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Abstract—Biological Data Science is an emerging field facing multiple
challenges for hosting, sharing, computing on, and interacting with
large data sets. Privacy regulations and concerns about the risks of
leaking sensitive personal health and genomic data add another layer
of complexity to the problem. Recent advances in cryptography over the
last 5 years have yielded a tool, homomorphic encryption, which can be
used to encrypt data in such a way that storage can be outsourced to
an untrusted cloud, and the data can be computed on in a meaningful
way in encrypted form, without access to decryption keys. This paper
introduces homomorphic encryption to the bioinformatics community,
and presents an informal “manual” for using the Simple Encrypted
Arithmetic Library (SEAL), which we have made publicly available for
bioinformatic, genomic, and other research purposes.
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I. INTRODUCTION

A wealth of personal genomic data is becoming available thanks
to scientific advances in sequencing the human genome and gene
assembly techniques. Hospitals, research institutes, clinics, and com-
panies handling human genomic material and other sensitive health
data are all faced with the common problem of securely storing,
and interacting, with large amounts of data. Commercial clouds offer
solutions but are subject to subpoenas, data misuse or theft, and
possible insider attacks. To mitigate the privacy risks inherent in stor-
ing and computing on sensitive data, cryptography offers a potential
solution in the form of encryption, which metaphorically locks the
data in a “box” which requires a key to open. Traditional encryption
systems lock data down in a way which makes it impossible to use,
or compute on, in encrypted form. Recent advances in cryptography
have yielded new tools that allow operations on encrypted data.
One such tool is homomorphic encryption. Encrypting data using a
homomorphic encryption scheme allows for meaningful computation
on the encrypted data producing the results of the computation in
encrypted form, without the need for decrypting it or requiring access
to the decryption key.

This paper details a state-of-the-art homomorphic encryption solu-
tion and is meant to serve as a guide to using it for bioinformatics and
genomic computations. The Microsoft Research Simple Encrypted
Arithmetic Library (SEAL) has been publicly released and can be
downloaded for experimentation and research purposes1.

Homomorphic encryption is a technique to encrypt data in such
a way that it can be computed on by anyone, without access to the
encryption or decryption keys, and the result of the computation is
obtained in encrypted form. Solutions for homomorphic encryption
which allow one operation, such as addition, have been known for
decades, for example based on the RSA or Elgamal cryptosystems.
But a homomorphic encryption solution which allows an unlimited
number of two operations, i.e. addition and multiplication, enables
the computation of any circuit, and thus such a solution is referred to
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as fully homomorphic (FHE). The first FHE solution was proposed
in [1], and many improvements and extensions have followed over
the last 5 years: [2], [3], [4], [5], [6]. For practical applications, an
important idea introduced in [7] is to use homomorphic encryption
schemes which only allow for a fixed amount of computation on the
data. It is usually the case that the computation (the function or the
algorithm) which will be applied to the data is known in advance, so
that a homomorphic encryption scheme may be instantiated to allow
only for that amount of computation on the data. This insight leads to
improved parameters, and thus better efficiency for both storage and
computation. A scheme for which it is possible, for any fixed given
function, to choose parameters such that the scheme allows homo-
morphic evaluation of that function, is called a leveled homomorphic
encryption scheme. Using a leveled homomorphic scheme, where
parameters are set to allow a certain predetermined, fixed amount of
computation, together with application-specific data encodings and
algorithmic optimizations, leads to a significant efficiency gain. We
refer to such a combination as Practical Homomorphic Encryption
(PHE).

While it was considered a major breakthrough to develop solutions
for homomorphic encryption, serious challenges remain to convert
these proposals into practical systems which can overcome the per-
formance hurdles and storage requirements. Significant improvements
have been made by encoding data for computation in clever ways to
reduce both the size of ciphertexts and the depth of circuits to be
evaluated. In Section III we present new methods for encoding real
data which lead to concrete improvements in both performance and
storage requirements.

When using PHE, parameters of the encoding an encryption
schemes should be chosen to optimize for efficiency, while preserving
security and correctness. To make this feasible in practice, we have
implemented tools (most importantly a noise growth simulator and
an automatic parameter selection module) to help users choose
their parameters for maximal performance. Section IV details these
techniques, and demonstrates their use in practice.

Homomorphic encryption provides a suitable solution for some, but
not all, privacy problems and scenarios. Current solutions allow for
a single data owner, such as a hospital, to encrypt data so that it can
be securely stored in a commercial cloud. Both private and public
key solutions are practical, and with the public key version many
parties can upload data encrypted under the hospital’s public key:
doctors, patients, lab technicians, etc., and the hospital administration
can set a policy for access to computations and decryptions. The same
idea can be applied to a research institute which stores data in the
cloud, selectively allows researchers to make queries on the encrypted
data, and then provides decryptions of the results. Consumer and
patient scenarios enabled by homomorphic encryption include secure
and private outsourcing of storage of personal health records, or of
predictive services for risk of disease.

This article is intended to serve as a guide to help practitioners
in bioinformatics to use the SEAL library, to experiment with
secure computation on biomedical data, and to evaluate the security
implications.

http://sealcrypto.codeplex.com
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A. Addendum

1) Recent updates to SEAL: Since this article was written, the
SEAL library has been developed and improved significantly, and
the description here refers to the older versions (prior to SEAL
v2.0). Most importantly, SEAL no longer uses YASHE′, the practical
variant of the YASHE scheme (see Section II), but instead the Fan-
Vercauteren scheme (FV) [8]. There are two main reasons for this
change.

First, the YASHE′ scheme relies on an unusual hardness assump-
tion for security, which [9], [10] show is much easier to break than
previously thought. The FV scheme instead relies purely on the much
better studied Ring-Learning With Errors (RLWE) assumption (see
e.g. [11]), and is completely resistant to the kinds of attacks that
weaken or break YASHE′.

Second, FV has better noise growth properties than the YASHE′

scheme, especially in homomorphic multiplication. Therefore, a set
of parameters that is not large enough for YASHE′ to perform a
particular computation on encrypted data might actually work with
the FV scheme, often resulting in significantly improved performance.

In addition to using a different scheme, newer versions of the
SEAL library have vastly better performance than the version that
is described here. Some new features have also been added, and a
few relatively minor API changes have been introduced. We refer
the reader to [12] for an extensive description of the most recent
version of the library (SEAL v2.1), including its new features, and
differences to previous versions.

2) CryptoNets: Since this article was written, it was demonstrated
in [13] that homomorphic encryption can be used to evaluate deep
convolutional neural networks on encrypted data with relatively high
throughput. In the paper it was shown how over 99% accuracy
in detecting hand-written digits (MNIST dataset) can be obtained
using an appropriately crafted neural network. While the latency
of the computation was still of the order of hundreds of seconds,
the techniques described in III-C allowed the authors to obtain
a throughput of over 50, 000 predictions per hour. An interesting
research problem is to extend the approach taken in [13] to more
complicated neural networks–e.g. to ones with medical or financial
applications.

II. HOMOMORPHIC ENCRYPTION

An encryption scheme that enables arbitrary computations on
encrypted data without first decrypting the data, and without any
access to the secret decryption key, is called a Fully Homomorphic
Encryption (FHE) scheme. The result of any such computation on
encrypted data is itself provided in encrypted form, and can only
be decrypted by an owner of the secret key. The first FHE scheme
was presented by Gentry [1] in 2009, and since its discovery many
improvements and new constructions have been proposed [14], [2],
[15], [3], [16], [17], [18], [6], [19], [20].

In Gentry’s work, and in many later papers, data is encrypted bit-
wise. This means that a separate ciphertext is produced for each bit
in the message. The computation is described as a boolean circuit
with XOR and AND gates, which can be realized as addition and
multiplication modulo 2. Both operations can then be performed on
the encrypted bits. Unfortunately, breaking down a computation into
bit operations can quickly lead to a large and complex circuit, which
together with a significant overhead in memory use per bit imposed by
the encryption scheme this makes homomorphic computations very
costly.

Fortunately, most known constructions allow for a larger message
space. In practical applications the desired computations often only
consist of additions and multiplications of integers or real numbers,

so there is no need to express the data in a bit-wise manner. Indeed,
most known constructions allow to encrypt integers, or appropriate
encodings of integers, and to homomorphically add and multiply
these values. This approach has the clear advantage that a ciphertext
now contains much more information than just a single bit of data,
making the homomorphic computations significantly more efficient.

In the known FHE schemes, typically ciphertexts contain a certain
amount of inherent noise, which “pollutes” them. This noise grows
during homomorphic operations, and if it becomes too large the
ciphertext cannot be decrypted even with the correct decryption
key. In order to perform an unlimited number of operations, and
thus achieve fully homomorphic encryption, ciphertexts need to be
constantly refreshed in order to reduce their noise. This is done using
a costly procedure called bootstrapping [1].

