

Praise for the First Edition of Raspberry Pi

The Raspberry Pi is bringing back the golden days of experimenting with home

computers, and Maik’s book is an ideal starting point. The included projects are

perfect for Raspberry Pi users of any age or level of experience.

➤ Tony Williamitis, Senior Embedded Systems Engineer

Schmidt takes a quick dip into many of the things you can do with a Raspberry

Pi straight out of the box. I found it very useful for understanding exactly what I

can use my Pi for, and it’s given me some ideas for what I can do next!

➤ Stephen Orr, Technical Enthusiast and Web Developer

This is the owner’s manual all Raspberry Pi buyers should get before they start

diving in. It’s clear, comprehensive, and succinct. I couldn’t ask for more.

➤ Thomas Lockney, Professional Geek

DorkbotPDX

A wonderfully clear, concise, and useful introduction to the Raspberry Pi.

➤ Michael Hunter

Raspberry Pi: A Quick-Start Guide,
2nd Edition

Maik Schmidt

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products

are claimed as trademarks. Where those designations appear in this book, and The Pragmatic

Programmers, LLC was aware of a trademark claim, the designations have been printed in

initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,

Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-

marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes

no responsibility for errors or omissions, or for damages that may result from the use of

information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create

better software and have more fun. For more information, as well as the latest Pragmatic

titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Jacquelyn Carter (editor)

Potomac Indexing, LLC (indexer)

Cathleen Small (copyeditor)

David J Kelly (typesetter)

Janet Furlow (producer)

Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2014 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-13: 978-1-93778-580-2

Encoded using the finest acid-free high-entropy binary digits.

Book version: P1.0—February 2014

http://pragprog.com
rights@pragprog.com

Contents

Acknowledgments ix

Preface xi

1. Meet the Raspberry Pi 1

Get to Know the Hardware 1

What Else You Need 6

Next Steps 9

2. Install an Operating System 11

See What’s Available 11

Have a Look Around with NOOBS 14

Prepare a Bootable SD Card 17

Next Steps 22

3. Configure Raspbian 23

Boot the Pi for the First Time 23

Customize Your Installation with Raspi-config 24

Start the Desktop 31

Manage Your Software with apt-get 33

Install Software and Media Using the Pi Store 38

Next Steps 39

4. Configure the Firmware 41

Update the Firmware and Kernel 41

Configure the Video Output 43

Test and Configure the Audio System 45

Next Steps 46

5. Intermezzo: Build a Kiosk with the Pi 47

Display Twitter Live Search Information 47

Refresh Websites Automatically 50

Try Different Browsers 51

Next Steps 51

6. Networking with the Pi 53

Perform Everyday Tasks on the Web 53

Use Secure Shell with the Pi 56

Share Desktops with the Pi 60

Turn the Pi into a Web Server 64

Add Wi-Fi to the Pi 67

Next Steps 74

7. Turn the Pi into a Multimedia Center 75

Install Raspbmc 75

Start Raspbmc for the First Time 77

Add Files to XBMC 80

Control XBMC Remotely 82

Next Steps 84

8. Play Games on Your Pi 85

Play Interactive Fiction 85

Play Point-and-Click Adventures 87

Emulate Other Platforms 88

Play Native Games 91

Next Steps 92

9. Tinker with the GPIO Pins 93

What You Need 93

Meet the Pi’s GPIO Pins 95

Build a Basic Circuit 96

Control an LED Using the GPIO Pins 98

Build an Out-of-Memory Alarm 100

Display the GPIO Status in a Browser 104

What If It Doesn’t Work? 105

Next Steps 106

10. Working with Digital and Analog Sensors 107

What You Need 107

Detect Motion with the Pi 109

Measure Temperature with the Pi 113

What If It Doesn’t Work? 120

Next Steps 120

Contents • vi

11. Control the Pi Camera 121

Meet the Camera’s Hardware 121

Connect the Camera to the Pi 122

Install the Camera Drivers 122

Take Some Photos 123

Record High-Definition Videos 125

Build a Burglar Alarm 126

What If It Doesn’t Work? 130

Where to Go from Here 130

A1. A Linux Primer 133

A First Encounter 134

Navigate Through the File System 136

Edit Text Files 137

Manage Users 139

Manage Processes 142

Shut Down and Reboot the Pi 144

Get Help 144

Index 145

Contents • vii

Acknowledgments

Whenever I tell people that I’m an author, they look at me dreamily for a few

seconds. Obviously, many people think that writing is about sitting at an old

wooden desk, staring outside the window on a stormy day, and enjoying a

good glass of red wine. For me this has rarely been the case, but still, most

of the time I have a lot of fun while writing books.

I had a lot of fun writing this book, too—mainly because of the invaluable

support of my editor, Jacquelyn Carter. She cheered me up on countless

occasions, and her thoughtful advice made most of my problems disappear

immediately. Thank you very much, Jackie!

As always, the whole team at the Pragmatic Bookshelf has been tremendously

helpful and agile. Without you, this book would’ve been impossible!

This book deals with electronics, and I have created all the circuit diagrams

with Fritzing.1 I am deeply grateful that the Fritzing team has made such a

great tool available for free. The Adafruit Fritzing library2 has been tremen-

dously helpful, too. Also, I have to thank Gordon Henderson for WiringPi.3 It

makes working with the Raspberry Pi’s GPIO pins a piece of cake, and it saved

me countless hours of debugging low-level code.

Simon Quernhorst kindly gave me permission to use screenshots of his great

game, A-VCS-tec Challenge, in this book.

I cannot thank my reviewers enough: Daniel Bachfeld, Gordon Haggart,

Michael Hunter, Thomas Lockney, Christian Müller, Angus Neil, Stephen Orr,

Mike Riley, Sam Rose, Mike Williamitis, Tony Williamitis, and Jim Wilson.

Your comments and suggestions made this book so much better.

Finally, I have to thank Tanja and Mika for being so patient and understand-

ing. I am so glad I have you!

1. http://fritzing.org/
2. https://github.com/adafruit/Fritzing-Library/
3. https://projects.drogon.net/raspberry-pi/wiringpi/

report erratum • discuss

http://fritzing.org/
https://github.com/adafruit/Fritzing-Library/
https://projects.drogon.net/raspberry-pi/wiringpi/
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

Preface

Over the past decades, computers have gotten cheaper and cheaper, so today

you can find them not only at your desk, but also in nearly every consumer

electronics device, such as smartphones and DVD players. Still, computers

aren’t so cheap that you spontaneously buy one when shopping for your

groceries. Usually, you carefully plan your next computer purchase, because

you have to use it for a couple of years.

Computers like the Raspberry Pi will change the situation completely in the

near future. The Raspberry Pi—or Pi, for short—is a full-blown desktop PC

that costs only $35. You can connect it directly to the Internet, and it can

display high-definition videos. Also, it runs Linux, so you don’t have to pay

for an operating system. This makes the Pi probably the first throwaway

computer in history.

Originally, the Raspberry Foundation1 built the Pi to teach children how to

program, so it comes as no surprise that the Pi is an excellent device for

exactly this purpose. On top of that, you can use the Pi for many other

exciting things. For example, you can turn it into a multimedia center, use

it as a cheap but powerful web server, or play some classic games.

The Pi is also a great machine for experimenting with electronics. In contrast

to many popular microcontroller boards, such as the Arduino, the Pi runs a

full-blown operating system, and you can choose from a wide range of pro-

gramming languages to implement your projects.

With cheap and small devices like the Raspberry Pi, a new era of ubiquitous

computing has begun, and you can be part of it. This book will help you get

up to speed quickly.

1. http://www.raspberrypi.org/

report erratum • discuss

http://www.raspberrypi.org/
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

Who Should Read This Book?

This book is for everyone who wants to get started with the Raspberry Pi.

Even if you have some experience with other computers, you’ll quickly see

that the Pi is different in many regards, and this book will help you avoid the

most common pitfalls.

You can choose from a variety of operating systems for the Pi, but this book’s

focus is on Debian Linux (Raspbian), because it’s the most convenient choice

for beginners. If you’ve never worked with Linux before, you should start with

Appendix 1, A Linux Primer, on page 133. Even if you’ve worked with Linux

before, you still might learn a few things, because running Linux on the Pi is

different in some ways.

Of course, you’ll get the most out of this book if you have a Raspberry Pi and

follow all the book’s examples closely.

What’s in This Book?

The Raspberry Pi doesn’t come with a user guide, but in this book you’ll learn

step by step how to get the most out of your mini-computer quickly. You’ll

learn how the Pi’s hardware works, as well as how to run different operating

systems and use the Pi for special purposes, such as turning it into a multi-

media center.

Here’s a list of all the things you’re going to learn:

• The book starts with an introduction to the Raspberry Pi’s hardware.

You’ll learn what the Pi’s connectors are for and which additional hardware

you need to start the Pi for the first time.

• After you’ve connected all the necessary devices to your Pi, you need an

operating system. Although the Pi is a fairly young project, you can already

choose from several operating systems, and you’ll learn about their pros

and cons.

• Installing an operating system on the Pi is quite different from installing

an operating system on a regular PC. So, you’ll learn how to get Debian

Linux up and running on the Pi.

• Debian Linux runs fine out of the box on the Pi, but to get the most out

of it, you have to tweak a few configuration parameters. For example, it’s

beneficial to set the correct layout for your keyboard. In addition, you’ll

learn how to install, update, and remove software.

Preface • xii

report erratum • discuss

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

• The Pi’s hardware—especially its graphics hardware—is special in many

regards. Depending on the display you’re using, you have to adjust some

low-level settings for the Pi’s firmware. You’ll learn what settings are

available and how to solve the most common firmware problems.

• To see what you can achieve with the Pi with a minimum of effort, you’ll

turn it into a kiosk system. It will be able to display a set of static slides

as well as live information from the Internet.

• At this point in the book, you’ll have used the Pi more or less in isolation,

but now you’ll learn how to integrate it with networks. You’ll use the Pi

for everyday tasks such as browsing the Web, you’ll make it accessible

via Secure Shell, and you’ll even turn it into a full-blown web server. Also,

you’ll learn how to share your Pi’s desktop with a PC, and vice versa.

• With the XBMC project, you can turn your Raspberry Pi into a multimedia

center with ease. Not only can you show your photo collections to your

friends in your living room, but you can also play music in all popular

formats, and you can watch your favorite movies and TV shows in high

definition.

• The Raspberry team originally built the Pi for educational purposes, but

you can easily use it to play some entertaining games. Even though it’s

possible to run some first-person shooters, you might prefer some classic

genres, such as interactive fiction and point-and-click adventures.

• One of the greatest advantages the Pi has over regular PCs is its GPIO

pins. In the book’s final chapters, you’ll learn how to use them to attach

your own electronics projects to the Pi.

• The Pi’s homogeneous hardware makes it easy to create additional hard-

ware. The Raspberry team has released a camera, for example, that works

perfectly with the Pi; you can easily integrate it with your own projects.

• The appendix contains a short introduction to Linux. If you’ve never

worked with Linux before, you should read the appendix before you start

with Chapter 3, Configure Raspbian, on page 23.

Where Can I Get a Raspberry Pi and Additional Hardware?

In the beginning, only two distributors in the UK produced and sold the

Raspberry Pi: Farnell2 and RS Components.3 Today, you can buy a Pi from

2. http://www.farnell.com/
3. http://www.rs-online.com/

report erratum • discuss

Where Can I Get a Raspberry Pi and Additional Hardware? • xiii

http://www.farnell.com/
http://www.rs-online.com/
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

many other stores, such as Adafruit,4 SparkFun,5 and Maker Shed.6 These

shops also sell many accessories for the Pi, such as power supplies, keyboards,

mice, and so on.

You can find a growing list of compatible hardware on the project’s wiki,7 but

when in doubt, it’s better to buy hardware from one of the vendors mentioned

here.

Debian Linux

The most popular operating system for the Pi is Linux. Several Linux distri-

butions are available for the Pi, and we chose Debian. In May 2013 the Debian

team froze the latest version, named wheezy, and because of the great efforts

of the Raspbian team,8 it became quickly available for the Pi. Raspbian

supersedes Debian squeeze, which was the reference operating system for

the Pi for a long time.

The Raspbian distribution has many advantages over all of its predecessors. It is

much faster, it has more recent software, and it is more stable. Also, it’s the pre-

ferred solution of the Raspberry team, so this book’s focus is on Raspbian.

Code Examples and Conventions

In this book you’ll find a few code examples written in PHP, Python, HTML,

and the programming language of the Bash shell. They’re all very short, and

if you’ve done some programming before, you’ll have no problem understanding

them. If you haven’t developed software before, you’ll still be able to copy the

code to the Pi and make it run.

Online Resources

This book has its own web page at http://pragprog.com/titles/msraspi, where you can

download the code for all examples, or you can click the filename above each

code example to download the source file directly. On the web page, you can

also participate in a discussion forum and meet other readers and me. If you

find bugs, typos, or other annoyances, please let me and the world know

about them on the book’s errata page.

Now it’s time to unbox your Raspberry Pi and have some real fun!

4. http://adafruit.com/
5. http://sparkfun.com/
6. http://makershed.com
7. http://elinux.org/RPi_VerifiedPeripherals
8. http://www.raspbian.org/

Preface • xiv

report erratum • discuss

http://pragprog.com/titles/msraspi
http://adafruit.com/
http://sparkfun.com/
http://makershed.com
http://elinux.org/RPi_VerifiedPeripherals
http://www.raspbian.org/
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

CHAPTER 1

Meet the Raspberry Pi

Before you start the Raspberry Pi for the first time, you should get familiar

with its connectors and its capabilities. This will help you decide what kind

of projects you can use the Pi for, and it will help you understand what kind

of additional hardware you’ll need. For example, you’ll need a power supply,

a keyboard, a mouse, and a display. In this chapter, you’ll learn which devices

work best.

Get to Know the Hardware

Unboxing a new Pi is exciting, but it certainly is not comparable to unboxing

a new Apple product. Usually, the Pi comes in a plain cardboard box with

one or two sheets of paper containing the usual safety hints for electronic

devices and a quick-start guide.

The first version of the Pi looks attractive only to real geeks. It is a single-

board computer without a case, and it’s the size of a credit card. It somewhat

resembles the innards of the many electronic devices you might have opened

when you were a child. Later versions of the Pi might have a case, but until

then we have to focus on its inner values, and that’s what counts, isn’t it?

What’s on the Pi

The Pi is available in two flavors: Model A and Model B. Model B has been

revised and is available in two slightly different versions now: Model B (Revi-

sion 1) and Model B (Revision 2). Model A is a bit cheaper and does not have

as many connectors as Model B. I’ll explain their differences and the differ-

ences between the two Model B revisions in detail in the following text.

I’ll mostly cover Model B in the rest of this book, because it’s much more

popular than Model A. You can see it in Figure 1, The front side of a Model B

(Revision 1), on page 2.

report erratum • discuss

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

Figure 1—The front side of a Model B (Revision 1)

All Raspberry Pi models have the same heart and brain: a system on a chip

(SoC) named BCM28351 that you can find in many mobile phones. It’s cheap,

it’s powerful, and it does not consume a lot of power. These characteristics

made it a perfect choice for the Raspberry team.

In contrast to a typical PC architecture, a SoC integrates a processor (CPU),

a graphics processing unit (GPU), and some memory into a single unit. The

BCM2835 contains an ARM1176JZF-S processor running at 700MHz, 512MB

of RAM, and a GPU named VideoCore IV. First-generation devices and Model

A boards have only 256MB of RAM. If you buy a new Pi, make sure it has

512MB of RAM.

For purists, the GPU is a bit problematic because its design and firmware are

proprietary; that is, their source code is not publicly available. This probably

will not affect you in your daily work with the Pi, but it is a problem for some

strong proponents of free software. At least Broadcom has released the source

code for the whole graphics stack under the BSD license.2 By the time you

read this, the Pi will probably be completely open source.

1. http://www.broadcom.com/products/BCM2835
2. See http://www.raspberrypi.org/archives/6299

Chapter 1. Meet the Raspberry Pi • 2

report erratum • discuss

http://www.broadcom.com/products/BCM2835
http://www.raspberrypi.org/archives/6299
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

The Pi has many connectors, and most of them look familiar. On a Model B

board, you’ll find two regular-sized USB ports that you can use to connect a

keyboard and a mouse, for example. You’ll also find a micro-USB port, but

you’ll need it to power the Pi, and you cannot use it to connect more devices.

If you need to connect more devices, you have to connect them to a USB hub.

The Model A board has only a single USB port, so you’ll probably always need

a USB hub.

You can connect the Model B to a network directly using its Ethernet (LAN)

port. Model A does not have an Ethernet port, but you can add one by

attaching a USB-to-Ethernet converter. Interestingly, Model B uses its internal

USB hardware for networking, too, so there’s no difference in networking

performance between a Model B and a Model A with a USB-to-Ethernet

adapter.

To connect the Pi to a display or a TV set, you have two options; the Pi has

ports for connecting both HDMI and composite video. The digital HDMI

standard is much more powerful than its much older brother, the analog

composite standard. With HDMI, you can transmit high-definition video in

crystal-clear quality, while the composite output is limited to what older geeks

know as “the childhood TV.” Using composite video, you cannot display high-

definition graphics, and the output usually flickers a bit. Its biggest advantage

is that many TV sets still have a composite connector, but HDMI is gaining

ground quickly. By the way, the Raspberry team did not add a VGA connector,

because it thinks that VGA is at the end of its life. Of course, you can use an

adapter to connect the Pi’s HDMI output to a DVI or VGA display.

With HDMI you can also transmit both video and sound, but if you’re using

composite video, you’ll need a separate connector for sound output. That’s

what the audio jack is for—you can connect it to headphones, to speakers,

or to your audio receiver using a standard 3.5mm plug.

To the left of the composite video connector, you’ll see an expansion header

that consists of two rows of pins. Most of these pins are general-purpose

input/output pins (GPIOs), and you can use them to connect the Pi to other

electronic devices. As you might have guessed from their name, they do not

have a special purpose, so you can do many different things with them. For

example, you can use them to connect your good old Atari VCS 2600 game

controllers to the Pi so you can run your favorite 8-bit games in an emulator.

In Chapter 9, Tinker with the GPIO Pins, on page 93, you’ll learn how to use

the expansion header, and you’ll build a small hardware project.

report erratum • discuss

Get to Know the Hardware • 3

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

On the board you can find several other connectors. The CSI connector3 is

meant for connecting a camera to the Pi (see Chapter 11, Control the Pi

Camera, on page 121). With the DSI connector,4 you can connect a display,

and the JTAG headers5 help you debug your hardware projects.

Every board has a few status LEDs. Model A boards have two LEDs, labeled

ACT and PWR. Model B boards have five LEDs with slightly different labels

depending on the board’s revision. On Revision 1.0 boards, the LEDs are

labeled OK, PWR, FDX, LINK, and 10M. On Revision 2.0 boards, their names

are ACT, PWR, FDX, LNK, and 100. The LEDs have the following meanings:

• The OK/ACT LED indicates SD card access; it blinks whenever the Pi

tries to access the SD card. You can control this LED by software, so it’s

not completely accurate.

• As soon as you connect a power supply to the Pi, the PWR LED turns on.

• The FDX LED shows whether your LAN is running full duplex.

• At every LAN activity, the LINK/LNK LED blinks.

• The 10M/100 LED indicates whether the Pi’s Ethernet link is running at

10Mbit/s or 100Mbit/s. When this LED is on, the Pi runs at 100Mbit/s.

In the following figure, you can see the back side of a Pi, and you can also

see a slot for an SD card on the right side.

Figure 2—The back side of a Model B

3. http://en.wikipedia.org/wiki/Camera_interface
4. http://en.wikipedia.org/wiki/Display_Serial_Interface
5. http://en.wikipedia.org/wiki/Jtag

Chapter 1. Meet the Raspberry Pi • 4

report erratum • discuss

http://en.wikipedia.org/wiki/Camera_interface
http://en.wikipedia.org/wiki/Display_Serial_Interface
http://en.wikipedia.org/wiki/Jtag
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

Figure 3—SD cards come in

various sizes.

The Pi has no persistent internal memory, so

you have to boot it from an SD card. You might

have worked with SD cards before, because

they are very popular as storage media in

cameras, cell phones, and portable game con-

soles. They are available in different sizes and

with different capacities, usually ranging from

1GB to 64GB (see the figure here).

What the Pi Does Not Have

Taking its cheap price into account, the Pi comes with a lot of nice things

already, but it also lacks some useful features. For example, the Pi does not

have a real-time clock (RTC) with a backup battery, and it does not have a

Basic Input Output System (BIOS).6 You can easily work around the missing

clock using a network time server, and most operating systems do this auto-

matically, but the lack of a BIOS is a bit more serious.

Simply put, a BIOS is a program stored in read-only memory (ROM) that runs

on a PC at startup. Among other things, it’s responsible for configuring new

devices and for determining the boot order. For example, using the BIOS, you

can specify whether you’d like to boot from your hard drive or from a DVD.

The Pi has no BIOS, so it always boots from an SD card. Even if you have a

perfectly valid installation of an operating system on a USB stick or an

external hard drive, you cannot boot it. Of course, you can still use external

storage devices, but you cannot use them to boot the Pi.

The Pi does not support Bluetooth or Wi-Fi out of the box, but you can add

support for both of them using USB dongles. Unfortunately, most Linux

distributions are still a bit picky about their hardware, so you should first

check whether your flavor of Linux supports your particular device. (See

Where Can I Get a Raspberry Pi and Additional Hardware?, on page xiii, for

some advice about where to get compatible hardware.) All this is true for

other types of hardware, such as microphones or webcams. As long as your

operating system and your applications support your devices, you’ll be fine.

Otherwise, you’d better look for an alternative that is known to work on your

operating system.

You now know what all the connectors on the Pi are for, and in the next sec-

tion, you’ll learn what devices you can actually connect to the Pi.

6. http://en.wikipedia.org/wiki/BIOS

report erratum • discuss

Get to Know the Hardware • 5

http://en.wikipedia.org/wiki/BIOS
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

What Else You Need

After unboxing the Pi for the first time, you’ll quickly realize that the Raspberry

team obeys the BYOP mantra—Bring Your Own Peripherals. The box contains

nothing but the board; you’ll need a couple of other things to get it up and

running. You’ll probably already have most of them at home.

Choose a Power Supply

First you need a power supply with a Micro USB connector, because currently

the Pi does not ship with one. According to the Pi’s specification, both models

need a power supply that outputs 5V. The power supply should source 300mA

for a Model A and 700mA for a Model B. Depending on the devices you connect

to the Pi, it might have to source even more.

Figure 4—A USB wall charger

Many cell-phone chargers meet the Pi’s

requirements, and this is not a coincidence.

The Raspberry team wanted the Pi to work

with cell-phone chargers because of their

ubiquity. I used the charger of a Samsung

Galaxy S II for a couple of days, and it worked

well for my first experiments. When I started

to add more devices, it was no longer suffi-

cient, and I replaced it with a wall charger

from Belkin (see the figure here). It outputs

1A and works better, but for some hardware

setups, you still need more power.

The Pi’s biggest limitation regarding the power

supply is that no external device should draw more than 100mA from any of

its USB ports. So, as long as your keyboard and your mouse need 100mA

each, everything works fine. Usually, you can find a small sticker with the

power characteristics on the back of a device. If one device draws more than

100mA, sooner or later you’ll observe strange effects.7 To be on the safe side,

use a power supply that delivers 1A to 1.2A for the Model B. For Model A it

should be between 500mA and 700mA.

You can unburden the Pi with a powered USB hub, but it doesn’t work with

every product. So, before you buy something for your Pi, it’s best to take a

look at the project’s wiki.8

7. http://elinux.org/RPi_Hardware#Power
8. http://elinux.org/RPi_VerifiedPeripherals

Chapter 1. Meet the Raspberry Pi • 6

report erratum • discuss

http://elinux.org/RPi_Hardware#Power
http://elinux.org/RPi_VerifiedPeripherals
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

Choose an SD Card

Even with a perfect power supply, a Pi will not do much when you start it,

because it needs an SD card with an operating system. You can buy

preloaded SD cards,9 but you can also start with an empty card and prepare

it yourself. (See Prepare a Bootable SD Card, on page 17, for how to do this.)

Usually this is the better approach, because it ensures that you get the latest

and greatest software for your Pi.

Some users have reported problems with incompatible SD cards, so when in

doubt, you should take a look at Where Can I Get a Raspberry Pi and Addi-

tional Hardware?, on page xiii. In theory, you can use a card of any size. Of

course, the minimum size depends on your operating system, on the

applications you’re going to install, and on the data you’re going to create on

the Pi later. As often in life, bigger is better, and you should use a card with

a capacity of at least 4GB for the most convenient Pi experience.

Connect a Keyboard and a Mouse

Unless you’re planning to use the Pi as a headless system,10 you’ll need a

keyboard and a mouse. You probably have a spare keyboard and mouse at

home, and as long as they have a USB connector, they’ll likely work with the

Pi. Note that sometimes keyboards with an internal USB hub cause problems

because they steal some current from the Pi that it might need for other

things. If you experience strange effects, such as an unresponsive keyboard

or infinite repetitions of keystrokes, try another keyboard or connect the

keyboard to the Pi using a powered USB hub. It’s best if your keyboard and

mouse consume only 100mA each.

Some wireless keyboards and mice will not work properly because Linux does

not support them all. In the beginning, be conservative and use wired equip-

ment until everything works as expected. Then start to replace components

one by one. If you run into problems, check to see whether your operating

system supports your particular keyboard or mouse.

Often you’ll need even more than two USB devices (or one, if you have a

Model A), so you’ll have to connect them to the Pi using a USB hub. Make

sure the hub delivers enough current to power all connected devices. In

nearly all cases, you’ll need a hub that has its own power supply.

9. http://uk.farnell.com/raspberry-pi-accessories#operatingsystem or http://uk.rs-online.com/web/p/flash-memory/
7631030/?

10. http://en.wikipedia.org/wiki/Headless_system

report erratum • discuss

What Else You Need • 7

http://uk.farnell.com/raspberry-pi-accessories#operatingsystem
http://uk.rs-online.com/web/p/flash-memory/7631030/?
http://uk.rs-online.com/web/p/flash-memory/7631030/?
http://en.wikipedia.org/wiki/Headless_system
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

Choose a Display

Depending on the display you’re going to use, you need an HDMI cable or a

composite-video cable. If you’re using HDMI and your display also has audio

output, you’re finished. Otherwise, you have to connect the Pi’s audio jack

to your sound system using a cable with a standard 3.5mm TRS connector.

It’s the same connector you’ll find at the end of your iPod’s headphones, and

of course you can use those, too.

Choose the Right Network Equipment

If you want to connect a Model B to a network, you need only an Ethernet

cable. The Model A does not have an Ethernet port, so to connect a Model A

to a network, you need a USB-to-Ethernet converter or a Wi-Fi dongle.

Add a Case

Future releases of the Pi might come with a case, but until then you have to

protect it yourself. Like every electronics device, the Pi is sensitive to dust

and conductive surfaces, so sooner or later you should put your Pi in a case.

The Pi community is very creative, and people have already created cases

using Legos11 and even paper.12 One of the biggest problems with most self-

made cases is that they usually don’t offer convenient access to the Pi’s

connectors. So, the best solution is often to buy a professional case—for

example, from Adafruit13 or ModMyPi.14

Figure 5—A wired Pi

In addition to all the devices men-

tioned, you need a separate PC for

some tasks, such as copying an

image to an SD card or cross-com-

piling applications. So, all in all,

setting up a Pi is not as cheap as it

sounds at first.

A typical Pi setup looks quite messy

on your desk after you’ve connected

all cables (see the figure here). But

despite its look, the hardware is

ready for a first test run!

11. http://www.raspberrypi.org/archives/1515
12. http://squareitround.co.uk/Resources/Punnet_net_Alpha3.pdf
13. https://www.adafruit.com/products/859
14. http://modmypi.com

Chapter 1. Meet the Raspberry Pi • 8

report erratum • discuss

http://www.raspberrypi.org/archives/1515
http://squareitround.co.uk/Resources/Punnet_net_Alpha3.pdf
https://www.adafruit.com/products/859
http://modmypi.com
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

Next Steps

In this chapter, you learned what all the connectors on the Pi are for, and

you learned what additional devices you need and how to choose the right

ones. In theory, you could start your Pi for the first time, but it won’t do much

without an operating system. In the next chapter, you’ll learn what your

options are and how to install a full-blown Linux system.

report erratum • discuss

Next Steps • 9

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

CHAPTER 2

Install an Operating System

Like every computer, the Raspberry Pi needs an operating system, and Linux

is the preferred one for the Pi. That’s partly because it’s free, but mainly it’s

because Linux runs on the Pi’s ARM processor while most other operating

systems work only on Intel architecture. Still, not every Linux distribution

will run on the Pi, because some don’t support the Pi’s particular type of ARM

processor. For example, you can’t install Ubuntu Linux on a Pi. In this

chapter, you’ll first learn what your operating system options are.

Choosing an operating system is only a first step; you also have to install it.

The installation procedure on the Pi is quite different from what you’re prob-

ably used to, but it’s not difficult: you need to install the operating system

on an SD card. In this chapter, we’re going to install the latest Debian Linux

distribution, but the process is the same for all operating systems. You can

actually create several SD cards, each with a different operating system, so

in the end you’ll have a pretty versatile system that you can turn into com-

pletely different machines by simply replacing the card.

See What’s Available

Linux is still the most popular choice for an operating system on the Pi, and

it helps you to get the most out of your Pi. Also, many people are already

familiar with Linux, whereas the other operating systems running on the Pi

are a bit more exotic.

Even if a Linux distribution runs on the Pi, it will often look and behave

differently from its regular desktop PC equivalent, because it might use a

windows manager that doesn’t need a lot of resources. Also, you won’t find

all of the applications you’re used to, such as many popular web browsers or

office products.

report erratum • discuss

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

In addition, you’ll face some limitations around installing the operating system.

Modern operating systems are fairly big, and they ship on DVD or are available

as ISO image downloads. These images and DVDs contain the full installation

process for the operating system; they start a program that detects your

computer’s hardware, and then they copy all files needed to the hard drive.

Unfortunately, you can’t insert a DVD into the Pi and install it, because the

Pi has no BIOS. (See What the Pi Does Not Have, on page 5.) You can’t boot

from an external USB drive, either. You also can’t copy an ISO image of a

DVD to an SD card. Instead, you need a snapshot of a system that has already

been installed and that you can boot from.

So, you have to create or find an image of a Linux distribution that you can

copy to an SD card, and it has to be compatible with the Pi. The easiest way

to get such an image is to visit the download page of the Raspberry project.1

At the time of this writing, you can find images for Raspbian (Debian wheezy),

Arch Linux ARM, Pidora, and RISC OS. More operating systems will certainly

appear in the future; at the least, Bodhi Linux2 and openSUSE3 are already

available. Also, some clever folks are currently trying to port Google’s Chrome

OS.4

At the moment, the best choice for your first steps with the Pi is Raspbian

(Debian wheezy). It fully supports the Pi’s hardware, it comes with a full-blown

desktop (see Figure 6, The Raspbian (Debian wheezy) desktop, on page 13),

and it contains some useful applications, such as a web browser.

On top of that, it has a powerful package manager that makes it very easy to

install more software. We’ll use Debian in the rest of this book, and in the

next section you’ll learn how to install it. Note that we’ll use the names

Raspbian and Debian interchangeably.

The other distributions are very interesting, too, but they target a different

audience. Still, I’ll briefly describe them in the following sections.

Arch Linux ARM

Arch Linux5 is very minimalist and assumes that you already have a fair

amount of Linux knowledge. Arch Linux doesn’t use many resources, and it

has a nice package manager, so it’s a good choice when you want to use the

1. http://www.raspberrypi.org/downloads
2. http://jeffhoogland.blogspot.co.uk/2012/06/bodhi-linux-arm-alpha-release-for.html
3. http://news.opensuse.org/2013/09/09/opensuse-arm-gets-new-raspberry-pi-images/
4. http://www.cnx-software.com/2012/04/19/building-chromium-os-for-raspberry-pi-armv6/
5. http://www.archlinux.org/

Chapter 2. Install an Operating System • 12

report erratum • discuss

http://www.raspberrypi.org/downloads
http://jeffhoogland.blogspot.co.uk/2012/06/bodhi-linux-arm-alpha-release-for.html
http://news.opensuse.org/2013/09/09/opensuse-arm-gets-new-raspberry-pi-images/
http://www.cnx-software.com/2012/04/19/building-chromium-os-for-raspberry-pi-armv6/
http://www.archlinux.org/
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

Figure 6—The Raspbian (Debian wheezy) desktop

Pi as a server. For a desktop system, Debian is more convenient, though,

because by default Arch Linux doesn’t ship with a desktop environment. You

have to install and configure it yourself.

RISC OS

The Pi doesn’t only run Linux; it also runs RISC OS,6 for example. This comes

as no surprise, because RISC OS was one of the first operating systems

designed for the ARM architecture. It still has a lot of fans and is definitely

worth a look. RISC OS is not free software, but it is available free of charge

to Raspberry Pi users.

