

Raspberry	Pi	Blueprints

Table	of	Contents

Raspberry	Pi	Blueprints

Credits

About	the	Author

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Downloading	the	color	images	of	this	book

Errata

Piracy

Questions

1.	Raspberry	Pi	Pirate	Radio

What	you	will	need

Setting	up	the	Pi

Choosing	a	Linux	distribution

Writing	an	SD	card

Windows

Linux	and	Mac	OS

Booting	the	Pi	for	the	first	time

Network	scanning

Connecting	to	the	Pi	via	SSH

Common	Linux	commands

The	initial	setup

Setting	up	the	pirate	radio

Transferring	MP3	files	to	the	Pi

Scripting	a	media	player

Calling	PiFM	from	Python

Searching	for	MP3	files

Getting	input	from	a	command	line

Queuing	the	media	files	to	be	played

Using	the	media	player	script

Summary

2.	Portable	Speaker	System

What	you	will	need

Tools	you	will	need

Setting	up	Logitech	Media	Server

Setting	up	the	Pi	as	a	Squeezebox	client

Setting	up	Wi-Fi	on	the	Pi

Running	squeezelite	as	a	daemon

Building	the	electronics

The	amplifier	circuit

Running	the	speaker	system	on	battery	power

Building	the	enclosure	for	the	speaker	system

Running	Logitech	Media	Server	on	the	Pi

Creating	a	backup	image	of	an	SD	card

Automounting	a	USB	storage	device

Installing	Logitech	Media	Server

Setting	up	the	Pi	as	a	Wi-Fi	access	point

Summary

3.	Mini	Retro	Arcade	Cabinet

Requirements

Setting	up	the	input	electronics

Building	the	cabinet

Setting	up	PiPlay

Using	the	buttons	and	joystick	with	PiPlay

Summary

4.	GPS-enabled	Time-lapse	Recorder

What	you	will	need

Setting	up	the	hardware

The	camera	board

Connecting	the	camera	module	to	the	Pi

Setting	up	the	Raspberry	Pi	camera

The	GPS	module

Setting	up	the	capture	software

Using	the	captures

Creating	a	time-lapse	video

Exporting	GPS	data	as	CSV

Summary

5.	Home	Theater	PC

What	you	will	need

Setting	up	OpenELEC

The	first	boot	and	initial	setup

Connecting	the	Pi	to	a	wireless	network

Uploading	media	files	to	the	Pi

Windows

Linux

Shutting	down	the	Pi

Setting	up	the	LCD

Setting	up	the	switches

Final	assembly

Summary

6.	Outdoor	Weather	Station

What	you	will	need

Reverse	engineering	the	Maplin	sensors

Understanding	the	sensors

Wiring

Setting	up	your	Arduino

Setting	up	the	remaining	sensors

DHT11/22

BMP180

The	weather	station	web	application

Deploying	the	app	on	the	Pi

Taking	readings	from	the	sensors

Assembling	the	weather	station

Using	the	web	application

Summary

7.	Home	Security	System

What	you	will	need

The	security	system	structure

Designing	your	security	system

Web	applications

Deploying	our	application

Configuring	sensors	and	alarms

Interfacing	sensors

The	PIR	motion	sensors

Magnetic	door	sensors

The	RF	network

Setting	up	the	Raspberry	Pi

Setting	up	Arduino

Troubleshooting

Summary

8.	Remote-operated	Robotic	Arm

What	you	will	need

Drive	electronics

Setting	up	the	camera

Deploying	web	applications

The	arm	and	chassis	construction

Calibration

Chassis	motors

Arm	2	and	hand	servos

The	arm	1	servos

Troubleshooting

The	video	stream	has	a	substantial	delay

The	servos	make	a	loud	humming	noise

Control	of	the	robot	is	lost

The	arm	jumps	to	new	positions

Summary

9.	Magic	Mirror

What	you	will	need

Tools	you	will	need

Theory

The	web	application

Developing	a	new	widget

The	Python	code

The	Jinja	page	template

The	JavaScript	code

The	Pi	setup

Rotating	the	display

Deploying	the	web	application

Setting	up	Chromium

Enclosure	construction

Building	the	mirror	without	an	enclosure

The	Pi	enclosure

Configuration

Widgets

Included	widgets

Example	configurations

bbc_ticker.conf

clock.conf

Styles

Troubleshooting

The	web	application	fails	with	the	500	Internal	Server	Error

The	display	does	not	work

Summary

10.	Bottle	Xylophone

What	you	will	need

Assembling	a	note	bottle

Electronics

The	web	application

Configuration

Tuning

Testing

Troubleshooting

Notes	are	missed

Servos	do	not	move	correctly

Summary

Index

Raspberry	Pi	Blueprints

Raspberry	Pi	Blueprints
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	March	2015

Production	reference:	1200315

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78439-290-1

www.packtpub.com

http://www.packtpub.com

Credits
Author

Dan	Nixon

Reviewers

Soumen	Chandra	Laha

Maryala	Srinivas

Commissioning	Editor

Akram	Hussain

Acquisition	Editor

Meeta	Rajani

Content	Development	Editor

Shubhangi	Dhamgaye

Technical	Editor

Siddhi	Rane

Copy	Editor

Neha	Vyas

Project	Coordinator

Harshal	Ved

Proofreaders

Simran	Bhogal

Maria	Gould

Paul	Hindle

Indexer

Mariammal	Chettiyar

Production	Coordinator

Manu	Joseph

Cover	Work

Manu	Joseph

About	the	Author
Dan	Nixon	lives	in	England	and	is	a	20-year	old	software	engineering	student	who	is
currently	studying	at	Newcastle	University	and	is	in	his	third	year.	He	has	long	had	an
interest	in	electronics	and	embedded	computing	projects.

Previously,	Dan	has	worked	on	a	360-degree	camera	system	for	the	Raspberry	Pi	and	this
is	where	his	interest	in	the	platform	started.

Currently,	he	is	on	a	year-long	work	placement	and	is	working	on	neutron	data	analysis
software	at	the	Rutherford	Appleton	Laboratory	in	Oxford,	UK.

I	would	like	to	thank	my	mother	and	father	for	their	support	while	writing	this	book.	I
would	also	like	to	thank	the	members	of	Maker	Space,	Newcastle,	for	providing	the
facilities	to	prototype	the	projects	and	allowing	me	to	use	some	of	their	projects	in	this
book.

About	the	Reviewers
Soumen	Chandra	Laha	has	been	working	as	a	senior	embedded	design	engineer	at	Wine
Yard	Technologies	since	2008.	He	started	his	career	as	a	quality	control	engineer	and
gradually	became	an	embedded	design	engineer.	He	has	been	working	in	the	field	of
embedded	systems	and	has	industry	experience	of	more	than	6	years	in	various	domains,
including	automotive,	consumer	electronics,	healthcare,	and	so	on.	He	has	hands-on
experience	in	various	microcontrollers	and	microprocessors,	such	as	8051,	PIC,	AVR,
PSoC,	ARM	Cortex,	ARM7,	ARM9,	ARM11,	and	the	TI-DSP	microcontroller.	He	has
development	exposure	to	embedded	Linux	and	Windows	CE	and	knows	how	to	port	real-
time	operating	systems	on	various	ARM	platforms.

He	is	an	electronic	hobbyist	and	designer	and	believes	in	continuous	learning.	His
strengths	lie	in	developing,	maintaining,	integrating,	and	debugging	large	sized	C	code	of
applications	and	system-level	embedded	software	designs.

Maryala	Srinivas	is	the	founder	and	managing	director	of	Wine	Yard	Technologies,
which	was	founded	in	2006.	He	has	over	10	years	of	experience	in	the	field	of	advanced
embedded	systems	design	and	development.	He	is	a	passionate	and	enthusiastic
entrepreneur.	His	passion	to	become	an	entrepreneur	made	him	reject	a	great	job	offer
from	Delhi	Metro	Rail	Corporation	(DMRC),	where	he	was	to	work	for	the	signaling
department	in	the	R&D	Division.	He	is	associated	with	Junior	Chamber	International,
India	and	Hyderabad	Directors/CEO’s	Forum	(HDCF).	He	received	the	Indira	Gandhi
Sadbhavana	Award	in	2012	for	outstanding	services,	achievements,	and	contributions	to
the	nation	in	the	field	of	science	and	technology.

Many	of	his	articles	are	published	in	national	and	international	journals	and	technical
magazines.	He	has	addressed	several	technical	conferences	and	seminars	in	the	field	of
embedded	systems	and	RTOS	design.	He	was	recognized	as	the	star	speaker	at	EFY
Design	Engineers’	Conference,	held	at	New	Delhi	in	March	2012.	Many	of	the	faculty
members	from	universities	such	as	NITs,	JNTU,	AU,	and	OU	and	other	private
engineering	colleges	benefited	immensely	by	the	technology	talent	transformation
workshops	conducted	by	him	at	Wine	Yard	Technologies.	The	Wine	Yard	team	led	by	him
has	achieved	many	milestones.	More	than	100,000	students	and	over	400	professionals,
including	the	teaching	faculty	from	universities	and	many	working	engineers,	have
immensely	benefited	from	the	talent	transformation	programs.

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
The	Raspberry	Pi	is	a	small	form	factor,	single	board,	ARM-based	computer.	It	is	capable
of	running	on	many	desktop	applications	that	can	be	run	on	a	standard	Linux	computer.
While	the	Pi	is	only	slightly	larger	than	a	credit	card,	it	uses	very	little	power.	As	such,	it
has	become	very	popular	among	the	hacker	and	maker	community,	which	uses	the	Pi	to
integrate	more	computing	power	in	their	projects.

The	Pi	is	very	easy	to	set	up	and	in	less	than	20	minutes,	you	can	run	it	on	a	modified
version	of	popular,	Linux-based	operating	systems.	It	will	function	just	like	you	would
expect	a	desktop	PC	to.	Thanks	to	its	small	form	factor,	many	people	have	used	it	as	an
alternative	to	a	traditional	PC	for	fast	access	to	applications	and	the	Internet.	Since	the	Pi
draws	very	little	power,	it	can	be	left	running.

Where	the	Pi	really	excels	is	that	it	brings	more	computing	power	to	hardware	and
electronics	projects.	This	is	made	possible	by	a	wide	range	of	interfaces	on	the	Pi	that	are
typically	not	found	on	conventional	computers.

This	has	led	to	a	rise	in	new	projects	that	are	made	using	the	Pi,	which	otherwise	would
have	been	considerably	more	difficult	or	expensive	to	make.

What	this	book	covers
Chapter	1,	Raspberry	Pi	Pirate	Radio,	introduces	the	Pi	and	gives	an	overview	of	its	setup
and	configuration	procedure	and	some	fundamental	Linux	concepts.	This	chapter	then
demonstrates	the	basic	use	of	the	GPIO	header	and	Python	scripting.

Chapter	2,	Portable	Speaker	System,	explores	how	to	use	the	Pi	as	a	portable,	battery-
powered	speaker	system	with	a	self-contained	media	server	that	can	be	used	without	any
ties	to	a	power	supply	or	home	network.

Chapter	3,	Mini	Retro	Arcade	Cabinet,	demonstrates	how	the	Pi	can	be	used	to	create	a
mini	arcade	cabinet	complete	with	a	traditional	joystick	and	button	controls	and	how	it	can
be	used	to	play	a	range	of	classic	arcade	and	console	games.

Chapter	4,	GPS-enabled	Time-lapse	Recorder,	covers	how	to	use	the	Pi	as	a	time	lapse
recorder	that	can	also	capture	the	location	of	each	image	and	trigger	the	image	capture
based	on	the	current	position	of	and	distance	traveled	by	the	camera.

Chapter	5,	Home	Theater	PC,	explores	the	way	in	which	the	Pi	can	be	used	as	a	home
theater	PC	using	the	popular	XBMC	media	center	software	and	a	custom,	purpose-built
enclosure.

Chapter	6,	Outdoor	Weather	Station,	delves	into	the	topic	of	interfacing	hardware	to	the	Pi
using	intermediate	devices,	in	this	case,	Arduino.	We	also	take	a	look	at	Python	web
applications	running	on	the	Pi.

Chapter	7,	Home	Security	System,	explores	how	to	use	the	Pi	as	a	hub	for	a	wireless
network	of	sensors	and	how	this	data	can	be	used	and	displayed	on	a	web	application.

Chapter	8,	Remote-operated	Robotic	Arm,	focuses	on	how	to	use	the	Pi	to	control	and
monitor	devices	remotely	in	the	form	of	a	robotic	arm	that	can	be	controlled	through	a
web	application.

Chapter	9,	Magic	Mirror,	expands	your	knowledge	of	woodworking	and	designing,	which
will	prove	to	be	important	skills	for	any	further	projects	that	you	do	in	the	field	of
electronics	and	physical	computing.

Chapter	10,	Bottle	Xylophone,	covers	how	the	Pi,	several	servos,	and	some	empty	bottles
can	be	turned	into	a	musical	instrument	driven	by	MIDI	files.

What	you	need	for	this	book
This	book	assumes	that	you	are	familiar	with	the	basics	of	the	Raspberry	Pi	and	Linux.
Most	of	the	code	in	this	book	is	in	Python	with	some	C++.	However,	the	source	code	for
each	of	the	projects	is	available	alongside	the	book	that	can	be	used	straight	on	the	Pi.

Several	of	the	projects	will	also	deal	with	some	basic	electronics,	and	as	such,	some	basic
tools	will	be	needed	for	the	completion	of	some	projects.	However,	note	that	at	the	start	of
each	chapter,	the	procedure	to	build	the	electronics	side	of	the	project	is	explained	step	by
step.

Some	projects	will	also	require	access	to	woodworking	tools	in	order	to	construct	cases
and	enclosures.	Usually,	you	will	require	just	the	common	“garden	shed”	tools.	However,
there	is	information	in	the	relevant	chapters	on	what	you	can	do	if	not	having	the	correct
tools	causes	an	issue	in	the	relevant	chapters.

Who	this	book	is	for
This	book	is	aimed	at	those	are	just	getting	started	with	the	Raspberry	Pi,	already	have	a
few	small	projects	under	their	belt,	and	are	looking	to	get	into	the	world	of	hardware	and
physical	computing	projects.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames	dummy	URLs	and	user	input	are	shown	as	follows:	“Where
path/to/raspbian_image.img	is	the	extracted	image	file	and	sdX	is	the	path	to	your	SD
card.”

A	block	of	code	is	set	as	follows:

#!/bin/bash

sleep	20

cd	/home/pi

python	player.py	-d	music	--random	-f	99.9	&

Any	command-line	input	or	output	is	written	as	follows:

ffmpeg	-i	file.mp3	-f	s16le	-ar	22.05k	-ac	2	-	|	sudo	./pifm	-	freq	22050	

stereo

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“Files	can	be	uploaded
by	right-clicking	on	them	and	selecting	Upload.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

http://www.packtpub.com
http://www.packtpub.com/support

Downloading	the	color	images	of	this	book
We	also	provide	you	with	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams
used	in	this	book.	The	color	images	will	help	you	better	understand	the	changes	in	the
output.	You	can	download	this	file	from
https://www.packtpub.com/sites/default/files/downloads/2901OS_ColoredImages.pdf.

https://www.packtpub.com/sites/default/files/downloads/2901OS_ColoredImages.pdf

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	Raspberry	Pi	Pirate	Radio
In	this	chapter,	we	will	take	a	quick	look	at	the	Raspberry	Pi	hardware	and	some	of	the
software	that	will	be	used	both	in	this	project	and	the	majority	of	others	throughout	this
book.

As	the	Pi	was	based	on	hardware	that	was	to	be	included	in	embedded	or	portable
electronics	(such	as	smartphones	and	tablets),	it	has	a	few	extra	hardware	features	that	are
not	found	on	a	typical	desktop	or	laptop	PC,	one	of	which	is	the	General	Purpose	Input
and	Output	(GPIO)	header.	This	is	a	set	of	pins	(26	on	the	model	A	and	B,	and	40	on	the
model	B+)	that	allows	you	to	communicate	with	external	hardware	such	as	GPS	sensors,
accelerometers,	and	motors	through	programming	languages	such	as	Python,	C,	and	C++.
When	we	get	further	in	this	chapter,	we	will	take	a	look	at	a	little	trick	that	can	be	done	to
turn	one	of	these	pins	into	an	FM	radio	transmitter.

What	you	will	need
You	will	need	the	following:

The	Raspberry	Pi	and	power	supply
An	SD	card	with	at	least	4	GB	memory	(16	GB	is	recommended	as	it	holds	a	good
amount	of	music)
A	thick	wire	or	FM	radio	antenna
Male	to	male	0.1	inch	pin	jumper	wires

Setting	up	the	Pi
In	order	to	get	the	Pi	up	and	running,	the	bare	minimum	you	will	need	is	a	USB	power
supply,	micro	USB	cable,	an	Ethernet	cable	to	connect	the	Pi	to	your	network,	and	an	SD
card	that	has	at	least	4	GB	memory.	Although,	later	on,	some	projects	will	need	a	larger
capacity	of	the	SD	card.

While	a	monitor,	mouse,	and	keyboard	can	also	be	used	for	a	lot	of	the	projects	in	this
book,	they	are	not	actually	required	assuming	that	you	have	a	network	that	runs	a	DHCP
server,	which	you	can	connect	with	the	Pi	in	order	to	set	it	up	over	SSH.

It	is	worth	mentioning	now	that	for	a	USB-powered	device,	the	Pi	is	quite	power-hungry
(drawing	around	600-700	mA),	therefore,	while	the	Pi	can	be	powered	from	a	USB	port,
which	is	usually	rated	for	around	500	mA,	it	is	recommended	that	you	use	a	mains
powered	adapter.	Without	this,	the	Pi	can	become	unstable	when	additional	devices	are
connected	that	draw	more	power,	for	example,	a	USB	Wi-Fi	dongle	or	camera	module.

Choosing	a	Linux	distribution
There	are	a	wide	range	of	Linux	distributions	available	for	the	Pi,	some	of	which	are	very
general	purpose	while	others	are	built	for	specific	purposes	(a	couple	of	which	will	be
used	in	the	later	projects	of	this	chapter).	For	now,	we	will	use	the	most	standard
distribution,	Raspbian,	which	as	the	name	suggests	is	based	on	the	Debian	distribution.

Note
The	Raspberry	Pi	downloads	page	(http://www.raspberrypi.org/downloads)	has	a	good
selection	of	general	purpose	distributions.

Another	relatively	new	distribution	that	is	worth	mentioning	is	Minibian
(http://minibianpi.wordpress.com),	a	distribution	based	on	Raspbian,	which	has	the
majority	of	its	default	software	removed.	While	this	may	not	seem	that	helpful,	it	means
that	the	Pi	boots	in	a	useable	OS	in	around	25	seconds	and	saves	the	SD	card	space.	This
type	of	OS	is	more	suited	to	a	project	that	has	finished	being	developed	and	is	going	into	a
more	natural	usage	environment.	You	usually	would	not	expect	a	Wi-Fi	router	to	take	3
minutes	to	boot,	so	why	should	your	Pi-based	Internet	radio?

http://www.raspberrypi.org/downloads
http://minibianpi.wordpress.com

Writing	an	SD	card
When	you	have	all	the	relevant	hardware,	head	over	to
http://www.raspberrypi.org/downloads	and	download	the	ZIP	archive	for	Raspbian	and
extract	it.

The	next	steps	vary	depending	on	your	operating	system.

Windows
Windows	does	not	natively	include	a	tool	used	to	write	disk	images,	therefore,	the	Win32
Disk	Imager	(http://sourceforge.net/projects/win32diskimager)	application	is	used	to	write
images	to	an	SD	card.

First,	go	to	the	download	link	mentioned	in	the	preceding	paragraph,	download,	and	install
Win32	Disk	Imager.	As	writing	images	to	drives	requires	administrator	permissions,	you
will	need	to	run	Win32	Disk	Imager	by	right-clicking	on	its	entry	in	the	Start	menu,	and
selecting	Run	as	administrator:

http://www.raspberrypi.org/downloads
http://sourceforge.net/projects/win32diskimager

Next,	select	the	.img	file	that	was	extracted	from	the	Raspbian	ZIP	file	using	the	folder
icon	under	Image	File	and	the	drive	letter	of	the	SD	card	from	the	drop-down	box:

Note
Ensure	that	the	correct	drive	letter	is	selected,	and	the	SD	card	does	not	contain	any	data
that	has	not	been	backed	up,	as	this	operation	will	destroy	all	of	the	data	already	present	in
the	card.

Finally,	click	on	Write	to	write	the	image	to	the	SD	card.

Linux	and	Mac	OS
Unix	and	Unix-like	operating	systems	already	have	a	tool	to	read	and	write	images	to
external	storage—dd.

First,	you	will	need	to	find	the	path	for	your	SD	card.	The	easiest	way	to	do	this	is	to	use
the	udev	management	tool,	udevadm,	to	monitor	the	udev	log,	which	logs	activity	from
various	devices	on	the	system,	including	the	SD	card	being	inserted	and	will	allow	you	to
see	the	device	path	that	was	assigned	to	it	and	the	partitions	already	existing	on	it.	This
can	be	done	by	running	the	following	command:

udevadm	monitor	--udev

Then,	insert	the	SD	card,	at	which	point,	you	should	see	a	set	of	log	messages	similar	to
the	ones	shown	in	the	following	screenshot:

Here,	the	important	information	can	be	seen	on	the	last	three	lines,	which	tells	us	that	in

this	case,	the	path	for	the	entire	card	is	/dev/sdb,	with	two	partitions	at	/dev/sdb1	and
/dev/sdb2.

We	must	now	ensure	that	none	of	these	partitions	on	the	SD	card	are	currently	mounted,	as
some	desktop	managers	(such	as	GNOME,	the	default	desktop	manager	on	Ubuntu)	will
try	to	automatically	mount	partitions	when	they	are	detected.

To	do	this,	we	will	run	the	following	command	for	every	partition	(that	is,	in	my	case,
/dev/sdb1	and	/dev/sdb2),	where	PATH	is	the	path	to	the	partition:

umount	PATH

If	the	partition	was	mounted,	you	will	not	see	any	output	from	the	command;	however,	if
the	partition	was	not	mounted,	you	will	get	the	following	message:

Once	you	know	the	path	for	your	SD	card	and	have	ensured	that	no	existing	partitions	are
mounted,	you	can	then	write	the	Raspbian	image	to	your	SD	card	using	the	following
command,	where	PATH	is	the	path	to	the	SD	card	(/dev/sdb	in	my	case):

sudo	dd	if=path/to/raspbian_image.img	of=PATH

Note
Be	certain	that	the	path	to	the	SD	card	is	correct,	and	the	card	does	not	contain	any	data
that	has	not	been	backed	up	as	this	operation	will	destroy	all	of	the	data	already	present	on
the	card.

Where	path/to/raspbian_image.img	is	the	extracted	image	file	and	sdX	is	the	path	to
your	SD	card.	Note	that	this	step	can	take	up	to	5-8	minutes,	since	no	output	is	given	on
the	screen,	the	SD	card	reader’s	busy/data	LED	is	a	good	indication	that	the	image	is
being	written.

Tip
Since	the	GNU	Coreutils	(which	include	commands	such	as	cp,	mv,	dd,	and	so	on)	do	not
provide	much	(or	any)	output	to	indicate	the	progress,	you	may	want	to	take	a	look	at	the
Coreutils	Viewer	tool	(https://github.com/Xfennec/cv),	which	shows	the	progress	of	the
Coreutils	commands.

https://github.com/Xfennec/cv

Booting	the	Pi	for	the	first	time
Once	you	have	the	image	written	to	the	card,	it	is	time	to	boot	the	Pi	and	perform	the
initial	setup.	The	most	common	way	to	do	this	is	by	using	a	keyboard,	mouse,	and
monitor;	however,	if	you	have	access	to	a	network	that	provides	DHCP	(as	most	home
networks	do),	then	the	setup	can	be	done	entirely	over	Secure	Shell	(SSH).

First,	set	up	the	hardware	and	boot	the	Pi	by	inserting	the	SD	card,	connecting	the	power,
and	the	Ethernet	cable.	Within	a	few	seconds,	you	will	see	that	the	ACT	LED	starts	to
flicker.	If	it	flashes	for	very	short	pulses	or	does	not	light	at	all,	then	this	indicates	an	issue
with	either	the	SD	image,	the	connection	between	the	card	and	the	Pi	(a	common	issue	for
the	models	A	and	B),	or	the	card	itself.

Once	the	Pi	has	booted	(indicated	by	less	frequent	flashing	of	the	ACT	LED),	you	will
need	to	determine	its	IP	address.	There	are	two	main	ways	to	do	this:	by	accessing	the
DHCP	allocations	via	your	router	or	by	scanning	the	local	network.

Network	scanning
The	cross-platform	tool,	the	Nmap	utility	(http://nmap.org)	can	be	used	to	scan	a	network.

To	do	so,	you	will	need	to	find	the	IP	address	of	your	PC	(in	order	to	find	the	subnet	on
your	local	network	to	search	for	the	Pi	in).	On	Windows,	this	can	be	done	by	opening	the
Command	Prompt	and	executing	this	command:

ipconfig

This	should	give	you	the	information	about	your	network	interfaces	similar	to	the
following:

On	Unix,	this	can	be	done	by	using	the	following	command:

http://nmap.org

ifconfig

This	command	gives	output	similar	to	the	following:

The	search	IP	range	that	is	given	to	Nmap	is	obtained	by	replacing	the	last	number	of	IPv4
or	InetAddress	with	*.	In	our	case,	it	will	be	192.168.0.*.

Now	that	we	know	the	address	range	in	which	we	will	be	looking,	we	can	open	a	terminal
and	run	the	following	command:

nmap	--open	192.168.0.*

Replacing	the	IP	range	with	your	search	range	will	try	to	make	contact	with	every	host	in
the	given	IP	address	range	and	will	return	with	a	list	of	every	host	that	is	up,	with	a	list	of
their	open	ports,	and	what	services	they	correspond	to.	In	our	case,	we	are	looking	for	any
hosts	that	have	an	open	SSH	port:

Starting	Nmap	5.21	(http://nmap.org)	at	2014-09-21	11:58	BST

Nmap	scan	report	for	192.168.0.8

Host	is	up	(0.0064s	latency).

Not	shown:	999	closed	ports

PORT			STATE	SERVICE

22/tcp	open		ssh

Nmap	done:	256	IP	addresses	(5	hosts	up)	scanned	in	5.84	seconds

Here,	I	have	only	shown	the	report	for	the	Pi.	Usually,	after	the	first	boot,	SSH	will	be	the

only	service	that	is	started,	so	it	is	usually	given	away	as	the	device	that	only	provides
SSH.

Connecting	to	the	Pi	via	SSH
On	Unix,	accessing	the	Pi	via	SSH	is	as	simple	as	executing	the	following:

ssh	pi@[Pi	IP]

Here,	Pi	IP	is	the	IP	address	of	the	Pi.	You	may	get	a	warning	similar	to	this	the	first	time
you	run	the	command:

The	authenticity	of	host	'192.168.0.8	(192.168.0.8)'	can't	be	established.

ECDSA	key	fingerprint	is	32:4c:46:1b:dd:7e:8b:52:a0:31:c3:f5:9f:73:d1:c6.

Are	you	sure	you	want	to	continue	connecting	(yes/no)?

This	can	safely	be	ignored	by	typing	yes	and	pressing	Enter.	You	will	then	be	asked	for	a
password,	and	as	this	is	the	first	boot,	the	default	is	raspberry.

On	Windows,	PuTTY	(http://www.putty.org)	can	be	used	to	SSH	into	the	Pi.	Once
downloaded,	run	PuTTY	and	enter	the	IP	address	of	the	Pi	and	the	Host	Name	field,
ensuring	that	Port	is	set	to	22	and	SSH	is	selected.	Then,	click	on	Open:

You	will	see	a	warning	message	similar	to	the	following	about	the	identity	of	the	host:

http://www.putty.org

Again,	this	can	be	ignored	by	clicking	on	Yes.	You	will	then	be	asked	for	a	username	and
password	in	the	PuTTY	terminal	window.	Since	this	is	the	first	boot,	the	defaults	are	pi
and	raspberry.

Common	Linux	commands
At	this	point,	it	would	be	good	to	learn	a	few	Linux	shell	commands,	which	you	will	no
doubt	come	across	while	working	with	the	Pi:

cd:	The	change	directory	command	sets	the	working	directory	to	a	given	directory,
for	example,	cd	/home/pi
ls:	The	list	command	lists	the	contents	of	the	current	working	directory
mkdir:	The	make	directory	command	creates	a	new	directory	within	the	current
working	directory,	for	example,	mkdir	code
cat:	The	concatenate	command	can	perform	operations	on	text	files,	and	it	can	also
display	its	contents	on	the	console,	for	example,	cat	/etc/passwd
pwd:	The	print	working	directory	command	tells	you	the	directory	you	are	currently
in
chmod:	The	change	mode	command	changes	the	access	permission	to	a	file,	for
example,	chmod	744	file	(this	gives	read,	write,	and	execute	permissions	to	the
owner,	and	read-only	permission	to	everyone	else)
sudo:	The	super	user	do	command	executes	the	following	commands	as	root,	for
example,	sudo	apt-get	upgrade
mv:	The	move	command	moves	the	file	or	directory	in	the	first	argument	to	the
second,	for	example,	mv	file.txt	misc_files
cp:	The	copy	command	creates	a	copy	of	a	file	or	directory	in	another	directory,	for
example,	cp	file.txt	misc_files/file2.txt
rm:	The	remove	command	deletes	a	file,	for	example,	rm	file.txt

More	information	can	be	obtained	about	a	given	command	via	its	man	page,	which	can	be
accessed	using	the	following	command,	where	command	is	the	command	you	wish	to	know

more	about:

man	command

The	initial	setup
Once	you	are	able	to	SSH	in	the	Pi,	run	the	configuration	utility	using	the	following
command:

sudo	raspi-config

This	utility	allows	you	to	configure	the	Pi	hardware	and	perform	useful	configuration
tasks	such	as	changing	passwords	and	resizing	the	root	partition	on	the	SD	card,	both	of
which,	we	will	do	now.

First,	select	the	Expand	Filesystem	option	and	press	Enter.	The	utility	will	modify	the
partition	table	and	report	that	it	has	completed,	and	that	the	changes	made	will	only	affect
the	filesystem	after	the	next	reboot.	Press	Enter	again	to	return	to	the	main	menu.

Now,	select	Change	User	Password	and	hit	Enter	twice.	You	will	be	taken	back	to	the
shell	and	prompted	to	enter	a	new	password,	which	has	to	be	entered	twice.	Once	done,	a
confirmation	box	will	notify	you	that	the	password	was	changed	successfully;	press	Enter
to	return	to	the	menu.

As	this	is	all	that	needs	to	be	done	in	raspi-config	for	now,	press	the	left	arrow	key	twice
to	select	Finish	and	Enter	to	confirm.	You	will	be	asked	whether	you	want	to	reboot	now;
select	Yes	and	press	Enter.	Once	the	Pi	is	rebooted,	SSH	back	into	it	using	your	new
password.

Once	you	have	access	again,	check	whether	you	now	have	access	to	the	full	storage	space
on	the	SD	card	using:

df	-h

The	command	should	report	the	size	of	rootfs	much	closer	to	the	SD	card	capacity:

rootfs		16G		2.5G		13G		17%		/

All	that	is	left	to	do	now	is	to	make	sure	that	the	software	on	the	Pi	is	up	to	date.	Since	we
are	using	an	image	that	was	just	downloaded,	it	is	not	likely	that	there	will	be	a	large
number	of	updates;	however,	it	is	a	good	practice	to	keep	an	installation	up	to	date.

Running	the	following	commands	will	first	update	the	list	of	available	packages	then
update	any	installed	packages	with	newer	versions	than	what	was	installed:

sudo	apt-get	update

sudo	apt-get	upgrade

Note	that	this	process	can	take	up	to	10	minutes	depending	on	the	number	of	updates,	and
usually	takes	longer	than	a	desktop	PC	or	laptop	as	this	process	is	writing	to	an	SD	card
rather	than	a	traditional	hard	drive.

Setting	up	the	pirate	radio
It’s	now	time	to	download	and	set	up	the	PiFM	software,	which	will	allow	you	to	use	the
GPIO	header	as	an	FM	transmitter.	First,	we’ll	need	to	download	the	software	using	the
following	commands:

wget	http://omattos.com/pifm.tar.gz

tar	-xzvf	pifm.tar.gz

This	will	get	the	gzipped	archive	that	contains	the	PiFM	software,	the	Python	library,	and
some	test	files	and	uncompress	them.

For	now,	a	single	male	to	male	0.1	inch	pin	jumper	will	suffice	as	an	antenna;	this	should
be	connected	to	GPIO	4	(pin	number	7)	on	the	GPIO	header	and	made	to	stand	as	upright
as	possible	to	ensure	the	best	range	(refer	to	the	following	image):

You	are	now	ready	to	test	the	setup	with	an	FM	radio;	firstly,	you	will	need	to	choose	a
frequency	that	will	not	overlap	with	any	licensed	broadcasts	in	your	area	and	is	within	the
FM	radio	transmission	range	in	your	area	(usually	between	88	Mhz	and	108	Mhz).	A	lot	of

radios	that	do	automatic	tuning	also	tend	to	prefer	frequencies	that	are	a	multiple	of	0.1
MHz	(for	example,	99.9,	101.3,	and	so	on).

Once	you	have	chosen	your	frequency,	tune	your	radio	in	to	it,	and	run	the	following
command	on	the	Pi,	where	freq	is	the	frequency	you	wish	to	broadcast	on:

sudo	./pifm	left_right.wav	freq	22050	stereo

You	should	now	hear	a	sample	auto	clip	demonstrating	the	ability	to	broadcast	stereo
audio.

Transferring	MP3	files	to	the	Pi
For	our	media	player,	we	are	going	to	need	a	selection	of	MP3	files	on	the	Pi	SD	card.
There	are	two	main	ways	to	do	this,	either	by	moving	the	card	back	to	your	PC	and
mounting	it	like	a	regular	SD	card,	or	by	using	the	Secure	File	Transfer	Protocol
(SFTP).

In	this	case,	since	the	Pi	is	already	running,	I	have	opted	to	use	SFTP.	This	can	be	done
using	the	FileZilla	(https://filezilla-project.org)	FTP	client.	Once	installed	and	opened,
enter	the	same	details	that	you	used	to	connect	to	the	Pi	over	SSH	in	the	fields	at	the	top	of
the	window	(using	22	for	Port),	and	click	on	Quickconnect.

You	should	now	be	able	to	browse	the	filesystems	of	both	your	computer	and	the	Pi,	as
shown	in	the	following	screenshot.	Files	can	be	uploaded	by	right-clicking	on	them	and
selecting	Upload.

In	order	to	play	the	music	you	have	just	transferred	to	the	Pi,	you	will	need	to	install	the
ffmpeg	utility,	which	is	a	tool	that	is	commonly	used	to	transcode	media	files	and	can	be
installed	using	the	following	command:

sudo	apt-get	install	ffmpeg

Now	that	you	have	some	of	your	own	music	on	the	Pi,	you	can	try	playing	it	by	piping	the

https://filezilla-project.org

output	of	ffmpeg	to	PiFM:

ffmpeg	-i	file.mp3	-f	s16le	-ar	22.05k	-ac	2	-	|	sudo	./pifm	-	freq	22050	

stereo

Here,	file	is	the	MP3	file	to	be	broadcasted	and	freq	is	the	frequency	to	broadcast	it	on.
Since	we	are	telling	ffmpeg	to	provide	output	for	two	audio	channels	(-ac	2)	and	giving
the	stereo	option	to	PiFM,	this	should	give	a	stereo	audio	broadcast.

Scripting	a	media	player
Now	that	the	FM	transmitter	is	working,	we	can	make	it	do	something	a	little	more	useful;
in	this	case,	we	will	use	it	to	broadcast	a	personalized	radio	station	with	a	collection	of
your	own	music.

To	do	this,	we	will	write	a	Python	script	that	manages	to	search	for	MP3	files	and	calls
PiFM	to	broadcast	them.

Calling	PiFM	from	Python
In	the	PiFM	download	and	on	the	PiFM	website,	you	may	have	noticed	that	there	is	a
Python	library	that	can	be	used	to	control	PiFM.	Although,	looking	at	the	source	code	for
it,	you	can	see	that	all	the	library	can	do	is	call	the	pifm	executable	with	the	minimum
number	of	commands,	and	therefore	will	not	allow	us	to	play	MP3	files.

However,	it	is	a	simple	process	to	create	our	own	function	that	will	allow	us	to	pass	the
filename	of	an	MP3,	a	frequency,	and	that	will	allow	Python	to	call	ffmpeg	and	PiFM	in
order	to	broadcast	the	audio	in	the	file	for	us:

def	play_file(filename,	frequency):

		command	=	'ffmpeg	-i	"%s"	-f	s16le	-ar	22.05k	-ac	2	-	|	sudo	./pifm	-	%f	

22050	stereo'	%	(filename,	frequency)

		subprocess.call(command,	shell=True)

This	code	is	an	extract	from	the	player.py	file;	all	we	are	doing	here	is	taking	the	shell
commands	used	to	play	an	MP3	file	and	replacing	the	filename	and	broadcast	frequency
with	values	that	are	passed	to	the	function	as	parameters.	Then,	we	are	using	the	Python
subprocess	module	to	execute	the	command	as	if	it	was	typed	into	a	shell.

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

http://www.packtpub.com
http://www.packtpub.com/support

Searching	for	MP3	files
For	our	script	to	play	any	MP3	files,	it	needs	to	be	able	to	find	them	first.	Finding	an	MP3
file	involves	taking	a	look	at	each	file	in	a	starting	directory	to	check	whether	a	file	is	an
MP3	file,	and	then	repeating	this	process	for	every	directory	within	the	start	directory.
Thankfully,	Python	makes	this	very	easy:

mp3_files	=	list()

for	root,	dirs,	files	in	os.walk(directory):

		for	filename	in	files:

				if	filename.endswith(".mp3"):

						mp3_files.append(os.path.join(root,	filename))

Here,	directory	is	the	directory	we	want	to	search	for	files	media	in.	The	os.walk
function	returns	a	tuple;	the	first	element	(root)	is	a	string	that	contains	the	absolute	path
to	the	search	directory,	dirs	is	a	list	of	directories	within	the	search	directory	and	its
subdirectories,	and	files	is	a	list	of	all	the	files	within	the	search	directory	and	its
subdirectories.

The	if	statement	is	a	simple	way	to	check	whether	a	file	is	an	MP3	file	based	solely	on	its
file	extension.	If	it	has	the	.mp3	extension,	it	is	added	to	the	mp3_files	list,	which	is	then
passed	to	the	playlist	code.

Getting	input	from	a	command	line
In	order	to	set	various	settings	for	our	player	script,	for	example,	the	directory	in	which
you	can	search	for	files,	we	need	a	way	to	get	input	from	the	user	via	a	command	line,	and
in	this	case,	from	the	arguments	passed	to	the	script	when	it	is	started.	To	do	this,	we	will
use	the	argparse	Python	module:

parser	=	argparse.ArgumentParser(description='Broadcast	a	set	of	MP3s	over	

FM')

parser.add_argument(

		'-f',	'--frequency',

		default=101.1,

		type=float,

		help='Frequency	on	which	to	broadcast')

params	=	parser.parse_args()

The	argparse	Python	module	allows	you	to	define	a	set	of	arguments	that	can	be	passed
to	a	Python	program,	it	allows	you	to	parse	the	arguments	when	the	script	is	run,	and	it
automatically	allows	you	to	generate	a	help	page	(accessed	by	passing	-h	to	the	script).

In	this	case,	we	will	add	an	argument	for	the	broadcast	frequency,	which	is	set	using	either
-f	or	--frequency;	type	is	used	to	validate	input	from	the	user,	default	is	what	is	read
by	the	program	if	the	user	does	not	set	a	value,	and	help	is	what	is	shown	for	this
argument	on	the	help	page.

Queuing	the	media	files	to	be	played
Our	media	player	will	also	need	a	way	to	manage	which	file	should	be	played	next.	We
will	implement	this	in	two	ways:	linear	playback	in	the	order	the	files	were	discovered	and
randomized	playback:

file_number	=	-1

while	True:

		if	params.random:

				file_number	=	random.randint(0,	len(filenames)	-	1)

		else:

				file_number	+=	1

				if	file_number	>=	len(filenames):

						return

play_file(filenames[file_number],	params.frequency)

Here,	if	the	--random	parameter	has	been	passed	to	our	script,	whenever	we	are	about	to
play	a	file,	the	file	to	be	played	will	be	selected	at	random	using	the	randint	function	in
the	random	Python	module.	This	number	is	then	used	to	get	a	certain	file	from	the	list	of
filenames	that	were	previously	discovered.

Using	the	media	player	script
The	player.py	script	can	be	invoked	using	the	following	command:

python	player.py	-d	music	-f	99.9	--random

This	will	search	for	all	MP3	files	under	the	music	directory	and	broadcast	them	at	99.9
MHz	in	a	random	order.	A	full	list	of	commands	will	be	available	to	you	if	you	run:

python	player.py	-h

Since	the	radio	is	not	much	of	use	when	you	have	to	SSH	into	it	to	start	playing	the	music,
we	will	add	a	cron	job	that	will	start	the	player.py	script	when	the	Pi	boots	up.

To	do	this,	we	will	use	a	shell	script	to	start	the	Python	script	(start_player.sh):

#!/bin/bash

sleep	20

cd	/home/pi

python	player.py	-d	music	--random	-f	99.9	&

This	will	ensure	that	the	player	script	is	executed	in	the	correct	folder,	in	this	case,
/home/pi,	as	this	is	where	our	PiFM	executables	and	music	directories	are.

Next,	we	will	add	an	entry	in	the	crontab,	which	is	where	cron	jobs	are	defined.	This	can
be	edited	with	the	following	command:

sudo	crontab	-e

This	command	will	open	the	default	command-line	text	edit	on	the	Pi,	nano,	which	will
allow	you	to	add	entries	to	the	crontab.	To	start	our	media	player	script,	we	will	need	to
add	the	following	line	to	the	end	of	the	crontab	that	is	opened:

@reboot	/home/pi/start_player.sh

In	our	case,	we	will	use	the	@reboot	cron	rule	instead	of	specifying	a	time	for	the
command	to	be	run,	and	as	the	name	suggests,	this	will	run	the	given	command	when	the
OS	starts.

Press	Ctrl	+	X	followed	by	Y	and	Enter	to	save	the	changes	to	the	crontab,	then	use	the
following	command	to	reboot	the	Pi,	and	if	all	goes	as	planned,	start	your	personalized
radio	station:

sudo	reboot

Summary
In	this	chapter,	we	covered	the	basic	setup	of	the	Pi	hardware	and	Raspbian	OS.	You
learned	how	to	discover	the	IP	address	of	the	Pi	in	order	to	allow	remote	access	to	it	over
SSH;	this	process	will	be	used	in	the	majority	of	the	projects	later	in	this	book.

We	also	took	a	quick	look	at	the	GPIO	expansion	header,	and	how	it	is	typically	used	to
interface	with	external	hardware.	We	also	used	this	as	a	crude	FM	transmitter	through
which	we	wrote	a	single	Python	script	to	broadcast	music.

In	the	next	chapter,	we	will	go	into	further	details	regarding	how	to	set	up	various
software	packages	in	order	to	run	them	on	the	Pi,	as	well	as	you	will	learn	the	various
ways	to	configure	networking	when	we	make	a	portable	speaker	system	that	runs	the
Logitech	Media	Server.

Chapter	2.	Portable	Speaker	System
In	this	chapter,	we	will	build	a	wireless,	battery-powered	speaker	system	that	can	be
controlled	using	a	web	browser	or	smartphone.

To	provide	the	music	for	the	speaker	system,	we	will	use	the	Logitech	Media	Server
software,	which	is	a	piece	of	software	that	can	be	used	to	stream	music,	videos,	and	photos
from	one	computer	on	a	network	to	multiple	other	devices.	It	also	allows	us	to	control	the
playback	from	any	computer	or	smartphone	on	the	same	network.

Initially,	we	will	set	up	the	Pi	to	connect	it	to	an	existing	server	(the	one	running	on	a
laptop	for	instance),	which	is	suitable	for	use	around	your	home	or	garden.	Later,	we	will
look	at	how	to	make	the	system	truly	portable	by	removing	the	need	for	an	existing	server
and	network.

The	system	will	be	self	contained	within	a	standard	flight	case	with	the	speakers	exposed
when	the	lid	is	opened	as	it	is	possible	to	run	Logitech	Media	Server	on	the	Pi	itself.	It	is
not	necessary	that	you	have	any	controls	on	the	system	itself	other	than	a	power	switch.

This	project	is	based	on	a	similar	project	made	by	Iain	Yarnall	at	Maker	Space,	Newcastle.

