction Pointer IP Instruction pointer

1-319

80186/80188 Registers continued

Table 1-28 80186/80188 Register Keywords (continued)

Register Keyword Description

Internal Register CSCTRL Chip select control register index range = (1-5)
Map Index DMAO DMA descriptors, channel 0 index range = (1-6)

DMA1 DMA descriptors, channel 1 index range = (1-6)
INTRPT Interrupt controller registers index range = (1-16)
TIMERO Timer 0 control registers index range = (1-4)
TIMER1 Timer 1 control registers index range = (1-4)
TIMER2 Timer 2 control registers index range = (1-4)

Flags Register FLAGS All flags

Relocation Register RELREG Relocation register, internal peripheral control

Discussion

1-320

Use 80186/80188 register keywords to display or change register values. Entering any register
keyword alone displays the current value of the 80186/80188 register.

You can display registers individually (using the keywords listed in Table 1-28) or as a group
(using the REGS command). All registers are displayed in the current base.

A write to an unused or read-only internal peripheral control register is not controlled by the
80186/80188 probe. No error message will result, but the write will not occur. Reads from
write-only registers will produce unpredictable data.

The internal register map index keywords in Table 1-28 are PICE pseudo-variables. They
permit direct access to the word at that location on the chip. Each keyword must be followed by
the index value in parentheses. The index values range from 1 to the maximum value listed in
Table 1-28; all indexes are in the current radix. For example, the following command changes
the value of the max count A register for internal timer 1.

/*count to 4K*/

The following command changes the value of the lower memory chip select register.

Figure 1-14 illustrates how the keywords match the internal registers. It also cross-references
the 80188/80186 register names listed in the iAPX 186 chip literature.

Encyclopedia

FICETM System

Keyword 80186/80188 Register Name

RELREG

DMAI(6)

DMAI(5)

DMAI(4)

DMAI(3)

DMAH2)

DMAI(1)

Relo_cation Register

Unused

Control Word

Transfer Count

Destination Pointer (upper 4 bits)

Destination Pointer

Source Pointer (upper 4 bits)

Source Pointer

Unused

Offset

from

RELREG

Value

(Hexadecimal)

------~--

FE

DC·FC

DA

D8

D6

D4

D2

DO

CC·CE

}
DMAO(6)

DMAO(5)

DMAO(4)

DMAO(3)

DMAO(2)

DMAO(l)

Control Word

Transfer Count

Destination Pointer (upper 4 bits)

Destination Pointer

Source Pointer (upper 4 bits)

Source Pointer

CA

J
C8

C6

C4

C2

CO

CSCTRL(5)

CSCTRL(4)

CSCTRL(3)

CSCTRL(2)

CSCTRL(l)

TIMER2(4)

TIMER2(3)

TIMER2(2)

TlMER2(1)

TIMERl (4)

TIMER1 (3)

TIMERl (2)

TlMER1 (1)

TIMERO(4)

TIMERO(3)

TIMERO(2)

TIMERO(l)

INTRPT(10

INTRPT(F)

INTRPT(E)

INTRPT(D)

INTRPT(C)

INTRPT(B)

INTRPT(A)

INTRPT(9)

INTRPT(8)

INTRPT(7)

INTRPT(6)

INTRPT(5)

INTRPT(4)

INTRPT(3)

INTRPT(2)

INTRPT(l)

)

Unused AA·BE

MPCS Register A8

MMCS Register A6

PACS Register A4

LMCS Register A2

UMCS Register AO

Unused 68·9E

Mode Control Word 66

Unused 64

Maximum Count A 62

Count Register 60

Mode Control Word 5E

Maximum Count B 5C

Maximum Count A 5A

Count Register 58

Mode Control Word 56

Maximum Count B 54

Maximum Count A 52

Count Register 50

Unused 40-4E

Interrupt 3 Control Register 3E

Interrupt 2 Control Register 3C

Interrupt 1 Control Register 3A

Interrupt 0 Control Register 38

DMA 1 Control Register 36

DMA 0 Control Register 34

Timer Control Register 32

Interrupt Controller Status Register 30

Interrupt Request Register 2E

In· Service Register 2C

Priority Mask Register 2A

Mask Register

Poll Status Register

Poll Register

EOI Register

Unused

28

26

24

22

20

Interrupt

Control

Registers

(non·iRMXTM Mode)

1
t

l
I

f
'\

I

~

/

Relocation Register

DMA Channel 1

Control Registers

DMA Channel 0

Control Registers

Chip Select

Control Registers

TIMER2 Control

Registers

TIMER1 Control

Registers

TIM ERO Control

Registers

Unused

Unused

INTRPT(10)

INTRPT(F)

INTRPT(E)

INTRPT(D)

INTRPT(C)

INTRPT(B)

INTRPT(A)

INTRPT(9)

INTRPT(6)

INTRPT(7)

INTRPT(6)

INTRPT(5)

INTRPT(4)

INTRPT(3)

INTRPT(2)

INTRPT(l)

Level 5 Control Register (TIMER2)

Level 4 Control Register (TIMER 1)

Level 3 Control Register (OMAn

Level 2 Control Register (OMAO)

Level 0 Control Register (TIMER 0)

Unused

Interrupt Request Register

In· Service Register

Priority· Level Mask Register

Mask Register

Unused

Unused

Specific EOI Register

Interrupt Vector Register

Interrupt

Control

3E

3C

3A

38

36

34

32

30

2E

2C

2A

28

26

24

22

20

Registers
(;RMXTM Mode)

[\

(,

/~

1356

Figure 1-14 80186/80188 Internal Register Map to PICETM System Keyword Cross-reference

Encyclopedia 1-321

80186/80188 Registers continued

Examples

1-322

1. Display the 80186/80188 probe registers.

*
* REGISTERS FOR UNIT 00
AX=0004 BX=063A
CS=5588 DS=0188
IP=46C7 BP=0634
DI=03A2 RELREG=2oFF
FLAGS: ZFL PFL
*E$#''$(JFF

* 5588H

* * 46C9H

CX=OOOO
SS=0104
SP=0624

DX=0002
ES=oooo
SI=083o

/*Move internal registers to 110 space*/

Encyclopedia

Displays or modifies 80286 registers

Syntax

80286-register[= expression]

Where:

80286-register

expression

80286
Register
Keyword

AX
AH
AL

BX
BH
BL

CX
CH
CL

DX
DH
DL

CS
CSBAS*
CSLlM*
CSAR*
CSSEL*

DS
DSBAS*
DSLlM*
DSAR*
DSSEL*

displays the current value of the 80286 register and is
one of the register keywords given in Table 1-29.

is an expression (of the correct data type) used to set an
80286 register value.

Table 1-29 The 80286 Registers

121CETM System Description
Memory Type

Accumulator register pair WORD
Accumulator high byte BYTE
Accumulator low byte BYTE

B register pair WORD
B register high byte BYTE
B register low byte BYTE

C register pair WORD
C register high byte BYTE
C register low byte BYTE

D register pair WORD
D register high byte BYTE
D register low byte BYTE

Code segment register WORD
Code segment register, base DWORD
Code segment register, limit WORD
Code segment register, access rights BYTE
Code segment register, selector WORD

Data segment register WORD
Data segment register, base DWORD
Data segment register, limit WORD
Data segment register, access rights BYTE
Data segment register, selector WORD

• Displayed only when PCHECK = FALSE

Encyclopedia 1-323

80286 Registers continued

Table 1-29 The 80286 Registers (continued)

80286 Description 121CETM System
Register Memory Type
Keyword

ES Extra segment register WORD
ESBAS* Extra segment register, base DWORD
ESLlM* Extra segment register, limit WORD
ESAR* Extra segment register, access rights BYTE
ESSEL * Extra segment register, selector WORD

SS Stack segment register WORD
SSBAS* Stack segment register, base DWORD
SSLlM* Stack segment register, limit WORD
SSAR* Stack segment register, access rights BYTE
SSSEL* Stack segment register, selector WORD

GDTBAS* Global descriptor table, base DWORD
GDTLlM* Global descriptor table, limit WORD

IDTBAS* Interrupt descriptor table, base DWORD
IDTLlM* Interrupt descriptor table, limit WORD

LDTBAS* Local descriptor table register, base DWORD
LDTLlM* Local descriptor table register, limit WORD
LDTAR* Local descriptor table register, access rights BYTE
LDTSEL * Local descriptor table register, selector WORD

TR* Task register WORD
TRBAS* Task register, base DWORD
TRLlM* Task regsiter, limit WORD
TRAR* Task register, access rights BYTE
TRSEL* Task register, selector WORD

FLAGS Flags register (see Flags entry). WORD
MSW Machine status word (see Flags entry). WORD

BP Base pointer WORD
SP Stack pOinter WORD
IP Instruction pointer WORD

DI Destination index WORD
SI Source index WORD

• Displayed only when PCHECK = FALSE

1-324 Encyclopedia

80286 Registers continued

Discussion

The segment registers, the task register, and the local descriptor table register each contains a
selector field. The selector field identifies a descriptor (a segment descriptor, a task state
segment descriptor, or a local descriptor table descriptor, respectively) and contains the re­
quested privilege level.

Modifying the task register while in interrogation mode may affect the current task state seg­
ment.

How FICE commands access the segment registers, the task register, and the descriptor table
registers depends on the protection enabled bit in the MSW and the setting of the PC HECK
pseudo-variable.

The Selector Field

Bit 15

The segment selector points to a segment descriptor in either the local descriptor table (LDT)
or the global descriptor table (GDT). The local descriptor table register (LDTR) selector and
the task register (TR) selector each choose a descriptor in the GDT.

Figure 1-15 shows the bit pattern of a selector.

The Selector Register Description

4 2 o
Keyword r--~T~Li-.--R~~~L--.

c-=-- Requested privilege leve'·
. ______ Table indicator·

L--___________________________________ An offset value into the selected

descriptor table

* Additional information:

TI 0 Selects the GOT. Must be 0 if the selector belongs to the LOTR or the TR.
1 Selects the LDT.

RP l If the RPl is numerically larger than the current privilege level (CPL), it overrides the CPl.

Figure 1-15 Selector Register Bit Pattern

Encyclopedia

1602

1-325

80286 Registers continued

The Task Register.

The task register contains the task state segment selector and a copy of the task state segment
descriptor. The task state segment selector points to the task state segment descriptor in the
global descriptor table.

When a task switch operation occurs, the 80286 saves the outgoing task's state in the outgoing
task's task state segment (TSS) and loads the task register with the incoming task's TSS selector
and TSS descriptor (TSSD).

Modifying the Task Register with the TR Pseudo-Variable

The TR pseudo-variable represents the selector portion of the task register. Setting TR to a new
value while in interrogation mode changes the current TSS. The current task becomes the
outgoing task; the new task becomes the incoming task.

However, unlike a task switch operation, modifying the task register with the TR pseudo­
variable does not set the task busy flag or the link field in the incoming TSS.

The task busy flag is part of the access field of the TSSD. When you switch tasks with a CALL
or INT instruction, the incoming and outgoing task state segment descriptors are marked busy
and the task register is loaded with the incoming task state segment selector. The 80286 then
automatically updates the TR's explicit cache with the new task state segment descriptor.

The value in TR before the modification points to the outgoing TSSD, which points to the
outgoing TSS. The PICE system updates the outgoing TSS with the current register values. The
value you put into TR points to the incoming TSSD. If an error occurs while setting TR, the
TSS and TR remain unchanged.

Figure 1-16 illustrates how the PICE system treats the TSS.

80286 Registers, 80286 Protection Mode, and Protection Checking

1-326

The protection enabled flag (PEF) in the MSW determines whether the 80286 is in protected
mode (PEF = 1) or real mode (PEF = 0).

The setting of the PCHECK pseUdo-variable determines whether FICE protection checking is
on (PCHECK = TRUE) or off (PCHECK = FALSE).

The setting of the SEL286 pseudo-variable determines whether the FICE system performs
80286 address translation (SEL286 = TRUE) or 8086 address translation (SEL286 = FALSE).

Encyclopedia

80286 Registers continued

Task 1

task~switch

-------1.~ Task 2

I'ICE'· System break >

The 121CETM system enters interrogation mode.

The task register contains the selector for task 2'5 T55.

The TSS command displays task 2's TSS. Because task 2 has not
experienc;ed a task switch, task 2's TSS contains initialization values. These
values are not necessarily equal to the actual values of the 80286 registers.

Use I'ICE'· System commands to modify 80286 registers, These modifications
are not recorded in task 2's TSS. Task 2's TSS still contains the initialization
values.

Load the task register with the selector for task l's T55. The TSS command
displays task 1 's TSS. The 121CETM system updates task 2's TSS. Task 2's
TSS now contains the values of the 80286 registers that were available
when you loaded the task register with the selector for task 1 's TSS. The
new values in task 2'5 TSS now include any register updates made while the
task register contained the selector for task 2'5 T55.

1603

Figure 1-16 Updating the TSS by Changing the TR

The PEF and PCHECK pseudo-variables affect how you access the segment registers, the
MSW, the descriptor table registers, and the task register, SEL286 and PCHECK detennine
how you access 80286 program memory, The results of the various pseudo-variable configura­
tions are as follows:

Real mode, protection checking on:

Real mode, protection checking off:

Protected mode, protection checking on:

Protected mode, protection checking off:

Encyclopedia

PEF=O
SEL286 = FALSE
PCHECK = TRUE

PEF=O
SEL286 = FALSE
PCHECK = FALSE

PEF=l
SEL286 = TRUE
PCHECK = TRUE

PEF=l
SEL286 = TRUE
PCHECK = FALSE

1-327

80286 Registers continued

Accessing the Segment Registers

In real mode with protection checking on, you can display and alter segment selectors. Do this
with the pseudo-variable that identifies the register, not the pseudo-variable that identifies the
selector field. For example, use DS, not DSSEL. In real mode, the segment base field (part of
the explicit cache) tracks the selector field.

In real mode with protection checking off, you can display and alter all segment register fields.
The pseudo-variable that identifies the register (for example, DS) operates differently than the
pseudo-variable that identifies the selector field (for example, DSSEL). Changing the selector
field with DS changes the segment register's explicit cache. In real mode, the segment base
field tracks the selector field. Changing the selector field with DSSEL changes only the selec­
tor field.

In protected mode with protection checking on, you can display but not alter all segment
register fields. You can explicitly alter only the selector field. You must use the pseudo-variable
that identifies the register, not the one that identifies the selector field. For example, use DS,
not DSSEL. Changing the selector field updates the segment register's explicit cache.

In protected mode with protection checking off, you can display all segment register fields.
You can explicitly alter each field. The pseudo-variable that identifies the register (for exam­
ple, DS) operates differently than the pseudo-variable that identifies the selector field (for
example, DSSEL). Changing the selector field with DS automatically updates the segment
register'S explicit cache. The FICE system goes to the appropriate descriptor table and copies
the selected segment descriptor. Changing the selector field with DSSEL changes only the
selector field.

The Descriptor-Thble Registers

1-328

The 80286 has three types of descriptor tables: the global descriptor table, the local descriptor
table, and the interrupt descriptor table. The descriptor table registers are the GDTR, the
LDTR, and the IDTR, respectively.

The FICE system treats the LDTR like a segment register. Note, however, that the TI bit in the
LDTR selector field must identify the GDT (TI must be 0).

The GDTR and the IDTR do not have selector or access fields. SEL86 and PCHECK deter­
mine how you can access these registers.

In real mode with protection checking on, the pseudo-variables identifying the base and limit
fields are inaccessible.

In real or protected mode with protection checking off, you can explicitly alter the base, limit,
and access fields.

In protected mode with protection checking on, you can only display the base, limit, and access
fields.

Encyclopedia

The Task Register

With regard to the protection rules, the PICE system treats the TR like a segment register. Note
that in protected mode with protection checking on, the TI bit in the TR selector field must
identify the GDT (TI must be 0).

Validity Checking

In real mode, the PICE system ignores the protection rules and does not check the validity of
the selector assignments.

In protected mode with protection checking on, the PICE system checks the validity of the
selector assignments.

In protected mode with protection checking off, the PICE system does not check the validity of
the selector assignments.

Examples

1. Load the task register:

* IA:Si¥ilQH:SA:SI
HEX

* * OOFO

!*Setting the default radix to hexadecimal*!

2. Display the registers when PCHECK = TRUE and the probes is in real mode:

REGISTERS FOR UNIT 0
AX=OOb4 BX=OOOb
SP=03F2 BP=0007
IP=FFFO
(S=FOOO DS=OOOO
FLAGS: none
MSW : none

Encyclopedia

(X=OOOO
SI=0311

ES=OOOO

DX=OODE
DI=0030

SS=OOOO

1-329

80286 Registers continued

3. Display the registers when PCHECK = FALSE and the probe is in protected mode:

REGISTERS FOR UNIT 0
GDT=DA28 LDT=1328
AX=DDb4 BX=DDDb
SP=D3F2 BP=DDD7
IP=DDDD
CSSEL=DD24
DSSEL=DD28
ESSEL=DD38
SSSEL=DD28
LDTSEL=DDDD
GDTBAS=DDD91D
TRSEL=DDb8
FLAGS: ZFL
IOPL=DD
MSW : MPF PEF

CSBAS=DDDE9D
DSBAS=DDD14D
ESBAS=DDDE9D
SSBAS=DDD14D
LDTBAS=DDDD7D
GDTLIM=D2C7
TRBAS=DDD5AD

PFL NFL

Cross-Reference

1-330

Address protection
Expression
Flags
PCHECK

IDT=1D28
CX=DDDD
SI=D311

CSLIM=DD3D
DSLIM=D3FF
ESLIM=DD3D
SSLIM=D3FF
LDTLIM=DDEF
IDTBAS=DDDBED
TRLIM=DD2B

DT=5128
DX=DDDE
DI=DD3D

CSAR=9B
DSAR=93
ESAR=93
SSAR=93
LDTAR=7F
IDTLIM=D18F
TRAR=FF

Encyclopedia

Displays or modifies 80287 registers

Syntax

80287-register[= expression]

Where:

80287-register

expression

80287 Register
Keyword

STO
ST1
ST2
ST3
ST4
ST5
ST6
ST7

FCW
FSW
FTW

Real Mode
FIA
FDA
FlO

Protected Mode
FIP
FCS
FDOFF
FDSEL

Encyclopedia

displays the current value of an 80287 register and is one
of the keywords listed in Table 1-30. Figure 1-17 shows
the bit pattern of the control word. Figure 1-18 shows
the bit pattern of the status word. Figure 1-19 shows the
bit pattern of the tag word.

is an expression (of the correct data type) that is used to
set an 80287 register value.

Table 1-30 The 80287 Registers

Description I2ICETM System
Memory Type

Stack register 0 TEMPREAL
Stack register 1 TEMPREAL
Stack register 2 TEMPREAL
Stack register 3 TEMPREAL
Stack register 4 TEMPREAL
Stack register 5 TEMPREAL
Stack register 6 TEMPREAL
Stack register 7 TEMPREAL

Control word WORD
Status word WORD
Tag word WORD

Instruction address DWORD
Data address DWORD
Instruction opcode WORD

Instruction offset WORD
Code segment selector WORD
Data operand offset WORD
Data operand selector WORD

\-331

80287 Registers (80286) continued

The Control Word

Bit 15

Keyword I
13 12 11

I IC I

* Additional information:

Ie 0 = projective
= affine

10

RC I

RC 00 = round to nearest or even

9 8

PC I

01 = round down (toward negative infinity)
10 = round up (toward positive infinity)
11 = chop (truncate toward zero)

PC 00 ~ 24 bits
01 = reserved
10 ~ 53 bits
11 ~ 64 bits

PM When 1, masks a precision exception
UM When 1, masks an underflow exception
OM When 1, masks an, overflow exception
ZM When 1, masks a zero-divide exception

7

OM When 1, masks a denormalized operand exception
1M When 1, masks an invalid operation exception

6 5 4 3 2 o
I PM I UM I OM I ZM I ON I 1M I

I I L

Figure 1-17 The Control Word Bit Pattern

Description

Invalid operation mask*
Denormalized operand mask*
Zero mask*
Overflow mask*
Underflow mask*
Precision mask*
Reserved
Precision control*
Rounding control*
Infinity control*
Reserved

1604

1-332 Encyclopedia

80287 Registers (80286) continued

Discussion

The 80287 is a numeric processor extension designed for use with the 80286. It extends the
iAPX 286/10 architecture with floating point, extended integer, and binary coded decimal data
types and adds over 50 mnemonics to the instruction set. The iAPX 286/20 (80286 with 80287)
fully conforms to the proposed IEEE floating-point standard.

The 80287 runs in real or protected mode. It must run in the same mode as the 80286.

When both the 80286 and 80287 are in real mode, the combination is software-compatible with
the iAPX 86/20 (8086 with 8087) except for the 8087 interrupt status bit (which is not used in
the 80287). In protected mode, all 80287 references to memory for data or status must obey the
80286 memory management and protection rules.

The Status Word Description

Bit 15 14 13 11 10 9 8 7 6 5 4 3 o
Keyword I B I C31 TOP I C2 I C1 I CO I ES I

*Additional information:

B 0 = The numeric execution unit (NEU) is idle
1 ~ The NEU is busy

I PE I UE I OE I ZE I DE I IE I

I I L Invalid operation exception
Denormalized exception
Zero-divide exception
Overflow exception
Underflow exception
Precision exception
Reserved
Error status·
Condition code bit 0
Condition code bit 1
Condition code bit 2
Rounding control·
Infinity control*
Top of stack*
Condition code bit 3
Busy·

TOP The 80287 has eight stack registers (5TO through 5T7). The TOP identifies which stack register is currently at the top of the stack.
Like 80286 memory stacks, the 80287 register stack grows down. A pop stores the value from the current top register in memory,
then increments TOP.

ES 0 = an unmasked exception bit is 0
1 = an unmasked exception bit is 1
The exception bits are bits 5 through O. The control word determines whether the exception bit is masked.

