
1

Paper 173-31

SAS® Macro Design Patterns
Mark Tabladillo Ph.D., MarkTab Consulting, Atlanta, GA

Associate Faculty, University of Phoenix

ABSTRACT
The qualities which SAS® macros share with object-oriented languages account for the power of macro
programming. This paper illustrates some examples of specific design patterns which can be partially or fully
implemented with the SAS macro language. The material is intermediate to advanced, and assumes knowledge of
macros and macro variables. The goal is to illustrate best practices for SAS macro programming.

INTRODUCTION
Experienced SAS programmers use the SAS macro facility all the time. Two components compose the macro facility:
1) the macro processor (the portion of SAS that does the work), and 2) the macro language (the syntax used to
communicate with the macro processor) (SAS Institute, 2005). The SAS macro language is powerful in several
partially overlapping ways, as illustrated in the following table.

Power Source Definition Examples
Function The SAS System has added specific macro functions. • %LENGTH

• %EVAL
• %SYSFUNC

See SAS Institute (2005)
Implementation The SAS System defines specific ways that macro

variables and macros resolve.
• Global versus local macro

variables
• %DO inside macros

See SAS Institute (2005)
Structure The SAS Macro language has some characteristics of

object-oriented languages.
To some extent:

• Encapsulation
• Polymorphism
• Inheritance

See Tabladillo (2005)
Table 1. Power sources of the SAS macro facility

Focusing on structure, this paper provides specific examples of how developers can use macros to implement some
aspects of object-oriented design patterns. Design patterns are a structural solution in context for solving a coding
problem.

This paper does NOT claim that the SAS macro language is inherently object-oriented, or that the SAS macro
language can or should become object-oriented. Instead, the SAS macro language possesses many object-oriented
language characteristics which developers can consciously apply. This paper’s premise is that whether macro
variables and macros exist, developers have to apply structure intelligently.

The SAS macro language is a character-based scripting language which can take advantage of the base SAS
System as well as many optionally licensed products. The base SAS System itself, a combination of functions,
statements, and procedures, already simplifies many tasks operations on variables and datasets. These
simplifications, especially seen in the SAS procedures, already contain many object-oriented features. Simply using
the SAS Windowing Environment allows programmers to leverage the power of object-oriented languages without
knowing any object-oriented concepts (such as encapsulation, polymorphism and inheritance). The SAS macro
language allows a programmer to customize blocks of code.

The SAS macro language continues to be popular because with each new version, base SAS and optional additional
SAS modules continue to grow more powerful, resulting in a reduced need to code complex applications or functions.
Object-oriented languages excel in applying structured discipline to complex applications, and SAS continually adds
many functions into the base and additionally licensed modules, improving the value delivered to SAS users. Since
many common functions (such as INDEX) exist, the SAS macro language mainly controls how, which, and when to
use these functions.

PostersSUGI 31

2

The goal of this paper is to provide specific design ideas for structuring macros in the most powerful way possible.
The experienced object-oriented development community defined specific design pattern applications illustrated in
this paper, but the concepts can apply to some extent to the SAS macro language.

This paper will proceed through four sections:

• First, the paper will illustrate three specific ways to trick the SAS macro language to emulate some
properties of object-oriented languages.

• Second, the paper will answer what a design pattern is and why design patterns are useful.
• Third, the paper will list seven specific design patterns and provide SAS macro language examples.
• Finally, the paper will prove some general application advice.

HOW TO TRICK THE SAS MACRO LANGUAGE
Tabladillo (2005) presents the limitations of the SAS macro language, which is a scripting language and not a full-
blown object-oriented language. However, scripting languages such as the SAS macro language continue to have
popularity because of their relative simplicity and low memory and resource overhead compared with many object-
oriented counterparts. Some scripting languages like PHP are free, and because the SAS macro language comes
with the base SAS System, it has the advantage of being essentially free to anyone who licenses that base product.

This section will provide a list of three specific tricks which allow the SAS macro language emulate some features of
object-oriented languages.