Coder

Coder7 isn’t really an operating system. In fact, it’s just Raspbian, but with

a special purpose. Some Google employees created it to offer an easy environ-

ment for people who are interested in learning about web development.

If you or your children are interested in developing web applications using

HTML5, CSS3, and JavaScript, you should take a look at Coder.

In addition to regular distributions, special-purpose distributions are common

in the Linux world. In Chapter 7, Turn the Pi into a Multimedia Center, on page

6. http://en.wikipedia.org/wiki/RISC_OS
7. http://googlecreativelab.github.io/coder/

report erratum • discuss

See What’s Available • 13

http://en.wikipedia.org/wiki/RISC_OS
http://googlecreativelab.github.io/coder/
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

75, you’ll get to know Raspbmc, a Linux distribution that will turn your Pi

into a multimedia center.

Even though you can’t change the Pi’s hardware easily, you can still turn it

into many different machines within a second: simply insert an SD card

containing another operating system.

If you don’t know what operating system works best for you, you might want

to try a few before settling down. Don’t worry, because in the next section

you’ll learn how to play around with various operating systems using NOOBS.

Have a Look Around with NOOBS

The number of different operating systems available for the Pi can be a bit

overwhelming for new users. Thanks to the New Out Of Box Software (NOOBS)

project, it’s easy to try out various operating systems.

NOOBS is an automatic installer for the Pi’s most popular operating systems.

At the time of this writing, it supports Arch Linux, OpenELEC, Pidora, RISC

OS, Raspbmc, and Raspbian. Two different versions of NOOBS are available

on the Raspberry Pi’s download page.8 You can download a fairly big zip

archive (more than 1GB) that already contains all supported operating sys-

tems. Alternatively, you can download NOOBS Lite, which contains only the

installer. It will download the operating systems as needed. To make sure

you’ve downloaded NOOBS from a trustworthy server, check the zip file’s

SHA-1 checksum. (You can learn how to do this in Prepare a Bootable SD

Card, on page 17.)

You need an SD card with a capacity of at least 4GB to install NOOBS. Before

you install NOOBS, you have to format the SD card with the FAT file system.

If you’re not familiar with formatting SD cards on your operating system, take

a look at the official tools for Windows9 and Mac OS X.10 On Linux, it’s best

to use gparted.11

After you’ve formatted the SD card, you can extract the zip archive and copy

its content to the SD card. When you extract the zip archive, the content will

be stored in a directory named NOOBS_v1_3 or something similar. Make sure

you copy only the directory’s content to the SD card, and not the directory

itself.

8. http://www.raspberrypi.org/downloads
9. https://www.sdcard.org/downloads/formatter_4/eula_windows/
10. https://www.sdcard.org/downloads/formatter_4/eula_mac/
11. http://gparted.sourceforge.net/

Chapter 2. Install an Operating System • 14

report erratum • discuss

http://www.raspberrypi.org/downloads
https://www.sdcard.org/downloads/formatter_4/eula_windows/
https://www.sdcard.org/downloads/formatter_4/eula_mac/
http://gparted.sourceforge.net/
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

That’s all you have to do to install NOOBS. You can now put the SD card into

your Pi and start it. NOOBS will greet you with a simple menu (see the follow-

ing figure) showing all available operating systems. Use your mouse or your

keyboard to choose as many as you like, and NOOBS will start a fully auto-

mated installation process. This installation process takes a couple of minutes.

Figure 7—You can choose from a lot of operating systems in NOOBS.

In some rare cases, NOOBS will not detect the correct output mode for your

display. Usually, you can fix this by pressing one of the following four number

keys:

1. Sets the display mode to its default value—that is, HDMI.

2. Selects the HDMI safe mode. It may help when you’ve connected the Pi

to a display using HDMI.

3. Try this option if you’ve connected your Pi to a display using composite

PAL.

4. This option is for users who have connected the Pi to a composite NTSC

display.

Also, NOOBS allows you to start a minimal web browser, so you can search

the web for solutions to potential problems. If you’ve installed Raspbian using

report erratum • discuss

Have a Look Around with NOOBS • 15

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

NOOBS, you can also edit /boot/config.txt from the main menu. In Chapter 4,

Configure the Firmware, on page 41, you’ll learn what this file is for.

After NOOBS has finished the installation, boot the Pi, and it will allow you

to boot one of the operating systems you’ve installed (see the following figure).

Figure 8—You can choose which operating system you’d like to boot.

If you’d like to remove an operating system or install another operating system,

hold the Shift key while booting the Pi. This will open the NOOBS menu so

you can choose another candidate. Note that currently NOOBS will always

reinstall all operating systems, so you’ll lose all of your data!

NOOBS is great for getting an overview of the Pi’s best operating systems, but

it has some disadvantages, too. For example, it doesn’t support all operating

systems available, it doesn’t always contain the latest versions, and it needs

some space on your SD card. So, it’s often better to cleanly install your favorite

operating systems directly on an SD card. In the next section, you’ll learn

how.

Chapter 2. Install an Operating System • 16

report erratum • discuss

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

Prepare a Bootable SD Card

As you saw in Chapter 1, Meet the Raspberry Pi, on page 1, the Raspberry

Pi doesn’t have a BIOS or internal persistent storage. It has only an SD card

slot. You use a separate computer to install the Pi’s operating system on an

SD card that you then use to boot the Pi. Fortunately, people have done this

already for several operating systems, and they’ve kindly made available the

content of such SD cards for free on the Internet. In this section, you’ll learn

how to transfer an SD card image to an SD card.

You’ll need a PC with a card reader (which is quite a misnomer, because you

can use it for writing, too) to modify the SD card. Some PCs have built-in

readers, but you can also get USB readers for a few dollars. It doesn’t matter

which operating system you use, and we’ll look at how to create the SD card

on all major platforms. If you have access to a Windows box, I strongly suggest

you use it, because it’s easier and more convenient than Mac OS X or Linux

for this particular purpose. Preparing an SD card on Mac OS X or Linux isn’t

rocket science, but you have to invoke a fairly dangerous command, and you

can easily delete some important files. Also, on Windows you’ll get more

feedback while copying the card image.

No matter what operating system you plan to use for the installation process,

you have to download the Debian image from the official download site.12 You

can download it using HTTP or via torrent. After the download has finished,

you should have a file named 2014-01-07-wheezy-raspbian.zip on your local hard

drive. (The filename might vary if a new version has been released.)

The procedures described in the following sections will be the same for images

of all operating systems compatible with the Pi. You have to replace only the

name of the image file.

Prepare an SD Card on Windows

Preparing the SD card on a Windows box is the most convenient alternative,

because of Win32 Disk Imager.13 This small application is free, has a nice

user interface, and has a single purpose: writing images to SD cards. You

don’t even have to install it; you can just download the zip file from the

project’s website and unzip it to a directory of your choice. Double-click

Win32DiskImager.exe, and you’re ready to go.

12. http://www.raspberrypi.org/downloads
13. http://sourceforge.net/projects/win32diskimager/

report erratum • discuss

Prepare a Bootable SD Card • 17

http://www.raspberrypi.org/downloads
http://sourceforge.net/projects/win32diskimager/
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

Before you write the SD card image to an SD card, you can check whether

the image is valid. So, you have to calculate the zip file’s SHA-1 checksum.

To do this, install the fciv command; Microsoft’s support site has a lot of

information about it.14 After you’ve installed fciv, you can use it as follows:

C:\>fciv 2014-01-07-wheezy-raspbian.zip -sha1
//
// File Checksum Integrity Verifier version 2.05.
//
9d0afbf932ec22e3c29d793693f58b0406bcab86 2014-01-07-wheezy-raspbian.zip

If the long hexadecimal number is the same as on the download page, the zip

file has not been compromised, and you can safely proceed. Otherwise,

download the image from another location.

After the application has started, select the Debian image and your card

reader’s drive letter. Make sure you don’t choose the wrong drive! If you do,

you risk losing important data. Then click the Write button, and you should

see something like the following image. Writing the image will take a few

minutes, but then you’ll have an SD card you can use to boot the Pi.

Figure 9—Win32 Disk Imager in action

Prepare an SD Card on Linux

Preparing an SD card for the Pi on a modern Linux system isn’t too difficult,

but you have to be very careful when performing the following steps, because

you can easily destroy important data! Do not insert the SD card into your

card reader right now. You’ll do it later in the process to determine your

reader’s device name.

14. http://support.microsoft.com/kb/841290

Chapter 2. Install an Operating System • 18

report erratum • discuss

http://support.microsoft.com/kb/841290
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

Download the zip file containing the Debian image from the official download

site, open a terminal, and change to the directory containing the zip file you’ve

just downloaded. Although it’s not necessary, it doesn’t hurt to check the

integrity of the file you’ve downloaded.

maik> sha1sum 2014-01-07-wheezy-raspbian.zip
9d0afbf932ec22e3c29d793693f58b0406bcab86 2014-01-07-wheezy-raspbian.zip

If the long hexadecimal number is the same as on the download page, the zip

file has not been compromised, and you can safely proceed. Otherwise,

download the image from another location.

The following command unzips the image file to the current directory:

maik> unzip 2014-01-07-wheezy-raspbian.zip
Archive: 2014-01-07-wheezy-raspbian.zip

inflating: 2014-01-07-wheezy-raspbian.img

Next you have to determine your card reader’s location. Run the following

command to get a list of all storage devices currently connected to your

computer:

maik> df -h
Filesystem Size Used Avail Use% Mounted on
/dev/sda1 63G 15G 46G 24% /
udev 494M 4.0K 494M 1% /dev
tmpfs 201M 740K 200M 1% /run
none 5.0M 0 5.0M 0% /run/lock
none 501M 124K 501M 1% /run/shm

Insert the SD card into your reader and run the command again.

maik> df -h
Filesystem Size Used Avail Use% Mounted on
/dev/sda1 63G 15G 46G 24% /
udev 494M 4.0K 494M 1% /dev
tmpfs 201M 772K 200M 1% /run
none 5.0M 0 5.0M 0% /run/lock
none 501M 124K 501M 1% /run/shm
/dev/sdc2 1.6G 1.2G 298M 81% /media/18c27e44-ad29-4264-9506-c93bb7083f47
/dev/sdc1 75M 29M 47M 39% /media/95F5-0D7A

As you can see, on my system the SD card is named sdc, and it has two

partitions named sdc1 and sdc2. Of course, this will vary on your system;

that is, you might have more or fewer partitions, and your SD card might be

named sdd, for example. Before you proceed, you need to unmount all parti-

tions, so in this case you’ll have to invoke the following commands:

maik> umount /dev/sdc1
maik> umount /dev/sdc2

report erratum • discuss

Prepare a Bootable SD Card • 19

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

As a final step, copy the image to the SD card. You have to run the following

command with root privileges and make sure you’re using the right device

name for the of option.

maik> sudo dd bs=1M if=2014-01-07-wheezy-raspbian.img of=/dev/sdc
[sudo] password for maik:
2825+0 records in
2825+0 records out
2962227200 bytes (2.9 GB) copied, 460.427 s, 12.1 MB/s

Copying the image will take a few minutes, but if everything went fine, you’ll

have a bootable SD card that will bring Debian to your Pi!

Prepare an SD Card on Mac OS X

Preparing an SD card containing Raspbian on a Mac is very similar to

preparing one on Linux, but there are a few important differences. You have

to run only a few commands, but you have to be focused.

Do not insert an SD card into your card reader right now. You’ll do it later to

determine your reader’s device name. Download the latest zip file containing

the Raspbian image from the official download page. Open a terminal and

change to the folder you’ve saved the zip file to. Then generate the file’s finger-

print using the following command (this step is optional if you trust your

download source or if you got the zip file from another trusted source):

maik> shasum 2014-01-07-wheezy-raspbian.zip
9d0afbf932ec22e3c29d793693f58b0406bcab86 2014-01-07-wheezy-raspbian.zip

If the hexadecimal number printed to the terminal isn’t the same as the

number on the download page, the zip file might have been compromised,

and you should download it from another location. Otherwise, you can safely

proceed. Unzip the file to the current directory.

maik> unzip 2014-01-07-wheezy-raspbian.zip
Archive: 2014-01-07-wheezy-raspbian.zip

inflating: 2014-01-07-wheezy-raspbian.img

Now you need to identify your card reader’s name. Run the following command

to see all disk drives currently connected to your Mac:

maik> diskutil list
/dev/disk0

#: TYPE NAME SIZE IDENTIFIER
0: GUID_partition_scheme *256.1 GB disk0
1: EFI 209.7 MB disk0s1
2: Apple_HFS Macintosh SSD 255.2 GB disk0s2
3: Apple_Boot Recovery HD 650.0 MB disk0s3

/dev/disk1

Chapter 2. Install an Operating System • 20

report erratum • discuss

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

#: TYPE NAME SIZE IDENTIFIER
0: GUID_partition_scheme *500.1 GB disk1
1: EFI 209.7 MB disk1s1
2: Apple_HFS Macintosh HD 499.2 GB disk1s2
3: Apple_Boot Recovery HD 650.0 MB disk1s3

/dev/disk2
#: TYPE NAME SIZE IDENTIFIER
0: FDisk_partition_scheme *500.1 GB disk2
1: Apple_HFS macback 500.1 GB disk2s1

/dev/disk4
#: TYPE NAME SIZE IDENTIFIER
0: GUID_partition_scheme *1.5 TB disk4
1: EFI 209.7 MB disk4s1
2: Microsoft Basic Data MEDIA 1.5 TB disk4s2

Your system’s output will vary, but you need it only to identify your SD card

reader. Insert the card into your card reader now, and after a few seconds,

run the command again.

maik> diskutil list
/dev/disk0

#: TYPE NAME SIZE IDENTIFIER
0: GUID_partition_scheme *256.1 GB disk0
1: EFI 209.7 MB disk0s1
2: Apple_HFS Macintosh SSD 255.2 GB disk0s2
3: Apple_Boot Recovery HD 650.0 MB disk0s3

/dev/disk1
#: TYPE NAME SIZE IDENTIFIER
0: GUID_partition_scheme *500.1 GB disk1
1: EFI 209.7 MB disk1s1
2: Apple_HFS Macintosh HD 499.2 GB disk1s2
3: Apple_Boot Recovery HD 650.0 MB disk1s3

/dev/disk2
#: TYPE NAME SIZE IDENTIFIER
0: FDisk_partition_scheme *500.1 GB disk2
1: Apple_HFS macback 500.1 GB disk2s1

/dev/disk4
#: TYPE NAME SIZE IDENTIFIER
0: GUID_partition_scheme *1.5 TB disk4
1: EFI 209.7 MB disk4s1
2: Microsoft Basic Data MEDIA 1.5 TB disk4s2

/dev/disk5
#: TYPE NAME SIZE IDENTIFIER
0: FDisk_partition_scheme *15.9 GB disk5
1: Windows_FAT_16 RECOVERY 1.3 GB disk5s1
2: Linux 33.6 MB disk5s3
3: Windows_FAT_32 BOOT 62.9 MB disk5s5
4: Linux 14.5 GB disk5s6

report erratum • discuss

Prepare a Bootable SD Card • 21

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

As you can see, on my Mac the SD card can be found at /dev/disk5. On your

Mac, it might be at a different location. So, in the following command, replace

/dev/disk5 with the location of your SD card:

maik> diskutil unmountDisk /dev/disk5
Unmount of all volumes on disk5 was successful

After you’ve unmounted the SD card, you can finally copy the Raspbian image

to it. WARNING: the following command will copy the image to the device you

specify with the of option. If you specify the wrong device—for example, your

Mac’s main hard drive or an external USB drive containing your most precious

photos—all data will be lost. If you’re absolutely sure that you’ve chosen the

right target, run the following command:

maik> sudo dd bs=1m if=2014-01-07-wheezy-raspbian.img of=/dev/disk5
Password:
2825+0 records in
2825+0 records out
2962227200 bytes transferred in 496.170855 secs (5970176 bytes/sec)

The command will run silently, and it won’t emit any progress messages. As

you can see in the previous output, it took several minutes to copy the image

to the card, so be patient.

When you create the SD card, watch out for one thing: some people have

experienced read/write errors or unrecognized cards with SDHC cards on

recent MacBooks and MacBook Pros with internal card readers. Using an

external card reader should solve these problems.

Finally, you can eject the card.

maik> diskutil eject /dev/disk5
Disk /dev/disk5 ejected

That’s it! You’ve created a bootable SD card containing Raspbian on your

Mac.

Next Steps

Regardless of what operating system you’ve used, you should now have a

bootable SD card containing Debian Linux. You also know how to transfer

the image of every operating system that is compatible with the Pi to a bootable

SD card. In the next chapter, you’ll learn how to start Debian on the Pi for

the first time.

Chapter 2. Install an Operating System • 22

report erratum • discuss

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

CHAPTER 3

Configure Raspbian

No operating system or hardware will fit every user’s needs out of the box.

This is especially true for the version of Debian that runs on the Pi, because

it comes as an image, which means you cannot choose all the configuration

parameters that you usually enter at installation time. For example, the image

comes with a fixed keyboard layout and locale. In this chapter, you’ll boot

the Pi for the first time and take a look around. You’ll learn how to configure

a lot of basics, such as your password and the time zone.

Boot the Pi for the First Time

Preparing the hardware and installing an operating system are important,

but it’s much more fun to actually boot the Raspberry Pi and see what it’s

capable of. So, insert the SD card you prepared in the previous chapter, and

plug in the power supply.

If you’ve worked with Linux before, you’ll recognize most of the messages

pouring onto the screen. This comes as no surprise, because even if the Pi is

an unusual computer, Raspbian still is an ordinary Linux distribution.

When you boot Raspbian for the first time, it starts a configuration program

named Raspi-config. This program helps you configure the most important

aspects of the Linux system. You can see its main menu in Figure 10, Raspi-

config makes most configuration tasks a breeze, on page 24.

You’re probably used to controlling user interfaces with your mouse, but you

have to control Raspi-config with your keyboard. Use the down cursor key to

move to the next menu item, and use the up cursor key to move to the pre-

ceding one. To select a menu item, press the Tab key or the right cursor key.

This will highlight the Select button at the bottom. Press the spacebar or the

Return key to select the menu item. Use the Esc key to leave Raspi-config.

report erratum • discuss

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

Figure 10—Raspi-config makes most configuration tasks a breeze.

To get familiar with Raspi-config, select the About raspi-config menu item.

This will open a new window that briefly explains what Raspi-config is for.

Click the OK button and press the spacebar to return to the main menu.

Most menus in Raspi-config also have a Cancel button. To cancel the current

operation, press the Tab key until the Cancel button is highlighted, and then

press the spacebar or the Return key.

The main menu has a Finish button that exits Raspi-config. Most changes

you can perform with Raspi-config require you to reboot the Pi. So, when you

press the Finish button in Raspi-config, it asks you whether you’d like to

reboot.

Raspi-config will not start automatically the next time you boot the Pi. Don’t

worry. You can always invoke it in a terminal, like this:

pi@raspberry:~$ sudo raspi-config

In the next section, you’ll learn what most of the Raspi-config options are for.

Customize Your Installation with Raspi-config

Before you do anything else with the Pi, you should adjust the most important

aspects of your Raspbian installation with Raspi-config. For example, you

should increase the space available on your SD card, and you should set the

right locale.

In this section, you’ll get to know the most important menu items in Raspi-

config. You’ll learn about the rest of the menu items later in the book.

Chapter 3. Configure Raspbian • 24

report erratum • discuss

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

Use All the Space on Your SD Card

The Raspbian image limits your root file system to 2GB. In other words, no

matter what the real capacity of your SD card is, you’ll be limited to 2GB.

You could copy the image to a 16GB SD card, for example, but you still would

only be able to use 2GB.

With the Expand Filesystem menu in Raspi-config, you can easily change

this situation. Select the menu item, and after the next reboot, the Pi will

grab all the space it can get on your SD card. Depending on your SD card’s

capacity and speed, this will take a while.

A few people have reported file system errors after they’ve resized the SD file

system on an overclocked Pi. (See Accelerate/Overclock the Pi, on page 29, to

learn more about overclocking.) In this case, rebooting the Pi usually helps.

Keep in mind that Raspi-config will not start automatically again. You have

to log in with the username pi and the password raspberry. To start Raspi-

config again, run the following command:

pi@raspberry:~$ sudo raspi-config

Change Your Password

At the time of this writing, you have to enter the username pi and the password

raspberry to log into the Pi. If you’re one of the lucky few who got one of the

first boards, you also got a flyer with incorrect credentials. In previous

releases the password was suse, so to be completely sure, check the creden-

tials on the download page.1

Select the Change User Password menu item in Raspi-config to change the

password. Raspi-config asks you for a new password, and it asks you to

confirm that password. Note that for security reasons, you cannot choose

simple passwords such as 123 or aaaa. If you want to learn more about users

and passwords, take a look at Manage Users, on page 139.

By the way, raspberry is a really bad password—not only because it’s easily

guessed, but also because it contains the character y. For anyone without

an English or American keyboard layout, this will lead to some frustrating

login sessions. By default, Debian uses a QWERTY keyboard layout, but in

Germany, for example, people usually use a QWERTZ layout. So if you’re

absolutely sure you’ve typed the password correctly for the tenth time, try

raspberrz instead.

1. http://www.raspberrypi.org/downloads

report erratum • discuss

Customize Your Installation with Raspi-config • 25

http://www.raspberrypi.org/downloads
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

Enable Boot to Desktop

By default, the Pi does not start a graphical desktop environment. Instead,

it greets you with a plain terminal.

In Start the Desktop, on page 31, you’ll learn how to start the desktop environ-

ment manually. The “Enable Boot to Desktop/Scratch” menu itemgives you

the options of starting the Pi in command line mode, in desktop mode, or

with the Scratch programming environment.2 Scratch is a graphical program-

ming language that makes it easy to create animations and games, even for

children.

Remap Your Keyboard and Change Your Locale

By default, Debian assumes you’re using an English keyboard layout, which

might lead to some confusion if you’re not. You can change the keyboard

layout by choosing the Change Keyboard Layout menu item in Raspi-config’s

Internationalisation Options. This will spawn a configuration program that

first asks for your type of keyboard (see the following figure).

Figure 11—Choose your keyboard type.

2. http://scratch.mit.edu/

Chapter 3. Configure Raspbian • 26

report erratum • discuss

http://scratch.mit.edu/
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

Next, you’ll specify the language you’re using, and after that, you’ll configure

the behavior of a few special keys.

To enable the new keyboard layout, you have to exit Raspi-config using the

Finish button and then reboot the Pi, but before that, you should consider

changing the locale, too. A locale determines more than a mere keyboard

layout. It determines how data such as text and dates get sorted and format-

ted, for example. Also, it affects the language the system uses to display

information such as menu text in applications. In the following figure, you

can see a German version of the LXDE desktop, for example.

Figure 12—A German version of LXDE

You can configure your locale using Raspi-config’s Change Locale menu. This

starts a configuration program that greets you with the menu in Figure 13,

Generate your locale, on page 28.

Here you can select which locales Raspbian should generate. You can select

several and switch between them if necessary. Use the cursor keys to move

through the list, and use the spacebar to select or deselect a locale. Using

report erratum • discuss

Customize Your Installation with Raspi-config • 27

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

Figure 13—Generate your locale.

the Tab key, you can move the focus between the list of locales and the OK

and Cancel buttons. Press the Return key to select a button.

After you select a list of locales and press the OK button, you can choose your

default locale. Press the OK button again, and you’re finished.

Set Your Time Zone, the Time, and the Date

To reduce costs, the Pi doesn’t have a real-time clock, so it doesn’t store the

current date and time internally. Setting the correct date and time isn’t just

a nice feature; it’s critical for cryptographic operations, such as validating

certificates. You need correct time information for many purposes. Raspbian

contacts a time server on the Internet when it boots and sets the current time

and date automatically.

So, internally the Pi knows the exact date and time in the UTC time zone, but

it doesn’t know your time zone. That’s what the Change Timezone menu item

is for in Raspi-config’s Internationalisation Options menu. Select it, and it

will ask a few questions to determine exactly where you live. Then Raspi-

config will store the time-zone information in your profile, so the next time

you boot your Pi, the machine will know what time zone you live in.

Chapter 3. Configure Raspbian • 28

report erratum • discuss

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

If you haven’t connected your Pi to the Internet, you can manually set the

date and time like this:

pi@raspberry:~$ sudo date --set="2014-02-04 13:24:42"

This solution has a few disadvantages. It’s not as accurate as it might be,

and you have to repeat it whenever the Pi boots, so it’s easy to forget it.

Enable the Pi Camera

The camera is a useful accessory for the Pi, and in Chapter 11, Control the Pi

Camera, on page 121, you’ll learn how to control it. Before you can use the

camera, you have to enable it with the Enable Camera option.

Add Your Pi to Rastrack

Rastrack3 is an online service that shows the locations of thousands of Pis

on a map. If you want to make your Pi show up on the map as well, choose

the Add to Rastrack menu option.

Accelerate/Overclock the Pi

By default, the Pi’s internal clock rate is 700MHz. This is pretty fast for most

tasks, but compared to the speed of modern PCs it’s still rather modest. As

with many PCs, you can overclock the Pi using Raspi-config’s Overclock menu

item. Here you can set the clock rate to 700MHz, 800MHz, 900MHz, 950MHz,

or even 1GHz. This will increase your Pi’s speed, but it will also lead to greater

power consumption and a higher working temperature.

Note: depending on the quality of your power supply, overclocking can lead

to stability problems or even damage the file system. In that case, hold the

Shift key while booting the Pi. This will disable the overclocking, and you can

then set a lower clock rate using Raspi-config.

Configure the Pi’s Overscan Mode

The Raspberry team wanted the Pi to work with as many displays as possible,

so they had to take into account overscan and underscan. In the case of

underscan, the video output doesn’t use the whole display size, so you can

see a black frame around the actual video output. In the case of overscan,

the opposite happens, so in some cases you can’t see the whole output because

it gets clipped at the display’s borders. With the Overscan menu in Raspi-

config’s Advanced Options menu, you can enable or disable the overscan

3. http://rastrack.co.uk/

report erratum • discuss

Customize Your Installation with Raspi-config • 29

http://rastrack.co.uk/
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

mode completely. In Configure the Video Output, on page 43, you’ll learn how

to control video output in a more refined manner.

Adjust the Pi’s Memory Layout

As you’ve learned, a Pi has either 256MB or 512MB of RAM. Let’s assume

you have the 256MB variant. Using the following command, you can check

how much memory is on your Pi:

pi@raspberry:~$ free -m
total used free shared buffers cached

Mem: 186 37 149 0 5 19
-/+ buffers/cache: 12 174
Swap: 127 0 127

Oops! Apparently the Pi has much less than 256MB of RAM. How can that

be? Don’t worry: everything’s OK with your hardware, and your Pi has 256MB

of RAM. It just splits it between the CPU and the GPU (the device responsible

for processing graphics). By default, the CPU gets 192MB of RAM, while the

GPU gets 64MB. In most cases this is reasonable, but in some cases a different

setup might make more sense. If you use the Pi as a server, for example, you

won’t need much graphics power, but you’ll need more RAM for the CPU.

You can change the memory layout using the Memory Split menu item in

Raspi-config’s Advanced Options menu. Here you can determine how much

memory the GPU gets. Choose the right amount for your usage and reboot

the Pi.

Enable the SPI Kernel Module

The Pi is an excellent platform for creating electronic projects. In these projects

you may use devices you can integrate using a protocol named SPI (Serial

Peripheral Interface Bus). Such devices depend on a certain kernel module,

and you can enable or disable this module using the SPI menu item in Raspi-

config’s Advanced Options menu. You’ll learn a lot more about SPI in Chapter

10, Working with Digital and Analog Sensors, on page 107.

Choose the Audio Output

The Pi can output audio using two different channels: via HDMI or using its

RCA jack. When connecting the Pi to a display using HDMI, it usually makes

sense to output audio via HDMI, too. If you’ve connected the Pi to a display

using its composite connector, you probably want to output audio with the

analog RCA connector.

Chapter 3. Configure Raspbian • 30

report erratum • discuss

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

Under some circumstances the Pi cannot determine the correct settings

automatically, so you have to adjust them manually. You can do this using

the Audio menu item in Raspi-config’s Advanced Options menu.

Start the Desktop

Unlike in other operating systems, a desktop environment is optional on

Linux. So, it’s not uncommon to have to start the environment manually.

Alternatively, you can start a desktop environment automatically whenever

the Pi boots. Choose Raspi-config’s Enable Boot to Desktop/Scratch menu

item to enable this behavior. If you rarely use the command line, this is a

convenient option. Otherwise, the Pi will greet you with the login prompt:

Figure 14—The Raspberry Pi’s login prompt

After you’ve successfully logged in, you still won’t see much more than a

boring shell prompt. Use the following command to start the desktop and see

some more colors. (It reminds you of the good ol’ MS-DOS times when you

had to run win to start the real action, doesn’t it?)

pi@raspberry:~$ startx

report erratum • discuss

Start the Desktop • 31

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

After a few seconds, the Pi presents a nice desktop with a colorful raspberry

in the background (see the following figure).

Figure 15—Raspberry Pi desktop

The desktop environment you’ve just started is named LXDE,4 and although

it doesn’t use many resources, it still comes with some nice features. For

example, it has virtual screens you can manage with the buttons in the toolbar

at the bottom.

Starting applications is similar to starting them on Windows systems prior

to Windows 8. Click the small LXDE logo on the left of the toolbar at the

bottom of the screen to see which applications are available. Move the mouse

to navigate through the pop-up menu, and start an application by clicking

its name. In Figure 12, A German version of LXDE, on page 27, you can see

the pop-up menu in action.

Also, you can configure a lot, such as the look and feel of all UI elements, the

desktop resolution, and so on. You can change most of the settings using the

system preferences menus; for example, you can see some of them in Figure

16, You can change many preferences in LXDE, on page 33.

To leave LXDE, use the small power-switch icon at the bottom right of the

screen. If you’ve configured Raspi-config to always start the desktop, the Pi

will shut down completely when you log out from LXDE. Otherwise, it will

return to the boot terminal. To shut down the Pi from there, run the following:

pi@raspberry:~$ sudo halt

4. http://lxde.org/

Chapter 3. Configure Raspbian • 32

report erratum • discuss

http://lxde.org/
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

Figure 16—You can change many preferences in LXDE.

Manage Your Software with apt-get

Now that you have Debian set up, you probably want to add more software.

Back in the old days, it was difficult to install new software on Linux systems.

Usually you had to download a program’s source code and compile and install

it yourself. If the program depended on other projects or libraries, you learned

about it when the compiler or the linker spat out some nasty error messages,

and then you had to resolve the dependencies yourself—you had to download,

compile, and install even more programs, and so on.

Fortunately, those days are long gone; all modern Linux distributions come

with a package manager that automates the whole process of downloading

and installing new software. Not only do package managers resolve all

dependencies automatically, but they also save a lot of time by downloading

binary packages instead of compiling them locally. Oh, and they help you get

rid of stuff you no longer need.

Debian comes with a package manager, too; its name is apt-get. (apt stands

for Advanced Packaging Tool.) In this section, you’ll learn how to perform

more operations, such as adding, updating, and removing software.

Install New Software

The Pi’s Debian distribution comes with a minimal set of applications. This

makes sense because the Pi doesn’t have a hard drive, but to get the most

report erratum • discuss

Manage Your Software with apt-get • 33

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

out of the Pi, you’ll probably have to install a few programs. The good news

is that installing software on the Pi is no different from installing software on

a regular PC running Debian. You’ll get your software mostly from the same

sources, and you can choose from many applications. Unfortunately, not all

packages are available for the Pi’s ARM architecture, and some applications

simply don’t run because they need more resources than the Pi has to offer.

Still, you can find plenty of useful programs.

In this section, you’ll install a PDF reader on your Pi. If you’ve worked exclu-

sively with Microsoft Windows or Mac OS X before, you probably didn’t worry

much about PDF readers, but on some Linux systems—and especially on the

little Pi—you can’t take a good PDF reader for granted.

Interestingly, you can choose from a variety of different tools, and there’s even

a website dedicated to free PDF readers.5 Two of these readers look especially

interesting: Xpdf 6 and Evince.7 You’ll install them both, try them, and unin-

stall the one you don’t like.

You can install new packages using the install command. To install Xpdf and

Evince, run the following command (just make sure you’re connected to the

Internet):

pi@raspberry:~$ sudo apt-get install xpdf
pi@raspberry:~$ sudo apt-get install evince

Alternatively, you can install more than one package at a time like this:

pi@raspberry:~$ sudo apt-get install xpdf evince

Note that the most recent version of Raspbian installs Xpdf by default. In that

case, apt-get will tell you that Xpdf is installed already.

