e

Bl Sales (408) 743-3355

iIAPX 86,88
Users Manual

s ® o _JNE SR
" o' & . 5 ® ;
) °* o)
°
o @
-~ ."‘
00 00
® 0O ® 00
® o o ® & o
e e o o e o o e o
e o o o o e o o o o o
e o o o e o o o o
e o o o o e o o o
e o o o e o o ;
® o o ® o o
® 00 ® 00
o0 O 00

Hamiltonbh LAY et

ELECTRDNICS A v oF ANET I

1175 Bordeaux Drive, Sunnyvale, California 94086

Admin, (408) 743-3300
Cust. Service (408) 743-3325

Order Number: 210201-001

intel

IAPX 86, 88 USER’S MANUAL

AUGUST 1981

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may
appear in this document nor does it make a commitment to update the information contained herein.

‘Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, duplication or
disclosure is subject to restrictions stated in Intel's software license, or as defined in ASPR 7-104.9 (a) (9). Intel Corporation
assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit
patent licenses are implied.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of
Intel Corporation.

The following are trademarks of Intel Corporation and may only be used to identify Intel products:

BXP Intelevision MULTIBUS

CREDIT Intellec MULTIMODULE

i iSBC Plug-A-Bubble

ICE iSBX PROMPT

ICS Library Manager Promware

im MCS RMX

Insite Megachassis UPI

Intel Micromainframe uScope
Micromap System 2000

MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered trademark of Mohawk
Data Sciences Corporation.

Additional copies of this manual or other Intel literature may be obtained from:
Intel Corporation
Literature Department SV3-3

3065 Bowers Avenue
Santa Clara, CA 95051

© INTEL CORPORATION, 1981 ii AFN-01300C-1

Table of Contents

CHAPTER 1
Introduction .
Manual Organization 1-1
iAPX Nomenclature e 1-1
iAPX 86 and iAPX 88 Architecture 1-2
Memory Segmentation 1-2
Addressing Structure 1-2
Operation Register Set 1-4
CHAPTER 2 ,
iAPX 86, 88 Central Processing Units
Processor Overview 2-1
Processor Architecture 2-3
Execution Unit00l 2-5
Bus Interface Unit 2-5
General Registersc.oo.t 2-6
Segment Registers 2-7
Instruction Pointer 2-7
Flagscooiiiiiiiiiiiiiiiiiia, 2-7
8080/8085 Register and Flag
Correspondenceic.iveinnnnn 2-8
Mode Selection, 2-8
Memoryo oo il 2-8
Storage Organization 2-8
Segmentationol 2-10
Physical Address Generation 2-11
Dynamically Relocatable Code 2-13
Stack Implementation 2-14
Dedicated and Reserved
Memory Locations 2-14
8086/8088 Memory Access
Differencescoiiiiiiiiiiinnn 2-15
Input/Qutput 2-15
Input/Output Space 2-16
Restricted 1/O Locations 2-16
8086/8088 Memory Access
Differencesccoiiiiiiiiioat, 2-16
Memory-Mapped I/O 2-16
Direct Memory Access 2-17
8089 Input/Output Processor (IOP) - 2-17
Multiprocessing Features 2-17
BusLockooiiiiiiiieeen 2-17
WAITand TEST e Wi eaensaas 2-18
Escapeooin e 2-19
© Request/Grant Lines 2-20
Multibus™ Architecture 2-21
8289 Bus Arbiterl 2-22
Process Control and Monitoring 2-22
“Interrupts ..o e 2-22
System Resetcoiiiiiininn. 2-29
Instruction Queue Status 2-29
ProcessorHalt 2-29
Status Linescciiiiiiin, 2-30

Instruction Set 2-30
Data Transfer Instructions 2-31
Arithmetic Instructions 2-33
Bit Manipulation Instructions 2-38
String Instructions 2-40
Program Transfer Instructions 2-43
Processor Control Instructions 2-47
Instruction Set Reference

Information ool 2-48
Addressing Modes 2-68
Register and Immediate Operands 2-68
Memory Addressing Modes 2-68
I/O Port Addressing 2-72
Programming Facilities 2-72
Software Development Overview 2-73
PL/IM-86 ...t 2-75
ASM-86 2-83
LINK-86ccoviviiiiiiiiiieannn. 2-90
LOC-86covviiiiiiiiiiiiiinnanns 2-90
LIB-86 ... 2-91
OH-86 ...ooviii it 2-91
CONV-86coiiiiiiiiiiiiiinennn. 2-92
Sample Programs 2-92
Programming Guidelines 2-96
Programming Examples 2-100

CHAPTER 3
The 8089 Input/Output Processor

Processor Overview 3-1
Evolution 3-1
Principles of Operation 3-2
Applicationsl 3-12
Processor Architecture 3-13
Common Control Unit (CCU) 3-13
Arithmetic/Logic Unit (ALU) 3-13
Assembly/Disassembly Registers 3-14
Instruction Fetch Unit 3-14
Bus Interface Unit (BIU) 3-16
Channels, 3-16
Memoryiiiiiiiiiinn. 3-21
Storage Organization 3-22
Dedicated and Reserved .

Memory Locations 3-23
Dynamic Relocation 3-23
Memory Accesscciiiiiiinn 3-24
Input/Output 3-25
Programmed /O 3-25
DMATransfersooiiinnn.. 3-27
Multiprocessing Features 3-34
Bus Arbitration000e 3-34
Bus Load Limit 3-36
BusLockc..iiiiiiiiiiina, 3-37

CHAPTER 3 (Continued)
The 8089 Input/Output Processor
Processor Control and

Monitoringl 3-37
Initialization ool 3-37
Channel Commands 3-40
DRQ (DMA Request) 3-43
EXT (External Terminate) 3-43
Interrupts ...l 3-43
Status Linesl 3-43
InstructionSet 3-44
Data Transfer Instructions 3-44
Arithmetic Instructions 3-45
Logical and Bit Manipulation
Instructions it 3-46
Program Transfer Instructions 3-48
Processor Control Instructions 3-49
Instruction Set Reference
Information oo Ll 3-51
Addressing Modes 3-59
Register and Immediate Operands 3-59
Memory Addressing Modes 3-59
Programming Facilities 3-63
ASM-89l 3-63
Linking and Locating ASM-89
Modules ... i, 3-76
Programming Guidelines 3-79
Programming Examples 3-81
CHAPTER 4

Hardware Reference Information
Introductionl 4-1
8086 and 8088 CPUs 4-1
CPU Architecture 4-1
Bus Operation0....... 4-5
Clock Circuitcciiiiiiiinaian.. 4-10
Minimum/Maximum Mode 4-10
External Memory Addressing 4-14
/O Interfacingi.c.c v, 4-15
Interrupts. i 4-16
Machine Instruction Encoding and

"Decoding ...l i i 4-18
8086 Instruction Sequence "............. 4-37
8089 1/0 Processori.... 4-38
System Configuration 4-39
Bus Operation 4-41
Initialization oL 4-44
1/0 Dispatching0........... 4-46
DMATransfers 0 4-47
DMATermination0......... 4-50
Peripheral Interfacingo.......... 4-50
Instruction Encoding 4-52

APPENDIX A
Application Notes
AP-67 8086 System Design A-3
AP-61 Multitasking for the 8086 A-67
AP-50 Debugging Strategies and
Considerations for 8089 Systems A-85

AP-51 Designing 8086, 8088, 8089
Multiprocessing Systems with the 8289
BusArbiter ...l A-111
AP-59 Using the 8259A Programmable
Interrupt Controller

AP-28A Intel® Multibus™ Interfacing ... A-175
APPENDIX B
Device Specifications
IAPX 86/10 ..ot B-1
Military iAPX 86/10 B-25
18086 ...c.viiiiiii i B-26
IAPX 88/10c.vviiiiiiiiiiiinanen B-27
8089 HMOSI/OcviviiiiiiaaL B-53
8259A/8259A-2/8259A-8 B-67
8282/8283 ... B-84
18282/8283ciiiiiiiiiiieas B-89
8284A ... B-90
M8284 B-98
18284 e B-99
18286/8287 ...t B-100
8288 B-101
18288 B-108
B289 ... B-109
Intellec Series Il B-120
Intellec Series Il B-124
PL/MB86,88ccoviiiiiiiinn, B-131
FORTRAN 86,88 B-136
PASCAL 86,88 e B-139
8086/8088 Software ~.................. B-142
8087 Software Support B-152
8089 Assembler Support Pack B-155
ICEBBA. ..o vttt eiiieiieeainanns B-157
ICEB6/88Acoiiiiiiiiiinnnn. B-165
SUPPLEMENT
iAPX 86/20, 88/20 Numerics Supplement

Table of Contents

Processor Overview S-1
Processor Architecture S-7
Computation Fundamentals S-11
Memory ...t S-21
Multiprocessing Features S-22
Processor Control and Momtonng S-26

“Instruction Set - o il S-29
Programming Facilities S-58

SUPPLEMENT
IAPX 86/20, 88/20 Numerics Supplement
(Continued)

Special TOpiCScovveviieinnannn.

Programming Examples

86/20, 88/20 Device Specifications

Tables
S-1 8087/Emulator Speed
Comparison

S-2 DataTypesccvvvvennn..
S-3 Principal Instructions
S-4 Real Number Notation

S-5 Rounding Modes
S-6 Exception and Response

Summary ...,

S-7 Processor State
Following Initialization

S-8 Bus Cycle Status Signals
S-9 Data Transfer Instructions

S-10 Arithmetic Instructions
S-11 Basic Arithmetic Instructions

and Operands
S-12 Comparison Instructions
S-13 FXAM Condition Code Setting

S-14 Transcendental Instructions

S-15 Constant Instructions

S-16 Processor Control Instructions
S-17 Key to Operand Types
S-18 Execution Penaities

S-19 Instruction Set

Reference Data
§-20 PL/M-86 Built-in Procedures
S-21 Storage Allocation Directives

S-22 Addressing Mode Examples

S-23 Denormalization Process

S-24 Exceptions Due to Denormal

Operandsccvevvnnn..

S$-25 Unnormal Operands and

Resultscoooiiiiiat.
S-26 Zero Operands and Results

S-27 Infinity Operands and Results
S-28 Binary Integer Encodings

S-29 Packed Decimal Encodings

S-30 Real and Long Real

Encodings

S-31 Temporary Real Encodings

S-32 Exception Conditions and
Masked Responses

S-33 Masked Overflow Response for

Directed Rounding

A-1. Instruction Encoding A-1
A-2. Machine Instruction Decoding

Guide, A-2
Figures
S-1 8087 Numeric Data Processor

Pin Diagram S-2
S-2 8087 Evolution and Relative

Performance S-2
S-3 NDP Interconnect S-7
S-4 8087 Block Diagram S-8
S-5 Register Structure S-9
S-6 Status Word Format S-10
S-7 Control Word Format S-11
S-8 TagWord Format S-12
S-9 Exception Pointers Format S-12
S-10 8087 Number System S-13
S-11 Data Formats S-14
S-12 Projective Versus Affine

Closureccviiiieeinninnn. S-18
S-13 Storage of Integer Data Types S-21
S-14 Storage of Real Data Types S-21
S-15 Synchronizing Execution

WithWAIT ..., S-24
S-16 Interrupt Request Logic S-27
S-17 Interrupt Request Path S-29
S-18 FSAVE/FRSTOR Memory

Layout ...l S-41
S-19 FSTENV/FLDENV Memory

Layoutl S-41
S-20 Sample 8087 Constants S-43
S-21 Status Word RECORD

Definition S-62
S-22 Structure Definition S-62
S-23 Sample PL/M-86 Program S-64
S-24 Sample ASM-86 Program S-65
S-25 Instructions and Register

Stack S-68
S-26 Conditional Branching

for Compares S-82
S-27 Conditional Branching for

FXAM ... S-83
S-28 Full State Exception Handler S-86
S-29 Latency Exception Handler S-87
S-30 Reentrant Exception Handler S-87

8087 INSTRUCTIONS, ENCODING
ANDDECODINGccoivennn. S-109

Introduction 1

INTRODUCTION

Successful microcomputer-based designs are judicious
blends of hardware and software. The User’s Manual
addresses both subjects in varying degrees of detail.
This publication is the definitive source of information
describing the iAPX 86 components. Software topics
are given moderately detailed coverage. The manual
serves as a reference source during system design and
implementation.

Intel’s Literature Guide, updated bi-monthly and avail-

able at no cost, lists all other manuals and reference

material. Of particular interest to iAPX 86,88 designers

are: AP-113, Getting Started with the Numeric Data

Processor; AP-106, Multiprogramming with iAPX

86,88 Microsystems; The Peripheral Design Handbook,
" and the iAPX 88 Book.

MANUAL ORGANIZATION

The manual contains four chapters, two appendices,
and a numerics supplement. The remainder of this
chapter describes the architecture of the iAPX 86
and 88.

Chapter 2 describes the iAPX 86 and iAPX 88 Central
Processing Units. Chapter 3 describes the 8089 Input/
Output Processor. These two chapters are identically
organized and focus on providing a functional descrip-
tion of the iAPX 86,88 and 89, plus related Intel
products.

Hardware reference information—electrical charac-
teristics, timing and physical interfacing—for the iAPX
86,88 processors is concentrated in Chapter 4.

Appendix A is a collection of iAPX 86 application
notes; these provide design and debugging examples.
Additional application notes are available through In-
tel’s Literature Department (see Literature Guide).

Appendix B contains iAPX component data sheets and
several systems data sheets. The entire Intel catalog of
data sheets is available in: 1981 Component Data Cata-
log and 1981 Systems Data Catalog.

The Numerics Supplement provides detailed informa-
tion on the 8087 numeric processor extension to the
iAPX 86/10 and 88/10 CPUs.

1-1

MICROSYSTEM 80
NOMENCLATURE

The increase in microcomputer system and software
complexity has prompted Intel to introduce a new fam-
ily of microprocessor products to reduce application
complexity and cost. This new generation of Intel
microprocessors is powerful and flexible and includes
many processor enhancements. These include CPUs,
numeric floating point extensions, I/O processors, and
all the support chips required for a full function system.

As Intel’s product line has evolved, its component-
based product numbering system has become inappro-
priate for all the possible VLSI computer solutions
offered. While the components retain their names, Intel
has moved to a new system-based naming scheme to
accommodate these new VLSI systems.

We have adopted the following prefixes for our product
lines, all of them under the general heading of
Microsystem 80:

iIAPX — Processor Series

iRMX — Operating Systems

iSBC — Single Board Computers
iSBX — MULTIMODULE Boards

Concentrating on the iAPX Series, two processor lines
are currently defined: .

iAPX 86 — 8086 CPU-based system
iAPX 88 — 8088 CPU-based system

Configuration options within each iAPX system are
identified by adding a suffix, for example:

iAPX 86/10 — CPU Alone (8086)

iAPX 86/11 — CPU + IOP (8086 + 8089)

iAPX 88/20 — CPU with Math Extension
(8088, 8087)

iAPX 88/21 — CPU with Math Extension + IOP
(8088, 8087 + 8089)

This improved numbering system will enable us to pro-
vide you with a more meaningful view of the capabili-
ties of our evolving Microsystem 80.

INTRODUCTION

iAPX 86 AND iAPX 88 ARCHITECTURE —
THE FOUNDATION FOR THE FUTURE

Overview

iAPX 86,88 is an evolving family of microprocessors and
peripherals. The family partitions processing functions among
general data processors (8086 and 8088), specialized coproces-
sors like the 8087 numeric data processor, and I/O channel
processors (the 8089).

Four key architectural concepts shaped the data processor
designs. All four reflect the family’s role as vehicles for
modular, high level language programming (in addition to
assembly language programming). The four architectural
concepts are memory segmentation, the operand addressing
structure, the operation register set, and the instruction
encoding scheme. They are distinct departures from the
minicomputer architectural styles of the 1960’s and 1970’s.

These earlier architectures (minicomputers) were designed
for assembly language programming which emphasizes reg-
ister based data and linear programs. Over the last decade,
large software development projects shifted their program-
ming to high level languages which employ modular pro-
gramming and memory based data. The iAPX 86,88
memory segmentation scheme is intended for modular pro-
grams. It supports the static and dynamic memory require-
ments of program modules, as well as their communication
needs. The iAPX 86,88 registers are designed for fast high
level language execution. The scheme employs specialized
registers and implicit register usage. You will derive signifi-
cant performance and memory utilization improvements
directly from these architectural features.

The four concepts are discussed in the following sections.
They are:

® Memory segmentation for modular programming,
evolution to memory management and protection

® Addressing structure for high level programming
languages

® Operation register set for computation

o Instruction set encoding for memory efficiency
and execution speed

Memory Segmentation for Modular Programming

Large programs (10-100K bytes) are not generally written in
assembly language. They are developed in individually com-
piled modules in high level languages. Modular program
development techniques, program libraries, compatible link-
ing, and project management tools are often requirements in
such an environment. A complex application program
might be composed of multiple processes, with each process
constructed from multiple modules. Procésses send mes-
sages to each other for communication, while modules gen-

erally share common data when needed. Ideally, these inter-
module communication paths are well structured and
disciplined.

The iAPX 86,88 segmentation scheme is optimized for the
reference patterns of computer programs. Four segment
registers are provided in a segment register file. Memory
references are relative to automatically selected code seg-
ment (CS) and data segment (DS) registers. The module
shares a stack segment (SS) with all other modules of the
process (task). The module may share a global data segment
with other modules in the process; for example, to send and
receive messages between modules. This segment is accessed
explicitly with the extra segment (ES) register.

This scheme is highly efficient because constant program
references to code and data, as well as the stack, have
automatic segment selection. This results in minimized
instruction length. Only 16 bits are required to address any-
where in the full megabyte address range. Only infrequent
inter-module communications require the extra prefix bits to
explicitly override the automatic segment selection.

There are two other significant advantages to the segment
register concept. First, it separates segment base addresses
from offset addresses which are relative to the segment base.
Only offset addresses are used within object modules. This
supports position-independent, dynamically relocatable mod-
ules. You merely have to alter the CS and DS register contents
to move a module, rather than relinking the whole task and
reloading. This structure employs short addresses (16 rather
than 20-bit) for efficient use of memory.

The second advantage of iIAPX 86,88 segmentation is that it
can be extended to include memory management and multi-
level protection. The contents and width of segmentation
registers are independent of the rest of the instruction set.
The architecture can be made to address additional memory
and provide access rights and limit checking. Using the
mainframe concept of memory based segment tables, this
structure can also support virtual memory. Further, since
only four registers are active in the file at a time, these
features can be accomplished on the CPU chip itself, avoid-
ing the access delays of off-chip memory management.

In summary, memory segmentation has several ultimate
benefits for the end user. It provides for simplified hardware
and faster, modular software development, more easily
maintainable code, and provides an orderly way for the
architecture to grow.

Addressing Structure for High Level
Programming Languages

The iAPX 86,88 architecture employs an operand address-
ing scheme complementing the memory segmentation
scheme. There are four components in an address. They are
the segment, base, index, and displacement. The segment
component was just described. A base register is dedicated to
both the data and stack segments. These base registers may

INTRODUCTION

AX AH AL ACCUMULATOR
BX -BH- A ‘BL’ BASE
CX CH CL. COUNT
DX ~DH DL~ DATA
SP STACK POINTER
BP BASE POINTER
S| SOURCE INDEX
DI DESTINATION INDEX

1P INSTRUCTION POINTER
FLAGSH [FLAGSL STATUSFLAGS

cs CODE SEGMENT

DS DATA SEGMENT

ss STACK SEGMENT

ES EXTRA SEGMENT

Figure 2. iAPX 86/10, 88/10 Register Model

also be used when accessing the extra (global) segment. They
are used for holding the base address of a data structure.

Two index registers are provided for use with the base
registers to dynamically select any element from a based data
structure. Eight or sixteen-bit fixed displacements may be
added to any of these address forms. The complete regis-
ter file is shown in Figure 2 and the addressing structure is
shown in Figure 3.

Referring to Figure 3,aniAPX 86,88 operand address con-
tains up to four components: a segment (S), a base (B), an
index (I), and a:displacement (d). The segment component is
automatically selected for the code, data, and stack seg-
ments. An explicit segment selection is required for data
references in the extra segment. Any combination of the
remaining three address components is permitted in virtually
all memory reference instructions, with at least one always
being present.

Block and string data are extensions to this scheme. They use
different assumptions for source and destination segments,
but the segments are still implicitly accessed. Immediate
operands are also supported.

The iAPX 86,88 is a two operand machine (source and
destination). It supports source/destination operand combi-
nations of register/ memory, memory/register, memory/
memory (string operations only), immediate/ register, and
immediate/ memory. The various address combinations of
S, B,I,and d correspond to common data structures used in
high level language programming. Such data structures can
therefore be implemented easily in assembly language as
well.

Figure 3 shows the correspondence between the most com-
mon iAPX 86,88 address modes and various data types in
high level programming languages. The S component is

COMPONENT

INDEX
DISPLACEMENT

=| S+B+1+d

EFFECTIVE ADDRESS

DESCRIPTION

‘CODE
DATA Selects 64K Address
STACK Range (Segment)
EXTRA
Selects Data
{D_I/_AATAK Structure within
STAC Segment
sounce - St
DESTINATION
Structure
8-BIT Fixed Offset
16 -BIT Selects Sub-Elements
(20 - BIT) One Mega-Byte

Address Range

Figure 3. iAPX 86,88 Four Component Addressing Structure

INTRODUCTION

implicit; the stack base (BP) assumes the stack segment; no B
component, or use of the data base (BX), assumes the data
segment. The less commonly used address modes are not
shown.

The stack base (BP) is a concept borrowed from the family of
P-machines “developed” as ideal PASCAL vehicles. P-
machines term this register the “mark pointer”. It always
points to the base of the current local data area in the stack
segment. This permits efficient local addressing in block-
structured languages such as PASCAL and PL/M. In these
languages, procedures are invoked by pushing their parame-
ters on the stack, calling the procedure, and then allocating
their local data area on the stack. The iAPX 86,88 return
instruction then removes the parameters from the stack, asis
done in the P-machines.

Operation Register Set for Computation

The Intel iAPX 86,88 line is truly a complete family of
microprocessors. The iAPX 86/ 10 and iAPX 88/ 10 are the
general data processor members of the family, while the 8089
is the I/ O processor family member. In addition, the CPU
itself has an interface for attaching coprocessors. Coproces-
sors provide specialized operation set extensions that benefit
the application by performing special purpose logic to
increase performance.)
The iAPX 86/20 Numeric Data Processor is an example of
this concept. Using an 8086 with an 8087 coprocessor (CPU
extension) it provides a one hundred-fold performance boost
over the IAPX 86/ 10 for a wide range of numeric operations.
The full computational capability of the iAPX 86,88 family
can therefore span a much broader range than is possible with
a single microprocessor. This technique has been used success-
fully in the mainframe and minicomputer industries to provide
instruction set options for scientific, commercial, text process-
ing, or other special purpose applications.

An 8087 extends the iAPX 86 or iAPX 88 architecture to
include additional data types, registers, and instructions. The
8086 or 8088, with an 8087 coprocessor, operates on 16, 32,
and 64-bit integers, 32, 64 and 80-bit floating point
numbers, and up to 18 digit packed BCD numbers. Data
conversions and calculations are performed in the 8087
and are transparent to the programmer.

The iAPX 86/ 10 and iAPX 88/ 10 CPUs alone can perform
arithmetic operations on signed and unsigned 8 and 16-bit
binary integers as well as packed and unpacked decimal
integers. The full complement of logical operations are pro-
vided as well. Interesting new features are the string opera-
tions. Six primitive string instructions (move, skip, search,
compare, set, and translate) are standard. When combined
with special control operators, complex string manipula-
tions are possible with two or three instructions.

1-4

Instruction Set Encoding for Memory Efficiency
and Execution Speed

The iAPX 86 uses a byte oriented instruction stream while
operating ‘with a 16-bit data bus. To accomplish this, the
processor is subdivided into two independent parallel pro-
cessors called the bus interface unit (BIU) and the execution
unit (EU). The iAPX 88 employs an identical execution
unit and is 100% code compatible with iAPX 86, yet it
interfaces to an 8-bit wide data bus BIU. The bus interface
unit is an independent processor that prefetches instruc-
tions. Instruction fetch time is therefore mostly over-
lapped with other iAPX 86,88 processor activity. The bus
interface unit permits either instructions or data to be
placed in memory without regard to word boundaries.
(An array of five byte records in PASCAL can be refer-
enced without requiring an additional byte of padding to
word align the records.) Processor subdivision into the
BIU and EU has the additional benefit of minimizing the
effect of wait states and bus hold time on CPU efficiency.

Instruction set encoding is substantially improved when
instructions are composed in byte multiples instead of
words. Instructions in the iAPX 86,88 vary from one to six
bytes in length (not counting optional prefix bytes). The
average instruction is three bytes long. In a word aligned
machine the same information would occupy four bytes.
This and the features described above give the IAPX 86,88
roughly a 30% program space savings over other archi-
tectures.

PROCESSOR PARTITIONING

Beyond efficient support for high level languages, the
iAPX 86 and iAPX 88 establish the foundation for the
family to build on in the 1980’s. The family uses increasing
levels of integration to significantly reduce software, hard-
ware, and development investment. '

TheiAPX 86/ 10 and iAPX 88/ 10 general purpose proces-
sors employ external module integration. Specialized sys-
tem functions are distributed among optimized compo-
nents and removed from the host processor. The CPU is
freed to become the system manager and resource allocator
rather than doing “all things for all programs”. The family
also includes the 8087 Numeric Data Processor and the
8089 I/ O Channel Processor.

These processors are optimized to address the three main
functions in a computer environment: data processing and
control, arithmetic computation, and input/output. The
8087 and 8089 are described below.

The 8087 Numeric Processor Extension (NPX) adds over
50 numeric opcodes and eight 80-bit registers to the host
processor to provide more extensive data and numeric
processing capability. It performs floating point and trans-

INTRODUCTION

HOST CPU (8086 or 8088)

NUMERIC DATA PROCESSOR (8087)

EXECUTION B
UNIT INTERFACE
UNIT

BUS INTERFACE UNIT ! FLOATING POINT EXECUTION UNIT
|

DATA

/\l

= A CONTROL
INSTRUC'l'lIONS ﬂ N
DATA
BLOCK
OPERAND
QUEUE

—

ALU

ADDRESS/STATUS

—

ADL

N

AND
BUS TRACKING

Figure 4. Numeric Data Processor Block Diagram

cendental (trigonometric) functions, processes decimal
operands up to 18 digits without roundoff, and performs
exact arithmetic on integers up to 64 bits long. Another
feature of the NDP, with important benefits to you, is that
it is compatible with the proposed IEEE floating point
standards. It can be used in applications requiring high
speed computation such as numerical analysis, accounting
and financial applications, the sciences, and engineering.
Throughput increases in such applications up to 100 times
current speeds are typical (See Figure 4.)

The 8089 Input/ Output Processor (IOP) is an independent
microprocessor that optimizes input/output operations.
The objective of the IOP is to remove all I/ O details from
application software. It responds to CPU direction but
executes its own instruction stream in parallel with other
processors. I/ O transfers of either 8 or 16-bit data can be

done at rates up to 1.25 megabytes per second. The IOP
therefore combines the attributes of both a CPU and a
DMA controller to provide a powerful I/ O subsystem. An
important feature of the IOP is that it can be physically
isolated from the application CPU. The advantage to you
is that I/ O subsystem changes or upgrades can be made
without any impact to application software. (See Figure 5.)

Summarizing, there are several advantages to external
module integration:

e System tasks may be allocated to special purpose pro-
cessors designed for optimal task handling
Simultaneous operation (parallel processing) provides
highest system performance

Isolated system functions minimize the effect of modifi-
cations, local failures, or errors on the rest of the system

HOST CPU (8086 or 8088))
M PERIPHERALS
execution | BASE
UNIT | INTERFACE 1/0 PROCESSOR (8089) CRT'S
: <:> <:> PRINTERS
| 1o DISKETTES
[} CHANNEL 1
: l
1]
! | -y -
= 8
w M
5 DMA a
b4 .
1 PRIVATE MEMORY
PUBLIC MEMORY CHANNEL 1 PROGRAM
10
HANNEL 2
PROGRAM © CHANNEL 2 PROGRAM
DATA L\.,
~J

Figure 5. 1/0 Processor Block Diagram

1-5

INTRODUCTION

e TheiAPX 86,88 family of processors allows division of
. theapplication into small, manageable tasks for parallel
development, while providing built-in hardware facili-
ties for coordinating processor interaction. With the

iAPX 86,88 approach you can implement high perfor- '

mance systems far more quickly and easily than would
otherwise be possible.

DEVELOPMENT TOOLS
Development Systems

Development systems are a unique cornbmanon of hardware
and software tools which increase your product development
productivity. With Intel development products, you will
shorten the development cycle and reduce your time to
‘market.

Development systems from Intel provide an upgradable spec-
trum of tools ranging from stand alone development systems
to future networks of specialized work stations. Intel elimi-
nates your risk of development system obsolescence by gua-
ranteeing product upgradability and compatibility. This gua-
rantee protects your capital investment.

For small to medium size projects, the Intellec™ development
system is available in many configurations at low cost. For
small projects, these systems have nominal program memory
with floppy disks as peripheral storage devices.. Minimum
configurations may be upgraded to provide increased perfor-
mance, increased memory, and increased mass storage via
hard disk. These more powerful configurations support
medium sized projects.

The Intellec Series I1/85 is a good example of such a system.
It is a complete microcomputer development system inte-
grated into one compact package. The Model 225 includes a
CPU with 64K bytes of RAM, 4K bytes of ROM, a 2000
character CRT, detachable full ASCII keyboard, and a 250K
byte floppy disk drive. The powerful ISIS-II Disk Operating
System software allows you to efficiently develop and debug
iAPX 86,88 programs. Optional storage peripherals provide
over 2 million and 7.3 million bytes of storage on floppy and
hard disk, respectively.

Distributed development configurations address the range of
‘medium to large sized projects. These configurations connect
multiple standalone development systems to more powerful
support resources such as mainframes and their peripherals.

In addition to the Intellec® development system, Intel offers
several products to help you debug and test your hardware and
software. In-Circuit-Emulators, such as ICE-86™ and ICE-
88™, are available to emulate your product environment. They
‘increase development productivity substantially. Another
software tool, RBF-89, helps you debug 8089 software under
ICE control. With these tools, software development time
can be reduced dramatically — lowering your total in-
vestment.

High Level Languages

Programming languages are the key to developing an applica-
tion. Intel programming languages serve three purposes in
your design. First, they are your primary design tool. Intel’s
breadth of languages and extended features give you the
maximum ability to properly design and plan your program.
Second, Intel languages are a communication vehicle between
programmers during implementation and later during modifi-
cation. Standard high level languages allow programmers to
better communicate what the programs.do. Third, Intel lan-
guages are designed in conjunction with Intel microsystems to
provide the greatest code efficiency and execution speed. Intel
languages speed implementation of your design and reduce
maintenance costs.

' MDS-311 is a set of software development tools for iAPX 86

and iAPX 88 applications. It is a complete set of software
products that run on the Intellec Model-800 and Series-II
development systems. The software tools provided include
PL/M-86, high level programmmg language, and the ASM-
86 assembler. Two utilities, LINK86 and LOC86, are supphed
to link separately compiled or assemb]ed program modules
into executable tasks. The lerary Manager, LIB86, lets you
maintain a library of iAPX 86 or iAPX 88 object modu]es
These modules can then be linked in with new programs
without being recomplled This simplifies and speeds your
development. Common code (e.g. a subroutine) only has to be
developed and compiled once. Intel code converters, such as
CONV86, are very useful tools for migrating 8080 or 8085,
280, and 6809 assembly language programs to the iAPX 86 or
iAPX 88. They convert assembly source code to ASM86
source code. This will help you make a rapid transition and cut
redevelopment costs substantially.

Intel will provide a variety of languages for both systems and
applications to facilitate development of your product. You
can choose the language (or languages) which best suits your
product needs and the expertise of your staff. ASM86, the
assembly language, and PL/M-86, the systems oriented high
level language, are both currently available; PASCAL, FOR-

. TRAN, and BASIC will be offered in the near future, and
-~ COBOL is planned after that.

" Intel’s languages also run on your ﬁnal product. Your pro-

1-6

duct’s function is significantly increased when packaged with

_language translators. They allow your customers to tailor your

products for their environment. Intel's languages will save
implementation time and free resources to work on the value-
added portion of your product.

SINGLE BOARD COMPUTERS
ACCELERATE YOUR
MICROSYSTEM SUCCESS

In addition to the increased integration of functions in
VLSI components, there is a strong trend today to imple-
ment microsystem applications with single board compu-

INTRODUCTION

ters. This allows the design engineer to:

Easily configure reliable and cost-effective systems
using iSBC and iSBX standard products.

Overcome the shortage of qualified engineers and
technicians.

Get the end product to market quickly.
Focus on the application.

Offset the increasing cost of capital.

In addition, using iSBC single board computers and iSBX
expansion products in your design reduces the number of
risks that you must face in all phases of the product life
cycle. The four major risk areas that Intel iSBC and iSBX
products will help you overcome are as follows:

With inflation running at its current rate, the amount of
time it takes to get a product from an idea to the market
becomes critical. A delay of a few months can collapse
your return on investment.

Experience shows that the first company that gets its
product to the marketplace usually dominates that
market. You can get your product to the market months
earlier using standard off-the-shelf iSBC, iSBX and
Real-Time Executive (iRMX) Software modules.
Intel’s large board manufacturing and distribution cap-
ability enables you to respond to your market demand
rapidly and in a cost-effective manner.

3. Solution Completeness and Project Credibility

Microprocessor based solutions for today’s problems
are commonplace and are expected to succeed. A broad
spectrum of compatible system components in the
iSBC,iSBX, and iRMX product line increase the prob-
ability of being right the first time. General purpose
iSBCboard solutions are easy to customize through the
use of iISBX modules from Intel, or your own design.

1. Limited Resources 4. Coping with the Technology/Complexity
Usi . Avalanche
sing a fully tested board computer, which incorpo-
rates the key elements of processor, memory and 1/O, iSBCand iSBX products incorporate the latest in VLSI
helps overcome today’s critical shortage of engineers, shortly after their initial introduction. With increasing
programmers and technicans. Implementing iSBC system complexity Intel’s design process and testing
boards and iSBX MULTIMODULES in your design reduces the risk of “gremlin” bugs which multiply with
reduces increasing capital costs in production, QC, and complexity and evade diagnosis. Standards used through-
test. It is estimated that using iISBC boards can save up out the product family such as the de facto industry
to $200,000 per board design. standard MULTIBUS, EIA, IEEE etc. provide a
smooth transition for your product to new and chang-
2. Time to Market Dictates Success or Failure ing processor, memory and I/ O technologies.

Intel’s single board computer product family is continuing
to reduce your risk and protect your investment in the
future by expanding iSBC and iSBX products in three
dimensions: processors, memory, and I/O.

iSBX™ MULTIMODULE AND
iSBX BUS

RAPID VLSI
INFUSION

ISBC™ SINGLE BOARD COMPUTER
STANDARD FORM FACTOR

MULTIMODULE™
MEMORY EXPANSION

X™

REAL-TIME
MULTIPROGRAMMING
EXECUTIVE
SOFTWARE

\ MULTIBUS™ STANDARD ARCHITECTURE

Figure 6. Single Board Computer (iSBC 86/12™)

1-7

INTRODUCTION

SUMMARY

Intel’s iIAPX 86,88 multiple processor family is designed

for modular programming in high level as well as assembly

languages.

e Its memory segmentation scheme is optimized for the
reference needs of computer programs, and is separate
from the operand addressing structure.

o The structure for addressing operands within segments
directly supports the various data types found in high
level programming languages.

o Thefamily provides an operation register set to support
general computation requirements. It also provides for
optimized operation register sets to do specialized data
processing functions with its inherent multi- and copro-
cessor support.

® The family uses optimized instruction encoding for
high performance and memory efficiency

® The family is well supported with development tools
and single board computer products.

This architecture provides the foundation for solving the
application needs in the 1980’s. It makes a noted departure
from architectures of the 1960’s and 1970’s — based on
Intel’s intent to minimize software and hardware product
costs for you, the end user.

" The IAPX 86 and 2
IAPX 88 Central
Processing Units

CHAPTER 2
THE 8086 AND 8088
CENTRAL PROCESSING UNITS

This chapter describes the mainstays of the 8086

microprocessor family: the 8086 and 8088 central o N/ whvee
processing units (CPUs). The material is divided a01a (]2 s[7 apss
into ten sections and generally proceeds from a1z s s8[] aterss
hardware to software topics as follows: e] arrssa
1. Processor Overview a1t []s 36[] Ate/ss
2. Processor Architecture aoto e 351 aterss
. aDs []7 34f] BHE/s7
3. Memory . AD8 I: 8 33|] mn/MX
4. Input/Output a7 []s 2[] /B
5. Multiprocessing Features sosfo 8088 wPnow @asT
. . ADS HLDA (RQ/GTT)
6. Processor Control and Monitoring = »H _ ___
apa []12 29[] WR (LOCK)
7. Instruction Set ‘ ap3 [1s s[wic @
8. Addressing Modes o2 [J14 Py m L
9. Programming Facilities A:' E 1: Z:g:: ::20)
ADO 1
10. Programming Guidelines and Examples i 7 w[®A sy
. . . INTR []18 23] TEST
The chaptgr descr.lbes thq mterngl operation of e e 22| Reaoy
the CPUs in detail. The interaction of the pro-
. aND [f20 21[7] RESET
cessors with other devices is discussed in func-
tional terms; electrical characteristics, timing, and
other information needed to actually interface o]t N/ wfvec
other devices with the 8086 and 8088 are provided aua[]2 o[ats
in Chapter 4. aa[]3 38 [] at6/s3
a12[}4 37[J A17/s4
: an[]s 36 [] A18/55
2.1 Processor Overview anl]s 35| atosss
Lo a7 3af] sso (HIGH)
The 8086. and 8088 are closely related third- as[]s aa [] Mn/ix
generation microprocessors. The 8088 is designed aor[]e a2[17
with an 8-bit external data path to memory and v 08 o0 %OPBS sfHow @asET)
I/0, while the 8086 can transfer 16 bits at a time. avs e o Hoa @6/
}n almost every other respect the processors are e <P e
identical; software written for one CPU will o
. . . ap3[]13 28[]10/M (52)
execute on the other without alteration. The chips o
. . N e e ap2[J14 27] oT/R &1)
are contained in standard 40-pin dual in-line) o —
packages (figure 2-1) and operate from a single ao1Lgts i
+5V power source. #po[]1s 25[] ALE (@s0)
- o : w17 24[]iINTA (@s1)
The 8086 and 8088 are suitable for an exception- iNTR[J18 23] TEST
ally wide spectrum of microcomputer applica- _ cLk 1o 22[] ReADY
tions, and this flexibility is one of their most- ano[] 20 217 Reser
outstanding characteristics. Systems can range
from uniprocessor minimal-memory designs . o
implemented with a handful of chips (figure 2-2), N KL NCaEaNS (g LOCK)
to multiprocessor systems with up to a megabyte
of memory (figure 2-3). Figure 2-1. 8086 and 8088 Central Processing
' Units

8086 AND 8088 CENTRAL PROCESSING UNITS

1 r i r ﬂ i ' PORT A '
' PORT B '

h_d

8155
e | —p|
TIMER ‘&
) | ——
y CLOCK
—»(TIMER
ADDRESS '
A
14 PORT A
ADDRESS/DATA M
&0 ‘-_ —’ 87554
_ ﬁ EPROM
170

PORT B
CONTROL \ N M

14 | 4

~

cLock
GEN. N
L4
b 4 A 4 A 4
Figure 2-2. Small 8088-Based System
: 1/0 MAPPED LOCAL
1/0 DEVICES ROM, RAM RESOURCES
1 1 T
- 1/0 BUS N 4 LOCAL BUS h 4 N
o~ T h 14 A -~ o L4
g4 8284 8288
CLOCK GENERATOR CLOCK GENERATOR BUS CONTROLLER
I ~ 5 I -~
| — .
TRANSCEIVERS TRANSCEIVERS .
AND LATCHES AND LATCHES
8089 iy
) ——————
o |, - <> 8088
\
+ . 4
~ | ~
8288 8289 TRANSCEIVERS TRANSCEIVERS 8289 8288
BUS CONTROLLER BUS ARBITER AND LATCHES AND LATCHES BUS ARBITER BUS CONTROLLER
. 4 . ﬂ .
)]
~ " MULTIBUS™ SYSTEM BUS h 4 i i N
; .
-
MULTIBUS™ CONTROLS MULTIBUS™ CONTROLS

SYSTEM ROM, RAM

Figure 2-3. 8086/8088/8089 Multiprocessing System

2-2

8086 AND 8088 CENTRAL PROCESSING UNITS

The large application domain of the 8086 and
8088 is made possible primarily by the processors’
dual operating modes (minimum and maximum
mode) and built-in multiprocessing - features.
Several of the 40 CPU pins have dual functions
that are selected by a strapping pin. Configured
in minimum mode, these pins transfer control
signals directly to’ memory and input/output
devices. In maximum mode these same pins take
on different functions that are helpful in medium
to large ystems, especially systems with multiple
processors. The control - functions assigned to
these pins in minimum mode are assumed by a
support chip, the 8288 Bus Controller.

The CPUs are designed to operate with the 8089
Input/Output Processor (IOP) and other pro-
cessors in multiprocessing and distributed pro-
cessing systems. When used .in conjunction with
one or more 8089s, the 8086 and 8088 expand
the applicability of microprocessors into 1/0-
intensive data processing systems. Built-in coor-
dinating signals and instructions, and electrical
compatibility with Intel’s Multibus™ shared bus
architecture, simplify and reduce the cost of
developing multiple-processor designs.

Both CPUs are substantially more powerful than
any microprocessor previously offered by Intel.
Actual performance, of course, varies from
application to application, but comparisons to the
industry standard 2-MHz 8080A are instructive.

The 8088 is from four to six times more powerful

than the 8080A; the 8086 provides seven to ten
times the 8080A’s performance (see figure 2-4).

100

RELATIVE PERFORMANCE
=

1972 1974 1977 1978 1979

YEAR INTRODUCED

Figure 2-4. Relative Performance of the
8086 and 8088

The 8086’s advantage over the 8088 is attributable
to its 16-bit external data bus. In applications that
manipulate 8-bit quantities extensively, or that
are execution-bound, the 8088 can approach to
within 10% of the 8086’s processing throughput.

The high performance of the 8086 and 8088 is
realized by combining a 16-bit internal data path
with a pipelined architecture that allows instruc-
tions to be prefetched during spare bus cycles.
Also contributing to performance is a compact
instruction format that enables more instructions
to be fetched in a given amount of time.

Software for high-performance 8086 and 8088
systems need not be written in assembly language.
The CPUs are designed to provide direct hard-
ware support for programs written in high-level
languages such as Intel’s PL/M-86. Most high-
level languages store variables in memory; the
8086/8088 symmetrical instruction set supports
direct operation on memory.operands, including
operands on the stack. The hardware addressing
modes provide efficient, straightforward
implementations of based variables, arrays, ar-
rays of structures and other high-level language
data constructs. A powerful set of memory-to-
memory string operations is available for efficient
character data manipulation. Finally, routines
with critical performance requirements that can-
not be met with PL/M-86 may be written in
ASM-86 (the 8086/8088 assembly language) and
linked with PL/M-86 code.

While the 8086 and 8088 are totally new designs,
they make the most of users’ existing investments
in systems designed around the 8080/8085
microprocessors. Many of the standard Intel
memory, peripheral control and communication
chips are compatible with the 8086 and the 8088.
Software is developed in the familiar Intellec
Microcomputer Development System environ-
ment, and most existing programs, whether writ-
ten in ASM-80 or PL/M-80, can be directly con-
verted to run on the 8086 and 8088.

2.2 Processor Architecture

Microprocessors generally execute a program by
repeatedly cycling through the steps shown below
(this description is somewhat simplified):

1. Fetch the next instruction from memory.

2. Read an operand (if required by the
instruction).

2-3

8086 AND 8088 CENTRAL PROCESSING UNITS

3. Execute the'instruction.

4. Write the result (if required by the
" instruction). '

In previous CPUs, most of these steps have been
performed serially, or with only a single bus cycle
fetch overlap. The architecture of the 8086 and
8088 CPUs, while performing the same steps,
allocates them to two separate processing units
within the CPU. The execution unit (EU) executes
instructions; the bus interface unit (BIU) fetches
instructions,. reads operands and writes results.

The two units can- operate independently. of one
another and are able, under most circumstances,
to extensively overlap instruction fetch with exe-
cution. The result is that, in most cases, the time
normally required to.fetch instructions ‘‘dis-
appears’’ because the EU .executes instructions
that have already been fetched by the BIU. Figure
2-5 illustrates this overlap and compares it with
traditional microprocessor operation. In. the
example, overlapping reduces the elapsed time
required to execute three instructions, and allows
two -additional instructions to be prefetched as
well. .

ELASPED TIME =

y . ” . L)) ‘
- N B FEE F FE R
SECOND 7 5 !