Figure 1-18 The 80287 Status Word Bit Pattern
1605

Encyclopedia 1-333

80287 Registers (80286) continued

After a reset, the 80287 is in real mode. It must execute the FSETPM instruction to enter
protected mode. Once in protected mode, only a reset can return the 80287 to real mode. This
reset must come from the user system.

By using the appropriate pseudo-variable, you can display the 80287 registers in either real or
protected format, independent of the current 80287 mode.

Cross-References

Bit

Keyword

1-334

I

COREQ
CPMODE
Expression

The Tag Word

15 14 13 12 11 10 9 B 7 6

TAG7 I TAG6 I TAG5 I TAG4 I TAG3 I

"Additional information:

The tag word marks the contents of each stack register.

00 ~Valid
01 = Zero
1 O=lnvalid or infinity
11 ~ Empty

5 4 3 2

TAG2 I TAG1 I

I l

Figure 1-19 The Tag Word Bit Pattern

o
TAGO I
~

Description

Tag for stack register O·
Tag for stack register 1 "
Tag for stack register 2"
Tag for stack register 3*
Tag for stack register 4*
Tag for stack register 5*
Tag for stack register 6"
Tag for stack register 7*

1606

Encyclopedia

Syntax

REGS
Displays selected microprocessor

registers and flags set
in the current unit

REGS [unit-number[, unit-number) *
ALL

Where:

unit-number

ALL

Discussion

is the number of the unit for which registers and flags
(0, I, 2, or 3) will be displayed or an expression that
evaluates to 0, 1,2, or 3.

displays the registers and flags for all emulating units.

The REGS command displays the register contents of the current FlCE probe's microprocessor
in the current base. Flags are printed only when they are set. If no flags are set, the word
"none" is displayed.

The FlCE system returns an error if you specify a unit that is emulating.

80286 Probe REGS Command

Which registers the REGS command displays depends on whether the 80286 is in real or
protected mode and whether you have enabled or disabled protection checking.

Real Mode

In real mode, the REGS command displays the AX, BX, CX and DX registers, the stack and
base pointers, the instruction pointer, the flags register, the segment registers, and the machine
status word (MSW). The PCHECK pseudo-variable does not affect this display.

Protected Mode

In protected mode, the PCHECK pseudo-variable affects the display.

When PCHECK is TRUE, the REGS command displays the same registers as in real mode and
also includes the selector fields of the LDT and the TR.

Encyclopedia 1-335

REGS continued

When PCHECK is FALSE, the REGS command displays the same registers as in real mode
and also includes the local descriptor table register, the global descriptor table register, the
interrupt descriptor table register, the task register, and the explicit caches of the segment
registers.

Displaying Flags

When a flag in the MSW or the flags register is set, the REGS command displays the flag's
mnemonic. If no flags are set, the REGS command displays the word "none".

The 1/0 privilege level (lOPL) in the flags register appears as a separate entry. The IOPL is a
number from 0 to 3, sigmfying the privilege level needed to execute 110 instructions.

Examples

1-336

1. The following example shows the 8086/8088 probe register display. Only the ZFL and
PFL flags are displayed because they are the only flags set.

REGISTERS FOR UNIT 0
AX=4
CS=5588
IP=46C7
DI=3A2
FLAGS :

BX=63A
DS=188
BP=634

ZFL PFL

(X=O
SS=104
SP=624

DX=2
ES=o
SI=83o

2. The following example shows the 80186/80188 probe register display. Only the ZFL and
PFL flags are displayed because they are the only flags set.

REGISTERS FOR PROBE 00
AX=4
CS=5588
IP=46C7
DI=3A2
FLAGS :

BX=63A
DS=188
BP=634
RELREG=2oFF

ZFL PFL

CX=O
SS=104
SP=624

DX=2
ES=o
SI=83o

Encyclopedia

3. When the 80286 is in real mode and PCHECK is TRUE or FALSE, the 80286 REGS
command operates as follows:

REGISTERS FOR UNIT 0000
AX=0064 BX=0006 (X=oooo
SP=03F2 BP=0007 SI=0311
IP=FFFo
(S=Fooo DS=oooo ES=oooo
FLAGS: none
MSW: none

DX=OoDE
DI=003o

SS=OOOO

4. When the 80286 is in protected mode and PCHECK is TRUE, the 80286 REGS command
operates as follows:

REGISTERS FOR UNIT 0000
AX=0064 BX=0006
SP=03F2 BP=0007
IP=2922
(S=0020
LDT=oooo
FLAGS :
IOPL=oo

DS=0028
TR=0068

ZFL PFL NFL

MSW: MPF PEF

Encyclopedia

(X=OOOO
SI=0311

ES=0038

DX=ooDE
DI=003o

SS=0028

1-337

REGS continued

5. When the 80286 is in protected mode and PCHECK is FALSE, the 80286 REGS command
operates as follows:

REGISTERS FOR UNIT 0000
GDT=oA28 LDT=1328
AX=0064 BX=0006
SP=03F2 BP=0007
IP=2922
CSSEL=002o
DSSEL=0028
ESSEL=0038
SSSEL=0028
LDTSEL=oooo
GDTBAS=00091o
TRSEL=0068
FLAGS: ZFL
IOPL=oo
MSW : MPF PEF

CSBAS=FF824o
DSBAS=00014o
ESBAS=000E9o
SSBAS=00014o
LDTBAS=000D7o
GDTLIM=02C7
TRBAS=0005Ao

PFL NFL

Cross-References

1-338

80286 Flags
80286 Registers
PCHECK

IDT=1028
CX=OOOO
SI=0311

CSLIM=551E
DSLIM=03FF
ESLIM=003D
SSLIM=03FF
LDTLIM=ooEF
IDTBAS=oooBEo
TRLIM=002B

DT=5128
DX=ooDE
DI=003o

CSAR=9B
DSAR=93
ESAR=93
SSAR=93
LDTAR=7F
IDTLIM=018F
TRAR=FF

Encyclopedia

Syntax

RELEASEIO

Discussion

Resumes emulation
after the HOLDIO command

Use the RELEASEIO command to resume emulation after using the HOLDIO command.

Example

?SE.tiEAselQ

Cross-Reference

HOLDIO

Encyclopedia 1-339

REMOVE
Deletes all user program symbols
or specified debug object definitions

Syntax

REMOVE

Discussion

DEBUG
ARMREG
BRKREG
EVTREG
SYSREG
TRCREG
PROC
LITERALLY
mtype
name

,ARMREG
,BRKREG
,EVTREG
,SYSREG
,TRCREG
,PROC
,LITERALLY
,mtype
,name

Use the REMOVE command to delete user program symbols and debug object definitions.
Note that if you specify a program symbol such as REMOVE ARMREG, all defined
ARM REGs are deleted. To delete a particular ARMREG, specify its name.

Example

1. Remove all user program symbols:

2. Remove a single debug procedure definition:

/*~and_ Y is the name of a defined procedure*/

3. Remove a single debug variable:

*R6M<:>~et.lltpr~ilt /*tempradix is defined as a single variable within a procedure*/

4. Remove all debug procedure definitions:

5. Remove all debug variables of type POINTER:

1-340 Encyclopedia

6. Remove all LITERALLY definitions:

7. Remove a single LITERALLY definition:

*.~.; Define literally GO='g'
*1II1I'I1:'1

Cross-References

ARMREG
BRKREG
EVTREG
LITERALLY
Mtype
Name
PROC
SYSREG
TRCREG

Encyclopedia

REMOVE continued

I*Display the LITERALLY definition*1

1-341

REPEAT
Groups and executes commands
forever or until an
exit condition is met

Syntax

REPEAT

[WHILE boolean-condition]*
U NTI L boolean-condition

PICE commands

END[REPEAT)

Where:

REPEAT

PICE commands

WHILE boolean-condition

UNTIL boolean-condition

END[REPEAT)

executes commands in blocks.

executes until the test condition(s) is met. All FICE
commands are legal except LOAD, EDIT, INCLUDE,
and HELP.

continues to execute while boolean-condition is true.
Execution halts when the WHILE condition is false.

halts execution when the boolean-condition is true.

ends the REPEAT block and starts execution. The op­
tional REPEAT keyword is used to label the block type.

Discussion

A REPEAT block is executed immediately after you enter the END statement. A REPEAT
block not containing WHILE or UNTIL clauses is executed forever or until aborted with
CTRL-C. A REPEAT block containing WHILE or UNTIL exits when any of the test condi­
tions are satisfied.

Example

1. The following example repeats a command:

1-342 Encyclopedia

REPEAT continued

Cross-Reference

Boolean condition

Encyclopedia 1-343

RESET
Reinitializes specified
functions of the 121CE system

Syntax

RESET

Where:

MAP

MAPIO

ICE

UNIT

BREAK

REGS

LA

unit-number

ALL

Cross-Reference

Expression

1-344

MAP
MAPIO
ICE
UNIT
BREAK
REGS
LA

unit-number[,unit-number] *
ALL

restores the program memory map to its initial
GUARDED state (no blocks mapped).

returns all 110 ports to USER status.

reloads the controlling software in the current probe.

activates the RESET pin on the probe processor.

clears any break conditions that were set in the current
probe unit.

resets the processor registers to their default values.

resets all the variables which have been set up for the
logic analyzer function to their default values.

is the number of the unit to be reset (0, 1, 2, or 3) or an
expression that evaluates to 0, 1,2, or 3.

resets all units to their default conditions.

Encyclopedia

Syntax

RSTEN = FALSE

A pseudo-variable that allows
the prototype to reset
the probe processor

[
TRUE

= boolean-expression

Where:

RSTEN

TRUE

FALSE

boolean-expression

Default

TRUE

Example

1. Display the current setting:

* R$1')6 III
TRUE

2. Disable the user reset:

3. Use RSTEN as a variable:

Encyclopedia

displays the current setting (TRUE or FALSE).

lets the prototype or other external signal reset the probe
processor through the reset pin during emulation.

deactivates your connection to the reset pin.

is any expression in which the low-order bit evaluates to
o (false) or 1 (true).

1-345

SASM
Loads memory with assembled
8086/8088/8087/80186/80188/80286
mnemonics

Syntax

SASM address = 'assembler-mnemonic' [, 'assembler-mnemonic' 1 *

Where:

address

assembler-mnemonic

is a single address or an expression that evaluates to a
single address.

is an 8086/8088/8087/80186/80188/80286 instruction.

Discussion

The single line assembler (SLA) converts assembler mnemonics to machine code.

Assembler Directives

The SLA does not support assembler directives. For example, you cannot replace assembler­
mnemonic with MY _ VAR DB ? What you enter for assembler-mnemonic must generate
code.

Assembler Operators

1-346

The SLA does not recognize all the possible assembler operators. The instruction MOV
AL,BYTE PfR [BX] is an incorrect form for the SLA because the SLA does not recognize
PfR. You can still put that instruction into memory with the SLA, but you must code it as MOV
AL,BYTE [BX]. In some cases, a correct form for the SLA is an incorrect form for ASM86.

The following assembler type operators are recognized by the SLA.

BYTE

WORD

DWORD

specifies a number that takes one byte. The correspond­
ing FICE memory type is BYTE.

specifies a 16-bit unsigned number. The corresponding
PICE memory type is WORD.

specifies a number that takes four bytes. The corres­
ponding FICE memory type is POINTER.

Encyclopedia

QWORD

TBYTE

FAR

segment override
prefixes

Jumps and Calls

specifies a number that takes eight bytes. The corres­
ponding FICE memory type is LONGREAL.

specifies a number that takes 10 bytes. The correspond­
ing PICE memory type is TEMPREAL.

specifies that both the CS and IP take part in a IMP or
CALL.

specifies that an operand is to be taken from a non­
default segment (CS:, DS:, ES:, SS:).

The SLA's control transfer instructions Gumps and calls) have different mnemonic conventions
than ASM86. This section discusses the five kinds of jumps and calls: direct-short, direct-near,
indirect-near, direct-far, and indirect-far.

Direct-short Jumps and Calls

The SLA does not produce a direct-short jump or a direct-short call; instead, use a direct-near
jump or a direct-near call, respectively.

Direct-near Jumps and Calls

The direct-near jump and the direct-near call consist of three bytes. The first byte is E9, the
opcode. The next two bytes are the difference between the current location and the destination.

The SLA uses an absolute address as the operand for a direct-near jump and a direct-near call.
For example, to load absolute address 100H with a direct-near instruction that jumps to 105H,
enter the following:

*SASM100H#;:fJMR105H'
000100 E90200

This instruction skips two bytes so the relative displacement from the IP is 0002. To load
absolute address 100H with a direct-near instruction that jumps to absolute address OOFCH,
enter the following:

*sllM •• 1Q(Ja#·raMI>·:.(JJ!1~"'i
000100 E9F9FF

The relative displacement from the IP is FFF9H, which is -7 in 2's complement notation.

Encyclopedia 1-347

SASM continued

Indirect-near Jumps and Indirect-near Calls

The indirect-near jump and the indirect-near call consist of two bytes and possibly a 16-bit
displacement. The first byte is the opcode FF, and the second byte contains the MOD field, the
RIM field, and three more bits of the opcode (lOOY). For example, to load absolute address
200H with an instruction that jumps to the offset contained in BX, enter the following:

*SASM21IHi¥:dMllxr
000200H FFE3

You can get another level of indirection by using brackets ([D. For example, to load absolute
address 200H with an instruction that jumps to the offset stored in the memory location whose
offset is in BX, enter the following:

*ilil~~~iF.~~I~fIIJ~
000200H ... FF27

Direct-far Jumps and Direct-far Calls

The direct-far jump and the direct-far call consist of five bytes. The first byte is the opcode EA,
and the last four bytes contain the offset and selector of the target instruction. The SLA
recognizes a direct-far jump or direct-far call by the FAR operator. For example, to load
location 3:300H with an instruction that jumps to location 12:34, enter the following:

lllla,=slll.,JrUII •• Mlili2t34f
0003:0300H EA34001200

If you leave out the selector of the target address, the SLA assumes zero. For example, JMP
FAR 34H transfers control to location 00:34.

Indirect-far Jumps and Indirect-far Calls

1-348

The indirect-far jump and the indirect-fall call consist of two bytes and possibly a 16-bit
displacement. The first byte is the opcode FE The second byte contains the MOD field, the RI
M field, and three more bits of the opcode (101 Y). For example, to load offset 400H with an
instruction that jumps to the selector and offset stored in the memory location whose offset is in
BX, enter the following:

Encyclopedia

Return-far Jumps and Return-far Calls

ASM86 knows whether a procedure is a near or far return and generates the appropriate
return. Because the SLA does not have this information, you must specify a near return as RET
and a far return as RETFAR. For example, to load offset SOaR with a far return that discards
three words from the stack after returning, enter the following:

*S.ASM.·5QQH.~.·.·.(·ftEIFA.A •• 6f
000500H CA0300

Absolute Addresses

Unlike ASM86, with the SLA you can specify an absolute address within an instruction. For
example, the SLA recognizes the instruction IMP 12:34 which is a far-direct jump. ASM86
requires that you use illabel or indirect jump through a register.

Like ASM86, the SLA accepts a symbol, but the SLA requires a fully-qualified symbolic
reference. For example, to jump to a label within the same module and procedure, enter the
module and procedure names in addition to the symbol names (e.g., IMP :mod.proc.label). To
load BX with a program variable, enter MOV BX, . :mod.proc. var. The period (.) before the
colon (:) is a standard FICE operator. It identifies the symbolic reference as resolving to the
address of var and not the actual value of var.

Symbolic Addresses

The SLA accepts symbolic addresses, but, because the SLA does not use the current name
scope, you must supply a fully-qualified symbolic reference, such as MOV AX,.:mod.proc­
.var.

Indirect Addressing

ASM86 lets you express an indirect address in many ways. For example, the following instruc­
tions assemble to the same value.

MOV AX,[BX+DI+2]
MOV AX, [BX][DI][2]
MOV AX,[BX][DI] +2

The SLA accepts only the last form. The following format is the general form for an indirect
address accepted by the SLA:

symbo/[basereg][indexreg) + offset

Encyclopedia 1-349

SASM continued

All the parts are optional. The brackets are part of the syntax and are required. You must use
options in the order shown. The following example loads offset 21 :3CH with an instruction
that moves the contents of the AX register to memory through an indirect address.

This instruction loads a memory location with the contents of AX, forming the address of the
memory location in the following way:

1. Adds 300H to the offset of the address of the program variable purchase (which, as shown
in the following example, is 44: lOH) in the module cmaker.

* ~:'II~I'fPltl~.
0044:0010H
*IlJS
0044

2. At run time, adds the contents of BX, the contents of SI, and the sum from step 1 to get the
final offset.

3. Assumes the data segment, gets the selector value from the DS register, constructs the
physical address, and loads the contents of AX into the addressed memory location.

Patching Code with SASM

1-350

You can use the SLA to patch user code by replacing an instruction with a jump to patch code in
an unused memory area. The final instruction in this area is a jump back to the user program.

For example, assume that the user program reads in a specified number of I/O ports and you
want to read additional I/O ports. Also assume that the user program resides within the first
30K bytes of FICE high-speed memory and that you want to make a patch at virtual location
0021:0023H to read additional I/O ports.

Encyclopedia

Use ASM to display the initial user code.

*_;;;m._lm't~1
:CMAKER#4
0021:0019H
0021:001BH
#5
0021:001EH
0021:0020H
#6
0021:0023H
0021:0027H
0021:0029H
#7
0021:002DH

E502
A30COO

E502
A30AOO

8BOEOCOO
2BC8
890E0600

8BC1

Insert a jump at location 21:23:

*$_2~J.;I!.aMI.II:111~
0021:0023 EA007COOOO

SASM continued

IN AX,2
MOV WORD PTR OOOCH,AX

IN AX,2
MOV WORD PTR OOOAH,AX

MOV CX,WORD PTR OOOCH
SUB CX,AX
MOV WORD PTR 0006H,CX

MOV AX,CX

This is a five-byte instruction. Add a NOP to get the instruction stream back into sequence.

*IMI~;II#;!.;"""l
0021:0028H 90

Now the initial code is as follows:

Encyclopedia

*IB;lIMlltlm,;mnal<lrtfJ!
:CMAKER#4
0021:0019H E502
0021:001BH A30COOMOV
#5
0021:001EH E502
0021:0020H A30AOOMOV
#6
0021:0023H
0021:0028H
0021:0029H
#7

EA007COOOOOO
90
890E0600

0021:002DH 8BC1

IN AX,2
WORD OOOCH,AX

IN AX,2
WORD PTR OOOAH,AX

JMP 0000H:7COOH
NOP
MOV WORD PTR 0006H,CX

MOV AX,CX

1-351

SASM continued

Now put in the patch. Read a value from liD port 4 and load it into data segment offset OOOEH:

*·$ASM3.1 •• K""/IN·.AXj4.!;~MO\f •• 'W(;)RO·OOOI:HiAXr
007COOH E504
007C02H 89060EOO
*ASM 31 K LENGTH 2
007COOH E504 IN AX,4
007C02H 89060EOO MOV WORD PTR OOOEH,AX

After adding the desired code, include the instructions you replaced at location 21 :23 before
jumping back to the initial code.

*AM ••• 31K·.+·6· .• ""··.·{M(l)\f·.f.'.i~~'Wfi)9DO~lf;!1,··(.$\f •••• Cl"'"~1",.<,.·(JfII~·.11:29l
007CObH 8BOEOCOO
007COAH 2BC8
007COCH EA29002100
*ASM·.S1K··lI:HG1H····S
007COOH
007C02H
007C06H
007COAH
007COCH

E504
89060EOO
8BOEOCOO
2BC8
EA29002100

IN AX,4
MOV WORD PTR OOOEH,AX
MOV CX,WORD PTR OOOCH
SUB CX,AX
JMP 0021H:0029H

When the FICE system emulates the user program, it jumps to absolute location 007COOH,
executes the patch code, then returns to the user code, as shown in the following example.

* G0l1l.E~Qmaker#7
?UNIT 0 PORT 0002H REQUESTS WORD INPUT (ENTER VALUE)*1
?UNIT 0 PORT 0002H REQUESTS WORD INPUT (ENTER VALUE)*I
?UNIT 0 PORT 0004H REQUESTS WORD INPUT (ENTER VALUE)*.

*Probe 0 stopped at : CMAKER#7+3H because of execute break Trace
Buffer Overflow

*PRINl' Ne'WeSl 1311

1-352 Encyclopedia

FRAME ADR BYTE MNEMONICS OPERANDS UNIT 0
3D1 0021:0019H E502 IN AX,2

000002H-CI-0001H
3D5 0021:001BH A30COO
3D8 0021:001EH E502

0003ECH-DW-0001H
3DC 0021:0020H A30AOO

MOV WORD PTR OOOCH,AX
IN AX,2

000002H-CI-0002H

3DF 0021:0023H EA007COOOO
MOV WORD PTR OOOAH,AX
JMP 0000H:7COOH

0003EAH-DW-0002H
3E3 007COOH E504 IN

000004H-CI-0003H
3E7 007C02H 89060EOO MOV WORD PTR OOOEH,AX
3EB 007C06H 8BOEOCOO MOV CX,WORD PTR OOOCH

0003EEH-DW-0003H 0003ECH-DR-0001H
3EF 007COAH 2BC8 SUB CX,AX
3F1 007COCH EA29002100 JMP 0021H:0029H
3F5 0021:0029H 890E0600 MOV WORD PTR 0006H,CX
3FA 0021:002DH 8BC1 MOV AX,CX

0003E6H-DW-FFFEH
FRAME ADR BYTE MNEMONICS

CWD
OPERANDS UNIT 0

3FC 0021:002FH 99

The PICE system executes this patch in real time. Except for the JMP instructions, the pro­
gram runs as if the patch code were inserted in the program. If real-time patching is not
required for your application, you can implement the patch with a debug procedure.

Multiple Forms of an Instruction

If there is more than one form of an instruction (and there usually is), the SLA assembles the
general form and not the shorter form. For example, consider the instruction MOV SUM,AL.
ASM86 assembles this in three bytes as A200 OIH, assuming that lOOH is the offset of the
program variable sum. The SLA requires a fully qualified symbolic reference for sum and
assembles the same instruction in four bytes as 8806 0OOlH.