Now you have both PDF readers installed as independent packages, and you

can start and test them to see which one better suits your needs. You can

find shortcuts for both applications in the Graphics section of the LXDE

desktop’s start menu. Also, you can start them from a terminal by running

either of the following (only if you’ve started the desktop environment before):

pi@raspberry:~$ evince

or:

pi@raspberry:~$ xpdf

5. http://pdfreaders.org/
6. http://www.foolabs.com/xpdf/
7. http://projects.gnome.org/evince/

Chapter 3. Configure Raspbian • 34

report erratum • discuss

http://pdfreaders.org/
http://www.foolabs.com/xpdf/
http://projects.gnome.org/evince/
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

In the following figure, you can see both programs in action rendering the

same PDF document.

Figure 17—Two PDF readers showing the same document

Remove Software

Play around with both applications for a while and see which one you like

best. Let’s assume that you prefer Evince; you can uninstall Xpdf using the

following command:

pi@raspberry:~$ sudo apt-get purge xpdf
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following packages were automatically installed and are no
longer required:

cups-bsd cups-client fonts-droid ghostscript lesstif2
libcupsimage2 libfile-copy-recursive-perl libgs9 libgs9-common
libijs-0.35 libpaper-utils libpaper1 libpoppler19 libxp6 poppler-data
poppler-utils update-inetd

Use 'apt-get autoremove' to remove them.
The following packages will be REMOVED:

xpdf*
0 upgraded, 0 newly installed, 1 to remove and 24 not upgraded.
After this operation, 404 kB disk space will be freed.
Do you want to continue [Y/n]?
(Reading database ... 60245 files and directories currently installed.)
Removing xpdf ...

report erratum • discuss

Manage Your Software with apt-get • 35

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

Purging configuration files for xpdf ...
Processing triggers for mime-support ...
Processing triggers for man-db ...
Processing triggers for menu ...
Processing triggers for desktop-file-utils ...

The Xpdf application is gone now, without any trace. If you want to remove

the application but keep its configuration files, use remove instead of purge.

Keep Your Software Up to Date

To make the software installation process as easy and as unobtrusive as

possible, apt-get comes with a small database containing a list of all available

packages and their dependencies. This database consists of only a few files.

You usually won’t work with it directly, but you should run the following

command occasionally to update it:

pi@raspberry:~$ sudo apt-get update

This downloads the latest package lists from a central server and updates

apt-get’s local database. So, if you run the apt-get command before you install

a new package, you can be sure that you will get the latest version available.

Note that in some cases you have to run this command twice. apt-get is nice

enough to tell you when this is the case.

If you’ve already installed software on your Pi using apt-get, you’ll probably

want to update it from time to time. The following command upgrades all

software that is currently installed on your Pi:

pi@raspberry:~$ sudo apt-get upgrade

Running this command will take a while, but when it’s finished you’ll have

the latest version of every single application and library on your Pi. For this,

apt-get has to download a lot of files that you no longer need after apt-get

has installed the applications. You can delete these obsolete files easily.

pi@raspberry:~$ sudo apt-get autoclean
Reading package lists... Done
Building dependency tree...
Reading state information... Done

Sometimes dependencies between packages and package versions change,

so you might not need some of the installed packages anymore. You can

remove them using the following command:

pi@raspberry:~$ sudo apt-get autoremove
Reading package lists... Done
Building dependency tree
Reading state information... Done

Chapter 3. Configure Raspbian • 36

report erratum • discuss

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

The following packages will be REMOVED:
ghostscript lesstif2 libxp6 poppler-data poppler-utils
0 upgraded, 0 newly installed, 5 to remove and 0 not upgraded.
After this operation, 15.3 MB disk space will be freed.
Do you want to continue [Y/n]?
(Reading database ... 49185 files and directories currently installed.)
Removing ghostscript ...
Removing lesstif2 ...
Removing libxp6 ...
Removing poppler-data ...
Removing poppler-utils ...
Processing triggers for man-db ...

In theory, this is all you need to know about managing software on a Debian

system. There is one more helpful tool that you should know about, which you’ll

learn about in the next section.

Find Packages with apt-file

If you know the exact name of a package you’d like to install, apt-get is all you

need, but in some cases you might not know the name. For example, you still

have to install a lot of software from source and compile it yourself. If this software

depends on a certain library that you don’t have installed, the compiler or the

linker will stop with an error message. Usually, the error message contains the

missing file’s name, so it would be great to have a tool that searches for all

packages that contain this file. apt-file is such a tool, and you can install it as

follows:

pi@raspberry:~$ sudo apt-get install apt-file

Like apt-get, the apt-file command depends on a local database containing a list of

all packages and their dependencies. To update this database, you should run

the following command:

pi@raspberry:~$ sudo apt-file update

Now you can use apt-file to search for a package containing a certain file. Let’s

assume you’ve heard about a cool PDF reader for the Pi named Evince, and you

don’t know which package you have to install to use it. The command shown here

is all you need:

pi@raspberry:~$ apt-file -l search evince
evince
evince-common
evince-dbg
evince-gtk
gir1.0-evince-2.30
libevince-dev
libevince2
python-evince

report erratum • discuss

Manage Your Software with apt-get • 37

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

This outputs a list of all packages referring to Evince so you can decide which

one you’d like to install.

You can also use apt-file to list the contents of a package, even if you haven’t

installed the package.

pi@raspberry:~$ apt-file list evince

Package managers are really helpful, and every modern Linux distribution

has one. On Debian it’s apt-get, on Fedora it’s yum, and on Arch Linux it’s

pacman. Although they differ slightly in their syntax, they all offer the same

operations and behavior.

Install Software and Media Using the Pi Store

At the end of 2012, the Raspberry Pi Foundation launched the Pi Store8

together with IndieCity9 and Velocix.10 In the store, you can find free and

commercial applications, games, development tools, and media such as

magazines or videos. The store offers two types of commercial applications:

you have to pay a fee upfront for some, while for others you can make a

donation if you like the application.

The Pi Store is available as a website, but it’s much more convenient to use

its native client (see Figure 18, The Pi Store has a native client, on page 39).

The latest Raspbian image contains the Pi Store client, and you can launch

it by double-clicking its icon on the desktop.

If you don’t already have the Pi Store client, you can install it using the follow-

ing commands:

pi@raspberry:~$ sudo apt-get update
pi@raspberry:~$ sudo apt-get install pistore

The application is fairly self-explanatory. After you’ve logged in, you can install

software with a single mouse click. At the moment, the store contains only a

few items, but taking the Pi’s popularity into account, that might change

soon. One title is particularly interesting: Iridium Rising
11 is an exclusive game

for the Pi. It’s free, and it looks very professional.

8. http://store.raspberrypi.com/
9. http://www.indiecity.com/
10. http://www.velocix.com/
11. http://store.raspberrypi.com/projects/iridiumrising

Chapter 3. Configure Raspbian • 38

report erratum • discuss

http://store.raspberrypi.com/
http://www.indiecity.com/
http://www.velocix.com/
http://store.raspberrypi.com/projects/iridiumrising
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

Figure 18—The Pi Store has a native client.

Next Steps

In this chapter, you booted the Pi for the first time, and you configured many

aspects to suit your personal preferences. Also, you learned how to manage

software on the Pi—how to install, update, and remove it.

Installing and configuring the Pi’s operating system are important steps, but

in contrast to regular PCs, the Pi needs some more configuration. In the next

chapter, you’ll learn about the Pi’s firmware and how to adjust it to your

needs.

report erratum • discuss

Next Steps • 39

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

CHAPTER 4

Configure the Firmware

The Pi needs not only an operating system, but also firmware that controls

its hardware on a low level. For example, the firmware controls and configures

the GPU, the card reader, and in some regards even the CPU. It’s a vital piece

of the Raspberry Pi, and you can solve many issues, such as problems with

the video output, by setting the correct parameters. In this chapter, you’ll

learn how to configure and update the Pi’s firmware.

Also, you have to update the Linux kernel itself from time to time. The kernel

is the heart of a Linux system, because it manages all processes and the

hardware. All applications depend on the kernel, and in this chapter, you’ll

learn how to keep it up to date.

Update the Firmware and Kernel

The Debian image already comes with firmware for the Pi, but the developers

of the Linux kernel and the Pi’s firmware release updates frequently. New

releases usually contain bug fixes and improvements, so it’s beneficial to

update both the kernel and the firmware from time to time. To check which

versions of the kernel and firmware are installed on your Pi, run the following

commands:

pi@raspberrypi ~ $ uname -a
Linux raspberrypi 3.10.25+ #622 PREEMPT Fri Jan 3 18:41:00 GMT 2014 armv6l GNU/Linux
pi@raspberrypi ~ $ /opt/vc/bin/vcgencmd version
Jan 6 2014 21:16:43
Copyright (c) 2012 Broadcom
version b00bb3ae73bd2799df0e938b7a5f17f45303fb53 (clean) (release)

You can find the latest version of all files on GitHub,1 and you can download

them to the SD card. To install a new kernel and new firmware, you have to

1. https://github.com/raspberrypi/firmware

report erratum • discuss

https://github.com/raspberrypi/firmware
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

replace a few files in the Pi’s /boot directory. The /boot directory belongs to the

SD card’s boot partition, which is formatted with the FAT file system. So, you

can read and write it not only with the Pi, but also with nearly every computer

in the world. In the following screen capture, you can see its content:

Figure 19—Contents of the boot directory

The file start.elf contains the firmware, and the kernel is in kernel.img.

So, you could download the new kernel and firmware files using your regular

PC and copy them to the SD card using a card reader. However, this would

still be tedious and error-prone. Fortunately, rpi-update2 automates the whole

process. It checks whether a new firmware version is available and downloads

it if necessary. rpi-update comes automatically with the latest version of

Raspbian.

If you have to install rpi-update yourself, you will first have to install some

packages it needs.

pi@raspberry:~$ sudo apt-get install ca-certificates git-core

Then you can download rpi-update and make it executable.

pi@raspberry:~$ sudo wget http://goo.gl/1BOfJ -O /usr/bin/rpi-update
pi@raspberry:~$ sudo chmod +x /usr/bin/rpi-update

After that, run rpi-update.

pi@raspberrypi:~$ sudo rpi-update

2. https://github.com/Hexxeh/rpi-update

Chapter 4. Configure the Firmware • 42

report erratum • discuss

https://github.com/Hexxeh/rpi-update
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

rpi-update performs a self-update first; it checks whether a newer version of

rpi-update is available. Then it checks to see whether a new firmware or a new

kernel is available. If yes, it downloads all files needed, and you have to reboot

the Pi to activate the new firmware. Note that rpi-update even tries to determine

and keep the current memory split. In Adjust the Pi's Memory Layout, on page

30, you learned what a memory split is and how to configure it.

Configure the Video Output

You can configure the firmware’s behavior in many ways using the /boot/config.txt
file. It contains all configuration parameters for the Pi’s firmware; it’s a good

idea to bookmark their descriptions3 in your web browser, because sooner or

later you’ll probably want to tweak a few things. Using the configuration file,

you can adjust video and audio output, and you can even change the CPU’s

clock rate.

Most of the defaults work quite well on most systems, but the video output

doesn’t always work properly. The main problems are overscan and underscan,

especially when you’re using composite video output. In the case of underscan,

the video output doesn’t use the whole display size, so you can see a black

frame around the actual video output. In the case of overscan, the opposite

happens, so you can’t see the whole output because it gets clipped at the

display’s borders.

In Figure 20, Overscan problems can lead to a clipped output, on page 44, the

last line isn’t fully visible, for example. You can solve both problems by setting

a few configuration options.

As you learned in Update the Firmware and Kernel, on page 41, you can access

all files in the /boot directory directly from your PC. If you prefer to edit

/boot/config.txt on the Pi, open it with the nano text editor or a text editor of your

choice.

pi@raspberry:~$ sudo nano /boot/config.txt

To adjust the display’s overscan, add these lines to the configuration file:

Adjust overscan.
overscan_left=10
overscan_right=20
overscan_top=0
overscan_bottom=10

3. http://elinux.org/RPi_config.txt

report erratum • discuss

Configure the Video Output • 43

http://elinux.org/RPi_config.txt
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

Figure 20—Overscan problems can lead to a clipped output.

Configuration parameters have a simple format: they start with a name

followed by an equal sign and a value. You can also add comments to the

configuration file—they start with a # character. The previous example sets

the overscan_bottom option to 10 pixels so that after a reboot, the Pi will skip 10

pixels on the bottom of the display. In Figure 21, Overscan problems can be

solved easily, on page 45, you can see the effect.

You can use the same set of options to solve underscan problems—that is,

to make the display area larger and remove the black frame. To achieve this,

you have to set the option values to negative numbers.

overscan_left=-20
overscan_right=-10

You have to reboot the Pi every time you change /boot/config.txt, so getting the

display settings right may take a while.

It’s a good idea to take a quick look at the list of all configuration parameters

so you’ll remember them if you run into any problems. You can play around

Chapter 4. Configure the Firmware • 44

report erratum • discuss

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

Figure 21—Overscan problems can be solved easily.

with most options, but beware: setting some options—for example, overclocking

options—will void your Pi’s warranty! If your Pi doesn’t start any longer or if

the display is no longer readable, edit /boot/config.txt on a separate PC and

reverse your last changes. If you’re totally lost, delete /boot/config.txt, and the

Pi will start with its defaults. Of course, you can also copy a fresh Raspbian

image to the SD card.

Test and Configure the Audio System

Audio output is still a bit problematic on Linux systems, but Raspbian enables

audio by default. For a first sound test, run the following commands:

pi@raspberry:~$ cd /opt/vc/src/hello_pi/libs/ilclient
pi@raspberry:~$ make
pi@raspberry:~$ cd ../../hello_audio
pi@raspberry:~$ make
pi@raspberry:~$./hello_audio.bin

report erratum • discuss

Test and Configure the Audio System • 45

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

This will compile a small test program that plays a siren sound. It outputs

the sound via the analog audio jack, so plug in some headphones or speakers

to hear it. Alternatively, you can play the sound via HDMI.

pi@raspberry:~$./hello_audio.bin 1

The Pi determines the best way to output audio automatically. It uses HDMI

when available and analog output otherwise. In recent versions of Raspbian,

you can change this behavior using Raspi-config (see Choose the Audio Output,

on page 30) or using amixer. This is a small tool that allows you to configure

the sound hardware. Run it as follows to see which options you can change:

pi@raspberry:~$ amixer controls
numid=3,iface=MIXER,name='PCM Playback Route'
numid=2,iface=MIXER,name='PCM Playback Switch'
numid=1,iface=MIXER,name='PCM Playback Volume'

You can change only three options, and you must reference them by their

numid. It’d be much nicer if the options had a real name, but the developers

of amixer decided to use numerical IDs instead. The option for setting the

playback route has a numid value of 3. Set it as follows:

pi@raspberry:~$ sudo amixer cset numid=3 1

This sets the playback route to 1 (analog output). You can also set it to 0

(automatic) or 2 (HDMI). When everything works as expected, you can add

the amixer command to the /etc/rc.local file, so the Pi runs it automatically at

startup. Open a text editor, such as nano, and add the following line to

/etc/rc.local:

amixer cset numid=3 1

Add it to the end of the file, but don’t make it the last line. Put it in front of

the exit 0 statement.

By the way, some displays don’t detect an HDMI cable correctly, so you might

have video output via HDMI while audio output does not work. You can change

this by setting the firmware configuration parameter hdmi_drive to 2 in

/boot/config.txt. See Configure the Video Output, on page 43, to learn how to do

this.

Next Steps

In this chapter, you learned how to configure the Pi’s firmware. You can solve

problems with the display, and you know how to adjust system parameters.

In the next chapter, you’ll take a short break and turn the Pi into a kiosk

system.

Chapter 4. Configure the Firmware • 46

report erratum • discuss

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

CHAPTER 5

Intermezzo: Build a Kiosk with the Pi

If you’ve been in a waiting room lately, chances are good that you’ve seen a

kiosk system.1 Usually, it consists of an old TV set with a DVD player and

sometimes even a VCR. In a doctor’s waiting room, you’ll see and hear a lot

about new and expensive treatments, while repair shops often bombard you

with advertisements for useless parts. Often the video signal flickers, the text

on the show contains many typos, and you feel as if you should leave the

office and look for a more professional medical provider.

On the other hand, you can find really good kiosk systems—for example,

while waiting for the subway or train. Here you can see news, weather fore-

casts, and cartoons on huge screens. The biggest difference between the good

and bad kiosks is that the good ones usually don’t repeat the same content

for all eternity. They often update it via the Internet.

The Raspberry Pi is a perfect platform for building a cheap but powerful kiosk

system. In this chapter, you’ll learn how to turn the Pi into a kiosk that dis-

plays Twitter live search information.

Display Twitter Live Search Information

The only piece of software you need to build most kiosk applications is a web

browser. Web browsers are very good at displaying multimedia content, so

you simply have to make the information you’d like to present available as

an HTML page.

Also, you have to disable all the browser’s menu bars and make sure the

browser refreshes the content automatically at a certain interval. Most modern

browsers already have a kiosk mode that does all of this automatically.

1. http://en.wikipedia.org/wiki/Kiosk_software

report erratum • discuss

http://en.wikipedia.org/wiki/Kiosk_software
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

In Chapter 6, Networking with the Pi, on page 53, you’ll learn a bit more about

Midori, the web browser that ships with Raspbian. All in all, the browser is

quite useful, and you can use it to build an impressive kiosk system.

The system you’re going to build will display a live search of a list of terms

on Twitter. For this book, for example, it’s natural to search for the term

pragprog. In the following screen capture, you can see the final result.

Figure 22—Results of a search for pragprog

The search automatically updates its content every minute. On a 46-inch

screen, this system looks really impressive, and it would be a nice addition

to your company’s foyer.

Perhaps the screenshot reminds you of a bloated Twitter widget. This is no

coincidence, because it actually is one. Usually, you’d embed such a Twitter

search widget into your websites, but it is also the right technology for a kiosk

Chapter 5. Intermezzo: Build a Kiosk with the Pi • 48

report erratum • discuss

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

system. The trick is to use the widget not as a widget but as your whole kiosk

application. That way, you just have to make it really big and increase the

size of your web browser’s font.

One of the greatest things about widgets is that you usually don’t have to

create them yourself. For example, you can customize and download a Twitter

search widget for free on Twitter’s website.2 You can choose the widget’s title,

some colors, and a search term. Then you can generate the JavaScript you

need to embed the widget into your own site. The final result looks like this:

kiosk/widget.html

<!DOCTYPE html>
<html>

<head>
<meta http-equiv="refresh" content="120"></meta>

</head>
<body align="center">
<a class="twitter-timeline" width="520" height="1000"

href="https://twitter.com/search?q=%23pragprog"
data-widget-id="357902770239594496"
data-chrome="noscrollbar nofooter"
data-tweet-limit="8">Tweets about "#pragprog"

<script>
!function(d, s, id) {

var js, fjs = d.getElementsByTagName(s)[0],
p = /^http:/.test(d.location) ? 'http' : 'https';

if (!d.getElementById(id)) {
js = d.createElement(s);
js.id = id;
js.src = p + "://platform.twitter.com/widgets.js";
fjs.parentNode.insertBefore(js, fjs);

}
}(document, "script", "twitter-wjs");

</script>
</body>

</html>

The Twitter website generates the whole JavaScript code for you. You only

have to add some boilerplate HTML. Also, the HTML code contains some style

sheets to center the widget and adjust its size. Note that Twitter currently

limits the widget’s width to 520 pixels. You can customize a few more things,

as explained on the Twitter website.3

2. https://twitter.com/settings/widgets/new/search
3. https://dev.twitter.com/docs/embedded-timelines#customization

report erratum • discuss

Display Twitter Live Search Information • 49

http://media.pragprog.com/titles/msraspi2/code/kiosk/widget.html
https://twitter.com/settings/widgets/new/search
https://dev.twitter.com/docs/embedded-timelines#customization
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

Note that every Twitter widget gets a unique ID that you can see in the

data-widget-id= attribute. If you want to change the search term, you have to

generate a new Twitter widget with a new ID.

To get the widget code onto your Pi, you can open a text editor, such as nano,

and type it in. A better approach is to download the zip archive containing

the book’s source code from the book’s website4 or click the filename above

the preceding code example. By default, Midori stores all downloads in the

/tmp directory, so after Midori has downloaded the file, open a terminal and

run the following commands:

pi@raspberrypi ~ $ cd /tmp
pi@raspberrypi ~ $ unzip msraspi-code.zip

Now you can find the widget code in /tmp/code/kiosk/widget.html. To run the kiosk

widget, start the LXDE desktop on your Pi, and then start the Midori browser.

After that, choose the Open menu in Midori and select the file containing the

widget code. The widget will start right away, but to see the full effect, press

F11 to enable Midori’s full-screen mode.

The widget now covers the whole screen and updates automatically. Press

Ctrl++ (plus) a few times to increase the font size. Without writing a single

line of code, you’ve turned the Pi into a kiosk system.

Refresh Websites Automatically

Many websites update their content periodically using JavaScript, and in the

past Twitter widgets used this mechanism, too. The website you used in the

preceding section uses a different approach. It updates its content using the

<meta> tag in the head section of the HTML page.

<meta http-equiv="refresh" content="120"></meta>

This element reloads the page every 120 seconds. It’s an easy solution, but

it works only when you’re allowed to change the page and have access to the

server hosting it. So, the best solution would be if you could tell your browser

to reload the current page at a certain interval. Most browsers have such a

function, and usually it’s called kiosk mode. Midori has a kiosk mode, too.

To use it, you have to start Midori from the command line. Using the -a option,

you specify the address Midori should display. To set the update interval, use

the -i option, and to turn on full-screen mode, use -e. The final command looks

like this:

4. http://media.pragprog.com/titles/msraspi/code/msraspi-code.zip

Chapter 5. Intermezzo: Build a Kiosk with the Pi • 50

report erratum • discuss

http://media.pragprog.com/titles/msraspi/code/msraspi-code.zip
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

pi@raspberrypi ~ $ midori -i 30 -e Fullscreen \
-a "http://twitter.com/search?q=pragprog"

This shows the results of a Twitter search for the term pragprog and refreshes

the page every thirty seconds. Increase the font size by hitting Ctrl++ a few

times, and you’re finished. Note that Midori supports many more options for

controlling it from the outside. You can list them using the following command:

pi@raspberrypi ~ $ midori --help-execute

Try Different Browsers

When the Pi was released, the Midori browser was the only relatively capable

browser running on the limited hardware. As the community grew, Raspbian

and its applications got better and better, and now ports of Chromium and

Iceweasel run fairly well on the Pi. (See But I Want My Regular Browser, on

page 54, to learn how to install them.)

These browsers have kiosk modes, too.5 They might provide better results for

some websites than Midori does. Depending on your project’s needs you might

give them a try.

Next Steps

In this chapter, you learned how to turn the Pi into a kiosk system in only a

few steps. Look around in your company for possible applications. For

example, you could permanently display the status of your most critical sys-

tems on a big screen. Also, you could display the current number of customers

or orders. Of course, you could also be conservative and simply display a set

of slides explaining how wonderful your company is.

5. See http://www.vatofknow.com/?p=932, for example.

report erratum • discuss

Try Different Browsers • 51

http://www.vatofknow.com/?p=932
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

CHAPTER 6

Networking with the Pi

Like any computer, the Pi gets even more exciting the moment you connect

it to a network. Suddenly, you can use the Pi for everyday tasks, such as

surfing the Web or tweeting messages. You also can make the Pi accessible

via Secure Shell, so you can securely and conveniently work on it from

another computer. You can even share the Pi’s graphical desktop with your

PC over a network, and vice versa.

In addition, you can use the Pi as a cheap but powerful web server that not

only serves static content, but also is able to run web applications written in

languages such as PHP, for example.

Perform Everyday Tasks on the Web

You’re probably used to performing many tasks using only your web browser:

checking email, reading RSS feeds, watching videos, sending tweets, and so

on. This is all possible because most browsers today support HTML5,

JavaScript, Flash, and Java. Without these technologies, the Web would still

look very much like it did in 1995.

All these nice things work only with modern browsers, such as Google Chrome

or Mozilla Firefox. Although you can already install Chromium on Raspbian,1

it will be a while until it will run sufficiently fast on the Pi. Also, it doesn’t

support all features, such as video, at the moment. The biggest limitation is

due to the Pi’s small memory, because modern browsers use a lot of it. The

browser that ships with the Debian distribution for the Pi is Midori.2 It’s a

pretty good web browser that doesn’t use a lot of memory. Unfortunately, it’s

still in its infancy, and it has some limitations. For one thing, technologies

1. http://hexxeh.net/?p=328117859
2. http://twotoasts.de/index.php/midori/

report erratum • discuss

http://hexxeh.net/?p=328117859
http://twotoasts.de/index.php/midori/
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

such as Flash and Java aren’t currently available on the Pi. So, if you come

across a website that uses Flash or a Java applet, it won’t work in any

browser running on the Pi.

But I Want My Regular Browser

The basis of the Google Chrome browser is the Chromium project.a There is no Google

Chrome for the Raspberry Pi, but at least you can run the Chromium browser. As of

this writing, the Chromium port is rather slow, but if you still want to install

Chromium on the Pi, run the following command:

pi@raspberrypi ~ $ sudo apt-get install chromium

Then you can start Chromium from a terminal on the LXDE desktop using the follow-

ing command:

pi@raspberrypi ~ $ chromium

You’ll also find a shortcut to the Chromium browser in the application menu. To

make it run as fast as possible, devote a maximum of 32MB of RAM to the GPU (see

Adjust the Pi's Memory Layout, on page 30). Also, you should consider overclocking

your Pi (see Accelerate/Overclock the Pi, on page 29).

Similarly, you can install Iceweasel, a Firefox port for Debian.b

pi@raspberrypi ~ $ sudo apt-get install iceweasel

Afterwards, you’ll find a shortcut to the Iceweasel browser in the Internet section of

the application menu. As with Chromium, you’ll get better performance by overclocking

your Pi.

a. http://www.chromium.org/
b. http://en.wikipedia.org/wiki/Mozilla_Corporation_software_rebranded_by_the_Debian_project#IceWeasel

Although Midori understands HTML5, CSS3, and JavaScript, it’s not capable

of properly interpreting all modern websites. For example, not all features of

Google Mail run out of the box, because Midori doesn’t understand some of

the site’s JavaScript. Also, Midori needs some time to render Google Mail’s

default view. You can improve this situation by disabling JavaScript using

Midori’s Preferences > Behaviour menu and by choosing Google Mail’s basic

HTML view.

Disabling JavaScript can improve the usability of other websites, too. When

you disable JavaScript in your browser, many websites will return a plain

HTML version of their service. This HTML version usually doesn’t have all the

bells and whistles of the original site, but at least you can use it.

Chapter 6. Networking with the Pi • 54

report erratum • discuss

http://www.chromium.org/
http://en.wikipedia.org/wiki/Mozilla_Corporation_software_rebranded_by_the_Debian_project#IceWeasel
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

For Twitter, it’s similar. Midori can render it, but it’s rather slow. A good

solution is to use Twitter’s mobile website.3 It won’t have all the features of

the original site, but it will still provide a very good Twitter experience, and

it works on Midori.

Another trick that sometimes helps is to change Midori’s user agent. All web

browsers send with every request a unique identifier that tells the web server

exactly what kind of browser has sent the request. This identifier is called

the user agent, and some websites change their response depending on its

value. For example, some websites generate an error message if they don’t

know the user agent. In Midori, you can change the user agent in the

Preferences > Network menu. Here you can tell Midori that it should pretend

to be a Mozilla Firefox browser, Safari, or an iPhone.

Some sites won’t work at the moment, no matter what you try. YouTube,4 for

example, depends on video support in the browser, be it HTML5 video or

Flash. Midori doesn’t support either of these on Raspbian at the moment, so

you can’t render YouTube properly. You’re out of luck, too, if a website depends

on some JavaScript code that doesn’t work on Midori or if it needs a Java

applet. Fortunately, Java applets aren’t very popular today, but some online

banking sites still use them.

In addition to all this, Midori sometimes uses a lot of resources, especially the

CPU. Midori often needs nearly the whole CPU to render a website—sometimes

you have to wait for a few minutes for just one page to render.

A Glimpse into the Future

The Raspberry Pi team has always known that the lack of a really good web browser

is one of the platform’s biggest problems. Instead of waiting for someone else to come

up with a decent solution, they’ve tried to improve the situation—chances are good

now that the Pi will eventually get a really good web browser.a

This browser is named “Web” (admittedly not the most creative name for a web

browser), and it has been around for quite a long time.b At the moment, early beta

ports for the Pi are available, and they look quite promising.

a. http://www.raspberrypi.org/archives/5535
b. http://en.wikipedia.org/wiki/Web_%28web_browser%29

3. http://mobile.twitter.com
4. http://youtube.com

report erratum • discuss

Perform Everyday Tasks on the Web • 55

http://www.raspberrypi.org/archives/5535
http://en.wikipedia.org/wiki/Web_%28web_browser%29
http://mobile.twitter.com
http://youtube.com
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

If you keep in mind that you can disable JavaScript and that most popular

websites have a mobile version, Midori is sufficient for most situations. Also,

the Pi’s popularity might result in major improvements in the near future.

Use Secure Shell with the Pi

It’s likely that you’ll connect your Pi to a network so you can access the Pi

from other computers, and vice versa. One of the best ways to communicate

securely between two computers is via Secure Shell (SSH), a network protocol

for secure data communication. Debian comes with everything you need to

use SSH; you simply have to configure a few things.

Access the Pi Using a Password

If you only want to access other computers from the Pi, you don’t have to

configure anything. For example, you can connect as the admin user to the

host maik-schmidt.de by starting SSH on the Pi with the other computer’s name

and password.

pi@raspberrypi ~ $ ssh admin@maik-schmidt.de
admin@maik-schmidt.de's password:
Last login: Wed Jan 2 09:41:34 2013 from 94.221.82.250
admin@maik-schmidt.de:~$ exit
logout
Connection to maik-schmidt.de closed.

However, if you want to access the Pi using SSH, you first have to enable the

SSH server on the Pi using Raspi-config.

pi@raspberrypi ~ $ sudo raspi-config

Choose the SSH menu item in the Advanced Options menu and enable the

SSH server. Then click the Finish button to leave Raspi-config. After you

reboot, the Pi’s boot log will contain a new message.

Starting OpenBSD Secure Shell server: sshd
My IP address is 192.168.2.109

This means you can access the Pi via SSH now, and that the Pi’s IP address

is 192.168.2.109. In your case, the IP address will likely be different. If you

need to determine your Pi’s IP address later, you can run this:

pi@raspberrypi ~ $ ip addr | grep 'inet .* eth0'
inet 192.168.2.109/24 brd 192.168.2.255 scope global eth0

The first IP address that appears in the output is your Pi’s address. Using

this address, you can access the Pi from all the other computers on your

network.

Chapter 6. Networking with the Pi • 56

report erratum • discuss

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

From a Mac or a Linux system, you can start SSH from the command line,

passing it the Pi user’s IP address and password.

maik> ssh pi@192.168.2.109
pi@192.168.2.109's password:
Linux raspberrypi 3.10.25+ #622 PREEMPT Fri Jan 3 18:41:00 GMT 2014 armv6l

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
Last login: Tue Feb 4 20:55:56 2014
pi@raspberrypi ~ $ exit
logout
Connection to 192.168.2.109 closed.

To access the Pi from a Windows box, you need an SSH client, and one of the

best is PuTTY.5 It’s a very small program that you don’t even have to install.

Download the executable, start it, and you’ll see the configuration screen

shown in Figure 23, PuTTY configuration screen, on page 58.

PuTTY allows you to configure many things, and it lets you store your config-

uration for each type of session you need. To log into the Pi, you simply enter

its IP address and click the Open button. Then you’ll see the Pi’s regular login

prompt, as in Figure 24, Accessing the Pi from Windows is easy, on page 58.

Access the Pi with a Public-Private Key Pair

If you often have to access your Pi via SSH, it might get tedious to always

enter the password when you log in. A more convenient method is to use the

public-private key mechanism. To do that, you have to generate a key on your

PC. The key has two parts, one private and one public, and you copy the

public part to the Pi. The next time you log in to the Pi from your PC, SSH

will verify your identity by checking whether the public and private parts of

the key match. If you want to access the Pi from several computers, you have

to run the steps in this section for each of them.

Before you generate a new key pair, you should check to see whether you

have one already. On Linux or Mac OS X, open a terminal and run the follow-

ing command:

maik> ls ~/.ssh/id_rsa.pub
/Users/maik/.ssh/id_rsa.pub

5. http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

report erratum • discuss

Use Secure Shell with the Pi • 57

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

Figure 23—PuTTY configuration screen

Figure 24—Accessing the Pi from Windows is easy.

