
Avaya Aura® Application Enablement Services

JTAPI Programmer’s Guide

02-603488

Release 7.0

May 2016

Issue 1.0

© 2016 Avaya Inc. All Rights Reserved

Notice



While reasonable efforts were made to ensure that the information in this document was 
complete and accurate at the time of printing, Avaya Inc. can assume no liability for any errors. 
Changes and corrections to the information in this document may be incorporated in future 
releases.

For full support information, please see the complete document,

Avaya Support Notices for Software Documentation, document number 03-600758.

To locate this document on our Web site, simply go to http://www.avaya.com/support and 
search for the document number in the search box.

Documentation disclaimer

Avaya Inc. is not responsible for any modifications, additions, or deletions to the original 
published version of this documentation unless such modifications, additions, or deletions were 
performed by Avaya. Customer and/or End User agree to indemnify and hold harmless Avaya, 
Avaya's agents, servants and employees against all claims, lawsuits, demands and judgments 
arising out of, or in connection with, subsequent modifications, additions or deletions to this 
documentation to the extent made by the Customer or End User.

Link disclaimer

Avaya Inc. is not responsible for the contents or reliability of any linked Web sites referenced 
elsewhere within this documentation, and Avaya does not necessarily endorse the products, 
services, or information described or offered within them. We cannot guarantee that these links 
will work all of the time and we have no control over the availability of the linked pages.

Warranty

Avaya Inc. provides a limited warranty on this product. Refer to your sales agreement to establish
the terms of the limited warranty. In addition, Avaya’s standard warranty language, as well as 
information regarding support for this product, while under warranty, is available through the 
following Web site: http://www.avaya.com/support.

Copyright

Except where expressly stated otherwise, the Product is protected by copyright and other laws 
respecting proprietary rights. Unauthorized reproduction, transfer, and or use can be a criminal, 
as well as a civil, offense under the applicable law.

Avaya support

Avaya provides a telephone number for you to use to report problems or to ask questions about 
your product. The support telephone number is 1-800-242-2121 in the United States. For 
additional support telephone numbers, see the Avaya Web site: http://www.avaya.com/support.

Application Enablement Services JTAPI Programmer’s Guide Page 2 of 88

http://www.avaya.com/support
http://www.avaya.com/support


CONTENTS 



1. About this Document

1.1 Scope of this Document
This document shows you how to use the Application Enablement (AE) Services JTAPI 
implementation to develop, debug, and deploy telephony applications.

 Chapter 1: “About this document” details certain pre-requisites required to read this 
document and lists supporting reference documents.

 Chapter 2: “Avaya JTAPI Implementation” provides background information about JTAPI 
in general and the AE Services JTAPI implementation in particular.

 Chapter 3: “Getting Started” gets you ready to configure and program to this API, as well 
as walk through the JTAPI Exerciser and sample code.

 Chapter 4: “Writing a client application” and Chapter 5: “Compiling and Debugging” guide 
you in developing and debugging applications.

 Appendix A and Appendix B list Avaya specific deviations and enhancements to the 
JTAPI API respectively.

 Appendix C is a useful reference for TSAPI developers starting to use JTAPI or vice 
versa. It also provides a mapping of deprecated observer style events that were the norm
in JTAPI 1.2 to their JTAPI 1.4 listener equivalents.

 Appendix D lists all of the values for the TSAPI error codes.

 The Glossary defines the terminology and acronyms used in this document.

1.2 Intended Audience
This document is written for application developers. A developer must know:

 Java™

 Telephony concepts

 JTAPI object model

You do not need to understand Avaya Aura® Communication Manager features and concepts, 
but such an understanding might be helpful.

If you are new to JTAPI, you may wish to start by reading the JTAPI overview whitepaper at the 
following link:

http://java.sun.com/products/jtapi/reference/whitepapers/index.html

Additionally, consider reading a portion of the JTAPI 1.4 specification, which can be found here:

http://java.sun.com/products/jtapi/

Upon downloading and unzipping the archive for the 1.4 specification, open the index.html file.  
After clicking the Description link at the top of this page, you will find several Overview 
paragraphs.  Click the JTAPI core Overview link for a helpful overview of JTAPI concepts.

The Avaya JTAPI Javadoc, Avaya Aura® Application Enablement Services JTAPI Programmers 
Reference, can be found online on the Avaya DevConnect Web site 
(http://www.avaya.com/devconnect) and on the Avaya Support Web site 
(http://www.avaya.com/support) under “Communication Systems”.

For those new to Avaya Communication Manager, you may wish to take a course from Avaya 
University (http://www.avaya.com/learning) to learn more about Avaya Aura® Communication 
Manager and its features. It is recommended that you start with the Avaya Aura® Communication
Manager Overview course (course ID AVA00383WEN).

http://www.avaya.com/learning
http://www.avaya.com/support
http://www.avaya.com/devconnect
http://java.sun.com/products/jtapi/
http://java.sun.com/products/jtapi/reference/whitepapers/index.html


1.3 Conventions used in this document
The following fonts are used in this document:

To represent... This font is used...

Java class, method and field names the getDeviceID method

Window names The buttons are assigned on the Station form

Browser selections Select Member Login

Hypertext links Go to the http://www.avaya.com/support 
website.

1.4 Related documents
While planning, developing, deploying, or troubleshooting your application, you may need to 
reference other Avaya Aura® Application Enablement Services documents, Avaya Aura® 
Communication Manager documents, or JTAPI documents listed below.

1.4.1 Application Enablement Services documents
For developers, the other important source of Java API information is the Javadoc:

 Avaya Aura® Application Enablement Services JTAPI Programmers Reference

Here you can find details about each package, interface, class, method, and field in the API.  You
can also find out what parts of the JTAPI protocol have been implemented.

Other Application Enablement Services documents include:

 Avaya Aura®  Application Enablement Services Overview (02-300360)

 Avaya Aura®  Application Enablement Services Installation and Upgrade Guide for a 
Software Only Offer (02-300355)

 Avaya Aura®  Application Enablement Services Installation and Upgrade Guide for a 
Bundled Server (02-300356)

 Avaya Aura®  Application Enablement Services Administration and Maintenance Guide 
(02-300357)

 Avaya Aura®  Application Enablement Services OAM Help (HTML)

 Avaya Aura®  Application Enablement Services 7.0 TSAPI for Avaya Aura® 
Communication Manager Programmer’s Reference (02-300544)

You can find all these documents online on the Avaya Support Center Web Site: 
http://support.avaya.com.

1.4.2 Avaya Aura® Communication Manager documents
Since JTAPI gives you programmable access to Avaya Aura® Communication Manager features,
you may wish to reference documents about that system. The following documents from the 
Avaya Aura® Communication Manager documentation set provide additional information about 
administering Avaya Aura® Communication Manager. They are on the Avaya Support Centre 
Web Site (http://www.avaya.com/support).

 Administering Avaya Aura® Communication Manager  (03-300509)

http://www.avaya.com/support
http://support.avaya.com/
http://www.avaya.com/support


 Avaya Aura® Communication Manager Feature Description and Implementation (555-
245-205)

1.4.3 JTAPI documents
The Java Programmers Reference (Javadoc) contains much of what you need to know about the 
JTAPI API. For JTAPI details not found in the Javadoc or this document, please refer to the 
JTAPI specification. The specification and API documents can be downloaded from the Java 
Community Process page for JTAPI - 
http://jcp.org/aboutJava/communityprocess/final/jsr043/index.html:

 JTAPI 1.4 specification

1.5 Providing documentation feedback
Let us know what you like or do not like about this document. Although we cannot respond 
personally to all your feedback, we promise we read each response we receive. Please email 
feedback to document@avaya.com

Thank you.

http://jcp.org/aboutJava/communityprocess/final/jsr043/index.html


2. AE Services 7.0.x Modifications

2.1 Update for AE Services 7.0.1 server

 Support for the TLSv1.2 protocol on AE Services server 7.0.1

In AE Services 7.0.1, only the Transport Layer Security (TLS) 1.2 protocol is enabled by default. 
The lower level TLS protocols 1.0 and 1.1 are disabled by default. Note, according to the National
Institute of Standards and Technology (NIST) Special Publication 800-52,  TLS version 1.1 is 
required, at a minimum, in order to mitigate various attacks on the TLS 1.0 protocol. The use of 
TLS 1.2 is strongly recommended. 

This change may cause older AE Services clients (version AE Services 7.0 and earlier) that are 
using TLS to fail to establish a secure socket connection to the AE Services 7.0.1 server. In order
to achieve a more secure client/server socket connection, we encourage current client 
applications to use an AE Services 7.0 SDK where the TLS 1.2 protocol is supported. Note, all 
the latest versions of the AE Services 7.0 SDKs support TLS 1.2. If upgrading to AE Services 7.0 
SDK is not a viable option, an AE Services administrator can enable the TLS 1.1 and/or TLS 1.0 
protocol via the AE Services Management Console web interface.  Note, all three TLS protocol 
versions can be active at the same time. This allows a gradual migration of current client 
applications to move towards a more secure TLS protocol over a period of time.



3. Avaya implementation of JTAPI
This chapter provides a high level overview of JTAPI concepts and packages 

Avaya has implemented the following packages.  

 JTAPI Core Package (javax.telephony)

 JTAPI Core Events Package (javax.telephony.events)

 JTAPI Call Center Package (javax.telephony.callcenter)

 JTAPI Call Center Events Package (javax.telephony.callcenter.events)

 JTAPI Call Control Package (javax.telephony.callcontrol)

 JTAPI Call Control Events Package (javax.telephony.callcontrol.events)

 JTAPI Media Package  (javax.telephony.media)

 JTAPI Media Events Package  (javax.telephony.media.events)

 JTAPI Private Data Package  (javax.telephony.privatedata)

Note: The JTAPI Phone Package and the JTAPI Phone Events Package are not supported.  
Many of the features represented by these packages are available from the AE Services Device, 
Media and Call Control API.

Please refer to Appendix A for a full description of the behavior you can expect when you invoke 
Avaya’s implementation of certain JTAPI methods.
Please refer to Appendix B for a description of Avaya specific enhancements to the JTAPI 
specification.

3.1 Understanding basic concepts of JTAPI
Before getting into package details, let’s understand a few basic concepts of JTAPI. JTAPI stands
for Java Telephony API. It is a standard that was created through the Java Community Process 
(JCP).  JTAPI 1.4 is specified by Java Specification Request (JSR) 43. 

The following diagram shows the JTAPI call model and the objects that compose the call model. 
A description of each object follows the diagram.   The diagram and descriptions were largely 
taken directly from the JSR 43 specification.  Further details can be found in that specification.



Figure 1: JTAPI Call Model

Provider Object 
The Provider object is an abstraction of telephony service-provider software. In the case of 
Avaya, the Provider is an abstraction of a Communication Manager. A Provider hides the service-
specific aspects of the telephony subsystem and enables Java applications and applets to 
interact with the telephony subsystem in a device-independent manner.  The Provider is the core 
object with which a JTAPI application interacts to obtain references to the other JTAPI objects 
described below.

Call Object 
The Call object represents a telephone call, the information flowing between the service provider 
and the call participants. A telephone call comprises a Call object and zero or more connections. 
In a two-party call scenario, a telephone call has one Call object and two connections. A 
conference call is three or more connections associated with one Call object. 

Address Object 
The Address object represents a telephone number. It is an abstraction for the logical endpoint of 
a telephone call. Note that this is quite distinct from a physical endpoint. In fact, one address may 
correspond to several physical endpoints (i.e. Terminals) 

Connection Object 
A Connection object models the communication link between a Call object and an Address 
object. This relationship is also referred to as a "logical" view, because it is concerned with the 
relationship between the Call and the Address (i.e. a logical endpoint). Connection objects may 



be in one of several states, indicating the current state of the relationship between the Call and 
the Address. These Connection states are summarized later. 

Terminal Object 
The Terminal object represents a physical device such as a telephone and its associated 
properties. Each Terminal object may have one or more Address Objects (telephone numbers) 
associated with it, as in the case of some office phones capable of managing multiple call 
appearances. The Terminal is also known as the "physical" endpoint of a call, because it often 
corresponds to a physical piece of hardware. 

TerminalConnection Object 
TerminalConnection objects model the relationship between a Connection and the physical 
endpoint of a Call, which is represented by the Terminal object. This relationship is also known as
the "physical" view of the Connection (in contrast to the Connection, which models the logical 
view). The TerminalConnection describes the current state of relationship between the 
Connection and a particular Terminal. The states associated with the TerminalConnection are 
described later in this document. 

3.2 Avaya implementation of standard JTAPI API
Most method calls are implemented faithfully as specified by the JTAPI specification with certain 
notable deviations. These deviations are mainly of the following types,

 Extra pre-conditions or CM / AE server settings required

 unsupported methods 

 certain method post conditions
Please refer to Appendix A for more information.

3.3 Avaya extensions to JTAPI
The Avaya JTAPI implementation provides value-added extensions to the standard JTAPI 
specification. 

These extensions fall under four main categories:

 Extensions to JTAPI  exceptions (to provide CSTA/ACS error codes)

 Extensions to JTAPI provider events (to provide low level information regarding the 
provider state)

 Avaya Aura® Communication Manager extensions to JTAPI exposing CM features to a 
JTAPI application

 Private data extensions to JTAPI (to assist independent switch vendors in the creation of 
a private data package for their switches, or allow application programmers to use or 
interpret private data when they are supplied with private data in its raw form)

Most extensions are provided via interfaces in the com.avaya.jtapi.tsapi package that extend the 
standard JTAPI interfaces. 

Please refer to Appendix B for more information.



4. Getting Started
This section describes what you need to do and what you need to know before you begin 
programming to this API.

4.1 Understanding the Avaya JTAPI architecture
The diagram below illustrates the architecture for the Avaya implementation of JTAPI. Application 
invocations on JTAPI objects result in CSTA 1 messages being exchanged with the TSAPI service 
on AE Services.  The TSAPI service then converts between CSTA 1 and ASAI and exchanges 
ASAI messages with CM.

It is important to note that the JTAPI operational model is quite different than the CSTA operational 
model.  That means that the Avaya JTAPI library is a rather sophisticated piece of software.  It does
not simply translate a method invocation to a single CSTA message and vice versa.  Instead, it 
must maintain call state and often translate a method invocation into a series of CSTA messages.

Figure 2: Avaya JTAPI architecture

4.1.1 Tlink
A Tlink (or T-Link) represents a TSAPI CTI link between the AE Services server and 
Communication Manager. When a TSAPI link is provisioned on the AE Services server, the TSAPI 
Service generates a Tlink identifier for the TSAPI link. There can only be one TSAPI CTI link (When
the security for a TSAPI CTI link is adminsitered as "both" [encrypted and unencrypted], there are 
two Tlink identifiers associated with the TSAPI CTI link) for one AES-Avaya Aura® Communication 
Manager combination. However, multiple Tlinks can be created between one AE Services server 
and multiple Communication Managers or vice-versa. Thus, multiple TSAPI CTI links will allow a 
JTAPI application to work with any number of AE servers each fronting up to 16 CM servers with 
unique identifiers for each of those pairs.  

Each JTAPI application needs to specify one of the available Tlinks at the time of establishing a 
connection to the TSAPI Service on the AE Services server..Through the chosen Tlink, the TSAPI 
service learns which CM the application wishes to interact with on this session.  (A single AES may 
support multiple CM systems).

The Tlink is of type String and has following format: 

AVAYA#Switch_Connection#Service_Type#AE_Services_Server_Name 

For example AVAYA#CMSIM#CSTA#AESSIM, where 

1. “AVAYA” is a fixed constant. 

2. Switch_Connection is a unique name assigned to identify a switch (i.e., Communication 

Manager). In general, hostname of the switch is assigned as the name of Switch 

Connection in the AE Services server. 

3. Service_Type: refers to the CSTA service type. It can be either of the following: 

o “CSTA” – when accessing an unencrypted TSAPI Link (non-secure connection). 

o “CSTA-S” – when accessing an encrypted TSAPI Link (secure connection). 

The CSTA versus CSTA-S service types specify whether or not encryption is used 

between the application and the AE Services server. 



4. AE_Services_Server_Name represents the host name of the AE Services server which is 

assigned during the AE Services installation. 

4.1.1.1 Alternate TLINK
As of Release 4.1.0, AE Services introduces the Alternate Tlinks feature to provide a link
failover capability for the JTAPI client. To effect this failover capability you must specify the 
alternate Tlinks in the JTAPI Configuration file.

Note: When multiple AE Servers are used as alternates, the username and password
specified by the application in the getProvider() request should be configured
identically for each AE Server.

Follow these steps to set up a list of alternate Tlinks in the TSAPI.PRO file (this file is a JTAPI 
configuration file. Refer section 3.2.4 for more details). You are essentially adding statements that 
specify a list of alternate Tlinks for the TSAPI Service.

 Locate the TSAPI.PRO file and open for editing (explained later)

 Add a list of alternate Tlink entries, using the following format. 
Alternates (TLINK) = TLINK1:TLINK2:TLINK3:TLINK4

where:

Alternates is the label for the first ordered list (you can have up to 16 lists)
(TLINK) is the name of the preferred Tlink, for example (AVAYA#CM1#CSTA#AESRV1). Be sure 
to enclose the preferred Tlink name in parentheses.
= The equal sign is a separator between the preferred Tlink, and the list of 1 to 4 alternate Tlinks. 
You must use the equal sign (=) to separate the preferred Tlink and the list of additional alternate 
Tlinks.
TLINK1:TLINK2:TLINK3:TLINK4 is an ordered list of Tlink names that are used as alternates if the
preferred Tlink is not available. Be sure to separate each Tlink name with a colon. You can specify 
from 1 to 4 Tlinks for each list of alternates.

Examples

In Example 1, there are two AE Servers, AESRV1 and AESRV2, that each have a TSAPI link to the
same switch, CM1. If AESRV1 is unavailable, the TSAPI client will attempt to use AESRV2 instead 
of AESRV1.

Example1
Alternates(AVAYA#CM1#CSTA#AESRV1)=AVAYA#CM1#CSTA#AESRV2

In Example 2, there are four AE Servers that each have a TSAPI link to the same switch, CM1.
If AESRV1 is unavailable, the TSAPI client will attempt to use AESRV2 instead of AESRV1.
If AESRV2 is also unavailable, then the TSAPI client will attempt to use AESRV3.
If AESRV3 is also unavailable, then the TSAPI client will attempt to use AESRV4.
If AESRV4 is also unavailable, then the TSAPI client will not be able to establish a connection with 
an AE server.

Example 2
Alternates(AVAYA#CM1#CSTA#AESRV1)=AVAYA#CM1#CSTA#AESRV2:AVAYA#CM1#CSTA
#AESRV3:AVAYA#CM1#CSTA#AESRV4

4.2 Setting up the development environment
Applications can be developed in any environment supporting Sun Microsystems™ Java 2 
Platform, Standard Edition (J2SE™) 1.5 or higher.



4.2.1 Downloading the Java SDK
With release 6.2 onwards, the JTAPI SDK supports OpenJDK (Open Java Development Kit), a free
and open source implementation of the Java programming language. The AE Services  server side
Java services are based on OpenJDK 8 (aka OpenJDK 1.8) and the AE Services  JTAPI SDK can
use either OpenJDK 8 or Oracle JDK 8.

