integl

THE PICE™
INTEGRATED INSTRUMENTATION
AND IN-CIRCUIT EMULATION
SYSTEM REFERENCE MANUAL

|
Copyright 1985, Intel Corporation, All Rights Reserved

Intel Corp., 3065 Bowers Ave., Santa Clara, CA 95051 Order Number: 166302-001

THE PICE™
INTEGRATED INSTRUMENTATION
AND IN-CIRCUIT EMULATION
SYSTEM REFERENCE MANUAL

Order Number: 166302-001

Copyright 1985, Intel Corporation, All Rights Reserved :
I Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051

This equipment generates, uses, and can radiate radio frequency energy and if not installed and used in accordance with
the instruction manual, may cause interference to radio communications. As temporarily permitted by regulation, it has
not been tested for compliance with the limits for Class A Computing Devices pursuant to Subpart J of Part 15 of FCC
rules, which are designed to provide reasonable protection against such interference. Operation of this equipment in a
residential area is likely to cause interference in which case the user, at his own expense, will be required to take whatever
measures may be required to correct the interference.

Additional copies of this manual or other Intel literature may be obtained from:
Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051
The information in this document is subject to change without notice.
Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. Intel Corporation assumes no responsibility for any errors that may appear in this

document. Intel Corporation makes no commitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other
circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, duplication or disclosure is subject
to restrictions stated in Intel’s software license, or as defined in ASPR 7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without prior written consent of Intel Corporation.

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may appear in this
document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.
Contact your local sales office to obtain the latest specifications before placing your order.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel products:

Above iLBX iPDS ONCE
BITBUS im iPSC OpenNET
COMMputer iMDDX iRMX Plug-A-Bubble
CREDIT iMMX iSBC PROMPT
Data Pipeline Insite iSBX Promware
GENIUS Intel iSDM QueX

A intel iSXM QUEST

i inteIBOS Library Manager Ripplemode
2ICE Intelevision MCS RMX/80
ICE inteligent Identifier Megachassis RUPI

iCEL inteligent Programming MICROMAINFRAME Seamless
ics Intellec MULTIBUS SLD

iDBP Intellink MULTICHANNEL UPI

iDIS iosp MULTIMODULE VLSIiCEL

MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered trademark of Mohawk Data

Sciences Corporation.

*MULTIBUS is a patented Intel bus.

Copyright 1985, Intel Corporation, All Rights Reserved

ii

CONTENTS

_inter-

Page
Preface . . . ix
Revision HiStory xiii
Service and Repair ASSIStANCEottt XV
CHAPTER1 ENCYCLOPEDIA
N 1-7
B 1-8
ACTIVE . . 1-10
ADD RESS . . 1-12
AdATeSS . . oo 1-14
Address protection (80286 probe specific). i 1-18
Address translation (80286 probe specific) i 1-20
APPEND ... e 1-25
ARMREG e e e e e 1-28
ASM L e 1-34
BASE .. e 1-37
B D . 1-40
BOOLEAN . 1-42
Boolean condition 1-45
Break specification 1-46
BREKREG . .. 1-48
BTHRDY (8086/8088 probe specific)ooviiiiiiiiiiiiiiiiiiiinnnnn. 1-52
BTHRDY (80186/80188 probe specific), 1-55
BTHRDY (80286 probe specific)ottt et 1-57
BUS ACT .. e 1-59
BY TE . . e 1-61
CALLSTACK . .o e 1-63
CAUSE .. 1-66
CH AR .. e 1-68
L N 1-70
CLEAREOL . .. 1-71
CLEAREOS. .. e 1-72
CLIPSIN .. e 1-73
CLIPSOUT . e 1-74
COENAB (8086/8088 probe Specific)ouuut et 1-76
COENAB (80186/80188 probe specific)ooviiiiiin it 1-78
COENAB (80286 probe SpecifiC)o v v vttt ettt 1-80
CON C AT . . e e 1-82
Confidence testS.o e 1-83
COREQ (80286 probe specifiC)couuiiiiiini i 1-88
COUNT ... R 1-90
CPMODE (8086/8088 probe SpecifiC) v vttt ettt 1-92

iii

iv

CPMODE (80186/80188 probe specific). ... 1-94

CPMODE (80286 probe specific).o vvvee ettt i e 1-96

CURHOMEottt e e e e e 1-98

CURX Lottt et et e e e e 1-99

CURY . ettt e e 1-100
DEbUZ TEEISIETS . . o oottt ettt 1-101
Debug variable. e 1-103
DEFINEt e 1-105
80286 Descriptor commands (80286 probe specific). oo 1-107
DR, . ot 1-110
DO . 1-116
DWORD . . .ottt ettt s 1-117
23) NP 1-119
BaItOrS ..t 1-121
ENABLE . . e e 1-127
ERROR . .o e 1-129
BV AL .. 1-131
Event machines e 1-133
EVTREG . .. e 1-136
BXIT e 1-146
EXPIESSIONot 1-147
B TIN T . oottt e e 1-163
B2 M L. oo 1-166
8086/8088 Flags (8086/8088 probe specific).ccuuuiiiiiiiiin i, 1-167
80186/80188 Flags (80186/80188 probe specific). 1-169
80286 Flags (80286 probe specific)ouuunnn e 1-171
FLDL2E. . o oot e e e e 1-174
Bl DL 2T . o e 1-175
FLDL G .. e 1-176
FLDLINZ . oottt e e e e e 1-177
FLD P .o 1-178
BPAT AN . L 1-179
BT AN . o 1-180
B R T . o 1-181
BY L2 X e 1-182
FY L 2X P L. o oot e 1-183
GET87 (8086/8088 probe SPeCifiC) eeee ettt 1-184
GET87 (80186/80188 probe Specific)ovviiiiiiiiiiniiii .. 1-186
GO 1-188
GRANULARITY (80286 probe specific)cooiuiuuiiiiiiiie i 1-195
H AL . o e e 1-197
HEL P . oo e 1-198
HOLDIO . .o e e 1-200
T2ICE . oo e 1-201
TF 1-206
INCLUDE . . . oottt e e e e e e e e e e e e 1-208
INST R o e 1-211
INTEGER . ..ottt e e e e e e 1-213

Contents

Contents

JORDDY .. 1-215
I TP, .. 1-217
KeyWOrds e 1-219
LT . 1-222
LITERALLY . .ottt ettt e e e e e e e e e e e e e e e e e 1-223
LOAD (8086/8088 and 80186/80188 probe specific) ..., 1-225
LOAD (80286 probe specifiC).t e 1-227
LONGINT . .o e e e e 1-230
LONGREAL . .. e 1-232
LSTEP . . oo e 1-234
M A . e 1-236
MAPIO. . .. e 1-242
Masked CONSEANLttt et e 1-249
MEMRDY .. 1-250
MENU L e 1-251
MY D . . oottt 1-253
Multitasking (80286 probe specific)outittitt e 1-263
NAE .« .o 1-266
NAMESCOPE. e 1-268
NUMTOSTR . .. 1-270
OFFSETOF . .. e e e e 1-271
Paging. .. 1-272
Partitiono 1-274
Pathname o i e 1-276
PCHECK (80286 probe Specific) vvvvtritt ittt i 1-278
PHANG (8086/8088 probe SpecifiC)vvvuriiiiee ittt it iie e iiiieeen 1-283
PHANG (80186/80188 probe specific)couviiiiiiiiiiiiiiiiiiieeeenean 1-285
PIN S . e e 1-287
POINTER (8086/8088 and 80186/80188 probe specific)cooivieiinen... 1-290
POINTER (80286 probe specific)ouuuiiiiiiii i, 1-292
POR T . . e 1-294
PRINT .. e e 1-296
PROC . e 1-302
Pseudo-variable 1-305
PSTEP ... 1-307
PUT . e 1-309
QSTAT (80186/80188 probe specific)couvtriitititinet e 1-312
REAL . .. e 1-313
8086/8088 Registers (8086/8088 probe specific).oouveineii i, 1-315
BO87 REGISIETS . . . o oottt e ettt et e 1-317
80186/80188 Registers (80186/80188 probe specific) 1-319
80286 Registers (80286 probe specific)t e 1-323
80287 Registers (80286 probe specific) e 1-332
REGS . e 1-335
RELEASEIO e e e 1-339
REMOVE. . .. e e e 1-340
REPE AT e e e 1-342
RESET .. e e 1-344

RO T EN . Lo e e 1-345
] 1-346
SAVE L 1-356
SCT R . 1-357
SEL286 (80286 probe Specific)uuuuuiiieiin e 1-359
SELECTORo e e e et e e e e e e e e et e 1-361
SELECTOROFttt ittt et e e e e e e e 1-364
SHORTINT . .o e e e et et e 1-365
Software requirements (8086/8088 and 80186/80188 probe specific) 1-367
Software requirements (80286 probe specific). 1-369
STACK . o oo T 1-371
ST AT U S . o e 1-372
N o T4 AP Pt 1-378
STRLENot P 1-380
STRTONUM .. .o e 1-381
SUB ST R. . e 1-382
SYMBOLIC. . . .o e 1-383
Symbolic Teferences ottt e 1-384
SY SREG .. o e 1-396
SY ST EM . e 1-401
System specification 1-402
TEMPREAL . . . e 1-408
TIMEBASE . . e 1-411
Trace buffer display (8086/8088 probe specific), 1-414
Trace buffer display (80186/80188 probe specific)c.uuuiiiiininiinea... 1-418
Trace buffer display (80286 probe specific).o 1-421
TROBUS oo 1-430
TRCREG . . .ottt e e e e 1-431
TSS (80286 probe specific)o oottt 1-434
UNIT o e 1-435
UNITHOLD e e e e e 1-436
VERSION . oo e 1-437
WAL L 1-438
WAITSTATEo e e e e e e e e e e e e e e e 1-440
WORD . .o e 1-442
WP O RT . .o 1-445
WRITE. . oo e e e e e e 1-446
O R e 1-450

CHAPTER2 ERROR MESSAGES

INDEX

vi Contents

TABLES Page

1-1 PPICE™ Commands Grouped by Function. o i, 1-1
1-2 CAUSE Message Variableso i 1-67
1-3 Input Clips Signals and Wire Colorsottt 1-73
1-4 The PICE™ System Confidence Tests.oiiiiiiniiiiiiiiiinnnn. 1-83
1-5 The 80286 Descriptor TYPESo oottt et 1-108
1-6 Mnemonics for the 80286 Descriptor Componentsouoeeeeneennnn.. 1-108
1-7 Components Associated with each Descriptor Type 1-108
1-8 User Program Types with Corresponding PICE™ Names. 1-112
1-9 Line Editor Keys. o e 1-122
1-10 Screen Editor Main Menu Commands and Functions 1-124
I-11 COMSEANLS. . ..ottt ettt ettt ettt e e 1-149
1-12 User-Defined Variables i i i 1-153
I-13 FUNCHONS.ot e et e e e 1-155
1-14 Definitions of Unary Operators i iiiiiiiiiiiiniinnennnnnnns 1-157
1-15 Definitions of Binary (Two-Operand) Operators.ouuirenunnennnnnnn. 1-159
1-16 The PICE™ Operators in Order of Precedencecoouuu.. 1-159
1-17 Basic MEYPeS. . ..ottt 1-254
1-18 Display Formats for MEyPesuuuiiinnnnnittt i, 1-256
1-19 Type Conversion by Combination as Operandscoiiuinnaaa... 1-257
1-20 Assignment Type CONVEISIONS.ttt tttttt ittt et e 1-259
1-21 Effects of the PCHECK Pseudo-Variable i, 1-280
1-22 The 80286 Memory Access Rules. ...ttt 1-281
1-23 Values Displayed by the PINS Command for the 8086/8088 Probe 1-288
1-24 Values Displayed by the PINS Command for the 80186/80188 Probe 1-288
1-25 Values Displayed by the PINS Command for the 80286 Probe 1-289
1-26 8086/8088 Register Keywords.ttt 1-315
1-27 8087 Register Keywordsuuuiiiimitii e 1-317
1-28 80186/80188 Register Keywords.oouiiiiiiiiiiiiiiiii i 1-319
1-29 The 80286 RegISterS.o ottt ittt ettt 1-323
1-30 The 80287 ReGIStErS\ vttt ettt et e e e e e e e e e 1-332
1-31 Values Displayed by the STATUS Command for the 8086/8088 Probe. 1-373
1-32 Values Displayed by the STATUS Command for the 80186/80188 Probe. 1-374
1-33 Values Displayed by the STATUS Command for the 80286 Probe 1-375
1-34 8086/8088 INSTRUCTIONS Mode Access Codescouuiniiiuunnneenn.. 1-414
1-35 8086/8088 CYCLES Mode Access Codesuvieuiiiiiiiin e, 1-415
1-36 80186/80188 INSTRUCTIONS Mode Access Codesvvvennnninnennnnnn. 1-418
1-37 80186/80188 CYCLES Mode Access COdeSiuunennnie e 1-419
1-38 Access Code in the Trace Buffer Display 1-421
1-39 Decimal Device Codes for the WAIT Function., 1-438
FIGURES

1-1 80286 Virtual Address Translationo, 1-22
12 The Descriptor Table Registers and the Descriptor Tables 1-23
1-3 The Segment Register and the Descriptor Tables, 1-24
1-4 Treeof Legal Syntaxoitoiiiitttnt e 1-31
1-5 8086/8088 Probe READY Timing Requirements when BTHRDY = TRUE........... 1-53
1-6 Accessing the Procedure Return Stack i, 1-64

Contents vii

FIGURES (continued) Page

1-7

1-8

1-9

1-10
1-11
1-12
1-13
1-14
1-15
1-16
1-17
1-18
1-19
1-20

viii

Execution Event MachineinaSample State 1-134
System State Machine ina Sample Statet 1-135
8086/8088 Flags Register Bit Patterniiiiiiiiieenennnn. 1-168
80186/80188 Flags Register Bit Patternuuuuiueneennn., 1-170
80286 Flags Register Bit Patternttt 1-172
The MSW Bit Patternt e 1-172
Branches of the GO Command SYntaxooeueeeeiiiinannnnniennnnnn. 1-192
80186/80188 Internal Register Map to PICE™ System Keyword Cross-reference 1-321
Selector Register Bit Pattern. e 1-325
Updating the TSS by Changingthe TR 1-327
The Control Word Bit Pattern. e 1-331
The 80287 Status Word Bit Patternot 1-333
The Tag Word Bit Patternuutt e e e 1-334
The 80286 Status Word Bit Patternooiiiiiiiiiiiiiiiiiiiiian.. 1-422
Contents

PREFACE

—intel'-

The PICE™ System Reference Manual is the master reference manual in the IPICE™ publica-
tions library. Refer to this manual for detailed operating information on IPICE commands,
topics, and error messages. The PICE™ System Reference Manual is divided into two chapters:

Chapter 1 is the command encyclopedia for the I’ICE command language. Each command and
topic in the IPICE command language is presented in alphabetical order. Each com-
mand entry contains the command syntax, a detailed description of the command,
one or more verified examples, and cross-references to related commands and
topics.

Chapter 2 describes the I!ICE error codes.

Notational Conventions
Chapter 1 is a detailed encyclopedia of the I’ICE system commands and topics in alphabetical

order. Each command entry follows the same format. The following sections briefly describe a
sample command entry.

Encyclopedia Commands and Topics
The two types of encyclopedia entries are topics and commands. The name of the command or
topic discussed in each section is printed in red on the outside corner of each page in that

section. Commands are printed entirely in uppercase letters (e.g., ACTIVE), while only the
first letter of each topic is capitalized (e.g., System specification).

Topic Entries

A topic entry expands a subject or consolidates common command syntax for easy reference.
A topic entry does not follow a pattern.

Command Entries

Most encyclopedia entries are I2ICE command keywords. The encyclopedia contains the com-
mands that work with all PICE probe types, as well as commands that are probe-specific.

The following example describes the information found in a typical command entry.

ix

COMMAND NAME

Purpose statement

Syntax

The command syntax shows how to construct a legal IPICE command. (Syntax notation is
explained in the following section.)

Where:

This section briefly explains each part of the command, including command options and initial
and legal values.

Default

This section indicates the default value (if any) for the command.

Discussion

The discussion section details how commands are used. It augments the general information
found in the PICE™ System User’s Guide and contains information about why and when com-
mands are most useful.

Examples

Each example uses the command in context. Examples begin with an explanation of how the
command is used, what it is used for, and any assumptions the example makes. User input is
shown in a shaded field, and system output is printed in a special typeface. For example:

systemresponse

Cross-References

Cross-reference items are commands and topics related to the encyclopedia entry.

X Preface

Syntax Notation

Preface

The following syntax notation is used throughout this manual:

COMMANDS

elements

{menu}

{menu}*

[menu]

[menu]*

punctuation

apostrophe

CTRL

Command keywords appear in all uppercase letters. (You may enter com-
mands in either uppercase or lowercase letters.)

Items for which you must substitute a value, expression, file name, etc., are
shown in lowercase letters and italicized.

Braces indicate that you must select one and only one of the items in the
enclosed menu.

Braces followed by an asterisk (*) indicate that you must select one or more
of the items in the enclosed menu.

Brackets indicate optional items of which you can select one and only one.

Brackets followed by an asterisk (*) indicate optional items of which you can
select more than one item.

You must enter punctuation other than braces ({ }) and brackets ([]) ex-
actly as shown. For example, you must enter all the punctuation shown in the
following command:

If your keyboard has two apostrophes (or single quotes), determine which
one the I!ICE system accepts in command syntax. Do this by entering one of
them. If the apostrophe you chose is not accepted by the I’ICE system, the
message line will display ““syntax error”.

CTRL denotes the terminal’s control key. For example, CTRL-C means

enter C while pressing the control key. (Note: Some keyboards use CNTL
rather than CTRL to indicate the control key.)

xi

NOTE

Entering CTRL-D invokes an internal debugger, used for debug-
ging 8086 software, that runs on the host development system. Do
not use this debugger when the IPICE software is running. If you
do enter CTRL-D, enter a G followed by a carriage return to re-
turn to the PPICE software.

CTRL-D does not terminate the JICE command line. The G re-
turns you to the same line at the point where you left. For example,
assume you enter CTRL-D after entering EX. After returning to
the PICE software, you can complete the EXIT command by en-
tering IT, as shown in the following example.

*EX

DL3A:15A8 RET :SHORT
PROCESSING ABORTED

*G

It -

I2ICE terminated

Related Publications

The following manuals contain additional information on the I2ICE system and its operating
environment.

PICE™ Integrated Instrumentation and In-Circuit Emulation System (data sheet), order num-
ber 210469

PICE™ System User’s Guide, order number 166298
PSCOPE-86 High-Level Program Debugger User’s Guide, order number 121790

AEDIT Text Editor User’s Guide, order number 121756

xii Preface

REVISION HISTORY

DATE

-001

Original Issue.

9/85

Xiii/xiv

SERVICE AND REPAIR ASSISTANCE

S it)

The best possible service for your Intel product is provided by an Intel Customer Engineer.
These trained professionals provide prompt, efficient, on-site installation, preventive mainte-
nance, and corrective maintenance services required to keep your equipment in the best possi-
ble operating condition.

The Intel Customer Engineer provides the service needed through a prepaid service contract or
on an hourly charge basis. For further information, contact your local Intel sales office.

In Phoenix, Arizona, there is a technical information center that will connect you with the
software support group for your particular Intel product.

Telephone (602) 869-INFO (4636)
When the Intel Customer Engineer is not available, contact the Intel Product Service Center.

United States customers can obtain service and repair assistance from Intel Corporation by
contacting the Intel Product Service Center in their local area. Customers outside the United
States should contact their sales source (Intel Sales Office or Authorized Distributor) for serv-
ice information and repair assistance.

Before calling the Product Service Center, have the following information available:
1. The date you received the product.

2. The complete part number of the product (including dash number). On boards, this num-
ber is usually silk-screened onto the board. On other MCSD products, it is usually stamped
on a label.

3. The serial number of the product. On boards, this number is usually stamped on the board.
On other MCSD products, the serial number is usually stamped on a label mounted on the
outside of the chassis.

4. The shipping and billing address.

5. If the Intel Product warranty has expired, a purchase order number is needed for billing
purposes.

6. Be sure to advise the Center personnel of any extended warranty agreements that apply.
Use the following telephone numbers for contacting the Intel Product Service Center:

Western Region: (602) 869-4951
Midwest Region: (602) 869-4392
Eastern Region: (602) 869-4045
International: (602) 869-4862

Always contact the Product Service Center before returning a product to Intel for repair. You
are given a repair authorization number, shipping instructions, and other important informa-

XV

Xvi

tion which helps Intel provide you with fast, efficient service. If you are returning the product
because of damage sustained during shipment, or if the product is out of warranty, a purchase
order is required before Intel can initiate the repair.

If available, use the original factory packaging material when preparing a product for shipment
to the Intel Product Service Center. If the original packaging material is not available, wrap the
product in a cushioning material such as Air Cap SD-240, manufactured by the Sealed Air
Corporation, Hawthorne, N.J. Securely enclose it in a heavy-duty corrugated shipping carton,
mark it “FRAGILE” to ensure careful handling, and ship it to the address specified by the Intel
Product Service Center.

Service and Repair Assistance

Encyclopedia
intel m—

This chapter contains the PICE™ system commands and topics in alphabetical order. Table 1-1
groups the commands by function.

Table 1-1 IPICE™ System Commands Grouped by Function

Function Command Description
Address GRANULAITY Determines the block size used for 80286 probe
memory mapping.
SEL286 Determines whether the 80286 probe performs
8086 address translation or 80286 address
translation.
TSS Displays the current task state segment for the
80286 probe when in protected mode.
Arm ARMREG Defines or modifies a debug register that contains
arm, trigger, and disarm or delay sequences.
SYSTEM Sets the initial state of the system arming
functions.
Block COUNT Groups and executes commands a specified
Commands maximum number of times.
DO Groups and executes commands.
IF Groups and conditionally executes commands.
REPEAT Groups and executes commands forever or until
an exit condition is met.
Break BRKREG Defines a register that contains break
specifications.
ENABLE Conditions the unit to accept system-level breaks
and traces.
Coprocessor COENAB Enables or disables coprocessor functions.
COREQ Enables or disables external numeric extension
activity for the 80286 probe.
CPMODE Displays or changes the external coprocessor
mode.
GET87 Defines register handling conditions for the 8087
COProcessor.
PHANG Enables and disables system timeout (for the
8086/8088 and 80186/80188 probes) based on
coprocessor activity.
Counter TIMEBASE Sets the counter source and the increment, and
formats the trace buffer timetag.

1-2

Table 1-1 IPICE™ System Commands Grouped by Function (continued)

Function Command Description
Debug ARMREG Defines or modifies a debug procedure that
Procedures contains arm, trigger, and disarm or debug
sequences.
BRKREG Defines a procedure that contains break
specifications.
EVTREG Defines a procedure that controls the event
machine.
PROC Defines, displays, or executes a debug procedure.
REMOVE Deletes all user program symbols or specified
debug object definitions.
SYSREG Defines a procedure that contains system break
specifications.
TRCREG Defines a procedure that contains user program
tracing specifications.
Directory DIR Displays program symbols and debug objects.
Editor EDIT Invokes the I2ICE system editor.
Emulation CAUSE Displays the reason emulation stopped.
EXIT Ends emulation.
GO Starts emulation and controls break and trace
functions.
HALT Breaks emulation from the terminal.
12ICE Invokes the I12ICE software.
LOAD Copies a program from a file into mapped program
memory.
RESET Reinitializes specified functions of the I2ICE
system.
WAIT Suspends command execution during emulation.
Error ERROR Controls the amount of error information
Messages displayed.
Event EVTREG Defines a register that controls the event machine.
Machines SCTR Assigns a value to the system event machine
counter.
XCTR Assigns a value to the execution event machine
counter.
Event EVTREG Defines a register that controls the event machine.
Register
Execution $ Displays or changes the current execution point.
Point NAMESCOPE Displays or sets the current NAMESCOPE for
symbolic references.
Expressions EVAL Calculates and displays the result of an

expression.

Encyclopedia

Table 1-1 PICE™ System Commands Grouped by Function (continued)

Function Command Description
Files APPEND Saves definitions of debug objects to a file.
INCLUDE Retrieves command definitions from a system
LIST Opens or closes a log file.
PUT Creates and saves system file contents from
memory to a file.
SAVE Saves the current memory image to a file.
Functions F2XM1 2x-1 function.
FLDL2E Constant log,(e).
FLDL2T Constant log,(10).
FLDLG2 Constant log,o(2).
FLDLN2 Constant log(2).
FLDPI Pi.
FPATAN Partial arctangent.
FPTAN Partial tangent.
FSQRT Square root.
FyL2X Y * 10gy(X).
FYL2XP1 Y * logx(x + 1).
Help CAUSE Displays the reason emulation stopped.
HELP Provides on-line operating assistance.
MENU Enables and disables the I2ICE syntax menu.
1/0 Ports HOLDIO Suspends I/O requests to ICE-mapped ports.
PORT Displays or changes the contents of byte-wide 1/0
ports.
RELEASEIO Resumes emulation after the HOLDIO command.
WPORT Displays or changes the contents of word-wide 1/0
ports.
Logic Clips CLIPSIN Displays the current state of the emulation logic
clips.
CLIPSOUT Sets the two output lines on the emulation logic
clips.
Memory Types ADDRESS Displays or changes memory as 16-bit unsigned
values.
ASM Displays memory as assembler mnemonics.
BCD Displays or changes memory as 80-bit packed
decimal values.
BOOLEAN Displays or changes memory as Boolean TRUE or
FALSE values.
BYTE Displays or changes memory as an 8-bit unsigned
value.
CHAR Displays or changes memory as ASCII characters.

Encyclpedia

1-4

Table 1-1 PICE™ System Commands Grouped by Function (continued)

Function Command Description
Memory Types DWORD Displays or changes memory as 32-bit unsigned
(continued) values.
EXTINT Displays or changes memory as 64-bit signed
values.
INTEGER Displays or changes memory as 16-bit signed
values.
LONGINT Displays or changes memory as 32-bit signed
values.
LONGREAL Displays or changes memory as 64-bit floating
point values.
MAP Displays or sets physical locations for program
memory.
MAPIO Displays or sets physical locations for I/O ports.
POINTER Displays or changes memory as selector:offset
address pointers.
REAL Displays or changes memory as 32-bit floating
point values.
SELECTOR Displays or changes memory as 16-bit unsigned
values.
SHORTINT Displays or changes memory as 8-bit signed
values.
TEMPREAL Displays or changes memory as 80-bit floating
point values.
WORD Displays or changes memory as 16-bit unsigned
values.
Number base BASE Displays or changes the number base.
Pointer OFFSETOF Returns the offset of a pointer value.
POINTER Displays or changes memory as selector:offset
address pointers.
SELECTOROF Returns the selector or segment portion of a
pointer.
Probe BTHRDY Represents the source of the probe processor
Microprocessor READY signal.
Signals PCHECK Requests I2ICE protection checking (80286 probe
specific)
PINS Displays the state of selected microprocessor
signals.
QSTAT Selects 80186/80188 probe configuration mode.
RSTEN Enables the prototype to reset the probe
processor.
Registers ARMREG Defines or modifies a debug register that contains

arm, trigger, and disarm or debug sequences.

Encyclopedia

Table 1-1 PICE™ System Commands Grouped by Function (continued)

Function Command Description
Registers BRKREG Defines a register that contains break
(continued) specifications.

EVTREG Defines a register that controls the event
machines.

REGS Displays selected microprocessor registers in the
current unit.

SYSREG Defines a register that contains system break
specifications.

TRCREG Defines a register that contains user program
tracing specifications.

Single-line SASM Loads memory with assembled mnemonics.

Assembler

Stack CALLSTACK Displays the return address of procedures on the
stack.

STACK Displays elements from the top of the stack.

Status ACTIVE Reports whether a variable exists at the current
execution point.

STATUS Displays the current setting of selected debug
environment conditions.

Stepping ISTEP Single-steps through user programs by
machine-language instructions.

LSTEP Single-steps sequentially through user programs
by high-level language instructions.

PSTEP Single-steps through user programs by high-level
language instructions, treating procedures as one
step.

Strings CONCAT Creates and displays a new string by
concatenating.

INSTR Returns the index of a substring within a given
string.

LITERALLY Defines, modifies, displays, or removes a name
that the I2ICE system interprets as a
previously-defined character string.

NUMTOSTR Converts an expression into ASCII code.

STRLEN Returns the number of characters in a string.

STRTONUM Converts a string to a numeric value.

SUBSTR Substring function.

WRITE Displays and formats character strings and
numerical expressions.

Terminal (¢]] Allows a character to be read from the system

Screen terminal.

Control CLEAREOL Clears the screen from the cursor to the end of the
line.

Encyclpedia

Table 1-1 PICE™ System Commands Grouped by Function (continued)

Function Command Description
Terminal CLEAREOS Clears the screen from the cursor to the end of the
Screen screen.
Control CURHOME Moves the cursor to the upper left-hand corner of
(continued) the screen.
CURX Displays the column number or moves the cursor
to column x.
CURY Displays the row number or moves the cursor to
rowy.
Paging Controls the terminal display speed.
Time-out BUSACT Allows a system time-out when the processor bus
is inactive for more than one second.
IORDY Allows a system time-out when an /O access
takes more than one second.
MEMRDY Allows a system time-out based on memory
access time.
Trace ENABLE Conditions the unit to accept system-level breaks
and traces.
PRINT Formats and displays the contents of the trace
buffer.
SYMBOLIC Enables or disables trace buffer symbolic display.
TIMEBASE Sets the counter source and the increment and
formats the trace buffer timetag.
TRCBUS Controls the collection of bus information in the
trace buffer.
TRCREG Defines a register that contains user program
tracing specifications.
Unit \ Overrides the current default unit.
Commands UNIT Displays or changes the current default unit.
UNITHOLD Causes the I2ICE system to pause while the user
cable is moved.
VERSION Displays host version number and probe version
numbers.
Wait-states WAITSTATE Specifies the number of memory wait-states

inserted by the I2ICE system.

Encyclopedia

AN

AN
Overrides the current
default unit
Syntax
0
1
\ 2
3
Discussion

With the unit override command, you can override the default unit number for one command;
it does not change the default unit (use the UNIT command to change the default unit). The
unit override command remains in effect until another backslash or a carriage return is encoun-
tered in the command.

Block commands are the only I’ICE commands that cannot be preceded with a backslash. The
unit override command cannot operate on the whole block because a block command contains
other commands, and the backslash operates on only one command.

The unit number (0, 1, 2, 3) is in the current radix.

Example

1. Add the variable var__2 from unit 1 to the variable var in unit 2 (the default unit):

*UNIT =2
*xEVAL var+ X\ tvar 2

Cross-Reference

UNIT

Encyclopedia 1-7

$

Pseudo-variable that displays or
changes the current execution point

Syntax
$ [=address]
Where:
$ displays the register pair code-segment:instruction-
pointer (CS:IP), which is the current execution point.
address changes the current execution point by assigning the $
pseudo-variable an address, in either symbolic or nu-
meric notation.
Discussion

The dollar sign ($) represents the program counter or fetch address of the next instruction. The
dollar sign is a shorthand way of referring to the CS:IP registers.

Use the dollar sign as follows:
® to display the current execution point
® (o change the current execution point

® to save the current execution point

If your program used the stack during the previous emulation, changing the execution
point may cause incorrect operation when emulation resumes.

Examples

1. Display the current execution point:

x$
0200:05BAH
xCS:1P
0200:D05BAH

1-8 Encyclopedia

2. Modify the current execution point:

x$ = coldstart + 4BH

X
*$ = 0ABH /*Absolute addressing is not recommended; see the */
o /*Address entry */
*CS = SELECTOROF mstart)
xIP = OFFSET (warmstart) /* Must change registers one at a */
/* time */
3. Save the current execution point as a variable:
Cross-Reference
Address
Encyclopedia

1-9

ACTIVE

Reports whether a program
variable is active at the
current execution point

Syntax

ACTIVE (name)
Where:

name is a program variable name.

Discussion

A static variable is always active; a dynamic variable is active only when the current execution
point (8) is in the program block that contains the dynamic variable. Use the ACTIVE com-
mand to determine whether dynamic, stack-resident variables (such as parameters) have or
have not been allocated at the current execution point. The ACTIVE command returns TRUE
if the program variable named in name is active in the current program block; otherwise, the
ACTIVE command returns an error message. For example, suppose a PL/M-86 program
contains the following procedure:

avg: PROCEDURE (x, y) REAL;
DECLARE (x, y) REAL;
RETURN (x +y)/2.0;

END avg;

When the execution point is not within this procedure, the variables x and y are not active.

Changing the current execution point (by reassigning $) can cause inactive variables to become
active (and vice versa). Keep in mind that the procedure prologue must be executed before its
dynamic variables are active. Even though the ACTIVE command returns TRUE, if the pro-
logue of a procedure that contains a dynamic variable has not been executed, accessing it
produces undefined results.

The symbolic reference to the variable must be fully qualified unless the variable is within the
current name scope. Changing the name scope does not affect whether a variable is active.
However, changing the name scope can affect the amount of qualification needed to reference
the variable.

When defining breakpoints and trace controls, you can refer to variables that are not active
because the value of the variable is not accessed when defined.

Encyclopedia

ACTIVE continued

Example

1. The following example defines a debug procedure that checks whether a variable is active
before you try to access it.

Note that :util.avg.x is the fully qualified reference to the variable x.

Cross-References

Name
NAMESCOPE

Encyclopedia 1-11

ADDRESS

Displays or changes memory
as 16-bit unsigned values

Syntax
oy = expression [, expression]*
ADDRESS partition = mtype partition
Where:

ADDRESS partition displays the contents of memory at that location as an
address in the current base. An address is a 16-bit un-
signed value.

partition is a single address, an expression that evaluates to a sin-
gle address, or a range of addresses specified as address
TO address or address LENGTH number-of-items.

expression converts to a 16-bit unsigned value for ADDRESS.

mtype is any of the memory types except ASM. The Mtype
entry in this encyclopedia lists mtypes.
Discussion

The ADDRESS command interprets the contents of memory as 16-bit unsigned values, over-
riding any type associated with the memory contents. Thus, ADDRESS .var1 displays the first
word at the address of varl, regardless of the type of varl.

The information displayed by the ADDRESS command is identical to that displayed by the
WORD and SELECTOR commands. However, when the memory type WORD is used as a data
type in a program, it is interpreted as a 16-bit unsigned value. Both the ADDRESS and SE-
LECTOR types, in that context, are interpreted as segments of address pointers.