TRICK ONE: EMULATE INHERITANCE BY CUTTING AND PASTING TEXT
The SAS macro language, unfortunately, does not have direct inheritance. It would not violate the SAS macro facility
to add a %INHERIT command which would allow inheritance, and we may see such a feature in future SAS versions.
However, Tabladillo (2005) provided a way to simulate inheritance using cut-and-paste.

This trick involves using code from a SAS file, or stored in a catalog, and simply cutting and pasting the text to a new
location. The trick does not provide the same features as an object-oriented language (such as the optionally
licensed SAS/AF® software), which would dynamically reflect parent code changes without having to cut and paste
each time. Nevertheless, as long as the developer systematically keeps up with cascading changes, this technique
provides an accurate inheritance simulation.

TRICK TWO: EMULATE ALL TYPES OF VARIABLES THROUGH SAS MACRO VARIABLES
The SAS macro language only accepts characters in its interface, defined as collecting elements passed to a SAS
macro. An object-oriented language will often accept characters, numbers, arrays, and objects as uniquely defined
elements, and can possibly test whether the data passed through these variables matches the variable type expected.
The advantage of object-oriented languages is being able to test for potential errors during build time (when the
developer writes code) instead of discovering them at run time (during code submission or execution).

Still, developers can trick the SAS macro language to simulate passing other than just character variables. Many
programmers know how to pass a number, but the following code provides some ideas on how to pass an array or an
object (in this case, implemented as a nested macro):

%macro interface(char, num, array, macro);
%local major;
%macro breakarray(m, n, p, q);
data _null_;
 call symput('major',&m);
 run;
%put &m &n &p &q;
%mend breakarray;
%macro submacro(a, b);
%put &a &b;
%mend submacro;
%put &char &num &array ¯o;
* Break up the array;
%breakarray&array.;
%put &major;
* Call the named macro;
%¯o.;
%mend interface;
%interface (char=character, num=2005, array=(1,2,3,4), macro=submacro(a=5,b=c));

Figure 1. Passing different data types through a macro

PostersSUGI 31

3

The preceding example can be submitted in a base SAS session. In this example, the CHAR macro variable contains
character data, the NUM macro variable passes a number, the ARRAY macro variable contains a list or array of
numbers or characters, and the MACRO macro variable calls a specific nested macro.

The BREAKARRAY nested macro uses a CALL SYMPUT to populate the local MAJOR macro variable with the
value. The data step resolves inside the INTERFACE macro, and therefore populates the local MAJOR macro
variable. Also, the data step needs to be inside the nested BREAKARRAY macro because it requires knowledge of
the local M macro variable. The nested SUBMACRO is called within the INTERFACE macro, and the technique
illustrated allows for named parameters to be nested within the original macro call.

This code shows how a developer can pass more than just character data. Depending on the application, a
developer could customize SAS macros to emulate other typical object-oriented features such as determine the
number of elements in the array, or determine whether the elements of the array are numeric or character.

TRICK THREE: EMULATE PUBLIC METHODS (OR FUNCTIONS) BY APPLYING NESTED MACROS
The SAS macro language does not have public (externally callable) methods (or functions), as would be true in an
object-oriented language. However, the SAS macro language does allow for nested macros, which provides a way to
simulate method calls.

%macro functions(function, array);
%macro subtract(p1,p2,p3);
data _null_;
 result = &p1 - &p2 - &p3;
 put result=;
 run;
%mend subtract;
%macro add(p1,p2,p3);
data _null_;
 result = &p1 + &p2 + &p3;
 put result=;
 run;
%mend add;
%if &function. = subtract or &function. = add %then %&function.&array.;
%mend functions;
%functions (function=add, array=(p1=45,p2=34,p3=34));

Figure 2. Emulating a public method (or function) with a nested macro

The preceding example can be submitted in a base SAS session, and illustrates trick two. Developers can explicitly
trick macros to allow their internal nested macros to act as an externally available function. The call itself is NOT an
application of %IF and %THEN (which could internally decide what do call) but instead is a direct reference to a
known nested macro. Object-oriented languages often allow objects to declare their functions as public (callable from
the outside) or not, increasing security and preventing potentially unwanted results. Having covered these three
tricks, this paper will now focus on the what and why of design patterns.