A release of 32-bit OpenJDK 8 for both Linux and Windows is available for download from the
Avaya Support and DevConnect websites at no charge.

Note: JDK 1.4.2 or earlier versions are not supported.

4.2.2 Downloading the Application Enablement Services JTAPI SDK
Here are the hardware and software requirements for JTAPI SDK.

CPU Any platform that supports Oracle’s Java Virtual Machine (VM),
Version 1.04 or later

Disk Space 20 MB

Browser Internet Explorer (6.0 or later)

Java Development Kit 
(JDK)

AE Services requires Java SE SDK 8 or open JDK 8, or later.

To download the Application Enablement Services JTAPI SDK from the Avaya DevConnect Web 
site:

1. Go to http://www.avaya.com/devconnect.

2. Select Member Login.

3. Log in with your email address and password. If you do not have a login, then the link referenced
above will give you the details about the DevConnect membership.

4. Click Downloads.

5. Click Java Telephony API (JTAPI).

6. Click the arrow after Programming Resources, then check the Software Development Kits 
check box.

6. From the list of results, select the appropriate download – 

 Avaya Aura Application Enablement Services 7.0 JTAPI SDK and Client (Windows)

 Avaya Aura Application Enablement Services 7.0 JTAPI SDK and Client (Linux)

7. Save the file to a temporary location on your computer.

8. If you are using Windows,  the installer  is a self-extracting zip file which, when executed, will 
extract the JTAPI SDK files into an appropriate folder on your file system. 

a. To extract the JTAPI SDK, go to the directory that contains the JTAPI SDK file that you 
downloaded, and double-click on it.

b. Click OK to start installing the SDK.

c. Click Setup. The installer will extract the files to a temporary location, then display the 
End User License Agreement.

d. Carefully review the license agreement. When prompted, enter y to agree to the license
terms.

e. When the installer prompts you to enter a directory to install the JTAPI SDK, enter a 
valid directory  on your computer.

http://www.avaya.com/devconnect


f. The installer will extract the JTAPI SDK files into a folder named ‘jtapi-sdk’ in the 
directory you entered above. You can safely move this folder to a different folder if 
needed.

9. If you are using Linux, the installer is an executable program which will, when executed, extract 
the JTAPI SDK files into the current directory

a. Log in to the computer as root. Go to the directory containing the JTAPI Linux SDK 
intstallation program that you downloaded.

b. Use the chmod command to make the JTAPI Linux SDK intstallation program 
executable. For example, chmod +x jtapi-sdk-7.0.0.64.bin.

c. Run the JTAPI Linux SDK intstallation program to begin the installation. For 
example: ./jtapi-sdk-7.0.0.64.bin.

d. Press the Enter key to display the End User License Agreement. Carefully review the 
license agreement. When prompted, enter y to agree to the license terms.

e. The installer will extract the JTAPI SDK files into a folder named ‘jtapi-sdk’ in the 
current directory. You can safely move this folder to a different folder if needed.

For a quick verification you can run this from a command line (DOS prompt / UNIX shell) – “java –
jar JTAPI_SDK_PATH/lib/ecsjtapia.jar ECSJtapiVersion”, where JTAPI_SDK_PATH is the absolute
path to the directory where the JTAPI SDK was unzipped. Also, it is assumed that the system 
PATH points to the right JDK. The above command should print the Avaya JTAPI library version. 
For further testing, see sample TSTest in section 3.5.3

Important artifacts in this distribution include

Directory / File Description

ant Ant 1.7.1 distribution, used by scripts to compile the sample 
applications

conf/TSAPI.PRO TSAPI.PRO file read by the sample applications

conf/log4j.properties Log4j.properties files used by the sample applications. 

javadoc This includes javadocs for the javax/telephony, 
com/avaya/jtapi/tsapi and com/avaya/jtapi/tsapi/adapters packages.
Please see the Accessing the client API reference documentation 
for more information.

lib/ecsjtapia.jar Avaya’s implementation of the JTAPI 1.4 spec. 

lib/log4j-1.2.12.jar Logging dependency used internally by ecsjtapia.jar for logging. 

lib/servlet-api-2.5-
6.1.1.jar

Servlet 2.5 specification required for recompiling the TSTest web 
application

resources/ 
avayaprca.jks

A Java Key Store containing the Avaya Product PKI Root CA 
Certificate.

sampleapps Sample applications bundled with this release. Please see Learning
from the sample code  section for more details 

sampleapps/bin Contains an ant based build file (build.xml) to build and run the 
sample apps. As a convenience, build scripts (both MS-DOS and 
Linux based) to invoke this ant build file are also provided in this 



directory.

tools/jtapiex The JTAPI Exerciser used to quickly test out JTAPI API’s. Refer to 
the chapter on JTAPI Exerciser.

tools/bin Contains scripts (both MS-DOS and Linux based)  to start the 
JTAPI Exerciser

.classpath, .project Eclipse specific files, used to quickly setup the file in the Eclipse 
environment. Please see the “Using Eclipse” section for more 
details

Readme.txt Contains information regarding features new to this release, 
instructions for running sample applications, links to online 
resources and late breaking changes that could not be included in 
this document

4.2.3 Setting up your test environment
Before running an application you will need to have an AE Services machine set up. For 
instructions see the appropriate Avaya Aura®  Application Enablement Services Installation and 
Upgrade Guide for the offer you have purchased (bundled server, software only or System 
Platform).

4.2.4 Configuring your JTAPI client library
In order for your JTAPI application to run, two main categories of configuration are required: 
configuration of JTAPI properties, and log4j configuration. A Sample configuration can be found in 
the TSAPI.PRO and log4j.properties files in the JTAPI_SDK_PATH/conf directory.

Please note that unlike previous releases, TSAPI.PRO is not a required configuration file anymore. 
Properties that were traditionally set in TSAPI.PRO can now be passed as system properties to 
your JTAPI application. However these property keys need to be prefixed by com.avaya.jtapi.tsapi

For example, the TSAPI.PRO debugLevel can also be passed as a system property named 
com.avaya.jtapi.tsapi.debugLevel.

Please note that in the case where a property is specified in both TSAPI.PRO as well as via its 
equivalent system property, the TSAPI.PRO entries will be given precedence.

4.2.4.1 Configuration properties
The JTAPI library can be configured by setting certain properties. See section "JTAPI  properties" 
to learn more about these JTAPI properties.

The primary configuration required in order to run a JTAPI application is the AE Services IP 
Address or fully qualified domain name.  

IPV6 Support:

With JTAPI 6.1 onwards, IPV6 support has been added. To specify an IPV6 address for the AE 
server, the IPV6 address should be enclosed within ‘[]’. For instance, if the AE server IPV6 address 
is 2001::10:15:192:100, then the address should be represented as  [2001::10:15:!92:100]. This 
convention is required for all the three methods described below.

There are three ways to provide this information:



Method Additional Information

Using 
TSAPI.PRO

Create a file named TSAPI.PRO anywhere in the application’s class path or in the 
directory from which the application is run. In case TSAPI.PRO is available at both of 
these locations, the file in class path is given precedence. 

This file should at a bare minimum contain line(s) of the format 
<AES_IP_ADDRESS>:<TSAPI_SERVICE_PORT>

TSAPI_SERVICE_PORT is 450 by default

IPV6 address example

[2001::10:15:192:100]=450

IPV4 address example

192.168.1.1=450

Hostname example

AES1.xyz.com=450

Using 
system 
properties

All system properties with keys pre-pended by com.avaya.jtapi.tsapi are read by the 
JTAPI library. If the AE server is not found in a TSAPI.PRO file, it will attempt to read it 
from the “com.avaya.jtapi.tsapi.servers” property.

This property value must be of the format

<AES_IP_ADDRESS1>:<TSAPI_SERVICE_PORT1>,<AES_IP_ADDRESS2>:<TSAPI
_SERVICE_PORT2> 

IPV6 address example

[2001::10:15:192:100]:450,[2010::11:15:192:11]:450

IPV4 address example

192:168.1.1:450,192.168.1.5:450

Hostname example

AES1.xyz.com:450,AES2.xyz.com:450

Using the 
connect 
string

The string parameter to the JtapiPeer.getProvider() method can contain the AE 
server(s) address information.

The format of the String is “<tlink>;login=<loginID>;passwd=<pw>;servers=<server 
entries>”

Where server entries follows the format

<AES_IP_ADDRESS1>:<TSAPI_SERVICE_PORT1>,<AES_IP_ADDRESS2>:<TSAPI
_SERVICE_PORT2>

IPV6 address example

[2001::10:15:192:100]:450,[2010::11:15:192:11]:450



Method Additional Information

IPV4 address example

192:168.1.1:450,192.168.1.5:450

Hostname example

AES1.xyz.com:450,AES2.xyz.com:450

Please ping the AE server address/DNS name from the box where your client application runs, 
before configuration to verify network connectivity. 

4.2.4.2 Log4j configuration
Previous releases of this JTAPI implementation relied on a custom logging implementation. As of 
version 5.2, log4j has been incorporated as the logging mechanism. Hence, as with all log4j based 
applications, logging can now be configured with a log4j.properties file.

In order to maintain backward compatibility, the implementation reads the debugLevel and other 
logging related properties and programmatically configures the log4j implementation with 
reasonable log4j equivalents.

A programmatic API call ITsapiProvider#setDebugPrinting(boolean) is also available. This method 
can be used to enable/disable debug printing in the implementation at runtime. Setting this 
parameter to 'true' will enable trace logging for the com.avaya.jtapi.tsapi logger. A value of 'false' 
results in logging either turned down to ERROR if error logging was already enabled when this 
method was called or OFF if error logging was originally disabled.

The implementation honors the following order of precedence:

1. Programmatic configuration (i.e. ITsapiProvider#setDebugPrinting(boolean))

2. TSAPI.PRO configuration

3. Log4j.properties configuration

The samples provide a log4j.properties file which contains four different commonly used 
configurations of log4j as examples.  In all scenarios, the root appender is configured as a console 
appender.

Configuratio
n

Description

A In this case, only messages of level “error” and worse are logged to files named 
jtapiErrors.log.n, where n is a number from 1 to 15. Use of each file as a log 
destination is discontinued once the file size hits 50 MB and the next file starts 
getting used. Please note that this is the recommended level of logging that 
should be enabled by default by all client applications

B In this case, only messages of level “error” and worse are logged to files named 
jtapiErrors.log. This file grows indefinitely, limited by only hard disk space 
availability. These messages are also duplicated on the console.

C In this case two different files are produced, one containing trace data (all 
messages that the library can generate excluding audit dumps) and another 
containing only error data. These messages are not duplicated on the console.

D In this case, trace data is logged to 16 rotating files 50MB each with fine grained 
logs enabled (Threshold set to ALL), while errors are logged to jtapiErrors.log. 
These messages are not duplicated on the console.



Please check the “debugging” section of this guide for more information on log4j related 
configuration for ecsjtapia.jar.

For more information regarding log4j please refer to the log4j home page at 
http://logging.apache.org/log4j

4.2.5 Running the JTAPI SDK contents

4.2.5.1 Using the scripts provided
The JTAPI SDK includes two scripts at JTAPI_SDK_PATH/sampleapps/bin and 
JTAPI_SDK_PATH/tools/bin to run the samples and Exerciser respectively. Both DOS and UNIX 
versions are available at these locations. These scripts setup the required PATH/java CLASSPATH
and run the applications. (JTAPI_SDK_PATH points to the directory where the JTAPI SDK has 
been unzipped).

Running the samples

Navigate to the ‘sampleapps/bin’ directory and type “ant help”. This will provide further help to run 
the sample you require.

For example, on Windows assuming JTAPI_SDK_PATH  as D:\jtapi-sdk-7.0.0.64 …

D:\jtapi-sdk-7.0.0.64\sampleapps\bin>ant help

Buildfile: build.xml

help:

 [echo] buildAll  -- builds all the sample apps.

 [echo] clean     -- cleans up generated classes of all samples.

 [echo] buildAcdSampleApp  -- builds the ACD sample app.

 [echo] runAcdSampleApp  -- runs the ACD sample app.

 [echo] buildAutoAnswerSampleApp -- builds the AutoAnswer sample app.

 [echo] runAutoAnswerSampleApp -- runs the AutoAnswer sample app.

 [echo] buildCallLogSampleApp -- builds the CallLog sample app.

 [echo] runCallLogSampleApp  -- runs the CallLog sample app.

 [echo] buildRouteSampleApp -- builds the Route sample app.

 [echo] runRouteSampleApp -- runs the Route sample app.

 [echo] buildTsTestSampleApp -- builds the TsTest sample app.

 [echo] distTsTestWebApp -- creates a war for TsTest sample app

 [echo] runTsTestSampleApp -- runs the TsTest sample app.

 [echo] buildClick2CallSampleApp -- builds the Click2Call sample app

 [echo] runClick2CallSampleApp -- runs the Click2Call sample app

 [echo] help                -- Prints this information message.

 

BUILD SUCCESSFUL

Total time: 0 seconds

http://logging.apache.org/log4j


D:\jtapi-sdk-7.0.0.64\sampleapps\bin>

As described above all “build*SampleApp” targets build individual samples or “buildAll” will build all 
samples, while “run*” targets run individual samples.

An exception is the “distTsTestWebApp” which does not run the TSTest sample, but builds it and 
packages it as a WAR file suitable for deployment into any J2EE container like Tomcat 
(http://tomcat.apache.org/) or WebLogic (http://www.oracle.com/appserver/weblogic/weblogic-
suite.html).

For more information on WAR files please see http://java.sun.com/j2ee/tutorial/1_3-
fcs/doc/WebComponents3.html

Running the web sample

The web sample tstest.war can be run in any servlet container. The following instructions use 
Tomcat 6 as an example.

 Download Tomcat 6 from http://tomcat.apache.org/

 Unzip it to the file system and place tstest.war in directory TOMCAT_HOME/webapps 
where TOMCAT_HOME is the location where tomcat was unzipped.

 Start the server using the script startup.bat/startup.sh (depending on your OS) found in 
location TOMCAT_HOME/bin

 The servers should print an INFO level message stating that the tstest web application 
deployed successfully.

 Visit http://localhost:8080/tstest with a web browser.

Running the JTAPI Exerciser

Navigate to the tools/bin directory and type “ant”. This will start up a Swing GUI that can be used to 
quickly test out JTAPI API’s. For more information regarding the JTAPI Exerciser, please refer to 
the JTAPI Exerciser section.

4.2.5.2 Using the Eclipse development environment
If Eclipse is your development environment of choice, you can take advantage of the Eclipse project
files that are included with the SDK.  

Simply create a new project in the JTAPI SDK directory on your file system, and that project will 
automatically be configured with appropriate sample app source files and class-path. 

The instructions below are applicable to Eclipse 3.2. Please search for “New Project Wizard” in the 
Eclipse help for more information on how to complete this operation.

 Select File > New > Project from the Eclipse menu.

 Select Java Project and click “Next”

 Enter a project name and select “Create project from existing source”

 In the “Directory” field, enter the directory path where the .project and .classpath files of the 
SDK reside, 

 Ensure you are using a JDK 8 or higher and click “Finish”

http://localhost:8080/tstest
http://tomcat.apache.org/
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/WebComponents3.html
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/WebComponents3.html
http://tomcat.apache.org/


Alternatively, you can use the import wizard of Eclipse to import from the file system to an existing 
project. Please search for “Import Wizard” in the Eclipse help for more information on how to 
complete this operation.

Running the samples

Please first update TSAPI.PRO and log4j.properties in the conf directory as described above.

Each sample can be run by right clicking on the sample’s main class and selecting “Run As >> Java
Application” or “Debug As >> Java Application”

The main classes for each sample are as detailed below

Sample Main Class

ACD sample acd.ui.ACDFrame

TSTest sample tstest.ui.TSTestFrame

Call log sample calllog.CallLog

Route sample route.ui.RouteFrame

Auto answer sample autoanswer.ui.AutoAnswerFrame

Click2Call sample click2Call.Click2Call

Running the JTAPI Exerciser in Eclipse

The instructions below to run the Exerciser as a java application, apply to Eclipse 3.2. They may 
vary slightly depending on your Eclipse installation.

 Please update TSAPI.PRO in the conf directory, 

 Open the debug configuration dialog of Eclipse using Run > Debug … from the Eclipse 
menu.

 Right click on “Java Application” in the tree menu to the left and select “New”

 Ensure that the correct Java project containing the SDK is selected.

 Ensure that “Include libraries when searching for a main class” is selected

 Enter “jtapiex.Jtapiex” in the main class field and click “Debug” to start the Exerciser.

For more information on the Exerciser, please see Using the JTAPI Exerciser

4.3 JTAPI properties
Below is a list of properties that can be passed to the JTAPI implementation to allow greater control
over its behavior. These properties can be set as System Properties or set in a configuration file 
named TSAPI.PRO. When using the TSAPI.PRO configuration file, place it in the CLASSPATH or 
the application’s working directory (defined by the java system property “user.dir”). If defining these 
properties as System Properties, please prefix them with ‘com.avaya.jtapi.tsapi.’. eg. 
com.avaya.jtapi.tsapi.debugLevel=5

Property Name Description Default 
value

altTraceFile Full path of the file for JTAPI logs console
traceFileCount Maximum number of trace files.  10
traceFileSize Maximum size of trace files.  Size may be 

expressed as an integer in the range 0 – 
2^63. Suffixes “KB”, “MB” or “GB” can be 
used to indicate kilobytes, megabytes or 
gigabytes respectively  

50MB



errorFile Full path of the file for error logs None
errorCount Maximum number of error files.  10
errorFileSize Maximum size of error files.  Size may be 

expressed as an integer in the range 0 – 
2^63. Suffixes “KB”, “MB” or “GB” can be 
used to indicate kilobytes, megabytes or 
gigabytes respectively 

50MB

debugLevel The following values are accepted:
0 => No logging
1 – 5 => Information messages
6 => debug logs (Logs all CSTA/ACS 
messages exchanged)
7 => Logs entry / exit of API implementation 
invocations (methods in classes in the 
com.avaya.jtapi.tsapi.impl package and 
invocation of observer/listener callbacks)
7 (with enableAuditDumps property set to 
true) => Audit dumps and trace messages

0

maxWaitForSocket Maximum time to wait (in seconds) for JTAPI 
to connect to TSAPI. Note: Windows platform
may not support a value higher than 20. Even
if the application sets a value higher than 20 
seconds, on Windows it may timeout in less 
than 20 seconds.

20 

propertyRefreshRate The rate (in seconds) at which properties will 
be re-read from TSAPI.PRO / System 
properties.  Only intervals of 10 seconds are 
supported.  Values that are not a multiple of 
10 will be rounded up.

100 

callCleanupRate The rate (in seconds) at which JTAPI will 
audit calls to clean up any calls that should 
no longer exist.  Only intervals of 10 seconds 
are supported.  Values that are not a multiple 
of 10 will be rounded up.

100 

trustStoreLocation The path to the trust store containing trusted 
certificates. See section 3.3.1

System 
classpath.

trustStorePassword The password to the trust store containing 
trusted certificates specified by 
‘trustStoreLocation’.

