


iAPX 86, 88 USER'S MANUAL 

AUGUST 1981 



Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may 
appear in this document nor does it make a commitment to update the information contained herein. 

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, duplication or 
disclosure is subject to restrictions stated in Intel's software license, or as defjned in ASPR 7-1 04.9 (a) (9). Intel Corporation 
assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit 
patent licenses are implied. 

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of 
Intel Corporation. 

The following are trademarks of Intel Corporation and may only be used to identify Intel products: 

BXP Intelevision MULTIBUS 
CREDIT Intellec MUL TIMODULE 
i iSBC Plug-A-Bubble 
ICE iSBX PROMPT 
ICS Library Manager Promware 
im MCS RMX 
Insite Megachassis UPI 
Intel Micromainframe JLScope 

Micromap System 2000 

MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered trademark of Mohawk 
Data Sciences Corporation. 

Additional copies of this manual or other Intel literature may be obtained from: 

Intel Corporation 
Literature Department SV3-3 
3065 Bowers Avenue 
Santa Clara, CA 95051 

© INTEL CORPORATION. 1981 ii AFN·01300C·1 



Table of Contents 

CHAPTER 1 Instruction Set ........................ 2-30 
Introduction Data Transfer Instructions .............. 2-31 

Manual Organization ................... 1-1 Arithmetic Instructions ................. 2-33 
iAPX Nomenclature .................... 1-1 
iAPX 86 and iAPX 88 Architecture ....... 1-2 

Bit Manipulation Instructions ........... 2-38 
String Instructions ..................... 2-40 

Memory Segmentation .................. 1-2 Program Transfer Instructions .......... 2-43 
Addressing Structure ................... 1-2 Processor Control Instructions ......... 2-47 
Operation Register Set .................. 1-4 Instruction Set Reference 

Information ............................ 2-48 
CHAPTER 2 Addressing Modes .................... 2-68 

iAPX 86, 88 Central Processing Units Register and Immediate Operands ...... 2-68 
Processor Overview .................... 2-1 Memory Addressing Modes ............. 2-68 
Processor Architecture ................. 2-3 I/O Port Addressing .................... 2-72 
Execution Unit .......................... 2-5 Programming Facilities ................ 2-72 
Bus Interface Unit ...................... 2-5 Software Development Overview ....... 2-73 
General Registers ....................... 2-6 PL/M-86 ................................ 2-75 
Segment Registers ...................... 2-7 ASM-86 ............................... 2-83 
Instruction Pointer ...................... 2-7 L1NK-86 ............................... 2-90 
Flags .................................. 2-7 LOC-86 ............................... 2-90 
8080/8085 Register and Flag LI B-86 ................................ 2-91 
Correspondence ............ ; .. ; ........ 2-8 OH-86 ................................. 2-91 
Mode Selection ......................... 2-8 CONV-86 .............................. 2-92 
Memory ................................ 2-8 Sample Programs ..................... 2-92 
Storage Organization ................... 2-8 Programming Guidelines .............. 2-96 
Segmentation ......................... 2-10 Programming Examples .............. 2-100 
Physical Add ress Generation ........... 2-11 
Dynamically Relocatable Code .......... 2-13 
Stack Implementation .................. 2-14 CHAPTER 3 
Dedicated and Reserved The 8089 Input/Output Processor 
Memory Locations ..................... 2-14 Processor Overview .................... 3-1 
8086/8088 Memory Access Evolution ............................... 3-1 
Differences ............................ 2-15 Principles of Operation ................. 3-2 
Input/Output .......................... 2-15 Applications ........................... 3-12 
Input/Output Space .................... 2-16 Processor Architecture ................ 3-13 
Restricted I/O Locations ................ 2-16 Common Control Unit (CCU) ........... 3-13 
8086/8088 Memory Access Arithmetic/Logic Unit (ALU) ............ : 3-13 
Differences ............................ 2-16 Assembly/Disassembly Registers ........ 3-14 
Memory-Mapped I/O ................... 2-16 Instruction Fetch Unit .................. 3-14 
Direct Memory Access ................. 2-17 Bus Interface Unit (BIU) ................ 3-16 
8089 Input/Output Processor (lOP) ...... 2-17 Channels .............................. 3-16 
Multiprocessing Features ............. 2-17 Memory .............................. 3-21 
Bus Lock ............................. 2-17 Storage Organization .................. 3-22 
WAITandTEST ........................ 2-18 Dedicated and Reserved 
Escape ................................ 2-19 Memory Locations ..................... 3-23 
Request/Grant Lines ................... 2-20 Dynamic Relocation ................... 3-23 
Multibus™ Architecture ................ 2-21 Memory Access ........................ 3-24 
8289 Bus Arbiter ........................ 2-22 Input/Output .......................... 3-25 
Process Control and Monitoring ....... 2-22 Programmed I/O ....................... 3-25 
Interrupts ............................. 2-22 DMA Transfers ......................... 3-27 
System Reset .......................... 2-29 Multiprocessing Features ............. 3-34 
Instruction Queue Status ............... 2-29 Bus Arbitration ........................ 3-34 
Processor Halt ......................... 2-29 Bus Load Limit ........................ 3-36 
Status Lines ........................... 2-30 Bus Lock ............................. 3-37 

iii 



CHAPTER 3 (Continued) 
The 8089 Input/Output Processor 

Processor Control and 
Monitoring ............................ 3-37 
Initialization ........................... 3-37 
Channel Commands ................... 3-40 
DRO (DMA Request) ........... ; ....... 3-43 
EXT (External Terminate) ............... 3-43 
Interrupts ............................. 3-43 
Status Lines ........................... 3-43 
Instruction Set ........................ 3-44 
Data Transfer Instructions .............. 3-44 
Arithmetic Instructions ................. 3-45 
Logical and Bit Manipulation 
Instructions ........................... 3-46 
Program Transfer Instructions .......... 3-48 
Processor Control Instructions ......... 3-49 
Instruction Set Reference 
Information ............................ 3-51 
Addressing Modes .................... 3-59 
Register and Immediate Operands ...... 3-59 
Memory Addressing Modes ............. 3-59 
Programming Facilities ................ 3-63 
ASM-89 ............................... 3-63 
Linking and Locating ASM-89 
Modules .............................. 3-76 
Programming Guidelines .............. 3-79 
Programming Examples ............... 3-81 

CHAPTER 4 
Hardware Reference Information 

Introduction ............................ 4-1 
8086 and 8088 CPUs .................... 4-1 
CPU Architecture ........ ; .............. 4-1 
Bus Operation .......................... 4-5 
Clock Circuit .......................... 4-10 
Minimum/Maximum Mode .............. 4-10 
External Memory Addressing ........... 4-14 
I/O Interfacing .......... , .............. 4-15 
Interrupts ............................. 4-16 
Machine Instruction Encoding and 
Decoding ............................. 4-18 
8086 Instruction Sequence ............. 4-37 
8089 I/O Processor .................... 4-38 
System Configuration .................. 4-39 
Bus Operation ......................... 4-41 
Initialization ........................... 4-44 
I/O Dispatching ........................ 4-46 
DMA Transfers ......................... 4-47 
DMA Termination ....................... 4-50 
Peripheral Interfacing .................. 4-50 
Instruction Encoding .................. 4-52 

iv 

APPENDIX A 
Application Notes 

AP-67 8086 System Design .............. A-3 
AP-61 Multitasking for the 8086 ........ A-67 
AP-50 Debugging Strategies and 
Considerations for 8089 Systems ....... A-85 
AP-51 Designing 8086, 8088, 8089 
Multiprocessing Systems with the 8289 
Bus Arbiter ........................... A-lll 
AP-59 Using the 8259A Programmable 
Interrupt Controller ................... A-135 
AP-28A Intel® Multibus™ Interfacing ... A-175 

APPENDIX B 
Device Specifications 

iAPX 86/10 ............................. B-1 
Military iAPX 86/10 .................... B-25 
18086 ................................. B-26 
iAPX 88/10 ............................ B-27 
8089 HMOS I/O ........................ B-53 
8259N8259A-2/8259A-8 ................ B-67 
8282/8283 ............................. B-84 
18282/8283 ............................ B-89 
8284A ............. ; .................. B-90 
M8284 ... ; ............................ B-98 
18284 ................................. B-99 
18286/8287 ........................... B-1 00 
8288 ., ............................... B-l0l 
18288 ................................ B-1 08 
8289 ................................. B-l09 
Intellec Series II ...................... B-120 
Intellec Series III ..................... B-124 
PUM 86,88 .......................... 8-131 
FORTRAN 86,88 ...................... 8-136 
PASCAL 86,88 ...... , ................. B-139 
8086/8088 Software .................. B-142 
8087 Software Support ............... 8-152 
8089 Assembler Support Pack ......... 8-155 
ICE 86A ............................... 8-157 
ICE 86/88A ........................... 8-165 

SUPPLEMENT 
iAPX 86/20, 88/20 Numerics Supplement 

Table of Contents 
Processor Overview ............... ; .... S-l 
Processor Architecture .................. S-7 
Computation Fundamentals ............ S-11 
Memory ............................... S-21 
Multiprocessing Features .............. S-22 
Processor Control and Monitoring ...... S-26 
Instruction Set ........................ S-29 
Programming Facilities ................ S-58 



SUPPLEMENT 
IAPX 86/20, 88/20 Numerics Supplement 
(Continued) 

Special Topics ......................... S-66 
Programming Examples ............... S-82 
86/20, 88/20 Device Specifications ...... S-89 
Tables 
S-1 8087/Emulator Speed 

Comparison ...................... S-3 
S-2 Data Types ........................ S-6 
S-3 Principal Instructions .............. S-6 
S-4 Real Number Notation ............ 8-15 
S-5 Rounding Modes ................ 8-17 
S-6 Exception and Response 

Summary ........................ S-20 
S-7 Processor State 

Following Initialization ........... S-26 
S-8 Bus Cycle Status Signals ......... S-28 
S-9 Data Transfer Instructions ......... S-30 
S-10 Arithmetic Instructions ........... 8-32 
8-11 Basic Arithmetic Instructions 

and Operands ................... 8-33 
S-12 Comparison Instructions ......... 8-36 
S-13 FXAM Condition Code Setting .... 8-37 
S-14 Transcendental Instructions ....... 8-37 
8-15 Constant Instructions ............ 8-38 
S-16 Processor Control Instructions .... 8-39 
S-17 Key to Operand Types ............ 8-42 
S-18 Execution Penalties .............. S-43 
S-19 Instruction Set 

Reference Data .................. S-44 
S-20 PUM-86 Built-in Procedures ...... 8-59 
8-21 8torage Allocation Directives ..... S-60 
S-22 Addressing Mode Examples ...... S-62 
S-23 Denormalization Process ......... 8-68 
8-24 Exceptions Due to Denormal 

Operands ........................ 8-69 
S-25 Unnormal Operands and 

Results .......................... 8-70 
8-26 Zero Operands and Results ....... 8-71 
S-27 Infinity Operands and Results .... S-72 
S-28 Binary Integer Encodings ........ 8-75 
S-29 Packed Decimal Encodings ....... S-76 
S-30 Real and Long Real 

Encodings ....................... S-76 
S-31 Temporary Real Encodings ....... 8-77 
S-32 Exception Conditions and 

Masked Responses .............. 8-79 
8-33 Masked Overflow Response for 

Directed Rounding ............... 8-81 

v 

A-1. Instruction Encoding ............. A-1 
A-2. Machine Instruction Decoding 

Guide ........................... A-2 
Figures 
S-1 8087 Numeric Data Processor 

Pin Diagram ...................... S-2 
S-2 8087 Evolution and Relative 

Performance ...................... S-2 
8-3 NDP Interconnect ................. 8-7 
8-4 8087 Block Diagram ............... S-8 
8-5 Register Structure ................ S-9 
S-6 Status Word Format .............. S-10 
S-7 Control Word Format ............. S-11 
S-8 Tag Word Format ................. S-12 
S-9 Exception Pointers Format ....... S-12 
8-10 8087 Number System ............. S-13 
S-11 Data Formats .................... S-14 
8-12 Projective Versus Affine 

Closure ......................... 8-18 
8-13 Storage of Integer Data Types ..... 8-21 
8-14 8torage of Real Data Types ....... S-21 
8-15 8ynchronizing Execution 

With WAIT ....................... S-24 
S-16 Interrupt Request Logic .......... S-27 
8-17 Interrupt Request Path ........... S-29 
8-18 FSAVE/FR8TOR Memory 

Layout .......................... S-41 
S-19 FSTENV/FLDENV Memory 

Layout .......................... 8-41 
8-20 8ample 8087 Constants .......... 8-43 
S-21 8tatus Word RECORD 

Definition ........................ 8-62 
8-22 8tructure Definition .............. S-62 
8-23 Sample PUM-86 Program ........ S-64 
S-24 Sample A8M-86 Program ......... 8-65 
S-25 Instructions and Register 

8tack ........................... 8-68 
S-26 Conditional Branching 

for Compares .................... 8-82 
8-27 Conditional Branching for 

FXAM ........................... S-83 
8-28 Full 8tate Exception Handler ..... S-86 
S-29 Latency Exception Handler ....... S-87 
8-30 Reentrant Exception Handler ..... S-87 

8087 INSTRUCTIONS, ENCODING 
AND DECODING ......................... S-109 





Introduction 1 





INTRODUCTION 

Successful microcomputer-based designs are judicious 
blends of hardware and software. The User's Manual 
addresses both subjects in varying degrees of detail. 
This publication is the definitive source of information 
describing the iAPX 86 components. Software topics 
are given moderately detailed CQverage. The manual 
serves as a reference source during system design and 
implementation. 

Intel's Literature Guide, updated bi-monthly and avail­
able at no cost, lists all other manuals and reference 
material. Of particular interest to iAPX 86,88 designers 
are: AP-I13, Getting Started with the Numeric Data 
Processor; AP-I06, Multiprogramming with iAPX 
86,88 Microsystems;The Peripheral Design Handbook, 
and the iAPX 88 Book. 

MANUAL ORGANIZATION 

The manual contains four chapters, two appendices, 
and a numerics supplement. The remainder of this 
chapter describes the architecture of the iAPX 86 
and 88. 

Chapter 2 describes the iAPX 86 and iAPX 88 Central 
Processing Units. Chapter 3 describes the 8089 Input! 
Output Processor. These two chapters are identically 
organized and focus on providing a functional descrip­
tion of the iAPX 86,88 and 89, plus related Intel 
products. 

Hardware reference information-electrical charac­
teristics, timing and physical interfacing-for the iAPX 
86,88 processors is concentrated in Chapter 4. 

Appendix A is a collection of iAPX 86 application 
notes; these provide design and debugging examples. 
Additional application notes are available through In­
tel's Literature Department (see Literature Guide). 

Appendix B contains iAPX component data sheets and 
several systems data sheets. The entire Intel catalog of 
data sheets is available in: 1981 Component Data Cata­
log and 1981 Systems Data Catalog. 

The Numerics Supplement provides detailed informa­
tion on the 8087 numeric processor extension to the 
iAPX 86/10 and 88/10 CPUs. 

MICROSYSTEM 80 
NOMENCLATURE 

The increase in microcomputer system and software 
complexity has prompted Intel to introduce a new fam­
ily of microprocessor products to reduce application 
complexity and cost. This new generation of Intel 
microprocessors is powerful and flexible and includes 
many processor enhancements. These include CPUs, 
numeric floating point extensions, I/O processors, and 
all the support chips required for a full function system. 

As Intel's product line has evolved, its component­
based product numbering system has become inappro­
priate for all the possible VLSI computer solutions 
offered. While the components retain their names, Intel 
has moved to a new system-based naming scheme to 
accommodate these new VLSI systems. 

We have adopted the following prefixes for our product 
lines, all of them under the general heading of 
Microsystem 80: 

iAPX - Processor Series 
iRMX - Operating Systems 
iSBC - Single Board Computers 
iSBX - MULTIMODULE Boards· 

Concentrating on the iAPX Series, two processor lines 
are currently defined: 

iAPX 86 - 8086 CPU-based system 
iAPX 88 - 8088 CPU-based system 

Configuration options within each iAPX system are 
identified by adding a suffix, for example: 

iAPX 86/10 - CPU Alone (8086) 
iAPX 86/11 - CPU + IOP (8086 + 8089) 
iAPX 88/20 - CPU with Math Extension 

(8088, 8087) 
iAPX 88121 - CPU with Math Extension + lOP 

(8088, 8087 + 8089) 

This improved numbering system will enable us to pro­
vide you with a more meaningful view of the capabili­
ties of our evolving Microsystem 80. 
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iAPX 86 AND iAPX 88 ARCHITECTURE -
THE FOUNDATION FOR THE FUTURE 
Overview 

iAPX .86,88 is an evolving family of microprocessors and 
peripherals. The family partitions processing functions among 
general data processors (8086 and 8088), specialized coproces­
sors like the 8087 numeric data processor, and 110 channel 
processors (the 8089). 

Four key architectural concepts shaped the data processor 
designs. All four reflect the family's role as vehicles for 
modular, high level language programming (in addition to 
assembly language programming). The four architectural 
concepts are memory segmentation, the operand addressing 
structure, the operation register set, and the instruction 
encoding scheme. They are distinct departures from the 
minicomputer architectural styles of the 1960's and 1970's. 

These earlier architectures (minicomputers) were designed 
for assembly language programming which emphasizes reg­
ister based data and linear programs. Over the last decade, 
large software development projects shifted their program­
ming to high level languages which employ modular. pro­
gramming and memory based data. The iAPX 86,88 
memory segmentation scheme is intended for modular pro­
grams. It supports the static and dynamic memory require­
ments of program modules, as well as their communication 
needs. The iAPX 86,88 registers are designed for fast high 
level language execution. The scheme employs specialized 
registers and implicit register usage. You will derive signifi­
cant performance and memory utilization improvements 
directly from these architectural features. 

The four concepts are discussed in the following sections. 
They are: 

• Memory segmentatipn for modular programming, 
evolution to memory management and protection 

• Addressing structure for high level programming 
languages 

• Operation register set for computation 

• Instruction set encoding for memory efficiency 
and executi()n speed 

Memory Segmentation for Modular Programming 

Large programs (1 0-100K bytes) are not generally written in 
assembly language. They are developed in individually com­
piled modules in high level languages. Modular program 
development techniques, program libraries, compatible link­
ing, and project management tools are often requirements in 
such an environment. A complex application program 
might be composed of multiple processes, with each process 
constructed from mUltiple modules. Processes send mes­
sages to each other for communication, while modules gen-
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erally share common data when needed. Ideally, these inter­
module communication paths are well structured and 
disciplined. 

The iAPX 86,88 segmentation scheme is optimized for the 
reference patterns of computer programs. Four segment 
registers are provided in a segment register file. Memory 
references are relative to automatically selected code seg­
ment (CS) and data segment (DS) registers. The module 
shares a stack segment (SS) with all other modules of the 
process (task). The module may share a global data segment 
with other modules in the process; for example, to send and 
receive messages between modules. This segment is accessed 
explicitly with the extra segment (ES) register. 

This scheme is highly efficient because constant program 
references to code and data, as well as the stack, have 
automatic segment selection. This results in minimized 
instruction length. Only 16 bits are required to address any­
where in the full megabyte address range. Only infrequent 
inter-module communications require the extra prefix bits to 
explicitly override the automatic segment selection. 

There are two other significant advantages to the segment 
register concept. First, it separates segment base addresses 
from offset addresses which are relative to the segment base. 
Only offset addresses are used within object modules. This 
supports position-independent, dynamically relocatable mod­
ules. You merely have to alter the CS and DS register contents 
to move a module, rather than relinking the whole task and 
reloading. This structure employs short addresses (16 rather 
than 20-bit) for efficient use of memory. 

The second advantage of iAPX 86,88 segmentation is that it 
can be extended to include memory management and multi­
level protection. The contents and width of segmentation 
registers are independent of the rest of the instruction set. 
The architecture can be made to address additional memory 
and provide access rights and limit checking. Using the 
mainframe concept of memory based segment tables, this 
structure can also support virtual memory. Further, since 
only four registers are active in the file at a time, these 
features can be accomplished on the CPU chip itself, avoid­
ing the access delays of off-chip memory management. 

In summary, memory segmentation has several ultimate 
benefitsfor the end user. It provides for simplified hardware 
and faster, modular software development, more easily 
maintainable code, and provides an orderly way for the 
architecture to grow. 

Addressing Structure for High Level 
Programming Languages 

The iAPX 86,88 architecture employs an operand address­
ing scheme complementing the memory segmentation 
scheme. There are four components in an address. They are 
the segment, base, index, and displacement. The segment 
component was just described. A base register is dedicated to 
both the data and stack segments. These base registers may 
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Figure 2. lAP X 86/10, 88/10 Register Model 

also be used when accessing the extra (global) segment. They 
are used for holding the base address of a data structure. 

Two index registers are provided for use with the base 
registers to dynamically select any element from a based data 
structure. Eight or sixteen-bit fixed displacements may be 
added to any of these address forms. The complete regis­
ter file is shown in Figure 2 and the addressing structure is 
shown in Figure 3. 

Referring to Figure 3, an iAPX 86,88 operand address con­
tains up to four components: a segment (S), a base (B), an 
index (I), and a displacement (d). The segment component is 
automatically selected for the code, data, and stack seg­
ments. An explicit segment selection is required for data 
references in the extra segment. Any combination of the 
remaining three address components.is permitted in virtually 
all memory reference instructions, with at least one always 
being present. 

COMPONENT 

'--__ S_~I ~J SEGMENT 

+ B BASE 

+ INDEX 

+ 
r--D] 
~___ d DISPLACEMENT 

S+B+I+d I EFFECTIVE ADDRESS 

Block and string data are extensions to this scheme. They use 
different assumptions for source and destination segments, 
but the segments are still implicitly accessed. Immediate 
operands are also supported. 

The iAPX 86,88 is a two operand machine (source and 
destination). It supports source/ destination operand combi­
nations of register/memory, memory/register, memory/ 
memory (string operations only), immediate/ register, and 
immediate/memory. The various address combinations of 
S, B, I, and d correspond to common data structures used in 
high level language programming. Such data structures can 
therefore be implemented easily in assembly language as 
well. 

Figure 3 shows the correspondence between the most com­
mon iAPX 86,88 address modes and various data types in 
high level programming languages. The S comportent is 

DESCRIPTION 
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Figure 3. iAPX 86,88 Four Component Addressing Structure 
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implicit; the stack base (BP) assumes the stack segment; no B 
component, or use of the data base (BX), assumes the data 
segment. The less commonly used address modes are not 
shown. 

The stack base (BP) is a concept borrowed from the family of 
P-machines "developed" as ideal PASCAL vehicles. P­
machines term this register the "mark pointer". It always 
points to the base of the current local data area in the stack 
segment. This permits efficient local addressing in block­
structured languages such as PASCAL and PLI M. In these 
languages, procedures are invoked by pushing their parame­
ters on the stack, calling the procedure, and then allocating 
their local data area on the stack. The iAPX 86,88 return 
instruction then removes the parameters froni the stack, as is 
done in the P-machines. 

Operation Register Set for Computation 

The Intel iAPX 86,88 line is truly a complete family of 
microprocessors. The iAPX 861 JO and iAPX 881 10 are the 
general data processor members ofthefamily, while the8089 
is the 110 processor family member. In addition, the CPU 
itself has an interface for attaching coprocessors. Coproces­
sors provide specialized operation set extensions that benefit 
the application by performing special purpose logic to 
increase performance. 

The iAPX 86/20 Numeric Data Processor is an example of 
this concept. Using an 8086 with an 8087 coprocessor (CPU 
extension) it provides a one hundred-jold peiformance boost 
over the iAPX 861 JO for a wide range of numeric operations. 
The full computational capability of the iAPX 86,88 family 
can therefore span a much broader range than is possible with 
a single microprocessor. This technique has been used success­
fully in the mainframe and minicomputer industries to provide 
instruction set options for scientific, commercial, text process­
iIlg, or other special purpose applications. 

An 8087 extends the iAPX 86 or iAPX 88 architecture to 
include additional data types, registers, and instructions. The 
8086 or 8088, with an 8087 coprocessor, operates on 16, 32, 
and 64-bit integers, 32, 64 and 80-bitfloating point 
numbers, and up to 18 digit packed BCD numbers. Data 
conversions and calculations are performed in the 8087 
and are transparent to the programmer. 

The iAPX 861 10 and iAPX 881 JO CPUs alone can perform 
arithmetic operations on signed and unsigned 8 and 16-bit 
binary integers as well as packed and unpacked decimal 
integers. The full complement of logical operations are pro­
vided as well. Interesting new features are the string opera­
tions. Six primitive string instructions (move, skip, search, 
compare, set, and translate) are standard. When combined 
with special control operators, complex string manipula­
tions are possible with two or three instructions. 
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Instruction Set Encoding for Memory Efficiency 
and Execution Speed 

The iAPX 86 uses a byte oriented instruction stream while 
operating with a 16-bit data bus. Toaccomplish this, the 
processor is subdivided into two independent parallel pro­
cessors called the bus interface unit (BIU) and the execution 
unit (EU). The iAPX 88 employs an identical execution 
unit and is 100% code compatible with iAPX 86, yet it 
interfaces to an 8-bit wide data bus BIU. The bus interface 
unit is an independent processor that prefetches instruc~ 
tions. Instruction fetch time is therefore mostly over~ 
lapped with other iAPX 86,88 processor activity. The bus 
interface unit permits either instructions or data to be 
placed in memory without regard to word boundaries. 
(An array of five byte records in PASCAL can be refer­
enced without requiring an additional byte of padding to 
word align the records.) Processor subdivision into the 
BIU and EU has the additional benefit of minimizing the 
effect of wait states and bus hold time on CPU efficiency. 

Instruction set encoding is substantially improved when 
instructions are composed in byte multiples .instead of 
words. Instructions in the iAPX 86,88 vary from one to six 
bytes in length (not counting optional prefix bytes). The 
average instruction is three bytes long; In a word aligned 
machine the same information would occupy four bytes. 
This and the features described above give the iAPX 86,88 
roughly a· 30% program space savings over other archi­
tectures. 

PROCESSOR PARTITIONING 
Beyond efficient support for high level languages, the 
iAPX 86 and iAPX 88 establish the foundation for the 
family to build on in the 1980's. The family uses increasing 
levels of integration to significantly reduce software, hard­
ware, and development investment. 

The iAPX 86 I 10 and iAPX 88 I 10 general purpose proces­
sors employ external module integration. Specialized sys­
tem functions are distributed among optimized compo­
nents and removed from the host processor. The CPU is 
freed to become the system manager and resource allocator 
rather than doing "all things for all programs". The family 
also includes the 8087 Numeric Data Processor and the 
8089 110 Channel Processor. 

These processors are optimized to address the three main 
functions in a computer environment: data processing and 
control, arithmetic computation, and input/output. The 
8087 and 8089 are described below. 

The 8087 Numeric Processor Extension (NPX) adds over 
50 numeric opcodes and eight 80-bit registers to the host 
processor to provide more extensive data and numeric 
processing capability. It performs floating point and trans-
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Figure 4. Numeric Data Processor Block Diagram 

cendental (trigonometric) functions, processes decimal 
operands up to 18 digits without roundoff, and performs 
exact arithmetic on integers up to 64 bits long. Another 
feature of the NDP, with important benefits to you, is that 
it is compatible with the proposed IEEE floating point 
standards. It can be used in applications requiring high 
speed computation such as numerical analysis, accounting 
and financial applications, the sciences, and engineering. 
Throughput increases in such applications up to JOO times 
current speeds are typical (See Figure 4.) 

The 8089 Input/ Output Processor (lOP) is an independent 
microprocessor that optimizes inputloutput operations. 
The objective of the lOP is to remove all 110 detailsfrom 
application software. It responds to CPU direction but 
executes its own instruction stream in parallel with other 
processors. 110 transfers of either 8 or 16-bit data can be 

HOST CPU (8086 or 8088) 

EXECUTION I BASE 

done at rates up to 1.25 megabytes per second. The lOP 
therefore combines the attributes of both a CPU and a 
DMA controller to provide a powerful II 0 subsystem. An 
important feature of the lOP is that it can be physically 
isolated from the application CPU. The advantage to you 
is that 110 subsystem changes or upgrades can be made 
without any impact to application software. (See Figure 5.) 

Summarizing, there are several advantages to external 
module integration: 

• System tasks may be allocated to special purpose pro­
cessors designed for optimal task handling 

• Simultaneous operation (parallel processing) provides 
highest system performance 

• Isolated system functions minimize the effect of modifi­
cations, localfailures, or errors on the restofthe system 
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• The iAPX 86,88 family of processors allows diVision of 
the application into small, manageable tasks for parallel 
development, while providing built-in hardware facili­
ties for coordinating processor interaction. With the 
iAPX 86,88 approach you can implement high perfor­
mance systems far more quickly and easily than would 
otherwise be possible. 

DEVELOPMENT TOOLS 

Development Systems 

Development systems are a unique combination of hardware 
and software tools which increase your product development 
productiVity. With Intel development products, you will 
shorten the development cycle and reduce your time to 
market. 

Development systems from Intel proVide an upgradable spec­
trum of tools ranging from stand alone development systems 
to future networks of specialized work stations. Intel elimi­
nates your risk of development system obsolescence by gua­
ranteeing product upgradability and compatibility. This gua­
rantee protects your capital investment. 

For small to medium size projects, the IntellecT" development 
system is available in many configurations at low cost. For 
small projects, these systems have nominal program memory 
with floppy disks as peripheral storage deVices. Minimum 
configurations may be upgraded to proVide increased perfor­
mance, increased. memory, and increased· mass storage via 
hard disk. These more powerful configurations support 
medium sized projects. 

The Intellec Series 11/85 is a good example of such a system. 
It is a complete microcomputer development system inte­
grated into one compact package. The Model 225 includes a 
CPU with 64K bytes of RAM, 4K bytes of ROM, a 2000 
character CRT, detachable full ASCII keyboard, and a 250K 
byte floppy disk drive. The powerful ISIS-II Disk Operating 
System software allows you to efficiently develop and debug 
iAPX 86,88 programs. Optional storage peripherals proVide 
over 2 million and 7.3 million bytes of storage on floppy and 
hard disk, respectively. 

Distributed development configurations address the range of 
,medium to large sized projects. These configurations connect 
multiple standalone development systems to more powerful 
support resources such as mainframes and their peripherals. 

In addition to the Intellec® development system, Intel offers 
several products to help you debug and test your hardware and 
software. In-Circuit-Emulators, such as ICE-86T" and ICE-
88T", are available to emulate your product environment. They 
increase development productiVity substantially. Another 
software tool, RBF-89, helps you debug 8089 software under 
.ICE control. With these tools, software development time 
can be reduced dramatically - lowering your total in­
vestment. 
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High Level Languages 

Programming languages are the key to developing an applica­
tion. Intel programming languages serve three purposes in 
your design. First, they are your primary design tool. Intel's 
breadth of languages and extended features give you the 
maximum ability to properly design and plan your program. 
Second, Intel languages are a communication vehicle between 
programmers during implementation and later during modifi­
cation. Standard high level languages allow programmers to 
better communicate what the programs do. Third, Intel Ian­
guages are designed in conjunction with Intel microsystetns to 
provide the greatest code efficiency and execution speed. Intel 
languages speed implementation of your design and reduce 
maintenance costs. 

MDS-311 is a set of software development tools for iAPX 86 
and iAPX 88 applications. It is a complete set of software 
products that run on the Intellec Model-800 and Series-II 
development systems. The software tools provided include 
PLI M-86, high level programming language, and the ASM-
86 assembler. Two utilities, LINK86 and LOC86, are supplied 
to link separately compiled or assembled program modules 
into executable tasks. The Library Manager, LIB86, lets you 
maintain a library of iAPX 86 or iAPX 88 ()bject modules. 
These modules can then be linked in with new programs 
without being recompiled. This simplifies and speeds. your 
development. Common code (e.g. a subroutine) ouly has to be 
developed and compiled once. Intel code converters~ such as 
CONV86, are very useful tools for migrating 8080 or 8085, 
Z80, and 6809 assembly language programs to the iAPX 86 or 
iAPX 88. They. convert assembly source· code to ASM86 
source code. This will help you make a rapid transition and cut 
redevelopment costs substantially. 

Intel will proVide a variety of languages f()r both systems and 
applications to facilitate development of your product. You 
can choose the language (or languages) which best suits your 
product needs and the expertise of your staff. ASM86, the 
assembly language, and PLI M-86, the systems oriented high 
level language, are both currently available. PASCAL, FOR­
TRAN, and BASIC will be offered in the near future, and 
COBOL is planned after that. 

Intel's languages also run on your final product, Your pro­
duct's function is significantly increased when packaged with 
language translators. They allow your customers to tailor your 
products for their environment. Intel's languages will save 
implementation time and free resources to work on the value-
added portion of your product. . . 

SINGLE BOARD COMPUTERS 
ACCELERATE YOUR 
MICROSYSTEM SUCCESS 
In addition to the increased integration of functions in 
VLSI components, there is a strong trend today to imple­
ment microsystem applications with single board compu-
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ters. This ~lIows the design engineer to: 

• Easily configure reliable and cost-effective systems 
using iSBC and iSBX standard products. 

• Overcome the shortage of qualified engineers and 
technicians. 

• Get the end product to market quickly. 

• Focus on the application. 

• Offset the increasing cost of capital. 

In addition, using iSBC single board computers and iSBX 
expansion products in your design reduces the number of 
risks that you must face in all phases of the product life 
cycle. The four major risk areas that Intel iSBC and iSBX 
products will help you overcome are as follows: 

1. Limited Resources 

Using a fully tested board computer, which incorpo­
rates the key elements of processor, memory and 1/0, 
helps overcome today's critical shortage of engineers, 
programmers and technicans. Implementing iSBC 
boards and iSBX MULTIMODULES in your design 
reduces increasing capital costs in production, QC, and 
test. It is estimated that using iSBC boards can save up 
to $200,000 per board design. 

2. Time to Market Dictates Success or Fallure 

With inflation running at its current rate, the amount of 
time it takes to get a product from an idea to the market 
becomes critical. A delay of a few months can collapse 
your return on investment. 

ISBX" MULTIMODULE AND 

RAPID VLSI L======~~s:::-----­
INFUSION 

Experience shows that the first company that gets its 
product to the marketplace usually dominates that 
market. You can get your product to the market months 
earlier using standard off-the-shelf iSBC, iSBX and 
Real-Time Executive (iRMX) Software modules. 
Intel's large board manufacturing and distribution cap­
ability enables you to respond to your market demand 
rapidly and in a cost-effective manner. 

3. Solution Completeness and Project Credibility 

Microprocessor based solutions for today's problems 
are commonplace and are expected to succeed. A broad 
spectrum of compatible system components in the 
iSBC, iSBX, and iRMX product line increase the prob­
ability of being right the first time. General purpose 
iSBC board solutions are easy to customize through the 
use of iSBX modules from Intel, or your own design. 

4. Coping with the Technology/Complexity 
Avalanche 

iSBC and iSBX products incorporate the latest in VLSI 
shortly after their initial introduction. With increasing 
system complexity Intel's design process and testing 
reduces the risk of "gremlin" bugs which multiply with 
complexity and evade diagnosis. Standards used through­
out the product family such as the de facto industry 
standard MULTIBUS, EIA, IEEE etc. provide a 
smooth transition for your product to new and chang­
ing processor, memory and 110 technologies. 

Intel's single board computer product family is continuing 
to reduce your risk and protect your investment in the 
future by expanding iSBC and iSBX products in three 
dimensions: processors, memory, and 1/0. 

MUL TIMODULE'" 
_________ MEMORY EXPANSION 

RMX" 
REAL-TIME 

MULTIPROGRAMMING 
EXECUTIVE 
SOFTWARE 

","'0 

--------- MULTI BUS" STANDARD ARCHITECTURE 

Figure 6. Single Board Computer (iSBC 86/12T") 
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SUMMARY 
Intel's iAPX 86,88 multiple· processor family is designed 
for modular programming in high level as well as assembly 
languages. 

• Its memory segmentation scheme is optimized for the 
reference needs of computer programs, and is separate 
from the operand addressing structure. 

• The structure for addressing operands within segments 
directly supports the· various data types found in high 
level programming languages. 

• The family provides an operation register set to support 
general computation requirements. It also provides for 
optimized operation register sets to do specialized data 
processing functious with its inherent multi- and cflpro­
cessor support. 

• The family uses optimized instruction encoding for 
high performance and memory efficiency 

• The family is well supported with development tools 
and single board computer products. 

This architecture provides the foundation for solving the 
application needs in the 1980's. It makes a noted departure 
from architectures of the 1960's and 1970's "'-- based on 
Intel's intent to minimize software and hardware product 
costs for you, the end user. 
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CHAPTER2 
THE 8086 AND 8088 

CENTRAL PROCESSING UNITS 

This chapter describes the mainstays of the 8086 
microprocessor family: the 8086 and 8088 central 
processing units (CPUs). The material is divided 
into ten sections and generally proceeds from 
hardware to software topics as follows: 

I. Processor Overview 

2. Processor Architecture 

3. Memory 

4. Input/Output 

5. Multiprocessing Features 

6. Processor Control and Monitoring 

7. Instruction Set 

8. Addressing Modes 

9. Programming Facilities 

10. Programming Guidelines and Examples 

The chapter describes the internal operation of 
the CPUs in detail. The interaction of the pro­
cessors with other devices is discussed in func­
tional terms; electrical characteristics, timing, and 
other information needed to actually interface 
other devices with the 8086 and 8088 are provided 
in Chapter 4. 

2.1 Processor Overview 

The 8086 and 8088 are closely related third­
generation microprocessors. The 8088 is designed 
with an 8-bit external data path to memory and 
I/O, while the 8086 can transfer 16 bits at a time. 
In almost every other respect the processors are 
identical; software written for one CPU will 
execute on the other without alteration. The chips 
are contained in standard 40-pin dual in-line 
packages (figure 2-1) and operate from a single 
+5V power source. 

The 8086 and 8088 are suitable for an exception­
ally wide spectrum of microcomputer applica­
tions, and this flexibility is one of their most 
outstanding char'acteristics. Systems can range 
from uniprocessor minimal-memory designs 
implemented with a handful of chips (figure 2-2), 
to multiprocessor systems with up to a megabyte 
of memory (figure 2-3). 
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The large application domain of the 8086 and 
8088 is made possible primarily by the processors' 
dual operating modes (minimum and maximum 
mode) and built-in multiprocessing features. 
Several of the 40 CPU pins have dual functions 
that are selected by a strapping pin. Configured 
in minimum mode, these pins transfer control 
signals directly to memory and input/output 
devices. In maximum mode these same pins take 
on different functions that are helpful in medium 
to large ystems, especially systems with multiple 
processors. The control· functions assigned to 
these pins in minimum mode are assumed by a 
support chip, the 8288 Bus Controller. 

The CPUs are designed to operate with the 8089 
Input/Output Processor (lOP) and other pro­
cessors in multiprocessing and distributed pro­
cessing systems. When used in conjunction with 
one or more 8089s, the 8086 and 8088 expand 
the applicability of microprocessors into I/O~ 
intensive data processing systems. Built-in coor­
dinating signals and instructions, and electrical 
compatibility with Intel's Multibus™ shared bus 
architecture, simplify and reduce the cost of 
developing multiple-processor designs. 

Both CPUs are substantially more powerful than 
any microprocessor previously offered by Intel. 
Actual performance, of course, varies from 
application to application, but comparisons to the 
industry standard 2-MHz 8080A are instructive. 
The 8088 is from four to six times more powerful 
than the 8080A; the 8086 provides seven to ten 
times the 8080A's performance (see figure 2-4). 
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The 8086's advantage over the 8088 is attributable 
to its 16-bit external data bus. In applications that 
manipulate 8-bit quantities extensively, or that 
are execution-bound, the 8088 can approach to 
within 100/0 of the 8086's processing throughput. 

The high performance of the 8086 and 8088 is 
realized by combining a 16-bit internal data path 
with a pipelined architecture that allows instruc­
tions to be prefetched during spare bus cycles. 
Also contributing to performance is a compact 
instruction format that enables more instructions 
to be fetched in a given amount of time. 

Software for high-performance 8086 and 8088 
systems need not be written in assembly language. 
The CPUs are designed to provide direct hard­
ware support for programs written in high-level 
languages such as Intel's PLlM-86. Most high­
level languages store variables in memory; the 
8086/8088 symmetrical instruction set supports 
direct operation on memory· operands, including 
operands on the stack. The hardware addressing 
modes provide efficient, straightforward 
implementations of based variables, arrays, ar­
rays of structures and other high-level language 
data constructs. A powerful set of memory-to­
memory string operations is available for efficient 
character data manipulation. Finally, routines 
with critical performance requirements that can­
not be met with PL/M-86 may be written in 
ASM-86 (the 8086/8088 assembly language) and 
linked with PLlM-86 code. 

While the 8086 and 8088 are totally new designs, 
they make the most of users' existing investments 
in systems designed around the 8080/8085 
microprocessors. Many of the standard Intel 
memory, peripheral control and communication 
chips are compatible with the 8086 and the 8088. 
Software is developed in the familiar Intellec® 
Microcomputer Development System environ­
ment, and most existing programs, whether writ­
ten in ASM-80 or PLlM-80, can be directly con­
verted to run on the 8086 and 8088. 

2.2 Processor Architecture 

Microprocessors generally execute a program by 
repeatedly cycling through the steps shown below 
(this description is somewhat simplified): 

I. Fetch the next instruction from memory. 

2. Read an operand (if required by the 
instruction). 
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3. Execute the instruction. 

4. Write the result (if required by the 
instruction). 

In previous CPUs, most of these steps have been 
performed serially, or with only a single bus cycle 
fetch overlap. The architecture of the 8086 and 
8088 CPUs, while performing the same steps, 
allocates them to two separate processing units 
within the CPU. The execution unit (EU) .executes 
instructions; the bus interface unit (BIU) fetches 
instructions, reads operands and writes results. 

The two units can· operate independently of one 
another and are able, under most circumstances, 
to extensively overlap instruction fetch with exe­
cution. The result is that, in most cases, the time 
normally required to. fetch instructions "dis­
appears" because the EU .executes instructions 
that have already been fetched by the BIU. Figure 
2-5 illustrates this overlap and compares it with 
traditional microprocessor operation. In. the 
example, overlapping reduces the elapsed time 
required to execute three instructions, and allows 
two additional instructions to be pre fetched as 
well. 
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Execution Unit 

The execution units of the 8086 and 8088 are iden­
tical (figure 2-6). A 16-bit arithmetic/logic unit 
(ALU) in the EU maintains the CPU status and 
control flags, and manipulates the general 
registers and instruction operands. All registers 
and data paths in the EU are 16 bits wide for fast 
internal transfers. 

The EU has no connection to the system bus, the 
"outside world." It obtains instructions from a 
queue maintained by the BIU. Likewise, when an 
instruction requires access to memory or to a 
peripheral device, the EU requests the BIU to 
obtain or store the data. All addresses 
manipulated by the EU are 16 bits wide. The BIU, 
however, performs an address relocation that 
gives the EU access to the full megabyte of 
memory space (see section 2.3). 
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Bus Interface Unit 

The BIUs of the 8086 and 8088 are functionally 
identical, but are implemented differently to 
match the structure and performance 
characteristics of their respective buses. 

The BIU performs all bus operations for the EU. 
Data is transferred between the CPU and memory 
or 110 devices upon demand from the EU. Sec­
tions 2.3 and 2.4 describe the interaction of the 
BIU with memory and 110 devices. 

In addition, during periods when the EU is busy 
executing instructions, the BIU "looks ahead" 
and fetches more instructions from memory. The 
instructions are stored in an internal RAM array 
called the instruction stream queue. The 8088 
instruction queue holds up to four bytes of the 
instruction stream, while the 8086 queue can store 
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up to six instruction bytes. These queue sizes 
allow the BIU to keep the EU supplied with pre­
fetched instructions under most conditions 
without monopolizing the system bus. The 8088 
BIU fetches another instruction byte whenever 
one byte in its queue is empty and there is no 
active request for bus access from the EU. The 
8086 BIU operates similarly except that it does 
not initiate a fetch until there are two empty bytes 
in its queue. The 8086 BIU normally obtains two 
instruction bytes per fetch; if a program transfer 
forces fetching from an odd address, the 8086 
BIU automatically reads one byte from the odd 
address and then resumes fetching two-pyte 
words from the subsequent even addresses. 

Under most circumstances the queues contain at 
least one byte of the instruction stream and the 
EU does not have to wait for instructions to be 
fetched. The instructions in the queue are those 
stored in the memory locations immediately adja­
cent to and higher than the instruction currently 
being executed. That is, they are the next logical 
instructions so long as execution proceeds seri­
ally. If the EU executes an instruction that 
transfers control to another location, the BIU 
resets the queue, fetches the instruction from the 
new address, passes it immediately to the EU, and 
then begins refilling the queue from the new loca­
tion. In addition, the BIU suspends instruction 
fetching whenever the EU requests a memory or 
110 read or write (except that a fetch already in 
progress is completed before executing the EU's 
bus request). 

General Registers 

Both CPUs have the same complement of eight 
16-bit general registers (figure 2-7). The general 
registers are subdivided into two sets of four 
registers each: the data registers (sometimes called 
the H & L group for "high" and "low"), and the 
pointer and index registers (sometimes called the 
P & I group). 

The data registers are unique in that their upper 
(high) and lower halves are separately 
addressable. This means that each data register 
can be used interchangeably as a 16-bit register, 
or as two 8-bit registers. The other CPU registers 
always are accessed as 16-bit units only. The data 
registers can be used without constraint in most 
arithmetic and logic operations. In addition, 
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Figure 2-7 .. General Registers. 

some instructions use certain registers implicitly 
(see table 2-1) thus allowing compact yet powerful 
encoding. 

Table 2-1. Implicit Use of General Registers 

REGISTER OPERATIONS 

AX Word Multiply, Word Divide, 
Word 1/0 

AL Byte Multiply, Byte Divide, Byte 
1/0, Translate, Decimal Arithmetic 

AH Byte Multiply, Byte Divide 

BX Translate 

CX String Operations, Loops 

CL Variable Shift and Rotate 

DX Word Multiply, Word Divide, 
Indirect 1/0 

SP Stack Operations 

SI String Operations 

DI String Operations 

The pointer and index registers can also par­
ticipate in most arithmetic and logic operations. 
In fact, all eight generlil registers fit the definition 
of "accumulator" as used in fir·st and second 
generation microprocessors. The P & I registers 
(except for BP) also are used implicitly in some 
instructions as shown in table 2-1. 
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Segment Registers 

The megabyte of SOS6 and 80SS memory space is 
divided into logical segments of up to 64k bytes 
each. (Memory segmentation is described in sec­
tion 2.3.) The CPU has direct access to four 
segments at a time; their base addresses (starting 
locations) are contained in the segment registers 
(see figure 2-8), The CS register points to the cur­
rent code segment; instructions are fetched from 
this segment. The SS register points to the current 
stack segment; stack operations are performed on 
locations in this segment. The DS register points 
to the current data segment; it generally contains 
program variables. The ES register points to the 
current extra segment, which also is typically used 
for data storage. 

The segment registers are accessible to programs 
and can be manipulated with several instructions. 
Good programming practice and consideration of 
compatibility with future Intel hardware and soft­
ware products dictate that the segment registers 
be used in a disciplined fashion. Section 2.10 pro­
vides guidelines for segment register use. 
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Instruction Pointer 

The I6-bit instruction pointer (IP) is analogous to 
the program counter (PC) in the 8080/S0S5 
CPUs. The instruction pointer is updated by the 
BIU so that it contains the offset (distance in 
bytes) of the next instruction from the beginning 
of the current code segment; i.e., IP points to the 
next instruction. During normal execution, IP 
contains the offset of the next instruction to be 
fetched by the BIU; whenever IP is saved on the 
stack, however, it first is automatically adjusted 
to point to the next instruction to be executed. 
Programs do not have direct access to the instruc­
tion pointer, but instructions cause it to change 
and to be saved on and restored from the stack. 
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Flags 

The S086 and 80SS have six I-bit status flags 
(figure 2-9) that the EU posts to reflect certain 
properties of the result of an arithmetic or logic 

mF E1~CARRV ~PARITV 
AUXILIARY CARRY 

'--------ZERO 

'--------SIGN 

'----------OVERFLOW 

'------------INTERRUPT-ENABLE 

'-------------DIRECTION 

'--------------TRAP 

Figure 2-9. Flags 

operation. A group of instructions is available 
that allows a program to alter its execution 
depending on the state of these flags, that is, on 
the result of a prior operation. Different instruc­
tions affect the status flags differently; in general, 
however, the flags reflect the following 
conditions: 

1. If AF (the auxiliary carry flag) is set, there 
has been a carry out of the low nibble into 
the high nibble or a borrow from the high 
nibble into the low nibble of an 8-bit quantity 
(low-order byte of a 16-bit quantity). This 
flag is used by decimal arithmetic 
instructions. 

2. If CF (the carry flag) is set, there has been a 
carry out of, or a borrow into, the high-order 
bit of the result (S- or 16-bit). The flag is used 
by instructions that add and subtract 
multibyte numbers. Rotate instructions can 
also isolate a bit in memory or a register by 
placing it in the carry flag. 

3. If OF (the overflow flag) is set, an arithmetic 
overflow has occurred; that is, a significant 
digit has been lost because the size of the 
result exceeded the capacity of its destination 
location. An Interrupt On Overflow instruc­
tion is available that will generate an inter­
rupt in this situation. 
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4. If SF (the sign flag) is set, the high-order bit 
of the result is a 1. Since negative binary 
numbers are represented in the 8086 and 8088 
in standard two's complement notation, SF 
indicates the sign of the result (0 = positive, 
1 = negative). 

5. If PF (the parity flag) is set, the result has 
even parity, an even number of I-bits. This 
flag can be used to check for data transmis­
sion errors. 

6. If ZF (the zero flag) is set, the result of the 
operation is O. 

Three additional control flags (figure 2-9) can be 
set and cleared by programs to alter processor 
operations: 

1. Setting DF (the direction flag) causes string 
instructions to auto-decrement; that is, to 
process strings from high addresses to low 
addresses, or from "right to left." Clearing 
DF causes string instructions to auto­
increment, or to process strings from "left to 
right. " 

2. Setting IF (the interrupt-enable flag) allows 
the CPU to recognize external (maskable) 
interrupt requests. Clearing IF disables these 
interrupts. IF has no affect on either non­
maskable external or internally generated 
interrupts. 

3. Setting TF (the trap flag) puts the processor 
into single-step mode for debugging. In this 
mode, the CPU automatically generates an 
internal interrupt after each instruction, 
allowing a program to be inspected as it exe­
cutes instruction by instruction. Section 2.10 
contains an example showing the use of TF in 
a single-step and breakpoint routine. 

8080/8085 Registers and Flag 
Correspondence 

The registers, flags and program counter in the 
8080/8085 CPUs all have counterparts in the 8086 
and 8088 (see figure 2-10). The A register (ac­
cumulator) in the 8080/8085 corresponds to the 
AL register in the 8086 and 8088. The 8080/8085 
H & L, B & C, and D & E registers correspond to 
registers BH, BL, CH, CL, DH and DL, respec­
tively, in the 8086 and 8088. The 8080/8085 SP 
(stack pointer) and PC (program counter) have 
their counterparts in the 8086/8088 SP and IP. 
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The AF, CF, PF, SF, and ZF flags are the same in 
both CPU families. The remaining flags and 
registers are unique to the 8086 and 8088. This 
8080/8085 to 8086 mapping allows most existing 
8080/8085 program code to be directly translated 
into 8086/8088 code. 

Mode Selection 

Both processors have a strap pin (MN/MX) that 
defines the function of eight CPU pins in the 8086 
and nine pins in the 8088. Connecting MN/MX to 
+5V places the CPU in minimum mode. In this 
configuration, which is designed for small 
systems (roughly one or two boards), the CPU 
itself provides the bus control signals needed by 
memory and peripherals. When MN/MX is 
strapped to ground, the CPU is configured in 
maximum mode. In this configuration the CPU 
encodes control signals on three lines. An 8288 
Bus Controller is added to decode the signals 
from the CPU and to provide an expanded set of 
control signals to the rest of the system. The CPU 
uses the remaining free lines for a new set of 
signals designed to help coordinate the activities 
of other processors in the system. Sections 2.5 
and 2.6 describe the functions of these signals. 

2.3 Memory 

The 8086 and 8088 can accommodate up to 
1,048,576 bytes of memory in both minimum and 
maximum mode. This section describes how 
memory is functionally organized and used. 
There are substantial differences in the way 
memory components are actually accessed by the 
two processors; these differences, which are in­
visible to programs, are covered in section 4.2, 
External Memory Addressing. 

Storage Organization 

From a storage point of view, the 8086 and 8088 
memory spaces are organized as identical arrays 
of 8-bit bytes (see figure 2-11). Instructions, byte 
data and word data may be freely stored at any 
byte address without regard for alignment thereby 
saving memory space by allowing code to be 
densely packed in memory (see figure 2-12). Odd­
addressed (unaligned) word variables, however, 
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SP 

BP BASE 
POINTER 

SI SOURCE 
INDEX 

DI DESTINATION 
INDEX 

CS CODE 
SEGMENT 

DS DATA 
SEGMENT 

SS STACK 
SEGMENT 

ES EXTRA 
SEGMENT 

Figure 2-10.8080/8085 Register Subset (Shaded) 

LOW MEMORY HIGH MEMORY 

OOOOOH 00001H 00002H 5 {FFFEH FFFFFH 

I111111111 II 111111111 115 SUIIIIIIII I I III 
7 07 07 07 0 

I.. 1 MEGABYTE .. I 

Figure 2-11. Storage Organization Figure 2-12. Instruction and Variable Storage 
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do not take advantage of the 8086's ability to 
transfer 16-bits at a time. Instruction alignment 
does not materially affect the performance of 
either processor. . 

Following Intel convention, word data always is 
stored with the most-significant byte in the higher 
memory location (see figure 2-13). Most of the 
time this storage convention is "invisible" to 
anyone working with the processors; exceptions 
may occur when monitoring the system bus or 
when reading memory dumps. 

A special class of data is stored as doublewords; 
i.e., two consecutive words. These are called 
pointers and are used to address data and code 
that are outside the currently-addressable 
segments. The lower-addressed word of a pointer 
contains an offset value, and the higher-addressed 
word contains a segment base address. Each word 
is stored conventionally with the higher-addressed 
byte containing the most-significant eight bits of 
the word (see figure 2-14). 

VALUE OF WORD STORED AT 724H: 5502H 

Figure 2-13. Storage of Word Variables 

Segmentation 

8086 and 8088 programs "view" the megabyte of 
memory space as a group of segments that are 
defined by the application. A segment is a logical 
unit of memory that may be up to 64k bytes long. 
Each segment is made up of contiguous memory 
locations and is an independent, separately­
addressable unit. Every segment is assigned (by 
software) a base address, which is its starting 
location in the memory space. All segments begin 
on 16-bytememory boundaries. There are no 
other restrictions on segment locations; segments 
may be adjacent, disjoint, partially overlapped, 
or fully overlapped (see figure 2-15). A physical 
memory location may be mapped into (contained 
in) one or more logical segments. 

The segment registers point to (contain the base 
address values of) the four currently addressable 
segments (see figure 2-16). Programs obtain 
access to code and data in other segments by 
changing the segment registers to point to the 
desired segments. 

Every application will define and use segments 
differently. The currently addressable segments 
provide a generous work space: 64k bytes for 
code, a 64k byte stack and 128k bytes of data 
storage. Many applications can be written to 
simply initialize the segment registers and then 
forget them. Larger applications should be 
designed with careful consideration given to seg­
ment definition. 

VALUE OF POINTER STORED AT 4H: 
SEGMENT BASE ADDRESS: 3B4CH 
OFFSET:65H 

Figure 2-14. Storage of Pointer Variables 
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Figure 2-15. Segment Locations in Physical Memory 

FFFFFH 

~--

The segmented structure of the 8086/8088 
memory space supports modular software design 
by discouraging huge, monolithic programs. The 
segments also can be used to advantage in many 
programming situations. Take, for example, the 
case of an editor for several on-line terminals. A 
64k text buffer (probably an extra segment) could 
be assigned to each terminal. A single program 
could maintain all the buffers by simply changing 
register ES to point to the buffer of the terminal 
requiring service. 

~-I 

~I I 
I 

h I I 
I I 

I 
1 L I 
I 
L_ 

OH 

D 

Physical Address Generation 

It is useful to think of every memory location as 
having two kinds of addresses, physical and 
logical. A physical address is the 20-bit value that 
uniquely identifies each byte location in the 
megabyte memory space. Physical addresses may 
range from OH through FFFFFH. All exchanges 
between the CPU and memory components use 
this physical address. 

Figure 2-16. Currently Addressable Segments 

Programs deal with logical, rather than physical 
addresses and allow code to be developed without 
prior knowledge of where the code is to be located 
in memory and facilitate dynamic management of 
memory resources. A logical address consists of a 
segment base value and an offset value. For any 
given memory location, the segment base value 
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locates the first byte of the containing segment 
and the offset value is the distance, in bytes, of 
the target location from the beginning of the 
segment. Segment base and offset values are 
unsigned 16-bit quantities; the lowest-addressed 
byte in a segment has an offset of O. Many dif­
ferent logical addresses can map to the same 
physical location as shown in figure 2-17. In 
figure 2-17, physical memory location 2C3 H is 
contained in two different overlapping segments, 
one beginning at 2BOH and the other at 2COH. 

Whenever the BIU accesses memory-to fetch an 
instruction or to obtain or store a variable-it 
generates a physical address from a logical 
address. This is done by shifting the segment base 
value four bit positions and adding the offset as 
illustrated in figure 2-18. Note that this addition 
process provides for modulo 64k addressing 
(addresses wrap around from the end of a seg­
ment to the beginning of the same segment). 

The BIU obtains the logical address of a memory 
location from different sources depending on the 
type of reference that is being made (see table 

PHYSICAL 
ADDRESS 

LOGICAL 
ADDRESSES ~ 

r 

SEGMENT 
BASE 

'- SEGMENT 
BASE 

2-2). Instructions always are fetched from the cur­
rent code segment; IP contains the offset of the 
target instruction from the beginning of the seg­
ment. Stack instructions always operate on the 
current stack segment; SP contains the offset of 
the top of the stack; Most variables (memory 
operands) are assumed to reside in the current 
data segment, although a program can instruct 
the BIU to access a variable in one of the other 
currently addressable segments. The offset of a 
memory variable is calculated by the EU. This 
calculation is based on the addressing mode 
specified in the instruction; the result is called the 
operand's effective address (EA). Section 2.8 
covers addressing modes and effective address 
calculation in detail. 

Strings are addressed differently than other 
variables. The source operand of a string instruc­
tion is assumed to lie in the current data segment, 
but another currently addressable segment may be 
specified. Its offset is taken from register SI, the 
source index register. The destination operand of 
a string instruction always resides in the current 
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Figure 2-17. Logical and Physical Addresses 
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Figure 2-18. Physical Address Generation 

Table 2-2. Logical Address Sources 

DEFAULT 
TYPE OF MEMORY REFERENCE SEGMENT 

BASE 

Instruction Fetch CS 
Stack Operation SS 
Variable (except following) OS 
String Source OS 
String Destination ES 
BP Used As Base Register SS 

extra segment; its offset is taken from DI, the 
destination index register. The string instructions 
automatically adjust SI and DI as they process the 
strings one byte or word at a time. 

When register BP, the base pointer register, is 
designated as a base register in an instruction, the 
variable is assumed to reside in the current stack 
segment. Register BP thus provides a convenient 
way to address data on the stack; BP can be used, 
however, to access data.in any of the other cur­
rently addressable segments. 

In most cases, the BIU's segment assumptions are 
a convenience to programmers. It is possible, 
however, for a programmer to explicitly direct the 
BIU to access a variable in any of the currently 
addressable segments (the only exception is the 
destination operand of a string instruction which 
must be in the extra segment). This is done by 
preceding an instruction with a segment override 
prefix. This one-byte machine instruction tells the 
BIU which segment register to use to access a 
variable referenced in the following instruction. 
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ALTERNATE 
SEGMENT OFFSET 

BASE 

NONE IP 
NONE SP 

CS,ES,SS Effective Address 
CS,ES,SS SI 

NONE 01 
CS,OS,ES Effective Address 

Dynamically Relocatable Code 

The segmented memory structure of the 8086 and 
8088 makes it possible to write programs that are 
position-independent, or dynamically relocatable. 
Dynamic relocation allows a multiprogramming 
or multitasking system to make particularly effec­
tive use of available memory. Inactive programs 
can be written to disk and the space they occupied 
allocated to other programs. If a disk-resident 
program is needed later, it can be read back into 
any available memory location and restarted. 
Similarly, if a program needs a large contiguous 
block of storage, and the total amount is available 
only in nonadjacent fragments, other program 
segments can be compacted to free up a con­
tinuous space. This process is shown graphically 
in figure 2-19. 

In order to be dynamically relocatable, a program 
must not load or alter its segment registers and 
must not transfer directly to a location outside the 
current code segment. In other words, all offsets 
in the program must be relative to fixed values 
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BEFORE RELOCATION AFTER RELOCATION 
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DATA CODE 
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DATA 
SEGMENT 

EXTRA EXTRA 
SEGEMENT SEGMENT 

~FREESPACE 

Figure 2-19. Dynamic Code Relocation 

contained in the segment registers. This allows the 
program to be moved anywhere in memory as 
long as the segment registers are updated to point 
to the new base addresses. Section 2.10 contains 
an example that illustrates dynamic code 
relocation. 

Stack Implementation 

Stacks in the 8086 and 8088 are implemented in 
memory and are located by the stack segment 
register (SS) and the stack pointer register (SP). A 
system may have an unlimited number of stacks, 
and a stack may be up to 64k bytes long, the max­
imum length of a segment. (An attempt to expand 
a stack beyond 64k bytes overwrites the beginning 
of the stack.) One stack is directly addressable at 
a time; this is the current stack, often referred to 
simply as "the" stack. SS contains the base 
address of the current stack and SP points to the 
top of the stack (TOS). In other words, SP con­
tains the offset of the top of the stack from the 
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stack segment's base address. Note, however, that 
the stack's base address (contained in SS) is not 
the "bottom" of the stack. 

8086 and 8088 stacks are 16 bits wide; instructions 
that operate on a stack add and remove stack 
items one word at a time. An item is pushed onto 
the stack (see figure 2-20) by decrementing SP by 
2 and writing the item at the new TOS. An item is 
popped off the stack by copying it from TOS and 
then incrementing SP by 2. In other words, the 
stack grows down in memory toward its base 
address. Stack operations never .move items on 
the stack, l).or do they erase them. The top of the 
stack changes only as a result of updating the 
stack pointer. . 

Dedicated and Reserved Memory 
Locations 

Two areas in extreme low and high memory. are 
dedicated, to specific processor functions or are 
reserved by Intel Corporation for use by Intel 
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Figure 2-20. Stack Operation 

hardware and software products. As shown in 
figure 2-21, the location are: OH throgh 7FH (128 
bytes) and FFFFOH through FFFFFH (16 bytes). 
These areas are used for interrupt and system 
reset processing 8086 and 8088 application 
systems should not use these areas for any other 
purpose. Doing so may make these systems 
incompatible with future Intel products. 

8086/8088 Memory Access 
Differences 

The 8086 can access either 8 or 16 bits of memory 
at a time. If an instruction refers to a word 
variable and that variable is located at an even­
numbered address, the 8086 accesses the complete 
word in one bus cycle. If the word is located at an 
odd-numbered address, the 8086 accesses the 
word one byte at a time in two consecutive bus 
cycles. 

To maximize throughput in 8086-based systems, 
16-bit data should be stored at even addresses 
(should be word-aligned). This is particularly true 
of stacks. Unaligned stacks can slow a system's 
response to interrupts. Nevertheless, except for 
the performance penalty, word alignment is 
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totally transparent to software. This allows max­
imum data packing where memory space is 
constrained. 

The 8086 always fetches the instruction stream in 
words from· even addresses except that the first 
fetch after a program transfer to an odd address 
obtains a byte. The instruction stream is 
disassembled inside the processor and instruction 
alignment will not materially affect the per­
formance of most systems. 

The 8088 always accesses inemory in bytes. Word 
operands are accessed in two bus cycles regardless 
of their alignment. Instructions also are fetched 
one byte at a time. Although alignment of word 
operands does not affect the performance of the 
8088, locating 16-bit data on even addresses will 
insure maximum throughput if the system is ever 
transferred to an 8086. 

2.4 Input/Output 

The 8086 and 8088 have a versatil.~ se( of in­
put/output facilities. Both processors provide a 
large I/O space that is, separate from the memory 

Mn,emonics © Intel, 1978 
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Figure 2-21. Reserved and Dedicated Memory 
and 110 Locations 

space, and instructions that transfer data between 
the CPU and devices located in the I/O space. 
I/O devices also may be placed in the memory 
space to bring the power of the full instruction set 
and addressing modes to input/output pro~ 
cessing. For high-s'peed transfers, the CPUs may 
be used with traditional direct memory' access 
controllers or the 8089 Input/Output Processor. 

InputlOutput Space 

The 8086/8088 I/O space can accommodate up to 
64k 8-bit ports or up to 32k 16-bit ports. The IN 
and OUT (input and output) instructions transfer 
data between the accumulator (AL for byte 
transfers, AX for word transfers) and ports 
located in the I/O space. 

The I/O space is not segmented; to access a port, 
the BIU simply places the port address (0-64k) on 
the lower 16 lines of the address bus. Different 
forms of the I/O instructions allow the address to 
be specified as a fixed value in the instruction or 
as a variable taken from register OX: 
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Restricted 1/0 Locations 

Locations F8H through FFH (eight of the 64k 
locations) in the I/O space are reserved by Intel 
Corporation for use by future Intel hardware and 
software products. Usirig these locations for any 
other purpose may inhibit compatibility with 
future Intel products. 

8086/80881/0 Access Differences 

The 8086 can transfer either 80r 16 bits at a time 
to a device located in the I/O space. A 16-bit 
device should be located at an even address so 
that the word will be transferred in a single bus 
cycle. An 8-bit device may be located at either an 
even or odd address; however, the internal 
registers in a given device must be assigned all­
even or all-odd addresses. 

The 8088 transfers one byte per bus cycle. If a 
16-bit device is used in the 8088 I/O space, it must 
be capable of transferring words in the same 
fashion, Le., eight bits at a time in two bus cycles. 
(The 8089 Input/Output Processor can provide a 
straightforward interface between the 8088 and a 
16-bit I/O device.) An 8-bit device may be located 
at odd or even addresses in the 8088 I/O space 
and internal registers may be assigned consecutive 
addresses (e.g., IH, 2H, 3H). Assigning all-odd 
or all-even addresses to these registers, however, 
will'simplify transferring the system to an 8086 
CPU.' 

Memory-Mapped 1/0 

I/O devices also may be placed in the 8086/8088 
memory space. As long as the devices respond like 
memory components, the CPU does not know the 
difference. 

Memory-mapped I/O provides additional pro­
gramming flexibility. Any instruction that 
references memory may be used to access an I/O 
port located in the memory space. For example, 
the MOV (move) instruction can transfer' data 
between any 8086/8088 register and a port, or the 
AND, OR and TEST instructions may be used to 
manipulate bits in I/O device registers. In addi­
tion, memory-mapped I/O can take advantage of 
the 8086/8088 memory addressing modes. A 
group of terminals, for example, could be treated 
as an array in memory with an index register 
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selecting a terminal in the array. Sectian 2.10 pra­
vides examples af using the instructian set and 
addressing mades with memory-mapped 110. 

Of course, a price must be paid for the added pro­
gramming flexibility that memory-mapped 110 
provides. Dedicating part of the ni.emory space to 
I/O devices reduces the number of addresses 
available for memory, althaugh with a megabyte 
af memory space this should rarely be a con­
straint. Memary reference instructions also take 
langer to. execute and are samewhat less compact 
than the simpler IN and OUT instructions. 

Direct Memory Access 

When configured in minimum mode, the 8086 
and 8088 pravide HOLD (hold) and HLDA (hald 
acknowledge) signals that are campatible with 
traditianal DMA controllers such as the 8257 and 
8237. A DMA controller can request use af the 
bus for direct transfer af data between an 110 
device and memory by activating HOLD. The 
CPU will complete the current bus cycle, if one is 
in progress, and then issue HLDA, granting the 
bus to the DMA controller. The CPU will not 
attempt to use the bus until HOLD goes inactive. 

The 8086 addresses memory that is physically 
organized in two separate banks, ane containing 
evencaddressed bytes and ane containing odd-ad­
dressed. bytes. An 8-bit DMA controller must 
alternately select these banks to access logically 
adjacent bytes in memory. The 8089 provides a 
simple way to interface a high-speed 8-bit device 
to. an 8086-based system (see Chapter 3). 

8089 Input/Output Processor (lOP) 

The 8086 and 8088 are designed. to be used with 
the 8089 in high-performance 110 applications. 
The 8089 conceptually resembles a 
microprocessor with two DMA channels and an 
instruction set specifically tailored for I/O opera­
tions. Unlike simple DMA controllers, the 8089 
can service II 0 devices directly, removing this 
task from the CPU. In addition,it can transfer 
data on its own bus or on the system bus, can 
match 8- or 16-bit peripherals to 8- or 16-bit 
buses, and can transfer data from· memory to 
memory and from 110 device to 110 device. 
Chapter 3 describes the 8089 in detail. 
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2.5 Multiprocessing Features 

As micropracessor prices have declined, 
multiprocessing (using two or more coardinated 
processors in a system) has become an increas­
ingly attractive design alternative. Performance 
can be substantially improved by distributing 
system tasks among separate, concurrently exe­
cuting processors. In addition, multiprocessing 
encourages a modular appraach to design, usually 
resulting in systems that are more easily main­
tained and enhanced. For example, figure 2-22 
shows a multiprocessor system in which 110 
activities have been delegated to an 8089 lOP. 
Should an 110 device in the system be changed 
(e.g., a hard disk substituted for a floppy), the 
impact af the modification is confined to the 110 
subsystem and is transparent to the CPU and to 
the application software. . 

The 8086 and 8088 are designed for the 
multiprocessing environment. They have built-in 
features that help solve the coordination prob­
lems that have discouraged multipracessing 
system develapment in the past. 

Bus Lock 

When configured in maximum mode, the 8086 
and 8088 provide the LOCK (bus lock) signal. 
The BIU activates LOCK when the EU executes 
the one-byte LOCK prefix instruction. The 
LOCK signal remains active throughout execu­
tian of the instruction that follows the LOCK 
prefix. Interrupts are not affected by the LOCK 
prefix. If anather processar requests use of the 
bus (via the request/grant lines, which are 
discussed shortly), the CPU records the request, 
but does not honor it until execution of the locked 
instruction has been completed. 

Note that the LOCK signal remains active for the 
duration af a single instruction. If two con­
secutive instructions are each preceded by a 
LOCK prefix, there will still be an unlocked 
periad between these instructions. In the case of a 
locked repeated string instruction, LOCK does 
remain active for the duration of the block 
operation. 

When the 8086 or 8088 is canfigured in minimum 
mode, the LOCK signal is not available. The 
LOCK prefix can be used, however, to delay the 
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Figure 2-22. Multiprocessing System 

generation of an HLDA response to a HOLD 
request until execution of the locked instruction is 
completed. 

The LOCK signal provides information only. It is 
the, responsibility of other processors on the 
shared bus to not attempt to obtain the bus while 
LOCK is active. If the system uses 8289 Bus 
Arbiters to control access to the shared bus, the 
8289's accept LOCK as an input and do not relin­
quish the bus while this signal is active. 

LOCK may be used in multipr~cessing systems to 
coordinate access to a common resource, such as 
a buffer or a pointer. If access to the resource is 
not controlled, one processor can read an 
erroneous value from the resource when another 
processor is updating it (see figure 2-23). 

Access can be controlled (see figure 2-24) by using 
the LOCK prefix in conjunction with the XCHG 
(exchange register with memory) instruction. The 
basis for controlling access to a given resource is a 
semaphore, a software-settable flag or switch that 
indicates whether the resource is "available" 
(semaphore=O) or "busy" (semaphore=I). Pro­
cessorsthat share the bus agree by convention not 
to use 'the resource unless the semaphore indicates 
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that it is available. They likewise agree to set the 
semaphore when they are using the resource and 
to clear it when they are finished. 

The XCHG instruction can obtain the current 
value of the semaphore and set it to "busy" in a 
single instruction. The instruction, however, 
requires two bus cycles to swap 8-bit values. It is 
possible for another processor to obtain the bus 
between these two cycles and to gain access to the 
partially-updated semaphore. This can be 
prevented by preceding the XCHG instruction 
with a LOCK prefix, as illustrated in figure 2-25. 
The bus lock establishes control over access to the 
semaphore and thus to the shared resource. 

WAIT and TEST 

The 8086 and 8088 (in either maximum or 
minimum mode) can be synchronized to an exter­
nal event with the WAIT (wait for TEST) instruc­
tion and the TEST input signal. When the EU 
executes aWAIT instruction, the result depends 
on the, state of the TEST input line. If TEST is 
inactive, the processor enters' an idle state and 
repeatedly retests the TEST line at five-clock 
intervals. If TEST is active, execution continues 
with the instruction following the WAIT. 
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Escape 

The ESC (escape) instruction provides a way for 
another processor to obtain an instruction and lor 
a memory operand from an 8086/8088 program. 
When used in conjunction with WAIT and TEST, 
ESC can initiate a "subroutine" that executes 
concurrently in another processor (see figure 
2-26). 

Six bits in the ESC instruction may be specified by 
the programmer when the instruction is written. 
By monitoring the 8086/8088 bus and control 
lines, another processor can capture the ESC 
instruction when it is fetched by the BIU. The six 
bits may then direct the external processor to per­
form some predefined activity. 

Figure 2-23. Uncontrolled Access to Shared 
Resource 

If the 8086/8088 is configured in maximum 
mode, the external processor, having determined 
that an ESC has been fetched, can monitor QSO 

SHARED POINTER 
BUSCYCLE SEMAPHORE IN MEMORY PROCESSOR ACTIVITIES 

0 I 05 I 2214C 11 B 

I 05 I 2214C 11 B 
"A" OBTAINS EXCLUSIVE 
USE 

2 IC21 5914C 118 "A" UPDATES 1 WORD 

IC2 1S914C 118 
"B" TESTS SEMAPHORE 
AND WAITS 

4 I C2 1 59 131 '1 05 "A" COMPLETES UPDATE 

IC2159131105 
"B" TESTS SEMAPHORE 
AND WAITS 

6 0 IC21 59.131 105 "A" RELEASES RESOURCE 

7 IC2159131 105 
"B" OBTAINS 
EXCLUSIVE USE 

8 I C2 1 59 131 I 05 
"B" READS 
UPDATED VALUE 

9 0 I C2 I 59 131 I 05 "B" RELEASES RESOURCE 

Figure 2-24. Controlled Access to Shared Resource 
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and QSl (the queue status lines, discussed in sec­
tion 2.6) and determine when the ESC instruction 
is executed. If the instruction references memory 
the external processor can then monitor the bus 
and capture the operand's physical address 
and I or the operand itself. 

Note that fetching an Esci~struction is not tan'~ 
tamount to executing iL . Tile ESC may be pre­
ceded by a jump that·,causes the queue to be 
reinitialized. This event also can be determined 
from the queue status lines. 

Request/Grant Lines 

SET MOV SEMAPHORE,O 

When the 8086 or 8088 is configured in maximum 
mode, the HOLD and HLDA lines evolve into 
two more sophisticated signals called RQ/GTO 
and RQ/GTI. These are bidirectional lines that 
can be used to share a local bus between an 8086 
or 8088 and two other processors via ahandshake 
sequence. SEMAPHORE 

"AVAILABLE" 

( EXIT) 

Figure 2-25. Using XCHG and LOCK 

The request/grant sequence is a three-phase cycle: 
request, grant and release. First, the processor 
desiring the bus pulses a request/grant line. The 
CPU returns a pulse on the same line indicating 
that it is entering the "hold acknowledge" state 
and is relinquishing the bus. The BIU is logically 
disconnected from the bus during this period. The 

PROCESSOR 
"A" 

Figure 2-26. Using ESC with WAIT and TEST 
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EU, however, will continue to execute instruc­
tions until an instruction requires bus access or 
the queue is emptied, whichever occurs first. 
When the other processor has finished with the 
bus, it sends a final pulse to the 8086/8088 in­
dicating that the request has ended and that the 
CPU may reclaim the bus. 

RQ/GTO has higher priority than RQ/GTI. If 
requests arrive simultaneously on both lines, the 
~nt~es to the processor on RQ/GTO and 
RQ/GTl is acknowledged after the bus has been 
returned to the CPU. If, however, a request 
arrives on RQ/GTO while the CPU is processing a 
prior request on RQ/GTl, the second r~est is 
not honored until the processor on RQ/GTl 
releases the bus. 

Multibus™ Architecture 

Intel has designed a general-purpose 
mUltiprocessing bus called the Multibus. This is 
the standard design used in iSBCTM single-board 
microcomputer products. Many other manufac­
turers offer products that are compatible with the 
Multibus architecture as well. When the 8086 and 
8088 are configured in maximum mode, the 8288 
Bus Controller outputs signals that are electrically 
compatible with the Multibus protocol. Designers 
of mUltiprocessing systems may want to consider 
using the Multibus architecture in the design of 
their products to reduce development cost and 

MASTER 

MASTER 
WITH 

BUS-ACCESSIBLE 
MEMORY 

time, and to obtain compatibility with the wide 
variety of boards available in the iSBC product 
line. 

The Multibus architecture provides a versatile 
communications channel that can be used to coor­
dinate a wide variety of computing modules (see 
figure 2-27). Modules in a Multibus system are 
designated as masters or slaves. Masters may 
obtain use of the bus and initiate data transfers on 
it. Slaves are the objects of data transfers only. 
The Multibus architecture allows both 8- and 16-
bit masters to be intermixed in a system. In addi­
tion to 16 data lines, the bus design provides 20 
address lines, eight multilevel interrupt lines, and 
control and arbitration lines. An auxiliary power 
bus also is provided to route standby power to 
memories if the normal supply fails. 

The Multibus architecture maintains its own 
clock, independent of the clocks of the modules it 
links together. This allows different speed masters 
to share the bus and allows masters to operate 
asynchronously with respect to each other. The 
arbitration logic of the bus permit slow-speed 
masters to compete equably for use of the bus. 
Once a module has obtained the bus, however, 
transfer speeds are dependent only on the 
capabilities of the transmitting and receiving 
modules. Finally, the Multibus standard defines 
the form factors and physical requirements of 
modules that communicate on this bus. For a 
complete description of the Multibus architec-

MEMORY SLAVE I/O SLAVE 

MUlTIBUSTM INTERFACE 

Figure 2-27. Multibus TM-Based System 
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ture, refer to the Intel Multibus Specification 
(document number 9800683) and Application 
Note 28A, "Intel Multibus Interfacing." 

8289 Bus Arbiter 

Multiprocessor systems require a means of coor­
dinating the processors' use of the shared bus. 
The 8289 Bus Arbiter works in conjunction with 
the 8288 Bus Controller to provide this control 
for 8086- and 8088-based systems. It is compati­
blewith the Multibus architecture and can be used 
in other shared-bus designs as well. 

The 8289 eliminates race conditions, resolves bus 
contention and matches processors operating 
asynchronously with respect to each bther. Each 
processor on the bus is assigned a different pri­
ority. When simultaneous requests for the bus 
arrive, the 8289 resolves the contention and grants 
the bus to the processor with,the highest priority; 
three different prioritizing techniques may be 
used. Chapter 4 discusses the 8289 in more detail. 

2.6 Processor Control and 
Monitoring 

Interrupts 

The 8086 and 8088 have a simple and versatile 
interrupt system.' Every interrupt is assigned a 
type code that identifies it to the CPU. The 8086 

I NON·MASKABLE 
INTERRUPT 
REQUEST 

NMI 
I 

and 8088 can handle up to 256 different interrupt 
types. Interrupts may be initiated by devices 
external to the CPU; in addition, they also maybe 
triggered by software interrupt instructions and, 
under certain conditions, by the CPU itself (see 
figure 2-28). Figure 2-29 illustrates the basic 
response of the 8086 and 8088 to an interrupt. 
The next sections elaborate on the information 
presented in this drawing. 

External Interrupts 

The 8086 and 8088 have two lines that external 
devices may use to signal interrupts (INTR and 
NMI). The INTR (Interrupt Request) line is 
usually driven by an Intel® 8259A Programmable 
Interrupt Controller (PIC), which is in turn con­
nected to the devices that need interrupt services. 
The 8259A is a very flexible circuit that is con­
trolled by software commands from the 8086 or 
8088 (the PIC appears as a set of I/O ports to the 
software). Its main job is to accept interrupt 
requests from the devices attached to it, deter­
mine which requesting device has the highest 
priority, and then activate the 8086/8088 INTR 
line if the selected device has higher priority than 
the device currently being serviced (if there is 
one). 

When INTR is active, the CPU takes different 
action depending on the state of the interrupt­
enable flag (IF). No action takes place, however, 
until the currently-executing instruction has been 

--r 
I 

-------- ---------, -I 
I 

INTERRUPT INTR 8259A 
LOGIC 

I 

Lt t+ I 
I I I 

I 
I 
I 
I 

SINGLE· I 
INTn INTO DIVIDE STEP I INSTR. INSTR. ERROR (TF=1) I 

I 
I 
I 
I 
I I 
L 80S6/S08S CPU I 
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Figure 2-28. Interrupt Sources 
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Figure 2-29. Interrupt Processing Sequence 
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completed. * Then, if IF is clear (meaning that 
interrupts signaled on INTR are masked or dis­
abled), the CPU ignores the interrupt request and 
processes the next instruction. The INTR signal is 
not latched by the CPU, so it must be held active 
until a response is received or the request is 
withdrawn. If interrupts on INTR are enabled (if 
IF is set), then the CPU recognizes the interrupt 
request and processes it. Interrupt requests arriv­
ing on INTR can be enabled by executing an STI 
(set interrupt-enable flag) instruction, and dis­
abled by executing a CLI (clear interrupt-enable 
flag) instruction. They also may be selectively 
masked (some types enabled, some disabled) by 
writing commands to the 8259A. It should be 
noted that in order to reduce the likelihood of 
excessive stack buildup, the STI and IRET 
instructions will reenable interrupts only after 
the end of the following instruction. 

The CPU acknowledges the interrupt request by 
executing two consecutive interrupt acknowledge 
(lNT A) bus cycles. If a bus hold request arrives 
(via the HOLD or request/grant lines) during the 
INT A cycles, it is not honored until the cycles 
have been completed. In addition, if the CPU is 
configured in maximum mode, it activates the 
LOCK signal during these cycles to indicate to 
other processors that they should not attempt to 
obtain the bus. The first cycle signals the 8259A 
that the request has been honored. During the 
second INT A cycle, the 8259A responds by plac­
ing a byte on the data bus that contains the inter­
rupt type (0-255) associated with the device 
requesting service. (The type assignment is made 
when the 8259A is initialized by software in the 
8086 or 8088.) The CPU reads this type code and 
uses it to call the corresponding interrupt 
procedure. 

An external interrupt request also may arrive on 
another CPU line, NMI (non-maskable inter­
rupt). This line is edge-triggered (lNTR is level­
triggered) and is generally used to signal the CPU 
of a "catastrophic" event, such as the imminent 
loss of power, memory error detection or bus 
parity error. Interrupt requests arriving on NMI 
cannot be disabled, are latched by the CPU, and 
have higher priority than an interrupt request on 
INTR. If an interrupt request arrives on both 
lines during the execution of an instruction, NMI 
will be recognized first. Non-maskable interrupts 
are predefined as type 2; the processor does not 
need to be supplied with a type code to call the 
NMI procedure, and it does not run the INT A bus 
cycles in response to a request on NMI. 

The time required for the CPU to recognize an 
external interrupt request (interrupt latency) 
depends on how many clock periods remain in the 
execution of the current instruction. On the 
average, the longest latency occurs when a 
multiplication, division or variable-bit shift or 
rotate instruction is executing when the interrupt 
request arrives (see section 2.7 for detailed 
instruction timing data). As mentioned pre­
viously, in a few cases, worst-case latency will 
span two instructions rather than one. 

Internal Interrupts 

An INT (interrupt) instruction generates an inter­
rupt immediately upon completion of its execu­
tion. The interrupt type coded into the instruction 
supplies the CPU with the type code needed to 
call the procedure to process the interrupt. Since 
any type code may be specified, software inter­
rupts may be used to test interrupt procedures 
written to service external devices. 

"There are a few cases in which an interrupt request is not recognized until after the following instruction. Repeat, LOCK 
and segment override prefixes are considered "part of" the instructions they prefix; no interrupt is recognized between 
execution of a prefix and an instruction. A MOV (move) to segment register instruction and a POP segment register 
instruction are treated similarly: no interrupt is recognized until after the following instruction. This mechanism protects 
a program that is changing to a new stack (by updating SS and SP). If an interrupt were recognized after SS had be€n 
changed, but before SP had been altered, the processor would push the flags, CS and IP into the wrong area of memory. 
It follows from this that whenever a segment register and another value must be updated together, the segment register 
should be changed first, followed immediately by the instruction that changes the other value. There are also two cases, 
WAIT and repeated string instructions, where an interrupt request is recognized in the middle of an instruction. In these 
cases, interrupts are accepted after any completed primitive operation or wait test cycle. 
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If the overflow flag (OF) is set, an INTO (inter­
rupt on overflow) instruction generates a type 4 
interrupt immediately upon completion of its 
execution. 

The CPU itself generates a type 0 interrupt 
immediately following execution of a DIV or 
IDIV (divide, integer divide) instruction if the 
calculated quotient is larger than the specified 
destination. 

If the trap flag (TF) is set, the CPU automatically 
generates a type 1 interrupt following every 
instruction. This is called single-step execution 
and is a powerful debugging tool that is discussed 
in more detail shortly. 

All internal interrupts (INT, INTO, divide error, 
and single-step) share these characteristics: 

1. The interrupt type code is either contained in 
the instruction or is predefined. 

AVAILABLE 
INTERRUPT 
POINTERS 
1224) 

084H 
I- TYPE 33 POINTER: 

(AVAILABLE) 

I-
TYPE 32 POINTER: 

(AVAILABLE) 
080H 
07FH 

I- TYPE 31 POINTER: 
(RESERVED) 

RESERVED 
INTERRUPT 
POINTERS 
(27) 

TYPE 5 POINTER: -
014H 

(RESERVED) 

- TYPE 4 POINTER: 
OVERFLOW 

010H 

2. No INT A bus cycles are run. 

3. Internal interrupts cannot be disabled, except 
for single-step. 

4. Any internal interrupt (except single-step) 
has higher priority than any external inter­
rupt (see table 2-3). If interrupt requests 
arrive on NMI and/or INTR during execu­
tion of an instruction that causes an internal 
interrupt (e.g., divide error), the internal 
interrupt is processed first. 

Interrupt Pointer Table 

The interrupt pointer (or interrupt vector) table 
(figure 2-30) is the link between an interrupt type 
code and the procedure that has been designated 
to service interrupts associated with that code. 
The interrupt pointer table occupies up to the first 
1 k bytes of low memory. There may be up to 256 
entries in the table, one for each interrupt type 

r 

-
-
-

" 
I" 

-
-

..., TYPE 3 POINTER: .• 7' 
I-BYTE INT INSTRUCTION 

DEDICATED 
OOCH 

INTERRUPT 
POINTERS - TYPE 2 POINTER: -NON-MASKABLE 
(5) 008H 

TYPE 1 POINTER: - SINGLE-STEP -
004H 

- TYPE 0 POINTER: -DIVIDE ERROR 

CS BASE ADDRESS 

IP OFFSET 

Figure 2-30. Interrupt Pointer Table 
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that can occur in the system. Each entry in the 
table is a doubleword pointer .containing the 
address of the procedure thatis to service inter­
rupts of that type. The higher-addressed word of 
the pointer contains the base address of the seg­
ment containing the procedure. The lower-ad­
dressed word contains the procedure's offset 
from the beginning of the seginenL Since each 
entry is four bytes long, the CPU can calculate the 
location of the correct entry for a given interrupt 
type by simply multiplying(type*4). 

Table 2-3. Interrupt Priorities 

INTERRUPT PRIORITY 

Divide error, INT n, INTO highest 
NMI 
INTR 
Single-step lowest 

Space at the high end of the table that would be 
occupied by entries for interrupt types that cannot 
occur in a given application may be used for other 
purposes. The dedicated and reserved portions of 
the interrupt pointer table (locations OH through 
7FH), however, should not be used for any other 
purpose to insure proper system operation and to 
preserve compatibility with future Intel hardware 
and software products. 

After pushing the flags onto the stack, the 8086 or 
8088 activates an interrupt procedure by exe­
cuting the equivalent of an intersegment indirect 
CALL instruction. The target of the "CALL" is 
the address contained in the interrupt pointer 
table element located at (type*4). The CPU saves 
the address of the next instruction by pushing CS 
and IP onto the stack. These are then replaced by 
the second and first words of the table element, 
thus transferring control to the procedure. 

If mUltiple interrupt requests arrive simulta­
neously, the processor activates the interrupt pro­
cedures in priority order. Figure 2-31 shows how 
procedures would be activated in an extreme case. 
The processor is running in single-step mode with 
external interrupts enabled. During execution of a 
divide instruction, INTR is activated. Further­
more the instruction generates a divide error 
interrupt. Figure 2-31 shows that the interrupts 
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are recognized in turn, in the order of their 
priorities except for INTR. INTR is notrecog­
nized until after the following instruction because 
recognition of the earlier interrupts cleared IF. Of 
couse interrupts could be reenabled in any of the 
interrupt response routines if earlier response to 
INTR is desired. 

As 'figure 2c31 shows, all main-line .code is exe" 
cuted in single-step mode. Also, because of the 
order of interrupt processing, the opportunity 
exists in each occurrence of the single-step routine 
to select whether· pending interrupt routines 
(divide error and INTR routines in this example) 
are executed at full speed orin sirigle-stepmode. 

Interrupt Procedures 

When an interrupt service procedure is entered, 
. the flags, CS, and IP are pushed onto the stack 
and TF and IF are cleared. The procedure may 
reenable external interrupts with the STI (set 
interrupt-enable flag) instruction, thus allowing 
itself to be interrupted by a request on INTR. 
(Note, however, that interrupts are not actually 
enabled until the instruction following STI has 
ex'ecuted.) An interrupt procedure always may be 
interrupted by a request arriving on NMI. 
Software- or processor-initiated interrupts 
occurring within the procedure also will interrupt 
the procedure. Care must be taken in interrupt 
procedures that the type of interrupt being ser­
viced by the procedure does not itself inadver­
tently occur within the procedure. For example, 
an attempt to divide by 0 in the divide error (type 
0) interrupt procedure may result in the procedure 
being reentered endlessly. Enough stack space 
must be available to accommodate the maximum 
depth of interrupt nesting that can occur in the 
system. 

Like all procedures, interrupt procedures should 
save any registers they use before updating them, 
imdrestore them before terminating. It is good 
practice for an interrupt procedure to enable 
external interrupts for all but "critical sections" 
of code (those sections that cannot be interrupted 

., without risking erroneous results). If external 
interrupts are disabled for too long in a pro­
cedure, interrupt requests on INTR can poten­
tially be lost. 
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Figure 2-31. Processing Simultaneous Interrupts 
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All interrupt procedures should be terminated 
with an IRET (interrupt return) instruction. The 
IRET instruction assumes that the stack is in the 
same condition as it was when the procedure was 
entered. It pops the top three stack words into IP, 
CS and the flags, thus returning to the instruction 
that was about to be executed when the interrupt 
procedure was activated. 

The actual processing done by the procedure is 
dependent upon the application. If the procedure 
is servicing an external device, it should output a 
command to the device instructing it to remove its 
interrupt request. It might then read status 
information from the device, determine the cause 
of the interrupt and then take action accordingly. 
Section 2.10 contains three typical interrupt pro­
cedure examples. 

Software-initiated interrupt procedures may be 
used as service routines ("supervisor calls") for 
other programs in the system. In this case, the 
interrupt procedure is activated when a program, 
rather than an external device, needs attention. 
(The "attention" might be to search a file for a 
record, send a message to another program, 
request an allocation of free memory, etc.) Soft­
ware interrupt procedures can be advantageous in 
systems that dynamically relocate programs dur­
ing execution. Since the interrupt pointer table is 
at a fixed storage location, procedures may 
"call" each other through the table by issuing 
software interrupt instructions. This provides a 
stable communication "exchange" that is 
independent of procedure addresses. The inter­
rupt procedures may themselves be moved so long 
as the interrupt pointer table always is updated to 
provide the linkage from the "calling" program 
via the interrupt type code. 

Single-Step (Trap) Interrupt 

When TF (the trap flag) is set, the 8086 or 8088 is 
said to be in single-step mode. In this mode, the 
processor automatically generates a type 1 inter­
rupt after each instruction. Recall that as part of 
its interrupt processing, the CPU automatically 
pushes the flags onto the stack and then clears TF 
and IF. Thus the processor is not. in single-step 
mode when the single-step interrupt procedure is 
entered; it runs normally. When the single-step 
procedure terminates, the old flag image is 
restored from the stack, placing the CPU back 
into single-step mode. 
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Single-stepping is a valuable debugging tool. It 
allows the single-step procedure to act as a "win­
dow" into the system through which operation 
can be observed instruction-by-instruction. A 
single-step interrupt procedure, for example, can 
print or display register contents, the value of the 
instruction pointer (it is on the stack), key 
memory variables, etc., as they change after each 
instruction. In this way the exact flow of a pro­
gram can be traced in detail, and the point at 
which discrepancies occur can be determined. 
Other possible services that could be provided by 
a single-step routine include: 

• Writing a message when a specified memory 
location or I/O port changes value (or equals 
a specified value). 

• Providing diagnostics selectively (only for 
certain instruction addresses for instance). 

• Letting a routine execute a number of times 
before providing diagnostics. 

The 8086 and 8088 do not have instructions for 
setting or clearing TF directly. Rather, TF can be 
changed by modifying the flag-image on the 
stack. The PUSHF and POPF instructions are 
available for pushing and popping the flags 
directly (TF can be set by ORing the flag-image 
with OIOOH and cleared by ANDing it with 
FEFFH). After TF is set in this manner, the first 
single-step interrupt occurs after the first 
instruction following the IRET from the single­
step procedure. 

If the processor is single-stepping, it processes an 
interrupt (either i~ternal or external) as follows. 
Control is passed normally (flags, CS and IP are 
pushed) to the procedure designated to handle the 
type of interrupt that has occurred. However, 
before the first instruction of that procedure is 
executed, the single-step interrupt is "recog­
nized" and control is passed normally (flags, CS 
and IP are pushed) to the type 1 interrupt pro­
cedure. When single-step procedure terminates, 
control returns to the previous interrupt pro­
cedure. Figure 2-31 illustrates this process in a 
case where two interrupts occur when the pro­
cessor is in single-step mode. 

Breakpoint Interrupt 

A type 3 interrupt is.dedicated to the breakpoint 
interrupt. A breakpoint is generally any place in a 
program where normal execution is arrested so 
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that some sort of special processing may be per­
formed. Breakpoints typically are inserted into 
programs during debugging as a way of display­
ing registers, memory locations, etc., at crucial 
points in the program. 

The INT 3 (breakpoint) instruction is one byte 
long. This makes it easy to "plant" a breakpoint 
anywhere in a program. Section 2.10 contains an 
example that shows how a breakpoint may be set 
and how a breakpoint procedure may be used to 
place the processor into single-step mode. 

The breakpoint instruction also may be used to 
"patch" a program (insert new instructions) 
without recompiling or reassembling it. This may 
be done by saving an instruction byte, and replac­
ing it with an INT 3 (CCH) machine instruction. 
The breakpoint procedure would contain the new 
machine instructions, plus code to restore the 
saved instruction byte and decrement IP on the 
stack before returning, so that the displaced 
instruction would be executed after the patch 
instructions. The breakpoint example in section 
2.10 illustrates these principles. 

Note that patching a program requires machine­
instruction programming and should be under­
taken with considerable caution; it is easy to add 
new bugs to a program in an attempt to correct 
existing ones. Note also that a patch is only a tem­
porary measure to be used in exceptional condi­
tions. The affected code should be updated and 
retranslated as soon as possible. 

System Reset 

The 8086/8088 RESET line provides an orderly 
way to start or restart an executing system. When 
the processor detects the positive-going edge of a 
pulse on RESET, it terminates all activities until 
the signal goes low, at which time it initializes the 
system as shown in table 2-4. 

Since the code segment register contains FFFFH 
and the instruction pointer contains OH, the pro­
cessor executes its first instruction following 
system reset from absolute memory location 
FFFFOH. This location normally contains an 
inter segment direct JMP instruction whose target 
is the actual beginning of the system program. 
The LOC-86 utility supplies this JMP instruction 
from information in the program that identifies 
its first instruction. As external (mask able) inter-
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rupts are disabled by system reset, the system 
software should reenable interrupts as soon as the 
system is initialized to the point where they can be 
processed. 

Table 2-4. CPU State Following RESET 

CPU COMPONENT CONTENT 

Flags Clear 
Instruction Pointer OOOOH 
CS Register FFFFH 
OS Register OOOOH 
SS Register OOOOH 
ES Register OOOOH 
Queue Empty 

Instruction Queue Status 

When configured in maximum mode, the 8086 
and 8088 provide information about instruction 
queue operations on lines QSO and QS 1. Table 2-5 
interprets the four states that these lines can 
represent. 

The queue status lines are provided for external 
processors that receive instructions and/or 
operands via the 8086/8088 ESC (escape) instruc­
tion (see sections 2.5 and 2.8). Such a processor 
may monitor the bus to see when an ESC instruc­
tion is fetched and then track the instruction 
through the queue to determine when (and if) the 
instruction is executed. 

asO 

0 

0 

1 

1 

Table 2-5. Queue Status Signals 
(Maximum Mode Only) 

aS1 
QUEUE OPERATION IN LAST 

CLKCYCLE 

0 No operation; default value 

1 First byte of an instruction was 
taken from the queue 

0 Queue was reinitialized 

1 Subsequent byte of an instruction 
was taken from the queue 

Processor Halt 

When the HL T (halt) instruction (see section 2.7) 
is executed, the 8086 or 8088 enters the halt state. 
This condition may be interpreted as "stop all 
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operations until an external interrupt occurs or 
the system is reset." No signals are floated during 
the halt state, and the contentof.the.address and 
data buses is undefined. A bus hold request 
arriving on the HOLD line (minimum mode) or 
either request! grant line (maximum mode) is 
acknowledged normally while the processor is 
halted. 

The halt state can be used when an event prevents 
the system from functioning correctly. An exam­
ple might be a power-fail interrupt. After 
recognizing that loss of power is imminent, the 
CPU could use the remaining time to move 
registers, flags and vital variables to (for example) 
a battery-powered CMOS RAM area and then 
halt until the return of power was signaled by an 
interrupt or system reset. 

Status Lines 

When configured in maximum mode, the 8086 
and 8088 emit eight status signals that can be used 
by external devices. Lines SO, S1 and S2 identify 
the type of bus cycle that the CPU is starting to 
execute (table 2-6). These lines are typically 
decoded by the 8288 Bus Controller. S3 and S4 
indicate which segment register was used to con­
struct the physical address being used in this bus 
cycle (see table 2-7). Line S5 reflects the state of 
the interrupt-enable flag. S6 is always o. S7 is a 
spare line whose content is undefined. 

Table 2-6. Bus Cycle Status Signals 

S2 S1 So TYPES OF BUS CYCLE 

0 a 0 Interrupt Acknowledge 
0 0 1 Read I/O 
0 1 0 Write I/O 
0 1 1 HALT 
1 0 0 Instruction Fetch 
1 0 1 Read Memory 
1 1 0 Write Memory 
1 1 1 Passive; no bus cycle 

Table 2-7. Segment Register Status Lines 

S4 S3 SEGMENT REGISTER 

0 0 ES 
0 1 SS 
1 0 CSor none (I/O or Interrupt Vector) 
1 1 OS 
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2.7 Instruction Set 

The 8086 and 8088 execute exactly the same 
instructions. This· instruction set includes 
equivalents to the instructions typically found in 
previous microprocessors, such as the 8080/8085. 
Significant new operations include: 

• multiplication and division of signed and 
unsigned binary numbers as well as unpacked 
decimal numbers, 

• move, scan and compare operations for 
strings up to 64k bytes in length, 

• non-destructive bit testing, 

• byte translation from one code to another, 

• software-generated interrupts, and 

• a group of instructions that can help 
coordinate the activities of multiprocessor 
systems. 

These instructions treat different types· of 
operands uniformly. Nearly every instruction can 
operate on either byte or word data. Register, 
memory and immediate operands may be 
specified interchangeably.in most instructions (ex­
cept, of course, that immediate values may only 
serve as "source" and not "destination" 
operands). In particular, memory variables can be 
added tO,subtracted from, shifted, compared, 
and so on, in place, without moving them in and 
out of registers. This saves instructions, registers, 
and execution time in assembly language pro­
grams. In high-level languages, where most 
variables are memory based, compilers, such as 
PL/M-86, can produce faster and shorter object 
programs. 

The 8086/8088 instruction set can be viewed as 
existing at two levels: the assembly level and the 
machine level. To the assembly language pro­
grammer, the 8086 and 8088 appear to have a 
repertoire of about 100 instructions. One MOY 
(move) instruction,· for example, transfers a byte 
or a word from a register or a memory location or 
an immediate value to either a register ora 
memory location. The 8086 and 8088 CPUs, 
however, recognize 28 different MOY machine 
instructions ("move byte register to memory," 
"move word immediate to register," etc.). The 
ASM-86 assembler translates the assembly-level 
instructions written by a programmer into the 
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machine-level instructions that are actually exe­
cuted by the 8086 or 8088. Compilers such as 
PLlM-86 translate high-level language statements 
directly into machine-level instructions. 

The two levels of the instruction set address two 
different requirements: efficiency and simplicity. 
The numerous-there are about 300 in all-forms 
of machine-level instructions allow these instruc­
tions to make very efficient use of storage .. For 
example, the machine instruction that increments 
a memory operand is three or four bytes long 
because the address of the operand must be 
encoded in the instruction. To increment a 
register, however, does not require as much 
information, so the instruction can be shorter. In 
fact, the 8086 and 8088 have eight different 
machine-level instnlctions that increment a dif­
ferent 16-bit register; these instructions are only 
one byte long. . . 

If a programmer had to write one instruction to 
increment a register, another to increment a 
memory variable, etc., the benefit of compact 
instructions would be offset by the difficulty of 
programming. The assembly-level instructions 
simplify the programmer's view of the instruction 
set. The programmer writes one form of the INC 
(increment) instruction and the ASM-86 
assembler examines the operand to determine 
which machine-level instruction to generate. 

This section presents the 8086/8088 instruction 
set from two perspectives. First, the assembly­
level instructions are described in functional 
terms. The assembly-level instructions are then 
presented in a reference table that breaks out all 
permissible operand combinations with execution 
times and machine instruction length, plus· the 
effect that tpe instruction has on the CPU flags. 
Machine-level instruction encoding and decoding 
are covered in section 4.2. . 

Data Transfer Instructions 

The 14 data transfer instructions (table 2-8) move 
single bytes and words between memory and 
registers as well as between register AL or AX and 
110 ports. The stack manipulation instructions 
are included in this group as are instructions for 
transferring flag contents and for loading seg­
ment registers. 

Table 2-8. Data Transfer Instructions 

GENERAL PURPOSE 

MOV Move byte or word 
PUSH Push word on.to stack 
POP Pop word off stack 
XCHG Exchange byte or word 
XLAT Translate byte 

INPUT /OUTPUT 

IN Input byte or word 
OUT Output byte or word 

ADDRESS OBJECT 

LEA Load effective address 
LOS Load pointer using OS 
LES Load pOinter using ES 

FLAG TRANSFER 

LAHF Load AH register from flags 
SAHF Store AH register in flags 
PUSHF Push flags onto stack 
POPF Pop flags off stack 

General Purpose Data Transfers 

MOV destination, source 

MOV transfers a byte or a word from the source 
operand to the destination operand. 

PUSH source 

PUSH decrements SP (the stack pointer) by two 
and then transfers a word from the source 
operand to the top of stack now pointed to by SP. 
PUSH often is used to place parameters on the 
stack before calling a procedure; more generally, 
it is the basic means of storing temporary data on 
the stack. 

POP destination 

POP transfers the word at the current top of stack 
(pointed to by SP) to the destination operand, 
and then increments SP by two to point to the 
new top of stack. POP can be used to move tem­
porary variables from the stack to registers or 
memory. 
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XCHG destination, source 

XCHG (exchange) switches the contents of the 
source and destination (byte or word) operands. 
When used in conjunction with the LOCK prefix, 
XCHG can test and set a semaphore that controls 
access to a resource shared by multiple processors 
(see section 2.5). 

XLAT translate-table 

XLAT (translate) replaces a byte in the AL 
register with a byte from a 256-byte, user-coded 
translation table. Register BX is assumed to point 
to the beginning of the table. The byte in AL is 
used as an index into the table and is replaced by 
the byte at the offset in the table corresponding to 
AL's binary value. The first byte in the table has 
an offset of O. For example, if AL contains 5H, 
and the sixth element of the translation table con­
tains 33H, then AL will contain 33H following 
the instruction. XLAT is useful for translating 
characters from one code to another, the classic 
example being ASCII to EBCDIC or the reverse. 

IN accumulator,port 

IN transfers a byte or a word from an input port 
to the AL register or the AX register, respectively. 
The port number may be specified either with an 
immediate byte constant, allowing access to ports 
numbered 0 through 255, or with a number 
previously placed in the DX register, allowing 
variable access (by changing the value in DX) to 
ports numbered from 0 through 65,535. 

OUT port,accumulator 

OUT transfers a byte or a word from the AL 
register or the AX register, respectively, to an out­
put port. The port number may be specified either 
with an immediate byte constant, allowing access 
to ports numbered 0 through 255, or with a 
number previously placed in register DX, allow­
ing variable access (by changing the value in DX) 
to ports numbered from 0 through 65,535. 

Address Object Transfers 

These instructions manipulate the addresses of 
variables rather than the contents or values of 
variables. They are most useful for list process· 
ing, based variables, and string operations. 
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LEA destination,source 

LEA (load effective address) transfers the offset 
of the source operand (rather than its value) to the 
destination operand. The source operand must be 
a memory operand, and the destination operand 
must be a 16-bit general register. LEA does not 
affect any flags. The XLAT and string instruc­
tions assume that certain registers point to 
operands; LEA can be used to load these registers 
(e.g., loading BX with the address of the translate 
table used by the XLAT instruction). 

LOS destination,source 

LDS (load pointer using DS) transfers a 32-bit 
pointer variable from the source operand, which 
must be a memory operand, to the destination 
operand and register DS. The offset word of the 
pointer is transferred to the destination operand, 
which may be any 16-bit general register. The seg­
ment word of the pointer is transferred to register 
DS. Specifying SI as the destination operand is a 
convenient way to prepare to process a source 
string that is not in the current data segment 
(string instructions assume that the source string 
is located in the current data segment and that SI 
contains the offset of the string). 

LES destination, source 

LES (load pointer using ES) transfers a 32-bit 
pointer variable from the source operand, which 
must be a memory operand, to the destination 
operand and register ES. The offset word of the 
pointer is transferred to the destination operand, 
which may be any 16-bit general register. The seg­
ment word of the pointer is transferred to register 
ES. Specifying DI as the destination operand is a 
convenient way to prepare to process a destina­
tion string that is not in the current extra segment. 
(The destination string must be located in the 
extra segment, and DI must contain the offset of 
the string.) 

Flag Transfers 

LAHF 

LAHF (load register AH from flags) copies SF, 
ZF, AF, PF and CF (the 8080/8085 flags) into 
bits 7, 6, 4, 2 and 0, respectively, of register AH 
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(see figure 2-32). The content of bits 5, 3 and 1 is 
undefined; the flags themselves are not affected.· 
LAHF is provided primarily for converting 
SOSO/SOS5 assembly language programs to run on 
an SOS6 or SOSS. 

SAHF 

SAHF (store register AH into flags) transfers bits 
7,6,4,2 and 0 from register AH into SF, ZF, AF, 
PF and CF, respectively, replacing whatever 
values these flags previously had .. OF, OF, IF and 
TF are not affected. This instruction is provided 
for SOSO/SOS5 compatibility. 

PUSHF 

PUSHF decrements SP (the stack pointer) by two 
and then transfers all flags to the word at the top 
of stack pointed to by SP (see figure 2-32). The 
flags themselves are not affected. 

POPF 
, .' , 

POPF transfers specific bits from the word at the 
current top of stack (pointed to by register SP) 
into the SOS6/S0SS flags, replacing whatever 
values the flags previously contained (see figure 
2-32). SP is then incremented by two to point to 
the new top of stack. PUSHFandPOPF allow a 
procedure to save and restore a calling program's 
flags. They also allow a program to change the 

LAHF, I I ,SAHF 5 J Z ,u I.A I U , P , U ,c 
(76543210( 

1_8080/8085 FLAGS_I 
I I 
I I 

~g~~F 'I U I U I U I U I 0 I D I I I TIS I Z I U I A I U I P I U I C 1 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

U = UNDEFINED;VALUE IS INDETERMINATE· 
o = OVERFLOW FLAG 
D = DIRECTION FLAG 
I. = INTERRUPT ENABLE FLA.G 
T = TRAP FLAG 
5= SIGN FLAG 
Z = ZERO FLAG 
A = AUXILIARY CARRY FLAG 
P = PARITY FLAG 
C = CARRY FLAG 

Figure 2-32. Fhlg Storage Formats 
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setting of TF (there is no instruction for updating 
this flag directly). The change is accomplished by 
pushing the flags, altering bit S of the memory­
image and then popping the flags. 

Arithmetic Instructions 

Arithmetic Data Formats 

SOS6 and SOSS arithmetic operations (table 2-9) 
may be performed on four types of numbers: 
unsigned binary, signed binary. (integers), 
unsigned packed decimal and unsigned unpacked 
decimal (see table 2-10). Binary numbers may be S 
or 16 bits long. Decimal numbers are stored in 
bytes, two digits per byte for packed decimal and 
one digit per byte for unpacked decimal. The pro­
cessor always assumes that the operands specified 
in arithmetic instructions contain data that repre­
sent valid numbers for the type of instruction 
being performed. Invalid data may produce 
unpredictable results. 

Table 2-9. Arithmetic Instructions 

ADDITION 

ADD Add byte orword 
ADC Add byte or word with carry 
INC Increment byte or word by 1 
AAA ASCII adjustfor addition 
DAA Decimal adjust for addition 

SUBTRACTION 

SUB Subtract byte or word 
SBB Subtract byte or word with 

borrow 
DEC Decrement byte or word by 1 
NEG Negate byte or word 
CMP Compare byte or word 
AAS ASCII adjust for subtraction 
DAS Decimal adjust for subtraction 

MULTIPLICATION 

MUL Multiply byte or word unsigned 
IMUL Integer multiply byte or word 
AAM ASCII adjust for multiply 

DIVISION 

DIV Divide byte or word unsigned 
IDIV Integer divide byte or word 
AAD ASCII adjust for division 
CBW Convert byte to word 
CWO Convert word to doubleword 
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Table 2-10. Arithmetic Interpretation of 8-BitNumbers 

HEX BIT PATTERN 
UNSIGNED 

BINARY 

07 00000111 7 

89 10001001 137 

C5 11000101 197 

Unsigned binary numbers may be either 80r 16 
bits long; all bits are considered in determining a 
number's magnitude. The value range of an 8-bit 
unsigned binary number is ·0-255; 16 bits can 
represent values from 0 through 65,535. Addi­
tion, subtraction, multiplication and division 
operations are available for unsigned binary 
numbers. 

Signed binary numbers (integers) may be either 8 
or 16 bits long. The high-order (leftmost) bit is 
interpreted as the number's sign: 0 = positive and 
1 = negative. Negative numbers are represented 
in standard two's complement notation. Since 
the high-order bit is used for a sign, the range of 
a.n 8-bit integer is ""'"128 through + 127; 16-bit 
integers may range. from -32,768 through 
+32,767. The value zero has a positive sign. 
Multiplication and division operations are pro­
vided for signed binary numbers. Addition and 
subtraction are performed with the unsigned 
binary instructions. Conditional jump instruc­
tions, as well as an "interrupt on overflow" 
instruction, can be used following an unsigned 
operation on an integer to detect overflow into 
the sign bit. 

Packed decimal numbers are stored as unsigned 
byte quantities. The byte is treated as having one 
decimal digit in each half-byte (nibble); the digit 
in the high-order half-byte is the most significant. 
Hexadecimal values 0-9 are valid in each half~ 
byte, and the range of a packed decimal number is 
0-99. Addition and subtraction are performed iIi 
two steps. First an unsigned binary instruction is 
used to produce an intermediate result in register 
AL. Thenan adjustment operation is performed 
which changes the· intermediate value in AL to a 
final correct packed decimal result. Multiplica.; 
tion and division adjustments are not available 
for packed decimal numbers. 
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SIGNED UNPACKED PACKED 
BINARY DECIMAL DECIMAL 

+7 7 7 

-119 invalid 89 

-59 invalid invalid 

Unpacked decimal numbers are stored as un­
signed byte quantities. The magnitude of the 
number is determined from the low-order half­
byte; hexadecimal values 0-9 are valid and are 
interpreted as decimal numbers. The high-order 
half-byte must be zero for multiplication and divi­
sion; it may contain any value for addition and 
subtraction. Arithmetic on unpacked decimal 
numbers is performed intwo steps. The unsigned 
binary addition, subtraction and multiplication 
operations are used to produce an intermediate 
result in register AL. An adjustment instruction 
then changes the value in AL to a final correct 
unpacked decimal number. Division is performed 
similarly, except that the adjustment is carried out 
on the numerator operand in register AL first, 
then a following unsigned binary division instruc­
tion produces a correct result. 

Unpacked decimal numbers are similar to the 
ASClIcharacter representations of the digitsO-9. 
Note, however, that the high-order half-byte of 
an ASCII numeral is always 3H. Unpacked 
decimal arithmetic may be performed on ASCII 
numeric characters under the following 
conditions: 

• the high-order half-byte of an ASCII 
numeral must be set to OH prior to 
multiplication or division. 

• unpacked decimal arithmetic leaves the 
high-order half-byte set to OH; it must be set 
to 3H to produce a valid ASCII numeral. 

Arithmetic Instructions and Flags 

The 8086/8088 arithmetic instructions post cer­
tain characteristics of the result of the operation 
to six flags. Most of these flags can be tested by 
following the arithmetic instruction with a condi­
tional jump instruction; the INTO (interrupt on 
overflow) instruction also may be used. The 
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various instructions affect the flags differently, as 
explained in the instruction descriptions. 
However, they follow these general rules: 

• CF (carry flag): If an addition results in a 
carry out of the high-order bit of the result, 
then CF is set; otherwise CF is cleared. If a 
subtraction results in a borrow into the high­
order bit of the result, then CF is set; other­
wise CF is cleared. Note that a signed carry is 
indicated by CF '" OF. CF can be used to 
detect an unsigned overflow. Two instruc­
tions, ADC (add with carry) and SBB (sub­
tract with borrow), incorporate the carry flag 
in their operations and can be used to per­
form multibyte (e.g., 32-bit, 64-bit) addition 
and subtraction. 

• AF (auxiliary carry flag): If an addition 
results in a carry out of the low-order half­
byte of the result, then AF is set; otherwise 
AF is cleared. If a subtraction results in a 
borrow into the low-order half-byte of the 
result, then AF is set; otherwise AF is 
cleared. The auxiliary carry flag is provided 
for the decimal adjust instructions and 
ordinarily is not used for any other purpose. 

• SF (sign flag): Arithmetic and logical 
instructions set the sign flag equal to the 
high-order bit (bit 7 or 15) of the result. For 
signed binary numbers, the sign flag will be 0 
for positive results and 1 for negative results 
(so long as overflow does not occur). A con­
ditional jump instruction can be used follow­
ing addition or subtraction to alter the flow 
of the program depending on the sign of the 
result. Programs performing unsigned opera~ 
tions typically ignore SF since the high-order 
bit of the result is interpreted as a digit rather 
than a sign. 

• ZF (zero flag): If the result of an arithmetic 
or logical operation is zero, then ZF is set; 
otherwise ZF is cleared. A conditional jump 
instruction can be used to alter the flow of 
the program if the result is or is not zero. 

• PF (parity flag): If the low-order eight bits of 
an arithmetic or logical result contain an 
even number of I-bits, then the parity flag is 
set; otherwise it is cleared. PF is provided for 
8080/8085 compatibility; it also can be used 
to check ASCII characters for correct parity. 
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• OF (overflow flag): If the result of an 
operation is too large a positive number, or 
too small a negative number to fit in the 
destination operand (excluding the sign bit), 
then OF is set; otherwise OF is cleared. OF 
thus indicates signed arithmetic overflow; it 
can be tested with a conditional jump or the 
INTO (interrupt on overflow) instruction. 
OF may be ignored when performing 
unsigned arithmetic. 

Addition 

ADD destination,source 

The sum of the two operands, which may be bytes 
or words, replaces the destination operand. Both 
operands may be signed or unsigned binary 
numbers (see AAA and DAA). ADD updates AF, 
CF, OF, PF, SF and ZF. 

ADC destination, source 

ADC (Add with Carry) sums the operands, which 
may be bytes or words, adds one if CF is set and 
replaces the destination operand with the result. 
Both operands may be signed or unsigned binary 
numbers (see AAA and DAA). ADC updates AF, 
CF, OF, PF, SF and ZF. Since ADC incorporates 
a carry from a previous operation, it can be used 
to write routines to add numbers longer than 16 
bits. 

INC destination 

INC (Increment) adds one to the destination 
operand. The operand may be a byte or a word 
and is treated as an unsigned binary number (see 
AAA and DAA). INC updates AF, OF, PF, SF 
and ZF; it does not affect CF. 

AAA 

AAA (ASCII Adjust for Addition) changes the 
contents of register AL to a valid unpacked 
decimal number; the high-order half-byte is 
zeroed. AAA updates AF and CF; the content of 
OF, PF, SF and ZF is undefined following execu­
tion of AAA. 
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DAA 

DAA (Decimal Adjust for. Addition) corrects the 
result of previously, adding two valid packed 
decimal operands (the destination operand must 
have been registerAL). DAA changes the content 
of AL to a pair of valid packed decimal digits. It 
updatesAF, CF, PF, SF and ZF; the content of 
OF is undefined following execution of DAA. 

Subtraction 

SUB destination,source 

The source operand is ~ubtracted from the 
destination operand, and the result replaces the 
destination operand. The operands may be bytes 
or words. Both operands may be ·signed or 
unsigned binary numbers (see AAS and DAS). 
SUB updates AF, CF ,OF, PF, SF and ZF. 

SBB destination, source 

SBB (Subtract with Borrow) subtracts the source 
frbm the destination, subtracts one if CF is set, 
and returns the result to the destination operand. 
Both operands maybe bytes or 'words. Both 
operands may be signed or unsigned binary 
numbers (see AAS and DAS). SBB updates AF, 
CF, OF, PF, SF and ZF. Since it incorporates a 
borrow from a previous operation, SBB'may be 
used to write routines that subtract numbers 
longer than 16 bits. 

DEC destination 

DEC (Decrement) subtracts one from the destina­
tion, which may ,be a byte or a word. DEC 
updates AF, OF, PF, SF, and ZF; it does not 
affect CF. 

NEG destination 

NEG (Negate) subtracts the destination operand, 
which may be a· byte or a word, from 0 and 
returns the result to the destination.' This forms 
the two's complement of the number, effectively 
reversing the sign of an integer. Iftheoperand is 
zero, its sign is not changed. Attempting to negate 
a byte containing -128 or a word containing 
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-32,768 causes no change to the operand and sets 
OF. NEG updates AF, CF, OF, PF, SF and ZF. 
CF is always set except when the operand is zero, 
in which case it is cleared. 

CMP destination, source 

CMP (Compare) subtracts the source from the 
destination, which may be bytes or words, but 
does not return the result. The operands are 
unchanged, but the flags are updated and can be 
tested by a subsequent conditional jump instruc­
tion. CMP updates AF, CF, OF, PF, SF and ZF. 
The comparison reflected in the flags is that of the 
destination to the source. If a CMP instruction is 
followed by a JG (jump if greater) instruction, for 
example, the jump is taken if the destination 
operand is greater than the source operand. 

AAS 

AAS (ASCII Adjust for Subtraction) corrects the 
result of a previous subtraction of two valid 
unpacked decimal operands (the destination 
operand must have been specified as register AL). 
AAS changes the content of AL to a valid 
unpacked decimal number; the high-order half­
byte is zeroed. AAS updates AF and CF; the con­
tent of OF, PF, SF and ZF is undefined following 
execution of AAs. 

DAS 

DAS (Decimal Adjust for Subtraction)' corrects 
the res.ult of a previous subtraction of two valid 
packed decimal operands (the destination 
operand must have been specified as register AL). 
DAS changes the content of AL to a pair of valid 
packed decimal digits. DAS updatesAF, eF, PF, 
SF and ZF; the content of OF is undefined 
following execution of DAS. 

Multiplication 

MULsource 

MUL (Multiply) performs an unsigned multi­
plication of the source operand and the 
accumulator. If the source is a byte, then it is 
mUltiplied by register. AL, 'and the double-length 
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result is returned in AH and AL. If the source 
operand is a word, then it is multiplied by register 
AX, and the double-length result is returned in 
registers DX and AX. The operands are treated as 
unsigned binary numbers (see AAM). If the upper 
half of the result (AH for byte source, DX for 
word source) is nonzero, CF and OF are set; 
otherwise they are cleared. When CF and OF are 
set, they indicate that AH or DX contains signifi­
cant digits of the result. The content of AF, PF, 
SF and ZF is undefined following execution of 
MUL. 

lMULsource 

IMUL (Integer Multiply) performs a signed 
multiplication of the source operand and the 
accumulator. If the source is a byte, then it is 
multiplied by register AL, and the double-length 
result is returned in AH and AL. If the source is a 
word, then it is multiplied by register AX, and the 
double-length result is returned in registers DX 
and AX. If the upper half of the result (AH for 
byte source, DX for word source) is not the sign 
extension of the lower half of the result, CF and 
OF are set; otherwise they are cleared. When CF 
and OF are set, they indicate that AH or DX con­
tains significant digits of the result. The content 
of AF, PF, SF and ZF is undefined following 
execution of IMUL. 

AAM 

AAM (ASCII Adjust for Multiply) corrects the 
result of a previous multiplication of two valid 
unpacked decimal operands. A valid 2-digit 
unpacked decimal number is derived from the 
content of AH and AL and is returned to AH and 
AL. The high-order half-bytes of the multiplied 
operands must have been OH for AAM to pro­
duce a correct result. AAM updates PF, SF and 
ZF; the content of AF, CF and OF is undefined 
following execution of AAM. 

Division 

DIV source 

DlV (divide) performs an unsigned division of the 
accumulator (and its extension) by the source 
operand. If the source operand is a byte, it is 
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divided into the double-length dividend assumed 
to be in registers AL and AH. The single-length 
quotient is returned in AL, and the single-length 
remainder is returned in AH. If the source 
operand is a word, it is divided into the double­
length dividend in registers AX and DX. The 
single-length quotient is returned in AX, and the 
single-length remainder is returned in DX. If the 
quotient exceeds the capacity of its destination 
register (FFH for byte source, FFFFFH for word 
source), as when division by zero is attempted, a 
type 0 interrupt is generated, and the quotient and 
remainder are undefined. Nonintegral quotients 
are truncated to integers. The content of AF, CF, 
OF, PF, SF and ZF is undefined following execu­
tion of DlV. 

IDIV source 

IDIV (Integer Divide) performs a signed division 
of the accumulator (and its extension) by the 
source operand. If the source operand is a byte, it 
is divided into the double-length dividend 
assumed to be in registers AL and AH; the single­
length quotient is returned in AL, and the single­
length remainder is returned in AH. For byte in­
teger division, the maximum positive quotient is 
+ 127 (7FH) and the minimum negative quotient is 
-127 (81H). If the source operand is a word, it is 
divided into the double-length dividend in 
registers AX and DX; the single-length quotient is 
returned in AX, and the single-length remainder 
is returned in DX. For word integer division, the 
maximum positive quotient is +32,767 (7FFFH) 
and the minimum negative quotient is -32,767 
(8001H). If the quotient is positive and exceeds 
the maximum, or is negative and is less than the 
minimum, the quotient and remainder are 
undefined, and a type 0 interrupt is generated. In 
particular, this occurs if division by 0 is 
attempted. Nonintegral quotients are truncated 
(toward 0) to integers, and the remainder has the 
same sign as the dividend. The content of AF, 
CF, OF, PF, SF and ZF is undefined following 
IDIV. 

AAD 

AAD (ASCII Adjust for Division) modifies the 
numerator in AL before dividing two valid 
unpacked decimal operands so that the quotient 
produced by the division will bea valid unpacked 
decimal number. AH must be zero for the subse-
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quentDIV to produce the correct result. The quo­
tient is returned in AL, and the remainder is 
returned in AH; both high-order half-bytes are 
zeroed. AAD updates PF, SF and ZF; the content 
of AF, CF and OF is undefined following execu­
tion of AAD. 

CBW 

CBW (Convert Byte to Word) extends the sign of 
the byte in register AL throughout register AH. 
CBW does not affect any flags. CBW can be used 
to produce a double-length (word) dividend from 
a byte priorto performing byte division. 

CWD 

CWD (Convert Word to Doubleword) extends the 
sign of the word in register AX throughout 
register DX. CWD does not affect any flags. 
CWD can be used to produce a double-length 
(doubleword) dividend from a word prior to per­
forming word division. 

Bit Manipulation Instructions 

The 8086 and 8088 provide three groups of 
instructions (table 2-11) for manipulating bits 
within both bytes and words: logical, shifts and 
rotates. 

Table 2-11. Bit Manipulation Instructions 

LOGICALS 

NOT "Not" byte or word 
AND "And" byte or word 
OR "Inclusive or" byte or word 
XOR "Exclusive or" byte or word 
TEST "Test" byte or word 

SHIFTS 

SHLISAL Shift logical! arithmetic left 
byte or word 

SHR Shift logical right byte or word 
SAR Shift arithmetic right byte or 

word 

ROTATES 

ROL Rotate left byte or word 
ROR Rotate right byte or word 
RCL Rotate through carry left byte 

or word 
RCR Rotate through carry right byte 

orword 
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Logical 

The logical instructions. include the boolean 
operators "not," "and," "inclusive or," and 
"exclusive or," plus a TEST instruction that sets 
the flags, but does not alter either of its operands. 

AND, OR, XOR and TEST affect the flags as 
follows: The overflow (OF) and carry (CF) flags 
are always cleared by logical instructions, and the 
content of the auxiliary carry (AF) flag is· always 
undefined following execution of a logical 
instruction. The sign (SF), zero (ZF) and parity 
(PF) flags are always posted to reflect the result of 
the operation and can be tested by conditional 
jump instructions. The interpretation of these 
flags is the same as for arithmetic instructions. SF 
is set if the result is negative (high-order bit is I), 
and is cleared if the result is positive (high-order 
bit is 0). ZF is set if the result is zero, cleared 
otherwise. PF is set if the result contains an even 
number of I-bits (has even parity) and is cleared if 
the number of I-bits is odd (the result has odd 
parity). Note that NOT has no effect on the flags. 

NOT destination 

NOT inverts the bits (forms the one's comple­
ment) of the byte or word operand. 

AND destination, source 

AND performs the logical "and" of the two 
operands (byte or word) and returns the result to 
the destination operand. A bit in the result is set if 
both corresponding bits of the original operands 
are set; otherwise the bit is cleared. 

OR destination,source 

OR performs the logical "inclusive or" of the two 
operands (byte or word) and returns the result to 
the destination operand. A bit in the result is set if 
either or both corresponding bits in the original 
operands are set; otherwise the result bit is 
cleared. 

XOR destination, source 

XOR (Exclusive Or) performs the logical "exclu­
sive . or" of the two operands and returns the 
result to the destination operand. A bit in the 
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result is set if the corresponding bits of the 
original operands contain opposite values (one is 
set, the other is cleared); otherwise the result bit is 
cleared. 

TEST destination,source 

TEST performs the logical "and" of the two 
operands (byte or word), updates the flags, but 
does not return the result, Le., neither operand is 
changed. If a TEST instruction is followed by a 
JNZ (jump if not zero) instruction, the jump will 
be taken if there are any corresponding l-bits in 
both operands. 

Shifts 

The bits in bytes and words may be shifted 
arithmetically or logically. Up to 255 shifts may 
be performed, according to the value of the count 
operand coded in the instruction. The count may 
be specified as the constant l, or as register CL, 
allowing the shift count to be a variable supplied 
at execution time. Arithmetic shifts may be used 
to multiply and divide binary numbers by powers 
of two (see note in description of SAR). Logical 
shifts can be used to isolate bits in bytes or words. 

Shift instructions affect the flags as follows. AF is 
always undefined following a shift operation. PF, 
SF and ZF are updated normally, as in the logical 
instructions. CF always contains the value of the 
last bit shifted out of the destination operand. 
The content of OF is always undefined following 
a multibit shift. In a single-bit shift, OF is set if 
the value of the high-order (sign) bit was changed 
by the operation; if the sign bit retains its original 
value, OF is cleared. 

SHL/SAL destination, count 

SHL and SAL (Shift Logical Left and Shift 
Arithmetic Left) perform the same operation and 
are physically the same instruction. The destina­
tion byte or word is shifted left by the number of 
bits specified in the count operand. Zeros are 
shifted in on the right. If the sign bit retains its 
original value, then OF is cleared. 

SHR destination, source 

SHR (Shift Logical Right) shifts the bits in the 
destination operand (byte or word) to the right by 
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the number of bits specified in the count operand. 
Zeros are shifted in on the left. If the sign bit 
retains its original value, then OF is cleared. 

SAR destination, count 

SAR (Shift Arithmetic Right) shifts the bits in the 
destination operand (byte or word) to the right by 
the number of bits specified in the count operand. 
Bits equal to the original high-order (sign) bit are 
shifted in on the left, preserving the sign of the 
original value. Note that SAR does not produce 
the same result as the dividend of an 
"equivalent" IDIV instruction if the destination 
operand is negative and l-bits are shifted out. For 
example, shifting -5 right by one bit yields -3, 
while integer division of -5 by 2 yields -2. The 
difference in the instructions is that IDIV trun­
cates all numbers toward zero, while SAR trun­
cates positive numbers toward zero and negative 
numbers toward negative infinity. 

Rotates 

Bits in bytes and words also may be rotated. Bits 
rotated out of an operand are not lost as in a 
shift, but are "circled" back into the other "end" 
of the operand. As in the shift instructions, the 
number of bits to be rotated is taken from the 
count operand, which may specify either a con­
stant of l, or the CL register. The carry flag may 
act as an extension of the operand in two of the 
rotate instructions, allowing a bit to be isolated in 
CF and then tested by a JC (jump if carry) or JNC 
(jump if not carry) instruction. 

Rotates affect only the carry and overflow flags. 
CF always contains the value of the last bit 
rotated out. On multibit rotates, the value of OF 
is always undefined. In single-bit rotates, OF is 
set if the operation changes the high-order (sign) 
bit of the destination operand. If the sign bit 
retains its original value, OF is cleared. 

ROL destination, count 

ROL (Rotate Left) rotates the destination byte or 
word left by the number of bits specified in the 
count operand. 
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ROR destination, count 

ROR (Rotate Right) operates similar to ROL 
except that the bits in the destination byte or word 
are rotated right instead of left. 

RCL destination,count 

RCL(Rotate through Carry Left) rotates the bits 
in the byte or word destination operand to the left 
by the number of bits specified in the count 
operand. The carry flag (CF) is treated as "part 
of" the destination operand; that is, its value is 
rotated into the low-order bit of the destination, 
and itself is replaced by the high-order bit of the 
destination. 

RCR destination, count 

RCR (Rotate through Carry Right) operates 
exactly like RCL except that the bits are rotated 
right instead of left. 

String Instructions 

Five basic string operations, called primitives, 
allow strings of bytes or words to be operated on, 
one element (byte or word) at a time. Strings of 
up to 64k bytes may be manipulated with these 
instructions. Instructions are available to move, 
compare and scan for a value, as well as for.mov­
ing string elements to and from the accumulator 
(see table 2-12). These basic operations may be 
preceded by a special one-byte prefix that causes 
the instruction to be repeated by the hardware, 
allowing long strings to be processed much faster 
than would be possible with a software loop. The 
repetitions can be terminated by a variety of con­
ditions, and a repeated operation may be inter­
rupted and resumed. 

The string instructions operate quite similarly in 
many respects; the common characteristics are 
covered here and in table 2-13 and figure 2-33 
rather than in the descriptions of the individual 
instructions. A string instruction may have a 
source operand, a destination operand, or both. 
The hardware assumes that a source string resides 
in the current data segment; a segment prefix byte 
may be used to override this assumption. A 
destination string must be in the current extra seg­
ment. The assembler checks the attributes of the 
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operands to determine if the elements of the 
strings are bytes or words. The assembler does 
not, however, use the operand names to address 
the strings. Rather, the content of register Sl 
(source index) is used as an offset to address the 
current element of the source string, and the con­
tent of register DI (destination index) is taken as 
the offset of the current destination string ele­
ment. These registers must be initialized to point 
to the source/destination strings before executing 
the string instruction; the LDS, LES and LEA 
instructions are useful in this regard. 

Table 2-12. String Instructions 

REP Repeat 

REPE/REPZ Repeat wh ile eq uall zero 

REPNE/REPNZ Repeat while not 
equal I not zero 

MOVS Move byte or word string 

MOVSB/MOVSW Move byte or word string 

CMPS Compare byte or word 
string 

SCAS Scan byte or word string 

LODS Load byte or word string 

STOS Store byte or word string 

Table 2-13. String Instruction Register and 
Flag Use . 

SI Index (offset) for source string 

DI Index (offset) for destination 

CX 

ALiAX 

DF 

ZF 

string 

Repetition counter 

Scan value 
Destination for LODS 
Source for STOS 

0= auto-increment SI, DI 
1 = auto-decrement SI, DI 

Scan I compare terminator 
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PRESENT 

DECREMENT 
CX BY 1 

I-----l 

I INST~~~~ION I L _____ J 

{
SI/DI,CX 
AND OF WOULD 
TYPICALLY BE 
INITIALIZED HERE 

STRING OF DELTA 

BYTE 0 1 
BYTE 1 -1 

WORD 0 2 
WORD 1 -2 

PREFIX Z 

REPE 1 
REPZ 1 

REPNE 0 
REPNZ 0 

Figure 2-33. String Operation Flow 
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The string instructions automatically update SI 
and/or DI in anticipation of processing the next 

- string element. The setting of DF (the direction 
flag) determines whether the index registers are 
auto-incremented (DF = 0) or auto-decremented 
(DF = I). If byte strings are being processed, SI 
and/ or DI is adjusted by!; the adjustment is 2 for 
word strings. 

If a Repeat prefix has been coded, then register 
CX (count register) is decremented by 1 after each 
repetition of the string instruction; therefore, CX 
must be initialized to the number of repetitions 
desired before the string instruction is executed. If 
CX is 0, the string instruction is not executed, and 
control goes to the following instruction. 

Section 2.10 contains examples that illustrate the 
use of all the string instructions. 

REP/REPE/REPZ/REPNE/REPNZ 

Repeat, Repeat While Equal, Repeat While Zero, 
Repeat While Not Equal and Repeat While Not 
Zero are five mnemonics for two forms of the 
prefix byte that controls repetition ofa subse­
quent string instruction. The different mnemonics 
are provided to improve program clarity. The 
repeat prefixes do not affect the flags. 

REP is used in conjunction with the MOVS 
(Move String) and STOS (Store String) instruc­
tions and is interpreted as "repeat while not end­
of-string" (CX not 0). REPE and REPZ operate 
identically and are physically the same prefix byte 
as REP. These instructions are used with the 
CMPS (Compare String) and SCAS (Scan String) 
instructions and require ZF (posted by these 
instructions) to be set before initiating the next 
repetition. REPNE and REPNZ. are two 
mnemonics for the same prefix byte. These 
instructions function the same as REPE and 
REPZ except that the zero flag must be cleared or 
the repetition is terminated. Note that ZF does 
not need to be initialized before executing the 
repeated string instruction. 

Repeated string sequences are interruptable; the 
processor will recognize the interrupt before pro­
cessing the next string element. System interrupt 
processing is not affected in any way. Upon 
return from the interrupt, the repeated operation 
is resumed from the point of interruption. Note, 
however, that execution does not resume properly 
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if a second or third prefix (Le., segment override 
or LOCK) has been specified in addition to any of 
the repeat prefixes. The processor "remembers" 
only one prefix in effect at the time of the inter­
rupt, the prefix that immediately precedes the 
string instruction. After returning from the inter­
rupt, processing resumes at this point, but any 
additional prefixes specified are not in effect. If 
more than one prefix must be used with a string 
instruction, interrupts may be disabled for the 
duration of the repeated execution. However, this 
will not prevent a non-maskable interrupt from 
being. recognized. Also, the time that the system is 
unable to respond to interrupts may be unaccept­
able iflong strings are being processed. 

MOVS destination-string, source-string 

MOVS (Move String) transfers a byte or a word 
from the source string (addressed by SI) to the 
destination string (addressed by DI) and updates 
SI and DI to point to the next string element. 
When used in conjunction with REP, MOVS per­
forms a memory-to-memory block transfer. 

MOVSB/MOVSW 

These are alternate mnemonics for the move 
string instruction. These mnemonics are coded 
without operands; they explicitly tell the 
assembler that a byte string (MOVSB) or a word 
string (MOVSW) is to be moved (when MOVS is 
coded, the assembler determines the string type 
from the attributes of the operands). These 
mnemonics are useful when the assembler cannot 
determine the attributes of a string, e.g., a section 
of code is being moved. 

CMPS destination-string, source-string 

CMPS (Compare String) subtracts the destination 
byte or word (addressed by DI) from the source 
byte or word (addressed by SI). CMPS affects the 
flags but does not alter either operand, updates SI 
and DI to point to the next string element and 
updates AF, CF, OF, PF, SF and ZF to reflect the 
relationship of the destination element to the 
source element. For example, if a JG (Jump if 
Greater) instruction follows CMPS, the jump is 
taken if the destination element is greater than the 
source element. If CMPS is prefixed with REPE 
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or REPZ, the operation is interpreted as "com­
pare while not end-of-string (CX not zero) and 
strings are equal (ZF = 1)." If CMPS is preceded 
by REPNE or REPNZ, the operation is inter­
preted as "compare while not end-of-string (CX 
not zero) and strings are not equal (ZF = 0)." 
Thus, CMPS can be used. to find matching or dif­
fering string elements. 

SCAS destination-string 

SCAS (Scan String) subtracts the destination 
string element (byte or word) addressed by DI 
from the content of AL (byte string)or AX (word 
string) and updates the flags, but does not alter 
the destination string or the accumulator. SCAS 
also updates DI to point to the next string element 
and AF, CF, OF, PF, SF and ZF to reflect the 
relationship of the scan value in ALI AX to the 
string element. If SCASis prefixed with REPE or 
REPZ, the operation is interpreted as "scan while 
not end-of-string (CX not 0) and string-element = 
scan-value (ZF = 1)." This form may be used to 
scan for departure from a given value. If SCAS is 
prefixed with REPNE or REPNZ, the operation 
is interpreted as "scan while not end-of-string 
(CX not 0) and string-element is not equal to 
scan-value (ZF = 0)." This form may be used to 
locate a value in a string. 

LODS source-string 

LODS (Load String) transfers the byte or word 
string element addressed by SI to register AL or 
AX, and updates SI to point to the next element 
in the string. This instruction is not ordinarily 
repeated since the accumulator would be over­
written by each repetition, and only the last ele­
ment would be retained. However, LODS is very 
useful in software loops as part of a more com­
plex string function built up from string 
primitives and other instructions. 

STOS destination-string 

STOS (Store String) transfers a byte or word from 
registerAL or AX to the string element addressed 
by DI and updates DI topoint to the next location 
in the string. As a repeated operation, STOS pro­
vides a convenient way to initialize a string to a 
constant value (e.g., to blank out a print line). 
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Program Transfer Instructions 

The sequence of execution of instructions in an 
8086/8088 program is determined by the content 
of the code segment register (CS) and the instruc­
tion pointer (IP). The. CS register contains the 
base address of the current code segment, the 64k 
portion of memory from which instructions are 
presently being fetched. The IP is used as an off­
set from the beginning of the code segment; the 
combination of CS and IP points to the memory 
location from which the. next instruction is to be 
fetched. (Recall that under most operating condi­
tions, the next instruction to be executed has 
already been fetched from memory and is waiting 
in the CPU instruction queue.) The program 
transfer instructions operate on the instruction 
pointer and on the CS register; changing the con~ 
tent of these causes normal sequential execution 
to be altered. When a program transfer occurs, 
the queue no longer contains the correct instruc­
tion, and the BIU obtains the next instruction 
from memory using the new IP and CS values, 
passes the instruction directly to the EU, and then 
begins refilling the queue from the new location. 

Four groups of program transfers are available in 
the 8086/8088 (see table 2-14): unconditional 
transfers, conditional transfers, iteration control 
instructions and interrupt-related instructions. 
Only the interrupt-related instructions affect any 
CPU flags. As will be seen, however, the execu­
tion of many of the program transfer instructions 
is affected by the states of the flags. 

Unconditional Transfers. 

The unconditional transfer instructions may 
transfer control to a target instruction within the 
current code segment (intrasegment transfer) or 
to a different code segment (intersegment 
transfer). (The ASM-86 assembler terms an 
intrasegment target NEAR and an intersegment 
target FAR.) The transfer is made uncondition­
ally any time the instruction is executed. 

CALL procedure-name 

CALL activates an out-of-line procedure, saving 
information on the stack to permit a RET (return) 
instruction in the procedure to transfer control 
back to the instruction following the CALL. The 
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Table 2-14. Program Transfer Instructions' 

UNCOND.ITIONAL TRANSFERS 

CALL Call procedure 
RET Return from procedure '. 
JMP Jump 

CONDITIONAL TRANSFERS 

JA/JNBE' Jump if above/not below 
nor equal 

JAE/JNB Jump if above or 
equal/not below 

JB/JNAE Jump if below/not above 
nor equal 

JBE/JNA Jump if below or 
equal! not above 

JC Jump if carry . 
JE/JZ Jump if equal/zero 
JG/JNLE Jump if greater/not less 

norequal' 
JGE/JNL JiJmp if greater or ' 

equal/not less' . 
JLlJNGE Jump if less/not greater 

nor equal 
JLE/JNG Jump if lessor equal/not 

greater 
JNC Jumpif not carry· 
JNE/JNZ Jumpif not equal/not 

zero' 
JNO Jump if not overflow 
JNP/JPO Jump if not parity/parity 

odd 
JNS Jump if not sign 
JO Jump if overflow 
JP/JPE Jump if parity/parity" 

even 
JS Jump if sign 

ITERATION CONTROLS 

LOOP Loop 
LOOPE/LOOPZ Loop if equal/zero 
LOOPNE/LOOPNZ Loop if not equal/ not 

zero 
JCXZ Jump if register CX = 0 

INTERRUPTS 

INT Interrupt 
INTO Interrupt if overflOW 
IRET Interrupt return 
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assemblergenerates'.a.'different"type of CALL 
instruction. depending on whether the. program­
merhasdeflned·fhe procedure name as NEAR or 
FAR. For control toteturn properly,the type of 
CALL instruction must match the type of RET 
instruction that exits from the proc.edure. (The 
potential .fotamismatchexists if the procedure 
and the CALL are contained in separately 
assembled programs.) Different forms of the 
CALL instruction allow the addtess of the target 
procedure to be obtai~ed from. the. instructipp 
itself (direct CALL) or from a memory location 
or. register referenced. by. the instruction (indirect 
CALL), In the following descriptions, bear.ill 
mind that the pro,'iessor automatically8.djusts II' 
to point to .thenext instruction to be executed 
before saving it onthi!stack. . , ' 

For an intrasegmentdirec~CAU~; SP ,(the. sta~k 
pointer) is decremented by two. and. IP is pushed 
onto the stack,The relative displacement (up to 
±32k) of the target procedure. from. the CALL 
instruction is then· added to': the instruction 
pointer. This forI!1.' of the CALL instruction is 
"self-relative" and is appropriate for position- in­
dependent (dynamically.relocatable) routiIies in 
which the .. CALL aIld its target.arein. the ,same 
segmeIlt and are moved together. . . 

A.n intrasegment indirect CALL may bi! .tTI,~de 
through memory or through a register. SP is 
decremented by two and IP is pushed onto the 
stack. The offset of the target procedure is 
obtained from the memory word or 16-bit general 
register referenced in the instruction and replaces 
IP. ' . . ... 

.... , .... 
For an intersegmertt direct CALL; ;'SPis 
decremented by two, and CS is pushed onto the 
stack.CS is replaced by' the segment word' con­
tained in the instruction. SP again'is decremented 
by two. IP is pushed ()nto the stack and is 
replaced by the offset wordcontairied in the 
instruction. '. 

For an inter segment indirect CALL (which only 
may be made through memory), SP is 
decremented by two, and'CS is pushed onto the 
stack. CS is then replaced by the content of the 
second word of the doubleword memory pointer 
referenced by the. instruction. SP again is 
decremented by ,two,. and IP ; is pushed onto the 
stack and is replaced bY.the conteniof the first 
word· of the.doubleword pointer referenc.ed. by the 
instruction .. ' .', ;., ' .. ' 
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RET optional-pap-value 

RET (Return) transfers control from a procedure 
back to the instruction following the CALL that 
activated the procedure. The assembler generates 
an intrasegment RET if the programmer has 
defined the procedure NEAR, or an intersegment 
RET if the procedure has been defined as FAR. 
RET pops the word at the top of the stack 
(pointed to by register SP) into the instruction 
pointer and increments SP by two. If RET is 
intersegment, the word at the new top of stack is 
popped into the CS register, and SP is again 
incremented by two. If an optional pop value has 
been specified, RET adds that value to SP. This 
feature may be used to discard parameters pushed 
onto the stack before the execution of the CALL 
instruction. 

JMP target 

JMP unconditionally transfers control to the 
target location. Unlike a CALL instruction, JMP 
does not save any information on the stack, and 
no return to the instruction following the JMP is 
expected. Like CALL, the address of the target 
operand may be obtained from the instruction 
itself (direct JMP) or from memory or a register 
referenced by the instruction (indirect JMP). 

An intrasegment direct JMP changes the instruc­
tion pointer by adding the relative displacement 
of the target from the JMP instruction. If the 
assembler can determine that the target is within 
127 bytes of the JMP, it automatically generates a 
two-byte form of this instruction called a SHORT 
JMP; otherwise, it generates a NEAR JMP that 
can address a target within ±32k. Intrasegment 
direct JMPS are self-relative and are appropriate 
in position-independent (dynamically relocatable) 
routines in which the JMP and its target are in the 
same segment and are moved together. 

An intrasegment indirect JMP may be made 
either through memory or through a 16-bit 
general register. In the first case, the content of 
the word referenced by the instruction replaces 
the instruction pointer. In the second case, the 
new IP value is taken from the register named in 
the instruction. 

An intersegment direct JMP replaces IP and CS 
with values contained in the instruction. 
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An intersegment indirect JMP may be made only 
through memory. The first word of the 
doubleword pointer referenced by the instruction 
replaces IP, and the second word replaces CS. 

Conditional Transfers 

The conditional transfer instructions are jumps 
that mayor may not transfer control depending 
on the state of the CPU flags at the time the 
instruction is executed. These 18 instructions (see 
table 2-15) each test a different combination of 
flags for a condition. If the condition is "true," 
then control is transferred to the target specified 
in the instruction. If the condition is "false," 
then control passes to the instruction that follows 
the conditional jump. All conditional jumps are 
SHORT, that is, the target must be in the current 
code segment and within -128 to +127 bytes of 
the first byte of the next instruction (JMP OOH 
jumps to the first byte of the next instruction). 
Since the jump is made by adding the relative 
displacement of the target to the instruction 
pointer, all conditional jumps are self-relative and 
are appropriate for position-independent 
routines. 

Iteration Control 

The iteration control instructions can be used to 
regulate the repetition of software loops. These 
instructions use the CX register as a counter. Like 
the conditional transfers, the iteration control 
instructions are self-relative and may only 
transfer to targets that are within -128 to + 127 
bytes of themselves, i.e., they are SHORT 
transfers. 

LOOP short-label 

LOOP decrements CX by 1 and transfers control 
to the target operand if ex is not 0; otherwise the 
instruction following LOOP is executed. 

LOOPE/LOOPZ short-label 

LOOPE and LOOPZ (Loop While Equal and 
Loop While Zero) are different mnemonics for 
the same instruction (similar to the REPE and 
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Table 2-15. Interpretation of Conditional Transfers 

MNEMONIC CONDITION TESTED· . "JUMPIF ... " 
, 

JA/JNBE (CFORZF)=O . above/ not below nor equal 
JAE/JNB CF=O . above or equal/not below 
JB/JNAE CF=1 below / not above nor equal 
JBE/JNA (CF oRZF)=1 below or equal/not above': 
JC CF=1 carry , 
JE/JZ ZF=1 equal/zero 
JG1JNLE ((SF XOR OF) OR ZF)=O greater/not less nor equal . 

JGE/JNL (SF XOR OF)=O greater or equal/ not less 
JLlJNGE (SF XOR OF)=1 . less/notgreater nor equal 
JLE/JNG ((SF XOR OF).OR ZF)=1 ., ',less or equal/ not greater 
JNC .' CF=O. " notcarry 
JNE/JNZ ZF=O "not equal! not zero 
JNO· OF=O not overflow 
JNP/JPO PF=O not parity / parity odd 
JNS SF=O not sign 
JO OF=1 overflow 
JP/JPE PF=1 parity / parity equal 

. JS SF=1 sign 

Note: "above" and·"below"refer to the relationship of twounsigned!Values; . 
"greater" and' 'less" refer to the relationsh ip of two sig ned ,val ues. 

REPZ repeat prefixes). CX is decremented by 1, 
and control is transferred to the target operand if 
CX is not 0 and if ZF is set; otherwise the instruc­
tion following LOOPE/LOOPZ is executed. 

LOOPNE/LOOPNZ short-label 

LOOPNE and LOOPNZ (Loop While Not Equal 
and ,Loop While Not Zero) are also synonyms for 
the same instruction. CX isdecremenfed by 1, 
and control is transferred tothe target operand if 
CX.is not 0 and if ZF is clear; otherwise the next 
sequential instruction is executed. 

JCXZ short-label 

JCXZ (Jump If CX Zero) transfers control to the 
target operand if CX is O. This instruction is 
useful at the beginning ofa loop; to bypass the 
loop if CX has a zero value, i.e., to execute the 
loop zero times. 

Interrupt Instructions 

The interrupt instructions allow interrupt service 
routines to be activated by programs as well as,.by 
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external hard~a~e devices~The effect of software 
interrupts is. similar to .hardware"initiated inter­
rupts. However, the processor does not execute 
an interrupt acknowledge bus cycle if the inter­
rupt originates in software or with an NMI. The 
effect of the interrupt instructions on the flags. is 
covered in the description of each instruction. . 

INT interrupt-type 
'. . . .: . 

INT (Interrupt) activates the interrupt procedure 
specified by the interrupt-type operand. INT 
decrements the stack pointer by· two, pushes the 
flags onto the stack, and clears the trap (TF) and 
interrupt-enable (IF) flags to disable single-step 
and maskable interrupts. The flags are stored in 
the format used by the PUSHF instruction. SP is 
decremented again by two, and the cS register is 
pushed onto the stack. The .address of the inter­
rupt pointer . .is calculated py mUltiplying 
interrupHype by four; thesecondword of the in~ 
terrupt: pointer replaces CS. SP; again is 
decremented by two, and IP is pushed onto the 
stack and is replaced by the first word oftheinter" 
rupt pointer. If interrupt-type = 3, the assembler 
generates a short (1 byte) form of the instruction, 
known as the breakpoint interrupt. 
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Software interrupts can be used as "supervisor 
calls," i.e., requests for service from an operating 
system. A different interrupt-type can be used for 
each type of service that the operating system 
could supply for an application program. Soft­
ware interrupts also may be used to check out 
interrupt service procedures written for hardware­
initiated interrupts. 

INTO 

INTO (Interrupt on Overflow) generates a soft­
ware interrupt if the overflow flag (OF) is set; 
otherwise control proceeds to the following 
instruction without activating an interrupt pro­
cedure. INTO addresses the target interrupt pro­
cedure (its type is 4) through the interrupt pointer 
at location lOH; it clears the TF and IF flags and 
otherwise operates like INT. INTO may be writ­
ten following an arithmetic or logical operation to 
activate an interrupt procedure if overflow 
occurs. 

IRET 

IRET (Interrupt Return) transfers control back to 
the point of interruption by popping IP, CS and 
the flags from the stack. IRET thus affects all 
flags by restoring them to previously saved 
values. IRET is used to exit any interrupt 
procedure, whether activated by hardware or 
software. 

Processor Control Instructions 

These instructions (see table 2-16) allow programs 
to control various CPU functions. One group of 
instructions updates flags, and another group is 
used primarily for synchronizing the 8086 or 8088 
with external events. A final instruction causes 
the CPU to do nothing. Except for the flag opera­
tions, none of the processor control instructions 
affect the flags. 

Flag Operations 

CLC 

CLC (Clear Carry flag) zeroes the carry flag (CF) 
and affects no other flags. It (and CMC and STC) 
is useful in conjunction with the RCL and RCR 
instructions. 
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Table 2-16. Processor Control Instructions 

FLAG OPERATIONS 

STC Set carry flag 
CLC Clear carry flag 
CMC Complement carry flag 
STD Set direction flag 
CLD Clear direction flag 
STI Set interrupt enable flag 
CLI Clear interrupt enable flag 

EXTERNAL SYNCHRONIZATION 

HLT Halt until interrupt or reset 
WAIT Wait for TEST pin active 
ESC Escape to external processor 
LOCK Lock bus during next 

instruction 

NO OPERATION 

Nap No operation 

CMC 

CMC (Complement Carry flag) "toggles" CF to 
its opposite state and affects no other flags. 

STC 

STC (Set Carry flag) sets CF to 1 and affects no 
other flags. . 

CLD 

CLD (Clear Direction flag) zeroes DF causing the 
string instructions to auto-increment the SI 
and/or DI index registers. CLD does not affect 
any other flags. 

STD 

STD (Set Direction flag) sets DF to 1 causing the 
string instructions to auto-decrement the SI 
and/or DI index registers. STD does not affect 
any other flags. 
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Cli 

CLI (Clear Interrupt-enable flag) zeroes IF. 
When the interrupt-enable flag is cleared, the 
8086 and 8088 do not recognize an external inter­
rupt request that appears on the INTR line; in 
other words mask able interrupts are disabled. A 
non-mask able interrupt appearing on the NMI 
line, however, is honored, as is a software inter­
rupt. CLI does. not affect any other flags. 

STI 

STI (Set Interrupt-enable flag) sets IF to 1, en­
abling processor recognition of maskable inter­
rupt requests appearing on the INTR line. Note 
however, that a pending interrupt will not actu­
ally be recognized until the instruction following 
STI has executed. STI does not affect any other 
flags. 

External Synchronization 

HlT 

HL T (Halt) causes the 8086/8088 to enter the halt 
state. The processor leaves the halt state upon 
activation of the RESET line, upon receipt of a 
non-maskable interrupt request on NMI, or, if 
interrupts are enabled, upon receipt of a 
mask able interrupt request on INTR. HLT does 
not affect any flags. It may be used as an alter­
native to an endless software loop in situations 
where a program must wait for an interrupt. 

WAIT 

WAIT causes the CPU to enter the wait state 
while its TEST line is not active. WAIT does not 
affect any flags. This instruction is .described 
more completely in section 2.5. 

ESC exfernal-opcode, source 

ESC (Escape) provides a means for an external 
processor to obtain an opcode and possibly a 
memory operand from the 8086 or 8088. The 
external opcode is a 6-bit immediate constant that 
the assembler encodes in the machine instruction 
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it builds (see table 2-26). An external processor 
may monitor the system bus and capture this 
opcode when the ESC is fetched. If the source 
operand is a register, the processor does nothing. 
If the source operand is a memory variable, the 
processor obtains the operand from memory and 
discards it. An external processor may capture the 
memory operand when the processor reads it 
from memory. 

lOCK 

LOCK is a one-byte prefix that causes the 
8086/8088 (configured in maximum mode) to 
assert its bus LOCK signal while the following 
instruction executes. LOCK does not affect any 
flags. See section 2.5 for more information on 
LOCK. 

No Operation 

NOP 

NOP (No Operation) causes the CPU to do 
nothing. NOP does not affect any flags. 

Instruction Set Reference Information 

Table 2-21 provides detailed operational informa­
tion for the 8086/8088 instruction set. The 
information is presented from the point of view 
of utility to the assembly language programmer. 
Tables 2-17, 2-18 and 2-19 explain the symbols 
used in table 2-21. Machine language instruction 
encoding and decoding information is given in 
Chapter 4. 

Instruction timings are presented as the number 
of clock periods required to execute a particular 
form (register-to-register, immediate-to-memory, 
etc.) of the instruction. If a system is running with 
a 5 MHz maximum clock, the maximum clock 
period is 200 ns; at 8 MHz, the clock period is 125 
ns. Where memory operands are used, "+EA" 
denotes a variable number of additional clock 
periods needed to calculate the operand's effec­
tive address (discussed in section 2.8). Table 2-20 
lists all effective address calculation times. 



8086 AND 8088 CENTRAL PROCESSING UNITS 

Table 2-17. Key to Instruction Coding Formats 

IDENTIFIER 

destination 

source 

source-table 

target 

short-label 

accumulator 

port 

source-string 

dest-string 

count 

i nterru pt-type 

USED.IN 

data transfer, 
bit manipulation 

data transfer, 
arithmetic, 
bit manipulation 

XLAT 

JMP, CALL 

condo transfer, 
iteration control 

IN,OUT 

IN,OUT 

string ops. 

string ops. 

shifts, rotates 

INT 

optional-pop-value RET 

external-opcode ESC 

EXPLANATION 

A register or memory location that may contain data 
operated on by the instruction, and which receives (is 
replaced by) the result of the operation. 

A register, memory location or immediate value that is 
used in the operation, but is not altered by the instruc­
tion. 

Name of memory translation table addressed by register 
BX. 

A label to which control is to be transferred directly, or a 
register or memory location whose content is the 
address of the location to which control is to be transfer­
red indirectly. 

A label to which control is to be conditionally 
transferred; must lie within -128 to +127 bytes of the first 
byte of the next instruction. 

Register AX for word transfers, AL for bytes. 

An I/O port number; specified as an immediate value of 
0-255, or register OX (which contains port number in 
range 0-64k). 

Name of a string in memory that is addressed by register 
SI; used only to identify string as byte or word and 
specify segment override, if any. This string is used in 
the operation, but is not altered. 

Name of string in memory that is addressed by register 
01; used only to identify string as byte or word. This 
string receives (is replaced by) the result of the opera­
tion. 

Specifies number of bits to shift or rotate; written as 
immediate value 1 or register CL (which contains the 
count in the range 0-255). 

Immediate value of 0-255 identifying interrupt pointer 
number. 

Number of bytes (0-64k, ordinarily an even number) to 
discard from stack. 

Immediate value (0-63) that is encoded in the instruction 
for use by an external processor. 
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Table 2-18. Key to Flag Effects 

IDENTIFIER EXPLANATION 

(blank) not altered 

0 cleared to 0 

1 set to 1 

X set or cleared according 
to result 

U undefined-contains no 
reliable value 

R restored from previously-
saved value 

For control transfer instructions, the timings 
given include any additional clocks required to 
reinitialize the instruction queue as well as the 
time required to fetch the target instruction. For 
instructions executing on an 8086, four clocks 
should be added for each instruction reference to 
a word operand located at an odd memory 
address to reflect any additional operand bus 
cycles required. Similarly for instructions exe­
cuting on an 8088, four clocks should be added to 
each instruction reference to a 16-bit memory 
operand; this includes all stack operations. The 
required number of data references is listed in 
table 2-21 for each instruction to aid in this 
calculation. 

Several additional factors can increase actual 
execution time over the figures shown in table 
2-21. The time provided assumes that the instruc­
tion has already been prefetched and that it is 
waiting in the instruction queue, an assumption 
that is valid under most, but not all, operating 
conditions. A series of fast executing (fewer than 
two clocks per opcode byte) instructions can drain 
the queue and increase execution time. Execution 
time also is slightly impacted by the interaction of 
the EU and BIU when memory operands must be 
read or written. If the EU needs access to 
memory, it may have to wait for up to one clock if 
the BIU has already started an instruction fetch 
bus cycle. (The EU can detect the need for a 
memory operand and post a bus request far 
enough in advance of its need for this operand to 
avoid waiting a full 4-clock bus cycle). Of course 
the EU does not have to wait if the queue is full, 
because the BIU is idle. (This discussion assumes 
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Table 2-19. Key to Operand Types 

IDENTIFIER EXPLANATION 

(no operands) No operands are written 

register An 8- or 16-bit general register 

reg 16 A 16-bit general register 

seg-reg A segment register 

accumulator Register AX or AL 

immediate 

immed8 

memory 

mem8 
mem16 

A constant in the range 
O-FFFFH 

A constant in the range O-FFH 

An 8- or 16-bit memory 
location(1) 
An 8-bit memory location(1) 

A 16-bit memory location(1) 

source-table Name of 256-byte translate 
table 

source-string Name of string addressed by 
register 51 

dest-string Name of string addressed by 
register 01 

DX Register DX 

short-label A label within -128 to +127 
bytes of the end of the instruc­
tion 

near-label A label in current code 
segment 

far-label A label in another code 
segment 

near-proc A procedure in current code 
segment 

far-proc 

memptr16 

memptr32 

regptr16 

repeat 

A procedure in another code 
segment 

A word containing the offset of 
the location in the current code 
segment to which control is to 
be transferred(1) 

A doubleword containing the 
offset and the segment base 
address of the location in 
another code segment to which 
control is to be transferred(1)1 

A 16-bit general register 
containing the offset of the 
location in the current code 
segment to which control is to 
be transferred 

A string instruction repeat 
prefix 

(1)Any addressing mode-direct, register in­
direct, based, indexed, or based 
indexed-may be used (see section 2.8). 
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Table 2-20. Effective Address Calculation 
Time 

that the BIU can obtain the bus on demand, i.e., 
that no other processors are competing for the 
bus.) 

EA COMPONENTS CLOCKS· 

Dis~lacement Onlv 6 With typical instruction mixes, the time actually 
required to execute a sequence of instructions will 
typically be within 5-100/0 of the sum of the 
individual timings given in table 2-21. Cases can 
be constructed, however, in which execution time 
may be much higher than the sum of the figures 
provided in the table. The execution time for a 
given sequence of instructions, however, is always 
repeatable, assuming comparable external condi­
tions (interrupts, coprocessor activity, etc.). If the 
execution time for a given series of instructions 
must be determined exactly, the instructions 
should be run on an execution vehicle such as the 
SDK-86 or the iSBC 86112™ board . 

Base or Index Only (BX,BP,SI,DI) 5 
Displacement 

+ 9 
Base or Index (BX,BP,SI,DI) 
Base BP+DI, BX+SI 7 

+ 
Index BP+SI, BX+DI 8 
Displacement BP+DI+DISP 

11 
+ BX+SI+DISP 

Base 
+ BP+SI+DISP 

12 
Index BX+DI+DISP 

• Add 2 clocks for segment override 

Table 2-21. Instruction Set Reference Data 

AAA I AAA (no operands) Flags 
ODITSZAPC 

ASCII adjust for addition U U U X U X 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 4 - 1 AAA 

AAD I AAD (no operands) Flags 
ODITSZAPC 

ASCII adjust for division U XXUXU 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 60 - 2 AAD 

AAM I AAM (no operands) Flags 
ODITSZAPC 

ASCII adjust for multiply U X X U X U 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 83 - 1 AAM 

AAS I AAS (no operands) 
ASCII adjust for subtraction 

FI 0 D ITS ZAP C 
ags U U U X U X 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 4 - 1 AAS 

'For the 8086, add four clocks for each 16-blt word transfer with an odd address. Forthe 8088, add four clocks for each 16·blt word transfer. 
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Table 2-21. Instruction Set Reference Data (Cont'd.) 

ADC IADC destination,source Flags 
ODITSZAPC 

Add with carry X XXXXX 

. Operands Clocks Transfers· Bytes Coding Example 

register, register 3 - 2 ADC AX, SI 
register,. memory 9+EA 1 2-4 ADC DX, BETA [SI] 
memory, register 16+EA 2 2-4 ADC ALPHA [BX] [SI], DI 
register, immediate 4 - ··3-4 ADC BX,256 
memory, immediate 17+EA 2 3-6 ADC GAMMA,30H 
accumulator, immediate 4 - 2-3 ADC AL,5 

ADD I ADD destination,source Flags 
ODITSZAPC 

Addition X XXXXX 

Operands Clocks Transfers· Bytes Coding Example 

register, register 3 - 2 ADD CX, DX· 
register, memory 9+EA 1 2-4 ADD DI, [BX].ALPHA 
memory, register 16+EA 2 2-4 ADD TEMP, CL 
register, immediate 4 - 3-4 ADD CL,2 
memory, immediate 17+EA 2 3-6 ADD ALPHA,2 
accumulator, immediate 4 - 2-3 ADD AX, 200 

AND lAND destination,source Flags 
ODITSZAPC 

Logical and 0 X'XU X 0 

Operands Clocks Transfers· Bytes Coding Example 

register, register 3 - 2 AND AL,BL 
register, memory 9+EA 1 2-4 AND CX,FLAG_WORD 
memory, register 16+EA 2 2-4 AND ASCII [DI],AL 
register, immediate 4 - .3-4 AND CX,OFOH 
memory, immediate 17+EA 2 3-6 AND BETA,01H 
accumulator, immediate 4 - 2"3 AND AX,01010000B 

CALL I,CALL target Flags 
ODITSZAPC' 

Call a procedure 

Operands Clocks Transfers· Bytes Coding Examples 

near-proc 19 1 . 3 CALL NEAR_PROC 
far-proc 28 2 5 CALL FAR_PROC 
memptr16 21+EA 2 2-4 CALL PROC_TABLE [SI] 
regptr 16 16 1 2 CALL AX 
memptr32 37+EA r 4 2-4 CALL [BX].TASK [SI] 

CBW I,CBW (no operands) Flags 
ODITSZAPC 

Convert byte to word 
.. 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 2 - 1 CBW 

'For the 8086, add four clocks for each 16-blt word transfer with an odd address. For the 8088, add four clocks for each 16-blt word transfer. 
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Table 2-21. Instruction Set Reference Data (Cont'd.) 

CLC I CLC (no operands) Flags 
ODIT5ZAPC 

Clear carry flag 0 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 2 - 1 CLC 

CLD I CLD (no operands) Flags 
ODIT5ZAPC 

Clear direction flag 0 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 2 - 1 CLD 

CLI I CLI (no operands) Flags 
ODIT5ZAPC 

Clear interrupt flag 0 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 2 - 1 CLI 

CMC I CMC (no operands) Flags 
ODIT5ZAPC 

Complement carry flag X 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 2 - 1 CMC 

CMP I CMP destination,source Flags 
o D IT 5 Z A PC 

Compare destination to source X XXXXX 

Operands Clocks Transfers· Bytes Coding Example 

register, register 3 - 2 CMP BX, CX 
register, memory 9+EA 1 2-4 CMP DH, ALPHA 
memory, register 9+EA 1 2-4 CMP [BP+2], 51 
register, immediate 4 - 3-4 CMP BL,02H 
memory, immediate 10+EA 1 3-6 CMP [BX].RADAR [DI], 3420H 
accumulator, immediate 4 - 2-3 CMP AL,00010000B 

CMPS I ,CMPS dest-string,source-string Flags 
ODIT5ZAPC 

Compare string X XXXXX 

Operands Clocks Transfers· Bytes Coding Example 

dest-string, source-string 22 2 1 CMP5 BUFF1, BUFF2 
(repeat) dest-string, source-string 9+22/rep 2/rep 1 REPE CMP5 ID, KEY 

'For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-blt word transfer. 
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Table 2-21. Instruction Set Reference Data (Cont'd.) 

CWD I CWD (no operands) Flags 
ODITSZAPC. 

Convert word to doubleword 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 5 - 1 CWD 

DAA I DAA (no operands) Flags 
ODITSZAPC 

Decimal adjust for addition X X X X XX 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 4 - 1 DAA 

DAS I DAS (no operands) Flags 
ODITSZAPC 

Decimal adjust for subtraction U XXXXX 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 4 - 1 DAS 

DEC I DEC destination Flags 
ODITSZAPC 

Decrement by 1 X XXXX 

Operands Clocks Transfers· Bytes Coding Example 

reg16 2 - 1 DEC AX .. 
regS 3 ..,.. 2 DEC AL 
memory 15+EA 2 2-4 DEC ARRAY [SI] 

DIV I DIV source Flags 
ODITSZAPC 

Division, unsigned U U U U U U 

Operands Clocks Transfers· Bytes Coding Example 

regS 80-90 - 2 DIV CL 
reg16 144-162 - 2 DIV BX 
mem8 (86-96) 1 2-4 DIV ALPHA 

+EA 
mem16 (150-168) 1 2-4 DIV TABLE [SI] 

+EA 

ESC I ESC external-opcode,source Flags 
o D IT S ZAP C 

Escape 

Operands Clocks Transfers· Bytes Coding Example 

immediate, memory S+EA 1 . 2-4 ESC 6,ARRA Y [SI] 
immediate, register 2 - 2 ESC 20,AL 

'For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-blt word transfer. 
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HLT 

Operands 

(no operands) 

IDIV 

Operands 

reg8 
reg16 
mem8 

mem16 

IMUL 

Operands 

reg8 
reg16 
mem8 

mem16 

IN 

Operands 

accumulator, immed8 
accumulator, OX 

INC 

Operands 

reg16 
reg8 
memory, 

Table 2-21. Instruction Set Reference Data (Cont'd.) 

I HL T (no operands) 
Halt 

Clocks 

2 

IIDIV source 
Integer division 

Clocks 

101-112 
165-184 

(107-118) 
+EA 

(171-190) 
+EA 

IIMUL source 
Integer multiplication 

Clocks 

80-98 
128~ 154 
(86-104) 

+EA 
(134-160) 

+EA 

IN accumulator,port 
Input byte or word 

Transfers· Bytes 

- 1 

Transfers· Bytes 

- 2 
- 2 
1 2-4 

1 2-4 

Transfers· Bytes 

- 2 
- 2 
1 2-4 

1 2-4 

Clocks Transfers· Bytes 

10 
8 

INC destination 
Increment by 1 

Clocks 

2 
3 

15+EA 

Transfers· 

-
-
2 

2 
1 

Bytes 

1 
2 

2-4 

Flags 
ODITSZAPC 

Coding Example 

HLT 

Flags 
ODITSZAPC 
U U U U U U 

Coding Example -

IDIV BL 
IDIV CX 
IDIV DIVISOR_BYTE [SI] 

IDIV [BX].DIVISOR_WORD 

Flags 
ODITSZAPC 
X UUUUX 

Coding Example 

IMUL CL 
IMUL BX 
IMUL RATE_BYTE 

IMUL RATLWORD [BP] [01] 

FI 0 0 ITS ZAP C 
ags 

Coding Example 

IN AL,OFFEAH 
IN AX, OX 

Flags 
ODITSZAPC 
X XXXX 

Coding Example 

INC CX 
INC BL 
INC ALPHA [01] [BX] 

"For the 8086, add four clocks for each 16-bIt word transfer with an odd address. For the 8088, add four clocks for each 16-blt word transfer. 
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Table 2-21. Instruction Set Reference Data (Cont'd.) 

INT liNT interrupt-type Flags 
ODITSZAPC 

Interrupt o 0 

Operands Clocks Transfers· Bytes Coding Example 

immed8 (type = 3) 52 5 1 INT 3 
immed8 (type *" 3) 51 5 2 INT 67 

INTRt INTR (external maskable interrupt) 
Flags 

ODITSZAPC 
Interrupt if INTR and IF=1 o 0 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 61 7 N/A N/A 

INTO IINTO (no operands) Flags 
ODITSZAPC 

Interrupt if overflow o 0 

Operands Clocks Transfers· Bytes Coding Example 

(no operandl:!) 53 or 4 5 1 INTO 

IRET IIRET (no operands) Flags 
ODITSZAPC 

Interrupt Return RRRRRRRRR 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 24 3 1 IRET 

JA/JNBE I JAlJNBE short-label Flags 
ODITSZAPC 

Jump if above/Jump if not below nor equal 

Operands Clocks Transfers· Bytes Coding Example 

short-label 16 or 4 - 2 JA ABOVE 

JAE/JNB I JAEI J N B short-label Flags 
ODITSZAPC 

Jump if above or equal/Jump if not below 

Operands Clocks Transfers· Bytes Coding Example 

short-label 16 or 4 - 2 JAE ABOVE_EQUAL 

JB/JNAE I JB/JNAE short-label Flags 
ODITSZAPC 

Jump if below/Jump if not above nor equal 

Operands Clocks Transfers· Bytes Coding Example 

short-label 16 or 4 - 2 JB BELOW 

"For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer. 

tlNTR is not an instruction; it is included in table 2-21 only for timing information. 
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Table 2-21. Instruction Set Reference Data (Cont'd.) 

JBE/JNA I JBEI JNA short-label Flags ODITSZAPC 
Jump if below or equal/Jump if not above 

Operands Clocks Transfers· Bytes Coding Example 

short-label 16 or 4 - 2 JNA NOT_ABOVE 

JC I JC short-label Flags 
ODITSZAPC 

Jump if carry 

Operands Clocks Transfers· Bytes Coding Example 

short-label 16 or 4 - 2 JC CARRY_SET 

JCXZ I JCXZ short-label Flags 
ODITSZAPC 

Jump if CX is zero 

Operands Clocks Transfers· Bytes Coding Example 

short-label 18 or 6 - 2 JCXZ COUNT_DONE 

JE/JZ I JEI JZ short-label Flags 
ODITSZAPC 

Jump if equal/Jump if zero 

Operands Clocks Transfers· Bytes Coding Example 

short-label 16 or 4 - 2 JZ ZERO 

JG/JNLE IJG/JNLE short-label Flags 
ODITSZAPC 

Jump if greater/Jump if not less nor equal 

Operands Clocks Transfers· Bytes Coding Example 

short-label 16 or 4 - 2 JG GREATER 

JGE/JNL I JGE/JNL short-label Flags 
ODITSZAPC 

Jump if greater or equal/ Jump if not less 

Operands Clocks Transfers· Bytes Coding Example 

short-label 16 or 4 - 2 JGE GREATER_EQUAL 

JL/JNGE IJL/JNGE short-label Flags 
ODITSZAPC 

Jump if less/Jump if not greater nor equal 

Operands Clocks Transfers· Bytes Coding Example 

short-label 16or4 - 2 JL LESS 

'For the BOB6, add four clocks for each 16-bit word transfer with an odd address. For the BOBB, add four clocks for each 16-bit word transfer. 
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,Table 2"21. Instruction Set Reference Data (Cont'd.) 

JLE/JNG IJLE/JNG short-label Flags 
ODITSZAPC 

Jump if less or equal/Jump if not greater 

Operands Clocks Transfers· Bytes Coding Example 

short-label 16 or 4 - 2 JNG NOT_GREATER 

JMP IJMP target Flags 
ODITSZAPC 

Jump 

Operands Clocks Transfers· Bytes Coding Example 

short-label 15 - 2 JMP SHORT 
near-label 15 - 3 JMP WITHIN~SEGMENT 
far-label 15 - 5 JMP FAR_LABEL 
.memptr16 1B+EA 1 2-4 JMP [BX].TARGET 
regptr16 11 - 2 • JMP CX 
memptr32 24+EA 2 2-4 JMP OTHER.SEG [SI] 

JNC . IJNC short-label Flags 
ODITSZAPC 

Jump if not carry 

Operands Clocks Transfers· Bytes Coding Example 

short-label 16 or 4 - 2 JNC NOT~CARRY 

JNE/JNZ I JNE/JNZ short-label Flags 
ODITSZAPC 

Jump if not equal/Jump ifnot zero 

Operands Clocks Transfers • Bytes Coding Example 

short-label 16or4 - 2 JNE NOT_EQUAL 

JNO ·1 JNOshort-label Flags 
ODITSZAPC 

Jump if not overflow 

Operands Clocks Transfers· Bytes Coding Example 

short~label 16or4 - 2 JNO NO_OVERFLOW 

JNP/JPO 1 JNP/JPO short-label 
Jump if not parity/Jump if parity odd 

Flags 0 D ITS ZAP C 

Operands Clocks Transfers· Bytes Coding Example 

short-label 16or4 - 2 JPO ODD_PARITY 

JNS I JNS short-label Flags 
ODITSZAPC 

Jump if not sign 

Operands Clocks Transfers· Bytes Coding Example 

short-label 16or4 - 2 JNS POSITIVE 

'For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-blt word transfer. 
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Table 2-21. Instruction Set Reference Data (Cont'd.) 

JO I JO short-label Flags 
OOITSZAPC 

Jump if overflow 

Operands Clocks Transfers· Bytes Coding Example 

short-label 16 or 4 - 2 JO SIGNEO_OVRFLW 

JP/JPE I JP/JPE short-label Flags 
OOITSZAPC 

Jump if parity/Jump if parity even 

Operands Clocks Transfers· Bytes Coding Example 

short-label 16 or 4 - 2 JPE EVEN_PARITY 

JS IJS short-label Flags 
OOITSZAPC 

Jump if sign 

Operands Clocks Transfers· Bytes Coding Example 

short-label 16 or 4 - 2 JS NEGATIVE 

LAHF I LAHF (no operands) Flags 
OOITSZAPC 

Load AH from flags 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 4 - 1 LAHF 

LOS I LOS destination,source Flags 
OOITSZAPC 

Load pointer using OS 

Operands Clocks Transfers Bytes Coding Example 

reg16, mem32 16+EA 2 2-4 LOS SI,OATA.SEG [01] 

LEA I LEA destination,source Flags 
OOITSZAPC 

Load effective address 

Operands Clocks Transfers· Bytes Coding Example 

reg16, mem16 2+EA - 2-4 LEA BX, [BP] [01] 

LES I LES destination,source Flags 
OOITSZAPC 

Load pointer using ES 

Operands Clocks Transfers· Bytes Coding Example 

reg16, mem32 16+EA 2 2-4 LES 01, [BX].TEXT_BUFF 

'For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer. 
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Table 2-21. Instruction Set Reference Data (Cont'd.) 

LOCK I LOCK (no operands) Flags 
o 0 ITS ZAP ,C 

Lock bus 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 2 - 1 LOCK XCHG FLAG,AL 

LODS I LODS source-string Flags OOITSZAPC 
Load string . 

Operands Clocks Transfers· Bytes Coding Example 

source-string 12 1 1 LOOS CUSTOMER_NAME' 
(repeat) source-string 9+13/rep 1/rep 1 REP LOOS NAME .. 

LOOP I LOOP short-label Flags 
OOITSZAPC 

Loop 

Operands Clocks Transfers· Bytes Coding Example 

short-label 17/5 - 2 LOOP AGAIN 

LOOPE/LOOPZ I LOOPE/LOOPZ short-label Flags o 0 ITS ZA P C, 
Loop if equal/Loop if zero 

Operands Clocks Transfers· Bytes Coding Example 

short-label 180r6 - 2 LOOPE AGAIN 

LOOPN E/LOO PNZ I LOO~NE/LOOPNZ sho.rt-Iabel Fla.gs.. 
o 0 ITS ZAP· C 

Loop If not equal/Loop If not zero 

Operands Clocks Transfers· Bytes 'coding Example 

short-label 190r5 - 2 LOOPNE AGAIN 

NMlt I NMI (external nonmaskable interrupt) Flags OSITSZAPC 
Interrupt if NMI = 1 . o 0 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 50' 5 N/A N/A 

'Forthe 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-blt word transfer. 

tNMI is not an instruction; it is included in table 2-21 only for timing information. 
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Table 2-21. Instruction Set Reference Data (Cont'd.) 

MOV I MOV destination,source Flags 
ODITSZAPC 

Move 

Operands Clocks Transfers· Bytes Coding Example 

memory, accumulator 10 1 3 MOV ARRAY [SI], AL 
accumulator, memory 10 1 3 MOV AX, TEMP _RESULT 
register, register 2 - 2 MOV AX,CX 
register, memory 8+EA 1 2-4 MOV BP, STACK_TOP 
memory, register 9+EA 1 2-4 MOV COUNT [DI], CX 
register, immediate 4 - 2-3 MOV CL,2 
memory, immediate 10+EA 1 3-6 MOV MASK [BX] [SI], 2CH 
seg-reg, reg16 2 - 2 MOV ES,CX 
seg-reg, mem16 8+EA 1 2-4 MOV DS, SEGMENT_BASE 
reg16, seg-reg 2 - 2 MOV BP,SS 
memory, seg-reg 9+EA 1 2-4 MOV [BX].SEG_SAVE, CS 

MOVS I MOVS dest-string,source-string Flags 
ODITSZAPC 

Move string 

Operands Clocks Transfers· Bytes Coding Example 

dest-string, source-string 18 2 1 MOVS LINE EDIT_DATA 
(repeat) dest-string, source-string 9+17/rep 2/rep 1 REP MOVS SCREEN, BUFFER 

MOVSB/MOVSW I MOVSB/MOVSW (no operands) Flags 
ODITSZAPC 

Move string (byte/word) 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 18 2 1 MOVSB 
(repeat) (no operands) 9+17/rep 2/rep 1 REP MOVSW 

MUL I MUL source Flags 
ODITSZAPC 

Multiplication, unsigned X U U U U X 

Operands Clocks Transfers· Bytes Coding Example 

reg8 70-77 - 2 MUL BL 
reg16 118-133 - 2 MUL CX 
mem8 (76-83) 1 2-4 MUL MONTH [SI] 

+EA 
mem16 (124-139) 1 2-4 MUL BAUD_RATE 

+EA 

'For the 8086, add four clocks for each 16·bit word transfer with an odd address. For the 8088, add four clocks for each 16·bit word transfer. 
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Table 2-21. Instruction Set Reference Data (Cont'd.) 

NEG I NEG destination Flags OOITSZAPC 
Negate X XXXX.1· 

Operands Clocks Transfers' Bytes Coding Example 

register 3 - 2 NEG AL 
memory 16+EA 2 2-4 NEG MULTIPLIER 

'0 if destination = 0 

Nap / NOP (no operands) Flags 
OOITSZAPC 

No Operation 

Operands Clocks Transfers' Bytes Coding Example 

(no operands) 3 - 1 NOP 

NOT J NOT destination Flags 
OOITSZApC 

Logical not 

Operands Clocks Transfers' Bytes Coding Example 

register. 3 - 2 NOT .AX 
memory 16+EA 2 2-4 NOT CHARACTER 

OR lOR destination,source Flags 
OOITSZAPC 

Logical inclusive or 0 X X U X 0 

, Operands Clocks Transfers' Bytes Coding Example 

register, register 3 -. 2 OR AL, BL 
register, memory 9+EA. 1 2-4 OR OX, PORT _10 [01] 
memory, register 16+EA 2 2-4 OR FLAG_BYTE, CL 
accumulator, immediate 4 - 2-3 OR AL,01101100B 
register, immediate 4 - 3-4 OR CX,OlH 
memory, immediate 17+EA 2 , 3-6. OR [BX].CMO_WORO,OCFH 

OUT ./ OUT port,accumulator Flags 
ODITSZAPC 

Output byte or word 

Operands Clocks Transfers' Bytes Coding Example 

immed8, accumulator 10 1 2 OUT 44, AX 
OX, accumulator 8 1 1 OUT OX, AL 

POP I POP destination Flags 
OOITSZAPC 

Pop word off stack 

Operands Clocks Transfers' Bytes Coding Example 

register 8 1 1 POP OX 
seg-reg (CS illegal) 8 1 1 POP OS 
memory 17+EA 2 2-4 POP PARAMETER 

'For the 8086, add four clocks for each l6-bit word transfer with an odd address. For the 8088, add four clocks for each l6-bit word transfer. 
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Table 2-21. Instruction Set Reference Data (Cont'd.) 

POPF I POPF (no operands) . Flags 
o D ITS Z A PC 

Pop flags off stack R RR R R R R R R 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) B 1 1 POPF 

PUSH I PUSH source Flags o D ITS Z AP C 
Push word onto stack 

Operands Clocks Transfers· Bytes Coding Example 

register 11 1 1 PUSH SI 
seg-reg (CS legal) 10 1 1 PUSH ES 
memory 16+EA 2 2-4 PUSH RETURN_CODE [SI] 

PUSHF I PUSHF (no operands) Flags 
o D IT S ZAP C 

Push flags onto stack 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 10 1 1 PUSHF 

RCL I ~CL destination,count Flags 
ODITSZAPC 

Rotate left through carry X X 

Operands . Clocks Transfers· Bytes Coding Example 

register, 1 2 - 2 RCLCX,1 
register, CL B+4/bit - 2 RCL AL,CL 
memory, 1 15+EA 2 2-4 RCL ALPHA,1 
memory, CL 20+EA+ 2 2-4 RCL [BP].PARM, CL 

4/bit 

RCR I ~CR designation,count Flags 
OD ITS ZAP C 

Rotate right through carry X X 

Operands Clocks . Transfers· Bytes Coding Example 

register, 1 2 - 2 RCR BX,1 
register, CL B+4/bit - 2 RCR BL,CL '. 

memory, 1 15+EA 2 2-4 RCR [BX].STATUS,1 
memory, CL 20+EA+ 2 2-4 RCR ARRAY [DI], CL 

4/bit 

REP I REP (no operands) " Flags 
o D ITS Z AP C 

Repeat string operation 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 2 - 1 REP MOVS DEST, SRCE 

'For the 8086, add four clocks for each 16-bit word transfer with an odd address,For the 8088, add four clocks for each 16-bit word transfer. 
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Table 2-21. Instruction Set Reference Data (Cont'd.) 

REPE/REPZ I REPE/REPZ (no operands) Flags 
ODITSZAPC 

Repeat string operation while equal/while zero 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 2 - 1 REPE CMPS DATA, KEY 

REPNEIREPNZ \IREPNE/REPNZ (no operands) Flags 
ODITSZAPC 

Repeat string operation while not equal/ not zero 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 2 - 1 REPNE SCAS INPUT_LINE 

RET I RET optional-pop-value Flags 
ODITSZAPC 

Return from procedure 

Operands Clocks Transfers· Bytes Coding Example 

(intra-segment, no pop) 8 1 1 RET 
(intra-segment, pop) 12 1 3 RET 4 
(inter-segment, no pop) 18 2 1 RET 
(inter-segment, pop) 17 2 3 RET 2 

ROL I ROL destination,count Flags 
ODITSZAPC 

Rotate left X X 

Operands Clocks Transfers Bytes Coding Examples 

register, 1 2 - 2 ROL BX,1 
register, CL 8+4/bit - 2 ROL DI, CL 
memory, 1 15+EA 2 2-4 ROL FLAG_BYTE [01],1 
memory, CL 20+EA+ 2 2-4 ROL ALPHA, CL 

4/bit 

ROR \ ~OR destination,count Flags 
ODITSZAPC 

Rotate right X X 

Operand Clocks Transfers· Bytes Coding Example 

register, 1 2 - 2 ROR AL,1 
register, CL 8+4/bit - 2 ROR BX,CL 
memory, 1 15+EA 2 2-4 ROR PORT_STATUS, 1 
memory, CL 20+EA+ 2 2-4 ROR CMD_WORD, CL 

4/bit 

SAHF \SAHF (no operands) Flags 
ODITSZAPC 

Store AH into flags R R R R R 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 4 - 1 SAHF 

·For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer. 
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Table 2-21. Instruction Set Reference Data (Cont'd.) 

SAL/SHL I SAL/SHL destination,count Flags 
00 ITS ZAP C 

Shift arithmetic leftl Shift logical left X X 

Operands Clocks Transfers· Bytes Coding Examples 

register,1 2 - 2 SAL AL,1 
register, CL 8+4lbit - 2 SHL 01, CL 
memorY,1 15+EA 2 2-4 SHL [BX].OVERoRAW,1 
memory, CL 20+EA+ 2 2-4 SAL STORE_COUNT, CL 

41bit 

SAR I SAR destination,source Flags 
OolTSZAPC 

Shift arithmetic right X X X U X X 

Operands Clocks Transfers· Bytes Coding Example 

register, 1 2 - 2 SAR OX,1 
register, CL 8+4lbit - 2 SAR 01, CL 
memory, 1 15+EA 2 2-4 SAR N_BLOCKS, 1 
memory, CL 20+EA+ 2 2-4 SAR N_BLOCKS, CL 

41bit 

SBB I SBB destination, source Flags 
OolTSZAPC 

Subtract with borrow X X X X X X 

Operands .. Clocks Transfers· Bytes Coding Example 

register, register 3 - 2 SBB BX,CX 
register, memory 9+EA 1 2-4 SBB 01, [BX].PAYMENT 
memory, register 16+EA 2 2-4 SBB I;lALANCE, AX 
accumulator, immediate .. 4 - 2-3 SBB AX,2 
register, immediate 4 - 3-4 SBB CL,1 
memory, immediate 17+EA 2 3-6 SBB COUNT [SI], 10 

seAS I SCAS dest-string Flags 
OolTSZAPC 

Scan string .x XXXXX 

Operands Clocks Transfers· Bytes Coding Example 

dest-string 15 1 1 SCAS INPUT_LINE 
(repeat) dest-string 9+151rep 11rep 1 REPNE SCAS BUFFER 

SEGMENTt I SI;G MENT override prefix Flags 
OolTSZAPC 

Override to specified segment 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 2 - 1 MOV SS:PARAMETER, AX 

'For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer. 

tASM-86 incorporates the segment override prefix into the operand specification and not as a separate instruction. SEGMENT is included in table 

2-21 only for timing information. 
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SHR I SHR destination,count Flags 
o D ITS ZA PC 

Shift logical right X X 

Operands Clocks Transfers· Bytes Coding Example 

register, 1 2 - 2 SHR SI,1 
register, CL 8+4/bit - 2 SHR SI, CL 
memory, 1 15+EA 2 2-4 SHR ID_BYTE [SI] [BX], 1 
memory, CL 20+EA+ 2 2-4 SHR INPUT_WORD, CL 

4lbit 

SINGLE STEPt I SINGLE STEP (Trap flag interrupt) Flags 
ODITSZAPC 

Interrupt if TF = 1 o 0 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 50 5 N/A N/A 

STC I STC (no operands) Flags ODITSZAPC 
Set carry flag 1 

Operands Clocks . Transfers· Bytes Coding Example 

(no operands) 2 - 1 STC 

.. STD I STD (no operands) Flags 
ODITSZAPC 

Set direction flag 1 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 2 - 1 STD 

STI I STI(no operands) Flags 
ODITSZAPC 

Set interrupt enable flag 1 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 2 - 1 STI 

STOS I STOS dest-string Flags ODITSZAPC 
Store byte or word string 

Operands Clocks Transfers· Bytes Coding Example 

dest-string 11 1 1 STOS PRINT_LINE 
(repeat) dest-string . 9+10/rep 1/rep 1 REP STOS DISPLAY 

• For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer. 

tSINGLE STEP is no, an instruction; it is included in table 2-21 only for timing information. 
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Table 2-21. Instruction Set Reference Data (Cont'd.) 

SUB IsUB destination, source Flags 
ODITSZAPC 

Subtraction X XXXXX 

Operands Clocks Transfers· Bytes Coding Example 

register, register 3 - 2 SUB CX, BX 
register, memory 9+EA 1 2-4 SUB OX, MATH_TOTAL [SI] 
memory, register 16+EA 2 2-4 SUB [BP+2], CL 
accumulator, immediate 4 - 2-3 SUB AL r 10 
register, immediate 4 - 3-4 SUB SI,5280 
memory, immediate 17+EA 2 3-6 SUB [BP].BALANCE,1000 

TEST I TEST destination,source Flags 
ODITSZAPC 

Test or non-destructive logical and 0 X X U X 0 

Operands Clocks Transfers· Bytes Coding Example 

register, register 3 - 2 TEST 51,01 
register, memory 9+EA 1 2-4 TEST 51, END_COUNT 
accumulator, immediate 4 - 2-3 TEST AL,00100000B 
register, immediate 5 - 3-4 TEST BX, OCC4H 
memory, immediate 11 +EA - 3-6 TEST RETURN_CODE,01H 

WAIT I WAIT (no operands) Flags 
ODITSZAPC 

Wait while TEST pin not asserted 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 3 + 5n - 1 WAIT 

XCHG IXCHG destination,source Flags 
ODITSZAPC 

Exchange 

Operands Clocks Transfers· Bytes Coding Example 

accumulator, reg16 3 - 1 XCHG AX, BX 
memory, register 17+EA 2 2-4 XCHG SEMAPHORE, AX 
register, register 4 - 2 XCHG AL, BL 

XLAT IXLAT source-table Flags 
ODITSZAPC 

Translate 

Operands Clocks Transfers· Bytes Coding Example 

source-table 11 1 1 XLAT ASCILTAB 

·For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer. 
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Table 2-21. Instruction Set Reference Data (Cont'd.) 

XOR I XOR destination,source Flags 
ODITSZAPC 

Logical exclusive or 0 X X U X 0 

Operands Clocks Transfers· Bytes Coding Example 

register, register 3 - 2 XOR CX, BX 
register, memory 9+EA 1 2-4 XOR CL, MASK_BYTE 
memory, register 16+EA 2 2-4 XOR ALPHA [SI], DX 
accumulator, immediate 4 - 2-3 XOR AL,01000010B 
register, immediate 4 - 3-4 XOR SI,00C2H 
memory, immediate 17+EA 2 3-6 XOR RETURN_CODE,OD2H 

• For the 8086, add four clocks for each 16-bit word transfer with an odd address. Forthe 8088, add four clocks for each 16-bit word transfer. 

2.8 Addressing Modes 

The 8086 and 8088 provide many different ways 
to access instruction operands. Operands may be 
contained in registers, within the instruction 
itself, in memory or in 1/0 ports. In addition, the 
addresses of memory and 110 port operands can 
be calculated in several different ways. These 
addressing modes greatly extend the flexibility 
and convenience of the instruction set. This sec­
tion briefly describes register and immediate 
operands and then covers the 8086/8088 memory 
and 110 addressing modes in detail. 

Register and Immediate Operands 

Instructions that specify only register operands 
are generally the most compact and fastest 
executing of all instruction forms. This is because 
the register "addresses" are encoded in instruc­
tions in just a few bits, and because these opera­
tions are performed entirely within the CPU (no 
bus cycles are ·run). Registers may serve as source 
operands, destination operands, or both. 

Immediate operands are constant data contained 
in an instruction. The data may be. either 8 or 16 
bits in length. Immediate operands can be 
accessed quickly because they are available 
directly from the instruction queue; like a register 
operand, no bus cycles need to be rUn to obtain an 
immediate operand. The limitations of immediate 
operands are that they may only serve as source 
operands and that they are constant values. 
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Memory Addressing Modes 

Whereas the EU has direct access to register and 
immediate operands, memory operands must be 
transferred to or from the CPU over the bus. 
When the EU needs to read or write a memory 
operand, it must pass an offset value to the BIU. 
The BIU adds the offset to the (shifted) content of 
a segment register producing a 20-bit physical 
address and then executes the bus cycle(s) needed 
to access the operand. 

The Effective Address 

The offset that the EU calculates for a memory 
operand is called the operand's effective address 
or EA. It is an unsigned J6-bit number that 
expresses the operand's distance in bytes from the 
beginning of the segment in which it resides. The 
EU can calculate the effective address in several 
different ways. Information encoded in the 
second byte of the instruction tells the EU how to 
calculate the effective address of each memory 
operand. A compiler or assembler derives this 
information from the stateme.nt or instruction 
written by the programmer. Assembly language 
programmers have access to. all addressing modes. 

Figure 2-34 shows that the execution unit 
calculates the EA by summing a displacement, the 
content of a base register and the content of an 
index register. The fact that any combination of 
these three components may be present in a given 
instruction gives rise to the variety of 8086/8088 
memory addressing modes. 
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ENCODED 
INTHE 
INSTRUCTION 

EXPLICIT { 
INTHE 
INSTRUCTION 

ASSUMED 
UNLESS 
OVERRIDDEN 
BY PREFIX 

SINGLE INDEX DOUBLE INDEX 

EU 

l 
BIU 

Figure 2-34. Memory Address Computation 

The displacement element is an 8- or 16-bit 
number that is contained in the instruction. The 
displacement generally is derived from the posi­
tion of the operand name (a variable or label) in 
the program. It also is possible for a programmer 
to modify this value or to specify the displace­
ment explicitly. 

A programmer may specify that either BX or BP 
is to serve as a base register whose content is to be 
used in the EA computation. Similarly, either SI 
or DI may be specified as an index register. 
Whereas the displacement value is a constant, the 
contents of the base and index registers may 
change during execution. This makes it possible 
for one instruction to access different, memory 
locations as determined by the current values in 
the base and/or index registers. 

It takes time for the EU to calculate a memory 
operand's effective address. In general, the more 
elements in the calculation, the longer it takes. 
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Table 2-20 shows how much time is required to 
compute an effective address for any combination 
of displacement, base register and index register. 

Direct Addressing 

Direct addressing (see figure 2-35) is the simplest 
memory addressing mode. No registers are in­
volved; the EA is taken directly from the displace­
ment field of the instruction. Direct addressing 
typically is used to access simple variables 
(scalars). 

Register Indirect Addressing 

The effective address of a memory operand may 
be taken directly from one of the base or index 
registers as shown in figure 2-36. One instruction 
can operate on many different memory locations 
if the value in the base or index register is updated 
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appropriately. The LEA (load effective address) 
and arithmetic instructions might be used to 
change the register value: 

Note that any 16-bit general register may be used 
for register indirect addressing with the JMP or 
CALL instructions. 

EA 

Figure 2-35. Direct Addressing 

BX 
OR 

~.I--OR EA BP ___ ~.[:::!~::] 
51 
OR 
01 

Figure 2-36. Register Indirect Addressing 

Based Addressing 

In based addressing (figure 2-37), the effective 
address is the sum of a displacement value and the 
content of register BX or register BP. Recall that 
specifying BP as a base register directs theBiU to 
obtain the operand from the current stack seg-

E~~---+--
EA 

Figure 2-37. Based Addressing 

Mnemonics © Intel, 1978 2-70 

ment (unless a segment override prefix is present). 
This makes based addressing with BP a very con­
venient way to access stack data (see section 2.10 
for examples), 

Based addressing also provides a straightforward 
way to address structures which may be located at 
different places in memory (see figure 2-38). A 
base register can be pointed at the base of the 
structure and elements of the structure addressed 
by their displacements from the base. Different 
copies of the same structure can be accessed by 
simply changing the base register. 

HIGH ADDRESS 

DISPLACEMENT 

t AGE ISTATUS - RATE 

VAC I SICK 

DEPT I DIV 

1 BASE REGISTER I i EMPLOYEE 

t 
L EA I 

T 
I BASE REGISTER h 

'" ",,",: ~i 
RATE J I 

VAC SICK I 
D~;PLOY~~ ______ .J 
LOW ADDRESS 

Figure 2-38. Accessing a Structure With Based 
Addressing 

Indexed Addressing 

In indexed addressing, the effective address is 
calculated from the sum of a displacement plus 
the content of an index register(SI or DI) as 
shown in figure 2-39. Indexed addressing often is 

Figure 2-39. Indexed Addressing 
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used to access elements in an array (see figure 
2-40). The displacement locates the beginning of 
the array, and the value of the index register 
selects one element (the first element is selected if 
the index register contains 0). Since all array 
elements are the same length, simple arithmetic 
on the index register will select any element. 

Based Indexed AddreSSing 

Based indexed addressing generates an effective 
address that is the sum of a base register, an 
index register and a displacement (see figure 
2-41). Based indexed addressing is a very flexible 
mode because two address components can be 
varied at execution time. 

HIGH ADDRESS 

ARRAY (8) 

Based indexed addressing provides a convenient 
way for a procedure to address an array allocated 
on a stack (see figure 2-42). Register BP can con­
tain the offset of a reference point on the stack, 
typically the top of the stack after the procedure 
has saved registers and allocated local storage. 
The offset of the beginning of the array from the 
reference point can be expressed by a displace­
ment value, and an index register can be used to 
access individual array elements. 

Arrays contained in structures and matrices (two­
dimension arrays) also could be accessed with 
based indexed addressing. 

r 
I 

i DISPLACEMENT I 

INDEX ~GISTER 
r+ ARRAY (7) 

ARRAY (6) 
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1 
I 
I Hd-j 

Eg~:+r 

I 
I 
I 
I 
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I 14 I , 
I EA I-
--------.. 

ARRAY (4) 

ARRAY (3) 

ARRAY (2) 

ARRAY (1) 

ARRAY (0) 

~1WORD~ 

LOW ADDRESS 

2 I 
t I 

--t EA I I 
_-------.J 

I EA 

Figure 2-40. Accessing an Array With Indexed 
Addressing Figure 2-41. Based Indexed Addressing 
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Figure 2-42. Accessing a Stack Array With Based Indexed Addressing 
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String Addressing 

String instructions do not use the normal memory 
addressing modes to access their operands. 
Instead, the index registers are used implicitly as 
shown in figure 2-43. When a string instruction is 
executed, SI is assumed to point to the first byte 
or word of the source string, and DI is assumed to 
point to the first byte or word of the destination 
string. In a repeated string operation, the CPUs 
automatically adjust SI and DI to obtain subse­
quent bytes or words. 

I/O Port Addressing 

If an I/O port is memory mapped, any of the 
memory operand addressing modes may be used 
to access the port. For example, a group of ter­
minals can be accessed as an "array." String 
instructions also can be used to transfer data to 
memory-mapped ports with an appropriate hard­
ware interface. Section 2.10 contains examples of 
addressing memory-mapped I/O ports. 
Two different addressing modes can be used to 
access ports located in the I/O space; these are 
illustrated in figure 2-44. In direct port address­
ing, the port number is an 8-bit immediate 

SI f..--..I. SOURCE EA 

01 1--1 DESTINATION EA 1 

Figure 2-43. String Operand Addressing 
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operand. This allows fixed access to ports 
numbered 0~255. Indirect port addressing is 
similar to register indirect addressing of memory 
operarids. The port number is taken from register 
DX and can range from 0 to 65,535. By pre­
viously adjusting the content of register DX, one 
instruction can access arty port in the I/O space. 
A group of adjacent ports can be accessed using a 
simple software loop that adjusts the value in DX. 