GENERATION

MICROPROCESSOR) - - : B -
BUS: BUSY BUSY BUSY

(N [/ . .
v N) 4 . :

8086/8088 . v N B
worornSetiss< o fFEET] [T laell

L BUS:I BUS'Y | I BUSY | reusv | I BUSY. l | BUSY I I BUSY#"

INSTRUCTION STREAM

[m

B>

1st INSTRUCTION (ALREADY FETCHED):
EXECUTE AND WRITE RESULT

2nd INSTRUCTION:’
EXECUTEONLY -

3rd INSTRUCTION:
READ OPERAND AND EXECUTE

4th INSTRUCTION:
(UNDEFINED)

5th INSTRUCTION:
(UNDEFINED)

Figure 2-5. Overlapped Instruction Fetch and Execution

2-4

8086 AND 8088 CENTRAL PROCESSING UNITS

Execution Unit

The execution units of the 8086 and 8088 are iden-
tical (figure 2-6). A 16-bit arithmetic/logic unit
(ALU) in the EU maintains the CPU status and
control flags, and manipulates the general
registers and instruction operands. All registers
and data paths in the EU are 16 bits wide for fast
internal transfers.

The EU has no connection to the system bus, the
“‘outside world.”’ It obtains instructions from a
queue maintained by the BIU. Likewise, when an
instruction requires access to memory or to a
peripheral device, the EU requests the BIU to
obtain or store the data. All addresses
manipulated by the EU are 16 bits wide. The BIU,
however, performs an address relocation that
gives the EU access to the full megabyte of
memory space (see section 2.3).

Bus Interface Unit

The BIUs of the 8086 and 8088 are functionally
identical, but are implemented differently to
match the structure and performance
characteristics of their respective buses.

The BIU performs all bus operations for the EU.
Data is transferred between the CPU and memory
or 1/0 devices upon demand from the EU. Sec-
tions 2.3 and 2.4 describe the interaction of the
BIU with memory and 1/0 devices.

In addition, during periods when the EU is busy
executing instructions, the BIU ‘‘looks ahead”’
and fetches more instructions from memory. The
instructions are stored in an internal RAM array
called the instruction stream queue. The 8088
instruction queue holds up to four bytes of the
instruction stream, while the 8086 queue can store

EXECUTION UNIT (EV)

GENERAL
REGISTERS

BUS INTERFACE UNIT (BIU)

SEGMENT
REGISTERS

INSTRUCTION
POINTER

1

ADDRESS
GENERATION

MULTIPLEXED BUS

OPERANDS I

1

C
1

AND BUS
CONTROL

1

INSTRUCTION
QUEUE

Figure 2-6. Execution and Bus Interface Units (EU and BIU)

2-5

8086 AND 8088 CENTRAL PROCESSING UNITS

up to six instruction bytes. These queue sizes
allow the BIU to keep the EU supplied with pre-
fetched instructions under most conditions
without monopolizing the system bus. The 8088
BIU fetches another instruction byte whenever
one byte in its queue is empty and there is no
active request for bus access from the EU. The
8086 BIU operates similarly except that it does
not initiate a fetch until there are two empty bytes
in its queue. The 8086 BIU normally obtains two
instruction bytes per fetch; if a program transfer
forces fetching from an odd address, the 8086
BIU automatically reads one byte from the odd
address and then resumes fetching two-byte
words from the subsequent even addresses.

Under most circumstances the queues contain at
least one byte of the instruction stream and the
EU does not have to wait for instructions to be
fetched. The instructions in the queue are those
stored in the memory locations immediately adja-
cent to and higher than the instruction currently
being executed. That is, they are the next logical
instructions so long as execution proceeds seri-
ally. If the EU executes an instruction that
transfers control to another location, the BIU
resets the queue, fetches the instruction from the
new address, passes it immediately to the EU, and
then begins refilling the queue from the new loca-
tion. In addition, the BIU suspends instruction
fetching whenever the EU requests a memory or
1/0 read or write (except that a fetch already in
progress is completed before executing the EU’s
bus request).

General Registers

Both CPUs have the same complement of eight
16-bit general registers (figure 2-7). The general
registers are subdivided into two sets of four
registers each: the data registers (sometimes called
the H & L group for “‘high’’ and ‘‘low’’), and the
pointer and index registers (sometimes called the
P & I group).

The data registers are unique in that their upper
(high) and lower halves are separately
addressable. This means that each data register
can be used interchangeably as a 16-bit register,
or as two 8-bit registers. The other CPU registers
always are accessed as 16-bit units only. The data
registers can be used without constraint in most
arithmetic and logic operations. In addition,

H 1 L
15 8,7 0
(| T — ACCUMULATOR
AH T AL :
— X _Jense
DATA BH — BL
GROUP CcX COUNT
~CcH T cL
DX
- — = — — —Jpata
L A T DL
5 0
-
STACK
sp POINTER
BASE
POINTER BP POINTER
INDEX SOURCE
GROUP sl INDEX
ol DESTINATION
L INDEX

Figure 2-7. General Registers

some instructions use certain registers implicitly
(see table 2-1) thus allowing compact yet powerful
encoding.

Table 2-1. Implicit Use of General Registers

REGISTER OPERATIONS

AX Word Multiply, Word Divide,
Word 1/O0

AL Byte Multiply, Byte Divide, Byte
110, Translate, Decimal Arithmetic

AH Byte Multiply, Byte Divide

BX Translate

CX String Operations, Loops

CL Variable Shift and Rotate

DX Word Multiply, Word Divide,
Indirect /O

SP Stack Operations

Sl String Operations

DI String Operations

The pointer and index registers can also par-
ticipate in most arithmetic and logic operations.
In fact, all eight general registers fit the definition
of ‘‘accumulator’ as used in first and second
generation microprocessors. The P & I registers
(except for BP) also are used implicitly in some
instructions as shown in table 2-1.

2-6

8086 AND 8088 CENTRAL PROCESSING UNITS

Segment Registers

The megabyte of 8086 and 8088 memory space is
divided into logical segments of up to 64k bytes
each. (Memory segmentation is described in sec-
tion 2.3.) The CPU has direct access to four
segments at a time; their base addresses (starting
locations) are contained in the segment registers
(see figure 2-8), The CS register points to the cur-
rent code segment; instructions are fetched from
this segment. The SS register points to the current
stack segment; stack operations are performed on
locations in this segment. The DS register points
to the current data segment; it generally contains
program variables. The ES register points to the
current extra segment, which also is typically used
for data storage.

The segment registers are accessible to programs
and can be manipulated with several instructions.
Good programming practice and consideration of
compatibility with future Intel hardware and soft-
ware products dictate that the segment registers
be used in a disciplined fashion. Section 2.10 pro-
vides guidelines for segment register use.

15
cs %Nt
DS SECMENT
ss RIS
ES SEGMENT

Figure 2-8. Segment Registers

Instruction Pointer

The 16-bit instruction pointer (IP) is analogous to
the program counter (PC) in the 8080/8085
CPUs. The instruction pointer is updated by the
BIU so that it contains the offset (distance in
bytes) of the next instruction from the beginning
of the current code segment; i.e., IP points to the
next instruction. During normal execution, IP
contains the offset of the next instruction to be
fetched by the BIU; whenever IP is saved on the
stack, however, it first is automatically adjusted
to point to the next instruction to be executed.
Programs do not have direct access to the instruc-
tion pointer, but instructions cause it to change
and to be saved on and restored from the stack.

Flags

The 8086 and 8088 have six 1-bit status flags
(figure 2-9) that the EU posts to reflect certain
properties of the result of an arithmetic or logic

CONTROL
FLAGS

STATUS
FLAGS
A

E
CARRY

PARITY

AUXILIARY CARRY
ZERO

SIGN

OVERFLOW
INTERRUPT-ENABLE
DIRECTION

TRAP

Figure 2-9. Flags

operation. A group of instructions is available
that allows a program to alter its execution
depending on the state of these flags, that is, on
the result of a prior operation. Different instruc-
tions affect the status flags differently; in general,
however, the flags reflect the following
conditions:

1. If AF (the auxiliary carry flag) is set, there
has been a carry out of the low nibble into
the high nibble or a borrow from the high
nibble into the low nibble of an 8-bit quantity
(low-order byte of a 16-bit quantity). This
flag is used by decimal arithmetic
instructions.

2. If CF (the carry flag) is set, there has been a

carry out of, or a borrow into, the high-order
bit of the result (8- or 16-bit). The flag is used
by instructions that add and subtract
multibyte numbers. Rotate instructions can
also isolate a bit in memory or a register by
placing it in the carry flag.

3. If OF (the overflow flag) is set, an arithmetic

overflow has occurred; that is, a significant
digit has been lost because the size of the
result exceeded the capacity of its destination
location. An Interrupt On Overflow instruc-
tion is available that will generate an inter-
rupt in this situation. |

8086 AND 8088 CENTRAL PROCESSING UNITS

4. If SF (the sign flag) is set, the high-order bit
of the result is a 1. Since negative binary
numbers are represented in the 8086 and 8088
in standard two’s complement notation, SF
indicates the sign of the result (0 = positive,
1 = negative).

5. If PF (the parity flag) is set, the result has
even parity, an even number of 1-bits. This
flag can be used to check for data transmis-
sion errors.

6. If ZF (the zero flag) is set, the result of the
operation is 0.

Three additional control flags (figure 2-9) can be
set and cleared by programs to alter processor
operations:

1. Setting DF (the direction flag) causes string
instructions to auto-decrement; that is, to
process strings from high addresses to low
addresses, or from ‘‘right to left.”” Clearing
DF causes string instructions to auto-
increment, or to process strings from *‘left to
right.”

2. Setting IF (the interrupt-enable flag) allows
the CPU to recognize external (maskable)
interrupt requests. Clearing IF disables these
interrupts. IF has no affect on either non-
maskable external or internally generated
interrupts.

3. Setting TF (the trap flag) puts the processor
into single-step mode for debugging. In this
mode, the CPU automatically generates an
internal interrupt after each instruction,
allowing a program to be inspected as it exe-
cutes instruction by instruction. Section 2.10
contains an example showing the use of TF in
a single-step and breakpoint routine.

8080/8085 Registers and Flag
Correspondence

The registers, flags and program counter in the
8080/8085 CPUs all have counterparts in the 8086
and 8088 (see figure 2-10). The A register (ac-
cumulator) in the 8080/8085 corresponds to the
AL register in the 8086 and 8088. The 8080/8085
H&L,B&C, and D & E registers correspond to
registers BH, BL, CH, CL, DH and DL, respec-
tively, in the 8086 and 8088. The 8080/8085 SP
(stack pointer) and PC (program counter) have
their counterparts in the 8086/8088 SP and IP.

The AF, CF, PF, SF, and ZF flags are the same in
both CPU families. The remaining flags and
registers are unique to the 8086 and 8088. This
8080/8085 to 8086 mapping allows most existing
8080/8085 program code to be directly translated
into 8086/8088 code.

Mode Selection

Both processors have a strap pin (MN/MX) that
defines the function of eight CPU pins in the 8086
and nine pins in the 8088. Connecting MN/MX to
+5V places the CPU in minimum mode. In this
configuration, which is designed for small
systems (roughly one or two boards), the CPU
itself provides the bus control signals needed by
memory and peripherals. When MN/MX is
strapped to ground, the CPU is configured in
maximum mode. In this configuration the CPU
encodes control signals on three lines. An 8288
Bus Controller is added to decode the signals
from the CPU and to provide an expanded set of
control signals to the rest of the system. The CPU
uses the remaining free lines for a new set of
signals designed to help coordinate the activities
of other processors in the system. Sections 2.5
and 2.6 describe the functions of these signals.

2.3 Memory

The 8086 and 8088 can accommodate up to
1,048,576 bytes of memory in both minimum and
maximum mode. This section describes how
memory is functionally organized and used.
There are substantial differences in the way
memory components are actually accessed by the
two processors; these differences, which are in-
visible to programs, are covered in section 4.2,
External Memory Addressing.

Storage Organization

From a storage point of view, the 8086 and 8088
memory spaces are organized as identical arrays
of 8-bit bytes (see figure 2-11). Instructions, byte
data and word data may be freely stored at any
byte address without regard for alignment thereby
saving memory space by allowing code to be
densely packed in memory (see figure 2-12). Odd-
addressed (unaligned) word variables, however,

2-8

8086 AND 8088 CENTRAL PROCESSING UNITS

. - K 7
A e v AL//—/% ACCUMULATOR
BX 70
©HL /BZH%%/ 7 /BL/ 77| BASE
CX 77
BC % CH //%/%j%// % COUNT
DX 7, 7
DE DH U oL 7, DATA
o
Astack
sp P 77/ POINTER
BASE
BP POINTER
o SOURCE
s! INDEX
DI DESTINATION
. INDEX
CODE
cs SEGMENT
DATA
DS SEGMENT
STACK
ss SEGMENT
EXTRA
ES SEGMENT
INSTRUCTION
pC ’ _|Fonten
S,2,AC, P, CY oF|DF| IF TFESF zFl) Iarl1PFl IcF|Fuaes
(//

Fiéure 2-10. 8080/8085 Register Subset (Shaded)

LOW MEMORY HIGH MEMORY
00002H FFFFEH_FFFFFH

00000H 00001H ¢
7 07 07 0

7 0
I<—1 MEGABYTE—————————>|

i !] ’

T
I
1 1 1 1 1 1

19H 1AH 1BH 1CH 1DH 1EH 1FH 20H 21H 22H 23H

Figure 2-11. Storage Organization Figure 2-12. Instruction and Variable Storage

2-9

8086 AND 8088 CENTRAL PROCESSING UNITS

do not take advantage of the 8086’s ability to
transfer 16-bits at a time. Instruction alignment
does not materially affect the performance of
either processor.

Following Intel convention, word data always is
stored with the most-significant byte in the higher
memory location (see figure 2-13). Most of the
time this storage convention is ‘‘invisible’’ to
anyone working with the processors; exceptions
may occur when monitoring the system bus or
when reading memory dumps.

A special class of data is stored as doublewords;
i.e., two consecutive words. These are called
pointers and are used to address data and code
that are outside the currently-addressable
segments. The lower-addressed word of a pointer
contains an offset value, and the higher-addressed
word contains a segment base address. Each word
is stored conventionally with the higher-addressed
byte containing the most-significant eight bits of
the word (see figure 2-14).

724H

[o 2|
0000 , 0010

725H

ERR G

0101 | 0101

HEX
BINARY

VALUE OF WORD STORED AT 724H: 5502H

Figure 2-13. Storage of Word Variables

Segmentation

8086 and 8088 programs ‘‘view’’ the megabyte of
memory space as a group of segments that are
defined by the application. A segment is a logical
unit of memory that may be up to 64k bytes long.
Each segment is made up of contiguous memory
locations and is an independent, separately-
addressable unit. Every segment is assigned (by
software) a base address, which is its starting
location in the memory space. All segments begin
on 16-byte memory boundaries. There are no
other restrictions on segment locations; segments
may be adjacent, disjoint, partially overlapped,
or fully overlapped (see figure 2-15). A physical
memory location may be mapped into (contained
in) one or more logical segments.

The segment registers point to (contain the base
address values of) the four currently addressable
segments (see figure 2-16). Programs obtain
access to code and data in other segments by
changing the segment registers to point to the
desired segments.

Every application will define and use segments
differently. The currently addressable segments
provide a generous work space: 64k bytes for
code, a 64k byte stack and 128k bytes of data
storage. Many applications can be written to
simply initialize the segment registers and then
forget them. Larger applications should be
designed with careful consideration given to seg-
ment definition.

5H

6H

0110 0101 0000 0000

= — =

0100

3 B _ JHEX

[0011 | 1011 |BINARY

1100

VALUE OF POINTER STORED AT 4H:
SEGMENT BASE ADDRESS: 3BACH

OFFSET: 65H

- Figure 2-14. Storage of Pointer Variables

2-10

8086 AND 8088 CENTRAL PROCESSING UNITS

FULLY
OVERLAPPED

PARTLY
OVERLAPPED

CONTIGUOUS_R

SEGMENTD

SEGMENTC

SEGMENTB I

I SEGMENTA ‘
|

DISJOINT

SEGMENTE

LOGICAL
SEGMENTS

|_/ PHYSICAL
MEMORY

0000H

20000H

0000H

Figure 2-15. Segment Locations in Physical Memory

FFFFFH

DATA: DS: -_—
CODE: CS: E— /"
smaox: ss[7 J-— |
EXTRA: Es: I l

_
| |

r____
!

n ||

=]l

OH

Figure 2-16. Currently Addressable Segments

The segmented structure of the 8086/8088
memory space supports modular software design
by discouraging huge, monolithic programs. The
segments also can be used to advantage in many
programming situations. Take, for example, the
case of an editor for several on-line terminals. A
64k text buffer (probably an extra segment) could
be assigned to each términal. A single program
could maintain all the buffers by simply changing
register ES to point to the buffer of the terminal
requiring service.

Physical Address Generation

It is useful to think of every memory location as
having two kinds of addresses, physical and
logical. A physical address is the 20-bit value that
uniquely identifies each byte location in the
megabyte memory space. Physical addresses may
range from OH through FFFFFH. All exchanges
between the CPU and memory components use
this physical address.

Programs deal with logical, rather than physical
addresses and allow code to be developed without
prior knowledge of where the code is to be located
in memory and facilitate dynamic management of
memory resources. A logical address consists of a
segment base value and an offset value. For any
given memory location, the segment base value

2-11

8086 AND 8088 CENTRAL PROCESSING UNITS

locates the first byte of the containing segment
and the offset value is the distance, in bytes, of
the target location from the beginning of the
segment. Segment base and offset values are
unsigned 16-bit quantities; the lowest-addressed
byte in a segment has an offset of 0. Many dif-
ferent logical addresses can map to the same
physical location as shown in figure 2-17. In

figure 2-17, physical memory location 2C3H is -

contained in two different overlapping segments,
one beginning at 2BOH and the other at 2COH.

Whenever the BIU accesses memory—to fetch an
instruction or to obtain or store a variable—it
generates a physical address from a logical
address. This is done by shifting the segment base
value four bit positions and adding the offset as
illustrated in figure 2-18. Note that this addition
process provides for modulo 64k addressing
(addresses wrap around from the end of a seg-
ment to the beginning of the same segment).

The BIU obtains the logical address of a memory
location from different sources depending on the
type of reference that is being made (see table

2-2). Instructions always are fetched from the cur-
rent code segment; IP contains the offset of the
target instruction from the beginning of the seg-
ment. Stack instructions always operate on the
current stack segment; SP contains the offset of
the top of the stack. Most variables (memory

" operands) are assumed to reside in the current

data segment, although a program can instruct
the BIU to access a variable in one of the other
currently addressable segments. The offset of a
memory variable is calculated by the EU. This
calculation is based on the addressing mode
specified in the instruction; the result is called the
operand’s effective address (EA). Section 2.8
covers addressing modes and effective address
calculation in detail.

Strings are addressed differently than other
variables. The source operand of a string instruc-
tion is assumed to lie in the current data segment,
but another currently addressable segment may be
specified. Its offset is taken from register SI, the
source index register. The destination operand of
a string instruction always resides in the current

2C4H

OFFSET

> 2C3H
2C2H
2C1H
2COH
2BFH
-|2BEH
2BDH
2BCH
2BBH

OFFSET 2BAH
(13H) 2B9H

2B8H
2B7H
2B6H
2B5H.
2B4H
2B3H
2B2H
2B1H

PHYSICAL
ADDRESS -
SEGMENT
BASE
LOGICAL
ADDRESSES
- SEGMENT
BASE

2BOH

Figure 2-17. Logical and Physical Addresses - -

8086 AND 8088 CENTRAL PROCESSING UNITS

SHIFT LEFT 4 BITS m SEGMENT
BASE

. " o LOGICAL
F 2 3 4 ﬂ ADDRESS
o 7 0 002 2 JOFFSET
5
+ o o 2 o]
15 0
= |1 2 s & 2] puysicaaooress
19 * ’ 0
TO MEMORY
Figure 2-18. Physical Address Generation
Table 2-2. Logical Address Sources
DEFAULT ALTERNATE
TYPE OF MEMORY REFERENCE SEGMENT SEGMENT OFFSET
BASE BASE
Instruction Fetch CS NONE IP
Stack Operation SS NONE SP
Variable (except following) DS CS,ES,SS Effective Address
String Source DS CS,ES,SS Sl
String Destination ES NONE DI
BP Used As Base Register SS CS,DS,ES Effective Address

extra segment; its offset is taken from DI, the
destination index register. The string instructions
automatically adjust SI and DI as they process the
strings one byte or word at a time.

When register BP, the base pointer register, is
designated as a base register in an instruction, the
variable is assumed to reside in the current stack
segment. Register BP thus provides a convenient
way to address data on the stack; BP can be used,
however, to access data in any of the other cur-
rently addressable segments.

In most cases, the BIU’s segment assumptions are
a convenience to programmers. It is possible,
however, for a programmer to explicitly direct the
BIU to access a variable in any of the currently
addressable segments (the only exception is the
destination operand of a string instruction which
must be in the extra segment). This is done by
preceding an instruction with a segment override
prefix. This one-byte machine instruction tells the
BIU which segment register to use to access a
variable referenced in the following instruction.

Dynamically Relocatable Code

The segmented memory structure of the 8086 and
8088 makes it possible to write programs that are
position-independent, or dynamically relocatable.
Dynamic relocation allows a multiprogramming
or multitasking system to make particularly effec-
tive use of available memory. Inactive programs
can be written to disk and the space they occupied
allocated to other programs. If a disk-resident
program is needed later, it can be read back into
any available memory location and restarted.
Similarly, if a program needs a large contiguous
block of storage, and the total amount is available
only in nonadjacent fragments, other program
segments can be compacted to free up a con-
tinuous space. This process is shown graphically
in figure 2-19. - .

In order to be dynamically relocatable, a program
must not load or alter its segment registers and
must not transfer directly to a location outside the
current code segment. In other words, all offsets
in the program must be relative to fixed values

2-13

8086 AND 8088 CENTRAL PROCESSING UNITS

BEFORE RELOCATION

AFTER RELOCATION

CODE
SEGMENT L
l——— Ccs
SS
STACK
SEGMENT bs
hn - ES
DATA
SEGMENT
EXTRA
SEGEMENT .

cs
ss
DS
ES
CODE
SEGMENT
o STACK
SEGMENT
DATA
_ | SEGMENT
EXTRA
| SEGMENT

D FREE SPACE

Figure 2-19. Dynamic Code Relocation

contained in the segment registers. This allows the
program to be moved anywhere in memory as
long as the segment registers are updated to point
to the new base addresses. Section 2.10 contains
an example that illustrates "dynamic code
relocation.

Stack Implementation

Stacks in the 8086 and 8088 are implemented in
memory and are located by the stack segment
register (SS) and the stack pointer register (SP). A
system may have an unlimited number of stacks,
and a stack may be up to 64k bytes long, the max-
imum length of a segment. (An attempt to expand
a stack beyond 64k bytes overwrites the beginning
of the stack.) One stack is directly addressable at
a time; this is the current stack, often referred to
simply as ‘‘the’’ stack. SS contains the base
address of the current stack and SP points to the
top of the stack (TOS). In other words, SP con-
tains the offset of the top of the stack from the

stack segment’s base address. Note, however, that
the stack’s base address (contained in SS) is not
the ‘‘bottom’’ of the stack.

8086 and 8088 stacks are 16 bits wide; instructions
that operate on a stack add and remove stack
items one word at a time. An item is pushed onto
the stack (see figure 2-20) by decrementing SP by
2 and writing the item at the new TOS. An item is
popped off the stack by copying it from TOS and
then incrementing SP by 2. In other words, the
stack grows down in memory toward its base
address. Stack operations never move items on
the stack, nor do they erase them. The top of the
stack changes only as a result of updating the
stack pointer.

Dedicated and Reserved Memory
Locations. - : »

Two areas in extreme low- and high memory are
dedicated - to specific processor functions or:are
reserved by Intel Corporation for-use by Intel

2-14

8086 AND 8088 CENTRAL PROCESSING UNITS

POP AX
POP BX
PUSH AX Axi—_l
EXISTING AX-| BX<--| :
N (¢ ‘.-’ N
1062 | 00 | 11 T 1062{ 00 [11 | 1062] oo | 11 |
1060 | 22 | 33 . 1060] 22 | 33 | 1060] 22 | 33 | :
105€| 44 | 55 gg 105E[44 | 55 | 10sefaafss | | |
1058 66 | 77 Eg 1058| 66 | 77 : toscfes [77] | |
105a[88 [99| @0 105A] 88 [99 | T0S o 1o5af8s |99
195 o joss[an|BE s 10 1058 | AA [BB _I 10s8[an] BB ——IJI
1056] 01| 23 B 1056|3412 J= 105634 [12 | —
tosaf as [o7] | B2 1054] 45 | 67 1054] 45 | 67
1052] 89 | AB E’":* 1052 89 | AB 1052] 89 [AB
1050 CD | EF '6; 1050 CD| EF 1050 | CD| EF
20
- ETEl

I

STACK OPERATION FOR CODE SEQUENCE

Figure 2-20. Stack Operation

hardware and software products. As shown in.

figure 2-21, the location are: OH throgh 7FH (128
bytes) and FFFFOH through FFFFFH (16 bytes).
These areas are used for interrupt and system
reset processing 8086 and 8088 application
systems should not use these areas for any other
purpose. Doing so may make these systems
incompatible with future Intel products.

8086/8088 Memory Access
Differences

The 8086 can access either 8 or 16 bits of memory
at a time. If an instruction refers to a word
variable and that variable is located at an even-
numbered address, the 8086 accesses the complete
word in one bus cycle. If the word is located at an
odd-numbered address, the 8086 accesses the
word one byte at a time in two consecutive bus
cycles.

To maximize throughput in 8086-based systems,
16-bit- data should be stored at even addresses
(should be word-aligned). This is particularly true
of stacks. Unaligned stacks can slow a system’s
response to interrupts. Nevertheless, except for
the performance penalty, word alignment is

totally transparent to software. This allows max-
imum data packing where memory space is
constrained. :

The 8086 always fetches the instruction. stream in
words from-even addresses except that the first
fetch after a program transfer to an odd address
obtains a byte. The instruction stream is
disassembled inside the processor and instruction
alignment will not materially affect the per-
formance of most systems.

The 8088 always accesses memory in bytes. Word
operands are accessed in two bus cycles regardless
of their alignment. Instructions also-are'fetched
one byte at a time. Although alignment of word
operands does not affect the performance of the
8088, locating 16-bit data on even addresses will
insure maximum throughput if the system 1s ever
transferred to an 8086.

2.4 Input/Output

The 8086 and 8088 have a versatile set of in-
put/output facilities. -Both processors provide a
large 1/0 space that is separate from the memory

2-15

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

- FFFFFH
RESERVED
FFFECH
FFFFBH
DEDICATED
FFFFOH
FFFEFH
FFFFH
d
& OPEN N
P “
d J
- GPEN o
80H l
7FH
RESERVED 100H
FFH
an RESERVED £
13H F7H
DEDICATED OPEN
OH OH
MEMORY 170

Figure 2-21. Reserved and Dedicated Memory
and 170 Locations

space, and instructions that transfer data between
the CPU and devices located in the I/0 space.
170 devices also may be placed in the memory
space to bring the power of the full instruction set
and addressing modes to input/output pro-
cessing. For high-speed transfers, the CPUs may
be used with traditional direct memory -access
controllers or the 8089 Input/Output Processor.

Input/Output Space

The 8086/8088 1/0 space can accommodate up to
64k 8-bit ports or up to 32k 16-bit ports. The IN
and OUT (input and output) instructions transfer
data- between the accumulator (AL for byte
transfers, . AX for word transfers) and ports
located in the 1/0 space.

The 170 space is not segmented; to access a port,
the BIU simply places the port address (0-64k) on
the lower 16 lines of the address bus. Different
forms of the I/0 instructions allow the address to
be specified as a fixed value in the instruction or
as a variable taken from register DX.

Restricted 1/0 Locations

Locations F8H through FFH (eight of the 64k
locations) in the I/O space are reserved by Intel
Corporation for use by future Intel hardware and
software products. Using these locations for any
other purpose may inhibit compatibility with
future Intel products.

8086/8088 1/0 Access Differences

The 8086 can transfer either 8 or 16 bits at a time
to a device located in the I/0 space. A 16-bit
device should be located at an even address so
that the word will be transferred in a single bus
cycle. An 8-bit device may be located at either an
even or odd address; however, the internal
registers in a given device must be assigned all-
even or all-odd addresses.

The 8088 transfers one byte per bus cycle. If a
16-bit device is used in the 8088 1/0 space, it must
be capable of transferring words in the same
fashion, i.e., eight bits at a time in two bus cycles.
(The 8089 Input/Output Processor can provide a
straightforward interface between the 8088 and a
16-bit 1/0 device.) An 8-bit device may be located
at odd or even addresses in the 8088 I/O space
and internal registers may be assigned consecutive
addresses (e.g., 1H, 2H, 3H). Assigning all-odd
or all-even addresses to these registers, however,
will simplify transferring the system to an 8086
CPU.

Memory-Mapped 1/0

170 devices also may be placed in the 8086/8088
memory space. As long as the devices respond like
memory components, the CPU does not know the
difference.

Memory-mapped I/0 provides additional pro-
gramming flexibility. Any instruction that
references memory may be used to access an 170
port located in the memory space. For example,
the MOV (move) instruction can transfer- data
between any 8086/8088 register and a port, or the
AND, OR and TEST instructions may be used to
manipulate bits in I/0 device registers. In addi-
tion, memory-mapped I/0 can take advantage of
the 8086/8088 memory addressing modes. A
group of terminals, for example, could be treated
as an array in memory with an index register

Mnemonics © Intel, 1978

2-16

8086 AND 8088 CENTRAL PROCESSING UNITS

selecting a terminal in the array. Section 2.10 pro-
vides examples of using the instruction set and
addressing modes with memory-mapped 1/0.

Of course, a price must be paid for the added pro-
gramming flexibility that memory-mapped 1/0
provides. Dedicating part of the memory space to
170 devices reduces the number of addresses
available for memory, although with a megabyte
of memory space this should rarely be a con-
straint. Memory reference instructions also take
longer to execute and are somewhat less compact
than the simpler IN and OUT instructions.

Direct Memory Access

When configured in minimum mode, the 8086
and 8088 provide HOLD (hold) and HLDA (hold
acknowledge) signals that are compatible with
traditional DMA controllers such as the 8257 and
8237. A DMA controller can request use of the
bus for direct transfer of data between an I/0
device and memory by activating HOLD. The
CPU will complete the current bus cycle, if one is
in progress, and then issue HLDA, granting the
bus to the DMA controller. The CPU will not
attempt to use the bus until HOLD goes inactive.

The 8086 addresses memory that is physically
organized:in two separate banks, one containing
even-addressed bytes and one containing odd-ad-
dressed. bytes. An 8-bit DMA controller must
alternately select these banks to access logically
adjacent bytes in memory. The 8089 provides a
simple way to interface a high-speed 8-bit device
to an 8086-based system (see Chapter 3).

8089 Input/Output Processor (IOP)

The 8086 and 8088 are designed to be used with
the 8089 in high-performance 1/0 applications.
The 8089 conceptually resembles a
microprocessor with- two DMA channels and an
instruction set specifically tailored for 170 opera-
tions. Unlike simple DMA controllers, the 8089
can service 1/0 devices directly, removing this
task from the CPU. In addition, it can transfer
data on its own ‘bus or on the system bus, can
match 8- or 16-bit peripherals to 8- or 16-bit
buses, and can transfer data from'memory to
memory and from I/0 device to 1/O device.
Chapter 3.describes the 8089 in detail.

2.5 Multiprocessing Features

As microprocessor prices have declined,
multiprocessing (using two or more coordinated
processors in a system) has become an increas-
ingly attractive design alternative. Performance
can be substantially improved by distributing

.system tasks among separate, concurrently exe-

cuting processors. In addition, multiprocessing
encourages a modular approach to design, usually
resulting in systems that are more easily main-
tained and enhanced. For example, figure 2-22
shows a multiprocessor system in which 1I/0
activities have been delegated to an 8089 IOP.
Should an I/0 device in the system be changed
(e.g., a hard disk substituted for a floppy), the
impact of the modification is confined to the I/0
subsystem and is transparent to the CPU and to
the application software.

The 8086 and 8088 are designed for the
multiprocessing environment. They have built-in
features that help solve the coordination prob-
lems that have discouraged multiprocessing
system development in the past.

Bus Lock

When configured in maximum mode, the 8086
and 8088 provide the LOCK (bus lock) signal.
The BIU activates LOCK when the EU executes
the one-byte LOCK prefix instruction. The
LOCK signal remains active throughout execu-
tion of the instruction that follows the LOCK
prefix. Interrupts are not affected by the LOCK
prefix. If another processor requests use of the
bus (via the request/grant lines, which are
discussed shortly), the CPU records the request,
but does not honor it until execution of the locked
instruction has been completed.

Note that the LOCK signal remains active for the
duration of a single instruction. If two con-
secutive instructions are each preceded by a
LOCK prefix, there will still be an unlocked
period between these instructions. In the case of a
locked repeated string instruction, LOCK does
remain active for the duration: of the block
operation. :

When the 8086 or 8088 is configured in minirhum
mode, the LOCK signal is not available. The
LOCK prefix can be used, however, to delay the

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

SYSTEM
MEMORY

APPLICATION
PROGRAMS |

DATA

8086
OR
8088
CPU

MAIN SYSTEM

I
N
I
I
|
I

I - SYSTEM BUS I

. LOCAL
MEMORY

1/0 PROGRAMS

1/0 BUFFERS

8089
10P

l LOCAL l

1/0
DEVICES

1/0 SUBSYSTEM

Figure 2-22. Multiprocessing System

generation of an HLDA response to a HOLD
request until execution of the locked instruction is
completed.

The LOCK signal provides information only. It is
the responsibility of other processors on the
shared bus to not attempt to obtain the bus while
LOCK is active. If the system uses 8289 Bus
Arbiters to control access to the shared bus, the
8289’s accept LOCK as an input and do not relin-
quish the bus while this signal is active.

LOCK may be used in multiprocessing systems to
coordinate access to a common resource, such as
a buffer or a pointer. If access to the resource is
not controlled, one processor can read an
erroneous value from the resource when another
processor is updating it (see figure 2-23).

Access can be controlled (see figure 2-24) by using
the LOCK prefix in conjunction with the XCHG
(exchange register with memory) instruction. The
basis for controlling access to a given resource is a
semaphore, a software-settable flag or switch that
indicates whether the resource is ‘‘available”
(semaphore=0) or ‘‘busy’’ (semaphore=1). Pro-
cessors that share the bus agree by convention not
to use the resource unless the semaphore indicates

that it is available. They likewise agree to set the
semaphore when they are using the resource and
to clear it when they are finished.

The XCHG instruction can obtain the current
value of the semaphore and set it to ““busy’’ in a
single instruction. The instruction, however,
requires two bus cycles to swap 8-bit values. It is
possible for another processor to obtain the bus
between these two cycles and to gain access to the
partially-updated semaphore. This can be
prevented by preceding the XCHG instruction
with a LOCK prefix, as illustrated in figure 2-25.
The bus lock establishes control over access to the
semaphore and thus to the shared resource.

WAIT and TEST

The 8086 and 8088 (in either maximum or
minimum mode) can be synchronized to an exter-
nal event with the WAIT (wait for TEST) instruc-
tion and the TEST input signal. When the EU
executes a WAIT instruction, the result depends
on the state of the TEST input line. If TEST is
inactive, the processor_enters an idle state and
repeatedly retests the TEST line at five-clock
intervals. If TEST is active, execution continues
with the instruction following the WAIT.

Mnemonics © Intel, 1978

2-18

8086 AND 8088 CENTRAL PROCESSING UNITS

Escape

The ESC (escape) instruction provides a way for
another processor to obtain an instruction and/or
a memory operand from an 8086/8088 program.
When used in conjunction with WAIT and TEST,
SHARED POINTER ESC can initiate a ‘‘subroutine’” that executes

BUS CYCLE IN MEMORY PROCESSOR ACTIVITIES : ¢
E— concurrently in another processor (see figure
0 05,224 18 2-26).

-

4C 1B “A‘“ UPDATES 1 WORD
Six bits in the ESC instruction may be specified by

«B" READS PARTIALLY . Lo on N
2 [c2, 59[4C, 18] UPDATED VALUE the programmer when the instruction is written.
3 [C2, 59] a1, 03] A" COMPLETES UPDATE By monitoring the 8086/8088 bus and control

lines, another processor can capture the ESC
instruction when it is fetched by the BIU. The six
bits may then direct the external processor to per-
form some predefined activity.

If the 8086/8088 is configured in maximum

mode, the external processor, having determined

Figure 2-23. Uncontrolled Access to Shared that an ESC has been fetched, can monitor QSO
Resource

»
I
>
El
m
o
o
=]
=
=
m
o

BUS CYCLE SEMAPHORE IN MEMORY PROCESSOR ACTIVITIES

0 0 4C 18

i “A’” OBTAINS EXCLUSIVE
1 1 4C, 1B USE

“A” UPDATES 1 WORD

“‘B” TESTS SEMAPHORE

N
-
Q
N
ar
©

8 1 AND WAITS

4 1 c2,59 31,05] “A’” COMPLETES UPDATE
“B” TESTS SEMAPHORE

5 1 C2,59]31,05] AND WAITS

6 0 C2,59.[31,05] “A’ RELEASES RESOURCE
“B” OBTAINS

7 1 c2 59 31,05 EXCLUSIVE USE
““B” READS

8 1 c2,59[31,05| UPDATED VALUE

9 0 C2,59 [31,05 | B’ RELEASES RESOURCE

Figure 2-24. Controlled Access to Shared Resource

2-19 Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

’ and QS1 (the queue status lines, discussed in sec-
(ENTER) tion 2.6) and determine when the ESC instruction
¥ ’ is executed. If the instruction references memory

the external processor can then monitor the bus

> v :

1 MOV AL,1 and capture the operand’s physical address

GETSEMA. ’ and/or the operand itself.

sgr‘?;lfss?s, * WAIT: LOCK XCHG AL, SEMAPHORE L .
] : : Note that fetching an ESC instruction is not tan-

l . tamount to executing it. - The ESC may be pre-

ceded by a jump that -causes the queue to be
reinitialized. This event also can be determined
from the queue status lines.’

BUSY(1)

TEST ALAL"
INZ WAIT
AVAILABLE(O) Request/Grant Lines
r— USE _—l . When the 8086 or 8088 is configured in maximum
I_“ESOURCE__I : mode, the HOLD and HLDA lines evolve into
) two more_sophisticated signals called RQ/GTO0
T : and RQ/GT1. These are bidirectional lines that
can be used to share a local bus between an 8086
- MOV SEMAPHORE,0 or 8088 and two other processors via a handshake
“AVAILABLE” sequence.
The request/grant sequence is a three-phase cycle:
y request, grant and release. First, the processor
< EXIT > desiring the bus pulses a request/grant line. The
CPU returns a pulse on the same line indicating

that it is entering the ‘‘hold acknowledge” state
and is relinquishing the bus. The BIU is logically

Figure 2-25. Using XCHG and LOCK disconnected from the bus during this period. The

PROCESSOR
“g»

S,) TEST

CONTINUE
UNTIL ““B”’s

PROCESSOR
“A” RESULT
IS NEEDED

Figure 2-26. Using ESC with WAIT and TEST

Mnemonics © Intel, 1978 2-20

8086 AND 8088 CENTRAL PROCESSING UNITS

EU, however, will continue to execute instruc-
tions until an instruction requires bus access or
the queue is emptied, whichever occurs first.
When the other processor has finished with the
bus, it sends a final pulse to the 8086/8088 in-
dicating that the request has ended and that the
CPU may reclaim the bus.

RQ/GTO has higher priority than RQ/GT1. If
requests arrive simultaneously on both lines, the
grant_goes to the processor on RQ/GTO and
RQ/GT!1 is acknowledged after the bus has been
returned to the CPU. If, however, a request
arrives on RQ/GTOQ while the CPU is processing a
prior request on RQ/GT]1, the second request is
not honored until the processor on RQ/GTI1
releases the bus.

Multibus™ Architecture

Intel has designed a general-purpose
multiprocessing bus called the Multibus. This is
the standard design used in iISBC™ single-board
microcomputer products. Many other manufac-
turers offer products that are compatible with the
Multibus architecture as well. When the 8086 and
8088 are configured in maximum mode, the 8288
Bus Controller outputs signals that are electrically
compatible with the Multibus protocol. Designers
of multiprocessing systems may want to consider
using the Multibus architecture in the design of
their products to reduce development cost and

time, and to obtain compatibility with the wide
variety of boards available in the iSBC product
line.

The Multibus architecture provides a versatile
communications channel that can be used to coor-
dinate a wide variety of computing modules (see
figure 2-27). Modules in a Multibus system are
designated as masters or slaves. Masters may
obtain use of the bus and initiate data transfers on
it. Slaves are the objects of data transfers only.
The Multibus architecture allows both 8- and 16-
bit masters to be intermixed in a system. In addi-
tion to 16 data lines, the bus design provides 20
address lines, eight multilevel interrupt lines, and
control and arbitration lines. An auxiliary power
bus also is provided to route standby power to
memories if the normal supply fails.

The Multibus architecture maintains its own
clock, independent of the clocks of the modules it
links together. This allows different speed masters
to share the bus and allows masters to operate
asynchronously with respect to each other. The
arbitration logic of the bus permit slow-speed
masters to compete equably for use of the bus.
Once a module has obtained the bus, however,
transfer speeds are dependent only on the
capabilities of the transmitting and receiving
modules. Finally, the Multibus standard defines
the form factors and physical requirements of
modules that communicate on this bus. For a
complete description of the Multibus architec-

MASTER
MASTER

WITH
BUS-ACCESSIBLE
MEMORY

MEMORY SLAVE 1/0 SLAVE

ADDRESS
DATA
COMMAND
BUS EXCHANGE
INTERRUPT
CONTROL
ADDRESS
DATA
COMMAND
BUS EXCHANGE

INTERRUPT

A

CONTROL

N

ADDRESS
DATA
COMMAND
CONTROL
ADDRESS
DATA
COMMAND
INTERRUPT
CONTROL

.

MULTIBUS™ INTERFACE

Figure 2-27. Multibus™-Based System

2-21

8086 AND 8088 CENTRAL PROCESSING UNITS

ture, refer to the Intel Multibus Specification
(document number 9800683) and Application
Note 28A, “‘Intel Multibus Interfacing.”’

8289 Bus Arbiter

Multiprocessor systems require a means of coor-
dinating the processors’ use of the shared bus.
The 8289 Bus Arbiter works in conjunction with
the 8288 Bus Controller to provide this control
for 8086- and 8088-based systems. It is compati-

ble with the Multibus architecture and can be used -

in other shared-bus designs as well.

The 8289 eliminates race conditions, resolves bus
contention and matches processors operating
asynchronously with respect to each other. Each
processor on the bus is assigned a different pri-
ority. When simultaneous requests for the bus
arrive, the 8289 resolves the contention and grants
the bus to the processor with the highest priority;
three different prioritizing techniques may be
used. Chapter 4 discusses the 8289 in more detail.

2.6 Proc_ess_or Control and
- Monitoring

Interrupts

The 8086 and 8088 have a simple and versatile
interrupt system. Every interrupt is assigned a
type code that identifies it to the CPU. The 8086

and 8088 can handle up to 256 different interrupt
types. Interrupts may be initiated by devices
external to the CPUj; in addition, they also may be
triggered by software interrupt instructions and,
under certain conditions, by the CPU itself (see
figure 2-28). Figure 2-29 illustrates the basic
response of the 8086 and 8088 to an interrupt.
The next sections elaborate on the information
presented in this drawing.

External Interrupts

The 8086 and 8088 have two lines that external
devices may use to signal interrupts (INTR and
NMI). The INTR (Interrupt Request) line is
usually driven by an Intel® 8259A Programmable
Interrupt Controller (PIC), which is in turn con-
nected to the devices that need interrupt services.
The 8259A is a very flexible circuit that is con-
trolled by software commands from the 8086 or
8088 (the PIC appears as a set of I/0 ports to the
software). Its main job is to accept interrupt
requests from the devices attached to it, deter-
mine which requesting device has the highest
priority, and then activate the 8086/8088 INTR
line if the selected device has higher priority than
the device currently being serviced (if there is
one).