“password”

verifyServerCertificate It is a setting that determines whether the 
JTAPI client verifies the Fully Qualified 
Domain Name (FQDN) in the Server 
Certificate (for added security).

 If you want the client to check the 
certificate for the FQDN, use this 
setting:verifyServerCertificate=true.

 When this setting is true, the JTAPI 
client will validate the date range of 
the server's certificate and validate 
that the server's certificate chain is 
trusted

 If you do not want the client to check 
the certificate for the FQDN, use this 
setting: verifyServerCertificate=false.

false

tsDevicePerformanceOptimization When true, internal TSDevice objects are not 
deleted from the Provider's device hash.  
This reduces the overhead of repeatedly 
sending CSTAQueryDeviceInfo requests to 

false



the switch.
maxThreadPoolSize The maximum number of threads for the 

thread pool that is used to deliver events to 
the application.

20

enableAuditDump A boolean value that indicates whether the 
audit thread should dump state of JTAPI 
objects like provider, calls, connections and 
agents to the log file.

false

getServicesTimeout The maximum number of seconds to wait for 
AE Services to respond with the set of TLinks
that it supports.  In some cases, it may take 
longer than 10 seconds for TSAPI to timeout 
when attempting to resolve a Worktop IP 
Address to a hostname.

Please try increasing this timeout if the 
JtapiPeer.getServices() API logs an error in 
the log file or it returns an empty list 
(assuming other parameters like the server 
name and port are correct).

10

callCompletionTimeout The maximum number of seconds to wait for 
post-conditions to be met following a 
Call.connect(), LucentCallEx2.fastConnect(), 
CallControlCall.consult() or 
CallCenterCall.connectPredictive() operation.

Please try increasing this timeout if any of the
above API calls fails with an error “Could not 
meet post-conditions of <api-name>”

15

4.3.1 Specifying location of certificates
As of Release 4.1, the AE Services provides Transport Layer Security (TLS) for encrypting links 
between the JTAPI client and the AE Services server. If you plan to use encrypted links, you have 
the option of using the certificate from the AE Services license file (this is the default), or the CA 
certificate issued by a trusted in-house or third-party certificate authority (also referred to as your 
own certificate). For more information about certificates, see Chapter 1: Managing certificates from 
the document “Application Enablement Services TSAPI and CVLAN Client and SDK Installation 
Guide” (02-300543).

Note: 
You do not have to add any configuration settings for certificates under the following conditions:

 You do not use encrypted links, and, hence, certificates. 

 You use encrypted Tlinks with the default AE Services certificate.This certificate is signed 
by the Avaya Product Root Certificate Authority (CA), and a Java Key Store containing the 
certificate for the Avaya Product Root CA is installed with the JTAPI client as <installation-
directory>\avayaprca.jks. Therefore, you do not need to configure the location of the 
Trusted CA File in the tsapi.pro configuration file.

Defining Certificate configuration properties - If you have installed your own certificates on the 
AE Server, you must define the following properties to specify where your certificates are located. 
For example:

trustStoreLocation=C:\\Documents and Settings\\user\\certs\\aesCerts.jks
trustStorePassword=password
verifyServerCertificate=true|false (optional)



As mentioned in Section 3.3 these properties can be defined through TSAPI.PRO or System 
properties. 

4.4 Accessing the client API reference documentation
You will need to reference the Java Programmer’s Reference (Javadoc) provided with this API.  It is
available on the Avaya support web site (http://www.avaya.com/support) as both a viewable HTML 
document and a downloadable zip file.

This html documentation is also included with the SDK. This documentation describes all of the 
interfaces and their parameters.

To access the Javadoc bundled in the SDK,

1. Go to the jtapi-sdk-7.0.x.y/javadoc directory.

2. Double click on index.html (or open this file with a browser).

The Javadoc includes descriptions of classes in the following packages:

● javax/telephony/**

This section of the Javadoc is also available if you download the JTAPI specification except for 
“Implementation Notes” attached to some API’s. These sections describe where Avaya’s 
implementation of the SDK 

 deviates from the specification, 

 adds extra functionality not described in the specification or 

 doesn’t support the functionality mentioned in the specification

Please refer to the “Implementation Notes” sections where ever available, while writing your 
application.

 com/avaya/jtapi/tsapi 

This package contains non-standard Avaya specific additions to the JTAPI API, created to make 
Avaya Aura® Communication Manager features, TSAPI service extensions and Avaya private data 
extensions available to users.

 com/avaya/jtapi/tsapi/adapters 

This package contains adapter equivalents for all listener interfaces in the JTAPI specification. The 
methods in these adapters are empty and provided as a convenience for easily creating listeners by
extension, overriding only the methods of interest.

Unsupported parts of the specification like the javax.telephony.mobile package and a large majority 
of the javax.telephony.media package are not included in the Javadoc.

4.5 Learning from the sample code

4.5.1 ACD sample
This sample demonstrates using the JTAPI Call Center package. The ACD sample does the 
following operations: 

 gets the ACDAddresses known to the provider and the agents logged-in at those ACD 
splits.

 tries to log-in two agents specified.

 Ensures the agents logged in successfully 

http://www.avaya.com/support


 Tries to log out the agents

 Ensures that no agents remain logged in

4.5.2 CallLog application
This application uses JTAPI along with some of the AE Services extensions to JTAPI to access 
functionality specific to Communication Manager. The CallLog application has the following 
purposes:

 To monitor a terminal to log all incoming and outgoing calls to/from the specified device. 
"User To User information," if any, associated with the call is also displayed.

 To make calls and optionally send "User To User information" along with the call.

 To send DTMF through an active call.

 To disconnect an active call.

4.5.3 TSTest application (in the TSTest directory)
Use TSTest to make and hang up a call in order to test the installation of the JTAPI client software. 
TSTest can be executed as a web application or a stand-alone Java application. 

Once the “TSTest Application” window is open, complete the fields as follows:

 In the LoginInfo->Login field, type your CT User user id.

 In the LoginInfo->Password field, type your CT User password.

 Click ‘Next’

 In the TSTestInfo->Service field, select the TLINK that corresponds to the AES-CM to be 
tested.

 In the TSTestInfo->Caller field, type a phone number that is administered in Avaya 
Communication Manager.

 In the TSTestInfo->Callee field, type another phone number that is administered in Avaya 
Communication Manager.

 Click Dial to make the call.

4.5.4 Route sample
The route sample demonstrates the use of the JTAPI Call Center package. It is a routing 
application that registers the VDN specified for routing. When a call is received by the VDN, the 
sample requests a route destination. When the route destination is entered, the call is routed to that
destination.

It should be noted that an AES ADVANCED SWITCH license is required to run this sample 
application.

4.5.5 Auto answer sample
The auto answer sample demonstrates a client application which monitors a terminal and auto 
answers any call placed to that terminal. The call is dropped after a brief interval.

4.5.6 Click2call sample
The click2Call sample demonstrates a client application which monitors a terminal for calls. This 
application will also maintain a log of all these calls. Such a call log will enable an user to call back 
the calling party by just clicking on the log record. The status of the log record is updated 
accordingly. This sample application also supports LDAP configuration.



5. Writing a JTAPI application
This chapter describes how to write an application using the Application Enablement Services 
JTAPI SDK. It will frequently refer to the details in the Javadoc, so you may wish to have ready 
access to the Javadoc while reading this chapter. Read Accessing the client API reference 
documentation to find out how to get access to the Javadoc and where to find which kinds of 
information within the Javadoc.

5.1 Initializing a JTAPI application
Initializing a JTAPI application involves following the sequence of steps listed below: 

 Getting the JtapiPeer object. 

 Getting the services list. 

 Getting the provider. 

5.1.1 Getting the JtapiPeer object
The term 'peer' is Java nomenclature for "a platform-specific implementation of a Java interface or 
API". The JtapiPeer interface in the javax.telephony package represents a vendor’s  particular 
implementation of the Java Telephony API (in this case Avaya’s). 

An instance of the JtapiPeer object can be obtained using the JtapiPeerFactory class. The 
getJtapiPeer() method of the JtapiPeerFactory class returns a JtapiPeer object that, in turn, enables
applications to obtain the Provider object. 

The JtapiPeerFactory.getJtapiPeer() method returns an instance of a JtapiPeer object given a fully 
qualified classname of the class which implements the JtapiPeer object. If no classname is 
provided (i.e., if classname is null), a default class named DefaultJtapiPeer is chosen as the 
classname to be loaded. If it does not exist or is not installed in the CLASSPATH as the default, a 
JtapiPeerUnavailableException exception is thrown. 

Following is the syntax of the getJtapiPeer() method: 

public static JtapiPeer getJtapiPeer(java.lang.String jtapiPeerName) 

The code snippet below shows the procedure to obtain JtapiPeer object: 
/* 
* Get the JtapiPeer object using JtapiPeerFactory class 
*/ 
try 
{ 
peer = JtapiPeerFactory.getJtapiPeer(null); 
} 
catch (Exception excp) 
{ 
System.out.println("Exception during getting JtapiPeer: " + excp); 
} 

The exception thrown is JtapiPeerUnavailableException which indicates that the JtapiPeer can not 
be located using the CLASSPATH that is available. 

In most cases, an application can provide a null parameter and accept the default JtapiPeer 
implementation. The catch block is required because the API throws a checked exception, but no 
exception should be thrown because a null parameter was passed.



5.1.2 Getting the services list
Once the application has successfully accessed a JtapiPeer object, the application typically gets a 
listing of the services that are supported by the system(s) implementing the JtapiPeer object. The 
services supported are the links from the AE Services server(s) to one or more Communication 
Managers that are provisioned and active. These links are also referred to as CTI-links. The 
application uses the getServices() method to acquire the list. 

Following is the syntax of the getServices() method: 

public java.lang.String[] getServices()

After getting a JtapiPeer object, the application needs to retrieve a list of the supported CTI-links 
provisioned on the AE Services server. The getServices() method returns an array of the services 
that this implementation of JtapiPeer supports. This method returns null if no services are 
supported. The getServices() method obtains the IP addresses of the AE Services server(s) from: 

-the TSAPI.Pro file.

-the com.avaya.tsapi.servers system property.

 to get all the Tlinks (See Tlink ) configured on each of the AE Services servers. 

Please see the JTAPI properties section for more information regarding these options.

If no services are returned from the getServices() method request, check the AE Service server’s IP
address in the TSAPI.PRO file or the value of com.avaya.tsapi.servers system property, and the 
provisioning and state of the Tlinks on the AE Service server.

Following is a sample Java code snippet for retrieving the services supported by the JtapiPeer 
implementation:

Try 
{ 
/* 
* Get service method services supported by the JtapiPeer implementation 
*/ 
String[] services; 
services = peer.getServices(); 
if(services == null) 
{ 
System.out.println("Unable to obtain the services list from JTAPI peer.\n”); 
System.exit(0); 
} 
String myService = serv[0]; 
} 
catch (Exception ex) 
{ 
System.out.println("Exception during getting services: " + ex); 
}

Once getServices() has returned a list of the services available on the AE Services server(s) listed 
in the TSAPI.PRO file or specified in the com.avaya.tsapi.servers system property value, the 
application can use any one of those services to create a Provider object.

5.1.3 Getting the provider
The next step for the application is to acquire a Provider instance from the JTAPI middleware. A 
Provider represents the telephony software-entity (i.e. AE Services) that interfaces with a telephony
subsystem such as Communication Manager. Please refer to section 4.1 for more details.



The getProvider() method of the JtapiPeer object returns an instance of a Provider object. 

Following is the syntax of the getProvider() method: 

public Provider getProvider(java.lang.String providerString) 

If the argument providerString is null, the getProvider() method returns a default Provider as 
determined by the JtapiPeer object.

The method takes a single string as an argument. This string contains a <service name>, a 
login=xxxx; and a passwd=yyyy; along with other optional parameters separated by semi-colons. 
The <service name> is the name of the service that the application wishes to utilize (typically one of
the services returned by the getServices() API). The login=xxxx; is the account that the application 
will use for authentication and authorization purposes. The passwd=yyyy; provides the password for
the login that is provided. An example of the argument to the getProvider() method is as follows: 
AVAYA#CMPROD#CSTA#AESPROD;login=appaccount;passwd=Passw0rd; 
As per the syntax given above, <service name> is mandatory and each optional argument pair that 
follows is separated by a semicolon. The keys for these arguments are Avaya implementation 
specific, except for two standard-defined keys, described below: 

1. login: provides the login user name to the Provider. 

2. passwd: provides a password to the Provider. 

JTAPI also allows programmatic specification of AE Services server IP addresses and/or 
hostnames. It supports this by providing an additional optional keyword argument “servers=X” or 
“servers=X:P” permitted to be included in the semi-colon separated list of keyword arguments 
required for the JtapiPeer.getProvider() API call.  More than one server can be provided by comma 
separating the entries e.g. “servers=X:P,Y:P1

myprovider = peer.getProvider(myService + ";login=" + login + ";passwd=" 
+ password + “;servers=135.8.1.2:450,[2010::11:15:192:11]:450");  // 
":450" optional

Following is the sample Java code snippet for getting the provider: 

/** Create a provider with AE Services server CTI-link, user name and 
password. 
* 
* @param String serv – AE services server cti-link selected by the 
application. 
* @param String login – user name for authentication purposes 
* @paramString password – password for authentication purposes 
* @throws Exception 
*/ 
try 
{ 
myprovider = peer.getProvider(myService + ";login=" + login + ";passwd=" + 
password); 
System.out.println(serv + ";login=" + login + ";passwd=" + password); 
} 
catch (Exception ex) 
{ 
System.out.println("Exception during getting services: " + ex); 
}



5.2 Catching Exceptions
Each service request may generate throw an exception; therefore the JTAPI application must be 
prepared to catch exceptions with a try/catch block around service requests.

The following diagram indicates the hierarchy of expected telephony related exceptions that may be
thrown by this implementation.

Exceptions of the pattern Tsapi*Exception that extend the standard JTAPI specification’s 
exceptions have an implementation specific error type and error code (e.g. 
TsapiInvalidStateException, TsapiInvalidArgumentException).

Error types include 

 ACS (for ACS related exceptions)

 CSTA (for CSTA related exceptions)

 JTAPI (In case of failure to meet method specific pre-conditions)

 Internal (for internal implementation specific exceptions)

When the errorType is ACS or CSTA, the errorCode will contain the Tsapi ACS or CSTA error code
which is documented in Appendix A of the Avaya Aura® Application Enablement Services TSAPI 
for Avaya Aura® Communication Manager Programmer’s reference.

Most exceptions are checked exceptions and will be documented in the method signature, forcing 
client code to handle it. Please refer to the javadoc of these checked exceptions for more 
information. 



The table below lists the runtime exceptions that this implementation may throw. These are 
unchecked, because a client cannot conceivably take corrective action on the fly in these 
conditions.

Exception Location Potential causes and solutions

 ASN1Exception Multiple Indicates that an IO exception occurred while
encoding/decoding ASN data types

 TsapiPropertiesException JtapiPeer.getServices()

JtapiPeer.getProvider()

Indicates that an error was encountered 
while processing the value of Alternates 
(TLINK) JTAPI property specified via 
configuration file (TSAPI.PRO) or via system 
properties.

Please ensure that the alternate Tlink entries 
are syntactically and semantically valid.

 TsapiSocketException Multiple Informs applications that a socket IO error 
has occurred between the JTAPI client and 
the AE server

 TsapiUnableToSendException Multiple Informs applications that the provider is in 
OUT_OF_SERVICE state and is unable to 
process requests

 ProviderUnavailableException JtapiPeer.getProvider() Informs an application that a provider cannot 
be created for the given provider string

TsapiPlatformException Multiple API’s that throw this exception are 
documented to do so via their javadoc throws
clause. Please refer to the API’s javadoc 
before using it.

In addition this exception may be thrown in 
the following cases

 If a confirmation event is not received
from TSAPI for any CSTA request 
issued

 If an ACS/CSTA error occurs

 If the creation of the concrete 
implementations of Call, Terminal, 
Address or Trunk fails

It is recommended that the application catch and log all possible exceptions since this will be an 
important source of information for debugging the application. 

5.3 Change from “observer” to “listener” paradigm
With 5.2 release onwards, the Avaya JTAPI implementation has deprecated the various observer 
interfaces available for handling JTAPI events and introduced support for listener interfaces. It is 
recommended that the future applications use listeners since the observer interfaces have been 
deprecated. The implementation still supports observer interfaces for backward compatibility



Listener events have the same content as Observer events. The principal motivation for the change
is to keep up with the changes in the Java SDKs and communities; in this case, the shift away from 
the Observer pattern and toward the Listener pattern.
Such a change simplifies the client code, which does not have to implement conditional statements 
to cycle through events at runtime; the appropriate listener callback (which contains client logic) is 
automatically called by the JTAPI library.

JTAPI 1.4 Listeners are different from JTAPI 1.2 Observers in the following ways:

 EVENTS MOVED UP A PACKAGE – JTAPI is organized into 6 basic packages: 
o core (javax.telephony), 
o callcontrol (javax.telephony.callcontrol), 
o callcenter (javax.telephony.callcenter), 
o phone (javax.telephony.phone), 
o mobile (javax.telephony.mobile) and 
o private (javax.telephony.private). 

In JTAPI 1.2, events are defined for each basic package; the events for each are defined in
a sub-package called X.events (e.g. javax.telephony.events for the core package events). 
In JTAPI 1.4, the interfaces which define the events are moved “up” out of the “events” sub-
packages and into the basic package. This was done to help avoid confusing the events. 
So while in JTAPI 1.2, the interface javax.telephony.events.Ev represents the superclass of
all Observer events, in JTAPI 1.4 the interface javax.telephony.Event represents the 
superclass of all Listener events.

 EXPANDED NAMES – In JTAPI 1.2, events all inherit from the root interface “Ev” 
(javax.telephony.events.Ev); all Observer events end in “Ev”; generally the first component 
of the event name is an abbreviation (e.g. Provider observer events start with “Prov”). In 
JTAPI 1.4, Listener events all inherit from the root interface “Event” 
(javax.telephony.Event); all Listener events end in “Event”; generally the first component of 
the event name is a full name (e.g. Provider listener events start with “Provider”).

 FEWER EVENT INTERFACES – the JTAPI mobile community objected to the many 
interfaces defined in the JTAPI 1.2 specification. In order to meet their memory constrained
needs, the  number of interfaces was reduced in the listener hierarchy. In the new scheme, 
a group of events were all represented by a single interface; each “old” event was then 
represented solely by the event’s ID.

 A METHOD FOR EACH EVENT – the Listener pattern calls for there to be a method 
named to match each kind of event, and for that event only to be delivered to that method. 
Because the JTAPI middleware provider provides classes called adapters, or classes which
provide a default “do-nothing” implementation for a Listener interface, this makes it easy for
application developers to write very simple Listener objects.