What	you	will	need
This	is	a	list	of	the	parts	that	you	will	need	for	this	project;	specific	parts	have	a	link	of
where	they	can	be	purchased	(it	is	recommended	that	you	use	these	specific	parts	as	other
similar	parts	may	need	an	assembly	that	differs	from	the	instructions	given	here),	and	all
other	parts	can	be	purchased	from	an	electronics	components	store:

The	Raspberry	Pi
A	USB	storage	device	to	store	a	media	library	(it	is	possible	to	use	a	hard	drive;
however,	to	keep	the	wiring	simple,	it	is	advisable	that	you	use	a	memory	stick)
A	Wi-Fi	adapter	(uk.rs-online.com/web/p/product/7603621/)
A	flight	case	(http://www.maplin.co.uk/p/flight-case-triple-pack-with-dividers-n50ju)
A	length	of	26	AWG	wire
A	length	of	32	AWG	wire
A	3.5	mm	stereo	audio	connector
A	strip	of	terminal	blocks
A	fuse	holder	and	1	Amp	fuse
Eight	20	mm	M3	screws,	washers,	and	nuts
Two	full-range	speakers	(http://cpc.farnell.com/visaton/2133/speaker-full-range-5-
60w-black/dp/LS02184)
Two	mono	amplifier	modules	(http://cpc.farnell.com/1/1/85173-amplifier-module-
18w-m033n-kemo-electronic.html)
A	variable	switch	mode	voltage	regulator
(http://imall.iteadstudio.com/im130731002.html)
A	power	switch	(http://cpc.farnell.com/arcolectric-switches/c1300abaaa/switch-spst-
16a-250vac-black-i/dp/SW05094)
Volume	control	(stereo	potentiometer)	(http://cpc.farnell.com/_/lp-200-8/speaker-l-
pad-stereo/dp/LS00544)
A	battery
(http://www.hobbyking.com/hobbyking/store/__11945__Turnigy_nano_tech_2200mah_4S_35_70C_Lipo_Pack.html

http://uk.rs-online.com/web/p/product/7603621/
http://www.maplin.co.uk/p/flight-case-triple-pack-with-dividers-n50ju
http://cpc.farnell.com/visaton/2133/speaker-full-range-5-60w-black/dp/LS02184
http://cpc.farnell.com/1/1/85173-amplifier-module-18w-m033n-kemo-electronic.html
http://imall.iteadstudio.com/im130731002.html
http://cpc.farnell.com/arcolectric-switches/c1300abaaa/switch-spst-16a-250vac-black-i/dp/SW05094
http://cpc.farnell.com/_/lp-200-8/speaker-l-pad-stereo/dp/LS00544
http://www.hobbyking.com/hobbyking/store/__11945__Turnigy_nano_tech_2200mah_4S_35_70C_Lipo_Pack.html

Tools	you	will	need
This	is	a	list	of	tools	that	you	will	need	for	this	chapter;	they	can	all	be	purchased	from
either	an	electronics	components	store	or	a	tool/hardware	store:

Drill	and	drill	bits	ranging	from	3	mm	to	10	mm
A	jigsaw
A	try	square	(optional)
A	soldering	iron	and	solder
A	multimeter
A	small,	flat	screwdriver
A	small	Posidrive	screwdriver

Setting	up	Logitech	Media	Server
We	will	first	start	by	downloading	and	installing	Logitech	Media	Server,	which	is	the
server	backend	that	manages	the	media	library	and	controls	the	players	based	on	the
commands	from	devices	that	can	control	the	server	(known	as	controllers).	Examples	of
controllers	include	the	web	interface	and	smartphone	applications.

The	players	are	devices	that	actually	output	audio	(also	known	as	Squeezebox	clients),	our
Pi,	for	example.	It	is	possible	to	have	several	controllers	and	players	running	from	the
same	server.

To	get	started,	go	to	http://www.mysqueezebox.com/download,	and	download	the	correct
version	for	your	OS.	In	most	of	the	cases,	the	download	is	an	executable	or	a	package	file
that	can	be	installed	in	the	same	way	as	any	other	piece	of	software.

Once	Logitech	Media	Server	is	installed,	open	a	web	browser	on	the	same	PC	and
navigate	to	localhost:9000;	you	should	see	the	Logitech	Media	Server	web	interface,	as
shown	in	the	following	screenshot.	This	allows	you	to	browse	the	media	library	and
stream	media	to	players	connected	to	that	server.

In	order	to	make	your	media	available	in	Logitech	Media	Server,	you	may	need	to	change
the	search	path	and	perform	a	library	rescan;	this	can	be	done	by	clicking	on	the	Settings
link	in	the	bottom-right	corner	of	the	Basic	Settings	page:

http://www.mysqueezebox.com/download

Next,	select	Browse	on	the	folder	that	has	Music	ticked;	this	will	open	a	directory	tree
that	will	allow	you	to	browse	the	directory	your	music	is	stored	in.	Once	you	do	this,	click
on	Close,	and	under	Rescan	Media	Library,	click	on	Rescan.	This	will	look	in	the
configured	directories	for	media	files	and	add	them	to	the	library,	which	may	take	a	few
minutes	depending	on	the	size	of	your	media	collection;	the	progress	of	this	process	can
be	viewed	in	the	Information	tab.	Click	on	Apply	in	the	bottom-right	corner	of	the	screen
to	return	to	the	library	view.

Once	back	to	the	library	view,	you	may	have	to	refresh	the	page	in	order	to	display	your
new	media;	this	can	be	done	by	clicking	on	the	Logitech	Media	Server	text	in	the	top-left
corner	of	the	page.

Since	this	is	all	Logitech	Media	Server	can	without	a	player,	we	will	now	set	up	the	Pi	as	a
Squeezebox	client.

Setting	up	the	Pi	as	a	Squeezebox	client
In	order	to	use	the	Pi	as	a	Squeezebox	client,	we	will	use	the	open	source	software,
squeezelite	(https://code.google.com/p/squeezelite).

First,	we	need	to	install	some	prerequisites	on	the	Pi	which	are	required	to	run	the
squeezelite	software,	which	can	be	done	using	the	following	command:

sudo	apt-get	install	-y	libflac-dev	libfaad2	libmad0

Next,	we	will	download	the	precompiled	squeezelite	binary	from	the	Google	Code	page
using	wget.	We	will	give	it	execute	permissions	to	it	and	move	it	into	the	binary	directory,
allowing	it	to	be	executed	like	any	other	command-line	application:

wget	http://squeezelite-downloads.googlecode.com/git/squeezelite-armv6hf

sudo	chmod	a+x	squeezelite-armv6hf

sudo	mv	squeezelite-armv6hf	/usr/bin

Now	that	the	client	application	is	installed,	we	will	do	a	little	bit	of	testing	to	be	sure	that
the	setup	is	working	properly.	We	will	do	this	to	determine	the	parameters	that	need	to	be
passed	to	the	client	to	get	the	best	audio	quality	and	performance.

To	start,	execute	the	following	command:

squeezelite-armv6hf	-n	Pi	-a	160

This	command	will	start	squeezelite	in	an	auto-discovery	mode	in	which	it	will	search	the
network	for	a	Logitech	Media	Server	instance	and	connect	to	the	first	one	it	finds.	If	you
have	more	than	one	instance	and	want	to	specify	the	server	to	connect	to,	then	you	can	use
the	-s	parameter:

squeezelite-armv6hf	-s	server_ip:port	-n	Pi	-a	160

The	-n	parameter	defines	the	name	of	the	client	and	subsequently,	what	it	will	be	called	in
Logitech	Media	Server;	this	is	useful	for	identification	when	you	are	using	more	than	one
client	on	the	same	server.	The	-a	parameter	is	used	to	specify	additional	ALSA	parameters
that	are	to	be	used	while	opening	the	output	audio	device;	in	this	case,	we	will	increase	the
default	buffer	size,	which	will	help	us	to	rectify	some	audio	quality	issues	that	may	occur
with	the	Pi.

Once	squeezelite	is	running	on	the	Pi,	go	back	to	the	Logitech	Media	Server	web	interface
and	select	the	player	from	the	drop-down	list	in	the	top-right	corner	of	the	page	(you	may
need	to	refresh	the	page	to	display	the	player).

You	can	then	browse	your	media	library	and	queue	the	music	to	be	played	on	the	Pi	using
the	add	and	play	buttons,	which	can	be	seen	when	each	media	item	is	highlighted,	as
shown	in	the	following	screenshot:

https://code.google.com/p/squeezelite

Setting	up	Wi-Fi	on	the	Pi
Running	an	Ethernet	cable	through	the	Pi	is	a	little	bit	unrealistic	for	this	use.	Hence,	we
will	connect	the	Pi	to	a	wireless	network.	Since	not	all	Wi-Fi	adapters	work	well	with	the
Pi,	it	is	a	good	idea	to	check	the	list	of	the	supported	devices
(http://elinux.org/RPi_USB_Wi-Fi_Adapters)	before	purchasing	one	specifically	for	this
project.

Firstly,	we	will	make	sure	that	we	have	all	the	Wi-Fi	tools	installed	using	the	following
command:

sudo	apt-get	install	wpasupplicant	wireless-tools

There	is	a	good	chance	that	these	packages	will	already	be	installed	on	Raspbian,	but	it	is
a	simple	step	to	check	beforehand.

It	is	likely	that	you	already	know	the	service	set	identifier	(SSID)	or	name	of	the	wireless
network	you	want	to	connect	to,	but	if	not,	or	just	to	check	whether	it	is	being	picked	up
by	the	Wi-Fi	adapter,	use	the	following	command	to	get	a	list	of	all	the	Wi-Fi	networks
available	in	the	range:

sudo	iwlist	wlan0	scan	|	grep	ESSID

You	will	get	output	similar	to	the	following:

Now	that	we	know	the	name	of	the	network	we	want	to	connect	to,	we	can	go	ahead	and
add	an	entry	in	the	wpa_supplicant	configuration	file,	which	contains	the	connection
details	for	the	network.	This	can	be	edited	by	the	nano	text	editor,	using	the	following
command:

sudo	nano	/etc/wpa_supplicant/wpa_supplicant.conf

At	the	end	of	the	file,	add	the	following	lines	and	replace	SSID	and	PASSWORD	with	SSID
and	the	password	for	your	wireless	network:

network={

		ssid="SSID"

		psk="PASSWORD"

		key_mgmt=WPA-PSK

}

Once	the	lines	have	been	added	to	the	file,	save	the	changes,	exit	nano,	and	reboot	the	Pi
using	the	following	command:

sudo	reboot

http://elinux.org/RPi_USB_Wi-Fi_Adapters

Once	the	Pi	has	booted,	SSH	back	into	it	and	make	sure	that	the	Pi	has	a	Wi-Fi
connection,	using	the	following	command:

ifconfig

If	the	configuration	is	successful,	you	will	see	output	similar	to	this,	which	shows	an
active	Ethernet	(on	192.168.0.2)	and	a	Wi-Fi	(on	192.168.0.18)	connection:

After	this,	you	should	be	able	to	SSH	in	the	Pi	via	its	Wi-Fi	IP	address	and	disconnect	the
Ethernet	cable.

Running	squeezelite	as	a	daemon
Since	we	want	the	Pi	to	be	ready	to	stream	music	without	having	to	do	anything	other	than
apply	power	to	it,	we	need	a	way	to	launch	squeezelite	when	the	Pi	boots;	this	time,	we
will	look	at	another	way	of	doing	this,	using	a	daemon.

A	daemon	is	a	program	that	runs	in	the	background	and	is	not	directly	visible	to	the	user;
because	of	this,	it	is	often	used	for	applications	such	as	servers.

In	our	case,	we	will	use	the	start-stop-daemon	utility	to	create	a	daemon	that	will	start
squeezelite	on	boot.	We	will	do	this	by	writing	a	shell	script	and	placing	it	in	the
/etc/inti.d	directory:

#!/bin/bash

###	BEGIN	INIT	INFO

#	Provides:										squeezelite

#	Required-Start:

#	Required-Stop:

#	Default-Start:					2	3	4	5

#	Default-Stop:						0	1	6

#	Short-Description:	Squeezelite	client

#	Description:							Logitech	media	server	client

###	END	INIT	INFO

DAEMON_USER=pi

PIDFILE=/var/run/squeezelite.pid

DAEMON=/usr/bin/squeezelite-armv6hf

DAEMON_OPTS="-n	Pi	-a	160"

do_start()

{

		start-stop-daemon	--start	--background	--pidfile	$PIDFILE	--make-pidfile	

--user	$DAEMON_USER	--chuid	$DAEMON_USER	--startas	$DAEMON—$DAEMON_OPTS

}

do_stop()

{

		start-stop-daemon	--stop	--pidfile	$PIDFILE	--retry	10

}

case	$1	in

		start)

				do_start

				;;

		stop)

				do_stop

				;;

		restart)

				do_stop

				do_start

				;;

		*)

				;;

esac

Make	the	script	executable	and	move	it	to	the	/etc/init/d	directory:

sudo	chmod	a+x	squeezelite

sudo	mv	squeezelite	/etc/init.d/squeezelite

Finally,	use	the	following	command	to	update	the	list	of	daemons:

sudo	update-rc.d	squeezelite	defaults

To	ensure	that	the	daemon	is	working	properly,	try	to	start	squeezelite	by	executing:

sudo	service	squeezelite	start

Check	whether	the	process	is	running:

ps	aux	|	grep	squeeze

This	should	give	you	output	similar	to	the	following:

The	preceding	output	shows	that	the	squeezelite	process	is	running;	this	can	also	be
verified	if	you	attempt	to	stream	music	in	the	player.

Building	the	electronics
The	electronics	for	the	speaker	system	can	be	split	into	two	main	sections—the	power
circuit	and	the	audio	circuit.

The	circuit	structure	of	the	electronics	is	shown	in	the	following	diagram:

The	speaker	system	block	diagram

Note	the	color	coding	of	the	wiring.	Here,	black	shows	the	power	ground,	gray	shows	the
audio	ground,	cyan	shows	the	unamplified	audio,	blue	shows	the	amplified	audio,	yellow
represents	the	battery	voltage,	and	red	shows	5	V.

Note	the	color	coding	of	the	wiring.	This	is	important	as	it	is	the	most	common	way	in
which	different	signals	and	power	supplies	are	identified	within	an	electronic	product.
There	are	a	few	common	conventions	that,	while	are	not	used	here,	are	good	to	know;
black	is	always	ground,	red	and	yellow	usually	indicate	a	power	supply	(5	V	and	12	V,
respectively),	and	yellow	and	green	stripes	usually	represent	a	mains	earth.

For	small	projects,	such	as	this,	following	a	standard	color	code	for	wiring	is	not	as
important.	Different	signals	have	a	colored	wire	of	their	own	to	make	identification	and
troubleshooting	easier.

Note
Unless	otherwise	stated,	a	26	AWG	wire	should	be	used.	The	wire	color	you	choose	to	use
does	not	have	to	match	the	ones	shown	in	the	preceding	diagrams;	however,	it	is
preferable	that	you	follow	it	to	make	identification	easier.

The	amplifier	circuit
Firstly,	we	will	wire	the	two	mono	amplifier	modules	to	a	strip	of	terminal	blocks	to	make
a	stereo	amplifier	module.	This	is	done	by	connecting	the	common	connections	from	each
amplifier	together	and	keeping	the	signal	and	output	connections	separate,	as	shown	in	the
following	diagram:

Next,	take	the	volume	control	and	solder	the	wires	onto	it	in	the	configuration,	as	shown
in	the	following	diagram:

The	audio	input	wires	should	be	relatively	short	(around	50	mm)	and	connected	to	a	strip
of	three	terminal	blocks;	the	output	should	have	enough	wire	to	reach	the	amplifier
module	(around	150-200	mm).	This	volume	control	is	essentially	comprised	of	two
potential	dividers	with	their	wipers	fixed	together	such	that	each	potential	divider	is
always	at	the	same	position.

Now,	we	can	solder	wires	to	the	3.5	mm	audio	jack;	since	this	is	a	bit	smaller	and	it	will
only	carry	the	unamplified	audio	signal,	we	can	use	a	32	AWG	wire	for	this:

The	audio	connector	can	now	be	connected	to	the	terminal	block	on	the	volume	control;	at
this	stage,	the	orientation	of	the	left	and	right	channels	is	not	important.

Then,	connect	the	output	from	the	volume	control	to	the	first	three	connections	on	the
amplifier	terminal	blocks;	again,	the	orientation	is	not	important	at	this	stage.

Since	the	power	ground	connection	on	the	amplifier	will	have	to	be	connected	to	both	the
speakers,	the	battery	and	the	DC-DC	converter	to	power	the	Pi	will	be	best	to	extend	the
speakers	connections	to	their	own	strip	of	terminal	blocks.	This	will	reduce	the	number	of
connects	that	have	to	be	made	in	the	same	connection.

This	is	simply	a	case	of	adding	a	short	length	of	wire	(around	50-100	mm)	to	the	two
speaker	outputs	and	power	ground	from	the	amplifier	terminal	blocks	and	connecting
them	to	a	strip	of	three	terminal	blocks:

Next,	we	need	to	solder	a	wire	(around	300	mm)	to	the	two	speakers.	Note	that	the	speaker
will	have	markings	that	show	the	correct	polarity	it	is	to	be	wired	in:

Now,	connect	each	speaker	to	the	strip	of	three	terminal	blocks	coming	from	the	amplifier
modules.	Once	again,	the	correct	speaker	orientation	is	not	important	at	this	stage.

This	is	all	with	respect	to	the	wiring	for	the	audio	section	of	the	speaker	system.

Running	the	speaker	system	on	battery	power
Since	the	battery	we	will	use	is	rated	at	14.4	V,	we	are	able	to	power	the	amplifier	directly
from	the	battery.	However,	the	Pi	must	be	powered	with	5	V.	So,	we	will	need	a	power
converter	to	be	able	to	power	the	Pi	using	the	battery.

The	power	converter	we	will	use	is	a	DC-DC	switch	mode	converter,	which	will	accept
input	voltage	from	the	set	output	voltage	up	to	35	V.	Therefore,	we	will	continue	to	power
the	Pi	as	the	battery	voltage	drops	while	under	heavier	load	(for	example,	when	playing	at
higher	volumes)	or	as	the	battery	starts	to	drain.

As	lithium	polymer	batteries	can	be	very	dangerous	if	used	incorrectly,	it	is	vital	that	a
fuse	is	used	in	line	with	the	power	switch	to	protect	the	battery	just	in	case	there’s	a	fault
in	the	speaker	system.	A	rating	of	around	0.8	to	1.5	A	will	be	suitable	for	this	purpose.

We	will	start	with	powering	just	the	amplifiers.	This	is	a	fairly	simple	task	as	all	it
involves	is	connecting	the	battery	positive	terminal	to	the	power	connector	on	the
amplifier	terminal	blocks	via	the	switch	and	fuse.	The	ground	is	connected	directly,	as
shown	in	the	earlier	diagram.	Perform	the	following	steps	to	connect	the	circuit:

1.	 Take	the	connector	for	your	battery,	and	assuming	that	it	has	leads	presoldered	onto
it,	connect	them	to	a	strip	of	two	terminal	blocks.	If	they	do	not	have	leads	soldered
onto	them,	then	this	should	be	done	first	using	a	short	length	of	wire	(around	50	mm).

2.	 Solder	a	100	mm	length	of	wire	onto	one	pole	of	the	power	switch	and	connect	the
other	end	to	the	positive	terminal	on	the	battery	terminal	block.

3.	 Solder	a	50	mm	length	of	wire	from	the	other	switch	pole	to	one	contact	of	the	fuse.
4.	 Solder	a	50	mm	length	of	wire	from	the	other	fuse	contact	and	connect	the	other	end

to	the	positive	power	connection	on	the	amplifier	terminal	blocks.
5.	 Connect	the	grounds	of	the	battery	terminal	block	and	the	amplifier	terminal	blocks

with	a	100	mm	length	of	wire.

Once	these	steps	have	been	completed,	the	setup	should	look	like	what	is	shown	in	the
following	image:

Now	would	be	a	good	time	to	give	the	audio	electronics	a	test	by	connecting	the	battery
and	powering	on	the	amplifiers.	You	can	either	use	the	Pi	powered	from	a	USB	or	any
other	media	player	as	the	audio	source.	It	is	best	to	have	the	volume	control	set	to	its
lowest	setting	and	gradually	increase	it.

Next,	we	want	to	power	the	Pi	from	the	battery	using	the	DC-DC	converter.	There	are	two
main	ways	of	doing	this:	either	by	applying	power	to	the	GPIO	header	or	by	back-
powering	the	Pi	using	a	powered	USB	hub.	In	this	case,	I	will	be	powering	via	the	GPIO
header,	which	will	likely	be	sufficient	for	what	we	are	doing	here.	Powering	using	a
powered	USB	hub	will	only	be	needed	if	you	are	using	an	external	hard	drive	to	store	the
music	library.

First,	we	need	to	solder	wires	to	each	of	the	terminals	of	the	DC-DC	converter	and	note
the	polarity	of	the	connections	to	ensure	that	the	color	coding	of	the	wiring	is	consistent.	A
length	of	around	100	mm	is	sufficient	for	each	connection.

Next,	connect	the	positive	and	ground	connections	on	the	power	input	side	of	the
converter	to	the	positive	and	ground	connections	on	the	amplifier	terminal	blocks,	and
connect	the	two	leads	from	the	output	terminals	of	the	DC-DC	converter	to	a	strip	of	two
terminal	blocks.

Now	that	we	have	the	DC-DC	converter	connected,	we	need	to	set	it	to	the	correct	output
voltage	before	we	connect	it	to	the	Pi.	To	do	this,	set	a	multimeter	to	the	voltage	mode	and
place	the	probes	across	the	two	connections	on	the	terminal	blocks	connected	to	the	DC-
DC	converter’s	output	(if	possible,	screw	the	tips	of	the	probes	into	the	terminal	blocks	to
avoid	having	to	hold	them	in	place).	Turn	the	power	on,	and	if	needed,	adjust	the	range	on
the	multimeter.

Usually,	I	find	that	these	converters	come	preset	to	the	output	just	below	the	input	voltage,

which	would	be	far	too	high	for	the	Pi,	which	is	designed	to	operate	at	5	V.	In	order	to
adjust	the	voltage,	use	a	small,	flat-head	screwdriver	to	adjust	the	square	blue
potentiometer.	This	is	a	multiple	turn	potentiometer,	so	do	not	be	surprised	if	it	takes	a	few
rotations	of	the	potentiometer	for	the	voltage	to	change.	A	reasonable	voltage	to	aim	for	is
5.1	V,	as	under	load,	the	voltage	is	expected	to	drop	slightly.

Once	the	voltage	is	corrected,	turn	the	power	off,	remove	the	multimeter	from	the	output
of	the	DC-DC	converter,	remove	one	end	of	two	0.1	inch	jumper	leads,	and	connect	them
to	the	terminal	block	on	the	output	of	the	DC-DC	converter.	Connect	the	positive	lead	to
pin	4	of	the	GPIO	headers	on	the	Pi	and	the	ground	lead	to	pin	6.

By	now,	the	setup	should	look	similar	to	the	following:

Once	this	is	done,	apply	power	once	more	and	within	a	few	seconds,	the	Pi	should	start
booting	up.	If	it	does	not,	turn	the	power	off	immediately	to	prevent	possible	damage	to
the	Pi	and	battery,	and	double-check	all	of	the	wiring	against	the	block	diagram	shown
earlier	in	the	chapter.

Building	the	enclosure	for	the	speaker
system
Since	we	are	using	a	premade	flight	case	as	the	base	for	our	speaker	system’s	enclosure,
all	we	have	to	do	is	cut	a	single	panel	that	will	hold	the	speakers,	volume	control,	and
power	switch	on	a	panel	that	is	exposed.	We	can	do	this	by	opening	the	case,	thus	hiding
the	Pi,	battery,	and	electronics	behind	it.

To	make	this	panel,	we	will	use	a	3	mm	medium	density	fiberboard	(MDF);	this	is	a
cheap	material	and	is	very	easy	to	work	with.

First,	we	will	need	to	cut	a	square	of	MDF	that	is	just	smaller	than	the	opening	in	the
flight	case.	To	do	this,	first	measure	the	length	and	width	of	the	inside	of	the	flight	case
and	mark	this	distance	away	from	two	edges	of	a	sheet	of	MDF,	as	shown	in	the	following
image:

Next,	take	a	try	square	and	draw	a	line	parallel	to	each	edge	in	line	with	the	markings	in
order	to	give	an	outline	of	where	the	square	needs	to	be	cut	to	get	our	panel	as	shown	in
the	following	figure.

Note
When	using	power	tools,	proper	safety	precautions	should	be	undertaken.	Eye	protection
should	always	be	worn	and	mains-powered	tools	should	be	protected	using	a	residual
current	device	(RCD).

Once	this	is	done,	we	can	take	a	jigsaw	and	cut	along	the	lines	to	get	the	panel,	which
should	be	able	to	snugly	fit	in	the	opening	of	the	flight	case.

Now	that	we	have	the	basic	panel	for	the	enclosure,	we	will	cut	the	two	speaker	holes.
Since	different	speakers	are	mounted	in	different	ways,	I	assume	that	you	are	using	the
same	speakers	that	are	listed	on	the	parts	list	here.

Mounting	the	speakers	will	first	involve	cutting	a	large	hole	into	the	sheet	to	set	the
speakers	in	and	then	drilling	four	smaller	holes	that	are	used	to	bolt	the	speaker	to	the
panel.	Fortunately,	for	the	speakers,	the	large	hole	can	be	marked	out	easily	by	tracing
around	a	CD.

Once	you	have	the	outline	of	the	speaker	positioned	correctly,	drill	a	10	mm	hole	near	the
edge	of	each	circle,	as	shown	in	the	following	image.	This	will	allow	us	to	get	inside	the
circle	with	the	jigsaw	in	order	to	cut	a	large	hole	in	the	panel.

Once	this	is	done,	insert	the	blade	of	the	jigsaw	into	the	hole	and	cut	around	the	outline	of
the	circle	for	each	speaker.	It	isn’t	vital	that	the	holes	are	cut	neatly	or	accurately,	since	the
speaker	will	cover	this	edge	when	installed;	however,	it	is	important	that	the	speaker	sits
flat	when	it	is	mounted	on	the	cutout.

Next,	we	need	to	drill	the	mounting	holes	that	will	be	used	to	bolt	the	speakers	to	the	MDF
panel;	in	this	case,	we	will	drill	4	mm	holes	and	use	M3	screws	and	nuts	to	mount	the
speakers.

First,	mark	the	positions	of	each	hole	by	placing	the	speaker	into	the	hole	and	making	a
mark	on	the	MDF	through	the	hole	in	the	speaker	fascia	(with	a	pencil,	for	example).

Next,	drill	a	4	mm	hole	in	each	marked	position.	It	would	be	a	good	idea	to	check	whether
the	holes	line	up	with	the	speaker	correctly	by	trial	fitting	it	with	just	the	screws;	however,
we	will	mount	the	speakers	properly	later.

Next,	we	need	to	drill	a	single	hole	large	enough	for	the	shaft	of	the	volume	control.	The
best	place	to	position	this	is	in	between	the	speakers,	but	far	away	enough	to	leave	room
for	the	front	plate.	Once	the	position	is	marked	out,	drill	the	hole	and	remove	any	loose
pieces	of	material.

The	hole	for	the	power	switch	is	probably	the	most	difficult	since	it	is	a	square	hole.	For
this,	we	will	drill	two	10	mm	holes	and	use	the	jigsaw	to	make	the	two	ends	square	and
remove	the	material	in	between	them.

The	two	holes	should	be	around	15-20	mm	apart.	This	should	allow	a	snug	fit	of	the
switch	once	the	full	hole	has	been	cut	out	using	the	jigsaw.	In	this	case,	since	the	edge	of
the	cut	may	be	more	visible,	it	is	a	good	idea	to	take	a	small	amount	of	material	off	in	each
pass	and	to	keep	checking	whether	the	switch	fits	neatly.

Now	that	all	the	mounting	holes	have	been	cut	out	of	the	panel,	it	is	time	to	mount	each
component	on	the	panel.	We	will	start	with	the	two	speakers,	which	can	be	mounted	by
inserting	the	speaker	into	the	large	hole	and	fastening	it	in	place	using	an	M3	machine
screw	in	each	mounting	hole	with	a	corresponding	washer	and	nut.	To	make	the	wiring
neater,	it	is	a	good	idea	to	have	the	terminals	of	each	speaker	facing	the	same	direction.	I
recommend	having	them	face	the	back	of	the	flight	case.

Next,	the	power	switch	can	be	fitted;	this	requires	you	to	disconnect	the	connections	to	the
amplifier	terminal	blocks	first.	Once	disconnected,	this	is	simply	a	case	of	feeding	the
wiring	and	fuse	holder	through	the	mounting	hole	and	pushing	the	switch	into	the	hole.
Once	in	place,	it	should	be	kept	securely	in	place	by	friction	alone.

Next,	the	volume	control	can	be	mounted	by	pushing	the	threaded	shaft	through	the	hole
drilled	for	it	from	the	back	of	the	MDF	panel.	Place	the	plastic	front	plate	over	the	shaft	on
the	front	of	the	MDF	panel	and	fasten	it	in	place	using	the	included	nuts.	The	knob	should
then	be	pushed	on,	ensuring	that	the	indicator	lines	up	with	the	minimum	indicator	on	the
plastic	front	panel.

By	this	time,	the	front	of	the	MDF	panel	should	look	similar	to	the	following	image:

All	that	is	left	to	do	now	is	mount	the	DC-DC	converter	and	amplifiers	to	the	back	of	the
panel,	reconnect,	and	tidy	up	the	wiring.

Since	the	amplifier	modules	have	mounting	holes,	I	used	these	to	thread	some	large	cable
ties	through	and	fastened	them	to	the	two	speakers.	This	allows	a	secure	mounting	of	the
amplifiers	that	does	not	need	additional	holes	to	be	drilled	in	the	MDF	panel.

The	DC-DC	converter	can	be	mounted	anywhere	on	the	MDF	panel	using	any	suitable
adhesive.	I	would	recommend	hot	glue	as	it	allows	fairly	easy	removal	without	risking
damage	to	the	converter,	but	you	can	also	use	double-sided	tape.

The	next	step	is	to	reconnect	all	the	wiring	that	is	currently	disconnected.	While	doing	so,
it	is	a	good	idea	to	trim	any	wires	that	are	excessively	long	so	that	each	wire	is	just	long
enough	to	reach	where	it	should	connect	to.	This	is	mainly	done	just	to	make	the	wiring
tidier.

By	now,	the	back	should	look	as	shown	in	the	following	image:

Assuming	that	you	are	using	the	same	flight	case	that	I	used,	there	are	two	dividers
included	that	make	a	perfect	spacer	to	keep	the	MDF	panel	a	good	distance	from	the
bottom	of	the	flight	case,	the	spacers	should	be	placed	around	40	mm	from	each	side	of
the	case.

All	that	is	left	to	do	now	is	reconnect	the	Pi	and	battery	and	give	the	system	a	test.

Running	Logitech	Media	Server	on	the	Pi
Our	current	solution	is	all	well	and	good	if	you	only	want	to	use	the	system	around	the
home	and	garden.	However,	to	make	the	system	truly	portable,	we	need	to	move	the	media
collection,	Logitech	Media	Server,	and	wireless	network	to	the	Pi.

Creating	a	backup	image	of	an	SD	card
Since	we	will	now	be	making	a	few	changes	to	the	software	running	on	the	Pi,	it	may	be
worthwhile	that	you	take	an	image	of	the	SD	card	so	that	later,	it	is	easy	to	restore	the	Pi
to	its	working	state.

Fortunately,	this	is	a	very	simple	thing	to	do,	and	since	it	is	essentially	just	the	reverse	of
writing	the	OS	image	to	the	card,	it	can	be	done	with	the	dd	utility:

sudo	dd	if=/dev/sdb	of=working.img

This	will	create	an	image	of	the	SD	card	at	/dev/sdb	and	save	it	to	the	working.img	file.
This	can	later	be	rewritten	to	the	SD	card	in	the	same	way	as	a	fresh	OS	image.

One	thing	worth	noting	about	this	method	is	that	it	will	take	an	image	of	the	entire	SD
card,	including	any	free	space.	Hence,	the	size	of	the	image	is	equal	(or	marginally	smaller
in	the	majority	of	cases)	to	the	capacity	of	the	SD	card.	This	means	that	to	restore	the
image,	you	need	an	SD	card	of	at	least	the	capacity	of	the	card	the	image	was	taken	from.
For	this	reason,	it	is	good	to	try	and	use	an	SD	card	that	is	just	big	enough	for	what	you
need,	in	order	to	both	restore	the	image	onto	a	larger	range	of	SD	cards	and	to	reduce	the
amount	of	storage	required	to	keep	the	images.

Automounting	a	USB	storage	device
Since	its	likely	that	your	media	collection	may	not	entirely	fit	on	a	single	SD	card	(as	well
as	Raspbian),	we	will	opt	to	store	this	on	an	external	USB	device,	this	could	either	be	a
USB	memory	stick	or	an	external	hard	drive.	The	process	of	doing	this	is	the	same	for	all
storage	devices.

First,	we	need	to	know	the	path	to	the	storage	device	and	the	filesystem	it	uses.	Both	can
be	obtained	using	the	following	command:

sudo	blkid

This	will	give	output	similar	to	the	following.	Here,	you	can	see	the	two	partitions	on	the
SD	card	(mmcblk0p1	and	mmcblk0p2)	as	well	as	a	USB	memory	stick	(/dev/sda1).
Ensuring	that	you	assign	a	label	to	the	partition	while	formatting	it	will	help	to	make
identification	easier:

/dev/mmcblk0p1:	SEC_TYPE="msdos"	LABEL="boot"	UUID="787C-2FD4"	TYPE="vfat"

/dev/mmcblk0p2:	UUID="3d81d9e2-7d1b-4015-8c2c-29ec0875f762"	TYPE="ext4"

/dev/sda1:	SEC_TYPE="msdos"	LABEL="DANNIXON"	UUID="321A-15D0"	TYPE="vfat"

Note	the	path	to	the	device	at	the	very	start	of	the	line	and	the	partition	type	given	by
TYPE.	We	will	need	both	of	these	pieces	of	information	when	we	set	up	the	partition	to	be
mounted	at	the	boot	time.

Next,	we	will	create	a	directory	for	the	partition	to	be	mounted	on.	This	is	the	path	that
will	be	used	to	access	the	root	of	the	partition	when	it	is	mounted.	In	this	case,	we	will
create	a	directory	under	/media.	In	Linux	this	is	the	directory	used	for	mounting
removable	filesystems;	the	name	of	the	directory	is	not	critical,	but	something	descriptive
is	recommended:

sudo	mkdir	/media/music

Now	that	the	mount	point	has	been	created,	we	will	modify	the	filesystem	table	(fstab)	to
automatically	mount	the	drive	when	the	Pi	boots;	this	can	be	done	using	the	nano	text
editor.	The	filesystem	table	needs	to	be	modified	as	root:

sudo	nano	/etc/fstab

To	add	the	partition	of	our	USB	device,	the	following	line	should	be	added	to	the	end	of
the	file,	replacing	/dev/sda1	with	the	path	to	your	partition	and	vfat	with	the	partition
type	(which	were	discovered	earlier):

/dev/sda1	/media/music	vfat	defaults	0	0

Once	finished,	press	Ctrl	+	X	to	save	and	exit.	Reboot	the	Pi	using:

sudo	reboot

Once	the	Pi	has	booted,	check	whether	the	partition	has	been	mounted	and	is	accessible
using:

ls	/media/music

This	should	show	you	the	files	and	directories	at	the	root	of	the	partition	on	the	USB
storage	device.

Installing	Logitech	Media	Server
Now	that	we	have	the	music	collection	stored	locally	with	the	Pi,	we	need	to	move	our
Logitech	Media	Server	instance	there.	Officially,	there	is	no	support	for	LMS	on	the	Pi,
however,	All	Things	Pi	(http://allthingspi.webspace.virginmedia.com/)	has	already	done
the	work	of	porting	LMS	to	run	on	the	Pi.

Firstly,	there	are	a	few	more	libraries	that	are	required	by	Logitech	Media	Server	that	may
need	to	be	installed	first.	This	can	be	done	with	the	following	command:

sudo	apt-get	install	libjpeg8	libpng12-0	libgif4	libexif12	libswscale2	

libavcodec53

Now,	we	can	download	and	install	the	Debian	version	of	Logitech	Media	Server	from	the
Logitech	website:

wget	

http://downloads.slimdevices.com/LogitechMediaServer_v7.7.2/logitechmediase

rver_7.7.2_all.deb

sudo	dpkg	-i	logitechmediaserver_7.7.2_all.deb

As	it	is,	the	installation	needs	some	modifications	before	it	can	be	used	on	the	Pi.	Before
we	start	with	this,	we	need	to	ensure	that	LMS	is	not	already	running;	this	is	done	by
attempting	to	stop	the	service:

sudo	service	logitechmediaserver	stop

Next,	we	need	to	download	and	extract	the	required	files	that	will	be	used	to	modify	the
LMS	installation	from	All	Things	Pi:

wget	http://allthingspi.webspace.virginmedia.com/files/lms-rpi-

raspbian.tar.gz

tar	-zxvf	lms-rpi-raspbian.tar.gz

Now,	we	can	perform	the	required	modifications	using	the	following	commands:

sudo	patch	/usr/share/perl5/Slim/bootstrap.pm	lms-rpi-bootstrap.patch

sudo	mv	arm-linux-gnueabihf-thread-multi-64int	

/usr/share/squeezeboxserver/CPAN/arch/5.14/

sudo	mv	libmediascan.so.0.0.0	libfaad.so.2.0.0	/usr/local/lib

sudo	mv	/usr/share/squeezeboxserver/Bin/arm-linux/faad	

/usr/share/squeezeboxserver/Bin/arm-linux/faad.old

sudo	mv	faad	/usr/share/squeezeboxserver/Bin/arm-linux

sudo	ln	-s	/usr/local/lib/libmediascan.so.0.0.0	

/usr/local/lib/libmediascan.so

sudo	ln	-s	/usr/local/lib/libmediascan.so.0.0.0	

/usr/local/lib/libmediascan.so.0

sudo	ln	-s	/usr/local/lib/libfaad.so.2.0.0	/usr/local/lib/libfaad.so

sudo	ln	-s	/usr/local/lib/libfaad.so.2.0.0	/usr/local/lib/libfaad.so.2

sudo	ldconfig

sudo	chown	-R	squeezeboxserver:nogroup	/usr/share/squeezeboxserver/

Once	we	are	finished,	Logitech	Media	Server	should	be	ready	to	use.	However,	I	had	to
reboot	before	I	was	able	to	navigate	to	the	web	interface:

http://allthingspi.webspace.virginmedia.com/

sudo	reboot

Once	the	Pi	has	booted,	navigate	to	PI_IP:9000	(where	PI_IP	is	the	IP	address	of	your	Pi)
to	access	the	LMS	web	interface.	Here,	you	can	follow	the	same	steps	described	earlier	to
set	up	your	media	library.	Keep	in	mind	that	the	web	interface	and	media	scanning	may
seem	slightly	slower	than	on	a	standard	PC.	This	is	mainly	due	to	the	lower	system
resources	of	the	Pi.

Setting	up	the	Pi	as	a	Wi-Fi	access	point
Since	we	want	to	be	able	to	use	the	speaker	system	wherever	we	go,	we	need	a	way	to
connect	to	the	Pi	without	relying	on	the	availability	of	a	wireless	network.	The	easiest	way
to	do	this	is	to	turn	the	Pi	into	a	Wi-Fi	access	point	that	we	can	connect	to	using	a
smartphone.

First,	we	will	assign	a	static	IP	address	to	the	Wi-Fi	interface.	Start	by	opening	the
interfaces	file	in	nano:

sudo	nano	/etc/network/interfaces

Edit	the	file	so	that	after	the	allow-hotplug	wlan0	line,	it	looks	like	the	following	code.
This	code	is	telling	the	wlan0	interface	to	take	a	static	IP	address	rather	than	using	DHCP
as	was	done	previously:

allow-hotplug	wlan0

iface	wlan0	inet	static

address	192.168.42.1

netmask	255.255.255.0

#iface	wlan0	inet	manual

#wpa-roam	/etc/wpa_supplicant/wpa_supplicant.conf

#iface	default	inet	dhcp

Next,	we	will	set	up	the	DHCP	server,	which	will	provide	an	IP	address	to	any	devices	that
connect	to	the	Wi-Fi	network:

sudo	apt-get	install	isc-dhcp-server

sudo	nano	/etc/dhcp/dhcpd.conf

This	will	open	nano	to	edit	the	DHCP	server	configuration.	First,	uncomment	the
authoritative	line.	This	tells	the	server	that	it	is	the	main	DHCP	server	on	the	network.
Next,	comment	out	the	following	two	lines:

option	domain-name	"example.org";

option	domain-name-servers	ns1.example.org,	ns2.example.org;

Next,	add	the	following	lines	to	the	end	of	the	file:

subnet	192.168.42.0	netmask	255.255.255.0	{

		range	192.168.42.10	192.168.42.50;

		option	broadcast-address	192.168.42.255;

		option	routers	192.168.42.1;

		default-lease-time	600;

		max-lease-time	7200;

		option	domain-name	"local";

		option	domain-name-servers	8.8.8.8,	8.8.4.4;

}

Then,	we	need	to	tell	the	DHCP	server	which	interfaces	to	use.	This	is	done	by	editing	the
following	configuration	file:

sudo	nano	/etc/default/isc-dhcp-server

Add	wlan0	to	the	list	of	interfaces	so	that	the	line	looks	like	this:

INTERFACES="wlan0"

Next,	we	will	install	and	configure	the	access	point	daemon.	This	involves	creating	a
configuration	file	for	the	access	point:

sudo	apt-get	install	hostapd

sudo	nano	/etc/hostapd/hostapd.conf

Add	the	following	lines	to	the	configuration	file,	replacing	NETWORK	and	PASSWD	with	the
SSID	and	key	you	wish	to	use	for	the	wireless	access	point:

interface=wlan0

driver=nl80211

#driver=rtl871xdrv

ssid=NETWORK

hw_mode=g

channel=6

macaddr_acl=0

auth_algs=1

ignore_broadcast_ssid=0

wpa=2

wpa_passphrase=PASSWD

wpa_key_mgmt=WPA-PSK

wpa_pairwise=TKIP

rsn_pairwise=CCMP

Now,	we	need	to	tell	the	daemon	to	use	this	configuration	file	when	it	starts.	This	is	done
by	editing	the	daemon	startup	options:

sudo	nano	/etc/default/hostapd

Replace	the	DAEMON_CONF	line	with	the	following:

DAEMON_CONF="/etc/hostapd/hostapd.conf"

Finally,	reboot	the	Pi	and	you	should	be	able	to	connect	to	the	Wi-Fi	network	using	the
login	used	in	the	configuration	file.	You	can	then	use	either	a	web	browser	or	smartphone
application	to	connect	to	the	Logitech	Media	Server	instance	at	192.168.42.1.

If	the	Wi-Fi	network	is	not	showing	up	in	a	search,	you	may	need	to	use	an	alternative
driver.	To	check	whether	this	is	the	case,	run	the	following	commands:

sudo	apt-get	install	iw

iw	list

If	you	see	a	message	similar	to	nl80211	not	found,	then	open
/etc/hostapd/hostapd.conf	and	swap	the	commented	out	driver	lines	so	that
rtl871xdrv	is	uncommented.	Next,	we	need	to	download	a	modified	version	of	hostapd
using	the	following	set	of	commands:

wget	http://www.adafruit.com/downloads/adafruit_hostapd.zip

unzip	adafruit_hostapd.zip

sudo	mv	/usr/sbin/hostapd	/usr/sbin/hostapd.ORIG

sudo	mv	hostapd	/usr/sbin

sudo	chmod	755	/usr/sbin/hostapd

Once	the	commands	have	finished	executing,	reboot	the	Pi	and	you	should	be	able	to	pick
up	the	Wi-Fi	network.

Summary
In	this	chapter,	we	took	a	look	at	some	basic	electronics	that	were	to	be	used	to	power	the
Pi	and	external	devices	and	to	amplify	the	audio	from	the	audio	output	on	the	Pi.

We	also	took	the	first	steps	to	design	and	manufacture	custom	enclosures	and	fittings	for
hardware	projects	by	adapting	an	existing	case	for	the	enclosure	of	the	speaker	system.	In
later	projects	in	this	book,	we	will	use	these	skills	to	manufacture	enclosures	from	scratch.

In	the	next	chapter,	we	will	look	further	into	designing	and	manufacturing	customized
enclosures,	as	we	build	a	mini	tabletop	arcade	machine.

Chapter	3.	Mini	Retro	Arcade	Cabinet
In	this	chapter,	we	will	build	a	mini	retro-style	arcade	cabinet,	which	runs	a	selection	of
emulators	that	can	play	games	from	a	wide	variety	of	game	consoles	and	arcade	machines.
This	will	be	done	using	an	operating	system	called	PiPlay	(formally	known	as	PiMAME).

An	arcade	cabinet	is	essentially	a	standard	computer	and	monitor	in	a	custom-built	cabinet
used	to	mimic	the	style	and	shape	of	retro	arcade	machines.

This	project	will	also	be	the	first	that	involves	a	significant	amount	of	woodwork	and
carpentry	in	the	making	of	the	cabinet	for	the	arcade	system.	Although	it	seems	like	a
daunting	task	for	anyone	who	has	not	undertaken	a	project	like	this	in	the	past,	the
construction	is	relatively	simple	and	can	be	done	with	common	household	tools.