When INTR is active, the CPU takes different
action depending on the state of the interrupt-
enable flag (IF). No action takes place, however,
until the currently-executing instruction has been

NON-MASKABLE)
INTERRUPT
REQUEST -~
NMI -—
] 1 k D
MASKABLE
[INTERRUPT pINTR] g250A & INTERRUPT
| | <—— [REQUESTS
['_I) II_l [-—
I I [«—o
I ! ——
L INTO owvioe | SRR |
| | nsTR. | | wsTR. | | ermor| |t | J
I I
| |
| Soss/e088 CPU B

Figure 2-28. Interrupt Sources

2-22

8086 AND 8088 CENTRAL PROCESSING UNITS

[

COMPLETE
CURRENT
INSTRUCTION

ACKNOWLEDGE |, | READ TYPE
INTERRUPT CODE

PUSH FLAGS
LETTEMP=TF
EXECUTE
INSTRUCTION '

__J CLEARIF&TF

PUSHCS &IP

CALL INTERRUPT
SERVICE ROUTINE

EXECUTE
USER INTERRUPT
PROCEDURE

POPIP&CS

POP FLAGS

RESUME
INTERRUPTED
PROCEDURE

il

Figure 2-29. Interrupt Processing Sequence

2-23

8086 AND 8088 CENTRAL PROCESSING UNITS

completed.* Then, if IF is clear (meaning that
interrupts signaled on INTR are masked or dis-
abled), the CPU ignores the interrupt request and
processes the next instruction. The INTR signal is
not latched by the CPU, so it must be held active
until a response is received or the request is
withdrawn. If interrupts on INTR are enabled (if
IF is set), then the CPU recognizes the interrupt
request and processes it. Interrupt requests arriv-
ing on INTR can be enabled by executing an STI
(set interrupt-enable flag) instruction, and dis-
abled by executing a CLI (clear interrupt-enable
flag) instruction. They also may be selectively
masked (some types enabled, some disabled) by
writing commands to the 8259A. It should be
noted that in order to reduce the likelihood of
excessive stack buildup, the STI and IRET
instructions will reenable interrupts only after
the end of the following instruction.-

The CPU acknowledges the interrupt request by
executing two consecutive interrupt acknowledge
(INTA) bus cycles. If a bus hold request arrives
(via the HOLD or request/grant lines) during the
INTA cycles, it is not honored until the cycles
have been completed. In addition, if the CPU is
configured in maximum mode, it activates the
LOCK signal during these cycles to indicate to
other processors that they should not attempt to
obtain the bus. The first cycle signals the 8259A
that the request has been honored. During the
second INTA cycle, the 8259A responds by plac-
ing a byte on the data bus that contains the inter-
rupt type (0-255) associated with the device
requesting service. (The type assignment is made
when the 8259A is initialized by software in the
8086 or 8088.) The CPU reads this type code and
uses it to call the corresponding interrupt
procedure. »

An external interrupt request also may arrive on
another CPU line, NMI (non-maskable inter-
rupt). This line is edge-triggered (INTR is level-
triggered) and is generally used to signal the CPU
of a ‘‘catastrophic’’ event, such as the imminent
loss of power, memory error detection or bus
parity error. Interrupt requests arriving on NMI
cannot be disabled, are latched by the CPU, and
have higher priority than an interrupt request on
INTR. If an interrupt request arrives on both
lines during the execution of an instruction, NMI
will be recognized first. Non-maskable interrupts
are predefined as type 2; the processor does not
need to be supplied with a type code to call the
NMI procedure, and it does not run the INTA bus
cycles in response to a request on NMI.

The time required for the CPU to recognize an
éxternal interrupt request (interrupt latency)
depends on how many clock periods remain in the
execution of the current instruction. On the
average, the longest latency occurs when a
multiplication, division or variable-bit shift or
rotate instruction is executing when the interrupt
request arrives (see section 2.7 for detailed
instruction timing data). As mentioned pre-
viously, in a few cases, worst-case latency will
span two instructions rather than one.

Internal Interrupts

An INT (interrupt) instruction generates an inter-
rupt immediately upon completion of its execu-
tion. The interrupt type coded into the instruction
supplies the CPU with the type code needed to
call the procedure to process the interrupt. Since
any type code may be specified, software inter-
rupts may be used to test interrupt procedures
written to service external devices.

*There are a few cases in which an interrupt request is not recognized until after the following instruction. Repeat, LOCK
and segment override prefixes are considered ‘‘part of’’ the instructions they prefix; no interrupt is recognized between
execution of a prefix and an instruction. A MOV (move) to segment register instruction and a POP segment register
instruction are treated similarly: no interrupt is recognized until after the following instruction. This mechanism protects
a program that is changing to a new stack (by updating SS and SP). If an interrupt were recognized after SS had been
changed, but before SP had been altered, the processor would push the flags, CS and IP into the wrong area of memory.
It follows from this that whenever a segment register and another value must be updated together, the segment register
should be changed first, followed immediately by the instruction that changes the other value. There are also two cases,
WAIT and repeated string instructions, where an interrupt request is recognized in the middle of an instruction. In these
cases, interrupts are accepted after any completed primitive operation or wait test cycle.

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

If the overflow flag (OF) is set, an INTO (inter-
rupt on overflow) instruction generates a type 4
interrupt immediately upon completion of its
execution.

The CPU itself generates a type O interrupt
immediately following execution of a DIV or
IDIV (divide, integer divide) instruction if the
calculated quotient is larger than the specified
destination.

If the trap flag (TF) is set, the CPU automatically
generates a type 1 interrupt following .every
instruction. ‘This is called single-step execution
and is a powerful debugging tool that is discussed

in more detail shortly.

All internal interrupts (INT, INTO, divide error,
and single-step) share these characteristics:

1. The interrupt type code is either contained in
the instruction or is predefined.

2. No INTA bus cycles are run.

3. Internal interrupts cannot be disabled, except
for single-step.

4. Any internal interrupt (except single-step)
has higher priority than any external inter-
rupt (see table 2-3). If interrupt requests
arrive on NMI and/or INTR during execu-
tion of an instruction that causes an internal
interrupt (e.g., divide error), the internal
interrupt is processed first.

Interrupt Pointer Table

The interrupt pointer (or interrupt vector) table
(figure 2-30) is the link between an interrupt type
code and the procedure that has been designated
to service interrupts associated with that code.
The interrupt pointer table occupies up to the first
1k bytes of low memory. There may be up to 256
entries in the table, one for each interrupt type

3FFH
| TYPE 255 POINTER: _|
(AVAILABLE)
3FCH
o) By
AVAILABLE
INTERRUPTJ T T
POINTERS
(224) | TYPE33POINTER: _|
(AVAILABLE)
084H
| TYPE32POINTER: _|
(AVAILABLE)
> g
r | TYPE31POINTER:
(RESERVED)
RESERVED
INTERRUPT e N
POINTERS “ N
(27)
| TYPE5POINTER: _|
(RESERVED)
>0MH
TYPE 4 POINTER: _|
OVERFLOW
010H
| TYPE3POINTER: _|
ooch] "BYTEINTINSTRUCTION
DEDICATED
INTERRUPT | TYPE2POINTER:
POINTERS NON-MASKABLE]
(5) 008H
| TYPE 1 POINTER:
‘ SINGLE-STEP
004H -
| TYPEOPOINTER: _| CSBASE ADDRESS _ |
L 000H DIVIDE ERROR P OFFSET

|[e——1681TS—— |

Figure 2-30. Interrupt Pointer Table

. 2-25

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

that can occur in the system. Each entry in the
table is a doubleword pointer containing the
address of the procedure that is to service inter-
rupts of that type. The higher-addressed word of
the pointer contains the base address of the seg-
ment containing” the procedure. The lower-ad-
dressed word contains the procedure’s offset
from the beginning of the segment. Since each
entry is four bytes long, the CPU can calculate the
location of the correct entry for a given interrupt
type by simply multiplying (type*4).

Table 2-3. Interrupt Priorities

INTERRUPT PRIORITY
Divide error, INT n, INTO ‘highest
NMI
INTR .
Single-step lowest

Space at the high end of the table that would be
occupied by entries for interrupt types that cannot
occur in a given application may be used for other
purposes. The dedicated and reserved portions of
the interrupt pointer table (locations OH through
7FH), however, should not be used for any other
purpose to insure proper system operation and to
preserve compatibility with future Intel hardware
and software products.

After pushing the flags onto the stack, the 8086 or
8088 activates an interrupt procedure by exe-
cuting the equivalent of an intersegment indirect
CALL instruction. The target of the ““CALL”’ is
the address contained in the interrupt pointer
table element located at (type*4). The CPU saves
the address of the next instruction by pushing CS
and IP onto the stack. These are then replaced by
the second and first words of the table element,
thus transferring control to the procedure.

If multiple interrupt requests arrive simulta-
neously, the processor activates the interrupt pro-
cedures in priority order. Figure 2-31 shows how
procedures would be activated in an extreme case.
The processor is running in single-step mode with
external interrupts enabled. During execution of a
divide instruction, INTR is activated. Further-
more the instruction generates a divide error
interrupt. Figure 2-31 shows that the interrupts

are recognized in turn, in the order of their
priorities except for INTR. INTR is not recog-
nized until after the following instruction because
recognition of the earlier interrupts cleared IF. Of
couse interrupts could be reenabled in any of the
interrupt response routines if earlier response to
INTR is desired.

As figure 2-31 shows, all main-line code is exe-
cuted in single-step mode. Also, because of the
order of interrupt processing, the opportunity
exists in each occurrence of the single-step routine
to select whether pending interrupt routines
(divide error and INTR routines in this example)
are executed at full speed or in single-step mode.

Interrupt Procedures

When an interrupt service procedure is entered,
the flags, CS, and IP are pushed onto the stack
and TF and IF are cleared. The procedure may
reenable external interrupts with the STI (set
interrupt-enable flag) instruction, thus allowing
itself to be interrupted by a request on INTR.
(Note, however, that interrupts are not actually
enabled until the instruction following STI has
executed.) An interrupt procedure always may be
interrupted by a request arriving on NMI.
Software- or processor-initiated interrupts
occurring within the procedure also will interrupt
the procedure. Care must be taken in interrupt
procedures that the type of interrupt being ser-
viced by the procedure does not itself inadver-
tently occur within the procedure. For example,
an attempt to divide by 0 in the divide error (type
0) interrupt procedure may result in the procedure
being reentered endlessly. Enough stack space
must be available to accommodate the maximum
depth of interrupt nesting that can occur in the
system.

Like all procedures, interrupt procedures should
save any registers they use before updating them,
and restore them before terminating. It is good
practice for an interrupt procedure to enable
external interrupts for all but ‘‘critical sections”’
of code (those sections that cannot be interrupted

" without risking erroneous results). If external

interrupts are disabled for too long in a pro-
cedure, interrupt requests on INTR can poten-
tially be lost.

Mnemonics © Intel, 1978

2-26

8086 AND 8088 CENTRAL PROCESSING UNITS

TF=1
IF=1

DIVIDE
INSTRUCTION | INTR

DIVIDE ERROR RECOGNIZED

J . PUSH FLAGS
PUSHCS & IP
CLEARIF & TF
EXECUTE NEXT
INSTRUCTION
| SINGLE STEP RECOGNIZED
l PUSH FLAGS
PUSH CS & IP
CLEARIF & TF
DIVIDE ERROR
PROCEDURE
SINGLE STEP
PROCEDURE *
POPCS & P
POP FLAGS
TF=1F=1 | POP CS & IP
POP FLAGS
INTR RECOGNIZED
l TF=0,IF=0 J
t PUSH FLAGS
PUSH CS & IP
CLEARTF & TF
EXECUTE NEXT
INSTRUCTION
SINGLE STEP RECOGNIZED
1
|
|
| L PUSH FLAGS
| PUSH CS & IP
| CLEARIF & TF
INTR
: PROCEDURE |
|
! SINGLE STEP
PROCEDURE*
POP CS & IP
POP FLAGS
TF=1,IF=1 | POP CS & IP
* TF CAN BE SET IN THE POPFLAGS
SINGLE STEP PROCEDURE
IF SINGLE STEPPING OF
THE DIVIDE ERROR OR INTR
PROCEDURE IS DESIRED. TF=0,IF=0

Figure 2-31. Processing Simultaneous Interrupts

2-27 Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

All interrupt procedures should be terminated
with an IRET (interrupt return) instruction. The
IRET instruction assumes that the stack is in the
same condition as it was when the procedure was
entered. It pops the top three stack words into IP,
CS and the flags, thus returning to the instruction
that was about to be executed when the interrupt
procedure was activated.

The actual processing done by the procedure is
dependent upon the application. If the procedure
is servicing an external device, it should output a
command to the device instructing it to remove its
interrupt request. It might then read status
information from the device, determine the cause
of the interrupt and then take action accordingly.
Section 2.10 contains three typical interrupt pro-
cedure examples.

Software-initiated interrupt procedures may be

used as service routines (‘‘supervisor calls’’) for

other programs in the system. In this case, the
interrupt procedure is activated when a program,
rather than an external device, needs attention.
(The “‘attention’’ might be to search a file for a
record, send a message to another program,
request an allocation of free memory, etc.) Soft-
ware interrupt procedures can be advantageous in
systems that dynamically relocate programs dur-
ing execution. Since the interrupt pointer table is
at a fixed storage location, procedures may
‘““call” each other through the table by issuing
software interrupt instructions. This provides a
stable communication ‘‘exchange’® that is
independent of procedure addresses. The inter-
rupt procedures may themselves be moved so long
as the interrupt pointer table always is updated to
provide the linkage from the ‘‘calling’’ program
via the interrupt type code.

Single-Step (Trap) Interrupt

When TF (the trap flag) is set, the 8086 or 8088 is
said to be in single-step mode. In this mode, the
processor automatically generates a type 1 inter-
rupt after each instruction. Recall that as part of
its interrupt processing, the CPU automatically
pushes the flags onto the stack and then clears TF
and IF. Thus the processor is not in single-step
mode when the single-step interrupt procedure is
entered; it runs normally. When the single-step
procedure terminates, the old flag image is
restored from the stack, placing the CPU back
into single-step mode.

Single-stepping is a valuable debugging tool. It
allows the single-step procedure to act as a “‘win-
dow’’ into the system through which operation
can be observed instruction-by-instruction. A
single-step interrupt procedure, for example, can
print or display register contents, the value of the
instruction pointer (it is on the stack), key
memory variables, etc., as they change after each
instruction. In this way the exact flow of a pro-
gram can be traced in detail, and the point at
which discrepancies occur can be determined.
Other possible services that could be provided by
a single-step routine include:

¢ Writing'a message when a specified memory
location or I70 port changes value (or equals
a specified value).

®* Providing diagnostics selectively (only for
certain instruction addresses for instance).

e Letting a routine execute a number of times
before providing diagnostics.

The 8086 and 8088 do not have instructions for
setting or clearing TF directly. Rather, TF can be
changed by modifying the flag-image on the
stack. The PUSHF and POPF instructions are
available for pushing and popping the flags
directly (TF can be set by ORing the flag-image
with 0100H and cleared by ANDing it with

- FEFFH). After TF is set in this manner, the first

single-step - interrupt occurs after the first
instruction following the IRET from the single-
step procedure.

If the processor is single-stepping, it processes an
interrupt (either internal or external) as follows.
Control is passed normally (flags, CS and IP are
pushed) to the procedure designated to handle the
type of interrupt that has occurred. However,
before the first instruction of that procedure is
executed, the single-step interrupt is ‘‘recog-
nized”’ and control is passed normally (flags, CS
and IP are pushed) to the type 1 interrupt pro-
cedure. When single-step procedure terminates,
control returns to the previous interrupt pro-
cedure. Figure 2-31 illustrates this process in a
case where two interrupts occur when the pro-
cessor is in single-step mode.

Breakpbint Interrupt

A type 3 interrupt is,dediéated to the breakpoint
interrupt. A breakpoint is generally any place in a
program where normal execution is arrested so

Mnemonics © Intel, 1978

2-28

8086 AND 8088 CENTRAL PROCESSING UNITS

that some sort of special processing may be per-
formed. Breakpoints typically are inserted into
programs during debugging as a way of display-
ing registers, memory locations, etc., at crucial
points in the program.

The INT 3 (breakpoint) instruction is one byte
long. This makes it easy to ‘“‘plant’’ a breakpoint
anywhere in a program. Section 2.10 contains an
example that shows how a breakpoint may be set
and how a breakpoint procedure may be used to
place the processor into single-step mode.

The breakpoint instruction also may be used to
“patch’> a program (insert new instructions)
without recompiling or reassembling it. This may
be done by saving an instruction byte, and replac-
ing it with an INT 3 (CCH) machine instruction.
The breakpoint procedure would contain the new
machine instructions, plus code to restore the
saved instruction byte and decrement IP on the
stack before returning, so that the displaced
instruction would be executed after the patch
instructions. The breakpoint example in section
2.10 illustrates these principles.

Note that patching a program requires machine-
instruction programming and should be under-
taken with considerable caution; it is easy to add
new bugs to a program in an attempt to correct
existing ones. Note also that a patch is only a tem-
porary measure to be used in exceptional condi-
tions. The affected code should be updated and
retranslated as soon as possible.

System Reset

The 8086/8088 RESET line provides an orderly
way to start or restart an executing system. When
the processor detects the positive-going edge of a
pulse on RESET, it terminates all activities until
the signal goes low, at which time it initializes the
system as shown in table 2-4.

Since the code segment register contains FFFFH
and the instruction pointer contains OH, the pro-
cessor executes its first instruction following
system reset from absolute memory location
FFFFOH. This location normally contains an
intersegment direct JMP instruction whose target
is the actual beginning of the system program.
The LOC-86 utility supplies this JMP instruction
from information in the program that identifies
its first instruction. As external (maskable) inter-

rupts are disabled by system reset, the system
software should reenable interrupts as soon as the
system is initialized to the point where they can b
processed. :

Table 2-4. CPU State Following RESET

CPU COMPONENT CONTENT
Flags Clear
Instruction Pointer 0000H

CS Register FFFFH

DS Register 0000H

SS Register 0000H

ES Register 0000H
Queue Empty

Instruction Queue Status

When configured in maximum mode, the 8086
and 8088 provide information about instruction
queue operations on lines QS0 and QS1. Table 2-5
interprets the four states that these lines can
represent.

The queue status lines are provided for external
processors that receive instructions and/or
operands via the 8086/8088 ESC (escape) instruc-
tion (see sections 2.5 and 2.8). Such a processor
may monitor the bus to see when an ESC instruc-
tion is fetched and then track the instruction
through the queue to determine when (and if) the
instruction is executed.

Table 2-5. Queue Status Signals
(Maximum Mode Only)

QUEUE OPERATION IN LAST

QSo| QsS4 CLK CYCLE

0 0 |No operation; default value

0 1 |First byte of an instruction was
taken from the queue

1 0 |Queue was reinitialized

1 1 |[Subsequent byte of an instruction
was taken from the queue

Processor Halt

When the HLT (halt) instruction (see section 2.7)
is executed, the 8086 or 8088 enters the halt state.
This condition may be interpreted as ‘‘stop all

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

operations until an external interrupt occurs or
the system is reset.”” No signals are floated during
the halt state, and the content of the.address and
data buses is undefined. A bus hold request
arriving on the HOLD line (minimum mode) or
either -request/grant line (maximum mode) is
acknowledged normally while the processor is
halted.

The halt state can be used when an event prevents
the system from functioning correctly. An exam-
ple might be a power-fail interrupt. After
recognizing that loss of power is imminent, the
CPU could use the remaining time to move
registers, flags and vital variables to (for example)
a battery-powered CMOS RAM area and then
halt until the return of power was signaled by an
interrupt or system reset.

Status Lines

When configured in maximum mode, the 8086
and 8088 emit eight status signals that can be used
by external devices. Lines S0, ST and 32 identify
the type of bus cycle that the CPU is starting to
execute (table 2-6). These lines are typically
decoded by the 8288 Bus Controller. S3 and S4
indicate which segment register was used to con-
struct the physical address being used in this bus
cycle (see table 2-7). Line SS reflects the state of
the interrupt-enable flag. S6 is always 0. S7 is a
spare line whose content is undefined.

Table 2-6. Bus Cycle Status Signals

IR TYPES OF BUS CYCLE
0 0| O | Interrupt Acknowledge

0] 0| 1] Readl/O

0l 1] 0| Writel/O

0| 1| 1| HALT

1.1 0 | 0 | Instruction Fetch

11 0] 1| ReadMemory

1 1 0 | Write Memory

1 1 1 Passive; no bus cycle

Table 2-7. Segment Register Status Lines

S4 |83 SEGMENT REGISTER
0]0]|ES
0|1]SS
1 0 | CSornone(l/0O orlinterrupt Vector)
1 1 | DS

2.7 Instruction Set

The 8086 and 8088 execute exactly the same
instructions. This instruction set includes
equivalents to the instructions typically found in
previous microprocessors, such as the 8080/8085.
Significant new operations include:

¢ multiplication and division of signed and
unsigned binary numbers as well as unpacked
decimal numbers,

* move, scan and compare operations for
strings up to 64k bytes in length,

* non-destructive bit testing, -
* ' byte translation from one code to another,
e software-generated interrupts, and

e a group of instructions that can hélp
coordinate the activities of multlprocessor
systems

These instructions treat different types - of
operands uniformly. Nearly every instruction can
operate on either byte or word data. Register,
memory. and immediate operands may be
specified interchangeably in most instructions (ex-
cept, of course, that immediate values may only
serve as ‘‘source’” and not ‘‘destination’’
operands). In particular, memory variables can be
added to, ‘subtracted from, shifted, compared,
and so on, in place, without moving them in and
out of registers. This saves instructions, registers,
and execution time in assembly language pro-
grams. In high-level languages, where most
variables are memory based, compilers, such as
PL/M-86, can produce faster and shorter object
programs.

The 8086/8088 instruction set can be viewed: as
existing at two levels: the assembly level and the
machine level. To the assembly language pro-
grammer, the 8086 and 8088 appear to have a
repertoire of about 100 instructions. One MOV
(move) instruction, for example, transfers a.byte
or a word from a register or a memory location or
an’ immediate value to either a register or a
memory location. The 8086 and 8088 CPUs,
however, recognize 28 different MOV machine
instructions (‘‘move byte register to memory,”’
“move word immediate to register,’”’ etc.). The
ASM-86 assembler translates the assembly-level
instructions written by a programmer into the

Mnemonics © Intel, 1978

2-30

8086 AND 8088 CENTRAL PROCESSING UNITS

machine-level instructions that are actually exe-
cuted by the 8086 or 8088. Compilers such as
PL/M-86 translate high-level language statements
directly into machine-level instructions.

The two levels of the instruction set address two
different requirements: efficiency and simplicity.
The numerous—there are about 300 in all—forms
of machine-level instructions allow these instruc-
tions to make very efficient use of storage. For
example, the machine instruction that increments
a memory operand is three or four bytes long
because the address of the operand must be
encoded in the instruction. To increment a
register, however, does not require as much
information, so the instruction can be shorter. In
fact, the 8086 and 8088 have eight different
machine-level instructions that increment a dif-
ferent 16-bit register; these instructions are only
one byte long.

If a programmer had to write one instruction to
increment a register, another to increment a
memory variable, etc., the benefit of compact
instructions would be offset by the difficulty of
programming. The assembly-level instructions
simplify the programmer’s view of the instruction
set. The programmer writes one form of the INC
(increment) instruction and the ASM-86
assembler examines the operand to determine
which machine-level instruction to generate.

This section presents the 8086/8088 instruction
set from two perspectives. First, the assembly-
level instructions are described in functional
terms. The assembly-level instructions are then
presented in a reference table that breaks out all
permissible operand combinations with execution
times and machine instruction length, plus the
effect that the instruction has on the CPU flags.
Machine-level instruction encoding and decoding
are covered in section 4.2.

Data Transfer Instructions

The 14 data transfer instructions (table 2-8) move
single bytes and words between memory and
registers as well as between register AL or AX and
170 ports. The stack manipulation instructions
are included in ‘this group as are instructions for
transferring flag contents and for loading seg-
ment registers.

Table 2-8. Data Transfer Instructions

GENERAL PURPOSE
MOV Move byte or word
PUSH Push word onto stack
POP Pop word off stack
XCHG Exchange byte or word
XLAT Translate byte
INPUT/OUTPUT
IN Input byte or word
ouT Output byte or word
ADDRESS OBJECT
LEA Load effective address
LDS Load pointer using DS
LES Load pointer using ES
FLAG TRANSFER
LAHF Load AH register from flags
SAHF Store AH register in flags
PUSHF Push flags onto stack
POPF Pop flags off stack

General Purpose Data Transfers
MOV destination,source

MOV transfers a byte or a word from the source
operand to the destination operand.

PUSH source

PUSH decrements SP (the stack pointer) by two
and then transfers a word from the source
operand to the top of stack now pointed to by SP.
PUSH often is used to place parameters on the
stack before calling a procedure; more generally,
it is the basic means of storing temporary data on
the stack.

POP destination

POP transfers the word at the current top of stack
(pointed to by SP) to the destination operand,
and then increments SP by two to point to the
new top of stack. POP can be used to move tem-
porary variables from the stack to registers or
memory. :

2-31

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

XCHG destination,source

XCHG (exchange) switches the contents of the
source and destination (byte or word) operands.
When used in conjunction with the LOCK prefix,
XCHG can test and set a semaphore that controls
access to a resource shared by multiple processors
(see section 2.5).

XLAT translate-table

XLAT (translate) replaces a byte in the AL
register with a byte from a 256-byte, user-coded
translation table. Register BX is assumed to point
to the beginning of the table. The byte in AL is
used as an index into the table and is replaced by
the byte at the offset in the table corresponding to
AL’s binary value. The first byte in the table has
an offset of 0. For example, if AL contains SH,
and the sixth element of the translation table con-
tains 33H, then AL will contain 33H following
the instruction. XLAT is useful for translating
characters from one code to another, the classic
example being ASCII to EBCDIC or the reverse.

IN accumulator,port

IN transfers a byte or a word from an input port
to the AL register or the AX register, respectively.
The port number may be specified either with an
immediate byte constant, allowing access to ports
numbered O through 255, or with a number
previously placed in the DX register, allowing
variable access (by changing the value in DX) to
ports numbered from 0 through 65,535.

OVUT port,accumulator

OUT transfers a byte or a word from the AL
register or the AX register, respectively, to an out-
put port. The port number may be specified either
with an immediate byte constant, allowing access
to ports numbered O through 255, or with a
number previously placed in register DX, allow-
ing variable access (by changing the value in DX)
to ports numbered from 0 through 65,535.

Address Object Transfers

These instructions manipulate the addresses of
variables rather than the contents or values of
variables. They are most useful for list process-
ing, based variables, and string operations.

LEA destination,source

LEA (load effective address) transfers the offset
of the source operand (rather than its value) to the
destination operand. The source operand must be
a memory operand, and the destination operand
must be a 16-bit general register. LEA does not
affect any flags. The XLAT and string instruc-
tions assume that certain registers point to
operands; LEA can be used to load these registers
(e.g., loading BX with the address of the translate
table used by the XLAT instruction).

LDS destination,source

LDS (load pointer using DS) transfers a 32-bit
pointer variable from the source operand, which
must be a memory operand, to the destination
operand and register DS. The offset word of the
pointer is transferred to the destination operand,
which may be any 16-bit general register. The seg-
ment word of the pointer is transferred to register
DS. Specifying SI as the destination operand is a
convenient way to prepare fo process a source
string that is not in the current data segment
(string instructions assume that the source string
is located in the current data segment and that SI
contains the offset of the string).

LES destination,source

LES (load pointer using ES) transfers a 32-bit
pointer variable from the source operand, which
must be a memory operand, to the destination
operand and register ES. The offset word of the
pointer is transferred to the destination operand,
which may be any 16-bit general register. The seg-
ment word of the pointer is transferred to register
ES. Specifying DI as the destination operand is a
convenient way to prepare to process a destina-
tion string that is not in the current extra segment.
(The destination string must be located in the
extra segment, and DI must contain the offset of
the string.)

Flag Transfers

LAHF

LAHF (load register AH from flags) copies SF,
ZF, AF, PF and CF (the 8080/8085 flags) into
bits 7, 6, 4, 2 and 0, respectively, of register AH

Mnemonics © Intel, 1978

2-32

8086 AND 8088 CENTRAL PROCESSING UNITS

(see figure 2-32). The content of ‘bits 5, 3 and 1 is

undefined; the flags themselves are not affected.

LAHF is provided primarily for converting'

8080/8085 assembly language programs to run‘on
an 8086 or 8088.

SAHF

SAHEF (store register AH into flags) transfers bits
7, 6, 4,2 and O from register AH into SF, ZF, AF,
PF and CF, respectively, replacing whatever
values these flags previously had. OF, DF, IF and
TF are not affected. This 1nstrucuon is provided
for 8080/8085 compatibility.

PUSHF

PUSHF decrements SP (the . stack pomter) by two
and then transfers all flags to the word. at the top
of stack pointed to by SP (see figure 2-32). The
flags themselves are not affected. .

POPF

POPF transfers specific bits from the word at the
current top of stack (pointed to by register SP)
into the 8086/8088 flags, replacing whatever
values the flags previously contained (see figure
2-32). SP is then incremented by two to point to
the new top of stack. PUSHF and POPF allow a
procedure to save and restore a calling program’s
flags. They also allow a program to change the

LAHF,
- SAHF ISIZIUIAIUIPIUICI
176543210
. l=—8080/8085 FLAGS—»~1
1 I
| . |

PUSHF, ; :

POPF IUIUIUIUIOIDIIITISIZIUIAIUIPIUICI
15 141312 1110 9 87 6 5 4 3 2 1 0

U = UNDEFINED; VALUE IS INDETERMINATE - -
o = OVERFLOW FLAG
= DIRECTION FLAG
? = INTENRUPY ENABLE FLAG
T = TRAPFLAG .
S ='SIGN FLAG
2 =ZEROF
& Z AUXLIARY. CARRY FLAG
P = PARITY FLAG .
C = CARRY FLAG

Figure 2-32. Flag Storage Formats

setting of TF (there is no instruction for updating
this flag directly). The change is accomplished by
pushing the flags, altering bit 8 of the memory-
image and then popping the flags.

Arithmetic Instructions

Arithmetic Data Formats

8086 and 8088 arithmetic operations (table 2-9)
may be performed on four types of numbers:
unsigned. binary, signed binary . (integers),
unsigned packed decimal and unsigned unpacked
decimal (see table 2-10). Binary numbers may be 8
or 16 bits long. Decimal numbers are stored in
bytes, two digits per byte for packed decimal and
one digit per byte for unpacked decimal. The pro-
cessor always assumes that the operands specified
in arithmetic instructions contain data that repre-
sent valid numbers for the type of instruction
being performed. Invalid data may produce
unpredictable results.

Table 2-9. Arithmetic Instructions

ADDITION
ADD Add byte or word
ADC Add byte or word with carry
INC Increment byte or word by 1
AAA ASCI| adjust for addition
DAA Decimal adjust for addition
SUBTRACTION
. SUB Subtract byte or word
SBB Subtract byte or word with
borrow
DEC Decrement byte or word by 1
NEG Negate byte or word
CMP Compare byte or word
AAS ASCI! adjust for subtraction
DAS Decimal adjust for subtraction
MULTIPLICATION
MUL Multiply byte or word unsigned
IMUL Integer multiply byte or word
AAM ASCI| adjust for multiply
) DIVISION '
DIV Divide byte or word unsigned
IDIV Integer divide byte or word
AAD ASCII adjust for division
CBW Convert byte to word
CWD Convert word to doubleword

2-33

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

.Table 2-10. Arithmetic Interpretation of 8-Bit Numbers

HEX | BITPATTERN "Bnany. | Binanv | . pecwiar | oeciMaL
07 00000111 7 +7 7 7

89 10001001 137 -119 invalid 89

cs 11000101 197 59 invalid invalid

Unsigned binary numbers may be either 8 or 16
bits long; all bits are considered in determining a
number’s magnitude. The value range of an 8-bit
unsigned binary number is:0-255; .16 bits can
represent values . from 0 through 65,535. Addi-
tion, subtraction, multiplication and division
opérations are available for un51gned bmary
numbers

Signed binary numbers (integers) may be either 8
or 16 bits long. The high-order (leftmost) bit is
interpreted as the number’s sign: 0 = positive and
1 = negative. Negative numbers are represented
in standard two’s complement notation. Since
the high-order bit is used for a sign, the range of
an 8-bit integer is —128 through +127; 16-bit
integers may range from ' —32,768 through
+32,767. The value zero has a positive sign.
Multiplication and division operations are pro-
vided for signed binary numbers. Addition and
subtraction are performed with the unsigned
binary .instructions. Conditional jump instruc-
tions, as well as an ‘‘interrupt on overflow’”
instruction, can be used following an unsigned
operatlon on an integer to detect overflow ‘into
the sign bit.

Packed decimal numbers are stored as unsigned
byte quantities The byte is treated as having one
decimal digit in each half-byte (nibble); the digit
in the high-order half-byte is the most significant.
Hexadecimal values 0-9 are valid in each half-
byte, and the range of a packed decimal number is
0-99. Addition and subtraction are performed in
two steps. First an unsigned binary instruction 1is
used- to-produce an intermediate result in register
AL. Then an adjustment operation is performed
which changes the intermediate value in AL to a
final correct packed decimal result. Multiplica-
tion and division adjustments are not available
for packed decimal numbers.

Unpacked decimal numbers are stored as un-
signed byte quantities. The magnitude of the
number is determined from the low-order half-
byte; hexadecimal values 0-9 are valid and are
interpreted as decimal numbers. The high-order
half-byte must be zero for multiplication and divi-
sion; it may contain any value for addition and
subtraction. Arithmetic on unpacked decimal
numbers is performed in two steps. The unsigned
binary -addition, subtraction and multiplication
operations are used to produce an intermediate
result in register AL. An adjustment instruction
then changes the value in AL to a final correct
unpacked decimal number. Division is performed
similarly, except that the adjustment is carried out
on the numerator operand in register AL first,
then a following unsigned binary division instruc-
tion produces a correct result.

Unpacked decimal numbers are similar to the
ASCII character representations of the digits 0-9.
Note, however, that the high-order half-byte of
an ASCII numeral is always 3H. Unpacked
decimal arithmetic may be performed on ASCII
numeric characters under the following
conditions:

e the high-order half-byte of an ASCII
numeral must be set to OH prior to
multiplication or division.

e unpacked decimal arithmetic leaves the
high-order half-byte set to OH; it must be set
to 3H to produce a valid ASCII numeral.

Arithmetic Instructions and Flags

The 8086/8088 arithmetic instructions post: cer-
tain characteristics of the result of the operation
to six flags. Most of these flags can be tested by
following the arithmetic instruction with a condi-
tional jump instruction; the INTO (interrupt on
overflow) instruction also may be used. The

Mnemonics © Intel, 1978

2-34

8086 AND 8088 CENTRAL PROCESSING UNITS

various instructions affect the flags differently, as
explained in the instruction descriptions.
However, they follow these general rules:

¢ CF (carry flag): If an addition results in a
carry out of the high-order bit of the result,
then CF is set; otherwise CF is cleared. If a
subtraction results in a borrow into the high-
order bit of the result, then CF is set; other-
wise CF is cleared. Note that a signed carry is
indicated by CF # OF. CF can be used to
detect an unsigned overflow. Two instruc-
tions, ADC (add with carry) and SBB (sub-
tract with borrow), incorporate the carry flag
in their operations and can be used to per-
form multibyte (e.g., 32-bit, 64-bit) addition
and subtraction.

e AF (auxiliary carry flag): If an addition
results in a carry out of the low-order half-
byte of the result, then AF is set; otherwise
AF is cleared. If a subtraction results in a
borrow into the low-order half-byte of the
result, then AF is set; otherwise AF is
cleared. The auxiliary carry flag is provided
for the decimal adjust instructions and
ordinarily is not used for any other purpose.

e SF (sign flag): Arithmetic and logical
instructions set the sign flag equal to the
high-order bit (bit 7 or 15) of the result. For
signed binary numbers, the sign flag will be 0
for positive results and 1 for negative results
(so long as overflow does not occur). A con-
ditional jump instruction can be used follow-
ing addition or subtraction to alter the flow
of the program depending on the sign of the
result. Programs performing unsigned opera-
tions typically ignore SF since the high-order
bit of the result is interpreted as a digit rather
than a sign.

o ZF (zero flag): If the result of an arithmetic
or logical operation is zero, then ZF is set;
otherwise ZF is cleared. A conditional jump
instruction can be used to alter the flow of
the program if the result is or is not zero.

* PF (parity flag): If the low-order eight bits of
an arithmetic or logical result contain an
even number of 1-bits, then the parity flag is
set; otherwise it is cleared. PF is provided for
8080/8085 compatibility; it also can be used

. to check ASCII characters for correct parity.

e OF (overflow flag): If the result of an
operation is too large a positive number, or
too small a negative number to fit in the
destination operand (excluding the sign bit),
then OF is set; otherwise OF is cleared. OF
thus indicates signed arithmetic overflow; it
can be tested with a conditional jump or the
INTO (interrupt on overflow) instruction.
OF may be ignored when performing
unsigned arithmetic.

Addition

ADD destination,source

The sum of the two operands, which may be bytes
or words, replaces the destination operand. Both
operands may be signed or unsigned binary
numbers (see AAA and DAA). ADD updates AF,
CF, OF, PF, SF and ZF.

ADC destination,source

ADC (Add with Carry) sums the operands, which
may be bytes or words, adds one if CF is set and
replaces the destination operand with the result.
Both operands may be signed or unsigned binary
numbers (see AAA and DAA). ADC updates AF,
CF, OF, PF, SF and ZF. Since ADC incorporates
a carry from a previous operation, it can be used
to write routines to add numbers longer than 16
bits.

INC destination

INC (Increment) adds one to the destination
operand. The operand may be a byte or a word
and is treated as an unsigned binary number (see
AAA and DAA). INC updates AF, OF, PF, SF
and ZF; it does not affect CF.

AAA

AAA (ASCII Adjust for Addition) changes the
contents of register AL to a valid unpacked
decimal number; the high-order half-byte is
zeroed. AAA updates AF and CF; the content of
OF, PF, SF and ZF is undefined following execu-
tion of AAA.

2-35

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

DAA

DAA (Decimal Adjust for Addition) corrects the
result of previously adding two valid packed
decimal operands (the destination operand must
have been register AL). DAA changes the content
of AL to a pair of valid packed decimal digits. It
updates AF, CF, PF, SF and ZF; the content of
OF is undefined-following execution of DAA.

Subtraction

SUB destination,source

The source operand is ‘subtracted from the
destination operand, and the result replaces the
destination operand. The operands may be bytes
or words. Both operands may be signed or
unsigned binary numbers (see- AAS and DAS).
SUB updates AF, CF, OF, PF, SF and ZF. :

SBB destination,source

SBB (Subtract with Borrow) subtracts the source
from the destination, subtracts one if CF is set,
and returns the result to the destination operand.
Both operands may ‘be bytes or ‘words. Both
operands may be signed or unsigned binary
numbers (see AAS and DAS). SBB updates AF,
CF, OF, PF, SF and ZF. Since it incorporates a
borrow from a previous operation, SBB may be
used to write routines that subtract numbers
longer than 16 bits.

DEC destination

DEC (Decrement) subtracts one from the destina-
tion, which may be a byte or a word. DEC
updates AF, OF, PF, SF, and ZF; it does not
affect CF. 5

NEG destination

NEG (Negate) subtracts the destination operand,
which may be a byte or a word, from 0 and
returns the result to the destination. This forms
the two’s complement of the number, effectively
reversing the sign of an integer. If the operand is
zero, its sign is not changed. Attempting to negate
a byte containing —128 or a word containing

—32,768 causes no change to the operand and sets
OF. NEG updates AF, CF, OF, PF, SF and ZF.
CF is always set except when the operand is zero,
in which case it is cleared.

CMP destination,source

CMP (Compare) subtracts the source from the
destination, which may be bytes or words, but
does not return the result. The operands are
unchanged, but the flags are updated and can be
tested by a subsequent conditional jump instruc-
tion. CMP updates AF, CF, OF, PF, SF and ZF.
The comparison reflected in the flags is that of the
destination to the source. If a CMP instruction is
followed by a JG (jump if greater) instruction, for
example, the jump is taken if the destination
operand is greater than the source opéerand.

AAS

AAS (ASCII Adjust for Subtraction) corrects the
result of a previous subtraction of two valid
unpacked decimal operands (the destination
operand must have been specified as register AL).
AAS changes the content of AL to a valid
unpacked decimal number; the high-order half-
byte is zeroed. AAS updates AF and CF; the con-

tent of OF, PF, SF and ZF is undefined following
execution of AAS.

DAS

DAS (Decimal Adjust for Subtraction) corrects
the result of a previous subtraction of two valid
packed decimal operands (the destination
operand must have been specified as register AL).
DAS changes the content of AL to a pair of valid
packed decimal digits. DAS updates AF, CF, PF,
SF and ZF; the content of OF is undefined
following execution of DAS. ’

Multiplication

MUL source

MUL (Multiply) performs an unsigned multi-
plication of - the source operand and the
accumulator. If the source is a byte, then it is
multiplied by register AL, and the double-length

Mnemonics © Intel, 1978

2-36

8086 AND 8088 CENTRAL PROCESSING UNITS

result is returned in AH and AL. If the source
operand is a word, then it is multiplied by register
AX, and the double-length result is returned in
registers DX and AX. The operands are treated as
unsigned binary numbers (see AAM). If the upper
half of the result (AH for byte source, DX for
word source) is nonzero, CF and OF are set;
otherwise they are cleared. When CF and OF are
set, they indicate that AH or DX contains signifi-
cant digits of the result. The content of AF, PF,
SF and ZF is undefined following execution of
MUL.

IMUL source

IMUL (Integer Multiply) performs a signed
multiplication of the source operand and the
accumulator. If the source is a byte, then it is
multiplied by register AL, and the double-length
result is returned in AH and AL. If the source is a
word, then it is multiplied by register AX, and the
double-length result is returned in registers DX
and AX. If the upper half of the result (AH for
byte source, DX for word source) is not the sign
extension of the lower half of the result, CF and
OF are set; otherwise they are cleared. When CF
and OF are set, they indicate that AH or DX con-
tains significant digits of the result. The content
of AF, PF, SF and ZF is undefined following
execution of IMUL.

AAM

AAM (ASCII Adjust for Multiply) corrects the
result of a previous multiplication of two valid
unpacked decimal operands. A valid 2-digit
unpacked decimal number is derived from the
content of AH and AL and is returned to AH and
AL. The high-order half-bytes of the multiplied
operands must have been OH for AAM to pro-
duce a correct result. AAM updates PF, SF and
ZF; the content of AF, CF and OF is undefined
following execution of AAM.

Division
DIV source
DIV (divide) performs an unsigned division of the

accumulator (and its extension) by the source
operand. If the source operand is a byte, it is

divided into the double-length dividend assumed
to be in registers AL and AH. The single-length
quotient is returned in AL, and the single-length
remainder is returned in AH. If the source
operand is a word, it is divided into the double-
length dividend in registers AX and DX. The
single-length quotient is returned in AX, and the
single-length remainder is returned in DX. If the
quotient exceeds the capacity of its destination
register (FFH for byte source, FFFFFH for word
source), as when division by zero is attempted, a
type O interrupt is generated, and the quotient and
remainder are undefined. Nonintegral quotients
are truncated to integers. The content of AF, CF,
OF, PF, SF and ZF is undefined following execu-
tion of DIV.

IDIV source

IDIV (Integer Divide) performs a signed division
of the accumulator (and its extension) by the
source operand. If the source operand is a byte, it
is divided into the double-length dividend
assumed to be in registers AL and AH; the single-
length quotient is returned in AL, and the single-
length remainder is returned in AH. For byte in-
teger division, the maximum positive quotient is
+127 (7FH) and the minimum negative quotient is
—127 (81H). If the source operand is a word, it is
divided into the double-length dividend in
registers AX and DX the single-length quotient is
returned in AX, and the single-length remainder
is returned in DX. For word integer division, the
maximum positive quotient is +32,767 (7FFFH)
and the minimum negative quotient is —32,767
(8001H). If the quotient is positive and exceeds
the maximum, or is negative and is less than the
minimum, the quotient and remainder are
undefined, and a type O interrupt is generated. In
particular, this occurs if division by 0 is
attempted. Nonintegral quotients are truncated
(toward 0) to integers, and the remainder has the
same sign as the dividend. The content of AF,
CF, OF, PF, SF and ZF is undefined following
IDIV.

AAD

AAD (ASCII Adjust for Division) modifies the
numerator in AL before dividing two valid
unpacked decimal operands so that the quotient
produced by the division will be-a valid unpacked
decimal number. AH must be zero for the subse-

2-37

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

quent DIV to produce the correct result. The quo-
tient is returned in AL, and the remainder is
returned in AH; both high-order half-bytes are
zeroed. AAD updates PF, SF and ZF; the content
of AF, CF and OF is undefined following execu-
tion of AAD.

CBW

CBW (Convert Byte to Word) extends the sign of
the byte in register AL throughout register AH.
CBW does not affect any flags. CBW can be used
to produce a double-length (word) dividend from
a byte prior to performing byte division.

CcwD

CWD (Convert Word to Doubleword) extends the
sign of the word in register AX throughout
register DX. CWD does not affect any flags.
CWD can be used to produce a double-length
(doubleword) dividend from a word prior to per-
forming word division.

Bit Manipulation Instructions

The 8086 and 8088 provide three groups of
instructions (table 2-11) for manipulating bits
within both bytes and words: logical, shifts and
rotates.

Table 2-11. Bit Manipulation Instructions
LOGICALS
NOT “Not’’ byte or word
AND ‘“And’’ byte or word
OR “Inclusive or’’ byte or word
XOR ‘‘Exclusive or’’ byte or word
TEST ““Test’” byte or word
SHIFTS
SHL/SAL | Shiftlogical/arithmetic left
byte or word
SHR Shift logical right byte or word
SAR Shift arithmetic right byte or
word
ROTATES
ROL Rotate left byte or word
ROR Rotate right byte or word
RCL Rotate through carry left byte
or word
RCR Rotate through carry right byte
or word i

Logical

The logical instructions -include the boolean
operators ‘‘not,”’ ‘‘and,”” ‘‘inclusive:or,” and
“‘exclusive or,”’ plus a TEST iinstruction that sets
the flags, but does not alter either of its operands.

AND, OR, XOR and TEST affect the flags as
follows: The overflow (OF) and carry:(CF) flags
are always cleared by logical instructions, and the
content of the auxiliary carry (AF) flag is always
undefined following execution of a logical
instruction. The sign (SF), zero (ZF) and parity
(PF) flags are always posted to reflect the result of
the operation and can be tested by conditional
jump instructions. The interpretation of these
flags is the same as for arithmetic instructions. SF
is set if the result is negative (high-order bit is 1),
and is cleared if the result is positive (high-order
bit is 0). ZF is set if the result is zero, cleared
otherwise. PF is set if the result contains an even
number of 1-bits (has even parity) and is cleared if
the number of 1-bits is odd (the result has odd
parity). Note that NOT has no effect on the flags.