 META EVENTS GIVE WARNING ABOUT CALLS – Meta events were added to JTAPI 1.4. 
JTAPI already had the concept of a meta event code (Ev.getMetaCode) and new meta 
event flag (Ev.isNewMetaEvent). The former gave a hint as to the larger process that led to
these small grained events; the latter gave an indication as to which sequences of JTAPI 
events were, together, generated because of a single outside stimulus (like the receipt of a 
CSTATransferredEvent). This one item (sending actual MetaEvents) represents the only 
new real content for JTAPI 1.4 Listener support, and it is a modification of something JTAPI
already provides (the meta code and new event flag data). In 1.2, the application would 
have to invoke the ‘isNewMetaEvent’ flag to identify a batch of JTAPI events that 
corresponded to a higher-level operation. In 1.4 instead, meta events are defined in pairs, 
eg. CallListener.singleCallMetaProgressStarted() and 
CallListener.singleCallMetaProgressEnded(). For more information, please refer to Javadoc
for javax.telephony.MetaEvent



5.4 Requesting notification of events
Each individual change to a JTAPI object is reported by an event sent to the appropriate Listener 
(or Observer). These changes could be as a result of JTAPI receiving an unsolicited event from AE 
Services (e.g. CSTADeliveredEvent, CSTAHeldEvent), or receiving a synchronous/asynchronous 
response to requested action (e.g. Transfer a call, Snapshot a call to get latest status). A JTAPI 
application can choose to be notified of events by implementing and adding listeners.

To listen for certain types of events, an application must:
1. Implement a listener.
2. Add the listener.

Note: 
1. Avaya recommends that the JTAPI application use a different listener implementation 

instance for each JTAPI object. In other words, applications should not re-use the same 
listener instance for any JTAPI object (Call/Terminal/Address). If applications do use the 
same listener instance on all devices, they might still get all the events, but the CSTACause
(obtained using getCSTACause() method of TsapiCallEvent/CallEventImpl) might not 
represent the value which the application expects..

2. Once the application receives an event, release the event thread immediately and continue 
with event processing on a different thread. If this recommendation is not adhered to, it 
could drastically reduce the performance of the JTAPI application. This is because the 
JTAPI application will not be notified of other events until the previous event’s callback 
method is complete.

Each event triggers a specific callback method in a listener. Listener implementations provide a way
for your application to respond to each event. For every listener, Avaya also provides an adapter 
class which provides a default implementation for each callback method which ignores the received
event. 
An application developer can extend this abstract adapter with his or her own concrete 
implementation and override only the callbacks he/she is interested in. Extending this adapter 
(instead of directly implementing the listener) allows the application developer to define only the 
callbacks he/she is interested in and delegate the rest to the default implementation in the adapter 
class. This simplifies the client application’s listener code.

Provided below is a list of Listeners that are supported. Also included is the name of the adapter 
class (for each Listener), provided by Avaya.

JTAPI Listener interface Avaya JTAPI’s Adapter class
Package javax.telephony Package com.avaya.jtapi.tsapi.adapters
AddressListener AddressListenerAdapter
CallListener CallListenerAdapter
ConnectionListener ConnectionListenerAdapter
ProviderListener ProviderListenerAdapter
TerminalConnectionListener TerminalConnectionListenerAdapter
TerminalListener TerminalListenerAdapter

Package javax.telephony.callcenter
ACDAddressListener ACDAddressListenerAdapter
AgentTerminalAddressListener AgentTerminalAddressListenerAdapter

Package javax.telephony.callcontrol
CallControlAddressListener CallControlAddressListenerAdapter
CallControlCallListener CallControlCallListenerAdapter
CallControlConnectionListener CallControlConnectionListenerAdapter
CallControlTerminalConnectionListener CallControlTerminalConnectionListenerAdapter
CallControlTerminalListener CallControlTerminalListenerAdapter

http://support.avaya.com/elmodocs2/AES/4.1/jtapi/javax/telephony/callcontrol/CallControlTerminalListener.html
http://support.avaya.com/elmodocs2/AES/4.1/jtapi/javax/telephony/callcontrol/CallControlTerminalListener.html
http://support.avaya.com/elmodocs2/AES/4.1/jtapi/javax/telephony/callcontrol/CallControlTerminalConnectionListener.html
http://support.avaya.com/elmodocs2/AES/4.1/jtapi/javax/telephony/callcontrol/CallControlTerminalConnectionListener.html
http://support.avaya.com/elmodocs2/AES/4.1/jtapi/javax/telephony/callcontrol/CallControlConnectionListener.html
http://support.avaya.com/elmodocs2/AES/4.1/jtapi/javax/telephony/callcontrol/CallControlConnectionListener.html
http://support.avaya.com/elmodocs2/AES/4.1/jtapi/javax/telephony/callcontrol/CallControlCallListener.html
http://support.avaya.com/elmodocs2/AES/4.1/jtapi/javax/telephony/callcontrol/CallControlCallListener.html
http://support.avaya.com/elmodocs2/AES/4.1/jtapi/javax/telephony/callcontrol/CallControlAddressListener.html
http://support.avaya.com/elmodocs2/AES/4.1/jtapi/javax/telephony/callcontrol/CallControlAddressListener.html
http://support.avaya.com/elmodocs2/AES/4.1/jtapi/javax/telephony/callcontrol/package-summary.html
http://support.avaya.com/elmodocs2/AES/4.1/jtapi/javax/telephony/callcontrol/AgentTerminalAddressListener.html
http://support.avaya.com/elmodocs2/AES/4.1/jtapi/javax/telephony/callcenter/AgentTerminalListener.html
http://support.avaya.com/elmodocs2/AES/4.1/jtapi/javax/telephony/callcenter/ACDAddressListener.html
http://support.avaya.com/elmodocs2/AES/4.1/jtapi/javax/telephony/callcenter/ACDAddressListener.html
http://support.avaya.com/elmodocs2/AES/4.1/jtapi/javax/telephony/callcenter/package-summary.html
http://support.avaya.com/elmodocs2/AES/4.1/jtapi/javax/telephony/TerminalListener.html
http://support.avaya.com/elmodocs2/AES/4.1/jtapi/javax/telephony/TerminalListener.html
http://support.avaya.com/elmodocs2/AES/4.1/jtapi/javax/telephony/TerminalConnectionListener.html
http://support.avaya.com/elmodocs2/AES/4.1/jtapi/javax/telephony/TerminalConnectionListener.html
http://support.avaya.com/elmodocs2/AES/4.1/jtapi/javax/telephony/ProviderListener.html
http://support.avaya.com/elmodocs2/AES/4.1/jtapi/javax/telephony/ProviderListener.html
http://support.avaya.com/elmodocs2/AES/4.1/jtapi/javax/telephony/ConnectionListener.html
http://support.avaya.com/elmodocs2/AES/4.1/jtapi/javax/telephony/ConnectionListener.html
http://support.avaya.com/elmodocs2/AES/4.1/jtapi/javax/telephony/CallListener.html
http://support.avaya.com/elmodocs2/AES/4.1/jtapi/javax/telephony/CallListener.html
http://support.avaya.com/elmodocs2/AES/4.1/jtapi/javax/telephony/AddressListener.html
http://support.avaya.com/elmodocs2/AES/4.1/jtapi/javax/telephony/AddressListener.html
http://support.avaya.com/elmodocs2/AES/4.1/jtapi/javax/telephony/package-summary.html


JTAPI Listener interface Avaya JTAPI’s Adapter class

Package javax.telephony.privatedata
PrivateDataAddressListener PrivateDataAddressListenerAdapter
PrivateDataCallListener PrivateDataCallListenerAdapter
PrivateDataProviderListener PrivateDataProviderListenerAdapter
PrivateDataTerminalListener PrivateDataTerminalListenerAdapter

The list of specific listener registration methods that are supported is given in the table below.  Note
that Avaya’s implementation of JTAPI does not support anything in the Phone package or the 
Mobile package; the same applies to Observers, Listeners and events in the Media package.

ACDAddress.addListener()
Address.addCallListener()
AgentTerminal.addListener()
CallCenterCall.addListener()
CallControlAddress.addListener()
CallControlCall.addListener()
CallControlConnection.addListener()
CallControlTerminalConnection.addListener()
CallControlTerminal.addListener()
Address.addListener()
Call.addListener()
Provider.addListener()
Connection.addListener()
TerminalConnection.addListener()
Terminal.addListener()
Terminal.addCallListener()

5.5 Call Control – Basic Telephony operations
This section covers a few basic telephony operations that can be performed in JTAPI. These 
operations can be used to create larger applications covering complex scenarios.

5.5.1 Detecting an incoming call
The destination Connection state changes to CallControlConnection.ALERTING when the 
destination Address is being notified of an incoming call. This change is signaled to the application 
by invoking the CallControlConnectionListener implementation’s connectionAlerting() method. 

The following code snippet shows the implementation of the call detection process.

http://support.avaya.com/elmodocs2/AES/4.1/jtapi/javax/telephony/privatedata/PrivateDataTerminalListener.html
http://support.avaya.com/elmodocs2/AES/4.1/jtapi/javax/telephony/privatedata/PrivateDataTerminalListener.html
http://support.avaya.com/elmodocs2/AES/4.1/jtapi/javax/telephony/privatedata/PrivateDataProviderListener.html
http://support.avaya.com/elmodocs2/AES/4.1/jtapi/javax/telephony/privatedata/PrivateDataProviderListener.html
http://support.avaya.com/elmodocs2/AES/4.1/jtapi/javax/telephony/privatedata/PrivateDataCallListener.html
http://support.avaya.com/elmodocs2/AES/4.1/jtapi/javax/telephony/privatedata/PrivateDataCallListener.html
http://support.avaya.com/elmodocs2/AES/4.1/jtapi/javax/telephony/privatedata/PrivateDataAddressListener.html
http://support.avaya.com/elmodocs2/AES/4.1/jtapi/javax/telephony/privatedata/PrivateDataAddressListener.html
http://support.avaya.com/elmodocs2/AES/4.1/jtapi/javax/telephony/privatedata/package-summary.html


//implementation of javax.telephony.callcontrol.CallControlConnectionListener
public void connectionAlerting(CallControlConnectionEvent event) {

Call call = event.getCall();

String callingDeviceID = null;

String calledDeviceID = null;

if(event.getCallingAddress() != null)
{
   callingDeviceID = event.getCallingAddress().getName();
}

if(event.getCalledAddress() != null)
{
  calledDeviceID = event.getCalledAddress().getName();
}

 System.out.println("Incoming call from " +
                                      callingDeviceID+ " to " + calledDeviceID);

}

5.5.2 Answering a call

5.5.2.1 Triggering Answer from the Application
An incoming call can be answered by using the answer() method of the TerminalConnection object.
The TerminalConnection object can be retrieved by using the getTerminalConnection() method of 
the Connection object. The getConnections() method of the Call object can be used to get the array
of Connection objects associated with a Call.

When a call is answered, the Connection state changes from CallControlConnection.ALERTING to 
CallControlConnection.ESTABLISHED

A sample code snippet for answering the call at a particular TerminalConnection is shown below.
         Call mycall; 
    Address myStationAddress; // Address for the station extension
    Terminal myStationTerminal; // Terminal for the station extension

    public void answerCall() throws Exception
    {
        Connection localConn = null;
        TerminalConnection[] terminalConns = null;

        // Get all the connections related to this call object
        Connection connection[] = this.mycall.getConnections();
        if( connection == null )
        {
            /* If connection array is null, there are no connections 
            associated with the call, this can happen if Call is no 
            longer ACTIVE. This can happen if there is a race condition 
            with a disconnect.*/
            System.out.println("There are no connections associated with "+
            "the call");
            return;
        }

        for( int conn_index = 0; conn_index < connection.length; conn_index++)
        {
            // get the connection object
            localConn = connection[ conn_index ];
            /* find the Address for the station extension from where 



            the call needs to be answered*/
            if(localConn.getAddress().equals(myStationAddress)){

                //get the terminal connections for the connection
                terminalConns = localConn.getTerminalConnections();
                if( terminalConns == null ){
                    System.out.println("No valid TerminalConnection found.");
                    return;
                }

                for( int term_conn_index = 0; term_conn_index <
                terminalConns.length; term_conn_index++ ){

                    TerminalConnection termConn = 
                        terminalConns[term_conn_index ];
                    /* find the Terminal for station extension from where 
                    the call needs to be answered*/
                    if(termConn.getTerminal().equals(myStationTerminal)){

                        try{

                            // Answer the call at the specified
                            // terminal connection.
                            if(termConn.getState()==
                                TerminalConnection.RINGING){
                                termConn.answer();
                            }
                        }
                        catch(Exception e){
                            System.out.println("Exception occurred " +
                                    "during Answer Call: " + e.getMessage());
                            return;
                        }
                        return;

                    }// End of if
                }// End of for
            }// End of if
        }// End of for
    }

5.5.2.2 Events Received When a Call is Answered
When a call is answered, either manually or programmatically, the state of the destination 
Connection changes from CallControlConnection.ALERTING to 
CallControlConnection.ESTABLISHED. If the application has registered a 
CallControlConnectionListener for either the Terminal or Address of the originating or destination 
station extension, the listener implementation’s connectionEstablished() method will be invoked. 
The event will contain information for the destination Connection.

The sample code snippet shown below demonstrates how to handle the CallCtlConnEstablishedEv 
event.

//implementation of javax.telephony.callcontrol.CallControlConnectionListener
    public void connectionEstablished(CallControlConnectionEvent event) {

        Connection conn = event.getConnection();

        System.out.println("Connection for Address " +
                conn.getAddress().getName() + " is in " +



        "Established state.");

        // Add code to handle connection established event here
    }

5.5.3 Disconnecting a call

5.5.3.1 Triggering a disconnect from the application
During an active call, the Connection is in one of the following states:

 Connection.INPROGRESS

 Connection.ALERTING

 Connection.CONNECTED

The state of the connection changes to the Connection.DISCONNECTED state after the connection
is disconnected, say when a user drops from an active call.

In order to disconnect a Connection programmatically, the application needs to call the disconnect()
method of the Connection object. 

The following code snippet shows how to use the disconnect() method to disconnect a call.

        // The reference to the Provider object is obtained during 
        //application initialization
        Provider myProvider; 
        String myAddressName = "40061";
        Connection localConn = null;
        Address address = myProvider.getAddress (myAddressName);
        Connection connection[] = address.getConnections();
        /* When there is more than one call at the address, then the 
         * following code selects the first connection in the 
         * CONNECTED state.
         */
        for (int connectionIndex = 0; connectionIndex < 
connection.length; 
        connectionIndex++){
            Connection conn = connection[connectionIndex];
            int state = conn.getState();
            if (state == Connection.CONNECTED){
                localConn = conn;
                break;
            }
        }
        /*cannot locate a connection in Connection.CONNECTED state with
        the specified Address in it.*/
        if(localConn == null) 
            return;

        try{
            localConn.disconnect();
        }
        catch ( Exception e ){
            System.out.println( "Exception occurred during disconnecting 
" +
                    "the Connection: " + e.getMessage() );
        }



5.5.3.2 Events received when a Connection is disconnected
If the application has registered a CallControlConnectionListener for either the Terminal or Address 
of the originating or destination station extension, the listener implementation’s 
connectionDisconnected() method will be invoked. The event will contain information for the 
destination Connection. After receiving this event, the associated Connection moves to the 
Connection.DISCONNECTED state.     

5.6 Getting DNIS, ANI information for a call
When the application receives listener events, it can invoke ‘getCallingAddress()’ to obtain ANI and 
‘getCalledAddress()’ to obtain the DNIS associated with the call. To extract the original call 
information, the application should invoke the method getOriginalCallinfo whose return type is an 
OriginalCallInfo object. On the OriginalCallInfo object invoke the ‘getCallingDevice()’ to obtain ANI 
and ‘getCalledDevice()’ to obtain the DNIS

5.7 Cleanup
It is important to free resources when they are no longer needed. For example, if the application is 
not interested in receiving any more events, it should remove the listener from the device.Please 
note that if the listener object is not removed, then java would not be able to garbage collect it.The 
application should also shutdown the provider, when it does not need it any more. This will allow 
the socket connection to AE Services Server to be released and thus free up valuable system 
resources.

5.8 Security Considerations
This section covers the security measures that the JTAPI library takes in order to protect the 
application.

5.8.1 Authorization Measures
AE Services optionally enforces an authorization policy as specified in the Security Database (SDB)
to ensure that only authorized users can monitor and control a given device.
The SDB allows an administrator to give a user restricted access by allowing control of a specific 
device or list of devices. An administrator can also allow a user to monitor/control any device by 
granting them "Unrestricted Access".  However in the latter case, any provider API invoked to 
obtain a list of addresses will fail. For eg. CallCenterProvider.getACDAddresses() will fail. For any 
such API, the application should use a CTI user having restricted access.

The administrator can also disable the SDB entirely, which turns off all authorization enforcement 
and allows any user to monitor or control any device.

 Please see the AE Services Administration and Maintenance Guide, 02-300357, for more 
information about SDB administration.
 (A CTI user can be administered for "Unrestricted Access" via the "Edit CTI User" Web page AE 
Services OAM )

5.8.2 Transport Security
JTAPI can establish either a secure (SSL) or a non-secure (non-SSL) TSAPI session connected to 
the given Telephony server.  The type of session returned is based on the protocol in the Tlink 
name.  For protocol "CSTA", a non-secure session is created.  For protocol "CSTA-S", a secure 
session is created.

For example: 



This link will result in a non-secure session - AVAYA#CMSIM#CSTA#AESSIM
This link will result in a secure session with AES - AVAYA#CMSIM#CSTA-S#AESSIM

To establish a secure session, the JTAPI client library will need the keystore properties to be 
configured (see JTAPI.PRO properties). Such configuration is only required if the default AE 
Services certificate is not used by the AE Service Server.

5.9 Heartbeats
JTAPI has a heartbeat monitoring mechanism, whereby messages sent at regular intervals, by the 
TSAPI service, are received by it. This provides a way for the JTAPI middleware to verify that the 
AES is operational even if there is no other activity from the application.  JTAPI application can 
adjust the heartbeat interval using the ITsapiProvider.setHeartbeatInterval() method.  

If the JTAPI library misses two consecutive heartbeat messages, it shuts down the provider. If the 
application has ProviderListener registered, then it will receive notification about this event. 

In addition to this heartbeat mechanism (which monitors the link between JTAPI library and AES), 
JTAPI also monitors the link between AES and the Avaya Aura® Communication Manager (CM). If 
that link goes down, JTAPI receives a notification from AES and the provider state is set to 
OUT_OF_SERVICE. This feature is available from release 5.2 onwards.

5.10 JTAPI Applets
This section explains the setup required for running JTAPI Applets in a browser.  It describes the 
steps for making the applet classes available in Internet Explorer (6.0 or later). In this configuration, 
the clients that will access the web server do not need to install the JTAPI software.

1. Copy the avayaprca.jks, the ecsjtapia.jar and the tsapi.pro files to the directory on the Web 
server that will host the web page (all files should be in the same directory).

2. Edit the tsapi.pro file to include the TCP/IP addresses or host names of the AE Servers that
will be used. The default port number is 450. 

3. “trustProxy = true” – the Java plug-in must have this system property value.  To confirm 
this, say in Internet Explorer, go to Tools->Sun Java Console, and then in that window type 
the letter “s” – it will say “Dump system and deployment properties”. Under the system 
properties, confirm “trustProxy = true”.