Chapter 6. Networking with the Pi • 58

report erratum • discuss

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

The file id_rsa.pub contains the public key, and the command shown earlier

tries to list it. If the output looks like the previous output, you already have

a key, and you can skip the key generation and copy the public key to the Pi,

as described next. If you get a “No such file or directory” message instead,

you have to generate a key, as in the following:

maik> ssh-keygen -t rsa -C "your_email@youremail.com"
Generating public-private rsa key pair.
Enter file in which to save the key (/Users/maik/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in
/Users/mschmidt/.ssh/id_rsa.
Your public key has been saved in
/Users/mschmidt/.ssh/id_rsa.pub.
The key fingerprint is:
f0:09:09:49:42:46:42:6f:42:3b:42:44:42:09:6a:e8
your_email@youremail.com
The key's randomart image is:
+--[RSA 2048]----+
| . .o.. |
|+ ..o + . |
|o.o + B o |
|.+ o o B . |
| E = S . |
| . . o |
| . |
| |
| |
+-----------------+

This generated a key pair in your home directory. You can find the public key

in a file named id_rsa.pub. You now have to transfer this file to the Pi, where

SSH keeps a list of all authorized keys in a file named .ssh/authorized_keys in the

Pi user’s home directory. The following commands append the id_rsa.pub file to

the Pi’s list of authorized keys:

maik> scp ~/.ssh/id_rsa.pub pi@192.168.2.109:/tmp
maik> ssh pi@192.168.2.109 "mkdir ~/.ssh"
maik> ssh pi@192.168.2.109 "cat /tmp/id_rsa.pub >> ~/.ssh/authorized_keys"

The first command copies id_rsa.pub to the Pi’s /tmp directory, and the second

command creates a hidden directory named .ssh that contains configuration

data for SSH. The last command appends the file’s content to the

~/.ssh/authorized_keys file. If you don’t plan to keep several keys in the authorized_keys
file, you can copy id_rsa.pub directly, of course.

maik> scp ~/.ssh/id_rsa.pub pi@192.168.2.109:/home/pi/.ssh/authorized_keys

report erratum • discuss

Use Secure Shell with the Pi • 59

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

On a Windows box, you can use some additional tools from the PuTTY

download page to generate the keys and to copy them to the Pi. In the following

figure you can see the PuTTYgen application that generates keys.

Figure 25—PuTTYgen generates keys on Windows.

To copy the generated public key file, use PSCP. It works exactly like scp, so

from a DOS prompt, run the following command:

C:\> pscp id_rsa.pub pi@192.168.2.109:/home/pi/.ssh/authorized_keys

Your Pi is a full-fledged member of your network now.

Share Desktops with the Pi

Logging into the Pi using SSH is convenient and opens a new world of possi-

bilities. For example, you can access the Pi’s file system, start and stop

processes, and monitor what’s happening on the Pi at the moment. The biggest

disadvantage of the SSH solution so far is that it only works in a text terminal.

Chapter 6. Networking with the Pi • 60

report erratum • discuss

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

You can easily overcome this limitation and control the Pi’s desktop, keyboard,

and mouse using another computer. One solution is Virtual Network

Computing (VNC),6 a technology that transmits the whole screen and all

mouse and keyboard events from one computer to another.

To enable VNC, you need a VNC client and server. The server runs on the

machine you’d like to control, and the client runs on the controlling machine.

So, if you want to control the Pi using your PC, you have to install a VNC

server on your Pi. You can choose from several, but one of the best is

TightVNC.7 It’s available for free for all major platforms, and you can install

it via apt-get.

pi@raspberrypi ~ $ sudo apt-get install tightvncserver
pi@raspberrypi ~ $ tightvncserver

You will require a password to access your desktops.

Password:
Verify:
Would you like to enter a view-only password (y/n)? n

New 'X' desktop is raspberrypi:1

Creating default startup script /home/pi/.vnc/xstartup
Starting applications specified in /home/pi/.vnc/xstartup
Log file is /home/pi/.vnc/raspberrypi:1.log

When you run tightvncserver for the first time, it asks you to set a password.

You have to enter this password in the VNC client later to prevent unautho-

rized people from accessing your Pi. In addition, TightVNC allows you to

optionally define a view-only password. This password gives clients read-only

access so they can see the screen, but they cannot control the keyboard and

mouse. This is useful for presentations, for example.

After you’ve defined the passwords, TightVNC creates a new virtual screen

that you can access from your PC or Mac. The great thing about VNC is that

it allows you to create as many virtual screens as you need. These screens

don’t necessarily have to correspond to physical screens. They are purely

virtual, so many users can access your Pi, for example, and each will get an

independent desktop environment.

To address a virtual screen, you need two things: the Pi’s IP address and the

screen’s port address. VNC’s base port is 5900, so to access screen number 1,

6. http://en.wikipedia.org/wiki/Vnc
7. http://www.tightvnc.com/

report erratum • discuss

Share Desktops with the Pi • 61

http://en.wikipedia.org/wiki/Vnc
http://www.tightvnc.com/
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

you have to use port 5901. To access the screen you’ve created with the pre-

vious commands, you have to use the network address 192.168.2.109:5901.

Keep in mind that your IP address will probably be different.

Now that you know the address of the Pi’s VNC server, you can access it from

a PC or a Mac using a VNC client. On a Mac it’s very easy, because the Mac

comes with a VNC client already. You can actually connect to a VNC server

using the Safari web browser. Simply enter the web address

vnc://192.168.2.109:5901, and Safari will spawn the Screen Sharing application.

Enter the password you defined earlier, and you’re finished. See the result

in the following figure.

Figure 26—Controlling the Pi from a Mac

On Windows and Linux, the procedure is very similar, but you have to install

a VNC client first. This is easy, because TightVNC runs on Windows and

Linux, and it contains a client, too.

Controlling your PC’s or Mac’s desktop from the Pi is easy, too. First you have

to install a VNC server on your PC. Again, TightVNC is a great choice for

Chapter 6. Networking with the Pi • 62

report erratum • discuss

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

Windows and Linux. On a Mac it’s even easier, because Mac OS X has an

integrated VNC server that you simply have to enable. In the System Prefer-

ences, select Sharing and then enable Screen Sharing. Click the Computer

Settings button to set a password. (You can see the preferences panel in the

following figure.)

Figure 27—Sharing the Mac’s screen is easy.

Now you need a VNC client on the Pi, and xtightvncviewer is a good one. Install

it using apt-get.

pi@raspberrypi ~ $ sudo apt-get install xtightvncviewer

Then open a terminal on the Pi’s desktop and start the client, passing it your

PC’s IP address and VNC port.

pi@raspberrypi ~ $ xtightvncviewer 192.168.2.100:5900

In Figure 28, Controlling a Mac from the Pi, on page 64, you can see a Mac’s

desktop inside a window on the Pi’s desktop. If it doesn’t work, make sure

report erratum • discuss

Share Desktops with the Pi • 63

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

you use the correct IP address and port number. Usually it’s 5900, but it

might vary in different VNC servers.

Figure 28—Controlling a Mac from the Pi

Turn the Pi into a Web Server

Although the Pi looks like a toy compared to modern web server hardware,

it’s still powerful enough to serve interesting information in your local network.

Not only can it serve static websites, but it can also generate dynamic content

using databases and web applications. In addition, it can even provide access

to its GPIO ports via web technologies.

The first thing you need to turn the Pi into a web server is an HTTP server, a

network service that understands the Hypertext Transfer Protocol (HTTP).

You can choose from several great products, such as the Apache HTTP server8

or Nginx,9 but Lighttpd10 is a good choice for the Pi because of its very low

memory footprint.

Installing/running Lighttpd is a piece of cake.

pi@raspberrypi ~ $ sudo apt-get install lighttpd

8. http://httpd.apache.org/
9. http://nginx.org/
10. http://www.lighttpd.net/

Chapter 6. Networking with the Pi • 64

report erratum • discuss

http://httpd.apache.org/
http://nginx.org/
http://www.lighttpd.net/
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

After the installation has completed, Lighttpd is up and running, and you

can point your PC’s web browser to your Pi’s IP address. For example, in the

following figure you can see the server’s welcome page.

Figure 29—Lighttpd’s welcome page

To create your own web pages, you have to add them to Lighttpd’s document

root, a directory containing all files it should serve for a website. Lighttpd’s

document root by default is the /var/www directory. You should make sure that

only members of the operating system group www-data have permission to

write to it. The following commands add a Pi user to the www-data group and

set the permission flags of the /var/www directory accordingly:

pi@raspberrypi ~ $ sudo adduser pi www-data
pi@raspberrypi ~ $ sudo chown -R www-data:www-data /var/www
pi@raspberrypi ~ $ sudo chmod -R 775 /var/www

report erratum • discuss

Turn the Pi into a Web Server • 65

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

After the next login, you can create new web pages. You can do it with any

text editor, such as nano. The following command creates a new file named

index.html that will be the start page of your first website:

pi@raspberrypi ~ $ nano /var/www/index.html

Enter the following text:

Networking/index.html

<!DOCTYPE html>
<html>

<head>
<title>Hello, world!</title>

</head>
<body>
<h1>Hello, world!</h1>

</body>
</html>

When you’re finished, press Ctrl+X to leave nano. Press Y to confirm that you

want to save the file, and then press Enter to confirm the filename. After that,

point your browser to the new web page, and you’ll see a result like this:

Figure 30—Results of pointing to the new web page

By the way, if you prefer, you can edit the index.html file on your PC and copy

it to the Pi afterward. (Remember to replace the IP address with your Pi’s IP

address.)

maik> scp index.html pi@192.168.2.109:/var/www

Using only a few commands, you’ve turned the Pi into a full-blown web server

that can serve static content, such as HTML pages. This is useful, but

sometimes you need more dynamic content. For example, you might want to

embed data from a database into your pages, or you might even embed envi-

ronmental data you collect with sensors attached to the Pi.

Chapter 6. Networking with the Pi • 66

report erratum • discuss

http://media.pragprog.com/titles/msraspi2/code/Networking/index.html
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

To create dynamic content, you need a programming language. You can choose

from many alternatives. For the Pi, PHP11 is a good choice because it doesn’t

use a lot of resources and it’s easy to install.

pi@raspberrypi ~ $ sudo apt-get update
pi@raspberrypi ~ $ sudo apt-get install php5-cgi
pi@raspberrypi ~ $ sudo lighty-enable-mod fastcgi-php
pi@raspberrypi ~ $ sudo /etc/init.d/lighttpd force-reload

These commands install a PHP interpreter and enable the FastCGI module

in the Lighttpd server. FastCGI12 speeds up dynamic websites tremendously,

so it’s a good idea to enable it.

To test whether everything works as expected, create a file named

/var/www/index.php with the following content:

Networking/index.php

<?php
phpinfo();

?>

Point your web browser to the newly created file, and you should see something

similar to Figure 31, Serving dynamic web pages from the Pi, on page 68.

This is PHP’s info page, which contains a lot of information about the system

on which PHP is currently running. PHP generates it dynamically. You can

see that everything works fine, and now you can start to build your own web

applications on the Pi. In Chapter 9, Tinker with the GPIO Pins, on page 93,

you’ll build a web application that controls some external hardware attached

to the Pi.

Add Wi-Fi to the Pi

Wireless networks are everywhere these days. Coffee shops, airports, and

hotels generally offer Wi-Fi to their customers. You probably run a wireless

network at home, too, so you can conveniently access your most important

services from your smartphone while you’re having a barbecue with the

family. On Windows or Mac OS X, you usually don’t have to think much about

joining wireless networks because the process is nearly invisible.

On the Pi it’s different, because the Pi’s hardware doesn’t support Wi-Fi by default.

You need a Wi-Fi stick for the USB port, and depending on the stick’s type,

Raspbian might configure it automatically. In some cases you have to configure

it manually; in this section, you’ll learn both ways.

11. http://www.php.net/
12. http://www.fastcgi.com/

report erratum • discuss

Add Wi-Fi to the Pi • 67

http://media.pragprog.com/titles/msraspi2/code/Networking/index.php
http://www.php.net/
http://www.fastcgi.com/
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

Figure 31—Serving dynamic web pages from the Pi

Configure Wi-Fi Using WiFi Config

The easiest way to configure Wi-Fi on Raspbian is to use a graphical tool

named WiFi Config. Plug the Wi-Fi stick into a USB port and start the LXDE

desktop:

pi@raspberrypi ~ $ startx

On the desktop you’ll find an icon for WiFi Config. Double-click it, and you’ll

see the application shown in Figure 32, WiFi Config lets you scan for wireless

networks, on page 69.

Chapter 6. Networking with the Pi • 68

report erratum • discuss

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

Figure 32—WiFi Config lets you scan for wireless networks.

Choose wlan0 from the Adapter drop-down menu and then click the Scan

button to search for wireless networks. If you find the network you’ve been

looking for, double-click its name, and the configuration dialog in Figure 33,

You can change many parameters in WiFi Config, on page 70 will appear.

Usually, you don’t have to change anything here. You only have to enter your

Wi-Fi password in the PSK text field. Press the Save button to return to the main

menu and then press the Connect button to connect the Pi to the wireless network.

If everything works as expected, save the current configuration using the File >

Save Configuration menu.

As long as Raspbian and WiFi Config recognize your Wi-Fi stick, WiFi Config

is the most convenient way to join wireless networks with the Pi.

Unfortunately, WiFi Config doesn’t work with all Wi-Fi sticks, and sometimes

you might need to avoid the desktop system because you’re running a server.

In these cases you have to configure Wi-Fi manually.

Configure Wi-Fi Manually

Configuring Wi-Fi on the command line isn’t very convenient, but it isn’t rocket

science, either. Plug your Wi-Fi stick into one of the Pi’s USB ports and run the

lsusb command to see whether the Pi recognizes it properly:

report erratum • discuss

Add Wi-Fi to the Pi • 69

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

Figure 33—You can change many parameters in WiFi Config.

pi@raspberrypi ~ $ lsusb
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
Bus 001 Device 002: ID 0424:9512 Standard Microsystems Corp.
Bus 001 Device 003: ID 0424:ec00 Standard Microsystems Corp.
Bus 001 Device 004: ID 050d:0237 Belkin Components F5U237 USB 2.0 7-Port Hub
Bus 001 Device 005: ID 04e8:2018 Samsung Electronics Co., Ltd WIS09ABGN

LinkStick Wireless LAN Adapter
Bus 001 Device 006: ID 046d:c312 Logitech, Inc. DeLuxe 250 Keyboard
Bus 001 Device 007: ID 046d:c05a Logitech, Inc. Optical Mouse M90

In this case, device 005 is a Wi-Fi stick manufactured by Samsung. You can

take a closer look at the Pi’s boot message with the dmesg command and see

whether the WLAN stick has been initialized properly:

Chapter 6. Networking with the Pi • 70

report erratum • discuss

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

pi@raspberrypi ~ $ dmesg | less
...
usb 1-1.3.6: new high speed USB device number 5 using dwc_otg
usb 1-1.3.6: New USB device found, idVendor=04e8, idProduct=2018
usb 1-1.3.6: New USB device strings: Mfr=1, Product=2, SerialNumber=3
usb 1-1.3.6: Product: 802.11 n WLAN
usb 1-1.3.6: Manufacturer: Ralink
usb 1-1.3.6: SerialNumber: 1.0
...

Press the spacebar to go down one page and press B to go up one page. Press

Q to go back to the shell prompt. As you can see in the current case, the

Samsung stick uses the Wi-Fi chipset from a company named Ralink. This

chipset is pretty popular, so Debian recognized it out of the box. If the output

of dmesg contains any errors right after the initialization of your Wi-Fi stick,

check the Pi’s wiki.13 Often you have to download the firmware for your Wi-Fi

stick manually and reconfigure the Linux kernel.

If no errors occurred, Debian Linux has recognized your Wi-Fi stick success-

fully. You can use the following command to get the current status of your

Pi’s wireless network interfaces:

pi@raspberrypi ~ $ iwconfig
lo no wireless extensions.

eth0 no wireless extensions.

wlan0 IEEE 802.11abgn ESSID:off/any
Mode:Managed Access Point: Not-Associated Tx-Power=20 dBm
Retry long limit:7 RTS thr:off Fragment thr:off
Power Management:on

At the moment, the Pi isn’t connected to a wireless network, but the wlan0

interface is up and running. The following command searches for wireless

networks:

pi@raspberrypi ~ $ sudo iwlist scan | grep ESSID
ESSID:"darknet"
ESSID:"valhalla"

In this case, two wireless networks named darknet and valhalla are within

reach. To connect to one of them, you have to edit the configuration file

/etc/network/interfaces using a text editor, such as nano. The configuration file

should look like this after editing:

13. http://elinux.org/RPi_VerifiedPeripherals#USB_WiFi_Adapters

report erratum • discuss

Add Wi-Fi to the Pi • 71

http://elinux.org/RPi_VerifiedPeripherals#USB_WiFi_Adapters
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

auto lo
iface lo inet loopback
iface eth0 inet dhcp

allow-hotplug wlan0
iface wlan0 inet manual
wpa-roam /etc/wpa_supplicant/wpa_supplicant.conf
iface default inet dhcp

These lines will activate the wlan0 network interface automatically the next

time you boot the Pi without an Ethernet connection. Also, they’ll make the

Pi obtain an IP address using DHCP (Dynamic Host Configuration Protocol).

You still have to configure your Wi-Fi credentials. Open /etc/wpa_supplicant/wpa_sup-
plicant.conf with your text editor of choice and enter the following lines:

ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev
update_config=1

network={
ssid="darknet"
psk="dontTellAny0ne"
proto=RSN
key_mgmt=WPA-PSK
pairwise=TKIP
auth_alg=OPEN

}

Of course, you have to adjust the parameters ssid and psk accordingly.

If you’re impatient, you don’t have to reboot the Pi. Run the following command

to make the Pi join your wireless network:

pi@raspberrypi ~ $ sudo ifup wlan0
Internet Systems Consortium DHCP Client 4.2.2
Copyright 2004-2011 Internet Systems Consortium.
All rights reserved.
For info, please visit https://www.isc.org/software/dhcp/

Listening on LPF/wlan0/00:12:fb:28:a9:51
Sending on LPF/wlan0/00:12:fb:28:a9:51
Sending on Socket/fallback
DHCPDISCOVER on wlan0 to 255.255.255.255 port 67 interval 8
DHCPDISCOVER on wlan0 to 255.255.255.255 port 67 interval 14
DHCPDISCOVER on wlan0 to 255.255.255.255 port 67 interval 14
DHCPREQUEST on wlan0 to 255.255.255.255 port 67
DHCPOFFER from 192.168.1.1
DHCPACK from 192.168.1.1
bound to 192.168.1.101 -- renewal in 2983 seconds.

Chapter 6. Networking with the Pi • 72

report erratum • discuss

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

The Pi has the IP address 192.168.1.101 now and is connected to your network

wirelessly. (Your IP address probably will differ.) Use the ping command to

check whether you can access a website such as Google, for example:

pi@raspberrypi ~ $ ping -c 3 google.com
PING google.com (173.194.69.100) 56(84) bytes of data.
64 bytes from google.com (173.194.69.100): icmp_req=1 ttl=45 time=26.7 ms
64 bytes from google.com (173.194.69.100): icmp_req=2 ttl=45 time=32.3 ms
64 bytes from google.com (173.194.69.100): icmp_req=3 ttl=45 time=34.8 ms

--- google.com ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2002ms
rtt min/avg/max/mdev = 26.752/31.338/34.863/3.395 ms

As you can see, the Pi is connected to the Internet via Wi-Fi now. Run the

following command to get some statistics about the signal strength and so

on:

pi@raspberrypi ~ $ iwconfig
lo no wireless extensions.

eth0 no wireless extensions.

wlan0 IEEE 802.11abgn ESSID:"darknet"
Mode:Managed Frequency:2.442 GHz Access Point: 54:E6:FC:CF:77:8A
Bit Rate=135 Mb/s Tx-Power=20 dBm
Retry long limit:7 RTS thr:off Fragment thr:off
Power Management:on
Link Quality=40/70 Signal level=-70 dBm
Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0
Tx excessive retries:1 Invalid misc:6 Missed beacon:0

Keep in mind that a computer like the Pi can have more than one IP address.

If you connect it via Ethernet and Wi-Fi, for example, your boot message will

display something like the following:

My IP address is 192.168.2.109 192.168.1.101

That means that you’ve connected your Pi using two network interfaces, and

for each interface it has a different IP address.

Configure Static IP Addresses

Until now you’ve configured all network devices using DHCP. That is, your

router assigns an IP address to your Pi automatically. This IP address is

unique, but it might change. In some cases it’s more convenient to assign a

static IP address—that is, an IP address that always stays the same. Of course,

you have to make sure you don’t use an IP address that is being used by

another device in your network.

report erratum • discuss

Add Wi-Fi to the Pi • 73

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

Configuring static IP addresses isn’t much different from configuring

dynamic IP addresses. You have to edit /etc/network/interfaces first. The following

file assigns a dynamic IP address to the Ethernet device. Also, it assigns the

static IP address 192.168.1.105 to the Wi-Fi device:

auto lo
iface lo inet loopback
iface eth0 inet dhcp

allow-hotplug wlan0
iface wlan0 inet manual
wpa-roam /etc/wpa_supplicant/wpa_supplicant.conf

iface home inet static
address 192.168.1.105
netmask 255.255.255.0
network 192.168.1.0
gateway 192.168.1.1

Make sure you’re using the correct addresses for netmask, network, and gateway.
Also, make sure the address 192.168.1.105 isn’t used by any other device on

your wireless network.

In this case, the static interface’s name is “home.” You have to connect it to

the Wi-Fi credentials by changing /etc/wpa_supplicant/wpa_supplicant.conf slightly:

ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev
update_config=1

network={
ssid="darknet"
psk="t0p$ecret"
proto=RSN
key_mgmt=WPA-PSK
pairwise=TKIP
auth_alg=OPEN
id_str="home"

}

The only thing you have to add is id_str="home". After you reboot the Pi, it will

listen on a dynamic Ethernet address and a static wireless address.

Next Steps

In this chapter, you learned how to integrate the Pi into your network. You

can now conveniently access the Pi via SSH, and you can even use it as a

web server. In the next chapter, you’ll do something completely different:

you’ll turn the Pi into a multimedia center.

Chapter 6. Networking with the Pi • 74

report erratum • discuss

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

CHAPTER 7

Turn the Pi into a Multimedia Center

The Pi’s small size, its low power consumption, and its graphics capabilities

make it a perfect candidate for a fully integrated multimedia center, just like

a PlayStation or an Apple TV box. To turn the Pi into such a multimedia

center, you need a special piece of software named XBMC.1

XBMC is a media player on steroids that can turn nearly every PC into an

entertainment hub for digital media. The Pi is no exception. In this chapter,

you’ll learn how to run XBMC on the Pi.

Install Raspbmc

XBMC is a really big software project, and installing and configuring it can

be tricky. Fortunately, you don’t have to do it yourself for the Pi; you can

benefit from the glorious efforts of the Raspbmc2 team. Raspbmc is a Linux

distribution for the Pi that does nothing but run XBMC. You can install it

using NOOBS (see Have a Look Around with NOOBS, on page 14) or copy an

image of this distribution to an SD card as usual. Then you can use the SD

card to boot the Pi. Instead of starting a terminal or a desktop environment,

the Raspbmc distribution starts XBMC automatically.

In contrast to other Linux distributions for the Pi, the Raspbmc team not only

offers for download a complete image file for an SD card, they also decided

to create an installer for all major platforms. This installer downloads the

latest version of Raspbmc from the Web and automatically copies it to your

SD card.

1. http://xbmc.org/
2. http://www.raspbmc.com/

report erratum • discuss

http://xbmc.org/
http://www.raspbmc.com/
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

If you’re using a Windows PC to prepare a Raspbmc card, download the

installer,3 extract it to your hard drive, and start the program named installer.exe.
You’ll see a window similar to this:

Figure 34—Raspbmc installer for Windows

Insert an SD card, select your SD card reader, and click the Install button.

The installer will download the latest version of Raspbmc and copy it to the

SD card. Note that the installer will delete all the data on the SD card.

The Raspbmc installer for Linux and Mac OS X doesn’t have a fancy UI, but

it’s easy to use. It’s a Python program, and after you’ve downloaded it,4 you

can run it from a terminal, as in the following example:

3. http://www.raspbmc.com/wiki/user/windows-installation/
4. http://svn.stmlabs.com/svn/raspbmc/release/installers/python/install.py

Chapter 7. Turn the Pi into a Multimedia Center • 76

report erratum • discuss

http://www.raspbmc.com/wiki/user/windows-installation/
http://svn.stmlabs.com/svn/raspbmc/release/installers/python/install.py
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

The installation program shows a list of all the drives connected to your PC,

including the SD card reader. On your PC the output will be different, but in

the previous example, the SD card is mounted under the name disk4. Enter

its name and confirm that you’d like to install Raspbmc. Make sure you choose

the correct drive, because the installer deletes all the data on the device you’ve

selected!

After you’ve created a bootable SD card, insert it into the Pi and turn it on.

Surprisingly, the Pi won’t start XBMC right away; rather, it boots a minimalist

Linux system and starts the actual installation of Raspbmc. First it repartitions

the SD card and formats the newly created partitions. Then it downloads and

installs the root file system, the kernel, some kernel modules, and a few

libraries. After a reboot, it eventually downloads and installs the latest version

of XBMC.

None of these steps requires user interaction. Depending on the speed of your

SD card and your Internet connection, they take about twenty to thirty min-

utes. So, you can safely go for a walk or have a cup of your favorite hot bev-

erage.

Start Raspbmc for the First Time

After the installation process has finished, Raspbmc starts XBMC automati-

cally. Its main menu looks like Figure 35, Raspbmc main menu, on page 78.

At first sight, XBMC looks like many other media players. It has menu items

for viewing photos, watching videos, playing music, and configuring some

report erratum • discuss

Start Raspbmc for the First Time • 77

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

Figure 35—Raspbmc main menu

system preferences. These functions are mainly self-explanatory—for playing

or viewing any kind of content, you can simply select media files from the SD

card or a USB device, and XBMC will output them.

To attach a USB device, such as a hard drive or a USB stick, to the Pi, you

have to use a USB hub, or you have to temporarily disconnect your mouse

and control XBMC using your keyboard. Instead of choosing a menu item by

clicking it with the mouse, you can move the focus with the cursor keys and

press Return to select an item. When you press the Esc key, you go back one

step in the menu hierarchy.

To get the most out of XBMC, you should connect it to your network. If you’ve

connected your Pi using Ethernet, you don’t have to do anything; XBMC will

recognize it automatically. If you want to use Wi-Fi, choose the Programs >

Raspbmc Settings menu. In the Network Configuration tab (see Figure 36,

You can change many settings using the Raspbmc Settings menu, on page 79),

set the Network Mode to Wireless (WIFI) Network. Then enter your wireless

network’s SSID and your password. Usually, it’s beneficial (but not necessary)

to set a static IP address for your Pi when it’s running XBMC. So disable the

Use DHCP button and enter a unique IP address in “IP address.” Click the

OK button, and you’re finished.

XBMC is more than a simple media player; you can improve and enhance it

using many add-ons that are available for free on the Web. Simply put,

Chapter 7. Turn the Pi into a Multimedia Center • 78

report erratum • discuss

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

Figure 36—You can change many settings using the Raspbmc Settings menu.

add-ons give you access to media on the Web. For example, you can find add-

ons that aggregate the content of certain TV stations or add-ons that give you

access to the music of the greatest video games. XBMC even provides a very

convenient way to manage add-ons. In Figure 37, Managing add-ons in XBMC,

on page 80, you can see the TED add-on, which lists the latest and greatest

TED conference videos.

Take a few minutes and browse the list of add-ons to see whether there’s some-

thing interesting to you. When in doubt, install it and take a look. It’s easy to

remove an add-on if you don’t like it. Note that you need to make sure you have

enough bandwidth for most add-ons, because they stream a lot of data.

Depending on the speed of your SD card and your Internet connection, you’ll

experience a noticeable lag when choosing menu items in XBMC. This might

get better in future releases, but for the moment you have to live with it and

be patient when navigating through XBMC’s menus. However, playing content

works fine, without any lags or staggering.

Finally, you should take a look at the Systems > Settings menu and see

whether all settings match your local setup. If you’re using composite video,

for example, you have to choose analog as your audio output device in

Systems > Settings > Audio.

report erratum • discuss

Start Raspbmc for the First Time • 79

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

Figure 37—Managing add-ons in XBMC

Add Files to XBMC

In XBMC you can easily add new movies, TV shows, or music using the Add

Files menu in the Videos or Music menu. Before you start to add your media

files, you should know how XBMC works internally. XBMC is more than a

simple media player; it’s a full-blown media library that tries to automatically

get as much information about your media files as possible. For example,

XBMC reads additional information about your favorite TV shows from web

databases and adds them to your library. This can be anything from an

episode’s original air date to a short summary.

To do this, XBMC depends on a certain file-naming scheme—you can read

all about it on the project’s wiki.5 Note that choosing the correct filenames

and directory structures even affects XBMC’s main menu. If you add a

directory for TV shows, for example, XBMC adds a TV shows menu item to

its main menu. So, to get the most out of XBMC, you should rename your

media files accordingly before you import them.

The easiest way to add files to XBMC is to attach a USB device containing

your media files directly to the Pi. This solution works fine, but it also has

some disadvantages. The USB device often is bigger than the Pi itself, and it

5. http://wiki.xbmc.org/index.php?title=Adding_videos_to_the_library/Naming_files

Chapter 7. Turn the Pi into a Multimedia Center • 80

report erratum • discuss

http://wiki.xbmc.org/index.php?title=Adding_videos_to_the_library/Naming_files
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

Video and Music Formats

XBMC supports nearly all container formats and codecs on the market. You’ll rarely

find a multimedia file that the Pi can’t play. There’s one problem, though: the Rasp-

berry Foundation licensed hardware acceleration only for the H.264 video codec.

Fortunately, this is one of the most popular codecs available, but if you have video

files using a different codec, you might not be able to watch them unless you buy a

license for them. At the moment, you can buy licenses for MPEG-2 and VC-1 online.a

You provide your Pi’s serial number and get back a license key that you enter in

Raspbmc’s Settings menu.

a. http://www.raspberrypi.com/license-keys/

probably consumes more power, too. In addition, it requires at least one of

your valuable USB ports. A better solution is to store media on the SD card

or to stream media from your local network. Because of XBMC’s great network

integration, you can implement both solutions easily.

XBMC supports FTP, SFTP, SSH, NFS, and Samba out of the box, and you

don’t have to configure much to get them all up and running. XBMC enables

SSH by default, so to copy data to the SD card, you can use scp, for example,

as you did in Use Secure Shell with the Pi, on page 56. Run the following

command from your PC’s terminal to create a folder named Movies in XBMC’s

home directory:

maik> ssh pi@192.168.2.109 "mkdir /home/pi/Movies"

Replace the IP address with your Pi’s address. Note that Raspbmc also comes

with a user named pi that has the password raspberry at the moment. Now

you can copy media files using scp and add them to the XBMC library

afterward.

maik> scp Pulp\ Fiction\ (1994).avi pi@192.168.2.109:Movies

Even if you use an SD card with plenty of space, it probably won’t be enough

to store your whole media library. Also, it doesn’t make sense to always copy

files before you can watch a film or listen to some music. That’s what network

file systems such as NFS and Samba were built for, and XBMC supports them

all.

Using NFS or Samba, you can host all your media files on your regular PC

and stream them to the Pi when you want to use them. Configuring NFS6 or

6. http://wiki.xbmc.org/index.php?title=NFS

report erratum • discuss

Add Files to XBMC • 81

http://www.raspberrypi.com/license-keys/
http://wiki.xbmc.org/index.php?title=NFS
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

Samba7 is beyond the scope of this book, but the XBMC wiki has excellent

documentation for all major platforms.

As soon as your media files are available in your home network via NFS or

Samba, you can easily access them using XBMC. For NFS you don’t usually

have to do anything, and you can configure your Samba settings in the

System > Service > SMB client menu.

Control XBMC Remotely

If you want to use the Pi as a multimedia center in your living room, sooner

or later you’ll want a remote control. If you have a modern TV, chances are

good that you can control the Pi using your TV’s remote control. Modern TV

sets use the HDMI cable not only for transferring video and audio data, but

also for transmitting remote-control commands. In this case, your TV set will

send remote-control commands automatically to the Raspberry Pi.

If your TV isn’t quite as modern, you can use some special hardware with an

infrared dongle,8 but the easiest method is just to use your smartphone.

Not only does XBMC have add-ons for managing your multimedia files, it also

allows you to install web interfaces for controlling XBMC remotely. Go to the

System > Settings > Services > Webserver menu and enable the “Allow control

of XBMC via HTTP” option. Then click the “Web interface” button and select

Get More. In Figure 38, XBMC comes with several web interfaces, on page 83,

you can see the currently available web interfaces. Enable all of them so you

can try them and choose your favorite.

After you’ve enabled the web interface, you can use it with every browser that

has access to your network. The interface listens on port 80, so in your

browser, you only have to enter your Pi’s IP address, such as http://192.168.2.109,
to open XBMC’s web interface. (Remember to replace the IP address with your

Pi’s IP address.) In Figure 39, The AWXi web interface in action, on page 83,

you can see the AWXi web interface in action, for example. It has all the

usual buttons, such as play, pause, and stop, and it allows you to search

your whole media library.