To	control	the	games,	we	will	use	a	selection	of	arcade	controls	that	are	readily	available
online.	We	will	interface	them	to	the	Pi	using	the	GPIO	port	and	some	software	written	by
Adafruit.

This	project	is	based	on	a	similar	project	built	by	Tony	Dixon	at	Maker	Space,	Newcastle.

Requirements
For	this	project,	you	will	need	the	hardware	and	tools.	Here	is	the	list	of	the	hardware
required:

The	Raspberry	Pi
A	USB	keyboard	(for	setup	only)
Arcade	buttons	and	a	joystick
A	monitor	(and	an	HDMI	adapter	if	needed)
A	sheet	of	6	mm	plywood	(see	the	Building	the	cabinet	section	for	the	size	required)
A	sheet	of	12	mm	plywood	(see	the	Building	the	cabinet	section	for	the	size
required)
Female-to-female	0.1	inch	pin	jumpers

Tools	required	for	this	project	are	listed	as	follows:

A	soldering	iron	and	solder
Wire	cutters
A	Pozidriv	screwdriver
A	drill	machine
A	30	mm	Forstner	drill	bit
Sandpaper	(80,	120,	and	240	grit)
A	jigsaw

Setting	up	the	input	electronics
In	this	section,	we	will	set	up	the	input	hardware	to	the	arcade	cabinet.	The	cabinet	we	will
build	comprises	a	joystick	and	seven	push	buttons.	All	of	the	devices	used	for	this	are
simple	digital	logic	devices	that	can	be	connected	directly	to	the	GPIO	header	on	the	Pi
without	external	electronics.

Firstly,	we	will	solder	the	connecting	wires	to	each	of	our	arcade	buttons	and	joystick.	The
buttons	used	have	three	connections	on	them	that	are	marked	as	COM,	NC,	and	NO,
which	stand	for	common,	normally	closed,	and	normally	open.

Note
The	buttons	and	joystick	that	I	have	used	are	from	a	seller	on	eBay	called	ultracabs
(http://www.ebay.co.uk/usr/ultracabs)	who	sells	a	variety	of	hardware	for	arcade	cabinets.
While	any	buttons	and	joysticks	should	work,	I	will	be	using	these	in	the	instructions.

In	our	case,	we	want	to	create	a	circuit	when	the	button	is	pressed,	so	we	need	to	solder
wires	to	COM	and	NO.	In	this	case,	we	will	use	female-to-female	0.1	inch	jumper	wires
with	one	end	removed	and	stripped,	as	this	will	allow	easier	connection	to	the	pins	on	the
Pi	GPIO	port,	as	shown	in	the	following	image:

Next,	we	need	to	solder	the	same	connecting	wires	onto	the	joystick.	For	this,	there	are
four	similar	switches	to	what	were	used	on	the	buttons	around	the	underside	of	the
joystick	assembly	that	needs	to	be	connected.

Note	that	the	particular	joystick	I	recommend	only	has	COM	and	NO	connections,	so
since	there	are	only	two	connections	on	the	switch,	getting	the	wires	connected	in	the
correct	way	is	less	important	here.

Here,	it	is	worth	connecting	the	COM	connections	of	each	switch	together	with	short
pieces	of	standard	wire,	so	that	we	only	need	a	single	common	wire	running	to	the

http://www.ebay.co.uk/usr/ultracabs

joystick.

Next,	as	with	the	buttons,	solder	a	0.1	inch	jumper	wire	to	each	switch	contact	and	a	single
jumper	wire	to	one	of	the	common	connections:

Once	this	is	done,	the	electronics	part	of	this	project	is	pretty	much	complete.	We	will
connect	the	buttons	and	joystick	to	the	Pi	later,	once	they	are	mounted	on	the	cabinet.

Building	the	cabinet
Firstly,	it	is	important	to	have	a	good	idea	of	the	dimension	that	we	need	for	each	part	of
the	cabinet.	The	following	diagram	shows	the	dimension	of	the	cabinet	I	made	with	the
height	and	width	of	the	monitor.	While	you	are	free	to	adapt	the	design	to	whatever	style
you	like,	be	aware	of	the	dimensions	that	are	likely	to	change	throughout	the	design.	In	the
following	diagram,	note	that	all	the	sizes	are	in	mm:

Note	that	the	angle	between	the	monitor	and	joystick	panel	is	not	fixed,	as	it	will	depend
on	the	size	of	the	monitor	and	joystick/button	panel.	The	dimensions	listed	in	the	diagram
are	only	a	rough	guide	and	you	are	encouraged	to	draw	a	side	panel	out	in	a	scale	of	1:1	to
check	the	dimensions	before	deciding	on	them.

Note
When	using	power	tools,	proper	safety	precautions	should	be	undertaken.	Eye	protection
should	always	be	worn	and	mains-powered	tools	should	be	protected	using	a	residual
current	device	(RCD).

The	first	parts	we	want	to	cut	are	the	two	side	panels	for	the	enclosure.	These	will	both	be
cut	from	a	12	mm	plywood.	As	we	will	be	using	a	jigsaw	to	cut	the	panels,	we	will	cut
both	the	left-hand	side	and	right-hand	side	panels	at	the	same	time,	since	it	is	very	difficult
to	get	exactly	the	same	cut	twice	when	you’re	guided	by	eye	alone.

Note
For	my	cabinet,	I	opted	to	use	Birch	plywood,	as	it	has	a	much	nicer	appearance	and	is
stronger	than	standard	plywood.	However,	it	more	expensive	and	can	be	harder	to	work
with.

For	this,	we	need	to	ensure	that	the	two	sheets	of	plywood	do	not	move	relative	to	each
other	during	the	cut.	There	are	multiple	ways	to	do	this,	but	the	way	I	chose	was	to	screw
the	two	sheets	together	at	regular	intervals	just	outside	the	cut	line	(refer	to	the	following
image).	This	is	probably	one	of	the	best	ways,	as	this	method	of	fixing	is	very	easy	to
remove	and	will	withstand	a	lot	of	force	(more	than	you	will	ever	exert	on	it	while	sawing)
before	the	sheets	start	to	move.

Once	both	the	sheets	of	material	are	fixed	together,	you	will	need	to	mark	out	the	cut	path
in	faint	pencil	markings	on	one	side	of	the	material.	Ensuring	that	this	is	as	faint	as
possible	will	make	it	is	easier	to	remove	any	leftover	markings	while	sanding	the	panels

down	later.

Once	the	panels	have	been	cut	out	as	shown	in	the	following	image,	they	will	have	fairly
untidy	edges,	especially	when	you	cut	against	the	grain	of	the	top	layer	of	material.	As
each	panel	is	made,	it	is	a	good	idea	to	take	a	piece	of	a	low-grit	sandpaper	(around	40-60)
and	quickly	remove	any	untidy	edges.	When	it	is	time	for	the	panel	to	be	assembled	in	its
final	position,	you	should	take	time	to	sand	the	edges	and	surfaces	with	progressively
higher	grip	sandpapers	to	achieve	a	smooth	and	tidy	finish.	A	good	progression	would	be
80,	then	120,	and	then	240.

Note
The	grit	classification	of	sandpaper	is	based	on	the	number	of	abrasive	particles	per	square
inch	of	material.	They	can	range	from	24	(very	coarse)	to	1,000	(very	fine).

Next,	we	will	cut	the	bottom	panel	of	the	cabinet.	Also,	cut	from	the	12	mm	plywood,	as
shown	in	the	diagram	at	the	start	of	this	section.	The	width	of	this	panel	will	be	around	the
width	of	the	monitor	plus	10	mm,	and	the	depth	will	be	whatever	the	desired	width	of	the
cabinet	is	(in	the	case	of	the	diagram,	it	is	400	mm).

As	with	the	side	panels,	they	should	be	sanded	down	to	remove	any	rough	edges.
However,	as	only	one	edge	will	be	exposed	to	the	front	of	the	cabinet,	getting	a	perfect

finish	here	is	not	essential.

Next,	we	will	attach	the	bottom	panel	to	the	two	side	panels.	To	do	this,	we	will	use	both
screws	through	the	side	panels	that	go	into	the	edge	of	the	bottom	panel	and	several	plastic
assembly	fittings	like	the	ones	shown	in	the	following	image.	This	will	help	to	ensure	a
good	quality,	durable	joint.

Note
For	a	more	permanent	fitting,	PVA	wood	glue	can	also	be	used	on	the	joints	between	two
plywood	panels.

First,	place	the	bottom	panel	on	a	flat	surface	and	align	the	one	side	panel	next	to	the
matching	edge	of	the	bottom	panel.	Next,	drill	a	series	of	pilot	holes	that	are	around	1-2
mm	smaller	than	the	screws	that	will	fix	the	two	panels	together	at	regular	intervals	along
the	edge	of	the	side	panel.	They	will	also	screw	the	side	panel	to	the	bottom	panel,	as
shown	in	the	following	image.	The	screws	used	here	should	be	dome-headed,	self-tapping
wood	screws	around	1.5	inches	long.	Here,	it	is	important	to	ensure	that	the	pilot	holes	are
deep	enough	to	prevent	the	plywood	from	splitting	as	the	screws	are	inserted.

Next,	on	the	inside	of	the	cabinet,	screw	several	of	the	plastic	assembly	joints	at	the	corner
between	the	two	panels	by	using	countersunk	self-tapping	wood	screws	around	3/4	inch
long.	Ensure	that	around	30	mm	of	space	is	left	at	each	end	to	give	enough	clearance	for
other	panels	and	their	assembly	joints,	as	shown	in	the	following	image.	Repeat	this
process	for	the	second	side	panel:

Next,	we	will	cut	the	panel	that	will	hold	the	monitor	in	place.	This	panel	needs	to	be
around	150	mm	high,	the	same	width	as	the	bottom	panel,	and	cut	from	12	mm	plywood.
This	can	be	marked	out	and	cut	in	the	same	way	as	the	other	panels.

Once	you’ve	cut	out	the	panel,	follow	the	next	diagram	to	mark	out	the	four	holes	that	will
be	needed	to	attach	the	monitor.	Here,	I	am	assuming	that	the	monitor	uses	the	VESA	100
standard,	which	is	the	most	common	size	found	on	15-22	inch	computer	monitors.	It
would	be	worth	checking	this	standard	when	you’re	looking	for	a	monitor	for	this	project.
VGA	monitors	with	this	type	of	mounting	are	very	common	on	Internet	auction	sites	and
often	sell	very	cheaply.	Note	that	the	following	diagram	is	not	to	scale	and	that	the	center
of	the	panel	is	indicated	by	the	red	cross:

Once	the	VESA	holes	are	drilled,	you	can	prepare	the	monitor	to	be	mounted	on	the	panel
by	removing	any	desk	stand	it	had	(the	procedure	for	doing	so	varies	for	each	monitor;	it
is	worth	searching	online	if	it	is	not	obvious	to	you	how	it	can	be	removed).	Attach	the
monitor	using	four	M4	machine	screws	in	the	holes	you’ve	just	drilled,	as	shown	in	the
following	image.	It	is	important	to	use	a	washer	on	both	sides	of	the	plywood	panel	to
help	spread	the	weight	of	the	monitor	and	to	prevent	the	screw	heads	from	digging	into	the
plywood.

Next,	we	will	attach	the	monitor	mount	to	the	two	side	panels.	To	make	the	positioning	of
the	monitor	easier,	first,	tip	the	cabinet	to	its	side	so	that	the	monitor’s	weight	is	supported.
Now,	move	the	monitor	panel	until	the	monitor	is	in	the	desired	position.	This	should
leave	at	least	5	mm	at	the	top	for	cooling	and	the	bottom	should	be	just	above	where	the
button	panel	will	be.

Now,	attach	the	monitor	panel	to	the	two	side	panels	using	two	assembly	joints	on	each
side	of	the	panel.	This	will	keep	the	panel	in	place	for	now.	However,	as	with	the	bottom
panel,	we	need	to	add	some	longer	screws	that	go	through	the	side	panel	to	provide
enough	support	for	the	weight	of	the	monitor.

To	do	this,	unscrew	the	monitor	and	mark	the	outline	of	the	monitor	panel	on	the	inside	of
each	side	panel	and	then	remove	the	screws	holding	the	assembly	joints	to	the	side	panels.
This	will	leave	an	indication	that	the	panel	was	mounted.

Next,	drill	two	holes	in	each	side	panel	that	will	be	used	to	guide	the	screws	into	the	side
of	the	monitor	panel,	as	shown	in	the	following	image.	It	is	important	here	to	ensure	that
the	position	of	the	holes	will	not	cause	the	screws	to	collide	with	the	screws	already	in	the
panel	from	the	assembly	joints.

Once	this	is	done,	reattach	the	monitor	panel	with	the	assembly	joints	and	use	the	holes
drilled	in	the	side	panels	to	drill	pilot	holes	in	the	edge	of	the	monitor	panel,	similar	to
what	was	done	in	the	bottom	panel.	To	finish,	screw	two	of	the	same	screws	used	for	the
bottom	panel	into	each	side	of	the	monitor	panel	and	reattach	the	monitor.	By	now,	the
back	of	the	cabinet	should	look	similar	to	what	is	shown	in	the	following	image:

Next,	we	will	cut	the	front,	top,	and	button/joystick	panels.	All	of	these	panels	can	be	cut
from	6	mm	plywood	and	the	width	of	these	will	be	the	same	as	the	bottom	and	monitor
panels.	The	exact	width	of	these	will	depend	on	your	design,	based	on	the	diagram	earlier
in	this	section.	Once	you	have	the	dimensions	of	the	panels,	they	can	be	cut	in	the	same
way	as	the	other	panels.

First,	we	will	attach	the	top	panel.	This	should	be	mounted	on	the	top	between	the	two
side	panels	and	can	be	held	in	place	with	two	assembly	joints	on	each	side	of	the	panel,	as
shown	in	the	following	image.	Since	this	plywood	is	thinner,	you	will	need	to	use	half
inch	screws	for	this.

Next,	we	need	to	drill	a	hole	in	the	front	panel	for	the	single-player	arcade	button.	To	do
this,	we	will	use	a	30	mm	Forstner	drill	bit.	First,	start	by	marking	the	center	of	the	hole
for	the	button.	This	will	be	used	to	align	with	the	sharp	point	in	the	center	of	the	drill	bit.

Although	holes	like	this	are	best	drilled	using	a	pillar	drill	or	drill	press,	they	can	be
drilled	using	a	handheld	electric	drill	(a	battery-powered	cordless	drill	is	unlikely	to	have
enough	power	to	drive	a	Forstner	bit	of	this	size).	It	is	important	to	hold	the	drill	as
vertical	and	steady	as	possible	to	ensure	that	the	hole	does	not	become	out	of	shape	by	the

drill	as	it	moves	relative	to	the	panel.

When	drilling	by	a	handheld	drill,	it	is	best	to	start	slow	to	ensure	that	the	drill	gets	a	good
position	in	the	center	of	the	hole	and	gradually	speed	up	to	do	the	bulk	of	cutting.	It	may
take	several	minutes	to	fully	cut	through	the	panel,	and	it	is	worth	stopping	occasionally	to
clean	any	material	that	has	built	up	on	the	drill	bit.	Be	careful	when	doing	this,	as	friction
can	cause	the	drill	bit	to	heat	up	enough	to	cause	burns.	The	drilled	hole	is	shown	in	the
following	image:

Once	the	hole	is	drilled,	remove	any	loose	material	around	the	edges	of	the	hole	using
medium-low	grit	sandpaper	(either	80	or	120)	and	insert	the	button	through	the	hole.	To
do	this,	you	will	have	to	remove	the	micro	switch	from	the	back	side	of	the	switch.	In	the
switch	that	I	used,	this	is	done	by	lifting	the	clips	on	one	side	of	the	switch,	which	allows
the	micro	switch	to	be	levered	out.

Once	the	switch	is	fitted	and	the	edges	of	the	panel	are	sanded	down,	the	panel	can	be
fitted	using	four	assembly	joints,	as	shown	in	the	following	image.	Depending	on	the
accuracy	of	the	cut,	you	may	find	that	the	panel	is	a	tight	fit	in	between	the	two	side
panels.	If	this	is	the	case,	then	loosen	the	screws	that	hold	the	side	panels	to	the	bottom
panel	so	that	the	side	panels	can	be	moved	outwards	slightly.	This	allows	the	front	panel	to
be	inserted	easily.

Note	that	in	the	preceding	image,	I	used	12	mm	plywood	for	the	front	panel.	While	it	is
possible	to	do	this,	it	is	not	required.	Drilling	the	30	mm	hole	takes	much	longer.

Next,	we	want	to	mark	the	position	of	the	buttons	and	joystick	on	the	front	panel.	The	best
way	to	do	this	is	to	place	the	panel	in	position	to	see	which	position	will	feel	most
comfortable	or	intuitive	to	play.	Once	you	have	done	this,	mark	the	position	of	the	center
of	each	button	and	the	joystick,	as	shown	in	the	following	image:

Now	that	we	have	the	positions	of	each	part	to	be	mounted	on	this	panel,	we	can	start
drilling	the	holes	for	them,	starting	with	the	joystick.

With	the	joystick,	I	recommend	that	you	drill	one	30	mm	hole	for	the	shaft	of	the	joystick
and	four	4	mm	holes	for	the	mounting	screws.	Start	by	drilling	the	30	mm	hole	centered
on	the	mark	you	made	for	the	center	of	the	joystick.	This	hole	will	be	cut	using	the	30	mm
Forstner	bit	in	the	same	way	as	the	hole	for	the	button	on	the	front	panel.

Once	this	is	done,	insert	the	joystick	into	the	hole	with	the	switch	side	on	the	back	side	of
the	panel	(you	will	need	to	unscrew	the	red	ball	from	the	top	of	the	joystick	first)	and
mark	the	position	of	the	four	holes	in	the	corner	of	the	metal	plate.	This	is	where	we	will
drill	the	holes	that	will	be	used	to	mount	the	joystick.

After	the	holes	have	been	drilled,	the	panel	should	look	something	like	what’s	shown	in
the	following	image:

We	will	mount	the	joystick	later	on.	Now,	it	is	time	to	drill	the	holes	for	our	arcade
buttons.	This	is	done	in	the	same	way	as	was	done	for	the	single-player	button	on	the	front
panel.

Each	of	the	buttons	can	now	be	mounted	on	the	panel.	While	nonessential,	mounting	them
so	that	all	of	the	micro	switches	line	up	parallel	to	each	other	makes	cable	management
easier,	as	shown	in	the	upcoming	image.

Next,	we	can	fasten	the	joystick	in	position	with	four	M3	machine	screws	by	using	a
washer	for	both	the	sides	of	the	metal	plate	on	the	joystick.	Finally,	place	the	round,	black
disc	that	came	with	the	joystick	over	the	joystick	shaft	and	reattach	the	red	ball.

By	this	point,	the	back	of	the	front	panel	should	look	something	like	what’s	shown	in	the
following	image:

All	that	is	left	to	do	now	is	to	attach	the	button/joystick	panel	to	the	rest	of	the	cabinet.	As
with	all	the	other	panels,	this	can	be	easily	done	by	using	several	assembly	joints.

While	it	is	possible	to	use	four	joints	here	to	fix	the	panel	in	a	single	position,	I	found	it
useful	to	only	attach	the	panel	using	two	joints	at	the	back	of	the	panel	(closest	to	the
bottom	of	the	monitor).	This	will	allow	the	front	panel	to	be	lifted	up	for	easy	access	to	the
Pi	and	wiring,	as	shown	in	the	following	image:

I	also	chose	to	use	a	set	of	male-to-female	0.1	inch	jumper	wires	to	extend	the	wires	that
had	been	soldered	onto	the	button	and	joystick	switches.	Again,	this	is	not	essential,	but
may	help	to	make	wiring	the	switches	to	the	Pi	easier.

Of	course,	this	is	just	one	possible	way	to	design	the	case	for	the	arcade	cabinet.	Here	are
another	two	very	unique	designs	of	a	similar	project:

http://www.instructables.com/id/NaCade-The-Naked-Raspberry-Pi-Arcade-Machine/
http://www.instructables.com/id/MAME-gaming-table-with-Raspberry-Pi/

http://www.instructables.com/id/NaCade-The-Naked-Raspberry-Pi-Arcade-Machine/
http://www.instructables.com/id/MAME-gaming-table-with-Raspberry-Pi/

Setting	up	PiPlay
First,	you	should	head	to	the	PiPlay	website	(http://pimame.org),	download	the	latest
version	of	the	OS,	and	write	the	image	to	an	SD	card.	This	is	the	same	procedure	that	we
followed	with	Raspbian	in	the	two	previous	projects.

Once	the	image	is	written	to	the	SD	card,	connect	a	network	cable,	USB	keyboard,	and
monitor	to	the	Pi	and	power	it	up.	After	a	few	minutes,	you	should	see	the	PiPlay	main
screen,	as	shown	in	the	following	screenshot:

This	shows	a	list	of	all	the	installed	emulators	and	a	count	of	how	many	games	are
installed	for	each	one	in	the	small	red	squares	(obviously,	for	a	clean	install,	there	will	not
be	any	games	installed).

PiPlay	has	a	web	interface	that	can	be	used	to	upload	games	to	the	arcade	system.	This	is
accessed	using	the	IP	address	of	the	Pi,	as	shown	in	the	following	screenshot:

http://pimame.org

This	interface	can	also	be	used	to	shutdown	and	reboot	the	Pi	using	the	Tools	menu.	For
now,	we	will	use	ROM	Uploader	to	add	a	new	game	to	the	Gameboy	emulator.	The	list
of	all	the	installed	emulators	is	shown	in	the	following	screenshot:

Note
There	are	many	websites	where	ROMs	can	be	downloaded.	If	you’re	looking	for	a
particular	game,	the	best	option	is	to	use	a	search	engine	with	a	query	containing	the	name
of	the	game	and	the	platform	you	want	to	emulate	it	on.

Here,	we	will	select	the	Gameboy	emulator.	This	shows	a	page	where	you	can	drag	and
drop	any	ROM	files	from	your	PC	that	are	to	be	uploaded	to	the	Pi:

Once	the	upload	is	complete,	the	new	game	will	be	available	in	the	menu	for	that
emulator.

When	a	new	game	has	been	added	for	a	certain	emulator,	PiPlay	will	ask	whether	you
want	to	download	its	information	from	an	online	database,	as	shown	in	the	following
screenshot.	This	will	automatically	correct	the	name	of	the	game	and	download	a	cover
image	if	it	is	available;	it	is	not	required	that	you	do	this	to	play	a	game.

When	an	emulator	is	selected,	a	menu	similar	to	the	one	shown	in	the	following
screenshot	is	shown,	which	lists	all	the	games	uploaded	to	the	Pi	for	the	current	emulator.
To	start	one,	select	it	using	the	arrow	keys	and	press	Enter.	To	return	to	the	main	PiPlay
menu,	press	Esc.

Using	the	buttons	and	joystick	with	PiPlay
While	the	ability	to	use	GPIO	inputs	as	input	to	emulators	is	planned	for	a	future	release
of	PiPlay,	the	current	version	does	not	support	the	use	of	switches	connected	via	the	GPIO
port	as	input	to	game	emulators.	Hence,	we	need	an	additional	piece	of	software	to	do	this.

Fortunately,	Adafruit	has	already	written	a	driver	that	converts	switch	signals	from	the
GPIO	port	to	key	presses	(https://github.com/adafruit/Adafruit-Retrogame),	which	we	will
use	for	our	arcade	buttons	and	joystick.

First,	we	need	to	install	some	required	programs	and	libraries	that	will	allow	us	to
recompile	the	retro	game	software	when	we	make	changes	to	it;	these	can	be	installed
using:

sudo	apt-get	install	git	libexpat1	libexpat1-dev	libncurses5	libncurses5-

dev

Next,	we	will	download	the	retro	game	software	and	move	to	the	directory	it	was	saved	in
by	using	the	following	two	commands:

git	clone	https://github.com/adafruit/Adafruit-Retrogame.git

cd	Adafruit-Retrogame

While	there	is	already	a	precompiled	version	of	the	software	available,	it	will	not	be
suitable	for	the	type	of	arcade	system	we	have	built.	So,	we	need	to	make	a	few
modifications	to	the	code	first.	Use	the	following	command	to	start	editing	the	program:

nano	retrogame.c

Next,	look	for	the	line	that	starts	with	ioStandard	and	replace	the	lines	up	to	the	END	OF
LIST	marker	with	the	following	code.	Note	that	if	you	are	using	a	Pi	B	version	1,	you	need
to	replace	27	with	21	in	this	code:

ioStandard[]	=	{

		{		25,					KEY_LEFT					},

		{		11,					KEY_RIGHT				},

		{			8,					KEY_UP							},

		{			9,					KEY_DOWN					},

		{		24,					KEY_ENTER				},

		{		22,					KEY_S								},

		{		17,					KEY_D								},

		{		10,					KEY_Z								},

		{		23,					KEY_X								},

		{		27,					KEY_C								},

		{			7,					KEY_ESC						},

		{		-1,					-1											}

};

Once	this	is	done,	the	code	should	look	something	like	the	following:

https://github.com/adafruit/Adafruit-Retrogame

Once	this	is	done,	recompile	the	code	using	the	following	command:

make

This	may	take	a	couple	of	minutes	and	will	output	a	message	similar	to	the	following:

If	this	is	the	case,	then	all	is	good	and	you	can	move	on	to	the	next	step.	If	you	get	a
message	with	the	word	Error	in	it	anywhere,	then	you	will	likely	have	errors	in	the	syntax

of	the	program	code.	In	this	case,	check	whether	the	code	you	have	matches	what’s	shown
in	the	preceding	screenshot.	You	can	also	get	an	error	when	one	of	the	libraries	used	by
the	code	is	not	installed	correctly;	in	which	case,	try	updating	the	installed	packages	using
the	following	commands:

sudo	apt-get	update

sudo	apt-get	upgrade

sudo	apt-get	install	git	libexpat1	libexpat1-dev	libncurses5	libncurses5-

dev

Once	the	retro	game	program	is	compiled	successfully,	we	need	to	add	a	udev	rule	to
ensure	its	compatibility	with	emulators	using	the	latest	SDL2	library.	To	do	this,	create	a
new	rule	file	using	the	following	command:

sudo	nano	/etc/udev/rules.d/10-retrogame.rules

On	a	single	line,	add	the	following	code:

SUBSYSTEM=="input",	ATTRS{name}=="retrogame",	ENV{ID_INPUT_KEYBOARD}="1"

Next,	we	want	to	ensure	that	the	retro	game	program	starts	as	soon	as	the	OS	boots	in
order	to	remove	the	need	to	attach	a	keyboard	to	the	Pi.	This	can	be	done	with	an	addition
to	the	rc.local	file:

sudo	nano	/etc/rc.local

Add	the	following	line	to	the	script	just	before	the	exit	0	line:

/home/pi/Adafruit-Retrogame/retrogame	&

The	script	should	now	look	similar	to	the	following:

This	script	is	run	at	the	end	of	the	Linux	boot	sequence,	so	it	is	a	good	place	to	add	code
that	should	be	executed	after	the	operating	system	has	finished	booting.

Finally,	reboot	the	Pi	and	move	on	to	configure	the	buttons	within	PiPlay:

sudo	reboot

The	next	step	is	to	wire	up	the	buttons	and	joystick	to	the	GPIO	port.	This	must	be	done,
as	shown	in	the	following	diagram,	to	ensure	that	the	button	mapping	is	as	expected	and
based	on	the	code	changed	in	retrogame.c.	It	would	be	worth	doing	this	wiring	with	the
power	to	the	Pi	turned	off	to	reduce	the	chances	of	mistakes	and	permanent	damage	to	the
Pi.

Note	that	PLR1	is	the	button	on	the	front	panel,	B1-3	is	the	bottom	row	of	buttons	from
left	to	right,	and	T1-3	is	the	top	row	of	buttons	from	left	to	right.

Once	all	the	connections	have	been	made,	the	inside	of	the	front	of	the	cabinet	should	look
something	like	what’s	shown	in	the	following	image.	Also	note	that	the	white	HDMI	to
VGA	converter	allows	you	to	use	an	old	PC	monitor	for	this	project.

In	the	preceding	image,	you	may	notice	that	I	am	powering	the	Pi	from	a	5	V	power
supply,	which	is	connected	directly	to	the	5	V	and	ground	pins	on	the	GPIO	port.	This	is
not	essential,	but	if	you	find	that	the	Pi	becomes	unstable	or	has	problems	with	USB
devices	or	in	maintaining	a	network	connection,	then	this	may	be	the	case	because	the
power	supply	cannot	supply	enough	current.	This	can	happen	especially	if	you’re	using	a
HDMI	to	VGA	converter,	which	requires	a	certain	amount	of	power	to	operate.

Once	this	is	done,	repower	the	Pi.	When	the	Pi	boots	back	into	PiPlay,	you	will	notice	that
the	joystick	and	button	1	will	already	be	able	to	move	the	cursor	and	select	emulators.
However,	you	will	need	to	configure	the	key	mapping	for	the	additional	buttons	used	by
each	emulator.

To	configure	the	joystick	and	buttons	for	a	certain	emulator,	press	the	Tab	key	on	the
keyboard.	This	should	bring	up	a	menu	similar	to	the	one	shown	in	the	following	image.
Use	the	arrow	keys	to	scroll	down	to	Controller	Setup	and	press	Enter.

This	will	show	another	menu	that	shows	all	the	emulators	that	PiPlay	can	control	the	key
mapping	of.	Here,	it	is	best	to	select	a	single	emulator	and	assign	its	key	mapping
individually,	for	instance,	select	arcade	from	this	menu.

This	will	then	show	a	preview	of	the	controller	as	shown	in	the	following	image	and	you
will	be	prompted	to	press	certain	buttons	to	configure	the	key	mapping.	Certain	emulators
may	have	more	buttons	than	what	are	available	on	the	cabinet.	In	this	case,	they	will	have
to	be	mapped	to	keys	on	the	USB	keyboard.	(I	have	only	found	this	to	be	the	case	with	a
couple	of	emulators,	for	example,	the	pause	and	credit	buttons	of	MAME	emulators	have
to	be	mapped	to	keys	on	the	keyboard.)

Once	this	is	done,	you	will	be	taken	back	to	the	main	menu	and	can	then	select	any	of	the
emulators	using	the	joystick	and	arcade	buttons.	Note	that	the	top-left	arcade	button	is
used	to	select	a	menu	option	and	the	front,	single-player	button	is	used	to	return	to	the
PiPlay	main	menu.

Summary
In	this	chapter,	we	had	a	good	look	at	the	process	of	designing	and	building	a	custom
enclosure	for	a	project	based	on	the	requirements	of	specific	parts	that	are	to	be	used	in	the
project.

We	also	made	more	use	of	the	GPIO	port	on	the	Pi	by	using	it	as	an	additional	input
device	to	control	a	variety	of	games	made	available	on	the	PiPlay	operating	system.

In	the	next	chapter,	we	will	use	the	Raspberry	Pi	camera	module	to	create	a	location-aware
time-lapse	recorder	that	can	be	used	to	record	a	series	of	still	images	over	a	long	period	of
time.

Chapter	4.	GPS-enabled	Time-lapse
Recorder
One	of	the	possible	uses	of	the	Raspberry	Pi	camera	module	is	the	recording	of	time-lapse
captures,	which	takes	a	still	image	at	a	set	interval	over	a	long	period	of	time.	This	can
then	be	used	to	create	an	accelerated	video	of	a	long-term	event	that	takes	place	(for
example,	a	building	being	constructed).

One	alteration	to	this	is	to	have	the	camera	mounted	on	a	moving	vehicle.	Use	the	time
lapse	to	record	a	journey;	with	the	addition	of	GPS	data,	this	can	provide	an	interesting
record	of	a	reasonably	long	journey.

In	this	chapter,	we	will	use	the	Raspberry	Pi	camera	module	board	to	create	a	location-
aware	time-lapse	recorder	that	will	store	the	GPS	position	with	each	image	in	the	EXIF
metadata.

To	do	this,	we	will	use	a	GPS	module	that	connects	to	the	Pi	over	the	serial	connection	on
the	GPIO	port	and	a	custom	Python	program	that	listens	for	new	GPS	data	during	the	time
lapse.

For	this	project,	we	will	use	the	Raspbian	distribution.	Instructions	on	how	this	is	installed
can	be	found	in	Chapter	1,	Raspberry	Pi	Pirate	Radio.

What	you	will	need
This	is	a	list	of	things	that	you	will	need	to	complete	this	project.	All	of	these	are	available
at	most	electronic	components	stores	and	online	retailers:

The	Raspberry	Pi
A	relatively	large	SD	card	(at	least	8	GB	is	recommended)
The	Pi	camera	board
A	GPS	module	(http://www.adafruit.com/product/746)
0.1	inch	female	to	female	pin	jumper	wires
A	USB	power	bank	(this	is	optional	and	is	used	to	power	the	Pi	when	no	other	power
is	available)

http://www.adafruit.com/product/746

Setting	up	the	hardware
The	first	thing	we	will	do	is	set	up	the	two	pieces	of	hardware	and	verify	that	they	are
working	correctly	before	moving	on	to	the	software.

The	camera	board
The	first	(and	the	most	important)	piece	of	hardware	we	need	is	the	camera	board.	Firstly,
start	by	connecting	the	camera	board	to	the	Pi.

Connecting	the	camera	module	to	the	Pi
The	camera	is	connected	to	the	Pi	via	a	15-pin	flat,	flex	ribbon	cable,	which	can	be
physically	connected	to	two	connectors	on	the	Pi.	However,	the	connector	it	should	be
connected	to	is	the	one	nearest	to	the	Ethernet	jack;	the	other	connector	is	for	display.

1.	 To	connect	the	cable	first,	lift	the	top	retention	clip	on	the	connector,	as	shown	in	the
following	image:

2.	 Insert	the	flat,	flex	cable	with	the	silver	contacts	facing	the	HDMI	port	and	the	rigid,
blue	plastic	part	of	the	ribbon	connector	facing	the	Ethernet	port	on	the	Pi:

3.	 Finally,	press	down	the	cable	retention	clip	to	secure	the	cable	into	the	connector.	If
this	is	done	correctly,	the	cable	should	be	perpendicular	to	the	printed	circuit	board
(PCB)	and	should	remain	seated	in	the	connector	if	you	try	to	use	a	little	force	to	pull
it	out:

4.	 Next,	we	will	move	on	to	set	up	the	camera	driver,	libraries,	and	software	within
Raspbian.

Setting	up	the	Raspberry	Pi	camera
Firstly,	we	need	to	enable	support	for	the	camera	in	the	operating	system	itself	by
performing	the	following	steps:

1.	 This	is	done	by	the	raspi-config	utility	from	a	terminal	(either	locally	or	over	SSH).
Enter	the	following	command:

sudo	raspi-config

This	command	will	open	the	following	configuration	page:

This	will	load	the	configuration	utility.	Scroll	down	to	the	Enable	Camera	option
using	the	arrow	keys	and	select	it	using	Enter.

2.	 Next,	highlight	Enable	and	select	it	using	Enter:

Once	this	is	done,	you	will	be	taken	back	to	the	main	raspi-config	menu.	Exit
raspi-config,	and	reboot	the	Pi	to	continue.

3.	 Next,	we	will	look	for	any	updates	to	the	Pi	kernel,	as	using	an	out-of-date	kernel	can
sometimes	cause	issues	with	the	low-level	hardware,	such	as	the	camera	module	and
GPIO.	We	also	need	to	get	a	library	that	allows	control	of	the	camera	from	Python.

Both	of	these	installations	can	be	done	with	the	following	two	commands:

sudo	rpi-update

sudo	apt-get	install	python-picamera

4.	 Once	this	is	complete,	reboot	the	Pi	using	the	following	command:

sudo	reboot

5.	 Next,	we	will	test	out	the	camera	using	the	python-picamera	library	we	just
installed.

To	do	this,	create	a	simple	test	script	using	nano:

nano	canera_test.py

6.	 The	following	code	will	capture	a	still	image	after	opening	the	preview	for	5	seconds.
Having	the	preview	open	before	a	capture	is	a	good	idea	as	this	gives	the	camera	time
to	adjust	capture	parameters	of	the	environment:

import	sys

import	time

import	picamera

with	picamera.PiCamera()	as	cam:

				cam.resolution	=	(1280,	1024)

				cam.start_preview()

				time.sleep(5)

				cam.capture(sys.argv[1])

				cam.stop_preview()

7.	 Save	the	script	using	Ctrl	+	X	and	enter	Y	to	confirm.	Now,	test	it	by	using	the
following	command:

python	camera_test.py	image.jpg

8.	 This	will	capture	a	single,	still	image	and	save	it	to	image.jpg.	It	is	worth
downloading	the	image	using	SFTP	to	verify	that	the	camera	is	working	properly.

The	GPS	module
Before	connecting	the	GPS	module	to	the	Pi,	there	are	a	couple	of	important	modifications
that	need	to	be	made	to	the	way	the	Pi	boots	up.

By	default,	Raspbian	uses	the	on-board	serial	port	on	the	GPIO	header	as	a	serial	terminal
for	the	Pi	(this	allows	you	to	connect	to	the	Pi	and	run	commands	in	a	similar	way	to
SSH).	However,	this	is	of	little	use	to	us	here	and	can	interfere	with	the	communication
between	the	GPS	module	and	the	Pi	if	the	serial	terminal	is	left	enabled.	This	can	be
disabled	by	modifying	a	couple	of	configuration	files:

1.	 First,	start	with:

sudo	nano	/boot/cmdline.txt

2.	 Here,	you	will	need	to	remove	any	references	to	ttyAMA0	(the	name	for	the	on-board
serial	port).	In	my	case,	there	was	a	single	entry	of	console=ttyAMA0,115200,	which
had	to	be	removed.	Once	this	is	done,	the	file	should	look	something	like	what	is
shown	in	the	following	screenshot:

3.	 Next,	we	need	to	stop	the	Pi	by	using	the	serial	port	for	the	TTY	session.	To	do	this,
edit	this	file:

sudo	nano	/etc/inittab

4.	 Here,	look	for	the	following	line	and	comment	it	out:

T0:23:respawn:/sbin/getty	-L	ttyAMA0	115200	vt100

Once	this	is	done,	the	file	should	look	like	what	is	shown	in	the	following	screenshot:

5.	 After	both	the	files	are	changed,	power	down	the	Pi	using	the	following	command:

sudo	shutdown	-h	now

Next,	we	need	to	connect	the	GPS	module	to	the	Pi	GPIO	port.	One	important	thing	to
note	when	you	do	this	is	that	the	GPS	module	must	be	able	to	run	on	3.3	V	or	at	least	be
able	to	use	a	3.3	V	logic	level	(such	as	the	Adafruit	module	I	am	using	here).

Note
As	with	any	device	that	connects	to	the	Pi	GPIO	header,	using	a	5	V	logic	device	can
cause	irreparable	damage	to	the	Pi.

Next,	connect	the	GPS	module	to	the	Pi,	as	shown	in	the	following	diagram.	If	you	are
using	the	Adafruit	module,	then	all	the	pins	are	labeled	on	the	PCB	itself.	For	other
modules,	you	may	need	to	check	the	data	sheet	to	find	which	pins	to	connect:

Once	this	is	completed,	the	wiring	to	the	GPS	module	should	look	similar	to	what	is
shown	in	the	following	image:

After	the	GPS	module	is	connected	and	the	Pi	is	powered	up,	we	will	install,	configure,
and	test	the	driver	and	libraries	that	are	needed	to	access	the	data	that	is	sent	to	the	Pi	from
the	GPS	module:

1.	 Start	by	installing	some	required	packages.	Here,	gpsd	is	the	daemon	that	managed
data	from	GPS	devices	connected	to	a	system,	gpsd-clients	contains	a	client	that
we	will	use	to	test	the	GPS	module,	and	python-gps	contains	the	Python	client	for
gpsd,	which	is	used	in	the	time-lapse	capture	application:

sudo	apt-get	install	gpsd	gpsd-clients	python-gps

2.	 Once	they	are	installed,	we	need	to	configure	gpsd	to	work	in	the	way	we	want.	To
do	this,	use	the	following	command:

sudo	dpkg-reconfigure	gpsd

3.	 This	will	open	a	configuration	page	similar	to	raspi-config.	First,	you	will	be	asked
whether	you	want	gpsd	to	start	on	boot.	Select	Yes	here:

4.	 Next,	it	will	ask	whether	we	are	using	USB	GPS	receivers.	Since	we	are	not	using
one,	select	No	here:

5.	 Next,	it	will	ask	for	the	device	(that	is,	serial	port)	the	GPS	receiver	is	connected	to.
Since	we	are	using	the	on-board	serial	port	on	the	Pi	GPIO	header,	enter
/dev/ttyAMA0	here:

6.	 Next,	it	will	ask	for	any	custom	parameters	to	pass	to	gpsd,	when	it	is	executed.	Here,
we	will	enter	-n	-G.	-n,	which	tells	gpsd	to	poll	the	GPS	module	even	before	a	client
has	requested	any	data	(this	has	been	known	to	cause	problems	with	some

applications)	and	-G	tells	gpsd	to	accept	connections	from	devices	other	then	the	Pi
itself	(this	is	not	really	required,	but	is	a	good	debugging	tool):

Note
When	you	start	gpsd	with	the	-G	option,	you	can	then	use	cgps	to	view	the	GPS	data
from	any	device	by	using	the	command	where	[IP]	is	the	IP	address	of	the	Pi:

cgps	[IP]

7.	 Finally,	you	will	be	asked	for	the	location	of	the	control	socket.	The	default	value
should	be	kept	here	so	just	select	Ok:

8.	 After	the	configuration	is	done,	reboot	the	Pi	and	use	the	following	command	to	test
the	configuration:

cgps	-s

This	should	give	output	similar	to	what	is	shown	in	the	following	screenshot,	if
everything	works:

If	the	status	indication	reads	NO	FIX,	then	you	may	need	to	move	the	GPS	module	into
an	area	with	a	clear	view	of	the	sky	for	testing.	If	cgps	times	out	and	exits,	then	gpsd	has
failed	to	communicate	with	your	GPS	module.	Go	back	and	double-check	the
configuration	and	wiring.

Setting	up	the	capture	software
Now,	we	need	to	get	the	capture	software	installed	on	the	Pi.

1.	 First,	copy	the	recorder	folder	onto	the	Pi	using	FileZilla	and	SFTP.
2.	 We	need	to	install	some	packages	and	Python	libraries	that	are	used	by	the	capture

application.	To	do	this,	first	install	the	Python	setup	tools	that	I	have	used	to	package
the	capture	application:

sudo	apt-get	install	python-setuptools	git

3.	 Next,	run	the	following	commands	to	download	and	install	the	pexif	library,	which
is	used	to	save	the	GPS	position	from	which	each	image	was	taken	into	the	image
EXIF	data:

git	clone	https://github.com/bennoleslie/pexif.git	pexif

cd	pexif

sudo	python	setup.py	install

4.	 Once	this	is	done,	SSH	into	the	Pi	can	change	directory	to	the	recorder	folder	and
run	the	following	command:

sudo	python	setup.py	install

5.	 Now	that	the	application	is	installed,	we	can	take	a	look	at	the	list	of	commands	it
accepts	using:

gpstimelapse	-h

This	shows	the	list	of	commands,	as	shown	in	the	following	screenshot:

A	few	of	the	options	here	can	be	ignored;	--log-file,	--log-level,	and	--verbose	were
mainly	added	for	debugging	while	I	was	writing	the	application.	The	--gps	option	will	not
need	to	be	set,	as	it	defaults	to	connect	to	the	local	gpsd	instance,	which	if	the	application
is	running	on	the	Pi,	will	always	be	correct.

The	--width	and	--height	options	are	simply	used	to	set	the	resolution	of	the	captured
image.	Without	them,	the	capture	software	will	default	to	capture	1248	x	1024	images.

The	--interval	option	is	used	to	specify	how	long,	in	seconds,	to	wait	before	it	captures
another	time-lapse	frame.	It	is	recommended	that	you	set	this	value	at	least	10	seconds	in
order	to	avoid	filling	the	SD	card	too	quickly	(especially	if	the	time	lapse	will	run	over	a
long	period	of	time)	and	to	ensure	that	any	video	created	with	the	frames	is	of	a
reasonably	length	(that	is,	not	too	long).

The	--distance	option	allows	you	to	specify	a	minimum	distance,	in	kilometers,	that
must	be	travelled	since	the	last	image	was	captured	and	before	another	image	is	captured.
This	can	be	useful	to	record	a	time	lapse	where,	whatever	holds	the	Pi,	may	stop	in	the
same	position	for	periods	of	time	(for	example,	if	the	camera	is	in	a	car	dashboard,	this
would	prevent	it	from	capturing	several	identical	frames	if	the	car	is	waiting	in	traffic).

This	option	can	also	be	used	to	capture	a	set	of	images	based	alone	on	the	distance
travelled,	disregarding	the	amount	of	time	that	has	passed.	This	can	be	done	by	setting	the
--interval	option	to	1	(a	value	of	1	is	used	as	data	is	only	taken	from	the	GPS	module

every	second,	so	checking	the	distance	travelled	faster	than	this	would	be	a	waste	of	time).