DESIGN PATTERNS – WHAT AND WHY?
Shalloway and Trott (2005) cite architect Christopher Alexander’s definition of a pattern as “a solution to a problem in
context.” (Shalloway and Trott, 2005, p. 78) Moreover, they propose that patterns provide a way to solve commonly
recurring software design problems, and they provide two compelling reasons to use design patterns at all (Shalloway
and Trott, p. 84):

• Reuse solutions – programmers learn efficiencies through code reuse, and design patterns provide a way
to copy coding frameworks from one project to the next. Most coding problems follow the design patterns
described in the software development literature, and developers who know these patterns have an
advantage in both recognizing and solving similar problems in the future.

• Establish common terminology – By attaching the same terms to the same types of problems, teams of
developers can collaborate more efficiently. In other words, there is an opportunity to learn and collaborate
with the larger software development community, even people who program in different languages.

The reusable solutions rationale provides a way for software developers to gain more experience in creating complex
code. The common terminology rationale allows developers to continue to read books and articles on design
patterns, and use that knowledge to build experience based on the experience of other developers. In this author’s
opinion, the terminology associated with object-oriented languages provides the main way that application developers
can generalize their experience whether using the SAS macro language, SAS/AF® software, or any scripting or
object-oriented language.

PostersSUGI 31

4

DESIGN PATTERNS USING THE SAS MACRO LANGUAGE
Anyone who has been already using the SAS macro language will probably discover that they have already been
using some of these patterns. What follows is a list of specific patterns which can be fully or partially implemented
with the SAS macro language.

FACADE: SIMPLIFY A COMPLEX SYSTEM
From Shalloway and Trott (2005):
 Façade Pattern Key Features
Intent You want to simplify how to use an existing system. You need to define your own interface.
Problem You need to use only a subset of a complex system. Or you need to interact with the

system in a particular way.
Solution The Facade presents a new interface for the client of the existing system to use.
Consequences The Façade simplifies the use of the required subsystem. However, since the Façade is

incomplete, certain functionality may be unavailable to the client.
Table 2. Façade Pattern Key Features (Shalloway and Trott, 2005, p. 96)

The façade pattern is perhaps one of the most used ideas in the SAS macro language documentation. The idea is to
put complex code inside a macro, and simply present a macro variable interface which only contains certain unique
variables.

The following SAS macro language example shows how the Façade pattern might work. In this case, the variables
passed to the macro represent the interface. We earlier saw a way to pass character, numeric, array, and macro call
information through the macro interface. In this example, we are going to pass the name of a dataset through the
macro, which will contain a relatively complex series of commands to process that dataset.

%macro facade(dataset);
proc freq data=&dataset.;
 tables year*sales/list missing;
 run;

proc means data=&dataset.;
 var annualSales totalEmployees sumTurnover;
 run;
%mend facade;
%facade(dataset=sales.ca200503);
%facade(dataset=sales.ca200510);
%facade(dataset=sales.ca200511);

Figure 3. Façade pattern example

Because the interface does not present details, the macro call asks only for the minimum information required. In this
case, that information is the dataset name, thus satisfying the best practice of programming to as simple an interface
as possible. The façade above is the dataset name only, and the macro itself does the complex work of completing
several procedures based on this simple one-variable interface.

STRATEGY: USE DIFFERENT BUSINESS RULES DEPENDING ON CONTEXT
From Shalloway and Trott (2005):
 Strategy Pattern Key Features
Intent Allows you to use different business rules or algorithms depending on the context in which

they occur.
Problem Selecting an algorithm depends upon the client making the request or the data being acted

upon. If you simply have a rule in place that does not change, you do not need a Strategy
pattern.

Solution Separates selecting the algorithm from implementing the algorithm. Allows for the
selection to be made based upon context.

Consequences • The Strategy pattern defines a family of algorithms.
• Switches or conditionals can be eliminated.
• You must invoke all algorithms in the same way (identical interface).