Examples

The following examples assume a hexadecimal base.

1. Display a single value at the current execution point:

0020:0004H 2EFA

1-12 Encyclopedia

ADDRESS continued

2. Display several adjacent values:

0020:0004H 2EFA 1L8E 0000 72BC 2E00 LESE 0002 OOEA 2101 0000 0814 0400 081y
0020:001EH 040008150400

3. Set a single value of type ADDRESS:
xADDRESS 40:4 = 34AF

4. Set several contiguous values:
xADDRESS 40:4 = 10FA, 3045, 107F
Display the values set:
*xADDRESS 40:4 LENGTH 3
0040:0004H 1OFA 3045 10°7F

5. Set a range of locations to the same value (block set):
xADDRESS 40:4 LENGTH 10=0

6. Set a repeating sequence of values:
xADDRESS 40:4 LENGTH 10 = 1234, 5678, 9ABC, DEF0
Display the values set:

*xADDRESS 40:4 LENGTH 10

0040:0004H 1234 5678 9ABC DEFO 1234 5678 9ABCDEFO 1234 5678 9ABC DEFO0 1234
0040:001EH 5678 0040:0020H 9ABC DEFD

7. Copy a value from one memory location to another:
xADDRESS 40:4 = ADDRESS $
8. Copy several values (block move):
xADDRESS 40:4 = ADDRESS $ LENGTH 10
9. Copy values with type conversion:
xADDRESS 40:4 = BYTE .var2

An error message is displayed if the type on the right side of the equal sign cannot be
converted to the type on the left. (Refer to the Expression entry in this encyclopedia for
rules concerning type conversions.)

Cross-References

Expression
Mtype
Partition

Encyclopedia 1-13

Address

References program locations

Syntax
e N
:module . .label
procedure] [.procedure] @label]]
#line
~module [.procedure 1* .variable
< .procedure ’ g
.variable
#line
[@]label
expression[:expression) J
-
Where:
module is the name of a module.
procedure is the name of a procedure.
label is the name of a program label. Use the @ sign when
referring to a numeric label.
Jabel is the name of a program label with the period (.) delim-
iter. Use the period delimiter unless the label is numeric.
@label is the name of a program label with the at-sign (@) de-
limiter. Use the at-sign delimiter only when the label is a
numeric label.
line is a program line number.
variable is the name of a program variable.
expression is an expression that evaluates to an absolute address or a

selector or an offset of a virtual address.

1-14 Encyclopedia

Addrass continued

is the pointer operator (refer to the Expression entry in
this encyclopedia for more information).

is the dot operator (refer to the Expression entry in this
encyclopedia for more information).

Discussion

Addresses can be either virtual or absolute. A virtual address is a symbolic reference or a
pointer expression (e.g., selector:offset). An absolute address is a numeric expression (e.g.,
045ABH). Do not mix absolute and virtual addresses in the same expression.

Address specification depends on the number base. For instance, when the base is decimal and
you specify a hexadecimal address, the H override character must appear following both the
segment and offset portions of the expression. Note that address display conventions differ
from address entry requirements. When a pointer address is displayed in hexadecimal, only
one H appears after the entire expression (e.g., 458:0AFH).

A pointer value consists of a 16-bit selector component and a 16-bit offset component. The
selector and offset are used to calculate the effective address. The exact method of calculation
is processor-specific. In the 8086 processor, for example, the selector is shifted left four bits,
then added to the offset to produce the effective address. (See the following section for infor-
mation on 80286 probe addresses.) Regardless of the method, there is exactly one effective
address corresponding to a given selector:offset pair. There are, however, numerous combina-
tions of selectors and offsets that can result in a given effective address.

Several ICE commands require an address value. The following examples show command
syntax containing address entries.

$ =address
NAMESCOPE = address

MAP address LENGTH number-of-bytes USER

When the system is expecting an address, the entry is converted to a pointer value if necessary.
An expression used as an address is converted to a pointer according to the rules for type
combination and assignment described in the Mtype entry in this encyclopedia.

Addresses for the 80286 Probe

The following subsections explain special aspects of 80286 addressing.

Encyclopedia 1-15

Address continued

Virtual Addresses

Virtual addresses are symbolic addresses, selector:offset pairs, or LDT-selector:selector:offset
triplets (LDT stands for local descriptor table). You must use a virtual address if the pseudo-
variables SEL286 and PCHECK are both TRUE.

The Selector:Offset Pair for the 80286 Probe

When the 80286 probe performs 8086 address translation (SEL286 = FALSE), a virtual ad-
dress is a selector:offset pair. The 80286 probe constructs the physical address by shifting the
selector left by four bits and adding the offset. The physical address can be up to 20 bits long.
If you specified the physical address directly, the address can be up to 24 bits long.

When the 80286 probe performs 80286 address translation (SEL286 = TRUE), the virtual
address is a selector:offset pair or an LDT-selector:selector:offset triplet.

The selector is an offset into either a local descriptor table (LDT) or a global descriptor table
(GDT). It points to a segment descriptor that contains a base address. The addition of this base
address and the offset is the final physical address.

The current LDT is identified by the contents of the local descriptor table register (LDTR).
The LDTR contains the LDT selector, which is an offset into the GDT that points to an LDT
descriptor. The LDT descriptor contains the base address of the LDT.

Similarly, the GDT is identified by the contents of the global descriptor register (GDTR).

The LDT-Selector:Selector:Offset Triplet

You can specify the LDT selector as part of the address. Your specification overrides the LDT
selector currently stored in the LDTR, so that the triplet uses a local descriptor table not
necessarily currently selected by the LDTR.

Absolute Addresses

An absolute address can be up to 24 bits long. You cannot use an absolute address if the
pseudo-variables SEL286 and PCHECK are both TRUE.

Examples

1. An integer entry assumes that the last hexadecimal digit is the offset. For example:

*$ =20H:6 /*Integer entry*/
x$
0020:000EH - /*New address of $ is the integer

converted to a pointer*/

1-16 Encyclopedia

2. Symbolic references, pointer expressions (like CS:IP), and POINTER expressions (a
memory type) are already pointers and need no conversion. For example:

/*Symbolic reference to the beginning of a module*/
/*Symbolic reference to the beginning of a procedure*/

/*Symbolic reference to a program line number*/

/*Pointer expression, no interpretation */

Cross-References

Address protection
Address translation
Expression
PCHECK

SEL286

Encyclopedia 1-17

Address protection
80286 probe specific

The 80286 has two modes of operation: real address mode (sometimes called compatible
mode) and protected mode.

In real address mode, the 80286’s operation is similar to the 8086’s operation. There is no
virtual memory capability; the physical address space is 1M byte plus 64K. Note that if you try
to access a 24-bit address in real address mode, the I’ICE system drops the upper four bits
(i.e., zeros them out).

In protected mode, the 80286 allows multitasking, multi-user, virtual memory systems. The
virtual address space is 1G byte per task; the physical address space is 16M bytes.

The 80286 powers up in real address mode at address OFFFFFOH. It enters protected mode
when you set the protection enabled flag (PEF) in the machine status word (MSW) to 1.

Privilege Levels

The current privilege level determines what memory locations (code and data) a task can
access. The I/O privilege level determines at which current privilege level a task must be
executing to execute an I/O instruction. There are four privilege levels: 0, 1, 2, and 3. Level O
has the most privilege; level 3 has the least privilege. A task can execute at only one of the four
levels, called the current privilege level (CPL).

Visibility

A data segment is visible to a task only when the segment’s descriptor privilege level (DPL) is
equal to or lower (numerically higher) than the CPL. A protection violation occurs if a user
program tries to access data belonging to a segment of higher (numerically lower) privilege.

Conforming segments can be read from any privilege level. When a conforming segment is
read by tasks of lower (numerically higher) privilege, the CPL remains the same. The con-
forming segment is executed at a lower (numerically higher) privilege level. An executable,
non-conforming segment is visible to a task only when the segment’s:-DPL is equal to the CPL.

The access field of a segment descriptor contains the DPL. The code-segment selector contains
the CPL.

The selector pointing to the segment descriptor contains the requested privilege level (RPL).
The RPL restricts individual data accesses. If a selector’s RPL is numerically larger than the
CPL, then the 80286 uses the RPL instead of the CPL when determining the visibility of a
segment.

Encyclopedia

Address protection (80286) continued

Transferring Control
A task can transfer control either directly or through a call gate.

When the task transfers control directly, the new execution address must be at the same privi-
lege level as the old execution address; that is, the DPL of the new code-segment descriptor
must be equal to the CPL.

When the task transfers control through a call gate, the privilege level of the call gate must be
equal to or lower (numerically higher) than the CPL; that is, the DPL of the call gate is equal to
or greater than the CPL.

The new execution address must be at the same or higher (numerically lower) privilege than
the call gate; that is, the DPL of the new code segment descriptor must be equal to or less than
the CPL.

Typically, an application program runs with privilege level 3. When the application program
requires the use of the operating system, it calls a routine of higher (numerically lower) privi-
lege.

Protection Checking

The IPICE system’s protection checking is distinct from 80286 protection checking, as follows:

® 80286 protection checking — the 80286 must be in protected mode. For example, if a user
program running with privilege level 3 tries to access data in a segment of privilege level
2, a protection violation occurs.

® PICE protection checking — the PPICE system does protection checking when the
PCHECK pseudo-variable is TRUE. PICE protection checking concerns the display and
modification of 80286 registers and memory locations with I’ICE commands.

When you access registers, the effect of PCHECK depends on whether the 80286 is in real or
protected mode. When you access memory, the effect of PCHECK depends on the setting of
the SEL286 pseudo-variable.

Cross-References

80286 flags
80286 registers
PCHECK
SEL286

Encyclopedia 1-19

Address translation
80286 probe specific

1-20

The 80286 has a virtual address space of 1G byte per task. The 80286 represents a virtual
address as a selector:offset pair. The selector and offset are each 16 bits long. The selector
contains 14 address bits; its other two bits define the requested protection level (RPL). With
the 16 address bits from the offset, the result is a 30-bit virtual address. With 30 bits, you can
address 1G byte of memory.

The 80286 probe performs either 8086 or 80286 address translation. When the probe performs
8086 address translation, it shifts the selector left by four bits and then adds the offset. The
result is a 20-bit physical address. With 20 bits, you can address 1M byte of memory.

When you reset the 80286 microprocessor, the upper four address bits <A23-A20> remain
high until the code-segment register (CS) is modified. When you set breakpoints, you may
want to specify these address bits as high. Do that by preceding the address with an asterisk

(%).

For example, the following commands set a breakpoint at the same address.

This command specifies a 24-bit absolute address.
(The leading zero is necessary to distinguish the num-
ber from a symbol when the first digit is a letter.)

You can use a 24-bit absolute address in the following
two cases:

When SEL286 = TRUE and PCHECK = FALSE.
When SEL286 = FALSE.

How the IPICE commands access memory does not de-
pend on the setting of the protection-enabled flag in the
MSW.

This command specifies a virtual address.

If SEL286 = FALSE, the 286 probe performs 8086 ad-
dress translation. This results in a 20-bit physical ad-
dress. The upper four address bits (< A23-A20>) are
normally zero. The asterisk forces these bits high. If
SEL286 = TRUE, the 286 probe performs 80286 ad-
dress translation. The result is a 24-bit physical ad-
dress. The asterisk forces the upper four address bits
(<A23-A20>) high.

When SEL286 = TRUE, you can also represent an ad-
dress as an LDT-selector:selector:offset triplet. The
asterisk forces the upper four address bits (<A23-
A20>) high.

*GO T

This command specifies a symbolic address.

Encyclopedia

Assume that the user program defines this symbolic
address as OFFFF:0 in real mode. Ordinarily, this
results in the 20-bit physical address FFFF0. Address
bits 23-20 are zero. The asterisk before the symbolic
address forces the upper four address bits (< A23-
A20>) high. The reset vector for the 80286 is FF-
FFFO.

In 80286 address translation, the selector is itself an offset into either the global descriptor
table (GDT) or a local descriptor table (LDT). There is only one GDT, but there may be
several LDTs. Both the GDT and the LDTs reside within the virtual memory space. Of the 14
address bits in the selector, one bit (the table indicator (TI) bit) selects either the GDT or an
LDT. The other 13 bits represent an offset into the selected table. Note: The GDT cannot be
indexed with a value greater than 255.

The 13-bit offset points to a segment descriptor. The segment descriptor contains access rights,
a base address, and the segment limit. The final physical address is the sum of the base address
from the segment descriptor and the offset from the virtual address. Unlike 8086 translation,
the selector is not shifted left before the addition. The result is a 24-bit physical address. With
24 bits, you can address 16M bytes of memory. The 80286 has a 1G-byte virtual address space
and a 16M-byte physical address space.

Figure 1-1 illustrates the 80286 virtual address translation.

The following 80286 registers are involved with address translation:

GDTR Global descriptor table register
LDTR Local descriptor table register
CS Code segment register
DS Data segment register
ES Extra segment register
SS Stack segment register

The GDTR and the LDTR

The GDTR contains the GDT descriptor. The GDT descriptor locates the GDT in memory.
The GDT descriptor contains the GDT’s base address and limit. The GDT limit is the range of
addresses above the GDT base address that make up the GDT.

The LDTR selector is an offset into the GDT. This offset points to an LDT descriptor. The
LDT descriptor, an entry in the GDT, contains the LDT’s access rights, base address, and
limit.

The LDTR contains an explicit cache. The LDTR selector is 16 bits long, but the register is
actually 64 bits long. The other 48 bits belong to the explicit cache. When you load the selector
portion of the LDTR, the 80286 copies the specified LDT descriptor from the GDT into the
LDTR’s explicit cache. Until you change the LDTR selector, the 80286 does not have to access
the GDT for a new LDT descriptor.

Encyclopedia 1-21

Address translation (80286) continued

Figure 1-2 shows the relationship of the two descriptor tables (the GDT and the LDT) and the
two registers (the LDTR and the GDTR).

The Segment Registers

A segment register identifies a segment descriptor. This segment descriptor is either in the
GDT or in the current LDT. The selector portion of a segment register chooses the GDT or the
LDT and provides an offset into the selected table. The 80286 multiplies this offset by eight. A
descriptor table entry is eight bytes long.

Each of the 80286 segraent registers also contains an explicit cache. When you load the selec-
tor portion of a segment register, the 80286 copies the specified segment descriptor from the

GDT

Table index (selector

shifted left 3 bits)

base

limit

Table Indicator
Bit=0

selector | offset

virtual
address

Table Indicator
Bit=1

Table index (selector
shifted left 3 bits)

LDT

physical address

base + offset

base + offset

access

base

limit

1609

Figure 1-1 80286 Virtual Address Translation

1-22

Encyclopedia

GDT into the explicit cache. Until you change the segment selector, the 80286 does not have to

access a descriptor table for a segment descriptor.

Figure 1-3 shows the relationship of the segment registers and the two descriptor tables (the

GDT and the LDT).
GDT
access base limit
LDTR
selector § access base limit
GDTR
base limit
LDT
access base limit
1610
Figure 1-2 The Descriptor Table Registers and the Descriptor Tables
Encyclopedia 1-23

Address translation (80286) continued

Cross-References

80286 registers
PCHECK
SEL286

Table index (selector
shifted left 3 bits)

Table Indicator Bit=0

segment register

selector | access

base

limit

Table Indicator Bit = 1

Table index (selector
shifted left 3 bits)

Figure 1-3 The Segment Register and the Descriptor Tables

GDT
base limit
LDT
base limit
1611

1-24

Encyclopedia

Syntax
(DEBUG
! ARMREG
BRKREG
EVTREG
APPEND pathname < | SYSREG
TRCREG
PROC
LITERALLY
mtype
name
.
Where:
APPEND pathname DEBUG
file pathname.
APPEND pathname
debug-object-type
APPEND pathname
debug-object-name
pathname
Discussion

APPEND

Saves the definitions of debug
objects from memory to a file

,ARMREG
,BRKREG
,EVTREG
,SYSREG
,TRCREG
,PROC
,LITERALLY
,name

adds all debug objects currently defined in memory to the

adds all debug objects of the specified type (ARMREG,
BRKREG, etc.) to the file pathname.

adds the named debug objects to the file pathname. Pro-

gram memory values are not saved.

is the fully-qualified reference of the file to which you
want to append the debug objects. For further informa-
tion on pathname, see the Pathname entry in the PICE™
System Reference Manual.

The APPEND command saves the definitions of debug procedures, LITERALLYs, debug
memory types, and debug registers to a disk file. The values of debug memory types are not

saved.

The APPEND command does not edit the file; it saves information to an existing file. When
the named file does not exist, APPEND creates it. Additionally, if a debug object already
exists in the APPEND file, both versions are saved but only the most recent definition is
restored (with the INCLUDE command).

Encyclopedia

1-25

APPEND continued

NOTE

Do not repeat keywords in the command. For example, the following command is
incorrect:

APPEND :f1:deb.001 PROC, PROC

Examples

The following examples assume that the debug objects have been defined and appended to the
file :f2:debug.inc and that the base is hexadecimal. (If you have an IBM PC host, disregard the
symbol ““:f2:”. If the file is in your current disk directory, append to the file using the com-
mand: APPEND debug.inc DEBUG. If the file is on another drive, replace :f3: with d:, where
d is the letter of the file’s disk drive.)

xDIR DEBUG /* List existing debug objects to the terminal */
I . . . - byte 5

J byte 10

K byte 1B

Sum integer +34Y

P pointer 0020:0012H

X_VALUE . . word FFCO

BASE_ADDR . . . literally 'BYTE 1LO00H:0H’

WHERE . . -
*xAPPEND :12:debug.inc DEBUG

1. Create and append additional debug objects to an existing file.

proc

/* Create debug objects */

1-26 Encyclopedia

2. Restore and list the debug objects from the file.

*det e literally BASE__ADDR = 'BYTE 1000H:0H’
xdefine proc WHERE =EVAL S LINE

xdefine dword S__FACTOR

xdefine dword R__FACTOR

Cross-References

ARMREG
BRKREG
EVTREG
LITERALLY
Mtype

Name
Pathname
PROC
SYSREG
TRCREG

Encyclopedia 1-27

ARMREG

Defines or modifies a debug register that

contains arm, trigger, and disarm
sequences or delay sequences

Syntax

ARM cond [DISARM cond] TRIG t-cond

DEFINE ARMREG name =

Where:

DEFINE ARMREG name

ARM cond

t-cond

cond

DISARM cond

1-28

[ARM cond] TRIG t-cond | AFTER {

INSTRUCTION count
QOCCURRENCE count

creates a debug break register called name. Follow the
equal sign (=) with an arm, trigger, disarm, or delay
specification to define the break criteria.

allows triggering. ARM condition must precede TRIG
and DISARM.

is one of the following:

SYSTRIG] o
SYSARM | [system-specification]
| SYSDARM
break-specification

break-register-name [,break-register-name}*
system-register-name [,system-register-name]*

is one of the following:

system-specification

break-specification

break-register-name [,break-register-name]*
system-register-name [,system-register-name]*

prevents triggering. The DISARM cond must be pre-
ceded with an ARM cond. When the DISARM cond is
met, the PICE system searches for the ARM condition
again.

Encyclopedia

Encyclopedia

TRIG t-cond

AFTER

SYSTRIG

SYSARM

SYSDARM

system-specification

break-specification

break-register-name
system-register-name
count

INSTRUCTION count

OCCURRENCE count

ARMBEG continued

triggers a break when TRIG t-cond and ARM cond (if
present) are true. When no ARM cond is specified, the
I’ICE system immediately searches for the TRIG r-cond.

qualifies the trigger condition with a delay factor. Trig-
gers without an AFTER cond define break conditions.
Triggers with an AFTER cond define break conditions
after a delay. The AFTER and DISARM clauses are mu-
tually exclusive.

triggers any enabled I’ICE units and performs the pro-
grammed action when the system-specification is met.
Refer to the ENABLE entry in this encyclopedia for a
description of the unit enabling process.

arms I’ICE units that are enabled when the system-
specification is met, which can then respond to the sys-
tem trigger line (SYSTRIG).

disarms any . IPICE units that are enabled when the
system-specification is met, which then cannot respond
to the system trigger line (SYSTRIG).

is a bus address, bus data, logic clip information, the
buffer full condition, or probe processor status. Com-
plete system-specification syntax is in the System speci-
fication entry in this encyclopedia.

is a numeric or symbolic address (line number, module
name, label, or a list of addresses). Complete break-
specification syntax is in the Break specification entry in
this encyclopedia.

refers to previously defined registers of type BRKREG
or SYSREG.

is a number or expression that evaluates to a positive
whole number in the current base.

breaks emulation after the specified number of machine
language instructions have been executed following the
trigger.

breaks emulation after the specified number of trigger
conditions are met.

1-29

ARMREG continued

Discussion

The ARMREG command sets conditional breakpoints that allow breaking within windows. A
break window is opened when an arm condition is encountered and closed when a disarm
condition is encountered. There are two ways to stop emulation based on arming sequences.
One way is using the GO command; the other is using a debug register called ARMREG (arm
register) in the GO command.

Consider using ARMREGs in three cases:

® Use ARMREG to trigger. Used this way, ARMREG operation is identical to BRKREG or
SYSREG operation.

® Use ARMREG to ARM a trigger. With ARMREG you can selectively trigger only after an
arm qualification is met. Furthermore, you can disarm the trigger. This way, trigger events
are screened. The probe recognizes the trigger condition only when armed.

® Use ARMREG to trigger after a delay. The effect of a trigger is specified in the TRIG
clause. Arming the system, disarming the system, or triggering a break in emulation are
examples of a trigger effect. There are two ways to delay the effect of a trigger. You can
tell the PICE system how many instructions to execute affer the trigger point before acti-
vating the trigger effect. Alternatively, you can tell the PICE system how many triggers
must occur before the trigger effect.

You can optionally enclose ARMREG specifications in a DO/END block.
How to Specify an ARMREG

Figure 1-4 simplifies the syntax diagram by showing a tree of legal syntax combinations.
Triggering

Triggering (controlled by TRIG) causes a defined action, such as an emulation break, to occur.

Counting
With the AFTER clause you can count events. Events can be the number of instructions exe-

cuted after the trigger point or the number of occurrences of the trigger condition. The count
sequence begins at the first trigger. The break occurs when the count is satisfied.

1-30 Encyclopedia

Manipulating ARMREGs

ARMREG continued

Manipulate an ARMREG by referring to it by name. You can manipulatt ARMREGS in the

following ways:

® Create an ARMREG with the DEFINE command
® Delete an ARMREG from memory with the REMOVE command
® List ARMREG names with the DIR command
® Save (or restore) an ARMREGs to (or from) a file with the PUT, APPEND, or INCLUDE

commands

® Display an ARMREG with the command ARMREG
® Execute an ARMREG with the GO USING command
® Modify an ARMREG with the editor

DEFINE ARMREG name

TRIG

Y
’ Y Y Y
ARM ARM TRIG ARM
Y Y \ \
TRIG DISARM AFTER TRIG
Y \
TRIG AFTER

Figure 1-4 Tree of Legal Syntax

1358

Encyclopedia

ARMREG continued

NOTE

Defining new break specifications using an old ARMREG name destroys the old defini-
tion in memory. An error results if you try to assign the name of an ARMREG to any
other type of debug object in memory.

Retrieving a saved ARMREG that has the same name as an existing ARMREG over-
writes the one in memory.

An error results when you try to retrieve a saved ARMREG from a file that has the same
name as any other debug object in memory.

Using ARMREGs with Multiple Units

The keywords SYSTRIG, SYSARM, and SYSDARM indicate actions caused by arm registers.
Other units in the PICE system must be enabled to respond to a system action. Refer to the
ENABLE and SYSTEM entries in this encyclopedia for details.

Limitations on Arm Specifications in the GO Command

Arm registers can contain any number of specifications. The GO command’s ability to execute
the specifications is, however, limited by the number of word recognizers available.

Word Recognizers

Word recognizers are the programmable portion of the internal execution state machine that
compares user match specifications with conditions on the bus it monitors. When the match
occurs, the state machine halts emulation. Refer to the Event machines entry in this encyclope-
dia for details.

Word recognizer use is governed internally. You cannot know precisely how many word recog-
nizers are used in any given specification. A good rule of thumb is that one- or two-range
(partition) specifications or four-location specifications are the upper limit.

The PICE system reports an error when the word recognizer limit is exceeded. You can either
simplify the specification or use the DEFINE EVTREG construct.

Restrictions

The following restrictions apply when using more than one unit:
® Only one unit is allowed to control system arming (SYSARM and SYSDARM).
® SYSARM, SYSDARM, and SYSTRIG cannot be used with SYSTRACE on the same unit.

Encyclopedia

ARMREG continued

Example

1. The following example shows how to trigger a break by specifying an ARMREG that
contains an arm, trigger, and disarm sequence.

The source code contains procedures A, B, and C that access utility procedure X. A
problem is discovered when procedure B calls utility X. To trap this particular bug, select
the arm register to conditionally break emulation.

The arm register constructed arms the trigger to the current probe when procedure B is
addressed and disarms the trigger whenever the probe addresses any other procedure. The
break is triggered by any call to utility procedure X from procedure B. Note that the I’ICE
system interprets symbolic references to procedures or modules as partitions.

*EVAL :mod__a.utility__x LINE
:mod__a #120

*DEFINE ARM

Probe 0 stopped at :mod_a #120+3 because of execute break
Break register is XTEST

Cross-References

Break specification
ENABLE

Event machines
Name

SYSTEM

System specification

Encyclopedia 1-33

ASM

Displays memory as assembler

mnemonics
Syntax
ASM partition
Where:
partition is a single address, an expression that evaluates to a sin-
gle address, or a range of addresses specified as address
TO address or address LENGTH number-of-instruc-
tions.
Discussion

1-34

The format of the display depends on the number of addresses referenced. A single address
reference displays the first instruction at that address. A range of addresses, specified as
address TO address, displays all instructions that start within the range. An instruction is
displayed if its first byte is within the partition, even if subsequent bytes are outside. To specify
an exact number of instructions to be displayed, use the form address LENGTH number-of
instructions. When partition is a symbolic reference to a procedure, ASM disassembles the
entire procedure.

Disassembled instructions and comments appear on the terminal in columns. They are, from
left to right: address, hexadecimal object values, opcode mnemonics, and operands (if any).
Comments appended to the operands provide additional information, such as the types of
jumps, calls, and returns, the address of a branch relative to the current execution point (3),
and the decimal equivalents of hexadecimal values. Refer to the example section of this com-
mand for a sample display.

The disassembly includes symbols and module and line number information when the follow-
ing three conditions are satisfied:

® Jf SYMBOLIC = TRUE (refer to the SYMBOLIC pseudo-variable entry in this encyclope-
dia for details).

® If the segment and offset values can be determined from the address.

® If the symbol table contains an exact match to the beginning of an instruction in the
partition.

When an absolute address is used to specify the partition, the disassembly begins without line
number information. If a jump or call instruction is subsequently encountered and the disas-
sembler can determine the true segment and offset values, then the display includes module and
line number identification.

Encyclopedia

Examples

1.

Encyclopedia

ASM continued

Display a single instruction:

*ASM §

0020:000kLH FA CLI
The following example shows the disassembly of several instructions. It shows the format
used by the disassembler for absolute addresses. It also shows the addition of module and
line number information after a CALL instruction has allowed the disassembler to identify
segment and offset values within the range of available line numbers.

x$

0020:000kLH

*xASM 206H LENGTH 30T
00020kH FA CLI
000207H 2E&ELLOOOO MOV SS.CS:WORD PTR 00O0OH
00020CH BC2000 MOV SP-.0020H 3+32T
00020FH 2EBELEDO200 MOV DS.CS:WORD PTR 0OO0O2H
000214H EAOAOD2100 JMP 0021LH:D00AH
000219H AA STOS ES:BYTE PTR [DI]
00021AH 8BEC MmMov BP.SP
00021CH FB STI
00021DH BaOCOD MOV AX.D000CH 3+12T
000220H 890L0800 MOV WORD PTR OO0O08H.AX
000224H ACLEDAOD MOV WORD PTR OOOAH.DS
000c228H BlL1E MOV CL-1EH 5+30T
00022AH 51 PUSH CX
00022BH B92700 MOV CX.0027H 3+39T
00022EH 51 PUSH (X
00022FH 1E PUSH DS
000230H 50 PUSH AX
000231H EAL700 CALL (TEST2PROC)A=001BH 3 s+2b

‘TEST2#2

0021:0024H 55 PUSH BP

0021:0025H 8BEC MOV BP.SP

#Yy

0021:0027H 817E040100 CMP WORD PTR [BP+O4H]-1

0021:002CH 7403 JZ (#5)A=0031H 5 s+5

0021:002EH E90LOO JMP (#B)A=0037H 5 $+9

#5

0021:0031H C?0LOEOODOOOO MOV WORD PTR OOOEH-O
#b

0021:0037H 5D POP BP

0021:0038H C20200 RET 2 5 NEAR

ASM continued

Cross-References
Address

Partition
SYMBOLIC

1-36 Encyclopedia

8ASE

A pseudo-variable that display
or changes the number base

Syntax
_) expression
BASE B {base-name }]
Where:
BASE displays the current number base. The default base is
decimal.
expression changes the default BASE. The expression must evalu-
ate to 2, 10, or 16.
base-name changes the default base. Names available are BINARY,
DECIMAL, and HEX.
Default
DECIMAL
Discussion

The BASE pseudo-variable controls the default number base for terminal input and output. You
can use BASE as follows:

® To display the default base (e.g., BASE).
® To change to a new base (e.g., BASE =2 or BASE = BINARY).

® As a variable in expressions (e.g., variable =BASE). The type of the BASE pseudo-
variable is BYTE.

When you change the base using an expression, if the expression does not evaluate to 2, 10, or
16 (decimal), the number base does not change and an error results. Unless otherwise speci-
fied, all expressions are evaluated in the current base. To override the current base, use an
explicit suffix: Y for binary, T for decimal, H for hexadecimal.

Encyclopedia 1-37

BASE continued

NOTE

The BASE variable is always global. When the number base is changed by executing the
BASE command, the change happens immediately, even if the change command is
within a debug procedure definition, a block command, or in a command line with

multiple commands.

Examples

1-38

or

or

or

or

or

Display the current base:

*BASE
DECIMAL

Change to binary radix:

xBASE =2T
X

*BASE = 10Y

Change to decimal radix:

xBASE =101

*xBASE = HEX
X

Use BASE in an expression:

Encyclopedia

)
)

BASE continued

6. The following example shows a command block in which the numbers will be in base two.
The block saves the current BASE, switches to BINARY radix for the commands, and then
restores the previous BASE.

/* Commands using binary numbers */

Cross-Reference

Expression

Encyclopedia 1-39

BCD

Displays or changes memory as
80-bit packed decimal values

Syntax
" = expression [, expression]*
BCD partition = mtype partition
Where:
BCD patrtition displays the location specified in partition as a binary
coded decimal number in decimal.
partition is a single address, an expression that evaluates to a sin-
gle address, or a range of addresses specified as address
TO address or address LENGTH number-of-items.
expression converts to an 80-bit packed decimal value for BCD.
mtype is any memory type except POINTER, BOOLEAN,
CHAR, and ASM.
Discussion

The BCD (binary coded decimal) command interprets the contents of memory as signed 80-bit
packed decimal values, overriding any type associated with the memory contents. Thus, BCD
.varl displays the 80-bit packed decimal value that begins at the address of varl, regardless of
the type of varl.

Examples
The following examples assume a decimal base. An H is required after both the segment and
the offset to specify hexadecimal addresses when the base is decimal.
1. Display a single value:

0020:0004H +732200001E9435k0

2. Display several adjacent values:

0020:0004H +732200001k943560 +210101500002249Y4
00c20:000EH +15040008140400081 +4817040008170400
00=0:0022H +12040008140400081

1-40 Encyclopedia

BCD continued

3. Set a single value of type BCD:

OH:4H = — 1234567890

4. Set several contiguous values:

Display the values set:

xBCD 40H:4H LENGTH 2

0040:0004H -12345L7890 +1000000000

5. Set a range of locations to the same value (block set):

*BCD 40H:4H LENGTH 10=0
6. Set a repeating sequence of values:

Display the values set:

xBCD 40H:4H LENGTH 6

0o40:0004H +1111111111 -22ceeeeded
0040:0028H +1111111111 -2écéeeceeded
0o40:002CH 41111111111 -22cdeeceded

7. Copy a value from one memory location to another:

8. Copy several values (block move):

JH:4H = BCD $ LENGTH 10T

9. Copy values with type conversion:

) 40H:4H = BYTE .var2
An error message is displayed if the type on the right side of the equal sign cannot be

converted to the type on the left. (Refer to the Expression entry in this encyclopedia for the
rules concerning type conversions.)

Cross-References
Expression

Mtype
Partition

Encyclopedia 1-41

BOOLEAN

Displays or changes memory as
Boolean TRUE or FALSE values

Syntax
- = expression [, expression]*
BOOLEAN partition = mtype partition
Where:
BOOLEAN partition displays the location specified in partition as a Boolean
value (TRUE or FALSE).
partition is a single address, an expression that evaluates to a sin-
gle address, or a range of addresses specified as address
TO address or address LENGTH number-of-items.
expression converts to a TRUE or FALSE value. Only the least sig-
nificant bit (LSB) of the result is tested. If the LSB is 1,
the BOOLEAN value is TRUE; if the LSB is 0, the
BOOLEAN value is FALSE.
mtype is any of the memory types except POINTER, CHAR,
and ASM.
Discussion

The BOOLEAN command interprets the contents of memory as TRUE or FALSE values,
overriding any type associated with the memory contents. Thus, BOOLEAN .varl displays
TRUE or FALSE, depending on the LSB of the byte at the address of the program variable
varl, regardless of the type of varl.

Examples

The following examples assume a hexadecimal base.

1. Display a single value:

0020:0004H TRUE

1-42 Encyclopedia

BOOLEAN continued

2. Display several consecutive values:

*BOOLEAN $ LENGTH 7
0020:0004HFALSE FALSE FALSE FALSE FALSE TRUE TRUE

3. Set a single value of type BOOLEAN:
xBOOLEAN 40:4 =FALSE

4. Set several contiguous values:
xBOOLEAN 40:4 = TRUE, FALSE, FALSE
Display the values set:

*BOOLEAN 40:4 LENGTH 3T
0040:0004H TRUE FALSE FALSE

5. Set a range of locations to the same value (block set):

xBOOLEAN 40:4 LENGTH 10 = TRUE

6. Set a repeating sequence of values:
*BOOLEAN 40:4 LENGTH 10T = TRUE, FALSE
Display the values set:

xBOOLEAN 40:4 LENGTH 10T
0040:0004H TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE
TRUE FALSE

7. Copy a value from one memory location to another:

*BOOLEAN 40:4 =BOOLEAN 5
8. Copy several values (block move):
xBOOLEAN 40:4 =BOOLEAN $ LENGTH 10T
9. Copy a value with type conversion:
*BOOLEAN 40:4 =BYTE .var2
An error message is displayed if the type on the right side of the equal sign cannot be converted

to the type on the left. (Refer to the Expression entry in this encyclopedia for the rules concern-
ing type conversions.)