However, in applications where only a predetermined computation
needs to be done, the costly bootstrapping procedure can be avoided
by using a so-called leveled homomorphic encryption scheme. As a
guiding principle, the choice of the parameters dictates how many
sequential multiplications the computation can involve, i.e. the max-
imum allowed depth of the computation expressed as an arithmetic
circuit, although in reality also other features of the computation need
to be taken into account. This approach is often significantly more
practical than using an FHE scheme with bootstrapping, but is not as
flexible if at a later point a different, more complex function needs
to be evaluated.

The remainder of this section describes the leveled homomorphic
encryption scheme that is implemented in our Simple Encrypted
Arithmetic Library (SEAL).

A. Homomorphic encryption scheme algorithms

The encryption scheme we use is a public-key, homomorphic
encryption scheme, and consists of the following algorithms:
• A key generation algorithm KeyGen(parms) that, on input the

system parameters parms, generates a public/private key pair
(pk, sk) and a public evaluation key evk, which is used during
homomorphic multiplication.

• An encryption algorithm Enc(pk,m), that encrypts a plaintext
m using the public key pk.

• A decryption algorithm Dec(sk, c), that decrypts a ciphertext c
with the private key sk.

• A homomorphic addition operation Add(c1, c2) that, given as
input encryptions c1 and c2 of m1 and m2, outputs a ciphertext
encrypting the sum m1 +m2.

• A homomorphic multiplication operation Mult(c1, c2) that,
given encryptions c1 and c2 of m1 and m2, outputs a ciphertext
encrypting the product m1 ·m2.

B. Encryption parameters

The specific instantiation that is implemented in SEAL is the more
practical variant of the scheme YASHE, proposed in the paper [6].
The encryption parameters of the scheme are the degree n, the moduli
q and t, the decomposition word size w, and distributions χkey, χerr.
Thus, parms := (n, q, t, w, χkey, χerr). Next we discuss these
parameters in more detail.
• The parameter n is the maximum number of terms in the poly-

nomials used to represent both plaintext and ciphertext elements.
In SEAL, n is always a power of 2. The polynomial Xn + 1 is
called the polynomial modulus, and denoted poly_modulus
in SEAL.

• The parameter q is the coefficient modulus. It is an integer mod-
ulus used to reduce the coefficients of ciphertext polynomials.
In SEAL, q is called coeff_modulus.
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• The parameter t is the plaintext modulus. It is an integer modulus
used to reduce the coefficients of plaintext polynomials. In
SEAL, t is called plain_modulus.

• The integer w is the base to which we decompose integer
coefficients into smaller parts. It determines the number `w,q :=
blogw(q)c+ 1 of parts when decomposing an integer modulo q
to the base w. In practice, we take w be a power of two, and call
log2 w the decomposition bit count. In SEAL, log2 w is called
decomposition_bit_count.

• The distribution χkey is a probability distribution on polynomials
of degree at most n− 1 with integer coefficients, which is used
to sample polynomials with small coefficients that are used in
the key generation procedure. In SEAL, coefficients are sampled
uniformly from {−1, 0, 1}.

• Similarly, the distribution χerr on polynomials of degree at
most n − 1 is used to sample noise polynomials, which are
needed during both key generation and encryption. In SEAL,
the distribution χerr is a truncated discrete Gaussian centered
at zero, with standard deviation σ. In SEAL, σ is called
noise_standard_deviation.

The remainder of this subsection goes into further detail, introduces
the necessary mathematical structures, and explains how the different
parameters are related to each other. The scheme operates in the ring
R := Z[X]/(Xn + 1), the elements of which are polynomials with
integer coefficients of degree less than n, where n is a power of
2. Any element a ∈ R can be written as a =

∑n−1
i=0 aiX

i, with
ai ∈ Z. All plaintexts, ciphertexts, encryption and decryption keys,
etc. are elements of the ring R, and have this form. Addition in
R is done coefficient-wise, and multiplication is simply polynomial
multiplication modulo Xn+1, i.e. standard polynomial multiplication
followed by reduction modulo Xn+1. The reduction modulo Xn+1
is carried out by replacing all occurrences of Xn by −1.

The scheme uses two integer moduli q and t, for which q is much
larger than t. The coefficients of ciphertext and key elements are
taken modulo q, whereas the coefficients of the plaintext elements
are taken modulo t. In what follows, we use the notation [a]q
(resp. [a]t) to denote the operation of reducing the coefficients of
a ∈ R modulo q (resp. t) into the set {d−q/2e, . . . , b(q−1)/2c}
(resp. {d−t/2e, . . . , b(t−1)/2c}).

The homomorphic multiplication operation, defined below, con-
tains a step which decomposes a given polynomial into a vector
of polynomials with smaller coefficients. This step is needed to
manage the noise growth during the homomorphic multiplication by
computing a product of two intermediate polynomials via a scalar
product. The size of the smaller coefficients is determined by the
parameter w, which thus controls a trade-off between multiplication
efficiency and evaluation key size on one hand, and noise growth on
the other. We now present the details for this decomposition.

A polynomial a ∈ R with coefficients in {d−q/2e, . . . , b(q−1)/2c}
can be decomposed using a base w ∈ Z as a =

∑`w,q−1
i=0 aiw

i,
where the ai ∈ R have coefficients in {d−w/2e, . . . , b(w−1)/2c}.
This is done by decomposing each coefficient to the base w. The
homomorphic encryption scheme makes use of two functions. The
first one is Decw,q(a) := ([ai]w)

`w,q−1
i=0 , which takes a polynomial

with coefficients modulo q, and returns the vector of polynomial parts
obtained by the w-adic decomposition described above. The second
one is Poww,q(a) := ([awi]q)

`w,q−1
i=0 , which takes a polynomial

and returns a vector of polynomials that are the products of the
polynomial with powers of the base w. Both functions take a
polynomial and map it to a vector of polynomials in R`w,q , such
that the following property holds

〈Decw,q(a),Poww,q(b)〉 = a · b (mod q) ,

where 〈·, ·〉 denotes the dot product of vectors (of polynomials),
defined in the usual way.

Finally, the scheme uses two probability distributions on R, χkey

and χerr, which both generate polynomials in R with small coeffi-
cients. In our implementation, we chose the distribution χkey as the
uniform distribution on polynomials with coefficients in {−1, 0, 1}.
Sampling an element according to this distribution means sampling all
its coefficients uniformly from {−1, 0, 1}. For the distribution χerr,
we use a discrete Gaussian distribution with mean 0 and appropriately
chosen standard deviation σ. Gaussian samplers typically sample
from a truncated discrete Gaussian distribution, and we denote the
bound, i.e. the maximal deviation from the mean (zero), by Berr. A
typical large enough choice for Berr would be around 5σ.

C. Plaintext space and homomorphic operations

All plaintext elements, i.e. the messages that can be encrypted
with the homomorphic encryption scheme, are polynomials in the
ring R, with coefficients reduced modulo the integer t. All ciphertext
elements, i.e. encryptions of plaintext elements, are polynomials in
the ring R, with coefficients reduced modulo the integer q. Formally,
this means that the plaintext space is the ring Rt := R/tR ∼=
Zt[X]/(Xn + 1), and the ciphertext space is contained in the
ring Rq := R/qR ∼= Zq[X]/(Xn + 1). However, not every element
of Rq is a valid ciphertext.

Any ciphertext produced by the encryption function of our scheme,
as described below, encrypts one plaintext message polynomial
m ∈ Rt. Whenever homomorphic addition (resp. multiplication) is
performed on ciphertexts that encrypt two plaintext elements, say
m1,m2 ∈ Rt, the resulting ciphertext will encrypt the sum m1 +m2

(resp. the product m1 · m2). The operations between the plaintext
elements are performed in the ring Rt. For homomorphic addition
this means that the resulting ciphertext will encrypt the coefficient-
wise sum m1 +m2, where the coefficients are automatically reduced
modulo the plaintext modulus t. For homomorphic multiplication the
resulting ciphertext will encrypt the product m1 ·m2 ∈ Rt, which
means that the polynomial will automatically be reduced modulo
Xn + 1, i.e. all powers Xn will be automatically replaced by −1,
until no monomials of degree n or higher remain, and just as in
homomorphic addition, the coefficients of the polynomial m1 · m2

will be automatically reduced modulo t.
These properties need to be taken into account when encrypting

data such as integers or real numbers that first need to be encoded
as plaintext polynomials. One needs to be aware of the fact that
the various reductions that occur on plaintext polynomials during
homomorphic operations do not necessarily correspond to meaningful
operations on the integral or real data.