NOT destination

NOT inverts the bits (forms- the one’s comple-
ment) of the byte or word operand.

AND destination,source

AND performs the logical ‘‘and’’ of the two
operands (byte or word) and returns the result to
the destination operand. A bit in the result is set if
both corresponding bits of the original operands
are set; otherwise the bit is cleared.

OR destination,source

OR performs the logical ‘‘inclusive or’’ of the two
operands (byte or word) and returns the result to
the destination operand. A bit in the result is set if
either or both corresponding bits in the original
operands are set; otherwise the result bit is
cleared.

XOR destination,source

XOR (Exclusive Or) performs the logical ‘‘exclu-
sive or”’ of the two operands and returns the
result to the destination operand. A bit in the

Mnemonics © Intel, 1978

2-38

8086 AND 8088 CENTRAL PROCESSING UNITS

result is set if the corresponding bits of the
original operands contain opposite values (one is
set, the other is cleared); otherwise the result bit is
cleared.

TEST destination,source

TEST performs the logical ‘‘and’’ of the two
operands (byte or word), updates the flags, but
does not return the result, i.e., neither operand is
changed. If a TEST instruction is followed by a
JNZ (jump if not zero) instruction, the jump will
be taken if there are any corresponding 1-bits in
both operands.

Shifts

The bits in bytes and words may be shifted
arithmetically or logically. Up to 255 shifts may
be performed, according to the value of the count
operand coded in the instruction. The count may
be specified as the constant 1, or as register CL,
allowing the shift count to be a variable supplied
at execution time. Arithmetic shifts may be used
to multiply and divide binary numbers by powers
of two (see note in description of SAR). Logical
shifts can be used to isolate bits in bytes or words.

Shift instructions affect the flags as follows. AF is
always undefined following a shift operation. PF,
SF and ZF are updated normally, as in the logical
instructions. CF always contains the value of the
last bit shifted out of the destination operand.
The content of OF is always undefined following
a multibit shift. In a single-bit shift, OF is set if
the value of the high-order (sign) bit was changed
by the operation; if the sign bit retains its original
value, OF is cleared.

SHL/SAL destination,count

SHL and SAL (Shift Logical Left and Shift
Arithmetic Left) perform the same operation and
are physically the same instruction. The destina-
tion byte or word is shifted left by the number of
bits specified in the count operand. Zeros are
shifted in on the right. If the sign bit retains its
original value, then OF is cleared.

SHR destination,source

SHR (Shift Logical Right) shifts the bits in the
destination. operand (byte or word) to the right by

the number of bits specified in the count operand.
Zeros are shifted in on the left. If the sign bit
retains its original value, then OF is cleared.

SAR destination,count

SAR (Shift Arithmetic Right) shifts the bits in the
destination operand (byte or word) to the right by
the number of bits specified in the count operand.
Bits equal to the original high-order (sign) bit are
shifted in on the left, preserving the sign of the
original value. Note that SAR does not produce
the same result as the dividend of an
““equivalent’’ IDIV instruction if the destination
operand is negative and 1-bits are shifted out. For
example, shifting —5 right by one bit yields —3,
while integer division of —5 by 2 yields —2. The
difference in the instructions is that IDIV trun-
cates all numbers toward zero, while SAR trun-
cates positive numbers toward zero and negative
numbers toward negative infinity. '

Rotates

Bits in bytes and words also may be rotated. Bits
rotated out of an operand are not lost as in a
shift, but are “‘circled’’ back into the other ‘‘end”’
of the operand. As in the shift instructions, the
number of bits to be rotated is taken from the
count operand, which may specify either a con-
stant of 1, or the CL register. The carry flag may
act as an extension of the operand in two of the
rotate instructions, allowing a bit to be isolated in
CF and then tested by a JC (jump if carry) or JNC
(jump if not carry) instruction.

Rotates affect only the carry and overflow flags.
CF always contains the value of the last bit
rotated out. On multibit rotates, the value of OF
is always undefined. In single-bit rotates, OF is
set if the operation changes the high-order (sign)
bit of the destination operand. If the sign bit
retains its original value, OF is cleared.

ROL destination,count

ROL (Rotate Left) rotates the destination byte or
word left by the number of bits specified in the
count operand.

2-39

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

ROR destination,count

ROR (Rotate Right) operates similar to ROL
except that the bits in the destination byte or word
are rotated right instead of left.

RCL destination,count

RCL (Rotate through Carry Left) rotates the bits
in the byte or word destination operand to the left
by the number of bits specified in the count
operand. The carry flag (CF) is treated as ‘‘part
of”’ the destination operand; that is, its value is
rotated into the low-order bit of the destination,
and itself is replaced by the high-order bit of the
destination.

RCR destination,count

RCR (Rotate through Carry Right) operates
exactly like RCL except that the bits are rotated
right instead of left.

String Instructions

Five basic string operations, called primitives,
allow strings of bytes or words to be operated on,
one element (byte or word) at a time. Strings of
up to 64k bytes may be manipulated with these
instructions. Instructions are available to move,
compare and scan for a value, as well as for mov-
ing string elements to and from the accumulator
(see table 2-12). These basic operations may be
preceded by a special one-byte prefix that causes
the instruction to be repeated by the hardware,
allowing long strings to be processed much faster
than would be possible with a software loop. The
repetitions can be terminated by a variety of con-
ditions, and a repeated operation may be inter-
rupted and resumed. ‘

The string instructions operate quite similarly in
many respects; the common characteristics are
covered here and in table 2-13 and figure 2-33
rather than in the descriptions of the individual
instructions. A string instruction may have a
source operand, a destination operand, or both.
The hardware assumes that a source string resides
in the current data segment; a segment prefix byte
may be used to override this assumption. A
destination string must be in the current extra seg-
ment. The assembler checks the attributes of the

operands to determine if the elements of the
strings are bytes or words. The assembler does
not, however, use the operand names to address
the strings. Rather, the content of register SI
(source index) is used as an offset to address the
current element of the source string, and the con-
tent of register DI (destination index) is taken as
the offset of the current destination string ele-
ment. These registers must be initialized to point
to the source/destination strings before executing
the string instruction; the LDS, LES and LEA
instructions are useful in this regard.

Table 2-12. String Instructions

REP Repeat

REPE/REPZ Repeat while equal/zero

REPNE/REPNZ Repeat while not
equallnot zero

MOVS Move byte or word string

MOVSBIMOVSW' Move byte or word string

CMPS Compare byte or word
string

SCAS Scan byte or word string

LODS Load byte or word string

STOS Store byte or word string

Table 2-13. String Instruction Register and

Flag Use
Si Index (offset) for source string
DI Index (offset) for destination
string
CX Repetition counter
AL/AX Scan value
Destination for LODS
Source for STOS
DF 0 = auto-increment Si, DI
1= auto-decrement Sl, DI
ZF Scan/compare terminator

Mnemonics © Intel, 1978

2-40

8086 AND 8088 CENTRAL PROCESSING UNITS

r———— - 1 SI/DI, CX
| . PREVIOUS _ _ _ JANDOGFWOULD
INSTRUCTIONS TYPICALLY BE

INITIALIZED HERE

L__I___J

REPEAT
PREFIX

ABSENT _

‘;PRESENT

CX:0 - >

NORMAL
SYSTEM
INTERRUPT
SERVICE

PENDING

NOT PENDING

DECREMENT
CXBY1

STRING DF DELTA

BYTE 0 1

BYTE 1 -1

/ WORD 0 2

WORD 1 -2

/
ADJUST PREFIX| Z
Si/D1 REPE | 1 '
BY DELTA REPZ 1
REPNE| 0
REPNZ | 0
7
/

PRESENT

REPEAT
PREFIX

Figure 2-33. String Operation Flow

2-41 Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

The string instructions automatically update SI
and/or DI in anticipation of processing the next
string element. The setting of DF (the direction
flag) determines whether the index registers are
auto-incremented (DF = 0) or auto-decremented
(DF = 1). If byte strings are being processed, SI
and/or DI is adjusted byl; the adjustment is 2 for
word strings.

If a Repeat prefix has been coded, then register
CX (count register) is decremented by 1 after each
repetition of the string instruction; therefore, CX
must be initialized to the number of repetitions
desired before the string instruction is executed. If
CX is 0, the string instruction is not executed, and
control goes to the following instruction.

Section 2.10 contains examples that illustrate the
use of all the string instructions.

REP/REPE/REPZ/REPNE/REPNZ

Repeat, Repeat While Equal, Repeat While Zero,
Repeat While Not Equal and Repeat While Not
Zero are five mnemonics for two forms of the
prefix byte that controls repetition of a subse-
quent string instruction. The different mnemonics
are provided to improve program clarity. The
repeat prefixes do not affect the flags.

REP is used in conjunction with the MOVS
(Move String) and STOS (Store String) instruc-
tions and is interpreted as ‘‘repeat while not end-
of-string’’ (CX not 0). REPE and REPZ operate
identically and are physically the same prefix byte
as REP. These instructions are used with the
CMPS (Compare String) and SCAS (Scan String)
instructions and require ZF (posted by these
instructions) to be set before initiating the next
repetition. REPNE and REPNZ are two
mnemonics for the same prefix byte. These
instructions function the same as REPE and
REPZ except that the zero flag must be cleared or
the repetition is terminated. Note that ZF does
not need to be initialized before executing the
repeated string instruction.

Repeated string sequences are interruptable; the
processor will recognize the interrupt before pro-
cessing the next string element. System interrupt
processing is not affected in any way. Upon
return from the interrupt, the repeated operation
is resumed from the point of interruption. Note,
however, that execution does not resume properly

if a second or third prefix (i.e., segment override
or LOCK) has been specified in addition to any of
the repeat prefixes. The processor ‘‘remembers’’
only one prefix in effect at the time of the inter-
rupt, the prefix that immediately precedes the
string instruction. After returning from the inter-
rupt, processing resumes at this point, but any
additional prefixes specified are not in effect. If
more than one prefix must be used with a string
instruction, interrupts may be disabled for the
duration of the repeated execution. However, this
will not prevent a non-maskable interrupt from
being recognized. Also, the time that the system is
unable to respond to interrupts may be unaccept-
able if long strings are being processed.

MOVS destination-string,source-string

MOVS (Move String) transfers a byte or a word
from the source string (addressed by SI) to the
destination string (addressed by DI) and updates
SI and DI to point to the next string element.
When used in conjunction with REP, MOVS per-
forms a memory-to-memory block transfer.

MOVSB/MOVSW

These are alternate mnemonics for the move
string instruction. These mnemonics are coded
without operands; they explicitly tell the
assembler that a byte string (MOVSB) or a word
string (MOVSW) is to be moved (when MOVS is
coded, the assembler determines the string type
from the attributes of the operands). These
mnemonics are useful when the assembler cannot
determine the attributes of a string, e.g., a section
of code is being moved.

CMPS destination-string,source-string

CMPS (Compare String) subtracts the destination
byte or word (addressed by DI) from the source
byte or word (addressed by SI). CMPS affects the
flags but does not alter either operand, updates SI
and DI to point to the next string element and
updates AF, CF, OF, PF, SF and ZF to reflect the
relationship of the destination element to the
source element. For example, if a JG (Jump if
Greater) instruction follows CMPS, the jump is
taken if the destination element is greater than the
source element. If CMPS is prefixed with REPE

Mnemonics © Intel, 1978

2-42

8086 AND 8088 CENTRAL PROCESSING UNITS

or REPZ, the operation is interpreted as ‘‘com-
pare while not end-of-string (CX not zero) and
strings are equal (ZF = 1).”’ If CMPS is preceded
by REPNE or REPNZ, the operation is inter-
preted as ‘‘compare while not end-of-string (CX
not zero) and strings are not equal (ZF = 0).”
Thus, CMPS can be used to find matching or dif-
fering string elements.

SCAS destination-string

SCAS (Scan String) subtracts the destination
string element (byte or word) addressed by DI
from the content of AL (byte string) or AX (word
string) and updates the flags, but does not alter
the destination string or the-accumulator. SCAS
also updates DI to point to the next string element
and AF, CF, OF, PF, SF and ZF to reflect the
relationship of the scan value in AL/AX to the
string element. If SCAS is prefixed with REPE or
REPZ, the operation is interpreted as ‘‘scan while
not end-of-string (CX not 0) and string-element =
scan-value (ZF = 1).”” This form may be used to
scan for departure from a given value. If SCAS is
prefixed with REPNE or REPNZ, the operation
is interpreted as ‘‘scan while not end-of-string
(CX not 0) and string-element is not equal to
scan-value (ZF = 0).”’” This form may be used to
locate a value in a string.

LODS source-string

LODS (Load String) transfers the byte or word
string element addressed by SI to register AL or
AX, and updates SI to point to the next element
in the string. This instruction is not ordinarily
repeated. since the accumulator would be over-
written by each repetition, and only the last ele-
ment would be retained. However, LODS is very
useful in software loops as part of a more com-
plex string function built up from string
primitives and other instructions.

STOS destination-string

STOS (Store String) transfers a byte or word from
register AL or AX to the string element addressed
by DI and updates DI to point to the next location
in the string. As a repeated operation, STOS pro-
vides a convenient way to initialize a string to a
constant value (e.g., to blank out a print line).

Program Transfer Instructions:

The sequence of execution of instructions in an
8086/8088 program is determined by the content
of the code segment register (CS) and the instruc-
tion pointer (IP). The CS register contains the
base address of the current code segment, the 64k
portion of memory from which instructions are
presently being fetched. The IP is used as an off-
set from the beginning of the code segment; the
combination of CS and IP points to the memory
location from which the. next instruction is to be
fetched. (Recall that under most operating condi-
tions, the next instruction to be executed has
already been fetched from memory and is waiting
in the CPU instruction queue.) The program
transfer instructions operate on the instruction
pointer and on the CS register; changing the con-
tent of these causes normal sequential execution
to be altered. When a program transfer occurs,
the queue no longer contains the correct instruc-
tion, and the BIU obtains the next instruction
from memory using the new IP and CS values,
passes the instruction directly to the EU, and then
begins refilling the queue from the new location.

Four groups of program transfers are available in
the 8086/8088 (see table 2-14): unconditional
transfers, conditional transfers, iteration control
instructions and interrupt-related instructions.
Only the interrupt-related instructions affect any
CPU flags. As will be seen, however, the execu-
tion of many of the program transfer instructions
is affected by the states of the flags.

Unconditional Transfers.

The unconditional transfer instructions may
transfer control to a target instruction within the
current code segment (intrasegment transfer) or
to a different code segment (intersegment
transfer). (The ASM-86 assembler terms an
intrasegment target NEAR and an intersegment
target FAR.) The transfer is made uncondition-
ally any time the instruction is executed.

CALL procedure-name

CALL activates an out-of-line procedure, saving
information on the stack to permit a RET (return)
instruction in the procedure to transfer control
back to the instruction following the CALL. The

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-14. Program Transfer Instructions

UNCONDITIONAL TRANSFERS

CALL Call procedure
RET Return from procedure
JMP Jump
CONDITIONAL TRANSFERS
JAIJNBE Jump if above/not below)
: nor equal -
JAE/JNB Jump if above or
equal/not below
JB/JNAE Jump if below/not above
f nor equal
JBE/JNA Jump if below or
’ equal/not above
JC Jump if carry
JE/JZ Jump if equal/zero
-JG/JINLE Jump if greater/not less
o nor equal
JGE/JNL Jump if greateror -
equal/notless:
JL/JINGE Jump if |esslnotgreater
nor equal .
~JLE/JNG Jump if less or equal/not
: greater .
JNC Jumpif notcarry
JNE/JNZ Jumpif not equal/not
zero -
JNO Jump if not overflow
JNP/JPO Jump if not parity/parity
odd
JNS Jump if not sign
Jo Jump if overflow
JP/JPE Jump if parity/parity
even
JS ‘| Jump if sign
ITERATION CONTROLS
LOOP Loop
LOOPE/LOOPZ Loop if equal/zero
LOOPNE/LOOPNZ | Loop if not equal/not
zero
JCXZ Jump if register CX =0
INTERRUPTS
INT | Interrupt’
INTO Interrupt if overflow
IRET Interrupt return

assembler generates ‘a different-type of CALL
instruction depending: on whether ‘the program-
mer has defined the procedure name as NEAR or
FAR. For control to réeturn properly, the type of
CALL instruction must match the type of RET
instruction that exits from the'procedure. (The
potential for.a mismatch .exists if the proceduré
and the CALL are contained in separately
assembled programs.) Different forms of the
CALL instruction allow the address of the target
procedure to be obtained from the instruction
itself (direct CALL) or from a memory location
or register referenced by.the.instruction (indirect
CALL)..In the following descriptions, bear .in
mind that the processor automatically.adjusts IP
to point to the next instruction to be executed
before saving it on the stack

For an intrasegment,direct C'ALL«, SP (the stack
pointer) is decremented by two and IP is pushed
onto the stack. The relative displacement .(up to
+32k) of the target procedure from the CALL
instruction is then -added to- the instruction
pointer. This form of the CALL. instruction is
“‘self-relative’” and is appropriate for position- in-
dependent (dynamically .relocatable) routines in
which the, CALL and its target are in the same
segment and are moved together

An mtrasegment mdlrect CALL may be made
through memory or through a register. SP is
decremented by two and IP is pushed onto the
stack. The offset of the target procedure is
obtained from the memory word or 16-bit general
register referenced in the 1nstructlon and replaces
1P.

For an intersegment direct -CALL, 'SP is
decremented by two, and CS is pushed onto the
stack. CS is replaced by the segment word con-
tained in the instruction. SP again'is decremented
by two. IP is pushed onto the stack and 'is
replaced by the offset word contamed in the
instruction. '

For an intersegment indirect CALL (which only
may be made through memory), SP is
decremented by two, and"CSis pushed onto the
stack. CS is then replaced by the content of the
second word of -the doubleword memory pointer
referenced - by ‘the "instruction.. 'SP -again ‘is
decremented by two, and IP is pushed onto the
stack and is replaced by.the.content of: the first
word of the doubleword pomter referenced by the
instruction. L . . L

Mnemonics © Intel, 1978

2-44

8086 AND 8088 CENTRAL PROCESSING UNITS

RET optional-pop-value

RET (Return) transfers control from a procedure
back to the instruction following the CALL that
activated the procedure. The assembler generates
an intrasegment RET if the programmer has
defined the procedure NEAR, or an intersegment
RET if the procedure has been defined as FAR.
RET pops the word at the top of the stack
(pointed to by register SP) into the instruction
pointer and increments SP by two. If RET is
intersegment, the word at the new top of stack is
popped into the CS register, and SP is again
incremented by two. If an optional pop value has
been specified, RET adds that value to SP. This
feature may be used to discard parameters pushed
onto the stack before the execution of the CALL
instruction.

JMP target

JMP unconditionally transfers control to the
target location. Unlike a CALL instruction, JMP
does not save any information on the stack, and
no return to the instruction following the JMP is
expected. Like CALL, the address of the target
operand may be obtained from the instruction
itself (direct JMP) or from memory or a register
referenced by the instruction (indirect JMP).

An intrasegment direct JMP changes the instruc-
tion pointer by adding the relative displacement
of the target from the JMP instruction. If the
assembler can determine that the target is within
127 bytes of the JMP, it automatically generates a
two-byte form of this instruction called a SHORT
JMP; otherwise, it generates a NEAR JMP that
can address a target within +32k. Intrasegment
direct JMPS are self-relative and are appropriate
in position-independent (dynamically relocatable)
routines in which the JMP and its target are in the
same segment and are moved together.

An intrasegment indirect JMP may be made
either through memory or through a 16-bit
general register. In the first case, the content of
the word referenced by the instruction replaces
the instruction pointer. In the second case, the
new IP value is taken from the register named in
the instruction.

An intersegment direct JMP replaces IP and CS
with values contained in the instruction.

An intersegment indirect JMP may be made only
through memory. The first word of the
doubleword pointer referenced by the instruction
replaces IP, and the second word replaces CS.

Conditional Transfers

The conditional transfer instructions are jumps
that may or may not transfer control depending
on the state of the CPU flags at the time the
instruction is executed. These 18 instructions (see
table 2-15) each test a different combination of
flags for a condition. If the condition is ‘‘true,”’
then control is transferred to the target specified
in the instruction. If the condition is ‘‘false,”
then control passes to the instruction that follows
the conditional jump. All conditional jumps are
SHORT, that is, the target must be in the current
code segment and within —128 to +127 bytes of
the first byte of the next instruction (JMP 00H
jumps to the first byte of the next instruction).
Since the jump is made by adding the relative
displacement of the target to the instruction
pointer, all conditional jumps are self-relative and
are appropriate for position-independent
routines. ‘

Iteration Control

The iteration control instructions can be used to
regulate the repetition of software loops. These
instructions use the CX register as a counter. Like
the conditional transfers, the iteration control
instructions are self-relative and may only
transfer to targets that are within —128 to +127
bytes of themselves, i.e., they are SHORT
transfers. :

LOOP short-label

LOOP decrements CX by 1 and transfers control
to the target operand if CX is not 0; otherwise the
instruction following LOOP is executed.
LOOPE/LOOPZ short-label

LOOPE and LOOPZ (Loop While Equal and

Loop While Zero) are different mnemonics for
the same instruction (similar to the REPE and

2-45

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-15. Interpretation of Conditional Transfers .

MNEMONIC CONDITION TESTED - “JUMPIF ...”

JA/JNBE (CForZF)=0 . above/notbelow nor equal
JAE/JNB CF=0 above or equal/not below
JB/JNAE CF=1 below/not above nor equal
JBE/JNA (CF or ZF)=1 below or equal/not above
JC CF=1 carry '

JE/JZ ZF=1 . equal/zero

JG/JINLE ((SF xor OF) or ZF)=0 greater/notless nor equal
JGE/JNL. (SF xor OF)=0 :. -greater or equal/not less
JL/UNGE (SF xor OF)=1 less/not.greater nor equal
JLE/JNG . ((SF xor OF) or ZF)=1 less or equal/not greater
JNC . : . CF=0. .-.notcarry

JNE/JNZ : ZF=0 -not equal/not zero

JNO. OF=0 not overflow

JNP/JPO : : PF=0 not parity/parity odd

JNS SF=0 not sign

JO OF=1 overflow

JP/JPE PF=1 parity/parity equal

Js . SF=1 sign

Note: ‘“‘above’’ and ‘‘below’’ refer to the relationship of two-unsigned:values; .
‘‘greater’’ and ‘‘less’’ refer to the relationship of two signed values.

REPZ repeat prefixes). CX is decremented by 1,
and control is transferred to the target operand if
CX is not 0 and if ZF is set; otherwise the instruc-
tion following LOOPE/LOOPZ is executed.

LOOPNE/LOOPNZ short-label

LOOPNE and LOOPNZ (Loop While Not Equal
and Loop While Not Zero) are also synonyms for
the same instruction. CX is decremented by 1,
and control is transferred to the target operand if
CXis not 0 and if ZF is clear; otherwise the next
sequential instruction is executed.

JCXZ short-label

JCXZ (Jump If CX Zero) transfers control to the
target operand if CX is 0. This instruction is
useful at the beginning of a loop.to bypass the
loop if CX has a zero value, i.e., to execute the
loop zero times.

Interrupt Instructions

The interrupt instructions allow interrupt service
routines to be activated by programs as well as by

external hardware devices. The effect of software
interrupts - is. similar to hardware-initiated inter-
rupts. However, the processor does not execute
an interrupt-acknowledge bus cycle if the inter-
rupt originates in software or with an NMI. The
effect. of the interrupt instructions on the flags is
covered in the description of each instruction.

INT interrupt-type ‘

INT (Interrupt) activates the interrupt procedure
specified by the -interrupt-type operand. INT
decrements the stack pointer by two, pushes the
flags onto the stack, and clears the trap (TF) and
interrupt-enable (IF) flags to disable single-step
and maskable interrupts. The flags are stored in
the format used by the PUSHF instruction. SP is
decremented again by two, and the CS register is
pushed onto the stack. The address of the inter-
rupt pointer is calculated by multiplying
interrupt-type by four; the second word of the in-
terrupt - pointer replaces CS. SP- again is
decremented by two, and IP is pushed onto the
stack and is replaced by the first word of the inter-
rupt pointer. If interrupt-type = 3, the assembler
generates a short (1 byte) form of the instruction,
known as the breakpoint interrupt.

Mnemonics © Intel, 1978

2-46

8086 AND 8088 CENTRAL PROCESSING UNITS

Software interrupts can be used as ‘‘supervisor
calls,” i.e., requests for service from an operating
system. A different interrupt-type can be used for
each type of service that the operating system
could supply for an application program. Soft-
ware interrupts also may be used to check out
interrupt service procedures written for hardware-
initiated interrupts.

INTO

INTO (Interrupt on Overflow) generates a soft-
ware interrupt if the overflow flag (OF) is set;
otherwise control proceeds to the following
instruction without activating an interrupt pro-
cedure. INTO addresses the target interrupt pro-
cedure (its type is 4) through the interrupt pointer
at location 10H; it clears the TF and IF flags and
otherwise operates like INT. INTO may be writ-
ten following an arithmetic or logical operation to
activate an interrupt procedure if overflow
occurs.

IRET

IRET (Interrupt Return) transfers control back to
the point of interruption by popping IP, CS and
the flags from the stack. IRET thus affects all
flags by restoring them to previously saved
values. IRET is used to exit any interrupt
procedure, whether activated by hardware or
software.

Processor Control Instructions

These instructions (see table 2-16) allow programs
to control various CPU functions. One group of
instructions updates flags, and another group is
used primarily for synchronizing the 8086 or 8088
with external events. A final instruction causes
the CPU to do nothing. Except for the flag opera-
tions, none of the processor control instructions
affect the flags.

Flag Operations

CcLC

CLC (Clear Carry flag) zeroes the carry flag (CF)
and-affects no other flags. It (and CMC and STC)
is useful in conjunction with the RCL and RCR
instructions.

Table 2-16. Processor Control Instructions -

FLAG OPERATIONS

STC Set carry flag
CLC Clear carry flag
CMC Complementcarry flag -
STD Set direction flag
CLD Clear direction flag
STI Setinterrupt enable flag
CLI Clear interrupt enable flag

EXTERNAL SYNCHRONIZATION
HLT Halt until interrupt or reset
WAIT Wait for TEST pin active
ESC Escape to external processor
LOCK Lock bus during next

instruction
NO OPERATION
NOP No operation
cMC

CMC (Complement Carry flag) ‘‘toggles’’ CF to
its opposite state and affects no other flags.

STC

STC (Set Carry flag) sets CF to 1 and affects no
other flags. ' ‘

CLD

CLD (Clear Direction flag) zeroes DF causing the
string instructions to auto-increment the SI
and/or DI index registers. CLD does not affect
any other flags. ‘

STD

STD (Set Direction flag).sets DF to 1 causing the
string instructions to auto-decrement the SI
and/or DI index registers. STD does not affect
any other flags. ‘

2-47

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

CLI

CLI (Clear Interrupt-enable flag) zeroes IF.
When the interrupt-enable flag is cleared, the
8086 and 8088 do not recognize an external inter-
rupt request that appears on the INTR line; in
other words maskable interrupts are disabled. A
non-maskable interrupt appearing on the NMI
line, however, is honored, as is a software inter-
rupt. CLI does not affect any other flags.

STI

STI (Set Interrupt-enable flag) sets IF to 1, en-
abling processor recognition of maskable inter-
rupt requests appearing on the INTR line. Note
however, that a pending interrupt will not actu-
ally be recognized until the instruction following
STI has executed. STI does not affect any other
flags.

External Synchronization

HLT

HLT (Halt) causes the 8086/8088 to enter the halt
state. The processor leaves the halt state upon
activation of the RESET line, upon receipt of a
non-maskable interrupt request on NMI, or, if
interrupts are enabled, upon receipt of a
maskable interrupt request on INTR. HLT does
not affect any flags. It may be used as an alter-
native to an endless software loop in situations
where a program must wait for an interrupt.

WAIT

WAIT causes the CPU to enter the wait state
while its TEST line is not active. WAIT does not
affect any flags. This instruction is described
more completely in section 2.5.

ESC external-opcode, source

ESC (Escape) provides a means for an external
processor to obtain an opcode and possibly a
memory operand from the 8086 or 8088. The
external opcode is a 6-bit immediate constant that
the assembler encodes in the machine instruction

it builds (see table 2-26). An external processor
may monitor the system bus and capture this
opcode when the ESC is fetched. If the source
operand is a register, the processor does nothing.
If the source operand is a memory variable, the
processor obtains the operand from memory and
discards it. An external processor may capture the
memory operand when the processor reads it
from memory.

LOCK

LOCK is a one-byte prefix that causes the
8086/8088 (configured in maximum mode) to
assert its bus LOCK signal while the following
instruction executes. LOCK does not affect any
flags. See section 2.5 for more information on
LOCK.

No Operation

NOP

NOP (No Operation) causes the CPU to do
nothing. NOP does not affect any flags.

Instruction Set Reference Information

Table 2-21 provides detailed operational informa-
tion for the 8086/8088 instruction set. The
information is presented from the point of view
of utility to the assembly language programmer.
Tables 2-17, 2-18 and 2-19 explain the symbols
used in table 2-21. Machine language instruction
encoding and decoding information is given in
Chapter 4.

Instruction timings are presented as the number
of clock periods required to execute a particular
form (register-to-register, immediate-to-memory,
etc.) of the instruction. If a system is running with
a 5 MHz maximum clock, the maximum clock
period is 200 ns; at 8 MHz, the clock period is 125

‘ns. Where memory operands are used, ‘“+EA”’

denotes a variable number of additional clock
periods needed to calculate the operand’s effec-
tive address (discussed in section 2.8). Table 2-20
lists all effective address calculation times.

Mnemonics © Intel, 1978

2-48

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-17. Key to Instruction Coding Formats

source-table
target
short-label

accumulator

port

: source-string
dest-string

count

“interrupt-type
optional-pop-value

external-opcode

bit manipulation

XLAT

JMP, CALL

cond. transfer,
iteration control

IN, OUT

IN, OUT

string ops.

string ops.

shifts, rotates

INT

RET

ESC

IDENTIFIER USED.IN EXPLANATION
destination data transfer, A register or memory location that may contain data
bit manipulation operated on by the instruction, and which receives (is
replaced by) the result of the operation.
’ source data transfer, A register, memory location or immediate value that is
arithmetic, used in the operation, but is not altered by the instruc-

tion.

Name of memory translation table addressed by register
BX.

A label to which control is to be transferred directly, ora
register or memory location whose content is the
address of the location to which control is to be transfer-
red indirectly.

A label to which control is to be conditionally
transferred; must lie within =128 to +127 bytes of the first
byte of the next instruction.

Register AX for word transfers, AL for bytes.

An 1/0 port number; specified as an immediate value of
0-255, or register DX (which contains port number in
range 0-64k).

Name of a string in memory that is addressed by register
Sl; used only to identify string as byte or word and
specify segment override, if any. This string is used in
the operation, but is not altered.

Name of string in memory that is addressed by register
DI; used only to identify string as byte or word. This
string receives (is replaced by) the result of the opera-
tion.

Specifies number of bits to shift or rotate; written as
immediate value 1 or register CL (which contains the
countin the range 0-255).

Immediate value of 0-255 identifying interrupt pointer
number.

Number of bytes (0-64k, ordinarily an even number) to
discard from stack.

Immediate value (0-63) that is encoded in the instruction
for use by an external processor.

2-49 Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-18. Key to Flag Effects

Table 2-19. Key to Operand Types

For control transfer instructions, the timings
given include any additional clocks required to
reinitialize the instruction queue as well as the
time required to fetch the target instruction. For
instructions executing on an 8086, four clocks
should be added for each instruction reference to
a word operand located at an odd memory
address to reflect any additional operand bus
cycles required. Similarly for instructions exe-
cuting on an 8088, four clocks should be added to
each instruction reference to a 16-bit memory
operand; this includes all stack operations. The
required number of data references is listed in
table 2-21 for each instruction to aid in this
calculation. ’

Several additional factors can increase actual
execution time over the figures shown in table
2-21. The time provided assumes that the instruc-
tion has already been prefetched and that it is
waiting in the instruction queue, an assumption
that is valid under most, but not all, operating
conditions. A series of fast executing (fewer than
two clocks per opcode byte) instructions can drain
the queue and increase execution time. Execution
time also is slightly impacted by the interaction of
the EU and BIU when memory operands must be
read or written. If the EU needs access to
memory, it may have to wait for up to one clock if
the BIU has already started an instruction fetch
bus cycle. (The EU can detect the need for a
memory operand and post a bus request far
enough in advance of its need for this operand to
avoid waiting a full 4-clock bus cycle). Of course
the EU does not have to wait if the queue is full,
because the BIU is idle. (This discussion assumes

source-table
source-string
dest-string
DX
short-label
near-label
far-label
near-proc
far-proc

memptri6

memptr32

regptri6

repeat

IDENTIFIER EXPLANATION IDENTIFIER EXPLANATION
(blank) not altered (no operands) [No operands are written
0 cleared to 0 register An 8- crr 16-bit geneljal register
1 setto1 reg 16 A 16-bit genera.l register
seg-reg A segment register
X set or cleared according .
to result accumulator | Register AX or AL
.) immediate A constant in the range
U unfieflned——contalns no v 0-FFFFH
reliable value immed8 A constantin the range 0-FFH
R restored from previously- memory An 8- or 16-bit memory
saved value location"
mems8 An 8-bit memory location®
mem16 A 16-bit memory location("

Name of 256-byte translate
table

Name of string addressed by
register SI

Name of string addressed by
register DI

Register DX

A label within -128 to +127
bytes of the end of the instruc-
tion

A label in current code
segment
A label in another code
segment

A procedure in current code
segment

A procedure in another code
segment

A word containing the offset of
the location in the current code
segment to which control is to
be transferred

A doubleword containing the
offset and the segment base
address of the location in
another code segment to which
control is to be transferred)

A 16-bit general register
containing the offset of the
location in the current code
segment to which control is to
be transferred

A string instruction
prefix

repeat

(MAny addressing mode—direct, register in-
direct, based, indexed, or based
indexed—may be used (see section 2.8).

Mnemonics © Intel, 1978

2-50

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-20. Effective Address Calculation

Time
EA COMPONENTS CLOCKS*
Displacement Only 6
Base orIndex Only (BX,BP,SI,DI) 5
Displacement
+ 9

Base or Index (BX,BP,SI,Dl)
Base BP + DI, BX+SI 7

+
Index BP +SI, BX+ DI 8
Displacement BP + DI+ DISP 11

+ BX + S|+ DISP
Base

+ BP + S|+ DISP 12
Index BX +DI+DISP

*Add 2 clocks for segment override

that the BIU can obtain the bus on demand, i.e.,
that no other processors are competing for the
bus.)

With typical instruction mixes, the time actually
required to execute a sequence of instructions will
typically be within 5-10% of the sum of the
individual timings given in table 2-21. Cases can
be constructed, however, in which execution time
may be much higher than the sum of the figures
provided in the table. The execution time for a
given sequence of instructions, however, is always
repeatable, assuming comparable external condi-
tions (interrupts, coprocessor activity, etc.). If the
execution time for a given series of instructions
must be determined exactly, the instructions
should be run on an execution vehicle such as the
SDK-86 or the iSBC 86/12™ board.

Table 2-21. Instruction Set Reference Data

AAA (no operands) ODITSZAPC
AAA ASCI! adjust for addition Flags UuU X U X
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 4 — 1 AAA
AAD (no operands) ODITSZAPC
AAD ASCll adjust for division Flags XX UXU
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 60 — 2 AAD
AAM (no operands) ODITSZAPC
AAM ASCli adjust for multiply Flags XX UX U
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 83 — 1 AAM
AAS (no operands) ODITSZAPC
AAS ASCII adjust for subtraction Flags , UUXUX
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 4 — 1 AAS

*For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.

2-51

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont’d.)

ADC

ADC destination,source

Flags ODITSZAPC
Add with carry 95 x X X X X X
Operands Clocks | Transfers* | Bytes Coding Example
register, register 3 — 2 ADC AX, Sl ‘
register, memory 9+EA 1 2-4 ADC DX, BETA[SI} -
memory, register 16+ EA 2 2-4 ADC ALPHA [BX][SI], DI
register, immediate 4 — . 3-4 ADC BX, 256
memory, immediate 17+ EA 2 3-6 ADC GAMMA, 30H
accumulator, immediate 4 — 2-3 ADC AL,5
ADD destination,source ODITSZAPC
ADD Addition Flags X X X X X
- Operands Clocks | Transfers* | Bytes Coding Example
register, register 3 — 2 ADD CX, DX
register, memory 9+EA 1 2-4 ADD DI, [BX].ALPHA
memory, register 16+ EA 2 2-4 ADD TEMP, CL
register, immediate 4 — 3-4 ADD CL, 2
memory, immediate 17+EA 2 3-6 ADD ALPHA, 2
accumulator, immediate 4 — 2-3 ADD AX, 200
AND destination,source ODITSZAPC
AND Logical and Flags XX UX 0
Operands Clocks | Transfers* | Bytes Coding Example
register, register 3 — 2 AND AL,BL
register, memory 9+EA 1 2-4 AND CX,FLAG_WORD
memory, register 16+EA 2 2-4 AND ASCII [DI],AL
register, immediate 4 — 34 AND CX,0F0H
memory, immediate 17+EA 2 3-6 AND BETA, 01H
accumulator, immediate 4 — 2-3 'AND AX, 01010000B
CALL target ODITSZAPC’
CALL Call a procedure Flags :
_ Operands Clocks | Transfers* | Bytes ‘Coding Examples
near-proc 19 1. 3 CALL NEAR__PROC
far-proc 28 2 5 CALL FAR_PROC
memptr 16 21+EA 2 2-4 CALL PROC__TABLE [SI]
regptr 16 16 1 2 CALL AX
memptr 32 37+EA 4 2-4 CALL [BX].TASK [Sl]
CBW (no operands) ODITSZAPC
CBW Convert byte to word Flags
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 2 — 1 CBW

*For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.

Mnemonics © Intel, 1978

2-52

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont’d.)

CLC (no operands) ODITSZAPC
CLC Clear carry flag Flags 0
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 2 — 1 CLC
CLD (no operands) ODITSZAPC
CLD ‘ Clear direction flag Flags 0
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 2 — 1 CLD
CLI (no operands) ODITSZAPC
CLi Clear interrupt flag Flags 0
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 2 — 1 CLI
CMC CMC (no operands) Flags ODITSZAPC
Complement carry flag 9 X
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 2 — 1 CMC
CMP destination,source ODITSZAPC
Cmp Compare destination to source Flags X XXX XX
Operands Clocks | Transfers* | Bytes Coding Example
register, register 3 — 2 CMP BX, CX
register, memory 9+EA 1 2-4 CMP DH, ALPHA
memory, register 9+EA 1 2-4 CMP [BP+2], SI
register, immediate 4 — 3-4 CMP BL, 02H
memory, immediate 10+ EA 1 3-6 CMP [BX].RADAR [Dl], 3420H
accumulator, immediate 4 — 2-3 CMP AL, 000100008
CMPS dest-string,source-string ODITSZAPC
CMPS Compare string Flags X XX XXX
Operands Clocks | Transfers* | Bytes Coding Example
dest-string, source-string 22 2 1 CMPS BUFF1, BUFF2
(repeat) dest-string, source-string 9+22/rep 2/rep 1 REPE CMPS ID, KEY

*For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.

2-53

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont’d.)

CWD (no operands)

ODITSZAPC

CwbD Convert word to doubleword Flags
Operands Clocks | Transfers* | Bytes 'Coding Example
(no operands) 5 — 1 CWD ‘
‘ DAA (no operands) ODITSZAPC
DAA Decimal adjust for addition Flags X X X X X
Operands Clocks | Transfers* | Bytes C'ddi‘n‘g Example
(no operands) 4 — 1 DAA
DAS (no operands) ODITSZAPG
DAS Decimal adjust for subtraction Flags U XX XXX
Operands Clocks | Transfers* | Bytes Coding Ei(ample
(no operands) 4 — 1 DAS
DEC destination ODITSZAP C'
DEC Decrement by 1) Flags X X X XX
Operands Clocks | Transfers* | Bytes Coding Example
reg16 2 — 1 DEC AX
reg8 3 - 2 DEC AL
memory 15+ EA 2 2-4 DEC ARRAY [SI]
DIV source - ODITSZAPC
DIV Division, unsigned Flags Uuuuu
Operands Clocks | Transfers* | Bytes Coding Example
reg8 80-90 — 2 DIV CL
reg16 144-162 — 2 DIV BX
mem8 (86-96) 1 2-4 DIV ALPHA
+EA
mem16 (150-168) 1 2-4 DIV TABLE [Sl]
+EA .
ESC ESC external-opcode,source Flags ODITSZAPC
Escape 9)
Operands Clocks | Transfers* | Bytes Coding Example
immediate, memory 8+EA 1 - 2-4 ESC 6,ARRAY [SI]
immediate, register 2 — 2 ESC 20,AL

*For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.

Mnemonics © Intel, 1978

2-54

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont’d.)

HLT HLT (no operands) Flags ODITSZAPC
Halt e
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 2 — 1 HLT
IDIV source ODITSZAPC
IDIV Integer division Flags Uuuuu
~ Operands Clocks | Transfers* | Bytes Coding Example
reg8 101-112 — 2 IDIV BL
reg16 165-184 — 2 IDIV CX
mem3 (107-118) 1 2-4 IDIV DIVISOR_BYTE [SI]
. +EA
mem16 (171-190) 1 2-4 IDIV [BX].DIVISOR_WORD
+EA :
IMUL source ODITSZAPC
IMUL Integer multiplication Flags X Uuuu X
Operands Clocks | Transfers* | Bytes Coding Example
reg8 80-98 — 2 IMUL CL
regi6 - 128-154 — 2 IMUL BX -
mem3 (86-104) 1 2-4 IMUL RATE__BYTE
+EA
mem16 (134-160) 1 2-4 | IMUL RATE_WORD [BP] [DI]
+EA
IN accumulator,port _ ODITSZAPC
IN Input byte or word Flags
Operands) Clocks | Transfers* | Bytes Coding Example
accumulator, immed8 10 1 2 IN AL, OFFEAH
accumulator, DX 8 1 1 IN AX, DX
INC destination ODITSZAPC
INC Increment by 1 Flags X X X.X
Operands Clocks | Transfers* | Bytes Coding Example
reg16 2 — 1 INC CX ’
reg8 3 — 2 INC BL
memory 15+EA 2 2-4 INC ALPHA [DI] [BX]

*For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.

2-55

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont’d.)

INT interrupt-type ODITSZAPC
INT Interrupt Flags 00
Operands Clocks | Transfers* | Bytes Coding Example
immed8 (type = 3) 52 5 1 INT 3
immeds8 (type # 3) 51 5 2 INT 67
1‘ INTR (external maskable interrupt) ODITSZAPC
INTR Interrupt if INTR and IF=1 Flags 00
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 61 7 N/A N/A
INTO (no operands) ODITSZAPC
INTO Interrupt if overflow Flags 00
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 530r4 5 1 INTO
IRET (no operands) ODITSZAPC
IRET Interrupt Return Flags R RRRRRRRR
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 24 3 1 IRET
JA/JNBE JA/JNBE short-label Flags ODITSZAPC
Jump if above/Jump if not below nor equal 9
Operands Clocks | Transfers* | Bytes Coding Example
short-label 160r4 — 2 JA ABOVE
JAE/JNB short-label ODITSZAPC
JAE/J NB Jump if above or equal/Jump if not below Flags
Operands Clocks | Transfers* | Bytes Coding Example
short-label 16 or 4 — 2 JAE ABOVE_EQUAL
JB/JNAE JB/JNAE short-label Flags ODITSZAPC
Jump if below/Jump if not above nor equal 9
Operands Clocks | Transfers* | Bytes Coding Example
short-label 16or4 — 2 JB BELOW

*For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.
tINTRis not an instruction; itis included in table 2-21 only for timing information.

Mnemonics © Intel, 1978

2-

56

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont’d.)

JBE/JNA short-label

ODITSZAPC

JBE/JNA Jump if below or equal/Jump if not above Flags
Operands Clocks | Transfers* | Bytes Coding Example
short-label 16 or4 — 2 JNA NOT__ABOVE
JC short-label ODITSZAPC
JC Jump if carry Flags
Operands Clocks | Transfers* | Bytes Coding Example
short-label 16or4 - 2 JC CARRY__SET
JCXZ JCXZ short-label Flaas ODITSZAPC
Jump if CX is zero 9
_ Operands Clocks | Transfers* | Bytes Coding Example
short-label 18or6 — 2 JCXZ COUNT_DONE
JE/JZ short-label ODITSZAPC
JE/JZ Jump if equal/Jump if zero Flags
) Operands Clocks | Transfers* | Bytes Coding Example
short-label 16o0r4 — 2 JZ ZERO
JG/JNLE JG/JNLE short-label Flags ODITSZAPGC
Jump if greater/Jump if not less nor equal 9
Operands Clocks | Transfers* | Bytes Coding Example
short-label 160r4 — 2 JG GREATER
JGE/JNL short-label ODITSZAPC
JG E/JN L Jump if greater or equal/Jump if not less Flags
Operands Clocks | Transfers* | Bytes Coding Example
short-label 16or4 — 2 JGE GREATER_EQUAL
JL/JNGE JL/JNGE short-label Flags ODITSZAPC
Jump if less/Jump if not greater nor equal 9
Operands Clocks | Transfers* | Bytes Coding Example
short-label 16or4 — 2 JL LESS

*For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.