6. Compiling and debugging

6.1 Installing Java
The java core packages need to be installed separately. Please download and install the Java 
installation appropriate for your operation system from the 

Oracle Java website (http://www.oracle.com/technetwork/java/javase/downloads/index.html) or

Open JDK from http://download.java.net/openjdk/jdk8/

6.2 Compiling and running
Compiling a test program can be done via the operating system’s command line interface or via a
development environment like Eclipse.

In order to compile your application in any case, you need to ensure that 

 You are using a JDK 8 or open JDK 8 or higher version of Java

 The ecsjtapia.jar file from the SDK is in your CLASSPATH.

6.2.1 Compiling using the command line interface (CLI)
Installing Java will install the tools “java” and “javac” in your system PATH automatically on 
Windows. On Linux, soft symbolic links like /usr/bin/java and /usr/bin/javac to your installation 
may be required. Please read the installation instructions posted on the Sun website. 

6.2.1.1 Checking the Java version
Please check the version used by typing “java –version”. As mentioned above, a version greater 
than 1.5 should be used

6.2.1.2 Compiling a simple application
The Windows compile command may look something like this

D:\jtapi-sdk-7.0.0.64>javac -classpath lib\ecsjtapia.jar *.java

This will compile all java files in the current directory

The Linux equivalent would be below

[jdoe@ linux-box jtapi-sdk-7.0.0.64]# javac -classpath lib/ecsjtapia.jar 

*.java

6.2.1.3 Compiling a complex application
Ant is the recommended build tool for any moderately complex application. 

This tool needs the system variable JAVA_HOME set to point to the java installation you wish to 
use. Please ensure that this variable points to a Java Development Kit (JDK) and not a Java 
Runtime environment (JRE)

On Windows a sample command to set this variable will be

http://download.java.net/openjdk/jdk8/
http://www.oracle.com/technetwork/java/javase/downloads/index.html


D:\jtapi-sdk-7.0.0.64>set JAVA_HOME= C:\Program Files\Java\jdk1.8.0_01

The Linux bash equivalent would be below. Please use the appropriate syntax of your shell

[jdoe@ linux-box jtapi-sdk-7.0.0.64]# export JAVA_HOME=/usr/java/ 

jdk1.8.0_01

Please refer to 

 The build script (ant.bat or ant.sh depending on your OS variant) for an example of how 
to use Ant from the command line. The above scripts set the path to use the ant 1.7.1 
distribution bundled with the SDK. This distribution is the same as the distribution 1.7.1 
available at http://ant.apache.org/ except that it uses extra ant contrib. tasks defined at 
JTAPI_SDK_PATH/ant/lib/ant-contrib-1.0b1.jar.   

 The build file build.xml at JTAPI_SDK_PATH/sampleapps/bin for an example of how to 
compile an application using ant.

6.2.1.4 Running a simple application
The Windows run command is similar to the compile command except that the “java” executable 
needs to be used instead of “javac”.

Log4j needs to be in the CLASSPATH. By default, the log4j jar in JTAPI_SDK_PATH/lib is 
included in the manifest of ecsjtapia.jar. If the log4j jar is not located in the same directory as 
ecsjtapia.jar, it needs to be passed in the CLASSPATH.

A class with a valid main() entry point needs to be specified.

 D:\jtapi-sdk-7.0.0.64>java -classpath lib\ecsjtapia.jar;log4j-
1.2.12.jar;.;conf TestApplication

D:\jtapi-sdk-7.0.0.64>

Assuming that a class TestApplication.java exists in the current directory and has an entry point 
of the signature “public static void main(String[] args)”, the above command will run that class. 

Please note the contents of the CLASSPATH used. It contains

 The Avaya implementation library (ecsjtapia.jar)

 The Log4j library, (on which ecsjtapia.jar depends for logging)

 The current directory (assuming that TestApplication.java has been compiled to this 
directory, i.e. the current directory was the build directory for compiling 
TestApplication.java)

 The conf directory (so that TSAPI.PRO and log4j.properties are included in the 
CLASSPATH)

The linux equivalent is presented below

[jdoe@ linux-box jtapi-sdk-7.0.0.64]# java -classpath 
lib/ecsjtapia.jar:log4j-1.2.12.jar:.:conf TestApplication

http://ant.apache.org/


6.2.1.5 Running a complex application
Similar to compilation, Ant is the recommended tool for running any moderately complex 
application. Please see the ant compilation setup section for information regarding setting up ant. 
Please refer to the build file build.xml at JTAPI_SDK_PATH/sampleapps/bin for an example of 
how to run an application using Ant.

6.2.1.6 Deploying a simple application
Java applications are traditionally deployed as jars.  Your application can be bundled as a jar with
the class-path attribute including ecsjtapia.jar and a main-class attribute pointing to your main 
class. Please remember to bundle the log4j jar and respective configuration files i.e. TSAPI.PRO 
and log4j.properties along with your application.

Assuming TestApplication.class as the main class, an example Manifest.mf file would be

Class-Path: ecsjtapia.jar  log4j-1.2.12.jar 

Main-Class: TestApplication

The jar can then be created using the “jar” tool included with the JDK. A sample command on 
Windows would be

D:\jtapi-sdk-7.0.0.64> jar -cfm testapp.jar Manifest.mf *.class 
log4j.properties TSAPI.PRO

This command will create a jar testapp.jar using the Manifest.mf specified and containing all class
files as well as the configuration files log4.properties and TSAPI.PRO in the current directory.

Please ensure that ecsjtapia.jar, testapp.jar and log4j-1.2.12.jar are in the same directory when 
run. An indicative run command would be

D:\jtapi-sdk-7.0.0.64> java –jar testapp.jar

On Linux, you may need to soft link the jar tool before usage. The jar creation and run commands
are similar to the Windows commands above.

6.2.1.7 Deploying a complex application
Binaries are best created as part of the build script using Ant in this case. Please refer to the Jar 
task of Ant at http://ant.apache.org/manual/CoreTasks/jar.html for information on how to create 
jars

6.2.2 Compiling using Eclipse
This can be done by setting up a java project in Eclipse. Please search for “New Java Project 
Wizard” in Eclipse for instructions on how to do so.

The following instructions apply to Eclipse 3.2

 Select File > New > Project > Java Project from the Eclipse menu and click “Next”.

 Enter a name for the project and ensure that a JVM > 7 is used for this project.

 Go to the libraries tab and click “Add External Jars”. Browse to the directory. 
JTAPI_SDK_PATH/lib and select ecsjtapia.jar and log4j-1.2.12.jar. Click “Finish”

 Copy a properly configured TSAPI.PRO and log4j.properties from JTAPI_SDK_PATH 
/conf to a source folder in your Eclipse project.

http://ant.apache.org/manual/CoreTasks/jar.html


 Create and your client application in this project. Please see the section “Writing a client 
application” for more information.

Eclipse provides wizards to create jars out of project artifacts. Please search the Eclipse 
documentation for “Creating a new Jar file” for more information on this procedure.

6.3 Debugging

6.3.1 Client-side debugging
Sample code can be debugged by opening the code in an IDE and stepping through it with a 
debugger. However, debugging the JTAPI implementation involves configuring logging at an 
appropriate level, executing the scenario and examining the generated logs

Following is a walkthrough on how to configure logging for the Avaya JTAPI implementation.

JTAPI 5.2 supports log4j based logging. JTAPI application developers can now control logging in 
2 ways as described below.

6.3.1.1 Using a log4j.properties file
JTAPI application developers can also control logging by specifying a log4j properties file to 
control JTAPI logging. JTAPI uses com.avaya.jtapi.tsapi as the internal logger. JTAPI application 
developers are advised not to use this logger but use com.avaya.jtapi as the logger to control 
JTAPI logging. Developers are encouraged to use this method to control JTAPI logging. Please 
refer to “Configuring the JTAPI client library” for log4j properties files examples.

6.3.1.2 Using TSAPI.PRO
JTAPI logging can be controlled by setting the properties in TSAPI.PRO. The log4j level can be 
controlled by setting the debugLevel property in TSAPI.PRO. The values for the property 
debugLevel must be between 0-7. 

The “altTraceFile”, “traceFileCount” and “traceFileSize” keys control trace logging. 

Similarly, the “errorFile”, “errorFileCount” and “errorFileSize” control error logging.

Please refer to the section on Configuring the JTAPI client library for more information regarding 
both debugLevel and these trace and error logging attributes. 

The exact behavior of JTAPI logging will depend on the properties that have been set in the 
TSAPI.PRO file. Since the trace and error parameters mentioned above are not mandatory, 
please keep in mind the following points while setting properties:

 If debugLevel property is set to a value greater than 0 and no other trace or error logging 
properties are present then JTAPI will create a console appender and log all details to the 
console.

 If debugLevel is set to a value greater than 0 and an errorFile is mentioned then JTAPI will 
log at a level corresponding to debugLevel and also turn on error logging to the file that is 
mentioned as value for errorLogging.

 If debugLevel is set to zero and errorFile is set then log4j level will be set to ERROR and 
error messages will be sent to the error file. Setting errorFile property will override 
debugLevel property in this case.

6.3.1.3 Using System properties
JTAPI logging can also be controlled through system properties. All the properties mentioned in 
the section 5.3.1.2 for enabling logging can be passed as system properties to your JTAPI 
application. However these property keys need to be prefixed by com.avaya.jtapi.tsapi.

6.3.1.4 Controlling logging programmatically
It is also possible to programmatically enable logging via the new 
ITsapiProvider.setDebugPrinting(boolean) method. 



If no trace appender exists, calling this method with a parameter value of true shall create a 
console appender with a log level of TRACE. If a trace appender does exist calling this method 
with a parameter value of false will change the log level to NONE while a parameter value of true 
will change the log level to TRACE.. Error logging shall not be impacted by this method 
invocation.

6.3.2 Server-side debugging
Server side logs are available at /opt/mvap/logs. The configuration file is 
/opt/mvap/conf/tracemask. A common configuration of tracemask would include

TSAPI=0x1

Please see the Avaya MultiVantage™ Administration and Maintenance Guide guide to learn more
about the server’s logs.

6.3.3 Improving performance
Many different factors may potentially affect the performance of your system. A JTAPI system has
four main parts that may be affected:

 The AE Services server

 Communication Manager

 The network

 The JTAPI client application

An excessive load on any of these may slow down the overall system. Please check the 
following.

On the AE Services server:

 Ensure that your AE Services server machine meets the minimum requirements specified
in the appropriate Avaya Aura® Application Enablement Services Installation and 
Upgrade Guide for the offer you have purchased (bundled server or software only).

 Avoid running JTAPI or any other application on the AE Services server machine.

 Check that the AE Services server’s Linux operating system resources are tuned 
correctly for your application needs. The server software makes no assumptions 
concerning your application needs and therefore does not tune the kernel for you. See 
the Linux documentation found at http://www.redhat.com/docs/manuals/linux/RHL-9-
Manual.

 Update the Linux kernel with the latest updates available.

On the Communication Manager:
Ensure that Avaya Aura® Communication Manager is properly configured for your network and 
business needs. Misconfigured Avaya Aura® Communication Manager elements can lead to 
performance issues.

On the network:
Ensure that your network traffic is properly balanced. One way to do this professionally is to ask 
Avaya to perform a network assessment. There is also a VoIP Readiness Guide available from 
the Avaya Support Centre (http://www.avaya.com/support). For more information about improving
the performance of your network, see the “Network Quality and Management” section of 
Administration for Network Connectivity for Avaya Avaya Aura® Communication Manager (555-
233-504).

http://www.avaya.com/support
http://www.redhat.com/docs/manuals/linux/RHL-9-Manual
http://www.redhat.com/docs/manuals/linux/RHL-9-Manual


On the client
If your application has large memory requirements, consider increasing the memory available to 
the JVM (using the –Xmx attribute for a Sun JVM). 
If many threads are required consider decreasing the default thread stack size (using the –Xss 
flag on Sun JVMs). Sun's JDK 1.4 allocates about 256K of address space per thread while JDK 
1.5, seems to allocate about 1M of address space per thread.

6.3.4 Getting support
Development support is only available through Avaya's DevConnect Program at this time. As an 
Innovator/Premier/Strategic level member of the DevConnect Program, technical support 
questions can be answered through the DevConnect Portal at www.avaya.com/devconnect.
As a Registered member of the program, support is not available. If you require support as a 
Registered member, you can apply for a higher level of membership that offers support and 
testing opportunities through the DevConnect Portal. Membership at the 
Innovator/Premier/Strategic level is not open to all companies. Avaya determines membership 
status above the Registered level.



7. Using the JTAPI Exerciser
The JTAPI SDK ships with an "Exerciser” tool that is very useful for developers just learning 
about the API and its capabilities. The Exerciser allows trial of all the capabilities of Avaya’s 
implementation of JTAPI without having to write any code.

This section explains the most common steps that would be performed each time the Exerciser is
used.  In general, you would do the following

 Create a Provider instance.

 Create one or more address objects that you are interested in monitoring.

 Add a call Observer on the address object to get events informing about the calls on this 
address.

 Make a call to the above address and check the events.

In order to run the Exerciser, you must first ensure that the TSAPI.PRO file in the jtapi-sdk/conf 
directory is properly configured to point to the AE server.  For further details, see “Configuring 
your JTAPI client library”.  The next step would be to go to JTAPI_SDK_PATH/tools/bin and run 
“ant.sh runJtapiExerciser” or “ant.bat runJtapiExerciser” depending on the platform. 



Once the Exerciser is launched, the system will display

 Your first step will be to acquire an instance of Provider object. You can do this by first acquiring 
a JtapiPeer, as your application would do, or you can take a short cut and double click directly on 
the “Provider” label.  If you take the latter option, the DefaultJtapiPeer will be used.



After clicking on provider label directly, the system will display 

You will have to enter the following information to be able to create a provider :

 Select the appropriate Tlink from the combo box labeled as “Tlink Name” (see Tlink)

 Enter username of an user in the text box labeled as Login.

 Enter password of the same user in the text box labeled as Password.

Click the “OK” button after entering the above information. Once this is done, check the object 
tree on the right panel of the Exerciser and it should show a node labeled as “provider1” under a 
node labeled as DefaultPeer. Please refer to the figure below.



Now that you have a valid provider instance, the next thing is to create an address object. 

Let us assume that we want to create an address object for a extension 4701. 

Double-click on the “provider1” node in the object tree to launch the provider window and then 
from this window, you can select the getAddress() function from the ‘Methods’ menu. Or you can 
take a shortcut by clicking on the address label in the JTAPI Object Palette to enter the extension 
directly.



After double-clicking on the address label in the JTAPI Object Palette, the system shows the 
window as below.

Enter the extension 4701 in the textbox labeled as “Device” and then click “Ok” button. You 
should now see a node labeled “a_4701” in the JTAPI object tree on the right panel of the 
Exerciser.

Now we will add a CallObserver on the address object to be able to get information about the 
calls to this address.

To do this, double-click on the “a_4701” node in the Jtapi object tree. This will launch a address 
window labeled as “Address:a_4701”. In this address window,click on the menu item labeled as 
“Methods “. Click on the first Item “Address” and then click the “addCallObserver()” method. 
Please refer to the figure below.



Having done this, you now have a CallObserver added to this address. Any events about the calls
to this address will be logged on the address window labeled “Addess:a_4701”.

We now move onto the next step of placing the call to the above address 4701 from an extension,
say 4702.

To do this, you need to create an Address and Terminal object for the extension 4702. The 
process for creating the address object for 4702 is similar to the one followed for creating address
object for 4701. 

To create a terminal object for 4702, double-click on the label “Terminal” in the JTAPI Object 
Palette. 



This would launch a window as shown below. 

Enter the extension 4702 in the text box labeled as “Device” and click the button “Ok”. This would 
add a node labeled “t_4702” in the object tree.

The next step is to double-click on the label “Call” in the JTAPI Object Palette. This would launch 
a window labeled provider.createCall() . Click the “Ok” button on this window. Now you should 
see a node labeled as “call1” in the JTAPI Object tree. Please refer to the figure below.



Double-click on the node labeled as “call1” in the object tree to launch a menu labeled as 
“Call:call1”. In this Menu click on the menu item labeled as “Methods”. From the list that appears, 
click on the first item labeled as “Call” and then click on the method labeled as 
“connect(Terminal,Address,String)”. This would open a window labeled as Call.connect() as 
shown below.



Enter extension 4701 in the textbox labeled as Device and then click “Ok” button.

You should now be able to see JTAPI events in the window labeled Address:a_4701 indicating a 
call alerting at extension 4701 as shown below. Scroll down the window to look for other JTAPI 
events pertaining to this call.



The object tree also gets updated with new nodes representing connections and terminal 
connections for respective address and terminal objects. 

It is now possible to answer the call and do some other API operations like transfer using the 
various nodes that are available on the object tree. 

The next step is to learn about how to clean up various objects that we created in our previous 
operations.

Let us assume we want to clear an object a_4701. To do this, check if you already have the 
window labeled Address:a_4701 opened. If not ,double-click on the node labeled as “a_4701”. 
This will launch a window labeled as Addess:a_4701. In this window from the menu bar, select 
'File | Destroy Obj. Once this is done, you should no longer see node labeled as a_4701 in the 
object tree. Please refer to the figure below:



The above process should be repeated for cleaning up other objects in the object tree.

If you want to clear up all the objects in one click, do the following:

From the menu bar select Tools | Restart Session. Please refer to the figure below.



Once this action is completed, there should be no nodes other than the DefaultPeer and the 
provider node in the object tree. Please refer to the picture below.





APPENDIX A – Avaya implementation specific deviations
from the JTAPI specification 

Core package implementation details

The following table describes the Core Package interfaces and methods.. 

Interface Method Implementation Notes

Address getTerminals

The implementation of this request relies on the AE Services 
Security Database (SDB).  If the SDB is not enabled, NULL will be
returned for address.getTerminals() and terminal.getAddresses(). 
Without the SDB, there is no listing of addresses and no 
information to pass.

Connection disconnect

Must be called with Connection in the CONNECTED, 
INPROGRESS, ALERTING, FAILED or UNKNOWN state. If the 
connection is not in either of these states then a 
InvalidStateException is thrown.

JtapiPeer Not applicable

Obtain a JtapiPeer object using the JtapiPeerFactory class. The 
TsapiPeer class represents this implementation of the JtapiPeer.  
To obtain TsapiPeer, invoke 
JtapiPeerFactory.getJtapiPeer(“com.avaya.jtapi.tsapi.TsapiPeer”)

JtapiPeer getServices
Returns an array of service names that can be used to build the 
String needed to be passed to JtapiPeer.getProvider(). These 
Strings are the AE Server Tlink names.

JtapiPeer getProvider

The providerString parameter to this method must contain an AE 
Services Tlink name as well as login and password for user 
authentication.  Optionally, the AE server to connect to can also 
be specified in this string as the value of the parameter servers..

The format of the String is 
“<tlink>;login=<loginID>;passwd=<pw>;servers=<server entries>”

Where server entries follows the format

server1:port,server2:port,server3:port 

Terminal  getAddresses

The implementation of this request relies on the AE Services 
Security Database (SDB).  If the SDB is not enabled, NULL will be
returned for address.getTerminals() and terminal.getAddresses(). 
Without the SDB, there is no listing of addresses and no 
information to pass.

Call Center package implementation details

The following table describes the Call Center Package interfaces and methods.