Table 3. Strategy Pattern Key Features (Shalloway and Trott, 2005, pp. 153-154)

The strategy pattern allows algorithm variation based on the parameters. In this pattern, one macro implements the
algorithm, and the selection comes to the implementation macro through the macro parameters (which collectively
form the context). The family of algorithms appear as a series of nested macros, and by using the macro parameters

PostersSUGI 31

5

to choose the correct algorithm, there is no need for IF/THEN statements. The following example illustrates how to
use the strategy pattern based on the example of choosing tax processing algorithms.

data work.taxExample;
 length grossAmount totalTax 8;
 grossAmount = 34000;
 run;
%macro calculateTaxes(dataset,county);
%macro taxStrategy(county);
%macro DeKalb;
 totalTax = grossAmount * 0.06;
%mend deKalb;
%macro Fulton;
 totalTax = grossAmount * 0.075;
%mend Fulton;
%macro Gwinnett;
 totalTax = grossAmount * 0.06;
%mend Gwinnett;
%if &county. = DeKalb or &county. = Fulton or &county. = Gwinnett %then %&county.;
%mend taxStrategy;
data &dataset.;
 set &dataset.;
 %taxStrategy(&county.);
 run;
proc print data=&dataset.;
 run;
%mend calculateTaxes;
%calculateTaxes(dataset=work.taxExample, county=Fulton);

Figure 4. Strategy pattern example

The preceding strategy pattern example can be submitted in base SAS. The algorithms named DeKalb, Fulton, and
Gwinnett, after the three metro Atlanta counties, form the family of possible selections. One of these three nested
macros are chosen outside the calculateTaxes macro. Therefore, there are no IF/THEN statements involved in
choosing the specific strategy.

In production code, the nested tax calculation macros could become complex, and it is likely that developers would
use more parameters. The main point is that developers can strategically choose nested macros from outside a
single implementation macro.

SINGLETON: HAVE ONLY ONE OBJECT AVAILABE
From Shalloway and Trott (2005):
 Decorator Pattern Key Features
Intent You want to have only one of an object but there is no global object that controls object

instantiation.
Problem Several different client objects need to refer to the same code and you want to ensure that

you do not have more than one of them.
Solution Guarantees one instance.
Consequences Clients need not concern themselves whether an instance of the singleton object exists.
Table 4. Singleton Pattern Key Features (Shalloway and Trott, 2005, p. 363)

By definition, the SAS macro language only allows for one macro object to exist. There cannot be multiple
instantiations (uniquely named copies), because instantiation is not a SAS macro language feature. Instantiation
implies classes (a single master source to copy and name), and there are no SAS macro classes. Perhaps a purist
language analyst might view the macro as a class and the macro call to be a singleton instance (copy). However, this
author prefers to consider the macro as a single object because the macro call does not allow for explicitly naming the
new instantiation with any arbitrary unique name, but only allows the original name.

Putting these complex subtleties aside, the SAS macro language only allows for one instance of a macro, period.
Therefore, a developer does not introduce special code because the SAS session is a global object (where, for
example, a global macro variable might exist), and at any specific time, will only allow one operative version of a
macro. Recalling the earlier strategy example, a singleton macro inherently could be a good place to store tax
calculation rules because there would be one and only one rate reference. In general, the singleton pattern allows
developers to store reference data or reference code.

PostersSUGI 31

6

The base SAS session is where global macro variables are defined, and it is a place for global singleton macros to
reside too. However, since macros can be called from several locations, the macro hierarchy defines which single
definition takes precedence:

When you call a macro, the macro processor searches for the macro name using this sequence:
1. the macros compiled during the current session
2. the stored compiled macros in the SASMACR catalog in the specified library (if options MSTORED

and SASMSTORE= are in effect)
3. each autocall library specified in the SASAUTOS option (if options SASAUTOS= and

MAUTOSOURCE are in effect).
(SAS Institute, 2005)

Finally, note that if you define a macro in a SAS session, then define it again, the SAS macro facility will consider the
last submitted definition to be the current definition. Multiple macro submissions are a way to override, or change the
definition, of a macro.