2-57

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

“Table 2-21. Instruction Set Reference Data (Cont’d.)

JLE/JNG short-label

ODITSZAPC

JLE/ING Jump if less or equal/Jump if not greater Flags
Operands Clocks | Transfers* | Bytes Coding Example

short-label 160r4 — 2 JNG NOT_GREATER

JMP jll\lllr:;arget Flags ODITSZAPC
Operands Clocks | Transfers* | Bytes Coding Example

short-label 15 — 2 JMP SHORT

near-label 15 — 3 JMP WITHIN_SEGMENT

far-label 15 — 5 JMP FAR_LABEL

memptr16 18+EA 1 2-4 JMP [BX].TARGET

regptr16 1 — 2 JMP CX

memptr32 24+EA 2 2-4 JMP OTHER.SEG [SI]

JNC Jump i notearry Flags 00792 AFO
Operands Clocks | Transfers* | Bytes Coding Example

short-label 16or4 — 2 JNC NOT_CARRY

JNE/JNZ jynli:)‘li?:oi:?;ttx—alflb\leulmp if not zero Flags OpITSZARGC
Operands Clocks | Transfers* | Bytes Coding Example

short-label 160r4 — 2 JNE NOT_EQUAL

JNO j?rgps:;%g;lisee:ﬂow Flags opiTSZARC
Operands Clocks | Transfers* | Bytes Coding Example

short-label 16or4 — 2 JNO NO__OVERFLOW

JNP/JPO jgnzgli?r?o?gzrrti;;?/%ilmpif parity odd Flags opiTSZAPC
Operands Clocks | Transfers* | Bytes Coding Example

short-label 16o0r4 — 2 JPO ODD__PARITY

INS s sortabel
Operands Clocks | Transfers* | Bytes Coding Example

short-label 160r4 - 2 JNS POSITIVE

*For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.

Mnemonics © Intel, 1978

2-58

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont’d.)

JO short-label ODITSZAPC
Jo Jump if overflow Flags
Operands Clocks | Transfers* | Bytes Coding Example
short-label 16or4 — 2 JO SIGNED_OVRFLW
JP/JPE short-label ODITSZAPC
JP/JPE Jump if parity/Jump if parity even Flags
Operands Clocks | Transfers* | Bytes Coding Example
short-label 16 or 4 — 2 JPE EVEN__PARITY
JS JS short-label Flaas ODITSZAPC
Jump if sign 9
Operands Clocks | Transfers* | Bytes Coding Example
short-label 16 or 4 — 2 JS NEGATIVE
: LAHF (no operands) ODITSZAPC
LAHF Load AH from flags Flags
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 4 — 1 LAHF
LDS destination,source ODITSZAPC
LDS Load pointer using DS Flags
Operands Clocks Transfers | Bytes Coding Example
reg16, mem32 16+ EA 2 2-4 LDS SI,DATA.SEG [DI]
LEA destination,source ODITSZAPC
LEA Load effective address Flags
Operands Clocks | Transfers* | Bytes Coding Example
reg16, mem16 2+EA — 2-4 LEA BX, [BP][DI]
LES LES destination,source Flaas ODITSZAPC
Load pointer using ES 9
Operands Clocks | Transfers* | Bytes Coding Example
reg16, mem32 16+EA 2 2-4 LES DI, [BX].TEXT_BUFF

*For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.

Mnemonics © intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont’d.)

LOCK (no operands) ODITSZAPC
LOCK Lock bus Flags
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 2 — 1 LOCK XCHG FLAG,AL
LODS source-string ODITSZAPC
LODS Load string Flags
Operands Clocks | Transfers* | Bytes Coding Example
source-string 12 1 1 LODS CUSTOMER__NAME:
(repeat) source-string 9+13/rep 1/rep 1 REP. .LODS NAME .
LOOP short-label ODITSZAPC
LOOP Loop Flags :
Operands Clocks | Transfers* | Bytes Coding Example
short-label 17/5 — 2 LOOP AGAIN
LOOPE/LOOPZ LOOPE/LOOPZ short-label Flags ODITSZAPC
Loop if equal/Loop if zero 9
Operands Clocks | Transfers* | Bytes Coding Example
| short-label ' 180r6 - 2 LOOPE AGAIN
LOOPNE/LOOPNZ LOOPNE/LOOPNZ short-label Flags ODITSZAPC
Loop if not equal/Loop if not zero 9s
Operands Clocks | Transfers* | Bytes Coding Example
short-label 190r5 — 2 LOOPNE AGAIN
‘I' NMI (external nonmaskable interrupt) OSITSZAPC
NMI Interrupt if NMI = 1 Flags 00
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 50° 5 N/A N/A

*For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.
$NMI is not an instruction; it is included in table 2-21 only for timing information.

Mnemonics © Intel, 1978

2-60

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont’d.)

MOV

MOV destination,source

ODITSZAPC
Flags

Move
Operands Clocks | Transfers* | Bytes Coding Example
memory, accumulator 10 1 3 MOV ARRAY [Sl], AL
accumulator, memory 10 1 3 MOV AX,TEMP_RESULT
register, register 2 — 2 MOV AX,CX
register, memory 8+EA 1 2-4 MOV BP, STACK_TOP
memory, register 9+EA 1 2-4 MOV COUNT [DI], CX
register, immediate 4 — 2-3 MOV CL,2
memory, immediate 10+EA 1 3-6 MOV MASK [BX] [Sl], 2CH
seg-reg, regi6 2 — 2 MOV ES, CX
seg-reg, mem16 8+EA 1 2-4 MOV DS, SEGMENT__BASE
reg16, seg-reg 2 — 2 MOV BP, SS
memory, seg-reg 9+EA 1 2-4 MOV [BX].SEG__SAVE, CS
MOVS MOVS dest-string,source-string Flags ODITSZAPC
Move string 9
Operands Clocks | Transfers* | Bytes Coding Example
dest-string, source-string 18 2 1 MOVS LINE EDIT_DATA
(repeat) dest-string, source-string 9+17/rep 2/rep 1 REP MOVS SCREEN, BUFFER
MOVSB/MOVSW MOVSB/MOVSW (no operands) Flags ODITSZAPC
Move string (byte/word) 9
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 18 2 1 MOVSB :
(repeat) (no operands) 9+17/rep 2/rep 1 REP MOVSW
MUL source ODITSZAPC
MUL Multiplication, unsigned Flags X UuuuX
Operands Clocks | Transfers* | Bytes Coding Example
reg8 70-77 — 2 MUL BL
reg16 118-133 — 2 MUL CX
mem38 (76-83) 1 2-4 MUL MONTH [SI]
+EA
mem16 (124-139) 1 2-4 MUL BAUD__RATE
+EA

*For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.

2-61

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont’d.)

ODITSZA

NEG destination PC
NEG * Negate Flags X X X X1*
~ Operands Clocks | Transfers* | Bytes Coding Example
register) 3 — 2 NEG AL
memory 16+ EA 2 2-4 NEG MULTIPLIER
*0if destination =0
NOP (no operands) ODITSZAPC
NOP No Operation Flags
A Operands Clocks | Transfers* | Bytes Coding Example -
(no operands) - 3 — 1 NOP
NOT destination ODITSZAPC
NOT Logical not Flags
Operands Clocks | Transfers* Bytes' Coding Ekample
register 3 — 2 NOT AX)
memory. 16+ EA 2 2-4 NOT CHARACTER
OR destination,sourcé ODITSZAP C
OR Logical inclusive or Flags 0 XXUXO0
Operands Clocks | Transfers* | Bytes Coding Example
register, register 3 — 1 2 OR AL,BL
register, memory 9+EA: 1 2-4 OR DX, PORT__ID [DI]
memory, register 16+EA 2 2-4 OR FLAG__BYTE, CL
accumulator, immediate. 4 — 2-3 OR AL, 011011008
register, immediate 4 — 3-4 OR CX,01H ‘
memory, immediate 17+EA 2, 3-6. OR [BX].CMD__WORD,0CFH
r OUT port,accumulator ODITSZAPC
out Output byte or word Flags e
Operands Clocks | Transfers* | Bytes Coding Example
immed8, accumulator 10 1 2 OUT 44, AX
DX, accumulator 8 1 1 OUT DX, AL
POP destination ODITSZAPC
POP Pop word off stack Flags
Operands Clocks | Transfers* | Bytes Coding Example
register 8 1 1 POP DX
seg-reg (CS illegal) 8 1 1 POP DS
memory 17+EA 2 2-4 POP PARAMETER

*For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.

Mnemonics © Intel, 1978

2-62

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont’d.)

POPF (no operands) ODITSZAPC
vPOPF Pop flags off stack Flags R RRRRRARR R
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 8 1 1 POPF
PUSH source ODITSZAPC
PUSH Push word onto stack Flags ‘
Operands Clocks | Transfers* | Bytes Coding Example
register 1 1 1 PUSH SI
seg-reg (CS legal) 10 1 1 PUSH ES
memory ' 16+EA [+ 2 2-4 PUSH RETURN__CODE [SI]
PUSHF PUSHF (no operands) Flaas ODITSZAPC
Push flags onto stack ‘rlag
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 10 1 1 PUSHF :
RCL destination,count - ODITSZAPC
RCL Rotate left through carry’ Flags X X
Operands 7 Clocks | Transfers* | Bytes Coding Example
register, 1 2. — 2 RCL CX,1
register, CL 8+ 4/bit — 2 RCL AL,CL
memory, 1 15+EA 2 2-4 RCL ALPHA,1
memory, CL 20+EA+ 2 2-4 RCL [BP].PARM, CL
4/bit :
RCR designation,count ODITSZAPC
RCR Rotate right through carry Flags X X
Operands Clocks | . Transfers* | Bytes Coding Example
register, 1 2 — 2 RCR BX, 1
register, CL 8+4/bit — 2 RCR BL,CL
memory, 1 15+EA 2 2-4 RCR [BX].STATUS, 1
memory, CL 20+EA+ 2 2-4 RCR ARRAY [DI], CL
4/bit
REP REP (no operands) - Flags ODITSZAPC
i Repeat string operation
Operands Clocks |- Transfers* | Bytes Coding Example
(no operands) 2 - 1 REP MOVS DEST, SRCE

*For the 8086, add four clocks for each 16-ﬁit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.

2-63

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS‘

Table 2-21. Instruction Set Reference Data (Cont’d.)

REPE/REPZ (no operands)

ODITSZAPC

REPE/REPZ Repeat string operation while equal/while zero Flags
Operands Clocks | Transfers* | Bytes Coding Example.
(no operands) 2 — 1 REPE CMPS DATA, KEY
REPNE/REPNZ (no operands) ODITSZAPC
REPN E/ REPNZ Repeat string operation while not equal/not zero Flags
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 2 — 1 REPNE SCAS INPUT__LINE
RET optional-pop-value ODITSZAPC
RET Return from procedure Flags
Operands Clocks | Transfers* | Bytes Coding Example
(intra-segment, no pop) 8 1 1 RET
(intra-segment, pop) 12 1 3 RET 4
(inter-segment, no pop) 18 2 1 RET
(inter-segment, pop) 17 2 3 RET 2
ROL destination,count ODITSZAPC
ROL Rotate left v Flags X X
Operands Clocks | Transfers | Bytes Coding Examples
register, 1 2 — 2 ROL BX, 1
register, CL 8+4/bit - 2 ROL DI, CL
memory, 1 15+EA 2 2-4 ROL FLAG__BYTE [DI],1
memory, CL 20+EA+ 2 2-4 ROL ALPHA ,CL
4/bit
ROR destination,count ODITSZAPC
ROR Rotate right Flags X X
Operand Clocks | Transfers* | Bytes Coding Example
register, 1 2 — 2 ROR AL, 1
register, CL 8+4/bit - 2 ROR BX, CL
memory, 1 15+ EA 2 2-4 ROR PORT__STATUS, 1
memory, CL 20+EA+ 2 2-4 ROR CMD_WORD, CL
4/bit
SAHF (no operands) ODITSZAPC
SAHF . Store AH into flags Flags RRRRR
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 4 — 1 SAHF

*For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.

Mnemonics © Intel, 1978

2-64

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont’d.)

' SAL/SHL destination,count ODITSZAPC
SAL/SHL Shift arithmetic left/ Shift logical left Flags X
Operands Clocks | Transfers* | Bytes Coding Exampies
register,1- 2 — 2 SAL AL
register, CL 8+4/bit — 2 SHL DI, CL
memory,1 15+ EA 2 2-4 SHL [BX].OVERDRAW, 1
memory, CL 20+EA+ 2 2-4 SAL STORE__COUNT, CL
4/bit
SAR destination,source ODITSZAPC
SAR Shift arithmetic right Flags X X U XX
Operands Clocks | Transfers* | Bytes Coding Example
register, 1 2 — 2 SAR DX, 1
register, CL 8+4/bit — 2 SAR DI, CL
memory, 1 15+ EA 2 2-4 SAR N_BLOCKS, 1
memory, CL 20+EA+ 2 2-4 | SAR N_BLOCKS, CL
4/bit '
SBB destination,source ODITSZAPC
SBB Subtract with borrow Flags X XX XXX
Operands Clocks | Transfers* | Bytes Coding Example
' register, register 3 — 2 SBB BX,CX
register, memory 9+EA 1 2-4 SBB DI, [BX].PAYMENT
memory, register 16+ EA 2 2-4 SBB BALANCE, AX
accumulator, immediate' . : 4 : — 2-3 SBB AX,2
register, immediate 4 — 3-4 SBB CL,1
memory, immediate 17+ EA 2 3-6 SBB COUNT [SI], 10
. SCAS dest-string ODITSZAPC
SCAS : Scan string Flags X XXXXX
Operands Clocks | Transfers* | Bytes Coding Example
dest-string - 15 1 1 SCAS INPUT__LINE
(repeat) dest-string 9+15/rep 1/rep | REPNE SCAS BUFFER
SEGMENTT SEGMENT override prefix Flags ODITSZAPC
Override to specified segment - 9
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 2 — 1 MOV SS:PARAMETER, AX

*For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.

+ASM-86 incorporates the segment override prefix into the operand specification and not as a separate instruction. SEGMENT is included in table

2-21 only for timing information.

2-65

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont’d.)

' SHR destination,count ODITSZAPC
SHR Shift logical right Flags X
Operands . Clocks | Transfers* | Bytes Coding Example
register, 1 2 - 2 | SHR S|, 1
| register, CL 8+4/bit - 2 SHR SI,CL
memory, 1 15+EA 2 2-4 SHR ID__BYTE [S1] [BX], 1
memory, CL 20+EA+ 2 2-4 SHR INPUT_WORD, CL
4/bit
e ‘ | 1' SINGLE STEP (Trap flag interru'pt)' ODITSZAPC
, SINGLE STEP Interruptif TE=1 Flags 00
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 50 5 N/A | N/A
v STC (no operands) ODITSZAPGC
STC)) Set carry flag ;) Flags 1
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 2 , — 1 STC
: STD (no operands) ODITSZAPC
: STD e Lo Set direction flag Flags 1
Operands Clocks | Transfers* | Bytes Coding Example
| (no operands) 2 — 1 STD
T STI (no operands) ODITSZAPC
'STI Set interrupt enable flag Flags 1
, Operands . Clocks | Transfers* | Bytes Coding Example
|(no operanqs) 2 — 1 STI
v STOS dest-string ODITSZAPC
STOS Store byte or word string Flags i
Operands Clocks | Transfers* | Bytes Coding Example
dest-string ‘ 1 1 1 STOS PRINT_LINE .
(repeat) dest-string " * 9+10/rep 1lrep 1 REP STOS DISPLAY

*For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.
tSINGLE STEP is not an instruction; it is included in table 2-21 only for timing information.

Mnemonics © Intel, 1978

2-66

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont’d.)

SUB destination,source ODITSZAPC

SuB Subtraction Flags X X X X X
Operands Clocks | Transfers* | Bytes Coding Example

register, register 3 - 2 SUB CX, BX
register, memory 9+EA 1 2-4 SUB DX, MATH__TOTAL [Sl]
memory, register 16+ EA 2 2-4 SUB [BP+2],CL
accumulator, immediate 4 — 2-3 SUB AL, 10
register, immediate 4 — 3-4 SUB SI, 5280
memory, immediate 17+EA 2 3-6 SUB [BP].BALANCE, 1000

TEST destination,source ODITSZAPC
TEST Test or non-destructive logical and Flags 0 XXUXO0
Operands Clocks | Transfers* | Bytes Coding Example
register, register 3 — 2 TEST SI, DI
register, memory 9+EA 1 2-4 TEST SI,END_COUNT
accumulator, immediate 4 — 2-3 TEST AL, 001000008
register, immediate 5 —_ 3-4 TEST BX, 0CC4H
memory, immediate 11+EA — 3-6 TEST RETURN__CODE, 01H
WAIT (no operands) ODITSZAPC
WAIT Wait while TEST pin not asserted Flags
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 3+ 5n —_ 1 WAIT
XCHG XCHG destination,source Flaas ODITSZAPC
Exchange 9
Operands Clocks | Transfers* | Bytes Coding Example
accumulator, reg16 3 — 1 XCHG AX, BX
memory, register 17+EA 2 2-4 XCHG SEMAPHORE, AX
register, register 4 — 2 XCHG AL, BL
XLAT XLAT source-table Flags ODITSZAPC
Translate 9
Operands Clocks | Transfers* | Bytes Coding Example

source-table

11

1

1

XLAT ASCI_TAB

*For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.

2-67

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont’d.)

XOR destination,source ODITSZAPC

XOR Logical exclusive or Flags 0 XXUXO0

Operands Clocks | Transfers* | Bytes Coding Example
register, register 3 - 2 XOR CX, BX
register, memory : 9+EA 1 2-4 XOR CL, MASK_BYTE
memory, register 16+ EA 2 2-4 XOR ALPHA [SI], DX
accumulator, immediate - 4 - 2-3 XOR AL, 01000010B
register, immediate - 4 - 3-4 XOR SI, 00C2H . .
memory, immediate 17+EA 2 3-6 XOR RETURN__CODE, 0D2H

*For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.

2.8 Addressing Modes

The 8086 and 8088 provide many different ways
to access instruction operands. Operands may be
contained in registers, within the instruction
itself, in memory or in I/0 ports. In addition, the
addresses of memory and 1/0 port operands can
be calculated in several different ways. These
addressing modes greatly extend the flexibility
and convenience of the instruction set. This sec-
tion briefly describes register and immediate
operands and then covers the 8086/8088 memory
and I/0 addressing modes in detail.

Register and Inmediate Operands

Instructions that specify only register operands
are generally the most compact and fastest
executing of all instruction forms. This is because
the register ‘‘addresses’ are encoded in instruc-
tions in just a few bits, and because these opera-
tions are performed entirely within the CPU (no
bus cycles are run). Registers may serve as source
operands, destination operands, or both. '

Immediate operands are constant data contained
in an instruction. The data may be either 8 or 16
bits in length. Immediate operands can be
accessed quickly because they are available
directly from the instruction queue; like a register
operand, no bus cycles need to be run to obtain an
immediate operand. The limitations of immediate
operands are that they may only serve as source
operands and that they are constant values.

Memory Addressing Modes

Whereas the EU has direct access to register and
immediate operands, memory operands must be
transferred to or from the CPU over the bus.
When the EU needs to read or write a memory
operand, it must pass an offset value to the BIU.
The BIU adds the offset to the (shifted) content of
a segment register producing a 20-bit physical
address and then executes the bus cycle(s) needed
to access the operand. :

The Effective Address

The offset that the EU calculates for a memory
operand is called the operand’s-effective address
or EA. It is an unsigned 16-bit number that
expresses the operand’s distance in bytes from the
beginning of the segment in which it resides. The
EU can calculate the effective address in several
different ways.. Information encoded in the
second byte of the instruction tells the EU how to
calculate the effective address of each memory

- operand. A compiler or assembler derives this

information from the statement or instruction
written by the programmer. Assembly language
programmers have access to all addressing modes.

Figure 2-34 shows that the execution unit
calculates the EA by summing a displacement, the
content of a base register and the content of an
index register. The fact that any combination of
these three components may be present in a given
instruction gives rise to the variety of 8086/8088
memory addressing modes.

Mnemonics © Intel, 1978 2-68

8086 AND 8088 CENTRAL PROCESSING UNITS

SINGLE INDEX
r

OR

ENC’?EDED OR

INT
INSTRUCTION

ﬁ

l

DOUBLE INDEX

OR
. -F EFFECTIVE
A —— -~ ADDRESS
EXPLICIT qr)<—-a DISPLACEMENT I-»(')
INTHE ——
INSTRUCTION |
OR
s Jow]
ASSUMED
UNLESS OR
OVERRIDDEN
P | os | oo By
L OR
ﬁ;ﬁ gs | oooo =@
L

——>|PHYSICAL ADDR | &

_ |

Figure 2-34. Memory Address Computation

The displacement element is an 8- or 16-bit
number that is contained in the instruction. The
displacement generally is derived from the posi-
tion of the operand name (a variable or label) in
the program. It also is possible for a programmer
to modify this value or to specify the displace-
ment explicitly.

A programmer may specify that either BX or BP
is to serve as a base register whose content is to be
used in the EA computation. Similarly, either SI
or DI may be specified as an index register.
Whereas the displacement value is a constant, the
contents of the base and index registers may
change during execution. This makes it possible
for one instruction to access different memory
locations as determined by the current values in
the base and/or index registers.

It takes time for the EU to calculate a memory
operand’s effective address. In general, the more
elements in the calculation, the longer it takes.

Table 2-20 shows how much time is required to
compute an effective address for any combination
of displacement, base register and index register.

Direct Addressing

Direct addressing (see figure 2-35) is the simplest
memory addressing mode. No registers are in-
volved; the EA is taken directly from the displace-
ment field of the instruction. Direct addressing
typically is used to access simple variables
(scalars).

Register Indirect Addressing

The effective address of a memory operand may
be taken directly from one of the base or index
registers as shown in figure 2-36. One instruction
can operate on many different memory locations
if the value in the base or index register is updated

2-69

8086 AND 8088 CENTRAL PROCESSING UNITS

appropriately. The LEA (load effective address)
and arithmetic instructions might be used to
change the register value:

Note that any 16-bit general register may be used
for register indirect addressing with the JMP or
CALL instructions.

CEMENT

Iopcoue JENT |

MODR/M | DISPLA

——

Figure 2-35. Direct Addressing

I OPCODE MODR/M I

—= 1]

Figure 2-36. Register Indirect Addressing

Based Addressing

In based addressing (figure 2-37), the effective
address is the sum of a displacement value and the
content of register BX or register BP. Recall that
specifying BP as a base register directs the BIU to
obtain the operand from the current stack seg-

I OPCODE MODR/M DISPLAC|EMENT 1
—
BX I
OR ——1—>
BP

Figure 2-37. Based Addressing

ment (unless a segment override prefix is present).
This makes based addressing with BP a very con-
venient way to access stack data (see section 2.10
for examples).

Based addressing also provides a. straightforward
way to address structures which may be located at
different places in memory (see figure 2-38). A
base register can be pointed at the base of the
structure and elements of the structure addressed
by their displacements from the base. Different
copies of the same structure can be accessed by
simply changing the base register.

HIGH ADDRESS

DISPLACEMENT DISPLACEMENT
| ®ate) | AGE [STATUS I (RatE)
RATE
vac | sick <
DEPT | DIV
r { sasereGIsTER | EMPLOYEE | BASE REGISTER |+
L] I
' e e e
L= 7y \ ,
AGE |STATUS |
RATE |
vac | sick |
DEPT [DIV
EMPLOYEE |*— — — — — — -
LOW ADDRESS

Figure 2-38. Accessing a Structure With Based
Addressing

Indexed Addressing

In indexed addressing, the effective address is
calculated from the sum of a displacement plus
the content of an index register (SI or DI) as
shown in figure 2-39. Indexed addressing often is

I OPCODE MOD R/M DISPLAC|EMENT =
E—
Sl I
> OR >
DI Q

Figure 2-39. Indexed Addressing

Mnemonics © Intel, 1978

2-70

8086 AND 8088 CENTRAL PROCESSING UNITS

used to access elements in an array (see figure
2-40). The displacement locates the beginning of
the array, and the value of the index register
selects one element (the first element is selected if
the index register contains 0). Since all array
elements are the same length, simple arithmetic
on the index register will select any element.

Baéed Indexed Addressing

Based indexed addressing generates an effective
address that is the sum of a base register, an
index register and a displacement (see figure
2-41). Based indexed addressing is a very flexible
mode because two address components can be
varied at execution time.

HIGH ADDRESS

N y

[

ARRAY (8)
ARRAY (7)
ARRAY (6)
ARRAY (5)
ARRAY (4)
ARRAY (3)
ARRAY (2)
ARRAY (1)
ARRAY (0)

~§ DISPLACEMENT | I oispLacEMENT } 1

INDEX REGISTER
14

INDEX REGISTER

r
|
|
|
|
1

|,

<1 WORD—>
LOW ADDRESS

Figure 2-40. Accessing an Array With Indexed

Based indexed addressing provides a convenient
way for a procedure to address an array allocated
on a stack (see figure 2-42). Register BP can con-
tain the offset of a reference point on the stack,
typically the top of the stack after the procedure
has saved registers and allocated local storage.
The offset of the beginning of the array from the
reference point can be expressed by a displace-
ment value, and an index register can be used to
access individual array elements.

Arrays contained in structures and matrices (two-
dimension arrays) also could be accessed with
based indexed addressing.

EMENT

I OPCODE MOD R/M DISPLAC

BX
BP

0O

S|
DI

nY
4

Addressing Figure 2-41. Based Indexed Addressing
HIGH ADDRESS
P P
DISPLACEMENT DISPLACEMENT
_ . PARM__2 .

:_ PARM_1 ——:
| ¢ = 4 |
OLD_BP
| BASE REGISTER }(BP) LD BX @r) [BasERecisTER } 4 |
: | OLD _AX - :
| ARRAY (6) |
| | _INDEX REGISTER ARRAY (5) INDEX REGISTER | |
: | ARRAY (4) | :
| | ARRAY (3) | |
| | EA ARRAY 2) |«—] EA] | |
I | : ARRAY (1) | |
| ARRAY (0) - |
by - COUNT e — ||
T ¥ TEMP T
X -] sTATUS y —

g o
~—1WORD—

LOWER ADDRESS

Figure 2-42. Accessing a Stack Array With Based Indexed Addressing

2-71

8086 AND 8088 CENTRAL PROCESSING UNITS

String Addressing

String instructions do not use the normal memory
addressing modes to access their operands.
Instead, the index registers are used implicitly as
shown in figure 2-43. When a string instruction is
executed, SI is assumed to point to the first byte
or word of the source string, and DI is assumed to
point to the first byte or word of the destination
string. In a repeated string operation, the CPUs
automatically adjust SI and DI to obtain subse-
quent bytes or words.

1/0 Port Addressing

If an I/0 port is memory mapped, any of the
memory operand addressing modes may be used
to access the port. For example, a group of ter-
minals can be accessed as an ‘‘array.’”’ String
instructions also can be used to transfer data to
memory-mapped ports with an appropriate hard-
ware interface. Section 2.10 contains examples of
addressing memory-mapped 1/0 ports.

Two different addressing modes can be used to
access ports located in the I/0 space; these are
illustrated in figure 2-44. In direct port address-
ing, the port number is an 8-bit immediate

I Sl

| DI

—>|. sourceea |
}——>] DESTINATION EA]

Figure 2-43. String Operand Addressing

operand. This allows fixed access to ports
numbered 0-255. Indirect port addressing is
similar to register indirect addressing of memory
operands. The port number is taken from register
DX and can range from O to 65,535. By pre-
viously adjusting the content of register DX, one
instruction can access any port in the I/0 space.
A group of adjacent ports can be accessed using a
simple software loop that adjusts the value in DX.

2.9 Programming Facilities

A comprehensive integrated set of tools supports
8086/8088 software development. These tools are
programs that run on Intellec® 800 or Series I1
Microcomputer Development Systems under the
ISIS-1II operating system, the same hardware and
operating system used to develop software for the
8080 and the 8085. Since the 8086 and 8088 are
software-compatible with one another, the same
tools are used for both processors to provide
programmers with a uniform development
environment. :

l OPCODE | DATAI

/
I PORT ADDRESS I

DIRECT PORT ADDRESSING

IOPCODEI
y

1 DX

|| PorT ADDRESS]

INDIRECT PORT ADDRESSING

Figure 2-44. 1/0 Port Addressing

2-72

8086 AND 8088 CENTRAL PROCESSING UNITS

Software Development Overview

A program that will ultimately execute on an
8086- or 8088-based system is developed in steps
(see figure 2-45). The overall program is com-
posed of functional units called modules. For
purposes of this discussion, a module is a section
of code that is separately created, edited, and
compiled or assembled. A very small program
might consist of a single module; a large program
could be comprised of 100 or more modules. The
8086/8088 LINK-86 utility binds modules
together into a single program. (The module
structure of a program is critical to its successful
development and maintenance; see section 2.10
for guidelines.))

8086 and 8088 modules can be written in either
PL/M-86 or ASM-86 (see table 2-22). PL/M-86 is
a high-level language suitable for most
microprocessor applications. It is easy to use,
even by programmers who have little experience
with microprocessors. Because it reduces software
development time, PL/M-86 is ideal for most of
the programming in any application, especially
applications that must get to market quickly.

ASM-86 is the 8086/8088 assembly language.
ASM-86 provides the programmer who is familiar
with the CPU architecture, access to all processor
features. For critical code segments within pro-
grams that make sophisticated use of the hard-
ware, have extremely demanding performance or
memory constraints, ASM-86 is the best choice.

EDIT

| 1sis-n
SQURCE
<—»| TEXT p—>

LiB-86

UPDATE
LIBRARIES

OBJECT
MODULE
LIBRARIES!

NK LOCATE . : LOAD
ExECOTE
RELOCAT- fABSOLUTE,
—>(oABLE, oc-86 |—»[oBJECT
oBiECT MODULE

LINK-86

EXECUTION
HARDWARE

Figure 2-45. Software Devélopment Process

2-73

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-22. PL/M-86/ASM-86 Characteristics

PL/M-86

ASM-86

* Fast Development
* Less Programmer Training

¢ Detailed Hardware Knowledge Not Required

¢ Fastest Execution Speed
e Smallest Memory Requirements

* Access To All Processor Facilities

The languages are completely compatible, and a
judicious combination of the two often makes
good sense. Prototype software can be developed
rapidly with PL/M-86. When the system is
operating correctly, it can be analyzed to see
which sections can best profit from being written
in ASM-86. Since the logic of these sections
already has been debugged, selective rewriting can
be done quickly and with low risk.

Each PL/M-86 or ASM-86 module (called a
source moduel) is keyed into the Intellec® system
using the ISIS-II text editor and is stored as a
diskette file. This source file is then input to the
appropriate language translator (ASM-86
assembler or PL/M-86 compiler). The language
translator creates a diskette file from the source
file, which is called a relocatable object module.
The translator also lists the program and flags any
errors detected during the translation. The
relocatable object module contains the 8086/8088
machine instructions that the translator created
from the statements in the source module. The

term “‘relocatable’’ refers to the fact that all :

references to memory locations in the module are
relative, rather than being absolute memory
addresses. The module generally is not executable
until the relative references are changed to the
actual memory locations where the module will
reside in the execution system’s memory. The pro-
cess of changing the relative references to
absolute memory locations is called locating.

There are very good reasons for not locating
modules when they are translated. First, the exe-
cution system’s physical memory configuration
(where RAM and ROM/PROM segments are
actually located in the megabyte memory space)
may not be known at the time the modules are
written. Second, it is desirable to be able to use a
common module (e.g., a square root routine) in
more than one system. If absolute addresses were
assigned at translation time, the common module
would either have to occupy the same physical

addresses in every system, or separate versions
with different addresses would have to be main-
tained for each system. When locating is deferred,
a single version of a common routine can be used
by any number of systems. Finally, the locations
of modules typically change as a system is
developed, maintained and enhanced. Separating
the location process from the translation process
means that as modifications are made, unchanged
modules only need to be relocated, not
retranslated.

Relocatable object modules may be placed into
special files called libraries, using the LIB-86
library manager program. Libraries provide a
convenient means of collecting groups of related
modules so that they can be accessed automati-
cally by the LINK-86 program.

When enough relocatable object modules have
been created to test the system, or part of it, the
modules are linked and located. Linking com-
bines all the separate modules into a single pro-
gram. Locating changes the relative memory
references in the program to the actual memory
locations where the program will be loaded in the
execution system. The link and locate process also
is referred to as R & L, for relocation and linkage.

Two other programs round out the software
development tools available for the 8086 and
8088. OH-86 converts an absolute object file into
a hexadecimal format used by some PROM pro-
grammers and system loaders (for example, the
SDK-86 and iSBC 957™ Joaders). CONV-86 can
do most of the conversion work required to
translate 8080/8085 assembly language source
modules into ASM-86 source modules.

The 8086/8088 software development facilities
are covered in more detail in the remainder of this
section. However, these are only introductions to

2-74

8086 AND 8088 CENTRAL PROCESSING UNITS

the use of these tools. Complete documentation is
available in the following publications available
from Intel’s Literature Department:

ISIS-II:

ISIS-I1 System User’s Guide, Order No. 9800306

ASM-86:

MCS-86 Assembly Language Reference Manual,
Order No. 9800640

MCS-86 Assembler Operating Instructions for
ISIS-1I Users, Order No. 9800641

PL/M-86:

PL/M-86 Programming Manual,
9800466

ISIS-II PL/M-86 Compiler Operator’s Manual,
Order No. 98004787

Order No.

LINK-86, LOC-86, LIB-86, OH-86: .

MCS-86 Software Development Utilities
Operating Instructions for ISIS-II Users, Order
No. 9800639

CONYV-86:

MCS-86 Assembly Language Converter
Operating Instructions for ISIS-II Users, Order
No. 9800642

PL/M-86

PL/M-86 is a general-purpose, high-level
language for programming the 8086 and 8088
microprocessors. It is an extension of PL/M-80,
the most widely-used, high-level programming
language for microprocessors. (PL/M-80 source
programs can be processed by the PL/M-86 com-
piler; the resulting object program is generally
reduced by 15-30% in size.) PL/M-86 is suitable
for all types of microprocessor. software from
operating systems to application programs.

PL/M-86’s purpose is simple: to reduce the time
and cost of developing and maintaining software
for the 8086 and 8088. It accomplishes this by
creating a programming environment that, for the
most part, is distinct from the architecture of the
CPUs. Registers, segments, addressing modes,
stacks, etc., are effectively ‘‘invisible’’ to the

PL/M-86 programmer. Instead, the processors
appear to respond to simple commands and
familiar algebraic expressions. The responsibility
for translating these source statements into the
machine instructions ultimately required to exe-
cute on the 8086/8088 is assumed by the PL/M-86
compiler. By “‘hiding’’ the details of the machine
architecture, PL/M-86 encourages programmers
to concentrate on solving the problem at hand.
Furthermore, because PL/M-86 is closer to
natural language, it is easier to ‘‘think in
PL/M-86’’ than it is to ‘“‘think in assembly
language.’”” This speeds up the expression of a
program solution, and, equally important, makes
that solution easier for someone other than the
original programmer to understand. PL/M-86
also contains all the constructs necessary for
structured programming.

Statements and Comments

A programmer builds a PL/M-86 program by
writing statements and comments (see figure
2-46). There are several different types of
statements in PL/M-86; they always end with a
semicolon. Blanks can be used freely before,
within, and after statements to improve read-
ability. A statement also may span more than one
line.

The characters ‘‘/*”’ start a comment, and the
characters ‘‘*/°’ end it; any characters may be.
used in between. Comments do not affect the exe-
cution of a PL/M-86 program, but all good pro-
grams are thoughtfully commented. Comments
are notes that document and clarify the program’s
operation; they may be written virtually anywhere
ina PL/M-86 program.

Data Definition

Most PL/M-86 programs begin by defining the
data items (variables) with which they are going to
work. An individual PL/M-86 data element is
called a scalar. Every scalar variable has a
programmer-supplied name up to 31 characters
long, and a type. PL/M-86 supports five types of
scalars: byte, word, integer, real, and pointer.
Table 2-23 lists the characteristics of these
PL/M-86 data types.

2-75

8086 AND 8088 CENTRAL PROCESSING UNITS

/*TRAFFIC DATA RECORDER CONTROL PROGRAM* .
"*VERSION 2.2, RELEASE 5, 23APR79.*
THIS RELEASE FIXES THREE BUGS
DOCUMENTED IN PROBLEM REPORT #16./

- 1*COMPUTE TOTAL PAYMENT DUE*/

TOTAL = PRINCIPAL + INTEREST;

IF TERMINALSREADY

THEN CALL FILL$BUFFER;

ELSE CALL WAIT (50);

I WAIT 50 MS FOR RESPONSE*/ ~

Figure 2-46. PL/M-86 Statements and Comments

Table 2-23. PL/M-86 Data Types

TYPE BYTES RANGE USAGE
BYTE 1 0to 255 Unsigned Integer, Character
WORD . 2 0 to 65,535 Unsigned Integer
o o | -32,768t0 . L .
INTEGER | 2 : +32,767 Signed Integer
‘ ' T 1x107%81to . .
REAL | _ 4 3.37x 10+ Floating Point
POINTER 214 N/A Address Manipulation

Variables are defmed by wrrtmg a DECLARE
statement of this form:

DECLARE scalar-name type:;

Options of the DECLARE statement can be used
to specify an initial value for the scalar and to
define a series of items in a shorthand form.

Besides scalar variables, scalar constants may be
used in PL/M-86 programs (see figure 2-47).
Constants may be written ‘‘as is”’ or may be given
names to improve program clarity.

Scalars can be aggregated into named collections

of data such-as arrays and structures. An array is:

a collection of scalars of the same .type (all
integer, all real, etc.). Arrays are useful" for
representing data that has a repetitive nature. For

example, monthly rainfall samples could be
represented as an array of 12 elements; one for
each month

DECLARE RAlNFALL (1 2) REAL

Each element in. an array is “accessible by a
number called a subscrrpt which is the element’s
relative location in the array. In PL/M-86, the,
first element in an array has a subscript of 0; it is
considered the “Oth”’ element. Thus, RAINFALL
(11) refers to December’s sample. The subscrrpt
need not be a constant; variables and expressrons
also may be used as subscripts,

Strings of character:data arevtypically defined as:
byte arrays. Characters can be ‘accessed with
subscripts or with powerful string-handling func-
tions built into PL/M-86.

2-76

8086 AND 8088 CENTRAL PROCESSING UNITS

10 /*DECIMAL NUMBER*/
0AH /*HEXADECIMAL NUMBER*/
12Q /*OCTAL NUMBER*/
00001010B /*BINARY NUMBER*/
10.0 /*FLOATING POINT NUMBER*/
1.0E1 /*FLOATING POINT NUMBER*/
‘A’ I*CHARACTER*/

/*CONSTANTS MAY BE GIVEN NAMES*/
DECLARE STATUS$PORT LITERALLY ‘OFFEH’;
DECLARE THRESHOLD LITERALLY ‘98.6°;

Figure 2-47. PL/M-86 Constants

A structure is a collection of related data elements
that do not necessarily have the same type. The
elements are related by virtue of ‘‘belonging’’ to
the entity represented by the structure. Here is a
simple structure declaration:

DECLARE BRIDGE STRUCTURE

(SPAN WORD,

YR$BUILT BYTE,
AVGSTRAFFIC REAL);

The year the bridge was built could be accessed by
writing BRIDGE.YR$BUILT; the structure ele-
ment name is ‘‘qualified’’ by the dot and the
* structure name. This allows structures with the
same element names to be distinguished from
each other (e.g., HHIGHWAY.YRS$BUILT).

Arrays and structures can be combined into more
complex data aggregates:

* array elements may be structures rather than
scalars,

¢ astructure element may be an array,

e structures in arrays may themselves contain
arrays.

Figure 2-48 provides sample PL/M-86 data
declarations.

Assignment Statement

Data that has been defined can be operated on
with PL/M-86 executable statements. The fun-
damental executable statement is the assignment
statement, written in this form:

* variable-name = expression;

This means ‘‘evaluate the expression and assign
(move) the result to the variable.”’

There are three basic classes of expressions in
PL/M-86; arithmetic, relational and logical (see
table 2-24 and figure 2-49). All expressions are
combinations of operands and operators,
although an expression can consist of a single
operand. Operands are variables and constants;
operators vary according to the type of expres-
sion. Evaluation of an expression always yields a
single result; different classes of expressions yield
different types of results.

Table 2-24. Characteristics of PL/M-86 Expressions

EXPRESSION OPERATORS RESULT
ARITHMETIC +,=,*,1,MOD NUMBER

e e “TRUE" - FFH
RELATIONAL >, <, =, >=, <= “EALSE" - OH
LOGICAL AND, OR, XOR, NOT 8/16-BIT STRING

8086 AND 8088 CENTRAL PROCESSING UNITS

/****SCALARS****| '
DECLARE SWITCH BYTE;
DECLARE GOUNT WORD, - 1*1 SCALAR* |
INDEX INTEGER; 1*1 SCALAR*/
DECLARE (NET, GROSS, TOTAL) ‘REAL; /*3SCALARS*/

[****ARRAYS****/
DECLAREMONTH (12) BYTE;
DECLARETERMINAL_LINE(80) BYTE;

[****STRUCTURE****/

DECLARE EMPLOYEE STRUCTURE
(ID_NUMBER WORD,
DEPARTMENT - BYTE ..
RATE ~ REAL);

[****ARRAY OF STRUCTURES****/
" DECLAREINVENTORY__ITEM (100) STRUCTURE

(PART_NUMBER WORD,
ON_HAND WORD, -
RE_ORDER BYTE);
[****ARRAY WITHIN-STRUCTURE****/
DECLARE COUNTY__DATA STRUCTURE
(NAME (20) BYTE,

TEN_YR_:RAINFALL(10) BYTE,
PER CAPITA_INCOME REAL);

Figure 2-48. PL/M-86 Data Declarations |

™ ARlTHMETIC*/

A=2;B=3; :

B=B+1; [*B CONTAINS 4*/:

C=(A*B)-2; /*C CONTAINS 6*/

C=((A*B)+3)MOD3; . /*C CONTAINS 2*/

- - I*"RELATIONAL*/

A=2;B=3

C=B>A; S /*C CONTAINS OFFH*/

C=B<>A; | /*C CONTAINS OFFH*/

C=B=(A+1); .. . [*CCONTAINS OFFH*/

[*LOGICAL*/

A =0011$0001B; /*$1S FOR READABILITY*/

B =1000$0001B; : i '

C=NOTB; /*C CONTAINS 0111$1110B*/
‘C=AANDB; /*C CONTAINS 0000$0001B* /*
. C=AORB; /*C CONTAINS 1011$0001B*/

C BXORA /*C CONTAINS 1011$0000B* /

=(A AND B) OROFQOH; /*C CONTAINS 1111$0001B*/ ..

" Figure 2-49. Expressions in PL/M-86 Assigniment Statements

2-78

8086 AND 8088 CENTRAL PROCESSING UNITS

Program Flow.Statements

Simple PL/M-86 programs can be written with
just DECLARE and assignment statements. Such
programs, however, execute exactly the same
sequence of statements every time they are run
and would not prove very useful. PL/M-86 pro-
vides statements that change the flow of control
through a program. These statements allow sec-
tions of the program to be executed selectively,
repeated, skipped entirely, etc.

The IF statement (figure 2-50) selects one or the
other of two statements for execution depending
on the result of a relational expressnon The IF
statement is written:

IF relational-expression
THEN statementt;
ELSE statement2;

Statement] is executed if the expression is ‘‘true’’;
statement2 is not executed in this case. If the rela-
tion is “‘false,”’ statementl is skipped and state-
ment2 is executed. In determining the ‘‘truth” of
an expression, the IF statement only examines the
low-order bit of the result (1=‘‘true’’). Therefore,
arithmetic and logical expressions also ‘may be
used in an IF statement.

A=3;B=5;

IFALZB
THEN MINIMUM =1,
ELSE MINIMUM = 2;

/*EXECUTED*/
/*SKIPPED*/

MORE__DATA =0FFH;

IF NOT MORE_DATA
THEN DONE =1;
ELSE DONE =0;

I*SKIPPED*/
[*EXECUTED*/

[*NESTED IF STATEMENTS*/
CLOCK__ON =1; HOUR=24; ALARM=0OFF;
IF CLOCK_ON
THEN IF HOUR =24
THEN IF ALARM = OFF
THEN HOUR =0; /*EXECUTED*/

Figure 2-50. PL/M-86 IF Statements

A DO block begins with a DO statement and ends
with an END statement. All intervening
statements are part.of the block. A DO block can
appear anywhere in a program that an executable
statement can appear. There are four kinds of DO
statements in PL/M-86: su‘nple DO, DO CASE,

interative DO, and DO WHILE.