D. Detailed algorithm description

The following gives a detailed description of the key generation,
encryption, decryption, and homomorphic evaluation algorithms.
• KeyGen(parms): On input the encryption parameters parms :=

(n, q, t, χkey, χerr), the key generation algorithm samples poly-
nomials f ′, g ← χkey from the key distribution, and sets f :=
[1 + tf ′]q . If f is not invertible modulo q, it chooses a new f ′.
Otherwise, it computes the inverse f−1 of f in Rq .
Next, the algorithm samples vectors e, s ∈ R`w,q , for which
each component is sampled according to the error distribu-
tion χerr, and computes the vector of polynomials γ :=
[Poww,q(f) + e + hs]q . It computes h := [tgf−1]q ∈ R, and
outputs the key pair

(pk, sk) := (h, f) ∈ R×R ,
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and the evaluation key evk := γ.
• Enc(h,m): To encrypt a plaintext element m ∈ Rt, the encryp-

tion algorithm samples small error polynomials s, e← χerr, and
outputs the ciphertext

c := [bq/tcm+ e+ hs]q ∈ R .

• Dec(f, c): Given the private decryption key f , and a ciphertext
c = Enc(h,m), the decryption algorithm recovers m using

m = [bt/q · [fc]qe]t ∈ R .

• Add(c1, c2): Given two ciphertexts c1 and c2, the algorithm Add
outputs the ciphertext cadd := [c1 + c2]q .

• Mult(c1, c2, evk): Given two ciphertexts c1 and c2, the algo-
rithm Mult first computes c̃mult := [bt/q(c1 · c2)e]q . It then
performs a so-called relinearization (or key switch) operation,
by returning

cmult := [〈Decw,q(c̃mult), evk〉]q .

E. Practical considerations

As we already explained in the beginning of Section II, every
ciphertext, even a freshly encrypted one, has a certain amount of
inherent noise, or error, in it. The decryption operation can be under-
stood as an algorithm for removing this noise using some auxiliary
information, namely the secret key. One of the main difficulties in
homomorphic cryptography is that in every homomorphic operation
this inherent noise increases, until it reaches its maximum, at which
point the message becomes so distorted that even the decryption
algorithm can not recover it. To counter this problem, one needs
to increase the parameter q, but for security reasons this means that
also n should be increased. Unfortunately, increasing n and q can
significantly degrade performance.

There are a number of ways to lower the noise growth during
homomorphic operations, at least in certain situations, and thus to
improve performance by allowing smaller parameters to be used.
For example, the function to be computed might involve publicly
known values that do not need to be encrypted before adding them
to, or multiplying them with an encrypted value. One simply needs to
mimic the standard operations described above, and include the public
values as ciphertexts obtained from an encryption procedure in which
all noise terms are set to zero. This approach yields significantly
smaller noise growth, allowing for the same number of homomorphic
operations to be performed with smaller parameters, and thus will
indirectly lead to improved performance.

Furthermore, when such public values are small, a multiplication
with them can be made much more efficient by using their repre-
sentation according to the currently used encoding technique. The
multiplication can then be performed by a sequence of shifts (mul-
tiplications by powers of X) and homomorphic additions, avoiding
the multiplication routine altogether. Since typically homomorphic
additions are significantly less costly than a homomorphic multipli-
cation, this approach can increase the efficiency of a computation
considerably. Due to their importance, SEAL contains functionality
for performing addition and multiplication by a (public) plaintext
polynomial.

Another promising avenue is to omit the relinearization step (recall
the description of Mult in II-D). The homomorphic multiplication
algorithm then only computes the polynomial c̃mult. Thus, we can
replace Mult by
• Multnorelin(c1, c2): Given two ciphertexts c1 and c2, the algo-

rithm returns

c̃mult := [bt/q(c1 · c2)e]q ∈ R .

The result of this operation does not give the correct value when
decrypted with the secret key sk, but instead needs to be decrypted
with the square of the secret key, [sk2]q ∈ R. Further multiplications
of this kind increase the required power of the secret key. This
means that the decryption algorithm needs to be called with the
corresponding power s of the secret key, and now looks as follows:
• Decnorelin(f, s, c): Given the private decryption key f , an ex-

ponent s, and a ciphertext c, the decryption algorithm recovers
m using

m = [bt/q · [fsc]qe]t ∈ R .

This approach has the advantage that it omits the by far most costly
part of the homomorphic evaluation algorithms, and works without
the evaluation key. Its usefulness, however, depends on the specific
choice of the encryption parameters. For example, the larger the
plaintext modulus t is, the fewer levels of multiplications can be
computed like this, given all other parameters stay fixed. One can
experiment with different trade-offs, for example by manually rein-
troducing relinearization steps at certain points in the computation.

F. Implementation

We now demonstrate how the above concepts are implemented
in SEAL. Here we present mostly code snippets, and for complete
examples we refer the reader to Section VI.

SEAL is written in C++, but comes with a .NET wrapper library
SEALNET. All of our code examples use the C++ library. The
necessary C++ header files are included with #include "seal.h
". SEAL contains a data type BigUInt for large unsigned integers,
and a data type BigPoly for large polynomials with BigUInt
coefficients. All polynomials used in the encryption scheme are stored
using instances of BigPoly, including plaintext and ciphertext
polynomials, the secret key, and the public key. For example, to create
a (plaintext) polynomial p(X) = 3X4 +X + 2, we can write

BigPoly p("3xˆ4 + 1xˆ1 + 2");

To access the i-th coefficient as a BigUInt, we can use p[i]. To
return the polynomial as a human-readable string, we can use the
member function to_string. We have seen above that plaintext
polynomials can have either positive or negative numbers as coeffi-
cients, but in SEAL the coefficients of BigPoly are always instances
of BigUInt, i.e. unsigned. For this reason we store coefficients in
the range {d−t/2e, . . . ,−1} instead as {b(t−1)/2c+ 1, . . . , t− 1}.
For example, if t = 210 (0x400 in hexadecimal), the polynomial
p(X) = X2 − 3X − 1 could be created using

BigPoly p("1xˆ2 + 3FDxˆ1 + 3FF");

To set up the cryptosystem, the first thing we must do is choose the
encryption parameters as described in II-B. These are encapsulated
in an instance of the class EncryptionParameters. First, we
set the three moduli that the encryption scheme uses: q (coefficient
modulus), t (plain modulus), and Xn + 1 (polynomial modulus).
These three are the most important parameters, and choosing them
correctly is crucial for achieving optimal performance. Next we set w,
or rather the decomposition bit count log2 w, the standard deviation σ
of the distribution χerr, and an upper bound for the output of the χerr

sampler. For the purpose of the examples here, we use the following
parameters:

Listing II.1. encryption_parameters
EncryptionParameters parms;
parms.poly_modulus() = "1xˆ2048 + 1";
parms.coeff_modulus() = ChooserEvaluator::

default_parameter_options().at(2048);
parms.plain_modulus() = 1 << 10;
parms.decomposition_bit_count() = 32;
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parms.noise_standard_deviation() = ChooserEvaluator::
default_noise_standard_deviation();

parms.noise_max_deviation() = ChooserEvaluator::
default_noise_max_deviation();

In the above, coeff_modulus and plain_modulus are in-
stances of BigUInt, poly_modulus is an instance of BigPoly
, decomposition_bit_count is an int, and the last two
are double. In general, choosing appropriate and optimal encryption
parameters is a surprisingly difficult task. For this reason SEAL pro-
vides an easy-to-use automatic parameter selection module, which we
discuss in more detail in Section IV. A part of this can be seen in the
above where coeff_modulus, noise_standard_devation
and noise_max_deviation are set to values hard-coded into

the library that we consider secure.
Next we need to generate the encryption keys. Specifically, there

are three types of keys we need to set: the public key, the secret
key, and the evaluation key (recall II-D). Of these, the public key
and the secret key are instances of BigPoly, and the evaluation
key is encapsulated in an EvaluationKeys object. The keys are
generated based on an instance of EncryptionParameters using
KeyGenerator as follows:

Listing II.2. key_generator
KeyGenerator generator(parms);
generator.generate();
BigPoly public_key = generator.public_key();
BigPoly secret_key = generator.secret_key();
EvaluationKeys evaluation_keys = generator.

evaluation_keys();

The next set of tools we need are for encrypting, decrypting, and
performing homomorphic operations:

Listing II.3. encryption_tools
Encryptor encryptor(parms, public_key);
Decryptor decryptor(parms, secret_key);
Evaluator evaluator(parms, evaluation_keys);

The following code constructs two plaintext polynomials, X2 −
2X , and 3X3 + 1, and encrypts them:

BigPoly plain1("1xˆ2 + 3FExˆ1");
BigPoly plain2("3xˆ3 + 1");
BigPoly enc1 = encryptor.encrypt(plain1);
BigPoly enc2 = encryptor.encrypt(plain2);

We can use the Evaluator to operate on ciphertext polynomials:

BigPoly enc_sum = evaluator.add(enc1, enc2);
BigPoly enc_prod = evaluator.multiply(enc1, enc2);

In addition to add and multiply, Evaluator supports a
number of other operations. For example, it is very efficient to add
and multiply ciphertexts by plaintext polynomials (recall II-E):

BigPoly p("1x+2"); // Public polynomial
BigPoly enc1_sum = evaluator.add_plain(enc1, p);
BigPoly enc2_prod = evaluator.multiply_plain(enc2, p);

The above code produces encryptions of (x2 − 2x) + (x + 2) and
(3x3 + 1) · (x+ 2).