DECORATOR: ATTACH ADDITIONAL RESPONSIBILITIES DYNAMICALLY
From Shalloway and Trott (2005):
 Decorator Pattern Key Features
Intent Attach additional responsibilities to an object dynamically.
Problem The object that you want to use does the basic functions you require. However, you may

need to add some additional code to the object occurring before or after the object’s base
functionality.

Solution Allows for extending the functionality of an object without resorting to subclassing.
Consequences Functionality that is to be added resides in small objects. The advantage is the ability to

dynamically add this function before or after the core functionality.
Table 5. Decorator Pattern Key Features (Shalloway and Trott, 2005, p. 308)

Developers need a full object-oriented language to accurately implement the decorator pattern. Though inheritance
can be completely simulated with the SAS macro language, the decorator pattern lacks classes (generic objects) in
the macro language. Only objects, the macros, exist. However, the following example demonstrates a partially
implemented decorator pattern which provides some of the main features.

%macro messyMacro(num,char);

* Messy Macro;
%put MessyMacro &num. &char.;

%mend messyMacro;

%macro decoratorBefore(parameters);

%put Before;
%messyMacro¶meters.;

%mend decoratorBefore;

%macro decoratorBeforeAndAfter(parameters);

%put Before;
%messyMacro¶meters.;
%put After;

%mend decoratorBeforeAndAfter;

%macro decoratorAfter(parameters);

%messyMacro¶meters.;
%put After;

%mend decoratorAfter;

%decoratorBeforeAndAfter(parameters=(num=1,char=SAS));

Figure 5. Decorator pattern example

The preceding decorator pattern example can be submitted in base SAS. The messyMacro has only a few lines, but
represents what could be complex and long code. Perhaps this complex macro represents a macro stored in a
shared SAS catalog, one used successfully for years, and currently being used by many people.

The decorator pattern provides a way to add code either before or after this messyMacro. Three variations are
provided, though in the general decorator pattern, there could be any number of macros which had code before, and
any number of the other two variations (named before and after, and after). Again, this implementation is not the full
decorator pattern since true object-oriented languages can have uniquely named multiple objects, while the SAS
macro language only allows for one object (or macro) to be available.

PostersSUGI 31

7

TEMPLATE METHOD: APPLY DISCIPLINE TO THE FUNCTIONS AVAILABLE INSIDE MACROS
From Shalloway and Trott (2005):
 Template Method Pattern Key Features
Intent Define the skeleton of an algorithm in an operation, deferring some steps to subclasses.

Redefine the steps in an algorithm without changing the algorithm’s structure
Problem There is a procedure or set of steps to follow that is consistent at one level of detail, but

individual steps may have different implementations at a lower level of detail.
Solution Allows for definition of substeps that vary while maintaining a consistent basic process.
Consequences Templates provide a good platform for code reuse. They are also helpful in ensuring the

required steps are implemented.
Table 6. Template Method Pattern Key Features (Shalloway and Trott, 2005, p. 342)

The template pattern can only be fully implemented using a full object-oriented language. Though inheritance can be
simulated with the SAS macro language, there is no class structure, only objects (the macros). However, the
following example demonstrates a partially implemented template pattern which provides some of the main features.

%macro accessSAS(connectParameters,selectRecordParameters);
%macro connectDB(num,char);
%put SAS ConnectDB;
%mend connectDB;
%macro selectRecords(num,char);
%put SAS Record Selection;
%mend selectRecords;
%macro doQuery;
* doQuery is the same for all macros;
%connectDB&connectparameters.;
%selectRecords&selectRecordParameters.;
%mend doQuery;
%doQuery;
%mend accessSAS;

%macro accessSQLServer(connectParameters,selectRecordParameters);
%macro connectDB(num,char);
%put SQL Server ConnectDB;
%mend connectDB;
%macro selectRecords(num,char);
%put SQL Server Record Selection;
%mend selectRecords;
%macro doQuery;
* doQuery is the same for all macros;
%connectDB&connectparameters.;
%selectRecords&selectRecordParameters.;
%mend doQuery;
%doQuery;
%mend accessSQLServer;