Encyclopedia 1-353

SASM continued

The Default Number Base

The SLA assumes the current number base, although you can override it by appending a letter
to the individual number. The SLA interprets a number as binary if you append a Y, as decimal
if you append a T, as hexadecimal if you append an H, and as a multiple of 1024 (decimal) if
you append a K.

String Moves

The SLA accepts only the MOYSB and MOYSW mnemonics and not MOYS for string moves.

8087 INSTRUCTIONS

The SLA handles 8087 instructions differently from ASM86 as explained in the following
sections.

The Stack Registers

For the SLA, specify the 8087 stack registers as STO through ST7 rather than ST(O) through
ST(7). ASM86 accepts ST as a symbol for the top of the stack. The SLA does not recognize
ST; you must enter STO.

The ESC Mnemonic

The SLA supports all ofthe 8087 mnemonics except ESC.

The No-wait Mnemonics

1-354

ASM86 inserts a WAIT instruction before an 8087 instruction unless you insert an N as the
second character in the 8087 mnemonic. For example, FDISI is preceded by a WAIT; FNDISI
is not preceded by a WAIT. The one exception is the 8087 instruction FNOP (a no-operation)
that generates a wait.

The SLA, however, is consistent when it interprets the second character of an 8087 mnemonic.
The FNOP instruction does not generate a WAIT; FOP does generate a WAIT.

In addition, ASM86 does not allow some 8087 instructions to have the no-wait form. The SLA
always accepts a no-wait mnemonic.

Encyclopedia

FWAIT

The SLA uses the WAIT instruction and not the FWAIT instruction.

Cross-Reference

ASM

Encyclopedia

SASM continued

1-355

SAVE
Saves the memory image
currently in mapped
memory to a file

Syntax

SAVE pathname partition

Where:

SAVE

pathname

partition

saves the contents of the specified memory partition to
the file specified by the pathname. The memory image is
saved in 8086 OMF format. The file can be loaded with
the LOAD command.

is the fully-qualified reference to the file in which you
want memory values saved. The file is created if it does
not exist; if it already exists, the question "Overwrite
existing file? (y or [n])" will be displayed. See the
Pathname entry in the PICETM System Reference Manual
for information on pathname .

is the address or range of addresses in memory that has
the memory values that you want saved.

Discussion

When you want to save values in mapped memory addresses, use the SAVE command. The
memory image is saved in 8086 OMF format so that it can be reloaded with the LOAD com­
mand. (When you load the file, disregard the warning message: "Load module contained no
starting address information.")

The SAVE command does not save symbolic information.

Use SAVE to save assembly-level patches for future debugging sessions or to save modified
data table values that improve performance of the software being debugged.

Example

1-356

1. Save the memory values currently at addresses 18H through OFF to the file LOAD. FIL (If
you have an IBM PC host, disregard the symbol" :f2:". If the file is in your current disk
directory, append to the file using the command: SAVE load.filI8H TO OFFH. If the file is
on another drive, replace: f2: with d:, where d is the letter of the file's disk drive.)

SAVE :F2:load.fiI18H TO OFFH

Encyclopedia

Syntax

SCTR
A pseudo-variable that assigns

a value to the system event
machine counter

SCTR [= unsigned-integer-expression]

Where:

SCTR displays the value of the system event machine (SEM)
counter before emulation. There is no default value;
SCTR is random at power on.

unsigned-integer-expression is a number or expression that evaluates to a positive
whole number in the current base.

Default

NONE (random at power on)

Discussion

The SCTR pseudo-variable displays what the value of the SEM counter will be when emulation
is initiated. It does not display the current value.

You can set the SEM counter in two ways: by defining the SCTR value in an EVTREG or by
using the SCTR command. If you specified a counter value in an EVTREG, executing that
EVTREG with the GO command replaces any previously specified SCTR value.

The SCTR pseudo-variable is useful when the counter value needs to be changed for a new
emulation or when you forget to specify it in the EVTREG definition. The SCTR command is
effective only when used just before invoking an event register specification that does not
specify a counter value for SEM.

Example

1. The following example shows how to set a variable SCTR for execution. This EVTREG
breaks emulation seven bus cycles after the first occurrence of address 23 on the bus. You
can vary this by changing SCTR.

Encyclopedia 1-357

seTR continued

~7

*~Ev:J;:aI?~c<iyn\-Lel1a * * SEIW~OIF~1"~31"HENI~¥R TA~
* *~JIF~~f:)£i~;rTHEN£Jr:lEA.KBUT ALW~
*GOU$INGeQui"l4e!1ange
Probe 0 stopped at 217 because of system break

Cross-References

\-358

Event machines
Expression

Encyclopedia

Syntax

SEL286 [

Where:

SEL286

TRUE

FALSE

=TRUE
= FALSE

Determines whether the 80286 probe
performs 8086 address translation

or 80286 address translation

= boolean-expression

displays the current setting (TRUE or FALSE).

indicates that the 80286 probe performs 80286 address
translation.

indicates that the 80286 probe performs 8086 address
translation.

boolean-expression is any expression in which the low order bit evaluates to
o (false) or I (true).

Default Value

FALSE

The setting of the SEL286 pseudo-variable is also determined by the last LOAD command.
When you load a program file in 8086 OMF and do not specify the SEL286 option, the
SEL286 pseudo-variable becomes FALSE. When you load a program file in 8086 OMF and
specify the SEL286 option, the SEL286 pseudo-variable becomes TRUE. When you load a file
in 80286 OMF, the SEL286 pseudo-variable becomes TRUE.

Discussion

The 8086 address translation consists of shifting the selector field I eft by four bits and then
adding the offset. The result is a 20-bit physical address. With 20 bits, you can address 1M
byte of memory.

In 80286 address translation, the selector of the selector:offset pair provides an index into
either the global descriptor table or a local descriptor table. The index is multiplied by 8 to
become an offset that points to a segment descriptor. This segment descriptor contains an
access field, a base address, and a limit field.

Encyclopedia 1-359

SEL286 (80286) continued

The access field identifies the type of descriptor, contains a descriptor privilege level, and
identifies whether the addressed segment is in physical memory or stored on some secondary
storage device.

The base address points to the base of the addressed segment. The final physical address is the
sum of this base address and the offset from the selector:offset pair.

The limit field identifies the number of bytes that make up a segment. A segment can be as
large as 64K-bytes.

Example

1. Set the SEL286 pseudo-variable to TRUE:

TRUE

Cross-References

1-360

Address translation
LOAD
Trace buffer display

Encyclopedia

Syntax

SELECTOR partition

Where:

SELECTOR partition

partition

expression

mtype

Discussion

Displays or changes memory
as 16-bit unsigned values

= expression [, expression]*
= mtype partition

displays the contents of memory specified in partition as
a se1ector:offset in the current base.

is a single address or a range of addresses specified as
address ID address or address LENGTH number-of­
items.

converts to a 16-bit unsigned value for SELECIDR.

is any of the memory types except ASM.

The SELECIDR command interprets the contents of memory as 16-bit unsigned values, over­
riding any type associated with the memory contents. Thus, SELECIDR .varl displays the
first word at the address of varl, regardless of the type of var 1.

The SELECIDR command displays information identical to that displayed by the WORD and
ADDRESS commands. However, when SELECIDR is used as a data type within a program, it
is interpreted as the code segment of an address pointer, with the instruction pointer segment
assumed to be 0000.

Examples

The following examples use a hexadecimal base.

I. Display a single value:

Encyclopedia

*seIWecmlS
0020: 0004H 2EF A

1-361

SELECTOR continued

2. Display several adjacent values:

*1·.rr'·.· .•.• llmtIEl·.lll.IJ .····,·i.
0020: DD1DH 2EFA 168E DODD 72BC 2EDD 1E8E 0002 DDEA 2101 DODD 081404000400
0020: DD1DH 0815 0400 72BC

3. Set a single value of type SELECTOR:

4. Set several contiguous values:

Display the values set:

*:SJiY",::] •• ';III['III1\;"
0040: 0004H 10F A 3045 107F

5. Set a range oflocations to the same value (block set):

6. Set a repeating sequence of values:

Display the values set:

*B1r ••• iilllliil
0040: DDD4H 1234 5678 9ABC DEFD 1234 5678 9ABC DEFD 12345678 9ABC DEFD 1234
0040: DD11H 5678 9ABC DEFD

7. Copy a value from one memory location to another:

*.:_._'11 __ 11
8. Copy several values (block move):

1-362 Encyclopedia

9. Copy values with type conversion:

An error message is displayed if the type on the right side of the equal sign cannot be
converted to the type on the left. (Refer to the Expression entry in this encyclopedia for the
rules concerning type conversions.)

Cross-References

Expression
Mtype
Partition

Encyclopedia 1-363

SELECTOROF
A function that returns
the selector portion
of a pointer

Syntax

SELECTOROF (pointer)

Where:

pointer

Discussion

is any program variable, debug variable, expression,
function, or other object of mtype POINTER.

A pointer contains selector (segment) and offset values used to calculate an address. The
SELEClDROF function returns the selector portion of a pointer.

Examples

1. Display the selector ofthe address 200: 100:

* $El1ECma0F{2nOfl~100a)
200

2. Display the selector ofthe current execution point ($):

*$
1FC4:34SDH

* *$El1E(ffQR0F($}
1FC4

Cross-References

1-364

Expression
Mtype
POINTER

/*Display the current execution address*/

/*Display the selector of $ * /

Encyclopedia

Syntax

SHORTINT partition

Where:

SHORTINT partition

partition

expression

mtype

Discussion

SHORTINT
Displays or changes memory

as a-bit signed values

= expression [, expression] *
= mtype partition

displays the contents of memory specified in partition as
a short integer in decimal.

is a single address or a range of addresses specified as
address TO address or address LENGTH number-of
items.

converts to an 8-bit signed value for SHORTINT.

is any of the memory types except ASM.

The SHORTINT command interprets the contents of memory as 8-bit signed values, overrid­
ing any type associated with the memory contents. Thus, SHORTINT .varl displays the inte­
ger that begins at the address of varl, regardless of the type of varl. If the most significant
nibble of the unsigned data comprising the INTEGER is 8 through F, the value is interpreted as
a negative number and displayed as the 2's complement of the unsigned data.

Note that the FICE system always displays values for signed-integer memory types as decimal
numbers, regardless of the selected number base.

Examples

The base is hexadecimal in the following examples.

1. Display a single value:

*_I\;II¢I.
0040:0004 +31

2. Display several adjacent values:

*_liS{a.mll
0020:0006H -7 +29 -72 +16 + +0

Encyclopedia 1-365

SHORTINT continued

3. Set a single value of type SHORTINT:

4. Set several adjacent values:

Display the values set (you can set memory locations to signed integer values using a
hexadecimal base, but the FICE system displays the values in decimal):

*~.li.I!_.;J
0040:0004 +12 -55 +03

5. Set a range oflocations to the same value (block set):

6. Set a repeating sequence of values:

7. Copy a value from one memory location to another:

*~i.§I;lI._.

8. Copy several values (block move):

9. Copy values with type conversion:

An error message is displayed if the type on the right side of the equal sign cannot be
converted to the type on the left. (Refer to the Expression entry in this encyclopedia for the
rules concerning type conversions.)

Cross-References

1-366

Expression
Mtype
Partition

Encyclopedia

The following steps outline how to prepare your program for debugging with the FICE system.

1. Generate source code.

2. Translate (compile or assemble) the source code. Suitable translators for the 8086/8088
and 80186/80188 FICE probes are as follows:

PLlM-86

PASCAL-8_6

ASM86

FORTRAN-86

C

Version 2.3 or greater

Version 2.0 or greater

Version 2.0 or greater

Version 2.0 or greater

Version 2.1 or greater

NOTE

To produce 186/188 instructions from PLlM-86 or ASM-86 translators, use the MOD
186 control.

When compiling, use the DEBUG control to generate the symbol table. Also use the
OPfIMIZE (0) compiler control. With other optimization levels, the compiler may
perform cross-statement optimization. The resulting output can be confusing when
specifying breakpoints for debugging.

With ASM86, use the TYPE control to get symbolic type information. For Pascal and
PLlM, TYPE is the default compiler control.

3. Link all object modules and library routines to resolve references and detect type mis­
matches and other relocation errors.

4. Locate the linked file (using LOC86) to produce an absolute object module.

Steps 5 through 7 invoke the FICE debugger.

5. Invoke the FICE software with the I2ICE command (described in this encyclopedia and in
the FICE7M System User's Guide).

Encyclopedia 1-367

Software requirements (8086/8088 and 80186/80188) continued

6. Map memory and I/O with the MAP and MAPIO commands (described in this encyclope­
dia).

7. Load the located program into mapped memory with the LOAD command (described in
this encyclopedia).

NOTE

The PICE system LOAD command does not handle overlays. You cannot use the PICE
system to load and debug files containing overlays.

The PSCOPE debugger requires load time locatable code (LTL) as input. The PICE
system requires absolute code as input. Programs configured for PSCOPE will not load
under the PICE system.

Cross-References

1-368

12ICE
LOAD
MAP
MAPIO

PIC£lM System User's Guide

Encyclopedia

Software r'equirements
80286 probe specific

The following steps outline how to prepare your 80286 program for debugging with the FICE
system.

1. Generate source code.

2. Translate (compile or assemble) the source code. Suitable translators for the 80286 PICE
probe are as follows:

BND286 Version 3.0 or greater

BLD286 Version 3.0 or greater

PUM-286 Version 2.5 or greater

PASCAL-286 Version 3.1 or greater

ASM286 Version 1. 1 or greater

FORTRAN-286 Version 3.0 or greater

C-286 Version 3.0 or greater

NffiE

When compiling, use the DEBUG control to generate the symbol table. Also use the
OPTIMIZE (0) compiler control. With other optimization levels, the compiler may
perform cross-statement optimization. The resulting output can be confusing when
specifying breakpoints for debugging.

With ASM286, use the TYPE control to get symbolic type information. For Pascal
and PUM, TYPE is the default compiler control.

NffiE

The FICE system does not support Pascal-286 and FORTRAN-286 array size
greater than 64K.

3. Bind all object modules and library routines to resolve references and detect type mismat­
ches and other relocation errors.

4. Locate the linkcd file (using BLD286) to produce an absolute object module.

Encyclopedia 1-369'

Software requirements (80286) continued

Steps 5 through 7 invoke the FICE debugger.

5. Invoke the FICE software with the I2ICE command (described in this encyclopedia and in
the PlCFM System User's Guide).

6. Map memory and 110 with the MAP and MAPIO commands (described in this
encyclopedia) .

7. Load the located program into mapped memory with the LOAD command (described in
this encyclopedia).

N(JfE

The FICE LOAD command does not handle overlays. You cannot use the FICE system
to load and debug files containing overlays.

Cross-References

1-370

I2ICE
LOAD
MAP
MAPIO

PICFM System User's Guide

Encyclopedia

Syntax

STACK [expression]

Where:

STACK

expression

Examples

Displays elements from
the top of the stack

displays one element from the top of the stack.

is a positive number or an expression that evaluates to a
positive number that specifies the number of elements to
be displayed.

1. Display one element from the top of the stack:

*ST:A~t(
003A: 0004H 0302

2. Display five elements from the top of the stack:

*STAet«(S
003A: 0004H 0302 OOOE 00A2 00020302

Cross-Reference

Expression

Encyclopedia 1-371

STATUS
Displays the current setting
of selected debug environment conditions

Syntax

STATUS [unit-number[,unit-number]*
ALL

Where:

unit-number

ALL

is the number of the unit (0, 1, 2, or 3) for which the
status will be displayed or an expression that evaluates to
0,1,2,or3.

displays the status of all units.

Discussion

1-372

The STATUS command displays the settings of certain probe-specific debug variables. The
current probe is the source of the display.

USERMODE and PROBETYPE are labels, not variables. PROBETYPE identifies which
processor is the source of the displayed information. For the 80286 probe, USERMODE
indicates whether the probe is executing in REAL or PROTECTED mode.

Tables 1-31, 1-32, and 1-33 explain the values displayed by the STATUS command for the
8086/8088 probe, the 80186/80188 probe, and the 80286 probe, respectively.

Encyclopedia

STATUS continued

Thble 1-31 Values Displayed by the STATUS Command for the 8086/8088 Probe

Value Description

BTHRDY When TRUE, the probe's microprocessor recognizes the AND of the
READY from wherever memory is mapped and the READY signal from
the prototype. When FALSE, the probe's microprocessor takes ready
from wherever memory is mapped. (Refer to the BTHRDY entry in this
encyclopedia for more information.)

BUSACT When TRUE, an emulating program times out when bus inactivity
exceeds one second. When FALSE, an emulating program does not time
out when bus inactivity exceeds one second. (Refer to the BUSACT entry
for more information.)

COENAB When TRUE, the coprocessor is enabled. When FALSE, the coprocessor
is disabled. (Refer to the COENAB entry for more information.)

CPMODE When 1, an external coprocessor runs only when the probe's
microprocessor is emulating. When 2, an external coprocessor runs all
the time. (Refer to the CPMODE entry for more information.)

10RDY When TRUE, an emulating program times out when an 1/0 access time
exceeds one second. When FALSE, an emulating program does not time
out when an 1/0 access time exceeds one second. (Refer to the 10RDY
entry for more information.)

MEMRDY When TRUE, an emulating program times out when a memory access
time exceeds one second. When FALSE, an emulating program does not
time out when a memory access time exceeds one second. (Refer to the
MEMRDY entry for more information.)

PHANG When TRUE, an emulating program times out when a coprocessor
memory access exceeds one second. When FALSE, an emulating
program does not time out when a coprocessor memory access exceeds
one second. (Refer to the PHANG entry for more information.)

PROBETYPE Identifies the probe.

RSTEN When TRUE, specifies that an external signal can reset the probe
processor. RSTEN has meaning only in emulation mode; it has no effect
in interrogation mode. When FALSE, specifies that the prototype's
connection to the RESET pin has no effect. (Refer to the RSTEN entry
for more information.)

TRCBUS When TRUE, collects both execution and bus information into the trace
buffer. When FALSE, collects only execution information into the trace
buffer. (Refer to the TRCBUS entry for more information.)

Encyclopedia 1-373

STATUS continued

Table 1-32 Values Displayed by the STATUS Command for the 80186/80188 Probe

Value Description

BTHRDY When TRUE, the probe's microprocessor recognizes the AND of the
READY from wherever memory is mapped and the READY signal from
the prototype. When FALSE, the probe's microprocessor takes ready
from wherever memory is mapped. (Refer to the BTHRDY entry in this
encyclopedia for more information.)

BUSACT When TRUE, an emulating program times out when bus inactivity
exceeds one second. When FALSE, an emulating program does not time
out when bus inactivity exceeds one second. (Refer to the BUSACT entry
for more information.)

COENAB When TRUE, the coprocessor is enabled. When FALSE, the coprocessor
is disabled. (Refer to the COENAB entry for information.)

CPMODE When 1, an external coprocessor runs only when the probe's
microprocessor is emulating. When 2, an external coprocessor runs all
the time. (Refer to the CPMODE entry for information.)

10RDY When TRUE, an emulating program times out when an 1/0 access time
exceeds one second. When FALSE, an emulating program does not time
out when an 1/0 access time exceeds one second. (Refer to the 10RDY
entry for more information.)

MEMRDY When TRUE, an emulating program times out when a memory access
time exceeds one second. When FALSE, an emulating program does not
time out when a memory access time exceeds one second. (Refer to the
MEMRDY entry for more information.)

PHANG When TRUE, an emulating program times out when a coprocessor
memory access exceeds one second. When FALSE, an emulating
program does not time out when a coprocessor memory access exceeds
one second. (Refer to the PHANG entry for information.)

PROBETYPE Identifies the probe.

OSTAT When TRUE, selects the queue status signal line configurations: OSO,
OS1, and OSMD. When FALSE, selects the standard signal line
configuration: ALE, WR, and RD. (Refer to the OSTAT entry for
information.)

RSTEN When TRUE, specifies that an external signal can reset the probe
processor. RSTEN has meaning only in emulation mode; it has no effect
in interrogation mode. When FALSE, specifies that the prototype's
connection to the RESET pin has no effect. (Refer to the RESET entry for
more information.)

TRCBUS When TRUE, sends both execution and bus information to the trace
buffer. When FALSE, collects only execution information into the trace
buffer. (Refer to the TRCBUS entry for more information.)

1-374 Encyclopedia

STATUS continued

Table 1-33 Values Displayed by the STATUS Command for the 80286 Probe

Value Description
BTHRDY When TRUE, the probe's microprocessor recognizes the AND of the

READY from wherever memory is mapped and the READY signal from
the prototype. When FALSE, the probe's microprocessor takes ready
from wherever memory is mapped. (Refer to the BTHRDY entry in this
encyclopedia for more information.)

BUSACT When TRUE, an emulating program times out when bus inactivity
exceeds one second. When FALSE, an emulating program does not time
out when bus inactivity exceeds one second. (Refer to the BUSACT entry
for more information.)

COENAB When TRUE, the 80286 probe microprocessor recognizes its HOLD and
HLDA signals. When FALSE, the 80286 probe microprocessor does not
recognize its HOLD and HLDA signals. (Refer to the COENAB entry for
more information.)

COREa When TRUE, the 80286 probe microprocessor recognizes its PEREa
and PEACK signals. When FALSE, the 80286 probe microprocessor
does not recognize its PEREa and PEACK signals. (Refer to the COREa
entry for more information.)

CPMODE When 1 , an external coprocessor runs only when the probe's
microprocessor is emulating. The probe's microprocessor recognizes its
PEREa, PEACK, HOLD, and HLDA lines only during emulation. When 2,
an external coprocessor runs all the time. The probe's microprocessor
recognizes its PEREa, PEACK, HOLD, and HLDA lines during both
emulation and interrogation. (Refer to the CPMODE entry for more
information.)