2.9 Programming Facilities 

A comprehensive integrated set of tools supports 
8086/8088 software development. These tools are 
programs that run on Intellec® 800 or Series II 
Microcomputer Development Systems under. the 
ISIS-II operating system, the same hardware and 
operating system used to develop software for the 
8080 and the 8085. Since the 8086 and 8088 are 
software-compatible with one another, the same 
tools are used for both processors to provide 
programmers with a uniform development 
environment. 

DIRECT PORT ADDRESSING 

INDIRECT PORT ADDRESSING 

Figure 2-44. i/o Port Addressing 
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Software Development Overview 

A program that will ultimately execute on an 
SOS6- or SOSS-based system is developed in steps 
(see figure 2-45). The overall program is com­
posed of functional units called modules. For 
purposes of this discussion, a module is a section 
of code that is separately created, edited, and 
compiled or assembled. A very small program 
might consist of a single module; a large program 
could be comprised of 100 or more modules. The 
SOS6/S0SS LINK-86 utility binds modules 
together into a single program. (The module 
structure of a program is critical to its successful 
development and maintenance; see section 2.10 
for guidelines.) 

S086 and 80S8 modules can be written in either 
PLlM-S6 or ASM-86 (see table 2-22). PLlM-86 is 
a high-level language suitable for most 
microprocessor applications. It is easy to use, 
even by programmers who have little experience 
with microprocessors. Because it reduces software 
development time, PL/M-S6 is ideal for most of 
the programming in any application, especially 
applications that must get to market quickly. 

ASM-86 is the S086/808S assembly language. 
ASM~86 provides the programmer who is familiar 
with the CPU architecture, access to all processor 
features. For critical code segments within pro­
grams that make sophisticated use of the hard­
ware, have extremely demanding performance or 
memory constraints, ASM-86 is the best choice. 

Figure 2-45. Software Development Process 
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Table 2-22. PLlM-86/ ASM-86 Characteristics 

PL/M-86 

• Fast Development 

• Less Programmer Training 

• Detailed Hardware Knowledge Not Required 

The languages are completely compatible, and a 
judicious combination of the two often makes 
good sense. Prototype software can be developed 
rapidly with PLlM-S6. When the system is 
operating correctly, it can be analyzed to see 
which sections can pest profit from being written 
in ASM-S6. Since the logic of these sections 
already has been debugged, selective rewriting can 
be done quickly and with low risk. 

Each PLlM-S6 or ASM-S6 module (called a 
source moduel) is keyed into the Intellec® system 
using the ISIS-II text editor and is stored as a 
diskette file. This source file is then input to the 
appropriate language translator (ASM-S6 
assembler or PL/M-S6 compiler). The language 
translator creates a diskette file from the source 
file, which is called a relocatable object module. 
The translator also lists the program and flags any 
errors detected during the translation. The 
relocatable object module contains the SOS6/S0SS 
machine instructions that the translator created 
from the statements in the source module. The 
term "relocatable" refers to the fact that all 
references to memory locations in the module are 
relative, rather than being absolute memory 
addresses. The module generally is not executable 
until the relative references are changed to the 
actual memory locations where the module will 
reside in the execution system's memory. The pro­
cess of changing the relative references to 
absolute memory locations is called locating. 

There are very good reasons for not locating 
modules when they are translated. First, the exe­
cution system's physical memory configuration 
(where RAM and ROM/PROM segments are 
actually located in the megabyte memory space) 
may not be known at the time the modules are 
written. Second, it is desirable to be able to use a 
common module (e.g., a square root routine) in 
more than one system. If absolute addresses were 
assigned at translation time, the common module 
would either have to occupy the same physical 
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ASM-86 

• Fastest Execution Speed 

• Smallest Memory Requirements 

• Access To All Processor Facilities 

addresses in every system, or separate versions 
with different addresses would have to be main­
tained for each system. When locating is deferred, 
a single version of a common routine can be used 
by any number of systems. Finally, the locations 
of modules typically change as a system is 
developed, maintained and enhanced. Separating 
the location process from the translation process 
means that as modifications are made, unchanged 
modules only need to be relocated, not 
retranslated. 

Relocatable object modules may be placed into 
special files called libraries, using the LIB-S6 
library manager program. Libraries provide a 
convenient means of collecting groups of related 
modules so that they can be accessed automati­
cally by the LINK-S6 program. 

When enough relocatable object modules have 
been created to test the system, or part of it, the 
modules are linked and located. Linking com­
bines all the separate modules into a single pro­
gram. Locating changes the relative memory 
references in the program to the actual memory 
locations where the program will be loaded in the 
execution system. The link and locate process also 
is referred to as R & L, for relocation and linkage. 

Two other programs round out the software 
development tools available for the SOS6 and 
SOSS. OH-S6 converts an absolute object file into 
a hexadecimal format used by some PROM pro­
grammers and system loaders (for example, the 
SDK-S6 and iSBC 957™ loaders). CONV-S6 can 
do most of the conversion work required to 
translate SOSO/SOS5 assembly language source 
modules into ASM-86 source modules. 

The S086/S0SS software development facilities 
are covered in more detail in the remainder of this 
section. However, these are only introductions to 
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the use of these tools. Complete documentation is 
available in the following publications available 
from Intel's Literature Department: 

ISIS-II: 

ISIS-II System User's Guide, Order No. 9S00306 

ASM-86: 

MCS-86 Assembly Language Reference Manual, 
Order No. 9S00640 

MCS-86 Assembler Operating Instructions for 
ISIS-II Users, Order No. 9S00641 

PL/M-86: 

PLIM-86 Programming Manual, Order No. 
9S00466 

ISIS-II PLIM-86 Compiler Operator's Manual, 
Order No. 980047S 

LINK-86, LOC-86, LIB-86, OH-86: 

MCS-86 Software Development Utilities 
Operating Instructions for ISIS-II Users, Order 
No.9S00639 

CONV-86: 

MCS-86 A$sembly Language Converter 
Operating Instructions for ISIS-II Users, Order 
No.9S00642 

PL/M-86 

PLlM-S6 is a general-purpose, high-level 
language for programming the SOS6 and SOSS 
microprocessors. It is an extension of PL/M-SO, 
the most widely-used, high-level programming 
language for microprocessors. (PL/M-SO source 
programs can be processed by the PL/M-S6 com­
piler; the resulting object program is generally 
reduced by 15-300/0 in size.) PLlM-S6 is suitable 
for all types of microprocessor software from 
operating systems to application programs. 

PLlM-S6's purpose is simple: to reduce the time 
and cost of developing and maintaining software 
for the SOS6 and SOSS. It accomplishes this by 
creating a programming environment that, for the 
most part, is distinct from the architecture of the 
CPUs. Registers, segments, addressing modes, 
stacks, etc., are effectively "invisible" to the 
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PLlM-S6 programmer. Instead, the processors 
appear to respond to simple commands and 
familiar algebraic expressions. The responsibility 
for translating these source statements into the 
machine instructions ultimately required to exe­
cute on the SOS6/S0SS is assumed by the PLlM-S6 
c()mpiler. By "hiding" the details of the machine 
architecture, PL/M-S6 encourages programmers 
to concentrate on solving the problem at hand. 
Furthermore, because PL/M-S6 is closer to 
natural language, it is easier to "think in 
PLlM-S6" than it is to "think in assembly 
language." This speeds up the expression of a 
program solution, and, equally important, makes 
that solution easier for someone other than the 
original programmer to understand. PL/M-S6 
also contains all the constructs necessary for 
structured programming. 

Statements and Comments 

A programmer builds a PLlM-S6 program by 
writing statements and comments (see figure 
2-46). There are several different types of 
statements in PLlM-S6; they always end with a 
semicolon. Blanks can be used freely before, 
within, and after statements to improve read­
ability. A statement also may span more than one 
line. 

The characters "1*" start a comment, and the 
characters "*1" end it; any characters may be 
used in between. Comments do not affect the exe­
cution of a PLlM-S6 program, but all good pro­
grams are thoughtfully commented. Comments 
are notes that document and clarify the program's 
operation; they may be written virtually anywhere 
in a PLlM-S6 program. 

Data Definition 

Most PLlM-S6 programs begin by defining the 
data items (variables) with which they are going to 
work. An individual PLlM-S6 data element is 
called a scalar. Every scalar variable has a 
programmer-supplied name up to 31 characters 
long, and a type. PLlM-S6 supports five types of 
scalars: byte, word, integer, real, and pointer. 
Table 2-23 lists the characteristics of these 
PLlM-S6 data types. 
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'".TRAFFIC DATA RECORDER CONTROL PROGRAM" 
. "VERSION 2.2, RELEASE 5,. 23APR79." 
"THIS RELEASE FIXES THREE BUGS" 
"DOCUMENTED IN PROBLEM REPORT #16."' 

"~COMPUTETOTAL PAYMENT DUE"' 
TOTAL = PRINCIPAL + INTEREST; 

IF TERMINAL$READY 
THEN CALL FILL$BUFFER; . ....... .... , 
ELSE CALL WAIT (50); '"WArt 50 MS FOR R'ESPONSE", 

Figure 2-46. pLlM-86 Statements and Comments 

Table 2-23. PLlM-86 Data Types 

TYPE BYTES RANGE US.AGE 

BYTE 1 o to 255 Unsigned Integer, Charact~r 
.. 

WORD 2 o to 65,535 Unsigned Integer 

INTEGER 2 
-32,768to . 

Signed Integer 
+32,767 

" 

1 x 10-38 to 
REAL 4 Floating Point 3.37 x 10+38 

POINTER 2'4 N'A 

. . 

Variables are defined by writing a DECLARE 
statement of this form: 

DECLAREscalar~name type; 

Options of the DECLARE statement can be used 
to specify an initial value for the scalar and to 
define a series of items in a shorthand form. 

Besides scalar variables, scalar constants may be 
used in .PLlM-86 programs (see figure 2-47). 
Constants may be written "as is"or may be given 
names to improve pr()gram clarity. . . 

Sca.lars can be aggregated into named collections 
of data such as arrays and structures. An array is 
a . collection of scalars of the same type (all 
integer, all real, etc.). Arrays are useful for 
representing data that has a repetitive nature. For 
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Address ManipulatiOn 

example, monthly rainfall samples could be 
represented as an array of 12 elements; one for 
each month: 

DECLARERAINFALL (12)REAL; 

Each element in. an array' isaccessibie by a 
number called .a subscript which is the element's 
relative location in the array. In Pt/M~86, the 
first element in an array has a s).lbscrlpt of O;.it is' 
considered the "Otl:l"element. Thus, Ri\INF AL.L 
(11) refers to December's sample. The subscript 
need not be aconsta~t; variables and expressions 
also maybe ~sed as subscripts. 

, . . ,"". 

Strings of character data are typically. defined as 
byte arrays. Characters can be accessed with 
subscripts or with powerful string-handling func­
tions built into PLlM-86. 
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10 '*DECIMAL NUMBER*' 
OAH '*HEXADECIMAL NUMBER*' 
120 '*OCTALNUMBER*' 

00001010B '*BINARY NUMBER*' 
10.0 '*FLOATING POINT NUMBER* I 

1.0E1 '*FLOATING POINT NUMBER*' 
'A' '*CHARACTER*' 

'*CONSTANTS MAY BE GIVEN NAMES*' 
DECLARE STATUS$PORT LITERALLY 'OFFEH'; 
DECLARE THRESHOLD LITERALLY '98.6'; 

Figure 2-47. PL/M-86 Constants 

A structure is a collection of related data elements 
that do not necessarily have the same type. The 
elements are related by virtue of "belonging" to 
the entity represented by the structure. Here is a 
simple structure declaration: 

DECLARE BRIDGE STRUCTURE 

(SPAN 

YR$BUILT 

WORD, 

BYTE, 

AVG$TRAFFIC REAL); 

The year the bridge was built could be accessed by 
writing BRIDGE. YR$BUIL T; the structure ele­
ment name is "qualified" by the dot and the 

. structure name. This allows structures with the 
same element names to be distinguished from 
each other (e.g., HIGHWAY.YR$BUILT). 

Arrays and structures can be combined into more 
complex data aggregates: 

• array elements may be structures rather than 
scalars, 

• a structure element may be an array, 

• structures in arrays may themselves contain 
arrays. 

Figure 2-48 provides sample PLlM-86 data 
declarations. 

Assignment Statement 

Data that has been defined can be operated on 
with PLlM-86 executable statements. The fun­
damental executable statement is the assignment 
statement, written in this form: 

. variable-name = expression; 

This means "evaluate the expression and assign 
(move) the result to the variable." 

There are three basic classes of expressions in 
PLlM-86; arithmetic, relational and logical (see 
table 2-24 and figure 2-49). All expressions are 
combinations of operands and operators, 
although an expression can consist of a single 
operand. Operands are variables and constants; 
operators vary according to the type of expres­
sion. Evaluation of an expression always yields a 
single result; different classes of expressions yield 
different types of results. 

Table 2-24. Characteristics of PL/M-86 Expressions 

EXPRESSION OPERATORS RESULT 
ARITHMETIC +, -, *,', MOD NUMBER 

RELATIONAL >,<,"',>"',<'" "TRUE"-FFH 
"FALSE"-OH 

LOGICAL AND, OR, XOR, NOT 8/16-BIT STRING 
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,····SCALARS····' 
DECLARE SWITCH BYTE; , 
DECLARE COUNT WORD, 

INDEX INTEGER; 
DECLARE(NET,GROSS, TOTAL) .. REAL;' 

'·1 SCALAR·' 
'*1 SCALAR·' 
'·3 SCALARS·' 

'····ARRAYS····, 
DECLARE MONTH (12) BYTE; 
DECLARE TERMINAL_LINE (80t: ,'BYTE; : 

'····STRUCTURE····' 
DECLARE EMPLOYEE STRUCTURE 

(lD_NUMBER 
DEPARTMENT 

WORD, 
BYTE· 
REAL); RATE 

, •••• ARRAY OF STRUCTURES····' 
DECLARE INVENTORY_ITEM (100) STRUCTURE 

(PART_NUMBER WORD, 
ON_HAND WORD, .' 
RE_ORDER BYTE); . ' 

, •••• ARRAY WITHIN STRUCTURE····' 
DECLARE COUNTY_DATA STRUCTURE 

(NAME (20) BYTE, 
TENc-YR~RAINFALL(10) BYTE, 
PER CAPITA_INCOME REAL); 

Figure 2-48. PLlM-86 Data Declarations' 

,. ARITHMETIC·' 
A=2; B=3; 
B=B+1; 
C = (A·B) -2; 
C = «A·B) + 3) MOD 3; 

, '·RELATIONAL·' 
A=2;B=3 
C=B>A; 
C=B<>A; 
C= B = (A+1); 

'·LOGICAL ., 
A = 0011$0001 B; 
B = 1000$0001 B; 
C= NOTB; 

'C=AAND B; 
C =; A OR B; 

'C= BXORA; 
C =,(A ANDB) OR OFOH; 

'·BCONTAINS4·1' 
,·C CONTAINS 6·' 
,·C CONTAINS 2·' 

,·C CONTAINS OFFH·' 
,·C CONTAINS OFFH ~ , 
,·C CONTAINS OFFH·' 

'·$IS FOR RE,ADABILlTY·' 

,·C CONTAINS 0111$1110B·' 
,·C CON-rAIN.S 0000$0001.8* /' , 
'·CCONTAINS1011$0001B·' . 
,·C CONTAINS 1011$0000B·' . 
,·C CONTAINS 1111$0001 B·' 

" .', ,:. 

Figure 2-49. Expressions in PLlM-86 Assignmerit Statements 
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Program Flow Statements 

Simple PLlM-86 programs can be written with 
just DECLARE and assignment statements. Such 
programs, however, execute exactly the same 
sequence of statements every time they are run 
and would not prove very useful. PL/M-86 pro­
vides statements that change the flow of control 
through a program. These statements allow sec­
tions of the program to be executed selectively, 
repeated, skipped entirely, etc. 

The IF statement (figure 2-50) selects one or the 
other of two statements for execution depending 
on the result of a relational expression. The IF 
~tatementis written: 

IF relational-expression 

THEN statement1; 

ELSE statement2; 

Statement1 is executed if the expression is "true"; 
statement2 is not executed in this case. If the rela­
tion is "false," statement! is skipped and state­
ment2 is executed. In determining the "truth" of 
an expression, the IF statement only examines the 
low-order bit of the result (1="true"). Ti).erefore, 
arithmetic and logical expressions also may be 
used in an IF statement. 

A=3; 8=5; 
IFA<8 

THEN MINIMUM = 1; 
ELSE MINIMUM = 2; 

MORE_DATA = OFFH; 
IF NOT MORE_DATA 

THEN DONE = 1; 
ELSE DONE = 0; 

'"EXECUTED"' 
'"SKIPPED"' 

'"SKIPPED"' 
'"EXECUTED"' 

'"NESTED IF STATEMENTS"' 
CLOCK_ON = 1; HOU R=24; ALARM=OFF; . 
IF CLOCK_ON 

THEN IF HOUR = 24 
THEN IF ALARM = OFF 

THEN HOUR = 0; '"EXECUTED"' 

Figure 2-50. PLlM-86. IF Statements 

A DO block begins with a DO statement and ends 
with' an ,.END statement. All intervening 
statements are part of the block. A DO block can 
appear anywhere in a program that an executable 
statement can appear. There are four kinds of DO 
statements in PLlM-86: simple DO, DO CASE, 
interative DO, and DO WHILE. . . 

A simple DO statement (figure 2-51) causes all the 
statements in the block to be treated as though 
they were a single statement. Simple DOs enable it 
single IF statement to cause. multiple. statements 
to be executed (the alternative would be to repeat 
the IF statement for every .statement to· be 
executed). 

'"SIMPLE DO"' 
A=5; 8=9; 
IF (A+2)< 8 THEN DO; 

X=X-1; 
Y(X)=O; 
END;. 

ELSE DO; 

'"DO CASE"' 
A=2; 

X=X+1; 
Y(X)=1 ; 
END; 

'"EXECUTED"' 
'"EXECUTED"' 

'"SKIPPED"' 
'"SKIPPED"' 

DO CASE (A); 
X=X+1; 
X=X+2; 
X=X+3.; 
X=X+4; 

'"SKIPPED"' 
'*SKIPPED"' 

. END; 

•• '*EXECUTED"' 
''''SKIPPED* , 

Figure 2-51. PLlM-86 Simple DO 
and DO CASE 

.DO CASE (figure 2-51) causes one statement in 
the DO block to be selected and executed depend­
ing on the result of the expression (usually 
arithmetic) written immediately following DO 
CASE: 

2-79 

DO CASE arithmetic-expression; 

If the expression yields 0, the first statement in the 
DO block is executed; if the expression yields 1, 
the second statement is executed, etc. A statement 
in the DO block may be null (consist of only a 
semicolon) to cause no action for selected cases. 
DO CASE provides a rapid and easily-understood 

. way to respond to data like "transaction codes" 
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where a different action is required for· each of 
many values a code might assume (an alternative 
would be an IF statement for every value the code 
could assume). 

An iterative DO block (figures 2-52 and 2-53) is 
executed from 0 to an infinite number of times 
based on the relationship of an index variable to 
an expression that terminates execution. The 
general form is: 

DO index = start~expr TO stop-expr BY step-expr; 

The "BY step-expr" is optional, and the step is 
assumed to be 1 if not supplied (the typical case). 
When control first reaches the DO statement, 
start-expr is evaluated and is assigned to index. 
Then index is compared to stop-expr; if index 
exceeds stop-expr, control goes to the statement 
following the DO block, otherwise the block is 
executed. At the end of the block, the result of 
step-expr is added to index, and it is compared to 

'*ITERATIVE DO*' 
DOI=OT05; 

ARRA Y(I)= I; 
TOTAL = TOTAL +1 ; 
END; 

'*1 = 6 ATTHIS POINT*' 

'*DOWHILE*' 
MORE = 0; SPACE_OK =1; 

stop-expr again, etc. (The iterative DO is quite 
flexible-this is a simplified explanation.) 
Iterative DOs are handy for "stepping through" 
an array. For example, an array of 10 elements 
could be zeroed by: 

DO I=OT09; 

ARRAY(I) = 0; 

END; 

In a DO WHILE (figures 2-52 and 2-54), the 
statements are executed repeatedly as long as the 
expression following WHILE evaluates to 
"true." DO WHILE often can be applied in 
situations where an interative DO will not work, 
or is clumsy, such as where repetition must be 
controlled by a non-integer value. Like an 
iterative DO, DO WHILE may be executed from 
o times to an infinite number of times. 

'*EXECUTED 6 TIMES* I 
'*EXECUTED 6 TIMES*' 

DO WHILE (MORE AND SPACE_OK); 
ITEMS = ITEMS + 1; '*SKIPPED*' 
N TRACKS = 
N_ TRACKS + 10; I*SKIPPED* I 
IF N_ TRACKS >= 999 '*SKIPPED*' 

THEN SPACE_OK = 0; 
END; 

'*DO WHILE*' 
CODE = 'A'; 
DO WHILE (CODE = 'A'); 

TEMP = TEMP' STEP; 1* EXECUTION STOPS* I 
IF TEMP> 98.6 '* AFTER TEMP*' 

THEN CODE = '8'; '*EXCEEDS 98.6* I 
N_STEPS = N_STEPS + 1; 

END; 

Figure 2-52. PL/M-86 Iterative DO and DO WHILE 
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8086AN08088 CENTRAL PROCESSING UNITS 

INDEX-START. 

EXECUTE 
BLOCK 

INDEX-INDEX+STEP 

OUTOF 
RANGE 

Figure 2-53. PL/M-86 Iterative DO Flowchart 

A GOTO written in the form 

GOTO target; 

causes an unconditional transfer (branch) to 
another statement in the program. The statement 
receiving control would be written 

target: statement; 

where "target" is a label identifying the 
statement. 

A CALL statement written in the form 

CALL proc-name (parm-list); 

EXECUTE 
BLOCK 

FALSE 

Figure 2-54. PLlM-86 DO WHILE Flowchart 

activates a procedure defined earlier in the pro­
gram. The variables listed in "parm-lisi" are 
passed to the' procedure, the procedure is 
executed, .and then .control returns to the state­
ment following the CALL. Thus, unlike a GOTO, 
a CALL· brings control back to the point of 
departure. 

Procedures 

Procedures are "subprograms" that make it 
possible to simplify the design of complex pro­
grams and to share a single copy of a routine 
among programs. A procedure usually is designed 
to perform one function; i.e.,to solve one part of 
the total problem with which the program is deal­
ing. For example, a program to calculate 
paychecks could be broken down into separate 
procedures for calculating gross pay, income tax, 
Social Security and net pay. The organization of 
the "main" program then could be understood at 
a glance: 

CALL GROSS_PAY; 
CALL INCOME_TAX; 
CALL SOCIAL_SECURITY; 
CALL NET_PAY; 
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Furthermore, the income tax procedure could be 
divided into separate procedures for calCulating 
state and federal taxes. Procedures, then, provide 
a mechanism by which a large, complex problem 
can be attacked with a "divide and conquer" 
strategy. 

A procedure usually is defined early in a program, 
but it is only executed when it is referred to by 
name in a later PL/M-86 statement. A procedure 
can accept a list of variables, called parameters, 
that it will use in performing its function. These 
parameters may assume different values each time 
the procedure is executed. 

PL/M-86 provides two classes of procedures, 
typed and untyped. A typed procedure returns a 
value to the statement that activates it and, in 
addition, may accept parameters from that state­
ment. A typed procedure is activated whenever its 
name appears in a statement; the value it returns 
effectively takes the place of the procedure name 
in the statement. Typed procedures can be used in 
all kinds of PLlM"86 expressions. Untyped pro­
cedures may accept parameters, but do not return 

a value. Untyped procedures are activated by 
CALL statements. Figure 2-55 shows how simple 
typed and untyped procedures may be declared 
and then activated. 

The statements forming the body o{ a procedure 
need not exist within the module that activates the 
procedure. The activating module can declare the 
procedure EXTERNAL, and the LINK-86 utility 
will connect the two modules. 

PLlM-86 procedures can be written to handle 
interrupts. Procedures also may be declared 
REENTRANT, making them concurrently usable 
by different tasks in a multitasking system. 
PLlM-86 also has about 50 procedures built into 
the language, including facilities for: 

• converting variables from one type to another 

• shifting and rotating bits 

• performing input and output 

• manipulating strings 

• activating the CPU LOCK signal. 

'"DECLARATION OF A TYPED PROCEDURE THAT 
ACCEPTS TWO REAL PARAMETERS AND RETURNS A REAL VALUE"' 
AVG: PROCEDURE (X,Y) REAL; 

DECLARE (X,Y) REAL; 
RETURN (X+Y)'2.0; 
END AVG; 

'" ACTIVATING A TYPED PROCEDU RE"' 
LOW=2.0; 
HIGH=3.0; 
TOTAL = TOTAL + AVG (LOW,HIGH); '"2.5IS ADDED TO TOTAL"' 

'"DECLARATION OF AN UNTYPED PROCEDURE 
THAT ACCEPTS ONE PARAMETER"' 

TEST: PROCEDURE (X); 
DECLARE X BYTE; 
IFX=OH THEN 

COUNT=COUNT+1; 
END TEST; 

'"ACTIVATING AN UNTYPED PROCEDURE"' 
CALL TEST (ALPHA); '"COUNT IS INCREMENTED 

IF ALPHA = 0"' 

Figure 2-55. PL/M-86 Procedures 
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ASM-86 

Programmers who are familiar with the CPU 
architecture can obtain complete access to all pro­
cessor facilities with ASM-S6. Since the execution 
unit on both the SOS6 and the SOSS is identical, 
both processors use the same assembly language. 
Examples of processor features not accessible 
through PLlM-S6 that can be utilized in ASM-S6 
programs include: software interrupts, the WAIT 
and ESC instructions and explicit control of the 
segment registers. 

An ASM-S6 program often can be written to 
execute faster and/or to use less memory than the 
same program written in PLlM-S6. This is 
because the compiler has a limited "knowledge" 
of the entire program and must generate a 
generalized set of machine instructions that will 
work in all situations,but may not be optimal in a 
particular situation. For example, assume that the 
elements of an array are to be summed and the 
result placed in a variable in memory. The 
machine instructions generated by the PLlM-S6 
compiler would move the next array element to a 
register and then add the register to the sum 
variable in memory. An ASM-S6 programmer, 
knowing that a register will be "safe" while the 
array is summed, could instead add all the array 
elements to a register and then move the register 
to the sum variable, saving one instruction .execu­
tion per array element. 

It is easier to write assembly language programs in 
ASM-S6 than it is in many assembly languages. 
ASM-S6 contains powerful data structuring 
facilities that are usually found only in high-level 

languages. ASM-S6 also simplifies the program­
mer's "view" of the SOS6/S088 machine instruc­
tion set. For example, although there are 2S. dif­
ferent types of· MOV machine instructions, the 
programmer always writes a single form of the 
instruction: 

MOV destination-operand, source-operand 

The assembler generates the correct machine­
instruction form based on the attributes of the 
source and destination operands (attributes are 
covered later in this section). Finally, the ASM-86 
assembler performs extensive checks on the con­
sistency of operand definition versus operand use 
in instructions, catching many common types of 
clerical errors. 

Statements 

Compared to many assemblers, ASM-86 accepts a 
relaxed statement format (see figure 2-56). This 
helps to. reduce clerical errors and allows pro­
grammers to format their programs for better 
readability. Variable and label names may be up 
to 31 characters long and .are not restricted to 
alphabetic and numeric characters. In particular, 
the underscore (_) may be used to improve\ the 
readability oflong names. Blanks may be inserted 
freely between identifiers (there are no "column" 
requirements), and statements also may span 
multiple lines. 

All ASM-S6 statements are classified as instruc­
tions or directives. A clear distinction must be 
made here between ASM-86 instructions and 

; THIS STATEMENT CONTAINS A COMMENT ONLY 

MOV AX, [BX + 3] 
MOV AX, [BX + 3] 

; TYPICAL ASM-86INSTRIjCTION 
; BLANKS NOT SIGNIFICANT 

MOV AX, 
& [BX+3] ; CONTINUED STATEMENTS 

ZERO EQU 0 ; SIMPLE ASM-86 DIRECTIVE 
CUR_PROJ EQU PROJECT [BX] [SI] ; MORE COMPLEX DIRECTIVE 
THE_STACK_STARTS_HERE SEGMENT; LONG IDENTIFIER 
TIG HT _LOOP: J M P TIG HT _LOOP ; LABELLED ST ATEM ENT 
MOV ES: DATLSTRING [SI], AL ; SEGMENT OVERRIDE PREFIX 
WAIT: LOCK XCHG AX,SEMAPHORE ; LABEL & LOCK PREFIX 

Figure 2-56. ASM-86 Statements 

2-S3 Mnemonics © Intel, 1978 
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8086/8088 machine instructions. The assembler 
generates machine instructions from ASM-86 
instructions· written· by a programmer. Each 
ASM-86 instruction produces one machine 
instruction, but the form of the generated 
machine instruction will vary according to the 
operands written in the ASM-86 instruction. For 
example, writing . 

·Mov BL,1 

produces a byte-immediate-to-register MOV, 
while writing 

MOV TERMINAL_NO,BX 

produces a word-register-to-memory MOV. To 
the programmer, though, there is simply a MOV 
source-to-destination instruction. 

ASM-86 instructions are written in the form: 

(label:) (prefix) mnemonic (operand(s)) (;comment) 

where parentheses denote optional fields (the 
parentheses are not actually written by program­
mers). The label field names the storage location 
containing the machine instruction so that it can 
be referred to symbolically as the target of a JMP 
instruction elsewhere in the program. Writing a 
prefix causes ASM-86 to generate one of the 
special prefix bytes (segment override, bus lockor 
repeat) immediately preceding the machine 
instruction. The mnemonic identifies the type of 
instruction (MOV for move, ADD for add, etc.) 
that is to be generated. Zero, one or two operands 
may be· written next, separated by commas, 
according to the requirements of the instruction. 
Finally, writing a semicolon signifies that what 
follows is a comment. Comments do not affect 
the execution of a program, but they can greatly 

improve its clarity; all good ASM-86 programs 
are thoughtfully commented. 

Writing a directive gives ASM-86 information to 
use in generating instructions, but does not itself 
produce a machine instruction. About 20 dif­
ferent directives are available in ASM-86. Direc­
tives are written like this: 

(name) mnemonic (operand(s)) (;comment) 

Some directives require a name to be present, 
while others prohibit a name. ASM-86 recognizes 
the directive from the mnemonic keyword written 
in the next field. Any operands required by the 
directive are written next, separated by commas. 
A comment may be written as the last field of a 
directive. 

Some of the more commonly used directives 
define procedures (PROC), allocate storage for 
variables (DB, OW, DO) give a descriptive name 
to a number or an expression (EQU), define the 
bounds of segments (SEGMENT and ENDS), 
and force instructions and data to be aligned at 
word boundaries (EVEN). 

Constants 

Binary, decimal, octal and hexadecimal numeric 
constants (see figure 2-57) may be written in 
ASM-86 statements; the assembler can perform 
basic arithmetic operations on these as well. All 
numbers must, however, be integers and must be 
representable in 16 bits including a sign bit. 
Negative numbers are assembled in standard 
two's complement notation. 

Character constants are enclosed in single quotes 
and may be up to 255 characters long when used 

MOV STRING [SI], 'A' 
STRING [SI], 41 H 
AX,OC4H 

; CHARACTER 
MOV 
ADD 
OCTAL_8 
OCTAL_9 
ALL_ONES 
MINUS_5 
MINUS_6 

Mnemonics © Intel, 1978 

EQU 100 
EQU 10Q 
EQU 11111111B 
EQU -5 
EQU -6D 

; EQUIVALENT IN HEX 
; HEX CONSTANT MUST START WITH NUMERAL 
; OCTAL 
; OCTAL ALTERNATE 
; BINARY . 
; DECIMAL 
; DECIMAL ALTERNATE 

Figure 2-57. ASM-86 Constants 

2-84 
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to initialize storage. When used as immediate 
operands, character constants may be one or two 
bytes long to match the length of the destination 
operand. 

Defining Data 

Most ASM-86 programs begin by defining the 
variables with which they will work. Three direc­
tives, DB, DW and DD, are used to allocate and 
name data storage locations in ASM-86 (see 
figure 2-58). The directives are used to define 
storage in three different units: DB means 
"define byte," DW means "define word," and 
DD means "define doubleword." The operands 
of these directives tell the assembler how many 
storage units to allocate and what initial values, if 
any, with which to fill the locations. 

A_SEG 
ALPHA 
BETA 
GAMMA 
DELTA 
EPSILON 
A_SEG 

B_SEG 
IOTA 
KAPPA 
LAMBDA 
MU 
B_SEG 

VARIABLE 

ALPHA 
BETA 
GAMMA 
DELTA 
EPSILON 
IOTA 
KAPPA 
LAMBDA 
MU 

SEGMENT 
DB ? 
DW ? 
DD '1 
DB ? 
DW 5 
ENDS 

; NOT INITIALIZED 
; NOT INITIALIZED 
; NOT INITIALIZED 
; NOT INITIALIZED 
; CONTAINS 05H' 

SEGMENT AT 55H ; SPECIFYING BASE ADDRESS 
DB 'HELLO' ; CONTAINS 48454C4C4F H 
DW 'AB' ; CONTAINS 42 41 H 
DD B_SEG ; CONTAINS 0000 5500 H 
DB 100DUPO ;CONTAINS(100X)00H 
ENDS 

ATTRIBUTES OPERATORS 

SEGMENT OFFSET TY.PE LENGTH SIZE 

A_SEG 0 1 1 1 
A_SEG 1 2 1 2 
A_SEG 3 4 1 4 
A_SEG 7 1 1 1 
A_SEG 8 2 1 2 
B_SEG 0 1 5 5 
B_SEG 5 2 1 2 
B_SEG 7 4 1 4 
B_SEG 11 1 100 100 

Figure 2-58. ASM-86 Data Definitions 

For every variable in an ASM-86 program, the 
assembler keeps track of three attributes: seg­
ment, offset and type. Segment identifies the seg­
ment that contains the variable (segment control 
is covered shortly). Offset is the distance in bytes 
of the variable from the beginning of its contain-
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ing segment. Type identifies the variable's alloca­
tion unit (1 = byte, 2 = word, 4 = doubleword). 
When a variable is referenced in an instruction, 
ASM-86 uses these attributes to determine what 
form of the instruction to generate. If the 
variable's attributes conflict with its usage in an 
instruction, ASM-86 produces an error message. 
For example, attempting to add a variable defined 
as a word to a byte register is an error. There are 
cases where the assembler must be explicitly told 
an operand's type. For example, writing MOVE 
[BX],5 will produce an error message because the 
assembler does not know if [BX] refers to a byte, 
a word or a doubleword. The following operators 
can be used to provide this information: BYTE 
PTR, WORD PTR and DWORD PTR. In the 
previous example, a word could be moved to the 
location referenced by [BX] by writing MOVE 
WORD PTR [BX],5. 

ASM-86 also provides two built-in operators, 
LENGTH and SIZE, that can be written in 
ASM-86 instructions along with attribute 
information. LENGTH causes the assembler to 
return the number of storage units (bytes, words 
or doublewords) occupied by an array. SIZE 
causes ASM-86 to return the total number of 
bytes occupied by a variable or an array. These 
operators and attributes make it possible to write 
generalized instruction sequences that need not be 
changed (only reassembled) if the attributes of the 
variables change (e.g., a byte array is changed fo a 
word array). See figure 2-59 for an example of 
using the attributes and attribute operators. 

Records 

ASM-86 provides a means of symbolically defin­
ing individual bits and strings of bits within a byte 
or a word. Such' a definition is called a record, 
and each named bit string (which may consist of a 
single bit) in a record is called a field. Records 
promote efficient use of storage while at the same 
time improving the readability of the program 
and reducing the likelihood of clerical errors. 
Defining a record does not allocate storage; 
rather, a record is a template that tells the 
assembler the name and location of each bit field 
within the byte or word. When a field name is 
written later in an instruction, ASM-86 uses the 
record to generate an immediate mask for instruc­
tions like TEST, AND, OR, etc., or an immediate 
count for shifts and rotates. See figure 2-60 for an 
example of using a record. 
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; SUM THE CONTENTS OF TABLE INTO AX 
TABLE DW 50 DUP(?) 
; NOTE SAME INSTRUCTIONS WOULD WORK FOR 
; TABLE DB 25 DUP(?) 
; TABLE DW 118 DUP(?), ETC. 

SUB 
MOV 
MOV 

AX,AX ; CLEAR SUM 
CX, LENGTH TABLE; LOOP TERMINATOR 
SI, SIZE TABLE ;POINT SUBSCRIPT 

; TO END OF TABLE 
ADD_NEXT: SUB SI, TYPE TABLE ; BACK UP ONE ELEMENT 

; ADD ELEMENT ADD . AX, TABLE [SI] 
LOOP ADD_NEXT ; UNTIL CX = 0 
; AX CONTAINS SUM 

Figure 2-59. Using ASM-86 Attributes and Attribute Operators 

EMP _BYTE DB ? ; 1 BYTE, UNINITIALIZED 
; BIT DEFINITIONS: 

7-2 : YEARS EMPLOYED 
1 : SEX (1 = FEMALE) 
o : STATUS (1 = EXEMPT) 

EMP _BITSRECORD ;RECORD DEFINED HERE 
& YRS_EMP : 6, 
& SEX: 1, 
& STATUS: 1 

.. 
; SELECT NONEXEMPT FEMALES EMPLOYED 10 + YEARS 

MOV AL, EMP _BYTE ; KEEP ORIGINAL INTACT 
TEST AL, MASK SEX ; FEMALE? 
JZ REJECT ; NO, QUITE 
TEST AL, MASK STATUS ; NONEXEMPT? 
JNZ REJECT ;NO, QUIT 
SHR AL, CL ; ISOLATE YEARS 
CMP AL,11 ; >=10 YEARS? 
JL REJECT ; NO, QUIT 
; PROCESS SELECTED EMPLOYEE 

.REJECT: ; PROCESS REJECTED EMPLOYEE 

Mnemonics © Intel, 1978 

MOV 
; RECORD USED HERE 
; GET SHIFT COUNT 

Figure 2-60. Using an ASM-86 RECORD Definition 
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Structures 

An ASM-86 structure is a map, or template, that 
gives names and attributes (length, type, etc.) to a 
collection of fields. Each field in a structure is 
defined using DB, DW and DD directives; 
however, no storage is allocated to the structure. 
Instead, the structure becomes associated with a 
particular area of memory when a field name is 
referenced in an instruction along with a base 
value. The base value "locates" the structure; it 
may be a variable name or a base register (BX or 
BP). The structure may be associated with 
another area of memory by specifying a different 
base value. Figure 2-61 shows how a simple struc­
ture may be defined and used. Note that a struc­
ture field may itself be a structure, allowing much 
more complex organizations to be laid out. 

Structures are particularly useful in situations 
where the same storage format is at multipleloca­
tions, where the location of a collection of 
variables is not known at assembly-time, and 
where the location of a collection of variables 
changes during execution. Applications include 
multiple buffers for a single file, list processing 
and stack addressing. 

EMPLOYEE STRUC 
SSN DB 9 
RATE DB 1 
DEPT DW 1 
YR_HIRED DB 1 
EMPLOYEE ENDS 

MASTER DB 12 
TXN DB 12 

Addressing Modes 

Figure 2-62 provides sample ASM-86 coding for 
each of the 8086/8088 addressing modes. The 
assembler interprets a bracketed reference to BX, 
BP, SI or DI as a base or index register to be used 
to construct the effective address of a memory 
operand. An unbracketed reference means the 
register itself is the operand. 

The following cases illustrate typical ASM-86 
coding for accessing arrays and structures, and 
show which addressing mode the assembler 
specifies in the machine instruction it generates: 

o If ALPHA is an array, then ALPHA lSI] is 
the element indexed by SI, and ALPHA 
lSI + 1] is the following byte (indexed). 

o If ALPHA is the base address of a structure 
and BETA is a field in the structure, then 
ALPHA.BET A selects the BETA. field 
(direct). 

o If register BX contains the base address of a 
structure and BETA is a field in the struc­
ture, then [BX].BET A refers to the BETA 
field (based). 

DUP(?) 
DUP(?) 
DUP(?) 
DUP(?) 

DUP(?) 
DUP(?) 

; CHANGE RATE IN MASTER TO VALUE IN TXN. 
MOV AL, TXN:RATE 
MOV MASTER~RATE, AL 

; ASSUME BX POINTS TO AN AREA CONTAINING 
DATA IN THESAME FORMATASTHE EMPLOYEE 
STRUCTURE. ZERO THE SECOND DIGIT 
OFSSN 

MOV SI,1; INDEX VALUE OF 2ND DIGIT 
MOV [BX].SSN[SI],O 

Figure 2-61. Using an ASM-86 Structure 
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ADD 
ADD 
ADD 
ADD 
ADD 
ADD 
ADD 
ADD 
ADD 
ADD 
ADD 
ADD 
IN 
OUT 

AX,BX 
AL,5 

; REGISTER - REGISTER 
; REGISTER -IMMEDIATE 

CX, ALPHA 
ALPHA,6 
ALPHA,DX 

; REGISTER - MEMORY (DIRECT) 
; MEMORY (DIRECT) -IMMEDIATE 
; MEMORY (DIRECT) - REGISTER 

BL, [BX] ; REGISTER - MEMORY (REGISTER INDIRECT) 
[SI], BH 
[PP].ALPHA, AH 
CX, ALPHA [SI] 
ALPHA [DI+2], 10 
[BX].ALPHA [SI], AL 
SI, [BP+4] [DI] 

; MEMORY (REGISTER INDIRECT) -IMMEDIATE 
; MEMORY (BASED) - REGISTER 
; REGISTER - MEMORY (INDEXED) 
; MEMORY (INDEXED) -IMMEDIATE 

AL,30 

; MEMORY (BASED INDEXED) - REGISTER 
; REGISTER - MEMORY (BASED INDEXED) 
; DIRECT PORT 

DX,AX ; INDIRECT PORT 

Figure 2-62. ASM-86 Addressing Mode Examples 

• If register BX contains the address of an 
array, then [BX] lSI] refers to the element 
indexed by SI (based indexed). 

• If register BX points to a structure whose 
ALPHA field is an array, then [BX] 
.ALPHA lSI] selects the element indexed by 
SI (based indexed). 

• If register BX points to a structure whose 
ALPHA field is itself a structure, then 
[BX].ALPHA.BETA refers to the BETA 
field of the ALPHA substructure (based). 

• If register BX points to a structure and the 
ALPHA field of the structure is an array and 
each element of ALPHA is a structure, then 
[BX].ALPHA[SI + 3].BETA refers to the 
field BET A in the element of ALPHA 
indexed by lSI + 3] (based indexed). 

Note that DI may be used in place of SI in these 
cases and that BP may be substituted for BX. 
Without a segment override prefix, expressions 
containing BP refer to the current stack segment, 
and expressions containing BX refer to the cur­
rent data segment. 

Segment Control 

An ASM-86 program is organized into a series of 
named segments. These are "logical" segments; 
they are eventually mapped into 8086/8088 
memory segments, but this usually is not done 
until the program is located. A SEGMENT direc­
tive starts a segment, and an ENDS directive ends 
the segment (see figure 2-63). All data and 
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instructions written between SEGMENT and 
ENDS are part of the named segment. In small 
programs, variables often are defined in one or 
two segment(s), stack space is allocated in another 
segment, and instructions are writteri in a third or 
fourth segment. It is perfectly possible, however, 
to write a complete program in one segment; if 
this is done, all the segment registers will contain 
the same base address; that is, the memory 
segments will completely overlap. Large pro­
grams may be divided into dozens of segments. 

The first instructions in a program usually 
establish the correspondence between segment 
names and segment registers, and then load each 
segment register with the base address of its cor­
responding segment. The ASSUME directive tells 
the assembler what addresses will be in the seg­
ment registers at execution time. The assembler 
checks each memory instruction operand, deter­
mines which segment it is in and which segment 
register contains the address of that segment. If 
the assumed register is the register expected by the 
hardware for that instruction type, then the 
assembler generates the machine instruction nor­
mally. If, however, the hardware expects one seg­
ment register to be used, and the operand is not in 
the segment pointed to by that register, then the 
assembler automatically precedes the machine 
instruction with a segment override prefix byte. 
(If the segment cannot be overridden, the 
assembler produces an error message.) An exam­
ple may clarify this. If register BP is used in an 
instruction, the 8086 and 8088 CPUs expect, as a 
default, that the memory operand will be located 
in the segment pointed to by SS-in the current 
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DATA_SEG SEGMENT 
; DATA DEFINITIONS GO HERE 

DATA_SEG ENDS 

STACK_SEG SEGMENT 
; ALLOCATE 100 WORDS FOR A STACK AND 

LABEL THE INITIAL TOS FOR LOADING SP. 
DW 100 DUP(?) 

ST ACK TOP LABEL WORD 
STACK_SEG ENDS 

CODE_SEG SEGMENT 
; GIVE ASSEMBLER INITIAL REGISTER-TO-SEGMENT 
; CORRESPONDENCE. NOTE THAT IN THIS 
; PROGRAM THE EXTRA SEGMENT INITIALLY 
; OVERLAPS THE DATA SEGMENT ENTIRELY. 

ASSUME CS: CODE_SEG, 
& DS: DATA_SEG, 
& ES: DATA_SEG, 
& SS: STACK_SEG 

START: ; THIS IS THE BEGINNING OFTHE PROGRAM. 
; LOC-86 WILL PLACE A JMP TO THIS 
; LOCATION AT ADDRESS FFFFOH. 

; LOAD THE SEGMENT REGISTERS. CS DOES NOT 
HAVE TO BE LOADED BECAUSE SYSTEM 
RESET SETS IT TO FFFFH, AND THE 
LONG JMP INSTRUCTION AT THAT ADDRESS 
U PDATES.IT TO TH E ADDRESS OF CODE_SEG. 
SEGMENT REGISTERS ARE LOADED FROM AX 
BECAUSE THERE IS NO IMMEDIATE-TO­
SEGMENT_REGISTER FORM OF THE MOV 
INSTRUCTION. 

MOV AX, DATA_SEG 
MOV DS, AX 
MOV ES, AX 
MOV AX, STACK_SEG 
MOV SS, AX 

. ; SET STACK POINTER TO INITIAL TOS. 
MOV SP, OFFSET STACK_TOP 

; SEGMENTS ARE NOW ADDRESSABLE. 
; MAIN PROGRAM CODE GOES HERE. 
CODE_SEG ENDS 

; NEXT STATEMENT ENDS ASSEMBLY ANDTELLS 
LOC-86 THE PROGRAMS STARTING ADDRESS. 

END START 

Figure 2-63. Setting Up ASM-86 Segments 
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stack segment. A programmer may, however, 
choose to use BP to address a variable in the cur­
rent data segment-the segment pointed to by 
DS. The ASSUME directive enables the assembler 
to detect this situation and to automatically 
generate the needed override prefix. 

It also is possible for a programmer to explicitly 
code segment override prefixes rather than relying 
on the assembler. This may result in a somewhat 
better-documented program since attention is 
called to the override. The disadvantage of 
explicit segment overrides is that the assembler 
does not check whether the operand is in fact 
addressable through the overriding segment 
register. 

ASM-86, in conjunction with the relocation and 
linkage facilities, provides much more 
sophisticated segment handling capabilities than 
have been described in this introduction. For 
example, different logical segments may be com­
bined into the same physical segment, and 
segments may be assigned the same physicalloca­
tions (allowing a "common" area to be accessed 
by different programs using different variable 
and label names). 

Procedures 

Procedures may be written in ASM-86 as well as 
in PL/M-86. In fact, procedures written in one 
language are callable from the other, provided 
that a few simple conventions are observed in the 
ASM-86 program. The purpose of ASM-86 pro­
cedures is the same as in PLlM-86: to simplify the 
design of complex programs and to make a single 
copy of a commonly-used routine accessible from 

. anywhere in the program. 

An ASM-86 program activates a procedure with a 
CALL instruction. The procedure terminates with 
a RET instruction, which transfers control to the 
instruction following the CALL. Parameters may 
be passed in registers or pushed onto the stack 
before calling the procedure. The RET instruction 
can discard stack parameters before returning to 
the caller. 

Unlike PL/M-86 procedures, ASM-86 procedures 
are executable where they are coded, as well as by 
a CALL instruction. Therefore, ASM-86 pro­
cedures often are defined following the main pro­
gram logic, rather than preceding it as in 
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PLlM-86. Figure 2-64 shows how procedures 
may be defined and called in ASM-86. Section 
2-10 contains examples of procedures that accept 
parameters on the stack. 

LlNK-86 

Fundamentally, LINK-86 combines separate 
relocatable object modules into a single program. 
This process· consists primarily of combining 
(logical) segments of the same name into single 
segments, adjusting relative addresses when 
segments are combined, and resolving external 
references. 

A programmer can use a procedure that is actual­
ly contained in another module by naming the 
procedure in an ASM-86 EXTRN directive, or 
declaring the procedure to be EXTERNAL in 
PLlM-86. The procedure is defined or declared 
PUBLIC in the module where it actually resides, 
meaning that it can be used by other modules. 
When LINK-86 encounters such an external 
reference, it searches through the other modules 
in its input, trying to find the matching PUBLIC 
declaration. If it finds the referenced object, it 
links it to the reference, "satisfying" the external 
reference. If it cannot satisfy the reference, 
LINK-86 prints a diagnostic message. LINK-86 
also checks PLlM-86 procedure calls and func­
tioh references to insure that the parameters 
passed to a procedure are the type expected by the 
procedure. 

LINK -86 gives the programmer, particularly the 
ASM-86 programmer, great control over 
segments (segments may be combined end to end, 
renamed, assigned the same locations, etc.). 
LINK-86 also produces a map that summarizes 
the link process and lists any unusual conditions 
encountered. While the output of LINK-86 is 
generally input to LOC-86, it also may again be 
input to LINK-86 to permit modules to be linked 
in incremental groups. 

LOC-86 

LOC-86 accepts the single relocatable object 
module produced by LINK-86 and binds the 
memory references in the module to actual 
memory addresses. Its output is an absolute 
object module ready for loading into the memory 
of an execution vehicle. LOC-86 also inserts a 
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FREQUENCY DB 256 DUP (0) 

USART_DATA EQU OFFOH ; DATA PORT ADDRESS 
USART_STAT EQU OFF2H ; STATUS PORT ADDRESS 

NEXT: CALL CHAR_IN 
CALL COUNT_IT 
JMP NEXT 

CHAR_IN PROC 
; THIS PROCEDURE DOES NOTTAKE PARAMETERS. 

IT SAMPLES THE USART STATUS PORT 
UNTIL A CHARACTER IS READY, AND 
THEN READS THE CHARACTER INTO AL 

MOV DX, USART_STAT 
AGAIN: IN AL, DX ; READ STATUS 

AND AL,2 ; CHARACTER PRESENT? 
JZ AGAIN ; NO, TRY AGAIN 
MOV DX, USART_DATA 
IN AL, DX ; YES, READ CHARACTER 
RET 

CHAR_IN ENDP 

COUNT_IT PROC 
; THIS PROCEDURE EXPECTS A CHARACTER IN AL. 

IT INCREMENTS A COUNTER IN A FREQUENCY 
TABLE BASED ON THE BINARY VALUE OF 
THE CHARACTER. 

XOR 
MOV 
INC 
RET 
ENDP 

AH, AH ; CLEAR HIGH BYTE 
SI, AL ; INDEX INTO TABLE 
FREQUENCY [S1; BUMP THE COUNTER. 

Figure 2-64. ASM-86 Procedures 

direct inter segment JMP instruction at location 
FFFFOH. The target of the JMP instruction is the 
logical beginning of the program. When the 8086 
or 8088 is. reset, this instruction is automatically 
executed to restart the system. LOC-86 produces 
a memory map of the absolute object module and 
a table showing the address of every symbol 
defined in the program. 

are a convenient way to make collections of 
modules available to L1NK-86. When a module 
being linked refers to "external" data or instruc~ 
tions, L1NK-86 can automatically search a series 
of libraries, find the referenced module, and 
include it in the program being created. 

LIB·86 

L1B-86 is a valuable adjunct to the R & L pro­
grams. It is used to maintain relocatable object 
modules in special files called libraries. Libraries 
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OH·86 

OH-86 converts an absolute object module into 
Intel's standard hexadecimal format. This format 
is used by some PROM programmers and system 
loaders, such as the iSBC 957™ and SDK-86 
loaders. 
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CONV-86 

Users who have developed substantial, fully­
tested assembly language programs for the 
8080/8085 microprocessors may want to use 
CONV-86 to automatically convert large amounts 
of this code into ASM-86 source code (see figure 
2-65). CONV-86 accepts an ASM-80 source pro­
gram as input and produces an ASM-86 source 
program as output, plus a print file that 
documents the conversion and lists any diagnostic 
messages. 

Some programs cannot be completely converted 
by CON V -86. Exceptions include: 

• self-modifying code, 

• software timing loops, 

• 8085 RIM and SIM instructions, 

• interrupt code, and 

• macros. 

By using the diagnostic messages produced by 
CONV-86, the converted ASM-86 source file can 
be manually edited to clean up any sections not 
converted. A converted program is typically 
10-20070 larger than the ASM-80 version and does 
not take full advantage of the 8086/8088 architec­
ture. However, the development time saved by 
using CONY -86 can make it an attractive alter­
native to rewriting working programs from 
scratch. 

Sample Programs 

Figures 2-66 and 2-67 show how a simple program 
might be written in PLlM-86 and ASM-86. The 
program simulates a pair of rolling dice and 
executes on an Intel SDK-86 System Design Kit. 
The SDK-86 is an 8086-based computer with 
memory, parallel and serial I/O ports, a keypad 
and a display. The SDK-86is implemented on a 
single PC board which includes a large prototype 
area for system expansion and experimentation. 
A ROM-based monitor program provides a user 
interface to the system; commands are entered 
through the keypad and monitor responses are 
written on the display. With the addition of a 
cable and software interface (called SDK-C86), 
the SDK-86 may be connected to an Intellec® 
Microcomputer Development· System. In this 
mode, the user enters monitor commands from 
the Intellec keyboard and receives replies on the 
Intellec CRT display. 
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CONV·86 

,-, 
-- __ ( EDIT ) 

_"'I~.a ~ 1.J 
I. rEDiTE57 

1----- ---.l ASM·86 I .., SOURCE 

~~~~ 

ASM-86 
ASSEMBLER 

Figure 2-65. ASM-80/ ASM-86 Conversion 

The dice program runs on an SDK-86 that is con­
nected to an Intellec® Microcomputer Develop­
ment System. The program displays two con­
tinuously changing digits in the upper left corner 
of the Intellec display. The digits are random 
numbers in the range 1-6. A roll is started by 
entering a monitor GO command. Pressing the 
INTR key on the SDK-86 keypad stops the roll. 

There are two procedures in the PL/M-86 version 
of the dice program. The first is called CO for 
console output. This is an untyped PUBLIC pro­
cedure that is supplied on an SDK-C86 diskette. 
CO is written in PLlM-86 and outputs one 
character to the Intellec console. It is declared 
EXTERNAL in the dice program because it exists 
in another module .. LINK-86 searches the 
SDK-C86 library for CO and includes it in the 
single relocatable object module it builds. 

RANDOM is an internal typed procedure; it is 
contained in the dice module and returns a word 
value that is a random number between 1 and 6. 
RANDOM does not use any parameters and is 
activated in the parameter list passed to CO. 
When CO is called like this, first RANDOM is ac­
tivated, then 30 is added to the number it returns 
and the sum is pa.ssed to CO. 
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PL/M-86 COMPILER DICE 

ISIS-II PL/M-86 Vl.2 COMPILATION OF MODULE DICE 
OBJECT MODULE PLACED IN :Fl:DICE.OBJ 
COMPILER INVOKED BY: PLM86 :Fl:DICE.P86 XREF 

2 
3 
ij 
5 
6 

8 1 
9 2 

10 2 

11 1 
12 2 
13 2 
lij 2 

15 2 
16 2 
17 2 

18 
19 

20 

21 2 
22 2 
23 2 

2ij 2 
25 2 
26 2 

27 

DICE: DO; 
I" THIS PROGRAM SIMULATES THE HOLL OF A PAIR OF CICE "I 

I" GIVE NAMES TO CONSTANTS "I 
DECLARE CLEAR$CRTl LITERALLY 'OlBH'; 
DECLARE CLEAR$CRT2 LITERALLY 'Oij5H'; 
DECLARE HOME$CURSORl LITERALLY 'OlBH'; 
DECLARE HOME$CURSOR2 LITERALLY 'Oij8H'; 
DECLARE SPACE LITERALLY '020H'; 

I" PROGRAM VARIABLES "I 
DECLARE (RANDOM$NUMBER,SAVE) WORD; 

I" CONSOLE OUTPUT PROCEDURE "I 
CO: PROCEDURE(X) EXTERNAL; 

DECLARE X BYTE; 
END CO; 

I" INTELLEC "I 
I~ CRT "I 
I" CONTROL "/ 
I" CODES "/ 
I"ASCII BLANK"/ 

I" RANDOM NUMBER GENERATOR PROCEDURE "I 
I" ALGORITHM FOR 16-BIT RANDOM NUMBER FROM: "I 
1* "A GUIDE TO PL/M PROGRAMMING FOR "I 
I" MICROCOMPUTER APPLICATIONS," *1 
I" DANIEL D. MCCRACKEN, "I 
I" ADDISON-WESLEY, 1978 *1 
RANDOM: PROCEDURE WORD; 

RANDOM$NUMBER = SAVE; I"START WITH OLD NUMBER"I 
RANDOM$NUMBER = 2053 " RANDOM$NUMBER + 138ij9; 
SAVE = RANDOM$NUMBER; I"SAVE FOR NEXT TIME"I 
I"FORCE 16-BIT NUMBER INTO RANGE 1-6"1 
RANDOM$NUMBER = RANDOM$NUMBER MOD 6 + 1; 
RETURN RANDOM$NUMBER; 
END RANDOM; 

I" MAIN ROUTINE *1 
1* CLEAR THE SCREEN*I 
CALL CO(CLEAR$CRT1); 
CALL CO(CLEAR$CRT2); 

1* ROLL THE DICE UNTIL INTERRUPTED "I 
DO WHlhE 1; I*"DO FOREVER""I 

I"NOTE THAT ADDING 30 TO THE DIE VALUE "I 
"I 

1"1ST DIE"I 
I*BLANK"I 
1*2ND DIE"I 

I" CONVERTS IT TO ASCII. 
CALL CO(RANDOM + 030H); 
CALL CO (SPACE) ; 
CALL CO(RANDOM + 030H); 
I" HOME THE CURSOR *1 
CALL CO(HOME$CURSOR1); 
CALL CO(HOME$CURSOR2); 
END; 

END DICE; 

CROSS-REFERENCE LISTING 

DEFN ADDR SIZE NAME, ATTRIBUTES, AND REFERENCES 
--------------------------------

2 CLEARCRTl LITERALLY 
18 

3 CLEARCRT2 LITERALLY 
19 

OOOOH CO PROCEDURE EXTERNAL(O) STACK=OOOOH 
18 19 21 22 23 2ij 25 

0002H 71 DICE PROCEDURE STACK=OOOijH 

HOMECURSORl LITERALLY 
2ij 

HOMECURSOR2 LITERALLY 
25 

11 00ij9H ijij RANDOM PROCEDURE WORD STACK=0002H 
21 23 

Figure 2-66. Sample PL/M-86 Program 
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OOOOH 2 RANDOMNUMBER 

0002H 2 SAVE 

SPACE 

OOOOH X 

MODULE INFORMATION: 

CODE ,AREA SIZE 
CONSTANT AREA SIZE 
VARIABLE AREA SIZE 
MAXIMUM STACK SIZE 
51 LINES RE~D 
o PROGRAM ERROR(S) 

END OF PL/M-86 COMPILATION 

0075H 
OOOOH 
0004H 
0004H 

1170 
00 
40 
40 

WORD 
12 13 14 

WORD 
12 14 

LITERALLY 
2,2 

BYTE PARAMETER 
9 

15 

Figure 2-66. Sample PL/M-86 Program (Cont'd.) 

16 

MCS-86 MACRO ASSEMBLER DICE 

ISIS-II MCS-86 MACRO ASSEMBLER V2.0 ASSEMBLY OF MODULE DICE 
OBJECT MODULE PLACED IN :Fl:DICE.OBJ 
ASSEMBLER INVOKED BY: ASM86 :fl:DICE.A86 XREF 

LOC OBJ 

0000 lBOO 
0002 4500 
0004 lBOO 
0006 4800 
0008 2000 
OOOA ???? 

0000 (20 
???? 

0028 

0000 
0000 Al0AOO 
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LINE 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1,1 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 

SOURCE 

THIS PROGRAM ,SIMULATES THE ROLL OF A PAIR OF DICE 

CONSOLE OUTPUT PROCEDURE 
EXTRN CO: NEAR 

; SEGMENT GROUP DEFINITIONS NEEDED FOR PL/M-86 COMPATIBILITY 
CGROUP GROUP CODE 
DGROUP GROUP DATA,STACK 

INFORM ASSEMBLER OF SEGMENT REGISTER CONTENTS. 
ASSUME CS:CGROUP,Di:DGROUP,SS:DGROUP,ES:NOTHING 

; ALLOCATE DATA 
DATA SEGMENT PUBLIC 'DATA' 

NOTE THAT THE FOLLOWING ARE PASSED ON THE STACK TO THE PL/M-86 
PROCEDURE 'CO'. BY CONVENTION, A BYTE PARAMETER IS PASSED IN 
THE LOW-ORDER 8-BITS,OF A WORD ON THE STACK. HENCE, THESE ARE 

; DEFINED AS WORD VALUES, THOUGH THEY OCCUPY 1 BYTE ONLY. 
CLEAR CRTl OW 01 BH INTELLEC 
CLEAR-CRT2 OW 045H CRT 
HOME CURSOR 1 OW 01 BH CONTROL 
HOMCCURSOR2 OW 048H CODES 
SPACE OW 020H ASCII BLANK 
SAVE OW HOLDS LAST 16-BIT RANDOM NUMBER 
DATA ENDS 

; ALLOCATE STACK SPACE 
STACK SEGMENT STACK 'STACK' 

DW 20 DUP (?) 

; LABEL INITIAL TOS: FOR LATER USE. 
STACK TOP LABEL WORD 
STACK- ENDS 

; PROGRAM CODE 
CODE SEGMENT PUBLIC 'CODE' 

RANDOM NUMBER GENERATOR PROCEDURE 
ALGORITHM FOR 16-BIT RANDOM NUMBER FROM: 

"A GUIDE TO PL/M PROGRAMMING FOR 
MICROCOMPUTER APPLICATIONS," 
DANIEL D. MCCRACKEN 

; ADDISON-WESLEY, 1978 
RANDOM PROC 

MOV AX,SAVE ; NEW NUMBER 

Figure 2-67. ASM-86 Sample Program 
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MCS-86 MACRO ASSEMBLER DICE 

LOC OBJ 

0003 B90508 
0006 F7El 
0008 051936 
OOOB A30AOO 

OOOE 2BD2 
0010 B90600 
0013 F7Fl 
0015 8BC2 
0017 40 
0018 C3 

0019 B8----
001C 8ED8 
001E 8EDO 

0020 BC2800 

0023 FF360000 
0027 E80000 
002A FF360200 
002E E80000 

0031 E8CCFF 
0034 0430 
0036 50 
0037 E80000 
003A FF360800 
003E E80000 
0041 E8BCFF 
0044 0430 
0046 50 
0047 E80000 

004A FF360400 
004E E80000 
0051 FF360600 
0055 E80000 

0058 EBD7 

R 
E 
R 
E 

LINE 

48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 

SOURCE 

MOV CX, 2053 
MUL CX 
ADD AX,13849 

OLD NUMBER • 2053 
+ 13849 

MOV SAVE,AX SAVE FOR NEXT TIME 
; FORCE 16-BIT NUMBER INTO RANGE 1 - 6 
, BY MODULO 6 DIVISION + 1 
SUB 
MOV 
DIV 
MOV 
INC 
RET 
ENDP 

OX, OX CLEAR UPPER DIVIDEND 
CX,6 SET DIVISOR 
CX DIVIDE BY 6 
AX, OX REMAINDER TO AX 
AX ADD 1 

RESULT IN AX 
RANDOM 

MAIN PROGRAM 

LOAD SEGMENT REGISTERS 
NOTE PROGRAM DOES NOT USE ES; CS IS INITIALIZED BY HARDWARE RESET; 

DATA & STACK ARE MEMBERS OF SAME GROUP, SO ARE TREATED AS A SINGLE 
; MEMORY SEGMENT POINTED TO BY BOTH OS & SS. 
START: MOV AX,DGROUP 

MOV DS,AX 
MOV SS ,AX' 

INITIALIZE STACK POINTER 
MOV SP,OFFSET DGROUP:STACK_TOP 

CLEAR THE SCREEN 
PUSH CLEAR CRTl 
CALL CO 
PUSH CLEAR CRT2 
CALL CO 

; ROLL THE DICE UNTIL INTERRUPTE 
ROLL: CALL RANDOM 

ADD AL,030H 
PUSH AX 
CALL CO 
PUSH SPACE 
CALL CO 
CALL RANDOM 
ADD AL,030H 
PUSH AX 
CALL CO 

HOME THE CURSOR 
PUSH HOME CURSORl 
CALL CO 
PUSH HOME CURSOR2 
CALL CO 

CONTINUE FOREVER 
JMP ROLL 

CODE ENDS 

GET 1ST DIE IN AL 
CONVERT TO ASCII 
PASS IT TO 

CONSOLE ,OUTPUT 
OUTPUT 

A BLANK 
GET 2ND DIE IN AL 
CONVERT TO ASCII 
PASS IT TO 

CONSOLE OUTPUT 

XREF SYMBOL TABLE LISTING 

NAME TYPE VALUE ATTRIBUTES, XREFS 

??SEG SEGMENT SIZE=OOOOH PARA PUBLIC 
CGROUP. GROUP CODE 711 11 
CLEAR CRT 1. V WORD OOOOH DATA 1911 77 
CLEAR:::CRT2. V WORD 0002H DATA 2011 79 
co. L NEAR OOOOH EXTRN 411 78 80 86 88 92 95 97 
CODE. SEGMENT SIZE=005AH PARA PUBLIC 'CODE' '(II 37 100 
DATA. SEGMENT SIZE=OOOCH PARA PUBLIC 'DATA' 811 14 25 
DGROUP. GRODP DATA STACK 811 .11 11 69 74 
flOME CURSOR 1. V WORD' 0004H DATA 2111 94 
HOMCCURSOR2. V WORD 0006H DATA 2211 96 
RANDOM. L NEAR 00 DOH CODE 4611 60 83 89 
ROLL. L NEAR 0031H CODE 8311 99 
SAVE. V WORD OOOAH DATA 2411 47 51 
SPACE V WORD 0008H DATA 2311 87 
STACK SEGMENT SIZE=0028H PARA STACK 'STACK' 
STACK TOP V WORD 0028H STACK 3211 74 
START-. L NEAR 0019H CODE 6911 104 

ASSEMBLY COMPLETE, NO ERRORS FOUND 

Figure 2-67. ASM-86 Sample Program (Cont'd.) 
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The ASM-86 version of the dice program operates 
like the PL/M-86 version. Since the program uses 
the PLlM-86 CO procedure for writing data to 
the Intellec console, it adheres to certain conven­
tions established by the PLlM-86 compiler. The 
program's logical segments (called CODE, 
DATA and STACK-the program does not use 
an extra segment) are organized into two groups 
called CGROUP and DGROUP. All the members 
of a group of logical segments are located in the 
same 64k byte physical memory segment. 
Physically, the program's DATA and STACK 
segments can be viewed as "subsegments" of 
DGROUP. 

PL/M-86 procedures expect parameters to be 
passed on the stack, so the program pushes each 
character before calling CO. Note that the stack 
will be "cleaned up" by the PLlM-86 procedure 
before returning (i.e., the parameter will be 
removed from the stack by CO). 

2.10 Programming Guidelines 
and Examples 

This section addresses 8086/8088 programming 
from two different perspectives. A series of 
general guidelines is presented first. These 
guidelines apply to all types of systems and are 
intended to make software easier to write, and 
particularly, easier to maintain and enhance. The 
second part contains a number of specific pro­
gramming examples. Written primarily in 
ASM-86, these examples illustrate how the 
instruction set and addressing modes may be uti­
lized in various, commonly encountered program­
ming situations. 

Programming Guidelines 

These guidelines encourage the development of 
8086/8088 software that is adaptable to change. 
Some of the guidelines refer to specific processor 
features and others suggest approaches to general 
software design issues. PL/M-86 programmers 
need not be concerned with the discussions that 
deal with specific hardware topics; they should, 
however, give careful attention to the system 
design subjects. Systems that are designed in 
accordance with these recommendations 
should be less costly to modify or extend. In 
addition, they should be better-positioned to 
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take advantage of new hardware and software 
products that are constantly being introduced 
by Intel. 

Segments and Segment Registers 

Segments should be considered as independent 
logical units whose physical locations in memory 
happen to be defined by the contents of the seg­
ment registers. Programs should be independent 
of the actual contents of the segment registers and 
of the physical locations of segments in memory. 
For example, a program should not take 
advantage of the "knowledge" that two segments 
are physically adjacent to each other in memory. 
The single exception to this fully-independent 
treatment of segments is that a program may set 
up more than one segment register to point to the 
same segment in memory, thereby obtaining 
address ability through more than one segment 
register. For example, if both DS and ES point to 
the same segment, a string located in that segment 
may be used as a source operand in one string 
instruction and as a destination string in another 
instruction (recall that a destination string must 
be located in the extra segment). 

Any data aggregate or construct such as an array, 
a structure, a string or a stack should be restricted 
to 64k bytes in length and should be wholly con­
tained in one segment (i.e., should not cross a seg­
ment boundary). 

Segment registers should only contain values sup­
plied by the relocation and linkage facilities. Seg­
ment register values may be moved to and from 
memory, pushed onto the stack and popped from 
the stack. Segment registers should never be used 
to hold temporary variables nor should they be 
altered in any other way. 

As an additional guideline, code should not be 
written within six bytes of the end of physical 
memory (or the end of the code segment if this 
segment is dynamically relocatable). Failure to 
observe this guideline could result in an attempted 
opcode prefetch from non-existent memory, 
hanging the CPU if READY is not returned. 

Self-Modifying Code 

It is possible to write a program that deliberately 
changes some of its own machine instructions 
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during execution. While this technique may save a 
few bytes or machine cycles, it does so at the 
expense of program clarity. This is particularly 
true if the program is being examined at the· 
machine instruction level; the machine instruc­
tions shown in the assembly listing may not match 
those found in memory or monitored from the 
bus. It also precludes executing the code from 
ROM. Also, because of the prefetch queue within 
the 8086 and 8088, cqde that is self-modified 
within six bytes of the current point of execution 
cannot be guaranteed to execute as intended. 
(This code may already have been fetched.) Fin­
ally, a self-modifying program may Prove 
incompatible with future Intel products that 
assume that the content of·· a code segment 
remains constant during execution. 

A corrollary to this requirement is that variable 
data should not be placed in a code segment. Con­
stant data may be written in a code segment, but 
this is not recommended for two reasons. First, 
programs are simpler to understand if they are 
uniformly subdivided into segments of code, data 
and stack. Second, placing data in a code segment 
can restrict the segment's position independence. 
This is because, in general, the segment base 
address of a data item may be changed, butthe 
offset (displacement) of the data item may not. 
This means that the entire segment must be 
moved as a unit to avoid changing the offset of 
the constant data. If the constant data were 
located in a data segment or an extra segment, 
individual procedures within the code segment 
could be moved independently. 

Input/Output 

Since 110 devices vary so widely in their 
capabilities and their interface designs, 110 soft­
ware is inevitably device dependent. Substituting 
a hard disk for a floppy disk, for example, 
necessitates software changes eVen though the 
disks are functionally identical. 110 software can, 
however, be designed to minimize the effect of 
device changes or). programs. 

Figure 2-68 illustrates a design concept that struc­
tures an I/O system into a hierarchy of separately 
compiled/assembled modules. This approach 
isolates application modules that use the 
input/output devices from all physical 
characteristics of the hardware with which they 
ultimately communicate. An application module 
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that reads a disk file, for example, should have no 
knowledge of where the file is located on the disk, 
what size the disk sectors are, etc. This allows 
these characteristics to change without affecting 
the application module. To an application 
module, the I/O system appears to be a series of 
file-oriented commands (e.g., Open, Close, Read, 
Write). An application module would typically 
issue a command by calling a file system 
procedure. 

The file system processes I/O command requests, 
perhaps checking for gross errors, and calls a pro­
cedure in the 110 supervisor. The 110 supervisor 
is a bridge between the functional 110 request of 
the application module and the physical I/O per­
formed by the lowest-level modules in the hier­
archy. There should be separate modules in the 
supervisor for different types of devices and some 
device-dependent code may be unavoidable at this 
level. The 110 supervisor would typically perform 
overhead activities such as maintaining disk 
directories. 

The modules that actually communicate with the 
110 devices (ortheir controllers) are at the lowest 
level in the hierarchy. These modules contain the 
bulk of the system's device-dependent code that 
will have to be modified in the event that a device 
is changed. 

The 8089 Input/Output Processor is specifically 
designed to encourage. the development of 
modular, hierarchical 110 systems. The 8089 
allows knowledge of device characteristics to be 
"hidden" from not only application programs, 
but also from the operating system that controls 
the CPU. The CPU's I/O supervisor can simply 
prepare a message in memory that describes the 
nature of the operation to be performed, and then 
activate the 8089. The 8089 independently per­
forms all physical 110 and notifies the CPU when 
the operation has been completed. 

Operating Systems 

Operating systems also should be organized in a 
hierarchy simiHu to the concept illustrated in 
figure 2-69. Application modules should "see" 
only the upper level of the operating system. This 
level might provide services like sending messages 
between application modules, providing time 
delays, etc. An intermediate level might consist of 
housekeeping routines that dispatch tasks, alter 
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priorities, manage memory, etc. At the lowest 
level would be the modules that implement 
primitive operations such as adding and removing 
tasks or messages from lists, servicing timer inter­
rupts, etc. 

Interrupt Service Procedures 

Procedures that service external interrupts should 
be considered differently than those that service 
internal interrupts. A service procedure that is 
activated by an internal interrupt, may, and often 
should, be made reentrant. External interrupt 
procedures, on the other hand, should be viewed 
as temporary tasks. In this sense, a task is a single 
sequential thread of execution; it should not be 
reentered. The processor's response to an external 
interrupt may be viewed as the following sequence 
of events: 

• the running (active) task is suspended, 

• a new task, the interrupt service procedure, is 
created and becomes the running task, 

• the interrupt task ends, and is deleted, 

• the suspended task is reactived and 
becomes the running task from the point 
where it was suspended. 

An external interrupt procedure should only be 
interruptable by a request that activates a dif-

MULTIPLE INTERRUPT SOURCES 

lliUfllU 

ferent interrupt procedure. When the number of 
interrupt sources is not too large, this can be 
accomplished by assigning a different type code 
and corresponding service procedure to each 
source. In systems where a large number of 
similar sources can generate closely spaced inter­
rupts (e.g., 500 communication lines), an 
approach similar to that illustrated in figure 2-70, 
may be used to insure that the interrupt service 
procedure is not reentered, and yet, interrupts 
arriving in bursts are not missed. The basic 
technique is to divide the code required to service 
an interrupt into two parts. The interrupt service 
procedure itself is kept as short as possible; it per­
forms the absolute minimum amount of process­
ing necessary to service the device. It then builds a 
message that contains enough information to per­
mit another task, the interrupt message processor, 
to complete the interrupt service. It adds the 
message to a queue (which might be implemented 
as a linked list), and terminates so that it is 
available to service the next interrupt. The inter­
rupt message processor, which is not reentrant, 
obtains a message from the queue, finishes pro­
cessing the interrupt associated with that message, 
obtains the next message (if there is one), etc. 
When a burst of interrupts occurs, the queue will 
lengthen, but interrupts will not be missed so long 
as there is time for the interrupt service procedure 
to be activated and run between requests. 

INTERRUPT 
SERVICE 

PROCEDURE 

ADD MESSAGE TO QUEUE 

,-1--, 
r----j 
f-- - - - -1 g~~~fJ~WJ~T 
f-- - - - -j ~~"d;~ES 
f------j 
L-f_.....J OBTAIN NEXT MESSAGE 

FROM QUEUE 

INTERRUPT 
MESSAGE 

PROCESSOR 

Figure 2-70. Interrupt Message Processor 
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Stack-Based Parameters 

Parameters are frequently passed, to procedures 
on a stack. Results produced by the procedure, 
however, should be returned ,in other memory 
locations or.in registers. ,In other wonis, the called 
procedure, should "clean up" .the stack by dis­
carding the parameters before returning. The, 
RET instruction can per~orm this function. 
PL/M-S6 procedures, always follow this 
convention. 

Fiag-Images 

Programs.shQuldmake no assumptions about the 
contents of. tlW undefined bits in the flag-images 
stored in memory, py the PUSHF and SAHF 
ip.structions. These bits always should be masked 
out of any comparisons or tests that use these 
flag-images" The umlefined bits of the, w,ord flag­
image can be cleared by ANDing the word with 
FD5H. The undefined bits of. the byte flag:image 
can be cleared by ANDing the byte with D5H. 

Programming, Examples 

These ex~m~les clemonst~ate theSOS6/S0S8 
instruction set and addressing modes in common 
programming situations. The following tOPIcs are 
addressed: 

• 
• 

• 

• 
• 
• 
• 

procedures (parameters, reentrancy) 

various forms of JMP and CALL 
instructions 

bit manipulation with the ASM-S6 RECORD 
facility 

dynamic code relocation 

memory mapped I/O 

breakpoints 

interrupt handling 

• string operations 

These examples are written primarily in ASM-86 
and will be of most interest to assembly language 
programmers. The PL/M-S6 compiler generates 
code that handles many of these situations 
automatically for PL/M-S6 programs.'Porexam­
pIe, the compiler takes care of the stack in 
PL/M-S6 procedures, allowing the programmer 
to concentrate on solving the application prob­
lem. PLlM-S6 programmers, how~~er, may want 
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to examine the memory mapped I/O and 
interrupt handling examples" since the concepts 
illustrated are generally applicable; one of the 
interrupt procedures is wdtten in PLlM-S6. 

The examples are intended to show one way to use' 
the instruction set, addressing molies and features 
of ASM-S6. They do riot demonstrate the "best" 
way to solve any particular proplem. The flexibil­
ity of the SOS6 and S088, application differences 
plus variations in programming style usually ,add 
up to a number of ways to implement a program­
~ing solution. 

Procedures 

The code in figure 2-71 illustrates, several tech­
niques that are typicallyused in writing A~M-86 
procedures. In this example a calling program 
invokes a procedure (called EXAMPLE) twice, 
passing it a different byte array each time. Two 
parameters are passed on the stack; the first con­
tains the number of elements in the array, and the 
second ,contains the address (offset in 
DAT LSEG) of the first array' element. This 
same technique can be used to pass a variable­
length parameter list to a procedure (the "array" 
could be any series of parameters or parameter 
addresses). Thus, although the procedure always 
receives two parameters; these can be used to 
indirectly access any number of variables 'in 
memory. 

Any results returned by a procedure should be 
placed in registers 'or in memory, but not on the 
stack. AX or AI. is often used to hold a single 
word or byte result: Alternatively, the calling pro­
gram can pass the address (or addresses) of a 
result area to,the procedure as a parameter. It is 
good practice for ASM-86 programs to follow the 
calling conventions, ,used by PLlM-S6; these are 
documented in MCS-86 Assembler Operating 
Instructions For ISIS-II Users, Order No. 
9S00641. 

EXAMPLE is defined as aFAR procedure, 
meaning it is in a different segment than the call­
ing program. The calling program must use an 
inter segment CALL to activate the procedure. 
Note that this type of CALL saves CS and IP on 
the stack. If EXAMPLE were defined as NEAR 
(in the same segment as the caller) then an intra­
segment CALL would be used, and only IP would 
be saved on the stack. It is the responsibility of 
the calling program to know how the procedure is 

,defined and to issue the correct type of CALL. 
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STACK_SEG SEGMENT 
DW 20 DUP (?) ; ALLOCATE 20-WORD STACK 

STACK_TOP LABEL WORD ; LABEL INITIAL TOS 
STACK_SEG ENDS 

DATA_SEG SEGMENT 
ARRAY_1 DB 10 DUP (?) ; 10-ELEMENT BYTE ARRAY 

ARRAY_2 DB 5 DUP (?) ; 5-ELEMENT BYTE ARRAY 

DATA_SEG ENDS 

PROC_SEG SEGMENT 
ASSUME CS:PROC_SEG,DS:DATA_SEG,SS:STACK_SEG,ES:NOTHING 

EXAMPLE PROC 

; PROCEDURE PROLOG 
PUSH 
MOV 
PUSH 
PUSH 
PUSHF 

FAR 

BP 
BP, SP 
CX 
BX 

SUB SP,6 
; END OF PROLOG 

; PROCEDURE BODY 

; MUST BE ACTIVATED BY 
INTERSEGMENT CALL 

; SAVE BP 
; ESTABLISH BASE POINTER 
; SAVE CALLER'S 

REGISTERS 
; AND FLAGS 
; ALLOCATE 3 WORDS LOCAL STORAGE 

MOV CX,[BP+B) ;GETELEMENTCOUNT 
MOV BX, [BP+6) ; GET OFFSET OF 1ST ELEMENT 
; PROCEDURE CODE GOES HERE 
; FIRST PARAMETER CAN BE ADDRESSED: 
; [BX) 
; LOCAL STORAGE CAN BE ADDRESSED: 
; [BP-BJ, [BP-10J, [BP-12) 
;ENDOFPROC~DUREBODY 

; PROCEDURE EPILOG 
ADD 
POPF 

SP,6 ; DE-ALLOCATE LOCAL STORAGE 
; RESTORE CALLER'S 

POP BX 
POP CX 
POP BP 
; END OF EPILOG 

; PROCEDURE RETURN 
RET 4 

EXAMPLE ENDP 

REGISTERS 
AND 
FLAGS 

; DISCARD 2 PARAMETERS 

; END OF PROCEDURE "EXAMPLE" 

Figure 2-71. Procedure Example 1 
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CALLER_SEG SEGMENT 
; GIVE ASSEMBLER SEGMENT IREGISTER CORRESPONDENCE 
ASSUME CS:CALLER_SEG, 
& DS:DATA_SEG, 
& SS:STACK_SEG, 
& ES:NOTHING ; NO EXTRA SEGMENT IN THIS PROGRAM 

; INITIALIZE SEGMENT REGISTERS 
START: MOV AX,DATA_SEG 

MOV DSjAX 
MOV AX,ST ACK_SEG 
MOV SS,AX 
MOV SP ,OFFSET STACK_TOP ; POINT SP TO TOS 

; ASSUME ARRAY _1 IS INITIALIZED 
, 
; CALL "EXAMPLE", PASSING ARRAY_1, THAT IS, THE NUMBER OF ELEMENTS 

IN THE ARRAY, ANDTHE LOCATION OFTHE FIRST ELEMENT. 
MOV AX,SIZE ARRAY _1 
PUSH AX 
MOV AX,OFFSET ARRAY_1' 
PUSH AX 
CALL EXAM PLE 

; ASSUME ARRAY_2IS INITIALIZED 
, 
; CALL "EXAMPLE" AGAIN WITH DIFFERENT SIZE ARRAY. 

MOV 
PUSH 
MOV 
PUSH 
CALL 

AX,SIZE ARRAY_2 
AX 
AX,OFFSET ARRAY_2 
AX 
EXAMPLE 
ENDS 

END START 

Figure 2-71. Procedure Example 1 (Cont'd.) 

Figure 2-72 shows the stack before the caller 
pushes the parameters onto it. Figure 2-73 shows 
the stack as the procedure receives it after the 
CALL has been executed. 

EXAMPLE is divided into four sections. The 
"prolog" sets up register BP so it can be used to 
address data on the stack (recall that specifying 
BP as a base register in an instruction auto­
matically refers to the stack segment unless a seg­
ment override prefix is coded). The next step in 
the prolog is to save the "state of the machine" as 
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it existed when the procedure was activated. This 
is done by pushing any registers used by the pro­
cedure (only CX and BP in this case) onto the 
stack. If the procedure changes the flags, and the 
caller expects the flags to be unchanged following 
execution of the procedure, they also may be 
saved on the stack. The last instruction in the pro­
log allocates three words on the stack for the pro­
cedure to use as local temporary storage. Figure 
2-74 shows the stack at the end of the prolog. 
Note that PL/M-86 procedures assume that all 
registers except SP and BP can be used without 
saving and restoring. 
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I---------t-SP(TOS) 

Figure 2-72. Stack Before Pushing Parameters 

HIGH ADDRESSES 

PARAMETER 1 

PARAMETER 2 

OLDCS 

OLDIP _SP(TOS) 

LOW ADDRESSES 

Figure 2-73. Stack at Procedure Entry 
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BP-8_ 

BP-10_ 

BP-12_ 

PARAMETER 1 

PARAMETER 2 

OLDCS 

OLD IP 

OLD BP 

OLDCX 

OLDBX 

OLD FLAGS 

LOCAL 1 

LOCAL2 

LOCAL3 

HIGH ADDRESSES 

_BP 

_SP(TOS) 

LOW ADDRESSES 

Figure 2-74. Stack Following Procedure Prolog 

The procedure "body" does the actual processing 
(none in the example). The parameters on the 
stack are addressed relative to BP. Note that if 
EXAMPLE were a NEAR procedure, CS would 
not be on the stack and the parameters would be 
two bytes "closer" to BP. BP also is used to 
address the local variables on the stack. Local 
constants are best stored in a data or extra 
segment. 

The procedure "epilog" reverses the activities of 
the prolog, leaving the stack as it was when the 
procedure was entered (see figure 2-75). 

HIGHER ADDRESSES 
r f' 

PARAMETER 1 

PARAMETER 2 

RETURN ADDRESS 

OLDBP _ BP & SP (TOS) 

h h 
LOWER ADDRESSES 

Figure 2-75. Stack Following Procedure Epilog 
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The procedure "return" restores CS and IP from 
the stack and discards the parameters. As figure 
2-76 shows, when the calling program is resumed, 
the stack is in the same state as it was before any 
parameters were pushed onto it. 

HIGH ADDRESSES 

t--------i 
_SP(TOS) 

LOW ADDRESSES 

Figure 2-76. Stack Following Procedure Return 

Figure 2-77 shows a simple procedure that uses an 
ASM-86 structure to address the stack. Register 
BP is pointed to the base of the structure, which is 
the top of the stack since the stack grows toward 
lower addresses (see figure 2-78). Any structure 
element can then be addressed by specifying BP as 
a base register: 

[BP).structure_element. 
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Figure 2-79 shows a different approach to using 
an ASM-86 structure to define the stack layout. 
As shown in figure 2-80, register BP is pointed at 
the middle of the structure (at OLD_BP) rather 
than at the base of the structure. Parameters and 
the return address are thus located at positive 
displacements (high addresses) from BP, while 
local variables are at negative displacements 
(lower addresses) from BP. This means that the 
local variables will be "closer" to the beginning 
of the stack segment and increases the likelihood 
that the assembler will be able to produce shorter 
instructions to access these variables, i.e., their 
offsets from SS may be 255 bytes or less and can 
be expressed as a I-byte value rather than a 2-byte 
value. Exit from the subroutine also is slightly 
faster because a MOV instruction can be used to 
deallocate the local storage instead of an ADD 
(compare figure 2-71). 

It is possible for a procedure to be activated a sec­
ond time before it has returned from its first 
activation. For example, procedure A may call 
procedure B, and an interrupt may occur while 
procedure B is executing. If the interrupt service 
procedure calls B, then procedure B is reentered 
and must be written to handle this situation cor­
rectly, i.e., the procedure must be made 
reentrant. 

In PLlM-86 this can be done by simply writing: 

B: PROCEDURE (PARM1, PARM2) REENTRANT; 

An ASM-86 procedure will be reentrant if it uses 
the stack for storing all local variables. When the 
procedure is reentered, a new "generation" of 
variables will be allocated on the stack. The stack 
will grow, but the sets of variables (and the 
parameters and return addresses as well) will 
automatically be kept straight. The stack must be 
large enough to accommodate the maximum 
"depth" of procedure activation that can occur 
under actual running conditions. In addition, any 
procedure called by a reentrant procedure must 
itself be reentrant. 

A related situation that also requires reentrant 
procedures is recursion. The following are 
examples of recursion: 

• A calls A (direct recursion), 

• A calls B, B calls A (indirect recursion), 

• A calls B, B calls C, C calls A (indirect 
recursion). 
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CODE SEGMENT 
ASSUME CS:CODE 

MAX PROC 
; THIS PROCEDURE IS CALLED BY THE FOLLOWING 

SEQUENCE: .. 
PUSH PARM1 
PUSH PARM2 
CALL MAX 

; IT RETURNS THE MAXIMUM OFTHETWO WORD 
PARAMETERS IN AX. 

; DEFINE THE STACK LAYOUT AS A STRUCTURE. 
STACK_LAYOUT STRUC 
OLD_BP DW? 
RETURN_ADDR DW.? 
PARM_2 DW? 
PARM_1 DW? 
STACK_LAYOUT ENDS 

; PROLOG 

; BODY 

PUSH 
MOV 

MOV 
CMP 
JG 
MOV 

; EPILOG 
FIRST_IS_MAX: POP 
; RETURN 

MAX 

CODE 

RET 
ENDP 

ENDS 
END 

; SAVED BPVALUE-BASEOFSTRUCTURE 
; RETURN ADDRESS 
; SECOND PARAMETER 
; FIRST PARAMETER 

BP 
BP,SP 

AX, [BPJ.PARM_1 
. AX, [BPJ.PARM_2 

FIRST _IS_MAX· 
AX, [BPJ.PARM_2 

BP 

4 

; SAVE IN OLD_BP 
; POINTTOOLD_BP 

; IF FIRST 
. ; >SECOND . 

; THEN RETURN FIRST 
; ELSE RETURN SECOND 

; RESTORE BP (& SP) 

; DISCARD PARAMETERS 

Figure 2-77. Procedure Example 2 

HIGHER ADDRESSES 
lor Jumps and Calls 

PARAMETER 1 

PARAMETER 2 

RETURN ADDRESS 

OLD BP ____ BP & SP (TOS) 

" 
LOWER ADDRESSES 

Figure 2-78. Procedure Example 2 Stack Layout 

The 8086/8088 instruction set contains many dif­
ferent types of JMPand CALL instructions (e.g., 
direct, indirect through register, indirect through 
memory, etc.). These varying types of transfer 
provide efficient use of space and execution time 
in different programming situations. Figure 2-81 
illustrates typical use of the different forms of 
these instructions. Note that the ASM-86 
assembler uses the terms "NEAR" and "FAR" 
to denote intrasegment and intersegment trans­
fers, respectively. 
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EXTRA SEGMENT 
; CONTAINS STRUCTURE TEMPLATE THAT "NEARPROC" 
; USES TO ADDRESS AN ARRAY PASSED BY ADDRESS. 
DUMMY STRUC 
PARM_ARRAY DB 256 DUP? 
DUMMY ENDS 
EXTRA ENDS 

CODE SEGMENT 
ASSUME CS:CODE,ES:EXTRA 

NEARPROC PROC 
; LAY OUT THE STACK (THE DYNAMIC STORAGE AREA OR DSA). 
DSASTRUC STRUC 
I DW ? ; LOCALVARIABLES FIRST 
LOC_ARRA Y DW 10 DUP (?) 

? 
, 

OLD_BP DW ; ORIGINAL BP VALUE 
; RETURN ADDRESS RETADDR DW ? 

POINTER DD ? ; 2ND PARM-POINTERTO "PARM_ARRAY" 
; 1ST PARM-A BYTE OCCUPIES COUNT DB ? 

DSASTRUC 
DB 
ENDS 

? A WORD ON THE STACK 

; USE AN EQU TO DEFINE THE BASE ADDRESS OF THE 
DSA. CANNOT SIMPLY USE BP BECAUSE IT WILL 
BE POINTING TO "OLD_BP" IN THE MIDDLE OF 

; THE DSA. 
DSA EQU [BP - OFFSET OLD_BP) 

; PROCEDURE ENTRY 
PUSH 
MOV 
SUB 

BP ; SAVE BP 
BP, SP ; POINT BP AT OLD_BP 
SP, OFFSET OLD_BP; ALLOCATE LOC_ARRAY & I 

; PROCEDURE BODY 
; ACCESS LOCAL VARIABLE I 
MOV AX,DSA.I 

; ACCESS LOCAL ARRAY (3) I.E., 4TH ELEMENT 
MOV SI,6 ; WORD ARRAY-INDEX IS 3*2 
MOV AX,DSA.LOC_ARRAY [SI) 

; LOAD POINTER TO ARRAY PASSED BY ADDRESS 
LES BX,DSA.POINTER 

; ES:BX NOW POINTS TO PARM_ARRAY (0) 
; ACCESS SI'TH ELEMENT OF PARM_ARRAY 
MOV AL,ES:[BX).PARM_ARRAY [SI) 

; ACCESS THE BYTE PARAMETER 
MOV AL,DSA.COUNT 

Figure 2-79. Procedure Example 3 

Mnemonics © Intel, 1978 2-106 



8086 AND 8088 CENTRAL PROCESSING UNITS 

; PROCEDURE EXIT 
MOV SP,BP ; DE-ALLOCATE LOCALS 
POP BP ; RESTORE BP 
; STACK NOW AS RECEIVED FROM CALLER , , 
RET 6 ; DISCARD PARAMETERS 

NEARPROC 
CODE 

ENDP 
ENDS 
END 

Figure 2-79. Procedure Example 3 (Cont'd.) 

'f' HIGHER ADDRESSES , 

I COUNT 

r---POINTER 

RETADDR 

OLD BP _BP 

LOCJRRAY (9) 

LOC_ARRAY (8) 

LOC_ARRAY (7) 

LOC_ARRAY (8) 

LOC_ARRAY (5) 

LOC_ARRAY (4) 

LOC_ARRAY (3) 

LOC_ARRAY (2) 

LOCJRRAY(1) 

LOC_ARRAY (0) 

I _SP 

" 
,., 

LOWER ADDRESSES 

Figure 2-80. Procedure Example 
3 Stack Layout 

The procedure in figure .2-81 illustrates how a 
PLlM-86 DO CASE construction may be 
implemented in ASM-86.It also shows: 

• an indirect CALL 'through memory to a 
procedure located in another segment, 

• 

• 

• 

a direct JMP to a label in another segment, 

an indirect JMP though memory to a label in 
the same segment,' ' 

an indirect JIvlP through a register to a label 
in the same segment, 

, . a direct CALL to· a procedure in another 
segment, 
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• a direct CALL to a procedure in the same 
segment, 

• direct JMPs to labels in the same segment, 
within -128 to +127 bytes ("SHORT") and 
farther than -128 to +127 bytes ("NEAR"). 
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DATA SEGMENT 
; DEFINE THE CASE TABLE (JUMP TABLE) USED BY PROCEDURE 

"DO_CASE." THE OFFSET OF EACH LABEL WILL 
; BE PLACED IN THE TABLE BY THE ASSEMBLER. 
CASE_TABLE DW ACTIONO, ACTION1, ACTION2, 
& ACTION3, ACTION4, ACTION5 . 
DATA ENDS 

; DEFINE TWO EXTERNAL (NOT PRESENT IN THIS' . 
. ASSEMBLY BUT SUPPLIED BY R & L FACILITY) 

PROCEDURES. ONE IS IN THIS CODE SEGMENT 
(NEAR) AND ONE IS IN ANOTHER SEGMENT (FAR). 

EXTRN NEAR_PROC: NEAR, FAR_PROC: FAR 

; DEFINE AN EXTERNAL LABEL (JUMP TARGET) THAT 
IS IN ANOTHER SEGMENT. 

EXTRN ERR_EXIT: FAR 

CODE SEGMENT 
ASSUME CS: CODE, DS: DATA 

; ASSUME DS HAS BEEN SET UP 
BY CALLERTOPOINTTO "DATA" SEGMENT. 

DO_CASE PROC NEAR 
; THIS EXAMPLE PROCEDURE RECEIVES TWO 

PARAMETERS ON THE STACK. THE FIRST 
PARAMETER IS THE "CASE NUMBER" OF 
A ROUTINE TO BE EXECUTED (0-5). THE SECOND 
PARAMETER IS A POINTER TO AN ERROR 
PROCEDURE THAT IS EXECUTED IF AN INVALID 
CASE NUMBER (>5) IS RECEIVED . 

. ; LAY OUT THE STACK. 
ST ACK_LA YOUTSTRUC 
OLD_BP DW? 
RETADDR DW? 
ERR_PROC_ADDR DD ? 
CASE_NO DB? 

DB ? 
STACK_LAYOUT ENDS 

; SET UP PARAMETER ADDRESSING 
, " PUSH BP 

MOV BP,SP 

; CODE TO SAVE CALLER'S REGISTERS COULD GO HERE. 

; CHECK THE CASE NUMBER 
MOV 
MOV 
CMP 
JLE 

BH,O 
BL, [BPj.CASE_NO 
BX, LENGTH CASE_TABLE 
OK ; ALL CONDITIONAL JUMPS 

; ARE SHORT DIRECT 

Figure 2-81. JMP and CALL Examples 
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; CALL THE ERROR ROUTINE WITH A FAR 
INDIRECT CALL. A FAR INDIRECT CALL 
IS INDICATED SINCE THE OPERAND HAS 
TYPE "DOUBLEWORD." 

CALL [BP].ERR_PROC_ADDR 

; JUMP DIRECTLY TO A LABEL IN ANOTHER SEGMENT. 

OK: 

A FAR DIRECT JUMP IS INDICATED SINCE 
THE OPERAND HAS TYPE "FAR." 

JMP ERR_EXIT 

; MULTIPLY CASE NUMBER BY 2TOGETOFFSET 
INTO CASE_TABLE (EACH ENTRY IS 2 BYTES). 

SHL BX,1 . 
; NEAR INDIRECT JUMP THROUGH SELECTED 

ELEMENT OF CASE_TABLE. A NEAR 
INDIRECT JUMP IS INDICATED SINCE THE 
OPERAND HAS TYPE "WORD." 

JMP CASE-'-.TABLE [BX] 

ACTIONO: ; EXECUTED IF CASE_NO = 0 
. ; CODE TO PROCESS THE ZERO CASE GOES HERE. 

; FOR ILLUSTRATION PURPOSES, USE A 
NEAR INDIRECT JUMP THROUGH A 
REGISTER TO BRANCH TO THE POINT 
WHERE ALL CASES CONVERGE. 
A DIRECT JUMP (JMP ENDCASE) IS 
ACTUALLY MORE APPROPRIATE HERE. 

MOV AX, OFFSET ENDCASE 
JMP AX 

ACTION1: ; EXECUTED IF CASE_NO = 1 
; CALL A FAR EXTERNAL PROCEDURE. A FAR 

DIRECT CALL IS INDICATED SINCE OPERAND 
HAS TYPE "FAR." 

CALL FAR_PROC 
; CALLA NEAR EXTERNAL PROCEDURE. 

CALL NEAR_PROC 
; BRANCH TO CONVERGENCE POINT USING NEAR 

DIRECT JUMP. NOTE THAT "ENDCASE" 
IS MORE THAN 127 BYTES AWAY 
SO A NEAR DIRECT JUMP WILL BE USED. 

JMP ENDCASE 

ACTION2: ; EXECUTED IF CASE_NO = 2 
; CODE GOES HERE 

JMP ENDCASE; NEAR DIRECT JUMP 

Figure 2-81. JMP and CALL Examples (Cont'd.) 
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ACTION3: ; EXECUTED IF CASE_NO = 3 
; CODE GOES HERE 

JMP ENDCASE; NEAR DIRECT JMP 

; ARTIFICIALLY FORCE "ENDCASE" FURTHER AWAY 
SO THAT ABOVE JUMPS CANNOT BE "SHORT." 

ORG 500 

ACTION4: ; EXECUTED IF CASE_NO = 4 
; CODE GOES HERE 

JMP ENDCASE; NEAR DIRECT JUMP 

ACTION5: ; EXECUTED IF CASE_NO ~ 5 
; CODE GOES HERE. 
; BRANCH TO CONVERGENCE POINT USING 

SHORT DIRECTJUMP SINCE TARGET IS 
WITHIN 127 BYTES. MACHINE INSTRUCTION 
HAS 1-BYTE DISPLACEMENT RATHER THAN 
2-BYTE DISPLACEMENT REQUIRED FOR 
NEAR DIRECT JUMPS. "SHORT" IS 
WRITTEN BECAUSE"ENDCASE" IS A FORWARD 
REFERENCE, WHICH ASSEMBLER ASSUMESIS 
"NEAR." IF "ENDCASE" APPEARED PRIOR 
TO THE JUMP, THE ASSEMBLER WOULD 
AUTOMATICALLY DETERMINEIFIT WERE REACHABLE 
WITH A SHORT JUMP. 

JMP SHORTENDCASE 

ENDCASE: ; ALL CASES CONVERGE HERE. 

; POP CALLER'S REGISTERS HERE. 
; RESTORE BP & SP, DISCARDPARAMETERS 

AND RETURN TO CALLER. 
MOV SP, BP 
POP BP 
RET 6 

ENDP 
ENDS 
END ; OF ASSEMBLY 

Figure 2-81. JMP and CALL Examples (Cont'd.) 

Figure 2-82 shows how the ASM-86 RECORD 
facility may be used to manipulate bit data. The 
example shows how to: • assign a constant known at assembly time, 

• right-justify a bit field, • assign a variable, 

• test for a value, • set or clear a bit field. 
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DATA SEGMENT 
; DEFINE A WORD ARRAY 
XREF DW 3000 DUP (?) 
; EACH ELEMENT OF XREF CONSISTS OF 3 FIELDS:; 

A 2-BIT TYPE CODE, 
A 1-BIT FLAG, 

; A 13-BIT NUMBER. 
; DEFINE A RECORDTO LAyqUTTHIS ORGANIZATION. 
LlNE_REC RECORD LINE_TYPE: 2, 
& VISIBLE: 1, 
& LlNE_NUM: 13 
DATA ENDS 

CODE SEGMENT 
ASSUME CS: CODE, DS: DATA 

; ASSUME SEGMENT REGISTERS ARE SET UP PROPERLY 
AND THAT SIINDEXES AN ELEMENT OF XREF .. 

; A RECORD FIELD-NAME USED BY ITSELF RETURNS 
THE SHIFT COUNT REQUIRED TO RIGHT-JUSTIFY 

; THE FIELD. ISOLATE "LINE_TYPE" IN THIS 
; MANNER. 

MOV AL, XREF [SI) 
.MOV CL, LINE_TYPE 
SHR AX, CL 

; THE "MASK" OPERATOR APPLIED TO A RECORD 
FIELD-NAME RETURNS THE BIT MASK 

, REQUIRED TO ISOLATE THE FIELD WITHIN 
THE RECORD. CLEAR ALL BITS EXCEPT 

.. "LlNE_NUM." 
MOV DX, XREF[SI) 
AND DX, MASK LlNE_NUM 

; DETERMINE THE VALU E OF THE "VISIBLE" FIELD 
TEST XREF[SIJ, MASK VISIBLE 
JZ NOT_VISIBLE 

; NO JUMP IF VISIBLE = 1 
NOT_VISIBLE: ; JUMP HERE IF VISIBLE = 0 

; ASSIGN A CONSTANT KNOWN AT ASSEMBLY-TIME 
TO A FIELD, BY FIRST CLEARING THE BITS 
AND THEN OR'ING IN THE VALUE. IN 
THIS CASE "LINE_TYPE" IS SETTO 2 (10B). 

AND XREF[SIJ,NOT MASK LINE_TYPE 
OR XREF[SI) ,2 SH L LIN E_ TYPE 

; THE ASSEMBLER DOES THE MASKING AND SHIFTING .. 
; THE RESULT IS THE SAME AS: 
. AND XREF[SIJ, 3FFFH 

OR XREF[SIJ, 8000H 
BUT IS MORE READABLE AND LESS SUBJECT 
TO CLERICAL ERROR. 

Figure 2-82. RECORD Example 
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; ASSIGN A VARIABLE (THE CONTENT OF AX) 
TO LINE_TYPE. 

MOV 
SHL 
AND 
OR 

CL, LINE_TYPE ; SHIFT COUNT 
AX, CL ; SHIFT TO "LINE UP" BITS 
XREF[SIJ, NOT MASK LINE_TYPE ; CLEAR BITS 
XREF[SIJ, AX ; OR IN NEW VALUE 

; NO SHIFT IS REQUIRED TO ASSIGN TO THE 
RIGHT-MOST FIELD. ASSUMING AX CONTAINS 
A VALID NUMBER (HIGH 3 BITS ARE 0), 
ASSIGN AX TO "L1NE_NUM." 

AND XREF[SIJ, NOT MASK L1NE_NUM 
OR XREF[SIJ, AX 

; A FIELD MAY BE SET OR CLEARED WITH 
ONE INSTRUCTION. CLEAR THE "VISIBLE" 
FLAG AND THEN SET IT. 

AND 
OR 

XREF[SIJ, NOT MASK VISIBLE 
XREF[SIJ, MASK VISIBLE 

CODE ENDS 
END ; OF ASSEMBLY 

Figure 2-82. RECORD Example (Cont'd.) 

The following considerations apply to position­
independent code sequences: 

• A label that is referenced by a direct FAR 
(inter segment) transfer is not moveable. 

• A label that is referenced by an indirect 
transfer (either NEAR or FAR) is moveable 
so long as the register or memory pointer to 
the label contains the label's current address. 

• A label that is referenced by a SHORT (e.g., 
conditional jump) or a direct NEAR (in­
trasegment) transfer is moveable so long as 
the referencing instruction is moved with the 
label as a unit. These transfers are self­
relative; that is they require only that the 
label maintain the same distance from the 
referencing instruction, and actual addresses 
are immaterial. 

• Data is segment-independent, but not offset­
independent. That is, a data item may be 
moved to a different segment, but it must 
maintain the same offset from the beginning 
of the segment. Placing constants in a unit 
of code also effectively makes the code 
offset-dependent, and therefore is not 
recommended. 

• A procedure should not be moved while it is 
active or while any procedure it has called is 
active. 
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• A section of code that has been interrupted 
should not be moved. 

The segment that is receiving a section of code 
must have "room" for the code. If the MOVS (or 
MOVSB or MOVSW) instruction attempts to 
auto-increment DI past 64k, it wraps around to 0 
and causes the beginning of the segment to be 
overwritten. If a segment override is needed for 
the source operand, code similar to the following 
can be used to properly resume the instruction if it 
is interrupted: 

RESUME: REP MOVS DESTINATION, ES:SOURCE 

;IF CX NOT = 0 THEN INTERRUPT HAS OCCURRED 

AND CX,CX ; CX=O? 

JNZ RESUME ;NO, FINISH EXECUTION 

;CONTROL COMES HERE WHEN STRING HAS BEEN MOVED. 

If the MOVS is interrupted, the CPU 
"remembers" the segment override, but 
"forgets" the presence of the REP prefix when 
execution resumes. Testing CX indicates whether 
the instruction is completed or not. Jumping back 
to the instruction resumes it where it left off. Note 
that a segment override cannot be specified with 
MOVSB or MOVSW. 
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Dynamic Code Relocation 

Figure 2-83 illustrates one approach to moving 
programs in memory at execution time. A "super­
visor" program (which is not moved) keeps 
a pointer variable that contains the current loca­
tion (offset and segment base) of a position­
independent procedure. The supervisor always 

calls the procedure through this pointer. The 
supervisor also has access to the procedure's 
length in bytes. The procedure is moved with the 
MOVSB instruction. After the procedure is 
moved, its pointer is updated with the new loca­
tion. The ASM-86 WORD PTR operator is writ­
ten to inform the assembler that one word of the 
doubleword pointer is being updated at a time. 

MAIN_DATA SEGMENT 
; SET UP POINTERS TO POSITION-INDEPENDENT PROCEDURE 

AND FREE SPACE. 
PIP_PTA DD EXAMPLE 
FREE_PTA DD TARGET_SEG 
; SET UP SIZE OF PROCEDURE IN BYTES 
PIP_SIZE DW EXAMPLE_LEN ,'or 

MAIN_DATA ENDS 

STACK SEGMENT 

STACK_TOP 
STACK 

DW 20 DUP(?) 

LABEL WORD 

; 20 WORDS FOR STACK 

; TOS BEGINS HERE 
ENDS 

SOURCE_SEG SEGMENT 
; THE POSITION-INDEPENDENT PROCEDURE IS INITIALLY IN THIS SEGMENT. 
; OTHER CODE MAY PRECEDE IT; I.E., ITS OFFSET NEED NOT BE ZERO. 
ASSUME CS:SOURCE_SEG 
EXAMPLE PROC FAR 

; THIS PROCEDURE READS AN 8-BIT PORT UNTIL 
; BIT 3 OFTHE VALUE READ IS FOUND SET. IT 
; THEN READS ANOTHER PORT. IF THE VALUE READ 
; IS GREATER THAN 10H IT WRITES THEVALUE TO 
; A THIRD PORT AND RETURNS; OTHERWISE IT STARTS 
; OVER. 

STATUS_PORT EQU 
PORT_READY EQU 
INPUT_PORT EQU 
THRESHOLD EQU 
OUTPUT_PORT EQU 
CHECK_AGAIN: IN 

TEST 
JNE 
IN 
CMP 
JLE 
OUT 

ODOH 
008H 
OD2H 
010H. 
OD4H 
AL,STATUS_PORT 
AL,PORT _READY 
CHECK_AGAIN 
AL,INPUT _PORT 
AL,THRESHOLD 
CHECK_AGAIN 
OUTP UT _PORT ,AL 

; GET STATUS 
; DATA READY? 
; NO, TRY AGAIN 
; YES, GETDATA 
;>10H? 
; NO, TRY AGAIN 
; YES, WRITE IT 

Figure 2-83. Dynamic Code Reiocati9D Example. 
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RET ; RETURN TO CALLER 
;GETPROCEDURELENGTH 
EXAMPLE_LEN EQU (OFFSET THIS BYTE)-(OFFSET CHECK_AGAIN) 

ENDP EXAMPLE ENDP 
SOURCE_SEG ENDS 

TARGET_SEG SEGMENT 
; THE POSITION-INDEPENDENT PROCEDURE 

IS MOVED TO THIS SEGMENT, WHICH IS 
; INITIALLY "EMPTY." 
; IN TYPICAL SYSTEMS, A "FREE SPACE MANAGER" WOULD 
; MAINTAIN A POOL OF AVAILABLE MEMORY SPACE 
; FOR ILLUSTRATION PURPOSES, ALLOCATE ENOUGH 

SPACE TO HOLD IT 
DB EXAMPLE_LEN DUP (?) 

TARGET_SEG ENDS 

MAIN_CODE SEGMENT 
; THIS ROUTINE CALLS THE EXAMPLE PROCEDURE 
; AT ITS INITIAL LOCATION, MOVES IT, AND 
; CALLS IT AGAIN ATTHE NEW LOCATION. 

ASSUME 
& 

CS:MAIN_CODE,SS:STACK, 
DS:MAIN_DAT A,ES:NOTHING 

; INITIALIZE SEGMENT REGISTERS & STACK POINTER. 
START: MOV AX,MAIN_DATA 

MOV DS,AX 
MOV AX,STACK 
MOV SS,AX 
MOV SP ,OFFSET STACK_TOP 

; CALL EXAMPLE AT INITIAL LOCATION. 
CALL PIP _PTR 

; SET UP CX WITH COUNT OF BYTES TO MOV 
MOV CX,PIP _SIZE 

; SAVE DS, SET UP DS/SI AND ESIDI TO 
POINT TO THE SOURCE AND DESTINATION 
ADDRESSES. 

PUSH 
LES 
LDS 

; MOVE THE PROCEDURE. 
CLD 
REP MOVSB 

DS 
DI,FREE_PTR 
SI,PIP_PTR 

; RESTORE OLD ADDRESSABILITY. 

; AUTO INCREMENT 

MOV AX,DS ; HOLD TEMPORARILY 
POP DS 

; UPDATE POINTER TO POSITION-INDEPENDENT PROCEDURE 
MOV WORD PTR PIP _PTR+2,ES 
SUB DI,PIP _SIZE ; PRODUCES OFFSET 
MOV WORD PTR PIP _PTR,DI 

Figure 2-83. Dynamic Code Relocation Example (Cont'd.) 
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; UPDATE POINTER TO FREE SPACE 
MOV WORD PTR FREE_PTR+2,AX 
SUB SI,PIP_SIZE ; PRODUCES OFFSET 
MOV WORD PTR FREE_PTR,SI 

; CALL POSITION-INDEPENDENT PROCEDURE AT 
NEW LOCATION AND STOP 

CALL PIP_PTA 
MAIN_CODE ENDS 

END START 

Figure 2-83. Dynamic Code Relocation Example (Cont'd.) 

Memory-Mapped I/O 

Figure 2-84 shows how memory-mapped 110 can 
be used to address a group of communication 
lines as an "array." In the example, indexed 
addressing is used to poll the array of status ports, 
one port at a time. Any of the other 8086/8088 
memory addressing modes may be used in con­
junction with memory-mapped 110 devices as 
well. 

In figure 2-85 a MOVS instruction is used to per­
form a high-speed transfer to a memory-mapped 
line printer. Using this technique requires the 
hardware to be set up as follows. Since the MOVS 

COM_LINES SEGMENT AT 800H 

instruction transfers characters to successive 
memory addresses, the decoding logic must select 
the line printer if any of these locations is written. 
One way of accomplishing this is to have the chip 
select logic decode only the upper 12 lines of the 
address bus (AI9-A8), ignoring the contents of 
the lower eight lines (A7-AO). When data is writ­
ten to any address in this 256-byte block, the 
upper 12 lines will not change, so the printer will 
be selected. 

If an 8086 is being used with an 8-bit printer, the 
8086's 16-bit data bus must be mapped into 8-bits 
by external hardware. Using an 8088 provides a 
more direct interface. 

; THE FOLLOWING IS A MEMORY MAPPED "ARRAY" 
OF EIGHT 8-BIT COMMUNICATIONS CONTROLLERS 
(E.G.,8251 USARTS). PORTS HAVE ALL-ODD 
OR ALL-EVEN ADDRESSES (EVERY OTHER BYTE 
IS SKIPPED) FOR 8086-COMPATIBILITY. 

COM_DATA DB ? 
DB ? ; SKIP THIS ADDRESS 

COM_STATUS DB ? 
DB ? ; SKIP THIS ADDRESS 
DB 28 DUP (?) ; REST OF "ARRAY" 

COM_LINES ENDS. 

CODE SEGMENT 
; ASSUME STACK IS SET UP, AS ARE SEGMENT 

REGISTERS (DS POINTING TO COM_LINES). 
FOLLOWING CODE POLLS THE LINES. 

CHAFLRDY EQU 
START_POLL: MOV 

SUB 

00000010B 
CX,8 
SI,SI 

; CHARACTER PRESENT 
; POLL 8 LINES ZERO 
; ARRAY INDEX 

Figure 2-84. Memory Mapped 1/0 "Array" 
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POLL_NEXT: TEST 
JE 
ADD 
LOOP 

COM_STATUS [SI], CHAR_RDY 
READ_CHAR; READ IFPRESENT 
SI,4 ; ELSE BUMP TO NEXT LINE 
POLL .. :_NEXT ; CONTINUE POLLING UNTIL 

; ALL8 HAVE BEEN CHECKED 
JMP ST ART_POLL; START OVER 

READ_CHAR: MOV AL,COM_DATA [SI] ;GETTHE DATA 
; ETC. 
CODE ENDS 

END 

Figure 2~84. Memory Mapped 1/0 "Array" (Cont'd.) 

PRINTER SEGMENT 
; THIS SEGMENTCONTAINS A "STRING"THAT 

ISACTUALLY A MEMORY-MAPPED LINE PRINTER .. 
THE SEGMENT (PRINTER) MUST BE ASSIGNED (LOCATED) 
TO ABLOCK OF THE ADDRESS SPACE SUCH 
THAT WRITING TO ANY ADDRESS IN THE 
BLOCK SELECTS THE PRINTER. 

PRINT_SELECT DB133 DUP (?) 
DB 123 DUP (?) 

PRINTER ENDS 

DATA SEGMENT 
. PRINT_BUF DB133 DUP(?) 

PRINT_COUNT DB 1 ? 
; OTHER PROGRAM DATA 
DATA ENDS 

CODE SEGMENT 
; ASSUME STACK AND SEGMENT REGISTERS HAVE 

BEEN SET UP (DS POINTS TO DATA SEGMENT). 
FOLLOWING CODE TRANSFERS A LINE TO 
THE PRINTER. 

ES: PRINTER 

; "STRING" REPRESENTING PRINTER. 
; REST OF256-BYTE BLOCK 

; LINE TO BE PRINTED 
; LINE LENGTH 

ASSUME 
MOV 
MOV 
SUB 
SUB 
MOV 
CLD 
MOVS 

. AX, PRINTER ; PREVENT SEGMENT OVERRIDE 

REP 

CODE 
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; ETC. 
ENDS 
END 

ES,AX 
DI, DI ; CLEAR SOURCE AND 
SI, SI DESTINATION POINTERS 
CX, PRINT_COUNT 
; AUTO-INCREMENT 
PRINT_SELECT, PRINT_BUF 

Figure 2-85. Memory Mapped Block Transfer Example 
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Breakpoints 

Figure 2-86 illustrates how a program may set a 
breakpoint. In the example, the breakpoint 
routine puts the processor into single-step mode, 
but the same general approach could be used for 
other purposes as well. A program passes the 
address where the break is to occur to a procedure 

that saves the byte located at that address and 
replaces it with an INT 3 (breakpoint) instruction. 
When the CPU encounters the breakpoint 
instruction, it calls the type 3 interrupt procedure. 
In the example, this procedure places the pro­
cessor into single-step mode starting with the 
instruction where the breakpoint was placed. 

INT_PTR_TAB SEGMENT 
; INTERRUPT POINTER TABLE-LOCATE AT OH 
TYPE_O DO ? 
TYPE_1 DO SINGLE_STEP 
TYPE_2 DO ? 
TYPE_3 DO BREAKPOINT 
INT_PTR_TAB ENDS 

SAVE_SEG 
SAVE_INSTR 

SEGMENT 
DB 1 DUP (?) 

SAVE_SEG ENDS 

MAIN_CODE SEGMENT 

; NOT DEFINED IN EXAMPLE 

; NOT DEFINED IN EXAMPLE 

; INSTRUCTION REPLACED 
; BY BREAKPOINT 

; ASSUME STACK AND SEGMENT REGISTERS ARE SET UP. 

; ENABLE SINGLE-STEPPING WITH INSTRUCTION AT 
LABEL "NEXT" BY PASSING SEGMENT AND 
OFFSET OF "NEXT" TO "SET_BREAK" PROCEDURE 

PUSH CS 
LEA AX,CS:NEXT 
PUSH AX 
CALL FAR SET_BREAK 

; ETC. 

NEXT: IN AL,OFFFH ; BREAKPOINT SET HERE 
; ETC. 

MAIN_CODE EN OS 

BREAK SEGMENT 
SET_BREAK PROC FAR 
; THIS PROCEDURE SAVES AN INSTRUCTION BYTE (WHOSE 

ADDRESS IS PASSED BY THE CALLER) AND WRITES 
AN INT 3 (BREAKPOINT) MACHINE INSTRUCTION 
ATTHETARGETADDRESS. 

TARGET EQU DWORD PTR [BP+6] 

Figure 2-86. Breakpoint Example 
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; SETUP BP F,OR PARM ADDRESSING & SAVE REGISTERS 
PUSH BP 
MOV BP, SP 
PUSH DS 
PUSH ES 

'. PUSH AX 
. . . PUSH BX 

; POINT DS/BX TO THE TARGET INSTRUCTION 
LDS BX, TARGET 

; POINT ES TO THE SAVE AREA 
MOV AX, SAVE_SEG 
MOV ES, AX 

; SWAP THE TARGET INSTRUCTION FOR INT 3 (OCCH) 
MOV AL,OCCH 
XCHG AL, DS: [BXJ . 

; SAVE THE TARGET INSTRUCTION 
MOV ES: SAVE_INSTR, AL 

;~ESTOREANDRETURN 
POP BX 
POP AX 
POP ES 
POP DS 
POP' BP 
RET 4 

SET_BREAK ENDP 

BREAKPOINT PROC FAR 
; THE CPU WILL ACTIVATE THIS PROCEDURE WHEN IT 

EXECUTES THE INT 3 INSTRUCTION SET BY THE 
SET_BREAK PROCEDURE. THIS PROCEDURE 
RESTORES THE SAVED INSTRUCTION BYTE TO ITS 
ORIGINAL LOCATION AND BACKS UP THE 
INSTRUCTION POINTER IMAGE ON THE STACK 
SO THAT EXECUTION WILL RESUME WITH 
THE RESTORED INSTRUCTION. IT THEN SETS 
TF (THE TRAP FLAG) IN THE FLAG-IMAGE 
ON THE STACK. THIS PUTS THE PROCESSOR 
IN SINGLE-STEP MODE WHEN EXECUTION 
RESUMES. 

FLAG_IMAGE EQU WORD PTR [BP + 6J 
IP _IMAGE EQU WORD PTR [BP + 2J 

NEXT_INSTR EQU DWORD PTR [BP+2J 
; SET UP BPTO ADDRESS STACK AND SAVE REGISTERS 

PUSH BP 
MOV BP, SP 
PUSH DS 
PUSH ES . 
PUSH AX 
PUSH BX 

; POINT ES AT THE SAVE AREA 
MOV AX, SAVE_SEG 
MOV ES, AX 

; GET THE SAVED BYTE 
MOV AL, ES: SAVE_INSTR 

Figure 2-86. Breakpoint Example (Cont'd.) 
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; GET THE ADDRESS OF THE TARGET + 1 
(INSTRUCTION FOLLOWING THE BREAKPOINT) 

LDS BX, NEXT_INSTR 
; BACK UP IP-IMAGE (IN BX) AND REPLACE ON STACK 

DEC BX 
MOV IP _IMAGE, BX 

; RESTORE THE SAVED INSTRUCTION 
MOV DS: [BX], AL 

; SET TF ON STACK 
AND FLAG_IMAGE,0100H 

; RESTORE EVERYTHING AND EXIT 
POP BX 
POP AX 
POP ES 
POP DS 
POP BP 
IRET 

BREAKPOINT ENDP 

SINGLE STEP PROC FAR 
; ONCE SINGLE-STEP MODE HAS BEEN ENTERED, 

THE CPU "TRAPS" TO THIS PROCEDURE 
AFTER EVERY INSTRUCTION THAT IS NOT IN 
AN INTERRUPT PROCEDURE. IN THE CASE 
OF THIS EXAMPLE, THIS PROCEDURE WILL 
BE EXECUTED IMMEDIATELY FOLLOWING THE 
"IN AL, OFFFH" INSTRUCTION (WHERE THE 
BREAKPOINT WAS SET) AND AFTER EVERY 
SUBSEQUENT INSTRUCTION. THE PROCEDURE 
COULD "TURN ITSELF OFF" BY CLEARING 
TF ON THE STACK. 

; SINGLE-STEP CODE GOES HERE. 
; SINGLE_STEP ENDP 

BREAK ENDS 

END 

Figure 2-86. Breakpoint Example (Cont'd.) 

Interrupt Procedures 

Figure 2~87 is a block diagram of a hypothetical 
system that is used to illustrate three different 
examples of interrupt handling: an external 
(maskable) interrupt,· an external non-mask able 
interrupt and a software interrupt. 

In this hypothetical system, an 8253 Program­
mabie Interval Timer is used to generate a tirrie 
base. One of the three tirriers on the 8253 is pro­
grammed to repeatedly generate interrupt 
requests at 50 millisecond intervals. The output 
from this timer is tied to one of the eight interrupt 
request lines of an 8259A Programmable Inter­
rupt Controller. The 8259A, in turn, is connected 
to the INTR line of an 8086 or 8088. . 
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Figure 2-87. Interrupt Example Block Diagram 

A power-down circuit is used in the system to 
illustrate one application of the 8086/8088 NMI 
(non-mask able interrupt) line. If the ac line 
voltage drops below a certain threshold, the 
power supply activates ACLO. The power-down 
circuit then sends a power-fail interrupt (PFI) 
pulse to the CPU's NMI input. After 5 
milliseconds, the power-down circuit activates 
MPRO (memory protect) to disable reading 
from and writing to the system's battery-powered 
RAM. This protects the RAM from fluctuations 
that may occur when power is actually lost 7.5 
milliseconds after the power failure is detected. 
The system software must save all vital informa­
tion in the battery-powered RAM segment within 
5 milliseconds of the activation of NMI. 

When power returns, the power-down circuit 
activates the system RESET line. Pressing the 
"cold start" switch also produces a system 
RESET. The PFS (power fail status) line, whichis 

connected to the low-order bit of port EO, iden­
tifies the source of the RESET. If the bit is set, the 
software executes a "warm start" to restore the 
information saved by the power-fail routine. If 
the PFS bit is cleared, the software executes a 
"cold start" from the beginning of the program. 
In either case, the software writes a "one" to the 
low-order bit of port E2. This line is connected to 
the power-down circuit's PFSR (power fail status 
reset) signal and is used to enable the battery­
powered RAM segment. 

2-120 

A software interrupt is used to update a simple 
real-time clock. This procedure is written in 
PLlM-86, while the rest of the system is written in 
ASM-86 to demonstrate the interrupt handling 
capability of both languages. The system's main 
program simply initializes. the system following 
receipt of a RESET and then waits for an 
interrupt. An example of this interrupt procedure 
is given in figure 2-88. 
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INT _POINTERS SEGMENT 
; INTERRUPT POINTER TABLE, LOCATE AT OH, ROM-BASED 
TYPE_O DO? ; DIVIDE-ERROR NOT SUPPLIED IN EXAMPLE. 
TYPE_1 DO? ; SINGLE-STEP NOT SUPPLIED IN EXAMPLE. 
TYPE_2 DO POWER_FAIL; NON-MASKABLE INTERRUPT 
TYPE_3 DO? ; BREAKPOINT NOT SUPPLIED IN EXAMPLE. 
TYPE_4 DO? ; OVERFLOW NOT SUPPLIED IN EXAMPLE. 
; SKIP RESERVED PART OF EXAMPLE 

TYPE_32 
TYPE_33 
TYPE_34 
TYPE_35 
TYPE_36 
TYPE_37 
TYPE_38 
TYPE_39 
, 

ORG 32'4 
DO ? 
DO ? 
DO ? 
DO TIMER_PULSE 
DO ? 
DO ? 

. DO ? 
DO ? 

; POINTER FOR TYPE 40 SUPPLIED BY PLlM-86 COMPILER 

INT_POINTERS ENDS 

BATTERY SEGMENT 

; 8259A IRO - AVAILABLE 
; 8259A IR1 - AVAILABLE 
; 8259A IR2 - AVA I LA BLE 
; 8259A IR3 
; 8259A IR4 - AVAILABLE 
; 8259A IR5 - AVAILABLE 
; 8259A IR6 - AVAILABLE 
; 8259A IR7 - AVAILABLE 

; THIS RAM SEGMENT IS BATTERY-POWERED. IT CONTAINS VITAL DATA 
; THAT MUST BE MAINTAINED DURING POWER OUTAGES. 
STACK_PTR OW ?' ; SP SAVE AREA 
STACK_SEG OW? ;SSSAVEAREA 
; SPACE FOR OTHER VARIABLES COULD BE DEFINED HERE. 
BATTERY ENDS 

DATA SEGMENT 
; RAM SEGMENT THAT.lS NOT BACKED UP BY BATTERY 
N_PULSES DB 1DUP{O) ;#TlMERPULSES 

; ETC. 
DATA ENDS 

STACK SEGMENT 
; LOCATED IN BATTERY-POWERED RAM 

STACK_TOP 
STACK 

OW 100 DUP (?) 

LABEL WORD 
ENDS 

; THIS IS AN ARBITRARY STACKSIZE 

; LABEL THE INITIAL TOS 

INTERRUPT_HANDLERS SEGMENT 
; INTERRUPT PROCEDURES EXCEPT TYPE 40 (PLlM-86) 

ASSUME: CS:INTERRUPT _HANDLERS,DS:DA T A,SS:ST ACK, ES:BA TTERY 

POWER_FAIL PROC ; TYPE 2 INTERRUPT 
; POWER FAIL DETECT CIRCUIT ACTIVATES NMI LINE ON CPU IF POWER IS 

ABOUTTO BE LOST. THIS PROCEDURE SAVES THE PROCESSOR STATE IN 
RAM (ASSUMED TO BE POWERED BY AN AUXILIARY SOURCE) SOTHAT IT 
CAN BE RESTORED BY A WARM START ROUTINE IF POWER RETURNS 

Figure 2-88. Interrupt Procedures Example 
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; IP, CS, AND FLAGS ARE ALREADY ON THE STACK. 
SAVE THE OTHER REGISTERS. 

PUSH AX 
PUSH BX 
PUSH CX 
PUSH OX 
PUSH SI 
PUSH 01 
PUSH BP 
PUSH OS 
PUSH ES 

; CRITICAL MEMORY VARIABLES COULD ALSO BE SAVED ON THE STACK ATTHIS 
POINT. ALTERNATIVELY, THEY COULD BE DEFINED IN THE "BATTERY" 
SEGMENT, WHERE THEY WILL AUTOMATICALLY BE PROTECTED IF MAIN POWER 
IS LOST. 

; SAVE SP AND SS IN FIXED LOCATIONS THAT ARE KNOWN BY WARM START ROUTINE. 
MOV AX,BATTERY 
MOV ES,AX 
MOV ES:STACK_PTR,SP 
MOV ES:STACK~SEG,SS 

; STOP GRACEFULLY 
HLT 

ENDP 

TIMER_PULSE PROC ; TYPE 35 INTERRUPT 
; THIS PROCEDURE HANDLES THE 50MS INTERRUPTS GENERATED BY THE 8253. 

, 

IT COUNTS THE INTERRUPTS AND ACTIVATES THE TYPE 40 INTERRUPT 
PROCEDURE ONCE PER SECOND. 

; OS IS ASSUMED TO BE POINTING TOTHE DATA SEGMENT 
, 
; THE 8253 IS RUNNING FREE, AND AUTOMATICALLY LOWERS ITS INTERRUPT 

REQUEST. IF A DEVICE REQUIRED ACKNOWLEDGEMENT,THE CODE MIGHT GO HERE. 
, 
; NOW PERFORM PROCESSING THAT MUST NOT BE INTERRUPTED (EXCEPT FOR NMI). 

INC N_PULSES 
; ENABLE HIGHER-PRIORITY INTERRUPTS AND DO LESS CRITICAL PROCESSING 

STI 
CMP N_PULSES,200; 1 SECOND PASSED? 
JBE DONE ; NO, GO ON. 
MOV N_PULSES,O ; YES, RESET COUNT. 
INT 40 ; UPDATE CLOCK 

; SEND NON-SPECIFIC END-OF-INTERRUPT COMMAND TO 8259A, ENABLING EQUAL 
; OR LOWER PRIORITY INTERRUPTS. 
DONE: MOV AL,020H ; EOI COMMAND 

OUT OCOH,AL ; 8259A pORT . 
IRET 

TIMER_PULSE ENDP 

INTERRUPT_HANDLERS ENDS 

CODE SEGMENT 
; THIS SEGMENT WOULD NORMALLY RESIDE IN ROM. 

ASSUME CS:CODE,DS:DATA,SS:STACK,ES:NOTHING 

Figure 2-88_ Interrupt Procedures Example (Cont'd.) 
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INIT PROC NEAR 
; THIS PROCEDURE IS CALLED FOR BOTH WARM AND COLD STARTS TO INITIALIZE 

THE 8253 AND THE 8259A. THIS ROUTINE DOES NOT USE STACK, DATA, OR 
EXTRA SEGMENTS, AS THEY ARE NOT SET PREDICTABLY DURING A WARM START. 
INTERRUPTS ARE DISABLED BY VIRTUE OFTHE SYSTEM RESET. 

; INITIALIZE 8253 COUNTER 1 - OTHER COUNTERS NOT USED. 
; CLK INPUT TO COUNTER IS ASSUMED TO BE 1.23 MHZ. 

L050MS 
HI50MS 
CONTROL 
COUNT_1 
MODE2 

EQU 
EQU 
EQU 
EQU 
EQU 

OOOH 
OFOH 
OD6H 
OD2H 
01110100B 

; COUNT VALUE IS 
; 61440 DECIMAL. 
; CONTROL PORT ADDRESS 
; COUNTER 1 ADDRESS 
; MODE 2, BINARY 

MOV DX,CONTROL ; LOAD CONTROL BYTE 
MOV AL,MODE2 
OUT DX,AL 
MOV DX,COUNT_1 ; LOAD 50MS DOWNCOUNT 
MOV AL,L050MS 
OUT DX,AL 
MOV AL,HI50MS 
OUT DX,AL 
; COUNTER NOW RUNNING, INTERRUPTS STILL DISABLED. 

; INITIALIZE 8259A TO: SINGLE INTERRUPT CONTROLLER, EDGE-TRIGGERED, 
; INTERRUPT TYPES 32-40 (DECIMAL) TO BE SENT TO CPU FOR INTERRUPT 
; REQUESTS 0-7 RESPECTIVELY, 8086 MODE, NON-AUTOMATIC END-OF-INTERRU PT. 
; MASK OFF UNUSED INTERRUPT REQUEST LINES. 

ICW1 
ICW2 
ICW4 
OCW1 
PORT_A 
PORT_B 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

00010011B 
00100000B 
00000001B 
11110111B 
OCOH 
OC2H 

; EDGE-TRIGGERED, SINGLE 8259A, ICW4 REQUIRED. 
; TYPE 20H, 32 - 400 
; 8086 MODE, NORMAL EOI 
; MASK ALL BUT IR3 
; ICW1 WRITTEN HERE 
; OTHER ICW'S WRITTEN HERE 

MOV DX,PORT _A ; WRITE 1ST ICW 
MOV AL,ICW1 
OUT DX,AL 
MOV DX,PORT_B ; WRITE 2ND ICW 
MOV AL,ICW2 
OUT DX,AL 
MOV AL,ICW4 ; WRITE 4TH ICW 
OUT DX,AL 
MOV AL,OCW1 ; MASK UNl,ISED IR'S 
OUT DX,AL 

; INITIALIZATION COMPLETE, INTERRUPTS STILL DISABLED 
RET 

INIT ENDP 

USER_PGM: 
; "REAL" CODE WOULD GO HERE. THE EXAMPLE EXECUTES AN ENDLESS LOOP 

UNTIL AN INTERRUPT OCCURS. 
JMP USER_PGM 

; EXECUTION STARTS HERE WHEN CPU IS RESET. 
POWER_FAILSTATUS EQU OEOH 
ENABLE_RAM EQU OE2H 

; PORT ADDRESS 
; PORT ADDRESS 

Figure 2-88. Interrupt Procedures Example (Cont'd.) 
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; ENABLE BATTERY-POWERED RAM SEGMENT 
START: MOV AL,001H 

OUT ENABLE_RAM,AL 

; DETERMINE WARM OR COLD START 
IN AL,POWER_FAIL-,-STATUS 
RCR AL,1 ; ISOLATE LOW BIT 
JC WARM_START 

COLD_START: 
; INITIALIZE SEGMENT REGISTERS AND STACK POINTER. 

ASSUME CS:CODE,DS:DATA,SS:STACK,ES:NOTHING 
; RESET TAKES CARE OF CS AND IP. 
MOV AX,DATA 
MOV DS,AX 
MOV AX,STACK 
MOV SS,AX 
MOV SP ,OFFSET STACK_TOP 

; INITIALIZE 8253 AND 8259A. 
CALL INIT 

; ENABLE INTERRUPTS 
STI 

; START MAIN PROCESSING 
JMP 

WARM_START: 
; INITIALIZE 8253 AND 8259A. 

CALL INIT 

; RESTORE SYSTEM TO STATE AT THE TIME POWER FAILED 

CODE 

Mnemonics © Intel, 1978 

; MAKE BATTERY SEGMENT ADDRESSABLE 
MOV AX,BATTERY 
MOV DX,AX 

; VARIABLES SAVED IN THE "BATTERY" SEGMENT WOULD BE MOVED 
BACK TO UNPROTECTED RAM NOW. SEGMENT REGISTERS AND 
"ASSUME" DIRECTIVES WOULD HAVE TO BE WRITTEN TO GAIN 
ADDRESSABILITY. 

; RESTORE THE OLD STACK 
MOV SS,DS:STACK_SEG 
MOV SP,DS:STACK_PTR 

; RESTORE THE OTHER REGISTERS 
POP ES 
POP DS 
POP BP 
POP DI 
POP SI 
POP DX 
POP CX 
POP BX 
POP AX 

; RESUME THE ROUTINE THAT WAS EXECUTING WHEN NMI WAS ACTIVATED. 
I.E., POP CS,IP, & FLAGS; EFFECTIVELY "RETURNING" FROM THE 
NMI PROCEDURE. 

IRET 
ENDS 

; TERMINATE ASSEMBLY AND MARK BEGINNING OF THE PROGRAM. 
END START 

Figure 2-88. Interrupt Procedures Example (Cont'd.) 
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TYPE$40: DO; 
DECLARE (HOUR, MIN, SEC) BYTE PUBLIC; 
UPDATE$TOD: PROCEDURE INTERRUPT 40; 

"THE PROCESSOR ACTIVATES THIS PROCEDURE 
'TO HANDLE THE SOFTWARE INTERRUPT 
'GENERATED EVERY SECOND BY THE TYPE 35 
'EXTERNAL INTERRUPT PROCEDURE. THIS 
'PROCEDURE UPDATES A REAL-TIME CLOCK. 
'IT DOES NOT PRETEND TO BE "REALISTIC" 
'AS THERE IS NO WAYTO SETTHE CLOCK." 

SEC=SEC + 1; 
IF SEC = 60 THEN DO; 

SEC=O; 
MIN=MIN + 1; 
IF MIN = 60 THEN DO; 

MIN =0; 
HOUR=HOUR + 1; 
IF HOUR = 24 THEN DO; 

HOUR = 0; 
END; 

END; 
END; 

END UPDATE$TOD; 
END; 

Figure 2-88. Interrupt Procedures Example (Cont'd_) 

String Operations 

Figure 2-89 illustrates typical use of string instruc­
tions and repeat prefixes. The XLAT instruction 
also is demonstrated. The first example simply 
moves 80 words of a string using MOVS. Then 
two byte strings are compared to find the 
alphabetically lower string, as might be done in a 
sort. Next a string is scanned from right to left 

(the index register is auto-decremented) to find 
the last period (". ") in the string. Finally a byte 
string of EBCDIC characters is translated to 
ASCII. The translation is stopped at the end of 
the string or when a carriage return character is 
encountered, whichever occurs first. This is an 
example of using the string primitives in combina­
tion with other instructions to build up more com­
plex string processing operations. 

ALPHA SEGMENT 
; THIS IS THE DATA THE STRING INSTRUCTIONS WILL USE 
OUTPUT DW 100 DUP (?) 
INPUT DW 100 DUP (?) 
NAME_1 DB 'JONES, JON A' 
NAME_2 DB 'JONES, JOHN' 
SENTENCE DB 80 DUP (?) 
EBCDIC_CHARS DB 80 DUP (?) 
ASCILCHARS DB 80 DUP (?) 
CONV_TAB DB64 DUP(OH) ; EBCDIC TO ASCII 

Figure 2-89. String Examples 
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; ASCII NULLS ARE SUBSTITUTED FOR "UNPRINTABLE" CHARS 
DB 1 20H 
DB 9 DUP (OH) 
DB7 'Q:','.','<~,'(','+',OH,'&'· 
DB 9 DUP (OH) 
DBB 'I', '$', '*', I)', ';',' ','-", 'I' 
DB 8 DUP (OH) 
DB6 ",',','%','~','>','?' 

DB 9 DUP (OH) ~ 
D817 ",':','#','@','''','=','''', 

DB7 
DB9 
DB7 
DB9 
DB22 
DB 10 
DB6 
DB 10 
DB6 
DB 10 
DB6 
DB 10 
DB6 

OH, 'a', 'b', Ie', 'd', 'e', 'f', 'g', 'h', Ii' 
DUP (OH) 
'j', 'k', 'I', 'm', In', '0', 'P',.'q', 'r' 
DUP (OH) 
'~', '5', It', 'u', 'v', 'w', 'x', 'y', IZ' 

DUP (OH) 
, ','A', '8', 'e', '0', 'E', 'F', 'G', 'l-i' , 'I' 
DUP (OH) 
, " 'J', 'K', 'L', 'M', 'N', '0', 'P', '0', 'R' 
DUP (OH) 
, ',OH, IS', 'T', lU', 'V', 'W', 'X', IV"~, 'Z' 
DUP (OH) 
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9' 
DUP (OH) 

ALPHA ENDS 

STACK SEGMENT 
DW 100 DUP (?) ; THIS IS AN ARBITRARY STACK SIZE 

; FOR ILLUSTRATION ONLY. 
STACK_BASE LABEL WORD ; INITIAL TOS 
STACK ENDS 

CODE 
BEGIN: 

& 

SEGMENT 
; SET UP SEGMENT REGISTERS. NOTICE THAT 
; ES & DS POINTTO THE SAME SEGMENT, MEANING 
; THAT THE CURRENT EXTRA & DATA 
; SEGMENTS FULLY OVERLAP. THIS ALLOWS 
; ANY STRJNG IN "ALPHA" TO BE USED 
; AS A SOURCE OR A DESTINATION. 
ASSUME CS: CODE, SS: STACK, 

DS:ALPHA,ES:ALPHA 
MOV AX, STACK 
MOV SS, AX 
MOV SP, OFFSET STACK_BASE; INITIAL TOS 
MOV AX, ALPHA 
MOV DS,AX 
MOV ES,AX 

; MOVE THE FIRST 80 WORDS OF "INPUT" TO 
THE LAST 80 WORDS OF "OUTPUT". 

LEA SI, INPUT ; INITIALIZE 
LEA DI, OUTPUT 4-20 ; INDEX REGISTERS 

Figure 2-89. String Examples (Cont'd.) 
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MOV 
CLD 

CX,80 ; REPETITION COUNT 
; AUTO-INCREMENT 

REP MOVS OUTPUT, INPUT 

; FIND THE ALPHABETICALLY LOWER OF 2 NAMES. 
MOV SI, OFFSET NAME_1 
MOV 01, OFFSET NAME_2 
MOV CX, SIZE NAME_2 
CLD 

; ALTERNATIVE 
; TO LEA 
; CHAR. COUNT 

REPE CMPS NAME_2, NAME_1 
NAME_2_LOW 

; AUTO-INCREMENT 
"WHILE EQUAL" 

JB 
NAME_1_LOW: 
NAME_2_LOW: 

; NOT IN THIS EXAMPLE 
; CONTROL COMES HERE IN THIS EXAMPLE. 
; 01 POINTS TO BYTE ('H') THAT 
; COMPARED UNEQUAL. 

; FIND THE LAST PERIOD (' .') IN A TEXT STRING. 
MOV 01, OFFSET SENTENCE + 

& LENGTH SENTENCE ; START AT END 
MOV CX, SIZE SENTENCE 
STD ; AUTO-DECREMENT 
MOV AL, '.' ; SEARCH ARGUMENT 

REPNE SCAS SENTENCE ; "WHILE NOT =" 
JCXZ NO_PERIOD ; IF CX=O, NO PERIOD FOUND 

PERIOD: ; IF CONTROL COMES HERE THEN 
; 01 POINTS TO LAST PERIOD IN SENTENCE. 

NO_PERIOD: ; ETC. 

; TRANSLATE A STRING OF EBCDIC CHARACTERS 
TO ASCII, STOPPING IF A CARRIAGE RETURN 
(ODH ASCII) IS ENCOUNTERED. 

MOV BX, OFFSET CONV __ TAB ; POINTTO TRANSLATE TABLE 
MOV SI, OFFSET EBCDIC __ CHARS ; INITIALIZE 
MOV 01, OFFSET ASCII_CHARS INDEX REGISTERS 
MOV CX, SIZE ASCII_CHARS ; AND COUNTER 
CLD ; AUTO-INCREMENT 

NEXT: LODS EBCDIC_CHARS ; NEXT EBCDIC CHAR IN AL 

CODE 

XLAT CONV_TAB ; TRANSLATE TO ASCII 
STOS ASCII_CHARS ; STORE FROM AL 
TEST AL,ODH ; IS IT CARRIAGE RETURN? 
LOOPNE NEXT ; NO, CONTINUE WHILE CX NOT 0 
JE CR_FOUND ; YES, JUMP 
; CONTROL COMES HERE IF ALL CHARACTERS 

HAVE BEEN TRANSLATED BUT NO 
; CARRIAGE RETURN IS PRESENT. 
; ETC. 

; 01-1 POINTS TO THE CARRIAGE RETURN 
IN ASCII_CHARS. 

ENDS 
END 

Figure 2-89. String Examples (Cont'd.) 
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CHAPTER 3 
THE 8089 INPUT/OUTPUT PROCESSOR 

This chapter describes the 8089 Input/Output 
Processor (lOP). Its organization parallels 
Chapter 2; that is, sections generally proceed 
from hardware to software topics as follows: . 

1. Processor Overview 

2. Processor Architecture 

3. Memory 

4. Input/Output 

5. Multiprocessing Features 

6. Processor Control and Monitoring 

7. Instruction Set 

8. Addressing Modes 

9. Programming Facilities 

10. Programming Guidelines and Examples 

As in Chapter 2, the discussion is confined to 
covering the hardware in functional terms; tim­
ing, electrical characteristics and other physical 
interfacing data are provided in Chapter 4. 

3.1 Processor Overview 

The 8089 Input/Output Processor is a high­
performance, general-purpose I/O system 
implemented on a single chip. Within the 8089 are 
two independent I/O channels, each of which 
combines attributes of a CPU with those of a very 
flexible DMA (direct memory access) controller. 
For example, channels can execute programs like 
CPUs; the lOP instruction set has about 50 dif­
ferent types of instructions specifically designed 
for efficient input/output processing. Each chan­
nel also can perform high-speed DMA transfers; a 
variety of optional operations allow the data to be 
manipulated (e.g., translated or searched) as it is 
transferred. The 8089 is contained in a 40-pin 
dual in-line package (figure 3-1) and operates 
from a single + 5V power source. An integral 
member of the 8086 family, the lOP is directly 
compatible with both the 8086· and 8088 when 
these processors are configured in maximum 
mode. The lOP also may be used in any system 
that incorporates Intel's Multibus™ shared bus 
architecture, or a superset of the Multibus™ 
design. 

3-1 
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A3ID3 52 
A2JD2 51 
Al/Dl so 
AO/DO RQ/GT 

SINTR·l SEL 

SINTR·2 CA 

ClK READY 

V,, RESET 

Figure 3-1.8089 Input/Output Processor 
Pin Diagram 

Evolution 

Figure 3-2 depicts the general trend in CPU and 
I/O device relationships in the first three genera­
tions of microprocessors. First generation CPUs 
were forced to deal directly with substantial 
numbers of TTL components, often performing 
transfers at the bit level. Only a very limited 
number of relatively slow devices could be 
supported. 

Single-chip interface controllers were introduced 
in the second generation. These devices removed 
the lowest level of device control from the CPU 
and let the CPU transfer whole bytes at once. 
With the introduction of DMA controllers, high­
speed devices could be added to a system, and 
whole blocks of data could be transferred without 
CPU intervention. Compared to the previous 
generation, I/O device and DMA controllers 
allowed microprocessors to be applied to prob­
lems that required moderate levels of I/O, both in 
terms of the numbers of devices that could be sup­
ported and the transfer speeds of those devices. 
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.. . 

The controllers themselves;' however, still 
required a considerable amount of attention from 
the CPU, and in many cases the CPU had to 
respond to an interrupt with every byte read or 
written. The CPU also had to stop while DMA 
transfers were performed. 

The 8089 introduces the third generation of 
inputloutputprocessing. It continues the trend of 
simplifying the CPU's "view",.ofIlO devices by 
removing another level of control from the CPU. 
The CPU performs an I/O op~ration by building 
a message in memory that describes the function 
to be performed; the lOP reads the message, car­
ries out the operation and notifies'the CPU when 
it has finished. AllI/O devices appear to the CPU 
as transmitting and receiving whole blocks of 
data; the lOP can make both byte- and word-level 
transfers invisible to the CPU; The lOP assumes 
all device controller overhead, performs both pro­
grammed and DMA transfers; and can recover 
from "soft" I/O errors withoutC,PU interven­
tion; all of these activities may be performed 
while the CPU is attending to other tasks. 

HOLC/SOLC 
PROTOCOL 

CONTROLLER 

Principles of Operation 

Since the 8089 is a new concept in microprocessor 
components, this section surveys the basic opera­
tion of the lOP as background to the. detailed 
descriptions provide9,. in the rest of the chapter. 
This summary deliberately omits some operating 
details in order to provide an integrated over:view 
of basic concepts. . , 

CPU/IOP Communications 

A CPU communicates with-an lOP in two distinct 
modes: initialization and command. The 
initialization sequence is typically performed 
when the system is powered-up or reset. The CPU 
initializes the lOP by preparing a series of linked 
message bloc'ks in memory. Ona signal from the 
CPU, the lOP reads these blocks and determines 
from them how the data buses are configured and 
how access to the buses is to be controlled. 

(FUTURE CONTROLLER) 

... ,r~.;;;~, 
I ? }--- -I I/O I 

'" A.... ,/ L ~E~C': .J 
'" '" FLOPPY DISK 

CONTROLLER 

Figure 3-2. lOP Evolution 
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Following initialization, the CPU directs all com­
munications to either of the lOP's two channels; 
indeed, during normal operation the lOP appears 
to be two separate devices-channel 1 and chan­
nel2. All CPU-to-channel communications center 
on the channel control block (CB) illustrated in 
figure 3-3. The CB is located in the CPU's 
memory space, and its address is passed to the 
lOP during initialization. Half of the block is 
dedicated to each channel. The channel maintains 
the BUSY flag that indicates whether it is in the 
midst of an operation or is available for a new 
command. The CPU sets the CCW (channel com­
mand word) to indicate what kind of operation 
the lOP is. to perform. Six different commands 
allow the CPU to start and stop programs, 
remove interrupt requests, etc. 

If the CPU is dispatching a channel to run a pro­
gram, it directs the channel to a parameter block 
(PB) and a task block (TB); these are also shown 
in figure 3-3. The parameter block is analogous to 
a parameter list passed by a program to a 
subroutine; it contains variable data that the 
channel program is to use in carrying out its 
assignment. The parameter block also may con-

tain space for variables (results) that the channel 
is to return to the CPU. Except for the first two 
words, the format and size of a parameter block 
are completely open; the PB may be set up to 
exchange any kind of information between the 
CPU and the channel program. 

A task block is a channel program-a sequence of 
8089 instructions that will perform an operation. 
A typical channel program might use parameter 
block data to set up the lOP and a device con­
troller for a transfer, perform the transfer, return 
the results, and then halt. However, there are no 
restrictions on what a channel program can do; its 
function may be simple or elaborate to suit the 
needs of the application. 

Before the CPU starts a channel program, it links 
the program (TB) to the parameter block and the 
parameter block to the CB as shown in figure 3-3. 
The links are standard 8086/8088 doubleword 
pointer variables; the lower-addressed word con­
tains an offset, and the higher-addressed word 
contains a segment base value. A system may 
have many different parameter and task blocks; 
however, only one of each is ever linked to a 
channel at any given time. 

CHANNEL CONTROL BLOCK (CB) 

(RESERVED) 1 

r--

I 
I 
I 
I 
I 
I 
I 

~ "-P~~~~~1~rBBA~~C&K 6~~~Jf)R- ~ ~ }CHANNEL2 

~ }CHANNELl 

BUSY I ccw 
(RESERVED) 

-{ -p(~~~r:,i1ETR B~LS~C&K ci~~~~i)R-
BUSY ccw 

15 87 I 
I 

L _________________________ , 

CHANNEl2 PARAMETER BLOCK (PS) CHANNEL 1 PARAMETER BLOCK (PS) 

r CHANNEL PROGRAM PARAMETERS 1 
(APPLICATION.DEFINED) 

{
TASK BLOCK POINTER i ",:,:-_(S_EG_M_EN_T_BA_S_E &_O_F_FS_ET_l ~ 0 -' 

CHANNEL 2 TASK BLOCK (TB) 
(CHANNEL PROGRAM) 

I 
I 
I 
I 
I 

I I 
I I 

CHANNEL 1 TASK BLOCK (TB) 
(CHANNEL PROGRAM) 

I INSTR68~~IONS I INSTR88g~IONS 
I DEFINED) DEFINED) I r (APPLICATION- r I J (APPLICATION- J 
~-L---------I L_L...--_ 

Figure 3-3. Command Communication Blocks 
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After the CPU has filled in the CCW and has 
linked the CB to a parameter block and a task 
block, if appropriate, it issues a channel attention 
(CA). This is done by activating the lOP's CA 
(channel attention) and SEL (channel select) pins. 
The state of SEL at the falling edge of CA directs 
the channel attention to channell or channel 2. If 
the lOP is located in the CPU's 110 space, it 
appears to the CPU as two consecutive 110 ports 
(one for each channel), and an OUT instruction 
to the port functions as a CA. If the lOP is 
memory-mapped, the channels appear as two 
consecutive memory locations, and any memory 
reference instruction (e.g., MOV) to these loca­
tions causes a channel attention. 

An lOP channel attention is functionally similar 
to a CPU interrupt. When the channel recognizes 
the CA, it stops what it is doing (it will typically 
be idle) and examines the command in the CCW. 
If it is to start a program, the channel loads the 
addresses of the parameter and task blocks into 
internal registers, sets its BUSY flag and starts 
executing the channel program. After it has issued 
the CA, the CPU is free to perform other process­
ing; the channel can perform its function in 
parallel, subject to limitations imposed by bus 
configurations (discussed shortly). 

When the channel has completed its program, it 
notifies the CPU by clearing its BUSY flag in the 
CB. Optionally, it may issue an interrupt request 
to the CPU. 

The CPU/lOP communication structure is sum­
marized in figure 3-4. Most communication takes 
place via "message areas" shared in common 
memory. The only direct hardware communica­
tions between the devices are channel attentions 
and interrupt requests. 

Channels 

Each of the two lOP channels operates 
independently, and each has its own. register set, 
channel attention, interrupt request and DMA 
control signals. At a given point in time, a chan~ 
nel may be idle, executing a program, performing 
a DMA transfer, or responding to a channel 
attention. Although only one channel actually 
runs at a time, thechannels can be active .concur­
rently, alternating their operations (e.g., .channel 
1 may execute instructions in the periods between 
successive DMA transfer cycles run by channel 2). 
A built-in priority system allows high-priority 
activities on one channel to preempt less critica] 
operations on the other channel. The CPU is able 
to further adjust priorities to handle special cases. 
The CPU starts the channel and can halt it, sus­
pend it, or cause it to resume a s·uspended< opera­
tion by placing different values in the CCW. 

Channel Programs (Task Blocks) 

Channel programs are written in ASM-89, the 
8089 assembly language. About 50 basic instruc­
tions are available. These instructions operate on 
bit, byte, word and doubleword (pointer) variable 
types; a 20-bit physical address variable type (not 
used by the 8086/8088) can also be manipulated. 
Data may be taken from registers, immediate con­
stants and memory. Four memory addressing 
modes allow flexible access to both memory 
variables and I/O devices located anywhere in 
either the CPU's megabyte memory space or in 
the 8089's 64k 110 space. 

The lOP instruction set contains general purpose 
instructions similar to those found in CPUs as 
well as instructions specifically tailored for 110 

CHANNEL ATTENTION 

MESSAGES 
CPU IN lOP 

MEMORY 

INTERRUPT 

Figure 3-4. CPU/lOP Communication 
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operations. Data transfer, simple arithmetic, 
logical and address manipulation operations are 
available. Unconditional jump and call instruc­
tions also are provided so that channel programs 
can link to each other. An individual bit may be 
set or cleared with a single instruction. Condi­
tional jumps can test a bit and jump if it is set (or 
cleared), or can test a value and jump if it is zero 
(or non-zero). Other instructions initiate DMA 
transfers, perform a locked test-and-set 
semaphore operation, and issue an interrupt 
request to the CPU. 

DMA Transfers 

The 8089 XFER (transfer) instruction prepares 
the channel for a DMA transfer. It executes one 
additional instruction, then suspends program 
execution and enters the DMA transfer mode. 
The transfer is governed by channel registers 
setup by the program prior to executing the 
XFER instruction. 

Data is transferred from a source to a destination. 
The source and destination may be any locations 
in the CPU's memory space or in the lOP's I/O 
space; the lOP makes no distinction between 
memory components and I/O devices. Thus 
transfers may be made from I/O device to 
memory, memory to I/O device, memory to 
memory and I/O device to I/O device. The lOP 
automatically matches 8- and 16-bit components 
to each other. 

Individual transfer cycles (i.e., the movement of a 
byte or a word) may be synchronized by a signal 
(DMA request) from the source or from the 
destination. In the synchronized mode, the chan­
nel waits for the synchronizing signal before start­
ing the next transfer cycle. The transfer also may 
be unsynchronized, in which case the channel 
begins the next transfer cycle immediately upon 
completion of the previous cycle. 

A transfer cycle is performed in two steps: fetch­
ing a byte or word from the source into the lOP 
and then storing it from the lOP into the destina­
tion. The lOP automatically optimizes the 
transfer to make best use of the available data bus 
widths. For example, if data is being transferred 
from an 8-bit device to memory that resides on a 
16-bit bus (e.g., 8086 memory), the lOP will nor­
mally run two one-byte fetch cycles and then store 
the full word in a single cycle. 
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Between the fetch and store cycles, the lOP can 
operate on the data. A byte may be translated to 
another code (e.g., EBCDIC to ASCII), or com­
pared to a search value, or both, if desired. 

A transfer can be terminated by several 
programmer-specified conditions. The channel 
can stop the transfer when a specified number (up 
to 64k) of bytes has been transferred. An external 
device may stop a transfer by signaling on the 
channel's external terminate pin. The channel can 
stop the transfer when a byte (possibly translated) 
compares equal, or unequal, to a search value. 
Single-cycle termination, which stops uncondi­
tionally after one byte or word has been stored, is 
also available. 

When the transfer terminates, the channel 
automatically resumes program execution. The 
channel program can determine the cause of the 
termination in situations where multiple termina­
tions are possible (e.g., terminating when 80 bytes 
are transferred or a carriage return character is 
encountered, whichever occurs first). As an exam­
ple of post-transfer processing, the channel pro­
gram could read a result register from the I/O 
device controller to determine if the transfer was 
performed successfully. If not (e.g., a CRC error 
was detected by the controller), the channel pro­
gram could retry the operation without CPU 
intervention. 

A channel program typically ends by posting the 
result of the operation to a field supplied in the 
parameter block, optionally interrupting the 
CPU, and then halting. When the channel halts, 
its BUSY flag in the channel control block is 
cleared to indicate its availability for another 
operation. As an alternative to being interrupted 
by the channel, the CPU can poll this flag to 
determine when the operation has been 
completed. 

Bus Configurations 

As shown in figure 3-5, the lOP can access 
memory or ports (I/O devices) located in a 
I-megabyte system space and memory or ports 
located in a 64-kilobyte I/O space. Although the 
lOP only has one physical data bus, it is useful to 
think of the lOP as accessing the system space via 
a system data bus and the I/O space over an I/O 
data bus. The distinction between the "two" 
buses is based on the type-of-cycle signals output 
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by the 8288 Bus Controller. Components in the 
system space respond to the memory read and 
memory write signals, whether they are memory 
or I/O devices. Components in the I/O space 
respond to the I/O read and I/O write signals. 
Thus I/O devices located in the system space are 
memory-mapped and memory in the I/O space is 
I/O-mapped. The two basic configuration op­
tions differ in the degree to which the lOP shares 
these buses with the CPU. Both configurations re­
quire an 8086/8088 CPU to be strapped in max­
imummode. 

In the local configuration, shown in figure 3-6, 
the lOP (or lOPs if two are used) shares both 
buses with the CPU. The system bus and the I/O 
bus are the same width (8 bits if the CPU is an 

MEMORY 

SYSTEM SPACE (1 MBYTE) 

SYSTEM 
DATA 
BUS 

lOP 

8088 or 16 bits if the CPU is an 8086). The lOP 
system space corresponds to the CPU memory 
space, and the lOP I/O space corresponds to the 
CPU I/O space. Channel programs are located in 
the system space; I/O devices may be located in 
either space. The lOP requests use of the bus for 
channel program instruction fetches as well as for 
DMA and programmed transfers. In the local 
configuration, either the lOP or the CPU may use 
the buses, but not both simultaneously. The 
advantage of the local configuration is that 
intelligent DMA may be added to a system with 
no additional components beyond the lOP. The 
disadvantage is that parallel operation of the pro­
cessors is limited to cases in which the CPU has 
instruction in its queue that can be executed 
without using the bus. 

MEMORY 

1/0 SPACE (64 KBYTES) 

1/0 
DATA 
BUS 

Figure 3-5. lOP Data Buses 
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8089 lOP 

.... -

EJ 
. SYSTEM SPACE 

Figure 3-6. Local Configuration 

In the remote configuration (figure 3-7), the lOP 
(or lOPs) shares a common system bus with the 
CPU. Access to this bus is controlled by 8289 Bus 
Arbiters. The lOP's I/O bus, however, is 
physically separated from the CPU in the remote 
configuration. Two lOPs can share the local I/O 
bus. Any number of remote lOPs may be con­
tained in a system, configured in remote clusters 
of one or two. The local I/O bus need not be the 
same physical width as the shared system bus, 
allowing an lOP, for example, to interface 8-bit 
peripherals to an 8086. hi the remote configura­
tion, the lOP can access local I/O devices and 
memory without using the shared system bus, 
thereby reducing bus contention with the CPU. 
Contention can further be reduced by locating the 
lOP's channel programs in the local I/O space. 
The lOP can then also fetch instructions without 
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accessing the system bus; Parameter, channel 
control and other CPUIIOP communication 
blocks must be located in system memory, 
however, so that both processors can access them. 
The remote configuration thus increases the 
degree to which an lOP and a CPU can operate in 
parallel and thereby increases a system's 
throughput potential. The price paid for this is 
that additional hardware must be added to 
arbitrate use of the shared bus, and to separate 
the shared and local buses (see Chapter'4 for 
details). . 

It is also possible to configure an lOP remote to 
one CPU, and local to another CPU (see figure 
3-8). The local CPU could be used to perform 
heavy computational routines for the lOP. 
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A Sample Transaction 

Figure 3-9 shows how a CPU and an lOP might 
work together to read a record (sector) from a 
floppy disk. This example is not illustrative of the 
lOP's full capabilities, but it does review its basic 
operation and its interaction with a CPU. 

The CPU must first obtain exclusive use of a 
channel. This can be done by performing a "test 
and set lock" operation on the selected channel's 
BUSY flag. Assuming the CPU wants to use 
channell, this' could be accomplished in 
PLlM-86 by coding similar to the following: 

DO WHILE LOCKSET (@CH1.BUSY,OFFH); 
END; 

In ASM-86 a loop containing the XCHG instruc­
tion prefixed by. LOCK' would accomplish .th.e 
same thing, namely testing the BUSY flag untIl It 
is clear (OH), and immediately setting it to FFH 
(busy) to prevent another task or processor from 
obtaining use of the channel. 

Having obtained the channel, the CPU fills in a 
parameter block (see figure 3-10). In this case, the 
CPU passes the following parameters to the chan­
nel: the address of the floppy disk controller, the 
address of the buffer where the data is to be 
placed, and the drive, track and sector to be read. 
It also supplies space for the lOP to return the 
result of the operation. Note that this is quite a 
"low-level" parameter block in that it implies 
that the CPU has detailed knowledge of the I/O 
system. For a "real" system, a higher-level 
parameter block would isolate the CPU fromllO 
device characteristics. Such a block might contain 
more general parameters such as file name and 
record key. 

After setting up the parameter block, the CPU 
writes a "start channel program" command in 
channell's CCW. Then the CPU places the 
address of the desired channel program in the 
parameter block and writes the parameter block 
address in the CB. Notice that in this simple 
example, the CPU "knows" the address of the 
channel program for reading from the disk, and 
presumably also "knows" the address of another 
program for writing, etc. A more general solution 
would be to place a function· code (read, write, 
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delete, etc.) in the parameter block and let a single 
channel program execute different routines 
depending on which function is requested. 

After the communication blocks have been setup, 
the CPU dispatches the channel by issuing a chan­
nel attention, typically by an OUT instruction for 
an I/O-mapped 8089,or.a MOVor other memory 
reference instructionJo[ ainemory-mapped 8089. 

The channel begins executing the channel pro­
gram (task block) whose address has been placed 
in the para,meter block by the CPU. In this case 
the program initializes the 8271 Floppy Disk Con­
troller by sending it a "read .data" command 
followed by a parameterihdicating the track to be 
read. The program initializes the channel registers 
that define and control the DMA transfer. 

Having prepared the 8271 and the channel itself, 
the channel program executes a XFER instruction 
and sends a final parameter (the sector to be read) 
to the 8271. (The 8271 enters DMA transfer mode 
immediately upon receiving the last of a series of 
parameters; sending the last parameter after the 
XFER instruction gives the channel time to setup 
for the transfer.) The DMA transfer begins when 
the 8271 issues a DMA request to the channel. 
The transfer continues until the 8271 issues an 
interrupt reqllest, indicating that the data has 
been transferred or that an error has occurred. 
The 8271 's interrupt requesL!ine is tied to the 
10e's EXTl (external terminate on channell) pin 
so that the channel interprets an interrupt request 
as an external terminate condition.' Upon ter­
mination of the trahsfer, the channel resumes 
executing instructions and reads the 8271 result 
register to determine if the data was read suc­
cessfully. If a soft (correctable) error is indicated, 
the lOP retriesthe'tra.nsfer.If a hard (urtcorrect­
able) error is detected, or if the transfer has been 
successful, the lOP posts the content of the result 
register to the parameter block result field, thus 
passing the result back to the CPU. The channel 
then interrupts the CPU (to inform the CPU that 
the request has been processed) and halts. 

When the CPU recognizes the interrupt, it 
inspects the result field in the parameter block to 
see if the content of the buffer is valid. If so, it 
uses the data; otherwise it typically executes an 
error routine. 
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Figure 3-10. Sample Parameter Block 

Applications 

Combining the raw speed and responsiveness. of a 
traditional DMA controller, an I/O-oriented 
instruction set, and a flexible bus organization, 
the 8089 lOP is a very versatile lIO system. 
Applications with demanding I/O requirements, 
previously beyond the abilities of microcomputer 
systems, can be undertaken with theJOP. These 
kinds of lIO-intensive applications include: 

• systems that employ high-bandwidth, low­
latency devices such as hard disks and 
graphics terminals; 

• systems with many devices requiring 
asynchronous service; and 

• systems with high-overhead peripherais such 
as intelligent CRTs and graphics terminals. 

In addition, virtually every application that per­
forms a moderate amount of lIO can benefit 
from the design philosophy embodied in the lOP: 
system functions should be distributed among 
special-purpose processors. An lOP channel pro­
gram is likely to be both faster and smaller than 
an equivalent program implemented with a CPU; 
Programming also is more straightforward with 
the lOP's specialized instruction set. 

Removing lIO from the CPU and assigning it to 
one or more lOPs simplifies and structures a 
system's design. The main interface to the lIO 
system can be limited to the parameter blocks. 
Once these are defined, the lIO system can be 
designed and implemented in parallel with the rest 
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of the system. lIO specialists can work on the lIO 
system without detailed knowledge of the applica­
tion; conversely, the operating system and 
application teams do not need to be expert in the 
operation of lIO devices. Standard high-level lIO 
systems can be used in multiple application 
systems. Because the application and I/O systems 
are almost· independent, application system 
changes canbeiritroduced without affecting the 
lIO system. New peripherals can similarly be 
incorporated into a system without impacting 
applications or operating system software. The 
lOP's simple CPU interface also is designed to be 
compatible with future Intel CPUs. 

Keeping in mind the true general-purpose nature 
of the lOP, some ofthe situations where it can be 
used to advantage are: 

• Bus matching - The lOP can transfer data 
between virtually any combination of 8- and 
16-bit memory and 1/.0 components. For 
example, it can interface a 16-bit peripheral 
to an 8cbit CPU bus, such as the 8088 bus. 
The lOP also provides a straightforward 
means of performing DMA between an 8-bit 
peripheral and 8086 memory that is split 
into odd- and even-addressed banks. The 
8089 can access both 8- and 16-bit 
peripherals connected to a 16-bit bus. 

• String processing - The 8089 can perform a 
memory move, translate, scan-for-match or 
scan-for-nonmatch operation much faster 
than the equivalent instructions in an 8086 or 
8088. Translate and scan operations can be 
setup so that the source and destination refer 
to the same addresses to permit the string to 
be operated on in place. 

• Spooling - Data from low-speed devices such 
as. terminals and paper tape readers can be 
read by the 8089 and placed in memory or on 
diSk until the transmission is complete. The 
lOP can then transfer the data at high speed 
when it is needed by an application program. 
Conversely, output data ultimately destined 
for a low-speed device such as a printer, can 
be temporarily· spooled to disk and then 
printed later. This permits batches of data to 
be gathered or distributed by low-priority 
programs that run in the background, essen­
tially using up "spare" CPU and lOP cycles. 
Application programs that use or produce 
the data can execute faster because they are 
not b01.lnd by the low-speed devices. 
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• Multitasking operating systems A 
multitasking operating system can dispatch 
110 tasks to channels with an absolute 
minimum of overhead. Because a remote 
channel can run in parallel with the CPU, the 
operating system's capacity for servicing 
application tasks can increase dramatically, 
as can its ability to handle more, and faster, 
110 devices. If both channels of an lOP are 
active concurrently, the lOP automatically 
gives preference to the higher-priority activ­
ity (e.g., DMA normally preempts channel 
program execution). The operating system 
can adjust the priority mechanism and also 
can halt or suspend a channel to take care of 
a critical asynchronous event. 

• Disk systems - The lOP can meet the speed 
and latency requirements of hard disks. It 
can be used to implement high-level, file­
oriented systems that appear to application 
programs as simple commands: OPEN, 
READ, WRITE, etc. The lOP can search 
and update disk directories and maintain free 
space maps. "Hierarchical memory" systems 
that automatically transfer data among 
memory, high-speed disks and low-speed 
disks, based on frequency of use, can be built 
around lOPs. Complex database searches 
(reading data directly or following pointer 
chains) can appear to programs as simple 
commands and can execute in parallel with 

. application programs if an lOP is configured 
remotely. 

• Display terminals - The 8089 is well suited to 
handling the DMA requirements of CRT 
controllers. The lOP's transfer bandwidth is 
high enough to support both alphanumeric 
and graphic displays. The 8089 can assume 
responsibility for refreshing the display from 
memory data; in the remote configuration, 
the refresh overhead can be removed from 
the system bus entirely. Linked-list display 
algorithms may be programmed to perform 
sophisticated modes of display. 

Each time it performs a refresh operation, 
the lOP can scan a keyboard for input and 
translate the key's row-and-column format 
into an ASCII or EBCDIC character. The 
8089 can buffer the characters, scanning the 
stream until an end-of-message character 
(e.g., carriage return) is detected, and then 
interrupt the CPU. 
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A single lOP can concurrently support an 
alphanumeric CRT and keyboard on one 
channel and a floppy disk on the other chan­
nel. This configuration makes use of approx­
imately 30 percent of the available bus band­
width. Performance can be increased within 
the available bus bandwidth by adding an 
8086 or 8088 CPU to a remote lOP con­
figuration. This configuration can provide 
scaling, rotation or other sophisticated 
display transformations. 

3.2 Processor Architecture 

The 8089 is internally divided into the functional 
units depicted schematically in figure 3-11. The 
units are connected by a 20-bit data path to obtain 
maximum internal transfer rates. 

Common Control Unit (CCU) 

All lOP operations (instructions, DMA transfer 
cycles, channel attention responses, etc.) are com­
posed of sequences of more basic processes called 
internal cycles. A bus cycle takes one internal 
cycle; the execution of an instruction may require 
several internal cycles. There are 23 different 
types of internal cycles each of which takes from 
two to eight clocks to execute, not including 
possible wait states and bus arbitration times . 

The common control unit (CCU) coordinates the 
activities of the lOP primarily by allocating inter­
nal cycles to the various processor units; i.e., it 
determines which unit will execute the next inter­
nal cycle. For example, when both channels are 
active, the CCU determines which channel has 
priority and lets that channel run; if the channels 
have equal priority, the CCU "interleaves" their 
execution (this is discussed more fully later in this 
section). The CCU also initializes the processor. 

Arithmetic/Logic Unit (ALU) 

The ALU can perform unsigned binary arithmetic 
on 8- and 16-bit binary numbers. Arithmetic 
results may be up to 20 bits in length. Available 
arithmetic instructions include addition, incre­
ment and decrement. Logical operations ("and," 
"or" and "not") may be performed on either 8-
or 16-bit quantities; 
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Figure 3-11. 8089 Block Diagram 

Assembly IDisassembly Registers 

All data entering the chip flows through these 
registers. When data is being transferred between 
different width buses, the 8089 uses the 
assembly/disassembly registers to effect the 
transfer in the fewest possible bus cycles. In a 
DMA transfer from an 8-bit peripheral to 16-bit 
memory, for example, the lOP runs two bus 
cycles, picking up eight bits in each cycle, 
assembles a 16-bit word, and then transfers the 
word to memory in a single bus cycle. (The first 
and last cycles of a transfer may be performed 
differently to accommodate odd-addressed 
words; the lOP automatically adjusts for this 
condition.) 

Instruction,Fetch Unit 

This unit controls instruction fetching for the 
executing channel (one channel actually runs at a 
time). If the bus over which the instructions are 
being fetched is eight bits wide, then the instruc­
tions are obtained one byte at a time, and each 
fetch requires one bus cycle. If the instructions 
are being fetched over a 16-bit bus, then the 
instruction fetch unit automatically employs a 1-
byte queue to reduce the number of bus cycles. 
Each channel has its own queue, and the activity 
of one channel does not affect the other's queue. 

3-14 

During sequential execution, instructions are 
fetched one word at a time from even addresses; 
each fetch requires one bus cycle. This process is 
shown graphically in figure 3-12. When the last 
byte of an instruction falls on an even address, the 
odd-addressed byte (the first byte of the following 
instruction) of the fetched word is saved in the 
queue. When the channel begins execution of the 
next instruction, it fetches the first byte from the 
queue rather than from memory. The queue, 
then, keeps the processor fetching words, rather 
than bytes, thereby reducing its use of the bus and 
increasing throughput. 

The, processor fetches bytes rather than words in 
two cases. If a program transfer instruction (e.g., 
JMP or CALL) directs the processor to an 
instruction located at an odd address, the first 
byte of the instruction is fetched by itself as 
shown ·in figure 3-13. This is because the program 
transfer invalidates the content of the queue by 
changing the serial flow of execution. 

The second case arises when an LPDI instruction 
is located at an odd address. In this situation, the 
six-byte LPDI instruction is fetched: byte, word, 
byte, byte, byte, and the queue is not used. The 
first byte of the following instruction is fetched in 
one bus cycle as if it had been the target of a pro­
gram transfer. Word fetching resumes with this 
instruction's second byte. 
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Bus Interface Unit (BIU) 

The BIU runs all bus cycles, transferring instruc­
tions and data between the lOP and external 
memory or peripherals. Every bus access is 
associated with a register tag bit that indicates to 
the BIU whether the system or I/O space is to be 
addressed. The BIU outputs the type of bus cycle 
(instruction fetch from I/O space, data store into 
system space, etc.) on status lines SO, Sf, and S2. 
An 8288 Bus Controller decodes these lines and 
provides signals that selectively enable one bus or 
the other (see Chapter 4 for details). 

The BIU further distinguishes between the 
physical and logical widths of the system and I/O 
buses. The physical widths of the buses are fixed 
and are communicated to the BIU during 
initialization. In the local configuration, both 
buses must be the same width, either 8 or 16 bits 
(matching the width of the host CPU bus). In the 
remote configuration, the lOP system bus must 
be the same physical width as the bus it shares 
with the CPU. The width of the lOP's I/O bus, 
which is local to the 8089, may be selected 
independently. If any 16-bit peripherals are 
located in the I/O space, then a 16-bit I/O bus 
must be used. If only 8-bit devices reside on the 
I/O bus, then either an 8- or a 16-bit I/O bus may 
be selected. A 16-bit I/O bus has the advantage of 
easy accommodation of future 16-bit devices and 
fewer instruction fetches if channel programs are 
placed in the I/O space. 

For a given DMA transfer, a channel program 
specifies the logical width of the system and the 
I/O buses; each channel specifies logical bus 
widths independently. The logical width of an 
8-bit physical bus can only be eight bits. A 16-bit 
physical bus, however, can be used as either an 8-
or 16-bit logical bus. This allows both 8- and 
16-bit devices to be accessed over a single 16-bit 
physical bus. Table 3-1 lists the permissible 
physical and logical bus widths for both locally 
and remotely configured lOPs. Logical bus width 
pertains to DMA transfers only. Instructions are 
fetched and operands are read and written in 
bytes or words depending on physical bus width. 

In addition to performing transfers, the BIU is 
responsible for local bus arbitration. In the local 
configuration, the BIU uses the RQ/GT 
(request/grant) line to obtain the bus from the 
CPU and to return it after a transfer has been per­
formed. In the remote configuration, the BIU 
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uses RQ/GT to coordinate use of the local I/O 
bus with another lOP or a local CPU, if present. 
System bus arbitration in the remote configura­
tion is performed by an 8289 Bus Arbiter that 
operates invisibly to the lOP. The BIU 
automatically asserts the LOCK (bus lock) signal 
during execution of a TSL (test and set lock) 
instruction and, if specified by the channel pro­
gram, can assert the LOCK signal for the dura­
tion of a DMA transfer. Section 3.5 contains a 
complete discussion of bus arbitration. 

Table 3-1. Physical/Logical Bus Combinations 

Configuration 
System Bus 1/0 Bus 

Physical:Logical Physical:Logical 

Local 
8:8 8:8 

16:8/16 16:8/16 

8:8 8:8 

Remote 
16:8/16 16:8/16 
16:8/16 8:8 
8:8 16,8/16 

Channels 

Although the 8089 is a single processor, under 
most circumstances it is useful to think of it as 
two independent channels. A channel may per­
form DMA transfers and may execute channel 
programs; it also may be idle. This section 
describes the hardware features that support these 
operations. 

1/0 Control 

Each channel contains its own I/O control section 
that governs the operation of the channel during 
DMA transfers. If the transfer is synchronized, 
the channel waits for a signal on its DRQ (DMA 
request) line before performing the next fetch­
store sequence in the transfer. If the transfer is to 
be terminated by an external signal, the channel 
monitors its EXT (external terminate) line and 
stops the transfer when this line goes active. 
Between the fetch and store cycles (when the data 
is in the lOP) the channel optionally counts, 
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translates, and scans the data, and may terminate 
the transfer based on the results of these opera­
tions. Each channel also has a SINTR (system 
interrupt) line that can be activated by software to 
issue an interrupt request to the CPU. 

Registers 

Figure 3-14 illustrates the channel register set, and 
table 3-2 summarizes the uses of each register. 
Each channel has an independent set of registers; 
they are not accessible to the other channel. Most 
of the registers play different roles during channel 
program execution than in DMA transfers. Chan­
nel programs must be careful to save these 
registers in memory prior to a DMA transfer if 
their values are needed following the transfer. 

General Purpose A (GA). A channel program 
may use GA for a general register or a base 
register. A general register can be an operand of 
most lOP instructions; a base register is used to 
address memory operands (see section 3.8). 
Before initiating a DMA transfer, the channel 
program points GA to either the source or 
destination address of the transfer. 

General Purpose B (GB). GB is functionally 
interchangeable with GA. If GA points to the 
source of a DMA transfer, then GB points to the 
destination, and vice versa. 

TAG 
BIT r, 

1-1 
J-i 
1-, 
L..J 

19 15 7 o 

GENERAL PURPOSE A 

GENERAL PURPOSE B 

GENERAL PURPOSE C 

TASK POINTER 

PARAMETER BLOCK POINTER 

INDEX 

BYTE COUNT 

MASK/COMPARE 

CHANNEL CONTROL 

Figure 3-14. Channel Register Set 

GA 

GB 

GC 

TP 

PP 

IX 

BC 

MC 

CC 

General Purpose C (GC). GC may be used as a 
general register or a base register during channel 
program execution. If data is to be translated dur­
ing a DMA transfer, then the channel program 
loads GC with the address of the first byte of a 
translation table before initiating the transfer. GC 
is not altered by a transfer operation. 

Task Pointer (TP). The CCU loads TP from the 
parameter block when it starts or resumes a chan­
nel program. During program execution, the 
channel automatically updates TP to point to the 

Table 3-2. Channel Register Summary 

Program 
System 

Register Size 
Access 

or 1/0 Use by Channel Programs Use in DMA Transfers 
Pointer 

GA 20 Update Either General, base Source/destination pointer 

GB 20 Update Either General, base Sourcejdestination pointer 

GC 20 Update Either General, base Translate table pointer 

TP 20 Update Either Procedure return, Adjusted to reflect cause of 
instruction pointer termination 

PP 20 Reference ;System Base N/A 

IX 16 Update N/A General, auto-increment N/A 

BC 16 Update N/A General Byte counter 

MC 16 Update N/A General, masked compare Masked compare 

CC 16 Update NIA Restricted use recommended Defines transfer options 

3-17 



8089 INPUT /OUTPUT PROCESSOR 

next instruction to be executed; i.e., TP is used as 
an instruction pointer or program counter. Pro­
gram transfer instructions (JMP, CALL, etc.) 
update TP to cause nonsequential execution. A 
procedure (subroutine) returns to the calling pro­
gram by loading TP with an address previously 
saved by the CALL instruction. The task pointer 
is fully· accessible to channel programs; it can be 
used as a general register or as a base register. 
Such use is not recommended, however, as it can 
make programs very difficult to understand. 

Parameter Block Pointer (PP). The CCU 
loads this register with the address of the 
parameter block before it starts a channel pro­
gram. The register cannot be altered by a channel 
program, but is very useful as a base register for 
accessing data in the parameter block. PP is not 
used during DMA transfers. 

Index (IX). IX may be used as a general register 
during channel program execution. It also may be 
used as an index register to address memory 
operands (the address of the operand is computed 
by adding the content of IX to the content of a 
base register). When specified as an index 
register, IX may be optionally auto-incremented 
as the last step in the instruction to provide a cone 
venient means of "stepping" through arrays or 
strings. IX is not used in DMA transfers. 

Byte Count (BC). BC may be used as a general 
register during channel program execution>. If 
DMA is to be terminated when a specific number 
of bytes has been transferred, BC should be 
loaded with the desired byte count before 
initiating the transfer. During DMA, BC is 
decremented for each byte transferred, whether 
byte count termination has been selected or not. 
If BC reaches zero, the transfer is stopped only if 
byte count termination has been specified. If byte 
count termination has not been selected, BC 
"wraps around" from OH to FFFFH and con­
tinues to be decremented. 

Mask/Compare (MC). A channel program may 
use MC for a general register. This register also 
may be used in either a channel program or in a 
DMA transfer to perform a masked compare of a 
byte value. To use MC in this way, the program 
loads a compare value in the low-order eight bits 
of the register and a mask value in the upper eight 
bits (see figure 3-15). A "1" in a mask bit selects 
the bit in the corresponding position in the com­
pare value; a "0" in a mask bit masks the cor-

3-18 

responding bit in the compare value. In figure 
3-15, a value compared with MC will be con­
sidered equal if its low~order five bits contain the 
value 00100; the upper three bits may contain any 
value since they are masked out of the 
comparison. 

15 8 7 

o 0 0 1 11 1 1 ! 1 0100100 

MASK COMPARE 
VALUE VALUE· 

~:!-~ ---' 
x x x 00 1 0 0 

MASKED 
COMPARE 

VALUE 

(X = IGNORE VALUE OF CORRESPONDING BIT) 

Figure 3-15. Mask/Compare Register 

Channel Control (CC). The content of the 
channel control register governs a DMA transfer 
(see figure 3-16). A channel program loads this 
register with appropriate values before beginning 
the transfer operation; section 3.4 covers the 
encoding of each field in detail. Bit 8 (the chain 
bit) of CC pertains to channel program execution 
rather than to a DMA transfer. When this bit is 
zero, the channel program runs at normal prior­
ity; when it is one, the priority of the program is 
raised to the same level as DMA (priorities are 
covered later in this section). Although a channel 
program may use CC as a general register, such 
use is not recommended because of the side 
effects on the chain bit and thus on the priority of 
the channel program. Channel programs should 
restrict their use of CC to loading control values 
in preparation for a DMA transfer, setting and 
clearing the chain bit, and storing the register. 

Program Status Word (PsW) 

Each channel maintains its own program status 
word (PSW) as shown in figure 3-17. Channel 
programs do not have access to the PSW. The 
PSW records the state of the the channel so that 
channel operation may be suspended and then 
resumed later. When the CPU issues a "suspend" 
command, the. channel saves the PSW, task 
pointer, and task pointer tag bit in the first four 
bytes of the channel's parameter block as shown 
in figure 3-18. Upon. receipt of a subsequent 
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15 7 0 

I F ITRI SYN I S I L I C ITSI TX I TBC I TMC I 
I I I I I I 

-,.- -r- TT L TERMINATE ON MASKED COMPARE 

TERMINATE ON BYTE COUNT 

TERMINATE ON EXTERNAL SIGNAL 

TERMINATE AFTER SINGLE TRANSFER 

CHAINED CHANNEL PROGRAM 
EXECUTION 
LOCK BUS DURING TRANSFER 

SOURCE/DESTINATION 

SYNCHRONIZATION 

TRANSLATE 

FUNCTION (PORT TO PORT, 
PORT TO MEMORY, ETC.) 

Figure 3-16. Channe~ Control Register 

"resume" command, the PSW, TP, and TP tag 
bit are restored from the parameter block save 
area and execution resumes. 

Two conditions override the normal channel 
priority mechanism. If one channel is performing 
DMA (priority 1) and the channel receives a chan­
nel attention (priority 2), the channel attention is 
serviced at the end of the current DMA transfer 
cycle. This override prevents a synchronized 
DMA transfers from "shutting out" a channel 
attention. DMA terminations and chained chan­
nel programs postpone recognition of a CA on 
the other channel; the CA is latched, however, 
and is serviced as soon as priorities permit. 

The lOP's LOCK (bus lock) signal also 
supersedes channel switching. A running channel 
will not relinquish control of the processor while 
LOCK is active, regardless of the priorities of the 
activities on the two channels. This is consistent 
with the purpose of the LOCK signal: to 
guarantee exclusive access to a shared resource in 
a multiprocessing system. Refer to sections 3.5 
and 3.7 for futher information on the LOCK 
signal and the TSL instruction. 

Tag Bits 

Registers GA, GB, GC, and TP are called pointer 
registers because they may be used to access, or 
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7 ° 
1+,1 BII*ITBI slDI 

~~~
I L DESTINATIONBUSLOGICALWIDTHIO",l'18) 

L SOURCE BUS LOGICAL WIDTH (0 "8,1 " 16) 

TASK BLOCK (CHANNEL PROGRAM) IN PROGRESS 

INTERRUPT CONTROL (0 = DISABLED, 1 " ENABLED) 

INTERRUPT SERVICE (0 "SINTRN INACTIVE 1 " SINTAN ACTIVE) 

BUS LOAD LIMIT 

TRANSFER IN PROGRESS 

PRIORITY BIT 

Figure 3-17. Program Status Word 

15 8 7 

TP 15-8 1 TP7·0 _PP 

PSW 1 TP 19-161 TAG 1 0 0 0 - PP + 2 

;::: REMAINDER OF PARAMETER BLOCK ~ 

I I L _________________ ~ 

Figure 3-18. Channel State Save Area 
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point to, addresses in either the system space or 
the I/O space. The pointer registers may address 
either memory or I/O devices (lOP instructions 
do not distinguish between memory and I/O 
devices since the latter are memory-mapped). The 
tag bit associated with each register (figure 3-14) 
determines whether the register points to an 
address in the system. space (tag=O) or the I/O 
space (tag::,I). 

The CCU sets or clears TP's tag bit depending on 
whether the command it receives from the CPU is 
"start channel program in system space," or 
"start channel program in I/O space." Channel 
programs alter the tag bits of GA, GB,GC, and 
TP by using different instructions for loading the 
registers. Briefly, a "load pointer" instruction 
clears a tag bit, a "move" instruction sets a tag 
bit, and a "move pointer" instruction moves a 
memory value (either 0 or 1) to a tag bit. Section 
3.9 covers these instructions in detail. 

If a register points to the system space, all 20 bits 
are placed on the address lines to allow the full 
megabyte to be directly addressed. If a register 
points to the I/O space, the upper four bits of the 
address lines are undefined; the lower 16 bits are 
sufficient to access any location in the 64k byte 
I/O space. 

Concurrent Channel Operation 

Both channels may be active concurrently, but 
only one can actually run at a time. At the end of 

each internal cycle, the CCU lets one channel or 
the other execute the next internal cycle. No extra 
overhead is incurred by this channel switching. 
The basis for making the determination is a 
priority mechanism built into the lOP. This 
mechanism recognizes that some kinds of 
activities (e.g., DMA) are more important than 
others. Each activity that a channel can perform 
has a priority that reflects its relative importance 
(see table 3-3). 

Two new activities are introduced in table 3-3. 
When a DMA transfer terminates, the channel 
executes a short internal channel program. This 
DMA termination program adjusts TP so that the 
user's program resumes at the instruction 
specified when the transfer was setup (this is 
discussed in detail in section 3.4). Similarly, when 
a channel attention is recognized, the channel 
executes an internal program that examines the 
CCWand carries out its command. Both of these 
programs consist of standard 8089 instructions 
that are fetched from internal ROM. Intel 
Application Note AP-50, Debugging Strategies 
and Considerations for 8089 Systems, lists the 
instructions in these programs. Users monitoring 
the bus during debugging may see operands read 
or written by the termination or channel attention 
programs. The instructions themselves, however, 
will not appear on the bus as they are resident in 
the chip. 

Notice also that, according to table 3-3, a channel 
program may run at priority 3 or at priority 1. 

Table 3-3. Channel Priorities and Interleave Boundaries 

Channel Activity 

DMA transfer 

DMA termination sequence 

Channel program (chained) 

Channel attention sequence 

Channel program (not chained) 

Idle 

I DMA is not interleaved while LOCK is active. 
2Except TSL instruction; see section 3 .. 7. 

Priority 
(1 = highest) 

1 

1 

1 

2 

3 

4 
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Interleave Boundary 
ByDMA By Instruction 

Bus cycle' Bus cycle' 

Internal cycle None 

Internal cycle2 Instruction 

Internal cycle None 

Internal cycle2 Instruction 

Two clocks Two clocks 
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Channel program priority is determined by the 
chain bit in the channel control register. If this bit 
is cleared, the program runs at normal priority 
(3); if it is set, the program is said to be chained, 
and it runs at the same priority as DMA. Thus, 
the chain bit provides a way to raise the priority 
of a critical channel program. 

The CCU lets the channel with the highest priority 
run. If both channels are running activities with 
the same priority, the CCU examines the priority 
bits in the PSWs. If the priority bits are unequal, 
the channel with the higher value (1) runs. Thus, 
the priority bit serves as a "tie breaker" when the 
channels are otherwise at the same priority level. 
The value of the priority bit in the PSW is loaded 
from a corresponding bit in the CCW; therefore, 
the CPU can control which channel will run when 
the channels are at the same priority level. The 
priority bit has no effect when the channel 
priorities are different. If both channels are at the 
same priority level and if both priority bits are 
equal, the channels run alternately without any 
additional overhead. 

The CCU switches channels only at certain points 
called interleave boundaries; these vary according 
to the type of activity running in each channel and 
are shown in· table 3-3. In table 3-3 and in the 
following .discussion, the terms "channel A" and 
"channel B" are used to identify two active chan­
nels that are bidding for control of an lOP. 
"Channel A" is the channel that last ran and will 
run again unless the CCU switches to "channel 
B." Where the CCU switches from one channel 
(channel A) to another (channel B) depends on 
whether channel B is performing DMA or is 
executing instructions. For this determination, 
instructions in the internal ROM are considered 
the same as instructions executed in user-written 
channel programs (chained or not chained). Table 
3-3 shows that a switch from channel A to chan­
nel B will occur sooner if channel B is running 
DMA. DMA, then, interleaves instruction execu­
tion at internal cycle boundaries. Since instruc­
tions are often composed of several internal 
cycles, instruction execution on channel A can be 
suspended by DMA on channel B (when channel 
A next runs, the instruction is resumed from the 
point of suspension). DMA on channel A is 
interleaved by DMA on channel B after any bus 
cycle (when channel A runs again, the DMA 
transfer sequence is resumed from the point of 
suspension). If both channels are executing pro­
grams, the interleave boundaries are extended to 
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instruction boundaries: a program on channel B 
will not run until channel A reaches the end of an 
instruction. Note that a DMA termination 
sequence or channel attention sequence on chan­
nel A cannot be interleaved by instructions on 
channel B, regardless of channel B's priority. 
These internal programs are short, however, and 
will not delay channel B for long (see Chapter 4 
for timing infurmation). 

Table 3-4 summarizes the channel switching 
mechanism with several examples. It is important 
to remember that channel switching occurs only 
when both channels are ready to run. In typical 
applications, one of the channels will be idle 
much of the time, either because it is waiting to be 

. dispatched by the CPU or because it is waiting for 
a DMA request in a synchronized transfer. (Dur­
ing a synchronized transfer, the channel is idle 
between DMA requests; for many peripherals, the 
channel will spend much more time idling than 
executing DMA cycles.) The real potential for one 
channel "shutting out" a priority 1 activity on the 
other channel is largely limited to unsynchronized 
DMA transfers and locked transfers (synchro­
nized or unsynchronized). Long, chained channel 
programs and high-speed synchronized DMA will 
slow a priority 1 activity on the other channel, but 
will not shut it out because the channels will alter­
nate (assuming their priority bits are equal). A 
chained channel program will shut out any lower 
priority activity on the other channel, including a 
channel attention. (The channel attention is 
latched by the lOP, however, so it will execute 
when the other channel drops to a lower priority.) 
Chained channel programs should therefore be 
used with discretion and should be made as short 
as possible. 

3.3 Memory 

The 8089 can access memory components located 
in two different address spaces. The system space, 
which coincides with the CPU's memory space, 
may contain up to 1,048,576 bytes. The 110 
space, which may either coincide with the CPU's 
110 space or be local (private) to the lOP, may 
contain up to 65,536 bytes. Memory components 
in the system space should respond to the memory 
read and write commands issued by the 8288 Bus 
Controller. Memory components in the I/O space 
must respond to 8288 I/O read and write com­
mands. Memory in either space may be 
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Table 3-4. Channel Switching Examples 

Channel.A (Ran Last) Channel B 
Result 

Activity 
Chain Priority 

LOCK Activity 
Chain Priority 

Bit Bit Bit Bit 

DMA transfer X X Inactive Idle X X A runs. 
DMA transfer X X Inactive Channel attention X X A runs until end of current 

transfer cycle; then Bruns. 
Channel program X 0 Inactive Channel program X 1 Bruns. 
Channel program X 0 Inactive Channel program X 0 A and B alternate by 

instruction. 
Channel program 1 X Inactive Channel program 0 X A runs. 
DMA transfer X 1 Inactive Channel program 1 1 B runs one bus or internal 

cycle following each bus cycle 
run by A.' 

Channel attention X X Inactive Channel program 1 X A runs if it has started the 
sequence; otherwise Bruns. 

DMA transfer X X Active Channel attention X X A runs until DMA terminates. 
Channel program 0 X Active DMA transfer X X A completes TSL instruction, 

(TSL instruction) LOCK goes inactive and B 
runs. 

'If transfer is synchronized, B also runs when A goes idle between transfer cycles. 

implemented like 8086 memory (l6-bit words split 
into even- and odd-addressed 8-bit banks) or 8088 
memory (a single 8-bit bank). See Chapter 4 for 
physical implementation considerations. 

Storage Organization 

From a software point of view, both 8089 
memory spaces are organized as unsegmented 
arrays of individually addressable 8-bit bytes 
(figure 3-19). Instructions and data may be stored 
at any address without regard for alignment 
(figure 3-20). 

The lOP views the system space differently from 
the 8086 or 8088 with which it typically shares the 
space. The 8086 and 8088 differentiate between a 
location's logical (segment and offset) address 
and its physical (20-bit) address. 

The 8089 does not "see" the logically segmented 
structure of the memory space; it uses its 20-bit 
pointer registers to access all locations in the 
system space by their physical addresses. Memory 
in the 8089 I/O space is treated similarly except 
that only 16 bits are needed to address any 
location. 

3-22 

SYSTEM 
SPACE 

I/O 
SPACE 

LOW MEMORY HIGH MEMORY 

OOOOOH 00001H 00002H 5 /FFFEH FFFFFH 

L 1111111111111,11111115 51111111111111 J 
7 07 07 07 0 

I. 1 MEGABYTE -I 

LOW MEMORY HIGH MEMORY 

0000H0001H 0002H 5· fFFFEH FFFFH 

L 1111111111111111111115 5k111111111111: I 
7 07 07 07 0 

I. 64K BYTES -I 

Figure 3-19. Storage Organization 

1AH 1BH 1CH 1DH 1EH 1FH 20H 21H 

Figure 3-20. Instruction and Variable Storage 
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Following Intel convention, word data is stored 
with the most-significant byte in the higher 
address (see figure 3-21). The 8089 recognizes the 
doubleword pointer variable used by the 8086 and 
8088 (figure 3-22). The lower-addressed word of 
the pointer contains an offset value, and the 
higher-addressed word contains a segment base 
address. Each word is stored conventionally, with 
the higher-addressed byte containing the most­
significant eight bits of the word. The 8089 can 
convert a doubleword pointer into a 20-bit 
physical address when it is loaded into a pointer 
register to address system memory; A special 3-
byte variable, called a physical address pointer 
(figure 3-23), is used to save and restore pointer 
registers and their associated tag bits. 

Dedicated and Reserved Memory 
Locations 

The extreme low and high addresses of the system 
space are dedicated to specific processor func­
tions or are reserved for use by other Intel hard-

VALUE OF WORD STORED AT 724H: 5502H 

Figure 3-21; Storage of Word Variables 

ware and software products; the locations are OH 
through 7FH (128 bytes) and FFFFOH through 
FFFFFH (16 bytes), as shown in figure 3-24. The 
low addresses are used for part of the 8086/8088 
interrupt pointer table. Locations FFFFOH­
FFFFBH are used for 8086, 8088 and 8089 startup 
sequences; the remaining locations are reserved 
by Intel. 

If an lOP is configured locally, its I/O space coin­
cides with the CPU's I/O space, and it must 
respect the reserved addresses F8H-FFH. The 
entire I/O space of a remotely-configured lOP 
may be used without restriction. 

Using any dedicated or reserved addresses may 
inhibit the compatibility of a system with current 
or future Intel hardware and software products. 

Dynamic Relocation 

The 8089 is very well-suited to environments in 
which programs do not occupy static memory 
locations, but are moved about during execution. 
Dynamic code relocation allows systems to make 
efficient use of limited memory resources by 
transferring programs between external storage 
and memory, and by combining scattered free 
areas of memory into larger, more useful, con­
tinuous spaces. 

lOP channel programs are inherently position­
independent, the only restriction being that chan­
nel programs that transfer to each other or 
share data must be moved as a unit. Since the lOP 

VALUEOF DOUBLEWORD POINTER STORED AT 4H: 
SEGMENT BASE ADDRESS: 3B4CH 
OFFSET:65H 

Figure 3-22. Storage of Doubleword Pointer Variables 
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POINTER 
REGISTER 

MEMORY 

101H 102H 

HEX 

BINARY 

VALUE OF PHYSICAL ADDRESS PDINTER AT 100H: 
ADDRESS: 26SF3H 
TAG: 0 

Figure 3-23. Storage of Physical Address 
Pointer Variables 

receives the address of a channel program and its 
associated parameter block when it is dispatched 
by the CPU, the location of these blocks is 
immaterial and can change from one dispatch to 
the next. (Note, however, that the channel control 
block cannot be moved without reinitializing the 
lOP.) Typically, then, the CPU would direct the 
movement of lOP channel programs and 
parameter blocks. These blocks, of course, can­
not be moved while they are in use. 

While the CPU may be in charge of relocation, 
the lOP is an excellent vehicle for performing the 
actual transfer of channel programs, parameter 
blocks, and CPU programs as well. A very simple 
channel program can transfer code between 
memory locations by DMA much faster than the 
equivalent CPU instructions, and transfers 
between disk and memory also can be performed 
more efficiently. 

Memory Access 

Memory accesses are always performed using a 
pointer register and its associated tag bit. The tag 
bit indicates whether the access is to the system 
space (tag=O) or the I/O space (tag=I). The 
pointer register contains the base address of the 
location; i.e., the pointer register is used as a base 
register. Only the low-order 16 bits of the pointer 
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FFFFFH 

RESERVED 

FFFFCH 
FFFFBH 

DEDICATED 

FFFFOH 
FFFEFH 

OPEN 
.., 

I--------I~~~ 
RESERVED 

1-------I1~~ 
DEDICATED 

.... _____ ... OH 

I ["" 
OPEN r 

I--~R~ES~E~R~VE~D~~}~~ 
1--~i.:2.!~:!!..._-I F8H 

F7H 
OPEN 

.... _____ .JOH 

SYSTEM SPACE 1/0 SPACE 
(LOCAL CONFIGURATION ONLY) 

Figure 3-24. Reserved Memory Locations 

register are used for I/O space locations; all 20 
bits are used for system space addresses. Different 
types of memory accesses use base registers as 
shown in table 3-5. The 8089 addressing modes 
allow the base address of a memory operand to be 
modified by other registers and constant values to 
yield the effective address of the operand (see sec­
tion 3.8). 