If you have an iPad/iPhone9 or an Android phone,10 you can even install a

native remote control application for XBMC. In Figure 40, Control XBMC on

7. http://wiki.xbmc.org/index.php?title=Samba
8. http://www.raspbmc.com/wiki/user/configuring-remotes/
9. http://itunes.apple.com/gb/app/official-xbmc-remote/id520480364
10. https://play.google.com/store/apps/details?id=org.xbmc.android.remote

Chapter 7. Turn the Pi into a Multimedia Center • 82

report erratum • discuss

http://wiki.xbmc.org/index.php?title=Samba
http://www.raspbmc.com/wiki/user/configuring-remotes/
http://itunes.apple.com/gb/app/official-xbmc-remote/id520480364
https://play.google.com/store/apps/details?id=org.xbmc.android.remote
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

Figure 38—XBMC comes with several web interfaces.

Figure 39—The AWXi web interface in action

an Android device, on page 84 and Figure 41, It looks and works like a regular

remote, on page 84, you can see the Android version. It not only looks beauti-

ful, but it also provides convenient access to all XBMC functions. In many

regards, it’s much better than a regular TV remote.

If you’re still not satisfied with the remote control, you can search for even

more advanced XBMC remote control apps. At the time of this writing, one

is Yatse,11 and more will probably be available soon.

11. https://play.google.com/store/apps/details?id=org.leetzone.android.yatsewidgetfree

report erratum • discuss

Control XBMC Remotely • 83

https://play.google.com/store/apps/details?id=org.leetzone.android.yatsewidgetfree
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

Figure 40—Control XBMC on an Android device.

Figure 41—It looks and works like a regular remote.

Next Steps

In this chapter, you learned to do something completely different with the Pi.

For the first time, you didn’t use it as a regular PC; instead, you turned it

into a special-purpose device, a multimedia center. In the next chapter, you’ll

learn how to run even more multimedia applications on your Pi, and you’ll

play some entertaining games.

Chapter 7. Turn the Pi into a Multimedia Center • 84

report erratum • discuss

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

CHAPTER 8

Play Games on Your Pi

Linux has never been a popular gaming platform. Even though the situation

has improved over the years, it probably will take some time for the first

blockbuster titles to become available. Still, you can already play some

entertaining and sometimes even addictive games on the Raspberry Pi.

For example, you can enjoy thousands of text adventure games on the Pi.

Although commercial publishers abandoned this genre long ago, it still has

an active and enthusiastic fan base that releases new games frequently. And

if you haven’t played classic games such as Zork, you should give them a try.

Another classic genre is point-and-click adventure, including games such as

The Secret of Monkey Island and Day of the Tentacle. Thanks to the efforts of

the open-source community, you can play most titles on your Pi.

Even if the Pi isn’t powerful enough to run modern games, it still has enough

power to run some native Linux games, such as Quake III. It even has enough

power to emulate some home computers and game consoles from the past.

For example, on the Pi you can play all games made for Atari’s VCS 2600.

Play Interactive Fiction

Text adventure games were very popular with users of the first home comput-

ers. In contrast to modern games with spectacular 3D graphics and surround

sound, text adventures look very spartan. They output only text, and you

control the game by typing commands on your keyboard. Here you can see

the opening of Zork, one of the most famous text adventures.

❮ ZORK I: The Great Underground Empire
Copyright (c) 1981, 1982, 1983 Infocom, Inc. All rights reserved.
ZORK is a registered trademark of Infocom, Inc.
Revision 88 / Serial number 840726
West of House

report erratum • discuss

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

You are standing in an open field west of a white house, with a
boarded front door.
There is a small mailbox here.

>open mailbox➾

Opening the small mailbox reveals a leaflet.❮

>take leaflet➾

Taken.❮

>read leaflet➾

"WELCOME TO ZORK!❮

ZORK is a game of adventure, danger, and low cunning. In it you will
explore some of the most amazing territory
ever seen by mortals. No computer should be without one!"

Don’t be misled by the game’s presentation. Many text adventures tell great

stories and can entertain you for hours.

Even though no commercial text adventures have been released for decades,

the genre still has an active community that produces exciting games. Most

of these games tell long and elaborate stories, so their authors prefer to call

their creations interactive fiction.

Infocom was one of the first companies to produce interactive fiction. They

created some of the greatest text adventure games. The Infocom developers

realized early on that they could reduce their efforts by creating a domain-

specific language for describing interactive fiction. They called this language

Z-language, and authors of interactive fiction still use it today to create games.

To run programs written in Z-language, you need an implementation of a

virtual machine named Z-machine,1 and one of the best is Frotz.2 You can

install it as follows:

pi@raspberrypi ~ $ sudo apt-get install frotz

To play a text adventure using Frotz, you need only the game’s Z-language

file. A great place to start your search for interactive fiction is the Interactive

Fiction Archive,3 which hosts thousands of games.

If you’re new to interactive fiction, you should start your journey with the

Zork trilogy. This series of games made Infocom famous, and although they

are a couple of decades old, they are still as fresh as they were on their first

1. http://en.wikipedia.org/wiki/Z-machine
2. http://frotz.sourceforge.net/
3. http://www.ifarchive.org/

Chapter 8. Play Games on Your Pi • 86

report erratum • discuss

http://en.wikipedia.org/wiki/Z-machine
http://frotz.sourceforge.net/
http://www.ifarchive.org/
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

day. Meanwhile, they are available for free,4 so download Zork I
5 and start it

as follows:

pi@raspberrypi ~ $ unzip zork1.zip
pi@raspberrypi ~ $ frotz zork1/DATA/ZORK1.DAT

This invokes the Z-machine interpreter and runs the game stored in ZORK1.DAT.
You might need a few moments to get used to this kind of game,6 but it’s

certainly well worth it.

If you enjoy playing interactive fiction, you might also enjoy creating it using

today’s tools. It’s really easy,7 at least on a technical level. You still have to

come up with a compelling and original story, though.

Play Point-and-Click Adventures

Another genre that has always been popular is point-and-click adventures.

In these games, you control the main character using the mouse. You can

make the character move to a certain place on the screen by clicking the

place, and you can perform actions by clicking the action’s name on the

screen. Popular point-and-click adventures are The Secret of Monkey Island,

Day of the Tentacle, and Maniac Mansion.

There has always been a demand for new point-and-click adventures, but

very few have been released over the last several years. The big publishers

didn’t believe in them and preferred to release countless first-person shooters,

such as Call of Duty and Battlefield, instead.

Tim Schafer, one of the creators of The Secret of Monkey Island, got frustrated

by this situation and tried to raise some money on Kickstarter.com to fund

a new point-and-click adventure. He raised more than $3.3 million and proved

that people are still very interested in this genre.

Similar to text adventures, most point-and-click adventures run on a virtual

machine. The most popular one is SCUMM, which stands for Script Creation

Utility for Maniac Mansion.

Originally, it was created by the developers of LucasArts to implement the

game Maniac Mansion, and they have used it to implement many other games

since.

4. http://www.infocom-if.org/downloads/downloads.html
5. http://www.infocom-if.org/downloads/zork1.zip
6. At http://pr-if.org/doc/play-if-card/play-if-card.html, you can find a nice help sheet.

7. http://inform7.com/

report erratum • discuss

Play Point-and-Click Adventures • 87

http://www.infocom-if.org/downloads/downloads.html
http://www.infocom-if.org/downloads/zork1.zip
http://pr-if.org/doc/play-if-card/play-if-card.html
http://inform7.com/
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

The ScummVM8 project implements a virtual machine that interprets SCUMM

games, and it’s available for free. You can install it as follows:

pi@raspberrypi ~ $ sudo apt-get install scummvm
pi@raspberrypi ~ $ sudo apt-get install beneath-a-steel-sky
pi@raspberrypi ~ $ sudo apt-get install flight-of-the-amazon-queen

This will install not only ScummVM, but also two great games you can play

with it. These games will appear in the Games section of your desktop’s Start

menu. In the following figure, you can see Beneath a Steel Sky.

Figure 42—Beneath a Steel Sky is still a great game.

Beneath a Steel Sky and Flight of the Amazon Queen are freeware, so you can

safely install them. Most other games aren’t available for free, so you’re allowed

to install them only if you own the original. If you own other games that are

compatible with ScummVM, you can start ScummVM directly and add them.

Emulate Other Platforms

Another way to play some fine games on the Pi is to emulate other platforms.

Many emulators are available for Linux, and they reanimate classic computers

and game consoles, such as the Commodore 64, the Sega Mega Drive, the

Nintendo Entertainment System (NES), and many more. There’s probably at

least one emulator for every single system from the past.

8. http://www.scummvm.org/

Chapter 8. Play Games on Your Pi • 88

report erratum • discuss

http://www.scummvm.org/
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

An emulator rebuilds the hardware of a certain computer or game console in

software. So, you run the emulator on the Pi, and then you can work with

the emulated system as if you’re using the original hardware. Most

importantly, you can run all the old software and games that were available

for the old system.

Emulating a complete computer is extremely difficult even for simple systems,

and most emulators suffer from two major problems. The first is accuracy;

often an emulator can’t emulate the original system at 100 percent. The second

problem is performance, because emulating even very old and slow hardware

requires a tremendous amount of resources. For example, the Commodore

64 ran at a clock speed of only 1MHz, but you need a lot of computing power

to emulate it. Even the Pi’s hardware isn’t powerful enough to emulate the

C64 at a reasonable frame rate at the moment, although it has a multiple of

the C64’s resources. This might change with better graphics drivers for the

Pi.

Still, the Pi is powerful enough to emulate some cool game consoles, and one

of them is the Atari VCS 2600.9 This device was popular from 1977 until the

early 1990s, and you could play great games such as Pac-Man, Centipede,

and Pitfall on it. The console was so popular that several emulators exist for

it, and one of the best is Stella.10 You can install and start it as follows:

pi@raspberrypi ~ $ sudo apt-get install stella
pi@raspberrypi ~ $ stella

First Stella asks you where it should look for game ROMs. The games for the

VCS 2600 shipped on cartridges containing a few kilobytes of read-only

memory (ROM). To play a game using Stella, you need a copy of its cartridge’s

ROM. You can copy the content of a cartridge to your PC using a special

device. Fortunately, you can find ROM files for all games on the Web,11 but

there’s one big problem: although most games for the VCS 2600 are very old,

they are still copyrighted. So in most countries, it’s illegal to download and

use ROM files of games you don’t actually own!

You can buy used cartridges on the Web for very little money, and some

publishers still sell Atari game collections that ship on CDs. These collections

do nothing but run an emulator and play the original ROM files.

9. http://en.wikipedia.org/wiki/Atari_2600
10. http://stella.sourceforge.net/
11. http://atariage.com/

report erratum • discuss

Emulate Other Platforms • 89

http://en.wikipedia.org/wiki/Atari_2600
http://stella.sourceforge.net/
http://atariage.com/
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

The size of a ROM file is usually between 4KB and 8KB, and the filenames

end with the extension .bin. So, Pac-Man’s ROM file is named pacman.bin, for

example. If you’ve copied a ROM file to the Pi, you can select it in Stella’s

main menu, and it will start immediately. By default, you can use the cursor

keys for movements and the spacebar for actions. Stella allows you to remap

all keys, and it also has support for joysticks. On top of that, you can change

countless video and audio options, but note that the Pi won’t emulate the

VCS 2600 properly in the most demanding video modes.

Playing some classic games might bring back childhood memories, but the

VCS 2600 has an incredibly active user group that still creates games.12 Many

of these home-brew titles actually look and sound better than most of the

original games, and they’re usually available for free. In the following figure,

you can see A-VCS-tec Challenge, for example.13 Some of these home-brew

games are available on cartridges even today.

Figure 43—People still create great games for the VCS 2600.

By the way, developing games or demos for the VCS 2600 is very difficult,

but you can learn a lot, and it can be fun! Most people can’t imagine how

limited the hardware was. It ran at a clock speed of 1.19MHz, it had only 128

bytes of RAM, and it had no frame buffer for the video display. Developing

software for this machine was really painful back in the old days, but today’s

tools and documentation make it much easier. For example, Stella comes

12. http://en.wikipedia.org/wiki/Atari_2600_homebrew
13. http://www.quernhorst.de/atari/ac.html

Chapter 8. Play Games on Your Pi • 90

report erratum • discuss

http://en.wikipedia.org/wiki/Atari_2600_homebrew
http://www.quernhorst.de/atari/ac.html
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

with a debugger that allows you to see and change the state of a game while

it’s running. To enable the debugger, start Stella like this:

pi@raspberrypi ~ $ stella -debug

To invoke the debugger, press the backquote key (`), and remember that you

can freely remap Stella’s actions to other keys if you can’t find them on your

keyboard. In the following figure, you can see the debugger in action.

Figure 44—Stella comes with a powerful debugger.

All in all, Stella works pretty well on the Pi, because the VCS 2600 isn’t a very

strong machine. Emulators for other systems don’t work as well at the

moment. The C64 emulator Vice,14 for example, theoretically works on the

Pi, but its frame rate is too low for playing most games. On the other hand,

emulators such as MAME15 work really well for many titles.

Play Native Games

In the preceding sections, you learned about technologies that help you run

games using virtual machines and emulators, but native games also exist for

14. http://vice-emu.sourceforge.net/
15. http://mamedev.org/

report erratum • discuss

Play Native Games • 91

http://vice-emu.sourceforge.net/
http://mamedev.org/
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

Linux. For example, on the LXDE desktop, you can find a compilation of some

classic games written in Python: Four in a Row, Snake, and so on.

Because the Pi is a regular Linux system, you can run every game compatible

with your current distribution as long as the Pi’s resources are sufficient. If

you search the Web for classic games, such as Tetris or Pac-Man, you’ll

quickly find really good clones.

pi@raspberrypi ~ $ sudo apt-get install ltris pacman

It’s worth trying to install all the games you find, but many are too demanding

for the Pi. Surprisingly, the Pi is capable of running Quake II and Quake III

(two famous first-person shooters) at a decent frame rate. As of this writing,

they have some problems with sound output, but they’re still playable.

In addition, you can find cool games in the Pi Store (see Install Software and

Media Using the Pi Store, on page 38). Iridium Rising, for example, is an

exclusive game for the Pi, and it’s very professional.

Finally, Mojang16 has released a special Minecraft edition for the Pi.17 It has

some unique features, and it’s free. So, it’s worth looking for new Pi games.

Next Steps

In this chapter, you learned how to kill some time playing classic games on

the Pi. The Pi might not be an Xbox or a PlayStation, but it runs some enter-

taining games that you won’t find on most modern video game consoles. The

next chapter deals with a completely different topic. You’ll learn how to build

and attach electronics projects to the Pi’s GPIO ports.

16. http://www.mojang.com/
17. http://www.raspberrypi.org/archives/3263

Chapter 8. Play Games on Your Pi • 92

report erratum • discuss

http://www.mojang.com/
http://www.raspberrypi.org/archives/3263
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

CHAPTER 9

Tinker with the GPIO Pins

The Raspberry Foundation built the Pi not only to teach kids how to program,

but also to teach them how to tinker with electronics. That’s why the Pi has

an expansion header that makes it easy to connect it to your own electronics

projects.

In this chapter, you’ll learn how to build your own small electronics devices

and control them with the Pi. We’ll start slowly and build a very basic circuit

that makes a light-emitting diode (LED) shine. After that, we’ll control the

LED using the Pi’s expansion header, and we’ll turn the LED on and off by

issuing commands from the Pi.

Then we’ll build a small memory alarm that shows how much memory is left

on the Pi. It will work like a traffic light, where a red light indicates that the

amount of remaining memory is critically low. In addition, we’ll make the

results of the memory alarm available in a web browser.

What You Need

To build all projects in this chapter, you need only a few cheap parts. (You

can see them all in Figure 45, The parts you need, on page 94.)

• A half-size breadboard

• Three 5mm LEDs (red, yellow, and green)

• Three resistors in the range of 220Ω to 1kΩ

• Four female/male jumper wires

report erratum • discuss

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

Figure 45—The parts you need

You can get these parts at any shop that sells electronic parts—for example,

RadioShack,1 SparkFun,2 Mouser,3 Digi-Key,4 and Adafruit.5 Note that buying

single LEDs, resistors, or jumper wires doesn’t make much sense. You can

get these parts for much cheaper when you buy them as a pack. For example,

RadioShack sells packs of LEDs (catalog number 276-1622) and resistors

(catalog number 271-308). Adafruit has a nice pack of jumper wires (product

ID 826), and it also sells breadboards (product ID 64).

1. http://radioshack.com
2. http://www.sparkfun.com/
3. http://mouser.com
4. http://digikey.com
5. http://adafruit.com

Chapter 9. Tinker with the GPIO Pins • 94

report erratum • discuss

http://radioshack.com
http://www.sparkfun.com/
http://mouser.com
http://digikey.com
http://adafruit.com
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

Meet the Pi’s GPIO Pins

To connect your own electronics projects to the Pi, you can use the expansion

header in the top-left corner of the Pi (see Figure 1, The front side of a Model

B (Revision 1), on page 2). It consists of twenty-six pins arranged in two rows

containing thirteen pins each. The top row contains the even-numbered pins,

and the other row contains the odd-numbered pins. That is, the first pin in

the lower row is pin 1, and you can find the label “P1” on the Pi below the

pin.

In the following figure, you can see the meaning and the numbering of the

pins. Note that the meaning of some pins has changed between revision 1

and revision 2. With the pins labeled Ground, the Pi can share a common

ground with our electronics projects. Using the pins labeled 3v3 and 5V, you

can power external devices connected to the Pi with 3.3 volts or 5 volts. The

Pi limits the output of pin 1 to 50mA, while pin 2 allows for a current draw

that depends on the USB input current. If you power the Pi with a 1A power

supply, for example, you can draw up to 300mA from pin 2, because the Pi

Model B needs 700mA for itself.

Rev 2 5V 5V Ground GPIO14 GPIO15 GPIO18 Ground GPIO23 GPIO24 Ground GPIO25 GPIO8 GPIO7

Rev 1 5V - Ground GPIO14 GPIO15 GPIO18 - GPIO23 GPIO24 - GPIO25 GPIO8 GPIO7

Pin 2 4 6 8 10 12 14 16 18 20 22 24 26

Pin 1 3 5 7 9 11 13 15 17 19 21 23 25

Rev 1 3v3 GPIO0 GPIO1 GPIO4 - GPIO17 GPIO21 GPIO22 - GPIO10 GPIO9 GPIO11 -

Rev 2 3v3 GPIO2 GPIO3 GPIO4 Ground GPIO17 GPIO27 GPIO22 3v3 GPIO10 GPIO9 GPIO11 Ground

Figure 46—The Pi’s GPIO pins

In revision 1, pins 4, 9, 14, 17, 20, and 25 were reserved for future

enhancements, so you couldn’t use them in your own projects. The remaining

pins are general-purpose input/output (GPIO) pins that you can use as digital

input or output pins. Note that the GPIO pin names don’t correspond to the

pin numbers of the expansion header.

You can use the GPIO pins, for example, to read the state of a push button

or to turn an LED on and off. For this chapter’s examples, you can assume

that all GPIO pins work the same, but you should know that some of the Pi’s

pins are special. Pin 12, for example, supports pulse-width modulation (PWM),6

6. http://en.wikipedia.org/wiki/Pulse_width_modulation

report erratum • discuss

Meet the Pi’s GPIO Pins • 95

http://en.wikipedia.org/wiki/Pulse_width_modulation
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

which can be handy for controlling motors. If you’re going to build more

complex projects, you should take a look at a more detailed description of

the Pi’s pins.7

Build a Basic Circuit

To warm up, we’ll build one of the most basic circuits possible. We’ll connect

an LED to the Pi and make it shine as long as the Pi is running. For this we’ll

need an LED, a resistor, a breadboard, and two female/male jumper wires.

Using these parts, we’ll build the circuit shown in the following figure.

Figure 47—A basic circuit

Before we actually build the circuit, you should know what all the parts are

for and how they work. Breadboards are useful tools for prototyping circuits.

You can simply plug in parts such as LEDs and resistors, and you don’t have

to solder them. Breadboards come in various sizes, but they all look very

similar. On all of them, you can find many sockets arranged in columns. Most

breadboards also have two rows of sockets at the top and at the bottom.

The main trick of a breadboard is that it automatically connects the sockets

belonging to a certain column and to a certain row. In the basic circuit shown

in the preceding figure, you connect the Pi’s ground pin to the second-to-last

row of the breadboard. This automatically connects all sockets in this row to

the Pi’s ground (which is why all the sockets in this row are light green). The

same happens in the two columns connected to the LED. The resistor indirectly

7. http://elinux.org/RPi_Low-level_peripherals

Chapter 9. Tinker with the GPIO Pins • 96

report erratum • discuss

http://elinux.org/RPi_Low-level_peripherals
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

connects the Pi’s ground pin to one of the LED’s connectors. In addition, you

connect the Pi’s pin 1 directly to the other connector of the LED by plugging

it into a socket in the same column.

By the way, LED stands for light-emitting diode, so an LED is basically a

diode. Diodes are useful because they let electricity pass in only one direction.

That’s true for LEDs, too, and LEDs emit light as a side effect.

Working with LEDs isn’t very difficult, but we have to take care of a few things.

First, we have to connect them the right way. LEDs have two wires, and one

of them is a bit shorter than the other. The shorter wire is called a cathode

(negative), and we have to connect it to the Pi’s ground pin. The longer wire

is called an anode (positive), and we have to connect it to one of the Pi’s

power supply or GPIO pins. You can also identify the anode and cathode by

taking a close look at the LED’s case. The flat side belongs to the cathode and

the round side to the anode. In Figure 47, A basic circuit, on page 96, the

anode is slightly bent.

Also, you always have to put a resistor in front of an LED. If you don’t, the

LED will consume too much power and will be destroyed. Simply put, a

resistor limits the amount of current that flows through an electric connection

and protects the LED. Calculating the resistor value for a certain type of LED

isn’t difficult, but it’s beyond the scope of this book. Simply keep in mind that

the lower the resistor value, the brighter the light will shine. When in doubt,

use a 330Ω or 470Ω resistor.

Now it’s time to actually build the circuit. First, connect the LED to the

breadboard. Make sure that the LED’s direction is correct, and plug it in. You

have to press firmly but not too hard—otherwise, you’ll bend the connectors,

and they won’t fit. It’s usually easier to plug in parts after you’ve shortened

the connectors. When cutting the connectors, wear safety glasses to protect

your eyes!

The resistor is next, and this time the direction doesn’t matter. Before plugging

in the resistor, you have to bend its connectors. Also, it usually helps to

shorten them.

Finally, connect the two jumper wires to the Pi and to the breadboard. Connect

the female side to the Pi and the male side to the breadboard. Make sure

you’re using the correct pins on the Pi, and then turn on the Pi. If you’ve

connected everything correctly, the LED will turn on, too. Otherwise, take a

look at What If It Doesn't Work?, on page 105.

report erratum • discuss

Build a Basic Circuit • 97

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

Control an LED Using the GPIO Pins

Making an LED shine is a fun exercise, but it gets boring pretty quickly. In

this section, you’ll learn how to control an LED using software—we’ll turn it

on and off by issuing commands on the Pi.

Programming hardware directly is usually a difficult task. Using the WiringPi

project,8 it becomes a piece of cake. WiringPi is an open-source project that

hides the ugly low-level functions behind a nice, clean interface. If you’ve

worked with the popular Arduino project9 before, WiringPi will look very

familiar because it tries to bring most of the Arduino goodies to the Pi.

WiringPi not only makes programming the Pi’s hardware easier, but it also

comes with a small command-line utility named gpio that allows you to control

the hardware without writing code.

You can install WiringPi on the Pi as follows:

pi@raspberry:~$ cd /tmp
pi@raspberry:~$ sudo apt-get install git-core
pi@raspberry:~$ sudo apt-get update
pi@raspberry:~$ sudo apt-get upgrade
pi@raspberry:~$ git clone git://git.drogon.net/wiringPi
pi@raspberry:~$ cd wiringPi
pi@raspberry:~$./build

These commands install the WiringPi libraries and the gpio command. You

can use WiringPi from many programming languages, such as C, C++, Python,

Ruby, and so on. In this chapter, we’ll use it exclusively from the command

line and in a short but effective shell script.

All we need for our first interactive electronics experiments is the gpio com-

mand. It supports many useful options and a lot of powerful commands. The

most important ones are mode, read, and write. For example, the following

command sets the GPIO18 pin into output mode:

pi@raspberry:~$ gpio -g mode 18 out

All GPIO pins can be in one of the following modes in, out, pwm, up, down, or tri.
We’re only interested in in and out at the moment. To read digital signals from

a GPIO pin, set its mode to in. Set it to out if you’d like to emit digital signals.

You have to set a pin’s mode only once, and the pin will remember its mode

until you set it to a different one.

8. http://wiringpi.com/
9. http://arduino.cc

Chapter 9. Tinker with the GPIO Pins • 98

report erratum • discuss

http://wiringpi.com/
http://arduino.cc
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

After you’ve set GPIO18’s mode to out, you can turn it on like this:

pi@raspberry:~$ gpio -g write 18 1

Turning it off works similarly:

pi@raspberry:~$ gpio -g write 18 0

Finally, you can read GPIO18’s current state using the read command:

pi@raspberry:~$ gpio -g read 18
0

This command returns 0 if there’s currently no signal and 1 otherwise.

With gpio, we can control the LED on our breadboard easily. You have to

connect it to only one of the Pi’s GPIO pins instead of connecting it directly

to a power-supply pin. For example, you can use GPIO18, which is pin 12 in

Figure 46, The Pi's GPIO pins, on page 95. Choosing and addressing the correct

pins can be a bit confusing because of the different naming and numbering

schemes. By default, WiringPi uses its own numbering scheme,10 but for our

first experiments we’ll use the official GPIO pin names. Fortunately, gpio
accepts them when you pass it the -g option.

So, in the circuit, disconnect the jumper wire from pin 1 and connect it to

pin 12 instead. Then run the following commands:

pi@raspberry:~$ gpio -g mode 18 out
pi@raspberry:~$ gpio -g write 18 1

These commands will turn on the LED, and the following command will turn

it off:

pi@raspberry:~$ gpio -g write 18 0

gpio supports many more commands and options, and it really pays to read

its manual page. For example, with the readall command, you can look at the

current state of all the Pi’s GPIO pins (see Figure 48, Results of the readall

command, on page 100).

With only a few parts and a single command-line tool, we’ve created our first

circuit. Even better, we can control it with the Raspberry Pi! In the next sec-

tion, we’ll create a more complex project using the techniques we’ve discussed

so far.

10. https://projects.drogon.net/raspberry-pi/wiringpi/pins/

report erratum • discuss

Control an LED Using the GPIO Pins • 99

https://projects.drogon.net/raspberry-pi/wiringpi/pins/
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

pi@raspberry:~$ gpio readall
+----------+------+--------+-------+
| wiringPi | GPIO | Name | Value |
+----------+------+--------+-------+
0	17	GPIO 0	Low
1	18	GPIO 1	Low
2	27	GPIO 2	Low
3	22	GPIO 3	Low
4	23	GPIO 4	Low
5	24	GPIO 5	Low
6	25	GPIO 6	Low
7	4	GPIO 7	Low
8	2	SDA	High
9	3	SCL	High
10	8	CE0	Low
11	7	CE1	Low
12	10	MOSI	Low
13	9	MISO	Low
14	11	SCLK	Low
15	14	TxD	High
16	15	RxD	High
+----------+------+--------+-------+			
17	28	GPIO 8	Low
18	29	GPIO 9	Low
19	30	GPIO10	Low
20	31	GPIO11	Low
+----------+------+--------+-------+

Figure 48—Results of the readall command

Build an Out-of-Memory Alarm

Turning an LED on and off using software is an important exercise, but it’s

certainly not a very useful project. Usually, you won’t control LEDs manually,

but you’ll use them as status indicators. For example, many USB devices use

LEDs to show whether they’re reading or writing data at the moment.

In this section, we’ll use three LEDs as status indicators for the Pi’s current

memory usage. The LEDs will have the same colors as a traffic light. If the

Pi’s memory is critically low, we’ll turn on the red light. If a lot of memory is

available, we’ll turn on the green light. Otherwise, it will be yellow.

In Figure 49, Memory alarm circuit diagram, on page 101, you can see the circuit

of the memory alarm. In Figure 50, The memory alarm circuit, on page 101,

you can see it in real life. It’s very similar to the last circuit we built. We have

to copy the original LED circuit only two times to control three LEDs.

Chapter 9. Tinker with the GPIO Pins • 100

report erratum • discuss

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

Figure 49—Memory alarm circuit diagram

Figure 50—The memory alarm circuit

report erratum • discuss

Build an Out-of-Memory Alarm • 101

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

To make the circuit do something useful, we have to write some software. We

could choose from a broad range of programming languages, but thanks to

the gpio command, we can implement the project’s software with a simple

shell script. The following statements define some constants and functions.

Also, they perform some initializations.

gpio/memwatch.sh

Line 1 #!/bin/bash
- green=18
- yellow=23
- red=24
5

- init_leds()
{-

-

done

for i in $green $yellow $red
do-

gpio -g mode $i out10

gpio -g write $i 0-

-

}-

-

15 set_led()
{-

- led_status=`gpio -g read $1`
-

then
if ["$led_status" -ne 1]

-

init_leds20

gpio -g write $1 1-

fi-

}-

-

25 cleanup()
{-

- init_leds
- exit 0
}-

30

-

trap cleanup INT TERM EXIT
init_leds

-

The first three lines define constants for the GPIO pins to which we’ve con-

nected the LEDs. Note that the numbers in the constants refer to the pin

names GPIO18, GPIO23, and GPIO24. They don’t refer to the expansion

header’s pin numbers 12, 16, and 18.

The init_leds() function in line 6 sets the mode of all three LEDs to output and

turns them off. The set_led() function turns on a certain LED and turns off the

other ones. Before turning on the LED, it checks whether the LED is already

Chapter 9. Tinker with the GPIO Pins • 102

report erratum • discuss

http://media.pragprog.com/titles/msraspi2/code/gpio/memwatch.sh
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

on. This ensures that the LED doesn’t flicker in case the current status hasn’t

changed. Finally, the cleanup() function turns off all LEDs and exits the program.

To initialize the program, we have to call init_leds(). To make sure that the

program cleans up before it stops, we can use the trap command in line 32.

This command binds the cleanup() method to the most common exit signals,

so if we terminate the script, it will call cleanup() before it shuts down.

Now that we’ve initialized everything properly, we can write the alarm’s busi-

ness logic. Therefore, we need to find a way to determine the Pi’s current

memory status, and the free command is the perfect solution to this problem.

pi@raspberry:~$ free
total used free shared buffers cached

Mem: 190836 40232 150604 0 6252 21068
-/+ buffers/cache: 12912 177924
Swap: 0 0 0

To calculate the percentage of memory available, we have to cut out the

amount of total memory and the amount of free memory from the free com-

mand’s output. After that, we have to turn on the correct LED depending on

the percentage value. Here’s how to do this:

gpio/memwatch.sh

Line 1 while :
do-

- total=`free | grep Mem | tr -s ' ' | cut -d ' ' -f 2`
- free=`free | grep Mem | tr -s ' ' | cut -d ' ' -f 4`
5 available=$((free * 100 / total))
- echo -n "$available% of memory available -> "
-

- if ["$available" -le 10]
- then

echo "Critical"10

set_led $red-

- elif ["$available" -le 30]
- then

echo "Low"-

set_led $yellow15

- else
echo "OK"-

set_led $green-

fi-

20

done
sleep 10

-

The memory monitor should permanently check the current memory status

so the whole logic runs in an endless loop. Lines 3 to 5 calculate the percent-

age of memory available by calling the free command two times and cutting

report erratum • discuss

Build an Out-of-Memory Alarm • 103

http://media.pragprog.com/titles/msraspi2/code/gpio/memwatch.sh
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

out the relevant information. Note that this solution has a potential flaw. If

the current memory usage changes significantly between the two calls to free,
we’ll get bad results. This isn’t very likely, but it might happen, so for a pro-

duction system we’d have to find a more sophisticated way to determine the

current memory usage. For a prototype, it’s sufficient.

The following lines compare the memory available to a few threshold values.

If the available memory is less than or equal to 10 percent of the total memory,

the program turns on the red LED. If it’s between 10 and 30 percent, it turns

on the yellow LED. Otherwise, the green LED will shine. Finally, the program

goes to sleep for 10 seconds, so it doesn’t waste a lot of CPU time.

Now type in the shell script or download it by clicking the filename above the

code, and copy it to the Pi. The following statement will make the script

executable:

pi@raspberry:~$ chmod a+x memwatch.sh

Then you can start it as follows:

pi@raspberry:~$./memwatch.sh
78% of memory available -> OK

To test the out-of-memory alarm, start the LXDE desktop environment and

run the script in a terminal. Then open a few applications and see how the

amount of available memory shrinks.