A simple DO statement (figure 2-51) causes all the
statements in the block to be treated as though
they were a single statement. Simple DOs enable a
single IF statement to cause multiple statements
to be executed (the alternative would be to repeat
the IF statement for every statement to be
executed). o

[*SIMPLE DO* /

A=5; B=9; :
IF (A+2)< BTHEN DO; :
‘ X=X-1; /*EXECUTED*/
Y(X)=0; -~ /*EXECUTED*/
e . END; . - : .
ELSE DO;
X=X+1; /*SKIPPED*/
Y(X)=1; /*SKIPPED*/
END;
/*DO CASE*/
A=2;
DO CASE (A); :
X=X+1; /*SKIPPED*/
X=X+2; /*SKIPPED*/
X=X+3;: ..* I*"EXECUTED*/
X=X+4; /*SKIPPED*/
END; ~ . .
Figure 2-51. PL/M-86 Simple DO

and DO CASE

‘DO CASE (figure 2-51) causes one statement in

the DO block to be selected and executed depend-
ing on the result of the expression (usually
arithmetic) written immediately following DO
CASE:

DO CASE arithmetic-expression;

If the expression yields 0, the first statement in the
DO block is executed; if the expression yields 1,
the second statement is executed, etc. A statement
in the DO block may be null (consist of only a
semicolon) to cause no action for selected cases.
DO CASE provides a rapid and easily-understood
way to respond to data like ‘‘transaction codes’’

2-79

8086 AND 8088 CENTRAL PROCESSING UNITS

where a different action is required for each of
many values a code might assume (an alternative
would be an IF statement for every value the code
could assume). -

An ‘iterative DO block (flgures 2-52 and 2-53) is
executed from 0 to an infinite number of times
based on the relationship of an index variable to
an expression that terminates execution. The
general form i is:

DO index = start-expr TO stop-expr BY step-expr;

The “BY step-expr’’ is optional, and the step is
assumed to be 1 if not supplied (the typical case).
When control first reaches the DO statement,
start-expr is evaluated and is assigned to index.
Then index is compared to stop-expr; if index
exceeds stop-expr, control goes to the statement
following the DO block, otherwise the block is
executed. At the end of the block, the result of
step-expr is added to index, and it is compared to

stop-expr again, etc.-(The iterative DO is quite
flexible—this is a simplified explanation.)
Iterative DOs are handy for *‘stepping through”’
an array. For example, an array of 10 elements
could be zeroed by:

DOI=0TOY;
ARRAY(l) = 0;
END;

In a DO WHILE (figures 2-52 and 2-54), the
statements are executed repeatedly as long as the
expression following WHILE evaluates to
“true.”” DO WHILE often can be applied in
situations where an interative. DO will not work,
or is clumsy, such as where repetition must be
controlled by a non-integer value. Like an
iterative DO, DO WHILE may be executed from
0 times to an infinite number-of times.

[*ITERATIVE DO*/

DOI=0TOS5;
ARRAY (I)=1;
TOTAL=TOTALH;
END; '

I*1=6 AT THIS POINT*/

/*DO WHILE*/

[*EXECUTED 6 TIMES*/
/*EXECUTED 6 TIMES*/

MORE =0; SPACE_OK =1;
DO WHILE (MORE AND SPACE__OK);

ITEMS = ITEMS +1;

N__TRACKS =
N_TRACKS + 10;

IF N_TRACKS >=999
THEN SPACE__OK =0;

END;

[*DO WHILE*/
CODE=‘A’;

- DO WHILE (CODE = ‘A’);

TEMP =TEMP * STEP;

IF TEMP >98.6

THEN CODE = ‘B

/*SKIPPED*/

/*SKIPPED*/
/*SKIPPED*/

/*EXECUTION STOPS*/
I*AFTER TEMP*/
s /*EXCEEDS 98.6*/

N_STEPS=N_STEPS + 1, .

END;

Figure 2-52. PL/M-86 Iterative DO and DO WHILE

2-80

8086 AND 8088 CENTRAL PROCESSING UNITS

[

INDEX+-START

EXECUTE
BLOCK

\

INDEX<+—INDEX + STEP

STATEMENT
FOLLOWING
END

Figure 2-53. PL/M-86 Iterative DO Flowchart

A GOTO written in the form

GOTO target;
causes an unconditional transfer (branch) to
another statement in the program. The statement
receiving control would be written

target: statement;

where ‘‘target’” is a label

statement.

identifying the

A CALL statement written in the form

CALL proc-name (parm-list);

EXPRESSION

EXECUTE
BLOCK

STATEMENT
. FOLLOWING
END

Figure 2-54. PL/M-86 DO WHILE Flowchart

activates a procedure defined earlier in the pro-
gram. The variables listed in ‘‘parm-list” are
passed to the ‘procedure, the procedure is
executed, and then control returns to the state-
ment following the CALL. Thus, unlike a GOTO,
a CALL -brings control back to the point of
departure.

Procedures

Procedures are ‘‘subprograms’’ that make it
possible to simplify the design of complex pro-
grams and to share a single copy of a routine
among programs. A procedure usually is designed
to perform one function; i.e., to solve one part of
the total problem with which the program is deal-
ing. For example, a program to calculate
paychecks could be broken down into separate
procedures for calculating gross pay, income tax,
Social Security and net pay. The organization of
the ““main’’ program then could be understood at
a glance:

CALL GROSS__PAY;

CALL INCOME__TAX;
CALL SOCIAL__SECURITY;
CALL NET__PAY;

2-81

8086 AND 8088 CENTRAL PROCESSING UNITS

Furthermore, the income tax procedure could be
divided into separate procedures for calculating
state and federal taxes. Procedures, then, provide
a mechanism by which a large, complex problem
can be attacked with a ‘‘divide and conquer”’
strategy.

A procedure usually is defined early in a program,
but it is only executed when it is referred to by
name in a later PL/M-86 statement. A procedure
can accept a list of variables, called parameters,
that it will use in performing its function. These
parameters may assume different values each time
the procedure is executed.

PL/M-86 provides two classes of procedures,
typed and untyped. A typed procedure returns a
value to the statement that activates it and, in
addition, may accept parameters from that state-
ment. A typed procedure is activated whenever its
name appears in a statement; the value it returns
effectively takes the place of the procedure name
in the statement. Typed procedures can be used in
all kinds of PL/M-86 expressions. Untyped pro-
cedures may accept parameters, but do not return

a value. Untyped procedures are activated by
CALL statements. Figure 2-55 shows how simple
typed and untyped procedures may be declared
and then activated.

The statements forming the body of a procedure
need not exist within the module that activates the
procedure. The activating module can declare the
procedure EXTERNAL, and the LINK-86 utility
will connect the two modules.

PL/M-86 procedures can be written to handle
interrupts. Procedures also may be declared
REENTRANT, making them concurrently usable
by different tasks in a multitasking system.
PL/M-86 also has about 50 procedures built into
the language, including facilities for:

® converting variables from one type to another
* shifting and rotating bits

¢ performing input and output

* manipulating strings

® activating the CPU LOCK signal.

/*DECLARATION OF A TYPED PROCEDURE THAT :
ACCEPTS TWO REAL PARAMETERS AND RETURNS A REAL VALUE*/

AVG: PROCEDURE (X,Y) REAL;
DECLARE (X,Y) REAL;
RETURN (X+Y)/2.0;

END AVG;

/*ACTIVATING A TYPED PROCEDURE*/

LOW =2.0;
HIGH = 3.0;

TOTAL =TOTAL + AVG (LOW,HIGH); /*2.51S ADDED TO TOTAL*/

/*DECLARATION OF AN UNTYPED PROCEDURE

THAT ACCEPTS ONE PARAMETER*/

TEST: PROCEDURE (X);
DECLARE X BYTE;
IF X=0H THEN
COUNT = COUNT +1;
END TEST;

/*ACTIVATING AN UNTYPED PROCEDURE*/
CALL TEST (ALPHA); /*COUNT IS INCREMENTED

IF ALPHA =0*/

Figure 2-55. PL/M-86 Procedures

8086 AND 8088 CENTRAL PROCESSING UNITS

ASM-86

Programmers who are familiar with the CPU
architecture can obtain complete access to all pro-
cessor facilities with ASM-86. Since the execution
unit on both the 8086 and the 8088 is identical,
both processors use the same assembly language.
Examples of processor features not accessible
through PL/M-86 that can be utilized in ASM-86
programs include: software interrupts, the WAIT
and ESC instructions and explicit control of the
segment registers.

An ASM-86 program often can be written to
execute faster and/or to use less memory than the
same program written in PL/M-86. This is
because the compiler has a limited ‘‘knowledge’’
of the entire program and must generate a
generalized set of machine instructions that will
work in all situations, but may not be optimal in a
particular situation. For example, assume that the
elements of an array are to be summed and the
result placed in a variable in memory. The
machine instructions generated by the PL/M-86
compiler would move the next array element to a
register and then add the register to the sum
variable in memory. An ASM-86 programmer,
knowing that a register will be “‘safe’’ while the
array is summed, could instead add all the array
elements to a register and then move the register
to the sum variable, saving one instruction execu-
tion per array element.

It is easier to write assembly language programs in
ASM-86 than it is in many assembly languages.
ASM-86 contains powerful data structuring
facilities that are usually found only in high-level

languages. ASM-86 also simplifies the program-
mer’s ‘“‘view”’ of the 8086/8088 machine instruc-
tion set. For example, although there are 28 dif-
ferent types of MOV machine instructions, the
programmer always writes a single form of the
instruction:

MOV destination-operand, source-operand

The assembler generates the correct machine-
instruction form based on the attributes of the
source and destination operands (attributes are
covered later in this section). Finally, the ASM-86
assembler performs extensive checks on the con-
sistency of operand definition versus operand use
in instructions, catching many common types of
clerical errors.

Statements

Compared to many assemblers, ASM-86 accepts a
relaxed statement format (see figure 2-56). This
helps to reduce clerical errors and allows pro-
grammers to format their programs for better
readability. Variable and label names may be up
to 31 characters long and are not restricted to
alphabetic and numeric characters. In particular,
the underscore (__) may be used to improve the
readability of long names. Blanks may be inserted
freely between identifiers (there are no ‘‘column’’
requirements), and statements also may span
multiple lines.

All ASM-86 statements are classified as instruc-
tions or directives. A clear distinction must be
made here between ASM-86 instructions and

; THIS STATEMENT CONTAINS A COMMENT ONLY

MOV AX,[BX+3]
MOV AX, [BX +3]
MOV AX,
& [BX +3]
ZERO EQU 0

CUR_PROJ EQU

TIGHT_LOOP: JMP TIGHT_LOOP
MOV ES: DATA_STRING [SI], AL

PROJECT [BX] [SI]
THE_STACK_STARTS_HERE SEGMENT

WAIT: LOCKXCHG AX,SEMAPHORE

; TYPICAL ASM-86 INSTRUCTION
; BLANKS NOT SIGNIFICANT

; CONTINUED STATEMENTS

; SIMPLE ASM-86 DIRECTIVE

; MORE COMPLEX DIRECTIVE
; LONG IDENTIFIER

; LABELLED STATEMENT

; SEGMENT OVERRIDE PREFIX
; LABEL & LOCK PREFIX

Figure 2-56. ASM-86 Statements

2-83

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

8086/8088 machine instructions. The assembler
generates machine instructions from ASM-86
instructions written by a programmer. Each
ASM-86 “instruction produces one machine
instruction, but the form of the generated
machine instruction will vary according to the
operands written in the ASM-86 mstructmn For
example, writing

MOV BL,1

produces a byte- 1mmed1ate to-register MOV,
while writing

" MOV TERMINAL__NO,BX

produces a word-register-to-memory MOV. To
the programmer, though, there is simply a MOV
source-to-destination instruction.

ASM-86 instructions are written in the form:
(label:) (prefix) mnemonic (operand(s)) (;comment)

where parentheses denote optional fields (the
parentheses are not actually written by program-
mers). The label field names the storage location
containing the machine instruction so that it can
be referred to symbolically as the target of a JMP
instruction elsewhere in the program. Writing a
prefix causes ASM-86 to generate one of the
special prefix bytes (segment override, bus lock or
repeat) immediately preceding the machine
instruction. The mnemonic identifies the type of
instruction (MOV for move, ADD for add, etc.)
that is to be generated. Zero, one or two operands
may be- written next, separated by commas,
according to the requirements of the instruction.
Finally, writing a semicolon signifies that what
follows is a comment. Comments do not affect
the execution of a program, but they can greatly

improve its clarity; all good ASM-86 programs
are thoughtfully commented.

Writing a directive gives ASM-86 information to
use in generating instructions, but does not itself
produce a machine instruction. About 20 dif-
ferent directives are available in ASM-86. Direc-
tives are written like this:

(name) mnemonic (operand(s)) (;comment) -

Some directives require a name to be present,
while others prohibit a name. ASM-86 recognizes
the directive from the mnemonic keyword written
in the next field. Any operands required by the
directive are written next, separated by commas.
A comment may be written as-the last field of a
directive.

Some. of the more commonly used directives
define procedures (PROC), allocate storage for
variables (DB, DW, DD) give a descriptive name
to a number or an expression (EQU), define the
bounds of segments (SEGMENT and ENDS),
and force instructions and data to be aligned at
word boundaries (EVEN).

Constants

Binary, decimal, octal and hexadecimal numeric
constants (see figure 2-57) may be written in
ASM-86 statements; the assembler can perform
basic arithmetic operations on these as well. All
numbers must, however, be integers and must be
representable in 16 bits including a sign bit.
Negative numbers are assembled in standard
two’s complement notation.

Character constants are enclosed in single quotes
and may be up to 255 characters long when used

MOV - STRING [S]], ‘A’ ; CHARACTER

MOV STRING [Sl], 41H ; EQUIVALENT IN HEX

ADD AX, 0C4H : ; HEXCONSTANT MUST START WITH NUMERAL
OCTAL__8 EQU 100 - ; OCTAL

OCTAL_9 EQU - 10Q: ; OCTAL ALTERNATE

ALL__ONES EQU 11111111B ; BINARY

MINUS__5- EQU -5 : ; DECIMAL

MINUS__6 EQU -6D ; DECIMAL ALTERNATE

Figure 2-57. ASM-86 Constants

Mnemonics © Intel, 1978

2-84

8086 AND 8088 CENTRAL PROCESSING UNITS

to initialize storage. When used as immediate
operands, character constants may be one or two
bytes long to match the length of the destination
operand.

Defining Data

Most ASM-86 programs begin by defining the
variables with which they will work. Three direc-
tives, DB, DW and DD, are used to allocate and
name data storage locations in ASM-86 (see
figure 2-58). The directives are used to define
storage in three different units: DB means
““/define byte,”” DW means ‘‘define word,’’ and
DD means ‘‘define doubleword.’”” The operands
of these directives tell the assembler how many
storage units to allocate and what initial values, if
any, with which to fill the locations.

A_SEG SEGMENT
ALPHA DB ? ; NOT INITIALIZED
ETA DW ? ; NOT INITIALIZED
GAMMA DD ? ; NOT INITIALIZED
DELTA DB ? ; NOT INITIALIZED
EPSILON DW 5 ; CONTAINS 05H
_SEG ENDS
B__SEG SEGMENT AT 55H ; SPECIFYING BASE ADDRESS
10TA DB ‘HELLO’ ; CONTAINS 48454C4C4FH
KAPPA Dw ‘AB’ {CONTAINS 4241 H
LAMBDA DD B_SEG : CONTAINS 0000 5500 H
[V} DB 100 DUP O CONTAINS (100 X) 00H
B_SEG ENDS
ATTRIBUTES OPERATORS
VARIABLE | SEGMENT | OFFSET | TYPE| LENGTH | SIZE
ALPHA A_SEG 0 1 1 1
BETA A_SEG 1 2 1 2
GAMMA A_SEG 3 4 1 4
DELTA A_SEG 7 1 1 1
EPSILON A_SEG 8 2 1 2
TA B__SEG 0 1 5 5
KAPPA B_SEG 5 2 1 2
LAMBDA B_SEG 7 4 1 4
U B_SEG 1 1 100 100

Figure 2-58. ASM-86 Data Definitions

For every variable in an ASM-86 program, the
assembler keeps track of three attributes: seg-
ment, offset and type. Segment identifies the seg-
ment that contains the variable (segment control
is covered shortly). Offset is the distance in bytes
of the variable from the beginning of its contain-

ing segment. Type identifies the variable’s alloca-
tion unit (1 = byte, 2 = word, 4 = doubleword).
When a variable is referenced in an instruction,
ASM-86 uses these attributes to determine what
form of the instruction to generate. If the
variable’s attributes conflict with its usage in an
instruction, ASM-86 produces an error message.
For example, attempting to add a variable defined
as a word to a byte register is an error. There are
cases where the assembler must be explicitly told
an operand’s type. For example, writing MOVE
[BX],5 will produce an error message because the
assembler does not know if [BX] refers to a byte,
a word or a doubleword. The following operators
can be used to provide this information: BYTE
PTR, WORD PTR and DWORD PTR. In the
previous example, a word could be moved to the
location referenced by [BX] by writing MOVE
WORD PTR [BX],5.

ASM-86 also provides two built-in operators,
LENGTH and SIZE, that can be written in
ASM-86 instructions along with attribute
information. LENGTH causes the assembler to
return the number of storage units (bytes, words
or doublewords) occupied by an array. SIZE
causes ASM-86 to return the total number of
bytes occupied by a variable or an array. These
operators and attributes make it possible to write
generalized instruction sequences that need not be
changed (only reassembled) if the attributes of the
variables change (e.g., a byte array is changed to a
word array). See figure 2-59 for an example of
using the attributes and attribute operators.

Records

ASM-86 provides a means of symbolically defin-
ing individual bits and strings of bits within a byte
or a word. Such a definition is called a record,
and each named bit string (which may consist of a
single bit) in a record is called a field. Records
promote efficient use of storage while at the same
time improving the readability of the program
and reducing the likelihood of clerical errors.
Defining a record does not allocate storage;
rather, a record is a template that tells the
assembler the name and location of each bit field
within the byte or word. When a field name is
written later in an instruction, ASM-86 uses the
record to generate an immediate mask for instruc-
tions like TEST, AND, OR, etc., or an immediate
count for shifts and rotates. See figure 2-60 for an
example of using a record.

2-85

8086 AND 8088 CENTRAL PROCESSING UNITS

; SUM THE CONTENTS OF TABLE INTO AX

TABLE - . DW 50 DUP(?)
; NOTE SAME INSTRUCTIONS WOULD WORK FOR
; TABLE DB 25 DUP(?)
; TABLE DW 118 DUP(?), ETC.
sSuB AX,AX ; CLEARSUM
MOV CX, LENGTH TABLE ; LOOP TERMINATOR
MOV S|, SIZE TABLE ;POINT SUBSCRIPT
; TOEND OF TABLE
ADD__NEXT: SUB S|, TYPE TABLE ; BACK UP ONE ELEMENT
ADD AX, TABLE [SI] ; ADD ELEMENT
LOOP ADD__NEXT ; UNTILCX =0

_: AXCONTAINS SUM

Figure 2-59. Using ASM-86 Attributes and Attribute Operators

EMP_BYTE DB ? ; 1BYTE, UNINITIALIZED
; BIT DEFINITIONS: ’
; 7-2 :YEARS EMPLOYED

1 : SEX (1 =FEMALE)

0. :STATUS (1=EXEMPT)

EMP__BITSRECORD ;RECORD DEFINED HERE
& YRS_EMP : 6,

& SEX:1,

& STATUS : 1

‘ , SELECT NONEXEMPT FEMALES EMPLOYED 10 + YEARS

MOV AL, EMP_BYTE ; KEEP ORIGINAL INTACT
TEST AL, MASK SEX ; FEMALE?
Jz REJECT ;NO, QUITE
TEST AL, MASK STATUS ; NONEXEMPT?
. JINZ REJECT ;NO, QUIT
‘SHR AL,CL ; ISOLATE YEARS
CMP AL, 11 . ; >=10 YEARS?
JL REJECT y NO, QUIT

- PROCESS SELECTED EMPLOYEE
REJECT: ; PROCESS REJECTED EMPLOYEE

. , ; RECORD USED HERE
MOV . CL,YRS_EMP ; GET SHIFT COUNT

Figure 2-60. Using an ASM-86 RECORD Definition

Mnemonics © Intel, 1978 2-86

8086 AND 8088 CENTRAL PROCESSING UNITS

Structures

An ASM-86 structure is a map, or template, that
gives names and attributes (length, type, etc.) to a
collection of fields. Each field in a structure is
defined using DB, DW and DD directives;
however, no storage is allocated to the structure.
Instead, the structure becomes associated with a
particular area of memory when a field name is

referenced in an instruction along with a base

value. The base value ‘‘locates’’ the structure; it
may be a variable name or a base register (BX or
BP). The structure may be associated with
another area of memory by specifying a different
base value. Figure 2-61 shows how a simple struc-
ture may be defined and used. Note that a struc-
ture field may itself be a structure, allowing much
more complex organizations to be laid out.

Structures are particularly useful in situations
where the same storage format is at multiple loca-
tions, where the location of a collection of
variables is not known at assembly-time, and
where the location of a collection of variables
changes during execution. Applications include
multiple buffers for a single file, list processing
and stack addressing.

Addressing Modes

Figure 2-62 provides sample ASM-86 coding for
each of the 8086/8088 addressing modes. The
assembler interprets a bracketed reference to BX,
BP, Sl or DI as a base or index register to be used
to construct the effective address of a memory
operand. An unbracketed reference means the
register itself is the operand.

The following cases illustrate typical ASM-86
coding for accessing arrays and structures, and
show which addressing mode the assembler
specifies in the machine instruction it generates:

o If ALPHA is an array, then ALPHA [SI] is
the element indexed by SI, and ALPHA
[SI+ 1] is the following byte (indexed).

o If ALPHA is the base address of a structure
and BETA is a field in the structure, then
ALPHA.BETA selects the BETA . field
(direct).

o If register BX contains the base address of a
structure and BETA is a field in the struc-
ture, then [BX].BETA refers to the BETA
field (based). '

EMPLOYEE STRUC
SSN DB 9
RATE DB 1
DEPT DW 1
YR_HIRED DB 1
EMPLOYEE ENDS

MASTER DB 12

TXN DB 12

DUP(?)
DUP(?)
DUP(?)
DUP(?)

DUP(?)
DUP(?)

; CHANGE RATE IN MASTER TO VALUE IN TXN.
AL, TXN.RATE
MASTER-RATE, AL

MOV
MoV

; ASSUME BX POINTS TO AN AREA CONTAINING
; DATAIN THE SAME FORMAT AS THE EMPLOYEE
; STRUCTURE. ZERO THE SECOND DIGIT

; OF SSN
' MoV
- MOV

SI,1 ;INDEX VALUE OF 2ND DIGIT
[BX].SSN[SI,0

Figure 2-61. Using an ASM-86 Structure

2-87

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

ADD AX,BX

ADD AL,5

ADD CX,ALPHA

ADD ALPHA,6

ADD ALPHA, DX

ADD BL, [BX]

ADD [Sl], BH

ADD [PP].ALPHA, AH
ADD CX, ALPHA[SI]
ADD ALPHA [DI+2],10
ADD [BX].ALPHA [SI], AL
ADD SI, [BP+4] [DI]

IN AL, 30

OUT DX, AX

; REGISTER < REGISTER
; REGISTER <
; REGISTER < MEMORY (DIRECT)
; MEMORY (DIRECT) < IMMEDIATE
; MEMORY (DIRECT) < REGISTER
; REGISTER <« MEMORY (REGISTER INDIRECT)
; MEMORY (REGISTER INDIRECT) < IMMEDIATE
; MEMORY (BASED) < REGISTER
; REGISTER < MEMORY (INDEXED)
; MEMORY (INDEXED) < IMMEDIATE
; MEMORY (BASED INDEXED) < REGISTER
; REGISTER < MEMORY(BASEDINDEXED)
; DIRECT PORT
; INDIRECT PORT

IMMEDIATE

Figure 2-62. ASM-86 Addressing Mode Examples

e If register BX contains the address of an
array, then [BX] [SI] refers to the element
indexed by SI (based indexed).

e If register BX points to a structure whose
ALPHA field is an array, then [BX]
.ALPHA [SI] selects the element indexed by
SI (based indexed).

e If register BX points to a structure whose
ALPHA field is itself a structure, then
[BX].ALPHA.BETA refers to the BETA
field of the ALPHA substructure (based).

e - If register BX points to a structure and the
ALPHA field of the structure is an array and
each element of ALPHA is a structure, then
[BX].ALPHA[SI + 3].BETA refers to the
field BETA in the element of ALPHA
indexed by [SI + 3] (based indexed).

Note that DI may be used in place of SI in these
cases and that BP may be substituted for BX.
Without a segment override prefix, expressions
containing BP refer to the current stack segment,
and expressions containing BX refer to the cur-
rent data segment.

Segment Control

An ASM-86 program is organized into a series of
named segments. These are ‘‘logical’’ segments;
they are eventually mapped into 8086/8088
memory segments, but this usually is not done
until the program is located. A SEGMENT direc-
tive starts a segment, and an ENDS directive ends
the segment (see figure 2-63). All data and

instructions written between SEGMENT and
ENDS are part of the named segment. In small
programs, variables often are defined in one or
two segment(s), stack space is allocated in another
segment, and instructions are written in a third or
fourth segment. It is perfectly possible, however,
to write a complete program in one segment; if
this is done, all the segment registers will contain
the same base address; that is, the memory
segments will completely overlap. Large pro-
grams may be divided into dozens of segments.

The first instructions in a program usually
establish the correspondence between segment
names and segment registers, and then load each
segment register with the base address of its cor-
responding segment. The ASSUME directive tells
the assembler what addresses will be in the seg-
ment registers at execution time. The assembler
checks each memory instruction operand, deter-
mines which segment it is in and which segment
register contains the address of that segment. If
the assumed register is the register expected by the
hardware for that instruction type, then the
assembler generates the machine instruction nor-
mally. If, however, the hardware expects one seg-
ment register to be used, and the operand is not in
the segment pointed to by that register, then the
assembler automatically precedes the machine
instruction with a segment override prefix byte.
(If the segment cannot be overridden, the
assembler produces an error message.) An exam-
ple may clarify this. If register BP is used in an
instruction, the 8086 and 8088 CPUs expect, as a
default, that the memory operand will be located
in the segment pointed to by SS—in the current

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

DATA__SEG SEGMENT
; DATA DEFINITIONS GO HERE
DATA_SEG ENDS

STACK_SEG SEGMENT
; ALLOCATE 100 WORDS FOR A STACK AND
; LABEL THE INITIAL TOS FOR LOADING SP.
DW 100 DUP(?)
STACK TOP LABEL WORD
STACK_SEG ENDS

CODE__SEG SEGMENT
; GIVE ASSEMBLER INITIAL REGISTER-TO-SEGMENT
; CORRESPONDENCE. NOTE THAT IN THIS
; PROGRAM THE EXTRA SEGMENT INITIALLY
; OVERLAPS THE DATA SEGMENT ENTIRELY.
ASSUME CS: CODE__SEG,

& DS: DATA_SEG,
& ES: DATA_SEG,
& SS: STACK_SEG

START: ;THISIS THE BEGINNING OF THE PROGRAM.)

; LOC-86 WILL PLACE A JMP TO THIS
; LOCATION AT ADDRESS FFFFOH.

; LOAD THE SEGMENT REGISTERS. CS DOES NOT
; HAVE TO BE LOADED BECAUSE SYSTEM
; RESETSETSITTO FFFFH, AND THE
; LONG JMP INSTRUCTION AT THAT ADDRESS
; UPDATESIT TO THE ADDRESS OF CODE__SEG.
; - SEGMENT REGISTERS ARE LOADED FROM AX
; BECAUSE THERE IS NO IMMEDIATE-TO-
; SEGMENT__REGISTER FORM OF THE MOV

INSTRUCTION.
MOV AX, DATA__SEG
MOV DS, AX
MOV ES, AX
MOV AX, STACK__SEG
MOV SS§, AX

~; SET STACK POINTER TO INITIAL TOS.
MOV SP, OFFSET STACK__TOP

; SEGMENTS ARE NOW ADDRESSABLE.
; MAIN PROGRAM CODE GOES HERE.
CODE__SEG ENDS

; NEXT STATEMENT ENDS ASSEMBLY AND TELLS
; LOC-86 THE PROGRAMS STARTING ADDRESS.

END START

Figure 2-63. Setting Up ASM-86 Segments

2-89

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

stack segment. A programmer may, however,
choose to use BP to address a variable in the cur-
rent data segment—the segment pointed to by
DS. The ASSUME directive enables the assembler
to detect this situation and to automatically
generate the needed override prefix.

It also is possible for a programmer to explicitly

code segment override prefixes rather than relying

on the assembler. This may result in a somewhat
better-documented program since attention is
called to the override. The disadvantage of
explicit segment overrides is that the assembler
does not check whether the operand is in fact
addressable through the ovemdmg segment
register. v

ASM-86, in conjunction with the relocation and
linkage facilities, provides much more
sophisticated segment handling capabilities than
have been described in this introduction. For
example, different logical segments may be com-

bined into the same physical segment, and

segments may be assigned the same physical loca-
tions (allowing a ‘‘common’’ area to be accessed
by different programs usmg dxfferent variable
and label names). :

Procedures

Procedures may be written in ASM-86 as well as
in PL/M-86. In fact, procedures written in one
language are callable from the other, provided
that a few simple conventions are observed in the
ASM-86 program. The purpose of ASM-86 pro-
cedures is the same as in PL/M-86: to simplify the
design of complex programs and to make a single
copy of a commonly-used routine accessible from
“anywhere in the program.

An ASM-86 program activates a procedure with a
CALL instruction. The procedure terminates with
a RET instruction, which transfers control to the
instruction following the CALL. Parameters may
be passed in registers or pushed onto the stack
before calling the procedure. The RET instruction
can discard stack parameters before returmng to
the caller.

Unlike PL/M-86 procedures, ASM-86 procedures
are executable where they are coded, as well as by
a CALL instruction. Therefore, ASM-86 pro-
cedures often are defined following the main pro-
gram logic, rather than preceding it as in

PL/M-86. Figure 2-64 shows how procedures
may be defined and called in ASM-86. Section
2-10 contains examples of procedures that accept
parameters on the stack.

LINK-86

Fundamentally, LINK-86 combines separate
relocatable object modules into a single program.
This process- consists primarily of combining
(logical) segments of the same name into single
segments, adjusting relative addresses when
segments are combined, and resolving external
references.

A programmer can use a procedure that is actual-
ly contained in another module by naming the
procedure in an ASM-86 EXTRN directive, or
declaring the procedure to be EXTERNAL in
PL/M-86. The procedure is defined or declared
PUBLIC in the module where it actually resides,
meaning that it can be used by other modules.
When LINK-86 encounters such an external
reference, it searches through the other modules
in its input, trying to find the matching PUBLIC
declaration. If it finds the referenced object, it
links it to the reference, ‘‘satisfying’’ the external
reference. If it cannot satisfy the reference,
LINK-86 prints a diagnostic message. LINK-86
also checks PL/M-86 procedure calls and func-
tion references to insure that the parameters
passed to a procedure are the type expected by the
procedure.

LINK-86 gives the programmer, particularly the
ASM-86 programmer, great control over
segments (segments may be combined end to end,
renamed, assigned the same locations, etc.).
LINK-86 also produces a map that summarizes
the link process and lists any unusual conditions
encountered. While the output of LINK-86 is
generally input to LOC-86, it also may again be
input to LINK-86 to permit modules to be linked
in incremental groups.

LOC-86

LOC-86 accepts the single relocatable object
module produced by LINK-86 and binds the
memory references in the module to actual
memory addresses. Its output is an absolute
object module ready for loading into the memory
of an execution vehicle. LOC-86 also inserts a

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

FREQUENCY DB 256 DUP(0)
USART_DATA EQU OFFOH - DATA PORT ADDRESS
USART_STAT EQU OFF2H . STATUS PORT ADDRESS
NEXT: CALL CHAR_IN

CALL COUNT_IT

JMP NEXT
CHAR_IN PROC

; THIS PROCEDURE DOES NOT TAKE PARAMETERS.
; IT SAMPLES THE USART STATUS PORT .

; UNTIL ACHARACTERIS READY, AND

; THEN READS THE CHARACTER INTO AL

MOV DX, USART_STAT
AGAIN: IN AL, DX ; READ STATUS

AND AL,2 ; CHARACTER PRESENT?
Jz AGAIN ; NO, TRY AGAIN
MOV DX, USART_DATA
IN AL, DX ; YES, READ CHARACTER
RET

CHAR_IN ENDP

COUNT_IT PROC

; THIS PROCEDURE EXPECTS A CHARACTERIN AL. -
; ITINCREMENTS A COUNTER IN A FREQUENCY
; TABLE BASED ON THE BINARY VALUE OF

; THE CHARACTER.
XOR AH, AH ; CLEAR HIGH BYTE
MOV SI, AL ; INDEXINTO TABLE
INC FREQUENCY [S]; BUMP THE COUNTER.
RET
COUNT_IT ENDP

Figure 2-64. ASM-86 Procedures

direct intersegment JMP instruction at location
FFFFOH. The target of the JMP instruction is the
logical beginning of the program. When the 8086
or 8088 is reset, this instruction is automatically
executed to restart the system. LOC-86 produces
a memory map of the absolute object module and
a table showing the address of every symbol
defined in the program.

LIB-86
LIB-86 is a valuable adjunct to the R & L pro-

grams. It is used to maintain relocatable object
modules in special files called libraries. Libraries

are a convenient way to make collections of
modules available to LINK-86. When a module
being linked refers to ‘‘external’’ data or instruc-
tions, LINK-86 can automatically search a series
of libraries, find the referenced module, and
include it in the program being created.

OH-86

OH-86 converts an absolute object module into
Intel’s standard hexadecimal format. This format
is used by some PROM programmers and system
loaders, such as the iSBC 957™ and SDK-86
loaders.

2-91

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

CONV-86

Users who have developed substantial, fully-
tested assembly language programs for the
8080/8085 microprocessors may want. to use
CONV-86 to automatically convert large amounts
of this code into ASM-86 source code (see figure

2-65). CONV-86 accepts an ASM-80 source pro-

gram as input and produces an ASM-86 source
program as output, plus a print file that
documents the conversion and lists any diagnostic
messages.

Some programs cannot be completely converted
by CONV-86. Exceptions include: :

¢ self-modifying code,

e software timing loops,

* 8085 RIM and SIM instructions, -
* interrupt code, and

® macros.

By using the diagnostic messages produced by
CONV-86, the converted ASM-86 source file can
be manually edited to clean up any sections not

converted. A converted program is typically -

10-20% larger than the ASM-80 version and does
not take full advantage of the 8086/8088 architec-
ture. However, the development time saved by
using CONV-86 can make it an attractive alter-
native to rewriting workmg programs from
scratch.

Sample Programs

Figures 2-66 and 2-67 show how a simple program
might be written in PL/M-86 and ASM-86. The
program simulates a pair of -rolling dice and
executes on an Intel SDK-86 System Design Kit.
The SDK-86 is an 8086-based computer with
memory, parallel and serial 170 ports, a keypad
and a display. The SDK-86 is implemented on a
single PC board which includes a large prototype
area for system -expansion and experimentation.
A ROM-based monitor program provides a user
interface to the system; commands are entered
through the keypad and monitor responses are
written on the display. With the addition of a
cable and software interface (called SDK-C86),
the SDK-86 may be connected to an Intellec®
Microcomputer Development -System. In this
mode, the user enters monitof commands from
the Intellec keyboard and receives replies on the
Intellec CRT display.

PROGRAM

CONV-86

=\
DIAGNOSTICS — -»(EDIT)
|\ N

* rme7
"_"__"' SOURCE |
\PRQGRAM y
ASM-86
ASSEMBLER

Figure 2-65. ASM-80/ASM-86 Conversion

The dice program runs dn an SDK-86 that is con-

nected to an _Intellec Microcomputer Develop-
ment System. The program displays two con-
tinuously changing digits in the upper left corner

- - of the Intellec display. The digits are random

numbers in the range 1-6. A roll is started by
entering- a monitor GO command. Pressing the
INTR key on the SDK-86 keypad stops the roll.

There are two procedures in the PL/M-86 version
of the dice program. The first is called CO for
console output. This is an untyped PUBLIC pro-
cedure that is supplied on an SDK-C86 diskette.
CO - is written in PL/M-86 :and outputs one
character .to the Intellec console. It is declared
EXTERNAL in the dice program: because it exists
in" another module. - 'LINK-86 searches the
SDK-C86 library for CO and includes it in the
single relocatable object module it builds.

RANDOM is an internal 'typed procedure; it is
contained in the dice module and returns a word
value that is a random number between 1 and 6.
RANDOM does not use any parameters ‘and is
activated in the parameter list passed to CO.
When CO is called like this, first RANDOM is ac-
tivated, ‘then 30 is added to the number it returns
and the sum ispassed to CO.

Mnemonics © Intel, 1978

2-92

8086 AND 8088 CENTRAL PROCESSING UNITS,

PL/M-86 COMPILER DICE

ISIS-II PL/M-86 V1.2 COMPILATION OF MODULE DICE

OBJECT MODULE PLACED IN :F1:DICE.OBJ
COMPILER INVOKED BY: PLM86 :F1:DICE.P86 XREF

1 DICE: DO;
/* THIS PROGRAM SIMULATES THE KOLL OF A PAIR OF DICE ¥/

/% GIVE NAMES TO CONSTANTS ¥/

2 1 DECLARE CLEAR$CRT1 LITERALLY '01BH'; /% INTELLEC ¥/
3 1 DECLARE CLEAR$CRT2 LITERALLY 'O45H'; /* CRT */
y 1 DECLARE HOME$CURSOR1 LITERALLY '01BH'; /% CONTROL %/
5 1 DECLARE HOME$CURSOR2 LITERALLY 'O48H'; /% ES %/
6 1 DECLARE SPACE LITERALLY '020H'; /*ASCII BLANK*/
/* PROGRAM VARIABLES */
701 DECLARE (RANDOM$NUMBER,SAVE) WORD;
/% CONSOLE OUTPUT PROCEDURE */
8 1 CO: PROCEDURE(X) EXTERNAL;
9 2 DECLARE X BYTE;
10 2 END CO;
/% RANDOM NUMBER GENERATOR PROCEDURE */
/* ALGORITHM FOR 16-BIT RANDOM NUMBER FROM: */
/% "A GUIDE TO PL/M PROGRAMMING FOR */
/% MICROCOMPUTER APPLICATIONS," */
/% DANIEL D. MCCRACKEN, */
/% ADDISON-WESLEY, 1978 */
1Mo RANDOM: PROCEDURE WORD}
12 2 RANDOM$NUMBER = SAVE; /*START WITH OLD NUMBER*/
13 2 RANDOM$NUMBER = 2053 * RANDOM$NUMBER + 13849;
14 2 SAVE = RANDOM$NUMBER; /*SAVE FOR NEXT TIME*/
/*FORCE 16-BIT NUMBER INTO RANGE 1-6%/
15 2 RANDGM$NUMBER = RANDOM$NUMBER MOD 6 + 1;
16 2 RETURN RANDOMSNUMBER
17 2 END RANDOM;
/% MAIN ROUTINE */
/* CLEAR THE SCREEN*/
18 1 CALL CO(CLEAR$CRT1);
19 1 CALL CO(CLEAR$CRT2);
/* ROLL THE DICE UNTIL INTERRUPTED */
20 1 DO WHILE 1; /%vDO FOREVER"*/
/*NOTE THAT ADDING 30 TO THE DIE VALUE */
/% CONVERTS IT TO ASCII. */
21 2 CALL CO(RANDOM + 030H); /%1ST DIE*/
22 2 CALL CO(SPACE); /*BLANK*/
23 2 CALL CO(RANDOM + 030H); /%2ND DIE*/
/* HOME THE CURSOR *#/
24 2 CALL CO(HOME$CURSOR1);
25 2 CALL CO(HOME$CURSOR2);
26 2 END;
27 1 END DICE;

CROSS-REFERENCE LISTING

DEFN ADDR SIZE NAME, ATTRIBUTES, AND REFERENCES
2 CLEARCRT1 LI?%RALLY
3 CLEARCRT2- LI?ERALLY
8 O000OH co PROCEDURE EXTERNAL(0) STACK=0000H

18 19 21 22 23 24 25

1 0002 71 DICE PROCEDURE STACK=0004H
y HOMECURSOR1 LITERALLY
24
5 HOMECURSOR2 LITERALLY
25
11 0049H 44 RANDOM

PROCEDURE WORD STACK=0002H
21 23

Figure 2-66. Sample PL/M-86 Program

2-93

-8086 AND 8088 CENTRAL PROCESSING UNITS

7 0000H 2 RANDOMNUMBER WORD o
1213 1415 16
7 0002H 2 SAVE WORD
: 12 14
6 SPACE LITERALLY
. 22
8 0000H 10X BYTE PARAMETER
. 9 .

MODULE INFORMATION:

CODE ‘AREA SIZE 0075H 117D

CONSTANT AREA SIZE = 0000H 0D
VARIABLE AREA SIZE = 0004H 4D
MAXIMUM STACK SIZE = 0004H 4D

51 LINES READ
0 PROGRAM ERROR(S)

END OF PL/M~86 COMPILATION

Figure 2-66. Sample PL/M-86 Program (Cont’d.)

MCS-86 MACRO ASSEMBLER DICE

ISIS-II MCS-86 MACRO ASSEMBLER V2.0 ASSEMBLY OF MODULE DICE
OBJECT MODULE PLACED IN :F1:DICE.OBJ .
ASSEMBLER INVOKED BY: ASM86 :F1:DICE.A86 XREF

LOC O0BJ . LINE © SOURCE .
1 ; THIS PROGRAM SIMULATES THE ROLL OF A PAIR OF DICE
2
3 ; CONSOLE OUTPUT PRCCEDURE
4 EXTRN CO:NEAR
5
6 ; SEGMENT GROUP DEFINITIONS NEEDED FOR PL/M-86 COMPATIBILITY
7 CGROUP GROUP CODE .
8 DGROUP GROUP DATA,STACK
9
10 ; INFORM ASSEMBLER OF SEGMENT KEGISTER CONTENTS.
1. ASSUME * CS:CGROUP,DS:DGROUP,SS:DGROUP,ES:NOTHING
12
13 ; ALLOCATE DATA
-—-- 14 DATA SEGMENT PUBLIC 'DATA'
15 5 NOTE THAT THE FOLLOWING ARE PASSED ON THE STACK TO THE PL/M-86
16 ; PROCEDURE 'CO'. BY CONVENTION, A BYTE PARAMETER IS PASSED IN
17 ; THE LOW-ORDER 8-BITS OF A WORD ON THE STACK. HENCE, THESE ARE
18 ; DEFINED AS WORD VALUES, THOUGH THEY OCCUPY 1 BYTE ONLY.
0000 1BOO 19 CLEAR_CRT1 DW - 01BH ; INTELLEC
0002 4500 20 CLEAR”CRT2 DW 0U45H H CRT
0004 1B0O 21 HOME_CURSOR1 DW 01BH . ; CONTROL
0006 4800 22 HOME_ CURSOR2 DW 048H H CODES
0008 2000 23 SPACE DW 020H ; ASCII BLANK
0004 22?27 24 SAVE DW ? ; HOLDS LAST 16-BIT RANDOM NUMBER
-—-- 25 DATA ENDS . . -
26
27
28 ; ALLOCATE STACK SPACE
-——-- 29 STACK SEGMENT STACK 'STACK'
0000 (20 30 DW 20 DUP (?)
?222?
)
31 ; LABEL INITIAL TOS: FOR LATER USE.
0028 32 STACK_TOP LABEL WORD
-——— 33 STACK ENDS
34
35
36 ; PROGRAM CODE
---- . 37 CODE SEGMENT PUBLIC 'CODE'
38
39
40 ; RANDOM NUMBER GENERATOR PROCEDURE
41 ; ALGORITHM FOR 16-BIT RANDOM NUMBER FROM:
42 H "A GUIDE TO PL/M PROGRAMMING FOR
43 H MICROCOMPUTER APPLICATIONS,"
4y ; DANIEL D. MCCRACKEN
45 ; ADDISON-WESLEY, 1978
0000 : 46 RANDOM PROC
0000 A10A00 R u7 MOV AX,SAVE ; NEW NUMBER =

Figure 2-67. ASM-86 Sample Program

Mnemonics © Intel, 1978 2:94

8086 AND 8088 CENTRAL PROCESSING UNITS

ASSEMBLY COMPLETE, NO ERRORS

FOUND

MES-86 MACRO ASSEMBLER DICE
LOC O0BJ LINE SOURCE
0003 B90508 48 MOV CX,2053 ; OLD NUMBER * 2053
0006. F7E1 49 MUL cX i+ 13849
0008 051936 50 ADD AX, 13849 ;
000B A30A00 R 51 MOV SAVE,AX ; SAVE FOR NEXT TIME
52 ; FORCE 16-BIT NUMBER INTO RANGE 1 - 6
53 ; BY MODULO 6 DIVISION + 1
000E 2BD2 54 SUB DX, DX ; CLEAR UPPER DIVIDEND
0010 B90600 ‘55 MOV CX,6 ; SET DIVISOR
0013 F7F1 56 DIV cX ; DIVIDE BY 6
0015 8BC2 57 MOV AX,DX ; REMAINDER TO AX
0017 40 58 INC AX ; ADD 1
0018 C3 59 RET ; RESULT IN AX.
60 RANDOM ENDP
61
62
63 ; MAIN PROGRAM
61
65 ; LOAD SEGMENT REGISTERS
66 ; NOTE PROGKAM DOES NOT USE ES; CS IS INITIALIZED BY HARDWARE RESET;
67 ; DATA & STACK ARE MEMBERS OF SAME GROUP, SO ARE TREATED AS A SINGLE
68 ; MEMORY SEGMENT POINTED TO BY BOTH DS & SS.
0019 B8---- R 69 START: MOV AX,DGROUP
001C 8ED8 70 MOV DS,AX .
001E 8EDO 71 MOV sS, AX
72
. 73 ; INITIALIZE STACK POINTER
0020 BC2800 R 74 MOV SP,OFFSET DGROUP:STACK_TOP
75
76 ; CLEAR THE SCREEN
0023 FF360000 R 77 PUSH CLEAR_CRT1
0027 E80000 E 78 CALL o
002A FF360200 R 79 PUSH CLEAR_CRT2
002E E80000 E 80 CALL co
81
‘ 82 ; ROLL THE DICE UNTIL INTERRUPTED
0031 EBCCFF 83 ROLL: CALL RANDOM ; GET 1ST DIE IN AL
0034 0430 84 ADD AL,030H ; CONVERT TO ASCII
0036 50 85 PUSH AX ; PASS IT TO
0037 E80000 E 86 CALL co ; CONSOLE .OUTPUT
003A FF360800 R 87 PUSH SPACE ; OUTPUT
003E E80000 E 88 CALL co ; A BLANK
0041 E8BCFF 89 CALL RANDOM ; GET 2ND DIE IN AL
0044 0430 90 ADD AL,030H ; CONVERT TO ASCII
0046 50 91 PUSH AX ; PASS IT TO
0047 E80000 E 92 CALL co ; CONSOLE OUTPUT
93 ; HOME THE CURSOR :
004A FF360400 R 94 PUSH HOME_CURSOR1
004E E80000 E 95 CALL co -
0051 FF360600 R 96 PUSH HOME_ CURSOR2
0055 E80000 E 97 CALL co -
98 ; CONTINUE FOREVER
0058 EEDT 99 JMP ROLL
— 100 CODE ENDS
101 .
XREF SYMBOL TABLE LISTING
NAME TYPE VALUE ATTRIBUTES, XREFS
2?SEG . . SEGMENT SIZE=0000H PARA PUBLIC
CGROUP. . GROUP CODE 7# 11
CLEAR_CRT1. . V WORD ~ 0000H DATA 19# 77
CLEARTCRT2. . V WORD 0002H DATA 20# 79
co. .~ . L NEAR 000OH EXTRN U4# 78 80 86 88 92 95 97
" CODE. . SEGMENT SIZE=005AH PARA PUBLIC 'CODE' 7# 37 100
DATA. . SEGMENT SIZE=000CH PARA PUBLIC 'DATA' 8# 14 25
DGROUP. . GROUP DATA STACK 8# 11 11 69 T4
HOME_CURSOR1. V WORD ' O0004H DATA 21# 94
HOME_CURSOR2. V WORD 0006H DATA -22# 96
RANLOM. . L NEAR 0000H CODE 46# 60 83 89
ROLL. . L-NEAR 0031H CODE 83# 99
SAVE. . V WORD O000AH DATA 24# 47 51
SPACE . V WORD 0008H DATA 23# 87
STACK . . SEGMENT SIZE=0028H PARA STACK 'STACK'
STACK TOP . . V WORD 0028H STACK -32# T4
START L NEAR 0019H CODE 69# 104

Figure 2-67. ASM-86 Sample Program (Cont’d.)