The	folder	structure	is	used	to	store	the	frames.	While	being	slightly	complex	at	first	sight,
this	is	a	good	method	that	allows	you	to	take	multiple	captures	without	ever	having	to
SSH	into	the	Pi.

Using	the	--folder	option,	you	can	set	the	folder	under	which	all	captures	are	saved.	In
this	folder,	the	application	looks	for	folders	with	a	numerical	name	and	creates	a	new
folder	that	is	one	higher	than	the	highest	number	it	finds.	This	is	where	it	will	save	the
images	for	the	current	capture.

The	filename	for	each	image	is	given	by	the	--filename	option.	This	option	specifies	the
filename	of	each	image	that	will	be	captured.	It	must	contain	%d,	which	is	used	to	indicate
the	frame	number	(for	example,	image_%d.jpg).

For	example,	if	I	pass	--folder	captures	--filename	image_%d.jpg	to	the	program,
the	first	frame	will	be	saved	as	./captures/0/image_0/jpg,	and	the	second	as
./captures/0/image_1.jpg.

Here	are	some	examples	of	how	the	application	can	be	used:

gpstimelapse	--folder	captures	--filename	i_%d.jpg	--interval	30:	This
will	capture	a	frame	in	every	30	seconds
gpstimelapse	--folder	captures	--filename	i_%d.jpg	--interval	30	--

distance	0.05:	This	will	capture	a	frame	in	every	30	seconds,	provided	that	50
meters	have	been	travelled
gpstimelapse	--folder	captures	--filename	i_%d.jpg	--interval	1	--

distance	0.05:	This	will	capture	a	frame	in	every	50	meters	that	have	been	travelled

Now	that	you	are	able	to	run	the	time-lapse	recorder	application,	you	are	ready	to
configure	it	to	start	as	soon	as	the	Pi	boots.	Removing	the	need	for	an	active	network
connection	and	the	ability	to	interface	with	the	Pi	to	start	the	capture.

1.	 To	do	this,	we	will	add	a	command	to	the	/etc/rc.local	file.	This	can	be	edited
using	the	following	command:

sudo	nano	/etc/rc.local

2.	 The	line	you	will	add	will	depend	on	how	exactly	you	want	the	recorder	to	behave.	In
this	case,	I	have	set	it	to	record	an	image	at	the	default	resolution	every	minute.	As
before,	ensure	that	the	command	is	placed	just	before	the	line	containing	exit	0:

Now,	you	can	reboot	the	Pi	and	test	out	the	recorder.	A	good	indication	that	the	capture	is
working	is	the	red	LED	on	the	camera	board	that	lights	up	constantly.	This	shows	that	the
camera	preview	is	open,	which	should	always	be	the	case	with	this	application.

Also	note	that,	the	capture	will	not	begin	until	the	GPS	module	has	a	fix.	On	the	Adafruit
module,	this	is	indicated	by	a	quick	blink	every	15	seconds	on	the	fix	LED	(no	fix	is
indicated	by	a	steady	blink	once	per	second).

One	issue	you	may	have	with	this	project	is	the	amount	of	power	required	to	power	the
camera	and	GPS	module	on	top	of	the	Pi.	To	power	this	while	on	the	move,	I	recommend
that	you	use	one	of	the	USB	power	banks	that	have	a	2	A	output	(such	power	banks	are
readily	available	on	Amazon).

Using	the	captures
Now	that	we	have	a	set	of	recorded	time-lapse	frames,	where	each	has	a	GPS	position
attached,	there	are	a	number	of	things	that	can	be	done	with	this	data.	Here,	we	will	have	a
quick	look	at	a	couple	of	instances	for	which	we	can	use	the	captured	frames.

Creating	a	time-lapse	video
The	first	and	probably	the	most	obvious	thing	that	can	be	done	with	the	images	is	you	can
create	a	time-lapse	video	in	which,	each	time-lapse	image	is	shown	as	a	single	frame	of
the	video,	and	the	length	(or	speed)	of	the	video	is	controlled	by	changing	the	number	of
frames	per	second.

One	of	the	simplest	ways	to	do	this	is	by	using	either	the	ffmpeg	or	avconv	utility
(depending	on	your	version	of	Linux;	the	parameters	to	each	are	identical	in	our	case).
This	utility	is	available	on	most	Linux	distributions,	including	Raspbian.	There	are	also
precompiled	executables	available	for	Mac	and	Windows.	However,	here	I	will	only
discuss	using	it	on	Linux,	but	rest	assured,	any	instructions	given	here	will	also	work	on
the	Pi	itself.

To	create	a	time	lapse,	form	a	set	of	images.	You	can	use	the	following	command:

avconv	-framerate	FPS	-i	FILENAME	-c:v	libx264	-r	30	-pix_fmt	yuv420p	

OUTPUT

Here,	FPS	is	the	number	of	the	time-lapse	frames	you	want	to	display	every	second,
FILENAME	is	the	filename	format	with	%d	that	marks	the	frame	number,	and	OUTPUT	is	the
output’s	filename.	This	will	give	output	similar	to	the	following:

Exporting	GPS	data	as	CSV
We	can	also	extract	GPS	data	from	each	of	the	captured	time-lapse	images	and	save	it	as	a
comma-separated	value	(CSV)	file.	This	will	allow	us	to	import	the	data	into	third-party
applications,	such	as	Google	Maps	and	Google	Earth.

To	do	this,	we	can	use	the	frames_to_gps_path.py	Python	script	included	in	the	code	for
this	chapter.	This	takes	the	file	format	for	the	time-lapse	frames	and	a	name	for	the	output
file.

For	example,	to	create	a	CSV	file	called	gps_data.csv	for	images	in	the	frame_%d.jpg
format,	you	can	use	the	following	command:

python	frames_to_gps_points.py	-f	frame_%d.jpg	-o	gps_points.csv

The	output	is	a	CSV	file	in	the	following	format:

[frame	number],[latitude],[longitude],[image	filename]

The	script	also	has	the	option	to	restrict	the	maximum	number	of	output	points.	Passing
the	--max-points	N	parameter	will	ensure	that	no	more	than	N	points	are	in	the	CSV	file.
This	can	be	useful	for	importing	data	into	applications	that	limit	the	number	of	points	that
can	be	imported.

Summary
In	this	chapter,	we	had	a	look	at	how	to	use	the	serial	interface	on	the	GPIO	port	in	order
to	interface	with	some	external	hardware.	The	knowledge	of	how	to	do	this	will	allow	you
to	interface	the	Pi	with	a	much	wider	range	of	hardware	in	future	projects.

We	also	took	a	look	at	the	camera	board	and	how	it	can	be	used	from	within	Python.	This
camera	is	a	very	versatile	device	and	has	a	very	wide	range	of	uses	in	portable	projects
and	ubiquitous	computing.

You	are	encouraged	to	take	a	deeper	look	at	the	source	code	for	the	time-lapse	recorder
application.	This	will	get	you	on	your	way	to	understand	the	structure	of	moderately
complex	Python	programs	and	the	way	they	can	be	packaged	and	distributed.

In	the	following	chapter,	we	will	take	a	more	intricate	look	at	how	to	interface	with
external	hardware	as	we	build	a	home	theater	PC.

Chapter	5.	Home	Theater	PC
In	this	chapter,	we	will	create	a	low-power	home	theater	PC	capable	of	playing	a	variety
of	local	media	files	from	a	USB	memory	stick	or	hard	drive	as	well	as	the	content	stored
on	your	local	network	and	cloud	services,	such	as	YouTube.

To	do	this,	we	will	use	the	OpenELEC	(http://openelec.tv)	operating	system,	which	is	an
operating	system	designed	specifically	for	home	theater	PCs	running	on	the	Pi.

We	will	also	create	a	custom	enclosure	for	the	media	PC	that	will	house	a	20	column	by	4
row	(20	x	4)	LCD,	which	can	be	used	by	XBMC	to	display	information	of	the	currently
playing	media	or	information	related	to	the	cursor	position	in	the	onscreen	menu.	We	will
also	include	a	set	of	buttons	that	can	be	used	to	control	XBMC	without	a	USB	keyboard	or
any	other	remote;	both	these	and	the	LCD	will	be	interfaced	directly	to	the	GPIO	port	on
the	Pi.

http://openelec.tv

What	you	will	need
This	is	the	list	of	parts	and	materials	you	will	need	for	this	project.	They	can	be	purchased
at	any	electronic	components	stores	and	online	retailers.

The	Raspberry	Pi
A	USB	keyboard	(for	setup	only)
A	600	x	600	mm	sheet	of	a	3	mm	MDF
A	20	x	4	LCD	(www.amazon.co.uk/2004-Characters-Display-Module-
Blacklight/dp/B009GXWFSM)
0.1	inch	female-to-female	jumper	wires
A	small	section	of	stripboard/prototyping	board	(www.maplin.co.uk/p/veroboard-
copper-stripboard-100x160mm-a62rl)
Two	10	K	multiple	turn	potentiometers	(http://cpc.farnell.com/1/1/24068-trimmer-24-
turn-10k-m64z103kb40-vishay-spectrol.html)
A	row	of	0.1	inch	pin	headers	(http://cpc.farnell.com/starconn-connectors/phw-40-
rv/0-1-pm-header-single-row-40-pms/dp/CN00870)
A	row	of	0.1	inch	right-angled	pin	headers	(http://cpc.farnell.com/starconn-
connectors/phw-40-rd/0-1-pin-header-right-angle-40-pms/dp/CN00871)
A	DC	barrel	jack	(http://cpc.farnell.com/1/1/1498-2-1mm-dc-socket-psg01769-pro-
signal.html)
Six	push-to-make	(PTM)	buttons	(www.rapidonline.com/electronic-
components/miniature-red-push-to-make-switch-78-0100)

In	this	project,	we	will	also	use	a	new	manufacturing	technique:	laser	cutting.	While	I
don’t	expect	a	laser	cutter	to	be	a	tool	that	many	people	actually	own,	access	to	it	is	more
readily	available	than	you	think.	It	is	worth	checking	whether	there	is	a	hackspace	in	your
local	area.	If	so,	they	may	either	have	a	machine	that	you	would	be	able	to	use	(or	at	least
have	someone	who	can	help	you	machine	your	design)	or	may	be	able	to	point	you	in	the
right	direction	for	where	you	can	have	it	done	locally.	Alternatively,	there	are	many
services	that	allow	you	to	upload	a	design	online	and	pay	to	have	it	cut	from	the	material
of	your	choice.

Note
Hackspaces	are	community-organized	(and	usually	community	funded)	workspaces	that
provide	a	variety	of	tools	and	equipments	that	may	not	usually	be	available	to	you.	They
also	provide	a	good	place	where	you	can	collaborate	on	projects	and	seek	advice	from	the
experts	for	a	problem	you	are	facing	in	your	own	projects.

http://www.amazon.co.uk/2004-Characters-Display-Module-Blacklight/dp/B009GXWFSM
http://www.maplin.co.uk/p/veroboard-copper-stripboard-100x160mm-a62rl
http://cpc.farnell.com/1/1/24068-trimmer-24-turn-10k-m64z103kb40-vishay-spectrol.html
http://cpc.farnell.com/starconn-connectors/phw-40-rv/0-1-pm-header-single-row-40-pms/dp/CN00870
http://cpc.farnell.com/starconn-connectors/phw-40-rd/0-1-pin-header-right-angle-40-pms/dp/CN00871
http://cpc.farnell.com/1/1/1498-2-1mm-dc-socket-psg01769-pro-signal.html
http://www.rapidonline.com/electronic-components/miniature-red-push-to-make-switch-78-0100

Setting	up	OpenELEC
OpenELEC	is	a	very	minimal	operating	system	that	is	preconfigured	with	the	XBMC
media	center	software	(http://kodi.tv)	and	a	range	of	utilities	specifically	set	up	for	home
media	sharing,	such	as	the	Samba	file	server.

First,	head	to	http://openelec.tv/get-openelec	and	(under	RaspberryPi	Builds)	download
the	latest	stable	SD	image	(the	title	will	be	something	like	what	is	indicated	in	the
following	screenshot).	Once	you	have	the	file	downloaded,	decompress	it	and	write	it	to
your	SD	card.

Under	Windows,	you	need	to	use	software	such	as	7-Zip	(www.7-zip.org)	to	decompress
this	type	of	file.

On	Linux	and	Mac,	the	following	command	can	be	used,	where	FILENAME	is	the	name	of
the	file	that	you	downloaded	from	the	OpenELEC	website:

gzip	-d	FILENAME.gz

Once	you	have	the	SD	image	written	to	the	card,	it	is	time	to	boot	the	Pi	for	the	first	time.
Here,	you	need	the	Pi	connected	to	a	TV	or	monitor	(here,	I	will	be	using	HDMI)	and	a

http://kodi.tv
http://openelec.tv/get-openelec
http://www.7-zip.org

USB	keyboard	connected	to	it.	I	will	also	connect	a	USB	Wi-Fi	adapter,	but	you	can	easily
just	use	an	Ethernet	connection	instead	of	Wi-Fi.

For	now,	we	can	power	the	Pi	from	a	USB	connection,	as	we	are	yet	to	connect	any
additional	peripherals	to	it.	However,	later	on,	we	need	to	power	the	Pi	using	a	more
substantial	5	V	power	supply	to	provide	enough	power	for	the	Pi	and	the	LCD.

The	first	boot	and	initial	setup
When	you	first	boot	OpenELEC,	it	will	show	a	screen	something	similar	to	the	following
screenshot.	It	may	display	this	for	some	time,	as	it	is	currently	resizing	the	media	storage
partition	of	the	SD	card.

When	OpenELEC	boots,	it	will	boot	straight	into	XBMC.	Since	this	is	the	first	time	it	has
been	booted,	you	will	also	be	greeted	with	the	OpenELEC	first-time	setup	wizard.	This
often	takes	a	while	to	be	displayed	after	XBMC	has	started.

To	navigate	the	menus,	simply	use	the	arrow	keys	to	move	the	cursor	and	Enter	to	select	a
menu	option;	perform	the	following	steps:

1.	 First,	you	are	asked	by	OpenELEC	to	select	the	appropriate	regional	settings.	Select
the	button	that	defaults	to	English	to	change	the	settings	and	select	Next	to	continue.

2.	 Next,	you	are	asked	to	enter	a	new	hostname	for	the	media	center.	It	is	not	required
that	you	change	it.	However,	if	you	intend	to	have	multiple	media	centers,	then	it
would	be	essential	as	no	two	devices	should	share	a	hostname.	This	will	make
identification	of	the	Pi	on	the	network	easier.

3.	 The	next	option	asks	you	to	configure	network	interfaces.	As	we	are	using	Wi-Fi,	we
cannot	do	anything	here	yet,	as	wireless	adapters	are	disabled	by	default	and	wired
connections	do	not	require	configuration.	Just	select	Next	to	continue.

4.	 Next,	you	will	be	asked	what	servers	you	want	to	enable	on	the	Pi.	By	default,	SSH	is
disabled	and	Samba	is	enabled.	I	would	recommend	you	to	enable	both,	as	you	will
need	SSH	to	configure	the	LCD	and	buttons	and	Samba	to	upload	media	to	the	Pi.

5.	 After	this	step,	the	initial	configuration	is	complete.	Select	Next	to	return	to	the
XBMC	home	screen.

6.	 For	now,	there	is	one	additional	setting	that	we	need	to	change.	To	do	this,	navigate
to	the	Settings	option	under	the	SYSTEM	menu	using	the	arrow	keys	and	the	Enter
key.

7.	 Next,	navigate	to	the	System	menu	and	select	it	using	Enter.

8.	 Next,	navigate	to	Input	devices	and	disable	the	Enable	mouse	and	touch	screen
support	option,	as	neither	of	these	devices	will	be	used	with	XBMC	the	way	we	will
be	using	them.

9.	 On	this	menu,	settings	are	automatically	saved	when	they	are	changed,	so	you	can
now	use	Esc	to	go	back	until	you	return	to	the	main	menu.

Connecting	the	Pi	to	a	wireless	network
If	you	plan	to	use	Wi-Fi	to	connect	to	your	network,	then	you	will	need	to	first	enable	it	in
order	to	join	your	wireless	network.	Using	Wi-Fi	as	opposed	to	Ethernet	allows	you	to
install	the	media	PC	without	having	to	worry	about	running	an	Ethernet	cable	to	it.
However,	your	network	performance	will	be	lower,	so	it	is	only	recommended	if	it	is
essential.	To	connect	to	the	wireless	network,	perform	the	following	steps:

1.	 Select	the	OpenELEC	option	under	the	SYSTEM	menu:

2.	 From	here,	navigate	to	Network	and	select	the	Active	option	under	Wireless
Networks.	This	will	enable	the	Wi-Fi	adapter	and	start	searching	for	wireless
networks	in	range.

3.	 To	connect	to	a	network,	navigate	to	the	Connections	menu.	Here,	you	should	see	a
list	of	the	Wi-Fi	networks	that	have	been	found	in	your	range.	To	connect	to	one	of
them,	navigate	to	it,	press	Enter,	and	select	the	option	Join.

4.	 You	will	then	be	asked	for	the	password	for	the	network.	Type	it	in	and	press	Enter.
Once	done,	this	will	return	to	the	Connections	menu;	you	should	now	see	that	the
network	you	selected	has	an	IP	address	listed	alongside	it.	This	shows	that	the

connection	was	successful.

Uploading	media	files	to	the	Pi
The	easiest	way	to	upload	media	to	the	Pi	is	by	accessing	the	Samba	file	shares	that	are
provided	by	the	Pi.

The	shares	are	split	by	the	type	of	content	that	should	be	stored	on	them.	A	few	of	the
most	common	ones	are:

Music:	This	is	used	to	store	music	files,	for	example,	.mp3
Pictures:	This	is	used	to	store	image	files,	for	example,	.jpeg,	.png
Videos:	This	is	used	to	store	video	files,	for	example,	.mkv,	.mp4
Userdata:	This	is	where	the	XBMC	configuration	files	are	stored

Windows
On	Windows,	you	can	use	Windows	Explorer	to	browse	all	shares	on	a	server	at	once.	To
do	this,	press	WinKey	+	R	to	open	the	run	prompt	and	enter	\\IP\,	where	IP	is	the	IP
address	of	the	Pi,	and	click	on	OK.

This	will	open	a	Windows	Explorer	window,	which	will	allow	you	to	browse	the	shares	on
the	Pi	and	copy	files	to	and	from	it,	as	if	it	were	a	local	folder.

When	you’ve	moved	the	files,	simply	close	the	Explorer	window.

Linux
On	Linux,	assuming	you	also	know	the	name	of	the	share	you	want	to	add	files	to,	you	can
mount	a	share	using	the	following	set	of	commands,	where	IP	is	the	IP	address	of	the	Pi
and	SHARE	is	the	share	name:

1.	 First,	we	need	to	create	a	directory	where	the	Samba	share	will	be	mounted	(known
as	the	mount	point).	This	only	has	to	be	done	once.

sudo	mkdir	/media/openelec

2.	 Next,	use	the	following	command	to	mount	the	Samba	share	to	the	just-created
mount	point:

sudo	mount	-t	cifs	//IP/SHARE	/media/openelec

3.	 You	will	be	asked	for	a	password,	but	since	OpenELEC	does	not	put	a	password	on
Samba	shared	by	default,	just	press	Enter.

4.	 If	the	command	exits	without	an	error,	you	can	go	ahead	and	copy	files	to
/media/openelec	to	upload	them	to	the	Pi.	If	you	do	get	an	error,	then	you	may	be
missing	a	package	needed	to	mount	Samba	shares.	This	can	be	fixed	using	the
following	command,	which	is	used	to	install	any	missing	packages:

sudo	apt-get	install	samba4	cifs-utils

5.	 When	you’ve	moved	the	files,	you	should	unmount	the	Samba	share	using	the

following	command:

sudo	umount	/media/openelec

Shutting	down	the	Pi
To	shut	down	the	Pi,	you	can	use	the	power	menu	in	XBMC,	which	can	be	found	in	the
bottom-left	corner	of	the	home	screen	in	the	form	of	a	power	symbol.

This	will	give	you	the	option	to	shut	down	and	reboot	the	Pi	as	well	as	the	ability	to	set	a
shutdown	timer,	which	will	shut	down	the	Pi	after	a	given	amount	of	time	has	elapsed.

Setting	up	the	LCD
Now	that	we	have	configured	OpenELEC,	we	can	start	adding	our	own	hardware	to	the
media	center,	starting	with	the	LCD:

1.	 First,	we	will	start	by	making	a	small	board	that	will	be	used	to	mount	two
potentiometers	(or	variable	resistors),	which	will	allow	the	adjustment	of	the
backlight	brightness	and	contrast	for	the	LCD.	This	board	will	also	have	a	few	0.1
inch	pin	headers	that	will	be	used	to	connect	the	switches	and	various	power	supplies.

To	construct	this	board,	first	take	a	piece	of	strip	board	(also	known	as
prototyping	board)	and	cut	a	1”	x	2”	section	using	a	pair	of	side	cutters.	Then,
cut	a	strip	of	0.1”	of	a	right-angled	pin	header	to	the	length	indicated	in	the
following	diagram.	Arrange	them	on	the	component-side	of	the	strip	board	(that
is,	the	side	with	no	copper	strips)	and	solder	them	to	the	board.

Take	extra	care	here	not	to	bridge	the	gap	between	the	copper	strips,	and	ensure
that	the	copper	surface	is	clean	before	you	start	soldering.	The	surface	can	be
cleaned	by	rubbing	it	with	some	high-grit	sandpaper,	or	preferably,	wet	and	dry
paper.	In	the	following	figure,	note	that	the	yellow	strips	represent	the	copper
strips	on	the	board.	This	is	viewed	from	the	component	side	of	the	board:

Once	the	pin	headers	are	in	place,	note	that	there	is	a	cross	on	the	diagram.	This
mark	is	used	to	indicate	that	the	copper	strip	must	be	cut	in	this	position.	The
easiest	way	to	do	this	is	to	take	a	4	mm	drill	bit	and	rotate	it	by	hand	in	the	hole
already	drilled	in	the	solder	side	until	the	copper	connection	is	removed	by	the
drill	bit.	If	need	be,	this	can	be	verified	by	checking	the	resistance	across	either
side	of	the	cut	using	a	multimeter.

2.	 Next,	insert	the	two	potentiometers,	as	shown	in	the	preceding	diagram,	and	solder
them	to	the	board.	When	you’re	done,	you	will	need	to	trim	the	excess	material	from
the	pins	with	the	help	of	adjacent	pins	or	tracks	to	prevent	this	from	shorting.

3.	 We	can	connect	the	LCD	to	the	Pi	using	several	0.1	inch	female-to-female	jumper
wires	by	following	the	wiring	information	shown	in	the	following	image.	Note	that
since	the	LCD	and	backlight	may	draw	a	significant	amount	of	power,	an	external	5

V	supply	is	needed	here	that	is	connected	to	the	+5	V	and	GND	connections	to	the	far
right	of	the	board	we	have	just	soldered.

This	connector	should	be	soldered,	as	shown	in	the	preceding	photograph,	where	the
red	wire	is	+5	V	and	the	white	wire	is	ground.	If	in	doubt	about	the	pinout	of	the
connector,	you	can	verify	it	by	testing	the	pairs	of	the	pins	using	a	multimeter,	when
there	is	a	power	adapter	connected.

The	following	two	diagrams	provide	details	for	the	wiring	of	the	home	theater	PC.	Note
that	all	connections	should	be	made	directly	to	the	other	pin	with	the	same	label,	with	the
exception	of	those	that	are	used	for	buttons	(that	is,	all	starting	with	B_),	in	which	the
push-to-make	button	should	be	wired	in	series	with	this	connection.

The	following	diagram	details	the	connections	to	the	power	distribution	board.	Note	that
the	+5	V	and	GND	pins	on	the	far	right	of	the	board	are	to	be	connected	to	the	input
power	from	the	power	supply.

Once	this	is	complete,	it	is	time	to	configure	the	software	that	will	communicate	with	the
LCD	and	allow	XBMC	to	update	the	display.	The	software	that	will	actually	interface	with
the	LCD	is	called	LCDproc.	This	is	preinstalled	on	OpenELEC,	so	it	only	requires
configuration.

All	that	is	required	now	is	to	move	the	LCDd.conf	file	included	with	this	project	to	the
/storage/.config	directory	on	the	SD	card.	This	can	be	easily	done	over	SFTP,	as	we
have	done	in	the	previous	projects.

After	opening	the	file,	you	will	see	the	following	important	lines:

Line	53	tells	LCDproc	that	we	want	to	use	the	HD44780	driver	for	the	display	we	are
connecting	to.
Lines	76-82	are	used	to	specify	the	test	that	is	to	be	shown	on	the	LCD	as	the
operating	system	boots	up	and	shuts	down.
Line	539	tells	the	HD44780	driver	that	our	display	is	connected	to	the	GPIO	port	on
the	Pi.	This	configuration	option	is	a	device-specific	option	that	was	added	due	to	its
popularity	that	it	uses	the	Pi	for	this	purpose.
Line	581	tells	the	HD44780	driver	how	big	our	display	is	in	number	of	columns	by
number	of	rows.

Note
HD44780	is	a	very	common	LCD	controller	chip	made	by	Hitachi.	You	will	find
either	this	specific	chip	or	one	that	is	command	identical	to	it	is	pretty	much	every
character	LCD	module.	The	16-pin	interface	is	usually	a	good	sign	as	it	can	be	used
with	drivers	that	support	HD44780.

Once	the	LCDd.conf	file	has	been	moved:

1.	 Reboot	the	Pi	using	the	following	command.	You	should	be	able	to	see	the	hello
message	displayed	shortly	after	the	Pi	starts	to	boot:

reboot

You	may	need	to	adjust	the	backlight	and	contrast	controls	to	get	the	clearest	text	on
the	display.	This	can	be	done	using	a	small,	flat	screwdriver	with	the	small	brass
screws	on	the	two	potentiometers.	As	they	are	multiple	turn	potentiometers,	it	may
take	a	while	before	you	see	a	noticeable	difference	in	the	display.

If	the	hello	message	is	not	displayed,	then	you	may	have	made	a	mistake	when
wiring	the	LCD.	Double-check	the	wiring	and	reboot	again.

2.	 Next,	we	need	to	install	the	LCDproc	add-on	to	XBMC	in	order	to	enable	it	to
communicate	with	LCDproc	and	show	information	on	the	display.	This	is	done	from
the	Add-ons	menu,	which	can	be	found	under	the	main	settings	menu	of	XBMC:

3.	 From	here,	select	Search,	enter	lcd,	and	press	Enter.

This	search	should	find	the	XBMC	LCDproc	add-on.	If	no	results	were	found,	try
rebooting	the	Pi,	as	I	found	problems	with	the	list	of	add-ons	not	being	updated	if	the
network	connection	was	just	set	up.

4.	 Select	the	LCDproc	add-on	using	Enter	and	select	the	Install	option.	This	will	now
download	and	install	the	add-on.	When	the	process	is	complete,	you	will	see	a
notification	in	the	bottom	right	of	the	screen,	and	the	entry	in	the	search	results	will
have	an	Enabled	indicator	next	to	it.

5.	 When	this	is	done,	select	the	add-on	from	the	search	results	again,	and	select	the
Configure	option.

This	has	some	options	that	control	how	certain	text	is	displayed.	Some	options	you
may	wish	to	change	here	are:

Navigation	display	duration:	This	is	the	duration	of	how	long	the	display	will

show	the	menu	position	after	it	is	changed.
Scroll	mode:	This	changes	the	way	text	wraps	around	the	display,	when	it	is
scrolling.	It	is	best	to	try	both	and	see	which	you	prefer.
Delay	for	scrolling	text:	This	controls	the	speed	of	the	text	scrolling.	If	it	is	set
to	0,	text	scrolling	will	be	disabled.

Other	options	under	Backlight	and	Connection	are	not	as	important,	as	we	do	not
have	a	backlight	that	LCDproc	can	control	and	we	don’t	want	to	change	the	default
connection	information.

6.	 When	finished,	save	any	changes	you’ve	made	to	the	settings	by	selecting	OK.
7.	 Finally,	you	can	customize	the	way	information	is	displayed	on	the	LCD	by

uploading	an	LCD.xml	file	to	the	Pi.	This	is	then	read	by	XBMC;	it	dictates	what
should	be	shown	on	each	line	of	the	LCD	in	a	range	of	different	situations.

I	have	included	a	sample	LCD.xml	file	in	the	files	for	this	project.	This	should	be	uploaded
to	the	user	data	folder	within	XBMC,	which	can	be	accessed	either	through	SFTP	via
/storage/xbmc/userdata	or	through	Samba	via	the	Userdata	share.

There	is	documentation	and	some	further	sample	LCD	configuration	files	available	on	the
XBMC	wiki	at	http://kodi.wiki/view/LCD.xml.

http://kodi.wiki/view/LCD.xml

Setting	up	the	switches
The	next	piece	of	hardware	we	will	set	up	is	the	six	switches	that	will	be	used	for	the	four
direction	keys,	back,	and	enter.	Although	they	can	be	easily	remapped	to	whatever	set	of
controls	you	like.

1.	 The	first	step	here	is	to	solder	wires	with	a	0.1	inch	female	pin	socket	at	one	end	to
each	switch	terminal.	This	process	is	very	similar	to	what	we	did	for	the	arcade
buttons	in	Chapter	3,	Mini	Retro	Arcade	Cabinet.

2.	 Once	this	is	done,	it	would	be	worth	wrapping	the	connections	in	some	insulation
tape	to	give	the	cables	extra	relief	from	the	strain,	as	shown	in	the	following	image:

3.	 Next,	it	is	time	to	wire	the	switches	to	the	Pi.	To	do	this,	we	will	follow	the	same
wiring	diagrams	used	in	the	previous	section	to	connect	the	LCD.

Once	this	is	done,	we	can	move	on	to	the	software	setup	for	the	buttons.	To	interface
with	the	GPIO	hardware,	we	will	use	the	sysfs	bindings	that	are	available	by	reading
and	writing	to	files	under	the	/sys/class/gpio/	directory.	This	method	is	used
because	OpenELEC	does	not	include	the	library	to	access	GPIO	through	Python,	and
because	the	operating	system	runs	mostly	from	a	read-only	filesystem,	it	is	difficult
to	install	this	library.

4.	 If	you	wish	to	use	a	different	button	mapping,	then	you	can	change	it	in	the	lines	131-
136	of	button_watcher.py:

BUTTONS['enter']		=	(4,		'Input.Select')

BUTTONS['back']			=	(9,		'Input.Back')

BUTTONS['up']					=	(27,	'Input.Up')

BUTTONS['down']			=	(22,	'Input.Down')

BUTTONS['left']			=	(10,	'Input.Left')

BUTTONS['right']		=	(11,	'Input.Right')

Note
Note	that	for	the	revision	1	board,	the	up	button	must	be	swapped	from	GPIO	27	to
GPIO	21.

Here,	the	first	entry	in	the	tuple	for	each	button	is	the	GPIO	number	(not	the	pin
number)	the	button	is	connected	to	and	the	second	entry	is	the	command	that	is	sent

to	the	XBMC	API	when	the	button	is	pressed.

Changing	the	values	for	these	entries	allows	you	to	remap	the	buttons	to	any
functions	supported	by	the	API.	Full	documentation	of	the	API	is	available	on	the
XBMC	wiki	(http://kodi.wiki/view/JSON-RPC_API/v4).	Here	is	a	list	of	some
common	remote	control	functions	that	can	be	used:

Input.Up:	This	navigates	up	in	the	GUI
Input.Down:	This	navigates	down	in	the	GUI
Input.Left:	This	navigates	left	in	the	GUI
Input.Right:	This	navigates	right	in	the	GUI
Input.Select:	This	selects	the	current	item	in	the	GUI
Input.Back:	This	navigates	back	one	level	in	the	GUI
Input.Home:	This	returns	to	the	home	menu	in	the	GUI
Player.PlayPause:	This	pauses	or	resumes	playback
Player.Stop:	This	stops	playback
Player.GoPrevious:	This	takes	you	to	the	previous	item	in	the	playlist
Player.GoNext:	This	takes	you	to	the	next	item	in	the	playlist

5.	 Once	you	have	the	buttons	mapped	according	to	your	liking,	go	ahead	and	copy	the
button_watcher.py	script	to	the	/storage/.config/	directory	on	the	SD	card.	This
is	easily	done	by	using	SFTP.

6.	 When	this	is	done,	use	the	following	command	to	run	the	script	and	test	each	of	the
buttons:

python	/storage/.config/button_watcher.py

If	all	is	well,	you	should	see	an	output	similar	to	the	following	on	the	console	and	XBMC
should	react	according	to	what	the	button	has	been	configured	to	do	in
button_watcher.py.	To	exit	the	script,	press	Ctrl	+	C.

If	you	see	an	error	stating	that	the	device	is	busy	or	unavailable,	check	the	mapping	in
button_watcher.py	and	ensure	that	all	of	the	GPIO	port	numbers	are	correct	and	that	you

http://kodi.wiki/view/JSON-RPC_API/v4

have	not	mapped	a	button	over	another	button	or	the	LCD.

1.	 When	the	script	is	working	as	intended,	it	is	time	to	configure	it	in	order	to	start	it
when	OpenELEC	boots	up.	This	is	done	in	a	slightly	different	manner	in	OpenELEC,
as	opposed	to	Raspbian.	First,	we	must	create	a	script	that	OpenELEC	looks	for	to
run	on	startup:

touch	/storage/.config/autostart.sh

chmod	+x	/storage/.config/autostart.sh

nano	/storage/.config/autostart.sh

2.	 Here,	the	first	command	creates	the	file,	the	second	command	makes	the	file
executable,	and	the	third	opens	it	in	nano	for	us	to	edit.	Here,	we	will	add	the
following	line	to	the	end	of	the	file:

#!/bin/sh

python	/storage/.config/button_watcher.py	&

3.	 This	tells	the	shell	to	run	the	Python	script	in	the	background	(noted	by	the	&
trailing).	Now,	simply	exit	nano	using	Ctrl	+	X	and	reboot	the	Pi	using	the	following
command:

reboot

When	the	Pi	has	booted	back	into	OpenELEC	and	XBMC	is	running,	you	should	now	be
able	to	use	the	buttons	right	away.

Final	assembly
The	first	thing	you	must	do	before	getting	the	parts	for	the	case	machined	is	decide	which
video	connector	you	will	use.	You	can	use	either	HDMI	or	composite	video	and	3.5	mm
audio	jacks.	This	will	determine	which	side	of	the	Pi	is	next	to	the	side	of	the	enclosure,
since	the	two	video	outputs	are	on	the	opposite	sides	of	the	board	and	as	such,	there	are
differences	between	the	designs	of	each	enclosure.

For	both	types	of	enclosure,	the	files	in	the	enclosure	folder	in	the	files	for	this	project
must	be	machined.	There	are	two	folders,	hdmi	and	composite_video,	that	contain	the
parts	specific	to	each	video	output	type.

The	parts	needed	for	each	type	are	shown	in	the	following	figure:

The	two	enclosure	variants:	composite	video	on	the	left	and	HDMI	on	the	right

Once	you	have	the	parts	you	need	for	the	enclosure	type	you	have	decided	to	build,	it
would	be	a	good	idea	to	remove	any	wiring	already	done	so	far	to	make	the	assembly
process	easier.

Once	this	is	done,	perform	the	following	steps:

1.	 Start	by	mounting	the	LCD	into	the	front	panel.	This	should	be	done	with	four	M4
machine	screws	and	nuts.	Ensure	that	you	do	not	over	tighten	the	nuts	and	put	excess
strain	on	the	PCB.

The	front	panel	is	symmetrical	with	the	horizontal	center	of	the	LCD	module,	so	it
does	not	matter	which	side	or	which	orientation	the	front	panel	is	in	when	you	mount
the	LCD.	Do	try	to	pick	the	side	that	is	better	looking.

2.	 Next,	mount	each	of	the	push	buttons	in	the	top	panel	using	the	washers	and	nuts	that
came	with	the	buttons,	as	shown	in	the	following	image:

3.	 Next,	we	can	assemble	the	top,	bottom,	back,	and	side	panels	that	will	include	the
cutout	for	the	video	connector,	that	is,	if	you	are	building	the	composite	video	version
of	the	enclosure,	you	will	have	the	opposite	side	attached	to	what	is	shown	in	the
following	image:

4.	 Around	the	edge,	the	middle	panels	connect	to	the	side	panels.	Here,	you	will	see	a
series	of	fittings	similar	to	those	shown	in	the	following	image.	These	require	an	M4
nut	to	be	inserted	into	the	slot	and	an	M4	machine	screw	to	be	inserted	through	the
hole	in	the	side	panel,	as	shown	in	the	following	image:

The	screw	fitting—before	being	tightened	(left)	and	after	being	tightened	(right)

Note
It	is	important	not	to	over	tighten	these	screw	fittings,	as	the	load	is	taken	entirely	by
the	approximately	2	mm	of	MDF	that	is	in	contact	with	each	nut.

5.	 Next,	mount	the	Pi	into	the	enclosure	using	two	M4	machine	screws	through	the
bottom	panel.	Here,	it	is	useful	to	use	a	stack	of	watchers	to	space	the	PCB	apart
from	the	bottom	panel	to	help	remove	strain	in	the	PCB.	Before	doing	this,	it	is
important	to	verify	that	the	washers	you	intend	to	use	are	small	enough	to	prevent
causing	a	short	with	any	exposed	components	at	the	bottom	of	the	Pi.

This	is	also	a	good	point	to	start	rewiring	the	Pi,	LCD,	and	the	small	board	we	made
to	control	the	LCD	brightness	and	contrast.

6.	 Next,	we	will	rewire	the	buttons	to	the	Pi	as	before	and	attach	the	top	panel	in	the
same	way	as	the	other	three.

By	this	point,	the	media	center	wiring	should	be	complete.	Now,	you	can	mount	the
DC	barrel	jack	that	will	be	used	to	power	the	Pi	externally	to	the	back	panel	using	the
nut	and	washer	that	was	supplied	with	it.

7.	 At	this	point,	you	are	ready	to	attach	the	remaining	side	panel	and	give	the	media
center	a	test	before	fastening	the	remaining	screw	fixings.

8.	 If	all	seems	to	be	good	and	both	the	LCD	and	buttons	work	as	intended,	you	can	go
ahead	and	fasten	the	remaining	side	panel	using	the	same	screw	fixings	that	were
used	for	the	other	side.

Here,	it	is	important	to	keep	the	enclosure	tilted	so	that	if	one	of	the	nuts	falls	out	of
the	slot,	it	will	fall	outside	of	the	enclosure	rather	than	inside	it.

Summary
In	this	chapter,	we	looked	at	yet	more	hardware	that	can	be	used	with	the	GPIO	port	on
the	Pi	and	additional	ways	in	which	it	can	be	controlled	by	software.

We	also	took	a	look	at	another	application-specific	operating	system	available	for	the	Pi,
how	they	can	be	very	different	to	the	general	Raspbian	OS,	and	how	the	approach	to	solve
a	problem	(such	as	the	buttons	in	this	project)	has	to	be	changed	based	on	the	environment
in	which	it	will	be	implemented.

We	also	took	a	quick	look	at	how	to	use	laser	cutting	to	manufacture	professional	quality
enclosures	quickly	and	easily.	This	is	a	very	versatile	manufacturing	process	and	can	be
used	to	create	some	very	impressive	products.	I	would	highly	recommend	you	to	consider
it	in	any	projects	you	may	undertake	in	the	future.

In	the	next	chapter,	we	will	look	at	how	to	interface	the	Raspberry	Pi	with	a	variety	of
sensors	using	the	Arduino	prototyping	platform	to	create	an	outdoor	weather	station.

Chapter	6.	Outdoor	Weather	Station
In	this	chapter,	we	will	make	an	outdoor	weather	station	that	is	accessible	over	the
Internet,	which	will	allow	remote	monitoring	and	recording	of	the	weather	conditions.

To	do	this,	we	will	have	a	look	at	a	new	skill	that	will	allow	us	to	take	some	existing
sensors	and	adapt	them	for	use	in	our	project—reverse	engineering.	This	is	essentially	the
process	of	taking	a	part	of	an	existing	product	and	deriving	the	communication	method
between	it	and	the	rest	of	the	product,	so	that	you	can	replace	either	a	specific	part	or	a
whole	product.

We	will	also	take	a	quick	look	at	how	to	use	the	Pi	as	a	web	server	and	the	method	used	to
develop	and	deploy	a	Python	web	application.

What	you	will	need
This	is	a	list	of	all	the	parts	you	will	need	in	order	to	complete	this	project.	Most	of	these
are	available	at	high-street	electronic	components	stores	and	online	distributors:

A	Raspberry	Pi
A	Wi-Fi	dongle
A	long	micro	USB	cable
A	clear/translucent	Tupperware	box
A	DHT11	(www.adafruit.com/product/386)	or	DHT22
(www.adafruit.com/products/385)	sensor
BMP180	(www.adafruit.com/product/1603)
A	Maplin	anemometer	(wind	speed	sensor)	(www.maplin.co.uk/p/maplin-
replacement-wind-speed-sensor-for-n96fy-n82nf)
A	Maplin	wind	direction	sensor	(www.maplin.co.uk/p/maplin-replacement-wind-
direction-sensor-for-n96fyn96gy-n81nf)
A	Maplin	rain	gauge	(www.maplin.co.uk/p/maplin-replacement-rain-gauge-for-
n25frn96fyn96gy-n77nf)
An	Arduino	Uno	(www.adafruit.com/product/50)
A	selection	of	resistors	(www.maplin.co.uk/p/e12-025w-resistor-610-piece-pack-
fa08j)
A	1	inch	square	section	of	a	stripboard	(www.maplin.co.uk/p/veroboard-copper-
stripboard-100x160mm-a62rl)
A	row	of	four	0.1	inch	pin	headers
A	strip	of	terminal	blocks
Male-to-male	pin	jumper	wires
Female-to-female	pin	jumper	wires

Note	that	even	though	I	have	specifically	listed	an	Arduino	Uno,	any	standard	8-bit	AVR-
based	Arduino	should	work	fine	for	this	project,	for	example,	the	Uno,	Mega,	Nano,	and
Duemilanove.

I	have	also	specified	two	different	DHT	sensors	that	can	be	used.	The	only	real	difference
between	them	is	that	DHT22	has	a	wider	operating	range	than	DHT11;	DHT11	can	read
temperatures	between	0	and	50	degrees	Celsius	and	humidity	between	20	and	80	percent
RH	(relative	humidity),	whereas	the	DHT22	can	read	temperatures	between	-40	to	80
degrees	Celsius	and	humidity	between	0	to	100	percent	RH.

We	will	make	use	of	different	valued	resistors	a	couple	of	times.	These	are	small	devices
that	are	used	to	limit	the	flow	of	current	through	a	circuit.	Their	resistance	is	measured	in
Ohms	and	is	denoted	by	Ω.	Since	these	devices	do	not	have	their	resistance	value	printed
on	them,	a	color	code	must	be	used.	To	find	the	color	code	used	to	denote	a	particular
resistance,	a	good	reference	chart	can	be	found	at
www.digikey.co.uk/en/resources/conversion-calculators/conversion-calculator-resistor-
color-code-4-band.	Throughout	this	chapter,	resistors	are	referred	to	by	both	value	and
color	code.

http://www.adafruit.com/product/386
http://www.adafruit.com/products/385
http://www.adafruit.com/product/1603
http://www.maplin.co.uk/p/maplin-replacement-wind-speed-sensor-for-n96fy-n82nf
http://www.maplin.co.uk/p/maplin-replacement-wind-direction-sensor-for-n96fyn96gy-n81nf
http://www.maplin.co.uk/p/maplin-replacement-rain-gauge-for-n25frn96fyn96gy-n77nf
http://www.adafruit.com/product/50
http://www.maplin.co.uk/p/e12-025w-resistor-610-piece-pack-fa08j
http://www.maplin.co.uk/p/veroboard-copper-stripboard-100x160mm-a62rl
http://www.digikey.co.uk/en/resources/conversion-calculators/conversion-calculator-resistor-color-code-4-band

Note	that	we	will	not	use	the	full	pack	of	resistors	I	provided	a	link	to.	However,	they	are
very	handy	to	have	as	having	to	order	parts	like	resistors	as	and	when	they	are	needed
slows	down	this	type	of	electronics	project.

Reverse	engineering	the	Maplin	sensors
Before	we	start	creating	our	own	electronics	to	take	readings	from	these	sensors,	we	need
to	start	with	a	little	theory	and	testing	to	get	a	good	understanding	of	how	these	sensors
work	and	how	we	will	be	able	to	interact	with	them.

Understanding	the	sensors
To	start	with,	let’s	take	a	look	at	the	mechanics	and	electronics	used	in	the	devices	to	know
how	the	official	device	would	have	taken	measurements	from	them	(note	that	you	do	not
have	to	disassemble	your	sensors	here).

We	will	start	with	probably	the	simplest	of	all	three—the	rain	gauge.	If	we	unclip	the	top
section,	we	will	be	able	to	notice	a	seesaw-like	mechanism	that	carries	water	from	the
spout	of	the	funnel	in	the	top	covered	section	to	either	the	left-hand	side	or	right-hand	side
of	the	sensor,	depending	on	the	position	of	the	seesaw.