%accessSAS(connectParameters=(num=1,char=SAS),
selectRecordParameters=(num=2,char=SAS));
%accessSQLServer(connectParameters=(num=1,char=SQLServer),
selectRecordParameters=(num=2,char=SQLServer));

Figure 6. Template method pattern example

The preceding template method pattern example can be submitted in base SAS. The main point is that the
accessSAS and accessSQLServer macros have the same nested macros, called connectDB and selectRecords.
Since nested macros emulate methods, the two nested macros are the template methods. If the SAS macro
language had the ability to define parents, we would have put these two nested macros into the parents, making sure
that all the children macros would have copies. The children macros could optionally choose to go with the default
(parent definition) or override the definition with their own unique definition.

In the SAS macro language, we do not have parents, but we can manually apply genetic discipline by making sure
that the nested macros have the same names and similar (but not identical) function. The advantage of using nested
macros with the same name includes ensuring complete coding in complex situations. This example only has two
nested macros, but more complex macros could have a larger group of nested macros, perhaps ten or twenty. If we
were to add a new macro called accessOracle, then we could start with the template provided by the other access

PostersSUGI 31

8

macros, and make sure all the nested macros genetically replicated previous work.

ANALYSIS MATRIX: HIGH-VOLUME MACRO PROCESSING
From Shalloway and Trott (2002):
 Analysis Matrix Method Pattern Key Features
Intent Provide a systematic way to surface varying dimensions of change.
Problem Variations in the system need to be made explicit so that applying design patterns

becomes easier.
Solution Create a matrix which documents the concepts which are varying. Matrix creation can help

the developer discover the concepts that are varying, find points of commonality, and
uncover missing requirements.

Consequences The final design is optimized for the surfaced dimensions, and refactoring may be required
if dimensions are added or removed.

Table 7. Analysis Matrix Pattern Key Features (Shalloway and Trott, 2002, pp. 279-295)

For example, Shalloway and Trott (2005) provide the following example analysis matrix which allows an analyst to
enumerate combinations of processing rules, in this case applied to shipping:

 U.S. Sales Canadian Sales German Sales
Calculate freight Combination Combination Combination
Verify address Combination Combination Combination
Calculate tax Combination Combination Combination
Money Combination Combination Combination
Dates Combination Combination Combination
Maximum Weight Combination Combination Combination
Table 8. Analysis Matrix Application (Shalloway and Trott, 2005, p. 286)

The eighteen unique combinations (6 rows times 3 columns) are not necessarily one-line formulas or numeric
multiplying parameters, but any of the combinations could be a series of complex IF/THEN statements which define
context-specific business rules. A developer could first document requirements for each of the eighteen
combinations. Next, the developer examines the combinations, and decides what minimal information uniquely
distinguishes combinations from one other. That minimal amount of information becomes the macro parameters,
which could be character, numeric, an array, or a macro (as shown under the tricks section). The developer then
encapsulates all other code inside the macro or nested macros.

Once the analysis produces that minimal amount of information, the developer can story a table of varying
parameters in a SAS dataset, and use that information to call the macro(s). In this author’s opinion, storing the
parameters in a dataset is an application of the analysis matrix as a creational design pattern. The cited text
considers the analysis matrix to be a powerful development tool which could result in the concurrent application of
several design patterns, and the author recommends studying Shalloway and Trott (2005) to learn generic
application. However, by keeping the parameter information in a dataset allows the matrix structure to remain intact,
and therefore the matrix becomes part of the overall code design. The data could be stored in any array, including
SAS format.

In the example above, there are only three countries listed, and only six types of shipping considerations. However,
using a SAS dataset to hold the parameters could allow for hundreds of countries, and even going to a more detailed
level (in the United States, to states, counties, and zip codes). Companies who do high-volume shipping have a
complex matrix of rules based on carriers and all sorts of parameters beyond the five types illustrated. Design pattern
examples typically show a small portion of code as part of a larger system, and in this case, it is possible to see how
these concepts can easily expand to examples far beyond the presented eighteen combination example.