Display the GPIO Status in a Browser

In Chapter 6, Networking with the Pi, on page 53, you learned how to set up

a web server and PHP5 on the Pi. Now we can use this web server to display

the Pi’s current memory usage in a web browser. Copy the following PHP

program to your Pi’s /var/www directory:

gpio/memwatch.php

<?php
function led_is_on($number) {

$status = trim(@shell_exec("/usr/local/bin/gpio -g read " . $number));
if ($status == "0") {

return False;
} else {

return True;
}

}
$green = 18;
$yellow = 23;
$red = 24;
echo "<h1>Memory Usage is ";

Chapter 9. Tinker with the GPIO Pins • 104

report erratum • discuss

http://media.pragprog.com/titles/msraspi2/code/gpio/memwatch.php
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

if (led_is_on($green)) {
echo "OK";

}
elseif (led_is_on($yellow)) {

echo "Low";
}
elseif (led_is_on($red)) {

echo "Critical";
}
else {

echo "Unknown";
}
echo ".</h1>";

?>

Start the memwatch.sh script and then point your browser to the memwatch.php
file. If the Pi’s IP address is 192.168.2.109, for example, we have to use the

URL http://192.168.2.109/memwatch.php. The browser will display a short

message explaining the current memory situation on the Pi.

Even if you’ve never used PHP before, you should be able to understand what

the program does. In the led_is_on() function, it calls the gpio command and

reads the current status of a GPIO pin. If the pin is currently on, the function

returns True; otherwise, it returns False. After that, the program checks which

of the LEDs is on and emits a corresponding message.

As you’ve seen, it’s easy to make the status of an electronics device available

in your network. Of course, you can make this page more colorful and turn

it into a real traffic-light display, but that is beyond the scope of this book.

What If It Doesn’t Work?

Building your own electronics devices isn’t rocket science, but it’s not

extremely simple, either. If you’ve never worked with a breadboard, LEDs,

and resistors before, many things can and will go wrong. Even if you have a

lot of experience, you’ll still make mistakes.

If something doesn’t work as expected, don’t panic! Usually, the cause of the

problem is very simple. The first thing you should check is whether you’ve

connected all parts to the correct pins. Then you should check the direction

of the LEDs. Also, make sure that all parts fit correctly into place. Plugging

parts into breadboards can be tricky, especially when the breadboard is new.

Don’t forget to plug in the power supply, and don’t proceed with your project

until you have the simplest version working.

report erratum • discuss

What If It Doesn’t Work? • 105

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

Next Steps

In this chapter, you learned how to build your own electronics projects and

control them with the Raspberry Pi. Even though you used only a few cheap

parts, you could actually build something fun and useful.

The next chapter will show you how to do even more exciting stuff. You’ll

connect digital and analog sensors to the Pi, so you can detect motion and

measure the current temperature, for example.

Chapter 9. Tinker with the GPIO Pins • 106

report erratum • discuss

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

CHAPTER 10

Working with Digital and Analog Sensors

Sensors are everywhere today, and many of them have become so ubiquitous

that often you don’t even notice them. When entering a grocery store, you

expect the doors to open automatically. Using temperature sensors, your car

automatically turns on the heat to defrost the side mirrors. Distance sensors

help you to navigate even the tiniest parking spots.

Of course, you can also find plenty of sensors in your tablet PC and in your

smartphone. For example, acceleration sensors turn the screen to landscape

or portrait mode automatically; you can also use them for controlling video

games.

Attaching sensors to a PC usually isn’t so easy. Fortunately, the Pi is

different—you can connect it to many intelligent sensors with little effort,

although it’s still not as easy as using sensors with a microcontroller board,

such as the Arduino. In this chapter, you’ll learn how to enhance your Pi with

both digital and analog sensors.

What You Need

To build all the projects in this chapter, you need the parts you see in Figure

51, The parts you need, on page 108.

• A half-size breadboard

• A PIR sensor

• A TMP36 temperature sensor

• An MCP3008-I/P analog-to-digital converter

• Six female/male jumper wires

• Some wires

You already learned where you can get a breadboard and wires in What You

Need, on page 93. Most of the vendors mentioned there also sell the two

report erratum • discuss

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

Figure 51—The parts you need

sensors and the MCP3008 chip. For example, Adafruit sells a PIR sensor

(product ID 189), the TMP36 (product ID 165), and the MCP3008 (product

ID 856). If you prefer the Parallax PIR sensor, make sure you’re using Rev A.1

The new version (Rev B) is a bit better, but its output voltage might be too

high for the Pi. Also, Rev A costs less than five dollars at the moment and is

sufficient for most purposes.

Make sure you buy the correct version of the MCP3008 chip, because they’re

available with different cases. You need the MCP3008-I/P (16 pins), because

you can use it with a breadboard.

WARNING! Never attach a sensor that outputs more than 3.3V directly to the Pi.

It will damage your Pi! Be very careful when buying new parts for the Pi.

1. Search for product number 910-28027 at http://www.parallax.com/

Chapter 10. Working with Digital and Analog Sensors • 108

report erratum • discuss

http://www.parallax.com/
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

Detect Motion with the Pi

Chances are good that you benefit from motion detectors several times a week

or even several times a day. They might turn on the lights automatically at

dark, or perhaps they turn on the lights when you enter the restroom at work.

In this section, you’ll learn how these detectors work, and you’ll learn how to

turn the Pi into a motion detector.

Connect the PIR Sensor to the Pi

Many motion detectors use passive infrared (PIR) sensors.2 A PIR sensor

permanently measures infrared light and notices whenever something in the

infrared spectrum changes. This is all you need to detect motion, because

nearly every object emits infrared light. That’s true for everything in front of

your house: the ground, a bicycle, a garbage can, and so on. All of these

things emit a fairly constant portion of infrared light, and it doesn’t change

rapidly. But if a human being or an animal approaches your front door, the

sensor will notice a big variation and fire a signal.

The innards of PIR sensors are rather complex, but using them is easy. In

the following figure, you can see the Parallax PIR sensor (Rev A) that we’ll use

in this section’s examples. The sensor has a jumper you can use for changing

its behavior. Make sure it’s in position H; that is, the jumper covers the pin

next to the H.3

Figure 52—Top and bottom of a passive infrared sensor

2. http://en.wikipedia.org/wiki/Passive_infrared_sensor
3. At http://www.ladyada.net/learn/sensors/pir.html, you’ll find an excellent tutorial explaining all

the sensor’s details.

report erratum • discuss

Detect Motion with the Pi • 109

http://en.wikipedia.org/wiki/Passive_infrared_sensor
http://www.ladyada.net/learn/sensors/pir.html
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

Also, the sensor has three pins that you need to connect to the Pi using

female/male jumper wires. In the following figure, you can see how. Connect

the Pi’s 5V pin to the sensor’s power pin and the Pi’s ground pin to the sensor’s

ground pin. Finally, connect the sensor’s signal pin to pin GPIO23 on the Pi.

Usually, the pins on the sensor are labeled. When in doubt, look at the sensor’s

data sheet.

Figure 53—The PIR circuit

All digital PIR sensors work more or less the same way. As long as they don’t

detect motion, they don’t output any current on their signal pin. When they

detect motion, they output a high signal—that is, a certain current that you

can usually look up in the sensor’s data sheet.

WARNING AGAIN! Never attach a sensor that outputs more than 3.3V

directly to the Pi. It will damage your Pi!

Control a PIR Sensor

Now that the wiring is finished, we have to control the sensor using some

software. For many programming tasks on the Pi, the Python programming

Chapter 10. Working with Digital and Analog Sensors • 110

report erratum • discuss

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

language4 is a good choice. It’s easy to learn, and the RPi library5 has many

convenient functions for controlling the Pi’s GPIO pins. Raspbian already

comes with Python, but you have to install RPi:

pi@raspberry:~$ sudo apt-get update
pi@raspberry:~$ sudo apt-get install python-dev python-rpi.gpio

That’s all the preparation we need, and now we can define a new Python class

for working with a PIR sensor:

Sensors/pir.py

Line 1 import RPi.GPIO as GPIO
2 class PassiveInfraredSensor:
3 def __init__(self, pin):

self.pin = pin4

GPIO.setmode(GPIO.BCM)5

GPIO.setup(self.pin, GPIO.IN)6

7

8 def motion_detected(self):
return GPIO.input(self.pin)9

Even if you’ve never worked with Python before, you should be able to

understand most of the code. Before we dissect the code line by line, you

should know that Python treats whitespace differently from most other pro-

gramming languages. Instead of creating code blocks using curly braces ({ })

or keywords such as begin and end, Python uses indentation. It doesn’t matter

whether you use spaces or tabs to indent a block of code, but you have to be

consistent. That is, if you’ve indented the first line of a block using four spaces,

you have to indent the next line using four spaces, too.

In the first line we import RPi’s GPIO functions, so we can use them in our

own code. Then we define a new class named PassiveInfraredSensor. Whenever

we create a new PassiveInfraredSensor object, Python will call the _ _init_ _() function.

This function expects two arguments: the newly created object (self) and the

number of the pin to which we’ve connected the sensor (pin). Python will ini-

tialize the first argument automatically.

In line 4, we store the pin number in the current object, and after that we set

the numbering scheme for the pins using the GPIO.setmode() function. We pass

it the value GPIO.BCM, so the RPi library interprets pin numbers using the

Broadcom definition. (See the top and bottom rows in Figure 46, The Pi's GPIO

pins, on page 95.) In our case, the pin number is 23 because we have

connected the sensor’s signal pin to pin GPIO23 on the Pi.

4. http://www.python.org/
5. http://code.google.com/p/raspberry-gpio-python/

report erratum • discuss

Detect Motion with the Pi • 111

http://media.pragprog.com/titles/msraspi2/code/Sensors/pir.py
http://www.python.org/
http://code.google.com/p/raspberry-gpio-python/
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

Alternatively, we can set the mode to GPIO.BOARD. In this case, RPi interprets

pin numbers as they are defined on the Raspberry Pi board, and we’d have

to use 16 instead with our current setup. (See the two rows in Figure 46, The

Pi's GPIO pins, on page 95, beginning with Pin.) Finally, we turn the pin to

which the sensor is connected into an input pin by calling GPIO.setup() in line 6.

Then we define a method named motion_detected(). It calls GPIO.input(), passing it

our signal pin number. Depending on the method call’s result, it returns True
if the sensor has detected a motion and False otherwise. Again, Python sets

the self argument automatically for us.

Our PassiveInfraredSensor class is complete now, so let’s use it to build a motion

detector. The following program periodically checks whether the PIR sensor

has detected motion. It prints a message if someone moves, and it also prints

a message if nobody has moved for more than two seconds.

Sensors/pir_demo.py

Line 1 from pir import *
- import time
-

- PIR_PIN = 23
5 pir = PassiveInfraredSensor(PIR_PIN)
-

- last_state = False
- while True:

if (pir.motion_detected() == True):-

if (last_state == False):10

print "Movement detected"-

last_state = True-

else:-

if (last_state == True):-

print "No movement detected"15

time.sleep(2)-

last_state = False;-

In the first two lines, we import the PassiveInfraredSensor class and Python’s

functions for manipulating dates and times. Then we define a constant named

PIR_PIN and set it to the number of our signal pin. We use the constant in the

following line when we create a new PassiveInfraredSensor object for the first time.

The detection algorithm starts in line 7. We store the last state of the PIR

sensor in a variable named last_state. Then we start an endless loop and check

to see whether the PIR sensor has currently detected a motion. If yes, we

check whether this is a new motion or whether we have detected it before. If

it is new, we print the message “Movement detected.”

Chapter 10. Working with Digital and Analog Sensors • 112

report erratum • discuss

http://media.pragprog.com/titles/msraspi2/code/Sensors/pir_demo.py
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

If the PIR sensor hasn’t detected a motion, we check whether it has previously

detected a motion. If it has, we print the message “No movement detected”

and wait for two seconds until we start again. Overall, we make sure that we

print a message only if the state has actually changed. This prevents our

motion detector from looking a bit nervous.

Now run the program, move a little in front of the PIR sensor, and stand still

from time to time.

pi@raspberry:~$ sudo python pir_demo.py
Movement detected
No movement detected

That’s all you need to turn the Pi into a motion detector. Printing a message

isn’t very spectacular, but you can easily improve the program so that it sends

an email or switches on a light. That way, you could turn your Pi into a burglar

alarm or make it the basis of a home-automation system.

Attaching most digital sensors to the Pi is easy as long as their output voltage

matches the Pi’s specifications and as long as they don’t depend on an accu-

rate timing. Working with analog sensors can be more complicated, but in

the next section you’ll see that it isn’t rocket science, either.

Measure Temperature with the Pi

Digital sensors have many applications and are easy to use, but in many

cases analog sensors have some advantages. For example, most processes in

nature are analog, so analog sensors are a better fit for measuring phenomena

such as temperature or acceleration.

Analog sensors usually measure a certain parameter and output a voltage

that corresponds to the size of their current input signal. For example, a

temperature sensor such as the TMP36 outputs a higher voltage for higher

temperatures and a lower voltage for lower temperatures.

Although this sounds reasonable and easy, we still have a problem: digital

computers like the Raspberry Pi don’t understand analog voltage signals.

They can only interpret digital signals—that is, HIGH or LOW current.

Microcontroller boards such as the Arduino have native support for analog

signals because they have an analog-to-digital converter (A/D) that takes a

voltage signal and turns it into a binary number. To achieve the same with

the Raspberry Pi, we need to attach an A/D to the Pi.

report erratum • discuss

Measure Temperature with the Pi • 113

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

Meet the MCP3008

The MCP30086 is an A/D that works great with the Pi. It’s cheap, it’s easy to

use, and it can read up to eight analog signals at the same time. Its output

resolution is 10 bits; that is, it returns numbers in the range of 0 to 1023

corresponding to the voltage signal emitted by an analog sensor. You can see

the MCP3008’s pins in the following figure.

M
C

P
3

0
0

8

CH0

CH1

CH2

CH3

CH4

CH5

CH6

CH7

VDD

VREF

AGND

CLK

DOUT

DIN

CS / SHDN

DGND

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

Figure 54—The pin layout of an MCP3008 A/D

You can use pins 1 to 8 on the left side to connect up to eight analog sensors.

Half the pins on the right side are needed for the power supply and ground

(VDD, VREF, AGND, and DGND). With the remaining four pins (CLK, DOUT,

DIN, and CS), you can read the current voltage signal as a digital number.

The MCP3008 has a resolution of 10 bits, so you might be wondering how

it’s possible to transfer 10 bits using only four digital pins. You might expect

the chip to have ten pins for emitting the value of the current analog signal.

In theory that’s a good idea, but adding ten pins would be wasteful. Not only

would the MCP3008 need more pins, but the Pi would need more pins, too.

That’s why the MCP3008 does something more sophisticated to output its

readings. It implements the Serial Peripheral Interface (SPI).7 SPI allows you

to create a synchronous serial link between a master and several slaves. The

master and slaves communicate via a serial bus; in our case, the Pi is the

master and the MCP3008 is the slave. Whenever the Pi wants to read an

analog signal, it sends a message to the MCP3008 and gets back a response.

To establish an SPI bus between two devices, you need four wires.

6. http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en010530
7. http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus

Chapter 10. Working with Digital and Analog Sensors • 114

report erratum • discuss

http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en010530
http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

In the following figure, you can see how to connect the Pi to the MCP3008 so

they can communicate using SPI. (Don’t worry! You’ll see the rest of the wiring

next.)

SCLK

MOSI

MISO

SS (CE0)

Raspberry Pi (Master)

SCLK (CLK)

MOSI (DIN)

MISO (DOUT)

SS (CS)

MCP3008 (Slave)

Figure 55—This is how you connect two SPI devices.

Note that SPI isn’t a very strict specification, so different vendors use different

labels for their pins. With the SCLK line, the master and the slave synchronize

their work using a common clock signal. The MOSI (Master Out, Slave In)

line is for sending data from the master to the slave, while MISO (Master In,

Slave Out) is for transferring data back from the slave to the master. Using

the SS line (Slave Select), the master selects the slave it wants to do some

work.

Implementing SPI communication in software isn’t difficult, but the Pi’s

hardware supports it out of the box. The same is true for Raspbian. In the

next section, you’ll learn how to enable it.

Enable SPI on the Pi

By default, Raspbian doesn’t enable SPI, so you need to either enable it using

raspi-config (see Enable the SPI Kernel Module, on page 30) or adjust a few con-

figuration files. If you’re working with a recent version of Raspbian, you’ll find

an option named SPI in raspi-config’s Advanced Options menu. Choose this

option, enable SPI, and you’re finished.

If you’re working with an older release or prefer to enable SPI manually, you’ll

need to remove SPI from the module blacklist by editing /etc/modprobe.d/raspi-
blacklist.conf:

pi@raspberry:~$ sudo nano /etc/modprobe.d/raspi-blacklist.conf

As of this writing, this file contains only two lines for disabling SPI and I2C.

It probably looks like this:

report erratum • discuss

Measure Temperature with the Pi • 115

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

blacklist spi-bcm2708
blacklist i2c-bcm2708

To remove SPI support from the blacklist, you need to comment out the cor-

responding line so the file looks like this:

#blacklist spi-bcm2708
blacklist i2c-bcm2708

Alternatively, you can delete the line. Save the file and then add the SPI

module to the list of modules the Pi loads automatically when it starts:

pi@raspberry:~$ sudo nano /etc/modules

Add a new line containing only the word spidev and save the file. Then reboot

the Pi:

pi@raspberry:~$ sudo reboot

Now your Pi should support two SPI devices. You can look them up using the

following command:

pi@raspberry:~$ ls /dev/spidev*
/dev/spidev0.0 /dev/spidev0.1

In the next section, we’ll bring one of these devices to life by connecting an

MCP3008 and a temperature sensor to the Pi.

Wire It All Up

Now that we know how SPI works in principle, we need to connect the Pi to

the MCP3008, and the MCP3008 to the TMP36 temperature sensor. In Figure

56, The TMP36 circuit, on page 117, you can see how to do this.

We need to connect the Pi’s power and ground pins to a couple of places on

the breadboard. So, we connect them to the two rows at the left of the

breadboard. From there, we can easily distribute power and ground to other

places using short wires.

Next we plug in the MCP3008 chip; we have to make sure it has the right

orientation. Chips have a U notch at the top, and the MCP3008 is no

exception. Pin 1 is to the left of the U notch. Gently plug it into the breadboard.

You’ll have to press firmly after you get them all lined up, but first double-

check to ensure that all pins fit into their holes. Use a small screwdriver as

a lever if you need to remove the chip.

Also, be very careful when wiring the MCP3008 to the Pi. Table 1, Pin mapping

for connecting the Pi to the MCP3008, on page 117 explains in detail how to

connect the Pi’s GPIO pins to the MCP3008.

Chapter 10. Working with Digital and Analog Sensors • 116

report erratum • discuss

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

Figure 56—The TMP36 circuit

MCP3008 PinRaspberry Pi Pin

16 (VDD)1 (3.3V)

15 (VREF)1 (3.3V)

14 (AGND)6 (GND)

9 (DGND)6 (GND)

13 (CLK)23 (SCLK)

12 (DOUT)21 (MISO)

11 (DIN)19 (MOSI)

10 (CS)24 (CE0)

Table 1—Pin mapping for connecting the Pi to the MCP3008

Connecting the TMP36 sensor is easy because it has only three pins. Plug

the sensor into the breadboard and make sure it has the correct orientation.

Connect the sensor’s power pin to the Pi’s 3.3V pin and its ground pin to the

Pi’s ground. Then connect the TMP36’s signal pin to pin 1 (CH0) of the

MCP3008.

So, the wiring is finished. Now we need to write some software so that we can

finally find out what the temperature is.

report erratum • discuss

Measure Temperature with the Pi • 117

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

Control the MCP3008

The MCP3008 is an SPI device, so we need to find a way to communicate with

it using the Pi’s SPI hardware. Fortunately, several people have already done

this. py-spidev8 is a small library that provides everything we need. Install it

as follows:

pi@raspberry:~$ sudo apt-get install python-dev python-rpi.gpio
pi@raspberry:~$ git clone git://github.com/doceme/py-spidev
pi@raspberry:~$ cd py-spidev
pi@raspberry:~$ sudo python setup.py install

The following is all we need to implement an MCP3008 class using Python:

Sensors/mcp3008.py

Line 1 import spidev
-

- class MCP3008:
- def __init__(self, bus = 0, client = 0):

self.spi = spidev.SpiDev()5

self.spi.open(bus, client)-

-

- def analog_read(self, channel):
if (channel < 0 or channel > 7):-

return -110

result = self.spi.xfer2([1, (8 + channel) << 4, 0])-

- return ((result[1] & 3) << 8) + result[2]

It’s just a short class, but it needs some explanation. In the first line we import

the spidev library we installed before. Then we define a class named MCP3008.
As before, in the PassiveInfrared class, we define a method named _ _init_ _() that

will be called whenever we create a new MCP3008 object. _ _init_ _() expects three

parameters: the newly created instance (self), the number of the SPI bus to

be used (bus), and the number of the client (slave) we’d like to talk to (client).
In line 5, we create a new SpiDev object, and we open a connection to the device

in the following line.

So far we’ve only established a communication channel to an SPI device; that

is, what we do in the _ _init_ _() method isn’t specific to the MCP3008. It would

be the same for every other SPI device. The specific parts happen in analog_read().
This method takes a port number and returns the current reading of the

analog sensor that has been connected to the port. We check whether the

port number is between 0 and 7, and if it’s not we return –1.

8. https://github.com/doceme/py-spidev

Chapter 10. Working with Digital and Analog Sensors • 118

report erratum • discuss

http://media.pragprog.com/titles/msraspi2/code/Sensors/mcp3008.py
https://github.com/doceme/py-spidev
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

In line 11, we send a message to the MCP3008 using the xfer2() method of our

SpiDev object. xfer2() expects an array of bytes and sends it using the SPI

protocol. In our case we need to send 3 bytes, and you might be wondering

what their meaning is. You can find the answer in Chapters 5 and 6 of the

MCP3008’s data sheet.9 The data sheet explains in detail what data the

MCP3008 expects and what data it sends back. The structure of the input

message looks like this:

0 0 0 0 0 0 0 1 1 D2 D2 D0 x x x x x x x x x x x x

Most of the bits in these 3 bytes have a constant value. Only the 3 bits named

D0, D1, and D2 may vary, and they contain the number of the channel you’d

like to read. So the first byte is always 1, the last byte is always 0, and the

second byte contains a slightly shifted version of the channel number. We

set all bits marked with an x to 0.

The MCP3008’s response message consists of 3 bytes, too. Their meaning is:

? ? ? ? ? ? ? ? ? ? ? ? ? 0 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0

Only the lower 10 bits are interesting; ignore the rest. Line 12 extracts the

interesting bits and returns them as a single number.

With the MCP3008 class, it’s easy to read the current temperature:

Sensors/tmp36_demo.py

Line 1 from mcp3008 import *
- import time
-

- mcp = MCP3008()
5 TMP36_CHANNEL = 0
-

- while True:
- analog_value = mcp.analog_read(TMP36_CHANNEL)
- voltage = 3.3 * analog_value / 1024

10 temperature_c = (voltage * 1000 - 500) / 10
- temperature_f = 9.0 / 5.0 * temperature_c + 32.0
-

time.sleep(1)
print "Temperature: %.1fC (%.1fF)" % (temperature_c, temperature_f)

-

After importing the MCP3008 class and Python’s time functions, we create a

new MCP3008 object in line 4. We also define a constant for the channel to

which we connected the TMP36 sensor.

9. http://ww1.microchip.com/downloads/en/DeviceDoc/21295d.pdf

report erratum • discuss

Measure Temperature with the Pi • 119

http://media.pragprog.com/titles/msraspi2/code/Sensors/tmp36_demo.py
http://ww1.microchip.com/downloads/en/DeviceDoc/21295d.pdf
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

We start an endless loop and read the TMP36’s current value by calling

analog_read(). In line 9, we turn this value into the actual voltage emitted by

the sensor. The following line calculates the actual temperature in degrees

Celsius using a formula you can find by studying the sensor’s data sheet.10

We convert this value into degrees Fahrenheit, too, and print them both. Then

we wait for a second and measure the current temperature again.

Run the program, and its output should look like this:

pi@raspberry:~$ sudo python tmp36_demo.py
Temperature: 20.9C (69.6F)
Temperature: 20.9C (69.6F)

And we’re finished! We can measure the current temperature with the Pi.

You’ve not only learned how to attach an analog sensor to the Pi, you’ve also

learned how to work with SPI devices—which is great, because they’re very

popular.

What If It Doesn’t Work?

All the advice from What If It Doesn't Work?, on page 105, also applies to the

projects in this chapter. In addition, you have to be very careful when plugging

the MCP3008 into the breadboard. Make sure you don’t bend any of its pins

accidentally. You also need to double-check every single connection from the

MCP3008 to the Pi.

Take a close look at the pins of the PIR sensor and the TMP36, too. Not all

PIR sensors have the same order of pins, and you can easily mix up the pins

of the TMP36.

Next Steps

You’ve learned how to work with digital and analog sensors, and you’ve learned

how to control SPI devices. The Pi also supports I2C,11 which is another pop-

ular standard for connecting devices. It’s certainly a good idea to look at it.

If you’d like to build more ambitious projects, you should consider buying an

extension board for the Pi. For example, the Adafruit Prototyping Pi Plate12

makes prototyping much easier. The Gertboard13 makes prototyping even

safer, and it comes with a lot of nice features, too.

10. http://www.analog.com/static/imported-files/data_sheets/TMP35_36_37.pdf
11. http://en.wikipedia.org/wiki/I%C2%B2C
12. http://adafruit.com/products/801
13. http://www.raspberrypi.org/archives/411

Chapter 10. Working with Digital and Analog Sensors • 120

report erratum • discuss

http://www.analog.com/static/imported-files/data_sheets/TMP35_36_37.pdf
http://en.wikipedia.org/wiki/I%C2%B2C
http://adafruit.com/products/801
http://www.raspberrypi.org/archives/411
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

CHAPTER 11

Control the Pi Camera

One of the greatest advantages of the Pi’s homogeneous hardware is that it’s

easy to build new accessories for it. The Raspberry Pi team has had a CSI

(Camera Serial Interface) slot on the board from the beginning, and they

recently released a camera module.

The camera is tiny but powerful. You can use it to take high-definition photos

and record videos. Its small size, low weight, and modest power consumption

make it an ideal candidate for many interesting projects. For example, you

can attach it to a remote-controlled quadcopter to record some videos of your

latest maneuvers.

In this chapter, you’ll learn how to connect the camera to the Pi and how to

get it up and running. You’ll use simple command-line tools to take photos

and record videos. Also, you’ll build an automatic burglar alarm using the

camera and a PIR sensor.

Meet the Camera’s Hardware

The Pi camera module is very small: 24mm x 25mm. Its height is 9mm, and

it weighs only about 3 grams. Like the Pi, it doesn’t look very pretty (see Figure

57, The camera's design is similar to the Pi's, on page 122), but like the Pi it’s

surprisingly powerful and versatile.

In most regards, the camera is similar to the cameras you can find in modern

smartphones. It has a fixed-focus lens that captures photos at a resolution

of 2592 x 1944 pixels. It supports three video modes with different resolutions

and frame rates: 1080p at 30 FPS, 720p at 60 FPS, and 640 x 480 at 60 or

90 FPS.

report erratum • discuss

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

Figure 57—The camera’s design is similar to the Pi’s.

Connect the Camera to the Pi

Connecting the camera module to the Pi isn’t difficult, but working with the

CSI port is a bit unusual compared to connecting USB devices, for example.

Before you can plug in the camera, you have to open the CSI connector by

pulling it up a little bit. Hold the Raspberry Pi board with one hand, grasp

the connector between the thumb and forefinger of your other hand, and pull

it up a few millimeters. Then insert the camera’s cable carefully while the

cable’s contacts point to the HDMI connector. Finally, close the CSI connector

by pressing it firmly from above. In Figure 58, Connecting the camera is easy

but a bit unusual, on page 123, you can see how to connect the camera module

correctly.

To make the camera work, you have to install some drivers; you’ll learn how

to do that in the next section.

Install the Camera Drivers

The latest version of Raspbian includes all the camera drivers. If you don’t

run the latest version, you’ll have to update your software stack. Issue the

following commands:

$ sudo apt-get update
$ sudo apt-get upgrade -y
$ sudo apt-get install git-core -y
$ sudo wget http://goo.gl/1BOfJ -O /usr/bin/rpi-update
$ sudo chmod +x /usr/bin/rpi-update
$ sudo rpi-update

Chapter 11. Control the Pi Camera • 122

report erratum • discuss

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

Figure 58—Connecting the camera is easy but a bit unusual.

These commands install the latest firmware and camera drivers for your Pi.

Also, you have to run raspi-config to enable the camera (see Enable the Pi Camera,

on page 29) and set the GPU memory to 128MB (see Adjust the Pi's Memory

Layout, on page 30).

In addition to the drivers, you get a few useful command-line tools for taking

photos and videos. In the next sections, you’ll learn how to use them.

Take Some Photos

After you’ve connected the camera and installed the drivers, it’s easy to take

some photos. The tool for the job is raspistill. When you call it without any

arguments, it prints a long list of options.

$ raspistill

Before we play with the options, let’s take an initial test photo. Run the fol-

lowing command and point the camera to something that looks interesting.

$ raspistill -o first.jpg

This command will take a photo and write it to a file named first.jpg. Before

the camera actually captures the photo, it’ll show a preview on the screen for

five seconds. Note that you don’t have to start a graphical desktop environment

to work with the camera. It will work just fine using a plain text terminal.

If you’d like to take a photo immediately—that is, without a five-second delay—

you have to run the following command:

$ raspistill -t 0 -o first.jpg

report erratum • discuss

Take Some Photos • 123

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

With the -t option, we can set the delay in milliseconds. When we set it to 0,

raspistill doesn’t show a preview window. If you’d like to have a delay but you

want to disable the preview window, you have to set the -n option.

$ raspistill -t 2000 -n -o first.jpg

In this case, raspistill will wait for two seconds before taking a photo, but it

won’t show the preview window. We can adjust the preview window’s size in

a couple of ways. We can make it occupy the entire screen, and we can set it

to an arbitrary size.

You might’ve noticed that the photos you’ve taken so far have been flipped

horizontally. Using -hf, we can change this behavior:

$ raspistill -hf -o first.jpg

Setting the -vf option flips the photo vertically. Note that raspistill doesn’t show

a preview when we’re using the flipping options. It only shows the final result

before writing it to a file.

Usually the JPEG format is a good choice for storing photos, but sometimes

you might need a different format. Using the -e option, we can set the output

file encoding to JPG, PNG, BMP, or GIF. For example, the following command

stores a photo in PNG format:

$ raspistill -e PNG -o first.png

In addition, you can choose from various effects that you’re probably used to

from your regular camera. Using the options -ex, -ifx, and -awd, you can adjust

the camera to different lightings and generate popular effects.

Create Time-Lapse Videos

One of the greatest advantages of the Pi camera module over most regular

cameras is that you can automate it. For example, it’s very easy to use it to

create time-lapse videos. Although you could write a program that automati-

cally calls raspistill every few seconds, raspistill supports time-lapsing right out

of the box.

$ mkdir photos
$ raspistill -n -tl 3000 -t 600000 -o photos/photo%04d.jpg

The preceding command takes a photo every three seconds (3,000 millisec-

onds) for ten minutes (600,000 milliseconds). It stores all photos in a folder

named photos, and all filenames start with the prefix “photo” followed by a

four-digit number. raspistill does the numbering automatically, so in the photos
folder, you’ll find files named photo0001.jpg, photo0002.jpg, and so on.

Chapter 11. Control the Pi Camera • 124

report erratum • discuss

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

Now we have to combine the photo files into a single video file. Several free

tools are available for this job. FFmpeg1 and avconv2 are very popular because

they’re extremely powerful.

In theory, you can install and run both tools on the Pi, but it’s usually best

to install just avconv, for a couple of reasons. To install FFmpeg, you have to

compile it yourself, which is a bit inconvenient. Also FFmpeg and avconv are

very similar because avconv is a fork of the FFmpeg project.

$ sudo apt-get install libav-tools

Then we can create a time-lapse video using the following command:

$ cd photos
$ avconv -r 4 -i photo%04d.jpg -r 4 -vcodec libx264 -crf 20 -g 15 video.mp4

avconv has a huge number of command-line options, and we can control

every single aspect of the generated video file. Run man avconv to read the pro-

gram’s manual.

Generating videos consumes a lot of resources, and it literally takes hours to

generate a video on the Pi itself. The best solution is to copy the photo files

to a more powerful computer. Then you can use ffmpeg to generate the video:

$ cd photos
$ ffmpeg -qscale 5 -r 4 -b 9600 -i photo%04d.jpg video.mp4

After running this command, you’ll find a video file named video.mp4 in the

photos folder. Like avconv, ffmpeg supports a vast number of options, and you

can look them up by running man ffmpeg.

raspistill is an amazingly versatile tool, and even though you’ve learned about

many of its options, there are still more to explore. Don’t be shy—go ahead

and play around with them.