With	each	movement,	the	seesaw	triggers	a	reed	switch,	a	small	switch	that	is	activated
using	a	magnet	in	the	center	of	the	seesaw	that	completes	a	circuit,	which	can	be
monitored	by	the	measurement	device.

While	this	method	is	quite	effective	at	measuring	when	there	is	rainfall,	it	cannot
accurately	determine	how	much	rainfall	there	has	been,	as	this	will	partially	depend	on	the
rate	of	rainfall.	Since	this	relationship	is	not	linear,	it	would	take	more	effort	than	what	it
is	worth	to	derive.	Simply	representing	the	number	of	times	the	switch	is	triggered	over	a
given	sample	time	will	be	sufficient	for	our	weather	station.

Let’s	move	on	to	the	anemometer	now.	This	is	the	device	that	will	be	used	to	determine
how	fast	the	wind	is	blowing.	If	you	remove	the	three	screws	at	the	bottom	of	the	sensor,
we	can	notice	that	it	has	a	similar	reed	switch.	By	attaching	a	multimeter	in	resistance
mode,	we	can	tell	that	the	switch	pulses	closed	circuit	and	then	open	circuit	twice	per
revolution	of	the	sensor.

Given	that	we	are	able	to	measure	time	relatively	accurately	(up	to	millisecond	precision)
using	Arduino,	we	can	use	the	signal	from	this	reed	switch	to	measure	the	revolutions	per
minute	(RPM)	travelled	by	the	anemometer.	Then,	we	can	multiply	this	by	the
circumference	of	the	anemometer	measured	from	the	center	of	the	cups	to	find	the
distance	travelled	by	a	single	cup	in	one	minute.	Finally,	convert	this	result	to	a	standard
unit	(in	our	weather	station	this	will	be	in	miles	per	hour	(MPH))	to	get	the	wind	speed.

The	final	(and	most	interesting)	sensor	is	the	wind	direction	sensor.	This	is	essentially	a
vane	that	points	in	a	given	direction	if	force	is	exerted	on	the	side	of	the	vane	by	the	wind.
If	we	open	the	bottom	of	this	sensor,	we	can	see	a	printed	circuit	board	(PCB)	that
contains	eight	reed	switches	and	a	socket,	which	is	used	to	connect	the	anemometer.

If	you	remove	this	PCB,	you	can	see	that	the	two	middle	connections	of	the	socket	are
connected	directly	to	the	middle	two	connections	of	the	cable	running	from	the	wind
direction	sensor,	leaving	just	the	outer	two	wires	of	the	cable	for	the	direction	sensor.

On	the	reverse	side	of	the	PCB,	you	will	also	notice	eight	resistors	marked	with	a	given
unique	resistance	on	the	PCB.	Here,	every	reed	switch	has	its	own	resistance	(as	shown	in
the	following	circuit	diagram),	and	because	of	the	spacing	of	the	switches,	only	one	can	be
activated	at	once.	Therefore,	by	measuring	the	resistance	across	the	circuit,	you	can	set	the
position	of	the	direction	sensor	accurate	to	45	degrees.

Now	that	we	know	exactly	how	each	of	the	sensors	work,	we	can	start	interfacing	them
with	our	own	electronics.	Since	this	involves	the	need	for	accurate	timing	to	measure	the
wind	speed,	we	cannot	use	the	Raspberry	Pi	to	directly	take	readings	from	the	sensors,	as
the	Pi	runs	a	scheduled	operating	system.	This	means	that	a	given	task	can	be	stopped	and
restarted	at	random	times	without	notice,	which	causes	problems	when	you	have	code	that
must	keep	an	accurate	track	of	time.

Arduino,	however,	is	a	real-time	system.	This	means	that	the	code	you	write	will	never	be
stopped	or	paused	(with	the	exception	of	interrupts).	This	allows	you	to	ensure	that	certain
parts	of	it	will	be	executed	in	a	given	amount	of	time.	Arduino	also	supports	hardware
interrupts	on	its	GPIOs,	which	allow	a	function	to	be	called	whenever	the	state	of	a	given
pin	changes.	This	will	be	used	with	both	the	rain	sensor	and	anemometer	to	keep	a	precise
track	of	the	readings	taken	from	these	sensors.

Although	it	is	not	originally	sold	as	a	weather	sensor,	we	will	also	be	including	a	light-
dependent	resistor	(LDR),	which	will	be	used	to	measure	ambient	light	levels.	As	the
name	suggests,	this	is	essentially	a	resistor	that	has	a	resistance	that	varies	depending	on
the	intensity	of	the	light	hitting	its	surface.

Since	this	is	an	analogue	output	(as	with	the	wind	direction	sensor),	we	cannot	use	the	Pi
to	take	readings	from	it,	as	the	GPIO	pins	on	the	Pi	are	only	digital,	whereas	Arduino	has
several	analogue	inputs	that	can	be	used	with	sensors	such	as	this.

Now	is	a	good	time	to	go	over	some	of	the	theory	of	how	the	inputs	to	microcontrollers
such	as	Arduino	work.	With	both	of	our	digital	inputs	here,	we	will	essentially	connect	a
switch	between	the	input	pin	and	ground	pin.	The	chip	used	on	Arduino	has	a	pull-up
resistor	on	each	pin,	which	can	be	toggled	in	the	software.	This	can	be	used	to	essentially
make	the	reading	from	the	pin	read	high	unless	there	is	a	path	to	the	ground	with	a	lower
resistance	than	the	pull-up	resistor,	which	in	our	case	will	be	the	reed	switches	that	have
negligible	resistance.

With	the	analogue	inputs,	we	will	use	an	additional	resistor	to	create	what	is	called	a
potential	divider.	This	is	a	circuit	that,	as	the	name	suggests,	outputs	a	voltage	that	is
somewhere	in	between	two	input	voltages,	in	our	case,	5	V	and	ground	(0	V).	The
potential	divider	makes	it	possible	for	a	microcontroller	to	measure	resistance	by	first
converting	it	to	voltage.

Wiring
Now	that	we	have	an	idea	of	how	our	sensors	work,	we	can	start	to	create	the	circuit	that
will	allow	us	to	interface	with	the	sensors.	Since	a	lot	of	the	sensors	are	quite	simple,	this
is	a	relatively	easy	task.

Firstly,	we	need	to	prepare	the	Maplin	weather	sensors	to	be	connected	to	Arduino.	While
this	can	be	done	by	purchasing	the	correct	type	of	socket	for	the	connectors	they	come
fitted	with,	it	will	be	easier	in	this	case	to	simply	cut	them	off	and	connect	them	using
strips	of	terminal	blocks.	To	do	so,	perform	the	following	steps:

1.	 Cut	the	two	connectors	off	the	ends	of	the	long	cables	that	are	connected	to	the	rain
gauge	and	wind	direction	sensor.	Do	not	remove	the	connection	from	the	anemometer
as	this	connects	it	to	the	socket	on	the	wind	direction	sensor.

2.	 Remove	around	1-2	inches	of	the	grey	insulation	to	expose	the	colored	wires.
3.	 Strip	around	10	mm	of	insulation	from	each	of	the	colored	wires.
4.	 Connect	the	two	wires	from	the	rain	gauge	to	one	side	of	a	strip	of	two	terminal

blocks.
5.	 Connect	the	four	wires	from	the	wind	direction	sensor	to	one	side	of	a	strip	of	four

terminal	blocks	in	the	order	black,	red,	yellow,	and	green.	This	should	be	the	same
order	for	the	wires	arranged	inside	the	cable.

6.	 Insert	a	1	kΩ	resistor	(color-coded	as	brown,	black,	and	red)	between	the	black	and
red	wires	coming	from	the	wind	direction	sensor	on	the	same	side	as	them	on	the
terminal	block.

7.	 On	the	other	side	of	each	of	the	terminal	blocks,	attach	a	male-to-male	pin	jumper
wire.	Note	that	the	color	does	not	have	to	match	with	that	of	the	wire	from	the
sensors.	Whenever	we	refer	to	these	wires,	we	will	refer	to	them	by	the	color	of	the
wire	from	the	sensor.

By	now,	the	wiring	from	the	sensors	should	look	something	like	what	is	shown	in	the
following	image:

Next,	we	will	prepare	the	LDR:

1.	 Take	a	strip	of	three	terminal	blocks	and	connect	the	LDR	to	the	center	and	the
leftmost	terminal.

2.	 On	the	same	side,	connect	a	4.7	kΩ	resistor	to	the	rightmost	terminal	and	the	center
terminal.

3.	 On	the	other	side	of	the	terminal	block,	connect	a	male-to-male	pin	jumper	wire	to
each	terminal.

Now,	the	terminal	block	with	the	LDR	should	look	similar	to	the	following	image:

Now	that	we	have	the	circuits	required	for	our	sensors	built,	we	can	connect	them	to	the
Arduino,	as	shown	in	the	following	diagram.	This	same	wiring	diagram	will	work	for	the
majority	of	Arduino	boards,	including	the	Uno,	Mega,	Leonardo,	and	Duemilanove:

Setting	up	your	Arduino
The	final	step	to	be	taken	for	the	sensors	to	work	is	uploading	the	software	that	will
monitor	the	sensors	and	report	information	back	to	the	Pi	via	your	Arduino.	To	do	this,	we
need	to	first	download	and	install	version	1.0.6	of	the	Arduino	IDE	from
http://arduino.cc/en/main/software.	When	it	is	installed,	follow	these	instructions	to
compile	and	upload	the	code	to	your	Arduino	and	perform	the	following	steps:

1.	 Connect	your	Arduino	to	your	computer	and	open	the	Arduino	IDE.
2.	 Select	File	and	Open	and	browse	to	the	MaplinWeatherInstrumentDriver	folder	in

the	project	files.	Open	the	Arduino	sketch	inside	that	folder.	When	loaded,	it	should
look	something	like	the	following	screenshot:

http://arduino.cc/en/main/software

3.	 Select	the	type	of	Arduino	on	which	you	will	be	uploading	the	program	by	navigating
to	Tools	|	Board.

4.	 Select	the	serial	port	your	Arduino	is	attached	to	by	navigating	to	Tools	|	Serial	Port.
5.	 Now,	click	on	the	upload	button	in	the	top-left	corner	of	the	Arduino	IDE.	This	is	the

round	button	with	an	arrow	pointing	to	the	right.	The	Arduino	IDE	will	then	give	a
message	that	it	is	uploading	the	sketch	to	the	board,	as	in	the	following	screenshot:

Assuming	that	the	upload	is	completed	successfully,	you	should	see	the	message
Done	uploading	in	the	IDE,	as	shown	in	the	following	screenshot:

If	you	get	an	error	here,	then	check	whether	your	board	and	serial	port	options	are	correct.
If	the	error	still	persists,	then	disconnect	your	Arduino	and	restart	the	Arduino	IDE	and	try
again.	This	usually	fixes	any	problems	that	occur	here.

Once	the	upload	is	complete,	you	can	open	the	serial	monitor	using	the	button	in	the	top-
right	corner	of	the	Arduino	IDE	that	has	the	magnifying	glass	symbol	to	check	whether
the	sensors	are	working	correctly.	Here,	you	should	be	able	to	manually	move	the	sensors
and	see	the	output	printed	to	the	serial	console.

Note

In	regards	to	wind	direction,	the	direction	is	represented	by	a	value	of	0	to	7,	where	0	is
north.	The	value	increases	in	45	degree	increments,	so	1	is	north	east,	2	is	east,	and	so	on.
This	goes	on	up	to	7,	which	is	north	west.

The	following	screenshot	displays	the	output	printed	in	the	serial	console:

Setting	up	the	remaining	sensors
Now	that	we	have	the	Maplin	sensors	and	the	LDR	working	properly,	using	the	Arduino
board,	we	can	turn	our	focus	to	the	remaining	sensors	that	will	measure	temperature,
humidity,	and	the	barometric	pressure.

For	this,	we	will	use	DHT11	or	DHT22	to	measure	the	temperature	and	humidity	and
BMP180	to	measure	the	barometric	pressure.	These	devices	can	be	interfaced	directly	to
and	powered	from	the	GPIO	port	on	the	Pi.

DHT11/22
DHT11	and	DHT22	use	a	one-wire	communication	protocol	to	send	data	back	to	the	Pi,
which	requires	an	additional	10	K	(brown,	black,	and	orange)	resistor	to	be	added	between
the	data	and	3.3	V	pins	on	the	sensor.	The	easiest	way	to	do	this	is	by	mounting	the	DHT
sensor,	resistor,	and	a	row	of	male	pin	headers	on	a	small	section	of	a	stripboard,	as	shown
in	the	following	diagram:

Once	this	is	complete,	the	board	should	look	similar	to	the	following	image:

The	copper	tracks	run	vertically	from	the	top	of	the	preceding	image	to	the	bottom.	As	this
is	simply	a	task	of	adding	a	resistor	across	two	tracks,	there	is	no	need	to	create	any	breaks
in	the	copper	tracks.

Now	that	we	have	a	board	for	the	DHT11/22	sensor,	we	can	make	the	following
connections	to	the	Pi	GPIO	port	by	using	female-to-female	pin	jumper	wires:

Pin	1	(the	leftmost	pin	in	the	preceding	image)	to	the	Pi	pin	6	(GND)
Pin	2	should	not	be	connected
Pin	3	to	the	Pi	pin	7	(GPIO	4)
Pin	4	(the	rightmost	pin	in	the	preceding	image)	to	the	Pi	pin	1	(3.3	V)

Once	the	wiring	is	complete,	we	can	now	configure	the	software	for	the	DHT11/22	sensor
with	the	following	steps:

1.	 First,	install	some	packages	that	will	be	needed	to	set	up	the	drivers:

sudo	apt-get	install	build-essential	git

2.	 Next,	clone	the	repository	for	the	Adafruit	driver	and	the	BMP180	sensor:

git	clone	https://github.com/adafruit/Adafruit_Python_DHT.git

3.	 Change	the	directory	to	the	repository	we	just	cloned	and	run	the	setup	script:

cd	Adafruit_Python_DHT

sudo	python	setup.py	install

4.	 To	ensure	that	the	sensor	is	working	correctly,	change	the	directory	to	the	examples
directory	and	run	the	sample	script.	Note	that	if	you’re	using	the	DHT22	sensor,	you
will	need	to	change	11	to	22	in	the	following	command:

cd	examples

sudo	./AdafruitDHT.py	11/22	4

Assuming	that	everything	went	as	it	should,	you	should	see	an	output	similar	to	the
following	screenshot,	with	the	readings	taken	from	the	sensor:

If	this	output	is	not	produced,	go	back	to	the	wiring	and	setup	steps	and	ensure	that	the
sensor	is	wired	and	configured	correctly.	It	is	worth	double-checking	the	soldering	on	the
stripboard	to	ensure	that	the	sensor	is	wired	with	the	correct	pin	and	that	there	are	no
solder	bridges	between	the	tracks	on	the	stripboard.

BMP180
The	BMP180	sensor	comes	almost	ready	to	use	and	requires	no	external	circuitry	to
connect	it	to	the	Pi,	as	it	uses	the	very	common	and	standardized	I2C	bus.	The	only
assembly	step	to	perform	here	is	to	solder	the	row	of	0.1	inch	pin	headers	on	to	the	PCB.
Be	careful	when	you	do	this	and	do	not	get	the	iron	too	close	to	any	of	the	components
already	mounted	on	the	PCB.

Once	the	pins	are	in	place,	we	can	then	wire	the	sensor	to	the	Pi.	This	is	done	by	making
the	following	connections	between	the	sensor	PCB	and	the	Pi	GPIO	header	by	using
female-to-female	pin	jumper	wires:

VIN	to	the	Pi	pin	17	(3.3	V)
GND	to	the	Pi	pin	25	(GND)
SDA	to	the	Pi	pin	3	(I2C1	SDA)
SCL	to	the	Pi	pin	5	(I2C1	SCL)

Once	the	wiring	is	complete,	we	can	now	configure	the	software	for	the	BMP180	sensor:

1.	 Edit	the	/etc/modules	file	to	enable	the	kernel	modules	that	will	allow	us	to	use	the
I2C	interface	bus	on	the	GPIO	header:

sudo	nano	/etc/modules

2.	 Add	the	following	lines	to	the	file:

i2c-bcm2708

i2c-dev

The	output	should	look	like	the	following	screenshot:

3.	 Install	some	packages	that	will	allow	us	to	use	the	I2C	bus	from	Python	and	a	tool
that	we	can	use	to	detect	which	devices	are	currently	connected	to	the	bus:

sudo	apt-get	install	i2c-tools	python-smbus

4.	 Next,	we	need	to	check	whether	the	/etc/modprobe.d/raspi-blacklist.conf	file
exists,	and	if	so,	there	are	some	lines	that	must	be	commented	out.	We	can	check
whether	it	exists	by	opening	the	file	in	nano;	if	it	does	not	exist,	the	nano	editor
window	will	be	empty:

sudo	nano	/etc/modprobe.d/raspi-blacklist.conf

5.	 If	the	file	is	empty,	you	can	skip	the	next	step,	otherwise,	comment	out	the	following
lines:

blacklist	spi-bcm2708

blacklist	i2c-bcm2708

The	file	should	look	similar	to	the	following	screenshot:

6.	 At	this	point,	we	need	to	reboot	the	Pi	to	load	the	new	drivers:

sudo	reboot

7.	 Once	the	Pi	reboots,	use	the	following	command	to	check	whether	the	BMP180
sensor	has	been	detected	by	the	Pi	correctly:

sudo	i2cdetect	-y	1

If	so,	you	should	see	an	output	similar	to	the	following	screenshot:

8.	 Assuming	that	the	device	is	now	being	detected	correctly	on	the	I2C	bus,	we	can
clone	the	repository	for	the	driver	that	will	interface	with	it	over	the	bus	with	the
following	command:

git	clone	https://github.com/adafruit/Adafruit_Python_BMP.git

9.	 Change	to	the	directory	for	the	driver	we	just	downloaded	and	run	the	setup	script:

cd	Adafruit_Python_BMP

sudo	python	setup.py	install

10.	 To	ensure	that	the	driver	is	communicating	with	the	sensor	correctly,	change	to	the
examples	directory	and	run	the	example	Python	script:

cd	examples

sudo	python	simpletest.py

This	should	give	an	output	similar	to	the	following	screenshot	with	the	readings	taken
from	the	sensor:

If	you	did	not	get	this	output,	then	you	may	need	to	double-check	the	wiring	between	the
sensor	and	Pi.	If	that	looks	OK,	then	it	is	worth	rebooting	the	Pi	and	trying	again.

The	weather	station	web	application
To	make	the	data	we	record	from	the	weather	sensors	a	bit	more	accessible,	we	will	use	a
web	application	written	in	Python	to	display	the	current	and	historical	data	recorded	from
our	weather	station.

To	do	this,	we	will	make	use	of	a	Python	web	application	framework	called	Flask
(http://flask.pocoo.org/),	an	application	server	called	Gunicorn	(http://gunicorn.org/),	and
a	reverse	proxy	server	called	Nginx	(http://nginx.org/).

The	web	application	will	have	two	pages,	one	will	show	the	current	weather	conditions
and	the	other	will	show	the	history	of	the	weather	conditions	over	a	given	time	range.	To
help	visualize	the	data	on	both	the	pages,	we	will	use	the	Google	Charts	API
(https://developers.google.com/chart/).	This	is	a	JavaScript	API	that	allows	the	creation	of
interactive	charts	on	a	web	page.

http://flask.pocoo.org/
http://gunicorn.org/
http://nginx.org/
https://developers.google.com/chart/

Deploying	the	app	on	the	Pi
It’s	now	time	to	deploy	our	web	application	on	the	Pi.	To	do	this,	we	will	use	the	Nginx
reverse	proxy	server	and	the	Gunicorn	web	application	server	to	host	the	application.
Here,	Gunicorn	is	the	server	that	actually	hosts	the	application	and	related	files,	and	Nginx
is	an	intermediate	server	between	the	Gunicorn	and	the	client	that	is	used	to	forward
requests	from	a	client	to	the	correct	web	server.

After	logging	in	to	the	Pi	over	SSH	and	uploading	config_files	and
weather_station_webapp	to	the	/home/pi	directory,	the	process	to	configure	the	web
application	is	as	follows:

1.	 Install	some	prerequisite	packages:

sudo	apt-get	install	python-pip	python-dev	gunicorn	supervisor	nginx

2.	 Clone	the	repository	for	Flask,	the	Python	web	application	framework	that	our	web
app	is	built	with:

git	clone	https://github.com/mitsuhiko/flask.git

3.	 Change	to	the	directory	for	the	repository	we	just	cloned	and	install	Flask	on	the	Pi:

cd	flask

sudo	python	setup.py	install

4.	 Copy	the	configuration	file	for	Nginx	to	the	directory	of	all	the	available	sites:

sudo	cp	config_files/nginx/weather-station.conf	/etc/nginx/sites-

available/weather-station.conf

5.	 Create	a	symbolic	link	to	the	site	configuration	from	the	sites-enabled	directory.
This	tells	Nginx	that	it	should	handle	requests	for	this	site:

sudo	ln	-s	/etc/nginx/sites-available/weather-station.conf	

/etc/nginx/sites-enabled/

6.	 Remove	the	default	site	that	Nginx	hosts	when	it	is	first	installed:

sudo	rm	/etc/nginx/sites-enabled/default

7.	 Once	all	the	configuration	is	done,	it	can	save	a	lot	of	debugging	time	to	have	Nginx.
Verify	its	configuration,	which	can	be	done	by	using	the	following	command:

sudo	nginx	-t

Assuming	that	the	configuration	was	validated	correctly,	you	should	see	a	result
similar	to	the	following	screenshot.	If	not,	go	back	through	the	configuration	steps
and	ensure	that	the	configuration	is	performed	correctly:

8.	 Assuming	that	the	configuration	is	validated	successfully,	you	can	now	restart	the
Nginx	service	for	it	to	start	handling	requests	for	our	web	app:

sudo	service	nginx	restart

9.	 Next,	change	to	the	directory	for	the	web	app:

cd	~/weather_station_webapp

10.	 Before	we	start	to	serve	the	web	app,	we	need	to	initialize	an	empty	database	to
record	measurements.	This	can	be	done	using	the	following	command:

flask	--app=weather_station_webapp	initdb

11.	 Now,	we	are	ready	to	test	the	web	application	by	running	Gunicorn,	which	can	be	run
using	the	following	command:

gunicorn	-b	127.0.0.1:5000	weather_station_webapp:app

Here,	Gunicorn	is	serving	the	web	application	on	port	5000	on	the	local	loopback	network
interface,	which	is	only	available	to	the	Pi.	Then,	a	request	comes	in	from	an	external
client	on	port	80	(the	standard	port	for	web	pages	to	be	served).	Nginx	forwards	this	traffic
to	127.0.0.1:5000,	where	the	request	is	then	processed	by	Gunicorn.

To	test	whether	this	is	working	properly,	browse	to	the	IP	address	of	the	Pi	from	another
computer	on	the	same	network	as	the	Pi.	You	should	be	greeted	with	a	page	similar	to	the
upcoming	screenshot.

If	you	receive	a	page	with	a	Bad	Request	error	message,	then	you	may	need	to	reboot	the
Pi	and	try	the	last	step	again.	If	you	receive	Internal	Server	Error,	then	you	may	need	to
run	the	command	to	initialize	the	database	again.

Assuming	that	the	web	app	is	loaded	correctly,	we	can	now	perform	the	final	step,	which
will	start	the	Gunicorn	server	automatically	when	the	Pi	boots.	To	do	this,	we	will	use	the
Supervisor	(http://supervisord.org/)	application,	which	is	a	process	control	tool	that	makes
the	creation	of	daemon	instances	of	programs	very	easy,	and	perform	the	following	steps:

1.	 First,	we	need	to	copy	the	configuration	entry	for	the	web	application	into	the
Supervisor	configuration	directory:

sudo	cp	config_files/supervisor/weather-station-webapp.conf	

/etc/supervisor/conf.d/weather-station-webapp.conf

2.	 Next,	run	this	set	of	commands	to	update	the	superuser	configuration	and	start	the
web	application	as	a	background	process:

sudo	supervisorctl	reread

sudo	supervisorctl	update

sudo	supervisorctl	start	weather-station-webapp

You	may	receive	what	looks	to	be	an	error	message	when	running	the	final	command
here.	However,	this	simply	states	that	the	process	is	already	running	and	can	safely	be
ignored.

3.	 Finally,	reboot	the	Pi	to	finish	the	deployment:

sudo	reboot

Once	the	Pi	has	rebooted,	browse	once	again	to	the	IP	address	of	the	Pi	and	you	should	be
able	to	see	the	same	page	as	before.	If	so,	you	have	successfully	deployed	the	web
application	on	your	Pi.

http://supervisord.org/

Taking	readings	from	the	sensors
Now	that	our	app	is	set	up,	we	need	to	configure	the	Pi	to	regularly	take	readings	from	the
sensors	and	update	the	database	with	the	latest	weather	conditions.	To	do	this,	we	will	use
a	Python	script	that	will	communicate	with	the	DHT11/22	and	BMP180	sensors	using
their	Adafruit	libraries	and	the	Maplin	sensors	using	the	pySerial	library	and	perform	the
following	steps:

1.	 We	must	first	install	the	pySerial	library	to	be	used	by	the	script.	All	the	other
libraries	used	are	either	installed	by	default	or	were	installed	when	we	had	set	up	the
DHT11/22	and	BMP130	sensors:

sudo	pip	install	pyserial

2.	 Next,	we	will	modify	the	rc.local	file	to	perform	the	script	run	when	the	Pi	boots:

sudo	nano	/etc/rc.local

3.	 Here,	add	the	following	line	to	the	file:

python	/home/pi/sensor_manager.py	--database	

/home/pi/weather_station_webapp/weather.db	--poll-interval	10	--submit-

interval	600	&

The	output	should	look	as	shown	in	the	following	screenshot:

Note
The	interval	at	which	the	script	takes	readings	from	the	sensors	and	stores	them	in	the
database	can	be	configured	by	changing	the	--poll-interval	and	--submit-
interval	arguments.	Note	that	if	the	--submit-interval	setting	is	set	any	lower
than	300	seconds	(5	minutes),	then	this	can	make	the	history	view	in	the	web
application	slow	to	load.

4.	 Finally,	reboot	the	Pi	and	try	to	access	the	web	interface	to	check	whether	the	data

update	after	the	submit	interval	has	elapsed.

Assembling	the	weather	station
Now	that	our	weather	station	is	set	up	and	takes	the	readings	correctly,	it’s	time	to
assemble	the	weather	station	and	set	it	up	outside.

Before	we	do	this,	you	may	want	to	consider	how	the	Pi	will	connect	to	your	network	and
receive	power.	Here,	I	would	recommend	you	use	Wi-Fi	for	networking.	This	can	be	set
up	by	following	the	same	procedure	that	we	used	in	Chapter	2,	Portable	Speaker	System.
For	power,	I	used	a	10	foot	micro	USB	cable,	which	was	long	enough	to	reach	as	far
outside	as	I	had	located	the	weather	station.

For	the	Maplin	weather	sensors,	simply	assemble	the	two	masts	and	fix	both	the
anemometer	and	wind	direction	sensor	at	the	top	of	their	own	masts	by	using	a	30	mm	M3
screw.	These	masts	can	then	be	pushed	relatively	easily	into	the	soil.	Since	they	are	not
particularly	tall,	it	is	better	to	place	them	in	an	area	as	open	as	possible	to	improve	the
accuracy	of	the	readings	taken	from	them.

As	an	enclosure	for	the	remaining	sensors,	the	Arduino,	and	the	Pi,	the	easiest	thing	to	use
is	a	Tupperware	(or	sandwich)	box.	This	should	be	at	least	6	inches	wide	by	4	inches	deep,
around	3	inches	tall,	and	either	clear	or	very	lightly	translucent,	so	that	the	light	intensity
does	not	fall	too	much	between	the	outside	and	inside	of	the	box	(as	the	light	sensor	will
be	mounted	on	the	inside).

There	are	a	few	modifications	that	must	first	be	made	to	the	box	to	make	it	suitable	for	use
as	an	enclosure	for	the	weather	sensors.	Firstly,	there	must	be	some	way	to	maintain	the
airflow	through	the	box	to	ensure	that	the	DHT11/22	and	BMP180	sensors	get	accurate
readings.	This	can	be	done	easily	by	drilling	a	pattern	of	six	holes	on	either	side	of	a
corner	of	the	box,	as	shown	in	the	following	image.	This	provides	a	path	for	air	to	flow
through	the	corner	of	the	case	without	allowing	moisture	and	water	to	get	to	the	Pi	and
Arduino	(which	will	be	located	at	the	opposite	end	of	the	box).

The	next	thing	we	will	need	is	a	way	to	run	cables	inside	the	box.	This	can	be	done	by
removing	the	lip	on	one	side	of	the	box,	so	that	when	the	lid	is	replaced,	there	is	a	gap
large	enough	to	run	the	wires	through.	The	lip	can	be	removed	by	using	a	pair	of	wire/side
cutters	to	create	a	gap	wide	enough	for	the	cables	from	the	rain	gauge,	wind	direction
sensor,	and	a	micro	USB	cable,	as	shown	in	the	following	image:

Note
Be	very	careful	while	cutting	away	the	lip	of	the	box	like	this.	Using	too	much	force	or
trying	to	cut	away	too	much	at	once	can	cause	parts	of	the	box	to	chip	away	at	high	speed.
Eye	protection	gear	should	be	worn	while	doing	this.

Next,	we	need	to	assemble	the	electronics	and	sensors	in	the	box.	The	only	requirement
here	is	that	the	LCD	faces	directly	upwards	and	that	the	DHT11/22	and	BMP180	sensors
are	close	to	the	path	of	air	which	goes	through	the	corner	of	the	box	where	the	holes	were
drilled.

You	should	use	an	adhesive	or	glue	to	keep	the	electronics	from	moving.	You	can	use
anything	from	a	temporary	fixing,	such	as	Blu-Tack,	to	a	more	permanent	(but	still
removable)	adhesive,	such	as	hot	glue.	Whichever	you	decide	to	use,	it	is	important	to
keep	adhesives	away	from	sensitive	areas	of	the	electronics,	such	as	the	metallic	sensor
chip	on	the	BMP180	PCB	or	the	surface	mount	components	on	the	back	of	the	Pi.

The	following	image	shows	the	assembled	electronics	and	sensors	in	the	box:

Finally,	all	that	is	left	to	do	is	to	replace	the	box	lid,	set	up	the	weather	station	outside,	and
apply	power.	We	can	now	move	on	to	test	the	weather	station	and	look	at	some	data	from
it.

Note	that	while	installing	the	wind	direction	sensor,	it	is	important	to	alight	it	properly
with	the	north	direction.	It	must	be	installed	such	that	when	the	arm	is	in	position,	as
shown	in	the	following	image,	the	vane	must	point	to	north	and	the	round	point	opposite
the	vane	must	point	to	south:

Using	the	web	application
When	you	first	browse	to	the	IP	address	of	the	Pi,	you	are	greeted	by	a	page	that	will	look
similar	to	the	following	screenshot.	This	shows	the	current	weather	conditions	that	have
been	recorded	over	the	last	measurement	period	(that	is,	the	period	specified	by	the	--
submit-interval	parameter	to	the	sensor_manager.py	script).

By	clicking	on	the	History	link	in	the	top-right	corner	of	the	page,	you	are	able	to	browse
through	all	the	recordings	that	have	been	taken	by	the	weather	station.

By	default,	it	displays	the	history	for	the	previous	week.	This	can	be	changed	by	using	the
two	options	at	the	top	of	the	page	(note	that	these	options	may	only	render	correctly	in
Chrome,	Opera,	or	Safari	web	browsers).

You	can	also	change	which	recorded	values	are	to	be	displayed	on	the	graph	by	using	the
selection	of	checkboxes	at	the	top	of	the	page.	Note	that	some	measurements	may	not	be
suited	to	be	displayed	at	the	same	time	as	they	have	different	ranges,	for	example,	rainfall
and	the	light	level.

If	you	ever	want	to	take	a	backup	of	the	weather	data,	you	can	do	so	by	taking	a	copy	of
the	weather.db	file	in	the	/home/pi/weather_station_webapp/	directory.	If	you	want	to
erase	all	the	recorded	data,	you	can	simply	run	the	initialize	database	command	again.

Note	the	units	for	the	measurements:

Wind	speed:	This	is	measured	in	miles	per	hour	(MPH)
Temperature:	This	is	measured	in	degrees	Celsius
Humidity:	This	is	measured	in	percentage	RH	(relative	humidity)
Pressure:	kPa	(kilopascal),	where	1	kPa	=	10	mb	(millibar)
Light	level	and	rain:	Arbitrary	units

Summary
In	this	chapter,	we	looked	at	the	steps	needed	to	design	and	deploy	a	Python-based	web
application	on	the	Pi	using	the	Flask	framework.	This	is	a	technique	we	will	be	using	in	a
couple	of	chapters	later	in	the	book,	where	we	will	create	web-based	control	panels	and
information	displays.

We	also	looked	at	yet	more	ways	to	interface	devices	to	the	Pi,	both	directly	via	the	GPIO
port	and	by	using	an	intermediate	device;	in	our	case,	an	Arduino.	We	also	looked	at	the
advantages	this	can	bring	with	certain	types	of	sensor.

In	the	next	chapter,	we	will	further	explore	the	use	of	sensors,	as	we	create	a	home
security	system	that	connects	several	sensors	using	a	wireless	network.

Chapter	7.	Home	Security	System
In	this	chapter,	we	will	look	at	how	to	create	a	simplistic	security	system	that	will	be	able
to	monitor	basic	security	sensors,	such	as	door	position	sensors	and	passive	infrared
(PIR)	sensors.	These	are	common	for	standard	home	security	systems	and	send	e-mail
alerts	when	certain	combinations	of	sensors	are	triggered.

What	you	will	need
This	is	the	list	of	the	minimum	parts	you	will	need	to	complete	this	project	by	following
the	sample	system	setup,	which	is	described	in	the	first	section	of	this	chapter:

The	Raspberry	Pi
At	least	two	nRF24L01	modules	(http://imall.iteadstudio.com/im120606002.html)
At	least	one	Arduino	Uno
0.1	inch	female-to-female	pin	jumper	wires
0.1	inch	male-to-female	pin	jumper	wires
A	selection	of	security	sensors:

The	PIR	sensor	(www.rapidonline.com/Electronic-Components/Pir-Module-61-
1516)
Magnetic	door	sensors	or	reed	switches	(www.rapidonline.com/Electronic-
Components/Surface-Mounting-Proximity-Switch-78-1672)

The	number	of	sensors,	Arduino	boards,	and	RF	modules	you	will	need	for	this	project
will	greatly	depend	on	how	many	rooms	you	want	the	security	system	to	cover	and	how
many	sensors	will	be	used	in	each	room.	In	this	chapter,	it	would	be	worth	reading	at	least
the	section	on	how	to	design	your	security	system	before	you	order	any	parts.	Do	this	to
ensure	that	you	have	enough	requirements	to	build	a	system	that	will	work	well	for	your
scenario.

http://imall.iteadstudio.com/im120606002.html
http://www.rapidonline.com/Electronic-Components/Pir-Module-61-1516
http://www.rapidonline.com/Electronic-Components/Surface-Mounting-Proximity-Switch-78-1672

The	security	system	structure
The	security	system	will	be	divided	into	five	main	parts:	the	Arduino	sensor	nodes,	the	RF
network	that	connects	each	node	to	the	Raspberry	Pi,	the	MQTT	broker	that	connects	the
RF	network	to	the	web	application,	the	web	application	that	manages	the	senor	events	and
alerts,	and	the	database	that	stores	the	configuration	of	the	sensors	and	alarms	and	the
history	of	each	sensor.

Each	sensor	node	is	comprised	of	an	RF	module	that	allows	communication	between	the
network	of	sensor	nodes	and	several	security	sensors,	such	as	PIR	motion	detectors	and
reed	switch	doors	or	window	sensors,	and	both	the	standard	sensors	used	on	the	standard
home	security	systems.	While	these	nodes	can	be	battery	powered	for	better	reliability,	we
will	power	ours	by	using	a	USB	port	and	USB	power	supply.

The	Raspberry	Pi	will	serve	as	both	the	host	server	for	the	web	application	and	database
and	the	base	node	in	the	RF	network.	This	will	use	the	same	RF	modules	and	software
libraries	as	the	Arduino	sensor	nodes.

Our	security	system	will	not	use	a	bell	or	sounder,	such	as	a	conventional	security	system;
instead,	it	will	send	e-mail	alerts	to	an	address	configured	via	the	web	interface.	It	will
also	allow	alarms	to	be	configured	much	more	freely	than	a	conventional	system,	allowing
you	to	set	several	alarms	for	each	different	area	in	a	house.	It	will	also	allow	the	alarms	to
act	independent	of	each	other.

Designing	your	security	system
For	the	rest	of	the	chapter,	we	will	assume	that	the	security	system	has	three	sensor	nodes;
here,	all	three	have	magnetic	door	sensors	and	only	two	out	of	three	have	PIR	motion
sensors.

At	this	stage,	you	need	to	think	about	where	each	node	will	be	located,	as	the	RF	modules
can	only	transmit	over	a	certain	distance	before	the	signal	either	becomes	too	weak	to
ensure	reliable	communication	or	is	lost	completely.	From	my	own	testing,	I	have	found
that	the	link	between	two	nodes	can	rarely	travel	more	than	one	wall	or	floor.

Therefore,	in	order	to	have	a	longer	distance	between	the	base	node	and	sensor	node,	the
sensor	node	must	communicate	through	a	node	that	acts	as	a	repeater.	This	is	handled	by
the	network	protocol	library	used	on	the	sensor’s	nodes	and	the	Pi.	We	will	look	at	this	in
more	detail	later	in	this	chapter,	but	for	now,	provisioning	at	least	one	sensor	node	in	each
room	you	want	to	have	a	sensor	in	as	well	as	any	room	between	nodes	will	be	sufficient.

The	following	diagram	roughly	shows	the	structure	of	the	system	we	will	use	for	the	rest
of	the	chapter:

If	you	are	using	your	own	system	design,	then	it	helps	to	make	your	own	diagram	similar
to	this.	Make	sure	to	note	the	sensor	node	address,	location,	and	MQTT	topic	of	each
sensor	to	help	make	the	programming	of	each	of	these	sensor	nodes	and	the	addition	of	the
sensors	to	the	web	application	easier.

Web	applications
The	security	system	will	be	based	on	a	web	application	that	will	be	used	to	record	and
view	events	from	the	sensors	and	will	allow	a	configuration	of	sensors	and	alarms.

For	this,	we	will	use	the	Flask	framework	for	Python,	which	was	used	in	the	previous
chapter,	and	the	MQTT	protocol	to	establish	communication	between	the	sensors	and	web
application.	This	protocol	is	a	publisher	and	subscriber	model,	where	clients	can	subscribe
to	information	(topics)	they	are	interested	in	and	receive	new	data	as	it	is	made	available
(published)	by	other	clients.

An	overview	of	the	structure	of	the	web	application	is	shown	in	the	following	diagram.	As
we	did	in	the	previous	chapter,	we	will	use	the	SQLite	database	engine:

Deploying	our	application
We	will	first	start	by	deploying	the	web	application	on	the	Pi.	This	will	mostly	be	the	same
process	as	was	used	in	the	previous	chapter	for	the	weather	station	web	application.
However,	there	are	additional	steps	here	as	the	security	application	requires	an	extra
configuration	file	to	set	options	for	the	login	details,	MQTT	broker,	and	e-mail	alerts:

1.	 First,	we	will	add	an	additional	source	to	the	list	of	repositories	that	APT	searches
for.	When	we	install	new	packages,	this	will	allow	us	to	install	the	up-to-date	version
of	the	Mosquitto	MQTT	broker	needed	for	the	security	system:

wget	http://repo.mosquitto.org/debian/mosquitto-repo.gpg.key

sudo	apt-key	add	mosquitto-repo.gpg.key

cd	/etc/apt/sources.list.d/

sudo	wget	http://repo.mosquitto.org/debian/mosquitto-wheezy.list

cd

2.	 Now	that	the	repository	has	been	added,	we	need	to	update	the	local	copy	of	the	list
of	packages	that	are	available	and	install	any	updates	while	we	are	at	it:

sudo	apt-get	update

sudo	apt-get	upgrade

3.	 Now	that	the	Pi	is	up	to	date,	we	can	start	installing	the	packages	we	will	need	for	the
security	system.	Don’t	worry	if	you	get	a	message	saying	a	package	is	already
installed	or	is	up	to	date,	as	some	of	these	may	or	may	not	be	already	installed:

sudo	apt-get	install	mosquitto	mosquitto-clients	python-pip	git	python-

dev	gunicorn	supervisor	nginx

sudo	pip	install	paho-mqtt

4.	 From	here	on,	the	procedure	will	be	similar	to	that	used	while	installing	Flash	in	the
previous	chapter.	However,	we	will	be	making	a	couple	of	modifications	this	time,	so
we	will	go	through	the	full	procedure	here.	Continue	by	cloning	the	Flash	code
repository	and	install	Flask	on	the	Pi:

git	clone	https://github.com/mitsuhiko/flask.git

cd	flask

sudo	python	setup.py	install

5.	 Next,	we	need	to	copy	the	Nginx	configuration	files	for	the	security	web	application
site.	Enable	the	site	configuration	and	remove	the	default	Nginx	site:

sudo	cp	config_files/nginx/security.conf	/etc/nginx/sites-

available/security.conf

sudo	ln	-s	/etc/nginx/sites-available/security.conf	/etc/nginx/sites-

enabled/

sudo	rm	/etc/nginx/sites-enabled/default

6.	 Now,	we	can	let	Nginx	test	the	configuration	and	assuming	that	the	test	has	passed,
restart	the	service.	If	the	test	failed,	go	back	to	the	configuration	and	ensure	that	all
the	files	have	been	copied	correctly:

sudo	nginx	-t

sudo	service	nginx	restart

7.	 Next,	we	can	test	the	web	application	by	running	it	manually	with	Gunicorn.	Here,	it
is	not	important	that	the	application	is	missing	the	configuration	file,	so	it	can	be
started	with	the	following	commands:

cd	~/security_webapp

flask	--app=security	initdb

gunicorn	-b	127.0.0.1:5000	security:app

Note
Note	that	while	initializing	the	database,	you	may	get	an	error	similar	to	that	shown
in	the	following	screenshot;	this	is	caused	by	the	exit	of	the	application	while	the
MQTT	client	is	still	running	and	can	be	safely	ignored.

8.	 Now,	browse	the	IP	address	of	the	Pi	on	a	computer	of	the	same	network	and	you
should	see	a	page	similar	to	that	shown	in	the	following	screenshot.	As	it	is,	this	is
the	only	page	of	the	site	that	will	work,	as	the	application	is	running	without	the
configuration	file:

If	the	web	page	does	not	appear,	then	you	may	need	to	reboot	the	Pi	before	trying

again	to	flush	out	any	bad	configuration,	which	may	still	be	applied	to	one	of	the
running	services.	If	this	does	not	work,	then	go	back	to	the	configuration	steps	and
ensure	that	each	file	was	copied	correctly.

9.	 Next,	we	will	configure	the	web	application	that	will	start	automatically	when	the	Pi
boots	using	the	supervisor:

sudo	cp	config_files/supervisor/security-webapp.conf	

/etc/supervisor/conf.d/security-webapp.conf

sudo	supervisorctl	reread

sudo	supervisorctl	update

sudo	supervisorctl	start	security_webappp

Note
Here,	you	can	try	to	access	the	web	application	again.	This	should	give	the	same
login	page	as	before.	This	will	still	be	the	only	functional	page	in	the	application	at
this	point.

10.	 Now	that	the	web	application	is	deployed,	we	need	to	edit	the	configuration	file	to
enable	login,	MQTT	broker	connection,	and	e-mail	alerts:

sudo	supervisorctl	stop	security_webappp

sudo	cp	config_files/security.conf	~

nano	~/security.conf

11.	 Now,	we	need	to	modify	the	configuration	file	so	that	it	suits	the	setup	we	have	for
the	MQTT	broker,	e-mail	alerts,	and	the	credentials	used	to	login	to	the	web
application.	Here,	we	must	also	set	a	secret	key	that	allows	our	application	to	save
information	in	a	browser	session.

In	the	configuration	file,	you	will	find	that	all	the	configuration	entries	are	already	there;
they	simply	need	to	be	populated	with	customized	values.	Note	that	while	the	SECRET_KEY
value	will	allow	you	to	log	in	to	the	application,	it	should	be	changed	to	something	unique
to	your	application	before	you	start	using	the	system	properly.

The	MQTT_BROKER	and	MQTT_PORT	configuration	parameters	are	used	to	determine	which
MQTT	broker	the	application	should	connect	to.	Here,	we	are	using	the	broker	running	on
the	Pi	locally,	so	these	can	be	left	as	the	parameters’	default	values.

The	USERNAME	and	PASSWORD	parameters	are	used	to	set	the	credentials	that	you	will	use	on
the	login	page	to	access	the	web	application.	As	it	is,	the	web	application	only	supports	a
single	user.