Finally, we can decrypt using our instance of Decryptor:

BigPoly sum = decryptor.decrypt(enc_sum);
BigPoly prod = decryptor.decrypt(enc_prod);
BigPoly plain_sum = decryptor.decrypt(enc1_sum);
BigPoly plain_prod = deryptor.decrypt(enc2_prod);

SEAL also supports multiplication without relinearization, and
a stand-alone relinearization operation (recall II-E). These are
provided by the member functions multiply_norelin and
relinearize of Evaluator.

III. ENCODING DATA

As was described in II-B and II-C, plaintexts and ciphertexts
are certain polynomials rather than integers or real numbers. More
precisely, plaintext elements are polynomials in R, with coefficients
reduced modulo t, and ciphertexts are polynomials in R, with coeffi-
cients reduced modulo q. However, most algorithms in genomics and
bioinformatics operate on integers, real numbers, and binary values.
Therefore, there is a mismatch between the plaintexts used by the
encrypt function in SEAL, and the data types used by practitioners.
This mismatch is resolved using encodings, which convert common
data types into plaintext polynomials. Encodings must always come
with a matching decoding, which performs the inverse operation. For
the homomorphic property of the encryption scheme to make sense,
the encoding and decoding functions must also be homomorphic in
such a way that addition (resp. multiplication) of encoded plaintext
polynomials yields an encoding of the sum (resp. product) of the
encoded integers or real numbers.

The main challenges in designing an encoding are (1) making
sure that the encoding and decoding functions have the appropriate
homomorphic poperties (see above), and (2) making sure that the
representation is compact and allows for fast and memory efficient
computation. As a simple example, consider encoding an integer as
the scalar coefficient of a plaintext polynomial. Decoding in this case
is trivial: Simply read the constant coefficient. However, if at any
point during the computation the values of the constant coefficient
increase beyond t, it will automatically be reduced modulo t, and
the result might be unexpected. The solution is to choose t large
enough, but this might in turn cause the inherent noise to grow very
rapidly in homomorphic multiplications. When encoding integers or
real numbers as higher degree polynomials, it is typically necessary
to keep track of the degrees of the plaintext polynomials appearing
during the computation, since if they exceed Xn−1 reduction modulo
the polynomial modulus Xn + 1 might occur, again leading to
unexpected results.

In the following section we present several powerful encoding
techniques. The choice of the right encoding depends on the problem.
Moreover, there are many other encoding techniques that might be
more appropriate for certain applications.

A. Encoding integers

The simplest way to encode an integer is what we already
mentioned above: by representing it as the constant coefficient
of a plaintext polynomial. Therefore, an integer y is encoded as
the constant polynomial p(X) := y. This scalar encoding works
as long as the numbers used during the computation remain in
{d−t/2e, . . . , b(t−1)/2c}. Otherwise reduction modulo t might occur,
yielding unexpected results.

The scalar encoding has two main limitations: (1) large integers
cannot be encoded without choosing t to be enormous, and (2) it
is inefficient in its use of available space in the plaintext polyno-
mial p(X), which has a total of n coefficients waiting to be used.
For one way to resolve both (1) and (2), consider the following. Let∑

i bi2
i be the binary representation of an integer y. We can encode

y as the polynomial p(X) :=
∑

i biX
i. In this case the number y can

be recovered using y = p(2), so this encoding also admits an efficient
and straight-forward decoding. The advantage of this binary encoding
over the scalar encoding is that the coefficients at the beginning of
each computation have only small values: either zero or one. While
adding and multiplying may increase the sizes of the coefficient, they
will still grow much slower than in the scalar encoding, and therefore
may not so easily reduced modulo t. However, modular reduction
may happen, as may reduction modulo around Xn + 1, which was
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not possible with the scalar encoding. A negative number we would
encode by simply negating every coefficient of the binary expansion
of its absolute value.

The binary encoding uses a base-2 representation to encode in-
tegers, but we can just as well use any higher base b, although this
comes with the cost of having larger coefficients appear in the freshly
encoded plaintext polynomial. Consider an odd base b ≥ 3. In this
case we can use a balanced set of representatives of integers modulo b
as coefficients of the base-b representation. In other words, each inte-
ger has a unique base-b representation, where powers of b appear with
coefficients from the symmetric range {b−b/2c, . . . , bb/2c}. Encoding
using the binary encoding wastes space since each coefficient is one
of {−1, 0, 1}, but all non-zero ones will necessarily have the same
sign. In balanced base-3 representation each coefficient again belongs
to the set {−1, 0, 1}, but now they can have different signs. For
example, encoding the number 25 using balanced base-3 encoding
would yield the polynomial p(X) := X3−X+1. Decoding amounts
to evaluating the polynomial at X = 3. Using a higher base b
produces shorter polynomials with larger coefficients. This might be
advantageous if the numbers to be encoded are very large.

Another way to handle large numbers is by encoding them multiple
times using several co-prime plaintext moduli t1, . . . , tk. Decoding
can be done using the Chinese Remainder Theorem (CRT)2 to
combine the individual decodings back into an integer modulo

∏
ti.

Therefore, we can break a large integer y into k much smaller
integers, obtained by reducing y modulo the ti, and for instance use
the scalar encoding to these separately, encrypt them, and operate
on them. Note that each operation must now be performed on each
of the k ciphertexts. Once done with the computation, use CRT to
assemble the decrypted remainders into a single number modulo t.
This method is obviously incredibly wasteful in terms of space, but
allows for very small t (and hence also q and n) to be used with the
scalar encoding. Note that the range of integers that can be encoded
increases exponentially with k.

SEAL provides classes BinaryEncoder and
BalancedEncoder that contain all of the essential functionality
for using the binary and balanced odd base encodings. The following
C++ code demonstrates encoding the integer 1234 using binary,
balanced base-3 and balanced base-5 encodings.

encryption_parameters (Listing II.1)
key_generator (Listing II.2)
encryption_tools (Listing II.3)

BinaryEncoder encoder2(plain_modulus);

/* In BalancedEncoder the base defaults to 3 */
BalancedEncoder encoder3(plain_modulus);
BalancedEncoder encoder5(plain_modulus, 5);

BigPoly e2 = encoder2.encode(1234);
BigPoly e3 = encoder3.encode(1234);
BigPoly e5 = encoder5.encode(1234);

The encoded BigPoly objects can be printed, as usual, using the
member function to_string.

B. Encoding real numbers

The most straightforward way to encode reals is by scaling them to
integers, which of course can only be done when a fixed precision is
needed. For example, suppose we are given real numbers for which
3 digits after the decimal point are significant. Multiplying these
numbers by 1000 and ignoring the fractional part will results in

2According to CRT, given co-prime integers t1, . . . , tk , and integers ri
(mod ti), there is exactly one integer y (mod

∏
ti) such that y ≡ ri

(mod ti) for every i.

integer values that capture the significant information. Note however,
that some book-keeping is required since all the results will be
scaled up. Moreover, when multiplying numbers that were scaled
up, the result will have a different scaling factor than the inputs. As
a result, it is important to keep track of the scale at different parts
of the calculation, which can get rather tedious with complicated
computations.

When the number of significant digits is large, the above method
will result in very large integers to be encoded. This can be avoided
by a different encoding scheme, where we encode the digits after the
decimal point as the highest degree coefficients of the polynomial.
More precisely, a real number y = y+.y−, where y+ denotes the
binary digits bI+bI+−1 . . . b1b0, and y− denotes the binary digits
b−1b−2 . . . b−I− , is encoded as the plaintext polynomial∑

i≤I+

Xibi −
∑

0<i≤I−

Xn−ib−i .

For example, 2 will be encoded as X , while 1/2 is encoded as
−Xn−1. When these two representations are multiplied, we obtain

X · (−Xn−1) = −Xn = 1 (mod Xn + 1) ,

as should be expected.
As another simple example, consider 3.25 = 11.012 encoded

as −Xn−2 + X + 1. Multiplying this by 1.5 = 1.12 encoded as
−Xn−1 + 1 gives

(−Xn−2 +X + 1)(−Xn−1 + 1)

= X2n−3 −Xn−2 −Xn −Xn−1 +X + 1

= −Xn−1 −Xn−2 −Xn−3 +X2 (mod Xn + 1) .