Encyclopedia 1-43

BOOLEAN continued

Cross-References
Expression

Mtype
Partition

1-44

Encyclopedia

e L

A condition that evaluates to a
Boolean value

A Boolean condition is either a value of type BOOLEAN (TRUE or FALSE) or an expression
that uses one of the following relational operators:

= equalto

\

greater than

< less than

> = greater than or equal to
< = less than or equal to

< > notequal to

Encyclopedia 1-45

Break specification

Defines a break specification

Syntax
[OUTSIDE] partition [,[OUTSIDE] partition]*
Where: '

partition is a single address, an expression that evaluates to a sin-
gle address, or a range of addresses specified as address
TO address or address LENGTH number-of-items.

An address can be virtual or absolute. The value of
LLENGTH is interpreted as the number of bytes, regard-
less of the memory type at that location. (Refer to the
Address and Partition entries in this encyclopedia for
more details.)

OUTSIDE tells the PICE system to recognize only addresses that
are not in the partition (a logical NOT function).
Discussion
The term break-specification has a special meaning in the syntax of the I’ICE system com-

mands. The execution control commands (i.e., GO, BRKREG, ARMREG, TRCREG, and
EVTREG) use this term in their syntax definitions.

Examples

The following examples show four ways to set a break specification in the GO command or a
register.

1. A module and procedure name as a single address:
:initmod.initio

2. A module, line number, and procedure name in a list:
:initmod #5, :initmod.initio

3. A partition of virtual addresses using the TO form:
21:0A7 TO 21:0D0

4. An exclusive partition of virtual addresses using the LENGTH form:

OUTSIDE 21:11 LENGTH 20

1-46 Encyclopedia

Cross-References

Address
Partition

Encyclopedia 1-47

BRKREG

Defines a register that contains
break specifications

Syntax

DEFINE BRKREG name = break-specification [,break-specification]* [CALL dproc]

Where:
DEFINE BRKREG name
= break-specification

name

break-specification

CALL dproc

Discussion

creates a debug break register called name. Following
the equal sign (=) with a break-specification defines the
break criteria.

is the name of the debug procedure called when the
break-specification is met.

is the address of an executable statement expressed ei-
ther numerically (e.g., 0465H) or symbolically (e.g., a
line number). (The Break specification entry in this en-
cyclopedia describes the syntax in detail.)

calls the debug procedure named when the break-
specification is met. The debug procedure must return
TRUE (meaning a break is to occur) or FALSE (mean-
ing emulation will continue without breaking).

Break specifications stop emulation when the target line of code is executed. You can stop
emulation using break specifications in two ways. One way is to specify the breakpoint in the
GO command; the other is to use a debug register called a BRKREG (break register) in the GO

command (with the USING option).

Manipulating BRKREGs

Manipulate a BRKREG by referring to its name. You can manipulate BRKREGs in the follow-

ing ways:

® Create a BRKREG with the DEFINE command

® Delete a BRKREG from memory with the REMOVE command
® |ist BRKREG names with the DIR command

® Save a BRKREG on file with the PUT or APPEND commands

1-48

Encyclopedia

® Restore a BRKREG from a file with the INCLUDE command

® Display a BRKREG with the BRKREG command

® Execute a BRKREG with the GO USING command

® Use a BRKREG as part of the DEFINE ARMREG specification
® Modify a BRKREG with the editor

Because BRKREGs are referred to by name, you can reuse break specifications without re-
entering them. The GO command allows BRKREG lists. By defining BRKREGs, you can
switch breakpoints in a GO statement by changing BRKREG names.

NOTE

Defining new break specifications using an old BRKREG name destroys the old defini-
tion in memory. An error results if you try to assign a BRKREG name to any other
debug object in memory.

Restoring a saved BRKREG that has the same name as an existing BRKREG overwrites
the one in memory.

An error occurs when you try to restore a saved BRKREG that has the same name as any
other debug object in memory.

You can optionally enclose BRKREG specifications in a DO/END block.

Using the Optional Call

When a trigger occurs because of a BRKREG that includes a CALL, the CALL transfers
control to the named debug procedure. This debug procedure must return a Boolean value
(TRUE or FALSE) to the BRKREG. If it returns TRUE, emulation stops and the break mes-
sage is printed. If it returns FALSE, emulation resumes. A CALL does not execute in real-
time.

Emulation halts if a Boolean value is not returned or there is an error in the called debug

procedure. An error message indicates that the halt was not caused by a normal execution
break.

Restrictions

A BRKREG may contain any number of specifications. The GO command’s ability to execute
these specifications, however, is limited by the number of word recognizers available.

Encyclopedia 1-49

BRKREG continued

Word recognizers are the programmable portion of the internal execution state machine that
compares user match specifications with conditions on the bus it monitors. When a match
occurs, the state machine halts emulation. Refer to the Event machines entry in this encyclo-
pedia for details.

Word recognizer use is governed internally. You cannot know precisely how many word recog-
nizers are used in any given specification. A good rule of thumb is that one- or two-range
(partition) specifications or four-location specifications are the upper limit. The ZICE system
indicates when the word recognizer limit is exceeded.

Example

1-50

1. The following example defines a procedure, a character variable, and a BRKREG. The
procedure is named QUERY. The procedure QUERY is called from a BRKREG named
THIS__ROUND. The procedure QUERY displays the value of the current probe proces-
sor’s registers and flags and asks if the user wants to stop emulation. Entering Y returns a
TRUE to the calling BRKREG and stops emulation.

/*Screen message */
/*Accept terminal */
/*input*/

/*Test and return Boolean value*/

; /* Call query at the
symbolic addr "helpentry”*/
/* Return true to BRKREG */

3 ‘3::' i sp 4 T %
REGISTERS FOR UNIT 0000 ----

AX=Y4 BX=hL3A CX=0 DX=2
CS=5588 DS=188 SS=104 ES=0
IP=4L(C? BP=kL34 SP=kLcYy SI=830
DI=3A2

FLAGS : ZFL PFL _
Do youwant to break?¥
Probe O stopped at :helpentry #3 because of execution break
Break register is THIS_ROUND

Encyclopedia

Cross-References
Break specification

Event machines
Name

Encyclopedia 1-51

BTHRDY

8086/8088 probe specific

A pseudo-variable that determines the

source of the probe processor READY signal

= boolean-expression

Syntax
=TRUE
BTHRDY =FALSE
Where:
BTHRDY
TRUE
FALSE
boolean-expression
Default
FALSE
Discussion

displays the current setting.

uses the logical AND of the prototype READY signal
and the PICE system READY signal to determine the
number of wait-states.

uses READY that depends on current mapping. For ex-
ample, if memory is mapped to USER, the user proto-
type supplies READY; if memory is mapped to HS, then
the PICE system supplies READY.

is any expression in which the low-order bit evaluates to
0 (false) or 1 (true).

The BTHRDY pseudo-variable controls the source of the READY signal used by the probe’s
microprocessor while emulating. The possible sources of READY are the following:

® Target system hardware (USER) memory

® High-speed (HS) memory

® Optional high-speed (OHS) memory
® MULTIBUS® (MB) memory [not supported on IBM PC hosts]
® Target system hardware (USER) I/0

¢ MULTIBUS I/O

1-52

Encyclopedia

If BTHRDY = TRUE and memory is mapped to HS, OHS, or MB memory, the probe’s micro-
processor waits for both the target system READY and READY from mapped HS, OHS, or
MB memory to become valid. (When you are executing from HS or OHS memory, the probe’s
microprocessor matches actual target execution speed.) The target system must provide a valid
READY signal. See Figure 1-5 for timing requirements when BTHRDY is TRUE. Note that
the target system must meet these requirements even if memory and I/O are mapped to USER.

If BTHRDY =FALSE and memory is mapped to HS, OHS, or MB memory, target system
READY is ignored for those addresses in the range of mapped memory. With this feature you
can use the probe as a signal generator for debugging the target system.

Use caution when BTHRDY = FALSE and memory is not mapped to USER. The microproces-
sor bus cycles in the target system are not terminated by the target system READY but by the
READY provided to the probe’s microprocessor by the corresponding mapped memory. To
prevent bus contention between the target system and the emulator when BTHRDY = FALSE,
ensure that the number of wait-states requested by the target system is less than or equal to the
number of wait-states specified in the WAITSTATE command.

READY TIMING FOR BTHRDY = TRUE

cLk __/ﬁ_/_—\;/_ﬂw_

S S
1 e
B S

READY R = _

(8086/8088 S

Input) H

1404

Figure 1-6 Ready Signal Set-up Time with BTHRDY
Enabled

Figure 1-5 8086/8088 Probe READY Timing Requirements when BTHRDY = TRUE

Encyclopedia 1-53

BTHRDY (8086/8088) continued

The following example illustrates bus contention when BTHRDY = FALSE, the target system
inserts two wait-states but WAITSTATE =0, and memory is mapped to HS or OHS. Given
these conditions, when a program is executed that causes a read cycle followed by a write
cycle, the following events occur:

® P’ICE memory returns the data, terminates the cycle in zero wait-states, and starts the write
cycle before the target system terminates the read cycle.

® The target system drives read data onto the data bus at the same time the probe is driving
write data onto the data bus.

Examples

1-54

1. Display the current setting:

3. Use BTHRDY as a variable:

Encyclopedia

Pseudo-variable that controls the source
of the probe microprocessor’'s READY

Syntax
=TRUE
BTHRDY =FALSE
= boolean-expression
Where:

BTHRDY displays the current setting.

TRUE uses the logical AND of the prototype READY signal
and the PICE system READY signal to determine the
number of wait-states.

FALSE uses READY that depends on current mapping. For ex-
ample, if memory is mapped to USER, the user proto-
type supplies READY; if memory is mapped to HS, then
the I’ICE system supplies READY.

boolean-expression is any expression in which the low-order bit evaluates to
0 (false) or 1 (true).

Default
FALSE
Discussion

The BTHRDY pseudo-variable controls the source of the READY signal used by the probe’s
microprocessor while emulating. The possible sources of READY are the following:

® Target system hardware (USER) memory

® High-speed (HS) memory

® Optional high-speed (OHS) memory

® MULTIBUS (MB) memory [not supported on IBM PC hosts]
® Target system hardware (USER) I/O

® MULTIBUS I/O

Encyclopedia 1-55

BTHRDY (80186/80188) continued

1-56

BTHRDY has no effect when memory or I/O is mapped to USER; the target system must
provide a valid READY signal.

If BTHRDY = TRUE and memory is mapped to HS, OHS, or MB memory, the probe’s micro-
processor waits for both the target system READY and READY from mapped HS, OHS, or
MB memory to become valid. The target system must provide a valid READY signal.

If BTHRDY = FALSE and memory is mapped to HS, OHS, or MB memory, the target system
READY is ignored for those addresses in the range of mapped memory. With this feature you
can use your probe as a signal generator for debugging the target system.

Use caution when BTHRDY = FALSE. The microprocessor bus cycles in the target system are
terminated by target system READY and not by the READY provided to the probe’s micropro-
cessor by the mapped memory. To prevent bus contention between the target system and the
emulator when BTHRDY =FALSE, ensure that the number of wait-states requested by the
target system is less than or equal to the number of wait-states specified in the WAITSTATE
command. If the number of wait-states requested is greater than the number specified in the
WAITSTATE command, you can still prevent contention by ensuring the following:

® The target system must not initiate bus cycles for addresses mapped to PICE system
memory.

® The target system must not drive the data bus during a read cycle to an address mapped to ‘
the PPICE system.

The following example illustrates bus contention when BTHRDY = FALSE, the target system
inserts two wait-states but WAITSTATE =0, and memory is mapped to HS or OHS. Given
these conditions, when a program is executed which causes a read cycle followed by a write
cycle, the PICE memory returns the data, terminates the cycle in zero wait-states, and starts
the write cycle before the target system terminates the read cycle. The target system drives
read data onto the data bus at the same time the probe is driving write data onto the data bus.

Encyclopedia

aplen el

Pseudo-variable that controls the source
of the probe microprocessor’'s READY

= boolean-expression

Syntax
=TRUE
BTHRDY =FALSE
Where:
BTHRDY
TRUE
FALSE
boolean-expression
Default
TRUE
Discussion

displays the current setting.

uses both prototype READY and PPICE system READY
to determine the number of wait-states, unless memory
or I/O is mapped to USER. When memory or I/O is
mapped to user, BTHRDY has no effect (i.e., the target
system READY is used).

uses READY that depends on current mapping. For ex-
ample, if memory is mapped to USER, the user proto-
type supplies READY; if memory is mapped to HS, then
the PPICE system supplies READY.

is any expression in which the low-order bit evaluates to
0 (false) or 1 (true).

The BTHRDY pseudo-variable controls the source of the READY signal used by the probe’s
microprocessor while emulating. The possible sources of READY are the following:

MULTIBUS 1I/0

Encyclopedia

High-speed (HS) memory

Target system hardware (USER) memory

Optional high-speed (OHS) memory
MULTIBUS (MB) memory [not supported on IBM PC hosts]
Target system hardware (USER) I/O

1-57

BTHRDY (80286) continued

BTHRDY has no effect when memory or I/O is mapped to USER; the target system must
provide a valid READY signal.

If BTHRDY = TRUE and memory is mapped to HS, OHS, or MB memory, the probe’s micro-
processor waits for both the target system READY and READY from mapped HS, OHS, or
MB memory to become valid. The target system must provide a valid READY signal.

If BTHRDY =FALSE and memory is mapped to HS, OHS, or MB memory, target system
READY is ignored for those addresses in the range of mapped memory. With this feature you
can use your probe as a signal generator for debugging the target system.

Use caution when BTHRDY = FALSE. The microprocessor bus cycles in the target system are
terminated by target system READY and not by the READY provided to the probe’s micropro-
cessor by the mapped memory. To prevent bus contention between the target system and the
emulator when BTHRDY = FALSE, ensure that the number of wait-states requested by the
target system is less than or equal to the number of wait-states specified in the WAITSTATE
command. If the number of wait-states requested is greater than the number specified in the
WAITSTATE command, you can still prevent contention by ensuring the following:

® The target system does not initiate bus cycles for addresses mapped to IZICE system mem-
ory (unless the preceding WAITSTATE condition is true).

® The target system does not drive the data bus during a read cycle to an address mapped to
the I’ICE system. :

The following example illustrates bus contention when BTHRDY = FALSE, the target system
inserts two wait-states but WAITSTATE =0, and memory is mapped to HS or OHS. Given
these conditions, when a program is executed which causes a read cycle followed by a write
cycle, the PICE memory returns the data, terminates the cycle in zero wait-states, and starts
the write cycle before the target system terminates the read cycle. The target system drives
read data onto the data bus at the same time the probe is driving write data onto the data bus.

Encyclopedia

A pseudo-variable that allows a system
time-out when the microprocessor bus
is inactive for more than one second.

Syntax
=TRUE
BUSACT =FALSE
= boolean-expression
Where:
BUSACT displays the current setting (TRUE or FALSE).
TRUE enables bus inactive time-outs.
FALSE disables bus inactive time-outs.
boolean-expression is any expression in which the low-order bit evaluates to
0 (false) or 1 (true).
Default
TRUE
Discussion

When BUSACT = TRUE, a time-out occurs when the processor bus is inactive for more than
one second. A time-out causes emulation to break.

Examples

1. Display the current setting:

2. Disable the time-out:

Encyclopedia 1-59

BUSACT continued

3. Use BUSACT as a variable:

1-60 Encyclopedia

RYT =

Displays or changes memory
as an 8-bit unsigned value

Syntax
" = expression [, expression]*
BYTE patrtition — mtype partition
Where:
BYTE partition displays the location specified in partition as a byte
value in the current base.
partition is a single address, an expression that evaluates to a sin-
gle address, or a range of addresses specified as address
TO address or address LENGTH number-of-items.
expression converts to an 8-bit unsigned value.
mtype is any memory type except ASM.
Discussion

The BYTE command interprets the contents of memory as 8-bit unsigned values, overriding
any type associated with the memory contents. Thus, BYTE .varl displays the first byte at the
address of varl, regardless of the type of varl.

The display includes the corresponding ASCII characters enclosed in apostrophes (*). Non-
printing characters are displayed as periods (.).

Examples

The following examples assume the base is hexadecimal.

1. Display a single value:

*BYTE §
0020:0004H FA

2. Display several contiguous values:

*BYTE § LENGTH 8T
0020:0004H FA 2E 8E 1L 00 00 BC 72 M :

Encyclopedia 1-61

BYTE continued

Cross-

1-62

3. Set a single value of type BYTE:

. Set several contiguous values:

"ABC’

Display the values set:

0A

0 4 5612 34 5k 12 34 5k 12 "SHV.HVL LYY

. Copy a value from one memory location to another:

An error message is displayed if the type on the right side of the equal sign cannot be converted
to the type on the left. (See the Expression entry in this encyclopedia for the rules concerning
type conversions.)

References

Expression

Mtype
Partition

Encyclopedia

Displays the names of procedures
on the stack

Syntax
CALLSTACK [n]
Where:

CALLSTACK displays the names of the procedures on the stack in or-
der of call (from top to bottom). An asterisk (%) before
an element indicates the current debug cursor location.

n is a number or expression that evaluates to the position
of a procedure in the stack. If n is negative, the ’ICE
system displays the return addresses of the earliest pro-
cedures (those on the bottom of the stack). If n is posi-
tive, the I!ICE system displays the return addresses of
the latest procedures (those on the top of the stack). Fig-
ure 1-6 illustrates positive and negative n.

Discussion

With the CALLSTACK command you can view the dynamic, run-time nesting of the program
as opposed to static, lexical nesting. After calls to a procedure, the stack contains the return
addresses in order from earliest to most recent. Figure 1-6 illustrates the precedence of proce-
dures in the return stack.

NOTE

The CALLSTACK command does not operate correctly if the nesting sequence includes
a procedure written in assembly language.

The CALLSTACK command does not operate correctly if the last executable statement
of the main module calls a procedure. The top-level return address must not be within a
procedure.

Encyclopedia 1-63

CALLSTACK continued
The display format is as follows:
:module-name[.procedure-name] [+ offset]

If the return address is within a procedure, the procedure-name is displayed. The offset in
bytes is displayed in the current number base.

The !ICE system makes certain assumptions about the stack at any given time. Chang-
ing the execution point, stack segment, or stack pointer may invalidate these assump-
tions.

Procedure
Return Stack

n -n

1 Procedure 5 -6

2 Procedure 4 -5

3 Procedure 3 -4

4 Procedure 2 -3

5 Procedure 1 -2

6 Main Program -1
1376

Figure 1-6 Accessing the Procedure Return Stack

1-64 Encyclopedia

Example

1. In this example, when the RETURN at the end of the current procedure is encountered,
execution resumes at the address represented by (:tca.prologue + 6). The next RETURN

after that returns to (:tca.main + 22).
*CALLSTACK

0013:0081H :tca.prologue+hk
0021:003AH :tca.main+22

Cross-Reference

Expression

Encyclopedia 1-65

CAUSE

Displays the reason emulation stopped

Syntax

CAUSE

Discussion

With the CAUSE command you can display the reason for the last emulation halt. The CAUSE
message describes the location and reason for the break. The message contains the debug
register that caused the break, value of the clips, and trace buffer overflow (if applicable). The
message has the following format:

PROBE p stopped at address because of cause
[BUS ADDRESS = absolute address]
[Break register is name] [Clips = cc] [Trace Buffer Overflow]

The PPICE system fills in the underlined items as described in Table 1-2.

CAUSE is useful when using the ISTEP, LSTEP, PSTEP, and WAIT commands because they
do not display a break message unless an error occurs or a breakpoint is stepped through. The
message is the same one that the I2ICE system prints when emulation stops because of a
programmed breakpoint.

Example

1. The following example displays the reason emulation stopped:

*
Probe O stopped at : CMAKER# 10 because of guarded access
Bus address=00827Y4

Cross-Reference

1-66

Expression

Encyclopedia

Table 1-2 CAUSE Message Variables

Item Description

P Unit number (0-3).

address The value of CS:IP where the unit stopped emulation, displayed in pointer or
symbolic notation. (Refer to the Expression entry in this encyclopedia for
notation examples.)

cause One of the following reasons:

bus break 1/0 not ready

bus not active memory not ready
coprocessor memory violation no user clock
coprocessor on bus over temperature
execute break personality board
guarded access system break

halt write to ROM

host 1/0 access

[...] Brackets indicate that the I12ICE system displays this information only if it is
available.

absolute Contents of the address bus in absolute format.
address The number of significant bits is probe-specific.

name When a debug register specification causes the break, the I12ICE system
displays its name.

cc A two-place hexadecimal number representing the value of the eight input
logic clips.

Encyclopedia 1-67

CHAR

Displays or changes memory
as ASCII characters

Syntax
- = expression [, expression]*
CHAR partition = mtype partition
Where:
CHAR partition displays the location specified in partition as an ASCII
character value.
partition is a single address, an expression that evaluates to a sin-
gle address, or a range of addresses specified as address
TO address or address LENGTH number-of-items.
expression converts to an ASCII byte value.
mtype is one of the following valid types for assignment to
CHAR: BYTE, WORD, DWORD, ADDRESS, SELEC-
TOR, CHAR, and ASM.
Discussion

The CHAR command interprets the contents of memory as 8-bit ASCII characters, overriding
any type associated with the memory contents. Thus, CHAR .var1 displays the first byte at the
address of varl as an ASCII character, regardless of the type of varl. Non-printing characters
and values outside the range of ASCII characters are displayed as periods (.).

Examples

1. Display a single character:

*xCHAR $
0020:0004H "A”’

2. Display several adjacent characters:

0020:0004H ‘A ..

1-68 Encyclopedia

3. Assign a single value of type CHAR:

4. Assign several adjacent values of type CHAR:

Display the values set:

*CHAR temp LENGTH 6
0040:0004H 'querty’

5. Assign several repeating values:
*CHAR temp LENGTH 12T = 'GR’
Display the values set:

*xCHAR temp LENGTH 12T
0040:000Y4 'GRGRGRGRGRGR’

Cross-References
Expression

Mtype
Partition

Encyclopedia 1-69

Cl

A function that reads
from the system terminal

Syntax

Discus

Examp

1-70

Cl

sion

With the CI (console input) function you can read one character from the system terminal. The
terminal pauses until the character is entered. No prompt is displayed while the system is
waiting for the CI character, and the entered character is not echoed to the screen. No carriage
return is required after the character has been keyed in.

le

1. This example defines a procedure, a character variable, and a BRKREG. The procedure is
named ‘“‘query”. It is called from a BRKREG named “this__round”. Query displays the
value of the current probe processor’s registers and flags and asks if the user wants to stop
emulation. A Y response returns a TRUE to the calling BRKREG and finishes the break.

*DEFINE PROC query = DO

- XREGS

- xXWRITE USING (' "Do you want to break?”,> ') /*Screen message */

. xDEFINE CHAR ccc =Cl /*Accept terminal input*/

- XxWRITE ccc

- xIF ccc = = 'Y’ then return true /*Test and return Boolean */

. - xELSE return false

. - xENDIF

. XEND

DEFINE BRKREG this__round = :helpentry CALL query / Call query at */

*GO FROM display USING this__round /*symbolic addr "helpentry”*/

————— REGISTERS FORUNIT 0000 ----

AX=Y4 BX=L3A CX=0 DX=2

CS=5588 DS=1848 SS=104 ES=0

IP=4kLC? BP=kL3Y4 SP=hk2l SI=830

DI=3A2

FLAGS : ZFL PFL

Doyouwant tobreak?¥ /* Return true to BRKREG */

ProbeOstoppedat :helpentry#3because of executionbreak
Break register is THIS_ROUND /*Probe break message */

Encyclopedia

S i s £ *\W AN A,

Clears screen from cursor
to end of line

Syntax

CLEAREOL

Discussion

The CLEAREOL command clears the screen display from the cursor’s location after the com-
mand is entered to the end of the line.

Examples

1. Clear the second line. The following CLEAREOL command clears the second line, be-
cause “CLEAREOL” is entered on the first line and then the RETURN (or Enter) key
moves the cursor to the second line before CLEAREOL is executed.

xCURHOME /*Moves cursor to upper left-hand corner of screen*/

*xCLEAREOL /*Clears the second line*/

2. Clear the first line. The following CLEAREOL command clears the first line, because the
RETURN (or Enter) that completes the command line moves the cursor to the next line,
after which the cursor is moved to the first line by CURHOME--then “CLEAREOL” is
executed.

Encyclopedia 1-71

CLEAREOS

Clears screen from cursor
to end of screen

Syntax
CLEAREOS

Discussion

The CLEAREOS comniand clears the screen display from the cursor’s location after the com-
mand is entered to the end of the screen.

Examples

1. Clear the screen from the second line. The following CLEAREOS command clears the
screen beginning at the second line, because “CLEAREOS” is entered on the first line and
then the RETURN (or Enter) key moves the cursor to the second line before CLEAREOL
is executed:

*CUR“OME /*moves cursor to upper left-hand corner of screen*/
*xCLEAREOS /*clears entire screen*/

2. Clear the screen from the first line. The following CLEAREOS command clears the
screen beginning at the first line, because the RETURN (or Enter) that completes the
command line moves the cursor to the next line, after which the cursor is moved to the first
line by CURHOME--then “CLEAREOS” is executed.

1-72 Encyclopedia

B 5
8%

“’E'é(
F

CLIES]
Viel? o

Displays current state of
emulator logic clips

Syntax
CLIPSIN

Discussion

The CLIPSIN command displays the current state of the eight input signals on the emulator
logic clips in hexadecimal format. Each signal line on the clip pod is numbered. The number of
the signal corresponds to the bit number in the byte returned. Table 1-3 lists the colors of the
wires corresponding to the input signals.

Table 1-3 Input Clips Signals and Wire Colors

Signal Wire Color
CLIPINO | Brown LSB
CLIPIN1 | Red
CLIPIN 2 | Orange
CLIP IN 3 | Yellow
CLIPIN 4 | Green
CLIPIN 5 | Blue
CLIPIN 6 | Violet .
CLIPIN7 | White MSB

Example

1. Display the input clips in hexadecimal:

*BASE = HEX
xCLIPSIN
1FH

Cross-References
System specification

P’ICE timing information is provided in the IPICE data sheet.

Encyclopedia 1-73

CLIPSOUT

Displays and sets the two
output lines on the
emulator logic clips

Syntax
CLIPSOUT [= expression]
Where:
CLIPSOUT displays the current state of clipsout 0 and 1 on the emu-
lator logic clips probe.
expression evaluates to a binary 00, 01, 10, or 11. The first digit
represents CLIPSOUT 1, and the second digit repre-
sents CLIPSOUT 0. A 0 equals low, and a 1 equals high.
The initial value is 00.
Default
00
Discussion

The CLIPSOUT command controls two of the four output lines (clipsout O and 1) on the
emulator logic clips probe. The other two lines, SYS BREAK/ and SYS TRACE/, are con-
nected to the user prototype for breaking and tracing in a multiple unit configuration.

By specifying a number, the controlled lines send a TTL voltage level signal as soon as you
press the RETURN (or Enter) key. The signals remain until changed with the CLIPSOUT

command or until you perform a power-on reset. The !ICE system displays the CLIPSOUT
display in binary, regardless of the setting of BASE.

Example

1. Set CLIPSOUT 0 to TTL low and CLIPSOUT 1 to TTL high; then display the result.

1-74 Encyclopedia

CLIPSOUT continued

Cross-References

Expression
System specification

Encyclopedia 1-75

COENAB
8086/8088 probe specific

Pseudo-variable that enables or
disables coprocessor functions

Syntax

=TRUE

COENAB =FALSE
= boolean-expression

Where:

COENAB displays the current setting.

TRUE enables the coprocessor.

FALSE disables the coprocessor.

boolean-expression is any expression in which the low-order bit evaluates to

0 (false) or 1 (true).

Default Value
TRUE

Note that the default value for COENAB is FALSE if the user system’s RQ/GT line is tied low
(i.e., a shorted signal).

Discussion

The coprocessor enable (COENAB) pseudo-variable enables or disables an external coproces-
sor. When COENAB =TRUE, the 8086/8088 probe recognizes RQ/GT (MAX mode) or
HOLD/HLDA (MIN mode) signals.

When using the coprocessor, you must set the COENAB command before emulation begins.
Coprocessor enable remains set until you change it with the COENAB command. Resets to the
probe processor and the 8087 device do not affect the setting of COENAB, but the RESET ICE
command returns to the default, COENAB = TRUE.

NOTE

RESET ICE does not reset an external coprocessor; it does reset an internal
COprocessor.

1-76 Encyclopedia

A /&088) continued
Although an internal coprocessor operates when COENAB is FALSE, the PICE system does
not acknowledge trace data, register information, and coprocessor-related breaks when
COENAB is FALSE. You can use the 8087 emulator software regardless of the setting of
COENAB.

When you use an external coprocessor that is not enabled, any coprocessor instruction exe-
cuted causes the I’ICE probe to wait indefinitely (hang) for an acknowledge. To correct the
hang, manually reset the target coprocessor first and then the probe.

An internal 8087 uses RQ/GT1, leaving RQ/GTO available for an external coprocessor. If there
is no internal 8087, both RQ/GTO and RQ/GT]1 are available for 8087 coprocessors.

Examples

1. Display the current setting of the external coprocessor:

*COENAB
TRUE
2. Disable an external coprocessor circuit:
xCOENAB =FALSE
Cross-Reference
Expression

Encyclopedia 1-77

COENAB

80186/80188 probe specific

Pseudo-variable that enables
or disables coprocessor functions

= boolean-expression

Syntax
=TRUE
COENAB =FALSE
Where:
COENAB
TRUE
FALSE

boolean-expression

Default Value

TRUE

Discussion

displays the current setting.
enables the coprocessor.
disables the coprocessor.

is any expression in which the low-order bit evaluates to
0 (false) or 1 (true).

The coprocessor enable (COENAB) pseudo-variable enables or disables an external coproces-
sor. When COENAB =TRUE, the 80186/80188 probe recognizes its HOLD/HLDA lines.

When using a coprocessor, you must set COENAB to TRUE before emulation begins. Copro-
cessor enable remains set until it is changed with the COENAB command. Resets to the probe
processor do not affect the setting of COENAB, but the RESET ICE command returns to the

default, COENAB =TRUE.

‘When you use an external coprocessor that is not enabled, any coprocessor instruction exe-
cuted causes the I’ICE probe to wait indefinitely (hang) for an acknowledge. To correct the
hang, manually reset the target coprocessor first and then the probe.

1-78

Encyclopedia

\B (80186/80188) continued
Examples

1. Display the current setting of the external coprocessor:

*COENAB
TRUE

2. Disable an external coprocessor circuit:

xCOENAB =FALSE

Cross-Reference

Expression

Encyclopedia 1-79

COENAB

80286 probe specific

Pseudo-variable that enables or
disables coprocessor functions (HOLD,HLDA)

Syntax
=TRUE
COENAB =FALSE
= boolean-expression
Where:
COENAB displays the current setting.
TRUE indicates that an external coprocessor such as the

ADMA 82258 is enabled. If CPMODE is 1, the 80286
probe recognizes the HOLD and HLDA lines only dur-
ing emulation. If CPMODE is 2, the 80286 probe recog-
nizes the HOLD and HLDA lines during both emulation
and interrogation.

FALSE indicates that an external coprocessor is disabled. The
80286 probe does not recognize HOLD and HLDA lines
at any time.

boolean-expression is any expression in which the low-order bit evaluates to

0 (false) or 1 (true).

Default Value

FALSE

Discussion

The COENAB pseudo-variable enables or disables an external coprocessor. It determines
whether the 80286 probe recognizes its HOLD and HLDA lines. (The IPICE pseudo-variable
COREQ controls the PEREQ and PEACK lines.)

When you set COENAB to FALSE, any coprocessor bus request causes the coprocessor to wait
indefinitely for an acknowledge (i.e., the PICE system may hang). If this happens, first reset
the external coprocessor and then the probe (with the RESET UNIT or RESET ICE com-
mand).

1-80 Encyclopedia

3 (80286) continued

Resetting the probe microprocessor (activating its RESET pin or entering the RESET UNIT
command) does not change the setting of COENAB. The RESET ICE command returns
COENAB to FALSE.

Examples

1. Display the current setting of the external coprocessor:

*COEl
TRUE

2. Disable an external coprocessor:

Cross-References

CPMODE
Expression

Encyclopedia 1-81

CONCAT

A function that creates and displays
a new string by concatenation

Syntax
CONCAT (string-reference |[, string-reference]*)
Where:
string-reference is characters enclosed in apostrophes, a string cxpres-
sion using CONCAT, NUMTOSTR, or SUBSTR func-
tions, or a reference to a CHAR type debug variable.
Discussion

The CONCAT command builds strings by concatenating all or parts of old strings to form a
new string.

The CONCAT command is used two ways: to display a new message without saving it and to
display and save the new message. When the CONCAT command is entered at the prompt, it
displays the new message.

Examples

1. Concatenate two strings, the predefined character string msgl and the literal string
"PROCI’:

xDEFINE CHAR msg1 = ‘Now executing ’

*CONCAT (msg1, 'PROC1)
Now executing PROCL

2. Concatenate two strings inside a debug variable definition.

*DEFINE CHAR msg2 = CONCAT (msg1, 'TEST PROCEDURE)
xmsg2
Now executing TEST PROCEDURE

Cross-Reference

Strings

1-82 Encyclopedia

Confidence tests

A series of tests that checks
12ICE hardware

Before running the confidence tests, load the appropriate confidence test diskette and plug the
user cable into the loopback socket. If you are testing an emulation clips module, connect the
logic clips as shown in the PZICE™ System User’s Guide.

See the following EXAMPLES section for information on invoking the confidence tests.

NOTE

The 80186/80188 self-test logic (test 20) does not test the following seven pins:

VCC (two pins)

TMROUT 0 and 1 (two pins)
HOLD (one pin)

HLDA (one pin)

BHE (one pin)

NOTE

The 80286 self-test logic (test 20) does not test the following pins:

RESET
INTR
CAP

READY PEREQ PEACK NMI
HOLD HLDA BUSY ERR
Vce Vss

Table 1-4 lists the confidence tests.