The	SMTP_SERVER,	SMTP_USERNAME,	SMTP_PASSWORD,	and	FROM_EMAIL	parameters	are	used
to	configure	the	sending	of	e-mail	alerts.	Currently,	only	Gmail	and	Google	Apps	e-mail
accounts	have	been	tested	with	the	application,	so	it	is	highly	recommended	that	you	use
one	of	these	accounts.	However,	the	Python	SMTP	library
(https://docs.python.org/2/library/smtplib.html)	is	well	documented,	so	modifying	the
send_mail()	function	in	security.py	is	always	an	option	if	you	want	to	use	a	different	e-
mail	provider.

https://docs.python.org/2/library/smtplib.html

Assuming	that	you	will	just	use	a	Gmail	(or	Google	Apps)	e-mail	account	for	e-mail
alerts,	the	SMTP_SERVER	parameter	is	already	set	to	the	correct	value.	SMTP_USERNAME	and
SMTP_PASSWORD	must	be	set	to	your	account	login	details,	which	are	your	full	e-mail
address	and	password.	The	FROM_EMAIL	parameter	is	used	to	set	the	e-mail	address	the
message	is	sent	from;	this	should	be	set	to	the	same	as	the	SMTP_USERNAME	parameter.

Once	the	configuration	file	is	complete,	it	should	look	something	like	what	is	shown	in	the
following	screenshot:

Now	that	the	configuration	file	has	been	modified,	the	last	step	is	to	start	the	web
application	once	more:

sudo	supervisorctl	start	security_webappp

Once	this	final	step	is	complete,	you	can	try	to	access	the	web	application	by	browsing	to
the	IP	address	of	the	Pi	on	a	computer	on	the	same	network.	This	should	present	you	with
the	same	login	screen	as	before.

Configuring	sensors	and	alarms
Now	that	the	web	application	is	deployed	correctly,	it	is	time	to	log	in	to	it	and	configure
the	sensors	and	alarms	we	will	use	for	the	system:

1.	 Start	by	browsing	to	the	IP	address	of	your	Pi	and	enter	the	login	details	in	the	page
you	are	taken	to.	These	login	credentials	are	the	ones	that	were	configured	in	the
configuration	file	in	the	previous	section.

2.	 Once	logged	in,	you	will	be	greeted	with	the	Sensors	page.	This	shows	a	list	of	all
the	sensors	that	are	currently	configured	on	the	security	system.	We	will	start	by	first
adding	a	new	sensor	by	clicking	on	the	Add	New	Sensor	link	at	the	top	of	the	page.

3.	 Here,	we	are	given	options	for	the	name	and	identification	of	the	sensor,	both	in
relation	to	the	position	in	the	house	and	the	MQTT	topic	that	it	maps	to.	We	will	set
this	sensor	to	be	the	door	sensor	on	the	first	sensor	node.	For	all	the	sensors	we	will
use,	the	value	of	Triggered	text	should	be	1.

4.	 Once	this	is	complete,	click	on	Add	and	you	will	see	a	message	saying	that	the
sensor	has	been	added.	At	the	bottom	of	this	screen,	you	will	see	a	section	that
displays	the	last	recorded	event	for	this	sensor.	Since	it	has	just	been	added,	no	events
have	been	recorded	yet.

5.	 Follow	this	procedure	for	the	remaining	sensors	in	your	setup,	following	the	system
structure	diagram	you	made	earlier	in	this	chapter.	Once	this	is	complete,	you	will
have	a	fair	few	sensors	added	to	the	system,	as	depicted	in	the	following	screenshot:

6.	 Next,	we	will	move	on	to	add	an	alarm	for	some	of	the	sensors.	This	will	control	how

and	when	you	receive	alerts	when	the	state	of	the	sensors	in	the	network	changes.	To
start,	click	on	Alarms	to	navigate	to	the	alerts	page	and	add	a	new	alarm.

7.	 On	this	screen,	you	will	be	given	the	option	to	give	the	alarm	a	name	and	description
to	assist	identification	as	well	as	a	field	for	an	e-mail	address	to	send	notification	e-
mails	when	the	alarm	is	triggered.

8.	 At	the	bottom	of	the	screen	is	a	list	of	all	the	sensors	that	have	been	added	to	the
security	system.	Check	all	of	them	that	you	want	to	have	an	effect	on	this	alarm.

9.	 Next,	choose	the	alarm	type	from	the	Alert	When	drop-down	box.	This	contains
several	options	for	how	sensors	must	behave	in	order	to	trigger	the	alarm.	Typically,
you	will	usually	set	this	to	Any	One	Triggered.	There	is	also	an	option	to	disable	the
alarm	if	needed.

At	this	point,	the	system	is	sufficiently	configured	to	behave	as	a	simple	security	system
and	send	alerts	when	sensors	have	been	triggered.	However,	should	you	ever	need	to	look
up	the	history	of	a	sensor	to	see	when	it	has	been	triggered,	there	is	an	events	page,	which
will	display	all	the	recorded	sensor	events	and	the	time	they	were	recorded	at.

This	can	also	be	handy	to	verify	that	a	sensor	is	functioning	correctly.

As	we	are	yet	to	add	any	sensors	to	the	system,	you	can	simulate	the	triggered	sensors
using	the	Mosquitto	command-line	tools.	If	not	already	installed,	they	can	be	downloaded
using	the	following	command:

sudo	apt-get	install	mosquitto_clients

Once	these	are	installed,	you	can	simulate,	for	instance,	a	door	being	opened	and	closed
using	the	following	two	commands,	where	PI_IP	is	the	IP	address	of	the	Pi:

mosquitto_pub	-h	192.168.0.17	-t	door2	-m	1

mosquitto_pub	-h	192.168.0.17	-t	door2	-m	0

On	the	Events	page	of	the	web	application,	this	will	appear,	as	shown	in	the	following
screenshot:

When	an	alarm	is	triggered	and	a	valid	e-mail	address	has	been	set	in	the	configuration
page,	an	e-mail	similar	to	the	following	will	be	delivered	to	the	configured	e-mail	address:

Interfacing	sensors
The	two	sensors	we	will	use	in	this	project	are	fairly	simple	to	interface	with	Arduino,	as
both	use	a	simple	digital	signal.	We	will	now	look	at	the	electrical	connection	between	the
sensors	and	Arduino	and	the	configuration	required	in	the	Arduino	code	for	each	sensor.

In	the	code	for	the	sensor	nodes	(the	rf_network/SensorNode_Arduino	directory),	there
are	two	important	variables	related	to	the	configuration	of	sensors	on	a	given	node:
NUM_SENSORS	and	sensors.	The	first	is	a	count	of	how	many	sensors	are	attached	to	the
current	sensor	node	and	the	second	is	an	array	of	configurations	for	each	sensor.

The	configuration	for	each	sensor	is	stored	in	a	struct	with	the	following	initialization:

{"MQTT_TOPIC",	PIN,	ACTIVE_LOW,	PULL_UP}

Here,	MQTT_TOPIC	is	the	MQTT	topic	where	the	changes	to	the	state	of	the	sensor	will	be
published,	PIN	is	the	Arduino	IO	pin	the	sensor	is	connected	to,	and	ACTIVE_LOW	shows
whether	the	sensor	should	be	considered	as	triggered	when	the	input	is	low.	If	this	is	the
case,	this	should	be	set	to	1,	otherwise	0.	PULL_UP	dictates	whether	the	internal	pull	up
resistor	should	be	activated	for	the	sensor;	if	so,	this	should	be	set	to	1,	otherwise	0.

The	PIR	motion	sensors
The	PIR	motion	sensors	have	three	wires:	ground,	power,	and	signal,	where	the	signal
output	is	high	when	motion	is	detected	in	the	field	of	view	of	the	sensor.

These	sensors	operate	by	detecting	a	relative	change	in	temperature	across	the	field	of
view	of	the	sensor.	This	is	done	by	positioning	the	two	infrared	detectors	at	slightly
different	angles	from	the	lens.	When	a	temperature	change	occurs,	the	voltage	across	the
two	sensors	relative	to	each	other	changes,	which	is	then	processed	on	the	sensor	that	is	to
be	converted	into	a	digital	output.

If	you	look	from	the	top	of	the	sensor	(that	is,	with	the	lens	facing	towards	you),	the	three
wires	are	ground,	power,	and	signal	from	left	to	right.	The	signal	wire	is	indicated	with	a
grey	stripe	along	it.

To	wire	this	up	to	Arduino,	connect	the	ground	wire	to	an	Arduino	pin	marked	GND,	send
power	to	either	the	Arduino	pin	marked	as	+5	V	or	Vin	and	the	signal	wire	to	any	unused
digital	input	(any,	from	2	to	8).

Note
Note	that	if	you	plan	to	power	the	Arduino	sensor	node	using	a	power	supply	higher	then
5	V,	then	you	should	connect	the	PIR	sensors	power	wire	to	+5	V	and	not	Vin.	Supplying
the	sensor	with	more	than	5	V	may	cause	permanent	damage	to	Arduino	or	the	power

supply.

Within	the	Arduino	code,	a	PIR	sensor	should	be	added	with	the	value	of	ACTIVE_LOW	and
PULL_UP	set	to	0.

Magnetic	door	sensors
This	sensor	can	be	used	to	determine	when	two	objects,	commonly	a	door	and	its	frame,
move	apart.	This	is	simply	a	reed	switch	and	magnet,	therefore	all	that	is	required	to	use
this	sensor	is	to	detect	when	a	digital	input	signal	level	changes.

Although	there	are	four	wires	coming	from	the	sensor,	only	two	are	needed	for	our	usage.
These	two	have	the	ends	of	the	wire	stripped,	revealing	a	section	of	the	conductor,	and	are
slightly	longer	than	the	other	two.	The	two	unnecessary	wires	can	be	cut	off	if	desired.

Within	the	Arduino	code,	a	magnetic	door	sensor	should	be	added	with	the	value	of
ACTIVE_LOW	set	to	0	and	PULL_UP	set	to	1.

The	RF	network
The	RF	network	that	will	be	used	for	the	sensor	nodes	is	provided	by	the	RF24Network
library	(https://github.com/TMRh20/RF24Network).	This	allows	RN	nodes	to	be
networked	in	a	tree	structure	in	which	each	node	can	have	up	to	five	child	nodes,	since
each	individual	node	can	listen	to	up	to	six	other	nodes	at	once.

As	such,	the	addresses	for	the	nodes	are	octal	and	follow	the	structure,	as	shown	in	the
following	diagram,	where	000	is	always	the	base	node,	001	is	a	child	of	the	base	node,
021	is	a	child	node	of	001,	and	so	on:

This	allows	a	message	to	be	passed	to	any	node	on	the	network	by	first	transmitting	it
upwards	through	the	tree	until	it	reaches	the	first	node	that	is	a	common	path	for	both	the
sending	and	receiving	node.

https://github.com/TMRh20/RF24Network

Setting	up	the	Raspberry	Pi
To	set	up	the	Pi	as	the	base	node	for	the	RF	network,	we	must	first	connect	the	RF	module
to	the	GPIO	port	and	install	the	drivers	that	will	allow	us	to	receive	messages	send	to	it	by
using	a	Python	script.	To	do	this,	perform	the	following	steps:

1.	 First,	start	by	wiring	the	module	to	the	GPIO	port	using	the	following	wiring
diagram:

2.	 Next,	install	the	driver	for	the	RF	module.	This	is	the	driver	that	allows	basic	point-
to-point	communication	using	the	RF	modules:

sudo	apt-get	install	libboost-python-dev	git

git	clone	https://github.com/TMRh20/RF24.git

cd	RF24

sudo	make	install

cd	RPi/pyRF24

sudo	python	setup.py	install

3.	 Now	that	the	driver	is	installed,	return	to	the	home	directory:

cd

4.	 Next,	we	will	install	the	RF	network	driver.	This	is	the	network	layer	that	provides
the	tree	network	routing:

git	clone	https://github.com/TMRh20/RF24Network.git	RFNetwork2

mv	RFNetwork2/RPi/RFNetwork	~

cd	RFNetwork

sudo	make	install

cd	RF24Network2/RPi/pyRF24Network

sudo	python	setup.py	install

5.	 Once	the	two	libraries	are	installed,	you	will	need	to	copy	the	BaseNode_RPi.py
script	from	the	rf_network	directory	in	the	files	for	this	project	to	the	home	directory
on	the	Pi.

6.	 Now	that	the	drivers	for	both	the	module	and	the	network	layer	are	installed,	we	can

test	the	base	node	script	using	the	following	command:

sudo	python	BaseNode_RPi.py	localhost	1338

This	should	give	an	output	similar	to	the	following.	If	you	see	a	repeating	pattern	in	the
configuration	data	or	all	the	bits	are	set	to	the	same	value,	then	you	may	have	an	issue
with	the	wiring	between	the	RF	module	and	the	Pi.

Assuming	that	the	output	of	the	script	was	similar	to	the	previous	screenshot	(such	that	the
values	are	not	all	0x00	or	0xFF),	we	can	go	ahead	and	configure	the	base	node	script	to
start	when	the	Pi	boots.	To	do	so,	perform	the	following	steps:

1.	 Open	the	rc.local	file	in	nano:

sudo	nano	/etc/rc.local

2.	 Add	the	following	line	to	the	end	of	the	file,	just	before	the	exit	0	line:

python	/home/pi/BaseNode_RPi.py	localhost	1883

This	is	shown	in	the	following	screenshot:

Once	this	is	complete,	reboot	the	Pi	to	run	the	base	node	and	web	application	on	boot.
This	completes	the	configuration	that	needs	to	be	done	on	the	Pi.

Setting	up	Arduino
It’s	now	time	to	program	each	of	the	RF	nodes	that	will	be	used	in	the	sensor	network.	We
can	program	these	using	the	code	in	the	rf_network/SensorNode_Arduino	directory	in
the	files	for	this	project	and	the	Arduino	IDE.

You	should	already	have	the	Arduino	IDE	installed	from	when	it	was	used	in	a	previous
chapter.	However,	we	first	need	to	download	some	additional	libraries	for	the	RF	module:

1.	 The	two	libraries	needed	can	be	downloaded	from	https://github.com/TMRh20/RF24
and	https://github.com/TMRh20/RF24Network.	You	will	see	the	Download	ZIP
option	at	the	right-hand	side	bar	of	the	website.

2.	 Once	these	are	downloaded,	extract	both	the	archives	and	place	them	into	the
sketchbook/libraries	directory.	The	sketchbook	directory	is	where	the	Arduino
IDE	stores	saved	code	files	by	default	and	where	it	searches	for	third-party	libraries.
By	default,	this	folder	is	in	your	home	directory.

When	doing	this,	ensure	that	the	program	used	to	unzip	the	archives	does	not	create
an	additional	directory	(this	is	known	to	happen	when	you	unzip	them	with	Windows
Explorer).	The	directory	structure	should	be	similar	to	that	shown	in	the	following
screenshot:

3.	 Next,	we	will	connect	an	RF	module	to	each	Arduino	that	we	will	use	as	a	sensor
node.	This	should	be	done	by	following	the	next	diagram	and	when	the	Arduino	is
not	powered:

https://github.com/TMRh20/RF24
https://github.com/TMRh20/RF24Network

Next,	using	the	following	steps,	program	each	Arduino	by	using	the	sensor	node	code
based	on	the	system	structure	diagram	given	earlier	in	this	chapter:

1.	 Connect	the	Arduino	to	your	PC	and	open	an	unmodified	version	of	the
SensorNode_Arduino.ino	code	in	the	Arduino	IDE.

2.	 Change	the	THIS_NODE_ADDR	variable	to	the	address	of	the	node	you	have	connected.
Note	that	having	0	at	the	start	of	the	address	is	required,	that	is,	if	the	address	is	23,
you	must	use	023	as	the	value.

3.	 Set	the	NUM_SENSORS	and	sensors	variables	as	described	in	the	Interfacing	sensors
section.

4.	 If	you	program	the	nodes	in	order	of	their	position	away	from	the	base	node	(for
example,	002,	012,	and	003),	you	will	be	able	to	test	each	node	as	you	program	it.
This	is	as	simple	as	opening	the	events	page	on	the	web	application	and	verifying	that
new	events	show	up	for	the	sensor	when	it	is	changed.	If	this	does	not	happen,	refer
to	the	Troubleshooting	section.

5.	 Assuming	that	the	sensor	node	works	as	intended,	you	can	now	disconnect	the	node
from	your	PC.	Although,	if	you	wish	to	keep	testing	additional	nodes,	you	will	need
to	power	the	node	externally.

Once	all	the	sensor	nodes	are	programmed	and	tested,	they	can	be	installed	in	their
intended	positions.	I	found	that	Blu-Tack	is	a	good	temporary	fix	for	the	nodes	that	are	to

be	placed	above	the	doors.

The	sensor	node	with	a	door	switch	and	PIR	sensor	installed	above	a	door	frame	using
Blu-Tack

Troubleshooting
If	you	find	that	a	sensor	node	is	not	updating	the	security	web	application	when	the
sensors	are	triggered,	you	may	need	to	first	check	the	wiring	and	configuration	of	the
sensor	node.	Do	this	to	check	whether	the	sensor	node	has	a	valid	address	and	that	it	is
trying	to	connect	to	a	parent	node	that	exists	on	your	network	(refer	to	the	start	of	The	RF
network	section).

If	this	does	not	seem	to	be	the	issue,	then	you	may	simply	be	out	of	range	of	the	sensors	or
have	a	signal	integrity	issue	caused	by	other	devices	using	the	same	frequency	range.	If
you	suspect	this	to	be	the	case,	you	can	try	changing	the	value	of	the	CHANNEL	variables	in
the	BaseNode_rPi.py	and	SensorNode_Arduino.ino	code	files.	This	value	sets	the
frequency	that	the	RF	module	operates	on.	The	frequency	can	be	derived	by	f	=	2400	+
CHANNEL	MHz.

Hence,	the	default	value	of	90	gives	a	frequency	of	2.49	GHz.	The	RF	module	can	operate
anywhere	between	2.4	GHz	and	2.525	GHz.

Summary
In	this	chapter,	we	gained	more	experience	with	expanding	the	Pi’s	hardware	capability	by
adding	additional	means	of	communication	to	it	and	adding	hardware	using	a	new
protocol,	that	is,	SPI.

Arduino	also	played	a	large	part	in	this	chapter	and	has	helped	to	provide	an	example	of	a
wide	range	of	hardware	that	could	possibly	be	used	with	the	Pi.	Even	if	a	sensor,	motor,	or
other	device	cannot	be	controlled	directly	from	the	Pi,	it	is	almost	guaranteed	that	there	is
an	additional	piece	of	hardware	that	can	sit	between	the	Pi	and	the	device	and	allow
control	of	the	device	from	the	Pi.

We	also	had	a	more	in-depth	look	at	the	type	of	web	applications	that	can	be	created	using
Python	and	Flask	and	introduced	quite	a	few	new	features	into	the	security	web
application	over	the	application	made	in	the	previous	chapter.

We	will	continue	to	explore	the	way	web	applications	can	be	used	as	an	input	method	for
the	Pi	and	control	physical	hardware	in	the	later	chapters	in	this	book	by	using	several
new	ways	of	interfacing	custom	electronics.

Chapter	8.	Remote-operated	Robotic	Arm
In	this	chapter,	we	will	use	the	Raspberry	Pi	to	create	a	simple	robotic	arm	actuated	with
several	micro	servos	mounted	on	a	movable	base	using	two	motors.	All	of	these	will	be
controlled	through	a	web	interface	via	the	Pi	GPIO	port.

We	will	also	mount	the	camera	module	at	the	front	of	the	base	and	stream	it	to	the	web
interface,	enabling	a	full	remote	operation.

What	you	will	need
This	is	a	list	of	the	parts	that	you	will	need	to	complete	this	project.	Most	of	them	will	be
available	at	either	a	local	electronic	components	store	or	an	online	retailer:

The	Raspberry	Pi
A	3	mm	MDF	(600	x	600	mm)
M3	and	M4	screws,	washers,	and	nuts
The	M3	threaded	bar
4x	micro	servos	(www.amazon.co.uk/Vktech-MG90S-Geared-Helicopter-
Airplane/dp/B00FF26480)
Servo	extension	cables	(www.amazon.co.uk/300mm-Servo-Extension-Cable-
Futaba/dp/B009REWWGU)
A	relay	board	(www.ebay.co.uk/itm/New-8-Channel-5V-Relay-Module-Board-for-
Arduino-PIC-AVR-MCU-DSP-ARM-UK-/151105724470)
Geared	motors	(www.rapidonline.com/Electrical-Power/950d5001-Gearbox-and-
Motor-500-1-6mm-Shaft-6-15v-37-1114)
0.1	inch	pin	headers
0.1	inch	female-to-female	pin	jumper	wires
0.1	inch	male-to-female	pin	jumper	wires
A	18	AWG	wire
Thick	copper	wire	(www.clasohlson.com/uk/Copper-Wire-1.2-mm/30-5028)
A	small	section	of	a	prototyping	board	(www.maplin.co.uk/p/veroboard-copper-
stripboard-100x160mm-a62rl)
A	9	V	battery
A	9	V	battery	clip	(www.maplin.co.uk/p/pp3-snap-battery-clip-hf28f)
A	USB	power	bank	(www.maplin.co.uk/p/lithium-ion-6000mah-portable-power-
bank-n48lk)
The	38	mm	version	of	a	castor	(www.clasohlson.com/uk/Swivel-
Castors/Pr309743000)
An	old	USB	cable
The	Raspberry	Pi	camera	module

http://www.amazon.co.uk/Vktech-MG90S-Geared-Helicopter-Airplane/dp/B00FF26480
http://www.amazon.co.uk/300mm-Servo-Extension-Cable-Futaba/dp/B009REWWGU
http://www.ebay.co.uk/itm/New-8-Channel-5V-Relay-Module-Board-for-Arduino-PIC-AVR-MCU-DSP-ARM-UK-/151105724470
http://www.rapidonline.com/Electrical-Power/950d5001-Gearbox-and-Motor-500-1-6mm-Shaft-6-15v-37-1114
http://www.clasohlson.com/uk/Copper-Wire-1.2-mm/30-5028
http://www.maplin.co.uk/p/veroboard-copper-stripboard-100x160mm-a62rl
http://www.maplin.co.uk/p/pp3-snap-battery-clip-hf28f
http://www.maplin.co.uk/p/lithium-ion-6000mah-portable-power-bank-n48lk
http://www.clasohlson.com/uk/Swivel-Castors/Pr309743000

Drive	electronics
The	first	step	is	to	wire	up	and	configure	the	drive	electronics	and	motors	that	will	move
the	various	parts	of	the	robot	arm;	this	will	consist	of	four	micro	servos	that	will	move	the
arm,	and	two	geared	motors	that	will	provide	drive	to	the	chassis.

The	servos	are	powered	by	a	5	V	power	supply	and	can	be	driven	using	a	pulsed	digital
signal	(through	Pulse	Width	Modulation	(PWM))	from	the	Pi	GPIO	ports,	which	define
the	position	that	the	arm	of	the	servo	is	to	be	kept	in.

The	motors	will	be	driven	using	a	relay	board,	which	allows	the	Pi	GPIO	port	to	switch
the	higher	currents	needed	to	power	the	motor.	This	is	just	one	of	the	many	ways	this	can
be	done.	Another	possibility	is	to	use	a	MOSFET	H-bridge,	which	will	also	allow	control
of	the	speed	of	the	motors.	However,	the	relay	solution	is	simpler	in	both	code	and
electronic	construction,	so	it	will	be	used	here.

The	wiring	for	the	drive	electronics	is	shown	in	the	following	diagram:

The	wiring	of	the	Pi	GPIO	header	is	shown	in	greater	detail	in	the	following	diagram:

We	will	start	by	constructing	the	power	board;	this	is	simply	two	sets	of	0.1	inch	pin
headers	on	a	small	section	of	the	stripboard	that	will	distribute	the	5	V	and	ground	power
rails.	We	will	need	at	least	seven	headers	for	both	the	5	V	and	ground	rails;	however,
adding	more	headers	will	allow	possible	expansion	later.

The	board	should	be	laid	out	as	shown	in	the	following	diagram:

Now	that	we	have	all	the	parts	needed	for	the	drive	electronics,	we	can	start	assembling
them	to	test	with	the	web	application,	later	in	the	chapter:

1.	 Solder	a	18	AWG	wire	on	to	each	terminal	of	both	motors,	as	shown	in	the	following

image:

2.	 Take	some	more	18	AWG	wires	and	wire	up	the	relay	board,	as	shown	in	the	diagram
earlier	in	the	chapter.

3.	 Connect	the	motors	and	PP3	battery	clip	to	the	relay	board.	By	now,	the	board	wiring
should	look	something	like	what	is	shown	in	the	following	image:

4.	 Remove	the	small	orange	pin	jumper	on	the	three-pin	connection	on	the	relay	board;
it	can	be	stored	by	connecting	one	side	of	it	to	the	middle	pin	of	this	header,	as	shown
in	the	following	image:

5.	 Now,	take	the	power	board	and	connect	the	four	servos	to	it,	as	shown	in	the
following	image,	to	provide	them	with	power	and	leave	the	signal	pin	accessible
from	the	side	of	the	board:

6.	 Next,	take	four	male-to-female	pin	jumper	cables	and	connect	the	servos	to	the	GPIO
header,	as	shown	in	the	preceding	diagram.

7.	 Take	the	USB	cable	and	cut	the	cable	10	cm	away	from	the	USB	A	connector.
8.	 Strip	the	outer	insulation	and	shielding	to	reveal	four	wires.
9.	 Strip	the	red	and	black	wires.	These	are	the	5	V	and	ground	power	connections	that

we	will	use	to	power	the	robot	arm	from	the	USB	power	bank.
10.	 Connect	the	wires	to	the	two	male-to-female	pin	jumpers	using	a	strip	of	two

terminal	blocks,	as	shown	in	the	following	image:

11.	 Finish	off	any	remaining	wiring	by	following	the	wiring	diagram	shown	earlier.

Now	that	the	wiring	is	complete,	attach	the	USB	power	bank	to	the	USB	cable	to	provide
power	to	the	Pi	and	servos.	Ensure	that	you	use	the	higher	output	current	port	on	the	bank
(usually	marked	as	either	2.1	A	or	used	for	tablet	charging)	and	connect	a	9	V	PP3	battery
to	the	battery	clip	attached	to	the	relay	board.

Setting	up	the	camera
There	are	a	few	ways	in	which	we	could	stream	a	video	from	the	Raspberry	Pi	camera
module	to	a	web	page.	The	easiest	of	which	is	to	use	the	Video	for	Linux	2	(V4	L2)
driver	(which	is	documented	in	greater	detail	at	www.linux-
projects.org/modules/sections/index.php?op=viewarticle&artid=14),	which	includes	a
server	that	allows	the	camera	to	be	controlled	and	streamed	over	a	network	connection.

First,	we	will	connect	and	configure	the	camera	in	the	Raspbian	OS	and	perform	the
following	steps:

1.	 With	the	power	disconnected,	connect	the	camera	module	to	the	Camera	Serial
Interface	(CSI)	port	on	the	Pi	just	behind	the	Ethernet	port.	You	can	do	this	by
lifting	the	cable	clip,	inserting	the	flat,	flex	cable,	as	shown	in	the	next	image,	and
pressing	down	on	the	clip	such	that	the	cable	is	firmly	held	in	place:

2.	 Next,	boot	into	Raspbian	and	run	the	configuration	utility:

sudo	raspi-config

3.	 Select	the	Enable	Camera	option	using	the	arrow	keys	and	press	Enter:

http://www.linux-projects.org/modules/sections/index.php?op=viewarticle&artid=14

4.	 Select	the	Enable	option	and	press	Enter:

5.	 Exit	the	configuration	utility	by	selecting	the	Finish	option	and	reboot	the	Pi.

The	Pi	camera	is	now	enabled	within	the	OS.	We	will	now	install	the	V4L2	driver	with	the
following	steps:

1.	 Before	installing	the	driver,	we	first	need	to	add	an	additional	repository	to	the	APT
package	manager.	This	manager	requires	you	to	download	and	add	an	APT	key,
which	is	done	using	the	following	two	commands:

wget	http://www.linux-projects.org/listing/uv4l_repo/lrkey.asc

sudo	apt-key	add	./lrkey.asc

2.	 Next,	we	must	add	the	repository	to	the	list	of	sources	used	by	APT.	This	is	done	by
editing	the	sources.list	file	using	nano:

sudo	nano	/etc/apt/sources.list

3.	 Next,	add	the	following	line	to	the	sources.list	file:

deb	http://www.linux-projects.org/listing/uv4l_repo/raspbian/	wheezy	

main

This	looks	similar	to	what	is	shown	in	the	following	screenshot:

4.	 Now,	we	need	to	refresh	the	list	of	packages	known	to	APT	and	finish	by	installing
the	required	packages:

sudo	apt-get	update

sudo	apt-get	install	uv4l	uv4l-raspicam	uv4l-raspicam-extras	uv4l-

server

5.	 Once	the	installation	is	complete,	reboot	the	Pi	to	complete	the	setup.

Now	that	the	camera	module	and	streaming	server	are	both	setup,	the	camera	can	be	tested
by	browsing	the	IP	address	of	the	Pi	on	the	port	8080	using	a	PC	connected	to	the	same
network	as	the	Pi.	This	is	done	by	entering,	for	example,	192.168.0.56:8080	into	the
browser	address	bar	assuming	that	192.168.0.56	was	the	IP	address	of	the	Pi.

Assuming	that	the	server	setup	went	according	to	your	plan,	you	should	see	a	web	page
similar	to	that	shown	in	the	following	screenshot.	Here,	you	will	see	two	links:	one	to
view	the	video	stream	from	the	Pi	camera	and	one	to	configure	the	camera	settings.

Although	we	will	be	able	to	view	a	stream	straightaway,	we	will	go	to	the	settings	page
first	(shown	in	the	following	screenshot)	in	order	to	change	the	capture	resolution	to
increase	the	frame	rate	of	the	video	stream.

Here,	we	will	change	the	image	width	and	height	options	at	the	top	of	the	page.	The
optimal	values	will	depend	on	the	network	connection	being	used.	However,	I	have	found
that	600	x	400	is	a	reasonable	starting	point,	as	this	streams	well	on	most	connections	and
gives	an	image	of	sufficient	quality	for	which	we	will	use	the	camera.

To	set	this,	enter	the	corresponding	options	in	the	height	and	width	fields	at	the	top	of	the
page	and	click	on	the	Apply	button	towards	the	end	of	the	page	as	shown	in	the	following
screenshot.	Once	this	is	applied,	you	will	be	redirected	back	to	the	settings	page.	To	get
back	to	the	main	page,	either	use	the	home	link	at	the	bottom	of	the	page	or	navigate	to
the	page	manually	by	using	the	same	address	we	used	previously.

Once	you’re	back	on	the	main	page,	select	the	video	stream	link	to	view	the	live	feed
from	the	Pi	camera.	The	following	screenshot	displays	the	main	page	on	which	the	video
is	streamed:

You	will	notice	some	delay	between	the	movement	in	the	front	of	the	camera	and	it	being
displayed	on	the	web	page.	This	is	caused	by	overheads	in	the	streaming	protocol	and	the
network	the	Pi	and	computer	are	connected	to.	Unfortunately,	there	is	little	that	can	be
done	about	this,	however,	I	have	only	ever	managed	to	measure	at	most	three	seconds	of
delay.

Deploying	web	applications
Next,	we	will	deploy	the	web	application	that	will	allow	us	to	control	the	arm	and	chassis
remotely	and	view	the	video	stream	from	the	Pi	camera.	Since	this	web	application	is	also
built	using	the	Flask	framework,	the	process	of	deploying	it	will	again	be	similar	to	that
used	in	the	previous	chapters.

Before	we	start,	be	sure	to	copy	the	config_files	and	robot_arm_webapp	directories
from	the	project	files	to	the	/home/pi	directory	on	the	Pi:

1.	 First,	we	will	install	the	required	packages	and	libraries,	including	the	RPIO	Python
library	used	to	control	the	GPIO	pins	from	Python:

sudo	apt-get	update

sudo	apt-get	upgrade

sudo	apt-get	install	python-pip	git	python-dev	gunicorn	supervisor	

nginx

sudo	pip	install	RPIO

2.	 Next,	download	and	install	the	Flask	framework:

git	clone	https://github.com/mitsuhiko/flask.git

cd	flask

sudo	python	setup.py	install

cd

3.	 Now,	copy	the	Nginx	configuration	and	perform	the	configuration	self-test:

sudo	cp	config_files/nginx/robot_arm.conf	/etc/nginx/sites-

available/robot_arm.conf

sudo	ln	-s	/etc/nginx/sites-available/robot_arm.conf	/etc/nginx/sites-

enabled/

sudo	rm	/etc/nginx/sites-enabled/default

sudo	nginx	-t

sudo	service	nginx	restart

4.	 Copy	the	supervisor	configuration	and	tell	the	supervisor	to	reread	the	configuration
files:

sudo	cp	config_files/supervisor/robot_arm_webapp.conf	

/etc/supervisor/conf.d/robot_arm_webapp.conf

sudo	supervisorctl	reread

5.	 Copy	the	web	application	configuration	file	to	the	home	directory.	This	defines	the
calibration	settings	for	the	servo	positions	and	the	GPIO	pins	each	device	is
connected	to.	The	GPIO	settings	should	not	be	changed	if	the	electronics	were	built
by	following	the	wiring	diagram.	We	will	look	at	the	calibration	values	in	greater
detail	later	in	this	chapter.	However,	it	would	be	useful	to	open	the	file	and	be
familiar	with	the	options	that	are	available	there.

sudo	cp	config_files/robot_arm.conf	~

nano	~/robot_arm.conf

6.	 Finally,	tell	the	supervisor	to	start	the	web	application:

sudo	supervisorctl	update

sudo	supervisorctl	start	robot_arm_webappp

Now	that	the	web	application	has	been	deployed,	we	can	test	the	electronics	and
camera	streaming	through	the	web	application.

The	main	page	of	the	web	application	shows	the	movement	controls	for	the	chassis
and	piArm:

7.	 First,	test	the	movement	controls	and	ensure	that	both	the	motors	rotate	in	the	same
direction	when	you	select	Forward	and	in	the	opposite	direction	when	you	select
Reverse.

8.	 Next,	ensure	that	the	arm	controls	move	the	servos	correctly.	For	Joint	2	and	Hand,
a	single	servo	should	move	and	for	Joint	1,	two	servos	should	move	in	the	opposite
direction.

The	video	page	(accessed	using	the	Video	link	in	the	top-right	corner	of	the	web
application)	shows	the	live	video	stream	from	the	Pi	camera	module.	Below	the	stream,
there	is	a	link	to	the	camera	settings	page	provided	by	the	streaming	server.	Note	that	there
is	no	link	back	to	the	web	application	from	the	camera	settings	page,	so	you	must	navigate
back	to	it	manually	after	following	this	link.

There	is	also	a	page	that	shows	both	the	video	stream	and	controls	accessed	using	the
Control	&	Video	link	in	the	top-right	corner	of	the	web	application.

The	arm	and	chassis	construction
Now	that	the	electronics	are	assembled,	it	is	time	to	assemble	the	robotic	arm	and	chassis.
Firstly,	we	will	go	over	what	parts	are	needed	to	construct	the	robot.

In	the	cad	directory	in	the	project	files,	there	are	several	DXF	files	for	parts	that	are
needed;	the	following	is	a	list	of	all	the	parts	that	are	needed	to	construct	the	robot:

1	x	Arm1_Main.dxf
2	x	Arm1_ServMount.dxf
1	x	Arm2_Main.dxf
2	x	Wheel.dxf
1	x	Spacers.dxf
1	x	CameraMount.dxf
1	x	Claw_ServoAttachment.dxf
1	x	BaseLayer.dxf

Once	all	of	the	parts	are	machined,	we	can	start	the	assembly:

1.	 First,	we	need	to	attach	the	two	geared	motors	and	castor	to	the	chassis	base.	This	is
done	using	four	M3	screws	and	nuts	for	each	motor	and	four	M4	screws	and	nuts	for
the	castor.

2.	 Next,	we	can	attach	the	relay	board	and	the	Pi	to	the	chassis	base	using	M3	screws
and	nuts	as	well	as	two	of	the	spacers	between	the	chassis	base	and	PCBs.

3.	 Next,	we	will	attach	the	claw	attachment	to	one	of	the	servos,	which	will	be	mounted
at	the	end	of	the	second	arm	assembly.	First,	use	one	of	the	plastic	attachments
supplied	with	the	servo	to	manually	move	the	servo	to	half	of	its	travel	(this	is	to
allow	plenty	of	travel	on	either	side	of	the	current	position	for	the	calibration	step
later	on).

4.	 Once	the	servo	shaft	is	in	the	correct	position,	we	can	remove	the	plastic	attachment
and	attach	the	MDF	claw	attachment.	This	is	done	by	pushing	the	servo	shaft	into	the
hole	in	the	center	of	the	circle.	This	will	take	some	force,	but	will	ensure	that	the
MDF	has	a	good	grip	of	the	servo	shaft.

5.	 Once	the	claw	attachment	has	been	attached	to	the	shaft,	use	an	M3	washer	and	the
screw	that	came	with	the	servos	to	fasten	the	attachment	onto	the	servo	shaft	using
the	tapped	thread	at	the	end	of	the	servo	shaft.

6.	 Next,	we	will	attach	the	servo	to	the	arm	2	section;	this	is	done	by	first	threading	the
cable	through	the	square	cutout	in	one	of	the	arm	sections	and	using	some	hot	glue	to
fix	the	servo	into	the	cutout,	as	shown	in	the	following	image:

7.	 Next,	we	need	to	cut	six	50	mm	lengths	of	M4	threaded	bar,	which	will	later	be	used
to	assemble	the	two	arm	sections.

8.	 Next,	we	will	assemble	the	upper	arm	assembly.	Start	by	assembling	the	two	sections
of	the	upper	arm	by	using	two	sections	of	the	M4	bar	in	the	first	two	holes	nearest	to
the	claw	and	space	the	gap	using	nine	of	the	MDF	spacers.

9.	 Insert	a	section	of	the	M4	threaded	bar	through	the	two	holes	at	the	end	of	the	upper
arm	section;	this	will	be	used	to	connect	to	the	servo,	which	will	move	the	upper	arm
section.

10.	 Next,	we	will	attach	the	servo	that	will	move	the	upper	arm	section	to	the	lower	arm
section;	again,	the	servo	must	first	be	set	to	50	percent	of	its	travel	before	you	do	this.

11.	 Now,	attach	a	single	arm	to	the	servo	and	screw	it	onto	the	servo	shaft.
12.	 Attach	the	servo	onto	the	lower	arm	panel	in	the	same	way	as	was	done	with	the

previous	servo,	as	shown	in	the	following	image:

13.	 Next,	we	will	take	the	remaining	two	servos	and	attach	them	to	the	two	mounting
brackets	that	are	attached	to	the	chassis	base.	These	servos	should	both	be	set	to	50
percent	travel	and	aligned	such	that	one	servo	is	in	the	top-right	corner	of	the	cutout
and	the	other	is	in	the	top-left	corner.	This	is	to	ensure	that	the	shafts	have	the	best
chance	of	lining	up	when	they	are	attached	to	the	chassis	base.

14.	 Next,	the	two	lower	arm	panels	must	be	attached	to	the	two	servos.	This	is	done	by
pressing	the	shaft	into	the	holes	in	the	lower	end	of	the	arm	panels	and	fastening	the
shaft	with	M3	washers	and	the	screws	supplied	with	the	servos.

15.	 Now,	the	lower	arm	assembly	can	be	assembled	in	the	similar	way	to	the	upper-arm
section	by	fastening	the	two	panels	together	using	two	of	the	M4	threaded	bar
sections	and	eleven	of	the	MDF	spacers.

16.	 The	upper	and	lower	arm	sections	can	now	be	joined	using	a	section	of	the	M4
threaded	bar,	as	shown	in	the	following	image.	Note	that	this	should	be	a	fairly	loose
fastening	to	reduce	the	friction	in	this	joint	and	therefore	reduce	the	load	on	the
servo.

17.	 Now,	we	can	attach	the	entire	arm	assembly	to	the	chassis	base	by	using	an	M3	screw
on	each	of	the	servo	brackets,	as	shown	in	the	following	image:

18.	 Now,	we	can	connect	the	servo	mounted	in	the	lower-arm	section	to	the	bar	across
the	upper-arm	section	using	a	piece	of	rigid	copper	wire.	This	should	be	attached	to
get	the	desired	field	of	movement	on	the	upper-arm	section,	which	can	be	measured
by	manually	moving	the	servo	arm.

19.	 The	final	step	of	the	assembly	is	to	attach	the	camera	to	the	mounting	bracket;	the
camera	should	first	be	disconnected	to	feed	the	flat,	flex	cable	through	the	slot	at	the
bottom	of	the	bracket,	as	shown	in	the	following	image:

20.	 Next,	attach	the	camera	to	the	bracket	by	using	small	sections	of	Blu-Tack	(this
allows	us	to	adjust	the	angle	of	the	camera	to	the	optimal	angle)	and	place	the	camera
attachment	into	the	slot	in	the	chassis	base.

Once	fully	assembled,	the	robot	should	look	something	like	what	is	shown	in	the
following	image:

Calibration
Now	that	the	arm	and	chassis	are	built,	we	need	to	calibrate	the	motors	and	servos	to
ensure	that	they	react	in	the	correct	way	to	the	commands	from	the	web	application.	In	the
case	of	the	servos,	do	not	attempt	to	move	them	too	far	as	this	will	cause	damage	to	them
or	other	parts	of	the	robotic	arm.

Chassis	motors
Firstly,	we	will	ensure	that	the	chassis	motors	behave	correctly.	This	is	simply	a	case	of
running	the	motors	in	each	of	their	directions	to	ensure	that	the	chassis	moves	in	the
direction	intended.

When	running	in	forward	or	reverse	motion,	if	one	motor	is	running	in	the	wrong
direction,	this	can	be	corrected	by	swapping	the	polarity	of	the	motor.	You	can	swap	the
polarity	by	swapping	the	connections	on	the	two	wires	leading	to	it	from	the	relay	board.

When	the	motor	runs	in	the	clockwise	or	counter	clockwise	rotation,	if	the	base	rotates	in
the	wrong	direction,	then	both	motors	need	to	have	their	polarity	swapped.

Arm	2	and	hand	servos
Since	these	two	servos	operate	independently,	they	are	fairly	simple	to	calibrate,	as	all	that
needs	to	be	done	is	to	find	the	limits	of	the	range	you	want	the	servos	to	move	in.

To	find	this,	we	will	use	the	RPIO	library	from	the	Python	console	to	set	different	values
on	the	servo:

1.	 First,	from	an	SSH	session	on	the	Pi,	open	a	new	Python	console	as	root	(root	access
is	required	as	the	library	needs	to	access	memory	directly	to	control	the	GPIO	pins):

sudo	python

2.	 Next,	import	the	RPIO	library	using	the	following	line	and	create	a	Servo	object:

import	RPIO.PWM	as	pwm

s	=	pwm.Servo()

3.	 Now,	you	can	set	the	position	of	the	servo	using	the	following	line	of	code,	where
GPIO	is	the	GPIO	number	the	servo	is	connected	to	and	VALUE	is	the	timing	value	for
the	PWM	signal	sent	to	the	servo	(this	should	be	between	500	and	2500):

s.set_servo(GPIO,	VALUE)

4.	 Repeat	the	last	step	until	you	find	good	values	for	the	maximum	and	minimum	values
of	the	servo	that	give	reasonable	limits	to	the	motion	of	the	servo.

Once	the	optimal	value	has	been	found,	it	should	be	entered	in	the	robot_arm.conf
configuration	file	in	the	appropriate	_MAX	and	_MIN	configuration	options.

The	arm	1	servos
Since	these	two	servos	operate	parallely	with	each	other,	the	calibration	procedure	is
slightly	more	complex.	We	must	first	determine	a	point	on	both	the	servos	where	they	are
in	equal	positions	and	are	not	moving	to	try	and	cancel	each	other	out.

1.	 Firstly,	open	a	Python	console	as	before:

sudo	python

2.	 Import	the	GPIO	library:

import	RPIO.PWM	as	pwm

3.	 Next,	create	two	servo	objects,	one	for	each	servo:

s1	=	pwm.Servo()

s2	=	pwm.Servo()

4.	 Now,	set	a	starting	value	(VALUE)	for	the	first	servo	(on	GPIO	number,	GPIO)	that	is
within	the	range	of	movement	for	the	lower	section	of	the	arm	(1500	is	a	good
starting	value;	however,	you	may	need	to	experiment	to	find	the	best	value):

s1.set_servo(GPIO,	VALUE)

5.	 Now,	we	need	to	find	a	value	(VALUE)	on	the	second	servo	(on	GPIO	number,	GPIO)	at
which	both	servos	are	at	rest	and	not	trying	to	move.	This	indicates	that	the	two
servos	are	in	the	same	position.	Note	that	you	may	need	to	move	the	arm	slightly	to
stop	the	servos	from	trying	to	move.	The	weight	of	the	arm	may	keep	the	servos	in
motion	even	though	they	are	in	the	same	position:

s2.set_servo(GPIO,	VALUE)

6.	 Once	the	two	servos	are	in	the	same	position,	make	a	note	of	the	two	values	(for
example,	1400	and	1600)	and	calculate	the	midpoint	of	the	two	(1500).	This	value
should	also	be	a	position	in	which	both	the	servos	will	be	in	the	same	position.