10RDY When TRUE, an emulating program times out when an I/O access time
exceeds one second. When FALSE, an emulating program does not time
out when an I/O access time exceeds one second. (Refer to the 10RDY
entry for more information.)

MEMRDY When TRUE, an emulating program times out when a memory access
time exceeds one second. When FALSE, an emulating program does not
time out when a memory access time exceeds one second. (Refer to
MEMRDY entry for more information.)

PCHECK When TRUE, you can display and alter only those parts of the prototype
system that would normally be accessible under the 80286 protection
mode. When FALSE, the 121CE system ignores most of the protection
rules. (Refer to the PCHECK entry for more information.)

PROBETYPE Identifies the probe.

RSTEN When TRUE, specifies that an external signal can reset the probe
processor. Reset enable has meaning only in emulation mode; it has no
effect in interrogation mode because system reset is ignored in
interrogation mode. When FALSE, specifies that the prototype's
connection to the RESET pin has no effect. (Refer to the RSTEN entry
for more information.)

Encyclopedia 1-375

STATUS continued

Value

SEL286

TRCBUS

Table 1-33 Values Displayed by the STATUS Command for the
80286 Probe (continued)

Description

When TRUE, the 80286 probe performs 80286 address translation.
When FALSE, the 80286 probe performs 8086 address translation.
(Refer to the SEL286 entry for more information.)

When TRUE, collects both execution and bus information into the trace
buffer. When FALSE, collects only execution information into the trace
buffer. (Refer to the TRCBUS entry for more information.)

USERMODE Reflects the state the processor was in when emulation was last halted.
When in real mode, the protection enabled flag in the MSW is O. When in
protected mode, the protection enabled flag in the MSW is 1.

Examples

1-376

I. Display the initial settings for an 8086/8088 FICE probe in the current unit:

*STAtUS
ST ATUS FOR UNIT DODD

PROBETYPE=86 RSTEN=TRUE TRCBUS=TRUE BTHRDY=FALSE
COENAB=TRUE CPMODE=1 MEMRDY=TRUE IORDY=TRUE
BUSACT=TRUE PHANG=TRUE

2. Display the settings for the 80186/80188 FICE probe in the current unit:

* STATUS
ST ATUS FOR UNIT DODD

PROBETYPE=186 RSTEN=TRUE
COENAB=TRUE CPMODE=1
BUSACT=TRUE PHANG=TRUE

TRCBUS=TRUE
MEMRDY=TRUE
QSTAT=FALSE

3. Display the settings for a 80286 FICE probe in unit 2:

:II',"B
STATUS FOR UNIT 0002

PROBETYPE=286 RSTEN=TRUE
COENAB=TRUE CPMODE=1
BTHRDY=FALSE BUSACT=TRUE
USERMODE=REAL

SEL286=TRUE
COREQ=TRUE
MEMRDY=TRUE

BTHRDY=FALSE
IORDY=TRUE
INTICE=FALSE

PCHECK=TRUE
TRCBUS=TRUE
IORDY=TRUE

Encyclopedia

Cross-References

Address protection
BTHRDY
BUSACT
COENAB
COREQ
CPMODE
IORDY
MEMRDY
PCHECK
PHANG
QSTAT
RSTEN
SEL286
TRCBUS

Encyclopedia

STATUS continued

1-377

Strings
Character strings for use
as variables and displays

Syntax

{
'character[character] * '}
string-reference

Where:

'character[character]* ,

string-reference

is one or more characters enclosed in apostrophes. A
string is stored as ASCII (byte) values.

can be characters enclosed in apostrophes, a string ex­
pression using the CONCAT, NUMTDSTR, or SUB­
STR function, or a reference to a CHAR type debug
variable. string-reference includes any object within the
PICE command language that is type CHAR.

Discussion

Strings contain one or more characters enclosed in apostrophes ('). To specify an apostrophe
within a string, use two apostrophes. For example, the string 'WHAT' 's UP?' is displayed as
WHAT'S UP?

The maximum length of a string is 254 characters, not counting the delimiters ('). Strings that
are adjacent and separated by one or more logical blanks (space, tab, or carriage return/line
feed) are concatenated to form a single string. With this feature you can break a string defini­
tion over a line boundary. The uppercase or lowercase status of the characters in the string is
preserved. The null string consists of just the two delimiters (' '). The CI, CONCAT, SUB­
STR, and NUMTDSTR commands produce strings as results. Refer to the entries on each of
these functions for examples.

Examples

1-378

1. The simplest reference is a string enclosed by apostrophes. After the following command
executes, D (or d) is an abbreviation for the command word DEFINE.

Encyclopedia

2. Another common way to refer to a string is with a debug variable of type CHAR.

3. Use the WRITE command to invoke the debug variable msgl and display the message.

*WFU1t1Ernsg1
Do you want to break?

4. The ASM type is also type CHAR; the string is the disassembled instruction or instruc­
tions. For example, suppose the current instruction is as follows:

*ASI!l$
0020:0005H2E8E160000 MOV SS, CS: WORD PTR OOOOH

To save the disassembly of the current instruction, use it as a string reference (note that
entering CHAR stat displays the address as well as the character string):

*~!riNle"'AJ!t .. at~AU
*$lat
2E8E160000 MOV SS, CS: WORD PTR OOOOH

Cross-References

CI
CON CAT
NUMTOSTR
STRLEN
STRTONUM
SUBSTR

Encyclopedia 1-379

STRLEN
A function that returns the number
of characters in a string

Syntax

STRLEN (string-reference)

Where:

string-reference

Examples

is a string reference that can be characters enclosed in
apostrophes, a string expression using the CONCAT,
NUMTOSTR, or SUBSTR function or a reference to a
type CHAR debug variable.

1. Return the number of characters in the string "hello":

2. Return the number of characters in the debug variable "temp":

5

Cross-Reference

Strings

1-380 Encyclopedia

Syntax

STRTONUM
A function that converts a
string to a numeric value

STRTONUM (string-reference)

Where:

string-reference

Example

can be characters enclosed in apostrophes, a string ex­
pression using the CONCAT, NUMWSTR, or SUB­
STR function, or a reference to a type CHAR debug
variable.

1. In the following example, the STRWNUM function converts a string to a variable and
forces it into the variable type.

* 1.23457E+1

Cross-Reference

Strings

Encyclopedia 1-381

SUBSTR
Substring function that returns
a portion of a string

Syntax

SUBSTR (string-reference, start, length)

Where:

string-reference

start

length

can be characters enclosed in apostrophes, a string ex­
pression using the CONCAT, NUMTOSTR, or SUB­
STR function, or a reference to a type CHAR debug
variable.

is an expression with a value from 1 through 254 that
specifies the index of the first character in the substring.

is an expression that specifies the number of characters
required by the substring.

Discussion

With the SUBSTR function you can observe portions of a string. The SUBSTR function re­
turns the substring length long, starting at the character indexed by start. If the index is out of
range, the null string (a blank) is returned.

Examples

1. Suppose the opcode field of a disassembled instruction is a four-character field starting at
position 20. You can test the field with the following command.

*.,....~.lJEJS1ifr(J\~M •• J; •• ·~~~ .••• ~)·o;;i.·.· •• o;;iflll;I~!a~·.lAt~J1i!a·.1.~.·J •• !i!iJ9UQ~ •• ~lt . * END
I'vefoundit

2. If start is valid but length is larger than the remaining characters in the string, all of the rest
of the string is returned.

*$.US$;rR·(i:af$Cl~fA;;3;1$)
cdef

Cross-References

1-382

Expression
Strings

Encyclopedia

Syntax

SYMBOLIC = FALSE

SYMBOLIC
A pseudo-variable that enables

or disables symbolic display
in the trace buffer

I TRUE

= boolean-expression

Where:

SYMBOLIC

TRUE

FALSE

boolean-expression

Default

TRUE

Encyclopedia

displays the current setting.

permits the symbolic display of information in the trace
buffer with the PRINT INSTRUCTIONS command.

prohibits the display of symbolic information in the
trace buffer with the PRINT INSTRUCTIONS com­
mand.

is an expression in which the low-order bit evaluates to 0
(false) or 1 (true).

1-383

Symbolic references
References to program
addresses and variables

Syntax (eight forms)

I. References to program modules:

:module-name

2. References to program labels:

[:module-name.J [procedure-name.J * label-name

3. References to procedures:

[:module-name .J[procedure-name.J * procedure-name

4. References to line numbers:

[:module-nameJ #line-number

5. References to variables:

[:module-name.J [procedure-name.J * variable-name

6. References to array variables:

[:module-name.J[procedure-name.]*variable-name [expr [, exprJ * J

7. References to fields in a record or structure:

[:module-name.J [procedure-name.J * record-name. field-name[. field-name J *

8. Changing the value of a variable:

variable-reference = expression

1-384 Encyclopedia

Where:

module-name
procedure-name
label-name
variable-name
record-name
field-name

line-number

[expr [, exprl*l

variable-reference

expression

Discussion

Symbolic references continued

are names of program objects that follow the rules for
identifiers.

is one or more decimal digits.

is a list of one or more expressions identifying an ele­
ment in an array. The list is enclosed in brackets (the
required pair of brackets is underlined to distinguish
them from the inner brackets indicating the optional part
of the reference).

is a reference to a variable, array variable, or field in a
record or structure.

converts, if necessary, to the type of the variable in the
variable-reference.

The user program symbol table contains the names of all objects in the program, including the
type and (for some objects) the length of each object. A symbolic reference identifies an object
by name. When a symbolic reference is used in a command or expression, the value corres­
ponding to the object is returned. The value returned depends on the type of the object. This
section reviews the kinds of symbolic references and the values they represent. This section
also discusses two special operators used with symbolic references, the double-quote operator
and the dot operator.

User Symbol Table

The FICE system reads in information about the program symbols from the object file named
in the LOAD command, unless symbol information is suppressed by a NOSYMBOLS or
NO LINES option. To make this information available in the object file, use the DEBUG
control on the compiler or assembler invocation. (Refer to the compiler or assembler manual
for details.) Compilers also generate line numbers. Line number information is read in with the
user program when the information is available.

Encyclopedia 1-385

Symbolic references continued

Names

The PICE system organizes the symbol and line number information into a user symbol table.
The user symbol table preserves scope and type information specified in the program me.
When the type of a variable cannot be determined from the file, the system assigns it to null
type. Operations that require type information are invalid with null types.

All symbolic references except line numbers involve the names of objects. In the PICE com­
mand language, the character sets that identify objects are referred to as name. Command
keywords, debug object names, and program symbols are all name. Refer to the Name entry in
this encyclopedia for more information.

Compilers and assemblers use name for module names, procedure names, labels, and variable
names in the source programs. Pascal and FORTRAN labels are decimal numbers in the
source program. Language compilers append a leading at sign (@) to Pascal and FORTRAN
labels, converting them to names. So, if a Pascal or FORTRAN program has a label 12, refer
to this label as @12.

References to Program Addresses

Modules

References to modules, procedures, labels, and line numbers represent addresses in the pro­
gram. The value returned is of type POINTER. In each case, the value represents the address
of the first executable instruction in the module, in the procedure, at the label, or at the line
number.

A module is identified with a leading colon (:). For example, if tca is the name of a module, the
reference is as follows:

*~tea
lCA7H:OOOOH

The POINTER value returned is the first executable address in the module.

Line Numbers

1-386

A line number reference is the line number preceded by a number sign (#). The module name
may be required as qualification. For example:

*#11
lCA7H:001AH

*!te@blv1t"f31
lCA7H:04D9H

Encyclopedia

Symbolic references continued

The NAMEScOPE pseudo-variable determines whether the line number reference requires a
module name as a qualification. The NAMES COPE pseudo-variable contains an address; if
the address is within the desired module, you can omit the module name. Initially and after
emulation breaks, NAMEScOPE contains the execution address. You can set NAMEScOPE
to any executable address.

Procedures

Labels

A procedure reference is the name of the procedure. If necessary, the reference should include
the module name and the names of any procedures that enclose the given procedure.

The NAMEScOPE variable determines when the procedure reference requires qualification
(module name and outer procedure names). You can omit module-name if NAMEScOPE is
within the desired module. If the NAMEScOPE address is within any enclosing procedures,
these qualifiers can be omitted as well. "for example:

*inner············pr0¢6ure
0100:0200H

The first example is valid only if NAMEScOPE is within procedure outer_procedure in
module modI.

Labels identify statements within procedures; typically, a label is used as the object of a GOTO
statement or to control transfer statements within the procedure. The NAMEScOPE variable
determines the qualifiers required to identify a label. For example:

*$ •• l'tILSover'
0100:0234H

:ilQa.:fJ .. JlQRQ~l$t.(tp:\(j~
0100:0234H

The first example is valid only if NAMES COPE is within procedure first_procedure in mod­
ule modI.

Encyclopedia 1-387

Symbolic references continued

References to Program Variables

You can use a reference to a program variable to display the contents of the variable, to use the
contents as an operand in an expression, or to change the contents of the variable. A reference
to a program variable is valid if the variable is active at the current execution point and if it has
a type that fits the context of the reference. The following sections detail the kinds of variables
programs can contain, with the corresponding references.

Static Variables

The simplest kind of variable is a static variable representing a single scalar quantity. Static
variables are always active and so can always be accessed. The address in NAMESCOPE
determines the kind of qualification required to identify a variable, as discussed previously in
the Procedures and Labels sections. The value returned by the reference depends on the type of
the variable.

For example, assume the current program has symbols as shown by the following DIR
command:

*l?la:~.I~~f.t~pi
DIR of : CALCULATEPI
MEMORY .
DENOMINATOR
ELEMENT
I
PI .
SGN
TERMS
DONE .

array [?] of byte
word
real
word
real
integer
word
label

After executing then breaking within this module, references to any of the variables are valid.
For example:

*PI
3.14159

*terms
5000

Dynamic Variables

1-388

Dynamic variables are based variables or stack-resident variables. The operating system mem­
ory manager allocates space for based dynamic variables as required during run-time. Stack­
resident variables are allocated to the stack instead of fixed memory locations. Examples of
stack-based variables are parameters in procedures, local variables in PUM REENTRANT
procedures, and all local variables in Pascal procedures.

Encyclopedia

Symbolic references continued

The form of a reference to a dynamic variable is exactly the same as for a static variable. The
difference is that ifthe execution point is not within the procedure that defines the variable, the
variable is not active. By contrast, static variables are always active. An error results if you try
to access a variable that is not active.

NOTE

When compiling a procedure, the compiler inserts a sequence of code called the pro­
logue at the beginning of the procedure. The prologue reserves space for stack-based
variables needed by the procedure. For stack-based variables to be fully active following
a break within a procedure, the break must occur after the prologue.

For example, suppose the program has a procedure named start with a parameter i. If the
execution point is not inside this procedure, the value of i is undefined. The following example
shows the initial load of the program and the display of the program symbols for the initial
module. Then it demonstrates that the symbol i is not active even when the correct qualifier is
included. Finally it shows that after emulation breaks within the procedure (and past the pro­
logue), the symbol i is valid.

DIR of : TCA
MEMORY
FINISH
START

DATE
I
TIME
TIMESTAMP
STATUS .
SYSTEMID .

MAIN .

Encyclopedia

COVERAGECLASSPTR
COVERAGEDEPTHPTR
RESULTPATHPTR
RESULTTYPEPTR
USERPATHPTR

I*Execute past the prologue*!

array [?] of byte
procedure
procedure

array [9] of byte
byte
array [22] of byte
array [22] of byte
word
array [22] of byte

procedure
pointer
pointer
pointer
pointer
pointer

1-389

Symbolic references continued

*1iV",I:;;$BS<llls.aues
:TCA.MAIN

*' ERROR .12: Symbol not known in current context
*atittd
[RR.?R.~ ... ~~ .. : .. ~xmbo 1 current 1 y not act i ve
*:G<:)''FlLiitca;.mtt
[Break at :tca.start]
IS.:rm 1 ISTEP to get past the prologue *1
*1
8

Array Variables

1-390

An array consists of elements of a given type. To access an individual element, the reference
specifies the index or indexes of the element. For example, suppose the array named date has
nine elements and is defined (in PLlM) as an array of bytes. Then you can access any element
with a reference such as the following:

*tJiteffll
8

Suppose also that element date[O] contains the length of the data portion of the array; in other
words, the data elements are numbered 1 through the value of date[O] (in this case 8). The
following debug procedure displays all the elements as bytes:

48
54
47
49
49
47
56
50

*

Encyclopedia

Symbolic references continued

To continue one step further, suppose date is really an array of ASCII characters. The next
example displays the character values and also illustrates the use of the dot operator to specify
the address of a variable (more details on the dot operator appear later in this section).

*~Hlfl;~Ii~'.111.t4'jI"~<I.teiOJ
1C4FH:0560H '06/11/82'

Pascal arrays can have more than one dimension; the reference to an element in such an array
must have the required number of indexes. For example, if array variable big_pascal_array
has four dimensions, a reference might be as follows:

Structure Variables

Variables with compound elements are called structures in PUM and records in Pascal. The
individual elements of a structure are called fields. A reference to a field value gives the
structure name, then the field name with a dot (.) to separate the names. The name scope
determines the amount of additional qualification required, just as for other variables.

For example, suppose a PUM program has a structure declared as follows:

DECLARE house STRUCTURE (
stories BYTE
rooms BYTE
bathrooms BYTE);

After the program is executed so that the variable fields have taken on values (and assuming
name scope is inside the module and procedure containing the structure), you can access the
fields with references such as the following:

* h6Use~$Iories
2

* hOuse. roonts
10

*hOuse.bathrooms
4

Compound Variables

The program can contain compound forms such as arrays of arrays, arrays of structures, and
structures of arrays. The rules for references to these compound forms combine the rules
discussed so far.

Encyclopedia 1-391

Symbolic references continued

1-392

As an example, suppose a PLiM program contains a structure defined as follows: .

DECLARE table(9) STRUCTURE(
option(lO) BYTE) data(

8, 'CONTROLS',
7, 'MODULES',
5, 'LINES',
5, 'PROCS "
5, 'COUNT "
7, 'NOCOUNT '
4, 'LIST',
4, 'SAVE',
5, 'MERGE',

);

References to this structure have forms such as the following:

*~~\?I~[Oli~p.i~nl'l
8

To display an entire option in this structure, note that the first element in each row gives the
number of ASCII characters in the option. For example:

The following debug procedure displays the entire structure:

1DFEH:010FH 'CONTROLS'
1DFEH:0119H'MODULES'
1DFEH:0123H'LINES'
1DFEH:012DH 'PROCS'
1DFEH:0137H 'COUNT'
1DFEH:0141H 'NOCOUNT'
1DFEH:0148H'LIST'
1DFEH:0155H'SAVE'
1DFEH:015FH'MERGE'

1* of the table in decimal * 1

Encyclopedia

Symbolic references continued

Based Variables and Pointer Variables

A based variable is referenced through another variable called its pointer variable. The pointer
variable contains the address of the based variable. The PLiM definition of a pointer and its
based variable might be as follows:

DECLARE optionptr POINTER;
DECLARE option BASED optionptr BYTE;

The executable part of the program then assigns a value to the based variable by setting the
pointer to the desired address, then assigning the value with PLiM statements such as the
following:

optionptr = old_option;
option =42;

After this code is executed, the value of the pointer variable is the address of the variable.
Assume the following addresses and contents for the two variables:

Variable

old_option
optionptr
option

Address of Variable

lDOOH:0874H
lDOOH:0420H
lDOOH:0874H

Contents of Variable

o
lDOOH:0874H
42

The following examples show references and displays for these variables. Note that with the
PICE system you can refer to a based variable directly:

*~p.i~1
42

*gP:JigIPl~
lDOOH:0874H

*1'Yiil!!)P:Ji~lpJr
lDOOH :0874H 42

*1'Yi:'f"ll<lPJJ.gg
lDOOH: 0874H 42

(The dot operator causes the system to return the address of the variable rather than the con­
tents, as discussed later in this section.)

Note that for PLlM, the symbol table entry describing the pointer variable does not contain any
information about the type of the based variable. To display the contents of the based variable,
specifY the type with a keyword such as BYTE, as in the previous examples.

Encyclopedia 1-393

Symbolic references continued

Changing the Value of a Variable

To make debugging easier, you can change the value of a program variable from the terminal.
The value assigned is converted to the type of the variable. For example:

*·:¢aloulatepi~tetrl1$ •••. 10000T

*
The variable must be active to receive a value. You cannot change the address corresponding to
a module, procedure, label, or line number to a new value.

Double-Quote Operator

Keywords, debug object names, and user program symbols are all names. The emulator does
not let you define a debug object with the same name as a keyword, but no checking is per­
formed on the user symbols as they are loaded. Thus a user symbol may duplicate a keyword
or debug object name. (For a list of FICE keywords, see the Keywords entry in this
encyclopedia.)

In case of a duplication, keywords and debug object names have precedence over user symbols.
Thus, if your program has a procedure named exit, the keyword EXIT masks out that symbol.
The following command produces an error:

*G01r'Lexit
i syntax error

To avoid conflict, precede the symbol with a double-quote operator ("). The double-quote
operator forces the system to look up the entry as a user program symbol. The double-quote
operator makes the following command valid:

*GO.1r •. Lxt.)dt
[break at : mod1#534]

Dot Operator

1-394

The dot operator (.) can precede any of the references to program variables described previ­
ously. The effect is to return the address of the variable instead of the value of the variable. The
dot operator is used whenever an address is required, as when using a type keyword to override
the variable type or setting a breakpoint on a data address.