Mnemonics © Intel, 1978

2-95

8086 AND 8088 CENTRAL PROCESSING UNITS

The ASM-86 version of the dice program operates
like the PL/M-86 version. Since the program uses
the PL/M-86 CO procedure for writing data to
the Intellec console, it adheres to certain conven-
tions established by the PL/M-86 compiler. The
program’s logical segments (called CODE,
DATA and STACK—the program does not use
an extra segment) are organized into two groups
called CGROUP and DGROUP. All the members
of a group of logical segments are located in the
same 64k byte physical memory segment.
Physically, the program’s DATA and STACK
segments can be viewed as ‘‘subsegments’’ of
DGROUP.

PL/M-86 procedures expect parameters to be
passed on the stack, so the program pushes each
character before calling CO. Note that the stack
will be ¢“cleaned up’’ by the PL/M-86 procedure
before returning (i.e., the parameter will be
removed from the stack by CO).

2.10 Programming Guidelines
and Examples

This section addresses 8086/8088 programming
from two different perspectives. A series of
general guidelines is presented first. These
guidelines apply to all types of systems and are
intended to make software easier to write, and
particularly, easier to maintain and enhance. The
second part contains a number of specific pro-
gramming examples. Written primarily in
ASM-86, these examples illustrate how the
instruction set and addressing modes may be uti-
lized in various, commonly encountered program-
ming situations.

Programming Guidelines

These guidelines encourage the development of
8086/8088 software that is adaptable to change.
Some of the guidelines refer to specific processor
features and others suggest approaches to general
software design issues. PL/M-86 programmers
need not be concerned with the discussions that
deal with specific hardware topics; they should,
however, give careful attention to the system
design subjects.Systems that are designed in
accordance with these recommendations
should be less costly to modify or extend. In
addition, they should be better-positioned to

take advantage of new hardware and software
products that are constantly being introduced
by Intel.

Segments and Segment Registers

Segments should be considered as independent
logical units whose physical locations in memory
happen to be defined by the contents of the seg-
ment registers. Programs should be independent
of the actual contents of the segment registers and
of the physical locations of segments in memory.
For example, a program should not take
advantage of the ‘‘knowledge’’ that two segments
are physically adjacent to each other in memory.
The single exception to this fully-independent
treatment of segments is that a program may set
up more than one segment register to point to the °
same segment in memory, thereby obtaining
addressability through more than one segment
register. For example, if both DS and ES point to
the same segment, a string located in that segment
may be used as a source operand in one string
instruction and as a destination string in another
instruction (recall that a destination string must
be located in the extra segment).

Any data aggregate or construct such as an array,
a structure, a string or a stack should be restricted
to 64k bytes in length and should be wholly con-
tained in one segment (i.e., should not cross a seg-
ment boundary).

Segment registers should only contain values sup-
plied by the relocation and linkage facilities. Seg-
ment register values may be moved to and from
memory, pushed onto the stack and popped from
the stack. Segment registers should never be used
to hold temporary variables nor should they be
altered in any other way.

As an additional guideline, code should not be
written within six bytes of the end of physical
memory (or the end of the code segment if this
segment is dynamically relocatable). Failure to
observe this guideline could result in an attempted
opcode prefetch from non-existent memory,
hanging the CPU if READY is not returned.

Self-Modifying Code

It is possible to write a program that deliberately
changes some of its own machine instructions

2-96

8086 AND 8088 CENTRAL PROCESSING UNITS

during execution. While this technique may save a
few bytes or machine cycles, it does so at the

expense of program clarity. This is particularly
true if the program is being examined at the -

machine instruction level; the machine instruc-
tions shown in the assembly listing may not match
those found in memory or monitored from the
bus. It also precludes executing the code from
ROM. Also, because of the prefetch queue within
the 8086 and 8088, code that is self-modified
within six bytes of the current point of execution
cannot be guaranteed to execute as intended.
(This code may already have been fetched.) Fin-
ally, a self-modifying program may prove
incompatible with future Intel products that
assume that the content of a code segment
remains constant durmg execution.

A corrollary to this requirement is that variable

data should not be placed in a code segment. Con-
stant data may be written in a code segment, but
this is not recommended for two reasons. First,
programs are simpler to understand if they are

uniformly subdivided into segments of code, data’

and stack. Second, placing data in a code segment
can restrict the segment’s position independence.
This is because, in" general, the segment base
address of a data item may be changed, but the
offset (displacement) of the data item may not.
This means that the entire segment must be
moved as a unit to avoid changing the offset of

that reads a disk file, for example, should have no

~ knowledge of where the file is located on the disk,

- the application module.

" what size the disk sectors are, etc. This allows

these characteristics to change without affecting
To an application
module, the I/0 system appears to be a series of

- file-oriented commands (e.g., Open, Close, Read,

Write) An application module would typically
issue a command by callmg a file system
procedure. .

The file system processes 1/0 command requests,
perhaps checking for gross errors, and calls a pro-

- cedure in the I/0 supervisor. The 1/0 supervisor

the constant data. If the constant -data were

located in a data segment or an extra segment,
individual procedures within the code segment
could be moved independently.

Input/Output

Since 1/0 devices vary so widely in their
capabilities and their interface designs, 1/0 soft-
ware is inevitably device dependent. Substituting
a hard disk for a floppy disk, for example,
necessitates software changes even though the
disks are functionally identical. I/0 software can,
however, be designed to minimize the effect of
device changes on programs.

is a bridge between the functional I/0 request of
the application module and the physical 1/0 per-
formed by the lowest-level modules in the hier-
archy. There should be separate modules in the
supervisor for different types of devices and some
device-dependent code may be unavoidable at this
level. The 170 supervisor would typically perform
overhead activities such as maintaining disk
directories.

The modules that actually communicate with the
170 devices (or their controllers) are at the lowest
level in the hierarchy. These modules contain the
bulk of the system’s device-dependent code that
will have to be modified in the event that a device
is changed.

The 8089 Input/Output Processor is specifically
designed - to encourage . .the development . of
modular, hierarchical 1/0 systems. The 8089
allows knowledge of device characteristics to be
“‘hidden’’- from not only application programs,
but also from the operating system that controls

~-the CPU. The CPU’s 1/0 supervisor can simply

prepare a message in memory that describes the
nature of the operation to be performed, and then
activate the 8089. The 8089 independently per-

forms all physical 1/0 and notifies the CPU when

the operation has been completed.

Figure 2-68 illustrates a design concept that struc- -

tures an I/0 system into a hierarchy of separately
compiled/assembled modules. This approach
isolates application modules that use the
input/output devices” from" all physical
characteristics of the hardware with which they
ultimately communicate. An application module

Operating Systems

Operating systems also should be organized in a
hierarchy similar to the concept illustrated in
figure 2-69. Application modules should ‘‘see’’
only the upper level of the operating system. This
level might provide services like sending messages
between application modules, providing time
delays, etc. An intermediate level might consist of
housekeeping routines that dispatch tasks, alter

2-97

8086 AND 8088 CENTRAL PROCESSING UNITS

b] C] L _] Woouces ™"
o L | !]
. - FILE SYSTEM
| .] MobULES)
[5
1/0 SUPERVISOR
| | : | l 1 | MODULES ;

_l

Co Ty

- PHYSICAL 1/0
| | J MobuLES

DEVICE CONTROL
HARDWARE

QO Q—

Figure 2-68. I/0 System Hierarchy Concept

APPLICATION MODULES

C O 1 10

OPERATING SYSTEM

[TI11]

FILE SERVICES SYSTEM SERVICES 1

HEEEEEREEEEER

1/0 SUPERVISOR HOUSEKEEPING INVISIBLE

HEEEEEEEREEEEE JJJ APPLICATION MODULES

PHYSICAL 1/0 ’ PRIMITIVE OPERATIONS

INEEEEEEERREEEEEEEEEE -

Figure 2-69. Operating System Hierarchy

2-98

8086 AND 8088 CENTRAL PROCESSING UNITS

priorities, manage memory, etc. At the lowest
level would be the modules that implement
primitive operations such as adding and removing
tasks or messages from lists, servicing timer inter-
rupts, etc.

Interrupt Service Procedures

Procedures that service external interrupts should
be considered differently than those that service
internal interrupts. A service procedure that is
activated by an internal interrupt, may, and often
should, be made reentrant. External interrupt
procedures, on the other hand, should be viewed
as temporary tasks. In this sense, a task is a single
sequential thread of execution; it should not be
reentered. The processor’s response to an external
interrupt may be viewed as the following sequence
of events:

* the running (active) task is suspended,

* anew task, the interrupt service procedure, is
created and becomes the running task,

e theinterrupt task ends, and is deleted,

e the suspended task 1is reactived and
becomes the running task from the point
where it was suspended.

An external interrupt procedure should only be
interruptable by a request that activates a dif-

ferent interrupt procedure. When the number of
interrupt sources is not too large, this can be
accomplished by assigning a different type code
and corresponding service procedure to each
source. In systems where a large number of
similar sources can generate closely spaced inter-
rupts (e.g., 500 communication lines), an
approach similar to that illustrated in figure 2-70,
may be used to insure that the interrupt service
procedure is not reentered, and yet, interrupts
arriving in bursts are not missed. The basic
technique is to divide the code required to service
an interrupt into two parts. The interrupt service
procedure itself is kept as short as possible; it per-
forms the absolute minimum amount of process-
ing necessary to service the device. It then builds a
message that contains enough information to per-
mit another task, the interrupt message processor,
to complete the interrupt service. It adds the
message to a queue (which might be implemented
as a linked list), and terminates so that it is
available to service the next interrupt. The inter-
rupt message processor, which is not reentrant,
obtains a message from the queue, finishes pro-
cessing the interrupt associated with that message,
obtains the next message (if there is one), etc.
When a burst of interrupts occurs, the queue will
lengthen, but interrupts will not be missed so long
as there is time for the interrupt service procedure
to be activated and run between requests.

MULTIPLE INTERRUPT SCURCES

/

INTERRUPT
IERRUE ADD MESSAGE TO QUEUE
PROCEDURE
———-7
F-—-d QUEUE (LIST
F-—-- OF INTERRUPT
F— — - — Wessaces
F-—-
[|
OBTAIN NEXT MESSAGE
FROM QUEUE
INTERRUPT
MESSAGE
PROCESSOR

Figure 2-70. Interrupt Message Processor

8086 AND 8088 CENTRAL PROCESSING UNITS

Stack-Based Parameters

Parameters are frequently passed .to procedures
on a stack. Results produced by the procedure,
however, should be returned .in other memory
locations or in registers. In other words, the called
procedure should ‘‘clean up’’ the stack by dis-
carding the parameters before returning. The,
RET instruction can perform this - function.
PL/M-86 procedures. always follow this
convention. -

Flag-Images

Programs should make no assumptions.about the
contents of the undefined bits in the flag-images
stored in memory by the PUSHF and SAHF
instructions. These bits always should be masked
out of any comparisons-or tests that use these
flag-images. The undefined bits of the word flag-
image can be cleared by ANDing the word with
FDSH. The undefined bits of the byte flag-image
can be cleared by ANDing the byte with D5H.

Programming Examples |

These examples demonstrate the 8086/ 8088
instruction set and addressing modes in. common
programming situations. The followmg topics are
addressed:

° procedures (parameters, reentrancy)

e various forms of JMP and CALL
instructions

® bit manipulation with the ASM-86 RECORD
facility

® dynamic code relocation
°* memory mapped I/O

* breakpoints

* interrupt handling

e string operations

These examples are written primarily in- ASM-86
and will be of most interest to assembly:language
programmers. The PL/M-86 compiler-generates
code that handles many of these situations
automatically for PL/M-86 programs. For exam-
ple, the compiler takes care of the stack in
PL/M-86 procedures, allowing the programmer
to concentrate on solving the application prob-
lem. PL/M-86 programmers, however, may want

to- examine the memory mapped 1/0 and
interrupt handling examples, since the concepts
illustrated are generally applicable; one of the
interrupt procedures is written in PL/M-86.

The examples are intended to show one way to use
the instruction set, addressing modes and features
of ASM-86. They do not demonstrate the ‘‘best’’
way to solve any particular problem. The flexibil-
ity of the 8086 and 8088, application differences
plus variations in programming style usually add
up.to a number of ways to implement a program-
ming solution. .

Procedures

The code in figure 2-71 illustrates. several tech-
niques that are typically used in writing. ASM-86
procedures. In this example a calling program
invokes a procedure (called EXAMPLE) twice,
passing it a different byte array each time. Two
parameters are passed on the stack; the first con-
tains the number of elements in the array, and the
second contains the address (offset in
DATA__SEG) of the first array element. This
same technique can be used to pass a variable-
length parameter list to a procedure (the ‘‘array’’
could be any series of parameters or parameter
addresses). Thus, although the procedure always
receives two parameters; these can be used to
indirectly access any number of variables in
memory.

Any results returned by a procedure should be
placed in registers ‘or in memory, but not on the
stack. AX or ‘AL is often used to hold a single
word or byte result. Alternatively, the calling pro-
gram can pass the address (or addresses) of a
result area to-the procedure as a parameter. It is
good practice for ASM-86 programs to follow the
calling conventions used by PL/M-86; these are
documented in MCS-86 Assembler Operating
Instructions For ISIS-II Users, Order No.
9800641.

EXAMPLE is defined as a FAR procedure,
meaning it is in a different segment than the call-
ing program. The calling program must use an
intersegment CALL to activate the procedure.
Note that this type of CALL saves CS and IP on
the stack. If EXAMPLE were defined as NEAR
(in the same segment as the caller) then an intra-
segment CALL would be used, and only IP would
be saved on the stack. It is the responsibility of
the calling program to know how the procedure is

defined and to issue the correct type of CALL.

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

STACK_SEG SEGMENT

DW 20 DUP (?) ; ALLOCATE 20-WORD STACK
STACK_TOP LABEL WORD ; LABEL INITIAL TOS
STACK_SEG ENDS
DATA__SEG SEGMENT
ARRAY__1 DB 10 DUP (?) ; 1-ELEMENT BYTE ARRAY
ARRAY_2 DB 5DUP (?) ; -ELEMENT BYTE ARRAY
DATA_SEG ENDS
PROC__SEG SEGMENT
ASSUME CS:PROC__SEG,DS:DATA__SEG,SS:STACK__SEG,ES:NOTHING
EXAMPLE PROC FAR ; MUST BE ACTIVATED BY

; INTERSEGMENT CALL

; PROCEDURE PROLOG

PUSH BP ; SAVE BP

MOV BP, SP ; ESTABLISH BASE POINTER

PUSH CX ; SAVE CALLER’S

PUSH BX ; REGISTERS

PUSHF ; AND FLAGS

SuB SP,6 ; ALLOCATE 3 WORDS LOCAL STORAGE

; END OF PROLOG
; PROCEDURE BODY

MoV CX, [BP+8] ;GETELEMENT COUNT

MOV BX,[BP+6] ;GET OFFSET OF 1ST ELEMENT

: PROCEDURE CODE GOES HERE
: FIRST PARAMETER CAN BE ADDRESSED:
» [BX]
: LOCAL STORAGE CAN BE ADDRESSED:
; [BP-8], [BP-10], [BP-12]
; END OF PROCEDURE BODY
: PROCEDURE EPILOG

ADD SP,6 ; DE-ALLOCATE LOCAL STORAGE

POPF ; RESTORE CALLER’S

POP BX ; REGISTERS

POP CX i AND

POP BP ; FLAGS

; END OF EPILOG
; PROCEDURE RETURN

RET 4 ; DISCARD 2 PARAMETERS
EXAMPLE ENDP ; END OF PROCEDURE ““EXAMPLE”’
PROC_SEG ENDS

Figure 2-71. Procedure Example 1

2-101 Mnemonics © Intel, 1978

- 8086 AND 8088 CENTRAL PROCESSING UNITS

CALLER__SEG SEGMENT

; GIVE ASSEMBLER SEGMENT/REGISTER CORRESPONDENCE

ASSUME CS:CALLER__SEG,
& DS:DATA__SEG,
& SS:STACK__SEG, ‘
& ES:NOTHING ; NO EXTRA SEGMENT IN THIS PROGRAM
; INITIALIZE SEGMENT REGISTERS -
START: MOV AX,DATA_SEG

MoV DS,AX ‘

MOV AX,STACK__SEG

MoV SS,AX

MoV SP,OFFSET STACK_TOP ; POINTSP TO TOS

; ASSUME ARRAY__1 IS INITIALIZED

; CALL “EXAMPLE”, PASSING ARRAY__1, THAT IS, THE NUMBER OF ELEMENTS
; INTHE ARRAY, AND THE LOCATION OF THE FIRST ELEMENT.

MoV - AX,SIZE ARRAY__1
PUSH AX

MoV AX,OFFSET ARRAY__1
PUSH AX

CALL EXAMPLE

; ASSUME ARRAY__2 IS INITIALIZED

; CALL “EXAMPLE" AGAIN WITH DIFFERENT SIZE ARRAY.

MOV AX,SIZE ARRAY__2
PUSH AX
- MoV AX,OFFSET ARRAY__2
PUSH AX
CALL EXAMPLE -
CALLER_SEG ENDS
END - START

Figure 2-71. Procedure Example 1 (Cont’d.)

Figure 2-72 shows the stack before the caller
pushes the parameters onto it. Figure 2-73 shows
the stack as the procedure receives it after the
CALL has been executed.

EXAMPLE is divided into four sections. The
“‘prolog”’ sets up register BP so it can be used to
address data on the stack (recall that specifying
BP as a base register in an instruction auto-
matically refers to the stack segment unless a seg-
ment override prefix is coded). The next step in
the prolog is to save the ‘‘state of the machine’’ as

it existed when the procedure was activated. This
is done by pushing any registers used by the pro-
cedure (only CX and BP in this case) onto the
stack. If the procedure changes the flags, and the
caller expects the flags to be unchanged following
execution of the procedure, they also may be
saved on the stack. The last instruction in the pro-
log allocates three words on the stack for the pro-
cedure to use as local temporary storage. Figure
2-74 shows the stack at the end of the prolog.
Note that PL/M-86 procedures assume that all
registers except SP and BP can be used without
saving and restoring.

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

<€—— SP(TOS)

Figure 2-72. Stack Before Pushing Parameters

HIGH ADDRESSES
BP +8 ——>| PARAMETER 1
BP 46— PARAMETER 2
oLDCS
oLDIP
OLD BP | «——BP
oLDCX
OLD BX
OLD FLAGS
BP-8—>» LOCAL1
BP-10 ——> LOCAL2
BP-12——>| LOCAL3 [<«—— SP (TOS)

LOW ADDRESSES

Figure 2-74. Stack Following Procedure Prolog

HIGH ADDRESSES
PARAMETER 1
PARAMETER 2
oLDCs
OoLDIP |<«——SP(TOS)
LOW ADDRESSES

Figure 2-73. Stack at Procedure Entry

The procedure ‘‘body’’ does the actual processing
(none in the example). The parameters on the
stack are addressed relative to BP. Note that if
EXAMPLE were a NEAR procedure, CS would
not be on the stack and the parameters would be
two bytes ‘‘closer’” to BP. BP also is used to
address the local variables on the stack. Local
constants are best stored in a data or extra
segment.

The procedure ‘‘epilog’’ reverses the activities of
the prolog, leaving the stack as it was when the
procedure was entered (see figure 2-75).

. HIGHER ADDRESSES

T
PARAMETER 1
PARAMETER 2
RETURN ADDRESS
OLD BP <«——BP & SP (TOS)
A N AR
LOWER ADDRESSES

Figure 2-75. Stack Following Procedure Epilog

2-103

8086 AND 8088 CENTRAL PROCESSING UNITS

The procedure ‘‘return’’ restores CS and IP from
the stack and discards the parameters. As figure
2-76 shows, when the calling program is resumed,
the stack is in the same state as it was before any
parameters were pushed onto it.

HIGH ADDRESSES

<«—— SP (TOS)

LOW ADDRESSES

Figure 2-76. Stack Following Procedure Return

Figure 2-77 shows a simple procedure that uses an
ASM-86 structure to address the stack. Register
BP is pointed to the base of the structure, which is
the top of the stack since the stack grows toward
lower addresses (see figure 2-78). Any structure
element can then be addressed by specifying BP as
a base register:

[BP].structure__element.

Figure 2-79 shows a different approach to using
an ASM-86 structure to define the stack layout.
As shown in figure 2-80, register BP is pointed at
the middle of the structure (at OLD__BP) rather
than at the base of the structure. Parameters and
the return address are thus located at positive
displacements (high addresses) from BP, while
local variables are at negative displacements
(lower addresses) from BP. This means that the
local variables will be ‘‘closer’’ to the beginning
of the stack segment and increases the likelihood
that the assembler will be able to produce shorter
instructions to access these variables, i.e., their
offsets from SS may be 255 bytes or less and can
be expressed as a 1-byte value rather than a 2-byte
value. Exit from the subroutine also is slightly
faster because a MOV instruction can be used to
deallocate the local storage instead of an ADD
(compare figure 2-71).

It is possible for a procedure to be activated a sec-
ond time before it has returned from its first
activation. For example, procedure A may call
procedure B, and an interrupt may occur while
procedure B is executing. If the interrupt service
procedure calls B, then procedure B is reentered
and must be written to handle this situation cor-
rectly, i.e., the procedure must be made
reentrant.

In PL/M-86 this can be done by simply writing:
B: PROCEDURE (PARM1, PARM2) REENTRANT;

An ASM-86 procedure will be reentrant if it uses
the stack for storing all local variables. When the
procedure is reentered, a new ‘‘generation’’ of
variables will be allocated on the stack. The stack
will grow, but the sets of variables (and the
parameters and return addresses as well) will
automatically be kept straight. The stack must be
large enough to accommodate the maximum
““depth”’ of procedure activation that can occur
under actual running conditions. In addition, any
procedure called by a reentrant procedure must
itself be reentrant.

A related situation that also requires reentrant
procedures is recursion. The following are
examples of recursion:

e A calls A (direct recursion),
e Acalls B, Bcalls A (indirect recursion),

e A calls B, B calls C, C calls A (indirect
recursion).

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

CODE SEGMENT

MAX PROC

ASSUME CS:CODE

THIS PROCEDURE IS CALLED BY THE FOLLOWING

SEQUENCE:
PUSH PARM1

CALL MAX

; ITRETURNS THE MAXIMUM OF THE TWO WORD

: PUSH PARM2

PARAMETERS IN AX.

; DEFINE THE STACK LAYOUT AS A STRUCTUHE.

STACK_LAYOUT STRUC

OLD__BP DW? ; SAVED BP VALUE—BASE OF STRUCTURE
RETURN__ADDR DW? ; RETURN ADDRESS
PARM__2 DW? ; SECOND PARAMETER
PARM_1 DW? ; FIRST PARAMETER
STACK_LAYOUT ENDS
; PROLOG
PUSH BP ; SAVEIN OLD_BP
MOV BP, SP ; POINTTO OLD_BP
; BODY
MOV AX, [BP].PARM__1 ;IFFIRST
CMP AX, [BP].PARM__2 _;>SECOND
JG FIRST__IS_MAX- ; THEN RETURN FIRST
MOV AX, [BP].PARM__2 ;ELSERETURN SECOND
; EPILOG :
FIRST__IS_MAX: POP BP ; RESTORE BP (& SP)
; RETURN
RET 4 ; DISCARD PARAMETERS
MAX ENDP
CODE ENDS
END

Figure 2-77. Procedure Example 2

HIGHER ADDRESSES
2l

1
PARAMETER 1
PARAMETER 2
RETURN ADDRESS
OLD BP ~«——BP &SP (TOS)
n dn
LOWER ADDRESSES

Figure 2-78. Procedure Example 2 Stack Layout

Jumps and Calls -

The 8086/8088 instruction set contains many dif-
ferent types of JMP and CALL instructions (e.g.,
direct, indirect through register, indirect through
memory, etc.). These varying types of transfer
provide efficient use of space and execution time
in different programming situations. Figure 2-81
illustrates -typical use of the different forms of
these instructions. Note that the ASM-86
assembler uses the terms ‘“‘NEAR’’ and ‘“FAR”’
to denote intrasegment and intersegment trans-
fers, respectively.

2-105 Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

EXTRA SEGMENT
; CONTAINS STRUCTURE TEMPLATE THAT ‘“NEARPROC"’
; USES TO ADDRESS AN ARRAY PASSED BY ADDRESS.

DUMMY STRUC
PARM_ARRAY DB 256 DUP ?
DUMMY ENDS
EXTRA ENDS
CODE SEGMENT
ASSUME CS:CODE,ES:EXTRA
NEARPROC PROC
; LAY OUT THE STACK (THE DYNAMIC STORAGE AREA OR DSA).
DSASTRUC STRUC
| DW ? ; LOCAL VARIABLES FIRST
LOC__ARRAY DW 10 DUP (?) ; ‘
OLD_BP DW ? ' ; ORIGINAL BP VALUE
RETADDR DW ? ; RETURN ADDRESS
POINTER DD ? ; 2ND PARM—POINTER TO “PARM_ARRAY"’
COUNT DB ? ; 1IST PARM—A BYTE OCCUPIES
‘ DB ? ; A WORD ON THE STACK
DSASTRUC ENDS

; USE AN EQU TO DEFINE THE BASE ADDRESS OF THE
; DSA.CANNOT SIMPLY USE BP BECAUSE IT WILL
; BEPOINTING TO “‘OLD_BP”’ IN THE MIDDLE O

; THEDSA. '
DSA EQU [BP — OFFSET OLD__BP]
; PROCEDURE ENTRY
' PUSH BP ; SAVE BP
Mov BP, SP ; POINT BP ATOLD__BP
SuB SP, OFFSET OLD__BP ; ALLOCATE LOC__ARRAY &1
; PROCEDURE BODY
; ACCESS LOCAL VARIABLE |
Mov AX,DSA.l
; ACCESS LOCAL ARRAY (3) I.E., 4TH ELEMENT
Mov SI,6 ; WORD ARRAY-INDEX IS 3*2
MOV AX,DSA.LOC__ARRAY [SI]

; LOAD POINTER TO ARRAY PASSED BY ADDRESS
LES - BX,DSA.POINTER

; ES:BX NOW POINTS TO PARM__ARRAY (0)
: ACCESS SI'TH ELEMENT OF PARM__ARRAY
MOV AL,ES:[BX].PARM__ARRAY [SI]

; ACCESS THE BYTE PARAMETER
MoV AL,DSA.COUNT

Figure 2-79. Procedure Example 3

Mnemonics © Intel, 1978 2-106

8086 AND 8088 CENTRAL PROCESSING UNITS

; PROCEDURE EXIT

MoV SP,BP
POP BP
; STACK NOW AS RECEIVED FROM CALLER

RET 6

NEARPROC ENDP
CODE ENDS
END

; DE-ALLOCATE LOCALS
; RESTORE BP

; DISCARD PARAMETERS

Figure 2-79. Procedure Example 3 (Cont’d.)

« HIGHER ADDRESSES

| counrt

POINTER

RETADDR
OLD_BP «—BP
LOC_ARRAY (9)
LOC_ARRAY (8)
LOC_ARRAY (7)
LOC_ARRAY (6)
LOC_ARRAY (5)
LOC__ARRAY (4)
LOC_ARRAY (3)
LOC_ARRAY (2)
LOC_ARRAY (1)
LOC_ARRAY (0)
) «——SP

g LOWER ADDRESSES

Figure 2-80. Procedure Example
3 Stack Layout

The procedure in figure 2-81 illustrates how a
PL/M-86 DO CASE construction may be
implemented in ASM-86.-1t also shows:

* an indirect CALL through memory to a
procedure located in another segment,

e adirect JMP to a label in another segment,

¢ anindirect JMP though memory to a label in
the same segment,

e . an indirect JMP through a register to a label
: in the same segment,

"o a direct CALL to 'a procedure in another

segment,

® a direct CALL to a procedure in the same
segment,

e direct JMPs to labels in the same segment,
within —128 to +127 bytes (‘*‘SHORT”’) and
farther than —128 to +127 bytes (““NEAR”’).

2-107

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

DATA SEGMENT

; DEFINE THE CASE TABLE (JUMP TABLE) USED BY PROCEDURE
; “DO__CASE.” THE OFFSET OF EACH LABEL WILL

; BE PLACED IN THE TABLE BY THE ASSEMBLER.

CASE_TABLE DW ACTIONO, ACTION1, ACTIONZ2,
& ACTION3, ACTION4, ACTIONS:
DATA - ENDS S

; DEFINE TWO EXTERNAL (NOT PRESENT IN THIS -
; ASSEMBLY BUT SUPPLIED BY R& L FACILITY)
; PROCEDURES. ONE IS IN THIS CODE SEGMENT
; (NEAR) AND ONE IS IN ANOTHER SEGMENT (FAR).
EXTRN NEAR_PROC: NEAR, FAR._PROC: FAR

; DEFINE AN EXTERNAL LABEL (JUMP TARGET) THAT
; IS IN ANOTHER SEGMENT.
EXTRN ERR_EXIT: FAR

CODE SEGMENT

ASSUME . CS: CODE, DS: DATA
; ASSUME DS HAS BEEN SET UP
; BYCALLERTOPOINT TO “DATA’ SEGMENT.

DO__CASE PROC NEAR
; THIS EXAMPLE PROCEDURE RECEIVES TWO
; PARAMETERS ON THE STACK. THE FIRST
; PARAMETERIS THE ‘“CASE NUMBER” OF
; AROUTINE TO BE EXECUTED (0-5). THE SECOND
3~ PARAMETERIS A POINTER TO AN ERROR
; PROCEDURE THAT IS EXECUTED IF AN INVALID
; ~ CASE NUMBER (>5) IS RECEIVED.

-; LAY OUT THE STACK.
STACK__LAYOUT STRUC
OLD__BP DW ?
RETADDR DW ?
ERR_PROC__ADDR DD ?
CASE__NO DB ?

DB ?

STACK__LAYOUT ENDS
; SET UP PARAMETER ADDRESSING
- PUSH BP
MOV BP, SP

; CODE TO SAVE CALLER’S REGISTERS COULD GO HERE.

: CHECK THE CASE NUMBER
MOV BH,O
MOV L, [BP].CASE_NO
CMP ax LENGTH CASE__TABLE
JLE oK : ALL CONDITIONAL JUMPS

; ARE SHORT DIRECT

Figure 2-81. JMP and CALL Examples

Mnemonics © Intel, 1978 2-108

8086 AND 8088 CENTRAL PROCESSING UNITS

; CALL THE ERROR ROUTINE WITH A FAR
; INDIRECT CALL. AFARINDIRECT CALL
; ISINDICATED SINCE THE OPERAND HAS
; TYPE “DOUBLEWORD.”
CALL [BP].ERR_PROC__ADDR

; JUMP DIRECTLY TO A LABEL IN ANOTHER SEGMENT.
; AFARDIRECT JUMP IS INDICATED SINCE
; THE OPERAND HAS TYPE “‘FAR.”

JMP ERR_EXIT

OK:
; MULTIPLY CASE NUMBERBY 2 TO GET OFFSET .
; INTO CASE__TABLE (EACH ENTRY IS2BYTES).
SHL BX,1 -
; NEAR INDIRECT JUMP THROUGH SELECTED
; ELEMENT OF CASE__TABLE. ANEAR
; INDIRECT JUMP IS INDICATED SINCE THE
; OPERANDHAS TYPE “WORD.”
" JMP CASE_TABLE [BX]

ACTIONO: ; EXECUTED IF CASE_NO =0

; CODE TO PROCESS THE ZERO CASE GOES HERE.
; FORILLUSTRATION PURPOSES, USE A

; NEARINDIRECT JUMP THROUGH A

; REGISTER TO BRANCH TO THE POINT

; WHERE ALL CASES CONVERGE.

; ADIRECT JUMP (JMP ENDCASE) IS

; ACTUALLY MORE APPROPRIATE HERE.

MOV AX, OFFSET ENDCASE
JMP AX
ACTIONT1: ; EXECUTED IF CASE_NO =1

; CALL AFAR EXTERNAL PROCEDURE. A FAR
; DIRECT CALLIS INDICATED SINCE OPERAND
; HASTYPE ““FAR.”

CALL FAR_PROC
; CALL ANEAR EXTERNAL PROCEDURE.
CALL NEAR_PROC

; BRANCH TO CONVERGENCE POINT USING NEAR
; DIRECT JUMP. NOTE THAT “ENDCASE"’

; ISMORE THAN 127 BYTES AWAY

; SOANEARDIRECT JUMP WILL BE USED.

JMP ENDCASE
ACTION2: ; EXECUTED IF CASE_NO =2
; CODE GOES HERE
JMP ENDCASE ; NEAR DIRECT JUMP

Figure 2-81. JMP and CALL Examples (Cont’d.)

2-109 Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

ACTIONS: ; EXECUTED IF CASE_NO =3
; CODE GOES HERE
JMP ENDCASE ; NEAR DIRECT JMP

; ARTIFICIALLY FORCE “ENDCASE’ FURTHER AWAY
;SO THAT ABOVE JUMPS CANNOT BE “SHORT "

ORG 500
ACTION4: ; EXECUTED IF CASE_NO =4
; CODE GOES HERE : '
JMP ENDCASE ; NEAR DIRECT JUMP
ACTIONS: ; EXECUTED IF CASE_NO =5

; CODE GOES HERE.

; BRANCH TO CONVERGENCE POINT USING
; SHORT DIRECT JUMP SINCE TARGET IS
; WITHIN 127’ BYTES. MACHINE INSTRUCTION
; HAS1-BYTE DISPLACEMENT RATHER THAN
; 2-BYTE DISPLACEMENT REQUIRED FOR
; NEARDIRECT JUMPS. “SHORT" IS
; WRITTEN BECAUSE ‘“‘ENDCASE’’ IS AFORWARD
; REFERENCE, WHICH ASSEMBLER ASSUMES IS
;. “NEAR.”IF “ENDCASE’ APPEARED PRIOR
; TOTHE JUMP, THE ASSEMBLER WOULD
; AUTOMATICALLY DETERMINEIFIT WERE REACHABLE
; WITH ASHORT JUMP. -

JMP SHORT ENDCASE

ENDCASE: ; ALL CASES CONVERGE HERE.

; POP CALLER’S REGISTERS HERE. ‘
; RESTORE BP & SP, DISCARD PARAMETERS

; AND RETURN TO CALLER.
MOV SP, BP
POP BP
RET 6
DO__CASE ENDP
CODE ENDS .
END - ; OF ASSEMBLY

Figure 2-81. JMP and CALL Examples (Cont’d.)

Records

Figure 2-82 shows how the ASM-86 RECORD
facility may be used to manipulate bit data. The

example shows how to: ® assign a constant known at assembly time,
* right-justify a bit field, e assignavariable,
e test for avalue, ® setorcleara bit field.

Mnemonics © Intel, 1978
e mme 2-110

8086 AND 8088 CENTRAL PROCESSING UNITS

DATA SEGMENT
; DEFINE A WORD ARRAY
XREF DW 3000 DUP (?)

; EACH ELEMENT OF XREF CONSISTS OF 3 FIELDS:
; A 2-BIT TYPE CODE,
; A1-BIT FLAG,
; A13-BIT NUMBER.
DEFINE A RECORD TO LAY OUT THIS ORGANIZATION.

LINE REC RECORD LINE_TYPE:2,
& VISIBLE: 1,

& LINE_NUM: 13
DATA ENDS

CODE SEGMENT

ASSUME CS: CODE, DS:DATA
; ASSUME SEGMENT REGISTERS ARE SET UP PROPERLY
; AND THAT SIINDEXES AN ELEMENT OF XREF.

; ARECORD FIELD-NAME USED BY ITSELF RETURNS
; THE SHIFT COUNT REQUIRED TO RIGHT-JUSTIFY
; THEFIELD. ISOLATE “LINE__TYPE” IN THIS

; MANNER.

MOV AL, XREF [Sl]
MOV CL, LINE_TYPE
SHR AX, CL

; THE ““MASK’* OPERATOR APPLIED TO A RECORD
; FIELD-NAME RETURNS THE BIT MASK
; REQUIRED TO ISOLATE THE FIELD WITHIN
; THE RECORD. CLEAR ALL BITS EXCEPT

CCLINE_NUM.” :
MOV DX, XREF[SI]
AND DX, MASK LINE_NUM
: DETERMINE THE VALUE OF THE “VISIBLE” FIELD
TEST XREF([SI], MASK VISIBLE
Jz NOT_VISIBLE

; NOJUMP IF VISIBLE =1
NOT__VISIBLE: ;JUMPHEREIFVISIBLE=0

; ASSIGN A CONSTANT KNOWN AT ASSEMBLY-TIME
; TO AFIELD, BY FIRST CLEARING THE BITS

; AND THEN OR’ING IN THE VALUE. IN

; THIS CASE ““LINE_TYPE” ISSETTO 2 (10B).

AND XREF[SI], NOT MASK LINE__TYPE

OR XREF[SI],2 SHL LINE_TYPE
: THE ASSEMBLER DOES THE MASKING AND SHIFTING. -
; THE RESULT IS THE SAME AS:
AND XREF[SI], 3FFFH
OR XREF[SI], 8000H
; BUT IS MORE READABLE AND LESS SUBJECT
. TO CLERICAL ERROR.

Figure 2-82. RECORD Example

2-111

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

; ASSIGN A VARIABLE (THE CONTENT OF AX)

; TOLINE_TYPE.
Mov CL,LINE_TYPE ;SHIFT COUNT"
SHL AX,CL ;SHIFTTO ““LINE UP” BITS
AND XREF([SI], NOT MASK LINE_TYPE ;CLEARBITS
OR XREF[SI], AX ;ORINNEW VALUE

; NO SHIFT IS REQUIRED TO ASSIGN TO THE
; RIGHT-MOST FIELD. ASSUMING AX CONTAINS
; A VALID NUMBER (HIGH 3 BITS ARE 0),

; ASSIGN AXTO “LINE_NUM.”

AND XREF[SI], NOT MASK LINE_NUM
OR XREF[SI], AX

; AFIELD MAY BE SET OR CLEARED WITH

; ONEINSTRUCTION. CLEAR THE “‘VISIBLE"

; FLAG AND THEN SET IT.

AND XREF[SI], NOT MASK VISIBLE

OR XREF[SI], MASK VISIBLE
CODE ENDS

END ~ ;OF ASSEMBLY

Figure 2-82. RECORD Example (Cont’d.)

The following considerations apply to position-
independent code sequences:

® A label that is referenced by a direct FAR
(intersegment) transfer is not moveable.

e A label that is referenced by an indirect
transfer (either NEAR or FAR) is moveable
so long as the register or memory pointer to
the label contains the label’s current address.

* Alabel that is referenced by a SHORT (e.g.,
conditional jump) or a direct NEAR (in-
trasegment) transfer is moveable so long as
the referencing instruction is moved with the
label as a unit. These transfers are self-
relative; that is they require only that the
label maintain the same distance from the
referencing instruction, and actual addresses
are immaterial.

® Data is segment-independent, but not offset-
independent. That is, a data item may be
moved to a different segment, but it must
maintain the same offset from the beginning
of the segment. Placing constants in a unit
of code also effectively makes the code
offset-dependent, and therefore is not
recommended.

® A procedure should not be moved while it is
active or while any procedure it has called is
active.

e A section of code that has been interrupted
should not be moved.

The segment that is receiving a section of code
must have ‘“‘room’’ for the code. If the MOVS (or
MOVSB or MOVSW) instruction attempts to
auto-increment DI past 64k, it wraps around to 0
and causes the beginning of the segment to be
overwritten. If a segment override is needed for
the source operand, code similar to the following
can be used to properly resume the instruction if it
is interrupted:

RESUME: REP = MOVS DESTINATION, ES:SOURCE
;IFCX NOT =0THEN INTERRUPT HAS OCCURRED
AND CX,CX ; CX=0?
JNZ RESUME ;NO, FINISH EXECUTION
;CONTROL COMES HERE WHEN STRING HAS BEEN MOVED.

If the MOVS is interrupted, the CPU
“‘remembers’’ the segment override, but
“forgets’’ the presence of the REP prefix when
execution resumes. Testing CX indicates whether
the instruction is completed or not. Jumping back
to the instruction resumes it where it left off. Note
that a segment override cannot be specified with
MOVSB or MOVSW.

Mnemonics © Intel, 1978 2-112

8086 AND 8088 CENTRAL PROCESSING UNITS

Dynamic Code Relocation

Figure 2-83 illustrates one approach to moving
programs in memory at execution time. A ‘‘super-
visor’> program (which is not moved) keeps
a pointer variable that contains the current loca-
tion (offset and segment base) of a position-
independent procedure. The supervisor always

calls the procedure through this pointer. The
supervisor - also has access to the procedure’s
length in bytes. The procedure is moved with the
MOVSB instruction. After the procedure is
moved, its pointer is updated with the new loca-
tion. The ASM-86 WORD PTR operator is writ-
ten to inform the assembler that one word of the
doubleword pointer is being updated at a time.

MAIN__DATA SEGMENT

; SETUP POINTERS TO POSITION-INDEPENDENT PROCEDURE

; AND FREE SPACE.
PIP_PTR DD
FREE__PTR DD

EXAMPLE
TARGET__SEG

; SET UP SIZE OF PROCEDURE IN BYTES

; 20 WORDS FOR STACK
; TOS BEGINS HERE

PIP__SIZE DW EXAMPLE__LEN
MAIN_DATA ENDS
STACK SEGMENT |

DW 20DUP (?)-
STACK_TOP LABEL WORD
STACK ENDS
SOURCE_SEG SEGMENT

; THE POSITION-INDEPENDENT PROCEDURE IS INITIALLY IN THIS SEGMENT.
; OTHER CODE MAY PRECEDE IT; I.E., ITS OFFSET NEED NOT BE ZERO.

ASSUME

EXAMPLE PROC FAR

CS:SOURCE__SEG

; THIS PROCEDURE READS AN 8-BIT PORT UNTIL

; BIT3OF THE VALUE READ IS FOUND SET. IT

; THEN READS ANOTHER PORT. IF THE VALUE READ

; IS GREATER THAN 10H IT WRITES THE VALUE TO

; ATHIRD PORT AND RETURNS; OTHERWISE IT STARTS

; OVER.

STATUS_PORT EQU 0DOH

PORT_READY EQU 008H

INPUT_PORT EQU 0D2H

THRESHOLD EQU 010H .