Notice that table 3-5 indicates that memory 
operands may be addressed using register PP in 
addition to GA, GB, and GC. PP is maintained 
by the lOP and can neither be read nor written by 
a channel program; it can be used, however, to 
access data in the parameter block. PP has no 
associated tag bit; a reference to it implies the 
system space, where a parameter block always 
resides. 

Table 3-5. Base Register Use in Memory Access 

Memory Access Base Register 

Instruction Fetch TP 
DMASource GAorGB' 
DMA Destination GAorGB' 
DMATranslate Table GC 
Memory Operand GA or GB or GC or PP' 

'As specified in CC register 
'As specified in instruction 
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The lOP is told the physical widths of the system 
and 110 buses when it is initialized. If a bus is 
eight bits wide, the lOP accesses memory on this 
bus likj': an 8088. Instruction fetches and operand 
reads and writes are performed one byte at a time; 
one bus cycle is run for each memory access. 
Word operands are accessed in two cycles, com­
pletely transparent to software. Instruction 
fetches are made as needed, and the instruction 
stream is not queued. 

The lOP accesses memory on a 16-bit bus like an 
8086. As mentioned in the previous section, the 
instruction stream is generally fetched in words 
from even addresses with the second byte held in 
the one-byte queue. If a word operand is aligned 
(i.e., located at an even address), the 8089 will 
access it in a single 16-bit bus cycle. If a word 
operand is unaligned (i.e., located at an odd 
address), the word will be accessed in two con­
secutive 8-bit bus cycles. Byte operands are 
always accessed in 8-bit bus cycles. 

For memory on 16-bit buses, performance is 
improved and bus contention is reduced if word 
operands are stored at even addresses. The 
instruction queue tends to reduce the effect of 
alignment on instructions fetched on a 16-bit bus, 
In tight loops, performance can be increased by 
word-aligning transfer targets. 

Notice that the correct operation of a program is 
completely independent of memory bus width. A 
channel program written for one system that uses 
an 8-bit memory bus will execute without 
modification if the bus is increased to 16 bits. It is 
good practice, though, to write all programs as 
though they are to run on 16-bit systems; i.e., to 
align word operands. Such programs will then 
make optimal use of the bus in whatever system 
they are run. 

3.4 Input/Output 

The 8089 combines the programmed 1/0 
capabilities of a CPU with the high-speed block 
transfer facility of a DMA controller. It also pro­
vides additional features (e.g., compare and 
translate during DMA) and is more flexible than a 
typical CPU or DMA controller. The 8089 
transfers data from a source address to a destina­
tion address. Whether the component mapped 
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into a given address is actually memory or 110 is 
immaterial. All addresses in both the system and 
I/O spaces are equally accessible, and transfers 
may be made between the two spaces as well as 
within either address space. 

Programmed I/O 

A channel program performs 110 similar to the 
way a CPU communicates with memory-mapped 
1/0 devices. Memory reference instructions per­
form the transfer rather than "dedicated" I/O 
instructions, such as the 8086/8088 IN and OUT 
instructions. Programmed 1/0 is typically used to 
prepare a device controller for a DMA transfer 
and to obtain statuslresult information from the 
controller following termination of the transfer. 
It may be used, however, with any device whose 
transfer rate does not require DMA. 

I/O Instructions 

Since the 8089 does not distinguish between 
memory components and 110 devices, any 
instruction that accepts a byte or word· memory 
operand can be used to access an 110 device. 
Most memory reference instructions take a source 
operand or a destination operand, or both. The 
instructions generally obtain data from the source 
operand, operate on the data, and then place the 
result of the operation in the destination operand. 
Therefore, when a source operand refers to an 
address where an 110 device is located, data is 
input from the device. Similarly, when a destina­
tion operand refers to an 1/0 device address, data 
is output to the device. 

Most 1/0 device controllers have one or more 
internal registers that accept commands and 
supply status or result information. Working with 
these registers typically involves: 

• reading or writing the entire register; 
• setting or clearing some bits in a register while 

leaving others alone; or 
• testing a single bit in a register. 

Table 3-6 shows some of the 8089 instructions 
that are useful for performing these kinds of 
operations. Sectian 3.7 covers- the 8089 instruc­
tion set in detail. 
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Table 3-6. Memory Reference Instructions 
Used for I/O 

Instruction Effect on I/O Device 

MOV/MOVB Read or write word / byte 

AND/ANDB Clear multiple bits in word/byte 

OR/ORB Set multiple bits in word/byte 

CLR Clear' single bit (in byte) 

SET Set single bit (in byte) 

JBT Read (byte) and jump if 
single bit =1 

JNBT Read (byte) and jump if 
single bit =0 

Device Addressing 

Since memory reference instructions are used to 
perform programmed I/O, device addressing. is 
very similar to memory addressing. An operand 
that refers to an I/O device always specifies one 
of the pointer registers GA, GB, or GC (PP is 
legal, but an I/O device would not normally be 
mapped into a parameter block). The base 
address of the device is taken from the specified 
pointer register. Any of the memory addressing 
modes (see section 3.8) may be used to modify the 
base address to produce the effective (actual) 
address of the device. The pointer register's tag 
bit locates the device in the system space (tag=O) 
or in the I/O space (tag=I). If the device is in 
the I/O space, only the low-order 16 bits of the 
pointer register are used for the base address; all 
20 bits are used for a system space address. The 
lOP's system and I/O spaces are fully compatible 

with the corresponding address spaces of. the 
other 8086 family processors. 

I/O Bus Transfers 

Table 3-7 shows the number of bus cycles the lOP 
runs for all combinations of bus size, transfer size 
(byte or word), and transfer address (even or 
odd). Bus width refers to the physical bus 
implementation; the instruction mnemonic deter­
mines whether a byte or a word is transferred. 

Both.8- and 16-bit devices may reside on a 16-bit 
bus. All 16-bit devices should be located at even 
addresses so that transfers will be performed in 
one bus cycle. The 8-bit devices on a 16-bit bus 
may be located at odd or even addresses. The 
internal registers in an 8-bit device on a 16-bit bus 
must be assigned all-odd or all-even addresses 
that are two bytes apart (e.g., IH, 3H, 5H, or 2H, 
4H, 6H). All 8-bit peripherals should be refer­
enced with byte instructions, and 16-bit devices 
should be referenced with word instructions. 
Odd-addressed 8-bit devices must be able to 
transfer data on the upper eight bits of the 16-bit 
physical data bus. 

Only 8-bit devices should be connected to an 8-bit 
bus, . and these should only be referenced with 
byte instructions. An 8-bit device on an 8-bit bus 
may be located at an odd or even address, and its 
internal registers may be assigned consecutive 
addresses (e.g., IH, 2H, 3H). Assigning all-odd 
or all-even addresses, however, will simplify con­
version to a 16-bit bus at a later date. 

Table 3-7. Programmed I/O Bus Transfers 

BusWidth: 8 16 

Instruction: byte word' byte. word 

Device Address: even odd even odd even odd even odd' 

Bus Cycles: 1 1 2 2 1 1 1 2 

, not normally used 
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DMA Transfers 

In addition to byte- and word-oriented pro­
grammed I/O, the 8089 can transfer blocks of 
data by direct memory access. A block may be 
transferred between any two addresses; memory­
to-memory transfers are performed as easily as 
memory-to-port, port-to-memory or port-to-port 
exchanges. There is no limitation on the size of 
the block that can be transferred except that the 
block cannot exceed 64k bytes if byte count ter­
mination is used. A channel program typically 
prepares for a DMA transfer by writing com­
mands to a device controller and initializing chan­
nel registers that are used during the transfer. No . 
instructions are executed during the transfer, 
however, and very high throughput speeds can be 
achieved. 

Preparing the Device Controller 

Most controllers that can peform DMA transfers 
are quite flexible in that they can perform several 
different types of operations. For example, an 
8271 Floppy Disk Controller can read a sector, 
write a sector, seek to track 0, etc. The controller 
typically has one or more internal registers that 
are "programmed" to perform a given operation. 
Often, certain registers will contain status 
information that can be read to determine if the 
controller is busy, if it has detected an error, etc. 

An 8089 channel program views these device 
registers as a series of memory locations. The 
channel program typically places the device's base 
address in a pointer register and uses programmed 
I/O to communicate with the registers. 

Some controllers start a DMA transfer 
immediately upon receiving the last of a series of 

parameters. If this type of controller is being 
used, the channel program instruction that sends 
the last parameter should follow the 8089 XFER 
instruction. (The XFER instruction places the 
channel in DMA mode after the next instruction; 
this is explained in more detail later in this 
section.) 

Preparing the Channel 

For a channel to perform a DMA transfer, it must 
be provided with information that describes the 
operation. The channel program provides this 
information by loading values into channel 
registers and, in one case, by executing a special 
instruction (see table 3-8). 

Source and . Destination Pointers. One 
register is loaded to point to the transfer source; 
the other points to the destination. A bit in the 
channel control register is set to indicate which 
register is the source pointer. If a register is 
pointed at a memory location, it should contain 
the address where the transfer is to begin - i.e., 
the lowest address in the buffer. The channel 
automatically increments a memory pointer as the 
transfer proceeds. If the tag bit selects the I/O 
space, the upper four bits of the register are 
ignored; if the tag selects the system space, all 20 
bits are used. The source and destination may be 
located in the same or in different address spaces. 

Translate Table Pointer. If the data is to be 
translated as it is transferred, GC should be 
pointed at the first (lowest-addressed) byte in a 
256-byte translation table. The table may be 
10Gated in either the system or I/O space, and GC 

Table 3-8. DMA Transfer Control Information 

Information Register or Instruction Required or Optional 

Source Pointer GAorGB Required 
Destination Pointer GAorGB Required 
Translate Table Pointer GC Optional 
Byte Count BC Optional 
Mask/Compare Values MC Optional 
Logical Bus Width WID Optional" 
Channel Control CC Required 

"Must be executed once following processor RESET. 
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should be loaded by an instruction that sets or 
clears its tag bit as appropriate. The translate 
operation is only defined for byte data; source 
and destination logical bus widths must both be 
set to eight bits. 

The channel translates a byte by treating it as an 
unsigned 8-bit binary number. This number is 
added to the content of register GC to form a 
memory address; GC is not altered by the opera­
tion. If GC points to the 110 space, its upper four 
bits are ignored in the operation. The byte at this 
address (which is in the translate table) is then 
fetched from memory, replacing the source byte. 
Figure 3-25 illustrates the translate process. 

Byte Count. If the transfer is to be terminated 
on byte count~ i.e., after a specific number of 
bytes have been transferred-the desired count 
should be loaded into register BC as an unsigned 
16-bit number. The channel decrements BC as the 
transfer proceeds, whether or not byte count ter­
mination . has been specifi~d. There are cases 
(discussed later in. this section) where the dif-

ference between BC's value before and after the 
transfer does not accurately reflect the number of 
bytes transferred tothe destination. 

Mask/Compare Values. If the transfer is to be 
terminated when a byte (possibly translated) is 
found equal or unequal to a search value, MC 
should be loaded as described in section 3.2. MC 
isnot altered during the transfer. Normally, the 
logical destination bus width is set to eight bits 
when transferred data. is being compared. If the 
logical destination width is 16 bits, only the low­
order byte of each word is compared. 

Logical Bus Width. The 8089 WID (logical bus 
width) instruction is used to set the logical width 
of the source and destination buses for a DMA 
transfer. Any bus whose physical width is eight 
bits can only have a logical width of eight bits. A 
16cbit physical bus,however, .can have a logical 
width of 8 or.16 bits; i.e., it can be. used as.either 
an 8-bit or 16-bit bus in any given transfer. 
Logical bus widths are set independently for each 
channel. 

TRANSLATE TABLE 
IN SYSTEM OR 1/0 SPACE 

00200 I-~ 3F 4C 1.66119 87 1( 
GC • 

B : 
SOURCE BYTE I 

+ 

= 00202 ~ ______ J 
TRANSLATE ADDRESS 

TO DESTINATION 

TRANSLATED BYTE 

Figure 3-25. Translate Operation 
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For a transfer to or from an I/O device on a 
16-bit physical bus, the logical bus width should 
be set equal to the peripheral's width; Le., 8 or 16 
bits. Transfers to or from 16-bit'memory will run 
at maximum speed if the logical bus width is set to 
16 since the channel will fetch/store words. In the 
following cases, however, the logical width 
should be set to 8: 

• the data is being translated, 
• the data is being compared under mask, and 

the 16-bit memory is the destination of the 
transfer. 

The WID instruction sets both logical widths and 
remains in effect until another WID instruction is 
execu ted. Following processor reset, the, settings 
of the logical bus widths are unprecrictable. 
Therefore, the WID instruction must be executed 
before the first DMA transfer. 

Channel Control. The 16 bits of the CC register 
are divided into 10 fields that specify how the 
DMA transfer is to be executed (see figure 3-26). 
A channel program typically sets these fields by 
loading a word into the register. 

The function field (bits 15-14) identifies the 
source and destination as memory or ports (1)0 
devices). During the transfer, the channel 
increments source/destination, poirtter registers 
that refer to memory so that the data will be 
placed in successive locations. Pointers that refer 
to I/O devices remain constant throughout the 
transfer. 

The translate field (bit 13) controls data transla­
tion. If it is set, each incomiilgbyte is translated 
using the table pointed to by register ,Oe. 
Translate is defined only for byte transfers; the 
destination bus must have a logical width of eight. 

The synchronization field (bits 12-11) specifies 
how the transfer is to be synchronized. 
Un synchronized ("free running") transfers al'e 
typically used in memory-to-memory moves. The 
channel begins the next transfer cycle immediately 
upon completion of the current cycle (assuming it 
has the bus). Slow memories, which cannot run as 
fast as the channel, can extend bus cycles by 
signaling "not ready" to the 8284 Clock, 
Generator, which will insert wait states into the ' 
bus cycle. A similar technique may be used with 
peripherals whose speed excecds the channel's 
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ability to execute a synchronized transfer: in 
effect, the peripheral synchronizes the transfer 
through theuse of wait states. Chapter 4 discusses 
synchronization in more detail. 

Source synchronization is typically selected when 
the source is an I/O device and the destination is 
memory. The I/O device starts the next transfer 
cycle by activating the channel's DRQ (DMA 
request) line. The channel then runs one transfer 
cycle and waits for the next DRQ. 

Destination synchronization is most often used 
,when the source is memory and the destination is 
an I/O device. Again, the I/O device controls the 
transfer frequency by signaling on DRQ when it is 
ready to receive the next byte or word. 

The source field (bit 10) identifies register GA or 
GB as the source pointer (and the other as the 
destination pointer). 

The lock field (bit 9) may be used to instruct the 
channel to assert the processor's bus lock (LOCK) 
signal during the transfer. In a source­
synchronized transfer, LOCK is active from the 
time the first DMA request is received until the 
channel enters the termination sequence. In a 
destination-synchronized transfer LOCK is active 
from the first fetch (which precedes the first 

. DMA request) until the channel enters the ter­
mination sequence. 

The chain field (bit 8) is not used during the 
transfer. As, discussed previously, setting this 
bit raises channel program execution to priority 
level I. 

rhe terminate on single transfer field (bit 7) can 
be used to cause the chaimel to run one complete 
transfer cycle only-:-i.e., to transfer one byte or 
word and immediately resume channel program 
execution. When single transfer is specified, any 
other termination conditions are ignored. Single 
transfer termination can be used with low-speed 
devices, such as keyboards and communication 
lines, to translate and/or compare one byte as it 
transferred. 

The thre,e low-order fields in register CC instruct 
the channel when to terminate the transfer, 
ussumingthat single transfer has not been 
selected. Three termination conditions may be 
specified singly or in combination. 
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15 7 0 

I r ITRI STNI S I Lie ITsl Tf I T~C I TM~ I 
£. FUNCTION 
00 PORT TO PORT 
01 MEMORY TO PORT 
10 PORT TO MEMORY 
11 MEMORY TO MEMORY 

TR TRANSLATE 
o NO TRANSLATE 
1 TRANSLATE 

SYN SYNCHRONIZATION 
00 NO SYNCHRONIZATION 
01 SYNCHRONIZE ON SOURCE 
10 SYNCHRONIZE ON DESTINATION 
11 RESERVED BY INTEL . 

S SOURCE 
o GA POINTS TO SOURCE 
1 GB POINTS TO SOURCE 

L LOCK 
o NO LOCK 
1 ACTUATE LOCK DURING TRANSFER 

.2 ~ 
o . NO CHAINING 
1 . CHAINED: RAISE TB TO PRIORITY 1 

TS TERMINATE ON SINGLE TRANSFER 
o NO·SINGLE TRANSFER TERMINATION 
1 . TERMINATE AFTER SINGLE TRANSFER 

TX TERMINATE ON EXTERNAL SIGNAL 
00 NO EXTERNAL TERMINATION 
01 TERMINATE ON EXT ACTIVE; OFFSET = 0 
10 TERMINATE ON EXT ACTIVE; OFFSET = 4 
11 TERMINATE ON EXT ACTIVE; OFFSET = 8 . 

TBC TERMINATE ON BYTE COUNT 
00 NO BYTE COUNT TERMINATION 
01 TERMINATE ON BC = 0; OFFSET = 0 
10 TERMINATE ON BC = 0; OFFSET = 4 
11 TERMINATE ON BC = 0; OFFSET = 8 

TMC TERMINATE ON MASKED COMPARE 
000 NO MASK/COMPARE TERMINATION 
001 TERMINATE ON MATCH; OFFSET = 0 
010 TERMINATE ON MATCH; OFFSET::: 4 
011 TERMINATE ON MATCH; OFFSET = 8 
100 (NO EFFECT) 
101 TERMINATE ON NON-MATCH; OFFSET = 0 
110 TERMINATE ON NON-MATCH; OFFSET = 4 
111 TERMINATE ON NON-MATCH; OFFSET = 8 

Figure 3-26. Channel Control Register Fields 

3-30 



8089 INPUT/OUTPUT PROCESSOR 

External termination allows an I/O device 
(typically, the one that is synchronizing the 
transfer) to stop the transfer by activating the 
channel's EXT (external terminate) line. If byte 
count termination is selected, the channel will 
stop when BC=O. If masked compare termination 
is specified, the channel will stop the transfer 
when a byte is found that is equal or unequal (two 
options are available) to the low-order byte in MC 
as masked by MC's high-order byte. The byte that 
stops the termination is transferred. If translate 
has been specified, the translated byte is 
compared. 

When a DMA transfer ends, the channel adds a 
value called the termination offset to the task 
pointer and resumes channel program execution 
at that point in the program. The termination off­
set may assume a value of 0, 4, or 8. Single 
transfer termination always results in a termina­
tion offset of O. Figure 3-27 shows how the ter­
mination offsets can be used as indices into a 
three-element "jump table" that identifies the 
condition that caused the termination. 

As an example of using the jump table, consider a 
case in which a transfer is to terminate when 80 
bytes have been transferred or a linefeed 
character is detected, whichever occurs first. The 
program would load 80H into BC and OOOAH 
into MC (ASCII line feed, no bits masked). The 
channel program could assign byte count termina­
tion an offset of 0 and masked compare termina­
tion an offset of 4. If the transfer is terminated by 
byte count (no linefeed is found), the instruction 
at location TP + 0 will be executed first after the 
termination. If the linefeed is found before the 
byte count expires, the instruction at TP + 4 will 
be executed first. The LJMP (long unconditional 
jump, see section 3.7) instruction is four bytes 
long and can be placed at TP + 0 and TP + 4 to 
cause the channel program to jump to a different 
routine, depending on how the transfer 
terminates. 

If the transfer can only terminate in one way and 
that condition is assigned an offset of 0, there is 
no need for the jump table. Code which is to be 
unconditionally executed when. the transfer ends 
can immediately follow the instruction after 
XFER. This is also the case when single transfer is 
specified (execution always resumes at TP + 0). 

It is possible, however, for two, or even three, ter­
mination conditions to arise at the same time. In 

3-31 

~ -(COULD DE A. DIFFERENT INSTRUCTION) 

L-.-r.:P~ER~FORM TRANSFER 

(TP POINTS TO 1ST LJMP INSTRUCTION) _ ...... _", 

OFFSET_O_COOE:! 1 
EXECUTED IFTERMINATION T OFFseT. 0 T 

OFFSET _4_COOE:1 1 
EXECUTED IF TERMINATION T ' , OFFSET. • J 

OFFSET __ 8_CODE:1 ' 1 
EXECUTED IF TERMINATION T OFFSET. 1 T 

Figure 3-27. Termination Jump Table 

the preceding example, this would occur if the 
80th character were a !inefeed. When multiple ter­
minations occur simultaneously, the channel 
indicates that termination resulted from the con­
dition with the largest offset value. In the 
preceding example, if byte count and search ter­
mination occur at the same time, the channel pro-
gram resumes at TP + 4. . 

Beginning the Transfer 

The 8089 XFER (transfer) instruction puts the 
channel into DMA transfer mode after the 
following instruction has been executed. This 
technique gives the channel time to set itself up 
when it is used with device controllers, such as the 
8271 Floppy Disk Controller, that begin transfer­
ring immediately upon receipt of the last in a 
series of parameters or commands. If the transfer 
is to or from such a device, the last parameter 
should be sent to the device after the XFER 
instruction. If this type of device is ·not being 
used, the instruction following XFER would 
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typically 'send a "start" command to the con­
troller. If a memory-to-memory transfer is being 
made, any instruction may follow XFER except 
one that alters GA; GB, or CC. The HL T instruc­
tion should normally not . be. coded after the 
XFER; doing so clears the channel's BUSY flag, 
but allows the DMA,transfer to proceed. 

DMA Transfer Cycle 

A DMA transfer cycle is illustrated in figure 3-28; 
a complete transfer isaseries ofthese cycles run 
until a termination condition is encountered. The 
figure is deliberateiy simplified to explain the 
general operation of .a DMA· transfer; in par­
ticular, the updating of the souJce. and destination 
pointers (GA and GB) can be more complex than 
the figure indicates: Notice'that it is possible to 
start an unending transfcrr by rwtspecifying ater­
mination condition in CC or by specifying a con­
dition that never occurs; it is the programmer's 
responsibility to ensure that the transfer eventu-
ally stops~ . 

If the transfer is source-synchronized, the channel 
waits until the synchronizing device activates the 
channd!sDRQ line. The other channel is free to 
run during this idle period. The channel fetches a 
byte or a word, depending on the source address 
(contained in GA or GB) and. the Jogical bus 
width. Table 3-9 shows how a. channeJperforms 
the fetch/store sequence for all.combinations of 
addresses and bus widths. If the destination is on 
a 16-bit iogical bus. and' the source is on an 8-bit 
logical bus, and the transfer is to an even address, 
the channel fetches a second byte and asserribles a 
word internally. During each fetch, the channel 
decrements BC according to whether a byte or 
word is obtained. Thus BC always indicates the 
number of bytes fetched. 

The channel; samples its EXT lineaftereyery bus 
cycle in the trimsfer. If EXT is recognized after 
the. first of, two. scheduled fetches, the second 
fetch is notruI),.After the fetch sequence has.been 
cPrnpleted: the channel translates the data if this 
option is' specified in q::: .. 

If a word has been fetched or assembled,and 
bytes are to be stored (destination bus is eight bits 
or transfer is to an odd address), the channel 
disassembles the word into two bytes. If the 
transfer is destination-synchronized (only one 
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Table 3-9. DMA Transfer 
Assembly/Disassembly' 

Address Logical Bus Width 
. (Sou,rce- , Source-Destination) 
Destination) 8-8 8-16 16-8 16-16 

EVEN-EVEN B-B B/B-W W-B/B W-W 
EVEN-ODD B-B B-B. W-B/B W-B/B 
ODD-EVEN B-B B/B-W B-B B/B-W 
ODD-ODD B-B B-B B-B B-+B 

. B= Byte Fetched or Stored in 1 Bus Cycle 
W= Word Fetched or Stored in 1 Bus Cycle 
B/B= 2 Bytes Fetched or Stored in 2 Bus Cycles 

type of synchronization may be specified for a 
giventnlnsfer), the channel waits for DRQ before 
ruiminga . store cycle. It' 'stores . a word or the 
lower-addressed byte (which may be the only byte 
or the first of two bytes). Table 3-9 shows the 
possible combinations of even/odd addresses and 
lo-gical bus widths that define the store cycle. 
Whenever stores are to memory on a 16-bit logical 
bus, the channel stores words; except that bytes 
may be stored on the first and last cycles. 

The channel samples EXT again after the first 
store cycle and, if it is active, the channel prevents 
the second store cycle from running. If specified 
in the Cc register, the low-order byte is compared 
to the value in MC. A "hit" on the comparison 
(equal or unequal, as indicated in CC) also 
prevents the second of two scheduled store cycles 
from running. In both of these cases, one byte has 
been "overfetched," and this is reflected in BC's 
value. It would be unusual, however; for a syn­
chronizing device to issue EXT in the midst of a 
DMA cycle. Note 'also that EXT is valid only 
when DRQ is inactive. Chapter 4 covers the tim­
ing requirements for these two signals in detail. 

GA and GB are updated next. Only memory 
pointers are incremented; pointers to 110 devices 
remain constant throughout the transfer .. 

If any termination condition has occurred during 
this cycle, the channel stops the transfer; It uses 
the content of the CC register to assign a value to 
the termination offset, to reflect the cause of the 
termination. The channel adds this offset to TP 
and resumes cliannel program execution at the 
location now addressed by TP. This offset will 
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ASSEMBLE 
BYTES 

(OPTIONAL) 

Figure 3-28. Simplified DMA Transfer Flowchart 

always be zero, four, or eight bytes past the end 
of the instruction following the XFER instruc­
tion. 

If no termination condition is detected and 
another byte remains to be stored, the channel 
stores this byte, waiting for DRQ -if necessary, 
and updates the source and destination pointers. 
After the store, it again checks for termination. 
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Following the Transfer· 

A DMA transfer updates register Be, register GA 
(if it points to memory), and register GB (if it 
points to memory). If the original contents of 
these registers are needed following the transfer, 
the contents should be saved in memory prior to 
executing the XFER instruction. 
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A program may determine the address of the last 
byte stored by a DMA transfer by inspecting the 
pointer registers as shown in table 3-10. The 
number of bytes stored is equal to: 

lasLbyte_address - first_byte_address + 1. 

For port-to-port transfers, the number of bytes 
transferred can be determined by subtracting the 
final value of BC from its original value provided 
that: 

• the original BC > final BC, 

• a transfer cycle is not "chopped off" before 
it completes by a masked compare or exter­
nal termination. 

In general, programs should not use the contents 
of GA, GB and BC following a transfer except as 
noted above and in table 3-10. This is because the· 
contents of the registers are affeCted by numerous 
conditions, particularly when the transfer is ter­
minated by EXT. In particular, when a program 
is performing a sequence of transfers, it should 
reload these registers before each transfer. 

3.5 Multiprocessing Features 

The 8089 shares the multiprocessing facilities 
common to the 8086 family of processors. It has 
on-chip logic for arbitrating the use of the local 
bus with a CPU or another lOP; system bus 
arbitration is delegated to an 8289 Bus Arbiter. 

The 8089's TSL (test and set while locked) in­
struction enables it to share a resource, such as a 
buffer, with other processors by means of 
semaphore (see section 2.5 for a discussion of the 
use of semaphores to control access to shared 
resources). Finally, the 8089 can lock the system 
bus for the duration of a DMAtransfer to ensure 
that the transfer completes without interference 
from other processors on the bus. 

In the remote configuration, the 8089 is electric­
ally compatible with Intel's Multibus ™ multi­
master bus design. This means that the power and 
convenience of 8089 I/O processing can be used 
in 8080- or 8085-based systems that implement the 
Multibus protocol or a superset of it. This 
includes single-board computers such as Intel's 
iSBC 80120™ and iSBC 80/30™ boards. In addi­
tion, the lOP can access other iSBC board 
products such as memory and communications 
controllers. 

Bus Arbitration 

The 8089 shares its system bus with a CPU, and 
may also share its I/O bus with an lOP or another 
CPU. Only one processor ata time may drive a 
bus. When two (or more) processors want to use a 
shared bus, the system must provide an arbitra­
tion mechanism that will grant the bus to one of 
the processors. This section describes the bus 
arbitration facilities that may be used with the 
8089 and covers their applicability to different 
lOP configurations. 

Table 3-10. Address of Last Byte Stored 

Termination Source Destination Synchronization Last Byte Stored 

memory memory any destination pointer', 
byte count memory port any source pointer 

port memory any destination pOinter 

memory memory any destination pointer 
masked compare memory port any source pointer 

port memory any destination pOinter 

memory memory unsynchronized destination pointer 
external memory port destination source pointer' 

port memory source destination pointer 

'Source pointer may also be used; 
'If transfer is B/B-+W, source pointer must be decremented by 1 to pointto last byte transferred. 
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Request/Grant Line 

When an 8089 is directly connected to 
another 8089, an 8086 or an 8088, the 
RQ/GT (request/grant) lines built into all of 
these processors are used to arbitrate use of a 
local bus. In the local mode, RQ/GT is used 
to control access· to both the system and the 
110 bus. 

As discussed in section 2.6, the CPU's 
request/grant lines (RQ/GTO and RQ/GTl) 
operate as follows: 

• an external processor sends a pulse to the 
CPU to request use of the bus; 

• the CPU finishes its current bus cycle, if one 
is in progress, and sends a pulse to the pro­
cessor to indicate that it has been granted the 
bus; and . 

• when the external processor is finished with 
the bus, it sends a final pulse to the CPU, to 
indicate that it is releasing the bus. 

The 8089's request/grant circuit can operate in 
two modes; the mode is selected when the lOP is 
initialized (see section 3.6). Mode 0 is compatible 
with the 8086/8088 request/grant circuit and 
must be specified when the 8089's RQ/GT line is 
connected to RQ/GTO or RQ/GTl of one of 
these.£PUs. Mode 0 may ~ s~ified when 
RQ/GT of one 8089 is tied to RQ/GT of another 
8089. When mode 0 is used with a CPU, the CPU 
is designated the master, and the lOP is 
designated a slave. When mode 0 is used with 
another lOP, one lOP is the master, and the other 
is the slave. Master/slave designation also is made 
at initialization time as discussed in section 3.6. 
The master has the bus when the system is in­
itialized and keeps the bus until it is requested by 
the slave. When the slave requests the bus, the 
master grants it if the master is idle. In this sense, 
the CPU becomes idle at the end of the current 
bus cycle. An lOP master, on the other hand, 
does not become idle until both channels have 
halted program execution or are waiting for DMA 
requests. Once granted the bus, the slave (always 
an lOP) uses it until both channels are idle, and 
then releases it to the master. In mode 0, the 
master has no way of requesting the slave to 
return the bus. 

Mode I operation of the request/grant lines may 
only be used to arbitrate use of a private I/O bus 
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between two lOPs. In this case, one lOP is 
designated the master, and the other is designated 
the slave. However, the only difference between a 
master and a slave running in mode I is that the 
master has the bus at initialization time. Both 
processors may request the bus from each other at 
any time. The processor that has the bus will 
grant it to the requester as soon as one of the 
following occurs on either channel: 

• an unchained channel program instruction is 
completed, or 

• a channel goes idle due to a program halt or 
the completion of a synchronized transfer 
cycle (the channel waits for a DMA request). 

Execution of a chained channel program, a DMA 
termination sequence, a channel attention 
sequence, or a synchronized DMA transfer (i.e., a 
high-priority operation) on either channel 
prevents the lOP from granting the bus to the 
requesting lOP. 

The handshaking sequence in mode I is: 

• the ~uesting processor pulses once· on 
RQ/GT; 

• the processor with the bus grants it by 
pulsing once; and 

• if the processor granting the bus wants it 
back immediately (for exampl.!2..to~tch the 
next instruction), it will pulse RQ/GT again, 
two clocks after the grant pulse. 

The fundamental difference between the· two 
modes is the frequency with which the bus can be 
switched between the two processors when both 
are active. In mode 0, the processor that has the 
bus will tend to keep it for relatively long periods 
if it is executing a channel program. Mode I in 
effect places unchained channel programs at a 
lower priority since the processor will give up the 
bus at the end of the next instruction. Therefore, 
when both processors are running channel pro­
grams or synchronized DMA, they will share the 
bus more or less equally. When a processor 
changes to what would typically be considered a 
higher-priority activity such as chained program 
execution or DMA termination, it will generally 
be able to obtain the bus quickly and keep the bus 
for the duration of the more critical activity. 
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8289 Bus Arbiter 

When an lOP is configured remotely,an 8289 Bus 
Arbiter is used to control its access to the shared 
system bus (the CPU also has its own 8289). In a 
remote cluster. of two lOPs or an lOP and a CPU, 
one 8289 .controls access to the system bus for 
both processors in the cluster. The 8289 has 
several operating modes; when used with an 8089, 
the 8289 is usually strapped in its lOB (110 
Peripheral Bus) mode. 

The 8289 monitors the lOP's status lines. When 
these indicate that the lOP needs a cycle on the 
system bus, and the lOP does not presently have 
the bus,the8289 activates a bus request signal. 
This signal, along with the bus request lines of 
other 8289s on the same bus, can be routed to an 
external priority-resolving circuit. At the end of 
the current bus cycle, this circuit grants the bus to 
the requesting 8289 with the highest priority. 
Several different prioritizing techniques may be 
used; ina typical system, an lOP would have 
higher bus priority than a CPU. If the 8289 does 
not obtain the bus for its processor, it makes the 
bus appear "not ready" as if a slow memory were 
being accessed. The processor's clock generator 
responds to the. "not ready" condition by insert­
ing wait states into the lOP's bus cycle, thereby 
extending the cycle until the bus is acquired. 

Bus Arbitration for lOP Configurations 

When the CPU initializes an lOP, it must inform 
the lOP whether it is a master or a. slave, and 
which request/grant mode is to be used. This sec­
tion covers the requirements and options 
available for each lOP configuration; section 3.6 
describes how the information is communicated 
at initialization time. 

Table 3-11 summarizes the bus arbitration 
requirements and options by lOP configuration. 
In the local configuration, all bus arbitration is 
performed by the request/grant lines without 
additional hardware. One lOP maybe connected 
to each of the CPU's RQ/GT lines. The lOP con­
nected toRQ/OTO will obtain the bus if both pro­
cessors make simultaneous requests. 

Since a si!!gle lOP in a remote configuration does 
not use RQ/GT, its mode may be set to 0 or 1 
without affect. The single remote lOP, however, 
must be initialized as a master. If two remote 
lOPs share an 110 bus, one must be a master and 
the other a slave; both must be initialized to use 
the same request/grant mode. Normally, mode 1 
will be selected for its improved responsiveness, 
and the designation of master will be arbitrary. If 
one lOP must have the I/O bus when the system 
comes up, it should be initialized as the master. 

When a remote lOP shares its 1/0 bus with a 
local CPU, it must be a slave and must use 
request/grant mode O. 

Bus Load Limit 

A locally configured lOP effectively has higher 
bus priority than the CPU since the CPU will 
grant the bus upon request from the lOP. One or 
two local lOPs can .potentially monopolize the 
bus at the expense of the CPU. Of course, if the 
lOP activities are time-critical, this is exactly what 
should happen. On the other hand, there may be 
low-priority channel programs that have less 
demanding performance requirements. 

In such cases, the CPU may set a CCW bit called 
bus load limit to constrain the channel's use of the 
bus during normal (unchained) channel program 

Table 3-11. Bus Arbitration Requirements and Options 

Local Remote 
Remote With 

. 
Local CPU 

lOP 
Master/ RQ/GT Master/ RQ/GT Master/ RQ/GT 

Slave Mode Slave Mode Slave Mode 

IOP1· Slave 0 Master Oor 1 Slave 0 

IOP2 Slave 0 Slave 
Same as 

N/A N/A 
Master 
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execution. When this bit is set, the channel 
decrements a 7-bit counter from 7F (127) to OH 
with each instruction executed. Since the counter 
is decremented once per clock period, the channel 
waits a minimum of 128 clock cycles before it exe­
cutes the next instruction. By forcing the execu­
tion time of all instructions to 128 clocks, the use 
of the bus is reduced to between 3 and 25 percent 
of the available bus cycles. 

Setting the bus load limit effectively enables a 
CPU to slow the execution of a normal channel 
program, thus freeing up bus cycles. This is of 
most use in local configurations, but also may be 
effective in remote configurations, particularly 
when channel programs are executed from system 
memory. Bus load limit has noeffect on chained 
channel programs, DMA transfers, DMA ter­
mination, or channel attention sequences. 

Bus Lock 

Like the 8086 and 8088, the 8089 has a LOCK 
(bus lock) signal which can be activated by soft­
ware. The LOCK output is normally connected to 
the LOCK input of an 8289 Bus Arbiter. When 
LOCK is active, the bus arbiter will not release the 
bus to another processor regardless of its priority. 
A channel automatically locks the bus during exe­
cution of the TSL (test and set while locked) 
instruction and may lock the bus for the duration 
of a DMA transfer. 

If bit 9 of register CC is set, the 8089 activates its 
LOCK output during a DMA transfer on that 
channel. If the transfer is synchronized, LOCK is 
active from the time that the first DRQ is 
recognized. If the transfer is unsynchronized, 
LOCK is active throughout the entire transfer 
(there are no idle periods in an unsynchronized 
transfer). LOCK goes inactive when the channel 
begins the DMA termination sequence. 

A locked transfer ensures that the transfer will be 
completed in the shortest possible time and that 
the transferring channel has exclusive use of the 
bus. Once the channel obtains the bus and starts a 
locked transfer, the channel, in effect, becomes 
the highest-priority processor on that bus. 

The 8089 TSL (test and set while locked) 
instruction can be used to implement a 
semaphore. (See section 2.5 for a discussion of 
how a semaphore may be used to control the 
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access of multiple processors to a shared 
resource.) The instruction activates LOCK and 
inspects the value of a byte in memory. If the 
value of the byte is OH, it is changed (set) to a 
value specified in the instruction and the follow­
ing instruction is executed. If the byte does not 
contain OH, control is transferred to another loca­
tion specified in the instruction. The bus is locked 
from the time the byte is read until it is either writ­
ten or control is transferred to ensure that another 
processor does not access the variable after TSL 
has read it, but before it has updated it (i.e., 
between bus cycles). The following line of code 
will repeatedly test a semaphore pointed to by GA 
until it is found to contain zero: 

TEST_FLAG: TSL [GAJ, OFFH, TEST_FLAG 

When the semaphore is found to be zero, it is set 
to FFH and the program continues with the next 
instruction. 

3.6 Processor Control and 
Monitoring 

This section focuses on lOP/CPU interaction, 
i.e., how the CPU initializes the lOP and sub­
sequently sends commands to channels, and how 
the channels may interrupt the CPU. It also 
covers the channels' DMA control signals and the 
status signals that external devices can use to 
monitor lOP activities. 

Initialization 

Before the 8089 channels can be dispatched to 
perform I/O tasks, the lOP must be initialized. 
The initialization sequence (figure 3-29) provides 
the lOP with a definition of the system environ­
ment: physical bus widths, request/grant mode, 
and the location of the channel control block. 

The sequence begins when the lOP's RESET line 
is activated. This halts any operation in progress, 
but does not affect any registers. Upon the first 
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lOP CPU 

l l 
PREPARE 

HALT INITIALIZATION 
CONTROL RESET_ 

BLOCKS 

J 
CH1 BUSY-FFH 

1 
CH2 BUSY-OH 

J 
WAIT FOR CA+SEL ISSUE 
CHANNEL CHANNEL 

ATTENTION ATTENTION 

I 

READ 
INITIALIZATION 0/ CONTROL CH1 BUSY 

BLOCKS 

~ OH 

lOP IS READY; 
CH1 BUSY-OH CPU MAY INITIALIZE 

ANOTHER lOP 

WAIT FOR 
CHANNEL 

ATTENTION 

Figure 3-29. Initialization Sequence 

RESET after power-up, the content of all lOP 
registers is undefined. Register contents are 
preserved if the lOP is subsequently RESET, 
except that RESET always clears the chain bit in 
register CC. 

The lOP initializes itself by reading information 
from initialization control blocks located in the 
system space (see figure 3-30). The three blocks 
are the SCP (system configuration pointer), SCB 
(system configuration block) and the CB (channel 
control block). The CB is normally RAM-based; 
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the SCP and the SCB may be in RAM or ROM. It 
is the CPU's responsibility to properly setup the 
control blocks. 

The CPU starts the initialization sequence by issu­
ing a channel attention to channell (SEL low) or 
to channel 2 (SEL high). The CPU typically 
accesses the channels as two consecutive addresses 
in its I/O or memory space. An OUT instruction 
(for an I/O-mapped lOP) or a memory reference 
instruction (such as MOV) then issues the channel 
attention. 
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Figure 3-30. Initialization Control Blocks 

If channel 1 is selected (SEL=low), the lOP con­
siders itself a master (as discussed in section 3.5). 
If channel 2 is selected (SEL=high), the lOP 
operates as a slave. The lOP ignores, and does 
not latch, any subsequent channel attentions that 
occur during initialization. 
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If the lOP is a master, it assumes that it has the 
bus immediately. If it is a slave, it pulses RQ/GT 
to request the bus from the CPU (local configura­
tion) or the other lOP (remote configuration). 
When the lOP has obtained the bus, it assumes 
that the system bus is eight bits wide and reads the 
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SYSBUS field (figure 3-31) from location 
FFFF6H in system memory. This byte rells the 
lOP the actual physical width of the system bus; 
all subsequent accesses take advantage of a 16-bit 
bus if it is available; i.e., even-addressed words 
are fetched in single bus cycles. It is therefore 
advantageous to word-align the control blocks. 

7 

o o o o o 

W = 0 = a-BIT SYSTEM BUS 
W = 1 = 16-BIT SYSTEM BUS 

o 

Figure 3-31. SYSBUS Encoding 

o 

w 

Next, the lOP reads the SCB address located at 
FFFF8H. This is a standard doubleword pointer, 
and the lOP constructs a 20-bit physical address 
from it by shifting the segment base left four bits 
and adding the offset word of the pointer. 

Having obtained the SCB address, the lOP reads 
the SOC (system operation command). This byte 
(see figure 3-32) tells the lOP the request/grant 
mode and the width of the I/O bus. 

7 

o o o o o 

R = REQUESTIGRANT MODE 
I = 0 = a-BIT 1/0 BUS 
I = 1 = 16-BIT 1/0 BUS 

R 

Figure 3-32. SOC Encoding 

o 

Then the lOP reads the doubleword pointer to the 
channel control block, converts the pointer into a 
20-bit physical address, and stores it in an internal 
register. This register is not accessible to channel 
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programs and is only loaded during initialization. 
The CB, therefore, cannot be moved during exe­
cution except by reinitializing the lOP. 

After loading the address of the CB, the lOP 
clears the channell BUSY flag to OH. The other 
fields in the CB are used when a channel is dis­
patched and are not read or altered in the 
initialization sequence. 

After the CPU has started the initialization 
sequence, it should monitor channell's BUSY 
flag in the CB to determine when the sequence has 
been completed. When the BUSY flag has been 
cleared, the CPU can dispatch either channel. It 
also can begin the initialization of another lOP. 
Since each lOP normally has a separate CB, the 
CPU must allocate the CB and update the pointer 
in the SCB before initializing the next lOP. Alter­
natively, multiple SCBs could be employed, each 
pointing to a different CB area. In this case the 
CPU would update the pointer in the SCP before 
initializing the next lOP. It follows from this that 
in multi-lOP systems, either the SCB or SCP, or 
both, must be RAM-based. When all lOPs have 
been initialized, the CPU may use RAM occupied 
by the SCB for another purpose. 

Channel Commands 

After initialization, any channel attention is 
interpreted as a command to channel 1 
(SEL=low) or to channel 2 (SEL=high). As 
discussed in section 3.2, the channel attention, 
depending on the activities of both channels, may 
not be recognized immediately. The channel 
attention is latched, however, so that it will be 
serviced as soon as priorities allow. 

When the channel recognizes the CA, it sets its 
BUSY flag in the CB to FFH. This does not pre­
vent the CPU from issuing another CA, but pro­
vides status information only. In its response to a 
CA, the channel reads various control fields from 
system memory. It is the responsibility of the 
CPU to ensure that the appropriate fields are 
properly initialized before issuing the CA. 

After setting its BUSY flag, the channel reads its 
CCW from the CB. It examines the command 
field (see figure 3-33) and executes the command 
encoded there by the CPU. 
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7 

CF COMMAND FIELD 
000 UPDATE PSW 

o 

CF 

001 START CHANNEL PROGRAM LOCATED IN I/O SPACE. 
010 (RESERVED) 
011 START CHANNEL PROGRAM LOCATED IN SYSTEM SPACE. 
100 (RESERVED) 
101 RESUME SUSPENDED CHANNEL OPERATION 
110 SUSPEND CHANNEL OPERATION 
111 HALT CHANNEL OPERATION 

ICF INTERRUPT CONTROL FIELD 
00 IGNORE, NO EFFECT ON INTERRUPTS. 
01 REMOVE INTERRUPT REQUEST; INTERRUPT IS ACKNOWLEDGED. 
10 ENABLE INTERRUPTS. 
11 DISABLE INTERRUPTS. 

B BUS LOAD LIMIT 
o NO BUS LOAD LIMIT 
1 BUS LOAD LIMIT 

P PRIORITY BIT 

Figure 3-33. Channel Command Word Encoding 

Figure 3-34 illustrates the channel's response to 
each type of command. Note that if CF contains a 
reserved value (010 or 100), the channel's 
response is unpredictable. 

The CPU can use the "update PSW" command 
to alter the bus load limit and priority bits in the 
PSW (see figure 3-17) without otherwise affecting 
the channel. This command also allows the CPU 
to control interrupts originating in the channel; 
this topic is discussed in more detail later in this 
section. 

The two "start program" commands differ only 
in their affect on the TP tag bit. If CF=OOI, the 
channel sets the tag to 1 to indicate that the pro­
gram resides in the I/O space. If CF=Oll, the tag 
is cleared to 0, and the program is assumed to be 
in the system space. The channel converts the 
doubleword parameter block pointer to a 20-bit 
physical address and loads this into PP. It loads 
the doubleword task block (channel program) 
pointer into TP, updates the PSW as specified by 
the ICF, Band P fields of the CCW and starts the 
program with the instruction pointed to by TP. 
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The CPU may suspend a channel operation 
(either program execution or DMA transfer) by 
setting CF to 110. The channel saves its state (TP, 
its tag bit, and PSW) in the first two words of the 
parameter block (see figure 3-18 for format) and 
clears its BUSY flag to OH. Note the following in 
regard to a suspended <>peration: 

• The content of the doubleword pointer to the 
beginning of the channel program is replaced 
by the channel state save data. Therefore, a 
suspended operation may be resumed, but 
cannot be started from the beginning without 
recreating the doubleword pointer. 

• TP is the only register saved by this 
operation. If another channel program is 
started on this channel, the other registers, 
including PP, are subject to being over­
written. In general, suspend is used to tem­
porarily halt a channel, not to "interrupt" it 
with another program. Section 3.10 provides 
an example of a program that can be used to 
save another program's registers. 
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Figure 3-34. Channel Commands 
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• Suspending a DMA transfer does not affect 
any 110 devices (an 110 device will act as 
though the transfer is proceeding). The CPU 
must provide for conditions that may arise if, 
for example, a device requests a DMA 
transfer, but the channel does not 
acknowledge the request because it has been 
suspended. Similarly, an 110 device may be 
in a different condition when the operation is 
resumed. 

A suspended operation may be resumed by setting 
CF to 101. This command causes the channel to 
reload TP, its tag bit, and the PSW from the first 
two words of PB. Resuming an operation that has 
not been suspended will give unpredictable results 
since the first two words of PB will not contain 
the required channel state data. A resume com­
mand does not affect any channel registers other 
than TP. 

The CPU may abort a channel operation by 
issuing a "halt" command (CF=111). The chan­
nel clears its BUSY flag to OH and then idles. 
Again, the CPU must be prepared for the effect 
aborting a DMA transfer may have on an 110 
device. 

ORO (OMA Request) 

The synchronizing device in a DMA transfer uses 
the DRQ line to indicate when it is ready to send 
or receive the next byte or word. The channel 
recognizes a signal on this line only during a 
DMA transfers, i.e., after the instruction follow­
ing XFER has been executed and before a ter­
mination condition has occurred. The channels 
have separate DMA request lines (DRQl and 
DRQ2). 

EXT (External Terminate) 

An external device (typically the synchronizing 
device) can terminate a DMA transfer by signal­
ing on this line. Each channel has its own external 
terminate line (EXT! and EXT2). The channel 
stops the transfer as soon as the current fetch or 
store cycle is completed. An external terminate in 
an unsynchronized transfer could result in a loss 
of data, although this would not be a typical use 
of EXT. In a synchronized transfer, the syn­
chronizing device will normally issue EXT instead 
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of DRQ following the last transfer cycle. If EXT 
is activated during a transfer cycle, a fetched byte 
may not be stored as explained in section 3.4. 

A channel does not recognize EXT if it is not per­
forming a DMA transfer. If EXTI and EXT2 are 
activated simultaneously, EXT! is recognized 
first. 

Interrupts 

Each channel has a separate system interrupt line 
(SINTRI and SINTR2). A channel program may 
generate a CPU interrupt request by executing a 
SINTR instruction. Whether this instruction 
actually activates the SINTR line, however, 
depends upon the state of the interrupt control bit 
(bit 3 of the PSW; see figure 3-17). If this bit is 
set, interrupts from the channel are enabled, and 
execution of the SINTR instruction activates 
SINTR. If the interrupt control bit is cleared, the 
SINTR instruction has no effect; intcrrupts from 
the channel are disabled. 

The CPU can alter a channel's interrupt control 
bit by sending any command to the channel with 
the value of ICF (interrupt control field) in the 
CCW set to 10 (enable) or 11 (disable). Thus, the 
CPU can prevent interrupts from either channel. 

Once activated, SINTR remains active until the 
CPU sends a channel command with lCF set to 01 
(interrupt acknowledge). When the channel 
receives this command, it clears the interrupt ser­
vice bit in the PSW (figure 3-17) and removes the 
interrupt request. Disabling interrupts also clears 
the interrupt service bit and lowers SINTR. 

Status Lines 

The lOP emits signals on the 8o-S2 status lines to 
indicate to external devices the type of bus cycle 
the processor is starting. Table 3-12 shows the 
signals that are output for each type of cycle. 
These status lines are connected to an 8288 Bus 
Controller. The bus controller decodes these lines 
and outputs the signals that control components 
attached to the bus. The lOP indicates "instruc­
tion fetch" on these lines when it is reading and 
writing memory operands as well as when it is fet-
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ched instructions. In the remote configuration, an 
8289 Bus Arbiter monitors the so-Si status lines 
to determine when a system bus access is required. 

Table 3-12. Status Signals SO-S2 

82 81 50 Type of Bus Cycle 

0 0 0 Instruction fetch from 110 space 

0 0 1 Data fetch from 110 space 

0 1 0 Data store to 110 space 

0 1 1 (not used) 

1 0 0 Instruction fetch from system 
space 

1 0 '1 Data fetch from system space 

1 1 0 Data store to system space, 

1 1 1 Passive; no bus cycle run 

Status lines S3-S6 indicate whether the bus cycle is 
DMA or non-DMA, and which channel is run­
ning the cycle (see table 3-i3)~ Note that when the 
lOP is not running a bus cycle (e.g., when it is idle 
or when it is executing an internal cycle that does 
not use the bus),the status lines reflect the last 
bus cycle run. 

Table 3-13. Status Signals S3-S6 

86 55 84 83 Bus Cycle 

1 1 0 0 DMA cycle on channel 1 

1 1 0 1 DMA cycle on channel 2 

1 1 1 0 Non-DMA cycle on channel 1 

1 1 1 1 Non-DMA cycle on channel 2 

3.7 Instruction Set 

This section divides the lOP's 53 instructions into 
five functional categories: 

1. data transfer, 

2. arithmetic, 

3. logic and bit manipulation, 

4. program transfer, 

5. processor control. 
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The ',description of each instruction in these, 
categories explains how the instruction operates 
and how it may:. be used in channel programs. 
Instructions that perform essentially the same 
operation (e.g., ADD and ADDB, which add 
words and bytes respectively), are ,described 
together; A reference table at the end:of the sec­
tion lists every instruction alphabetically and pro­
vides execution time"encoded length, and sample 
ASM-89 coding for each permissable operand 
combination. For information on how the 8089 
machine instructions, are encoded in memory, see 
section 4.3 . , ',' , 

In reading this secti~n, . it is important .to recall 
that the instruction set does not differentiate 
betweenmeI)1ory ,addresses and I/O device 
addresses. Instructions that are described as 
accepting, byte and word memory operands may 
also be used to read and write I/O devices. 

Data Transfei'lnstructions 

These instructions move data between memory 
and channel registers. Traditional byte and word 
moves (including memory-to-memory) are 
available, as are special, instructions that' load 
addresses into pointer registers and update tag 
bits in the process. 

MOV , destination, source 

MOV transfers abyt~orwordJrom the source,to 
the destination. Four instruction,S ,are provided: 

MOV 
MOVB 
MOVI 
MOVBI 

Move Word Variable, 
Move Byte Variable, 
Move Word Immediate, 
Move Byte Immediate. 

Figure 3-35 shows how these, instructions affect 
register, operands. Notice that when a pointer 
registeris specified as the destination of a MOV, 
its tag 'bit is unconditionally set to 1. MOV 
instructions ' are therefore ,used to load I/O space 
addresses into pointer registers., 
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Register is Destination 

Tag 19 15 7 0 

Byte r l r. - - ---r-----,...--------, 
Operation L1JLS~~SISSSSSSSSIRRRRRRRR I 

Word rlr--
Operation L-1J LS ~ ~ SiR R R R R R R R I R R R R R R R R I 

Register is Source 

Tag 19 15 7 o 

~ x.J0~~xlx X X X X X X XIT T T T T T TTl 

[xJG~~XITTTTTTTTITTTTTTTT I 

T = bit is transferred to destination operand 
R = bit is replaced by source operand 
S = bit is sign extension of high-order bit transferred 
X = bit is ignored 
1 = bit is unconditionally set 

Figure 3-35. Register Operands in MOV Instructions 

MOVP destination, source 

MOVP (move pointer) transfers a physical 
address variable between a pointer register and 
memory. If the source is a pointer register, its 
content and tag bit are converted to a physical 
address pointer (see figure 3-23). If the source is a 
memory location, the three bytes are converted to 
a20-bitphysicaladdress and a tag value, and are 
loaded into the pointer register and its tag bit. 
MOVP is typically used to save and restore 
pointer registers. 

LPD destination, source 

LPD (load pointer with doubleword) converts a 
doubleword pointer (see figure 3-22) to a 20-bit 
physical address and loads it into the destination, 
which must be a pointer register. The pointer 
register's tag bit is unconditionally cleared to 0, 
indicating a system address. Two instructions are 
provided: 

LPD 

LPDI 

Load Pointer With Doubleword 
Variable 
Load Pointer With Doubleword 
Immediate 
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An 8086 or 8088 can pass any address in its 
megabyte memory space to a channel program in 
the form of a doubleword pointer. The channel 
program can access the location by using LPD to 
load the location address into a pointer register. 

Arithmetic Instructions 

The arithmetic instructions interpret all operands 
as unsigned binary numbers of 8, 16 or 20 bits. 
Signed values may be represented in standard 
two's complement notation with the high-order 
bit representing the sign (O=positive, 1 =negative). 
The processor, however, has no way of detecting 
an overflow into a sign bit so this possibility must 
be provided for in the user's software. 

The 8089 performs arithmetic operations to 20 
significant bits as follows. Byte and word 
operands are sign-extended to 20 bits (e.g., bit 7 
of a byte operand is propagated through bits 8-19 
of an internal register). Sign extension does not 
affect the magnitude of the operand. The opera­
tion is then performed, and the 20-bit result is 

Mnemonics © Intel, 1979 



8089 INPUT IOUTPUT PROCESSOR 

INC destination returned to the destination operand. High-order 
bits are truncated as necessary to fit the result in 
the available space. A carry out of, or borrow 
into, the high-order bit of the result is not 
detected. However, if the destination is a register 
that is larger than the source operand, carries will 
be reflected in the upper register bits, up to the 
size of the register. 

The destination is incremented by 1. Two instruc-
tions are available: ' 

INC 
INCB 

Increment Word 
Increment Byte 

DEC destination 
Figure 3-36 shows how the arithmetic instructions 
treat registers when they are specified as source 
and destination operands. 

The destination is decremented by 1. Word and 
byte instructions are provided: 

ADD destination, source 

The sum of the two operands replaces the destina­
tion operand. Four addition instructions are 
provided: 

DEC 
DECB 

Decrement Word 
Decrement Byte 

Logical and Bit Manipulation 
Instructions 

ADD 
ADDB 
ADD! 
ADDBI 

Add Word Variable 
Add Byte Variable 
Add Word Immediate 
Add Byte Immediate 

The logical instructions include the boolean 
operators AND, OR and NOT. Two bit manipu­
lation instructions are provided for setting or 

Register is Destination Register is Source 

Tag 19 15 7 0 Tag 19 15 7 o 
Byte 1"':;' r- -

Operation I.x.J~~~RIRRRRRRRRIRRRRRRRR I ~xJ~~~xlxxxxxxxxlpppppppp I 

Word r;,r-­
Operation LXJ~~~RIRRRRRRRRIRRRRRRRR I 
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x = bit is ignored in operation 
R = bit is replaced by operation result 
p = bit participates in operation 

Figure 3-36. Register Operands in Arithmetic Instructions 
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clearing a single bit in memory or in an 110 device 
register. As shown in figure 3-37, the logical 
operations always leave the upper four bits of 
20-bit destination registers undefined. These bits 
should not be assumed to contain reliable values 
or the same values from one operation to the 
next. Notice also that when a register is specified 
as the destination of a byte operation, bits 8-15 
are overwritten by bit 7 of the result. Bits 8-15 can 
be preserved in AND and OR instructions by 
using word operations in which the upper byte of 
the source operand is FFH or OOH, respectively. 

AND destination, source 

The two operands are logically ANDed and the 
result replaces the destination operand. A bit in 
the result is set if the bits in the corresponding 
positions of the operands are both set, otherwise 
the result bit. is cleared. The following AND 
instructions are available: 

AND 
ANDB 
AND! 
ANDBI 

Logical AND Word Variable 
Logical AND Byte Variable 
Logical AND Word Immediate 
Logical AND Byte Immediate 

Register is Destination 

Tag 19 15 7 0 

AND is useful when more than one bit of a device 
register must be cleared while leaving the remain­
ing bits intact. For example, ANDing an 8-bit 
register with EEH only clears bits o and 4. 

OR destination, source 

The two operands are logically ORed, and the 
result replaces the destination operand. A bit in 
the result is set if either or both of the correspond­
ing bits of the operands are set; if both operand 
bits are cleared, the result bit is cleared. Four 
types of OR instructions are provided: 

OR 
ORB 
ORI 
ORBI 

Logical OR Word Variable 
Logical OR Byte Variable 
Logical OR Word Immediate 
Logical OR Byte Immediate 

OR can be used to selectively set multiple bits in a 
device register. For example, ORing an 8-bit 
register with 30H sets bits 4 and 5, but docs not 
affect the other bits. 

Register is Source 

Tag 19 15 7 o 
Byte r ::l r. - - -

Operation L ~ LU ~ ~ uis S S S S S S siR R R R R R R R I [xJ0~~ xlxxxxxxxxip p p p p p p p I 

[~~~~ xlp p p p p p P plpp P P P P P P I 

x = bit is ignored in operation 
U = bit is undefined following operation 
R = bit participates in operation and is replaced by result 
S = bit is sign-extension of high-order result bit 
P = .bit participates in operation, but is unchanged 

Figure 3-37. Register Operands in Logical' Instructions 
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NOT destination/destination, source 

NOT inverts the bits of an operand. If a single 
operand is coded, the inverted result replaces the 
original value. If two operands are coded, the 
inverted bits of the source replace the destination 
value (which must be a register), but the source 
retains its original value. In addition to these two 
operand forms, separate mnemonics are provided 
for word and byte values: 

NOT 
NOTB 

Logical NOT Word 
Logical NOT Byte 

NOT followed by INC will negate (create the 
two's complement of) a positive number. 

SETB destination, bit-select 

The bit-select operand specifies one bit in the 
destination, which must be a memory byte, that is 
unconditionally set to 1. A bit-select value of 0 
specifies the low-order bit of the destination while 
the high-order bit is set if bit-select is 7. SETB is 
handy for. setting a single bit in an 8-bit device 
register. 

CLR destination, bit-select 

CLR operates exactly like SETB except that the 
selected bit is unconditionally cleared to O. 

Program Transfer Instructions 

Register TP controls the sequencejn which chan­
nel program instructions are executed. As each 
instruction is executed, the length of the instruc­
tion is added to TP so that it. points to the next 
sequential instruction. The program transfer 
instructions can alter this sequential execution by 
adding a signed displacement value to TP. The 
displacement is contained in the program transfer 
instruction and may be either 8 or 16 bits long. 
The displacement is encoded in two's complement 
notation, and the high-order bit indicates the sign 
(O=positive displacement, 1 =negative displace­
ment). An 8-bit displacement may cause a 
transfer to a location in the range -128 through 
+ 127 bytes from the end of the transfer instruc­
tion, while a 16-bit displacement can transfer to 
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any location within -32,768 through +32,767 
bytes. An instruction containing an 8-bit displace­
ment is called a short transfer and an instruction 
containing a 16-bit displacement is called a long 
transfer. 

The program transfer instructions have alternate 
mnemonics. If the mnemonic begins with.the let­
ter "L," the transfer is long, and the distance to 
the transfer target is expressed as a 16-bit 
displacement regardless of how far away the 
target is located. If the mnemonic does not begin 
with "L," the ASM-89 assembler may build a 
short or long displacement according to rules 
discussed in section 3.9. 

The "self-relative" addressing technique used by 
program transfer instructions has two important 
consequences. First, it promotes position­
independent code, i.e., code that can be moved in 
memory and still execute correctly. The only 
restriction here is that the entire program must be 
moved as a unit so that the distance between the 
transfer instruction and its target does not 
change. Second, the limited addressing range of 
these instructions must be kept in mind when 
designing large (over 32k bytes of code) channel 
programs. 

CALL/LCALL TPsave, target 

CALL invokes an out-of-line routine, saving the 
value of TP so that the subroutine can transfer 
back to the instruction following the CALL. The 
instruction stores TP and its tag bit in the TPsave 
operand, which must be a physical address 
variable, and then transfers to the target address 
formed by adding the target operand's displace­
ment to TP. The subroutine can return to the 
instruction following the CALL by using a 
MOVP instruction to load TPsave back into TP. 

Notice that the 8089's facilities for implementing 
subroutines, or procedures, is less sophisticated 
than its couriterparts in the 8086/8088. The prin­
cipal difference is that the 8089 does not have a 
built in stack mechanism. 8089 programs can 
implement a stack using a base register as a stack 
pointer. On the other hand, since channel pro­
grams are not subject to interrupts, a stack will 
not be required for most channel programs. 
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JMP/LJMP target 

JMP causes an unconditional transfer (jump) to 
the target location. Since the task pointer is not 
saved, no return to the instruction following the 
JMP is implied. 

JZ/LJZ source, target 

JZ (jump if zero) effects a transfer to the target 
location if the source operand is zero; otherwise 
the instruction following JZ is executed. Word 
and byte values may be tested by alternate 
instructions: 

JZ/LJZ 
JZB/LJZB 

Jump/Long Jump if Word Zero 
Jump/Long Jump if Byte Zero 

If the source operand is a register, only the low­
order 16 bits are tested; any additional high-order 
bits in the register are ignored. To test the low­
order byte of a register, clear bits 8-15 and then 
use the word form of the instruction. 

JNZlLJNZ source, target 

JNZ operates exactly like JZ except that control is 
transferred to the target if the source operand 
does not contain all O-bits. Word and byte sources 
may be tested using these mnemonics: 

JNZ/LJNZ Jump/Long Jump if Word Not 
Zero 

JNZB/LJNZB Jump/Long Jump if Byte Not 
Zero. 

JMCE/LJMCE . source, target 

This instruction (jump if masked compare equal) 
effects a transfer to the target location if the 
source (a memory byte) is equal to the lower byte 
in register MC as masked by the upper byte in 
MC. Figure 3-15 illustrates how O-bits in the 
upper half of MC cause the corresponding bits in 
the lower half of MC and the source operand to 
compare equal, regardless of their actual values. 
For example, if bits 8-15 of MC contain the value 
01H, then the transfer will occur if bit 0 of the 
source and register MC are equal. This instruction 
is useful for testing multiple bits in 8-bit device 
registers. 

3-49 

JMCNE/LJMCNE source, target 

This instruction causes a jump to the target loca­
tion if the source is not equal to the mask/ 
compare value in MC. It otherwise operates iden­
tically to JMCE. 

JBT ILJBT source, bit-select, target 

JBT (jump if bit true) tests a single bit in the 
source operand and jumps to the target if the bit 
is a 1. The source must be a byte in memory or in 
an 110 device register. The bit-select value may 
range from 0 through 7, with 0 specifying the low­
order bit. This instruction may be used to test a 
bit in an 8-bit device register. If the target is the 
JBT instruction itself, the operation effectively 
becomes "wait until bit is 0." 

J N BT ILJ N BT source, bit-select, target 

This instruction operates exactly like JBT, except 
that the transfer is made if the bit is not true, i.e., 
if the bit is O. 

Processor Control Instructions 

These instructions enable channel programs to 
control lOP hardware facilities such as the LOCK 
and SINTRI-2 pins, logical bus width selection, 
and the initiation of a DMA transfer. 

TSL destination, set-value, target 

Figure 3-38 illustrates the operation of the TSL 
(test and set while locked) instruction. TSL can be 
used to implement a semaphore variable that 
controls access to a shared resource in .a 
multiprocessor system (see section 2.5). If the 
target operand specifies the address of the TSL 
instruction, the instruction is repetively executed 
until the semaphore (destination) is found to con­
tain zero. Thus the channel program does not 
proceed until the resource is free. 

WID source-width, dest-width 

WID (set logical bus widths) alters bits 0 and 1 of 
the PSW, thus specifying logical bus widths for a 
DMA transfer. The operands maybe specified as 
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ACTIVATE 
mcK 

FETCH 
DESTINA TION 

ASSIGN· 
SET·VALUETO 
DESTINA TION 

STORE 
DESTINA TION 

DE·ACTIVATE 
~ 

* OH DE·ACTIVATE 
LOCK 

NEXT SEQUENTIAL INSTRUCTION 

Figure 3-38. Operation of TSL Instruction 

8 or 16 (bits), with the,restriction that the logical 
width of a bus cannot exceed its physical width. 
The logical bus widths are undefined following a 
processor RESET; therefore the WID instruction 
must be executed before the first transfer. 
Thereafter the logical widths retain their values 
until the next WID instruction or processor 
RESET. 

XFER (no operands) 

XFER (enter DMA transfer mode after following 
instruction) prepares the channel for a DMA 
transfer operation. In a synchronized transfer, 
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the instruction following XFER may ready· the 
synchronizing device (e.g., send a "start" com­
mand or the last of a series of parameters). Any 
instruction, including NOP and WID, may follow 
XFER, except an instruction that alters GA, GB 
orGC.· 

SINTR (no operands) 

This instruction sets the interrupt service bitin the 
PSW and activates the channel's SINTR line if 
the interrupt control bit in the PSW is set. If the 



8089 INPUT /OUTPUT PROCESSOR 

interrupt control bit is cleared (interrupts from 
this channel are disabled), the interrupt service bit 
is set, but SINTRI-2 is not activated. A channel 
program may use this instruction to interrupt a 
CPU. 

NOP (nooperands) 

This instruction consumes clock cycles but per­
forms no operation. As such, it is useful in timing 
loops. 

HL T (no operands) 

This instruction concludes a channel program. 
The channel clears its BUSY flag and then idles. 

Instruction Set Reference Information 

Table 3-16 lists every 8089 instruction 
alphabetically by its ASM-89 mnemonic. The 
ASM-89 coding format is shown (see table 3-14 
for an explanation of operand identifiers) along 

with the instruction name. For every combination 
of operand types (see table 3-15 for key), the 
instruction's execution time and its length in 
bytes, and a coding example are provided. 

The instruction timing figures are the number of 
clock periods required to execute the instruction 
with the given combination of operands. At 
5 MHz, one clock period is 200 ns; at 8 MHz a 
clock period is 125 ns. Two timings are provided 
when an instruction operates on a memory word. 
The first (lower) figure indicates execution time 
when the word is aligned on an even address and 
is accessed over a 16-bit bus. The second figure is 
for odd-addressed words on 16-bit buses and any 
word accessed via an 8-bit bus. 

Instruction fetch time is shown in table 3-17 and 
should be added to the execution times shown in 
table 3-16 to determine how long a sequence of 
instructions will take to run. (Section 3.2 explains 
the effect of the instruction queue on 16-bit 
instruction fetches.) External delays such as bus 
arbitration, wait states and activity on the other 
channel will increase the elapsed time over the 
figures shown in tables 3-16 and 3-17. These 
delays are application dependent. 

Table 3-14. Key to ASM-89 Operand Identifiers 

IDENTIFIER USEDIN EXPLANATION 

destination data transfer, A register or memory location that may contain data operated on 
arithmetic, by the instruction, and which receives (is replaced by) the result 
bit manipulation of the operation. 

source data transfer, A register, memory location, or immediate value that is used in 
arithmetic, the operation, but is not altered'by the instruction. 
bit manipulation 

target program transfer Location to which control is to be transferred. 

TPsave program transfer A 24-bit memory location where the address'of the next sequen-
tial instruction is to be saved. 

bit-select bit manipulation Specification of a. bit location within a byte; Q=least-significant 
(rightmost) bit, 7=most-significant (leftmost) bit. 

set-value TSL Value to which destination is set if it is found O. 

source-width WID Logical width of source bus. 

dest-width WID Logical width of destination bus. 
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IDENTIFIER 

(no operands) 

register 

ptr-reg 

immed8 

immed16 

mem8 

mem16 

mem24 

mem32 

label 

short-label 

0-7 

8/16 

8089 INPUT /OUTPUT PROCESSOR 

Table 3-15. Key to Operand Types 

. 

No operands are written 

Any general register 

A pointer register 

EXPLANATION 

A constant in the range O-FFH 

A constant in the range O-FFFFH 

An 8-bitmemory location (byte) 

A 16-bit memory location (word) 

A 24-bit memory location (physical address pointer) 

A 32-bit memory location (doubleword pOinter) 

A label within -32,768 to +32,767 bytes of the end of the instruction 

A label within -128 to +127 bytes of the end of the instruction 

A constant in the range: 0-7 

The constant 8 or the constant 16 

Table 3-16. Instruction Set Reference Data 

ADD destination, source Add Word Variable 

Operands Clocks Bytes Coding Example 

register, mem16 11/15 2-3 ADD BC, [GAj.LENGTH 
mem16, register 16/26 2-3 ADD [GBj,GC 

" 

ADDB destination, source Add Byte Variable 

Operands Clocks Bytes Coding Example 

register, ll)em8 11 2-3 ADDB GC, [GAj.N_CHARS 
mem8, register 16 2-3 ADDB [PPj.ERRORS, MC 

ADDBI destination, source Add Byte Immediate 

Operands Clocks Bytes Coding Example 

register, immed8 '3 3 ADDBI MC,10 
mem8, immed8 16 3-4 ADDBI [PP+IX+j.RECORDS,2CH 

ADDI destination, source AddWord Immediate 

Operands Clocks Bytes Coding Example 

register, immed16 3 4 ADDI GB,OC25BH 
mem16, immed16 16/26 4-5 ADDI [GBj.POINTER,5899 
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Table 3-16. Instruction Set Reference Data (Cont'd.) 

AND destination, source Logical AND Word Variable 

Operands Clocks Bytes Coding Example 

register, mem16 11115 2-3 AND MC, [GA).FLAG_WORD 
mem16, register 16126 2-3 AND [GC).STATUS, BC 

ANDB destination, source Logical AND Byte Variable 

Operands Clocks Bytes Coding Example 

register, memB 11 2-3 AND BC, [GC) 
memB, register 16 2-3 AND [GA+IX).RESULT, GA 

.. 

ANDBI destination, source Logical AND Byte Immediate 

Operands Clocks Bytes Coding Example 

register, immedB 3 3 GA ,01100000 B 
memB, immedB 16 3-4 [GC+IX], 2CH 

ANDI . destination, source Logical AND Word Immediate 

Operands Clocks Bytes Coding Example 

register, immed16 3 4 IX,OH 
mem16, immed16 16126 4-5 [GB+IX).TAB,40H 

CALL TPsave, target Call 

Operands Clocks Bytes Coding Example 

mem24, label 17123 3-5 CALL [GC+IX).SAVE, GET_NEXT 

CLR destination, bit select Clear Bit To Zero 

Operands Clocks Bytes Coding Example 

memB,0-7 . 16 2-3 CLR [GA], 3 
-

DEC destination Decrement Word By 1 

Operands Clocks Bytes Coding Example 

register 3 "2 
mem16 16126 2-3 DEC [PP).RETRY 
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Table 3-16. Instruction Set Reference Data (Cant'd.) 

DECB destination Decrement Byte By 1 

Operands Clocks Bytes Coding Example 

mem8 16 2-3 DECB [GA+IX+].TAB 

HLT (no operands) Halt Channel Program 

Operands Clocks Bytes Coding Example 

(no operands) 11 2 HLT 

INC destination Increment Word by 1 

Operands Clocks Bytes Coding Example 

register 3 2 INC GA 
mem16 16/26 2-3 INC [GA].COUNT 

INCB destination Increment Byte by 1 

Operands Clocks Bytes Coding Example 

mem8 16 2-3 INCB [GBl.POINTER 

JBT source, bit-select, target Jump if Bit True (1) 

Operands Clocks Bytes Coding Example 

mem8, 0-7, label 14 3-5 JBT [GA].RESULLREG,3,DATLVALID 

JMCE source, target Jump if Masked Compare Equal 

Operands Clocks Bytes Coding Example 

mem8, label 14 3-5 JMCE [GB].FLAG, STOP_SEARCH 

JMCNE source, target Jump if Masked Compare Not Equal 

Operands Clocks Bytes Coding Example 

mem8, label 14 3-5 JMCNE [GB+IX], NEXT_ITEM 

JMP target Jump Unconditionally 

Operands Clocks Bytes Coding Example 

label 3 3-4 JMP READ_SECTOR 
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Table 3-16. Instruction Set Reference Data (Cont'd.) 

JNBT source, bit-select, target Jump if Bit Not True (0) 

Operands Clocks Bytes Coding Example 

memS, 0-7, label 14 3-5 JNBT [GCl. 3, RE_READ 

JNZ source, target Jump if Word Not Zero 

Operands Clocks Bytes Coding Example 

register, label 5 3-4 JNZ BC, WRITE_LINE 
mem16, label 12/16 3-5 JNZ [PP].NUM~CHARS, PUT_BYTE 

JNZB source, target Jump if Byte Not Zero 

Operands Clocks Bytes Coding Example 

memS, label 12 3-5 JNZB [GA], MORE_DATA 

JZ source, target Jump if Word is Zero 

Operands Clocks Bytes Coding Example 

register, label 5 3-4 JZ BC, NEXT_LINE 
mem16, label 12/16 3-5 JZ [GC+IX].lNDEX, BUF _EMPTY 

JZB source, target Jump if Byte Zero 

Operands Clocks Bytes Coding Example 

memS, label 12 3-5 JZB [PP].LlNES_LEFT, RETURN 

LCALL TPsave, target Long Call . 

Operands Clocks Bytes Coding Example 

mem24, label 17/23 4-5 LCALL [GC].RETURN_SAVE,INIT_S279 

LJBT source, bit-select, target Long Jump if Bit True (1) 

Operands Clocks Bytes Coding Example . 

memS, 0-7, label 14 4-5 LJBT [GA].RESULT, 1, DATA_OK 

LJMCE source, target Long jump if Masked Compare Equal 

Operands Clocks Bytes Coding Example 

memS, label 14 4-5 LJMCE [GB], BYTE_FOUND 
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'table 3~16. Instruction Set Reference Data (Cont'd.) 

LJMCNE source, target Long jump if Masked Compare Not Equal 

Operands Clocks Bytes Coding Example 

memB, label 14 4-5 LJMCNE [GC+IX+], SCAN_NEXT 

LJMP target Long Jump Unconditional 

Operands Clocks Bytes Coding Example 

label 3 4 LJMP GET_CURSOR 

LJNBT source, bit-select, target Long Jump if Bit Not True (0) 

Operands Clocks Bytes Coding Example 

memB, 0-7, label 14 4-5 LJNBT [GC], 6, CRCC_ERROR 

LJNZ source, target Long Jump if Word Not Zero 

Operands Clocks Bytes Coding Example 

register, label 5 4 LJNZ BC, PARTIALXMIT 
mem16, label 12/16 4-5 LJNZ [GA+IX].N_LEFT, PUT_DATA 

. 

LJNZB source, target Long Jump if Byte Not Zero 

Operands Clocks Bytes Coding Example 

memB, label h 12 4-5 LJNZB [GB+lX+].ITEM, BUMP_COUNT 

LJZ source, target Long Jump if Word Zero 

Operands Clocks Bytes Coding Example 

register, label 5 4 LJZ IX, FIRST_ELEMENT 
mem16, label 12/16 . 4-5 LJZ [GB].XMIT_COUNT,NO_DATA 

LJZB source, target Long Jump if Byte Zero 

Operands Clocks Bytes Coding Example 

memB, label 12 4-5 LJZB [GA], RETURN_LINE 

LPD destination, source Load Pointer With Doubleword Variable 

Operands Clocks Bytes Coding Example 

ptr-reg, mem32 20/2B* 2-3 LPD GA, [PP].BUF _START 

*20 clocks if operand is on even address; 2B if on odd address 

Mnemonics © Intel, 1979 
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Table 3-16. Instruction Set Reference Data (Cont'd.) 

LPDI destination, source Load Pointer With Doubleword Immediate 

Operands Clocks Bytes Coding Example 

ptr-reg, immed32 12/16' 6 LPDI GB, DISK_ADDRESS 

'12 clocks if instruction is on even address; 16 if onodd address 

MOV destination, source Move Word 

Operands Clocks Bytes Coding Example 

register, mem16 8/12 2-3 MOV IX, [GC] 
mem16, register 10/16 2-3 MOV [GA].COUNT, BC 
mem16, mem16 18/28 4-6 MOV [GA].READING, [GB] 

MOVB destination, source Move Byte 

Operands Clocks Bytes Coding Example 

register, mem8 8 2-3 MOVB BC, [PP].TRAN_COUNT 
mem8, register 10 2-3 MOVB [PP].RETURN_GODE, GC 
mem8, mem8 18 4-6 MOVB [GB+IX+], [GA+IX+] 

MOVBI destination, source Move Byte Immediate 

Operands Clocks Bytes Coding Example 

register, immed8 3 3 MOVBI MG, 'A' 
mem8, immed8 12 3-4 MOVBI [PP].RESULT,O 

MOVI destination, source Move Word Immediate 

Operands Clocks Bytes Coding Example 

register, immed16 3 4 MOVI BC,O 
mem16, immed16 12/18 4-5 MOVI [GB], OFFFFH 

MOVP destination, source Move Pointer 

Operands Clocks Bytes Coding Example 

ptr-reg, mem24 19/27' 2-3 MOVP TP, [GG+IX] 
mem24, ptr-reg 16/22' 2-3 MOVP [GB].SAVE_ADDR, GG 

'First figure is for operand on even address; second is for odd-addressed operand. 

NOP (no operands) . No Operation 

Operands Clocks Bytes Coding Example 

(no operands) 4 2 NOP 
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Table 3-16. Instruction Set Reference Data (Cont'd.) 

NOT destination 1 destination, source Logical NOT Word 

Operands Clocks Bytes Coding Example 

register 3 2 NOT MC 
mem16 16/26 2-3 NOT [GA).PARM 
register, mem16 11/15 2-3 NOT BC, [GA+IX).LlNES_LEFT 

NOTB desti nation 1 desti nation, sou rce Logical NOT Byte 

Operands Clocks Bytes Coding Example 

mem8 16 2-3 NOTB [GA).PARM_REG 
register, mem8 11 2-3 NOTB IX, [GB).STATUS 

OR destination, source Logical OR Word 

Operands Clocks Bytes Coding Example 

register, mem16 11/15 2-3 OR MC, [GC).MASK 
mem16, register 16/26 2-3 OR [GCl. BC 

ORB destination, source Logical OR Byte 

Operands Clocks Bytes Coding Example 

register, mem8 11 2-3 ORB IX, [PP).POINTER 
mem8, register 16 2-3 ORB [GA+IX+l. GB 

ORBI destination, source Logical OR Byte Immediate 

Operands Clocks Bytes Coding Example 

register, immed8 3 3 ORBI IX, 00010001 B 
mem8, immed8 16 3-4 ORBI [GB).COMMAND,OCH 

ORI destination, source Logical OR Word Immediate 

Operands Clocks Bytes Coding Example 

register, immed16 3 4 ORI MC, OFFODH 
mem16,immed16 16/26 4-5 ORI [GAl. 1000H 

SETB destination, bit-select Set Bit to 1 

Operands Clocks Bytes Coding Example 

mem8,0-7 16 2-3 SETB [GA).PARM_REG,2 

SINTR (no operands) Set Interrupt Service Bit 

Operands Clocks Bytes Coding Example 

(no operands) 4 2 SINTR 

Mnemonics © Intel, 1979 
3-58 



8089 INPUT /OUTPUT PROCESSOR 

Table 3-16. Instruction Set Reference Data (Cont'd.) 

TSL destination, set-value, target Test and Set While Locked 

Operands Clocks Bytes Coding Example 

mem8, immed8, short-label 14116' 4-5 TSL [GAl.FLAG, OFFH, NOT_READY 

'14 clocks if destination f. 0; 16 clocks if destination = 0 

WID source-width, dest-width 

Operands 

8116,8116 

XFER (no operands) 

Operands 

(no operands) 

Table 3-17. Instruction Fetch Timings 
(Clock Periods) 

BUSWIDTH 
INSTRUCTION 

LENGTH 16 

(BYTES) 
8 

(1 ) 

2 14 7 
3 18 14 
4 22 14 
5 26 18 

Clocks 

4 

Clocks 

4 

(2) 

11 
11 
15 
15 

(1) First byte of instruction is on an even 
address. 

(2) First byte of instruction is on an odd address. 
Add 3 clocks if first byte is not in queue (e.g., 
first instruction following program transfer). 

3.8 Addressing Modes 

8089 instruction operands may reside in registers, 
in the instruction itself or in the system or I/O 
address spaces. Operands in the system and I/O 
spaces may be either memory locations or 110 
device registers and may be addressed in four dif­
ferent ways. This section describes how the chan-

Set Logical Bus Widths 

Bytes Coding Example 

2 WID 8,8 

Enter DMA Transfer Mode After Next Instruction 
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Bytes Coding Example 

2 XFER 

nel processes different types of operands and how 
it calculates addresses using its addressing modes. 
Section 3.9 describes the ASMc89 conventions 
that programmers use to specify these operands 
and addressing modes. 

Register and Immediate Operands 

Registers may be specified as source or destina­
tion operands in many instructions. Instructions 
that operate on registers are generally both 
shorter and faster than instructions that specify 
immediate or memory operands. 

Immediate operands are data contained in 
instructions rather than in registers or in memory. 
The data may be either 8 or 16 bits in length. The 
limitations of immediate operands are that they 
may only serve as source operands and that they 
are constant values. 

Memory Addressing Modes 

Whereas the channel has direct access to register 
and immediate operands, operands in the system 
and 110 space must be transferred to or from the 
lOP over the bus. To do this, the lOP must 
calculate the address of the operand, called its 
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effective address (EA). The programmer may 
specify that an operand's address be calculated in 
any of four different ways; these are the 8089's 
memory addressing modes. 

The Effective Address 

An operand in the system space has a 20-bit effec­
tive address, and an operand in the IIO space has 
a 16-bit effective address. These addresses are 
unsigned numbers that represent the distance (in 
bytes) of the low-order byte of the operand from 
the beginning of the.address space. Since the 8089 
does not "see" the segmented structure of the 
system space that it may share with an 8086 or 
8088, 8089 effective addresses are equivalent to 
8086/8088 physical addresses. 

All memory addressing modes use the content of 
one of the pointer registers, and the state of that 
register's tag bit determines whetherthe operand 
lies in the system,or theIlO space. If the operand 
is in the IIO space (tag = 1), bits 16-19 of the 
pointer register are ignored in the effective 
address calculation. Section 4.3 describes the t~o 
fields (AA and MM) in the encoded machine 
instruction that specify addressing mode and base 
(pointer) register. 

MM 

Based Addressing 

In based addressing (figure 3-39), the effective 
address is taken directly from the content of GA; 
GB, GC or PP. Using this iiddressing mode, one 
instruction may access different locations if the 
register isupdated before the instruction exec~tes. 
LPD, MOV,MOVP or arithmetic instructions 
might be used to change the value of the base 
register. 

Offset Addressing 

In this mode (figure 3-40) an 8-bit unsigned value 
contained in the instruction is added to the con­
tent of a base register to form the effective 
address. The offset mode provides a convenient 
way to address elements in structures· (a 
parameter block is a typical example of a struc" 
ture). As shown in figure 3-41, a base register can 
be pointed at the base (first element) in the struc" 
ture, and then different offsets can be used to 
access the elements within the structure. By 
changing the base address, the same structure can 
be relocated elsewhere in memory. 

Indexed Addressing 

An indexed address is formed by adding the con­
tent of register IX (interpreted as an unsigned 
quantity) to a base register as shown in figure 
3-42. Indexed addressing is often used to access 

MACHINE INSTRUCTION FORMAT 

GA 
OR 

GB 
OR 

GC 
OR 

pp 

EA 

Figure 3-39. Based Addressing 
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MM MACHINE INSTRUCTION FORMAT 

GA 
OR 

GB 
OR 

GC 
OR 

PP 

---11---.( + 

Figure 3-40. Offset Addressing 

OFFSET 

Y 
'r 

HIGH ADDRESSES 

6 ERROR l LlNECT 

+4 BUFF_PTR 

+2 POSITIONI CURSOR 

r-
I ................ ...,..-_...... r-~+O END_BUS 

LOW ADDRESSES .., 
I I 
I I 
I I 
I I 
I EA I 
I I L __________ ~ ____ ~ 

Figure 3-41. Accessing a Structure with Offset Addressing 

, 

.., 

array elements (see figure 3-43). A base register 
locates the beginning of the array and the value in 
IX selects one element, i.e., it acts as the array 
subscript. The ith element of a byte array is 
selected when IX contains (i '-1):To access the 
ith element of a word array, IX should contain 
((i-l)*2). 

Indexed Auto-Increment Addressing 
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In this variation of indexed addressing, the effec­
tive address is formed by summing IX and a base 
register, and then IX is incremented automat­
ically. (See figure 3-44.) The addition takes place 
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after the EA is calculated. IX is incremented by 1 
for a byte operation, by 2 for a word operation 
and by 3 for a M 0 VP instruction. This addressing 

R/B/P WB AA W OPCODE MM 

mode is very useful for "stepping through" suc­
cessive elements of an array (e.g., a program loop 
that sums an array). 

MACHINE INSTRUCTION FORMAT 

GA 

OR 

GB 

OR 

GC 

OR 

PP 

Figure 3-42. Indexed Addressing 

r 
I 
I 
I 
I 
I 
I 
I 
r 
r 
I 
I 

IX 

EA 

L... ___ . ...,;.. ____ _ 

I 

I 

I • 

----'- .. 

HIGH ADDRESSES ~ r-

ARRAY (9) 

ARRAY (8) 

ARR,AY(7) 

'l 

ARRAY (6) 

ARRAY (5) 

ARRAY (4) 

ARRAY (3) 

" 
ARRAY (2) 

ARRAY (1) 

ARRAY (0) 

!-1WORD_ 
h ' 

LOW ADDRESSES 

, , Figure 3-43. Accessing a Word Array with Indexed Addressing 
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R/B/P WB AA W OPCODE MM MACHINE INSTRUCTION FORMAT 

GA 
OR 

GB 

J~ 
OR IX 
GC 

OR • 
PP I 

I 
I 
I 

EA I 
I 
I 

J.0-I IX DELTA 

Figure 3-44. Indexed Auto-Increment Addressing 

3.9 Programming Facilities 

The compatibility of the 8089 with the 8086 and 
8088 extends beyond the hardware interface. 
Comparing figure 3-45, with figure 2-45, one can 
see that, except for the translate step, the software 
development process is identical for both 
8086/8088 and 8089 programs. The ASM-89 
assembler produces a relocatable object module 
that is compatible with the 8086 family software 
development utilities LIB-86, LINK-86, LOC-86 
and OH-86, described in section 2.9. All of these 
development tools run on an Intellec® 800 or 
Series II microcomputer development system. 

This section surveys the facilities of the ASM-89 
assembler and discusses how LINK-86 and 
LOC-86 can be used in 8089 software develop­
ment. For a complete description of the 8089 
assembly language, consult 8089 Assembly 
Language User's Guide, Order No. 9800938, 
available from Intel's Literature Department. 
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ASM-09 

The ASM-89 assembler reads a disk file contain­
ing 8089 assembly language statements, translates 
these statements into 8089 machine instructions, 
and writes the result into a second disk file. The 
assembly input is called a source module, and the 
principal output is a relocatable object module. 
The assembler also produces a file that lists the 
module and flags any errors detected during the 
assembly. 

Statements 

Statements are the building blocks of ASM-89 
programs. Figure 3-46 shows several examples of 
ASM-89 statements. The ASM-89 assembler gives 
programmers considerable flexibility in format­
ting program statements. Variable names and 
labels (identifiers) may be up to 31 characters 
long, the underscore (_) character may be used 
to improve the readability of longer names (e.g., 
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WAIT_UNTIL_READY). The component 
parts of statements (fields) need not be located at 
particular "columns" of the statement. Any 
number of blank characters may separate fields 

and multiple identifiers within the operand field. 
Long statements may be continued onto the next 
link by coding an ampersand (&) as the first 
character of the continued line. 

(FROM PL/M·B6 & ASM-86 TRANSLATORS) 

UPDATE 
LIBRARIES LlB-86 

Figure 3-45.8089 Software Development Process 

; THIS STATEMENT CONTAINS ACOMMENT FIELD ONLY 
ADDI BC,5 ; TYPICAL ASM89 INSTRUCTION 

ADDI BC, 5 ; NO "COLUMN" REQUIREMENTS 
MOV [GAl.STATUS, 
& 6 
SOURCE EQU GA 
L1NE_BUFFER_ADDRESS DO 

; A CONTINUED STATEMENT 
; A SIMPLE ASM89 DIRECTIVE 
; A LONG IDENTIFIER 

Figure 3-46. ASM-89 Statements 
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A statement whose first non-blank character is a 
semicolon is a comment statement. Comments 
have no affect on program execution and, in fact, 
are ignored by the ASM-89 assembler. Never­
theless, carefully selected comments are included 
in all well written ASM-89 programs. They sum­
marize, annotate and clarify the logic of the pro­
gram where the instructions are too 
"microscopic" to make the operation of the pro­
gram self-evident. 

An ASM-89 instruction statement (figure 3-47) 
directs the assembler to build an 8089 machine 
instruction. The optional label field assigns a 
symbolic identifier to the address where the 
instruction will be stored in memory. A labelled 
instruction can be the target of a program 
transfer; the transferring instruction specifies the 
label for its target operand. In figure 3-47 the 
labelled instruction conditionally transfers to 
itself; the program will loop on this one instruc-

tion as long as bit 3 of the byte addressed by 
[GA].ST ATUS is not true. The mnemonic field of 
an instruction statement specifies the type of 8089 
machine instruction that the assembler is to build. 

The operand field may contain no operands or 
one or more operands as required by the instruc­
tion. Multiple operands are separated by commas 
and, optionally, by blanks. Any instruction state­
ment may contain a comment field (comment 
fields are initiated by a semicolon). 

An ASM-89 directive statement (figure 3-48) does 
not produce an 8089 machine instruction. Rather, 
a directive gives the assembler information to use 
during the assembly. For example, the DS (define 
storage) directive in figure 3-48 tells the assembler 
to reserve 80 bytes of storage and to assign a sym­
bolic identifier (INPUT_BUFFER) to the first 
(lowest-addressed) byte of this area. The ASM-89 
assembler accepts 14. directives; the more com­
monly used directives are discussed in this section. 

;WAIT UNTIL READY I 

[ COMMENT (OPTIONAL) 

OPERANDS (REQUIRED/PROHIBITED) 

'----------------- MNEMONIC (REQUIRED) 

....... ------------------- LABEL (OPTIONAL) 

INPUT_BUFFER: 

Figure 3-47. ASM-89 Instruction Format 

OS 80 

COMMENT (OPTIONAL) 

....... ------ OPERANDS (REQUIRED/PROHIBITED) 

....... --------- MNEMONIC (REQUIRED) 

L..-______________ LABEL/NAME (REQUIRED/PROHIBITED) 

Figure 3-48. ASM-89 Directive Format 
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The first field in a directive may be a label ora 
name; individual directives may require or pro­
hibit names, while labels are optional Jor direc­
tives that accept them. A label ends in a colon like 
an instruction statement label. However, a direc­
tive label cannot be specified .as the target of a 
program transfer. A name does not have a colon. 
The second field is the directive mnemonic, and 
the assembler distinguishes between instructions 
and directives by this field.' Any operands 
required by the directive are written next; multiple 
operands are separated by commas and, option­
ally, by blanks. A comment may be included in 
any directive by beginning the text with a 
semicolon. 

Constants 

Binary, decimal, octal and hexadecimal numeric 
constants (figure 3-49) may be writtcm in ASM-89 
instructions and directives. The assembler can 
add and subtract constants at assembly .time. 
Numeric constants; including theresufis of 
arithmetic operations, must be representable in 16 
bits. Positive numbers cannot exceed 65,535 
(decimal); negative numbers, which the assembler 
represents in two's complement notation, cannot 
be "more negative" than -32,76& (decimal). 

Character constants are enclqsed in single quote 
marks as shown in figure 3-49. Strings of 
characters up to 255 bytes long may be written 
when initializing storage. Instruction operands, 
however, can only be one or two characters long 
(for byte and word instructions respectively). 

As an aid to program clarity, The EQU (equate) 
directive may be used to give names to constants 
(e.g., DISK-STATUS EQU OFF20H). 

Defining Data 

Fotir ASM-89 directives reserve space for memory 
variables in the ASM-89 program (see figure 
3-50): The DB, DW and DD directives allocate 
units of bytes, words and doublewords, respec­
tively, initialize the locations, and optionally label 
them so that they may be referred to by name in 
instruction statements. The label of a storage 
directive always refers to the first (lowest­
addressed)· byte of the area reserved by the 
qirective. " . 

The DB and DW directives may be used to define 
byte- and word-constant scalars (individual data 
items) and arrays (sequences of the same type of 
item). For example, a character string constant 
could be defined as a byte array: 

SIGN_ON_MSG: DB 'PLEASE ENTER PASSWORD' 

The DD directive is typically used to define the 
address ofa location in the" system space, i.e., a 
doubleword pointer variable. The address may be 
loaded into a pointer register with the LPD 
instruction. 

The DS directive reserves, and optionally names, 
storage in units of bytes, but does not initialize 
a11Y of the reserved bytes. DS is typically used for 
RAM-based variables such as buffers. As there is 
no special directive for defining a physical address 
pointer, DS is typically used to reserve the three 
bytes used by the MOVP instruction. 

MOVBI GA, 'A' ; CHARACTER 
MOVBI GA,41 H ; HEXADECIMAL 
MOVBI GA,65 ; DECIMAL " 
MOVBI GA,65D ; DECIMAL ALTERNATIVE 
MOVBI GA,101Q ; OCTAL 
MOVBI GA,1010 ; OCTAL ALTERNATIVE 
MOVBr GA, 01000001 B ; BINARY 
; NEXT TWO STATEMENTS ARE EQUIVALENT AND 
; ILLUSTRATE TWO'S COMPLEMENT REPRESENTATION 
; "OF NEGATIVE NUMBERS 
MOVBI GA,-5 
MOVBI GA,11111011B 

Figure.3-49. ASM89 Constants 
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; ASM89 DIRECTIVE ; MEMORY C.oNTENT(HEX) 
ALPHA: DB 1 ; 01 

DB -2 ; FE (TW.o'S C.oMPLEMENT) 
DB 'A', 'B' ; 4142 

BETA: DW 1 ; 0100 
DW -5 ; FAFF 
DW 'AB' ; 4241 
DW 400,500 ; 2410F401 
DW 400H,500H ; 00040005 

gamma: DW BETA ; .oFFSET .oF BET A AB.oVE, 
; FR.oM BEGINNING .oF PR.oGRAM 

DELTA DD GAMMA ; ADDRESS (SEGMENT & .oFFSET) 
;.oFGAMMA 

ZETA: DS 80 ; 80 BYTES, UNINITIALIZED 

Figure 3-50. ASM-89 Storage Directives 

Structures 

An ASM-89 structure is a map or template that 
gives names and relative locations to a collection 
of related variables that are called structure 
elements or members. Defining a structure, 
however, does not allocate storage. The structure 
is, in effect, overlaid on a particular area of 
memory when one of its elements is used as an 
instruction operand. Figure 3-51 shows how a 
structure representing a parameter block could be 
defined and then used in a channel program. The 

MEMORY MAP 

OFFSETS, , HIGHER ADDRESSES , 

+10 BUFFER_LEN 

+8 
BUFFER_START 

+6 

+4 COMMAND I RESULT 

+2 
TP _RESERVED 

PP- - .+0 

LOWER ADDRESSES h 

USING "HARD·CODED" OFFSETS 

LPD GA, [PPj.6 
MOVBI [PPj.5,0 

assembler uses the structure element name to pro­
duce an offset value (structures are used with the 
offset. addressing mode). Compared to "hard· 
coded" offsets, structures improve program clar­
ity and simplify maintenance. If the layout of a 
memory block changes, only the structure defini­
tion must be modified. When the program is 
reassembled, all symbolic references to the struc­
ture are automatically adjusted. When multiple 
areas of memory are laid out identically, a single 
structure can be used to address any area by 
changing the content of the pointer (base) register 
that specifies the structure's "starting address." 

STRUCTURE DEFINITION 

PARM_BLOCK 
TP_RESERVED: 
COMMAND: 
RESULT: 
BUFFER_START: 
BUFFER_LEN: 

PARM_BLOCK 

STRUC 
OS 4 
OS 1 
OS 1 
OS 4 
OS 2 
ENDS 

USING STRUCTURE ELEMENT NAMES 

LPD GA, [PPj.BUFFER_START 
MOVBI [PPj.RESULT,O 

Figure 3-51. ASM-89 Structure Definition and Use 
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Addressing Modes 

Table 3-18 summarizes the notation a program­
mer uses to specify how the effective address of a' 
memory operand is to be computed. Examples of 
typical ASM-89 coding for each addressing mode, 
as well as register and immediate operands, are'., ' 
provided in figure 3-5LNotice that a bracketed, .:: 
reference to a register indicates that the content of 
the register is to be usedu>'form'the effective 
address of a' memory operand; 'while" ari 
unbracketed register reference' specifies that the'" 
register itself is the operand, ,: ' , 

The following examples summarize how the, 
memory addressing modes can be used to access' 
simple variables, structures and arrays. '" 

• If GA contains the address of a memory 
"', ?perand, then [GA] refers to that operand. 
41' "II. oK!' cdrttilins 'the base, address of a 

~trudfu~e .. '1h:ebJGA].i)ATA refers ,to the 
DAT Ael~m~nt (fie!d)' iii thaI struct~re. If 
DATA is sixbytes'from the beginning of the 
structure, then [GA].6 r<!fers to the same 
location. ' , , . , ,'" , " 

• Jf.GAcentains the startingaddr,ess of all 
"arJay, then[GA +IX] addresses the ,aqay ele­

mentindexed by)X. For example, if IX con­
tains the value, 4H, the effective" address 
.refer~ tothe .fifth element of it byte array, or 
the third element of Ii w'ord array.'[GA+IX+] 
selects the same, element and additionally 
auto~increments' IX by 1 (byte operation), 2 
(word operation) or 3 (MOVP instruction) in 
anticipation of accessing the next array 
element. 

Note that any pointer register could have been 
substituted for GA in ihe'p,revious examples. 

Table,3-18. ASM-89,~mory Addressing 
, ModeNotation 

',", 

Notation ' , Addressing Mode 

[ptr-reg] Based " 

[ptr-reg ].offset Offset 
[ptr-reg + IX] Indexed 
[ptr-reg + IX +] Ind,exed Post Auto-increment 

ptr-reg 
offset " 

= GA, GB, GC or PP 
=S-bit signed value; may be struc­

ture element 

Program Transfer Targets 

As discussed in se,ction 3.7, program transfer 
instructions operate, by adcling Ii signed byte or' 
word displacement to the task pointer. Table 3~19 
shows how the ASM-89 assembler determines the 
sign imd size of the displaceqlent value it places'in 
a program transfer machine instruction" In the 
table the terms "backward" and "forward" 

' .. ,- .. I ", . ,'." ".-. 

refer to the location ofa label specified ,as a 
transfer target relative to the tran~fer instruction. 
",Backward" means the label physically precedes 
the instruction in the sourceniodule, imd "for-' 
ward" means the label follows the instruction in 
the source text.The distances are from the'end of 
the transfer instruction; the distance to the 
instruction immediately following the transfer is 
o bytes." , 

ADDI 
ADD 
ADDBI 
ADDB 
ADDB 
ADD 
ADDI 
ADDB, 

GA,5, , ; REGISTER, IMMEDIATE 
'GC, [GB] ; REGISTER, MEMORY (BASED) 

[PP],10 ; MEMORY (BASED), IMMEDIATE 
IX, [GB].5 ; REGISTER, MEMORY (OFFSET) 
BC, [GC].COUNT ; REGISTER, MEMORY (OFFSET) , 
[GC+ IX], BC ; MEMORY (INDEXED), REGISTER 
[GA+ IX + ],5 ; MEMORY (INDEXED AUTO-INCREMENT), IMMED 

,,[PP].ERROR j [GAl ; MEMORY (OFFSET), MEMORY(BASED) 
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Two important points can be drawn from table 
3-19. First, a target must lie within 32k bytes of a 
transfer instruction; this should not prove restric­
tive except in very large programs. Second, one 
byte can be saved in the assembled instruction by 
writing the short mnemonic when the target is 
known to be within -128 through +127 assembled 
bytes of the transfer. 

It is also important to note that a program 
transfer target must reside in the same module as 
the transferring instruction, i.e., the target 
address must be known at assembly time. 

Procedures 

An ASM-89 program may invoke an out-of-line 
procedure (subroutine) with the CALLILCALL 
instruction. The first instruction operand 
specifies a memory location where the content.of 
TP will be stored as a physical address pointer 
before control is transferred to the procedure. 
The procedure may return to the instruction 
following the CALLILCALL by using the 
MOVP instruction to restore TP from the save 
area. Figure 3-53 illustrates one approach to pro­
cedure linkage. 

A channel program may use the first two words of 
its parameter block (pointed to by PP) as a task 
pointer save area. However, this is not recom­
mended if there is any chance that the CPU will 

issue a "suspend" command to the channel; this 
command stores the current value of TP in the 
same location, possibly overwriting a return 
address. . 

As in any program tran.sfer, the target of a 
CALLILCALL instruction must be contained in 
the same module and· within 32k bytes of the 
instruction. 

Segment Control 

TherelocatabIe object module produced by the 
ASM-89 assembler consists of a single logical seg­
ment. (A segment is a storage unit up to 64k bytes 
long; for a more complete description, refer to 
sections 2.3 and 2.7.) The ASM-89 SEGMENT 
and ENDS directives name the segment as shown 
in figure 3-54. Typically, all instructions and most 
directives are coded ih between these directives. 

-The ENDdirective,·which terminates the 
assembly, is ari excep·tlOn. 

The LOC-86 utility can assign this logical segment 
to any memory address that is a physical segment 
boundary(i.e~, whose low-order four bits are 
0000). In a ROM-based system, variable data 
(which must be in RAM) can be "clustered" 
together at one "end" of the program as shown in 
figure 3-55 . Th.e·ORGdirective ciirithellbeused 
to force assembly of the variables to start at a 
given offset from the beginning of the segment 
(2,000 hexadecimal bytes in figure 3-55). As the 

Table 3-19. Program Transfer Displacement 

Target Location 

Mnemonic 
Direction Distance 

Displacement 
Form Sign Bytes 

Backward ·~128 1 
... 

-
Forward ~127 + 1 

Short Backward ·:";;32,768 - 2: 
(e.g.,JMP) Forward ~32,767 Error 

., 

Backward >32,768 ::. Error· 
Forward >32,767 Error 

Backward ~128 - 2 
Forward ~127 + 2 

Long BaCkward ~32,768 .... - . 2 ',. ':.:' 

(e.g., LJMP) Forward ~32,767 + 2 
Backward· . >32,768 Error; 
Forward >32,767 Error· 
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CALL SAVE: DS 3 ; TP SAVE AREA 

; SET UPTP SAVE AREA 
. NOTE: EXAMPLE ASSUMES PROGRAM 

IS IN 1/0 SPACE. USE LPDI 
IF IN SYSTEM SPACE. 

, MOVI . GC, CALLSAVE ; LOAD ADDRESS TO GC .' . 
; CALLlT .. 

. LCALL [GC),DEMO 

HLT ; LOGICAL END OF PROGRAM 

; DEFINE THE PROCEDURE. 
DEMO: 
; PROCEDURE INSTRUCTIONS GO HERE. 
; NOTE: PROCEDURE MUST NOT UPDATE GC, 
; . AS IT POINTS TO THE RETURN ADDRESS. 

'; RETURN TO CALLER. 
MOVp· TP, [GC) 

Figure 3-53. ASM-89 Procedure Example 

SEGMENT ; START OF SEGMENT " 

ASM89 SOURCE STATEMENTS 

CHANNEL1 ENDS 
END 

; END OF SEGMENT 
;END OFASSEMBLY 

Figure 3-54. ASM-89 SEGMENT and ENDS Directives 

figure shows, the segment can then be located so 
that instructions and constants fall into the ROM 
portion of memory, while the variable part of the 
segment is located in RAM. The entire segment, 
including any "unused" portions, of cours!;!, can­
not exceed 64k bytes. 

Intermodule Communication 

An ASM-89 module can make some of its 
addresses available to other modules by defining 
symbols with the PUBLIC directive. At a 
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minimum, a channel program must make the 
. address of. its first instruction available to the 

CPU module that starts the channel program. 
Figure 3-56 shows an ASM-89 module that con­
tains . three channel programs labelled READ, 
WRITE and DELETE. The example shows how a 

. PL/M-86 program and an ASM-86 program 
could define these "entry points" as EXTER­
NAL and EXTRN symbols respectively. When 
the modules are linked together, LINK-86 will 
match the externals with the publics, thus pro­
viding the CPU programs with the addresses they 
need. 
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DEMO: SEGMENT 
;CONSTANT DATA 

;INSTRUCTIONS 

8089 INPUT /OUTPUT PROCESSOR 

HIGHER ADDRESSES 

(AVAILABL E) 

------ t 
ORG 2000H 

;VARIABLE DATA 

DEMO ENDS 
END 

VARIABLES 
2000H t-------t 

(UNUSED) 

INSTRUCTIONS 

CONSTANTS 

(AVAILABLE) 

LOWER ADDRESSES 

Figure 3-55. Using the ASM-89 ORO Directive 

RAM 

ROM 

ASM-89 MODULE DEFINES THREE PUBLIC SYMBOLS 

PUBLIC READ, WRITE, DELETE 

READ: ; ASM89 INSTRUCTIONS FOR "READ" OPERATION 

HLT 
WRITE: ; ASM89 INSTRUCTIONS FOR "WRITE" OPERATION 

HLT 
DELETE: ; ASM89 INSTRUCTIONS FOR "DELETE" OPERATION 

HLT 

Figure 3-56. ASM-89 PUBLIC Directive 
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PLlM-86 MODULE USES "WRITE" SYMBOL 

DECLARE (READ,WRITE,DELETE) POINTER EXTERNAL; 
DECLARE PARM$BLOCK STRUCTURE 

(TP$START POINTER, 
BUFFER$ADDR POINTER, 
BUFFER$LEN WORD); 

'*SET UP "WRITE" CHANNEL OPERATION*' 
PARM$BLOCK. TP$START = WRITE; 

ASM-86 MODULE USES "READ" SYMBOL 

EXTRN READ,WRITE,DELETE 

READ_PTR DD READ 
WRITE_PTR DD WRITE 
DELETE_PTR DD DELETE 

; PARM_BLOCK 
EVEN 

TP _START DD ? 
BUFFER_ADDRDD ? 
BUFFER_LEN DW? 

; FORCE TO EVEN ADDRESS 

; SET UP "READ" CHANNEL OPERATION 
MOV AX, WORD PTR READ_PTR 
MOV WORD PTRTP _START, AX 
MOV AX, WORD PTR READ_PTR 
MOV WORD PTR TP _START + 2, AX 

; 1ST WORD 

; 2ND WORD 

Figure 3-56. ASM-89 PUBLIC Directive (Cont'd.) 

Conversely, an ASM-89 module can obtain the 
address of a public symbol in another module by 
defining it with the EXTRN directive. An external 
symbol, however, can only appear as the initial 
value operand of a DD directive (see figure 3-57). 
This effectively means that an ASM-89 program's 
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3-72 

use of external symbols is limited to obtaining the 
addresses of data located in the system space. 
Another way of doing this, which may be 
preferable in many cases, is to have the CPU pro­
gram place system space addresses in the 
parameter block. 
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PLlM-86 PROGRAM DECLARES PUBLIC SYMBOL "BUFFER" 

DECLARE BUFFER (80) BYTE PUBLIC; 

ASM-89 PROGRAM OBTAINS ADDRESS OF PUBLIC SYMBOL "BUFFER" 

EXTRN BUFFER 

BUF _ADDRESS DD BUFFER 

LPD GA, BUF _ADDRESS ; POINT TO SYSTEM BUFFER 

Figure 3-57. ASM-89 EXTRN Directive 

Sample Program 

Figure 3-58 diagrams the logic of a simple 
ASM-89 program; the code is shown in figure 
3-59. The program reads one physical record (sec­
tor) from a diskette drive controlled by an 8271 
Floppy Disk Controller. No particular system 
configuration is implied by the program, except 
that the 8271 resides in the lOP's I/O space. 

Hardware address decoding logic is assumed to be 
set up as follows: 

• reading location FFOOH selects the 8271 
status register, 

• writing location FFOOH selects the 8271 
command register, 

• reading location FFOIH selects the 8271· 
result register 

• writing location FFOIH selects the 8271 
parameter register 

• decoding the address FF04H provides the 
8271 DACK (DMA acknowledge) signal. Figure 3~58. ASM-89 Sample Program Flow 

3-73 Mnemonlcs.© Inlel, 1979 



8089 INPUT/OUTPUT PROCESSOR 

The program uses structures to address the 
parameter block and the 8271 registers. Register 
PP contains the address of the parameter block, 
and the program loads GC with FFOOH to point 
to the 8271 registers. The program's entry point 
(the label START) is defined as a PUBLIC sym­
bol so that the CPU program can place its address 
in the parameter block when it starts the program. 

,Register IX is used asa retry counter. If the 
transfer is not completed successfully (bit 3 of the 
8271 result register *' 0), the program retries the 
transfer up to 10 times. 

Since the 8271 automatically requests a DMA 
transfer upon receipt of the last parameter, this 
parameter is sent immediately following the 
XFER command. 

8089 ASSEMBLER 

ISIS-II 8089 ASSEMBLER V1.0 ASSEMBLY OF MODULE FLOPPY 
OBJECT MODULE PLACED IN : FO: FLOPPY. OBJ 
ASSEMBLER INVOKED BY ASM89 FLOPPY.A89 

0000 

0000 
0004 
0008 
0009 
OOOA 
OOOB 

0000 
0001 
0002 

HOD 
FF04 

0000 OA4F OA 00 

0004 B130 DADO 

0008 5130 DOFF 

OOOC EABA 00 FC 

0010 OA4E 00 12 

0014 0293 08 02CE 01 

001A D130 2088 

Mnemonics © Intel, 1979' 

1 
2 FLOPPY 
3 ; .1. SEGMENT 

4 ; ••• 8089 PROGRAM TO READ SECTOR FROM FLOPPY DISK 
5 .••• 
'6 '.' 
7 .••• LAY OUT PARAMETER 
8 PARM BLOCK STRUC 
9 RESERVED TP: DS 

10 BUFF PTR: DS 
11 TRACK: OS 
12 SECTOR: uS 
13 RETURN CODE: DS 
14 PARM BL'OCK ENDS 
15 
16 ;"'LAY OUT 8271 
17 FLOPPY REGS 
18 COMMAND STAT: 
19 PARM RESULT: 
20 FLOPPY REGS 
21 

DEVI CE 
STRUC 

DS 
DS 

ENDS 

22 ; ••• 8271 ADDRESSES. 

BLOCK. 

4 
4 
1 
1 
1 

REGISTERS. 

23 FLOPPY REG ADDR EQU OFFOOH 
24 DACK 8271 EQU OFF04H 
25 

;LOW-ADDRESSED REGISTER 
;DMA ACKNOWLEDGE 

26 ; ••• MAKE PROGRAM ENTRY POINT ADDRESS 
~~ PUBLIC AVAILABLE ~~A~iHERMODULES. 

29 
30 ;·.·CLEAR RETURN CODE IN PARAMETER BLOCK. 
31 START: MOVBI [PPJ.RETURN CODE,O 
32 
33 ;".INITIALIZE RETRY COUNT. 
34 . MOVI IX,10 
35 
30 ; ···POINT GC AT LOW-ORDER 8271 REGISTER. 
37 MOVI GC, FLOPPY REG ADDR 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 

;1t**SEND 
····WAIT 
RETRY: 
;···SEND 

COMMAND SEQUENCE TO 8271, HOLDING FINAL PARM. 
UNTIL 8271 IS NOT BUSY. 

JNBT [GCj.COMMAND STAT,7,RETRY 
"READ SECTOR, DRIVE 0" COMMAND. 

MOVBI [GCj.COMMAND STAT,012H 
;'.'SEND TRACK ADDRESS PARAMETER. 

MOVB [GCj.PARM RESULT,[PPJ.TRACK, 

; ••• LOAD CHANNEL CONTROL REGISTER 
FROM PORT TO MEMORY, 
SYNCHRONIZE ON SOURCE, 
GA POINTS TO SOURCE, 
TERMINATE ON EXT, 
TERMINATION OFFSET O. 

MOVI CC,08820H 

SPECIFYING: 

Figure 3-59. ASM-89 Sample Program 
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001E AOOO 

0020 238B 
0023 1130 

0027 AABA 

002B 6000 

002D 0293 

0033 6ABE 

0037 A03C 

0039 A840 

003C EABA 

0040 OA4E 

0044 8ABA 

0048 0292 

004E 4000 

0050 2048 

0052 

SYMBOL TABLE 
------------

DEFN VALUE 

10 0004 
18 0000 
24 FF04 
83 003C 

2 0000 
17 0000 
23 FFOO 

8 0000 
19 0001 
9 0000 

41 OOOC 
13 OOOA 
12 0009 
31 0000 
11 0008 
63 0027 
89 0044 

8089 INPUT /OUTPUT PROCESSOR 

04 
04FF 

00 FC 

09 02CE 01 

01 05 

DO 

00 FC 

00 2C 

00 FC 

01 02CF OA 

TYPE NAME 

SYM BUFF PTR 
SYM COMMAND STAT 
SYM DACK 8271 
SYM EXIT-
SYM FLOPPY 
STR FLOPPY REGS 
SYM FLOPPY-REG ADDR 
STR PARM B[OCK--
SYM PARM-RESULT 
SYM RESERVED TP 
SYM RETRY 
SYM RETURN_CODE 
SYM SECTOR 
PUB START 
SYM TRACK 
SYM WAITl 
SYM WAIT2 

55 i"IISET SOURCE BUS = 8, DEST BUS = 16. 
56 WID 8,16 
57 
~8 
59 
60 
01 

; ""POINT GB AT DESTINATION, GA AT SOURCE. 
LPD UB,[PP].BUFF PTR 
MOVI GA, DACK~8271-

b2 i .IIINSURE THAT 8271 IS READY FOR -LAST PARAMETER. 
63 WAIT1: JNBT [GC].COMMAND_STAT,5,WAITl 
64 
05 i"IIPREPARE FOR DMA. 
06 XFER 
67 
b8 i"I.START DMA BY SENDING FINAL PARAMETER TO 8271. 
09 MOVB [GCJ.PARM_RESULT,[PP].SECTOR 
70 
71 i"IIPROGRAM RESUMES HERE FOLLOWING EXT. 
72 
73 i '''IF TRANSFER IS OK THEN EXIT ,ELSE TRY AGAIN. 
74 JBT [GCJ.PARM_RESULT,3,EXIT 
75 
76 i"IIDECREMENT RETRY COUNT. 
77 DEC IX 
78 
79 i·I·TRY AGAIN IF COUNT NOT EXHAUSTED. 
80 JNZ IX, RETRY 
81 
ll2 i'''WAIT UNTIL 8271 IS NOT BUSY. 
83 EXIT: JNBT [GCJ.COMMAND_STAT,7,EXIT 
84 
85 i".ISEND "READ RESULT" COMMAND TO 8271. 
86 MOVBI [GCJ.CUMMAND_STAT,02CH 
87 
88 ;"".WAIT FOR RESULT. 
89 WAIT2: JNBT 
90 

[GCJ.COMMAND_STAT,4,WAIT2 

91 i ···POST RESULT IN PARAMETER BLOCK FOR CPU. 
92 MOVB [PP].RETURN __ CODE,[GCJ.PARM_RESULT 
93 
94 i· •• INTERRUPT CPU. 
95 SINTR 
96 
97 i"IISTOP EXECUTION. 
98 HLT 
99 

100 FLOPPY 
101 

ENDS 
END 

ASSEMBLY COMPLETEi NO ERRORS FOUND 

Figure 3-59. ASM-89 Sample Program (Cont'd.) 
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Linking and Locating ASM-89 Modules 

The LINK-86 utility program combines multiple 
relocatable ()bject modules into a single. 
relocatable module. The input m9dules may con~ 
sist of modules produced by any of the 8086 fam­
ily language translators: ASM-89, ASM-86, or 
PLlM-86. LINK-86's principal function is to 
satisfy external references made in the moduies~ 
Any symbol that is defined with the EXTRN 
directive in ASM-89 or ASM-86 oris declared 
EXTERNAL in,PLlM-86' is an external. 
reference, i.e., a' reference to ari address con­
tained in another module. Whenever LINK-86 
encounters an external reference, it searches the 
other modules for a PUBLIC symbol of the Same 
name. If it finds the matching symbol, it replaces 
the external reference with the address .of. the 
object. 

The most common' occurrence of an external 
reference in a system that employs one or .more 
8089s is the channel 'program' address. Inorder 
for a CPU program to start a channel program I it 
must erisure that the address of the first channel 
program instruction is contained in the first two 
words of the parameter block. Since the channel 
program is assembled separately, the translator 
that processes the CPU program will not typically 
know its address. If this address is defined as an 

exter.nal symbol (see figure 3-56), LINK-86 will 
obtain the address from the ASM-89 channel pro­
gram when the two are linked together. (The 
ASM-89. program must, of course, define' the 
~ymbol in a PUBLIC directive.) . '. 

Other external references may arise when one 
module. uses data (e.g., a buffer) that is contained 
in another module, and (in PLlM-86 and 
ASM-86 modules) when oI).e module executes 
another module, typically by a CALL statement 

. :or instruction. 

When an 8089 module (or modules) is to be 
located in the system space, it may be linked 
together with PLlM-86 or ASM-86 modules as 
described above and shown in figure 3-60. 
LINK-86 resolves external references 'and com­
bines the input modules into a single relocatable 
object module. This module' caw,be input to 
LOC-86 (LOC-86 assigns final absolute memory 
addresses to all of the instructions and data). This 

, . absolute object module may, in turn, be pro­
cessed by the OH-86 utility to translate the 
module into the hexadecimal format. This format 
makes the module readable (the records are writ­
ten ill ASCII characters) and is required by some 
PROM programmers and RAM loaders. Intel's 
Universal PROM Programmer (UPP) and iSBC 
957™ Execution Package (loader) use thehexa­
decimal format. 

Figure3~60. Creating. a Single Absolute Object Module 
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If the 8089 code is to reside in its 1/0 space, a dif­
ferent technique is required since separate 
absolute object modules must be produced for the 
system and 110 spaces. Figure 3-61 shows how to 
link and locate when there are exter'nal references 
between 110 space modules and system space 
modules. 

The normal link and locate sequence is followed 
and culminates in the production of an absolute 
module in hexadecimal format. Since the records 
in this file are human-readable, the file can' be 
edited using the ISIS-II text editor. The editing 
task involves finding the 8089 110 space records 
in the file, writing them to one file, and then 
writing the 8086/8088 records (destined for the 
system space) to another file. MCS-86 Absolute 
Object File Formats, Order No. 9800921, 
available from Intel's Literature Department, 
describes the records in absolute (including hexa­
decimal) object modules. 

When using the previous method, it is likely that 
LOC-86 will issue messages warning that 
segments overlap. For example, the 8089 code 
would typically be located starting at absolute 
location OH of the 110 space. However, the 
8086/8088 interrupt pointer table occupies these 
low memory addresses in the system space. Since 
LOC-86 has no way to know that the segment will 
ultimately be located in different address spaces, 
it will warn of the conflict; the warning may be 
ignored. 

An alternative to linking the modules together 
and then separating them is to link system space 
modules separately from 110 space modules as 
shown in figure 3-62. This approach avoids the 
manual edit of the absolute object module and the 

FROM 
ASM-86 

segment conflict messages from LOC-86. It 
reoluires, however, that modules in the two spaces 
n,ot llse the EXTRN/PUBLIC mechanism to refer 
to each other. Modules in the same space can 
deJiil.1e external and public symbols, however. 

Ex temal references from 1I0space,modul(,!s to 
sYf';tem space modules can' be eliminated if the 
CPU programs pass ,all system space addresses in 
paralmeter blocks. In oth(,!r words, a channel pro­
granll can obtain any address in the system space if 
the :address is in the parameter block. Using this 
apptoach allows the system space addresses to be 
changed during execution. If the addresses are 
constant values, they may also, be altered as 
sysltt:m development proceeds without relinking 
the'c'hannel programs.' 

External references from system space modules to 
ad,dresses in the 1/0 space may be eliminated by 
assig, ning these addresses values that are known at 
assembly or compilation time. Figure 3-63 
illust ,rates how the ASM-89 ORO directive can be 
used to force the first instruction (entry point) of 
a chU,nnel program to an absolute address. In the 
case of' the example,()ne module contains two 
entr), points labelled "READ" and "WRITE." 
Assnming the module is located at absolute 
address OH in the 110 space, the channel pro­
gram IS will begin at 2001land 600H respectively. 
In n Ie example, these values have been chosen 
arb it rarily; in a typical application they would be 
base( j on the length of the programs and the loca­
tion I)f RAM and ROM areas. By starting the pro­
gramls at fixed addresses that are known to the 
CPU programs that activate them, the channel 
proglrams can be reassembled without needing to 
relin],~ the CPU programs. 

, 

TO SYSTEM 
SPACE 

TallO 
SPACE 

I ' 
Figure 3-61. Creating Separate Absolute Object ModuVes-External References in Relocatable 

Modules. " , '" , 
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-------------------------------,~----------------------------------------

FROM 
ASM-8a 

rOSYSTEM 
SPACE 

TO 110 
SPACE 

, Figure 3-62. Creating Separate Absolute Object Modules-No External References in Relocatable 
Modules 

ASM-89 ENTRY POIN'T DEFINITION'S 

, ORG 200H 
READ: 

;JNSTRUCTIONS FCIR"READ" CHANNEL PROGRAM 

ORG600H 
WRITE: 

; INSTRUCTIONS FOR "WRITE" CHANNEL PROGRAM 

ASM-86 DEFINITION' OF ENTRY POINT ADDRESSES 

DD 200H 
DD 600H 

PLlM-86 DECLARAtiON OF ENTRY POINT ADDRESSES 

DECLARE READ$ADDR POINTER; 
DECLARE WRITE$PIDDR POINTER; 
READ$ADDR = 200H ; 
WRITE$ADDR = 60011rf; 

Figure 3-63. Using Absolute Entry Point Addresses 

------------------------~ .. ~------------------------~--------
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3.10 Programming Guidelines 
and Examples 

This section provides two types of 8089 program­
ming information. A series of general guidelines, 
which apply to system and program design, is 
presented first. These guidelines are followed by 
specific coding examples that illustrate program­
ming techniques that may be applied to many dif­
ferent types of applications. 

Programming Guidelines 

The practices in this section are recommended to 
simplify system development and, particularly, 
for system maintenance and enhancement. Soft­
ware that is designed in accordance with these 
guidelines will be adaptable to the changing 
environment in which most systems operate, 
and will be in the best position to take 
advantage of new intel hardware and software 
products. 

Segments 

Although the lOP does not "see"the segmented 
organization of system memory, it should respect 
this logical structure. The lOP should only 
address the system space through pointers passed 
by the CPU in the parameter block. It should not 
perform arithmetic on these addresses or other­
wise manipulate them except for the automatic 
incrementing that occurs during DMA transfers. 
It is the responsibility of the CPU to pass 
addresses such that transfer operations do not 
cross segment boundaries. 

Self-Modifying Code 

Programs that alter their own instructions are dif­
ficult to understand and modify, and preclude 
placing the code in ROM. They may also inhibit 
compatibility with future Intel hardware and soft­
ware products. 

Note also that when the 8089 is on a 16-bit bus, its 
instruction fetch queue can interfere with the 
attempt of one instruction to modify the next 
sequential instruction. Although the instruction 
may be changed in memory, its unmodified first 
byte will be fetched from the queue rather than 
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memory if it is on an odd address. The processor 
will thus execute a partially-modified instruction 
with unpredictable results. 

I/O System Design 

Section 2.10 notes that I/O systems should be 
designed hierarchically. Application programs 
"see" only the topmost level of the structure; all 
details pertaining to the physical characteristics 
and operation of I/O devices are relegated to 
lower levels. Figure 3-64 shows how this design 
approach might be employed in a system that uses 
an 8089 to perform I/O. The same concept can be 
expanded to larger systems with multiple lOPs. 

The application system is clearly separated from 
the I/O system. No application programs per­
form I/O; instead they send an I/O request to the 
I/O supervisor. (In systems with file-oriented 
I/O, the request might be senUo a file system that 
would then invoke the I/O supervisor.) The I/O 
request should be expressed in terms of a logical 
block ·of data-a record, a line, a message, etc. It 
should also be devoid of any device-dependent 
information such as device address, sector size, 
etc. 

The I/O supervisor transforms the application 
program's request for service into it parameter 
block and dispatches a channel program to carry 
out the operation. The I/O supervisor controls 
the channels; therefore, it knows the cor­
respondence between channels and I/O devices, 
the locations of CBs and channel programs, and 
the format of all of the parameter blocks. The 
I/O supervisor also coordinates channel 
"events," monitoring BUSY flags and respond­
ing to channel-generated interrupt requests. The 
I/O supervisor does not, however, communicate 
with I/O devices that are controlled by the chan­
nels. If the CPU performs some I/O itself (this 
should be restricted to devices other than those 
run by the channels), the I/O supervisor invokes 
the equivalent of a channel program in the CPU 
to do the physical I/O. Note that although the 
I/O supervisor is drawn as a single box in figure 
3-64, it is likely to be structured as a hierarchy 
itself, with separate modules perforining its many 
functions. 

The software interface between the CPU's I/O 
supervisor and an lOP channel program should 
be completely and explicitly defined in the 
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parameter block. For example, the 110 supervisor 
should pass the addresses of all system memory 
areas that the channel program will use. The 
channel program should not be written so that it 
"knows" any of these addresses, even if they are 
constants. Concentrating the interface into one 
place like this makes the system easier to under­
stand and reduces the likelihood of an undesirable 
side effect if it is modified. It also generalizes the 
design so that it may be used in other application 
systems. 

Figure 3-64 shows a simple channel program run­
ning on channel 1 and a more complex program 
running on channel 2. Channell's program per­
forms a single function and is therefore designed 
as a simple program. The program on channel 2 
performs three functions (e.g., "read," "write," 
"delete") and is structured to separate its func­
tions. The functions might be implemented as 
procedures called by the "channel supervisor" 
depending on the content of the parameter block. 
Notice that to the 110 supervisor, both programs 
appear alike; in particular, both have a single 
entry point. 

In some channel programs, different functions 
will need different information passed to them in 
the parameter block. Figure 3-65 shows one 
technique that accommodates different formats 
while still allowing the channel supervisor to 
determine which procedure to call from the PB. 
The parameter block is divided into fixed and 
variable portions, and a function code in the fixed 
area indicates the type of operation that is to be 
performed. Part of the fixed area has been set 
aside so that additional parameters can be added 
in the future. 

Programming Examples 

The first example in this section illustrates how a 
CPU can initialize a group of lOPs and then 
dispatch channel programs. This code is written 
inPLlM-86. 

The remaining examples, written in ASM-89, 
demonstrate the 8089 instruction set and address­
ing modes in various commonly-encountered pro­
gramming situations. These include: 

• memory-to-memory transfers 

• saving and restoring registers 
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Figure 3-65. Variable Format Parameter Block 

Initialization and Dispatch 

The PLlM-86 code in figure 3-66 initializes two 
lOPs and dispatches two channel programs on 
one of the lOPs. The same general technique can 
be used to initialize any number of lOPs. The 
hypothetical system that this code runs on is con­
figured as follows: 

• 8086 CPU (16-bit system bus); 

• two remote lOPs share an 8-bit local 1/0 bus 
via the request/grant lines operating in 
mode 1; 

• 8089 channel attentions are mapped into four 
port addresses in the CPU's 110 space; 

• channel programs reside in the 8089 110 
space; 

• one 8089 controls a CRT terminal, one 
channel running the display, the other scan­
ning the keyboard and building input 
messages; 

• the function of the second 8089 is not defined 
in the example. 
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The code declares one CB (channel control block) 
for each 8089. The. CBs are declared as two­
element arrays, each element defining the struc­
ture of one channel's portion of the CB. The SCB 
(system. configuration block) and SCP (system 
configuration pointer) are also declared as struc­
tures. The SCP is located at its dedicated system 
space address of FFFF6H. The other structures 
are not located at specific addresses since they are 
all linked together by a chain of pointers 
"anchored" at the SCP. . 

Two simple parameter blocks define messages to 
be transmitted between the PL/M-86 program 
and theCRT. Each PB contains a pointer to the 
beginning of the message area and the length of 
the message. In the case of the keyboard (input) 
message, the channel program builds the message 
in the buffer pointed to by the pointer in the PB 
and returns the length of the message in the.PB. 

The code initializes one lOP at a time since the 
chain of control blocks read by the lOP during 
initialization must remain static until the process 
is complete. To initialize the first lOP, the code 
fills in the SYSBUS and SOC fields and links the 
blocks to each other using the PLlM-86 @ 
(address) operator. It sets channell's BUSY flag 
to FFH so that it can monitor the flag to deter­
mine when the initialization has been completed 
(the rop clears the flag to OH when it has 
finished). Channel 2's BUSY flag is cleared, 
although this could just as well have been done 
after the initialization (the rop does not alter 
channel 2's BUSY flag during initialization). The 
code starts the lOP by issuing a channel.attention 
to channel 1 to indicate that the rop is a bus 
master. PLlM-86's OUT function is used to select 
the port address to which the rop's CA and SEL 
lines have been mapped. The data placed on the 
bus (OH) is ignored by the lOP. It then waits until 
the lOP clears the channell BUSY flag. 

The second rop is initialized in the same manner, 
first changing the pointer in the SCB to point to 
the second lOP's channel control block. If this 

rop were on a different I/O bus, the SOC field 
would have been altered if a different 
request/grant mode were being used or if the lOP 
had a 16-bit I/O bus. The second lOP is a slave so 
its initialization is started by issuing a CA to chan­
nel2 rather than channell. 

After both lOPs are ready, the code dispatches 
two channel programs (not coded in the example); 
one program is dispatched to each channel of one 
of the lOPs. To avoid external references, the 
system has been set up so that the PL/M-86 code 
"knows" .the starting addresses of these channel 
programs (200H and 600H). The code uses the 
PLlM-86 LOCKSET function to: 

• lock the system bus; 

• read the BUSY flag; 

• set the BUSY flag to FFH jfit is clear; 

• unlock the system bus. 

This operation continues until the BUSY flag is 
found to be clear (indicating that the channel is 
available). Setting the flag immediately to FFH 
prevents another processor (or another task in 
this program activated as a result of an interrupt) 
from using the channel. The code fills in the 
parameter block with the address and length of 
the message to be displayed, sets the CCW and 
then links the channel program (task block) start 
address to the parameter block and links the 
parameter block to the CB. The channel is dis­
patched with the OUT function that effects a 
channel attention for channell. 

A similar procedure is followed to start channel 2 
scanning the terminal keyboard. In this case, the 
code allows channel 2 to generate an interrupt 
request (which it might do to signal that a message 
h~s been assembled). An interrupt procedure 
would then handle the interruptrequest. 

I*ASSIGN NAMES TO CONSTANTS* I 
DECLARE CHANNEL$BUSY 
DECLARE CHANNEL$CLEAR 
DECLARE CR/*CARR. RET.* I 
DECLARE LF 1*L1NE FEED* I 
DECLARE DISPLA Y$TB 
DECLARE KEYBD$TB 

L1TERALLY'OFFH'; 
L1TERALLY'OH'; 
L1TERALLY'ODH'; 
L1TERALLY'OAH'; 
LITERALLY '200H'; 
LITERALLY '600H'; 

Figure 3-66. Initialization and Dispatch Example 
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DECLARE '"lOP CHANNEL ATTENTION ADDRESSES"' 
IOP$A$CH1 LITERALLY 'OFFEOH', . 
IOP$A$CH2 LITERALLY 'OFFE1 H', 
IOP$B$CH1 LITERALLY 'OFFE2H', 
IOP$B$CH2 LITERALLY 'OFFE3H'; 

DECLARE '"CHANNEL CONTROL BLOCK FOR 10P$A) 
CB$A(2) STRUCTURE 
(BUSY BYTE, 
CCW BYTE, 
PB$PTR POINTER, 
RESERVED WORD); 

DECLARE '"CHANNEL CONTROL BLOCK FOR 10P$B" j 
CB$B(2) STRUCTURE 
(BUSY BYTE, 
CCW BYTE, 
PB$PTR POINTER, 
RESERVED WORD); 

DECLARE '"SYSTEM CONFIGURATION BLOCK"' 
SCB STRUCTURE 
(SOC BYTE, 
RESERVED BYTE, 
CB$PTR POINTER); 

DECLARE '"SYSTEM CONFIGURATION POINTER"' 
SCP STRUCTURE 
(SYSBUS BYTE, . 
SCB$PTR POINTER) AT (OFFFF~H); 

DECLARE MESSAGE$PB STRUCTURE 
(TB$PTR POINTER, 
MSG$PTR POINTER, 
MSG$LENGTH WORD); 

DECLARE KEYBD$PB STRUCTUE 
(TP$PTR POINTER, 
BUFF _PTR POINTER, 
MSG$SIZE WORD); 

DECLARE SIGN$ON BYTE (") DATA 
(CR, LF, 'PLEASE ENTER USER ID'); 

DECLARE KEYBD$BUFF BYTE (256); 

," 
"INITIALIZE 10P$A, THEN 10P$B 

"' 
'"PREPARE CONTROL BLOCKS FOR 10P$A"' 
SCP .SCB$PTR = @ SCB; . 
SCP.SYSBUS = 01 H; '"16-BIT SYSTEM BUS"' 
SCB.SOC = 02H; '"RQ'GT MODE1, 8-BIT 1'0 BUS"' 
SCB.CB$PTR = @ CB$A(O); 
CB$A(O).BUSY = CHANNEL$BUSY 
CB$A(1).BUSY = CHANNEL$CLEAR; 

Figure 3-66. Initializatio.n and Dispatch Example (Cont'd.) 
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I*ISSUE CA FOR CHANNEL1, INDICATING lOP IS MASTER* I 
OUT (IOP$A$CH1) = OH; . 

I*WAIT UNTIL FINISHED* I 
DO WHILE CB$A(O).BUSY = CHANNEL$BUSY; 

END; 

I*PREPARE CONTROL BLOCKS FOR 10P$B* I 
SCB.CB$PTR = @CB$B(O); 
CB$B(O).BUSY = CHANNEL$BUSY; 
CB$B(1). BUSY = CHAN N EL$CLEAR; 

I*ISSUE CA FOR CHANNEL2, INDICATING SLAVE STATUS* I 
OUT (IOP$B$CH2) = OH; 

I*WAIT UNTIL lOP IS READY* I 
DO WHILE CB$B(O).BUSY = CHANNEL$BUSY; 

END; 

1* 
*SEND SIGN ON MESSAGE TO CRT CONTROLLED 
*BY CHANNEL 1 OF 10P$A 
*1 

I*WAIT UNTIL CHANNEL IS CLEAR, THEN SETTO BUSY* I 
DO WHILE LbCKSET (@CB$A(O).BUSY, CHANNEL$BUSY); 

END; . 

I*SETCCWAS FOLLOWS: 
* PRIORITY = 1, 

NO BUS LOAD LIMIT, 
DISABLE INTERRUPTS, 
START CHANNEL PROGRAM IN 1/0 SPACE* I 

CB$A(O).CCW = 10011001 B; 

I*LlNK MESSAGE PARAMETER BLOCK TOCB* I 
CB$A(O).PB$PTR =@ MESSAGE$PB; 

I*FILL IN PARAMETER BLOCK* I 
MESSAGE$PB.TB$PTR = DISPLAY$TB; 
MESSAGE$PB.MSG$PTR = @SIGN$ON; 
MESSAGE$PB. MSB$LENGTH = LENGTH (SIGN$ON); 

I*DISPATCH THE CHANNEL"I 
OUT (IOP$A$CH1) = OH; 

1* 
*DISPATCH CHANNEL 2 OF 10P$A TO 
*CONTINUOUSLY SCAN KEYBOARD, INTERRUPTING 
*WHEN A COMPLETE MESSAGE IS READY 
*1 

I*WAIT UNTIL CHANNELIS CLEAR, THEN SET TO BUSY* I 
DO WHILE LOCKSET (@ CB$A(1).BUSY, CHANNEL$BUSY); 

END; 

Figure3-66. Initialization and Dispatch Example (Cont'd.) 
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I*SET CCW AS FOLLOWS: 
* PRIORITY = 0 

BUS LOAD LIMIT, 
ENABLE INTERRUPTS, 
START CHANNEL PROGRAM IN 1/0 SPACE* I 

CB$A(1 ).CCW = 00110001 B; 
1*L1NK KEYBOARD PARAMETER BLOCK TO CB* I 
CB$A(1).PB$PTR = @KEYBD$PB; 
I*FILL IN PARAMETER BLOCK* I 
KEYBD$PB.TB$PTR = KEYBD$TB; 
KEYBD$PB.BUFF$PTR = @ KEYBD$BUFF; 
KEYBD$PB.MSG$SIZE = OH; 
I*DISPATCH THE CHANNEL * I 
OUT (IOP$A$CH2) = OH; 

Figure3-66.Initialization and Dispatch Example (Cont'd,) 

Memory-to-Memory Transfer 

Figure 3-67 shows a channel program that per­
forms a memory-to-ip.emory block transfer in 
seven instructions. The program moves up to 64k 
bytes between any two locations in the system 
space. A 16-bit system bus is assumed, and the 
CPU is assumed to be monitoring the channel's 
BUSY flag to determine when the program has 
finished. 

To attain maximum transfer speed, the program 
locks the bus during each transfer cycle. This 
ensures that another processor does not acquire 
the bus in the interval between the DMA fetch 
and store operations. By setting this channel's 
priority bit in the CCW to 1 and the other chan­
nel's to 0, the CPU could effectively prevent the 
other channel from running during the transfer. 
Byte count termination is selected so that the 
transfer will stop when the number of bytes 
specified by the CPU has been moved. Since there 
is only a single termination condition,a termina­
tion offset of 0 is specified. The transfer begins 
after the WID instruction, and the HL T instruc­
tion is executed immediately upon termination. 

Saving and Restoring Registers 

A CPU program can "interrupt" a channel pro­
gram by issuing a "suspend" channel command. 
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The channel responds to this command by saving 
the task pointer and PSW -in the first two words 
of the parameter block. The suspended program 
can be restarted by issuing a "resume" command 
that loads TP and the PSW from the save area. 

If the CPU wants to execute another channel pro­
gram between the suspend and resume opera­
tions, the suspended program's registers will 
usually have to be saved first. If the "interrupt­
ing" program -"knows" that the registers must be 
saved, it can pedorm the operation and also 
restore the registers before it halts. 

A more general solution is shown in figure 3-68. 
This is a program that does nothing but save the 
contents of the channel registers. The registers are 
saved in the parameter block because PP is the 
only register that is known to point to an available 
area of memory. A similar program could be writ­
ten to restore registers from the same parameter 
block. 

Using this approach, the CPU would "interrupt" 
a running program as follows: 

• suspend the running program, 

• run the register save program, 

• run the "interrupting" program, 

• run the register restore program, 

• resume the suspended program. 
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MEMEXAMP SEGMENT 
;""MEMORY-TO-MEMORY TRANSFER PROGRAM"" 
PB STRUC 
TP _RESERVED: DS 4 
FROM_ADDR: DS 4 
TO_ADDR: DS 4 
SIZE: DS 2 
PB ENDS 

;POINT GA AT SOURCE, GB AT DESTINATION. 
LPD . GA, [PPl.FROM_ADDR 
LPD GB, [PP .TO_ADDR 

;LOAD BYTE COUNT INTO BC. 
MOV BC, [PPj.SIZE 

;LOAD CC SPECIFYING: 
; MEMORYTO MEMORY, 
; NOTRANSLATE, 
; UNSYNCHRONIZED, 
; GA POINTS TO SOURCE, 
; LOCK BUS DURING TRANSFER, 
; NO CHAINING, 
; TERMINATING ON BYTE COUNT,OFFSET = O. 

MOV CC, OC208H 
;PREPARE CHANNEL FOR TRANSFER. 

XFER 

;SET LOGICAL BUS WIDTH. 
WID' 16,16 

;STOP EXECUTION AFTER DMA. 
HLT 

MEMEXAMP ENDS 
END 

Figure 3-67. Memory-to-Memory Transfer Example 

SAVEREGS SEGMENT 
;SAVE ANOTHER CHANNEL'S REGISTERS IN PB 
PB STRUC 
TP _RESERVED: DS 4 
GA_SAVE: DS 3 
GB_SAVE: DS 3 
GC_SAVE: DS 3 
IX_SAVE: DS 2 
BC_SAVE: DS 2 
MC_SAVE: DS 2 
CC_SAVE: DS 2 
PB ENDS 

SAVEREGS 

MOVP 
MOVP 
MOVP 
MOV 
MOV 
MOV 
MOV 
HLT 
ENDS 
END 

PP .GA_SAVE, GA 
PP .GB_SAVE, GB 
PP .GC_SAVE, GC . 
PP .IX_SAVE, IX 
PP .BC_SAVE, BC 
PP .MC_SAVE, MC 
PP .CC_SAVE, CC 

Figure 3-68. Register Save Example 
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HARDWARE REFERENCE INFORMATION 

4.1 Introduction 

This chapter presents specific hardware informa­
tion regarding the operation and functions of the 
8086 family processors: the 8086 and 8088 Central 
Processing Units (CPUs) and the 8089 I/O Pro­
cessor (lOP). Abbreviated descriptions of the 
8086 family support circuits and their circuit 
functions appear where appropriate within the 
processor descriptions. For more specific 
information on any of the 8086 family support 
circuits, refer to the corresponding data sheets in 
Appendix B. 

4.2 8086 and 8088 CPUs 

The 8086 and 8088 CPUs are characterized by a 
20-bit (1 megabyte) address bus and an identical 
instruction/function format, and differ essential­
ly from one another by their respective data bus 
widths (the 8086 uses a 16-bit data bus, and the 
8088 uses an 8-bit data bus). Except where 
expressly noted, the ensuing descriptions are 
applicable to both CPUs. 

Both the 8086 and 8088 feature a combined or 
"time-multiplexed" address and data bus that 
permits a number of the pins to serve dual func­
tions and consequently allows the complete CPU 
to be incorporated into a single, 40~pin package. 
As explained later in this chapter, a number of the 
CPU's control pins are defined according to the 
strapping of a single input pin (the MN/MX pin). 
In the "minimum mode," the CPU is configured 
for small, single-processor systems, and the CPU 
itself provides all control signals. In the "max­
imum mode," an Intel® 8288 Bus Controller, 
rather than the CPU, provides the control signal 
outputs and allows a number of the pins pre­
viously delegated to these control functions to be 
redefined in order to support multiprocessing 
applications. Figures 4-1 and 4~2 describe the pin 
assignments and signal definitions for the 8086 
and 8088, respectively. 

CPU Architecture 

As shown in figures 4-3 and 4-4, both CPUs 
incorporate two separate processing units: the 
Execution Unit or "EU" and the Bus Interface 
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Unit or "BIU." The EU for each processor is 
identical. The BIU for the 8086 incorporates a 16-
bit data bus and a 6-byte instruction queue 
whereas the 8088 incorporates an 8-bit data bus 
and a 4-byte instruction queue. 

The EU is responsible for the execution of all 
instructions, for providing data and addresses to 
the BIU, and for manipulating the general 
registers and the flag register. Except for a few 
control pins, the EU is completely isolated from 
the "outside world." The BIU is responsible for 
executing all external bus cycles and consists of 
the segment and communications registers, the 
instruction pointer and the instruction object 
code queue. The BIU combines segment and off­
set values in its dedicated adder to derive 20-bit 
addresses, transfers data to and from the EU on 
the ALU data bus and loads or "prefetches" 
instructions into the queue from which they are 
fetched by the EU. 

The EU, when it is ready to execute an instruc­
tion, fetches the instruction object code byte from 
the BIU's instruction queue and then executes the 
instruction. If the queue is empty when the EU is 
ready to fetch at). instruction byte, the EU waits 
for the instruction byte to be fetched. In the 
course of instruction execution, if a memory loca­
tion or 110 port must be accessed, the EU 
requests the BIU to perform the required bus 
cycle. 

The two processing sections of the CPU operate 
independently. In the 8086 CPU, when two or 
more bytes of the 6-byte instruction queue are 
empty and the EU does not require the BIU to 
perform a bus cycle, the BIU executes instruction 
fetch cycles to refill the queue. In the 8088 CPU, 
when one byte of the 4-byte instruction queue is 
empty, the BIU executes an instruction fetch 
cycle. Note that the 8086 CPU, since it has a 16-
bit data bus, can access two instruction object 
code bytes in a single bus cycle, while the 8088 
CPU, since it has an 8-bit data bus, accesses one 
instruction object code byte per bus cycle. If the 
EU issues a request for bus access while the BIU is 
in the process of an instruction fetch bus cycle, 
the BIU completes the cycle before honoring the 
EU's request. 
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Common Signals 

Name Function Type 

AD15-ADO Address/Data Bus Bidirectional, 
3·State 

A19/S6- Address/Status Output, 
A16/S3 3·State 

BHE/S7 Bus High Enable/ Output, 
Status 3·State 

MN/MX Minimum/Maximum Input Mode Control 

AD Read Control Output, 
3·State 

TEST Wait On Test Control Input 
READY Wait State Control Input 
RESET System Reset Input 

NMI Non·Maskable Input Interrupt Request 
INTR Interrupt Request Input 
ClK System Clock Input 
Vee +5V Input 
GND Ground 

Minimum Mode Signals (MN/MX=VCc) 

Name Function Type 

HOLD Hold Request Input 
HlDA Hold Acknowledge Output 

WR Write Control Output, 
3·State 

M/IO MemoryllO Control Output, 
3·State 

DT/R Data Transmit/ Output, 
Receive 3·State 

DEN Data Enable Output, 
3·State 

ALE Address latch Output Enable 
INTA Interrupt Acknowledge Output 

Maximum Mode Signals (MN/MX = GND) 

Name Function Type 

RQ/GT1,0 Request/Grant Bus Bidirectional Access Control 

lOCK Bus Priority lock Output, 
Control 3·State 

82-S0 Bus Cycle Status Output, 
3·State 

Q81, QSO Instruction Queue Output Status 

GND 

AD14 

AD13 

AD12 

AD11 

AD10 

AD9 

ADB 

AD7 

AD6 

ADS 

AD4 

AD3 

AD2 

AD1 

ADO 

NMI 

INTR 

ClK 

GND 

vcc 

AD1S 

A16/S3 

A17/s4 

A1B/sS 

A19/s6 

BHE/s7 

MN/MX 

AD 

8086 HOLD (RO/GTO) 
CPU 

HlDA (RO/GT1) 

WR (lOCK) 

M/iO (52) 

DT/R (51) 

DEN (So) 

ALE (050) 

INTA (051) 

TEST 

READY 

RESET 

MAXIMUM MODE PIN FUNCTIONS (e.g.,lOCK) 
ARE SHOWN IN PARENTHESES 

Figure 4-1. 8086 Pin Definitions 
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Common Signals 

Name Function Type 

AD7-ADO Address/Data Bus Bidirectional, 
3·State 

A15-A8 Address Bus Output, 
3·State 

A19/S6- Address/Status Output, 
A16/S3 3·State 

MN/MX Minimum/Maximum Input Mode Control 

RD Read Control Output, 
3·State 

TEST Wait On Test Control Input 
READY Wait State Control Input 
RESET System Reset Input 

NMI Non·Maskable Input Interrupt Request 
INTR Interrupt Request Input 
ClK System Clock Input 

Vee +5V Input 
GND Ground 

Minimum Mode Signals (MN/MX = Vee> 

Name Function Type 

HOLD Hold Request Input 
HlDA Hold Acknowledge Output 

WR Write Control Output, 
3·State 

- Output, 10/M 10/Memory Control 3·State 

DT/R Data Transmit/ Output, 
Receive 3,State 

DEN Data Enable Output, 
3·State 

ALE Address latch Output Enable 
INTA Interrupt Acknowledge Output 

SSO SO Status Output, 
3·State 

Maximum MQdeSignals (MN/MX = GND) 

Name Function Type 

RQ/GT1,0 Request/Grant Bus Bidirectional Access Control 

'CO'Ci< Bus Priority lock Output, 
Control 3·State 

S2-S0 Bus Cycle Status Output, 
3·State 

QS1, QSO Instruction Queue Output Status 

GND 

A14 

A13 

A12 

All 

Al0 

A9 

A8 

AD7 

AD6 

AD5 

AD4 

AD3 

AD2 

ADl 

ADO 

NMI 

INTR 

CLK 

• GND 

vcc 

A15 

A16/S3 

Al71S4 

A18/S5 

A19/S6 

SSO (HIGH) 

MN/MX 

iii) 

8088 HOLD (iffi/GTii) 
CPU 

HLDA (RO/GT1) 

Viii (LOCK) 

IO/M (52) 

DTIR ($1) 

DEN (SO) 

ALE (OSO) 

iNTA (OSl) 

'fEST 

READY 

RESET 

MAXIMUM MODE PIN FUNCTIONS (e.g.,LOCK) 
ARE SHOWN IN PARENTHESES 

Figure 4-2.8088 Pin De::finitions 
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GENERAL 
REGISTERS 

GENERAL 
REGISTERS 

AH 
BL 

DL 

BP 

ALU DATA BUS 

(16 BITS) 

E' XECUTION UNIT 
(EU) 

I 
I 

I 
I 

I 

I 
I 

ADDRESS BUS 

DATA BUS 

(16 BITS) 

II r'I---'NTERNAL~ 
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REGISTERS BUS 
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lOGIC 

BUS INTERFACE UNIT 
(BIU), 

Figure 4-3. 80815 Elementary Block Diagram 
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Figure 4-4. 8011~8 Elementary Block Diagram 
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Bus Operation 

To explain the operation of the time"multiplexed 
bus, the BIU's bus cycle must be examined. 
Essentially, a bus cycle is an asynchronous event 
in which the address' of an 1I0 peripheral or 
memory location is presented,followed by either 
a read control signal (to capture or "read" the 
data from the addressed device) or a write control 
signal and the associated data (to transmit or 
"write" the data to the addressed device). The 
selected. device (memory or 1I0 ;Jeripheral) 
accepts the data on the bus during a write cycle or 
places the requested data on the bus during aread 
cycle. On termination of the' cycle, the device 
latches the data written or removes the'data read. 

As shown ih figure 4-5, all bus cycles consist of a 
minimum of four clock cycles' or "T -states" iden­
tifiedas Tl, T2' T3 and T4.The CPU places the 
address of the memory location orliO device on 
the bus during state T 1. DUring a write bus cycle, 
the CPU places the data on the bus from state T2 
until stateT 4. During a read bus cycle, the CPU 
accepts the data present on the bus in states T3 

and T 4' and the multiplexed address/data bus is 
floated in state T2 to allow the CPU to change 
from the write mode (output address) to the read 
mode (input data). 

It is important to note that the BIU executes a bus 
cycle only when a bus cycle is requested by the EU 
as part of instruction execution or when it must 
fill the instruction queue. Consequently, clock 
periods in which there is no BIU activity can 
occur between bus cycles. These inactive clock 
periods are referred to as idle states (TI): While 
idle clock states result from several conditions 
(e.g., bus access granted to a coprocessor), as an 
example, consider the case of the execution of a 
"long" instruction. In the following example; an 
8-bit register multiply (MUL) instruction (which 
requires between 70 and 77 clock, cycles) is exe­
cuted by the 8086. Assuming that the multiplica­
tion routine is entered as a result of a program 
jump (which causes the instruction queue to be 
reinitialized when the jump is executed) and, as 
will be explained later in this chapter, that the 
object code bytes are aligned on even-byte bound­
aries, the BIU's bus cycle sequence would appear 
as shown in figure 4-6. 

----6US CyClE---- -----6US CyClE-----l 

r"\ r., ,.., 
I 

.J 

EU AS A RESULT OF THE JMP 
ACTIVITY INSTRUCTION, THE EU 

REINITIALIZES THE QUEUE 
DURING EXECUTION OF 
THE JUMP. 

Figure 4-5. Typical BIU Bus Cycles 

2 3 4 I 5 7 10 11 
EU FETCHES THE FIRST TWO BYTES FROM THE QUEUE (THE MUL INSTRUCTION) AND 
COMPLETES INSTRUCTION EXECUTION IN 70 TO 77 CLOCK. CYCLES. 

EU FETCHES THE NEXT 
OBJECT CODE BYTES 
FROM THE QUEUE AND 
BEGINS EXECUTING THE 
NEXT INSTRUCTION. 

61U 
ACTIVITY 

SINCE THE QUEUE 15 BIU FETCHES TWO OBJECT BIU FETCHES TWO MORE 
OBJECT CODE BYTES. 
QUEUE IS NOW FULL lSI X 
BYTES). 

81U IS IDLE FO'R 62-69 CLOCK CYCLES BIU FETCHES TWO OBJECT 
EMPTY, THE BIU FETCHES CODE BYTES. QUEUE WHILE THE EU COMPLETES EXECUTION OF CODE BYTES TO REFILL 
TWO OBJECT CODE BYTES AGAIN CONTAINS FOUR THE MUL INSTRUCTION. THE QUEUE. THE QUEUE IS 

AGAIN FULL. (THE MUL INSTRUCTION) IN BYTES. 
ONE BUS CYCLE AND I 
COMPLETES A seCOND 
BUS CYCLE. THE QUEUE 
CONTAINS FOUR BYTES. 

Figure 4-6.BIUIdle States 
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In addition to the idle state previously described, 
both theSOS6 and SOSS CPUs include a 
mechanism for .inserting additional T -states in the 
bus cycle to compensate for devices (memory Or 
110) that cannot transfer data at the maximum 
rate. These extra T -states are called wait states 
(TW) and, when required, are inserted between 
states T 3 and T 4, During a wait state,the data on 
the bus remains unchanged. When the device can 
complete the transfer (present or accept the data), 
it signals the CPU to exit the wait state and to 
enter state T 4, 

As shown in .the following timing diagrams, the 
actual bus cycle timing differs between a read and 
a write .bus cycle and varies between. the two 
CPUs. Note that the timing diagrams illustrated 
are for the minimum mode. (Maximum mode 
timing is described later in this chapter.) 

Referring to figures 4-7 and 4-S, the SOS6 CPU 
places a 20-bit address on the multiplexed 
address/ data bus during state T l' During state 
T2' the CPU removes the address from the bus 
and either three-states (floats) the lower 16 
address/data lines in preparation for a read cycle 
(figure 4-7) or places write data on these lines 

(figure 4-S). At this time, bus cycle status is 
available on the address/status lines. During state 
T 3, bus cycle status is maintained on the 
address/status lines and either the write data is 
maintained or read data is sampled on the lower 
16 address/data lines. The bus cycle is terminated 
in state T 4 (control lines are disabled and the 
addressed device deselects from the bus). 

The SOSS CPU, like the S086, places a 20-bit 
address on the multiplexed address/data bus dur­
ing state T 1 as shown in figures 4-9 and 4-10. 
Unlike the SOS6, the SOSS maintains the address 
on the address lines (A 15-AS) for the entire bus 
cycle. During state T2' the CPU removes the 
address on the address/data lines (ADrADo) and 
either floats these lines in preparation for a read 
cycle (figure 4.-9) or places write data on these 
lines (figure 4-10). Atthis time, bus cycle status is 
available on the address/status lines. During.state 
T 3, bus cycle status is maintained on . the 
address/status lines and either write data is main­
tained or. read data is sampled on the 
address/data lines. The bus cycle is terminated in 
state T 4 (control lines are disabled and the 
addressed device deselects from the bus). 

I---------oNE BUSCYClE--------! 

ClK 

A19/SS-A16/Sa ~ ADDRESS, BHE OUT X ~TATUS OUT }-ANDIIil!/S7 ~ .'--. ____ ....;... _____ --'. 

AD15-ADO -----« ADDRESS OUT )~----('__~DA~TA~IN~__J)r----

ALE / \'---_____ --JI 
MliO ~'--_____ lO_W_=_'/O_R_EA_D_, H_'G_H=_M_E_MO_R_Y R_E_AD ______ L 

\\-----------'/ 
---, ,-..,-

DT/. \ I . ___ ~' ___________________ -L' __ _ 

DEN - - - - -j..-------'---..... \ jr---'-""",...\--
____ I 1.... _______ ---J. \ __ 

Figure 4-7. S086 Read Bus Cycle 
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elK 

A19/SS-A16/S3 ~ ADDRESS, BHE OUT X STATUS OUT 
ANOBlffi/S7 ~ . 1..... ___________ ---J 

AD15-ADO ~ ADDRESS OUT X'-_____ DA_J_AO_U_T ____ ---J 

ALE / 
_---1 

\~ ________________ ---J 

M/iO ~'--_____ "_OW_=_'_/O_W_R'_TE_. "_'G_"_=M_E_M_OR_V_W_R'_TE _____ _ 

\\-___________ -1 

----7'---------------------, 
DTIR I 

___ J 

DEN ------.,'-------\ 
____ ~ 1..... _____________ ---J 

Figure 4-8.8086 Write Bus Cycle 

A majority of system memories and peripherals 
require a stable address for the duration of the 
bus cycle (certain MCS-85™ components can 
operate with a multiplexed address/data bus). 
During state T 1 of every bus cycle, the ALE 
(Address Latch Enable) control signal is output 
(either directly from the microprocessor in the 
minimum mode or indirectly through an 8288 Bus 
Controller in the maximum mode) to permit the 
address to be latched (the .address is valid on the 
trailing-edge of ALE). This "demultiplexing" of 
the address/data bus can be done remotely at 
each device in the system or locally at the CPU 
and distributed throughout the system as a 
separate address bus. For optimum system per­
formance and for compatibility with multi­
processor systems or' with the Intel Multibus 
architecture, the locally-demultiplexed address 
bus is recommended. To latch the address, Intel ® 
8282 (non-inverting) or 8283 (inverting) Octal 
Latches are offered as part of the 8086 product 
family and are implemented as shown in figure 
4-11. These circuits, in addition to providing the 
desired latch function, provide increased current 
drive capability and capacitive load immunity. 

4-7 

The data bus cannot be demultiplexed due to the 
timing differences between read and write cycles 
and the various read response times among 
peripherals and memories. Consequently, the 
multiplexed data bus either can be buffered or 
used directly. When memory and 110 peripherals 
are connected directly to an unbuffered bus, it is 
essential that during a read cycle, a device is 
prevented from corrupting the address present on 
the bus during state T l' To ensure that the 
address is not corrupted, a device's output drivers 
should be enabled by an output enable function 
(rather than the device's chip select function) con­
trolled by the CPU's read signal. (The MCS-86 
family processors guarantee that the read signal 
will not be valid until after the address has been 
latched by ALE.) Many Intel peripheral, 
ROM/EPROM, and RAM circuits provide an 
output enable function to allow interface to an 
unbuffered multiplexed address/data bus. The 
alternative of using a buffered data bus should be 
considered since it simplifies the interfacing 
requirements and offers both increased drive cur­
rent capability and ca.pacitive load immunity. The 
Intel® 8286 (non-inverting) and 8287 (inverting) 



HARDWARE REFERENCE INFORMATION 

1---------- ONE BUS CYCLE ----------1 

ClK 

A19/S6~A161S3 ~ ADDRESS OUT X STATUS OUT ~ ....... ----------I~ 
A15-Aa ~ ADDRESS OUT )-

AD7-ADO ADDRESS OUT DATA IN 

ALE I 
-----' \ ....... ________ ~----~r-

'Mil ~'--______ lO_W_=_M_E_M_O_RY_R_E_A_D,_H_'G_H_=_"O_RE_A_D ________ C 

\ ....... ---------', 
---, ,---

DTIA ____ ' .... ' ________________________ ...... / ___ _ 

1mT =~~~-JT/-------------;\ ... ________ ..... ,r---""TL~= 
Figure 4-9.8088 Read Bus Cycle 

I----------ONE BUS CYClE----------_ 

T2 T3 T4 

ClK 

X~ _____ S_T_M_U_S_OU_T ____ ~~r-----

A'S·A8 ~'-. _________ A_DD_R_ES_S_O_U_T __ .,.-_____ ~r_____ 

AD7-AD~ ~ ADDRESS OUT X ... ______ D-'AT_A_O_U_T __ ~ __ ___'r_____ 

ALE I 
-----' \'--_____ -----'r-

'OIM .~ ...... ______ l_OW_=_ME_M_O_RY_W_R'_TE_, H_'_GH_=_'_'O_W_R_'T_E ______ ---'C 

\'-------', 
~,--..,..------,.,.----------------_,ir,---

~~ I , ___ ~L __ -' 

1mT ----'/------'\ ,-
____ oJ \-.. _____ --', 

Figure 4-10.8088 Write Bus Cycle 
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Octal Bus Transceivers, shown in figure 4-12, are 
expressly designed to buffer the data bus. These 
transceivers use the CPU's DEN (Data Enable) 
and DT lir (Data Transmit/Receive) control 
signals to enable and control the direction of data 
on the bus. These signals provide the proper tim­
ing relationship to guarantee isolation of the 
address that is present on the multiplexed bus 
during state T l' 

o VCC r 11 1 
MN/MX Rii 

~ ClK 
8284 WR 

RES CLOCK ~ READY 101M 
GENERATOR 

r--- RESET 

8088 
CPU ALE 

ADDRESS 
A19-A16 

ADDRESS .. 
A15-Aa 

... ADDRESS/DATA ~ 
A07-ADo 

Except where noted, all subsequent discussions 
and examples in this chapter assume a locally 
demultiplexed address bus and a buffered data 
bus. The resultant address and data buses from 
the address latches and data transceivers to the 
memory and I/O devices will be referred to collec­
tively as the "system" bus. 

ST. 
ADDRESS BUS 

8282 

!J,. ~ ! OR ! ! 8283 
(20R 3) 

SEL ROWR 

OE 
MEMORY 110 PERIPHERAL 

-i- DATA DATA 

X X 

Figure 4-11. Minimum Mode 8088 Demultiplexed Address Bus 

o VCC 

VCC r Ii l 
MN/Ml1 Rii I-- ClK 

8284 iVA 
>--+ m CLOCK I-- READY MfiO GENERATOR 

f---- RESET 

1 8086 BilE 
ALE ST. CPU 

I ADDRESS .. ADDRESS BUS 
A19-A16 

" 
8282 
OR 

j j j j j BilE 8283 

AD15-ADO 
... ADDRESS/DATA .. 

DEN "'/ii ., " m; Ito" 

! MEMORY 110 PERIPHERAL 

DATA DATA 

~ I DATA BUS 1 
8286 

T OR 
8287 

.... OE ... 

Figure 4-12. Minimum Mode 8086 Buffered Data Bus 
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Clock Circuit 

To establish the bus cycle time, the CPU requires 
an external clock signal. As an integral part of the 
8086 family,. Intel offers· the 8284 Clock 
Generator/Driver for this purpose. In addition to 
providing the primary (system) clock signal, this 
device provides both the hardware reset interface 
and the mechanism for the insertion of wait states 
in the bus cycle. 

The clock generator/driver requires an external 
series-resonant crystal input (or external frequen­
cy source) at three times the required system clock 
frequency (Le., to operate the CPU at 5 MHz, a 
15 MHz fundamental frequency source is 
required). The divided-by-three output (CLK) 
from the 8284 is routed directly to the CPU's 
CLK input. Thedock generator/driver provides a 
second clock output called PCLK (Peripheral 
Clock) at one half the frequency of the CLK out­
put and a buffered TTL level OSC (oscillator) 
output at the applied crystal input frequency. 
These outputs are available for use by. system 
devices. 

The 8284's hardware reset function is accom­
plished with an internal Schmitt trigger circuit 
that is activated by the RES (Reset) input. When 
this input is pulled low (i.e., a contact closure to 
ground), the RESET output is activated syn­
chronously with the CLK signal. This signafmust 
be active for four clock cycles and causes the CPU 
to fetch and execute the instruction at location 
FFFFOH. An external RC circuit is connected to 
the RES input to provide the power-on reset func­
tion (on power-on, the RES input mustbe active 
for 50 microseconds). The RESET output is 
coupled directly to the RESET input of the CPU 
as well as being available to system peripherals as 
the system reset signaL 

elK 

The insertion of wait states in the CPU's bus cycle 
is accomplished by deactivating one of the 8284's 
RDY inputs (RDYI or RDY2). Either of these 
inputs, when enabled by its corresponding AEN 1 
or AEN2 input, can be deactivated directly by a 
peripheral device when it must extend the CPU's 
bus cycle (when it is not ready to present or accept 
data) or by a· "wait state generator" circuit (a 
logic circuit that holds the RDY input inactive for 
a given number of clock cycles). 

The READY output, which is synchronized to the 
CLK signal is coupled directly to the CPU's 
READY input. As shown in figure 4-13, when the 
addressed. device needs to insert one or more wait 
states in a bus cycle, it deactivates the 8284's RDY 
input prior to the end of state T2 which causes the 
READY output to be deactivated at the end of 
stateT2. Theresultant wait state (TW) is inserted 
between states T 3 and T 4. To exit the wait state, 
the device activates the 8284's RDY input which 
causes the READY input to the CPU to go active 
at the end of the current wait state and allows the 
CPU to enter state T 4. 

Minimum/Maximum Mode 

A unique feature of the 8086 and 8088 CPUs is 
the ability of a user to define a subset of the 
CPU's controisignal outputs in order to tailor the 
CPU to its intended system environment. This 
"system tailoring" is accoI!!lWshed by the strap­
ping of the CPU's MN/MX(minimum/max­
imum) input pin. Table 4-1 defines the 8086 and 
8088 pin assignments in both the minimum and 
maximum modes. 

ROY INPUT _____ """"""== 
~ iii 

READY OUTPUT _______ ., 

\I....-__ ---J! 

Figure 4-13. Wait State Timing 
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Table 4-1. Minimum/Maximum Mode Pin Assignments 

8086 

Mode 
Pin 

Minimum Maximum 

31 HOLD RQ/GTO 
30 HLDA RQ/GT1 
29 WR LOCK 
28 MilO S2 
27 DT/R S1 
26 DEN SO 
25 ALE QSO 
24 INTA QS1 

Minimum Mode 

In the minimum mode (MN/MX pin strapped to 
+5V), the CPU supports small, single-processor 
systems that consist of a few devices and that use 
the system bus rather than support the 
Multibus™ architecture. In the minimum mode, 
the CPU itse!.L.Aenerates all bus cQ.!!!rol 
signals (DT/R, DEN, ALE and. either MilO or 
101M) and the command output signal (RD, WR 
or INT A), and provides a mechanism for 
requesting bus access (HOLD/HLDA) that is 
compatible with bus master type controllers (e.g., 
the Intel® 8237 and 8257 DMA Controllers). 

In the. minimum mode, when a bus master 
requires bus access, it activates the HOLD input 
to the CPU (through its request logic). The CPU, 
in response to the "hold" request, activates 
HLDA as an acknowledgement to the bus master 
requesting the bus and simultaneously floats the 
system bus and control lines. Since a bus request 
is asynchronous, the CPU samples the HOLD 
input on the positive transition of each CLK 
signal and, as shown in figure 4-14, activates 
HLDA at the end of either the current bus cycle 

. (if a bus cycle is in progress) or idle clock period. 
The hold state is maintained until the bus master 
inactivates the HOLD input at which time the 
CPU regains control of the system bus. Note that 
during a "hold" state, the CPU will continue to 
execute instructions until a bus cycle is required. 

Note that in the minimum mode, the I/O-memory 
control line for the 8088 CPU is the converse of 
the corresponding control line for the 8086 CPU 
(MilO on the 8086 and 101M on the 8088). This 
was done to provide the 8088 CPU, since it is an 
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8088 

Mode 
Pin 

Minimum Maximum 

31 HOLD RQ/GTO 
30 HLDA RQ/G'fi 
29 WR LOCK 
28 101M S2 
27 DTiA" S1 
26 DEN SO 
25 ALE QSO 
24 INTA aS1 
34 SSO High State 

8-bit device, compatibility with existing 
MCS-85™ systems and specific MCS-85™ family 
devices (e.g., the Intel® 8155156). 

Maximum Mode 

In the maximum mode (MN/MX pin strapped to 
ground), an Intel® 8288 Bus Controller is added 
to provide a sophisticated bus control function 
and compatibility with the Multibus architecture 
(combining an Intel® 8289 Arbiter with the 8288 
permits the CPU to support multiple processors 
on the system bus). As shown in figure 4-15, the 
bus controller, rather than the CPU, provides all 
bus control and command outputs, and allows the 
pins previously delegated to these functions to be 
redefined to support multiprocessing functions. 

S2, S1 and SO 

Referrin&..!o.l!gure 4-15, the 8288 Bus Controller 
uses the S2, SI and SO status bit outputs from the 
CPU (and the 8089 lOP) to generate all bus. con­
trol and command output signals required for a 
bus cycle. The status bit outputs are decoded as 
outlined in table 4-2. (For a detailed description 
of the operation of the 8288 Bus Controller, refer 
to the associated data sheet in Appendix B.) 

The 8088 CPU, in the minimum mode, provides 
an SSO status output. This output is equivalent to 
SO in the maximum mode and can be decoded 
with DT IR: and 101M (inverted), which are 
equivalent to Si and' S2 respectively, to provide 
the same CPU cycle status information defiried in 
table 4-2. This type of decoding could be used in a 
minimum mode 8088-based system to allow 
dynamic RAM refresh during passive CPU cycles. 
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Status Inputs 

I -: 

S1 

0 
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Figure 4-14. HOLD/HLDA Timing 

8288 
ClK BUS 
CONTROLLER 

I-------.~ So 11m( ~----'----------
1--------.·1 §j 

1--':-----. .. 1 52 
DEN 

DT/I'i 

ALE 

STB 

~~----~-------------
~~--------~~-------------­
~~_------~4--------.--__ -
~~--__ ----~4--------4--.--

8282 
OR 

8283 

MEMORY 110 PERIPHERAL 

Figure 4-15. Elementary Maximum Mode System 

Table 4-2. Status Bit Decoding 

CPU Cycle 8288 Command 
SO 

0 Interrupt Acknowledge INTA 
1 Read 1/0 Port . 10RC ... 
0 Write 1/0 Port 10WC,AIOWC 
1 Halt None 
0 Instruction Fetch MRDC 
1 Read Memory MRDC 
0 . lNrite Memory MWTC,AMWC 

. 1 Passive None 
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RQ/GT1, RQ/GTO 

The Request/Grant signal lines (RQ/GTO and 
RQ/GTl) provide the CPU's bus access 
mechanism in the maximum mode (replacing the 
HOLD/HLDA function available in the 
minimum mode) and are designed expressly for 
multiprocessor applications using the 8089 I/O 
Processor in its local mode or other processors 
that can support this function. These lines are 
unique in that the request/grant function is 
accomplished over a single line (RQ/GTO 
or RQ/GTl) rather than the two-line 
HOLD/HLDA function. 

As shown in figure 4-16, the request/grant 
sequence is a three-phase cycle: request, grant and 
release. The sequence is initiated by another pro­
cessor on the system .bus when it outputs a pulse 
on one of the RQ/GT lines to request bus access 
. (request phase). In response, the CPU outputs a 
pulse (on the same line) at the end of either the 
current bus cycle (if a bus cycle is in progress) or 
idle clock period to indicate to the requesting pro­
cessor that it has floated the system bus and that it 
will logically disconnect. from the bus controller 
on the next clock cycle (grant phase) and enter a 

"hold" state. Note that the CPU's execution unit 
(EU) continues to execute the instructions in. the 
queue until an instruction requiring bus access is 
encountered .or until the queue is empty. In, the 
third (release) phase, the request~ processor 
again outputs a pulse on the RQ/GT line. This 
pulse alerts the CPU that the processor is ready to 
release the bus. The CPU regains bus access on its 
next clock cycle. Note that the exchange of pulses 
is synchronized and, accordingly, both the CPU 
and requesting processor must be referenced to 
the same clock signal. 

The request/grant lines are prioritized with 
RQ/GTO taking precedence over RQ/GTl. If, a 
request arrives--2!l both lines simultaneously, the 
processor on RQ/GTO is granted the bus (the 
request on RQ/GTl is granted when the bus. is 
released by the first processor following'!..2,ne.-2!:, 
two clock channel transfer delay). Both. RQ/GT 
lines (and the HOLD line in minimum mode) have 
a higher priority than a.pending interrupt. 

Request/grant latency (the time interval between 
the receipt of a request pulse and the return of a 
grant pulse) for several conditions is given in table 
4-3. 

I T4 OR TI I 
ClK JLl\L 

RQIGr 5-\ ( r 
COPROCESSOR REQUESTS CPU GRANTS BUS COPROCESSOR RELEASES 

BUS ACCESS TO COPROCESSOR BUS 

Figure 4-16. RequestiGrantTiming 

Table 4-3. Request/Grant Latency 

Operating Condition 
Request/Grant Delay 

8086 8088 

Normal Instruction Processing-LOCK inactive 3-6(10*) clock.s 3-10 clocks 

INTA Cycle Executing-LOCK active 15clocks 15 clocks 

. Locked XCHGlnstruction Processing-:-LOCK active 24-31 (39*) clocks 24-39 clocks 

~The number of clocks in parentheses applies when the instruction being .executed.references a word 
operand at an odd address boundary. 
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Latency during normal instruction processing 
(LOCK inactive) can be as short as three clock 
cycles (e.g., during execution of an instruction 
that does not reference memory) and no· more 
than ten clock cycles. Whenever the LOCK out­
put is active (LOCK is activated during an inter­
rupt acknowledge cycle or during execution of an 
instruction with a Lock prefix), latency is 
increased. In the case of the execution of a locked 
XCHG instruction (used during· semaphore 
examination), maximum latency is limited to 39 
clock cycles. Greater latencies occur when a 
"long" instruction is locked. This, however, is 
neither necessary nor recommended. 

At the end of processor activity, the 8086 or 
8088 will not redirve its control and data buses 
until two clock cycles following receipt of the 
release pulse (or two clock cycles after HOLD 
goes inactive in the minimum mode). 

A Hold request is honored immediately following 
CPU reset if the HOLD line is active when the 
RESET line goes inactive. This action facilitates 
the downloading of programs and, more 
specificallY, the setting of memory location 
FFFFOH prior to CPU activation. Note that the 
same result can be effected in the maximum mode 
through the RQ/GT line by generating the request 
pulse in the first or second clock cycle after 
RESET goes inactive. 

LOCK 

The LOCK output is used in conjunction with an 
Intel 8289® Bus Arbiter .to guarantee exclusive 
access of a shared system bus for the duration of 
an instruction. This output is software controlled 
and is effected by preceding the instruction 
requiring exclusive access with a one byte "lock" 
prefix (see instruction set description in Chapter 
2). 

When the lock prefix is decoded by the EU, the 
EU informs the BIU to activate the LOCK output 
during the next clock cycle. This signal remains 
active until one clock cycle after the executi6n of 
the associated instruction is concluded. 

QS1, QSO 

The QSI and QSO (Queue Status) outputs permit 
external monitoring of the CPU's internal 
instruction queue to allow instruction set exten-
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sion processing by a coprocessor. (The 
corresponding Intel ICE modules use these status 
bits during "trace" operations.) The encoding of 
the QSI and QSO bits is shown in table 4-4. 

Table 4~4. Queue Status Bit Decoding 

QS1 QSO Queue Status 

o (low) 0 No Operation. During the last 
clock cycle, nothing was taken 
from the queue. 

0 1 First Byte. The byte taken from the 
queue was the first byte of the 
instruction. 

1 (high) 0 Queue Empty. The queue has 
been reinitializedas a result of the 
execution of a transfer instruction. 

. 1 1 Subsequent Byte. The byte taken 
from the queue was a subsequent 
byte of the instruction. 

The queue status is valid during the clock cycle 
after the indicated activity has occurred. 

External Memory Addressing 

The 8086 and 8088 CPUs have a 20-bit address 
bus and are capable of accessing one megabyte of 
memory address space. 

The 8086 memory address space consists of a 
sequence of up to one million individual bytes in 
which any two consecutive bytes can be accessed 
as a 16-bit data word. As shown in figure 4-17, 
the memory address space is physically divided 
into two banks of up to 512k bytes each. 

One bank is associated with the lower half of the 
CPU'sI6-bit data bus (data bits D7-DO),and the 
other bank is associated with the upper half of the 
data bus (data bits DI5-D8). Address bits A19 
through Al are used to simultaneously address a 
specific byte location in both the upper and lower 
banks, and the AO address bit is not used in 
memory addressing. Instead, AO is used in 
memory bank selection. The lower bank, which 
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AO 

iiHE 

+ ... ,.. 
SEL AO-A18 

UPPER 
(ODD) 
BANK 

512K x 8 

00-07 

ADDRESS BUS 

1 ... ,.. 
SEL AO-A18 

LOWER 
(EVEN) 
BANK 

512K x 8 

00-07 

! T 
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07- 00 ----""!L"'!'OW!!!E!!!R~H"'!'AL!"'!F!"'!O'!!'F'!!'OA;!'!!TA'!"'!!'!'BU!!"S-....;;~--·~§ 

Figure 4-17. 8086 Memory Interface 

contains even-address bytes, is selected when 
AO=O. The upper bank, containing odd address 
bytes (AO=I), is selected by a separate signal, Bus 
High Enable (BHE). Table 4-5 defines the 
BHE-AO bank selection mechanism. 

Table 4-5. Memory Bank Selection 

BHE AO Byte Transferred 

o (low) 0 Both bytes 
0 1 Upper byte to/from odd address 
1 (high) 0 Lower byte to/from even address 
1 1 None 

When accessing a data byte at an even address, 
the byte is transferred to or from the lower bank 
on the lower half of the data bus (D7-DO). In this 
case, the inactive level of the AO address bit 
enables the addressed byte in the lower bank, and 
the inactive level of the BHE signal disables the 
addressed byte in the. upper bank. Conversely, 
when performing a byte access at an odd address, 
the data byte is transferred to or from the upper 
bank on the upper half of the data bus (DI5-D8). 
The active level of the BHE signal enables the 
upper bank; and the active level of the AO address 
bit disables the lower bank. 

As indicated in table 4-5, the 8086 can access a 
byte in both the' upper and lower banks 
simultaneously as a 16-bit word. When the low­
order byte of the word to be accessed is on an 
even address boundary (that is, when the low-
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order byte is in the lower bank), the word is said 
to be "aligned" and can be accessed in a single 
operation (a single bus cycle). As with the byte 
transfers previously described, address bits Al9 
through Al address both banks, except that now 
BHE is active (selecting the upper bank) and AO is 
inactive (selecting the lower bank) to access both 
bytes. 

When the low-order byte of the word to be 
accessed is on an odd address boundary (when the 
low-order byte is in the upper bank), the word is 
"not aligned" and must be accessed in two bus 
cycles. During the first cycle; the low-order byte 
of the word is transferred to or from the upper 
bank as described for a byte access at an odd 
address (AO and BHE active). The memory 
address is then incremented, which causes AO to 
shift to an inactive level (selecting the lower 
bank), and a byte access at an even address is per­
formed during the next bus cycle to transfer the 
word's high-order byte to or from the lower bank. 
The above sequence is initiated automatically by 
the 8086 whenever, a word access at an odd 
address is performed. Also, the directing of .the 
high- and low-order bytes of the 8086's internal 
word registers to the appropriate halves of the 
data bus is performed automatically and, except 
for the additional four clock cycles required to 
execute the second bus cycle, the entire operation 
is transparent to the program. 

The 8088 memory address space is logically 
organized as a linear array of up to one million 
bytes. Since the 8088 uses an 8-bit-wide data bus, 
memory consists of a single bank. Address bit AO 
is used to address memory, and a BHE signal is 
not provided. 

Word (16-bit) operands can be located at odd- or 
even-address boundaries. The low-order byte of 
the word is stored in the lower-valued address 
location, and the high-order byte is stored in the 
next, higher-valued address location. The 8088 
automatically executes two bus cycles when 
accessing word operands. 

I/O Interfacing 

The 8086 and 8088 CPUs support both 1/0 
mapped 110 and memory mapped 110. 110 
mapped 1/0 permits an 110 device to reside ina 
separate address space (first 64k of address 
space), and the standard 110 instruction set is 
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available for device communications. Memory 
mapped 110 permits an 110 device to reside 
anywhere in memory and allows the complete 
CPU instruction set to be used for 110 
operations. 

The 8086 supports both 8-bit and 16-bit 110 
devices. An 8-bit 110 device may be associated 
with either the upper or lower half of the data 
bus. (Assigning an equal number of devices to 
each half of the data bus distributes bus loading.) 
When an 110 device is assigned to the lower half 
of the bus (D7-DO), all I/O addresses must be 
even (AO equal "0"), and when an 110 device is 
assigned to the upper half of the bus, all 110 
addresses must be odd (AO equal" 1 "). Note that 
since AO always will be either a "1" or a "0" for 
a specific device, it cannot be used as an address 
input to select registers within the 110 device. 
When an 110 device on the upper half of the bus 
and an 110 device on the lower half of the bus are 
assigned addresses that differ only by the state of 
AO (adjacent odd and even addresses), AO and 
BHE both must be conditions of device selection 
to 'prevent a write operation to one device from 
overwriting data in the other device. 

To permit data transfers to 16-bit I/O devices to 
be performed in a single bus cycle, the device is 
assigned an even address. To ensure that the 110 
device is selected only for word transfers, AO and 
BHE both must be conditions of device selection. 

The 8088, since its data bus is eight bits wide, is 
designed to support 8-bit 110 devices and places 
no restrictions on odd or even addresses. 

When the 8086 or the 8088 is operated in the 
minimum mode, the CPU's read and write com­
mands (RD and WR) are common for memory 
and 110 devices. If the memory and 110 address 
spaces overlap, device selection must be. qualified 
by M/IO (8086) or 10/M (8088) to determine if 
the device is memory or 110. This restriction does 
not apply to systems in which 110 and memory 
addresses do not overlap or to systems that use 
memory-mapped 110 exclusively. In the max­
imum mode, the CPU generates (through the bus 
controller) separate memory read/write an~U/O 
read/write commands in place of the MilO or 
10/M signal. In a maximum mode system, an 110 
device is assigned to an 110 address or to a 
memory address (memory mapped 110) by con­
necting either the memory or 110 read/write com­
mand lines to the device's command inputs. 
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When the 110 and memory address spaces 
overlap, device selection is determined by the 
appropriate read/write command set. 

Interrupts 

CPU interrupts can be software or hardware 
initiated. Software interrupts originate directly 
from program execution (i.e., execution of a 
breakpointed instruction) or indirectly through 
program logic (Le., attempting to divide by zero). 
Hardware interrupts originate from external logic 
and are classified as either non-maskable or 
maskable. All interrupts, whether software or 
hardware initiated, result in the transfer of con­
trol to a new program location. A 256-entry vec­
tor table, which contains address pointers to the 
interrupt routines, resides in absolute locations 0 

. through 3FFH. Each entry in this table consists of 
two 16-bit address values (four bytes) that are 
loaded into the code segment (CS) and the 
instruction pointer (lP) registers as the interrupt 
routine address when an interrupt is accepted. 
Figure 4-18 illustrates the organization of the 256-
entry vector table. 

Memory Table Vector 
Address Entry Definition 

::: I----~-:-::-:----II} Vector 255,. 

82 

80 

7E 

7e 

16 

14 

12 

10 

DE 

Oe 

OA 

08 

06 

04 

02 

00 

eS32 

IP32 

eS31 

IP31 

ess 

IPS 

eS4 

IP4 

eS3 

IP3 

eS2 

IP2 

eS1 

IP1 

CS Value - Vector 0 (CS 0) 

IP Value - Vector 0 (IP 0) 

I 
I User Available 

I Reserved 

r Vector 5 

r Vector 4 - Overflow 

I' 
r Vector 3 - Breakpoint 

-< 

r Vector 2 - NMI 

~ 

r Vector 1 - Slngle·Step 

I~ 

r Vector 0 - Divide Error 

1-2 Bytes_I 
Figure 4-18. Interrupt Vector Table 
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As shown in figure 4-18, the first five interrupt 
vectors are associated with the software-initiated 
interrupts and the hardware non-maskable inter­
rupt (NMI). The next 27 interrupt vectors are 
reserved by Intel and should not be used if com­
patibility with future Intel products is to be main­
tained. The remaining interrupt vectors (vectors 
32 thorugh 255) are available for user interrupt 
routines. 

The non-mask able interrupt (NMI) occurs as a 
result of a positive transition at the CPU's NMI 
input pin. This input is asynchronous and, in 
order to ensure that it is recognized, is required to 
have a minimum duration of two clock cycles. 
NMI is typically used with power fail circuitry, 

. error correcting memory or bus parity detection 
logic to allow fast response to these fault condi­
tions. When NMI is activated, control is trans­
ferred to the interrupt service routine pointed to 
by vector 2 following execution of the current 
instruction. When a non-maskable interrupt is 
acknowledged, the current contents. of the flags 
register are pushed onto the stack (the stack 
pointer is decremented by two), the interrupt 
enable and trap bits in. the flags register are 
cleared (disabling maskable and single-step inter­
rupts), and the vector 2 CS and IP address 
pointers are loaded into the CS and IP registers as 
the interrupt service routine address. 

CLK 

The CPU provides a single interrupt request input 
(INTR) that can be software masked by clearing 
the interrupt enable bit in the flags register 
through the execution of a CLI instruction. The 
INTR input is level triggered and is synchronized 
internally to the positive transition of the CLK 
signal. In order to be accepted before the next 
instruction, INTR must be active during the clock 
period preceding the end of the current instruc­
tion (and the interrupt enable bit must be set). 

As shown in figure 4~19, when a maskable inter­
rupt is acknowledged, the CPU executes two 
interrupt acknowledge bus cycles .. 

During the first bus cycle, the CPU floats the 
address/ data bus and activates the INT A (Inter­
rupt Acknowledge) command output during 
states T 2 through T 4' In the minim urn mode, the 
CPU will not recognize a hold request from 
another bus master until the full interrupt 
acknowledge sequence is completed. In the max­
imum mode, the CPU activates the LOCK output 
from state T2 of the first bus cycle until stateT2 
of the second bus cycle to signal all 8289 Bus 
Arbiters in the system that the bus should not be 
accessed by any other processor. During the 
second bus cycle, the CPU again activates its 
INT A command output. In response to the 

ALEJ\ n r 
'LOCK \ I 

INTA \,--_.,...---.<1 \'--__ --11 
AD7-ADO ---------------------~( VECTOR TYPE )>----

'MAXIMUM MODE ONLY 
"SEVERAL (3 TYPICAL) IDLE CLOCK STATES OCCUR BETWEEN THE FIRST AND SECOND 

INTERRUPT ACKNOWLEDGE BUS CYCLES IN THE 8086 CPU (DURING THIS INTERVAL THE 
BUS IS DRIVEN). INTERRUPT ACKNOWLEDGE BUS CYCLES OCCUR BACK·TO·BACK IN 
THE 8088 CPU. 

Figure 4-19. Interrupt Acknowledge Sequence 

4-17 Mnemonics © Intel, 1978 



HARDWARE REFERENCE INFORMATION 

second INTA, the external interrupt system (e.g., 
an Intel® 8259A Programmable Interrupt Con­
troller) places a byte on the data bus that iden­
tifies the source of the interrupt (the vector 
number or Vector "type"). This byte is read by 
the CPU and then multiplied by four with the 
resultant value used as a pointer into the interrupt 
vector table. Before calling the corresponding 
interrupt routine, the CPU saves the machine 
status by pushing the current contents of the flags 
register onto the stack. The CPU then clears the 
interrupt enable and trap bits in the flags register 
to prevent subsequent maskable and single-step 
interrupts, and establishes the interrupt routine 
return linkage by pushing the current CS and IP 
register contents onto the stack before loading the 
new CSand IP register values from the vector 
table. 

The four classes of interrupts are prioritized with 
software-initiated interrupts having the highest 
priority and with maskable and single-step inter­
rupts sharing the lowest priority (see section 2.6). 
Since the CPU disables maskable and single-step 

. interrupts when acknowledging any interrupt, if 
recognition of mask able interrupts or single-step 
operation is required as part of the interrupt 
routine, the routine first must set these bits. 

The processing times for the various classes of 
interrupts are given in table 4-6. (These times also 
are included with the 8086/8088 instruction times 
cited in section 2.7.) 

Table 4-6. Interrupt Processing Time 

Interrupt Class Processing Time 

External Maskable Interrupt 
(lNTR) 61 clocks 

Non-Maskable Interrupt (NMI) 50 clocks 

INT (with vector) 51 clocks 
INTType3 52 clocks 
INTO 53 clocks 

Single Step 50 clocks 

Note that the times shown in table 4-6 represent 
only the time required to process the interrupt 
request after it has been recognized. To determine 
interrupt latency (the time interval between the 
posting of the interrupt request and the execution 
of "useful" instructions within the interrupt 
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routine), additional time must be included for the 
completion on an instruction being executed when 
the interrupt is posted (interrupts are generally 
processed only at instruction boundaries), for 
saving the contents of any additional registers 
prior to interrupt processing (interrupts 
automatically save only CS,IP and Flags) and for 
any wait states that may be incurred during inter­
rupt processing. 

Machine Instruction Encoding and 
Decoding 

Writing a MOV instruction in ASM-86 in the 
form: 

MOV destination, source 

will cause the assembler to generate 1 of 28 pos­
sible forms of the MOV machine instruction. A 
programmer rarely needs to know the details of 
machine instruction formats or encoding. An 
exception may occur during debugging when it 
may be necessary to monitor instructions fetched 
on the bus, read unformatted memory dumps, 
etc. This section provides the information 
necessary to translate or decode an 8086 or 8088 
machine instruction. 

To pack instructions into memory as densely as 
possible, the 8086 and 8088 CPUs utilize an effi­
cient coding technique. Machine instructions vary 
from one to six bytes in length. One-byte instruc­
tions, which generally operate on single registers 
or flags, are simple to identify. The keys to 
decoding longer instructions are in the first two 
bytes. The format of these bytes can vary, but 
most instructions follow the format shown in 
figure 4-20. 

The first six bits of a multibyte instruction 
generally contain an opcode that identifies the 
basic instruction type: ADD, XOR, etc. The 
following bit, called the 0 field, generally 
specifies the "direction" of the operation: 1 = the 
REG field in the second byte identifies the 
destination operand, 0 = the REG. field identifies 
the source operand. The W field distinguishes 
between byte and word operations: 0 = byte, 1 = 
word. 

One of three additional single-bit fields, S, V or 
Z, appears in some instruction formats. S is used 
in conjunction with W to indicate sign extension 
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of immediate fields in arithmetic instructions. V 
distinguishes between single- and variable-bit 
shifts and rotates. Z is used as a compare bit with 

the zero flag in conditional repeat and loop 
instructions. All single-bit field settings are sum­
marized in table 4-7. 

BYTE 1 

II II 
OPCODE 

Field 

S 

W 

D 

V 

Z 

BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTE 6 
------r-----r-----~------l 

I I I I 
LOW DISP/DATA I HIGH DISP/DATA I LOW DATA I HIGH DATA I 

I I I I 

I II II 
ow MOD REG R/M 

~ 
___________ ...l. ______ , ______ ~ 

REGISTER OPERAND/REGISTERS TO USE IN EA CALCULATION 

REGISTER OPERAND/EXTENSION OF OPCODE 

REGISTER MODE/MEMORY MODE WITH DISPLACEMENT LENGTH 

WORD/BYTE OPERATION 

DIRECTION IS TO REGISTER/DIRECTION IS FROM REGISTER 

OPERATION (INSTRUCTION) CODE 

Figure 4-20. TypicalSOS6/S0SS Machine Instruction Format 

Table 4-7. Single-Bit Field Encoding 

Value Function 

0 No sign extension 
1 Sign extend a-bit immediate data to 16 bits if W=1 

0 Instruction operates on byte data 
1 Instruction operates on word data 

0 Instruction source is specified in REG field 
1 Instruction destination is specified in REG field 

0 Shift/rotate count is one 
1 Shift/rotatecount is specified in CL register 

0 Repeatlloop while zero flag is clear 
1 Repeatlloop while zero flag is set 
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The second byte of the instruction,usually iden­
tifies the instruction's operands. The, MOD 
(mode) field indicates whether one of the 
operands is in memory or whether both operands 
are registers (see table 4-8). The REG (register) 
field identifies a register that is one of the instruc­
tion operands (see table 4-9). In a number of 
instructions, chiefly the immediate-to-memory 
variety,' REG is used as an extension of the 
opcode to identify the type of operation. The 
encoding of the R/M (register/memory) field (see 
table 4-10) depends on how the mode field is set. 
If MOD = 11 (register-to-register mode), then 
R/M identifies· the second register operand. If 
MOD selects memory mode, then R/M indicates 
how the effective a.ddress of the memory operand 
is to be calculated. Effective address calculation 
is covered in detail in section 2.8. 

Bytes 3 through 6 of an instruction are optional 
fields that usually contain the displacement value 
of a memory operand and/or the actual value of 
an immediate constant operand. 

Table 4-8. MOD (Mode) Field Encoding' 

CODE EXPLANATION 

00 Memory Mode, no displacement 
follows* 

01 Memory Mode, 8-bit 
displacement follows 

10 Memory Mode, 16-bit 
displacement follows 

11 Register Mode (no 
displacement) 

*Except when RIM = 110,then16-bit 
displacement follows 

Table 4-9. REG (Register) Field Ellcoding 

REG \ w=o W,=1, 

000 AL AX 
001 CL CX 
010 OL OX 
011 BL BX 
100 AH SP 
101 CH BP 
110 OH SI 
111 BH 01 

Theremaybe o~eor two displacement bytes; the 
language translators generate one byte whenever 
possible. The MOD field indicates 'how many 
displacement bytes are present. Following Intel 
convention, if the <;lisplacement is two bytes, the 
most-significant byte is stored second in the 
instruction. If the displacement is only a single 
byte, the 8086 or 8088automatically sign-extends 
this quantity to 16-bits before using the informa­
tion in further address calculations. Immediate 
values always follow any displacement values that 
may be present. The second byte of a two-byte 
immediate value is the most significant. 

Table 4-12 lists the instruction encodings for all 
8086/8088 instructions. This table can be used to 
predict the machine encoding of any ASM-86 
instruction. Table 4-13 lists the 8086/8088 
machine instructions in order by the binary value 
of their first byte. This table can be used to 
decode any machine instruction from its binary 
representation. Table 4-11 is a key to the 
abbreviations used in tables 4-12 and 4-13. Table 
4-14 is a more compact instructi()n decoding 
guide. 

Table 4-10. RIM (Register/Memory) Field Encoding 

MOD=11 'EFFECTIVE ADDRESS CALCULATION 

RIM W=O W=1 R/M MOD=OO MOD=01 MOD=1~ 

000 AL AX 000 (BX)+(SI) " (BX) + (SI) + 08 (BX)+(SI)+016 
001 CL CX 001 (BX) + (01) (BX) + (01) + 08 (BX) + (01) + 016 
010 OL OX 010 (BP)+(SI) (BP) + (SI) + 08 (BP) + (SI) + 016 
011 BL BX 011 (BP)+(OI) (BP) + (01) + 08 (BP) + (01) + 016 
100 AH SP 100 (SI) (SI)+08 (SI)+016 
101 CH BP 101 (01) (01)+08 (01)+016 
110 OH SI 110 OIRECTAOORESS (BP)+ 08 (BP)+016 
111 BH 01 111 (BX) (BX)+ 08 , (BX)+ 016 
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IDENTIFIER 

MOD 

REG 

R/M 

SR 

W, S, D, V,Z 

DATA-8 

DATA-SX 

DATA-LO 

DATA-HI 

(DISP-LO) 

(DISP-HI) 

IP-LO 

IP-HI 

CS-LO 

CS-HI 

IP-INC8 

IP-INC-LO 

IP-INC-HI 

ADDR-LO 

ADDR-HI 

xxx 
YYY 

REG8 

REG16 

MEM8 

MEM16 

IMMED8 

IMMED16 

SEGREG 

OEST-STR8 
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Table 4-11. Key to Machine Instruction Encoding and Decoding 

EXPLANATION 

Mode field; described in this chapter. 

Register field; described in this chapter. 

Register/Memory field; described in this chapter. 

Segment register code: OO;=ES, 01=CS,10=SS, 11 =DS. 

Single-bit instruction fields; described in this chapter. 

8-bit immediate constant. 

8-bit immediate value that is automatically sign-extended to 16-bits 
before use. 

Low-order byte of 16-bit immediate constant. 

High-order byte of 16-bit immediate constant. 

Low-order byte of optional 8- or 16-bit unsigned displacement; MOD 
indicates if present. 

High-order byte of optional 16-bit unsigned displacement; MOD 
indicates if present. 

Low-order byte of new IP value. 

High-order byte of new IP value 

Low-order byte of new CS value. 

High-order byte of new CS value. 

8-bit signed increment to instruction pointer. 

Low-order byte of signed 16-bit instruction pointer increment. 

High-order byte of signed 16-bit instruction pointer increment. 

Low-order byte of direct address (offset) of memory operand; EA not 
calculated. 

High-order byte of direct address (offset) of memory operand; EA not 
calculated. 

Bits may contain any value. 

First 3 bits of ESC opcode. 

Second 3 bits of ESC opcode. 

8-bit general register operand. 

16-bit general register operand. 

8-bit memory operand (any addressing mode). 

16-bit memory operand (any addressing mode). 

8-bit immediate operand. 

16-bit immediate operand. 

Segment register operand. 

Byte string addressed by 01. 
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Table 4-11. Key to Machine Instruction Encoding and Decoding (Cont'd.) 

IDENTIFIER EXPLANATION 

SRC-STR8 Byte string addressed by SI. 

OEST-STR16 Word string addressed by 01. 

SRC-STR16 Word string addressed by SI. 

SHORT-LABEL Label within ±127 bytes of instruction. 

NEAR-PROC Procedure in current code segment. 

FAR-PROC Procedure in another code segment. 

NEAR-LABEL Label in current code segment but farther than -128 to +127 bytes 
from instruction. 

FAR-LABEL Label in another code segment. 

SOURCE-TABLE XLAT translation table addressed by BX. 

OPCOOE ESC opcode operand. 

SOURCE ESC register or memory operand. 

Table 4-12.8086 Instruction Encoding 

DATA TRANSFER 

MOV = Move: 765432107654321076543210765432107654321076543210 

Register/memory to/from register 1 0 0 0 1 Od w mod reg rim (DISP-LOI (DISP-HII I 
Immediate to register/memory 1 1 0 0 0 1 1 w mod o 0 0 rim (DISP-LOI (DISP-HI) I data I dataifw'"1 I 
Immediate to register 1 0 1 1 w reg data data If w = 1 

Memory to accumulator 1Ql0000w addr-Io addr-hl 

Accumulator to memory 1010001w addr-l0 addr-hi 

Register/memory to segment register 1 0 0 0 1 1 1 0 mod o SA rim (DISP-LOI (DISP-HII I 
, Segment register to register/memory 10001100 mod o SA rim (DISP-LOI (DISP-HII I 

PUSH = Push: 

Registerlmemory 11111111 mod 1 1 0 rIm I (DISP-LOI I (DISP-HII I 
Register 01010reg 

Segment register 000reg110 

POP = Pop: 

Register/memory 1 0 0 0 1 1 1 1 mod 0 0 0 r/f!l I (DISP-LOI I (DISP-HII I 
Register o 1 0 1 1 reg 

Segment register 000reg111 

Mnemonics © Intel, 1978 
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Table 4-12.8086 Instruction Encoding (Cont'd.) 

DATA TRANSFER (Conl'd.) 