Thus, if your program has a BYTE variable named temp_variable in procedure getchar, the
following reference returns the contents of the variable:

* g~t~"g~;~~",p.;Vi,jliaQI.
19

Encyclopedia

Symbolic references continued

However, the following reference uses the dot operator to return the location of the variable:

The dot operator should precede the outermost qualifier, including the module name if it is
used. For example:

*~!M¥it.~l
lDFEH:0125H

Cross-References

Address
Expression
Keywords
Name

Encyclopedia 1-395

SYSREG
Defines a register that contains
system break specifications

Syntax

DEFINE SYSREG name =

Where:

1-396

DEFINE SYSREG name
= system-specification

name

SYSTRIG

SYSARM

SYSDARM

system-specification

CALLdproc

dproc

SYSTRIG
SYSARM system-specification [CALL dproc)
SYSDARM

creates a system register called name. Specifying
system-specification after the equal sign (=) defines the
break criteria. The System specification entry in this en­
cyclopedia describes this syntax.

is the name of the system register you are creating.

specifies that when the system-specification is met, any
FICE units enabled are triggered and perform the pro­
grammed action.

specifies that when the system-specification is met, any
FlCE units enabled are armed to perform the pro­
grammed action.

specifies That when the system-specification is met, any
FICE units enabled are disarmed.

defines the break criteria. The System specification en­
try in this encyclopedia defines system-specification.

calls the debug procedure named when system­
specification is met. The called debug procedure must
return either TRUE (meaning a break is to occur) or
FALSE (meaning emulation is to continue). CALL
dproc is never activated when a SYSTRIG, SYSARM,
or SYSDARM is specified.

is the name of the debug procedure you want to call
when system-specification is met.

Encyclopedia

SYSREG continued

Discussion

The SYSREG command defines breaks on operand access, operand data, logic clips, system
breaks, and coprocessor cycles.

Read the System specification entry in this encyclopedia to familiarize yourself with the terms
used in the following discussion.

When to Use SYSREGs

The two ways to use a system specification are to state it in the GO command or to use a debug
register called a SYSREG (system register) in the GO command.

Use system registers (SYSREGs) to define processor state specifications. The state is any of
the following items expressed as addresses or data:

• READ from memory

• WRITE to memory

• INPUT from an input port

• OUTPUT to an output port

• FETCH an instruction

NOTE

A break specification is not a system specification. The BRKREG, ARMREG, EV­
TREG, and GO commands define break-specification breakpoints.

How to Specify SYSREGs

Note that you can optionally enclose the entire specification following the equal sign in a DO­
END block.

Specifying Addresses and Data

The DEFINE SYSREG command distinguishes between address and data values. All bus-data
items are prefixed with the keyword IS. All bus-address items are prefixed with the keyword
AT. (The syntax for bus-data and bus-address is defined in the System specification entry.)

Encyclopedia 1-397

SYSREG continued

Processor States

Processor state items are lists of break conditions (e.g., READ). Lists can be ORed together to
form compound break conditions. For example:

READ OR WRITE AT address

Furthermore, you can combine an ORed list with a logically ANDed list. For clarity, you can
insert the optional keyword WITH as a reminder that a logical AND is being specified. For
example, the following two commands are the same:

Using the Optional Call

When emulation stops because of a SYSREG that includes a CALL, the CALL transfers
control to the named debug procedure. The debug procedure must return a Boolean value
(TRUE or FALSE). If TRUE, emulation stops and a break message is displayed. If FALSE,
emulation continues.

NOTE

Emulation halts if a Boolean value is not returned or if there is an error in the called
debug procedure. An error message indicates that the halt was not caused by a normal
execution break.

Manipulating SYSREGs

1-398

Manipulate a SYSREG by referring to it by name. You can manipulate SYSREGs in the
following ways:

• Create a SYSREG with the DEFINE command

• Delete a SYSREG from memory with the REMOVE command

• List SYSREG names with the DIR command

• Save (or restore) a SYSREG to (or from) a file with the PUT or APPEND (or INCLUDE)
commands

• Display a SYSREG with the SYSREG command

• Execute a SYSREG with the GO USING command

Encyclopedia

SYSREG continued

• Use a SYSREG as part of the DEFINE ARMREG specification

• Modify a SYSREG with the editor

NOTE

Defining new break specifications using an old SYSREG name destroys the old defini­
tion in memory. An error results if you try to assign a SYSREG name to any other debug
object in memory.

Restoring a saved SYSREG that has the same name as a SYSREG in memory overwrites
the latter.

An error occurs if you try to restore a saved SYSREG that has the same name as another
debug object in memory.

Because SYSREGs are referred to by name, you can reuse break specifications without re­
entering them. The GO command allows SYSREG lists. By combining SYSREGs, you can
switch breakpoints in a GO statement by changing SYSREG names.

Using SYSREGs with Multiple Units

The keywords SYSTRIG, SYSARM, and SYSDARM indicate actions caused by system regis­
ters. Other units in the FICE system must be enabled to respond to a system action. The unit
causing the system action is also affected if it is enabled. Refer to the ENABLE and SYSTEM
entries in this encyclopedia for details.

Restrictions

System registers can contain any number of specifications, limited only by memory. The GO
command's ability to execute them is limited by the number of word recognizers available.

Word recognizers are the programmable portion of the internal execution state machine. They
compare user match specifications with conditions on the bus they monitor. When a match
occurs, the state machine halts emulation. Refer to the Event machine entry in this encyclope­
dia for details.

Word recognizer use is governed internally. You cannot know precisely how many word recog­
nizers the FICE system uses in any given specification. A good rule of thumb is that one- or
two-range (partition) specifications or four-location specifications are the upper limit.

The FICE system indicates when the word recognizer limit is exceeded.

Encyclopedia 1-399

SYSREG continued

Example

1. The following example shows how to define a SYSREG to trigger a system break when bus
address 105H is read and contains the value 45H. In addition, the value of the input logic
clips must be OOlOXOIH.

*
Cross-References

1-400

ENABLE
Event machines
Name
SYSTEM
System specification

Encyclopedia

Syntax

{ ARM } SYSTEM DISARM

Where:

Default

SYSTEM ARM

SYSTEM DISARM

SYSTEM ARM

Discussion

SYSTEM
Sets the initial state of

the system arming functions

sets the initial system state to armed.

sets the initial system state to disarmed.

The SYSTEM ARM/DISARM command is issued before entering an emulation using the
SYSTRIG function. The condition is reinitialized to this state each time a GO command is
executed. You should set the initial state to SYSTEM DISARM when system arming functions
will be used in the debug session. Otherwise, you should set the initial state to SYSTEM ARM.

Example

1. The following example defines an arm register that arms the system when line 12 of
module TEST is executed, triggers the current probe when line 25 is executed, and then
disarms the current probe.

+2 because of execute break

Encyclopedia 1-401

System specification
Defines system specifications
for execution control commands

The term system-specification has a special meaning in the syntax of FICE system commands.
The execution control commands (Le., GO, ARMREG, SYSREG, TRCREG, and EVTREG)
use this term in their syntax definitions.

The break-specification, defined in the Break specification entry in this encyclopedia, refers to
object code addresses. The system-specification, defined syntactically in the following Syntax
section, is essentially everything else, including bus addresses, bus data, probe processor
status, trace buffer full, and the optional external logic clips input (if attached).

You can categorize break or trace information into break-specification or system-specification.
Only certain keywords apply in each case, which cuts down on the number of keywords to be
recalled per situation.

This entry describes how to specify the syntax for each branch of the system-specification
term.

When you construct the control command line, substitute the syntax shown in the Syntax
section for system-specification.

Syntax

1-402

READ
WRITE
INPUT
OUTPUT
FETCH

condition is

bus-address
IS item
CLIPS item
[NO] FULLBUF
STATUS item

READ
WRITE

OR INPUT
OUTPUT
FETCH

*

{
condition [condition] * }
condition [WITH condition] *

Encyclopedia

System specification continued

bus-address with READ, WRITE, or FETCH is

[AT masked-constant [, masked-constant] *
AT partition

bus-address without READ, WRITE, or FETCH is

[AT masked-constant [, masked-constant] *
AT [OUTSIDE] partition

item is

[
expression [,expression]* [
masked-constant [,masked-constant] *
[OUTSIDE] partition

Where:

condition

bus-address

Encyclopedia

qualifies the READ, WRITE, INPUT, OUTPUT, or
FETCH. If you do not include a READ, WRITE, IN­
PUT, OUTPUT, or FETCH, the PICE system assumes
the OR of all the possibilities.

is the address of an opcode or an operand (data). Ad­
dresses refer to the emulating processor's bus. Qualify­
ing the bus address with the processor's status
distinguishes between opcode fetches and data accesses.
For example:

DEFINE SYSREG sys = FETCH AT address

DEFINE SYSREG sys = READ AT address

Instruction bytes are prefetched into the processor queue
but might not be executed. Branch instructions flush the
queue.

Fetched instructions appear in the PRINT CYCLES
trace buffer display in the BUS ADR column. Instruc­
tions are interspersed with operand data.

1-403

System specification continued

OUTSIDE

item

IS item

CLIPS item

[NO) FULLSUF

1-404

The following bus-address options are valid:

AT address-one
AT OUTSIDE address-start LENGTH 50
AT address-one, address-two, address-three
AT .data
AT OUTSIDE .databegin TO .dataend
AT .start LENGTH OSH
ATXOX1101Y
AT OUTSIDE 45H TO 50H
ATCS:3000
ATOAXXFH

When the system specification is a READ, WRITE, or
FETCH, you cannot specify the bus-address to be OUT­
SIDE a partition.

The BUS ADR column of the PRINT CYCLES trace
display indicates addresses and data.

tells the PICE system to recognize all addresses other
than those in the partition (a logical Nor function).

is either an expression, a partition, or a masked con­
stant.

specifies data or an instruction read (from memory or an
110 port) or written (to memory or an 110 port).

specifies one of the eight input or one of the two output
logic clips supplied with the PICE system. The input
clips are displayed with the CLIPSIN command. The
output clips are set with the CLIPSOUT command. Re­
fer to the CLIPSIN and CLIPSOUT entries in this ency­
clopedia for details.

Use the eight input clips to qualify system-specification
breakpoints. Using masked constants simplifies CLIPS
breakpoint specifications. Specifying a CLIPS item
breakpoint when the input clips are not attached results
in the message "No clips module".

specifies a break or trace or both when the trace buffer is
full. The keyword NO is a logical Nor. The trace buffer
is a system-specification condition. Stopping emulation
or tracing on the buffer full condition prevents the buffer
from being entirely overwritten.

Encyclopedia

STATUS item

partition

expression

masked-constant

Discussion

System specification continued

refers to the state of the probe processor. See the PRINT
entry in this encyclopedia for more information about
processor status.

is a bounded range of contiguous addresses. A symbolic
reference to a module or procedure is a partition.

represents a single address or list of addresses. Ad­
dresses are numbers or symbolic references.

is a binary or hexadecimal number with one or more
locations set to a don't-care condition. Replacing num­
bers with an uppercase or lowercase X tells the FICE
system to accept any number as a valid match. Masked
constants represent 32 bits. If the base is binary, each X
represents one bit. If the base is hexadecimal, each X
represents four bits. Unspecified leading bits are filled
with zeros.

A status item can appear in an ORed list only once. For example, READ OR READ is illegal.
The WITH keyword logically ANDs conditions.

Refer to the Expression, Masked constant, and Partition entries in this encyclopedia for details
on expression, masked-constant, and partition, respectively.

When specifYing bus addresses, you need to know Intel's iAPX architecture. The 16-bit iAPX
microprocessors access memory a word at a time. They access memory as words beginning on
even addresses. If the word exists at an odd address, the 16-bit iAPX microprocessor performs
two memory accesses, both at even addresses.

For example, assume that the word AB12H is stored at the even address FCOOH. Memory is
arranged as follows:

FCOO 12
FCOI AB
FC02 ??
FC03 ??

When you read the word at FCOOH, one memory access occurs. The data bus contains AB12.
Assume that your program reads that word. You can define a system debug register that trig­
gers a break when the read occurs.

Encyclopedia 1-405

System specification continued

*llrt'III~III~.Y.Qil.llll)IJ~11

Now assume that the word AB12 is stored at the odd address FC01 and that FCOOH and FC03
both contain 90H. Memory is arranged as follows:

FCOO 90
FCOl 12
FC02 AB
FC03 90

When you read FC01H two memory accesses occur. The memory bus contains 1290 the first
time and 90AB the second time. The previous system debug register no longer causes a break.
Because the word AB12 is at an odd address, it does not appear on the data bus as a complete
word. You can still break on that condition, but you must use an event debug register.

**
**
** * * Ill)

Use the FETCH keyword carefully. For example, assume that you want to specify a break
when the emulating microprocessor fetches the instruction beginning at statement #13 in the
module cmaker.

If that instruction is at an odd address, the break might not occur. The l6-bit microprocessors
do word fetches from even addresses, with one exception. The first fetch after a program
transfer to an odd address obtains a byte. If you program transfers control to an odd address,
the fetch is from that odd address.

Examples

1-406

1. The following example shows the syntax for a DO statement containing system­
specification options.

/* Debug register named x */

/* Partial construction * /
/* The CLIPS keyword is entered as is */

/* Matches the DO */

Encyclopedia

System specification continued

2. The following example shows the same DO statement with the system-specification options
defined.

*
Cross-References

Expression
Masked constant
Partition

Encyclopedia 1-407

TEMPREAL
Displays or changes memory
as 80-bit floating-point values

Syntax

TEMPREAL partition [= expression [, expression]'
= mtype partition

Where:

TEMPREAL partition

partition

expression

mtype

displays the contents of memory in the partition as a
temporary real number in scientific format.

is a single address or a range of addresses specified as
address TO address or address LENGTH number-of­
items.

converts to an 80-bit floating-point value for TEM­
PREAL.

is any of the memory types except ASM.

Discussion

The TEMPREAL command interprets the contents of memory as 80-bit floating-point decimal
values, overriding any type associated with the memory contents. Thus, TEMPREAL .var1
displays the 80-bit floating-point value that begins at the address of var1, regardless of the type
of varl.

Examples

1-408

The following examples assume a decimal number base.

1. Display a single value:

* _1.1
0020:0006H +3.3657976670200750E-199

Encyclopedia

TEMPREAL continued

2. Display several adjacent values:

*~t,f_.1
0020:0006H +3.3657976670200750[-199 -0.05072760847314735[+3623
0020:0020H +0.0368425402359838[+4856

3. Set a single value of type TEMPREAL:

4. Set several adjacent values:

Display the values set:

-2.345667890000000000[+4

5. Set a range of locations to the same value:

6. Set a repeating sequence of values:

7. Copy a value from one memory location to another:

8. Copy several values (block move):

9. Copy values with type conversion:

An error message is displayed if the type on the right side of the equal sign cannot be converted
to the type on the left. (Refer to the Expression entry in this encyclopedia for the rules concern­
ing type conversions.)

Encyclopedia 1-409

TEMPREAL continued

Cross-References

1-410

Expression
Mtype
Partition

Encyclopedia

Syntax

TIMEBASE = integer

Where:

integer

NS
US
MS

Default

200NS

Discussion

{~NS~ }

TIMEBASE
A pseudo-variable that sets the trace

counter source and increment and
formats the trace buffer timetag

is a number or an expression that evaluates to a positive
whole number. The integer controls the amount of time
between increments of the timebase counter. The integer
ranges from 200 nanoseconds (NS) through 6,553 mi­
croseconds (US), in multiples of 100 NS.

is the time measurement suffix for integer; NS is nano­
seconds, US is microseconds, and MS is milliseconds.

The TIMEBASE command uses the timebase counter and increment settings to calculate and
save timetag information. Timetag is part of the trace buffer displayed with the PRINT
CYCLES command.

The TIMEBASE command controls a free-running counter (timebase counter). By specifying
a timebase increment value, you control how often the counter increments by one. The current
counter value is transparent to the user. However, the timebase increment and count value
determine the timetag in the PRINT CYCLES trace buffer display.

The timebase counter starts at zero, counts until it wraps around and then starts over. Wrap­
arounds are transparent. Timetag is calculated as follows: (timebase increment * timebase
counter). The value of the timebase counter is saved every time an instruction is executed.

The TIMEBASE command defines the amount of time between increments for all units. The
current unit is the source of the timebase counter. Traced events between FICE probes are
synchronized because they use the same TIMEBASE setting.

Encyclopedia 1-411

TIMEBASE continued

NOTE

Trace buffer timing is not synchronized with the Intel logic timing analyzer (iLTA)
timing information.

The effect of the TIMEBASE command is important in two instances: when tracing is continu­
ous and when trace is switched on and off.

Continuous Tracing

Using TIMEBASE to set up timetag information is straightforward when tracing is continuous.
You can accurately compare traces collected from one or more probes without interruption.
Timebase counter wrap-arounds are transparent.

Interrupted Tracing

Turning the trace on, off, and back on again can create synchronization problems. A discontin­
uity occurs if the timebase counter wraps around while trace is off. Wrap-arounds with trace
off occurs when the timebase counter value, which is free running, has been incremented 2048
times before trace is resumed. For example, suppose TIMEBASE = 1 US was set. A trace
discontinuity occurs if the length of time between turning the trace off and turning it back on is
longer than (l US * 2048).

A trace discontinuity is displayed in the PRINT cycles trace buffer under the heading LEVEL.
The newest trace data collected is always at level O. A trace discontinuity increments the level
count by one.

Only trace data at level 0 is comparable for timing synchronization between probes.
Trace data timing information is comparable for any single level, but only for each
probe considered individually.

Example

1-412

1. The following example shows how to set TIMEBASE parameters and shows the trace
buffer display that results using the 8086/8088 probe. The timebase counter source is the
trace board in unit 3 and the increment, referenced by all probes, is 200 microseconds.

Encyclopedia

TIMEBASE continued

EXEC ADR BUS ADR DATA STATUS CLIPS FRAME TIME LEVEL UNIT
x b 000202 d C38B s 0054 CF c f 000
x 000202 b d s c 02 f 001 0 nanosecs 0
x b 000204 d FAE2 s 0054 CF c f 002
x 000204 b d s c 02 f 003 0.8 microsecs 0
x b 000206 d F8EB s 0054 CF c f 004
x b 000208 d Eool s 0054 CF c f 005
x b 000200 d (103 s 0054 CF c f 006
x 000200 b d s c 83 f 007 4.4 microsecs 0
x b 000202 d C38B s 0054 CF c f 008

Cross-Reference
Expression

Encyclopedia 1-413

Trace buffer display
8086/8088 probe specific

1-414

The PRINT command (discussed in the PRINT entry of this encyclopedia) displays the con­
tents of the trace buffer. The INSTRUCTIONS option displays the trace buffer in disassem­
bled mnemonics, and the CYCLES option displays the trace buffer in bus cycles.

INSTRUCTIONS mode shows bus activity and execution within the emulating probe proces­
sor. The display of execution within the probe processor shows the frame number, execution
address, instruction opcode, mnemonic, and unit number, as shown in the following example:

FRAME
001

ADR
oo0204H

BYTE
FA

MNEMONICS OPERANDS
ClI

The following example shows how bus activity is displayed:

000390H-SW-0021H

The format of the bus activity display is as follows:

bus address-access code-data

Where:

bus address is a bus address.

UNIT 0

access code is a two-character access code representing the origin of
the FICE trace data. The first character represents the
access type, and the second character represents proces­
sor activities. Thble 1-34 defines the access codes.

data is the FICE trace data.

Table 1-34 8086/8088 INSTRUCTIONS Mode Access Codes

Access Type Code Processor Activity Code

Segment Fetch instruction F
Extra segment (ES) E Read memory R
Stack segment (SS) S Write memory W
Code segment (CS) C Input from 1/0 port I
Data segment (OS) 0 Output from 1/0 port 0

Halt H
Coprocessor Interrupt acknowledge A

RQ/GTO 0
RQ/GT1 1

Encyclopedia

Trace buffer display (8086/8088) continued

CYCLES mode displays the execution address, bus address, bus data, processor status, clip
information, frame number, timetag, level, and unit number. The status column in CYCLES
mode contains a 16-bit hexadecimal bus status code followed by a two-character access code.
Table 1-35 defines the two-character access codes.

Encyclopedia

Table 1-35 8086/8088 CYCLES Mode Access Codes

Bits Function Code

2 1 0

0 0 0 Interrupt acknowledge A
0 0 1 Input from 1/0 port I
0 1 0 Output from 1/0 port 0
0 1 1 Halt H
1 0 0 Fetch instruction F
1 0 1 Read memory R
1 , 0 Write memory W

Bits Function Code"

2 1 0

0 0 0 Extra segment (ES) E
0 0 1 Stack segment (SS) S
0 1 0 Code segment (CS) C
0 1 1 Data segment (DS) D

N(YfE

When bit 5 = 0, bits I through 4 are interpreted as access codes; when bit 5 = 1, a
coprocessor bus cycle is indicated and bit 3 then indicates the coprocessor number.

Bit 6: Status of TEST pin.
Bit 7: System event machine (SEM) in state 3

(XLINK) when bit 7 = 1.
Bits 8-15: Unused.

1-415

Trace buffer display (8086/8088) continued

Examples

1. The following example shows a sample 808618088 probe trace buffer displayed in IN­
STRUCTIONS mode.

*1\111;1' ___ 1.
FRAME ADR BYTE MNEMONICS OPERANDS

CLI 001
002
008
OOA
010
015
017
018
OlD
020

023

028

02B

02E

030

035

038
03A

000204H FA
000205H 2E8E160000
00020AH BC7200
00020DH 2E8E1E2EBC
000212H EA000121000
000310H 8BEC
000312H FB
000313H 2E8D60800
000318H DE
0003l9H 50
000390H-SW-0021H

MOV
MOV
MOV
JMP

SS,CS:WORD PTR OOOOH
SP,0072H ;+1141
DS,CS:WORD PTR OBC2EH
0021H:Ol00H

MOV BP,SP
STI
LEA AX,CS:WORD PTR 0008H
PUSH CS
PUSH AX

00031AH 9A34003AOO CALL 003AH:0034H
00038EH-SW-0008H 0003BCH-SW-0021H
0003D4H lE PUSH DS
00038AH-SW-Ol0FH
0003D5H 55
000388H-SW-0032H
0003D6H 8BEC
000386H-SW-0072H
0003D8H 8EDEOAH
000390H-SR-0021H
0003DBH 8B5EOB
00038EH-SR-0008H
0003DEH BFOOOO
0003E1H BACEOO

PUSH BP

MOV SP,SP

MOV DS, [BP+OAH]

MOV BX,[BP+OBH]

MOV DI,O
MOV DX,OOCEH ;+2061

UNIT 0

2. The following example shows a sample 8086/8088 probe trace buffer displayed in CYCLES mode.

EXEC ADR BUS ADR DATA STATUS CLIPS FRAME TIME LEVEL UNIT 0
x b 000202 d C38B s 0054 CF c fOOD
x 000202 b d s c 02 fOOl 0.0 nanosecs 0
x b 000204 d FAE2 s 0054 CF c f 002
x 000204 b d s c 02 f 003 0.8 microsecs 0

1-416 Encyclopedia

Trace buffer display (8086/8088) continued

x b DDD2Db d F8EB s DDS4 CF c f DD4
x b DDD2D8 d EDDl s DDS4 CF c f DDS
x b DDD2DD d C1D3 s DDS4 CF c f DDb
x DDD2DD b d s c 83 f DD? 4.4 microsecs D
x b DDD2D2 d C38B s DDS4 CF c f DD8

Cross-Reference

PRINT

Encyclopedia 1-417

Trace buffer display
80186/80188 probe specific

The PRINT command (discussed in the PRINT entry in this encyclopedia) displays the con­
tents of the trace buffer. The INSTRUCTIONS option displays the trace buffer in disassem­
bled mnemonics, and the CYCLES option displays the trace buffer in bus cycles.