Decoding yields 22 + 2−1 + 2−2 + 2−3 = 4.875, which is what we
would expect.

When setting up such a fractional encoder, we need to tell how
many plaintext polynomial coefficients are reserved for the fractional
part, and how many are reserved for the integral part, because the
encoding algorithm needs to know where to truncate a possibly
infinite expansion of the fractional part, and the decoding algorithm
needs to know which coefficients belong to which part, as they
must be treated differently. For example, if we have n = 4096, we
could reserve 1024 coefficients for the integral part, and 128 for the
fractional part. Freshly encoded numbers can then use all of the 128
highest coefficients for their fractional parts, and up to 1024 lowest
coefficients for their integral parts. When two such polynomials are
multiplied, they can have up to 256 of their top coefficients be
non-zero. Clearly when such polynomials are further multiplied, the
fractional part quickly grows down towards the coefficients reserved
for the integral part. In this case the fractional part can take up to
4096 − 1024 = 3072 coefficients, but after that it gets mixed with
the integral part and can yield unexpected results when decoded.
In the decoding process we would only count the 128 highest
coefficients towards the fractional part, the lowest 1024 towards the
integral part, and ignore the rest. Our library provides basic fractional
encoding functionality in the BinaryFractionalEncoder and
BalancedFractionalEncoder classes.

We present an example of computing 3.14 · 15.93 in encrypted
form. In this example we use fractional balanced base-3 encoding,
reserve 128 coefficients for the fractional part, and 256 coefficients
for the integral part.

encryption_parameters (Listing II.1)
key_generator (Listing II.2)
encryption_tools (Listing II.3)

/* The base defaults to 3 */
BalancedFractionalEncoder encoder(parms.plain_modulus(),

parms.poly_modulus(), 256, 128);
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BigPoly plain1 = encoder.encode(3.14);
BigPoly plain2 = encoder.encode(15.93);

BigPoly enc1 = encryptor.encrypt(plain1);
BigPoly enc2 = encryptor.encrypt(plain2);

BigPoly enc_prod = evaluator.multiply(enc1, enc2);

BigPoly prod = decryptor.decrypt(enc_prod);
double result = encoder.decode(prod);

The correct answer, stored in result, is 50.0202.

C. Plaintext packing

SEAL requires working with high degree polynomials to ensure
both security and correctness of the computation. However, the data
to be encoded is in many cases rather small, resulting in an enormous
message expansion rate, and relatively long encoding/encryption/de-
cryption times. One way to avoid these problems is to pack several
pieces of data in a single message, and use the Single Instruction
Multiple Data (SIMD) paradigm to operate on these messages [21],
[22].

One way to encode more data in a single message is by using the
Chinese Reminder Theorem (CRT) for polynomial rings. For exam-
ple, suppose that n = 2 and t = 5. Since X2 +1 = (X+2)(X+3)
(mod 5), CRT yields an explicit isomorphism

Z5[X]

(X2 + 1)
∼=

Z5[X]

(X + 2)
× Z5[X]

(X + 3)
.

This isomorphism allows taking two values, one in Z5[X]/(X + 2),
and the other in Z5[X]/(X + 3), and encoding them as a single
element in Z5[X]/(X2 + 1).

More generally, assume that

Xn + 1 =

k∏
i=1

Qi(X) (mod t)

for some polynomials Q1(X), . . . , Qk(X) that are co-prime3. Then

Zt[X]

(Xn + 1)
∼=

k∏
i=1

Zt[X]

(Qi(x))
(mod t) .

This allows to encode k integers in a single plaintext as, for instance,
the constant coefficients of each of the k factors, and to operate on
each of them simultaneously. In many cases it is possible to find
n such polynomials Q1(X), . . . , Qn(X) which are co-prime, and
Xn + 1 =

∏
Qi(X) (mod t), in which case, each Qi(X) must be

a linear polynomial, Zt[X]/(Qi(X)) ∼= Zt, and Zt[X]/(Xn + 1) ∼=
Zn
t . This is the optimal case, and allows encoding of n integers into

one plaintext polynomial. Of course this only makes sense if the
scalar encoding is otherwise appropriate for the problem at hand.

Plaintext packing is implemented in SEAL in the
class PolyCRTBuilder.

D. Encoding binary data

In some situations encrypting integers is more convenient to do bit-
by-bit. This is particularly useful for efficient comparison or equality
testing, but is not very efficient or practical when homomorphic multi-
plication of integers is required. For example, one situation where bit-
wise encryption is particularly useful is in computing the edit distance
between two short encrypted DNA sequences [23]. One option is to
use the scalar encoding together with a plaintext modulus t = 2,
so that the plaintexts are elements of Z2[X]/(Xn + 1). This is of

3This means that if R(X) is a polynomial that divides both Qi(X) and
Qj(X) such that i 6= j, then R(X) is a constant.

course incredibly inefficient in many ways, but it does allow the user
to perform both XOR and AND operations on individual bits using
homomorphic addition and multiplication, respectively, providing an
enormous amount of functionality.

A naı̈ve way to improve the performance is by encoding up to
n bits as the n coefficients of a plaintext polynomial. This does
allow for some parallelism, namely one can evaluate XOR gates on
n encrypted pairs of bits with just one homomorphic addition, or
to evaluate either XOR or AND with a plaintext bit on n encrypted
bits simultaneously. What is not possible however, is evaluating AND
gates on n encrypted pairs of bits simultaneously.

A much better way to introduce parallelism to bit-wise encryption
is to use the CRT technique of III-C. In this case up to n bits can be
encoded in the constant coefficients of the different slots, where both
addition and multiplication are performed separately for each slot,
resulting in massive improvements in the amortized complexity.

IV. PARAMETER SELECTION

Selecting secure parameters for homomorphic encryption schemes
is a surprisingly complicated task. Security of the encryption scheme
used by SEAL depends on the assumed hardness of a lattice problem
known as Ring-Learning With Errors (RLWE) [6], [17]. In some
parameter settings the hardness of RLWE can further be proven to that
of certain extremely well studied worst-case lattice problems [24],
[11], [25], [26], [27], but unfortunately such parameters are not
relevant for practical use. Instead, in practice the security claims must
be directly based on an analysis of state-of-the-art attacks against
RLWE, which has been done in [28], [29], [30].

In addition to guaranteeing security, the encryption parameters
must also be large enough, or else the inherent noise (recall Sec-
tion II) will grow too big, and make the ciphertexts impossible to
decrypt. We denote ∆ := bq/tc, and by rt(q) the (positive) remainder
when dividing q by t. The inherent noise in a ciphertext c ∈ R is a
polynomial v ∈ R, such that

fc ≡ ∆[m]t + v (mod q) .

It is shown in [6] that a ciphertext c is possible to decrypt only as
long as it has an inherent noise that satisfies

||v||∞ <
∆− rt(q)

2
.

Here ||v||∞ denotes the largest absolute value of the coefficients
of v. Even freshly encrypted ciphertexts have a certain amount of
noise in them (see IV-A below), and performing arithmetic operations
on ciphertexts always increases the noise level, until it reaches its
maximum value and corrupts the underlying plaintext. Due to the
significance of ||v||∞, we often call it the inherent noise, instead
of v. In fact, our noise growth simulator only estimates the growth
of ||v||∞, rather than of v.

In addition, the encoding scheme typically places strong restric-
tions on the size of the plaintext modulus t, and in some cases on the
degree n of the polynomial modulus, as was explained in Section III.
Hence, to set up the cryptosystem with appropriate parameters, the
user must perform (roughly) the following steps:

(1) Let σ be a constant or possibly a function of n.
(2) Determine lower bounds for t and n (depending on encoding).
(3) Determine a lower bound for q such that decryption can be

expected to succeed.
(4) Choose n, q, and possibly σ, based on the bounds determined

above and state-of-the-art security estimates.
(5) Choose w to be as large as possible (at most q) so that decryption

still succeeds.
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(6) If w chosen above is too small, or no such w could be chosen,
switch to larger n and q.

Our automatic parameter selection tool essentially performs the above
steps. By default it uses a constant σ := 3.19, a constant bound
Berr = 15.95 for the Gaussian error sampler, and a hard-coded list
of pairs (n, q) that we consider to be secure based on the analysis
of [28]. Table IV shows the size of q for the values of n that are used
by the automatic parameter selector. A noise growth simulator then
estimates the growth of inherent noise in the homomorphic operations
without requiring any actual encrypted data as input. These default
values are all available also outside the automatic parameter selector
through the static functions

default_noise_standard_deviation()
default_noise_max_deviation()
default_parameter_options()

of ChooserEvaluator. Alternatively, the user can supply their
own σ, Berr, and list of (n, q)-pairs for the parameter selector to use.