Table 1-4 The PICE™ System Confidence Tests

Test Number Test Name
0000H Interface map RAM [test ignored by IBM PC hosts]
0001H ACK time-out
0002H System configuration
0003H ICE-LINK data paths
0004H Slushware RAM
0005H Probe initialization
0006H Probe ID
0007H Probe start
0008H Probe address/data
0009H Host/probe communications
000AH Slushware loader
000BH Communications exerciser
000CH Probe CPU instruction set
000DH Memory map RAM

Encyclopedia

Confidence tests continued
Table 1-4 The PICE™ System Confidence Tests (continued)

Test Number Test Name
000EH 1/10 map RAM
000FH High-speed memory map RAM
0010H High-speed RAM
0011H Probe memory time-out
0012H Probe 1/O time-out
0013H Probe bus time-out
0014H MULTIBUS DMA [test ignored by IBM PC hosts]
0015H MULTIBUS DMA exerciser [test ignored by IBM PC hosts]
0016H Software interrupt
0017H High-speed memory emulation
0018H MULTIBUS emulation [test ignored by IBM PC hosts]
0019H Single step
001AH 8086/8088 and 80186/80188: Hardware stack pointer
80286: Hardware register dump area
001BH Wait-state generator
001CH Host disk mapping
001DH Host I1/0 mapping
001EH Guarded access mapping
001FH Read-only mapping
0020H Probe self-test
0021H 8086/8088: 8087 execution

80186/80188: Internal timer interrupt
80286: Execution state machine RAM

0022H 8086/8088 and 80186/80188: Execution state machine RAM
80286: Execution word recognizer RAM

0023H 8086/8088 and 80186/80188: Execution word recognizer RAM;
80286: Execution word recognizer decoding

0024H 8086/8088 and 80186/80188: Execution word recognizer decoding;
80286: Bus state machine

0025H 8086/8088 and 80186/80188: Bus state machine RAM
80286: Bus word recognizer RAM

0026H 8086/8088 and 80186/80188: Bus word recognizer RAM
80286: Bus word recognizer decoding

0027H 8086/8088 and 80186/80188: Bus word recognizer decoding;
80286: Execution breakpoint

0028H 8086/8088 and 80186/80188: Execution breakpoint
80286: Bus breakpoint

0029H 8086/8088 and 80186/80188: Bus breakpoint
80286: Execution bus breakpoint

002AH 8086/8088 and 80186/80188: Execution bus breakpoint
80286: Trace counter

002BH 8086/8088 and 80186/80188: Trace counter
80286: Trace on/off

002CH 8086/8088 and 80186/80188: Trace on/off
80286: Trace buffer RAM part 1

002DH 8086/8088 and 80186/80188: Trace buffer RAM part 1
80286: Trace buffer RAM part 2

002EH 8086/8088 and 80186/80188: Trace buffer RAM part 2
80286: Trace buffer RAM part 3

002FH 8086/8088 and 80186/80188: Trace buffer RAM part 3

80286: Execution delay counter

1-84 Encyclopedia

Confidence fests

Table 1-4 The PICE™ System Confidence Tests (continued)

Test Number Test Name

0030H 8086/8088 and 80186/80188: Execution delay counter
80286: Bus delay counter

0031H 8086/8088 and 80186/80188: Bus delay counter
80286: Time tag counter

0032H 8086/8088 and 80186/80188: Time-tag counter
80286: System bus

0033H 8086/8088 and 80186/80188: System bus
80286: Logic clips

0034H 8086/8088: Coprocessor word recognition

80186/80188: Status word recognition
80286: Local reset

0035H 8086/8088 and 80186/80188: Logic clips
0036H 8086/8088 and 80186/80188: Optional high speed memory
0037H 8086/8088 and 80186/80188: Verify slushware

80286: Optional high speed memory
0038H 8086/8088 and 80186/80188: User interface exerciser*
0039H 8086/8088 and 80186/80188: User emulation*
003AH 8086/8088 and 80186/80188: Host-probe utilities

* The user interface exerciser test and user emulation test assume that the target system has
RAM at addresses 0 to 221H.

Examples

The following subsections provide examples for running confidence for the 8086/8088,
80186/80188, and 80286 probes.

Confidence Tests for the 8086/8088 Probe

The following examples assume that the the 8086/8088 diagnostic disk is in drive 1 (or for the
IBM PC, drive A) and that you want to run the 8086/8088 confidence tests on I!ICE unit 2.

1. Run the diagnostic tests on the Intellec® Series II1:
-RUN :F1:1CT086 2
I2ICED&L Confidence Tests Vx.y

Copyright 1984, Intel Corporation
>TEST

Encyclopedia 1-85

Confidence tests continued

Run the diagnostic tests on the Intellec Series I'V:

IE'ICE 08L Confidence Tests Vx-
Copyright 1984+ Intel Cor‘poratlon

Run the diagnostic tests on an IBM PC host. (The prompts shown in the example assume
that you have set your PC prompt using the command PROMPT = PG.)

C:\ >a:
A:\ >ICTO8! er >

I2ICE 08k Conf1 ence Tests Vx.
Copyright 1984, Intel Cor‘poratlon
>TEST

Generate a summary of any tests that failed:

Return to the host operating system by entering

>EXIT

Confidence Tests for the 80186/80188 Probe

The following examples assume that the 80186/80188 diagnostic diskette is in drive 1 (or drive
A on an IBM PC host) and that you want to run the 80186/80188 confidence tests on unit 2.

4. Run the diagnostic tests on the Intellec Series III:

-RUN :F1:1CT186 2

I2ICE 18k Confidence Tests Vx.y
Copyright 1984+ Intel Corporation
>TEST

Run the diagnostic tests on the Intellec Series IV:

1164608.001/1CT186.86 2

I2ICE 18k Confidence Tests Vx-
Copyright 1984, Intel Corporatlon
>TEST

Run the diagnostic tests on an IBM PC host. (The prompts shown in the example assume
that you have set the prompt using the command PROMPT = PG.)

IEICE 18k Confldence Tests Vx.y
Copyright 1984. Intel Corporation
>TEST

Encyclopedia

o)

Confidence tesis continued

5. Generate a summary of any tests that failed:

>SUMEO

6. Return to the host operating system:

Confidence Tests for the 80286 Probe

The following examples assume that the 80286 diagnostic diskette is in drive 1 (or drive A on
an IBM PC host) and that you want to run the 80286 confidence tests on unit 2.

7. Run the diagnostic tests on the Intellec Series III:

IEICE cékb Confldence Tests Vx.y
Copyright 1984+ Intel Corporation
>TEST

Run the diagnostic tests on the Intellec Series IV:

I2ICE E'BI: Confldence Tests Vx.y
Copyright 1984, Intel Corporation
>TEST

Run the diagnostic tests on an IBM PC host. (The prompts shown in the example assume
that you have set your PC prompt using the command PROMPT = PG.)

C:\ >
A:\ >IC
I2ICE 28k Confidence Tests Vx- .y

C ,,‘,rr:lght 1984, Intel Corporation

8. Generate a summary of any tests that failed:

>SUM

9. Return to the host operating system.

>EXIT

Cross-Reference

The PICE™ System User’s Guide has a more information about the IZICE confidence tests.

Encyclopedia 1-87

COREQ

80286 probe specific

Pseudo-variable that enables or disables

an external numeric extension (PEREQ, PEACK)

displays the current setting.

indicates that an external numeric extension such as the
80287 is enabled. When CPMODE is 1, the 80286
probe recognizes the PEREQ and PEACK lines only
during emulation. When CPMODE is 2, the 80286
probe recognizes the PEREQ and PEACK lines during
both emulation and interrogation.

Syntax
=TRUE
COREQ =FALSE
" = boolean-expression
Where:
COREQ
TRUE
FALSE

boolean-expression

Default Value

FALSE

Discussion

indicates that an external numeric extension is disabled.
The 80286 probe does not recognize the PEREQ and
PEACK lines at any time.

is any expression in which the low order bit evaluates to
0 (false) or 1 (true).

The PICE pseudo-variable COREQ enables or disables an external numeric extension. It deter-
mines whether the 80286 probe recognizes its PEREQ and PEACK lines. (The COENAB
pseudo-variable controls the HOLD and HLDA lines.)

When you set COREQ to FALSE, any processor extension data transfer request causes the
processor extension to wait indefinitely for an acknowledgement. Under certain conditions
when COREQ is TRUE and CPMODE is 1, the probe may also hang. When this happens, first
reset the external coprocessor, and then reset the probe (with the RESET command).

Encyclopedia

COREQ (80286) continued

Resetting the probe microprocessor (activating its RESET pin or entering the RESET UNIT
command) with the RESET UNIT command does not change the setting of COREQ. The
RESET ICE command returns COREQ to FALSE.

Example

1. Disable a numeric processor extension.

Cross-References
80287 registers

COENAB
CPMODE

Encyclopedia 1-89

COUNT

Groups and executes commands a
specified maximum number of times

Syntax

COUNT expression

12ICE commands

WHILE boolean-condition
UNTIL boolean-condition

END[COUNT)]
Where:

COUNT expression

I2ICE commands

WHILE boolean-condition

UNTIL boolean-condition

END[COUNT]

Discussion

1-90

specifies the maximum number of times the COUNT
command loop executes. The expression must evaluate
to a positive whole number, less than or equal to 65535T
in the current base.

executes until the test condition(s) is (are) met or the
terminal count is reached. All I’ICE commands are legal
except HELP, LOAD, EDIT, and INCLUDE.

executes the COUNT loop while boolean-condition is
true. Execution halts when the WHILE condition is false
or the terminal count is reached.

halts COUNT loop execution when boolean-condition is
true (unless the terminal count is reached first).

terminates the COUNT block. The optional COUNT
keyword labels the block type.

Unless it is within a procedure definition, a COUNT block is executed immediately after you

enter the END statement.

COUNT blocks not containing WHILE or UNTIL clauses are executed at least once. COUNT
blocks containing WHILE or UNTIL exit whenever the test condition is satisfied or the count

value is reached.

Encyclopedia

COUNT continued

Example

1. The following example shows COUNT used to provide a count from O to 4.

*xDEFINE BYTE b
*b=0
*xCOUNT 5

Cross-References

Boolean condition
Expression

Encyclopedia 1-91

CPMODE

8086/8088 probe specific

Pseudo-variable that displays or changes
the mode of external coprocessor operation

Syntax
=1
CPMODE =2
= expression that evaluates to 1 or 2
Where:
CPMODE displays the current setting.
1 is 1 or an expression that evaluates to 1. Mode 1 allows

handshaking during emulation only.

2 is 2 or an expression that evaluates to 2. Mode 2 allows
handshaking during both emulation and interrogation.

Default Value

1

Discussion

Select the external coprocessor mode with the CPMODE command before emulation begins.

Mode 1

When CPMODE is 1, the 8086/8088 probe recognizes RQ/GT (MAX mode) or HOLD/
HLDA (MIN mode) signals only during emulation.

Mode 1 operation assumes that emulation resumes from the last breakpoint. When this is not
the case (e.g., when you use GO FROM), clear the external coprocessor of any pending
requests by resetting it. You must reset the external coprocessor because the 8086/8088 probe
stores a request from the 8087 coprocessor until the 8086/8088 probe enters emulation, at
which time the request is honored.

1-92 Encyclopedia

Mode 2
When CPMODE is 2, the 8086/8088 probe recognizes coprocessor requests at any time. The

USER memory is not protected from unauthorized access by the coprocessor. Registers are
available for examination and modification.

NOTE

CPMODE operates only on the external coprocessor. It has no effect on the internal
8087 coprocessor.

Cross-References

8086/8088 registers
COENAB

Encyclopedia 1-93

CPMODE
80186/80188 probe specific
Pseudo-variable that displays or

changes the mode of external
coprocessor operation

Syntax
=1
CPMODE =2
= expression that evaluates to 1 or 2
Where:
CPMODE displays the current setting.
1 is 1 or an expression that evaluates to 1. Mode 1 allows

handshaking during emulation only.

2 is 2 or an expression that evaluates to 2. Mode 2 allows
handshaking during both emulation and interrogation.

Default Value

1

Discussion
Select external coprocessor mode with the CPMODE command before emulation begins.

NOTE

The 80186/80188 probe can have only an external coprocessor; it cannot have an inter-
nal coprocessor.

Mode 1

When CPMODE is 1, the 80186/80188 probe recognizes HOLD/HLDA signals only during
emulation.

Mode 1 operation assumes that emulation resumes from the last breakpoint. When this is not
the case (e.g., when you use GO FROM), clear the external coprocessor of any pending
requests by resetting it.

1-94 Encyclopedia

Mode 2
When CPMODE is 2, the 80186/80188 probe recognizes coprocessor requests at any time

(even while not emulating). The USER memory is not protected from unauthorized access by
the coprocessor.

Cross-References

80186/80188 registers
COENAB

Encyclopedia 1-95

CPMODE

80286 probe specific

Pseudo-variable that displays or changes the mode
of coprocessor (and processor extension) operation

Syntax
=1
CPMODE =2
= expression that evaluates to 1 or 2
Where:

CPMODE displays the current setting.

1 is 1 or an expression that evaluates to 1. Mode 1 indi-
cates that the coprocessor operates only during emula-
tion.

2 is 2 or an expression that evaluates to 2. Mode 2 indi-

cates that the coprocessor operates during both emula-
tion and interrogation.

Default Value

2

Discussion

1-96

When CPMODE is 1, the COENAB and COREQ pseudo-variables have meaning only during
emulation. When CPMODE is 1 and COENAB is TRUE, the 80286 probe recognizes the
HOLD and HLDA signals only during emulation. When CPMODE is 1 and COREQ is
TRUE, the 80286 probe recognizes the the PEREQ and PEACK signals only during emula-
tion.

Mode 1 operation assumes that emulation resumes from the last breakpoint. When emulation
resumes from a different location (for example, after you use the GO FROM command), reset
the coprocessor to clear any pending requests.

When CPMODE is 2, the COENAB and COREQ pseudo-variables have meaning during both

emulation and interrogation. When CPMODE is 2 and COENAB is TRUE, the 80286 probe
recognizes the HOLD and HLDA signals during emulation and interrogation. When

Encyclopedia

CPMODE is 2 and COREQ is TRUE, the 80286 probe recognizes the the PEREQ and PEACK
signals during emulation and interrogation.

To access 80287 registers with IPICE pseudo-variables, CPMODE must be 2 and the 80286
probe must not be emulating.

Cross-References
80287 registers

COENAB
COREQ

Encyclopedia 1-97

CURHOME

Moves cursor to the top left corner
of the display screen

Syntax
CURHOME

Discussion

The CURHOME command moves the cursor to the top left corner of the display screen (coor-

dinates (0,0)).

1-98

Encyclopedia

Syntax
CURX [= expression]
Where:
CURX

expression

Discussion

(AR B I
s e B

A pseudo-variable that displays
the column number or moves
the cursor to column X

displays the number of column X in the current base.

moves the CRT cursor from its current position to the
indicated column. The expression must be in the range
from 0 to the maximum number of columns on your
CRT.

The CURX command is typically used with the CURY command to position the cursor on the
display screen. Any information written to the screen, after the cursor is moved, is written
from the new cursor location. Any characters previously displayed at that location are deleted
from the screen as the new characters are written over the old.

Example

1. This example shows cursor movement after the CURX command:

Cross-Reference

CURY
Expression

Encyclopedia

1-99

CURY

A pseudo-variable that displays
the row number or
moves the cursor to row Y

Syntax
CURY [=expression]
Where:
CURY displays the number of the Y row in the current base.
expression moves the CRT’s cursor from its previous position to the
indicated row. The expression must be in the range from
0 to the maximum number of rows on your CRT.
Discussion

The CURY command is usually used with the CURX command to position the cursor on the
display screen. Any information written to the screen, after the cursor is moved, is written
from the new cursor location. Any characters previously displayed at that location are deleted
from the screen as the new characters are written over the old.

Example

1. This example shows cursor movement (from the first row to the fifth) in the Y direction.

Cross-Reference

CURX
Expression

1-100 Encyclopedia

Displays debug register contents

Syntax
debug-register name
Where:
debug-register is one of the following keywords:
ARMREG
BRKREG
EVTREG
SYSREG
TRCREG
name is the name of a previously defined debug register.
Discussion

Debug registers contain breakpoint or trace specifications or both.

You can manipulate debug registers in the following ways:

® (Create a debug register with the DEFINE command

® Delete a debug register from memory with the REMOVE command
® List debug register names with the DIR command

® Save a debug register to a file with the PUT or APPEND commands
® Retrieve a debug register from a file with the INCLUDE command

® Display a debug register by entering its keyword and name

® Execute a debug register with the GO USING command

® Modify a debug register with the editor

Example

1. This example displays the contents of the ARMREG named trigger__one.

MREG TRIGGER_ONE=TRIG CLIPS OXXXXXXX1lY AFTER

OCCURRENCE &

Encyclopedia 1-101

Debug registers continued

Cross-Reference

Name

1-102 Encyclopedia

Syntax (three forms)

1. Define a debug variable:

Defines, modifies, or
displays a debug variable

DEFINE [GLOBAL] mtype debug-variable-name [= expression]

If you do not enter expression, type CHAR is initially null, type BOOLEAN is initially
FALSE, and all other memory types (mtypes) are initially 0.

2. Modify a debug variable:

debug-variable-name = expression

3. Display a debug variable:
debug-variable-name
Where:

DEFINE mtype debug-variable-name
[=expression]
GLOBAL

mtype

debug-variable-name

expression

Discussion

creates a single value of the specified mem-
ory type in host memory space.

defines variables as global rather than local
to any block.

can be any memory type. (See the Mtype
entry in this encyclopedia for a complete
list.)

displays the value of the named debug vari-
able.

can be any valid combination of values and
operations.

Debug variables can be local or global. Local variables are known only in their enclosing block
and are only visible when that block is executing. Global variables can be accessed at any time.

Encyclopedia

1-103

Debug variable continued
Debug variables are global by being defined outside of a block or by being declared GLOBAL.
Local variables are removed automatically after a block has been executed. Global variables
are deleted with the REMOVE command.

Debug variables can be defined without a value being assigned. Values are forced to the correct
type if possible.

You can change a debug variable by either reassigning its name to a new value or editing the
- definition.

Examples

1. Define and display a single debug variable:

/*Definition of byte b, no value assigned*/
/*Command to display b*/

Cross-References

Expression
Mtype

1-104 Encyclopedia

Defines a debug object
Syntax (four forms)

1. To define a LITERALLY expression:

DEFINE LITERALLY literally-name = ' character-string’
2. To define a debug procedure:

DEFINE PROC debug-procedure-name = DO
I2ICE commaﬁds

END

3. To define a debug register:

DEFINE
((ARMREG arm-register-name = arm-specification h
BRKREG break-register-name = break-specification
[CALL debug-procedure-name]
EVTREG event-register-name = DO event-specification
[CALL debug-procedure-name]
< END F
SYSTRIG
SYSREG system-register-name= | SYSARM | system-specification
SYSDARM

[CALL debug-procedure-name])

\ TRCREG trace-register-name = trace-specification

4. To define a debug variable:

DEFINE [GLOBAL] mtype debug-variable-name [= expression]

Encyclopedia 1-105

DEFINE continued

Discussion

With the DEFINE command you can create LITERALLY definitions, debug procedures, de-
bug registers, and debug variables. Defining debug objects prevents you from having to re-
enter them each time you use them. The LITERALLY entry explains how to replace a
character string with a specified name. The PROC entry describes defining debug procedures.
The ARMREG, BRKREG, EVTREG, SYSREG, and TRCREG entries discuss defining arm,
break, event, system, and trace registers, respectively. The Debug variable entry shows how to
define debug variables.

Cross-References

ARMREG

Break specification
BRKREG

Debug variable
EVTREG
Expression
LITERALLY
Mtype

Name

PROC

SYSREG

System specification
TRCREG

1-106 Encyclopedia

Syntax

Display descriptors:

dtable[.ALL]

dtable (index
DT (selector)

Alter descriptors:

Display and alter 80286 descriptors

dtable(index).component [= expression)
D.T(se/ector).component [=expression]

Where:

Encyclopedia

dtable

index

ALL

DT

selector

component

expression

represents one of the three descriptor tables. The LDT is
the current task’s local descriptor table. The GDT is the
global descriptor table. The IDT is the interrupt descrip-
tor table.

is a number that identifies a descriptor within the de-
scriptor table chosen by drable. The first table entry is 0;
the second is 1, etc. Note that index is an index and not a
selector value.

specifies that all entries in the specified descriptor table
are displayed.

identifies the following argument as a selector.

is a 16-bit value that identifies the descriptor table (the
TI bit) and the offset into the table.

identifies a descriptor field. Not all components apply to
every type of descriptor.

resolves to a number to be loaded into the specified de-
scriptor or descriptor field.

1-107

80286 Descriptor commands continued

Discussion

Table 1-5 lists abbreviations for the 80286 descriptor types. Table 1-6 lists the mnemonics that
represent the different descriptor components. Table 1-7 lists the descriptor type associated
with each component.

Table 1-5 The 80286 Descriptor Types

Abbreviation Description Residence

CALLG Call gate GDT, LDT

DSEG Data segment GDT, LDT

DTABLE Descriptor table GDT

ESEG Executable segment GDT. LDT

INTG Interrupt gate IDT

TASKG Task gate GDT, LDT, IDT

TRAPG Trap gate IDT

TSS Task state segment GDT

Table 1-6 Mnemonics for the 80286 Descriptor Components

Mnemonic Description Size

BASE Segment or table 24-bit address 3 bytes

LIMIT Segment or table 16-bit length 1 word

WCNT Word count for gates 5 bits

SSEL Segment selector 1 word

SOFF Segment offset 1 word

IR Reserved by Intel 1 word

DPL Descriptor privilege level 2 bits

ED Expand down (for stack) 1 bit

w Writable segment 1 bit

A Accessed 1 bit

C Conforming 1 bit

R Readable 1 bit

P Present 1 bit

B Busy task 1 bit

Table 1-7 Components Associated with each Descriptor Type
Component Mnemonics
Descriptor type
BASE LIMIT WCNT SSEL SOFF IR DPL ED W A C R P A

Data segment X X X X X X X X
Executable segment X X X X X X X X
Call gate X X X X X X
Trap gate X X X X X
Interrupt gate X X X X X
Task gate X X X X
Task state segment X X X X X X
Descriptor table X X X X X
1-108 Encyclopedia

To display a single descriptor table entry do one of the following.

1. Enter the name of the descriptor table with the entry number in parentheses.

2. Enter DT for descriptor table and put a 16-bit selector value in parentheses. The selector
identifies either the LDT or the GDT.

An error message results if you specify an entry beyond the range of the descriptor table. If the
entry is within range but you have identified an invalid descriptor, the entry displays in non-
decoded form.

To display all the entries in a descriptor table, enter the mnemonic for the descriptor. All
entries that identify present objects are displayed. If you append the optional ALL, all entries
(even those identifying non-present objects) are displayed.

To set a descriptor table entry to a particular value, first identify the entry and the component
you want to change. Then, set that component equal to an expression.

You can change the type of a descriptor by identifying the descriptor entry and setting it equal

to one of the descriptor types in Table 1-5.

Examples

1. Display the fourth entry in the LDT:

*LDT()

LDT (3) DSEG BASE=FFO250 LIMIT=FFF9P=1 DPL=3 ED=1 W=1 A=0SR=0000 (SS)
2. Display all the descriptor entries in the LDT:

*LDTALL

LDT (1T) DSEG BASE=000L40 LIMIT=00A? P=1 DPL=0ED=0UW=1 A=0SR=0000

LDT (2T) DSEG BASE=000220 LIMIT=0024 P=1 DPL=3 ED=0W=1 A=0 SR=0000 (S%)

LDT (3T) DSEGBASE=FF0250 LIMIT=FFF9P=1DPL=3 ED=1 =1 A=0SR=0000 (DS) (ES)
LDT (4T) ESEG BASE=000250 LIMIT=0014 P=1 DPL=3 (=0 R=0 A=0 SR=0000 ((S)

3. Set the LIMIT field of LDT(2) to OOFF:

XLDT(2).LIMIT = 00FF

Encyclopedia 1-109

DIR

Displays program symbols and
debug object names

Syntax

1-110

DEBUG [mtype]
[DEBUG] [dtype]

DIR PUBLICS
[:module-name)

MODULE

SYMBOLS

Where:
DIR

DEBUG [mtype]

DEBUG dtype
mtype

dtype

PUBLICS [mtype]
PUBLICS [stype]

mtype
stype

displays the symbols for the current module as deter-
mined by NAMESCOPE.

displays the names of all debug objects. If you specify
mtype, only debug variables of that type are displayed.

displays all the entries of the specified debug type.

is one of the memory types: BYTE, WORD, DWORD,
ADDRESS, SELECTOR, SHORTINT, INTEGER,
LONGINT, EXTINT, REAL, LONGREAL, TEM-
PREAL, BCD, POINTER, BOOLEAN, or CHAR.
When any of these keywords is used as an option to the
DIR command, the I’ICE system only lists the mtypes in
the current module.

is one of the debug object types: PROC, LITERALLY,
BRKREG, TRCREG, ARMREG, SYSREG, or EV-
TREG. Debug objects that are debug variables must be
preceded by the DEBUG keyword to distinguish them
from program variables.

displays symbols with the PUBLICS attribute for all
modules. If mtype or stype is used, only symbols of that
type are displayed. (Note that the stype LINE is not a
valid PUBLICS type.)

Encyclopedia

[:module-name] [mtype]
[:module-name] [stype]

stype

MODULE
SYMBOLS

Discussion

B

FOE D o .
DiR co ued

&

displays the symbols for the named module. When
:module-name is omitted, the current module is as-
sumed. If mrype or stype is used, only symbols of that
type within the module are displayed.

is one of the special user program types: PROCEDURE,
LINE, LABEL, FILE, ARRAY, RECORD, SET, or
MODULE.

displays the names of all modules currently loaded.

displays the names of all program symbols.

When symbols from a module are displayed, indentation shows the scope of each symbol. The

order of items displayed is undefined.

The PICE system recognizes IYICE memory types and certain user program types. The ’PICE
system may use different names for these types than the user program. Table 1-8 shows these
differences.

Encyclopedia

1-111

DIR continued

Table 1-8 User Program Types with Corresponding PICE™ Name

1-112

ASM86 Corresponding I2ICE™ Name
BYTE BYTE
DWORD POINTER
QWORD LONGREAL
STRUC RECORD
STRUC ARRAY ARRAY OF RECORD
TBYTE TEMPREAL
WORD WORD
PL/M-86 Corresponding I2ICE™ Name
BYTE BYTE
DWORD DWORD
INTEGER INTEGER
POINTER ADDRESS (small module)
POINTER POINTER (large module)
REAL REAL
SELECTOR SELECTOR
STRUCTURE RECORD
STRUCTURE ARRAY | ARRAY OF RECORD
WORD WORD
Pascal-86 Corresponding I2ICE™ Name
ARRAY ARRAY
BOOLEAN BOOLEAN
CHAR CHAR
FILE FILE
INTEGER INTEGER
LONGINT LONGINT
LONGREAL LONGREAL
REAL REAL
RECORD RECORD
SET SET
TEMPREAL TEMPREAL
WORD WORD
FORTRAN-86 Corresponding I2ICE™ Name
CHARACTER*1 CHAR
INTEGER*1 SHORTINT
INTEGER*2 INTEGER
INTEGER*4 LONGINT
LOGICAL™1 BOOLEAN
LOGICAL*2 WORD
LOGICAL*4 DWORD
REAL*4 REAL
REAL*8 LONGREAL
REAL*TEMPREAL TEMPREAL

Encyclopedia

Examples

1.

Encyclopedia

The following example displays the symbols in the current module. Note that the type
designations are normally aligned. Indentation indicates the nesting level of that object.

xDIR SYMBOLS

DIRof :PLMMODULE
MEMORY
PLM_BYTE
PLM_WORD . .
PLM_INTEGER .
PLM_REAL
PLM_DWORD .
PLM_POINTER .
PLM_BASED_BYTE
PLM_BASED__WORD

PLM_BASED__INTEGER

PLM_BASED_REAL .
PLM_BASED_DWORD
ANOTHER_BYTE
ANOTHER_WORD .
ANOTHER_INTEGER .
ANOTHER_REAL
ANOTHER_DWORD .
ANOTHER_POINTER .
ANOTHER_BASED_BYTE
ANOTHER_BASED__WORD

- byte

array[?] of byte
byte

word

integer

real

dword

address

byte BASED
word BASED
integer BASED
real BASED
dword BASED

word
integer
real

dword
address
byte BASED
word BASED

ANOTHER_BASED__INTEGER integer BASED

ANOTHER_BASED__REAL

ANOTHER_BASED_DWORD

ANY_SELECTOR .
PLM_BYTE_ARRAY
PLM_WORD_ARRAY .
PLM_INTEGER_ARRAY
PLM_REAL__ARRAY
PLM_STRUCTURE -
STRO_BYTE .
STRO_WORD .
STRO_INTEGER -
STRO_REAL . . .
STRO_BYTE__ARRAY
STRO_WORD_ARRAY

STRO_INTEGER_ARRAY

STRO_REAL__ARRAY

PLM_STRUCTURE_ARRAY

real BASED
dword BASED

selector

array[l0] of byte
array(l0] of word
array[l0] of integer
array[l0] or real
record

byte

word

integer

real

array[l0] of byte

array[l0] of word

array[l0] of integer

array[l0] of real

array[l0] of record

1-113

DIR continued

STR1_BYTE . byte

STR1I_WORD . - - word

STRI_INTEGER integer

STRI_REAL - real
STRLI_BYTE_ARRAY . . array[l0] of byte
STRL_WORD_ARRAY . . array[l0] of word
STRLI_INTEGER_ARRAY . array[l0] of integer
STRL_REAL_ARRAY . . array[l0] of real

2. Display the public symbols:

*Dl S

DIR of PUBLICS

WCONN « « = s o s « s+ « « word

RCONN « « e« s« e« s« « « « = word
MEMORYWRITER procedure
ERRCHK « « « . « procedure
SYSTEMSTACK <null type>

3. Display the line numbers in the current module:

#1 #1939 #29 #39 #40 #4l #42 #43 #4y #45
#4L #47 #48 #49 #50 #5] #52 #53 #54 #55
#59 #L0 #bl #L2 #b3 #bY #L5 #bLL #L7 #LA

4. Display all debug object names:

bbb . . . byte

XXX « « « word

LIT - . . literally’literally’
WOR . . . literally’word’

BYT . . . literally’byte’

DEF . . . literally’define’

1-114 Encyclopedia

5. Display the directory of the module SORT, the current module:

DIR of :SORT

310 v e e e e label
D50 « « ¢ v v e e label
SORTARRAY « « ¢ ¢ v v o v ARRAYTYPE (array[100] of integer)
CURRENTMAX « « = o v v v INDEXTYPE (subrange of byte)
CONTROLWORD « « « « « « . . word
GETVALUES « « « « v o v o procedure
[= label
LT o label
INDEX « « v o v o v v v v INDEXTYPE (subrange of byte) stack relative
NEST_L .+« v v v oo procedure
£ = label
B30 . - v f e % . . label
SORTVALUES « « v v v v v procedure
LEFT « ¢ v o v v v o v o s INDEXTYPE (subrange of byte) stack relative
RIGHT v « ¢ v v v v v v v INDEXTYPE (subrange of byte) stack relative
= label
TEMP « v v v v i o v o integer stack relative
SENTINEL « « v v v v v v . . integer stack relative
1 I I T INDEXTYPE (subrange of byte) stack relative
) INDEXTYPE (subrange of byte) stack relative
PUTVALUES - . « .« . o .. procedure
INDEX v v v v v v v vt INDEXTYPE (subrange of byte) stack relative

Cross-Reference

Mtype

Encyclopedia 1-115

DO

Groups and executes commands

Syntax
DO
[l2ICE commands]*
END
Where:
DO...END
I2ICE commands

Discussion

executes one or more commands in a block.

is all IPICE commands except LOAD, EDIT, IN-
CLUDE, and HELP.

The DO block is executed immediately after you enter END.

Debug variables are local only when defined in DO-END blocks. Use the GLOBAL option on
the DEFINE command to define global debug objects within a DO-END block. LITERALLY
definitions, debug procedures, and break and trace registers are always global.

Example

1. The following example shows how to access the values stored in an array by defining a
local debug variable to serve as an index. Typically, this block would be defined in a debug
procedure for reuse.

1-116

Encyclopedia

Syntax

DWORD patrtition

Where:

DWORD partition

partition

expression

mtype

Discussion

Displays or changes memory
as 32-bit unsigned values

= expression [, expression]*
= mtype partition

displays the location specified in partition as a double
word in the current base.

is a single address or a range of addresses specified as
address TO address or address LENGTH number-of-
items.

converts to a 32-bit unsigned value for DWORD.

is any of the memory types except ASM.

The DWORD (double word) command interprets the contents of memory as 32-bit unsigned
values, overriding any type associated with the memory contents. Thus, DWORD 40:4 displays
the first two words at the address of varl, regardless of the type of varl.

Examples

All the following examples assume a hexadecimal number base.

1. Display the current execution point as a double word:

xDWORD $

0020:0004H 1LBECEFA

2. Display several adjacent values:

*DWORD $ LENGTH 5
0020:0004H 1LBE2EFA 16BC0000 1EAE2ZEDD OCEADDOE EFO02100

3. Set a single value of type DWORD:

xDWORD 40:4 = 9876

Encyclopedia

1-117

DWORD continued

Display the value set:

0040:0004H 0000987k

4. Set a series of adjacent values:

xDWORD 40:4 = 1234, 55555555, 8

Display the values set:

*DWORD 40:4 LENGTH 3
DO40:0004H 00002234 55555555 00000089

5. Set a range of locations to the same value (block set):
*DWORD 40:4 LENGTH 10T =0
6. Set a repeating sequence of values:

xDWORD 40:4 LENGTH 5 = 0A, 12345678, 4567

Display the values set:

*DWORD 40:4 LENGTH 6
0o40:0014 ODOODOOA 12345678 00004567 00D00000A 12345678 90909090

Note that the sixth value is not affected by the command since a length of five was
specified.

7. Copy a value from one memory location to another:
*DWORD 40:4 =DWORD $

8. Copy several values (block move):
xDWORD 40:4 = DWORD $ LENGTH 10

9. Copy values with type conversion:
*DWORD 40:4 = ADDRESS .var2

If the type on the right of the equal sign cannot be converted to the type on the left, an error
message results. (Refer to the Expression entry in this encyclopedia for type conversion
rules.)