7.	 Now	that	we	know	this	value,	we	can	define	the	sets	function,	which	will	set	both
the	servos	to	a	given	offset,	allowing	us	to	derive	the	upper	and	lower	limits	for	both
servos.	Here,	GPIO_1	and	GPIO_2	are	the	GPIO	numbers	that	each	servo	is	connected
to	and	VAL	is	the	midpoint	value	calculated	in	the	previous	step:

def	sets(position_delta):

				s1.set_servo(GPIO_1,	VAL	+	position_delta)

				s2.set_servo(GPIO_2,	VAL	–	position_delta)

8.	 We	can	now	use	trial	and	error,	as	with	the	previous	servos,	to	find	the	optimal
maximum	and	minimum	servos	positions	by	making	calls	to	the	sets	function:

sets(-300)

sets(0)

sets(1000)

…

9.	 Now	that	we	have	the	maximum	and	minimum	values	that	can	be	passed	to	the	sets

function,	we	can	easily	derive	the	values	that	need	to	be	set	in	the	configuration	file
as	(where	VAL	is	the	calculated	midpoint,	SETS_MIN	and	SETS_MAX	are	the
maximum	and	minimum	values	passed	to	the	sets	function,	SETS_MIN	is	negative,
and	SETS_MAX	is	positive):

ARM_1_A_SERVO_MIN	=	VAL	+	SETS_MIN
ARM_1_A_SERVO_MAX	=	VAL	+	SETS_MAX
ARM_1_B_SERVO_MIN	=	VAL	-	SETS_MAX
ARM_1_B_SERVO_MAX	=	VAL	–	SETS_MIN

Once	these	values	are	derived,	they	can	be	entered	into	the	robot_arm.conf	configuration
file.

Troubleshooting
The	following	are	a	few	issues	you	may	come	across	while	building	and	using	the	robotic
arm,	where	the	causes	of	the	issues	and	information	on	how	the	problem	can	be	fixed.

The	video	stream	has	a	substantial	delay
This	delay	can	be	caused	if	you	attempt	to	stream	at	too	high	of	a	resolution.	The	first
thing	to	do	is	to	try	and	reduce	the	resolution	you	are	streaming	at	(note	that	this	has	to	be
done	every	time	the	Pi	is	rebooted).

If	the	issue	is	still	there,	then	you	may	want	to	try	reducing	the	JPEG	quality	and	frame
rate	options	on	the	streaming	server	configuration	page	(which	is	accessible	via	the	link	on
the	video	stream	page	of	the	web	application).

The	servos	make	a	loud	humming	noise
The	servos	can	often	make	a	loud	humming	sound	when	they	are	under	substantial	load.
Usually,	this	is	the	case	when	the	arm	is	fully	extended	or	is	attempting	to	lift	a	load.	If
this	continues,	an	extended	length	of	time	will	consume	more	battery	power	and	could
lower	the	expected	lifetime	of	the	servos;	however,	in	this	project,	this	behavior	is	normal
operation.

Control	of	the	robot	is	lost
If	the	control	of	the	robot	is	lost,	the	most	likely	cause	is	the	loss	of	the	Wi-Fi	signal.
However,	other	causes	can	include	low	power	in	the	USB	battery	bank	or	additional	load
on	the	servos	that	causes	them	to	draw	more	power	than	usual	(however,	this	should	only
ever	cause	an	issue	when	the	battery	bank	is	running	low).

The	arm	jumps	to	new	positions
This	can	be	caused	by	too	many	requests	to	move	an	axis	of	the	arm	in	a	given	direction
being	sent	in	a	period	of	time.	If	you	find	that	it	takes	too	long	to	move	the	arm,	then
consider	increasing	the	value	of	SERVO_DELTA	in	the	web	application	configuration	file.

Summary
In	this	chapter,	we	had	a	look	at	yet	more	ways	to	interface	with	hardware	over	the	GPIO
port	that	includes	using	pulse	width	modulation,	which	can	be	used	to	drive	devices	such
as	the	servos	used	in	this	chapter.	We	also	took	a	look	at	how	to	emulate	an	analog	signal,
which	can	then	be	used,	for	example,	to	control	the	brightness	of	an	LED.

We	also	took	a	look	at	the	ways	in	which	the	Raspberry	Pi	camera	can	be	accessed
remotely	using	the	V4	L	streaming	server.	In	the	server,	the	same	control	and	streaming
options	that	are	available	to	the	local	applications	are	made	available	to	the	devices	on	the
same	network.

In	the	next	chapter,	we	will	look	at	how	to	use	the	Pi	for	a	true	ubiquitous	computing
project,	which	will	combine	an	information	display	into	a	fairly	standard	mirror.

Chapter	9.	Magic	Mirror
In	this	chapter,	we	will	create	a	mirror	that	is	capable	of	being	both	a	reflective	surface
and	an	information	display	that	can	be	used	to	show	customized	information.

This	will	be	done	by	taking	advantage	of	the	properties	of	a	two-way	mirror	(commonly
used	for	shop	security),	which	will	allow	light	to	pass	through	it	as	if	it	was	a	glass	when
the	other	side	is	darker	and	behave	like	a	regular	mirror	otherwise.

This	project	is	based	on	the	Magic	Mirror	project	by	Michael	Teeuw.	More	information
about	his	original	version	can	be	found	at	http://michaelteeuw.nl/tagged/magicmirror.

http://michaelteeuw.nl/tagged/magicmirror

What	you	will	need
The	following	is	a	list	of	things	that	you’d	need	for	this	project:

The	Raspberry	Pi
A	USB	keyboard	(for	setup	only)
A	VGA	monitor
A	6	mm	plywood
A	12	mm	plywood
A	sheet	of	two-way	mirrored	acrylic	(www.cutplasticsheeting.co.uk/mirrored-
sheeting/two-way-acrylic-mirror)
M4	machine	screws	and	washers

http://www.cutplasticsheeting.co.uk/mirrored-sheeting/two-way-acrylic-mirror

Tools	you	will	need
The	following	is	a	list	of	tools	you	will	need	to	construct	the	plywood	enclosure	for	the
mirror:

A	25	mm	Forstner	drill	bit
A	large	electric	drill	or	drill	press
A	jigsaw
A	router	and	table
A	straight,	top	bearing,	and	guided	router	bit	(www.screwfix.com/p/titan-flush-trim-
bit-with-bearing-shank-12-7-x-25mm/72588)
A	4	mm	rebate	router	bit	(www.screwfix.com/p/biscuit-router-cutter-no-20-shank-
41mm/86179)

Note	that	here,	a	router	and	table	are	required	to	machine	the	plywood	enclosure	for	the
mirror,	which	are	both	tools	that	you	may	not	have	easy	access	to.	If	this	is	the	case,	as
with	laser	cutting	in	the	previous	chapters,	a	good	place	to	start	would	be	to	look	for	a
local	hacker	space,	which	would	likely	have	these	tools	and	members	who	would	be
happy	to	help	you	use	them.

The	router	bits	I	have	lined	here	are	for	a	1/2	inch	shank,	which	must	fit	the	router	you
intend	to	use.	If	your	router	can	only	find	1/4	inch	shank,	then	you	will	need	to	find
alternative	cutters.

If	you	still	have	trouble	getting	access	to	one,	there	is	an	alternative	way	to	build	this
project	that	will	forgo	the	plywood	enclosure	at	the	expense	of	some	aesthetic	appeal	of
the	mirror.

The	monitor	you	select	should	preferably	be	widescreen	if	you	intend	to	use	the	monitor	in
portrait	mode	(as	will	be	done	in	this	chapter).	Although	it	is	not	required,	the	build
process	is	made	easier	if	the	control	buttons	for	the	monitor	are	mounted	on	the	back	of
the	display.

http://www.screwfix.com/p/titan-flush-trim-bit-with-bearing-shank-12-7-x-25mm/72588
http://www.screwfix.com/p/biscuit-router-cutter-no-20-shank-41mm/86179

Theory
The	two-way	mirror	that	will	be	used	in	this	project	has	an	important	property.	When	one
side	of	the	mirror	is	exposed	to	a	brighter	ambient	light	than	the	other,	this	light	is
reflected	in	the	mirror	surface	and	is	allowed	to	pass	through	to	the	other	(darker)	side	of
the	mirror.

Typically,	this	property	is	used	to	control	how	the	mirror	is	used	in	security	applications,
for	example,	a	shop	may	fit	such	a	mirror	between	an	office	and	the	shop	floor	so	that
those	in	the	office	can	still	see	what	is	happening	on	the	shop	floor.	For	this	to	happen,	the
office	must	have	very	minimal	lighting	to	ensure	that	the	bright	light	from	the	already
well-lit	shop	floor	passes	through	to	the	office	and	that	no	light	from	the	office	leaks
through	the	mirror,	exposing	it	to	the	shop	floor.

In	our	project,	we	will	use	this	property	to	create	a	display	that	shows	white	text	and
graphics	on	a	mirrored	background	by	placing	a	section	of	the	mirror	in	front	of	an	LCD
monitor.

This	is	possible	if	you	keep	the	display	dark	in	the	areas	where	the	mirror	surface	should
be	preserved	and	use	bright	white	text	and	graphics	where	they	should	be	shown	instead	of
the	mirror	surface.	By	doing	this,	you	can	allow	them	to	pass	through	the	mirror	surface
provided	that	the	brightness	of	the	display	is	greater	than	that	of	the	ambient	light	in	the
room	the	project	is	in.

For	this	reason,	it	is	worth	noting	that	this	project	will	not	work	if	the	mirror	surface	is
subject	to	bright	sources	of	light,	so	it	is	best	to	keep	the	mirror	pointed	away	from	large
windows	or	lights.

While	searching	for	a	suitable	monitor,	it	is	also	better	to	get	the	highest	combination	of
brightness	and	contrast	ratio	possible,	as	this	will	allow	you	to	get	brighter	text	and
graphics	from	the	display.	This	in	turn	will	improve	the	quality	of	the	image	on	the	mirror
surface	while	maintaining	a	dark	background	so	as	not	to	cause	any	light	leakage	where
the	display	should	remain	a	mirror.

The	web	application
The	web	application	we	will	use	for	the	mirror	is	essentially	a	framework	built	using
Flask,	which	provides	a	common	interface	for	individual	widgets	displayed	on	the	mirror.
In	order	to	get	the	desired	effect	where	the	widgets	are	visible	through	the	mirror,	the	page
must	have	a	black	background	with	white	text	and	graphics.	For	best	results,	the	text
should	be	as	large	as	possible	so	that	it	allows	maximum	light	to	pass	through	the	mirror’s
surface.

Developing	a	new	widget
Each	type	of	widget	that	can	be	shown	on	the	mirror	is	comprised	of	four	files:

A	server-side	(Python)	script	file	(widgets/CLASSNAME.py)
A	Jinja-style	template	file	(templates/widgets/CLASSNAME.html)
A	CSS	file	(static/widgets/CLASSNAME/style.css)
A	client-side	(JS/jQuery)	script	file	(static/widgets/CLASSNAME/script.js)

Here,	CLASSNAME	is	the	class	name	given	to	the	widget	that	is	used	in	the	widget
configuration	files	to	create	an	instance	of	the	widget	on	the	mirror	display.	Templates	for
these	files	can	be	generated	using	the	following	script	(assuming	that	you	are	currently	in
the	mirror_webapp/	directory):

./make_new_widget	CLASSNAME

We	will	now	take	a	look	at	the	demo	widget	to	see	what	needs	to	be	done	if	you	want	to
implement	your	own	widgets.

The	Python	code
The	first	step	to	develop	a	new	widget	is	to	create	a	Python	script	that	will	provide	the
web	application	with	the	data	it	needs	to	operate.	This	will	have	access	to	the
configuration	options	that	are	set	under	the	[widget]	section	of	the	configuration	file.	The
main	part	of	the	Python	script	is	the	get_data	function	which	must	return	a	dictionary	that
will	be	made	accessible	from	the	widget	data	web	service	and	translated	into	JavaScript
Object	Notation	(JSON):

from	AbstractWidget	import	AbstractWidget

class	DemoWidget(AbstractWidget):

				def	get_data(self,	config):

								self.logger.info('Getting	data	for	demo	widget')

								data	=	{	'greeting':'No	Text	Set!'	}

								if	'text'	in	config:

												data['greeting']	=	config['text']

								return	data

Here,	you	can	see	the	get_data	function,	which	takes	the	widget	configuration	as	a
dictionary	parameter	and	returns	a	dictionary.	This	is	only	a	simple	example	that	returns	a
text	string	taken	from	the	configuration	file.	However,	there	is	a	lot	of	scope	for	the
additional	processing	that	can	be	done	here	(refer	to	the	code	for	some	of	the	other
widgets,	for	example).

You	will	also	notice	that	the	first	line	of	the	function	is	used	to	log	information.	This	can
be	very	useful	for	debugging	the	application.	The	log	is	kept	in	the
/home/pi/mirror_webapp/mirror_app.log	file	and	contains	the	log	output	from	the
framework	application	and	each	configured	widget.

Text	can	be	output	to	the	log	at	several	levels,	from	least	severe	to	most	severe:	debug,
info,	warning,	error,	and	critical.

The	data	returned	by	the	get_data	function	is	made	available	on	the	widget	data	web

service	available	at	[PI_IP]/widget_data/[widget_id].	Here,	PI_IP	is	the	IP	address	of
the	Pi	and	widget_id	is	the	widget	ID	that	is	given	by	the	filename	of	the	configuration
file	(that	is,	a	widget	with	the	configuration	filename	clock.conf	will	have	the	widget	ID
clock).

The	Jinja	page	template
The	web	page	for	the	application	is	generated	by	Flask	using	Jinja2	templates.	This	allows
a	very	simple	and	clean	way	of	building	an	HTML	structure	dynamically.

The	first	thing	required	in	the	file	is	the	extends	statement,	which	takes	a	common	section
of	code	used	for	each	widget	and	adds	the	contents	block	to	it	based	on	the	rest	of	the	file:

{%	extends	"widget.html"	%}

The	next	section	is	the	widget_contents	block.	This	is	where	the	actual	contents	of	the
widget	should	be	written.

Here,	you	have	access	to	a	data	variable	that	contains	the	data	returned	by	the	get_data
function	in	the	Python	code	for	the	widget:

{%	block	widget_contents	%}

		<p>{{	data.greeting	}}</p>

{%	endblock	%}

Typically,	you	will	find	that	a	lot	of	dynamic	content	is	handled	by	JavaScript,	as	once	the
Pi	has	booted,	the	web	page	will	never	be	refreshed	under	normal	operation.	Hence,	this
HTML	generation	step	is	only	ever	performed	once.

Tip
For	more	information	on	the	Jinja	template	language,	refer	to	the	documentation	at
http://jinja.pocoo.org/docs/dev/.

The	JavaScript	code

http://jinja.pocoo.org/docs/dev/

Since	the	demo	widget	does	not	have	any	dynamic	content,	the	functions	in	the	JavaScript
file	are	just	empty	placeholders.	However,	the	main	point	to	be	shown	here	is	how	the
functions	are	called	by	the	framework.

Firstly,	there	is	a	closure	(a	way	of	limiting	scope	in	JavaScript	to	get	something	that
behaves	similar	to	a	class	in	object-oriented	languages)	that	defines	the	widget.	This	can
be	used	to	store	instance-specific	variables	for	the	widget:

var	DemoWidget	=	function()	{

}

Next,	there	is	a	public	function	that	is	executed	when	the	page	first	loads.	This	is	used	to
get	the	widget	into	its	initial	state	(for	example,	populating	a	list	of	RSS	items	before	the
next	update	or	setting	the	time	of	a	Date	object):

DemoWidget.prototype.init	=	function(widgetDOM)	{

		return;

};

The	next	function	is	called	at	intervals	of	the	update_time	variable	set	in	the	widget
configuration	file	(refer	to	the	Configuration	section	later	in	this	chapter).	This	should	be
used	to	update	the	contents	of	the	widget	so	that	the	mirror	keeps	displaying	new
information,	for	example,	refreshing	a	list	of	news	stories	or	incrementing	the	second	hand
of	a	clock:

DemoWidget.prototype.update	=	function(widgetDOM)	{

		return;

};

The	widgetDOM	parameter	given	to	both	the	functions	is	the	Document	Object	Model
(DOM)	of	the	widget	container	element.	This	provides	a	safe	and	easy	way	to	access	the
elements	of	your	widget	without	having	to	rely	on	ID	attributes	in	the	HTML.

For	instance,	to	access	a	certain	paragraph	element	of	the	widget,	you	would	first	assign	a
class	to	the	element	in	the	HTML	template,	shown	as	follows:

<p	class="news-story-title"></p>

Then,	you	can	easily	access	the	element	and	change	its	test	using	the	following	line	of
JavaScript:

widgetDOM.getELementsByClassName("news-story-title")[0].innerText	=	"Hello,	

World!"

Tip
For	more	information	on	JavaScript	development,	refer	to	the	w3schools	reference	pages
at	www.w3schools.com/jsref.

http://www.w3schools.com/jsref

The	Pi	setup
The	initial	steps	to	set	up	the	Pi	are	to	get	a	copy	of	Raspbian	installed	on	an	SD	card	of	at
least	4	GB	(although	8	GB	or	larger	is	preferable),	as	described	in	Chapter	1,	Raspberry	Pi
Pirate	Radio,	and	if	desired,	connect	the	Pi	to	your	Wi-Fi	network.	This	project	will	keep
the	Pi	outside	the	display	enclosure	so	that	Wi-Fi	is	only	really	needed	if	a	wired
connection	is	not	available.

Rotating	the	display
You	may	wish	to	rotate	the	display	to	use	the	mirror	in	a	portrait	orientation,	in	which	case
the	video	output	of	the	Pi	will	also	need	to	be	rotated.	Fortunately,	this	is	done	by	a	simple
change	to	a	configuration	file:

1.	 Open	the	boot	configuration	file	using:

sudo	nano	/boot/config.txt

2.	 Add	the	following	line	and	replace	N	with	one	of	the	options	described	in	the	next
screenshot:

display_rotate=N

The	configuration	file	looks	similar	to	the	following	screenshot:

3.	 Save	the	file	and	reboot	the	Pi	to	see	the	changes:

sudo	reboot

The	possible	options	that	can	be	given	for	N	are:

0:	Normal	display
1:	Rotate	90	degrees	clockwise
2:	Rotate	180	degrees	clockwise
3:	Rotate	270	degrees	clockwise

Deploying	the	web	application
Now	that	the	Pi	is	set	up,	we	can	go	ahead	with	the	deployment	of	the	web	application	on
the	Pi.	Once	again,	this	is	a	Flask	application,	so	the	procedure	will	be	very	similar	to	that
used	in	the	previous	projects:

1.	 First,	start	by	copying	the	config_files	and	mirror_webapp	directories	to	the
/home/pi	directory	on	the	Raspberry	Pi.

2.	 Now,	we	will	ensure	that	the	software	on	the	Pi	is	up	to	date	and	install	the	required
software	to	run	the	web	application	(note	that	the	last	lines	here	are	Python	libraries
required	by	some	of	the	widgets):

sudo	apt-get	update

sudo	apt-get	upgrade

sudo	apt-get	install	python-pip	git	gunicorn	supervisor	nginx

sudo	pip	install	requests	pytz	feedparser

3.	 Next,	we	will	download	the	Flask	code	repository	and	install	it:

git	clone	https://github.com/mitsuhiko/flask.git

cd	flask

sudo	python	setup.py	install

cd

4.	 Now,	we	will	copy	the	Nginx	configuration	for	the	mirror	web	application,	enable	it,
and	restart	Nginx	so	that	it	starts	handling	requests	for	the	mirror	web	application:

sudo	cp	config_files/nginx/mirror.conf	/etc/nginx/sites-

available/mirror.conf

sudo	ln	-s	/etc/nginx/sites-available/mirror.conf	/etc/nginx/sites-

enabled/

sudo	rm	/etc/nginx/sites-enabled/default

sudo	nginx	-t

sudo	service	nginx	restart

5.	 Next,	we	will	copy	the	supervisor	configuration	for	the	application,	which	will	allow
the	web	application	to	be	served	by	the	Pi,	as	soon	as	it	boots:

sudo	cp	config_files/supervisor/mirror_webapp.conf	

/etc/supervisor/conf.d/mirror_webapp.conf

6.	 Next,	copy	the	default	widget	configuration	files.	For	now,	we	will	just	use	the
defaults	until	the	mirror	is	fully	set	up	and	go	over	the	steps	to	configure	widgets	and
styles	later	in	the	chapter:

cp	config_files/mirror_app.conf	~

cp	-r	config_files/widgets/	widget_configs/

7.	 Finally,	update	supervisor	to	enable	the	web	application:

sudo	supervisorctl	reread

sudo	supervisorctl	update

sudo	supervisorctl	start	mirror_webappp

Once	this	has	been	done,	you	should	be	able	to	browse	the	web	application	using	the	IP
address	of	the	Pi	from	any	PC	on	the	same	network.	On	doing	so,	you	should	be	greeted
with	a	page	similar	to	that	shown	in	the	following	screenshot:

Don’t	worry	if	the	page	looks	badly	rendered,	as	the	default	widget	configuration	is
designed	to	be	shown	on	a	portrait	monitor	and	the	font	sizes	are	set	relative	to	the	width
of	the	screen.	When	displayed	on	the	Pi,	this	looks	a	lot	better.

Setting	up	Chromium
Now	that	we	have	the	web	application	set	up,	we	can	move	on	to	install	the	Chromium
browser.	We	will	use	the	browser	in	the	kiosk	mode	to	display	the	web	application	on	the
PI	automatically,	when	it	boots.	To	set	up	Chromium,	perform	the	following	steps:

1.	 Firstly,	we	must	configure	the	Pi	to	boot	straight	into	LXDE	(the	default	window
manager	used	on	Raspbian)	instead	of	a	console.	This	can	be	done	using	the	Pi
configuration	utility:

sudo	raspi-config

2.	 Next,	select	the	Enable	Boot	to	Desktop/Scratch	option	and	hit	Enter.

3.	 Now,	select	the	Desktop	Log	in	as	user	‘pi’	at	the	graphical	desktop	option	and	hit
Enter.

4.	 Next,	select	the	Finish	option	and	when	asked	whether	you	would	like	to	reboot	now,
select	No.

5.	 Once	that	is	complete,	we	now	need	to	install	the	Chromium	browser:

sudo	apt-get	install	chromium	x11-xserver-utils	unclutter

6.	 Next,	we	will	modify	the	LXDE	autostart	script	so	that	Chromium	automatically
starts	and	browses	to	the	web	application	page	when	the	Pi	boots:

sudo	nano	/etc/xdg/lxsession/LXDE/autostart

7.	 Comment	out	the	following	line.	This	will	disable	the	default	screensaver	to	ensure
that	the	web	application	always	remains	visible:

@xscreensaver	-no-splash

8.	 Add	the	following	lines	at	the	end	of	the	file.	The	first	three	disable	the	power	saving
features	that	would	automatically	turn	the	monitor	blank	and	turn	it	off	after	a	period
of	inactivity.	The	final	line	will	start	the	Chromium	browser	in	a	fullscreen	kiosk
mode	and	browse	to	the	web	application:

@xset	s	off

@xset	-dpms

@xset	s	noblank

@chromium	--kiosk	--incognito	http://localhost

By	this	point,	the	autostart	file	should	look	similar	to	the	following	screenshot:

9.	 Finally,	reboot	the	Pi	to	test	the	setup:

sudo	reboot

All	being	well,	you	should	see	the	Pi	boot	into	LXDE	(indicated	by	the	Raspberry	Pi	logo
shown	on	a	white	background)	and	shortly	after	that,	Chromium	should	start	and	browse
to	the	web	application.

Enclosure	construction
Now	that	the	electronics	and	software	installation	is	complete,	we	can	move	on	to	build
the	plywood	enclosure	for	the	mirror.	If	you	do	not	have	access	to	a	router	and	table	for
this	project,	then	refer	to	the	Building	the	mirror	without	an	enclosure	section	described
later	in	the	chapter	for	instructions	on	how	to	construct	the	display	without	the	plywood
enclosure.

Note
When	using	power	tools,	proper	safety	precautions	should	be	taken.	Eye	and	ear
protection	should	always	be	worn	and	mains-powered	tools	should	be	protected	by	using	a
residual	current	device	(RCD).

First,	we	need	to	measure	the	monitor	to	determine	both	the	size	of	the	mirrored	acrylic
sheet	that	needs	to	be	ordered	and	the	sizes	to	which	the	panels	for	the	enclosure	should	be
cut.

The	upcoming	diagram	shows	the	panels	that	must	be	cut	out	to	make	the	plywood
enclosure.	Each	of	the	dimensions	are	given	by	the	following	calculations:

W	=	monitor	width	+	24
H	=	monitor	height
Wb	=	W	+	10
Hb	=	H	+	10
T	=	monitor	thickness	+	9

Note
Note	that	all	the	sizes	are	in	mm.

To	construct	the	enclosure,	perform	the	following	steps:

1.	 While	taking	the	measurements	of	the	height	and	width,	it	is	advisable	to	leave
around	2	mm	on	each	side	of	the	monitor,	which	will	allow	us	to	rectify	any	errors	in
the	measurement	while	manufacturing.

2.	 In	order	to	take	the	next	measurement,	we	must	first	remove	the	front	plastic	bezel
from	the	monitor.	This	is	usually	held	on	with	a	series	of	small	plastic	clips	around
the	edge	of	the	monitor,	as	shown	in	the	following	image.	To	remove	them,	use	a
small,	flat	screwdriver	to	prize	open	the	gap	between	the	back	of	the	monitor	case
and	the	front	bezel.	Gradually,	work	around	the	monitor	until	all	the	clips	are
released.	The	front	bezel	should	now	lift	off	with	ease.

3.	 If	the	monitor	has	any	buttons	or	LEDs	on	the	front	panel,	there	is	likely	an
additional	PCB	that	must	be	removed	from	the	front	bezel.	This	usually	requires	us	to
unscrew	the	board.

4.	 Once	the	bezel	is	removed,	we	can	now	measure	the	space	required	inside	the	box	for
the	monitor.	This	is	the	distance	from	the	back	of	the	monitor	(specifically	the	VESA
mounting	points)	to	the	front	(preferably	level	with	the	display	surface),	as	shown	in
the	following	image.	It	is	advisable	to	add	at	least	an	additional	5	mm	to	this
measurement,	as	it	is	easy	to	add	washers	to	move	the	monitor	forward	if	the	panels
are	cut	too	large.	However,	this	is	impossible	to	recover	if	you	cut	the	panel	too
small.

5.	 Once	you	have	these	three	measurements,	you	can	substitute	them	into	the
calculations	shown	in	the	diagram.	Using	a	jigsaw,	cut	the	panels	to	size.	You	will
need	two	of	both	the	long	and	short	12	mm	plywood	side	panels	and	one	of	the	back
6	mm	plywood	panel.

6.	 Once	these	panels	are	cut,	it	is	time	to	cut	the	slots	in	them	to	place	the	mirrored
acrylic.	This	is	done	using	a	4	mm	rebate	router	bit	in	a	router	table,	which	can	be
seen	in	the	upcoming	image.	To	do	this,	perform	the	following	steps:

1.	 Firstly,	ensure	that	the	router	is	firmly	fixed	into	the	table	and	the	bit	is	tightened
correctly	into	the	router.

2.	 Next,	use	the	router’s	depth	lock	to	fix	the	height	of	the	router,	so	that	the	lower
edge	of	the	blades	are	around	4-5	mm	above	the	table.

3.	 Now,	move	the	fence	so	that	around	5-6	mm	of	the	cutter	is	exposed	on	the	front
of	the	fence	(that	is,	the	cutter	can	only	cut	up	to	5-6	mm	from	the	material
passed	along	the	fence).

7.	 Once	the	router	and	table	are	set	up,	it	is	a	good	idea	to	make	a	few	test	cuts	on	a
scrap	piece	of	material	to	ensure	that	the	router	is	set	up	correctly.	Aim	to	get	a	slot
that	is	around	5-6	mm	deep	into	the	plywood	and	around	4	mm	away	from	one	edge,
as	shown	in	the	following	image:

8.	 Once	you	are	happy	that	the	setup	is	correct,	you	can	machine	the	actual	panels	to
end	up	with	a	set	of	panels,	as	shown	in	the	following	photograph.	At	this	stage,	it	is
a	good	idea	to	sand	the	panels	with	some	coarse	grit	sandpaper	to	remove	any	ragged
edges	left	by	the	router	or	jigsaw.

9.	 The	next	step	is	to	assemble	the	four	side	panels	that	form	the	outside	of	the
enclosure.	This	is	done	using	two	screws	at	each	end	of	the	long	panels	that	are
screwed	into	the	ends	of	the	two	short	panels.	For	this,	we	will	use	screws	that	are	at
least	1	inch	in	length,	but	no	more	than	2	inch.	Perform	the	following	steps:

1.	 First,	we	must	drill	clearance	holes	into	the	ends	of	the	two	long	sides	to	allow
the	screw	shaft	to	pass	through	easily.	This	hole	should	be	just	larger	than	the
shaft	of	the	screw,	but	smaller	than	the	head.

2.	 Next,	align	one	of	the	long	panels	against	a	short	one,	as	shown	in	the	following
figure,	and	use	the	clearance	hole	as	guidance	to	drill	a	pilot	hole	in	the	end	of
the	short	side	panel.	This	hole	should	be	around	0.5-1	mm	smaller	than	the	shaft
of	the	screw.

3.	 Repeat	the	previous	step	until	all	the	joints	have	been	fastened,	ensuring	that	the
slot	for	the	mirror	runs	all	the	way	around	the	inside	edge,	as	shown	in	the
following	photograph:

10.	 The	next	step	is	to	attach	the	rear	6	mm	plywood	panel	to	the	back	of	the	enclosure
frame.	This	can	be	done	using	several	self-tapping	screws	around	the	edge	of	the
enclosure.	Note	that	this	panel	has	intentionally	been	made	larger	than	what	is
required.

1.	 Firstly,	with	the	enclosure	placed	on	top	of	the	rear	panel,	draw	around	the
inside	of	the	enclosure	to	help	mark	out	the	positions	for	the	clearance	holes	so
that	the	screws	hold	on	to	the	back	panel.

2.	 Next,	using	this	marking	as	a	guide,	drill	several	clearance	holes	around	the
perimeter	of	the	enclosure.	Typically,	two	holes	on	the	short	panels	and	three
holes	on	the	long	ones	should	be	enough.

3.	 Once	this	is	done,	drill	pilot	holes	for	the	screws	so	that	they	go	into	the	side
panels	and	attach	the	back	panel	to	the	rest	of	the	enclosure.

11.	 The	next	step	is	to	trim	the	excess	material	from	the	back	panel	(the	whole	idea	here
was	to	remove	the	need	for	accuracy	while	cutting	and	fitting	the	back	panel).	This	is
done	using	a	straight,	bearing	guided,	router	cutter.

1.	 Firstly,	move	the	fence	toward	the	back	of	the	router	table	(we	will	not	use	it	as
a	guide	here)	and	fit	the	straight	bit	in	the	router.

2.	 Next,	using	the	depth	stop,	move	the	router	to	a	position	where	the	bearing	is	on
the	same	level	as	the	12	mm	side	panels,	so	that	there	is	enough	clearance	to
allow	the	cutter	to	remove	the	excess	material	on	the	back	panel	only.

3.	 Now,	you	can	machine	away	the	excess	material	on	the	back	panel	by	keeping
the	enclosure	tight	against	the	router	bit	while	making	a	pass	along	all	the	edges
of	the	enclosure.	Once	this	is	done,	the	panel	should	look	similar	to	the
following	image:

12.	 The	next	step	is	to	mark	the	position	of	the	VESA	mounts	on	the	back	panel	in	order
to	drill	the	required	holes	in	the	back	panel.	The	easiest	way	to	do	this	is	to	carefully
remove	the	display	assembly	from	the	rear	plastic	housing,	using	the	following	steps
as	a	guide:

1.	 The	display	assembly	is	rarely	fixed	into	the	plastic	housing	by	anything	other
than	the	fact	that	it	is	enclosed	by.	So,	if	we	give	enough	force,	the	display	panel
and	electronics	enclosure	behind	the	display	panel	will	be	removed.

Note
Be	careful	when	removing	the	display	assembly	as	the	display	panel	and
electronics	enclosure	are	usually	not	fixed	to	each	other	and	excess	stress	could
damage	the	cables	running	between	the	two.

It	is	also	not	advised	that	you	apply	power	to	a	monitor	with	the	back	cover
removed	as	there	are	potentially	dangerous	voltages	in	the	rear	electronics
cabinet.

2.	 Once	this	is	done,	you	should	be	able	to	place	the	rear	plastic	case	into	the
enclosure	and	easily	mark	the	positions	of	the	four	VESA	mounting	holes.

3.	 At	this	stage,	it	would	also	be	useful	to	mark	the	position	of	the	hole	that	will
allow	power	and	video	cables	to	reach	the	monitor.	This	hole	should	be	at	least
25	mm	in	diameter	so	that	it	accommodates	an	IEC	power	connector.

4.	 Once	the	holes	are	marked,	you	can	now	put	the	display	assembly	back	into	the
rear	plastic	case.

13.	 Once	the	holes	in	the	back	panel	are	marked,	the	panel	can	be	removed	and	the	holes
drilled	with	the	following	steps:

1.	 The	four	holes	for	the	VESA	mount	can	be	drilled	using	a	4.5	mm	drill	bit.
2.	 The	25	mm	hole	will	have	to	be	drilled	with	either	a	fairly	powerful	mains	hand

drill	or,	better,	a	drill	press	using	a	Forstner	drill	bit.

14.	 Once	the	back	panel	has	the	required	holes	drilled	in	it,	it	is	worth	giving	it	a	quick
sand	over	by	using	a	coarse	grit	sandpaper,	just	to	tidy	the	edge	left	by	the	router	and
Forstner	drill	bit.

15.	 Next,	reattach	the	back	panel	onto	the	rest	of	the	enclosure	using	the	screw	holes
made	previously.

16.	 At	this	point,	it	is	worth	powering	up	the	monitor	and	ensuring	that	the	display	is	set
to	fairly	high	contrast	and	brightness	settings	in	order	to	get	the	best	image	quality
through	the	mirrored	acrylic.

17.	 Once	this	is	done,	feed	the	cables	through	the	hole	previously	made	for	them.	Line	up
the	VESA	mount	with	the	holes	drilled	for	them	and	screw	the	monitor	into	position.

If	your	monitor	has	buttons	mounted	on	the	front	panel,	you	can	simply	place	the
PCB	they	are	mounted	on	behind	the	monitor	within	the	range	of	the	cable	through
which	they	are	connected	to	the	monitor.

Note	that	if	the	monitor	is	too	far	back	in	the	enclosure	(that	is,	the	display	surface	is
more	than	1	mm	away	from	the	slot	for	the	mirror),	then	you	may	need	to	add	some
washers	and	spacers	to	the	screws	to	move	the	monitor	slightly	forward,	as	shown	in
the	following	image:

By	this	point	the	enclosure	should	look	something	like	the	following	image:

18.	 The	final	step	is	to	insert	the	mirrored	acrylic	panel	into	the	slot	cut	for	it.	This	can	be
easily	done	by	removing	one	of	the	short	side	panels	with	the	following	steps:

1.	 Firstly,	remove	the	screws	that	hold	the	short	panel	in	place	on	both	the	long
side	panels	and	the	back	panel	and	remove	the	panel.

2.	 You	should	now	be	able	to	slide	the	mirrored	acrylic	panel	into	the	enclosure
easily.

3.	 At	this	point,	you	may	wish	to	power	on	the	monitor	once	more	to	check
whether	the	display	settings	leak	any	light	through	the	mirror	panel	when	the
display	is	black.	If	so,	turn	the	brightness	down	slightly.

4.	 The	final	step	is	to	reattach	the	short	side	panel	and	the	enclosure	is	complete.

Since	the	buttons	on	the	monitor	are	no	longer	easily	accessible	from	outside	the
enclosure,	it	is	important	to	ensure	that	the	monitor	will	automatically	turn	on	when	power
is	applied	to	it.	This	will	be	the	method	used	to	enable	and	disable	the	information	display
on	the	mirror.

Note
As	the	enclosure	is	almost	fully	enclosed,	it	is	discouraged	that	you	leave	the	monitor	on
for	a	long	period	of	time	to	avoid	excessive	build	up	of	heat	inside	the	enclosure.	Instead,
it	is	recommended	that	you	only	apply	power	to	the	monitor	when	the	information	display
is	desired.

If	desired,	hardware	fittings	can	be	used	to	make	the	mirror	wall	mountable.	However,	for
now,	we	will	use	ours	as	a	desk	mounted	mirror	only.	It	is	recommended	that	you	place	the
mirror	against	a	wall	to	ensure	good	stability,	as	its	high	center	of	gravity	does	make	it
more	liable	to	fall	over	even	if	very	little	force	is	applied	to	it.	If	this	is	an	issue,	then	you
could	use	it	in	the	landscape	mode	by	changing	the	display	rotation.

Building	the	mirror	without	an	enclosure
If	you	do	not	have	access	to	the	tools	required	to	build	the	plywood	enclosure	(or	would
simply	prefer	a	more	modern-style	mirror)	then	you	can	adapt	an	existing	monitor	into	a
mirror	relatively	simply	without	any	tools.	All	that	is	required	now	is	an	adhesive.

You	may	wish	to	use	a	temporary	adhesive,	such	as	a	clear	tape	or	hot	glue	for	this	to
ensure	that	the	monitor	can	be	reused	if	you	decide	to	remove	the	mirror	material.
Although	nothing	is	stopping	you	using	something	like	a	contact	adhesive,	such	as
Araldite,	for	a	more	permanent	fitting.

1.	 The	first	step	to	construct	the	display	is	to	measure	the	size	of	the	mirror	material	that
will	be	needed.	These	are	essentially	the	dimensions	of	the	screen	that	is	exposed	on
the	inside	of	the	plastic	bezel	around	the	side	of	the	monitor	(refer	to	the	following
image).	Order	the	mirror	material	to	be	cut	a	few	millimeters	smaller	to	ensure	that	it
will	definitely	fit	within	the	inside	of	the	bezel.

2.	 Once	you	have	the	mirror	material,	you	should	find	that	it	simply	drops	into	the	bezel
with	around	1	mm	spared	on	each	side.

3.	 Next,	using	your	adhesive	of	choice,	fix	the	mirror	material	into	the	bezel	of	the
monitor.	It	is	important	here	to	avoid	getting	adhesive	of	any	type	on	the	display
surface,	as	this	can	damage	the	monitor.

The	Pi	enclosure
Since	the	Pi	is	not	part	of	the	enclosure	we	have	built,	you	may	wish	to	keep	the	Pi	in	an
external	enclosure.	There	are	many	of	these	available	at	online	retailers.	One	of	my
personal	favorites	is	the	Pibow	range	by	Pimoroni
(http://shop.pimoroni.com/products/pibow-raspberry-pi-case).

http://shop.pimoroni.com/products/pibow-raspberry-pi-case

Configuration
Now	that	the	web	application	has	been	deployed	to	the	Pi	and	the	display	enclosure	is
constructed,	it	is	time	to	configure	what	information	is	shown	and	how	it	is	shown	on	the
mirror.

Note	that	when	changing	the	style	sheet,	simply	reload	the	page	in	Chromium	by	pressing
F5	on	a	connected	keyboard	to	show	the	change.	Changes	to	widget	configurations	will
require	you	to	restart	the	web	application	by	using	the	following	commands:

sudo	supervisord	stop	mirror_webapp

sudo	supervisord	start	mirror_webapp

Widgets
The	widgets	are	configured	using	several	configuration	files	in	the
/home/pi/widget_configs/	directory.	Each	widget	that	is	displayed	on	the	mirror
requires	its	own	configuration	file.

The	configuration	files	are	divided	into	several	sections:	core,	ui,	position,	and	widget,
each	containing	several	values	related	to	the	widget.	These	options	are	described	as
follows:

core

class:	The	name	of	the	widget	class
update_time:	The	interval	at	which	the	UI	is	refreshed	(in	seconds;	it	defaults	to
1	minute	if	the	interval	not	provided)
title:	The	title	of	the	widget	(can	be	left	blank	to	hide	the	title)

ui

width:	This	is	the	width	allocated	to	the	widget	(in	pixels)
show_borders:	If	a	border	is	to	be	drawn	around	the	widget

position

type:	This	is	the	type	of	positioning	(top,	bottom,	left,	right,	and	floating)
index:	This	is	the	number	that	denotes	the	position	of	the	widget	in	a	bar	(only
valid	if	the	type	is	one	of	top,	bottom,	left,	and	right)
x:	This	is	the	distance	between	the	left-hand	side	of	the	widget	and	the	left	of	the
mirror	(only	valid	if	type	is	set	to	floating)
y:	This	is	the	distance	between	the	top	of	the	widget	and	the	top	of	the	mirror
(only	valid	if	type	is	set	to	floating)

widget:	This	contains	configuration	information	specific	to	the	widget

The	effects	of	the	position	configuration	options	are	shown	in	the	following	diagram:

Included	widgets
Here	is	a	list	of	the	widgets	that	come	with	the	mirror	web	application	and	a	list	of	their
configuration	options:

Digital	clock	(class:	DigitalClock)

timezone:	The	time	zone	for	which	the	time	is	displayed	(for	example,
US/Eastern)

Analog	clock	(class:	AnalogClock)

timezone:	The	time	zone	for	which	the	time	is	displayed	(for	example,
US/Eastern)

Text	calendar	(class:	TextCalendar)

timezone:	The	time	zone	for	which	the	date	is	displayed	(for	example,
US/Eastern)

Current	weather	(class:	Weather)

location:	The	location	for	which	the	current	weather	conditions	are	displayed
(for	example,	Oxford,	UK)

RSS	feed	(class:	RSSFeed)

feed_url:	The	URL	for	the	RSS	feed
num_items:	This	is	the	number	of	feed	items	to	be	displayed	(it	defaults	to	10	if
it	is	not	set)

RSS	headline	ticker	(class:	RSSTicker)

feed_url:	The	URL	for	RSS	feed
num_items:	Number	of	feed	items	to	fetch	(this	defaults	to	10	if	it	is	not	set)
text_type:	This	is	the	type	of	text	to	be	displayed	(either	title	for	a	short
headline	or	summary	for	a	more	detailed	description)
ticker_update_time:	This	is	the	time	interval	shown	between	new	RSS	items
(in	seconds)

Example	configurations
Here	are	a	couple	of	example	configuration	files	with	an	explanation	of	what	each	value
does;	both	are	taken	from	the	default	widget	configuration	included	in	the	code	for	this
chapter.

bbc_ticker.conf

The	BBC	news	ticket	is	shown	at	the	bottom	of	the	mirror	using	the	demo	configuration.
This	widget	gives	a	new	headline	from	the	BBC	UK	news	RSS	feed	every	10	seconds:

[core]

class=RSSTicker					#Using	the	RSSTicker	widget

title=BBC	UK	News			#Give	it	a	title

[ui]

show_borders=true			#Show	the	rounded	borders	round	the	widget

width=450											#Allow	the	widget	to	be	up	to	450	pixels	wide

[position]

mode=bottom									#Put	the	widget	in	the	bottom	bar

index=1													#This	is	the	second	widget	from	the	corner

[widget]

#	This	is	the	BBC	UK	news	RSS	feed	URL

feed_url=http://feeds.bbci.co.uk/news/uk/rss.xml

text_type=summary						#Just	display	the	short	title

ticker_update_time=10		#Give	a	new	headline	every	10	seconds

clock.conf

The	analog	clock	is	shown	at	the	top,	in	the	left-hand	corner	of	the	mirror	using	the	demo
configuration:

[core]

class=AnalogClock			#Using	the	AnalogClock	widget

update_interval=1			#Clocks	must	have	this	set	to	1	second

[ui]

width=200											#AnalogClock	must	be	set	to	a	width	of	200

show_borders=false		#AnalogClock	look	better	with	borders	disabled

[position]

mode=top												#Put	the	clock	in	the	top	bar

index=0													#This	will	be	the	first	item

[widget]												#Do	not	need	any	configuration	here

Styles
The	global	style	is	configured	using	the	mirror_webapp/static/style.css	style	sheet.
This	contains	the	styles	that	are	used	in	all	other	widgets	and	is	the	easiest	way	to	make
alterations	to	font	sizes	and	layout	margins.

Tip
For	any	configuration	that	should	only	affect	a	single	widget,	the	style.css	file	for	that
specific	widget	is	a	better	place	to	make	the	change.