XCHG = Exchange: 76543210 76543210 76543210 76543210 76543210 76543210 

Aeglsterfmemory with register 

Register with accumulator 

IN = Input from: 

Fixed port 

Variable port 

OUT = Output to: 

Fixed port 1 1 1 0 0 1 1 w DATA-S 

Variable port 1 1 1 01 1 1 w 

XLAT = Translate byte to AL 11 o 1 0 1 11 

LEA = Load EA to register 100011 o 1 mod reg rim (DISP·LD) (DISP-HI) 

LOS = Load pOinter to OS 110001 o 1 mod reg rim (DISP-LD) (DISP-HI) 

LES = Load pOinter to ES 1 1 0 0 0 1 o 0 mod reg rim (DISP-LD) (DISP-HI) 

LAHF = Load AH with flags 1 0 0 1 11 11 

SAHF = Store AH into flags 1 0 0 1 11 1 0 

PUSHF = Push flags 1 0 0 11 1 0 0 

POPF = Pop flags 1 a 0 1 1 1 0 1 

ARITHMETIC 

ADD = Add: 

Reg {memory with register to either OOOOOOdw mod reg rim (DISP-LD) (DISP-HI) I 
Immediate to register/memory 100000sw mod o 0 0 rim (DISP-LD) (DISP-HI) I data I data If s: w=Ql I 
Immediate to accumulator 0OOOO10w data data If w=l 

ADe = Add with carry: 

Reg/memory with register to either 0OO100dw mod reg rim (DISP·LD) (DISP-HI) I 
Immediate to register/memory 100000sw mod o 1 0 rim (DISP-LD) (DISP-HI) I data I data If s: w"'Ol I 
Immediate to accumulator 0OO1010w data datalfw"l 

INC = Increment: 

Register/memory 1 1 1 1 1 1 1 w mod' 0 0 0 rim I (DISP-LO) I (DISP-HI) I 
Register 01000reg 

AAA = ASCII adjust for add o 0 1 1 0 1 11 

DAA = Decimal adjust for add o 0 1 o 0 1 11 
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Table 4-12. 8086 Instruction Encoding (Cont'd.) 

ARITHMETIC (Conl'd.) 

SUB = Subtract: 76543210 76543210 76543210 76543210 76543210 76543210 

Reg/memoryand register to either 001010dw mod reg rim (DISP-LO) (DISP-HI) 

Immediate from register/memory 100000sw mod 1 o 1 rim IDISP-LO) (DISP-HI) data I data if s: w=Ol I 
Immediate from accumulator 0010110w data data Ifw=l 

saa = Subtract with borrow: 

Reg/memoryand register to either 0OO110dw mod reg rim (DISP-LO) IDISP-HI) I 
Immediate from register/memory 100000sw mod 011 rIm (DISP-LO) (DISP-HI) I data I data if s: w=Ol I 
Immediate from accumulator o 0 0 1 1 lOw data data If w=l 

DEC Decrement: 

Register/memory 1111111 w mod 0 0 1 rIm i IDISP-LO) I IDISP-HI) I 
Register o 1 0 0 1 reg 

NEG Change sign 1 1 1 1 0 1 1 w mod 0 1 1 rim I IDISP-LO) J IDISP-HI) J 

CMP = Compare: 

Reglsterl memory and register o 0 1 1 1 0 d w mod reg rim (DISP-LO) IDISP-HI) 

immediate with register/memory 100000sw mod 1 1 1 rim (DISP-LO) (DISP-HI) data I data if s: w=l J 
Immediate with accumulator o 0 1 1 1 1 0 w data 

AAS ASCII adjust for subtract o 0 1 111 11 

CAS Decimal adjust for subtract o 0 1 011 11 

MUl Multiply (unsigned) 1 1 1 1 0 1 1 w mod 1 o 0 rIm IDISP·LO) IDISP-HI) 

IMUL integer multiply (signed) 1111011 w mod 1 o 1 rim (DISP-LO) IDISP-HI) 

AAM ASCII adjust for multiply 1 1 0 1 0 1 '0 0 o 0 0 0 1 0 1 0 IDISP-LO) IDISP-HI) 

DIV Oivide (unsigned) 1111011 w mod 1 1 o rIm (DISp·LO) IDISP-HI) 

IDIV Integer divide (Signed) 1 1 1 1 0 1 1 w mod 11 1 rim IDISP-LO) IDISP-HI) 

AAD ASCII adjust for divide 1101 o 1 0 1 o 0 0 0 1 0 1 0 IDISP-LO) (DISP-HI) 

caw Convert byte to word 1001 1 0 0 0 

CWO Convert word to double word 1 0 0 1 1 0 01 

LOGIC 

NOT Invert 11 1 1 01 1 w mod o 1 0 rim IDISP-LO) (DISP-HI) 

SHl/SAl Shilt logicallarlthmetic leU 1 1 0 1 0 0 v w mod 1 o 0 rim IDISP-LO) IDISP-HI) 

SHR Shift logical right 1 1 0 1 0 0 v w mod 1 o 1 rim IDISP-LO) IDISP·HI) 

SAR Shift arithmetic right 1 1 0 1 0 0 v w mod 1 11 rim IDISP-LO) IDISP-HI) 

ROl Rotate left 1 1 0 1 0 0 v w mod 0 o 0 rim IDISP-LO) IDISP-HI) 
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Table 4-12.8086 Instruction Encoding (Cont'd.) 

LOGIC (Conl'd.) 76543210 76543210 76543210 76543210 76543210 76543210 

ROR Rotate right 11010Qvw mod 0 o 1 rim (DISp·LOI (DISP·HII 

RCL Rotate through carry flag left 1 1 0 1 0 0 v w mod o 1 o rim (DISp·LOI (DISp·HII 

RCR Rotate through carry right 110100vw mod 0 11 rim (DISP·LOI (DISP·HII 

AND = And: 

Reg/memory with register to either 001000dw mod reg rim (DISP·LOI (DISp·HII I 
Immediate to regl.ster/memory 1000000w mod 1 0 0 rim (DISp·LO) (DISP·HII I data I data if w .. 1 I 
Immediate to accumulator 0010010w data dataifw=1 

TEST = And function to flags no result: 

Register/memory and register 0OO100dw mod reg rim (DISP-LOI· I (DISP·HII I 
Immediate data and register/memory 1 1 1 1 01 1 w mod o 0 0 rim (DISP·LO) I (DlSP·HII I data I dataifw",,1 I 
Immediate data and accumulator 1010·100w data 

OR = Or: 

Reg/memory and register to either 0OOO10dw mod reg rIm (DISp·LO) (DISp·HII I 
Immediate to register/memory 1000000w mod o 0 1 rIm (DISP·Lci) (DISp·HII I da1a I datalfw=1 I 
Immediate to accumulator 0OOO110w da1a dataifw=1 

XOR = Exclusive or: 

Reg/memory and register to either 001100dw mod reg rim (DlSP·LO) (DlSP·HI) I 
Immediate to register/memory 0011010w data (DISP'LO) (DISP-HI) I data I dataifw-1 I 
Immediate to accumulator 0011010w data data If w=1 

STRING MANIPULATION 

REP=Repeat 1 1 1 1 0 0 1 z 

MOVSa Move byte/word 1 0 I 0 0 I Ow 

CMPS=Compare byte/word 1 o 1 0 0 I 1 w 

SCAS=$can byte/word 1 0 1 0 1 1 1 w 

LODS=Load byle/wd 10 ALIAX 1 0 1 0 1 1 0 w 

STDS=Slor byle/wd from ALIA 1 0 1 0 1 0 1 w 
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Table 4-12. 8086 Instruction Encoding (Cont'd.) 

CONTROL TRANSFER 

CALL = Call: 76543210765432107654321076543210765432107654321.0 

Direct within segment 

Indirect within segment 

Direct Intersegment 

Indirect intersegment 

JMP = Uncondltional,Jump: 

Direct within segment 

Direct within segment-short 

Indirect within segment 

Direct Intersegment 

indirect intersegment 

RET = Return from CALL: 

Within segment 

Within seg adding immed to SP 

Intersegment 

lntersegment adding immediate to SP 

JE/JZ=Jumpon equallzero 

JL/JNGE=Jumpon lesslnot greater or equal 

JLE/JNG =Jumpon less or equalfno! greater 

JB/JNAE=Jumpon below/not above orequa! 

JBE/JNA=Jump'on beloworequal/not above 

JP I JPE = Jump on parity I parity even 

JO =Jump on overflow 

JS=Jump on sign 

JNE/JNZ= Jump on not equal/not zerO 

JNL/JGE=Jump on not lesslgreateror equal 

JNLE/JG =Jump on not less or equal/greater 

JNB/JAE:;:;Jump on not belowfabove orequal 

JNBE/JA=Jump on not below orequal/above 

JNP/JPO=Jump on not parI par odd 

JNO=Jump on not overflow 
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111 o 1 o 0 0 

1111 1111 

1 0 0 1 1 o 1 0 

11111111 

111 o 1 o 0 1 

1 1 1 0 1 o 1 1 

11111 111 

11 1 0 1 o 1 0 

11111111 

1 1 0 0 0 0 1 1 

1 1 0 0 0 0 1 0 

1 1 0 0 1 o 1 1 

1 1 0 0 1 o 1 0 

o 1 1 1 0 1 o 0 

o 1 111 1 0 0 

o 1 111 1 1 0 

o 1 1 1 0 -0.1 0 

o 1 1 1 o 1 1 0 

o 1 1 1 1 0 1 0 

o 1 1 1 0 0 0 0 

o 1 1 1 1 0 0 0 

o 1 1 1 0 1 o 1 

o 1 1111 o 1 

o 1 11 11 11 

o 1 1 1 0 0 1 1 

o 1 1 1 011 1 

o 1 1 1 1 0 1 1 

o 1 11 o 0 0 1 

IP-INC-LO IP-INC-HI 

mod o 1 0 rim (DISP-LOI IDISP-HII I 
IP-Io IP-hi 

CS-l0 CS-hl 

mod o 1 1 rim (DISP-LOI IDISP-HII I 

IP-INC-LO IP-INC-HI I 
IP-INC8 

mod 1 0 0 rim (DISP-LOI IDISP-HII I 
IP-Io IP-hi 

CS-Io CS-hl 

mod 1 0 1 rim (DISP-LOI IDISP-HII I 

data-Io data-hi I 

data-Io data-hi I 
IP-INC8 

IP-INC8 

IP-INC8 

IP-INC8 

IP-INC8 

IP-INC8 

IP-INC8 

IP-INC8 

IP-INC8 

IP-INC8 

IP-INC8 

Ip·1NC8 

IP~INC8 

IP-INC6 

IP-INC6 
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Table 4-12. 8086 Instruction Encoding (Cont'd.) 

CONTROL TRANSFER (Cont'd.) 

RET = Return from CALL; 76543210 76543210 76543210 76543210 76543210 78543210 

JNS=Jump on not sign o 1 1 1 1 0 0 1 Ip·INCB 

LOOP = Loop ex times 1 1 1 a 0 0 1 0 IP-INCB 

LOOPZlLOOPE = Loop while zero/equal 1 1 1 0 0 0 0 1 IP-INCB 

LOOPNZ/lOOPNE=Loop while not zero/aqua I 11100000 lp·INCS 

JCXZ=Jump on ex zero 1 1 1 0 0 0 1 1 IP-INCB 

INT" = Interrupt: 

Type specified 1 1 0 0 1 1 0 1 DATA-a I 
Type3 1 1 0 0 1 1 0 0 

INTO = Interrupt on overflow 1 1 0 0 1 1 1 0 

IRET = Interrupt return 1 1 a a 1 1 1 1 

PROCESSOR CONTROL 

elC = Clear carry 1 1 1 1 1 0 a 0 

CMC=Complement carry 1 1 1 1 a 1 a 1 

STC = Set carry 1 1 1 1 1 0 0 1 

eLO =Clear direction 1 1 1 1 1 1 a 0 

STO = Set direction 1 1 1 1 1 " 0 1 

eLi = Clear Interrupt 1 1 1 1 1 0 1 0 

STI=Set Interrupt 1 1 1 1 1 0 1 1 

HLT=Halt 1 1 1 1 0 1 0 0 

WAIT = Walt 1 0 0 1 1 0 , 1 

ESC = Escape (to extern/ill device) 1 1 0 1 1 x x x modyyyr/m I (DISP-LOI I (DISP-HII I 
LOCK= Bus lock prefix 1 1 1 1 0 0 0 0 

SEGMENT=Overrlde prefix 001reg110 

Table 4-13. Machine Instruction Decoding Guide 

1ST BYTE 
2ND BYTE BYTES 3, 4, 5, 6 ASM·86 INSTRUCTION FORMAT 

HEX BINARY 

00 0000 0000 MOD REG RIM (DISP-LO),(DISP-HI) ADD REG81 MEM8, REG8 
01 0000 0001 MOD REG RIM (DISP-LO),(DISP-HI) ADD REG161 M EM16, REG16 
02 0000 0010 MOD REG RIM (DISP-LO),(DISP-HI) ADD REG8, REG81 M EM8 
03 0000 0011 MOD REG RIM (DISP-LO),(DISP-HI) ADD REG16,REG16/MEM16 
04 0000 0100 DATA-8 ADD AL,IMMEDB 
05 0000 0101 DATA-LO DATA-HI ADD AX,IMMED16 
06 0000 0110 PUSH ES 
07 0000 0111 POP ES 
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Table 4-13. Machine Instruction Decoding Guide (Cont'd.) 

1ST BYTE 2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT 
HEX BINARY 

08 0000 1000 MOD REG RIM (DISP-LO),(DISP-HI) OR REG8/MEM8,REG8 
09 0000 1001 MOD REG RIM (DISP-LO),(DISP-HI) OR REG16/MEM16,REG16 
OA 0000 1010 MOD REG RIM (DISP-LO),(DISP-HI) OR REG8,REG8/MEM8 
OB 0000 1011 MOD REG RIM (DISP-LO),(DISP-HI) OR REG16,REG16/MEM16 
OC 0000 1100 DATA-8 OR AL,IMMED8 
OD 0000 1101 DATA-LO DATA-HI OR AX,IMMED16 
OE 0000 1110 PUSH CS 
OF 0000 1111 (not used) 
10 0001 0000 MOD REG RIM (DISP-LO),(DISP-HI) ADC REG8/MEM8,REG8 
11 0001 0001 MOD REG RIM (DISP-LO),(DISP-HI) ADC REG16/MEM16,REG16 
12 0001 0010 MOD REG RIM (DISP-LO),(DISP-HI) ADC REG8,REG8/MEM8 
13 0001 0011 MOD REG RIM (DISP-LO),(DISP-HI) ADC REG16,REG16/MEM16 
14 0001 0100 DATA-8 ADC AL,IMMED8 
15 0001 0101 DATA-LO DATA-HI ADC AX,IMMED16 
16 0001 0110 PUSH SS 
17 0001 0111 POP SS 
18 0001 1000 MOD REG RIM (DISP-LO),(DISP-HI) SSS REG8/MEM8,REG8 
19 0001 1001 MOD REG RIM (DISP-LO),(DISP-HI) SSB REG16/MEM16,REG16 
1A 0001 1010 MOD REG RIM (DISP-LO),(DISP-HI) SBB REG8,REG8/MEM8 
18 0001 1011 MOD REG RIM (DISP-LO),(DISP-HI) SBS REG16,REG16/MEM16 
1C 0001 1100 DATA-8 SBB AL,IMMED8 
10 0001 1101 DATA-LO DATA-HI SSS AX,IMMED16 
1E 0001 1110 PUSH DS 
1F 0001 1111 POP OS 
20 0010 0000 MOD REG RIM (DISP-LO),(DISP-HI) AND REG8/MEM8,REG8 
21 0010 0001 MOD REG RIM (DISP-LO),(DISP-HI) AND REG16/MEM16,REG16 
22 0010 0010 MOD REG RIM (DISP-LO),(DISP-HI) AND REG8,REG8/MEM8 
23 0010 0011 MOD REG RIM (DISP-LO),(DISP-HI) AND REG16,REG16/MEM16 
24 0010 0100 DATA-8 AND AL,IMMED8 
25 0010 0101 DATA-LO DATA-HI AND AX,IMMED16 
26 0010 0110 ES: (segment override 

prefix) 
27 0010 0111 DAA 
28 0010 1000 MOD REG RIM (DISP-LO),(DISP-HI) SUS REG8/MEM8,REG8 
29 0010 1001 MOD REG RIM (DISP-LO),(DISP-HI) SUB REG16/MEM16,REG16 
2A 0010 1010 MOD REG RIM (DISP-LO),(DISP-HI) SUB REG8,REG81 MEM8 
2B 0010 1011 MOD REG RIM (DISP-LO,(DISP-HI) SUB REG16,REG16/MEM16 
2C 0010 1100 DATA~8 SUB AL,IMMED8 
2D 0010 1101 DATA-LO DATA-HI SUB AX,IMMED16 
2E 0010 1110 CS: (segment override 

prefix) 
2F 00.10 1111 DAS 
30 0011 0000 MOD REG RIM (DISP-LO),(DISP-HI) XOR REG8/MEM8,REG8 
31 0011 0001 MOD REG RIM (DISP-LO),(DISP-HI) XOR REG161 MEM16,REG16 
32 0011 0010 MOD REG RIM (DISP-LO),(DISP-HI) XOR REG8, REG81 M EM8 
33 0011 0011 .MOD REG RIM (DISP-LO),(DISP-HI) XOR REG16,REG161 MEM16 
34 0011 0100 DATA-8 XOR AL,IMMED8 
35 0011 0101 DATA-LO DATA-HI XOR AX,IMMED16 
36 0011 0110 SS: (segment override 

prefix) 
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Table 4-13. Machine Instruction Decoding Guide (Cont'd.) 

1ST BYTE 2ND BYTE BYTES 3,4,5,6 ASM~86 INSTRUCTION FORMAT 
HEX BINARY 

37 0011 0110 AAA 
38 0011 1000 MOD REG RIM (DISP-LO),(DISP-HI) CMP REG8/MEM8,REG8 
39 0011 1001 MOD REG RIM (DISP-LO),(DISP-HI) CMP REG161 MEM16,REG1.6 
3A 0011 1010 MOD REG RIM (DISP-LO),(DISP-HI) CMP REG8, REGSI M EM8 
3B 0011 1011 MOD REG RIM (DISP-LO),(DISP-HI) CMP REG16,REG16/MEM16 
3C 0011 1100 DATA-8 CMP AL,IMMEDS 
3D 0011 1101 DATA-LO DATA-HI CMP AX,IMMED16 
3E 0011 1110 DS: (segment override 

prefix) 
3F 0011 1111 AAS 
40 0100 0000 INC AX 
41 0100 0001 INC CX 
42 0100 0010 INC DX 
43 0100 0011 INC BX 
44 0100 0100 INC SP 
45 0100 0101 INC BP 
46 0100 0110 INC SI 
47 0100 0111 INC DI 
48 0100 1000 DEC AX 
49 0100 1001 DEC CX 
4A 0100 1010 DEC DX 
4B 0100 1011 DEC BX 
4C 0100 1100 DEC SP 
4D 0100 1101 DEC BP 
4E 0100 1110 DEC SI 

. 4F 0100 1111 DEC DI· 

. 50 0101 ·0000 PUSH AX 
51 0101 0001 PUSH CX 
52 0101 0010 ·PUSH DX 
53 0101 0011 PUSH BX 
54 0101 0100 PUSH SP· 
55 0101 0101 PUSH BP 
56 0101 0110 PUSH SI 
57 0101 0111 PUSH DI 
58 0101 1000 POP AX 
59 0101 1001 POP CX 
5A 0101 1010 POP DX 
5B 0101 1011 POP BX 
5C 0101 1100 . POP SP 
5D 0101 1101 POP BP 
5E 0101 1110 POP SI 
5F 0101 1111 POP DI 
60 0110 0000 (not used) . 
61 0110 0001 (not used) 
62 0110 0010 (not used) 
63 0110 0011 (not used) 
64 0110 0100 (not used) 
65 0110 0101 (not used) 
66 0110 0110 (not used) 
67 0110 0111 (not used) 
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Table 4-13. Machine Instruction Decoding Guide (Cont'd.) 

1ST BYTE 
2ND.BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT 

HEX BINARY 

68 0110 1000 (not used) 
69 0110 1001 (not used) 
6A 0110 1010 (not used) 
6B 0110 1011 (not used) 
6C 0110 1100 (not used) 
60 0110 1101 (not used) 
6E 0110 1110 (not used) 
6F 0110 11.11 (not used) 
70 0111 0000 IP-INC8 JO SHORT-LABEL 
71 0111 0001 IP-INC8 JNO SHORT-LABEL 
72 0111 0010 IP-INC8 JB/JNAEI SHORT-LABEL 

JC 
73 0111 0011 IP-INC8 JNB/JAEI SHORT-LABEL 

JNC 
74 0111 0100 IP-INC8 JE/JZ SHORT-LABEL 
75 0111 0101 IP-INC8 JNE/JNZ SHORT-LABEL 
76 0111 0110 IP-INC8 JBE/JNA SHORT-LABEL 
77 0111 0111 IP-INC8 JNBE/JA SHORT-LABEL 
78 0111 1000 IP-INC8 JS SHORT-LABEL 
79 0111 1001 IP-INC8 JNS SHORT-LABEL 
7A 0111 1010 IP-INC8 JP/JPE SHORT-LABEL 
7B 0111 1011 IP-INC8 JNP/JPO SHORT-LABEL 
7C 0111 1100 IP-INC8 JLlJNGE SHORT-LABEL 
70 0111 1101 IP-INC8 JNLlJGE SHORT-LABEL 
7E 0111 1110 IP-INC8 JLE/JNG SHORT-LABEL 
7F 0111 1111 IP-INC8 JNLE/JG SHORT-LABEL 
80 1000 0000 MOD 000 RIM (DISP-LO),(OISP-HI), ADD REG8/MEM8,IMMED8 

DATA-8 
80 1000 0000 MOD 001 RIM (DISP-LO),(DISP-HI), OR REG8/MEM8,IMMED8 

DATA-8 
80 1000 0000 MOD010 RIM (DISP-LO),(DISP-HI), ADC REG8/MEM8,IMMED8 

DATA-8 
80 1000 0000 MOD 011 RIM (DISP-LO),(DISP-HI), SBB REG8/MEM8,IMMED8 

OATA-8 
80 1000 0000 MOD100 RIM (DISP-LO),(DISP-HI), AND REG8/MEM8,IMMED8 

DATA-8 
80 1000 0000 MOD 101 RIM (DISP-LO),(DISP-HI), SUB REG8/MEM8,IMMED8 

DATA-8 
80 1000 0000 MOD110 RIM (DISP-LO),(DISP-HI), XOR REG8/MEM8,IMMED8 

DATA-8 
80 1000 0000 MOD 111 RIM (DISP-LO),(OISP-HI), CMP REG8/MEM8,IMMED8 

DATA-8 
81 1000 0001 MODOOO RIM (DISP-LO),(OISP-HI), ADD REG16/MEM16,IMMED16 

DATA-LO,DATA-HI 
81 1000 0001 MOD 001 RIM (DISP-LO),(DISP-HI), OR REG16/MEM16,IMMED16 

DATA-LO,DATA-HI 
81 1000 0001 MOD010 RIM (DISP-LO),(DISP-HI), AOC REG16/MEM16,IMMED16 

DATA-LO,DATA-HI 
81 1000 0001 MODOll RIM (DISP-LO),(OISP-HI), SBB REG16/MEM16,IMMED16 

DATA-LO,DATA-HI 
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Table 4-13. Machine Instruction Decoding Guide (Cont'd.) 

1ST BYTE 2ND BYTE. BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT HEX BINARY 

81 1000 0001 MOD100 RIM (DISP-LO),(DISP-HI), AND REG16/MEM16,IMMED16 
DATA-LO,DATA-HI 

81 1000 0001 MOD 101 RIM (DISP-LO),(DISP-HI), SUB REG16/MEM16,IMMED16 
DATA-LO,DATA-HI 

81 1000 0001 MOD110R/M (DISP-LO),(DISP-HI), XOR REG16/MEM16,IMMED16 
DATA-LO,DATA-HI 

81 1000 0001 MOD111 RIM (DISP-LO),(DISP-HI), CMP REG16/MEM16,IMMED16 
DATA-LO,DATA-HI 

82 1000 0010 MODOOOR/M (DISP-LO),(DISP-HI), ADD REG8/MEM8,IMMED8 
DATA-8 

82 1000 0010 MOD 001 RIM (not used) 
82 1000 0010 MOD 010 RIM (DISP-LO),(DISP-HI), ADC REG8/MEM8,IMMED8 

DATA-8 
82 1000 0010 MOD 011 RIM (DISP-LO),(DISP.HI), SBB REG8/MEM8,IMMED8 

DATA-8 
82 1000 0010 MOD 100 RIM (not used) 
82 1000 0010 MOD 101 RIM (DISP-LO),(DISP-HI), SUB REG8/MEM8,IMMED8 

DATA-8 
82 1000 0010 MOD110 RIM (not used) 
82 1000 0010 MOD111 RIM (DISP-LO),(DISP-HI), CMP REG8/MEM8,IMMED8 

DATA-8 
83 1000 0011 MOD 000 RIM (DISP-LO),(DISP-HI), ADD REG16/MEM16,IMtylED8 

DATA-SX 
83 1000 0011 MOD 001 RIM (not used) 
83 1000 0011 MOD 010 RIM (DISP-LO), (DISP-HI), ADC REG16/MEM16,IMMED8 

DATA-SX 
83 1000 0011 MOD011 RIM (DISP-LO),(DISP-HI), SBB REG16/MEM16,IMMED8 

DATA-SX 
83 1000 0011 MOD100 RIM (not used) 
83 1000 0011 MOD101 RIM (DISP-LO),(DISP-HI), SUB REG16/MEM16,IMMED8 

DATA-SX 
83 1000 0011 MOD110 RIM (not used) 
83 1000 0011 MOD 111 RIM (DISP-LO),(DISP-HI), CMP REG16/MEM16,IMMED8 

DATA-SX 
84 1000 0100 MOD REG RIM (DISP-LO),(DISP-HI) TEST REG8/MEM8,REG8 
85 1000 0101 MOD REG RIM (DISP-LO),(DISP-HI) TEST REG16/MEM16,REG16 
86 1000 0110 MOD REG RIM (DISP-LO),(DISP-HI) XCHG REG8,REG8/MEM8 
87 1000 0111 MOD REG RIM (DISP-LO),(DISP-HI) XCHG REG16,REG16/MEM16 
88 1000 1000 MOD REG RIM (DISP-LO),(DISP-HI) MOV REG8/MEM8,REG8 
89 1000 1001 .MOD REG RIM (DISP-LO),(DISP-HI) MOV REG16/MEM16/REG16 
8A 1000 1010 MOD REG RIM (DISP-LO),(DISP-HI) MOV REG8,REG8/MEM8 
8B 1000 1011 MOD REG RIM (DISP-LO),(DISP-HI) MOV REG16,REG16/MEM16 
8C 1000 1100 MODOSRR/M (DISP-LO),(DISP-HI) MOV REG16/MEM16,SEGREG· 
8C 1000 1100 MOD1-R/M (not used) 
8D 1000 1101 MOD REG RIM (DISP-LO),(DISP-HI) LEA REG16,MEM16 
8E 1000 1110 MODOSRR/M (DISP-LO),(DISP-HI) MOV SEGREG,REG16/MEM16 
8E 1000 1110 MOD1-R/M (not used) 
8F 1000 1111 MOD 000 RIM (DISP-LO),(DISP-HI) POP REG16/MEM16 
8F 1000 1111 MOD 001 RIM (not used) 
8F 1000 1111 MOD 010 RIM (not used) 
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Table 4-13. Machine Instruction Decoding Guide (Cont'd.) 

1ST BYTE 
2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT HEX BINARY 

BF 1000 1111 MOD 011 RIM (not used) 
BF 1000 1111 MOD100 RIM (not used) 
BF 1000 1111 MOD 101 RIM (not used) 
BF 1000 1111 MOD110 RIM (not used) 
BF 1000 1111 MOD 111 RIM (not used) 
90 1001 0000 NOP (exchange AX,AX) 
91 1001 0001 XCHG AX,CX 
92 1001 0010 XCHG AX,DX 
93 1001 0011 XCHG AX,BX 
94 1001 0100 XCHG AX,SP 
95 1001 0101 XCHG AX,BP 
96 1001 0110 XCHG AX,SI 
97 1001 0111 XCHG AX,DI 
9B 1001 1000 CBW 
99 1001 1001 CWO 
9A 1001 1010 DISP-LO DISP-HI,SEG-LO, CALL FAR_PROC 

SEG-HI 
9B 1001 1011 WAIT 
9C 1001 1100 PUSHF 
90 1001 1101 POPF 
9E 1001 1110 SAHF 
9F 1001 1111 LAHF 
AD 1010 0000 ADDR-LO ADDR-HI MOV AL,MEMB 
A1 1010 0001 ADDR-LO ADDR-HI MOV AX,MEM16 
A2 1010 0010 ADDR-LO ADDR-HI MOV MEMB,AL 
A3 1010 0011 ADDR-LO ADDR-HI MOV MEM16,AL 
A4 1010 0100 MOVS DEST-STRB,SRC-STRB 
A5 1010 0101 MOVS DEST -STR16,SRC-STR16 
A6 1010 0110 CMPS DEST-STRB,SRC-STRB 
A7 1010 0111 CMPS DEST-STR16,SRC-STR16 
AB 1010 1000 DATA-B TEST AL,IMMEDB 
A9 1010 1001 DATA-LO DATA-HI TEST AX,IMMED16 
AA 1010 1010 STOS DEST-STAB 
AB 1010 1011 STOS DEST-STR16 
AC 1010 1100 LODS SRC-STAB 
AO 1010 1101 LODS SRC-STR16 
AE 1010 1110 SCAS DEST-STRB 
AF 1010 1111 SCAS DEST-STR16 
BO 1011 0000 DATA-B MOV AL,IMMEDB 
B1 1011 0001 DATA-B MOV CL,IMMEDB 
B2 1011 0010 DATA-B MOV DL,IMMEOB 
B3 1011 1011 DATA-B MOV BL,IMMEDB 
B4 . 1011 0100 DATA-B MOV AH,IMMEDB 
B5 1011 0101 DATA-B MOV CH,IMMEDB 
B6 1011 0110 DATA-B MOV DH,IMMEDB 
B7 1011 0111 DATA-B MOV BH,IMMEDB 
BB 1011 1000 DATA-LO DATA-HI MOV AX,IMMED16 
B9 1011 1001 DATA-LO DATA-HI MOV CX,IMMED16 
BA 1011 1010 DATA-LO DATA-HI MOV DX,IMMED16 
BB 1011 1011 DATA-LO DATA-HI MOV BX,IMMED16 
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Table 4-13. Machine Instruction Decoding Guide (Cont'd.) 

1ST BYTE 2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT 
HEX BINARY 

BC 1011 1100 DATA-LO DATA-HI MOV SP,IMMED16 
BD 1011 1101 DATA-LO DATA-HI MOV BP,IMMED16 
BE 1011 1110 DATA-LO DATA-HI MOV SI,IMMED16 
BF 1011 1111 DATA-LO DATA-HI MOV DI,IMMED16 
CO 1100 0000 (not used) 
C1 1100 0001 (not used) 
C2 1100 0010 DATA-LO DATA-HI RET IMMED16 (intraseg) 
C3 1100 0011 RET (intrasegment) 
C4 1100 0100 MOD REG RIM (DISP-LO),(DISP-HI) LES REG16,MEM16 
C5 1100 0101 MOD REG RIM (DISP-LO),(DISP-HI) LOS REG16,MEM16 
C6 1100 0110 MODOOO RIM (DISP-LO),(DISP-HI), MOV MEM8,IMMED8 

. DATA-8 
C6 1100 0110 MOD001 RIM . (not used) 
C6 1100 0110 MOD010 RIM (not used) 
C6 1100 0110 MOD 011 RIM (not used) 
C6 1100 0110 MOD100 RIM (not used) 
C6 1100 0110 MOD101 RIM (not used) 
C6 1100 0110 MOD110 RIM (not used) 
C6 1100 0110 MOD 111 RIM (not used) 
C7 1100 0111 MODOOO RIM (DISP-LO),(DISP-HI), MOV MEM16,IMMED16 

DATA-LO,DATA-HI 
C7 1100 0111 MOD001 RIM (not used) 
C7 1100 0111 MOD010 RIM (not used). 
C7 1100 0111 MOD011 RIM (not used) 
C7 1100 0111 MOD100 RIM (not used) 
C7 1100 0111 MOD101R/M (not used) 
C7 1100 0111 MOD 110 RIM (not used) 
C7 1100 0111 MOD111 RIM (not used 
C8 1100 1000 (not used) 
C9 1100 1001 (not used) 
CA 1100 1010 DATA-LO DATA-HI RET IMMED16 (intersegment) 
CB 1100 1011 RET (intersegment) 
CC 1100 1100 INT 3 
CD 1100 1101 DATA-8 INT IMMED8 
CE 1100 1110 INTO 
CF 1100 1111 IRET 
DO 1101 0000 MOD 000 RIM (DISP-LO),(DISP-HI) ROL REG8/MEM8,1 
DO 1101 0000 MOD 001 RIM (DISP-LO),(DISP-HI) ROR REG8/MEM8,1 
DO 1101 0000 MOD010 RIM (DISP-LO),(DISP-HI) RCL REG8/MEM8,1 
DO 1101 0000 MOD011 RIM (DISP-LO),(DISP-HI) RCR REG8/MEM8,1 
DO 1101 0000 MOD 100 RIM (DISP-LO),(DISP-HI) SALISHL REG8/MEM8,1 
DO 1101 0000 MOD101 RIM (DISP-LO),(DISP-HI) SHR REG8/MEM8,1 
DO 1101 0000 MOD110R/M (not used) 
DO 1101 0000 MOD111 RIM (DISP-LO),(DISP-HI) SAR REG8/MEM8,1 
01 1101 0001 MODOOOR/M (DISP-LO),(DISP-HI) ROL REG16/MEM16,1 
01 1101 0001 MOD 001 RIM (DISP-LO),(DISP-HI) ROR REG16/MEM16,1 
01 1101 0001 MOD 010 RIM (DISP-LO),(DISP-HI) RCL REG16/MEM16,1 
01 1101 0001 MOD011 RIM (DISP-LO),(DISP-HI) RCR REG16/MEM16,1 
01 1101 0001 MOD 100 RIM (DISP-LO),(DISP-HI) SALISHL REG16/MEM16,1 
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Table 4-13. Machine Instruction Decoding Guide (Cont'd:) 

1ST BYTE 
2NO.BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT 

HEX BINARY 

01 1101 0001 MOD101 RIM (DISP-LO),(DISP-HI) SHR REG16/MEM16,1 
01 1101 0001 MOD 110 RIM (not used) 
01 1101 0001 MOD111 RIM (DISP-LO),(DISP-HI) SAR REG16/MEM16,1 
02 1101 0010 MOD 000 RIM . (DISP-LO),(DISP-HI) ROL REG8/MEM8,CL 
02 1101 0010 MOD001 RIM (DISP-LO),(DISP-HI) ROR REG8/MEM8,CL 
D2 1101 0010 MOD010 RIM (DISP~LO),(DISP~HI) RCL REG8/MEM8,CL 
D2 1101 ·0010 MOD011 RIM (DISP-LO),(DISP-HI) RCR REG8/MEM8,CL 
D2 1101 0010 MOD100 RIM (DISP-LO),(DISP-HI) SALISHL REG8/MEM8,CL 
D2 1101 0010 MOD101 RIM (DISP-LO),(DISP-HI) SHR REG8/MEM8,CL 
D2 1101 0010 MOD110 RIM (not used) 
D2 1101 0010 MOD11t RIM (DISP-LO) ,(DISP-H I) SAR REG8/MEM8,CL 
D3 1101 0011 MOD 000 RIM (DISP-LO),(DISP-HI) ROL REG16/MEM16,CL 
D3 1101 0011 MOD 001 RIM (DISP-LO),(DISP-HI) ROR REG16/MEM16,CL 
D3 1101 0011 MOD010 RIM (DISP-LO),(DISP-HI) RCL REG16/MEM16,CL 
03 1101 0011 MOD011 RIM (DISP~LO),(DISP-HI) RCR REG16/MEM16,CL 
03 1101 0011 MOD100 RIM (DISP-LO),(DISP-HI) SALISHL REG16/MEM16,CL 
03 1101 0011 MOD101 RIM (DISP-LO),(DISP-HI) SHR REG16/MEM16,CL 
03 1101 0011 MOD110 RIM (not used) . 
03 1101 0011 MOD 111 RIM (DISP~LO),(DISP-HI) SAR REG16/MEM16,CL 
04 1101 0100 00001010 AAM 
D5 1101 0101 00001010 AAD 
D6 1101 0110 (not used) . 
D7 1101 0111 XLAT . SOURCE-TABLE 
D8 1101 1000 MOD 000 RIM 

1XXX MODYYYR/M (DISP-LO), (DISP-HI) ESC OPCODE;SOURCE 
DF 1101 1111 MOD 111 RIM 
EO 1110 0000 IP-INC-8 LOOPNEI SHORT~ABEL 

LOOPNZ 
E1 1110 0001 IP-INC-8 LOOPEI SHORT-LABEL 

LOOPZ 
E2 1110 0010 IP-INC-B LOOP SHORT-LABEL 
E3 1110 0011 IP-INC-8 JCXZ SHORT-LABEL 
E4 1110 0100 DATA-8 IN AL,IMMED8 . , 

E5 1110 0101 DATA-8 IN AX,IMMED8 
E6 1110 0110 DATA-8 OUT AL,IMMED8 
E7 1110 0111 DATA-8 OUT AX,IMMED8 
E8 1110 1000 IP-INC-LO IP-INC-HI CALL . NEAR-PROC 
E9 1110 1001 IP-INC-LO IP-INC-HI JMP NEAR-LABEL 
EA 1110 1010 IP-LO I P-H I, CS-LO, CS-H I JMP FAR-LABEL 
EB 1110 1011 IP-INC8 JMP . SHORT-LABEL 
EC 1110 1100 IN AL,DX 
ED 1110 1101 IN AX,DX 
EE 1110 1110 OUT AL,DX 
EF 1110 1111 OUT AX,DX 
FO 1111 0000 LOCK (prefix) 
F1 1111 0001 (not used) 
F2 1111 0010 REPNEJREPNZ 
F3 1111 0011 REP/REPE/REPZ 
F4 1111 0100 HLT 
F5 1111 0101 CMC 
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Table 4-13. Machine Instruction Decoding Guide (Cont'd.) 

1ST BYTE 
2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT 

HEX BINARY 

F6 1111 0110 MOD 000 RIM (DISP-LO),(DISP-HI), TEST REGBI M EMB,IM M EDB 
DATA-B 

F6 1111 0110 MOD 001 RIM (not used) 
F6 1111 0110 MOD010 RIM (DISP-LO),(DISP-HI) NOT REGB/MEMB 
F6 1111 0110 MOD011 RIM (DISP-LO),(DISP-HI) NEG REGB/MEMB 
F6 1111 0110 MOD100 RIM (DISP-LO) ,(DISP-H I) MUL REGB/MEMB 
F6 1111 0110 MOD101 RIM (DISP-LO),(DISP-HI) IMUL REGB/MEMB 
F6 1111 0110 MOD110 RIM (DISP-LO),(DISP-HI) DIV REGB/MEMB 
F6 1111 0110 MOD 111 RIM (DISP-LO),(DISP-HI) IDIV REGB/MEMB 
F7 1111 0111 MODOOOR/M (DISP-LO),(DISP-HI), TEST REG16/MEM16.IMMED16 

DATA-LO,DATA-HI 
F7 1111 0111 MOD 001 RIM (not used) 
F7 1111 0111 MOD010R/M (DISP-LO),(DISP-HI) NOT REG16/MEM16 
F7 1111 0111 MOD011 RIM (DISP-LO),(DISP-HI) NEG REG16/MEM16 
F7 1111 0111 MOD100 RIM (DISP-LO),(DISP-HI) MUL REG16/MEM16 
F7 1111 0111 MOD101 RIM (DISP-LO),(DISP-HI) IMUL REG16/MEM16 
F7 1111 0111 MOD110 RIM (DISP-LO),(DISP-HI) DIV REG16/MEM16 
F7 1111 0111 MOD111 RIM (DISP-LO),(DISP-HI) IDIV REG16/MEM16 
FB 1111 1000 CLC 
F9 1111 1001 STC 
FA 1111 1010 CLI 
FB 1111 1,011 STI 
FC 1111 1100 CLD 
FD 1111 1101 STD 
FE 1111 1110 MOD 000 RIM (DISP-LO),(DISP-HI) INC REGB/MEMB 
FE 1111 1110 MOD 001 RIM (DISP-LO),(DISP-HI) DEC REGB/MEMB 
FE 1111 1110 MOD010R/M (not used) 
FE 1111 1110 MOD011 RIM (not used) 
FE 1111 1110 MOD100R/M (not used) 
FE 1111 1110 MOD101 RIM (not used) 
FE 1111 1110 MOD110R/M (not used) 
FE 1111 1110 MOD111 RIM (not used) 
FF 1111 1111 MODOOOR/M (DISP-LO),(DISP-HI) INC MEM16 
FF 1111 1111 MOD 001 RIM (DISP-LO).(DISP-HI) DEC MEM16 
FF 1111 1111 MOD010 RIM (DISP-LO),(DISP-HI) CALL REG16/MEM16 (intra) 
FF 1111 1111 MOD011 RIM (DISP-LO),(DISP-HI) CALL MEM16 (intersegment) 
FF 1111 1111 MOD100 RIM (DISP-LO),(DISP-HI) JMP REG16/MEM16 (intra) 
FF 1111 1111 MOD101 RIM (DISP-LO).(DISP-HI) JMP MEM16 (intersegment) 
FF 1111 1111 MOD 110 RIM (DISP-LO).(DISP-HI) PUSH MEM16 
FF 1111 1111 MOD 111 RIM (not used) 
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Lo 
HI 0 I 2 

0 ADD ADD ADD 
b,t,r/m w,t,r/m b,t,r/m 

1 ADC ADC ADC 
b.f,r/m w.f,r/m b,t.r/m 

2 AND AND AND 
b.f,r/m w.f.r/m b,t.r/m 

3 XOR XOR XOR 
b.f,r/m w.f,r/m b,t,r/m 

4 INC INC INC 
AX CX DX 

5 PUSH PUSH PUSH 
AX CX OX 

6 

7 JO JNO JBI 
JNAE 

8 Immed Immed Immed 
b,r/m w.r/m b,r/m 

9 XCHG XCHG XCHG 
AX CX OX 

A MOV MOV MDV 
m - AL m -AX AL - m 

B MOV MOV MOV 
i _ AL i - CL i - OL 

C RET, 
(i+SP) 

0 Shift Shift Shift 
b w b,v 

E LOOPNZI LOOPZI LOOP LOOPNE LOOPE 
F LOCK REP 
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Table 4-14. Machine Instruction Encoding Matrix 

3 4 5 6 
ADD ADD ADD PUSH 

w,t.r/m b, ia w.ia ES 
,ADC ADC ADC PUSH 

w,t,r/m b,i w,i SS 
AND AND AND SEG 

w,t,r/m b,i w.i "ES 
XOR XOR XOR SEG 

w,t,r/m b,i w,i "SS 
INC INC INC INC 
BX SP BP SI 

PUSH, PUSH PUSH PUSH 
BX SP BP SI 

JNBI JEI JNEI JBEI 
JAE JZ JNZ JNA 

Immed TEST TEST XCHG 
is.r/m b,r/m w,r/m b,r/m 

XCHG XCHG XCHG XCHG 
BX SP BP SI 

MOV MOVS MOVS CMPS 
AX - m 

MOV MOV MOV MOV 
i - BL i - AH i - CH i - DH 

RET LES LOS MOV 
b,i.r/m 

Shift AAM AAD 
W,V 

JCXZ IN IN OUT 
b w b 

REP HLT CMC 
Grp 1 

z b,r/m 

where' 
modOr/m 000 001 010 

Immed ADD OR ADC 
Shill ROL ROR RCL 
Grp 1 TEST - NOT 
Grp2 INC DEC CALL 

b = byte operation 
d = direct 
t = from CPU reg 
i = immediate 
ia = immed, to accum. 
id = indirect 

id 

is = immed. byte, sign ext. 
I = long ie. intersegment 

7 
POP 
ES 

POP 
SS 

DAA 

AAA 

INC 
01 

PUSH 
01 

JNBEI 
JA 

XCHG 
w,r/m 

XCHG 
01 

CMPS 

MOV 
i - BH 

MOV 
w,i.r/m 

XLAT 

OUT 
w 

Grp 1 
w.r/m 

011 
SBB 
RCR 
NEG 

CALL 
Lid 

8 9 A 8 

OR OR OR OR 
b,t.r/m w.f.r/m b,t,r/m w,t,r/m 

SBB SBB SBB SBB 
b,t,r/m w,t,r/m b,t,r/m w,t,r/m 

SUB SUB SUB SUB 
b.f.r/m w.f,r/m b.t,rim w,t.r/m 

CMP CMP CMP CMP 
b,t,r/m w.f.r/m b,t,r/m wHim 

DEC DEC DEC DEC 
AX CX OX BX 
POP POP POP POP 
AX CX OX BX 

JS JNS JPI JNPI 
JPE JPO 

MOV MDV MOV MOV 
b.f,r/m w.f,r/m b,t,r/m wHim 

CBW CWO CALL WAIT I,d 
TEST TEST STOS STOS b,l,a w,l,a 

MOV MOV MOV MOV 
i-AX i - CX i-OX i - BX 

RET, RET 
1.(i+SP) I 

ESC ESC ESC ESC 
0 1 2 3 

CALL JMP JMP JMP 
d d I,d si.d 

CLC STC ' CLI STI 

100 101 110 111 
AND SUB XDR CMP 

SHLISAL SHR - SAR 
MUL IMUL' DlV IDIV 
JMP JMP PUSH 

id I.id 

m = memory 
rim = EA is second byte 
si = short intrasegment 
sr = segment register 
t = to CPU reg 
v = variable 
w = word operation 
z = zero 
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C 0 E F 
OR OR PUSH 
b.i w,j CS " 

SBB SBB PUSH POP 
b,1 w.i OS OS 

SUB SUB SEG DAS b,i w.i "CS 
CMP CMP SEG AAS b,i w,i "OS 
DEC DEC DEC DEC 
SP BP SI or 

POP POP POP POP 
SP BP SI 01 

JLI JNLI JLEI JNLEI 
JNGE JGE JNG JG 
MOV LEA MOV POP 

sr,t,r/m sr,t,r/m rim 

PUSHF POPF SAHF LAHF 

LOOS LOOS SCAS' SCAS 

MOV MOV MOV MOV 
i - SP i - BP i - SI i _ 01 

INT INT INTO IRET Type 3 (Any) 
ESC ESC ESC ESC 

4 5 6 7 
IN IN OUT OUT 
v,b v,w v,b v,w 

CLD STO 
Grp 2 Grp 2 
b,r/m w,r/m 
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8086 Instruction Sequence 

Figure 4-22 illustrates the internal operation and 
bus activity that occur as an 8086 CPU executes a 
sequence of instructions. This figure presents the 
signals and timing relationships that are impor­
tant in understanding 8086 operation. The follow­
ing discussion is intended to help in the interpreta­
tion of the figure. 

Figure 4-22 shows the repeated execution of an 
instruction loop. This loop is defined in both 
machine code and assembly language by figure 
4-21. A loop was chosen both to demonstrate the 
effects of a program jump on the queue and to 
make the instruction sequence easy to follow. The 
program sequence shown was selected for several 
reasons. First, consisting of seven instructions 
and 16 bytes, the sequence is typical of the tight 
loops found in many application programs. 
Second, this particular sequence contains several 
short, fast-executing instructions that 
demonstrate both the effect of the queue on CPU 
performance and the interaction between the exe­
cution unit (EU) fetching code from the queue 
and the bus interface unit (BIll) filling the queue 
and performing the requested bus cycles. Last, 
for the purpose of this discussion, code, stack, 
and memory data references were arranged to be 
aligned on even word boundaries. 

ASSEMBLY LANGUAGE 

MOV AX, OF802H 
PUSH AX 
MOVCX, BX 
MOVDX,CX 
ADD AX, [51] 
ADD 51, 8086H 
JMP $ -14 

MACHINE CODE 

8802F8 
50 ' 
8BGB 
8BD1 
0304 
,81C68680 
EBFQ 

Figure 4-21. Instruction Loop Sequence 

Figure 4-22 can be more easily interpreted- by 
keeping the following guidelines in mind. 

, ' 

• The queue status lines (QSO, QSl) are the key 
indicators of EU activity. 

• Status .lines S2 through SO are the main 
indicators or 8086/8088 bus activity. 

• Interaction of the BIU and EU is via the 
queue for pre fetched opcodes and via the EU 
for requested bus cycles for data operands. 

4-37 

Keeping these guidelines in mind, the instruction 
sequence depicted in figure 4-22 can. be described 
as follows. Starting the loop arbitrarily in clock 
cycle I with the queue reinitialization that occurs 
as part of the JMP instruction, JMP instruction 
execution is completed by the EU, while the BIU 
performs an opcode fetch to begin refilling the 
queue. (Note that a shorthand notation has been 
used in the figure to represent the ,two queue 
status lines and the three status lines-active 
periods on any of these lines are noted and the 
binary value of the lines is indicated above each 
active region.) 

In clock cycle 8, the queue status lines indicate 
that the first byte of the MOV immediate instruc­
tion has been removed from the queue (one clock 
cycle after it was placed there by the BIU fetch) 
and that execution of this instruction has begun. 
The second byte of this instruction is taken from 
the queue in clock cycle 10 and then, in clock 
cycle 12, the EU pauses to wait one clock cycle for 
the BIU's second opcode fetch to be completed 
and for the third byte of the MOV immediate 
instruction to be available for execution 
(remember the queue status lines indicate queue 
activity that h~s occurred in the previous clock 
cycle). ' 

Clock cycle 13 begins the execution of the PUSH 
AX instruction, and in clock cycle 15, the BIU 
begins the fourth opcode fetch. The BIU finishes 
the fourth fetch in clock cycle 18 and prepares for 
another fetch when it receives a request from the 
EU for a memory write (the stack push). Instead 
of completing the opcode fetch and forcing the 
EU to wait four additional clock cycles, the BIU 
immediately aborts the fetch cycle (resulting in 
two idle clock cycles (TI) in clock cycles 19 and 
20) and performs the required memory write. This 
interaction between the EU and BIU results in a 
Single clock extension to the execution time of the 
PUSH AX instruction, the maximum delay 'that 
can occur in response to an EU bus cycle request. 

Execution continues in clock cycle 24 with the 
execution of back-to-back, register-to-register 
MOV instructions. The first of these instructions 
takes full advantage of the pre fetched opcode to 
complete this operation in two clock cycles. The 
second MOV instruction, however, depletes the 
queue and requires two additional clock cycles 
(clock cycles 28 and 29). 
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eLK 

T, I T, IT, T2 f3' 

FETCHBl02 

." 

EU otg:cus:" ------, 

T4 I Tl 

~ 
T2 TS 
FETCHFISO 

.~ 

r .. I Tl 

~ 
MOW"''''''' 

T2 fa 
mCH II CI 

~~~ 
. ,. 

T2 fa 
mCH •• D1 

~ II ., 

PUIHAX 

T2 fS 
WRITE FI020NTO 

STACK 

r4 I Tl " FETCMDO 

~~~ 
11 01 

FI"'T I NEXT I FIRST I N 
IYTE I BYTf linE I • 

1·lIovci n+-. 

Figure 4-22. Sample.lnstruction Sequence Execution 

In clock cycle 30, the ADD memory indirect to 
AX instruction begins. In the time required to 
execute this instruction, the BIU completes two 
opcode fetch cycles and a memory read and 
begins a fourth opcode fetch cycle, Note that in 
the case of the memory read, the EU's request for 
a bus cycle occurs at a point in the BIU fetch cycle 
where it can be incorporated directly (idle states 
are not required and no EU delay is imposed). 

In clock cycle 44, the EU begins the ADD 
immediate instruction, taking four bytes from the 
queue and completing instruction execution in 
four clock cycles. Also during this time, the BIU 
senses a full queue in clock cycle 45 and enters a 
series of bus idle states (five or six bytes constitute 
,a full queue in the 8086; the BIU waits until it can 
fetch a full word of opcode before accessing the 
bus) .. 

At clock cycle 47, the BIU again begins a bus 
cycle, sequence, one that is destined to be an 
"overfetch" since the EU is executing a JMP 
instruction. As part of the JMP instruction, the 
queue reinitialization (which began the instruc­
tion sequence) occurs. 

The entire sequence of instructions has taken 55 
clock cycles. Eighteen opcode bytes.were fetched, 
one word memory read occurred, and one word 
stack write was performed. 

This example was, by design, partially bus limited 
and indicates the types of EU and BIU interaction 
that can occur in this situation. Most application 
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code sequences, however, use a higher proportion 
of more complex, longer-executing instructions 
and addressing modes, and therefore tend to be 
execution limited. In this case, less BlU-EU 
interaction is required, the queue more often is 
full, and more idle states occur on the bus. 

The previous example sequence can be easily 
extended to incorporate wait. states in the bus 
access cycles. In the case of a single wait state, 
each bus cycle would be lengthened to five clock 
cycles with a wait state (TW) inserted between 
every T 3 and T 4 state of the bus cycle. As a first 
approximation, the instruction sequence exection 
time would appear to be lengthened by 10 .clock 
cycles, one cycle for each useful read or write bus 
cycle that occurs. Actually, this approximation 
for the number of wait states inserted is incorrect 
since the queue can compensate for wait states by 
making use of previously idle bus time. For the 
example sequence, this compensation reduced the 
actual execution time by one wait state, and the 
sequence was completed in 64 clock cycles, one 
less than the approximated 65 clock cycles. 

4.3 8089 I/O Processor 

The Intel® 8089 I/O Processor (lOP) combines 
the functions of a DMA controller with the pro­
cessing capabilities of a microprocessor. In addi­
tion to the normal DMA function of transferring 
data, the 8089 is capable of dynamically 
translating and comparing the data as it is 
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Figure 4-22. Sample Instruction Sequence Execution 

transferred arid of supporting a number of ter­
minate conditions including byte count expired, 
data compare or miscompare and the occurrence 
of an external event. The 8089 contains two 
separate DMA channels, each with its own 
register set. Depending on the established 
priorities (both inherent and program deter­
mined), the two channels can alternate 
(interleave) their respective operations. 

Designed expressly to relieve the 8086 or 8088 
CPU of the overhead associated with I/O opera­
tions, the 8089, when configured in the remote 
mode, can perform a complete I/O task while the 
CPU is performing data processing tasks. The 
8089, when it has completed its I/O task, can then 
interrupt the CPU. 

Transfer flexibility is an integral part of the 
8089's design. In addition to routine transfers 
between an I/O peripheral and memory, transfers 
can be performed between two I/O devices or 
between two areas of memory. Transfers between 
dissimilar bus widths are automatically handled 
by the 8089. When data is transferred from an 
8-bit peripheral bus to a.16-bit memory bus,. the 
8089 reads two . bytes from the peripheral, 
assembles the bytes into a 16-bit word and then 
writes the single word to the addressed memory 
location. Also; both 8- and 16-bit peripherals can 
reside on the same (16-bit) bus; byte transfers are 
performed with the 8-bit peripheral, and word 
transfers are performed with the 16-bit 
peripheral. 
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System Configuration 

The 8089 can be implemented in one of two 
system configurations: a "local" mode in which 
the 8089 shares the system bus with an 8086 or 
8088 CPU and a "remote" mode in which the 
8089 has exclusive access to its own dedicated bus 
as well as access to the system bus. Note that in 
either the local or remote mode, the 8089 can 
address a full megabyte of system memory and 
64k bytes of I/O space. 

Local Mode 

In the local mode, the 8089 acts as a slave to an 
8086 or 8088 CPU that is operating in the max­
imum mode. In this configuration, the 8089 
shares the system address latches, data 
transceivers and bus controller with the CPU as 
shown in figure 4-23. . 

Since the lOP and CPU share the system bus, 
either the.IOP or the CPU will have access to the 
bus at anyone time. When one processor is using 
the bus, the other processor floats its 
address/ data and control lines. Bus access 
between the lOP and CPU is determined through 
the request/grant function. Recalling the CPU's 
request/grant sequence, the lOP requests the bus 
from the CPU, the CPU grants the bus to the 
lOP, and the lOP relinquishes the bus to the CPU 
when its operation is complete. Remember that 
the CPU cannot request the bus from the lOP 
(the CPU is only capable of granting the bus and 
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Figure 4-23. TypicaiSOSS/SOS9 Local Mode Configuration 

must wait for the lOP to release the bus). Also, 
since the request/grant pulse exchange must be 
synchronized, both the CPU and lOP must be 
referenced to the same clock signal. 

The 8089 lOP, when used in the local mode, can 
be ad_ded to an 8086 or 8088 maximum mode con­
figuration with little affect on component count 
(channel attention decoding logic asrequired) and 
offers the benefits of intelligent DMA 
(scan/match,- translate, variable termination con­
ditions), modular programming in a full 
megabyte of memory address space and a set of 
optimized I/O instructions that are unavailable to 
the 8086 and 8088 CPUs. The major disadvantage 
to the local configuration is that since the system 
bus is shared, bus contention always exists 
between the CPU and lOP. The use of the bus 
load limit field in the channel control word can 
help reduce lOP bus access during task block pro­
gram execution (bus load limiting has no affect on 
DMA transfers) although, for I/O intensive 
systems, the remote mode should be considered. 

Remote Mode 

The 8089,whenused in the 'remote mode, pro­
vides a multiprocessor system with true parallel 
processing. In this mode, the 8089 has a separate 
(local) bus and memory for 110 peripheral com­
munications, and the system bus is completely 
isolated from the 110 peripheral(s). Accordingly, 
I/O transfers between an I/O peripheral and the 
lOP's local memory can occur simultaneously 
with CPU operations on the system bus. 

As shown in figure 4-24, to interface the 8089 to 
the system -bus, data transceivers and address 
latches are used to separate the lOP's local bus 
from the system bus, an 8288 Bus Controller is 
used to generate the bus control signals for both 
the local and system buses as well-as to govern the 
operationofthe transceivers/latches, and an 8289 
Bus Arbiter is used to control access to the system 
bus (each processor in the system would have an 
associated 8289 Bus Arbiter). To interface the 
8089 to its local bus, another set of address 
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Figure 4-24. Typical 8089 Remote Mode Configuration 

latches is required (unless MCS-85™ multiplexed 
address components are exclusively interfaced) 
and, depending on the bus loading demands, one 
(8-bit bus) or two (16-bit bus) data transceivers 
would be used. 

In the remote mode, the lOP's local bus is treated 
as 1/0 space (up to 64k bytes), and the system bus 
is treated as memory space (1 megabyte). The 
8288 Bus Controller's 1/0 command outputs con­
trol the local (110) bus, and its memory command 
outputs control the system (memory) bus. The 
8289 Bus Arbiter, which is operated in its lOB 
(110 ~ripheral bus) mode, also decodes the 
lOP's S2 through SO status outputs. In this mode, 
the 8289 will not request the multimaster system 
bus when the lOP indicates an operation on its 
local bus. If the lOP's bus arbiter currently has 
access to the system bus, the CPU's arbiter (or 
any other arbiter in the system) can acquire use of 
the system bus at this time (a bus arbiter main­
tains bus access until another arbiter requests the 
bus). 
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Bus Operation 

The 8089 utilizes the same bus structure as an 
8086 or 8088 CPU that is configured in the max­
imum mode and performs a bus cycle only on de­
mand (e.g., to fetch an instruction during task 
block execution or to perform a data transfer). 
The bus cycle itself is identical to an 8086 or 8088 
CPU's bus cycle in that all cycles consist of four 
T -states and use the same time-multiplexing 
technique of the addressdata lines. As shown in 
the following timing diagrams, the address (and 
ALE signal) is output during state T 1 for either a 
read or write cycle. Depending on the type of 
cycle indicated, the addressl data lines are floated 
during state T2 for a read cycle (figure 4-25) or 
data is output on these lines during a write cycle 
(figure 4-26). During state T3, write data is main­
tained or read data is sampled, and the busy cycle 
is concluded in state T 4. 

Since the 8089 is capable of transferring data to or 
from both 8-bit and 16-bit buses, when an 8-bit 
physical bus is specified (bus width is specified 
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Figure 4-25. Read Bus Cycle (8-Bit Bus) 
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Figure 4-26. Write Bus Cycle (16-Bit Bus) 

4-42 



HARDWARE REFERENCE INFORMATION 

during the initialization sequence), the address 
present on the AD 15 through AD8 address/data 
lines is maintained for the entire bus cycle as 
shown in figure 4-25 and, unless added drive 
capability is required, the associated address latch 
can be eliminated. An 8-bit data bus is compatible 
with the 8088 CPU and with the MCS-85™ 
multiplexed address peripherals (8155, 8185, 
etc.). 

The 8089 operates identically to the 8086 CPU 
with respect to the use of the low- and high-order 
halv!!s of the data bus. Table 4-14 defines the data 
bus use for the various combinations of bus width 
and address boundary. 

The S2 through SO status lines define the bus cycle 
to be performed. These lines are used by an 8288 
Bus Controller to generate all memory and 110 
command and control signals, and are decoded 
according to table 4-15. 

Table 4-14. Data Bus Usage 

Physical Bus Width' 
Logical Address 

BusWidth' Boundary 16 
8 

Byte Transfer Word Transfer 

Even 
AD7-ADO = DATA AD7-ADO= DATA 

N/A 
(SHE not used) (SHE high) 

8 

Odd 
AD7-ADO = DATA AD15-AD8 = DATA 

N/A 
(SHE not used) (SHE low) 

Even Illegal 
AD7-ADO = DATA AD15-ADO = DATA 

(SHE high) (BHE low) 
16 

Odd Illegal 
AD15-AD8 = DATA 

N/A' 
(SHE low) 

Notes: 

1. Logical bus width is specified by the WID instruction prior to the DMA transfer. 

2. Physical bus width is specified when the 8089 is initialized. 

3. A word transfer to or from an odd boundary is performed as two byte transfers. The first byte trans­
ferred is the low-order byte on the high-order data bus (AD15-AD8), and the second byte is the high­
order byte on the low-order data bus (AD7-ADO). The 8089 automatically assembles the two bytes in 
their proper order. 

Table 4-15. Bus Cycle Decoding 

Status Output 
Bus Cycle Indicated 

Bus Controller 

S2 S1 SO Command Output 

0 0 0 Instruction fetch from I/O space INTA 
0 0 1 Data read from I/O space 10RC 
0 1 0 Data write to I/O space 10WC,AIOWC 
0 1 1 Not used None 
1 0 0 Instruction fetch from system memory MRDC 
1 0 1 Data read from system memory MRDC 
1 1 0 Data write to system memory MWTC,AMWC 
1 1 1 Passive None 
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Note that the 8089 indicates an instruction fetch 
from I/O space as a status of zero (S2, SI and SO 
equal 0). Since the 8288 Bus Controller decodes 
an input status value of zero as an interrupt 
acknowledge bus cycle, the bus controller's INTA 
output must be OR'ed with its 10RC output to 
permit fetching of task block instructions from 
!ocal8089memory (remote configuration) or 
system 110 space (local and remote 
configurations). 

The S2 through SO status lines become active in 
state T 4 if a subsequent bus cycle is to be per­
formed. These lines are setto the passive state (all 

· "ones") in the state immediately prior to state T 4 
of the current bus cycle (state T 3 or T w) and are 
floated when the 8089 does not have access to the 
bus. 

The S6 through S3 status lines are multiplexed 
with the high-order address bits (AI9-AI6f and, 

· accordingly, become valid in state T2 of the bus 
cycle. The S4 and S3 status lines reflect the type of 
bus cycle being performed on the corresponding 

· channel as indicated in taple 4-16. . 

Table 4-16. Type of Cycle Decoding 

Status Output 
Type of Cycle 

S4 S3 

0 0 DMA on Channel 1 
0 1 DMA on Channel 2 
1 0 Non-OMA on Channel1 
1 1 Non-DMA on Channel 2 

The S6 and S5 status lines are always" 1" on the 
8089. Since these lines are not both" I" on the 
other processors in: the 8086 family (S6 is always 
"0" on the 8086 and 8088 CPUs), these status 
lines can be used as a "signature" in a 
multiprocessor environment to identify the. type 
of processor performing the bus cycle. 

The 8089 includes the same provision as do the 
8086 and 8088 CPUs for the .insertion of wait 
states (T w) in a bus cycle when the associated 
memory or I/O device cannot respond within the 
.allotediime interval or when, in the remote mode, 
,the 8089 must wait for access to the system bus. 
An 8284 Clock Generator/Driver is used to con­
trol the insertion of wait states which, when 
,required, are inserted between states T 3 and T 4. 
The actual insertion of wait states is accomplished 
'by deactivating one of the 8284's RDY inputs 
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(RDYI or RDY2). Either of these inputs, when 
enabled by its corresponding AEN lor AEN2 
input, can be deactivated directly by the memory 
or I/O device when it must extend the 8089's bus 
cycle (when the addressed device is not ready to 
present or accept data). The 8284's READY out­
put, which is synchronized to the CLK signal, is 
directly connected to the 8089's READY input. 
As shown in figure 4-27, when the addressed 
device requires one or more wait states to be 
inserted into a bus cycle, it deactivates the 8284's 
RDY input prior to the end of state T2. The 
READY output from the 8284 is subsequently 
deactivated at the end of state T2 which causes the 
8089 to insert wait states following state T3. To 
exit the wait state, the device activates the 8284's 
RDY input which causes the READY input to the 
8089 to go active on the next clock cycle and 
allows the 8089 to enter state T 4. 

ClK 
TRWc,·_II_ TR1vcl·_11- _I !--TClR1X· 

ROY INPUT -----"."""= • 

READY 
OUTPUT 

READY \'--__ No_T_RE_Ao_y_---I1 READY 

"REFER TO THE 8284 CLOCK GENERATOR/DRIVER DATA SHEET IN APPENDIX B FOR 
TIMING INFORMATION 

Figure 4-27. Wait State Timing 

Periods of inactivity can occur between bus 
cycles. These inactive periods are referred to as 
idle states (Tl) and, as with the 8086 and 8088 
CPUs, can result from the execution of a "long" 
instruction or the loss of the bus to another pro­
cessor during task block instruction execution. 
Additionally, the 8089 can experience idle states 
when it is in the DMA mode and it is waiting for a 
DMA request from the addressed I/O device or 
when the bus load limit (BLL) function is enabled 
for a channel performing task block instruction 
execution and the other channel is idle. 

Initialization 

Initialization of the lOP is generally the respon­
sibility of the host processor which,· as stated in 
Chapter 3, prepares the communications data 
structure in shared memory. Initialization of the 
lOP itself begins with the activation of its RESET 
input. This input (originating typically from an 
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8284 Clock Generator/Driver) must be held active 
for at least five clock cycles to allow the 8089's 
internal reset sequence to be completed. Note that 
like the 8086 and 8088 CPUs, the RESET input 
must be held active for at least 50 microseconds 
when power is first applied. Following the reset 
interval, the host processor signals the lOP to 
begin its initialization sequence by activating the 
8089's CA (Channel Attention) input. The 8089 
will not recognize a pulse at its CA input until one 
clock cycle after the RESET input returns to an 
inactive level. Note that the minimum width for a 
CA pulse is one clock cycle and that this pulse 
may go active prior to RESET returning to an 
inactive level provided that the negative-going, 
trailing-edge of the CA pulse does not occur prior 
to one clock cycle after RESET goes inactive. 
Figure 4-28 illustrates the timing for this portion 
of the initialization sequence. 

elK 

RESET ~J~~I~~ ~~~~~ \ CYCLES 1---____ _ 

1-1 eLK MIN-I 
-----------~~~~~CA 

CA -----------J~-, C-LK-M-1N ~~~~ RECOGNIZED 

Figure 4-28. RESET -CA Initialization Timing 

Coincident with the trailing edge of the first 
CA pulse following reset, the 8089 samples its 
SEL (Select) input from the host processor to 
determine master/slave status for its 
request/grant circuity. If the SEL input is low, 
the 8089 is designated a "master," and if the SEL 
input is high, the 8089 is designated a "slave." As 
a master, the 8089 assumes that it has the bus 
initially, and it will subsequently grant the bus to 
a requesting slave when the bus becomes available 
(i.e., the 8089 will respond to a "request" pulse 
on its RQ/GT line with a "grant" pulse). A single 
8089 in the remote configuration (or one of two 
8089s in a remote configuration) would be 
designated a master. As a slave, the 8089 can only 
request the bus from a master processor (Le., the 
8089 initiates the request/grant sequence by out­
putting a "request" pulse on its RQ/GT line). An 
8089 that shares a bus with an 8086 or 8088 (or 
one of two 8089s in a remote configuration) 
would be designated a slave. Note that since the 
8086 and 8088 CPUs can grant the bus only in 
response to a request, whenever an 8086 or 8088 
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and an 8089 share a common bus, the 8089 must 
be designated the slave. Also, when the RQ/GT 
line is not used (Le., a single 8089 in the remote 
configuration), the 8089 must be designated a 
master. 

In addition to determining master/slave status, 
the CA pulse also causes the 8089 to begin execu­
tion of its internal ROM initialization sequence; 
Note that since the 8089 must have access to the 
system bus in order to perform this sequence, the 
8089 immediately initiates a request/grant 
sequence (if designated a slave) and, if required, 
then requests the bus through the 8289 Arbiter. 
(If designated a master, the 8089 requests the bus 
through the 8289 Arbiter.) In the execution of the 
initialization sequence, the 8089 first fetches the 
SYSBUS byte from location FFFF6H. The W bit 
(bit 0) of this byte specifies the physical bus width 
of the system bus. ,Depending on the bus width 
specified, the 8089 then fetches the address of the 
system configuration block (SCB) contained in 
locations FFFF8H through FFFFBH in either two 
bus cycles (16-bit bus, Wbit equal 1) .or four bus 
cycles (8-bit bus, W bit equal 0). The SCB offset 
and segment address values fetched are combined 
into a 20-bit physical address that is stored in an 
internal register. Using this address, the 8089 next 
fetches the system operation command (SOC) 
byte. As explained in Chapter 3, this byte 
specifies both the request/grant operational mode 
(R bit) and the physical width of the 110 bus (I 
bit). After reading the SOC byte, the 8089 fetches 
the channel control block (CB) offset and seg­
ment address values. These values are combined 
into a 20-bit physical address and are stored in 
another internal register. To inform the host CPU 
that it has completed the initialization sequence, 
the 8089 clears the Channel. 1 Busy flag in the 
channel control block by writing an all "zeroes" 
byte to CB + 1. 

After the lOP has been initialized, the system 
configuration block may be altered in order to in­
itialize another lOP. Once an lOP has been in­
itialized, its channel control block in system 
memory cannot be moved since the CB address, 
which is internally stored by the lOP during the 
initialization sequence, is automatically accessed 
on every subsequent CA pulse. 
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As previously stated, the generation of the CA 
and SEL inputs to the lOP are the responsibility 
of the host CPU. Typically, these signals result 
from the CPU's execution of an 110 write 
instruction to one of two adjacent 110 ports (110 
port addresses that only differ by AD). Figure 4-29 
illustrates a simple decoding circuit that could be 
used to generate the CA and SEL signals. Note 
that by qualifying the CA output with 10WC, the 
SEL output, since it is latched for the entire 110 
bus cycle, is guaranteed to be stable on the trailing 
edge of the CA pulse. . 

A7 

AS 

As 

A4 

A3 

A2 

AI 

iOWC 

Au 

S30 

PORT FC=CHANNEL I CA 
PORT FD = CHANNEL 2 CA 

CA 

.. SEL 

Figure 4-29. Channel Attention Decoding Circuit 

1/0 Dispatching 

During normal operation, the 110 supervisory 
program running in the host CPU will receive a 
request to perform a specific 110 operation on 
one of the 8089's channels. In response to this 
request, the supervisory program will typically 
perform the following sequence of operations: 

• Check the availability of the specified 
channel by examining the channel's busy flag 
in the Channel Control Block. If it is possible 
for another processor to access the channel, a 
semaphore operation (implemented by a 
locked XCHG instruction) is used to check 
channel availability. 

• Load the variable parameters required for 
the intended operation into the channel's 
parameter block. 

• Load the channel command word (CCW) 
into the channel control block. 

• Establish the necessary linkages by writing 
the starting address of the channel program 
(task block) in the first four bytes of the 
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parameter block and writing the address of 
the parameter block in the channel control 
block. 

• Issue a channel attention (CA) to the 
specified channel. 

In response to the CA, the 8089 interrupts any 
current activity at its first opportunity (see "Con­
current Channel Operation" in section 3.2) and 
begins execution of an internal instruction 
sequence that fetches and decodes the channel 
command word (CCW) and then performs the 
operation indicated (i.e., start, halt or continue 
channel program execution). 

If the CCW specifies start channel program (start 
task block execution), the address of the 
parameter block is fetched from the channel 
control block, the address of the first channel 
program instruction (contained in the first four 
bytes of the parameter block) is fetched and then 
loaded into the TP (task pointer) register and, 
finally, task block execution is initiated from 
either system or 110 space. Task block execution 
continues, subject to the activity on the other 
channel as described in "Concurrent Channel 
Operation," until a XFER instruction is 
executed. Following execution of this instruction, 
the next sequential channel program instruction is 
executed before the channel enters the DMA 
transfer mode. 

If the CCW specifies halt channel, the current 
operation on the specified channel is halted. If the 
channel is performing task block execution (either 
chained or not chained), channel operation is 
stopped at an instruction boundary, and if the 
channel is performing a DMA transfer, channel 
operation is stopped at a DMA transfer cycle 
boundary. Note that a channel will not stop a 
locked DMA transfer until the operation is com­
pleted. There are two unique halt channel com­
mands. One command simply halts the channel 
and clears the busy flag in the channel control 
block. This command is used when the halted 
operation is to be discarded. The other command 
halts the channel, saves the task pointer and pro­
gram status word (PSW) byte, and clears the busy 
flag. This command is used when the halted 
operation is to be resumed. Note that this halt 
command will not affect the integrity of resumed 
task block execution or a memory-to-memory 
DMA transfer, but could affect the integrity of a 
synchronized DMA transfer (a DMA request 
occuring while the channel is halted could be 
missed). 
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If the CCW specifies continue channel, an opera­
tion that has been previously halted is resumed 
(and the busy flag is set). Since this command 
restores the task pointer and. PS W, it should be 
used only if the task pointer and PSW have been 
saved by a previous halt command. 

Table 4-17 outlines the various CCW command 
execution times. Note that the times listed in the 
table for the halt commands do not include the 
time required to complete any current channel 
activity when the channel attention is received 
(completion of the current DMA transfer cycle or 
task block instruction). 

DMA Transfers 

The number of bytes transferred during a single 
DMA cycle is determined by both the source and 
destination logical bus widths as well as by the 

address boundary (odd or even address). The 
8089 performsDMA transfers between dissimilar 
bus widths by assembling bytes or disassembling 
words in its internal assembly register file. As 
explained in Chapter 3, the DMA source and 
destination bus widths are defined by the execu­
tion of a WID instruction during task block 
(channel command) execution. Note that the bus 
widths specified remain in force until changed by 
a subsequent WID instruction. Table 4-18 defines 
the various byte (B) and word (W) 
source/ destination transfer combinations based 
on address boundary and bus width specified. 

The 8089 additionally optimizes bus accesses dur­
ing transfers between dissimilar bus widths 
whenever possible. When either the source or 
destination is a 16-bit memory bus (auto­
incrementing) that is initially aligned on an odd 

Table 4-17. CCW Command Execution Times 

CCWCommand Minimum Time· Maximum Time·· 

CANOP 48 + 2n clocks 48 + 2n clocks 
CA Halt (no save) 48 + 2n clocks 48 + 2n clocks 

CA Halt (with save) 94 + 5n clocks 100 + 6n clocks 
CA Start (memory) 108 + 6n clocks 124 + 10n clocks 

CA Start (110) 96 + 5n clocks 108 + 8n clocks 
CA Continue 95 + 5n clocks 103 + 6n clocks 

Notes: 
n is the number of wait states per bus cycle. 

* Minimum time occurs when both the channel control block and parameter block addresses are aligned on 
an even address boundary and a 16-bit bus is used. 

Maximum time occurs when both the channel control block and parameter block addresses are aligned 
on an odd address boundary on a 16-bit bus or when an 8-bit bus is used. 

Table 4-18. DMA Assembly Register Operation 

Logical Bus Width 
Address Boundary (Source - Destination) 

(Source - Destination) 
8-8 8-16 16 - 8 16-16 

Even - Even B-B BIB - W W-B/B W-W 
Even - Odd B-B B-B W - BIB W - BIB 
Odd - Even B-B B/B-W B-B B/B-W 
Odd - Odd B-B B-B B-B B-B 
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address boundary (causing the first transfer cycle 
to be byte-to-byte), following the first transfer 
cycle, the memory address will be aligned on an 
even address boundary, and word transfers will 
subsequently occur. For example, when perform­
ing a memory-to-port transfer from a 16-bit bus 
to· an 8-bit bus with the source beginning on an 
odd address boundary, the first transfer cycle will 
be byte-to-byte (B --- B) as indicated in table 4-18, 
but subsequent transfers will be word-to­
bytelbyte (W --- BIB). 

All DMA transfer cycles consist of at least two 
bus cycles; one bus cycle to fetch (read) the data 
form the source into the lOP, and one bus cycle 
to store (write) the data previously fetched from 
the lOP into the destination. Note that in all 
transfers, the data passes through the lOP to 
allow maskl compare and translate operations to 
be optionally performed during the transfer as 
well as to allow the data to be assembled or 
disassembled. 

The lOP performs DMA transfers in one of three 
modes: unsynchronized, source synchronized or 
destination synchronized (the transfer mode is 
specified in the channel control register). The un­
synchronized mode is used when both the source 
and destination devices do not provide a data re­
quest (DRQ) signal to the lOP as in the case of a 
memory-to-memory transfer. In the synchronized 
transfer modes, the source (source synchronized) 
or destination (destination synchronized) device 
initiates the transfer cycle by activating the lOP's 
DRQl (channell) or DRQ2 (channel 2) input. 

The DRQ input is asynchronous and usually 
originates from an I/O device controller rather 
than from a memory circuit. This input is latched 
on the positive transition of the clock (CLK) 
signal and therefore must remain active for more 
than one clock period (more than 200 
nanoseconds when using a 5 MHz clock) in order 
to guarantee that it is recognized. 

During state T 1 of the associated fetch bus cycle 
(source synchronized) or store bus cycle (destina­
tion synchronized), the lOP outputs the address 
of the 1/0 device (the port address). This address 
must be decoded (by external circuitry) to 
generate the DMA acknowledge (DACK) signal 
to the 1/0 controller as the response to the con­
troller's DMA request. An I/O controller will 
typically use DACK as a conditional input for the 
removal of DRQ. (After receipt of the DACK 
signal, most Intel peripheral controllers deac­
tivate DRQ following receipt of the correspon­
ding read or write signal.) Figures 4-30 and 4-31 
illustrate the DRQ/DACK timing for both source 
synchronized (i.e., port-to-memory) and destina­
tion synchronized (i.e., memory-to-port) 
transfers. 

Table 4-19 defines the DMA transfer cycles in 
terms of the number of bus and clock cycles re­
quired. Note that the number of clocks required 
to complete a transfer cycle does not take into ac­
count the effects of possible concurrent opera­
tions on the other channel or wait states within 
any of the bus cycles. . 

I TRANSFER CYCLE 

--FETCH BUS CYCLE--I--' STORE BUS CYCLE--
~ I q I ~ I ~ ~ I q I ~ I ~ 

ClK 

DRQ2 

(FROM 110 DEVICE) 

DRO HOLD -1-1 I 2 IDLE I 4 IDLE I SIDLE 
FROM READ - ClOCKS'--CLOCKS'- -ClOCKS'-,----------------------\\\\\\~\\\\\\\\ ! . DRO FOR NEXT TRANSFER CYCLE 

(DECODED I/O ADD~~~:) ~ VALID 110 ADDRESS PRESENT \ __________ _ 

NOTES: 

1. INDICATES THE NUMBER OF IDLE CLOCK CYCLES INSERTED BEFORE THE NEXT 
TRANSFER CYCLE BEGINS. IF ORO IS RECEIVED PRIOR TO STATE T4 OF THE CURRENT 
FETCH CYCLE, THE NEXT FETCH CYCLE BEGINS IMMEDIATELY FOLLOWING THE 
CURRENT STORE CYCLE. 

2. IF THE 8089 IS IDLE WHEN ORO IS RECOGNIZED, FIVE IDLE CLOCK CYCLES OCCUR 
BEFORE THE ASSOCIATED TRANSFER CYCLE IS INITIATED. 

Figure 4-30. Source Synchronized Transfer Cycle 
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elK 

ORO HOLD i--I 1_2 'DLE~I_4 IDLE-I_S IDLE CLOCKSJ - _ 
__________ FR_O_M_W_RIT_E-m=:m ' CLOCKSl CLOCKS] -t-------~= 

ORO· ~ ,f~;a~~;N_;XT TRANSFER CYCLE I . ~ ,r-----
(fROM 110 DEVICE) ~ _ • ~ _ 

(DECODED I/O AOO~~~~ _________ ......J! VALID 1/0 ADDRESS PRESENT \\.. ___________ ...JI 

NOTES: 1. FIRST DMA FETCH CYCLE OCCURS IMMEDIATELY AFTER THE LAST TASK BLOCK 
INSTRUCTION 15 EXECUTED. 

2. FETCH BUS CYCLE 2 BEGINS IMMEDIATELY FOLLOWING STORE BUS CYCLE 1. 

3. INDICATES THE NUMBER OF IDLE CLOCK CYCLES INSERTED BEFORE STORE BUS 
CYCLE 2 BEGINS. IF ORO IS RECEIVED PRIOR TO STATE 14 OF STORE BUS CYCLE 1, 
STORE BUS CYCLE 2 BEGINS IMMEDIATELY FOLLOWING FETCH BUS CYCLE 2. 

4. IF THE 8089 IS IDLE WHEN ORO IS RECOGNIZED, FIVE IDLE CLOCK CYCLES OCCUR 
BEFORE THE ASSOCIATED STORE BUS CYCLE IS INITIATED. 

Figure 4-31. Destination Synchronized Transfer Cycle 

Table 4-19. DMA Transfer Cycles 

Transfer Mode 
Logical Bus Width 

L 

U nsynchronized Source Synchronized Destination Synchronized 

Source Destination 
Bus Cycles Total ' Bus Cycles Total' BusCycles Total' 
Required Clocks Required Clocks Required Clocks 

8 8 2 (1 fetch, 1 store) 8' 2 (1 fetch, 1 store) 8' 2 (1 fetch, 1 store) 8' 
8 16' 3 (2 fetch, 1 store) 12 3 (2 fetch, 1 store) 16' 3 (2 fetch, 1 store) 12 

16' 8 3 (1 fetch, 2 store) 12 3 (1 fetch, 2 store) 12 3 (1 fetch, 2 store) 16' 
16' 16' 2 (1 fetch, 1 store) 8 2 (1 fetch, 1 store) 8 2 (1 fetch, 1 store) 8 

Notes: 
1. The "Total Clocks Required" does not include wait states. One clock cycle per wait state must be 

added to each fetch and/or store bus cycle in which a wait state is inserted. When performing a 
memory-to-memory transfer, three additional clocks must be added to the total clocks required (the 
first fetch cycle of any memory-to-memory transfer requires seven clock cycles). 

2. When performing a translate operation, one additional 7-clock bus cycle must be added to the values 
specified in the table. 

3. Word transfers in the table assume an even address word boundary. Word transfers to or from odd 
address boundaries are performed as indicated in table 4-18 and are subject to the bus cycle/clock 
requirements for byte-to-byte transfers. 

4. Transfer cycles that include two synchronized bus cycles (i.e., synchronous transfers between 
dissimilar logical bus widths) insert four idle clock cycles between the two synchronized bus cycles 
to allow additional time for the synchronzing device to remove its initial DMA request. 
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DACK latency is defined as the time required for 
the 8089 to acknowledge, by outputting the 
device's corresponding port address, a DMA 
request at its PRQ input. This response latency is 
dependent on a number of factors including the 
transfer cycle being performed, activity on the 
other channel, memory address boundaries, wait 
states present in either bus cycle and bus arbitra­
tion times. 

Generally, when the other channel is idle, the' 
maximum DACK latency is five clock cycles (l 
microsecond at 5 MHz), excluding wait states and 
bus arbitration times. An exception occurs when 
performing a word transfer to or from an' odd. 
memory address boundary. This operation, since 
two store (source synchronized) or two fetch 
(destination synchronized) bus cycles are required 
to access memory, has a maximum possible laten­
cy of nine clock cycles. When the other channel is 
performing DMA transfers of equal priority 
("P" bits equal), interleaving occurs at bus cycle 
boundaries, and the maximum latency is either 
nine clock cycles when the other channel is per­
forming a normal 4-clock fetch or store bus cycle. 
or twelve, clock cycles when the other channel is 
performing the first fetch cycle of a memory-to­
memory transfer. If the other channeUs perform­
ing "chained" task block instruction execution of 
equal priority, maximum latency can be as high as 
12 clock cycles (channel command instruction 
execution is interrupted at machine cycle boun­
daries which range from two to eight clock 
cycles). 

DMA Termination 

As stated in Chapter 3, a channel can exit the 
DMA transfer mode (and return to task block 
execution) on any of the following terminate 
conditions: 

• Single cycle transfer 

• Byte count expired 

• Mask/ compare match or mismatch 

• External event 

The terminate conditions are. specified by in­
dividual fields in the channel control register. 
More than one terminate condition can be 
specified for a transfer (e.g., a transfer can be ter­
minated when a specific byte count is reached or 
on the occurrence of an external event). When 
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more than one terminate condition is possible, 
displacements (which are added to the task 
pointer register value) are specified to cause task 
block execution to resume at a unique entry point 
for each condition. Three reentry points are 
available: TP, TP + 4 and TP + 8. The time inter­
val between the occurrence of a terminate condi­
tion and the resumption of task block execution is 
12 clock cycles for reentry point TP and 15 clock 
cycles for reentry points TP + 4 and TP + 8. 

Peripheral Interfacing 

When interfacing a peripheral to an 8-bit physical 
data bus, the 8089 uses only the lower half of the 
address/data lines (AD7-ADO) as the bidirec­
tional data bus, and the upper half of the ad­
dress/ data lines (AD 15-AD8) maintain address 
information for the entire bus cycle. Consequent­
ly, with this bus configuration, only one octal 
latch (e.g., an Intel® 8282/83 Octal Latch) is re­
quired since only the lower half of the ad­
dress/data lines is time-multiplexed (unless the 
address bus requires the increased current drive 
capability and capacitive load immunity provided 
by the latch). 

When interfacing a peripheral to a 16-bit data 
bus, both the lower and upper halves of the ad­
dress/ data lines are time-multipelxed, and two oc­
tal latches are required. Note that unlike the 8086 
and 8088 CPUs, the 8089 does not time-multiplex 

. BHE (this signal is valid for the entire bus cycle). 
Both 8- and 16-bit peripherals can be interfaced to 
a 16-bit bus. An 8-bit peripheral can be connected 
to either the upper or lower half of the bus. An 8-
bit peripheral on the lower half of the bus must 
use an even source/destination address, and an 8-
bit peripheral on the upper half of the bus must 
use an odd source/destination address. TO.take 
advantage of word transfers, a 16-bit peripheral 
must use an even source/ destination address. 

To prepare a peripheral device for a DMA 
transfer, command and parameter data is written 
to the device's command/status port. This is 
usually. accomplished using pointer register GC. 
Recalling that the 8089 executes one additional 
task block instruction following execution of the 
XFER instruction (the XFER instruction causes 
the 8089 to enter the DMA mode), this additional 
instruction is used to access the command port of 
an· I/O device that' immediately begins DMA 
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operation on receipt of the last command (the 
8271 Floppy Disk Controller begins its DMA 
transfer on receipt of the last command 
parameter). Since a translate DMA operation re­
quires the use of all three pointer registers (GA 
and GB specify the source and destination ad­
dresses; GC specifies the base address of the 
translation table), when it is necessary to use the 
last task block instruction to start the device, 
command port access can be accomplished 
relative to one of the pointer registers or relative 
to the PP register. If the device's data port ad­
dress (GA or GB) is below the device's command 
port address, either an offset or an indexed 
reference can be used to access the command 
port. 

A peripheral's (or peripheral controller's) DMA 
communication protocol with the 8089 is as 
follows: 

• The peripheral (when source or destination 
synchronized) initiates a DMA transfer cycle 
by activating the 8089's DRQ (DMA request) 
input. 

• The 8089 acknowledges the request by 
placing the peripheral's assigned data port 
address on the bus during state T 1 of the cor­
responding fetch (source synchronized) or 
store (destination synchronized) bus cycle. 
The peripheral is responsible for decoding 
this address as the DMA acknowledge 
(DACK) to its request. 

• The data is transferred between the 
peripheral and the 8089 during the T 2 
through T4 state interval of the bus cycle. 
The peripheral must remove its DMA request 
during this interval. 

• The peripheral, when ready, requests another 
DMA transfer cycle by again activating the 
DRQ input, and the above sequence is 
repeated. 

• The peripheral can, as an option, end the 
DMA transfer by activating the 8089's EXT 
(external terminate) input. 

I 

The 8089 can support mulitple peripheral devices 
on a single channel provided that only one device 
is in the active transfer mode at anyone time. To 
interface mUltiple devices, the DMA request 
(DRQ) lines are OR'ed together as are the exter­
nal terminate (EXT) lines. Unique port addresses 
are, however, assigned to each device so that an 
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individual DMA acknowledge (DACK) is return­
ed to only the active device. DACK decoding can 
be accomplished with an Intel ® 8205 Binary 
Decoder or a ROM circuit. Note that the 8089 can 
only determine which device has requested service 
or terminated by the context of the task block 
program. 

Most peripheral devices interfaced to the 8089 will 
use the decoded DMA acknowledge signal 
(DACK) as the "chip select" input. Peripheral 
devices that do not follow this convention must 
use DACK as a conditional input of chip select. . 

While most interrupts associated with the 8089 
will be DMA requests or external terminates, non­
DMA related interrupts can additionally be 
supported. 

One technique that would be used when an 8089 is 
the local configuration (or when an 8086 or 8088 
and an 8089 are locally connected as a remote 
module) is to allow the CPU to accept the inter­
rupt and then direct the 8089 to the interrupt ser­
vice routine. Another technique is to allow the 
8089 to "poll" the device to determine when an 
interrupt has occurred (most peripheral con­
trollers have an interrupt pending bit in a status 
word). The 8089's bit testing instructions are 
ideally suited for polling. 

When the 8089 is in a remote configuration, non­
DMA related interrupts can be supported with the 
addition of an Intel® 8259A Programmable 
Interrupt Controller. Systems that require this 
type of interrupt structure would dedicate one of 
the 8089's channels to interrupt servicing. In 
implementing this structure, the interrupt output 
from the 8259A is directly connected to the chan­
nel's external terminate (EXT) input, and the 
channel's DMA request (DRQ) input is not used. 
A task block program is initially executed to per­
form a source-synchronized DMA transfer (with 
an external terminate) on the "interrupt" channel 
to "arm" the interrupt mechanism. Since the 
DRQ input is not used, when the channel enters 
the DMA transfer mode, the channel idles while 
waiting for the first DMA request (which never 
occurs). The other channel, since the interrupt 
channel is idle, operates at maximum throughput. 
When an interrupt occurs, the "pseudo" DMA 
transfer is immediately terminated, and task 
block instruction execution is resumed. The task 
block program would write a "poll" command to 
the 8259A's command port and then read the 
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8259A's data port to acknowledge the interrupt 
and to determine the device responsible for the 
interrupt (the device is identified by a 3-bit binary 
number in the associated data byte). The device 
number read would be used by the task block pro­
gram as a vector into a jump table for the device's 
interrupt service routine. Pertinent interrupt data 
could be written into the associated parameter 
block for subsequent examination by the host 
processor~ 

The interrupt mechanism previously described, 
since it uses the 8089's external terminate func­
tion, provides an extremely fast interrupt 
response time. . 

Note that when using dynamic RAM memory 
with the 8089, an Intel® 8202 Dynamic RAM 
Controller can be used to simplify the interface 
and to perform the RAM refresh cycle. When 
maximum transfer rates are required, the RAM 
refresh cycle can be externally initiated by the 
8089. By connecting the decoded DACK (DMA 
acknowledge) signal to the 8202's REFRQ 
(refresh request) input, the refresh cycle will occur 
coincident with the I/O device bus cycle and 
therefore will not impose wait states in the 
memory bus cycle. 

Instruction Encoding 

Most 8089 programming will be performed atthe 
assembly language level using ASM-89,the 8089 
assembler. During program debugging, however, 
it may be necessary to work directly with machine 
instructions when monitoring the bus, reading un­
formatted memory dumps, etc. This section con­
tains both a table to encode any ASM-89 instruc­
tion into its corresponding machine instruction 

(table 4-24) and a table to "disassemble" any 
machine instruction back into its associated 
assembly language equivalent (table 4~26). 

Figure 4-32 shows the format of a typical 8089 
machine instruction. Except for the LPDI and 
memory-to-memory forms of the MOV and 
MOVB instructions that are six bytes long, all 
8089 machine instructions consist of from two to 
five bytes. The first two bytes are always present 
and are generally formatted as shown· in . figure 
4"32 (table 4-24 contains the exact encoding of 
every instuction). 

Bits 5 through 7 of the first byte of an instruction 
comprise the R/B/P field. This field identifies a 
register, bit select or pointer register operand as 
outlined in table 4-20. 

Table 4-20. R/B/P Field Encoding 

Code Register Bit Pointer 

000 GA 0 GA 
001 GB 1 GB 
010 GC 2 GC 
011 BC 3 N/A 
100 TP 4 TP 
101 IX 5 N/A 
110 CC 6 N/A 
111 MC 7 N/A 

The WB field (bits 3 and 4 of the first byte) in­
dicates how many displacement! data bytes are 
present in the instruction as outlined in table 4-21. 
The displacement bytes are used in program 
transfers; one byte is present for short transfers, 
while long transfers contain a two-byte (word) 
displacement. As mentioned in Chapter 3, the 

BYTE 1 TE BY 2 

III II II 

- ~Y~:" - 4- - ~~ ~ - -I- - ~~ ~ - -I 
I I I I I I 

R/B/PI WB I AA Iw OPCODE 

1 
I I I I I I 

11~111+111Ll11+111Ll11~ 
OFFSET I LOW DISP/DATA I HIGH DISP/DATA I IMM 

L 
_____ L _____ ~~----~ 

BASE REGISTER FOR MEMORY OPERAND 

OPERATION (INSTRUCTION) CODE 

WIDTH (BYTE OR WORD OPERANDS) 

MEMORY ADDRESSING MODE 

NUMBER OF DISPLACEMENT IDATA BYTES 

REGISTER, BIT, POINTERSELECT 

Figure 4-32. Typical 8089 Machine Instruction Format 
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displacement is stored in two's complement nota­
tion with the high-order bit indicating the sign. 
Data bytes contain the value of an immediate con­
stant operand. A byte immediate instruction 
(e.g., MOVBI) will have one data byte, and a 
word immediate instruction (e.g., ADDI) will 
have two bytes (a word) of immediate data. An 
instruction may contain either displacement or 
data bytes, but not both (the TSL instruction is an 
exception and contains one byte of displacement 
and one byte of data). If an offset byte is present, 
the displacement/data byte(s) always follow the 
offset byte. 

Table 4-21. WB Field Encoding 

Code Interpretation 

00 No displacement/data bytes 
01 One displacement/data byte 
10 Two displacement/data bytes 
11 TSL instruction only 

The AA field specifies the addressing mode that 
the processor is to use in order to construct the ef­
fective address of a memory operand. Four ad~ 
dressing modes are available as outlined in table 
4-22. (Address modes are described in detail in 
section 3.8.) 

Table 4-22. AA Field Encoding 

Code Interpretation 

00 Base register only 
01 Base register plus offset 
10 Base register plus IX 
11 Base register plus IX, 

auto-increment 

Bit 0 of the first instruction byte indicates whether 
the instruction operates on a byte (W=O) or a 
word (W=I). 

Bits 7 through 2 of the second instruction byte 
specify the instruction opcode. The opcode, in 
conjunction with the W field of the first byte, 
identifies the instruction. For example, theop­
code "1110 11" denotes the decrement instruc­
tion; if W=O, the assembly language instruction is 
DECB, while if W=I, the instruction is DEC. 
Table 4-26 lists, in hexadecimal order, the opcode 
of every assembly language instruction. 

The MM field (bits 0 and 1) indicates which 
pointer (base) register is to be used to construct 
the effective address of a memory operand. Table 
4-23 defines the MM field encoding. (Memory 
operand addressing is described in section 3.8.) 

Table 4-23. MM Field Encoding 

Code Base Register 

00 GA 
01 GB 
10 GC 
11 pp 

When the AA field value is "01" (base register 
+ offset addressing), the third byte of the instruc­
tion contains the offset value. This unsigned value 
is added to the content of the base register 
specified by the MM field to form the effective 
address of the memory operand. 

When the AA field value is "10," the IX register 
value is added to the content of the base register 
specified by the MM field to provide a 64k range 
of effective addresses. (Note that the upper four 
bits of the IX register are not sign-extended.) 

When the AA field value is "11," the IX register 
value is added to the base register value to form 
the effective address as described for an AA field 
value of "10." In this addressing mode, however; 
the IX register value is incremented by one after 
every byte accessed. 

Table 4-24. 8089 Instruction Encoding 

DATA TRANSFER INSTRUCTIONS 

MOV ;:; Move word variable 76543210 76543210 76543210 76543210 76543210 76543210 

Memory to register RRROOAAl 100000MM offset if AA=01 

Register to memory RRROOAAl 100001MM offset if AA=01 

Memory to memory OOOOOAAl 100100MM offset if AA=01 OOOOOAA11110011MM I offset if AA=01 I 
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Mova = Move byte variable 

Memory to register 

Reglsterto memory 

Memory to memory 

MOYBI = Move byte Immedla~e 

Immediate to register 

Immediate to memory 

MOVI = Move word immediate 

Immediate to register 

Immediate to memory 

MOVP :III Move pointer 

Memory to pointer register 

Pointer register to memory 

LPD = load pointer with doubleword variable 

HARDWARE REFERENCE INFORMATION 

Table 4-24.8089 Instruction Encoding (Cont'd.) 

76543210765.4321076543210765432107654321076543210 

RRROOAAO 100000MM offset If AA""01 

RRROOAAO 100001MM olls.ll1 AA=Ol 

OOOOOAAO 100100MM offset if AA-01 o 0 0 O. 0 A A ~ 11 1 a 0 11M M I offset If AA .. 01 

offset if AA=01 

LPDI = Loa'd pointer. with doubleword immediate 

ARITHMETIC INSTRUCTIONS 

ADD = Add word variable 

Memory to register. 

Reglsterto memory 

ADDB = Add byte variable 

Memory to register 

Register to memory 

ADDI = Add word immediate 

Immediate to register 

Immediate to memory 
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offset if AA=01 

4-54 

J 



ARITHMETIC INSTRUCTIONS (Cont'd.) 

AD OBI = Add byte Immediate 

Immedaite to register 

Immediate to memory 

INC = Increment word by 1 

Register 

Memory 

INCB = Increment byte by 1 

DEC = Decrement word by 1 

Register 

Memory 

CECB = Decrement byte by 1 

HARDWARE REFERENCE INFORMATION 

Table 4-24.8089 Instruction Encoding (Cont'd.) 

76543210 76543210 76543210 76543210 76543210 76543210 

1000 a 0 A A 0 1111 0 10M M offset If AA=Ol 

I 0 0 0 :0 0' A A 0 11 1 1 0 1·1 M M offsetlf AA=Ol 

LOGICAL AND BIT MANIPULATION INSTRUCTIONS 

AND = AND word variable 

Memory to register 

Register to memory 

ANDB = AND byte variable 

Memory to register 

Register to memory 

ANDI = AND word immediate 

Immediate to register 

Immediate to memory 

ANDBI = AND byte Immediate 

Immediate to register 

Immediate to memory 

OR = OR word variable 

Memory to register 

Register to memory 
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Table 4-24.8089 Instruction Encoding (Cont'd.) 

LOGICALANO BIT MANIPULATION INSTRUCTIONS (Cont'd.) 

ORB = OR byte variable 78543210 78543210 78543210 78543210 78543210 78543210 

Memory to register 

Reglsterto memory 

ORI = OR word immediate 

Immediate to register 

Immediate to memory 

ORBI = OR byte immediate 

Immediate to register 

Immediate to memory 

NOT = NOT word variable 

Register RRROOOOO 00101100 

Memory OOOOOAAI 110111MM offset If AA=01 I 
Memory to register RRROOAAI 101011MM offset If AA=01 I 
NOTS = NOT byte variable 

Memory 

Memory to register 

SETB = Set bit to 1 offset If AA=01 

CLR = Clear bit to 0 offset If AA=01 

PROGRAM TRANSFER INSTRUCTIONS 

'CALL = Call 

LCALL = Long call 

"JMP = Jump unconditional l' 0001000 10 a 1 a a a a a disp-6 

LJMP = Long Jump unconditional l' 0010001 I 0 a 1 a a a a a dlsp-iO dlsp-hl 

*The ASM-89 Assembler will automatically generate the long form of a program transfer instruction when the 

target is known to be beyond the byte·displacement range. 
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Table 4-24. 8089 Instruction Encoding (Cont'd.) 

PROGRAM TRANSFER INSTRUCTIONS (Cont'd.1 

*JZ = Jump If word is 0 

Label to register 

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6' 5 4 3 2 1 0 1 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 

Label to memory 

LJZ = Long jump if word Is 0 

Label to register 

Label to memory 

*JZB = Jump if byte is 0 

LJZB = Long jump if byte Is 0 

*JNZ = Jump If word natO 

Label to register 

Label to memory 

LJNZ = Long Jump If word notO 

Label to register 

Label to memory 

*JNZB = Jump if byte not 0 

LJNZB = Long Jump if byte not 0 

*JMCE = Jump If masked compare equal 

LJMCE = Long Jump If masked compare equal 

*JMCNE = Jump if masked compare not equal 

LJMCNE = Long jump If masked compare notequai 
~ ______ ~ ______ -L ______ -L ______ ~ ______ ~ 

·JeT = Jump if bit is 1 

*The ASM-89 Assembler will a~tomatically generate the long form of a program transfer instruction when the 

target is known to be beyond the byte-displacement range. 
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Table 4-24; 8089 Instruction Encoding (Cont'd.) 

PROGRAM TRANSFER INSTRUCTIONS (Conl'd.) 

7 6 5 4 3 2 1 0 7 6 5 4 3 21 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 I 0 7 6 5 4 3 2 1 0 7 6 5 43 2 1 0 

LJBT = long Jump If bit Is 1 

·JNBT = Jump if bit Is not 1 

LJNBT = Long jump if bit Is not 1 

PROCESSOR CONTROL INSTRUCTIONS 

TSL = Test and set while locked 

WID = Set logical bus widths l' s D' a a a a a I a a a a a a a a 

·S=source width, D=destination width; 0=8 bits, 1=16 bits 

XFER = Enter DMA mode I a 1 1 a a a a 01 a a a a 0 a 00 

SINTR = Set interrupt service bit 101000000100000000 

HLT = Halt channel program 100100000 101 001 000 

NOP = No operation 10 a a a a a a a 100 a a a a a a 

·The ASM·89 Assembler will automatically generate the long ~orm of a program transfer Instruction when the 

target is known to be beyond the byte·displacement range. 

Table 4-26 lists all of the 8089 machine instruc­
tions in hexadecimal/binary order by their second 
byte. This table may be used to "decode" an 
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assembled machine instruction into its ASM-89 
symbolic form. The preceding table (table 4-25) 
defines the notation used in table 4-26. 
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Table 4-25. Key to 8089Machine Instruction Decoding Guide 

Identifier Explanation 

S Logical width of source bus; 0=8, 1=16 
0 Logical width of destination bus; 0=8, 1 =16 

PPP Pointer register encoded in R/BIP field 
RRR Register encoded in R/BI P field 
AA AA (addressing mode) field 

BBB Bit select encoded in R/B/P field 
offset-Io Low-order byte of offset word in doubleword pOinter 
offset-hi High-order byte of offset word in doubleword pointer 

segment-Io Low-order byte of segment word in doubleword pointer 
segment-hi High-order byte of segment word in doubleword pOinter 

data-8 8-bit immediate constant 
data-Io Low-order byte of 16-bit immediate constant 
data-hi High-order byte of 16-bit immediate constant 
disp-8 8-bit signed displacement 
disp-Io Low-order byte of 16-bit signed displacement 
disp-hi High-order byte of 16-bit signed displacement 
(offset) Optional 8-bit offset used in offset addressing 

Table 4~26. 8089 Machine Instruction Decoding Guide 

Byte 1 
Byte 2 

ASM89 Instruction Format 
Hex Binary 

Bytes 3, 4, 5, 6 

00000000 00 00000000 NOP 
01000000 00 00000000 SINTR 
15000000 00 00000000 WID source-width,dest-width 
01100000 00 00000000 XFER 

01 00000001 

} + + not used 
07 00000111 

PPP10001 08 00001000 offset-Io,offset-hi,segment-Io,segment-hi LPDI ptr-reg,immed32 
09 00001001 

} + + not used 
1F 00011111 

RRR01000 20 00100000 data-8 ADDBI register,immed8 
RRR10001 20 00100000 data-Io,data-hi ADDI register, immed16 
10001000 20 00100000 disp-8 JMP short-label 
10010001 20 00100000 disp-Io,disp-hi LJMP long-label 

21 00100001 

} + + notused 
23 00100011 

RRR01000 24 ·00100100 data-8 ORBI register,immed8 
RRR10001 24 00100100 data-Io,data-hi ORI register,immed16 

25 00100101 

} + + not used 
27 00100111 

RRR01000 28 00101000 data-8 ANDBI register,immed8 
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Table 4-26. 8089 Machine Instruction Decoding Guide (Cont'd. 

Byte 1 
Byte2 

Bytes 3, 4, 5, 6 ASM89 Instruction Format 
Hex Binary 

RRR10001 28 00101000 data-Io,data"hi ANDI register,immed16 
29 00101001 

} + + not used 
2B 00101011 

RRROOOOO 2C 00101100 NOT register· 
20 00101101 

} + + , not used 
2F 00101111 

RRR01000 30 00110000 data-8 MOVBI register,immed8 
, RRR10001 30 00110000 data-Io,data-hi MOVI register,immed16 

31 00110001 

} + + not used 
37 00110111 

RRROOOOO 38 00111000 INC register 
39 00111001 

} + + not used 
3B 00111011 

RRROOOOO 3C 00111100 DEC register 
3D 00111101 

} + + not used 
3F 00111111 

RRR01000 40 01000000 disp-8 JNZ register,short-Iabel 
RRR10000 40 01000000 disp-Io,disp-hi LJNZ register, long-label 

41 01000001 

} + t not used. 
43 01000011 .. ' . 

RRR01000 44 01000100 disp-8 JZ reg ister,short-Iabel 
RRR10000 44 01000100 disp-Io,disp-hi LJZ register,short-Iabel,. 

45 01000101 

} + + not used 
47 01000111 .. 

00100000 . 48 01001000 HLT 
49 01001001 

} + + not used 
4B 01001011 

00001AAO 4C 010011MM 

} } + + + (offset),data-8 -. , MOVBI mem8,immed8 
00001AAO .4F 010011MM , , 

00010AA1 4C 010011MM 

} } t + + (offset),data-Io,data-hi MOVI mem16,immed16 
00010AA1 4F 010011MM 

50 01010000 } + + _. ,not used 
7F 01111111 : 

RRROOAAO 80 100000MM 

} } + + (offset) MOVB register,mem8 
RRROOAAO 83 100000MM 
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Table 4-26.8089 Machine Instruction Decoding Guide (Cont'd. 

Byte1 
Byte2 

ASM89 Instruction Format 
Hex Binary 

Bytes 3, 4, 5, 6 

RRROOAA1 80 100000MM } } + .. + + (offset) MOV register, mem16 
RRROOAA1 83 100000MM 
RRROOAAO 84 100001 MM 

} } + t + (offset) MOVB mem8,register 
RRROOAAO 87 100001 MM 
RRROOAA1 84 100001 MM 

} } + + + (offset) MOV mem16,register 
RRROOAA1 87 100001MM 
PPPOOAA1 88 100010MM 

} } + + + (offset) LPD ptr-reg, mem32 
PPPOOAA1 8B 100010MM 
PPPOOAA1 8C 100011 MM 

} } + + + (offset) MOVP ptr-reg,mem24 
PPPOOAA1 8F 100011 MM 
OOOOOAAO 90 100100MM 

} } + t t (offset),OOOOOAAD, 110011 M M,(offset) MOVB mem8,mem8 
OOOOOAAO 93 100100MM 
00000AA1 90 100100MM 

} } t t t (offset),OOOOOAA 1,110011 MM ,(offset) MOV mem16,mem16 
00000AA1 93 100100MM 
00011AAD 94 100101 MM 

} } t t t ( offset),data-8,disp-8 TSL mem8,immed8,short"label 
00011AAO 97 100101 MM 
PPPOOAA1 98 100110MM 

} } t t t (offset) MOVP mem24,ptr-reg 
PPPOOAA1 9B 100110MM 
10001AA1 9C 100111MM 

} } t t t (offset),disp-8 CALL mem24,short-label 
10001AA1 9F 100111 MM 
10010AA1 9C 100111 MM 

} } + + t (offset),d isp-Io,disp-h i LCALL mem24, long-label 
10010AA1 9F 100111MM 

RRROOAAO AO 101000MM 

} } t + + (offset) ADDB register, mem8 
RRROOAAO A3 101000MM 
RRROOAA1 AD 101000MM 

} } + t t (offset) ADD register,mem16 
RRROOAA1 A3 101000MM 
RRROOAAO A4 101001 MM 

} } t ·t + (offset) ORB register,mem8 
RRROOAAO A7 101001MM 
RRROOAA1 A4 101001 MM 

} } + + + (offset) OR register ,mem16 
RRROOAA1 A7 101001 MM 
RRROOAAO A8 101010MM 

} } + + + (offset) ANDB mem8, register 
RRROOAAO AB 101010MM 
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Table 4-26.8089 Machine Instruction Decoding Guide (Cont'd. 

Byte 1 
Byte 2 

Bytes 3, 4, 5, 6 ASM89 Instruction Format 
Hex Binary , 

RRROOAA1 AS 101010MM 

} } + + + (offset) AND mem16,register 
RRROOAA1 AB 101010MM 
RRROOAAO AC 101011 MM 

} } + + + (offset) NOTB register,memS 
RRROOAAO AF 101011 MM 
RRROOAA1 AC 101011MM 

} } + + + (offset) N9T r,egister,mem16 
RRROOAA1 AF 101011 MM 
00001AAO BO 101100MM 

} } + + + (offset),disp-S JMCE memS,short-label 
00001AAO B3 101100MM 
00010AAO BO 101100MM 

} } + + + (offset),disp-Io,disp-hi LJMCE memS,long-label 
00010AAO B3 101100MM 
00001AAO B4 101101 MM 

} } + + + (offset),disp-S JMCNE memS,short-label 
00001AAO B7 101101 MM 
00010AAO B4 101101 MM 

} } + + + (offset),disp-Io,disp-hi LJMCNE memS,long-label 
00010AAO B7 101101 MM 

BBB01AAO BS 101110MM } } + + + (offset),disp-S JNBT memB,bit;select,short·label 
BBB01AAO BB 101110MM 
BBB10AAO BS 101110MM 

} } + + + (offset),disp-Io,disp-hi LJNBT mem8,bit-select,long-label 
BBB10AAO BB 101110MM 
BBB01AAO BC 101111 MM 

} } T T + (offset),disp-S JBT memB,bil-select,short-label 
BBB01AAO BF 101111MM 
BBB10AAO BC 101111MM 

} ,} T T T (offset),disp-Io,disp-hi LJBT mem8,bit-select,long-label 
BBB10AAO BF 101111MM 
00001AAO CO 110000MM 

} } T T T (offset),data-S AD OBI memS,immedS 
00001AAO C3 110000MM 
00010AA1 CO 110000MM 

} } T T 'T (offset),data-Io,data-hi ADDI mem16,immed16 
00010AA1 C3 110000MM 
00001AAO C4 110001 MM 

} } T T T (offset),data-S ORBI memS,immedS 
00001AAO C7 110001 MM 
00010AA1 C4 110001 MM } } + + + (offset), data-I 0, data-h i ORI mem16,immed16 
00010AA1 C7 110001MM 
00001AAO C8 110010MM 

} } T + + (offset),data-8 ANDBI mem8,immedS 
00001AAO CB 110010MM 
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Table 4-26. 8089 Machine Instruction Decoding Guide (Cont'd. 

Byte 1 
Byte 2 

Bytes 3, 4, 5, 6 ASM89 Instruction Format 
Hex Binary 

00010AA1 CB 110010MM 
} (offset),data-Io,data-hi } t t t ANDI mem16,immed16 

00010AA1 CB 110010MM 
CC 11001100 

} t t not used 
CF 11001111 

RRROOAAO DO 110100MM 

} } t t t (offset) ADDB memB,register 
RRROOAAO 03 110100MM 
RRROOAA1 DO 110100MM 

} } t t t (offset) ADD mem16,register 
RRROOAA1 03 110100MM 
RRROOAAO 04 110101MM 

} } t t t (offset) ORB mem8,register 
RRROOAAO 07 110101 MM 
RRROOAA1 04 110101MM 

} } t t t (offset) OR mem16,register 
RRROOAA1 07 110101MM 
RRROOAAO DB 110110MM 

} } ANDB mem8,register t t t (offset) 
RRROOAAO DB 110110MM 
RRROOAA1 08 110110MM 

} (offset) } AND mem16,register t t t 
RRROOAA1 DB 110110MM 
RRROOAAO DC 110111 MM } } t t t (offset) NOTB mem8,register 
RRROOAAO OF 110111MM 
RRROOAA1 DC 110111MM 

J } t t t (offset) NOT mem16,register 
RRROOAA1 OF 110111MM 
00001AAO EO 111000MM 

} } t t t (offset),disp-8 JNZB mem8,short-label 
00001AAO E3 111000MM 
00001AA1 EO 111000MM 

} } t t t (offset),disp-8 JNZ mem16,short-label 
00001AA1 E3 111000MM 
00010AAO EO 111000MM 

} } t t t (offset),disp-Io,disp-hi LJNZB mem8,long-label 
00010AAO E3 111000MM 
00010AA1 EO 111000MM 

} } t t t (offset),disp-Io,disp-hi LJNZ mem16,longlabel 
00010AA1 E3 111000MM 
00001AAO E4 111001 MM 

} } JZB mem8,short-label t t t (offset),disp-B 
00001AAO E7 111001 MM 
00001AA1 E4 111001MM 

} } JZ mem16,short-label t t t (offset),disp-8 
00001AA1 E7 111001MM 
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Table 4"26.8089 Machine Instruction Decoding Guide (Cont'd. 

Byte 1 
Byte 2 

Bytes 3, 4, 5, 6 ASM89 Instruction Format 
Hex Binary 

00010AAO E4 111001 MM } } t t t (offset) ,d isp-Io,d isp"hi LJZB mem8,long-label 
00010AAO E7 111001MM 
00010AA1 E4 111001 MM } } t t t (offset),d isp-Io,d isp-hi LJZ mem16,long-label 
00010AA1 E7 111001MM 
OOOOOAAO E8 111010MM 

} } t t t (offset) INCB mem8 
OOOOOAAO EB 111010MM 
000OOAA1 E8 111010MM 

} } INC mem16 t t t (offset) 
OOOOOAA1 EB 111010MM 
OOOOOAAO EC 111011 MM 

} } DECB t t t (offset) mem8 
OOOOOAAO EF 111011MM 
OOOOOAA1 EC 111011MM 

} (offset) } DEC mem16 t t t 
00000AA1 EF 111011MM 

FO 11110000 
} not used t t 

F3 11110000 
BBBOOAAO F4 111101MM 

} (offset) } SETB t t t mem8,0-7 
BBBOOAAO F7 111101MM 
BBBOOAAO F8 111110MM 

} (offset) } CLR t t t mem8,0-7 
BBBOOAAO FB 111110MM 

FC 11111100 
} not used t t 

FF 11111111 
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1. INTRODUCTION 

The 8086 family, Intel's new series of microprocessors 
and system components, offers the designer an ad· 
vanced system architecture which can be structured to 
satisfy a broad range of applications. The variety of 
speed, configuration and component selections avail· 
able within the family enables optimization of a specific 
design to both cost and performance objectives. More 
Important however, the 8086 family concept allows the 
designer to develop a family of systems providing multi· 
pie levels of enhancement within a single design and a 
growth path for future designs. 

This application note is directed toward the implemen­
tation of the system hardware and will provide an in­
troduction to a representative sample of the systems 
conflgurable with the 8086 CPU member of the family. 
Application techniques and timing analysis will be given 
to aid the designer in understanding the system require­
ments, advantages and limitations. Additional Intel 
publications the reader may wish to reference are the 
8086 User's Manual (9800722A), 8086 Assembly Lan-
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guage Reference Guide (9800749A), AP-28A MULTI­
BUS™ Interfacing (98005876B), INTEL MULTIBUS™ 
SPECIFICATION (9800683), AP-45 Using the 8202 Dy­
namic RAM Controller (9/l00809A), AP-51 Designing 
8086, 8088, 8089 Multiprocessor Systems with the 8289 
Bus Arbiter and Ap·59 Using the 8259A Programmable 
Interrupt Controller. References to other Intel publica· 
tions will be made throughout this note. 

2. 8086 OVERVIEW AND BASIC SYSTEM CONCEPTS 

2A. 8086 Bus Cycle Definition 

The 8086 is a true 16-bit microprocessor with 16-bit in­
ternal and external data paths, one megabyte of memory 
address space (2**20) and a separate 64K byte (2**16) 
1/0 address space. The CPU communicates with its ex­
ternal environment via a twenty-bit time multiplexed ad­
dress, status and data bus and a command bus. To 
transfer data or fetch instructions, the CPU executes a 
bus cycle (Fig. 2A 1). The minimum bus cycle consists of 
four CPU clock cycles called T states. During the first T 
state (T1), the CPU asserts an address on the twenty-bit 

---T:V'Tw T4-1-
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STATUS X 
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V 

Figure 2A1. Basic 8086 Bus Cycle 
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multiplexed address/data/status bus. For the second T 
state (T2), the CPU removes the address from the bus 
and either three·states its outputs on the lower sixteen 
bus lines in preparation for a read cycle or asserts write 
data. Data bus transceivers are enabled in either T1 or 
T2 depending on the 8086 system configuration and the 
direction of the transfer (into or out of the CPU). Read, 
write or interrupt acknowledge commands are always 
enabled in T2. The maximum mode 8086 configuration 
(to be discussed later) also provides a write command 
enabled in T3 to guarantee data setup time prior to com­
mand activation. 

DuringT2, the upper four multiplexed bus lines switch 
from address (A19-A16) to bus cycle status 
(S6,85,S4,S3). The status information (Table 2A1) is 
available primarily for diagnostic monitoring. However, 
a decode of S3 and S4 could be used to select one of 
four banks of memory, one assigned to each segment 
register. This technique allows partitioning the memory 
by segment to expand the memory addressing beyond 
one megabyte. It also provides a degree of protection by 
preventing erroneous write operations to one segment 
from overlapping into another segment and destroying 
information in that segment. 

The CPU continues to provide status information on the 
upper four bus lines during T3 and will either continue 
to assert write data or sample read data on the lower six­
teen bus lines. If the selected memory or I/O device is 
not capable of transferring data at the maximum CPU 
transfer rate, the device must signal the CPU "not 
ready" and force the CPU to insert additional clock 
cycles (Wait states TW) after T3. The 'not ready' indica­
tion must be presented to the CPU by the start of T3. 
Bus activity during TW is the same as T3. When the 
selected device has had sufficient time to complete the 
transfer, it asserts "Ready" and allows the CPU to con­
tinue from the TW states. The CPU will latch the data on 
the bus during the last wait state or during T3 if no wait 
states are requested. The bus cycle is terminated in T4 
(command lines are disabled and the selected external 
device deselects from the bus). The bus cycle appears 
to devices in the system as an asynchronous event con­
Sisting of an address to select the device followed by a 
read strobe or data and a write strobe. The selected 
device accepts bus data during a write cycle and drives 
the desired data onto the bus during a read cycle. On ter­
mination of the command, the device latches write data 
or disables its bus drivers. The only control the device 
has on the bus cycle is the insertion of wait cycles. 

The BOB6 CPU only executes a bus cycle when instruc­
tions or operands must be transferred to or from 
memory or I/O devices. When not executing a bus cycle, 
the bus interface executes idle cycles (TI). During the 
idle cycles, the CPU continues to drive status informa­
tion from the previous bus cycle on the upper address 
lines. If the previous bus cycle was a write, the CPU con­
tinues to drive the write data onto the multiplexed bus 
until the start of the next bus cycle. If the CPU executes 
idle cycles following a read cycle, the CPU will not drive 
the lower 16 bus lines until the next bus cycle is 
required. 

A-6 

Since the CPU prefetches up to six bytes of the instruc­
tion stream for storage and execution from an internal 
instruction queue, the relationship of instruction fetch 
and associated operand transfers may be skewed in 
time and separated by additional instruction fetch bus 
cycles. In general, if an instruction is fetched into the 
BOB6's internal instruction queue, several additional in­
structions may be fetched before the instruction is 
removed from the queue and executed. If the instruction 
being executed from the queue is a jump or other con­
trol transfer instruction, any instructions remaining in 
the queue are not executed and are discarded with no ef­
fect on the CPU's operation. The bus activity observed 
during execution of a specific instruction is dependent 
on the preceding instructions but is always deter­
ministic within the specific sequence. 

Table 2A1 

S3 S4 

o 0 Alternate (relative to the ES segment) 

1 0 Stack (relative to the SS segment) 

o Code/None (relative to the CS seg-
ment or a default of zero) 

Data (relative to the DS segment) 

S5 = IF (interrupt enable flag) 
S6 = 0 (indicates the BOB6 is on the bus) 

2B. 8086 Address and Data Bus Concepts 

Since the majority of system memories and peripherals 
require a stable address for the duration of the bus 
cycle, the address on the multiplexed address/data bus 
during T1 should be latched and the latched address 
used to select the desired peripheral or memory loca­
tion. Since the B086 has a 16-bit data bus, the multi­
plexed bus components of the B085 family are not ap­
plicable to the 8086 (a device on address/data bus lines 
B-15 will not be able to receive the byte selection ad­
dress on lines 0-7). To demuliiplex the bus (Fig. 2B1a), 
the BOB6 system provides an Address Latch Enable 
signal (ALE) to capture the address in either the 8282 or 
82B3 8-bit bi-stable latches (Diag. 2B1). The latches are 
either inverting (8283) or non-inverting (8282) and have 
outputs driven by three-state buffers that supply 32 mA 
drive capability and can switch a 300 pF capacitive load 
in 22 ns (inverting) or 30 ns (non-inverting). They prop­
agate the address through to the outputs while ALE is 
high and latch the address on the falling edge of ALE. 
This only delays address access and chip select 
decoding by the propagation delay of the latch. The out­
puts are enabled through the low active OE input. The 
demultiplexing of the multiplexed address/data bus 
(Iatchings of the address from the multiplexed bus), can 
be done locally at appropriate points in the system or at 
the CPU with a separate address bus distributing the ad­
dress throughout the system (Fig. 2B1b). For optimum 
system performance and compatibility with multiproc­
essor and MULTIBUS™ configurations, the latter tech­
nique is strongly recommended over the first. The re­
mainder of this note will assume the bus is demul­
tiplexed at the CPU. 
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The programmer views the 8086 memory address space 
as a sequence of one million bytes in which any byte 
may contain an eight bit data element and any two con­
secutive bytes may contain a 16-bit data element. There 
is no constraint on byte or word addresses (boundaries). 
The address space is physically implemented on a six­
teen bit data bus by dividing the address space into two 
banks of up to 512K bytes (Fig. 2B2). One bank is con­
nected to the lower half of the sixteen-bit data bus (07-0) 
and contains even addressed bytes (AD = 0). The other 
bank is connected to the upper half of the data bus 
(015-8) and contains odd addressed bytes (AD = 1). A 
specific byte within each bank is selected by address 
lines A19-A1. To perform byte transfers to even ad­
dresses (Fig. 2B3a), the information is transferred over 
the lower half of the data bus (07-0). AD (active low) is 
used to enable the bank connected to the lower half of 
the data bus to participate in the transfer. Another 
signal provided by the 8086, Bus High Enable (BHE), is 
used to disable the bank on the upper half of the data 
bus from participating in the transfer. This is necessary 
to prevent a write operation to the lower bank from 
destroying data in the upper bank. Since BHE is a 
multiplexed signal with timing identical to the A19-A16 
address lines, it also should be latched with ALE to pro­
vide a stable signal during the bus cycle. Ouring T2 
through T4, the BHE output is multiplexed with status 
line S7 which is equal to BHE. To perform byte transfers 
to odd addresses (Fig. 2B3b), the information is trans­
ferred over the upper half of the data bus (015-08) while 
BHE (active low) enables the upper bank and AD 
disables the lower bank. Oirecting the data transfer to 
the appropriate half of the data bus and activation of 
BHE and AD is performed by the 8086, transparent to the 
programmer. As an example, consider loading a byte of 
data into the CL register (lower half of the CX register) 
from an odd addressed memory location (referenced 
over the upper half of the 16-bit data bus). The data is 
transferred into the 8086 over the upper 8 bits of the 
data bus, automatically redirected to the lower half of 
the 8086 internal 16-bit data path and stored into the CL 
register. This capability also allows byte I/O transfers 
with the AL register to be directed to I/O devices con­
nected to either the upper or lower half of the 16-bit data 
bus. 

To access even addressed sixteen bit words (two con­
secutive bytes with the least significant byte at an even 

T, Tw T, 
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Diagram 2B1. ALE Timing 
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byte address), A19-A1 select the appropriate byte within 
each bank and AO and BHE (active low) enable both 
banks simultaneously (Fig. 2B3c). To access an odd ad­
dressed 16-blt word (Fig. 2B3d), the least significant 
byte (addressed by A19-A1) is first transferred over the 
upper half of the bus (odd addressed byte, upper bank, 
BHE low active and AO = 1). The most significant byte is 
accessed by incrementing the address (A19-AO) which 
allows A19-A1to address the next physical word loca­
tion (remember, AO was equal to one which indicated a 
word referenced from an odd byte boundary). A second 
bus cycle Is then executed to perform the transfer of the 
most significant byte with the lower bank (AO is nowac· 
tive low and BHE is high). The sequence Is alitomatically 
executed by the 8086 whenever a word transfer Is ex­
ecuted to an odd address. Directing the upper and lower 
bytes of the 8086's internal sixteen-bit registers to the 
appropriate halves of the data bus is also performed 
automatically by the 8086 and is transparent to the pro· 
grammer. 

(A) LOBICAL ADDRESS SPACE 
(8) PHYSICAL IMPLEMENTATION OF THE 

ADDRESS SPACE 
512K BYTES 

FFFFF 

612K BYTES 

FFFFF 
FFFFE 
FFFFO 
FFFFC 

m 
1 MEGABYTE 

...}. 

-y 

1 

. FFFFD 

Figure 2B2. 8086 Memory 
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Figure 2B3a. Even Addressed Byle Transfer 
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--V 
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IV 
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..tS ;0.. 

I 
..".-"?>-

1 "' ~ _I "" 7" 
0,.-0. BHE (LOW) 0,-00 A.(HIGH) 

Figure 2B3b. Odd Addressed Byle TIBnsfer 

.... ___ ...,TRANSFER X+l, X,... __ ..., 

, 0,,-0. iiiiE (LOW) 0,-00 A.(LOW) 

Figure 2B3c. Even Addressed Word Trensfer 

.-__ .....,FIRST BUS CYCLE.-__ ..., 

D15-Ds BHE (LOW) 0,-00 Ao(HIGH) 

Figure 2B3d. Odd Addressed Word Transfer 

During Ii byte read, the CPU floats the entire sixteen-bit 
data bus even though data is only expected on the upper 
or lower half of the data bus. As will be demonstrated 
later, this action simplifies the chip select decoding re­
quirements for read only devices (ROM, EPROM). During 
a byte write operation, the 8086 will drive the entire 
sixteen-bit data bus. The information on the half of .the 
data bus not transferring data is indeterminate. These 
concepts also apply to the 1/0 address space. Specific 
examples of 1/0 and memory interfacing are considered 
In the corresponding sections. 

2C. System Data Bus Concepts 

When referring to the system data bus, two Implemen· 
tation alternatives must be considered; (a) the multi· 
plexed address/data bus (Fig. 2C1a) and a data bus buf· 
fered from the multiplexed bus by transceivers (Fig. 
2C1b). 

If memory .or 1/0 devices are connected directly to the 
multiplexed bus, the designer must guarantee the 
devices do not corrupt the address on the bus during T1. 

A-8 



AP-67 

MULTIPLEXED DATA BUS 

ADDRESS 

'-____ -'A.:::D.:.:15'-'-A.:::D.::.O J\ MULTIPLEXED 
'--_-'-_____ --,/ ADDRESS/DATA 

Figure 2C1a. Multiplexed Data Bus 

BUFFERED DATA BUS 

8282 

Figure 2C1b. Bullered Data Bus 

T1 

SYSTEM 
BUS 

T2 

To avoid this, device output drivers should not be enabl­
ed by the device chip select, but'should have an output 
enable controlled by the system read signal (Fig. 2C2). 
The 8086 timing guarantees that read Is not valid . until 
after the address Is latched by ALE (Dlag. 2C1). All Intel 
peripherals, EPROM products and RAM's for microproc­
essors provide output enable or read Inputs to allow 
connection to the multiplexed bus. 

ALE---_I 

WR --'-----01 

iiD------oI RD/OE 

ADDRESS BUS 

MULTIPLEXED 
BUS 

Figure 2C2. Devices with Output Enables on the Multiplexed Bus 

Several techniques are available for Interfacing devices 
without output enables tei the multiplexed bus but each 
introduces other restrictions or limitations. Consider 
Figure2C3 which has chip select gated with read and 
write. Two problems exist with this technique. First, the 
chip select access time Is reduced to the read access 
time, and may require a faster device If maximum 
system performance .(no wait states) is to be achieved 
(Diag. 2C2). Second, the designer must verify that chip 
select to write setup and hold times for the device are 
not violated (Diag. 2C3). Alternate techniques can be ex­
tracted from the bus Interfacing techniques given later 
in this section but are subject to the associated restric­
tions. In general, the best solution is obtained with 
devices having output enables. 

A subsequent limitation on the multiplexed bus is the 
8086's drive capability of 2.0 mA and capacitive loading 
of 100 pF to guarantee the speCified A.C. character­
istics. Assuming capacitive . loads of 20 pF per 1/0 
device, 12 pF per address latch and 5-12 pF per memory 
device, a system mix of three peripherals and two to 
four memory devices (per bus line) are close to the 
loading limit. 

T3 T4 

,-""-.-
ALE ___ -I--' .\ 

~~----~--+---------~---------4J 

Diagram 2C1. Relationship of ALE to READ 
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ADDRESS 

ALE 

'----------;;>~-,J MULTIPLEXED BUS 

Figure 2C3. Devices without Output Enables on the Multiplexed Bus 

ADDRESS---{'-__________ ---.,. __ _ 

, DATA----------+---<I 

1 ,ACCESS TIME FOR CS GENERATED FROM ADDRESS DECODE. 

2 'ACCESS. TIME IF CS IS GATED WITH ~DIWR. 

Diagram 2C2. Access Time: CS Gated with iffilWR 

1 CS IS NOT VALID PRIOR TO WRITE AND BECOMES ACTIVE ONE OR TWO GATE 
DELAYS LATER. 

2 CS REMAINS VAI,.ID AFTER WRITE ONE OR TWO GATE DELAYS. 

Diagram 2C3. CS to WR Set·Up and Hold 

To satisfy the capacitive loading and drive requirements 
of larger systems, the data bus must be buffered. The 
8286 non·inverting and 8287 inverting octal transceivers 
are offered as part of the 8086 family to satisfy this re­
quirement. They have three-state output buffers that 
drive 32 mA on the bus interface and 10 mA on the CPU 
interface and can switch capacitive loads of 300 pF at 
the bus interface and 100 pF on the CPU interface in 22 
ns (8287) or 30 ns (8286). To enable and control the direc­
tion of the transceivers, the 8086 system provides Data 
ENable (DEN) and Data Transmit/Receive (DT/Rj signals 
(Fig. 2C1b). These signals provide the appropriate tim­
ing to guarantee isolation of the multiplexed bus from 
the system during T1 and elimination of bus contention 
with the CPU during read and write (Diag. 2C4). Although 
the memory and peripheral devices are isolated from the 
CPU (Fig. 2C4), bus contention may still exist in the 
system if the devices do not have an output enable con­
trol other than chip select. AS an example, bus conten­
tion will exist during transition from one chip select to 
another (the newly selected dev.icebegins driving the 
bus before the previous device has disabled its drivers). 
Another, more severe case exists during a write cycle. 
From chip select to write active, a device whose outputs 
are controlled only by chip select, will drive the bus 
simultaneously with write data being driven through the 
transceivers by the CPU (Diag. 2C5). The same tech­
nique given for circumventing these problems on the 
multiplexed bus can be applied here with the same limi­
tations. 

One last extension to the bus implementation is a sec-, 
ond level of buffering to reduce the total load seen by 
devices on the'system bus (Fig. 2C5). This is typically 
done for multi board systems and isolation of memory 
arrays. The concerns with this configuration are the ad­
ditional delay for access and more important, control of 
the second transceiver in relationship to the system bus 
and the device being interfaced to the system bus. 
Several techniques for controlling the transceiver are 
given in Figure 2C6. This first technique (Fig. 2C6a) 
simply distributes DEN and DTiR throughout the 
system. DT/R is inverted to provide proper direction con­
trol for the second level transceivers. The second exam­
ple (Fig. 2C6b) provides control for devices with output 
enables. RD is used to normally direct data from the 
system bus' to the peripheral. The buffer Is selected 
whenever a device on the local bus is cl1ip selected. Bus 
contention is possible on the device's local bus during a 
read as the read simultaneously enables the device out­
put and changes the transceiver direction. The conten­
tion may also occur as the read is terminated. 

For devices without output enables, the same technique 
can be applied (Fig. 2C6c) If the chip select to the device 
is conditioned by read or write. Controlling the chip 
select with read/write prevents the device from driving 
against the transceiver prior to the command being 
received. The limitations with this technique are access 
limited to read/write time and limited CS to write setup 
and hold times. 
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T,Il---T'-----T3----T.-

--
ADDRESS A1S-Ao I FLOAT X DATA IN 015- 0 0 

---

- 1\ 
1\ 

ADDRESS DATA OUT 

- ---
I - -..I 

1 DEN IS ENABLED AFTER THE 8088 HAS FLOATED THE MULTIPLEXED BUS 

2 iiEI'l ENABLES THE TRANSCEIVERS EARLy IN THE CYCLE, BUT DT/R GUARANTEES 
THE TRANSCEIVERS ARE IN TRANSMIT RATHER THAN RECEIVE MODE AND WILL 
NOT DRIVE AGAINST THE CPU. 

Diagram 2C4. Bus Transceiver Control 

--------X FLOAT --------

V 

I FLOAT 

/ 

ADDR~~ ______________ _ 

DT/A I 
...I 

DE~~~ ~~~VES ___ -,'-'{ 

'--------------OI1Ili DATA 

1~fvNES~~~V:~~ ____ ....:!o{ 
~--~------~--~ ~----------~------~Vffl 

~ BUS CONTENTION ~ .. 
BOTH DEVICES DRIVE ____ ---< >_---------

THE BUS 

Figure 2C4. Devices with Output Enables on the System Bus Diagram 2C5. 
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CPU LOCAL 
BUS 

SYSTEM 
BUS 

MEMORY/IO 
LOCAL BUS 

Figure 2C5. Fully Buffered System 

MEMORYIlfO. DEVICES "-==-,, 
828617 

Figure 2C6a. Controlling System Transceivers with DEN and DT/R 

Wft--------------~~----. 

~----------~--------~ 
RD---------1--~--------~--~ 

SYSTEM /"'-",,-,,-,-J' 
DATA 
BUS 

Figure 2C6b. Buffering Devices with OEiRD 

MEMORY/I/O 
DEVICE 

MEMORYIllO 
DEVICE 

Figure 2C6c. Buffering DevlceB without OEtRD and with Common 
or Separate InpuUOutput 

An alternate technique applicable to devices with and 
without output enables is shown in Figure 2C6d. RD 
again controls the direction of the transceiver but It Is 
not enabled until a command and chip select are active. 
The possibility for bus contention still exists but Is 
reduced to variations In output enable vs. direction 
change time for the transceiver. Full access time from 
chip select is now available, but data will not be valid 
'prlorto write and will only be held valid after write by the 
delay to disable the transceiver. 

~--------~------------------------, 

SYSTEM DATA BUS 

MEMORY/I/O 
DEVICE 

Figure 2C6d. Buffering Devices without OEiRD and with Common 
or Separate InpuUOutput 

One last technique is given for devices with separate in· 
puts and outputs (Fig. 2C6e). Separate bus receivers and 
drivers are provided rather than a single transceiver. The 
receiver is always enabled while the bus driver Is can· 
trolled by RD and chip .select. The only possibility for 
bus contention in this system occurs as multiple 
devices on each line of the local read bus are enabled 
and disabled during chip selection changes. 

Throughout this note, the multiplexed bus will be con­
sidered the local CPU bus and the demultlplexed ad­
dress and buffered data bus will be the system bus. For 
additional Information on bus .. contention and the 
system problems associated with It, refer to Appendix 1. 
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~~---------------------------. 
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WR-------+--------------, 

SYSTEM 

74504 
OR 

745240 

DATA ~-------t---1 
BUS 

LOCAL WRITE BUS 
o 

MEMORY/I/O 
LOCAL READ BUS DEVICE 

745240 

Figure 2C6e. Bulferlng Devices without oEiRii and with Separate 
Input/Output 

20. Multiprocessor Environment 

The 8086 architecture supports multiprocessor systems 
based on the concept of a shared system bus (Fig. 201). 
All CPU's in the system communicate with each other 
and share resources via the system bus. The bus may be 
either the Intel Multlbus™ system bus or an extension 
of the system bus defined in the previous section. The 
major addition required to the demultlplexed system 
bus is arbitration logic to control access to the system 
bus. As each CPU asynchronously requests access to 
the shared bus, the arbitration logic resolves priorities 
and grants bus access to the highest priority CPU. Hav· 
ing gained access to the bus, the CPU completes its 
transfer and will either relinquish the bus or wait to be 
forced to relinquish the bus. For a discussion on 
MultibuS™ arbitration techniques, refer to AP·28A, Intel 
MultibuS™ Interfacing. 

Figure 201. 8086 Family Multiprocessor System 

To support a multimaster interface to the Multibus 
system bus for the 8086 family, the 8289 bus arbiter is 
included as part of the family. The 8289 is compatible 
with the 8086's local bus and in conjunction with the 
8288 bus controller, implements the Multibus protocol 
for bus arbitration. The 8289 provides a variety of arbitra· 
tion and prioritization techniques to allow optimization 
of bus availability, throughput and utilization of shared 
resources. Additional features (implemented through 

strapping options) extend the configuration options 
beyond a pure CPU Interface to the multlmaster system 
bus for access to shared resources to Include concur­
rent support of a local CPU bus for private resources. 
For specific configurations and additional Information 
on the 8289, refer to application note Ap·51. 

3. 8086 SYSTEM DETAILS 

3A. Operating Modes 

Possibly the most unique feature of the 8086 Is the abili­
ty to select the base machine configuration most suited 
to the application. The MN/MX Input to the 8086 Is a 
strapping option which allows the deSigner to select 
between two functional definitions of a subset of the 
8086 outputs. 

MINIMUM MODE 

The minimum mode 8086 (Fig. 3A1) Is optimized for 
small to medium (one or two boards), Single CPU 
systems. Its system architecture is directed at satisfy· 
Ing the requirements of the lower to middle segment of 
high performance 16·bit applications. The CPU main­
tains the full megabyte memory space, 64K byte I/O 
space and 16-blt data path. The CPU directly provides all 
bus control (DT/A, DEN, ALE, M/iO), commands 
(RD,WR,INTA) and a simple CPU preemption mech­
anism (HOLD, HLDA) compatible with existing DMA 
controllers. 

MAXIMUM MODE 

The maximum mode (Fig. 3A2) extends the system ar­
chitecture to support multiprocessor configurations, 
and local instruction set extension processors (co­
processors). Through addition of the 8288 bipolar bus 
controller, the 8086 outputs assigned to bus control and 
commands in the minimum mode are redefined to allow 
these extensions and enhance general system perform­
ance. Specifically, (1) two prioritized levels of processor 
preemption (RO/GTO, RO/GT1) allow multiple proc­
essors to reside on the 8086's local bus and share its in­
terface to the system bus, (2) Oueue status (OSO,OS1) is 
available to allow external devices like ICE™_86 or 
special instruction set extension co·processors to track 
the CPU instruction execution, (3) access control to 
shared resources in multiprocessor systems is sup­
ported by a hardware bus lock mechanism and (4) 
system command and configuration options are ex­
panded via ancillary devices like the 8288 bus controller 
and 8289 bus arbiter. 

The queue status indicates what information is being 
removed from the internal queue and when the queue is 
being reset due to a transfer of control (Table 3A1). By 
monitoring the SO,51,52 status lines for instructions 
entering the 8086 (1,0,0 indicates code access while AO 
and BHE indicate word or byte) and OSO, OS1 for in­
structions leaving the 8086's internal queue, it is possi­
ble to track the instruction execution. Since instruc­
tions are executed from the 8086's internal queue, the 
queue status is presented each CPU clock cycle and Is 
not related to the bus cycle activity. This mechanism (1) 
allows a co-processor to detect execution of an 
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ESCAPE instruction which directs the co·processor to 
perform a specific task arid (2) allows ICE-86 to trap ex· 
ecution of a specific memory location. An example of a 
circuit used.by ICE Is given In Figure 3A3. The first up 
down counter tracks the depth of the queue while the 
second captures the queue depth on a match. The sec· 
ond counter decrements on further fetches from the 
queue until the queue is flushed or the count goes to 
zero indicating execution of the match address. The 
first counter decrements on felch from the queue 
(050=1) and Increments on code fetches Into the 

queue. Note that a normal code fetch will transfer two 
bytes into the queue so two clock increments are given 
to the counter (T201 and T301) unless a single byte Is 
loaded over the upper half of the bus (AO·P Is high). 
Since the execution unit (EU) is not synchronized to the 
bus interface unit (BIU), a fetch from the queue can oc· 
cur simultaneously with a transfer into the queue. The 
excluslve·or gate driving the ENP input of the first 
counter allows these simultaneous operations to cancel 
each other and not modify the queue depth. 
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Figure 3A1. Minimum Mode 8086 
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TABLE 3A1. QUEUE STATUS 

aS1 aSO 

a (LOW) a No Operation 
a 1 First Byte of Op Code from Queue 
1 (HIGH) a Empty the Queue 
1 1 Subsequent Byte from Queue 

The queue status is valid during the CLK cycle after 
which the queue operation is performed. 

To address the problem of controlling access to shared 
resources, the maximum mode 8086 provides a hard­
ware LOCK output. The LOCK output is activated 
through the instruction stream by execution of the 
LOCK prefix instruction. The LOCK output goes active 
In the first CPU clock cycle following execution of the 
prefix and .remains active until the clock following the 
completion of the Instruction following the LOCK prefix. 
To provide bus access control In multiprocessor 
systems, the LOCK signal should be incorporated into 
the system bus arbitration logic resident to the CPU. 

During normal multiprocessor system operation, pri­
ority of the shared system bus is determined by the ar­
bitration circuitry on a cycle by cycle basis. As each 
CPU requires a transfer over the system bus, It requests 
access to the bus via its resident bus arbitration logic. 
When the CPU gains priority (determined by the system 
bus arbitration scheme and any associated logic), It 
takes control of the bus, performs Its bus cycle and 
either maintains bus control, voluntarily releases the 
bus or Is forced off the bus by the loss of priority. The 
lock mechanism prevents the CPU from losing bus con­
trol (either voluntarily or by force) and guarantees a CPU 
the ability to execute multiple bus cycles (during execu-

tion of the locked instruction) without Intervention and 
possible corruption of the data by another CPU. A 
classic use of the mechanism Is the 'TEST and SET 
semaphore' during which a CPU must read from a 
shared memory location and return data to the location 
without allowing another CPU to reference the same 
location between the TEST operation (read) and the SET 
operation (write). In the 8086 this is accomplished with a 
locked exchange instruction. 

LOCK XCHG reg, MEMORY; reg Is any register 
;MEMORY Is the add,,;ss of the 
;semaphore 

The activity of the LOCK output is shown in Diagram 
3A1. Another interesting use of the LOCK for multiproc· 
essor systems Is a locked block move which allows high 
speed message transfer from one CPU's message buf­
fer to another. 

During the locked Instruction, a request for processor 
preemption (RQ/Gn is recorded but not acknowledged 
until completion of the locked Instruction. The LOCK 
has no direct affect on Interrupts. As an exam.£1e, a 
locked HALT instruction will cause HOLD (or RQ/Gn re­
quests to be Ignored but will allow the CPU to exit the 
HALT state on an Interrupt. In general, prefix bytes are 
considered extensions of the Instructions they precede. 
Therefore, Interrupts that occur during execution of a 
prefix are not acknowledged (assuming interrupts are 
enabled) until completion of the Instruction following 
the prefixes (except for instructions which allow servic­
Ing interrupts during their execution, i.e., HALT, WAIT 
and repeated string primitives). Note that multiple prefix 
bytes may precede an Instruction. As another example, 
consider a 'string primitive' preceded by the repetition 

.------1 ">o---~24>CLK 

MHBYTEO:::============2!==~ ______________ t-______________ ~9 LOAD 
MHBYTE1 74500 745169 

aCTO 

L--'="-=--_______ -'q LOAD 

745169 

-+-----+·'-L;:'O=-+-------------------~__l UP/DOWN 

ENP MHBYTEAND 1 - MATCH CONDITIONS 

SOLH --------:-r"\ 
SlLH ---------'-L./ 

Sffi! _____ ---'-13, 

74504 

ClKA 
aS1, aso 
T301,1201 
SOLH-S2LH 
CACCESS 
aCTO 
AO·P 

- CPU CLOCK 
- CPU QUEUE STATUS 
- T STATES 13 and T2 (CLOCK LOW TIME",,01) 
- CPU STATUS SO·S2 
- CODe ACCESS 
- QUEUE MATCH 
- SINGLE BYTE ON UPPER HALF OF THE BUS 

)OC13=--_____________________________________________________ C ACCESS 

Figure 3A3. Example Circuit to Track the a086 Queue 
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prefix (REP) which Is interruptible after each execution 
of the string primitive. This holds even if the REP prefix 
Is combined with the lOCK prefix and prevents inter· 
rupts from being locked out during a block move or 
other repeated string operation. As long as the opera· 
tlon Is not interrupted, lOCK remains active. Further In· 
formation on the operation of an Interrupted string 
operation with multiple prefixes is presented in the sec· 
tion dealing with the 8086 Interrupt structure. 

Three additional status lines (SO, 51, 52) are defined to 
provide communications with the 8288 and 8289. The 
status lines tell the 8288 when to initiate a bus cycle, 
what type of command to issue and when to terminate 
the bus cycle. The 8288 samples the status lines at the 
beginning of each CPU clock (ClK). To initiate a bus cy· 
cle, the CPU drives the status lines from the passive 
state (SO, 51, 52 = 1) to one of seven possible command 
codes (Table 3A2). This occurs on the rising edge of the 
clock during T4 of the previous bus cycle or a TI (idle cy· 
cle, no current bus activity). The 8288 detects the status 
change by sampling the status lines on the high to low 
transition of each clock cycle. The 8288 starts a bus cy· 
cle by generating ALE and appropriate buffer direction 
control in the clock cycle immediately following detec· 
tion of the status change (T1). The bus transceivers and 
the selected command are enabled in the next clock 
cycle (T2) (or T3 for normal write commands). When the 
status returns to the passive state, the 8288 will ter· 
minate the command as shown in Diagram 3A2. Since 
the CPU will not return the status to the passive state 
until the 'ready' indication is received, the 8288 will 
maintain active command and bus control for any 
number of wait cycles. The status lines may also be 
used by other processors on the 8086's local bus to 
monitor bus activity and control the 8288 if they gain 
control of the local bus. 

CLK 

QSO 

LOCK 

LOCK 
PREFIX 

BYTE FROM 
QUEUE 

NOP BYTE 
FROM THE 

QUEUE 
(LOCKED NOP) 

TABLE 3A2. STATUS LINE DECODES 

52 51 50 

o (lOW) 0 0 Interrupt Acknowledge 
0 0 1 Read I/O Port 
0 1 0 Write I/O Port 
0 1 1 Halt 
1 (HIGH) 0 0 Code Access 
1 0 1 Read Memory 
1 1 0 Write Memory 
1 1 1 Passive 

The 8288 provides the bus control (DEN, DT/R, ALE) and 
commands (INTA, MRDC, 10RC, MWTC, AMWC, iQWC, 
AIOWC) removed from the CPU. The command structure 
has separate read and write commands for memory and 
I/O to provide compatibility with the Multibus command 
structure. 

The advanced write commands are enabled one clock 
period earlier than the normal write to accommodate the 
wider write pulse widths often required by peripherals 
and static RAMs. The normal write provides data setup 
prior to write to accommodate dynamic RAM memories 
and I/O devices which strobe data on the leading edge of 
write. The advanced write commands do not guarantee 
that data is valid prior to the leading edge of the com· 
mand. The DEN signal In the maximum mode Is Inverted 
from the minimum mode to extend transceiver control 
by allowing logical conjunction of DEN with other 
signals. While not appearing to be a significant benefit 
in the basic maximum mode configuration, introduction 
of interrupt control and various system configurations 
will demonstrate the usefulness of qualifying DEN. 
Diagram 3A3 compares the timing of the minimum and 
maximum mode bus transfer commands. Although the 

~--~~=----~ LOCKED INSTRUCTION 

1 QUEUE STATUS INDICATES FIRST BYTE OF OPCODE FRO~ THE QUEUE. 

2 THE LOCK OUTPUT WILL GO INACTIVE BETWEEN SEPARATE LOCKED INSTRUCTIONS. 

3 TWO CLOCKS ARE REQUIRED FOR DECODE OF THE LOCK PREFIX AND 
ACTIVATION OF THE LOCK SIGNAL. 

4 SINCE QUEUE STATUS REFLECTS THE QUEUE OPERATION IN THE PREVIOUS CLOCK 
CYCLE, THE LOCK OUTPUT ACTUALLY GOES ACTIVE COINCIDENT WITH THE START 
OF THE NEXT INSTRUCTION AND REMAINS ACTIVE FOR ONE CLOCK CYCLE 
FOLLOWING THE INSTRUCTION. 

S IF THE INSTRUCTION FOLLOWING THE LOCK PREFIX IS NOT IN THE QUEUE,THE 
[OCR OUTPUT STILL GOES ACTIVE AS SHOWN WHILE THE INSTRUCTION IS BEING 
FETCHED. 

6 THE BIU WILL STILL PERFORM INSTRUCTION FETCH CYCLES DURING EXECUTION 
OF A LOCKED INSTRUCTION. THE [OCR MERELY LOCKS THE BUS TO THIS CPU FOR 
WHATEVER BUS CYCLES THE CPU PERFORMS DURING THE LOCKED INSTRUCTION. 

Diagram 3A1. 8086 Lock Acllvlly 
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maximum mode configuration Is designed for multi­
processor environments, large single CPU designs 
(either Multlbus systems or greater than two PC boards) 
should also use the maximum mode. Since the 8288 Is a 
bipolar dedicated controller device, Its output drive for 
the commands (32 mAl and tolerances on AC character­
Istics (timing parameters and worse case delays) pro­
vide better large system performance than the minimum 
mode 8086. 

ClK 

ALE 

READY 

In addition to assuming the functions removed from the 
CPU, the 8288 provides additional strapping options and 
controls to support multiprocessor configurations and 
peripheral devices on the CPU local bus. These capa­
bilities allow assigning resources (memory or 1/0) as 
shared (available on the Multibus system bus) or private 
(accessible only by this CPU) to reduce contention for 
access to the Multibus system bus and improve multl­
CPU system performance. Specific configuration possi­
bilities are discussed in AP-51. 

\\~~\\\ 

GOES INACTIVE IN THE STATE 
JUST PRIOR TO T4 

o 
WAIT 

READY 

Diagram 3A2. Status Lin. Activation and Termination 
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Diagram 3A3. 8Q86 Minimum and Maximum Mod. Command Timing 
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3B. Clock Generation 

The 8086 requires a clock signal with fast rise and fall 
times (10 ns max) between low and high voltages of 
- 0;5 to + 0.6 low and 3.9 to VCC + 1.0 high. The max· 
imum clock frequency of the 8086 Is 5 MHz and 8MHz 
for the 8086·2. Since the design of the 8086iricorporates 
dynamic cells, a minimum frequency of 2 MHz Is reo 
qUln:id to retain the state of the-machine. Due to the 
minimum frequency requirement, Single stepping or 
cycling of the CPU may not be accomplished by dis· 
abllng the clock. The timing and voltage requirements of 
the CPU clock are shown In 'Figure 3B1. In general, for 
frequencies below the maximum, the CPU clock need 
not satisfy the frequency dependent pulse width liml· 
tatlons stated' in the 8086 data sheet. The values 
specified only reflect the minimum values which must 
be satisfied and are stated In terms of the maximum 
clock frequency. As the clock frequency approaches the 
maximum frequency of the CPU, the clock must con· 
form,'to a 33% duty cycle to satisfy the CPU minimum 
clock low and high time specifications. 

i0n.MAX 

Figure 3Bl. 8088 Clock 

An optimum 33% duty cycle clock with the required 
voltage levels and transition times can be obtained with 
the 8284 clock generator (Fig. 3B2). Either an external 
frequency source ora series resonant crystal may drive 
the 8284. The selected source must oscillate at 3X the 
desired CPU frequency. To select the crystal 'Inputs of 
the 8284 as the frequency source for clock generation, 
the Fie Input to the 8284 must be strapped to ground. 
The strapping, option allows selecting either the crystal 
or the external frequency Input as the source for clock 
generation. Although the 8284 provides an Input for a' 
tank circuit to accommodate overtone mode crystals, 
fundamental mode crystals are recommended for more 
accurate and stable frequency generation. When selec· 
tlng a crystal for use with the 8284, the series resistance 
should be as low as possible. Since other circuit com· 
ponents will tend to shift the operating frequency from 
resonance, the operating impedance will typically be, 
higher than the specified series resistance. If the at· 
tenuatlon of the oscillator's feedback circuit, reduces 
the loop gain to less than onEi, the oscillator will fall. 
Since, the oscillator delays In the 8284 appear as Induc· 
tlve elements to the crystal, causing it to .run at a fre· 
quency'beiow that of the pure series resonance" a 
capacitor should be placed In series with the crystal and 
the X2 input of the 8284. This capacitor serves to cancel 
this Inductive element. The value of the capacitor (Cl) 

must not cause the Impedance of the feedback circuit to 
reduce the loop gain below one. The impedance of the 
capacitor is a ,function of the operating frequency and 
can be determined' from the following equation: 

XCl= 1/2n"F"Cl 

17 
X, csc 12 

8284 8088 XTAl CJ 

Y 18 ClK 19 ClK" 
X, 

Cl 
13 FIll" 

'-
Figure 3B2: 8284 Clock Generalor 

It is recommended that the crystal series resistance 
plus XCl be kept less than 1 K ohms. This capaCitor also 
serves to debias the crystal and prevent a DC voltage 
bias from straining and perhaps damaging the crystal· 
line structure. As the crystal frequency Increases, the 
amount of capaCitance should be decreased. For exam· 
pie, a 12 MHz crystal may require Cl'" 24 pF while 22 
MHz may require Cl '" 8 pF. If very close correlation 
with the pure series resonance is not necessary, a 
nominal Cl value of 12·15 pF may be used with a 15 MHz 
crystal (5 MHz 8086 operation). Board layout and compo­
nent variances will affect the actual amount of induc· 
tance and therefore the series capaCitance required to 
cancel it out (thiS Is especially true for wire·wrapped 
layouts). 

Two of the many vendors which supply crystals for Intel 
microprocessors are listed In Table 3B1 along with a list 
of crystal part numbers for various frequencies which 
may be of interest. For additional information on specl· 
fylng crystals for Intel components refer to application 
note AP·35. 

TABLE 3Bl. CRYSTAL VENDORS 

f Parallell Cryltek(l) CTS Knlght,12l 
Serlel Corp. Inc. 

15.0MHz S CY15A MP150 
18.432 S CY19B" MP184* 
24.0 MHz S CY24A MP240 

',Inlel also supplies a cryslal numbered 8801 lor Ihls application. 

Not •• : 1. Address: 1000 Cryslal Driye, Fort Meyers, Florldli 33901 
2. Address: 400 Reimann AYe., Sandwich, illinois 

If a high accuracy frequency source, externally variable 
frequency source or a common source for,driving mul· 
tlple 8284's Is desired, the Externai Frequency li}Put 
(EFI) of the 8284 can be selected by strapping the F/C in· 
put to 5 volts through "'1 K ohms (Fig. 3B3). The external 
frequency source should be TIL compatible, have a 
50% duty cycle and oscillate at three times the desired 
CPU operating frequency. The maximum EFI frequency 
the 8284 can accept is Slightly above 24 MHz with 
minimum clock low and high times of 13 ns. Although 
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no minimum EFI frequency is specified, it should not 
violate the CPU minimum clock rate. If a common fre· 
quency source is used to drive multiple 8284's 
distributed throughout the system, each 8284 should be 
driven by its own line from the source. To minimize 
noise In the system, each line should be a twisted pair 
driven by a buffer like the 74lS04 with the ground of the 
twisted pair connecting the grounds of the source and 
receiver. To minimize clock skew, the lines to all 8284's 
should be of equal length. A simple technique for gen· 
erating a master frequency source for additional 8284's 
Is shown in Figure 384. One 8284 with a crystal is used 
to generate the desired frequency. The oscillator output 
of the 8284 (OSC) equals the crystal frequency and is 
used to drive the external frequency to all other 8284's 
in the system. 

+5 

X, 
X. 

EXTERNAL Fie 
FREQUENCY---=! EFt 

SOURCE 

ClK 1-=-__ ..:;19"-1 ClK 

8284 8088 

Figure 3B3. 8284 with External Frequency Source 
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13 
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Figure 3B4. External Frequency for Multiple 8284s 

OSC 

ClK 

PCLK 

The oscillator output Is inverted from the oscillator 
signal used to drive the CPU cloc,k generator circuit. 
Therefore, the oscillator output of one 8284 should not 
drive the EFI Input of a second 8284 If both are driving 
clock inputs of separate CPU's that are to be syn­
chronized. The variation on EFI to' ClK delay over a 
range of 8284's may approach 35 to 45 ns.lf, however, all 
8284's are of the same package type, have the same 
relative supply voltage and operate In the same tem­
perature environment, the variation will be reduced to 
between 15 and 25 ns. 

There are three frequency outputs from the 8284, the 
oscillator (OSC) mentioned above, the system clock 
(ClK) which drives the CPU, and a peripheral clock 
(PClK) that runs at one half the CPU clock frequency. 
The oscillator output is only driven by the crystal and Is 
not affected by the FIC strapping option. If a crystal Is 
not connected to the 8284 when the external frequency 
input Is used, the oscillator output is Indeterminate. The 
CPU clock is derived from the selected frequency 
source by an internal divide by three counter. The 
counter generates the 33% duty cycle clock which Is op­
timum for the CPU at maximum frequency. The 
peripheral clock has a 50% duty cycle and is derived 
from the CPU clock. Diagram 380 shows the relation­
ship of ClK to OSC and PClK to elK. The maximum 
skew is 20 ns between OSC and ClK, and 22 ns between 
ClK and PClK. 

Since the state of the 8284 divide by three counter is in­
determinate at system initialization (power on), an exter­
nal sync to the counter (CSYNC) is provided to allow 
synchronization of the CPU clock to an external event. 
When CSYNC is brought high, the ClK and PClK out­
puts are forced high. When CSYNC returns low, the next 
positive clock from the frequency source starts clock 
generation. CSYNC must be active for a minimum of two 
periods of the frequency source. If CSYNC is asynchro­
nous to the frequency source, the circuit In Figure 385 
should be used for synchronization. The two latches 
minimize the probability of a meta·stable state in the 
latch driving CSYNC. The latches are clocked with the 
inverse of the frequency source to guarantee the 8284 
setup and hold time of CSYNC to the frequency source 
(Diag. 381). If a single 8284 is to be synchronized to an 
external event and an external frequency source is not 
used, the oscillator output of the 8284 may be used to 

Diagram 3BO. OSC - ClK and ClK - PClK Relationships 
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synchronize CSYNC (Fig. 3B6). Since the oscillator out· 
put Is Inverted from the Internal oscillator signal, the In· 
verter In the previous example Is not required. If multiple 
8284's are to be synchronized, an external frequency 
source must drive all 8284's and a single CSYNC syn· 
chronlzation circuit must drive the CSYNC Input of all 
8284's (Fig. 3B7). Since activation of CSYNC may cause 
violation of CPU minimum clock low time, It should only 
be enabled during reset or CPU clock high. CSYNC must 
also be disabled a minimum of four CPU clocks before 
the end of reset to guarantee proper CPU reset. 

EXTERNAL 
SYNC-----I 

CONDITION 
EXTERNAL 

FREQUENCY 

+5 

lK 

Q 
TO 
CSYNC 
INPUT 

TO 
'-------------- EFI 

INPUT 

Figure 3B5. Synchronizing CSYNC with EFI 

EFI 

CaYNe .J 
I 

-t 

I 
I 
I-TYHEH 

"'MAX IS SPEC'ED TO GUARANTEE MAX 8086 CLOCK FREQUENCY 

SYNC 

Diagram 3B1. CSYNC Setup and Hold to EFI 

+5 

74LS74 

CLK 

D Q 

74LS74 
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17 X, 

C 

Y 18 
X2 

13 Fie 
0:- 1 

CSVNC 

Figure 3B6. EFI Irom 8284 Oscillator 

OSC 12 

CLK 8 

Figure 3B7. Synchronizing Multiple 62848 

Due to the fast transitions and high drive (5 mAl of the 
8284 ClK output, It may be necessary to put a 10 to 100 
ohm resistor in series with the clock line to eliminate 
ringing (resistor value depending on the amount of drive 
required). If multiple sources of ClK are needed with 
minimum skew, ClK can be buffered by a high drive 
device (74S241) with outputs tied to 5 volts through 100 
ohms to guarantee VOH = 3.9 min (8086 minimum clock 
input high voltage) (Fig. 3B8). A single 8284 should not 
be used to generate the ClK for multiple CPU's that do 
not share a common local (multiplexed) bus since the 
8284 synchronizes re"qy to the CPU and can only ac· 
commodate ready fora single CPU. Ifmultlple CPU's 
share a local bus, they should be driven with the same 
clock to optimize transfer of bus control. Under these 
Circumstances, only one CPU will be using the bus for a 
particular bus cycle which allows· sharing a common 
READY signal (Fig. 3B9). 

l00Q 

CLK 

8284 
100Q 

l00Q 

Figure 3B8. Bullerlng the 8284 CLK Output 
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MULTIPLEXED BUS 

Figure 3B9. 8086 and Co·Processor on the local Bus Share a 
. Com mon 8284 

3C. Reset 

The 8086 requires a high active reset with minimum 
pulse width of four CPU clocks except after power on 
which requires a 50 fls reset pulse. Since the CPU inter­
nally synchronizes reset with the clock, the reset is in­
ternally active for up to one clock period after the exter­
nal reset. Non-Maskable Interrupts (NMI) or hold re­
quests on RQ/GT which occur during the internal reset, 
are not acknowledged. A minimum mode hold request 
or maximum mode RQ pulses active immediately after 
the internal reset will be honored before the first in­
struction fetch. 

From reset, the 8086 will condition the bus as shown in 
Table 3Cl. The multiplexed bus will three-state upon 
detection of reset by the CPU. Other signals which 
three-state will be driven to the inactive state for one 
clock low interval prior to entering three-state (Fig. 3Cl). 
In the minimum mode, ALE and HLDA are driven inac­
tive and are not three-stated. In the maximum mode 
RQ/GT lines are held inactive and the queue status in: 
dicates no activity. The queue status will not indicate a 
reset of the queue so any user defined ellternal circuits 
monitoring the queue should also be reset by the 
system reset. 22K ohm pull-up resistors should be con­
nected to the CPU command and bus control lines to 

CLOCK 

RESET INPUT 

INTERNAL RESET 

BUS 

guarantee the inactive state of these lines in systems 
where leakage currents or bus capacitance may cause 
the voltage levels to settle below the minimum high 
voltage of devices in the system. In maximum mode 
systems, the 8288 contains internal pull-ups on the 
SO-52 inputs to maintain the inactive state for these 
lines when the CPU floats the bus. The high state of the 
status lines during reset causes the 8288 to treat the 
reset sequence as a passive state. The condition of the 
8288 outputs for the passive state are shown in Table 
3C2. If the reset occurs during a bus cycle, the return of 
the status lines to the passive state will terminate the 
bus cycle and return the command lines to the inactive 
state. Note that the 8288 does not three-state the com­
mand outputs based on the passive state of the status 
lines. If the designer needs to three-state the CPU off 
the bus during reset in a single CPU system, the reset 
signal should also be connected to the 8288's AEN input 
and the output enable of the address latches (Fig. 3C2). 
This forces the command and address bus interface to 
three-state while the inactive state of DEN from the 8288 
three-states the transceivers on the data bus. 

Table 3C1. 8086 Bus During Reset 

Signals Condition 

AD1S,() Three-State 
A19-1s1S6.3 Three-State 
BHE/S7 Three-State 
S2/(M/IO) Driven to "1" then three-state 
Sl/(DT/R) Driven to "1" then three-state 
SOlD EN Driven to "1" then three-state 
LOCKlWR Driven to "1" then three-state 
RD Driven to "1" then three-state 
INTA Driven to "1" then three-state 
ALE 0 
HLDA 0 
RQ/GTO 1 
RQ/GT1 1 
QSO 0 
QSl 0 

t LFLOATBUS 

~ DRIVE OUTPUT TO INACTIVE STATE 

Figure 3C1. 8086 Bus Conditioning on Reset 
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TABLE 3C2. 8288 OUTPUTS DURING PASSIVE MODE 

ALE 
DEN 
DTIR 
MCElPDEN 
COMMANDS 

o 
o 
1 

0/1 
1 

~~------------~.IAEN 

8288 
~+--'lDEN 

8284 

RESET 1--4--1 RESET 

8088 

Figure 3C2. Re$et Disable lor ,Max Mode,8086 Bus Interlace 

" 

For multiple processor systems using arbitration of a 
multlmaster bus, 'the system reset should be connected 
to the INIT input of the 8289 bus arbiter in addition to 
the 8284 reset Input (Fig. 3C3). The low active INIT input 
forces all 8289 outputs to their inactive state. The inac­
tive state of the 8289 AEN output will force the 8288 to 
three-state the, command outputs and the address 
latches to three-state the address bus interface. DEN in­
active from the 8288 wiil three-state the data bus inter­
face. For the multimaster CPU configuration, the reset 
should be common to all CPU's (8289's and 8284's) and 
satisfy the maximum of either the CPU reset re­
quirements or 3 TBLBL (3 8289 bus clock times)+ 3 
TCLCL (3 8086 clock cycle times) to satisfy 8289 reset 
requirements. 

8284 

RESET 

¥.:l 
l .. :J 

Figure 3C3. Reset Disable 01 for Max Mode 8086 Bus Interlace In 
Multi CPU System 

If the 8288 command outputs are three-stated during 
reset, the command lines should be pulled up to Vee 
through 2.2K ohm resistors. ' 

The reset signal to the 8086 can be generated by the 
8284. The 8284 has a schmitt trigger Input (RES) for 
generating reset from a low active external reset. The 
hysteresis specified In the 8284 data sheet iniplles that 
at least .25 volts will separate the 0 and 1 switching 
point of the 8284 reset Input. Inputs without hysteresis 
will switch from low to high and high to low at approxi­
mately the same voltage threshold. The Inputs are 
guaranteed to switch at specified low and high voltages 
(VIL and VI H) but the actual switching point is anywhere 
in-between. Since VIL min Is specified at .8 volts, the 
hysteresis guarantees that the reset will be active until 
the Input reaches at least 1.05 volts. A reset will not be 
recognized until the Input drops at least .25 VOlts' below 
the reset Inputs VIHof 2.6 volts. 

To guarantee reseUrom power up, the reset Input must 
remain below 1.05 volts for 50 microseconds after Vee 
has reached the minimum supply vqltage of 4.5 volts. 
The hysteresis allows the reset input to be driven by a 
simple RC circuit as, shown in Flgure,3C4. The 
calculated RC value does not include time, for the power 
supply to reach 4.5 volts or the charge accumulateddur­
Ing thlslriterval. Without the hysteresis, the reset out­
put might oscillate as the input voltage passes through 
the switching voltage of the input. The calculated RC 
value provides the minimum required reset period of 50, 
microseconds for 8284's that switch at tlie 1.05 volt 
level arid a reset periOd of approximately 162 micro­
seconds for 8284's that switch at the 2.6 volt level. If 
tighter tolerance between the minimum and maximum 
reset times Is necessary, the reset, circuit shown in 
Figure 3C5 might be used rather than the,slmple RC cir­
cuit. This circuit provides a constant current source and 
a linear charge rate on the capacitor ratherthim the in­
verse exponential charge rate of the RC ,circuit. The 
maximum reset period for this implementatl()n is 124 
microseconds. ' , 

+V 

RESET IN 
11 liES 

8284 

I 
VeIl) = Jl-e iit) 
t = 50 ~sec 
V = 4,5 
Vc = 1.05 
RC = 188x 10-& 

RESET ACTIVE TIME 

I-- MAXIMUM RESET ACTIVE TIME 

Figure 3C4. 8284 Reset Circuit 
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D, 

D, 

Vee 

RESET 

R, - DETERMINES CURRENT TO CHARGE C 
R, - VALUE NOT CRITICAL ='OK 

le= CHARGE CURRENT= V,dD, ~ D, - T1I 

IF All SEMICONDUCTORS ARE SILICON, Ic. ~ 

,l4'----- .Vee-.
6 

dV _ Ie 
'iIf~c 

T 

Figure 3C5. Constant Current Power·On Reset Circuit 

The 8284 synchronizes the reset input with the CPU 
clock to generate the RESET signal to the CPU (Fig. 
3C6). The output is also available as a general reset to 
the entire system. The reset has no effect on any clock 
circuits in the 8284.' 

17 X, ClK 8 
SYSTEM 
RESET 

CJ 8284 
19 

ClK 

Y 18 X, 8086 

+5 13 RESET 10 21 
Fie RESET 

"::' 

11 
RES 

~ 

Figure 3C6. 8086 Reset and System Reset 

CLOCK 

80861\EADY 

READY INACTIVE 6 ns 

3D. Ready Implementation and Timing 

As discussed previously, the ready signal Is used In the 
system to accommodate memory and 1/0 devices that 
cannot transfer Information at the maximum CPU bus 
bandwidth. Ready Is also used In multiprocessor 
systems to force the CPU to walt for access to the 
system bus or Multlbus system bus. To Insert a walt 
state In the bus cycle, the READY signal to the CPU 
must be Inactive (low) by the end of T2. To avoid Inser­
tion of a walt state, READY must be active (high) within 
a specified setup time prior to the positive transition 
during T3. Depending on the size and characteristics of 
the system, ready Implementation may take one of two 
approaches. 

The classical ready implementation Is to have the 
system 'normally not ready.' When the selected device 
receives the command (RDIWR/INTA) and has had suffi­
cient time to complete the command, It activates 
READY to the CPU, allowing the CPU to terminate the 
bus cycle. This implementation is characteristic of large 
multiprocessor, Multibus systems or systems where 
propagation delays, bus access delays and device char­
acteristics inherently slow down the system. For max­
imum system performance, devices that can run with no 
wait states must return 'READY' within the· previously 
described limit. Failure to respond In time will only 
result in the insertion of one or. more walt cycles. 

An alternate technique Is to have the system 'norm~lIy 
ready.' All devices are assumed to operate at the max­
imum CPU bus bandwidth. Devices that do not meet the 
requirement must disable READY by the end of T2 to 
guarantee the Insertion of walt cycles. This implementa­
tion is typically applied to small single CPU systems 
and reduces the logic required to control the ready 
signal. Since the,failure ola device requiring wait states 
to disable READY by the end of T2 Will result in prema­
ture termination of the bus cycle, the system timing 
must be carefully analyzed when using this approach. 

The 8086 has two different .timing requirements on 
READY depending on the system Implementation. For a 
'normally ready' system to insert a wait state, the 
READY must be disabled within 8 ns (TRYLCL) after the 
end of T2 (start of T3) (Diag. 3D1). To guarantee proper 

119 ns TO GUARANTEE THE 
CYCLE IS T4 

Diagram 301. Normally Ready System Inserting a Walt State 

A-23 



AP-67 

operation of the 8086, the READY input must not change 
from ready to not ready during the clock low time of T3. 
For a 'normally not ready' system to avoid wait states, 
READY must be active within 119 ns (TRYHCH) of the 

positive clock transition during T3 (Diag. 3D2). For both 
cases, READY must satisfy a hold time of 30 ns 
(TCHRYX) from the T3 or TW positive clock transition. 

CLOCK 

8088 READY 

Diagram 302. Normally Nol Ready Syslem Avoiding a Wall Slale 

17 
X, ClK 

19 
ClK 

D RESET 10 21 
RESET 

Y 18 
X. 22 

READY READY 

FIC 
8284 8086 

11 
RES 

3 
AEN1 

:r: RDY1 
7 AEN2 

6 RDY2 

To generate a stable READY signal which satisfies the 
previous setup and hold times, the 8284 provides two 
separate system ready inputs (RDY1, RDY2) and a single 
synchronized ready output (READY) for the CPU. The 
RDY inputs are qualified with separate access enables 
(AEN1,AEN2, low active) to allow selecting one of the 
two ready signals (Fig. 3D1). The gated signals are 
logically OR'ed and sampled at the beginning of each 
ClK cycle to generate READY to the CPU (Diag. 3D3). 
The sampled READY signal is valid within 8 ns (TRYlCl) 
after ClK to satisfy the CPU timing requirements on 
'not ready' and ready. Since READY cannot change until 
the next ClK, the hold time requirements are also satis· 
fied. The system ready inputs to the 8284 (RDY1,RDY2) 
must be valid 35 ns (TRIVCl) before T3 and AEN must be 
valid 60 ns before T3. For a system using only one RDY 
input, the associated AEN is tied to ground while the 
other AEN is connected to 5 volts through "-'1 K ohms 
(Fig. 3D2a). If the system generates a low active ready 
signal, it can be connected to the 8284 AEN input if the 
additional setup time required by the 8284 AEN input is 
satisfied. In this case, the associated RDY input would 
be tied high (Fig. 3D2b). Figure 301. Ready Inpuls 10 Ihe 8284 and Oulpullo Ihe 8086 

CLOCK 

8284 READY OUT 
(TO 8086) 

---~~o--T.rrw 

NOTE: THE 8284 DATA SHEET SPECIFIES READY OUT DELAY (TRYlCl) AS -8 ns 
'BEFORE' THE END OF T. WHICH IMPLIES THE TIMING SHOWN. 

Diagram 303. 8284 with 8086 Ready Timing 
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SYSTEM 
READY 

+5 

ROY1 
7 AEN2 
8 ROY2 

8284 

Figure 302a. Using ROYlIROY2 to Generate Ready 

1K 

+5 

3 AEI'IT 8284 

4 ROY1 := 
Figure 302b. Using AEN1/AEN2 to Generate Ready 

The majority of memory and peripheral devices. which 
fall to operate at the maximum CPU frequency typically 
do not require more than one wait state. The circuit 
given in Figure 303 Is an example of a simple walt state 
generator. The system ready line Is driven low whenever 
a device requiring one walt state Is selected. The flip 
flop Is cleared by ALE, enabling ROY to the 8284. If no 
walt states are required, the flip flop does not change. If 
the system ready Is driven low, the flip flop toggles on 
the low to high clock transition of T2 to force one walt 
state. The next low to high clock transition toggles the 
flip flop again to Indicate ready and allow completion of 
the bus cycle. Further changes In the state of the flip 
flop will not affect the bus cycle. The circuit allows 
approximately 100 ns for chip select decode and condi­
tioning of the system ready (Dlag. 304). 

If the system Is 'normally not ready,' the programmer 
should not assign executable code to the last six bytes 
of physical memory. Since the 8086 prefetches Instruc­
tions, the CPU may attempt to access non-existent 
memory when executing code at the end of physical 

memory. If the access to non-existent memory falls to 
enable READY, the system will be caught In an In-
definite walt. . 

rC~~~-{>r~~~J 
C< 
74LS73 

K 'Q" RDV TO 12&4 

Figure 303. Single Walt State Generator 

3E. Interrupt Structure 

The 8086 Interrupt structure Is based on a table of Inter· 
rupt vectors stored In memory locations OH through 
003FFH. Each vector consists of two bytes for the In· 
struction pOinter and two bytes for the code segment. 
These two values combine to form the address of the In· 
terrupt service routine. This allows the table to contain 
up to 256 interrupt vectors which specify the starting ad· 
dress of the service routines anywhere In the one mega· 
byte address space of the 8086. If fewer than 256 differ­
ent Interrupts are defined in the system, the user need 
only allocate enough memory for the interrupt vector 
table to provide the vectors for the defined Interrupts. 
During initial system debug, however, it may be desir­
able to assign all undefined Interrupt types to a trap 
routine to detect erroneous interrupts. 

Each vector Is associated with an interrupt type number 
which pOints to the vector's location in the interrupt vec· 
tor table. The Interrupt type number multiplied by four 
gives the displacement of the first byte of the associ· 
ated interrupt vector from the beginning of the table. As 
an example, interrupt type number 5 points to the sixth 
entry In the Interrupt vector table. The contents of this 
entry in the table points to the Interrupt service routine 
for type 5 (Fig. 3E1). This structure allows the user to 
specify the memory address of each service routine by 
placing the address (instruction pointer and code seg· 
ment values) In the table.location provided for that type 
interrupt. 

Diagram 304. 
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INTERRUPT 
VECTOR TABLE 

ADDRESS 

INTERRUPT TYPE MEMORY 

r ~U~B!.R - ~====~~-=--=--=----I-i'~-ooo~~-~;'., 
1------=::-----1 004 

008 

1----=:-----1 ooe 

TYPE 5 INTERRUPT 
SERVICE ROUTINE 

L-____ -' FFFFE 

INTERRUPT 
VECTOR 
TABLE 

Figure 3E1. Direction to Interrupt Service Routine through the 
Interrupt Vector Table 

All Interrupts in the 8086 must be assigned an Interrupt 
type which uniquely identifies each I nterrupt. There are 
three classes of interrupt types in the 8086; predefined 
interrupt types which are Issued by specific functions 
within the 8086 and user defined hardware and software 
Interrupts. Note that any Interrupt type including the 
predefined interrupts can be Issued by the user's hard­
ware and/or software. 

PREDEFINED INTERRUPTS 

The predefined Interrupt types In the 8086 are listed 
below with a brief description of how each is Invoked. 
When Invoked, the CPU will transfer control to the 
memory location specified by the vector associated 
with the specific type. The user must provide the inter­
rupt service routine and Initialize the interrupt vector 
table with the appropriate service routine address. The 
user may additionally Invoke these Interrupts through 
hardware or software. If the preassigned function Is not 
used In the system, the user may aSSign some other 
function to the associated type. However, for com­
patibility with future Intel hardware and software prod­
ucts for the 8086 family, Interrupt types 0-31 should not 
be assigned as user defined interrupts. 

TYPE 0 - DIVIDE ERROR 

This Interrupt type Is Invoked whenever a division opera­
tion Is attempted during which the quotient exceeds the 
maximum value (ex. division by zero). The interrupt Is 
non-maskable and Is entered as part of the execution of 
the divide Instruction. If Interrupts are not reenabled by 
the divide error interrupt service routine, the service 
routine execution time should be included in the worst 
case divide instruction execution time (primarily when 
conSidering the longest Instruction execution time and 
Its effect on latency to servicing hardware interrupts). 

TYPE 1 - SINGLE STEP 

This interrupt type occurs one instruction after the TF 
(Trap Flag) is set in the flag register. It is used to allow 
software single stepping through a sequence of code. 
Single stepping is initiated by copying the flags onto the 
stack, setting the TF bit on the stack and popping the 
flags. The interrupt routine should be the single step 
routine. The interrupt sequence saves the flags and pro­
gram counter, then resets the TF flag to allow the single 
step routine to execute normally. To return to the 
routine under test, an interrupt return restores the IP, 
CS and flags with TF set. This allows the execution of 
the next instruction in the program under test before 
trapping back to the single step routine. Single Step is 
not masked by the IF (Interrupt Flag) bit in the flag 
register. 

TYPE 2 - NMI (Non-Maskable Interrupt) 

This is the highest priority hardware interrupt and is 
non-maskable. The input is edge triggered but is syn­
chronized with the CPU clock and must be active for two 
clock cycles to guarantee recognition. The interrupt 
signal may be removed prior to entry to the service 
routine. Since the input must make a low to high transi­
tion to generate an interrupt, spurious transitions on the 
Input should be suppressed. If the Input is normally 
high, the NMI low time to guarantee triggering is two 
CPU clock times. This input is typically reserved for 
catastrophic failures like power failure or timeout.of a 
system watchdog timer. 

TYPE 3 - ONE BYTE INTERRUPT 

This is invoked by a special form of the software inter­
rupt instruction which requires a single byte of code 
space. Its primary use is as a breakpoint Interrupt for 
software debug. With full representation within a single 
byte, the instruction can map Into the smallest instruc­
tion for absolute resolution in setting breakpOints. The 
interrupt Is not maskable. 

TYPE 4 - INTERRUPT ON OVERFLOW 

This Interrupt occurs if the overflow flag (OF) is set In 
the flag register and the INTO Instruction Is executed. 
The Instruction allows trapping to an overflow error ser­
vice routine. The Interrupt is non-maskable. 

Interrupt types 0 and 2 can occur without specific action 
by the programmer (except for performing a divide for 
Type 0) while types 1,3, and 4 require a conscious act by 
the programmer to generate these interrupt types. All 
but type 2 are invoked through software activity and are 
directly associated with a specific Instruction. 

USER DEFINED SOFTWARE INTERRUPTS 

The user can generate an interrupt through the software 
with a two byte Interrupt instruction INT nn. The first 
byte Is the INT opcode while the second byte (nn) con­
tains the type number of the Interrupt to be performed. 
The INT Instruction Is not maskable by the interrupt 
enable flag. This Instruction can be used to transfer con­
trol to routines that are dynamically relocatable and 
whose location in memory is not known by the calling 
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program. This technique also saves the flags of the call· 
Ing program on the stack prior to transferring control. 
The called procedure must return control with an inter· 
rupt return (I RET) instruction to remove the flags from 
the stack and fully restore the state of the calling pro­
gram. 

All Interrupts Invoked through software (all Interrupts 
discussed thus far with the exception of NMI) are not 
maskable with the IF flag and initiate the transfer of 
control at the end of the instruction in which they occur. 
They do not initiate interrupt acknowledge bus cycles 
and will disable subsequent maskable interrupts by 
resetting the IF and TF flags. The interrupt vector for 
these interrupt types is either implied or specified In the 
instruction. Since the NMI is an asynchronous event to 
the CPU, the point of recognition and Initiation of the 
transfer of control Is similar to the maskable hardware 
interrupts. 

USER DEFINED HARDWARE INTERRUPTS 

The maskable interrupts initiated by the system hard­
ware are activated through the INTR pin of the 8086 and 
are masked by the IF bit of the status register (interrupt 
flag). During the last clock cycle of each Instruction, the 
state of the INTR pin Is sampled. The 8086 deviates from 
this rule when the instruction Is a MOY or POP to a seg­
ment register. For this case, the Interrupts are not 
sampled until completion of the following Instruction. 
This allows a 32-bit pOinter to be loaded to the stack 
pointer registers SS and SP without the danger of an In­
terrupt occurring between the two loads. Another excep­
tion is the WAIT Instruction which walts for a low active 
input on the TEST pin. This Instruction also continu­
ously samples the interrupt request during Its execution 
and allows servicing interrupts during the walt. When an 
interrupt Is detected, the WAIT instruction is again 
fetched prior to servicing the interrupt to guarantee the 
interrupt routine will return to the WAIT Instruction. 

UNINTERRUPTABLE INSTRUCTION SEQUENCE 

MOY SS, NEW$STACK$SEGMENT 
MOY SP, NEW$STACK$POINTER 

Also, s.lnce prefixes are considered part of the instruc­
tion they precede, the 8086 will not sample the interrupt 
line until completion. of the instruction the preflx(es) 
precede(s). An exception to this (other than HALT or 
WAIT) is the string primatives preceded by the repeat 
(REP) prefix. The repeated string operations will sample 
the interrupt line at the completion of each repetition. 
This includes repeat string operations which include the 
lock prefix. If multiple prefixes precede a repeated 
string operation, and the instruction is interrupted, only 
the prefix immediately preceding the string primative is 
restored. To allow correct resumption of the operation, 
the following programming technique may be used: 

LOCKED$BLOCK$MOVE: LOCK REP MOVS DEST, CS:SOURCE 
AND CX, CX 

JNZ LOCKED$BLOCK$MOVE 

The code bytes generated by the 8086 assembler for the 
MOYS instruction are (in descending order): LOCK 
prefix, REP prefix, Segment Override prefix and MOYS. 
Upon return from the interrupt, the segment override 
prefix Is restored to guarantee one additional transfer is 
performed between the correct memory locations. The 
Instructions following the move operation test the 
repetition count value to determine If the move was 
completed and return If not. 

If the INTR pin Is high when sampled and the IF bit is set 
to enable Interrupts, the 8086 executes an interrupt 
acknowledge sequence. To guarantee the interrupt will 
be acknowledged, the INTR input must be held active 
until the Interrupt acknowledge is issued by the CPU. If 
the BIU Is running a bus cycle when the interrupt condi­
tion is detected (as would occur if the BIU is fetching an 
Instruction when the current instruction completes), the 

I T, I T2 T3 T4 TI TI T, I T2 

ALE f\'----_~--Jn'------_ 

\L-____ ---...JI 

FLOAT 
ADo-AD15 

BY CPU IF QUEUE 15 NOT FULL 

Figure 3E2. Interrupt Acknowledge Sequence 
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Interrupt must be valid at the 8086 2 clock cycles prior to 
T4 of the bus cycle if the next cycle is to bean interrupt 
acknowledge cycle. If the 2 clock setup is'notsatisfied, 
another pending bus cycle will be executed before the 
Interrupt acknowledge is issued, If a hold request is also 
pending (this might occur if an interrupt and hold re­
quest are made during execution of a locked instruc­
tion), the interrupt is serviced after the hold request Is 
serviced. 

Theinterrupt.acknowledge sequence is only generated 
In response to an interrupt on the 8086 INTR input. The 
associated bus activity is shown in Figure 3E2. The cy­
cle consists of two INTA bus cycles separated by two 
Idle clock cycles. During the bus cycles the INTA com· 
mand is Issued rather than read. No address is provided 
by the 8086 during either bus cycle (BHE and status are 
valid), however, ALE is still generated and will load the 
address latches' with indeterminate Information. This 
condition requires .that devices In the system do not 
drive their outputs without being qualified by the Read 
Command. As will be shown later, the ALE is useful in 
maximum mode systems with multiple 8259A priority In· 
terrupt controllers. During the INTA bus cycles, DT/R 
and DEN are conditioned to allow the 8086 to receive a 
one byte interrupt type number from the interrupt 
system. The first INTA bus cycle signals an interrupt 
acknowledge cycle Is in progress and allows the system 
to prepare to presentthe Interrupt type number on the 
next INTA bus cycle. The CPU does not capture informa· 
tion on the bus during the first cycle. The type number 
must be transferred to the 8086 on the lower half of the 
16-blt data bus during the second cycle. This· Implies 
that devices which present Interrupt type numbers to 
the 8086 must be located on the lower half of the 16·bit 
databus. The timing of the INTA bus cycles (with excep­
tion of address timing) is similar to read cycle timing. 
The 8086 Interrupt acknowledge . sequence deviates 
from.the form used on 8080 and 8085 In that no instruc­
tion Is issued as part of the sequence. The 8080 and 
8085 required either a restart or call instruction be 
Issued to affect the transfer of control. 

In the minimum mode system, the MilO signal will be 
low Indicating I/O during the INTA bus cycles. The 8086 
internal LOCK signal will be active from T2 of the first 
bus cycle until T2 of the second to prevent the BIU from 
honoring a hold request between the two INTA cycles. 

In the maximum mode, the status lines SO-52 will re­
quest the 8288 to activate the INTA output for each cy­
cle. The LOCK output of the 8086 will be active from T2 
of the first cycle until T2 of the second to prevent the 
8086 from honoring a hold request on either RQ/GT in­
put and to prevent bus arbitration logic from relinquish· 
Ing the bus between INTA's In multi·master systems. 
The consequences of READY are Identical to those for 
READ and WRITE cycles. 

Once the 8086 has the Interrupt type number (from the 
bus for hardware Interrupts, from the Instruction stream 
for software Interrupts or from· the predefined con­
dition), the type number Is multiplied by four to form the 
displacement to the corresponding interrupt vector in 
the Interruot vector table. The four bytes of the interrupt 

vector are: least significant byte of the instruction 
pOinter, most significant byte of the Instruction pointer; 
least significant· byte of the code segment register, 
most significant byte of the code segment register. Dur· 
ing the transfer of control, the CPU pushes the flags and: 
current code segment register and instruction pointer 
onto the stack. The new code segment and instruction 
pointer values are loaded and the single step and inter­
rupt flags are reset.Resetting the interruptflag disables 
response to further hardware interrupts in the service 
routine unless the flags are specifically re·enabled by 
the service routine. The CS and IP values are read from 
the interrupt vector table with data read cycles. No seg­
ment registers are used when referencing the vector 
table during the interrupt context switch. The vector 
displacement isadded to zero to form the 20-bit address 
and. 54,.53 = 10 indicating no segment register selec­
tion. 

The actual bus activity associated with the hardware in­
terrupt acknowledge sequence is as follows: Two Inter­
rupt acknowledge bus cycles, read new IP from the in­
terrupt vector table, read new CS from the interrupt vec­
tor table, Push flags, Push old CS, Opcode fetch of the 
first .instructionof the interrupt service. routine, and 
Push old IP. After saving the.old IP, the BIU will resume 
normal operation of prefetching instructions Into the 
queue and servicing EU requests .for operands. 55 (inter­
rupt enable flag status) will go inactive in the second 
clock cycle following reading the new CS. 

The number of clock cycles from the end of the instruc­
tion during which the interrupt occurred to the start of 
interrupt routine execution is 61 clock cycles. For soft­
ware generated interrupts, the sequence of bus cycles 
Is the same except no interrupt acknowledge bus cycles 
are executed. This reduces the delay to service routine 
execution to 51 clocks for INT nri and single step, 52 
clocks for INT3 and 53 clocks for INTO. The same Inter­
rupt setup requirements with respect to the BIU that 
were stated for the hardware interrupts also apply to the 
software interrupts. If wait states are inserted by either 
the memories or the device supplying the interrupt type 
number, the given clock times will increase accordingly. 

When considering the precedence of interrupts for 
multiple simultaneous interrupts, the following guide­
lines apply: 1.INTR is the only maskable interrupt and if 
detected simultaneously with other interrupts, resetting 
of IF by the other interrupts will mask INTR. This causes 
I NTR to be the lowest priority interrupt serviced after all 
other interrupts unless the other interrupt service 
routines reenable interrupts. 2. Of the nonmaskable In­
terrupts (NMI, Single Step and software generated), In 
general, Single Step has highest priority (will be ser­
viced first) followed by NMI, followed by the software In­
terrupts. This Implies that a simultaneous NMI and 
Single Step trap will cause the NMI service routine to 
follow single step; a simultaneous software trap and 
Single Step trap will cause the software Interrupt ser­
vice routine to follow single step and a simultaneous 
NMI and software trap will cause the NMI service 
routine to be executed followed by the software Inter­
rupt service routine. An exception to this priority struc­
ture occurs if all three interrupts are pending. For this 
case, transfer of control to the software Interrupt ser-
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vice routine followed by the NMI trap will cause both the 
NMI and software interrupt service routines to be ex­
ecuted without single stepping_ Single stepping 
resumes upon execution of the instruction following the 
Instruction causing the software interrupt (the next in­
struction in the routine being single stepped). 

If the user does not wish to single step before INTR ser­
vice routines, the single step routine need only disable 
interrupts during execution of the program being single 
stepped and reenable interrupts on entry to the single 
step routine. Disabling the Interrupts during the pro­
gram under test prevents entry into the Interrupt service 
routine while single step (TF = 1) Is active. To prevent 
single stepping before NMI service routines, the single 
step routine must check the return address on the stack 
for the NMI service routine address and return control to 
that routine without single step enabled. As examples, 
consider Figures 3E3a and 3E3b. In 3E3a Single Step 
and NMI occur simultaneously while in 3E3b, NMI, INTR 
and a divide error all occur during a divide Instruction 
being single stepped. 

TF,IF=l 

NMI 

NORMAL SINGLE STEP 
OPERATION 

Figure 3E3a. NMI During Single Stepping and Nonnal Single Step 
Operallon 
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INTR 

TF=l 
IF=l 

CONTINUE TO SINGLE STEP 
THE PROGRAM 

Figure 3E3b. NMI. INTR. Single Step and Divide Error Simultaneous 
Interrupts 

SYSTEM CONFIGURATIONS 

To accommodate the INTA protocol of the maskable 
hardware Interrupts, the 8259A Is provided as part of the 
8086 family. This component Is programmable to 
operate In both 8080/8085 systems and 8086 systems. 
The devices are cascadable In master/slave arrange­
ments to allow up to 64 Interrupts In the system. Figures 
3E4 and 3E5 are examples of 8259A's In minimum and 
maximum mode 8086 systems. The minimum mode con­
figuration (a) shows an 8259A connected to the CPU's 
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multiplexed bus. Configuration (b) Illustrates an 8259A 
connected to a demultiplexed bus system. These inter· 
connects are also applicable to maximum mode 
systems. The configuration given for a maximum mode 
system shows a master 8259A on theCPU's multiplexed 
bus with additional slave 8259A's .out on the buffered 
system bus. This configuration demonstrates several 
unique features of the maximum mode system Inter· 
face. If the master 8259A receives Interrupts from a mix 
of slave 8259A's and regular Interrupting devices, the 
slaves must provide the type number for devices con· 
nected to them while the master provides the type 
number for devices directly attached to Its Interrupt in· 
puts. The master 8259A is programmable to determine if 
an interrupt is from a direct input or a slave 8259A and 
will use this information to enable or disable the data 
bus transceivers (via .the 'nand' function of DEN and 
EN). If the master must provide the type number, It will 
disable the data bus transceivers. If the slave provides 
the type number, the master will enable the data bus 
transceivers. The EN output is normally high to allow 

the 8086/8288 to control the bus transceivers. To selec.t 
the proper slave when servicing a slave .Interrupt, the 
master must provide a cascade address to the slave. If 
the 8288 is not strappedlnthe 1/0 bu.smode (the 8288 
lOB Input connected to ground), the MCE/PDEN output 
becomes a MCEor Master Cascade Enable output. This 
signal Is only.actlve dur[ng INTA cycles as shown In 
Figure 3E6 and enables the master 8259A's cascade ad· 
dress onto the 8086's local bus dui'ing ALE: This allows 
the address latches to capture the cascade address with 
ALE and allows use of the system address bus for 
selecting the proper slave 8259A. The MCE Is gated with 
LOCK to minimize local bus contention between the 
8086 three·statlng Its bus outputs and Hie cascade ad· 
dress being enabled onto the bus. The first INTA bus cy· 
cle allows the master to resolve internal priorities and 
output a cascade address to be transmitted to the. 
slaves on the subsequentilii'fA. bus cycle. For ilddltlonaf 
information qn the 8259A, reference application· note 
AP·59. . 

t-__ ....L. ___ --I.....L.-'-_-'--'-__ ..... , ADDRESS 

~--~---~rT---,-r--~/BUS 

IJL------....::..::..--....::..::..--...J, DATA 
I\r----------'-----,/ BUS 

a. 

b. 

Figura 3E4. 'Min Mode 8086 ';Ith ·Mastar 8259A on tha Local Bus ·and Slav~ 8259As on tha ·Systam Bus 
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ADDRESS 
~'-------'--------r,---------,-~------,/BUS 

r~----------------~~------~~------~\DATA 

BUS 

Figure 3E5. Max Mode 8086 with Master 8259A on the Local Bus and Slave 8259As on the System Bus 

1 T, I T2 T3 T4 TI TI T, I T, T, 

ALE J\~ __ ---Jn,------,--_ 
\\..--__ -------,-_---11 

FLOAT FLOAT 
ADo-AD" 

\\..--___ --J/ \\--.--
Figure 3E8. MCE Timing to Gate 8259A CAS Addre •• onto the 8086 Local Bus 
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3F. Interpreting the 8086 Bus Timing Diagrams 

At first glance, the 8086 bus timing diagrams (Diag. 3F1 
min mode and Diag. 3F2 max mode) appear rather com· 
plex. However, with a few words of explanation on how 
to interpret them, they become a powerful tool in deter· 
mining system requirements. The timing diagrams for 
both the minimum and maximum modes may be divided 
into six sections: (1) address and ALE timing; (2) read cy· 
cle timing; (3) write cycle timing; (4) interrupt acknowl· 
edge timing; (5) ready timing; and (6) HOLD/HLDA or 
RQ/GT timing. Since the A.C. characteristics of the 
signals are specified relative to the CPU clock, the rela· 
tionship between the majority of signals can be de· 
duced by simply determining the clock cycles between 
the clock edges the signals are relative to and adding or 
subtracting the appropriate minimum or maximum 
parameter values. One aspect of system timing not com· 
pensated for in this approach is the worst case relation· 
ship between minimum and maximum parameter values 
(also known as tracking relationships). As an example, 
consider a signal which has specified minimum and 
maximum turn on and turn off delays. Depending on 
device characteristics, it may not be possible for the 
component to simultaneously demonstrate a maximum 
turn·on and minimum turn·off. delay even though worst 
case analysis might imply the possibility. This argument 
is characteristic of MOS devices and is therefore ap· 
plicable to the 8086 A.C. characteristics. The message 
is: worst case analysis mixing minimum and maximum 
delay parameters will typically exceed the worst case 
obtainable and therefore should not be subjected to fur· 
ther subjective degradation to obtain worst·worst case 
values. This section will provide guidelines for specific 
areas of 8086 timing sensitive to tracking relationships. 

A. MINIMUM MODE BUS TIMING 

1. ADDRESS and ALE 

The address/ALE timing relationship is important to 
determine the ability to capture a valid address from the 
multiplexed bus. Since the 8282 and 8283 latches cap· 
ture the address on the trailing edge of ALE, the critical 
timing involves the state of the address lines when ALE 
terminates. If the address valid delay is assumed to be 
maximum TCLAV and ALE terminates at its earliest 
point, TCHLLmin (assuming zero minimum delay), the 
address would be valid only TCLCHmin·TCLAVmax= 8 
ns prior to ALE termination. This result is unrealistic in 
the assumption of maximum TCLAV and minimum 
TCHLL. To provide an accurate measure of the true 
worst case, a separate parameter specifies the 
minimum time for address valid prior to the end of ALE 
(TAVAL). TAVAL= TCLCH·60 ns overrides the clock 
related timings and guarantees 58 ns of address setup 
to ALE termination for a 5 MHz 8086. The address is 
guaranteed to remain valid beyond the end of ALE by the 
TLLAX parameter. This specification overrides the rela· 
tionship between TCHLL and TCLAX which might seem 
to imply the address may not be valid by the end of the 
latest possible ALE. TLLAX holds for the entire address 
bus. The TCLAXmin spec on the address indicates the 
earliest the bus will go invalid if not restrained by a slow 
ALE. TLLAX and TCLAX apply to the entire multiplexed 
bus for both read and write cycles. AD15·0 is three· 
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stated for read cycles and immediately switched to 
write data during write cycles. AD19·16 immediately 
switch from address to status for both read and write 
cycles. The minimum ALE pulse width is guaranteed by 
TLHLLmin which takes precedence over the value ob­
tained by reiating TCLLHmax and TCHLLmin. 

To determine the worst case delay to valid address on a 
demultiplexed address bus, two paths must be con· 
sidered: (1) delay of valid address and (2) delay to ALE. 
Since the 8282 and 8283 are flow through latches, a valid 
address is not transmitted to the address bus until ALE 
is active. A comparison of address valid delay TCLAV· 
max with ALE active delay TCLLHmax indicates TCLAV­
max is the worst case. Subtracting the latch prop­
agation delay gives the worst case address bus valid 
delay from the start of the bus cycle. 

2. Read Cycle Timing 

Read timing consists of conditioning the bus, activating 
the read command and establishing the data transceiver 
enable and direction controls. DT/R is established early 
in the bus cycie and requires no further consideration. 
During read, the DEN signal must allow the transceivers 
to propagate data to the CPU with the appropriate data 
setup time and continue to do so until the required data 
hold time. The DEN turn on delay allows TCLCL+ 
TCHCLmin - TCVCTVmax - TDVCL= 127 ns transceiver 
enable time prior to valid data required by the CPU. 
Since the CPU data hold time TCLDXmin and minimum 
DEN turnoff delay TCVCTXmin are both 10 ns relative to 
the same clock edge, the hold time is guaranteed. Addi­
tionally, DEN must disable the transceivers prior to the 
CPU redriving the bus with the address for the next bus 
cycle. The maximum DEN turn off delay (TCVCTXmax) 
compared with the minimum delay for addresses out of 
the 8086 (TCLCL+ TCLAVmin) indicates the trans­
ceivers are disabled at least 105 ns before the CPU 
drives the address onto the multiplexed bus. 