Interface Method Implementation Notes

ACDAddress getOldestCallQueued Method not supported.



ACDAddress getRelativeQueueLoad Method not supported.

ACDAddress getQueueWaitTime Method not supported.

ACDAddress getACDManagerAddress Method not supported.

ACDManagerAddress getACDAddresses Method not supported.

Agent getAgentID Returns a null string.

AgentTerminalObserver  No methods defined.

The AgentTerminalObserver only supports 
the AgentTermLoggedOnEv and 
AgentTermLoggedOffEv when the state 
change is produced through the JTAPI 
application.  In order to monitor agent activity
(e.g., agents logging on and off manually), 
an ACDAddressObserver should be added 
to the ACDAddress.

Similarly in case of listeners, 
AgentTerminalListener# 
agentTerminalLoggedOn and 
AgentTerminalListener# 
agentTerminalLoggedOff are supported only 
when the JTAPI application itself is logging 
the agent on and off. To completely monitor 
agent activity, please use an 
ACDAddressListener

CallCenterCall connectPredictive The answeringEndpointType parameter is 
not supported. The maxRings and 
answeringTreatment parameters are 
supported.  If the Call is observed and the 
ACDAddress or AgentTerminal is also call 
observed, then two unique Call objects will 
be created that are associated with the same
real call.  One of the following methods must 
be used to determine that there are two Call 
objects representing the same real call.

 If the called address is unique 
among all calls, the 
Call.getCalledAddress() method can 
be used. 

 Another way is to use the 
UserToUserInfo Avaya Aura 
Software server-specific extension. 
The application can send a unique 
ID in the UserToUserInfo with the 
connectPredictive and this ID will be 
reported in call events for the 
ACDAddress or AgentTerminal. The 
UserToUserInfo can also be 
retrieved directly from the Calls.

In any case, both Call objects and all 
Connections and TerminalConnections in 
both Calls are valid. Valid requests may be 
made of any of the objects.

Currently, only Connection.CONNECTED is 



valid as the connectionState parameter. If 
Connection.ALERTING is specified, it is 
ignored and Connection.CONNECTED is 
used.

CallCenterCall getApplicationData
Returns the application-specific data 
associated with the Call. This method 
returns null is there is no associated data.

CallCenterCall setApplicationData

This method associates application specific 
data with a Call. The format of the data is 
application-specific. The application-specific 
data given in this method replaces any 
existing application data. If the argument 
given is null, the current application data (if 
any) is removed.

In the case that a Call is transferred or 
conferenced, the application data from the 
Call from which the conference or transfer is 
invoked will be retained.

PrivateTermEv getPrivateData Method not supported.

RouteAddress  registerRouteCallback
Only one RouteCallback may be registered 
for an Address at a time.

RouteSession  selectRoute
Only the first route specified in the 
routeSelected parameter is used. The 
subsequent routes are ignored.

RouteSession getRouteAddress

The RouteAddress returned by 
RouteSession.getRouteAddress() is the 
originally called device if there is no 
distributing device (ACD or VDN), or the 
distributing device if the call vectoring with 
VDN override feature of the PBX is enabled.

AgentTerminal setAgents Method not supported.

Call Center Events package implementation details

All events in the Call Center Events package are only sent to the application when a state change
results from an application request. If the state change occurs via some other interface (e.g. the 
agent pushes a button on their telephone), no event will be sent to the application.

Similarly, all callbacks in the CallCenterCallListener, ACDAddressListener and 
AgentTerminalListener are sent only when the state change is actively made by the JTAPI 
application.

Call Control package implementation details

The following table describes the Call Control Package interfaces and methods.

Interface  Method Implementation notes

CallControlAddress setForwarding Avaya supports the 



FORWARD_UNCONDITIONALLY 
forwarding type only when used in 
combination with the ALL_CALLS 
filter type. 

CallControlAddress getDoNotDisturb

For this method, there is no 
distinction between an Address and
a Terminal. 
CallControlAddress.getDoNotDistur
b() and 
CallControlTerminal.getDoNotDistu
rb() always return equivalent 
values.

CallControlAddress setDoNotDisturb

For this method, there is no 
distinction between an Address and
a Terminal. 
CallControlAddress.setDoNotDistur
b() and 
CallControlTerminal.setDoNotDistur
b() behave the same. 

CallControlCall offHook Method not supported.

CallControlCall transfer(String address) 

This method is supported with the 
following implementation-specific 
details: 

 the application must call 
setTransferController() 

 transfer(String) returns a 
connection in UNKNOWN 
state but followup events 
provide state updates

CallControlCall 
consult(TerminalConnecti
on termconn)

Method not supported.

CallControlConnection accept    Method not supported.

CallControlConnection  reject Method not supported.

CallControlConnection  addToAddress Method not supported.

CallControlConnection  park Method not supported.

CallControlTerminal getDoNotDisturb 

For this method, there is no 
distinction between an Address and
a Terminal. 
CallControlAddress.getDoNotDistur
b() and 
CallControlTerminal.getDoNotDistu
rb() always return equivalent 
values.

CallControlTerminal setDoNotDisturb For this method, there is no 
distinction between an Address and
a Terminal. 
CallControlAddress.setDoNotDistur
b() and 
CallControlTerminal.setDoNotDistur



b() behave the same. 

CallControlTerminal 
pickupFromGroup (String
pickupGroup, Address 
terminalAddress) 

Method not supported.

CallControlTerminalConnection join Method not supported.

CallControlTerminalConnection leave Method not supported. 

CallControlAddressListener addressDoNotDisturb

Similar to the equivalent observer 
behavior described above, this 
callback is invoked even if 
DoNotDisturb was changed using 
CallControlTerminal.setDoNotDistur
b(). For DoNotDisturb, there is no 
distinction between an Address and
a Terminal. 

CallControlConnectionListener connectionDialing Callback not supported

CallControlConnectionListener connectionOffered Callback not supported

CallControlTerminalConnectionList
ener

terminalConnectionInUse Callback not supported

Call Control Events package implementation details

The following table describes the Call Control Events Package interfaces and methods..

Interface  Method Implementation notes

CallCtlAddrDoNotDisturbEv getDoNotDisturbState

The CallCtrlAddrDoNotDisturbEv event is 
sent even if DoNotDisturb was changed using
CallControlTerminal.setDoNotDisturb(). For 
DoNotDisturb, there is no distinction between
an Address and a Terminal.

CallCtlConnDialingEv Not applicable Interface not supported.

CallCtlConnOfferedEv Not applicable Interface not supported.

CallCtlTermConnInUseEv Not applicable Interface not supported.

Media package implementation details

This package is an optional part of the JTAPI specification. Avaya supports only DTMF related 
functionality in this package. MediaTerminalConnection.generateDtmf() is supported to send 
DTMF tones and MediaTermConnDtmfEv from the events package is supported to enable an 
application to be notified of the DTMF digits dialed. MediaCallObserver is supported to the extent 
that an observer implementing this interface is required to be used in order to be notified of a 
MediaTermConnDtmfEv event.



Media Events package implementation details

As mentioned above, MediaTermConnDtmfEv is the only media event that is supported. 

Although the MediaTermConnDtmfEv interface has been defined as a TerminalConnection event,
the TerminalConnection field will be null. The Call field will be filled in with the call to which the 
DTMF digits have been applied. This event is sent only when a DTMF detector is attached to the 
call and DTMF tones are detected. The tone detector is disconnected when the far end answers 
or "#" is detected. This event is used in conjunction with the Communication Manager-specific 
extension LucentRouteSession.selectRouteAndCollect().

In case a listener (more specifically a PrivateDataCallListener) is used, the DTMF digits applied 
will be passed as private data via the PrivateDataCallListener.callPrivateData callback. Invoking 
getPrivateData() on the parameter passed to this callback will return an instance of 
com.avaya.jtapi.tsapi.PrivateDtmfEvent, which will contain the dialed DTMF digits

Private Data package implementation details

The following table describes the JTAPI Private Data package interfaces and methods..

Interface  Method Implementation notes

PrivateData setPrivateData
For this method, the private data Object parameter must 
be an instance of TsapiPrivate.

PrivateData sendPrivateData
For this method, the private data Object parameter must 
be an instance of TsapiPrivate.

Phone package implementation details

No class / interface in this package is supported.

Mobile package implementation details

No class / interface in this package is supported.



APPENDIX B – Avaya implementation specific 
enhancements to the JTAPI specification 

Extensions to JTAPI Exceptions

AE Services extensions to the JTAPI exceptions provide more detailed error information than is 
defined in JTAPI. These extensions consist of the CSTA and ACS error codes provided by 
TSAPI.

For information about Computer-Supported Telecommunications Applications (CSTA) and API 
Control Services (ACS) error codes, refer to Avaya MultiVantage Application Enablement 
Services TSAPI Programmer's Reference, 02-300545. 

ACS error codes are defined in the enum ACSUniversalFailure_t, while CSTA error codes are 
defined in the enum CSTAUniversalFailure_t.

The javadoc of com.avaya.jtapi.tsapi.ITsapiCSTAUniversalFailure also contains a list of CSTA 
failure codes.

Extension to CallCenterAddress interface

Feature Name and 
Description

Class or Interface Returned/Used by Methods 
in Class or Interface

Call listener to monitor calls for
the lifetime of the call. 

Not applicable LucentCallCenterAddress

Extensions to JTAPI Provider events

AE Services defines additional JTAPI Provider events. These events provide more detailed 
Provider state changes. These TSAPI Provider states map to JTAPI Provider states as follows: 

TSAPI Provider State JTAPI Provider State

ITsapiProvider.TSAPI_OUT_OF_SERVICE Provider.OUT_OF_SERVICE

ITsapiProvider.TSAPI_INITIALIZING Provider.OUT_OF_SERVICE

ITsapiProvider.TSAPI_IN_SERVICE Provider.IN_SERVICE

ITsapiProvider.TSAPI_SHUTDOWN Provider.SHUTDOWN



Avaya Aura® Communication Manager Extensions to JTAPI

This table summarizes the Avaya Aura® Communication Manager features that are available as 
extensions to JTAPI.

Feature Name and Description Class or Interface Returned/Used by Methods in Class or 
Interface

Advice of Charge - Reports network 
charges incurred by outgoing trunk 
calls. 

LucentChargeAdviceEvent

LucentChargeError

LucentChargeType

LucentV5Provider

Agent Work Mode - Specifies the 
overriding mode of the Agent; affects 
the cycle of the possibly occurring 
Agents states. 

LucentV6 Agent adds support for: 

reason code(an application-defined 
reasonCode (1-9), which may be 
specified when the state is set to 
Agent.NOT_READY.) 

and 

pending Work Modes( A JTAPI 
Application may request to change an 
Agent's state to 
Agent.WORK_NOT_READY and 
Agent.NOT.READY, and to have the 
state change be held "pending" until all
current calls that are active on the 
Agent's Agent Terminal are 
completed).

LucentV7Agent adds support for 
expanded reason codes. (1-99),

Not applicable LucentAgent 

LucentAgentStateInfo

LucentV5AgentStateInfo

LucentTerminal

LucentV5Terminal

LucentV5TerminalEx

LucentV5AgentStateInfo 

LucentV6Agent 

LucentV6AgentStateInfo

LucentV7Agent 

Call Classifier Information - Provides
information on call classifier port usage
(namely available and in-use ports)

CallClassifierInfo LucentProvider

Collect Digits - Allows a route request
to wait for a specified number of digits 
to be collected.

This feature is not supported currently. 
Invocation of the following method 

• selectRouteAndCollect

on LucentRouteSession will throw a 
TsapiMethodNotSupportedException.

Not applicable LucentRouteSession

Dial-Ahead Digits - Allows a route  Not applicable LucentRouteSession



Feature Name and Description Class or Interface Returned/Used by Methods in Class or 
Interface

request to place digits in a dial-ahead 
buffer.

This feature is not supported currently. 
Invocation of the following method 

• selectRouteWithDigits

on LucentRouteSession will throw a 
TsapiMethodNotSupportedException.

Direct Agent Calls - Allows calls to be
made to and from specific logged-in 
ACD Agents Allows calls to be made to
and from specific logged-in ACD 
Agents

Not applicable LucentCall

LucentRouteSession

Dropping Resources - Allows specific
switch resources to be dropped from 
the call.

Not applicable LucentConnection 
LucentTerminalConnection

Flexible Billing - Allows changing the 
billing rate for incoming 900-type calls.

 Not applicable LucentV5Call

LucentBillType

Flexible Generation of DTMF Tones -
Enables an application to specify tone 
duration and inter-tone delay duration.

Not applicable LucentV5TerminalConnectionEx

Integrated Directory Name - Allows 
the Avaya Aura® Communication 
Manager Integrated Directory 
Database name to be returned

 Not applicable LucentAddress

LucentTerminal

Device On Switch

Allows applications to determine if an 
Address/Terminal object represents a 
station administered on the switch

Not Applicable LucentAddress

LucentTerminal

Predictive call observation - Allows 
the application to receive notice of all 
call events for the predictive dial call.

Not applicable LucentV7ACDManagerAddress

Look-Ahead Interflow Information - 
Can be used by a routing server 
application to determine the proper 
destination of a call.

LookaheadInfo LucentCallInfo

OriginalCallInfo

Extended AgentTerminal connection
information - Provides information 

Not applicable LucentCallInfo



Feature Name and Description Class or Interface Returned/Used by Methods in Class or 
Interface

regarding

1. The ACDAddress or 
ACDManagerAddress that was an 
intermediate endpoint before the call 
terminated at the AgentTerminal.

2. The ACDAddress that this call was 
delivered through to the 
AgentTerminal.

Lucent Call Information - Provides 
Avaya Aura Communication Manager-
specific call information on Call and 
CallControlCall events; information 
includes delivering ACD, distributing 
Address, originating Trunk, reason for 
last Call event, and other information.

LucentCallInfo Implemented by Lucent call objects, route 
session objects, and CallControlCall 
events.LucentCallInfo (extended by 
LucentCall; extended by LucentV5CallInfo; 
extended by CallControlCall events)

LucentV5 Call Information – In 
addition to the Lucent call information , 
LucentV5 call information adds support
for : Universal Call ID, Originator Type,
and Flex Billing Flag. 

LucentV5CallInfo Implemented by Lucent call objects, route 
session objects, and CallControlCall 
events.LucentV5CallInfo (extended by 
LucentV5Call; extended by 
LucentV7CallInfo; extended by 
CallControlCall events)

LucentV7 Call Information – In 
addition to the LucentV5 call 
information, LucentV7 call information 
adds support for retrieving the current 
list of device history entries for this call 
and the distributing VDN (if defined)

LucentV7CallInfo Implemented by Lucent call objects, route 
session objects, and CallControlCall 
events.LucentV7CallInfo (extended by 
LucentV7Call; extended by CallControlCall 
events)

Message Waiting Application 
Information - Indicates which types of 
applications have enabled message 
waiting

 Not applicable LucentAddress 
LucentAddressMsgWaitingEvent

LucentCallControlAddressMsgWaitingEvent

Network Progress Information - 
Contains supplementary call progress 
information from the ISDN Progress 
Indicator Information Element. 

V5NetworkProgressInfo adds support 
for: trunk. 

NetworkProgressInfo 

V5NetworkProgressInfo

LucentConnNetworkReachedEvent

Original Call Information - Contains 
information about the original call in 
conjunction with the Call.consult() 
service.

OriginalCallInfo LucentCallInfo



Feature Name and Description Class or Interface Returned/Used by Methods in Class or 
Interface

LucentV5 Original Call Information –
In addition to the Lucent Original Call 
information, LucentV5 Original Call 
Information adds support for: Universal
Call ID, Originator Type, and Flex 
Billing Flag.

V5OriginalCallInfo LucentV5CallInfo

LucentV7 Original Call Information - 
In addition to the LucentV5 Original 
Call information, LucentV7 Original 
Call information adds support for: 
device history.

V7OriginalCallInfo LucentV7CallInfo

Priority Calls – Extends the equivalent
standard API’s to enable priority calling

Not applicable LucentCall (connect, predictive calling and 
consult API’s)

LucentRouteSession (route selection API)

Selective Listen – Allows control of 
listen paths between parties on a 
conference call.

Not applicable LucentV5Connection

LucentV5TerminalConnection

Single Step Conference – Adds 
another party to a call (added party 
does not alert; used mainly for service 
observing).

Not applicable LucentV5Call

Supervisor Assist Calls – Allows 
logged-in ACD Agents to place calls to 
a supervisor’s extension.

Not applicable LucentCall

Direct Agent Consultation Calls – 
Allows logged-in ACD agents to place 
consult calls to other agents.

Not applicable LucentCall

Supervisor Assist Consultation 
Calls – Allows logged-in ACD agents 
to place consult calls to a supervisor.

Not applicable LucentCall

Fast Connect – Similar to the 
standard Call.connect() except that this
API only waits for the connection for 
the calling party to be created before 
returning. This method is useful when 
sending FACs(Feature Access Codes) 

Not applicable LucentCallEx2



Feature Name and Description Class or Interface Returned/Used by Methods in Class or 
Interface

such as TAC (Trunk Access Code) 
codes.

Switch Date and Time Information - 
Returns the current date and time from
Communication Manager.

Not applicable LucentProvider

Trunk Group Information - Provides 
information on trunk group usage. 

Trunk associates group and member 
information with a connection. If a 
connection is associated with a trunk 
party, then the application can get 
trunk group number and trunk group 
member information.

TrunkGroupInfo LucentProvider 

LucentV6Connection

LucentTrunk

ITsapiTrunk

Universal Call ID - A call identifier that
is globally unique across switches and 
the network.

Not applicable LucentV5CallInfo (extended by 
LucentV5Call)

User Entered Code - The code/digits 
that may have been entered by the 
caller through the Avaya Aura 
Communication Manager Call 
Prompting feature of the Collected 
Digits feature.

UserEnteredCode LucentCallInfo

OriginalCallInfo

User-to-User Information -  An ISDN 
feature that allows end-to-end 
transmission of application data during 
call setup/teardown. UUI can be 
specified, and will be made available, 
accommodating string values up to 96 
bytes.

UserToUserInfo LucentCall

LucentCallInfo

LucentConnection

LucentRouteSession

LucentTerminalConnection

LucentCallInfo

Network Call Redirection -  The 
Adjunct Route support for Network Call
Redirection capability allows an 
adjunct to request that an incoming 
trunk call be rerouted using the 
Network Call Redirection feature 
supported by the serving PSTN instead
of having the call routed via a tandem 
trunk configuration. 

The LucentV7RouteSession interface 
extends LucentRouteSession to add 

Not applicable LucentV7CallInfo 

LucentV7RouteSession 

 



Feature Name and Description Class or Interface Returned/Used by Methods in Class or 
Interface

the ability to use the Network Call 
Redirection feature of call routing on 
Avaya switches. When a Provider is 
bound to a Avaya Aura® 
Communication Manager switch, this 
interface may be used to access this 
additional capability. The route session
object which implements this interface 
also implements the ECSCallInfo 
interface. 

ISDN Redirecting Number 
(Redirecting Number Information 
Element presented through 
DeviceHistory) - The ISDN 
Redirecting Number for ASAI Events. 
Avaya Aura® Communication Manager
feature may be used by CTI 
applications to provide enhanced 
treatment of incoming ISDN calls 
routed over an Integrated Services 
Digital Network (ISDN) facility. 