Cross-References
Expression

Mtype
Partition

1-118 Encyclopedia

Invokes the IPICE system editor

Syntax
<ESC key >
debug-procedure-name
debug-register-name
EDIT literally-name
GO
Where:

<ESC key> invokes the I!ICE screen editor if pressed while entering
a command. Pressing the ESC key in response to the
I’ICE prompt (%) places the last command group in the
screen editor for editing.

EDIT invokes the I!ICE screen editor and creates an empty edit
buffer. You cannot invoke the EDIT command from in-
side a block or procedure.

debug-procedure-name displays the definition of the named debug procedure for
editing.

literally-name displays the definition of the named literal for editing.

debug-register-name displays the definition of the named debug register for
editing.

GO displays the GO command for editing. (The FROM
clause of the GO command is not saved.)

Discussion

With the EDIT command you can create or modify previously defined debug objects. The
Editors entry in this encyclopedia explains the menu-driven screen editor invoked by the EDIT

command, including examples.

The PICE system editor has all the features of the AEDIT V1.0 editor. The AEDIT Text Editor
User’s Guide (order number 121756) describes AEDIT.

Encyclopedia

1-119

EDIT continued

Cross-References

Editors
GO
Name

AEDIT Text Editor User’s Guide (order number 121756)

1-120 Encyclopedia

The ICE system has
a system editor and
a line editor

The two editors available when you run the IPICE software are the line editor and the menu-
driven screen editor (AEDIT V1.0). The line editor (an input line processor) uses the control
(CTRL) key in combination with other keys to perform editing functions. The menu-driven
screen editor is invoked by the ESC key or the EDIT command.

When to Use the Editors
Use the line editor to alter commands either before pressing the carriage return or for com-

mands in the history buffer. Use the menu-driven screen editor when creating or modifying
debug objects or development system files.

NOTE

You cannot edit debug variables by typing EDIT debug-variable-name, but you can re-
define debug variables (using the DEFINE command described in this encyclopedia).

The Line Editor
The PICE input line processor stores all command entries in a buffer until you press RETURN
(or Enter). You can edit a command line either before pressing RETURN (or Enter) or when it

is in the history buffer, thus by-passing the menu-driven screen editor.

The line editor uses the directional arrows and the CTRL key (in combination with other keys)
to alter command lines.

While in line editor mode, you can press RETURN (or Enter) regardless of the position of the
cursor without losing the line to the right of the cursor.

The keys that have special line editing functions are listed in Table 1-9.

Encyclopedia 1-121

Editors continued

Table 1-9 Line Editor Keys

Key Name Function

RUBOUT (or «— | Deletes the character to the left of the cursor.

on an IBM PC)

CTRL-A Deletes the part of the line beginning at the cursor and continuing to the
end of the line.

CTRL-C Cancels the command in progress.

CTRL-E Re-executes the last command.

CTRL-F Deletes the character at the cursor and adjusts spacing.

CTRL-X Deletes the part of the line to the left of the cursor and closes the space.

CTRL-Z Deletes the current line.

ESC Enters the screen editor.

Left Arrow Moves the cursor left one character.

Right Arrow Moves the cursor right one character.

Up Arrow Restores the previous line from the history buffer for editing.

Down Arrow Moves to the next line in the history buffer.

HOME Magnifies the effect of the last arrow key. Causes jumps to the
beginning or end of the current line when used with the right or left
arrow.

The Screen Editor

The menu-driven screen editor has the features of the AEDIT V1.0 editor and provides func-
tions, such as block moves, not available using the line editor. Screen editing is necessary when
editing debug procedures, debug registers, LITERALLYs, or development system files (e.g.,
source and listing files). Note that you cannot invoke EDIT within an INCLUDE, SUBMIT, or
block command.

If you make an error while defining a debug object, you must press the ESC key before
entering anything else. Unless immediately recalled for editing, the debug object defini-
tion is lost.

1-122 Encyclopedia

Using the ESC Key Versus EDIT Invocations

Both the ESC key and EDIT command invoke the same edit function. Use the EDIT command
to create or modify previously-defined debug objects or development system files. Use the
ESC key to display and modify the text of the last command sequence entered. This sequence
includes all text entered since the last prompt was displayed.

Menu Contents

When invoked, the screen editor displays the edit menu at the bottom of the screen. Entering
the first letter of a keyword from a menu invokes that function. The editing field at the top of
the display is either blank or contains the requested command text. The following screens show
the main menu prompt lines, and Table 1-10 lists each main menu item’s function.

V——_—__-—_——_—-""*~——-_.____________________.____-—————“"’"—_—-—-——_—

Again Block Delete Execute Find -find Get --more--

J

Hex Insert Jump Macro Other Quit Replace --more--

_ Y,

?replace Set Tag View Xchange --more--

_ J

The Main Menu Screens

Encyclopedia 1-123

Editors continued

Table 1-10 Screen Editor Main Menu Commands and Functions

Command or Key Function

RUBOUT Deletes the character to the left of the cursor.

CTRL-A Deletes that part of the line beginning at the cursor and
continuing to the end of the line.

CTRL-BREAK For IBM PC hosts, cancels the command in progress.

CTRL-C For non-IBM PC hosts, cancels the command in progress.

CTRL-F Deletes the character at the cursor and adjusts spacing.

CTRL-U Restores characters deleted by the last CTRL-A, CTRL-X, or
CTRL-Z to the current cursor position.

CTRL-X Deletes the line to the left of the cursor and closes the
space.

CTRL-Z Deletes the current line.

Up Arrow Moves the cursor up one row in the same column.

Down Arrow Moves the cursor down one row in the same column.

Left Arrow Moves the cursor left one character.

Right Arrow Moves the cursor right one character.

HOME Key Magnifies the effect of the last arrow key and causes jumps

to the beginning or end of the current line when used with
the right or left arrow.

Up Arrow and HOME™* Displays the previous page.

Down Arrow and HOME* Displays the next page.

RETURN Moves the cursor to the beginning of the next line.

ESC Terminates the edit command in progress and returns to the
main menu.

TAB Displays the next screen of menu prompts.

A (Again) Repeats the last command.

B (Block) Delimits a section of text that can be deleted, copied, or
moved.

D (Delete) Delimits a section of text that can be deleted, copied, or
moved.

E (Execute) Executes the specified macro file.

F (Find) Searches forward from the current cursor position for a
specified string.

- (-find) Searches backward from the current cursor position for the
specified string.

G (Get) Restores the contents of a block buffer or external file to the
current cursor position.

H (Hex) Converts ASCII characters to hexadecimal values and
hexadecimal values to ASCII characters.

| (Insert) Inserts text at the current cursor position.

* Pressed consecutively

1-124 Encyclopedia

Table 1-10 Screen Editor Main Menu Commands and Functions (continued)

Command or Key Function

J (Jump) Moves the cursor to a location specified in text by the TAG
command, to the start or end of the file, or to a line or
column.

M (Macro) Creates, retrieves, and lists macro files of EDIT commands.

O (Other) Switches between the primary and secondary buffers.

Q (Quit) Ends the editing session.

R (Replace) Searches for a specified string and replaces it with a new
string or deletes it if found.

? (?replace) Searches for a specified string and queries before deleting it
or replacing it with a new string.

S (Set) Sets switches that control automatic carriage return, back-up
files, case significance, indents, displaying lines longer than
80 characters, tabs, displaying text when finding or replacing
strings, tabs, and the view row.

T (Tag) Specifies locations in a file to which you can jump (using the
Jump command).

V (View) Moves the cursor to the specified row.

X (Xchange) Replaces characters on a one-for-one basis by typing over
them.

Several of the screen-editor commands prompt for additional information or display sub-
menus. The AEDIT manual (order number 121756) describes all the screen editor commands
in detail and gives examples.

File Editing

One very useful screen-editor feature is the ability to edit development system files without
exiting the I!ICE software. To edit another file, enter Q at the end the current editing session
and then enter I to get the Init sub-menu. The Init sub-menu prompts for the name of the file to
be edited. The file name must be a fully-qualified reference if the file resides on another drive
(e.g., :Fl:myfile). If you did not specify an output file before editing the external file (when
the editor prompted enter [file [TO file]]), use Quit and then Write to save any changes. The
Write sub-menu prompts for the name of the output file. Your changes will be lost if you do not
specify an output file.

In addition to Write, the Quit command offers the eXit and Execute options. The eXit com-
mand updates the file you just edited and returns you to the IPICE command level. The Execute
command returns you to the PICE command level and executes the file you just edited.

Encyclopedia 1-125

Editors continued

You can also put an external file into the editor using the Get command. The Get command
inserts the entire file at the current cursor position. After making your changes, delimit the text
to be returned to the external file using the Block command (to retain the copy in the current
file) or the Delete command (to delete the copy in the current file). Then use the Put command
to return the delimited text to an external file. Note that the block buffer containing the delim-
ited text has a fixed maximum size of 2K bytes. Use the Quit/Write commands to save larger
files.

Displaying Text

The screen editor displays up to 79 characters per line. In lines exceeding 79 characters, the
last (80th) character is displayed as an exclamation point (!) to indicate that text overflows the
screen display width. (Use the Set command to move the left margin so that you can view
characters beyond column 79.)

The editor displays tabs and unprintable characters differently from the I’ICE system. Unprint-
able characters are displayed as question marks (?) in the editor. The IZICE system does not
support tabs. They are displayed as single spaces.

NOTE
Editing appears on the terminal screen only. Editing sessions cannot be recorded in list
files.
Cross-References
DEFINE
EDIT

The PICE system tutorial has modules that introduce the IPICE screen editor and line editor.

1-126 Encyclopedia

ENABLE

Conditions the unit to accept
system level breaks and traces

Syntax
ENABLE SYSBREAKIN
DISABLE SYSTRACEIN
Where:
ENABLE causes the system trace or system break condition on the
current unit to be recognized.
DISABLE prevents the IPICE system from recognizing the current
unit’s system trace or system break condition.
SYSBREAKIN indicates that the system break input is to be enabled or
disabled. A system break is caused by SYSTRIG with
the system armed.
SYSTRACEIN indicates that the system trace input is to be enabled or
disabled.
Defaults
SYSBREAKIN ENABLED
SYSTRACEIN ENABLED
Discussion

The ENABLE/DISABLE commands refer to input signals to the probe. When the current
probe is enabled, it can break or trace based on input from other probes or inputs from the Intel
logic timing analyzer (iLTA). You cannot configure the iLTA to break or trace on probe condi-
tions. Refer to the iLTA Reference Manual (order number 163257) for the specific commands.

The system must be armed using the SYSTEM command or by the GO command using an
EVTREG or SYSREG with the SYSARM option. The system break or trace conditions are
activated the same way (with SYSTRIG or SYSTRACE).

You can enter any combination of enables and disables. When you enable any unit’s SYSTRA-

CEIN, that probe gathers trace data while any probe is asserting trace. When you enable any
unit’s SYSBREAKIN, that probe breaks when any unit asserts SYSTRIG.

Encyclopedia 1-127

ENABLE continued

To ensure that the iLTA is ready to trace emulation, specify the LAGO command before you
specify the GO command (which starts probe emulation).

Cross-Reference

SYSREG

1-128 Encyclopedia

A pseudo-variable that controls
the display of error information

Syntax
=TRUE
ERROR =FALSE
= boolean-expression
Where:
ERROR displays the current setting (TRUE or FALSE).
TRUE tells the IPICE system to search the disk-resident error
file for the text of error messages to be displayed.
FALSE tells the PICE system to display “Error Message Inhib-
ited” and the error number. No file search occurs.
boolean-expression is any expression in which the low-order bit evaluates to
0 (false) or 1 (true).
Default
TRUE
Discussion

Setting ERROR to FALSE speeds up I’ICE system operation by eliminating the disk search.
Because the HELP file also contains the text of error messages, you can enter the HELP
command when you want expanded error information.

Examples

1. Display the current setting:

Encyclopedia 1-129

ERROR continued

2. Display an error message:

ERROR #2y
Cannot performsymbol table request. Nouser program loaded.

mMim
ERROR #24
<Error message inhibited>

4. Use ERROR as a variable:

ERROR THEN ‘ .
'E 'Error messages are disabled.’

Error messages aredisabled.
X

Cross-Reference

HELP

1-130 Encyclopedia

Calculates and displays
the result of an expression

Syntax

. LINE
EVAL < xpression PROCEDURE
address SYMBOL
Where:

EVAL expression is any valid combination of values and operations.

EVAL address

LINE evaluates the expression as a line number reference.

PROCEDURE evaluates the expression as a procedure reference.

SYMBOL evaluates the expression as a symbolic reference (label
or variable). Specify only pointer values in address
when using SYMBOL.

Discussion

If you do not specify an option (LINE, PROCEDURE, or SYMBOL), the value of the expres-
sion is displayed. Most results are displayed in all bases (binary, decimal, and hexadecimal)
and in ASCII. If the ASCII interpretation is a non-printing character, a period (.) is displayed.
Results of types POINTER, unsigned values bigger than DWORD, signed values bigger than
LONGINT, and strings longer than two characters are displayed as bytes in hexadecimal.

If you specify LINE, the display has the form :module#line-number. If the expression does not
evaluate to an exact match with a line number, the system displays the line number’s address
that is closest to, but lower than, the value of the expression and adds + offset, the difference in
bytes. The offset is displayed in the current base.

If you specify PROCEDURE, the display has the form :module.procedure-name for exact
matches and adds + offset for inexact matches, as described for LINE.

If you specify SYMBOL, the display is a fully qualified reference to the matching user symbol,
with an offset for inexact matches.

Encyclopedia 1-131

EVAL continued

NOTE

If no symbol table information is available, the display for the LINE, PROCEDURE, or
SYMBOL options gives the offset from the beginning of the current module.

If the object’s address of the requested type (LINE, PROCEDURE, or SYMBOL) is
less than the expression, the message < UNKNOWN > is displayed.

The SYMBOL display accesses program variables (i.e., data symbols) and labels, but
not procedure names.

Examples

1. Display the result of a numeric calculation:

100011100012121Y LB207?T 4?1FH ' .G. .’

2. Display the line number corresponding to an absolute address:

tMOD1#5]

3. Display the location in a procedure corresponding to a line number in a module:
tMODL.SET_SCAN+2Y

4. Display a data location as a program symbol:

XEVAL DS:SI SYMBOL
:TCA.BIG_ARRAY+D1Y

Cross-References

Address
Expression

1-132 Encyclopedia

Monitors processor events

The PICE system contains two state machines that work in parallel to monitor processor
events: the execution event machine (XEM) monitors instruction execution and the system
event machine (SEM) monitors processor bus activity (fetches, reads, and writes), address and
data lines, and logic clip signal lines.

You can access these state machines in two ways. One way is to use the GO command or debug
registers to set conditions for break and trace. The PICE system translates these conditions for
appropriate event-machine testing. The second way is to manually load the event machines
using an EVTREG. By programming an EVTREG, you can set up complex break and trace
conditions.

Each state machine has four states (SO through S3). Each state represents a control branch that
can detect match conditions (e.g., break or trace), initiate actions, or branch to a new state.

State S3 sets up a communication link between the two event machines. Break or trace condi-
tions that must match execution instructions and system action require communication between
the two event machines. While either state machine is in state S3, the Boolean variable for that
machine (i.e., XLINK is the Boolean variable for the XEM and SLINK is the Boolean variable
for the SEM) is set to TRUE, and the XEM and SEM can communicate. Thus, decisions can
be made in one machine based on the condition of the other.

Each event machine has an event counter input. Counters permit conditionally delayed triggers
to be programmed. For example, the counter can be used to detect the fifth occurrence of an
event, to count bus cycles, or to count the number of instructions after a trigger.

Word recognizers are the programmable portion of the internal execution state machine that
compares user match specifications with conditions on the bus it monitors. When the match
occurs, the state machine halts.emulation. Refer to the Event machines entry in this encyclope-
dia for details.

The XEM state machine, shown in Figure 1-7, gathers 24 lines of execution address informa-
tion from the IPICE bus through the word recognizers. Additional information about the
counter and the state of the SEM is merged with the XEM information. This merging causes
the event machine to either remain in the same state or change states, then increment the
counter, and halt emulation and trace collection.

The SEM, shown in Figure 1-8, monitors bus address and data, logic clips, and probe proces-
sor status through its word recognizers. Additionally, it monitors the state of the execution
event machine (XLINK) and the trace buffer full-condition.

A match with any of these inputs can activate the same actions as the execution event machine.
Event matching can also activate system arm, system disarm, system trigger, and system trace.

Encyclopedia 1-133

Event machines continued

Instruction Address

24

C WORD RECOGNIZER)

System Machine Status (SLINK)

- State Transition

Increment

Counter Break
Trace

1359

Figure 1-7 Execution Event Machine in a Sample State

Trace Buffer Full

When you start emulation (using thte GO or ISTEP commands), trace data is collected into a
1024-frame buffer. The buffer signals the event machine when it is full and about to be over-
written. You can use EVTREG or SYSREG to detect the buffer full condition. You can use
buffer full detection to break emulation or switch to a state that has no trace specification (e.g.,
trace off).

Programming Restrictions

1-134

Normally, you can emulate with up to four break specifications in any one named break regis-
ter, although this number can be lower in some cases. Where the break is a range (partition),
for instance, more than the available number of word recognizers may be required to validate
the match condition.

Encyclopedia

cvent machines continued

Logic Processor Bus Bus
Clips Status Data Address
8 8 16 24
(WORD RECOGNIZER

Execution Machine Status (XLINK)

Trace Buffer Full ———| State Transition
System Armed Increment
Counter Break
Trace

System Arm
System Disarm
System Trigger
System Trace

1360

Figure 1-8 System State Machine in a Sample State

Cross-References

Event machines
EVTREG
GO

Encyclopedia

1-135

EVTREG

Defines a register that controls
the event machines

Syntax

1-136

For clarity, this command format differs from the usual format of the entries in this encyclope-
dia. The following skeleton syntax illustrates how the entire command appears. Detailed sub-
stitution lists follow. You should read the Event machines entry in this encyclopedia before
using the DEFINE EVTREG command.

Skeleton Syntax:

DEFINE EVTREG name =DO

XEM execution-event- | SEM system-event-]

program-block program-block
[CALL dproc]
SEM system-event- XEM execution-event-]
program-block program-block

END

The skeleton example illustrates the syntax for the two event machines (the execution event
machine and the system event machine) and the way they can be nested. Each event machine is
controlled by a program block. The program block syntax varies, depending on which event
machine you are programming.

The command entered at the terminal might look like the following:

REG s

END

The following detailed syntax diagrams describe the two machines separately. Machines are
either defined individually or combined according to the format shown in the skeleton syntax.

Encyclopedia

1. Syntax to define a register to control the execution event machine:
DEFINE EVTREG name =DO
state-# x-if-block
XEM CTR =count * [CALL dproc]
START = state-#
END

Where:

state-# is one of the following:

SO
S1
S2
S3

x-if-block is one of the following:
IF x-condition THEN x-action | ORIF x-condition THEN x-action *
ELSEIF x-condition THEN x-action
ELSE x-action

BUT ALWAYS x-action
ALWAYS x-action

x-condition is

break-specification
[NO] ENDCNT
[NOJ] SLINK

break-specification
WITH < [NO] ENDCNT
[NO] SLINK

x-action is

GOTO statett GOTO state# *
BREAK AND BREAK

TRACE TRACE
INCREMENT INCREMENT

Encyclopedia 1-137

EVTREG continued

2. Syntax to define a register to control the system event machine:

DEFINE EVTREG name =DO

state-# s-if-block
SEM CTR =count * [CALL dproc]
START = state-#

END
Where:
state-# is one of the following:
{0]
S1
S2
S3
s-if-block is one of the following:
IF s-condition THEN s-action | ORIF s-condition THEN s-action *
ELSEIF s-condition THEN s-action
ELSE s-action
BUT ALWAYS s-action

ALWAYS s-action

s-condition is

system-specification
[NO] ENDCNT
[NO] XLINK

*

system-specification
[WITH] < [NO] ENDCNT
[NO] XLINK

1-138 Encyclopedia

EVTREG continued

B o Yt N e/ 6

s-action is

' ~ r ~N |
GOTO state# GOTO state# *
BREAK BREAK
TRACE TRACE

J INCREMENT> AND < |NCREMENT>
SYSTRIG SYSTRIG
SYSTRACE SYSTRACE
SYSARM SYSARM
SYSDARM SYSDARM

L J “ J [

You must enclose the contents of each EVTREG debug register in a DO-END block. With
other debug registers, using the DO-END block is optional. Either or both of the event ma-
chines (XEM or SEM) may be programmed in any one EVTREG. You can activate only one
EVTREG at a time with the GO command.

Syntax for the execution-event-program-block or system-event-program-block defines which
event machine is being programmed, counter and start state initialization, and state numbers
with their corresponding IF blocks.

The conditions the IF block tests include execution-events (addresses) and system-events (ad-
dresses, data, clips, and trace buffer full), depending on which event machine is specified. The
actions the IF block causes when the condition for the XEM is matched include state changes,
breaks, traces, and counter increments. The SEM adds system triggers, system arms, system
disarms, and system traces.

The following paragraphs describe each keyword and variable and their legal values and
defaults.

XEM defines the execution event machine. The execution
event machine recognizes break conditions for break
specifications, the state of the XEM counter, and the
state of the system event machine (SLINK).

SEM defines the system event machine. It recognizes break
conditions for bus data, bus addresses, logic clips, trace
buffer full, processor status, the state of its counter, and
the state of the execution event machine (XLINK).

state-# is the state number and is either SO, S1, S2, or S3. S3 is
the state that provides the link to the other event machine
(see x-event and s-event).

Encyclopedia 1-139

EVTREG continued

1-140

CTR =count

START = state-#

ALWAYS actions

if-block

ORIF condition
THEN action

ELSEIF condition
THEN action

ELSE action

BUT ALWAYS action

x-condition

sets up the event machine event counter. The count must
evaluate to an unsigned integer, maximum size 64K
bytes. You can omit the event machine counters and set
them externally using the SCTR or XCTR commands.

indicates the state where execution is to begin. If you do
not specify start-#, SO is the default.

causes all actions specified to occur (when you do not
specify conditional clauses).

is either the x-if-block or the s-if-block. While the syntax
for each machine looks alike at this level, each machine
has different conditions it can recognize and actions it
can perform. The difference in syntax accents the differ-
ences between the two event machines. The if-block
msut be preceded by a state number.

The if-block is a conditional control block. When the IF
condition is satisfied, the THEN action is performed. If
the initial IF condition is FALSE, then the following
lines are evaluated in order and executed when true. The
conditions and actions that you can specify in an if-block
vary with the event machine.

is an inclusive clause. If one or more ORIF clauses are
true, including the preceding IF or ELSEIF clause, all
true ORIFs produce actions. The first GOTO specified
takes precedence in case of contention.

is an exclusive clause. IF more an one ELSEIF clause is
true, incuding the IF clause, only the first true condi-
tional clause, including any immediately following
TRUE ORIF clauses, produces actions.

is evaluated when none of the other care TRUE.

causes all actions specified in that state to occur uncon-
ditionally.

can be stated singly or ANDed togeth‘c':r using the op-
tional WITH keyword. They are break specifications
that include a single address, a list of addresses or parti-
tions, the state of the event counter in the execution
event machine, or the state of the system event machine
(SLINK).

Encyclopedia

Encyclopedia

s-condition

Xx-action

The SLINK execution condition is true when the system
event machine (SEM) is in state 3. With this option the
SEM can arm the execution event machine (XEM).

The [NOJENDCNT execution condition tests whether
the associated event machine counter is equal to the
counter value set (CTR, XCTR, or SCTR).

can be stated singly or ANDed together using the op-
tional WITH keyword. An s-condition includes any
system-specification, such as bus data, bus address, clips
and buffer full, the state of the event counter in the sys-
tem event machine, or the state of the execution event
machine (XLINK).

The system-specification syntax, because of its length
and because other debug registers share the same for-
mat, is detailed in the System specification entry in this
encyclopedia.

The XLINK system condition is true when the execution
event machine (XEM) is in state 3. This option lets the
XEM arm the system event machine (SEM).

The [NOJENDCNT system condition tests whether the
associated event machine counter is equal to the counter
value set (CTR, XCTR, or SCTR).

can be listed singly or ANDed together using the AND
keyword. An x-action is the result of an event in the

execution event machine being recognized as true.

GOTO state-# transfers control to a new state.

BREAK causes the probe to break emulation.

TRACE causes the emulator to trace while
the associated conditional clause is
true.

INCREMENT adds one to the counter, in the cur-
rent base.

1-141

EVTREG continued

s-action can be listed singly or ANDed together using the AND
keyword. An s-action is the result of an event in the
system event machine being recognized as true.

GOTO state-#

BREAK

TRACE

INCREMENT

SYSTRIG

SYSTRACE

SYSARM

SYSDARM

transfers control to a new state.
causes the probe to halt emulation.

causes the emulator to trace while
the associated conditional clause is
true.

adds one to the counter, in the cur-
rent base.

causes a system trigger to be sent to
all enabled units.

causes conditional trace collection
as a result of any enabled unit’s trig-
ger.

causes a system arm to be sent to all
enabled units.

causes a system disarm to be sent to
all enabled units.

The ANDed lists require parentheses.

CALL dproc calls the debug procedure named when a GO USING
evtreg-name causes an emulation break.

Discussion

1-142

Event machine control is an automatic process in the high-level break and trace control com-
mands (e.g., GO USING brkreg-name). By using event registers, you can control the event
machines directly. Regardless of how they are specified, all breaks and traces occur through

the event machine hardware.

Encyclopedia

When to Use EVTREGs

Consider using event registers in the following situations:

® When a GO command exceeds the number of break specifications the system can handle.
The PICE system reports an error when this happens.

® When the complexity of the statement exceeds the capabilities of other debug registers.

® When you need both the counting features of an ARMREG and multiple arm and disarm
features of a SYSREG in one statement.

Specifying EVTREGs

The body of the syntax of the event-program-block (pictured in the skeleton diagram) is essen-
tially an IF-THEN-ELSE control structure. It adds state numbers, similar to line numbers or
labels, to transfer control from state to state.

Because the number of word recognizers is limited, you can specify only a finite number of
break criteria. Notice that omitting the condition preceding the optional keyword WITH in the
IF block statement lets you use additional word recognizers.

For example:

This example is missing the condition between the ORIF and WITH keywords. It is syntacti-
cally legal. The IPICE system inserts the address specification following the IF. This form is
also legal in the GO command. (See the GO entry for details.)

Manipulating EVTREGs

Manipulate an EVTREG by referring to its name. You can manipulate EVTREGs in the fol-
lowing ways:

® Create an EVTREG with the DEFINE command

® Delete an EVTREG from memory with the REMOVE command
® List EVTREG names with the DIR command

® Save an EVTREG on file with the PUT or APPEND commands
® Retrieve an EVTREG from a file with the INCLUDE command

Encyclopedia 1-143

EVTREG continued

® Display an EVTREG with the EVTREG command
® Execute an EVTREG with the GO USING command
® Modify an EVTREG with the editor

NOTE

Defining new break and trace specifications using an old EVTREG name destroys the
old definition in memory. An error occurs if you try to assign an EVTREG name to any
other debug object in memory.

Restoring a saved EVTREG that has the same name as an EVTREG in memory over-
writes the latter.

An error results when you try to restore a saved EVTREG that has the same name as any
other debug object in memory.

Using the Optional Call

When emulation halts because an EVTREG included a CALL, the CALL transfers control to
the named debug procedure. This debug procedure must return a Boolean value (TRUE or
FALSE) to the EVTREG. If TRUE is returned, emulation stops. If FALSE is returned, emula-
tion continues.

NOTE

Emulation halts if a Boolean value is not returned or there is an error in the called debug
procedure. An error message indicates that the halt was not caused by a normal execu-
tion break.

1-144 Encyclopedia

Examples

1. The following example illustrates how the same specification can be made using one
EVTREG rather than two other debug registers. Both versions catch an event when execu-
tion takes place in .proc__a and a data value (0123H) is written to .adr__.

2. The following example illustrates an event machine program that causes a break at line 68.
Furthermore, a break only occurs if line 68 is executed after lines 32, 44, and 56 are
executed (in order) and line 125 is not executed.

Cross-References

Break specification
Event machines

GO

System specification

Encyclopedia 1-145

EXIT

Terminates the debug session and
returns control to the host
operating system

Syntax
EXIT

Discussion

The EXIT command closes all open files, terminates the debug session, and returns to the host
operating system.
You cannot use the EXIT command in two cases:

® f any probe has any memory mapped to the MULTIBUS (MB) memory. (To exit in this
case, reset MAP by entering RESET MAP before entering EXIT). [Note that MULTIBUS
memory mapping is not available on IBM PC hosts.]

® If any of I/O memory is mapped to PICE while any probe is emulating. (To exit in this
case, reset MAPIO by entering RESET MAPIO before entering EXIT.)

1-146 Encyclopedia

I

One or more numbers, variables,
pseudo-variables, or functions
separated by operators

Syntax
[unary-op] operand [binary-op [unary-op] operand]*
Where:
unary-op (unary operator) acts on a single operand (Table 1-14
defines unary operators).
operand can be a constant, a variable, a pseudo-variable, a func-
tion, or a sub-expression. Some operands are user-
defined; others are system-defined.
binary-op (binary operator) acts on two operands. The result is a
single operand (Table 1-15 defines binary operators).
Discussion

An expression is a combination of operands and operators. Evaluating an expression applies
the operators to the operands until a single result is obtained. This section explains how to
display the result of an expression, tells how expressions are evaluated, and describes the
operands and operators that are valid in I’ICE system expressions.

Evaluating Expressions

An expression entered as a command is evaluated directly. The result is displayed in the current
base. For example, assuming the default base is DECIMAL:

*357 x 51
18207

You can also use the EVAL command and the WRITE command to display the result of an
expression. However, the examples in this section use direct evaluation.

You can use the contents of a programming location read as an mtype in an expression (mtypes
are described in the Mtype entry in this encyclopedia).

Encyclopedia 1-147

Expression continued

To evaluate an expression, the system scans the expression iteratively from left to right, one
iteration for each operator in the expression. The series of scans ends when either of two
conditions occurs:

® Nothing remains except a single numeric result

® A syntax error, type combination error, or other error occurs

On each iteration, the scan identifies the operator that must be applied next. This operator can
be unary (requires one operand) or binary (requires two operands). The next operator is always
the left-most operator with the highest precedence that is enclosed in the inner-most pair of
parentheses. (Precedence rules are discussed later in this section.)

If the next operator is unary, its operand must be adjacent to it and of a proper type. If so, the
operator is applied to produce a numeric result. If not, an error results. The operation may
change the type of the operand.

If the next operator is binary, its two operands must be of proper types. The operation then
produces a numeric result. If not, an error results. The operation may change the types of the
operands. (Refer to the Mtype entry in this encyclopedia for the rules of type combination and
conversion.)

An error occurs if the next operator does not have the required number of operands. Spaces are
allowed between operators and operands.

A pair of parentheses is unnecessary when it contains a single result. For example, (7) is the
same as 7.

After an operation is performed, the numeric result becomes an operand for the next scan.
Parentheses are cleared before the next scan begins.

Operands

The following sections summarize the classes of operands that the system accepts. The four
classes of operands are constants, variables, functions, and sub-expressions. Within each class,
some operands are user-defined and others are built-in (that is, the form is defined by the PICE
system). An expression can be a single operand without any operators.

Constants

1-148

Constants do not change value during execution. Table 1-11 summarizes the user-defined and
built-in constants. Subsequent sections give additional information on constants.

Encyclopedia

Table 1-11 Constants

Constant Description

USER-DEFINED CONSTANTS

unsigned integer constants Interpreted in current base, stored as a double word
(DWORD).

signed integer constants Interpreted in current base, stored as a long integer
(LONGINT).

real number constants Always decimal, stored as a temporary real number
(TEMPREAL).

string constants ASCI! characters (maximum 254), enclosed in
delimiters ().

You can use one-character strings as operands with
arithmetic operators.

BUILT-IN CONSTANTS

TRUE Boolean value TRUE.
FALSE Boolean value FALSE.
FLDPI pi, type TEMPREAL,;

value 3.14159265358979324E + 00000.
FLDL2T log,(10), type TEMPREAL;

value 3.32192809488736235E + 00000.
FLDL2E log,(e), type TEMPREAL;

value 1.44269504088896341E + 00000.
FLDLG2 logo(2), type TEMPREAL;

value 3.01029995663981195E —00001.
FLDLN2 log.(2), type TEMPREAL;

value 6.93147180559945309E —00001.

Unsigned-Integer Constants

An unsigned integer contains one or more valid digits and (optionally) a character indicating
the number base. If you omit the number base character, the digits are interpreted in the current
number base. The valid digits and characters for binary, decimal, and hexadecimal number
bases are as follows:

Base Valid Digits Number Base Character
BINARY 0,1 Y
DECIMAL 0 through 9 T
HEX 0 through 9, A through F H

Encyclopedia 1-149

Expression continued

NOTE

To avoid confusion with variables and symbols, a hexadecimal number must not have a
letter as the first digit. For this reason, a hexadecimal number requires a leading O; for
example, use 0AB6H instead of AB6H.

Integers of the form nK are valid constants, where # is an unsigned decimal integer, and K is
1024.

Examples of unsigned integers (decimal base) are as follows:

Unsigned integers belong to the unsigned class of basic program types.

Signed-Integer Constants

A signed integer includes unary plus or minus. For example:

-157
Signed integers of 8, 16, and 32 bits belong to the signed class of program types. Signed

integers with 64 bits use an 8087 coprocessor or 8087 emulator and belong to the 8087 class of
program types.

1-150 Encyclopedia

Real-Number Constants
Real numbers have the following general format:
[sign][numerall*[.numerall* [E[sign][numeral*]]

Real numbers are always decimal. The sign, plus or minus, is optionally included. The numer-
als are the decimal numerals O through 9. The decimal point can be anywhere in the sequence
of numerals. The following two examples show how to enter a real number at the terminal and
shows the I!ICE system’s evaluation of that number.

x0.1
1.00000000000000000E-1

1.23456789000000000E+4

The exponent (E) form is also called scientific notation for real numbers. No space is permitted
before the E. For example:

*43.337E4
4.33370000000000000E+5

0445E - §
1.04450000000000000E-5

NOTE

When you use the E-form, a decimal point is required to distinguish them from hexadec-
imal integers of the form nnnnEnnnn. Numerals are required both on the left and on the
right of the decimal point.