TABLE I
(n, q)-PAIRS

n 1024 2048 4096 8192 16384
q 48 bits 91 bits 127 bits 383 bits 768 bits

A. Noise growth simulator

Upper bounds for inherent noise growth in the homomorphic
encryption scheme are well understood [6], and have already been
used for parameter selection in e.g. [31]. The problem with these
bounds is that they are typically extremely conservative, and as such
yield highly inefficient parameters. We instead focus on the most
significant terms contributing to the noise, and use average-case
estimates for their sizes. As a result, we obtain simple, but fairly
accurate estimates for inherent noise growth in all homomorphic
operations. Moreover, these estimates only require the encryption
parameters, and the inherent noise estimates for the input ciphertexts
to work. More precisely, given input ciphertexts with estimated
inherent noises v1, v2, the estimated inherent noise of the output is
computed as follows:

fresh: 2t

√
2n

3
Berr

add:
√
||v1||2∞ + ||v2||2∞

multiply:

√
2n

3

[
nt2

2
(||v1||∞ + ||v2||∞) +

√
n `w,q Berr w t

]
add_plain: ||v||∞
multiply_plain by p(X):

√
deg(p) + 1 ||v||∞ ||p||∞

negate: ||v||∞

The above estimates are only valid when the parameters are in
realistic ranges, and only until the inherent noise reaches its upper
bound of (∆ − rt(q))/2. It is crucial to understand that both
homomorphic addition and multiplication by a plaintext polynomial
typically increase the noise significantly less than true homomorphic
multiplication of two ciphertexts, which can be easily seen from the
estimates.

Recall from II-E that it is possible to also do multiplication
without performing the relinearization procedure, but that the result
must then be decrypted with a different secret key. In the above
noise growth estimate for multiply, the first term comes from

the multiply_norelin part, and the second from the operation
relinearize.

To understand what is involved in these estimates, consider for
example estimating the noise in a freshly encrypted ciphertext. Recall
that the encryption of a plaintext polynomial m ∈ R is

c := [bq/tc[m]t + e+ hs]q ∈ R ,

where h :=
[
tgf−1

]
q

is the public key, and s, e← χerr. To find the
inherent noise in c, we compute

[fc]q =
[
(1 + tf ′)(bq/tc[m]t + e+ hs)

]
q

=
[
bq/tc[m]t + fe+ tgs− rt(q) f ′ [m]t

]
q
,

where coefficients of the secret polynomial f ′ are chosen uniformly
at random from {−1, 0, 1}. We have also used q = bq/tct + rt(q).
The inherent noise polynomial in a fresh ciphertext is therefore

vfresh :=
[
fe+ tgs− rt(q) f ′ [m]t

]
q
.

It is the || · ||∞-norm of vfresh that matters, and that we need to
estimate. By the triangle inequality

||vfresh||∞ ≤ ||fe||∞ + ||tgs||∞ + rt(q)||f ′ [m]t||∞ .

In typical cases the last term is very small compared to the first two,
so we omit it. This is especially true when rt(q) is small, when [m]t
has small coefficients, and/or when [m]t is sparse and short enough.
In the first term, the polynomial e is dense and has coefficients
distributed according to a discrete Gaussian distribution with mean
0 and standard deviation σ. Since approximately two thirds of the
coefficients of f are ±t, and one third are 0, each coefficient of fe is
roughly a sum of 2n/3 discrete Gaussian distributions, multiplied by t,
and hence distributed according to a discrete Gaussian distribution
with standard deviation t

√
2n/3σ. This means that we can expect

||fe||∞ ≈ t
√

2n/3Berr. The polynomial tgs has similar structure,
so also ||tgs||∞ ≈ t

√
2n/3Berr, resulting in the estimate above for

fresh. The other ones involve similar approximations.

B. Automatic parameter selection

As we explained in the beginning of this section, automatic param-
eter selection involves much more than simply estimating inherent
noise growth. In particular, the plaintext modulus t must be large
enough for decoding to work. The user must provide an estimated size
of the input plaintext data, in particular bounds on the lengths of the
plaintext polynomials and on the absolute values of their coefficients,
and of course the homomorphic operations that are to be performed.
From all this information we can compute a compute a lower bound
for t. The homomorphic operations must also be stored in order to
later run the noise simulator.

In practice we perform this by introducing a device called
ChooserPoly. These objects carry three essential pieces of data:
(CP1) Upper bound on the number of non-zero coefficients in a

(plaintext) polynomial
(CP2) Upper bound on the || · ||∞-norm of a (plaintext) polynomial
(CP3) A directed acyclic graph representing the entire operation

history of the ChooserPoly
One should think of a ChooserPoly as modeling a ciphertext,
while only carrying information about the size of the underlying
plaintext polynomial, and information about how the ciphertext was
obtained as a result of homomorphic operations. The operation history
tells exactly how the particular ChooserPoly was obtained from
freshly encrypted ciphertexts. Those ChooserPolys that model
freshly encrypted ciphertexts have their operation history set to a
special fresh value, with no inputs. We use ChooserPolys with
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NULL operation history to model plaintext polynomials instead of
ciphertexts. Whenever a homomorphic operation is performed on one
or more ChooserPolys, a new one is created with (CP1) and (CP2)
computed from (CP1) and (CP2) of the inputs. Finally, the operation
histories of the inputs are fully cloned and merged to create (CP3).

We still have not mentioned the parameter w, or the decomposition
bit count log2 w. For efficiency reasons we prefer to have log2 w be
an integer in the range {1, . . . , dlog2 qe}, i.e. we always take w to
be a power of 2. It is clear from the estimates in IV-A that a larger w
corresponds to larger noise growth in homomorphic multiplication,
but it also makes the operation faster. Thus, the procedure for
selecting w is as follows:

(1) Start with log2 w = dlog2 qe.
(2) Use the inherent noise growth simulator to find out whether

decryption can be expected to work with encryption parameters
(n, q, t, σ, w).

(3) If decryption can not be expected to succeed, decrease log2 w,
and go to (2), unless log2 w is already too small to be efficient
(bound can be determined by user), in which case increase (n, q)
and go to (1).

Finally, we need to explain in more detail how the pairs (n, q) are
chosen. For security and efficiency reasons, we always take n be a
power of 2, and choose q from a hard-coded list of prime numbers of
a certain form, whose sizes were presented above in Table IV. These
choices are estimated to yield a security level of well over 128 bits
(see [28]), and are certainly a conservative choice4.

Our automatic parameter selection module contains also tools
analogous to BalancedEncoder, Encryptor, and Evaluator
. This makes it very easy for the user to switch from running their
code on ChooserPoly objects to running it on actual data. More
precisely, the following classes are provided:

ChooserPoly:
Contains information about the approximate size of a plaintext
polynomial, and an operation history, as was explained above.

ChooserEncoder:
This class can be used analogously to BalancedEncoder. If the
user knows beforehand some numbers going into the computation,
e.g. coefficients of a linear function to be evaluated on the encrypted
data, they can be converted into ChooserPoly objects with NULL
operation history using the encode function in ChooserEncoder.

ChooserEncryptor:
Most importantly, this class contains a function encrypt that can
be used to change the operation history in a ChooserPoly from
NULL to fresh. The same result can be achieved by calling the
set_fresh member function of the particular ChooserPoly.

ChooserEvaluator:
The ChooserEvaluator class is used to perform operations on
the ChooserPoly objects. The operations take a varying number
of ChooserPolys as input parameters, and always output a new
ChooserPoly with updated values for (CP1)–(CP3).

Once the user has performed all of their computations
on the ChooserPoly objects, they can use the function
select_parameters of ChooserEvaluator to obtain an
optimized set of encryption parameters encapsulated in an instance
of EncryptionParameters.

4An expert user might benefit from switching to slightly less secure
parameters (larger q, smaller n), and this is certainly easy to do by changing
the values in the code, but is also highly discouraged without a very good
understanding of the security results.

C. Examples

Here we present a few simple examples of using the automatic
parameter selection module.