OUTPUT__PORT EQU 0D4H -

CHECK_AGAIN: - IN AL,STATUS_PORT ;GETSTATUS
TEST AL,PORT_READY ; DATA READY?
JNE CHECK_AGAIN ; NO, TRY AGAIN
IN AL,INPUT_PORT ; YES,GET DATA
CMP AL, THRESHOLD ; > 10H?
JLE CHECK_AGAIN ; NO, TRY AGAIN
ouT ; YES, WRITEIT

OUTPUT__PORT,AL

Figure 2-83. Dynamic Code Relocation Example

2-113

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

RET ; RETURN TO CALLER
GET PROCEDURE LENGTH
EXAMPLE_LEN EQU (OFFSET THIS BYTE)—(OFFSET CHECK_AGAIN)

ENDP EXAMPLE ENDP
SOURCE_SEG ENDS :

TARGET_SEG = SEGMENT
; THE POSITION-INDEPENDENT PROCEDURE
; ISMOVED TO THIS SEGMENT, WHICH IS
; INITIALLY “EMPTY.”
;INTYPICAL SYSTEMS, A “‘FREE SPACE MANAGER" WOULD
; MAINTAIN A POOL OF AVAILABLE MEMORY SPACE
; FORILLUSTRATION PURPOSES, ALLOCATE ENOUGH
; SPACETOHOLDIT _
DB EXAMPLE_LEN DUP (?)

TARGET_SEG ENDS

MAIN__CODE SEGMENT
; THIS ROUTINE CALLS THE EXAMPLE PROCEDURE
; ATITS INITIAL LOCATION, MOVES IT, AND-

; CALLS IT AGAIN AT THE NEW LOCATION.

ASSUME CS:MAIN__CODE,SS:STACK,
& DS:MAIN_DATA,ES:NOTHING
; INITIALIZE SEGMENT REGISTERS & STACK POINTER.
START: MoV AX,MAIN__DATA
MoV DS,AX
MOV AX,STACK
MOV SS,AX
MoV SP,OFFSET STACK_TOP

; CALL EXAMPLE AT INITIAL LOCATION.
CALL PIP_PTR

; SET UP CX WITH COUNT OF BYTES TO MOV
MOV CX,PIP_SIZE

; SAVE DS, SET UP DS/SIAND ES/DITO

; POINT TO THE SOURCE AND DESTINATION

; ADDRESSES.
PUSH DS
LES DI,FREE_PTR
LDS SI,PIP_PTR

; MOVE THE PROCEDURE.
CLD ; AUTO INCREMENT
REP MOVSB

; RESTORE OLD ADDRESSABILITY.
MoV AX,DS ; HOLD TEMPORARILY
POP DS .

; UPDATE POINTER TO POSITION- INDEPENDENT PROCEDURE

MoV WORD PTR PIP_PTR+2,ES
SuB DI,PIP_SIZE ; PRODUCES OFFSET
MoV WORD PTR PIP__PTR,DI

Figure 2-83. Dynamic Code Relocation Example (Cont’d.)

Mnemonics © Intel, 1978 2-114

8086 AND 8088 CENTRAL PROCESSING UNITS

; UPDATE POINTER TO FREE SPACE

WORD PTR FREE_PTR+2,AX

; PRODUCES OFFSET

WORD PTR FREE__PTR,SI

MoV

suB SI,PIP_SIZE

MoV
; CALL POSITION-INDEPENDENT PROCEDURE AT
; NEW LOCATION AND STOP

CALL PIP_PTR
MAIN_CODE ENDS

END START

Figure 2-83. Dynamic Code Relocation Example (Cont’d.)

Memory-Mapped I/0

Figure 2-84 shows how memory-mapped 1/0 can
be used to address a group of communication
lines as an ‘‘array.’”’ In the example, indexed
addressing is used to poll the array of status ports,
one port at a time. Any of the other 8086/8088
memory addressing modes may be used in con-
junction with memory-mapped I/O devices as
well.

In figure 2-85 a MOVS instruction is used to per-
form a high-speed transfer to a memory-mapped
line printer. Using this technique requires the
hardware to be set up as follows. Since the MOVS

instruction transfers characters to successive
memory addresses, the decoding logic must select
the line printer if any of these locations is written.
One way of accomplishing this is to have the chip
select logic decode only the upper 12 lines of the
address bus (A19-A8), ignoring the contents of
the lower eight lines (A7-A0). When data is writ-
ten to any address in this 256-byte block, the
upper 12 lines will not change, so the printer will
be selected.

If an 8086 is being used with an 8-bit printer, the
8086’s 16-bit data bus must be mapped into 8-bits
by external hardware. Using an 8088 provides a
more direct interface.

COM__LINES

SEGMENT AT 800H

; THE FOLLOWING IS A MEMORY MAPPED ‘‘ARRAY"’

; OF EIGHT 8-BIT COMMUNICATIONS CONTROLLERS
; (E.G., 8251 USARTS). PORTS HAVE ALL-ODD

; ORALL-EVEN ADDRESSES (EVERY OTHER BYTE

; IS SKIPPED) FOR 8086-COMPATIBILITY.

COM_DATA DB ?
b ?
COM_STATUS DB ?
bB . ?
‘DB 28 DUP(?)
COM__LINES ENDS
CODE’ SEGMENT

; SKIP THIS ADDRESS

; SKIP THIS ADDRESS
; REST OF ““ARRAY”’

; ASSUME STACK IS SET UP, AS ARE SEGMENT
; REGISTERS (DS POINTING TO COM__LINES).
; FOLLOWING CODE POLLS THE LINES.

CHAR_RDY EQU 00000010B
START_POLL: MOV CX, 8
SuB Sl, Si

; CHARACTER PRESENT
; POLL 8 LINES ZERO
; ARRAY INDEX

Figure 2-84. Memory Mapped 170 ““Array’’

2-115

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS
POLL__NEXT: TEST COM__STATUS [SI], CHAR__RDY:
“JE -"READ_CHAR ; READ IF PRESENT
ADD Sl 4 ; ELSE BUMP TO NEXT LINE
LOOP - POLL__NEXT ; CONTINUE POLLING UNTIL
; ALL8HAVE BEEN CHECKED
JMP START_POLL; STARTOVER ' LI
READ__CHAR: MOV AL,COM__DATA[SI] ;GET THE DATA
; ETC. :
CODE ENDS
END
Figure 2-84. Memory Mapped 170 ‘““Array’’ (Cont’d.)
PRINTER SEGMENT

; THIS SEGMENT-CONTAINS A “‘STRING” THAT
1S'ACTUALLY A MEMORY-MAPPED LINE PRINTER.

TO A BLOCK OF THE ADDR

!
’
’
’
’

THE SEGMENT (PRINTER) MUST BE ASSIGNED (LOCATED)

ESS SPACE SUCH

THAT WRITING TO ANY ADDRESS IN THE
BLOCK SELECTS THE PRINTER.

PRINT_SELECT DB133 ~ DUP(?) ; “STRING” REPRESENTING PRINTER
. DB123 .~ DUP(?) ; REST OF 256-BYTE BLOCK .
PRINTER - ENDS < -
DATA ~ SEGMENT
PRINT_BUF DB133 DUP(?) ; LINE TO BE PRINTED
PRINT_COUNT DB1 ?

; OTHER PROGRAM DATA
DATA ENDS

CODE SEGMENT

; LINELENGTH

; ASSUME STACK AND SEGMENT REGISTERS HAVE

; THE PRINTER.
ASSUME
MOV
MOV
SUB
SuB
MOV
CLD
MOVS
; ETC.
ENDS .
END

REP
CODE

Figure2-85.

BEEN SET UP (DS POINTS TO DATA SEGMENT).
FOLLOWING CODE TRANSFERS ALINETO

_ ES:PRINTER o '

_AX, PRINTER ; PREVENT SEGMENT OVERRIDE
ES, AX ' 4 .
DI, DI : CLEAR SOURCE AND -
st, s ; DESTINATION POINTERS.

CX, PRINT_COUNT
; AUTO-INCREMENT :
PR|NT SELECT, PRINT _ BUF

Memory Mapped Block Transfer Example

Mnemonics © Intel, 1978

2-116

8086 AND 8088 CENTRAL PROCESSING UNITS

Breakpoints

Figure 2-86 illustrates how a program may set a
breakpoint. In the example, the breakpoint
routine puts the processor into single-step mode,
but the same general approach could be used for
other purposes as well. A program passes the
address where the break is to occur to a procedure

that saves the byte located at that address and
replaces it with an INT 3 (breakpoint) instruction.
When the CPU encounters the breakpoint
instruction, it calls the type 3 interrupt procedure.
In the example, this procedure places the pro-
cessor into single-step mode starting with the
instruction where the breakpoint was placed.

INT_PTR_TAB SEGMENT

; INTERRUPT POINTER TABLE-LOCATE AT 0H
?

TYPE__0 DD ? ; NOT DEFINED IN EXAMPLE

TYPE__1 DD SINGLE_STEP

TYPE__2 DD ? ; NOT DEFINED IN EXAMPLE

TYPE__3 DD BREAKPOINT

INT_PTR_TAB ENDS

SAVE_SEG SEGMENT

SAVE__INSTR DB 1 DUP (?) ; INSTRUCTION REPLACED
; BY BREAKPOINT

SAVE__SEG ENDS

MAIN_CODE SEGMENT

; ASSUME STACK AND SEGMENT REGISTERS ARE SET UP.

; ENABLE SINGLE-STEPPING WITH INSTRUCTION AT
; LABEL ““NEXT” BY PASSING SEGMENT AND
; OFFSET OF “NEXT" TO ““SET_BREAK” PROCEDURE

PUSH CS
LEA AX, CS: NEXT
PUSH AX
CALL FAR SET_BREAK
; ETC.
NEXT: IN AL, OFFFH ; BREAKPOINT SET HERE
; ETC.

MAIN__CODE ENDS

BREAK SEGMENT
SET_BREAK PROC FAR

; THIS PROCEDURE SAVES AN INSTRUCTION BYTE (WHOSE
; ADDRESS IS PASSED BY THE CALLER) AND WRITES
; ANINT 3(BREAKPOINT) MACHINE INSTRUCTION

AT THE TARGET ADDRESS.

TARGET EQU

DWORD PTR [BP +6]

Figure 2-86. Breakpoint Example

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

; SET-UP.BP FOR PARM ADDRESSING & SAVE REGISTERS

PUSH BP
MOV _ BP,SP
PUSH DS
PUSH ES
_PUSH AX
PUSH BX
; POINT DS/BX TO THE TARGET INSTRUCTION

LDS BX, TARGET

: POINT ES TO THE SAVE AREA
MOV AX, SAVE__SEG
MOV ES, AX

; SWAP THE TARGET INSTRUCTION FOR INT 3 (0CCH) _
MOV AL, 0CCH
XCHG AL, DS: [BX] -

: SAVE THE TARGET INSTRUGTION

_ MOV ES: SAVE__INSTR, AL

; RESTORE AND RETURN
POP BX
POP AX
POP ES
POP DS
POP BP
RET 4

SET_BREAK ENDP

BREAKPOINT PROC FAR
; THE CPU WILL ACTIVATE THIS PROCEDURE WHEN IT
; EXECUTES THE INT 3INSTRUCTION SET BY THE
; SET_BREAK PROCEDURE. THIS PROCEDURE
; RESTORES THE SAVED INSTRUCTION BYTETOITS
; ORIGINAL LOCATION AND BACKS UP THE
; INSTRUCTION POINTER IMAGE ON THE STACK
; SOTHAT EXECUTION WILL RESUME WITH
; THERESTORED INSTRUCTION. IT THEN SETS
; TF(THE TRAP FLAG) IN THE FLAG-IMAGE
; ONTHE STACK. THIS PUTS THE PROCESSOR
;IN SINGLE-STEP MODE WHEN EXECUTION

RESUMES.
FLAG__IMAGE EQU WORD PTR [BP +6]
__IMAGE EQU WORD PTR [BP +2]
NEXT_INSTR EQU DWORD PTR [BP + 2]
; SET UP BP TO ADDRESS STACK AND SAVE REGISTERS
PUSH BP
MoV BP, SP
PUSH DS
PUSH ES
PUSH AX
PUSH BX
; POINT ES AT THE SAVE AREA :
MOV AX, SAVE__SEG
MOV ES, AX
; GET THE SAVED BYTE
MoV AL, ES: SAVE__INSTR

Figure 2-86. Breakpoint Example (Cont’d.)

Mnemonics © Intel, 1978 2-118

8086 AND 8088 CENTRAL PROCESSING UNITS

; GET THE ADDRESS OF THE TARGET + 1
;i (INSTRUCTION FOLLOWING THE BREAKPOINT)

LDS BX, NEXT__INSTR
BACK UP IP-IMAGE (IN BX) AND REPLACE ON STACK
DEC BX
MOV __IMAGE, BX
RESTORE THE SAVED INSTRUCTION
MOV DS: [BX], AL
; SETTF ON STACK
AND FLAG_IMAGE, 0100H
; RESTORE EVERYTHING AND EXIT
POP BX
POP AX
POP ES
POP DS
POP BP
IRET
BREAKPOINT ENDP
SINGLE STEP PROC FAR

ONCE SINGLE-STEP MODE HAS BEEN ENTERED,

THE CPU ““TRAPS" T

TO THIS PROCEDURE

AFTER EVERY INSTRUCTION THAT IS NOT IN
AN INTERRUPT PROCEDURE. IN THE CASE
OF THIS EXAMPLE, THIS PROCEDURE WILL

“IN AL, OFFFH"' INSTRUCTION (WHERE THE
BREAKPOINT WAS SET) AND AFTER EVERY
SUBSEQUENT INSTRUCTION. THE PROCEDURE

; BE EXECUTED IMMEDIATELY FOLLOWING THE

COULD “TURN ITSELF OFF" BY
i TFONTHE STACK.
; SINGLE-STEP CODE GOES HERE.
; SINGLE_STEP ENDP

BREAK ENDS

END ;

CLEARING

Figure 2-86. Breakpoint Example (Cont’d.)

Interrupt Procedures

Figure 2-87 is a block diagram of a hypothetical
system that is used to illustrate three different
examples of interrupt handling: an external
(maskable) interrupt, an external non-maskable
interrupt and a software interrupt.

In this hypothetical system, an 8253 Program-
mable Interval Timer is used to generate a time
base. One of the three timers on the 8253 is pro-
grammed to repeatedly generate interrupt
requests at 50 millisecond intervals. The output
from this timer is tied to one of the eight interrupt
request lines of an 8259A Programmable- Inter-
rupt Controller. The 8259A, in turn, is connected
to the INTR line of an 8086 or 8088.

2-119 Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

ACLO +5V BATTERY
BATTERY © N
COLD START >
- POWER DOWN
CIRCUITS o
RESET MPRO DECODER
PF1
T PFSR
(PULSE) PFS
v |
LN - B0 E2
- 1IR3} CTR1
8086/8085 8259A © 8253 PORTS
11 11 L I 1
ADDRESS BUS-l l I " I .)
) [[T 1 1| 1 | [
DATA BU — : e I —
CONTROL BUS | l 3
cs cs
DECODER >] EPROM DECODER »| RAM

Figure 2-87. Interrupt Example Block Diagram

A power-down circuit is used in the system to
illustrate one application of the 8086/8088 NMI
(non-maskable interrupt) line. If the ac line
voltage drops below a certain threshold, the
power supply activates ACLO. The power-down
circuit then sends a power-fail interrupt (PFI)
pulse to the CPU’s NMI input. After S
milliseconds, the power-down circuit activates
MPRO (memory protect) to disable reading
from and writing to the system’s battery-powered
RAM. This protects the RAM from fluctuations
that may occur when power is actually lost 7.5
milliseconds after the power failure is detected.
The system software must save all vital informa-
tion in the battery-powered RAM segment within
5 milliseconds of the activation of NMI.

When power returns, the power-down circuit
activates -the system RESET line. Pressing the
“‘cold start”” switch also produces a system
RESET. The PFS (power fail status) line, which.is

connected to the low-order bit of port EO, iden-
tifies the source of the RESET. If the bit is set, the
software executes a ‘‘warm start’’ to restore the
information saved by the power-fail routine. If
the PFS bit is cleared, the software executes a
‘‘cold start” from the beginning of the program.
In either case, the software writes a ‘“‘one’’ to the
low-order bit of port E2. This line is connected to
the power-down circuit’s PFSR (power fail status
reset) signal and is used to enable the battery-
powered RAM segment.

A software interrupt is used to update a simple
real-time clock. This procedure is written in
PL/M-86, while the rest of the system is written in
ASM-86 to demonstrate the interrupt handling
capability of both languages. The system’s main
program simply initializes the system following
receipt of a RESET and then waits for an
interrupt. An example of this interrupt procedure
is given in figure 2-88.

2-120

8086 AND 8088 CENTRAL PROCESSING UNITS

INT_POINTERS SEGMENT
; INTERRUPT POINTER TABLE, LOCATE AT 0H, ROM-BASED
TYPE_0 DD ? ; DIVIDE-ERROR NOT SUPPLIED IN EXAMPLE.
TYPE_1 DD ? ; SINGLE-STEP NOT SUPPLIED IN EXAMPLE.
TYPE__2 DD POWER__FAIL ; NON-MASKABLE INTERRUPT
TYPE_3 DD ? ; BREAKPOINT NOT SUPPLIED IN EXAMPLE.
TYPE__4 DD ? ; OVERFLOW NOT SUPPLIED IN EXAMPLE.
; SKIP RESERVED PART OF EXAMPLE
ORG 32%4

TYPE__32 DD ? ; 8259A IR0 - AVAILABLE
TYPE_33 DD ? ; 8259A IR1 - AVAILABLE
TYPE__34 DD oy ; 8259A IR2 - AVAILABLE
TYPE__35 ‘DD TIMER_PULSE ; 8259A 1IR3)
TYPE__36 DD ? ; 8259A IR4 - AVAILABLE
TYPE_37 .. DD ? ; 8259A 1R5 - AVAILABLE
TYPE_38 DD ? : ; 8259A IR6 - AVAILABLE

? ; 8259A IR7 - AVAILABLE

TYPE_39 DD

: POINTER FOR TYPE 40 SUPPLIED BY PL/M-86 COMPILER
INT_POINTERS ENDS

BATTERY SEGMENT

; THIS RAM SEGMENT IS BATTERY-POWERED. IT CONTAINS VITAL DATA
; THAT MUST BE MAINTAINED DURING POWER OUTAGES.

STACK__PTR DW 2 : SP SAVE AREA
STACK__SEG DW -) : SS SAVE AREA
- SPACE FOR OTHER VARIABLES COULD BE DEFINED HERE.
BATTERY ENDS
DATA SEGMENT
: RAM SEGMENT THAT IS NOT BACKED UP BY BATTERY - :
N__PULSES DB 1DUP (0) ; # TIMER PULSES
: ETC. o : ' '
DATA ENDS
STACK SEGMENT
; LOCATED IN BATTERY-POWERED RAM o
DW 100 DUP (?) ; THIS IS AN ARBITRARY STACKSIZE
STACK__TOP LA‘BEL WORD .; LABEL THE INITIAL TOS
STACK ENDS

INTERRUPT_HANDLERS - SEGMENT
; INTERRUPT PROCEDURES EXCEPT TYPE 40 (PL/M-86)

ASSUME: CS:INTERRUPT__HANDLERS,DS:DATA,SS:STACK,ES:BATTERY

POWER__FAIL PROC ; TYPE 2INTERRUPT
; POWER FAIL DETECT CIRCUIT ACTIVATES NMI LINE ON CPU IF POWER IS

; ABOUT TO BE LOST. THIS PROCEDURE SAVES THE PROCESSOR STATE IN

; RAM(ASSUMED TO BE POWERED BY AN AUXILIARY SOURCE) SOTHATIT

; CAN BE RESTORED BY A WARM START ROUTINE IF POWER RETURNS

Figure 2-88. Interrupt Procedures Example

Mnemonics © Intel, 1978

2-121

8086 AND 8088 CENTRAL PROCESSING UNITS

;IP,CS, AND FLAGS ARE ALREADY ON THE STACK.

; SAVE THE OTHER REGISTERS.
PUSH AX
PUSH BX
PUSH cX
PUSH " DX
PUSH sI
PUSH DI
PUSH BP
PUSH DS’
PUSH ES

; CRITICAL MEMORY VARIABLES COULD ALSO BE SAVED ON THE STACK AT THIS
; POINT. ALTERNATIVELY, THEY COULD BE DEFINED IN THE *‘BATTERY"
; SEGMENT, WHERE THEY WILL AUTOMATICALLY BE PROTECTED IF MAIN POWER

; ISLOST.
; SAVE SP AND SS IN FIXED LOCATIONS THAT ARE KNOWN BY WARM START ROUTINE.
MOV AX,BATTERY
MoV ES,AX
MOV: ES:STACK__PTR,SP .
MOV ES:STACK_SEG,SS
; STOP GRACEFULLY
HLT
POWER__FAIL ENDP
TIMER_PULSE PROC . ; TYPE 35 INTERRUPT

; THIS PROCEDURE HANDLES THE 50MS INTERRUPTS GENERATED BY THE 8253.
; ITCOUNTS THE INTERRUPTS AND ACTIVATES THE TYPE 40 INTERRUPT
; PROCEDURE ONCE PER SECOND.

; DS IS ASSUMED TO BE POINTING TO THE DATA SEGMENT

; THE 8253 1S RUNNING FREE, AND AUTOMATICALLY LOWERS ITS INTERRUPT
i REQUEST. IF A DEVICE REQUIRED ACKNOWLEDGEMENT, THE CODE MIGHT GO HERE.

; NOW PERFORM PROCESSING THAT MUST NOT BE INTERRUPTED (EXCEPT FOR NMI).
INC N_PULSES

; ENABLE HIGHER-PRIORITY INTERRUPTS AND DO LESS CRITICAL PROCESSING
STI

CMP N__PULSES,200 ; 1SECOND PASSED?
JBE DONE ; NO, GOON.

MOV N_PULSES,0 ; YES, RESET COUNT.
INT 40 ; UPDATE CLOCK

; SEND NON-SPECIFIC END-OF-INTERRUPT COMMAND TO 8259A, ENABLING EQUAL
OR LOWER PRIORITY INTERRUPTS.

DONE: MoV AL,020H ; EOICOMMAND . .
ouT 0COH,AL . ; 8259A PORT
IRET

TIMER_PULSE ‘ ENDP

INTERRUPT_HANDLERS ENDS

CODE SEGMENT

; THIS SEGMENT WOULD NORMALLY. RESIDE IN-ROM..
ASSUME CS:CODE,DS:DATA,SS:STACK,ES:NOTHING

Figure 2-88. Interrupt Procedures Example (Cont’d.)

Mnemonics © Intel, 1978 2-122

8086 AND 8088 CENTRAL PROCESSING UNITS

INIT

PROC

NEAR

; THIS PROCEDURE IS CALLED FOR BOTH WARM AND COLD STARTS TO INITIALIZE

; THE 8253 AND THE 8259A. THIS ROUTINE DOES NOT USE STACK, DATA, OR

i EXTRASEGMENTS, AS THEY ARE NOT SET PREDICTABLY DURING A WARM START.
i INTERRUPTS ARE DISABLED BY VIRTUE OF THE SYSTEM RESET.

; INITIALIZE 8253 COUNTER 1 - OTHER COUNTERS NOT USED.
; CLKINPUT TO COUNTER IS ASSUMED TO BE 1.23 MHZ.

LO50MS
HI50MS
CONTROL
COUNT__1
MODE2

EQU
EQU
EQU
EQU
EQU

MoV
MoV
ouT
MOV
MoV
ouTt
MoV
ouT

000H
OFOH
0D6H
0D2H
011101008

DX,CONTROL
AL,MODE2
DX,AL
DX,COUNT__1
AL,LO50MS
DX,AL
AL,HIS0MS
DX,AL

; COUNT VALUEIS

; 61440 DECIMAL.

; CONTROL PORT ADDRESS
; COUNTER 1 ADDRESS

; MODE 2, BINARY

; LOAD CONTROL BYTE

; LOAD 50MS DOWNCOUNT

; COUNTER NOW RUNNING, INTERRUPTS STILL DISABLED.

; INITIALIZE 8259A TO: SINGLE INTERRUPT CONTROLLER, EDGE-TRIGGERED,
i INTERRUPT TYPES 32-40 (DECIMAL) TO BE SENT TO CPU FOR INTERRUPT
; REQUESTS 0-7 RESPECTIVELY, 8086 MODE, NON-AUTOMATIC END-OF-INTERRUPT.
; MASK OFF UNUSED INTERRUPT REQUEST LINES.

ICW1
ICW2
ICW4
ocwi
PORT_A
PORT_B

EQU
EQU
EQU
EQU
EQU
EQU

MOV
MoV
ouT
MOV
MOV
ouT
MOV
out
MOV
ouT

00010011B
001000008
00000001B
111101118
0COH
0C2H

DX,PORT_A
AL,ICW1
DX,AL
DX,PORT__B
AL,ICW2
DX,AL
AL,ICW4
DX,AL
AL,0CWA1
DX,AL

; EDGE-TRIGGERED, SINGLE 8259A, ICW4 REQUIRED.

; TYPE 20H, 32 - 40D

; 8086 MODE, NORMAL EOI

i MASKALLBUTIR3

; ICW1 WRITTEN HERE

; OTHER ICW’S WRITTEN HERE

; WRITE1ST ICW

; WRITE 2ND ICW

; WRITE 4TH ICW

; MASK UNUSED IR’S

; INITIALIZATION COMPLETE, INTERRUPTS STILL DISABLED

INIT

USER_PGM:

RET

ENDP

; “REAL" CODE WOULD GO HERE. THE EXAMPLE EXECUTES AN ENbLESS LOOP

; UNTIL AN INTERRUPT OCCURS.

JMP

USER_PGM

; EXECUTION STARTS HERE WHEN CPU IS RESET.
POWER_FAIL__STATUS

ENABLE_RAM

EQU 0EOH
EQU OE2H

; PORT ADDRESS
; PORT ADDRESS

Figure 2-88. Interrupt Procedures Example (Cont’d.)

2-123

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

; ENABLE BATTERY-POWERED RAM SEGMENT

START: MOV
ouT

AL,001H
ENABLE__RAM,AL

; DETERMINE WARM OR COLD START

IN
RCR
JC

AL, POWER FAIL STATUS
AL,1 ; ISOLATE LOW BIT
WARM_START .

COLD__START:
; INITIALIZE SEGMENT REGISTERS AND STACK POINTER.
ASSUME CS:CODE,DS:CATA,SS:STACK,ES: NOTHING
; RESET TAKES CARE OF CS AND IP.

MOV AX,DATA
MOV .- DS,AX
MoV AX,STACK
MOV SS,AX
Mov SP,OFFSET STACK__TOP
; INITIALIZE 8253 AND 8259A. :
CALL INIT
; ENABLE INTERRUPTS
STI
; START MAIN PROCESSING
JMP USER_PGM
WARM__START:
INITIALIZE 8253 AND 8259A.
CALL " INIT

; RESTORE SYSTEM TO STATE AT THE TIME POWER FAILED

; MAKE BATTERY SEGMENT ADDRESSABLE
MOV AX,BATTERY
MOV DX,AX :

; VARIABLES SAVED IN THE “BATTERY” SEGMENT WOULD BE MOVED
; BACKTO UNPROTECTED-RAM NOW. SEGMENT REGISTERS AND
**ASSUME’’ DIRECTIVES WOULD HAVE TO BE WRITTEN TO GAIN
; ADDRESSABILITY.

; RESTORE THE OLD STACK
MOV SS,DS:STACK_SEG
MOV - SP,DS:STACK_PTR

; RESTORE THE OTHER REGISTERS

POP ES
POP DS
POP BP
POP DI
POP S
POP DX
POP CX
POP BX
POP AX

; RESUME THE ROUTINE THAT WAS EXECUTING WHEN NMIWAS ACTIVATED.
; I.E., POP CS, IP, & FLAGS, EFFECTIVELY “RETURNING" FROM THE
NMI PROCEDURE.
IRET
CODE ENDS

;TERM|NATE.ASSEMBLY AND MARK BEGINNING OF THE PROGRAM.
END START

Figure 2-88. Interrupt Procedures Example (Cont’d.)

Mnemonics © Intel, 1978

2-124

8086 AND 8088 CENTRAL PROCESSING UNITS

TYPE$40: DO;

DECLARE (HOUR, MIN, SEC) BYTE PUBLIC;
UPDATE$TOD: PROCEDURE INTERRUPT 40;

/*THE PROCESSOR ACTIVATES THIS PROCEDURE
*TO HANDLE THE SOFTWARE INTERRUPT
*GENERATED EVERY SECOND BY THE TYPE 35
*EXTERNAL INTERRUPT PROCEDURE. THIS
*PROCEDURE UPDATES A REAL-TIME CLOCK.
*IT DOES NOT PRETEND TO BE “‘REALISTIC”

AS THERE IS NO WAY TO SET THE CLOCK./

SEC=SEC + 1;
IF SEC =60 THEN DO;

SEC=0;

MIN =MIN + 1;

IF MIN =60 THEN DO;
MIN = 0;
HOUR=HOUR + 1;
IFHOUR = 24 THEN DO;

HOUR=0;
END;
END;

END;

END UPDATESTOD;
END;

Figure 2-88. Interrupt Procedures Example (Cont’d.)

String Operations

Figure 2-89 illustrates typical use of string instruc-
tions and repeat prefixes. The XLAT instruction
also is demonstrated. The first example simply
moves 80 words of a string using MOVS. Then
two byte strings are compared to find the
alphabetically lower string, as might be done in a
sort. Next a string is scanned from right to left

(the index register is auto-decremented) to find
the last period (‘*.”’) in the string. Finally a byte

string of EBCDIC characters is translated to

ASCII. The translation is stopped at the end of
the string or when a carriage return character is
encountered, whichever occurs first. This is an
example of using the string primitives in combina-
tion with other instructions to build up more com-
plex string processing operations.

ALPHA SEGMENT

; THIS IS THE DATA THE STRING INSTRUCTIONS WILL USE
OUTPUT DW 100 DUP (?)

INPUT DW 100 DUP (?)

NAME__1 DB ‘JONES, JONA’

NAME__2 DB ‘JONES, JOHN’

SENTENCE DB 80 DUP (?)

EBCDIC_CHARS DB 80 DUP (?)

ASCI_CHARS DB80 DUP (?)

CONV__TAB DB 64 DUP(0H)

Figure 2-89. String Examples

; EBCDIC TO ASCII

2-125

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

; ASCIINULLS ARE SUBSTITUTED FOR “UNPRINTABLE”’ CHARS

DB1 20H
DB9 'DUP (0H) _
DB7 ‘e, L, <0, 4+, OH, (&
DB9 DUP (0H) i
DB8 A L
DB8 UP(OH) _
DB6 O %, >
DB9 DUP (0H)
DB 17 R ‘@"”’,"‘”’
OH, ‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’, ‘g’, ‘h’, ¥’
DB7 DUP (0H)
DB9 Gk, 'mY e’ o7, Y, g,
DB7 DUP (0H)
DB9 = S S T I VAR T S A
DB 22 DUP(OH)
DB 10 CCUAY B, fC, D ‘B LG CHYL
DB6 DUP(OH)
DB 10 000K, LY, MY N, O, P, QY ‘R’
DB6 DUP(OH)
DB 10 ¢ 0H, S, T, U VW, X ‘Y’ A
DB6 DUP(OH)
DB 10 ‘0’, 1,2, ‘3, ‘4", ‘5, '6’, ‘7", ‘8", ‘9’
DB6 DUP (0H)
ALPHA ENDS
STACK SEGMENT - .
DW 100 .DUP (?) . ; THIS IS AN ARBITRARY STACK SIZE
; FORILLUSTRATION ONLY.
STACK__BASE . LABEL. WORD ; INITIAL TOS
STACK ENDS
. CODE- . SEGMENT

BEGIN: . ;SET UP SEGMENT REGISTERS. NOTICE THAT

o ; ES & DS POINT TO THE SAME SEGMENT, MEANING
; THAT THE CURRENT EXTRA & DATA
; SEGMENTS FULLY OVERLAP. THIS ALLOWS
; ANY STRING IN ‘“‘ALPHA’’ TO BE USED
; AS ASOURCE OR A DESTINATION.

' : ASSUME CS: CODE, SS: STACK,
& DS: ALPHA, ES: ALPHA

MOV AX, STACK

MoV SS, AX

MOV "~ SP,OFFSET STACK__BASE; INITIAL TOS
MoV AX, ALPHA

MOV DS, AX

MOV ES, AX

; MOVE THE FIRST 80 WORDS OF “INPUT” TO'
; THELAST 80 WORDS OF “OUTPUT”. * - .
LEA SI, INPUT - ; INITIALIZE
LEA - DI, OUTPUT+20 ; INDEX REGISTERS

Figure 2-89. String Examples (Cont’d.)

Mnemonics © Intel, 1978 2-126

8086 AND 8088 CENTRAL PROCESSING UNITS

MOV CX, 80 ; REPETITION COUNT
CLD ; AUTO-INCREMENT
REP MOVS OUTPUT, INPUT
; FIND THE ALPHABETICALLY LOWER OF 2 NAMES.
MOV SI, OFFSET NAME__1 ; ALTERNATIVE
MOV DI, OFFSET NAME_2 ; TOLEA
MOV CX, SIZE NAME__2 ; CHAR. COUNT
CLD ; AUTO-INCREMENT
REPE CMPS NAME__2, NAME_1 “WHILE EQUAL”
JB NAME__2_ LOW
NAME__1__LOW: ; NOT IN THIS EXAMPLE
NAME_2__LOW: ; CONTROL COMES HERE IN THIS EXAMPLE.
; DIPOINTS TOBYTE (‘H’) THAT
; COMPARED UNEQUAL.
; FIND THE LAST PERIOD (‘.") IN A TEXT STRING.
MOV DI, OFFSET SENTENCE +
& LENGTH SENTENCE ; START AT END
MOV CX, SIZE SENTENCE
STD ; AUTO-DECREMENT
MOV AL, ‘.’ ; SEARCH ARGUMENT
REPNE SCAS SENTENCE ; “WHILE NOT ="
JCXZ NO__PERIOD ; IF CX=0, NO PERIOD FOUND
PERIOD: ; IFCONTROL COMES HERE THEN
; DIPOINTS TO LAST PERIOD IN SENTENCE.
NO__PERIOD: ; ETC.

; TRANSLATE A STRING OF EBCDIC CHARACTERS
; TO ASCII, STOPPING IF A CARRIAGE RETURN
; (0DH ASCIl) IS ENCOUNTERED.

MoV BX, OFFSET CONV_TAB ;POINT TO TRANSLATE TABLE
MOV Sl, OFFSET EBCDIC_CHARS ; INITIALIZE
MOV DI, OFFSET ASCII_CHARS ; INDEX REGISTERS
MOV CX, SIZE ASCII_CHARS ; ANDCOUNTER
CLD ; AUTO-INCREMENT

NEXT: LODS EBCDIC__CHARS ; NEXT EBCDIC CHAR IN AL
XLAT CONV__TAB ; TRANSLATE TO ASCII
STOS ASCII_CHARS ; STORE FROM AL
TEST AL, O0DH ; ISIT CARRIAGE RETURN?
LOOPNE NEXT ; NO, CONTINUE WHILE CXNOT 0
JE CR_FOUND ; YES, JUMP

; CONTROL COMES HERE IF ALL CHARACTERS
; HAVE BEEN TRANSLATED BUT NO
; CARRIAGE RETURN IS PRESENT.

; ETC.

CR_FOUND:
; DI-1 POINTS TO THE CARRIAGE RETURN
; INASCII_CHARS.

CODE ENDS

END

Figure 2-89. String Examples (Cont’d.)

Mnemonics © Intel, 1978

2-127/2-128

The IAPX 8089 3
Input/Output
Processor

CHAPTER3
THE 8089 INPUT/OUTPUT PROCESSOR

This chapter describes the 8089 Input/Output
Processor (IOP). Its organization parallels
Chapter 2; that is, sections generally proceed
from hardware to software topics as follows:

1. Processor Overview

Processor Architecture

Memory

Input/Output

Multiprocessing Features
Processor Control and Monitoring
Instruction Set

Addressing Modes

Programming Facilities

R R

_
e

Programming Guidelines and Examples

As in Chapter 2, the discussion is confined to
covering the hardware in functional terms; tim-
ing, electrical characteristics and other physical
interfacing data are provided in Chapter 4.

3.1 Processor Overview

The 8089 Input/Output Processor is a high-
performance, general-purpose I/O system
implemented on a single chip. Within the 8089 are
two independent 1/O channels, each of which
combines attributes of a CPU with those of a very
flexible DMA (direct memory access) controller.
For example, channels can execute programs like
CPUs; the IOP instruction set has about 50 dif-
ferent types of instructions specifically designed
for efficient input/output processing. Each chan-
nel also can perform high-speed DMA transfers; a
variety of optional operations allow the data to be
manipulated (e.g., translated or searched) as it is
transferred. The 8089 is contained in a 40-pin
dual in-line package (figure 3-1) and operates
from a single’ +5V power source. An integral
member of the 8086 family, the IOP is directly
compatible with both the 8086 and 8088 when
these processors are configured in maximum
mode. The IOP also may be used in any system
that incorporates Intel’s Multibus™ shared bus
architecture, or a superset of the Multibus™
design.

vss []1 ~] Vee
Alao1a [2 38 [] A15/D15
A13D13[] 3 38 [AteIs3
A12012[] 4 37 [A17sa
A1ID11[] 6 36 [7] A18ISS
Atop10] 6 3577 A19/S68
A9IDS [} 7 347 BHE
Aeps[] 8 33[] ExT1
Arior] 9 32[] ExT2
Aeipe (] 10 317 orat
AsiDs [} 11 8989 35/ pra2
AdIDa [] 12 29 E LocK
A3D3[]13 28] s2
A2p2] 14 271 §i
YT/ 20m RE I 26[7 s
Aono[] 16 - 2517 RQIGT
SINTR-1[] 17 24[7] SEL
SINTR2[]18 = 23[7 ca
CLK[] 19 22[] READY
Vss [] 20 21[] RESET

Figure 3-1. 8089 Input/Output Processor
Pin Diagram

Evolution

Figure 3-2 depicts the general trend in CPU and
170 device relationships in the first three genera-
tions of microprocessors. First generation CPUs
were forced to deal directly with substantial
numbers of TTL components, often performing
transfers at the bit level. Only a very limited
number- of Trelatively slow devices could be
supported.

Single-chip interface controllers were introduced
in the second generation. These devices removed
the lowest level of device control from the CPU
and let the CPU transfer whole bytes at once.
With the introduction of DMA controllers, high-
speed devices could be added to a system, and
whole blocks of data could be transferred without
CPU intervention. Compared to the previous
generation, I/0 device and DMA controllers
allowed microprocessors to be applied to prob-
lems that required moderate levels of 170, both in
terms of the numbers of devices that could be sup-
ported and the transfer speeds of those devices.

3-1

8089 INPUT/OUTPUT PROCESSOR

The controllers themselves, "however, still
required a considerable amount of attention from
the CPU, and in many cases the CPU had to
respond to an interrupt with every byte read or
written. The CPU also had to stop while DMA
transfers were performed.

The 8089 introduces the third generation of
input/output processing. It continues the trend of
simplifying the CPU’s ‘‘view”’.of 1/0 devices by
removing another level of control from the CPU.
The CPU performs an I/0 operation by building
a message in memory that describes the function
to be performed; the IOP reads the message, car-
ries out the operation and notifies the CPU when
it has finished. All I/0O devices appear to the CPU
as transmitting and receiving whole blocks of
data; the IOP can make both byte- and word-level
transfers invisible to the CPU: The IOP assumes
all device controller overhead, performs both pro-
grammed and DMA transfers; and can recover
from ‘‘soft’’ I/0 errors without.CPU interven-
tion; all of these activities. may be performed
while the CPU is attending to other tasks.

Principles of Operation

Since the 8089 is a new concept in microprocessor
components, this section surveys the basic opera-
tion of the IOP as background to the detailed
descriptions provided in the rest of the chapter.
This summary deliberately omits some operating
details in order to provide an integrated overview
of basic concepts.

CPU/IOP Communications

A CPU communicates with an IOP in two distinct
modes: initialization ‘and command. The
initialization sequence is typically performed
when the system is powered-up or reset. The CPU
initializes the IOP by preparing a series of linked
message blocks in memory. On a signal from the
CPU, the IOP reads these blocks and determines
from them how the data buses are configured and
how access to the buses is to be controlled.

I TELETYPE-
WRITER

COMMUNICATION
INTERFACE

OTHER
o .
DEVICE

PERIPHERAL
INTERFACE

HDLC/SDLC
~ PROTOCOL

CONTROLLER -
- DATA LINK- 8273)

COMMUNICATION
INTERFACE

8089

CRT — 8251A 10P

- -PERIPHERAL
INTERFACE

OTHER

o . |- 8255A
DEVICE

© OTHER
1/0
DEVICE

FLOPPY DISK
CONTROLLER

DMA
CONTROLLER
(FUTURE CONTROLLER)
<N I Furvre 1
I 2 =< wvo |
s L DEVICE,
7 ——
7 FLOPPY DISK
CONTROLLER
8086/8088 8089 FLOPPY
36781 s2r1) Disk

1oP

5 ’5‘}5.'3 | HARD
- | contRoLLER DISK \ -

Figure 3-2. IOP Evolution

3-2

8089 INPUT/OUTPUT PROCESSOR

Following initialization, the CPU directs all com-
munications to either of the IOP’s two channels;
indeed, during normal operation the IOP appears
to be two separate devices—channel 1 and chan-
nel 2. All CPU-to-channel communications center
on the channel control block (CB) illustrated in
figure 3-3. The CB is located in the CPU’s
memory space, and its address is passed to the
IOP during initialization. Half of the block is
dedicated to each channel. The channel maintains
the BUSY flag that indicates whether it is in the
midst of an operation or is available for a new
command. The CPU sets the CCW (channel com-
mand word) to indicate what kind of operation
the IOP is. to perform. Six different commands
allow the CPU to start and stop programs,
remove interrupt requests, etc.

If the CPU is dispatching a channel to run a pro-
gram, it directs the channel to a parameter block
(PB) and a task block (TB); these are also shown
in figure 3-3. The parameter block is analogous to
a parameter list passed by a program to a
subroutine; it contains variable data that the
channel program is to use in carrying out its
assignment. The parameter block also may con-

tain space for variables (results) that the channel
is to return to the CPU. Except for the first two
words, the format and size of a parameter block
are completely open; the PB may be set up to
exchange any kind of information between the
CPU and the channel program.

A task block is a channel program—a sequence of
8089 instructions that will perform an operation.
A typical channel program might use parameter
block data to set up the IOP and a device con-
troller for a transfer, perform the transfer, return
the results, and then halt. However, there are no
restrictions on what a channel program can do; its
function may be simple or elaborate to suit the
needs of the application.

Before the CPU starts a channel program, it links
the program (TB) to the parameter block and the
parameter block to the CB as shown in figure 3-3.
The links are standard 8086/8088 doubleword
pointer variables; the lower-addressed word con-
tains an offset, and the higher-addressed word
contains a segment base value. A system may
have many different parameter and task blocks;
however, only one of each is ever linked to a
channel at any given time.

CHANNEL CONTROL BLOCK (CB)

(RESERVED)

-——

14
| _PARAMETER BLOCK POINTER__| 12
(SEGMENT BASE & OFFSET) | 19 } CHANNEL 2

|
| BUsY | ccw 8
I (RESERVED) 6
| 4
| _PARAMETER BLOCK POINTER_]
! T ‘{ (SEGMENT BASE & OFFSET) | , (* CHANNEL1
|
Pl Busy | ccw 0
! 15 87
| -t - —_—————_——————— -
g |
1 |
CHANNEL 2 PARAMETER BLOCK (PB) ! CHANNEL 1 PARAMETER BLOCK (PB) |
|
|
l CHANNEL PROGRAM PARAMETERS l ! '.L CHANNEL PROGRAM PARAMETERS |
(APPLICATION-DEFINED) 0 | (APPLICATION-DEFINED) £
4 | 4
| 7asksiockponter |2 | | TASKBLOCKPOINTER _ |2 |
— (SEGMENT BASE & OFFSET) o< T (SEGMENT BASE & OFFSET) 0 <!
|
| 15) : 15 0
! CHANNEL 2 TASK BLOCK (TB) ! CHANNEL 1 TASK BLOCK (TB)
! (CHANNEL PROGRAM) | (CHANNEL PROGRAM)
! |
! |
! |
| i |
| 8089 | 8089
- INSTRUCTIONS - 3 INSTRUCTIONS .
I r (APPLICATION. 9 T (APPLICATION- <
| DEFINED) | DEFINED)
[|
| |
L L

Figure 3-3. Command Communication Blocks

33

8089 INPUT/OUTPUT PROCESSOR

After the CPU has filled in the CCW and has
linked the CB to a parameter block and a task
block, if appropriate, it issues a channel attention
(CA). This .is done by activating the IOP’s CA
(channel attention) and SEL (channel select) pins.
The state of SEL at the falling edge of CA directs
the channel attention to channel 1 or channel 2. If
the IOP is located in the CPU’s I/0 space, it
appears to the CPU as two consecutive 1/0 ports
(one for each channel), and an OUT instruction
to the port functions as a CA. If the IOP is
memory-mapped, the channels appear as two
consecutive memory locations, and any memory
reference instruction (e.g., MOYV) to these loca-
tions causes a channel attention.

An IOP channel attention is functionally similar
to a CPU interrupt. When the channel recognizes
the CA, it stops what it is doing (it will typically
be idle) and examines the command in the CCW.
If it is to start a program, the channel loads the
addresses of the parameter and task blocks into
internal registers, sets its BUSY flag and starts
executing the channel program. After it has issued
the CA, the CPU is free to perform other process-
ing; the channel can perform its function in
parallel, subject to limitations imposed by bus
configurations (discussed shortly).

When the channel has completed its program, it
notifies the <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>