All real numbers are stored as TEMPREALSs (10 bytes) and must be in the range of TEM-
PREALS. Real numbers require the 8087 coprocessor and belong to the 8087 class of program

types.

Encyclopedia 1-151

Expression continued

Strings

A string contains up to 254 characters enclosed in apostrophes (“). An apostrophe within a
string is entered as a double apostrophe (“). The value of a string is its ASCII representation,
with a byte for each corresponding character. You can use one-character strings as operands for
arithmetic operators. For example:

x’abcde
abcdef

X 5 /* A one-character string used as an operand */

102

You can also use string functions such as CONCAT and SUBSTR in expressions. String func-
tions are included in Table 1-13.

Built-in Constants
Built-in constants are of two types, BOOLEAN and TEMPREAL.

The BOOLEAN constants are true (representing the value 1) and false (representing 0). Be-
cause only the least significant bit of a value is used in a BOOLEAN type context, these
constants provide the expected Boolean logic. The BOOLEAN constants are useful for setting
up variables in the PICE system. For example:

*MEMADS
*xBUSAC

The TEMPREAL constants (FLDPI, FLD2T, FLD2E, FLDLG2, FLDLN2) correspond to
8087 constant instructions. For example:

Xcircumierence
1.53L2YE+5S
Variables
Variables store values that can change during execution or by user command. The name of the

variable represents the current value. Table 1-12 summarizes the user-defined variables recog-
nized by the IPICE system.

1-152 Encyclopedia

Table 1-12 User-Defined Variables

Variable Definition

procedure reference Returns the address of the first executable (machine)
instruction in the procedure.

line number reference Returns the address of the first executable instruction in the
line.

label reference Returns the address of the first executable instruction in the
labeled statement.

program variable Returns the contents of the data variable.

debug variable Returns the contents of the debug variable.

User-defined variables include symbolic references to program addresses and variables and
debug variables defined during the debug session.

Symbolic References

Symbolic references to program addresses include procedure names, line numbers, and labels
and represent the address of the first executable instruction within the procedure, line, or
labeled statement, respectively. For example:

x:imod1.parser /* Procedure reference */
0100:0F30H
:mod? / Line number reference */

0100H

oooao

/* Label reference */

The name of a variable in the user program represents the current value (contents) of the
variable. For example:

/* Simple variable */

15

xtable[50] /* Array variable */
123

/* Field in a structure or record */

Encyclopedia 1-153

Expression continued

Debug Variables

Debug variables are defined by the user within the debug session to hold temporary values. To
refer to a debug variable in an expression, enter the name of the variable.

The following example shows a command block in which most of the numbers are to be in
binary. The block saves the current base by defining a debug variable TEMPRADIX, switches
to binary radix for the commands, then restores the previous base by naming TEMPRADIX in
the assignment command. (Note that the variable TEMPRADIX is local to the block and is
removed automatically after the block finishes executing.)

/* Commands using binary numbers */

Functions

1-154

You call a function by naming the function and specifying any required parameters. The func-
tion returns a value to the place in the expression or command from which it was called. Table
1-13 summarizes the available functions.

User-defined functions are debug procedures that include the RETURN command. An error

occurs if the debug procedure does not have a RETURN command when it is used as a func-
tion. The following is an example of a debug procedure that uses RETURN.

/* User enters N */

The built-in functions are the mathematical, general-purpose, and string functions and are
summarized in Table 1-13. For example:

Encyclopedia

Table 1-13 Functions

Function

Description

USER-DEFINED FUNCTIONS
debug procedure call

A debug procedure must have a RETURN
statement in its definition to be used as a function.
The call then returns the expression specified in
the RETURN command.

BUILTIN FUNCTIONS
Mathematical Functions
FPTAN (x)
FPATAN (x,y)

FSQRT (x)
F2XM1 (x)
FYL2X (x, y)
FYL2XP1 (x, y)

General-purpose Functions
ACTIVE (symbolic-reference)

Cl

OFFSETOF (pointer)
SELECTOROF (pointer)
PTR (partition, mtype, unit)

String Functions
string-reference

STRLEN (string-reference)

CONCAT (string-reference
[, string-reference]*)

Partial tangent (x is converted to TEMPREAL).
Partial arctangent (x and y are converted to
TEMPREAL).

Square root (x is converted to TEMPREAL).

2x —1 (x is converted to TEMPREAL).

y * logs(x) (x and y are converted to TEMPREAL).

y * log,(x + 1) (x and y are converted to
TEMPREAL).

Returns TRUE if the symbolic reference is active
at the current execution point (i.e., is a static
object or a dynamic object with space allocated to
it); otherwise, returns FALSE.

Enables you to enter a single character from the
terminal and returns that character as the operand
value.

Returns the offset portion of the pointer.

Returns the selector (segment) portion of the
pointer.

Returns a pointer to the partition of the type and
unit specified.

The reference can be characters enclosed in
apostrophes, a string expression using CONCAT
or SUBSTR, or a reference to a CHAR type debug
variable.

Returns the number of characters in the string.

Creates a new string by concatenating the strings
referenced.

Encyclopedia

1-155

Expression continued

Table 1-13 Functions (continued)

Function

Description

SUBSTR (string-reference,
start, length)

STRTONUM (string-reference)

NUMTOSTR (expression)

INSTR (stringref1,
stringref2 [, start])

Returns the substring of (maximum) length length
starting at the character indexed by start (string
indexes begin at 1).

Returns the numeric value of the string, based on
the ASCII code. The type of the result depends on
the context.

Converts the expression into its ASCII
representation.

Searches for stringref2 within stringref1 and
returns the index of the first character of
stringref2. The optional start defines where to
begin the search in stringref1.

Sub-expressions

A sub-expression is an expression enclosed in parentheses. Parentheses override the prece-
dence of the operators. An expression inside parentheses is evaluated first, thus becoming an
operand for the rest of the expression outside the parentheses. When parentheses are nested,
the sub-expression in the inner-most pair of parentheses is evaluated first. For example:

Operators

Expressions can use a variety of operators. Unary operators act on a single operand; binary

operators combine two operands.

1-156

Encyclopedia

Unary Operators

Table 1-14 summarizes the unary operators; the following paragraphs provide details.

Table 1-14 Definitions of Unary Operators

Operator Operation

" A double quotation mark must precede symbolic references (forcing look-up
of the reference in the user symbol table) when the symbol name duplicates a
keyword or debug variable name.

The dot operator returns the address (type POINTER) of a symbolic
reference to a user program variable. Without the dot operator, a reference to
a program variable returns the memory contents of the variable.

+ Unary plus denotes a positive number.

- Unary minus denotes a negative number and converts an unsigned value to a
2’s complement signed value.

NOT NOT is the 1’s complement.

Double-Quote Operator

You must use the double-quote operator (") when a user program symbol duplicates an 'ICE
keyword. (See the Keywords entry in this encyclopedia for a list of IZICE keywords.) The
double-quote operator forces the system to use the symbol defined in your program for the
reference. The following example command causes an error because exit is an PICE system
keyword.

x:mod1.exit
But use of the double-quote operator makes possible the desired reference. For example:
x:mod1.7exit

Dot Operator

The dot operator placed before a symbolic reference to a program variable, returns the address
of the variable as a POINTER value. For example, if your program has a variable named
COUNTER of type BYTE, then the following command returns the BYTE content of the
variable.

12

Encyclopedia ‘ 1-157

Expression continued

But the variable preceded by the dot operator returns the memory address of the variable. For
example:

OFE8:0014H
Unary Plus and Minus

The unary plus (+) causes the operand to be treated as a signed integer rather than unsigned
number. For example:

1+255=256
+1+(+255)= +256

The unary minus (—) reverses the sign of its operand. If the operand is an unsigned type,
unary minus converts the operand to a signed integer, using the 2’s complement. Examples:

a
-546378923

NOT Operator

The NOT operator returns the 1’s complement of its operand. For example:

X}
TRUE
The operand must be unsigned or Boolean; NOT is invalid with any other mtype.
Binary Operators

The sign determines the value with which the PICE system calculates in binary arithmetic. A
binary operator working on two signed constants does signed arithmetic. A binary operator
working on two unsigned constants does unsigned arithmetic. Table 1-15 summarizes the bi-
nary operators. The Mtype entry in this encyclopedia lists the rules for type conversions. The
following examples illustrate binary operators:

1-158 Encyclopedia

Table 1-15 Definitions of Binary (Two-Operand) Operators

Operator Function
Pointer
: Creates a pointer (selector:offset) from two operands
Arithmetic
* Multiplication
/ Division
MOD Modulo reduction (remainder after division)
+ Addition
- Subtraction
Relational
== Equal to
> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to
<> Not equal to
Logical
AND Bit-wise AND
OR Bit-wise inclusive OR
XOR Bit-wise exclusive OR

Table 1-16 shows the relative precedence of the unary and binary operators.

Table 1-16 The IP'ICE™ System Operators in Order of Precedence

Precedence* | Operators

"
B

unary +, —
*, 1, MOD
binary +, —
NOT

AND

OR, XOR

ONOOT A WN =

* 1 = highest precedence
(evaluated first), 8 = lowest
precedence.

Encyclopedia 1-159

Expression continued

Pointer Operator

The pointer operator (:) creates a pointer out of two 16-bit values. A pointer has the following
format:

selector:offset

where selector and offset can be any type except BOOLEAN. For example:

nuuu 1234H
FFFFQDDDDH

Arithmetic Operators

The binary arithmetic operations in order of precedence are multiplication, division, modulo
reduction, addition, and subtraction.

The multiplication operator (*) returns the product of its operands. For example:

1. ESEI:EI?DE].'-IBS:I].?BDE+1
The division operator (/) returns the quotient of its two operands. If both operands are integers
(signed or unsigned) the result is the integer part of the quotient (i.e., integer division for
integer operands). If either operand is real, the result is also real.

For example:

X
1.57079632k79489kkE

1-160 Encyclopedia

The MOD operator returns the remainder after division of its two operands. With integer
operands, MOD returns an integer; with real operands, MOD returns the fractional quotient.
For example:

1.41592k53589793239E-1

The addition operator (+) returns the sum of its two operators; the subtraction operator (—)
returns the difference. For example:

*
2.-453400001525879LE+2

Note that addition and subtraction have lower precedence than multiplication and division. For
example:

14

Relational Operators

The relational operators (included in Table 1-15) compare two operands. If the comparison
holds, the operation returns TRUE (1). If not, it returns FALSE (0). For example:

Logical Operators

The logical operators are AND, OR, and XOR (exclusive OR). Operands other than Boolean
and unsigned types are invalid with logical operators.

Logical operations performed on relational expressions evaluate to a Boolean value. For exam-
ple:

Encyclopedia 1-161

Expression continued

Logical operations performed on unsigned expressions return bit-by-bit values. For example:

1000

Examples

The following examples assume a decimal base.

1. Arithmetic expression:

365

2. Using real constants and variables:

1.53b238807L0540889E+5

3. Logical operator with a function call:

TR

Cross-References

EVAL

Keywords
Masked constant
Mtype

Strings

WRITE

1-162 Encyclopedia

Displays or changes memory as
64-bit signed values

Syntax
. = expression [, expression]*
EXTINT partition = mtype partition
Where:

EXTINT partition displays the location specified in partition as an ex-
tended integer in decimal.

partition is a single address or a range of addresses specified as
address TO address or address LENGTH number-of-
items.

expression converts to a 64-bit signed value for EXTINT.

mtype is any of the memory types except ASM.

Discussion

The EXTINT command interprets the contents of memory as 64-bit signed values, overriding
any type associated with the memory contents. Thus, entering EXTINT .varl displays the
extended integer that begins at the address of varl, regardless of the type of varl. If the most
significant nibble of the unsigned data comprising the EXTINT is 8 through F, it is interpreted
as a negative number and displayed in the 2’s complement form of the unsigned data.

Note that the I!ICE system always displays values for signed-integer memory types as decimal
numbers, regardless of the selected number base.

Examples

In the following examples, the number base is hexadecimal and $ refers to the current execu-
tion point.

1. Display a single value:

XEXTINT $
0020:000LH +1673000016443179

Encyclopedia 1-163

EXTINT continued

. Display consecutive values:

3
: ?30000Lkb443179 +0335000217812900
0020:001kH -1374227L10993400

. Set a single value of type EXTINT:

. Set adjacent values:

Display the values set (you can set memory locations to signed integer values using a
hexadecimal base, but the I’ICE system displays the values in decimal):

+7 +8198552921L48LATS5
0040:00L4H +4779

. Set a range of locations to a single value:

The destination is the memory location left of the equal sign; the source is on the right.

. Copy several values (block move):

Encyclopedia

An error messages is displayed if the type on the right side of the equal sign cannot be
converted to the type on the left. (Refer to the Expression entry in this encyclopedia for the
rules concerning type conversions.)

Cross-References
Expression

Mtype
Partition

Encyclopedia 1-165

F2XM1

2% —1 function

Syntax
F2XM1 (x)
Where:
F2XM1 (x) represents the function 2* — 1.
X is a number or expression that evaluates to a number (0
< x < 0.05).
Discussion

The F2XM1 function is identical to the 8087 instruction.
The parameter (x) is converted to type TEMPREAL, and the result is TEMPREAL.

You can use the F2XM1 function anywhere an expression is valid.

NOTE
If x is outside the range 0 < x < 0.5, F2XM1 produces an undefined result without
signaling an exception.

Example

1. Calculate the 2* —1 function for x = .25:

xF2XMA1 (0.25)
1.892071150027210L7E-1
Cross-Reference
Expression

1-166 Encyclopedia

Displays or modifies 8086/8088 flags

Syntax
FLAGS
FL .
FH [=expression]
8086/8088-flag
Where:
FLAGS displays the 8086/8088 flags register.
expression is an expression (of the correct data type) used to set flag
values.
FL displays the lower (least significant) byte of the 8086/
8088 flags register.
FH displays the upper (most significant) byte of the 8086/
8088 flags register.
8086/8088-flag displays the current value of a flag and is one of the
keywords shown in Figure 1-9.
Discussion

Display flag values by entering their keywords or by entering the keyword FLAGS. Flag values
are displayed as Boolean values. The REGS command displays the flag mnemonic of all flags
set to 1. If no flags are set, the word “none” is displayed.

You can modify individual flags in two ways. One way is to enter the word FLAGS (or FL or
FH) ORed or ANDed with the proper bit pattern. The other way is to assign a value to the
individual flag. The flag is set according to the value of the least significant bit (LSB) in
expression.

Encyclopedia 1-167

8086/8088 Flags continued

The FLAGS Register

Bit Keyword

15

12

11 OFL

10 DFL
9 IFL
8 TFL
7 SFL
6 ZFL
5 XX
4 AFL
3 XX
2 PFL
1 XX
(o] CFL

Description

Don’t care

Overflow flag
Direction flag
Interrupt flag
Trap flag
Sign flag
Zero flag
Don’t care
Auxiliary flag
Don’t care
Parity flag
Don’t care
Carry flag

I2ICE™ System Memory Type

BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN

BOOLEAN

BOOLEAN

BOOLEAN

Figure 1-9 8086/8088 Flags Register Bit Pattern

1697

Example

1. Display the value of the zero flag and set the trap flag:

TRUE

Cross-Reference

1-168

Expression

/* Set the trap flag */

Encyclopedia

Displays or modifies 80186/80188 flags

Syntax
FLAGS
FL [= expression]
FH =exp
80186/80188-flag
Where:
FLAGS displays the current value of the 80186/80188 flags reg-
ister.
expression is an expression (of the correct data type) used to set flag
values.
FL displays the lower (least significant) byte of the 80186/
80188 flags register.
FH displays the upper (most significant) byte of the 80186/
80188 flags register.
80186/80188-flag displays the current value of a flag and is one of the

keywords shown in Figure 1-10.

Discussion
Display flag values by entering their individual keywords or by entering the keyword FLAGS.
Flag values are displayed as Boolean values. The REGS command displays the flag mnemonic

of all flags set to 1; if no flags are set, the word “‘none” is displayed.

You can modify individual flags in two ways. One way is to enter the word FLAGS ORed or
ANDed with the proper bit pattern (only the least significant 16 bits of expression are used).
The other way is to assign a Boolean value to the individual flag.

Example

1. The following example shows two ways to set the trap flag.

*xFLAGS =FLAGS OR 100000000Y /*Set the trap flag */
*xTFL = TRUE

Encyclopedia 1-169

80186/80188 flags continued

The FLAGS Register

Bit Keyword

15

12

11 OFL

10 DFL
9 IFL
8 TFL
7 SFL
6 ZFL
5 XX
4 AFL
3 XX
2 PFL
1 XX
(0] CFL

Figure 1-10 80186/80188 Flags Register Bit Pattern

Description

Don’t care

Overflow flag
Direction flag
Interrupt flag
Trap flag
Sign flag
Zero flag
Don’t care
Auxiliary flag
Don’t care
Parity flag
Don’t care
Carry flag

I2ICE™ System Memory Type

BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN

BOOLEAN

BOOLEAN

BOOLEAN

1598

Cross-Reference

1-170

Expression

Encyclopedia

Syntax

FLAGS
FL

FH
80286-flag

MSW
80286-flag

Where:

FLAGS
MSW
FL

FH

80286-flag

expression

Encyclopedia

j

Displays or modifies 80286 flags

[= expression]

[= expression]

displays the current value of the 80286 flags register
(see Figure 1-11).

displays the current value of the 80286 machine status
word (MSW) register (see Figure 1-12).

displays the lower (least significant) byte of the 80286
flags register.

displays the upper (most significant) byte of the 80286
flags register.

displays the current value of a flag and is one of the
keywords shown in Figures 1-11 and 1-12. The flags
may belong to the 80286 flags register or to the 80286
machine status word (MSW). Figure 1-11 shows the bit
pattern of the FLAGS register. Figure 1-12 shows the bit
pattern of the MSW.

is an expression (of the correct data type) used to set flag
values.

1-171

80286 flags continued

The FLAGS Register Description FPICE™ System
Memory Type

Bt 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Keyword [x | NFL| 10PL |OFL|DFL|IFL|TFLISFLIZFLl X IAFLI x[PFL[x[cn]

Carry flag BOOLEAN
Don't care
Parity flag BOOLEAN
Don’t care
Auxiliary flag BOOLEAN
Don’t care
Zero flag BOOLEAN
Sign flag BOOLEAN
Trap flag BOOLEAN
Interrupt flag BOOLEAN
Direction flag BOOLEAN
Overflow flag BOOLEAN
1/0 privilege level BYTE
N d task flag BOOLEAN
Don't care
1600
Figure 1-11 80286 Flags Register Bit Pattern
The MSW Description FICE™ System

Memory Type

Bit 15 4 3 2 1 o
Keyword {1 1 1 1 1 1 1 1 1 1 1 1 [TSF] EMF]MPF [PEF |

Protection enabled BOOLEAN
flag

Monitor processor BOOLEAN
extension flag*

Processor BOOLEAN
extension flag*

Task switch flag BOOLEAN
All1's

*Additional information:

Setting both the EMF bit and the MPF bit high will cause the 12ICE system to fail to break emulation. Entering the RESET UNIT command
will stop emulation in this case.

1601

Figure 1-12 The MSW Bit Pattern

1-172 Encyclopedia

30288 flags continued

P

Discussion

Display flag values by entering their individual keywords or by entering the keyword FLAGS.
Flag values are displayed as Boolean values. The REGS command displays the flag mnemonic
of all flags set to 1; if no flags are set, the word “‘none” is displayed.

You can modify individual flags in two ways. One way is to enter the word FLAGS ORed or
ANDed with the proper bit pattern (only the least significant 16 bits of expression are used).
The other way is to assign a Boolean value to the individual flag.

A task switch always sets the task-switch flag (TSF). A task switch performed with a CALL or

an INT instruction also sets the nested task flag (NFL). A task switch performed with a JMP
instruction leaves the NFL unchanged.

Examples

1. Set the trap flag (TFL) to TRUE.

X
TR
2. Another way to set the trap flag to TRUE:

TRUE

Cross-References

Expression
Multitasking
80286 registers
REGS

Encyclopedia 1-173

FLDL2E

Constant log,(e)

Syntax
FLDL2E
Where:

FLDL2E

Discussion

is the constant log,(e), type TEMPREAL, value
1.44269504088896341. The value (e) is the base of the

natural logarithm.

The constant FLDL2E is identical to the 8087 constant instruction. You can use it anywhere an

expression is valid.

Example

J 504088896341

5.337971k512891b4b1
Cross-Reference

Expression

1-174

Encyclopedia

Constant log,(10)

Syntax
FLDL2T
Where:
FLDL2T is the constant log,(10), type TEMPREAL, value
3.32192809488736235.
Discussion

The constant FLDL2T is identical to the 8087 constant instruction. You can use it anywhere an
expression is valid.

Example

xFLDL2T
3.3219280948873k235

Cross-Reference

Expression

Encyclopedia 1-175

FLDLG2

Constant log,(2)

Syntax
FLDLG2
Where:
FLDLG2 is the constant log,(2), type TEMPREAL, value
5601029995663981195E — 1.
Discussion

The constant FLDLG?2 is identical to the 8087 constant instruction. You can use it anywhere an
expression is valid.

Example

3. 9995LL3981195E-1

Cross-Reference

Expression

1-176 Encyclopedia

Constant log,2

Syntax
FLDLN2
Where:
FLDLN2 is the constant log.(2), type TEMPREAL, value
6.93147180559945309E — 1.
Discussion

The constant FLDLN?2 is identical to the 8087 constant instruction. You can use it anywhere an
expression is valid.

Example

xF

£.93147180559945309E-1

Cross-Reference

Expression

Encyclopedia 1-177

FLDPI

Mathematical constant pi

Syntax
FLDPI
Where:
FLDPI is the constant pi, type TEMPREAL, value
3.14159265358979324.
Discussion

The constant FLDPI is identical to the 8087 constant instruction. You can use it anywhere an
expression is valid.

Examples

1. The following debug procedure calculates the circumference of a circle. The radius of the
circle is passed to the procedure as a parameter (indicated by %0), and the value of the
circumference is passed back with a RETURN command.

*xDEFINE PROC circum = DO

. *xRETURN 2.0 x FLDPI x %0
. xEND

2. The following example shows a call to the previous debug procedure using the radius
24,450T.

xcircum (2.445E4)
1.53k23880760540889E+5

Cross-Reference

Expression

1-178 Encyclopedia

Partial arctangent function

Syntax
FPATAN (x,y)
Where:
FPATAN (x,y) is the partial arctan (y/x) function (angle in radians) (O
<y<x< ™),
Discussion

The FPATAN function is identical to the 8087 partial arctangent instruction. The result is type
TEMPREAL.

The value x is converted to TEMPREAL before the function is applied.

You can use the FPATAN function anywhere an Expression is valid.

NOTE

If x or y is outside the range 0 < y < x < oo, FPATAN produces an undefined result
without signaling an exception.

5)
0900080L11LE-1

Cross-Reference

Expression

Encyclopedia 1-179

FPTAN

Partial tangent function

Syntax
FPTAN (x)
Where:
FPTAN (x) is the partial tangent function of an angle. The argument
x is the angle in radians and (0 < x < w/4).
Discussion

The FPATAN function is identical to the 8087 partial tangent instruction.

The argument x is converted to type TEMPREAL before the function is applied. The result is
type TEMPREAL.

You can use FPTAN anywhere an expression is valid.

NOTE
If x is outside the range 0 < x < w/4, FPTAN produces an undefined result without
signaling an exception.

Example

1. Calculate and display the partial tangent of .5T:

5.4L302489843790513E-1

Cross-Reference

Expression

1-180 Encyclopedia

Syntax
FSQRT (x)
Where:
FSQRT

X

Discussion

FSURT

Square root function

is the square root function.

is a number or expression that evaluates to a number (0
=X < + ™).

The square root function is identical to the 8087 square root instruction.

The parameter x is converted to type TEMPREAL, and the result is TEMPREAL.

You can use the function FSQRT anywhere an expression is valid.

Example

1. Calculate and display the square root of 10T:

3.1b2277bb0LLA37933

Cross-Reference

Expression

Encyclopedia

1-181

FYL2X

Y * log,(x) function

Syntax
FYL2X (x, y)
Where:
FYL2X is the function y * log,(x).
X is a number or expression that evaluates to a number (0
< x < + o).
y is a number or expression that evaluates to a number
(—® <y <+).
Discussion

The FYL2X function is identical to the 8087 log instruction.

The parameters x and y are converted to TEMPREAL before the function is applied, and the
result is type TEMPREAL.

You can use FYL2X anywhere an expression is valid.
Examples

1. Calculate and display the FYL2X function of 4T and 1T:

c.0000000000000OCOOD
2. Calculate and display the FYL2X function of 38.7T, 23.34T:

1.23101267173739499E+2

Cross-Reference

Expression

1-182 Encyclopedia

y * log,(x + 1) function

Syntax
FYL2XP1 (x, y)
Where:
FYL2XP1 is the function y * log,(x + 1).
X is a number or expression that evaluates to a number (0
< lxl< a=2)12).
y is a number or expression that evaluates to a number
(=0 <y <+).
Discussion

The FYL2XP1 function is identical to the 8087 log instruction.

The parameters x and y are converted to TEMPREAL before the function is applied and the
result is type TEMPREAL.

You can use FYL2XP1 anywhere an expression is valid.
Example

1. Calculate and display the FYL2XP1 function for .1T and 1T.

x| v
1.3?7503523749934908E-1

Cross-Reference

Expression

Encyclopedia 1-183

GET87

8086/8088 probe specific

Defines register handling conditions
for the 8087 coprocessor

Syntax
GET87 [(address)]
Where:
GET87 tells the PICE system that an 8087 coprocessor is
present.
address describes the starting address of a 110-byte buffer area
in user-mapped memory; address must be 10H or
greater. The I’ICE system uses this area to save and re-
store the register contents of the external 8087 coproces-
sor when entering and exiting emulation. Use address
with the external coprocessor only.
Discussion

1-184

Enter the GET87 command before starting emulation to tell the IZICE system that an 8087
coprocessor is present. When emulation breaks, the I’ICE system preserves the values of the
8087 registers by saving them in memory. This makes all 8087 register data available to you for
display and modification. You cannot display or modify the 8087 registers if you have not
entered the GET87 command. When emulation resumes, the registers are restored to the 8087
coprocessor. The GET87 command does not affect the operation of either internal or external
8087’s during emulation.

Note that you need enter the GET87 command only once before emulation begins. However, if
the specified 110-byte buffer changes status and no longer starts at 10H or greater, enter the
GET87 command again to set up the new buffer area.

The PPICE system determines the memory area in which to save registers by first determining
the location of the user 8087 coprocessor. External 8087’s save registers in user memory, while
internal 8087’s save registers in reserved system memory. The I!ICE system looks for the 8087
coprocessor and responds in one of three ways:

® If an external 8087 is present, the IPICE system uses it.
® If no internal 8087 is present, the PICE system assumes an external 8087.

® If no external 8087 is present, the PICE probe hangs.

When using an internal 8087 coprocessor, user memory is not altered and the optional address
is not required; address input is ignored.

Encyclopedia

When using an external 8087, you must identify a 110-byte buffer in user mapped memory
using the address option. This area is used as an intermediate buffer in saving and restoring the

8087 register data. The original contents of this buffer are preserved between save and restore
operations.

Example

1. Set up the IPICE system to recognize an external 8087 coprocessor:

/* BREAK MESSAGE "
xST0
+4.0293200090000000E-12

Cross-Reference

Address

Encyclopedia 1-185

GET87
80186/80188 probe specific

Defines register handling conditions
for the 8087 coprocessor

Syntax
GET87 (address)
Where:
GET87 tells the PPICE system that an 8087 coprocessor is
present.
address describes the starting address of a 110-byte buffer area
in user-mapped read/write memory; address must be
greater than 10H. The PPICE system uses this area to
save and restore the register contents of the external
8087 coprocessor upon entering and exiting emulation.
After restoring 8087 coprocessor register contents, the
PICE system restores user memory to its previous
contents.
Discussion

1-186

Enter the GET87 command before emulation begins to tell the IPICE system that an 8087
coprocessor is present. When emulation breaks, the PICE system preserves the values of the
8087 registers by saving them in memory. This makes all 8087 register data available to you for
display and modification. You cannot display or modify the 8087 registers if you have not
entered the GET87 command. When emulation resumes, the registers are restored to the 8087
coprocessor. The GET87 command does not affect the operation of the external 8087 copro-
cessor during emulation.

Note that you need enter the GET87 command only once before emulation begins. However, if
the specified 110-byte buffer changes status and the starting address is no longer greater than
10H, enter the GET87 command again to set up a new buffer area.

The IPICE system responds in one of two ways to a GET87 command.

® If an external 8087 is present and the GET87 command is entered, the ’ICE system uses
the external 8087.

® Ifno external 8087 is present and the GET87 command is entered, the PICE system hangs.

Encyclopedia

Example

1.

Set up the I!ICE system to recognize an external 8087 coprocessor:

xMAP CS:100 LENGTH 100 USER
*GET87 eo)

/* BREAK MESSAGE */
*S5T0
+4.0293200090000000E-12

Cross-Reference

Address

Encyclopedia

1-187

GO

Starts emulation and controls
break and trace functions

Syntax

go-til-spec

GO [FROM adaress] | o icina-spec

[go-trace-spec]

Where go-til-spec is one of the following:

(FOREVER A
TIL break-spec

SYSARM system-spec

SYSDARM system-spec
< SYSTRIG system-spec >
arm-spec
[DO] evt-spec END /*see note*/

_TIL BOTH (break-spec) AND (system-spec))

Where go-using-spec is one of the following:

((FOREVER h
USING evireg-name /*see note*/
BRKREG
SYSREG
< armreg-name r
brkregs
sysregs

_USING BOTH (brkregs) AND (sysregs)

—

Where go-trace-spec is one of the following:

trcreg-name |[,trcreg-namej*
TRACE {trace-spec

trace-spec is

[break-spec]
[SYSTRACE] system-spec

1-188 Encyclopedia

NOTE

You cannot use the TRACE option with evt-spec. You can use the TRACE option with

evtreg-name.
Where:

GO

FROM address

FOREVER

TIL

break-spec

system-spec

Encyclopedia

starts emulation from the current execution point
(CS:1P) without altering break or trace specifications.
The PPICE system’s initial condition is to GO FOREVER
and to always collect trace.

changes the current execution point to the address speci-
fied.

Changing the execution point can invalidate the
stack.

If the FROM location is not the first byte of a
machine language instruction, the PICE system
may execute an incorrect data item as an opcode.

clears all active break specifications and starts emula-
tion. GO FOREVER is the initial condition.

specifies break or trace conditions (or both) without reg-
isters. The I’ICE probe remembers these conditions un-
til you either execute a GO FOREVER, specify a new
break or trace condition, or issue a RESET BREAK.

is a numeric or symbolic address (line number, module
name, label, or a list of addresses). break-spec syntax
appears under the Break specification entry in this ency-
clopedia.

is a bus address, bus data, logic clip information, the
buffer full condition, or probe processor status. system-
spec syntax appears under the System specification en-
try in this encyclopedia.

1-189

GO continued

1-190

arm-spec

is replaced by the following syntax:

ARM cond [DISARM cond] TRIG t-cond

[ARM cond] TRIG t-cond

evt-spec

TIL BOTH (break-spec)
AND (system-spec)

USING

evtreg-name

BRKREG

SYSREG

INSTRUCTION count
AFTER {OCCURRENCE count }]

The ARMREG entry in this encyclopedia contains de-
tails on arm-spec.

is replaced by the following syntax:

state-# x-if-block
XEM < CTR=count
START = state-#

state-# s-if-block
SEM < CTR=count
START = state-#

The EVTREG entry in this encyclopedia contains details
on evt-spec.

combines a logically ORed list of execution addresses
with a logically ORed list of system specifications. The
combination is logically ANDed. break-spec must pre-
cede system-spec.

specifies break or trace conditions or both using
previously-defined break and trace registers. The I’ICE
probe remembers these conditions until you either exe-
cute a GO FOREVER, specify a new break or trace con-
dition, or issue a RESET BREAK.

causes the I’ICE probe to break or trace (or both) based
on conditions specified in the named event register.

causes the I’ICE probe to respond to all BRKREGs cur-
rently defined in memory.

causes the PICE probe to respond to all SYSREGs cur-
rently defined in memory.

Encyclopedia

armreg-name causes the IPICE system to break based on conditions
specified in the named arm register.

brkregs causes the I’ICE probe to break based on conditions
specified in one or more named break registers. The
form is as follows:

brkreg-name [,brkreg-name]*

sysregs causes the ’ICE probe to break based on conditions
specified in one or more named system registers. The
form is as follows:

sysreg-name [,sysreg-name]”

GO USING BOTH (brkregs) combines a logically ORed list of brkregs with a logi-
AND (sysregs) cally ORed list of sysregs. The combination is logically
ANDed. The brkregs must precede the sysregs. For sim-

plicity and accuracy, use only one BRKREG and

SYSREG.

TRACE informs the PPICE system that a trace specification fol-
lows.

trcreg-name causes the I’ICE system to collect traces based on condi-

tions specified in the named trace register. You can spec-
ify the contents of trace registers directly in the GO
command. (The TRCREG command specifies syntax.)

SYSTRACE specifies that when the system-spec is met, any PICE
units properly enabled are triggered and traced accord-
ing to the defined criteria. Do not specify SYSTRACE
on any unit which also has SYSARM, SYSDARM, or
SYSTRIG specified.

Discussion

This section explains when to choose one form of the GO command over another. The choice is
based on the type of condition specified, the type of action the IPICE system is to take, and
whether the condition specification is to be reused.

The types of conditions specified to the I’ICE system are break specifications and system
specifications. The types of actions the PICE system is to take are breaking emulation, halting
trace collection, triggering, arming, and disarming. The Execution with Breakpoints section
describes these features.

Encyclopedia 1-191

GO continued

Use a debug register to save a condition specification for a later debug session. Debug registers
are saved and recalled by name. The Execution with Debug Registers section describes this
feature.

Note that you can edit the most recent GO command by entering EDIT GO.

Using the GO Syntax

Figure 1-13 illustrates the branches of the GO command syntax. If you specify GO without
options, the last go-til-spec or go-using-spec is used.

While a probe is emulating, you cannot issue a command that requires a probe, such as GO or
ISTEP. During emulation, the I’ICE system replaces the asterisk prompt (%) with a question
mark prompt (?) to remind you that the current probe is emulating.