If memory or I/O devices are connected directly to the 
multiplexed address and data bus, the TAZRL parameter 
guarantees the CPU will float the bus before activating 
read and allowing the selected device to drive the bus. 
At the end of the bus cycle, the TRHAV parameter spec­
ifies the bus float delay the device being deselected 
must satisfy to avoid contention with the CPU driving 
the address for the next bus cycle. The next bus cycle 
may start as soon as the cycle following T4 or any 
number of clock cycles later. 

The minimum delay from read active to valid data at the 
CPU is 2TCLCL - TCLRLmax - TDVCL = 205 ns. The 
minimum pulse width is 2TCLCL- 75 ns= 325 ns. This 
specification (TRLRH) overrides the result which could 
be derived from clock relative delays (2TCLCL­
TCLRLmax + TCLRHmin). 

3. Write Cycle Timing 

The write cycle involves providing write data to the 
system, generating the write command and controlling 
data bus transceivers. The transceiver direction control 
signal DT/A is conditioned to transmit at the end of each 
read cycle and does not change during a write cycle. 
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This allows the transceiver enable signal DEN to be ac­
tive early In the cycle (while addresses are valid) without 
corrupting the address on the multiplexed bus_ The 
write data and write command are both enabled from the 
leading edge of T2_ Comparing minimum WR active 
delay TCVCTVmln with the maximum write data delay 
TCLDV Indicates that write data may be not valid until 
100 ns after write Is active. The devices in the system 
should capture data on the trailing edge of the write 
command rather than the leading edge to guarantee 
valid data. The data from the 8086 is valid a minimum of 
2TCLCL - TCLDVmax + TCVCTXmin = 300 ns before the 
trailing edge of write. The minimum write pulse width Is 
TWLWH = 2TCLCL- 60 ns=340 ns. The CPU maintains 
valid write data TWHDX ns after write. The TWHDZ spec­
Ification overrides the result derived by relating 
TCLCHmin and TCHDZmln which Implies write data 
may only be valid 18 ns afterWR. The 8086 floats the bus 
after write only If being forced off the bus by a HOLD or 

ClK (8284 OUTPUT) 

MOO 

ALE 

RDY (8284 INPUT) 
SEE NOTE4 

READ CYCLE 

TAVAl-

TAVAL 

TClAV 

RQ Input. Otherwise, the CPU simply switches the out­
put drivers from data to address at the beginning of the 
next bus cycle. As with the read cycle, the next bus cy­
cle may start In the clock cycle following T4 or any clock 
cycle later. 

DEN Is disabled a minimum of TCLCHmln + 
TCVCTXmln - TCVCTXmax = 18 ns after write to 
guarantee data hold time to the selected device. Since 
we are again evaluating a minimum TCVCTX with a max­
imum TCVCTX, the real minimum delay from the end of 
write to transceiver disable Is approximately 60 ns. 

4. Interrupt Acknowledge Timing 

The Interrupt acknowledge sequence consists of two In­
terrupt acknowledge bus cycles as previously de­
scribed. The detailed timing of each cycle is Identical to 
the read cycle timing with two exceptions: command 
timing and address/data bus timing. 

Tw 

TClRH-

TCLOX-

r-­
I 

NOTE 1 TCHCTV TClRll---+o-f--'---f--TRlRH ---r--I 

DT/R 

TCVCTX-

Figure 3F1. 8086 Bus Timing - Minimum Mode System 
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WRITE CYCLE 

NOTE 1 
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INTACYCLE 
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M/iO 

ALE 

AD1S-ADo 

DTIR 

SOFTWARE HALT - (DEN = 
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BEGIN A NEW Tl. 

AD1S-ADo 
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.! ',' 

INVALID ADDRESS 

TClAV 

; 

NOTES: 1. ALL SIGNALS SWITCH BETWEEN VOH AND VOl UNLESS OTHERWISE 
SPECIFIED. 

2. RDY IS SAMPLED NEAR THE END OF T., T3, TW TO DETERMINE IF TW 
MACHINES STATES ARE TO BE INSERTED. , 

3. BOTH INTA CYCLES' RUN BACK·TO·BACK. THE 8088 LOCAL ADDRIDATA BUS IS 
FLOATING DURING THE SECOND INTA CYCLE. CONTROL SIGNALS SHOWN 
FOR SECOND INTA CYCLE. 

4. SIGNALS AT 8284 ARE SHOWN FOR REFERENCE ONLY. 
5. ALL TIMING MEASUREMENTS ARE MADE AT 1.5V UNLESS OTHERWISE 

NOTED. 

Figure 3Fl. 8086 Bus Timing - Minimum Mode System (Con't) 
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I- TCHSV ~ 1+ TCLSH 

------
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~~~,-~~ 
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TCLAV-

E -TCLAZ -I ~DVCL-!-TCLDX-.•. ~ '~ ~"'" FL~:J' 
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V 
TCHDTL- TCLRL I\~ TCHDTH 

{ TRLRH 
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~ 
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Figure 3F2a. 8086 Bus Timing - Maximum Made System (Using 8288) 
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SEE,NOTES 5,6 

INTACYCLE 
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AD1S-ADO 

DEN 

AMWC OR AIOWC 

MWTC OR lowe, , 

ACtS-ADo 
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= 
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T, T, 

Tw 

VCl 

TCHDX-

DATA 

TCVNX-

TCLMH-

(I!ER _ vOL;IIJ),IfII1rn,=,~,AMWC,Il!WC,AIOWC,INT A,DT/A = VOH) 

INVALID ADDRESS 

TeLAV 

~ /r-----------.-, ------­
\'---~ '\._-----

NOTES: 1. ALL SIGNALS SWITCH BETWEEN VOH AND VOL UNLESS OTHERWISE 
SPECIFIED. 

2. RoY IS SAMPLED NEAR THE END OF 12. T3. Tw TO DETERMINE IF Tw 
MACHINES STATES ARE TO BE INSERTED. 

3. CASCADE ADDRESS IS VALID BETWEEN FIRST AND SECOND INTA CYCLES. 
4. BOTH INTA CYCLES RUN BACK·TO·BACK. THE 8088 LOCAL ADDRIDATA BUS IS 

FLOATING DURING THE SECOND INTA CYCLE. CONTROL FOR POINTER ADDRESS 
IS SHOWN FOR SECOND INTA CYCLE. 

5. SIGNALS AT 8284 OR 8288 ARE SHOWN FOR REFERENCE ONLY, 
6. THE ISSUANCE OF THE 8288 COMMAND AND CONTROL SIQNALS~. 

1olWTe, AMWe, IOI!C, 10m, AR!\YC, lIlTA AND DEN) LAOS THE ACTIVE HIOH 
8288 CEN. 

7. ALL TIMINQ MEASUREMENTS ARE MADE AT 1.6V UNLESS OTHERWISE 
NOTED. 

8. STATUS INACTIVE IN STATE JUST PRIOR TO Te. 

Figure 3F2b. 8086 Bus Timing - Maximum Mode System (Using 8288) (Con'l) 
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The multiplexed address/data bus floats from the begIn­
ning (T1) of the INTA cycle (within TCLAZ ns)_ The upper 
four multiplexed address/status lines do not three-state. 
The address value on A19-A16 is Indeterminate but the 
status Information will be valid (S3=0, S4=0, S5=IF, 
S6=0, S7= BHE=O)~ The multiplexed address/data 
lines will remain In three-state until the cycle after T4 of 
the INTA cycle. This sequence occurs for each of the 
INTA bus cycles. The interrupt type number read by the 
8086 on the second INTA bus cycle must satisfy the 
bame setup and hold times required for data during a 
read cycle. 

The OEN and OT/R signals are enabled for each INTA cy­
cle and do not remain active between the two cycles. 
Their timing for each cycle is identical to the read cycle. 

The INTA command has the same timing as the write 
command. It is active within 110 ns of the start of T2 pro­
viding 260 ns of access time from command to data 
valid at the 8086. The command is active a minimum of 
TCVCTXmln = 10 ns into T4 to satisfy the data hold time 
of the 8086. This provides minimum INTA pulse width of 
300 ns, however taking signal delay tracking into con­
sideration gives a minimum pulse width of 340 ns. Since 
the maximum Inactive delay of INTA is TCVCTXmax= 
110 ns and the CPU will not drive the bus until 15 ns 
(TCLAVmln) Into the next clock cycle, 105 ns are avail­
able for Interrupt devices on the local bus to float their 
outputs. If the data bus is buffered, OEN provides the 
same amount of time for local bus transceivers to three­
state their outputs. 

5. Ready Timing 

The detailed timing requirements of the 8086 ready 
signal and the system ready signal Into the 8284 are 
described in Section 30. The system ready signal is 
typically generated from either the address decode of 
the selected device or the address decode and the com­
mand (RO, WR, INTA). For a system which is normally 
not ready, the time to generate ready from a valid ad­
dress and not insert a walt state, is 2TCLCL­
TCLAVmax- TR1VCLmax= 255 ns. This time Is avail­
able for buffer delays and address decoding to deter­
mine If the selected device does not require a walt state 
and drive the ROY line high. If wait cycles are required, 
the user hardware must provide the appropriate ready 
delay. Since the address will not change until the next 
ALE, the ROY will remain valid throughout the cycle. If 
the system Is normally ready, selected devices requiring 
walt states also have 255 ns to disable the ROY line. The 
user circuitry must delay re-enabling ROY by the ap­
propriate number of walt states. 

If the RO command is used to enable the ROY signal, 
TCLCL- TCLRLmax- TRIVCLmax= 15 ns are available 
for external logic. If the WR command Is used, TCLCL­
TCVCTVmax - TRIVCLmax = 55 ns are avai lable. Com­
parison of ROY control by address or command In­
dicates that address decoding provides the best timing. 
If the system Is normally not ready, address decode 
alone could be used to provide ROY for devices not re­
quiring wait states while devices requiring wait states 
may use a combination of address decode and com­
mand to activate a wait state generator. If the system Is 

normally ready, devices not requiring walt states do 
nothing to ROY while devices needing walt states 
should disable ROY via the address decode and use a 
combination of address decode and command to ac­
tivate a delay to re-enable ROY. 

If the system requires no walt states for memory and a 
fixed number of wait states for RD and WR to all I/O 
devices, the M/iO signal can be used as an early Indica­
tion of the need for walt cycles. This allows a common 
circuit to control ready timing for the entire system 
without feedback of address decodes. 

6. Other Considerations 

Detailed HOLO/HLDA timing Is covered In the next sec­
tion and is not examined here. One last signal con~ 
sideration needs to be mentioned for the minimum 
mode system. The TEST Input is sampled by the 8086 
only during execution of the WAIT Instruction. The TEST 
signal should be active for a minimum of 6 clock cycles 
during the WAIT instruction to guarantee detection. 

B. MAXIMUM MOOE BUS TIMING 

The maximum mode 8086 bus operations are logically 
equivalent to the minimum mode operation. Detailed 
timing analysis now involves signals generated by the 
CPU and the 8288 bus controller. The 8288 also provides 
additional control and command signals which expand 
the flexibility of the system. 

1. ADDRESS and ALE 

In the maximum mode, the address information con­
tinues to come from the CPU while the ALE strobe is 
generated by the 8288. To determine the worst case rela­
tionships between ALE and the address, we first must 
determine 8288 ALE activation relative to the SO-S2 
status from the CPU. The maximum mode timing 
diagram specifies two possible delay paths to generate 
ALE. The first is TCHSV + TSVLH measured from the ris­
ing edge of the clock cycle preceding T1. The second 
path is TCLLH measured from the start of T1. Since the 
8288 initiates a bus cycle from the status lines leaving 
the passive state (SO-52 = 1), if the 8086 is late In issuing 
the status (TCHSVmax) while the clock high time is a 
minimum (TCHCLmln), the status will not have changed 
by the start of T1 and ALE Is Issued TSVLH ns after the 
status changes. If the status changes prior to the begin­
ning of T1, the 8288 will not Issue the ALE until TCLLH 
ns after the start of T1. The resulting worst case delay to 
enable ALE (relative to the start of T1) is TCHSVmax+ 
TSVLHmax - TCHCLmln = 58 ns_ Note, when calcu­
lating signal relationships, be sure to use the proper 
maximum mode values rather than equivalent minimum 
mode values. 

The trailing edge of ALE Is triggered In the 8288 by the 
positive clock edge in T1 regardless of the delay to 
enable ALE. The resulting minimum ALE pulse width Is 
TCLCHmax-58ns=75ns .assuming TCHLL=O. 
TCLCHmax must be used since TCHCLmln was as­
sumed to derive the 58 ns ALE enable delay. The ad­
dress is guaranteed to be valid TCLCHmln + 
TCHLLmln- TCLAVmax=8 ns prior to the trailing edge 
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of ALE to capture the address in the 8282 or 8283 
latches. Again we have assumed a very conservative 
TCHLL= O. Note, since the address and ALE are driven 
by separate devices, no tracking of A.C. characteristics 
can be assumed. 

The address hold time to the latches is guaranteed by 
the address remaining valid until the end of T1 while 
ALE is disabled a maximum of 15 ns from the positive 
clock transition in T1(TCHCLmin - TCHLLmax = 52 ns 
address hold time). The multiplexed bus transitions 
from address to status and write data orthree·state (for 
read) are identical to the minimum mode timing. Also, 
since the address valid delay (TCLAV) remains the 
critical path in establishing a valid address, the address 
access times to valid data and ready are the same as the 
minimum mode system. 

2. Read Cycle Timing 

The maximum mode system offers read signals 
generated by both the 8086 and the 8288. The 8086 RD 
output signal timing is identical to the minimum mode 
system. Since the A.C. characteristics of thl'! read com­
mandsgenerated by. the 8288 are significantly better 
than the 8086 output, access to devices on the demul· 
tiplexed buffered system bus should use the 8288 com­
mands. The 8086 RD signal is available for devices 
which reside directly on the multiplexed bus. The 
following evaluations for read, write and· interrupt 
acknowledge only consider the 8288 command timing. 

The 8288 provides separate memory and 110 read Signals 
which conform to the same A.C. characteristics. The 
commands are Issued TCLML ns after the start of T2 
and terminate TCLMH· ns after the start of T4. The 
minimum command length is 2TCLCL- TCLMLmax + 
TCLMLmin = 375 nS.The access time to valid data at the 
CPU is 2TCLCL- TCLMLmax - TDVCLmax = 335 ns. 
Since the 8288 was designed for systems with buffered 
data busses, the commands are enabled before the CPU 
has three·stated the multiplexed bus and should not be 
used with devices which reside directly on the multi· 
plexed bus (to do so could result In bus contention duro 
ing 8086 bus float and device turn-on). 

The direction control for data bus transceivers Is estab· 
lished in T1 while the transceivers are not enabled by 
DEN until the positive clock transition of T2. This pro· 
vides TCLCH + TCVNVmin = 123 ns for 8086 bus float 
delay and TCHCLmin + TCLCL - TCVNVmax­
TDVCLmax = 187 ns of transceiver active to data valid at 
the CPU. Since both DEN and command are valid a mini· 
mum of 10 ns into T4, the CPU data hold time TCLDX is 
guaranteed. A maximum DEN disable of 45 ns (TCVNX 
max) guarantees the transceivers are disabled by the 
start of the next 8086 bus cycle (215 ns minimum from 
the same clock edge). On the positive clock transition of 
T4, DT/R is returned to transmit in preparation for a 
possible write operation on the next bus cycle. Since 
the system memory and 110 devices reside on a buffered 
system bus, they must three-state their outputs before 
the device ·for the next bus cycle is selected (approxi· 
mately 2TCLCL) or the transceivers drive write data onto 
the bus (approximately 2TCLCL). 

3. Write Cycle Timing 

Inthe maximum mode, the 8288 provides normal and ad­
vanced write commands for memory and 110. The ad· 
vanced write commands are active a full clock cycle 
ahead of the normal write comniands .and have timing 
identical. to the read commands. The advanced write 
pulse width is 2TCLCL- TCLMLmax+ TCLMHmln=;375 
ns while the normal write pulse width Is TCLCL­
TCLMLmax+ TCLMHmin = 175 ns. Write data setup 
time to the selected device is a function of either the 
data valid delay from the 8086 (TCLDV) or the transceiver 
enable delay TCVNV. The worst case delay to valid write 
data is TCLDV = 110 ns minus transceiver propagation 
delays. This implies the data may not be valid until 100 
ns after the advanced write command but will be valid 
approximately TCLCL - TCLDVmax + TCLMLmin = 100 
ns prior to the ·Ieading edge of the normal write com­
mand. Data will be valid 2TCLCL- TCLDVmax+ 
TCLMHmln = 300 nsbefore the trailing edge of either 
write command; The data and command overlap for the 
advanced command is 300 ns while the overlap with the 
normal write command is 175 ns. The transceivers are 
disabled a minimum of TCLCHmin - TCLMHmax + 
TCVNXmln = 85 nsafter the write command while the 
CPU provides valid data a minimum of TCLCHmin­
TCLMHmax + TCHDZmin = 85 ns. This guarantees write 
data hold of 85 ns after the write command. The trans­
ceivers are disabled TCLCL - TCVNXmax + 
TCHDTLmin= 155 ns (assuming TCHDTL=O) prior to 
transceiver direction change for a subsequent read 
cycle. 

4. Interrupt Acknowledge Timing 

The maximum modelNTA sequence is logically iden­
tical to the minimum mode sequence. The transceiver 
control (DEN and DT/R) and INTA command timing of 
each interrupt acknowledge cycle is identical to the 
read cycle. As In the minimum mode system, the multi­
plexed address/data bus will float from the leading edge 
of T1for each INTA bus cycle and not be driven by the 
CPU until after T4 of each INTA cycle. The setup and 
hold times on the vector number for the second cycle 
are the same as data setup and hold for the read. If the 
device providing the interrupt vector number is con· 
nected to the local bus, TCLCL - TCLAZmax + 
TCLMLmln = 130 nsare available from 8086 bus float.to 
INTA command active. The selected device on the local 
bus must disable the system data bus transceivers 
since DEN is still generated by the 8288. 

If the 8288 Is not in the. lOB (110 Bus) mode, the 8288 
MCE/PDEN output becomes the MCE output: This out­
put Is active during each INTA cycle and overlaps the 
ALE signal during T1. The MCE Is available for gating 
cascade addresses from a master 8259A onto three of 
the upper AD15-AD8 lines and allowing ALE to latch the 
cascade address Into the address latches. The address 
lines may then be used to provide CAS address selec· 
tlon to slave 8259A's located on the system bus (refer­
ence Figure 3E5). MCE Is active within 15 ns of status or 
the start of T1 for eachlNTA cycle. MCE should not 
enable the CAS lines onto the multiplexed bus during 
the first cycle since the CPU does not guarantee to float 

A-38 



AP-67 

the bus until 80 ns Into the first Im"A cycle. The first 
MCE can be Inhibited by gating MCE with 05CK". The 
8086 LOCK output Is activated during T2 of the first 
cycle and disabled during T2 of the second cycle. The 
overlap of LOCK with MCE allows the first MCE to be 
masked and the second MCE to gate the cascade ad­
dress onto the local bus. Since the 8259A will not pro­
vide a cascade address until the second cycle, no Infor­
mation Is lost. As with ALE, MCE Is guaranteed valid 
within 58 ns of the start of T1 to allow 75 ns CAS ad­
dress setup to the trailing edge of ALE. MCE remains 
active TCHCLmln - TCHLLmax+ TCLMCLmln = 52 ns 
after ALE to provide data hold time to the latches. 

If the 8288 Is strapped In the lOB mode, the MCE output 
becomes PDEN and all 110 references are assumed to be 
devices on the local bus rather than the demultlplexed 
system bus. Since INTA cycles are considered 110 
cycles, all Interrupts are assumed to come from the 
local system and cascade addresses are not gated onto 
the system address bus. Additionally, the DEN signal Is 
not enabled since no 110 transfers occur on the system 
bus. If the local 110 bus Is also buffered by transceivers, 
the PO EN .signal Is used to enable those transceivers. 
PDEN A.C. characteristics are identical to DEN with 
PO EN enabled for 110 references and DEN enabled for 
instruction or memory data references. 

5. Ready Timing 

Ready timing based on address valid timing is the same 
for maximum anc! minimum mode· systems. The delay 
from 8288 command valid to ROY valid at the 8284 is 
TCLCL- TCLMLmax- TRIVCLmln= 130 ns. This time is 
available for external circuits to determine the need to 
Insert wait states and disable ROY or enable ROY to 
avoid wait states. INTA, all read commands and ad· 
vanced write commands provide this timing. The normal 
write command is not valid until after the ROY signal 
must be valid. Since both normal and advanced write 
commands are generated by the 8288 for all write 
cycles, the advanced write may be used to generate a 
ROY indication even though the selected device uses 
the normal write command. 

Since sepa~te commands are provided for memory and 
110, no MilO signal is specifically available as in the 
minimum mode to allow an early 'wait state required' in­
dication for 110 devices. The S2 status line, however is 
logically equivalent to the MilO signal and can be used 
for this purpose. 

6. Other Considerations 

The Ra/GT timing Is covered in the next section and will 
not be duplicated here. The only additional signals to be 
considered in the maximum mode are the queue status 
lines aso, aS1. These signals are changed on the 
leading edge of each clock cycle (high to low transition) 
Including Idle and walt cycles (the queue status is In­
dependent of the bus activity). External logic may sam­
ple the lines on the low to high transition of each clock 
cycle. When sampled, the signals Indicate the queue ac­
tivity In the previous clock cycle and therefore lag the 
CPU's activity by one cycle. The TEST input require-

ments are Identical to those stated for the minimum 
mode. . 

To Inform the 8288 of HALT status when a HALT Instruc­
tion Is executed, the 8086 will Initiate a status transition 
from passive to HALT status. The status change will 
cause the 8288 to emit an ALE pulse with an Indeter­
minate address. Since no bus cycle Is Initiated (no com­
mand Is Issued), the results of thls.address will not af­
fect CPU operation (I.e., no response such as READY Is 
expected from the system). This allows external hard­
ware to latch and decode all transitions In system 
status. 

3G. Bus Control Transfer (HOLD/HLDA and RQ/GT) . 

The 8086 supports protocols for transferring control ~f 
the local bus between Itself and other devices capable 
of acting as bus masters. The minimum mode config. 
uration offers a signal level handshake shnllar to the 
8080 and 8085 systems. The maximum mode provides 
an enhanced pulse sequence protocol designed to op­
timize utilization of CPU pins while extending the 
system configurations to two prioritized levels of alter­
nate bus masters. These protocols are simply tech­
niques for arbitration of control of the CPU's local bus 
and should not be confused with the need for arbitration 
of a system bus. 

1. MINIMUM MODE 

The minimum mode 8086 syste.:n uses a hold request·in­
put (HOLD) to the CPU and a hold acknowledge (HLDA) 
output from the CPU. To gain control of the bus,:a 
device must assert HOLD to the CPU and wait for the 
HLDA before driving the bus. When the 8086 can relin­
quish the bus, it floats the RD, WR,INTA and M/iOcom· 
mand lines, the DEN and DTiRbus control lines and the 
multiplexed address/data/status lines. The ALE signal is 
not three-stated. The CPU aCknowledges the request 
with HLDA to allow the requestor to take control of the 
bus. The requestor must maintain the HOLD request ac­
tive until it no longer requires the bus. The HOLD reo 
quest to the 8086 directly affects the bus interface unit 
and only indirectiy affects the execution unit. The CPU 
will continue to execute from its internal queue until 
either more instructions are needed or an operand 
transfer Is required. This allows a high degree of overlap 
between CPU and auxiliary bus master operation. When 
the requestor drops the HOLD signal, the 8086 will re­
spond by dropping HLDA. The CPU will' not re-drive the 
bus, command and control signals from tl1ree-state until 
it needs to perform a bus transfer. Since the 8086 may 
stili be executing from Its Internal quelle when HOLD 
drops, there may exist a period of time during which no 
device is driving the bus. To prevent the command lines 
from drifting below the minimumVIH level during the 
transition of bus control, 22K ohm pull up resistors 
should be connected to the bus command lines. The 
timing diagram in Figure 3G1 shows the handshake se­
quence and 8086 timing to sample HOLD, float the bus, 
and enable/disable HLDA relative to the CPU clock. 

To guarantee valid system operation, the designer must 
assure that the requesting device does not assert con-
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trol of the bus prior to the 8086 relinquishing control and 
that the device relinquishes control of the bus prior to 
the 8086 driving the bus. The HOLD request into the 
8088 must be stable THVCH ns prior to the CPU's low to 
high clock transition. Since this Input 15 not syn· 
chronized by the CPU, signals driving the HOLD input 
should be synchronized with the CPU clock to 
guarantee the setup time Is not violated. Either clock 
edge may be used. The maximum delay between HLDA 
and the' 8088 floating. the bus Is TCLAZmax':' 
TCLHAVmin= 70 ns. If the system cannot tolerate the 
70 ns overlap, HLDA active from the 8088 should be 
delayed to the device. The minimum delay for the CPU to 
drive the control bus from HOLD Inactive 15 THVCHmln 
+3TCLCL=835 ns and THVCHmln+3TCLCL+ 
TCHCL= 701 ns to drive the multiplexed bus. If the 
device doesncit satisfy these requirements, HOLD Inac· 
tlve to the 8086 should be delayed. The delay from HLDA 
inactive to driving the busses Is TCLCL+ TCLCHmin­
TCLHAVmax= 158 ns for the control bus and 2TCLCL­
TCLHAVmax = 240 ns for the data bus. 

1.1 Latency of HLDA to HOLD 

The decision to respond to a HOLD request Is made In 
the bus Interface unit. The major factors that Influence 
the decision are the current bus activity; the state of the 
LOCK signal internal to the CPU (activated bY the soft· 
ware LOCK prefix) and Interrupts. 

If the LOCK Is not active, an interrupt acknowledge cy­
cle Is not in progress and the BIU (Bus Interface Unit) Is 
executing a T4 or TI when the HOLD request is received, 
the minimum latency to HLDA Is: 

35.ns 
65 ns 
200 ns. 
10 ns 

310 ns 

CLK 

HOLD 

THVCH min (Hold setup) 
TCHCL min 
TCLCL (bus float delay) 
TCLHAV min (HLDA delay) 

@ 5 MHz 

The maximum delay under these conditions is: 

34 ns 
200 ns 
82 ns 
200 ns 
160 ns 

677 ns 

Oust missed setup time) 
delay to next sample . 
TCHCL max 
TCLCL.(bus float delay) 
TCLHAV max (HLDA delay) 

@5MHz 

If the BIU just initiated a bus cycle when the HOLD Re· 
quest was received, the worst case response time is: 

34 ns 
82 ns 
7*200 
N*200 
160 ns 

1.676"s 

THVCH Oust missed) 
TCHCL max 
bus cycle execution 
N wait states/bus cycle 
TCLHAV max (HLDA delay) 

@ .5 MHz, no wait states 

Note, the 200 ns delay for just missing Is Included in the 
delay for bus cycle execution. If the operand transfer Is 
a word transfer to an odd byte boundary, two bus cycles 
are executed to perform the transfer. The BIU will not 
acknowledge a HOLD request between the two bus 
cycles. This type of transfer would extend the above 
maximum latency by four additional clocks plus N addi· 
tlonal wait states. With no wait states in the bus cycle 
the maximum would be 2.476 microseconds. ' 

Although the minimum mode 8088 does not have a hard· 
ware LOCK output, the software LOCK prefix may still 
be included In the instruction stream. The CPU Internal­
ly reacts to the LOCK prefix as would the maximum 
mode 8088. Therefore, the LOCK does not allow a H()LD 
request to be honored until completion of the instruc­
tion following the prefix. This allows an instruction 
which performs more than one memory reference (ex. 
ADD [BX], CX; which adds CX to [BXD to execute without 
another bus master gaining control of the bus between 
memory references. Since the LOCK signal is active for 
one clock longer than the instruction execution, the 
maximum latency to HLDA is: 

A~~D __ ~ __ ~1-~~~~--------------~--------~---f------------------f-~ 

CONTROL 

"LDA ________ .oJ 

Figure 3G1. HOLD/HLDA Sequence 
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34 ns 
200 ns 
82 ns 
(M + 1)*200 ns 
200 ns 
160 ns 

THVCH (just miss) 
delay to next sample 
TCHCL max 
LOCK Instruction execution 
set up HLDA (internal) 
TCLHAV max (HLDA delay) 

(M*200 ns)+ 876 ns @ 5 MHz 

If the HOLD request Is made at the beginning of an Inter· 
rupt acknowledge sequence, the maximum latency to 
HLDA Is: 

34 ns 
82 ns 
2600 ns 
160 ns 

2.8761's 

THVCH (just missed) 
TCHCL max 
13 clock cycles fo~ I NT A 
TCLHAV max 

@5MHz 

1.2 Minimum Mode DMA Configuration 

vee 
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A typical use of the HOLD/HLDA signals In the minimum 
mode 8086 system Is bus control exchange with DMA 
devices like the Intel 8257-5 or 8237 DMA controllers. 
Figure 3G2 gives a general Interconnect for this type of 
configuration using the 8237-2. The DMA controller 
resides on the upper half of the 8086's local bus and 
shares the A8·A 1.5 demultlplexlng address latch of the 
8086. All registers In the 8237-2 must be assigned odd 
addresses to allow Initialization and Interrogation by the 
CPU over the upper half of the data bus. The 8086 
RDlWR commands must be demultiplexed to provide 
separate 1/0 and memory commands which are compati­
ble with the 8237-2 commands. The AEN control from 
the 8237-2 must disable the 8086 commands from the 
command bus, 'disable the address latches from the 
lower (AO·A7) and upper (A19·A16) address bus and 
select the 8237-2 address strobe (ADSTB) to the AS-A 15 
address latch. If the data bus Is buffered, a pull·up 
resistor on the DEN line will keep the buffers disabled. 
The DMA controller will only transfer bytes between 

DEMULTIPLEX T 
~DI:l I 

RDIWR/IO/M 

I 8284 I iiHE A10-16 

L 8088 

READY ALE 

CLK 

RESET AD1S·0 

HOLD HLDA 

74LS74 

CLR : I CLK 

t 

4 

MIN MODE COMMANDS 

r Em\IILE 
8282 

01 DO 

T 
STB 

EN - '( 

~ 
EN 

- 00-

Ub~~R - 01 

ADDR -

- 8282 1/0 PORT 
LOADED DURING 

8237 INITIALIZATION 

8282 
01 DO 

~ STB 

AD7-(1 
8282 

-01 DO 

STB 

EN 

~ 
(AO) 

087·0 

~:) L..,-- AEN 

ADSTB 8237·2 lOW 1-
HLDA MEMR 

HRQ CLK MEMW 

t RESET 

Figure 3G2. DMA Using the 8237·2 
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memory and 1/0 and requires the 1/0 devices to reside on 
an a-bit bus derived from the 16-bit to 8-bit bus multiplex 
circuit glvenin Section 4. Address lines A7-AO are driven 
directly by th~ 8237 and BHE is generated by inverting 
AO.lf A19-A16 are used, they must be provided by an ad­
ditional port with either a .fixed value or initialized by 
software and enabied ontothe address bus by AEN. 

Figure 3G3 gives an interconnection for placing the 
8257 on the system bus. By using a separate latch to 
hold the upper address from the 8257-5. and connecting 
the outputs to the address bus as shown, l6-bit DMA 
transfers are provided. In this configuration, AEN 
simultaneously enables AO and BHE to allow word 
transfers. AEN still disables the CPU interface to the 
command and address busses. 

2. MAXIMUM MODE (RQ/GT) 

The maximum mode 8086 configuration supports a sig­
nificantly different protocol for transferring bus control. 
When viewed with respect to the HOLD/HLDA sequence 
of the minimum mode, the protocol appears difficult to 
implement externally. However, it is necessary to under­
stand the intent of the protocol and its purpose within 
the system architecture. 

8282 
A19-16 DO 

ALE 

'iIHE 
OE 

CPU 

2.1 Shared System Bus (RQ/GT Alternative) 

The maximum mode RQ/GT sequence is intended to 
transfer control of the. CPU local bus between the CPU 
and alternate bus masters which reside totally on the 
local bus and share the complete CPU interface to the 
system bus. The complete interface Includes the ad­
dress latches, data transceivers, 8288 bus controller and 
8289 multi master bus arbiter. If the alternate bus 
masters In the system do not reside directly on the 8086 
local bus, system bus arbitration is required rather than 
local CPU bus arbitration. To satisfy the need for multi­
master system bus arbitration at each CPU's system in­
terface, the 8289 bus arbiter should be used rather than 
the CPU RQ/GT logic. 

To allow a device with a simple HOLD/HLDA protocol to 
gain control of a single CPU system bus, the circuit in 
Figure 3G4 could be used. The design Is effectively a 
simple bus arbiter which Isolates the CPU from the 
system bus when an alternate bus master' issues a 
HOLD request. The output of the circuit, Am (Address 
ENable), disables the 8288 and 8284 when the 8086 In­
dicates idle status (SO,S1,82 = 1), LOCK Is not active and 
a HOLD request Is active. With AEN Inactive, the 8288 
three-states the command outputs and disables DEN 

A,9·17 

A16 

iFiE 

BUS AD,s_a f--+-~------1I--.--f--------+_-- A,5·& 
INTERFACE 

STB 
OE 

DO 

8282 
AD'.O,--,-+_I 01 

DO 
STB 

OE 

DT/R 

f--~---~---1-~~f-.-------+--~A. 

f--+------I-.~--+_____.-----_t_-- A,., 

----..........-

8257 
AEN 

1/0 PORT 

Ao TO GROUND AND 
r--±:-----'....;.;.~;;l_....,..::'=,.._-+__;~..., UPPER BITS OF DMA ADDRESS 

HOLD __ ------j (FIXED OR REG) 

HLDA-----~~I 

CONTROLS ARE SAME AS 8·BIT 
TRANSFER CONFIGURATION WITH 
MANIPULATION OF THE DATA BUS 

Figure 3G3. 8086 Min System, 8257 on System Bus 16·BIt Transfers 
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which three·states the data bus transceivers. AEN must 
also three·state the address latch (8282 or 8283) outputs. 
These actions remove the 8086 from the system bus and 
allow the requesting device to drive the system bus. The 
AEN signal to. the 8284 disables the ready Input and 
forces a bus cycle Initiated by the 8086 to walt until the 
8086 regains· control of the system bus. The CPU may 
actively drive Its local bus during this interval. 

The requesting device will not gain control of the bus 
during an 8086 Initiated bus cycle, a locked Instruction 
or an Interrupt acknowledge cycle. The LOCK signal 
from the 8086 Is active between INTAcycles to 
guarantee the CPU maintains control of the bus. Unlike 
the minimum mode 8086 HOLD response, this arbltra· 
tion circuit allows the requestor. to gain control of the 
bus between consecutive bus .cycles which transfer a 
word operand on an odd address boundary and are not 
loc~ed. Depending on the characteristics of the reo 
questing device, any of·the 74LS74 outputs can be used 
to generate a HLDA to the device. 

Upon completion of its bus operations, the alternate bus 
master must relinquish control of the system bus and 
drop the HOLD request. After AEN goes inactive, the ad· 
dress latches and data transceivers are enabled but, If a 
CPU initiated bus cycle Is pending, the 8288 will not 
drive the command bus until a minimum of 105 ns or 
maximum of 275 ns later. If the system is normally not 
ready, the 8284 AEN Input may Immediately be enabled 
with ready returning to the CPU when the selected 
device completes the transfer. If the system Is normally 
·ready, the 8284 AEN input must be delayed long enQugh 
to provide access time equivalent to a normal bus cycle. 
The 74LS74 latches In the design provide a minimum of 
TCLCHmin for the alternate device to float the system 
bus after releasing HOLD. They also provide 2TCLCL ns 
address access and 2TCLCL- TAEVCHmax ns (8288 
command enable delay) commarid access prior to ena· 
bling 8284 ready detection. If HLDA is generated as 
shown In Figure 3G4, TCLCL ns are available for the 
8086 to release the bus prior to issuing HLDA while 
HLDA is dropped almost Immediately upon loss of 
HOLD .. 

So 
S, 

S2~=~[) 
COCK 
HOLD 

ClK 

+5 

o Q 

C Q 

+5 

A circuit configuration for an 8257·5 using this tech· 
nique to interface with a maximum mode 8086 can be 
derived from Figure 3G3. The 8257·5 has Its own address 
latch for buffering the address lines A15·A8and uses its 
AEN output to enable the latch onto the address bus. 
The maximum latency from HOLD to HLDAfor this clr· 
cult is dependent on the state of the system when the 
HOLD Is issued. For an Idle system the maximum delay 
is the propagation delay through the nand gate and RIS 
fllp·flop (TD1) plus 2TCLCL plus TCLCHmax plus prop· 
agatlon delay of the 74LS74 and 74LS02 (TD2): For a 
locked Instruction it becomes: TD1 + TD2 + (M + 2) 
*TCLCL+ TCLCHmax where M is the number of clocks 
required for execution of the locked Instruction. For the 
interrupt acknowledge cycle the latency·· Is 
TD1 + TD2 + 9 *TCLCL + TCLCHmax. 

2.2 Shared Local Bus (RQ/GT Usage) 

The RQ/GT protocol was developed to allow up to two In· 
structlon set extension processors (co'processors) or 
other special function processors (like the 8089 1/0 
processor in local mode) to reside directly on the 8086 
local bus. Each RQ/GT pin of the 8086 supports the full 
protocol for exchange of bus control (Fig. 3G5). The se· 
quence consists of a request from the alternate bus 
master to gain control of the system bus, a grant from 
the CPU to indicate the bus has been relinquished and a 
release pulse from the alternate master when done. The 
two RQ/GT pins (RQ/GTO and RQ/Gn) are prioritized 
with RQ/GTO having the highest priority. The prloritlza· 
tion only occurs if requests have been received on both 
pins before a response has been given ·to either. For ex· 
ample, If a request Is received on RQ/Gn followed by a 
request on RQ/GTO prior to a grant on RQ/GT1, RQ/GTO 
will gain priority over RQ/GT1. However, If RQ/Gn had 
already received a grant, a request on RQ/GTO must walt 
until a release pulse is received on RQ/GT1. 

The requestlgrant sequence interaction with the bus in· 
terface unit Is similar to HOLD/HLDA. The CPU con· 
tinues to execute until a bus transfer for additional in· 
structions or data is required. If the release pulse is 

,-------------AEti (TO B2BB &828213'0) 

m'(TO B2B4) 

HlDA 

Figure 3G4. Circuit 10 Translale HOLD Inlo AEN Disabl.e·'or Max Mode 8086 
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recelvedbefo~ the CPU needs the bus; It will hot drive 
the bus until a transfer I!) requ I rEi.d. 

Upon receipt ·of,a req~est pulse, .the 8086fioats the 
multiplexed address, data. and, status bus, the SO,' 51, 
and 52 status lines, the LOCK pin and RD. This action 
does not disable the 8288 .command. outputs from. drlv· 
Il1gthe command bus and does not disable the address 
latches f,rom driving the address bus. The 8288 contains 
Internal pull,up resistorS on the SO,Sl, andS2 status 
lines to maintain the passive siate while the 8086 out, 
puts are three·state. The passive state prevents the 8288 
from,lnltlating any commands or activating DEN to 
enal;l.le the transceivers buffering ,the data bUS. If the 
device Issuing the RQdoesnotuseJhe 8288, It must 
disable the 8288 command outputs by disabling the 
8288 AEN Input. Also, address latches not used by the 
requesting device must be disabled. 

GND ~cc 
AD14 AD15 

AD13 Al8/S3 

A.D1Z A17/S4 

, AD11 Al81SS 

AD10 1118/58 

.ADS BHE/S7 

ADB MN/MX 

AD7 iifj 

ADa RO/,GTO 

ADS iiCi/GTi 
AD4 LOcii 
AD3 52 
ADZ Si 
AD1 so 
ADO QSO 

NMI QS1 

INTR rEST 

elK READY 

GND RESET 

Figure 3GS, 8086 RQlGT Connections 

''''''' t. THlIOllFLOATSAJ:OZ ..... IliANOasaRONTH .. I!DGlI! 
L TMIOTMIR MAlTlR FLOATlJi,Ii."" PIIO.l.1.t aTATlON THIII!DGI 
L THI! OTHI" MAtTl!II. 'LOATS Aao. .us, IRr, AND meR ON THlllOOE 
t.TKI_IIIDIIIYUntlCONTIIOLLINU . 
LTttI._III0111V11nt1AOoUND 

2.3 RQ/GT Operation 

Detailed timing of .the RQ/GTsEjquence Is given In 
Flgure3G6. To request a transfer of bus' control via the 
RO/G'i'lines, the device must drive the line low,forno 
more thanorie CPU clock Interval to generate a request 
p'ulse. The pulse must .be 'synchronized with the CPU 
clock to guaranteethe appropriate,setuparid hold times 
to the clock edge which samples the RQ/GT lines In'the 
CPU. After Issuing a ·request pulse'; the device must 
begin sampling for a'grant pulse with the next low to 
high clock edge. 5ince the 8086 can respond with a 
grant pulse In the clock cycle Immediately following the 
request;ttie RQ/GT line may not return to the positive 
level between the request and grant pulses. Therefore 
edge triggered 'ioglc ·Is not valid for capturing a grant 
pulse. It also Implies the circuitry which generates the 
request pulse must guarantee the request Is remolied In 
time to detect a grant from the CPU. After receiving the 
grant pulse, the requesUng device may drive the local 
bus. 51nce the 8086 does not float the address and data 
bus, I,OCK or RD until the ,high to low clock transition 
following the low to high clock transition the requestor 
uses to sample for the g'rant, the requestor should 'walt 
the float' delay of the 8086 (TCLAZ) before driving the 
local bus. This precaution prevents buscontl!ntlon dur­
i ng the access, of bus control by the requestor. 

To returnco,iltrcilof the'bus to the 8086, the alternate 
bus master relinquishes bus control and issues a 
release p'u'lse on the same RQ/GT line. The 8086 may 
drive the SO-52 status lines, RD and LOCK, three clock 
cycles afier detecting the .release pulse and thead­
dreSS/data bus TCHCLmln ris {clock high time) after the 
status lines. The alternate bus master should be three­
stated off the local, bus and hav.e other BOB6 interface 
circuits (B2BB and address latches) re-enabled within the 
80B6 c;telay to regain control cif the bus. ' 

2.4 RQ/GT LatEmcy 

The, RQ to GTlatency for a single RQ/GT line Is similar 
to the HOLD to'HLDA latency. The cases given for the 
minimum mode BOB6 also apply to the maximum mode. 
For each case the delay from RQ detection by the CPU 
to GT detection by the requestor is: 

(HOLD to HLDA delay)- (THVCH + TCHCL+ TCLHAV) 

, Figure 3G8. Requeli/Grant Sequence 
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This gives a clock cycle maximum delay for an Idle bus 
interface. All other cases are the minimum mode result 
minus 476 ns. If the 8086 has previously issued a grant 
on one of the RO/GT lines, a request on the other RO/GT 
line will not receive a grant until the first device releases 
the interface with a release pulse on its RO/GT line. The 
delay from release on one RO/GT line to a grant on the 
other is typically one clock period as shown In Figure 
3G7. Occasionally the delay from a release on RO/GT1 

CHANNEL 0 TO 1 

CLOCK 

to a grant on RO/GTO will take two clock cycles and Is a 
function of a pending request for transfer of control 
from the execution unit. The latency from request to 
grant when the Interface is under control of a bus 
master on the other RO/GT line is a function of the other 
bus master. The protocol embodies no mechanism for 
the CPU to force an alternate bus master off the bus. A 
watchdog timer should be used to prevent an errant 
alternate bus master from 'hanging' the system. 

RO/GTO ~ RELEASE 

RQIGT1 ~GRANT 

CHANNEL 1 TO 0 

CLOCK 

RO/GT1 ~RELEASE 

RO/GTO \ / GRANT 
'-_-.J, 

OR 

\ / GRANT 

Figure 3G7. Channel Transfer Delay 
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2.5 RQ/GT to· HOLD/HLDA: Conversion 

A clrculf for translating a HOLD/HLDA hand-shake se­
quence IntoaRQ/GT pulse sequence is given In Figure 
3GB. After receiving the grant pulse, the HLDA Is ena­
bled TCHCLmln ns before the CPU has three-stated the 
bus. If the requesting circuit drives the bUs within 20 ns 

of HLDA, It may be desirable to delay the acknowledge 
one clock period. The H LDA is dropped no later than one 
clock period after HOLD Is disabled. The HLDA also 
drops··at the beginning of the release pulse to provide 
2TCLCL+ TCLCH ·for the requestor to relinquish control 
of the status lines and 3TCLCL to float. the remaining 
signals .. 

ClOCK------------------------------------, 

A 

74lS78 74S02 
}O---_H J Q I-_+-----'f-..... 

HlDA 

HOLD 

ClK 
QH-+-+-> 

ClR 

B 

74lS78 
)o-~rl---iJ Q 

ClK 
K 

~--------------------------------~ 

B8.3MIN-1 

ClK 

HLDR 

Figure 3GB •. HOLD/HLD~Rci/GT Conversion Circuit 

r- -1. r- 44 .• MIN , r- DATA BUS FLOATS 

RQ 

HLDA r-----t 
------------------~I 

Figure 3GBb. HOLD/HLD __ O/GT Conversion Timing 
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4. INTERFACING WITH 1/0 

The 8086 Is capable of Interfacing with 8· and 16·blt 1/0 
devices using either 1/0 Instructions or memory mapped 
1/0. The 1/0 Instructions allow the 1/0 devices to reside 
In a separate I/0address space while memory mapped 
1/0 allows the full power of the Instruction set to be 
used for 1/0 operations. Up to 64K bytes of 1/0 mapped 
1/0 may be defined In an 8086 system. To the program· 
mer, the separate 1/0 address space Is only accessible 
with INPUT and OUTPUT commands which transfer data 
between 1/0 devices and the AX (for 16·blt data trans· 
fers) or AL (for 8-blt data transfers) register. The first 256 
bytes of the I/O space (0 to 255) are directly addressable 
by the 1/0 I nstructions while the entire 64K Is accessible 
via register Indirect addressing through the DX register. 
The later technique is particularly desirable for service 
procedures that handle more than one device by allow­
I ng the desired device address to be passed to the pro­
cedure as a parameter. 1/0 devices may be connected to 
the local CPU bus or the buffered system bus. 

4A. Elght·Blt 1/0 

Eight-bit 1/0 devices may be connected to either the up­
per or lower half of the. data bus_ Assigning an equal 
number of devices to the upper and lower halves of the 
bus will distribute the bus loading. If a device is con­
nected to the upper half of the data bus, all 1/0 ad­
dresses assigned to the device must be odd (AO = 1). If 
the device is on the lower half of the bus, Its addresses 
must be even (AO = 0). The address assignment directs 
the eight-bit transfer to the upper (odd byte address) or 
lower (even byte address) half of the sixteen-bit data 
bus. Since AO will always be a one or zero for a specific 
device, AO cannot be used as an address input to select 
registers within a specific device. If a device on the 
upper half of the bus and one on the lower half are 
assigned addresses that differ only in AO (adjacent odd 
and even addresses), AO and BHE must be conditions of 
chip select decode to prevent a write to one device from 
erroneously performing a write to the other. Several 
techniques for generating 1/0 device chip selects are 
given in Figure 4A1. 

The first technique (a) uses separate 8205's to generate 
chip selects for odd and even addressed byte periph­
erals. If a word transfer is performed to an even ad­
dressed device, the adjacent odd addressed 1/0 device 
is also selected. This allows accessing the devices In· 
dlvldually with byte transfers or simultaneously as a 
16·blt device with word transfers. Figure 4A 1(b) restricts 
the chip selects to byte transfers, however a word 
transfer to an odd address will cause the 8086 to run two 
byte transfers that the decode technique will not detect. 
The third technique simply uses a single 8205 to 
generate odd .and even device selects for byte transfers 
and will only select the even addressed eight-bit device 
on a word transfer to an even address. 

If greater than 256 bytes of the 1/0 space or memory 
mapped 1/0 Isused, additional decoding beyond what Is 
shown In the examples may be necessary. This can be 
done with additional TTL, 8205's or bipolar PROMs (In· 
tel's 3605A). The bipolar PROMs are slightly slower than 
multiple levels of TTL (50 ns vs 30 to 40ns for TTL) but 

provide full decoding In a Single package and allow In­
serting a new PROM to reconfigure the system 1/0 map 
without circuit board or wiring modifications (Fig. 4A2). 

ADDRESS 

EVEN ADDRESSED 
WORD OR BYTE 
PERIPHERALS 

ODD ADDRESSED 
BYTE PERIPHERALS 

BHE ---1--01 

ADDRESS 

. Ao 

BHE 

(a) 

(b) 

EVEN ADDRESSED 
BYTE PERIPHERALS 

ODD ADDRESSED 
BYTE PERIPHERALS 

1§r----....J\ EVEN ADDRESSED 

ADDRESS AO·'.205 0jO r!~I:~~~~~~ 
Ao A2 

Ei ODD ADDRESSED 
~ 0, PERIPHERALS 

(BYTE) 

(e) 

Figure 4Al. Techniques for I/O Device Chip Selects 

CSl 0, 
11 

10 CS2 12 0, 
Ao 02 13 
Al 

3605 01 14 A'2 A·l 
A, A, 

15 

A, 
A, 16 

As 
17 

A, A, 

Figure 4A2_ Bipolar PROM Decoder 

One last technique for Interfacing with elght·blt periph· 
erals Is considered In Figure 4A3. The sixteen-bit data 
bus Is multiplexed onto an eight-bit bus to accom­
modate byte oriented DMA or bloc.k transfers to memory 
mapped eight-bit 1/0. Devices connected to this Inter· 
face may be assigned a sequence of odd and even ad­
dresses rather than all odd or even. 
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11-BIT 
DATA 

BUS 

1Ll __ l\ 8·Blt 
PERIPHERAL 
DATA BUS 

Figure 4A3. 16- to 8·Blt Bus Conversion 

4B. Sixteen· Bit ItO 

For obvious reasons of efficient bus utilization and sim· 
pllclty of devlceselection, slxteen·blt 1/0 devices should 
be assigned even addresses. To guarantee the device is 
selected only for word operations, AO and BHE should 
be conditions of chip select code (Fig. 4B1). 

ADDRESS Ao·. 0., 

Ao ---+-01 r; 82051 
IRE ~ 

Eo 0, 

EVEN ADDRESSED 
WORD PERIPHERALS 

Figure 4Bl. Slxteen·Blt 1/0 Decode 

4C. General Design Considerations 

MINIMAX, MEMORY 1/0 MAPPED AND LINEAR SELECT 

Since the minimum mode 8086 has common read and 
write commands for memory and 1/0, If the memory and 
110 address spaces overlap, the chip selects must be 
qualified by MilO to determine which address space the 
devices are assigned to. This restriction on chip select 
decoding can be removed if the 1/0 and memory ad­
dresses in the system do not overlap and are properly 
decoded; all 1/0 Is memory mapped; or RD, WR and M/iO 
are decoded to provide separate memory and 1/0 
readlwrlte commands (Fig. 4C1). The 8288 bus controller 
In the maximum mode 8086 system generates separate 
1/0 and memory commands In place of a M/iO signal. An 
1/0 device Is assigned to the 1/0 space or memory space 
(memory mapped 1/0) by connection of either 1/0 or 
memory command lines to the command Inputs of the 
device. To allow overlap of the memory and 1/0 address 
space, the device must not respond to chip select alone 
but must require a combination of chip select and a read 
or write command. 

74LS02 74LS388 

iffi--:===t=1::)o--I><>---:IDR 

DEFINED EN~:i: --------4---' 

NOTE: IF IT IS NOT NECESSARY TO THREE·STATE THE COMMAND LINES. A 
DECODER C8205 OR 74S138) COULD BE USED. THE 74LS257 IS NOT 
RECOMMENDED SINCE THE OUTPUTS MAY EXPERIENCE VOLTAGE 
SPIKES WHEN ENTERING OR LEAVING THREE·STATE. 

Figure 4Cl. Decoding Memory and I/O RD and WR Commands lor 
Minimum Mode 8086 Systems 

Linear select techniques (Fig. 4C2) for 1/0 devices can 
only be used with devices that either reside In the I/O ad­
dress space or require more than one active chip select 
(at least one low active and one high active). Devices 
with a single chip select Input cannot use linear select If 
they are memory mapped. This Is due to the assignment 
of memory address space FFFFFOH-FFFFFFH to reset 
startup and memory space 00000H-003FFH to Interrupt 
vectors. 

ADD~~~~{] 
Il5Jm Iil5 I/O DEVICE 

IlWR; WIi 

Ca) SEPARATE I/O COMMANDS 

ADDRESS{t]S LINES a· 
Iil5 1il5. 110 DEVICE 

WIi W1i.. 

Cb) MULTIPLE CHIP SELECTS 

Figure 4C2. Linear Select lor I/O 

40. Determining ItO Device Compatibility 

This section presents a set of A.C. characteristics which 
represent the timing of the asynchronous bus Interface 
of the 8086. The equations are expressed in terms of the 
CPU clock (when applicable) and are derived for 
minimum and maximum modes of the 8086. They repre­
sent the bus characteristics at the CPU. 

The results can be used to determine 1/0 device re­
quirements for operation on a single CPU local blis or 
buffered system bus. These values are not applicable to 
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a Multlbussystem bus interface. The requirements for a 
Multibus system bus are available In the Multlbus Inter· 
face specification. 

A list o/bus parameters, their definition and how they 
relate to the A.C. characteristics of Intel peripherals are 
given in Table 401. Cycle dependent values of the 
parameters are given In Table 402. For each equation, if 
more than one. signal path Is Involved, the equation 
reflects the worst case path. 

ex. TAVRL(address valid before read active) = 
(1) Address from CPU to RO active 

( or) 
(2) ALE (to enable the address through the 

address latches) to RO active 

The worst case delay path Is (1). 

For the maximum mode 8086 configurations, TAVWLA, 
TWLWHA and TWLCLA are relative to the advanced 
write signal while TAVWL, TWLWH and TWLCL are 
relative to the normal write signal. 

TABLE4Dl. PARAMETERS FOR PERIPHERAL COMPATIBILITY 

TAVRl - Address stable before RD leading edge 
TRHAX - Address hold after RD trailing edge 
TRLRH - Read pulse width 
TRLDV - Read to data valid delay 
TRHDZ - Read trailing edge to data floating 
TAVDV - Address to valid data delay 
TRLRL - Read cycle time 
TAVWL - Address valid before write leading edge 
TAVWLA - Address valid before advanced write 
TWHAX - Address hold after write trailing edge 
TWLWH - Write pulse width 
TWLWHA - Advanced write pulse width 
TDVWH - Data set up to write trailing edge 
TWHDX - Data hold from write trailing edge 
TWLCL - Write recovery time 
TWLCLA - Advanced write recovery time 
TSVRL - Chip select stable before RD leading edge 
TRHSX - Chip select hold after RD trailing edge 
TSLDV - Chip select to data valid delay 
TSVWL - Chip select stable before WR leading edge 
TWHSX - Chip select hold afterWR trailing edge 
TSVWLA - Chip select stable before advanced write 

(TAR) 
(TRA) 
(TRR) 
(TRD) 
(TO F) 
(TAD) 

(TRCYC) 
(TAW) 
(TAW) 
(TWA) 
(TWW) 
(TWW) 
(TOW) 
(TWO) 
(TRV) 
(TRV) 
(TAR) 
(TRA) 
(TRD) 
(TAW) 
(TWA) 
(TAW) 

Symbols In parentheses are equivalent parameters specified for 
Intel peripherals. 

In the given list of equations, TWHOXB is the data hold 
time from the trailing edge of write for the minimum 
mode with a buffered data bus. For this equation, 
TCVCTX cannot be a minimum for data hold and a max­
Imum for write Inactive. The maximum difference is 50 
ns giving the result TCLCH-50. If the reader wishes to 
verify the equations or derive others, refer to Section 3F 
for assistance with interpreting the 8086 bus timing 
diagrams. 

Figure 401 shows four representative configurations 
and the compatible Intel peripherals (Including wait 
states If required) for each configuration are given In 
Table 403. Configuration 1 and 2 are minimum mode 
demultlplexed bus 8086 systems without (1) and with (2) 
data bus transceivers. Configurations 3 and 4 are max­
Imum mode systems with one (3) and two (4) levels of ad­
dress and data buffering. The last configuration Is 
characteristic of a multi-board system with bus buffers 
on each board. The 5 MHz parameter values for these 
configurations are given in Table 404 and demonstrate 

the relaxed device requirements for even a large com­
plex configuration. The analysis assumes all com­
ponents are exhibiting the specified worst case param­
eter values and are under the corresponding tem, 
perature, voltage and capacitive load .condltlons. If the 
capacitive loading on ttie 8282183 or 8286187 Is less than 
the maximum, graphs of delay vs. capacitive loading in 
the respective data sheets should be used to determine 
the appropriate delay values. 
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TABLE 402. CYCLE DEPENDENT PARAMETER REQUIREMENTS 
FOR PERIPHERALS 

(a) Minimum Mode 

TAVRL= TCLCL+ TCLRLmin - TCLAVmax= TCLCL-l00 
TRHAX= TCLCL- TCLRHmax+ TCLLHmin= TCLCL-150 
TRLRH = 2TCLCL- 60= 2TCLCL- 60 
TRLDV= 2TCLCL- TCLRLmax- TDVCLmin= 2TCLCL-195 
TRHDZ=TRHAVmin= 155 ns 
TAVDV = 3TCLCL- TDVCLmln- TCLAVmax= 3TCLCL-140 
TRLRL= 4TCLCL= 4TCLCL 
TAVWL= TCLCL+ TCVCTVmin- TCLAVmax= TCLCL-l00 
TWHAX= TCLCL+ TCLLHmin- TCVCTXmax = TCLCL-110 
TWLWH = 2TCLCL - 40 = 2TCLCL - 40 
TDVWH = 2TCLCL+ TCVCTXmin - TCLDVmax = 2TCLCL- 100 
TWHDX = TWHDZmin = 89 
TWLCL= 4TCLCL= 4TCLCL 
TWHDXB=TCLCHmin+(- TCVCTXmax+ TCVCTXmin)= 

TCLCHmin - 50 

. Note: Delays relative to chip select are a function of the chip select 
decode technique used and are equal to: equivalent delay 
from address - chip select decode delay. 

(b) Maximum Mode 

TAVRL= TCLCL+ TCLMLmin- TCLAVmax= TCLCL-l00 
TRHAX= TCLCL- TCLMHmax+ TCLLHmin= TCLCL- 40 
TRLRH = 2TCLCL- TCLMLmax+ TCLMHmin= 2TCLCL- 25 
TRLDV= 2TCLCL- TCLMLmax- TDVCLmin= 2TCLCL-65 
TRHDZ= TRHAVmin = 155 
TAVDV= 3TCLCL- TDVCLmin- TCLAVmax= 3TCLCL-140 
TRLRL= 4TCLCL= 4TCLCL 
TAVWLA=TAVRL=TCLCL-l00 
TAWIL = TAVRL+ TCLCL= 2TCLCL-100 
TWHAX= TRHAX= TCLCL- 40 
TWLWHA= TRLRH = 2TCLCL- 25 
TWLWH = TRLRH.., TCLCL= TCLCL- 25 
TDVWH = 2TCLCL + TCLMHmin - TCLDVmax = 2TCLCL- 100 
TWHDX = TCLCHmin - TCLMHmax + TCHDZmin = TCLCHmin - 30 
TWLCL= 3TCLCL= 3TCLCL 
TWLCLA= 4TCLCL= 4TCLCL 

TABLE 403. COMPATIBLE PERIPHERALS (5 MHz 8086) 

Configuration 

Minimum Mode Maximum Mode 

Unbuffered Buffered Buffered Fully Buffered 

8251A v 1W v v 
8253·5 v lW v v 
8255A·5 v lW v v 
8257·5 v lW v v 
8259A v v v v 
8271 v lW v v 
8273 v 1W v v 
8275 v 1W v v 
8279·5 v lW v v 
8041A' v 1W v v 
8741A v 1W v v 
8291 v v v v 

'Includes other Intel peripherals based on the 8041A (Le., 8292, 8294, 
8295). 

~ implies full operation with no wait states. 

W implies the number of wait states required. 

, 



TABLE 4D4. PERIPHERAL REQUIREMENTS FOR FULL SPEED 
OPERATION WITH 5 MHz 8086 

Configuration 

Minimum Mode Maximum Mode 

Unbuffered Buffered Buffered Fully Buffered 

TAVRL 70 72 70 58 
TRHAX 57 27 169 141 
TRLRH 340 320 375 ' 347 
TRLOV 205 150 305 261 
TRHOZ 155 158 382 360 
TAVOV 430 400 400 372 
TRLRL 800 770 800 772 
TAVWL 70 72 270 258 
TAVWLA - - 70 58 
TWHAX 97 67 169 141 
TWLWH 360 340 175 147 
TWLWHA - - 375 347 
TOVWH 300 339 270 258 
TWHOX 88 15 95 13 
TWLCL BOO 772 600 572 
TWLCLA - - 800 772 
TSVRL 52 54 52 40 
TRHSX 50 50 171 143 
TSLOV 412 382 382 354 
TSVWL 52 54 252 240 
TWHSX 90 90 171 143 
TSVWLA - - 52 40 

- Not applicable. 
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Peripheral compatibility is determined from the ,equa­
tions given for the CPU by modifying them to account 
for additional delays from address latches and data 
transceivers In the configuration. Once the system con­
figuration is selected, the system requirements can be 
determined at the peripheral Interface and used to 
evaluate compatibility of the peripheral to the system. 
During this process, two areas must be, considered. 
First, can the device operate at maximum bus band­
width and if not, how many walt states are required. Sec­
ond, are there any problems that cannot be resolved by 
walt states. 

Examples of the first are TRLRH (read pulse width) and 
TRLDV (read access or RD active to output data valid). 
Consider address access time (valid address to valid 
data) for the maximum mode fully buffered configura­
tion. 

TAVDV=3TCYC-140 ns - address latch delay -
address buffer delay - chip select decode delay - 2 
transceiver delays 

Assuming Inverting latches, buffers and trans­
ceivers with 22 ns max delays (8283, 8287) and a 
bipolar PROM decode with 50 ns delay, the result 
Is: 

TAVDV = 322 ns @ 5 MHz 

b. MINIMUM MODE BUFFERED DATA AND COMMAND BUSSES 

Figure 401. 8086 System C~nligur.tlons 
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c. MAXIMUM MODE BUFFERED DATA BUS 

elK 

8284 

NOTE: FOR OPTIMUM PERFORMANCE WITH INTEL PERIPHERALS, AIOW (ADVANCED 
WRITE) SHOULD BE USED. 

d. MAXIMUM MODE DOUBLE BUFFERED SYSTEM 

8284 

Figure 401. 8086 System Configurations (Can't) 

The result gives the address to data valid delay required 
at the peripheral (in this configuration) to satisfy zero 
wait state CPU access time. If the maximum delay 
specified for the peripheral is less than the result, this 
parameter is compatible with zero wait state CPU opera­
tion. If not, wait states must be inserted until TAVDV + n 
* TCYC (n is the number of wait states) is greater than 
the peripherals maximum delay. If several parameters 
require wait states, either the largest number required 
should always be used or different transfer cycles can 
insert the maximum number required for that cycle. 

The second area of concern includes TAVRL (address 
set up to read) and TWHDX (data hold after write). 
Incompatibilities in this area cannot be resolved by the 
insertion of wait states and may require either add i-
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tional hardware, slowing down the CPU (if the parameter 
is related to the clock) or not using the device. 

As an example consider address valid prior to advanced 
write low (TAVWLA) for the maximum mode fully buf­
fered system. 

TAVWLA=TCYC-100 ns - address latch delay -
address buffer delay - chip select decode delay + 
write buffer delay (minimum) 

Assuming inverting latches and buffers with 22 ns 
delay (8283, 8287) and an 8205 address decoder with 
18 ns delay 

TAVWLA = 38 ns which is the time a 5 MHz 8086 
system provides 
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4E. 110 Example. 

1. Consider an Interrupt driven procedure for handling 
multiple communication lines. On receiving an Interrupt 
from one of the lines, the Invoked procedure polls the 
lines (reading the status of each) to determine which 
line to service. The procedure does not enable lines but 
simply services Input and output requests until the 
associated output buffer Is empty (for output requests) 
or until an Input line Is terminated (for the example only 
EOT Is considered). On detection of the terminate condl· 
tlon, the routine will disable the line. Itls assumed that 
other routines will fill a lines output buffer and enable 
the device to request output or empty the Input buffer 
and enable the device to Input additional characters. 

The routine begins operation by loading CX with a count 
of the number of lines in the system and OX with the 110 
address of the first line. The 110 addresses are aSSigned 
as shown In Figure 4E1 with 8251A's as the 110 devices. 
The status of each line Is read to determine If it needs 
service. If yes, the appropriate routine is called to Input 
or output a character. After servicing the line or If rio 
service Is needed, CX Is decremented and OX Is In· 
cremented to test the next line. After all lines have been 
tested and serviced, the routine terminates. If all Inter· 
rupts from the lines are OR'd together, only one Inter­
rupt Is used for all lines. If the Interrupt Is Input to the 
CPU through an 8259A interrupt controller, the 8259A 
should be programmed in the level triggered mode to 
guarantee all line Interrupts are serviced. 

To service either an input or, output request, the called 
routine transfers OX to BX, and shifts BX to form the off­
set for this device Into the table of input or output buf­
fers. The first entry In the buffer Is an Index to the next 
character position In the biJffer and Is loaded Into the 81 
register. By specifying tlie base address of the table of 

D" .. \,-____________ --, 

. D7.CJ 

DEVICES ARE CONNECTED TO THE UPPER AND 
LOWER HALVES OF THE DATA BUS. 

'ADDRESS 

'0 
1 
2 

,3 
, 4 

5 
8 
7 

ETC. 

DEVICE 0 
DEVICE 1 
DEVICE 0 ' 
DEVICE 1 
DEVICE 2 
DEVICE 3 
DEVICE 2 
DEVICE 3 

DATA 
DATA 
CONTROUSTATUS 
CONTROUSTATUS 
DATA 
DATA 
CONTROUSTATUS 
CONTROUSTATUS 

Figure 4El. De.lce Asslgnmenl 

buffers as a displacement Into the data segment, the 
base + Index + displacement addressing mode allows 
direct access to the appropriate memory location. 8086 
code ~or part of this example is shown In Figure 4E2. 

,2. As a second example, consider using memory 
mapped 110 and the,8086 string prlmatlve instructions to 
perform block transfers betwe~n memory and 110. By 
aSSigning a block of the memory address space 
(equivalent In size to the maximum block to be trans­
ferred to the 110 device) and decoding this address 
space to generate the 110 device's chip select, the block 
transfer capability Is easily Implemented. Figure 4E3 
gives an Interconnect for 16-blt 110 devices while Figure 
4E4 Incorporates the 16-blt bus to 8-blt bus multiplexing 
scheme to support 8-blt 110 devices. A code example to 
perform such a transfer Is shown In Figure 4E5. 

, THIS CODE DEMONSTRATES TESTING DEVICE 
, STATUS FOR SERVICE, CONSTRUCTING THE 
; APPROPRIATE LINE BUFFER ADDRESS FOR INPUT 
, AND OUTPUT AND SERVICING AN INPUT 
, REQUEST 

MASK EQU OFFFDH 
CHECK......STATUS: INPUT AL. OX ; GET 8251A STATUS. 

MOY AH,AL 
TEST AH. READ_OR-WRITE..STATUS 
JZ NEXT-'O 
CALL ADDRESS 
TEST AH. READ STATUS 
JZ WRITE..SEAVICE 
CALL READ 
TEST AH. WRITE STATUS 
JZ NEXT_IO 

WRITE-SERVICE: CALL WRITE 
NEXT_IO: DEC ex j TEST IF DONE. 

ADDRESS: 

READ: 

JNC EXIT' , YES. RESTORE' RETURN. 
AND DX. MASK , REMOVE AI AND 
ADD DX. 3 , INCREMENT ADDRESS. 
OR DX. • , SELECT STATUS FOR 
JMP CHECILSTATUS , NEXT INPUT. 
AND ox. MASK 
MOV BH, DL 
INC BH 
SHR BH 
XOR BL, aL 
RET 
INPUT AL, DX 

, ,SELECT DATA. 
, CONSTRUCT BUFFER 
, DISFLACEMENT FOR 
, THIS DEVICE. 
, BX IS THE DISPLACEIIENT. 

, READ CHARACTER. 
MOV SI. READ_BUFFERS IBX! 
MOV READ_BUFFERS IBX + SQ, AL 
INC READ_BUFFERS IBX! 
CMPAL. EDT 

i GET CHARACTER POINTER. 
, STORE CHARACTER. 
, INCR CHARACTER POINTER. 
, END OF TRANSIII88ION? 

JNZ CONT_READ 
CALL DISABLE READ 
CONT.JIEAD: RET 

, YES, DISABLE RECEIVER. 
,SEND IIESSAGE THAT INPUT 
jISREADY. 

Flgur.4E2. 

A' •. 8 

iii) 

Viii 

3605 
A·l 

DECODE 

BIPOLAR 
PROM 

110 CHIP SELECT 

TRANSFER 256 BYTE BLOCKS TO THE 110 DEVICE 

THE ADDRESS SPACE ASSIGNED TO THE 110 DEVICE IS 

All 
FROM k-BASE 
THRU ~BASE 

~Ar ,~Ao 
ADDRESS D'. 
ADDRESS I', 

MEMORY DATA NEED'NOT BE ALIGNED TO EVEN ADDRESS BOUNDARIES 
110 TRANSFERS MUST BE WORD TRANSFERS TO EVEN ADDRESS BOUNDARIES 

Figure 4E3., Block Trans'.r 10 16'BIII/O Using 8066 SIring Prlmailve. 
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015·8 \r--.---,/ 

BHE--;-"""L._ 

CHIP SELECT 

CS 

8·BIT 
DATA 110 

DEVICE 

iiii Viii 

-+-----------J) 1 
ADDRESS ASSIGNMENT SAME AS PREVIOUS EXAMPLE. 18-BIT BUS IS 
MULTIPLEXED ONTO AN 8·BIT PERIPHERAL BUS. 

Figure 4E4. Block Transfer to 8·BIt 110 Using 8086 String Prlmatlves 

; DEFINE THE 1/0 ADDRESS SPACE 
110 SEGMENT 
ORG BLOCK.....ADDRESS 

I/O_BLOCK: OW 128 DUP (?) 
1/0 ENDS 

; ASSUME THE DATA IS FROM THE CURRENT 
;. DATA SEGMENT . 
CLD. ; OF = FORWARD 
LES 01, I/O_BLOCKJDDRESS ; 1/0 BLOCK ADDRESS 

MOV CX, BLOCLLENGTH 
MOV 51, SOURCEJDDRESS 
MOVS 1/0 BLOCK 

; END CODE EXAMPLE 

; CONTAINS THE ADDRESS 
; OF 1/0 BLOCK 

; PERFORM WORD TRANSFERS 

NOTE THE CODE IS CAPABLE OF PERFORMING BYTE TRANSFERS BY 
CHANGING THE 1/0 BLOCK DEFINITION FROM 128 WORD TO 258 BYTES 

Figure 4E5. Code for Block Transfers 

5.INTERFACINQ WITH MEMORIES 

Figure 5,1 is a general block diagram of an 8086 
memory, The basic characteristics of the diagram are 
the partitioning of the 16·bit word memory into high and 
low 8·blt banks on the upper and lower halves of the 
data bus and Inclusion of BHE and AO In the selection of 
the banks. Specific implementations depend on the type 
of memory and the system configuration, 

5A. ROM and EPROM 

The easiest devices to Interface to the system are ROM 
and EPROM. Their byte format provides a simple bus In· 
terface and since they are read only devices, AO and 
BHE need not be Included In their chip enable/select 
decoding (chip enable Is similar to chip select but addi· 
tlonally determines If the device is in active or standby 
power mode), The address lines connected to the 
devices start with A1 and continue up to the maximum 

number the device can accept, leaving the remaining ad· 
dress lines for chip enable/select decoding. To connect 
the devices directly to the multiplexed bus, they must 
have output enables. The output enable is also 
necessary to avoid bus contention in other configura· 
tions, Figure 5A1 shows the bus connections for ROM 
and EPROM memories. No special decode techniques 
are required for generating chip enables/selects. Each 
valid decode selects one device on the upper and lower 
halves of bus to allow byte and word access. Byte ac· 
cess Is achieved by reading the full word onto the bus 
with the 8086 only accepting the desired byte. For the 
minimum mode 8086, if RD, WR and M/iO are not decod· 
ed to form separate commands for memory and 1/.0, and 
the I/O space overlaps the memory space assigned to 
the EPROM/ROM then M/IO (high active) must be a.con· 
dltion of chip enable/select decode. The output enable 
is controlled by the system memory read signal. 

HIGH BAN~E(~----:----..,------, 

ADDRESS _____ -, 

CONTROL 

. DATA 

Figure 5.1. 8086 Memory Array 

CHIP SELECT ----.... ----<lI 

°a·15 

A'.12 ----TO 

RD----H 

00-7 \,... __ --,,.-__ --1 

NOTE AD AND BHE ARE NOT USED. 

Figura SAl. EPROM/ROM BUllnt.rlaee 
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Static ROM's and EPROM's, have only four parameters 
to evaluate when determining their compatibility to the 
system. The parameters~ equations and evaluation tech­
niques, given in the I/O section are also applicable to 
these devices. The relationship of parameters is.glven in 
Table 5A1. TACC and TCE are related to the same equa­
tion and differ only by the delay associated with the chip 
enable/select decoder. As an example, consider a 2716 
EPROM memory residing on the multiplexed bus of a 
minimum mode configuration: 

TACC =; 3TCLCL-140- address buffer delay =430 ns 
(8282= 30 ns max delay)' . 

TCE= TACC- decoder delay= 412 ns 
. (8205 decoder delay = 18 ns) 

TOE=2TCLCL':"195=205 ns 

TDF= =155ns 

TABLE 5Al. EPROM/ROM PARAMETERS 

TOE - Output Enable to Valid Data" TRLDV 
TACC - AddresstoValid Data" TAVDV· 
TCE - Chip Enable to Valid Data" TSLDV 
TDF - Output Enable High to Output Float" TRHDZ 

The results are the times the system configuration reo 
quires of the component for full speed compatibility 
with the systern. Comparing these times with 2716 
parameter limits indicates the 2716-2 will work with no 
wait states while the 2716 will require one wait state. 
Table 5A2 demonstrates EPROM/ROM compatibility for 
the configurations presented In the I/O section. Before 
designing a ROM or EPROM memory system, refer to 
AP-30 for additional information on design techniques 
that give the'system an upgrade path from 16K to 32K 
and 64K devices. 

TABLE 5A2. COMPATIBLE EPROM/ROM (5 MHz 8086) 

Configuration 

Minimum Mode Maximum Mode 

Unbuffered Buffered Buffered Fully Buffered 

2716·1 ... ... ... ... 
2716-2 ... lW 1W 1W 
2732 lW lW lW lW 
2332 ... ... ... ... 
2364 ... ... ;,. ... 

58. Static RAM 

Interfacing static RAM .to the system introduces several 
new requirements to the memory design. AO and BHE 
must be Included in .the chip select/chip enable 
decoding of the devices and write timing must be con­
sidered In the compatibility analysis. 

For each device, the data bus connections must be 
restricted to either the upper or lower half of the data 
bus. Devices like the 2114 or 2142 must not straddle the 
upper and lower halves of the data bus (Fig. 5B1). To 
allow selecting either the upper byte, lower byte or full 
16-bit word for a write operation, BHE must be a condi­
tion of decode for selecting the upper byte and AO must 
be a condition of decode for selecting the lower byte. 
Figure 5B2 gives several selection techniques for 

devices with single chip selects and no output enables 
(2114, 2141, 2147). Figure 5B3 gives selection tech­
niques for devices with chip selects and output enables. 

cs---=4CS, liD, __ D. 

CS---J 
0, 

ADDRESS 
0, 

0, 

Figure 5Bl. Incorrect Connection of 2142 Across Byte Boundaries 

The first group requires inclusion of AO and BHE to 
decode or enable the chip selects. Since these 
rnemorles do not have output enables, read and write 
are used as enables for chip select generation to pre­
vent bus contention. If read and write are not used to 
enable the chip selects, devices with common input/out­
put pins (like the 2114) will be subjected to severe bus 
contention between chip select and write active. For 
devices with separate input/output lines (like 2141, 
2147), the outputs can be externally buffered with the 
buffer enable controlled by read. This solution will only 
allow bus contention between memory devices in the ar­
ray during chip select transition periods. These tech­
niques are considered in more detail In Section 2C. 

For devices with output enables (2142), write may be 
gated with BHE and AO to provide upper and lower bank 
write strobes. This simplifies chip select decoding by 
eliminating BHE and AO as a condition of decode. 
Although both devices are selected during a byte write 
operation, only one will receive a write strobe. No bus 
contention will exist during the write slnce.a read com­
mand must be Issued to enable the memory output 
drivers. 

If multiple chip selects.are available at the device, BRE" 
and AO may ,directly control device selection. This 
allows normal chip select decoding of the address 
space and direct connection 01 the read and write com· 
mands to the devices. Alternately, the multiple chip 
select inputs of the device could directly decode the ad­
dress space (linear select) and be combined with the 
separate write strobe technique to minimize the control 
Circuitry needed to generate chip selects. 

'As with the EPROM's and ROM's, If separate commands 
are not provided for memory and 110 In the minimum 
mode 8086 and the address spaces overlap, M/iO(hlgh 
active) must be a condition of chip select decode .. Also, 
the address lines connected to the memory devlce.s 
must start with A 1 rather than AO. 

A-54 



ADDRESS L-'-___ ---, 

Ao-------j 
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E, 

(a) 
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AO----------~ 

BHE----------------(~b)----~ 

BHE-----~ 

MliO--------t 

(e) 

ADDR 

Ao 

RD 
Viii 

BHE ----+----<>1 CS1 

..... ----<lICS2 

(d) 

LOW BANK 
CHIP SELECTS 
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HIGH BANK 
CHIP SELECTS 

LOW BANK 
CHIP SELECT 

A10.' ________ ., 

RD--------1 

Ao----<r-...... 
WR-.,-..... _ 

BHE--..... _ 

2142's 

Io--+------q CSbS2 

+V 

(a) HIGH AND LOW BANK WRITE STROBES 

2142's 

HIGH BANK AtO_' 
CHIP SELECT ---------, 

CHIP SELECTS 
(HIGH AND LOW FOR 
FOUR GROUPS) 

LOW BANK 
CHIP SELECTS 

HIGH BANK 
CHIP SELECTS 

RD---------i 

WR----------,~ 

AO-------r1 

BHE------+-----~ 

CS--------~~----------~ 

(b) Ao AND BHE AS DIRECT CHIP SELECT INPUTS 

A1O.' ________ -, 

RD-------~ 

Ao--<r---... 
WR-r-__ 

BHE---..... _ 

2142's' 

A19 ------..... -1---4 CSbS2 

A" -------,----+-------' 
(e) LINEAR CHIP SELECT USED WITH HIGH 

AND LOW BANK WRITE STROBES 

07·0 

015·8 

Figure 5B2. Generating Chip Selects for Devices without Output 
Enables Figure 5B3. Chip Selection for Devices with Output Enables 
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For analysis of RAM compatibility, the write timing 
parameters listed in Table 581 may also need to be con­
sidered (depending on the RAM device being consid­
ered). The CPU clock relative timing is given In Table 
582. The equations specify the device requirements at 
the CPU and provide a base for determining device reo 
quirements in other configurations~ As an example con­
sider the write timing requirements of a 2142 in a max­
imum mode buffered 8086 system (Figure 584). The 
2142 write parameters that must be analyzed are TWA 
advanced write pulse width, TWR write release time, 
TOWA data to write time overlap and TDH data hold 
from write time. 

TWA = 2TCLCL- TCLM Lmax + TCLM Hmin = 375 ns. 
TWR = 2TCLCL- TCLMHmax+ TCLLHmin + TSHOVmln = 170 ns. 
TDWA = 2TCLCL- TCLDVmax + TCLM Hmln - TIVOVmax = 265 ns. 
TDH = TCLCH - TCLMHmax + TCHDXmln + TIVOVmln= 95 ns. 

TABLE 5Bl. TYPICAL WRITE TIMING PARAMETERS 

TW - Write Pulse Width 
TWR - Write Release (Address Hold From End of Write) 
TOW - Data and Write Pulse Overlap 
TDH - Data Hold From End of Write 
TAW - Address Valid to End of Write 
TCW - Chip Select to End of Write 
TASW - Address Valid to Beginning of Write 

TABLE 5B2. CYCLE DEPENDENT WRITE PARAMETERS 
FOR RAM MEMORIES 

(a) Minimum Mode 

TW= TWLWH = 2TCLCL- 60= 340 ns 
TWR= TCLCL- TCVCTXmax+ TCLLHmin=90 ns 
TDW=2TCLCL- TCLDVmax+ TCVCTXmin =300 ns 
TDH = TWHDX = 88 ns 
TAW= 3TCLCL- TCLAVmax+ TCVCTXmin= 500 ns 
TCW=TAW-Chip Select Decode 
TASW= TCLCL- TCLAVmax+ TCVCTXmin = 100 ns 

(b) Maximum Mode 

TW= TCLCL- TCLMLmax+ TCLMHmin= 175 ns 
TWR= TCLCL- TCLMHmax+ TCLLHmin= 165 ns 
TDW=TW= 175 ns 
TDH = TCLCHmin - TCLMHmax+ TCHDXmin= 93 ns 
TAW= 3TCLCL- TCLAVmax+ TCLMHmin= 500 ns 
TCW=TAW-Chip Select Decode 
TASW= 2TCLCL- TCLAVmax+ TCLMLmin= 300 ns 
TWA'=TW+TCLCL=375 ns 
TDWA' = 2TCLCL- TCLDVmax+ TCLMHmin= 300 ns 
TASWA' = TASW - TCLCL= 100 ns 

*Relatlve to Advanced Write. 

Comparing these results with the 2142 family indicates 
the standard 2142 write timing is fully compatible with 
this 8086 configuration. Read timing analysis is also 
necessary to completely determine compatibility of the 
devices. 

5C. Dynamic RAM 

Dynamic RAM is perhaps the most complex device to 
design into a system. To relieve the engineer of most of 
this burden, Intel provides the 8202 dynamic RAM con­
troller as part of the 8086 family of peripheral devices. 
This section will discuss using the 8202 with the 8086 to 
build a dynamic memory system for an 8086 system. For 

additional Information on the 8202, refer to the 8202 
data sheet (9800873) and application note AP-45 Using 
the 8202 Dynamic RAM Controller (9800809A). 

Figure 5B4. Sample Configuration for Compatibility Analysis Example 

5.C.1 Standard 8086-8202 Interconnect 

Figure 5.C.1.1 shows a standard interconnection for an 
8202 into an 8086 system. The configuration accom­
modates 64K words (128K bytes) of dynamic RAM ad­
dressable as words or bytes. To access the RAM, the 
8086 initiates a bus cycle with an address that selects 
the 8202 (via PCS) and the appropriate transfer com­
mand (MRDC or MWTC). If the 8202 is not performing a 
refresh cycle, the access starts immediately, otherwise, 
the 8086 must wait for completion of the refresh. XACK 
from the 8202 is connected to the 8284 RDY input to 
force the CPU to wait until the RAM cycle is completed 
before the CPU can terminate the bus cycle. This effec­
tively synchronizes the asynchronous events of refresh 
and CPU bus cycles. The normal write command 
(MWTC) is used rather than the advanced command 
(AMWC) to guarantee the data is valid at the dynamic 
RAMS before the write command is issued. The gating 
of WE with AO and 8HE provides selective write strobes 
to the upper and lower banks of memory to allow byte 
and word write operations. The logic which generates 
the strobe for the data latches allows read data to prop­
agate to the system as soon as the data is available and 
latches the data on the trailing edge of CAS. 

DETAILED TIMING 

Read Cycle 

For no wait state operation, the 8086 requires data to be 
valid from MRDC in: 

2TCLCL- TCLML- TDVCL- buffer delays = 291 ns. 

Since the 8202 is CAS access limited, we need only ex­
amine CAS access time. The 8202/2118 guarantees data 
valid from 8202 RD low to be: 

(tph + 3tp + 100 ns) 8202 TCC delay + TCAC for the 2118 
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HIOH BYTE 
WRITE 

2111 

Dlo.11 

Figure 5C1.1. 5 MHz 808B18202l128K Byte System - Double Data, Control and Address Buffering (Note: Bus driver on 8202 Is not needed" less 
than 14K bytes are used) 

For a 25 MHz 8202 and 2118·3, we get 297 ns which Is in­
sufficient for no walt state operation. If only 64~~tes 
are accessed, the 8202 requires only (tph + 3tp + 80 ns) 
giving 282 ns access and no walt states required. Refer 
to Figure 5.C.1.2 and 5C.1.3 for timing Information on 
the 8202 and 2118. 

Write Cycle 

An Important consideration for dynamic RAM write 
cycles Is to guarantee data to the RAM Is valid when 
both CAS and WE are active. For the 2118, If WE Is valid 
prior to CAS, the data setup Is to CAS and If CAS Is valid 
before WE (as would occur during a read modify write 
cyc~he data setup time Is to WE. For the 8202, the WR 
to CAS delay Is analyzed to determine the data setup 
time to CAS Inherently provided by the 8202 command 
to RAS/CAS timing. The minimum delay from WR to· 
CAS Is: 

TCCmln= tph+2tp+25= 127 ns @ 25 MHz 

Subtracting buffer delays and data setup at the 2118, 
we have 83 ns to generate valid data after the write 
command Is Issued by the CPU (In this case the 8288). 
Since the 8086 will not guarantee valid data until 
TCLAVmax - TCLMLmln = 100 ns from the advanced 

write Signal, the normal write signal Is used. The normal 
write MWTC guarantees data Is valid 100 ns before It Is 
active. The worst case write pulse width Is approximate­
ly 175 ns which is sufficient for all 2118's. 

Synchronization 

To force the 8086 to walt during refresh the XACK or 
SACK lines must be returned to the 8284 ready Input. 
The maximum delay from RO to SACK (If the 8202 Is not 
performing refresh) Is TAC= tp+ 40= 80 ns. To prevent 
a walt state at the 8086, ROY must be valid at the 8284 
TCLCHmln - TCLMLmax - TR1VCLmax = 48 ns after 
the command Is active. This Implies that under worst 
case conditions, one walt state will be Inserted for every 
read cycle. Since MWTC does not occur until one clock 
later, two walt states may be Inserted for writes. 

The XACK from command delay will assert ROY TCC+ 
TCX = (tph + 3tp + 100) + (5tp + 20) = 460 ns after the 
command. This will typically Insert one or two walt 
states. 

Unless 2118-3's are used In 64K byte or less memories, 
SACK must not be used since It does not guarantee a 
walt state. From the previous access time analysis we 
saw that other conflguratlQns required a walt state. 
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A.C. CHARACTERISTICS 
TA= o·c to 70·C, VCC= 5V ± 10% 

Measurements made with respect to RAS1- RAS4, CAS, 
WE, OUTo- OUTs are at 2.4V and 0.8V. All other pins are 
measured at 1.5V. 

Loading: 

64 Devices 

Symbol 

tp 

tAC 

tAAH 

tASA 

tCAH 

tASC 

tACO 

twcs 

tASH 

tCAS 

tAP 

tWCH 

tAEF 

tCA 

tcc 

tAFA 

tAS 

tCA 

tCK 

tKCH 

tsc 

tcx 

tACK 

txw 

tLL 

tCHS 

tww 

tAL 

tLA 

tpL 

tpH 

tpH 

Noles: 

Cl= 30 pF 
Cl=320 pF 
Cl=230 pF 
Cl=450 pF 
Cl= 640 pF 

Parameter 
Clock (Internal/External) Period (See Note 1) 

Memory Cycle Time 

Row Address Hold Time 

Row Address Setup Time 

Column Address Hold Time 

Column Address Setup Time 

RAS to CAS Delay Time 

WE Setup to CAS 

RAS Hold Time 

CAS Pulse Width 

RAS Precharge Time (See Note 2) 

WE Hold Time to CAS 

Internally Generated Refresh to Refresh Time 
64 Cycle 
128 Cycle 

RD, WR to RAS Delay 

RD, WR to CAS Delay 

REFRQ to RAS Delay 

Ao-A15 to RD, WR Setup Time (See Note 4) 

RD, WR to SACK leading Edge 

RD, WR to XACK, SACK Trailing Edge Delay 

RD, WR Inactive Hold to SACK Trailing Edge 

RD, WR, PCS to X/ClK Setup Time (See Note 3) 

CAS to XACK Time 

XACKLeading Edge to CAS Trailing Edge Time 

XACK Pulse Width 

REFRQ Pulse Width 

RD, WR, PCS Active Hold to RAS 

WR to WE Propagation Delay 

Sl to ALE Setup Time 

Sl to ALE Hold Time 

External Clock low Time 

External Clock High Time 

External Clock High Time for Vcc= 5V ± 5% 

1. tp minimum determines maximum oscillator frequency. 

Min Max Units 

40 54 ns 

10 tp- 30 12 tp ns 

tp-10 ns 

tpH ns 

5 tp ns 

tp- 35 ns 

2 tp-10 2 tp+45 ns 

tp- 40 ns 

5 t p - 30 ns 

5 tp- 30 ns 

4 t p - 30 ns 

5 tp- 35 ns 

548 tp 576 tp ns 
264 tp 288tp ns 

tpH + 30 tpH + tp+ 75 ns 

tpH+2tp+25 tpH + 3 tp+ 100 ns 

1.5 tp+ 30 2.5 tp+ 100 ns 

0 ns 

tp+ 40 ns 

30 ns 

10 ns 

15 ns 

5 tp- 40 5 tp+ 20 ns 

10 ns 

2 tp- 25 ns 

20 ns 

0 ns 

8 50 ns 

40 ns 

2 tp+ 40 ns 

15 ns 

22 ns 

18 ns 

tp maximum determines minimum frequenc;yJQ maintain 2 ms refresh rate and tAP minimum. 
2. To achieve the minimum lime between the RAS" of a memory cycle and the ~ of a refresh cycle, such as a transparent refresh, AEFAQ should be 

pulsed In the prevfous memory cycle. 
3. tsc Is not required for properoperalion which Is In agreement with the other specs, but can be used to synchronize external signals with XlCLK If It Is 

desired. 
4. If tAS Is less than 0 then the only Impact Is that tASA decreases by a corresponding amount. 

Figure 5C1.2. 8202 Timing Information (Con'l) 
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NOTES: 1,2. VIM MIN AND VrL MAX ARE REFERENCE LEVELS FOR MEASURING TIMING OF 
INPUT SIONALS. 

3,4. VOH MIN AND VOL MAX ARE REFERENCE LEVELS FOR MEASURING TIMING 
OF DOUT. 

S. toFF IS MEASURED T 
e. S OR WE, WHICHEVER OCCURS LAST. 
t· TO THE TRAILING eDGe OF m OR m. WHICHEVER 

.. 'CRP REQUIREMENT IS ONLY APPLICABLE FOR RADICAS CYCLES 
PRECEDED BY A en·ONLY CYCLE (I. •.• FOR SYSTEMS WHERE en HAS 
NOT BEEN DECODED WITH AAS). 

Figura 5C1.3. 2118 Family Timing 
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A.C. CHARACTERISTICSll,2,31 
TA=O·C 10 70·C, Voo= 5V:t 10%, VSs=OV, unless olherwlse noled. 

READ, WRITE, READ·MODIFY·WRITE AND REFRESH CYCLES 

2118·3 2118-4 2118·7 

Symbol Parameler Min. Max. Min. Max. Min. Max. Unil Notes 

IRAC Access Time From RAS 100 120 150 ns 4,5 

ICAC Access Time from CAS 55 65 80 ns 4,5,6 

IREF Time Belween Refresh 2 2 2 ms 

IRP RAS Precharge Time 110 120 135 ns 

ICPN CAS Precharge Time (non·page cycles) 50 55 70 ns 

ICRP CAS 10 RAS Precharge Time 0 0 0 ns 

IRCO RAS 10 CAS Delay Time 25 45 25 55 25 70 ns 7 

IRSH RAS Hold Time 70 85 105 ns 

ICSH CAS Hold Time 100 120 165 ns 

IASR Row Address Sel·Up Time 0 0 0 ns 

IRAH Row Address Hold Time 15 15 15 ns 

IASC Column Address Sel·Up Time 0 0 0 ns 

ICAH Column Address Hold Time 15 15 20 ns 

IAR Column Address Hold Time to RAS 60 70 90 ns 

IT Transition Time (Rise and Fall) 3 50 3 50 3 50 ns 8 

lOFF Outpul Buffer Turn Off Delay 0 45 0 50 0 60 ns 

READ AND REFRESH CYCLES 

TRC Random Read Cycle Time 235 270 320 ns 

IRAS RAS Pulse Wldlh 115 10000 140 10000 175 10000 ns 

ICAS CAS Pulse Width 55 10000 65 10000 95 10000 ns 

IRCS Read Command Sel·Up Time 0 0 0 ns 

IRCH Read Command Hold Time 0 0 0 ns 

WRITE CYCLE 

tRc Random Wrlle Cycle Time 235 270 320 ns 

IRAS RAS Pulse Wldlh 115 10000 140 10000 175 10000 ns 

ICAS CAS Pulse Wldlh 55 10000 65 10000 95 10000 ns 

twos Wrlle Command Sel·Up Time 0 0 0 ns 9 

tWCH Wrlle Command Hold Time 25 30 45 ns 

tWCR Write Command Hold Time, 10 RAS 70 85 115 ns 

Iwp Wrlle Command Pulse Wldlh 25 30 50 ns 

IRWL Wrlle Command 10 RAS Lead Time 60 65 110 ns 

ICWL Write Command 10 CAS Lead Time 45 50 100 ns 

los Dala·ln Sel·Up Time 0 0 0 ns 

lOH Dala·ln Hold Time 25 30 45 ns 

tOHR Dala·ln Hold Time, 10 RAS 70 65 115 ns 

READ·MODIFY·WRITE CYCLE 

IRWC Read·Modlfy·Wrile Cycle Time 285 320 410 ns 

IRRW RMW Cycle RAS Pulse Wldlh 165 10000 190 10000 265 10000 ns 

tCRW RMW Cycle CAS Pulse Width 105 10000 120 10000 185 10000 ns 

IRWO RAS 10 WE Delay 100 120 150 ns 9 

Icwo CAS 10 WE Delay 55 65 80 ns 9 

NOTES: 
1. All voltages referenced to vss. _ 
2. Eight cycles are required after power·up or prolonged periods (greater than 2 ms) of RAS Inactivity before proper device operation is achieved. Any 8 cycles which perform 

refresh are adequate for this purpose. 
3. A.C. Characteristics assume 'T= 5 ns. 
4. Assume that tRCD " tRCD (max.). If tRCD Is greater than tRCD (max.) then tRAe wllllncreaSB by the amount that tRCD exceeds IRCD (max.). 
5. Load = 2 TTL loads and 100 pF. 

~: ~:~~~~~~rsDs~~~ft~d(~::");eference point only; If tRCD is less than tRCo (max.) access time Is tRAC' If tRCo Is greater than tRCO (max.) accesa time Is tRCo+tCAC' 
8. tT Is measured between VIH (min.) and VIL (max.). 
9. tWCS. tcwo and trrwo are speCified as reference pOints only. If twcs .. twcs (min.) the cycle Is an ~arly write cycle and the data out pin will remain high Impedance 

!~~:~~e~o~~~~:8:~:fr~e~r~!~'~: t~Cew,.~!~~~n~I\~~~~ ~n~a!~yt~~t~:~J'n~~~~~' ~~~h~~~~~so~/rs~~~~~~·~~::. cycle and the data oul will contain the data read from the 

Figure 5C1.3. 2118 Family Timing (Con'l) 



S.C.2 Enhanced Operation 

Two problems are evident from the previous investiga· 
tlon: 

1) SACK timing from command will not allow reliable 
operation while XACK Is not active early enough to pre· 
vent walt states. 

2) The normal write command required to guarantee 
data setup is not enabled until the CPU has sampled 
READY thereby forcing multiple walt states during write 
operations. 

The first problem could be resolved if an early command 
could be generated that would guarantee SACK was 

+5 

5,-----+'-1 

10 

s, ___ +--t1:=t2 0 
PRE 

$;---+--+'-10 

Q 

Q 

74LS74 

ALE -D<>-~-+~ CK Q 6 

74LS32 Q 

MRDC 1 11 
74LS74 

--2 CK Q 8 
MWTC 

CLR 

13 

T, T, 

EARLYRo 

valid when READY was sampled and SACK to data valid 
satisfied the CPU requirements. Figure 5.C.2.1 is a cir· 
cult which provides an early read command derived from 
the maximum mode status. The early command is en· 
abled from the trailing edge of ALE and disabled on the 
trailing edge of the normal command. The command 
provides an additional TCHCLmln - TCHLLmax + 
TCLMLmax - circuit delays = 53 ns of access time and 
time to generate RDY from the early command. If we go 
back to our previous equations, early command to valid 
data at the CPU is now: 

TCHCLmin - TCHLLmax+ 2TCLCL...;. TDVCLmax - buf­
fer and circuit delays = 333 ns 

T, 

Figure 5C2.1. Early Read and Write Command Generation 
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We can now use the slowest 2118 which gives 8202 and 
2118 access of 320 ns. Early command to ROY timing Is 
TCLCL - TCHLLmax - circuit delays - TR1 VCLmax = 
115 ns and provides 35 ns of margin beyond the 8202 
command to SACK delay. 

The write timing of the 8202 and write data valid timing 
of the 8086 do not allow use of an early write command. 
However, If the 8202 clock Is redl,lced from 25 MHz to 20 
MHz and WE to the RAM's Is gated with CAS, the ad­
vanced write command (AMWC) may be used. At 20 MHz 
the minimum command to CAS delay Is 148 ns while the 
maximum data valid delay is 144 ns. 

The reduced 8202 clock frequency stili satisfies no walt 
state read operation from early read and will insert no 
more than one wait state for write (assuming no conflict 
with refresh). 20 MHz 8202 operation will however re­
quire using the 2118-4 to satisfy read access time. 

Note that slowing the 8202 to 22.2 MHz guarantees valid 
data within 10 ns after CAS and allows using the 2118-7. 
Since this analysis is totally based on worst case 
minimum and maximum delays, the designer should 
evaluate the timing requirements, of his specific im­
plementation. 

It should be noted that the 8202 SACK is equivalent to 
XACK timing if the cycle being executed was delayed by 

refresh. Delaying SACK until XACK time causes the 
CPU to enter walt states until the cycle is completed. If 
the cycle is a read cycle, the XACK timing guarantees 
data is valid at the CPU before ROY is issued to the CPU. 

The use of the early command signals also solves a 
problem not mentioned previously. The cycle rate of the 
8202 @ 20 MHz requires that commands (from leading 
edge to leading edge) be separated by a minimum of 695 
ns. The maximum mode 8086 however may issue a read 
command 600 ns after the normal write command. For 
the early read command and advanced write command, 
725 ns 'ar,e guaranteed between commands. 

EARLVRo 

WElO RAMS 

'-----'CAS 

FIgure 5C2.2. Delayed Write to DynamIc RAMs 
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APPENDIX I 
BUS CONTENTION AND ITS EFFECT ON·SYSTEM INTEGRITY 

SYSTEM ARCHITECTURE 

As higher performance microprocessors have become 
availabl.e, the architecture of microprocessor systems 
has been evolving, again placing demands on memory. 
For many years, system designers have been plagued 
with the problem of bus contention when connecting 
multiple memories to a common data bus. There have 
been various schemes for avoiding the problem, but 
device manufacturers have been unable to design inter­
nal circuits that would guarantee that one memory 
device would be "off" the bus before another device 
was selected. With small memories (512x8 and 1 Kx8), it 
has been traditional to connect all the system address 
lines together and utilize the difference between tACC 
and tco to perform a decode to select the correct device 
(as shown in Figure 1). 

Figure 1. Single Control Line Architecture 

With the 1702A, the chip select to output delay was only 
100 ns shorter than the address access time; or to state 
it another way, the tACC time was 1000 ns while the tco 
time was 900 ns. The 1702A tACC performance of 1000 ns 
was suitable for the 4004 series microprocessors, but 
the 8080 processor required that the corresponding 
numbers be reduced to tACC= 450 ns and tco= 120 ns. 
This allowed a substantial improvement in performance 
over the 4004 series of microprocessors, but placed a 
substantial burden on the memory. The 2708 was 
developed to be compatible with the 8080 both In ac· 
cess time and power supply requirements. A portion of 
each 8080 machine cycle time had to be devoted to the 
architecture of the system decoding scheme used. This 
devoted portion of the machine cycle included the time 
required for the system controller (8224) to perform Its 
function before the actual decode process could begin. 

Let's pause here and examine the actual decode 
scheme that was used so we can understand how the 
control functions that a memory device requires are 
related to system architecture. 

The 2708 can be used to Illustrate the problem of having 
a single control line. The 2708 has only one read control 

function, chip select (eS), which is very fast (tco= 120 
ns) with respect to the overall access time (tACC = 450 
ns) of the 2708. It is this time difference (330 ns) that is 
used to perform the decode function, as illustrated in 
Figure 2. The scheme works well and does not limit 
system performance, but it does lead to the possibility 
of bus contention. 

ADDRESS3'--_______ ""-__ -ilc--_ 

. cs ----7-1----'-------1\ I 

DATA OUT 
1_· D~f~~E_I_.·.· 1~_~ 

Figure 2. Single Line Control Architecture 

BUS CONTENTION 

There are actually two problems with the scheme 
described in the previous section. First, if one device In 
a multiple memory system has a relatively long deselect 
time, and a relatively fast decoder is used, it would be 
possible to have another device selected at the same 
time. If the two devices thus selected were reading op­
posite data; that is, device number one reading a HIGH 
and device number two reading a LOW, the output tran· 
sistors of the two memory devices would effectively pro· 
duce a short circuit, as Figure 3 illustrates. In this case, 
the current path is from VCC on device number one to 
GND on device number two. This current is limited only 
by the "on" impedance of the MOS output transistors 
and can reach levels In excess of 200 mA per device. If 
the MaS transistors have a lot of "extra" margin, the 
current is usually not destructive; however, an instan· 
taneous load of 400 mA can produce "glitches" on the 
Vcc supply-glitches large enough to cause standard 
TIL devices to drop bits or otherwise malfunction, thus 
causing incorrect address decode or generation. 

The second problem with a single control line scheme is 
more subtle. As previously mentioned, there is only one 
control function available on the 2708 and any decoding 
scheme must use it out of necessity. In addition, any in­
advertent changes in the state of the high order address 
lines that are inputs to the decoder will cause a change 
in the device that is selected. The result Is the same as 
before-bus contention, only from a different source. 
The deselected device cannot get "off" the bus before 
the selected one is "on" the bus as the addresses rapid­
ly change state. One approach to solving this problem 
would be to design (and specify as a maximum) devices 
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with tOF time less than tco time, thereby assuring that if 
one device Is selected while another Is simultaneously 
being deselected, there would be some small (20 ns) 
margin. Even with this solution, the user would not be 
protected from devices which have very fast tco times 
(tco Is specified as a maximum). 

2708=-;------, 
Vee I 

I 

~ I 
I 
I 
I 

Vss I _______ .J 

r----"2iOa:i 
I Vee 

OR I 
TIE I 

DATA 
BUS 

I 

I 
I 
I 
I Vss L ______ _ 

RESULTS OF IMPROPER TIMING WHEN OR TYING MULTIPLE 
MEMORIES. 

Figure 3. Results 01 Improper Timing when OR Tying Muillple 
Memories 

The only sure solution appears to be the use of an exter· 
nal bus driver/transceiver that has an independent 
enable function. Then that function, not the "device 
selecting function," or addresses, could control the 
flow of data "on" and "off" the bus, and any contention 
problems would be confined to a particular card or area 
of a large card. In fact, many systems are implemented 
that way-the use of bus drivers is not at all uncommon 
in large systems where the drive requirements of long, 
highly capacitive interconnecting lines must be taken 
into consideration-it also may be the reason why more 
system deSigners were not aware of the bus contention 
problem until they took a previously large (multicard) 
system and, using an advanced micorprocessor and 
higher density memory devices, combined them all on 
one card, thereby eliminating the requirement for the 
bus drivers, but experiencing the problem of bus con­
tention as described above. 

THE MICROPROCESSOR/MEMORY INTERFACE 

From the foregoing discussion, It becomes clear that 
some new concepts, both with regard to architecture 
and performance are required. A new generation of two 
control line devices Is called for with general require· 
ments as listed below: 

1. Capability to control the data "on" and "off" the 
system bus, independent of the device selecting func­
tion Identified above. 

2. Access time compatible with the high performance 
microprocessors that are currently available .. 

Now let's examine the system architecture that is reo 
quired to implement the two line control and prevent 
bus contention. This Is shown In the form of a timing 
diagram (Figure 4). As before, addresses are used to 

generate the unique device selecting function, but a 
separate and independent Output Enable (OE) control is 
now used to gate data "on" and "off" the system data 
bus. With this scheme, bus contention Is completely 
eliminated as the processor determines the time during 
which data must be present on the bus and then 
releases the bus by way of the Output Enable line, thus 
freeing the bus for use by other devices, either 
memories or peripheral devices. This type of architec­
ture can be easily accomplished If the memory devices 
have two control functions, and the system Is im­
plemented according to the block diagram shown in 
Figure 5. It differs from the previous block diagram 
(shown in Figure 1) In that the control bus, which Is con­
nected to all memory Output Enable pins, provides 
separate and Independent control over the data bus. In 
this way, the microprocessor is always in control of the 
system; while in the previous system, the microproc­
essor passed control to the particular memory device 
and then waited for data to become available. Another 
way to look at it Is, with a single control line the sytem Is 
always asynchronous with respect to microprocessor/ 
memory communications. By using two control lines, 
the memory is synchronized to the processor. 

ADDRESS --y V---.1\ _____ "-

SELECTION 

OUTPUT 
ENABLE 

D~~~ --------l( ... __ ....J)I-----

Figure 4. Two Control Line Archltecture-

Figure 5. Two Control Lln~ Architecture 
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INTRODUCTION 

Real-time saftware systems differ markedly fram batch 
pracessing systems. An external signal indicating that 
it is time far an haurly lag .or an interrupt caused by an 
emergency canditian is an event usually nat encaun­
tered in batch pracessing. Because real-time cantral 
systems .of all types share a number .of characteristics, 
it is passible ta develap flexible .operating systems 
which will meet the needs .of a great majarity .of real­
time applicatians. Intel Carparatian has develaped such 
a system, the RMX/80™ system, far the iSBCTM line .of 
8080/85 based single baard camputers. Thus, the user is 
released fram the chare .of designing an .operating 
system and is free ta cancentrate his effarts an the 
applicatians saftware far the individual' tasks and 
merely integrate them inta a pre-existing system. 

But what if a user daes nat need all the capabilities .of an 
RMX/80™ system or wants a different hardware can­
figuratian than an iSBC™ camputer? This applicatian 
nate cantains a set .of PLlM-86 procedures designed ta 
be used in medium-camplexity 8086 real-time systems. 

A narmal cantral system can be braken dawn inta a 
number .of cancurrently executable tasks_ The CPU can 
be running .only .one task at any instant .of time but the 
speed .of the pracessar .often makes cancurrent tasks 
appear ta be running simultaneausly. Breaking the saft­
ware functians inta separate cancurrent tasks is the jab 
.of the designer/pragrammer. Once this is dane there re­
mains the prablem .of integrating these tasks with a 
supervisary pragram which acts as a traffic cap in the 
scheduling and executian .of the separate tasks. This 
nate discusses a set .of PLlM-86 pracedures ta imple­
ment the supervisary pragram functian. 

A minimum .operating system might (like its batch prac­
essing causin) have .only a queue far ready tasks (tasks 
waiting ta be executed). Any task that becames ready is 
put an the battam .of the queue and when a running task 
is finished, the task an the tap .of the queue is started. 
Any inferrupt causes the state .of the system ta be 
saved, an interrupt rautine ta be executed, the state .of 
the system ta be restared, and executian .of the inter­
rupted pragram ta cantinue. The interrupt rautine might 
(.or might nat) put a new task an the ready queue. This 
appraach has warked well far many simple cantral 
systems, especially in the single-chip camputer area. 
But what features are lacking in this appraach that are 
necessary (.or at least nice)? 

1. A system .of priarities is .often needed. All waiting 
ready tasks must be executed saaner .or later but same 
tasks need immediate attentian while .others can be run 
when there is nathing else ta da. If a midnight manthly 
repart, due far campletian by 8 a.m. the next day, is in 
the pracess .of printing at 1 a.m_ and a fire alarm .occurs, 
it is reasanable ta assume that the fire alarm has higher 
priarity since the fire cauld canceivably render the 
manthly repart irrelevant. 

There are a number .of ways in which ta assign priarities. 
Tasks are usually numbered and may be assigned 
priarities accarding ta their ascending (.or descending) 
numbers. They cauld instead be grauped inta a number 
.of priarity levels, with tasks an the same level having 
equal priarities. The latter appraach is taken in this 
applicatian nate. 

Assume that a manthly repart is being printed and an 
alarm .occurs in the external warld that, because .of its 
impartance, must be attended ta immediately. The inter­
rupt rautine,executed as a result .of the alarm input, 
shauld nat autamatically return ta the interrupted lag­
ging rautine but instead shauld call a preempt rautine 
which'checks ta see if a higher priarity task is ready far 
executian. The reasan far this is that the manthly repart 
rautine, if returned ta, has na way .of "knawing" that a 
higher priarity task is waiting ta be executed. The alarm 
.output task has been readied by the interrupt rautine 
and since it is knawn ta be higher priarity than the lag­
ging task, it is executed first, thereby immediately 
signaling the system aperatar that there has been an 
alarm. It then returns ta the lagging task pravided that 
there are na further high priarity tasks waiting ta be exe­
cuted. The lagging printer may nat have even paused 
during the alarm .output task. The camputer appears ta 
human beings ta be executing cancurrent tasks 
simultaneausly. 

Of caurse, the alarm .output functian cauld be perlarmed 
inside the interrupt pracedure. But saaner .or later, the 
designer will encaunter a warst case situatian in which 
there is nat enaugh time ta execute all required tasks 
between interrupts, and the system will fall behind in 
real-time. It is much Cleaner ta make the interrupt pra­
cedures as shart as passible and stack up tasks ta be 
executed than ta stack up interrupt pracedures. ' 

2. Anather feature that might be necessary is a capabil­
ity ta put a task ta sleep far a knawn peri ad .of real time. 
Assume a relay .output must remain clased far .one sec­
and. Mast real-time systems can nat talerate the dedica­
tian .of the CPU ta such a trivial task far that length .of 
time sa a system .of pragrammable dynamic delays 
cauld be implemented. This applicatian nate imple­
ments such a system. 

Althaugh the PLlM-86 procedures here have been' de­
bugged and tested, it is assumed that the user will want 
ta change, add, .or delete features as needed. This appli­
catian nate is intended ta present ideas far a lagical 
structure.of pracedures that, because they are written in 
PLlM-86, can be easily madified ta user requirements. 
Each pracedure will be discussed in detail, and integra­
tian and aptianal features will be presented. 

PLlM-86 

PLM-86 is a black structured high level language that 
allaws direct design .of saftware madules. Using 
PLlM-86, designers can farget their assembly level 
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c'oding'problems and design direCtly,lIi a subset of the 
English language. The 801i6' architect'ure was designed 
to accommodatehigh'ly structured languages and the 
PLM'86 compileriS quite effIC:ierit in the generation of 
machine code. ' , ' 

PLM-86 STRUCTURE 

PLlM-86 automatically keeps track of the level of the d,if­
ferentsoftware blocks, (See Chapter 10, "PLiM,86 Pro~ 
gramrningManual"). There are. methods' of writing 
PLI,M·S6whic,h contribute to the understandability cif 
I/Je source code without adding ,to the amountof,object 
code generated., For instance, the following three 
IF/THEN/ELSEbiocks, generate identical object ,code 
but are complied froln different source statements. 

Lln~,' Level 

3 t 
7 
8 

9 
10 

1 ' 
l ' , " 

11 , ,,1, 
13 2 
14 2 
15 1 
16,' 2 
17 2 

,,18 1 

'Stateinent 

II"A= 1;1 THEN C=D; ELSE E=F;G= H; 

IF A=B THEN 
C='D;' 
ELSE 
E=F; 
G=H; 

IF A= BTHEN DO; 
C =' D; . 
END; 
ELSE DO; 
E= F; 
END; 
G=H; 

'It is noi instantly apparent frond,~e,code on line3 or the 
code starting at lirie 7 which' statements will be exe­
cuted: However, adding the DO;!ln.d END; statements 
(starting at line 11) remove any doubt. ' Either the 
statements starting at line 11 or the statements starting 
at 11Iie15 will be executed and the stahlment online 18 
will Qe executed in either case. Why? Because all these 
lines are at level 1 in the block structure. The other lines 
are at level 2 because olthe OO;/END; combinations. 
When 6,ne refers to the relatively complex structures of 
thet~sk multiplexer procedures, the usefulness of such 
an approach is obvioLis, as the procedures have been in­
dented according to the level numbers generated by 
PLlM·86. In particular, if the designer ,Is not careful, 
nes\ed IFITHEN/ELSE statements' can generate im­
pro'per resu,lts. Usinga proper number of DO;/Ei'JD; com­
binations avoids the possible ambiguity in nested 
IF/TH'EN/ELSE statements as can be seen in the ACTI­
VATE$TASk procedure IIshid In the PLiM·86 source 
code later hi this note. The DO;/END; construct naturalLy 
must'be ~sed when multiple statements are required 
within theIFliHEN/ELSE blocks. Foliowing are exam­
ples of the possible primary structures of PLlM-86: 

DO; , 
A=B; , 
C=D; , 
END; , '",: . 

DO WHILE A= B; 
C=D; 
E=F; 
END; 

DO 1';',1,105; 
A=I; 
C=D+I; 
END; 

DO CASE A; 
A=B; 
A=C; 

, ,A'=D; 
END; 

IF A= BTHEN PO; 
O=D; 
END; 

ELSE DO; 
E= F; 
END;' , 

IF ,'A= B THEN DO; 
, ,C=D; 

END; 
.ELSE IF A = C TH EN PO; 

D=E; 
END; ". 

ELSE IF A= D THEN DO; 
E=F; 

, END; 
ELSE DO; 

F=G; 
END; 

A complete tutorial on structured programming Is 
beyond the scope and intentof this application note and 
the reader is referred to the appropriate referencesap­
pearing in the bibliography. 

ANATOMY OF THE TASK MULTIPLEXER 

Once a deciSion is made on the 'details of thek'ind of 
data' structure' that is needed to implement the task 
multiplexer, the procedures that manipulate the struc­
ture are'relatively simple to write. ,The fallowing'char­
acteristics are assumed for the task muJtiplexer appear­
ing' in this applicaiiC)n note. ' ," ' 

There"are .two levels of priority, high a~dJow.AIi high 
priority tasks that are ready to run will be dispatched, 
executed, and completed, on a FIFO basis, before any 
.low priority task is dispatChed. 

Any task can be Interrupted. No' task multiplexer pro-
cedure can be ,interrupted. ,"'", 

If a high priority task is interruptEld, it ,,;iill bec'o'mplelEid 
before any other task is dispatched.lla low,priorlty 'ask 
is interrupted, all ready highpdority tasks wiil be~is­
patched~ executed,and completed before program' con-
trol is returned to the low priority task. ' 
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There are two ready queues, one for high priority tasks 
and one for low priority tasks. Each queue has a head 
(top) pointer and a tail (bottom) pointer and tasks on any 
queue are link·listed from head to tail. Tasks are "dis· 
patched" (taken off the queue) at the head and "acti­
vated" (put on the queue) at the tail on a FIFO basis. 

Link-listed queues are chosen for simplicity. All dis­
patch and activate information is contained in the head 
and tail pointers. Tasks located in the middle of these 
link·lists .are of no concern for activating and dispatch­
ing. This means, of course, that tasks are executed in 
the order that they appear on the queue, i.e., first-in, 
first-out. 

There is a painter byte associated with each task. If a 
task is on either the low priority or high priority ready 
queue, its associated pOinter byte will point to the next 
task number on the list. These pOinter bytes enable the 
task ready lists to be linked. Note that the pointer byte is 
o for the last task on a list. 

There is a status (flag) byte associated with each task. If 
a task is on a ready list or a delay list, bit 7 will be a "1" 
indicating that that particular task is busy. If a task is on 
either high priority or low priority ready queues,.bit 6 will 
be a "1" indicating that the task is on one of the ready 
queues. If the task is listed on the delay list, (see next 
item), bit 5 will be a "1" indicating that this particular 
task has a delay in progress. If a task is unlisted, bits 
5-7 will be "0." Bits 0-4 are not used by the task 
multiplexer procedures and are available to the user, giv­
ing 5 user defined flags per task. 

There is a delay byte associated with each task. This 
feature allows tasks to be "put to sleep" for a variable 
length of time, from 1 to 255 "ticks" of the interrupt 
clock. If a task does not need an associated delay then 
this byte is available to the user as a utility byte to be 
used for any purpose. These delays will be discussed in 
detail later in the application note. 

The following diagram is a representation of the task 
multiplexer data structure: 

TASK NUMBER POINTER BYTE STATUS BYTE DELAY BYTE 

0 n n+1 n+2 
1 n+3 n+4 n+5 
2 n+6 n+7 n+8 
3 n+9 n+ 10 n+11 

n+ 12 n+ 13 n+ 14 
n+ 15 n+ 16 n+ 17 

m-1 n+ 3m-6 n+3m-5 n+ 3m- 4 
m n+3m- 2 n+3m-l n+3m 

3m+3 TOTAL RAM BYTES 
n = FIRST RAM ADDRESS OF ARRAY 

Following is a chart of what a task multiplexer data 
structure might look like at a given moment in time: 

HIGH$PRIORITY$HEAD = 5 
HIGH$PRIORITY$TAIL = 3 
LOW$PRIORITY$HEAD = 8 
LOW$PRIORITY$TAIL = 10 
DELAY$HEAD = 4 

TASK NUMBER TASK(n).PNTR TASK(n).STATUS TASK(n).DELAY 

10 

·See text. 

7 
1 
o 
2 

10 
o 

1100 0000 
1010 0000 
1100 0000 
1010 0000 
1100 0000 
0000 0000 
1010 0000 
1100 0000 
0000 0000 
1100 0000 

o 

o 
o 

What information can one ascertain from observation of 
the above chart? The ready-to·run high priority tasks, in 
order, are 5,1,3. This can be seen by following the high 
priority ready linked list from head to tail. The ready-to­
run low priority tasks, in order are 8, 10. The 
TASK(n).PNTR byte = 0 for the last listed task. Tasks 4, 
7, 2 are listed, in order, on the delay list and have 
associated delays of 4,10,13 ticks respectiVely. Tasks 6 
and 9 are not I isted and therefore id Ie. The * for the 
TASK (0) bytes indicate a special condition. There is no 
TASKOO allowed and a zero condition is treated as an er· 
ror condition. TASK(O).PNTR byte is used for the 
DELAY$HEAD byte to minimize code in the ACTI­
VATE$DELA Y procedure. TASK(O).STATUS and 
TASK(O).DELAY are unused bytes. 

DEFINITIONS 

NEW$TASK is the number of the task that will be in­
stalled on a ready list or the delay list when ACTI­
VATE$TASK or ACTIVATE$DELAY is called. 

NEW$DELAY is the value of the delay that will be in­
stalled on the delay list when ACTIVATE$DELAY is 
called. 

A task is defined as RUNNING if it is in the act of execu­
tion or if an interrupt routine is executing which inter­
rupted a RUNNING task. 

A task is defined as PREEMPTED if it has been inter­
rupted and a higher priority task is being executed. 

A task is defined as READY if it is contained within one 
of the ready queues. 

A task is defined as IDLE if its BUSY$BIT (bit 7) is not 
set, i.e., it is not listed anywhere else. Note that it is 
possible to completely disable an IDLE task simply by 
setting its BUSY$BIT. In that case, it is not and cannot 
be listed anywhere else. This feature is useful during 
system integration. 
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STATE DIAGRAM 

The state diagram indicates the relationships among 
the possible task states and the procedures involved in 
changing states. 

The state diagram looks somewhat complicated and a 
discussion of the possible change of states is in order. 
Assuming a certain existing state, future possible 
states will be discussed including the procedures which 
can cause the change of state. 

From the unlisted (idle) state, the ACTIVATE$TASK pro· 
cedure will put the NEW$TASK on either the high priori· 
ty ready queue or the low priority ready queue at the tail 
end of the queue. The number of the task automatically 
assigns the priority and therefore the proper queue. All 
task numbers below FIRST$LOW$PRIORITY$TASK are 
assumed to be high priority tasks. Also, from the 
unlisted state the ACTIVATE$DELAY procedure will put 
the NEW$TASK and NEW$DELAY at the proper position 
on the delay list. 

After a task has been put on either high priority ready 
queue or low priority ready queue it eventually will go to 
the RUNNING$TASK state. The DISPATCH procedure 
accomplishes this action. 

From the delay list a task can only go to one of the ready 
queues. When a task's associated delay goes to zero the 
DECREMENT$DELAY procedure calls the ACTI· 
VATE$TASK procedure and installs the NEW$TASK on 
the proper ready queue. 

From the RUNNING$TASK state a task may use the 
CASE$TASK procedure to put itself on the ready list tail 
by setting NEW$TASK = RUNNING$TASK. It may 
instead 'put itself on the delay list by setting 
NEW$TASK= RUNNING$TASK and also setting 
NEW$DELAY equal to something other than zero. Other· 
wise, it will progress to the unlisted state upon comple· 
tion. 

The CASE$TASK procedure unlists tasks when they 
have completed execution. A low priority RUN· 
NING$TASK will go to the preempted state if a high 
priority task is on the ready list following an interrupt 
during execution of the low priority task if the PREEMPT 
procedure is called. 

And finally, a PREEMPTED$TASK will return to a RUN· 
NING$TASK state when all high priority ready tasks 
have completed execution. This is accomplished by the 
DISPATCH procedure which then returns to the PRE· 
EMPT procedure. 

STATE DIAGRAM 
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Some lockouts are necessary to avoid chaos in the task 
multiplexer. These are as follows: 

The BUSY$BIT= 1 in the TASK(n).STATUS byte will 
abort the ACTIVATE$TASK and the ACTIVATE$DELAY 
procedures and return an indication of the aborting by 
setting the STATUS byte equal zero. A task must be 
unlisted to be able to be installed on a list. 

A RUNNING$TASK may put itself on a list after it has 
executed but it is not allowed to re·list any listed tasks 
(i.e., no task may ever be listed twice at the same time!). 
A task that tries to activate another task that is already 
busy can wait (via the delay feature) for the required task 
to complete execution, become idle, and therefore be 
available to be activated. A PREEMPTED$TASK may not 
be listed. If the ACTIVATE$TASK or ACTIVATE$DELAY 
procedure is called and NEW$TASK = PRE· 
EMPTED$TASK, the procedure will be aborted and 
return with STATUS = O. Otherwise, the STATUS byte is 
returned with the new task status. 

Only one task may be preempted as there are only two 
levels of priority. The user may desire to implement 
many levels of priority in which case a linked·list of 
preempted tasks could be declared in a structure which 
includes the number of the first task in each priority 
level group of tasks. This obviously complicates the 
PREEMPT and DISPATCH procedures. 

The tasks themselves are made into reentrant proce· 
dures because of the necessary forward references' of 
the CASE$TASK procedure. 

PLlM·86 allows structures and arrays of structures. The 
structure needed for the task multiplexer is a link·list 
pointer byte, a task status byte, and a task delay byte. 
Each task has an associated painter byte, status byte, 
and delay byte. These are combined into an array of up 
to 255 tasks. For purposes of this discussion, the 
number of tasks is chosen as an arbitrary 10, leading to 
the following array declaration. 

DECLARE TASK(10)STRUCTURE 
(PNTR BYTE,STATUS BYTE,DELAY BYTE); 

Thus the delay byte associated with task number 7 can 
be accessed by using the variable TASK(7).DELAY and 
the status of task number 5 can be examined through 
the use of TASK(5).STATUS. The TASK(n).PNTR byte 
contains the task number of the next listed task on the 
same list as TASK(n), i.e., if TASK(n) is on the delay list, 
then TASK(n).PNTR will contain the number of the next 
task on the delay list or 0 indicating the end of the list. 

TASK(n).STATUS is a byte with the following reserved 
flags: 

BIT 7 BUSY$BIT, "1" IF TASK IS BUSY 
BIT 6 READY$BIT, "1" IF ON READY LIST 
BIT 5 DELAY$BIT, "1" IF ON DELAY LIST 
BIT 4 - BIT 0 UNUSED 

The unused bits in the STATUS byte are available to the 
user. 

The TASK(n).DELAY byte is a number which can put 
TASK(n) to sleep for up to 255 system clock ticks. The 
system clock tick is interrupt driven from the user's 
timer and its period is chosen for the particular applica· 
tion. A one millisecond timer is popular and assuming 
such a time, delays of up to 255 ms are available in the 
task multiplexer as it is written. If this delay range is not 
wide enough, the user may want to define his 
TASK(n).DELAY as a word instead of a byte in the 
PLlM-86 declare statement, giving delays of up to 65 
seconds from the basic one millisecond clock tick. 

LINKED LISTS 

Linked lists are useful for a number of reasons. 
However, a treatise on linked lists would defeat the pur· 
pose of this application note and the reader is referred 
to the references listed in the bibliography. 

The linked lists used in this application, note have a 
head byte associated with each list, i.e., the head byte 
contains the number of the first task on the list. The first 
task painter byte points to the second task on the list, 
etc. The painter of the last task on the list is set at zero 
to indicate that it is the last task. Two of the linked lists 
are ready queues and require a tail byte as well as a head 
byte. The tail byte paints to the last entry on the list. 
Tasks are put on the bottom, or tail, of the ready lists 
and are taken off the top, or head, of the ready lists. The 
delay list has no tail but does have a head, called a 
DELAY$HEAD. The delay list is not a queue, as delays 
are installed on the list in order of delay magnitude for 
reasons to be explained later. 

There are two ready lists, one for high priority tasks and 
one for low priority tasks. The head and tail pointers 
associated with these two lists are: HIGH$PRIORITY$ 
HEAD, HIGH$PRIORITY$TAIL, LOW$PRIORITY$HEAD, 
and LOW$PRIORITY$TAIL. Obviously, the structure can 
be expanded to any number of priority levels by expand· 
ing the head and tail pointers and the historical record 
of the preempted tasks. 

DELAY STRUCTURE 

A task multiplexer can have a number of simultaneous 
delays active and it would be efficient if there were a 
way to keep from decrementing all delays on every clock 
tick, which is most time consuming. One way to accom· 
plish this feat is to move the problem from the 
DECREMENT$DELAY routine to the ACTIVATE$DELAY 
routine. The delays are arranged in a linked·list of 
ascending sizes such that the value of each delay in· 
cludes the sum of all previous delays. This allows the 
decrementing of only one delay during each clock tick 
interrupt routine. An example will further illuminate this 
approach. Suppose the following conditions exisl: 
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Task 7 has a 5 millisecond delay 

Task 3 has an 8 millisecond delay 

Task 9 has a 14 millisecond delay 

The delay structure is arranged so that: 

DELAY$HEAD = 07 
TASK(7).PNTR = 03 
TASK(3).PNTR = 09 
TASK(9).PNTR = 00 
TASK(7).DELAY=05 (FIRST DELAY=5) 
TASK(3).DELAY = 03 (5 + 3 = 8) 
TASK(9).DELAY =06(5 + 3 + 6 = 14) 

The linked·list is arranged so that the delays are in 
ascending order and each delay is equal to the sum of 
all previous delays up through that point. Since this is 
true, all delays are effectively decremented merely by 
decrementing the first delay. Of course, something for 
nothing is impossible and the speed gained by arrang· 
ing the delays in the above manner is paid for by the 
complexity of the ACTIVATE$DELAY routine. But since 
the ACTIVATE$DELAY routine is executed less fre· 
quently than the DECREMENT$DELAY routine, the sav· 
ings in real time is worth the added complexity. 

Suppose a new delay is to be activated in the· above 
scheme. Task 5 with a delay of 10 milliseconds is to be 
added. A before and after chart will indicate what the 
ACTIVATE$DELAY procedure must accomplish. 

BEFORE 

TASK NUMBER 07 03 09 

POINTER 07 03 09 00 

DELAY 05 03 06 

AFTER .. 

07 03 05 09 TASK NUMBER 

POINTER 

DELAY 

07 03 05* 09@ 00 

05 03 02@ 04* 

FIRST POINTER IS THE DELAY$HEAD 
CHANGES ARE MARKED WITH AN • 
ADDITIONS ARE MARKED WITH AN @ 

Note that the pOinter before the added task has changed 
and the delay after the added task has changed. The 
function of the ACTIVATE$DELAY procedure is to ac· 
complish these changes and additions. 

PROCEDURES 

The following procedure explanations reference the 
PLlM·86 source code listing which follows the applica· 
tion note text. . 

ACTIVATE$TASK Procedure 

This procedure is initiated by a call instruction with the 
byte NEW$TASK containing the number of the task to 
be put on the proper ready queue. 

Interrupts must be disabled whenever the link·lists are 
being changed. If interrupts· are enabled when this 
procedure is called, they should be re·enabled upon 
returning. 

The assignment of priority is a simple matter. A declare 
statement, DECLARE FIRST$LOW$PRIORITY$TASK 
LITERALLY 'N,' (where N is the actual number of the 
first low priority task) indicates to the procedures that 
tasks 1 to N are high priority tasks and tasks N or higher 
are low priority tasks. 

This procedure checks the busy bit in the status byte to 
see if this particular task is already busy and if so, 
returns a STATUS of zero. Otherwise, it returns the new 
STATUS of the task. It then checks the priority to see if 
this particular task is a high or low priority. If it is high 
priority, then the task pOinter pOinted to by the HIGH$ 
PRIORITY$TAIL pOinter is changed from zero to the 
number of the NEW$TASK. The HIGH$PRIORITY$TAIL 
pOinter is then changed to the number of the 
NEW$TASK and the pOinter associated with NEW$ 
TASK is made equal to zero. This completes the ACTI· 
VATE$TASK functions. If the new task is a low priority 
task, then the same functions are performed using the 
LOW$PRIORITY$TAIL pOinter. 

ACTIVATE$DELAY Procedure 

This procedure is initiated by a call with the byte NEW$ 
TASK containing the number of the task to be put on the 
delay list and the byte NEW$DELAY containing the 
value of the associated delay. 

Interrupts are disabled and the busy bit of this particular 
task is checked. If the busy bit is set the STATUS byte is 
set to zero and the procedure returns without activating 
the delay. If the busy bit is not set the integer value DIF· 
FERENCE is set equal to the NEW$DELAY value. 
POINTER$O is set equal to the DELAY$HEAD. POINT· 
ER$1 is set to zero. The DO WHILE loop executes until 
POINTER$O equals zero or DIFFERENCE is less than 
zero. Remember that the proper place to insert the new 
delay is being searched for,and that wiH be eitherat the 
end of the list (POINTER$O = 0) or when the sum of the 
previous delays do not exceed the neW delay value. The 
DO WHILE loop l;1as POINTER$O, POINTER$1, OLD$DIF· 
FERENCE, and DIFFERENCE keeping track of where 
the procedure is in the loop, while searching for the 
proper place to insert the new delay. The existing delays 
are sequentially subtracted from the remains of NEW$ 
DELAY according to the link·listed order until the end of 
the list or a negative result is encountered indicating 
that the proper delay insertion pOint has been reached. 
At this point POINTER$O contains the task number to be 
assigned to TASK(NEW$TASK).PNTR. POINTER$1 con· 
tains the task number immediately preceding the 
NEW$TASK such that TASK(POINTER$1). PNTR= NEW$ 
TASK and our. link list is fully updated, with the actual 
delays yet to go. If POINTER$O = 0 it means that the new 
delay is larger than any of the other delays and therefore 
should go on the end of the list so TASK(NEW$ 
TASK).DELAY is set equal to the DIFFERENCE. If 
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POINTER$O is not equal to zero then if POINTER$O 
equals POINTER$1 (indicating that there were not any 
delays previously listed), then TASK(POINTER$1).PNTR 
is set equal to zero. TASK(NEW$TASK).DELAY is 
set equal to the OLD$DIFFERENCE and TASK 
(POINTER$O).DELAY is set equal to the negative of DIF· 
FERENCE which at this point is negative, thereby 
resulting in a positive unsigned number. The reader is 
encouraged to implement an example (see Delay Struc­
ture section) to prove that the above approach is valid. 
Particular attention should be paid to the contents of 
the two pOinters, as they are the key to the procedure. 
The final function of this procedure is to set the 
BUSY$BIT and DELAY$BIT in the TASK(NEW$ 
TASK).STATUSbyte. The byte named STATUS which is 
returned by this procedure is set equal to the status of 
the new task. If it is desired to have interrupts enabled, 
they must be enabled after the procedure return instruc­
tion. The reason for such a complex method of ac­
tivating a delay will become apparent in the following 
section. 

DECREMENT$DELAY Procedure 

The first delay on the linked-list is decremented and, if it 
is zero, the associated task is put on the appropriate 
ready queue. The next delay (if any) is checked to see if 
it is zero and if so, that task is put on the appropriate 
ready ,queue, etc. A loop is performed until either no 
delay or a non-zero delay is found. The procedure then 
returns. 

It is assumed that this procedure is part of an interrupt 
routine and that the interrupts are disabled during its 
execution. Interrupts cannot be enabled during changes 
to any of the linked-lists or else recovery may not be 
possible., 

This ,procedure begins by checking to see if there are 
any active delays. If DELAY$HEAD = 0 thEm this pro­
cedure returns immediately. Otherwise it decrements 
the first delay. If this delay goes to zE1ro then ,the 
associated task number is passed to the ACTIVATE$ 
TASK procedure as the, OFF$DELAY byte. A new 
DELAY$HEAD is chosen from the next link-listed delay 
and that delay checked for a,value of zero which will 
happen if the first two or more delays are equal. This 
loop. is accomplished by the DO WHILE, DELAY$ 
HEAD <> 0 AND TASK(DELAY$HEAD).DELAY = 0; This 
procedure is designed to require very little CPU time 
unless a delay times out. The DO WHILE loop is by­
passed if the resulting delay value is not zero. A certain 
amount of care should be exercised to insure that many 
delays do not all time out at the same time. One method 
would be to modify the ACTIVATE$DELAY procedure to 
insure that there are no zero entries in the delay bytes. 
The basic procedure, however, assumes that the clock 
"tick" timing will be chosen to minimize the above 
potential problem. 

CASE$TASK Procedure 

This procedure performs the function of calling the task 
indicated by the contents of the RUNNING$TASK byte. 
All listed tasks are called in this manner. The 
CASE$TASK procedure is called by the DISPATCH pro­
cedure. When a particular task has completed execution 
it returns to the CASE$TASK procedure which then 
resets the BUSY$BIT and the READY$BIT and re'turn,s to 
the DISPATCH procedure after setting RUNNING$TASK 
equal to zero. This procedure allows a task to relist itself 
immediately upon returning from execution. 

PREEMPT PROCEDURE 

The PREEMPT procedure is called whenever it is pos­
sible that a high priority task has been put on the ready 
queue while a low priority task was in the process of 
execution. An example will il,lustrate: 

Assume that the control system is being interrupted by 
the 60 Hz line frequency and a register is being in­
cremented each time this 16.67 ms edge occurs. When 
the register gets to 60 (indicating that one second has 
passed), the register is zeroed and the high priority time­
keeping task is put on the ready queue. Assume also 
that a low priority data logging task was running when 
this interrupt occurred. The interrupt routine calls PRE­
EMPT. If a high priority task is running, PREEMPT 
simply returns. But in our example, a low priority task is 
running so PREEMPT transfers RUNNING$TASK to 
PREEMPTED$TASK and calls DISPATCH, which calls 
CASE$TASK, which calls the time-keeping task. When 
the time-keeping task ,has completed, it returns to 
CASE$TASK which returns to DISPATCH which returns 
to the PREEMPT procedure which returns to the inter­
rupt routine which returns to the interrupted low priority 
data logging task if no other high priority tasks are on 
the ready queue. If the high priority ready queue is not 
empty, any and all high priority tasks will be completed 
before the interrupted routine is returned to. PREEMPT 
refuses to return to the interrupt routine until HIGH$ 
PRIORITY$HEAD is equal to zero. It is important to note 
that a low priority task will not be preempted unless the 
PREEMPT procedure is called. As noted above,'it is nor­
mally called from the interrupt routine which interrupted 
the low priority task, but there is nothing to prohibit 
PREEMPT from being called from inside a low priority 
task procedure. 

DISPATCH PROCEDURE 

This procedure calls a high priority task if HIGH$ 
PRIORITY$HEAD is not equal to zero, restores a pre­
empted task if PREEMPTED$TASK is not equal to zero, 
calls a low priority task if LOW$PRIORITY$HEAD is not 
equal to zero, and simply returns if there is nothing to 
do, all in order of priority. The DISPATCH procedure is 
called from the main program loop which must enable 
interrupts as DISPATCH disables interrupts as soon as 
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it is called. It is also called by the PREEMPT procedure. 
RUNNING$TASK must be 0 when this procedure is 
called. 

PLlM·a6 PROCEDURES 

Because the block structure and levels are so important 
to the understanding of the following procedures, they 
have been indented according to level. This was a sim· 
pie task accomplished by no indenting for level one, 
indenting once for level two, etc. The resulting attrac· 
tive, easy to follow format was worth the effort to 
increase the initial level of understanding for readers of 
this application note who are not intimately familiar 
with PLiM. 

Everything except the very simple main program loop 
has been made into procedures. Interrupt routines and 
tasks are also procedures. Keeping track of interrupts, 
calis, and returns is easy for PLiMand a violation of the 
block structure through such devices as GOTO targets 
outside the procedure body is the best way the author 
knows to crash and burn. Honor the power of the struc· 
ture, accept the limitations involved, and checkout and 
debugging will be a pleasure. 

Since CASE$TASK references the individual tasks, the 
task procedure structure was included in the PLlM·86 
compilation. All the user has to do is insert the par· 
ticular task code in place of the I'TASKnn CODE'I com· 
ment, define the interrupt procedures and the system 
should be ready to run. Obviously, the user will desire to 
change the total number of tasks and the number of the 
FIRST$LOW$PRIORITY$TASK. 

INITIALIZATION AND THE MAIN LOOP 

The last entry in the PLlM·86 program is the initialization 
process which essentially zeros the task multiplexer 
data and the main loop which loops until TRUE= FALSE, 
i.e. forever, with interrupts enabled. The STATUS = 
STATUS instruction simply insures that the loop can be 
interrupted as the instruction following an ENABLE in· 
struction is not interruptible. 

These few instructions are included for information only 
and will need to be expanded considerably for use in a 
real·world system. The task multi'plexer procedures 
were checked out on an iSBC 86112™ computer running 
under random interrupt control and these instructions 
were the minimum necessary to cause the system to 
run. As was stated earlier, the following source code 
does not include any interrupt procedures and these will 
have to be generated following the format explained in 
the PLlM·86 programming manual. 

ADDITIONAL IDEAS 

Resource allocation is a feature that could be added to 
the task multiplexer. To keep it simple and yet avoid the 
deadlock problem (two tasks each grab a resource that 
the other needs), an extra array can be added to the 
TASK(n).XXX structure in which each bit in the byte (or 
word), represents a resource necessary for the execu· 
tion of a task. A RESOURCES$STATUS byte can then 
keep the dynamic busy status of the system resources 
(printers, terminals, floating pOint math packages, etc.). 
When the CASE$TASK procedure is called, the 
resources required by the next RUNNING$ 
TASK can be compared to the RESOURCES$STATUS 
byte to see if the required resources are available. I! they 
are, the following PLlM·86 statement will update the 
new status of the resources: 

RESOURCES$STATUS= RESOURCES$STATUS OR 
TASK(RUNNING$TASK).RESOURCES; . 

However, if the resources are not available, the CASE$ 
TASK procedure can return the task to the ready ordelay 
list and try again later. When the task has completed, 
the following PLlM·86 statement will update the 
resources status byte: 

RESOURCES$STATUS,= RESOURCES$STATUS AND NOT 
TASK(RUNNING$TASK).RESOURCES; 

Message passing from task to task may also be 
necessary. Assuming that a task will have only one 
message at a time to deliver or receive, another byte 
could be added to the task structure such that 
TASK(RUNNING$TASK).MESSAGE could represent a 
byte containing the number of the task wishing to 
deliver a message to the RUNNING$TASK. Since a task 
can call CASE$TASK which in turn will call another task, 
message block parameters can be passed directly from 
one task to another. The task that calls CASE$TASK 
must handle the necessary housekeeping involved in 
recoveri ng after the message has been passed. Of 
course, the data structure would have to be expanded to 
accommodate the message parameters and blocks. For 
further ideas involving message handling refer to the 
RMXI80™ user's guide. 

Two additional relatively simple procedures could be 
added to obtain the SUSPEND and RESUME features of 
the RMXI80™ system. Remember that if the BUSY$BIT 
is set in a TASK(n).STATUS byte and the task is unlisted, 
then it cannot be listed. I! it is desired to dynamically 
enable and disable a task, this bit could be set by a 
SUSPEND procedure and reset by the RESUME pro· 
cedure. 
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SOURCE CODE 

Tl"186: DO; 

OECLARE TOTAL$TASKS LITERALLY' 10'; 
OECLARE TRUE LITERALLY '0FFH'; 
DECLARE FALSE LITERALLY '0'; 
DECLARE BUSY$BIT LITERALLY' 10000000B'; 
DECLARE READ~$BIT LITERALLY '01000000a'; 
DECLARE DELAY$BIT LITERALLY '00100000B'; 
DECLARE FIRST$LOW$PRIORIT~$TASK LITERALLY '6'; 

DECLARE TASK(TOTAL$TASKS) STRUCTURE(PNTR B~TE, STATUS BYTE, DELAY BYTE); 
DECLARE HIGH$PRIORITY$HEAD BYTE, HIGH$PRIORITY$TAIL BYTE; 
DECLARE LOW$PRIORITY$HEAD BYTE, LOW$PRIORI'rY$'rAIL BYTE; 
DECLARE RUNNING$TASK BYTE, PREEMPTED$TASK BYTE; 
OECLARE STATUS BYTE, NEW$TASK BYTE, NEW$DELAY BYTE; 
DECLARE OELA~$HEAD BYTE AT (@TASK(0) .PNTR) ; 

AC'rIVA'rE$TASK: PROCEDURE; /* ASSUMES NEW$TASK<>0 * / 
DISABLE; 
IF (TASK(NEW$TASK) .STATUS AND BUSY$BIT)<>0 THEN STATUS=0; 
ELSE /* SINCE TASK IS NOT BUSY */ DO; 

IF NEW$TASK < FIRST$LOW$PRIORITY$TASK THEN DO; 
IF HIGH$PRIORITY$TAIL<>0 THEN DO; 

TASK(HIGH$PRIORITY$TAIL) .PNTR=NEW$TASK; 
END; 

ELSE /* SINCE HIGH$PRIORITY$TAIL=0 THEN */ DO; 
HIGH$PRIORIT~$HEAD=NEW$TASK; 

END; 
HIGH$PRIORIT~$TAIL=NEW$TASK; 

END; 
ELSE /* SINCE TASK IS LOW PRIORITY THEN */ DO; 

I~ LOW$PRIORITY$TAIL<>0 THEN DO; 
TASK(LOW$PRIORITY$TAIL) .PNTR=NEW$TASK; 
END; 

ELSE /* SINCE LOW$PRIORITY$TAIL=0 THEN */ DO; 
LOW$PRIORITY$HEAD=NEW$TASK; 
END; 

LOW$PRIORITY$TAIL=NEW$TASK; 
END; 

TASK (NEW$TASK) .PNTR=0; 
TASK (NEW$TASK) • STATUS=TASK(NEW$TASK) .STATUS OR 

BUSY$BIT OR READY$BIT; 
STATUS=TASK(NEW$TASK) .STATUS; 
END; 

NEW$TASK=0; 
RE'rURN; 
END ACTIVATE$TASK; 
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ACTIVATE$DELAY: PROCEDURE;I*ASSUMES NEW$TASK, NEW$DELAY<>0*1 
DECLARE POINTER$0 BYTE, POINTER$1 BYTE; 
DECLARE OLD$DIFFERENCE INTEGER, DIFFERENCE INTEGER; 
DISABLE; 
IF (TASK(NEW$TASK) .STATUS AND BUSY$BIT)<>0 THEN STATUS=0; 
ELSE 1* SINCE TASK IS NOT BUSY *1 DO; 

DIFFERENCE=INT(NEW$DELAY) ; 
POINTER$0=DELAY$HEAD; 
POINTER$I=0; 
DO wHILE POINTER$0<>0 AND DIFFERENCE>0; 

OLD$DIFFERENCE=DIFFERENCE; 
DIFFERENCE=DIFFERENCE-INT(TASK~POINTER$0) • DELAY) ; 
IF DIFFERENCE>0 THEN DO; 

POINTER$I=POINTER$0; 
POINTER$0=TASK(POIN'rER$I) .PNTR; . 
END; 

END; 
TASK(NEW$TASK) .PNTR=POINTER$0; 
TASK(POINTER$I) .PNTR=NEW$TASK; 
IF POIN'rER$0=0 THEN TASK (NEw$'rASK) • DELAY=LOW CUNSIGN (DIFFERENCE) ); 
ELSE 1* SINCE DIFFERENCE<0 THEN *1 DO; 

IF POINTER$0=POINTER$1 THEN TASK(POINTER$I) .PNTR=0; 
TASK(NEW$TASK) .DELAY=LOW(UNSIGN(OLD$DIFFERENCE)); 
TASK(POINTER$0) .DELAY=LOW(UNSIGN(-DIFFERENCE)); 
END; . 

TASK (NEw$TASK) .STATUS=TASK(NEw$TASK) .STATUS OR 
BUSY$BIT OR DELAY$BIT; 

STATUS=TASK(NEW$TASK) .STATUS; 
END; 

NEw$'rASK=0 ; 
NEw$DELAY=0; 
RE'rURN ; 
END ACTIVATE$DELAY; 

DECREMENT$DELAY: PROCEDURE; lie ASSUMES INTERRUPTS DISABLED */ 
DECLARE OFF$DELAY BYTE; 
IF DELAY$HEAD<>0 THEN DO; 

TASK(DELAY$HEAD).DELAY=TASK(DELAY$HEAD) .DELAY-I; 
DO wHILE DELAY$HEAD<>0 AND TASK(DELAY$HEAD).DELAY~0; 

OFF$DELAY=DELAY$HEAD; 
DELAY$HEAD=TASK(DELAY$HEAD) .PNTR; 
TASK (OFF$DELAY) .STATUS=TASK(OF~$DELAY) ~STATUS 

AND NOT (BUSY$BI'r OR DELAY$BIT); 
NEW$TASK=OFF$DELAY; 
CALL ACTIVATE$TASK; 
END; 

END; 
RETURN; 
END DECREMENT$DELAY; 
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CASE$TASK: PROCEDURE REENTRANT~ 
DO CASE RUNNING$TASK~ 

CALL 'rASKfil0 ~ 
CALL 'rASK01 ~ 
CALL 'rASKfil2 ~ 
CALL 'rASK(B ~ 
CALL TASK04~ 
CALL 'fASKfil5 ~ 
CALL 'fASKfil6 ~ 
CALL TASKfil7~ 
CALL 'rASK08 ~ 
CALL TASKfil9~ 

AP·61 

END~ " 
TASK (RUNNING$TASK) • STA'rUS=TASK (RUNNING$TASK) • STATUS AND 

NOT (BUSY$6I~ OR READY$BIT1~ 
TASK (RUN1UNG$'fASK) • PNTR=fil ~ 
IF RUNNING$TASK=NEw$TASK THEN DO~ 

IF NEw$DELAY<>fil THEN DO~ 
CALL ACTIVATE$DELAY~ 
END~ 

ELSE /* SINCE NEw$OELAY=fil */ DO~ 
CALL ACTIVATE$TASK~ 
END~ 

END~ 

RUNNING$'fASK=fil ~ 
RETURN ~ 
END CASE$'rASK~ 

PREEI>lPT:PROCEDURE REENTRANT~ /* ASSUMES INTERRUPTS DISABLED */ 
IF PREEMPTED$TASK=fil THEN DO~ 

IF (HIGH$PRIORITY$HEAD<>fil) AND (RUNNING$TASK>= 
FIRST$LOW$PRIORITY$TASK) THEN DO~ 

PREEMPTED$TASK=RUNNING$TASK~ 
RUNNING$TASK=fil~ 
DO wHILE PREEMPTED$TASK<>fil~ 

CALL DISPATCH~ 
END~ 

END~ 
END~ 

RETURN ~ 
END PREEMPT~ 
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DISPATCH:PROCEDURE REENTRANT; 1* ASSUMES RUNNING$TASK=0 ~I 
DISABLE; 
IF HIGH$PRIORITY$HEAD<>0 THEN DO; 

RUNNING$TASK=HIGH$PRIORITY$HEAD; 
aIGH$PRIORITY$HEAD=TASK(RUNNING$TASK) .PNTR; 
IF HIGH$PRIORITY$HEAD = 0 THEN HIGH$PRIORITY$TAIL 0; 
CALL CASE$TASK; 
END; 

ELSE IF PREEMPTED$TASK<>0 THEN DO; 
RUNNING$TASK=PREEMPTED$TASK; 
PREEMPTED$TASK=0; 
END; 

ELSE IF LOW$PRIORITY$HEAD<>0 THEN DO; 
RUNNING$TASK=LOW$PRIORITY$HEADj 
LOW$PRIORITY$HEAD=TASK(RUNNING$TASK).PNTR; 
IF LOW$PRIORITY$HEAD = 0 THEN LOW$PRIORITY$TAIL 0; 
CALL CASE$TASK; 
END; 

ELSE RETURN; 
RETURN; 
END DISPATCH; 
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TASK00: PROCEDURE REENTRAN'r~/*ERROR CODE*/RETURN~END TASK00~ 

TASK01: PROCEDURE REENTRANT~ 

ENABLE~ 

DISAi3LE~ 

RE'rURN~ 

/*'rASK01 CODE* / 

END TASK01~ 

TASK02: PROCEDURE REENTRANT~ 
ENAi3LE~ 

DISAt3LE~ 
RETURN ~ 

/*'rASK02 CODE* / 

END TASK02~ 

TASK01: PROCEDURE REENTRANT~ 
ENABLE~ 

DISABLE~ 
RE'rURN ~ 

/*'rASK01 CODE*/ 

END 'l'ASK01 ~ 

'rASK04: PROCEDURE REENTRANT ~ 
ENABLE~ 

DISABLE~ 
RETURN ~ 

/*'rASK04 CODE * / 

END 'fASK0 4 ~ 

TASK05: PROCEDURE REENTRANT~ 
ENABLE ~ 

DISABLE~ 

RETURN ~ 

/*'rASK05 CODE* / 

END TASK05~ 

TASK06: PROCEDURE REENTRANT~ 
ENABLE~ 

DISABLE~ 
RE'rURN ~ 

/*TASK06 CODE*/ 

END TASK06~ 

TASK07: PROCEDURE REENTRANT~ 
ENABLE ~ 

DISABLE~ 

RETURN ~ 

/*'rASK07 CODE*/ 

END TASK07~ 
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TASK0B: PROCEDURE REENTRANT; 
ENABLE; 

DISABLE; 
RE'rURN ; 

/*'rASK0 B CODE * / 

END TASK0B; 

TASK09: PROCEDURE REENTRANT; 
ENABLE; 

DISABLE; 
RETURN ; 

/*'rASK09 CODE* / 

END 'rASK09; 

/* IN I'rIAL I Z E* / 

DISABLE; 
00 STATUS=0 'ro 9; 

TASK(STATUS).PNTR=0; 
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TASK(STATUS) .STATUS=0; 
TASK(STATUS).DELAY=0; 
NEW$TASK,NEW$DELAY=0; 
HIGH$PRIORITY$HEAD,HIGH$PRIORITY$TAIL=0; 
LOW$PRIORITY$HEAO,LOW$PRIORITY$TAIL=0; 
RUNNING$TASK,PREEMPTED$TASK=0; 
END; 

/* MAIN LOOP */ 

DO WHILE TRUE<>FALSE; 
CALL DISPA'rCH; 
ENABLE; 
STATUS=STA'rus; 
END; 

END TMB6; 
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INTRODUCTION 

The Intel 6069 Is the first integrated 1/0 processor 
available. This 1/0 processor (lOP) makes available the 
power of 1/0 channels, as used in mainframes and mini­
computers, In a microcomputer form. Designed as part 
of the MCS·6S™ family, the lOP can be Interfaced with 
the MCS·60™ and MCS·65™ families as well. 

An 1/0 channel is basically a processor remote from the 
main CPU, which independently runs 1/0 operations 
upon command of the CPU. To relate the 6069 to ex­
Isting LSI components, it is similar to a microprocessor 
that is time·multiplexed with a DMA controller, but with 
two channels available. However, since the 6069 proc· 
essor is optimized for 1/0 and multiprocessor opera­
tions, and the DMA has been made much more flexible 
than existing DMA controllers, a truly general purpose 
and powerful 110 control system Is available on one chip. 

Due to the uniqueness of the 6069, this application note 
was written to review debugging strategies and point 
out possible pitfalls when developing an lOP system. 
Debugging an lOP system is very similar to debugging 
m Icroprocessor/DMA controller systems, and many of 
the techniques described here are standard microproc· 
essor techniques. However, several factors are present 
which can complicate the debugging process: 

1. Multiprocessor Operation 

Although usable by itself, the lOP is designed to be 
used with other processors. All factors normally en­
countered with multiprocessor operation, including bus 
arbitration, processor communication, critical code sec· 
tions, etc., must be addressed in the design and debug 
of an lOP system. 

2. DMA Tle·ln to lOP Program Execution 

The relationship between lOP program execution and 
DMA transfers and termination is different from earlier 
DMA controllers and should be fully understood to prop­
erly run the system. 

3. Dependency of Programs on Real·Tlme I/O 
Operations 

Requirements by 110 devices for maximum data rates 
and minimum latency times farce the software program· 
mer to be aware of hardware timing constraints and can 
complicate program debugging. 

4. Dual Channel Operation 

Related to multiprocessor operation and real·time 
dependencies, the two independent channels available 
on the 6069 may have to be coordinated with each other 
to make the whole system function. Dependence of one 
channel on the other can also complicate debugging. 

Due to the complexities of running in a real·time envi· 
ronment, as many steps as possible should be taken to 
facilitate debugging. A major help here is to make sure 
as much of the hardware and software as possible is 
working before running real-time tasks. This is a good 
practice anyway, but it should be reemphasized that a 
complex multichannel system can quickly get out of 
hand if more than a few things are not right. 

An aid to debugging any system is a clean, well organ­
ized system design. The 6069 lends itself to structured, 
modular software interfaces to the host CPU, via the 
linked·list initialization structure, and parameter com­
munication through the parameter block (PB) area. 
Some of the aspects of structured programming that aid 
debugging are: 

• Top Down Programming - The functions done by 
low·level routines are well understood, and the 
number of program fixes, which can cause more 
errors, is minimized. 

• Program Modularity - Small, easy to manage sub­
programs can be debugged independently, increas· 
ing the chance that the entire system will work the 
first time. 

• Modular Remoteness - By having all program 
modules communicate only through a well-defined 
interface, one module's knowledge of the "inner 
workings" of another is minimized. System soft· 
ware complexity is reduced. Updates to program 
modules are more reliable, too. 

Two major areas of debugging will be outlined here -
static (or functional) debugging in which the hardware 
and software are not tested in a real-time environment, 
and real·time debugging. Applying a logic analyzer to 
lOP debugging will also be explained, and a review of 
lOP operation and potential problems will be done. 

STATIC (OR FUNCTIONAL) DEBUGGING 

The predominant errors in a system, when first tried out, 
are, either errors in Implementation (I.e., wrong hookups 
or coding errors), or an Incorrect implementation (a 
wrong assumption somewhere). Most of these bugs can 
be found through static debugging techniques that are 
usually easier to work with than real-time testing. 

Hardware Testing 

Static hardware testing is done mainly to see if all indio 
vidual parts of the system work, so the whole system 
will "play" when run. The level of testing can run from 
checking for continuity and shorts (which finds only 
hookup errors) to trying to move data around and run­
ning 110 devices from a monitor or special test programs 
(which can also find incorrect circuit design). In all but 
the simplest systems, the lalter approach Is recom· 
mended since it is a step towards software debugging. 

Several approaches to hardware testing will be covered. 
Running diagnostic programs (such as a monitor) out of 
the lOP's host system, in both the LOCAL and REMOTE 
modes, will be covered. The case where the host system 
cannot support diagnostic software and must have an 
external processor to exercise the lOP and its periph· 
erals will also be explained. 

The case where the host system can run diagnostics or 
test programs that have interactive user 110, such as a 
CRT terminal or teletype, provides the most straightfor­
ward way to test the lOP. Naturally, before these pro· 
grams can be run, the basic hardware must be correct 
enough to run programs. When this point is reached, a 
monitor program can be used to exercise memory and 
110 controllers on the system bus. 
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It should be mentioned that aids, other than just testing 
with software, are helpful for hardware debugging. 
While a necessity for real-time debugging, a logic 
analyzer is also a definite help for static hardware 
debugging. Its main use in hardware debugging is show­
ing timing relationships between address or data paths 
and other signals. It is especially useful for functional 
software debugging, to be described shortly. The last 
debugging section outlines the use of an analyzer with 
the lOP. Of course, an oscilloscope, logic probes and 
pulsers, etc., can be used to trace out specific logic or 
timing problems. 

LOCAL Mode 

When the lOP is running in the LOCAL Mode, all 1/0 con­
trollers and memory are accessible by the host or con­
trolling CPU. Thus a standard monitor, such as the one 
supplied with the SDK-86 or available for the iSBC-
86112™ development kit, can exercise all hardware on 
the bus.· The breakpoint routines, however, will not 
work due to the different instruction set. The 8086 or 
8086 is best suited for running the lOP in the LOCAL 
mode due to identical status lines and bus timing, as 
well as the RequestlGrant line, which eliminates bus ar­
bitration hardware. Figure 1 shows the general LOCAL 
mode configuration. 

"The SDK·B6 serial monitor is a good basis for a general BOB6 moniior. 
The lOP cannot be used directly with the SDK·B6, since the BOB6 is run· 
ning in the minimum mode. The SDK·B6 can be converted to run in the 
maximum mode, if desired. 

REMOTE Mode 

From a system design standpoint, running the lOP in 
the REMOTE Mode is advantageous in that it removes 
the 1/0 bus cycles from the system bus. Normally, the 
remote 1/0 is not accessible to the host CPU. Until the 
lOP is able to run its own test programs to transfer data 
from the REMOTE bus to the system bus, 1/0 controllers 
and memory on the REMOTE bus will be invisible to the 
host. To get around this problem during prototyping, 
either an external processor interface can be used (see 
next section), or a temporary bypass can be made to ac­
cess the REMOTE bus from the system bus. 

Bypassing the normal REMOTEISYSTEM interface is a 
handy technique for doing preliminary debugging on the 
REMOTE bus. This can be done by memory-mapping the 
lOP's 1/0 space into an, unused portion of the host 
CPU's system memory space. When accessing this 
space, the lOP access to its own 1/0 space is disabled, 
and a separate set of address buffers, transceivers and 
bus control signal buffers are enabled. Reads and writes 
can then be do'ne to the formerly inaccessible REMOTE 
bus by the host CPU. 

A simple system (Figure 2) implements this bypassing 
scheme. It was designed fpr just forCing or examining 
devices on the REMOTE bus and may not read or write 
correctly if the lOP is simultaneously trying to do bus 
cycles. A more sophisticated arbitration system would 
permit reliable run-time checking also. 

SYSTEM BUS 
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Figure 2. Remote Mode Bypass for Debugging 

Running the lOP in the REMOTE mode, particularly if 
the MULTIBUS™ protocol is adhered to, has the advan­
tage that the lOP can be exercised with any MUL TIBUS­
compatible processor. If the main processor is not 
amenable to being used as a debugging tool, another 
processor could be used to debug the hardware inter­
face. If the microprocessor is of the same type as the 
intended host processor, software debugging can be 
done as well. A generalized REMOTE mode configura­
tion using the MULTIBUS is shown in Figure 3. 

External Processor Interface 

A technique that can be used if the host processor can­
not run any debugging or monitor routines is to have an 
external processor tie into the host processor's bus. 
This is useful if the main system CPU cannot run an in­
teractive monitor or other debugging programs. If a 
MULTIBUS Interface is being used, an 8289 bus arbiter 
and a set of address/data/control buffers can be used. A 
somewhat simpler system, similar to the remote bus ac­
cess system mentioned above, could be used for static 
debugging of non-MUL TIBUS systems. Again, if true bus 
arbitration is added (which brings us nearly to a MULTI­
BUS interface), it could also be used for run-time 
testing. Intel processors that have the MULTIBUS 
interface include the iSBC-80/20™, iSBC-86/12™, iSBC-

80/10™, iSBC-80/05™, the Intellec'" development 
systems, among others. 

In the previously described systems, the external proc­
essor would disable the host CPU's access to the bus, 
either by some form of bus request or by a "brute force" 
disabling of the CPU's buffers. In the latter case, the ex­
ternal processor could only control the bus during a 
time that the CPU is halted, without destroying the pro­
gram flow. Mapping the processor's memory space into 
the external processor memory space is the simplest 
method, but can impact programs being run on the 
external processor. If the processor under test utilizes 
the MULTIBUS interface (with bus arbitration), then a 
processor like the iSBC-80/30™ or iSBC-86/12™ could 
be used as the debug vehicle with no special hardware. 
A more flexible interface that would have less Impact on 
the system memory space would have the addresses for 
the system under test generated from latches loaded by 
the I/O instructions from the external processor. This 
case must have software routines to interface to the I/O 
ports and handle the desired debugging routines (see 
Figure 4). 

Software Testing 

It is desirable to check as much of the lOP program as 
possible statically, since various tools and techniques 
are available which may not be usable during real-time 
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Figure 3. Generalized Remote Bus Using MULTI BUS Interlace 
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testing. This "static" software testing is not applicable 
to heavily 1/0·dependent or DMA·dependent routines, 
but Is best su Ited to longer computational or data han· 
dling routines. The idea is to test the correctness of 
algorithms, rather than seeing if the whole system runs. 

There are two main approaches to functional software 
testing. One is to essentially run the program in real 
time and monitor program flow on a logic analyzer. The 
difference between this and real·time testing is that pro· 
gram subsections can be tested separately by using dif­
ferent TP (Task Pointer) starting addresses. If it is 
necessary to set up certain registers or parameters in 
memory, a small "setup" program can be run afterini· 
tialization, which can load up registers or memory, then 
jump to the program· section desired. . 

Another technique is to run the programs with break· 
point routines so that one can step through code 
segments and follow program execution. Software 
breakpOints are usually implemented by inserting a 
jump or restart to a monitor routine at the breakpOint 
location. This jump or restart is machine language 
dependent so, unfortunately, the existing breakpoint 
routines within monitors for the 8080 or 8086 are not 
applicable. 

New routines tailored to the 8089 can be used, and, if 
done properly, can even be used to examine programs 
running on a REMOTE bus. Using breakpOints is some· 
what complicated on the 8089 because the minimum in­
struction length Is two bytes. There is no absolute CALL 
Instruction, only a relative one (which would have to 
have its displacement recalculated each time it was 
used). But, with a several·byte absolute jump inserted at 
each place a breakpoint is desired, full breakpOint 
capabilities can be obtained. 

There are many ways the breakpOints can be imple­
mented. When a breakpOint is reached, the 8089 Itself 
could output the machine state to a console through its 
own routines. Better suited to debugging, though,is a 
system that has the 8069 place its machine state in 
memory, alert the host processor, and then halt. The 
host then picks up the 8069's state and can treat it in the 
same way it runs its own breakpoint routines. Since the 
host processor is more likely to be running a monitor or 
some other kind of debugging routine (and most likely 
has at least temporary console 1/0), it is the logical sys­
tem to initiate and examine 8089 breakpOints. If the lOP 
is running in the REMOTE mode, and the host processor 
has access to the 1/0 bus via the scheme mentioned in 
the hardware debugging section, then lOP programs 
running on the REMOTE bus can be examined. 

The breakpoint itself can consist of an escape sequence 
that is used to save the TP value and jump to the save 
routine, or just a jump to the save routine. This routine 
saves all register contents for the channel the break· 
point is in, signals the host processor, and stops the 
lOP. All user programmable registers (GA, GB, GC, IX, 
MC, BC, TP), as well as the pOinter tags, are accessible. 
The PP (Parameter POinter) and PSW are not normally 
accessible, but if the generation of the CA is such that 
the lOP can send itself a CA, then by sending a CA 
HALT, the PSW will appear at PP+3. Remember that 

since the lOP doesn't have arithmetic or logical condi­
tion codes, the PSW is not as importanl1 as in other 
machines. 

The most straightforward way to pass data from the lOP 
to the host processor Is through the PB (Parameter 
Block) area since the PP will normally remain relatively 
fixed throughout the lOP program. In order not to in· 
fringe on the PB areas used by the programs, an area 18 
bytes long should be allocated at the end of the PB 
block to hold the register contents. Using other areas to 
store the register data requires saving and reloading a 
pOinter register as part of the breakpOint escape 
sequence. 

The data returned from the breakpoint save routine will 
appear to the host processor as a sequential block of 
data in the PB area. Sixteen·bit data can easily be ex­
tracted, but 20-bit pointer data will have to be 
reconstructed from the move pointer (MOVP) format: 

07 

HIGHEST I I I 
ADDRESS D1S ... D16100~ 

TAG BIT 
O=SYSTEM 

1=1/0 

015 ... 08 

07 

07 ... 00 I LOWEST 
ADDRESS 

Several means are available to signal the host processor 
that a breakpoint has been reached. A bit could be set in 
memory or an interrupt sent to the CPU. The best way, 
though, is to use the BUSY flag (at CP + 1 or CP + 9). 
After starting the lOP, the BUSY flag is set to FF. When 
a breakpoint is reached, the lOP performs its save 
routine and does either a software or CA HALT. These 
result In clearing the BUSY flag, which then signals the 
CPU to obtain valid breakpoint data. The CPU can then 
restart the lOP by either a CA START or CA CONTINUE. 

The breakpoint routine outlined above will work for a 
"one·shot" test. However, to be more useful as a 
general purpose debugging tool, some refinements 
must be added. To keep from destroying the program 
whenever a breakpoint is placed, the supervisory pro· 
gram running from the host processor must save the 
lOP code that Is occupied by the escape sequence. 
When the breakpOint is completed and lOP execution is 
to resume, the host program restores the lOP code, sets 
the TP in the CB area back to where the breakpoint was 
placed, and sends a CA START. Since the length of each 
instruction can be easily found from bits 1-4 of the op­
code, a Single stepping function can also be done.' By 
the time this is implemented, the host program is 
becoming a full·fledged debugging routine. Appendix 3 
describes a debugging program that makes use of tlie 
ideas presented here. 

Breakpoint routines can be quite useful, but some 
restrictions and limitations should be mentioned. The 
processor examining the breakpOints must have access 
to the lOP program memory, either directly, or through 
lOP programs that Simulate direct access. The program 
memory must be in RAM. The breakpvint must be 

·The formula for length of Instructions Is: length (In bytes) = 2 + 1 (If bits 
1,0=01)+ 1 (If bits 3,2=01) +2 (If bit 3= 1)+2 (If LPOI). 
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placed on an Instruction boundary, and multiple break­
points must not be placed so that they overlap. There 
may be some impact on the PB area. CA generation may 
have to·be different than usual. But, despite these 
IImltatlons,the breakpoints offer a useful and more con­
ventional software debugging tool than analyzers. 

REAL-TIME TESTING 

Running an lOP program in its final environment with 
real 110 devices is the true test of dynamic operation. 
The program is no longer In a static, isolated environ­
ment. The demands of DMA and multiprocessing may 
reveal unplanned timing dependencies or critical sec­
tion problems. There may also be. sections of hardware 
or software, which couldn't be tested statically, that 
may have bugs. The whole purpose of static or func­
tional testll1g Is to dig these problems out while con­
venient debugging tools can be used. Since there are no 
simple techniques for real-time debugging, the use of a 
logic state analyzer and techniques to fully understand 
the lOP's real-time operation will be emphaSized. 

Multiprocessing operations and real-time asynchronous 
110 requests can cause the timing complexity of the 
system as a whole to rise beyond the point of complete 
comprehension by an individual. It is then essential that 
techniques to ensure correctness are used. These in­
clude good design methods, especially a clean, well­
structured design, as well as good testing. A thorough 
test requires the attitude that the system should be 
tested for failures, rather than tested for correctness. In 
other words, one should try to make the system fall, 
tests should be chosen that will put the worst stress on 
critical timing areas. 

The best way to do this Is to write a diagnostic program 
that puts the CPU, lOP, and 110 devices through the 
worst conceivable timing and program combinations. 
Ideally, the program should be self-checking so that It 
can be run without supervision, printing any data or pro­
gram errors that occur, much like a memory test. 

The two main real-time problem areas are insufficient 
data rates or latency, and critical section problems. To 
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test for data rate problems, run the system clock at Its 
lowest expected frequency and use memory and 110 
with maximum expected wait states. Identify the 
tightest program timings and try to have these sections 
coincide with worst case DMA or other heavy bus utiliza­
tion (see dual channel operation later). Critical section 
problems can occur when two Independent processors 
communicate with each other with Improper "handshak­
ing." This can result In one processor miSSing another's 
message, or even having both processors hang up, 
waiting for each other to go ahead. The 8089 provides 
aids to these problems, Including the TSLlnstructlon (to 
implement semaphores) and .the BUSY flag. However, 
any interprocessor communication (Including one chan­
nel of the lOP to the other) should be checked. Beware 
of cases when one processor is running considerably 
slower than the other (due to DMA overhead or chained 
instruction sequences). 

The techniques for real;time debugging evolve from 
functional testing using a logic analyzer. For all but the 
simplest systems, an analyzer Is essential, since It can 
graphically show program execution and timing rela­
tionships during real-time execution. Another aid Is a 
delayed oscilloscope. Triggering the scope from the 
logic analyzer, the delay can be adjusted so that any 
signal in the system can be monitored. i 

To facilitate the use of the logic analyzer, especially if 
its memory is not very deep or when using it to trigger 
a·n oscilloscope, a repetitive system can be used to con­
tinually update the display. Using a repetitive reset 
helps to debug the software-hardware Interface, since 
oscilloscope or logic analyzer probes can be readily 
moved around the circuit to observe new signals 
without manually retriggering the display. At its 
Simplest, thereset to the host processor can be strob­
ed, say every 10 ms. The processor will then provide the 
two channel attentions (CAs) that are needed to In­
itialize the lOP. Where this isn't feasible, the CAs can be 
externally forced by either a string of one-shots or a sim­
ple proc·essor with timing loops (such as a SDK-85 or 
SDK-86). See Figure 5 for Initialization timing. 

START CH2 

: POWER 
,ON ,- -LONGER IF WAIT STATES 

Figure 5. Inillalizalion Inpul Sequence 
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Memory protection of the lOP and system programs Is 
helpful when debugging DMA operation. It Is quite easy 
for runaway DMA to wipe out memory. Another precau· 
tlon to avoid this problem Is to set an upper limit on the 
number of bytes transferred by always specifying a byte 
count termination. 

Logic Analyzer Techniques 

In the absence of other powerful debugging systems, 
the logic analyzer has shown to be an extremely useful 
tool. Because of its importance in debugging an lOP 
system, some basic techniques and observations that 
relate to monitoring lOP operation will be reviewed here. 
The particular brand or type of analyzer used Is not too 
Important, but would be desirable to have the following 
features: 

• At least a 24·bit data width 
• Flexible triggering and qualification control 
• Display after triggering on a sequence of states 
• Capability for hexadecimal data display 

It is best to hook up to the address/data lines at the lOP, 
as opposed to looking at the separate address and data 
lines, since 39 lines would be required just to look at ad· 
dress, data and status lines. The three lower status lines 
should be monitored to show the type of bus cycle be· 
ing run. Other lines can be connected where needed, at 
places like the DRO lines, the EXT lines or other lines 
related to the system. 

For general purpose debugging, triggering the analyzer 
on the rising edge of the lOP clock shows the most 
useful data concerning bus cycles. Of course, using the 
falling edge may be necessary to check certain signals, 
particularly ones that are active only while the clock is 
low. The following discussion is based on sampling 
data on the clock's rising edge. 

One should be careful when setting up the triggering 
for the analyzer that the desired event is what is dis· 
played and not a later event with the same trigger word. 
This can happen when the logic analyzer is in the repet· 
itive trigger mode. It may retrigger before the system ac· 
tually resets. A sequence restart feature is helpful. 

The basis of following program execution and DMA on a 
logic analyzer is to follow an 8089 bus cycle, which is 
Identical to a 8086 and 8088 bus cycle. The following 
diagram shows a typical 8089 bus cycle. 

For general purpose debugging, displaying every clock 
Is useful, but for quickly finding one's way around a pro· 
gram, the analyzer can be qualified so that only instruc· 
tion letches (status = 100 or 000), with ALE active, are 
trapped. A much more compact display of execution 
flow results. 

BUS 
CYCLE 

T1 

T2 

T3 

T4 

A16-19 ADO-1S ~ PREVIOUS ADDRESS. UPPER STATUS 

X X X X X 111 IDLE STATUS 

F 0 1 0 1 0 1 20·BIT ADDRESS = FF010. 

E [F F FlO 1 LOWER STATUS = MEMORY DATA READ 

E A A 50 1 1 1 1f1.BIT DATA RETURNED = AASO 

E F 0 1 0 1 1 1 ADDRESS REMAINS IN CHIP OUTPUT t LATCH AFTER END OF BUS CYCLE 

DATA NOT READY YET 
UPPER STATUS INDICATES: NON·DMA. CH1 

As mentioned earlier, on a 16·bit bus, most instructions 
starting on odd addresses won't. show the first fetch, 
since the internal queue is in use. It is a good idea in 
that case to use only even instruction boundaries' as 
trigger words. When following dual channel operation, 
one should keep an eye on the upper status bits (53-56), 
since 53 indicates which channel Is runnlng.(0=CH1, 
1 = CH2), and 54 indicates DMA/non·DMA transfer 
(0 = DMA, 1 = non·DMA) . 

A REVIEW OF lOP OPERATION 
(With things to look out for) 

When trying to get an unfamiliar system gOing for the 
first time, it is too easy to stumble on apparent prob· 
lems that are really just unexpected operation modes or 
peculiarities of the machine. For this reason the basic 
principles of lOP operation will be reviewed here with 
special emphasis on possible problem areas or pitfalls 
that a user might encounter when debugging a 8089 sys­
tem. The topics are covered generally in the order en­
countered when bringing up a system. For complete 
details of operation and some design examples, see the 
8086 Family User's. Manual. 

RESET 
RESET must be active (HIGH) for at least four clocks in 
order to fully initialize all Internal circuitry. On power up, 
RESET should be held high for at least 50 microsec­
onds. The chip is only ready to accept a Channel Atten­
tion (CA) one clock after RESET goes inactive. 

Note that the SEL pin is sampled on the falling edge of 
the first CA after RESET to tell the 8089 whether it is a 
master (0) or a slave (1) for its request/grant Circuitry. If a 
master, it will assume it has the bus from the beginning. 
If a slave, it will strobe the RO/GT Line to request the 
bus back and will not start any bus transfers until ithas 
been granted the bus. If the RO/GT line is not being 
used, make sure the lOP comes up in the master mode. 

Initialization 

Upon the first CA after reset, a sequence of Instructions 
is executed from an internal ROM. These instructions 
pick up parameters and load data from the linked list 
sequence (Figure 6). The instruction sequence is essen­
tially: 

MOVB SYSBUS from FFFF6 
LPD System Configuration Block (SCB) from FFFF8 
MOVB SOC from (SCB) 
LPD Control POinter (CP) from (SCB) + 2 
MOVBI "00" to CP + 1 (clears BUSY flag) 
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Remember that four bytes must be fetched during an 
LPD. If on a 16-blt bus, with even addressed boundaries, 
only two fetches are needed. Otherwise (8-bit bus or odd 
boundaries), four fetches are needed. 

Even though no bus cycles are run to fetch these in­
structions, the CH1 Task Pointer (TP) appears on the ad­
dress latches during .the short internal fetch periods. 
On power up, this value Is meaningless, but If a repeti­
tive RESET is used, the TP remains unchanged from the 
end of the last program run. See Figure 6 for the start of 
a typical initialization sequence as viewed on a logic 
analyzer. 

Bit 0 in the SYSBUS field sets the actual (or physical) 
system bus width that the lOP expects. In the 8-bit 
mode, only byte accesses are made, and all 8-bit data 
should appear on the lower eight data lines. In the 16-bit 
mode, word accesses can be made (if the address is 
even), all data on even addresses appears on the lower 
eight data lines, and all data at odd addresses appears 
on the upper eight. 

Bit 0 in the SOC field sets the physical width for the 1/0 
bus. The same rules for the system bus apply here. Note 
that these bits should reflect the actual hardware imple­
mentation and are not to be confused with the OMA logi­
cal widths set by the WID instruction. 

The R bit (bit 1) in the SOC field is used to change the 
mode of the RQ/GT circuitry. When the lOP is on the 
same bus as an 8086, it is required to have the R bit be 0, 
with the 8086 as the master and the 8089 as the slave. 

CA 

14 { 
CK 

6 
CK 

A1S-AO S3-S0 

FF F F F 111 
FF F F F 111 
FF F F F 111 
FF F F F 111 
EOO 0 0 111 
EOO 0 0 111 
FFC6 D 111 

FFC6 D 111 
FF F F 6 101 
EF F F F 101 
EF F 01 111 
EF F F F 111 
EF F F 6 111 
EF F F 6 111 
FFC6 D 111 

FFC6 D 111 
FF F F 8 101 
EF F F F 101 
EF F F 0 111 
EF F F F 111 
EF F F 8 111 
EF F F 8 111 
EF F F 8 111 
EF F F 8 111 
FF F FA 101 
EF F F F 101 
EF F FA 111 

EFF FA 111 
FFC6 D 111 

T COMMENTS 

Trigger ClK I 

Bus un-tristated 

TP to latch 

T1 Address loaded to latch 
T2 Data not ready yet (nothing on bus) 
T3 SYSBUS loaded into chip (01) 
T4 Nothing on bus 

After bus cycle, address remains in 
latch 

TP is loaded to latch. even though 
fetches are from internal ROM 

T1 Address to latch 
T2 
T3 1 st 2 bytes of lPD data fetched (FFFO) 
T4 

2nd 2 bytes of lPD data fetched (FFFA) 

Figure 6. Start of Initialization Sequence On a 16·Bit Bus 

The master (8086 or 8088) can never take the.IJus away 
from the slave (8089); only the slave can give back the 
bus. In other words, during OMA transfers, the 8089 
would not have the bus taken away. This is the only 
mode compatible with the 8086 or 8088. 

When two lOPs are being used on the same bus, the 
RQ/GT circuity can be put into an equal priority mode 
by setting the R bit to one. A slave can only be granted 
the bus if the master is doing unchained instructions or 
running idle cycles. The master can request the bus 
back from the slave at any time. The slave grants it if do­
Ing unchained instructions or if it is idling. The master 
and slave are put on essentially the same priority. 

At the end of initialization, the "BUSY" flag of CH1 is 
cleared. For systems where the 8086 is waiting for the 
initialization sequence to end before giving another CA, 
it can set the BUSY flag high prior to initialization. The 
BUSY flag going low is a sign that the lOP is ready for 
another CA. It is important to remember that the lOP will 
not respond to, nor latch, a CA during an initialization 
sequence. 

Channel Attentions 

The main system processor initiates communications 
with the lOP through the Channel Attention (CA) line. As 
mentioned earlier, the first CA after system RESET in­
itializes the lOP. All subsequent CAs cause the lOP to 
do a two-step process. It first fetches the Channel Con­
trol Word (CCW) from the appropriate channel at (PP) for 
channel 1 or (PP + 8) for channel 2. (SEL at the time of 
CA falling determines the channel for all following ac­
tions.) The lower three bits of the CCW Command Field 
(CF) are examined and then cause the lOP to execute 
the desired function. 

Command Field (CF) 

Control of task block programs is accomplished 
through the command field. The various CF functions 
are: 
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000 - Examine other field only and set BUSY flag 
001 - Start task program in I/O space 
011 - Start task program in system memory 

The start command causes the following instructions 
to be executed out of the internal ROM: 

LOP CP from (CP)+ 2 (CH1) or + 10 (CH2) 
LOP TP from (PP) (for TP in system) or 
MOVB TBP from (PP) (for TBP in I/O) 

MOVBI "FF" to (CP) + 1 or + 9 (set BUSY flag) 
111 - HALT channel. BUSY flag cleared to "00" 
110 - HALT channel. Save state of machine and 

clear BUSY flag by executing: 
MOVP TP to (PP) 
MOVB PSW to (PP) + 3 

MOVBI "00" to (PP) + 1 or + 9 
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The channel will HALT and the machine will con­
tinue execution on the other channel or go'to idle if 
the other channel is idle. 

101 - Continue channel. The channel Is revived 
after a HALT by executing: 

MOVP TP from (PP) 
MOVB PSW from (PP)+3 
MOVBI "FF" to (CP) + 1 or + 9 

(set BUSY flag) 

Do not do a CONTINUE after Initialization without doing 
a CA START first since the (PP) register In CH1 Is used 
as a temporary register (to hold SCB) and Is only correct­
ly loaded by a CA START. 

The upper 5 bits in the CCW will have affect If CF = 000 
or upon a CA START. Some things to note about these 
upper fields are: 

• Priority Bit - If both channels are doing tasks of 
the same overall priority, the tasks with the higher 
priority bit will run_ If the priority bits are the same, 
execution will alternate between the two channels. 

• BLL Bit (Bus Load Limit) - Keeps nonchalned In­
structions from occurring more often than once 
every 128 clocks. However, channel attention or ter­
mination cycles, even on the other channel, may 
disrupt the exact time Interval to the next 
instruction. 

It should be noted that the setting or clearing of the 
BUSY flag occurs after the loading ,or storing of 
registers, so that In a system where the main CPU uses 
the BUSY flag as a form of semaphore to tell when the 
lOP Is truly finished, there is no danger that the SCB, 
CP, PP or TP could be changed before the lOP loads 
them. 

Also since DMA termination cycles and chained instruc­
tion execution have a higher priority than CA, it Is possi­
ble for CA to be "shut-out" by these higher priorities 
runn'lng on· the other channel. However,. since CA is 
always latched (except during initialization), it won't be 
forgotten. 

How Can a Channel be Halted? 

Sometimes a channel may stop its operation 'unex­
pectedly. To see what could cause this, and to show the 
impact of halting a channel, the various ways of stop­
ping a channel are explained: 

HALTED CHANNEL - If the channel has never started 
after Initialization, If It has received a CA HALT com­
mand or a software HALT, channel operation Is sus­
pended. If the other channel can run, it will, otherwise 
idle cycles will run. Only a CA START or CONTINUE can 
resume operation. ' , 
WAITING FOR A DMA REQUEST - If the channel Is in a 
source or destination synchronized DMA transfer mode, 
it will wait until DRQ is active before running its syn­
chronized transfer. To minimize the impact on .the 
overall throughput of the chip, the other channel can run 
during these DRQ wait periods. 

WAITING TO GET THE BUS BY RQ/GT - If the lOP has 
given the bus away via RQicrr, it won't Initiate any bus 
transfers until it has the bus back. The machine will run 
up to just before T1 of a bus clock cycle and will three­
state its address/data and status pins until It has been 
granted the bus. 

WAITING FOR READY - When running bus transfers, 
'READY Is sampled at T3 of a busy cycle. If Inactive, the 
whole chip will walt until READY goes active. 

The last two cases of waiting (or"walt" states) stop the 
whole chip and do not permit the other channel to run. 
However, with READY Inactive or with the bus not ac­
quired, there Is not much that can be done on the other 
channel anyway. These two cases only stop the chip 
when running bus cycles. Any Internal operations can 
proceed without having the bus or with the system not 
READY. . 

Note the difference between when the chip Is HALTed 
when using RQ/GT and an external arbiter (8289) for 
bus arbitration. Not having the bus due to RQ/GT will 
inhibit the bus cycle from even starting. Since the 8289 
stops the chip by forcing AEN inactive, which goes 
through the 8284 clock generator to force READY inac­
tive to the lOP (or 8086/8088), a bus cycle has already 
been started, with ALE asserted, and the address on the 
address/data lines. When the bus Is obtained, operation 
proceeds at T3 of the bus cycle. 

As 'will be mentioned later, many invalid opcodes will 
cause the machine to hang up. In these cases the 
address/data lines will point to where the bad opcode 
was fetched. 

Task Execullon 

Although optimized for fast and flexible DMA operation, 
the lOP Is also a full-fledged microprocessor. The 8086 
Family User's Manual deals with programming 
strategies and other details. Some of the things to be 
noted during debugging will be mentioned here. 

Instruction Fetching 

Unlike the 8085 (but like the 8086), the 8089 labels all 
fetches from the instruction stream, whether OPCODE, 
offset, displacement, or literal data, as an instruction 
fetch on the status lines. In some cases, such as MOV 
R,I and ADD R,I, the instruction fetch time greatly ex­
ceeds execution time because literals are treated as In­
struction fetches. When following programs on a logic 
analyzer, triggering on status = 100 or 000 (Instruction 
fetch) and a known program address is the'handiest way 
to trace the flow of the program. 

When running programs on a 16-blt bus, a 1-byte queue 
register comes into play, saving the upper byte fetched 
from the last Instruction fetch, If not used by the 
previous instruction. This reduces fetch time and bus 
utilization since the odd byte doesn't need to be fetched 
again. An internal four-clock cycle fetches data from the 
queue. Like the Internal ROM fetches,. the task pOinter is 
put out on the address/data lines, but no bus cycle is run. 
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The queue can have some possible unexpected affects 
that have to be taken into account during debugging. 
These apply only to 16·bit systems and are: 

1. Instructions that start on odd boundaries will not 
likely have bus cycles run to fetch the odd byte 
unless jumped to, unless preceded by LPDI (which 
clears the queue), or an instruction that modifies the 
task pOinter is executed. The latter causes the queue 
to be cleared so that part of .. an old instruction won't 
become part of the new one. 

2. There is a queue register for each channel so loading 
or.clearing the queue on one channel has no affect on 
the other channel's queue. 

3. The second word of immediate data fetched by a 
LPDI is done during a pseudo-Instruction fetch cycle 
that cannot make use of the queue or already fetched 
data. Thus, if on an odd boundary; fetching an LPDI 
will be byte, word, byte, byte, byte, and the queue will 
not be loaded. 

When Can the Other Channel Interrupt Inst.ructlon 
Execution? 

This will be explained more In the "dual channel" opera­
tion section" but a few pOints will be mentioned here. All 
instructions are made up of internal cycles, with each 
cycle composed of two to eight clocks. Each bus cycle 
is one internal cycle, but there can be internal cycles 
with no comunications to outside the chip. Internal 
cycles Will be extended by the number of wait states in 
each bus cycle. Between any of these cycles, DMA from 
the other channel can intervene if the priorities permit it. 
Instruction fetching and execution can only interrupt in­
structions on the other channel when the instruction 
has been completed, not between internal cycles. 

Registers 

All the registers have some special purpose use in the 
.Instruction Execution or DMA, but all except the CC 
register can be used as general purpose registers during 
instruction sequences. A few are loaded specially: 

• GP - Is only loaded during an initialization se­
quence. There is one CP register that handles both 
channels. (All others are duplicated, one set for 
each channel.) 

• PP - Is only properly loaded during a CA START 
command. It holds the SCB value after the initializa­
tion sequence. 

• TP - This is included as part of the registers in the 
RRR field, but cannot be operated on unless you 
plan on having your program execution jump 
around. Every time this is operated on, the queue is 
cleared. The TP is loaded from two words (address 
and displacement) on a CA START, LPD, or LPDI, 
and loaded from 3-byte MOVP format (see illustra­
tion on page 5) on Ii CA CONTINUE, and can be op-

. erated on using any register oriented instructions. 

The following registers are loaded during program exe­
cution, but can have special effects: 

• GG - The only thing that affects instructions in the 
CC register is the chaining bit. If chaining doesn't 
matter (if only one channel is being used without 
channel attentions, for example), then. the CC reg­
ister can be general purpose. However, for portabil­
ity of programs, it is strongly suggested not to use 
the CC register except for altering DMA parameters 
and chaining. 

• MG - Is a general purpose 16-bit register, but is 
also used to do a masked comparison either for 
DMA search/match termination or for the JMCE and 
JMCNE instructio'ns. 

• BG, IX, - Both general purpose 16-bit registers. In 
instructions that reference memory using the AA 
field, if AA = 11, the IX register is incremented by 
the number of bytes fetched or stored. 

• Pointer Registers (GA, GB, GG and TP) - Are,20-bit 
registers, but can also be used as 16-bit registers. 
Adds will carry into the upper 4 bits, but other 
operations (CaMP, OR, AND) are done only on the 
lower 16 bits. Note that when used as pOinters to 
system memory, it is possible to add a large 16-blt 
number to the pOinter and to put the pOinter Into 
another 64K block of memory. 

Sign Extension 

All program data brought into the chip, either literals or 
displacements in opcodes, or program data fetched 
from memory, is sign·extended. Offsets used for 
calculating addresses are not sign extended. Any 8-blt 
data brought in has bit 7 sign-extended up to bit 19. 
Sixteen-bit data is sign-extended from bit 15 to bit 19.1t 
is important to note this, because it can affect logical 
operations. For example, if one wanted to, OR 0084H 
with 1234H, in register GC, you couldn't do ORBI GC, 
84H, because bit 7 would sign-extend into the upper 
byte. Instead, you should code ORI, 0084H to do this 
properly (note that this has a word for the immediate 
data). The non-ADD operations will cause the upper four 
bits of the pOinter registers to be invalid since the upper 
four bits of the ALU come only from the adder. 

Tags 

It should be noted that the way the lOP knows which 
bus to access (system or 110) is via the Tag bit associ­
.ated with the pOinter register used. The TAG can only be 
set in these ways: loading as a 16-bit register (MOV R,M, 
MOV R,I) sets TAG to 110 space, loading as a pointer 
(LPD, LPDI) sets TAG to a system space), or bringing the 
TAG in from memory by a MOVP instruction . 

Effects of Invalid Opcodes 

The upper 6 bits of the, 2-btye opcode actually determine 
which opcode will be executed. If these bits are a valid 
opcode, but lower bits are invalid, the chances are good 
that the bad bits will be ignored. But if the upper six bits 
are invalid, there is a very good chance that the chip will 
hang up and stop execution in that channel. The only 
way to get out of this mode is to reset the chip. If this 
hang-up occurs, it can usually be traced because the 
last address of the instruction fetch will still be on the 
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address/data lines, showing where the program went 
astray. 

Going from Instruction Execution Into DMA 

The XFER instruction places the current channel into 
the OMA mode after the next Instruction. This permits 
one last Instruction to star! up an I/O device (start CRT 
display on an 8275, for example). However, in order for 
the lOP to get setup for OMA, the GA, GB, and CC 
registers should not be altered during this last Instruc­
tion. Failure to observe this will probably result In an 
Improper first OMA fetch. The WID Instruction can be 
placed after XFER. 

DMA Transfers 

Incrementing/Non-Incrementing pointers 

A memory or I/O pointer can be made to Increment for 
each byte transferred during OMA or It can remain fixed. 
Incrementing Is used primarily for memory block 
transfers, and non-Incrementing Is used to access I/O 
ports. 

B/W Mode 

Each OMA transfer is composed of separate fetch and 
store cycles so that 8/16-bit data can be assembled and 
disassembled, and translation and termination may also 
be easily handled. There are four possible trimsfers or 
B/W modes. They are: 

B - B-1 byte fetched, 1 byte stored 
B/B - W - 2 bytes fetched, 1 word stored 
W - B/B - 1 word fetched, 2 bytes stored 
W - W ...:... 1 word fetched, 1 word stored 

The BIW mode used depends on the logical bus width 
(selected by the WID Instruction), address boundary, 
and incrementing mode. 

All systems with 8-blt physical buses will run in the B/B 
mode. On 16-bit physical buses the other modes are 
possible, depending on the logical widths selected. 
Note that the logical bus width can be different than the 
physical bus width since there are cases where an 8-blt 
peripheral may be used on a 16-blt bus. The selection of 
the logical width, and not the physical width, is what 
determines the BIW mode. Thus it is the responsibility 
of the programmer not to program an invalid combina­
tion (I.e., don't specify a 16-bit logical width on an 8-blt 
physical bus). 

Any transfer on an odd boundary will be B/B but if the 
pOinter is Incrementing and on a 16-bit logical bus, after 
the first transfer, the pOinter will be on an even bound­
ary. The lOP will then try to maintain word transfers in 
order to transfer data aseffeciently as possible. See the 
user's manual for detalls~ The change in B/W mode oc­
curs only after the first transfer or, as explained In the 
termination section, upon certain byte count ter­
minations. 

Synchronlzafion . 

In the unsynchronzied mode, transfers occur as fast as 
priorities will allow. This is the lOP's "block-move" 
mode. Most I/O peripherals only want a OMA transfer on 
demand; the ORa .lines, along with synchronization 
specified, will handle this need. Source synchronization 
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Is used for I/O reads and destination synchronization Is 
used for I/O writes. 

If the lOP Is waiting for a OMA request, It will run pro­
grams or OMA on the other channel, or execute Idle 
cycles If nothing Is pending. If running Idle cycles when 
the ORa comes, the transfer starts five clocks after 
ORa Is recognized. If running OMA or Instructions. on 
the other channel, the ORa cannot be serviced until the 
current Internal cycle Is done, and may require a max­
Imum of 12 clocks (without bus arbitration or walt 
states). 

Consecutive ORa-synchronized OMA transfers on the 
same channel are separated by four Idle clocks (assum­
ing no other delays) by an internal sampling mechanism. 
This happens between the 2-byte fetches on source­
synchronized B/B-W cycles, and between the two stores 
on destination-synchronized W-B/B cycles. This delay 
between consecutive OMA cycles allows adequate time 
for proper acknowledgement of the current OMA re­
quest before the next request is processed. On 
destination-synchronized OMA, this isn't a problem, but 
on source-synchronized OMA, there will be four extra 
clocks per transfer. Unless one is running right at the 
speed limit, this won't be a problem. Near the maximum 
data rate, unsynchronized transfers can be used, with 
synchronization done by manipulating the READY line. 

Translafe Mode 

When the translate bit Is set, the data fetched during 
OMA will be added to the GC register. This new pointer 
will in turn be used to fetch, via a seven clock extra fetch 
cycle, new data, which will then be stored. Translate Is 
only defined for byte transfers. The bytes are added to 
GC as a positive offset, so a lookup table for translating 
data can be a maximum of 256 bytes long. Even If the 
data to be translated falls within a smaller range (such 
as ASCII code), a full 256-byte lookup table Is recom­
mended so that erroneous data can be flagged and con­
trolled. 

Translate can be run on any of the B/B transfer modes, 
so Jt Is useful for doing block translation within program 
execution as well as translation directly to or from an I/O 
port. 

DMA Termination 

One of the powerful features of the lOP Is Its varied 
OMA termination conditions and their close tie-In with 
resuming histruction Block programs. However, be­
cause of the multitude of OMA modes, care must be 
taken in predicting the exact termination parameters. 
Various things to be careful about will be outlined here. 

Byte Count (BC) Termination 

The BC register Is decremented for every byte trans­
ferred whether or not BC termination Is set. If Be ter­
mination Is set, the last transfer done Is the one that 
results In BC being zero. To avoid the problem of miss­
Ing Be = 0 on word transfers, If Be Is odd between every 
transfer, the lOP detects when Be Is 1, and forces the 
last transfer to be In the B/B mode. Since both the fetch 
and store cycles are complete, the source and destina­
tion pOinters point exactly to the next byte or word that 
would have been fetched. 
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Masked Compare (MC) Termination 

An MC termination occurs when a pattern matches (or 
doesn't match, depending on mode selected) the lower 
half of the MC register (the match pattern) with only the 
bits that are enabled by the upper half of MC (the mask 
pattern) contributing to a match. Thus the masked bits 
can be "don't cares" in both the data byte and the match 
byte. 

The masked comparison is only done onstore (deposit) 
cycles. Any bytes transferred (in BIB or W-B/B mode) will 
be compared. But, since the MC comparison is done on 
only one byte, any words stored (W-W or B-B/W) have 
only their lower byte compared. This may be fine, but if 
not, make the destination logical width 8 bits. 

Just like BC termination, the pointers will point to the 
next data to be transferred. The BC will also be decre­
mented correctly, except if the termination occurs on 
the first byte of a W-B/B transfer. In this case the BC will 
be decremented as if the entire transfer (both bytes) had 
taken place. 

The store cycle that causes an. MC termination will be 
lengthened by two extra clocks (or. by one extra clock if 
there are, wait states), to allow time to set up the ter­
mlnationcycle. 

MASK PATTERN -----' MATCH 

Figure 7. Masked Compare Logic for l·BIt 

External (EXT) Termination 

External termination allows the 1/0 device or controller 
to use its own conditions to generate a termination. 
Basically, the lOP will halt OMA as soon as it recognizes 
an EXT terminate, even if a transfer is only partially com­
plete. There might be concern that multi byte cycles 
(W-B/B or B/B-W) might have data lost if an EXTter­
minate stopped the store cycle. In unsynchronized OMA 
this would happen, but this mode is typically not used 
with 1/0 controllers that could generate. external ter­
minations. In synchronized OMA modes, it is assumed 
that the I/O controller will only do a ORO for valid data 
transferred, and that it won't give an EXT terminate with 
its ORO active. In destination synchronization, the 
possible problem occurs In the W-B/Bmode, where EXT 
terminate comes after the first store but before the sec­
ond. This is fine, since even though data was over­
fetched,the proper amount was actually transferred. in 
source synchronization, the B/B-W mode raises prob­
lems since if an EXT terminate came after the first byte 
fetched and before the second byte fetched, normally 
no store cycles wouldbe done at all, thus losing the first 
byte fetched. In this case (i.e., source synced, ORO inac­
tive, and 1 byte already fetched), a single byte store 
cycle is run before the termination'cycle, ensuring data 
integrity. 

In orderto preventan invalid signal level from becoming 
trapped from the asynchronous EXT term lines, two 
clocks of delay and signal conditioning are done on 
these lines. In addition, a termination cycle can only be 
started at certain times during OMA (or TB on the other 
channel - see dual channel operation section). The EXT 
terminate lines should be valid eight clocks before the 
start of the OMA cycle to be stopped. . 

EXT is sampled even when the lOP is running something 
on the other channel. Remember though, that despite 
the high priority of termination, the current instruction 
on the other channel has to finish before the termination 
cycle is run. Simultaneous EXTs on both channels result 
in CH1 termination being done first. 

In order to have enough time to process a byte count ter­
mination, the BC register is always decremented during 
OMA fetch cycles. Because of this, external or MC ter­
minations that occur during W-B/B cycles will result in 
the byte count always being decremented by two, even 
if only one byte is stored. This also occurs in the block­
to-block or block-to-port B/B-W modes: To find the exact 
number of bytes transferred, the source pointer address 
can be checked in the block-to-port and block-to-block 
modes during B/B-W cycles and in the block-to-port 
W-B/B mode. The destination pointer address can be 
used to find the number of bytes transferred in the port­
to-block and block-to-block modes during W-B/B cycles. 

Termination Cycles and Multiple Terminations 

Upon termination, the user can run different task block 
programs, depending on which type of termination has 
occurred, by specifying an appropriate termination off­
set. That is, instruction fetching will begin after a 
termination cycle starting at either the TP value before 
the OMA started, TP + 4 or TP + 8. These offsets permit 
long or short jumps to termination routines. 

The termination cycle is an add immediate instruction 
that runs from the internal ROM and adds the proper off­
setto the TP. It is 15 clocks long for TP + 4 and TP + 8 
termination and 12 clocks long for TP+ 0 termination. 

As mentioned earlier, EXT terminate must come a cer­
tain time before the end of a .transfer to ensure that the 
next transfer. doesn't start. If it comes in time and MC 
termination. also occurs on the current transfer, then the 
termination cycle with the largest offset. is run. A 
simultaneous BC terminate cycle will have priority over 
Me and will result in the running the BC termination 
program. 

Priorities/Dual Channel Operation 

The lOP can share its internal and external hardware 
between two separate channels. The user sees two 
identical lOP channels with all registers, machine flags, 
etc., independent of the other channel. The only register 
in common is the CP register, loaded by the initializa­
tion sequence. The mechanism for achieving dual chan­
nel operation is time multiplexing between the two 
channels. 

Since interleaving two channels afiects their response 
time to external events and since interfacing to these 
events is the prime purpose ofthelOP, sev.eral means of 
adjusting the priorities of the channels are provided. 
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Before gOing into the priority algorithms in detail the 
four types of cycles that are affected by the priorities 
will be outlined: 

1. DMA Cycles - Any type of DMA transfer cycle, 
including Single transfers and translate cycl.es. DMA 
can be interrupted after any bus transfer by the other 

. channel. 

2. Instruction Cycles - Any instructions that have 
been fetched out of I/O or system memory. Instruc­
tion cycles are made up of internal cycles, each two 
to eight clocks long (assuming no wait states). Some 
cycles may not run bus transfers. Instructions can be 
interrupted by DMA after anyone of the internal 
cycles, but can only be interrupted by instructions on 
the other channel (normal ones or ones from internal 
ROM) after the current instruction is completed. 

3. Termination Cycle - Performed when DMA transfers 
end and instructions resume (except on single 
transfers). 

4. Channel Attention Cycles - Performed when chan­
nel attention is given, performs actions specified in 
the CCW field. Both termination and CA cycles can 
be interrupted by DMA after any internal cycle, but 
can only be interrupted by instruction cycles after 
the complete sequence of internal cycles is done. 

Termination and channel attention cycles as well as the 
initialization cycle (which never runs concurrently with 
other operations) are sequences of instructions fetched 
from an internal ROM. 