Device History Entry - The 
V7DeviceHistoryEntry is an entry that 
represents a connection that was 
formerly on a call. This provides 
equivalent content to the Avaya TSAPI 
service implementation of CSTA3 
DeviceHistory parameter (see ECMA-
269 Edition 5, "12.2.13 
DeviceHistory"). Note that private 
interfaces are defined to enable an 
application to use the TSAPI 
information (specifically the 
ConnectionID). 

V7DeviceHistory 

V7OriginalCallInfo

LucentV7CallInfo 

LucentV7RouteSession 

 

 

Query Device Name - The private 
Query Device Name service allows an 
application to query the switch to 
identify the Integrated Directory name 
assigned to an extension. When a 
name has been assigned to an 
Attendant station extension, then an 
application can use the 
getDirectoryName method of the 
LucentAddress interface to get the 
configured Integrated Directory name 
assigned to that attendant extension.

Not applicable LucentAddress



Feature Name and Description Class or Interface Returned/Used by Methods in Class or 
Interface

Enhanced Get API Capabilities 
function - The GetAPICaps function is
enhanced to return the following 
information.  

 Administered Switch 
Version (as administered in the
system parameters customer 
options form on the switch)

 Software Version (the same 
software version string that is 
shown when a customer logs 
into a SAT for a switch)

 Offer Type (values to be added
in future releases of TSAPI 
Service).Valid values  include: 
s8300, s8400,s8500 and 
s8700..

 Server Type (more values to 
be added in future releases). 
Valid values include: 
s8300c,s8300d,icc,premio,tn8
400, laptop,ibmx306, 
ibmx306m,dell1950, 
xen,hs20,hs20_8832_vm,isp2
100, 
ibmx305,dl380g3,dl385g1, 
dl385g2 and unknown.,

Not applicable LucentV7Provider

Expanded universal failure error 
codes - The list of universal failure 
codes that can be returned in CSTA 
UniversalFailure unsolicited events and
confirmation events. This is useful, for 
example, for JTAPI exceptions thrown 
by the Avaya implementation which 
returns these values. 

Not applicable ITsapiCSTAUniversalFailure

User-to-user information used 
specifically for a Q.931/I.451 User-
Network Call Control Message - This
form of UUI can be used to send 
commands out to an ISDN network, 
and subsequently to an SS7 network if 
an ISDN/SS7 gateway is used. An 
object of this type is initialized with a 
byte array value (see constructor) and 
its value may be retrieved as a byte 
array (see UserToUserInfo). This 
information, when available, is 
obtained via the 
LucentCallInfo.getUserToUserInfo() 

Q931UserToUserInfo LucentCall

LucentCallInfo

LucentConnection

LucentRouteSession

LucentTerminalConnection

LucentCallInfo



Feature Name and Description Class or Interface Returned/Used by Methods in Class or 
Interface

method. An instance so acquired may 
be classified using 'instanceof'. 

Connection ID - The ConnectionID is 
used to access the contents of a 
TSAPI ConnectionID as defined by 
Avaya's TSAPI service 
implementation. 

Not applicable ConnectionID 

Added Cause Values – The 
LucentEventCause gives the list of 
event cause values returned in a 
number of contexts by the underlying 
Avaya TSAPI service. Note that 
'EC_NONE' through 
'EC_VOICE_UNIT_INITIATOR' values 
are taken from of the ECMA-179 
'CSTA 1 Services' specification, and 
the subsequent cause value 
extensions, added specifically to 
expose additional capability, adopted 
names and values outlined in the 
CSTA3 service specification (ECMA-
269, 'CSTA 3 Services'). 

Not applicable LucentEventCause

Private interface to RouteUsedEvent
returns an Address - This private 
interface to the RouteUsedEvent helps 
pre-Avaya JTAPI 3.1 applications 
which use the JTAPI 1.2 
RouteUsedEvent.getRouteUsed() 
method to be adapted to conform to 
the JTAPI 1.4 specification with a one-
line code change. The problem is that 
the JTAPI 1.4 getRouteUsed method 
no longer returns an Address; instead 
it now returns a Terminal. In many 
scenarios this is a problem because no
Terminal may be used to represent an 
off-switch party, so for those 'routes' 
this will return 'null'. An Address may 
be returned for off-switch parties. To 
solve this problem caused by the new 
return value, this private interface 

Not applicable LucentRouteUsedEvent



Feature Name and Description Class or Interface Returned/Used by Methods in Class or 
Interface

includes a new method that returns 
what the JTAPI 1.2 method used to 
use (an Address), so that it can be 
used as a replacement API call. 

DTMF Event reporting using 
listeners - If a PrivateDataCallListener
type listener is used, its 
callPrivateData() callback will be 
invoked with an argument of type  
PrivateDtmfEvent if a DTMF-tone has 
been detected on the telephone line. 

Not applicable PrivateDtmfEvent

Access to expanded range of 
reason codes - This interface extends 
the LucentV6Agent interface with 
features specific to TSAPI Version 7 
private data.This interface may be 
used to access additional capabilities. 
This interface specifically provides 
access to the ability to set a broader 
range of reason codes for the 
setState() method. Specifically: it is an 
application-defined reasonCode (1-99) 
which may be specified when the state 
is set to Agent.NOT_READY or 
Agent.LOG_OUT. A zero (0) value is 
also allowed, meaning "no reason". 

Not applicable LucentV7Agent

Access to additional call capabilities
- The LucentV7Call interface extends 
LucentV5Call with additional Avaya 
features exposed through the 
LucentV7CallInfo interface. This 
interface may be used to access 
additional Call capabilities. 

Not applicable LucentV7Call



Feature Name and Description Class or Interface Returned/Used by Methods in Class or 
Interface

Access to additional call 
information - The LucentV7CallInfo 
interface provides access to call 
information from methods that are 
implemented on the call object, the 
route session object, and on certain 
call control call events. For example, if 
a CallControlCallObserver receives a 
CallCtlConnAlertingEv, it may be cast 
to LucentV7CallInfo to use the 
getDeviceHistory() method. These 
methods may return null if the 
requested data is not available. 

Not applicable LucentV7CallInfo

Expanded queries for Avaya Aura® 
Communication Manager - Adds 
queries which give information about 
the underlying Avaya switching 
platform. Introduced with Application 
Enablement Services Server 3.1. 

Not applicable LucentV7Provider



Endpoint Registration and Unregistration Events

Starting with JTAPI release 6.3.1, AE Services and Avaya JTAPI now provide a way for 
applications to monitor a station for endpoint registration and unregistration events, and to query 
for the endpoints registered at a station. 

Checking if Endpoint Events are Available
The Endpoint Events feature has the following prerequisites – 

1. The TSAPI link on AE Services should be configured using ASAI link version 6 (or later). 
ASAI link version 6 is available beginning with Avaya Communication Manager Release 
6.3.2.

2. The application should negotiate private data version 11 (or later) with the TSAPI service 
on the AE Server. The JTAPI library, starting with release 6.3.1, automatically requests 
private data version 11 when creating a Provider.

To check if the Provider is bound to an Avaya Communication Manager using private data 
version 11 or later, a new interface, LucentV11Provider, has been provided with three new 
methods. In your application, you can cast the Provider instance to LucentV11Provider and 
call one of the below methods to determine if the endpoint events feature is available.
 

bo ol ea n g et En dp oin tRe gis ter edE ven t() D o es th e pr ovid er su ppor t e nd poi nt r eg istr atio n e ve nts ?

bo ol ea n g et En dp oin tUn reg ist ere dEv ent () D o es th e pr ovid er su ppor t e nd poi nt u nr egi strat ion ev en ts?

bo ol ea n g et Qu er yEn dpo int Reg ist rat ion Inf o() D o es th e pr ovid er su ppor t q ue ryin g f or a li st o f e nd poin ts c ur ren tly re gist ere d a t a g iv en Ad dre ss?

Registered Endpoints Query
A new interface - LucentV11Address - has been added to the Address hierarchy in JTAPI. This
interface defines a single new method – 

V 11 Re gis ter edE ndp oin tIn fo[ ] ge tR egi ste red End poi nts ()

T hi s m et ho d r et urn s a li st o f e nd poin ts c ur ren tly re gist ere d a t th e st ati on st atio n c or res pondi ng to t he A dd res s. F or e ac h e nd poi nt, th e fo llowi ng in for matio n i s pr ovi ded – 

i ns ta nce ID – F or H .3 23 en dp oints r egi ster ed th rou gh D M CC, t he i ns tanc eID is 0 -2.  F or H .3 23 en dp oints n ot r egi ster ed th rou gh D M CC a nd fo r SI P en dp oints, t he i nst anc eID is a lw ays 0.  T o u ni quely i de ntify a n en dp oint, ap pli catio ns mu st us e bo th t he e nd po int Add res s a nd i ns ta nce ID fi eld s.

e nd po int Add res s –  Fo r H. 32 3 e nd poin ts, th is is t he I P ad dr ess of t he e nd poi nt.  Fo r SI P en dpoi nts, th is is t he e nd poi nt’s Un iv ersal R es ourc e I de ntifi er (U RI).

s wi tc hEn dIp Add res s –  Th e s wi tch-en d IP a dd res s s er ving t he e nd point .

m ac Ad dre ss – T he M edia A cc ess Co nt rol (M AC ) a dd res s r ec eive d f ro m th e en dpo int wh en t he e nd point r egi ster ed, or i f th e en dp oint’ s M AC ad dre ss i s un kn own, t he v alu e “ 00 :0 0: 00: 00: 00: 00” .

p ro du ctI D –  Fo r H. 32 3 e nd poin ts, th is is a n id en tifier s ub mitt ed by t he e nd poin t d ur ing re gis trati on.  It s va lue is o ne o f t he p rod uct ID s ad min iste red on t he A va ya Co mm uni cati on M anag er sy ste m-pa ram eter s c us to mer-op tio ns sc ree n.  Fo r S IP e nd poi nts, th e pr od uc tID is “ SI P_ Ph one”.

n et wo rkR egi on – T he ne tw ork re gion ( 1-25 0) a dm inist ered f or th e en dp oint o n Av ay a C om mu nicat ion M ana ger.

m ed ia Mod e –  Th e m ed ia mo de i n us e by t he e nd poin t.  Th e po ssi ble va lue s a re :

M M_ CL IEN T_S ERV ER – The endpoint is registered in either client media mode or server media mode.

M M_ TE LEC OMM UTE R – The endpoint is registered in Telecommuter media mode.

M M_ NO NE – The endpoint is registered without media control.  This media mode is sometimes 
referred to as “Shared Control” because it allows a DMCC application to share control of 
an extension with another endpoint registered to that extension.

M M_ OT HER – The endpoint is registered with some other media mode not listed above.

d ep en den cyM ode – T he de pe nden cy mo de in u se b y t he e nd poin t.  T he po ssib le va lues a re:



D M_ MA IN – The endpoint is registered with dependency mode Main.  The endpoint can originate 
and receive calls.  Only one endpoint can be registered to the extension with dependency
mode Main.  Typically, this is a physical set or an IP softphone.

D M_ DE PEN DEN T – The endpoint is registered with dependency mode Dependent.  An endpoint can only 
register with this dependency mode if another endpoint is already registered with 
dependency mode Main.

D M_ IN DEP END ENT – The endpoint is registered with dependency mode Independent.  The endpoint can 
originate and receive calls even if another endpoint is not registered with dependency 
mode Main.

D M_ OT HER – The endpoint is registered with some other dependency mode not listed above.

u ni co deS cri pt – F or H .3 23 en dp oints , t hi s i s a s et o f bi t fl ags in dica ting wh ic h U ni cod e c ha ract er se ts ar e su ppo rted b y th e st ati on.  Fo r SI P en dpo ints, t his p ara met er is s et t o US _N ON E. Fo r a  li st of s up por ted bi t fl ags, re fe r t o th e Ja va doc fo r th e Lu ce nt End poi ntU nic ode Scr ipt c la ss.

s ta ti onT ype – T he st atio n t yp e ad mini ster ed fo r th e ex ten sion.

s ig na lin gPr oto col – T he si gnali ng pr otoc ol f or t he e nd poin t.  Th e po ssi ble va lue s a re :

S P_ H3 23 – The endpoint registered as an H.323 endpoint.

S P_ SI P – The endpoint registered as a SIP endpoint.

S P_ NO T_S PEC IFI ED – Avaya Communication Manager cannot provide the endpoint’s signaling protocol.

N ot e: Av aya C om mun icati on M anag er ca nno t p ro vide s om e i nf orm ation f or a S IP s ta tion t ha t i s no t mo nit ored. I t is r ec omm end ed th at th e ap plic ation a dd a L uc en tV1 1Ad dre ssL ist ene r t o t he A dd ress b ef ore qu er ying it u si ng th e Lu ce nt V11 Add res s.g etR egi ste red End poi nts () m et ho d.

Endpoint Events
A new interface - LucentV11AddressListener - has been added to the Listener hierarchy in 
JTAPI. To receive endpoint events, your AddressListener should implement this interface and 
provide an implementation for the following new methods – 

v oi d en dp oi ntR egi ste red (Lu cen tEn dpo int Reg ist ere dEv ent e ve nt )

v oi d en dp oi ntU nre gis ter ed( Luc ent End poi ntU nre gis ter edE ven t ev en t)

The endpointRegistered  method will be called whenever an H.323 or SIP endpoint registers 
to the monitored station. The information contained in the event is the same as provided by the 
LucentV11Address.getRegisteredEndpoints () method above. When the listener is 
added to the Address, it will immediately receive endpoint events for any endpoints already 
registered at that Address. Each event will contain information about a single endpoint, so 
multiple events will be delivered to the application if there is more than one endpoint registered.

The endpointUnregistered  method will be called whenever an H.323 or SIP endpoint 
unregisters from the station. The event will contain the following information – 

i ns ta nce ID – F or H .3 23 en dp oints r egi ster ed th rou gh D M CC, t he i ns tanc eID is 0 -2.  F or H .3 23 en dp oints n ot r egi ster ed th rou gh D M CC a nd fo r SI P en dp oints, t he i nst anc eID is a lw ays 0.  T o u ni quely i de ntify a n en dp oint, ap pli catio ns mu st us e bo th t he e nd po int Add res s a nd i ns ta nce ID fi eld s.

e nd po int Add res s –  Fo r H. 32 3 e nd poin ts, th is is t he I P ad dr ess of t he e nd poi nt.  Fo r SI P en dpoi nts, th is is t he e mp ty s tri ng (“ ”).

s wi tc hEn dIp Add res s –  Th e s wi tch-en d IP a dd res s s er ving t he e nd point .

d ep en den cyM ode – T he de pe nden cy mo de wi th w hic h t he e nd poi nt h ad b ee n re gis tere d.

s ta ti onT ype – T he st atio n t yp e ad mini ster ed fo r th e ex ten sion.

 s ig na lin gPr oto col – T he si gnali ng pr otoc ol f or t he e nd poin t.  Th e po ssi ble va lue s a re :

S P_ H3 23 – The endpoint registered as an H.323 endpoint.

S P_ SI P – The endpoint registered as a SIP endpoint.



S P_ NO T_S PEC IFI ED – Avaya Communication Manager cannot provide the endpoint’s signaling protocol.

r ea so n –  Th e r ea son th at th e en dp oint u nr egist ered . F or a lis t o f p os sible re as on co des t ha t m ay b e r ep orte d i n ti s pa ram eter , r ef er to t he J av ado c f or t he L uc en tEn dpo int Unr egi ste red Rea son c la ss.

c mr ea son – T he un int erpre ted re as on th at th e en dp oint un re gist ered, a s re por ted by Av aya C om mun icati on M anag er. Be ca use fu tu re re leas es of A va ya Co mm uni catio n M anag er m ay in clud e n ew r ea son co de s f or w hy a n en dp oint u nr egist ered , t he u ni nter pret ed va lue is m ad e av aila ble to a pp lica tions . T he v al ue of t he r ea son f iel d f or all s uc h ne wly s up port ed r ea son c od es wi ll b e UR _O T HE R.

The two code snippets below show an example of adding a LucentV11AddressListener to an 
Address in order to receive endpoint events, and querying an Address for currently registered 
endpoints. 

// check if the provider supports endpoint events
if ( ((LucentV11Provider)provider).getEndpointEvents() ) {
  
    Address address = provider.getAddress(extension);    

    // CustomAddressListener should implement LucentV11AddressListener
    CustomAddressListener listener = new CustomAddressListener();
    address.addAddressListener(listener);    
} else {
    System.err.println(“Endpoint events not supported”);
} 

// check if the provider supports querying for registered endpoints
if ( ((LucentV11Provider)provider).getQueryEndpointRegistrationInfo() ) {
    V11RegisteredEndpointInfo[] endpoints = null;
  
    Address address = provider.getAddress(extension);
    endpoints = ((LucentV11Address)address).getRegisteredEndpoints();
    if (endpoints != null && endpoints.length > 0) {
        for (V11RegisteredEndpointInfo endpoint : endpoints)
            // print or process endpoint details
    } else
        System.out.println(“No registered endpoints or endpoint info not” +   
                            “available for this station”);
} else {
    System.err.println(“Registered endpoints query not supported”);
}



Vendor independent private data extensions to JTAPI

The private data extensions to JTAPI assist independent switch vendors in the creation of a 
private data package for their switches, or allow application programmers to use or interpret 
private data when they are supplied with private data in its raw form (i.e., without an intermediate 
private data package.) The following sections describe guidelines for using or interpreting private 
data when it is supplied in its raw form.

Initialization of Private Data
In order to use or interpret private data from a switch vendor other than Avaya, the application 
must specify the vendor name and the version of the private data that is to be used. The 
particular format of the name and version strings used is supplied by the vendor.

The specification of the vendor name and the version of the private data must be done after the 
application creates a JtapiPeer but before it creates the Provider. The ITsapiPeer.addVendor() 
method allows vendor names and versions to be specified to the application. For example, if a 
JtapiPeer has been created (called peer) which is an instance of ITsapiPeer, then:

((ITsapiPeer)peer).addVendor(“Brand X”,”1-3”)

indicates that the application knows how to interpret private data from vendor “Brand X” as well 
as versions 1, 2, and 3 of that private data. If the application supports private data produced by 
multiple vendors, the application may call addVendor() multiple times before receiving the 
Provider.

When a String containing the vendor name and version is passed to JtapiPeer.getProvider(), a 
particular Provider will be connected to a single vendor delivering one particular version of private
data. The application determines the connected vendor and version by executing the 
ITsapiProvider.getVendor() and ITsapiProvider.getVendorVersion() methods.

Once a particular vendor and version is associated with a particular Provider, this association will 
not change for the life of the Provider. If the application wants a different Provider, the application 
must call ITsapiPeer.addVendor() again.

Using TsapiPrivate as a JTAPI Private Data Object
Where JTAPI specifies that a private data Object is to be passed in as an argument to a method, 
this implementation of JTAPI requires the Object to be an instance of TsapiPrivate. Where JTAPI 
specifies that a private data Object is to be returned from a method, in this implementation, the 
returned Object is always an instance of TsapiPrivate.