When using SYSTRACE in a multiprobe environment with various probe frequencies, the
slower probes may miss the system trace event for one instruction. Therefore, specify a range
of addresses, such as one of the following:

SYSTRACE AT OUTSIDE address-start LENGTH 50
SYSTRACE AT X0X110XY

Execution without Breakpoints

To start emulation without setting breakpoints, use the FOREVER option, which executes your
program through its normal end. The PICE system automatically collects trace information
unless otherwise directed. Stop emulation before the end of the program by entering CTRL-C.
For IBM PC hosts, use CTRL-Break instead of CTRL-C.

Execution with Breakpoints

To conditionally break emulation, use the GO TIL or the GO USING option. Emulation also
stops when aborted by CTRL-C (or by CTRL-Break, for IBM PC hosts) or when an error
occurs.

GO [FROM address]

FOREVER TIL USING

1361

Figure 1-13 Branches of the GO Command Syntax

1-192

Encyclopedia

With the TIL construct you can specify break conditions directly on the GO command line.
Use the TIL construct for simple break conditions that require few keystrokes and which will
be used only once.

The USING construct requires defined debug registers. Use the USING construct when the
break condition exceeds one line or when the break condition will be used more than once.

NOTE

When using the 8086/8088 probe, you must not specify an execution break on an in-
struction that accesses memory locations O8H to OBH.

Execution with Debug Registers

Consider using debug registers when breakpoints and trace conditions are complex and will be
reused. By putting conditions into debug registers you can identify specifications by name so
that changing conditions is simplified, in addition to saving re-entry time.

The keywords for the five debug register types are BRKREG, SYSREG, ARMREG, EV-
TREG, and TRCREG. Each register type permits only certain kinds of conditions. Refer to
each debug register type’s keyword in this encyclopedia for details.

Examples

1. The following example shows a simple GO command. The current IZICE probe starts
execution from the current contents of CS:IP (e.g., the last breakpoint).

*GO
2. The following example specifies a starting address in the GO command.

*xGO FROM 12:0 FOREVER

3. The following example shows two ways to specify a break at location 12:26 and begin trace
collection from locations 12:8 to 12:18.

x GO TIL 12:26 TRACE 12:8 TO 12:18
or

*xDEFINE TRCREG trace__it=12:8 TO 12:18
*GO TIL 12:26 TRACE trace_ it

Encyclopedia 1-193

GO continued

4. The following example shows two ways to specify a break at locations 2 or 4.

or

5. The following example shows two ways to specify a combined BRKREG and SYSREG
specification. Both versions cause a break where execution takes place in .proc__b, and a
data value (0123H) is written to .adr__b.

or

*GO TIL

Cross-References

ARMREG

Break specification
BRKREG

Debug registers
DEFINE

EVTREG

Name

SYSREG

System specification
TRCREG

1-194 Encyclopedia

Determines the block size
used for memory mapping

Syntax

=1K

GRANULARITY [—16K

Default Value

1K

Discussion

You can map 1024 blocks of memory in either 1K-byte blocks or 16K-byte blocks. When
GRANULARITY = 1K, only the lower megabyte of memory is mappable. When GRANU-
LARITY = 16K, the entire address space is available. Before you can change the GRANU-
LARITY, program memory must be mapped to all USER or all GUARDED.

The PICE system always maps to OHS in 16K-byte blocks, even if GRANULARITY is 1K.

GRANULARITY Is 1IK

The memory map behaves differently for memory mapped to HS, MB, OHS, or GUARDED
and for memory mapped to USER.

Memory Mapped to HS, MB, OHS, or GUARDED

When you map to HS, MB, or GUARDED and the granularity is 1K, the 80286 probe ignores
the upper four address bits (<A23-A20>). Consequently, an address wrap-around occurs,
and each physical memory location has 16 physical addresses. For example, if you map the 1K-
byte block from physical address OK to physical address 1K —1 to HS, you are actually map-
ping the following 16 blocks to the same RAM:

Oto 1IK—1

IMto IM+1K -1
2Mto2M + 1K — 1
3Mto3M +1K -1
4Mto4M +1K -1

Encyclopedia 1-195

GRANULARITY (80286) continued

SMto5SM+1K -1
6M to 6M + 1K —1
TMto M+ 1K -1
8Mto SM + 1K1
OMto M +1K—1
10M to IOM + 1K —1
11IMto IIM + 1K —1
12M to 12M + 1K —1
13Mto 13M + 1K —1
14Mto 14M + 1K -1
15Mto ISM + 1K —1

Memory Mapped to USER
USER memory decodes an address according to USER’s own decode logic.

GRANULARITY Is 16K

‘When the granularity is 16K, there is no wrap-around. The memory map is as specified.

NOTE

If you use the RESTART option with the I2ICE command, the granularity will be reset
to 1K if it previously was set to 16K. The probe hardware retains the 16K mapping
boundaries set up previously, but the map display will be based on 1K granularity.

Example

1. Set the granularity to 16K:
*GRANULARITY = 16K

*GRANULARITY
16K GRANULARITY

1-196 Encyclopedia

HALT

Breaks emulation from the terminal

Syntax
unit-number{,unit-number]*
HALT ALL
Where:
unit-number is the number of the unit you want to stop (0, 1, 2, or 3)
or an expression that evaluates to 0, 1, 2, or 3.

ALL stops all emulating units.

Discussion

The HALT command stops program emulation. Entering HALT aborts execution from the
terminal without altering break or trace specifications. Restarting from HALT begins execu-
tion without disrupting the emulating program. Use the GO command to resume execution.

NOTE
CTRL-C (or CTRL-Break, for IBM PC hosts) has no effect on emulating programs.

Example

7HALT
*Probe O stopped at location 0027:00AEH because of halt

Encyclopedia 1-197

HELP

Provides on-line operating assistance

Syntax

HELP[unit-name]

Where:
HELP

unit-name

debug-topic

En

Discussion

1-198

debug-topic

En
E
n

displays the list of HELP information available.

refers to the various I’ICE chassis, each containing a
probe or a logic analyzer or both. Probes are designated
P86, P186, or P286. The logic analyzer is designated
PLTA. The default unit-name is the current unit.

is one of the help topics shown in the following Example
section. Entering HELP debug-topic displays informa-
tion for that topic.

displays the expanded error message number n. The ex-
istence of extended messages is indicated by a [*] sym-
bol following the error. The n must be a decimal
number.

requests the extended error message for the last error.
Do not specify a unit-name option with this command.
Specifying E causes the PICE system to default to the
unit where the error was generated. An error occurs if
you specify any unit-name.

displays error message number n without the expanded
text. The n must be a decimal number.

When the error message display is suppressed with the ERROR command, use the HELP
command to display the text of selected error messages. You cannot use the HELP command
within any block structure, a REPEAT, DO-END, COUNT, IF, or debug procedure (PROC).

See the Paging entry in this encyclopedia for information on how to control text movement on
the screen during the display of HELP information.

Encyclopedia

Example

1. Display the list of available help information.

*HELP

HELP is available for:

ACTIVE

BCD

CALLSTACK

COUNT

DEFINE

EDIT
GETA?

INCLUDE

LABEL

LONGREAL
MODIFY
PAGING

PORT
REALS

RELEASEIO

SASM

STRING

UNIT
WPORT
LACH

LAFIND
LAPRETRIG
LATIME

LAVAR

Cross-Reference

Paging

Encyclopedia

APPEND
BOOLEAN
CAUSE
CPMODE
DESCRIPTOR
ERROR

GO
INTEGER
LINES
MACRO
MODULE
PARTITION
PORTDATA
REFERENCE
REMOVE
SAVE
SYSREG
UNITHOLD
WRITE
LACLKQ
LAGO
LAREF
LATIMEBASE
LAWR

INVOCATION

ASM
BTHRDY
COENAB
CURX
DISPLAY
EVTREG
HELP
IORDY
LITERALLY
MAPIO
NAMESCOPE
PCHECK
PROC
REGS18hL
RESET
SELECTOROF
TRCBUS
VERSION
LAACQMODE
LACOMPARE
LAICELINE
LASAVE
LATRACE

BACKSLASH
BUSACT
COMMENTS
CURY

DO

EXIT
HOLDIO
ISTEP
LOAD
MEMRDY
OFFSETOF
PHANG
PSEUDO__VAR
REGSE28L
RETURN
SHORTINT
TRCREG
WAIT
LAAUXMEM
LACURSOR
LAMAINMEM
LASTATUS
LATRANSFER

BASE
BYTE
CONSTRUCTS
DEBUG
DWORD
EXPRESSION
IF

KEYS
LONGINT
MENU
OPERATOR
PINS

PUT
REGS8EL
RSTEN
STATUS
TYPES
WORD
LABEGIN
LAEND
LAOCCURQ
LATHRESH
LATRIGUR

1-199

HOLDIO

Suspends I/O requests to ICE-mapped ports

Syntax
HOLDIO

Discussion

The HOLDIO command suspends I/O requests to ports mapped to ICE, thus allowing you to
enter PICE commands. All probe-related commands are invalid when the HOLDIO command
is active. Resume emulation by entering the RELEASEIO command.

NOTE

Use the HOLDIO command in only one circumstance: after the I’ICE system requests
input. If you enter HOLDIO at any other time, the system returns a syntax error.

Example

1. Suspend I/O requests:
7UNITOPORT 2HREQUESTS WORD INPUT (ENTER VALUE) :HOLDIO
?

Cross-Reference

RELEASEIO

1-200 Encyclopedia

Syntax

I121CE

CRT [(pathname)]
NOCRT

Where:

Encyclopedia

12ICE

CRT [(pathname)]

pathname

NOCRT

MACRO [(pathname)]
NOMACRO

||

[VSTBUFFER (number)] [HELP (pathname)] [ERROR (pathname))

Invokes the IPICE
system software

SUBMIT
NOSUBMIT

] [RESTART]

P086 (pathname)
P186 (pathname)
P286 (pathname)

loads the IPICE software from drive O and the default
programs I2ICE.CRT and I2ICE.MAC on the system
disk. I2ICE also selects the files I2ICE.OVE and
I2ICE.OVH if they are on drive O.

specifies a CRT file containing the character definitions
for terminals other than the Series III or IV development
systems or the IBM PC hosts. CRT, with an optional
pathname, causes the I’ICE system to load the specified
file. A fatal error occurs if no CRT file is found. Speci-
fying CRT without a pathname loads the file
I2ICE.CRT. If you do not have a Series III, Series IV, or
IBM PC host, the default is CRT without a pathname.
(For these hosts there is no CRT file and the CRT option
is not needed when you use the I2ICE command.) The
abbreviation for CRT is CR.

describes the location of files on peripheral devices to
the PICE system. How this information is specified de-
pends on the host system you are using. Refer to the
Pathname entry in this encyclopedia for more informa-
tion on pathname.

prevents the PZICE system from loading the I2ICE.CRT
file. Specify NOCRT when you use a Series III or IV or
IBM PC terminal and you happen to have a CRT file in
your directory. The abbreviation for NOCRT is NOCR.

1-201

1-202

I2ICE continued
MACRO [(pathname)]

NOMACRO

SUBMIT

NOSUBMIT

RESTART

specifies a file containing YICE commands to be dis-
played and executed during initialization. The abbrevia-
tion for MACRO is MR.

The MACRO option, with an optional pathname, causes
the PICE system to load the specified file. A fatal error
occurs if no MACRO file is found. Specifying MACRO
without a pathname loads the file I2ICE.MAC.

The default is MACRO without a pathname.

prevents the I!ICE system from loading the I2ICE.MAC
file. The abbreviation for NOMACRO is NOMR.

specifies that the I2ICE program will be used in batch
load mode. Using SUBMIT disables the EDIT com-
mand and passes all line-editing and command echoing
functions to the operating system. You can abbreviate
SUBMIT to SM. If a file is loaded using the operating
system SUBMIT program and the SUBMIT option in
this invocation is not specified, each command is echoed
to the terminal twice.

prohibits using the SUBMIT files to load jobs to the op-
erating system. The default is NOSUBMIT. You can ab-
breviate NOSUBMIT to NOSM.

reloads the host development system portion of the
I!ICE software. It does not affect the probe, and so it
preserves the state of the probe’s hardware.

NOTE

For the 80286 probe, if you use the RESTART option with the I2ICE command, the
granularity will be reset to 1K if it previously was set to 16K. The probe hardware
retains the 16K mapping boundaries set up previously, but the map display will be based

on 1K granularity.

VSTBUFFER (number)

number

specifies the amount of physical memory to be used by
the virtual symbol table. The virtual symbol table can
range from 5K bytes to 61K bytes. The default is 5K
bytes. The larger the resident portion of the virtual sym-
bol table, the less time the PZICE system spends manipu-
lating the virtual symbol table. Increasing the buffer size
uses more memory but improves performance. The ab-
breviation for VSTBUFFER is VSTB.

specifies the number of Kbytes in physical memory re-
served by the virtual symbol table. The minimum is 5,
and the maximum is 61.

Encyclopedia

HELP (pathname) selects the PZICE help text file. If you do not use this
option, the IPICE system looks for a file called
I2ICE.OVH on the same device that I2ICE.86 resides.

ERROR (pathname) selects the IPICE error text file. If you do not use this
option, the IPICE system looks for a file called
I2ICE.OVE on the same device that I2ICE. 86 resides.

P086 (pathname) selects the file containing ’ICE 8086/8088 probe soft-
ware. If you do not use this option, the I’ICE system
looks for a file called I2ICE.O86 on the same device
that I2ICE.86 resides.

P186 (pathname) selects the file containing PICE 80186/80188 probe
software. If you do not use this option, the I!ICE system
looks for a file called I2ICE. 186 on the same device that
I2ICE. 86 resides.

P286 (pathname) selects the file containing IZICE 80286 probe software.
If you do not use this option, the ’PICE system looks for
a file called I2ICE.286 on the same device that
I2ICE. 86 resides.

Discussion

The I2ICE command invokes the PICE software. (For detailed instructions on loading and
executing ’ICE software, see the PICE™ System User’s Guide.) Because the I2ICE command
is for use with the host operating system and is not an I’ICE command, you cannot specify it
once the I!ICE software is running. The PICE software runs in the 8086 environment. When
using an Intellec Series III development system with the ISIS operating system, you must
invoke the RUN program before invoking the I!ICE software.

If the IPICE software is loaded into a system configured for the 8086/8088 probe, the ’ICE
software checks the user pins. If an unusual state exists (such as a pin held low), the system
displays a message advising you to check pin status by entering the PINS command. You must
reset the hardware to reflect the following pin values:
8086/8088 probe in MIN mode:
RESET =1 NMI=0 HOLD =0 HLDACK =0 INTR =1
8086/8088 probe in MAX mode:

RESET =1 NMI=0RQ/GTO=1RQ/GT1=1INTR=0

Encyclopedia 1-203

12ICE continued

The file containing the I2ICE host software is called I2ICE.86 (or, for IBM PC hosts,
I2ICE.EXE); you invoke the software by entering its file name. The other I!ICE files are as
follows:

I2ICE.OVE The PICE error text file.

I2ICE.OVH The ’ICE help text file.

12ICE.086 The PPICE 8086/8088 probe software.
I2ICE.186 The I!ICE 186/188 probe software.
I2ICE.286 The I’ICE 286 probe software.

When you invoke I2ICE. 86 (or I2ICE.EXE), the I!ICE system assumes that these files exist on
the same device as I2ICE.86 (or I2ICE.EXE). You need the probe software for only the probe
or probes attached to the host development system.

If you rename I2ICE.86 (or I2ICE.EXE), then you must invoke the software by entering the
new name. If you do rename I2ICE.86 (or I2ICE.EXE) and want the I’ICE system to use the
default pathnames, rename all the other PICE files. For example, if you rename I2ICE.86 (or
I2ICE.EXE) to MYFILE.86 (or MYFILE.EXE), the PPICE system looks for a HELP file
called MYFILE.OVH.

With the options on the invocation line you can override the default pathnames and specify the
name and location of each PICE file. For example, if the invocation line contains P186
(:F1:PROBE. 186), the I’ICE system assumes that the 80186/80188 probe software is in a file
called PROBE.186 on :F1:.

All the PICE files must be valid. For example, if the invocation line contains HELP (:F2:MY-
HELP), the file MYHELP must really be the IPICE help file.

Instead of entering the options on the command line, you can construct a configuration file
called I2ICE.CFG. If the disk from which you invoke the host software contains a configura-
tion file, the IPICE system uses that file. (If there are conflicts between the configuration file
and the invocation line, the system uses the information on the invocation line.) The configura-
tion file is a text file; it uses the same syntax as the invocation line. The following example is a
typical configuration file for using IZICE software that is on floppy disks (i.e., not on a hard
disk):

Examples

1-204

1. Run the PICE software on the Series III.

Encyclopedia

ST Y Y » BB ey @ o
IZICE continued

2. Run the PPICE software on the Series IV and specify that the I’ICE system load the submit
file.
-121CE.86 SUBMIT

3. Run the PICE software from the current directory on an IBM PC host. (The prompts
shown in the example assume that you have set your PC prompt using the command PRO-
MPT = PG. It is also assumed that you initially loaded your PICE software into the
directory ICEDIR.)
C\ICEDIR>{2ICE

Cross-Reference
EXIT
Pathname

PICE™ System User’s Guide, Installation Instructions

Encyclopedia

1-205

iF

Groups and conditionally
executes commands

Syntax
IF boolean-condition THEN
[l?ICE commands]*
[ELSE [?ICE commands]*]
ENDIIF]
Where:
IF boolean-condition executes the THEN PCE commands when boolean-
THEN RICE commands condition is true. The boolean-condition specifies a con-
ditional test whose result evaluates to a TRUE (LSB = 1)
or a FALSE (LSB =0). All I’ICE commands are legal
except LOAD, EDIT, HELP, and INCLUDE.
ELSE 2ICE commands executes the ELSE clause when the IF boolean-
condition is false.
Discussion

An IF block is executed immediately after you enter its END statement.

NOTE

Debug objects are local only in memory type definitions and DO-END blocks. Literals,
debug procedures, and all break and trace registers are always global.

1-206 Encyclopedia

Example

1. Create a debug procedure containing an IF block. The debug procedure returns TRUE if
the number passed as a parameter (indicated by %0) is evenly divisible by three.

Cross-Reference

Boolean condition

Encyclopedia 1-207

INCLUDE

Retrieves command definitions
from a system file

Syntax
INCLUDE pathname [NOLIST]
Where:
INCLUDE pathname loads and displays the entire command file into the de-
velopment system in a form usable by the I’ICE system.
pathname is the fully-qualified reference to the file you want to
include. For information on pathname, see the
Pathname entry in the PICE™ System Reference
Manual.
NOLIST suppresses the listing of the included file to the terminal.
Discussion

The INCLUDE command retrieves a command file and executes it.

You can create command files in two ways: Create a file using the screen editor (refer to the
Editors entry) or save definitions created during a debug session to a file with the PUT or
APPEND commands.

INCLUDE has the following restrictions:

® You can nest INCLUDE commands (limited by available memory), but they must be the
last item on a command line.

® An INCLUDE command cannot appear in block structures (i.e., REPEAT, COUNT, IF,
DO-END, or a debug procedure).
Examples

1. The following example shows how to retrieve a sequence of IZICE commands stored in a
file named setup.tes. This is useful when creating debug objects in one session that are
required in another session.

1-208 Encyclopedia

Encyclopedia

This example shows one way to reset a circuit connected to the user prototype hardware.
By including the previously developed debug procedures to perform this task, debug ob-
jects are restored. (If you have an IBM PC host, disregard the symbol “:f3:”. If the file
that you wish to INCLUDE is in your current disk directory, you would use the command:
INCLUDE setup.tes. If the file is on another drive, replace :f3: with d:, where d is the
letter of the file’s disk drive.)

Peripheral reset
X

/*Invoke the peripheral reset procedure */

When a long file is created, you may not want to see it listed to the screen when it is
included. The following example shows how the NOLIST option suppresses display. (If
you have an IBM PC host, disregard the symbol ““:f3:”.)

/*Invoke the peripheral reset procedure */

b 3

1-209

INCLUDE continued

3. The following example shows how to confirm what debug objects are included when the
NOLIST option is specified. The DIR command displays the debug objects in the symbol
table after including the procedure from example 1. (If you have an IBM PC host, disre-
gard the symbol ““:f3:”.)

. « « literally
COMMAND . . . literally
IO_DATA . . . literally
RESET_IO0 . - . proc
Xreset _io

Peripheral reset

b 4

Cross-References

1-210

APPEND
Editors
Pathname
PUT

‘0a000h

Encyclopedia

Function that returns the index
of a substring within a given string

Syntax
INSTR (string-reference1, string-reference?2 [, start})
Where:

string-reference can be characters enclosed in apostrophes, a string ex-
pression using CONCAT, NUMTOSTR, or SUBSTR
functions, or a reference to a CHAR type debug
variable.

start defines where to begin the search in string-referencel.
The start is an index number or an expression that evalu-
ates to an index number from 1 through 254 in the cur-
rent base.

Discussion

The INSTR function searches for string-reference2 within string-referencel and returns the
index (in decimal) of the first character of string-reference?2.

Examples

1. Return the decimal index of the first occurrence of the substring ‘def”:

xINSTR ('abcdet’, ‘def’)
y

2. Define a string variable “longmsg”. Find the index of the first instance of the substring
"Add’. To locate the substring "Add’ at the beginning of the second sentence, skip the
first instance of this substring by including an index (which is 10).

xDEFINE CHAR longmsg = &

*x "Addresses < 0 are invalid. Addresses > 1024K are also invalid.’
xINSTR (longmsg, ‘Add’)

1

xINSTR (longmsg, 'Add’, 10)
29

Encyclopedia 1-211

INSTR continued

Notice the continuation character (&). It enables you to continue a command to the next line.

Cross-Reference

Strings

1-212 Encyclopedia

Displays or changes memory
as 16-bit signed values

Syntax
-, = expression [, expression]*
INTEGER partition — mtype partition
Where:
INTEGER partition displays the value of the memory location specified in
partition as a decimal integer.
partition is a single address, an expression that evaluates to a sin-
gle address, or a range of addresses specified as address
TO address or address LENGTH number-of-items.
expression converts to a 16-bit signed value for INTEGER.
mtype is any of the memory types except ASM.
Discussion

The INTEGER command interprets the contents of memory as 16-bit signed values, overriding
any type associated with the memory contents. Thus, INTEGER .varl displays the integer that
begins at the address of var1, regardless of the type of varl. If the most significant nibble of the
unsigned data comprising the integer is 8 through F, the value is interpreted as a negative
number and displayed as the 2’s complement form of the unsigned data.

Note that the PZICE system always displays values for signed-integer memory types as decimal
numbers, regardless of the selected number base.

Examples

The number base is hexadecimal in the following examples.
1. Display a single value.
0:000EH +3473

2. Display several adjacent values:

XINTEGER $ LENGTH 0D

0020:000LH +3473 0 0 0 -12187 -30293 +1.77L? +
297 +4779

0020:001CH 0 0 0 -14113 +18508 +20841 +24135

Encyclopedia 1-213

INTEGER continued

3. Set a single value of type INTEGER:

xINTEGER 40;

4. Set several adjacent values:

*INTEGER 40:04 = 1234, 0ABCD, 3

Display the values set (you can set memory locations to signed integer values using a
hexadecimal base,but the IPICE system displays the values in decimal):

xINTEGER 40:04 LENGTH 3
0040:0004H +1234 -21555 +3

5. Set a range of locations to the same value (block set):

XINTEGER 40:04 LENGTH 10=0

6. Set a repeating sequence of values:

xINTEGER 40:04 LENGTH 10 = 1234, 5678, 9ABC, 0DEFO0

7. Copy a value from one memory location to another:

xINTEGER 40:04 = INTEGER $

8. Copy several values (block move):

xINTEGER 40:04 = INTEGER $ LENGTH 10
9. Copy values with type conversion:
*INTEGER 40:04 = BYTE .var2
An error message is displayed if the type on the right side of the equal sign cannot be

converted to the type on the left. (Refer to the Expression entry in this encyclopedia for the
rules concerning type conversions.)

Cross-Reference
Expression

Mtype
Partition

1-214 Encyclopedia

tod

A pseudo-variable that allows
a system time-out when an 1/O access
takes more than one second.

= boolean-expression

Syntax
=TRUE
IORDY| =FALSE
Where:
IORDY
TRUE
FALSE
boolean-expression
Default
TRUE
Discussion

(I/O ready) with no options displays the current setting
(TRUE or FALSE).

enables processor I/0 time-outs.
disables I/O time-outs.

is any expression in which the low-order bit evaluates to
0 (false) or 1 (true).

When IORDY = TRUE, a time-out occurs if an I/O access during emulation takes longer than
one second. A time-out breaks emulation.

Examples

1. Display the current setting of IORDY:

xIORDY
TRUE

2. Disable the IORDY time-out:

*IORDY = FALSE

Encyclopedia

1-215

IORDY continued

3. Use IORDY as a variable:

1-216 Encyclopedia

Single-steps through machine
language instructions
in user programs

Syntax
ISTEP [increment] [FROM address]
Where:
ISTEP executes by machine language instruction.
increment is an unsigned integer expression in the current base
specifying the number of steps to take. The default in-
crement is 1. The maximum increment value is 65,535T.
FROM address specifies a starting address where ISTEPs are to begin.
The default start address is the current execution point
($). (The Address entry in this encyclopedia contains
more information on addresses.)
Discussion

The ISTEP command single-steps through machine language instructions. An ISTEP com-
mand executes one instruction and halts. Break messages are not displayed. Use the CAUSE
command to display break messages. Use the ASM command to display the current machine
language instruction.

NOTE

When you use the 8086/8088 probe, the instruction being single-stepped must not access
locations 4 through OBH. Stepping through a POPF or IRET instruction may clear the
trap flag (TF) if the instruction is programmed that way. To enable single-stepping
without clearing the TF, define the event register and procedure, as shown in the follow-
ing example. Because ISTEP uses the hardware break facility, it may slide through an
instruction.

*DEFINE EVTREG hstep =DO
- xXEM S0 ALWAYS BREAK END
xDEFINE PROC S = GO USING hstep
Any NMIs are ignored when stepping using the 8086/8088 probe.

When any of the probes is used, stepping through an instruction that alters a segment
register executes two instructions.

Encyclopedia 1-217

ISTEP continued

Example

1. Step and display the probe processor’s registers at each line in the program:

*DEFINE PROC rat =DO
- xREPEAT

- - XISTEP

. .xASM 8

- -XREGS _

- - xENDREPEAT

. XEND

Cross-References

Address
Expression
LSTEP
PSTEP

1-218 Encyclopedia

Discussion

Terms used as commands, command options
or as part of the I?ICE system software

This entry explains I’ICE system keywords and symbols that are reserved by the IZICE system

software.

Keywords

Following is a list of keywords for the I’ICE system software. If any of these keywords is used
as a debug symbol, the I2ICE software will respond with a syntax error message. However, if a
keyword has been used as a program variable or label, there is a way to use it in a debug
session: Precede the keyword with a double quote ().

For example, in the tutorial PL/M program, there is a variable named char. On the list of
keywords, you will find char. To use this variable in a debug session, enter " char.

NOTE: If you have iLTA software, LA keywords will also result in an error message
when used as debug symbols. See the iLTA Logic Timing Analyzer Reference Manual
(order number 163257) for the iLTA keywords that begin with the “LA” prefix.

ACTIVE
ADDRESS
ADR
AFL
AFTER
AH

AL

ALL
ALWAYS
AND
APPEND
ARM
ARMREG
ARRAY
ASM

AT

AX

BASE
BCD

BH

BL
BOOLEAN

1 80186/80188 only;

Encyclopedia

BOTH

BP

BREAK
BRKREG
BTHRDY
BUFBREAK
BUSACT
BUT

BX

BYTE
CALL
CALLSTACK
CAUSE
CFL

CLEAR
CLEAREOL
CLEAREOS
CLIPS

2 80286 only

CLIPSIN
CLIPSOUT
COENAB
CONCAT
COREQ
COUNT
CPMODE
CS
CSAR?
CSBAS?
CSCTRL!
CSLIM?
CSSEL?
CTR
CURHOME
CURX
CURY
CcX
CYCLES
DATA
DBG
DEBUG

DEFINE
DFL

DH

DI

DIR
DISABLE
DISARM
DL
DMAQO!
DMAL1!
DO

DS
DSAR?
DSBAS?
DSLIM?
DSSEL?
DWORD
DX
EDIT
ELSE
ELSEIF
ENABLE

1-219

Keywords continued

1-220

END
ENDCNT
ENDCOUNT
ENDREPEAT
ENUMERATION
ERROR
ES

ESAR?
ESBAS?
ESLIM?
ESSEL?
EVAL
EVTREG
EXIT
EXTINT
FALSE
FCS?
FCW

FDA
FDOFF:
FDSEL?
FETCH
FIA

FILE

FIO

FIP
FLAGS
FLD2E
FLDL2T
FLDLG2
FLDLN2
FLDPI
FOREVER
FPATAN
FPTAN
FSQRT
FSW

FTW
FULLBUF
FYL2X
FYL2XP1
GDT?
GDTBAS?
GDTLIM?
GET87
GLOBAL
GO

1 80186/80188 only;

GOTO
GRANULARITY
GUARDED
HALT

HELP

HOLDIO
HPORT

(reserved for Intel)

HS
IBYTE

(reserved for Intel)

ICE

IDT?
IDTBAS?
IDTLIM?

IF

IFL
INCLUDE
INCREMENT
INPUT
INSTR
INSTRUCTION
INTEGER
INTRIN

(reserved for Intel)

INTRPT!
IOPL?
IORDY
1P

IS

ISTEP
LABEL
LAST
LDT?
LDTAR?
LDTBAS?
LDTLIM?
LDTSEL?
LENGTH
LEVELS
LINE
LINK
LIST
LITC!
LITERALLY
LOAD
LONGINT

2 80286 only

LONGREAL
LSTEP

MAP
MAPIO

MB
MEMRDY
MOD
MODULE
MS

MSW?
NAMESCOPE
NEWEST
NEXT

NFL?

NO
NOCODE
NOCR
NOLINES
NOLIST
NOSYMBOLS
NOT

NP

NS
NUMTOSTR
OCCURRENCE
OFFSETOF
OFL

OHS
OLDEST

OR

ORIF
OUTPUT
OUTSIDE
PCHECK
PFL

PHANG
PINS
POINTER
PORT

PUT
QSTAT
READ
REAL
RECORD
REGS
RELEASEIO
RELREG!
REMOVE
REPEAT
RESET
RETURN
RSTEN
SO

SEL286
SELECTOR
SELECTOROF
SEM

SET

SFL
SHORTINT

SI

PORT__ADDRESS__BASE ST3

(reserved for Intel)

PORTDATA
PRINT

PROC
PROCEDURE
PSTEP
PUBLICS

ST4

STS

ST6

ST7
STACK
START
STATUS

Encyclopedia

Keywords continued

STRLEN TAG TRBAS? USING
STRTONUM TEMPREAL TRCBUS VERSION
SUBSTR TFL TRCREG WAIT
SYMBOL THEN TRIG WAITSTATE
SYMBOLIC TIL TRLIM? WHILE
SYMBOLS TIMEBASE TRSEL? WITH
SYSARM TIRO! TRUE WORD
SYSBEAKIN TIMER1! TSS WPORT
SYSDARM TIMER2! UNIT WRITE
SYSREG TO UNITHOLD XCTR
SYSTEM TR? UNTIL XEM
SYSTRACE TRACE UsS XLINK
SYSTRACEIN TRAR? USER XOR
SYSTRIG ZFL
! 80186/80188 only
2 80286 only

Delimiters

The following delimiters cannot be included as part of debug symbols.

& % () * + , . - & #
: ; < > < = > = [] / \

Characters that can be used are the question mark (?), an underscore(__), and an at symbol
(@). The dollar sign ($) is permitted, but ignored.

A double quote (") is used if a program variable is also an I’ICE keyword. Precede the variable
with a ” when using it in a debug session.

Encyclopedia 1-221

LIST

Opens or closes a list file

Syntax
LIST pathname
NOLIST
Where:
LIST displays the pathname of the current list file.
LIST pathname opens a list file named pathname.
pathname is the fully-qualified reference to the file you want for a
list file (e.g., :fl:listing). The file is created if it does
not exist; if it already exists, the question “Overwrite
existing file? (y or [n])” is displayed.
NOLIST closes the open list file.
Discussion

A list file is an PICE utility file. Typically, a list file is used as a debug session log. All
interactions between the IPICE system and the terminal (except edits) are recorded in an open
LIST file.

You can open only one list file at a time. Close list files by issuing the NOLIST command or by
terminating the debug session.

Example

1. Open a list file named AUG1.84 (if you have an IBM PC host, disregard the symbol
“:F2:7):

Cross-Reference

Pathname

1-222 Encyclopedia

Defines, modifies, displays, or removes a
name that the I2ICE system interprets as a
previously-defined character string

Syntax
DEFINE LITERALLY literally-name = ' character-string’
Where:
DEFINE LITERALLY literally-name replaces literally-name with the string in
= 'character-string’ "character-string’ whenever literally-name is
invoked.
Discussion

LITERALLY definitions are special debug objects with character strings as values. They are
similar to PL/M LITERALLY definitions.

When you enter a command that has a LITERALLY name in it, as soon as you press the space
bar after the name, the name is automatically expanded on the screen. If you wish to disable
this automatic expansion feature, use the following command:

MENU =0

(This command also deletes the syntax menu at the bottom of the screen.) To re-enable the
automatic expansion feature (and to reactivate the syntax menu display), enter MENU = 1. You
can also use CTRL-V to toggle off and on the automatic expansion feature (and the menu).

When the PPICE scanner sees a LITERALLY name in a debug object such as a PROC, the
scanner replaces that name with the character string value that defines it. However, if the
command containing the LITERALLY name is echoed to the terminal, the terminal displays
the LITERALLY name rather than the defined character string.

With LITERALLY definitions, you can abbreviate keywords or complete commands, which
can have up to 254 characters. With LITERALLY definitions you can also create mnemonics,
such as substituting “temp__control__reg” for the command PORT(40H).

LITERALLY definitions are always global. They must not duplicate a keyword.