Recognizing the higher importance in doing DMA, ter­
mination and (to a lesser extent) CA cycles, the follow­
ing priority scheme is built into the lOP. Any channel 
that has a higher-priority operation will run continuously 
until done. If both channels are running the same priori­
ty, execution will alternate between them_ 

Highest Priority 

1. DMA transfers, termination, chained instructions 
2. Channel attention cycles 
3. Instruction cycles 
4. Idle cycles 

Lowes t Priority 

Two ways exist to alter the priority scheme. One way is 
to utilize the priority bits for each channel. If one is 
greater than the other; that channel will run at the ex­
pense of the other if both channels are otherwise run­
ning at the same priority. Thus the P bit only has effect 
on channels running at the same priority level. 

If one wants to run instructions along with or in place of 
DMA on the other channel, the other technique is to set 
the chaining bit (in the CC register) which brings the 
instruction priority up to the level of DMA. Care should 
be taken with this since now CAs are at a lower priority 
than instructions and will not be serviced unless that 

channel goes idle. Chaining will also lock out normal In­
structions on the other channel. Chaining should thus 
be used with care. 

In order to reduce the possibility of shutting out channel 
attentions, an exception is made to the above priority 
scheme. After every DMA transfer, whether synchro­
nized or unsynchronlzed, the lOP will service any pend­
ing CA. However, chained task block execution will still 
shut out CAs on the other channel. 

What is the importance of priorities? Well, as an 
example, let's say that we are running long periods of 
non-time-critical block moves (via DMA) on one channel 
and running short bursts of DMA that must be serviced 
promptly on the other channel. With the default 
priorities, the short DMA channel bursts would be in­
terleaved with the longer DMA, reducing the maximum 
transfer rate for both channels. If, however, the priority 
bit was one on the burst mode DMA and zero on the 
other, the bursts would be serviced continuously at the 
fastest possible data rate. 

An even more critical case would be the same low prior­
ity, long DMA transfers on one channel with DMA on the 
other channel that must terminate, run a short Instruc­
tion sequence, and resume DMA again within a short, 
fixed time. (This might be the case in running a CRT dis­
play with linked list processing between lines.) Normal­
ly, the low priority, long DMA could indefinitely block 
the short TB sequence. By setting the high-priority chan­
nel's priority bit to one and putting it into the chained 
instruction mode, the low priority channel would stop 
its DMA entirely so that the terminationlinstructlon se­
queneJe could run. 

When establishing the priorities to be run, care should 
be taken that both channels will run successfully under 
a worst case combination. This can be tricky when the 
channels are running asynchronously with fast data 
rates andlor short latencies, but must be taken into ac­
count. Of course, running only one channel on the lOP is 
an easy solution, but if more than one lOP is being used 
in the system, the priorities and delays of the bus ar­
bitration used (either RQ/GT or an 8289 bus arbiter) must 
be taken into account. It may be found that the on-chip 
arbitration between the two channels is faster and more 
powerful than external arbitration. 

SUMMARY 

It is hoped that the material presented here will aid 
those who are putting together and debugging an 8089 
lOP system, and help them in understanding the opera­
tion of the lOP. Many of the debugging techniques 
should be familiar to those who have worked with micro­
and minicomputer systems before. Other debugging 
techniques not mentioned here, which work well with 
microprocessor systems, could be just as applicable to 
the 8089. The unique nature of the lOP among LSI 
devices warrants special consideration for its 110 func­
tions and multiprocessor capabilities. 
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Appendix'i 

CHECKLIST OF POSSIBLE PROBLEMS 

HARDWARE PROBLEMS 

• Is RESET at least four clocks long? 

• Are both Vss lines connected to ground? 

• Does the first CA falling edge come at least two clocks 
after RESET goes away? 

• Does the second CA come at least 150 clocks (16-bit 
system, no wait states) after the first CA? 

• Is, READY correctly synchronized and gated by 
local/system bus lines? 

• Is SEL correct for first CA so that lOP comes up cor­
rectly as master or slave? 

• If two lOPs are local t6 each other, is a 2.7K pull-up re­
sistor used on RQ/GT? 

SOFTWARE PROBLEMS 

• Are the initialization parameters in the initialization 
linked-list correct? 

• Is BUSY flag being properly tested by host CPU soft­
ware before modifying PB or providing a new com­
mand? 

• Has the chaining, translate, or lock bit in the CC 
register been erroneously set? 

• Have DMA termination conditions been met? The lOP 
could be trying to do endless DMA. 

Appendix II 

BREAKPOINT ROUTINE 
AND 

CONTROL PROGRAM 

The debugging program described here is an example of 
the kind of software development tool that can be 
developed for the 8089 lOP. It was written to tryout 
various breakpoint schemes, and has been used to 
debug an engineering application test system. The pro­
gram is not meant to be the ultimate debugging tool, but 
is an example of what can be put together to utilize the 
breakpoint routine described earlier in the application 
note. 

The debugging program was tested on ,a B086·based 
system that emulates the SDK-86 I/O structure, and uses 
the SDK-86 serial monitor. This enables it to use the 
SDK-86 Serial Downloader to interface to an 
Intellec@ development system on which: the software 
was created. The 8086 system is interfaced via a 
MULTIBUS™ Interface to an lOP running in the REMOTE 
mode. The remote bus access technique, mentioned 
earlier In this note, Is implemented on this system, but 
was not used in the software debugging program. 

The breakpoint routine uses a simple jump to a save 
routine. The PUM-86 supervisory or control program 
handles the placement of the jump within the users pro­
gram. Since it can not normally access the remote bus, 
all lOP programs to be tested must run out of system 
memory. 

When the control program starts, It assumes the 10P,has 
just been reset. It then prompts the user for the CP 
and PP values. After this, it sends the first (initialization) 
channel attention. It then asks the user for the channel 
to be run, and the starting and stopping addresses. After 
the stopping address has been entered, a Channel At­
tention Start is given. If the breakpoint is reached, a 
HALT is executed, and the control program prints the 
register contents. If the breakpoint hasn't been reached, 
the user can type any character, and a Channel Atten­
tion Halt will be sent to the lOP. If the lOP responds 
within 50 ms, the TP where it was halted is printed. 
Otherwise, the control program issues ,an error 
message. If, at any time, the user wants to get out of the 
program, typing an ESC will pass control back to the 
SDK·86 monitor. Figure 9 shows the flow of the control 
program. 

Note that, unlike a single CPU debugging routine, hav­
ing the 8086 supervise the 8089 enables a clean exit 
from crashed lOP programs. The program code where 
jumps had been placed are always restored. The control 
program is a good example of how the power of dual 
processors can be put to good advantage. 

Comments within the control program indicate 
parameters that need to be changed to run on different 
systems. It should be noted that channel attentions are 
invoked by the recommended method of using an I/O 
write to a port to generate CA and using AO for SEL. 

Source and object files of. this program are available 
through Intel's INSITE™ User's Program Library as pro­
gram 8089 Break. 89 (number AD6). 

MASTER DATA STORAGE LOCATIONS: 

TP 

GA r" 
GA 

GB 

GC 

GC 

BC 

IX 

CC 
MC 

TP 

GB 

=lINCREASING 
ADDRESS 

PP -

~ -
i-

t= 

PP+239 

PP + 242 

PP + 245 

PP+ 248 

PP + 250 

PP+252 

PP+254 

Figura 8. Breakpoint Routine to Run 8089 Program out of System 
Memory 
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NO 

Figure 9. Breakpoint Routine to Run 8089 Program out of System Memory 

A-lOl 



AP-50 

PL/M-86 COMPILER 8089 BREAKPOINT ROUTINE 

ISIS-I I PLlM··86 Xl03 COMPILATION OF MODULE BREAKPOINT 
OBJECT MODULE PLACED IN BREAK.OBJ 
COMPILER INVOKED BY, ,F1; PLM86 BREAK. SRC PAGEWIDTH (100) 

2 
3 
4 
5 
6 

7 
8 
9 

10 

11 

$TITLE ('8089 BREAKPOINT ROUTINE') 

8089 BREAK POINT PROCEDURE 
WRITTEN BY DAVE FERGUSON 2/2/79 
INTEL CORPORATION 

BRE:AK$POINT, 
DO, 
DECLARE I BYTE, 

REV 2 8/14179 

DECLARE SAVECODE (4) WORD, I*BUFFER FOR STORAGE*I 
DECLARE ONEPP POINTER, 1* CHAN ONE PP *1 
DECLARE TWOPP POINTER, 1* CHAN TWO PP *1 
DECLARE STARTBYTES (4) BYTE, 1* BUFFER FOR START ADDRESS *1 

DECLARE STARTPOINTER POINTER, 1* POINTER FOR START ADDR. *1 
DECLARE ENDPOINTER POINTER, 1* POINTER FOR END ADDR. *1 
DECLARE PRESENT POINTER AT (@INPNTR), 1* POINTER BUFFER *1 
DECLARE TRUE LITERALLY 'OFFH', FALSE LITERALLY '~O~H', 

1* YOU MUST CONFIGURE YOUR 1/0 STRUCTURE AND 
SYSTEM TO MATCH THE PROGRAM OR VISA VERSA *1 

DECLARE CRT STATUS LITERALLY '0F,FF2H', 1* 8251 STATUS PORT *1 
CRTDATA LITERALLY 'OFFFOH', 1* 8251 DATA PORTS *1 

....... *1 

CHANATTEN LITERALLY 'OFAH', 1* CHANNEL ONE CHANNEL ATTENTION PORT *1 
1* CHANNEL TWO CHANNEL ATTENTION PORT = CHANATTEN + 1 *1 

CHANNELONE LITERALLY 'OOH', 
CHANNEL TWO LITERALLY 'OIH', 

1* ASC II IS A STR ING OF HEX CHARACHTERS IN ASCII FORM.; *1 
ASCII (*) BYTE DATA ('0123456789ABCDEF'), 
TITLE$STRING (*) BYTE DATA WAH,ODH, '8089 BREAKPOINT VER 1. 0', 

OAH,ODH, 'TYPE ESCAPE TO RETURN TO MONITOR. " 
OAH, bDH, 0), 

CHANGIVEN (*) BYTE DATA ('CHANNEL ATTENTION GIVEN TYPE ANY KEY TO ABORT. ' 
,DAH, ODH, 0>, 

IlKREACHED (*) BYTE DATA WAH,ODH, 'BREAKPOINT REACHED', OAH, ODH, 0), 
GETCP (*) BYTE DATA (' INPUT CP IN HEX', OAH, ODH, 00), 
GET$PP (*) BYTE DATA ('INPUT PP IN HEX FOR ',OOH), 

PAGE 

GETSTART (*) BYTE DATA (OAH, ODH, 'INPUT STARTING ADDRESS IN HEX', OAH, ODH, OOH), 
STOPADDR (*) IlYTE DATA ('INPUT END ADDRESS IN HEX',OAH,ODH,OOH), 
CHANNUMIlER (*) BYTE DATA (OAH,ODH, 'CHANNEL ONE OR TWO? ',DOH), 
ABORT (*) IlYTE DATA (' FATAL ERROR - lOP DOES NOT RESPOND TO CHANNEL', 
, ATTENTION. RE-INITIALIZE SYSTEM ',0), 
ABORTAT (*) BYTE DATA (' TP WAS ',0), 
ONE (*) BYTE DATA (' CHANNEL ONE',OAH,ODH,OOH), 
TWO (*) BYTE DATA (' CHANNEL TWO',OAH, ODH, OOH), 
GASTRING (*) BYTE DATA ('GA = ',OOH), 
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12 
13 

14 

15 

16 
17 

18 

19 
20 
22 
23 

24 

25 
26 
28 
29 
30 
32 
33 

34 

35 
36 
37 
39 
40 
41 

2 

2 
2 

2 
2 
2 
2 

1 
2 
2 
2 
2 
2 
2 

2 
2 
3 
3 
2 
2 
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GBSTRING (*) BYTE DATA ('GB = ',OOH), 
GCSTRING (*) BYTE DATA ('GC = '.OH). 
BCSTRING (*) BYTE DATA .(OAH,ODH. 'BC = ',OOH), 
IXSTRING (*) BYTE DATA (OAH,ODH. 'IX '.OOH). 
CCSTRING (*) BYTE DATA (OAH.ODH. 'CC '. OOH). 
MCSTRING (*) BYTE DATA (OAH.ODH. 'MC, = '.OOH) 

DECLARE CHAR BYTE, 
DECLARE ONETWO BYTE, 

1* SDKMON IS A PLM TECHNIQUE USED TO FORCE THE CPU INTO AN 
INTERUPT LEVEL 3. IN ORDER TO USE THIS THE PROGRAM MUST 
BE COMPIL.ED (LARGE), *1 

SDKMON: 
PROCEOURE. 

DECLARE HERE (*) BYTE OATA (OCCH). 
1* THIS IS AN INT. 3 *1 

WHERE WORD DATA(.HERE), 
CAL.L WHERE, 

END, 

1* CO SENDS A CHAR TO THE CONSOLE WHEN READY *1 
1* THIS ROUTINE IS WRI·TTEN TO RUN VIA THE SERIAL 

PORT OF AN SDK86 *1 
CO: 
PROCEDURE (C), 

DECLARE C BYTE, 
DO WHILE (INPUT(CRTSTATUS) AND 01H) 0, END, 
OUTPUT (CRTDATA) = C, 

END. 

1* CI GETS A CHARACHTER FROM THE USER VIA THE SERIAL PORT *1 
1.* CI AUTOMATICALLY ECHOS THE CHARACHTER TO THE USER CONSOLE *1 
DECLARE ~SCAPE LITERALLY '1BH'. 

CI: PROCEDURE BYTE, 
DO WHILE (INPUT(CRTSSTATUS) AND 02H) = 0, END, 
CHAR = INPUT (CRTDATA) AND 07FH. 
CALL CO ( CHAR) • 
IF CHAR = ESCAPE THEN CALL SDKMON, 1* GO TO SDK MONITOR *1 
RETURN CHAR, 

END. 

1* VALIDHEX CHECKS THE VALIDITY OF A BYTE AS A HEX CHARACHTER*I 
1* THE PROCEDURE RETURNS TRUE IF VALID FALSE IF NOT *1 

VALIDHEX: 
PROCEDURE (H) BYTE, 

DECLARE H BYTE, 
DO 1=0 TO LAST(ASCII), 

IF H=ASCII(I) THEN RETURN TRUE. 
END, 
RETURN FALSE, 

END, 
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42 

43 2 
4~ 2 
46 2 
47 3 
49 3 
50 2 

51 

52 2 
53 2 
54 2 
55 2 

56 

57 2 
58 2 
59 2 
60 2 

61 

62 

63 2 

64 2 
65 2 
66 2 
67 2 

68 2 
69 2 
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1* HEXCONV CONVERTS A HEX CHARACTER TO BINARY FOR MACHINE USE. 
IF THE CHARACTER IS NOT A VALID HEX CHAR. THE PROCEDURE RETURNS 
THE VALUE OFFH *1 

HEXCONV: 
PROCEDURE (OAT) BYTE; 

DECLARE OAT BYTE; 
IF VALIDHEX(DAT) <> OFFH THEN RETURN TRUE; 
DO 1=0 TO LAST(ASCII); 

IF OAT = ASCII(I) THEN RETURN I; 
END; 
END; 

1* HEXOUT'WILL CONVERT A VALUE OF TYPE BYTE TO AN ASCII STRING 
AND SEND IT TO THE CONSOLE *1 

HEXOUT: 
PROCEDURE (C); 

DECLARE C BYTE; 
CALL CO(ASCII(SHR(C.4) AND OFH»; 
CALL CO(ASCII (C AND OFH»; 

END; 

1* WORDOUT CONVERTS A VALUE OF TYPE WORD TO AN ASCII STRING 
AND SENDS IT TO THE CONSOLE *1 

WORDOUT: 
PROCEDURE (W); 

DECLARE W WORD; 
CALL HEXOUT(HIGH(W»; 
CALL HEXUUT(LOW(W»; 

END; 

1* GET ADDRESS 15 A PROCEDURE TO GET AN ADDRESS FROM THE CONSOLE. 
THIS PROCEDURE WILL ONLY CONSIDER THE LAST 5 CHARACHTERS ENTERED 
*1 

DECLARE INPNTR (4) BYTE; 

GETSADDRESS: 
PROCEDURE POINTER; 

DECLAR" BUFF BYTE; 
I*CLEAR ALL VALUES TO ZERO *1 

INPNTR (0) 0; 
INPNTR ( 1 ) 0; 
INPNTR (2) 0; 

INPNTR(3) 0; 

BUFF ~ 0; 
DO WHILE BUFF () TRUE; 

1* THIS SEQUENCE OF SHIFTS ALLOW THE USER TO TYPE IN FIVE 
DR MORE CHARACHTERS TO BECOME THE ACTUAL POINTER FOR 8089 
DR 8086. THIS PROCEDURE RETURNS THE LAST FIVE IN PROPER 
SEQUENCE STORED IN INPNTR(0-3). THE STORAGE 
IS AS FOLLOWS: 

1. THE LAST CHARACTER INPUT GOES INTO 
THE LOW FOUR BITS OF INPNTR(O). 

2. THE NEXT TO LAST CHARACTER GOES INTO 
THE LOW FOUR BITS OF INPNTR(2). 
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70 
71 
72 
73 
74 
75 
7b 
77 
78 
79 

80 

81 
82 
83 
84 
85 
86 
87 

88 

89 

90 
91 
92 

93 
94 
95 

96 
97 
98 

3 
3 
3 
3 
3 
3 
2 
2 
2 
2 

2 
2 
2 
3 
3 
3 
2 

2 
2 
2 

2 
3 
3 

2 
3 
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3. THE THIRD CHARACTER INPUT GOES INTO 
THE HIGH FOUR BITS OF INPNTR(2) 

4. THE SECOND CHARACHTER INPUT GOES INTO 
THE LOW FOUR BITS OF INPNTR(3) 

5. THE FIRST CHARACTER INPUT GOES INTO 
THE UPPER FOUR BITS OF INPNTR(3). 

THE 86 SHIFTS INPNTR (2,AND3) LEFT FOUR BITS AND ADDS THIS TO 
INPNTR(O) RESULTING IN THE ADDRESS THE USER TYPED IN. *1 

INPNTR(3) ~ '(SHL(INPNTR(3),4) OR (SHR( INPNTR(2),4) AND OFH», 
INPNTR(2) ~ (SHL(INPNTR(2),4) OR (INPNTR(O) AND OFH», 
INPNTR(O) ~ BUFF, 
BUFF ~ CI, 
BUFF ~ HEXCONV(BUFF), 

END, 
CALL CO(OAH), I*LINE FEED TO CRT*I 
CALL CO(ODH), I*CARRIAGE RET TO CRT*I 
RETURN PRESENT, 1* PRESENT IS A POINTER TO THE ARRAY INPNTR. *1 

END, 

1* STRINGOUT IS A PROCEDURE TO SEND THE CONSOLE AN ASCII STRING 
ENDING IN THE VALUE 00. STRINGOUT NEEDS A VALUE OF TYPE POINTER 

*1 

STR I NG$OUT: 
PROCEDURE (PTR ), 

DECLARE PTR POINTER,STR BASED PTR (1) BYTE, 
I ~ 0, 
DO WHILE STR(I) <> 0, 

CALL CO(STR(I», 
I ~ I + 1, 

END, 
END, 

DECLARE TAGIS (*) BYTE DATA (' OPERATING IN ',0), 
TAGISONE (*) BYTE DATA ('10 SPACE',OAH,ODH, 0), 
TAGISZERO (*) BYTE DATA ('SYSTEM SPACE',OAH,ODH,O), 

1* TAGTEST TESTS THE TAG BIT AND SENDS A MESSAGE TO THE CONSOLE 
THE TAG IS LOCATED IN BIT THREE. A TAG BIT OF ONE MEANS THE 
POINTER IS TO lID SPACE, AND A TAG BIT OF ZERO MEANS THE 
POINTER IS TO SYSTEM SPACE *1 

1* THE CALLER MUST DECIDE WHICH BYTE HAS THE TAG AND PASS IT TO TAGTEST *1 

TAGTEST: 
PROCEDURE (TEST), 

DECLARE TEST BYTE, 
CALL STRINGOUT(@TAGIS), 
IF (TEST AND 01000B) <> 0 
THEN 
DO, 

CALL STRINGOUT(@TAGISONE), 
END, 
ELSE 
DO, 

CALL STRINGOUT(@TAGISZERO), 
END, 
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qq 

100 

101 

102 

103 
1,)4 

1 :)5 

lr,6 

107 
108 
IG9 
110 
111 

112 
113 
114 

115 

lib 
117 

118 
119 

120 

;;; 

2 

2 
;;; 
2 
", 
;;; 

2 
2 

END; 
DECLARE 5AVESADDR LITERALLY '2000H', 

SAVESSEG LITERALLY 'OOCOH'; 

DECLARE BREAK89 (4) WORD DATA (9B8IH,089IH,SAVESADDR,SAVESSEG), 
1* BREAKB9 IS AN 4 WORD ESCAPE SEGUENCE TO ADDRESS 2000H 

CONSIST,ING OF AN LPDI TP, SAVESADDR WITH SEGMENT· 
LOCATED AT OCOOH, *1 

1* BRKRTN IS 33 BYTES OF CODE THAT STORES ALL REGISTERS 
AS FOl LOWS: 

GA STORED AT PP + 239 
GB STORED AT PP + 242 
GC STORED AT PP + 245 
BC STORED AT PP + 248 
IX STORED AT PP + 250 
CC STORED AT PP + 252 
MC STORED AT PP + 254 

*1 

DECLARE BRKRTN (33) BYTE AT (02COOH) 
i* 02COOH 15 ACTUALL.Y (SAVESADDR + (SHL(SAVESSEG), 4», AND SHOULD 

MATCH ADDRESS AND SEGMENT WHERE BREAK ROUTINE IS WANTED *1 
INITIAL 

,03H,Q9BH,QEFH,023H,09BH,OF2H,043H,09BH,OF5H,063H,087H,OF8H,OA3H,087H, 
OFAH,QC3H,Q87H,OFCH, OE3H,OB7H, OFEH,020H,048H) 

DECLARE PP POINTER; 
DECLARE PPP BASED PP (I) BYTE; 

STARTSPROM 
PROCEDURE(ONESTWO,PPP); 
DECLARE ,ONEHWO BYTE, PPP POINTER, 
WHERE BASED PPP (I) BYTE; 

WHERECO) = STARTSBYTES(O), 
WHERE( 1) = p; 
WHERE(2) ~ STARTSBYTES(2), 
WHERE(3) ~ STARTSBYTES(3); 
CPDAT(CONESTWO) * 8) = 3, 
1* IF ONETWO = 1 THEN OUTPUT TO PORT OFBH, IF ONETWO 

15 0 THEN OUTPUT TO PORT OFAH *1 
OUTPUT C CHANATTEN + (ONETWO » = 0; 
CALL STRINGOUT(@CHANGIVEN); 

END; 

1* THIS PART OF THE PROGRAM ALLOWS THE USER TO DEFINE THE 
CP,PP OF EACH CHANNEL *1 

DECl.ARE BREAKOUT BASED ENDPOINTER (I) WORD; 

DECLARE CP POINTER; 
DECLARE CPDAT BASED CP (I) BYTE, 

DECLARE ONEPPDAT BASED ONEPP (I) BYTE, 
DECLARE TWOPPDAT BASED TWOPP (I) BYTE; 

CALL STR INGOUT C i!T ITLESTR ING), 
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121 
122 
123 
124 
125 
126 
127 
128 
129 

8089 BREAKPOINT ROUTINE 

CALL STRINGOUTCIGETCP), 
CP = GETADDRESS, 
CALL STRINGOUTCIGETPP), 
CALL STRINGOUTCIONE) , 
ONEPP = GETADDRESS, 
CALL STRINGOUTCIGETPP), 
CALL STRINGOUTC@TWO), 
TWOPP = GETADDRESS, 

AP-50 

OUTPUT CCHANATTEN) = 0, 1* INITIALIZATION CA *1 

130 MAIN: 

131 
132 

134 2 
135 2 
136 2 

137 1 
138 2 
139 2 
140 2 

141 

142 1 
143 1 
144 2 
145 2 
146 1 

147 1 
148 1 
149 2 
150 2 
151 1 
152 2 
153 2 
154 1 
155 1 
156 1 
157 2 
158 2 
159 2 
160 1 

161 

CALL STRINGOUTC@CHANNUMBER), 
CHAR = CI, 1* GET CHANNEL NUMBER *1 
IF (CHAR AND 01H) (> 0 1* CHECK BIT ZERO TO DEFINE 

CHANNEL NUMBER *1 
THEN DO, 

CALL STRINGOUTC@ONE), 
ONETWO = CHANNELSONE, 

END, 
ELSE 

DO, 
CALL STRINGOUTC@TWO), 
ONETWO = CHANNELSTWO, 

END, 

CALL STRINGOUTC@GETSSTART), 1* GET STARTING ADDRESS 
FROM USER *1 

STARTPOINTER = GET ADDRESS, 
DO I = 0 TO 3, 1* MOVE STARTING ADDRESS INTO CP AREA *1 

STARTBYTESCI) = INPNTRCI), 
END, 
CALL STRINGOUTC@STOPADDR), 1* GET STOP ADDRESS 

FROM USER *1 

ENDPOINTER : GETADDRESS, 
DO I = 0 TO 3, 1* MOVE CODE TO SAFE AREA *1 

SAVECODECI) = BREAKOUTCI), 
END, 
DO I = 0 TO 3, 

BREAKOUT(I) = BREAK89CI), 1* MOVE ESCAPE SEClUENCE INTO PLACE *1 
END, 
CPDAT(I) ~ OFFH, 1* SET CHANNEL ONE BUSY FLAG *1 
CPDAT(9) = OFFH, 1* SET CHANNEL TWO BUSY FLAG *1 
DO CASE ONETWO, 
PP = ONEPP, 
PP = TWOPP, 
END, 
CALL STARTSPRGM(ONESTWO,PP), 
1* WAIT FOR ONE OF THE FOLLOWING 

I.CPDAT(I) = 0 CHI NOT BUSY 
2.CPDAT(9) = 0 CH2 NOT BUSY 
3. THE 8251 REC. BUFFER IS FULL BECAUSE USER HAS DEPRESSED A KEY 

*1 
DO WHILE C CCPDAT(I) AND CPDAT(9» AND CNOT CINPUTCCRTSSTATUS) AND 02H») 

A-I07 
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162 2 
163 1 

164 1 
165 2 
166 2 
167 3 
168 3 

169 2 

170 2 
171 2 
172 3 
173 3 

174 2 

175 2 
176 3 
177 3 

178 2 
179 3 
180 3 

181 3 

182 3 

183 3 
184 2 
185 2 
186 2 
187 1 

188 2 

189 2 
190 2 
191 2 
192 2 
193 2 

194 2 
195 2 
196 2 
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END, 
IF CINPUTCCRT.STATUS) AND 02H) (> 0 

THEN 
DO, 

CHAR = CI, 
DO I = 0 TO 3, 

BREAKOUTCI) = SAVECODECI), 
END, 

1* IF ONE TWO = 0 THEN PUT CHA HLT IN CPDATCO) 
IF ONETWO = 1 THEN PUT CHA HLT IN CPDAT(8) 

*1 
CPDATCONESTWO *8) = 06H, 

1* IF ONE TWO = 0 THEN OUTPUT TO PORT OFAH. IF ONETWO 
IS 1 THEN OUTPUT TO PORT OFBH. 

*1 
OUTPUTCCHANATTEN + ONE TWO I = 0, 
DO I e. 0 TO 5, 

CALL TIMEClOO), 
END, 

1* IF BUSY FLAG HAS BEEN CLEARED. THEN A CA HALT&SAVE 
WAS EXECUTED. IF SO. PRINT SAVED TP, IF NOT. ABORT *1 

IF CPDATCSHLCONETWO.3) + I) () 0 
THEN 
DO, 

CALL STRINGOUTC@ABORT), 
END, 
ELSE 
DO, 

CALL STRINGOUTC@ABORTAT), 

1* CHECK BUSY FLAG *1 

CALL COCASC!lCSHRCPPP(2).4»), 1* UPPER NIBBLE OF AD DR 
STORED BY HALT *1 

END; 
DO; 

CALL HEXOUTCPPPCI», 1* MIDDLE BYTE OF ADDR 
STORED BY HALT *1 

CALL HEXOUTCPPPCO»; 1* LEAST SIG BYTE OF ADDR 
STORED BY HALT *1 

END, 
CPDATCONETWO * 8) = 3H; 1* CA START IN CPDATCO) OR CPDAT(8) *1 
GO TO MAIN, 

CALL STRINGOUTC@BKREACHED); 

CALL STRINGOUTC@GASTRING); 
CALL COCASCIICSHRCPPP(241).4»); 
CALL HEXOUTCPPP(240», 
CALL HEXOUTCPPP(239»; 
CALL TAGTESTCPPPC241», 

CALL STRINGOUTC@9BSTRING); 
CALL COCASCIICSHRCPPP(244).4»); 
CALL HEXOUTCPPP(243», 
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197 
198 

1<;9 
200 
201 
202 
203 

204 
205 
206 

207 
208 
209 

210 
211 
212 

213 
214 
215 

~16 

217 
218 
219 

220 

221 

2 
2 

2 
2 
2 
2 
2 

2 
2 ., 

2 
2 
2 

2 
2 
2 

2 

2 

END, 

CALL HEXOUT(PPP(242ll, 
CALL TAGTE5T(PPP(244ll, 

CALL STRINGOUT(@GC5TRINGl, 
CALL CO(A5CII(SHR(PPP(247l,4lll, 
CALL HEXOUT(PPP(246ll, 
CALL HEXOUT(PPP(245ll, 
CALL TAGTE5T(PPP(247l), 

CALL 5TRINGOUT(@BCSTRINGl, 
CALL HEXOUT(PPP(249)l, 
CALL HEXOUT(PPP(248)l, 

CALL STRINGOUT(@IX5TRINGl, 
CALL HEXOUT(PPP(251)l, 
CALL HEXOUT(PPP(250ll, 

CALL STRINGOUT(@CC5TRINGl, 
CALL HEX OUT (PPP (253 1 l' 
CALL HEXOUT(PPP(252l), 

CALL STRINGOUT(@MCSTRINGl, 
CALL HEXOUT(PPP(255l), 
CALL HEXOUTIPPP(254)l, 

END, 
f* RESTORE CODE TO ORIGINAL LOCATION *1 
DO I ~ 0 TO 3, 

BREAKOUT(Il SAVECODE(Il, 
END, 

GO TO MA IN, 

MODULE INFORMATION 

CODE AREA SIZE, 
CONSTANT AREA SIZE 
VARIABLE AREA SIZE 
MAXIMUM STAC~ SIZE 
427 LINES READ 
o PROGRAM ERROR(S) 

END OF PLfM-86 COMPILATION 

0619H 
01EFH 
0020H 
0014H 

15610 
495D 

320 
200 
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ISIS-II 8089 ASSEMBLER X004 ASSEMBLY OF MODULE AP50_BREAKPOINT_ROUTINE 
OBJECT MODULE PLACED IN :FO:BRKASM.OBJ 
ASSEMBLER INVOKED BY ASM89.4 BRKASM. SRC 

0000 

2000 

0000 

0000 
OOEF 
00F2 
00F5 
00F8 
OOFA 
OOFC 
OOFE 
0100 

2000 
2003 
2006 
2009 
200C 
200F 
2012 

2015 

2017 

9108 00200000 

039B EF 
239B F2 
439B F5 
6387 F8 
A387 FA 
C387 FC 
E387 FE 

2048 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 

NAME AP50_BREAKPOINT_ROUTINE 
BRKPNT SEGMENT 
i************************************** 

BASIC 8089 BREAKPOINT ROUTINE 
BY JOHN ATWOOD REV 3 8/13/79 
INTEL CORPORATION 

i************************************** 

THE FOLLOWING CODE IS CONTAINED IN THE PL/M-86 
CONTROL PROGRAM(BREAK.89) AND IS ASSEMBLED HERE 
TO ILLUSTRATE HOW THE ESCAPE SEGUENCE AND SAVE 
ROUTINE CODE WAS GENERATED. TO USE THE 8089 BREAK­
POINT PROGRAM, THIS ASM89 PROGRAM WOULD NOT BE 
NEEDED. SAVE ADDR IS THE SAME AS SAVE$ADDR IN THE 
BREAK. 89 PROGRAM. 

EGU 2000H ,SAVE ROUTINE ADDRESS 

LPDI TP,SAVE_ADDR ,JUMP TO SAVE ROUTINE 

i*************************************** 

REGISTER SAVE LOCATIONS WITHIN PB: 

REGS STRUC 
PBLOCK: OS 239 , PARAMETER BLOCK 
GASAV: OS 3 ,GA AREA 
GBSAV: OS 3 ,GB AREA 
GCSAV: OS 3 , GC AREA 
BCSAV: OS 2 ,BC AREA 
IXSAV: OS 2 , IX AREA 
CCSAV: OS 2 ,CC AREA 
MCSAV: OS 2 , MC AREA 
REGS ENDS 

REGISTER SAVE ROUTINE: 

MOVP [PPJ.GASAV,GA 
MOVP [PPl.GBSAV,GB 
MOVP [PPJ.GCSAV,GC 
MOV [PPJ.BCSAV,BC 
MOV [PPl. IXSAV, IX 
MOV [PPl.CCSAV,CC 
MOV [PPJ.MCSAV,MC 

HLT 

I SAVE GA 
,SAVE GB 
,SAVE GC 
,SAVE BC 
,SAVE IX 
,SAVE CC 
,SAVE MC 

,STOP THIS CHANNEL, 
,CLEAR BUSY FLAG. 

;**************************************** 
BRKPNT ENDS 

END 
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INTRODUCTION 

Over the past several years, microprocessors have been 
increasing in popularity. The performance improve· 
ments and cost reductions afforded by LSI technology 
have spurred on the design motivation of using multiple 
processors to meet system real·time performance 
requirements. The desire for improved system real·time 
response, system reliability and modularity has made 
multiprocessing techniques an increasingly attractive 
alternative to the system design engineer; techniques 
that are characterized as having more than one micro· 
processor share common resources, such as memory 
and 1/0, over a common multiple processor bus. 

This type of design concept allows the system designer 
to partition overall system functions into tasks that 
each of several processors can handle individually to 
increase system performance and throughput. But, how 
should a designer proceed to implement a multiproc­
essing system? Should he design his own? If so, how 
are the microprocessors synchronized to avoid conten­
tion problems? The designer could put them all in phase 
using one clock for all the microprocessors. This may 
work, until the physical dimensions of the system 
become large. When this occurs, the designer is faced 
with many problems, like clock skew (resulting in bus 
spec Violations) and duty cycle variations. 

A better approach to implementing a multiprocessor 
system is not to have a common processor clock, but 
allow each processor to work asynchronously with 
respect to each other. The microprocessor requests to 
use the multiple processor bus could then be synchro· 
nized to a high frequency extemal clock which will per· 
mit duty cycle and phase shift variations. This type of 
approach has the benefit of allowing modularity of hard· 
ware. When new system functions are desired, more 
processing power can be added without impacting 
existing processor task partitioning. 

One approach to implement this asynchronous process· 
ing structure would be to have all the bus requests enter 
a priority encoder which samples its inputs as a func· 
tion of the higher frequency "bus clock". The inputs 
would arrive asynchronously to the priority encoder and 
would be resolved by the priority encoder structure as to 
which microprocessor would be granted the bus. An· 
other approach, that used by Intel, is rather than allow· 
ing the requests to arrive asynchronously with respect 
to one another at the priority encoder, the bus requests 
are synchronized first to an external high frequency bus 
clock and then sent to the priority encoder to be reo 
solved. In this way, the resolving circuitry common to all 
microprocessors is kept at a minimum. Overall system 
reliability is improved in the sense that should a circuit 
which serves to synchronize the processor's request 
(which is now located on the same card as the micro· 
processor itself) fail, it is only necessary to remove that 
card from the system and the rest of the system will 
continue to function. Whereas in the other approach, 
should the synchronizing mechanism fail, the whole 

system goes down, as the synchronizing mechanism is 
located at the shared resource. In addition to the im· 
proved system reliability, moving the synchronization 
mechanism to the processor permits processor control 
over that mechanism, thereby permitting system flexi· 
bility (as will be shown) which could not be reasonably 
obtained by any other approach. 

This synchronizing or arbitrating function was inte· 
grated into the 8289, a custom arbitration unit for the 
8086, 8088, and 8089 processors. This note basically 
describes the 8289 arbitration unit, illustrates its dif· 
ferent modes of operation and hardware connect in a 
multiprocessor system. Related and useful documents 
are: 8086 user's manual, 8289 data sheet, Article Reprint 
-55: Design Motivations for Multiple Processor 
Microcomputer Systems (which discusses implement­
ing a semaphore with the MULTIBUS™) and Application 
Note 28A, Intel MULTIBUS™ interfacing. 

BUS ARBITER OPERATING CHARACTERISTICS 

The 8289 Bus Arbiter operates in conjunction with the 
8288 Bus Controller to interface an 8086, 8088, or 8089 
processor to a multi·master system bus (the 8289 is 
used as a general bus arbitration unit). The processor is 
unaware of the arbiter's existence and issues com· 
mands as though it has exclusive use of the system bus. 
If the processor does not have the use of the multi· 
master system bus, the bus arbiter prevents the bus 
controller, the data transceivers and the address latches 
from accessing the system bus (i.e., all bus driver out­
puts are forced into the high impedance state). Since 
the command was not issued, a transfer acknowledge 
(XACK) will not be returned and the processor will enter 
into wait states. Transfer acknowledges are signals 
returned from the addressed resource to indicate to the 
processor that the transfer is complete. This signal is 
typically used to control the ready inputs of the clock 
generator. The processor will remain in wait until the 
bus arbiter acquires the use of the multi·master system 
bus, whereupon the bus arbiter will allow the bus con· 
troller, the data transceivers and the address latches to 
access the system bus. Once the command has been 
issued and a data transfer has taken place, a transfer 
acknowledge (XACK) is returned to the processor. The 
processor then completes its transfer cycle. Thus, the 
arbiter serves to multiplex a processor (or bus master) 
onto a multi·master system bus and avoid contention 
problems between bus masters. 

Since there can be many bus masters on a multi·master 
system bus, some means of resolving priority between 
bus masters simultaneously requesting the bus must be 
provided. The 8289 Bus Arbiter provides for several 
resolving techniques. All the techniques are based on a 
priority concept that at a given time one bus master will 
have priority above all the rest. These techniques in· 
clude the parallel priority resolving techniques, serial 
priority resolving and rotating priority techniques. 
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A parallel priority resolving technique has a separate 
bus request (BREQ) line for each arbiter on the multi­
master bus (see Figure 1). Each BREQ line enters into a 
priority encoder which generates the binary address of 
the highest priority BREQ line which is active at the 
inputs. The output binary address is decoded by a 
decoder to select the corresponding BPRN (bus priority 
in) line to be returned to the highest priority requesting 
arbiter. The arbiter receiving priority (BPFilil active low) 
then allows its associated bus master onto the rnulti· 
master system bus as soon as it becomes available (Le., 
it is no longer busy). When one bus arbiter gains priority 
over another arbiter, it cannot immediately seize the 
bus, it must wait until the. present bus occupant com-

pletes its transfer cycle. Upon completing its transfer 
cycle, the present bus occupant recognizes that it no 
longer has priority and surrenders the bus, releasing 
BUSY. BUSY is an active low OR-ti.ed signal iine which 
goes to every bus arbiter on the system bus. When 
BUSY goes high, the arbiter which presently has bus 
priority (BPRN active low) ttien seizes the bus and pulls 
BUSY low to· keep other arbiters off the bus. (See 
waveform timing diagram, Figure 2.) Note that all multi­
master system bus transactions are synchronized to the 
bus clock (BCLK). This allows for the parallel priority 
resolving circuitry or, any .other priority resolving 
scheme employed, time to ·settle and make a correct 
decision. 

74138 3 

D:CTgD~R 4 

Figure 1. Parallel Priorlly Resolving Technique 

0) HIGHER PRIORITY BUS ARBITER REQUESTS THE MULTI·MASTER SYSTEM BUS. 

@ ATTAINS PRIORITY. 

@ LOWER PRIORITY BUS ARBITER RELEASES BUSY. 

@) HIGHER PRIORITY BUS ARBITER THEN ACQUIRES THE BUS AND PULLS BUSY DOWN. 

Figure 2. Higher Priority Arbiter Obtaining The Bus From A Lower Priority Arbiter 
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A serial priority resolving technique eliminates the need 
for the priority encoder-decoder arrangement by daisy­
chaining the bus arbiters together. This is accomplished 
by connecting the higher priority bus arbiter's BPRO 
(bus priority out) output to the BPRN of the next lower 
priority (see Figure 3). The highest priority bus arbiter 
would have its BPRN line grounded, signifying to the ar­
biter that it always has highest priority when requesting 
the bus. 

HIGHEST PRIORITY 

/ 

. 
CBRQ: : BUSY 

THE NUMBER OF ARBITERS THAT MAY BE DAISY·CHAINED 
TOGETHER IN THE SERIAL PRIORITY RESOLVING TECH· 
NIQUE IS A FUNCTION OF BCLK AND THE PROPAGATION 
DELAY FROM ARBITER TO ARBITER. NORMALLY. AT 10 MHz 
ONLY 3 ARBITERS MAY BE DAISY·CHAINED. SEE TEXT. 

Figure 3. Serial Priority Resolving 

A rotating priority resolving technique arrangement is 
similar to that of the parallel priority resolving technique 
except that priority is dynamically reassigned. The pri­
ority encoder is replaced by a more complex circuit 
which rotates priority between requesting arbiters, thus 
guaranteeing each arbiter equal time on the multi­
master system bus. 

There are advantages and disadvantages for each of the 
techniques described above. The rotating priority re­
solving technique requires an extensive amount of logic 
to Implement, while the serial technique can accommo­
date only a limited number of bus arbiters before the 
daisy-chain propagation delay exceeds the multi-master 
system bus clock (BCLK). The parallel priority resolving 
technique is, in general, the best compromise. It allows 
for many arbiters to be present on the bus while not 
requiring much logic to implement. 

Whatever resolving technique is chosen, it is the 
highest priority bus arbiter requesting use of the multi­
master system bus which obtains the bus. Exceptions 
do exist with the 8289 Bus Arbiter where a lower priority 
arbiter may take away the bus from a higher priority ar­
biter without the need for any additional external logic. 
This Is accomplished through the use of the CBRQ pin, 
discussed in a later section. 

MULTI-MASTER SYSTEM BUS SURRENDER AND 
REQUEST 

The 8289 Bus Arbiter provides an intelligent interface to 
allow a processor or bus master of the 8086 family to ac­
cess a multi-master system bus. The arbiter directs the 
processor onto the bus and allows both higher and 
lower priority bus masters to acquire the bus. Higher 
priority masters obtain the bus when the present bus 
master utilizing the bus completes its transfer cycle (in­
cluding hold time). Lower priority bus masters obtain 
the bus when a higher priority bus master is not 
accessing the system bus and a lower priority arbiter 
has pulled CBRQ low. This signifies to the arbiter 
presently holding the multi-processor bus that a lower 
priority arbiter would like to acquire the bus when it is 
not being used. A strapping option (ANYRQSn allows 
the multi-master system bus to be surrendered to any 
bus master requesting the bus, regardless of its priority. 
If there are no other bus masters requesting .the bus, the. 
arbiter maintains the bus. as long as its associated bus 
master has not entered the HALT state. The 8289 Bus 
Arbiter will not voluntarily surrender the system bus and 
has to be forced off by another bus master. An excep­
tion to this can be obtained.by strapping CBRQ low and 
ANYRQST high. In this configuration the 8289 will 
release the bus after each transfer cycle. 

How the 8289 Bus Arbiter is configured determines the 
manner in which the arbiter requests and surrenders the 
system bus. If the arbiter is configured to operate with a 
processor which has access to both a multi-master 
system bus and a resident bus, the arbiter requests the 
use of the multi-master system bus only for system bus 
accesses (i.e., it is a function of the SYSB/RESB input 
pin). While the processor is accessing the resident bus, 
the arbiter permits a lower priority bus master to seize 
the system bus via CBRQ, since It is not being used. A 
processor configuration with both an 110 peripheral bus 
and a system bus behaves similarly. If the processor Is 
accessing the peripheral bus, the arbiter permits the 
surrendering of the multi-master system bus to a lower 
priority bus master. To request the use of the multi­
master system bus, the processor must perform a 
system memory access (as opposed to an 110 access). 

The arbiter decodes the processor status lines to deter­
mine what type of access is being performed and be­
haves correspondingly. For simpler system config­
urations, such as a processor which accesses only a 
multi-master system bus, the arbiter requests the use of 
the system bus when it detects the status lines in­
itiating a transfer cycle. The decoding of these status 
lines can be referenced in the 8086, 8088 (non-liD proc­
essor) data sheets or the 8089 (110 processor) data 
sheet. 

There is one condition common to all system configura­
tions where the multi-master system bus is surrendered 
to a lower priority bus master requesting the bus by pull­
ing CBRa low. This is the idle or Inactive state (TI) which 
is unique to the 8086 and 8088 processor family. This TI 
state come·s about due to the processor's ability to 
fetch Instructions in advance and store them internally 
for quick access. The size of the internal queue was op­
timized so that the processor would make the most ef-
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fective use of its resources and be slightly execution 
bound. Since the processor can fetch code faster than it 
can execute it, it will fill to capacity its internal storage 
queue. When this occurs, the processor will enter into 
idle or inactive states (TI) until the processor has ex· 
ecuted some of the code in the storage queue. Once this 
occurs, the processor will exit the TI state and again 
start code fetching. Between entering into .and exiting 
from the TI state an indeterminate number of TI states 
can occur during which the bus arbiter permits the sur­
rendering of the multi-master system bus to a lower 
priority bus master. As noted earlier and worth 
repeating here, once the 8289 Bus Arbiter acquires the 
use of the mlJlti-master system it will not voluntarily sur­
render the bus and has to be forced off by another bus 
master. This will be discussed in more detail later. 

Two other signals, LOCK and CRQLCK (Figure 4), lend 
to the flexibility of the 8289 Bus Arbiter within system 
configurations. LOCK is a signal generated by the proc­
essor to prevent the bus arbiter from surrendering the 
multi-master system bus to any other bus master, either 
higher or lower priority. CRQLCK (common request lock) 
serves to prevent the bus arbiter from surrendering the 
bus to a lower priority bus master when conditions war­
rant. it. LOCK is used for implementing software 
semaphores for critical code sections and real time 

LOCK TIMING 

critical events (such as refreshing or hard disk 
transfers). 

8289 BUS ARBITER INTERFACING TO THE 8288 
BUS CONTROLLER 

Once the 8289 Bus Arbiter determines to either allow its 
associated processor onto the multi-master system bus 
or to surrender the bus, it must guarantee that com­
mand setup and hold times are not violated. This is a 
two part problem. One, guaranteeing hold time and two, 
guaranteeing setup time. The 8288 Bus Controller per­
forms the actual task of establishing setup time, while 
the 8289 Bus Arbiter establishes hold time (see Figure 
5). 

The 8289 Bus Arbiter communicates with the 8288 Bus 
Controller via the AEN line. When the arbiter allows its 
associated processor access to the multi·master sys­
tem bus, it activates AEN. AEN immediately enables the 
address latches and data transceivers. The bus con­
troller responds to AEN by bringing its command output 
buffers out of high impedance state but keeping all 
commands disqualified until command setup time is 
established. Once established, the appropriate com­
mand is then issued. AEN is brought to the false state 
after the command hold time has been established by 
the arbiter when su rrenderi ng the bus. 

THE ONLY CRITICAL LOCK TIMING IS THAT SHOWN ABOVE. LOCK MUST BE 
ACTIVATED NO SOONER THAN 20 ns INTO ,.,1 AND NO LATER THAN 40 ns 
PRIOR TO THE END OF ".,2. LOCK INACTIVE HAS NO CRITICAL TIMING AND 
CAN BE ASYNCHRONOUS. 

CROlCK HAS NO CRITICAL TIMING AND IS CONSIDERED AS AN 
ASYNCHRONOUS INPUT SIGNAL. 

AEN 
(8289) 

Figure 4. Lock Timing 

~SETUP~I 
COMMAND FLOAT 

ACTIVE -..:.::::::.:.-t~ 
(8288) 

*ADDRESS 

CONT~sg~~E~2~~ ---...;c-
AEN FRoM 8289 r-----------' '-_____ -J '-------'1 

·ADDRESSES ARE ACTIVATED IMMEDIATELY WHILE COMMAND IS DELAY 
TO ESTABLISH SETUP TIME REQUIREMENTS. 

uTHE 8289 ARBITER INTERNALLY TRACKS THE PROCESSOR CYCLE TO 
ESTABLISH THE PROPER AMOUNT OF HOLD TIME AFTER THE COMMAND 
HAS GONE INACTIVE. 

Figure 5. Single Bus Interface Timing 
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8289 BUS ARBITER INTERNAL ARCHITECTURE 

A block diagram of the internal architecture of the 8289 
Bus Arbiter is shown in Figure 6 .. lt is useful to under­
stand this block diagram when discussing the different 
modes of the 8289 and their impact on processor bus 
operations; however, you may want to skip this section 
to "8086 family processor types and system configura­
tions" and return to it afterwards, as this section ad­
dresses the very involved reader. The front end state 
generator (FETG) and the back end state generator 
(BETG) allow the arbiter to track the processor cycle. An 
examination of an 8086 family processor state tim,ings 
show that all command and control signals are issued in 
states T1 and T2 while being terminated in states T3 and 
T4, with an indeterminate number of wait states (Tw) oc­
curring in between. Note further, that an indeterminate 
number of idle or inactive states can occur immediately 
proceeding and following a given transfer cycle. Since 
an indeterminate number of wait states can occur two 
state generators are required; one to generate cdntrol 
signals (the FETG) and one to terminate control Signals 
(the BETG). The FETG is triggered into operation when 
the processor activates the status lines. The FETG is 
reset and the BETG is triggered into operation by the 
status lines going to the passive condition. The BETG is 
reset when the status lines again go active. 

It is necessary for the 8289 Bus Arbiter to track the proc­
essor in order that it is properly able to determine where 
and when to request or surrender the use of the multi­
master system bus. In system configurations which ac­
cess a resident bus, the use of the multi-master system 

PRO~~~~~~ ~ __ ...J'" 

& CLOCK 

STATUS & MOVE 
DECODE 

'MMS= MULTI·MASTERSYSTEM 

BREQ 
RESET 

WINDOW 

bus is requested later in order to allow time for the 
SYSB/RESB input to become valid. Forsystems which 
access a peripheral bus, the arbiter issues a request for 
the system bus only for memory transfer cycles which it 
decodes from the status lines (and time must be al­
lowed for the status lines to become valid and then de: 
coded). In a system which accesses only a multi-master 
system bus, a request is made as soon as the·arbiter 
detects an active-going transition on the processor's 
status lines. Thus, when the processor initiates a 
transfer cycle, the FETG is triggered into operation and, 
depending upon what mode the arbiter is configured in, 
the STATUS & MODE DECODE circuitry initiates a re­
quest for the system bus at the appropriate time. The re­
quest enters the BREQ .SET circuitry where it is then 
synchronized to the multi-master system bus clock 
(BCLK) by the PROCESSOR SYNCHRONIZATION cir­
cuitry.· Once synchronized, the multi-master system 
bus interface circuitry issues a BREQ. When the priority 
resolving circuitry returns a BPRN (bus priority in), the 
PROCESSOR SYNCHRONIZATION circuitry seizes the 
b~s the next time it becomes available (i.e., BUSY goes 
high) by pullin.llJ!..USY low one BCLK after it goes high 
and enables AEN. (See waveform timing diagram in 
Figure 2). Once the arbiter acquires the use of the 
system bus and a data exchange has taken place (a 
transfer acknowledge, XACK, was returned to the proc­
essor), the processor status I ines go passive and the 

• Due to the asynchronous ~ature of processor trasnsfer request to the 
multi-master system bus clo~k, it is necessary to synchr.onize the proc­
essor:s transfer request to BelK. 

PROCESSOR 
SYNCHRONIZATION 

CIRCUITRY 

MMS- BUS 
SYNCHRONIZATION 

CIRCUITRY 

BCLK 

11l __ ....I' :~~~ 
,,--,1 IiUSV 

BPRO 
CBRQ 

~--------------~AEN 

Figure 6. 8289 Bus Arbiter Block Diagram 
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BETG is triggered into operation. The BETG provides 
the timing for the bus surrender circuitries in the event 
that conditions warrant the surrender of the multi· 
master bus, i.e~, the bus arbiter lost priorityto a higher 
bus master or the processor has entered into TI states 
and CBRQ is pulled low, etc. If such is the case, the 
BREQ RESET DECODER initiates a bus surrender reo 
quest. The bus surrender request is synchronized by the 
MMS BUS SYNCHRONIZATION CIRCUITRY to the proc· 
essor clock. The MMS BUS SYNCHRONIZATION CIR· 
CUITRY instructs the bus controller interface circuitry 
to make AEN· go false and resets the BREQ. SET cir· 
cuitry. Resetting the BREQ SET circuitry will cause its 
output to go false and be synchronized by the processor 
synchronization, eventually instructing the MULTI· 
MASTER SYSTEM BUS INTERFACE circuitry to reset 
BREQ. In the event that a lower priority arbiter has 
caused the arbiter to surrender the bus, it is necessary 
that BREQ be reset. Resetting BREQ allows the priority 
resolving circuitry to generate BPRN to the next highest 
priority bus master requesting the bus. The BREQ 
RESET WINDOW circuitry provides a 'window' wherein 
the arbiter allows the multi·master system bus to be sur· 
rendered and serves as part of the M MS bus·processor 
synchronization circuitry. 

8086 FAMilY PROCESSOR TYPES AND 
SYSTEM CONFIGURATIONS 

There are two types of processors in the 8086 family -
an 1/0 processor (the 8089 lOP) and a non·I/O processor 
(the 8086 and 8088 CPUs). Consequently, there are two 
basic operating modes in the 8289 Bus Arbiter. One, the 
lOB (1/0 peripheral bus) mode, permits the processor ac· 
cess to both an 1/0 peripheral bus and a multi·master 
system bus. The second, the RESB (residen\ bus) mode, 
permits the processor to communicate over both a resi· 
dent bus and a multi·master system bus. Even though it 
is intended for the arbiter to be configured in the lOB 
mode when interfacing to an 1/0 processor and for it to 
be in the RESB mode when interfacing to a non·I/O proc· 
essor, it is quite possible for the reverse to be true. That 
is, it is possible for a non·I/O processor to have access 
to an 1/0 peripheral bus or for an 1/0 processor to have 
access to a resident bus as well as access to a multi· 
master system bus. The lOB strapping option con· 
figures the 8289 Bus Arbiter into the lOB mode and 
RESB strapping option configures it into the resident 
bus mode. If both strappi ng options are strapped false, 
a third mode of operation is created, the single bus 
mode, in which the arbiter interfaces the processor to a 
multi·master system bus only. With bottvoptions strap· 
ped true, the arbiter interfaces the processor to a multi· 
master system bus, a resident bus and an 1/0 bus. 

To better understand the 8289 Bus Arbiter, each of the 
operating modes, along with their respective timings, 
are examined by means of examples. The simplest con· 
figuration, the Single Bus Configuration, (both lOB and 
RESB strapped inactive) will be considered first, fol· 

lowed by the 1/0 bus Configuration and the Resident 
Bus Configuration. Finally, brief mention is made of a 
configuration that allows the processor to interface to 
two multi·master system buses. This particular con· 
figuration is briefly mentioned because, as will be seen, 
it is simply an extension of the resident bus configura· 
tion. When discussing the Single Bus Configuration, 
processorlarbiter, arbiterlsystem bus and Internal ar· 
biter, considerations are made resulting in a table that il· 
I ustrates overhead in requesting the system bus. As this 
applies tothe other 8289 configurations, only additional 
considerations will be given. A summary of when to use 
the different configurations is given at the end. 

8289 SINGLE BUS INTERFACE 

Figure 7 shows a block diagram of a bus master which 
has to interface only to a system bus - preferably the 
MUl TIBUS - where there exists more than one bus 
master. In later configurations, it will be shown how the 
processor can be made to interface with more than one 
bus. Since the processor has only to interface with one 
bus, this configuration is called "Single". 

Connecting the 8289 Bus Arbiter to the processor is as 
simple as it was to connect the 8288 Bus Controller. 
Namely, the three status lines, SO, S1, and S2 are 
directly connected from the processor to the arbiter. 
The clock line from the 8284 Clock Generator is brought 
down and connected. (Note that both the 8288 Bus Con· 
troller and the 8289· Bus Arbiter are connected to the 
same clock, ClK and not the peripheral clock, PClK as 
the 8086 processor.) From the arbiter, AEN is con· 
nected to the bus controller and to the clock generator. 
The lOB pin on the arbiter is strapped high and on the 
controller the lOB pin is strapped low. In addition, the 
RESB pin on the arbiter is strapped low, finishing the 
processor interface. 

Some flexibility exists with the MUlTIBUS or multi· 
master system bus interface. The system designer must 
first decide upon the type of priority resolving scheme 
to be employed, whether it is to be the serial, parallel, or 
rotating priority scheme. A rotating priority scheme 
would be employed where the system designer would 
want to guarantee that every bus master on the bus 
would be given time on the bus. In the serial and parallel 
schemes, the possibility exists that the lowest assigned 
priority bus master may not acquire the bus for long 
periods of time. This occurs because priority is perma· 
nently assigned and if bus demand is high by the higher 
assigned priorities, then the lower priorities must wait. 
In most cases, this situation is acceptable because the 
highest priority is assigned to the bus master that can· 
not wait. Highest priority is usually assigned to DMA 
type devices where service requirements occur in real 
time. CPUs are assigned the lower priorities. For the 
purpose of this discussion, the parallel priority scheme 
will be used with brief reference to the serial priority 
scheme. 
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Figure 7. Single Multima~ter Bus Interface 

Figure 8 shows how a typical multi·processing system 
might be configured with the 8289 in the Single Bus 
mode. In the system there are three bus masters, each 
having the assigned priority as indicated-priority 1 
being the highest and priority 3 being the lowest. Prior· 
ity is established using the parallel priority scheme 
(ignore the dotted signal interconnect for the moment). 
Each bus arbiter monitors its associated processor and 
issues a bus request (BREO) whenever its processor 
wants the bus. A common clocking signal (BCLK) runs 
to each of the arbiters in the system. It is from the fail­
ing edge of this clock that all bus requests are issued. 
Since all bus requests are made on the same clock 
edge, a valid priority can be established by the priority 
resolving circuitry by the next falling BCLK edge. Note 
that all mUlti-master system bus (MULTIBUS) input sig­
nals are considered to be valid at the falling edge of 
BCLK. And that all multi-master system bus output 
signals are issued from the falling edge of BCLK. With 
the parallel resolving module, arbiters 2 and 3 would 
Issue their respective BREOs (Figure 9) on the falling 
!dge of BCLK 1, as shown. The outputs (BPRN 1, BPRN 
2, and BPRN 3) of the priority encoder·decoder arrange­
ment change to reflect their new input conditions and 
need to be valid early enough in front of BCD<2 to 
guarantee the arbiter's setup time requirements. Since 
arbiter 2 at the time is the highest priority arbiter re­
guesting the bus, bus priority is given to arbiter 2 (BPRN 
2 goes low), and since the bus was not busy (BUSY is 
high) at the time priority was granted to arbiter 2 arbiter 
2 pulls BUSY inactive on BCLK 2, thereby sei;ing the 
bus and excluding all other arbiters access to the bus. 
Once the bus is seized, arbiter 2 activates its AEN. AEN 
going low directly enables the 8283 address latches and 

wakes up the 8288 Bus Controller. The bus controller 
enables the 8287 transceivers, waits until the address to 
command setup time has been established, and then 
enables Its command drivers onto the bus. 

If the serial priority resolving mode was used instead, 
much of the events that happened for the parallel prior­
ity resolving mode would be the same except, of course, 
there would be no parallel priority resolving module. In­
stead, the system would be connected as indicated in 
Figure 8 by the dotted signal lines connecting the BPRO 
of one arbiter to BPRN of the next lower priority arbiter. 

The BREO lines would be disconnected and the priority 
encoder-decoder arrangement removed. This arrange­
ment is simpler than the parallel priority arrangement 
except that the daisy-chain propagation delay of the 
highest priority bus arbiter's BPRO to the lowest priority 
bus arbiter's BPRN, including setup time requirement 
(BPRN to BLCK), cannot exceed the BCLK period. In 
short, this means there are only so many arbiters that 
can be daisy·chained for a given BCLK frequency. Of 
course, the lower the BCLK frequency, the more arbiters 
can be daisy-chained. The maximum BCLK frequency Is 
specified at 10 MHz, which would allow for three 8289 
arbiters to be daisy-chained. In general, the number of 
arbiters that can be connected in the serial daisy-chain 
configuration can be determined from the following 
equation: 

BCLK period ~ TBLPOH + TPNPO (N -1) + TPNBL 

where N = # of arbiters in system 
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BREQ 
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BREQ 
ARBITER H2 

BREQ 
ARBITER H3 

SPRN 
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\ 
ARBITER #2 

\---', ----I 

V 
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INVALID INVALID 

ARBITER I#~ I\. ARBITER #3 

r-1 ~r-1 ~ 

CBRQ ~\-" ______ --\1\-', _____ -\','\-, ____ ---\',\-I ____ ..If 
'DECODING GLITCHES ARE PERMITTED 

Figure 9. Example Timing For Figure 8 

Returning to Figure 9, it can be seen that K BClKs later, 
arbiter 1 has decided to request the bus and its BREQ, 
BREQ 1, has gone low. Since arbiter 1 is of higher priori· 
ty than arbiter 2, which presently has the bus, bus priori­
ty is reassigned by the priority module (or the daisy­
chain approach in the serial priority) to arbiter 1. BPRN 1 
goes low and BPRN 2 now goes high (BPRN 3 remains 
high, even though decoding can cause it to glitch 
momentarily). The loss of priority instructs arbiter 2 that 
a higher priority arbiter wants the bus and that it is to 
release the bus as soon as its present transfer cycle is 
done. Since arbiter 2 cannot immediately release the 
bus, arbiter 1 must wait. In the particular case illustrated 
in Figure 9, arbiter 2 releases the bus (allows BUSY to go 
high) on clock edge M, and on clock edge M + 1, arbiter 1 
now seizes the bus, pulling BUSY low. Arbiter 1 is the 
highest priority arbiter in the system and it now has the 
bus. Arbiters 2 and 3 still want the bus (their BREQs are 
both low). 

How quickly arbiter 1 can acquire the bus is dependent 
upon the configuration and strapping options of the ar­
biter it is trying to acquire it from. For example, if the 
lOCK input to arbiter 2 was active (low) at the time, then 
arbiter 1, even though it was of higher priority, would not 
have acquired the bus until after lOCK was released 
(goes high). Effectively, lOCK locks the arbiter onto the 
bus once the bus has been acquired. lOCK will not 
force another arbiter to release the bus any sooner, it 
just prevents the bus from being given away no matter 
what the priority of the other arbiter. Another factor to 
be considered is where in the transfer cycle is the proc­
essor when the arbiter is instructed to give up the bus. 
Obviously, if the cycle had just started, it will take 
longer for the bus to be released than if the cycle was 
just ending. Another factor to be included in this con­
sideration is the phase relationship of the processor's 
clock (ClK) to the bus clock (BClK). This relationship is 
examined in more detail later on. Table 1 lists the time 
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requirements for various arbiter actions such as bus ac­
quisition and bus release (under lOCK <ind. other 
circumstances) taking into account the phase relation­
ships between ClK and BClK. 

Bus Request (BREQI) Mode Delay Delay 
(Max) (Min) 

Status- BREQI Single 2 BClKs I BClK 

Status-BREQI lOB 2 BClKs+ I BClK+ 
-I ClK" - V, ClK" 

Status-BREQt RESB 2 BClKs+ I BClK+ 
-2 ClKst -IV, ClKst 

Status-BREQI 10B.RESB 2 BClKs+ I BClK+ 
-2 ClKst tV, ClKst 

"Request originates off of <1>2 ofTI and BREQI occurs I BClK(min) 
to 2 BClKs (max) thereafter. Depending upon where status occurs 
with respect to clock determines how lon9'a time exists between 
status and .,2 of TI, and is anywhere from V, ClK (min) to I ClK 
(max) .. 

tRequest originates off of T2·.,1 and BREQI occurs I BClK (min) to 
2 BClKs (max) thereafter. The same reasoning as used in the lOB 
mode is valid here 

Bus Rele.se (BREQt) Mode Delay Delay 
(Max) (Min) 

Higher Priority (BPRN I) All 2 CLKs+ I ClK+ 
2BCCKs I BClK 

lower Priority (CBRQI) All 2 ClKs+ I ClK+ 
2 BClKs' I BClK 

Surrender occurs once the proper surrender conditions exist. 

Table 1. Surrender and Request Time Delays 

One signal which has been basically ignored to. this 
point is CBRO. CBRO, like BUSY, is an open-collector 
Signal from the arbiter which is tied to the CBRO signals 
of the other arbiters and to a pull-up resistor (see Figure 
8). CBRO is both an input and an output. As an output, 
CBRO serves to instruct the arbiter presently on the bus 
that another arbiter wishes to acquire the bus. As an in­
put, CBRO serves to instruct the arbiter presently on the 
bus that another arbiter wants the bus. CBRO is an input 
or output, dependent on whether the arbiter is on the 
bus or not (respectively), and is issued as a fu nction of 
BREO. Thus, a lower priority arbiter requesting the bus 
already controlled by a higher priority arbiter will pull 
CBRO low, as well as BREO. Even a higher priority ar­
biter will pull CBRO low until it acquires the bus. Note, 
however, that the higher priority arbiter will acquire the 
blls,through the reassignment of priorities - it being 
given priority and the other arbiter presently on the bus 
losing it. In effect, CBRO serves to notify the arbiter that 
ali arbiterof'lower priority wants the bus. 

If the arbiter presently on the bus is configured to react 
toCBRO and the proper surrender conditions exist, the 
bus is released. When releasing the bus, the arbiter also 
tums off its BREO (BREO goes high) in order to allow 
priority to be established to the next lower arbiter re­
questing the bus. Such is the case shown in Figure 9. 
Whereas it was assumed that the proper surrender con­
ditions did not exist for arbiter 2 when it had the bus, it 
Is assumed that the proper conditions do exist during 
the time that arbiter 1 has the bus. Arbiter 2 had to give 
up the bus because an arbiter of higher priority was re-

questing it. Arbiter 1 surrenders the bus because the 
proper surrender conditions exist and a lower priority ar­
biter requested the bus by pulling CBRO low. This is an 
assumed condition which is not otherwise shown in 
Figure 9. This is not an unrealistic condition. Normally, 
a higher priority arbiter will acquire the bus through the 
reassignment of priorities, while lower priority arbiters 
acquire the bus through CBRO. 

Digressing for a moment, the 8289 Bus Arbiter will not 
voluntarily surrender the bus (except when the proc­
essor halts execution). As a result, it has to be forced off 
the bus. The 8289 Bus Arbiter does not generate a BREO 
for each cycle. It generates a BREO once and then 
'hangs onto the bus. To do otherwise would require that 
BREO be dropped (go high) after each transfer cycle so 
that if it did ne.ed to do another transfer cycle,another 
arbiter would automatically be assigned priority. This 
approach, however, entails certain overhead. Command 
to address setup and hold time must be prefixed and ap­
pended to each transfer cycle. Each transfer cycle 
would be characterized by first acquiring the bus, then 
establishing the setup time requirements, finally per­
forming the transfer cycle, establishing the hold time re­
quirements, and then releasing the bus (see Figure 10). 
If another transfer cycle was to immediately follow and 
if the arbiter still had priority, then the whole above pro­
cedure would be repeated. The end result would be 
wasted time as hold times following setup times (see 
Figure 10A). The approach taken by the 8289 Bus Arbiter 
of having to be forced off the bus, even when it is not 
using the bus (i.e., forced off by a lower priority arbiter), 
provides for greater bus efficiency. A lower priority ar­
biter having to force ciff another arbiter that is not using 
the bus but just hanging on to it, may not seem very effi­
cient. In actuality it is a good trade-off: In many multi­
master systems some bus masters occasionally de­
mand the bus, while others demand the bus constantly. 
The bus master which constantly demands the bus may 
momentarily need not to access the bus. Why should 
that arbiter surrender the bus when chances are that the 
other bus masters which occasionally access the bus 
don't want it at the time? If it doesn't give up the bus, 
then it can momentarily cease access to the bus and 
then continue, without any performance penalty of hav­
ing to reestablish control of the bus. The greater bus ef­
ficiency that it affords is well worth the added complexi-
ty (Figure 10B). ' 

Returning to Figure 9, the combination of the proper sur­
render conditions existing and CBRO being low, . .forced 
the higher priority arbiter, arbiter 1, ott the bus. Arbiter 
2, being of next higher priority and wanting the. bus, ac­
quired the bus. on clock edge N + 1. If arbiter ldecides 
to:e-access the bus, it would reacquire the bus through 
the reassignment of. priorities .. This is not the case 
shown in Figure 9. Arbiter 1 has decided that it does not 
need the bus and does not renew its BREO. Arbiter 2, 
having acquired the bus .through CBRO; is now the 
highest priority arbiter , requesting the bus. As can be 
seen it is not the only arbiter requesting the bus. Arbiter 
3 is still patiently waiting for the bus andCBROremalns 
low. The same conditions that forced,arbiter 1 off the 
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bus for arbiter 2 now forces arbiter 2 off the bus for ar­
biter 3. When the proper surrender conditions exist, ar­
biter 2 releases its BREQ and surrenders the bus to ar­
biter 3. Arbiter 3 acquires the bus on clock edge P + 1 
and releases its CBRQ. Since no other arbiter wants the 
bus (i.e., there is no other arbiter holding CBRQ low), 
CBRQ goes high (inactive). This would have also been 
true when arbiter 2 acquired the bus and released its 
CBRQ if arbiter 3 didn't want the bus. 

In the Single interface, the arbiter monitors the proc­
essor's status lines, which are activated whenever the 
processor performs a transfer cycle. The arbiter, on 
detecting the status lines going active, will issue a 
BREQ if the status is not the HALT status. If the proc­
essor issues the HALT status, the arbiter will not re­
quest the bus, and if it has the bus, will release it. 

This effectively concludes how arbiters interact to one 
another on the bus. Having examined the processor-to­
arbiter interface, and arbiter-to-MUlTIBUS (arbiter-to­
arbiter) interaction, one interface is left, the internal 
interface of processor-related signals to that of 
MULTI BUS-related signals. 

An important point to remember is that the processor 
has its own clock (ClK) and the multi-master system 
bus has its own (BClK). These two clocks are usually 
out of phase and of different frequencies. Thus, the ar­
biter must synchronize events occurring on one inter­
face to events occurring on another interface. As a 
result of this back and forth synchronization, ambiguity 
can arise as to when events actually do take place. 

Very simply, the 8289 arbiter operation can be repre­
sented as two events, requesting and surrendering. 
Figure 11 is a representation of the timing relationships 
involved. The request input is a function of the proc­
essor's clock and the surrender input is a function of 
either the bus clock or the processor's clock. To request 

"J 

,bJ 

the bus, the processor activates its status lines which in 
turn enables the request input. Depending upon the 
phase relationship between the occurrence of status (re­
quest active) and BClK, BREQ appears one to two 
BClKs later. As shown in Figure 12, the phase relation­
ship between request and BClK is such that the BRQ1 
flip-flop mayor may not catch request on the first 
BClK." 

If BRQ1 flip-flop doe~ catch the request, then one BCD< 
later, BREQ goes low and one BClK after that, BUSY 
goes low (it is assumed that priority is immediately 
granted and that the bus is avaiiable). If BRQ1 flip-flop 
does not catch the request, then request is caught on 
the next BClK and BREQ goes low one BClK later, fol­
lowed by BUSY which also goes low one BClK later. 
Note that BREQ and BUSY track, as BREQ is an input 
term for BUSY. During bus acquisition, the surrender 
flip-flop is false (SURNDR Q = low), and AEN follows 
BUSY. 

Once the bus is acquired, the surrender circuitry is 
enabled so that when a valid surrender condition exists, 
the bus can be surrendered. The surrender circuitry syn­
chronizes the surrender request to the processor's 
clock and drives SURNDR low. Like the acquisition cir­
cuitry, it takes from one to two processor clocks to gen­
erate SURNDR and depends upon the phase relation­
ship between the surrender request and the processor's 
clock. ' 

'The two bus request flip-flops, BROt and BR02, are edge·triggered. 
high resolution flip·flops and serve to reduce the probability of walkout 
down to an acceptable level. Walkout occurs because BCLK Is asyn-" 
chronous with respect to request. If walkout does occur on BROt flip· 
flop, the probability Is high that the BROt fIIp·flop will resolve itself 
prior to BR02 flip·flop being triggered. Even if BROt flip·flop did not 
quite resoive itself, the probability of BR02 flip·flop walking out to an 
u'nacceptable point in time is itself low. ' 

a) BUS UTILIZATION AS A RESULT, OF HAVING TO REQUEST AND RELEASE THE BUS 
FOR EACH TRANSFER CYCLE. THIS PERMITS LOWER PRIORITY ARBITERS EASY 
ACCESS TO THE BUS SHOULD THE HIGHER PRIORITY ARBITER NO LONGER NEED 
THE BUS. HOWEVER, BUS EFFICIENCY IS POOR DUE TO THE ARBITER THAASING ON 
AND OFF OF THE BUS FOR EACH TRANSFER CYCLE. 

b) 8289 BUS UTILIZATION IS MORE EFFICIENT IN THAT THE ARBITER HAS ONLY TO 
ACQUIRE THE BUS ONCE. THE 8289 HANGS ONTO THE BUS UNTIL FORCED OFF. 
THIS APPROACH ADDS A LlTILE MORE COMPLEXITY TO THE SYSTEM INASMUCH AS 
SOME MEANS MUST BE PROVIDED FOR LOWER PRIORITY ARBITERS TO FORCE THE 
HIGHER PRIORITY ARBITER OFF OF THE BUS WHEN IT IS NOT USING IT. THE ADDED 
COMPLEXITY IS WELL WORTH THE BUS EFFICIENCY AND SYSTEM FLEXIBILITY IT 
AFFORDS. THE 8289 ARBITER CAN BE CONFIGURED TO HAVE THE'TRANSFER TIMING· 
AS SHOWN IN (a) (IMITATING THE METHOD 8218 AND 8219 USES, BUS ARBITERS FOR 
8080 AND 8085 RESPECTIVELY) BY STRAPPING ANYRCST HIGH AND CBR~Q ,L~W. 

Figure 10. Two Techniques For Doing Multlbu~ Tr.~sler Cycles 
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Having synchronized the surrender request to the proc­
essor's clock to generate SURNDR, SURNDR is then 
synchronized to BClK to reset the BUSY and BRQ flip­
flops_ When BUSY-Q goes low, the surrender circuitry is 
reset which in turn re-enables the request input The tim­
ing in Figure 13 shows the surrender request input 
going high on the falling edge of the clock. If the Sample 
flip-flop was able to catch the surrender request on the 
edge of clock 1, then SURNDR would be generated (go 
low) on clock edge 2. If not, SURNDR would be gener­
ated on clock edge 3. SURNDR going Iowan clock edge 
2 will be, for ease of discussion, referred to as SURNDR 
a and SURNDR going Iowan clock edge 3 will be refer­
red to as SURNDR b. As can be seen from Figure 13, 
SURNDR a just happens to go Iowan BClK edge 2. 
Since SURNDR is used to reset the BRQ flip-flops, 
which are clocked by the falling edge of BClK, the 
BRQ1 flip-flop mayor may not catch SURNDR a on 
BClK edge 2. If it does, then BRQ and BUSY go high on 
BClK edge 3 which, for convenience, will be called 
BREQ a or BUSY a. If not, theh BREQ and BUSY will go 
high on BClK edge 4, which will be referred to as BREQ 
b or BUSY b, respectively. SURNDR b occurs early 
enough to assure that BUSY and BREQ are reset on 
BClK edge 5, which will be referred to as BUSY b1 and 

ClK 

SURRENDER 
REaUEST 

BREQ b1. Depending upon when BUSY goes high, deter­
mines when the surrender circuitry is reset and how 
soon the next BREQ can be generated. BUSY a1 causes 
SURNDR c to occur where shown and SURNDR c in turn 
would allow the earliest bus request to occur at BREQ 
c1. At the other extreme, BUSY b1 allows the earliest 
bus request to occur at BREQ e1. 

Table 1 summarizes the maximum and minimum delays 
for bus request, once the proper request and surrender 
conditions exist Table 2 lists the proper surrender con­
ditions. 

~~---------~--:---::-:--~-~ 

Mode Surrender Conditions 
Single ----cH-:-A-:-L-=T-s-la-te-" loss of BP-R-N-,-T-I.-C-B-'-R-EO--'---

lOB 

RESB 

10B-RESB 

HALT state, loss of BPRN, TI·CBREO, 
110 Command.CBRO 

HALT state, loss of BPRN, TI.CBREO, 
ISYSBIRESB = O),CBRO 

HALT state,loss of BPRN, TI·CBREO, 
ISYSBIRESB = O),CBREO, 
110 Command.CBRO 

Table 2. Surrender Conditions 

\ 
\ c1 \ d1 \ 91 
\ \ \ '--_ ...... _______ ,1,....._ ~ ..J.,z b/ 

BREal 
(EARLIEST THAT BREa COULD GO ACTIVE AFTER BUS RELEASE) 

Figure 13. Asynchronous Bus Release 
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lOB INTERFACE 

Now that the processor-arbiter, arbiter-system bus and 
internal .arbiter timings have been discussed, it is ap­
propriate to consider the other interfaces that the 8289 
Bus Arbiter provides. 

In the lOB mode, the processor communicates and con­
trols a host of peripherals over the peripheral bus. When 
the 1/0 processor heeds to communicate with system 
memory, it is done so over the system memory bus. Fig­
ure 14 shows a possible 1/0 processor system con­
figuration, utilizing the 8089 1/0 processor in its 
REMOTE mode. Resident memory exists on the periph­
eral bus in order that canned 1/0 routines and buffer 
storage can be provided. Resident memory is treated as 
an 110 peripheral. When a peripheral device needs ser­
vicing, the 1/0 processor accesses resident memory for 
the proper 1/0 driver routine and services the device, 
transmitting or storing peripheral data in buffer storage 
area of resident memory. The resident memory's buffer 
storage area could then be emptied or replenished from 
system memory via the system bus. Using the lOB inter­
face allows an 1/0 processor the capability of executing 
from local memory (on the peripheral bus) concurrently 
with the host processor. 

Timing in this mode is no different from timing in the 
SINGLE BUS mode. The only difference lies in the re­
quest and surrender conditions. The arbiter extends the 
single bus mode conditions to qualify when the system 
bus is requested and adds on additional surrender con­
ditions. The system bus is only requested during sys­
tem bus commands (the arbiter decodes the processor's 
status lines) and, in addition to the other surrender 

8284 
CLOCK 

terms, the arbiter permits surrender to occur during I/O 
bus (or local bus) commands, when the 1/0 processor is 
using its own local bus. 

Like the arbiter, the bus controller must also be in­
formed of the mode it is operating in. In the lOB mode, 
the 8288 bus controller issues 1/0 bus commands in­
dependently of the state of AEN from the arbiter. It is 
assumed that all 1/0 bus commands are intended for the 
1/0 bus and hence there is a separate 1/0 command bus 
from the controller. All 1/0 bus commands are sent 
directly to the 1/0 bus and are not influenced by AEN. 
System bus commands are assumed as going to the 
system bus. Since system bus commands are directed 
to the system bus, they must still be influenced by AEiii 
and the arbitration mechanism provided by the 8289. 

As an example, suppose the processor issues an 1/0 bus 
command. The 8288 Bus Controller generates the 
necessary control signal to latch the 1/0 address and 
configure the transceivers In the correct direction. In the 
lOB mode, the multiplexed MCE/PDEN pin of the 8288 
becomes PDEN (peripheral data enable) and serves to 
enable the 1/0 bus's data transceivers during 1/0 bus 
commands. DEN similarily serves to enable the system 
bus's data transceivers during memory commands. 
PDEN and DEN are mutually exclusive, so it is not possi­
ble for both sets of transceivers to be on, thereby 
avoiding contention between the two sets. Since the 1/0 
bus commands are generated independently of AEN In 
the lOB mode, the 1/0 bus has no delay effects due to 
the arbiter. During this time in which the processor is 
accessing memory the arbiter, if it already has the bus, 
will permit it to be surrendered to either a higher or 
lower priority independently of where the processor is in 

XACK(IIO BUS))------jRDYl RDY21---------------{XACK MUlTI,MASTERSYSTEM BUS 
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Its transfer cycle (i.e., independent of the machine 
state). * If the arbiter does not already have the bus, it 
will make no effort to acquire the bus. 

If the processor issues a memory command instead, the 
same set of events take place, except that 1) the system 
bus's data transceivers are enabled instead of the 
peripherals bus's data transceivers, and 2) when the 
command is issued depends upon the state of the ar· 
biter. In both cases of I/O bus commands and system 
bus commands, the address generated for that com· 
mand is latched into both sets of address latches, the 
system bus's address latches, and the peripherals bus's 
address latches. For each command (regardless of com· 
mand type), an address is put out on the I/O bus and on 
the system bus if the arbiter has the bus at that particu· 
lar time. However, the bus controller only issues a com· 
mand to one of the buses and hence, no ill effects are 
suffered by addressing both buses. 

If the arbiter already has the system bus when a system 
bus command is issued, no delays due to the arbiter will 
be noticed by the processor. If the arbiter doesn't have 
the bus and must acquire it, then the processor will be 
delayed (via the system bus command being delayed by 
the bus controller through AEN from the arbiter) until 
the arbiter has acquired the bus. The arbiter .will then 
permit the bus controller to issue the command and the 
transfer cycle continues. 

RESBINTERFACE 
The non·I/O processors in the 8086 family can communi· 
cate with both a resident bus and a multi·master system 
bus. Two bus controllers would be needed in such a con· 
figuration as shown in Figure 15. In such a system con· 
figuration the processor wou Id have to access to 
memory and peripherals of both buses. Address map· 
ping techniques can be applied to select which bus is to 
be accessed. The SYSB/RESB (system bus/resident bus) 
input on the arbiter serves to instruct the arbiter as to 
whether or not the system bus is to be accessed. It also 
enables or disables commands from one of the bus con· 
trollers. 

In such a system configuration, it is possible to issue 
both memory and I/O commands to either bus and as a 
result, two bus controllers are needed, one for each bus. 
Since the controllers have to issue both memory and I/O 
commands to their respective buses, the lOB options on 
the controllers are strapped off (lOB is low). The ar· 
biter, too, has to be informed of the system configura­
tion in order to respond appropriately to system inputs 
and has its RESB option strapped on (RESB is high). The 
arbiter's lOB option is strapped inactive (lOB is high). 
Strapping the arbiter into the resident bus mode 
enables the arbiter to respond to the state of the 
SYSB/RESB input. Depending upon the state of this in­
put, the arbiter either requests and acquires the system 
bus or permits the surrendering of that bus. 

*Under other Circumstances, bus surrendering would only be permitted 
during the period from where address to command hold time has been 
established just prior to where the next command would be issued. 

In the system shown in Figure 15, memory mapping 
techniques are applied on the resident bus side of the 
system rather than on the multiprocessor or system 
bus side. As mentioned earlier in the lOB interface, both 
sets of address latches (the resident bus's address 
latches and the system bus's address latches) are 
latched with the same address; in this case, by their 
respective bus controllers. * The system bus's address 
latches, however, mayor may not be enabled depending 
upon the state of the arbiter. The resident bus's address 
latches are always enabled, hence the address mapping 
technique is applied to the resident bus. 

Address mapping techniques can range in complexity 
from a single bit of the address bus (usually the most 
significant bit of the address), to a decoder, to a PROM. 
The more elaborate mapping technique, such as PROM, 
provides segment mapping, system flexibility, and easy 
mapping modifications (Simply make a new PROM). 

In actual operation, both bus controllers respond to the 
processor's status lines and both will simultaneously 
issue an address latch strobe (ALE) to their respective 
address latches. Both bus controllers will issue com­
mand and control signals unless inhibited. The purpose 
of the address mapping circuitry is to inhibit one of the 
bus controllers before contention or erroneous com­
mands can occur. The transceivers are enabled off the 
same clock edge the commands are issued, namely <1>1 
of T2 (Figure 16). The address is strobed into the ad­

. dress latches by ALE. ALE is activated as soon as the 
processor issues status, and is terminated on <1>2 of of 
T1. From when ALE is issued, plus the propagation 
delay of the address latches, determines where the ad­
dress is valid. The time from which the address is valid 
to where control and commands are issued determines 
how much settling time is available for the address map­
ping circuitry. The mapping circuitry must inhibit (via 
CEN) one of the bus controllers prior to where controls 
and commands are issued. Part of the settling time 
(see Figure 16) is consumed as a setup time requirement 
to the bus controllers. As it turns out, CEN (command 
enable) can be disqualified as late as on the falling edge 
of clock (the leading edge of <1>1 of T2) without fear of the 
bus controller issuing any commands or transceiver 
control signals. In systems (8 MHz) where less time is 
available for the address mapping circuitry, the address 
latches can be bypassed, hooking the mapping circuitry 
straight onto the processor's multiplexed address/data 
bus (the local bus) and using ALE to strobe the mapping 
circuitry. This would avoid the propagation delay time of 
the transceiv.ers. Besides needing to inhibit one of the 
bus controllers, the arbiter needs to be informed of the 
address mapping circuitry's decision. Depending upon 
that decision, the arbiter acquires or permits the release 
of the system bus. 

• A simpler system with an 8086 or 8088 can exist, If it Is desirable to 
only have PROM, ROM, or a read only peripheral interface on the resi· 
dent bus. The 8086 and 8088 additionally generate a read signal in con­
Junction with the 8288 control Signals. By using this read signal and 
memory mapping, the 8086 or 8088 could operate from local program 
store without having the contention of using the system bus. 
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The arbiter is informed of this decision via its 
SYSB/RESB input. If the memory mapping circuitry 
selects the resident bus, then SYSB/RESB input to the 
arbiter and CEN input of the system bus controller are 
brought low; and the CEN Input of the resident bus con· 
troller is brought high. The commands and control 
Signals of the resident bus are now enabled and those of 
the system bus are disabled. In addition, with the arbiter 
being informed that the transfer cycle is occurring on 
the resident bus, the system bus is permitted to be sur· 
rendered. Glitching is permitted on the SYSB/RESB in· 
put of the arbiter up until <1>1 of T2. Thereafter, only clean 
transitions can occur on the input. * So, if mapping cir· 
cuitry can settle prior to <1>1 of T2, there is no need to be 
concerned over glitching. If the mapping circuitry is 
unable to settle prior to this time, then the designer 
must guarantee a clean transition on the SYSB/RESB in· 
put. 

INTERFACE TO TWO MULTI·MASTER BUSES 

The interface of an 8086 family processor to two multi· 
system buses is simply an extension of the resident bus 
interface. The only difference is that now two arbiters 
are needed, one for each multi·master bus, and the ad· 
dress mapping circuitry must acquire its input straight 
off the processor's multiplexed address/data bus (the 
local bus), using ALE as an address strobe input. Figure 
17 depicts how such a system might be configured. 

Figure 17 illustrates the use of the 8289 in a system en· 
vironment in three of its four modes. The host 8086 CPU 
(priority 3) is using the 8289 in its single bus multi· 
master mode, while an 8089 I/O processor is using the 
8289 in its lOB mode. A work station based on an 8088 
processor uses the 8289 in it system/resident bus mode. 
This diagram represents a hypothetical system wherein 
there can exist more than one work station (only one 
shown). Each work station shares system resources and 
I/O. The lowest priority processor (8086) would provide 
supervisory functions and system control, i.e., allow 
operator intervention into the system resources. A work 
station would call in assemblers and compilers or ap· 
plication programs as needed. When compiled or 
assembled, the results are transferred to the I/O station 
for output, thus freeing up a work station for another 
user. 

'In certain memory mapping techniques, the CENs of the bus control· 
lers are controlled differently from the SYSBIRESB input of the arbller. 
In short, CEN is brought low automatically to both bus controllers, 
thereby disabling their command and control outputs. This permits a 
longer settling time for the memory mapping Circuitry, since both con· 
trollers are disabled. When the mapping circuitry settles, sometime 
after 4>1 of T2, one of the bus controllers and its associated bus arbiter 
(If one exists) Is enabled. After 4>1 of T2, the arbiter can -only permit 
clean transitions on the SYSBIRESB Input line. 

If one work station is used, the serial priority resolving 
technique could be used between the 8289 Bus Arbiters 
(shown in dotted lines). If more than one work station Is 
desired, it would be necessary to either slow down the 
system bus clock to accommodate the additional ar· 
biters, or resort to the parallel resolving technique (as 
shown). 

WHEN TO USE THE DIFFERENT MODES 

Single Bus Multi·Master Interface 

This mode is the simplest and is sufficient for systems 
where a multiprocessing environment exists and the 
system bus bandwidth is sufficient to handle the peak 
concurrent requirements of a multi·master environment. 
This solution can provide an inexpensive solution for 
multi·masters to access an expensive I/O device. If, 
however, the system bus bandwidth is exceeded, the 
lOB or system/resident modes should be considered. 

lOB Mode 

The lOB mode is ideal when the bus can be separated In· 
to an I/O bus and memory or system bus. This mode Is 
commonly used with the 8089 I/O processor In its 
REMOTE configuration to separate the I/O space from 
memory space. With the 8089, all instructions operate 
on either system or I/O address space. 64K bytes of I/O 
space can be accessed by the processors in the 8086 
family. 

The remaining processors in the 8086 family are con· 
strained to using only I/O instructions when referencing 
I/O space. If this is a limitation, and it is desirable to 
remove some of the processor functions to its private 
resources, the resident bus mode should be considered. 

Resident Bus Mode 

The resident bus mode allows for maximum flexibility 
for a CPU device, giving it both access to Its own local 
resources with full instruction set capability, and the 
system resources. The CPU can work from its own local 
resources without contention on· the system bus. By 
using a PROM for memory mapping, memory space can 
be easily altered in this mode. This mode requires the 
use of a second 8288 bus controller chip. 

CONCLUSION 

The 8289 brings a new dimension to microcomputer ar· 
chitecture by allowing the advanced 8/16·bit microproc· 
essors to play easily in a multi·master, multiprocessing 
environment. With the fiexlble modes of the 8289, a user 
can define one of several bus architectures to meet his 
cost/performance needs. Modularity, improved system 
reliability and Increased performance are just a few of 
the benefits that designing a multiprocessing system 
provides. 
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INTRODUCTION 

The Intel 8259A is a Programmable Interrupt Controller 
(PIC) designed for use in real· time interrupt driven 
microcomputer systems. The 8259A manages eight 
levels of interrupts and has built·in features for expan· 
sion up to 64 levels with additional 8259A's. Its versatile 
design allows it to be used within MCS·80, MCS·85, 
MCS·86, and MCS·88 microcomputer systems. Being 
fully programmable, the 8259A provides a wide variety of 
modes and commands to tailor 8259A interrupt process· 
ing for the specific needs of the user. These modes and 
commands control a number of interrupt oriented func· 
tions such as interrupt priority selection and masking of 
interrupts. The 8259A programming may be dynamically 
changed by the software at any time, thus allowing com· 
plete interrupt control throughout program execution. 

The 8259A is an enhanced, fully compatible revision of 
its predecessor, the 8259. This means the 8259A can use 
all hardware and software originally designed for the 
8259 without any changes. Furthermore, it provides ad· 
ditional modes that increase its flexibility in MCS·80 
and MCS-85 systems and allow it to work in MCS·86 and 
MCS·88 systems. These modes are: ' 

• MCS·86/88 Mode 
• Automatic End of Interrupt Mode 
• Level Triggered Mode 
• Special Fully Nested Mode 
• Buffered Mode 

Each of these are covered in depth further in this appli· 
cation note. 

This application note was written to explain completely 
how to use the 8259A within MCS·80, MCS·85, MCS·86, 
and MCS·88 microcomputer systems. It is divided into 
five sections. The first section, "Concepts", explains 
the concepts of interrupts and presents an overview of 
how the 8259A works with each microcomputer system 
mentioned above. The second section, "Functional 
Block Diagram", describes the internal functions of t,he 
8259A in block diagram form and provides a detailed 
functional description of each device pin. "Operation of 
the 8259A", the, third section, explains in depth the 
operation and use of each of the 8259A modes and com­
mands. For clarity of explanation, this section doesn't 
make reference to the actual programming of the 8259A. 
Instead, all programming is covered in the fourth sec· 
tion, "Programming the 8259A". This section explains 
how to program the 8259A with the modes and com· 
mands mentioned in the previous section. These two 
sections are refer.enced in Appendix A. The fifth and 
final section "Application Examples", shows the 8259A 
in three typical applications. These applications are 
fully explained with reference to both hardware and soft­
ware. 

The reader should note that some of the terminology 
used throughout this application note may differ 
slightly from existing data sheets. This is done to better 
clarify and explain the operation and programming of 
the 8259A. 

1. CONCEPTS 

In microcomputer systems there is usually a need for 
the processor to communicate with various Input/Out· 

put (1/0) devices such as keyboards, displays, sensors, 
and other peripherals. From the system Viewpoint, the 
processor should spend as little time as possible servic­
ing the peripherals since the time required for these 110 
chores directly affects the amount of time available for 
other tasks. In other words, the system should be 
designed so that 1/0 servicing has little or no effect on 
the total system throughput. There are two basic 
methods of handling the 1/0 chores in a system: status 
polling and interrupt servicing. 

The status poll method of 1/0 serviCing essentially in· 
volves having the processor "ask" each peripheral if it 
needs servicing by testing the peripheral's status line. If 
the peripheral requires service, the processor branches 
to the appropriate service routine; if not, the processor 
continues with the main program. Clearly, there are 
several problems in implementing such an approach. 
First, how often a peripheral is polled is an important 
constraint. Some idea of the "frequency-of-service" 
required by each peripheral must be known and any soft­
ware written for the system must accommodate this 
time dependence by "scheduling" when a device is 
polled. Second, there will obviously be times when a 
device is polled that is not ready for service, wasting the 
processor time that it took to do the poll. And other 
times, a ready device would have to wait until the proc· 
essor "makes its rounds" before it could be serviced, 
slowing down the peripheral. 

Other problems arise when certain peripherals are more 
important than others. The only way to implement the 
"priority" of devices is to poll the high priority devices 
more frequently than lower priority ones. It may even be 
necessary to poll the high priority devices while in a low 
priority device service routine. It is easy to see that the 
polled approach can be inefficient both time-wise and 
software-wise. Overall, the polled method of 1/0 servic­
ing can have a detrimental effect on system throughput, 
thus limiting the tasks that can be performed by the 
processor. 

A more desirable approach in most systems would allow 
the processor to be executing its main program and only 
stop to service the 1/0 when told to do so by the 1/0 
itself. This is called the interrupt service method. In 
effect, the device would asynchronously signal the proc­
essor when it required service. The processor would 
finish its current instruction and then vector to, the 
service routine for the device requesting service. Once 
the service routine is complete, the processor would 
resume exactly where it left off. USing the interrupt ser­
vice method, no processor time is spent testing devices, 
scheduling is not needed, and priority schemes are 
readily implemented. It is easy to see that, using the in­
terrupt service approach, system throughput would in­
crease, allowing more tasks to be handled by the 
processor. 

However, to implement the interrupt service method 
between processor and peripherals, additional hardware 
is usually required. This is because, after interrupting 
the processor, the device must supply information for 
vectoring program execution. Depending on the proc­
essor used, this can be accomplished by the device tak­
ing control of the data bus and "jamming" an instruc­
tion(s) onto it. The instruction(s) then vectors the pro-
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gram to the proper service routine. This of course re­
quires additional control logic for' each interrupt re­
questing device. Yet the implementation so far is only in 
the most basic forr:n. What if certain peripherals.are to 
be of higher priority than others? What if certain inter­
rupts must be disabled while others' are to be enabled? 
The possible variations go on,b,uttheyall adduptq one 
theme; to provide greater flexibility using the interrupt 
service method, hardware requirements increase: 

So, we're caught in the middl.e. The. status poll method 
is' a less desirable way of servicing I/O in terms of 
throughput, but its hardware requirements are minimal. 
On the other hand, the interrupt service method is most 
desirable in terms of flexlbilitY'and throughput, but 
additional hardware IS required. . . 

The perfect situation would be to have the flexibility and 
throughput of the interrupt method in an implementa­
tion wi.th mini,mal hardware requirements.' The. 8259A 
Programmable interrupt Controller (PIC) makes this all 
possible; .,. . 

The 8259A Programmable Interrupt Controller (PIC) was 
designed to function as an overall manager of an inter­
rupt driven system. No additional hardware is required_ 
The 8259A alone can handle eight prioritized interrupt 
levels, controlling the complete interface between pe­
r.ipherals and processor .. Additional 8259A's can be 
"cascaded" to increase the number of interrupt levels 
processed. A wide variety of modes and commands for 
programming the 8259A give it enough flexibility for 
almost any interrupt controlled structure. Thus, the 
8259A is the' feasible answer to handling I/O servicing in 
microcomputer systems. 

Now, before explaining exactly how to use the 8259A, 
let's go over interrupt structures of the MCS-80, MCS-85, 
MCS,86, and MCS,88 systems,. and how they Interact 
with the 8259A.Figure 1 shows a block diagram of the 
8259A interfacing with a standard system bus; This may 
prove useful as reference throughout the rest of the 
"Concepts" section. 

I 
INTERRUPT 
R!QUESTS 

r 
I 

Figure 1: 8259Alnterface to. Standard System Bus ." 

1.1 MCS-80™_8259A OVERVIEW 

In an MCS-80-8259A interrupt configuration, as in 
Figure 2, a device may cause an interrupt by'pulling one; 
of the 8259A's interrupt request pins (IRO-IR7) high. If 
the 8259A accepts the interrupt request (this depends 
On its programmed condition), the 8259A's INT (inter­
rupt) pin will go high, driving the 8080A's INT pin high. 

The 8080A can receive an. interrupt request anY.time, 
since Its INT input is asynchronous. The 8080A, how­
ever, doesn't always have to acknowledge an interrupt 
request immediately. It can accept or disregard re­
quests under software control using the EI (Enable Inter­
rupt) or 01 (Disable Interrupt) instructions. These in­
structions either set or reset an internal Interrupt enable 
flip-flop. The output of this flip-flop controls the state of 
the INTE (Interrupt Enabled) pin. Upon reset, the 8080A 
interrupts aredisabled,making INTE low. 

Ai the end of each instruction cycle, the 8080A exam~ 
ines the state of its INT pin. If an interrupt request Is 
present and Interrupts are enabled, the 8080A enters an 
interrupt machine cycle. During the interrupt machine 
cycle the 8080A resets the internal interrupt enable flip­
flop, disabling further interrupts until an EI instruction 
is executed. Unlike normal machine cycles, the interrupt 
machine cycle doesn't increment the program counter. 
This ensures that the8080A can return to the pre­
interrupt program location after the: interrupt is com­
pleted.The 8080A then issues an INTA (Interrupt 
Acknowledge) pulse via the 8228 System Controller Bus 
Driver. ThislN'fA pulse signals the 8259A that the 8080A 
is honoring the request and is ready to process the inter­
ru~ , '. 

The 8259A can now vector program execution to the cor­
responding service routine. This is done during a se­
quence of the three INTA pulses from the 8080A via the 
8228. Upon receiving the first INTA pulse the 8259A 
places the opcode for a CALL' instruction on the data 
bus. This causes the contents of the program counter to 
be pushed onto 'the stack. In addition, the CALL instruc­
tion causes two more INTA pulses to be issued, allow; 
ing the 8259A to place onto the data bus the starting 
address of the corresponding service routine. This 
address is called the interrupt-vector address. The lower 
8 bits (LSB) of the interrupt-vector address are released 
during the second INTA pulse and the upper 8 bits 
(MSB) during the third INTA pulse. Once this sequence 
is completed, program execution then vectors to the 
service routine at the interrupt-vector address. 

If the same registers are used by both the main program 
and the interrupt service routine, their contents should 
be saved when entering the service routine. This in­
cludes the Program Status Word (PSW) which consists 
of the accumulator and flags, The best way to do this is 
to "PUSH" each register used onto the stac~. The ser­
vice routine can then "POP" each register off the ,stack 
in the reverse order when it is completed. This prevents 
any ambiguous operation when returning to the main 
program. 

Once the service routine Is completed, . the main 
program maybe re-entered by usinga·normal RET 
(Return) instruction. Thi.s will "POP" the original con-
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tents of the program counter back off the stack to 
re,sume program execution where it left off. Note, that 
because interrupts are disabled during the interrupt 
acknowledge sequence, the EI instruction must be 
executed either during the service routine or the main 
program before further interrupts can be processed. 

For additional information on the 8080A interrupt struc­
tureand operation, refer to the MCS-80 User's Manual. 

1.2 MCS·85™_8259A OVERVIEW 

An MCS-85-8259A configuration processes interrupts 
in much the same format as an MCS-80-8259A config-

uration. When an interrupt occurs, a sequence of three 
INTA pulses causes the 8259A to release onto the data 
bus a CALL instruction and an interrupt-vector address 
for the corresponding service routine. Other events that 
occur during the 8080A interrupt machine cycle, such as 
disabling interrupts and not incrementing the program 
counter, also occur in the 8085A interrupt acknowledge 
machine cycle. Additionally, the instructions for saving 
registers, enabling or disabling of interrupts, and return­
ing from service routines are literally the same. 

The 8085A, however, has a different interrupt hardware 
scheme as shown in Figure 3. For one, the 8085A sup­
plies its own INTA output pin rather than using an addi-
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Figure 2. MCS-80 8259A Basic Configuration Example 
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tional chip, as the 8080A uses the 8228 System Con: 
troller Bus Driver. Another hardware difference is the 
8085Ahas five hardware interrupt pins: INTR, RST 7."5, 
RST6.5, RST 5.5, and TRAP. The INTR (Interrupt Request) 
pin is the equivalent to the 8080A's INT pin. The RST 
(Restart) pins and TRAP pin are all restart" interrupts 
which vector program execution to an individual dedi­
cated address when asserted: The' important factor 
aSSOCiating these interrupts is their relative priority, as 
shown below: . 

TRAP Highest Priority 
RST 7.5 
RST 6.5' 
RST 5.5 
INTR Lowest Priority 

The INTR pin has lowest priority among the other 8085A 
hardware interrupts. Thus, precautions to prevent inter­
rupting 8259A service routines may be necessary. This, 
of course, depends on how the 8085A interrupts are 
being used in a particular application. Such precautions 
can be implemented, however,by masking the RST pins 
using the SIM instruction. The TRAP pinon the other 
hand is non-maskable; all interrupt pins but TRAP can 
be controlled by the EI.(Enable Interrupt) and 01 (Disable 
Interrupt) instructions.: 

For a complete description of the 808~A inter.rupt struc­
ture, refer to the' MCS~85 User's Manual. 

1.3 MCS-S6ISS™--S259A OVERVIEW 

Operation of an MCS-86/88-8259A configuration has 
basic similarities of the MCS-80/85-8259A configura-

ADO.1SI----'M"'U"'LT!!!'P"'L"'EX"'ED"'A""D""DR,;;E"'SSJi"D"'A"'TA",,0"'US:!-, 

LOCK 

-NMI 

INTR 

tions. That is, a device can cause an interrupt by pulling 
one oftM8259A's interrupt request pins (lRO-IR7) high. 
If the 8259A honors the request, its INT pin will go high, 
driving the8086/8088's INTR pin high. Like the 8080A 
and 8085A, the INTR pin of the 8086/8088 is 'asynchro­
nous, thus it can receive an interrupt any time. The 
8086/8088 can also accept or disregard requests on 
INTR under software control using the STI (Set Interrupt) 
or CLI (Clear Interrupt) instructions. These instructions 
set or clear the interrupt-enabled flag IF. Upon 
8086/8088 reset the IF flag is cleared, disabling external 
interrupts on INTR. Beside the INTR pin, the 8086/8088 
provides an NMI (Non-Maskable Interrupt) pin. The NMI 
functions similar to the 8085A's TRAP; it can't be dis­
abled or masked. NMI has higher priority than INTR. 

Figure 4 shows an MCS·86 MAX Mode system interfac­
ing with an 8259A on the Idcal bus. This MCS-86-8259A 
configuration is also representative of an MCS-88-
8259A configuration except for the data bus which is 16 
bits for 8086 and 8 bits for 8088. In the MCS·86 system 
the 8259A must be on the lower 8 bits of the data bus. 
Note that the 8259A could also be interfaced on the 
system bus. 

Although there are some basic similarities, the actual 
processing of interrupts with an 8086/8088 is different 
than an 8080A or 8085A. When an interrupt request is 
present and interrupts are enabled, the 8086/8088 enters 
its Interrupt acknowledge machine cycle. The interrupt 
acknowledge machine cycle pushes the flag registers 
onto the stack (as in a PUSH F instruction). It then clears 
the IF flag which disables interrupts. The contents of 
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Figura 4. MSC-88 ™ S259AB •• lc Configuration Example (8088 In Max. Mode) 
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both the code segment and the instruction pOinter are 
then also pushed onto the stack. Thus, the stack retains 
the pre·interrupt flag status and pre·interrupt program 
location which are used to return from the. service 
routine. The 8086/8088 then issues the first of two INTA 
pulses which signal the 8259A that the 8086/8088 has 
honored ·its interrupt request. If the 8086/8088 is used in 
its "MIN Mode" the INTA signal is available from the 
8086/8088 on its INTA pin. If the 8086/8088 is used in the 
"MAX Mode" the INTA signal is available via the 8288 
Bus Controller INTA pin. Additionally, in the "MAX 
Mode" the 8086/8088 LOCK pin goes low during the in· 
terrupt acknowledge sequence. The LOCK signal can be 
used to indicate to other system bus masters not to gain 
control of the system bus during the interrupt acknowl· 
edge sequence. A "HOLD" request won't be honored 
while LOCK is low. 

The 8259A is now ready to vector program execution to 
the corresponding service routine. This is done during 
the sequence of the two INTA pulses issued by the 80861 
8088. Unlike operation with the 8080A or 8085A, the 
8259A doesn't place a CALL instruction and the starting 
address of the service routine on the data bus. Instead, 
the first INTA pulse is used only to signal the 8259A of 
the honored reql!est. The second INTA pulse·causes the 
8259A to place a single interrupt·vector byte onto the 
data bus. Not used ·as a direct address, this interrupt· 
vector byte pertains to one of 256 interrupt "types" sup· 
ported by the 8086/8088 memory. Program execution is' 
vectored to the corresponding service routine by the 
contents of a specified interrupt type. 

All 256 interrupt types are located in absolute memory 
locations 0 through 3FFH which make up the 80861 
8088's interrupt-vector table. Each type in the interrupt­
vector table requires 4 bytes of memory and stores a 
code segment address and an instruction pOinter ad­
dress. Figure 5 shows a block diagram of the interrupt­
vector table. Locations 0 through 3FFH should be 
reserved for the interrupt-vector table alone. Further­
more, memory locations 00 through 7FH (types 0-31) are 
reserved for use by Intel Corporation for Intel hardware 
and software products. To maintain compatibility with 
present and future Intel products, these locations 
should not be used. 

- -
INTERRUPT TYPE 255 

INTERRUPT TYPE 254 

· • 
• 

INTERRUPT TYPE 2 

INTERRUPTTYPE 1 

INTERRUPT TYPE 0 

Figure 5. 8086/8088 Interrupt Vector Table 
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OH 

When the 8086/8088 receives an interrupt-vector byte 
from the 8259A, it multiplies its value by four to acquire 
the address of the interrupt type. For example, if the 
interrupt-vector byte specifies type 128 (80H), the vec­
tored address in 8086/8088 memory is 4 x 80H, which 
equals 200H. Program execution is then vectored to the 
service routine whose address is specified by the code 
segment and instruction pOinter values within type 128 
located at 200H. To show how this is done, let's assume 
interrupt type 128 is to vector data to 8086/8088 memory 
location 2FF5FH. Figure 6 shows two possible ways to 
set values of the code segment and instruction poi nter 
for vectoring to location 2FF5FH. Address generation 
by the code segment and instruction pOinter is ac­
complished by an offset (they overlap). Of the total 
20-bii address capability, the code segment can desig­
nate the upper 16 bits, the instruction pointer can 
deSignate the lower 16 bits. 

CS(MSB) 

CS(LSB) 

IP(MSB) 
IP(LSB) 

CS(MSB) 
CS(LSB) 

IP(MSB) 
IP(LSB) 

-
-

2FH 

FOH 
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FFH 

5FH 

-
1FFH 

1FEH 

1FDH 

1FCH 

-
1FFH I 1FEH 
~F,DH' TYPE 128 

1FCH 

Figure 6. Two Examples 01 8086/8088 Interrupt Type 128 Vectoring 
to Location 2FF5FH 

When entering an interrupt service routine, those regis­
ters that are mutually used between the main program 
and service routine should be saved. The best way to do 
this is to "PUSH" each register used onto the stack im­
mediately. The service routine can then "POP" each 
register off the stack in the same order when it is com­
pleted. 

Once the service routine is completed the main program 
may be re-entered by using a IRET (Interrupt Return) in­
struction. The IRET instruction will pop the pre-interrupt 
instruction pointer, code segment and flags off the 
stack. Thus the main program will resume where it was 
interrupted with the same flag status regardless of 
changes in the service routine. Note especially that this 
includes the state of the IF flag, thus interrupts are re­
enabled automatically when returning from the service 
routine. 

Beside external interrupt generation from the INTR pin, 
the 8086/8088 is also able to invoke interrupts by soft­
ware. Three interrupt instructions are provided: INT, INT 
(Type 3), and INTO. INT is a two byte instruction, the sec­
ond byte selects the interrupt type. INT (Type 3) is a one 
byte instruction which select!! interrupt Type 3. INTO is 
a conditional one byte Interrupt instruction which 
selects interrupt Type 4 if the OF flag (trap on overflow) 
is set. All the software interrupts vector program execu­
tion as the hardware interrupts do. 
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For further information on 8086/8088 interrupt operation 
and internal interrupt structure refer to the MCS-86 
User's Manual and the 8086.System Design application 
note. 

2_ 8259A FUNCTIONAL BLOCK DIAGRAM 

A block diagram of the 8259A is' shown in Figure 7. As 
can be seeri from this figure, the 8259A consists of eight 
major blocks: the Interrupt Request Regl~ter (IRR), the 
In-Service Register (ISR), the Interrupt Mask Register 
(lMR), the Priority Resolver (PR), the cascade buffer/ 
comparator, the data bus buffer, and logic blocks for 
control and read/write. We'll first go over the blocks 
directly related to interrupt handling, the IRR, ISR, IMR, 
PR, and the control logic. The remaining functional 
blocks are'theri discussed. 

2.1 INTERRUPT REGISTERS AND CONTROL LOGIC 

Basically, interrupt requests are handled by three "cas­
caded" registers: the Interrupt Request Register (IRR) is 
use to store all the interrupt levels requesting service; 
the In-Service Register (lSR) stores all the levels which 
are being serviced; and the Interrupt Mask Register 
(IMR) stores the bits of the interrupt lines to be masked. 
The Priority Resolver (PR) looks at the IRR, ISR and IMR, 
and determines whether an INT should be Issued by the 
the control logic to the processor. 

Figure 8 shows conceptually how the Interrupt Request 
(IR) Input handles an interrupt request and how the 
various interrupt registers interact. The figure repre-

PIN CONFIGURATION 

cs vcc 
WR .." 
iii5 INTA 

0, IR7 

D. IR6 

Os IRS 

D. IR4 

03 IR3 

D. IR2 

·0, IR1 

Do IRO 

CASO INT 

CAS 1 SP/EN 

GND CAS 2 

PIN NAMES 
°7-DO DATA BUS (BI·DlRECTIONALI 

RD READ INPUT 

WR WRiTE INPUT 

Ao COMMAND SELECT ADDRESS CASO 

cs CHIP SELECT CAS1 
CAS1-CASO CASCADE LINES 

SP/EN SLAVE PROGRAM/ENABLE BUFFER CAS' 

INT INTERRUPT OUTPUT 

sents oneof eight "daisy-chained" priority cells, one for 
each IR input. 

The best way to explain the operation of the priority cell 
is to go through the sequence of internal events that 
happen when an interrupt request occurs. However, 
first, notice that the input circuitry of the priority cell 
allows for both level sensitive and edge sensitive IR in­
puts. Deciding which method to use is dependent on the 
particular application and will be discussed in more 
detail later. 

When the IR input is in an Inactive state (LOW), the edge 
sense latch Is set. If edge sensitive triggering is 
selected, the "Q" output of the edge sense latch will 
arm the input gate.to the request latch. This input gate 
will be disarmed after the IR input goes active (HIGH) 
and the interrupt request has been acknowledged. This 
disables the input from generating any further Inter­
rupts untWit has returned low to re-arm the edge sense 
latch. If level sensitive triggering is selected, the "a" 
output of the edge sense latch is rendered useless. This 
means the level of the IR input is in complete control of 
interrupt generation; the Input won't be disarmed once 
acknOWledged. 

When an interrupt occurs on the IR input, it propagates 
through the request latch and to the PR (assuming the 
input Isn't masked). The PR looks althe incoming re­
quests and the currently in-service interrupts to ascer­
tain whether an interrupt should be issued to the proc­
essor. Let's assume ihat the request is the only one in­
coming and no requests are presently in service. The PR 
then causes the control logic to pull the INT line to the 
processor high. 

DATA 
BUS 

BUFFER 

BLOCK DIAGRAM 

CONTROL LOG Ie 

INTA INTERRUPT ACKNOWLEDG.E INPUT SP/EIiI ___ -' ~INTERNAL BUS 
IRO-IR7 INTERRUPT REOUEST INPUTS 

Figure i .8259A Block Diagram and Pin Configuration 
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LTIM BIT 
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1 = LEVEL 

TO OTHER PRIORITY CELLS 
CLR ISA 

ISR BIT 

EDOE 
SENse 

~LA~T~CH~f--------t---+--+---<'ltjH-;;;:S~~1 SETISR 
PRIORITV 
RESOLVER 

IR -I-[)o---+-----<L.J 

MCS80/8S { 
MODE 

INTA~ 

FREEZE 

I~ 
MCsa.I •• { INTA u= 

MODE 

FREEZE 

NOTES 

NON· 
MASKED 
REO 

CONTROL 
LOGIC 

y---+----t-t----+------- ~li::~~ 

1. MASTER CLEAR ACTIVE ONLY DURING leW1 
2. FREEZE/IS ACTIVE DURING INTA/ AND POLL SEQUENCES ONLY 
3. TRUTH TABLE FOR I).LATCH . 

c I 0 I Q I OPERATION 
1 DI DI FOLLOW 
o X Qn-1 HOLD 

Figure 8. Priority Cell 

When the processor honors the INT pulse, It sends a se· 
quence of INTA pulses to the 8259A (three for a080A/ 
8085A, two for 8086/8088). During this sequence the 
state of the request latch is frozen (note the INTA-freeze 
request timing diagram). Priority is again resolved by the 
PR to determine the appropriate interrupt vectoring 
which is conveyed to the processor via the data bus. 

Immediately after the interrupt acknowledge sequence, 
the PR sets the corresponding bit in the ISR which 
simultaneously clears the edge sense latch. If edge sen­
sitive triggering Is used, clearing the edge sense latch 
also disarms the request latch. This inhibits the 
possibility of a still active IR input from propagating 
through the priority cell. The IR input must return to an 
inactive state, setting the edge sense latch, before 
another interrupt request can be recognized. If level sen· 
sitive triggering Is used, however, clearing the edge 
sense latch has no affect on the request latch. The state 
of the request latch is entirely dependent upon the IR in­
put level. Another interrupt will be generated immedi­
ately if the IR level is left active after its ISR bit has been 
reset. An ISR bit gets reset with an End-of·lnterrupt (EOI) 
command Issued in the service routine. End-of­
interrupts will be covered in more detail later. 

2.2 OTHER FUNCTIONAL BLOCKS 

Data Bus Buffer 

This three-state, bidirectional 8-bit buffer Is used to in­
terface the 8259A to the processor system data bus (via 

OBO-OB7). Control words, status information, and 
interrupt-vector data are transferred through the data 
bus buffer. 

Read/Write Control Logic 

The function of this block is to c.ontrol the programming 
of the 8259A by accepting OUTput commands from the 
processor. It also controls the releasing of status onto 
the data bus by accepting INput commands from the 
processor. The initialization. and operation command 
word registers which store the various control formats 
are located in this block. The RO, WR, Mi, and OS 
pins are used to control access to this block by the 
processor. 

Cascade Buffer/Comparator 

As mentioned earlier, multiple 8259A's can be combined 
to expand the number of interruptlevels. A master-slave 
relationship of cascaded 8259A's is used for the expan­
sion. The SP/EI\! and the CASO-2 pins are used for oper­
ation of this block. The cascading of 8259A's is covered 
in depth in the "Operation of the 8259A" section of this 
application note. 

2.3 PIN FUNCTIONS 

Name Pin 1# 1/0 Function 

Vee 
GNO 

28 

14 

+5\1 supply 

Ground 
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Name Pin 1# I/O Function 

WR 2 

RD 3 

D7-DQ 4-11 

CASQ- 12,13, 
CAS2 15 

SP/EN 16 

INT 17 

Cflip Select: A low on this pin en­
ables RD and WR communication be­
tween the CPU and the 8259A. INTA 
functions are independent of CS. 

Write: A low on'this pin when CS is 
low enables the 8259A to accept 
command words from the CPU. 

Read: A low on this pin when CS is 
low enables the 8259A to release 
status onto the data bus for the CPU. 

110 Bidirectional Data Bus:' Control, 
status and interrupt-vector informa­
tion is transferred via this bus. 

I/O Cascade Lines: The CAS lines form a 
private 8259A bus to control a multi­
ple 8259A structure. These pins are 
outputs for a master 8259A and in- . 
puts for a slave 8259A. 

110 Slave Program/Enable Buffer: This is 
a dual function pin. When in the buf­
fered mode it can be used as an out­
put to control buffer transceivers' 
(EN). When not in the buffered rnode 
it is used as an input to deSignate a 
master (SP= 1) or slave (SP=Q). 

o Interrupt: This pin goes high when­
ever a valid interrupt request is as­
serted. It is used to interrupt the 
CPU, thus it is connected to the 
CPU's interrupt pin. 

IRQ-. . 18~25 I 
IR7 

Interrupt Requests: Asynchronous in­
puts. An interrupt request can be 
generated by raising an IR input (lOW 
to high) and holding .it high until it is 
acknowledged (edge triggered mode); 
or just by a high level on an IR input 
(level triggered mode). 

INTA 26 

AQ 27 

Interrupt Acknowledge: This pin is 
used to enable 8259A interrupt-vector 
data onto the data bus. This is done 
bya sequence of interrupt acknowl­
edge pulses issued by the CPU. 

AD Address Line: This pin acts in con­
junction with the CS, WR, and RD 
pins. It is used by the 8259Ato de­
cipher between various command 
wqrds the CPU writes. and status the 
CPU wishes to read. It is typically 
connected to the CPU AQ address 
line (A 1 for 8086/8.088). 

3. OPERATION OF THE 82S9A 

Interrupt operation of the 8259A falls under five main 
categories: vectoring, priorities, triggering, status, and 
cascading. Each of these categories use various modes 
and commands. This section wil.1 explain the operation 
of these modes and commands. For clarity of explana­
tion, however, the actual programming o'f the 8259A isn't 

covered in this section but in "Programming the 8259A". 
Appendix A is provided as a cross reference between 
these two sections. 

3.1 INTERRUPT VECTORING 

Each IR input of the 8259A has an individual interrupt­
vector address in memory associated with it. Designa­
tion of each address depends upon the initial program­
ming of the 8259A. As stated earlier, the interrupt 
sequence and addressing of an MCS-8Q and MCS-85 
system differs from that of an IIIICS-86 and MCS-88 
system. Thus, the 8259A must be initially programmed 
in either a MCS-8Q/85 or MCS-86/88 mode of operation to 
insure the correct interrupt vectoring. 

MCS-80/8S™ Mode 

When programmed in the MCS-8Q/85 mode, the 8259A 
should only be used within an 8Q8QA or an 8Q85A 
system. In this mode the 8Q8QA/8Q85A will handle inter­
rupts in the format described in the "MCS-8Q-8259A or 
MCS-85-8259A Overviews." 

Upon interrupt request in the MCS-8Q/85 mode, the 
8259A will output to the data bus the opcode for a CALL 
instruction and the address of the desired routine. This 
is in response to a sequence of three INTA pulses 
issued by the 8Q8QA/8Q85A after the 8259A has raised 
INT high. 

The first INTA pulse to the 8259A enables the CALL 
opcode "CDH" onto the data bus. It also resolves IR pri­
orities and effects operation in the cascade mode, 
which will be covered later. Contents of the first 
interrupt-vector byte are shown in Figure 9A. 

During the second and third INTA pulses, the 8259A 
conveys a 16-bit interrupt-vector address to the 8Q80AI 
8085A. The interrupt-vector addresses for all eight levels 
are selected when initially programming the 8259A. 
However, only one address is needed for programming. 
Interrupt-vector addresses of IRQ-IR7 are automatically 
set at equally spaced intervals based on the one pro­
grammed address. Address intervals are user definable 
to 4 or 8 bytes apart. If the service routine for a device is 
short it may be possible to fit the entire routine within 
an 8-byte interval. Usually, though, the service routines 
require more than 8 bytes. So, a 4-byte interval is used to 
store a Jump (JMP) ihstruction which directs the 8Q8QAI 
8Q85A to the appropriate routine. The 8-byte interval 
maintains compatibility with current 8Q8QA/8Q85A 
Restart (RST) instruction software, while the 4-byte in­
terval is best for a compact jump table. If the 4-byte in­
terval is selected, then the 8259A will automatically 
insert bits AQ-A4. This leaves A5-A15 to be pro­
grammed by the user. If the 8-byte interval is selected, 
the 8259A will automatically insert bits AQ-A5. This 
leaves only A6-A15 to be programmed by the user. 

The LSB of the interrupt-vector address is placed on the 
data bus during the second INTA pulse. Figure 9B 
shows the contents of the second interrupt-vector byte 
for both 4 and 8-byte intervals. 

The MSB of the interrupt-vector address is placed on the 
data bus during the third'iNTA pulse. Contents of the 
third interrupt-vector byte is shown in Figure 9C. 
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01 08 05 04 OJ 02 01 