INSTRUCTIONS mode shows bus activity and execution within the emulating probe proces­
sor. The display of execution within the probe processor shows the frame number, execution
address, instruction opcode, mnemonic, and unit number, as shown in the following example:

FRAME ADR
3E6 000016H

BYTE
EA10000000

MNEMONICS OPERANDS
JMP OOOOH:0010H

UNIT 0

1-418

The following example shows how bus activity is displayed:

000010H- W-10A1H

The format of the bus activity display is as follows:

bus address-access code-data

Where:

bus address

access code

data

is a bus address.

is a two-character access code representing the origin of
the PICE trace data. The first character represents the
access type, and the second character represents proces­
sor activities. Table 1-36 defines the access codes.

is the PICE trace data.

Table 1-36 80186/80188 INSTRUCTIONS Mode Access Codes

Access Type Character Code Device Activity Code

DMA channel 0 0 Fetch instruction F
DMA channel 1 1 Read memory R
Coprocessor C Write memory W
Normal CPU activity (blank) Input from 1/0 port I

Output from 1/0 port a
Halt H
Acknowledge interrupt A

Encyclopedia

Trace buffer display (80186/80188) continued

CYCLES mode displays the execution address, bus address, bus data, processor status, clips
information, frame number, timetag, level, and unit number. The status column in CYCLES
mode display contains a 16-bit hexadecimal bus status code followed by a one-character access
code. Table 1-37 defines the access code.

2

0
0
0
0
1
1
1

Bit 3 = 1
Bit 4 = 1
Bit 5 = 1
Bit 6 = 1

Table 1-37 80186/80188 CYCLES Mode Access Codes

Bits

1

0
0
1
1
0
0
1

Function

0

0 Interrupt acknowledge
1 Input from liD port
0 Output from 110 port
1 Halt
0 Fetch instruction
1 Read memory
0 Write memory

NOTE

DMA channel 0 bus cycle
DMA channell bus cycle
Coprocessor bus cycle
Bus cycle with lock asserted

Code

A
I

0
H
F
R
W

Bit 7=XLINK The Event machines entry in this encyclopedia describes XLINK.

Examples

The examples in this section are based on the following assembly language program:

oooolOH
oooo13H
oooo16H
oooolBH
oooolCH
oooolDH

A11000
A31000
EAlOoooooo
90
90
90

MOV AX,WORD PTR oo10H
MOV WORD PTR oolOH,AX
JMP ooooH:ooloH
NOP
NOP
NOP

1. The following example shows a sample 80186/80188 probe trace buffer displayed in IN­
STRUCTIONS mode.

Encyclopedia 1-419

Trace buffer display (80186/80188) continued

FRAME ADR BYTE MNEMONICS OPERANDS UNIT 0
3E6 oooo16H EAlOoooooo JMP ooooH:ooloH

ooooloH- W-lOA1H
3EC oooolOH AllOoo MOV AX,WORD PTR ooloH
3EF oooo13H A31000 MOV WORD PTR oolOH,AX

oooolOH- R-lOA1H
3F2 oooo16H EAlOoooooo JMP ooooH:oolOH

oooolOH- W-lOA1H
3F8 ooooloH Allooo MOV AX,WORD PTR ooloH
3FB oooo13H A31000 MOV WORD PTR oolOH,AX

oooolOH- R-lOA1H oooolOH- W-lOA1H

2. The following example shows a sample 80186/80188 probe trace buffer displayed in CY-
CLES mode.

EXEC ADR BUS ADR DATA STATUS CLIPS FRAME TIME LEVEL UNIT 0
x 000013 b d s c f 3EF 408.2 microsecs 0
x b 000010 d lOAl s 0005 R c f 3Fo
x b 000016 d loEA s 0004 F c f 3Fl
x 000016 b d s c f 3F2 409.2 microsecs 0
x b 000010 d lOAl s 0006 W c f 3F3
x b 000018 d 0000 s 0004 F c f 3F4
x b oooolA d 9000 s 0004 F c f 3FS
x b oooolC d 9090 s 0004 F c f 3F6
x b 000010 d lOAl s 0004 F c f 3F7
x 000010 b d s c f 3F8 411.6 microsecs 0
x b 000012 d A300 s 0004 F c f 3F9
x b 000014 d 0010 s 0004 F c f 3FA
x 000013 b d s c f 3FB 413.0 microsecs 0
x b 000010 d lOAl s 0005 R c f 3FC
x b 000016 d lOEA s 0004 F c f 3FD
x b 000010 d lOAl s 0006 W c f 3FE

Cross-Reference

PRINT

1-420 Encyclopedia

Trace buffer display
80286 probe specific

The PRINT command (discussed in the PRINT entry in this encyclopedia) displays the con­
tents of the trace buffer. The INSTRUCTIONS option displays the trace buffer in disassem­
bled mnemonics, and the CYCLES option displays the trace buffer in bus cycles.

INSTRUCTIONS mode shows bus activity and execution within the emulating probe proces­
sor. The display of execution within the probe processor shows the frame number, execution
address, instruction opcode, mnemonic, and unit number, as shown in the following example:

fRAME
3Al

ADR
976H

B.YTE
8ECO

MNEMONICS OPERANDS UNIT 0
MOV ES,AX

The following example shows how bus activity is displayed:

0005A6H- R-007CH

The format of the bus activity display is as follows:

bus address-access code-data

Where:

bus address

access code

data

is a bus address.

is a two-character access code representing the origin of
the FICE trace data. The first character represents the
access type, and the second character represents proces­
sor activities. Table 1-38 defines the access codes.

is the FICE trace data.

Table 1-38 Access Code in the Trace Buffer Display

Code: First Code: Second
Processor Activity Character Character

Processor extension activity C Instruction fetch F
Locked instruction L Read from memory R
HOLD asserted H Write to memory W
Normal CPU activity blank Input from 1/0 port I

Output to 1/0 port 0
Halt H
Acknowledge interrupt A

Encyclopedia 1-421

Trace buffer display (80286) continued

In CYCLES mode, the trace buffer displays a 16-bit status word. The upper eight bits (bits
< 15-8>) are zero. The status word decodes into the two-character access code (the access
codes are defined in Table 1-38). Figure 1-20 shows the decoding of the status word.

Note that breakpoints can be set to the occurrence of any given bus cycle type by using the
status word. For example, the following command causes the probe to break on any interrupt
acknowledge cycle:

Bit 15 8 7 I 6 5 4 I 3 2 o I

1-422

I I I I I I I I
I I

* Additional information:

5EM5 When 1, signifies that the system event machine is in state 3 (5L1NK~1).

PA

TA

xOx
xll
010
110

Locked instruction, decoded as L.
HOLD asserted, decoded as H.
Processor extension activity, decoded as C.
Normal CPU activity.

x Don't-care bit.

0000
0100
0101
0110
1001
1010
1101

Acknowledge interrupt, decoded as A.
Halt. decoded as H.
Memory read, decoded as R.
Memory write, decoded as W.
Input from 110 port, decoded as I.
Output from 1/0 port, decoded as O.
Instruction fetch, decoded as F.

Figure 1-20 The 80286 Status Word Bit Pattern

I I
L 50

51
COD/INTA
MilO
HOLD
LOCK
PEACK
5EM5'
unused

2277

Encyclopedia

Trace buffer display (80286) continued

Examples

The examples in this section are based on the following PLIM source code.

FLOATING_POINT _MATH_TEST:
DO;
/* This program performs a few math routines for ICE86A emulation of 8087 and emulator */

DECLARE ERROR(10) BYTE INITIAL(O,O,O,O,O,O,O,O,O,O);
DECLARE (A, B) REAL;
DECLARE PT WORD INITIAL(.A);
DECLARE RESULT BASED PT(1) WORD;
DECLARE I BYTE;
DECLARE REALST_BUF(100) BYTE;
DECLARE FERROR WORD INITIAL(O);
DECLARE LOOP_COUNT BYTE INITIAL(O);

CALL INIT$REAL$MATH$UNIT;
CALL SET$REAL$MODE(33EH);

/* Summation */
A,B=O.O;
DO 1=1 to 5;

B=B+1000.0;
A=A+B;

END;
IF A < > 15000.0 THEN ERROR(1)=1;

/* Anti-summation */
B=O.O;
DO 1=1 TO 5;

B=B+1000.0;
A=A-B;

END;
IF A < > 0.0 THEN ERROR(2)=1;

/* Negative summation */
A,B=O.O;
DO 1=1 TO 5;

B=B-1000.0;
A=A+B;

END;
IF A <>-15000.0 THEN ERROR(3)=1;

/* Anti-negative summation */
B=O.O;

Encyclopedia 1-423

Trace buffer display (80286) continued

DO 1=1 TO 5;
B=B+1000.0;
A=A+B;

END;
IF A < > 0.0 THEN ERROR(4)=1;

/* DOUBLE */
A=O.O;
B=100.0;
DO 1=1 TO 10;

A=A+B;
B=A;

END;
IF A < > 51200.0 THEN ERROR(5)= 1;

/* Divide and subtract */
DO 1=1 TO 10;

A=A I 2.0;
B=B-A;

END;
IF B < > A THEN ERROR(6)= 1;
IF A < > 50.0 THEN ERROR(7)= 1;

/* Factorial */
A=1.0;
B=2.0;
DO 1=1 TO 9;

A=A * B;
B=B+1.0;

END;
IF RESULT(O) < > 7COOH OR RESULT(1) < > 4A5DH THEN ERROR(8)=1;

/ * Anti-factorial * /
DO 1=1 TO 10:

B=B-1.0;
A=A I B;

END;
IF RESULT(O) < > 0 OR RESULT(1) < > 3F80H THEN ERROR(9)=1;

LOOP _COUNT=LOOP _COUNT+1;

CALL SAVE$REAL$STATUS(@REALST_BUF);

COMPLETED: HALT;

END;

1-424 Encyclopedia

Trace buffer display (80286) continued

Disassemble the source code by entering the ASM command.

*f:I!_I1IJIllL: ,Jim
0020:D006H FA
002D:DDD7H 2E8E16DDDD
OD2D:DDDCH 8C1DDD
OD2D:DDDFH 2E8E1ED2DO
OD2D:DD14H EADADD21DD
DD2D:DD19H DD88ECF8
DD21:DDDDH 9ADDDD5FDD
:FlOATING_POINT_MATH_TEST#11
D021:DD12H 883ED3
D021:DD15H 5D
DD21:DD16H 98D96EFE
OD21:DD1AH 58
.12
OD21:DD18H 98D9D6DDDD
OD21:DD2DH 98D91624DD
OD21:DD25H 98D91E2DD
OD21:DD2AH 98
.13
OD21:DD28H C6D636DDDL

Encyclopedia

ClI
MOV SS,CS:WORD PTR DDDOH
MOV SP,DD1DH; + 16T
MOV DS,CS:WORD PTR DDD2H
JMP (#1D)DD21H:DDOAH
ADD [8P+DI+OF8ECH),Cl
CAll DD5FH:DDDDH

MOV AX,D33EH; +83DT
PUSH AX
FlDCW WORD PTR [8P-D2H)
POP AX

FlD
FST
FSTP
FWAIT

MOV

DWORD PTR DDDOH
DWORD PTR DD24H

DWORD PTR DD2DH

8YTE PTR DD36H,1

1-425

Trace buffer display (80286) continued

1. Display the trace buffer in INSTRUCTIONS mode (for brevity, this display is truncated
after frame 41H):

FRAME ADR BYTE
001 D002D6H FA
004 DDD2D7H 2E8E16DDDD

DDD20DH- R-005EH
008 DOD2DCH BC1DOO
ODB DOD2DFH 2E8E1ED2DO

D00202H- R-D055H
010 DDD214H EAOADD21DO
:FlOATING_POINT_MATH#lD
013 D021:0DOAH 8BEC
015 0021:0DOCH FB
018 0021:0DODH 9AODD05FDO

00D5EEH- W-D021H

MNEMONICS OPERANDS
ClI

UNIT 0

MOV SS,CS:~ORD PTR DODOH

MOV
MOV

JMP

MOV
STI
CAll

SP,D01DH ; +16T
DS,CS:WORD PTR ODD2H

(#lD)OD21H:DOOAH

DD5FH:ODODH

OLD DOD5FDH CB RET; FAR
DDD5ECH- W-D012H DD05ECH- R-OD12H DDD5EEH- R-OD21H

:FlOATING POINT_MATH#11
023 D021:DD12H B83ED3
025 D021:DD15H 50
026 D021:DD16H 9BD96EFE

DDD5EEH- W-D33EH
02E D021:DD1AH 58

DDDDF8H- 0-6ED9H
:FlOATING_POINT_MATH#12

MOV AX,D33EH ; +830T
PUSH AX
FlDCW

POP AX

WORD PTR [BP-D2H]

030 D021:DD1BH 9BD9D6DDDO FlD DWORD PTR ODDDH
DDD5EEH-CR-033EH ODODFAH- O-D33EH DDD5EEH- R-D33EH

ODODF8H- O-D6D9H
DODOFCH- 0-001CH DOOOFCH- O-DD21H DDD55DH-CR-ODDOH
.... ·etc.

1-426 Encyclopedia

Trace buffer display (80286) continued

2. Display the trace buffer in CYCLES mode (for brevity, this display is truncated after frame
4IH):

*RIJ!IW'fl~""'$$~14
EXEC ADR BUS ADR DATA STATUS CLIPS FRAME TIME LEVEL UNIT 0
x b 000206 d 2EFA 5 ODED F c f DOD
x 000206 b d 5 c 06 f 001 0.0 nanosecs 0
x b 000208 d 168E 5 006D F c f 002
x b 00020A d DODD 5 006D F c f 003
x 000207 b d 5 c 06 f 004 1.4 microsecs 0
x b 00020C d 10BC 5 006D F c f 005
x b 00020E d 2EOO 5 006D F c f 006
x b 000200 d 005E 5 0065 R c f 007
x 00020C b d 5 c 06 f 008 3.0 microsecs 0
x b 000210 d lE8E 5 006D F c f 009
x b 000212 d 0002 5 006D F c f OOA
x 00020F b d 5 c 06 f OOB 5.2 microsecs 0
x b 000214 d OAEA 5 006D F c f DOC
x b 000216 d 2100 5 006D F c f DOD
x b 000202 d 0055 5 0065 R c f DOE
x b 000218 d DODD 5 006D F c f OOF
x 000214 b d 5 c 06 f 010 8.0 microsecs 0
x b 00021A d EC8B 5 006D F c f 011
x b 00021A d EC8B 5 006D F c f 012
x 00021A b d 5 c 06 f 013 10.4 microsecs 0
x b 00021C d 9AFB 5 006D F c f 014
x 00021C b d 5 c 06 f 015 11.0 microsecs 0
x b 00021E d DODD 5 006D F c f 016
EXEC ADR BUS ADR DATA STATUS CLIPS FRAME TIME LEVEL UNIT 0
x b 000220 d 005F 5 006D F c f 017
x 00021D b d 5 c 06 f 018 12.4 microsecs 0
x b 000222 d 3EB8 5 006D F c f 019
x b 000224 d 5003 5 006D F c f 01A
x b 0005EE d 0021 5 0066 W c f 01B
x b 0005FO d OOCB 5 006D F c f 01C

Encyclopedia 1-427

Trace buffer display (80286) continued

x 0005FO b d s c 06 fOLD
x b oo05EC d 0012 s 0066 W c f OLE
x b oo05EC d 0012 s 0065
x b oo05EE d 0021 s 0065
x b 000222 d 3E88 s o06D
x b 000224 d 5003 s o06D
x 000222 b d s
x b 000226 d D998 s o06D
x 000225 b d s
x 000226 b d s
x b 000228 d FE6E s o06D
x b oo05EE d o33E s 0066
x
x
x
x
x

b d s
b oo022A d 9858 s o06D
b 00022C d o6D9 s o06D
b oo022E d 0000 s o06D
b 000230 d D998 s o06D

Ref olF
Ref 020
F c f 021
F c f 022

c 06 f 023
F c f 024

c 06 f 025
c 06 f 026

F c f 027
W c f 028

c 06 f 029
F c f o2A
F c f 028
F c f 02C
F c f o2D

EXEC ADR 8US ADR DATA STATUS CLIPS FRAME
x oo022A b d s c 06 f o2E
x b 0000F8 d 6ED9 s o06A 0 c f o2F
x 000228 b d s c 06 f 030
x
x
x
x
x
x
x
x
x
x

1-428

b oo05EE d o33E s 0025 CR c f 031
b ooooFA d o33E s o06A
b oo05EE d o33E s 0065
b 000232 d 2416 s o06D
b d s
b 000234 d 9800 s o06D
b 000236 d lED9 s o06D
b 000238 d 0020 s o06D

o c f 032
Ref 033
F c f 034

c 06 f 035
F c f 036
F c f 037
F c f 038

b oo023A d C698 s o06D F c
b 0000F8 d o6D9 s o06A 0 c

f 039
f o3A

15·4 microsecs

19.8 microsecs

20.0 microsecs
20.6 microsecs

21.8 microsecs

o

o

o
o

o

TIME LEVEL UNIT 0
25.0 microsecs o

26.0 microsecs o

28.8 microsecs o

Encyclopedia

x b ooooFC d 001C s o06A o c f 038
x b ooooFC d 0021 s o06A 0 c f O3C
x b 000550 d 0000 s 0025 CR c f o3D
x b ooooFA d 0000 s o06A o c f o3E
x b 000552 d 0000 s 0025 CR c f o3F
x b ooooFA d 0000 s o06A o c f 040
x b ooooFC d 0000 s o06A o c f 041

Cross-Reference

PRINT

Encyclopedia 1-429

TRCBUS
A pseudo-variable that controls
the collection of bus information
in the trace buffer

Syntax

TRCBUS { : ;:~SEE }
= boolean-expression

Where:

TRCBUS

TRUE

FALSE

boolean-expression

displays the setting, either TRUE or FALSE.

collects both execution and bus information into the
trace buffer.

collects only execution addresses into the trace buffer.

is an expression in which the low-order bit evaluates to 0
(false) or I (true).

Default

TRUE

Discussion

The PICE system normally collects both execution and bus information in the trace buffer.
Typically, three times as many bus cycles are executed as execution cycles. If bus activity is of
no particular interest, you can set TRCBUS to FALSE, ftlling all 1023 usable trace buffer
frames with just execution frames.

Display the trace buffer with the PRlNT INSTRUCTIONS or PRlNT CYCLES command.

Cross-Reference

PRlNT
Trace buffer display

1-430 Encyclopedia

Syntax

DERNETRCREGname=

Where:

DEFINE TRCREG name

name

SYSTRACE

Discussion

Defines a register that contains
user program tracing specifications

{
break-specification }
[SYSTRACEI system-specification

creates a debug trace register called name. A break­
specification or [SYSTRACE] system-specification fol­
lowing the equal sign (=) defines the trace collection
criteria. The Break specification and System specifica­
tion entries in this encyclopedia describe the syntax in
detail.

is the name of the debug trace register you want to cre­
ate.

specifies that when the system-specification is met, any
FlCE units properly enabled are triggered and trace ac­
cording to the defined criteria. Do not specify SYS­
TRACE on any unit that also has SYSARM,
SYSDARM, or SYSTRlG specified.

The FICE system normally records (traces) all probe processor bus information when TRC­
BUS is TRUE. Only execution addresses are traced when TRCBUS is FALSE. The TRCREGs
are programmed to selectively collect trace information. By using this debug register, you can
specify conditions to the probe that control when trace information is collected.

Defined trace registers (TRCREGs) can only be activated using the optional TRACE keyword
in the GO command.

You can optionally enclose a TRCREG specifications in a DO-END block.

Manipulating TRCREGs

You manipulate a TRCREG by referring to its name. You can manipulate TRCREGs in the
following ways:

• Create a TRCREG with the DEFINE command

Encyclopedia 1-431

TRCREG continued

•
•
•
•
•
•
•

Delete a TRCREG from memory with the REMOVE command

List TRCREG names with the DIR command

Save a TRCREG to a file with the PUT or APPEND commands

Restore a TRCREG from a file with the INCLUDE command

Display a TRCREG with the TRCREG command

Execute a TRCREG with the GO USING command

Modify a TRCREG ''lith the editor

Restrictions

1-432

The TRCREGs may contain any number of specifications. The GO command's ability to
execute the specifications, however, is limited by the number of word recognizers available.

Word recognizers are the programmable portion of the internal execution state machine. They
compare your match specifications with conditions on the bus they monitor. When a match
occurs, the state machine halts emulation. Refer to the Event machines entry in this encyclope­
dia for details.

Word recognizer use is governed internally. You cannot know precisely how many word recog­
nizcrs are used in any given specification. A good rule of thumb is one- or two-range (parti­
tion) specifications or four-location specifications are the upper limit.