Encyclopedia 1-223

LITERALLY continued

Examples

. Create LITERALLY definitions:

TERALLY Ién
DEFINELITERALLY len="length’

. Display the directory of LITERALLY definitions:

X
DEF...........1literally ‘define’
LITeeoeenennnn literally 'literally’
LEN«cooeeennnn literally 'length’
IOREG:« s s euns literally 'port (4DH)"’

. Edit LITERALLY definitions:

*EDIT len

. Delete the LITERALLY definition for LEN:

*REMOVE len

. Delete all LITERALLY definitions:

Cross-References
Keywords
Name
Strings

1-224

Encyclopedia

T 5
L086/8
80188/801

shel %j‘ﬁq@

Copies an object from a file
into mapped memory

Syntax
LOAD pathname [NOCODE] [NOLINES] [NOSYMBOLS] [APPEND]
Where:

LOAD pathname copies the object file (including code, line numbers, and
symbols, if present) from the designated file into
mapped memory.

pathname is the fully-qualified reference to the file you want to
load.

NOCODE ignores content records (the code and data) when load-
ing; just the symbol table information is loaded.

NOLINES ignores debug line number information when loading.

NOSYMBOLS ignores debug symbol table information when loading.

APPEND allows multiple symbolic loads without purging the sym-
bol table.

Discussion

Before loading, you must link and locate your program. The IPICE system accepts only abso-
lute object files, not run-time locatable (RTL) object files or load-time locatable (LTL) object
files.

If the load file contains a start address, that address is loaded into the CS:IP registers. If the
address is not present (as will always be the case when a file has been stored using the SAVE
command), a warning message is displayed. Other segment registers may be initialized, de-
pending on the programming language used to create the load file.

You can load all of a file or part of a file by selecting LOAD command options. You can
combine the options in any order. If you do not specify any options, all symbol table and line
number information present in the file is loaded into mapped program memory. The DEBUG
control on the assembler or compiler causes program symbol and debug information to be
included in the object file.

Encyclopedia 1-225

LOAD (8086/8088 and 80186/80188) continued

When loading a translated file into memory, the IPICE system first determines which probe is
active.

NOTE

You must map memory (using the MAP command) before loading your program.

You cannot use the LOAD command in block structures (i.e., REPEAT, COUNT, IF, DO-
END, or debug procedures).

Examples

1. Load an object file. (If you have an IBM PC host, disregard the symbol *“:f1:”’; assume the
file is in your current hard disk directory. To load the file, you would use the command:
LOAD prog01.186.)

*LOAD :f1:prog01.186
X

The PICE system returns the X prompt when loading is complete.

2. Load an object file with code only, suppressing symbols and line numbers. (If you have an
IBM PC host, disregard the symbol “:f3:.)

3. Load program symbols and line numbers only (no code). (If you have an IBM PC host,
disregard the symbol “:f1:”.)

Cross-References

MAP
MAPIO
Pathname
SAVE

1-226 Encyclopedia

Syntax

/-j'.éﬁ% i) m
@ e

cific

Copies an object file from disk
into mapped memory

LOAD pathname [NOCODE] [NOLINES] [NOSYMBOLS] [SEL286] [APPEND]

Where:

LOAD

pathname

NOCODE
NOLINES
NOSYMBOLS

SEL286

APPEND

Default Value

loads an object file into mapped memory. The program
file must be absolute code, not load-time-locatable code.

is the fully-qualified reference to the file you want to
load.

prevents loading of the code and data.
prevents loading line numbers.
prevents loading the symbols.

loads a file that is in 8086 object module format (OMF)
when you want the program’s addresses interpreted as
80286 selector:offset pairs.

The selector of an 80286 address is an index into either
the LDT or the GDT. If the file is an 8086 OMF and the
SEL?286 option is not present, the PICE system obtains
the base address of the segment by shifting the selector
left by four bits.

adds the symbol table of the current LOAD to the sym-
bol table of the previous LOAD.

By default the I!ICE system loads code, data, line numbers, and the symbol table. By default
the symbol table of the current load overwrites the symbol table of the previous load.

The PICE host software has two loaders: the 8086 loader and the 80286 loader. When you load
a file that is in 8086 OMF, the I’ICE host software uses the 8086 loader. When you load a file
that is in 80286 OMF, the I!ICE host software uses the 80286 loader. You need not specify what

OMF the file is in.

Encyclopedia

1-227

LOAD (80286) continued

Discussion

The LOAD command loads a file from disk into mapped memory. Memory must be mapped to
the physical locations expected by the file. The !ICE system expects absolute code, not load-
time locatable code.

Refer to the Using the Initialization Segment section (in the Probes chapter of the PICE™
System User’s Guide) for additional information on loading, including loading the initialization
segment with the 8086 loader.

Constructing a Program File

Construct a program file by compiling (or assembling) the source file, binding the object file,
and building the bound file. To compile the source file, use one of the following compilers:

PL/M-86 Version 2.1 or greater
PL/M-286 Version 2.5 or greater
PASCAL-86 Version 2.0 or greater
PASCAL-286 Version 3.1 or greater
ASM-86 Version 1.1 or greater
ASM-286 Version 1.1 or greater
FORTRAN-86 Version 1.1 or greater
FORTRAN-286 Version 3.0 or greater
C-286 Version 3.0 or greater

Include the DEBUG and TYPE options with the compiler or assembler. To bind the resulting
object file, use BIND286 (version 3.0 or greater) with the NOLOAD option. To build the
resulting bound file, use BUILD286 (version 3.0 or greater) with the BOOTLOAD option.

Mapping Program Memory

You must have sufficient mapped memory to contain the object file. The physical locations
expected by the object file must be mapped to existing memory.

The SEL286 Pseudo-Variable and the SEL286 LOAD Option

1-228

The SEL286 pseudo-variable determines whether the IPICE system performs 8086 address
translation (SEL286 is FALSE) or 80286 address translation (SEL286 is TRUE). When you
load an 8086 OMF, the SEL286 pseudo-variable becomes FALSE. When you load an 80286
OME, the SEL286 pseudo-variable becomes TRUE.

The SEL286 option of the LOAD command is distinct from the SEL286 pseudo-variable. Use
the SEL286 option to load a file in 8086 OMF and have its addresses interpreted as 80286
addresses during the load. The selector:offset pairs in the 8086 OMF must point to valid
descriptors in a local or global descriptor table (which must be already set up).

Encyclopedia

LOAD (80286) continued

When you load an 8086 OMF and specify the SEL286 option, the IPICE system sets the
SEL286 pseudo-variable to TRUE. Setting the SEL286 variable to TRUE after loading an
8086 OMF without including the SEL.286 option is insufficient because 80286 address transla-
tion must occur during the load.

The Protection Enabled Flag

The LOAD command affects the protection enabled flag (PEF) in the MSW. If the program file
is an 80286 OMF, PEF becomes 1, and the loader is in protected mode. If the program file is
an 8086 OMF, PEF becomes 0, and the loader is in real mode.

Initial Values for Registers

When you load a program file that is an 80286 OMF, the 80286 registers attain the values
specified by the 80286 builder.

Example

1. Load only the code from an object file on disk drive 1 into mapped memory. (If you have
an IBM PC host, disregard the symbol “:F1:”; assume the file is in your current disk
directory. To load the file, you would use the command: LOAD cmaker.286 NOLINES
NOSYMBOLS.)

*LOAD : cer.286 NOLINES NOSYMBOLS

Cross-References

Pathname
PCHECK
SEL286
SAVE

Encyclopedia 1-229

LONGINT

Displays or changes memory
as 32-bit signed values

Syntax
- = expression [, expression]*
LONGINT partition — mtype partition
Where:
LONGINT partition displays the value of the location specified by partition
as a long integer in decimal.
partition is a single address, an expression that evaluates to a sin-
gle address, or a range of addresses specified as address
TO address or address LENGTH number-of-items.
expression converts to a 32-bit signed value for LONGINT.
mtype is any of the memory types except ASM.
Discussion

The LONGINT (long integer) command interprets the contents of memory as 32-bit signed
values, overriding any type associated with the memory contents. Thus LONGINT .varl dis-
plays the 32-bit integer that begins at the address of varl, regardless of the type of varl.

If the most significant nibble of any LONGINT is 8 through F, it is interpreted as a negative

number and the value displayed is the

2’s complement form of the unsigned data.

You cannot use LONGINT in a block structure (i.e., REPEAT, COUNT, IF, DO-END, or

debug procedures).

Note that the PICE system always displays values for signed-integer memory types as decimal
numbers, regardless of the selected number base.

Examples

Hexadecimal is assumed in the following examples.

1. Display a single value:

L +1L855312

1-230

Encyclopedia

LONGINT continued

2. Display several adjacent values:

XxL
0020:0006H +1L855312 +1lbkbb?7999 +12321330 +02340002-10333700

3. Set a single value of type LONGINT:

4. Set several adjacent values:

Display the values set (you can set memory locations to signed integer values using a
hexadecimal base, but the ’ICE system displays the values in decimal):

0040:0004H +305419896 +43981 +3

5. Set a range of locations to the same value (block set):

6. Set a repeating sequence of values:

7. Copy a value from one memory location to another:

8. Copy several values (block move):

Cross-References
Expression

Mtype
Partition

Encyclopedia 1-231

LONGREAL

Displays or changes memory
as 64-bit floating-point values

Syntax
. = expression [, expression]*
LONGREAL partition — mtype partition
Where:
LONGREAL partition displays the memory location specified by partition as a
long real number in scientific format.
partition is a single address, an expression that evaluates to a sin-
gle address, or a range of addresses specified as address
TO address or address LENGTH number-of-items.
expression converts to a 64-bit floating-point value for LONG-
REAL.
mtype is any of the memory types except ASM.
Discussion

The LONGREAL command interprets the contents of memory as 64-bit floating-point decimal
values, overriding any type associated with the memory contents. Thus, LONGREAL .varl
displays the 64-bit floating-point value that begins at the address of varl, regardless of the type
of varl.

Examples

The following examples show the ’ZICE system responses in decimal because all real numbers
are displayed in decimal, regardless of the base of the input information.

1. Display a single value:

xLONGREAL $
0020:000kH +3.3k5797kL7020075E -199

1-232 Encyclopedia

LONGREAL continued

2. Display several adjacent values:

*LONGREAL $ LENGTH 3
0020:000kH +3.3k5797LL7020075E -199 +1.85929134L53L33E -2k
0020:00LkkH -7.27184994732136E +214

3. Set a single value of type LONGREAL:
*LONGREAL 40H:04H = 0.00012
4. Set several adjacent values:

*LONGREAL 40H:04H = 1212121212121212, 0.00012, -12000

Display the values set:

nnqn'nnnuH +1.21212121212121E +151.20000000000000E -4
0040:0014H -1.20000000000000E +4

5. Set a range of locations to the same value:
*LONGREAL 40H:04H LENGTH 10=0

6. Set a repeating sequence of values:

*LONGREAL 40H:04H LENGTH 10=5.678,

7. Copy a value from one memory location to another:

.LONGREAL $

8. Copy several values (block move):
*LONGREAL 40H:04H = LONGREAL $ LENGTH 10
Cross-References
Expression

Mtype
Partition

Encyclopedia

1-233

LSTEP

Single-steps through user programs by
high-level language instructions

Syntax
LSTEP [increment] [FROM address]
Where:
LSTEP executes by numbered high-level language statements.
increment is an unsigned integer expression in the current base
specifying the number of steps to take. The default in-
crement is 1. The maximum increment value is 65,535T.
FROM address specifies a starting address where LSTEP is to begin.
The default start address is the current execution point
($). (The Address entry in this encyclopedia contains
more information on addresses.)
Discussion

The LSTEP command single-steps through user programs by numbered high-level language
statements. The LSTEP command executes the next consecutive statement and halts. Break
messages are not displayed. Use the CAUSE command to display break messages.

After LSTEP executes a line, it displays a message of the following form:

[:module-name#line-number)

NOTE

When you use the 8086/8088 probe, the instruction being single-stepped must not access
locations 4 through OBH. Stepping through a POPF or IRET instruction may clear the
trap flag (TF) if the instruction is programmed that way. To enable single-stepping
without clearing the TF, define the event register and procedure, as shown in the follow-
ing example. Because LSTEP uses the hardware break facility, it may slide through an
instruction.

Any NMIs are ignored during single-stepping using the 8086/8088 probe.

When you use any of the probes, stepping through an instruction that alters a segment
register executes two instructions.

1-234 Encyclopedia

Cross-References

Address
Expression
ISTEP
PSTEP

Encyclopedia 1-235

MAP

Displays or sets physical locations
for program memory

Syntax

MAP [partition]

Where:
MAP

partition

GUARDED

USER

HS

MB [(name)]

1-236

GUARDED
USER

READ
HS [WRITE

MB [(name)]

OHS

with no options, displays the current memory map.

is a single address, an expression that evaluates to a sin-
gle address, or a range of addresses. The range is speci-
fied as either address TO address or address LENGTH
number-of-bytes. The partition is in multiples of 1K
bytes (e.g., 2K =2048 bytes).

reports attempts to access memory in the location speci-
fied by partition. Initially, all program memory is
GUARDED.

directs memory references to your prototype hardware.
If you are using an 8087 or 80287 external coprocessor,
you must map all of program memory to USER. If you
are using an 8089 external coprocessor, you must map
all memory that the 8089 accesses to USER.

directs memory references to high-speed memory on the
MAP board in 1K-byte blocks.

directs memory references to the MULTIBUS expansion
memory in the host development system. [The IBM PC
hosts cannot map to MB.] The name option allows more
than one partition of addresses to be mapped to the same
physical memory (shared memory). The name can be
one to six characters long.

Encyclopedia

MAP continued

OHS directs memory references to the optional high-speed
memory board (in the instrumentation chassis) in 16K-
byte blocks.

READ specifies that partition is read only. Emulation breaks if

a write occurs.

WRITE suppresses the normal read-after-write verification on
program loads and memory writes from the terminal.

Discussion

The IPICE system uses a memory map to direct processor address space to physical memory
locations and to control access to mapped program memory during emulation. Because all
memory is initially guarded, you must map memory before loading programs. The MAP
command displays or changes the map. The partition option specifies the size of the map,
while the other options specify the locations and whether they are READ or WRITE.

Specifying the Number of Blocks to be Mapped

The memory map size is described to the IPICE system in blocks using the partition option.
The high-speed memory board is mapped in 1K-byte blocks, and the optional high-speed
memory board is mapped in 16K-byte blocks. Exceeding the size of available memory causes
an error, and nothing is mapped.

Addresses specified in partition must begin on a block boundary. When the starting address
does not begin on a block boundary or the last location in the range does not fill a whole block,
the PICE system automatically expands the map to the next boundary and reports the expan-
sion.

The partition has two forms, a TO form and a LENGTH form. The TO form maps memory
from a starting address TO an ending address. The LENGTH form maps memory starting
from an address for the specified number of bytes. If you omit partition, the entire address
space is mapped to the location specified.

Mapping Blocks to Guarded Memory

Initially, all blocks in the map are guarded. If the program accesses guarded memory during
emulation, a break occurs after completion of the current instruction. Note that the access does
occur. An error occurs if guarded memory is accessed from the terminal. You can reset all of
the blocks to guarded with the MAP or RESET MAP command.

Encyclopedia 1-237

MAP continued

Mapping to the User System

When mapping occurs, no check is made to ensure that the amount of memory installed in the
prototype matches the map. However, the system normally performs a read-after-write verifi-
cation during program load. When your system memory is ROM or PROM, use the READ
option to avoid an error message on program load.

NOTE

To perform real math operations, you must map memory to your system when using a
coprocessor on the system bus.

Your system receives both the read or write signals from memory and the data for writes
generated by the probe processor, regardless of the map. The map determines the source
of data for reads. When mapped to USER, data for reads is accepted through the chip
interface connector. Otherwise, user data is ignored.

Mapping to High-speed Probe Memory

Each probe contains 32K bytes of mappable high-speed memory. You can map probe memory
to any location in 1K increments. Probe memory must not overlap any other memory space.

Mapping to MULTIBUS® Memory in the Development System

1-238

[NOTE: Mapping to MULTIBUS memory is not available for IBM PC hosts.]

The MULTIBUS (MB) expansion memory must reside on the same physical bus as the I’ICE
interface board. Wait-states are automatically inserted when MULTIBUS memory occurs since
all MULTIBUS activity must arbitrate for control of the bus.

The name option assigns a temporary name to the portion of user memory mapped to MULTI-
BUS memory. To enable two or more blocks to share the same area of MULTIBUS memory,
map all blocks to MB with the same name for all. The partition sizes of shared blocks must
match.

Unlike other types of memory, MULTIBUS expansion memory has one mapping restriction.
Usually, any block of mapped memory can be remapped by entering the MAP command again
with a new partition. When memory has been mapped to MB, there are only two ways to
change it: reset the entire map or remap the entire MB area. Remapping just a portion of MB
memory produces an error. An example is provided in the following Example section.

Encyclopedia

MAP

Mapping to Optional High-speed Memory

The instrumentation chassis has extra slots for up to two optional 128K-byte high-speed (zero
wait state) memory boards. If the optional memory is installed in the chassis, you can map
program memory to it in 16K-byte blocks on 16K-byte boundaries.

When changing the map, a new partition can partially overlap a partition previously mapped to
optional high-speed memory. However, the boundary (start or end) of the new partition that
falls within the partition previously mapped to optional high-speed memory must be on a 16K-
byte boundary.

Read and Write Controls on the MAP Command

The READ control on the MAP command designates the mapped partition as read-only (write-
protected during emulation). Without this control, program memory can be both read and
written. Emulation breaks if a read-only address is written (the write is executed anyway). The
break occurs after completing the instruction that produced the write.

The WRITE control suppresses any reads, such as the read-after-write verification. The
READ option is useful for memory blocks that are ROM or memory-mapped I/0. The WRITE
option is useful if memory is write-only memory.

Normally, the system verifies program memory at two times:

® During program loads

® When you change memory from the terminal

You can use READ and WRITE controls with any of the physical memories available to the
map.

Lock Prefix on Instructions

Instructions with a bus lock prefix are supported during emulation when the program memory
is mapped to the MULTIBUS memory. When program memory is mapped to USER, the
LOCK pin on the user plug is active during locked instructions.

Restrictions

Note that if your prototype system is connected to the IZICE system, I/O data always goes out to
your prototype system, whether the I/O ports are mapped to USER or PICE. Mapping to the
I’ICE system only prevents the IPICE system from receiving user system input. Thus, you
should disconnect your system if your prototype system must not respond to IPICE system
output.

Encyclopedia 1-239

MAP continued

Examples

1-240

. Display the current memory map:

xMAP
MAP OK LENGTH 32K HS
MAP 32K LENGTH 992K GUARDED

Map to USER prototype memory:

xMAP USER /* Maps all blocks */

Three ways to restore memory to the guarded state:

/* Maps four 1K-byte blocks */

/* Guards 2 blocks */
MAP GUARDED / Sets all blocks to GUARDED */

*RESET MAP

/* Another way to set all blocks to GUARDED */

. Map all blocks to probe memory:

MAP 0 LENGTH 32K HS / Map lowest 32K addresses */

Map to MULTIBUS memory in the development system [not available with IBM PC
hosts]:

Map two program address spaces to the same area of MULTIBUS memory, using the name
COMMON [not available with IBM PC hosts]:

Encyclopedia

‘:“ Mm"ly‘-ﬂ;sﬁ@@

9. Designate a partition of memory as write-only:

*xMAP 64K LENGTH 8K USER WRITE

10. Memory, once mapped to MULTIBUS memory, cannot be partially remapped. The follow-
ing example shows this error condition [not relevant for IBM PC hosts]:

xMAP 0 LERGT!'E 4K MB

SEVERE ERROR #2b5¢
Illegal map change-
To remap MULTIBUS memory, all the MB blocks must be remapped as shown:

*MAP 0 LENGTH 4K MB

MAP 0 LENGTH 6K USER / Valid map change */

11. The following example shows how the PICE system adjusts partitions to match block
boundaries. All memory is initially guarded. The partition entered is less than a complete
1K-byte block. The PICE system adjusts the boundary upward to completely enclose the
partition requested.

*BASE = DECIMAL

*xMAP /*Display the current map settings */

MAP OK LENGTH 01L24K GUARDED

*MAP 1 TO 10HS /*Partition not on a 1K-byte
boundary*/

WARNING:Map address boundaries changed tomatch hardware

xMAP /*Display the 1K-byte boundary change*/

MAP OK LENGTH 1K HS
MAP LK LENGTH 1023K GUARDED

Cross-References

Name
Partition

Encyclopedia 1-241

MAPIO

Displays or sets physical
locations for I/O ports

Syntax

USER

MAPIO | [partition]

Whereﬁ

MAPIO

partition

USER
ICE

ICE [(debug-procedure-name)]

Discussion

ICE [(debug-procedure-name)]]]

displays the current map of I/O port address
blocks. One block is 64 bytes.

is an entry specifying a range of addresses with
one of the following forms:

port-address to port-address
port-address LENGTH number-of-bytes

Omitting partition maps all 64K bytes of 1/O
space.

transfers data values between the user’s prototype
system and the I’ICE probe.

transfers I/0O data values between the terminal,
not the prototype system, and the I’ICE probe.

calls the named procedure when I/O accesses oc-
cur. The I/O data values are transferred between
the IPICE probe and the debug procedure de-
signed to simulate the prototype 1/O operation.

The PPICE system uses the I/O port map to control input to and output from peripherals. With
the MAPIO command you can display or change the I/O port map. All mapped I/O data is

displayed on the host system terminal.

1-242

Encyclopedia

Mapping by Blocks
The I/0O port addresses are mapped in blocks using the MAPIO command, as program memory
is mapped in blocks using the MAP command. There are 64K bytes of I/O space, divided into
1K-byte blocks. Each block is 64 bytes long.

If an address partition is specified that is not on one of the 64-byte block boundaries, the
system expands the partition to the next block boundary and displays the following message:

WARNING: MAPIO address boundaries changed tomatch hardware

I/0 Simulation Using the Terminal

The ICE option causes I/O requests to appear on the terminal. When input data is required, the
following message is displayed:

UNIT n PORT mH REQUESTS type INPUT (ENTER VALUE) :

Where:
n is the unit number.
mH is the port number in hexadecimal.
type is BYTE or WORD.

Enter either the desired data values or the command HOLDIO. Data values cannot be expres-
sions. '

You can halt emulation during an I/O operation to enter ’ICE commands. Any commands
except PORT and WPORT are valid. When you enter HOLDIO, emulation and I/O requests
for that unit are suspended so that you can enter ’ICE commands. To resume emulation and the
flow of I/O requests, enter the command RELEASEIO. If the I/O requests for that unit have not
been suspended, entering RELEASEIO causes the input request to be repeated.

If you enter information incorrectly, the following message is returned:

Input options are anumber or HOLDIO
UNIT nPORT mHREQUESTS type INPUT (ENTER VALUE) :

Encyclopedia 1-243

MAPIO continued

When output data values are returned, they are displayed in the following format:

UNIT n PORT mH OUTPUT type value

Where:
value is the numerical value (hexadecimal) of the output data.
PORT is the port number displayed in hexadecimal.
UNIT is the unit number displayed in decimal.

I/0 Simulation Using an I/O Debug Procedure

An I/0O procedure is a special case of debug procedures. It is created, displayed, modified, and
removed in exactly the same way that all debug procedures are (see the entry for PROC in this
encyclopedia). However, to be useful, an I/O procedure should simulate your system’s handling
of I/0 data.

If you specify an I/O debug procedure name in the ICE option of the MAPIO command, I/O
requests within the specified partition generate a call to the debug procedure of that name.
When the debug procedure is invoked in this context, its parameters are set to identify the form
of the I/O request as follows:

Parameter Interpretation
%0 port number
%1 Boolean value: TRUE if read requested; FALSE if write requested
%2 Boolean value: TRUE for byte port access, FALSE for word port access

Within the I/O debug procedure, use the built-in pseudo-variable PORTDATA to read and
write the I/O port. The PORTDATA pseudo-variable is only valid when used inside a proce-
dure that is executed as a result of an I/0 access. Any other use results in an error.

When the procedure simulates input (the unit wants to read data from the procedure), the
procedure must have a statement with the following syntax:

PORTDATA = port-value

1-244 Encyclopedia

MAPIO continued
Where:

port-value is a positive whole number of type byte or word, de-
pending on the size of your port.

If the procedure supplies more than one value, the system returns the following message:
Toomany values supplied. Kept the last one.

When the procedure simulates output (the current unit wants to write data to the procedure),
the procedure can either receive the data in a variable or write it to the terminal. The syntax for
writing to a variable is as follows:

variable = PORTDATA
The syntax for writing data values to the terminal is as follows:
WRITE PORTDATA

An error message is returned and the I/O request is handled on the terminal if a procedure
exists and any of the following errors occur while emulating:

® An error occurs while the procedure is being executed
® The unit wants to read data and the procedure supplies no data
® The procedure tries to write data when the unit requests a read

® The procedure tries to read data when the unit requests a write

An error that occurs while executing a PORT or WPORT command in the procedure is not
recoverable. In this case, an error message is displayed followed by the prompt ().

Restrictions

Note that if your target system is connected to the ZICE system, I/O data always goes out to
your system, whether the I/O ports are mapped to USER or the I’ICE system. Mapping to the
PICE system only prevents the I’ICE system from receiving your system input. Thus, you
should disconnect the user (target) system if you do not want it responding to the PICE system
output.

Encyclopedia 1-245

MAPIO continued

Examples

1. Display I/O port mapping:

MAPIO 0000:0000HLENGTH OO0O0O0O400 ICE
MAPIO 0040:0000HLENGTH OOOOFCODO USER

2. The following examples (2a through 2¢) simulate data input using the terminal. The exam-
ples are taken from the following disassembled program, which is a loop requiring input to
port 22H.

000000H 90 NOP

O000D0LH E52e IN AX-22H 5 +35T
0000D3H 90 NOP

000004H EBFA JMP A=0000H 5 $-Y4
DO000LH 90 NOP

a. @

TiL4
*UNIT OPORT 22HREQUESTS WORD INPUT (ENTER VALUE) x7a66h
*¥Probe 0 stopped at 0000:0000 because of execute break

NOTE

After the GO command in example 2a, the only user input was '7a66h’.

Confirm that the port values entered are now in register AX:

7ALbL
b. Using HOLDIO and RELEASEIO:

PORT 22H REQUESTS WORD INPUT (ENTER VALUE) * lio
88h /* HOLDIO permits command entry */

*UNIT OPORT 22HREQUESTS WORD INPUT (ENTER VALUE) 13

1-246 Encyclopedia

3.

Encyclopedia

B A TIAAY g g
WMARPIO cont

Hinued

c. System response to incorrect input:

xGO FROM0:0 TIL 3
UNITOPORT 22HREQUESTS WORD INPUT (ENTER VALUE) x5+86
Input options are anumber or HOLDIO

No expressions are allowed.

UNITOPORT 22HREQUESTS WORD INPUT (ENTER VALUE) xaaah
Input options are anumber or HOLDIO

Hexadecimal values must have a leading zero.

The following example demonstrates data output from the terminal. The data output is
required by the following program, which asks for data output from port 23H. Assume
that AL is initialized.

*BASE = 10T

*ASM 0 LENGTH 5

D00O0O0O0H 90 NOP

O0DDD1H Ek23 OUT 23H.AL

000D03H 90 NOP

000D0uYH EBFA JMP A=0000H 5 s-4

0D0D0OO0EH 90 NOP

*xGOFROMOTIL 3

UNITOPORT23H OUTPUT BYTE %55 /*User input is 55%/
Probe 0 stopped at 0000:0004 because cf execute break
XAL /*Display AL register*/
55

The following examples show how to use the ICE debug-procedure-name option, which
involves creating a procedure that simulates your system I/O operation.

a. This procedure (mapioproc) simulates data output from a port and writes the data to
the screen. It is called whenever the user writes data to a port (or wport) within the
mapped area.

xBASE =167

xDEFINE PROC mapioproc = WRITE PORTDATA /* Define the debug
procedure */

MAPIO 0 LENGTH 1K ICE(mapioproc) / Map /O to ICE with a debug

procedure call */
xPORT(23) =1234 /* Execute the debug procedure by accessing the byte port */
34

1-247

MAPIO continued

The PORT command accepts only byte inputs.

/

/* Execute the debug procedure by accessing the word port */
OBA
1C

Data in from WPORT(47) is displayed on two lines because the port is on an odd boundary.

b. This procedure (inputproc) is called whenever a program asks for input from one of
the ports mapped to ICE:

c. This program is a loop that requires input from port 12H. It is used to test procedure

inputproc:

00D000H 90 NOP

000001H E512 IN AX-l2H 5 +18T
000003H 90 NOP

000004H EBFA JMP A=D000H 5 -4
000DO0EH 90 NOP

Run the program and halt it when the emulation prompt appears:

Probe D stopped at 0000:0003 because of halt

Cross-References

Name
Partition
PROC

1-248 Encyclopedia

Masked constant
A number with don’t-care bits

for match conditions in
break and trace controls

Masked constants are used as patterns for matching addresses and data values in break and
trace controls. The X bits in the masked constant are don’t-care bits; these bits match both 0
and 1 in the address or data value to be matched.

Only binary and hexadecimal masked constants are allowed. All masked constants are stored
internally as 32-bit values.

If you omit Y or H for the base of the number, the number is interpreted in the current default
base. (An error occurs if the digits are not valid in the current base.)

Examples

1. A binary masked constant that accepts either 0 or 1 for the lower eight bits:

2. A hexadecimal masked constant that accepts any number (0-F) for the lower byte:

Encyclopedia 1-249

MEMRDY

A pseudo-variable that allows
a system time-out based
on memory access time

Syntax
=TRUE
MEMRDY =FALSE
= boolean-expression
Where:
MEMRDY displays the current setting (TRUE or FALSE).
TRUE lets a time-out occur when memory access time during
emulation exceeds one second. The default value is
TRUE.
FALSE disables memory time-outs.
boolean-expression is any expression in which the low-order bit evaluates to
0 (false) or 1 (true).
Discussion

The PPICE system senses the READY line of the probe processor. A time-out occurs if this line
is high for more than one second and MEMRDY is TRUE. A time-out halts emulation.

Example

1. Use MEMRDY as a variable:

1-250 Encyclopedia

7
it

Y e B

Enables and disables the I2ICE
system menu display

= boolean-expression

Syntax
=TRUE
MENU =FALSE
Where:
MENU
TRUE
FALSE

boolean-expression

Discussion

displays the setting, either TRUE or FALSE.
enables the menu display. TRUE is the default.
disables the menu display.

is an expression in which the low-order bit evaluates to 0
(false) or 1 (true).

With the MENU command you can enable or disable the I’ICE menu display at the bottom of
the terminal screen. The IPICE menu is a syntax directory on the bottom of the screen. The
syntax directory aids in construction of syntactically correct commands. Note, however, that
you can construct a syntactically correct command that is semantically incorrect.

When MENU =TRUE, the menu displays all the tokens you can enter at the current cursor
position. As you advance the cursor to the next token (with a space or other delimiter), the
menu is updated to show the legal tokens at the new position. Often all the available tokens do
not fit on one line. In that case, press the TAB key to display the other choices.

If you enter a token not on the current token list, the I’ICE system returns a syntax error.

You must be in command mode to enter the MENU command, but you can change the menu
mode at any time by pressing CTRL-V.

Example

1. The following example shows the first menu display after entering the IXICE command:

----more ----Use[TAB]Jtocycle through prompts when "more™ appears-
APPEND ARMREG BASE BRKREG CALLSTACK CAUSE CLEAREOL CLEAREOS

Encyclopedia

1-251

MENU continued

Pressing the TAB key advances to the following menu display:

----more----
CLIPSIN CLIPSOUT COUNT CURHOME DEFINE DIR DISABLE EDIT ENABLE

1-252) Encyclopedia

Syntax (List of Keywords)

Default

ADDRESS
ASM

BCD
BOOLEAN
BYTE
CHAR
DWORD
EXTINT
INTEGER
LONGINT
LONGREAL
POINTER
REAL
SELECTOR
SHORTINT
TEMPREAL
WORD

BYTE

Discussion

Mtype

Basic program memory types
used in commands and displays

The IPICE command language assumes that every object in memory has a type. Many com-
mands involve explicit references to memory types, and displays also depend on the type of the

value. Type BYTE is the default when no type is specified.

This section describes the available memory types. The discussion includes the keywords used
to specify types, the formats for displaying various types, and the rules for converting one type
to another.

Encyclopedia

Although every object in memory has a type, debug objects cannot be accessed using the

memory type keywords.

1-253

Mtype continued

Types and Type Classes

Table 1-17 lists the program types with their basic definitions. The table also classifies the
types by common attributes. The following sections provide more detailed information on

mtypes.
Table 1-17 Basic Mtypes
Type Keyword Definition

UNSIGNED BYTE 8-bit unsigned quantity.
WORD 16-bit unsigned quantity *.
ADDRESS 16-bit unsigned quantity *.
SELECTOR 16-bit unsigned quantity *.
DWORD 32-bit unsigned quantity.

SIGNED SHORTINT 8-bit signed quantity.
INTEGER 16-bit signed quantity.
LONGINT 32-bit signed quantity.

87 REAL 32-bit floating-point number.
EXTINT 64-bit signed quantity.
LONGREAL 64-bit floating-point number.
TEMPREAL 80-bit floating-point number.
BCD 80-bit packed decimal number.

POINTER POINTER 32-bit quantity, consisting of a segment selector
component and an offset component. Each component
is a 16-bit WORD.

BOOLEAN** BOOLEAN TRUE (LSB = 1) or FALSE (LSB =0).

CHARACTER CHAR 8-bit ASClII value.

ASM Assembly language mnemonic; ASM is a read-only
type.

* The I2ICE system does not distinguish between these types. The difference is significant
only in your program.
** The Boolean type is determined by the least significant bit (LSB) of the byte.

1-254 Encyclopedia

Y TR g BB g e o ol
Miype continued

Unsigned Types

The unsigned types are BYTE, WORD, ADDRESS, SELECTOR, and DWORD. ADDRESS
and SELECTOR are synonyms for WORD and are included for compatibility with high-level
languages that support these types.

Signed Types

The signed types are SHORTINT, INTEGER, and LONGINT. Internally, these types have a
leading sign bit; they use the 2’s complement for negative values. When signed types are used
in expressions, they are converted internally to LONGINT.

87 Types

The 87 types are BCD, EXTINT, REAL, LONGREAL, and TEMPREAL. These types use
either the 87 coprocessor or internal IZICE 87 emulator software. The internal representations
of these types are described in the iAPX-86,88 User’s Manual. The 87 types used in expres-
sions are converted to TEMPREAL.

Pointer Type

Objects of type POINTER are used in address calculations. The method of calculation is
processor-specific.

Boolean Type

Boolean objects have one of two values, TRUE or FALSE. When the Boolean mtype is applied
to memory, the contents of memory are treated as bytes. If the low-order bit of a byte is a 1, the
Boolean value is TRUE. I