Record High-Definition Videos

raspistill is probably all you’ll ever need to take photos with the Pi camera

module, but you can’t use it to record videos. That’s what raspivid is for, and

it supports nearly the same set of options as raspistill.

To record one minute (60,000 milliseconds) of high-definition video using 25

frames per second, run the following command:

$ raspivid -t 60000 -fps 25 -o video.h264

1. http://www.ffmpeg.org/
2. http://libav.org/avconv.html

report erratum • discuss

Record High-Definition Videos • 125

http://www.ffmpeg.org/
http://libav.org/avconv.html
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

This results in a file named video.h264 that contains the video data encoded

using the H.264 codec. This codec is popular, but to make it work with most

video players we have to put it into a suitable container, like MP4:

$ avconv -r 25 -i video.h264 -vcodec copy video.mp4

Now video.mp4 contains an MP4 version of our video that we can play using

nearly any video player in the world.

All in all, the Pi camera produces good videos. The only thing that’s missing

is a microphone. Still, you can create many useful and fun projects with it.

In the next section, you’ll learn how to build a burglar alarm using the camera

and a motion detector.

Build a Burglar Alarm

In Detect Motion with the Pi, on page 109, you learned how to control a motion

sensor with the Pi. The controlling software only printed messages to the

console—which is fine for demonstration purposes, but in real life it’s not

very useful. In this section, you’ll learn how to build an actual burglar alarm

that takes photos automatically as soon as someone moves, and then sends

an email with the latest photo attached.

Disable the Camera’s LED

A burglar alarm should work as unobtrusively as possible, and one feature

of the Pi camera contradicts this principle. Whenever the camera takes a

photo or records a video, it turns on a bright-red LED. Usually this is good

because it shows that the camera is working and it prevents you from taking

pictures of people secretly. However, for a burglar alarm we should disable

the LED.

We could simply hide it under some duct tape, but that wouldn’t be very ele-

gant. The Raspbian team provided an option to disable the camera LED

completely. Open the file /boot/config.txt using the nano text editor, for example:

$ sudo nano /boot/config.txt

Add the following line at the end of the file:

disable_camera_led=1

Finally, reboot the Pi:

$ sudo reboot

Chapter 11. Control the Pi Camera • 126

report erratum • discuss

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

Now the Pi camera won’t turn on the LED when it takes pictures or records

videos. We can still control the LED via our own software, as you’ll learn in

the next paragraphs.

Control the Camera Using Python

For the burglar alarm, we need to find a way to take photos programmatically.

That is, we need to write some software to control the camera.

In Detect Motion with the Pi, on page 109, we wrote the code for controlling the

PIR sensor in Python, so it’s advantageous to write the code for controlling

the camera in Python, too. It would also be great if we could reuse the raspistill
code so we don’t have to reinvent the wheel.3

The easiest way to integrate raspistill with Python is to execute the command-

line utility using Python’s subprocess module. in most cases, invoking

command-line tools from programming languages isn’t an ideal solution

because of poor performance. In this case it’s OK, because taking pictures

takes some time, so the overhead of creating a subshell is negligible. All we

need is the following Camera class:

camera/camera.py

Line 1 import RPi.GPIO as GPIO
- from subprocess import call
-

- CameraLedPin = 5
5

-

def __init__(self):
class Camera:

-

def led_on(self):

GPIO.setmode(GPIO.BCM)-

GPIO.setwarnings(False)-

GPIO.setup(CameraLedPin, GPIO.OUT, initial = False)10

-

-

GPIO.output(CameraLedPin, True)-

-

15 def led_off(self):
GPIO.output(CameraLedPin, False)-

-

- def take_photo(self, filename):
call(['raspistill -n -t 0 -hf -o {0}'.format(filename)], shell = True)-

It’s not a lot of code, and its most complicated parts don’t deal with taking

pictures, but instead with controlling the camera’s LED. The _ _init_ _() method

prepares the LED’s control pin in lines 7 to 10. The LED is hardwired to GPIO

3. You can find a Python library for the Pi camera at https://github.com/waveform80/picamera/.

report erratum • discuss

Build a Burglar Alarm • 127

http://media.pragprog.com/titles/msraspi2/code/camera/camera.py
https://github.com/waveform80/picamera/
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

pin number 5, so we can easily turn it on and off using led_on() and led_off(),
respectively.

Using the take_photo() method, we can take a new photo, and the method will

delegate its work to raspistill. It sets a few reasonable defaults that we can

change easily. The following program shows how to use the Camera class:

camera/camera_demo.py

from camera import *
camera = Camera()
camera.led_off()
camera.take_photo('photo.jpg')

This small demo program includes the Camera class and creates a new instance

named camera. Then it turns off the camera’s LED and takes a new photo. It

stores the photo in a file named photo.jpg.

Now that we can control the camera from a Python program, we need a way

to send an email with a photo attachment. You’ll learn how to do that in the

next section.

Send an Email

Sending emails programmatically is no big deal using modern programming

languages, and Python is no exception. It has great support for SMTP,4 and

it supports email attachments in various forms. The following EmailNotification
class provides all the functionality for sending emails with photo attachments:

camera/email_notification.py

import smtplib
from email.mime.image import MIMEImage
from email.mime.multipart import MIMEMultipart

class EmailNotification:
def __init__(self, server, user, pwd):
self.server = server
self.user = user
self.pwd = pwd
self.subject = 'INTRUDER ALERT!'
self.from_addr = 'me@example.com'
self.to_addr = 'alert@example.com'

def send(self, image_file):
msg = MIMEMultipart()
msg['Subject'] = self.subject
msg['From'] = self.from_addr
msg['To'] = self.to_addr

4. http://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol

Chapter 11. Control the Pi Camera • 128

report erratum • discuss

http://media.pragprog.com/titles/msraspi2/code/camera/camera_demo.py
http://media.pragprog.com/titles/msraspi2/code/camera/email_notification.py
http://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

msg.preamble = self.subject
msg.attach(self.__read_image(image_file))
self.__send_email(msg)

def __read_image(self, image_file):
attachment = open(image_file, 'rb')
image_data = MIMEImage(attachment.read())
attachment.close()
return image_data

def __send_email(self, msg):
server = smtplib.SMTP(self.server)
server.ehlo()
server.starttls()
server.login(self.user, self.pwd)
server.sendmail(self.from_addr, self.to_addr, msg.as_string())
server.quit()

The _ _init_ _() method initializes the name of your SMTP server, its username,

and its password. Also, it defines the default subject of your email, its origin

address, and its recipient. You’re free to change all of them.

Using the send() method, we can send an image file via email. The method

creates a new MIMEMultipart object containing all of the email’s properties,

including an image file that has been created using the Pi camera.

Finally, _ _send_email() sends an email using Python’s smptlib. Depending on

your current email provider, you might have to adjust this method. For

example, some providers insist on the call to ehlo() and others don’t.

Build the Final Product

We now have software to control the PIR sensor and the Pi camera, and we’re

able to send emails. The only thing left to do is to combine all the single parts

into a complete burglar alarm.

Using the PassiveInfraredSensor, Camera, and EmailNotification classes, it’s easy to

build a burglar alarm:

camera/burglar_alarm.py

Line 1 from pir import *
- from camera import *
- from email_notification import *
- import time
5

- PIR_PIN = 23
- PREFIX = 'photos/alert'
-

EMAIL_USER = 'me@example.com'
EMAIL_SERVER = 'smtp.gmail.com:587'

-

report erratum • discuss

Build a Burglar Alarm • 129

http://media.pragprog.com/titles/msraspi2/code/camera/burglar_alarm.py
http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

10 EMAIL_PWD = 't0p$ecret'
-

- pir = PassiveInfraredSensor(PIR_PIN)
- camera = Camera()
- notifier = EmailNotification(EMAIL_SERVER, EMAIL_USER, EMAIL_PWD)

15 i = 0
- last_state = False
- while True:

if (pir.motion_detected() == True):-

if (last_state == False):-

print 'INTRUDER ALERT!'20

image_file = PREFIX + '{0}.jpg'.format(i)-

camera.take_photo(image_file)-

notifier.send(image_file)-

i = i + 1-

last_state = True25

else:-

if (last_state == True):-

time.sleep(1)-

last_state = False;-

In lines 7 to 10, we define the most important attributes of the burglar alarm.

Simply insert your email provider’s SMTP server, your username, and your

password.

The rest of the program works exactly like the motion detector in Detect Motion

with the Pi, on page 109. Instead of simply printing a message to the console,

it takes a photo and sends it via email in lines 21 to 23.

What If It Doesn’t Work?

If you have any problems with the PIR sensor, take a look at What If It Doesn't

Work?, on page 120. Attaching the camera is unusual but not a big deal. Still,

if it isn’t working, check to be sure you’ve plugged in the cable correctly.

The Pi camera is a great tool and toy for many purposes. Its main advantage

is that you can easily control it programmatically. It’s a perfect tool for creating

time-lapse videos of your latest birthday party or for turning it into a dash-

board camera in your car. It also can be the basis for a burglar alarm, but it

works best in well-lighted environments.

Where to Go from Here

At this point you have learned what a versatile tool the Raspberry Pi is. You’ve

learned how to install various operating systems and how to use the Pi as a

day-to-day computer. In addition, you turned the Pi into a web server, and

Chapter 11. Control the Pi Camera • 130

report erratum • discuss

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

then you turned it into a multimedia center. On top of that, you’ve used it as

a basis for electronics projects and attached digital and analog sensors.

The Pi is a much more open platform than most regular PCs. For example,

you can easily create your own hardware extensions using the Pi’s GPIO parts.

Along with its friendly and active community, the Pi will be one of the most

popular, useful, and fun gadgets in the years ahead. People publish useful

projects every day, and there’s no reason why you shouldn’t create something

special with the Pi, too.

report erratum • discuss

Where to Go from Here • 131

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

APPENDIX 1

A Linux Primer

The most popular operating system for the Pi is Linux, especially the Debian

Linux distribution (Raspbian). If you’ve worked exclusively with operating

systems such as Windows or Mac OS X until now, Linux might produce a

little culture shock for you, mainly because on Linux systems the graphical

user interface (GUI) is optional. That means you can run a Linux system

without using a mouse and without double-clicking colorful icons.

Still, you need a way to interact with the system, and on Linux you have to

use a shell for this purpose. A shell is a program that awaits your commands

via a keyboard and passes them to the operating system (Linux). After Linux

has run the command, the shell passes the results back to you.

The shell itself runs in a terminal that goes back to the very beginnings of

computing. In these times, you had to connect to the “real” computers using

a more or less dumb terminal that basically forwarded your inputs and dis-

played the computer’s outputs. Today you no longer have to use explicit

terminal devices, but the metaphor still lives on, and Linux depends on it.

So, whenever you log into a Linux computer, it usually starts a shell in a

terminal session. In the shell, you can invoke commands that actually run

on the Linux computer.

Nowadays, Linux comes with graphical desktop systems that are very similar

to Windows and Mac OS X. Still, these desktop systems ship with a terminal

emulator you can use to invoke commands directly. The LXDE desktop, for

example, comes with a desktop emulator named LXTerminal. You can find a

shortcut on the LXDE desktop, so double-click it, and the Pi will start a new

terminal session.

report erratum • discuss

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

A First Encounter

After you’ve logged into the Pi or after you’ve started a new terminal from the

desktop, you’ll see the following prompt awaiting your commands:

pi@raspberrypi ~ $

It doesn’t look like much, but it already gives you a lot of information. For

example, the first part (pi@raspberrypi) tells you that the host name of your

computer is raspberrypi. It also tells you that your username is pi. This is an

important piece of information, because Linux is a multiuser operating system.

This means that multiple people can work on the same computer simultane-

ously (over a network, for example). Also, you can switch to another user

account whenever you need to, so it’s good to know who you are at the

moment.

The next part of the prompt contains the file system path you’re currently in.

Here it consists only of the tilde character (~), which is an abbreviation for

the user’s home directory. Every Linux user has a home directory for storing

personal data and configuration files. It’s similar to the My Documents folder on

Windows or the Documents folder on Mac OS X. The dollar sign at the end marks

the end of the prompt.

To see the content of the current directory, type ls and press the Enter key

to run the ls command.

pi@raspberrypi ~ $ ls
Desktop python_games

The current directory contains two items named Desktop and python_games. From

only their names, you cannot tell whether they are regular files or directories.

Fortunately, you can control the behavior of most Linux commands using

command options. Usually, these options consist of only a single letter pre-

ceded by a dash. The ls command supports many options, and when you pass

it the -l (short for “long”) option, it displays more information about the files

in the current directory.

pi@raspberrypi ~ $ ls -l
total 8
drwxr-xr-x 2 pi pi 4096 Jul 15 19:36 Desktop
drwxr-xr-x 2 pi pi 4096 Jul 15 19:36 python_games

At first it looks a bit scary, but it’s really easy to understand. For every item

in the directory, ls displays the information shown in the following figure.

Appendix 1. A Linux Primer • 134

report erratum • discuss

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

drwxr-xr-x 2 pi pi 4096 Jul 15 19:36 Desktop

File Mode Modification TimestampSize FilenameOwner

Links Group

Figure 59—The different components of ls output

The file mode contains the file type and its permissions. If the first character

is a dash, the file is a regular file. If it contains a d, it is a directory. So, both

Desktop and python_games are directories.

The following nine characters encode the file permissions of three groups of

people: the owner, the group, and others. The first three characters are rwx,
and they mean that the owner of the file is allowed to read (r), write (w), and

execute (x) it. In case of a directory, execute means to enter the directory.

Every file on a Linux system belongs to a user and to a group. Groups help

to build teams who work together on the same resources. So, for every file,

Linux stores permissions for the group, too. In the current case, they are r-x,
which means that group members can read and execute the file but aren’t

allowed to change it.

Finally, Linux stores permissions for other users who are not a file’s owner

and who don’t belong to the file’s group. Again, r-x means that other users

might read and execute the file but aren’t allowed to change it.

The next information ls outputs is the number of links to a file. For your first

tour through Linux, you can safely ignore it.

Then you can find the name of the file’s owner and its group. In this case,

both are pi; that is, on the current Linux system, there’s both a user named

pi and a group named pi.

Next you can find the file size. On Linux, directories are files too, and they

simply contain the names of the files stored in the directory. By default, Linux

allocates some space for this list of files up front, and in case of Debian on

the Raspberry Pi, it’s 4,096 bytes.

report erratum • discuss

A First Encounter • 135

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

To the right of the file size, you can see the date the file was modified for the

last time. And, finally, ls outputs the file’s name.

Navigate Through the File System

The pwd (print working directory) command outputs the directory you’re cur-

rently in.

pi@raspberrypi ~ $ pwd
/home/pi

As you can see, your home directory (~) expands to the absolute path /home/pi.
Linux distinguishes between absolute and relative paths. Absolute paths

always begin with a forward slash (/) and reference the same file no matter

where you are in the file system. Relative paths, on the contrary, are relative

to your current position in the file system. The following example will clarify

the difference between absolute and relative paths.

As you saw in the preceding section, the pi user’s home directory contains

two directories named Desktop and python_games.

pi@raspberrypi ~ $ ls
Desktop python_games

Using the cd (change directory) command, you can change the current direc-

tory to another one.

pi@raspberrypi ~ $ cd Desktop/
pi@raspberrypi ~/Desktop $

Now your current working directory has changed. You can see that your

prompt has changed, and you can also check it using the pwd command.

pi@raspberrypi ~/Desktop $ pwd
/home/pi/Desktop

To go back to the pi user’s home directory, you have a couple of options. First,

you can invoke cd with the absolute path to the home directory.

pi@raspberrypi ~/Desktop $ cd /home/pi
pi@raspberrypi ~ $

Alternatively, you can use a relative path like this:

pi@raspberrypi ~/Desktop $ cd ..
pi@raspberrypi ~ $ pwd
/home/pi

The abbreviation .. stands for the parent directory of the current directory. In

the previous command, your current working directory is /home/pi/Desktop. When

Appendix 1. A Linux Primer • 136

report erratum • discuss

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

you run cd .., you change the working directory to the parent directory of

Desktop, which is /home/pi.

You can move to your user’s home directory from any location in the file

system by running cd with no arguments:

pi@raspberrypi ~/Desktop $ cd
pi@raspberrypi ~ $ pwd
/home/pi

This command is really useful, so it’s worth remembering.

Edit Text Files

Many Linux tools depend on configuration files. Most of these files are regular

text files, and you have to edit them from time to time. On Linux, you’ll find

many powerful text editors for the terminal. If you’re used to graphical text

editors, most Linux text editors look a bit awkward at first. One of the easiest

and most intuitive editors is nano. It permanently displays shortcuts to its

most important commands so you don’t have to remember them. The following

command starts nano and creates an empty text file named hello.txt:

pi@raspberrypi ~ $ nano hello.txt

In the following figure, you can see how nano looks in your terminal.

Figure 60—nano on the terminal

You can use most of the screen for editing the text, so type in a few words

and move the cursor around using the cursor keys. At the bottom of the

screen, you’ll see the most important nano commands. To invoke them, you

have to press the Ctrl key and the letter belonging to the command.

report erratum • discuss

Edit Text Files • 137

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

(The ^ character is an abbreviation for the Ctrl key.) For example, you can

exit nano by pressing Ctrl+X.

When you do this, nano doesn’t simply discard your changes and exit. It asks

you whether you’d like to save your changes (see the following figure).

Figure 61—Saving a file with the nano text editor

Enter y if you’d like to save your changes and n otherwise. If you pressed y,

you aren’t finished yet, because nano asks you to confirm the filename (see

the following figure).

Figure 62—nano always asks you to confirm the filename.

Appendix 1. A Linux Primer • 138

report erratum • discuss

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

Usually, you’ll just press Enter to confirm the current filename, and nano

will save the file. At the bottom of the screen, you can see some useful options

allowing you to store the file in different formats, for example.

If you’re going to work with Linux more often, you should get familiar with

one of its text editors. For beginners, nano is an excellent choice, so play

around with it for at least a few minutes.

Manage Users

Linux is a multiuser operating system—you can work with several different

users on the same computer at the same time. In this book, you’ll mainly use

the user pi, because it comes with the Raspbian image automatically. This

is convenient, but sometimes it’s handy to create different users for different

tasks. Also, pi is a very powerful user that has full administrative rights and

can change nearly every aspect of the system. You don’t want to grant all

privileges to all users. It’s always a good idea to work with only the adminis-

trative rights you need to get the job done. That way, you can’t harm the

system by accident.

Adding a new user to Linux is easy using the adduser command.

pi@raspberrypi ~ $ sudo adduser maik

❮ Adding user `maik' ...
Adding new group `maik' (1002) ...
Adding new user `maik' (1002) with group `maik' ...
Creating home directory `/home/maik' ...ß
Copying files from `/etc/skel' ...
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully
Changing the user information for maik
Enter the new value, or press ENTER for the default

Full Name []: Maik Schmidt➾

❮

Is the information correct? [Y/n] Y

Room Number []:
Work Phone []:
Home Phone []:
Other []:

➾

You have to provide only a username (by convention it should contain only

lowercase letters), a password, and a few optional attributes, such as your

full name. After you’ve confirmed that all information is correct, Linux will

create a new user with its own home directory. The next time you boot the

Pi, you can use it to log into the system. If you’re impatient, you can use the

su (substitute user identity) command to switch to the new user.

report erratum • discuss

Manage Users • 139

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

pi@raspberrypi ~ $ su - maik
Password:
maik@raspberrypi ~ $ pwd
/home/maik
maik@raspberrypi ~ $ startx

su asks for the user’s password, and if it’s correct, it switches to the new user.

The pwd command prints the current working directory; in this case, it’s the

home directory of the newly created user. If you start the LXDE desktop with

the startx command, it greets you with the standard LXDE background image

(see the following figure), because in contrast to the pi user, the new user

starts with the desktop’s defaults.

Figure 63—The default look of LXDE

When working with the pi user, you’ve often used sudo to run commands with

administrative privileges. See what happens if you try to delete a file that you

don’t own using the rm (remove file) command.

maik@raspberrypi ~ $ sudo rm /boot/config.txt

We trust you have received the usual lecture from the local System
Administrator. It usually boils down to these three things:

#1) Respect the privacy of others.
#2) Think before you type.
#3) With great power comes great responsibility.

[sudo] password for maik:
maik is not in the sudoers file. This incident will be reported.

Appendix 1. A Linux Primer • 140

report erratum • discuss

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

The command prints a warning and then asks for your password. Obviously,

the new user isn’t allowed to delete files in the /boot directory, so Linux refuses

to invoke the rm command.

While it’s a good default behavior to deny new users access to dangerous

operations, sometimes users need more privileges. If you want to give your

new users the same rights as the pi user, you have to add the user to the

sudoers file. This file contains a list of all users who are allowed to run the sudo
command, and it specifies which operations the users are allowed to perform.

You can’t edit the sudoers file directly; you have to use the visudo command,

which invokes the text editor vi by default. If you want to edit the file using

a different text editor, such as nano, you have to specify it on the command

line. (Make sure you’re using the pi user again.)

pi@raspberrypi ~ $ sudo EDITOR=nano visudo

This opens the /etc/sudoers file using the nano text editor. In the file, you’ll find

a section that looks like this:

User privilege specification
root ALL=(ALL) ALL
suse ALL=(ALL) ALL
pi ALL=(ALL) ALL

Add a new line that looks exactly like one of the previous three lines, but

replace the username with the name of your new user. If you’re using nano

to edit the file, press Ctrl+X and confirm that you’d like to save the changes.

Then confirm the filename, and you’re finished—your new user now has the

same rights as the original pi user.

If you no longer need a certain user, it’s reasonable to delete it.

pi@raspberrypi ~ $ sudo userdel maik

The previous command will delete the user’s account but not the user’s files.

The user can no longer log into the system, but all the files he or she has

created in the home directory are still available. If you want to delete the files

as well, run the following:

pi@raspberrypi ~ $ sudo userdel -r maik

If you ever need to change a user’s attributes, such as his or her home

directory, you can use the usermod command. You can use it to lock or unlock

accounts, for example.

pi@raspberrypi ~ $ sudo usermod -L maik

report erratum • discuss

Manage Users • 141

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

This will lock the account of the user named maik. The user can no longer

log into the system. To unlock the account, run the following command:

pi@raspberrypi ~ $ sudo usermod -U maik

You can read usermod’s manual page (and the manual page of every other

Linux command) using the man command.

pi@raspberrypi ~ $ man usermod

This displays the command’s manual pages. You can stop the man command

by pressing Q.

One important action is changing a user’s password. For this, you can use

the passwd command.

pi@raspberrypi ~ $ passwd maik
Changing password for maik.
Old Password:
New Password:
Retype New Password:

passwd asks for the current password and then for the new password. If

everything is OK, it prints no message, and your user has a new password.

Manage Processes

Whenever you run a command or an application on a Linux system, the

operating system’s kernel spawns a new process. You can list your current

processes using the ps command.

pi@raspberrypi ~ $ ps
PID TTY TIME CMD

1880 pts/2 00:00:00 bash
1892 pts/2 00:00:00 ps

At the moment, you own only two processes. The first has the process ID

(PID) 1880, and it belongs to a command named bash. (The process IDs on

your system will vary.) This is the process that belongs to the shell in which

you’re currently working. The process with the PID 1892 belongs to the ps
command you’ve used to list your current processes. At the moment, you see

the output of the ps command; process 1892 will be gone already. To see the

effect, run ps again.

pi@raspberrypi ~ $ ps
PID TTY TIME CMD

1880 pts/2 00:00:00 bash
1894 pts/2 00:00:00 ps

Appendix 1. A Linux Primer • 142

report erratum • discuss

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

As you can see, the shell still has the PID 1880, but your latest call to ps was

handled by a new process with PID 1894.

You can get more information about your processes using the -f option.

pi@raspberrypi ~ $ ps -f
UID PID PPID C STIME TTY TIME CMD
pi 1880 1879 0 12:51 pts/2 00:00:00 -bash
pi 1895 1880 0 12:58 pts/2 00:00:00 ps -f

Now you can see the user ID (UID) of the user who has spawned a certain

process. Not surprisingly, the UID is pi for all of your processes. In addition

to the PID, you can see the parent process ID (PPID). This is the ID of the

process that has created another process. For example, the ps -f command

you’ve run before has the PPID 1880. This is the PID of the shell you’re using.

So, the shell is the parent of the process created by the ps -f command.

To see all information about all processes currently running on your Pi, run

the following command:

pi@raspberrypi ~ $ ps -ef

This will output a fairly long list of processes that contains every single Linux

service your Pi has started.

Getting a list of all active processes is useful, but most often you’ll be looking

for a certain process for a reason. Perhaps the process uses too many

resources or takes too long, and you’d like to terminate it. But how can you

terminate a process?

Terminating a long-running process is easy when you start it directly from

the shell. To demonstrate, the following command searches for all text files

on your SD card, so it will take a long time to finish:

pi@raspberrypi ~ $ find / -name '*.txt'

While the process is running, you can terminate it by pressing Ctrl+C on your

keyboard. When you press Ctrl+C, the shell recognizes your keypress and

sends a signal to the process that is currently running. Signals are small

messages that all processes listen for in the background. Pressing Ctrl+C

generates a signal named SIGINT that tells a process it got interrupted. When

a process receives a SIGINT signal, it usually cleans up and terminates.

For processes that are still running in your terminal, pressing Ctrl+C is a

good option, but what if you need to terminate a process that is running in

the background? For example, most Linux services run in the background

report erratum • discuss

Manage Processes • 143

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

by default, and you don’t start them yourself. In this case, you have to find

out the PID of the process and pass it to the kill command.

pi@raspberrypi ~ $ kill 4711

The previous command sends the SIGTERM command to the process with the ID

4711. You can send other signals with the kill command, too. For example, the

following command will terminate the process with the PID 4711 in any case:

pi@raspberrypi ~ $ kill -KILL 4711

Of course, you need to have the permission to terminate a process. Usually

you are allowed to kill only your own processes.

Shut Down and Reboot the Pi

When you’re finished with your work, don’t simply switch off the Pi. It might

result in the loss of data. Always shut it down using the following command:

pi@raspberrypi ~ $ sudo halt

If you need to reboot the Pi, use the following command:

pi@raspberrypi ~ $ sudo reboot

Get Help

Since their beginnings, the Unix/Linux operating systems came with a great

manual system named man pages. Whenever you need to look up the options

of a certain command, you can display its manual using the man command.

To look up all options of the ls command, for example, run the following

command:

pi@raspberrypi ~ $ man ls

To scroll down a line, press the down cursor key. Press the up cursor key to

scroll up a line. To scroll down a page, press the spacebar. Press Ctrl+B to

scroll up a page. To leave the program, press Q.

The man command has many more options. To learn more about it, run the

following:

pi@raspberrypi ~ $ man man

Appendix 1. A Linux Primer • 144

report erratum • discuss

http://pragprog.com/titles/msraspi2/errata/add
http://forums.pragprog.com/forums/msraspi2

Index

SYMBOLS
character, configuration file

comments, 44

$ sign in prompt, 134

' character, Stella game emu-
lator debugger, 91

.. abbreviation for parent direc-
tory, 136

/ character and absolute
paths, 136

^ character in nano naviga-
tion, 137

~ character in prompt, 134

DIGITS
100/10M status LED, 4

8-bit games emulator, 3, 85,
89–91

A
-a option, kiosk mode, 50

A-VCS-tec Challenge, 90

A/D converters, see analog-
to-digital converters

absolute paths, 136

accelerating, see overclocking

accuracy, game emulators, 89

ACT status LED, 4

Adafruit, xiii, 8, 94, 120

Adafruit Prototyping Pi Plate,
120

add-ons, XBMC, 78, 82

adduser command, 65, 139

AGND pin, MCP3008, 114

alarms
burglar alarm project,

121, 126–130
memory alarm project,

93–105

amixer tool, 46

analog sensors, temperature
sensor project, 107, 113–
120

analog-to-digital converters,
107, 113–120

analog_read() method, tempera-
ture sensor project, 118,
120

Android, multimedia center
remote control, 82

anode, 97

Apache HTTP server, 64

apt-file, 37

apt-get, managing software
with, 33–38

Arch Linux ARM, 12, 38

Arduino, 98, 113

ARM1176JZF-S processor, 2,
11

Atari VCS 2600 emulator, 3,
85, 89–91

attachments, email, 128

attributes, adding new users,
139

audio
configuring and testing,

45
connecting display, 8
connector, 3, 8
game emulators, 90
XBMC, 79

audio jack, 3, 8

authorized keys, 59

autoclean command, 36

autoremove command, 36

avconv, 125

-awd option, camera, 124

AWXi web interface, 82–83

B
backquote key, Stella game

emulator debugger, 91

backup battery, lack of, 5

base port, VNC, 61

Basic Input Output System,
see BIOS

battery, lack of backup, 5

BCM2835 SoC, 2

Beneath a Steel Sky, 88

BIOS, lack of, 5, 12

blacklist, removing SPI from,
115

Bluetooth, 5

BMP format, 124

BOARD mode, GPIO pins, 112

Bodhi Linux, 12

/boot directory, firmware and
kernel, 41

/boot/config.txt
configuring video, 43–45
disabling camera LED,

126
NOOBS, 15

booting
configuring, 26
desktop, 26, 31–32
disabling overclocking

while, 29
initial, 23

lack of BIOS, 5
from NOOBS, 16
rebooting, 144
from SD cards, 5, 17–22

breadboards
about, 96
extension boards, 120
memory alarm project,

93, 96
motion detector project,

107
temperature sensor

project, 107, 116–117
troubleshooting, 105, 120

Broadcom, 2, 111

burglar alarm project, 121,
126–130

bus argument, temperature
sensor project, 118

C
camera

burglar alarm project,
121, 126–130

controlling, 121–126
CSI connector, 4, 122
disabling camera LED,

126–127
drivers, 122
enabling, 29, 123
high-definition, 121, 125
still photos, 123
time-lapse videos, 124

Camera class, 127, 129

canceling
menus in Raspi-config,

24
processes, 143

carat character in nano navi-
gation, 137

card readers, preparing
bootable SD cards, 17–22

cartridges, game, 89

cases, 8

cathode, 97

cd command, 136

cell-phone chargers, power
supply from, 6

Centipede, 89

checking downloads, 14, 18–
20

checksum, 14, 18–20

chip orientation, 116

chmod command, Lighttpd, 65

chown command, Lighttpd, 65

Chromium, 12, 51–54, 131,
see also web browsers

circuits
building basic, 96
memory alarm project,

100–101
PIR sensor, 110
TMP36 temperature sen-

sor, 116–117

cleanup() function, memory
alarm project, 102

client argument, temperature
sensor project, 118

clients, VNC, 61–64

CLK pin, MCP3008, 114

clock, real-time, 5, 28

code
GPU source code, 2
graphic drivers source

code, 2
used in this book, xiv

codecs
camera, 126
licenses, 81

Coder, 13

comments, configuration file,
44

Commodore 64 emulator, 88,
91

composite video
about, 3
connectors, 3
output modes and

NOOBS, 15
XBMC, 79

configuring
audio, 45
configuration file com-

ments, 44
Debian Linux, 23–32
defaults, 44
desktop, 32
editing Linux text files,

137
firmware, 41–46
overscan/underscan, 29,

43
parameters format, 44
Samba, 82
SPI, 115
SSH, 56
static IP addresses, 73
video, 43–45
Wi-Fi, 67–74

connectors
about, 3–5

camera, 4, 122
display, 3–4, 8
illustration, 8
networking, 3, 8

constants
memory alarm project,

102
motion detector project,

112
temperature sensor

project, 119

copyright, games, 89

CPU
about, 2
Midori use, 55
RAM distribution, 30

CS pin, MCP3008, 114

CSI connector, 4, 122

Ctrl key in nano navigation,
137

current directory, 136

cursor keys
games navigation, 90
locale configuration, 27
man pages navigation,

144
nano navigation, 137
Raspi-config navigation,

23
XBMC navigation, 78

D
data sheets

MCP3008 analog-to-digi-
tal converter, 119

TMP36 temperature sen-
sor, 120

data-widget-id= attribute, 50

date
file, 136
setting, 28–29

date command, 29

Day of the Tentacle, 85, 87

Debian Linux, see also Linux
advantages, xii, 11
versions, xiv, 41

debugging
JTAG headers, 4
Stella game emulator, 90

delay, camera, 124

deleting
/boot/config.txt, 44
files, 36, 140–141
operating systems with

NOOBS, 16

Index • 146

packages, 36
software, 35
users, 141

desktop
Arch Linux ARM, 12
booting, 26, 31–32
configuring, 32
Debian Linux, 13
defaults for new users,