CALL CODE LI_, __________ I I 
A. FIRST INTERRUPT VECTOR BYTE, MCSaO/as MODE 

1-, 
6 , 

01 De 05 O~ 03 02 01 

Ac...' --",,----_""A,,_' _'---' __ .' 0 
_~_; _:_: _ :~ _-+_1 _ 0 _-+-+ 

~~~~::~~A"-'-"----~-~;---~ 
'.-OO-LO 

~~~~~_""A~'~"_____~_ 

IR 1''''1'1111 .. 8 

01 De 05 04 03 02 01 00 r-rr-;;-7-Aij---,- 1-··' 1--0 ---ij-o-

~~-A6 

r-++~i- +--: ---~- --;--~-+ 
~~~~~~O, .. ·-~~O--~~· -~ 
1-'-+-'''----''''----"._-' .. _.- .------

I 0 0 0 

'-"-'--~~~_"__"____.....::... _ _' _0_--"_ 
B. SECOND INTERRUPT VECTOR BYTE, MCSaO/as MODE 

07 011 05 O~ 03 02 01 DO 

I A15 I AU I AI3 I A12 I All I AlOl~ 
C. THIRD INTERRUPT VECTOR BYTE, MCSaO/as MODE 

Figure 9. 9A-C. Inle"upl·Vector Bytes for 8259A, MCS 80/B5 Mode 

MCS·86188™ Mode 

When programmed in the MCS·86/88 mode, the 8259A 
should only be used within an MCS·86 or MCS·88 
system, In this mode, the 8086/8088 will handle inter· 
rupts in the format described earlier in the "8259A-
8086/8088 Overview". 

Upon interrupt in the MCS·86/88 mode, the 8259A will 
output a single interrupt,vector byte to the data bus. 
This is in response to only two INTA pulses issued by 
the 8086/8088 after the 8259A has raised INT high, 

The first INTA pulse is used only for set·up purposes in· 
ternal to the 8259A. As in the MCS·80/85 mode, this set· 
up includes priority resolution and cascade mode oper· 
ations which will be covered later. Unlike the MCS·80/85 
mode, no CALL opcode is placed on the data bus, 

The second INTA pulse is used to enable the single 
interrupt·vector byte onto the data bus. The 8086/8088 
uses this interrupt·vector byte to select one of 256 inter· 
rupt "types" in 8086/8088 memory. Interrupt type selec· 
tion for all eight IR levels is made when initially pro· 
gramming the 8259A, However, reference to only one in· 
terrupt type is needed for programming. The upper 5 bits 
of the interrupt vector byte are user definable. The lower 
3 bits are automatically inserted by the 8259A depend· 
ing upon the IR level. 

Contents of the interrupt·vector byte for 8086/8088 type 
selection is put on the data bus during the second INTA 
pulse and is shown in Figure 10. 

IR 07 Da OS 04 03 02 01 DO 
7 T7 T6 T5 T4 T3 1 1 1 
6 T7 T6 T5 T4 T3 1 1 0 
5 T7 T6 T5 T4 T3 1 0 1 
4 T7 T6 T5 T4 T3 1 0 0 
3 T7 T6 T5 T4 T3 0 1 1 
2 T7 T6 T5 T4 T3 0 1 0 
1 T7 T6 T5 T4 T3 0 0 1 
0 T7 T6 T5 T4 T3 0 0 0 

FIIIU .. 10. Intenupt Vector Byte, MCS 88/88™ Mode 

3.2 INTERRUPT PRIORITIES 

A variety of modes and commands are available for con· 
trolling interrupt priorities of the 8259A. All of them are 
programmable, that is, they may be changed dynamic· 
ally under software control. With these modes and com· 
mands, many possibilities are conceivable, giving the 
user enough versatility for almost any interrupt con· 
trolled application. 

Fully Nested Mode 

The fully nested mode of operation is a general purpose 
priority mode. This mode supports a multilevel·interrupt 
structure in which priority order of all eight IR inputs are 
arranged from highest to lowest. 

Unless otherwise programmed, the fully nested mode is 
entered by default upon initialization. At this time, IRO is 
assigned the highest priority through IR7 the lowest. 
The fully nested mode, however, is not confined to this 
IR structure alone. Once past initialization, other IR in· 
puts can be assigned highest priority also, keeping the 
multilevel·interrupt structure of the fully nested mode. 
Figure 11A-C shows some variations of the priority 
structures in the fully nested mode. 

IR LEVELS IR1 IRS IRS IR4 IR3 IR2 IR1 IRO 
PRIORITY 7 6 5 4 3 2 1 0 

A 

IR LEVELS IR1 IRS IRS IR4 IR3 IR2 IR1 IRO 
PRIORITY 4 3 2 1 0 7 6 5 

B 

IR LEVELS IR7 IRB IRS IR4 IR3 IR2 IR1 IRO 
PRIORITY 1 0 7 6 5 4 3 2 

C 

Figure 11. A-C. Some Variations of Priority Structure in the 
Fully Nested Mode 

Further explanation of the fully nested mode, in this 
section, is linked with information of general 8259A in· 
terrupt operations. This is done to ease explanation to 
the user in both areas. 

In general, when an interrupt is acknowledged, the 
highest priority request is determined from the IRR (In· 
terrupt Request Register). The interrupt vector is then 
placed on the data bus. In addition, the corresponding 
bit in the ISR (In·Service Register) is set to designate the 
routine in service. This ISR bit remains set until an EOI 
(End·Of·lnterrupt) command is issued to the 8259A. 
EOI's will be explained in greater detail shortly. 

In the fully nested mode, while an ISR bit is set, all fur· 
ther requests of the same or lower priority are inhibited 
from generating an interrupt to the microprocessor. A 
higher priority request, though, can generate an inter· 
rupt, thus vectoring program execution to its service 
routine. Interrupts are only acknowledged, however, if 
the microprocessor has previously executed an "Enable 
Interrupts" instruction. This is because the interrupt 
request pin on the microprocessor gets disabled auto· 
matically after acknowledgement of any interrupt. The 
assembly language instructions used to enable inter· 
rupts are "EI" for 8080A/8085A and "STI" for 8086/8088. 
Interrupts can be disabled by using the instruction "DI" 
for 8080AI 8085A and "CLI" for 8086/8088. When a 
routine is completed a "return" instruction is executed, 
"RET" for 8080A/8085A and "IRET" for 8086/8088. 
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Figure 12 illustrates the correct usage of interrupt 
related instructions and the interaction of interrupt 
levels in the fully nested mode. 

Assuming the IR priority assignment for the example in 
Figure 12 is IRO the highest through IR7 the lowest. the 
sequence is as follows. During the main program, IR3 
makes a request. Since interrupts are enabled, the 
microprocessor is vectored to the IR3 service routine. 
During the IR3 routine, IR1 asserts a request. Since IR1 
has higher priority than IR3, an interrupt is generated. 
However, it is not acknowledged because the micro­
processor disabled interrupts in response to the IR3 in­
terrupt. The IR1 interrupt is not acknowledged until the 
"Enable Interrupts" instruction is executed. Thus the 
IR3 routine has a "protected" section of code over 
which no interrupts (except non-maskable) are allowed. 
The IR1 routine has no such "protected" section since 
an "Enable Interrupts" instruction is the first one in its 
service routine. Note that in this example the IR1 re­
quest must stay high until it is acknowledged. This is 
covered in more depth in the "Interrupt Triggering" 
section. 

IR3 
INTERRUPT 

IRI 
INTER· 

RUPT 

IR3 SERVICE 
ROUTINE 

IR1 SERVICE 
ROUTINE 

RET OR IRET 

FIgure 12. Fully N •• ted Mod. Example (MCS 8018S™ or MCS 881ee™) 

What is happening to the ISR register? While In the main 
program, no ISR bits are set since there aren't any inter­
rupts in service. When the IR3 interrupt is acknowl­
edged, the ISR3 bit is set. When the IR1 interrupt is 
acknowledged, both the ISR1 and the ISR3 bits are set, 
indicating that neither routine is complete. At this time, 
only IRO could generate an interrupt since it is the only 
input with a higher priority than those previously in ser­
vice. To terminate the IR1 routine, the routine must 
inform the 8259A that it is complete by resetting its ISR 
bit. It does this by executing an EOI command. A 
"return" instruction then transfers execution back to 

the IR3 routine. This allows IRO-IR2 to interrupt the IR3 
routine again, since ISR3 is the highest ISR bit set. No 
further interrupts occur in the example so the EOI com­
mand resets ISR3 and the "return" instruction causes 
the main program to resume at its pre-interrupt location, 
ending the example. 

A single 8259A is essentially always in the fully nested 
mode unless certain programming conditions disturb it. 
The following programming conditions can cause the 
8259A to go out of the high to low priority structure of 
the fully nested mode. 

• The automatic EOI mode 

• The special mask mode 

• A slave with a master not in the special fully nested 
mode 

These modes will be covered in more detail later, 
however, they are mentioned now so the user can be 
aware of them. As long as these program conditions 
aren't inacted, the fully nested mode remains undis­
turbed. 

End of Interrupt 

Upon completion of an interrupt service routine the 
8259A needs to be notified so its ISR can be updated. 
This is done to keep track of which interrupt levels are in 
the process of being serviced and their relative priori­
ties. Three different End-Of-Interrupt (EO I) formats are 
available for the user. These are: the non-specific EOI 
command, the specific EOI command, and the auto­
matic EOI Mode. Selection of which EOI to use is depen­
dent upon the interrupt operations the user wishes to 
perform. 

Non-Specific EOI Command 

A non-specific EOI command sent from the microproc­
essor lets the 8259A know when a service routine has 
been completed, without specification of its exact inter­
rupt level. The 8259A automatically determines the inter­
rupt level and resets the correct bit in the ISR. 

To take advantage of the non-specific EOI the 8259A 
must be in a mode of operation in which it can predeter­
mine in-service routine levels. For this reason the n6n­
specific EOI command should only be .used when the 
most recent level acknowledged and serviced is always 
the highest priority level. When the 8259A receives a 
non-specific EOI. command, it simply resets the highest 
priority ISR bit, thus confirming to the 8259A that the 
highest priority routine of the routines in service is 
finished. 

The main advantage of using the non-specific EOI com­
mand is that IR level specification isn't necessary as in 
the "Specific EOI Command", covered shortly. 
However, special consideration should be taken when 
deciding to use the non-specific EOL Here are two pro­
gram conditions in which it is best not used: 

• Using the set priority command within an interrupt 
service routine. 

• Using a special mask mode. 

These conditions are covered in more detail in their own 
sections, but are listed here for the users reference. 
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Specific EOI Command 

A specific EOI command sent from the microprocessor 
lets the 8259A know when a service routine of a particu­
lar interrupt level is completed. Unlike a non-specific 
EOI command, which automatically resets the highest 
priority ISR bit, a specific EOI command specifies an 
exact ISR bit to be reset. One of the eight IR leliels of the 
8259A can be specified in the command. 

The reason the specific Ear command is needed, is to 
reset the ISR bit of a completed service routine when­
ever the 8259A isn't able to automatically determine it. 
An example of this type of situation might be if the 
priorities of the interrupt levels were changed during an 
interrupt routine ("Specific Rotation"). 'In thi& case, if 
any other routines were in service at the same time, a 
non-specific EOI might reset the wrong ISR bit. Thus. the 
specific EOI command is the best bet In this case, or for 
that matter, any time in which confusion of interrupt 
priorities may exist. The specific EOI command can be 
used in all conditions of 8259A operation,' including 
those that prohibit non-specific EOI command usage. 

Automatic EOI Mode 

When programmed in the automatic EOI mode, the 
microprocessor no longer needs to issue a command to 
notify the 8259A it has completed an interrupt routine. 
The 8259A accomplishes this by performing a non­
specific EOI automatically at the trailing edge of the last 
INTA pulse (third pulse in MCS-80/85, second in 
MCS-8S). 

The obvious advantage of the automatic EOI mode over 
the other EOI command is no command has to be 
issued. In general, this simplifies programming and 
lowers code requirements within interrupt routines. 

However, special consideration should be taken when 
deciding to use the automatic EOI mode because it 
disturbs the fully nested mode. In the automatic EOI 
mode the ISR bit of a routine in service is reset right 
after it's acknowledged, thus leaving no deSignation' in 
the ISR that a sevice routine is being executed. If any in­
terrupt request occurs during this time (and interrupts 
are enabled) It will get serviced regardless of its priority, 
low or high. The problem of "over nesting" may also 
happen in this situation. "Over nesting" is when an IR 
Input keeps Interrupting its own routine, resulting in un­
necessary stack pushes which could fill the stack in a 
worst case condition. This is ncit usually a desired forni 
of operation! 

So what good is the automatic EOI mode with problems 
like those just covered? Well, again, like the other EOls, 
selection is dependent upon the application. If inter­
rupts are controlled at a predetermined rate, so as not to 
cause the problems mentioned above, tht;l automatic 
EOI mode works perfect just the way it is. However, if in­
terrupts happen sporadically at an Indeterminate rate, 
the automatic EOI mode should only be used under the 
following guideline: 

• When using the automatic EOI mode with an inde­
, terminate interrupt rate,.themicroprocessor should 

keep its interrupt request input disabled during 
execution of service routines. 

By doing this, higher priority interrupt levels will be ser­
viced only after the completion of a routine in service. 
This guideline restores the fully nested structure in 
regards to the IRR; however,a routine in-service can',t be 
interrupted. ' 

Automatic Rotation - Equal Priority 

Automatic rotation of priorities serves, in applications 
where the interrupting devices are of equal priority, 
such as communications channels .. The. concept is that 
once a peripheral is serviced, all other equal priority 
peripherals' should be given a chance to be serviced 
before the original peripheral i!,l serviced again. This is 
accomplished by automaticaliyassigning a peripheral 
the lowest priority after being serviced Th'us, in worst, 
case, the .device would have t6 wait until all other 
devices are serviced before being serviced again. , 

There are-. two methods of accomplishing automatic 
rotation. One is used in, conjunction with the non: 
specific EOI, "rotate on non-specific EOI command". 
The other is used with the automatic EOlmode, "rotate 
in automatic EOI mode". 

Rotate on Non-Specific EOI Command 

When the rotate on non-specific EOI command Is 
issued, the highest ISR bit' is reset a~ in a normal non­
specific EOI command. After it's reset though, the cor­
responding IR level is aSSigned lowest 'priority.OtherlR 
priorities rotate to conform to the fullY nested mode 
based 'on the newly assigned low priority' . , 

Figures 13A and B show how the rotate on non,specific 
EOI command effects the Interrupt priorities. Let's 
assume the IR priorities were assigned with IRO the 
highest and IR7 the lowest, as in 13A. IR6 and.IR4. are 
already in service but neither is completed. Being the 
higher' priority routine, IR4 is necessarily the. routine 
being executed. During the IR4 routine a rotate on non­
specific EOI command is executed. When this happens, 
bit 4 in the ISR is reset. IR4 then becomes the lowest 
priority and IR5 becomes,. the highest as in 13B. 

157 156 155 154 153 152 151 ISO 

A ISRpRSTIOARTIUTSy I 0 " 0 1 0 0" 0 0 1 BEFORE 
. 7 6 5 4' 3 2 1 0 _ COMMAND 

1 1 
LOWEST PRIORITY HIGHEST PRIORITY 

157 156 155 154 153 152 151 ISO 
ISR STATUS I 0 1 0 0 0 0 0 0 I AFTER 

PRIORITY 2 1 0 7 6 5 4 3 COMMAND 

, t tL-_-. r-- I 
HIGHEST PRIORITY LOWEST PRIORITY 

Figure 13. A-B. Rotate on Non-specific EOI Command'Example 

Rotate in Automatic EOI Mode 

The rotate in automatic EOI mode works much like the 
rotate on non-specific EOI command. The main differ­
ence is that priority'rotation is done automatically after 
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the last INTA pulse of an Interrupt request. To enter or 
exit this mode a rotate-in-automatic-EOI set command 
arid rotate-in-automatic-EOI clear command is provided_ 
After that, no commands are needed as with the normal 
automatic EOI mode_ However, it must be remembered, 
when using any form of the automatic EOI mode, spe­
cial consideration should be taken_ Thus, the guideline 
for the automatic EOI mode also stands for the rotate in 
automatic EOI mode_ 

Specific Rotation - Specific Priority 

Specific rotation gives the user versatile capabilities in 
Interrupt controlled operations. It serves in those ap­
plications in which a specific device's interrupt priority 
must be altered. As opposed to automatic rotation 
which automatically sets priorities, specific rotation is 
completely user controlled. That is, the user selects 
which interrupt level is to receive lowest or highest 
priority. This can be done during the main program or 
within interrupt routines. Two specific rotation com­
mands are available to the user, the "set priority com­
mand" and the "rotate on specific EOlcommand." 

Set Priority Command 

The set priority command allows the programmer to 
assign an IR level the lowest priority. All other interrupt 
levels will conform to the fully nested mode based on 
the newly assigned low priority. 

An example of how the set priority command works is 
shown in Figures 14A and 14B. These figures show the 
status of the ISR and the relative priorities of the inter­
rupt levels before and after the set priority command. 
Two interrupt routines are shown to be in service in 
Figure 14A. Since IR2 is the highest priority, it is 
necessarily the routine being executed. During the IR2 
routine, priorities are altered so that IR5 is the highest. 
This is done simply by issuing the set priority command 
to the 8259A. In this case, the command specifies IR4 as 
being the lowest priority. The result of this set priority 
command is shown in Figure 14B. Even though IR7 now 
has higher priority than IR2, it won't be acknowledged 
until the IR2 routine is finished (via EOI). This is because 
priorities are only resolved upon an interrupt request or 
an Interrupt acknowledge sequence. If a higher priority 
request occurs during the IR2 routine, then priorities are 
resolved and the highest will be acknowledged. 

157 156 155 154 153 152 151 150 
IsR STATUS I 1 0 0 0 0 1 0 0 I BEFORE 

A PRIORITY 7 6 5 4 3 2 1 0 COMMAND 

1 1 
LOWEST PRIORITY HIGHEST PRIORITY 

IsR STATUS 
PRIORITY 

157 156 155 154 153 152 151 150 

I ~ ~g ~ ~ . ~ ~ ±l C6'~~~~D 
~ 1'-----,1 

HIGHEST PRIORITY LOWEST PRIORITY 

Figure 14. A-B. Set Priority Command Example 

When completing a service routine in which the set 
priority command is used, the correct EOI must be 
issued. The .non-specific EOI command shouldn't be 
used in the same routine as a set priority command. 
This is because the non-specific EOI command resets 
the highest ISR bit, which, when using the set priority 
command, is not always the most recent routine in ser­
vice. The automatic EOI mode, on the other hand, can be 
used with the set priority command. This is because it 
automatically performs a non·specific EOI before the 
set priority command can be issued. The specific EOI 
command is the best bet in most cases when using the 
set priority command within a routine. By resetting the 
specific ISR bit of a routine being completed, confusion 
is eliminated. 

Rotate on Specific EOI Command 

The rotate on specific EOI command is literally a com­
bination of the set priority command and the specific 
EOI command. Like the set priority command, a speci­
fied IR level is assigned lowest priority. Like the specific 
EOI command, a specified level will be reset in the ISR. 
Thus the rotate on specific EOI command accomplishes 
both tasks in only one command. 

If it is not necessary to change I R priorities prior to the 
end olan interrupt routine, then this command is advan­
tageous. For an EOI command must be executed any­
way (unless in the automatic EOI mode), so why not do 
both at the same time? 

Interrupt Masking 

Disabling or enabling interrupts can be done by other 
means than just controlling the microprocessor's inter­
rupt request pin. The 8259A has an IMR (Interrupt Mask 
Register) which enhances interrupt control capabilities. 
Rather than all interrupts being disabled or enabled at 
the same time, the IMR allows individual IR masking. 
The IMHis an 8-bit register, bits 0-7 directly correspond 
to IRO-IR7. Any IR input can be masked by writing to the 
IMR and setting the appropriate bit. Likewise, any IR in­
put can be enabled by clearing the correct IMR bit. 

There are various uses for masking off individual IR in­
puts. One example is when a portion of a main routine 
wishes only to be interrupted by specific interrupts. 
Another might be disabling higher priority interrupts for 
a portion of a lower priority service routine. The possi­
bilities are many. 

When an interrupt occurs while its IMR bit is set, it isn't 
necessarily forgotten. For, as stated earlier, the IMR 
acts only on the output of the IRR. Even with an IR input 
masked it is still possible to set the IRR. Thus, when 
resetting an IMR, if its IRR bit is set it will then generate 
an interrupt. This is providing, of course, that other 
priority factors are taken into consideration and the IR 
request remains active. If the IR request is removed 
before the IMR is reset, no interrupt will be acknowl­
edged. 

Special Mask Mode 

In various cases, it may be desirable toenable interrupts 
of a lower priority than the routine in service. Or, in other 
words, allow lower priority devices to generate inter­
rupts. However, in the fully nested mode, all IR levels of 
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priority below the routine in service are inhibited. So 
what can be done to enable them? 

Well, one method could be using an EOI command 
before the actual completion of a routine in service. But 
beware, doing this may cause an "over nesting" prob­
lem, similar to in the automatic EOI mode. In addition, 
resetting an ISR bit is irreversible by software control, 
so lower priority IR levels could only be later disabled by 
setting the IMR. 

A much better solution is the special mask mode. Work­
ing in conjunction with the IMR, the special mask mode 
enables interrupts from all levels except the level in ser­
vice. This is done by masking the level that is in service 
and then issuing the special mask mode command. 
Once the special mask mode is set, it remains in effect 
until reset. 

Figure 15 shows how to enable lower priority interrupts 
by using the Special Mask Mode (SMM). Assume that 
IRO has highest priority when the main program is inter­
rupted by IR4. In the IR4 service routine an enable inter­
rupt instruction is executed. This only allows higher 
priority interrupt requests to interrupt IR4 in the normal 
fully nested mode. Further in the IR4 routine, bit 4 of the 
IMR is masked and the special mask mode is entered. 
Priority operation is no longer in the fully nested mode. 
All interrupt levels are enabled except for IR4. To leave 
the special mask mode, the sequen'ce is executed in 
reverse. 

MAIN PROGRAM 

EI OR STI 

IR4_ 

IR4 SERVICE 
ROUTINE 

EI OR STI 

MASK IR4 

SET SMM 

RESET SMM 

EOI 

IRO-3 ENABLED 
IR4-7 DISABLED 

IRO-3, 5-7 ENABLED 
IR4 DISABLED 

IRO-3 ENABLED 
IR4-7 DISABLED 

Figure 15_ Spacial Ma.k Made Example (MCS 80185™or MCS 8aiaa™) 

Precautions must be taken when exiting an interrupt 
service routine which has used the special mask mode. 
A non-specific EOI command can't be used when in the 
special mask mode. This is because a non-specific 
won't clear an ISR bit of an interrupt which is masked 
when in the special mask mode. In fact, the bit will ap­
pear invisible. If the special mask mode is cleared 
before an EOI command is issued a non-specific EOI 
command can be used. This could be the case in the ex­
ample shown in Figure 15, but, to avoid any confusion 
it's best to use the specific EOI whenever using the 
special mask mode. 

It must be remembered that the special mask mode ap­
plies to all masked levels when set. Take, for instance, 
IR1 interrupting IR4 in the previous example. If this hap­
pened while in the special mask mode, and the IR1 
routine masked itself, all interrupts would be enabled 
except IR1 and IR4 which are masked. 

3.3 INTERRUPT TRIGGERING 

There are two classical ways of sensing an active inter­
rupt request: a level sensitive input or an edge sensitive 
input. The 8259A gives the user the capability for either 
method with the edge triggered mode and the level trig­
gered mode. Selection of one of these interrupt trigger­
ing methods is done during the programmed initializa­
tion of the 8259A. 

,Level Triggered Mode 

When in the level triggered mode the 8259A will recog­
nize any active (high) level on an IR input as an interrupt 
request. If the IR input remains active after an EOI com­
mand has been issued (resetting its ISR bit), another in­
terrupt will be generated. This is providing of course, the 
processor INT pin is enabled. Unless repetitious inter­
rupt generation is desired, the IR input must be brought 
to an inactive state before an EOI command is issued in 
its service routine. However, it must not go inactive so 
soon that it disobeys the necessary timing require­
ments shown in Figure 16. Note that the request on the 
IR input must remain until after the falling edge of the 
first INTA pulse. If on any IR input, the request goes 
inactive before the first INTA pulse, the 8259A will 
respond as if IR7 was active. In any design in which 
there's a possibility of this happening, the IR7 default 
feature can be used as a safeguard. This can be accom­
plished by using the IR7 routine as a "clean-up routine" 
which might recheck the 8259A status or merely return 
program execution to its pre-interrupt location. 

Depending upon the particular design and application, 
the level triggered mode has a number of uses. For one, 
it provides for repetitious interrupt generation. This is 
useful in cases when a service routine needs to be con­
tinually executed until the interrupt request goes inac­
tive. Another possible advantage of the level triggered 
mode is it allows for "wire-OR'ed" interrupt requests. 
That is, a number of. interrupt requests using the same 
,IR input. This can't be done in the edge triggered mode, 
for if a device makes an interrupt request while the IR in­
put is high (from another request), its transition will be 
"shadowed". Thus the 8259A won't recognize further in­
terrupt requests because its IR input is already high. 
Note that when a "wire-OR'ed" scheme is used, the ac-
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Figure 16. IR Triggering Timl"g Requiremenls 

tual requesting device has to be determined by the soft· 
ware in the service routine. 

Caution should be taken when using the automatic EOI 
mode and the level triggered mode together. Since in 
the automatic EOI mode an EOI is automatically per­
formed at the end of the interrupt acknowledge se­
quence, if the processor enables interrupts while an IR 
input is still high, an interrupt will occur immediately. To 
avoid this situation interrupts should be kept disabled 
until the end of the service routine or until the IR input 
returns low. 

Edge Triggered Mode 

When in the edge triggered mode, the 8259A will only 
recognize interrupts if generated by an inactive (low) to 
active (high) transition on an IR input. The edge trig­
geredmode incorporates an edge lockout method of 
operation. This means that after the rising edge of an 
interrupt requ'est and the acknowledgement of the re­
quest, the positive level of the IR input won't generate 
further interrupts on this level. The user needn't worry 
about quickly removing the request after acknowledge~ 
ment in fear of generating further interrupts as might be 
the case in the level triggered mode. Before another in­
terrupt can be generated the IR input must return to the 
inactive state. 

Referring back to Figure 16, the timing requiremeriis for 
interrupt triggering is shown. Like the level triggered 
mode, in the edge triggered mode the request on the IR 
Input must remain active until after the falling edge of 
the firs't INTA pulse for that particular interrupt. Unlike 
the level triggered mode, though, after the interrupt 
request is acknowledged its IRR latch is disarmed. Only 
after the IR input goes Inactive will thE! IRR latch again 
become armed, making it ready to receive another inter­
rupt request (in the level triggered mode, the IRR latch is 
always armed). Because of the way the edge triggered 
mode functions, it is best to use a positive level with a 
negative pulse to trigger the IR requests. With this type 
of input, the trailing edge of the pulse ca:uses the inter­
rupt and the maintained positive level meets the neces­
sary timing requirements (remaining high until after the 
interrupt acknowledge occurs). Note that the IR7 default 

fea:ture mentioned in the "level triggered mode" section 
also works for the edge triggered mode. 

Depending upon the particular design and application, 
the edge triggered mode has various uses. Because of 
its edge ,lockout operation, it is best used in those 
applications where repetitious interrupt generation isn't 
desired. It is also very useful in systems where the inter­
rupt request is a pulse (this should be in the form of a 
negative pulse to the 8259A). Another possible advan­
tage is that it can be used with the automatic EOI mode 
without the cautions in the level triggered mode. Over­
all, in most cases, the edge triggered mode simplifies 
operation for the user, since the duration of the interrupt 
request at a positive level is not usually a factor. 

3.4 INTERRUPT STATUS 

By means of software control, the user can interrogate 
the status of the 8259A. This allows the reading of the 
internal interrupt registers, which may prove useful for 
interrupt control during service routines. It also pro­
vides for a modified status poll method of device moni­
toring, by using the, poll command. This makes the 
status of the internal IR inputs available to the user via 
software control. The poll command offers an alterna­
tive to the interrupt vector method, especially for those 
cases when more than 64 interrupts are needed. 

Reading Interrupt Registers 

The contents of each 8-bit interrupt register, IRR, ISR, 
and IMR, can be read to update the user's program on 
the present status of the 8259A. This can be a versatile 
tool in the decision making pr()cess of a service routlr)e, 
giving the user more control over interrupt operations. 
Before delving into the actual process of reading the 
registers, let's briefly review their general descriptions: 

IRR (Interrupt Specifies all interrupt levels re-
Request Register) questing service. 

ISR (In-Service Specifies all Interrupt levels 
Register) which are being serviced. 

IMR (Interrupt Specifies all Interrupt levels that 
Mask Register) , are masked. 
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To read the contents of the IRR or ISR, the user must 
first issue the appropriate read register command (read 
IRR or read ISR) to the 8259A. Then by applying a RD 
pulse to the 8259A (an INput instruction), the contents 
of the desired register can be acquired. There is no need 
to issue a read register command every time the IRR or 
ISR is to be read. Once a read register command is 
received by the 8259A, it "remembers" which register 
has been selected. Thus, all that is necessary to read 
the contents of the same register more than once is the 
RD pulse and the correct addressing (AO = 0, explained 
in "Programming the 8259A"). Upon initialization, the 
selection of registers defaults to the IRR. Some caution 
should be taken when using the read register command 
In a system that supports several levels of interrupts. If 
the higher priority routine causes an interrupt between 
the read register command and the actual input of the 
register contents, there's no guarantee that the same 
register will be selected when it returns. Thus it is best 
in such cases to disable interrupts during the operation. 

Reading the contents of the IMR is different than read­
ing the IRR or ISR. A read register command is not 
necessary when reading the IMR. This is because the 
IMR can be addressed directly for both reading and 
writing. Thus all that the 8259A requires for reading the 
IMR is a RD pulse and the correct addressing (AO= 1, 
explained in "Programming the 8259A"). 

Poll Command 

As mentioned towards the beginning of this application 
note, there are two methods of servicing peripherals: 
status polling and interrupt servicing. For most applica· 
tions the interrupt service method is best. This is 
because it requires the least amount of CPU time, thus 
increasing system throughput. However, for certain ap­
plications, the status poll method may be desirable. 

For this reason, the 8259A supports polling operations 
with the poll command. As opposed to the conventional 
method of polling, the poll command offers improved 
device servicing and increased throughput. Rather than 
having the processor poll each peripheral In order to 
find the actual device requiring service, the processor 
polls the 8259A. This allows the use of all the previously 
mentioned priority modes and commands. Additionally, 
both polled and interrupt methods can be used within 
the same program. 

To use the poll command the processor must firsthave 
its interrupt request pin disabled. Once the poll com­
mand is issued, the 8259A will treat the next (CS quali­
fied) RD pulse issued to it (an INput instruction) as an in­
terrupt acknowledge. It will then set the appropriate bit 
in the ISR, if there was an interrupt request, and enable a 
special word onto the data bus. This word shows 
whether an interrupt request has occurred and the 
highest priority level requesting service. Figure 17 
shows the contehts of the "poll word" which is read by 
the processor. Bits WO-W2 convey the binary code of 
the highest priority level requesting service. Bit I desig­
nates whether or not an interrupt request is present. If 
an interrupt request is present, bit I will equal 1. If there 
isn't an interrupt request at all, bit I will equal 0 and bits 
WO-W2 will be set to ones. Service to the requesting 
device is achieved by software decoding the poll word 
and branching to the appropriate service routine. Each 

time the 8259A is to be polled, the poll command must 
be written before reading the poll word. 

The poll command is useful in various situations. For in­
stance, it's a good alternative when memory is very 
limited, because an interrupt-vector table isn't needed. 
Another use for the poll command is when more than 64 
interrupt levels are needed (64 is the limit when cascad­
ing 8259's). The only limit of interrupts using the poll 
command is the number of 8259's that can be addressed 
in a particular system. Still another application of the 
poll command might be when the INT or INTA signals 
are not available. This might be the case in a large 
system where a processor on one card needs to use an 
8259A on a different card. In this instance, the poll com· 
mand is the only way to monitor the interrupt devices 
and still take advantage of the 8259A's prioritizing 
features. For those cases when the 8259A is using the 
poll command only and not the interrupt method, each 
8259A must receive an initialization sequence (interrupt 
vector). This must be done even though the interrupt 
vector features of the 8259A are not used. In this case, 
the interrupt vector specified in the initialization 
sequence could be a "fake". 

r::!----W2W1WO 

, WO·W2 = BINARY CODE OF HIGHEST 
PRIORITY LEVEL REQUESTING ,SERVICE 

1=1 IF AN INTERRUPT OCCURRED. 

Figure 17. Poll Word 

3.5 INTERRUPT CASCADING 

As mentioned earlier, more than one 8259A can be used 
to expand the priority interrupt scheme to up to 64 levels 
without additional hardware. This method for expanded 
interrupt capability is called "cascading". The 8259A 
supports cascading operations with the cascade mode. 
Additionally, the special fully nested mode and the buf­
fered mode are available for increased flexibility when 
cascading 8259A's in certain applications. 

Cascade Mode 

When programmed in the cascade mode, basic opera­
tion consists of one 8259A acting as a master to the 
others which are serving as slaves. Figure 18 shows a 
system containing a master and two slaves, providing a 
total of 22 interrupt levels. 

A specific hardware set·up is required to establish 
operation in the cascade mode. With Figure 18 as a ref­
erence, note that the master is designated by a high on 
the SP/EN pin, while the SP/EN pins of the slaves are 
grounded (this can also be done by software, see buf­
fered mode). Additionally, the INT output pin of each 
slave is connected to an IR input pin of the master. The 
CASO-2pins for all 8259A's are paralleled. These pins 
act as outputs when the 8259A is a master and as Inputs 
for the slaves. Serving as a private 8259A bus, they con­
trol which slave has control of the system bus for inter­
rupt vectoring operation with the processor. All other 
pins are connected as in normal operation (each 8259A 
receives an INTA pulse). 
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Figure 18. Cascaded 8259A'S 22 Interrupt Levels 

Besides hardware set·up requirements, all 8259A's must 
be software programmed to work in the cascade mode. 
Programming the cascade mode is done during the in· 
itialization of each 8259A. The 8259A that is selected as 
master must receive specification during its initializa· 
tion as to which of its IR inputs are connected to a 
slave's INT pin. Each slave 8259A, on the other hand, 
must be designated during its initialization with an 10 (0 
through 7) corresponding to which of the master's IR in· 
puts its INT pin is connected to; This is all necessary so 
the CASO-2 pins of the masters will be able to address 
each individual slave. Note that as in normal operation, 
each 8259A must also be initialized to give its IR inputs 
a unique interrupt vector. More detail on the necessary 
programming of the cascade mode is explained in "Pro· 
gramming the 8259A". 

Now, with background information on both hardware 
and software for the cascade mode, let's go over the 
sequence of events that occur during a valid interrupt 
request from a slave. Suppose a slave IR input has 
received an interrupt request. Assuming this request is 
higher priority than other requests and in·service levels 
on the slave, the slave's INT pin is driven high. This 
signals the master of the request by causing an inter· 
rupt request on a designated I R pin of the master. Again, 
assuming that this request to the master is higher priori· 
ty than other master requests and in·service levels 
(possibly from other slaves), the master's INT pin is 
pulled high, interrupting the processor. 

The interrupt acknowledge sequence appears to the 
processor the same as the non·cascading interrupt 
acknowledge sequence; however, it's different among 
the 8259A's. The first INTA pulse is used by all the 
8259A's for internal set·up purposes and, if in the 
8080/8085 mode, the master will place the CALL opcode 
on the data bus. The first INTA pulse also signals the 
master to place the requesting slave's 10 code on the 
CAS lines. This turns control over to the slave for the 
rest of the interrupt acknowledge sequence, placing the 
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appropriate pre·programmed interrupt vector on the 
data bus, completing the interrupt request. 

During the interrupt acknowledge sequence, the cor· 
responding ISR bit of both the master and the slave get 
set. This means two EOI commands must be issued (if 
noUn the automatic EOI mode), one for the master and 
one for the slave. 

Special consideration should be taken when .mixed 
interrupt requests are assigned to a master 8259A; that 
is, when some of the master's IR inputs are used for 
slave interrupt requests and some are used for individ­
ual interrupt requests. In this type of structure, the 
master's IRa must not be used for a slave. This is 
because when an IR input that isn't initialized as a slave 
receives an interrupt request, the CASO-21ines won't be 
activated, thus staying in the default condition address· 
ing for IRa (slave IRa). If a slave is connected to the 
master's IRa when a non·slave interrupt occurs on 
another master IR input, erroneous. conditions may 
result. Thus IRa should be the last ch6icewhen assign­
ing slaves to IR inputs. 

Special Fully Nested Mode 

Depending on the application, changes in the nested 
structure of the cascade mode may be desired. This is 
because the nested structure of a slave 8259A differs 
from that of the normal fully nested mode. In the cas­
cade n)ode, if a slave receives a higher priority interrupt 
request than one which is in service (through the same 
slave), it won't be recognized by the master. This is 
because the master's ISR.bit is set, ignoring all requests 
of equal or lower priority. Thus, in this case, the higher 
priority slave interrupt won't be serviced until after the 
master's ISR bit is reset by an .EOI command. This. is 
most likely after the completion of the lower priority 
routine. . . . 

If the user wishes to have a truly fully nested structure 
within a slave 8259A, the special fully nested mode 
should be used. The special fully nested mode is pro-
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grammed in the master only. This is done during the 
master's initialization. In this mode the master will 
ignore only those interrupt requests of lower priority 
than the set ISR bit and will respond to all requests of 
equal or higher priority. Thus if a slave receives a higher 
priority request than one in service, it will be recognized. 
To insure proper interrupt operation when using the 
special fully nested mode, the software must determine 
if any other slave interrupts are still in service before 
issuing an EOI command to the master. This is done by 
resetting the appropriate slave ISR bit with an EOI and 
then reading its ISA. If the ISR contains all zeros, there 
aren't any other interrupts from the slave in service and 
an EOI command can be sent to the master. If the ISR 
isn't all zeros, an EOI command shouldn't be sent to the 
master. Clearing the master's ISR bit with an EOI com­
mand while there are still slave interrupts in service 
would allow lower priority interrupts to be recognized at 
the master. An example of this process is shown in the 
second application in the "Applications Examples" sec­
tion. 

Buffered Mode 

The buffered mode is useful in large systems where buf­
fering is required on the data bus. Although not limited 
to only 8259A cascading, it's most pertinent in this use. 
In the buffered mode, wh'enever the 8259A's data bus 
output is enabled, its SP/EN pin will go low. This signal 
can be used to enable data transfer through a buffer 
transceiver in the required direction. 

Figure 19 shows a conceptual diagram of three 8259A's 
in cascade, each slave is controlling an individual 8286 
8-blt bidirectional bus driver by means of the buffered 
mode. Note the pull-up on the SP/EN. It is used to 
enable data transfer to the 8259A for its initial program­
ming. When data transfer is to go from the 8259A to the 
processor, SP/EN will go low; otherwise, it will be high. 

A question should arise, however, from the fact that the 
SP/EN pin is used to designate a master from a slave; 

how can it be used for both master·slave selection and 
buffer control? The answer to this is the provision for 
software programmable master-slave selection when in 
the buffer mode. The buffered mode is selected during 
each 8259A's initialization. At the same time, the user 
can assign each individual 8259A as a master or slave 
(see "Programming the 8259A"). 

4_ PROGRAMMING THE 8259A 

Programming the 8259A is accomplished by uslng,two 
types of command words: Initialization Command 
Words (lCWs) and Operational Command Words 
(OCWs). All the modes and commands explained in the 
previous section, "Operation of the 8259A", are pro­
grammable using the ICWs and OCWs (see Appendix A 
for cross reference). The ICWs are issued from theproc­
essor in a sequential format and are used to set-up the 
8259A in an initial state of operation. The OCWs are 
issued as needed to vary and control 8259Aoperation. 

Both ICWs and OCWs are sent by the processor to the 
8259A via the data bus (8259A' CS = 0, WR = 0). The 
8259A distinguishes between the different ICWs and 
OCWs by the state of its AO pin (controlled by processor 
addressing), the sequence they're issued in (ICWs only), 
and some dedicated bits among the ICWs and OCWs. 
Those bits which are dedicated are indicated sd by fixed 
values (0 or 1) in the corresponding ICW or OCW pro­
gramming formats which are covered shorily. Note, 
when issuing either ICWs or oews, the interrupt 
request pin of the processor should be disabled: 

4.1 INITIALIZATION COMMAND WORDS (ICWs) 

Before normal operation can begin, each 8259A In a 
system must be initialized by a sequence of two to four 
programming bytes called ICWs (Initialization Com­
mand Words). The ICWs are used to set-up the neces­
sary conditions ahd modes for proper 8259A operation. 

DTIR 

I----DEN 

MASTER 
8259A INT INTR 

Figure 19. Cascade· Buffered Mode Example 
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Figure 20 shows the initialization flow of ttie 8259A. 
Both ICW1 a:nd ICW2 must be issued for any form of 
8259A' operation. However, ICW3 and ICW4 are used 
only if designated soinICW~. Determining the neces­
sity and' use of each ICW is covered shortly in individual 
groupings; Note that,once intialized, if any program· 
ming changes within the rcws are to be made, the entire 
ICW sequence must be reprogrammed, not just an indio 
viduallCW. 

Certain internal set-up condition's occut automatically 
within the 8259A after the first ICW has been issued, 
These are: 

A. Sequencer logic is set t6 acceplthe remain'ng ICWs 
as designated in ICW1. . 

B. ThelSR (In-Service,Register) and IMR (Interrupt Mask 
, Register) are both cleared., 

C.The special mask mode is reset. 

D .. The, rotat~. in automatic EOI.mode flip-flop is cleared. 

E. The IRR (Interrupt Request Register) is selected for 
the, read ~egistercbmmand. ' . 

F. If the IC4 bit equals.O in ICW1, all functions in ICW4 
are cleared; 8080/8085 mode is selected by default. 

G .. The hilly n'ested mode is entered with an initial prior: 
ity aSSignment of IRO highest through IR7 lowest. 

H. T~e edges'ense I~ich of. each IR priority cell is 
cleared, thus' requiring a iow i6 high transition to 
generatEl·aninterrupt (edge ~riggered mode effected 
only). ' 

NO,(IC4=O) 

Figure 20. Initialization Flow 

The ICW programming format, Figure 21 ,.shows ,bit 
designation and a short.definition of each ICW. With the 
ICW format as reference, the functions of each ICW will 
now be explained individually. 

lewl 

A,S ASOf INlERRUPT VECT~R 

'--"--'--'--'-'-'--'---'--'----1 ~~DR~Sg~~~~:~·:~~~~!~E·; . 
IMCS8688MOO[.J. ' 

ICW31MASTIER DEVICEt 

" SlAVJ 10" 

.. J 4 !t 61 

0' 0 1 

00 10011 

00 01 

NOlI 1 SLAV! 10 IS lOUAl TO lilt COlll!!SP(lNDINti MASTllIllIlNl'lJI 
NOTr "IX INlll(;f\IIS"OON'TCf\1l1 . 

SOME OF THE TERMINOLOGY USED MAY DIFFER SLIGHTLY FROM EXISTING 8259A 
DATA SHEETS. THIS IS DONE TO BETTER CLARIFY AND EXPLAIN THE PROGRAM. 
MING «;)f TH.E .~2~9A. THE OPERATIONAL RESULTS REMAIN THE SAME. 

Figure 21. Initialization Command Words (ICWS) Programming Format 
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ICW1 and ICW2 

Issuing ICWl and ICW2 is the minimum amount of pro· 
gramming needed for any type of 8259A operation. The 
majority of bits within these two ICWs are used to desig· 
nate the interrupt vector starting address. The remain· 
ing bits serve various purposes. Description oflhe ICWl 
and ICW2 bits is as follows: 

IC4: The IC4 bit is used to designate to the 8259A 
whether or not ICW4 will be issued. If any of 
the ICW4 operations are to be used, ICW4 
must equal 1. If they aren't used, then ICW4 
needn't be issued and IC4 can equal O. Note 
that if IC4 = 0, the 8259A will assume operation 
in. the MCS·80/85 mode. 

SNGL: . The SNGL bit is used to designate whether or 
not the 8259A is to be used alone or in the cas· 
cade mode. If the cascade mode is desired, 

. SNGL must equal O. In doing this, the 8259A 
will accept ICW3 for further cascade mode pro· 
gramming. If the 8259A is to be used as the 
single 8259A within a system, the SNGL bit 
must equal 1; ICW3 won't be accepted. 

ADI: The ADI bit is used to specify the address in· 
terval for the MCS·80/85 mode. If a 4·byte ad· 
dress interval is to be used, ADI must equal 1. 
For an 8·byte address interval, ADI must equal 
O. The state of AOI is ignored when the 8259A 
is in the MCS·86/88 mode. 

LTIM: The LTIM bit is used to select between the two 
IR input triggering modes. If LTIM = 1, the level 
triggered mode is selected. If LTIM = 0, the 
edge triggered mode is selected. 

A5-A15: The A5-A15 bits are used to select the inter· 
rupt vector address when in the MCS·80/85 
mode. There are two programming formats 
that can be used to do this. Which one is im· 
plemented depends upon th'eselected address 
interval (AD I}. If ADI is set for the 4·byte inter· 
val, then the 8259A will automatically insert 
AO-A4 (AO, A 1 = a and A2, A3, A4 = I RO-7). 
Thus A5-A15 must be user selected by pro· 
gramming the A5-A 15 bits with the desired ad· 
dress. If AOI is set for the 8·byte interval, then 
AO-A5 are automatically inserted (AO, Al, 
A2 = a and A3, A4, A5 = IRO-7). This leaves 
A6-A15 to be selected by programming the 
A6-A15 bits with the desired address. The 
state of bit 5 is ignored in the latter format. 

T3-T7: The T3-T7 bits are used to select the interrupt 
type when the MCS·86/88 mode is used. The 
programming of T3-T7 selects the upper 5 
bits. The lower 3 bits are automatically in· 
serted, corresponding to the IR level causing 
the interrupt. The state of bits A5-A10 will be 
ignored when in the MCS·86/88 mode. Estab· 
lishing the actual memory address of the inter· 
rupt is shown in Figure 22. 

I T,j "I T, I T, I T, I 
I I 

_UPPER 5 BITS OF 808618088 
INTERRUPT TYPE (USER PROGRAMMED) 

I I 
I I 

I .~ - iA~~~~!~;AI~L ~~~;~~TED BY 8259A) 
I 
I 

I I 
I rd lsi T~! T41 T~ I T21 TIl Tol -:-- COMPLETE 808618088 IN:ERRUPT TYPE 

I I 
r---.J ,_--1 

10 lot 0 10 I 171Tsl T51 T41 T31 h I TIl Tot 0 t 0 1_ :!~~~~~p~DT~~~S(~~:E8~~~/8068 

Figure 22. Establishing Memory Address of 808618088 Interrupt Type 

ICW3 

The 8259A will only accept ICW3 if programmed in the 
cascade mode (ICW1, SNGL= 0). ICW3 is used for 
specific programming within the cascade mode. Bit 
definition of ICW3 differs depending on whether the 
8259A is a master or a slave. Definition of the ICW3 bits 
is as follows: 

SO-7 If the 8259A is a master (either when the 
(Master): SP/EN pin is tied high or in the buffered 

mode when MIS = 1 in ICW4), ICW3 bit defi· 
nition is SO-7, corresponding to "slave 0-7". 
These bits are used to establish which IR in· 
puts have slaves connected to them. Al 
designates a slave, a a no slave. For exam· 
pie, if a slave was connected to IR3, the S3 
bit should be set to a 1. (SO) should be .last' 
choice for slave designation. 

100-102 If the 8259A is a slave (either when the SP/EN 
(Slave): pin is low or in the buffered mode when 

MIS = a in ICW4), ICW3 bit definition is used 
to establish its individual identity. The 10 
code of a particular slave must correspond 
to the number of the masters IR input it is 
connected to. For example, if a slave was 
connected to IR6 of the master, the slaves 
100-2 bits should be set to 100=0,101 =1, 
and 102= 1. 

ICW4 

The 8259A will only accept ICW4 if it was selected in 
ICWl (bit IC4= 1). Various modes are offered by using 
ICW4. Bit definition of ICW4 is as follows: 

f'PM: The f'PM bit allows for selection of either the 
MCS·80/85 or MCS·86/88 mode. If set as a 1 the 
MGS·86/88 mode is selected, if a 0, the 
MCS·80/85 mode is selected. 

AEOI: The AEOI bit is used to select the automatic 
end of interrupt mode. If AEOI = 1, the 
automatic end of interrupt mode is selected. If 
AEOI = 0; it isn't selected; thus an EOI com· 
mand must be used during a service routine. 

MIS: The MIS bit is used in conjunction with the buf· 
fered mode. If in the buffered mode, MIS. 
defines whether the 8259A is a master or a 
slave. When MIS is set to a 1, the 8259A 
operates as the master; when MIS is 0, it 
operates as a slave. If not programmed in the 
buffered mode, the state of the MIS bit is 
ignored. 
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BUF: The BUF bit is used to designate operation in 
the bu'tfered mode, thus controlling the use of 
the SP/EN pin. If BUF is set to a 1, the buffered 
mode is programmed and SP/EN is used as a 
transceiver enable output. If BUF is 0, the buf· 
fered mode isn't programmed and SP/EN is 
used for master/slave selection. Note if leW4 
isn't programmed; SP/EN is used for master/ 
slave selection. 

SFNM: The SFNM bit designates selection of the 
special fully nested mode which is used in 
conjunction with the cascade mode: Only the 
master should be programmed in the special 
fully nested mode to assure a truly fully nested 
structure among the slave IR inputs. If SFNM 
is set to a 1, the special fully nested mode is 
selected; if SFNM is 0, it is not selected. 

4.2 OPERATIONAL COMMAND WORD (OCWs) 

Once initialized by the leWs, the 8259A will most likely 
be operating in the fully nested mode. At this point, 
operation can be further controlled or.modlfied by the 
use ofOeWs (Operation Command Words). Three 
oews are available for programming various modes and 
commands. Unlike the leWs, the oews needn't be in 
any type of sequential order. Rather, they are issued by 
the processor as needed within a program. 

Figure 23, the oew prograniming format, shows the bit 
designation and short definition of each oew. With the 
oew format as reference, the functions of each oew 
will be explained individually. 

OCW1 

OeW1 is used solely for 8259A masking operations. It 
provides a direct link to the IMR (Interrupt Mask Regis· 
ter). The processor can write to or read from the IMR via 
OeW1. The OeW1 bit definition Is as fqllows: 

MO-M7: The MO-M7 bits are used to control the mask· 
ing of IR inputs. If an M bit is set to a 1, it will 
mask the corresponding IR inpul..A 0 clears 
the mask, thus enabling the IR input. These. 
bits convey the same meaning when being 
read by the processor for status update .. 

OCW2 

OeW2 is used for end of interrupt,automatic rotation, 
and specific rotation operations. Associated commands 
and modes of these operations (with the exception of 
AEOI Initialization), are selected using the bits of oeW2 
in a combined fashion. Selection of· a command or 
mode should be made with the corresponding table for 
OeW2 in the oew programming format (Figure 20), 
rather than on a bit by bit basis. However, ·for com· 
pleteness of explanation, bit definition of OeW2 is as 
follows: 

LO-L2: The LO-L2 bits are·used to designate an inter· 
rupt level (O ... 7) to be acted upon for the opera· 
tion selected by the EOI, SL, and R bits of 
OeW2. The level designated will either be 
used to reset a specific ISR bit or to set a 
specific priority. The LO-L2 bits are enabled or 
disabled by the SL bit. 

I' 'I" I" 1'1'1 c, I c. I c·1 

I I 

, , , 
, 0 0 

I L I~LEVElTOBEACTEDUPON 

o I 2 3 • ~ (I 7 

~OII1'I0101 
001 100 I I 

0000 1.1 I I 

NON·speCIFIC eOI COMMANO 

'SPECIFIC EDt COMMANO 
} END OF INTERRUPT 

ROTATE ON NON sPECifiC EOI COMMAND } 

:~~:;::: :~i::;:~ :~: :~~: :~~~~RI AUTOMATIC ROTATION 

'ROTATE ON SPECIFIC eOI COMMAND 

1 0 "SET PRIORITY COMMAND } SPECIFIC ROTATIO~. 
, 0 

I 0 I ' 1,,··1 .. ·1 • I ' I • I " I '" 

I 1~ __ ~~'~"_O~"~"_"r"_CO;._.A1NO~~ 
r-;.-t--j----l 

READ RUD 
. NO IAR(G 'SREG 

ACTION ONNE'IT ON NEill 
ROPULSE ROPULSE 

1 • POLL COMMAND 
O' NO POLL COMMAND . I 

RUET iliOn 
SPECIAL SPfCIAl 

NOTe 1: )( INDICATES "DON'Y CARE" MASK MASK 

SOME OF THE TERMINOLOGY USED MAY DIFFER SLIGHTLY FROM EXISTING 82SIA 
DATA SHEETS. THIS IS DONE TO BETTER CLARIF"f AND EXPLAIN THE PROGRAM· 
MING OF THE 82S9A, THE OPERATIONAL RESULTS REMAIN THE SAME. 

Figura 23. Operational Command Words (OCWs) Programming Format 

EOI: 

SL: 

R: 

A ... 156 

The EOI bit is used for all end of interrupt com· 
mands (not automatic end of interrupt mode). 
If set 10'a 1, a form of an end of interrupt com· 
mand will be executed depending on the state 
of the SL and R bits. If EOI is 0, an end of Inter· 
rupt command won't be executed. 

The SL bit is used to select a specific level for 
a given operation. If SL is set to a 1, the LO-L2 

. bits are enabled. The operation selected by the 
EOI and R bits will be executed on the 
specified interrupt level. If SL is 0, the LO-L2 
bits are disabled. 

The R bit is used to control all 8259A rotation 
operations. If the R bit is set to a .1; a form of 
priority rotation will be executed depending on 
the state of SL and EOI bits. IfR isO, rotation 
won't be executed. 
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OCW3 

OCW3 is used to issue various modes and commands to 
the 8259A. There are two main categories of operation 
associated with OCW3: interrupt status and interrupt 
masking. Bit definition of OCW3 is as follows: 

RIS: The RIS bit is used to select the ISR or IRR for 
the read register command. If RIS is set to 1, 
ISR is selected. If RIS is 0, IRR is selected. The 
state of the RIS is only honored if the RR bit is 
a 1. 

RR: The RR bit is used to execute the read register 
command. If RR is set to a 1, the read register 
command is issued and the state of RIS deter· 
mines the register to be read. If RR is 0, the 
read register command isn't issued. 

P: The P bit is used to issue the poll command. If 
P is set to a 1, the poll command is issued. If it 
is 0, the poll command isn't issued. The poll 
command will override a read register com· 
mand if set simultaneously. 

SMM: The SMM bit is used to set the special mask 
mode. If SMM is set to a 1, the special mask 
mode is selected. If it is 0, it is not selected. 
The state of the SMM bit is only honored if it is 
enabled by the ESMM bit. 

ESMM: The ESMM bit is used to enable or disable the 
effect of the SMM bit. If ESMM is set to a 1, 
SMM is enabled. If ESMM is 0, SMM is dis­
abled. This bit is useful to prevent interference 
of mode and command selections in OCW3. 

5. APPLICATION EXAMPLES 

In this section, the 8259A is shown in three different ap­
plication examples. The first is an actual design imple­
mentation supporting an 8080A microprocessor system, 
"Power Fail/Auto Start with Battery Back-Up RAM". The 
second is a conceptual example of incorporating more 
than 64 interrupt levels in an 8080A or 8085A system, 
"78 Level Interrupt System". The third application is a 
conceptual design using an 8086 system, "Timer Con­
trolled Interrupts". Although specific microprocessor 
systems are used in each example, these applications 
can be applied to either MCS-80, MCS-85, MCS-86, or 
MCS-88 systems, providing the necessary hardware and 
software changes are made. Overall, these applications 
should serve as a useful guide, illustrating the various 
procedures in using the 8259A. 

5_1 POWER FAIL/AUTO-START WITH BATTERY 
BACK-UP RAM 

The first application illustrates the 8259A used in an 
8080A system, supporting a battery back-up scheme for 
the RAM (Random Access Memory) in a microcomputer 
system. Such a scheme is important in numerical and 
process control applications. The entire microcomputer 
system could be supported by a battery back-up 
scheme, however, due to the large amount of current 
usually required and the fact that most machinery is not 
supported by an auxiliary power source, only the state 
of calculations and variables usually need to be saved. 
I n the event of a loss of power, if these items are not 
already stored in RAM, they can be transferred there and 
saved using a simple battery back-up system. 

The vehicle used in this application is the Intel® 
SBC-80/20 Single Board Computer. An 8259A is used in 
the SBC-80/20 along with control lines helpful in imple­
menting the power-down and automatic restart se­
quence used in a battery back-up system. The SBC-80/20 
also contains user·selectable jumpers which allow the 
on-board RAM to be powered by a supply separate from 
the supply used for the non-RAM components. Also, the 
output of an undedicated latch is available to be con­
nected to the IR inputs of the 8259A (the latch is cleared 
via an output port). In addition, an undedicated, buffered 
input line is provided, along with an input to the RAM 
decoder that will protect memory when asserted. 

The additional circuitry to be described was con­
structed on an SBC-905 prototyping board. An SBC·635 
power supply was used to power the non-RAM section 
of the SBC-80/20 while an external DC supply was used 
to simulate the back-up battery supplying power to the 
RAM. The SBC-635 was used since it provides an open 
collector ACLO output which indicates that the AC 
input line voltage is below 103/206 VAC (RMS). 

The following is an example of a power-down and restart 
sequence that introduces the various power fail signals. 

1. An AC power failure occurs and the ACLO goes high 
(ACLO is pulled up by the battery supply). This indi­
cates that DC power will be reliable for at most 7.5 
ms. The power fail circutry generates a Power Fail In­
terrupt (PFI) signal. This signal sets the PFI latch, 
which is connected to the IRa input of the 8259A, and 
sets the Power Fail Sense (PFS) latch. The state of 
this latch will indicate to the processor, upon reset, 
whether it is coming up from a power failure (warm 
start) or if it is coming up initially (cold start). 

2. The processor is interrupted by the 8259A when the 
PFI latch is set. This pushes the pre-power-down pro­
gram counter onto the stack and calls the service 
routine for the IRa input. The IRa service routine 
saves the processor status and any other needed 
variables. The routine should end with a HALT 
instruction to minimize bus transitions. 

3. After a predetermined length of time (5 ms in this ex­
ample) the power fail circuitry generates a Memory 
Protect (MPRO) signal. All processing for the power 
failure (including the interrupt response delays) must 
be completed within this 5 ms window. The MPRO 
signal ensures that spurious transitions on the sys­
tem control bus caused by power goi ng down do not 
alter the contents of the RAM. 

4. DC power goes down. 

5. AC power returns. The power-on reset circuitry on the 
SBC-80/20 generates a system RESET. 

6. The processor reads the state of the PFS line to 
determine the appropriate start-up sequence. The 
PFS latch is cleared, the MPRO signal is removed, 
and the PFI latch driving IRa is cleared by the Power 
Fail Sense Reset (PFSR) signal. The system then con­
tinues from the pre-power-down location for a warm 
start by restoring the processor status and popping 
the pre-power-down program counter off the stack. 

Figure 24 illustrates this timing. 
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POWER DOWN RESTART 

ACLO 
\1....-___ _ 

~--------~~--~/ 
IRO 

PFSR -"----'-t-----------\\-------""' 

MPRO ---+---..... 

DC--~~----~ 

'-----' r---1 
POWER UP 

ROUTINE 

Figure 24. Power Down Restart Timing 

Figure 25 shows the block diagram for the system. 
Notice that the RAM, the RAM decoder, and the power­
down circuitry are powered by the battery supply. 

The schematic of the power-down circuit~y and the 
SBC-80/20 interface is shown in Figure 26. The design is 
very straightforward and uses CMOS logic to minimize 
the battery current requirements. The cold start switch 
is necessary to ensure that during a cold start, the PFS 
line is indicating "cold start"sense (PFS high). Thus, for 

a cold start, the cold start swltch'is depressed during 
power on. After that, no further action is needed. Notice 
that the PFI signal sets the on-boa~d PFllatch. The out­
put of this latch drives the 8259A IRO input. This latch is 
cleared during the restart routine by executing an OUT­
put D4H instruction. The state of the PFS line may be 
read on the least significant data bus line (DBO) by exe­
cuting an INput D4H instruction. An 8255 port (8255 #1, 
port C, bit 0) is used to control the PFSR line. 

BATTERY SUPPLY 

COLD 
..r-START 

CONTROLBUS-i-+~--+_-~_f~--+_~~~~~~--~~_+--~ 
DATABUS-i-4---+_--~-4------+_--~~~~~------~_+----~ 

ADDRESSBUS~~------~--~~------~~--------~--------~-----~ 

Figure 25. Block Diagram 01 SBC 80/20 with Power Down Circuit 
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£1259 
IRO 

'" LATCH 
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Al MC14049 A2 MC14013 A3 MC14528 

Figure 26. Power Down Circuit - SBC 80/20 Interface 

The fully nested mode for the 8259A is used in its initial 
state to ensure the IRO always has the highest priority. 
The remaining IR inputs can be used for any other pur­
pose in the system. The only constraint is that the ser­
vice routines must enable interrupts as early as possi­
ble. Obviously, this is to ensure that the power-down in­
terrupt does not have to wait for service. If a rotating 
priority scheme is desired, another 8259A could be 
added as a slave and be programmed to operate in a 
rotating mode. The master would remain in the initial 
state of the fully nested mode so that the IRO still re­
mains the highest priority input. 

The software to support the power-down circuitry is 
shown in Figure 27. The flow for each label will be 
discussed. 

After any system reset, the processor starts execution 
at location OOOOH (START). The PFS status is read and 
execution is transferred to CSTART if PFS indicates a 
cold start (Le., someone is depressing the cold start 
switch) or WSTART if a warm start is indicated (PFS 
LOW). CSTART is the start of the user's program. The 
Stack Pointers (SP) and device initialization were in­
cluded just to remind the reader that these must occur. 
The first EI instruction must appear after the 8259A has 
received its initialization sequence. The 8259A (and 
other devices) are initialized in the INIT subroutine. 

When a power failure occurs, execution is vectored by 
the 8259A to REGSAV by way of the jump table at 
JSTART. The pre-power-down program counter is placed 
on the stack. REGSAV saves the processor registers 
and flags in the usual manner by pushing them onto the 
stack. Other items, such as output port status, program-

mabie peripheral states, etc., are pushed onto the stack 
at this time. The Stack Pointer (SP) could be pushed on­
to the stack by way of the register pair HL but the top of 
the stack can exist anywhere in memory and there is no 
way then of knowing where that is when in the power-up 
routine. Thus, the SP is saved at a dedicated location in 
RAM. It isn't really necessary to send an EOI command 
to the 8259A in REGSAV since power will be removed 
from the 8259A, but one is included for completeness. 
The final instruction before actually losing power is a 
HALT. This minimizes somewhat spurious transitions 
on the various busses and lets the processor die 
gracefully. 

On reset, when a warm start is detected, execution is 
transferred to WSTART. WSTART activates PFSR by 
way of the 8255 (all outputs go low then the 8255 is ini­
tialized). In the power-down circuitry, PFSR clears the 
PFS latch and removes the MPRO signal which then 
allows access to the RAM. WSTART also clears the PFI 
latch which arms the 8259A IRO input. Then the 8259A is 
re-initialized along with any other devices. The SP is 
retrieved from RAM and the processor registers and 
flags are restored by popping them off the stack. Inter­
rupts are then enabled. Now the power-down program 
counter is on top of the stack, so executing a RETurn in­
struction transfers the processor to exactly where it left 
off before the power failure. 

Aside from illustrating the usefulness of the 8259A (and 
the SBC-80120) in implementing a power failure pro­
tected microcomputer system, this application should 
also point out a way of preserving the processor status 
when using interrupts. 
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Figure 27. Power Down and Restart Software 

5.2 78 LEVEL INTERRUPT SYSTEM 

The second application illustrates an interrupt structure 
with greater than 64 levels for an 8080A or 8085A sys· 
tem, In the cascade mode, the 8259A supports up to 64 
levels with direct vectoring to the service routine, Ex· 
tending the structure to greater than 64 levels requires 
polling, using the poll command. A 78 level interrupt 
structure is used as an illustration; however, the prin· 
ciples apply' to systems with up to 512 levels, 

To implement the 78 level structure, 3 tiers of 8259A's 
are used, Nine 8259A's are cascaded in the master·slave 
scheme, giving 64 levels at tier 2, Two additional 
8259A's are connected, by way of the INT outputs, to 
two of the 64 inputs, The 16 inputs at tier 3, combined 
with the 62 remaining tier 2 inputs, give 78 total leyels, 
The fully nested structure is preserved over all levels, 
although direct vectoring is supplied for only the tier 2 
inputs, Software is required to vector any tier 3 reo 
quests, Figure 28 shows the tiered structure used in this 
example, Notice that the tier 3 8259A's are connected to 
the bottom level slave (SA7). The master·slaves are inter· 
connected as shown in "Interrupt Cascading", while the 
tier 3 8259A's are connected as "masters"; that is, the 
SPIEN pins are pulled high and the CAS pins are left un· 
connected, Since these 8259A~s are only going to be 
used with the poll command, no INTA is required, there· 
fore the INTA pins are pulled high, 
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The concept used to implement the 78 levels is to 
directly vector to all tier 2 input service routines. If a tier 
2 input contains a tier 3 8259A, the service routine for 
that input will poll the tier 3 8259A and branch to the tier 
3 input service routine based on the poll word read after 
the poll command. Figure 29 shows how the jump table 
is organized assuming a starting location of 1000H and 
contiguous tables for all the tier 2 8259A's. Note that 
"SA35" denotes the IR5 input of the slave connected to 
the master IR3 input. Also note that for the normal tier 2 
inputs, the jump table vectors the processor directly to 
the service routine for that input, while for the tier 2 in· 
puts with 8259A's connected to their IR inputs, the proc· 
essor is vectored to a service routine (i.e., S80) which 
will poll to determine the actual tier 3 input requesting 
service. The polling routine utilizes the jump table start· 
ing at 1200H to vector the processor to the correct tier 3 
service routine. 

Each 8259A must receive an Initialization sequence 
regardless of the mode. Since the tier 1 and 2 8259A's 
are in cascade and the special fully nested mode is used 
(covered shortly), all ICWs are required. The tier 3 
8259A's don't require ICW3 or ICW4 since only polling 
will be used on them and they are connected as masters 
not in the cascade mode. The initialization sequence for 
each tier is shown in Figure 30. Notice that the master is 
initialized with a "dummy" jump table starting at OOH 
since all vectoring is done by the slaves. The tier 3 
devices also receive "dummy" tables since only polling 
is used on tier 3. 

As explained in "Interrupt Cascading", to preserve a 
truly fully nested mode within a slave, the master 8259A 
should be programmed in the special fully nested mode. 
This allows the master to acknowledge all interrupts at 
and above the level in service disregarding only those of 
lower priority. The special fully nested mode is pro· 
grammed in the master only, so it only affects the im· 
mediate slaves (tier 2 not tier 3). To implement a fully 
nested structure among tier 3 slaves some special 
housekeeping software is required in all the tier·2·with· 
tier·3·slave routines. The software should simply save 
the state of the tier 2 IMR, mask all the lower tier 2 inter· 
rupts, then issue a specific EOI, resetting the ISR of the 
tier 2 interrupt level. On completion of the routine the 
IMR is restored. 

Figure 31 shows an example flow and program for any 
tier 2 service routine without a tier 3 8259A. Figure 32 
shows an example flow and program for any tier 2 ser· 
vice routine with a tier 3 8259A. Notice the reading of the 
ISR In both examples; this is done to determine whether 
or not to issue an EOI command to the master (refer to 
the section on "Special Fully Nested Mode" for further 
details). 

LOCATION 8259 CODE COMMENTS 

1000 H SAO JMP SADa ; SADa SERVICE ROUTINE 

10le H JMP SA07 ; SA07 SERVICE ROUTINE 

1020 H SAl JMP SA10 ; SAl a SERVICE ROUTINE 

I03e H JMP SAl7 ; SA17 SERVICE ROUTINE 

; SA20-SAS7 SERVICE ROUTINES 

10EO H SA7 JMP SA70 ; SA70 SERVICE ROUTINE 

10F8 H JMP sao ; seo POLL ROUTINE 
10FC H JMP sal ; SBI POLL ROUTINE 
1200 H sao JMP 5800 ; S800 SERVICE ROUTINE 

121CH JMP sa07 ; S807 SERVICE ROUTINE 

1220 H sal JMP 58'0 ; 5810 SERVICE ROUTINE 

123C H JMP SB17 ; SB17 SERVICE ROUTINE 

Figure 29. Jump Table Organlzallon 

INITIALIZATION SEQUENCE FOR 78 LEVEL INTERRUPT STRUCTURE 

INITIALIZE MASTER 

MINT: MVI 
OUT 
MVI 
OUT 
MVI 
OUT 
MVI 
OUT 

A,15H 
MPTA 
A,OOH 
MPTB 
A.OFFH 
MPT8 
A,IOH 
MPTB 

; ICWI,LTM=O,ADI=1,S=O,IC4=1 
; MASTER PORT AO=O 
; ICW2, DUMMY ADDRESS 
; MASTER PORT AD = 1 
; ICW3, S7-SO = 1 
; MASTER PORT AD = 1 
; ICW4, SFNM = 1 
; MASTER PORT AD = 1 

; INITIALIZE SA SLAVES - X DENOTES SLAVE ID (SEE KEY) 

SAXINT: MVI 
OUT 
MVI 
OUT 
MVI 
OUT 
MVI 
OUT 

A,II 
SAXPTA 
A,10H 
SAXPTB 
AOXH 
SAXPTB 
A10H 
SAXPTB 

; SEE KEY FOR ICW1, LTM=O. ADI=1, S=O,IC4=1 
; SA"X" PORT AO = 0 
: ICW2, ADDRESS MSB 
; SA"X" PORT AD= 1 
; ICW3.SA 10 
; SA"X" PORT AO= 1 
: ICW4, SFNM=1 
; SA"X" PORT AO= f 

REPEAT ABOVE FOR EACH SA SLAVE 

INITIALIZE sa SLAVES - X DENOTES 0 or 1 (DO sao, REPEAT FOR SB1) 

SBXINT MVI 
OUT 
MVI 
OUT 

A,ISH 
SBXPTA 
A,OOH 
SBXPTB 

; ICW1, LTM=O, ADI=1, S=1,IC4=0 
; sa"x" PORT AO=O 
; ICW2, DUMMY ADDRESS 
; SB"X" PORT AO=1 

SA INITIALIZATION KEY 

SA"X" Q'(ICW1) JUMP TABLE START (H) 

0 15 1000 
1 35 1020 
2 55 1040 
3 75 1060 
4 95 1080 
5 85 10AO 
5 05 1DCO 
7 F5 10EO 

Figure 30; Initialization Sequence for 78 Lavel Interrupt Structure 
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; SA"X" ROUTINE - GENERAL INTERRUPT SERVICE ROUTINE 
; FOR TIER 2 INTERRUPTS WITHOUT TIER 3 8259A 

SAX: PUSH 0 
PUSH B 
PUSH H 
PUSH PSW 
EI 

; SERVICE ROUTINE GOES HERE 

01 
.VI 
OUT 
.UI 
OUT 
IN 
ANI 
JZN 
.VI 
OUT 

SAXRSR: POP 
POP 
POP 
POP 
EI 
RET 

'" SAXPTA 
A,OBH 
SAXPTA 
SAXPTA 
OFFH 
SAXRSR 
A,DSH 
MA5PTA 
PSW 
H 
B 
o 

; SAVE DE 
; SAVE Be 
; SAVE HL 
; SAVE A, FLAGS 
; ENABLE INTERRUPTS 

; DISABLE INTERRUPTS 
; OCW2, NON·SPECIFIC EOI 
: SA"X" PORT AD = 0 
: OCW3, READ REGISTER, ISR 
; SA"X" PORT AD '" 0 
; SA"X" PORT AO=O, SA"X"'SR 
: TEST FOR ZERO 
; IF NOT ZERO, RESTORE STATUS 
: OCW2. NON·SPECIFIC EOI 
; MASTER PORT AD '" 0 
: RESTORE A, FLAGS 
; RESTORE HL 
: RESTORE Be 
: RESTORE DE 
; ENABLE INTERRUPTS 
: RETURN 

Figure 31. Example Service Rouline for Tier 2 Interrupt (SA"X") without Tier 3 82S9A (SB"X") 

: SB"X" ROUTINE - SERVICE ROUTINE FOR TIER 2 
; INTERRUPTS WITH TIER 3 8259AS 

sax: PUSH 0 SAVE DE 
PUSH B SAVE BC 
PUSH H SAVE HL 
PUSH PSW SAVE A, flAGS 
IN SAXPTB READ SA"X" IMR 
MOV D,A SAVE 
MVI A,XXH MASK SA"X" LOWER IR 
OUT SAXPTB SA"X" PORT AD = 1 
MVI A,6XH OCW2 SPECIFIC EOI SA"X" 
OUT SAXPT A SA"X" PORT AD '" 1 
LXI H,1200H : JUMP TABLE START 
MVI B,OOH : CLEAR B 
MVI A,DCH ; OCW3, POLL COMMAND 
OUT SBXPTA ; SB"X" PORT AO""O 
IN SBXPTA; GET POLL WORD 
ANI D7H : LIMIT TO 3 BITS 
ADD A : GET TABLE OFFSET 
ADD A 
MOV C,A 
DAD B 
EI 

; OFFSET TO C 
; HL HAS TABLE ADDRESS 
: ENABLE INTERRUPTS 

SB"X"RET ROUTINE - FOR EOI AND MASK RESTORE 
AFTER SB"X" ROUTINE 

SBXRET 01 ; DISABLE INTERRUPTS 
MVI A,20H : OCW2, NON SPECIFIC EOI 
OUT SBXPTA ; SA"X" PORT AO=O 
.VI A,OBH ; ~f,~~' :~:~ :oE2~STER ISR OUT, SAXPTA 
IN SBXPTA SA"X" PORT AD", 0, ISR 
ANI OFFH TEST FOR ZERO 
JNZ SBXRSR IF*O RESTORE IMR 
.VI A,2DH OCW2, NON·SPECIFIC EOI 
OUT MASPTA MASTER PORT AD '" 0 

SBXRSR: MOV A.O RESTORE SA"X" IMR 
OUT SAXPTB SA"X" PORT AO=1 
POP PSW RESTORE A, flAGS 
POP H RESTORE HL 
POP B RESTORE BC 
POP 0 RESTORE BC 
EI ; RESTORE DE 
RET ; RETURN 

Figure 32. Example Service Routine lor Tier 2 Interrupt (SA"X") with Tier 3 82S9A (SB"X") 
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5.3 TIMER CONTROLLED INTERRUPTS 

In a large nurnber of controller type rnicroprocessor 
designs, certain tirning requirernents rnust be irnple· 
rnented throughout prograrn execution. Such tirne 
dependent applications include control of keyboards, 
displays, CRTs, printers, and various facets of industrial 
control. These exarnples, however, are just a few of 
rnany designs which require device servicing at specific 
rates or generation of tirne delays. Trying to rnaintain 
these tirning requirernents by processor control alone 
can be costly in throughput and software cornplexity. 
So, what can be done to alleviate this problern? The 
answer, use the 8259A Prograrnrnable Interrupt Con· 
troller and external tirning to interrupt the processor for 
tirne dependent device servicing. 

This application exarnple uses the 8259A for tirner con· 
trolled interrupts in an 8086 systern. External tirning is 
done by two 8253 Prograrnrnable Interval Tirners. Figure 
33 shows a block diagrarn of the tirner controlled inter­
rupt circuitry which was built on the breadboard area of 
an SDK-86 (systern design kit). Besides the 8259A and 
the 8253's, the necessary 1/0 decoding is also shown. 
The tirner controlled interrupt circuitry interfaces with 
the SDK-86 which serves as the vehicle of operation for 
this design. 

A short overview of how this application operates is as 
follows. The 8253's are prograrnrned to generate inter­
rupt requests at specific rates to a nurnber of the 8259A 
IR inputs. The 8259A processes these requests by inter­
rupting the 8086 and vectoring prograrn execution to the 
appropriate service routine. In this exarnple, the 
routines use the· SDK·86 display panel to display the 
nurnber of the interrupt level being serviced. These 
routines are rnerely for dernonstration purposes to show 
the necessary procedures to establish the user's own 
routines in a tirner controlled interrupt scherne; 

Let's go over the operation starting with the actual inter­
rupt tirning generation which is done by two 8253 Pro­
grarnrnable Interval Tirners (8253 #1 and 8253 #2). Each 
8253 provides three individual 16-bit counters (counters 

0-2) which are software prograrnrnable by the proc­
essor. Each counter has a clock input (ClK), gate input 
(GATE), and an output (OUT). The output signal is based 
on divisions of the clock input signal. Just how or when 
the output occurs is deterrnined by one of the 8253's six 
prograrnrnable rnodes, a prograrnrnable 16-bit count, 
and the state of the gate input. 

Figure 34 shows the 8253 tirning configuration used for 
generating interrupts to the 8259A. The SDK·86's PCLK 
(peripheral clock) Signal provides a 400 ns period clock 
to ClKO of 8253 #1. Counter 0 is used in rnode 3 (square 
wave rate generator), and acts as a prescaler"to provide 
the clock inputs of the other counters with II 10 rns 
period square wave. This 10 rns clock period rnade it 
easy to calculate exact tirnings for the other counters. 
Counter 2 of the 8253 #1 is used in rnode 2 (rllte gener­
ator), it is prograrnrned to output a 10 rns pulse for every 
200 pulses it receives (every 2 sec). The output of 
counter 2 causes an interrupt on IR1 of the 8259A. All 
the 8253 #2 counters are used in rnode 5 (hardware trig­
gered strobe) in which the gate input initiates counter 
operations. In this case the output of 8253 #1 counter 2 
controls the gate of each 8253 #2 counter. When one of 
the 8253 #2 counters receive the 8253 #1 counter 2 out­
put pulse on its gate, it will output a pulse (10 rns in 
duration) after a certain preprograrnrned nurnber of 
clock pulses have occurred. The prograrnrned nurnber of 
clock pulses for the 8253 #2 counters is as follows: 50 
pulses (0.5 sec) for counter 0, 100 pulses (1 sec) for 
counter 1, and 150 pulses (1.5 sec) for counter 2. The 
outputs of these counters cause interrupt requests on 
IR2 through IR4 of the 8259A. Counter 1 of 8253 #1 is .. 
used in rnode 0 (interrupt on terrninal count). Unlike the 
other rnodes used which initialize operation auto­
rnatically or by gate triggering, rnode 0 allows software 
controlled counter initialization. When counter 1 of 8253 
#1 .is set during prograrn execution, it. will count 25 
clocks (250 rns) and then pull its output high, causing an 
interrupt request on IRO of the .8259A. Figure 35 shows 
the tirning generated by the 8253's which cause inter­
rupt request on the 8259A IRinputs. 

EACH DEVICEVcc'" +5V,GND - ~ 

Flg.ure 33. Timer Controlled Interrupt Circuit on SDK 86 Breadboard Area 
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Figure 34. 8253 Timing Configuration lor Timer Controfled Interrupts 
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Figure 35. 8259A IR Input Signal From 8253S 

There are basically two methods of timing generation 
that can be used in a timer controlled interrupt struc· 
tu're: dependent timing and independent timing. Depen· 
dent timing uses a single timing occurrence as a refer­
ence to base other timing occurrences on. On the other 
hand, independent timing has no mutual reference be· 
tween occurrences. 'Industrial controller type applica· 
tions are more apt to use dependent timing, whereas in· 
dependent timing is prone to individual device control. 

Although this application uses primarily dependent tim· 
ing, independent timing is also incorporated as an 
example. The use of dependent timing can be seen back 
in Figure 34, where timing for IR2 through IR4 uses the 
IR1 pulse <IS reference. Each one of the 8253 #2 counters 
will generate an interrupt request a specific amount of 
times after the IR1 interrupt request occurs. When using 
the dependent method, as in this case, the IR2 through 
IR4 requests must occur before the next IR1 request. 
Independent timing is used to control the IRa interrupt 
request. Note that its timing isn't controlled by any of 
the other IR requests. In this timer controlled interrupt 
configuration the dependent timing is initially set to be 
self running and the independent timing is software 
initialized, However, both methods can work either way 
by using the various 8253 modes to generate the same 
interrupt timing. 

The 8259A processes the interrupts generated by the 
8253's according to how it is programmed. In this appli· 
cation it is programmed to operate in the edge triggered 
mode, MCS·86/88 mode, and automatic EOI mode. In the 
edge triggered mode an interrupt request on an 8259A 

IR input becomes active on the rising edge. With this in 
mind, Figure 35 shows that IRa will generate an inter· 
rupt every half second and IR1 through IR4 will each 
generate.an interrupt every 2 seconds spaced apart at 
half second intervals. Interrupt vectoring in the 
MCS·86/88 mode is programmed so IRa, when activated, 
will select interrupt type 72. This means IR1 will select 
interrupt type 73, IR2 interrupt type 74, and so on 
through IR4. Since IR5 through IR7 aren't used, they are 
masked off. This prevents the possibility of any acci· 
dental interrupts and rids the necessity to tie the 
unused IR inputs to a steady level. Figure 36 shows the 
8259A IR levels (IRO-IR4) with their corresponding inter· 
rupt type in the 8086 interrupt·vector table. Type 77 in 
the table is selected by a software "INT" instruction 
during program execution. Each type is programmed 
with the necessary code segment and instruction 
pointer values for vectoring to the appropriate service 
routine. Since the 8259A is programmed in the auto· 
matic EOI Mode, it doesn't require an EOI command to 
deSignate the completion of the service routine. 

TYPE 77 

TYPE 76 

TYPE 75 
TYPE 74 

TYPE 73 

TYPE 72 

SOFTWARE INT 

IR4 t 
IR3 

IR2 J 8259A 
IR1 

IRO 

Figure 36. Interrupt "Type" Designation 
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As mentioned earlier, the interrupt service routines in 
this application are used merely to demonstrate the 
timer controlled interrupt scheme, not to implement a 
particular design. Thus a service routine simply displays 
the number of its interrupting level on the SDK·86 dis· 
play panel. The display panel is controlled by the 8279 
Keyboard and Display Controller. It is initialized to 
display "Ir" in its two left· most digits during the entire 
display sequence. When an interrupt from IR1 through 
IR4 occurs the corresponding routine will display its IR 
number via the 8279. During each IR1 through IR4 servo 
ice routine a software "INT77" instruction is executed. 
This instruction vectors program execution to the servo 
ice routine designated by type 77, which sets the 8253 
counter controlling IRO so it will cause an interrupt in 
250 ms. When the IRO interrupt occurs its routine will 
turn off the digit displayed by the IR1 through IR4 
routines. Thus each IR level (IR1-IR4) will be displayed 
for 250 ms followed by a 250 ms off time caused by IRO. 
Figure 37 shows the entire display sequence of the 
timer controlled interrupt application. 

, , I 'Rl 

1'1' I I I I I I 'RO 

1'1 'I I I 121 I 'R2 

1'1' I I I I I I 'RO 

1'1 'I I 1:11 I I 'R3 

1'1 'I I I I I I 'RO 

1'1' I I YI I I I ,R4 

1'1 rJ I I I I I 'RO 

Figure 37. SDK Display Sequence for Timer Controlled Interrupts 
Program (Each Display Block Shown is 250 msec 
In Duration) 

Now that we've covered the operation, let's move on to 
the program flow and structure of the timer controlled 
interrupt program. The program flow is made up of an 
initialization section and six interrupt service routines. 
The initialization program flow is shown in Figure 38. It 
starts by initializing some of the 8086's registers for pro­
gram operation; this includes the extra segment, data 
segment, stack segment, and stack pointer. Next, by 
using the extra segement as reference, interrupt types 
72 through 77 are set to vector interrupts to the appro­
priate routines. This is done by moving the code seg­
ment and instruction pOinter values of each service 
routine into the corresponding type location. The 8253 
counters are then programmed with the proper mode 
and count to provide the interrupt timing mentioned 
earlier. All counters with the exception of the 8253 #1, 
counter 1 are fully initialized at this point and will start 
counting. Counter 1 of 8253 #1 starts counting when its 
counter is loaded during the "INTR77" service routine, 
which will be covered shortly. Next, the 8259A is issued 
ICW1, ICW2, ICW4, and OCW1. The ICWs program the 

8259A for the edge triggered mode, automatic EOI 
mode, and the proper. interrupt vectoring (IRO, type 72). 
OCW1 is used· to mask off the unused IR inputs 
(IR5-IR7). The 8279 is then set to display "IR" on its two 
left·most digits. After that the 8086 enables interrupts 
and a "dummy" main program is executed to wait for in­
terrupt requests. 

Figure 38. Initialization Program Flow for Timer Controlled Interrupts 

There are six different interrupt service routines used in 
the program. Five of these routines, "INTR72" through 
"INTR76", are vectored to via the 8259A. Figure 39A-C 
shows the program flow for all six service routines. Note 
that "INTR73" through "INTR76" (IR1-IR4) basically'use 
the same flow. These four similar routines display the 
number of its interrupting IR level on the SDK-86 display 
panel. The "INTR77" routine is vectored to by software 
during each of the previously mentioned routines and 
sets up interrupt timing to cause the "INTR72" (IRO) 
routine to be executed. The "INTR72" routine turns off 
the number on the SDK-86 display panel. 

A. INTERRUPT ON 
8259AIRO 

B. INTERRUPT ON 
8259AIR1~IR4 

C. SOFTWARE INVOKED 
INTERRUPT 

Figure 39. A-C. Interrupts Service Routine Flow for 
Timer Controlled Interrupts. 
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To best explain how these service routines work, let's 
assume an interrupt occurred on IR1 of the 8259A.The 
associated service routine for IR1 is "INTR73". Entering 
"INTR73", the first thing done is saving the pre·interrupt 
program status. This isn't really necessary in this pro­
gram since a "dummy" main program is being executed; 
however, it is done as an example to show the operation. 
Rather than having code for saving the registers in each 
separate routine, a mutual call routine, "SAVE", is used. 
This routine will save the register status by pushing it 
on the stack. The next portion of "INTR73" will display 
the number of its IR level, "1", in the first digit of the 
SDK-86 display panel. After that, a software INT instruc­
tion is executed to vector program execution to the 
"INTR77" service routine. The "INTR77" service routine 
simply sets the 8253 #1 counter 1 to cause an interrupt 
on IRO in 250ms and then returns to "INTR73". Once 
back in "INTR73", the pre-interrupt status is restored by 
a call routine, "RESTORE". It does the oppOSite of 
"SAVE", returning the register status by popping it off 
the stack. The "INTR73" routine then returns to the 
"dummy" main program. The flow for the "INTR74" 
through "INTR76" routines are the same except for the 
digit location and the IR level displayed. 

After 250 ms have elapsed, counter 1 of 8253 #1 makes 
an interrupt request on IRO of the 8259A. This causes 
the "INTR72" service routine to be executed. Since this 
routine interrupts the main program, it also uses the 
"SAVE" routine to save pre-interrupt program status. It 
then turns off the digit displaying the IR level. In the 
case of the "INTR73" routine, the "1" is blanked out. 
The pre-interrupt status is then restored using the 
"RESTORE" routine and program execution returns to 
the "dummy" main program. 

The complete program for the timer controlled inter­
rupts application is shown in Appendix B. The program 
was executed in SDK-86 RAM starting at location 0500H 
(code segment = 0050, instruction pointer= 0). 

CONCLUSION 

This application note has explained the 8259A in detail 
and gives three applications illustrating the use of some 
of the numerous programmable features available. It 
should be evident from these discussions that the 
8259A is an extremely flexible and easily programmable 
member of the Intel~ MCS-80, MCS-85, MCS-86, and 
MCS-88 families. 
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This table is provided merely for reference information between the "Operation of the 8259A" and "Programming the 
8259A" sections of this application note. It shouldn't be used as a programming reference guide (see "Programming 
the 8259A"). 

Operational Command 
Description Words Bits 

MCS·80185™ Mode ICW1,ICW4* IC4, "PM* 

Address Interval for MCS·80/85 Mode ICW1 ADI 

Interrupt Vector Address for MCS·80/85 Mode ICW1,ICW2 A5-A15 

MCS·86/88 Mode ICW1,ICW4 IC4,,,PM 

Interrupt Vector Byte for MCS·86/88 Mode ICW2 T3-T7 

Fully Nested Mode OCW-Default 

Non·Specific EOI Command OCW2 EOI 

Specific EOI Command OCW2 SEOI, EOI, 
LO-L2 

Automatic EOI Mode ICW1,ICW4 IC4, AEOI 

Rotate On Non·Specific EOI Command OCW2 EOI 

Rotate In Automatic EOI Mode OCW2 R, SEOI, EOI 

Set Priority Command OCW2 LO-L2 

Rotate on Specific EOI Command OCW2 R, SEOI, EOI 

Interrupt Mask Register OCW1 MO-M7 

Special Mask Mode OCW3 ESMM-SMM 

Level Triggered Mode ICW1 LTIM 

Edge Triggered Mode ICW1 LTIM 

Read Register Command, IRR OCW3 ERIS, RIS 

Read Register Command, ISR OCW3 ERIS, RIS 

Read IMR OCW1 MO-M7 

Poll Command OCW3 P 

Cascade Mode ICW1,ICW3 SNGL, SO-7, 
100-2 

Special Fully Nested Mode ICW1,ICW4 IC4, SFNM 

Buffered Mode ICW1,ICW4 IC4, BUF, 
MIS 

·Only needed if ICW4 is used for purposes other than ItP mode set. 
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MCS-86 ASSEMBLEii' TCI59ft 

ISIS-II I'ICS-3G AS5CMBLER Vi. f:! fiSSEMBL Y (f MODlJLE TCI59A 
OBJECT MODIJLE. PLACED IN H: '1CI59A. OB.J 
ASSEMBLER INYOKED BY: :Fi:ASt136F1TCI59A. SRC 

LOC OB.j 

0120 
0120 0401 
0122 m? 
0124 1801 
0126 m? 
0123 3801 
01~A '1m 
0121: 4801 
012E ???? 
aBa 6tl01 
0132 ???? 
eB4 78131 
0136 ?m 

0009 m? 
0002 ???? 
0004 ?? 

0090 BB8998 
9993 SEct! 
90115 BB71lOO 
Il9!l8 SED8 
90IIA 1:I~7aoo 
eeeD SEOO 
800F &8l1li0 

LI ~~E SOURCE 

; ****************"'*** TIMER COtlTROLLED INTI:.RRUf'TS *****************'1"* 
2 
3 ; 
4 ; 
5 
6 
7 EXTRA SI:.UI1ENl 
8 ; 

9 ORG 
10 TP72IP DW 
11 TP72CS DW 
12 TP73IP DW 
13 TP73CS I)W 

14 TP?4If' DW 
15 TP74CS DW 
16 1l'75If' 1IW 
1l TP75CS DW 
18 TP76IP DW 
19 TP76CS DW 
20 TP77IP DW 
21 TP77CS DW 
22 
23 E~nRA ENDS 
24' i 

25 
26 
27 DATA 
2B 
29 STflCI(l 
30 AXTEMP 
31 DIGIl 
32 
33 DAm 
34 ; 

35 ; 

36 
37 CODE 
38 

SEGMENT 

DW 
DW 
DB 

ElIDS 

SEGMENT 

EXTRA SEGMENT DECLARATIONS 

12011 
1N1Im ; TYPE 72 INSTRUCTION POINTER 
') .; noPE 72 CODE SEGMENT 
ItlTlm ; noPE T1 INSl RUCTION POINTER 
? ; TYPE 73 CODE SIOGI'IENl 
INTR74 ; ll'f'E 74 INSTRUClION POINTER 
-J ; TYPE ;'4 COOE SEGl'lENT 
INTR75 ; TYrE 75 INSTRUCTION POINTER 
? ; noPE ,'5 CODE StGMENl 
IN1R76 i lYPE 76 INSTRUCTION POINTER 
? ; T','PE 76 CODE SEGl'lENT .. 
INTR77 ; TYPE 77 INSTRUCTION f'tiINTI:.R 
? ,TYPE 77 COOE SEGMENT 

llATA SEGMENT DECLARATI ONS 

? ; VARIABLE TO SAYE CALL AO[)RI;SS 
? i VARIABLE TO SAVE AX REGISTEr< 
? i VARIABLE TO SAVE SELECTt[) DIGIT 

CODE SEGI1ENT DECLARATION 

39 ASSUI'IE ES : EXTRA, DS : IXlTA, CS : CODE 
40 
41 INITIflLlZE REGISTERS 
42 
43 STRRT: t1O\I AX, !lH ; txlRA SEGMENT AT 0H 
44 I10Y ES,AX 
45 I'IOY AX, 7011 .i DATA SEGl'lENT AT 701lH 
46 110\1 OS,AX 
47 I'IOY AX, 'ISH ; SlACK SEGI1ENl AT 788H 
48 I'IOY 55, AX 
49 I'IOY sP,88f! i SlACK POINTER AT 88H (SlflCK=S00H) 
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I1CS-86 ASSEMBLER TCI59A 

LOG OBJ LINE SOIJRCE. 

50 
51 LOAD lNlE.I<:RUf'1 VECTOR IfiBLE 
52 

0012 B80401 ~j3 ['tPES. NOV m:., OFFSET (I1HR72) ; LORD T'tPI:. 0'2 
0015 2GH32gel 54 MOil IP721f', AX 
9019 26SC0E2201 55 MOil IP72CS. CS 
0alE B81801 ~6 ~Oll AX., OFFSET (INTR73) ; LOADf'tPE 73 
8021 26A32401 57 flOY TP73IP, AX 
13025 268C9E2601 '58 MO'J 11-'73C5, (;5 
e02A B83001 59 Mall AX. OFFSET <ItHR74) ; LOAD TYPE 74 
002D 26A328l:t1 60 MOil TP74IP, fiX 
0031 268C9E2A01 61 MO\l TF'74CS., CS 
0936 B84891 62 flOlI m(. OFFSET (INTR75) ; LOAD TYPE 7J 
0039 26A32C01 63 11011 TP75IP, fiX 
903D 268C9E2EOl 6.4 MO\l n''15CS, C5 
e042 B86001 65 MOo,; AX. OFFS[l (I NTR76) .; LOAl) T'tPE 76 
9945 26A330Bl 66 110V TP7GIP. AX 
9949 268C0E32el 67 1'10\1 TP76CS .. CS 
B04E 8878131 68 11011 A:<, OfFSET (INTRm ; LOHJ) T'tPE 7( 

01351 26f133401 69 MOV TP77IP. AX 
0055 268comlill 70 1'101,' IP77C5. C5 

71 ; 
~~ 
,~ 8253 INITIALIZATION 
73 

OOSA BAOEFF 74 SET5}1: MOV DX. eFFBEH ; 82:i3 111 CONTROL WORD 
005D B036 75 MOV AL. 36H ; COUNTER 0. MODE 3, BINARY 
995F EE 76 OUT J)X,AL 
00613 B071 77 110\1 AL. 71H .: COIJllT!:R 1, MODE 0. BCD 
9962 EE 78 OUT DX.AL 
0063 BBB5 ?9 MOV AL. BBSH ; COUNTER 2., MOOE 2. SCI) 
0065 EE 80 OUT DX.AL 
0066 BAB8FF 81 MOil DX. aFFOSH ; LOAD COUNTER a (101'1S) 
9069 B0AS 82 MOY AL, BASH .:L~.B 

e06B EE 8·' , OliT DX.AL 
006C B061 84 MOil AL,61H ;M5B 
006E EE 85 OIJT OX, At. 
006F BABCFF 86 t10Y J)X. BFFOCH ; LOAD COUIHER 2 (2St:C) 
0072 B900 87 MOV AL,0fJH ;LSB 
0074 EE ss OUT OX.AL 
0075 8002 89 MOV AL. 02H ;MSB 
0077 EE 913 OUT OX.AL 
0078 BA16Ff 91 SET~32: MOV DX.0FF16H ; 8253 12 (;QN'I ROL WORJ) 
e97B Be3B 92 MOil AL,3BH ; COUNTER O. MOO!: 5, BCD 
W7D EE 9l OUT DX.AL 
007E !le7B 94 MOY AL. 7BH ; COUNTER 1. MOO~ !), BCD 
B08B EE 95 OUT OX.AL 
01181 B0BB 96 MOY AL. 0BBH ; COUNTER 2. MODE 5, BCD 
0083 EE 97 OUT DX. AL 
91184 BA1eFF 98 MOV DX, eFF10H ; LOAD COUNTER B C 551:(;) 
008? S0sa 99 NOV AL.5fJH ;LSB 
0089 EE 190 OUT DX.AL 
008A 8000 191 /'lOY At.,9BH ;MSB 
008C EE 102 OUT J)X. AL 
11080 BA12FF 193 HOV J)X,0FF12H ; LOAD COUNTER 1 (1Sm 
0090 8000 194 /'lOy AL. 9BH ;LSB 

A-169 



AP·59 

M(;5-86 ASSEMBLER TCI59A 

LOC OBJ LINE SOURCE 

0992 EE 105 OUT DX,AL 
91193 BII01 106 'MOV AL,01H' ;MSB 
11995 EE 107 OUT DX,AL 
9996 BA14FF les MOV DX,eFF14H ; LOA\) COUNTI::R 2 (1. 5sm 
8099 805e 1139 MOY AL59H ;L~B 

809B EE 119 OUT DX,AL 
999C B0el 111 MOil ' AL~ 91H ;MSB 
809E EE 112 Olll I)X,AL 

113 ; 

114 ; , 'S259fl nimALIZATION ' "',(', 

115 ; 

009F BA09FF 116 SET59A:, MOV DX,0FFOOH ; 8259A A0=0 
99A2 8013 117 MOV AL,BH ; lCW1-L TII'I=9, S=l, IC4=1 
OOA4 EE 118 OUT DX,AL 
OOA5 BA9lFF 119 MO~' DX,0FF02H ;8259A fle=1 
eaRS 8048 1211 1'10'1 'AL, 48H ; ICW2-INTERRUPT TYPI:: i'2 (120H) 
000R EE 121 OUT DX,AL 
110AB B003 122 MOV AL, 9~H ;ICW4-SFNI'I=9,BUr=e,A[OI=l,MPH=1 ' 

" 

9I!AD EE 123 OUT DX,AL 
90AE 80E0 124 MOV AL,0EeH ; OCW1-MASK IRS, 6, 7 (NOT USED), ' ' 

8080 EE 125 OUT DX,AL <'.~ 

126 ; 

127 8279INHIALI2f1TION 
128 , 

0081 BAEAFF 129 . ~ET79: MOV DX,0FFEAH ' ; 8279 COrt1ANl) WORDS fINl) STATUS 
0084 8900 . ". ,ne MOl' AL,aooH ; CLEAR DISPLAY 
eeu EE 131 OUT DX,AL 
0087 EC 132 ' WAIT79: IN AL,DX ",' ; READ !.l ATUS 
eOO8 D0C8 1:>3 rot. AL,1 ; "DU' BIT lO CARRY 
98BA 72FB ",' B4 JB WAIT79 ; JUMP IF DISPLAY IS UNAVAILABLE 
OOBC 80S7 B5 MOV AL, 87H ' ; DIGlT 8 
90BE EE 136 OUT DX,AL ,'., 

00BF BAEBFF 137 MOV [lX,8FFE8H ' ; 8279 DATA WORD 
99C2BOO6 138 MOV AL,06H ,; CHARACTER "1' 
OOC4 EE 139 OUT [lX,AL 
00C5 BAEAFF 149 HOY DX,8FFEAH .. ; 8279 COI'II'IANI) WORD 
OOC8 B086 141 MOV AL,86H ; DIGIT 7 
99CA EE 142 OUT DX,AL 
90CB BAEBFF 143 MOV [lX, !lFFE8H ' ; 82i'9 DATA WORD 
OOCE B950 144 MOV AL,59H ; CHARfl:TER "R" 
OOD8 EE 145 OUT DX,AL 
0001 FB 146 STI ; ENABLE UlTERRUPTS 

147 ;' 

148 
149 DUMMY PROGRAI'I 
159 

9002 EBFE " :i51 DUI'IMY: JMP DUItIY ; WAIT FOR INTtRRUPT 
152 

'153 
0004 A30200 154 SAVE: MOV AXTEI'IP,AX ' ; SAVE AX 
0007 58 155 POP AX ' '; POP CfLL RETURN ADDRESS 
98D8 A3!l91!9 156 MOV STACK1,AX ; SAVE CALL RETURN AOOI<~S 
99DB A19200 157 I'tOV fIX, AXIDIP ;RESTORE AX 
000E 59 158 PUSH AX ' ; SAYE PROCESS~ STATUS 
OODF 53 159 PUSH BX 
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11CS-86 ASSEMBLE~: TCI59A 

LOC OBJ LINE SOURCE 

OOEO ~1 160 PUSH c:~ 

OOEl 52 161 PIJSH DX 
130E2 55 162 PUSH, BP 
130E3 56 163 PUSH 51 
a0E4 57 164 PIJSH DI 
90E5 1E 165 PUSH OS 
OOE6 06 166 PUSH E5 
0eE7 A1000(J 167 ~10V AX, STACK1 ,; RESTORE CALL RETUf<N ADDRESS 
!leEA 50 168 PUSH AX ; PUSH CALL 1<10 lLIRN ADDRESS 
00EB n 169 RET 

170 
OOEC 53 171 RI,STOR: POP fiX i POP CALL RUIJRN ADDRESS 
BeED A3000B 172 ~101/ STACK1, AX ; SAVE CALL RETURN ADDRESS 
00FB 07 173 POP ES ,; RESTORE PROCESSOR STATUS 
e0F11F 174 POP [l5 

OOF2 SF 175 POP DI 
B0n 5E 176 POP 51 
e0F4 50 1f'(' POP SP 
0BF5 5A 178 POP DX 
00F6 59 179 POP ex 
e0F7 5B 180 POP BX 
a0F8 58 181 POP AX 
00F9 A30200 132 ilOV AXTEMP, AX ; SAVE AX 
00FC A10000 133 ilOV AX, STACKl ; RESTORE CALL RETURN ADDRESS 
9!1FF 50 134 PUSH AX ; PUSH CfU RETURN ADDRESS 
0100 A1B20B 185 ilOV AX, AX1EMP ; RESTORE AX 
f.ll~3 (;3 186 RET 

187 
183 
189 ., INTERRUPT 72, CLEAR DISPLAY, IRO 3259A 
190 

0104 ESCDFF 191 INTR72: CALL SAVE , RuliTI NE TO SAVE. PROCESSOR S1 ATlJS 
(j107 BAEAFF 192 ~10V D~;, OFFEAH ; 8279 COMMAND WORD 
81(jA Aewe0 193 MOV AL DIGIT .: 5ELE.CTED LED DIGll 
810D EE 194 OliT DX,AL 
01eE BAEBFF 195 110V DX,0FFE8B ; 3279 DATA 
0111 B080 196 ilOV AL 00H ; BLANK OUT f)!GIT 
91B EE 197 OUT DX, AL 
0114 E8D5FF 198 CALL RESlOR ,; ROUTINE TO RES10RE PROCESSOR STfi1US 
8117 CF 199 IRET ; RETURN FkOM INTERRLiI'l 

280 ; 

201 
202 ; INTEkRUPT n IRl 8259A 
2il3 

0118 ESB9FF 204 nITR73: CALL SAVE ,; ROUTINE 10 SAV!: PROCESSOR STAlliS 
9118 BnEAFF 205 MOV DX, aFFEAH ,; 8279 COMMAND WORD 
011E Bese 206 MOV AL, a8H ; LED DISPLAY DIGIT 1 
9120 A20409 207 NOV DIGIT, AL 
8123 EE 20S OUT DX,AL 
0124 BAESFF. 299 110',' DX, I:JFFE8H ; S2(9 DATA 
0127 B006 210 ilOV AL,06H ; CHARA(;'I ER "1" 
f.l129 EE 211 OUT DX,AL 
912A CD4D 212 INT 77 ; 1 IMER DELAY FOR LED ON TJt1E 
912C ESBDFF 213 CALL RESTOR ; ROUTINE 10 RESTORE PROCESSOR STATUS 
8121- CF 214 IRET ; RETURN FROM IN1ERRUPT 
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MC5-86 ASSEMBLER TCI59A 

LOC OSJ LINE SOIJRCE 

215 ; 

216 
217 INTERRUPT 74 .• Ik2 8259f: 
218 

0130 E8A1FF 219 INTR74: CALL SAVE ; ROIJTINE TO SAVE PROCESSOR 51 ATUS 
0133 BAEAFF 220 MOil OX,0FFEAH ; 8279 COMMAND WORD 
0156 B081 221 MOil AL.81H ; LEO DISPLAY 0 Hlri 2 
013S A20400 222 MOil DIGIT, AL 
0138 EE 223 OUT DX,AL 
0BC BffESFF 224 MOil DX,0FFESH ; 8279 DA1A 
0HF fJ05B 225 MOil AL 5811 ; CHARACTER "2" 
0141 EE 226 OUT DX,AL 
0142 CD4D 227 INT ?? ; TIMER DELfi'l FOR LED ON TIME 
11144 E8A5FF 228 CALL RESTOR .' ROLITI NE TO RESTORE P~OCESSOR SlAWS 
0147 cr 229 IR~l ; RETURN FROM I NTERRIJPT 

239 
231 
232 I NTERRIJPT 75 .. IR3 8259A 
233 

0148 E8S9FF 234 I NTR75: CALL SAVE , ROUTI NE TO SAllE. PROCESSOR STATUS 
0148 BAEAFf 235 MOil DX,0FFEAH ,8279 COMMAND WORD 
014E 8882 236 MOil AL,82H i LED DISf'LA~' DlCilT 3 
!l150 A20400 237 MOV DIGIT, AL 
am EE 238 OUT DX,AL 
0154 BAESFF 239 MUll DX,0FFESH .,8279 DATA 
!l157 804f' 240 MOV AL,4FH ; CHARACTER "3" 
0159 EE 241 OliT DX,AL 
91JA CD4D 242 INT 77 ,TIMER DELAY FOR LED ON TIME 
01J!; E88DFF 243 CALL RESTOR ; ROUTINE TO RESTORE PROCE.SSOR STATUS 
915F CF 244 IRET i RfWRN FROM lN1EI<:RUPT 

245 
246 
247 ; INTERRUPT 76, IR4 82J9A 
248 ; 

0169 E871FF 249 I NTR76: CALL SAllE ; ROUT! NE TO SAVE PROCESSOR S 1 ATUS 
0163 BAEAFF 250 MOIl OX,9FFEAH ; 8279 COMMAND WORD 
8166 B08J 251 MOl! AL83H ,LED DISPLAV IHGH 4 
9168 A2!l4!l0 252 MOil DIGIT, AL 
816B EE 253 OUT DX,AL 
016C BAE8FF 254 MOil DX, !!FFESH ; 92(9 DATA 
016F B!l66 255 MOIl AL,66H ; CHARAl:TE.R "4" 
9171 EE 256 OUT DX,AL 
0172 CD4D 257 INT 77 ; II MER DELAY FOR LEI! ON H ME 
8174 E875FF 258 CALL RESTOR i ROUTINE TO RESTORE PROCESSOR 51 ATUS 
0177 CF 259 IRET ; RETURN FROM INl ERRUPT 

260 
261 
262 INTERRUPT 77, T1I'1ER IiELAV, SOFTWARE CONTROLLED 
26J 

01?8 BA8AFF 264 HUR77 : MOV DX,0FF!lAH .' LO/1I) COUNTER 1 8253 Ii (250 I'ISEC) 
8178 8025 265 fl011 AL,25H ;LS8 
017D EE 266 OUT DX,AL 
01lE BIl88 267 MOIl AL,00H iMSB 
9180 EE 268 OUT DX,AL 
0181 CF 269 IRET ; R[( URN FROM INTERRUPT 
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t1(:5-86 A5SEHEILER TC 159A 

LOC OB} UN~ SOURCE 

270 
271 
272 CODE ENDS; 
~.,,"") 

'-1_" 

274 
0a00 275 END START 

S·"t-1BOL TABLE LE,T1NG 
------ ----- -------

Nfi~lE T'T'PE VALUE ATTRIBUTES 

?')SEG SI:.GrlENT 5 I ZE =00~II.lH PARA PUSU C 
AXTEMP \I WORD 0€1(j2H DATA 
CODE. SEGt1ENT SIZE =0182H PARA 
[iATA SEGHENT SIZE =OOOSH PRRA 
DIGIT './ B~'TE 1.l004H l'ATA 
DIJI'lHY L NEAR 00D2H CODE 
EXTRA SEGMENT SIZE=OBSH PAPA 
INTR72 L NEA~: 0Hl4H COllE 
lNTP?] L NEAR BUSI·: CODE 
INTR74 L N~HR 013I]H CODE 
INTP75 L NEAR 0148H CODE 
INTR76 L NEAR Bl60H CODE 
!NTR?? L NEAR S17GH CO[iE 
~:E5TOR. ~ NEA'" 0eECH COOE 
SAllE. L NEqR OI.l{)4H CODE 
5ET531 L NEAR 005AH CODE 
SET532 L NEA!? B078fl cor,E 
5ET59A L NEAR 009FH CODE 
5ET79 L NEAR BaB1H COIJE 
STACKl II WORD 0000H DATA 
5TRRT L NEAP 0000H COOE 
TP72CS II weIR[) 0122H EXTRA 
TP?2IP './ WORD 0120H EXTRA 
TP7]CS 'v' WORD 0126H EXTRA 
Tf'nIP V WORD B124H EXTRA 
TP?4CS \,I ~lliRD 3l2AH E:HRA 
TP74IP II WOR[J B123H EXTRA 
rp75CS './ WORD 012Efl EXTRA 
TP75IP II WORD 012CH EXTRA 
TP76CS II IjORD @E2H EXTRA 
TP76IP 'v' WORD eBOH EXTRA 
Tr7?C5 'I WORD 0136H EXTRA 
Tf'mp v WORD B134H EXTRA 
TYPES L NEAR 0012H CODE 
WAIT79 L NEAR OOB7H CODE 

f:S5EMBL~' COtlPLETE, NO ERRORS FOUND 
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I. INTRODUCTION 

A significant measure of the power and flexibility 
of the Intel OEM Computer Product Line can be 
attributed to the design of the Intel MULTIBUS 
system bus. The bus structure provides a common 
element for communication between a wide 
variety of system modules which include: Single 
Board Computers, memory, digital, and analog 
I/O expansion boards, arid peripheral controllers. 

The purpose of this application note is to help you 
develop a working knowledge ofthe Intel MULTI­
BUS specification. This knowledge is essential for 
configuring a system containing multiple mod­
ules. Another purpose is to provide you with the 
information necessary to design a bus interface for 
a slave module. One of the tools that will beused to 
achieve this goal is the complete description of a 
MUL TIBUS slave design example, Other portions 
of this application note provide an In depth 
examination of the bus signals, operating charac­
teristics, and bus interface circuits. 

This application note was originally written in 
1977. Since 1977, the MULTIBUSspecification 
has been significantly expanded to cover opera­
tion with both 8 and 16-bit system modules and 
with an auxiliary power bus. This application 
note now contains information on these new 
MULTIBUS specification features. 

In addition, a detailed MUL TIBUS specification 
has also been published 'which provides the user 
with further information concerning MULTIBUS 
interfacing. The MULTIBUS specification and 
other useful documents are listed in the overleaf of 
this note under Related Intel Publications. 

II. MULTIBUSTM SYSTEM BUS 
DESCRIPTION 

Overview 

The Intel MULTIBUS signal lines can be grouped 
in the following categories: 20 address lines, 16 
bidirectional data lines, 8 multilevel interrupt 
lines, and several bus control, timing and power 
supply lines. The address and data lines are 
driven by three-state devices, while the interrupt 
and some other control lines are open-collector 
driven. 

Modules that use the MULTIBUS system bus have 
a master-slave relationship. A bus master module 
can drive the command and address lines: it can 
control the bus. A Single Board Computer is an 
example of a bus master.. A bus slave cannot 
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control the bus. Memory and I/O expansion 
boards are examples of bus slaves. The MULTI­
BUS architecture provides for 'both 8 and 16-bit 
bus masters and slaves. 

Notice that a system may have a number of bus 
masters. Bus arbitration results when more than 
one master requests control ofthe bus at the same 
time. A bus clock is usually provided by one ofthe 
bus masters and may be derived independently 
from the processor clock. The bus clock provides a 
timing reference for resolving bus contention 
among multiple requests from bus masters. For 
example, a processor and a DMA (direct memory 
access) module may both request control of the 
bus. This feature allows different speed masters to 
share resources on the same bus. Actual transfers 
via the bus, however, proceed asynchronously 
with respect to the bus clock. Thus, the transfer 
speed is dependent on the transmitting and 
receiving devices only. The bus design prevents 
slow master modules from being handicapped in 
their attempts to gain control of the bus, but does 
not restrict the speed at which faster modules can 
transfer data via the same bus. Once a bus request 
is granted, single or multiple read/write transfers 
can proceed. The most obvious applications for the 
master-slave capabilities of the bus are multi­
processor configurations and high-speed direct­
memory-access (DMA) operations. However, the 
master-slave capabilities of the bus are by no 
means limited to these two applications. 

MULTIBUS™ Signal Descriptions 

This section defines the signal lines that comprise 
the Intel MULTIBUS system bus. These signals 
are contained on either the PI or P2 connector of 
boards compatible with the MULTIBUS specifi· 
cation. The PI signal lines contain the address, 
data, bus control, bus exchange, interrupt and 
power supply lines. The P2 signal lines contain the 
optional auxiliary signal lines. Most signals on 
the bus are active-low. For example, a low level on 
a control signal on the bus indicates active, while a 
low level on an address or data signal on the bus 
represents logic "I" value. 

NOTE 

In this application note, a signal will be 
designated active-low by placing a slash (/) 
after the mnemonic for the signal. 

Appendix A contains a pin assignment list of the 
following signals: 
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MULTIBUS PI Signal Lines-

Initialization Signal Line 

INITI 

Initialization signal; resets the entire system to 
a known internal state. INIT I may be driven by 
one of the bus masters or by an external source 
such as a front panel reset switch. 

Address and Inhibit Lines 

ADROI - ADR131 

20 address lines; used to transmit the address of 
the memory location or 110 port to be accessed. 
The lines are labeled ADROI through ADR9/, 
ADRAI through ADRF I and ADRlOl through 
ADRI3/. ADR131 is the most significant bit. 
8-bit masters use 16 address lines (ADROI -
ADRF I) for memory addressing and 8 address 
lines (ADROI - ADR7/) for 110 port selection. 
16-bit masters use all twenty address lines for 
memory addressing and 12 address lines 
(ADROI - ADRB/) for 110 port selection. Thus, 
8-bit masters may address 64K bytes of memory 
and 256 110 devices while 16-bit masters may 
address 1 megabyte of memory and 4096 110 
devices. (The 8086 CPU actually permits 16 
address bits to be used to specify 110 devices, 
the MULTIBUS specification, however, states 
that only the low order 12 address bits can be 
used to specify 110 ports.) In a 16-bit system, 
the ADROI line is used to indicate whether a low 
(even) byte or a high (odd) byte of memory or 
110 space is being accessed in a word oriented 
memory or 110 device. 

BHEN! 

Byte High Enable; the address control line 
which is used to specify that data will be trans­
ferred on the high byte (DAT81 - DATF/) of the 
MULTIBUS data lines. With current iSBC 
boards, this signal effectively specifies. that a 
word (two byte) transfer is to be performed. This 
signal is used only in systems which incorporate 
siXteen bit memory or 110 modules. 

INHlI 

Inhibit RAM signal; prevents RAM memory 
devices from responding to the memory address 
on the system address bus. INHlI effectively 
allows ROM memory devices to override RAM 
devices when ROM and RAM memory are 

assigned the same memory addresses. INHlI 
may also be used to allow memory mapped 110 
devices to override RAM memory. 

INH21 

Inhibit ROM signal; prevents ROM memory 
devices from responding to the memory address 
on the system address bus. INH21 effectively 
allows auxiliary ROM (e.g., a bootstrap pro­
gram) to override ROM devices when ROM and 
auxiliary ROM memory are assigned the same 
memory addresses. INH21 may also be used to 
allow memory mapped 110 devices to override 
ROM memory. 

Data Lines 

DATOI - DATFI 

16 bidirectional data lines; used to transmit or 
receive information to or from a memory ioca­
tion or 110 port. DATF I being the most signifi­
cant bit. In 8-bit systems, only lines DATOI -
DAT7I are used (DAT7I being the most signi­
ficant bit). In I6-bit systems, either 8·or 161ines 
may be used for data transmission. 

Bus Priority.Resolution Lines 

BCLKI 

Bus clock; the negative edge (high to low) of 
BCLKI is used to synchronize bus priority re­
solution circuits. BCLKI is asynchronous to the 
CPU clock. It has a 100 ns minimum ·period and 
a 35'11, to 65% duty cycle. BCLKI may be slowed, 
stopped, or single stepped for debugging. 

CCLKI 

Constant clock; a bus signal which provides a 
clock signal of constant frequency for unspeci­
fied general use by modules on the system bus. 
CCLKI has a minimum period of 100 ns and a 
35% to 65% duty cycle. 

BPRNI 

A-179 

Bus p,:.iority in signal; indicates to a par&icular 
master module that no higher priority module 
is requesting use of the system bus. BPRN I is 
synchronized with BCLK/. This signal is not 
bused. on the backplane. 
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BPROI 

Bus priority out signal; used with serial (daisy 
chain) bus priority resolution schemes. BPROI 
is passed to the BPRN I input of the master 
module with the next lower bus priority. BPROI 
is synchronized with BCLK/. This signal is not 
bused onihe backplarie. 

BUSYI 

Bus busy signal; an open collector line driven 
by the bus master currently in control to indicate 
that the bus is currently in use. BUSY I prevents 
al} other master modules from gaining control 
of the bus. BUSY I is synchronized with BCLKI. 

BREQI 

Bus request signal; used with a parallel bus 
priority network to indicate that a particular 
master module requires use of the bus for one 
or more data tranl[!fers. BREQI is synchronized 
with BCLKI. This signal is not bused on the 
backplane. 

CBRQI 

C9Jt1.mon bus request; an open-collector line 
which is driven by all potential bus masters 
and is used to inform the current bus master 
that another master wishes to use the bus. . If 
CBRQi' is high, it indicates to the bus master 
that no other master is requesting the bus, and 
therefore, the present bus master can r:etain the 
bus. This saves the bus exchange overhead for 
the current master. 

Information Transfer Protocol Lines 

A bus master provides separate read/write 
command signals for memory and I/O devices: 
MRDCI, MWTCI, IORCI I,lnd IOWCI, as ex­
plained below. When a read/write command is 
active, the address signals must be stabilized at all 
slaves on the bus. For this reason, the protocol 
requires that a bus master must issue address 
signals (and data signals for a write operation) at 
least 50 ns ahead of issuing a read/write command 
to the bus, initiating the data transfer. The bus 
master must keep address signals unchanged until 
at least 50 ns after the read/write command is 
turned off, terminating th~ data transfer. 

A bus slave must provide an acknowledge signal to 
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the bus master in response to a read or write 
command signal. 

MRDCI 

Memory read command; indicates that the 
address of a memory location has been placed 
on the system address lines and specifies that 
the contents (8 or 16 bits) of the addressed 
location are to be read and placed on the system 
data bus. MRDCI is asynchronous with respect 
to BCLKI. 

MWTCI 

Memory write command; indicate!!! that the 
address of a memory location has been placed 
on the system address lines and that data (8 or 
16 bits) has been placed on the system data bus. 
MWTCI specifies that the data is to be written 
into the 'addressed memory location. MWTCI is 
asynchronous with respect to BCLKI. 

IORCI 

liD read command; indicates that the. address 
of an input port has been placed on the system 
address bus and that the data (8 or 16 bits) at 
that input port is to be read and placed on the 
system data bus. IORCI is asynchronous with 
respect to BCLKI. . . 

IOWCI 

liD write command; indicates that the address 
of an oiItput port has bee.n placed on the system 
admess bus and that the contents of the system 
data bus (8 or 16 bits) are to be output to the 
address port. 10WCI is asynchronous with 
respect to BCLKI. 

XACKI 

Transfer acknowledge signal; the required 
response of a slave board which indicates that 
the specified . read/write operation has been 
completed. That is, data has been placed on, or 
accepted from, the system data bus li'nes. 
XACKI is asynchronous with respect to BCLKI. 

Asynchronous Interrupt Lines 

INTO; - INT71 

8 Multi-level, parallel interrupt request lines; 
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used with a parallel interrupt resolution net­
work. INTO. has the highest priority, while 
INT7/ has lowest priority. Interrupt lines 
should be driven with open collector drivers. 

INTAI 

Interrupt aclmuwledge; an interrupt acknowl­
edge line (INTA/), driven by the bus master, 
requests the transfer of interrupt information 
onto the bus from slave priority interrupt con­
trollers (8259s or 8259As). The specific informa­
tion timed onto the bus depends upon the 
implementation of the interrupt scheme. In 
general, the leading edge of INTAI indicates 
that the address bus is active while the trailing 
edge indicates that data is present on the data 
lines. 

MULTIBUS P2 Signal Lines - The signals 
contained on the MULTIBUS P2 auxiliary con­
nector are used primarily by optional power 
back-up circuitry for memory protection. P2 
signals are not bused on the backplane, and 
therefore, require a separate connector for each 
board using the P2 signals. Present iSBC boards 
have a slot in the card edge and should be used 
with a keyed P2 edge connector. Use of the P2 
signal lines is optional. 

ACLO 

AC Luw; this signal generated by the power 
supply goes high when the AC line voltage 
drops below a certain voltage (e.g., 103v AC in 
115v AC line voltage systems) indicating D.C. 
power will fail in 3 msec. ACLO goes low when 
all D.C. voltages return to approximately 95% 
of the regulated value. This line must be pulled 
up by the optional standby power source, if one 
is used. 

PFINI 

Puwer fail interrupt; this signal interrupts the 
processor when a power failure occurs, it is 
driven by external power fail circuitry. 

PFSNI 

Power fail sense; this line is the output ofa 
latch which indicates that a power failure has 
occurred. It is reset by PFSR/. The power fail 
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sense latch is part of external power fail cir­
cuitry and must be powered by the standby 
power source. 

PFSRi 

PUll'('/' fail sellse reset; this line is used to reset 
the power fail sense latch (PFSN I). 

MPRO/ 

Memory .prote('t; prevents memory operation 
during period of uncertain DC power, by in­
hibiting memory requests. MPROi is driven 
by external power fail circuitry. 

ALE 

Address latch enable; generated by the CPU 
(8085 or 80S6) to provide an auxiliary address 
latch. 

HALT! 

Halt; indicates that the master CPU is halted. 

AUX RESET! 

Auxiliary Reset; this externally generated sig­
nal initiates a power-up sequence. 

WAIT! 

Bus master wait state; this signal indicates 
that the processor is in a wait state. 

Reserved - Several PI and P2 connector bus 
pins are unused. However, they should be regard­
ed as reserved for dedicated use in future Intel 
products. 

Power Supplies - The power supply bus pins 
are detailed in Appendix A which contains the 
pin assignment of signals on the MULTIBUS 
backplane. 

It is the designer's responsibility to provide 
adequate bulk decoupling on the board to avoid 
current surges on the power supply lines. It is also 
recommended that you provide high frequency 
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decoupling for the logic 011 your board. Values of 
22uF for +5v and +12v pins and 10uF for -5v and 
-12v pins are typical on iSBC boards. 

Operating Characteristics 

Beyond the definition of the MULTIBUS signals 
themselves, it is important to examine the 
operating characteristics of the bus. The Ac 
requirements outline the timing ofthe bus signals 
and in particular, define the relationships between 
the various bus signals. On the other hand, the DC 
requirements specify' the bus driver character­
istics, maximum bus loading per board, and the 
pull-up/down resistors. 

The AC requirements are best presented by a 
discussion of the relevant timing diagrams. 
Appendix B contains a list of the MULTIBUS 
timing specifications. The following sections will 
discuss data transfers, inhibit operations, inter­
rupt operations, MULTIBUS multi-master opera' 
tion and power fail considerations. 

Data Transfers - Data transfers on the MULTI­
BUS system bus occur with a maximum band­
width of 5 MHz for single or multiple read/write 
transfers. Due to bus arbitration and memory 
access time, a typical maximum transfer rate is 
often on the order of 2 MHz. 

Read Data 

Figure 1 shows the read operation AC timing 
diagram. The address must be stable (tAS) for a 
minimum of 50 ns before command (IORCI or 
MRDC/).Thistime is typically used by the bus 
interface to decode the address and thus provide 
the required device selects; The device selects 
establish the data paths on the user system in 
anticipation of the strobe signal (command) 
which will follow. The minimum command pulse 
width is 100 ns. The address must remain stable 
for at 'least 50 ns foll~wi~g the command (tAH). 
Valid data should not be driven onto the bus prior 
to command, and must not be removed until the 
command is cleared. The XACKI signal, which is 
a response indicating the specified read/write 
operation' has been completed, niust coincide or 
follow both the read access and valid data (tDXL). 
XACKI must be held until the command is cleared 
(tXAH)· 
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Figure 1. Read AC Timing 

Write Data 

The write operation AC timing diagram is shown 
in Figure 2. D~ring a write data transfer, valid 
data must be presented simultaneously with a 
stable address. Thus, the write data setup time 
(tDS) has the same requirement as the address 
setup time (tAS). The requirement for stable data 
both before and after command (IOWCI or 
MWTC/) enables the bus interface circuitry to 
latch data oneither the leading or trailing edge of 
command. 
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Figure 2. Write AC Timing 

PASSIVE 

Data Byte Swapping in 16-bit Systems 

MASTER 
TO 

SLAVE 

A 16-bit master may transfer data on the MULTI­
BUS data lines using 8-bit or I6-bit paths 
depending on whether a byte or word (2 byte) 
operation has been specified. (A word transfer 
specified with an odd 110 or memory address will 
actually be executed as two single byte transfers.) 
An 8-bit master may only perform byte transfers 
on the MULTIBUS data lines DATOI - DAT7I. 

In order to maintain compatibility with older 
8-bit masters and slaves, a byte swapping buffer 
is included in all new 16-bit masters and 16-bit 
slaves. In the iSBC product line, all byte transfers 
will take place on the low 8 data lines DATOI -
DAT7I. Figure 3 contains a example of 8/16-bit 
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data driver logic for 16-bit master and slave 
systems. In the 8/16-bit system, there are three 
sets of buffers; the lower byte buffer which 
accesses DATOI - OAT?!, the upper byte buffer 
which accesses DATSI - DATF/, and the swap 
byte buffer which accesses the MULTIBUS data 
lines DATOI - OAT?! and transfers the data 
to/from the on-board data bus lines 08 - OF. 

Figure 4 summarizes the 8 and I6-bit data paths 
used for three types of MULTI BUS transfers. Two 
signals control the data transfers. 

Byte High Enable (BHEN I) active indicates that 
the bus is operating in sixteen bit mode, and 
Address Bit 0 (ADRO/) defines an even or odd byte 
transfer address. 

On the first type of transfer, BHEN I is inactive, 
and ADROI is inactive indicating the transfer of 
an even eight bit byte. The transfer takes place 
across data lines DATOI - OAT?!. 

BUFFERED 
BHENI 

AORO 

USER BUS 

00-01 •• ------+1 

DIRECTION -----+-----. 

On the second type of transfer, BHEN I is inactive, 
and ADROI is active indicating the transfer of a 
high (odd) byte. On this type of transfer, the odd 
(high) byte is transferred through the Swap Byte 
Buffer to DATOI - OAT?!. This makes eight bit 
and sixteen bit systems compatible. 

AEN! ---+--. 

Figure 3_ a/16-Bit Data Drivers 

l6-BIT DEVICE MULTIBUS BHENI ADROI MULTIBUS DEVICE 
TRANSFER BYTE 

DATOI 

DATFI 

DATA PATH TRANSFERRED 

DATO/- DAT7I 

H H a-BIT. 
DATOI - DAT7I 

H L a-BIT. 
DATOI - DAT7I 

L H. l6-BIT. 
DATOI - DATFI 

Figure 4. a/l6-Bit Device Transfer Operation 
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The third type of transfer is a 16 bit (word) 
transfer. This is indicated by BHEN/ being 
active, and ADRO/being inactive. On this type of 
transfer, the low (even) byte is transferred on 
DATO/ - DAT7I and the high (odd) byte is 
transferred on DATS/ - DATF/. 
Note that the condition when both BHENI and 
ADROI are active is not used with present iSBC 
boards. This condition could be used to transfer a 
high odd byte of data on DATil/ - DATF/, thus 
eliminating the need for the swap byte buffer. 
However, this is not a recommended transfer type, 
because it eliminates the capability of communi­
cating with 8-bit modules. 

Inhibit Operations - Bus inhibit operations are 
required by certain bootstrap and memory mapped 
I/O configurations. The purpose of the inhibit 
operation is to allow a combination of RAM , ROM, 
or memory mapped I/O to occupy the same 
memory address space. In the case of a bootstrap, 
it may be desirable to have both ROM and RAM 
memory occupy the same address space, selecting 
ROM instead of RAM for low order memory only 
when the system is reset. Asystem designed to use 

memory mapped I/O, which has actual memory 
occupying the memory mapped 110 address 
space, may need to inhibit RAM or ROM memory 
to perform its functions. 

There are two essential requirements for a success­
ful inhibit operation. Thefirst is that the inhibit 
signal must be asserted as soon as possible, within 
a maximum of 100 ns (tCI), after stable address. 
The second requirement for a successful inhibit 
operation is that the acknowledge must be delayed 
(tXACKB) to allow the inhibited slave to ter­
minate any irreversible timing operations in­
itiated by detection of a valid command prior to its 
inhibit. 

This situation may arise because a command can 
be asserted within 50 ns after stable address (tAS) 
and yet inhibit is not required until 100 ns (tID) 
after stable address. The acknowledge delay time 
(tXACKB) is a function of the c;ycle time of the 
inhibited slave memory. Inhibiting the iSBC 016 
RAM board, for example, requires a minimum of 
1.5 usec. Less time is typically needed to inhibit 
other memory modules. For example, the iSBC 104 
board requires 475 ns. 

Figure 5 depicts a situation in which both RAM 
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LOCAL 
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----'-~~ ~-------' 

LOCAL 
SELECT I 

Figure 5. Inhibit Timing 
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and PROM memory have the same memory 
addresses. In this case, PROM inhibits RAM, 
producing the effect of PROM overriding RAM. 
After address is stable, local selects are generated 
for both the PROM and the RAM. The PROM local 
select produces the INHII signal which then 
removes the RAM local select and its driver enable. 
Because the slave RAM has been inhibited after it 
had already begun its cycle, the PROM XACKI 
must be delayed (tXACKB) until after the latest 
possible acknowledgement from the RAM 
(tXACKA)· 

Interrupt Operations - The MULTIBUS inter­
rupt lines INTOI - INT71 are used by a MULTI­
BUS master to receive interrupts from bus slaves, 
other bus masters or external logic such as power 
fail logic. A bus master may also contain internal 
interrupt sources which do not require the bus 
interrupt lines to interrupt the master. There are 
two interrupt implementation schemes used by 
bus interrupts, Non Bus Vectored Interrupts and 
Bus Vectored Interrupts. N on Bus Vectored 
Interrupts do not convey interrupt vector address 
information on the bus. Bus Vectored Interrupts 
are interrupts from slave Priority Interrupt Con­
trollers (PlCs) which do convey interrupt vector 

BUS MASTER 

I MASTER CPU I 
rNTXI 

INTAI iNTRI DATA 
BUS 
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I PROGRAMMABLE INTERRUPT I 
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FLIP­
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'------ -
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IORCI 
OR 

lowe/ 

A 

t 

address information on the bus. 

Non Bus Vectored Interrupts 

Non Bus Vectored Interrupts are those interrupts 
whose interrupt vector address is generated by the 
bus master and do not require the MULTIBUS 
address lines for transfer of the interrupt vector 
address. The interrupt vector address is generated 
by the interrupt controller on the master and 
transferred to the processor over the local bus. The 
source of the interrupt can be on the master module 
or on other bus modules, in which case the bus 
modules use the MULTI BUS interrupt request 
lines (INTOI - INT7/) to generate their interrupt 
requests to the bus master. When an interrupt 
request line is activated, the bus master performs it 
own interrupt operation and processes the inter­
rupt. Figure 6 shows an example of Non Bus 
Vectored Interrupt implementation. 

Bus Vectored Interrupt,s 

Bus Vectored Interrupts (Figure 7) are those inter­
rupts which transfer the interrupt vector address 
along the MULTIBUS address lines from the 
slave to the bus master using the INTAI command 
signal for synchronization. 
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Figure 6. Non Bus Vectored Interrupt Implementation 
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Figure 7. B!"s Vectored Interrupt Logic ,(With 2 INTAI Timing Diagram) 

When an interrupt.request from the MULTIBUS 
interrupt lines INTOI . INT7 I occurs, the interrupt 
control logic on the bus master interrupts its 
processor. The processor on the bus master 
generates an INTAI command which freezes the 
state of the interrupt logic on the MULTIBUS 
slaves for priority resolutiop. The bus master also 
locks (retains the bus between bus cycles) -the 
MULTIBUS ,control lines to guarantee itself 
consecutive bus cycles. After the first INT AI 
command, the bus master's interrupt control logic 
puts an in,terrupt code on to the MULTIBUS 
address lines ADR81 -ADRA/. The interrupt code 
is the address of the highest priority active inter­
rupt request line. At this point in the Bus Vectored 
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Interrupt procedure, two different sequences could 
take place. The difference occurs, because the 
MULTI BUS specification can support masters 
which generate one additional INTAI (8086 
masters) or two additional INTA/s (8080A and 
8085masters). 

, If the bus master generates one additional INTA/, 
this second INTAI causes the bus slave interrupt 
control logic to transmit an interrupt vector 8-bit 
pointer on the MULTIBUS data lines. The vector 
pointer is used by the bus master to determine the 
memory address of the interrupt service r~lUtine. 

If the bus ,master generates two additional 
INT AI s, these two INTAI commands allow the 
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bus slave to puta two byte interrupt vector address 
on to the MULTIBUS data lines (one byte for each 
INTA/). The interrupt vector address is used by 
the bus master to service the interrupt. 

The MULTIBUS specification provides for only 
one type of Bus Vectored Interrupt operation in a 
given system. Slave boards which have an 8259 
interrupt controller are only capable of 3 INTAI 
operation (2 additional INTA/s after the first 
INTA/). Slave boards with the 8259A interrupt 
controller are capable of either 2 INTAI or 3 
INTAI operation. All slave boards in a given 
system must operate in the same way (2 INT AI s or 
3 INTA/s) if Bus Vectored Interrupts are to be 
used. However, the MULTIBUS specification 
does provide forBus Vectored Interrupts and Non 
Bus Vectored Interrupts in the same system. 

MULTIBUS Multi-Master Operation - The 
MULTIBUS system bus can accommodate several 
bus masters on the same system, each one taking 
control of the bus as it needs to affect data trans· 
fers. The bus masters request bus control through 
a bus exchange sequence. 

Two bus exchange priority resolution techniques 
are discussed, a serial technique and a parallel 
technique. . Figures 8 and 9 illustrate these two 
techniques. The bus exchange operation dis­
cussed later is the same for both techniques. 

Serial Priority Technique 

_ Serial priority resolution is accomplished with a 
daisy chain technique (see Figure 8). The priority 
input (BPRN/) of the highest priority master is 
tied to ground. The pri~rity output (BPRO/) ofthe 

HIGHEST 
PRIORITY 
MASTER 

BPRNI 

highest priority master is then connected to the 
priority input (BPRN/) of' the next lower priority 
master, and so on. Any master generating a bus 
request will set its BPROI signal high to the next 
lower priority master, Any master seeing a high 
signal on its BPRN/line will sets its BPRO/line 
high, thus passing down priority information to 
lower priority masters. In this implementation, 
the bus request line (BREQ/) is not used outside of 
the individual masters. A limited number of 
masters can be accommodated by this technique, 
due to gate delays through the daisy chain. Using 
the current Intel MULTIBUS controller chip on 
the master boards up to 3 masters may be accom­
modated if a BCLKI period of 100 ns is used. If 
more bus masters are required, either BCLKI must 
be slowed or a parallel priority technique used. 

Parallel Priority Technique 

In the parallel priority technique, the priority is 
resolved in a priority resolution circuit in which 
the highest priority BREQI input is encoded with 
a priority encoder chip (74148). This coded value is 
then decoded with a priority decoder chip (74S138) 
to activate the appropriate BPRNI line. The 
BPROI lines are not used in the. parallel priority 
scheme. However, since the MULTIBUS back­
plane contains a trace from the BPRNI signal of' 
one card slot to the BPROI signal of the adjacent 
lower card slot, the BPROI must be disconnected 
from the bus on the board or the backplane trace 
must be cut. A practical limit of sixteen masters 
can be accommodated. using the parallel priority 
technique due to physical bus length limitations. 
Figure 9 contains the schematic for a typic;ll 
parallel resolution network. Note that the parallel 
priority resolution network must be externally 
supplied. 

LOWEST 
PRIORITY 
MASTER 

BPROI 

Figure 8. Serial Priority Technique 
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MUL TIBUS Exchange Operation - A timing 
diagram for the MULTIBUS exchange operation 
is shown in Figure 10. This implementation 
example uses a parallel resolution scheme, how­
ever, the timing would be basically the same for 
the serial resolution scheme. 

In this example, master A has been assigned a 
lower priority than master B. The bus exchange 
occurs because master B generates a bus request 
during a time when master A has control of the 
bus. 

The exchange process begins when master B 
requires the bus to access some resource such as an 
I/O or memory module while master A controls the 
bus. This internal request is synchronized with 
the trailing edge (high to low) of BCLKI to 
generate a bus request (BREQ/). The bus priority 
resolution circuit changes the BPRNI signal from 
active (low) to inactive (high) for master A and 
from inactive to active for master B. Master A 
must first complete the current bus command if 
one is in operation. After master A completes the 
command, it sets BUSY I inactive on the next 
trailing edge of BCLK/. This allows the actual bus 
exchange to occur, because master A has relin­
quished control of the bus, and master B has been 
granted its BPRN/. During this time, the drivers 
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for master A are disabled. Master B must take 
control of the bus with the next trailing edge of 
BCLKI to complete the bus exchange. Master B 
takes control by activating BUSY I and enabling 
its .drivers. 

It is possible for master A to retain control of the 
bus and prevent maste'r B from getting control. 
Master A activates the Bus Override (or Bus Lock) 
signal which keeps BUSY I active allowing con­
trol of the bus to stay with master A. This 
guarantees a master consecutive bus cycles for 
software or hardware functions which require 
exclusive, continuous access to the bus. 

Note that in systems with only a single master it is 
necessary to ground the BPRN I pin of the master, 
if slave boards are to be accessed. In single board 
systems which use a CPU board capable of Bus 
Vectored Interrupt operation, the BPRNI pin must 
also be grounded. 

In a single master system bus transfer efficiency 
may be gained if the BUS OVERRIDE signal is 
kept active continuously. This permits the master 
to maintain control of the bus at all times, there­
fore saving the overhead of the master reacquiring 
the bus each time it is needed. 

The CBRQI line may be used by a master in 
control of the bus to determine if another master 
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Figure 10. Bus Control Exchange Operation 

requires the bus. If a master cunently in control of 
the bus sees the CBRQI line inaCtive, it will 
maintain control of the bus between adjacent bus 
accesses. Therefore, when a bus access is required, 
the master saves the overhead of reacquiring the 
bus. If a current bus master sees the CBRQI line 
active, it will then relinquish control of the bus 
after the current bus access and will contend for 
the bus with the other master(s) requiring the bus. 
The relative priorities of the masters will deter­
mine which master receives the bus. 
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Note that except for the BUS OVERRIDE state, no 
single master may keep exclusive control' of the 
bus. This is true because iUs impossible for the 
CPU on a inaster to require continuous access to 
the bus. Other lower priority masters will always 
be able to gain access to the bus betweenaccesses 
of a higher priority master. 

Power Fail Considerations - The MULTIBUS 
P2 connector signals provide a means of handling 
power failures. The circuits required for power 
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Figure 11. Power Fall Timing Sequence 

failure detection and handling are optional and 
must be supplied by the user. Figure 11 shows 
the timing of a power fail sequence. 

The power supply monitors the AC power level. 
When power drops below an acceptable value, the 
power supply raises ACLO which tells the power 
fail logic that a minimum of three milliseconds will 
elapse before DC power will fall below regulated 
voltage levels. The power fail logic sets a sense 
latch (PFSN I) and generates an interrupt (PFIN I) 
to the processor so the processor can store its 
environment. After a 2.5 millisecond timeout, the 
memory protect signal (MPRO/) is asserted by the 
power fail logic preventing any memory activity. 
As power falls, the memory goes on standby 
power. Note that the power fail logic must be 
powered from the standby source. 

As the AC line revives, the logic voltage level is 
monitored by the power supply. After power has 
been at its operating level for one millisecond 
minimum, the power supply sets the signal ACLO 
low, beginning the restart sequence. First, the 
memory protect line (MPRO/) then the initialize 
line (INIT/) become inactive. The bus master now 
starts running. The bus master checks the power 
fail latch (PFSN/) and, ifitfinds it set, branches to 
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a power up routine which resets the latch (PFSR/), 
restores the environment, and resumes execution. 

Note that INITI is activated only after DC power 
has risen to the regulated voltage levels and must 
stay low for five milliseconds minimum before the 
system is allowed to restart. Alternatively,INITI 
may be held low through an open collector device 
by MPROI. 

How the power failure equipment is configured is 
left to the system designer. The backup power 
source may be batteries located on the memory 
boards or more elaborate facilities located off· 
board. The location of the power- fail logic 
determines which MULTIBUS powerfaillines are 
used. Pins on the P2 connector have been specified 
for the power failure functions for use as needed. 

To further clarify the location and use of the power 
fail circuitry, an example of a typical power fail 
system block diagram is shown in Figure 12. A 
single board computer and a slave memory board 
are contained in the system. It is desired to power 
the memory circuit elemen ts of the memory board 
from auxiliary power. The single board computer 
will remain on the main power supply. To ac· 
complish this, user supplied power fail logic and 
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* USER SUPPLIED 

Figure 12. Typical Power Fail System Block Diagram 

an auxiliary power supply have been included in 
the system. 

The single board computer is powered from the PI 
power lines and accesses the P2 signal lines 
PFIN/, PFSNI and PFSRI (only the P2 signal 
lines used by a particular functional block are 
shown on the block diagram). The PFSRI line is 
driven from two sources: a front panel switch and 
the single board computer. The front panel switch 
is used during normal power·up to reset the power 
fail sense latch. The single board computer uses 
the PFSRI line to reset the latch during a power·up 
sequence after a power failure. Current single 
board computers must access the PFSNI and 
PFSRI signals either directly with dedicated 
circuitry and a P2 pin connection or through the 
parallel I/O lines with a cable connection from the 
parallel 110 connector to the P2 connector. 

The slave memory board uses both the PI and P2 
power lines, the P2 power lines are used (at all 
times) to power the memory circuit elements and 
other support circuits, the PI power lines power all 
other circuitry. In addition, the MPROI line is 
input and used to sense when memory contents 
should be protected. 

The power fail logic contains the power fail sense 
latch, and uses the PFSRI and ACLO lines for 
inputs and the PFINI PFSN/, and MPROI lines 
for outputs. The power fail logic must be powered 
by the P2 power lines. 
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DC Requirements - The drive and load charac· 
teristics of the bus signals are listed in Appendix 
C. The physical locations of the drivers and loads, 
as well as the terminating resistor value for each 
bus line, are also specified. Appendix D contains 
the MULTIBUS power specifications. 

MUL TIBUS™ Slave Interface 
Circuit Elements 

There are three basic elements of a slave bus 
interface: address decoders, bus drivers, and 
control signal logic. This section discusses each of 
these elements in general terms. A description of a 
detailed implementation of a slave interface is 
presented in a later section ofthis application note. 

Address Decoding - This logic decodes. the 
appropriate MULTIBUS address bits into,RAM 
requests, ROM requests, or 110 selects. Care must 
be taken in the design of the address decode logic 
to ensure flexibility in the selection of base address 
assignments. Without this flexibility, restrictions 
may be placed upon various system configura· 
tions. Ideally, switches and jumper connections 
should be associated with the decode logic to 
permit field modification of base address assign· 
ments. 

The initial step in designing the address decode 
portion of a MUL TIBUS interface is to determine 
the required number of unique address locations. 
This decision is influenced by the fact that 
address decoding is usually done in two stages. 
The first stage decodes the base address, pro· 
ducing an enable for the second stage which 
generates the actual device selects for the user 
logic. A convenient implementation of this two 
stage decoding scheme utilizes a pair of decoders 
driven by the high order bits of the address for the 
first stage and a second decoder for the low order 
bits of the address bus. This technique forces the 
number of unique address locations to be a power 
of two, based at the address decoded by the first 
stage. Consider the scheme illustrated in Figure 
13. 

As shown in Figure 13, the address bits A4 . ABare 
used to produce switch selected outputs ofthe first 
stage of decoding. The lout of 8 binary decoders 
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have been used. The top decoder decodes address 
lines A4 - A 7, and the bottom decoder decodes 
address lines A8' A B. If only address Jines AO -A 7 
are being used for device selection, as in the case of 
I/O port selection in 8-bitsystems, the bottom 
decoder may be disabled by setting switch 82 to the 
ground position. Address lines A7 and A B drive 
enable inputs E2 or E3 of the decoders. The 
address lines AO - A3 enter the second stage 
address decoder to produce 8 user device selects. 
The second stage decoder must first be enabled by 
an address that corresponds to the switch-selected 
base address. 

Address decoding must be completed before the 
arrival of a command. Since the command may 
become active within 50 ns after stable address, 
the decode logic should be kept simple with a 
minimal number of layers of logic. Furthermore, 
the timing is extremely critical in systems which 
make use of the inhibit lines. 

A linear or unary select scheme in which no binary 
encoding of device address (e.g., address bit AO 
selects deviCe 0, address bit A 1 selects device 1, 
etc.) is performed is not recommended because the 
scheme offers no protection in case multiple 
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Figure 13~ Two Stage Decoding Scheme 

devices are simultaneously selected, and because 
the addressing within such a system is restricted 
by the extent of the address space occupied by such 
a scheme. 

Data Bus Drivers - For user designed logic 
which simply receives data from the MULTIBU8 
data lines, this portion of the bus interface logic 
may only consist of buffers. Buffers are required 
to ensure that maximum allowable bus loading is 
not exceeded by the user logic. 

In systems where the user designed logic must 
place data onto the MULTIBUS data lines, three­
state drivers are required. These drivers should be 
enabled only when a memory read command 
(MRDC/) or an I/O read command (lORC/) is 
present and the module has been addressed. 

When both the read and write functio'ns are re­
quired, parallel bidirectional bus drivers (e.g., Intel 
8226,8287, etc.) are used. A note of caution must be 
included for the designer who uses this type of 
device. A problem may arise if data hold time 
requirements must be satisfied for user logic 
following write operations. When bus commands 
are used to directly produce both the chip select for 
the bidirectional bus driver and a strobe toa latch 
in the user logic, removal of that signal may not 
provide the user's latch with adequate data hold 
time. Depending on the specifics of the user logic, 
this problem may be solved by permanently 
enabling the data buffer's receiver circuits and 
controlling only the direction of the buffers. 

Control Signal Logic - The.control signal logic 
consists of the circuits that forward the I/() and 
memory read/write commands to their respective 
destinations, provide the bus with a transfer 
acknowledge response, and drive the system 
interrupUines. 

Bus Command Lines 

The MULTIBU8 information transfer protocol 
lines (MRDC/, MWTC/, lORD/_ and lOWC/) 
should be buffered by devices with very high speed 
switching. Because the bus DC requirements 
specify that each board may load these lines with 
2.0 mA, Schottky devices are recommended. LS 
devices are not recommended due to their poor 
noise immunity. The commands should be gated 
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with a signal indicating the base address has been 
decoded to generate read and write strobes for the 
user logic. 

Transfer Acknowledge Generation 

The user interface transfer acknowledge genera­
tion logic provides a transfer acknowledge re­
sponse, XACK/, to notify the bus master that write 
data provided by the bus master has been accepted 
or that read data it has requested is available on 
the MULTIBUS data lines. XACKI allows the bus 
master to conclude its current instruction. 

Since XACKI timing requirements depend on both 
the CPU of the bus master and characteristics of 
the user logic, a circuit is needed which will provide 
a range of easily modified acknowledge responses. 

The transfer acknowledge signals must be driven 
by three-state drivers which are enabled when the 
bus interface is addressed and a command is 
present. 

Interrupt Signal Lines 

The asynchronous interrupt lines must be driven 
by open collector devices with a minimum drive of 
16 mA. 

In a typical Non Bus Vectored Inter"upt system, 
logic must be provided to assert and latch-up an 
interrupt signal. In addition to driving the 
MULTIBUS interrupt lines, the latched interrupt 
signal would be read by an 110 operation such as 
reading the module's status. The interrupt signal 
would be cleared by writing to the status register. 

III. MULTIBUSTM SLAVE DESIGN 
EXAMPLE 

A MULTIBUS slave design example has been 
included in this application note to reinforce the 
theory previously discussed. The design example 
is of general purpose 110 slave interface. This 
design example could easily be modified to be used 
as a slave memory interface by buffering the 
address signals and using the appropriate 
MULTIBUS memory commands. In addition, to 
help the reader better understand an application 
for an 110 slave interface, two Intel 8255A Parallel 
Peripheral Interface (PPI) devices are shown con­
nected to the slave interface. 

The design example is shown in both 8/16-bit 
version and an 8-bit version. The 8/16-bit version 
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is an 110 interface which will permit a 16-bit 
master to perform 8 or 16 bit data transfers. 8-bit 
masters may also use the 8/16-bit version of the 
design example to perform 8-bit data transfers. 

The 8-bit version of the design example may be 
used by both 8 or 16-bit masters, but will only 
perform 8-bit data transfers. It does not contain 
the circuitry required to perform 16-bit data 
transfers. 

Both the 8/16-bit version and the 8-bit version of 
the design example were implemented on an iSBC 
905 prototype board. The schematics for each of 
the examples are given in Appendices F and G. 

Functional/Programming Characteristics 

This section describes the organization of the 
slave interface from two points of view, the 
functional point of view and the programming 
characteristics. First, the principal functions 
performed by the hardware are identified and the 
general data flow is illustrated. This point of view 
is intended as an introduction to the detailed 
description provided in the next section; Theory of 
Operation. In the second point of view, the 
information needed by a programmer to access the 
slave is summarized. 

Functional Description - The function of this 
110 slave is to provide the bus interface logic for 
general purpose 110 functions and for two Intel 
8255A Parallel Peripheral Interface (PPI) devices. 
Eight device selects (port addresses) are available 
for general purpose 110 functions. One of these 
device select lines is used to read and reset the state 
of an interrupt status flip-flop, the other seven 
device selects are unused in this design. An 
additional eight 110 device port addresses are 
used by the two 8255A devices; four 110 port 
addresses per 8255A (three 110 port address for 
the three parallel ports A, B, and C and the fourth 
110 port address for the device control register). 

Figure 14 contains a functional block diagram of 
the slave design example. This block diagram 
shows the fundamental circuit elements of a bus 
slave: bidirectional data bus driverslreceivers, 
address decoding logic and bus control logic. Also 
shown is the address decoding logic for the low 
order four bits, the interrupt logic which is selected 
by this decoding logic, and the two 8255A devices. 
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Programming Characteristics ,..... The slave 
design example provides, 16 110 port addresses 
which may be accessed by user, software. The 
base address of the 16 contiguous port addresses 
is selected by wire wrap connections on the proto­
type board. The wire wrap ,connections specify 
address ,bits ADR41 - ADRBI, They allow, the 
selection of a base address on any 16 byte 
boundary. Twelve address bits (ADRO/- ADRB/) 
are used since 16-bit (BOB6 based) masters use 12 
bits to specity I/O port addresses. If an B bit (BOBO 
or BOB5 based) master is used with this slave board, 
the high order address bits (AD RBI -ADRB/)must 
not be used by the decoding circuits; a wire wrap 
jumper position (ground position) is provided for 
this_ ' 

The 16 110 port addresses are divided into two 
groups'ofB port addresses by decoding address line 
ADR3/. Port addressesXXO- XX7 are used for 
general 1/0 functions (XX indicates any hexi­
decimal digit combination). Port address XXO is 
used for accessing the interrupt status flip:flop and 

port addresses XXI. - XX7 are not used in this 
example. Port addresses XXB - XXF are used for 
accessing the PPIs. If port addresses XXB - XXF 
are selected, then ADROI is used to specify which 
of two PPIs are selected. If the address is even 
(XXB, XXA, XXC, or XXE) then one PPI is selected; 
If the address is odd (XX9, XXB, XXD, or XXF'), 
then the other PPI is selected. ADRll and ADR21 
are connected directly to the PPIs. Table L 
summarizes the 110 port addresses of the slave 
design example. Note that if a 16-bit master is 
used, it is possible to access the slave in a byte or 
word mode. If word access is used with port 
address XXB, XXA, XXC, or XXE, then 16 bit 
transfers wilf occur' between the PPIs and the' 
master. These 16 bit transfers occur because an 
even address has bel,ln specified and the MULTI· 
BUS BHEN/sig'nal indicates that a 16-bit 
transfer is'requested. 

A-194 

Theory' of Operation 

In the preceding section, each of the slave design 
example functional blocks was identified and 
briefly explained. This section explains how these 
functions are implemented. For detailed circuit 
information, refer to the schematics in Appendices 
F and G. The schematic in Appendix F is on a 
foldout page so that the following text may easily 
be related, to the schematic., 

The discussion of the theory of operation is divided 
into five segments, each of which, discusses' a 
different funCtion performed by the MULTIBUS 
slave design example. The five segments are: 

1. ' Bus address decoding 

2. Data buffers 

3. Control signals 

4. Interrupt logic 

, 5. PPI operation 

Each of these topics are discussed with rega~d to 
the 8/16-bit version' ,of the design example; 
followed by a discussion of the circuit elements 
which are required by the B-bit version of the 
interfa~e. " , 

Bus Address Decoding - Bus address decoding 
is performed by two B205 1 out ofB binary d~coders. 
One decoder (A3) decodes address bits ADRBi' : 
ADRB/, and the second decoder (A2) decodes 
address bits ADR41 - ADR7 I. The base address 
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Table 1 

SLAVE DESIGN EXAMPLE PORT ADDRESSES 

1/0 PORT ADDRESS READ WRITE 

BYTE ACCESS 

XXO Bit a = Interrupt Status Reset I nterrupt Status 

XX1 - XX? Unused Unused 

XX8 Parallel Port A, Even PPi Parallel Port A, Even PPI 

XX9 Parallel Port A, Odd PPI Parallel Port A, Odd PPI 

XXA Parallel Port B, Even PPI Parallel Port B, Even PPI 

XXB Parallel Port B, Odd PPI Parallel Port B, Odd PPI 

XXC Parallel Port C, Even PPI Parallel Port C, Even PPI 

XXD Parallel Port C, Odd PPI Parallel Port C, Odd PPI 

XXE Illegal Condition Control, Even PPI 

XXF Illegal Condition Control, Odd PPI 

WORD ACCESS 

XXO Bit a = Interrupt Status Reset Interrupt Status 

XX2 - XX6 Unused Unused 

XX8 Parallel Port A, Even and Odd PPls Parallel Port A, Even and Odd PPts 

XXA Parallel Port B, Even and Odd PPls Parallel Port B, Even and Odd PPls 

XXC Parallel Port C, Even and Odd PPls Parallel Port C, Even and Odd PPls 

XXE Illegal Condition Control, Even and Odd PPls 

XX = Any hex digits, assigned by jumpers; XX defines the base address. 

selected is determined by the position of wire wrap 
jumpers. The outputs of the two decoders are 
ANDed together to form the BASE ADR SELECTI 
signal. This signal specifies the base address 
for a group of 16 I/O ports. Using the wire wrap 
jumper positions shown in the schematic, a base 
address of EJ has been selected. Therefore, this 

- MULTIBUS slave board will respond to I/O port 
addresses in the EJO - EJF range. 

If this slave board is to be used with 8-bit MUL 1'1-
BUS masters, the high order address bits must not 
be decoded. Therefore, the wire wrap jumper 
which selects the output of decoder A3 must be 
placed in the top (ground) position (pin 10 of gate 
A9 to ground). 

The low order 4 address lines (ADROI -AD RJ/) are 
buffered and inverted using 74LS04 inverters. 
These address lines are input to an 8205 for 
decoding a chip select for the interrupt logic; the 
address lines are also used directly by the PPIs. 
LS-Series logic is required for buffering to meet the 
MUL TIBUS specification for IlL (low level inpu t 
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current). S-Series or standard series logic will not 
meet this specification. 

Address decoder A4 is used to decode addresses 
EJO - EJ7. The CSOI output of this decoder is used 
to select the interrupt logic, thus I/O port address 
EJO is used to read and reset the interrupt latch. 
The remaining outputs from decoder A4 (CSl/ . 
CS7/) are not used in this example. They would 
normally be used to select other functions in a 
slave board with more capability. Note that in the 
schematic shown in Appendix G for the 8-bit 
version of this slave design example, the high 
order (ADR81 - ADRB/) address decoder is not 
included and the BHEN I signal is not used. 

Data Buffers - Intel 8287 8-bit parallel bi­
directional .bus drivers are used for the MULTI­
BUS data lines DATOI - DATF/. In the 81l6-bit 
version of the slave board, three 8287 drivers 
are used. 

When an 8-bit data transfer is requested, either 
driver A5, which is connected to on-board. data 
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lines DO - D7, or driver A6, which is connected to 
on-board data lines D8 - DF, is used. If a byte 
transfer is requested from an even address, driver 
A5 will be selected. If a byte transfer from an odd 
address is requested, driver A6 will be selected. All 
byte transfers take place on MULTIBUS data 
lines DATOI - DAT7I. When a word (16-bit) 
transfer is requested from an even address, drivers 
A5 and A 7 will be used. Note that if a user program 
requests a word transfer from an odd address, 
16-bit masters in the iSBC product line will 
actually perform two byte transfer requests. 

The logic which determines the chip selection 
(8287 input signal OE, output enable) signals for 
the bus drivers uses the low order address bit 
(ADRO/) and the buffered Byte High Enable 
signal (BHENBL/). Note that the MULTIBUS 
signal BHENI has been buffered with an 74LS04 
inverter. This is done to meet the bus address line 
loading specification. The SWAP BYTEI signal 
which is generated is qualified by the BD ENBLI 
signal and used to select the bus drivers. 

The steering pin for the 8287 drivers is labelled T 
(transmit) and is driven by the signal RD. When 
an input (read) request is active or when neither a 
read or· write command is being serviced, the 
direction of data transfer ofthe 8287 will be set for 
B to A. 

The 8287 drivers are set to point IN (directionB to 
A) when no MULTIBUS I/O transfer command is 
being serviced for two reasons. First, ifthe driver 
were pointed OUT (direction A to B) and a write 
command occured, it would be necessary to turn 
the buffers IN and set the OE (output enable) 
signal active before the data could be transferred 
to the on-board bus. A possibility of a "buffer­
fight" could. occur in some designs ifthe OE signal 
permitted an 8287 to drive the MULTIBUS data 
lines momentarily before the steering signal could 
switch the direction of the 8287. In this case, both 
the MULTIBUS master and the slave would be 
driving the data lines; this is not recommended. 
(In this particular design, the steering signal will 
always stabilize before the OE signal becomes 
active.) 

The second reason the driver is pointing IN when 
no command is present is due to the "data valid 
after WRITE" requirements of the 8255As. The 
8255A requires that data remain on its data lines 
for 30 ns after the WRITE command (WR at the 
8255A) is removed. This requirement will be met if 
the direction of the 8287 drivers is not switched 

when the MULTIBUS IOWCI signal is removed 
(WRTI could have been used to steer the 8287 
instead of RD); and if the capacitance of the on­
board data bus lines is sufficient to hold the data 
values on the bus after the 8287 OE signal and the 
8255A PPI WRT I signal go inactive. The on-board 
data bus may easily be designed such that the 
capacitance of the lines is sufficient to meet the 30 
ns data hold time requirement. In addition, the 
current leakage of all devices connected to the on­
board bus must be kept small to meet the 30 ns data 
hold time requirement. 

The 8-bit version of this design example uses only 
one 8287 instead of the three required by the 8/16-
bit version. The logic required to control the swap 
byte buffer is also not necessary. The chip select 
signal used for the 8287 is the BD ENBLI signal. 

Control Signals - The MULTIBUS control 
signals used by this slave design example are 
IORCI, IOWCI, and XACKI. IORCI and IOWCI 
are qualified by the BASE ADR SELECT I signal 
to form the signals RD and WRT. RD and WRT 
are used to drive the interrupt logic, the PPI logic 
and the XACKI (transfer acknowledge) logic. 

For the XACKI logic RD and WRT are ORed to 
form the BD ENBLI signal which is inverted and 
used to drive the CLEAR pin of a shift register. 
When the slave board is not being accessed, the 
CLEAR pin of the shift register will be low (BD 
ENBLI is high). This causes the shift register to 
remain cleared and all outputs ofthe shift register 
will be low. When the slave board is accessed, the 
CLEAR pin will be high, and the A and B inputs 
(which are high) will be clocked to the output pins 
by CCLKI. To select a delay for the XACKI signal, 
a jumper must be installed from one of the shift 
register output pins to the 8089 tri-state driver. 
Each of the shift register output pins select an 
integer multiple of CCLKI periods for the signal 
delay. Since the CCLKI signal is asynchronous, 
the actual delay selected may only be specified 
with a tolerance of one CCLKI period. In this 
example a delay of 3 - 4 CCLKI periods was 
selected; with a CCLKI period of 100 ns, the 
XACKI delay would occur somewhere within the 
range of 300 - 400 ns from the time when the 
CLEAR signal goes high. 

The control signal logic used in the 8-bit version of 
the slave design example is identical to the logic 
used in the 8/16-bit version. 
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Interrupt Logic - The interrupt logic uses a 
74S74 flip-flop to latch an asynchronous interrupt 
request from some external iogic. The Q output 
of the INTERRUPT REQUEST LATCH is output 
through an open collector gate to one of the 
MULTIBUS interrupt lines. The state of the 
INTERRUPT REQUEST LATCH is transferred 
to the INTERRUPT STATUS LATCH when a 
read command is performed on liD port BASE 
ADDRESS+O (E30 for the jumper configuration 
shown). The Qoutput ofINTERRUPT STATUS 
LATCH is used to drive data line DO of the 01).­

board data bus by using an 8089 tri-state driver. 
If a user program performs an INPUT from liD 
port E30, data bit 0 will be set to 1 if the INTER­
RUPT REQUEST LATCH is.set. 

The purpose of INTERRUPT STATUS LATCH is 
to minimize the possibility of the asynchronous 
interrupt occuring while the interrupt status is 
being read by a bus master. If the latch was not 
included in the design and an asynchronous inter­
rupt did occur while a: bus master i's reading 
MULTIBUS data line DATOI, a data buffer on the 
master could go into a meta-ste.blestate. By 
adding the extra latch, which is clocked by the 
IORDI command for liD port E30, the possibility 
of data line DATOI changing during a bus master 
read operation is eliminated. 

The INTERRUPT REQUEST LATCH is cleared 
when a user program performs an OUTPUT to liD 
port E30. 

This interrupt structure assumes that several 
interrupt sources may exist on the same MULTI­
BUS interrupt line (for example, INT3/). When the 
MULTIBUS master gets interrupted, it must poll 
the possible sources of the interrupt received and 
after determining the source of the interrupt, it 
must clear the INTERRUPT REQUEST LATCH 
for that particular interrupt source. 

The interrupt logic for the 8.-bit version of the 
design example is identical to the interrupt logic of 
the 8/16-bit version of the design example. 

PPI Operation - Two 8255A Parallel Peripheral 
Interface (PPI) devices are shown interfaced to 
the slave design example logic. One PPI is con­
nected to the on-board data bus lines DO - D7 and 
is addressed with the even liD port addresses 
E38, E3A, E3C, and E3E. The second PPI is 
connected to data bus lines D8 - DF and is address­
ed with the odd liD port addresses E39, E3B, 

E3D, and E3F. The even or odd liD port selection 
is controlled by using the ADRO address line in 
the chip select term of the PPIs: In addition, the 
odd PPI (All) is selected when the BHENBL 

'term is high. This occurs when the MULTIBUS 
signal BHENI is low indicating that a word 
(16-bit) 110 instruction is being executed. When 
a word liD instruction is executed, both PPIs will 
perform the liD operation specified, 

The specifications of the 8255A device state ,that 
the addre!?s lines AO and, Al and the chip select 
lines must be stable before the RD or WR lines are 
activated. The MULTIBUS specification address 
set:up time of 50 ns and the short gate propagation 

, delays in this design assure that the address lines 
are stable before RD or WR are active.' 

, The data hold requirements. of the 8255A were 
discussed in a previous section. The 8255A speci­
fication states that data will be 'stable on the data 
bus lines a maximum .of 250 ns after a READ 
command. This specification was used to select 
the delay for the XACKI signal. 

The PPI operation for the 8-bit version of the 
design example is slightly different than that used 
for the 81 I6-bit version. The chip select signal for 
the bottom PPI does not use the BHENBL term 
since I6-bit data transfers are not possible with an 
8-bit liD slave board. Also, the chip select and 
address signals have been swapped so the top PPI 
occupies liD address range X8 - XB, and the 
bottom PPI occupies 110 address range XC -XF (X 
is the base address of the8·bit version). This 
swapping of the address lines was not necessary; 
howJver, it was thought to be more convenient to 
access the PPIs in two groups of4 contiguous liD 
port addresses. 

IV. SUMMARY, 

This application note has shown the structure of 
the Intel MULTIBUS system bus. The structure 
supports a wide range of system modules from the 
Intel OEM Microcomputer Systems product line 
that can be extended with the addition of user 
designed modules. Because the user designed 
modules are no doubt unique to particular applica­
tions, a goal of this application note has been to 
describe in detail the singular common element -
the bus interface. Materiai has also been 
presented to assist the systems designer to under­
standing the bus functions so that successful 
sY,stems integration can be achieved. 
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APPENDIX A 

PIN ASSIGNMENT OF BUS SIGNALS ON MUL TIBUS BOARD P1 CONNECTOR 
. 

(COMPONENT SIDE) (CIRCUIT SIDE) 

PIN MNEMONIC DESCRIPTION PIN MNEMONIC DESCRIPTION 

1 GND Signal GND 2 GND Signal GND 
3 +5V +5Vdc 4 +5V +5Vdc 

POWER 5 +5V +5Vdc 6 +5V +5Vdc 
SUPPLIES 7 +12V + 12Vdc 8 +12V +12Vdc 

9 -5V -5Vdc 10. -5V -5Vdc 
11 GND Signal GND 12 GND SignalGND 

13 BCLK! Bus Clock 14 INIT/ Initialize 
15 BPRN! Bus Pri. In 16 BPRO! Bus Pri. Out 

BUS 17 BUSY! Bus Busy 18 BREO! Bus Request 
CONTROLS 19 MRDC! Mem Read Cnid 20 MWTC! Mem Write Cmd 

21 10RC! I/O Read Cmd 22 .IOWC! I/O Write Cmd 
23 XACK! XFER Acknowledge 24 INH1! Inhibit 1 disable RAM 

BUS 25 Reserved 26 INH2! Inhibit 2 disable PROM or ROM 

CONTROLS 27 BHEN! Byte High Enable 28 AD10! 

AND 29 CBRO! Common Bus Request 30 AD11! Address 

ADDRESS 31 CCLK! Constant Clk 32 AD12! Bus 
33 INTA! Intr Acknowledge 34 AD13! 

35 INT6! Parallel 36 INT7! Parallel 

INTERRUPTS 37 INT4! Interrupt 38 INT5! Interrupt 
39 INT2! Requests 40 INT3! Requests 
41 INTO! 42 INT1! 

43 ADRE! 44 ADRF! 
45 ADRC! 46 ADRD! 
47 ADRAI Address 48 ADRB/ Address 

ADDRESS 
49 . ADR8! Bus 50 ADR9! Bus 
51 ADR6! 52 ADR7! 
53 ADR4! 54 ADR5! 
55 ADR2! 56 ADR3! 
57 ADRO! 58 ADR1! 

59 DATE! 60 DATF! 
61 DATC! 62 DATD! 
63 DATA! Data 64 DATB! Data 

DATA 65 DAT8! Bus 66 DAT9! Bus 
67 DAT6! 68 DAT7! 
69 DAT4! 70 OATS! 
71 DAT2! 72 DAT3! 
73 DATO! 74 DAT1!' 

75 GND Signal GND 76 GND Signal GND 
77 Reserved 78 Reserved 

POWER 79 -12V -12Vdc 80 -12V -12Vdc 
SUPPLIES 81 +5V +5Vdc 82 +5V +5Vdc 

83 +5V +5Vdc 84 +5V +5Vdc 
85 GND SignalGND 86 GND SignalGND 

All Mnemonics © Intel Corporation 1978 
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APPENDIX A (Continued) 

P2 CONNECTOR PIN ASSIGNMENT OF OPTIONAL BUS SIGNALS 

(COMPONENT SIDE) (CIRCUIT SIDE) 

PIN MNEMONIC DESCRIPTION PIN MNEMONIC DESCRIPTION 

1 GND Signal GND 2 GND Signal GND 
3 5 VB + 5V Battery 4 5 VB +5V Battery 
5 Reserved 6 vccpp + 5V Pulsed Power 
7 -5 VB -5V Battery 8 -5 VB -5V Battery 
9 Reserved 10 Reserved 

11 12 VB +12V Battery 12 12 VB +12V Battery 
13 PFSRI Power Fail Sense Resel 14 Reserved 
15 -12 VB -12V Battery 16 -12 VB -12V Battery 
17 PFSNI Power Fail Sense 18 ACLO ACLow 
19 PFINI Power Fail Interrupt 20 MPROI Memory Protect 
21 GND Signal GND 22 GND Signal GND 
23 +15V +15V 24 +15V +15V 
25 -15V -15V 26 -15V -15V 
27 PARll Parity 1 28 HALTI Bus Master HALT 
29 PAR21 Parity 2 30 WAITI Bus Master WAIT STATE 
31 \ 32 ALE Bus Master ALE 
33 34 Reserved 
35 36 Reserved 
37 38 AUX RESETI Reset switch 
39 40 
40 42 
43 > Reserved 44 
45 46 
47 48 
49 50 Reserved 
51 52 
53 54 
55 56 
57 58 
59 60 

Notes: 

1. PFIN, on slave modules, iI possible, should have the option of connecting to INTOI on PI. 
2. All undefined pins are reserved for future use. 

All Mnemonics © Intel Corporation 1978 
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APPENDIX B 

BUS TIMING SPECIFICATIONS SUMMARY 

Parameter Description Minimum Maximum Units 

tBCY Bus Clock Period 100 D.C. ns 

tBW Bus Clock Width 0.35 tBCY 0.65 tBCY 

tSKEW BCLKlskew 3 ns 

tPD Standard Bus 3 
Propagation Delay 

tAS Address Set-Up Time 50 ns 
(at Slave Board) 

tDS Write Data Set· 50 ns 
Up Time 

tAH Address Hold Time 50 ns 

tDHW Write Data Hold Time 50 ns 

tDXL Read Data Set 0 ns 
Up Time To XACK 

tDHR Read Data Hold Time 0 65 ns 

tXAH Acknowledge Hold 0 65 ns 
Time 

tXACK Acknowledge Time 0 tTOUT ns 

tCMD Command Pulse 100 tTOUT ns 
Width 

tiD Inhibit Delay 0 100 ns 
(Recommend < 100 ns) 

tXACKA Acknowledge Time of 
of an Inhibited Slave 

t IAD + 50 ns tTOUT 

tXACKB Acknowledge Time of 
an Inhibiting Slave 

1.5 tTOUT ~s 

tlAD Acknowledge Disable 0 100 ns 
from Inhibit (An (arbitrary) 
internal parameter on 
an inhibited slave; 
used to determine 
tXACKA Min.) 

tAIZ Address to Inhibits 100 ns 
High delay 

tlNTA INTAI Width 250 ns 

tCSEP Command Separation 100 ns 
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APPENDIX B (Continued) 

BUS TIMING SPECIFICATIONS SUMMARY 

Parameter Description Minimum Maximum Units 

tBREOL IBCLKI 10 BREOI 0 35 ns 
Low Delay 

IBREOH IBCLKI 10 BREOI 0 35 ns 
High Delay 

IBPRNS BPRNI 10 IBCLKI 22 ns 
Selup Time 

IBUSY BUSY I delay 0 70 ns 
from IBCLKI 

IBUSYS BUSY 110 IBCLKI 25 ns 
Setup Time 

IBPRO IBCLK/to BPROI 0 40 ns 
(CLK 10 Priority Out) 

tBPRNO BPRN 110 BPROI 0 30 ns 
IPriority In to Out) 

tCBRO IBCLKllo CBROI 0 60 ns 
(CLKto Common 
Bus Request) 

tCBROS CBRO/to IBCLKI 35 ns 
Setup Time 

tCPM Central Priority 0 tBCy-tBREO 
Module Resolution -2tPD 
Delay (Parallel -tBPRNS 
Priority) -tSKEW 

tCCY C-clock Period 100 110 ns 

tcw C-clock Width 0.35tcCY 0.65tccY ns 

tlNIT INIT/Width 5 ms 

tlNITS .INIT 110 MPROI 100 ns 
Setup Time 

tPBD Power Backup 0 200 ns 
Logic Delay 

tpFINW PFINI Width 2.5 ms 

tMPRO MPROI Delay 2.0 2.5 ms 

tACLOW ACLOI Width 3.0 ms 

tPFSRW PFsRI Width 100 ns 

tTOUT Timeout Delay 5 00 ms 

tDCH D.C. Power Supply 3.0 ms 
Hold from ALCOI 

tDCS D.C. Power Supply 5 ms 
Setup to ACLOI 
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APPENDIX.C 

BUS DRIVERS, RECEIVERS,AND:rERMINATIONS 
-.. 

Drlvarl,3 Racelvar2,3 Tarmlnatlon 

Bus Slgnlls Location Typa IOL IOH Co Locltlon IlL IIH CI Locltlon Typa R Units 

Mlnml Mln~. MlXpt MI'ml MI'~I M.'pl 

OATO/-OATFI Masters TAl lil -2000 300 Maslers -0.8 125 . 18 .1 place Pullup 2.2 Kg· 
(16 lines) and Slaves and Slaves 

AOAO/-AOAB/, Masters TAl 16 -2000 300 Slaves -0.8 125 18 .1 place Pullup 2.2 .Kg 

BHEN/ .. 
(21 lines) 

MAOC/,MWTC/' Masters TAl 32 -2000 300 Slaves -2 125 18 1 place Pull up 1 Kg 

(Memory; 
memory~ 

mapped 110) 

10ACI,IOWCI Masters TAl 32 -2000 300 Slaves -2 125 18 1 place Pullup 1 Kg 

(1/0) 

XACKI Slaves TAl 32 -2000 300 Masters -2 125 18 1 place Pullup 510 g 

INH1/,INH21 Inhibiting OC 16 - , 300 Inhibited -2 50 18 1 place Pull~p 1 Kg 

Slaves Slaves . 
, (AAM,PAOM, 

AOM, Memory-
Mapped 1/0) 

BCLKi ." 1 place TTL 48 -3000 300 Master -2 125 '18 MolM'er- To +5V 220 g 

(Master us) board ToGNO 330 g 

BAEQI Each TTL 5 -400 60 Central 2 50 18 Central Pullup 1 Kg 

Master Priority Priority 
Module Module 

'.": (riotreq): 

BPAOI Each TTL 5 -400 60 Next Master -1.6 50 18 (not req) i 
, Master in Serial 

Priority 
Chainal 
its BPANI 

BPANI Parallel: TTL 5 -400 300 Master -2 50 (not req) 
Central 
Priorily 
Module 
Serial:Prev 

. 
." 

Masters 
BPAOI 

BUSY/, CBRa All Masters D.C. 32 - 300 All Masters -2 50 18' I pllice Pullup 1 Kg 
,," 

INIT/ .... , Master O.C. 32 - 300 All -2 50 18 1 place PulJup 2.2 Kg 

CCLKh, 1 place TTL 48 -3000 300 Any -2 125 ,18, . Mother- To +5V 220 g 
boar~ . ToGNO 330 g 

INTA/ .. Maslers TAl 32 -2000 300 Slaves -2 125 18 1 place PuliuP 1 Kg 
(Inlerrupling 
1/0) 

INTO/-INT7! Slaves O.C. 16 - 300 Masters -1.6 40 18 1 place Pullup 1 Kg 
(8 lines) 

PFSA! User's Fron TTL 16 -400 300 Slaves, -1.6 40 18 1 tiiace . F'ullup 1 Kg 
Panel? Maslers 

PFSN! Power Back· TTL 16 -400 300 Maslers -1.6 40 16 I place Pullup 1 Kg 
Up Unit 

ACLO Power O.C. 16 -400 300 Slaves, -1.6 40 18 1 place Pullup 1 Kg 
Supply Masters 

PFIN! Power Back- D.C. 16 -400 300 Masters -1.6 40 18 1 place Pullup 1 Kg 
UpUnil 

MPAO! Power Back- TTL 16 -400 300 Slaves -1.6 40 18 1 place Pullup 1 Kg 
Up Unil Masters 
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APPENDIX C (Continued) 

BUS DRIVERS, RECEIVERS, AND TERMINATIONS 

Driver 1,3 Receiver 2,3 Termination 

Bus Signals LocaUon Type IOL IOH Co LocaUon IlL IIH CI Location Type R Units 

Mlnma Mln~a Maxpf MUms Max/J8 Maxpf 

Aux Aesetl User's Switch - - - Masters -2 50 t6 None 
Front toGND 
Panel? 

Notes: 

t. Driver Requirements 

'0H = High Output Current Drive 
IOL = Low Output Current Drive 
Co = Capacitance Drive Capability 
TAl = 3-State Drive 
O.C. = Open Collector Driver 
TTL = Totem-pole Driver 

2. Receiver Requirements 

IIH = High Input Current Load 
IlL = Low Input Current Load 
C, = Capacitive Load 

3. TTL low state must be 2 -0.5v but,;. 0.8v at the receivers 
TTL high state must be2 2.0v but ~ 5.5v at the receivers 

4. For the iSBC 80/10 and the iSBC 80/10A use only a 1 K pull-up resistor to +5v for BClKI and CCLKI termination. 

A-203 



AP-28A 

APPENDIX D 

BUS POWER SPECIFICATIONS 

Standard (P1) Optional (P2) 

Analog Power Ballery Power Backup 

Ground +5 +12 -12 + 15 -15 +5 +12 -12 -5 

Mnemonic GND +5V + 12V -12V + 15V -15V +56 +126 -126 -56 

6us Pins Pl + 1,2, P1 + 3,4, P1 + 7,8 P1 + 79, P2+23, P2+25, P2+3,4, P2+ 11, P2+ 15, P2- 7,8 
11,12, 5,6,81, 80 24 26 5,6 12 16 
75,76 82,83, 
85,86 84 

Nominal Output Ref. +5.0V + 12.0V -1'2.0V + 15.0V -15.0V +5.0V + 12.0V -12.0V -5.0V 

Tolerance from 
Nominal' Ref. ±5% ±5% ±5% ±3% ±3% ±5% ±5% ±5% ±5% 

Ripple 
(Pk-Pk)' Ref. 50 mV 50 mV 50 mV 10 mV 10 mV 50 mV 50 mV 50 mV 50 mV 

Transient 
Response 500/Ls 500/Ls 500/Ls 100/Ls 100/Ls 500/Ls 500/Ls 500/Ls 500/Ls 
Time' 

Transient 
Deviation' ±10% ±10% ±10% ±10% ±10% ± 10% ± 10% ±10% ±10% 

NOTES: 

1. Tolerance is worst case, including initial voltage setting line and load effects of power source, temperature drift, and any additional steady 
state influences. 

2. As measured over any bandwidth not to exceed 0 to 500 kHz. 

3. As measured from the start of a load change to the time an output recovers within ±0.1% of final voltage. 

4. Measured as the peak deviation from the initial voltage. 
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APPENDIX E 

MECHANICAL SPECIFICATIONS 

12.00 !O,OOS 

11.500 

COMPONENT SIDE 

D> 

I-- 0.25 

~ 
o i.-.9:~ 

5.950 
to.DOS 

6.20 

5 REF 

R -----~-----------:=a. 0.06 
TV 

D> 0 

-----Rr 
I-f 

p 

I. 

NOTES: 

D> 
B> 

6.767 to,OOS 

BOARD THICKNESS: 0,062 

MUL llOUS CONNECTOR: 86-PIN, 0.156 SPACING 
CDC VFBOl E43DOOA 1 
VIKING 2VH4311ANE5 

AUXILIARY CONNECTOR: BO·PIN, O. laO SPACING 
CDC VPB01B30DOOAl 
TI H311130 
AMP PE5·14559 

I 

[9 
5. 

s. 
7. 

s. 

L- ,---1" 0.55 '-0. 
3.080 t-:-- 0.390 

30 

4.570 '\. 

EJECTOR TYPE: SCANBE #$203 

CHAMFER ALL 
CONNECTOR EDGES 
0.040 x 45° 

0.015 :!: 0.005 x 45° 
2 PLACES 

BUS DRIVERS AND RECEIVERS SHOULD BE LOCATED AS CLOSE AS POSSIBLE TO 
THEIR RESPECTIVE MUL Tleus PIN CONNECTIONS 

BOARD SPACING: 0.6 

COMPONENT HEIGHT: 0.4 

CLEARANCE ON CONDUCTOR NEAR EDGES: 0.050 
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Device Specifications 





iAPX 86/10 
16-BIT HMOS MICROPROCESSOR 

8086/8086-2/8086-1 

• Direct Addressing Capability to 1 
MByte of Memory 

• Architecture Designed for Powerful 
Assembly Language and Efficient High 
Level Languages. 

• 14 Word, by 16-Bit Register Set with 
Symmetrical Operations 

• 24 Operand Addressing Modes 

• Bit, Byte, Word, and Block Operations 

• 8 and 16-Bit Signed and Unsigned 
Arithmetic in Binary or Decimal 
Including Multiply and Divide 

• Range of Clock Rates: 
5 MHz for 8086, 
8 MHz for 8086-2, 

10 MHz for 8086-1 

• MULTIBUS™ System Compatible 
Interface 

The Intel iAPX 86/10 high performance 16-bit CPU is available in three ciock rates: 5, 8 and 10 MHz. The CPU is 
implemented in N-Channel, depletion load, silicon gate technology (HMOS), and packaged in a 40-pin CerDIP package. 
The iAPX 86/10 operates in both single processor and multiple processor configurations.to achieve high performance 
levels. 
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Figure 1. iAPX 86/10 CPU Block Diagram 
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Figure 2. iAPX 86/10 Pin Configuration 
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Table 1. Pin Description 

The following pin function descriptions are for iAPX 86 systems in either minimum or maximum mode. The "Local 
Bus" in these descriptions Is the direct multiplexed bus interface connection to the 8086 (without regard to additional 
bus buffers). 

Symbol Pin No. Type Name and Function 

AD,5·ADo 2·16.39 1/0 Address Data Bus: These lines constitute the time multiplexed memoryllO address (T,) 
and data (T 2. T 3. T w. T 4) bus. Ao is analogous to BHE for the lower byte of the data bus. 
pins D7·Do. It is lOW during T, when a byte is to be transferred on the lower portion of 
the bus in memory or 1/0 operations. Eight-bit oriented devices tied to the lower half 
would normally use Ao to condition chip select functions. (See BHE.) These lines are 
active HIGH and float to 3-state OFF during interrupt acknowledge and local bus "hold 
acknowledge." 

A,glSe. 35-38 0 Address/Status: During T, these are the four most signi-
A,afS5. ficant address lines for memory operations. During 1/0 
A17/S4. operations these lines are lOW. During memory and 110 

A17/S4 Als1S3 Characteristics 
A,sfS3 operations. status information is available on these 

lines during T 2. T 3. T w. and T 4. The status of the interrupt o (LOW) 0 Alternate Data 

enable FLAG bit (S5) is updated at the beginning of each 0 1 Stack 
1 (HIGH) 0 Code or None 

ClK cycle. A17/S4 and A,sfS3 are encoded as shown. 1 1 Oata 

This information indicates which relocation register is 
$6 is 0 

(LOW) 

presently being used for data accessing. 

These lines float to 3·state OFF during local bus "hold 
acknowledge." 

BHE/S7 34 0 Bus High Enable/Status: During T, the bus high enable 
signal (BHE) should be used to enable data onto the 
most significant half of the data bus. pins D,5-D8' Eight- BHE AO Characteristics 

bit oriented devices tied to the upper half of the bus 0 0 Whole word 
would normally use BHE to condition chip select func- 0 1 Upper byte from! 
tions. BHE is lOW during T, for read. write. and inter- to odd address 

rupt acknowledge cycles when a byte is to be transfer- 1 0 Lower byte froml 

red on the high portion of the bus. The S7 status informa- to even address 

lion is available during T 2. T 3. and T 4. The Signal is active 
1 1 None 

lOW. and floats to 3-state OFF in "hold." It is lOW dur-
ing T, for the first interrupt acknowledge cycle. 

RD 32 0 Read: Read strobe indicates that the processor is performing a memory of 1/0 read cy-
cle. depending on the state of the S2 pin. This signal is used to read devices which 
reside on the 8086 local bus. RD is active lOW during T 2. T 3 and T w of any read cycle. 
and is guaranteed to remain HIGH in T 2 until the 8086 local bus has floated. 

This signal floats to 3-state OFF in "hold acknowledge." 

READY 22 I READY: is the acknowledgement from the addressed memory or 1/0 device that it will 
complete the data transfer. The READY signal from memory/IO is synchronized by the 
8284A Clock Generator to form READY. This signal is active HIGH. The 8086 READY in-
put is not synch.ronized. Correct operation is not guaranteed if the setup and hold 
times are not met. 

INTR 18 I Interrupt Request: is a level triggered input which is sampled during the last clock cy-
cle of each instruction to determine if the processor should enter into an interrupt 
acknowledge operation. A subroutine is vectored to via an interrupt vector lookup table 
located in system memory. It can be internally masked by software resetting the inter-
rupt enable bit. INTR is internally synchronized. This signal is active HIGH. 

TEST 23 I TEST: input is examined by the "Wait" instruction. If the TEST input is lOW execution 
continues. otherwise the processor waits in an "Idle" state. This input is synchronized 
internally during each clock cycle on the leading edge of ClK. 
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Table 1. Pin Description (Continued) 

Symbol Pin No. Type Name and Function 

NMI 17 I Non·maskable interrupt: an edge triggered input which causes a type 2 interrupt. A 
subroutine is vectored to via an interrupt vector lookup table located in system 
memory. NMI is not maskable internally by software. A transition from a lOW to HIGH 
initiates the interrupt at the end of the current instruction. This input is internally syn· 
chronized. 

RESET 21 I Reset: causes the processor to immediately terminate its present activity. The signal 
must be active HIGH for at least four clock cycles. It restarts execution, as described in 
the Instruction Set description, when RESET returns lOW. RESET is internally syn· 
chronized. 

ClK 19 I Clock: provides the basic timing for the processor and bus controller. It is asymmetric 
with a 33% duty cycle to provide optimized internal timing. 

Vcc 40 Vcc: + 5V power supply pin. 

GND 1,20 Ground 

MN/MX 33 I Minimum/Maximum: indicates what mode the processor is to operate in. The two 
modes are discussed in the following sections. 

The following pin function descriptions are for the 808618288 system in maximum mode (i.e., MNIMX = Vssl. Only the 
pin functions which are unique to maximum mode are described; all other pin functions are as described above. 

S2, S1, So 26·28 a Status: active during T4, T1, and T2and is returned to the 
. passive state (1,1,1) during T 3 or during T w when READY 52 51 So Characteristics 

is HIGH. This status is used by the 8288 Bus Controller OllOW) 0 0 Interrupt 

to generate all memory and I/O access control signals. Acknowledge 

Any change by 8;,5" or So during T 4 is ,used to indicate 0 0 1 Read 110 Port 
0 1 0 Write 1/0 Port 

the beginning of a bus cycle, and.the return to the pas· 0 1 1 Hall 

sive state in T 3 or T w is used to indicate the end of a bus 1IHIGH) 0 0 Code Access 

cycle. 1 0 1 Read Memory 
1 1 0 Write Memory 

These signals float to 3·state OFF in "hold acknowl· 1 1 1 Passive 

edge." These status lines are encoded as shown. 

RQ/GTo, 30,31 I/O Request/Grant: pins are used by other local bus masters to force the processor to 
RQ/GT1 release the local bus at the end 01 the processor's current bus cycle. Each pin is 

bidirectional with RQ/GTo having higher priority than RQ/GT1 •. RQ/GT has an internal 
pull-up resistor so may be left unconnected. The request/grant sequence is as follows 
(see Figure 9): 

1. A pulse of 1 ClK wide from another local bus master indicates a local bus request 
("hold") to the 8086 (pulse 1); 

2. During a T4 orTJ clock cycle, a pulse 1 ClK wide from the 8086to the requesting master 
(pulse 2), indicates that the 8086 has allowed the local bus to float and that it will enter 
the "hold acknowledge" state at the next ClK. The CPU's bus interface unit is discon-
nected logically from the local bus during "hold acknowledge." 

3. A pulse 1 ClK wide from the requesting master indicates to the 8086 (pulse 3) that 
the "hold" request is about to end and that the 8086 can reclaim the local bus at the 
next ClK. 

Each master-master exchange of the local bus is a sequence of 3 pulses. There must 
be one dead ClK cycle after each bus exchange. Pulses are active lOW. 

If the request is made while the CPU is performing a memory cycle, itwill release the local 
bus during T4 of the cycle when all the following conditions are met: 

1. Request occurs on or before T2. 

2. Current cycle is not the low byte of a word (on an odd address), 
3. Current cycle is not the first acknowledge of an interrupt acknowledge sequence. 
4. A locked instruction is not currently executing. 
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Table 1. Pin Description (Continued) 

Symbol Pin No. Type Name and Function 

If the local bus is idle when the request is made the two possible events will follow: 

1. Local bus will be released during the next clock. 
2. A memory cycle will start within 3 clocks. Now the four rules for a currently active 

memory cycle apply with condition number 1 already satisfied. 

LOCK 29 a LOCK: output indicates that other system bus masters are not to gain control of the 
system bus while LOCK is active LOW. The LOCK signal is activated by the "LOCK" 
prefix instruction and remains active until the completion of the next instruction. This 
signal is active LOW, and floats to 3·state OFF in "hold acknowledge." 

as" aso 24,25 a Queue Status: The queue status is valid during the CLK 
cycle after which the queue operation is performed. 

QS, and QSo provide status to allow external tracking of 
the internal 8086 instruction queue. 

The fol/owing pin function descriptions are for the 8086 in minimum mode (i.e., MN/MX = Vee). Only the pin functions which 
are unique to minimum mode are described; al/ other pin functions are as described above. 

MilO 28 a Status line: logically equivalent to S2 in the maximum mode. It is used to distinguish a 
memory access from an I/O access. MIlO becomes valid in the T4 preceding a bus cycle 
and remains valid until the final T 4 of the cycle (M = HIGH, 10 = LOW). MIlO floats to 
3·state OFF in local bus "hold acknowledge." 

WR" 29 a Write: indicates that the proces~r is performing a write memory or write I/O cycle, 
depending on the state of the MilO signal. WR is active for T 2, T 3 and T w of any write cy· 
cle. It is active LOW, and floats to 3-state OFF in local bus "hold acknowledge." 

INTA 24 a INTA is used as a read strobe for interrupt acknowledge cycles. It is active LOW during 
T 2, T 3 and T w of each interrupt acknowledge cycle. 

ALE 25 a Address Latch Enable: provided by the processor to latch the address into the 82821 
8283 address latch. It is a HIGH pulse active during T, of any bus cycle. Note that ALE 
is never floated. 

DT/R 27 a Data Transmit/Receive: needed in minimum system that desires to use an 8286/8287 
data bus transceiver. It is used to control the direction of data flow through the 
transceiver. LogicallyDT/R is equivalent to 51 in the maximum mode, and its timing is 
the same as for MIlO. (T = HIGH, R = LOW.) This signal floats to 3-state OFF in local bus 
"hold acknowledge." 

DEN 26 a Data Enable: provided as an output enable for the 8286/8287 in a minimum system 
which uses the transceiver. DEN is active LOW during each memory and I/O access and 
for INTA cycles. For a read or INTA cycle it is active from the middle of T2 until the mid-
dle of T4, while for a write cycle it is active from the beginning of T2 until the middle of 
T4. DEN floats to 3-state OFF in local bus "hold acknowledge." 

HOLD, 31,30 I/O HOLD: indicates that another master is requesting a local bus "hold." To be acknowl-
HLDA edged, HOLD must be active HIGH. The processor receiving the "hold" request will 

issue HLDA (HIGH) as an acknowledgement in the middle of a T4 orT, clock cycle. Simul-
taneous with the issuance of HLDAthe processor will float the local bus and control 
lines. After HOLD is detected as being LOW, the processor will LOWer HLDA, and when 
the processor needs to run another cycle, it will again drive the local bus and control 
lines. 

The same rules as for RQIGT apply regarding when the local bus will be released. 

HOLD is not an asynchronous input. External synchronization should be provided if the 
system cannot otherwise guarantee the setup time. 
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FUNCTIONAL DESCRIPTION 

GENERAL OPERATION 

The internal functions of the iAPX 86/10 processor are 
partitioned logically into two processing units. The first is 
the Bus Interface Unit (BIU) and the second is the Exe­
cution Unit (EU) as shown in the block diagram of 
Figure 1. 

These units can interact directly but for the most part 
perform as separate asynchronous operational process­
ors. The bus interface unit provides the functions related 
to instruction fetching and queuing, operand fetch and 
store, and address relocation. This unit also provides the 
basic bus control. The overlap of instruction pre-fetching 
provided by this unit serves to increase processor perfor­
mance through improved bus bandwidth utilization. Up to 
6 bytes of the instruction stream can be queued while 
waiting for decoding and execution. 

The instruction stream queuing mechanism allows the 
BIU to keep the memory utilized very efficiently. When­
ever there is space for at least 2 bytes in the queue, the 
BIU will attempt a word fetch memory cycle. This greatly 
reduces "dead time" on the memory bus. The queue 
acts as a First-In-First-Out (FIFO) buffer, from which the 
EU extracts instruction bytes as required. If the queue is 
empty (following a branch instruction, for example), the 
first byte into the queue immediately becomes available 
to the EU. 

The execution unit receives pre-fetched instructions 
from the BIU queue and provides un-relocated operand 
addresses to the BIU. Memory operands are passed 
through the BIU for processing by the EU, which passes 
results to the BIU for storage. See the Instruction Set 
description for further register set and architectural 
descriptions. 

Memory Segment Register 
Reference Need Used 

Instructions CODE (CS) 

Stack STACK (SS) 

Local Data DATA (OS) 

External (Global) Data EXTRA (ES) 

MEMORY ORGANIZATION 
The processor provides a 20-bit address to memory which 
locates the byte being referenced. The memory is orga­
nized as a linear array of up to 1 million bytes, addressed 
as OOOOO(H) to FFFFF(H). The memory is logically divided 
into code, data, extra data, and stack segments of up to 
64K bytes each, with each segment falling on 16-byte 
boundaries. (See Figure 3a.) 

All memory references are made relative to base 
addresses contained in high speed segment registers. The 
segment types were chosen based on the addressing 
needs of programs. The segment register to be selected is 
automatically chosen according to the rules of the follow­
ing table. All information in one segment type share the 
same logical attributes (e.g. code or data). By structuring 
memory into relocatable areas of similar characteristics 
and by automatically selecting segment registers, pro­
grams are shorter, faster, and more structured. 

Word (16-bit) operands can be located on even or odd 
address boundaries and are thus not constrained to 
even boundaries as is the case in many 16-bit com­
puters. For address and data operands, the least signifi­
cant byte of the word is stored in the lower valued 
address location and the most significant byte in the 
next higher address location. The BIU automatically per­
forms the proper number of memory accesses, one if 
the word operand is on an even byte boundary and two if 
it is on an odd byte boundary. Except for the perfor­
mance penalty, this double access is transparent to the 
software. This performance penalty does not occur for 
instruction fetches, only word operands. 

Physically, the memory is organized as a high bank 
(DIs-Del and a low bank (07-00) of 512K 8-bit bytes 
addressed in parallel by the processor's address lines 

A19 - AI. Byte data with even addresses is transferred on 
the 07-00 bus lines while odd addressed byte data (Ao 
HIGH) is transferred on the DIS-Os bus lines. The process­
or provides two enable signals, BHE and Ao, to selectively 
allow reading from or writing into either an odd byte 
location, even byte location, or both. The instruction 
stream is fetched from memory as words and is addressed 
internally by the processor to the byte level as necessary. 

Segment 
Selection Rule 

Automatic with all instruction prefetch. 

All stack pushes and pops. Memory references relative to BP 
base register except data references. 

Data references when: relative to stack, destinatibn of string 
operation, or explicitly overridden. 

Destination of string operations: Explicitly selected using a 
segment override. 
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Figure 3a. Memory Organization 

In referencing word data the BIU requires one or two 
memory cycles depending on whether or not the start· 
ing byte of the word is on an even or odd address, 
respectively. Consequently, in referencing word oper· 
ands performance can be optimized by locating data on 
even address boundaries. This is an especially useful 
technique for using the stack, since odd address refer· 
ences to the stack may adversely affect the context 
switching time for interrupt processing or task multi· 
plexing. 

Certain locations in memory are reserved for specific 
CPU operations (see Figure 3b.) Locations from address 
FFFFOH through FFFFFH are'reserved for operations 
including a jump to the initial program loading routine. 
Following RESET, the CPU will always begin execution 
at location FFFFOH where the jump must be, Locations 
OOOOOH through 003FFH are reserved for interrupt 
operations. Each of the 256 possible interrupt types has 
its service routine pOinted to by a 4·byte pointer element 

6-6 

consisting of a 16·bit segment address and a 16·bit off· 
set address. The pointer elements are assumed to have 
been stored at the respective places in reserved memory 
prior to occurrence of interrupts . 

RESET BOOTSTRAP 
PROGRAM JUMP 

INTERRUPT POINTER 
FOR TYPE 255 

INTERRUPT POINTER 
FOR TYPE 1 

INTERRUPT POINTER 
FOR TYPE 0 

FFFFFH 

FFFFOH 

3FFH 

3FCH 

7H 

4H 
3H 

OH 

Figure 3b. Reserved Memory Locations 

MINIMUM AND MAXIMUM MODES 
The requirements for supporting minimum and maximLim 
iAPX 86/10 systems .are sufficiently different that they 
cannot be done efficiently with 40 uniquely defined 
pins. Consequently, the 8086 is equipped with a strap 
pin (MN/MX) which defines the system configuration. 
The definition of a certain subset of the pins changes 
dependent on the condition of the strap pin. When 
MN/MX pin is strapped to GND, the 8086 treats pins.24 
through 31 in maximum mode. An 8288_bl!,s s,ontroller 
interprets status information coded into SO,S1,S2 to gen· 
erate bus timing and control signals compatible with 
the MULTIBUS™ architecture. When the MN/MX pin is 
strapped to Vee. the 8086 generates bus control signals 
itself on pins 24 through 31. as shown in parentheses in 
Figure 2. Examples of minimum mode and maximum 
mode systems are shown in Figure 4. 
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Figure 4b. Maximum Mode iAPX 86/10 Typical Configuration 
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BUS OPERATION 

The 86/10 has a combined address and data bus com­
monly referred to as a time multiplexed bus. This tech· 
nique provides the most efficient use of pins on the 
processor while permitting the use of a standard 40·lead 
package. This "local bus" can be buffered directly and 
used throughout the system with address latching pro· 
vided on memory and 1/0 modules. In addition, the bus 
can also be demultiplexed at the processor with a Single 
set of address latches if a standard non·multiplexed bus 
is desired for the system. 

Each processor bus cycle consists of at least four ClK 
cycles. These are referred to as T" T2, Ta and T4 (see 
Figure 5). The address is emitted from the processor 
during T, and data transfer occurs on the bus during T 3 
and T 4. T 2 is used primarily for changing the direction of 
the bus during read operations. In the event that a "NOT 
READY" indication is given by the addressed device, 
"Wait" states (T w) are inserted between T 3 and T 4. Each 
inserted "Wait" state is of the same duration as a ClK 
cycle. Periods can occur between 8086 bus cycles. 
These are referred to as "Idle" states (TI) or inactive CU< 
cycles. The processor uses these cycles for internal 
housekeeping. 

During T, of any bus cycle the ALE (Address latch 
Enable) signal is emitted (by either the processor or the 
8288 bus controller, depending on the MN/MX strap). At 
the trailing edge of this pulse, a valid address and cer· 
tain status information for the cycle may be latched. 

Status bits So, 5" and S2 are used, in maximum mode, 
by the bus. controller to identify the type of bus transac· 
tion according to the following table: 

S2 S; So CHARACTERISTICS 

a (lOW) a a Interrupt Acknowledge 
a a 1 Read 1/0 
a 1 a Write 1/0 
a 1 1 Halt 
1 (HIGH) 0 0 Instruction Fetch 
1 a 1 Read Data from Memory 
1 1 a Write Data to Memory 
1 1 1 Passive (no bus cycle) 

8-8 

Status bits S3 through S7 are multiplexed with high· 
order address bits and the SHE Signal, and are therefore 
valid during T2 through T4. S3 and S4 indicate which 
segment register (see Instruction Set description) was 
used for this bus cycle in forming the address,accord· 
ing to the following table: 

S. S3 CHARACTERISTICS 
a (lOW) a Alternate Data (extra segment) 
a 1 Stack 
1 (HIGH) a Code or None 
1 1 Data 

S5 is a reflection of the PSW interrupt enable bit. S6=0 and 
S7 is a spare status bit. 

1/0 ADDRESSING 

In the 86/10, I/O operations can address up to a maximum 
of 64K I/O byte registers or 32K I/O word registers. The 
I/O address appears in the same format as the memory 
address on bus lines A,s-Ao. The address lines A,g-A,s 
are zero in I/O operations. The variable I/O instructions 
which use register OX as a pointer have full address capa­
bility while the direct I/O instructions directly address one 
or two of the 256 I/O byte locations in page 0 of the I/O 
address space. 

1/0 ports are addressed in the same manner as memory 
locations. Even addressed bytes are transferred on the 
0 7-00 bus lines and odd addressed bytes on 0'5-08' 
Care must be taken to assure that each register within 
an 8·bit peripheral located on the lower portion of the 
bus be addressed as even. 
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Figure 5. Basic System Timing 
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EXTERNAL INTERFACE 
PROCESSOR RESET AND INITIALIZATION 

Processor initialization or start up is accomplished with 
activation (HIGH) of the RESET pin. The 8086 RESET is 
required to be HIGH for greater than 4 elK cycles. The 
8086 will terminate operations on the high-going edge of 
RESET and will remain dormant as long as RESET is 
HIGH. The low-going transition of RESET triggers an 
internal reset sequence for approximately 10 elK cycles. 
After this interval the 8086 operates normally beginning 
with the instruction in absolute location FFFFOH (see 
Figure 38). The details of this operation are specified in the 
Instruction Set description of the MeS-86 Family User's 
Manual. The RESET input is internally synchronized to the 
processor clock. At initialization the HIGH-to-lOW trans­
ition of RESET must occur no sooner than 50 ,..s after 
power-up, to allow complete initialization of the 8086. 

NMI may not be asserted prior to the 2nd elK cycle fol­
lowing the end of RESET. 

INTERRUPT OPERATIONS 

Interrupt operations fall into two classes; software or 
hardware initiated. The. software initiated interrupts and 
software aspects of hardware interrupts are specified in 
the Instruction Set description. Hardware interrupts can 
be classified as non·maskable or maskable. 

Interrupts result in a transfer of control to a new pro­
gram location. A 256-element table containing address 
pointers to the interrupt service program locations 
resides in absolute locations 0 through 3FFH (see 
Figure 3b), which are reserved for this purpose. Each 
element in the table is 4 bytes in size and corresponds 
to an interrupt "type". An interrupting device supplies 
an 8-bit type number, during the interrupt acknowledge 

sequence, which is used to "vector" through the ap­
propriate element to the new interrupt service program 
location. 

NON·MASKABLE INTERRUPT (NMI) 

The processor provides a single non-maskable interrupt 
pin (NMI) which has higher priority than the maskable in· 
terrupt request pin (INTR). A typical use would be to ac­
tivate a power failure routine. The NMI is edge-triggered 
on a lOW-to-HIGH transition. The activation of this pin 
causes a type 2 interrupt. (See Instruction Set descrip­
tion.) 

NMI is required to have a duration in the HIGH state of 
greater than two elK cycles, but is not required to be 
synchronized to the clock. Any high-going transition of 
NMI is latched on-chip and will be serviced at the end of 
the current instruction or between whole moves of a 
block-type instruction. Worst case response to NMI 
would be for multiply, divide, and variable shift instruc­
tions. There is no specification on the occurrence of the 
low-going edge; it may occur before, during, or after the 
servicing of NMI. Another high-going edge triggers 
another response if it occurs after the start of the NMI 
procedure. The Signal must be free of logical spikes in 
general and be free of bounces on the low-going edge to 
avoid triggering extraneous responses. 

MASKABLE INTERRUPT (INTR) 

The 86/10 provides a single interrupt request input (INTR) 
which can be masked internally by software with the 
resetting of the interrupt enable FLAG status bit. The 
interrupt request signal is level triggered. It is internally 
synchronized during each clock cycle on the high-going 
edge of elK. To be responded to, INTR must be present 
(HIGH) during the clock period preceding the end of the 
current instruction or the end of a whole move for a 
block-type instruction. During the interrupt response 
sequence further interrupts are disabled. The enable bit 
is reset as part of the response to any interrupt (INTR, 
NMI, software interrupt or single-step), although the 

I T, T2 T3 T41TII T, T, 

ALE~~_-----Iln~ __ 

= \ / } I 
! ( 

rt' ~ \ (NfA \ 

\ ~FLOAT ) I TYPE VECTOR >-j ( AOo-AD1~ 

Figure 6. Interrupt Acknowledge Sequence 
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FLAGS register which Is automatically pushed onto the 
stack reflects the state of the processor prior to the 
interrupt. Until the old FLAGS register is restored the 
enable bit will be zero unless specifically set. by an 
instruction. 

During the response sequence (figure 6) the processor 
executes two successive (back-to-back) interrupt 
acknowledge cycles. The 8086 emits the LOCK signal 
from T 2 of the first bus cycle until T 2 of the second. A 
local bus "hold" request will not be honored until the 
end of the second bus cycle. In the second bus cycle a 
byte is fetched from the external interrupt system (e.g., 
8259A PIC) which identifies the source (type) of the 
interrupt. This byte is multiplied by four and used as a 
pOinter into the interrupt vector lookup table. An INTR 
signal left HIGH will be continually responded to within 
the limitations of the enable bit and sample period. The 
INTERRUPT RETURN instruction includes a FLAGS pop 
which returns the status of the original interrupt enable 
bit when it restores the FLAGS. 

HALT 
When a software "HALT" instruction is executed the 
processor indicates that it is entering the· "HALT" state 
in one of two ways depending upon which mode is 
strapped. In minimum mode, the processor issues one 
ALE with no·qualifying bus control signals. In Maximum 
Mode, the processor issues appropriate HALT status on 
525,50 and tlie 8288 bus controller issues one ALE. The 
8086 will not leave the "HALT" state when a local bus 
"hold'.' is entered while in "HALT". In this case, the 
processor reissues the HALT indicator. An interrupt 
request or RESET will force the 8086 out of the "HALT" 
state. 

READ/MODIFY/WRITE (SEMAPHORE) 
OPERATIONS VIA LOCK 
The LOCK status information is provided by the proc· 
essor when directly consecutive bus cycles are required 
during the execution of an instruction. This provides the 
processor with the capability of performing readlmodifyl 
write operations on memory (via the Exchange Register 
With Memory instruction, for example) without the 
possibility of another system bus master receiving 
intervening memory cycles. This is useful in multi· 
processor system configurations to accomplish "test 
and set lock" operations. The LOCK signal is activated 
(forced LOW) in the clock cycle following the one in 
which the software "LOCK" prefix instruction is 
decoded by the EU. It is deactivated at the end of the 
last bus cycle of the instruction following the "LOCK" 
prefix instruction. While LOCK is active a request on a 
RQ/GT pin will be recorded and then honored at the end 
of the LOCK. 

EXTERNAL SYNCHRONIZATION VIA TEST 
As an alternative to the interrupts and general 110 
capabilities, the 8086 provides a single software­
testable input known as the TEST signal. At any time the 
program may execute a WAIT Instruction. If at that time 
the TEST signal is inactive (HIGH), program execution 
becomes suspended while the processor waits for TEST 
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to become active. It must remain active for at least 5 
CLK cycles. The WAIT instruction is re·executed 
repeatedly until that time. This activity does not con­
sume bus cycles. The processor remains in an idle state 
while waiting. All 8086 drivers go to 3-state OFF if bus 
"Hold"ls entered. If interrupts are enabled, they may 
occur while the processor is waiting. When this occurs 
the processor fetches the WAIT instruction one extra 
time, processes the interrupt, and then re-fetches and 
re·executes the WAIT Instruction upon returning from 
the interrupt. 

BASIC SYSTEM TIMING 
Typical system configurations for the processor 
operating in minimum mode and in maximum mode are 
shown in Figures 4a and 4b, respectively. In minimum 
mode, the MN/MX pin is strapped to Vee and the proc­
essor emits bus control signals in a manner similar to 
the 8085. In maximum mode, the MN/MX pin is strapped 
to Vss and the processor emits coded status informa­
tion which the 8288 bus controller uses to generate 
MUL TIBUS compatible bus control signals. Figure 5 il­
lustrates the signal timing relationships. 

AX AH AL ACCUMULATOR 

BX BH BL BASE 

CX CH CL COUNT 

OX DH DL DATA 

~m 
STACK POINTER 

BP BASE POINTER 

SI SOURCE INDEX 

01 DESTINATION INDEX 

I IP I INSTRUCTION POINTER 

FLAGSH I FLAGSl ' STATUS FLAGS 

CS CODE SEGMENT 

OS DATA SEGMENT 

- 55 STACK SEGMENT 

ES EXTRA SEGMENT 

Figure 7. iAPX 86/10 Register Model 

SYSTEM TIMING - MINIMUM SYSTEM 
The read cycle begins in T, with the assertion of the 
Address Latch Enable (ALE) signal. The trailing (low· 
going) edge of this signal is used to latch the address 
information, which is valid on the local bus at this time, 
into the 8282/8283 latch. The BHE and Ao signals 
address the low, high, or both bytes. From T, to T4 the 
MilO signal indicates a memory or 1/0 operation. At T 2 
the address is removed from the local bus and the bus 
goes to a high impedance state. The read control signal 
is also asserted at T 2. The read (RD) signal causes the 
addressed device to enable its data bus drivers to the 
local bus. Some time later valid data will be available on 
the bus and the addressed device will drive the READY 
line HIGH. When the processor returns the read signal 
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to a HIGH level, the addressed device will again 3-state 
its bus drivers. If a transceiver (8286/8287) is required to 
buffer the 8086 local bus, signals DT/R and DEN are pro­
vided by the 8086. 

A write cycle also begins with the assertion of ALE and 
the emission of the address. The M/iO signal is again 
asserted to indicate a memory or 1/0 write operation. In 
the T2 immediately following the address emission the 
processor emits the data to be written into the 
addressed location. This data remains valid until the 
middle of T4. During T 2, T 3, and T w the processor asserts 
the write control signal. The write (WR) signal becomes 
active at the beginning of T 2 as opposed to the read 
which is delayed somewhat into T2 to provide time for 
the bus to float. 

The BHE and Ao signals are used to select the proper 
byte(s) of the memoryllO word to be read or written 
according to the following table: 

BHE AO CHARACTERISTICS 

0 0 Whole word 

0 1 Upper byte from! 
to odd address 

1 0 Lower byte from! 
to even address 

1 1 None 

1/0 ports are addressed in the same manner as memory 
location. Even addressed bytes are transferred on the 
D7-DO bus lines and odd addressed bytes on D'5-D8' 

The basic difference between the interrupt acknowl­
edge cycle and a read cycle is that the interrupt 
acknowledge signal (INTA) is asserted in place of the 
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read (AD) signal and the address bus is floated. (See 
Figure 6.) In the second of two successive INTA cycles, 
a byte of information is read from bus lines D7-DO as 
supplied by the interrupt system logic (i.e., 8259A Prior­
ity Interrupt Controller). This byte identifies the source 
(type) of the interrupt. It is multiplied by four and used 
as a pOinter into an interrupt vector lookup table, as 
described earlier. 

BUS TIMING-MEDIUM SIZE SYSTEMS 

For medium size systems the MN/MX pin is connected to 
Vss and the 8288 Bus Controller is added to the system as 
well as an 828218283 latch for latching the system address, 
and a 8286/8287 transceiver to allow for bus loading 
greater than the 8086 is capable of handling. Signals ALE, 
DEN, and DT/R are generated by the 828B instead of the 
processor in this configuration although their timing re­
mains relatively the same. The B086 status outputs (82, 8" 
and So) provide type-of-cycle information and become 
B2BB inputs. This bus cycle information specifies read 
(code, data, or I/O), write (data or I/O), interrupt acknowl­
edge, or software halt. The B2BB thus issues control 
signals specifying memory read or write, 1/0 read or write, 
or interrupt'acknowledge. The B2B8 provides two types of 
write strobes, normal and advanced, to be applied as re­
quired. The normal write strobes have data valid at the 
leading edge of write. The advanced write strobes have 
the same timing as read strobes, and hence data isn'tvalid 
at the leading edge of write. The B2B6/B2B7 transceiver 
receives the usual T and OE inputs from the B2BB's DT/R 
and DEN. 

The pOinter into the interrupt vector table, which is 
passed during the second INTA cycle, can derive from 
an 8259A located on either the local bus or the system 
bus. If the master 8259A Priority Interrupt Controller is 
positioned on the local bus, a TTL gate is required to 
disable the 8286/8287 transceiverwhen reading from the 
master 8259A during the interrupt acknowledge 
sequence and software "poll". 
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ABSOLUTE MAXIMUM RATINGS· 

Ambient Temperature Under Bias ......... O·C to 70·C 
Storage Temperature ............. - 65·C to + 150·C 
Voltage on Any Pin with 

Respect to Ground .................. - 1.0 to + 7V 
Power Dissipation ........................ 2.5 Watt 

'NOTICE: Stresses above those listed under "Absolute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above 
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum 
rating conditions for extended periods may affect device 
reliability. 

D.C. CHARACTERISTICS (8086: TA = O°C to 70°C, Vcc = 5V ± 10%) 
(8086-1: TA = O°C to 70°C, Vee = 5V ± 5%) 
(8086-2: TA = O°C to 70°C, Vee = 5V ± 5%) 

Symbol Parameter Min. Max. Units TeBI Conditions 

VIL Input Low Voltage -0.5 +0.8 V 

VIH Input High Voltage 2.0 Vee+ 0.5 V 

VOL Output Low Voltage 0.45 V IOL=2.5 mA 

VOH Output High Voltage 2.4 V 10H= -400/AA 

Icc Power Supply Current: 8086 340 
8086-1 360 mA TA=25·C 
8086-2 350 

III Input Leakage Current ± 10 "A OV.;; VIN .;; Vee 

ILO Output Leakage Current ± 10 /AA 0.45V ~ VOUT ~ Vee 

VeL Clock Input Low Voltage -0.5 +0.6 V 

VeH Clock Input High Voltage 3.9 Vee+ 1.O V 

Capacitance of Input Buffer 
CIN (All input except 15 pF fe= 1 MHz 

ADo-AD15• RQ/GT) 

CIO 
Capacitance of I/O Buffer 

15 pF le= 1 MHz 
(ADo-AD 15• RQ/GT) 
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A.C. CHARACTERISTICS (8086:TA = ooe to iooe, VCC = 5V ± 10%) 
(8086-1: TA = ooe to 70oe, Vcc = 5V ± 5%) 
(8086-2: TA = ooe to 70oe, Vcc ;= 5V ± 5%) 

MINIMUM COMPLEXITY SYSTEM 
TIMING REQUIREMENTS 

Symbol Parameter 8086 

Min. 

TCLCl ClK Cycle Period 200 

TClCH ClKLowTime (%TCLCl)-15 

TCHCl ClK High Time (1J.!TClCL)+2 

TCH1CH2 ClK Rise Time 

TCL2CL1 CLKFaliTime 

TDVCl Data in Setup Time 30 

TClDX Data in Hold Time 10 

TR1VCL ROY Setup Time 35 
into 8284A (See 
Notes 1, 2) 

TCLRIX ROY Hold Time 0 
into 8284A (See 
Notes 1,2) 

TRYHCH READY Setup (%TClCL)-15 
Time into 8086 

TCHRYX READY Hold Time 30 
int08086 

TRYlCL READY Inactive to. -8 
CLK (See Note 3) 

THVCH HOLD Setup Time. 35 

TINVCH INTR. NMI, TEST 30 
Setup Time (See 
Note 2) 

TlLIH Input Rise Time' 
(Except ClK) 

TlHIL Input Fall Time 
(Except ClK) 

8086,1 (Preliminary) 8086-2 

Max. Min. Max. Min. 

500 100 500 125 

(% TClCL)-14 (%TCLCl)-15 

(1J.!TCLCl)+6 (1J.!1'ClCl)+2 

10 10 

10 10 

5 20 

10 10 

35 35 

0 0 

53 (% TClCl)-15 

20 20 

-10 -8 

20 20 

15 15 

20 20 

12 12 

8·14. 

Test 
Units Conditions 

Max. 

500 n. 

ns 

ns 

10 ns From 1.0Vto 
3.5V 

10 ns Fl'()m 3.5Vto 
1.0V 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

. ns 

ns 

20 ns 'From 0.8" to 
2.0V 

12 ns From 2.0Vto 
0.8V 
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A.C. CHARACTERISTICS (Continued) 

TIMING RESPONSES 

Symbol Parameter 8086 

Min. Max. 

TCLAV Address Valid Delay 10 _110 

TCLAX Address Hold Time 10 

TCLAZ Address Float TCLAX 80 
Delay 

TLHLL ALE Width TCLCH-20 

TCLLH ALE Active Delay 80 

TCHLL ALE Inactive Delay 85 

TLLAX Address Hold Time TCHCL-l0 
to ALE Inactive 

TCLDV Data Valid Delay 10 110 

TCHDX Data Hold Time 10 

TWHDX Data Hold Time TCLCH-30 
AflerWR 

TCVCTV Control Active 10 110 
Delay 1 

TCHCTV Control Active 10 110 
Delay 2 

TCVCTX Control Inactive 10 110 
Delay 

TAZRL Address Float to 0 
READ Active 

TCLRL RD Active Delay 10 165 

TCLRH RD Inactive Delay 10 150 

TRHAV RD Inactive to Next TCLCL-45 
Address Active 

TCLHAV HLDA Valid Delay 10 160 

TRLRH RDWidth 2TCLCL-75 

TWLWH WRWidth 2TCLCL-60 

TAVAL Address Valid to TCLCH-60 
ALE Low 

TOLOH Output Rise Time 20 

TOHOL Output Fall Time 12 

NOTES: 
1. Signal at B2B4A shown for reference only. 

iAPX 86/10 

8086-1 (Preliminary) 8086-2 

Min. Max. Min. 

10 50 10 

10 10 

10 40 TCLAX 

TCLCH-l0 TCLCH-l0 

40 

45 

TCHCL-l0 TCHCL-l0 

10 50 10 

10 10 

TCLCH-25 TCLCH-30 

10 50 10 

10 45 10 

10 50 10 

0 0 

10 70 10 

10 60 10 

TCLCL-35 TCLCL-40 

10 60 10 

2TCLCL-40 2TCLCL-50 

2TCLCL-35 2TCLCL-40 

TCLCH-35 TCLCH-40 

20 

12 

2. Setup requirement for asynchronous signal only to guarantee recognition at next CLK. 
3. Applies only to T2 state. (B ns into T3). 
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Test 
Units Conditions 

Max. 

60 ns 

ns 

50 ns 

ns 

50 ns 

55 ns 

ns 

60 ns ·CL = 20-100 pF 

ns for all 8086 Out-
puts (In addi-

ns tion to 8086 self-
load) 

70 ns 

60 ns 

70 ns 

ns 

100 ns 

80 ns 

ns 

100 ns 

ns 

ns 

ns 

20 ns From 0.8Vto 
2.0V 

12 ns From 2.0Vto 
0.8V 
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A.C. TESTING INPUT, OUTPUT WAVEFORM A.C. TESTING LOAD CIRCUIT 

INPUT/OUTPUT 

DEVICE 
UNDER 

ICL~IOOPF TEST 

_. 
AC. TESTING: INPUTS ARE DRIVEN AT 2.4V FOR A LOGIC "1" AND O.4SV FOR 
A LOGIC "0.'" TIMING MEASUREMENTS ARE MADE AT 1.5V FOR BOTH A 
LOGIC "'1" AND "0." 

CL INCLUDES JIG CAPACITANCE 

WAVEFORMS 

MINIMUM MODE 

) ClK (8284A Output 

MIlO 

ALE 

) RDY (6264A Input 
SEE NOTE 4 

READY (8086 Input) 

RD 

T, T2 13 Tw T, 

· ~~"'-=]J=--=lC' I CHr--\ ~ r'~ rL-~ ~ -
- TCHCTV ~ ;------ TCHCl r-- TClCH_ 

TClAV- I- - TClDV 
_, 

TCHDX- t-TClAX- -
BHE, A19-A18 57-53 

TCllH-

f 
TlHll-=: _TlLAX 

TJAl 

r--
I~ __ -- := 0c TCHLL-I -TRIVCL 

V,H '" l'\\t\ \\\\\ 
, 

VIL ---.:. - I-TclRIX 

I 
TRYlCl- -

f 
- h 

1 - -TCHRYX 

- TAVAl r-- TRYHCH- -TllAX_ -I 
TClAV- - - -TClAZ TDVCl-- -TCLDX-

_TClAX 

A15-ADo DATA IN 

::{ FlO:~'-
TAZRL- TClRH- 1-1 t-TRHAV 

~ 
READ CYCLE 

(NOTE I) 

(WR. INTA = VOH) 
DTJR 

-= ----z- TCHCTV 
TClRl TRlRH -TCHCTV 

1 
TCVCTV- f TCVCTX- I 
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inter 
WAVEFORMS (Continued) 

MINIMUM MODE (Continued) 

CLK (8284A Oulpull 

M/iO 

ALE 

WRITE CYCLE 

(/IOTE 1) DEN 

(liD. iN'fA. 
DTIII=voHI 

INTA CYCLE DT/R 
(NOTES I" 31 
RD. WRI:IVOH 
I!RE=VOU 

SOFTWARE HALT-

RD. WR. INTA = VOH 

DT/R = INDETERMINATE 

NOTES: 

VCH 

TCLAV 

iAPX 86/10 

INVALID ADDRESS 

1. All signals switch between VOH and VOL unless otherwise specified. 

Tw 

SOFTWARE HALT 

2. ROY is sampled near the end of T2• T3. Tw to determine if Tw machines states are to be inserted. 
3. Two INTA cycles run back-to-back. The 8086 LOCAL AOORIOATA BUS is floating during both INTA cycles. Control signals shown 

for second INTA cycle. . 
4. Signals at 8284A are shown for reference only. 
5. All timing measurements are made at 1.5V unless otherwise noted. 
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A.C. CHARACTERISTICS 

MAX MODE SYSTEM (USING 8288 BUS CONTROLLER) 
TIMING REQUIREMENTS 

Symbol Parameter 8086 8086·1 (Preliminary) 

Min. Max. Min. Max. 

TCLCL CLK Cycle Period 200 500 100 500 

TCLCH CLK Low Time (% TCLCL)-15 (% TCLCL)-14 

TCHCL CLK High Time (1I:J TCLCL)+2 (Y, TCLCL)+6 

TCH1CH2 CLK Rise Time 10 10 

TCL2CLI CLK Fall Time 10 10 

TDVCL Data in Setup Time 30 5 

TCLDX Data In Hold Time 10 10 

TRtVCL ROY Setup Time 35 35 
into 8284A (See 
Notes 1, 2) 

TCLR1X ROY Hold Time 0 0 
into 8284A (See 
Notes 1, 2) 

TRYHCH READY Setup Time (% TCLCL)-15 53 
into 8086 

TCHRYX READY Hold Time 30 20 
into 8086 

TRYLCL READY Inactive to -8 -10 
CLK (See Note 4) 

TINVCH Setup Time for 30 15 
Recognition (INTR, 
NMI, TEST) (See 
Note 2) 

TGVCH RQ/GT Setup Time 30 12 

TCHGX RQ Hold Time into 40 20 
8086 

TILIH Input Rise Time 20 20 
(Except CLK) 

TIHIL Input Fall Time 12 12 
(Except CLK) 

NOTES: 
1. Signal at 8284A or 8288 shown for reference only. 

8086-2 (Preliminary) 

Min. Max. 

125 500 

(% TCLCL)-15 

(V, TCLCL)+2 

10 

10 

20 

10 

35 

0 

(% TCLCL)-15 

20 

-8 

15 

15 

30 

20 

12 

2. Setup requirement for asynchronous signal only to guarantee recognition at next elK. 
3. Applies only to T3 and wait states. 
4. Applies only to T2 state (8 ns into T3). 
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Test 
Units Conditions 

ns 

ns 

ns 

ns From 1.0Vto 
3.5V 

ns From 3.5Vto 
1.0V 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns From 0.8Vto 
2.0V 

ns From 2.0Vto 
0.8V 
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A.C. CHARACTERISTICS (Continued) 

TIMING RESPONSES 

Symbol Parameter 8086 

Min. Max. 

TCLML Command Active 10 35 
Delay (See Note 1) 

TCLMH Command Inactive 10 35 
Delay (See Note 1) 

TRYHSH READY Active to 110 
Status Passive (See 
Note 3) 

TCHSV Status Active Delay 10 110 

TCLSH Status Inactive 10 130 
Delay 

TCLAV Address Valid 10 110 
Delay 

TCLAX Address Hold Time 10 

TCLAZ Address Float Delay TCLAX 60 

TSVLH Status Valid to ALE 15 
High (See Note 1) 

TSVMCH Status Valid to 15 
MCE High (See 
Note 1) 

TCLLH CLK Low to ALE 15 
Valid (See Note 1) 

TCLMCH CLK Low to MCE 15 
High (See Note 1) 

TCHLL ALE Inactive Delay 15 
(See Note 1) 

TCLMCL MCE Inactive Delay 15 
(See Note 1) 

TCLDV Data Valid Delay 10 110 

TCHDX Data Hold Time 10 

TCVNV Control Active 5 45 
Delay (See Note 1) 

TCVNX Control Inactive 10 45 
Delay (See Note 1) 

TAZRL Address Float to 0 
Read Active 

TCLRL RD Active Delay 10 165 

TCLRH RD Inactive Delay 10 150 

TRHAV RD Inactive to TCLCL-45 
Next Address Active 

TCHDTL Direction Control 50 
Active Delay (See 
Notel) 

TCHDTH Direction Control 30 
Inactive Delay (See 
Notel) 

TCLGL GT Active Delay 0 65 

TCLGH GT Inactive Delay 0 65 

TRLRH RDWidth 2TCLCL-75 

TOLOH Output Rise Time 20 

TOHOL Output Fall Time 12 

iAPX 86/10 

Test 
8086-1 (Preliminary) 8086·2 (Preliminary) Units Conditions 

Min. Max. Min. Max. 

10 35 10 35 ns 

10 35 10 35 ns 

45. 65 ns 

10 45 10 60 ns 

10 55 10 70 ns 

10 50 10 60 ns 

10 10 ns 

10 40 TCLAX 50 ns 

15 15 ns 

15 15 ns 

15 15 ns 

15 15 ns 

15 15 ns Cl = 20-100 pF 
for all 6066 Out-

15 15 ns 
puts (In addi-
tion to 6066 self-
load) 

10 50 10 60 ns 

10 10 ns 

5 45 5 45 ns 

10 45 10 45 ns 

0 0 ns 

10 70 10 100 ns 

10 60 10 60 ns 

TCLCL-35 TCLCL-40 ns 

50 50 ns 

30 30 ns 

0 45 0 50 ns 

0 45 0 50 ns 

2TCLCL-40 2TCLCL-50 ns 

20 20 ns From 0.6V to 
2.0V 

12 12 ns From 2.0Vto 
0.6V 
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WAVEFORMS 

MAXIMUM MODE 

CLK 

VCL 

§2,S1,So (EXCEPT HALT) 

1 
ALE (8288 OUTPUn 

SEE NOTE 5 

RDY (8284A INPUT) 

READ CYCLE 

RD 

DTIR 

8288 OUTPUTS 

SEE NOTES 5,6 
MRDCORIORC 

DEN 

iAPX 86/10 

----~r---_r---r----+_--+_~TI7~7ir_--_+ __ ------

TCLAV-j 

TCHDTl-
TRLRH 

8-20 

TCHDX 

-TCHRYX 

TCLDX-

DATA IN 

TCLRH+--t--t 

TCLMH-+-

TCVNX-

\ \.._----

r-­
I 

AFN-01497B 



inter 
WAVEFORMS (Continued) 

MAXIMUM MODE (Continued) 

ClK 

~,'S1,So (EXCEPT HALT) 

WRITE CYCLE 

DEN 

8288 OlJtPUTS 

SEE NOTES 5,6 AMWC OR AIOWC 

INTACYCLE 

SOFTWARE HALT-

MWTCOR lowe 

AD1S-ADO 
(SEE NOTES 3 & 4) 

8288 OUTPUTS 

MCE! 
POrn 

DT/A: 

SEe NOTES 5'6]INTA 

DEN 

VCl 

TSVMCH-

(DEN = VOLiR'D,MR1iC,IORC,MWTC,AMWC,IDWC,AIOWC,INTA,:::: VOH) 

NOTES: 

iAPX 86/10 

T, 

1. All signals switch between VOH and VOL unless otherwise specified. 

T, T, 

Tw 

DATA 

TCLMH-

POINTER 

2. RDY is sampled near the end of T2, T3, Tw to determine if Tw machines states are to be inserted. 
3. Cascade address is valid between first and second INTA cycle. 

T. 

TCHDX-

TCVNX-

FLOAT 

TCLDX 

FLOAT 

\ 

,~----

,-­
I 

TCHDTH 

4. Two INTA cycles run back-to-back. The 8086 LOCAL ADDR/DATA BUS is floating during both INTA cycles. Control for pointer 
address is shown for second INTA cycle. 

5. Signals at 8284A or 8288 are shown for reference only. 
6. The issuance of the 828'~ command and control signals (MRDC, MWTC, AMWC, IORC, IOWC, AIOWC, INTA and DEN) lags the 

active high 8288 CEN. " \, 
7. All timing measurement~ are made at 1.5V unless otherwise noted. 
8. Status inactive in state iust prior to T4. 

I, 
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WAVEFORMS (Continued) 

ASYNCHRONOUS SIGNAL RECOGNITION 

NM' 

INTR 

TEST 

NOTE: 1. seTUP REQUIREMENTS FOR, ASYNCHRO­
NOUS SIGNALS ONLY TO GUARANTEE RECOGNITION 
AT NEXT elK 

BUS LOCK SIGNAL TIMING (MAXIMUM MODE ONLY) 

Any elK cycle--J An, elK Cycle __ I 

ClIl. 

REQUEST/GRANT SEQUENCE TIMING (MAXIMUM MODE ONLY) 

NOTES; 1. THE COPROCESSOR MAY NOT DRIVE THE BUSES OUTSIDE THE REGION 
SHOWN WITHOUT RISKING CONTENTION. 

HOLD/HOLD ACKNOWLEDGE TIMING (MINIMUM MODE ONLY) 

ADIS-ADQ. 
AlIfS.-Ala1S3. 

L7Mlm 
Dr/Fi, WR, Ii'N 

COPRO~ESSOR 

8-22 
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Table 2. Instruction Set Summary 

DATA TRANSFER 
IOV ~ 1m: 71543210 7 B5 .. 3 2 I a 711543 Z I 0 715 43 Z I 0 DEC Dlullalnl: 115 .. 321 a 765 .. 3Z I 0 7150210 115 .. 3 2 I 0 
RegrsttrlmemO'ylallromregtsler 110001011 w I mod '" "m Reglslrr/memory 11111111 w ImoclO 01 "m I 
Immed,ale10 reglsle,'memOIY 111000'1 w I mod 000 "m dala I dala,'w 1 I Register ~ 
Immeclllie10 reglsler 1101 I W Itg I dala dala,l..,. 1 I IEB-ChangeSlgn 11111011 w tmodO 11 "m 
Memory 10 accumuialor 11010 0 DOw I adel,·low acldr.hIQh"] 

eMP tampuI: 
Accumulator 10 memory I' 0 1 000 1 w I adel,·low adel,·hlgh I 
Reglsle,'memo,yloseQmenl,eglsler II 0 001110 ImodOreg "m Reglslrrlmemory and reglsler 001110 d w mod .. , "m 

Segment uglste, 10 flg,ster/memory II 0 0 a I I 00 I mod 0 r'g "m Immediate with leg.ster/memory 1000005 w modi II "m dala dala Iisw 01 
ImmedlalewllhaccumulalOI 0011 I lOw dala dalarlw 1 

rUIH= 1'a.1I: AlSASCllad,uSllorsubtracl ~ 
Regislerlmeml:lly 111 I 1 II 1 mod 11 0 ,1m DAS Oetlmalad,uSllcrsublracl ~ 
Reglsler 01010 reg IIIUl MulhplylunSlgnedl I'I II 0 I I W I mod 100 "m 
Segmenlregisler 000legll0 IIUL Iniegermuiliply ISlgnedl 1III011w mod 10 I "m 

AlM ASCII adlUSI lor mul!lply 11010100 00001010 
POP="p: 

DIVD,v,(!elunslgnedl 1 I 11 0 11 W mod 11 0 "m 
R.glsl.rlmemClly 1000 11\ I madOOO ,1m 

IDI¥lnlegp.rdlvlde!srgnedl 1111011w mod 111 rim 
Regisler 01011 '" AlOASCliadJuSlloldrvrde 11 0 1 0 101 00001010 
Segmentreg,sIel 1000legl111 caw Canvertbylt10 WDrd 10011 000 

XCH8= heung.: cwo Canvert word to double wOld 10011 001 

RegislerlmemolY wrth register I' 000011 W Imod '" "m I 
Regisler with actumulalar 1'0010 reg I 
Ilil-inpullrom: 

Fiudporl 11110010 W I porI 

Valiablepoll I 111 0 110 wi 

LOGIC 
OUT-OulputIO: 1I0Tln'wl 1111011 w modO 1 0 "m 
Fixed porI 1110011w pOll SNL/SAL ShIIllo~lcal/a"'hme"c lell I' 0 1 00 v w mod I 0 0 "m 
Vallabl.parl 1110lllw SJlRShlllloQ,eallighl 111 0 I 0 0 v w Imodl 0 1 "m 
ILAT-Translal.by'eloAl 11 0 1 0 I 11 SAR Sh,lIaldhmetlclight 1'10100 v w Imod' 11 "m 
W-LoadEAloreg'sler 10001101 mod '" ROLRolalelelt 110100 v w modO 0 0 ,1m 
LDI·La.dpoinlelloDS 11 0 0 0 101 mod re~ RORRolatelight 1111111 0 v w modO 0 I um 
W·loadpoinllrtoES 11 100 III 0 0 Imod '" RCLRolalelhloughcailyliagleft 110 I 0 0 v w modO 1 0 "m 
LAIIF'LoadAHwilhllags I' 0 0111 11 I RCRRolalelhroughcarryrrghl 11 0 1 0 0 v w modO 11 "m 
.AIIF,S!oreAHmlalllgs 100 II 11 0 

'","F·Pushliags 10011100 AND And: 
PO"~Pop lIaas 100111 0 I Reg Imemory and reglsler 10 ellher 001000 d w mod .. , "m 

Jmmetbale10 leglsler/nlemary 1000000 w mod' 00 11m data daladw 1 

Immed,aleto accumulalor 00' 0 010 w dala dala,'w 1 

TEST AndlunclionIDIIIDI,nor •• ult: 
ARITHMEnC Regrsler/memolyand reglsler I' 000010 w jmod '" "m 
ADD-Add, Immedlaleda'aandleglslel/memory 1111011w modO 0 0 11m dlla dati It. I 
Rtt!./m.morywlthregisllrloei'hli 000000 d w mod '" <1m Immedlatedala and Iccumulatar '010100 w dala dala,lw' 
Immldi.'.,oregisl.r/memory 1000005 w modO 0 0 ,1m dala datarlsw 01 
Immedlale10 ItCl/mutator 0000010 w dala dalallw 1 O. Dr: 

Reg Imemoryandleglslerlaellher OOOOIDdw mod '" "m 
ADC -MII.HllaIlY: Immedlalela reglsler/memory 1000000 w modO 01 "m dala dalarlw' 
Rea·/mtmoryw"hreai$ler'oerlt1er 000 I DOd IN m.' '" "m Immed,ale10 accumulalOI 000011 0 w data datarlw·l 
Immtdial.,olIgisler/memory 100000 s w modO 1 0 "m dala dala II 5111'01 

Immldi.1I10 accumula'or 100010 lOw I dala datalfw" IDR'Elclullv •• r: 

Reg./memolyandreglslerlaerlher 0011 0 Od w mod '" ,1m 
IIC-IKruIIIIl: Immedrllelolegrslellmemory 1000000 w modI' 0 "m dala dalallw 1 
Re;isllrlmemory 111111,. modO 0 0 ,1m fmmedrale10 accumulalol 00 II 0 lOw dlla dalall. I 
Rl;islll 01000 .. , 
UAaASCl1 adjUlI for add 00110111 

IUr-Dlcimll.djustlorldd 00100111 

lUI -IIIMnct 
Rq./mimoryanclrigilierlolilher 00101 Od w mod .. , "m 
Immedial.'rom If'.IIistellmemory 100000 s '" modi 0 1 "m data da'a,I sw·Ot STRINO MANIPULATIDN 

Immedlal,llomaccumUlalo, 001011 0 w dala dalailw-' REP=Repeal 1" 11001 Z I 
MOVS'MoYII bylefward '0 10010 w 

111-SUlllrlClwltlllllrnw CMPS=CDmplllbyle{word 10 I 0 0 11 w 
Reg./memorr.nd register laeilh.r 000110 It w m,' .. , "m SCAS=SClnbyle/word 10 1011 I w 
Immtdi.lllrom reglstlr/m,mary 100000. w modO 11 "m daliil dl!lII sw·Ol LDDS*LoadbvlelwdloALfAX 101011 0 w 
Immtdi.lllromlccLimul.tor 000111 0 w dala datlilw'l STOS=StorbylelwdlromALfA ItO I 0 I 0 1 w I 

Mnemonics ©Intel, 1978 
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Table 2, Instruction Set Summary (Continued) 

CONTROL TRANSFER 
CAll 0 CIII, 16543210 16543210 76543210 

Direct within segment 

Indirecl within segmerlt 

Direct mlersegment 

11 1 1 0 1 000 I !lIsp-low I drsp:hlgh I 
11 1 1 1 1 1 1 1 I mod 0 1 0 rIm I 
11 0 0 1 1 0 1 0 I offset-low I olfset-high 

I seg-Iow I seg-high 

Indirect intersegment 11 1 1 lIt 1 1 fmo!! 01 1 rIm I 

JMP = Unl:ondlllonil Jump: 

Direct wlthrn segment 11 1 1 0 1 0 0 1 I dlsp-Iow dlsp-hlgh I 
Direct wlthinsegmer>t-short ~ 11 I dlsp 

Indirecl within segment ~1 1 I mod 1 00 rIm 

Direct intersegment 11 1 101010 I offset-low 

\ seg-Iow 

Indrrecl mlersegment 111111111 ImOd 1 0 1 rim 

RET = Relurn from CALl: 

Olfset-hlghWO] 

Seg-high] 

Within segment Fll~l;,,;O~O;;O~O~' ,;:' f--,-,--.,.---,--;c:c-::-c:--, 
Within seg. addmg Immed 10 SP Fll~l,=O~O,=O;;O~' o~_--=="----'--" data-low data-hlgO 

Intersegment 11 i 001011 
lntersegment. adding Immediate to SP FllC"C'O~O'='=l 0'='=, ~O f-----,;==--,---:;:::-;:::;:--, data-low data·hlgh I 
JE/Jl=Jump on equal/zero 101 1 1 0 1 00 
JL/JNGE~~Ue~~a)n leSS/ni)l greater ~I O'='~'~'~' '=, o~o F=~";;;;~-=\ 
JLE/JNGg~~~~ron less or equal/not Ip:O,,;l,,;l,,;l,,;l~l~l,,;O+~~~=4 

dlsp 

disp 

dlsp 

JB/JN,U~~Ue~ea~n below/not above (p:0,,;1,,;1,,;1,,;0;,;0~1,,;0+~~~=4 
JBE/JNA~~~~~o~~ below or equal! 1F.0,,;1,,;1=:1;,,;0~1C",=0+~~:"'==4 

dlsp 

dlsp 

JP/JPE·Jump on parity/parity even 1~0=1",.1=1=1",0='C'0*======4 
JO~Jump on over/low Ip:O;";l,,,l;,,;l,,;O;,;O,,;O;,,;O~IF=~::;;"'===i 

dlsp 

dlsp 

JS~Jump on sign 10 1 1 1 1 000 I dlsp 

disp JNE/Jlll=Jump on nol equal/nolzero p:0;,,;1,,;1,,;1;,;0~1;,;0~1*=~~=4 
JNL/JGE;~ue~ea)n not less/greater 0 1 1 1 1 1 0 1 dlsp 

dlsp JNLE/JGg~~~~/n not less or equal! IP:O;";'~';";'~'~';';'~'*I =~~~=i 

Footnot .. : 

Al '" 8-bit accumulator 
AX '" 16-bit accumulator 
ex '" Count register 
OS 0 Data segment 
ES 0 Extra segment 
Above/below refers to unsigned value. 
Greater", more positive; 
less'" less positive (more negative) signed values 
·\f d = 1 then "to" reg; if d '" 0 then "from" reg 
if w:: 1 then word instruction; if w '" a then byte instruction 

if mod 0 11 then rim is treated as a REG field 
if mod = 00 then OISP 0 0', disp-Iow and disp-high are absent 
if mod = 01 then OISP = disp-Iow sign-extended to 16-bits, disp-high is absent 
if mod = 10 then OISP = disp-high: disp-Iow 

if rim 0 000 then EA = (BX) , (SI) , OISP 
if rim = 001 then EA 0 (BX) , (01) , OISP 
if rim = 010 then EA 0 (BP) , (SI) , OISP 
if rim = 011 then EA 0 (BP) , (01) , OISP 
if rim = 100 then EA = (SI) , OISP 
if.r 1m = 101 then EA 0 (01) , OISP 
if rim = 110 then EA 0 (BP) ,0ISP' 
if rim = 111 then EA = (BX) , OISP 
OISP follows 2nd byte of instruction (before data if required) 

'except if mod = 00 and rim 0 110 then EA 0 disp-high: disp-Iow. 

Mnemonics© Intel, 1978 

16543210 765432 I 0 
JNB/JAEoJump on not below/above ! 0 , 1 '·0 nIl I dlsp I or equal 
JNBE/JAoJump on not below or [0 1 1 1 0 1 1 1 I disp I equal/above 
JNP/JPO=Jump on nol par /par odd 10 1 1 1 1 0 1 1 I disp I 
JNO<Jump on not over/low 1011100011 dlsp I 
JNS·Jump on nol Sign 10 1 1. 1 tOOl I disp ] 
LOOP Loop CX times 111100010] disp I 
LOOPZlLOOPE· Loop while zero/equal 11 1 1 0 0 0 0 1 I dlsp I 
LOOPNZlLOOPNE loop .... hlle not 11 I 1·00000 I dlsp I zero/equal 
JCll-Jump on CX zero II 1 1 000 1 1 I dlsp I 
tNT Interrupt 

TypespCClfled 

Type 3 

l1IDO'101~ 
l' I 00 1 1 0 0 1 

INTO~lnterrupt on overflow 

IRET-Interruptreturn 

PROCESSOR CONTROL 
CLC Clear carry 

CMC Complement carry 

STC Sel carry 

CtD Clear direction 

STO Set direction 

CLI Clear Interrupt 

STI Set Interrupt 

liLT Halt 

WAIT Walt 

1" 00111 0 I 
1110 01111 I 

111 '11000 I 
11 I 1·1 0 1 0 I I 
11111 .. '.001 I 

111111100 I 
111111.101 I 
111111010 i 
lii.i.iili:iJ 
'1 1 , 1 0 1 00 I 
11 a a , 1 0 1 1 I 

ESC Escape (to e~ternal deVice) 

LDCK Bus lock prefix 

~~xFo~imJ 

[i"!!2!YTOJ 

if s:w=01then 16 bits of immediate data form the operand. 
if s:w = 11 then an immediate data byte is sign extended to 

form Ihe 16-bit operand. 
if v = 0 then "count" = 1: if v = 1 then "count" in (Cl) 
x = don't care 
z is used for string primitives for comparison with Z.F FLAG. 

SEGMENT OVERRIDE PREFIX 

10 0 1 reg 1 1 01 

REG is assigned according to the following table: 

f6-BIt (w 0 tl 8-BIt Iw' 0) 

000 AX 000 Al 
001 CX 001 Cl 
010 OX 010 Ol 
011 BX 011 Bl 
100 SP 100 AH 
101 BP 101 CH 
110 SI 110 OH 
111 01 111 BH 

Segment 

00 ES 
01 CS 
10 S5 
11 OS 

Instructions which reference the flag register file as a 160bit object use 
the symbol FLAGS to represent the file: 

FLAGS 0 X:X:X:X:(OF): (OF) :(IF):(TF) :(SF):(ZF) :X: (AF):X: (PF): X:(CF) 

AFN-D14978 
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MILITARY iAPX 86/10 
16-81T HMOS MICROPROCESSOR 

(M8086) 
MILITARY 

Direct Addressing Capability to 1 • 8·and 16·Bit Signed and Unsigned 
MByte of Memory Arithmetic in Binary or Decimal 

Assembly Language Compatible with 
Including Multiply and Divide 

8080/8085 • 5 MHz Clock Rate 

14 Word, By 16·Bit Register Set with 
MULTIBUS™ System Compatible Symmetrical Operations • 
Interface 

24 Operand Addressing Modes 
• Military Temperature Range: 

Bit, Byte, Word, and Block Operations -55°C to +125°C 

The Intel® Military iAPX 86/10 is a new generation, high performance 16-bit microprocessor implemented in N-channel, 
depletion load, silicon gate technology (HMOS), and packaged in a 40-pin CerDIP package. The processor has attributes of 
both 8- and 16-bit microprocessors. It addresses memory as a sequence of8-bit bytes, but has a 16-bit wide physical path to 
memory for high performance. 

EXE.CUTION UNIT 

REGISTER FILE 

DATA. 
POINTER. AND 

INDEX REGS 
18 WORDS) 

BUS INTEAFACE UNIT 

I RELOCATION I 
REGISTER FILE 

,-....0..."--'-_ iiiirl51 

6·8VTE 
INSTRUCTION 

QUEUE 

TEsT--_r------~~------, 
IN'--_ 
NMI---

CONTROl & TIMING 

HOLO--­
HLDA--...-r __ -,-__ .--__ -.---c~ 

eLK RESET READY GND 

V" 

A,glS6 

A,6tSl 

Figure 1. Functional Block Diagram 

GND Vee 
AD14 A01S 

ADI3' A16/S3 

AD12 A 17/S4 

AD11 A18/S5 

AD10 A19/S6 

AD9 BHE/S7 

AD8 MN/MX 

AD7 Ali 
AD6 RO/GTO (HOLD) 

AD5 RO/GT1 (HLDA) 

AD4 LOCK (WA) 

AD3 52 (M/iO) 

AD2 51 (DTii'i) 

ADI so (DEN) 

ADO aso (ALE) 

NMI aSl «NTA) 

INTR TEST 

CLK READY 

GND RESET 

Figure 2. Pin Configuration 

Intel Corporation Assumes No Responaibilty for the Use of Any Circuitry Other Than Circuitry Embodied in an Intel Product. No Other Circuit Patent Licenaes 8,e Implied. 
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18086 
16·81T HMOS MICROPROCESSOR 

INDUSTRIAL 

Industrial Grade Temperature • 24 Operand 'Addressing Modes 
Range: -40°C to +85°C 

• Bit, Byte, Word, and Block Operations 
Direct Addressing Capability to 1 
MByte of Memory • 8· and 16·Bit Signed and Unsigned 

Arithmetic in Binary or Decimal 

Assembly Language Compatible with 
Including Multiply and Divide 

MCS·80,85® • 5 M Hz Clock Rate 

14 Word, By 16·Bit General Register • MULTIBUS™ System Compatible 
Set Interface 

The 'Intell!> Industrial iAPX 86/10 is a new generation, high performance microprocessor implemented in N-channel, 
depletion load, silicon gate technology (HMOS), and packaged in a 40-pin CerDIP package. The processor has attri­
butE/lIof both 8- and 16-bit microprocessors. It addresses memory as a sequence of 8-bit bytes, but has a 16-bit wide 
physical paih to memory for high performance. 

EXECUTION UNIT 

REGISTER FILE 

DATA. 
POINTER. AND 

INDEX REGS 
laWORDS) 

BUS INTERFACE UNIT 

I A~~~~f:~I~~E I 
SEGMENT 

REGISTERS 
AND 

INSTRUCTION 
POINTER 

(SWORDS) 

r-"":::"c.,..,-_ IIItEIS, 

FLAGS 

6·BYTE 
INSTRUCTION 

·QUEUE . 

fEs'f-. ..---'--"'""'-----, 
'NT-_ .,,'-­

ROtolo.1 2 
CONTROL & riMING 

HOLD-­

HLD.-"'"'L-r_.---,;----,;--~:-' 

I 
elK RESET READY MN/MX aND 

Vee 

AlrSa 

A,IIS3 

3 OTlR.DEN.ALE 

3 Sa,51,So 

Figure 1_ 18086 CPU Functional Block Diagram 

8-26 

GND VCC 

AD14 AD15 

AD13 Al61S3 

AD12 A17/54 

AD11 A1B/S5 

AD10 A19/S6 

AD9 BHelS7 

AD8 MN/MX 

AD7 Rii 
AD6 RQ/iffij (HOLD) 

AD5 RQ/GT1 (HlDA) 

AD4 lOCK (WA) 

AD3 52 (M/iO) 

A.D2 51 (DT/ii) 

ADl SO (DEN) 

ADO OSO (ALE) 

NMI OSl (MA) 

INTR TEST 

ClK READY 

GND RESET 

40 LEAD 

Figure 2_ 18086 Pin Diagram 



iAPX 88/10 
(8088) 

8-BIT HMOS MICROPROCESSOR 
• 8·Bit Data Bus Interface 

• 16·Bit Internal Architecture 

• Direct Addressing Capability to 1 Mbyte 
of Memory 

• Direct Software Compatibility with 
iAPX 86/10 (8086 CPU) 

• 14-Word by 16-Bit Register Set with 
Symmetrical Operations 

• 24 Operand Addressing Modes 

• Byte, Word, and Block Operations 

• 8-Bit and 16-Bit Signed and Unsigned 
Arithmetic in Binary or Decimal, 
Including Multiply and Divide 

• Compatible with 8155·2, 8755A·2 and 
8185·2 Multiplexed Peripherals 

The Intel® iAPX 88/10 is a new generation, high performance microprocessor implemented in N-channel, depletion load, 
silicon gate technology (HMOS), and packaged in a 40-pin CerDIP package. The processor has attributes of both 8- and 
16-bit microprocessors. It is directly compatible with iAPX 86/10 software and 8080/8085 hardware and peripherals. 

MEMORY INTERFACE 

C·BUS 
MIN 

[MAX 1 
MODE MODE 

GND Vee 

A1' A1S 
INSTRUCTiON 

A13 A16/S3 
STREAM BYTE 

OUEUE A12 A17IS4 

All A18/S5 

A10 A19JS6 

BUS 
CS 

A9 SSO (HIGH) 
INTERFACE SS AS MN/MX 

UNIT 
OS AD7 !iii 
IP AD6 HOLD (RQ/GTD) 

ADS HlDA (RO/Gfi) 

A·BUS AD. m (lOCK) 

AD3 101M (52) 

AD2 DTill (Si) 
AH Al AD1 !lEN (so) 
BH Bl ADO ALE (OSO) 
CH Cl 

EXECUTION DH Dl NMI INTA (OS1) 

UNIT SP INTR TEST 

BP ClK READY 

SI GND RESET 
01 FLAGS 

Figure 1. iAPX 88/10 CPU Functional Block Diagram Figure 2. iAPX 88/10 Pin Configuration 
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iAPX 88/10 

Table 1. Pin Description 

The following pin function descriptions are for 8088 systems in either minimum or maximum mode. The "local bus" in 
these descriptions is the direct multiplexed bus interface connection to the 8088 (without regard to additional bus 
buffers). . 

Symbol Pin No •.. "TYpe Name and Function 

AD7-ADO 9-16 I/O Address Data Bus: These lines constitute the time multiplexed memory/IO 
address (T1) and data (T2, T3, Tw, and T4) bus. These lines are active HIGH and 
float to 3-state OFF during interrupt acknowledge and local bus "hold acknowl-

. edge". 

A15-A8 2-8,39 0 Address Bus: These lines provide address bits 8 through 15 for the entire bus 
cycle (T1-T4). These lines do not have to be latched by ALEto remain valid. 
A15-A8 are active HIGH and float to 3-state OFF during interrupt acknowledge 
and local bus "hold acknowledge". 

A19/56, A18/55, . 34-38 0 Address/Status: During T1, these are the four 
A17/54, A16/53 most significant address lines for memory op-

erations. During I/O operations, these lines are 
LOW. During memory and I/O operations, status 
information is .available on these lines during 

. T2, T3, Tw, and T4. 56 is always low. Thestatuscif .. .3 CHARACTERISTICS 

the interrupt enable flag bit (55) is updated at OllOW) 0 AI'ernaleData 
0 , Stack 

the beginning of each clock cycle. 54 and 53 are 1 (HIGH) 0 Code or None , , Data 

encoded as shown. S6isO(LOW} 

This information indicates which segment reg-
ister is presently being used for data accessing. 

These lines float to 3-state OFF during local bus 
"hold acknowledge". 

RD 32 0 Read: Read strobe indicates that the processor is performing a memory or I/O 
read cycle, depending on the state of the 10/fiil pin or 52. This signal is used to 
read devices which reside on the 8088 local bus. RD is active LOW during T2, T3 
and Tw of any read cycle, and is guaranteed to remain HIGH in T2 until the 8088 
local bus has floated. 

This signal floats to 3-state OFF in "hold acknowledge". 

READY 22 I READY: is the acknoWledgementfrom the addressed memory or I/O device that 
it will complete the data transfer. The RDY signal from memory or I/O is syn-
chronized by the 8284 clock generator to form READY. This Signal is active 
HIGH. The 8088 READY input is not synchronized. Correct operation is not 
guaranteed if the set up and hold times are not met. 

INTR 18 I Interrupt Request: is a level triggered input which is sampled during the last 
clock cycle of each instruction to determine if the processor should enter into an 
interrupt acknowledge operation. A subroutine is vectoreq to via an interrupt 
vector lookup table located in system memory. It can be internally masked by 
software resetting the interrupt enable bit.INTR is internally synchronized. This 
signal is active HIGH. 

TE5T 23 I TEST: input is examined by the "wait for test" instruction. If the TE5T input is 
LOW, execution continues, otherwise the processorwaits in an "idle" state. This 
input is synchronized internally durin!;! each clock cyde on the leading edge of 
CLK. 

NMI 17 I Non-Maskable Interrupt: is an edge triggered input which causes a type 2 
interrupt. A subroutine is vectored to via an interruPtv~ctor lookup table located 
in system memory. NMI is not maskable internally by software. A transition from 
a LOW to HIGH initiates the interrupt at the end of the current instruction. This 

d input is internally synchronized. 

AFN.()()826B 



iAPX 88/10 

Table 1. Pin Description (Continued) 

Symbol Pin No. Type Name and Function 

RESET 21 I RESET: causes the processor to immediately terminate its present activity. The 
signal must be active HIGH for at least four clock cycles. It restarts execution,as 
described in the instruction set description, when RESET returns Law. RESET 
is internally synchronized. 

eLK 19 I Clock: provides the basic timing for the processor and bus controller. It is 
asymmetric with a 33% duty cycle to provide optimized internal timing. 

Vee 40 Vee: is the. +5V ±10% power supply pin. 

GND 1,20 GND: are the ground pins. 

MN/MX 33 I Minimum/Maximum: indicates what mode the processor is to operate in. The 
two modes are discussed in the following sections. 

The following pin function descriptions are for the 8088 minimum mode (i.e., MN/MX = VecJ. Only the pin functions which 
are unique to minimum mode are described; all other pin functions are as described above. 

IO/M 28 a Status Line: is an inverted maximum mode S2. It is used to distinguish a 
memory access from an I/O access. 10/M becomes valid in the T4 preceding a 
bus cycle and remains valid until the final T4 of the cycle (I/O=HIGH, M= LOW). 
10/M floats to 3-state OFF in local bus "hold acknowledge". 

WR 29 a Write: strobe indicates that the processor is performing a write memory or write 
I/O cycle, depending on the state of the 10/M signal. WR is active for T2, T3, and 
Tw of any write cycle. It is active LOW, and floats to 3-state OFF in local bus "hold 
acknowledge" . 

INTA 24 a INTA: is used as a read strobe for interrupt acknowledge cycles. It is active LOW 
during T2, T3, and Tw of each interrupt acknowledge cycle. 

ALE 25 a Address Latch Enable: is provided by the processor to latch the address into 
the 8282/8283 address latch. It is a HIGH pulse active during clock low of T1 of 
any bus cycle. Note that ALE is never floated. 

DT/R 27 a Data Transmit/Receive: is needed in a minimum system that desires to use an 
8286/8287 data bus transceiver. It is used to control the direction of data flow 
through the transceiver. Logically, DT/R is equivalent to 51 in the maximum 
mode, and its timing is the same as for 10/M (T=HIGH, R=LOW). This signal 
floats to 3-state OFF in local "hold acknowledge". 

DEN 26 a Data Enable: is provided as an output enable for the 8286/8287 in a minimum 
system which uses the transceiver. DEN is active LOW during each memory and 
I/O access, and for INTA cycles. For a read or INTA cycle, it is active from the 
middle of T2 until the middle of T4, while for a write cycle, it is active from the 
beginning ofT2 until the middle ofT4. DEN floats to 3-state OFF during local bus 
"hold acknowledge". 

HOLD,HLDA 30,31 1,0 HOLD: indicates that another master is requesting a local bus "hold". To be 
acknowledged, HOLD must be active HIGH. The processor receiving the "hold" 
request will issue HLDA (HIGH) as an acknowledgement, in the middle of a T4 or 
TI clock cycle. Simultaneous with the issuance of HLDA the processor will float 
the local bus and control lines. After HOLD is detected as being LOW, the 
processor lowers HLDA, and when the processor needs to run another cycle, it 
will again drive the local bus and control lines. 

Hold is not an asynchronous input. External synchronization should be 
provided if the system cannot otherwise guarantee the set up time. 

SSO 34 a Status line: is logically equivalent to SO in t~ 101M DTJR ''0 CHARACTERISTICS 

maximum mode. The combination of SSO, 10/M ~ (HIGHI 0 0 Interrupt Ac~nowledge 
0 , Read 1/0 pori 

and DT/R allows the system to completely de- , , 0 ~~::eIIO port , , , 
code the current bus cycle status. o (LOW) 0 0 Code access 

0 0 , Read memory 
0 : 0 ~:~~~v;emOfY 
0 , 
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Table 1. Pin Description (Continued) 

The fol/owing pin function descriptions are for the 8088, 8228 system in maximum mode (i.e., MN/MX=GND.) Only the pin 
functions which are unique to maximum mode are described; aI/ other pin functions are as described above. 

Symbol Pin No. Type 

S2, S1, SO 26-28 

RQ/GTO, 
RQ/GT1 

30,31 

o 

I/O 

Name and Function 

Status: is active during clock high of T4, T1, 
and T2, and is returned to the passive state 
(1,1,1) during T3 or during Tw when READY is 
HIGH. This status is used by the 8288 bus con­
troller to generate all memory and I/O access 
control signals. Any change by S2, 51, or SO 
during T4 is used to indicate the beginning of a 
bus cycle, and the return to the passive state in 
T3 or Tw is used to indicate the end of a bus 
cycle. 

These signals float to 3-state OFF during "hold 
acknowledge". During the first clock cycle after 
RESET becomes active, these signals are active 
HIGH. After this first clock, they float to 3'state 
OFF. . 

1 (HIGH) , , , 

Request/Grant: pins are used by other local bus masters to force the processor 
to release the local bus at the end of the processor's current bus cycle. Each pin 
is bidirectional with RQ/GTO Having higher priority than RQ/GT1. RQ/GT has an' 
internal pull-up resistor, so may be left unconnected. The request/grant se­
quence is as follows (See Figure 8): 

1. A pulse of one ClK wide from another local bus master indicates a local bus 
request ("hold") to the 8088 (pulse 1). 

2. During a T4 or TI clock cycle, a pulse one clock wide from the 8088 to the 
requesting master (pulse 2), indicates that the 8088 has allowed the local bus 
to float and that it will enter the "hold acknowledge" state at the next ClK. 
The CPU's bus interface unit is disconnected logically from the local bus 
during "hold acknowledge':. The same rules as for HOLD/HOLDA apply as for 
when the bus is released. 

3. Apulse one ClK wide from the requesting master indicates to the 8088 (pulse 
3) that the "hold" request is about to end and that the 8088 can reclaim the 
local bus at the next ClK. The CPU then enters T4. 

Each master-master exchange of the local bus is a sequence of three pulses. 
There must be one i'dle ClK cycle after each bus exchange. Pulses are active 
lOW. 

If the request is made while the CPU is performing a memory cycle, it will release 
the local bus during T4 of the cycle when all the following conditions are met: 

1. Request occurs on or before T2. 
2. Current cycle is not the low bit ofa word. 
3. Current cycle is not the .first acknowledge of an interrupt acknowledge 

sequence. 
4. A locked instruction is not currently executing. 

If the local bus is idle when the request is made the two possible events will 
follow: 

1. local bus will be released duririg the next clock. 
2. A memory cycle will start within 3 clocKs. Now the four rules for a currently 

active memory cycle apply:with condition number 1 already satisfied. 
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Table 1. Pin Description (Continued) 

Symbol Pin No. "TYpe Name and Function 

lOCK 29 a lOCK: indicates that other system bus masters are not to gain control of the 
system bus while lOCK is active (lOW). The iJ5CR signal is activated by the 
"lOCK" prefix instruction and remains active until the completion of the next 
instruction. This signal is active lOW, and floats to 3-state off in "hold acknowl-
edge". 

aS1, aso 24,25 a Queue Status: provide status to allow external a51 aso CHARACTERISTICS 
tracking of the internal 8088 instruction queue. OlLOW~ 0 No operation 

0 , First tlyta of ope ode from queue 

The queue status is valid during the ClK cycle I(HIGH) 0 Empty the queue , , Subsequ~nl byte from queue 

after which the queue operation is performed. 

- 34 a Pin 34 is always high in the maximum mode. 
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FUNCTIONAL DESCRIPTION 

Memory Organization 
The processor provides a 20-bit address to memory which 
locates the byte being referenced. The memory is. orga­
nized as a linear array of up to 1 million bytes, addressed 
as OOOOO(H) to FFFFF(H). The memory is logically divided 
into code, data, extra data, and stack segments of up to 
64K bytes each, with each segment falling on 16-byte 
boundaries. (See Figure 3.) 

All memory references are made relative to base 
addresses coritained in high speed segment registers. The 
segment types were chosen based on the addressing 
needs of programs. The segment register to be selected is 
automatically chosen according to the rules of the follow­
ing table. All information in one segment type share the 
same logical attributes (e.g. code or data). By structuring 
memory into relocatable areas of similar characteristics 
and by automatically selecting segment registers, pro­
grams are shorter, faster, and more structured. 

Word 06-bit) operands can be located on even or odd ad­
dress boundaries. For address and data operands, the 
least significant byte of the word is stored in the lower 
valued address location and the most significant byte in 

~FFFFFH 

..IKe D} CODE SEGMENT 

-~ XXXXOH 

~L..--I-_~ 

} STACK SEGMENT 

SEGMENT \ 
REGISTER FilE ORO I MSB 

E~3~~E~~==~Wl--;\~':-:::=E1 J DATA SEGMENT 
OS 
ES 

L-+_-! 

}EXTRA DATA SEGMENT 

~OOOOOH 

Figure 3. Memory Organization 

Memory Segment Register 
Reference Need Used 

the next higher address location. The BIU will auto­
matically execute two fetch or write cycles for 16-bit 
operands. 

Certain locations in memory are reserved for specific 
CPU operations. (See Figure 4,) Locations from ad­
dresses FFFFOH through FFFFFH are reserved for 
operations including a jump to the initial system initial­
izationroutine. Following RESET, the CPU will always 
begin execution at location FFFFOH where the jump 
must be located. Locations OOOOOH through 003FFH are 
reserved for interrupt operations. Four-byte pOinters 
consisting of a 16-bit segment address and a 16-bitoff­
set address direct program flow to one of the 256 possi­
ble interrupt service routines. The pOinter elements are 
assumed to have been stored at their respective places 
in reserved memory prior to the occurrence of inter­
rupts. 

Minimum and Maximum Modes 
The requirements for supporting minimum and maxi­
mum 8088 systems are sufficiently different that they 
cannot be done efficiently with 40 uniquely defined 
pins. Consequently, the 8088 is equipped with a strap 
pin (MN/MX) which defines the system configuration. 
The definition of a certain subset of the pins changes, 
dependent on the condition of the strap pin. When the 
MN/MX pin is strapped to GND, the 8088 defines pins 24 
through 31 and 34 in maximum mode. When the MN/MX 
pin Is strapped to Vee, the 8088 generates bus control 
signals itself on pins 24 through 31 and 34. 

FFFFFH 
RESET BOOTSTRAP 

PROGRAM JUMP 
lFFFFOH 

• 

INTERRUPT POINTER 
3FFH 

FOR TYPE 25S 
3FOH 

• 
7H 

INTERRUPT POINTER 
FOR TYPE 1 4H 

INTERRUPT POINTER 3H 

FOR TYPE 0 
OH 

Figure 4. Reserved Memory Locations 

Segment 
Selection Rule 

Instructions CODE (CS) Automatic with all instruction prefetch. 

Stack STACK (SS) All stack pushes and pops. Memory references relative to BP 
base register except data references. 

Local Data DATA (DS) Data references when: relative to stack, destination of string 
operation, or explicitly overridden. 

External (Global) Data EXTRA (ES) Destination of string operations: Explicitly selected using a 
segment override. 
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The minimum mode 8088 can be used with either a 
multiplexed or demultlplexed bus. The multiplexed bus 
configuration Is compatible with the MCS·85™ multi· 
plexed bus peripherals (8155, 8156, 8355, 8755A, and 
8185). This configuration (See Figure 5) provides the user· 
with a minimum. chip count system. This architecture 
provides the 8088 processing power in a highly integrated 
form. . 

The demultiplexed mode requires one latch (for 64K ad· 
dressability) or two latches (for a full megabyte of ad· 
dressing). A third latch can be used for buffering if the 
address bus loading requires it. An 8286 or 8287 trans· 
ceiver can also be used if data bus buffering is required. 
(See Figure 6,) The 8088 provides i5EFl and DTiR to con· 

trol the transceiver, and ALE to latch the addresses. 
This configuration of the minimum mode provides the 
standard demultiplexed bus structure with heavy bus 
buffering and relaxed bus timing requirements. 

The maximum mode employs the 8288 bus controller. 
(See B9ure 7,) The 8288 decodes status lines SO, 51, 
and 52, and provides the system with all bus control 
signals. Moving the bus control to the 8288 provides 
better source and sink current capability to the control 
lines, and frees the 8088 pins for extended large system 
features. Hardware lock, queue status, and two requestl 
grant interfaces are provided by the 8088 in maximum 
mode. These features allow co·processors in local bus 
and remote bus configurations. 
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Figure 5. Multiplexed Bus Configuration 
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Bus Operation 
The 8088 address/data bus is broken into three parts -
the lower eight address/data bits (ADO-AD?), the middle 
eight address bits (A8-A15), and the upper four address 
bits (A16-A19). The address/data bits and the highest 
four address bits are time multiplexed. This technique 
provides the most efficient use of pins on the proc­
essor, permitting the use of a standard 40 lead package. 
The middle eight address bits are not multiplexed, i.e. 
they remain valid throughout each bus cycle. In addi-

tion, the bus can be demultiplexed at the processor with 
a single address latch if a standard, non-multiplexed 
bus is desired for the system. 

Each processor bus cycle consists of at least four eLK 
cycles. These are referred to as T1, T2, T3, and T 4. (See 
Figure 8), The address Is emitted from the processor 
during T1 and data transfer occurs on the bus during T3 
and T4. T2 is used primarily for changing the direction of 
the bus during read operations. In the event that a "NOT 
READY" Indication Is given by the addressed device, 

!-------{4+NWAIT)""TCy-----_j ______ (4+NWAIT)_TCy _____ -j 

T, T, T3 TWAIT I 14 T, 12 13 TWAIT I 14 

elK 

GOES INACTIVE IN THE STATE 

~ ~'-----_----LJ../~UJ../.LLLJ/um// ~ ~' \-----
ADDRfSTATUS 

ADDR 

ADDRIDATA -----8 ______ 0_AT_A_O_"T_IO_,._O,_1 ----)---QC 

READY 

DT/R 

\'---_---1/ 

Figure 8. Basic System Timing 
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"wait" states (Tw) are inserted between T3 and T4. Each 
inserted "wait" state is of the same duration as a ClK 
cycle. Periods can occur between 8088 driven bus 
cycles. These are referred to as "idle" states (Ti), or inac· 
tive ClK cycles. The processor uses these cycles for in­
ternal housekeeping. 

During T1 of any bus cycle, the ALE (address latch 
enable) signal is emitted (by either the processor or the 
8288 bus controller, depending on the MN/m strap). At 
the trailing edge of this pulse, a valid address and cer­
tain status information for the cycle may be latched. 

Status bits SO, 81, and S2 are used by the bus controller, 
in maximum mode, to identify the type of bus transac­
tion according to the following table: 

S2 S1 SO CHARACTERISTICS 

o (low) 0 0 Interrupt Acknowledge 
0 0 1 Read I/O 
0 1 0 Write I/O 
0 1 1 Halt 
1 (High) 0 0 Instruction fetch 
1 0 1 Read data from memory 
1 1 0 Write data to memory 
1 1 1 Passive (no bus cycle) 

Status bits S3 through S6 are multiplexed with high 
order address bits and are therefore valid during T2 
through T4, S3 and S4 indicate which segment register 
was used for this bus cycle in forming the address ac­
cording to the following table: 

S4 S3 CHARACTERISTICS 

o (low) 0 Alternate data (Extra Segment) 
0 1 Stack 
1 (High) 0 Code or none 
1 1 Data 

S5 is a reflection of the PSW interrupt enable bit. S6 is 
always equal to O. 

I/O Addressing 
In the 8088, I/O operations can address up to a maxi­
mum.of 64K I/O registers. The I/O address appears in the 
same format as the memory address on bus lines 
A15-AO. The address lines A19-A16 are zero in I/O 
operations. The variable I/O instructions, which use 
register DX as a pointer, have full address capability, 
while the direct I/O instructions directly address one or 
two of the 256 I/O byte locations in page 0 of the I/O ad­
dress space. I/O ports are addressed in the same man­
ner as memory locations. 

Designers familiar with the 8085 or upgrading an 8085 
design should note that the 8085 addresses I/O with an 
8-bit address on both halves of the 16-bit address bus. 
The 8088 uses a full 16-bit address on its lower 16 ad­
dress lines. 
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EXTERNAL INTERFACE 
Processor Reset and Initialization 
Processor initialization or start up is accomplished with 
activation (HIGH) of the RESET pin. The 8088 RESET is 
required to be HIGH for greater than four clock cycles. 
The 8088 will terminate operations on the high-going 
edge of RESET and will remain dormant as long as 
RESET is HIGH. The low-going transition of RESET trig­
gers an internal reset sequence for approximately 7 
clock cycles. After this interval the 8088 operates nor­
mally, beginning with the instruction in absolute loca­
tion FFFFOH. (See Figure4J The RESET input is inter­
nally synchronized to the processor clock. At initializa­
tion, the HIGH to lOW transition of RESET must occur 
no sooner than 50 p's after power up, to allow complete 
initialization of the 8088. 

If INTR is asserted sooner than nine clock cycles after 
the end of RESET, the processor may execute one in­
struction before responding to the interrupt. 

All 3-state outputs float to 3-state OFF during RESET. 
Status is active in the idle state for the first clock after 
RESET becomes active and then floats to 3-state OFF. 

Interrupt Operations 
Interrupt operations fall into two classes; software or 
hardware initiated. The software Initiated Intorrupts and 
software aspects of hardware interrupts are specified In 
the instruction set description in the B086 Family User's 
Manual. Hardware interrupts can be classified as non­
maskable or maskable. 

Interrupts result in a transfer of control to a new pro­
gram location. A 256 element table containing address 
pointers to the interrupt service program locations 
resides in absolute locations 0 through 3FFH (see Fig­
ure 4), which are reserved for this purpose. Each ele­
ment in the table is 4 bytes in size and corresponds to 
an interrupt "type". An interrupting device supplies an 
8·bit type number, during the interrupt acknowledge se­
quence, which is used to vector through the appropriate 
element to the new interrupt service program location. 

Non-Maskable Interrupt (NMI) 
The processor provides a single non-maskable interrupt 
(NMI) pin which has higher priority than the maskable in­
terrupt request (INTR) pin. A typical use would be to acti­
vate a power failure routine. The NMI is edge-triggered 
on a lOW to HIGH transition. The activation of this pin 
causes a type 2 interrupt. 

NMI is required to have a duration in the HIGH state of 
greater than two clock cycles, but is not required to be 
synchronized to the clock. Any higher going transition 
of NMI is latched on-chip and will be serviced at the end 
of the current instruction or between whole moves (2 
bytes in the case of word moves) of a block type instruc­
tion. Worst case response to NMI would be for multiply, 
divide, and variable shift instructions. There is no 
specification on the occurrence of the low-going edge; it 
may occur before, during, or after the servicing of NMI. 
Another high-going edge triggers another response if it 
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occurs after the start of the NMI procedure. The signal 
must be free of logical spikes in general and be free of 
bounces on the low·going edge to avoid triggering ex· 
traneous responses. 

Maskable Interrupt (INTR) 
The 8088 provides a single interrupt request input (INTR) 
which can be masked internally by software with the 
resetting of the interrupt enable (IF) flag bit. The in· 
terrupt request signal is level triggered. It is internally 
synchronized during each clock cycle on the high-going 
edge of CLK. To be responded to, INTR must be present 
(HIGH) during the clock period preceding the end of the 
current instruction or the en(j of a whole move for a 
block type instruction. During interrupt response se­
quence, further interrupts are disabled. The enable bit is 
reset as part of the response to any interrupt (INTR, 
NMI, software interrupt, or single step), although the 
FLAGS register which is automatically pushed onto the 
stack reflects the state of the processor prior to the in­
terrupt. Until the old FLAGS register is restored, the 
enable bit will be zero unless specifically set by an in­
struction. 

During the response sequence (See Figure 9), the proc­
essor executes two successive (back to back) interrupt 
acknowledge cycles. The 8088' emits the LOCK signal 
(maximum mode only) from T2 of the first bus cycle until 
T2 of the second. A local bus "hold" request will not be 
honored until the end of the second bus cycle. In the 
second bus cycle, a byte is fetched from the external in­
terrupt system (e.g., 8259A PIC) which identifies the 
source (type) of the interrupt. This byte is multiplied by 
four and used as a pOinter into the interrupt vector 
lookup table. An INTR signal left HIGH will be continual­
ly responded to within the limitations of the enable bit 
and sample period, The interrupt return instruction in­
cludes a flags pop which returns the status of the 
original interrupt enable bit when it restores the flags. 

HALT 

When a software HALT instruction is executed, the 
processor indicates that it is entering the HALT state in 
one of two ways, depending upon which mode is 
strapped, In minimum mode, the processor issues ALE, 
delayed by one clock cycle, to allow the system to latch 
the halt status, Halt status is available on 10/M, DT/R, 
and SSO. In maximum mode, the processor issues ap­
propriate HALT status on S2, S1, and SO, and the 8288 
bus controller issues one ALE. The 8088 will not leave 
the HALT state when a local bus hold is entered while in 
HALT. In this case, the processor reissues the HALT in­
dicator at the end of the local bus hold. An interrupt reo 
quest or RESET will force the 8088 out of the HALT 
state. 

Read/Modify/Write (Semaphore) Operations 
via LOCK 

The LOCK status Information is provided by the proc­
essor when consecutive bus cycles are required during 
the execution of an instruction. This allows the proc­
essor to perform read/modify/write operations on 
memory (via the "exchange register with memory" 
instruction), without another system bus master receiv­
ing Intervening memory cycles. This is useful in multi­
processor system configurations to accomplish "test 
and set lock" operations. The meR signal is activated 
(LOW) in the clock cycle following decoding of the 
LOCK prefix instruction. It is deactivated at the end of 
the last bus cycle of the instruction following the LOCK 
prefix. While LOCK is active, a request on a RQ/GT pin will 
be recorded, and then honored at the end of the LOCK. 

External Synchronization via TEST 

As an alternative to interrupts, the 8088 provides a 
single software-testable input pin (TEST). This Input is 
utilized by executing a WAIT instruction. The single 

T, I T2 Ta T4 T1 I T2 

ALEJ\ __ ~n,--__ 
\~, __ ----'I 

FLOAT 

Figure g, Interrupt Acknowledge Sequence 
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WAIT Instruction Is repeatedly executed until the TEST 
Input goes active (LOW). The execution of WAIT does 
not consume bus cycles once the queue is full. 

If a local bus request occurs during WAIT execution, the 
8088 3-states all output drivers. If interrupts are enabled, 
the 8088 will recognize interrupts and process them. 
The WAIT Instruction Is then refetched, and reexecuted. 

Basic System Timing 

In minimum mode, the MN/MX pin is strapped to Vee 
and the processor emits bus control signals compatible 
with the 8085 bus structure. In maximum mode, the 
MN/MX pin is strapped to GND and the processor emits 
coded status information which the 8288 bus controller 
uses to generate MULTIBUS compatible bus control 
signals. 

System Timing - Minimum System 
(See Figure 8.1 

The read cycle begins In T1 with the assertion of the ad­
dress latch enable (ALE) signal. The trailing (low going) 
edge of this signal is used to latch the address Informa· 
tion, which is valid on the addressldata bus (ADO-AD7) 
at this time, into the 8282/8283 latch. Address lines A8 
through A15 do not need to be latched because they re­
main valid throughout the bus cycle. From T1 to T4 the 
101M signal indicates a memory or 110 operation. At T2 
the address is removed from the addressldata bus and 
the bus goes to a high impedance state. The read con­
trol signal is also asserted at T2. The read (RD) signal 
causes the addressed device to enable its data bus 
drivers to the local bus. Some time later, valid data will 
be available on the bus and the addressed device will 
drive the READY line HIGH. When the processor returns 
the read signal to a HIGH level, the addressed device 
will again 3·state its bus drivers. If a transceiver 
(8286/8287) is required to buffer the 8088 local bus, 
signals DT/A and DEN are provided by the 8088. 

A write cycle also begins with the assertion of ALE and 
the emission of the address. The 101M signal is again 
asserted to indicate a memory or 110 write operation. In 
T2, immediately following the address emission, the 
processor emits the data to be written into the ad­
dressed location. This data remains valid until at least 
the middle of T4. During T2, T3, and Tw, the processor 
asserts the write control signal. The write (WR) signal 
becomes active at the beginning of T2, as opposed to 
the read, which is delayed somewhat into T2 to provide 
time for the bus to float. 

The basic difference between the interrupt acknowl­
edge cycle and a read cycle is that the interrupt 
acknowledge (INTA) signal is asserted in place of the 
read (RD) signal and the address bus is floated. (See 
Figure 9.1 In the second of two successive INTA cycles, 
a byte of information is read from the data bus, as sup· 
plied by the interrupt system logic (i.e. 8259A priority in­
terrupt controller). This byte identifies the source (type) 
of the interrupt. It is multiplied by four and used as a 
pOinter into the interrupt vector lookup table, as de­
scribed earlier. 
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Bus Timing - Medium Complexity Systems 

(See Figure 10.1 

For medium complexity systems, the MN/MX pin Is con­
nected to GND and the 8288 bus controller is added to 
the system, as well as an 828218283 latch for latching 
the system address, and an 8286/8287 transceiver to 
allow for bus loading greater than the 8088 Is capable of 
handling. Signals ALE, iJErii, and DTiA are generated by 
the 8288 instead of the processor in this configuration, 
although their timing remains relatively the same. The 
8088 status outputs (82, 51, and SO) provide type of 
cycle information and become 8288 inputs. This bus 
cycle information specifies read (code, data, or 110), 
write (data or 110), interrupt acknowledge, or software 
halt. The 8288 thus issues control signals specifying 
memory read or write; 110 read or write, or interrupt 
acknowledge. 'The 8288. provides two types of write 
strobes, normal and advanced, to be applied as required. 
The normal write strobes have data valid at the leading 
edge of write. The advanced write strobes have the 
same timing as read strotJes, and hence, data is not 
valid at the leading edge of write. The 8286/8287 trans­
ceiver receives the usual T and DE inputs from the 
8288's DTiR" ~nd DEN outputs. 

The pointer into the interrupt vector table, which Is 
passed during the second INTA cycle, can derive from 
an 8259A located on either the local bus or the system 
bus. If the master 8289A priority interrupt controller is 
pOSitioned on the local bus, a TTL gate is required to 
disable the 8286/8287 transceiver when reading from the 
master 8259A during the interrupt acknowledge se­
quence and software "poll". 

The 8088 Compared to the 8086 

The 8088 CPU is an 8-blt processor designed around the 
8086 Internal structure. Most internal functions of the 
8088 are identical to the equivalent 8086 functions. The 
8088 handles the external bus the same way the 8086 
does with the distinction of handling only 8 bits at a 
time. Sixteen-bit operands are fetched or written in two 
consecutive bus cycles. Both processors will appear 
identical to the software engineer, with the exception of 
execution time. The internal register structure is iden­
tical and all instructions have the same end resiJlt. The 
differences between the 8088 and 8086 are outlined 
below. The engineer who is unfamiliar with the 8086 is 
referred to the 8086 Family User's Manual, Chapters 2 
and 4, for function description and instruction set 
Information. 

Internally, there are three differences between the 8088 
and the 8086. All changes are related to the 8-bit bus in­
terface. 

• The queue length is 4 bytes in the 8088, whereas the 
8086 queue contains 6 bytes, or three words. The 
queue was shortened to prevent overuse of the bus by 
the BIU when prefetching instructions. This was re­
quired because of the additional time necessary to 
fetch instructions 8 bits at a time. 
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~Tofurtheroptimize the queue, the prefetching algo' 
rlthm was changed. The 8088 BIU will fetch a new In­
struction to load into the queue eac': time there is a 1 
!:lyte hole, (space available) in the queue. The 8086 

, , waits until a, 2-byte ~pace is available. 

~ The internal execution time of the instruction set is 
affected by the 8-bit ,interface. All 16-bit fetches and 
writes, fromlto memory take an additional four clock 
cycles. The CPU is also limited by the speed of in­
struction fetches. This latter problem only occurs 
when a series of. simple operations occur. When the 
more ~ophisticated instructions ,of the 8088 are being 
used, the queue has time to fill and the execution pro­
ceeds as fast as the execution unit.will allow. 

The 8088 and 8086 are completely ,software compatible 
by virture of their identical execution units. Software 
that is system dependent may not becomphiltely trans­
ferable, but software that ,is not system dependent will 
operate equailyas well on an 8088 or an 8086. 

The hardware intE1rface of the 8088 contains the major 
differences between, the, two CPUs. The pin, assign· 
ments are nearly identical, however, with the following 
functional changes: 

0, ,A8-A15 - These pins are only address outputs on the 
8088. These address lines are latched internally and 

, remain valid throughout a bus cycle In a manner 
similar to the 8085 upper address lines. 

o BHE has no meaning on the 8088 and has,been elimi' 
nated. 

o SSOprovides the SO status information in the mini­
mum mode. This output occurs on pin 34 in minimum 
mode only. DT/R, 101M, andSSO provide the cOmplete 
bus status in minimum mode. ' 

o 10iM has been inverted to be compatible with the 
MCS-85 bus structure. ' 

o ALE is delayed by one cloc:k cycle in the minimum 
mode when entering HALT, to allow the status to be 
latched with ALE. 
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T, T2 T, T. 

ClK ---..r- I I' II-

OSl,OSO X 
8088 

52,51,SO 11111 '~~==== 
A19/S6-Al6JS3 A19-A16 S6-53' 

ALE '\ ,-
--

8288 ROY 8284 ~ 

READY 8088 

AD7-ADO A7 AD '" DATA IN 

8088 A15-A8 A15-A8 x=. 
RD 

DT/R 

8288 MRDC 

DEN 

Figure 10. Medium Complexity System Timing 
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ABSOLUTE MAXIMUM RATINGS· 

Ambient Temperature Under Bias ......... 0 °C to 70°C 
Storage Temperature ............. - 65°C to + 150°C 
Voltage on Any Pin with 

Respect to Ground .................. - 1.0 to + 7V 
Power Dissipation ........................ 2.5 Watt 

"NOTICE: Stresses above those listed under "Absolute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above 
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum 
rating conditions for extended periods may affect device 
reliability. 

D.C. CHARACTERISTICS (TA = O°C to 70°C, Vee = 5V ±10%) 

Symbol Parameter Min. Max. 

Vil Input low Voltage -0.5 +0.8 

VIH Input High Voltage 2.0 Vcc+ 0.5 

VOL Output low Voltage 0.45 

VOH Output High Voltage 2.4 

Icc Power Supply Current 340 

III Input leakage Current ±10 

IlO Output leakage Current ±10 

vCl Clock Input low Voltage -0.5 +0.6 

VCH Clock Input High Voltage 3.9 Vcc+1.0 

Capacitance of Input Buffer 
CIN (All input except 15 

ADO-AD? RO/GT) 

CIO 
Capacitance of I/O Buffer 15 
(ADo-AD? RO/GT) 

A.C. CHARACTERISTICS (TA = O°C to 70°C, Vee = 5V ±10%) 

MINIMUM COMPLEXITY SYSTEM TIMING REQUIREMENTS 

Symbol Parameter Min. 

TClCl ClK Cycle Period 200 

TClCH ClK low Time (2;3 TClCl)-15 

TCHCl ClK High Time (V3 TClCl)+2 

TCH1CH2 ClK Rise Time 

TCl2CL1 ClK Fall Time 

TDVCl Data In Setup Time 30 

TClDX Data In Hold Time 10 

TR1VCl RDY Setup Time into 8284 (See Notes 1.2) 35 

TClR1X RDY Hold Time into 8284 (See Notes 1. 2) 0 

TRYHCH READY Setup Time into 8088 (2;3 TClCl)-15 

TCHRYX READY Hold Time into 8088 30 

TRYlCl READY Inactive to ClK(See Note 3) -8 

THVCH HOLD Setup Time 35 

TINVCH INTR. NMI. TEST Setup Time (See Note 2) 30 

TILIH Input Rise Time (Except ClK) 

TIHll Input Fall Time (Except ClK) 

8-42 

Units Test Conditions 

V 

V 

V 10l = 2.0 mA 

V 10H = 400 flA 

mA TA = 25°C 

flA OV.,. VIN'" Vee 

flA 0.45V" Vour " Vcc 

V 

V 

pF fc = 1 MHz 

pF fc = 1 MHz 

Max. Units Test Conditions 

500 ns 

ns 

ns 

10 ns From 1.0V to 3.5V 

10 ns From 3.5V to 1.0V 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

20 ns From 0.8V to 2.0V 

12 ns From 2.0V to 0.8V 

AFN.()()826B 



inter iAPX 88/10 

A.C. CHARACTERISTICS (Continued) 
TIMING RESPONSES 

Symbol Parameter 

TCLAV Address Valid Delay 

TCLAX Address Hold Time 

TCLAZ Address Float Delay 

TLHLL ALE Width 

TCLLH ALE Active Delay 

TCHLL ALE Inactive Delay 

TLLAX Address Hold Time to ALE Inactive 

TCLDV Data Valid Delay 

TCHDX Data Hold Time 

TWHDX Data Hold Time After WR 

TCVCTV Control Active Delay 1 

TCHCTV Control Active Delay 2 

TCVCTX Control Inactive Delay 

TAZRL Address Float to READ Active 

TCLRL RD Active Delay 

TCLRH RDlnactive Delay 

TRHAV RD Inactive to Next Address Active 

TCLHAV HLDA Valid Delay 

TRLRH RD Width 

TWLWH WR Width 

TAVAL Address Valid to ALE Low 

TOLOH Output Rise Time 

TOHOL Output Fall Time 

A.C. TESTING INPUT, OUTPUT WAVEFORM 

INPUT/OUTPUT 

" J- .-~ "" .o'"~ - -~ 
0.45 

A C TESTING INPUTS ARE DRIVEN AT 2.4V FOR A LOGIC ,',. AND O,4SV FOR 
A LOGIC' 0," THE CLOCK IS DRIVEN AT 4.3V AND Q.2SV TIMING MEASURE­
MENTS ARE MADE AT 1.5V FOR BOTH A LOGIC ,. AND -0 

Min. Max. Units Test Conditions 

10 110 ns 

10 ns 

TCLAX 80 ns 

TCLCH-20 ns 

80 ns 

85 ns 

TCHCL-10 ns 

10 110 ns CL; 20-100 pFfor 

10 ns all 8088 Outputs 
in addition to 

TCLCH~30 ns internal loads 
10 110 ns 

10 110 ns 

10 110 ns 

0 ns 

10 165 n5 

10 150 ns 

TCLCL-45 ns 

10 160 ns 

2TCLCL-75 ns 

2TCLCL-60 ns 

TCLCH-60 ns 

20 ns From 0.8V to 2.0V 

12 ns From 2.0V to 0.8V 

A.C. TESTING LOAD CIRCUIT 

DEVICE 

'1CC0100PF UNDER 
TEST 

-=-

CL INCLUDES JIG CAPACITANCE 
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WAVEFORMS 

BUS TIMING-MINIMUM MODE SYSTEM 

elK (8284 Output) 

101M, SSO 

ALE 

ROY (8284 Input) 

SEENOTE5 

READY (8088 Input) 

READ CYCLE 

(NOTE 1) 

(WIi, INfA=VOH) 
DTfR 

T, T, T, Tw T, 

VCHV"'""""""\ _TCLCL_TCH'CH21~'~, 

'--------Ir\.-vic ~~ --'" TCHCTV TCHCL _TCLCH_ 

A15 - As (Float during INTA) 

TCLAV-- - - t--TCLDV 
TCHDX -- -TCLAX+ -i 

A19-A16 
1\ s,-J, 

TCLLH- r TLHLL--=: I---- TlLAX r--
I 

TCHLL-I 
----

r-
:r~~-_~~\ !-- TAVAL- ~\\\\\\~ f - !--TCLR1X 

'c:R -
1 - -TCHRYX 

I. 

TRYHCH j -- I-TC~AZ TDVCL-,-- !--TCLDX-

AD7-ADo DATA IN 

-:( FLOA:-J'--
TAZRL- TCLRH- H f---TRHAV 

~ 

-=Y-TCHCTV 
TCLRL TRLRH TCHCTV 

I I 
TCVCTV- { TCVCTX- L 
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WAVEFORMS (Continued) 

BUS TIMING-MINIMUM MODE SYSTEM (Continued) 

ClK 18284 Oulpul) 

WRITE CYCLE 
NOTE 1 

INTA CYCLE 
NOTES 1,3 

IRD, WR=VOHI 

SOFTWARE HALT­

DEiii,iiD,WR,lNTA = VOH 

DTIii" INDETERMINATE 

ACT-ADO 

ACT-ADO 

DT/ii 

INVALID ADDRESS SOFTWARE HALT 

TCLAV 

NOTES: 1. ALL SIGNALS SWITCH BETWEEN VOH AND VOL UNLESS OTHERWISE 
SPECIFIED. 

2. ROY IS SAMPLED NEAR THE END OF T2, T3, Tw TO DETERMINE IF Tw 
MACHINES STATES ARE TO BE INSERTED. 

3. TWO INTA CYCLES RUN BACK·TO·BACK. THE 8088 lOCAL ADDRIDATA 
BUS IS FLOATING DURING BOTH INTA CYCLES. CONTROL SIGNALS 
ARE SHOWN FOR THE SECOND INTA CYCLE. 

4. SIONALS AT 8284 ARE SHOWN FOR REFERENCE ONLY. 
5. ALL TIMING MEASUREMENTS ARE MADE AT 1.5V UNLESS OTHERWISE 

HOTED. 
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A.C. CHARACTERISTICS (Continued) 

MAX MODE SYSTEM (USING 8288 BUS CONTROLLER) 

TIMING REQUIREMENTS 

Symbol Parameter 

TCLCl ClK Cycle Period 

TClCH ClK low Time 

TCHCl ClK High Time 

TCH1CH2 ClK Rise Time 

TCl2Cl1 ClK Fall Time 

TDVCl Data In Setup Time 

TCLDX Data In Hold Time 

TR1VCl RDY Setup Time into 8284 (See Notes 1. 2) 

TClR1X RDY Hold Time into 8284 (See Notes 1, 2) 

TRYHCH READY Setup Time into 8088 

TCHRYX READY Hold Time into 8088 

TRYlCl . READY Inactive to ClK (See Note 4) 

TINVCH Setup Time for Recognition (INTR, NMI, TEST) 
(See Note 2) 

TGVCH RQ/GT Setup Time 

TCHGX RQ Hold Time into 8086 

TILIH Input Rise Time (Except ClK) 

TIHll Input Fall Time (Except ClK) 

8-46 

Min. 

200 

(% TClCl)-15 

(V3 TClCl)+2 

30 

10 

35 

0 

(% TClCl)-15 

30 

-8 

30 

30 

40 

Max. Units Test Condltlons--

500 ns 

ns 

ns 

10 ns From 1.0V to 3.5V 

10 ns From 3.5V to 1.0V 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

20 ns From 0.8V to 2.0V 

12 ns From 2.0V to 0.8V 
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A.C. CHARACTERISTICS (Continued) 
TIMING RESPONSES 

Symbol Parameter 

TClMl Command Active Delay (See Note 1) 

TClMH . Command Inactive Delay (See Note 1) 

TRYHSH READY Active to Status Passive (See Note 3) 

TCHSV Status Active Delay 

TClSH Status Inactive Delay 

TClAV Address Valid Delay 

TClAX Address Hold Time 

TClAZ Address Float Delay 

TSVlH Status Valid to ALE High (See Note 1) 

TSVMCH Status Valid to MCE High (See Note 1) 

TCllH ClK low to ALE Valid (See Note 1) 

TClMCH ClK low to MCE High (See Note 1) 

TCHll ALE Inactive Delay (See Note 1) 

TClMCl MCE Inactive Delay (See Note 1) 

TClDV Data Valid Delay 

TCHDX Data Hold Time 

TCVNV Control Active Delay (See Note 1) 

TCVNX Control Inactive Delay (See Note 1) 

TAZRl Address Float to Read Active 

TClRl RD Active Delay 

TClRH RD Inactive Delay 

TRHAV RD Inactive to Next Address Active 

TCHDTl Direction Control Active Delay (See Note 1) 

TCHDTH Direction Control Inactive Delay (See Note 1) 

TClGl GT Active Delay 

TClGH GT Inactive Delay 

TRlRH RD Width 

TOlOH Output Rise Time 

TOHOl Output Fall Time 

NOTES: 
1. Signal at 8284 or 8288 shown for reference only. 

Min, 

10 

10 

10 

10 

10 

10 

TClAX 

10 

10 

5 

10 

0 

10 

10 

TClCl-45 

2TClCl-75 

2. Setup requirement for asynchronous signal only to guarantee recognition at next elK. 
3. Applies only to T2 state (8 ns into T3 state). 
4. Applies only to T2 state (8 ns into T3 state). 

8-47 

Max. Units Test Conditions 

35 ns 

35 ns 

110 ns 

110 ns 

130 ns 

110 ns 

ns 

80 ns 

15 ns 

15 ns 

15 ns 

15 ns 

15 ns 

15 ns CL = 20-100 pF for 
110 ns all 8088 Outputs 

ns in addition to 
internal loads 

45 ns 

45 ns 

ns 

165 ns 

150 ns 

ns 

50 ns 

30 ns 

110 ns 

85 ns 

ns 

20 ns From 0.8V to 2.0V 

12 ns From 2.0V to 0.8V 
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WAVEFORMS (Continued) 

BUS TIMING-MAXIMUM MODE 
SYSTEM (USING 8288) 

CLK 

s"s"So (EXCEPT HAL n 

jALE (8288 OUTPUn 

SEE NOTE 5 

RDY (8284 INPUT) 

READ CYCLE 

AD7-ADO 

RD 

DTIIi 

8288 OUTPUTS 1 MRDC OR IIDiC 
SEE NOTES 5,8 

DEN 

VCH" 

VCL J 
TCLAV-

-

-
TSVLH 
TCLLH+ 

TCLAV-

iAPX 88/10 

T, T, 

-TCLCL- TCH1CH2--l'H I- TCL2CL1 r~ 
r-\ fL----J0-I~~ '-----" ~ TCHCL I--TCLCH-

.A\ 
TCHSV - i-TCLSH 

------
W;0 W(SEE NOTE 8) \ 

\._---.;., 

A1S-Aa 

I---T%~~X_ =fCLDV 

TCHDX- -
A19·A16 57.53 

- { TCHLL 

r--
I 
----

~ ~ 
I--Tr1VCL 

~~~~ ~~ 
TRYLCL -

-; 

TYHSH~I -

-TCHRYX 

..... TeLAX _ TRYHCH-f -

E -TCLAZ - I FDVCL-I--TCLDX-

J 

~- r DATA IN 

FL:~ 
TAZRL- r- TCLRH TRHAV 

V 
TCHDTL- TCLRL \\ TCHDTH 

\ TRLRH 

TCLMl-- - TCLMH-

'\ 
TCVNV- Ii-

i{ 
TCVNX- -
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WAVEFORMS (Continued) 

BUS TIMING-MAXIMUM 
MODE SYSTEM 

(USING 8288) 
eLK r veH 

veL 

iAPX 88/10 

1 3 • 

J~ r-\ r--\ ;,,--,f'\-~ r'-----l 
------82,51. so (EXCEPT HALn --'!III!f ( ... note 8) _____ 0 

WRITE CYCLE 

DEN 

6288 0UTPU1S 

seE NOTES 5,6 AMWC OR AIOWC 

MWTC QR lowe 

INTA CYCLE 

AIS-AS 
(SEE NOTES 3,4) 

ADrADo 

MeE! 
I'llER 

OT/R 

TCLAV--

FlOAT 

-
TSVMCH-

TCLMCH-

r- - TCLCi~ ~ ~TClSH 
TeLAX 

JK DATA 

TCVNV- -

- -TeLML TeLMH-

_ {TeLML -

RESERVED FOR \. 
CASCADE AD DR FLOAT 

/{TrZ \ r--TDveL-

POINTER 
JI J FLo:e 

~ 

~-
TCLMCL-I .I-

i 
{r"= - / 

TCLML-

TCHDX- -
TCVNX- -
r 

-TCLMH 

FLOAT 

!-TCLDX 

FLOAT 

r--
I 
---

\- TCHDTH 

\ 8200 CllITPUTS 
SEe NOTES 5,6 INTA 'tj 

- TCVNV 
_{1MH 

DEN 

SOFTWARE TCVNX--- -HALT -(DEN = vodlfi,'fvlJiBC,mRC,MWTC,AMWG,IDWC,AiQWC,INT A,DT/R = VOH_ 

NOTES: 1. ALL SIGNALS SWITCH BETWEEN VOH AND VOL UNLESS OTHERWiSE 
SPECIFIED. 

