

AMBERLYST™ Polymeric Catalysts

Application & Product name	Туре	Matrix ^[3]	Surface Area ^[1] [m²/g]	Ave. Pore Diameter [Å]	Min. Ca [eq/kg ^[2]]	apacity [eq/L]	Moisture Content [%]
Etherification (MTBE, ETBE, TAI	VIE)						
AMBERLYST 15Wet	Strong acid	MR[3]	53	300	4.70	1.70	52-57
AMBERLYST 35Wet	Strong acid	MR	50	300	5.20	1.90	51-57
DOWEX MONOSPHERE M-31	Strong acid	MR	30	200	4.70	1.70	50-54
Dimerization (Isooctane)							
AMBERLYST 35Wet	Strong acid	MR	50	300	5.20	1.90	51-57
AMBERLYST 36Wet	Strong acid	MR	33	240	5.40	1.90	53-59
Phenol Purification							
AMBERLYST 16Wet	Strong acid	MR	30	250	4.80	1.70	52-58
AMBERLYST 36Wet	Strong acid	MR	33	240	5.40	1.90	53-59
Phenol Alkylation							
AMBERLYST 15Dry	Strong acid	MR	53	300	4.70	-	≤1.6
AMBERLYST 35Dry	Strong acid	MR	50	300	5.00	-	≤3.0
AMBERLYST 36Dry	Strong acid	MR	33	240	5.40	-	≤1.65
DOWEX MONOSPHERE DR-20	030 Strong acid	MR	30	200	4.70	-	≤3.0
Condensation (Bisphenol A)	-						
AMBERLYST 31Wet	Strong acid	Gel	-	-	4.80	1.35	63-67
AMBERLYST 33	Strong acid	Gel	-	-	4.80	1.35	64-68
AMBERLYST 121Wet	Strong acid	Gel	-	-	4.80	0.73	74-84
AMBERLYST 131Wet	Strong acid	Gel	-	-	4.80	1.35	62-68
Hydrogenation (MIBK, TAME)							
AMBERLYST CH10	Strong acid (Pd)	MR	33	240	4.80	1.60	52-58
AMBERLYST CH28	Strong acid (Pd)	MR	36	260	4.80	1.60	52-58
AMBERLYST CH43	Strong acid (Pd)	MR	35	250	-	1.80	51-57
Olefin hydration (TBA, IPA, SBA	<u> </u>						
AMBERLYST 15Wet	Strong acid	MR	53	300	4.70	1.70	52-57
AMBERLYST 70	Strong acid	MR	36	220	2.65	0.95	52-57
Esterification (Acetates, Acryla	tes, Fatty Acid Ester	rs)					
AMBERLYST 15Wet	Strong acid	MR	53	300	4.70	1.70	52-57
AMBERLYST 16Wet	Strong acid	MR	30	250	4.80	1.70	52-58
AMBERLYST 36Wet	Strong acid	MR	33	240	5.40	1.90	53-59
AMBERLYST 39Wet	Strong acid	MR	32	230	5.00	1.15	60-66
AMBERLYST 46	Strong acid	MR	75	235	0.43	0.8	26-36
AMBERLYST 70	Strong acid	MR	36	220	2.65	0.95	52-57
AMBERLYST 131Wet	Strong acid	Gel	-	-	4.80	1.35	62-68
Base Catalysed Reactions							
AMBERLYST A21	Weak base	MR	35	110	4.60	1.30	54-60
AMBERLYST A26 OH	Strong base Type 1	MR	30	290	4.20	0.80	66-75

Footnotes: [1] Nitrogen BET [2] Dry weight [3] MR = MacroReticular [4] Free base form [5] OH form

AMBERLYST™ Polymeric Catalysts

Shippin [g/L]	g Weight [lb/ft³]	Recommer Op. Temp [°C]		Remarks	
770	48.0	120	250	Etherification catalyst. Extremely resistant to breakdown by osmotic and mechanical shock. Excellent etherification catalyst. Higher acid strength, better performance, and longer lifetime than conventional catalysts.	
800	50.0	150	300		
760	47.0	120	250	Uniform particle size catalyst offering reduced pressure drop and higher throughput for increased production.	
800	50.0	150	300	Dimerization catalyst with high activity and high temperature stability. Dimerization catalyst that combines high activity, high temperature stability, and good resistance to polymer fouling.	
800	50.0	150	300		
780	48.7	130	265	Condensation catalyst. Its low crosslinking degree provides a high resistance to polymer fouling. Higher exchange capacity and improved thermal stability compared to conventional catalysts.	
800	50.0	150	300		
610	38.0	120	250	Alkylation catalyst. Excellent for use in non-aqueous systems where the presence of water has a negative effect on catalyst activity.	
560	35.0	150	300	Alkylation catalyst with higher acidity and improved thermal stability compared to conventional catalysts. Premium alkylation catalyst. In addition to its high thermal stability, its low crosslinking degree confers a high resistance to organic fouling.	
770	48.0	150	300		
590	37.0	120	250	Uniform particle size dry catalyst offering reduced pressure drop and increased productivity.	
770	48.0	130	265	Excellent lifetime, good selectivity, and high reactivity. Very low acid leachables, designed for high purity BPA production. Low cross-linked catalyst that offers optimum productivity with good resistance to polymer fouling. Excellent catalyst with uniform particle size which confers enhanced hydraulic properties and	
770	48.0	130	265		
730	45.5	130	265		
740	46.0	130	265		
790	49.3	130	265	reactivity compared to conventional catalysts. Bifunctional catalyst with acid and metal functionality; contains 1.0 g/L Pd. Used primarily in TAME production to selectively hydrogenate diolefins.	
790	49.3	130	265	Bifunctional catalyst with acid and metal functionality; contains 2.8 g/L Pd. Used primarily for MIBK production Bifunctional catalyst with acid and metal functionality; contains 2.8 g/L Pd. Enhanced acid strength for increased conversion and MIBK yield.	
790	49.3	140	285		
770	48.0	120	250	Conventional hydration catalyst suitable for reactive olefins such as isobutylene. Patented catalyst with the highest thermal stability on the market. Ideal for SBA and IPA production.	
770	48.0	190	375		
770	48.0	120	250	Catalyst for low molecular weight acetate esters. Best suitable catalyst for medium molecular weight esters. Used in industrial production of butyl acrylate and methyl methacrylate.	
780	48.7	130	265		
800	50.0	150	300	Highly active catalyst with high temperature stability. Well suited for fatty acid esterification. Esterification catalyst for higher molecular weight compounds that diffuse slowly into conventional catalysts.	
735	45.9	130	265		
600	37.4	120	250	Patented esterification catalyst that minimizes by-product formation such as ethers or olefins. Patented catalyst stable up to 190°C. Very well suited for high molecular weight esters and the esterification of diols and polyols.	
770	48.0	190	375		
740	46.0	130	265	Excellent catalyst for low molecular weight esters. Used for ethyl acrylate production.	
660	41.2	100[4]	210	Catalyst for silane disproportionation and acid removal from aqueous and non-aqueous streams. Excellent choice for aldol condensation. High resistance to organic fouling.	
675	42.1	60[5]	140		