Suppose the user wants to compute 12 · 345 + 6789 in encrypted
form. Consider the following C++ code:

ChooserEncoder encoder;
ChooserEncryptor encryptor;
ChooserEvaluator evaluator;

ChooserPoly plain1 = encoder.encode(12);
ChooserPoly plain2 = encoder.encode(345);
ChooserPoly plain3 = encoder.encode(6789);
ChooserPoly enc1 = encryptor.encrypt(plain1);
ChooserPoly enc2 = encryptor.encrypt(plain2);
ChooserPoly enc3 = encryptor.encrypt(plain3);

ChooserPoly prod = evaluator.multiply(enc1, enc2);
ChooserPoly result = evaluator.add(prod12, enc3);

EncryptionParameters parms = evaluator.select_parameters(
result);

This stores a working set of encryption parameters in parms,
which the user can read and use. Once the user knows which
encryption parameters they want to use, and have set up the
cryptosystem accordingly, it is extremely easy to convert the
above code to run on real data. The only change needed is, in-
stead of creating ChooserEncoder, ChooserEncryptor, and
ChooserEvaluator, to create an encoder, encryptor, and evalua-
tor as usual, e.g.

encryption_parameters (Listing II.1)
key_generator (Listing II.2)
encryption_tools (Listing II.3)

BalancedEncoder encoder(parms.plain_modulus());
Encryptor encryptor(parms, public_key);
Evaluator evaluator(parms, evaluation_keys);

and change the ChooserPoly objects into BigPoly objects. Then
BigPoly result will contain the encryption of 12·345+6789 =
10929.

Typically whoever chooses the parameter sizes does not
know exactly what the input data is, but only an esti-
mate of its size. For example, if we know that enc1,
enc2, and enc3 will contain encryptions of balanced base-3 en-
coded numbers, with encodings of length at most 9, we could use

ChooserEvaluator evaluator;

ChooserPoly enc1(9,1);
ChooserPoly enc2(9,1);
ChooserPoly enc3(9,1);

ChooserPoly prod = evaluator.multiply(enc1, enc2);
ChooserPoly result = evaluator.add(prod12, enc3);

EncryptionParameters parms = evaluator.select_parameters(
result);

to obtain appropriate encryption parameters. The constructor of
ChooserPoly takes (CP1) and (CP2) as input parameters. The
operation histories of the three ChooserPolys are set by default
to fresh.

Next we demonstrate choosing parameters for computing a linear
combination of encrypted numbers with public coefficients. Suppose
we know that all of the encrypted numbers are encoded using
balanced base-7 encoding, and have length at most 20 terms5.
Suppose that the coefficients are stored as integers in an std::
vector<int>. The following C++ code can be used to find an
appropriate set of encryption parameters:

5So the numbers have absolute value at most (720 − 1)/2.
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#include <vector>

...

ChooserEncoder encoder(7);
ChooserEncryptor encryptor;
ChooserEvaluator evaluator;

std::vector<int> c_ints {/* list of coeffs */};
int c_count = c_ints.size();

std::vector<ChooserPoly> c_cps;
for(int i=0; i<c_count; ++i)
{

c_cps.push_back(encoder.encode(c_ints[i]));
}

std::vector<ChooserPoly> encs(
c_count, ChooserPoly(20, 3));

ChooserPoly result = evaluator.multiply_plain(
encs[0], c_cps[0]);

for (int i = 1; i < c_count; ++i)
{

ChooserPoly term = evaluator.multiply_plain(encs[i],
c_cps[i]);

result = evaluator.add(result, term);
}

EncryptionParameters parms = evaluator.select_parameters(
result);

V. BIOMEDICAL APPLICATIONS

A. Sample tasks

There are many different types of analyses which researchers or
healthcare professionals may wish to perform on sensitive genomic
or medical data. For example, Genome-Wide Association Studies
(GWAS) typically perform statistical calculations across a large
population, such as computing Minor Allele Frequencies (MAFs), χ2-
statistics, Pearson goodness-of-fit tests, tests for association between
different loci in the genome, estimates of haplotype frequencies,
and tests for association of a genotype with a disease. These, and
other statistical analysis tools, are available and widely used in the
R Project [32].

Based on earlier internal implementations of homomorphic en-
cryption which were hand-tuned, not publicly available, and not
very flexible, performance numbers for many such computations on
homomorphically encrypted genomic data were reported in [33], [34],
[31]. Most recently, [33] implemented MAFs, χ2-statistics, Hamming
distance, and edit distance for sequence matching, which were the
tasks in the Secure Genome Analysis Contest run by iDASH, and
funded by NIH [35]. The implementation in [34] was written using
the Magma software package [36], and demonstrated encodings and
performance numbers for many functions from the R package: the
Pearson goodness-of-git and χ2-tests to test for deviation from Hardy-
Weinberg equilibrium, various measures of linkage disequilibrium to
test for association in the genotypes at two different loci in a genome,
the Estimation Maximization (EM) Algorithm to estimate haplotype
frequencies from genotype counts, and the Cochran-Armitage Test
for Trend (CATT) to determine if a candidate allele is associated
with a disease.

In [31], logistic regression and the Cox proportional hazard model
were implemented as representative examples for disease prediction.
A private cloud service for predicting cardiovascular disease (CVD)
was demonstrated on homomorphically encrypted data using a model
based on logistic regression, and shown at the AAAS Meeting
2014 Newsroom. To apply logistic regression to homomorphically
encrypted data, we use a polynomial approximation to the function
which approximates the prediction well enough in a certain range.
Logistic regression has been commonly used to predict whether

a patient will survive or suffer from various diseases, including
cardiovascular disease (CVD), diabetes, probability of survival in
blunt trauma, testing gender as a predictor of mortality after heart
surgery, correlating genotypes with the risk of cardiovascular disease,
and relating protein abnormalities with occurrence of diabetes [37].

B. Practical considerations

The statistical functions mentioned above often take inputs which
are integers or real numbers. For example, frequency counts for MAF
and haplotype frequencies are represented as integers, and health data
input to predictive models using logistical regression are often real
numbers. The encoding methods described in III-A and III-B can
be used to significantly improve the parameters and performance of
homomorphic encryption for such applications. On the other hand,
tasks like sequence matching often take discrete inputs, such as
strings of genomic data. In such cases the best option might be to use
bit-wise encryption of inputs, and use the CRT techniques to pack
multiple bits in one plaintext/ciphertext pair, as was briefly described
in III-D. In this section we demonstrate how to concretely use SEAL
for tasks such as these.

As our first example we discuss using the logistic regression model
for predicting the likelihood of a patient developing diabetes [31]. A
predictive equation to screen for diabetes was developed based on
logistic regression in [38]. The equation was computed from data
on more than 1, 000 Egyptian patients with no history of diabetes.
The predictive variables used were: age (a), sex, BMI, number of
hours since the last food or drink (PT: postprandial time), and
Random Capillary Plasma Glucose level (RCPG). The study was
cross-validated on a sample of more than 1, 000 American patients.
The predictive equation calculated is

P (x) :=
ex

ex + 1
,

with the following logistic regression parameters:

x = −10.0382 + 0.0331 · a
+ 0.0308 · RCPG + 0.2500 · PT

+ 0.5620 · (if female) + 0.0346 · BMI ,

where age is given in years, random plasma glucose (RPG) in
mg/dl, and postprandial time (PT) in hours. Undiagnosed diabetes is
predicted if the value is greater than 0.20 (20%). Thus only one digit
of accuracy is required beyond the decimal point when computing
the value of the predictive function approximately.

The sigmoid function P (x) can be approximated near x = 0 by
the Taylor series

P (x) = 1
2

+ 1
4
x− 1

48
x3 + 1

480
x5 − 17

80640
x7 +O(x9) ,

which we can attempt to evaluate homomorphically on our input data.
First set up the scheme and the encoder, and encrypt some sample

patient data:

#include <vector>

...

encryption_parameters (Listing II.1)
key_generator (Listing II.2)
encryption_tools (Listing II.3)

BalancedFractionalEncoder encoder(
parms.plain_modulus(), parms.poly_modulus(), 256, 16)

;

BigPoly a = encoder.encode(42);
BigPoly RCPG = encoder.encode(115);
BigPoly PT = encoder.encode(8);
BigPoly female = encoder.encode(1);
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BigPoly BMI = encoder.encode(20.2);

std::vector<BigPoly> data {
encryptor.encrypt(a),
encryptor.encrypt(RCPG),
encryptor.encrypt(PT),
encryptor.encrypt(female),
encryptor.encrypt(BMI)

};

Next, encode the coefficients needed to evaluate x:

std::vector<BigPoly> xweights {
encoder.encode(0.0331),
encoder.encode(0.0308),
encoder.encode(0.2500),
encoder.encode(0.5620),
encoder.encode(0.0346)

};
BigPoly translate = encoder.encode(-10.0382);

Computing x is now easy using the multiply_plain and add
functions:

BigPoly x = evaluator.multiply_plain(data[0], xweights
[0]);

for (int i = 1; i<5; ++i)
{

BigPoly prod = evaluator.multiply_plain(
encrypted_data[i], encoded_xweights[i]);

x = evaluator.add(x, prod);
}
x = evaluator.add_plain(x, translate);