The following code illustrates a way to use a SAS dataset to call macros. Again, the economies of scale are justified
when there are many variations, and example below provides a visual idea of how much code it costs to implement
this solution.

data work.shippingMatrix;
 length freight address tax money dates country $64;
 freight = ‘(a,1,a)’; address = ‘(b,2,b)’; tax = ‘(c,3,c)’;
 money = ‘(d,4,d)’; dates = ‘(e,5,e)’;
 country = ‘United States of America’; output;
 country = ‘Canada’; output;
 country = ‘Germany’; output;
 run;

PostersSUGI 31

9

%macro processingMacro(freight,address,tax,money,dates,country);
%put Processing Macro &freight. &address. &tax. &money. &dates. &country.;
%mend processingMacro;

%macro analysisMatrix(dataset);
%local systemError datasetID returnCode totalObs;
%local matrixFreight matrixAddress matrixTax matrixMoney matrixDates matrixCountry;
%let systemError = 0;
%let datasetID = 0;
%if %sysfunc(exist(&dataset,DATA)) %then %do;
* Open the dataset by obtaining a numeric datasetID;
 %let datasetID = %sysfunc(open(&dataset,i));
 %if &datasetID. > 0 %then %put Dataset Successfully Opened: &datasetID.;
 %else %do;
 %put ERROR IN OPENING DATASET &dataset. – DatasetID = &datasetID.;
 %let systemError = 1;
 %end;
%end;
%else %do;
 %put Dataset &dataset. does not exist;
 %let systemError = 1;
%end;
%if not(&systemError.) %then %do;
 * Obtain the number of dataset observations (rows);
 %let totalObs = %sysfunc(ATTRN(&datasetID.,NLOBS));
 %if &totalObs. > 0 %then %put Total Dataset Observations: &totalObs.;
 %else %do;
 %put ERROR INSUFFICIENT OBSERVATIONS IN &dataset. -- DatasetID = &datasetID.;
 %let systemError = 1;
 %end;
%end;
%if not(&systemError.) %then %do;
 %do counter = 1 %to &totalObs.;
 %let returnCode = %sysfunc(fetchobs(&datasetID.,&counter.));
 %if &returnCode. = 0 %then %do;
 %let matrixFreight = %sysfunc(getvarc(&datasetID.,%sysfunc(varnum(&datasetID.,freight))));
 %let matrixAddress = %sysfunc(getvarc(&datasetID.,%sysfunc(varnum(&datasetID.,address))));
 %let matrixTax = %sysfunc(getvarc(&datasetID.,%sysfunc(varnum(&datasetID.,tax))));
 %let matrixMoney = %sysfunc(getvarc(&datasetID.,%sysfunc(varnum(&datasetID.,money))));
 %let matrixDates = %sysfunc(getvarc(&datasetID.,%sysfunc(varnum(&datasetID.,dates))));
 %let matrixCountry = %sysfunc(getvarc(&datasetID.,%sysfunc(varnum(&datasetID.,country))));
 * After the matrix variables have been populated, then call the processing macro;
 %processingMacro(freight=&matrixFreight.,address=&matrixAddress.,tax=&matrixTax.,
 money=&matrixMoney.,dates=&matrixDates.,country=&matrixCountry.);
 %end;
 %end;
%end;
%if &datasetID. > 0 %then %do;
 * Close the dataset;
 %let returnCode = %sysfunc(close(&datasetID.));
 %if &returnCode. = 0 %then %do;
 %let datasetID = 0;
 %put Dataset Successfully Closed;
 %end;
 %else %do;
 %put ERROR IN CLOSING DATASET &datasetID.;
 %let systemError = 1;
 %end;
%end;
%mend analysisMatrix;
%analysisMatrix(dataset=work.shippingMatrix);

Figure 7. Analysis matrix pattern example

The preceding analysis matrix pattern example can be submitted in base SAS. The key functions such as OPEN,
CLOSE, ATTRN, FETCHOBS, and GETVARC are normally associated with SAS/AF® software, but are included in
the base SAS license. The simplified test dataset does not have any variation in the parameters other than country,
but that type of variation could include a variable number of named macro parameters depending on the specific
country. The code above includes error condition checking, which is always a good idea because abnormal
terminations could result in locked datasets. Included with the error checking are %PUT notification statements which
provides processing messages in the SAS log.