140
exiting, 32
games, 91
German language ver-

sion, 27
navigating, 32
sharing, 60–64
terminal access, 133

df -h command, 19

DGND pin, MCP3008, 114

DHCP, 72

Digi-Key, 94

digital sensors
burglar alarm project,

121, 126–130
motion detector project,

107–113

DIN pin, MCP3008, 114

directories
changing, 136
current working, 136
file type and permissions,

135
home, 134, 136, 139
listing contents, 134
parent, 136
size, 135
XBMC, 80

disk drives, listing, 20

displays
choosing, 8
connectors, 3–4
output modes and

NOOBS, 15
overscan/underscan, 29,

43

dmesg command, Wi-Fi config-
uration, 70

document root, Lighttpd, 65

dollar sign in prompt, 134

DOUT pin, MCP3008, 114

down mode, GPIO pins, 98

drivers
camera, 122
graphic drivers source

code, 2

DSI connector, 4

DVI displays, 3

dynamic content, web
servers, 67–68

Dynamic Host Configuration
Protocol (DHCP), 72

E
-e option

camera, 124
kiosk mode, 50

editing
Linux text files, 137
NOOBS config file, 15

-ef option, listing processes,
143

effects, camera, 124

ehlo() method, email, 129

electronics
memory alarm project,

93–105
troubleshooting, 105, 120

email, burglar alarm project,
126, 128–130

EmailNotification class, 128–129

emulators, game, 3, 85, 88–
91

errors, see also troubleshoot-
ing

Midori user agent, 55
preparing bootable SD

cards, 22
resized SD file system, 25

/etc/rc.local file, audio configura-
tion, 46

Ethernet (LAN)
configuring static IP ad-

dresses, 74
connectors, 3, 8
status LEDs, 4
XBMC, 78

Evince, 34

-ex option, camera, 124

execute file permissions, 135

exiting, LXDE desktop, 32

Expand Filesystem menu,
Raspi-config, 25

expansion header
about, 3
connecting electronic

projects, 95

extension boards, 120

external storage devices
inability to boot from, 5
listing, 19

F
-f option, listing processes,

143

Farnell, xiii

FastCGI, 67

FAT file system, 14

fciv command, checksum
with, 18

FDX status LED, 4

Fedora, 38

FFmpeg, 125

file mode, 135

file permissions, 135

filename
confirming filename in

nano, 138
ls command, 136

files
adding to XBMC, 80–82
confirming filename in

nano, 138
deleting, 36, 140–141
editing Linux text files,

137
file mode, 135
file system errors, 25
formats, 139
ls command, 136
navigating file system,

136
permissions, 135
size, 135
type, 135

firmware
camera, 123
configuring, 41–46
Wi-Fi, 71

Flash, 53, 55

Flight of the Amazon Queen,
88

flipping photos, 124

floating-point unit, 12

font size, Twitter widget, 50

formats
file, 139
music and video, 81
photos, 124

formatting SD cards, 14

forums, xiv

Index • 147

forward slash and absolute
paths, 136

Four in a Row, 91

frame rate
camera, 121, 125
game emulators, 89, 91
native games, 92

free command, memory sta-
tus, 103

Frotz, 86

FTP, XBMC support, 81

full-screen mode, Midori, 50

G
-g option, GPIO pin names, 99

game cartridges, 89

games
emulators, 3, 85, 88–91
interactive fiction, 85–87
music from, 78
native, 38, 91
point-and-click adven-

ture, 85, 87

gateway, configuring static IP
addresses, 74

general-purpose input/output
pins, see GPIO pins

generating key pairs, 59–60

Gertboard, 120

GIF format, 124

GitHub, 41

Google Chromium, 12, 51–
54, 131, see also web
browsers

Google Mail, Midori, 54

gparted, formatting SD cards,
14

GPIO pins
about, 3
constants, 102
game emulators, 3
memory alarm LED

project, 93–105
modes, 98, 111
motion detector project,

107–113
names and numbers, 95,

99, 102, 111
temperature sensor

project, 107, 113–120
web server access, 64

gpio utility, 98, 102, 105

GPU
about, 2

camera configuration,
123

RAM distribution, 30,
123

source code, 2

ground pin
connecting breadboard

to, 96
MCP3008, 114
TMP36, 117

H
-h option, camera, 124

H.264 codec, 126

halt command, 32, 144

hardware
about, 1–8
camera, 121
compatibility, xiv, 5–6
configuring firmware, 41–

46
game emulators, 89
infrared dongle, 82
power usage, 6
programming with

WiringPi, 98

HDMI
about, 3
configuring and testing,

46
connectors, 3, 8
output modes and

NOOBS, 15
safe mode, 15

headless systems, 7

--help-execute, Midori, 51

high-definition photos and
videos, 121, 125, 131, see

also HDMI

home directory, 134, 136, 139

horizontal option, camera,
124

host name, 134

HTML
HTML5, 55
Twitter search widget, 49
view in Midori, 54

HTTP
multimedia center remote

control, 82
Pi as web server, 64–67

I
-i option, kiosk mode, 50

I2C, 115, 120

Iceweasel, 51, 54

id_rsa.pub file, key pairs, 59

IDs
parent process, 143
Twitter widgets, 50
user, 143

ifup command, Wi-Fi, 72

-ifx option, camera, 124

images, transferring SD card,
17–22

in mode, GPIO pins, 98

indentation, Python, 111

index page, creating and
editing, 66

IndieCity, 38

Infocom, 86

infrared sensors
burglar alarm project,

121, 126–130
dongle, 82
motion detector project,

107–113

_ _init_ _() function
camera LED in burglar

alarm project, 127
email in burglar alarm

project, 129
motion detection project,

111
temperature sensor

project, 118

init_leds() function, memory
alarm project, 102

initialization
memory alarm project,

102
motion detection project,

111
temperature sensor

project, 118

input() method, GPIO pins, 112

installing
camera drivers, 122
Chromium, 54
firmware, 41
Linux, 11–22
Linux kernel, 41
with NOOBS, 14–16
operating systems, 11–22
PDF readers, 34
Pi Store client, 38
Raspbmc, 75–77
rpi-update, 42
from SD cards, 17–22
software from Pi Store, 38
software with apt-get, 33

Interactive Fiction Archive, 86

Index • 148

interactive fiction games, 85–
87

Internationalisation Options
menu, 26, 28

IP address
DHCP, 72
multimedia center

project, 78, 81–82
static, 73, 78
viewing, 56
VNC, 61

iPad/iPhone, multimedia
center remote control, 82

Iridium Rising, 38, 92

iwconfig command, Wi-Fi con-
figuration, 71

J
Java applets, 53, 55

JavaScript
disabling in Midori, 54
Twitter search widget, 49

joysticks, 90

JPEG format, 124

JTAG headers, 4

jumper, PIR sensor, 109

jumper wires
memory alarm project,

93, 97
motion detector project,

107, 110
temperature sensor

project, 107

K
kernel

updating, 41–43
Wi-Fi configuration, 71

key pairs, public-private, 57

keyboards
configuring, 26
connecting, 7
games navigation, 90
locale configuration, 27
man pages navigation,

144
nano navigation, 137
password selection, 25
Raspi-config navigation,

23
remapping, 26, 91
Wi-Fi configuration, 71
XBMC navigation, 78

kill command, 143

kiosk mode, 50

kiosk project, 47–51

L
-L option, user files, 141

-l option, Linux, 134

lag, XBMC menu, 79

LAN, status LEDs, 4, see al-

so Ethernet (LAN)

languages, specifying, 27

last_state variable, motion detec-
tor project, 112

led_is_on(), memory alarm
project, 105

led_off() method, burglar alarm
project, 127

led_on() method, burglar alarm
project, 127

LEDs
about, 97
circuit, 96, 100–101
connecting, 97
disabling camera LED,

126–127
memory alarm project,

93–105
status, 4

Lego case, 8

licenses
codecs, 81
game copyrights, 89

lighting effects, camera, 124

Lighttpd, 64–67

LINK/LNK status LED, 4

links, file, 135

Linux
command options, 134
configuring, 23–32
desktop, 13
editing text files, 137
hardware compatibility,

5
image, 17
installing, 11–22
kernel, 41–43, 71
managing processes,

142–144
managing users, 139–142
manuals, 142, 144
navigating file system,

136
operating system down-

loads, 12
preparing bootable SD

cards, 17–18

primer, xii, 133–144
prompt, 134
special-purpose distribu-

tions, 13
SSH, 57
wireless keyboards and

mice, 7

listing
directory contents, 134
disk drives, 20
Midori options, 51
package contents, 38
processes, 142
storage devices, 19

locale, configuring, 26, 28

locking/unlocking accounts,
141

login, 25, 57

ls command, Linux, 134

lsusb command, Wi-Fi configu-
ration, 69

LucasArts, 87

LXDE desktop
defaults for new users,

140
exiting, 32
games, 91
German language ver-

sion, 27
navigating, 32
terminal, 133

LXTerminal, 133

M
Mac OS X

preparing bootable SD
cards, 17, 20–22

SSH, 57
VNC, 62–64

MacBooks/MacBook Pros,
preparing bootable SD
cards, 22

Maker Shed, xiii

MAME, 91

man command
about, 142, 144
avconv, 125
FFmpeg, 125

Maniac Mansion, 87

manuals
about, 144
avconv, 125
FFmpeg, 125
usermod, 142

Index • 149

Master In, Slave Out (MISO),
115

Master Out, Slave In (MOSI),
115

masters, SPI, 114, 118

MCP3008-I/P analog-to-digi-
tal converter, 107, 113–120

media, see also games; video
multimedia center

project, 13, 75–84
Pi Store, 38

memory
about, 2
camera configuration,

123
layout, 30, 43, 123
LED alarm project, 93–

105
SD cards, 5
viewing, 30, 103
web browser usage, 53–

54

Memory Split menu, 30

memwatch.sh script, 104

<meta> tag, refreshing web-
sites automatically, 50

micro-USB port, 3, 6

Midori, see also web browsers
download storage, 50
kiosk project, 47–51
limitations, 53
options, 51
user agent, 55
using, 54–56

MIMEMultipart object, 129

Minecraft, 92

MISO (Master In, Slave Out),
115

mode command, GPIO pins,
98

Model A
connectors, 3–5, 8
hardware, 1, 4
power supply, 6
status LEDs, 4
USB port and hubs, 3

Model B
back side illustration, 4
connectors, 3–5, 8
front side illustration, 2
hardware, 1–5
power supply, 6
status LEDs, 4

modes
file, 135
GPIO pins, 98, 111

ModMyPi, 8

Mojang, 92

MOSI (Master Out, Slave In),
115

motion detector project, 107–
113

motion_detected() method, 112

mouse
connecting, 7
point-and-click adventure

games, 85, 87

Mouser, 94

MP4, 126

MPEG-2 license, 81

multimedia center project,
13, 75–84

music
formats, 81
multimedia center

project, 75–84

N
-n option, camera, 124

nano text editor, 137

native games, 91

navigation
games, 90
Linux file system, 136
LXDE desktop, 32
manual pages, 144
nano, 137
Raspi-config, 23
Wi-Fi configuration, 71
XBMC, 78–79

NES (Nintendo Entertainment
System) emulator, 88

netmask, configuring static IP
addresses, 74

network, configuring static IP
addresses, 74

networking
connectors, 3, 8
desktop sharing, 60–64
everyday tasks, 53–56
Pi as web server, 64–67
SSH, 56–60
status LEDs, 4
Wi-Fi, 5, 67–74, 78
XBMC, 78, 80–81

New Out Of Box Software,
see NOOBS

NFS, XBMC support, 81

Nginx, 64

Nintendo Entertainment Sys-
tem (NES) emulator, 88

NOOBS, 14–16

NOOBS Lite, 14

NTSC, output modes and
composite, 15

numid options in amixer, 46

O
OK status LED, 4

openSUSE, 12

operating systems, see al-

so Debian Linux; Linux
booting from SD cards,

17–22
choosing, xii, 11–14
installing, 11–22
limitations, 12
using multiple, 11, 14, 16

of option, preparing bootable
SD cards, 22

orientation, chip, 116

out mode, GPIO pins, 98

output mode, NOOBS and
displays, 15

overclocking
Chromium and, 54
disabling, 29
file system errors, 25
with Raspi-config, 29
warranty and, 44

overscan, configuring, 29, 43

P
Pac-Man, 89, 92

package managers, 12, 33–38

packages
finding, 37
listing contents, 38
package managers, 12,

33–38
removing, 36
updating, 36

pacman package manager, 38

PAL, output modes and com-
posite, 15

paper case, 8

Parallax PIR sensor, motion
detector project, 107–113

parent directories, 136

parent process IDs, 143

partitions, SD cards, 19

Index • 150

passive infrared sensors,
see PIR sensor

PassiveInfraredSensor class, 111,
129

passwd command, 142

passwords
adding new users, 139
changing, 25, 142
default, 25
SSH, 56–60
view-only, 61
VNC, 61

paths, absolute and relative,
136

PDF readers, installing/unin-
stalling, 34

performance, game emula-
tors, 89, 91

peripherals, choosing, 6–8

permissions
file, 135
web server, 65

phones, multimedia center
remote control, 82–84

photos, see camera

PHP, 67–68, 104

Pi, see Raspberry Pi

Pi Store, 38, 92

PIDs, 143

pin argument, motion detec-
tion project, 111

ping command, 73

PIR sensor
burglar alarm project,

121, 126–130
motion detector project,

107–113
troubleshooting, 130

PIR_PIN constant, motion detec-
tor project, 112

Pitfall, 89

playback route, setting, 46

PNG format, 124

point-and-click adventure
games, 85, 87

port address, VNC, 61

power consumption
camera, 121
hardware, 6
overclocking, 29

power supply
choosing, 6
keyboards and mice, 7

limitations on devices, 6
overclocking, 29

PPIDs, 143

previewing photos, 123

primer, Linux, xii, 133–144

private-public key pairs, 57

privileges, user, 139–140

processes, managing Linux,
142–144

processor, 2

programming and Pi develop-
ment, xi

prompt, Linux, 134

Prototyping Pi Plate, 120

ps command, 142

pscp command, 60

public-private key pairs, 57

pulse-width modulation
(PWM), 95

purge command, 35

PuTTY, 57–58, 60

pwd command, 136, 140

PWM (pulse-width modula-
tion), 95

pwm mode, GPIO pins, 98

PWR status LED, 4

py-spidev library, tempera-
ture sensor project, 118–
120

Python
burglar alarm camera,

127–130
games, 91
motion detector project,

110–113
Raspbmc installer, 76
SMTP support, 128
temperature sensor

project, 118–120
time functions, 119

Q
Quake II, 92

Quake III, 85, 92

R
r file permissions, 135

-r option, deleting user files,
141

RadioShack, 94

RAM, layout, 30

Raspberry Foundation, web-
site, xi

Raspberry Pi
back side illustration, 4
buying, xiii
download page, 12, 14
front side illustration, 2
hardware, 1–8
price, xi
versions, 1

Raspbian team, website, xiv

Raspbmc, multimedia center
project, 13, 75–84

Raspi-config
camera, 123
configuring and using,

23–32
invoking, 24
navigating with keyboard,

23
overclocking, 29
SPI, 115
SSH enabling, 56

Raspian, see Debian Linux;
Linux

raspistill
burglar alarm camera,

127–128
taking photos with, 123
time-lapse videos, 124

raspivid, high-definition video
recording, 125

Rastrack, 29

read command, GPIO pins, 98

read file permissions, 135

read-only access, VNC, 61

readall command, GPIO pins,
99

real-time clock (RTC), 5, 28

reboot command, 144

refreshing websites automati-
cally, 50

relative paths, 136

remapping keyboard, 26, 91

remote control, XBMC multi-
media center, 82–84

remove command, 36

resistor values, 97

resistors
about, 97
memory alarm project,

93, 97

resolution, camera, 121

resource usage
Midori, 55

Index • 151

PHP, 67
video generation, 125

resources
book web page, xiv
compatible hardware,

xiv, 6
Debian image, 17
download page, 12, 14
GPIO pins, 95
NFS, 81
PDF readers, 34
Python, 110
Raspberry Foundation, xi
Samba, 81
Twitter search widget, 49
XBMC, 80–81

RISC OS, 12–13

rm command, 140

ROM, game cartridges, 89

RPi library, motion detector
project, 110–113

rpi-update, 42

RS Components, xiii

RTC (real-time clock), 5, 28

rwx file permissions, 135

S
Safari, VNC servers, 62

safe mode, HDMI, 15

Samba, XBMC support, 81

saving changes in nano, 138

Schafer, Tim, 87

scp command
generating key pairs, 59
XBMC, 81

Scratch, 26

screen sharing, VNC, 60–64

Script Creation Utility for
Maniac Mansion (SCUMM),
87

scrolling, man pages naviga-
tion, 144

SCUMM, 87

ScummVM, 88

SD cards
adding files to XBMC, 80
booting from, 5, 17–22
choosing, 7
compatibility, 7
configuring space on, 25
formatting, 14
installing operating sys-

tems from, 11
NOOBS installation, 14

partitions, 19
preparing bootable, 17–

22
Raspbmc/XBMC, 75–77
sizes, 5, 7, 25
slot, 4
status LED, 4
unmounting, 22

searching
packages, 37
Twitter for kiosk project,

47–51
wireless networks, 69, 71

The Secret of Monkey Island,
85, 87

Secure Shell, see SSH

security, see passwords; SSH

Sega Mega Drive emulator, 88

self argument
motion detection project,

111
temperature sensor

project, 118

send() method, burglar alarm
project, 129

_ _send_email() method, burglar
alarm project, 129

sensors
burglar alarm project,

121, 126–130
motion detector project,

107–113
temperature sensor

project, 107, 113–120

serial bus, SPI, 114, 118

Serial Peripheral Interface
(SPI), 114–120

servers
Arch Linux ARM, 12
Pi as web server, 64–67
VNC, 61–64

set_led() function, memory
alarm project, 102

setmode() function, GPIO pins,
111

setup() method, GPIO pins, 112

SFTP, XBMC support, 81

SHA-1 checksum, 14, 18–20

sharing, desktop, 60–64

shell, about Linux, 133

shutdown, 32, 144

SIGINT signal, 143

siren sound test, 46

Slave Select (SS) line, 115

slaves, SPI, 114, 118

smartphones, multimedia
center remote control, 82–
84

smptlib, 129

SMTP, 128

Snake, 91

SoC (system on a chip), 2

software
installing, 33, 38
managing with apt-get, 33–

38
Pi Store, 38
updating, 36, 122

sound, see audio

spacebar
games navigation, 90
locale configuration, 27
man pages navigation,

144
Raspi-config navigation,

23
Wi-Fi configuration, 71

SparkFun, xiii, 94

speed
default, 29
game emulators, 89, 91
overclocking, 25, 29, 44,

54
XBMC menu, 79

SPI (Serial Peripheral Inter-
face), 114–120

spidev library, temperature
sensor project, 116, 118–
120

SpiDev object, 118

SS line (Slave Select), 115

SSH
clients, 57
key pairs, 57
using, 56–60
XBMC support, 81

.ssh/authorized_keys file, key
pairs, 59

startx command, 31, 140

static IP addresses
configuring, 73
multimedia center

project, 78

statistics, Wi-Fi, 73

status LEDs
about, 4
memory alarm project,

100–105

Index • 152

Stella, 89–91

stopping
manual displays, 142
processes, 143

storage
inability to boot from ex-

ternal storage devices,
5

listing devices, 19
Midori downloads, 50

strange effects, power supply
issues, 6–7

streaming media, 80–81

style sheets, Twitter search
widget, 49

su command, 139

substitute user identity, 139

sudo command, 140

sudoers file, 141

switching
locales, 27
operating systems with

NOOBS, 16
users, 139

system on a chip (SoC), 2

T
-t option, camera, 124

take_photo() method, burglar
alarm project, 128

TED add-on, 78

television, XBMC, 78

temperature
overclocking, 29
sensor project, 107, 113–

120

terminal
about Linux, 133
text editors, 137, 141

testing, audio, 45

Tetris, 92

text adventure games, 85–87

text editors, 137, 141

text files, editing Linux, 137

threshold values, memory,
104

TightVNC, 61–64

tilde character in prompt, 134

time, setting, 28

time functions, Python, 119

time zone, setting, 28

time-lapse videos, 124

timing, sensors and, 113

TMP36 temperature sensor,
107, 113–120

transferring SD card image to
SD card, 17–22

trap command, memory alarm
project, 103

tri mode, GPIO pins, 98

troubleshooting
burglar alarm project,

130
display output modes

and NOOBS, 15
electronics projects, 105,

120
file system errors, 25
preparing bootable SD

cards, 22

TRS connector, 8

Twitter
kiosk project, 47–51
using mobile website, 55

U
-U option, user files, 141

UIDs, 143

underscan, configuring, 29,
43

uninstalling, software with
apt-get, 35

unlocking/locking accounts,
141

unmounting
partitions, 19
SD cards, 22

up mode, GPIO pins, 98

updating
apt-file, 37
camera drivers, 122
firmware, 41–46
Linux kernel, 41–43
software, 36, 122
websites automatically in

kiosk project, 50

upgrade command, 36

USB card readers, 17

USB devices and XBMC, 80

USB hubs, 3, 6–7

USB ports, 3, 6

USB wall chargers, 6

USB-to-Ethernet converter,
3, 8

user IDs, 143

user agent, Midori, 55

userdel command, 141

usermod command, 141

usernames
adding new users, 139
default, 25, 134

users
adding, 139
adding to web server, 65
deleting, 141
locking/unlocking ac-

counts, 141
managing, 139–142
passwords and user-

names, 25, 142
privileges, 139–140
switching, 139
UIDs, 143

V
/var/www directory

Lighttpd, 65
memory alarm project,

104

VC-1 license, 81

VDD pin, MCP3008, 114

Velocix, 38

versions
Debian Linux, xiv, 41
firmware, 41
Linux kernel, 41
NOOBS support, 16
Raspberry Pi, 1
software, 36

vertical option, camera, 124

-vf option, camera, 124

VGA displays, 3

vi text editor, 141

Vice, 91

video
burglar alarm project,

121, 126–130
camera controls, 121–126
configuring, 43–45
formats, 81
game emulators, 90
high-definition, 121, 125
multimedia center

project, 75–84
overscan/underscan, 29,

43
time-lapse, 124

VideoCore IV, 2

view-only passwords, 61

visudo command, 141

VNC (Virtual Network Comput-
ing), 60–64

Index • 153

voltage
analog sensors, 113–

114, 120
digital sensors, 107, 110,

113
GPIO pins, 95
power supply, 6

VREF pin, MCP3008, 114

W
wall chargers, 6

warranty and overclocking,
44

Web (web browser), 55

web applications, Coder, 13

web browsers
choosing, 51
Chromium, 12, 51–54
everyday tasks, 53–56
kiosk mode, 50
kiosk project, 47–51
limitations, 53
memory alarm project,

104
multimedia center remote

control, 82
NOOBS, 15

VNC servers, 62
Web, 55

web pages
creating, 65
dynamic content, 67–68

web servers
permissions, 65
Pi as web server, 12, 64–

67

websites
disabling JavaScript, 54
refreshing automatically,

50

wheezy distribution, see De-
bian Linux; Linux

whitespaces, Python, 111

Wi-Fi
configuring, 67–74
hardware, 5
XBMC, 78

widgets, kiosk project, 48

WiFi Config tool, 68

Win32 Disk Imager, 17

Windows
preparing bootable SD

cards, 17
SSH, 57–58, 60

wireless keyboards and mice,
problems with, 7

WiringPi, 98

working directory, 136

write command, GPIO pins, 98

write file permissions, 135

www-data group, 65

X
x file permissions, 135

XBMC, multimedia center
project, 75–84

xfer2() method, temperature
sensor project, 119

Xpdf, 34

xtightvncviewer client, 63

Y
YouTube, 55

yum package manager, 38

Z
Z-language, 86

Z-machine, 86

Zork, 85–87

Index • 154

Sound and Arduino!
Add live sound to your apps, and explore the Arduino.

Programming Sound with Pure Data
Sound gives your native, web, or mobile apps that extra

dimension, and it’s essential for games. Rather than

using canned samples from a sample library, learn

how to build sounds from the ground up and produce

them for web projects using the Pure Data program-

ming language. Even better, you’ll be able to integrate

dynamic sound environments into your native apps or

games—sound that reacts to the app, instead of

sounding the same every time. Start your journey as

a sound designer, and get the power to craft the sound

you put into your digital experiences.

Tony Hillerson

(196 pages) ISBN: 9781937785666. $36

http://pragprog.com/book/thsound

Arduino
Arduino is an open-source platform that makes DIY

electronics projects easier than ever. Even if you have

no electronics experience, you’ll be creating your first

gadgets within a few minutes. Step-by-step instructions

show you how to build a universal remote, a motion-

sensing game controller, and many other fun, useful

projects. This book has now been updated for Arduino

1.0, with revised code, examples, and screenshots

throughout. We’ve changed all the book’s examples

and added new examples showing how to use the Ar-

duino IDE’s new features.

Maik Schmidt

(272 pages) ISBN: 9781934356661. $35

http://pragprog.com/book/msard

http://pragprog.com/book/thsound
http://pragprog.com/book/msard

Long Live the Command Line!
Use tmux and Vim for incredible mouse-free productivity.

tmux
Your mouse is slowing you down. The time you spend

context switching between your editor and your con-

soles eats away at your productivity. Take control of

your environment with tmux, a terminal multiplexer

that you can tailor to your workflow. Learn how to

customize, script, and leverage tmux’s unique abilities

and keep your fingers on your keyboard’s home row.

Brian P. Hogan

(88 pages) ISBN: 9781934356968. $16.25

http://pragprog.com/book/bhtmux

Practical Vim
Vim is a fast and efficient text editor that will make

you a faster and more efficient developer. It’s available

on almost every OS—if you master the techniques in

this book, you’ll never need another text editor. In more

than 100 Vim tips, you’ll quickly learn the editor’s core

functionality and tackle your trickiest editing and

writing tasks.

Drew Neil

(346 pages) ISBN: 9781934356982. $29

http://pragprog.com/book/dnvim

http://pragprog.com/book/bhtmux
http://pragprog.com/book/dnvim

Android and Processing
Script your Android device right on the device, and explore Processing on Android for faster

development.

Developing Android on Android
Take advantage of the open, tinker-friendly Android

platform and make your device work the way you want

it to. Quickly create Android tasks, scripts, and pro-

grams entirely on your Android device—no PC required.

Learn how to build your own innovative Android pro-

grams and workflows with tools you can run on An-

droid itself, and tailor the Android default user inter-

face to match your mobile lifestyle needs. Apply your

favorite scripting language to rapidly develop programs

that speak the time and battery level, alert you to im-

portant events or locations, read your new email to

you, and much more.

Mike Riley

(232 pages) ISBN: 9781937785543. $36

http://pragprog.com/book/mrand

3D Game Programming for Kids
You know what’s even better than playing games?

Creating your own. Even if you’re an absolute beginner,

this book will teach you how to make your own online

games with interactive examples. You’ll learn program-

ming using nothing more than a browser, and see cool,

3D results as you type. You’ll learn real-world program-

ming skills in a real programming language: Java-

Script, the language of the web. You’ll be amazed at

what you can do as you build interactive worlds and

fun games. Appropriate for ages 10-99!

Chris Strom

(250 pages) ISBN: 9781937785444. $36

http://pragprog.com/book/csjava

http://pragprog.com/book/mrand
http://pragprog.com/book/csjava

Seven in Seven
From Web Frameworks to Concurrency Models, see what the rest of the world is doing with

this introduction to seven different approaches.

Seven Web Frameworks in Seven Weeks
Whether you need a new tool or just inspiration, Seven

Web Frameworks in Seven Weeks explores modern

options, giving you a taste of each with ideas that will

help you create better apps. You’ll see frameworks that

leverage modern programming languages, employ

unique architectures, live client-side instead of server-

side, or embrace type systems. You’ll see everything

from familiar Ruby and JavaScript to the more exotic

Erlang, Haskell, and Clojure.

Jack Moffitt, Fred Daoud

(302 pages) ISBN: 9781937785635. $38

http://pragprog.com/book/7web

Seven Concurrency Models in Seven Weeks
Your software needs to leverage multiple cores, handle

thousands of users and terabytes of data, and continue

working in the face of both hardware and software

failure. Concurrency and parallelism are the keys, and

Seven Concurrency Models in Seven Weeks equips you

for this new world. See how emerging technologies

such as actors and functional programming address

issues with traditional threads and locks development.

Learn how to exploit the parallelism in your computer’s

GPU and leverage clusters of machines with Map-Re-

duce and Stream Processing. And do it all with the

confidence that comes from using tools that help you

write crystal clear, high-quality code.

Paul Butcher

(300 pages) ISBN: 9781937785659. $38

http://pragprog.com/book/pb7con

http://pragprog.com/book/7web
http://pragprog.com/book/pb7con

Put the “Fun” in Functional
Elixir puts the “fun” back into functional programming, on top of the robust, battle-tested,

industrial-strength environment of Erlang.

Programming Elixir
You want to explore functional programming, but are

put off by the academic feel (tell me about monads just

one more time). You know you need concurrent appli-

cations, but also know these are almost impossible to

get right. Meet Elixir, a functional, concurrent language

built on the rock-solid Erlang VM. Elixir’s pragmatic

syntax and built-in support for metaprogramming will

make you productive and keep you interested for the

long haul. This book is the introduction to Elixir for

experienced programmers.

Dave Thomas

(240 pages) ISBN: 9781937785581. $36

http://pragprog.com/book/elixir

Programming Erlang (2nd edition)
A multi-user game, web site, cloud application, or

networked database can have thousands of users all

interacting at the same time. You need a powerful, in-

dustrial-strength tool to handle the really hard prob-

lems inherent in parallel, concurrent environments.

You need Erlang. In this second edition of the best-

selling Programming Erlang, you’ll learn how to write

parallel programs that scale effortlessly on multicore

systems.

Joe Armstrong

(548 pages) ISBN: 9781937785536. $42

http://pragprog.com/book/jaerlang2

http://pragprog.com/book/elixir
http://pragprog.com/book/jaerlang2

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers will

be there with more titles and products to help you stay on top of your game.

Visit Us Online
This Book’s Home Page

http://pragprog.com/book/msraspi2
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates
Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community
Read our weblogs, join our online discussions, participate in our mailing list, interact with

our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you'd like to have a paper copy of the book. It's available

for purchase at our store: http://pragprog.com/book/msraspi2

Contact Us
http://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://pragprog.com/write-for-usWrite for Us:

+1 800-699-7764Or Call:

http://pragprog.com/book/msraspi2
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
http://pragprog.com/book/msraspi2
http://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://pragprog.com/write-for-us

	Cover
	Table of Contents
	Acknowledgments
	Preface
	Who Should Read This Book?
	What's in This Book?
	Where Can I Get a Raspberry Pi and Additional Hardware?
	Debian Linux
	Code Examples and Conventions
	Online Resources

	1. Meet the Raspberry Pi
	Get to Know the Hardware
	What Else You Need
	Next Steps

	2. Install an Operating System
	See What's Available
	Have a Look Around with NOOBS
	Prepare a Bootable SD Card
	Next Steps

	3. Configure Raspbian
	Boot the Pi for the First Time
	Customize Your Installation with Raspi-config
	Start the Desktop
	Manage Your Software with apt-get
	Install Software and Media Using the Pi Store
	Next Steps

	4. Configure the Firmware
	Update the Firmware and Kernel
	Configure the Video Output
	Test and Configure the Audio System
	Next Steps

	5. Intermezzo: Build a Kiosk with the Pi
	Display Twitter Live Search Information
	Refresh Websites Automatically
	Try Different Browsers
	Next Steps

	6. Networking with the Pi
	Perform Everyday Tasks on the Web
	Use Secure Shell with the Pi
	Share Desktops with the Pi
	Turn the Pi into a Web Server
	Add Wi-Fi to the Pi
	Next Steps

	7. Turn the Pi into a Multimedia Center
	Install Raspbmc
	Start Raspbmc for the First Time
	Add Files to XBMC
	Control XBMC Remotely
	Next Steps

	8. Play Games on Your Pi
	Play Interactive Fiction
	Play Point-and-Click Adventures
	Emulate Other Platforms
	Play Native Games
	Next Steps

	9. Tinker with the GPIO Pins
	What You Need
	Meet the Pi's GPIO Pins
	Build a Basic Circuit
	Control an LED Using the GPIO Pins
	Build an Out-of-Memory Alarm
	Display the GPIO Status in a Browser
	What If It Doesn't Work?
	Next Steps

	10. Working with Digital and Analog Sensors
	What You Need
	Detect Motion with the Pi
	Measure Temperature with the Pi
	What If It Doesn't Work?
	Next Steps

	11. Control the Pi Camera
	Meet the Camera's Hardware
	Connect the Camera to the Pi
	Install the Camera Drivers
	Take Some Photos
	Record High-Definition Videos
	Build a Burglar Alarm
	What If It Doesn't Work?
	Where to Go from Here

	A1. A Linux Primer
	A First Encounter
	Navigate Through the File System
	Edit Text Files
	Manage Users
	Manage Processes
	Shut Down and Reboot the Pi
	Get Help

	Index
	– SYMBOLS –
	– DIGITS –
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– J –
	– K –
	– L –
	– M –
	– N –
	– O –
	– P –
	– Q –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –
	– X –
	– Y –
	– Z –