The FICE system returns an error when the word recognizer limit is exceeded.

NOTE

Defining new trace specifications using an old TRCREG name destroys the old defini­
tion in memory. An error results if you try to assign a TRCREG name to any other
debug object in memory.

Restoring a saved TRCREG that has the same name as a TRCREG in memory over­
writes the latter.

An error occurs when you try to restore a saved TRCREG that has the same name as any
other debug object in memory.

Because TRCREGs are referred to by name, you can reuse break specifications without re­
entering them. The GO command allows TRCREG lists. You can switch breakpoints in a GO
statement by changing TRCREG names.

Encyclopedia

When using SYSTRACE in a multiprobe environment with various probe frequencies, the
slower probes may miss the system trace event for one instruction. Therefore, specify a range
of addresses, such as one of the following:

SYSTRACE AT OUTSIDE address-start LENGTH 50
SYSTRACE AT XOXllOXY

Trace Buffer

Trace information is collected in a 1024-frame buffer in either of two frame types, bus frames
or execution frames. A bus frame contains bus addresses, data, and processor status. Bus
frames are collected for each bus cycle (read, write, input, output, and fetch). An execution
frame contains execution addresses, clips, and timetags. Execution frames are collected every
time an instruction is popped from the processor's queue and executed. Trace frames are
displayed with the PRINT command.

Example

I. The following example shows how to define a trace register to cause all enabled units to
trace when the data value 32H is read from location 106H of the current unit.

Cross-References

Break specification
Event machines
Name
PRINT
System specification
Trace buffer display

Encyclopedia 1-433

TSS
80286 probe specific

Displays the current task state segment

Syntax

TSS [(expression)]

Where:

TSS

expression

displays the current task-state segment.

represents a 16-bit selector value. This option overrides
the current selector stored in the task register.

Discussion

The selector, if specified, selects the descriptor table (either the GDT or the LDT) and an offset
into the table. If the selector is not specified, the FICE system assumes the selector stored in
the task register (TR). When you include a selector, that selector must identify the GDT (bit 2
must be 0).

Example

1. Display the current task state segment:

*1fSS
L1NK=0280 SPO =0400
SP2 =0000 SS2 =0000
ex =0024 DX =001e
S1 =FF5A D1 =0030
DS=0028 RLDT=OOOO

SSO
1P
8X
ES

=0028
=3592
=FF56
=0038

SP1
FL
SP
es

=0000
=0046
=0400
=0020

SS1
AX
8P
SS

=0000
=0000
=0006
=0028

Note that the selector part of the local descriptor table register is called RLDT when the task
state segment is displayed.

Cross-Reference

1-434

80286 registers
Expression
Multitasking

Encyclopedia

Syntax

UNIT [= unit-number]

Where:

UNIT

unit-number

Default

o

Discussion

A pseudo-variable that displays
or changes the current default unit

displays the current default unit.

changes the default unit. The unit-number is an expres­
sion that evaluates to 0, 1,2, or 3.

The UNIT command changes the default unit for the system. All commands are directed to the
default (current) unit unless a command is specifically referred to another unit with the back­
slash (\) control.

The default unit is always numbered O. The chassis located first in the system cable chain is the
default unit.

Example

1. Set PICE chassis number 1 as the default unit:

Cross-Reference

Expression

Encyclopedia 1-435

UNITHOLD
Causes the 121CE system
to pause while the
user cable is moved

Syntax

UNITHOLD

Where:

UNITHOLD

unit-number

ALL

unit-number[,unit-number] *
ALL

suppresses the error displayed when the user cable is
disconnected from a running unit. Entering any charac­
ter restores normal error detection.

is a number of the unit you want to hold (0, 1, 2, or 3) or
an expression that evaluates to 0, 1, 2, or 3.

holds all units.

Discussion

In software (loopback) mode, the user cable is plugged into the loopback socket on the probe
buffer box. In hardware mode, the user cable is plugged into the user prototype. Normally, the
system issues an error message if the user cable is not connected to either the user system or to
the software-only socket on the buffer box. With the UNITHOLD command you can change
prototypes and switch between hardware and software modes. Use the UNITHOLD command
before you disconnect the user cable while the FICE software is running.

Terminal interaction pauses while UNITHOLD is active. Enter any character to restore normal
error detection.

UNITHOLD causes the 80286 probe to 3-state all signals on the user cable. For the 8086/8088
and 80186/80188 probes, UNITHOLD 3-states most of the signals on the user cable. This
effect of the UNITHOLD command permits the safe transfer of the user cable between the
loopback socket and the target system while FICE system power remains on.

Cross-Reference

Expression

1-436 Encyclopedia

Syntax

VERSION

Where:

VERSION

unit-number

ALL

Discussion

unit-number(,unit-numberl *
ALL

VERSION
Displays the version numbers of the

host and probe software

displays the host software version number.

is the number of the probe whose software version num­
ber you want to display (0, 1, 2, or 3) or an expression
that evaluates to 0, 1, 2, or 3.

displays the version number of all probes' software.

The VERSION command displays the version numbers of the software for the host and any
probes connected to the system. If a probe is emulating when you enter the VERSION com­
mand, the system returns a message that the probe is emulating rather than returning the
version number.

Encyclopedia 1-437

WAIT
A function that suspends command
execution during emulation

Syntax

WAIT

Where:

WAIT returns a device code indicating which PICE probe or
iLTA caused the break.

Discussion

1-438

The WAIT function prevents the FICE system from accepting terminal commands until any
emulating unit executes a breakpoint or the iLTA (Intel logic timing analyzer) completes data
collection.

You must enter a WAIT command for every unit in operation. For example, if you have two
probes emulating, enter two WAIT commands.

When a break occurs, the WAIT function returns the device code, in the current base, of the
unit causing the break. The codes and their definitions are listed in Table 1-39.

Thble 1-39 Decimal Device Codes for the WAIT Function

Code Definition

0 121CE Chassis 0
1 121CE Chassis 1
2 121CE Chassis 2
3 121CE Chassis 3
4 iLTA Chassis 0
5 iLTA Chassis 1
6 iLTA Chassis 2
7 iLTA Chassis 3
255 No device emulating

NOTE: These table values are
displayed in the current base.

The WAIT function depends on a break or trigger event to execute commands. This is particu­
larly useful in debug procedures written for multiple unit control.

Encyclopedia

Example

WAIT continued

NafE

When specifying a WAIT inside a debug procedure, the WAIT command must be fol­
lowed by the CAUSE command for the display to be properly formatted.

1. This example defines a debug procedure, named runmany, that starts two units emulating
the same program. The procedure runmany suppresses the break message with a REPEAT
loop until both probes have halted emulation. The REPEAT loop will execute as long as
there is at least one probe emulating.

Encyclopedia

I*Begin emulating on unit 0*1

I*Begin emulating on unit 1 *1

I*Wait until both probes have broken*1
I*Required CAUSE command*1

I*Execute PROC*I

1-439

WAITSTATE
A pseudo-variable that controls
the number of memory wait-states
inserted by the 121CE system

Syntax

WAITSTATE [= expression I

Where:

WAITSTATE

expression

Default

o

Discussion

displays the current setting.

is any numeric expression that evaluates to a BYTE
value from 0 to 15 (decimal).

Program memory can run with no wait-states (i.e., no extra clock cycles), or you can specify
the number of wait-states to simulate slower memories. The initial value is zero wait-states.
Setting WAITSTATE to a value other than zero affects all program memory, including memory
mapped to USER. If expression is greater than 15, WAITSTATE is set to 15 and a message is
displayed to tell you that WAITSTATE is set to 15.

Examples

1-440

The following examples assume decimal base.

1. Display the current setting:

2. Change the setting:

*_11111 •.
3. Use WAITSTATE as a variable:

Encyclopedia

WAJTSTATE continued

Cross-Reference

Expression

Encyclopedia 1-441

WORD
Displays or changes memory
as 16-bit unsigned values

Syntax

WORD partition [= expression [, expression] *
= mtype partition

Where:

WORD partition

partition

expression

mtype

displays the contents of memory in partition as a WORD
in the current base.

is a single address or a range of addresses specified as
address TO address or address LENGTH number-of­
items.

converts to a 16-bit unsigned value for WORD.

is any of the memory types except ASM.

Discussion

1-442

The WORD command interprets the contents of memory as 16-bit unsigned values, overriding
any type associated with the memory contents. Thus, WORD. varl displays the first two bytes
at the address of varl, regardless of the type of var 1.

The information displayed by the WORD command is identical to that displayed by the AD­
DRESS and SELECTOR commands. However, when the memory type WORD is used as a
data type in a program, it is interpreted as a 16-bit unsigned value. Both the ADDRESS and
SELECTOR types, in that context, are interpreted as segments of address pointers.

NOTE

The FICE system writes a word value in two byte values (uses two bus cycles).

Encyclopedia

Examples

The following examples assume a hexadecimal base.

1. Display a single value:

*W<lJIQ$
0020: 0004H 2EF A

2. Display several adjacent values:

* WQIQ$ tllSIBililifi6
0020: 0004H 2EF A 168E o 72BC 2EOO 1E8E

3. Set a single value of type WORD:

4. Set several contiguous values:

Display the values set:

*W<lJSQ4P.;4l.ieaJ3ililif3
0040: 0004H 10F A 304S 107F

5. Set a range oflocations to the same value (block set):

6. Set a repeating sequence of values:

Display the values set:

* WClFlD·[40't4IEENGiElif6
0040: 0004H 1234 S678 9ABC DEFO 1234 S678

7. Copy a value from one memory location to another:

8. Copy several values (block move):

Encyclopedia 1-443

WORD continued

9. Copy values with type conversion:

An error message occurs if the type on the right side of the equal sign cannot be converted
to the type on the left. (Refer to the Expression entry in this encyclopedia for the rules
concerning type conversions.)

Cross-References

1-444

Expression
Mtype
Partition

Encyclopedia

Syntax

WPORT
A pseudo-variable that displays

or changes the contents
of word-wide 1/0 ports

WPORT(port-number) [= datal

Where:

WPORT(port-number)

data

Discussion

displays the contents of the specified word-wide 110 port
in the current base. The port-number is a number or
expression that specifies one of the 110 ports in the
range OOOOH to OFFFFH.

writes a word of data to the specified port.

If the 110 reference (port-number) is mapped to an 80186/80188 internal peripheral control
register, the register is transparently accessed. There is no protection against writing a read­
only control register.

Note that the FlCE system displays the output word in hexadecimal regardless of the current
radix.

Examples

1. Read a word-wide port:

2. Write a word-wide port:

Cross-References

Expression
PORT

Encyclopedia 1-445

WRITE
Displays and formats character
strings and numerical expressions

Syntax

WRITE [SCREEN (x,y)] [USING(' format-item [,format-item] , ')] write-list

1-446

Where:

WRITE write-list

SCREEN (x,Y)

(x,Y)

USING ('format-item,
[format-item]' ')

format-item

n

m.n

displays the items in write-list to the terminal. The write­
list consists of write-items, separated by commas. The
write-items are ASCII character strings or numerical ex­
pressions. The ASCII character strings must always be
enclosed in apostrophes ('). The number of write-items
is limited only by the size of the line buffer.

writes the write-list to a specified (x,y) coordinate loca­
tion on the display screen. After the write, the cursor
returns to its previous location.

are the screen coordinates. The upper left corner is loca­
tion (0,0). The columns (x) are numbered 0 to 79. Rows
(y) are numbered 0 to 24 on the Intel Series III/IV and
IBM PC terminals. The x is any integer or expression
that evaluates to 0 through 79. The y is any integer or
expression that evaluates to 0 through 24.

formats the display according to a list of one or more
format-items.

is one of the following:

is a decimal number specifying the width of the output
field. If n = 0 and the radix is binary or hexadecimal, the
length used is the normal display length of the item with­
out padding or truncation. If the radix is decimal, 0
specifies that the output be left-justified. If you choose
any other number, that number directly determines the
maximum width of any display item.

specifies the width of the output field for a real number.
The m is the total number of characters, including the
decimal point. The n is the number of digits to the right
of the decimal point. Both m and n are entered in deci­
mal.

Encyclopedia

[nlC

[nIX

H

T

y

>

&

" text"

Discussion

WRITE continued

moves the output pointer to column n. The next item, if
any, is written from that point. Columns are numbered 1
to 80. The C (without n) moves the pointer to the next
column. The n is in decimal.

writes n spaces between items. The X (without n) writes
one space.

writes numerical items in hexadecimal (overrides the de­
fault number base).

writes numerical items in decimal (overrides the default
number base).

writes numerical items in binary (overrides the default
number base).

terminates a format string (optional). If the list contains
undisplayed items, they remain undisplayed.

terminates a format string and specifies that a carriage
return and line feed are not to be issued following the
write. If the list contains undisplayed items, they remain
undisplayed.

terminates a format string and specifies that the write
output buffer is not to be flushed at the end of the write.
Later writes are added to the one in the buffer. If the list
contains undisplayed items, they remain undisplayed.

inserts ASCII text in the format. In this context only, you
must enclose "text" in quotation marks (").

The WRITE command is most often used in procedures to add explanatory text to returned
values or to write returned values in a more useful form, such as a table.

The WRITE command displays a maximum of 200 bytes of data. An ASCII character is one
byte of data. Spaces, carriage returns, and line feeds count as characters. The byte content of
numerical expressions depends on the memory type required to store the number. If you try to
write more than 200 bytes of data, an exclamation point (!) is displayed at the end of the line
and you cannot see the rest of the information.

Unless specified in the format string by the continuation symbol (&), the information in the
write buffer is deleted at the end of every write. Even if you specify the continuation symbol,
the write buffer is deleted on a return from a procedure.

Encyclopedia 1-447

WRITE continued

If the write-list contains more items than are specified by the format string, the format string is
reused from the beginning, until all write-items are displayed according to the format.

Examples

1-448

1. Write a character string to the display screen:

*W8JmS;Wimm6%
hello

2. Format a display:

45 67 22

3. The following example shows the WRITE USING option. The procedure SQUAREIT
squares a number the user specifies at the time the procedure is called (%0).

Calling the procedure and specifying the number:

*~
The square of 7 is 49

Encyclopedia

4. The following procedure SQR squares a series of numbers from 0 to a number (%0) the
user specifies at the time the procedure is called. The display format is set up as a table
with headers.

Number
o
1
2
3
4
5

Cross-References

Expression
Strings

Encyclopedia

Square
o
1
4
9

16
25

1-449

XCTR
A pseudo-variable that assigns
a value to the execution
event machine counter

Syntax

XCTR [= unsigned-integer-expression]

Where:

XCTR displays the value of the execution event machine
(XEM) counter prior to emulation. There is no default
value; XCTR is random at power on.

unsigned-integer-expression is a number or expression that evaluates to a positive
whole number in the current base.

Discussion

The XCTR command displays what the value of the system event machine (SEM) counter will
be when emulation is initiated. It does not display the current value.

There are two methods to set the system event machine (SEM) counter: when defining an
EVTREG or by using the XCTR command. If a counter value is specified in an EVTREG
invoked with a GO command, the EVTREG value replaces any previously specified XCTR
value.

The XCTR command is useful when you must change the counter value from a new emulation
or you forget to specify it in the EVTREG definition. The XCTR command is effective only
when used just before invoking an event register specification that does not specify a counter
value for the execution event machine (XEM).

Example

1-450

1. The following example shows how to set XCTR for execution. The EVTREG breaks
emulation five execution addresses after the first occurrence of execution address 12.

Encyclopedia

Cross-Reference

Expression

Encyclopedia 1-451

2 Error Messages
....................................... imJ ..

The five classes of errors that the PICE system reports are as follows:

WARNING

ERROR

SEVERE ERROR

FATAL ERROR

INTERNAL ERROR

The PICE system takes no action and command process­
ing continues. Warnings advise you of a possible error
condition.

The PICE system stopped processing the current com­
mand. The prompt reappears, indicating that you should
try again. Memory may be altered.

The PICE system closes all INCLUDE files and returns
a prompt to the terminal. Memory may be altered.

Non-recoverable error. Control returns to the host oper­
ating system. Memory may be altered.

Indicates an internal software problem. You should con­
tact Intel's service organization. Memory may be al­
tered.

All error messages have the following format:

[device-number] severity-level # number
message [*1

Where:

device-number

severity-level

number

message

is the probe number P86, P186, or P286. When device­
number is not present, the error pertains to the host de­
velopment system.

is warning, error, severe error, fatal error, or internal
error.

is the decimal error message number.

is the text of the error. If the ERROR command is set to
FALSE, the error message display is suppressed.

2-1

2-2

Messages followed by a [*1 have extended messages. The extended message is displayed on­
line with the HELP command (see the HELP entry in Chapter 1).

Note that error numbers are duplicated; that is, a host error can have the same number as a
probe error.

Error Messages

INDEX
... i~ ..

" (quote) operator, 1-157, 1-267, 1-394
$ pseudo-variable, 1-8
* (multiply) operator, 1-160
+ (addition) operator, 1-161
- (subtraction) operator, 1-161
. (dot) operator, 1-391, 1-393, 1-394
1 (divide) operator, 1-160
\ (unit change) command, 1-7
11" function, 1-114
2' - 1 function, 1-104
87 memory type, 1-255
8086 internal debugger, xi
8086/8088:

flags, 1-167
probe software requirements, 1-367
registers, 1-315

8087:
instructions, SLA, 1-354
registers, 1-317

80186/80188:
flags, 1-169
probe software requirements, 1-367
registers, 1-319

80286:
descriptor commands, 1-107
flags, 1-171
memory access rules, 1-281
probe software requirements, 1-227, 1-369
registers, 1-323

80287 registers, 1-331

Absolute addresses, 1-15, 1-274
Absolute addresses, SLA, 1-349
Access code, 1-299
ACTIVE pseudo-variable, 1-9
Addition (+) operator, 1-161
ADDRESS command, 1-10
Address:

commands, 1-1
protection (80286 probe), 1-18
space mapping, 1-236
translation (80286 probe), 1-20

Addresses, 1-14, 1-386
AEDIT editor, 1-119, 1-121

Index Index-l

Index-2

AND logical operator, 1-161
APPEND command, 1-25
Arithmetic operators, 1-160
Arming commands, 1-1
Arming the FlCE system, 1-28, 1-401
ARMREG command, 1-28
Array variables, 1-390
ASCII character:

display, 1-68
character strings, 1-378

ASM command, 1-34
ASM86 program types with corresponding FICE names, 1-112
Assembled mnemonics, 1-346
Assembler:

directives, 1-346
operators, 1-346

BASE pseudo-variable, 1-37
Based variables, 1-388, 1-393
BCD command, 1-40
Binary coded decimal, 1-40
Binary operators, 1-158
Block commands, 1-1
BOOLEAN command, 1-42
Boolean:

condition, 1-45
memory type, 1-255

Both ready pseudo-variable:
8086/8088 probe, 1-52
80186/80188 probe, 1-55
80286 probe, 1-57

Break:
registers, 1-48
specifications, 1-46, 1-396
windows, 1-30

Breakpoints:
conditional, 1-30
execution with, 1-192
execution without, 1-192

BRKREG command, 1-48
BTHRDY pseudo-variable:

8086/8088 probe, 1-52
80186/80188 probe, 1-55
80286 probe, 1-57

Built-in constants, 1-152
Built-in functions, 1-154
Bus inactive time-out, 1-59
Bus lock prefix, 1-239

Index

Index

BUSACT pseudo-variable, 1-59
BYTE command, 1-61
Byte-wide I/O ports, 1-294

Cable switching, 1-436
Calculating the value of an expression, 1-131
Calls, SLA, 1-347
CALLSTACK command, 1-63
CAUSE command, 1-66
CHAR command, 1-68
Character (ASCII) display, 1-68
Character memory types, 1-255
Character strings, 1-378
CI functions, 1-70
Clear screen:

to end ofline, 1-71
to end of screen, 1-72

CLEAREOL command, 1-71
CLEAREOS command, 1-72
CLIPSIN command, 1-73
Clipsout 0 and 1, 1-74
CLIPSOUT command, 1-74
Code patching with SASM, 1-350
COENAB pseudo-variable:

8086/8088 probe, 1-76
80186/80188 probe, 1-78
80286 probe, 1-80

Command execution suspended during emulation, 1-438
Command file retrieval, 1-208
Compound variables, 1-391
CONCAT function, 1-82
Concatenating strings, 1-82
Conditional breakpoints, 1-30
Configuration file, 1-204
Console:

display speed control, 1-175
input function, 1-70

Constant:
loglO(2) function, 1-176
log2(1O) function, 1-175
log2(e) function, 1-174
log.(2) function, 1-177

Constants, 1-148
Continuous tracing, 1-412
Control transfer instructions, SLA, 1-347
Conventions, notational, ix
Converting memory types, 1-256
Coprocessor (external) operating mode:

8086/8088 probe, 1-92

Index-3

Index-4

80186/80188 probe, 1-94
80286 probe, 1-96

Coprocessor commands, 1-1
COREQ pseudo-variable, 1-88
COUNT blOCk, 1-90
CPMODE pseudo-variable:

8086/8088 probe, 1-92
80186/80188 probe, 1-94
80286 probe, 1-96

CTRL-D caution, xi
CURHOME command, 1-98
Current execution point, 1-8, 1-10
Cursor movement:

to home position, 1-98
to specified column, 1-99
to specified row, 1-100

CURX pseudo-variable, 1-99
CURY pseudo-variable, 1-100

Debug break registers, 1-46
Debug object names directory, 1-110
Debug object removal, 1-340
Debug objects, creating and saving, 1-25, 1-309
Debug procedures: 1-2

used to simulate I/O, 1-244
Debug registers: 1-101

execution with, 1-193
Debug variables, 1-103, 1-154
Default number base, 1-37
Default unit, changing, 1-435
DEFINE command, 1-105
Defining:

debug procedures, 1-105
debug registers, 1-105
debug variables, 1-103, 1-154
LITERALLYs, 1-105