The	main	sections	that	you	may	wish	to	make	alterations	to	are	as	follows:

This	defines	the	default	style	for	all	the	text	displayed	on	the	mirror,	including	the
font.	If	you	wish	to	use	an	alternative	font,	this	would	be	the	place	to	make	the
change	(by	default,	I	am	using	the	Roboto	font	by	Christian	Robertson):

h1,	h2,	h3,	h4,	h5,	h6,	p,	li	{

		font-family:	'Roboto',	sans-serif;;

		margin:	0;

		font-weight:	normal;

		color:	#FFF;

}

The	following	set	of	styles	define	the	size	of	each	of	the	different	levels	of	text.	By
default,	they	use	the	viewport	width	CSS	size:

h1																		{	font-size:	5vw;	}

h2																		{	font-size:	3.75vw;	}

h2,	h3,	h4,	h5,	h6		{	font-size:	3.25vw;	}

p																			{	font-size:	2.5vw;	}

p.small													{	font-size:	1.8vw;	}

li																		{	font-size:	2.5vw;	}

In	mirror_webapp/templates/mirror.html,	you	will	also	notice	the	following	line	at	the
top	of	the	page.	This	is	used	to	load	the	Roboto	font	from	the	Google	Font	service
(www.google.com/fonts):

<link	href='http://fonts.googleapis.com/css?family=Roboto:400,100'	

rel='stylesheet'	type='text/css'>

Once	the	configuration	is	complete,	reboot	the	Pi	and	you	should	be	greeted	with	your
customized	information	display.

http://www.google.com/fonts

Troubleshooting
This	section	details	some	of	the	common	issues	you	may	encounter	while	building	this
project	and	the	steps	to	be	taken	to	resolve	them.

For	issues	not	listed	here,	check	either	the	log	files	in	the	/home/pi	directory	(and	its
subdirectories)	or	the	Chromium	(or	Google	Chrome)	developer	console.

The	web	application	fails	with	the	500	Internal
Server	Error
This	can	be	caused	by	a	variety	of	reasons.	More	information	as	to	the	cause	of	the
problem	will	be	available	in	the	/home/pi/mirror_webapp/mirror_app.log	log	file.

Some	of	the	common	issues	that	are	likely	to	cause	this	are:

The	lack	of	Internet	connection	may	cause	failure	to	update	widgets,	such	as	weather
and	RSSTicker
Errors	in	widget	configuration	files	can	cause	failure	of	the	server-side	Python
scripting
Errors	in	the	widget	code	itself	will	also	cause	this	issue;	although	this	is	less	likely

The	display	does	not	work
There	can	be	issues	with	the	usage	of	certain	HDMI	to	VGA	adapters	with	the	Pi.	Edit	the
/boot/config.txt	file	and	uncomment	the	following	line:

hdmi_force_hotplug=1

This	forces	the	Pi	to	output	the	video	on	the	HDMI	output	even	if	it	fails	to	detect	a	device
connected	to	it.

If	you	still	have	problems	after	this,	then	there	is	likely	an	issue	with	the	power	supply	you
are	using	to	power	the	Pi.	Since	HDMI	to	VGA	adapters	also	draw	power,	a	larger	USB
power	supply	(preferably	capable	of	outputting	up	to	2	A)	is	needed	to	perform	stable
operations.

Summary
In	this	chapter,	we	looked	at	how	to	run	a	web	application	on	the	Pi	using	Flask	and
Python	to	create	a	framework	that	provides	an	easy	way	to	add	new	information	displays
to	the	mirror	display.

We	also	had	a	look	at	some	more	advanced	techniques	to	manufacture	an	enclosure,	which
can	be	applied	to	a	wide	range	of	projects	you	may	wish	to	pursue	after	this	book.

In	the	next	chapter,	we	will	look	at	yet	another	example	of	how	the	Pi	can	be	used	to
control	electronic	devices	in	real	time,	when	we	will	build	an	electronic	xylophone	that
plays	music	from	MIDI	files.

Chapter	10.	Bottle	Xylophone
In	this	chapter,	we	will	build	a	configurable	MIDI-controlled	xylophone-like	instrument
made	with	empty	glass	bottles	and	a	set	of	servos.	This	will	make	use	of	almost	all	of	the
Pi’s	GPIO	headers	to	drive	the	servos.

The	servos	are	controlled	using	a	web	application	that	allows	you	to	upload	a	MIDI	file,
set	a	temp,	and	allows	the	Pi	to	play	the	file	on	the	bottles	using	a	configuration	file	to	tell
it	which	bottle	is	tuned	to	which	note.	The	tuning	itself	is	done	by	varying	the	level	of
water	in	each	bottle.

Since	this	project	requires	a	lot	of	GPIO	pins,	you	may	wish	to	opt	for	a	B+	model,	which
has	an	additional	nine	GPIO	pins	on	its	40-pin	connector.

What	you	will	need
For	this	project,	you	will	need	the	following:

The	Raspberry	Pi	B+
A	small	section	of	a	prototyping	board
USB	power	supply	and	a	micro	USB	cable
High	current	5	V	power	supply
Several	1000	uF	capacitors	(www.maplin.co.uk/p/1000f-35v-85c-radial-electrolytic-
capacitor-vh51f)
A	breadboard	(www.maplin.co.uk/p/ad-100-breadboard-ag08j)
A	strip	of	0.1-inch	pin	headers
0.1-inch	male-to-female	pin	jumpers
M3	nuts	and	machine	screws
Cable	ties
15x	empty	glass	bottles
15x	micro	servos
A	15x	servo	mount	base
A	15x	servo	mount

I	found	that	the	larger	500	ml	bottles	are	better	for	this	as	opposed	to	the	330	ml	ones.
Anything	larger	then	500	ml	will	still	work;	however,	they	may	not	fit	on	the	servo	mount
base	correctly	(this	should	not	stop	the	servo	from	working	correctly).

To	make	tuning	easier,	it	is	recommended	that	you	use	the	same	size	bottles	for	all	the	15
notes.

The	amount	of	capacitors	you	will	need	is	determined	by	the	power	output	of	the	power
supply	you	are	using	and	the	number	of	servos	you	have;	at	least	five	capacitors	are
recommended	for	this.	The	power	supply	should	be	rated	for	at	least	2	A	to	ensure	reliable
operation.

http://www.maplin.co.uk/p/1000f-35v-85c-radial-electrolytic-capacitor-vh51f
http://www.maplin.co.uk/p/ad-100-breadboard-ag08j

Assembling	a	note	bottle
The	bottle	mounts	are	comprised	of	two	laser	cut	sections	of	3	mm	material.	This	can	be
any	rigid	material,	such	as	MDF,	plywood,	or	acrylic.	I	would	recommend	you	use	MDF,
as	it	is	less	prone	to	damage	under	force	and	can	be	sanded	easily	if	the	joints	are	too	tight.

The	base	design	has	two	layers,	one	for	the	section	that	is	to	be	cut	and	a	section	that
shows	the	rough	placement	of	the	bottles.	This	can	be	engraved	if	you	would	like	it	as	part
of	the	“note	bottle”	assembly;	however,	this	is	not	required.

The	parts	required	to	assemble	one	note	bottle

The	servo	arms	that	actually	hit	the	bottles	will	be	made	using	a	short	section	of	metal	bar.
This	can	really	be	any	metal	bar	as	long	as	all	the	servos	use	the	same	type	in	order	to
make	tuning	easier.	To	do	this,	perform	the	following	steps:

1.	 The	first	step	is	to	cut	15	lengths	of	the	metal	bar.	To	do	this,	use	a	piece	of	kitchen
roll	to	tightly	grip	the	bar	at	the	edge	of	a	table	and	cut	a	section	around	10	cm	long
using	a	hacksaw.

2.	 Once	this	is	done,	you	can	then	attach	the	bars	to	the	plastic	servo	arms	that	came
with	each	servo.	To	do	this,	we	will	use	the	arm	with	two	large	servo	arms	opposite
each	other	(as	shown	in	the	following	image)	to	attach	the	metal	bar	to	the	servo
using	two	cable	ties.

3.	 The	next	step	is	to	attach	the	small	servo	mount	to	the	larger	mount	base.	You	can
attach	the	mount	on	either	of	the	sets	of	the	mounting	holes;	however,	you	only	need
to	attach	one	servo	mount	per	base.

4.	 If	the	joint	is	slack,	then	you	can	use	an	M3	nut	and	machine	screws	to	tighten	the
joint.	Whether	this	is	needed	or	not	depends	on	the	resolution	of	the	laser	cutter	used
to	machine	the	parts.	If	the	joint	feels	fairly	tight	on	its	own,	then	you	can	skip	this
step.

5.	 Now,	all	that	is	left	is	to	attach	the	servo	to	the	servo	mount.	This	can	be	done	using
either	the	small	screws	that	came	with	the	servo	or	using	an	adhesive,	such	as	hot
glue	or	Araldite.

Once	this	is	done,	you	should	have	a	note	bottle	assembly	that	looks	similar	to	the	one
shown	in	the	following	image:

Electronics
Now	that	the	note	bottle	assembly	is	built,	it	is	time	to	build	the	electronics	that	will
connect	the	servos	to	the	Pi.	This	step	is	relatively	simple,	as	all	that	you	need	to	do	is
connect	the	Pi	directly	to	the	signal	wire	of	the	servos	(usually	yellow	or	white,	sometimes
orange)	and	provide	power	to	the	servos.

Since	this	project	has	the	scope	to	use	a	lot	of	GPIO	pins,	we	will	use	the	Pi	B+	for	this
project,	which	has	an	additional	nine	usable	GPIO	pins	on	its	40-pin	header	than	on	the
older	Pi	model	B’s	26	pin	header.

For	reference,	the	circuit	we	will	construct	is	laid	out	similar	to	the	following	diagram
(note	that	for	simplicity,	only	one	servo	is	shown	here):

The	first	step	to	create	the	electronic	parts	of	this	project	is	to	build	a	power	distribution
board	that	can	be	connected	to	all	the	servos	in	order	to	receive	power.	This	board	is	very
similar	to	the	one	used	for	the	servos	on	the	robotic	arm	in	Chapter	8,	Remote-operated
Robotic	Arm.	Perform	the	following	steps	to	build	a	power	distribution	board:

1.	 Take	a	section	of	the	prototyping	board	and	0.1-inch	pin	headers	and	solder	them,	as
shown	in	the	following	diagram,	such	that	there	are	two	long	strips	of	connected	pins:

Once	this	is	complete,	you	should	have	a	board	that	looks	similar	to	this:

2.	 If	your	power	supply	is	rated	for	3	A	or	less,	you	will	most	likely	need	to	include	a
capacitor	bank	to	ensure	that	there	is	a	constant	reliable	power	supply	for	the	motors.
This	can	be	built	by	simply	connecting	the	capacitors	along	with	one	of	the	power
rails	of	a	breadboard.	Using	two	male-to-female	jumper	wires,	connect	this	to	the
servo	power	distribution	board.

Note
While	building	the	capacitor	bank,	ensure	that	all	the	capacitors	are	wired	in	the
correct	way.	There	will	be	a	light	strip	with	several	negative	(-)	symbols	next	to	the
leg	that	must	be	connected	to	the	ground.	This	leg	is	also	shorter	than	the	positive
leg.

If	this	type	of	capacitor	is	connected	in	the	incorrect	way	in	the	circuit,	then	it	can
swell,	leak,	or	explode.

3.	 Next,	we	will	connect	each	of	the	servos	to	the	power	distribution	board	such	that	the
signal	pin	is	overhanging	on	the	edge.	Note	that	because	of	the	width	of	the	servo
headers,	you	are	better	off	if	you	connect	them	in	sets	of	five,	as	shown	in	the
following	image:

4.	 Finally,	we	can	connect	the	servo	signal	wires	to	the	Pi.	The	following	diagram

shows	the	pins	that	are	available	on	both	the	Pi	model	B	(just	the	pins	above	the	blue
line)	and	the	model	B+	(the	entire	connector).	In	order	to	use	the	default
configuration	supplied	with	the	code,	you	must	have	a	note	bottle	on	these	pins:	4,
17,	18,	27,	22,	23,	24,	10,	9,	25,	11,	8,	7,	and	5.	The	following	diagram	shows	the
GPIO	pins	available	to	connect	the	servos	to	and	the	common	ground	pin:

Once	this	is	complete	and	all	the	bottles	are	in	place,	the	finished	setup	should	look
something	like	this:

If	you	find	that	you	cannot	lay	out	each	of	the	note	bottles	in	a	very	suitable	way	due	to
the	short	cables	on	the	servos,	you	can	use	some	extension	cables	that	give	around	another
30	cm	of	cable	length.	Such	cables	can	be	found	at	www.amazon.co.uk/Remote-Control-
Servo-Extension-Cable/dp/B007SUKUXM.

http://www.amazon.co.uk/Remote-Control-Servo-Extension-Cable/dp/B007SUKUXM

The	web	application
As	with	the	previous	chapter,	the	web	application	that	controls	the	servos	is	built	using	the
Flask	framework	and	served	using	Nginx	and	Gunicorn.	Hence,	the	deployment	procedure
will	be	very	similar	here:

1.	 First,	we	must	ensure	that	the	Raspbian	installation	is	up	to	date	and	install	the
packages	that	we	need	to	deploy	on	the	web	application:

sudo	apt-get	update

sudo	apt-get	upgrade

sudo	apt-get	install	python-pip	git	python-dev	gunicorn	supervisor	

nginx	swig	libasound-dev

sudo	pip	install	RPIO

2.	 Next,	we	will	clone	the	code	repository	for	the	MIDI	parsing	library	that	will	be	used
to	read	MIDI	files	and	then	install	it	using	Python	setup	tools:

git	clone	https://github.com/vishnubob/python-midi.git

cd	python-midi

sudo	python	setup.py	install

cd

3.	 Next,	we	will	clone	the	code	repository	for	the	Flask	framework	and	install	it	using
Python	setup	tools:

git	clone	https://github.com/mitsuhiko/flask.git

cd	flask

sudo	python	setup.py	install

cd

4.	 Next,	we	will	copy	the	Nginx	configuration	files	from	the	project	folder	to	the
configuration	directories;	we	will	have	Nginx	verify	the	configuration	and	apply	the
configuration	by	restarting	the	Nginx	service:

sudo	cp	config_files/nginx/bottle_xylophone.conf	/etc/nginx/sites-

available/bottle_xylophone.conf

sudo	ln	-s	/etc/nginx/sites-available/bottle_xylophone.conf	

/etc/nginx/sites-enabled/

sudo	rm	/etc/nginx/sites-enabled/default

sudo	nginx	-t

sudo	service	nginx	restart

5.	 Now,	we	will	copy	the	supervisor	configuration	and	have	the	supervisor	reread	its
configuration	files:

sudo	cp	config_files/supervisor/bottle_xylophone_webapp.conf	

/etc/supervisor/conf.d/bottle_xylophone_webapp.conf

sudo	supervisorctl	reread

6.	 Next,	we	will	copy	the	web	application	configuration,	which	will	be	read	by	our	web
application.	It	contains	the	configuration	for	the	servo	output:

cp	config_files/bottle_xylophone.conf	~

7.	 Finally,	we	will	update	the	supervisor	and	start	the	web	application:

sudo	supervisorctl	update

sudo	supervisorctl	start	bottle_xylophone_webappp

Now	that	the	web	application	has	been	deployed,	you	should	be	able	to	browse	to	the
application	using	the	IP	address	of	the	Pi	from	a	PC	on	the	same	network	as	the	Pi.	When
you	do	so,	you	should	see	a	page	similar	to	the	following:

Configuration
Chances	are	that	the	Pi	and	bottles	will	need	to	be	reconfigured	and	retuned	on	a	per	song
basis	due	to	the	limited	number	of	notes	that	can	be	configured	at	the	same	time	(if	you
use	the	Pi	model	B+,	this	may	not	be	a	big	problem).	To	help	make	this	process	easier,
there	is	a	script	(midi_note_summary.py)	included	with	this	chapter	that	will	take	a	MIDI
file	and	generate	a	report	of	exactly	what	notes	are	used	in	the	file.	This	will	make	it	easier
for	us	to	determine	which	notes	have	to	be	configured	on	the	Pi	and	accordingly,	the
bottles	can	be	tuned	for	them.

This	script	should	be	used	with	the	following	command,	where	MIDI_FILE	is	the	filename
of	the	MIDI	file:

python	midi_note_summary.py	MIDI_FILE.mid

Its	output	is	shown	in	the	following	screenshot:

Note	that	this	script	will	work	straight	away	on	the	Pi	without	additional	configuration,	as
all	the	required	libraries	are	installed	when	the	web	application	is	deployed.	However,	to
use	the	script	on	a	different	PC,	you	will	first	have	to	download	and	install	the	python-
midi	library	(https://github.com/vishnubob/python-midi).

Once	you	have	determined	the	range	of	notes	that	are	needed	for	a	particular	song,	you
can	then	modify	the	bottle_xylophone.conf	configuration	file	to	set	the	GPIO	pins	that
will	be	used	for	each	MIDI	note.

This	file	must	first	contain	two	settings	that	determine	the	servo	timing	output	values	that
correspond	to	the	retracted	position	(which	the	servo	is	in	when	it	is	not	being	used)	and
hit	position	(the	position	at	which	the	servo	arm	will	hit	the	bottle).	These	settings	will	be
applied	to	all	the	configured	servos	unless	stated	otherwise	with	a	servo-specific
configuration:

DEFAULT_HIT	=	1700

DEFAULT_RETRACT	=	1500

The	following	section	of	the	configuration	file	should	now	contain	the	mapping	between
the	MIDI	note	and	GPIO	number.	The	general	format	for	this	is	as	follows:

MIDI_GPIO_[NOTE]	=	[GPIO]

Here,	[NOTE]	is	the	MIDI	note	number	and	[GPIO]	is	the	GPIO	number.	An	example	of
how	notes	should	be	mapped	is	shown	as	follows:

MIDI_GPIO_49	=	4

MIDI_GPIO_50	=	17

https://github.com/vishnubob/python-midi

MIDI_GPIO_51	=	18

MIDI_GPIO_53	=	27

In	the	case	where	a	particular	servo	has	different	hit	and	retract	positions	from	the	others
(for	example,	because	of	a	different	sized	bottle	or	servo	arm),	this	can	be	configured
using	the	general	format:

MIDI_HIT_[NOTE]	=	[SERVO	OUTPUT]

MIDI_RETRACT_[NOTE]	=	[SERVO	OUTPUT]

Here,	[NOTE]	is	the	MIDI	note	number	and	[SERVO	OUTPUT]	is	the	servo	timing	value	to
the	output.	An	example	of	this	is	shown	as	follows:

MIDI_HIT_49	=	1800

MIDI_RETRACT_49	=	1550

MIDI_HIT_50	=	1850

Once	you	have	configured	the	web	application,	it	is	worth	changing	the	default	log	level
from	DEBUG	to	either	INFO	or	WARNING	to	reduce	the	amount	of	information	that	is	saved	to
the	log	file.	This	can	be	done	using	the	following	entry	in	the	configuration	file:

LOG_LEVEL	=	[LOG	LEVEL]

Here,	[LOG	LEVEL]	is	either	INFO	or	WARNING.

When	you	are	finished	making	changes	to	the	configuration	file,	make	sure	to	reload	the
web	application	using	the	following	two	commands:

sudo	supervisorctl	stop	bottle_xylophone_webapp

sudo	supervisorctl	start	bottle_xylophone_webapp

Tuning
To	get	assistance	for	tuning	the	bottles,	it	is	best	to	use	a	tone	generator	to	get	an	idea	of
the	sound	you	are	aiming	for	when	you	strike	the	bottles.	These	are	available	in	many
forms;	one	good	website	that	does	this	is	http://plasticity.szynalski.com/tone-
generator.htm,	which	allows	you	to	select	any	note	and	play	a	sample	of	it.	Audacity
(http://audacity.sourceforge.net/)	is	an	example	of	a	piece	of	desktop	software	that	does	a
similar	thing.	There	are	also	many	smartphone	applications	that	have	similar	features.

The	first	step	to	tune	a	set	of	bottles	is	to	sort	the	bottles	into	groups	of	unique
combinations	of	shapes	and	sizes.	The	combination	of	these	two	properties	will	define	the
pitch	of	the	sound	a	bottle	without	any	liquid	makes	when	it	is	struck	(the	frequency	of
which	is	known	as	the	bottle’s	natural	frequency,	that	is,	the	frequency	at	which	it	will
oscillate	when	not	exposed	to	external	dampening).	We	will	then	use	the	bottles	with	the
lowest	pitch	for	the	lower-pitched	MIDI	notes	and	vice	versa.

Once	you	have	a	source	of	the	actual	note	you	are	aiming	for,	you	simply	have	to	hit	each
note	with	one	of	the	servo	arms	(detached	from	the	servo	itself)	and	change	the	level	of
water	in	the	bottle	until	the	note	sounds	similar	to	the	target	note.

http://plasticity.szynalski.com/tone-generator.htm
http://audacity.sourceforge.net/

Testing
Now	that	we	have	finished	building	the	bottle	xylophone,	it	is	time	to	give	it	a	test	using	a
MIDI	file.	First,	browse	to	the	IP	address	of	the	Pi	and	you	should	be	greeted	with	a	page
similar	to	the	following:

Toward	the	bottom	of	the	page,	you	will	have	the	option	to	browse	for	a	MIDI	file	(with
the	.mid	file	extension)	and	to	upload	it.	Once	you	have	done	so,	you	will	see	the	file
listed	in	the	MIDI	Files	section	of	the	page	as	well	as	a	confirmation	message	that	the	file
was	successfully	uploaded,	as	shown	in	the	following	screenshot:

If	required,	the	tempo	at	which	the	file	will	be	played	can	be	modified	using	the	tempo
setting	at	the	top	of	the	page.	This	must	be	set	before	you	select	a	file	to	be	played	by
changing	the	value	in	the	field	and	by	clicking	on	Submit.	Once	the	tempo	has	been
changed,	you	will	see	a	notification,	as	shown	in	the	following	screenshot:

Once	you	are	ready	to	play	a	file,	simply	click	on	the	[play]	link	next	to	the	filename.	You
should	see	a	notification,	as	shown	in	the	following	screenshot,	and	the	servos	should	start
to	move.	If	you	have	any	issues	here,	refer	to	the	Troubleshooting	section	later	in	this
chapter.

Playback	can	then	be	stopped	using	the	[stop]	link	near	the	top	of	the	page.

Troubleshooting
This	section	details	some	of	the	common	issues	you	may	encounter	while	building	this
project	and	steps	you	can	use	to	resolve	them.

Notes	are	missed
The	most	common	cause	of	missed	notes	is	the	delay	between	the	note	on	event	and	note
off	event	in	the	MIDI	file.	If	the	MIDI	file	is	too	short,	it	will	not	give	the	servo	arm	time
to	extend	and	retract.	This	can	be	rectified	using	the	midi_note_expand.py	script	included
in	the	code	for	this	chapter.

This	script	can	be	run	using	the	following	command;	here,	MIDI_FILE	is	the	filename	of
the	MIDI	file,	DELAY	is	the	desired	minimum	delay	in	milliseconds	between	note	on	and
note	off	events,	and	TEMPO	is	the	tempo	you	intend	to	play	the	file	at	(the	delay	time	will
vary	depending	on	the	tempo	at	which	the	file	is	played):

python	midi_note_expand.py	-f	MIDI_FILE.mid	-d	DELAY	-t	TEMPO

This	script	will	produce	an	output	similar	to	that	shown	in	the	following	screenshot.	By
default,	it	saves	the	modified	file	as	MIDI_FILE_modified.mid.	By	default,	the	script	will
only	modify	the	delay	between	the	notes	if	it	is	less	than	the	value	set	using	the	-d
parameter.	The	script	can	also	be	used	to	set	the	delay	between	note	events	for	all	the
notes	in	the	file	to	the	same	value	by	adding	the	-s	flag	to	the	end	of	the	command.

Servos	do	not	move	correctly
If	the	servos	seem	to	be	behaving	erratically,	then	there	is	almost	certainly	an	issue
regarding	a	lack	of	sufficient	power	supply	for	all	the	servos.	This	can	be	confirmed	by
measuring	the	voltage	across	5	V	and	ground	connections	on	the	servo	power	distribution
board.

Summary
In	this	chapter,	we	continued	to	look	at	the	possibilities	to	control	hardware	using	the
GPIO	ports	and	had	a	quick	look	at	the	additional	features	of	the	Pi	model	B+.

We	also	looked	at	some	of	the	issues	caused	by	driving	large	numbers	of	electronic
devices	that	require	a	large	amount	of	power	during	their	operations.	We	also	looked	at
how	these	issues	can	be	overcome.

Now	that	you	have	completed	all	the	projects	in	this	book,	it	is	time	for	you	to	embark	on
your	own	projects	using	the	Raspberry	Pi	and	the	vast	range	of	devices	that	can	be	used
with	it	to	create	some	impressive	projects	that	can	interact	with	the	world	around	you.

Index
A

Adafruit
URL	/	Using	the	buttons	and	joystick	with	PiPlay

All	Things	Pi
URL	/	Installing	Logitech	Media	Server

Arduino
setting	up,	for	Maplin	sensors	/	Setting	up	your	Arduino
setting	up,	for	RF	network	/	Setting	up	Arduino

Arduino	IDE
URL	/	Setting	up	your	Arduino

Audacity
URL	/	Tuning

B
bottle	xylophone

requisites	/	What	you	will	need
note	bottle,	assembling	/	Assembling	a	note	bottle
electronics,	configuring	/	Electronics
web	application,	creating	/	The	web	application
configuration	/	Configuration
tuning	/	Tuning
testing	/	Testing
troubleshooting	/	Troubleshooting

C
calibration,	robotic	arm

chassis	motors	/	Chassis	motors
arm	2	/	Arm	2	and	hand	servos
hand	servos	/	Arm	2	and	hand	servos
arm	1	servos	/	The	arm	1	servos

camera
setting	up,	for	robotic	arm	/	Setting	up	the	camera

Camera	Serial	Interface	(CSI)
about	/	Setting	up	the	camera

captures,	GPS-enabled	Timelapse	Recorder
using	/	Using	the	captures
timelapse	video,	creating	/	Creating	a	time-lapse	video
GPS	data,	exporting	as	CSV	/	Exporting	GPS	data	as	CSV

capture	software,	GPS-enabled	Timelapse	Recorder
setting	up	/	Setting	up	the	capture	software

Chromium
setting	up	/	Setting	up	Chromium

closure
about	/	The	JavaScript	code

comma-separated	value	(CSV)	file
about	/	Exporting	GPS	data	as	CSV

configuration,	Magic	Mirror
widget	/	Widgets
styles	/	Styles

Coreutils	Viewer
URL	/	Linux	and	Mac	OS

D
Document	Object	Model	(DOM)

about	/	The	JavaScript	code
drive	electronics

configuring,	for	robotic	arm	/	Drive	electronics

E
electronics,	Portable	Speaker	System

building	/	Building	the	electronics
amplifier	circuit,	connecting	/	The	amplifier	circuit
battery,	using	/	Running	the	speaker	system	on	battery	power

enclosure	construction,	Magic	Mirror
instructions	/	Enclosure	construction
without	plywood	enclosure	/	Building	the	mirror	without	an	enclosure
Pi	enclosure	/	The	Pi	enclosure
URL,	for	Pi	enclosure	/	The	Pi	enclosure

extension	cables
reference	link	/	Electronics

F
FileZilla

URL	/	Transferring	MP3	files	to	the	Pi
Flask

URL	/	The	weather	station	web	application

G
Google	Charts	API

URL	/	The	weather	station	web	application
Google	Fonts

URL	/	Styles
GPS-enabled	Timelapse	Recorder

requisites	/	What	you	will	need
hardware,	setting	up	/	Setting	up	the	hardware
capture	software,	setting	up	/	Setting	up	the	capture	software
captures,	using	/	Using	the	captures

Gunicorn
URL	/	The	weather	station	web	application

H
Hackspaces

about	/	What	you	will	need
hardware,	GPS-enabled	Timelapse	Recorder

setting	up	/	Setting	up	the	hardware
camera	board	/	The	camera	board
camera	module,	connecting	to	Raspberry	Pi	/	Connecting	the	camera	module	to
the	Pi
Raspberry	Pi	camera,	setting	up	/	Setting	up	the	Raspberry	Pi	camera
GPS	module,	setting	up	/	The	GPS	module

home	security	system
requisites	/	What	you	will	need
structure	/	The	security	system	structure
designing	/	Designing	your	security	system
web	application,	creating	/	Web	applications
sensors,	interfacing	/	Interfacing	sensors
RF	network	/	The	RF	network
troubleshooting	/	Troubleshooting

home	theatre	PC
requisites	/	What	you	will	need
OpenELEC,	setting	up	/	Setting	up	OpenELEC
LCD,	setting	up	/	Setting	up	the	LCD
switches,	setting	up	/	Setting	up	the	switches
assembling	/	Final	assembly

I
installation,	Logitech	Media	Server

about	/	Installing	Logitech	Media	Server

J
JavaScript	development

reference	link	/	The	JavaScript	code
JavaScript	Object	Notation	(JSON)

about	/	The	Python	code
Jinja	template	language

reference	link	/	The	Jinja	page	template

L
LCD

setting	up	/	Setting	up	the	LCD
LCD	configuration	files

reference	link	/	Setting	up	the	LCD
LCDproc

about	/	Setting	up	the	LCD
light-dependent	resistor	(LDR)

about	/	Understanding	the	sensors
Linux

SD	card,	writing	/	Linux	and	Mac	OS
Linux	distribution

selecting,	for	Raspberry	Pi	/	Choosing	a	Linux	distribution
Linux	shell	commands

cd	/	Common	Linux	commands
ls	/	Common	Linux	commands
mkdir	/	Common	Linux	commands
cat	/	Common	Linux	commands
pwd	/	Common	Linux	commands
chmod	/	Common	Linux	commands
sudo	/	Common	Linux	commands
mv	/	Common	Linux	commands
cp	/	Common	Linux	commands
rm	/	Common	Linux	commands

Logitech	Media	Server
setting	up	/	Setting	up	Logitech	Media	Server
running	/	Running	Logitech	Media	Server	on	the	Pi
backup	image,	creating	of	SD	card	/	Creating	a	backup	image	of	an	SD	card
USB	storage	device,	automounting	/	Automounting	a	USB	storage	device
installing	/	Installing	Logitech	Media	Server
Pi,	setting	up	as	Wi-Fi	access	point	/	Setting	up	the	Pi	as	a	Wi-Fi	access	point

M
Mac	OS

SD	card,	writing	/	Linux	and	Mac	OS
Magic	Mirror

requisites	/	What	you	will	need
required	tools	/	Tools	you	will	need
theory	/	Theory
web	application,	developing	/	The	web	application
Pi	setup	/	The	Pi	setup
enclosure,	constructing	/	Enclosure	construction
configuration	/	Configuration
troubleshooting	/	Troubleshooting

magnetic	door	sensors
using	/	Magnetic	door	sensors

Maplin	sensors
using	/	Reverse	engineering	the	Maplin	sensors
working	with	/	Understanding	the	sensors
wiring	/	Wiring
Arduino,	setting	up	/	Setting	up	your	Arduino

measurement	units
for	wind	speed	/	Using	the	web	application
for	temperature	/	Using	the	web	application
for	humidity	/	Using	the	web	application
for	pressure	/	Using	the	web	application
for	light	level	and	rain	/	Using	the	web	application

media	files
types	/	Uploading	media	files	to	the	Pi

media	player
scripting	/	Scripting	a	media	player
PiFM,	calling	from	Python	/	Calling	PiFM	from	Python
MP3	files,	searching	/	Searching	for	MP3	files
input,	obtaining	from	command	line	/	Getting	input	from	a	command	line
media	files,	queuing	/	Queuing	the	media	files	to	be	played
player.py	script,	using	/	Using	the	media	player	script

medium	density	fiberboard	(MDF)
about	/	Building	the	enclosure	for	the	speaker	system

miles	per	hour	(MPH)
about	/	Understanding	the	sensors

Minibian
URL	/	Choosing	a	Linux	distribution

mini	retro-style	arcade	cabinet
requisites	/	Requirements
input	electronics,	setting	up	/	Setting	up	the	input	electronics

cabinet,	building	/	Building	the	cabinet
reference	link	/	Building	the	cabinet
PiPlay,	setting	up	/	Setting	up	PiPlay
buttons,	using	with	PiPlay	/	Using	the	buttons	and	joystick	with	PiPlay
joystick,	using	with	PiPlay	/	Using	the	buttons	and	joystick	with	PiPlay

mini	retro-style	arcade	cabinet,	requisites
hardware	/	Requirements
tools	/	Requirements

mount	point
about	/	Linux

MP3	files
transferring,	to	Raspberry	Pi	/	Transferring	MP3	files	to	the	Pi

N
network

scanning,	with	Nmap	utility	/	Network	scanning
Nginx

URL	/	The	weather	station	web	application
Nmap	utility

URL	/	Network	scanning
used,	for	scanning	network	/	Network	scanning

O
Online	Tone	Generator

URL	/	Tuning
OpenELEC

setting	up	/	Setting	up	OpenELEC
booting	/	The	first	boot	and	initial	setup
Pi,	connecting	to	wireless	network	/	Connecting	the	Pi	to	a	wireless	network
media	files,	uploading	to	Pi	/	Uploading	media	files	to	the	Pi
media	files,	uploading	on	Windows	/	Windows
media	files,	uploading	on	Linux	/	Linux
Pi,	shutting	down	/	Shutting	down	the	Pi

outdoor	weather	station
requisites	/	What	you	will	need
Maplin	sensors,	using	/	Reverse	engineering	the	Maplin	sensors
sensors,	setting	up	/	Setting	up	the	remaining	sensors
weather	station	web	application,	creating	/	The	weather	station	web	application
assembling	/	Assembling	the	weather	station
using	/	Using	the	web	application

P
PiPlay

URL	/	Setting	up	PiPlay
setting	up	/	Setting	up	PiPlay
buttons,	using	/	Using	the	buttons	and	joystick	with	PiPlay
joystick,	using	/	Using	the	buttons	and	joystick	with	PiPlay

Pirate	Radio
setting	up	/	Setting	up	the	pirate	radio
MP3	files,	transferring	to	Raspberry	Pi	/	Transferring	MP3	files	to	the	Pi

PIR	motion	sensors
using	/	The	PIR	motion	sensors

Pi	setup,	for	Magic	Mirror
display,	rotating	/	Rotating	the	display
web	application,	deploying	/	Deploying	the	web	application
Chromium,	setting	up	/	Setting	up	Chromium

Portable	Speaker	System
requisites	/	What	you	will	need
required	tools	/	Tools	you	will	need
Logitech	Media	Server,	setting	up	/	Setting	up	Logitech	Media	Server
Raspberry	Pi,	setting	as	Squeezebox	client	/	Setting	up	the	Pi	as	a	Squeezebox
client
electronics,	building	/	Building	the	electronics
enclosure,	building	/	Building	the	enclosure	for	the	speaker	system
Logitech	Media	Server,	running	on	Pi	/	Running	Logitech	Media	Server	on	the
Pi

potential	divider
about	/	Understanding	the	sensors

printed	circuit	board	(PCB)
about	/	Understanding	the	sensors

prototyping	board
about	/	Setting	up	the	LCD

pull-up	resistor
about	/	Understanding	the	sensors

Pulse	Width	Modulation	(PWM)
about	/	Drive	electronics

push-to-make	(PTM)	buttons
about	/	What	you	will	need

PuTTY
URL	/	Connecting	to	the	Pi	via	SSH

python-midi	library
URL	/	Configuration

Python	SMTP	library
URL	/	Deploying	our	application

R
Raspberry	Pi

setting	up	/	Setting	up	the	Pi
Linux	distribution,	selecting	/	Choosing	a	Linux	distribution
URL,	for	downloading	/	Choosing	a	Linux	distribution,	Writing	an	SD	card
SD	card,	writing	/	Writing	an	SD	card
booting	/	Booting	the	Pi	for	the	first	time
network	scanning,	with	Nmap	utility	/	Network	scanning
connecting,	via	SSH	/	Connecting	to	the	Pi	via	SSH,	Common	Linux	commands
initial	setup	/	The	initial	setup
MP3	files,	transferring	/	Transferring	MP3	files	to	the	Pi
setting	up,	for	RF	network	/	Setting	up	the	Raspberry	Pi

Raspberry	Pi,	as	Squeezebox	client
setting	up	/	Setting	up	the	Pi	as	a	Squeezebox	client
Wi-Fi,	setting	up	/	Setting	up	Wi-Fi	on	the	Pi
squeezelite,	running	as	daemon	/	Running	squeezelite	as	a	daemon

remote	control	functions
Input.Up	/	Setting	up	the	switches
Input.Down	/	Setting	up	the	switches
Input.Left	/	Setting	up	the	switches
Input.Right	/	Setting	up	the	switches
Input.Select	/	Setting	up	the	switches
Input.Back	/	Setting	up	the	switches
Input.Home	/	Setting	up	the	switches
Player.PlayPause	/	Setting	up	the	switches
Player.Stop	/	Setting	up	the	switches
Player.GoPrevious	/	Setting	up	the	switches
Player.GoNext	/	Setting	up	the	switches

residual	current	device	(RCD)
about	/	Building	the	enclosure	for	the	speaker	system,	Building	the	cabinet,
Enclosure	construction

revolutions	per	minute	(RPM)
about	/	Understanding	the	sensors

RF24Network	library
URL	/	The	RF	network

RF	network
using	/	The	RF	network
Raspberry	Pi,	setting	up	/	Setting	up	the	Raspberry	Pi
Arduino,	setting	up	/	Setting	up	Arduino

RH	(relative	humidity)
about	/	What	you	will	need

robotic	arm
requisites	/	What	you	will	need

drive	electronics,	configuring	/	Drive	electronics
camera,	setting	up	/	Setting	up	the	camera
web	application,	deploying	/	Deploying	web	applications
arm,	constructing	/	The	arm	and	chassis	construction
chassis,	constructing	/	The	arm	and	chassis	construction
calibrating	/	Calibration
troubleshooting	/	Troubleshooting

S
scheduled	operating	system

about	/	Understanding	the	sensors
SD	card

writing	/	Writing	an	SD	card
writing,	on	Windows	/	Windows
writing,	on	Linux	/	Linux	and	Mac	OS
writing,	on	Mac	OS	/	Linux	and	Mac	OS
backup	image,	creating	/	Creating	a	backup	image	of	an	SD	card

Secure	File	Transfer	Protocol	(SFTP)
about	/	Transferring	MP3	files	to	the	Pi

sensors
setting	up	/	Setting	up	the	remaining	sensors
DHT11/22,	setting	up	/	DHT11/22
BMP180,	setting	up	/	BMP180
readings,	recording	/	Taking	readings	from	the	sensors

sensors,	home	security	system
interfacing	/	Interfacing	sensors
PIR	motion	sensors,	using	/	The	PIR	motion	sensors
magnetic	door	sensors,	using	/	Magnetic	door	sensors

service	set	identifier	(SSID)
about	/	Setting	up	Wi-Fi	on	the	Pi

squeezelite
URL	/	Setting	up	the	Pi	as	a	Squeezebox	client
running,	as	daemon	/	Running	squeezelite	as	a	daemon

SSH
Raspberry	Pi,	connecting	/	Connecting	to	the	Pi	via	SSH,	Common	Linux
commands

Supervisor	application
URL	/	Deploying	the	app	on	the	Pi

switches
setting	up,	for	home	theatre	PC	/	Setting	up	the	switches

T
troubleshooting,	bottle	xylophone

missed	notes	/	Notes	are	missed
servos	movement	/	Servos	do	not	move	correctly

troubleshooting,	Magic	Mirror
issues,	with	web	application	/	The	web	application	fails	with	the	500	Internal
Server	Error
display	issue	/	The	display	does	not	work

troubleshooting,	robotic	arm
video	stream	/	The	video	stream	has	a	substantial	delay
servos	/	The	servos	make	a	loud	humming	noise
robot	control	/	Control	of	the	robot	is	lost
arms	movement	/	The	arm	jumps	to	new	positions

U
ultracabs

about	/	Setting	up	the	input	electronics
URL	/	Setting	up	the	input	electronics

USB	storage	device
automounting	/	Automounting	a	USB	storage	device

V
Video	for	Linux	2	(V4	L2)	driver

about	/	Setting	up	the	camera
reference	link	/	Setting	up	the	camera

W
weather	station	web	application

creating	/	The	weather	station	web	application
deploying	/	Deploying	the	app	on	the	Pi

web	application,	home	security	system
creating	/	Web	applications
deploying	/	Deploying	our	application
sensors,	configuring	/	Configuring	sensors	and	alarms
alarms,	configuring	/	Configuring	sensors	and	alarms

web	application,	Magic	Mirror
developing	/	The	web	application
widget,	developing	/	Developing	a	new	widget

Wi-Fi
setting	up,	on	Raspberry	Pi	/	Setting	up	Wi-Fi	on	the	Pi
reference	link	/	Setting	up	Wi-Fi	on	the	Pi

widget,	Magic	Mirror
Python	code	/	The	Python	code
Jinja	page	template	/	The	Jinja	page	template
JavaScript	code	/	The	JavaScript	code
configuration	files	/	Widgets,	Example	configurations
configuration	options	/	Included	widgets

widget	configuration,	Magic	Mirror
bbc_ticker.conf	file	/	bbc_ticker.conf
clock.conf	file	/	clock.conf

Win32	Disk	Imager
URL	/	Windows

Windows
SD	card,	writing	/	Windows

X
XBMC	media	center	software

URL	/	Setting	up	OpenELEC

Z
7-Zip

URL	/	Setting	up	OpenELEC

	Raspberry Pi Blueprints
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions
	1. Raspberry Pi Pirate Radio
	What you will need
	Setting up the Pi
	Choosing a Linux distribution
	Writing an SD card
	Windows
	Linux and Mac OS
	Booting the Pi for the first time
	Network scanning
	Connecting to the Pi via SSH
	Common Linux commands
	The initial setup
	Setting up the pirate radio
	Transferring MP3 files to the Pi
	Scripting a media player
	Calling PiFM from Python
	Searching for MP3 files
	Getting input from a command line
	Queuing the media files to be played
	Using the media player script
	Summary
	2. Portable Speaker System
	What you will need
	Tools you will need
	Setting up Logitech Media Server
	Setting up the Pi as a Squeezebox client
	Setting up Wi-Fi on the Pi
	Running squeezelite as a daemon
	Building the electronics
	The amplifier circuit
	Running the speaker system on battery power
	Building the enclosure for the speaker system
	Running Logitech Media Server on the Pi
	Creating a backup image of an SD card
	Automounting a USB storage device
	Installing Logitech Media Server
	Setting up the Pi as a Wi-Fi access point
	Summary
	3. Mini Retro Arcade Cabinet
	Requirements
	Setting up the input electronics
	Building the cabinet
	Setting up PiPlay
	Using the buttons and joystick with PiPlay
	Summary
	4. GPS-enabled Time-lapse Recorder
	What you will need
	Setting up the hardware
	The camera board
	Connecting the camera module to the Pi
	Setting up the Raspberry Pi camera
	The GPS module
	Setting up the capture software
	Using the captures
	Creating a time-lapse video
	Exporting GPS data as CSV
	Summary
	5. Home Theater PC
	What you will need
	Setting up OpenELEC
	The first boot and initial setup
	Connecting the Pi to a wireless network
	Uploading media files to the Pi
	Windows
	Linux
	Shutting down the Pi
	Setting up the LCD
	Setting up the switches
	Final assembly
	Summary
	6. Outdoor Weather Station
	What you will need
	Reverse engineering the Maplin sensors
	Understanding the sensors
	Wiring
	Setting up your Arduino
	Setting up the remaining sensors
	DHT11/22
	BMP180
	The weather station web application
	Deploying the app on the Pi
	Taking readings from the sensors
	Assembling the weather station
	Using the web application
	Summary
	7. Home Security System
	What you will need
	The security system structure
	Designing your security system
	Web applications
	Deploying our application
	Configuring sensors and alarms
	Interfacing sensors
	The PIR motion sensors
	Magnetic door sensors
	The RF network
	Setting up the Raspberry Pi
	Setting up Arduino
	Troubleshooting
	Summary
	8. Remote-operated Robotic Arm
	What you will need
	Drive electronics
	Setting up the camera
	Deploying web applications
	The arm and chassis construction
	Calibration
	Chassis motors
	Arm 2 and hand servos
	The arm 1 servos
	Troubleshooting
	The video stream has a substantial delay
	The servos make a loud humming noise
	Control of the robot is lost
	The arm jumps to new positions
	Summary
	9. Magic Mirror
	What you will need
	Tools you will need
	Theory
	The web application
	Developing a new widget
	The Python code
	The Jinja page template
	The JavaScript code
	The Pi setup
	Rotating the display
	Deploying the web application
	Setting up Chromium
	Enclosure construction
	Building the mirror without an enclosure
	The Pi enclosure
	Configuration
	Widgets
	Included widgets
	Example configurations
	bbc_ticker.conf
	clock.conf
	Styles
	Troubleshooting
	The web application fails with the 500 Internal Server Error
	The display does not work
	Summary
	10. Bottle Xylophone
	What you will need
	Assembling a note bottle
	Electronics
	The web application
	Configuration
	Tuning
	Testing
	Troubleshooting
	Notes are missed
	Servos do not move correctly
	Summary
	Index