When constructing a TsapiPrivate object to be used with the sendPrivateData() methods, 
waitForResponse must be set so that the appropriate action is taken. 

 A value of true indicates that the implementation should block sendPrivateData() until a 
response is received from the switch. This response will be passed back to the 



application as the return code from sendPrivateData(). This is equivalent to the TSAPI 
request cstaEscapeService().

 A value of false indicates that the implementation should return immediately (with a null) 
from sendPrivateData(), without waiting for a response from the switch. This is equivalent
to the TSAPI request cstaSendPrivateEvent(). 

 When a TsapiPrivate object is passed as an argument to a setPrivateData() method, the 
waitForResponse flag is ignored.

APPENDIX C: TSAPI and JTAPI API level comparisons
The Avaya JTAPI implementation internally delegates to the TSAPI implementation. Hence by 
definition, this JTAPI implementation can support only functionality that TSAPI itself supports

The table below documents the TSAPI requests that you can expect to be initiated given a 
particular JTAPI API call invocation

JTAPI interface JTAPI method TSAPI request

Call connect cstaMakeCall

Connection disconnect cstaClearConnection

JtapiPeer getServices acsEnumServerNames

JtapiPeer getProvider acsOpenStream

JtapiPeer getProvider cstaSysStatStart

Provider shutdown acsCloseStream

Provider shutdown cstaSysStatStop

Provider getState cstaSysStatReq

TerminalConnection answer cstaAnswerCall

AgentTerminal addAgent cstaSetAgentState

Agent setState cstaSetAgentState

Agent getState cstaQueryAgentState

CallCenterCall connectPredictive cstaMakePredictiveCall

RouteAddress registerRouteCallback cstaRouteRegisterReq

RouteAddress cancelRouteCallback cstaRouteRegisterCancel

RouteSession selectRoute cstaRouteSelectInv

RouteSession endRoute cstaRouteEndInv

CallControlAddress setForwarding cstaSetForwarding

CallControlAddress cancelForwarding cstaSetForwarding

CallControlAddress getForwarding cstaQueryForwarding

CallControlAddress getDoNotDisturb cstaQueryDoNotDisturb

CallControlAddress setDoNotDisturb cstaSetDoNotDisturb

CallControlAddress getMessageWaiting cstaQueryMsgWaitingInd

CallControlAddress setMessageWaiting cstaSetMsgWaitingInd

CallControlCall drop cstaClearCall

CallControlCall conference cstaConferenceCall



CallControlCall Transfer(call) cstaTransferCall

CallControlCall Transfer(string) cstaEscapeService

CallControlCall consult cstaConsultationCall

CallControlConnection redirect cstaDeflectCall

CallControlTerminal getDoNotDisturb cstaQueryDoNotDisturb

CallControlTerminal setDoNotDisturb cstaSetDoNotDisturb

CallControlTerminal pickup cstaPickupCall

CallControlTerminal pickupFromGroup cstaGroupPickupCall

CallControlTerminalConnection hold cstaHoldCall

CallControlTerminalConnection unhold cstaRetrieveCall

PrivateData sendPrivateData cstaSendPrivateEvent

The following TSAPI requests are currently un-implemented by this JTAPI implementation. 
Therefore, there is no access to the private data for these TSAPI requests.

Service Type TSAPI request

Call Control Services cstaAlternateCall, cstaCallCompletion, cstaReconnectCall

Supplementary Services cstaQueryLastNumber, cstaQueryDeviceInfo

Monitor Services cstaChangeMonitorFilter, FeatureEventReport, CSTACallInfoEvent

Escape Services cstaEscapeServiceConf, cstaEscapeService

Maintenance Services cstaChangeSysStatFilter

The following table maps JTAPI listener callbacks to their deprecated observer events and the 
corresponding CSTA unsolicited TSAPI event that caused it to be invoked.

The private data related to these TSAPI events will be contained in the respective event in case 
of observer events and will be a part of the first parameter passed to the listener callback in case 
of listeners, 

TSAPI event JTAPI Observer event JTAPI listener callback

CSTACallClearedEvent CallInvalidEv CallListener#callInvalid

CSTAMonitorEndedEvent CallObservationEndedEv CallListener#callEventTransmissionEnded

CSTADeliveredEvent ConnAlertingEv ConnectionListener#connectionAlerting

CSTADivertedEvent ConnDisconnectedEv ConnectionListener#connectionDisconnected

CSTAEstablishedEvent ConnConnectedEv ConnectionListener#connectionConnected

CSTAHeldEvent CallCtlTermConnHeldEv CallControlTerminalConnectionListener#termi
nalConnectionHeld

CSTARetrievedEvent CallCtlTermConnTalkingEv CallControlTerminalConnectionListener#termi
nalConnectionTalking

CSTAConnectionClearedEve
nt

ConnDisconnectedEv ConnectionListener#connectionDisconnected



CSTAFailedEvent ConnFailedEv ConnectionListener#connectionFailed

CSTADoNotDisturbEvent CallCtlAddrDoNotDisturbEv CallControlAddressListener#addressDoNotDis
turb

CSTAForwardingEvent CallCtlAddrForwardEv CallControlAddressListener# 
addressForwarded

CSTAMessageWaitingEvent

(not supported)

CallCtlAddrMessageWaiting
Ev

CallControlAddressListener# 
addressMessageWaiting

CSTAServiceInitiatedEvent CallCtlConnInitiatedEv CallControlConnectionListener# 
connectionInitiated

CSTAOriginatedEvent CallCtlConnEstablishedEv CallControlConnectionListener# 
connectionEstablished

CSTANetworkReachedEvent CallCtlConnNetworkReache
dEv

CallControlConnectionListener# 
connectionNetworkReached

CSTAQueuedEvent CallCtlConnQueuedEv CallControlConnectionListener# 
connectionQueued

CSTALoggedOffEvent ACDAddrLoggedOffEv 
AgentTermLoggedOffEv

ACDAddressListener# acdAddressLoggedOff

AgentTerminalListener 
#agentTerminalLoggedOff

CSTALoggedOnEvent ACDAddrLoggedOnEv 

AgentTermLoggedOnEv

ACDAddressListener# acdAddressLoggedOn

AgentTerminalListener 
#agentTerminalLoggedOn

CSTANotReadyEvent

(not supported)
ACDAddrNotReadyEv 

AgentTermNotReadyEv

ACDAddressListener# acdAddressNotReady

AgentTerminalListener 
#agentTerminalNotReady

CSTAReadyEvent

(not supported)

ACDAddrReadyEv

AgentTermReadyEv

ACDAddressListener# acdAddressReady

AgentTerminalListener #agentTerminalReady

CSTAWorkNotReadyEvent

(not supported)

ACDAddrWorkNotReadyEv

AgentTermWorkNotReadyE
v

ACDAddressListener# 
acdAddressWorkNotReady

AgentTerminalListener 
#agentTerminalWorkNotReady

CSTAWorkReadyEvent

(not supported)

ACDAddrWorkReadyEv

AgentTermWorkReadyEv

ACDAddressListener# acdAddressWorkReady

AgentTerminalListener 
#agentTerminalWorkReady

The following table maps route related TSAPI events and their JTAPI equivalents

TSAPI Event JTAPI Event

CSTARouteRequestExtEvent RouteEvent

CSTAReRouteRequestEvent ReRouteEvent

CSTARouteUsedExtEvent RouteUsedEvent

CSTARouteEndEvent RouteEndEvent

CSTARouteRegisterAbortEvent RouteCallbackEndedEvent



Converting TSAPI based Java constructs to standard JTAPI 
objects

Some Avaya private interfaces expose classes that represent raw TSAPI constructs.

For example, com.avaya.jtapi.tsapi.V7DeviceHistoryEntry#getOldConnectionID() returns you a 
ConnectionID, which contains a TSAPI callID.

To convert this callID into a first class JTAPI object (in this case a javax.telephony.Call 
implementation), please cast the provider to the com.avaya.jtapi.tsapi.ITsapiProviderPrivate 
interface and use the getCall(int callID) API.

V7DeviceHistoryEntry history = ……..;  //assume code that returns a 
V7DeviceHistoryEntry

Provider avayaProvider = ….;  //assume code that creates a provider 
instance

/*com.avaya.jtapi.tsapi.V7DeviceHistoryEntry#getOldConnectionID() 
returns you a ConnectionID, which contains a TSAPI callID.*/

ConnectionID connID = history.getOldConnectionID();

/*promote to a first class JTAPI object (in this case a 
javax.telephony.Call implementation)*/

Call call = ((com.avaya.jtapi.tsapi.ITsapiProviderPrivate) 
avayaProvider).getCall(connID.getCallID());

Similarly, the com.avaya.jtapi.tsapi.ITsapiConnIDPrivate interface exposes a ConnectionID 
object. 

ITsapiProviderPrivate also contains methods to promote ConnectionID objects to JTAPI 
Connection/TerminalConnection objects (as the case may be). 

ExtendedDeviceID is currently not exposed, but may be exposed in future releases. Please use 
the relevant methods in ITsapiProviderPrivate to promote these ExtendedDeviceID objects to 
JTAPI Address / Terminal implementations.

TSAPI Construct Java Class JTAPI Object Conversion Method in 
ITsapiProviderPrivate

ExtendedDeviceID_t ExtendedDeviceID Address getAddress()

ExtendedDeviceID_t ExtendedDeviceID Terminal getTerminal()

ConnectionID_t ConnectionID Connection getConnection()

ConnectionID_t ConnectionID TerminalConnection getTerminalConnection()

callID (field in a 
ConnectionID_t)

int Call getCall()



APPENDIX D - TSAPI Error Code Definitions

This appendix lists all of the values for the TSAPI error codes.

There are two major classes of TSAPI error codes:

CSTA universal Failures

ACS Universal Failures

CSTA Universal Failures

CSTA Universal Failures are error codes returned by CSTAErrorCode:Unexpected CSTA error 
code. The following table lists the definitions for the CSTA error codes. Consult the TSAPI 
Programmer’s Guide for the definition of the numeric error code.

TABLE: CSTA Error Definitions c om pas 105 17.a aa.do cx

Error Numeric Code

genericUnspecified 0

genericOperation 1

requestIncompatibleWithObject 2

valueOutOfRange 3

objectNotKnown 4

invalidCallingDevice 5

invalidCalledDevice 6

invalidForwardingDestination 7

privilegeViolationOnSpecifiedDevice 8

privilegeViolationOnCalledDevice 9

privilegeViolationOnCallingDevice 10

invalidCstaCallIdentifier 11

invalidCstaDeviceIdentifier 12

invalidCstaConnectionIdentifier 13

invalidDestination 14

invalidFeature 15

invalidAllocationState 16



invalidCrossRefId 17

invalidObjectType 18

securityViolation 19

genericStateIncompatibility 21

invalidObjectState 22

invalidConnectionIdForActiveCall 23

noActiveCall 24

noHeldCall 25

noCallToClear 26

noConnectionToClear 27

noCallToAnswer 28

noCallToComplete 29

genericSystemResourceAvailability 31

serviceBusy 32

resourceBusy 33

resourceOutOfService 34

networkBusy 35

networkOutOfService 36

overallMonitorLimitExceeded 37

conferenceMemberLimitExceeded 38

genericSubscribedResourceAvailability 41

objectMonitorLimitExceeded 42

externalTrunkLimitExceeded 43

outstandingRequestLimitExceeded 44

genericPerformanceManagement 51

performanceLimitExceeded 52

unspecifiedSecurityError 60

sequenceNumberViolated 61

timeStampViolated 62



pacViolated 63

sealViolated 64

genericUnspecifiedRejection 70

genericOperationRejection 71

duplicateInvocationRejection 72

unrecognizedOperationRejection 73

mistypedArgumentRejection 74

resourceLimitationRejection 75

acsHandleTerminationRejection 76

serviceTerminationRejection 77

requestTimeoutRejection 78

requestsOnDeviceExceededRejection 79

unrecognizedApduRejection 80

mistypedApduRejection 81

badlyStructuredApduRejection 82

initiatorReleasingRejection 83

unrecognizedLinkedidRejection 84

linkedResponseUnexpectedRejection 85

unexpectedChildOperationRejection 86

mistypedResultRejection 87

unrecognizedErrorRejection 88

unexpectedErrorRejection 89

mistypedParameterRejection 90

nonStandard 100



ACS Universal Failures

ACS Universal Failures are error codes returned by CSTAErrorCode:Unexpected ACS 
error code. The following table lists the definitions for the ACS error codes. Consult the 
TSAPI Programmer’s Guide for the definition of the numeric error code

Error Numeric Code Description

ACSERR_APIVERDENIED -1 This return indicates that the API Version 
requested is invalid and not supported by 
the existing API Client Library.

ACSERR_BADPARAMETER -2 One or more of the parameters is invalid.

ACSERR_DUPSTREAM -3 This return indicates that an ACS Stream 
is already established with the requested 
Server.

ACSERR_NODRIVER -4 This error return value indicates that no 
API Client Library Driver was found or 
installed on the system.

ACSERR_NOSERVER -5 This indicates that the requested Server is 
not present in the network.

ACSERR_NORESOURCE -6 This return value indicates that there are 
insufficient resources to open a ACS 
Stream.

ACSERR_UBUFSMALL -7 The user buffer size was smaller than the 
size of the next available event.

ACSERR_NOMESSAGE -8 There were no messages available to 
return to the application.

ACSERR_UNKNOWN -9 The ACS Stream has encountered an 
unspecified error.

ACSERR_BADHDL -10 The ACS Handle is invalid.

ACSERR_STREAM_FAILED -11 The ACS Stream has failed due to network
problems. No further operations are 
possible on this stream.

ACSERR_NOBUFFERS -12 There were not enough buffers available to
place an outgoing message on the send 
queue. No message has been sent.

ACSERR_QUEUE_FULL -13 The send queue is full. 

ACSERR_SSL_INIT_FAILED -14 A stream could not be opened because 
the initialization of the OpenSSL library 



failed.

ACSERR_SSL_CONNECT_FAILED -15 A stream could not be opened because 
the SSL connection failed.

ACSERR_SSL_FQDN_MISMATCH -16 During the SSL handshake, the fully 
qualified domain name (FQDN) in the 
server certificate did not match the 
expected FQDN.



Glossary

A

AE

Used as a “shorthand” term in this documentation for Application Enablement. 

AES

Stands for Advanced Encryption Scheme or Application Enablement Services

API

Application Programming Interface. A “shorthand” term in this documentation for the 
Java interface provided by the Application Enablement Services. 

application machine

The hardware platform that the JTAPI API library and the c li  are running on

C

client application

An application created using the JTAPI library

CSTA

Computer-Supported Telecommunications Applications

E

ECMA

European Computer Manufacturers Association. A European association for 
standardizing information and communication systems in order to reflect the international
activities of the organization.

I

IPv6 

Internet Protocol Version 6

J

JDK

Java Developers Kit

JRE

Java Runtime Environment

J2SE

Java 2 Platform, Standard Edition

JTAPI

Java Telephony Application Programming Interface

JVM

Java Virtual Machine. Interprets compiled Java binary code for a computer’s processor 
so that is can perform a Java program’s instructions



O

OAM

Operations, Administration and Maintenance

R

RPM

Red Hat Package Manager

S

SAT

System Access Terminal (for Communication Manager)

SDK

S of twa re D evel opm ent Ki t

T

T Li nk

T SA PI Li nk: I t re fer s t o a s wi tch co nn ecti on b et we en a s pe cific s wit ch an d a sp ec ific AE  Se rvi ces Se rv er.

T SA PI

T el eph ony Se rv ices A PI


	CONTENTS
	1. About this Document
	1.1 Scope of this Document
	1.2 Intended Audience
	1.3 Conventions used in this document
	1.4 Related documents
	1.4.1 Application Enablement Services documents
	1.4.2 Avaya Aura® Communication Manager documents
	1.4.3 JTAPI documents

	1.5 Providing documentation feedback

	2. AE Services 7.0.x Modifications
	2.1 Update for AE Services 7.0.1 server

	3. Avaya implementation of JTAPI
	3.1 Understanding basic concepts of JTAPI
	3.2 Avaya implementation of standard JTAPI API
	3.3 Avaya extensions to JTAPI

	4. Getting Started
	4.1 Understanding the Avaya JTAPI architecture
	4.1.1 Tlink
	4.1.1.1 Alternate TLINK


	4.2 Setting up the development environment
	4.2.1 Downloading the Java SDK
	4.2.2 Downloading the Application Enablement Services JTAPI SDK
	4.2.3 Setting up your test environment
	4.2.4 Configuring your JTAPI client library
	4.2.4.1 Configuration properties
	4.2.4.2 Log4j configuration

	4.2.5 Running the JTAPI SDK contents
	4.2.5.1 Using the scripts provided
	4.2.5.2 Using the Eclipse development environment


	4.3 JTAPI properties
	4.3.1 Specifying location of certificates

	4.4 Accessing the client API reference documentation
	4.5 Learning from the sample code
	4.5.1 ACD sample
	4.5.2 CallLog application
	4.5.3 TSTest application (in the TSTest directory)
	4.5.4 Route sample
	4.5.5 Auto answer sample
	4.5.6 Click2call sample


	5. Writing a JTAPI application
	5.1 Initializing a JTAPI application
	5.1.1 Getting the JtapiPeer object
	5.1.2 Getting the services list
	5.1.3 Getting the provider

	5.2 Catching Exceptions
	5.3 Change from “observer” to “listener” paradigm
	5.4 Requesting notification of events
	5.5 Call Control – Basic Telephony operations
	5.5.1 Detecting an incoming call
	5.5.2 Answering a call
	5.5.2.1 Triggering Answer from the Application
	5.5.2.2 Events Received When a Call is Answered

	5.5.3 Disconnecting a call
	5.5.3.1 Triggering a disconnect from the application
	5.5.3.2 Events received when a Connection is disconnected


	5.6 Getting DNIS, ANI information for a call
	5.7 Cleanup
	5.8 Security Considerations
	5.8.1 Authorization Measures
	5.8.2 Transport Security

	5.9 Heartbeats
	5.10 JTAPI Applets

	6. Compiling and debugging
	6.1 Installing Java
	6.2 Compiling and running
	6.2.1 Compiling using the command line interface (CLI)
	6.2.1.1 Checking the Java version
	6.2.1.2 Compiling a simple application
	6.2.1.3 Compiling a complex application
	6.2.1.4 Running a simple application
	6.2.1.5 Running a complex application
	6.2.1.6 Deploying a simple application
	6.2.1.7 Deploying a complex application

	6.2.2 Compiling using Eclipse

	6.3 Debugging
	6.3.1 Client-side debugging
	6.3.1.1 Using a log4j.properties file
	6.3.1.2 Using TSAPI.PRO
	6.3.1.3 Using System properties
	6.3.1.4 Controlling logging programmatically

	6.3.2 Server-side debugging
	6.3.3 Improving performance
	6.3.4 Getting support


	7. Using the JTAPI Exerciser
	APPENDIX A – Avaya implementation specific deviations from the JTAPI specification
	APPENDIX B – Avaya implementation specific enhancements to the JTAPI specification
	APPENDIX C: TSAPI and JTAPI API level comparisons
	APPENDIX D - TSAPI Error Code Definitions
	Glossary