Deleting program symbols or debug objects, 1-340
Descriptor commands, 80286 probe, 1-107
DIR command, 1-110
Direct-far jumps and calls, SLA, 1-348
Direct-near jumps and calls, SLA, 1-347
Direct-short jumps and calls, SLA, 1-347
Directives, assembler, 1-346
Directory of program symbols and debug object names, 1-110
DISABLE command, 1-127
Disable input signals to the probe, 1-127
Disarming the FICE system, 1-28, 1-401
Disassembling instructions, 1-34
Displaying debug variables, 1-103

Index

Index

Divide (I) operator, 1-160
DO block, 1-116
Dollar sign ($) pseudo-variable, 1-8
Don't-care bit, 1-249
Dot (.) operator, 1-151, 1-391, 1-393, 1-394
Double-quote (") operator, 1-157, 1-267, 1-394
DWORD command, 1-117
Dynamic variables, 1-388

EDIT command, 1-119
Editing files, 1-125
Editors, 1-121
Emulation:

commands, 1-2
ending from the terminal, 1-197
halt, reason for, 1-66
starting, 1-188

Emulator logic clips:
input, 1-73
output, 1-74

ENABLE command, 1-127
Enable input signals to the probe, 1-127
Error information display control, 1-129
Error messages, 2-1
ERROR pseudo-variable, 1-129
ESC key used to invoke the editor, 1-119, 1-121, 1-123
EVAL command, 1-131
Evaluating expressions, 1-131, 1-147
Event machine counter, 1-357
Event machines, 1-2, 1-133, 1-136 thru 1-145
Event registers, 1-133, 1-136 thru 1-145
EVTREG command, 1-133, 1-136 thru 1-145,1-357
Exclusive OR logical operator, 1-161
Execution event machine (XEM): 1-133, 1-136, 1-137, 1-139

counter, 1-450
Execution:

point, 1-8, 1-10
suspended during emulation, 1-438
with breakpoints, 1-192
with debug registers, 1-193
without breakpoints, 1-192

EXIT command, 1-146
Exiting the PICE system, 1-146
Expression evaluation, 1-131, 1-147
Expressions, 1-147
External coprocessor operating mode:

8086/8088 probe, 1-92
80186/80188 probe, 1-94
80286 probe, 1-96

EXTINT command, 1-163

Index-5

Index-6

F2XMl function, 1-166
FATAL ERROR error message, 2-1
FETCH, 1-406
File:

editing, 1-125
handling, 1-3
loading:

8086/8088 probe, 1-225
80186/80188 probe, 1-225
80286 probe, 1-227

pathname, 1-276
retrieval, 1-208

Filing debug object definitions, 1-25, 1-309
Flags and registers: 1-335

8086/8088,1-315
8087,1-317
80186/80188, 1-319
80286, 1-323
80287, 1-331

Flags: 1-335
8086/8088, 1-167
80186/80188, 1-169
80286, 1-171

FLDL2E function, 1-174
FLDL2T function, 1-175
FLDLG2 function, 1-176
FLDLN2 function, 1-177
FLDPI function, 1-178
Formatting character strings and numerical expressions, 1-446
FORTRAN-86 program types with corresponding FICE names, 1-112
FPATAN function, 1-179
FPTAN function, 1-180
FSQRT function, 1-181
Fully qualified references, 1-268
Functions, 1-3, 1-154
FYL2X function, 1-182
FYL2XPI function, 1-183

GET87 pseudo-variable:
8086/8088 probe, 1-184
80186/80188 probe, 1-186

Global debug variables, 1-103
GO command, 1-188
GRANULARITY command, 80286 probe, 1-195
Guarded memory, 1-237

HALT command, 1-197
HELP command, 1-198
Help commands, 1-3, 1-198

Index

Index

High-speed memory, 1-239
History buffer, 1-121
HOLDIO command, 1-200
Host software, FICE, 1-204

I2ICE command, 1-201
FICE host software, 1-204
IF block command, 1-206
INCLUDE command, 1-208
Indexing strings, 1-211
Indirect addressing, SLA, 1-349
Indirect-far jumps and calls, SLA, 1-348
Indirect-near jumps and calls, SLA, 1-348
Input clips signals and wire colors, 1-73
INSTR function, 1-211
INTEGER command, 1-213
Internal debugger, xi
INTERNAL ERROR error message, 2-1
Interrupted tracing, 1-412
Invocation configuration file, 1-204
Invoking the PICE software, 1-201
110 port:

commands, 1-3
mapping, 1-242

1/0 ports, 1-294, 1-445
1/0 requests suspension, 1-200
110 simulation:

from the terminal, 1-243
using a debug procedure, 1-244

1/0 time-outs, 1-215
IORDY pseudo-variable, 1-215
ISTEP command, 1-217

Jumps, SLA, 1-347

Keywords, 1-219

Labels, 1-267, 1-387
Line editor, 1-121
Line numbers, 1-386
LIST command, 1-222
List files, 1-222
LITERALLY command, 1-223
LOAD command:

8086/8088 probe, 1-225
80186/80188 probe, 1-225
80286 probe, 1-227

Loading flles:
808618088 probe, 1-225

Index-7

Index-8

80186/80188 probe, 1-225
80286 probe, 1-227

Local debug variables, 1-103, 1-206
LOCK pin, 1-239
Lock prefix, 1-239
Log file, 1-222
Logic clips:

input, 1-73
output, 1-74

Logical operators, 1-161
LONGINT command, 1-230
LONGREAL command, 1-232
Lowercase/uppercase letters, 1-266
LSTEP command, 1-234

Machine status word (MSW), 80286 probe, 1-171
Manuals, PICE, xii
MAP command, 1-236
MAPIO command, 1-242
Mapping I/O ports, 1-242
Mapping program memory, 1-236
Masked constants, 1-249
Memory:

access rules, 80286,1-281
access time-out, 1-250
mapping, 1-236
type conversions, 1-253
types, 1-3, 1-253
saving, 1-356

MEMRDY pseudo-variable, 1-250
MENU command, 1-251
Microprocessor flags: 1-335

8086/8088,1-167
80186/80188, 1-169
80286, 1-171

Microprocessor registers: 1-335
8086/8088, 1-315
8087,1-317
80186/80188, 1-319
80286, 1-323
80287,1-331

Mnemonics, assembled, 1-346
MOD operator, 1-161
Modify a debug variable, 1-103
Modules, 1-386
MSW (machine status word), 80286 probe, 1-171
Mtype, 1-253
MULTIBUS memory, 1-238
Multiply (*) operator, 1-160
Multitasking, 80286 probe, 1-263

Index

Index

Names, 1-266, 1-386
NAMESCOPE command, 1-15,1-268,1-387
Nor operator, 1-158
Notational conventions, ix
No-wait mnemonics, SLA, 1-354
Number base, changing, 1-37
Number-to-string conversion, 1-270
NUMmSTR function, 1-270

Object names directory, 1-110
Offset value, 1-271
OFFSEmF function, 1-271
Operands, 1-148
Operators, 1-156
Operators, assembler, 1-346
Optional high-speed memory, 1-239
OR logical operator, 1-161
Overriding the current number base, 1-37

Packed decimal values, 1-40
Paging, 1-272
Parameter passing in procedures, 1-303
Partial arctangent function, 1-179
Partial tangent function, 1-180
Partially-qualified references, 1-268
Partition, 1-274
Pascal-86 program types with corresponding PICE names, 1-112
Passing parameters in procedures, 1-303
Patching code with SASM, 1-350
Pathname, 1-276
Pause while user cable moved, 1-436
PCHECK pseudo-variable, 80286 probe, 1-278
PHANG pseudo-variable:

8086/8088 probe, 1-283
80186/80188 probe, 1-285

Physical memory locations, mapping to, 1-236
Pi function, 1-178
PINS command, 1-287
PLlM-86 program types with corresponding PICE names, 1-112
POINTER command:

8086/8088 probe, 1-290
80186/80188 probe, 1-290
80286 probe, 1-292

Pointer: 1-364
808618088 probe, 1-290
80186/80188 probe, 1-290
80286 probe, 1-292
memory type, 1-255
operator, 1-160

Index--9

Index-IO

variable, 1-393
PORT pseudo-variable, 1-294
PORTDATA pseudo-variable, 1-244
Ports, I/O, 1-242, 1-294, 1-445
PRINT command, 1-296
Privilege levels, 80286 probe, 1-18
Probe:

microprocessor signals, 1-4
processor resetting, 1-345
signal lines, 1-287

PROC command, 1-302
Procedures, 1-302, 1-387
Processor bus inactive time-out, 1-59
Program addresses, 1-386
Program:

memory mapping, 1-236
symbol directory, 1-11 0
symbol removal, 1-340
symbol table, 1-267
variables, 1-388

Prologue of procedure, 1-389
Protection checking, 80286 probe, 1-19
Pseudo-variable, 1-305
PSTEP command, 1-307
PUT command, 1-309

QSTAT pseudo-variable, 80186/80188 probe, 1-312
Quote (") operator, 1-157, 1-267, 1-394

Reading characters from the system terminal, 1-70
READY line, 1-250
Ready signals:

8086/8088 probe, 1-52
80186/80188 probe, 1-55
80286 probe, 1-57

REAL command, 1-313
Real number constants, 1-151
Record variables, 1-391
Referencing a file, 1-276
Registers: 1-335

808618088, 1-315
8087, 1-317
80186/80188, 1-319
80286, 1-323
80287, 1-331
ARMREG,I-28
BRKREG, 1-48
debug, 1-4, 1-5:
EVTREG, 1-133, 1-136 thru 1-145

Index

Index

SLA stack, 1-354
SYSREG, 1-396
system, 1-396
TRCREG,1-431

REGS command, 1-335
Reinitialize the FICE system, 1-344
Related publications, xii
Relational operators, 1-161
RELEASIO command, 1-339
REMOVE command, 1-340
Removing program symbols and debug objects, 1-340
REPEAT block command, 1-342
RESET command, 1-344
Resetting:

the FICE system, 1-344
the probe processor, 1-345

Retrieving command files, 1-208
RETURN function, 1-302
Return-far jumps and calls, SLA, 1-349
Return stack display, 1-63
Returning to the host operating system, 1-146
RSTEN pseudo-variable, 1-345

SASM command, 1-346
SAVE command, 1-356
Saving:

debug object definitions to a file, 1-25, 1-309
memory images, 1-356

Scientific notation, 1-151
Screen display:

clear to end of line, 1-71
clear to end of screen, 1-72

Screen editor, 1-119, 1-121
SCTR pseudo-variable, 1-357
SEL286 pseudo-variable, 80286 probe, 1-228, 1-359
SELECTOR command, 1-361
Selector portion of a pointer, 1-364
SELECTOROF function, 1-364
SEM, 1-133, 1-136, 1-138, 1-139
SEM counter, 1-357
SEVERE ERROR error message, 2-1
SHORTINT command, 1-365
Signal lines, 1-287
Signals, probe microprocessor, 1-4
Signed integer constants, 1-150
Signed memory types, 1-255
Significant characters, 1-266
Simulating 110:

from the terminal, 1-243

Index-ll

Index-12

using debug procedures, 1-244
Single-line assembler (SLA), 1-346
SLINK, 1-133
Software requirements:

8086/8088 probe, 1-367
80186/80188 probe, 1-367
80286 probe, 1-227, 1-369

Square root function, 1-181
STACK command, 1-371
Stack;

display, 1-63, 1-371
registers, SLA, 1-354
-resident variables, 1-388

State machines, 1-133, 1-136 thru 1-145
Static variables, 1-388
STATUS command, 1-372
Status of selected debug environment conditions, 1-372
Stepping commands, 1-4
Stepping through programs, 1-4
String:

concatenation, 1-82
indexing, 1-211
manipulation, 1-5, 1-152, 1-378

STRLEN function, 1-380
STRTONUM function, 1-381
Structure variables, 1-391
Sub-expressions, 1-156
SUBSTR function, 1-382
Subtraction (-) operator, 1-161
Suspending:

command execution during emulation, 1-438
110 requests, 1-200

Symbolic addresses, SLA, 1-349
SYMBOLIC pseudo-variable, 1-383
Symbolic references, 1-153, 1-268, 1-384
Symbols: 1-266

directory, 1-110
table, 1-267

Syntax:
directory, 1-251
notation, xi

SYSREG command, 1-396
SYSTEM command, 1-401
System:

armingl disarming, 1-401
-defined variables, 1-305
event machine (SEM), 1-133, 1-136, 1-138, 1-139
event machine counter, 1-357
110 time-out, 1-215

Index

Index

register, 1-396
specifications for execution control commands, 1-402

Task register, 80286 probe, 1-326
Task state segment, 1-263
Task state segment (TSS) command, 80286 probe, 1-434
TEMPREAL command, 1-408
Terminal:

display speed control, 1-272
input function, 1-70
screen control, 1-5

Terminating debug session, 1-146
Time-out:

memory access, 1-250
pseudo-variables, 1-6
system I/O, 1-215

Timebase counter, 1-411
TIMEBASE pseudo-variable, 1-411
Timetags, 1-297, 1-411
Trace buffer: 1-134, 1-411, 1-433

contents, 1-296
display:

8086/8088 probe, 1-414
80186/80188 probe, 1-418
80286 probe, 1-421

symbolic display enabled, 1-383
Trace collection, 1-298
Trace commands, 1-6
Trace register, 1-431
Tracing, 1-411, 1-431
Transfer of control instructions,SLA, 1-346
TRCBUS pseudo-variable, 1-430
TRCREG command, 1-431
Triggering, 1-28 thru 1-33
TSS command, 80286 probe, 1-434
Type conversions, 1-256

Unary operators, 1-157
Unary plus and minus, 1-158
UNIT pseudo-variable, 1-435
Unit:

changing default, 1-435
commands, 1-6
override command (\), 1-7

UNITHOLD command, 1-436
Unsigned integer constants, 1-149
Unsigned memory types, 1-255
UNTIL, 1-342
Uppercase/lowercase letters, 1-266

Index-13

Index-14

User:
cable switching, 1-436
-defined variables, 1-152, 1-153
memory, 1-238
program types with corresponding PICE names, 1-112
symbol table, 1-385

Variables, 1-152, 1-388
VERSION command, 1-437
Version numbers of host and probe, 1-437
Virtual addresses, 1-15, 1-274
Virtual symbol table, 1-267

WAIT function, 1-438
Wait-state, 1-440
WAITSTATE pseudo-variable, 1-440
WARNING error message, 2-1
WHILE,1-342
Wire colors and input clips signals, 1-73 '
WORD command, 1-442
Word recognizers, 1-32, 1-50, 1-143, 1-399, 1-432
Word-wide I/O ports, 1-445
WPORT pseudo-variable, 1-445
WRITE command, 1-446

X (don't-care) bit, 1-249
XCTR pseudo-variable, 1-450
XEM, 1-133, 1-136, 1-137, 1-139
XEM counter, 1-450
XLINK, 1-133
XOR logical operator, 1-161

Y*log2(x) function, 1-182
Y*log2(x + 1) function, 1-183

Index

intJ
WE'D LIKE YOUR OPINION

J2ICETM System
Reference Manual

166302-001

Please use this form to help us evaluate the effectiveness of this manual and improve the quality of future
documents

To order publications, contact the Intel Literature Department (see page ii of this manual).

Fill in the squares below with a rating of 1 through 10:

POOR

2 3

o Readability

o Technical depth

o Technical accuracy

4

AVERAGE

5 6

o Usefulness of material for your needs

o Comprehensibility of material

o OVERALL QUALITY OF THIS MANUAL

7

If you gave a 4 or less (in any category), please explain here:

What suggestions would you have for improving this manual:

* * * ATTENTION * * *

EXCELLENT

8 9 10

Receive 50% off on the next Intel publication you buy. Send us your comments, and we'll
send you a 50%-off certificate.

If you would like us to call you for more specifics about this book, provide the following information.
Please print clearly.

Name __ __

Phone Number (__ _

Address __ ___

WE'D LIKE YOUR COMMENTS . ..

This document is one of a series describing Intel products. Your com­
ments on the back of this form will help us produce better manuals.
Each reply will be carefully reviewed by the responsible person. All
comments and suggestions become the property of Intel Corporation.

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO. 79 BEAVERTON, OR 95051

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
5200 N.E. Elam Young Pkwy.
Hillsboro, OR 97124-6497

OSHO Technical Publications

NO POSTAGE
NECESSARY

IF MAILED
INTHE

UNITED STATES

INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.8.A.

Instrumentation

0688151<10885/8081 AD

	0001
	0002
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	1-001
	1-002
	1-003
	1-004
	1-005
	1-006
	1-007
	1-008
	1-009
	1-010
	1-011
	1-012
	1-013
	1-014
	1-015
	1-016
	1-017
	1-018
	1-019
	1-020
	1-021
	1-022
	1-023
	1-024
	1-025
	1-026
	1-027
	1-028
	1-029
	1-030
	1-031
	1-032
	1-033
	1-034
	1-035
	1-036
	1-037
	1-038
	1-039
	1-040
	1-041
	1-042
	1-043
	1-044
	1-045
	1-046
	1-047
	1-048
	1-049
	1-050
	1-051
	1-052
	1-053
	1-054
	1-055
	1-056
	1-057
	1-058
	1-059
	1-060
	1-061
	1-062
	1-063
	1-064
	1-065
	1-066
	1-067
	1-068
	1-069
	1-070
	1-071
	1-072
	1-073
	1-074
	1-075
	1-076
	1-077
	1-078
	1-079
	1-080
	1-081
	1-082
	1-083
	1-084
	1-085
	1-086
	1-087
	1-088
	1-089
	1-090
	1-091
	1-092
	1-093
	1-094
	1-095
	1-096
	1-097
	1-098
	1-099
	1-100
	1-101
	1-102
	1-103
	1-104
	1-105
	1-106
	1-107
	1-108
	1-109
	1-110
	1-111
	1-112
	1-113
	1-114
	1-115
	1-116
	1-117
	1-118
	1-119
	1-120
	1-121
	1-122
	1-123
	1-124
	1-125
	1-126
	1-127
	1-128
	1-129
	1-130
	1-131
	1-132
	1-133
	1-134
	1-135
	1-136
	1-137
	1-138
	1-139
	1-140
	1-141
	1-142
	1-143
	1-144
	1-145
	1-146
	1-147
	1-148
	1-149
	1-150
	1-151
	1-152
	1-153
	1-154
	1-155
	1-156
	1-157
	1-158
	1-159
	1-160
	1-161
	1-162
	1-163
	1-164
	1-165
	1-166
	1-167
	1-168
	1-169
	1-170
	1-171
	1-172
	1-173
	1-174
	1-175
	1-176
	1-177
	1-178
	1-179
	1-180
	1-181
	1-182
	1-183
	1-184
	1-185
	1-186
	1-187
	1-188
	1-189
	1-190
	1-191
	1-192
	1-193
	1-194
	1-195
	1-196
	1-197
	1-198
	1-199
	1-200
	1-201
	1-202
	1-203
	1-204
	1-205
	1-206
	1-207
	1-208
	1-209
	1-210
	1-211
	1-212
	1-213
	1-214
	1-215
	1-216
	1-217
	1-218
	1-219
	1-220
	1-221
	1-222
	1-223
	1-224
	1-225
	1-226
	1-227
	1-228
	1-229
	1-230
	1-231
	1-232
	1-233
	1-234
	1-235
	1-236
	1-237
	1-238
	1-239
	1-240
	1-241
	1-242
	1-243
	1-244
	1-245
	1-246
	1-247
	1-248
	1-249
	1-250
	1-251
	1-252
	1-253
	1-254
	1-255
	1-256
	1-257
	1-258
	1-259
	1-260
	1-261
	1-262
	1-263
	1-264
	1-265
	1-266
	1-267
	1-268
	1-269
	1-270
	1-271
	1-272
	1-273
	1-274
	1-275
	1-276
	1-277
	1-278
	1-279
	1-280
	1-281
	1-282
	1-283
	1-284
	1-285
	1-286
	1-287
	1-288
	1-289
	1-290
	1-291
	1-292
	1-293
	1-294
	1-295
	1-296
	1-297
	1-298
	1-299
	1-300
	1-301
	1-302
	1-303
	1-304
	1-305
	1-306
	1-307
	1-308
	1-309
	1-310
	1-311
	1-312
	1-313
	1-314
	1-315
	1-316
	1-317
	1-318
	1-319
	1-320
	1-321
	1-322
	1-323
	1-324
	1-325
	1-326
	1-327
	1-328
	1-329
	1-330
	1-331
	1-332
	1-333
	1-334
	1-335
	1-336
	1-337
	1-338
	1-339
	1-340
	1-341
	1-342
	1-343
	1-344
	1-345
	1-346
	1-347
	1-348
	1-349
	1-350
	1-351
	1-352
	1-353
	1-354
	1-355
	1-356
	1-357
	1-358
	1-359
	1-360
	1-361
	1-362
	1-363
	1-364
	1-365
	1-366
	1-367
	1-368
	1-369
	1-370
	1-371
	1-372
	1-373
	1-374
	1-375
	1-376
	1-377
	1-378
	1-379
	1-380
	1-381
	1-382
	1-383
	1-384
	1-385
	1-386
	1-387
	1-388
	1-389
	1-390
	1-391
	1-392
	1-393
	1-394
	1-395
	1-396
	1-397
	1-398
	1-399
	1-400
	1-401
	1-402
	1-403
	1-404
	1-405
	1-406
	1-407
	1-408
	1-409
	1-410
	1-411
	1-412
	1-413
	1-414
	1-415
	1-416
	1-417
	1-418
	1-419
	1-420
	1-421
	1-422
	1-423
	1-424
	1-425
	1-426
	1-427
	1-428
	1-429
	1-430
	1-431
	1-432
	1-433
	1-434
	1-435
	1-436
	1-437
	1-438
	1-439
	1-440
	1-441
	1-442
	1-443
	1-444
	1-445
	1-446
	1-447
	1-448
	1-449
	1-450
	1-451
	1-452
	2-01
	2-02
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10
	I-11
	I-12
	I-13
	I-14
	replyA
	replyB
	xBack