Now we come to evaluating the Taylor expansion. First encode the
coefficients of the expansion:

std::vector<BigPoly> taylor_coeffs {
encoder.encode(1.0 / 4),
encoder.encode(-1.0 / 48),
encoder.encode(1.0 / 480),
encoder.encode(-17.0 / 80640)

};
BigPoly taylor_constant = encoder.encode(1.0 / 2);

To compute the odd powers of x we can use the member function
exponentiate of Evaluator. Computing the Taylor expansion
is now easy:

BigPoly result = evaluator.multiply_plain(
x, taylor_coeffs[0]);

for (int i = 1; i<4; ++i)
{

BigPoly power_of_x = evaluator.exponentiate(
x, 2 * i + 1);

BigPoly prod = evaluator.multiply_plain(power_of_x,
taylor_coeffs[i]);

result = evaluator.add(result, prod);
}
result = evaluator.add_plain(result, taylor_constant);

Finally, result can be decrypted and decoded:

double plain_result = encoder.decode(decryptor.decrypt(
result));

The computation above is, however, not a very optimal solution. In
fact, the parameters given in Listing II.1 are not nearly large enough
to deal with this problem. Everything works well until the sigmoid
function has to be evaluated. Problems arise when real numbers
encoded with the fractional encoders are raised to high powers, such
as 7. The reason is that even if only very few terms of precision are
used, the number of cross terms between those few high degree terms
in the exponentiation quickly becomes enormous, and dominates the
growth of the coefficients of the plaintext polynomial. This forces
us to increase t significantly, which in turn forces us to use a much
larger (n, q) pair than what is given in Listing II.1. Another unrelated
problem is that the sigmoid function is not very well approximated by
a Taylor expansion, and the quality of the result in this case depends
hugely on the exact value of x.

There are numerous ways to solve these problems using more
complicated neural networks to perform the prediction. Such neural
networks can be made to use low degree polynomials as activation
functions to yield models better suited for homomorphic computa-
tions than the above logistic regression model. Another option is to
return x instead of returning the troublesome probability P (x).

VI. EXAMPLES

In this section we present complete examples for using the SEAL
library. Our examples are in C++, but are easy to convert to use
the .NET wrappers in the SEALNET library. All of the examples
we present here use the basic setup presented in Listings II.1, II.2,
and II.3.

As the first example, consider the following encrypted computation
of (x2 − 1) · (x3 − 2x+ 1)− (x3 + x2 + x+ 1).

#include "seal.h"
#include <iostream>

using namespace std;
using namespace seal;

int main()
{

encryption_parameters (Listing II.1)
key_generator (Listing II.2)
encryption_tools (Listing II.3)

/* Note that a negative coefficient y is expressed as
t-y */

BigPoly plain1("1xˆ2 + 3FF");
BigPoly plain2("1xˆ3 + 3FExˆ1 + 1");
BigPoly plain3("1xˆ3 + 1xˆ2 + 1xˆ1 + 1");

/* Now encrypt plain1, plain2, plain3 */
BigPoly enc1 = encryptor.encrypt(plain1);
BigPoly enc2 = encryptor.encrypt(plain2);
BigPoly enc3 = encryptor.encrypt(plain3);

/* Use Evaluator to do the computation */
BigPoly prod = evaluator.multiply(enc1, enc2);
BigPoly negenc3 = evaluator.negate(enc3);
BigPoly result = evaluator.add(prod, negenc3);

BigPoly plain_result = decryptor.decrypt(result);

/* Now print the result: xˆ5-4xˆ3+x-2 */
cout << "Result: " << plain_result.to_string() <<

endl;

return 0;
}

Here is an example of computing the weighted average of 5 real
numbers (in the vector numbers), with given public weights (in the
vector weights).

#include "seal.h"
#include <iostream>
#include <vector>

using namespace std;
using namespace seal;

int main()
{

encryption_parameters (Listing II.1)
key_generator (Listing II.2)
encryption_tools (Listing II.3)

/* We need the fractional encoder */
BalancedFractionalEncoder encoder(parms.plain_modulus

(), parms.poly_modulus(), 256, 64);

vector<BigPoly> numbers{
encryptor.encrypt(encoder.encode(6.12)),
encryptor.encrypt(encoder.encode(1.10)),
encryptor.encrypt(encoder.encode(8.43)),
encryptor.encrypt(encoder.encode(9.30)),
encryptor.encrypt(encoder.encode(7.05))
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};

vector<BigPoly> weights{
encoder.encode(0.20),
encoder.encode(0.20),
encoder.encode(0.35),
encoder.encode(0.15),
encoder.encode(0.20)

};
BigPoly denom = encoder.encode(0.2);

/* Multiply numbers by weights and add them up to
result */

BigPoly result = evaluator.multiply_plain(numbers[0],
weights[0]);

for (int i = 1; i<5; ++i)
{

BigPoly prod = evaluator.multiply_plain(numbers[i
], weights[i]);

result = evaluator.add(result, prod);
}

/* Finally divide by 5 */
result = evaluator.multiply_plain(result, denom);

/* Now decrypt/decode and print the result: */
BigPoly plain_result = decryptor.decrypt(result);
cout << "Result: " << encoder.decode(plain_result) <<

endl;

return 0;
}

The above code will print the correct answer: 1.4399.

A. Performance

The performance numbers reported in this section are obtained
using SEAL v2.1 [12] (recall Section I-A) due to its substantially
better performance compared to the previous versions.

To give a rough idea of the overhead for doing computation on
homomorphically encrypted data, we give some sample timings for
the SEAL library when running on a single thread on an Intel Xeon
E5-1620 v3 @ 3.50 GHz, with Hyper-Threading and Turbo Boost
disabled. These timings were obtained by averaging across 100 runs
of the operations. We always perform multiplications followed by the
relinearization operation (recall II-E), and the times reported below
are the combined timings of these two operations.

For the smallest parameter set with n = 1024, and coefficient
modulus q of size 35 bits, the time required for a homomorphic
multiplication of ciphertexts was measured to be 3.461 milliseconds.
For slightly larger parameters with n = 2048 and q of size 60
bits, homomorphic multiplication takes 8.509 milliseconds. With
n = 4096, and q of size 116 bits, homomorphic multiplication takes
24.89 milliseconds. Finally, for n = 8192 with q of size 226 bits,
the time to do a multiplication is 107.1 milliseconds.
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[5] D. Stehlé and R. Steinfeld, “Making ntru as secure as worst-case
problems over ideal lattices,” in Advances in Cryptology–EUROCRYPT
2011. Springer, 2011, pp. 27–47.

[6] J. W. Bos, K. Lauter, J. Loftus, and M. Naehrig, “Improved security for
a ring-based fully homomorphic encryption scheme,” in Cryptography
and Coding. Springer, 2013, pp. 45–64.

[7] M. Naehrig, K. Lauter, and V. Vaikuntanathan, “Can homomorphic
encryption be practical?” in Proceedings of the 3rd ACM workshop on
Cloud computing security workshop. ACM, 2011, pp. 113–124.

[8] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic
encryption.” IACR Cryptology ePrint Archive, vol. 2012, p. 144, 2012.

[9] M. Albrecht, S. Bai, and L. Ducas, “A subfield lattice attack on
overstretched ntru assumptions: Cryptanalysis of some fhe and graded
encoding schemes,” Cryptology ePrint Archive, Report 2016/127, Tech.
Rep., 2016.

[10] P. Kirchner and P.-A. Fouque, “Comparison between subfield and
straightforward attacks on ntru,” Cryptology ePrint Archive,(Report
2016/717), 2016.

[11] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and
learning with errors over rings,” Journal of the ACM (JACM), vol. 60,
no. 6, p. 43, 2013.

[12] K. Laine, H. Chen, and R. Player, “Simple encrypted
arithmetic library - seal (v2.1),” Tech. Rep., September
2016. [Online]. Available: https://www.microsoft.com/en-us/research/
publication/simple-encrypted-arithmetic-library-seal-v2-1/

[13] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig,
and J. Wernsing, “Cryptonets: Applying neural networks to encrypted
data with high throughput and accuracy,” in Proceedings of The 33rd
International Conference on Machine Learning, 2016, pp. 201–210.

[14] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully ho-
momorphic encryption over the integers,” in EUROCRYPT, ser. Lecture
Notes in Computer Science, H. Gilbert, Ed., vol. 6110. Springer, 2010,
pp. 24–43.

[15] Z. Brakerski and V. Vaikuntanathan, “Efficient fully homomorphic
encryption from (standard) LWE,” in FOCS, R. Ostrovsky, Ed. IEEE,
2011, pp. 97–106.

[16] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic
encryption,” Cryptology ePrint Archive, Report 2012/144, 2012, http:
//eprint.iacr.org/.
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