When the %SYSFUNC parameter runs functions, parameter quotation marks (which you might see in some SAS
documentation examples) are dropped for enumerated constants. Also, variables are implemented using macro
variables preceded by an ampersand. For example, the table below summarizes these requirements using the OPEN
function.

PostersSUGI 31

10

 Enumerated Constant Variable Example of Final Form
Without %SYSFUNC ‘constant’ dataset open(dataset,’constant’)
With %SYSFUNC Constant &dataset. %sysfunc(open(&dataset.,constant))
Table 9. Illustration of how to call functions inside %SYSFUNC

GENERAL APPLICATION ADVICE
One might conclude that these seven patterns describe seven different types of programs. However, developers
should analyze and synthesize applications using several patterns concurrently. In other words, distinct patterns do
not usually become specific individual programs (though they often could be). Shalloway and Trott (2005, pp. 279-
295) provide a specific analysis matrix application which relies on several patterns.

In this paper, all the SAS macro language examples used the façade pattern in presenting a simplification of code
encapsulated inside a macro. Also, as argued, the SAS macro language automatically applies a singleton definition
by default. This author believes that all scripting languages have these types of restrictions (considered as “features”,
once one knows design patterns) which beneficially require everyone to use multiple design patterns every time they
code. Requisite structure proves how any scripting language has inherent structural power.

In general, developers may want to go beyond the minimal discipline inherent to scripts. For example, the optionally
licensed SAS/AF® software provides a way to use full object-oriented programming with SAS software. Other ways
include the optional webAF™ software (which uses Java) and SAS® Integration Technologies (which exposes SAS to
Windows .NET development). This author’s observation, however, is that scripting languages (including HTML,
Cascading Style Sheets, Perl, PHP, Cold Fusion, and Javascript) will continue to remain popular.

In this paper, I only considered one scripting language, the SAS macro language. Developers can intelligently apply
design patterns to create sophisticated applications among several languages, and this author has combined
SAS/AF, SAS macro, and Visual Basic. Developers who continue to learn the vocabulary and structure of common
design patterns become better equipped to write and debug code more quickly even if they never use a fully object-
oriented language.

CONCLUSION
This paper demonstrated specific design patterns which can be partially or fully implemented with the SAS macro
language. The author recommends Shalloway and Trott (2002) to provide further understanding of how to apply
object-oriented concepts, and uses examples in this paper to complement the examples from this book. This book
excels in not only defining and describing patterns, but also providing extensive and detailed coaching, far beyond the
advice contained in this paper, on how to best apply design patterns in a production environment. A larger challenge
is the original Design Patterns (Gamma, et. Al., 1995), a comparatively difficult text because it reads more like a
dictionary rather than a training manual. Finally, there are many other object-oriented resources available on the web,
and by typing in the keywords design pattern or the specific names of patterns, a developer can potentially discover
helpful free documentation.

REFERENCES
Fowler, Martin (1999), Refactoring: Improving the Design of Existing Code, Reading, MA: Addison Wesley Longman,
Inc.
Gamma, E., Helm, R., Johnson, R., Vlissides, J. (1995), Design Patterns: Elements of Reusable Object-Oriented
Software, Reading, MA: Addison Wesley Longman, Inc.
SAS Institute Inc. (2005), SAS OnlineDoc® 9.1.3, Cary, NC: SAS Institute, Inc.
Shalloway, A., and Trott, J. (2005), Design Patterns Explained: a New Perspective on Object-Oriented Design
(Second Edition), Boston, MA: Addison-Wesley, Inc.
Tabladillo, M. (2005), “Macro Architecture in Pictures”, SUGI Proceedings, 2005.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Mark Tabladillo
MarkTab Consulting
Web: http://www.marktab.com/

TRADEMARK CITATION
SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are
trademarks of their respective companies.

PostersSUGI 31

	SUGI 31 Proceedings Table of Contents