2. ROY IS SAMPLED NEAR THE END OF 12. 13. Tw TO DETERMINE IF Tw 
MACHINES STATES ARE TO BE INSERTED. 

3 .• CASCADE ADDRESS IS VALID BETWEEN FIRST AND SECOND INTA 
CYCLES. 

4. TWO INTA CYCLES RUN BACK·TO·BACK. THE 8088 LOCAL ADDR/DATA 
BUS IS FLOATING DURING BOTH INTA CYCLES. CONTROL FOR 
POINTER ADDRESS IS SHOWN FOR SECOND INTA CYCLE. 

5. SIGNALS AT 8284 OR 8288 ARE SHOWN FOR REFERENCE ONLY. 
6. THE ISSUANCE OF THE 8288 COMMAND AND CONTROL SIGNALS 

(MlIDC, M\VTC, AI.\Wl:, 1lllIC, 1llWl:, l!JOWl:, TRTJ\ AND DEN) LAGS THE 
ACTIVE HIGH 8288 CEN. 

7. ALL TIMING MEASUREMENTS ARE MADE AT 1.5V UNLESS OTHERWISE 
NOTED. 

8. STATUS INACTIVE IN STATE JUST PRIOR TO T4. 
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WAVEFORMS (Continued) 

ASYNCHRONOUS 
SIGNAL RECOGNITION 

iAPX 88/10 

BUS LOCK SIGNAL TIMING 
(MAXIMUM MODE ONLy) 

Any elK Cycle ·_1 

NOTE! 1. SETUP REQUIREMENTS FOR ASYNCHRONOUS 
SIGNALS ONLY TO GUARANTEE RECOGNITION AT NEXT eLK 

eLK 

REQUEST/GRANT SEQUENCE TIMING (MAXIMUM MODE ONLy) 

~ 
Previous grant 

AltlSeA:l~:: 1-1 _______________ -/ 

ADr-ADo 

:;:~ 1-'----------------/ 
NOTE: 1. THE COPROCESSOR MAY NOT DRIYE THE BUSSES OUTSIDE THE REGION 

SHOWN WITHOUT RISKINQ CONTENTION. 

COPROCESSOR 

(SEE NOTE 1) 

HOLD/HOLD ACKNOWLEDGE TIMING (MINIMUM MODE ONLy) 

,~"""- ~ 
I\----+---I~ 
i~C\--f-----;LHAV 

~
_lCLKCYCLE-

CLK 

_I _THVCH ,SEE NOTE1) 

HOLD~ 

HLOA 

- TClHAV 

_____ 1"_feLAZ 
1---->. .... COPROCESSOR 
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iAPX 86/10, 88/10 
INSTRUCTION SET SUMMARY_ 

DATA TRANSFER 
IOW,IIVI: 71543 2 I [I 115432 I [I 715432 I [I 11543 Z 1 II 

Regrster1mem()!y tOlhom register ~O d w I mOd fe~ rim I 
Immedl~te 10 register/memory 11 I 0 [I 0 I 1 w jll'lOll 0 G 0 tim I 
Immediate loreo,sler 1,011 w reg I dala I 
Memorv 10 accumulator 11 0 t 0 [I 0 0 w I addr·low I 
Accumulator 10 memOIV 11 0 I II 0 0 1 w I ~ddl low! 

Regl$terlmemol'IIO segmenllto'sier Li::.!!:ITi 1 10 Imod 0 leg rim I 
Segment reo,ster to ,eg'sttlimemo'V 11 000 \ 100 Imod-O~ 

PUSIt Puth: 

Register/memory 

Segmentreglsltr 

PO' Pap: 

Reg,sler/memOly 

Register 

lCIIGohcll.ngl: 

Reglslerlmemorywlth regiSler 

ReOlster wltnaccumulato' 

IN'lnpu\hom 

Flxcdpol1 

VarlOibleport 

OUT·OUlpUIID 

Fllcdpoll 

mod ItO rim 

01010 reg 

OOOrtgllO 

10001 I I t modO 0 0 11m 

01011 reg 

OOOreglll 

(100001 1 w !mOd reg rim I 
[T?Tt~ 

(I I 100 lOw I 
I HI 0 11 Ow I 

1
'1100 I I w I 

. I I 101 I 1 w . 

~~ 
I I 0001 101 Imod 

111000101 ImOd 

1,1000100 Imod 

POri 

port 

reg 11m I 

~r~ 
~ala II w I I 
addrh~ 
andr h'~h I 

DEC O.trlmln! 

Reglsler/memory 

CMP CampuI: 

ReQ'SlerimemOlyana,egrsl!r 

Immedrate wrlh reglslerlmemory 

Immed,ate With .ccumulator 

1D5·t3210 1&543210 11543210 

II I 1 I I 1 1 w ImOdO 0 I 

I'I I '01 I w imOdO' 1 

00 1 1 10 d w mod re~ 

100000 S w mod 111 rim 

001" lOw 

AASASClladluStl0r~ub"~~t ~ 

US Owmal ad,uSllor subtra~t ~'"".,.'''''.,.' "",' "",' '=t----,-,-:-;:---, 
MUl Muiliply lunSl~nedl 1 I 1 1 0 1 1 w mod I 0 0 rim 

IMUl Inleger multiply ISIgnedl I 1 I I 0 I 1 w mod I 0 I r,m 

UM ASCllad,ustlor muiliply 

UIVO,v,delunSlgnedl 

IOI~ Integfr d,v'de ISIlinedl 

Uti ASCII ad,ustlor ~Iv,de 

caw Conve't byleto word 

11010100 00001010 

II 1 I 101 I w ImOd I I a ,rm i 

111 , 101 I w imod I I I "m I 
1'10'0 101 10000 lfiiJ 

100" 0 0 0 

cwo Convert word to double word 100 I 100 I 

lOGIC 
1I0T IMen ~lwmOdOIOrm 
SHllSAl Sh,H logical 3"tnmellC lelt 1 10100 v w mod 100 !Jm 

SKR ShlHlog,eal "Qht 1'10 100 v w Imod 10 I rim 

SAR S~llt a!llhmellc "Qhl 11 0 1 0 0 v w mod I I I om 

ROlRolateletl 110 tOO. w modO 0 0 ,m 

RORRotate"ght 11 0 I 0 0 v w modO 01 "m 

RClRotalethroughtarry!taglelt 110 I 0 0 v w modO 1 0 "m 

RCA ROlale through carr v IIQht II 0 I 00. w modO 1 I 

AND And: 

dala 01 SW 01 

Var,ablepol1 

n,U·T,.nslate byte to Al 

UA'lo'dEAloreg'$ler 

LDS,lo'd pOlnler laOS 

lfl·loadpOlnlerloES 

lAlIF·lGad AH with Hags 

IAIIF'SloreAHrnlollags 

I'Ulllf'Pushllags 

I'DrF·Papliags 

10011111 

1001 1 " 0 

1 00 I 11 00 

100 11 10 I 
Reg Imemory and reg,ster to e,lher f'\ O~'~'~'~':t'~' t·~1 m~Ot' ~"~o ~q=~~=+::::::;~~G 
tmmed,ate to reg,ster ImemOry r=T 0 0 0 0 0 0 w mOd 1 00 rim 

tmmed,ate 10 accumulalor 0 0 tOOl 0 w data dala II w 1 

ARITHMETIC 
ADD Add: 

Reg Imemory w,th reg'slerto either 

Immed,ate 10 re91~terrmemory 

Immedlaleto accumuialor 

ADC Add willi urrv: 

Reg Imemory wllh rtOlster to tither 

Immedlilteto reglster/memory 

Immediate 10 accumulator 

IIC,lncrlln,nl: 

Regrsterlmemory 

W·ASClI ad,ust lor add 

W·OeClmal adlust tor add 

IUI-SUlllrlCl: 

ReglmemolYiillldreglsWloellher 

Immediate Irom reglsterlmemory 

tmmedlatetrom accumulator 

••• • SUMract wllft 111m. 

RIg Imemory and reglsUI 10 either 

MnemontCS ©Intel. 1978 

~Oooodwimod 'e~~ 
lioooOswmooooo r'm~~aIJ I~-:;'I;o1-~~-i.iJ 

10 a 0 0 0 lOw I I dala rl wi! 

1000loOdwlmod,eQ~ 

11111 I 1 1 w ImodO 0 0 11m 

01000 reg 

0011 0 I 1 I 

~ 

~dwlmOd'egr,m 
100000 s w mod 10 I rim 

00 101 lOw 

000110 d w reo rim 

dala 

TEST And lunc!lan 10 1I11l1.na ruull: 
Reg,sterlmemory and leg,stel r.\ 1-"-"-'-'-'-' -:-, ::-,.'--'-:1 m""o':-::,,:-. --:,C:,m-

Immedlale dala and reg,ster /memory F.ll""'~'~'~'~' ~, w~1 m~o,;':;,~,'.:',""~'m~---:';;;":;-, -,----":;,,,;-;,'.-:.:c,"1 
Immediate data and accumulalor F.li:.'::iii:'~,:=;,=;;,~, "'" "'" ."+1 =';,~,,::-, ~F~~:7"l~-~ 

OR Or: 
Reg/memory andreg,ster to e"her loooolodwl!!,od reg~ 
ImmedialeloreQISler/memory L:i:iOOOOOW ImOdOO! rim I 

Immedlaleto accumulator lI::§OO£o 110 w ! I 

XOII hclullvlar: 

ReQ Imemory and regls\tr 10 either 10 0 1 I 0 0 d w I mod reg ii!ii:J 
Immediate to reg,ster/memory 

ImmedIate to accumulalor 

STRING MANIPULATION 
REP-Reput 

MO\lS·Movebytelword 

CMPS'Comparebytel",o,d 

SCAS'Scanbyte/word 

lODS·loidbvtelwdto Al/AX 

STOI'';tOI bvlel",d hom ALIA 

1 0 0 0 0 0 0 w modI I 0 rim 

0011 0 lOw 

111 1 1001 1 i 

! 10 10010 w ! 
1,0 10011 wi 

101011 I w 

10 I 0 11 0 w 

l' 0 I 0 I 0 I w I 

data 

lIata 01 w , 

data 

data Llw I I 

data IIw 1 
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iAPX 88/10 

INSTRUCTION SET SUMMARY (Continued) 

CONTROL TRANSFER 
CALL ~ CIII: 71543210 11543210 18S43110 

Direct within segment 

Indirect wlthm segment 

Direct mlersegment 

11 I 1 0 1 0 0 0 I dlsp·!ow I dlsp-tllgh I 

Indlred intersegment 

JMP :, UnCllndltlanl1 Jump: 

Direct within segment 

Direct w.thln segment-short 

Indirect wlthm segment 

O.rect mtersegment 

Indirectlntersegmenl 

RET : Return from CALL: 
Within segment 

11 1 1 1 1 1 1 1 ImOd 010 rIm I 
10011010ollseHow olfset.hlgh 

seQ-low seQ-high 

1" 11 111 mod 011 rim 

11 1 1 0 , 00 1 t d.sp-Iow 

1 1 , 0 1 0 1 1 d.sp 

1 1 1 1 1 1 1 1 mod 1 00 rim 

lIlt 0 1 0 1 0 I olfset·low 

I seg·low 

1111 I 1 1 1 1 Imod 101 rim 

W.thln seo_ adding immed to SP ]110000101 data·low dala.hlg£] 

Inlersegment 1110010111 

Inlersegmenl. adding Immediate to $P 11 1 0 0 1 0 1 0 [ 

JE/JZ=Jump on equal/zero 
Jl/J18E·Jump on less/not grealer 

or equal 
JlE/JII=Jump on less orequallnol 

grealer 
JI/JIAE=Jump on belowlnot above 

or equal 
J.E/JIA~~~~Coov~ below or eQuall 

JP/JP(·Jump on panty/panly even 

JO'Jumpon overllow 

JS'Jump on sign 

JIE/JIZ·Jump on not equallnotzero 
JILlJIE=Jump on nol less/grealer 

or equal 
JILEIJ8=Jump on not less or equal! 

grealer 

Foot .... : 

AL ~ 8-bit accumulator 
AX " 16-bit accumulator 
CX " Count register 
OS ~ Data segment 
ES • Extra segment 

o 1 1 lOt 0 0 

o 1 1 1 1 I 00 

1011 1 1 11 0 I 
10 It 100101 
01110110 

01111010 

101 11 00001 
[011110001 

o 1 1 1 0 1 0 1 

01111101 

1011111111 

Above/below refers to unsigned value. 
Greater" more positive; 
less" less positive (more negative) signed values 
if d" 1 then "to" reg; if d " 0 then "from" reg 
if w" 1 then word instruction; if w ," 0 then byte instruction 

if mod" 11 then r 1m is treated as a REG field 

data· low 

dlsp 

dlsp 

dlsp 

dlsp 

dlsp 

dlsp 

dlsp 

dlsp 

dlsp 

dlsp 

dlsp 

if mod· 00 then OIsP • 0", disp-Iow and disp-high are absent 

data·hlgh 

if mod· 01 then OISP ~ disp-Iow sign-extended to 16-bits, disp-high is absent 
if mod· 10 then OISP • disp-high: disp-Iow 

if rim ~ 000 then EA • (BX) • (51) .0ISP 
if rim· 001 then EA • (BX) • (01) .01SP 
if rim· 010 then EA • (BP) • (SI) • OISP 
if rim· 01 t then EA • (BP) • (01) • OISP 
if rim· 100 then EA ~ (SI) • OISP 
if rim· 101 then EA ~ (01) • OlsP 
if rim· 110 then EA • (BP). OISP" 
if rim ~ 111 then EA • (BX) .00SP 
OISP follows 2nd byte of instruction (before data if required) 

"except if mod ·00 and rim· 110 then EA ~ disp-high: disp-Iow, 

Mnemonics© Intel, 1978 

1 

J"./JAE·Jump on nol below/abo ... , 
or eQual 

J •• E/JA·Jump on nol below or 
equal/above 

JMP/JPO'Jump on nol parlpar odd 

JIO,Jump on not overllow 

JIIS Jump on nol Sign 

lOOP loop ex limes 

LOOPl/LODPE loop while zero/equal 
lOOPNl/LDOPIE loop .. hi Ie not 

zerofeQu,\' 
Jell Jump on ex zero 

INT Intmupt 

Typespecilled 

TypeJ 

INTO-Interrupt on overllow 

IRH Interrupt return 

PROCESSOR CONTROL 
ClC Clear carry 

CMC Complement carry 

STC Set carry 

CUI Clear directIOn 

STD Set dtreClton 

Cli Clear Interrupt 

STI Set Interrupt 

HLT Hall 

WAIT Walt 

ESC Escape Ito external device I 

LOCK Sus lock prellJ( 

71543210 18543210 

10 1 1 1 00 II! dlsp I 
10 1 I 1 0 1 I 1 I dlsp I 
10 1 , 1 1 0 I 1 I dlsp I 
10 , 1 I ODD 1 I dlsp I 
1011110011 , .. , J 
11 1 1 000 1 0 ] dlsp I 
11 1 1 0000 1 i dlsp I 

1 1 1 00000 dlso 

1 1 I 000 1 1 dlSp 

1 1 00 1 1 0 1 type 

1 10011 00 

111001110[ 

I' 1001 1 11 I 

11 1 1 1 1 000 I 
l' 11 10101 I 
\, 11 1 1001 I 

11 1 1 1 , 0 0 

1 1 1 11 10 1 

I" 1 1 ! 0 '0 I 
liiiiiiiiJ 
I" 1 10100 1 
1'0011011 1 
1'1011 J(xxlmo~/~ 

~oJJ 

if s:w = 01 then 16 bits 01 immediate data form the operand 
iI s:w = 11 then an immediate data byte is sign extended to 
. form the 16-bit operand, 

il v = 0 then "count" = 1; if v = 1 then "count" in (CL) 
x = don't care 
I is used for string primitives lor comparison with l.F FLAG. 

SEGMENT OVERRIDE PREFIX 

10 0 1 reg 1 1 01 

REG is ass~gned according to the following table: 

1I1-Bit (w ~ f) B-Bit (w ~ 0) 

000 AX 000 AL 
OOt CX 001 CL 
010 DX 010 OL 
011 BX 011 BL 
100 SP 100 AH 
tOl BP lOt CH 
110 SI 110 OH 
111 01 tl1 BH 

Segment 

00 ES 
01 CS 
10 S5 
It OS 

Instructions which reference the flag register file as a 16-biI object use the symbol FLAGS to 
represent the tile: 

FLAGS • X:X:X :X:(OF):(OF): (IF):(TF):(SF):(ZF):X: IAF):X:(PF):X:(CFI 
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8089 
8 & 16-BIT HMOS I/O PROCESSOR 

• High Speed DMA Capabilities Including 
I/O to Memory, Memory to I/O, Memory 
to Memory, and I/O to I/O 

• iAPX 86, 88 Compatible: Removes I/O 
Overhead from CPU in iAPX 86/11 or 
88/11 Configuration 

• Allows Mixed Interface of 8- & 16-Bit 
Peripherals, to 8- & 16-Bit Processor 
Busses 

• 1 Mbyte Addressability 

• Memory Based Communication with 
CPU 

• Supports LOCAL or REMOTE I/O 
Processing 

• Flexible, Intelligent DMA Functions 
Including Translation, Search, Word 
Assembly/Disassembly 

• MULTIBUS™ Compatible System 
Interface 

The Intel® 8089 is a revolutionary concept in microprocessor input/output processing. Packaged in a 40-pin DIP package, 
the 8089 is a high performance processor implemented in N-channel, depletion load silicon gate technology (HMOS). The 
8089's instruction set and capabilities are optimized for high speed, flexible and efficient I/O handling. It allows easy 
interface of Intel's 16-bit iAPX 86 and 8-bit iAPX 8B microprocessors with 8- and 16-bit peripherals. In the REMOTE 
configuration, the 80B9 bus is user definable allowing it to be compatible with any B/16-bit Intel microprocessor, interfacing 
easily to the Intel multiprocessor system bus standard MULTIBUSTM. 

The 8089 performs the function of an intelligent DMA controller for the Intel iAPX 86, BB family and with its processing 
power, can remove I/O overhead from the iAPX 86 or iAPX B8. It may operate completely in parallel with a CPU, giving 
dramatically improved performance in I/O intensive applications. The 8089 provides two I/O channels, each supporting a 
transfer rate up to 1.25 mbyte/sec at the standard clock frequency of 5 MHz. Memory based communication between the, 
lOP and CPU enhances system flexibility and encourages software modularity, yielding more reliable, easier to develop 
systems. 

DMA REal 

OMA 

TERMINATEl 

DMA REQ2 

OMA 
TERMINATE2 

I/O CHANNEL 1 

1/0 CHANNEL 2 

CPU 

r=--i 
I I 
I I 
I I 
I~I 
I~I 
L_ =.J 

ASSEMBlYI 
DISASSEMBLY 

INSTRUCTION 
FETCH UNIT 

Figure 1. 8089 1/0 Processor Block Diagram 
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STATUS 

ADDRESS/ 
DATA 

v" 
A14/D14 

A12JD12 

A111D11 

A1OJD10 

A9/D9 

ABlD8 

A7/07 

A5ID5 

A4ID4 

SINTR·1 

SINTR·2 

v" 
A151D15 

RESET <-__ I"" 

Figure 2. 
8089 Pin Configuration 



8089 

Table 1 ~ Pin Description 
r----.--.-------------~----~~ 

Symbol Type Name and Function 

AD-A15/ 
DO-D15 

A16-A19/ 
83-S6 

I/O Multiplexed Address and Data Bus: The 
function of these lines are defined by the 
state of SO, 51 and S2 lines. The pins are 
floated after reset and when the bus is not 
acquired. A8-A15 are stable on transfers to a 
physical 8'blt data bus (same bus as 8088), 
and are multiplexed'with data on transfers to 
a 16-bit physical bus. 

o Address and Status: Multiplexed most 
significant address lines and status in­
formation. The address lines are active only 
when addressing memory. Otherwise, the 
status lines are active and are encoded as 
shown below. The pins are floated after reset 
and when the bus is not acquired. 
S6S5S4S3 
1 1 0 0 DMA cycle on CH1 
1 10 1 DMA cycle on CH'2 
1 1 1 0 Non-DMA cycle on CH1 
,1 1 1 1 Non-DMAeycleon CH2 

BHE 9 Bus High Enable: The, Bus High Enable 'is 
used to enable data operations on the most 
significant half of the data bus (D8-D15). The 

• signal is active low when a byte is to be 
.' transferred on the upper half of the data bus. 

The pin is floated after reset ilnd when the 
bus is not acquired. BHE does not liave tei be 

'latched. 

SO, S1, S2 0 Status: These are the status pins that define 
the lOP activity during any given cycle. They 
are encoded as shown below: 
s2§iSii 
o 0 0 Instruction fetch; i/o space 
o 0 1 Data fetch; I/O space 
o 1 0 Data store; I/O space 
o 1 1 Not used 
1 0 0 Instruction fetch; System Memory 
1 0 1 Data fetch; System Memory 
l' 1 0 Data store; System Memroy 
1 1 1 Passive 

The status lines are utilized, by the bus 
controller and bus arbiter, to generate all 
memory and I/O control signals. The signals 
c,hange during T4 if a new cycle is to be 
entered while the return to passive state in T3 
or Tw Indicates the end of a cycle. The pins 
are floated after system reset and when the 
bus is not acquired. 

READY I Ready: The ready Signal received from the 
addressed device indicates that the device is 
ready for data transfer. The signal is active 
high and is synchronized by the 8284 clock 
generator. 

Symbol 

lOCK 

RESET 

ClK 

CA 

SEl 

DRQ1-2 

RQ/GT 

SINTR1-2 

EXT1-2 

Vee 

Vss 
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Type Name and Function 

0 lock: The lock output signal indicates to the 
bus controller that the bus is needed for more 
than one contiguous cycle. It is set via the 
channel control register, and during the TSl 
instruction. The pin floats after reset and 
when the bus is not acquired. This output is 
active low. 

I Reset: The receipt of a reset signal causes 
the lOP to susfJEmd all its activities and enter 
an idle state until a channel attention is 
received. The signal must be active for at 
least four clock cycles. 

I Clock: Clock provides all timing needed for 
internal lOP operation. 

I Channel Attention: Gets the attention of the 
lOP. Upon the falling edge of this signal, the 
SEl Input pin is examined to determine 
Master/Slave or CH1/CH2 information. This 
Input is active high. 

I Select: The first CA received after 'system 
reset informs the lOP via the SEl line,whe-
ther it is a Master or Slave (0/1 for Mas-
ter/Slave respectively) and starts the in~ 

itialization sequence. During any other CA 
the SEl line signifies ihe selection, of 
CH1/CH2. (0/1 respectively.) , 

I Data Request: DMA request Inputs which 
signal the lOP that a peripheral is ready to 
transfer/receive data using channels 1 or 2 
respectively. The signals must be held active 
high until the appropriate fetch/stroke is 
initiated. 

I/O Request Grant: Request Grant implements 
the communication dialogue required to ar-
bitrate the use of.the system bus (between 
lOP and CPU, lOCAL mode) or I/O bus when 
two lOPs share.:!tle same bus (REMOTE 
mode). The RQ/GT signal..!! a~ive low. An 
internal pull-up permits RQ/GT to be left 
floating if not used. 

0 Signal Interrupt: Signal Interrupt outputs 
from channels 1 and 2 respectively. The 
interrupts may be sent directly to the CPU or 
through the 8295A interrupt controller. They 
are used to indicate to the system the 
occurrence of user defined events. 

I External Terminate: External terminate 
inputs for channels 1 and 2 respectively. The 
EXT signals will cause the termination of the 
current DMA transfer operation if the chan-
nel is so programmed by the channel control 
register. The signal must be held active high 
until termination is complete. 

Voltage: +5 volt power Input. 

Ground. 

AFN·00840C 
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FUNCTIONAL DESCRIPTION 
The 8089 lOP has been designed to remove I/O proces­
sing, control and high speed transfers from the central 
processing unit. Its major capabilities include that of in­
'JtIalizing and maintaining peripheral components and 
supporting versatile DMA. This DMA function boasts 
flexible termination conditions (such as external termi­
nate, mask compare, single transfer and byte count ex­
pired). The DMA function of the 8089 lOP uses a two cy­
cle approach where the information actually flows 
through the 8089 lOP. This approach to DMA vastly sim­
plifies the bus timings and enhances compatibility with 
memory arid peripherals, in addition to allo"ling opera­
tions to be performed on the data as it is transferred. 
Operations can include such constructs as translate, 
where the 8089 automatically vectors through a lookup 
table and mask compare, both on the "fly". 

The 8089 is functionally compatible with Intel's iAPX 86, 88 
family. It supports any combination of 8/16-bit busses. In 
the REMOTE mode it can be used to complement other 
Intel processor families. Hardware and communication 
architecture are designed to provide simple mechanisms 
for system upgrade. 

The only direct communication between the lOP and 
CPU is handled by the Channel Attention and Interrupt 
lines. Status information, parameters and task pro­
grams are passed via blocks of shared memory, simpli­
fying hardware interface and encouraging structured 
programming. 

The 8089 can be used in applications such as file and 
buffer management in hard disk or floppy disk control. It 
can also provide for soft error recovery routines and scan 

MNIMX r OND 
elK iIIIliC so so !iWfC 

50 51 8281 AMWf I-H.e. s;; S. BUS ..... CON· IOAC .... '"= 
DEN TROLLER fc5WC 

I-H.C. ep" DTili Alowe 

- ~~DY 
iiiE ALE INTA 

~ESET -'---

l@ 
,""iff ~-----.., 

~ 
-------, 

a sn I i .... I OND OE 
8282 II 

CLOCK - LATCH T GENERATOR 

~ 
n,20R3) lti HD 

AOIOT 
RESET so 

I- r-------, READY 51 
L-. elK e I=- >-~ I .... iHE I 

OOP ~DRI~ .... 
TRANSCEIVER I 

(10RZ) I CA ...... I SEl ~ ~ ~ 
T'i' i i 

-<~::f' I I I 
".OTI/O ADDR : I I I 

DECODE 

NOTE: ONLY ONE LATCH IS NEEDED IF CONFIGURED WITH I0Il AND ONLY 14K 
ADDRESSINO IS USED. ONLY ONE TRANSCEIVER IS NEEDED IF USINO A 
PHYSICAL 8-BIT DATA BUS (8088). 

A. 

control. CRT control, such as cursor control and auto 
scrolling, is simplified with the 8089. Keyboard control, 
communication control and general 1/0 are just a few of 
the typical applications for the 8089. 

Remote and Local Modes 
Shown in Figure 3 is the 8089 in a LOCAL configuration. 
The iAPX86 (oriAPX88) is used in its maximum mode. The 
8089 and iAPX 86 reside on the same local bus, sharing the 
same set of system buffers. Peripherals located on the 
system bus can be addressed by either the iAPX 86 or the 
8089. The 8089 requests the use of the LOCAL bus by 
means of the RQ/GT line. This performs a similar function 
to that of HOLD and HLDA on the Intel B085A, 8080A and 
iAPX 86 minimum mode, but is implemented on one 
physical line. When the iAPX 86 relinquishes thE' system 
bus, the 8089 uses the same bus control, latches and 
transceiver components to generate the system address, 
control and data lines. This mode allows a more 
economical system configuration at the expense of 
reduced CPU thruput due to lOP bus utilization. 

A typical REMOTE configuration is shown in Figure 4. In 
this mode, the lOP's bus is physically separated from 
the system bus by means of system buffers/latches. The 
lOP maintains its own local bus and can operate out of 
local or system memory. The system bus interface con­
tains the following components: 

• Up to three 8282 buffer/latches to latch the address to 
the system bus. 

• Up to two 8286 devices bidirectionally buffer the 
system data bus. 

AOOR 
BHE 

DATA 

I ffJ[ ~I1 Is I~ I~~ I~ I~ III 1i1; II!; II 
rJ § 2718-2 MC&IO Me ... I~ ~" .. AAM (~ : I EPADM (. ~ PEAOr::-AL PERIP HERAl 

ONT 

Il>WC 1K.I tKIII 2K.8 2Kx8 DUO DMAe OM. OMAC 

Figure 3. Typical iAPX 86/11,88/11 Configuration with 8089 in LOCAL Mode, 8088, 8086 In MAX Mode 

8-55 AFN-0084OC 



inter 8089 

• An 8288 bus controller supplies the control signals 
necessary for buffer operation as well as MRDC 
(Memory Read) and MWTC (Memory Write) signals. 

• An 8289 bus arbiter performs all the functions 
necessary to arbitrate the use of the system bus. This 
is used in place of the RQ/GT logic in the LOCAL 
mode. This arbiter decodes type of cycle information 
from the 8089 statqs lines to determine if the lOP 
desires to perform a transfer over the "common" or 
system bus. 

The peripheral devices PER1 and PER2 are supported on 
their own data and address bus. the 8089 communicates 
with the peripherals without affecting system bus opera­
tion. Optional buffers may be used on the local bus when 
capacitive loading conditions so dictate. I/O programs and 
RAM buffers may also reside on the local bus to further 
reduce system bus utilization. 

COMMUNICATION MECHANISM 
Fundamentally, 'communication between the CPU and 
lOP is performed through messages prepared in shared 
memory. The CPU can cause the 8089 to execute a pro­
gram by placing it in the 8089's memory space andlor 
directing the 8089's attention to it by asserting a hard­
ware Channel Attention (CA) signal to the lOP, ac­
tivatingthe proper 1/0 channel. The SEL Pin indicates to 

the lOP which channel is being addressed. Communica­
tion from the lOP to the processor can be performed in a 
similar manner via a system interrupt (SINTR 1,2), if the 
CPU has enabled interrupts for this purpose. Addition­
ally, the 8089 can store messages in memory regarding 
its status and the status of any peripherals. Tllis com­
munication mechanism is supported by a hierarchial 
data structure to provide a maximum amount of flexi­
bility of memory use with the added capability of handl-
ing multiple lOP's. ' 

Illustrated in Figure 5 is an overview of the communica­
tion data structure hierarchy that exists for the 8089 1/0 
processor. Upon the first CA from RESET, if the lOP is 
initialized as the BUS MASTER, 5 bytes of information are 
read into the 8089 starting at location FFFFS (FFFFS, 
FFFF8-FFFFB) where the type of system bus OS-bit or 8-
bit) and pointers to the system configuration block are 
obtained. This is the only fixed location the 8089 accesses. 
The remaining addresses are obtained via the data struc­
ture hierarchy. The 8089 determines addresses in the 
same manner as does the iAPX 8S; i.e., a 1S-bit relocation 
pointer is offset left 4 bits and added to the 1S-bit address 
offset, obtaining a 20-bit address. Once these 20-bit ad­
dresses are formed, they are stored as such, as all the 8089 
address registers are 20 bits long. After the system con­
figuration pointer address is formed, the 8089 lOP ac­
cesses the system configuration block. 

1
...---

LOCAL 
MEMORY I ROM/RAM 

/"::-" 

S2 eLK 

} 
MULTIBUS 

,-----j------iS1 ~'i:: H'-J-+-- ARBITRATION 
ARBITRATION SIONALS 

(OPTIONAL-IF r---I----~-E~~-lIHIi--NEEDED TO REDUCE I so nR 
LOADING ON 8089) r--l 

r~:J.,c-::'l' r- ~~~N "'" 

IJ!--'-J'------"J: 8:::TI_R·~~i ~:=l-11~~~~~~~~~~i'" j~L ~MEMAD 
, : ' ALE elK t----" MEMWR '"1. _______ 1 

If-----<~I: V'-----'" J.L.-..l..--L--'----'---L ~~::~::~~~:k'·-AO.BH~ 
Ie L r- ~ LATCH 1M" -y 

~ .......-----. 52 5, So UJ 
'-----'\,--l----~ DAa, 

~I PERl 
J------'\j~ 1-----jexT 1 

8089 ADDRESS/DATA 

i-----jORQ:z elK-

'I I READY-
VL.L...J-----'\I\,I PER2 RclIRESET -

I\,.,.,-----,IIA EXT2 aT 

U : I 
• TO ANOTHER 

lOP 

~t- T ---------1 07·00 

V -t- OE I D~DO 
f------L>I ~~~":l 11'----'\ 

~ 
AEN 

~AEADY 

8284 rAESET 
'-101-' 

Figure 4_ Typical REMOTE Configuration 
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SYSTEM 
CONFIOURATION 
BLOCK 

CONTROL 
BLOCK 

T T 

J 
CB RELOCATION ) 

BUSY I CCW 

PB ADDRESS 

PB RELOCATION 

BUSY CCW 

PB ADDRESS 

PB RELOCATION 

TASK BLOCK J 
1r-, ----':'::'=":'----'1 

lOP TASK T PROGRAM T 

LOCATION 
FFFF6 

CHANNEL 
1 

CHANNEL 
2 

Figure 5. Communication Data Structure Hierarchy 

The System Configuration Block (SCB), used only dur­
ing startup, pOints to the Control Block (CB) and provides 
lOP system configuration data via the SOC byte. The 
SOC byte initializes lOP 1/0 bus width to 8/16, and 
defines one of two lOP RQ/GT ope'rating modes. For 
RQ/GT mode 0, the lOP is typically initialized as SLAVE 
and has its RQ/GT line tied to a MASTER CPU (typical 
LOCAL configuration). In this mode, the CPU normally 
has control of the bus, grants control to the lOP as need­
ed, and has the bus restored to it upon lOP task comple· 
tion (lOP request-CPU grant-lOP done). For RQ/GT 
mode 1, useful only in remote mode between two lOPs, 
MASTERISLAVE designation is used only to initialize 
bus control: from then on, each lOP requests and grants 
as the bus is needed (IOP1 request-IOP2 grant-IOP2 
request-IOP1 grant). Thus, each lOP retains bus con· 
trol until the other requests it. The completion of in· 
itialization is signalled by the lOP clearing the BUSY 
flag in the CB. This type of startup allows the user to 
have the startup pOinters in ROM with the SCB in RAM. 
Allowing the SCB to be in RAM gives the user the flex· 

. ibility of being able to initialize multiple lOPs. 

The Control Block furnishes bus control Initialization for 
the lOP operation (CCW or Channel Control Word) and 
provides pOinters to the Parameter Block or "data" 
memory for both channels 1 and 2. The CCW is retrieved 
and analyzed upon all CA's other than the first after a 
reset. The CCW byte is decoded to determine channel 
operation. 

The Parameter Block contains the address of the Task 
Block and acts as a messge center between the lOP and 
CPU. Parameters or variable information is passed from 
the CPU to its lOP in this block to customize the soft­
ware interface to the peripheral device. It is also used 
for transferring data and status information between the 
lOP and CPU. 

The Task Block contains the instructions for the respec­
tive channel. This block can reside on the local bus of 
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the 10P,allowing the lOP to operate concurrently with 
the CPU, or reside in system memory. 

The advantage of this type of communication between 
the processor, lOP and peripheral, is that it allows for a 
very clean method for the operating system to handle 
1/0 routines. Canned programs or "Task Blocks" allow 
for execution of general purpose 1/0 routines with the 
status and peripheral command information being 
passed via the Parameter Block ("data" memory). Task 
Blocks (or "program" memory) can be terminated or 
restarted by the CPU, if need be. Clearly, the flexibility 
of this communication lends itself to modularity andap: 
plicabllity to a large number of peripheral devices and 
upward compatibility to future end user systems and 
microprocessor families. . . 

Register Set 

The 8089 maintains separate registers for its two ilo 
channels as well as some common registers (see Figure 
6). There are sufficient registers for each channel to sus­
tain its own DMA transfers, and process its own instruc' 
tion stream. The basic DMA pOinter re.gisters (GA, GB -
20 bits each), can pOint to either the system bus or local 
bus, DMA source or destination, and can be autoincre·. 
mented. A third register set (GC) can be used to allow 
translation during the DMA process through a lookup 
table it points to. Additionally, registers are provided for a 
masked compare during the data transfer and can be set 
up to act as one of the termination conditions. Other 
registers are also provided. Many of these registers can be 
used as general purpose registers during program execu· 
tion, when the lOP is not performing DMA cycles. 

USER PROGRAMMABLE 

TAG 19 0 

G.P. ADDRESS A (GA) 

G.P. ADDRESS B (G8) 

G,P. ADDRESS C (GC) 

TASK POINTER tTP) 

'--- 1·81T POINTER TO EITHER 110 OR SYSTEM MEMORY SPACE 

15 0 
INDEX (IX) 

BYTe COUNT (BC) 

MASK COMPARE (Me) 

CHANNEL CONTROL (CC) 

NON USER PROGRAMMABLE 
(ALWAYS POINTS TO SYSTEM MEMORy) 

191 P I PARAMETER POINTER (PP) 

I CHANNEL CONTROL POINTER (CP) I 

Figure 6. Register Model 

Bus Operation 
The 8089 utilizes the same bus structure as the 
iAPX 86, 88 in their maximum mode configurations (see 
Figure 7). The address is time multiplexed with the data 
on the first 16/8 lines. A16 through A19 are time multi· 
plexed with four status lines 83·S6. For 8089 cycles, S4 
and S3 determine what type of cycle (DMA versus non· 
DMA) is being performed on channels 1 or 2. S5 and S6 
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are a unique code assigned to the 8089 lOP, enabling 
the user to detect which processor is performing a bus 
cycle In a multiprocessing environment. 

The first three status lines, 80·82, are used with an 8288 
bus controller to determine if an Instruction fetch or 
data transfer is being performed in 1/0. or system 
memory space. 

DMA transfers require at least two bus cycles with each 
bus cycle requiring a minimum of four clock cycles. Ad· 
ditional clock cycles are added If wait states are reo 
qulred. This two cycle approach simplifies considerably 
the bus timings in burst DMA. The 8089 optimizes the 
transfer between two different bus widths by using 
three bus cycles versus four to transfer 1 word. More 
than one read (write) is performed when mapping an 
8·bit bus onto a 16·bit bus (vice versa). For example, a 
data transfer from an 8·bit peripheral to a 16·bit physical 
location in memory is performed by first doing two 
reads, with word assembly within the lOP assembly 
register file and then one write. 

As can be expected, the data bandwidth of the lOP is a 
function of the phYSical bus width of the system and 1/0 
busses. Table 2 gives the bandwidth, latency and bus 
utilization of the 8089. The system bus is assumed to be 

16·bits wide with either an 8·bit peripheral (under byte 
column) or 16·bit peripheral (word column) being shown. 

The latency refers to the worst case response time bv 
the lOP to a DMA request, without the bus arbitration 
times. Notice that the word transfer allows 50% more 
bandwidth. This occurs since three bus cycles are reo 
quired to map 8·bit data into a 16·bit location, versus two 
for a 16·bit to 16·bit transfer. Note that it is possible to 
fully saturate the system bus in the LOCAL mode 
whereas in the REMOTE mode this is reduced to a max· 
imum of 50%. 

Table 2. Achievable 5 MHz 8089 Operations 

Local Remote 

Byte Word Byte Word 

Bandwidth 830 KB/S 1250 KB/S 830 KB/S 1250 KBiS 

Latency 1.0/2.4 ~sec· 1.0/2.4 ~sec· 1.0/2.4 ~sec· 1.0/2.4 ~sec· 

System Bus 
2.4 ~sec 1.6 ~sec 0.8 ~sec 0.8 ~sec 

PER PER PER PER 
Utilization TRANSFER TRANSFER TRANSFER TRANSFER 

*2.4 psec if interleaving with other channel and no wait states. 1,usec if 
channel 15 waiting for request. 

i-----!4+NWAIT) .. TCV-----I-----14+NwAlr) .. Tov--'-----i 

SEE NOTE 1 

T, T2 I T~ TWA'T I T~ T, T3 TWAIT I T. 

\1.--

ADDR/DATA 
(1G.eIT 

PHYSICAL 8US) -----~'-__ ,_.,_.O_UT_"_,,_-,._) _~~-~ 

DTIA 

DeN 

NOTE 1; IRE IS STABLE II .•.• NON MULTIPLEXED) THROUGHOut EACH TRANSFER 
CYCLE. ..... ,1,,' ARE ALSO STABLE ON TRANSFERS TO A PHYSICAL '·BIT 
IIUS. 

\'----~/ 

Figure 7. 8089 Bus Operation 
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ABSOLUTE MAXIMUM RATINGS· 

Ambient Temperature Under Bias ......... O'C to 70'C 
Storage Temperature ...•..•...... -65'C to + 150'C 
Voltage on Any Pin with 

Respect to Ground ................. - 1.0 to + 7V 
Power Dissipation .....•................•.. 2.5 Watt 

"NOTICE: Stresses above those listed under "Absolute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above 
those indicated in the operational sections of this 
specification is not implied. Exposure to absolute maxi­
mum rating conditions for extended periods may affect 
device reliability. 

D.C. CHARACTERISTICS (TA = O'C to 70'e, Vee = 5V ±10%) 

Symbol Parameter Min. Max. Units Test Conditions 

VIL Input Low Voltage -0.5 +0.8 V 

VIH Input High Voltage 2.0 Vcc+1.0 V 

VOL Output Low Voltage 0.45 V IOL=2.0 mA 

VOH Output High Voltage 2.4 V 10H = -400",A 

Icc Power Supply Current 350 mA TA=25'C 

III Input Leakage Current(1) ±10 ".A OV < VIN < Vee 

IlO Output Leakage Current ± 10 ".A 0.45V .;; Your .;; Vee 

VCl Clock Input Low Voltage -0.5 +0.6 V 

VCH Clock Input High Voltage 3.9 Vcc + 1.0 V 

Capacitance of Input Buffer 
C IN (All input except 15 pF fc = 1 MHz 

ADo- AD15, RQ/GT) 

C IO 
Capacitance of I/O Buffer 15 pF fc = 1 MHz 
(ADo- AD15, RQ/GT) 

A.C. CHARACTERISTICS (TA = O'C to 70'C, Vee = 5V ±10%) 

8089/8086 MAX MODE SYSTEM (USING 8288 BUS CONTROLLER) TIMING REQUIREMENTS 

Symbol Parameter Min. Max. Units Tast Conditions 

TClCl ClK Cycle Period 200 500 ns 

TClCH ClK low Time ('hTClCl)-15 ns 

TCHCl ClK High Time (V,TClCl) + 2 ns 

TCH1CH2 ClK Rise Time 10 ns . From 1.0V to 3.5V 

TCl2Cl1 ClK Fall Time 10 ns From 3.5V to 1.0V 

TDVCl Data In Setup Time 30 ns 

TClDX Data In Hold Time 10 ns 

TR1VCl ROY Setup Time into 8284 (See Notes 1. 2) 35 ns 

TClR1X ROY Hold Time into 8284 (See Notes 1. 2) 0 ns 

TRYHCH READY Setup Time into 8089 ('h TClCl) - 15 ns 

TCHRYX READY Hold Time into 8089 30 ns 

TRYlCl READY Inactive to ClK (See Note 4) -8 ns 

TINVCH Setup Time Recognition (ORO 1.2 RESET. Ext 1.2) (See Note 2) 30 ns 

TGVCH RO/GT Setup Time 30 ns 

TCAHCAl CA Width 95 ns 

TSlVCAl SEl Setup Time 75 ns 

TCAlSlX SEl Hold Time 0 ns 

TCHGX GT Hold Time into 8089 40 ns 

TILIH Input Rise Time (Except ClK) 20 ns From 0.8V to 2.0V 

TIHll Input Fall Time (Except ClK) 12 ns From 2.0V to O.8V 
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A.C~ CHARACTERISTICS (Continued) 

TIMING RESPONSES 

Symbol Parameter Min. Max. Units Test Conditions 

TClML Command Active Delay (See Note 1) 10 35 ns Cl=BO pF 

TClMH Command Inactive Delay (See Note 1) 10 35 ns 

TRYHSH READY Active to Status Passive (See Note 3) 110 ns 

TCHSV Status Active Delay 10 110 ns 

TClSH Status Inactive Delay 10 130 ns 

rClAV Address Valid Delay 10 110 ns 

TClAX Address Hold Time 10 ns 

TClAZ Address Float Delay TCLAX BO ns 

TSVlH Status Valid to ALE High (See Note" 1) 15 ns 

TCllH ClK low to ALE Valid (See Note 1) 15 ns CL= 150 pF 

TCHLl ALE Inactive Delay (See Note 1) 15 ns 

TClDV 
f---

Data Valid Delay 10 110 ns 

TCHDX Data" Hold Time 10 ns 

TCVNV Control Active Delay (See Note 1) 5 45 ns 

TCV"!X ContrOl Inactive Delay (See Note 1) 10 45 ns 

TCHDTl Direction ContrOl Active Delay (See Note 1) 50 ns 

TCHDTH Direction Control Inactive Delay (See Note 1) 30 ns 

TClGl RQ Active Delay 0 B5 ns CL= 100 pF" 

TClGH RQ Inactive Delay B5 ns Note 5: CL = 30 pF 

TClSRV SINTR Valid Delay 150 ns Cl=100 pF 

TDLDH Output Rise Time 20 ns From O.BV to 2.0V 

TDHOL Output Fall Time 12 ns From 2.0V to O.BV 

NOTES: 1. Signal at 8284 or 8288 shown for reference only. 4. Applies only to T2 state. 
2. Setup requirement for asynchronous signal only to guarantee recognition at next elK. 5. Applies only if RQ/GT Mode 1 CL =SOpf, 2.7 Kn pull up to Vee. 
3. Aplies only to T3 and TW states. . . 

A.C. TESTING INPUT, OUTPUT WAVEFORM 

INPUT/OUTPUT 

A.G. TESTING: INPUTS ARE DRIVEN AT2.4V FDA A LOGIC "1" ANDO.45V FDA 
A LOGIC "0," THE CLOCK IS DRIVEN AT 4.3V AND 0.25\1. TIMING MEASURE­
MENTS ARE MADE AT 1.SV FOR BOTH A LOGIC "1" AND "0," 
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A.C. TESTING LOAD CIRCUIT 

DEVICE 

~C'_'00PF 
UNDER 

TEST 

CL :::: l00pF 
C, INCLUDES JIG CAPACITANCE 
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WAVEFORMS 

8089 BUS TIMING USING 8288 

CLK 

( 
Aa-A,s ON TRANSFERS 

see NOTE 7 TO AN 8·BIT PHYSICAL BUS 
AND SHE 

S2,S"So (EXCEPT HAL 1) 

\ 

ALE (8288 OUTPUT) 

SEe NOTE 4 

ROY (8264 INPUT) 

READY (80891NPUn 

READ - (MWTC,AMWC.IOWC,AIDWC = VOH) 

see NOTE 1 ( 
AND ABOVE AD'S,ADo 

(lffiE) 

8288 OUTPUTS 

see NOTES 4, 5 

WRITE - (RD,MRDC,IORC,DT/R = YOH) 

SEE NOTE 7 ( 
AND ABOVE AD,S·ADo 

(BHE) 

8288 OUJPUTS 

see NOTES 4,5 

DEN 

MWTC OR lowe 

1 2 , 

CH1CH2-- --_I_TCL2CL1 Tw --TeLCL-_ 

VCH r-'- ,r-\ I,r""-\ r'\ 
VCL--' 1'----1 ~ I\-----l f\---..-J 

L -ro~= -TCHDX 
TCLAV- ~ 1__ 1- TCHCL 

~'-____ ---1-------+--~------1-----t-----__ r-~ FLOAT 
(SEE NOTE 3) 

--_ TCHSV - TCLSH 

~ \ 
1- relAV aClOV TCHDX- 2:~----

------+1->"11 TCLAX- ~l~ 
A A 56-53 

19 16 ~+--+--f--+----t-------f--~ FLOAT 
----T::SV::L::H--t+-:' { (SEE NOTe 3) _ - TCHLL 

TCLlH r--

~----~~~-r--t---+-----r---yJ~---

~~Ii~~ 
TAYlCl_ 

f-TCHRYX 

T LAYHSH-l- -

- rCLAX ~ TRYHCH-

__ T_C_LA_V_-+-+.JI.-r---f ____ -+T_C_LA,Z -1 !-TDVCL-l-TCLDX--! 

Il AwAo FLOAT DATA IN ____ -+-+'I~+_--+-J FLOAI 
______ -II-T.,C_H_D_TL_--+ __ ,.II- -- tTCHDTH 

\~-4 ___ ~----t----rr 
TCLML--

TCLMH-

TCVNV-

---++---f----f--+-'-' 
TCVNX-

L -TCLAXr-

TCLAV- ~ 1___ - TCLD I- TCHDX -- ~FLOAT 

~ 1,---+--+------+----1-,1 (SEE 
A1S·AO DATA OUT 

-----+---1' '-_1--_-1_-' ,--+-----f--------+------+-' NOTE 3) 
TCVNV- r-__ + ____ +-__________ -I __ T_C_v_NX_---+ __ ~\1 

-----+~--+_--tJl ~---
______ -I-I ____ -+ ____ --+_."I·~TCLML TCLMH- -

TCLML _ - TCLMH 

I 
I. ALL SIQNAU; SWITCH BETWEEN YOH AND Ym UNLESS OTHERWise SPECIFIED 
2. AOY IS SAMPLEO NEAR tHE END OF 1,.1",1.,. TO DETERMINE IF Tw "'''CHINE STAlES ARE TO BE INSERTED 

3. ~~~t~~i~~ t:=~T:t7SV~L;L~'fl~~E:v ... ;~: ::a~~~~:~~:oa~~~;~:~~ uR~~~:s;Oi~; :6~NMO;;~:~:~~~~~ TO RUN "NOTl~ Ell BU5 
~,SIGN"LS"T82&'OR82MAAESHDWNfOAREFEAENCEONLV. ______ _ 
5. THE ISSUANCE OF THE 6288 COMMolNO AND CONTROL SIGN"LS IMADe, MWlC. "",we, 10RC. lowe. "'lowe. INT .... AND DENllAGS THE 

"CnVfHIGH8288CEN 
8. ALL TIMING MEASUREMENTS ARE "''''DE AT 1.5Y UNLESS OTHEFlWIS~ NOTED 
T, A.oA" AAESTABlEON1AANSFERSTO AN a 81T PHYSICAL DUA BUS,. A._A" 

DON'T FLOAT ON II. AUD FROM AN 8 BIT PHYSICAL eus OR MULTIPLEX WITH 
OATA ON A WAITE TO AN 8 BIT PHYSICAL BUS 1HE IS STABLE ,NON 
MULllPlEXEOIFORAll TRANSFERS 
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WAVEFORMS (Continued) 

ASYNCHRONOUS SIGNAL RECOGNITION 

, C,LK 

NOTES:', , 
NEGAllVE EDOiE TRIGGERED. 1. SETUP REQUIREMENTS FOR ASYNCHRONOUS SIGNALS ONLY TO OUARANTEE 

RECOQNInON AT NEXT elK. 
z. ALL INPUTS EXCEPT CA ARE LATCHED ON A elK EDGE. THE CA INPUT IS 

3. DRQ BECOMINQ ACTIVE GREATER THAN 30 n. AFTER THE RISING EDGE OF elK 
WILL GUARANTEE NON·RECOGNITION UNTIL THE NEXT RISING CLOCK EDGE. 

BUS LOCK SIGNAL TIMING AND SI"TR 

elK 

REQUEST/GRANT SEQUENCE 

8019 AS SLAYE (MODe D) 

~tT r 
8089;m OUTPUTJ ' . (TOMAs1'EA) 

"- 8089 REQIUESTB BUS 

8089 AS MASTER (MODE~) 
TCHGX 

lOYeH 

L-.!. .. _._, ."'Q:-'-NP'"'U"T....J' 
(FROM CURRENT SLAYE) 

Any elK cYCle-I 

8019 aT INPUT 
(FROM MASTER) 

8089 WAITS F~A BUS I " " I 
8089 FLOATS STATUS BUS 

TeL.l -I 
8089 FLOATS 

AID BUS 

8089 aT OUTPUT 

TeLa" 

(OLD MASTER BeCOMes NEW SLAVE) 

r.oaJ FLOATS AID BUS 

-.~"'-~ . 
TCHOX - -- i--TeLal 

-! _TeLa" 

---+- raveH 

t 
808. RQ INPUT 

(FAOM CURRENT SLAYE) 

1 

-= F-~~~J: 
8011 CiT OUTPUT 

(OLD MASTER BECOMES NEW SLAVE) 

8-62 

elK 

'-----_Tel.RYj,---.. 

SlNTR 1,2 :_ "-----." 

TCHOX 

1- t 
1011 iiEmft INPUT 

(TO MASTER) 
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WAVEFORMS (Continued) 

EXTERNAL TERMINATE SETUP 

elK 

EXT 1,2 

SEL SETUP AND TIMING 
TCAHCAl_ 

CA 

SEL .• 'SLVCAL_I--'CALSLX. 
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8089 INSTRUCTION SET SUMMARY 

Data Transfers 

POINTER INSTRUCTIONS OPCODE 
7 0 7 0 

LPD P,M Load Pointer PPP from Addressed Location P P P 0 o A A 1 1 0 0 0 1 OMM 

LPDI P,I Load Pointer PPP Immediate 4 Bytes P P P 1 000 1 o 0 0 0 1 000 
MOVPM,P Store Contents of Pointer PPP in Addressed Location P P P 0 o A A 1 100 1 1 OMM 

MOVPP,M Restore Pointer P P P 0 o A A 1 1 000 1 1 M M 

MOVE DATA OPCODE 

MOV M,M Move from Source to Destination 
Source- o 0 0 0 OAAW 1 o 0 1 OOMM 

Destination- . o O. 0 0 OAAW 1 1 00 11M M 

MOV R,M Load Register RRR from Addressed Location R R R 0 o A .AW 1 000 OOMM 

MOV M,R Store Contents of Register RRR in Addressed Location R R R 0 OAAW 1 000 o 1 M M 

MOVI R Load Register RRR Immediate (Byte) Sign Extend R R R wb OOW o 0 1 1 o 0 0 0 
MOVI M Move Immediate to Addressed Location 000 wb AAW o 1 0 0 11M M 

Control Transfer 
CALLS OPCODE 

7 07 0 
"CALL Call Unconditional 11 o 0 dd A AW 11 0 0 1 1 1 M M 1 

JUMP OPCODE 

JMP Unconditional 1 0 0 dd OOW o 0 1 0 o 0 0 0 

JZ M Jump on Zero Memory 000 dd AAW1 1 1 0 01MM 

JZ R Jump on Zero Register R R R dd o 0 0 0 1 0 0 o 1 0 0 
JNZ M Jump on Non-Zero Memory 000 dd AAW1 1 1 0 OOMM 

JNZ R Jump on Non-Zero Register R R R dd 000 o 1 0 0 o 0 0 0 
JBT Test Bit and Jump if True B B B dd A AD 1 0 1 1 11M M 
JNBT Test Bit and Jump if Not True B. B B dd A AD 1 0 1 1 10M M 
JMCE Mask/Compare and Jump on Equal 000 dd A AD 1 0 1 1 OOMM 
JMCNE Mask/Compare and Jump on Non-Equal 000 dd A AD 1 0 1 1 o 1 M M 

Arithmetic and Logic Instructions 
INCREMENT, DECREMENT OPCODE 

7 07 0 

"ADDI M,I ADD Immediate to Memory o 000 OAAW 1 1 1 0 1 OMM 

'ADDI R,I ADD Immediate to Register R R R 0 o 0 0 0 o 0 1 1 1 000 

tADD M,R ADD Register to Memory o 0 0 0 OAAW 1 1 1 0 1 1MM 

tADD R,M ADD Memory to Register R R R 0 o 0 0 0 o 0 1 1 1 100 
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Arithmetic and Logic Instructions 

ADD OPCODE 

7 o 7 0 
ADDI M,l ADD Immediate to Memory 000 wb AAW 1 1 0 0 0 OMM 
ADDI R,l ADD Immediate to Register R R R wb OOW o 0 1 0 0 000 
ADD M,R ADD Register to Memory R R R 0 OAAW1 1 0 1 0 OMM 
ADD R,M ADD Memory to Register R R R 0 OAAW 101 0 OOMM 

AND OPCODE 

ANDl M,l AND Memory with Immediate 000 wb AAW 1 1 0 0 1 OMM 
ANDI R,l AND Register with Immediate R R R wb OOW a a 1 0 1 a a a 
AND M,R AND Memory with Register R R R a a A AW 1 1 a 1 1 OMM 
AND R,M AND Register with Memory R R R a OAAW 101 a 1 OMM 

OR OPCODE 

ORl M,l OR Memory with Immediate a a a wb AAW 1 1 a a a 1 M M 
ORl R,l OR Register with Immediate R R R wb AAW a a 1 a a 100 
OR M,R OR Memory with Register R R R a OAAW1 1 a 1 a 1MM 
OR R,M OR Register with Memory R R R a OAAW 101 0 a 1MM 

NOT OPCODE 

NOT R Complement Register I R R R a a a a a a a 1 a 1 1 a a 
NOT M Complement Memory a a a a OAAW 1 1 0 1 1 1 M M 
NOT R,M Complement Memory, Place in Register R R R a OAAW 1 a 1 a 1 1 M M 

Bit Manipulation and Test Instructions 

BIT MANIPULATION OPCODE 

7 07 0 

SET Set the Selected Bit IB B B a oAAol111 1 0 1 M M I 
CLR Clear the Selected Bit IB B B a OAA O l111 1 1 OM MJ 

TEST OPCODE 

TSL Test and Set Lock 10 a a 1 1 A A a 11 a 0 1 a 1 M M I 

Control 

Control OPCODE 
7 07 0 

HLT Halt Channel Execution a a 1 a a a a a a 1 0 a 1 a a a 
SINTR Set Interrupt Service Flip Flop a 1 a a a a a a a a 0 a a a a a 
NOP No Operation a a a a a a a a a a 0 a a a a a 
XFER Enter DMA Transfer a 1 1 a a a a a a a 0 a a a a a 
WID Set Source, Destination Bus Width; S,D 0=8, 1 = 16 1 S 0 a a a a a a a 0 a a a a a 
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'II field in call instruction can be 00, 01, 10 only. 
"OPCODE is second byte fetched. 

All Instructions consist of at least 2 bytes, while some 
Instructions may use up to 3 additional bytes to specify 
literals and displacement data. The definition of the 
various fields within each instruction is given below: 

o 7 

PPP BBB 

M M Base Pointer Select 

00 GA 
01 GB 
10 GC 
11 PP 

RRR Register Field 

The RRR field specifies a 1S-bit register to be used in 
the instruction. If GA, GB, GC or TP, are referenced by 
the RRR field, the upper 4 bits of the registers are load­
ed with the sign bit (Bit 15). PPP registers are used as 
20-bit address pOinters. 

RRR 

000 
001 
010 
011 
100 
101 
110 
111 

rO GA 
r1 GB 
r2 GC 
r3 BC 
r4 TP 
r5 IX 
rS CC 
r7 MC 

ppp 

000 pO GA 
001 p1 GB 
010 p2 GC 

; byte count 
; task block 
; index register 
; channel control (mode) 
; mask/compare 

100 p4 TP ; task block pOinter 

NOTES: 

BBB Bit Select Field 

The bit select field replaces the RRR field in bit manipu­
lation instructions and is used to select a bit to be oper­
ated on by those instructions. Bit 0 is the least signifi­
cant bit. 
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wb 

01 1 byte literal 
10 2 byte (word) literal 
dd 

01 1 byte displacement 
10 2 byte (word) displacement. 

AA Field 

00 The selected pOinter contains the operand address. 
01 The operand address is formed by adding an B-bit, 

unsigned, offset contained in the instruction to the 
selected pOinter. The contents of the pointer are un­
changed. 

10 The operand address is formed by adding the con­
tents of the Index register to the selected pointer. 
Both registers remain unchanged. 

11 Same as 10 except the Index register is post auto­
incremented (by 1 for B-bit transfer, by 2 for 16-bit 
transfer). 

W Width Field 

o The selected operand is 1 byte long. 
1 The selected operand is 2 bytes long. 

Additional Bytes 

OFFSET: B-blt unsigned offset. 
SDISP : B/1S-bit signed displacement. 

LITERAL: B/1S-bit literal. (32 bits for LOP!). 

The order in which the above optional bytes appear in lOP 
instructions is given below: 

OFFSET I 

Offsets are treated as unsigned numbers. Literals and 
displacements are sign extended (2's complement). 
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8259A/8259A-2/8259A-8 
PROGRAMMABLE INTERRUPT CONTROLLER 

• iAPX 86, iAPX 88 Compatible • Programmable Interrupt Modes 

• MCS-80®, MCS-85® Compatible • Individual Request Mask Capability 

• Eight-Level Priority Controller • Single + 5V Supply (No Clocks) 

• Expandable to 64 Levels • 28-Pin Dual-In-Line Package 

The Intel'" 8259A Programmable Interrupt Controller handles up to eight vectored priority interrupts for the CPU. It is 
cascadable for up to 64 vectored priority interrupts without additional circuitry. It is packaged in a 28·pin DIP, uses 
NMOS technology and requires a single + 5V supply. Circuitry is static, requiring no clock input. 

The 8259A is designed to minimize the software and real time overhead in handling multi-level priority interrupts. It has 
several modes, permitting optimization for a variety of system requirements. 

The 8259A is fully upward compatible with the Intel'" 8259. Software originally written for the 8259 will operate the 
8259A in all 8259 equivalent modes (MCS·80/a5, Non-Suffered, Edge Triggered). 

DATA CONTROL LOGIC °7-°0 BUS 
BUFFER 

Cs 
WR "0 
AD iNfA 

0, IR1 

RD IRO D. IR6 
IR' 0, IR5 ViR IR2 

D. IR4 

0, IR3 

0, IR2 

IT 0, IR' 

Do IRO 

CASO INT 

CASD CAS' SP/EN 
CASCADE GND CAS2 

CAS 1 BUFFERI 
COMPARATOR 

CAS 2 

SP/EN ~INTERNAl BUS 

Figure 1. Block Diagram Figure 2. Pin Configuration 
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Table 1. Pin Description 

Symbol Pin No. Type Name and Function 

Vee 26 I Supply: +5V Supply. 

GND 14 I Ground. 

CS 1 I Chip Select: A lowon this pin enables RD and WR communication between the CPU and the 6259A. 
INTA functions are independent of CS. 

WR 2 0 Write: A low on this pin when CS is low enables the 6259A to accept command words from the CPU. 

RD 3 I Read: A Iowan this pin when CS is low enables the 8259A to release status onto the data bus forthe 
CPU. 

D7-DO 4-11 I/O Bidirectional Data Bus: Control, status and interrupt-vector information is transferred via this bus. 

CASO-CAS2 12,13,15 I/O Cascade Lines: The CAS lines form a private 6259A bus to control a multiple 6259A structure. These 
pins are outputs for a master 6259A and inputs for a slave 6259A. 

SP/EN 16 I/O Slave Program/Enable Buller: This is a dual function pin. When in the Buffered Mode it can be used 
as an output to control buffer transceivers (EN). When not in the buffered mode it is used as an input 
to designate a master (SP = 1) or slave (SP = 0). 

INT 17 0 Interrupt: This pin goes high whenever a valid interrupt request is asserted. It is used to interruptthe 
CPU, thus it is connected to the CPU's interrupt pin. 

IRo-IR7 16-25 I Interrupt Requests: Asynchronous inputs. An interrupt request is executed by raising an IR input 
(low to high), and holding it high until it is acknowledged (Edge Triggered Mode), or just by a high 
level on an IR input (Level Triggered Mode). 

INTA 26 I Interrupt Acknowledge: This pin is used to enable 6259A interrupt-vector data onto the data bus by 
a sequence of interrupt acknowledge pulses issued by the CPU. 

Ao 27 I AO Address Line: This pin acts in conjunction with the CS, WR, and RD pins. It is used by the 6259A 
to decipher various Command Words the CPU writes and status the CPU wishes to read. It is typically 
connected to the CPU AO address line (AI for iAPX 66, 68). 
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FUNCTIONAL DESCRIPTION 

Interrupts in Microcomputer Systems 
Microcomputer system design requires that 1/0 devices 
such as keyboards, displays, sensors and other com· 
ponents receive servicing In an efficient manner so that 
large amounts of the total system tasks can be assumed 
by the microcomputer with little or no effect on through· 
put. 

The most common method of servicing such devices II' 
the Polled approach. This Is where the processor mus, 
test each device in sequence aild In effect "ask" each 
one if It needs servicing. It is easy to see that a large por· 
tion of the main program is looping through this con· 
tinuous polling cycle and that such a method would 
have a serious, detrimental effect on system through· 
put, thus limiting the tasks that could be assumed by 
the microcomputer and reducing the cost effectiveness 
of using such devices. 

A more desirable method would be one that would allow 
the microprocessor to be executing its main program 
and only stop to service peripheral devices when it Is 
told to do so by the device itself. In effect, the method 
would provide an external asynchronous input that 
would inform the processor that It should complete 
whatever instruction that is currently being executed 
and fetch a new routine that will service the requesting 
device. Once this servicing is complete, however, the 
processor would resume exactly where it left off. 

This me\hod is called Interrupt. It is easy to see that 
system throughput would drastically increase, and thus 
more tasks could be assumed by the microcomputer to 
further enhance its cost effectiveness. 

The Programmable Interrupt Controller (PIC) functions 
as an overall manager In an Interrupt·Driven system 
environment. It accepts requests from the peripheral 
equipment, determines which of the Incoming requests 
is of the highest importance (priority), ascertains 
whether the incoming request has a higher priority value 
than the level currently being serviced, and issues an 
interrupt to the CPU based on this determination. 

Each peripheral device or structure usually has a special 
program or "routine" that is associated with its specific 
functional or operational requirements; this is referred 
to as a "service routine". The PIC, after issuing an Inter· 
rupt to the CPU, must somehow Input Information into 
the CPU that can "point" the Program Counter to the 
service routine associated with the requesting device. 
This "pointer" is an address In a vectoring table and will 
often be referred to, In this document, as vectoring data. 

The 8259A 
The 8259A Is a device specifically designed for use in 
real time, interrupt driven microcomputer systems. It 
manages eight levels or requests and has bullt·ln fea· 
tures for expandabllity to other 8259A's (up to 64 levels). 
It is programmed by the system's software as an I/O 
peripheral. A selection of priority modes Is available io 
the programmer so that the manner In which the reo 
quests are processed by the 8259A can be configured to 

match his system requirements. The priority modes can 
be changed or reconfigured dynamically at any time duro 
ing the main program. This means that the complete 
interrupt structure can be defined as required, based on 
the total system environment. 
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Figure 3a. Polled Method 
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INTERRUPT REQUEST REGISTER (IRR) AND 
IN·SERVICE REGISTER (ISR) 

The interrupts at the IR input lines are handled by two 
registers in cascade, the Interrupt Request Register 
(IRR) and the In·Service Register (ISR). The IRR is used 
to store all the interrupt levels which are requesting ser· 
vice; and the ISR is used to store all the interrupt levels 
which are being serviced. 

PRIORITY RESOLVER 

This logic block determines the priorities of the bits set 
in the IRR. The highest priority is selected and strobed 
into the corresponding bit of the ISR during INTA pulse. 

INTERRUPT MASK REGISTER (IMR) 

The IMR stores the bits which mask the interrupt lines 
to be masked. The IMR operates on the IRR. Masking of 
a higher priority input will not affect the interrupt 
request lines of lower priority. 

INT (INTERRUPT) 

This output goes directly to the CPU interrupt input. The 
VOH level on this line is designed to be fully compatible 
with the 8080A, 8085A and 8086 input levels. 

INTA (INTERRUPT ACKNOWLEDGE) 

INTA pulses will cause the 8259A to release vectoring 
information onto the data bus. The format of this data 
depends on the system mode ("PM) of the 8259A. 

DATA BUS BUFFER 

This 3-state, bidirectional 8-bit buffer is used to inter­
face the 8259A to the system Data Bus. Control words 
and status information are transferred through the Data 
Bus Buffer. 

READIWRITE CONTROL LOGIC 

The function of this block is to accept OUTput com­
mands from the CPU. It contains the Initialization Com­
mand Word (ICW) registers and Operation Command 
Word (OCW) registers which store the various control 
formats for device operation. This function block also 
allows the status of the 8259A to be transferred onto the 
Data Bus. 

CS (CHIP SELECT) 

A LOW on this input enables the 8259A. No reading or 
writing of the chip will occur unless the device is 
selected. 

WR (WRITE) 

A LOW on this input enables the CPU to write control 
words (ICWs and OCWs) to the 8259A. 

RD (READ) 

A LOW on this input enables the 8259A to send the 
status of the Interrupt Request Register (IRR), In Service 
Register (ISR), the. Interrupt Mask Register (IMR), or the 
Interrupt level onto the Data Bus. 
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Figure 4a. 8259A Block Diagram 

Figure 4b. 8259A Block Diagram 

Ao 
This input signal is used in conjunction with WR and RD 
signals to write. commands into the various command 
registers, as well as reading the various status registers 
of the chip. This line can be tied directly to one of the ad­
dress lines. 
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THE CASCADE BUFFER/COMPARATOR 

This function block stores and compares the IDs of all 
8259A's used in the system. The associated three 1/0 
pins (CASO-2) are outputs when the 8259A Is used as a 
master and are Inputs when the 8259A is used as a 
slave. As a master, the 8259A sends the ID of the Inter· 
rupting slave device onto the CASO-2 lines. The slave 
thus selected will send Its preprogrammed subroutine 
address onto the Data Bus during the next one or two 
consecutive INTA pulses. (See section "Cascading the 
8259A".) 

INTERRUPT SEQUENCE 

The powerful features of the 8259A in a microcomputer 
system are its programmability and the interrupt routine 
addressing capability. The latter allows direct or Indirect 
jumping to the specific interrupt routine requested 
without any polling of the interrupting devices. The nor· 
mal sequence of events during an interrupt depends on 
the type of CPU being used. 

The events occur as follows in an MCS·80/85 system: 

1. One or more of the INTERRUPT REQUEST lines 
(IR7-0) are raised high, setting the corresponding IRR 
bit(s). 

2. The 8259A evaluates these requests, and sends an 
INT to the CPU, if appropriate. 

3. The CPU acknowledges the INT and responds with an 
INTA pulse. 

4. Upon receiving an INTA from the CPU group, the 
highest priority ISR bit is set, and the corresponding 
IRR bit is reset. The 8259A will also release a CALL in· 
struction code (11001101) onto the 8·bIt Data Bus 
through its D7 -0 pins. 

5. This CALL instruction will initiate two more INTA 
pulses to be sent to the 8259A from the CPU group. 

6. These two INTA pulses allow the 8259A to release its 
preprogrammed subroutine address onto the Data 
Bus. The lower 8·bit address is released at the first 
INTA pulse and and the higher 8·bit address is reo 
leased at the second INTA pulse. 

7. This completes the 3·byte CALL instruction released 
by the 8259A. In the AEOI mode the ISR bit is reset at 
the end of the third INTA pulse. Otherwise, the ISR bit 
remains set until an appropriate EOI command is 
issued at the end of the interrupt sequence. 

The events occurring in an iAPX 86 system are the same 
until step 4. 

4. Upon receiving an INTA from the CPU group, the high· 
est priority ISR bit is set and the corresponding IRR 
bit is reset. The 8259A does not drive the Data Bus 
during this cycle. 

5. The iAPX 86/10 will initiate a second INTA pulse. 
During this pulse, the 8259A releases an 8·bit pointer 
onto the Data Bus where it is read by the CPU. 

6. This completes the interrupt cycle. In the AEOI mode 
the ISR bit is reset at the end of the second INTA 
pulse. Otherwise, the ISR bit remains set until an 
appropriate EOI command is issued at the end of the 
interrupt subroutine. 
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If no interrupt request is present at step 4 of either 
sequence (I.e., the request was too short in duration) the 
8259A will issue an Interrupt level 7. Both the vectoring 
bytes and the CAS lines will look like an Interrupt level 7 
was requested. 

iW 
'" .. OR' 

_IRI 
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Figure 4c. 8259A Block Diagram 
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INTERRUPT SEQUENCE OUTPUTS 
MCS-aO®,MCS-85® 

This sequence is, timed by three INTA pulses. During the 
first INTA pulse the CALL opcode is enabled onto the 
data bus. 

Content of First Interrupt 
Vector Byte 

07 06 05 04 03 02 01 DO 

CALL CODE I 1 0 0 0 1 I 
During the second INTA pulse the lower address of the 
appropriate service routine is enabled onto the data bus. 
When Interval = 4 bits As-A7 are programmed, while Ao­
A4 are automatically inserted by the 8259A. When Inter-

, val = 8 only As and A7 are programmed, while Ao-As are 
automatically inserted. 

IR 

7 

S 

5 

4 

3 

2 

1 

0 

IR 

7 

S 

S 

4 -
3 --
2 

1 
---

0 

07 

A7 

A7 

A7 

A7 

A7 

A7 

A7 

A7 

07 

A7 

A7 

A7 

A7 
--

A7 

A7 

Content of Second Interrupt 
Vector Byte 

Inlerval~4 

06 05 04 03 02 

AS A5 1 1 1 

A6 AS 1 1 0 

AS AS 1 0 1 

A6 AS 1 0 0 

AS AS 0 1 1 ._.-
AS AS 0 1 0 

AS AS 0 0 1 

A6 AS 0 0 0 

Inlerval=8 

06: ' 05 04 03 02 

AS 1 1 1 0 

AS 1 1 0 0 

AS 1 0 1 0 

AS 1 0 0 0 

AS 0 1 1 0 

AS 0 1 0 0 

01 DO 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

01 DO 

0 0 

0 -~ 
0 0 -
0 0 

0 0 
---

0 0 
-------------

A7 A6 - 0 0 1 0 0 0 
-----------------------------
~ AS 0 000 0 0 -----,._--_ .. _-----

During the third INTA pulse the higher address of the 
appropriate service routine, which was programmed as 
byte 2 of the initialization sequence (As - A1s), is 
enabled onto the bus. 

07 06 

AIS I- A14 

Content of Third Interrupt 
Vector Byte 

03 02 

All Al0 

iAPX 86, iAPX 88 

01 DO 

A9 AS 

iAPX 86 mode is similar to MCS-80 mode except that only 
two Interrupt Acknowledge cycles are issued by the pro­
cessor and no CALL opcode is sent to the processor. The 
first interrupt acknowledge cycle is similar to that of 
MCS-80, 85 systems in that the 8259A uses it to internally 
freeze the state of the interrupts for priority resolution and 
as a master it issues the interrupt code on the cascade 
lines at the end of the INTA pulse_ On this first cycle it does 

8-72 

not issue any data to the processor and leaves its data bus 
buffers disabled. On the second interrupt acknowledge 
cycle in iAPX 86 modethe master (or slave if so pro­
grammed) will send a byte of data to the processor with 
the acknowledged interrupt code composed as follows 
(note the state of the ADI mode control is ignored and 
As-A11 are unusediniAPX 86 mode): 

IA7 

lAS 

IA5 

IA4 

IA3 

IA2 

IAI 

lAO 

Content of Interrupt Vector Byte 
for IAPX 86 System Mode 

07 06 05 04 03 02 

T7 TS T5 T4 T3 1 

T7 TS T5 T4 T3 1 

T7 TS T5 T4 T3- 1 

T7 TS T5 T4 T3 1 
T7 TS T5 T4 T3 0 

T7 T6 T5 T4 T3 0 

T7 T6 T5 T4 T3 0 

T7 T6 T5 T4 T3 0 

PROGRAMMING THE 8259A 

01 DO 

1 1 

1 0 

0 1 

0 0 

1 1 

1 0 

0 1 

0 '0 

The 8259A accepts two types of command words gener­
ated by the CPU: 

1. Initialization Command Words (JCWs): Before normal 
operation can begin, each 8259A in the system must 
be brought to a starting point - by a sequence of 2 to 
4 bytes timed by WR pulses. . 

2. Operation Command Words (OCWs): These are the 
command words which command the 8259A to oper­
ate in various interrupt modes. These modes are: 

a. Fully nested mode 
b. Rotating priority mode 
c. Special mask mode 
d. Polled mode 

The OCWs can be written into the 8259A anytime after 
Initialization. 

INITIALIZATION COMMAND WORDS 
(ICWS) 
GENERAL 

Whenever a command is issued with AO = 0 and 04 = 1, 
this is interpreted as Initialization Command Word 1 
(ICW1). ICW1 starts the initialization sequence during 
which the following automatically occur. 

a. The edge sense circuit is reset, which means that fol­
lowing initialization, an interrupt request (IR) input 
must make a low-to-high transition to generate an 
interrupt. 

b. The Interrupt Mask Register is cleared. 
c. IR7 input is assigned priority 7. 
d. The slave mode address is set to 7. 
e. Special Mask Mode is cleared and Status Read is set to 

IRR. 
f. If IC4=O, then all functions selected in ICW4 are set to 

zero. (Non-Buffered mode", no Auto-EOI, MCS-80, 85 
system). 

"Nole: Masler/Slave In ICW4 is only used in the buffered mode. 
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INITIALIZATION COMMAND WORDS 1 AND 2 
(ICW1,ICW2) 

A5-A15: Page starting address of service routines. In an 
MCS 80/85 system, the 8 request levels will generate 
CALLs to 8 locations equally spaced in memory. These 
can be programmed to be spaced at intervals of 4 or 8 
memory locations, thus the 8 routines will occupy a 
page of 32 or 64 bytes, respectively. 

The address format is 2 bytes long (Ao-A15). When the 
routine interval is 4, Ao-A4 are automatically inserted by 
the 8259A, while A5-A15 are programmed externally. 
When the routine Interval Is 8, Ao-A5 are automatically 
inserted by the 8259A, while As-A15 are programmed 
externally. 

The 8·byte interval will maintain compatibility with cur· 
rent software, while the 4·byte Interval is best for II com· 
pact jump table. 

In an iAPX 86 system A15-A11 are inserted in the five most 
significant bits of the vectoring byte and the 8259A sets 
the three least significant bits according to the interrupt 
level. A10-A5 are ignored and ADI (Address interval) has 
no effe9t. 

LTIM: If LTIM=1, then the 8259A will operate In the 
level Interrupt mode. Edge detect logic on the 
Interrupt Inputs will be disabled. 

ADI: CALL address Interval. ADI = 1 then Interval = 4; 
ADI = 0 then Interval = 8. . 

SNGL: Single. Means that this Is the only 8259A In the 
system. If SNGL= 1 no ICW3 will be Issued. 

IC4: If this bit Is set - ICW4 has to be read. If ICW4 
Is not needed, set IC4 = O. 

NO ISINGL '" 1) 

NO (1C4 = 0) 

INITIALIZATION COMMAND WORD 3 (lCW3) 

This word is read only when there is more than one 
8259A In the system and cascading is used, in which 
case SNGL= O. It will load the 8·bit slave register. The 
functions of this register are: 

a. In the master mode (either when SP = 1, or in buffered 
mode when M/S= 1 in ICW4) a "1" is set for each 
slave in the system. The master then will release byte 
1 of the call sequence (for MCS-80/85 system) and 
will enable the corresponding slave to release bytes.2 
and 3 (for iAPX 86 only byte 2) through the cascade 
lines. 

b.ln the slave mode (either when SP=O, or If BUF= 1 
and MIS = 0 in ICW4) bits 2-0 identify the slave. The 
slave compares its cascade Input with these bits and, 
If they are equal, bytes 2 and 3 of the call sequence (or 
just byte 2 for iAPX 86 are released by it on the Data 
Bus. 

INITIALIZATION COMMAND WORD 4 (lCW4) 

SFNM: If SFNM = 1 the special fully nested mode Is 
programmed. 

BUF: If BUF = 1 the buffered mode Is programmed. In 
buffered mode SP/EN becomes an enable outplA 
and the mastfilrlslave determination Is by MIS. 

MIS: If buffered mode Is selected: MIS = 1 means the 
8259A Is programmed to be a master, MIS = 0 
means the 8259A Is programmed to be a slave. If 
BUF = 0, MIS has no function. 

AEOI: If AEOI =·1 the automatic end of Interrupt mode 
Is programmed. 

"PM: Microprocessor mode: p,PM = 0 sets the 8259A for 
MCS-80, 85 system operation, p,PM = 1 sets the 
8259A for iAPX 86 system operation. 

Figure 6_ Initialization Sequence 

8-73 AFN'()0221C 



A, 0, 

.. 0, D. 

8259A!8259A-2/8259A-8 

lew, 

lew, 
D. 

tatllMASTER DEVICE) 

ICW31SLAVE DEVICE) 

'" D. 0, U, 0, 0, 

1 lewe NEEDED 
0: NO ICW" NEEDED 

1 = SINGLE 
o ;; CASCADE MODE 

CAll AL'ORESS INTERVAL 
1" INTERVAL OF .. 
O· INTERVAL OF 8 

1, = LEvEL TRIGGERED MODE 
o = EDGE TRIGGEAED MODE 

A7-AS 01 INTERRUPT 
VECTOR ADDRESS 

(MeS-BO/BS MODE ONLY) 

A'5-Aa OF INTERRUPT 
VECTOR ADDRESS 

(MCSaD/55 MODE) 
T 7-T 3 OF INTERRUPT 
VECTOR ADDRESS 

(808618088 MODE) 

1 = IR INPUT HAS A SLAVE 
0" IR INPUT OOES NOT HAVE 

A SLAVE 

I ' I 0 I 0 I 0 I 0 I 0 1'0, lID, 11D,j 

NOTE 1: SLAVE 10 IS EQUAL TO THE CORRESPONDING 
MASTER IR INPUT. 

SLAVE 10111 

o , , 3 • • • 7 

o , 0 , 0 , 0 , 

o 0 , , 0 0 , , 
o 0 0 o , , , , 

1 = B08618088 MODE 
0= Mes-aOl55 MODE 

1 AUTO EOI 
0= NORMAl. EOI 

~x . NON BUFFERED MODE 
,-- 0 - BUFFERED MODEfSlAVE 
1 1 - BUFFERED MODE/MASTER 

1 = SPECIAL FUllY NESTED 

L-________ +j 0 ;; ~g~~PECIAL FULLY 

NESTED MODE 

Figure 7. Initialization Command Word Forma~ 
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OPERATION COMMAND WORDS (OCWs) 
After the Initialization Command Words (ICWs) are pro­
grammed Into the 8259A, the chip Is ready to accept 
Interrupt requests at Its Input lines. However, during the 
8259A operation, a selection of algorithms can com­
mand the 8259A to operate In various modes through 
the Operation Command Words (OCWs). 

OPERATION CONTROL WORDS (OCWs) 

OCWl 

AO 07 06 05 04 03 02 01 DO 

[i] I M7 M6 M5 M4 M3 M2 Ml MO I 

OCW2 

0 I A SL EOI 0 0 L2 Ll LO I 

OCW3 

0 0 ESMM SMM 0 P AA AIS I 
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OPERATION CONTROL WORD 1 (OCW1) 

OCW1 sets and clears the mask bits in the interrupt 
Mask Register (lMR). M7 - Mo represent the eight mask 
bits. M = 1 indicates the channel is masked 
(inhibited), M = 0 indicates the channel is enabled. 

OPERATION CONTROL WORD 2 (OCW2) 

R, SL, EOI - These three bits control the Rotate and 
End of Interrupt modes and combinations of the two. A 
chart of these combinations can be found on the Opera­
tion Command Word Format. 

L2 , L1 , Lo-These bits determine the interrupt level acted 
upon when the SL bit is active. 

OPERATION CONTROL WORD 3 (OCW3) 

ESMM - Enable Special Mask Mode. When this bit is 
set to 1 it enables the SMM bit to set or reset the Special 
Mask Mode. When ESMM = 0 the SMM bit becomes a 
"don't care". 

SMM - Special Mask Mode. If ESMM = 1 and SMM = 1 
the 8259A will enter Special Mask Mode. If ESMM = 1 
and SMM = 0 the 8259A will revert to normal mask mode. 
When ESMM = 0, SMM has no effect. 
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ocw, 

OCW2 

AO Ol D, Os 04 D3 ~ D, Do 

I • "I ILI'O'I· I· I L,I L·I Lol 

I 
IRLEVELTOBE 
ACTED UPON 

• , 2 • 4 5 • 7 

• , • , • , • , 
• • , , • • , , 
• • • • , , , , 

l r 
rt • .f NON-SPECIFIC EOICOllMAND l END OF INTERRUPT .fff-i" SPECIFIC EOI eoMMANO ,fci"f-i" AOTATI! ON NON-SPECIFIC EOI COMMAND } • rut-; ROTATE IN AU1"OMATIC EOI MODE (SETl . AIITOIlATlCROTATlON 

.1i'1-1r AOTArI! IN AUTOMATIC ,EOI MODE (CLEAR) ,I-TI-T "ROTATE ON SPECIFIC EOI COMMAND l ~~~ "SET PRIORITY COMMAND 
SPEClFJC ROTATION 

~:...!..!.2. NOO~ON 

"LO-L2 AfIE USED 

OOW. 

At. 0 7Da'?s D.Dl D2 D, Do 

I · I 0 IESMMI SMM I • I ' I p I RR I "IS I 

I Lf. READ REGISTER COMMAND 

• I , • , 
• I • , , 

READ READ 

NO ACTION IR REG ISREG 
~N£:,(T ON NEXT 
RDPULSE RDPULSE 

, .. POLL COMMAND 
a-NO POLL COMMAND 

SPECIAL MASK MODE 

• I , • , 
• I • , , 

RESET SET 
NO ACTION SPECIAL SPECIAL MASk MASK 

Figure 8. Operation Command Word Format 
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FULLY NESTED MODE 

This mode is entered after initialization unless another 
mode is programmed. The interrupt requests are 
ordered in priority form 0 through 7 (0 highest). When an 
interrupt Is acknowledged the highest priority request is 
determined and Its vector placed on the bus. Additional­
ly, a bit of the Interrupt Service register (ISO-7) is set. 
This bit remains set until the microprocessor issues an 
End of Interrupt (EOI) command immediately before 
returning from the service routine, or if AEOI (Automatic 
End of Interrupt) bit is set, until the trailing edge of the 
last INTA. While the IS bit is set, all further interrupts of 
the same or lower priority are inhibited, while higher 
levels will generate an interrupt (which will be 
acknowledged only If the microprocessor internal Inter­
rupt enable flip·flop has been re-enabled through soft­
ware). 

After the Initialization sequence, IRO has the hlgnesl 
priority and IR7 the lowest. Priorities can be changed, as 
will be explained, In the rotating priority mode. 

END OF INTERRUPT (EOI) 

The In Service (IS) bit can be reset either automatically 
following the trailing edge of the last in sequence INTA 
pulse (when ~EOI bit in ICW1 is set) or by a command 
word that must be Issued to the 8259A before returning 
from a service routine (EOI command). An EOI command 
must be issued twice if in the Cascade mode, once forthe 
master and once for the corresponding slave. 

There are two forms of EOI commalld: Specific and Non· 
Specific. When the 8259A is operated in modes which 
preserve the fully nested structure, it can determine 
which IS bit to reset on EOI. When a Non·Speclflc EOI 
command is issued the 8259A will automatically reset 
the highest IS bit of those that are set, Since in the 
fully nested mode the highest IS level was necessarily the 
last level acknowledged and serviced. A non-specific EOI 
can be issued with OCW2 (EOI = 1, SL = 0, R = 0). 

When a mode is used which may disturb the fully nested 
structure, the 8259A may no longer be able to determine 
the last levei acknowledged. In this case a Specific End of 
Interrupt must be issued which includes as part of the 
command the IS level to be reset. A specific EOI can be is­
sued with OCW2 (EOI = 1, SL = 1, R = 0, and LO-L2 is the 
binary level of the IS bit to be reset). 

It should be noted that an IS bit that is masked by an 
IMR bit will not be cleared by a non·specific EOI if the 
8259A is In the Special Mask Mode. 

AUTOMATIC END OF INTERRUPT (AEOI) MODE 

If AEOI = 1 In ICW4, thenthe 8259A will operate in AEOI 
mode continuously until reprogrammed by ICW4. In this 
mode. the 8259A will automatically perform a non­
specific EOI operation at the trailing edge of the last 
interrupt acknowledge pulse (third pulse in MCS·80/85, 
second in iAPX 86). Note that from a system standpoint, 
this mode should be used only when a nested multilevel 
interrupt structure is not required within a single 8259A. 

The AEOI mode can only be used in a master 8259A and 
not a slave. 
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AUTOMATIC ROTATION 
(Equal Priority Devices) 

In some applications there are a number of Interrupting 
devices of equal priority. In this mode a device, after 
being serviced, receives the lowest priority, so a device 
requesting an Interrupt will have to walt, In the worst 
case until each of 7 other devices are serviced at most 
once. For example, If the priority and "In service" status 
Is: 

Before Rotate (IR4 the highest priority requiring service) 

157 lSI 1&5 164 153 152 151 ISO 

"IS" Status 101 , 101,010101 0 1 

Priority Status 

Low •• t Priority Hlgh"~rlOrlt' 

I 716 I 5 I 4 I 3 I 2 I 1]'0 I 

After Rotate (lR4 was serviced, all other priorities 
rotated correspondingly) 

IS7 lSI IS5 164 153 IS2 151 ISO 

"IS" Status 10 1, 1010101010101 

Priority Status 

Hlgh •• t Prtorlt, Low •• t Prlortt, 

I 2 I 110 I 7f'a-rD 4 I 3 1 

There are two ways to accomplish Automatic Rotation 
using OCW2, the Rotation on Non-Specific EOI Command 
(R = 1, SL = 0, EOI = 1) and the Rotate in Automatic EOI 
Mode which is set by (R = 1, SL = 0, EOI = 0) and cleared 
by (R = 0, SL = 0, EOI = 0). 

SPECIFIC ROTATION 
(Specific Priority) 

The programmer can change priorities by programming 
the bottom priority and thus fixing all other priorities; 
i.e., if IR5 is programmed as the bottom priority device, 
then IR6 will have the highest one. 

The Set Priority command is issued in OCW2 where: 
R = 1, SL = 1; LO-L2 isthe binary priority level codeofthe 
bottom priority device. 

Observe thaUn this mode internai status is updated by 
software control during OCW2. However, it is independent 
of the End of Interrupt (EOI) command (also executed by 
OCW2). Priority changes can be executed during an EOI 
command by using the Rotate on Specific EOI command 
in OCW2 (R = 1, SL = 1, EOI = 1 and LO-L2 = IR level to 
receive bottom priority). 

INTERRUPT MASKS 

Each Interrupt Request Input can be masked Individu­
ally by the Interrupt Mask Register (lMR) programmed 
through OCW1. Each bit In the IMR masks one Interrupt 
channel If It Is set (1). Bit 0 masks IRO, Bit 1 masks IR1 
and so forth. Masking an IR channel does not affect the 
other channels operation. 

AF~1C 
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SPECIAL MASK MODE 

Some applications may require an interrupt service 
routine to dynamically alter the system priority struc· 
ture during its execution under software control. For 
example, the routine may wish to Inhibit lower priority 
requests for a portion of its execution but enable some 
of them for another portion. . 

The difficulty here is that if an Interrupt Request is 
acknowledged and an End of Interrupt command did not 
reset its IS bit (i.e., while executing a service routine), 
the 8259A would have Inhibited all lower priority 
requests with no easy way for the routine to enable 
them 

That is where the Special Mask Mode comes In. In the 
special Mask Mode, when a mask bit is set in OCW1, it 
inhibits further interrupts at that level and enables inter· 
rupts from a/l other levels (lower as well as higher) that 
are not masked. 

Thus, any interrupts may be selectively enabled by 
loading the mask register. 

The special Mask Mode is set by OCW3 where: 
SSMM=1, SMM=1, and cleared where SSMM=1, 
SMM=O. 

POLL COMMAND 

In this mode the INT output is not used or the micropro­
cessor internal Interrupt Enable flip-flop is reset, disabling 
its interrupt input. Service to devices is achieved by 
software using a Poll command. 

The Poll command is Issued by setting P = "1" in OCW3. 
The 8259A treats the next RD pulse to the 8259A (i.e., 
RD = 0, OS = 0) as an interrupt acknowledge, sets the 
appropriate IS bit if there is a reque~ and~ads the 
priority level. Interrupt is frozen from WR to RD. 

The word enabled onto the data bus during Rl5 is: 

07 08 05 04 03 02 01 DO 

I I W2 W1 wol 
WO-W2: Binary code of the highest priority level 

requesting service. 
I: Equal to a "1" if there is an interrupt. 

This mode is useful if there is a routine command com· 
mon to several levels so that the INiA sequence is not 
needed (saves ROM space). Another application is to 
use the poll mode to expand the number of priority 
levels to more than 64. 

lTtM 81T 
0", EDGE 
1 :.lEVEl 

TO OTHER ,."'OATY CElL.S 

MOOE 1 

EDGE 
SENSE 

CLIII I,ft 

eLA Q ISAIIT 

SET 

~LA~T:=;CH~+-__ -l-___ +_-1-__ ..(~r-ttt----::=!:::::::-t1 SET ISA 

" --+-11>~+----~ 
NON 
MASKED 
.EO 

!'AIORIn 
AESOL~ER 

CONHIOL 
lOGIC 

MC8-80,85 f /linLJ. 
f'lIlU[ INTERNAL 

'-+--~ ___ -+++--4~ __ -+ ____ o.r .... BUS 

IAPX 86 
MOOE 

I~ 
{ 

INTAn 

FREEZE, r-----
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1. MA'TER CLEAR .... CTlVE ONLY DURING ICW' 
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c I 0 
1 Oi 
• X 

OPE ..... TION 

FOLLOW 
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Figure 9. Priority Cell-Simplified Logic Diagram 
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READING THE 8259A STATUS 

The input status of several internal registers can be read to 
update the user information on the system. The following 
registers can be read via OCW3 (IRR and ISR or OCW1 
[IMRl). 

Interrupt Request Register (IRR): 8-bit register which con­
tains the levels requesting an interrupt to be acknowl­
edged. The highest request level is reset from the IRR 
when an interrupt is acknowledged. (Not affected by IMR.) 

In-Service Register(lSR): 8-bit register which contains the 
priority levels that are being serviced. The ISR is updated 
when an End of Interrupt Command is issued. 

Interrupt Mask Register: 8-bit register which contains the 
interrupt request lines which are masked. 

The IRR can be read when, prior to the RD pulse, a Read 
Register Command is issued with OCW3 (RR = 1, RIS = 0.) 

The ISR can be read when, prior to the RD pulse, a Read 
Register Command is issued with OCW3 (RR = 1, RIS = 1). 

There is no need to write an OCW3 before every status 
read operation, as long as the status read corresponds 
with the previous one; i.e., the 8259A "remembers" 
whether the IRR or ISR has been previously selected by 
the OCW3. This is not true when poll is used. 

After initialization the 8259A is set to IRR. 

For reading the IMR, no OCW3 is needed. The output data 
bus will contain the IMR whenever RD is active and AO =1 
(OCW1). 

Polling overrides status read when P = 1, RR = 1 in OCW3. 

IR 

INT ------l-..J 

INTA -----+------"""' 

LATCH' 
ARMED 

EARliEST IR 
CAN BE REMOVED 

EDGE AND LEVEL TRIGGERED MODES 

This mode is programmed using bit 3 in ICW1. 

If L TIM = '0', an interrupt request will be recognized by a 
low to high transition on an IR input. The IR input can re­
main high without generating another interrupt. 

If LTIM = '1', an interrupt request will be recognized bya 
'high' level on IR Input, and there is no need for an edge 
detection. The interrupt request must be removed before 
the EOI command is issued orthe CPU interrupt is enabled 
to prevent a second interrupt from occurring. 

The priority cell diagram shows a conceptual circuit of the 
level sensitive and edge sensitive input circuitry of the 
8259A. Be sure to note that the request latch is a transpar­
ent D type latch. 

In both the edge and level triggered modes the IR inputs 
must remain high until after the falling edge of the first 
INTA. If the IR input goes low before this time a DEFAULT 
IR7 will occur when the CPU acknowledges the interrupt. 
This can be a useful safeguard for detecting interrupts 
caused by spurious noise glitches on the IR inputs. To im­
plement this feature the IR7 routine is used for "clean up" 
simply executing a return instruction, thus ignoring the 
interrupt. If IR7 is needed for other purposes a default IR7 
can still be detected by reading the ISR. A normal IR7 
interrupt will set the corresponding ISR bit, a default IR7 
won't. If a default IR7 routine occurs during a normallR7 
routine, however, the ISR will remain set. In this case it is 
necessary to keep track of whether or not the IR7 routine 
was previously entered. If another IR7 occurs it is a 
default. 

8086/8088 8080/8085 

8086/8088 

8080/8085 

'EDGE TRIGGERED MODE ONLY 
LATCH' 
ARMED 

Figure 10. IR Triggering Timing Requirements 
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THE SPECIAL FULLY NESTED MODE 

This mode will be used In the case of a big system 
where cascading is used, and the priority has to be con· 
served within each slave. In this case the fully nested 
mode will be programmed to the master (using ICW4). 
This mode is similar to the normal nested mode with the 
following exceptions: 

a. When an interrupt request from a certain slave is in 
service this s'lave is not locked out from the master's 
priority logic and further interrupt requests from 
higher prloriiy IR's within the slave will be recognized 
by the master and will initiate interrupts to the proc­
essor. (In the normal nested mode a slave is masked 
out when Its request is in service and no higher 
requests from the same slave can be serviced.) 

b. When exiting the. Interrupt Service routine the soft­
ware has to check whether the interrupt serviced was 
the only onefr()m that slave. This is done by sending 
a non-specific End of Interrupt (EOI) command to the 
slave and then. reading its In-Servic'e register and 
checking 'or zero. If it is empty, a non-specific' EOI 
can be sent to the master too. If not, no EOI should be 

.sent. 

BUFFERED MODE 

When the 8259A .15 used In a large system where bus 
driving buffers are required on the data bus and the cas­
cading mode Is used, there exists the problem of enabl­
Ing buffers. 

The buffered mode will structure the 8259A to send an 
enable signal on SP/EN to enable the buffers. In this 

mode, whenever the 8259A's .data bus outputs are ena­
bled, the SP/EN output becomes active. 

This modification forces the use of software program­
ming to determine whether the 8259A is. a master or a 
slave. Bit 3 in ICW4 programs the buffered mode, and bit 
2 In ICW4 determine.s whether it is a master or a slave. 

CASCADE MODE 
The 8259A can be easily interconnected in a system of one 
master with up to eight slaves to handle up to 64 priority 
levels. 

The master controls the slaves through the 31ine cascade 
bus .. The cascade bus acts like chip selects to the slaves 
during the INTA sequence. 

In a cascade configuration, the slave interrupt outputs are 
connected to the master interrupt request inputs. When a 
slave request line is activated and afterwards acknowl­
edged, the master will enable the corresponding slave to 
release the device routine address during bytes 2 and 3 of 
INTA. (Byte 2 only for 8086/8088). 

The cascade bus lines are normally. low and will contain 
the slave address code from the trailing edge of the first 
INTA pulse to the. trailing edge of the .third pulse. Each 
8259A in the system mustfollow a separate initialization 
sequence and can be programmed to work in a different 
mode. An EOI command must be issued twice: once for 
the master and once for the corresponding slave. An 
address decoder is required to activate the Chip Select 
(CS) input of each 8259A. . .. 

The cascade lines of the Master 8259A are activated only 
for slave inputs, non slave inputs leave the cascade line 
inactive (low). 

\ ADDRESS BUS 06J 

\ CONTROL BUS \ 
INT REO 

\ DATA BuS !81 \ 

-- - - - - --- - -
-- -- - - - -- - - - -
--I- - -- -- - -- - - ~ 

r---' I I 7 
cs ... 00-7 tNTA !NT cs "0 00·7 INTA IN' cs "0 00-7 INTA INT 

CASO CASO CASO 

8259A CAS 1 ,.... 8259A 6259A 

SLAVE A r- SLAVE B CAS 1 CAS 1 MASTER 

III 
CAS2 CAS 2 

SPIEN7 6 5 • 3 2 SP/EN7 6 5 4 3 2 1 0 SPIENM7 M6 M5 M4 M3 M2 Ml MO 

G!O I I 1 I I I GIo I 1 1 1 Ill! L 1, t 1 1 31 1 1 
7 6 5 • 3 2 1 6 5 4 3 2 , 0 • • 1 0 

I I 
r 

INTERRUPT REOUESTS 

Figure 11_ Cascading the 8259A 
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ABSOLUTE MAXIMUM RATINGS* 
Ambient Temperature Under Bias ...... -40·Ct085·C 
Storage Temperature ......•...•... -65·Cto +150·C 
Voltage on Any Pin 

with Respect to Ground ............. -0.5V to + 7V 
Power Dissipation .........•................ 1 Watt 

'NOTICE: Stresses above those listed under "Absolute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above 
those indicated in the operational sections of this specifi­
cation is not implied. 

D.C. CHARACTERISTICS [TA = o·c to 70·C, Vee = 5V ±10% (8259-A), Vee = 5V ±10% (B259A)] 

Symbol Parameter Min. Max. Units Test Con\iitions 

VIL Input Low Voltage -0.5 0.8 V 

VIH Input High Voltage 2.0 Vee+0.5V V 

VOL Output High Voltage 0.45 V IOL = 2.2mA 

VOH Output High Voltage 2.4 V IOH - -400/LA 

Interrupt Output High 3.5 V IOH = -100/LA 
VOH(lNT) Voltage 2.4 V . IOH - -400/LA 

III Input Load Current 10 /LA OV,,;;VIN ,,;;Vee 

ILOL Output Leakage Current -10 /LA 0.45V ,,;;VOUT ,,;;Vee 

lee Vee Supply Current 85 rnA 

-300 /LA VIN = 0 
ILiR IR Input Load Current 

10 /LA VIN = Vee 

CAPACITANCE (TA = 25·C; vee = GND = OV) 

Symbol Parameter Min. Typ. Max. Unit Test Conditions 

C'N Input Capacitance 10 pF fc=lMHz 

ClIO 110 Capacitance 20 pF Unmeasured pins returned to Vss 

AC. CHARACTERISTICS [TA = O·Cto 70·C, Vee = 5V ±5% (8259A-8), vee = 5V ±10% (8259A)] 

. TIMING REQUIREMENTS 

Symbol Parameter 
8259A·8 8259A 8259A·2 Units Test Conditions 

Min. Max. Min. Max. Min. Max. 

TAHRL AO/CS Setup to RD/INTAI 50 0 0 ns 

TRHAX AO/CS Hold after RDIINTAr 5 0 0 ns 

TRLRH RD Pulse Width 420 235 160 ns 

TAHWL AO/CS Setup to WRI 50 0 0 ns 

TWHAX AO/CS Hold after WRr 20 0 0 ns 

TWLWH WR Pulse Width 400 290 190 ns 

TDVWH Data Setup to WRr 300 240 160 ns 

TWHDX Data Hold after WRr 40 0 0 ns I 
TJLJH Interrupt Request Width (Low) 100 100 100 ns See Note 1 

TCVIAL 
Cascade Setup to Second or Third 

55 55 40 ns 
INTAI (Slave Only) 

TRHRL End of RD to Next Command 160 160 160 ns 

TWHRL cnd of WR to Next Command 190 190 190 ns 

Note: Th,s ,s the low t,me reqUired to clear the ,nput latch ,n the edge triggered Mode. 

8-81 AFN·00221C 



inter 8259A/8259A-2/8259A-8 

A.C. CHARACTERISTICS (Continued) 

TIMING RESPONSES 

Symbol Parameter 
8259A-8 

Min. Max. 

TRLDV Dala Valid from RD/INTAj 300 

TRHDZ Dala Floal after RD/INTAT 10 200 

TJHIH Interrupt Output Delay 400 

TIALCV Cascade Valid from FirstlNTAj 
565 

(Master Only) 

TRLEL Enable Active from RD j or INTAj 160 

TRHEH Enable Inactive from RDT or INTAT 325 

TAHDV Data Valid from Stable Address 350 

TCVDV Cascade Valid to Valid Data 300 

A.C. TESTING INPUT, OUTPUT WAVEFORM 

INPUT/OUTPUT 

"=X )C 2.0 2.0 . > TEST POINTS < 
0.8 0.8 

0.45 

A.C. TESTING: INPUTS ARE DRIVEN AT 2.4V FOR A LOGIC .",. AND 0.45V FDA 
A LOGIC "0," TIMING MEASUREMENTS ARE MADE AT 2.0V FOR A LOGIC r 
AND C.SV FOR A LOGIC "0 " 

WAVEFORMS 

WRITE 

cs 
ADDRESS 

DATA IUS 

IUS 

\ 
- TAHWL -
) 

8259A 8259A-2 
Units Test Conditions 

Min. Max. Min. Max. 

200 120 ns C 01 Dala Bus = 
100pF 

100 85 ns C of Dala Bus 

350 300 ns 
Max text C = 100 pF 
Min. test C = 15 pF 

565 360 ns C'NT = 100 pF 

125 100 ns CCASCADE = 100 pF 

150 150 ns 

200 200 ns 

300 200 ns 

A.C. TESTING LOAD CIRCUIT 

DEVICE 
UNDER 

lcL~100PF TEST 

-= 
CL= 100pF 
CL INCLUDES JIG CAPACITANCE 

TWLWH 

- TWHAX -
J~ 

-TDVWH- -TWHDX 

) ( 
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WAVEFORMS (Continued) 

READ/INTA 

iiiMNTA --------" t-----TRLRH------t •• _---------

TIILEL 

TRHAX 

a-----""""'\ 
ADDIIESS BUS 

Ao--------' 

N"_-------------~~~l ..... ________ ..J} ------

OTHER TIMING 
IIDIJRn-----'" 

1----TWHAl---_1 

INTA SEQUENCE 

IA 

INT-------' 

INTA------------~ 

D8-----------__ -- -0--
_TCVIAL 

TCYDY 

CO.2-_________ ~---~----L--~~-------~--

- TlALCV--.--

NOTES: Interrupt output must remain HIGH at least until leading edge of first INTA. 
1. Cycle 1 in iAPX 86, iAPX 88 systems, the Data Bus is not active. 
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8282/8283 
OCTAL LATCH 

• Address Latch for iAPX 86, 88, 
MCS·80®, MCS·85®, MCS·48® Families 

• 3·State Outputs 

• High Output Drive Capability for 
Driving System Data Bus .20·Pin Package with 0.3" Center 

• Fully Parallel 8·Bit Data Register and 
Buffer 

• Transparent during Active Strobe 
• No Output Low Noise when Entering 

or Leaving High Impedance State 

The 8282 and 8283 are 8-bit bipolar latches with 3-state output buffers_ They can be used to Implement latches, buffers 
or multiplexers. The 8283 inverts the input data at its outputs while the 8282 does not. Thus, all of the principal perl ph 
eral and input/output functions of a microcomputer system can be implemented with these devices. 

-------; ~.­
OI5-~ 

~F DO, 

E}~ l_______ ~ 

Figure 1. Logic Diagrams 
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013 4 
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015 6 

016 7 

01 7 8 

OE 9 

Figure 2. Pin Configurations 



inter 

Pin 

STB 

OE 

010-017 

000-007 
(8282) 

000'-007 
(8283) 

8282/8283 

Table 1. Pin Description 

Description 

STROBE (Input). STB Is an input control 
pulse used to strobe data at the data input 
pins (Ao-A7) into the data latches. This 
signal is active HIGH to admit input data. 
The data Is latched at the HlGH to LOW 
transition of STB. 

OUTPUT ENABLE (Input). OE Is an input 
control signal which when active LOW 
enables the contents of the data latches 
onto the data output pin (Bo-B7)' OE being 
Inactive HIGH forces the output buffers to 
their high impedance state. 

DATA INPUT PINS (Input). Data presented 
at these pins satisfying setup time re-
quirements when STB is strobed and 
latched into the data input latches. 

DATA OUTPUT PINS (Output). When OE is 
true, the data In the data latches is pre-
sented as Inverted (8283) or non-Inverted 
(8282) data onto the data output pins. 

FUNCTIONAL DESCRIPTION 

The 8282 and 8283 octal latches are 8·bit latches with 
3-state output buffers. Data havi ng satisfied the setup 
time requirements is latched into the data latches by 
strobing the STS line HIGH to LOW. Holding the STe 
line in its active HIGH state makes the latches appear 
transparent. Data Is presented to the data output pins by 
activating the OE input line. When OE is Inactive HIGH 
the output buffers are In their high impedance state. 
Enabling or disabling the output buffers will not cause 
negative-going transients to appear on the data output 
bus. 
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ABSOLUTE MAXIMUM RATINGS· 

Temperature Under Bias ................. 0 DC to 70 DC 
Storage Temperature ............. -65 DC to + 150DC 
All Output and Supply Voltages ........ - 0.5V to + 7V 
All Input Voltages ................ , . - 1.0V to + 5.5V 
Power Dissipation .......................... 1 Watt 

-NOTICE: Stresses above those lIsted under "Absolute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above 
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum 
rating conditions for extended periods may affect device 
reliability. 

D_C. CHARACTERISTICS (Vee = 5V ±10%, TA = O°C to 70°C) 

Symbol Parameter Min. Max. Units Test Conditions 

Vc Input Clamp Voltage -1 V Ie = -5mA 

Icc Power Supply Current 160 mA 

IF Forward Input Current -0.2 mA VF = 0.45V 

IR Reverse Input Current 50 ,..A VR = 5.25V 

VOL Output Low Voltage .45 V IOL = 32 mA 

VOH Output High Voltage 2.4 V IOH = -5 mA 

IOFF Output Off Current ± 50 ,..A VOFF = 0.45 to 5.25V 

VIL Input Low Voltage O.B V Vee= 5.0V See Note t 

VIH Input High Voltage 2.0 V Vee= 5.0V See Note 1 

F= 1 MHz 
CIN Input Capacitance 12 pF VSIAS =2.5V, Vee=5V 

TA=25°C 

NOTE: 
1. Output Loading IOL=32mA, 10H= -5mA, eL=300pF. 

A.C. CHARACTERISTICS (Vee = 5V ±10%, TA = O°C to 70°C 
Loading: Outputs -IOL = 32 mA, IOH = -5 mA, CL = 300 pF) 

Symbol Parameter Min. Max. Units Test Conditions 

TIVOV Input to Output Delay (See Note 1) 
-Inverting 5 22 ns 
-Non-Inverting 5 30 ns 

TSHOV STB to Output Delay 
-Inverting 10 40 ns 
-Non-Inverting 10 45 ns 

TEHOZ Output Disable Time 5 18 ns 

TELOV Output Enable Time 10 30 ns 

TIVSL Input to STB Setup Time 0 ns 

TSLIX Input to STB Hold Time 25 ns 

TSHSL STB High Time 15 ns 

TILlH, TOLOH Input, Output Rise Time 20 ns From O.BV tq 2.0V 

TIHIL, TOHOL Input, Output Fall Time 12 ns From 2.0V to O.BV 

NOTE: 
1. See waveforms and test load circuit on following page. 
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A.C. TESTING INPUT, OUTPUT WAVEFORM 

INPUTIOUTPUT 

A.C. TESTING: INPUTS ARE DRIVEN AT 2.4V FOR A LOGIC . .,.. AND 0.45V FOR 
A LOGIC ··0:· TIMING MEASUREMENTS ARE MADE AT 1.5V FOR BOTH A 
LOGIC .,',. AND "0:' 

OUTPUT TEST LOAD CIRCUITS 

1.5V 

3312 

OUT 0-----

I300PF 

3-STATE TO VOL 

1.SV 

18012 

OUT 0-----

I 300PF 

3-STATE TO VOH 

B-87 

2.14V 

52.712 

OUT 0--

SWITCHING 

AFN.(J()727C 



inter 8282/8283 

WAVEFORMS 

INPUTS 
\11 \11 
/1\ )1\ 
!---TlVSL-I*TSLIX. 

,I \ 
-.l TSHSL~I\ 

STB 

II \ 
... . .. / f\ -

I*TlVOV- -'~~I- m~-E VOH-.1V . .. . 

\V 1>-------
~f\ 

SEE NOTE 1 
VOL +.1V 

OUTPUTS 

-TSHOV-

NOTE: 1.8283 ONLY - OUTPUT MAY BE MOMENTARILY INVALID FOLLOWING THE HIGH GOING STB TRANSITION. 

2. ALL TIMING MEASUREMENTS ARE MADE AT 1.5V UNLESS OTHERWISE NOTED. 

&l 
<II 

Z 

5 
w 
Q 

50 

8282 

10 

pF LOAD 

50 

8283 

40 

&l 
<II 

Z 

5 
Q 

pF LOAD 

Output Delay VI. Capacitance 
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18282/8283 
OCTAL LATCH 

INDUSTRIAL 

• Fully Parallel 8·Bit Data Register and 
Buffer 

• Transparent during Active Strobe 

• Address Latch for iAPX 86, 88, 
MCS·80®, MCS·85®, MCS·48® Families 

• High Output Drive Capability for· 
Driving System Data Bus 

• 3·State Outputs 

• 20·Pin Package with 0.3" Center 

• No Output Low Noise when Entering 
or Leaving High Impedance State 

• Industrial Temperature Range: 
-40° to +85°C 

The 18282 and 18283 are 8·blt bipolar latches with 3·state output buffers. They can be used to implement latches, buf· 
fers, or multiplexers. The 18283 Inverts the input data at its outputs while the 18282 does not. Thus, all of the principal 
peripheral and input/output functions of a microcomputer system can be Implemented with these devices. 

L ______ _ ~
L-------

00, 

L ______ _ 

s9 
Figure 1. Logic Diagrams 
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8284A 
CLOCK GENERATOR AND DRIVER FOR 

iAPX 86, 88 PROCESSORS 

• Generates the System clock for the 
iA,PX 86,88 Processors 

• Uses a Crystal or a nL Signal for 
Frequency Source 

• Provides Local READY and Multibus™ 
READY Synchronization 

RES 0 

Xl 
XTAl 

OSCillATOR 
X2 

FIe 

+3 

EFI 
SYNC 

CSYNC 

RDY1 

AEN1 

RDY2 
CKt 

AEN2 D Q 

FF1 

ASYNC 

Figure 1. 8284A Block Diagram 

8-90 

• 18·Pin Package 

• Single +5V Power Supply 

• Generates System Reset Output from 
Schmitt Trigger Input 

• Capable of Clock Synchronization with 
Other 8284As 

D 

RESET 

OSC 

PClK 

RDY1 ASYNC 

READY 

ClK 
ClK 

GND 

READY 

Figure 2. 
8284A Pin Configuration 
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Table 1. Pin Description 

Symbol Type Name and Function 

AEN1, I Address Enable: AEN is an active lOW 
AEN2 signal. AEN serves to. qualify its respective 

Bus Ready Signal (RDYI or RDY2). AENI 
validates RDYI while AEN2 validates RDY2. 
Two AEN signal inputs are useful in system 
configurations which permit the processor to 
access two Multi-Master System Busses. In 
non Multi-Master configurations the AEN 
signal inputs are tied true (lOW). 

RDY1, I Bus Ready: (Transfer Complete). RDY is an 
RDY2 active HIGH signal which is an indication from 

a device located on the system data bus that 
data has been received, or is available. RDYI 
is qualified by AENI while RDY2 is qualified 
by AEN2. 

ASYNC I Ready Synchronization Select: ASYNC is an 
input which defines the synchronization 
mode of the READY logic. When ASYNC is 
low, two stages of READY synchronization are 
provided. When ASYNC is left open or HIGH a 
single stage of READY synchronization is 
provided. 

READY 0 Ready: READY is an active HIGH signal 
which is the synchronized RDY signal input. 
READY is cleared after the guaranteed hold 
time to the processor has been met. 

Xl, X2 I Crystal In: Xl and X2 are the pins to which a 
crystal is attached. The crystal frequency is 3 
times the desired processor clock frequency. 

F/C I FrequencylCrystal Select: F/C is a strapping 
option. When strapped lOW, FIC permits the 
processor's clock to be generated by the crys-
tal. When F/eis strapped HIGH, ClK is gener-
ated from the EFI input. 

EFI I External Frequency: When F/C is strapped 
HIGH, ClK is generated from the input fre-
quency appearing on this pin. The input 
signal is a square wave 3times the frequency 
of the desired ClK output. 

FUNCTIONAL DESCRIPTION 

General 

The 8284A is a single chip clock generatorldriver for the 
iAPX 86, 88 processors. The chip contains a crystal­
controlled oscillator, a divide-by-three counter, com­
plete MULTIBUSTM "Ready" synchronization and reset 
logic. Refer to Figure 1 for Block Diagram and Figure 2 
for Pin Configuration. 

Oscillator 

The oscillator circuit of the 8284A is designed primarily 
for use with an external series resonant, fundamental 
mode, crystal from which the basic operating frequency 
is derived. 
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Symbol Type Name and Function 

ClK 0 Processor Clock: ClK is Ihe clock output 
used by the processor and all devices which 
directly connect to the processor's local bus 
(i.e., the bipolar support chips and other MOS 
devices). ClK has an output frequency which 
is V3 olthe crystal or EFI inputfrequency and a 
Va duty cycle. An output HIGH of 4.5 volts 
(Vcc= 5V) is provided on this pin to drive MOS 
devices. 

PClK 0 PerIpheral Clock: PClK is a TTL level pe-
ripheral clock signal whose output frequency 
is V2 that of ClK and has a 50% duty cycle. 

OSC 0 Oscillator Output: OSC is the TTL level out-
put of the internal oscillator circuitry. Its fre-
quency is equal to that of the crystal. 

RES I Reset In: RES is an active lOW signal which 
is used to generate RESET. The 8284A 
provides a Schmit! trigger input so that an RC 
connection can be used to establish the 
power-up reset of proper duration. 

RESET 0 Reset: RESET is an active HIGH signal which 
is used to reset the 8086 family processors. Its 
timing characteristics are determined by 
RES. 

CSYNC I Clock Synchronization:· CSYNC is an active 
HIGH signal which allows multiple 8284As to 
be synchronized to provide clocks that are in 
phase. When CSYNC is HIGH the internal 
counters are reset. When CSYNC goes lOW 
the internal counters are allowed to resume 
counting. CSYNC needs to be externally syn-
chronized to EFI. When using the internal os-
cillator CSYNC should be hardwired to 
ground. 

GND Ground. 

Vcc Power: +5V supply. 

The crystal frequency should be selected at three times 
the required CPU clock. X1 and X2 are the two crystal 
input crystal connections. For the most stable operation 
of the oscillator (OSC) output circuit, two series resistors 
(R1 = R2 = 5100) as shown in the waveform figures are 
recommended. The output of the oscillator is buffered and 
brought out on OSC so that other system timing signals 
can be derived from this stable, crystal-controlled source. 

For systems which have a Vce ramp time;;. 1 V/ms andlor 
have inherent board capacitance between X1 or X2, ex­
ceeding 10pF (not including 8284A pin capacitance), the 
configuration in Figures 4 and 6 is recommended. This 
circuit provides optimum stability forthe oscillator in such 
extreme conditions. It is advisable to limit stray ca­
pacitances to less than 10pF on X1 and X2 to minimize 
deviation from operating at the fundamental frequency. 
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Clock Generator 
The clock generator consists of a synchronous divide­
by-three counter with a special clear input that inhibits 
the counting. This clear input (CSYNC) allows the out­
put clock to be synchronized with an external event 
(such as another 8284A clock). It is necessary to syn­
chronize the CSYNC Input to the EFI clock external to 
the 8284A. This is accomplished with two Schottky flip­
flops. The counter output is a 33% duty cycle clock at 
one-third the input frequency. 

The F/Cinput is a strapping pin that selects either the 
crystal oscillator or the EFI input as the clock for the.,. 3 
counter. If the EFI input is selected as the clock source, 
the oscillator section can be used independently for 
another clock source. Output is taken from OSC. 

Clock Outputs 
The ClK output is a 33% duty cycle MaS clock driver 
designed to drive the iAPX 86, 88 processors directly. 
PClK is a TIL level peripheral clock signal whose out­
put frequency is V2 that of ClK. PClK has a 50% duty 
cycle. 

Reset Logic 
The reset logic provides a Schmitt trigger input (RES) 
and a synchronizing flip-flop to generate the reset 
timing. The reset signal is synchronized to the falling 
edge of ClK. A simple RC network can be used to 
provide power-on reset by utilizing this function of the 
8284A. . 

READY Synchronization 
Two READY inputs (RDY1, RDY2) are provided to accom­
modate two Multi-Master system busses. Each input 
has a qualifier (AEN1 and AEN2, respectively). The AEN 
signals validate their respective RDY signals. If a Multi-

CLOCK 
SYNCHRONIZE >--+----1-1 D 

EFI 

Q 

Master system is not being used the AEN pin should be 
tied lOW. 

Synchronization is required for all asynchronous active­
going edges of either RDY input to guarantee that the 
RDY setup and hold times are met. Inactive-going edges 
of RDY in normally ready systems do not require syn­
chronization but must satisfy RDY setup and hold as a 
matter ot' proper system design. 

The ASYNC input defines two modes of READY syn­
chronization operation. 

When ASYNC is lOW, two stages of synchronization 
are provided for active READY input signals. Positive­
going asynchronous READY inputs will first be syn­
chronized to flip-flop one at the rising edge of CLI~ 
and then synchronized to flip-flop two at the next falling 
edge of ClK, after which time the READY output will go 
active (HIGH). Negative-going asynchronous READY in­
puts will be synchronized directly to flip-flop two at the 
falling edge of ClK, after which time the READY output 
will go inactive:'This mode of operation is intended for use 
by asynchronous (normally not ready) devices in the sys­
tem which cannot be guaranteed .by design to meet the 
required RDY setup timing, TR1VCL, on each bus cycle. 

When ASYNC is high or left open, the first READY flip­
flop is bypassed in the READY synchronization logic. 
READY inputs are synchronized by flip-flop two on the 
falling edge of ClK before they are presented to the 
processor. This mode is available for synchronous 
devices that can be guaranteed to meet the required 
RDY setup time. 

ASYNC can be changed on every bus cycle to select the 
appropriate mode of synchronization for each device in 
the system. 

D 
Q 

(TO OTHER 8284As) 

Figure 3. CSYNC Synchronization 
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ABSOLUTE MAXIMUM RATINGS· 

Temperature Under Bias ................. O·C to 70·C 
Storage Temperature .............. -65·C to +150·C 
All Output and Supply Voltages ......... -0.5V to + 7V 
All Input Voltages ................... -1.0V to +5.5V 
Power Dissipation .......................... 1 Watt 

'NOTlCE: Stresses above those listed under "Absolute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above 
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute- maximum 
rating conditions for extended periods may affect device 
reliability. 

DC CHARACTERISTICS (TA-O·C to 70'C Vcc-5V± 10%) - , -
Symbol Parameter Min. 

IF Forward Input Current (ASYNC) 
Other Inputs 

IR Reverse Input Current (ASYNC) 
Other Inputs 

Vc Input Forward Clamp Voltage 

Icc Power Supply Current 

V,L Input lOW Voltage 

V,H Input HIGH Voltage 2.0 

V'HR Reset Input HIGH Voltage 2.6 

VOL Output lOW Voltage 

VOH Output HIGH Voltage ClK 4 
Other Outputs 2.4 

V'HR- V'LR RES Input Hysteresis 0.25 

A.C. CHARACTERISTICS (TA=O·C to 70·C, Vcc=5V± 10%) 

TIMING REQUIREMENTS 

Symbol Parameter Min. 

tEHEL External Frequency HIGH Time 13 

tELEH External Frequency lOW Time 13 

tELEL EFI Period tEHEL + tELEH + d 

XTAl Frequency 12 

tR1VCL RDY1, RDY2 Active Setup to ClK 35 

tR1VCH RDY1, RDY2 Active Setup to ClK 35 

t R1VCL RDY1, RDY2 Inactive Setup to ClK 35 

tCLR1X RDY1, RDY2 Hold to ClK 0 

tAYVCL ASYNC Setup to ClK 50 

tCLAYX ASYNC Hold to ClK 0 

tA1VR1V AEN1, AEN2 Setup to RDY1, RDY2 15 

tCLA1X AEN1, AEN2 Hold to ClK 0 

tYHEH CSYNC Setup to EFI 20 

tEHYL CSYNC Hold to EFI 20 

tYHYL CSYNC Width 2' tELEL 

t'1HCL RES Setup to ClK 65 

tCLl1H RES Hold to ClK 20 

t'LiH Input Rise Time 

tlLlL Input Fall Time 

8-93 

Max. Units Test Conditions 

-1.3 rnA VF=0.45V 
-0.5 rnA VF=0.45V 

50 p.A VR= Vcc 
50 p.A VR=5.25V 

-1.0 V Ic= -5mA 

162 rnA 

0.8 V 

V 

V 

0.45 V 5mA 

V ~1mA 

V -1mA 

V 

Max. Units Test Conditions 

ns 90%-90% V,N 

ns 10%-10% V,N 

ns (Note 1) 

30 MHz 

ns ASYNC= HIGH 

ns ASYNC=lOW 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns (Note 2) 

ns (Note 2) 

20 ns From 0.8V to 2.0V 

12 ns From 2.0V to O.BV 
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A.C. CHARACTERISTICS (Continued) 
TIMING RESPONSES 

Symbol Parameter Min. 

tCLCL ClK Cycle Period 100 

tCHCL ClK HIGH Time (Y3 tcLcLl+2 for ClK Freq ... B MHz 
(V:! tCLcLl+6 for ClK Freq.=10 MHz 

tCLCH ClK lOW Time (% tCLcLl-15 for ClK Freq ... B MHz 
(% tCLcL)-14 for ClK Freq.=10 MHz 

tCH1CH2 ClK Rise or Fall Time 
tCL2CLl 

tpHPL PClK HIGH Time tCLCL-20 

tpLPH PClK lOW Time tCLCL -20 

tRYLCL Ready Inactive to ClK (See Note 4) -B 

tRYHCH Ready Active to ClK (See Note 3) (% tCLcLl-15 for ClK Freq ... B MHz 
(% tCLcLl-14 for ClK Freq.=10 MHz 

tCLlL ClK to Reset Delay 

tCLPH ClK to PClK HIGH DELAY 

tCLPL ClK to PClK lOW Delay 

tOLC"; OSC to ClK HIGH Delay -5 

tOLCL OSC to ClK lOW Delay 2 

tOLOH Output Rise Time (except ClK) 

tOHOL Output Fall Time (except ClK) 

NOTES: 

1. 0= EFI rise (5ns max) + EFI fall (5ns max). 

2. Setup and hold necessary only to guarantee recognition at next clock. 

3. Applies only to T3 and TW states. 

4. Applies only to T2 states. 

Max. Units Test Conditions 

ns 

ns Fig. 7 & Fig. B 

ns Fig. 7 & Fig. B 

10 ns 1.0V to 3.5V 

ns 

ns 

ns Fig. 9 & Fig. 10 

ns Fig. 9 & Fig. 10 

40 ns 

22 ns 

22 ns 

22 ns 

35 ns 

20 ns From O.BV to 2.0V 

12 ns From 2.0V to O.BV 

A.C. TESTING INPUT, OUTPUT WAVEFORM A.C. TESTING LOAD ClflCUIT 

INPUT/OUTPUT 

A.C. TESTING: INPUTS ARE DRIVEN AT 2.4V FOR A LOGIC "1" AND O,4SV FOR 
A LOGIC "0." TIMING MEASUREMENTS ARE MADE AT 1.SV FOR BOTH A 
LOGIC ''1'' AND "0." 
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... Vl =2.0BV 

~L '" 325n 

DEVICE 
UNDER i-----

TEST 

I CL 

-= 
CL = l00pF FOR ClK 

CL= 30pF FOR READY 
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WAVEFORMS 

CLOCKS AND RESET SIGNALS 

NAME 

EFI 

OSC 

ClK 0 

PClK 0 

CSYNC I 

8284A 

RESET 0 ____ ~/~--------~~t 
NOTE: All TIMING MEASUREMENTS ARE MADE AT 1.5 VOLTS, UNLESS OTHERWISE NOTED. 

READY SIGNALS (FOR ASYNCHRONOUS DEVICES) 

ClK 

tR1VCL 

RDY1,2 

READY 

tRYHCH 
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WAVEFORMS (Continued) 

READY SIGNALS (FOR SYNCHRONOUS DEVICES) 

elK 

tR1VCL 

RDY1,2 

tCLR1X 

READY 

IRYHCH tRYLCL 

X1 ClK I lOAD I 
24MHZ$ 

I (SEE NOTE 1) 

X2 

1 = R2 = 5100. 

F/C 
R2 1 

j. 
CSYNC 

- - R 

Clock High and Low Time (Using X1, X2) 

.. 

I PULSE I EFI ClK I lOAD I 
GENERATOR I I (SEE NOTE 1) 

VL 
F/C 

.r- CSYNC 

-

Clock High and Low Time (Using EFI) 
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Vcc 

AEm ClK 1-----1 

,-------------,------t X1 

NOTES: 
',CL=l00pF 
2. CL-30pF 

24MHz CJ READY 1----1 

r---;=======~~--1X2 

PULSE 
GENERATOR 

1------1 RDY2 OSC 

Fie 
AEN2 
CSYNC 

Ready to Clock (Using X1, X2) 

t--1~--tEFI ClK 1----1 

Fie 
AEN1 

1----tRDY2 
AEN2 
CSYNC READY'I----I 

Ready to Clock (Using EFI) 
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M8284 
CLOCK GENERATOR AND DRIVER 

FOR MILITARY iAPX 86 
MILITARY 

• Military Temperature Range: 
- 55°C to + 125°C 

• Generates the System Clock for the 
M8D8S 

• 18·Pin Package 

• Generates System Reset Output 
from Schmitt Trigger Input 

• Uses a Crystal or TTL Signal for 
Frequency Source 

• Provides Local Ready and 
MULTIBUS™ Ready Synchronization 

• Single +5V Power Supply 
• Capable of Clock Synchronization 

with other M8284's 

The M8284 is a bipolar clock generator/driver designed to provide clock signals for the Military iAPX 86 and peripherals. It 
also contains READY logic for operation with two MULTIBUS™ systems and provides the processors required READY 
synchronization and timing. Reset logic with hysteresis and synchronization is also provided. 

CSYNC VCC 
X1 

x, PClK X1 ose 

eLK AEN1 X2 

RDY1 
Fie 

N.C. 

EFI 
READY EFI 

PCLK RDY2 Fie 

CSYNC AEN2 OSC 

RDY1 
eK ClK RES 

AEN1 
READY 

GND AEN2 RESET RDY2 

Figure 1. Block Diagram Figure 2. Pin Configuration 

X11 CONNECTIONS FOR CRYSTAL RES RESET INPUT X21 
Fie CLOCK SOURCE SELECT RESET SYNCHRONIZED RESET OUTPUT 

EFI EXTERNAL CLOCK INPUT OSC OSCILLATOR OUTPUT 

CSYNC CLOCK SYNCHRONIZATION INPUT CLK MOS CLOCK 108086 

ROY' 1 
PCLK TTL CLOCK FOR PERIPHERALS 

RDY2 I REAOY SIGNAL FROM TWO MUlTIBUS™ SYSTEMS READY SYNCHRONIZED READY OUTPUT 

AEN11 VCC + 5 VOLTS 
AEN21 ADDRESS ENABLED QUALIFIERS FOR RDY1.2 

GND o VOLTS 

M8284 Pin Names 
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18284 

• 

CLOCK GENERATOR AND DRIVER 
FOR iAPX 86, 88 PROCESSORS 

INDUSTRIAL 

Industrial Temperature Range: • 18·Pin Package 
-40°C to +85°C 

• Generates System Reset Output from 

• Generates the System Clock for the Schmitt Trigger Input 
Industrial iAPX 86/10 

• Provides Local Ready and MUL TIBUS™ 

• Uses a Crystal or a TTL Signal for Ready Synchronization 
Frequency Source 

• Capable of Clock Synchronization with 

• Single +5V Power Supply other 8284's 

The 18284 is a bipolar clock generator/driver designed to provide clock signals for the iAPX 86, 88 and peripherals. It 
also contains READY logic for operation with two MULTIBUS™ systems and provides the processors required READY 
synchronization and timing. Reset logic with hysteresis and synchronization is also provided. 

X1 

x, 

Fie 

EFI 

CSYNC 

ROY1 

AEN1 

AeN2 
RDY2 

~ 
CK 

[>"==0 

Figure 1. Block Diagram 

X'I 
X21 
Fie 
EFI 

CONNECTIONS FOR CRYSTAL 

CLOCK SOURCE SELECT 
EXTERNAL CLOCK INPUT 

CSYNC CLOCK SYNCHRONIZATION INPUT 

osc 

ClK 

PCLK 

READY 

ROY' I 
RDY2 I 

AEN1 I 
AEN21 

READY SIGNAL FROM TWO MULTIBUS™ SYSTEMS 

ADDRESS ENABLED QUALIFIERS FOR RDY1.2 

18284 Pin Names 
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RES 
REser 
OSC 
CLK 
PCLK 
READY 

VCC 

GND 

CSYNC VCC 

PClK X1 

AEN1 X2 

RDY1 N.C. 

READY EFI 

RDY2 FIe 

AEN2 asc 
ClK RES 

GND RESET 

Figure 2. Pin Configuration 

RESET INPUT 
SYNCHRONIZED RESET OUTPUT 
OSCILLATOR OUTPUT 
MOS CLOCK 108086 
TTL CLOCK FOR PERIPHERALS 
SYNCHRONIZED READY OUTPUT 

+5 VOLTS 

o VOLTS 



18286/8287 
OCTAL BUS TRANSCEIVER 

INDUSTRIAL 

• Data Bus Buffer Driver for iAPX 86,88, 
MCS-80®, MCS-85®, and MCS-48® 
Families 

• High Output Drive Capability for 
Driving System Data Bus 

• Fully Parallel 8-Bit Transceivers 

• 3-State Outputs 

• 20-Pin Package with 0_3" Center 

• No Output Low Noise when Entering 
or Leaving High Impedance State 

• Industrial Temperature Range: 
-40°C to +85°C 

The 18286 and 18287 are 8·bit bipolar transceivers with 3·state outputs. The 18287 Inverts the input data at its outputs 
while the 18286 does not. Thus, a wide variety of applications for buffering in microcomputer systems can be met. 

18286 r-------l 
I I 

I 
I 

18287 r-------l 
I I 

I 
I 

Figure 1. Logic Diagrams 
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8288 
BUS CONTROLLER 

FOR iAPX 86, 88 PROCESSORS 

• Bipolar Drive Capability 

• Provides Advanced Commands 

• Provides Wide Flexibility in System 
Configurations 

• 3-State Command Output Drivers 

• Configurable for Use with an 110 Bus 

• Facilitates Interface to One or Two 
Multi-Master Busses 

The Intellll> 8288 Bus Controller is a 20-pin bipolar component for use with medium-to-Iarge iAPX 86, BB processing 
systems. rhe bus controller provides command and control timing generation as well as bipolar bus drive capability while 
optimizing system performance. . . 

A strapping option on the bus controller configures it for use with a multi-master system bus and separate I/O bus. 

ISo 
MRDC 

8086 _ STATUS -. MWTC lOB VCC 
STATUS ~- DECODER 

S2 ---: COM· AMWC 
MULTIBUS™ 

So 
MAND 

SIGNAL 10RC COMMAND 51 52 
GENER· 10WC 

SIGNALS 
ATOR MCElPDEN 

AIOWC 

iNTA ALE DEN 

AEN CEN 

MRDC INTA rLK
-

DTIR }' 
AMWC 10RC 

CONTROL liEN-
CONTROL ADDRESS LATCH, DATA 

CONTROL SIGNAL DEN TRANSCEIVER, AND MWTC AIOWC 
INPUT CEN- LOGIC GENER· MCEiPDEN INTERRUPT CONTROL 

ATOR SIGNALS GND 10WC 
10B- ALE . 

+5V GND 

Figure 2. 
Figure 1. Block Diagram Pin Configuration 
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Table 1. Pin Description 

Symbol Type Name and Function Symbol Type Name and Function 

Vcc Power: +5V supply. AIOWC 0 Advanced I/O Write Command: The 

GND Ground. 
AIOWC issues an I/O Write Command 
earlier in the machine cycle to give I/O 

50,5,,52 I Status Input Pins: These pi ns are the devices an early indication of a write in-
status input pins from the 8086, 8088 or struction. Its timing is the same as a read 
8089 processors. The 8288 decodes these command signal. AIOWC is active LOW. 
inputs to generate command and control 
signals at the appropriate time. When 
these pins are not in use (passive) they are 
all HIGH. (See chart under Command and 

10WC 0 I/O Write Command: This command line 
instructs an I/O device to read the data on 
the data bus. This signal is active LOW. 

Control Logic.) 10RC 0 I/O Read Command: This command line 

CLK I· Clock: This is a clock signal from the 
8284 clock g!lnerator and serves to estab-
lish when command and control signals 

instructs an I/O device to drive its data 
onto the data bus. This Signal is active 
LOW. 

are generated. AMWC 0 Advanced Memory Write Com-

ALE 0 Address Latch Enable: This signal 
serves to strobe an address into the 
address latches. This signal is active HIGH 
and latching occurs on the falling (HIGH 
to LOW) transition. ALE is intended for 
use with transparent D type latches. 

mand: The AMWC issues a memory write 
command earlier in the machine cycle to 
give memory devices an early indication 
of a write instruction. Its timing is the 
same as a read command signal. AMWC is 
active LOW. 

DEN 0 Data Enable: This signal serves to en-
able data transceivers onto either the 
local or system data bus. This signal is 
active HIGH. 

MWTC 0 Memory Write Command: This com-
mand line instructs the memory to record 
the data present on the data bus. This 
signal is active LOW. 

DT/R 0 Data Transmit/Receive: This signal es-
tablishes the direction of data flow 
through the transceivers. A HIGH on this 
line indicates Transmit (write to I/O or 

MRDC 0 Memory Read Command: This com-
mand line instructs the memory to drive 
its data onto the data bus. This signal is 
active LOW. 

memory) and a LOW indicates Receive INTA 0 Interrupt Acknowledge: This command 
(Read). line tells an interrupting device that its 

AEN I Address Enable: AEN enables command 
outputs of the 8288 Bus Controller at least 
115 ns after it becomes active (LOW). AEN 
going inactive immediately 3-states the 

interrupt has been acknowledged and 
that it should drive vectoring information 
onto the data bus. This signal is active 
LOW. 

command output drivers. AEN does not MCE/PDEN 0 This is a dual function pin. 
affect the I/O command lines if the 8288 is MCE (lOB Is tied LOW): Master Cascade 
in the I/O Bus mode (lOB tied HIGH). Enable occurs during an interrupt se-

CEN I Command Enable: When this signal is 
LOW all 8288 command outputs and the 
DEN and PDEN control outputs are forced 
to their inactive state. When this signal is 
HIGH, these same outputs are enabled. 

quence and serves to read a Cascade 
Address from a master PIC (Priority Inter-
rupt Controller) onto the data bus. The 
MCE signal is active HIGH. 
PDEN (lOB Is tied HIGH): Peripheral 
Data Enable enables the data bus trans-

lOB I Input/Output Bus Mode: When the lOB is ceiver for the I/O bus that DEN performs 
strapped HIGH the 8288 functions in the for the system bus. PDEN is active LOW. 
I/O Bus mode. When it is strapped LOW, .. 
the 8288 functions in the System Bus 
mode. (See sections on I/O Bus·and Sys-
tem Bus modes). 
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FUNCTIONAL DESCRIPTION 

Command and Control Logic 
The command logic decodes the three 8086, 8088 or 8089 
CPU status lines (So, S1, S2l to determine what command 
is to be issued, 
This chart shows the meaning of each status "word". 

s; ~ SO Processor State 8288Command 
0 0 0 Interrupt Acknowledge INTA 
0 0 1 Read 110 Port 10RC 
0 1 0 Write 110 Port 10WC,AIOWC 
0 1 1 Halt None 
1 0 0 Code Access MRDC 
1 0 1 Read Memory MRDC 
1 1 0 Write Memory MWTC,AMWC 
1 1 1 Passive None 

The command is issued in one of two ways dependent 
on the mode of the 8288 Bus Controller. 
110 Bus Mode - The 8288 is in the 110 Bus mode if the 
lOB pin is strapped HIGH. In the 110 Bus mode all 110 
command lines (IORC, 10WC, AIOWC, INTA) are always 
enabled (i.e., not dependent on AEN). When an 110 com· 
mand is initiated by the processor, the 8288 immediately 
activates the command lines using PDEN and DT/R to 
control the I/O bus transceiver. The 110 command lines 
should not be used to control the system bus in this 
configuration because no arbitration is present. This 
mode allows one 8288 Bus Controller to handle two ex· 
ternal busses. No waiting is involved when the CPU 
wants to gain access to the I/O bus. Normal memory ac· 
cess requires a "Bus Ready" signal (AEN LOW) before it 
will proceed. It is advantageous to use the lOB mode if 
I/O or peripherals dedicated to one processor exist in a 
multi·processor system. 

System Bus Mode - The 8288 is in the System Bus mode 
if the lOB pin is strapped LOW. In this mode no command 
is issued until 115 ns after the AEN Line is activated 
(LOW). This mode assumes bus arbitration logic will in· 
form the bus controller (on the AEN line) when the bus is 
free for use. Both memory and I/O commands wait for bus 
arbitration. This mode is used when only one bus exists. 
Here, both I/O and memory are shared by more than one 
processor. 

COMMAND OUTPUTS 
The advanced write commands are made available to in· 
itiate write procedures early in the machine cycle. This 
signal can be used to prevent the processor from enter· 
ing an unnecessary wait state. 

The command outputs are: 

MRDC - Memory Read Command 
MWTC - Memory Write Command 
10RC - I/O Read Command 
10WC - I/O Write Command 
AMWC - Advanced Memory Write Command 
AIOWC - Advanced I/O Write Command 
INTA - Interrupt Acknowledge 

INTA (Interrupt Acknowledge) acts as an I/O read during 
an interrupt cycle. Its purpose is to inform an inter· 
rupting device that its interrupt is being acknowledged 
and that it should place vectoring information onto the 
data bus. 

CONTROL OUTPUTS 
The control outputs of the 8288 are Data Enable (DEN), 
Data Transmit/Receive (DT/R) and Master Cascade 
Enable/Peripheral Data Enable (MCE/PDEN). The DEN 
signal determines when the external bus should be 
enabled onto the local bus and the DT/R determines the 
direction of data transfer. These two signals usually go 
to the chip select and direction pins of a transceiver. 

The MCE/PDEN pin changes function with the two 
modes of the 8288. When the 8288 is in the lOB mode 
(lOB HIGH) the PDEN Signal serves as a dedicated data 
enable signal for the I/O or Peripheral System bus. 

INTERRUPT ACKNOWLEDGE AND MCE 
The MCE signal is used during an interrupt acknowl· 
edge cycle if the 8288 is in the System Bus mode (lOB 
LOW). During any interrupt sequence there are two inter· 
rupt acknowledge cycles that occur back to back. Our· 
ing the first interrupt cycle no data or address transfers 
take place. Logic should be provided to mask off MCE 
during this cycle. Just before the second cycle begins 
the MCE signal gates a master Priority Interrupt Con· 
troller's (PIC) cascade address onto the processor's 
local bus where ALE (Address Latch Enable) strobes it 
into the address latches. On the leading edge of the 
second interrupt cycle the addressed slave PIC gates an 
interrupt vector onto the system data bus where it is 
read by the processor. 

If the system contains only one PIC, the MCE signal is 
not used. In this case the second Interrupt Acknowledge 
signal gates the interrupt vector onto the processor bus. 

ADDRESS LATCH ENABLE AND HALT 
Address Latch Enable (ALE) occurs during each machine 
cycle and serves to strobe the current address into the 
~d~ss latches. ALE also serves to strobe the status (SQ, 
SI, S2l into a latch for halt state decoding. 

COMMAND ENABLE 
The Command Enable (CEN) input acts as a command 
qualifier for the 8288. If the CEN pin is high the 8288 
functions normally. If the CEN pin is pulled LOW, all 
command lines are held in their inactive state (not 
3·state). This feature can be used to implement memory 
partitioning and to eliminate address conflicts between 
system bus devices and resident bus devices, 
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ABSOLUTE MAXIMUM RATINGS* 

Temperature Under Bias .................. O'C to 70'C 
Storage Temperature ............... -6S'C to +1S0'C 
All Output and Supply Voltages ......... -O.SV to + 7V 
All Input Veltages .................... -1.0V te +S.SV 
Power Dissipatien ........................... 1.S Watt 

'NOTICE: Stresses above those listed under "Absolute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above 
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum 
rating conditions for extended periods may affect device 
reliability. 

D.C. CHARACTERISTICS (Vee = SV ± 10%, TA = O'C te 70°C) 

Symbol Parameter Min. Max. 

Ve Input Clamp Veltage -1 

lee Pewer Supply Current 230 

IF Ferward Input Current -0.7 

IR Reverse Input Current. SO 

VeL Output lew Veltage 
Cemmand Outputs O.S 
Centrel Outputs O.S 

VeH Output High Veltage 
Cemmand Outputs 2.4 
Centrel Outputs 2.4 

V1L Input lew Veltage 0.8 

V1H Input High Veltage 2.0 

leFF Output Off Current 100 

A.C. CHARACTERISTICS (Vec= sv ± 10%, TA = O'C te 70'C) 

TIMING REQUIREMENTS 

Symbol Parameter Min. Max. 

TClCl ClK Cycle Peried 100 

TClCH ClK lew Time SO 

TCHCl ClK High Time 30 

TSVCH Status Active Setup Time 3S 

TCHSV Status Active Held Time 10 

TSHCl Status Inactive Setup Time 3S 

TClSH Status Inactive Held Time 10 

TILIH Input, Rise Time 20 

TIHll Input, Fall Time 12 

8-104 

Unit Test Conditions 

V Ie = -S mA 

mA 

mA VF = O.4SV 

/LA VR = Vee 

V leL = 32 mA 
V leL = 16 mA 

V . leH = -S mA 
V leH = -1 mA 

V 

V 

/LA . VeFF = 0.4 te S.2SV 

Unit Test Conditions 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns Frem 0.8V to 2.0V 

ns Frem 2.0V te 0.8V 
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A.C. CHARACTERISTICS (Continued) 
TIMING RESPONSES 

Symbol Parameter 

TCVNV Control Active Delay 

TCVNX Control Inactive Delay 

TCLLH, ALE MCE Active Delay (from CLK) 
TCLMCH 

TSVLH, ALE MCE Active Delay (from 
. TSVMCH Status) 

TCHLL ALE Inactive Delay 

TCLML Command Active Delay 

TCLMH Command Inactive Delay 

TCHDTL Direction Control Active Delay 

TCHDTH Direction Control Inactive Delay 

TAELCH Command Enable Time 

TAEHCZ Command Disable Time 

TAELCV Enable Delay Time 

TAEVNV AENto DEN 

. TCEVNV CEN to DEN, PDEN 

TCELRH CEN to Command 

TOLOH Output, Rise Time 

TOHOL Output, Fall Time 

A.C. TESTING INPUT, OUTPUT WAVEFORM 

INPUT/OUTPUT 

8288 

Min. Max. Unit 

5 45 n5 

10 45 ns 

20 ns 

20 ns 

4 15 ns 

10 35 ns 

10 35 ns 

50 ns 

30 ns 

40 ns 

40 ns 

115 200 ns 

20 ns 

25 ns 

TCLML ns 
20 . ns 

12 ns 

A.C. TESTING: INPUTS ARE DRIVEN AT 2AV FOR A LOGIC "1" AND OASV FOR 
A LOGIC "0," THE CLOCK IS DRIVEN AT 4.3V AND 0.25v' TIMING MEASURE­
MENTS ARE MADE AT 1.SV FOR BOTH A LOGIC ·'1" AND "0:· 

TEST LOAD CIRCUITS-3·STATE COMMAND OUTPUT TEST LOAD 

1.SV 

oo'~'·' 
I 300 pF 

3·STATE TO HIGH 

1.SV 

oo,~~ 
1300 PF 

3·STATE TO LOW 

B-1 05 

2.14V 

. ·lS2.72 

OUT~ 
.~ r300PF 

COMMAND OUTPUT 
TEST LOAD 

Test Conditions 

, 
MRDC 

IORC 

MWTC IOL == 32 mA 

IOWC IOH = -5 mA 

INTA CL = 300 pF 

AMWC 

AiOWC 

Oth" 'I 10L = 16 mA 

10H = -1 mA 

CL = 80 pF 

From 0.8V to 2.0V 

From 2.0V to O.8V 

2.28V 

oo'~"· 
. r~PF 

CONTROL OUTPUT 
TEST LOAD 
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WAVEFORMS 

STATE _TO-_T, T, - T3 

n I----'-TCLCLR 
-TCLCH-h LF / 1\ I L-.I 

CLK 

TCHSV- I- - TSVCH - TCHCL- ~y -TSHCL - TCLS~ 
\ 
1\ \ 

X ADDR WRITE CD VALID DATA VALID 
ADDRESS/DATA 

TCLLH_ r rl I-TCHLL TSVLH 

..,.,. 

ALE 

) 
) 

) 
) 

DEN (WRITE ) 

PDEN (WRITE ) 

) DTIR(READ 
(INTA ) 

MCE 

r. 

--. 

TCVNV-

TCHDTH- .t:: --_.-

1 IJ ---- -
If l@ 

TCLMCH- 1-- LTSVMCH" 

1. ADDAES8IDATA BUS IS SHOWN ONLY FOR REFERENCE PURPOSES. 

\ 
\ 
-TCLML --. i--TCLML 

\ 
1\ 

- ~TCVNV 

V 
j 

\ 
1\ 

1--. 

V 
J 

\ 
\ 

TCHOTL 

\ 
r-TCVNX 

2. LEADING EDGE ~ ALE AND MeE IS DETERMINED BY THE FAWNG EDGE OF CLK OR STATUS GOINO ACTIVE, WHICHEVER OCCURS LAST. 
3. ALL nY.NO MEASUREMENTS NlE MADE AT 1.5V UNLESS SPECIFIED OTHERWISE. 

B~106 

-

TCVNX-

TO-

n 
\ I ~ 

-

r-TCLMH 

v 
I 

I ~ 

\ 
\ 

-
I 

\ 
r\ 

--. ~TCVNX 

V 
I 

TCHDTH- l 
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WAVEFORMS (Continued) 

DEN, PDEN QUALIFICATION TIMING 

CEN \V 
/1\ 

AEN V 
J\ 

-TAEVNV-

DEN 
\V \I 
jl~ /\ 

-TCEVNV_ 

PDEN 
\I 
/\ 

ADDRESS ENABLE (AEN) TIMING (3-STATE ENABLE/DISABLE) 

\-'.5-V -TAELCV~ 

\~------1---------~ 
1.5V 

~I o·iv TAELCHt IITAEHCZ 

VOH ~ VOH 

OUTPUT ____________ ---'J,�r-~'--.-t-\----""T"1V....---.,,"\:,'---...::---t-------
ro~~ /~ / 

V 
CEN---------------;T:;:;CE::;-l;;;RH~_1 

-TCELRH 

\ 
,\ 

NOTE: CEN must be low or valid prior to T2 to prevent the command from being generated. 
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18288 
BUS CONTROLLER 

FOR iAPX 86, 88 PROCESSORS 
INDUSTRIAL 

Bipolar Drive Capability • Configurable for Use with an 1/0 Bus 

Provides Advanced Commands • Facilitates Interface to One or Two 
Multi·Master Busses 

Provides Wide Flexibility in System 
Configurations • Industrial Temperature Range: 

- 40°C to 85°C 
3·State Command Output Drivers 

The Intel® 18288 Bus Controller is a 20-pin bipolar component for use with medium-to-Iarge iAPX 86 processing 
systems. The bus controller provides command and control timing generation as well as bipolar bus drive capability 
while optimizing system performance. 

A strapping option on the bus controller configures it for use with a multi-master system bus and separate 1/0 bus. 

/50- MRDC 1 8086 - STATUS --- .. MWTC 
STATUS \ ~-- DECODEA 

52--· ... COM· 
AM we MUlTIBUSTM MAND 

SIGNAL 10RC J COMMAND 
GENER· rowe SIGNALS 

AIDR 
AIOWC 

INTA 

IClK--
eliA 

CONTROL AEN--
CONTROL l ADDRESS LATCH, DATA 

CONTROL SIGNAL DEN TRANSCEIVER, AND 

INPUT l CEN-- lOGIC GENER· MCEIPDEN I INTERRUPT CONTROL 
AlDR ALE SIGNALS 

108--

+ 5V GND 

Figure 1. Block Diagram 

lOB VCC 

ClK so 
51 52 

DT/R MCE/PDEN 

ALE DEN 

AEN CEN 

iiRilC INTA 

AMWC IORC 

MWTC AIOWC 

GND 10WC 

Figure 2. Pin Configuration 

GND VCC 

li1288 

MWTC 

MRDC 

10RC 

INTA 

DT/R 

ALE 

MCElPDEN 

DEN 

COMMAND 
BUS 

:} CONTROL 
_ OUTPUT 

Figure 3. Functional Pin·Out 



8289 
BUS ARBITER 

• Provides Multi-Master System Bus 
Protocol 

• Synchronizes iAPX 86, 88 Processors 
with Multi-Master Bus 

• Provides Simple Interface with 8288 
Bus Controller 

• Four Operating Modes for Flexible 
System Configuration 

• Compatible with Intel Bus Standard 
MULTIBUS™ 

• Provides System Bus Arbitration for 
8089 lOP in Remote Mode 

The Intel 8289 Bus Arbiter is a 20-pin, 5-volt-only bipolar component for use with medium to large iAPX 86, 88 multi­
master/multiprocessing systems. The 8289 provides system bus arbitration for systems with multiple bus masters, such as 
an 8086 CPU with 8089 lOP in its REMOTE mode, while providing bipolar buffering and drive capability. 

BCLK 
BREa MULTIBUSTM 

80881808818088 { ~ 
STATUS SO 

BPRN COMMANO 
BPRO SIGNALS 

BUSY 
CBRa . 

iNiT I 
PROCESSOR I CR~~~~ 

CONTROL RESB } 
ANYRaST AEN . 

SYSTEM 

lOB -L~::::::!~~=~~~~~J- SIGNALS SYSB/RHIi 

RESB 

iiCLK 

iliff 

GND 

VCC 

51 
So 
CLK 

[ljCi( 

ilJIMCK 
ANYRaST 

Am' 

CiRQ" 

BUSY 

+5V 

Figure 1. Block Diagram 

CONTROU 
STRAPPING 

OPTIONS 

GND VCC 

- LOCK 
CLK 8288 - CRQLCKi - RESB ! 
ANYRast - ~ 

-INIT 
-iiCLK 

BREa 
iiPiiN MULTIBUS 

INTERFACE 
Bl'RO 
IlmV 

SYSB/l!ED } SYSTEM 
AEIiI SIGNALS 

Figure 2. Pin Diagram Figure 3. Functional Pinout 
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Table 1. Pin Description 

Symbol lYpe Name end Function Symbol Type Name end Function 

Vcc Power: +5V supply ±10%. AEN 0 Address Enable: The output of the 8289 

GND Ground. Arbiter to the processor's address latc~es, 
to the 8288 Bus Controller and 8284A 

SO,S1,S2 I Status Input Pins: The status input pins Clock Generator. AEJij serves to instruct the 
from an 8086, 8088 or 8089 processor. The Bus Controller and address latches when 
8289 decodes these. pins to Initiete bus re-
quest and surrender actions. (See Table 2.) 

ClK I Clock: From the 8284 clock chip and 
serves to establish when bus arbiter ac-
tions are Initiated. 

to tri-stat.e their output drivers.' 

SYSBI I System Busl.Resldent Bus: An Input 
RESB signal when the arbiter is configured in the 

S.R. Mode (RESB is strapped high) which 
determines when the mUlti-master system 

lOCK I Lock: A processor generated signal which 
when activated (low) prevents the arbiter 
from surrendering the multi-master system 
bus to. any other bus artiter, regardless of 
its priority. 

CROlCK I Common Request Lock: An active low 
signal which prevents the arbiter from sur-
renderingthemulti-master system bus to 
any other bus arbiter requesting the bus 
through the CBRO input pin. 

bus is requested and mUlti-master system 
bus surrendering is permitted. The Signal 
Is Intended. to originate from a ·form of 
address-mapping circuitry, as a decoder or 
PROM attached to the resident address 
bus. Signal transitions and glitches are 
permitted on this pin from.p1 of T4 to.p 1 of 
T2 of the processor cycle. During the 
periodfrom.p1 ofT2to.p1 ofT4,onlyciean 
transitions are permitted on this pin (no 
glitches). If a glitch occurs, the arbiter may 

RESB I Resident Bus: A strapping option to con- capture or miss it, and the mUlti-master 
figure the arbiter to operate in systems'hav- system bus may be requested or surren-
ing both a multi-master system bus and a dered, depending upon the state of the 
Resident Bus. Strapped high, the multi- glitch. The arbiter requests the multi-
master system bus is requested or s~ 
dered as a function of the SYSB/RESB 

master system bus in the S.A. Mode when 
the state of the SYSB~ pin is high and 

input pin. Strapped low, the SYSB/RESB permits the bus to be surrendered when 
input is ignored. this pin is low. 

ANYROST I Any Request: A strapping option which CBRO 1/0 Common Bus Request: An input signal 
permits the multi-master system bus to be 
surrendered to a lower priority arbiter as if 

which instructs the arbiter if there are any 
other arbiters of lower priority requesting 

it were an arbiter of higher priority (i.e., the use of the mUlti-master system bus. 
when a la,wer priority arbiter requests the 
use of the mulii-master system bus, the bus The CBRO pins (open-collector output) of 
is surrendered as soon as it is possible). :all the 8289 Bus Arbiters which surrender 
When ANYROST Is strapped low, the bus is to the multi-master system bus upon re-
surrendered according to Table 2. If ANY- quest are connected together. 
ROST is strapped high and CBRO is ac-
tivated, the bus is surrendered althe end of The Bus Arbiter running the current trans-
the present bus cycle. Strapping CBRO low fer cycle will not itself pull the CBRO line 
and ANYROST high forces the 8289 arbiter low. Any other arbiter connected to the 
to surrender the mUlti-master system bus CBRO line can request the mUlti-master 
after each transfer cycle. Note that when system bus. The arbiter presently running 
surrender occurs BREO is driven false the current transfer cycle drops its BREO 
(high). signal and surrenders the bus whenever 

lOB I 10 Bus: A strapping option which confi-
gures the 8289·Arbiter to operate in sys-
tems having both an 10 Bus (Peripheral 
Bus) and a mUlti-master system bus. The 
arbiter requests and surrenders the use of 

the proper surrender conditions exist. 
Strapping CBRO low and ANYROST high 
allows. the multi-master. system bus to be 
surrendered after each transfer cycle. See 
the pin definition of ANYROST. 

the mUlti-master system bus as a function 
of the status line, 82. The multi-master sys-

INIT I Initialize: An active low multi-master sys-
terT] bus input Signal used to reset all the 

tem bus is permitted to be surrendered bus arbiters on the mUlti-master system 
while the processor is performing 10 com- bus. After initialization, no arbiters have 
mands and is requested whenever the pro- the use of the multi~master system bus. 
cessor 'performs a memory' command. 
Interrupt cycles are assumed as coming 
from. the peripheral bus and are treated as 
an 10 command. 
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Table 1. Pin Descriptions (Continued) 

Symbol ~pe Name and Function 

BClK I Bus Clock: The multi-master system bus 
clock to which all multi-master system bus 
interface signals are synchronized. 

BREQ 0 Bus Request: An active low output signal 
in the parallel Priority Resolving Scheme 
which the arbiter activates to request the 
use of the multi-master system bus. 

BPRN I Bus Priority In: The active low signal re-
turned tothe arbiter to instruct ilthat it may 
acquire the mUlti-master system bus on the 
next failing edge of BClK. BPRN indicates 
to the arbiter that It Is the highest priority 
requesting arbiter presently on the bus. 
The loss of BPRN instructs the arbiter that 
it has lost priority to a higher priority 
arbiter. 

FUNCTIONAL DESCRIPTION 

The 8289 Bus Arbiter operates in conjunction with the 
8288 Bus Controller to interface iAPX 86, 88 processors to 
a multi-master system bus (both the iAPX 86 and iAPX 88 
are configured in their rnax mode). The processor is un­
aware of the arbiter's existenqe and issues commands as 
though it has exclusive use of the system bus. If the pro­
cessor does not have the use of the multi-master system 
bus, the arbiter prevents the Bus Controller (8288), the 
data transceivers and the address latches from accessing 
the system bus (e.g. all bus driver outputs are forced into 
the high impedance state). Since the command sequence 
was not issued by the 8288, the system bus will appear as 
"Not Ready" and the processor will enter wait states. The 
processor will remain in Wait until the Bus Arbiter ac­
quires the use of the multi-master system bus whereupon 
the arbiter will allow the bus controller, the data transceiv­
ers, and the address latches to access the system. Typi­
cally, once the command has been issued and a data 
transfer has taken place, a transfer acknowledge (XACK) 
is returned to the processor to indicate "READY" from the 
accessed slave device. The processor then completes its 
transfer cycle. Thus the arbiter serves to multiplex a pro­
cessor (or bus master) onto a multi-master system bus and 
avoid contention problems between bus masters. 

Arbitration Between Bus Masters 

In general, higher priority masters obtain the bus when a 
lower priority master completes Its present transfer 
cycle. Lower priority bus masters obtain the bus when a 
higher priority master is not accessing the system bus. 
A strapping option (ANYRQST) is provided to allow the 
arbiter to surrender the bus to a lower priority master as 
though it were a master of higher priority. If there are no 
other bus masters requesting the bus, the arbiter main­
tains the bus so long as Its processor has. not entered 

Symbol ~pe Name and Function 

BPRO 0 Bus Priority Out: An active low output 
signal used in the serial priority resolving 
scheme where BPRO Is daisy-chained to 
BPRN of the next lower priority arbiter. 

BUSY I/O Busy: An active low open collector 
mUlti-master system bus interface signal 
used to Instruct all the arbiters on the bus 
when the multi-master system bus is avail-
able. When the multi-master system bus is 
available the highest requesting arbiter 
(determined by BPRN) seizes the bus and 
pulls BUSY low to keep other arbiters off of 
the bus. When the arbiter is done with the 
bus, it releases the BUSYsignal, permitting 
it to go high and thereby allowing another 
arbiter to acquire the mUlti-master system 
bus. 

the HALT State. The arbiter will not voluntarily surrender 
the system bus and has to be forced off by another 
master's bus request, the HALT State being the only ex­
ception. Additional strapping options permit other 
modes of operation wherein the multl·master system 
bus Is surrendered or requested under different sets of 
conditions. 

Priority Resolving Techniques 

Since there can be many bus masters on a multi·master 
system bus, some means of resolving priority between 
bus masters simultaneously requesting the bus must be 
provided .. The 8289 Bus Arbiter provides several resolv· 
Ing techniques. All the techniques are based on a priori­
ty concept that at a given time one bus master will have 
priority above all the rest. There are provisions for using 
parallel priority resolving techniques, serial priority 
resolving techniques, and rotating priority techniques. 

PARALLEL PRIORITY RESOLVING 
The parallel priority resolving technique uses a separate 
bus request line (~ for each arbiter on the multi· 
master system bus, see Figure 4. Each BREQ line enters 
Into a priority encoder which generates the binary ad· 
dress of the highest priority BREQ line which Is active. 
The binary address Is decoded by a decoder to select 
the corresponding BPRN (Bus Priority In) line to be 
returned to the highest priority requesting arbiter. The 
arbiter receiving priority (BPRN true) then allows its 
associated bus master onto the multi·master system 
bus as soon as it becomes available (I.e., the bus Is no 
longer busy). When one bus arbiter gains priority over 
another arbiter It cannot immediately seize the bus, It 
must wait until the present bus transaction Is complete. 

8-111 AFN·00839C 



8289 

Upon completing its transaction the present bus occu­
pant recognizes that it no longer has priority and sur­
renders the bus by releasing BUSY. BUSY is an active 
'low "OR" tieel signal line which goes to every bus arbiter 
on the system bus. When BUSY goes inactive (high), the 
arbiter which presently has bus priority (BPRN true) then 

seizes the bus and pulls BUSY low to keep other arbiters 
off of the bu~. See waveform timing diagram, Figure 5. 
Note that all mUlti-master system bus transactions, are 
synchronized to the bus clock (BClK). This allows the 
parallel priority resolving circuitry or any other priority 
resolving scheme employed to settle. 

74148 

r---~I :~~OOR~~~ 
74138 
H08 

DECODER 

Figure 4_ Parallel Priority Resolving Technique 

~ 
HIGHER PRIORITY BUS ARBITER REQUESTS THE MULTI·MASTER SYSTEM BUS. 

2 ATTAINS PRIORITY. 

3 LOWER PRIORITY BUS ARBITER RELEASES BUSY. 

4 HIGHER PRIORITY BUS ARBITER THEN ACQUIRES THE BUS AND PULLS BUSY DOWN. 

Figure 5_ Higher Priority Arbiter obtaining the Bus from a Lower Priority Arbiter 
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SERIAL PRIORITY RESOLVING 
The serial priority resolving technique eliminates the 
need for the priority encoder-decoder arrangement by 
daisy-chaining the bus arbiters together, connecting the 
higher priority bus arbiter's BPRO (Bus Priority Out) out­
put to the BPRN of the next lower priority. See Figure 6. 

THE NUMBER OF ARBITERS THAT MAY BE DAISY·CHAINED TOGETHER IN THE 
SERIAL PRIORITY RESOLVING SCHEME IS A FUNCTION OF 8CLK AND THE PROPA· 
GATION DELAY FROM ARBITER TO ARBITER. NORMALLY, AT 10 MHz ONLY 3 ARBI· 
TER MAY BE DAIS~.CHAINED. 

Figure 6 •. Serial Priority Resolving 

ROTATING PRIORITY RESOLVING 
The rotating priority resolving technique Is similar to 
that of the parallel priority resolving technique except 
that priority Is dynamically re-asslgned. The priority en­
coder Is replaced by a more complex circuit which ro­
tates priority between requesting arbiters thus allowing 
each arbiter an equal chance to use the multi-master 
system bus, over time. 

Which Priority Resolving Technique To 
Use 

There are advantages and disadvantages for each of the 
techniques described above. The rotating priority 
resolving technique requires substantial external logic 
to Implement while the serial technique uses no exter­
nallogic but can accommodate only a limited number of 
bus arbiters before the daisy-chain propagation delay 
exceeds the multi-master's system bus clock (BCLK). 
The parallel priority resolving technique Is in general a 
good compromise between the other two techniques. It 
allows for many arbiters to be present on the bus while 
not requiring too much logic to implement. 

·In some system configurations it is possible for a non-I/O Processor to 
have access to more than one Multi·Master System Bus, see 8289 
Application Note. 

8289 MODES OF OPERATION 

There are two types of processors in the iAPX 86 family. An 
Input/Output processor (the 8089 lOP) and the iAPX 86/10, 
88/10 CPUs. Consequently, there are two basic operating 
modes in the 8289 bus arbiter. One, the lOB (I/O Peripheral 
Bus) mode, permits the processor access to both an I/O 
Peripheral Bus and a mUlti-master system bus. The sec­
ond, the RESB (Resident Bus mode), permits the pro­
cessor to communicate over both a Resident Bus and a 
multi-master system bus. An I/O Peripheral Bus is a bus 
where all devices on that bus, including memory, are 
treated as I/O devices and are addressed by I/O com­
mands. All memory commands are directed to another 
bus, the multi-master system bus. A Resident Bus can 
issue both memory and I/O commands, but it is a distinct 
and separate bus from the multi-master system bus. The 
distinction is that the Resident Bus has only one master, 
providing full availability and being dedicated to that one 
master. 

The lOB strapping option configures the 8289 Bus Ar­
biter into the lOB mode and the strapping option RESB 
configures it into the RESB mode. It might be noted at 
this point that if both strapping options are strapped 
false, the arbiter interfaces th.e processor to a multi­
master system bus only (see Figure 7). With both op­
tions strapped true, the arbiter interfaces the processor 
to a multi-master system bus, a Resident Bus, and an 1/0 
Bus. 

In the lOB mode, the proce~sor communicates and con­
trols a host of peripherals over the Peripheral Bus. When 
the 1/0 Processor needs to communicate with system 
memory, it does so over the system memory bus. Figure 
8 shows a possible 1/0 Processor system configuration. 

The iAPX 86 and iAPX 88 processors can communicate 
with a Resident Bus and a multi-master system bus. Two 
bus controllers and only cine Bus Arbiterwould be needed 
in such a configuration as shown in Figure 9. In such a 
system configuration the processor would have access to 
memory and peripherals of both busses. Memory map­
ping techniques are applied to select which bus is to be 
accessed. The SYSB/RESB input on the arbiter serves to 
instruct the arbiter as to whether or not the system bus is 
to be accessed. The Signal connected to SYSB/RESB also 
enables or disables commands from one of the bus 
controllers. 

A summary of the modes that the 8289 has, along with 
its response to its status lines inputs, is summarized in 
Table 2. 
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Table 2, Summary of 8289 Modes, Requesting and Relinquishing the Multi·Master System Bus 

Status Lines From lOB Mode RESB (Mode) Only lOB Mode RESB Mode 

8086 or 8088 or 8089 Only lOB = High RESB = High tOB = Low RESB = High 

52 51 So lOB", Low SYSB/RESB = High SYSB/RESB = Low SYSB/RESB = High SYSB/RESB = Low 

0 0 0 ·x x x x 
1/0 

0 0 1 x x x x 
COMMANDS 

0 1 0 x x x x 

HALT 0 1 1 x x x x x 

1 0 0 x x 
MEM 

1 0 1 x x 
COMMANDS 

1 1 0 x x 

IDLE 1 1 1 x x x x x 

NOTES: 

1. X=.Multi·Master System Bus is allowed to be Surrendered. 
2. V' = Multi·Master System Bus is Requested. 

Pin Multi·Master System Bus 
Mode 

Strapping Requested" Surrendered" 

Single Bus 10B= High Whenever the processor's 
HLT + TI • CBRQ + HPBRQ t 

Multi·Master Mode RESB= Low status lines go active 

RESB Mode Only 10B= High SYSB/RESB = High· (SYSB/RESB = Low + TI) • 
RESB= High ACTIVE STATUS CBRQ + HLT + HPBRO 

lOB Mode Only 10B=Low Memory Commands 
(110 Status + TI) • CBRO + 

RESB= Low HLT+HPBRO 

10B=Low (Memory Command) • 
«110 Status Commands)+ 

lOB Mode· RESB Mode SYSB/RESB = LOW)) • CBRO 
RESB= High (SYSB/RESB = High) 

+ HPBRQt + HLT 

NOTES: 
• LOCK prevents surrender of Bus to any other arbiter, CRQ[CR prevents surrender of Bus to any lower priority arbiter. 

·'Except for HALT and Passive or IDLE Status. 

t HPBRQ, Higher priority Bus request or BPRN = 1. 
1. lOB Active Low. 
2. RESB Active High. 
3. + is read as "OR" and· as "AND." 
4. TI= Processor Idle Status 52, 51,SO= 111 
5. HLT= Processor Halt Status 52,81, SO=011 
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RESIDENT BUS 

8289 

o 
AEN2 AEN1't--------, 

1284A 
CLOCK 

~~;~ENT BUS---------!RDY2 ROY1i--------+-------- XACK MULTI·MASTER SYSTEM BUS 

RESIDENT COMMAND 1'------'----1 
,US 

PROM 
OR 

DECODER 

:~~IDENT ADDRESS <:;::==~~===1 

RESIDENT DATA~======~ BUS \, 

AEN 

8288 

ADDR 
LATCH 

828218283 
fZOR3) 

'BY ADDING ANOTHER 8289 ARBITER AND CONNECTING ITS AEN TO THE 8288 
WHOSE A'ER IS PRESENTLY GROUNDED, THE PROCESSOR COULD HAVE ACCESS 
TO TWO MUL TI·MASTER BUSES. 

Vee 

MUl fl.MASTER SYSTEM 
COMMAND BUS 

MULTI·MASTER SYSTEM 
AODRESS BUS 

Figure 9. 8289 Bus Arbiter Shown in System·Resident Bus Configuration 
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inter 

ABSOLUTE MAXIMUM RATINGS· 

Temperature Under Bias ................. O·C to 70·C 
Storage Temperature ............. -65·C to + 150·C 
All Output and Supply Voltages ........ - 0.5V to + 7V 
All Input Voltages .................. - 1.0V to + 5.5V 
Power Dissipation ..••..•..••.••........... 1.5 Watt 

8289 

·NOTlCE: Stresses above those listed under "Absolute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above 
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum 
rating conditions for extended periods may affect device 
reliability. 

D.C. CHARACTERISTICS (TA = o·c to 70·C, Vee = +5V ±10%) 

Symbol Parameter Min. Max. Units 

Ve Input Clamp Voltage -1.0 V 

IF Input Forward Current -0.5 mA 

IR Reverse Input leakage Current 60 ,..A 

VOL Output Low Voltage 
BUSY, CBRa 0.45 V 
AEN 0.45 V 
BPRO,BREa 0.45 V 

VOH Output High Voltage 
BUSY,CBRa Open Collector 

All Other Outputs 2.4 

Icc Power Supply Current 165 

VIL Input Low Voltage .8 

V1H Input High Voltage 2.0 

Cin Status Input Capacitance 25 

Cln (Others) Input Capacitance 12 

A.C. CHARACTERISTICS (Vee = +5V ±10%, TA = o·c to 70·C) 

TIMING REQUIREMENTS 

Symbol Parameter Min. 

TClCl ClK Cycle Period 125 

TClCH ClK low Time 65 

TCHCl ClK High Time 35 

TSVCH Status Active Setup 65 

TSHCl Status Inactive Setup 50 

THVCH Status Active Hold 10 

THVCl Status Inactive Hold 10 

TBYSBl BUSYi ~Setup to BClK~ 20 

TCBSBl CBRQt~Setup to BClK~ 20 

TBlBl BClK Cycle Time 100 

TBHCl BClK High Time 30 

TCllll lOCK Inactive Hold 10 

TCllL2 lOCK Active Setup 40 

TPNBl BPRN~ ito BClK Setup Time 15 

TClSRl SYSB/RESB Setup 0 

TClSR2 SYSB/RESB Hold 20 

TIVIH Initialization Pulse Width 3TBlBl+ 

\ 3 TClCl 

TILIH Input Rise Time 

TIHll Input Fall Time 

8-117 

V 

mA 

V 

V 

pF 

pF 

Max. 

TClCl-l0 

TClCl-l0 

.65[TBlBlJ 

20 

12 

Test Condition 

Vee=4.50V, le= -5 mA 

Vee = 5.50V, VF = 0.45V 

Vcc =5.50, VR=5.50 

IOL=20 mA 
IOL= 16 mA 
IOL= 10 mA 

IOH = 400 ,..A 

Unit Test Condition 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns From 0.8 to 2.0V 

ns From 2.0V to 0.8V 
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A.C.CHARACTERISTICS (Continued) 

TIMING RESPONSES 

Symbol Parameter 

TBLBRL BCLK to BREO Delay.l i 

TBLPOH BCLK to BPRO.l i (See Note 1) 

TPNPO BPRN.I ito BPRO.l iDelay 
(See Note 1) 

TBLBYL BCLK to BUSY Low 

TBLBYH BCLK to BUSY Float (See Note 2) 

TCLAEH CLK to AEN High 

TBLAEL BCLK to AEN Low 

TBLCBL BCLK to CBRO Low 

TRLCRH BCLK to CBRO Float (See Note 2) 

TOLOH Output Rise Time 

TOHOL Output Fall Time 

.Ii Denotes that spec applies to both transitions of the signal. 

NOTES: 

8289 

Min. Max. Unit Test Condition 

35 ns 

40 ns 

25 ns 

60 ns 

35 ns 

65 ns 

40 ns 

60 ns 

35 ns 

20 ns From O.BV to 2.0V 

12 ns From 2.0V to O.BV 

1. BCLK generates the first BPRO wherein subsequent BPRO changes lower in the chain are generated through BPRON. 
2. Measured at .5V above GND. 

A.C. TESTING INPUT, OUTPUT WAVEFORM 

INPUT/OUTPUT 

A.C. TESTING: INPUTSAAE DRIVEN AT 2.4V FOR A LOGIC "1" AND O.4SV FOR 
A LOGIC "0." THE CLOCK IS DRIVEN AT 4.3V AND O.2SV. TIMING MEASURE­
MENTS ARE MADE AT 1.5V FOR BOTH A LOGIC "1" AND "0." 

A.C. TESTING LOAD CIRCUIT 

DEVICE 
UNDER 

i}CC-'OOPF 
TEST 

-=-
CL = 100pF 
CL INCLUDES JIG CAPACITANCE 
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WAVEFORMS 

eLK 

I:mlK 
(SEE NOTE 1) 

SYSBIJrESij 

ill 
(SEE NOTE 3) 

PROCESSOR elK RE~TED 

BUS eLK RELATED 

...... 
(!ISlR)fl1) 

lIPRll .. 
(mill #3) 

.... 

NOTES: 

8289 

1. iJ5CK ACTIVE CAN OCCUR DURING ANY STATE, AS LONG AS THE 
RELATIONSHIPS SHOWN ABOVE WITH RESPECT TO THE CLK ARE MAINTAINED. 
i1iCii INACTIVE HAS NO CRITICAL TIME AND CAN BE ASYNCHRONOUS. 
-CRQLCK HAS NO CRITICAL TIMING AND IS CONSIDERED AN ASYNCHRONOUS 
INPUT SIGNAL ' 

2. GUTCHING OF SYSBIRESa PIN IS PERMITTED DURING THIS TIME. AFTER </> 2 OF 
Tl, AND BEFORE </>1 OF T4, SYSBIRESB SHOULD BE STABLE. 

3. AEN LEADING EDGE IS RELATED TO BCLK, TRAIUNG EDGE TO CLK. THE 
TRAILING EDGE OF AEN OCCURS AFTER BUS PRIORITY IS LOST. 

ADDITIONAL NOTES: 

The signals related to ClK are typical processor signals, and do not relate to the depicted sequence of events of the 
signals referenced to BCCK. The signals shown related to the BClK represent a hypothetical sequence of events for 
illustration. Assume 3 bus arbiters of priorities t, 2 and 3 configured in serial priority resolving scheme as shown in 
Figure 6. Assume arbiter 1 has the bus and is holding busy low. Arbiter #2 detect~rocessor wants the 'bus and 
pulls low BREQ#2. If BPRN#2 is high (as shown), arbiter #2 will pull low CBRO line. CBRO signals to the higher priority 
arbiter #1 that a lower priority arbiter wants the bus. [A higher priority arbiter would be granted BPRN when it makes 
the bus request rather than having to wait for another arbiter to release the bus through 'CBIrol." Arbiter #1 will relin­
quish the multi-master system bus when it enters a state not requiring it (see Table 1), by lowering its BPRO#l (tied to 
BPRN#2) and releasing BUSY. Arbiter #2 now sees that it has priority from BPRN#2 being low and releases CBRQ. As 
soon as BUSY signifies the bus is available (high), arbiter #2 pulls BUSY low on next falling edge of BClK. Note that if 
arbiter #2 didn't want the bus at the time it received priority, it would pass priority to the next lower priority arbiter by 
lowering its EiPROii2 [TPNPOj. 

··Note that even a higher priority arbiter which is acquiring the bus through 'B'PAN will momentarily drop C"B"RQ until It has acquired the bus. 
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MODEL 230 
INTELLEC SERIES II 

MICROCOMPUTER DEVELOPMENT SYSTEM 
Complete microcomputer development 
center for Intel MCS-86, MCS-80, MCS-85 
and MCS-48 microprocessor families 

LSI electronics board with CPU, RAM, 
ROM, 110, and interrupt circuitry 

64K bytes RAM memory 

Self-test diagnostic capability 

Eight-level nested, maskable priority 
interrupt system 

Built-in interfaces for high speed paper 
tape reader/punch, printer, and universal 
PROM programmer 

Integral CRT with detachable upper/ 
lower case typewriter-style full ASCII 
keyboard 

Powerful ISIS-II Diskette Operating 
System software with relocating 
macroassembler, linker, and locater 

1 million bytes (expandable to 2_5M 
bytes) of diskette storage 

Supports PUM and FORTRAN high level 
languages 

Standard MUL TIBUS with multiprocessor 
and DMA capability 

Compatible with standard Inteliec/iSBC 
expansion modules 

Software compatible with previous 
Intellec systems 

The Model 230 Intellec Series II Microcomputer Development System Is a complete center for the development of 
microcomputer-based products. It Includes a CPU, 64K bytes of RAM, 4K bytes of ROM memory, a 2000-character CRT, 
a detachable full ASCII keyboard, and dual double density diskette drives providing over 1 million bytes of on-line data 
storage. Powerful ISIS-II Diskette Operating System software allows the Model 230 to be used quickly and efficiently 
for assembling and/or compiling and debugging programs for Intel's MCS-S6, MCS-SO, MCS-S5, or MCS-4S microproc­
essor families without the need for handling paper tape. ISIS-II performs all file handling operations, leaving the user 
free to concentrate on the details of his own application. When used .In conjunction with an optional in-circuit 
emulator (ICE) module, the Model 230 provides ali the hardware and software development tools necessary for the 
rapid development of a microcomputer-based product. 
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MODEL230 

FUNCTIONAL DESCRIPTION 

Hardware Components 

The Intellec Series II Model 230 is a packaged, highly 
integrated microcomputer development system consist­
Ing of a CRT chassis with a 6-slot card cage, power sup­
ply, fans, cables, and five printed circuit cards. A 
separate, full ASCII keyboard is connected with a cable. 
A second chassis contains two floppy disk drives capa­
ble of double-density operation along with a separate 
power supply, fans, and cables for connection to the 
main chassis. A block diagram of the Model 230 is 
shown in Figure 1. 

CPU Cards - The master CPU card contains its own 
microprocessor, memory, 110, interrupt and bus inter­
face circuitry fashioned from Intel's high technology LSI 
components. Known as the Integrated processor board 
(IPB), it occupies the first slot in the cardcage. A second 
slave CPU card is responsible for all remaining 110 con­
trol including the CRT and keyboard Interface. This card, 
mounted on the rear panel, also contains Its own micro­
processor, RAM and ROM memory, and 110 interface 
logic, thus, in effect, creating a dual processor environ­
ment. Known as the 110 controller (lOC), the slave CPU 

card communicates with the IPB over an 8-bit bidirec­
tional data bus. 

Memory and Control Cards - In addition, 32K bytes of 
RAM (bringing the total to 64K bytes) is located on a 
separate card in the main cardcage. Fabricated from 
Intel's 16K RAMs, the board also contains all necessary 
address decoding and refresh logic. Two additional 
boards in the cardcage are used to control the two 
double-density floppy disk drives. 

Expansion - Two remaining slots. in the card cage are 
available for system expansion. Additional expansion of 
4 slots can be achieved through the addition of an Intel­
lec Series II expansion chassis. 

System Components 
The heart of the IPB Is an Intel NMOS 8:bit microproces­
sor, the 8080A-2, running at 2.6 MHz. 32K bytes of RAM 
memory are provided on the board using Intel 16K 
RAMs. 4K of ROM is provided, preprogrammed with sys- . 
tem bootstrap ~'seH-test" diagnostics and the Intellec 
Series II System Monitor. The eight-level vectored prior­
Ity interrupt system allows interrupts to be individually 
masked. Using Intel's versatile 8259A interrupt con­
troller, the interrupt system may be user programmed to 
respond to Individual needs. 

Figure 1. Intellec Series II Model 230 Microcomputer Development System Block Diagram 
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MODEL230 

Input/Output 
IPB Serial Channels - The I/O subsystem in the Model 
230 consists of two parts: the 10C card and two serial 
channels on the IPB itself. Each serial channel is RS232 
compatible and is capable of running asynchronously 
from 110 to 9600 baud or synchronously from 150 to 56K 
baud. Both may be connected to a user defined data set 
or terminal. One channel contains current loop 
.adapters. Both channels are implemented using Intel's 
8251A USART. They can be programmatically selected 
to perform a variety of I/O functions. Baud rate selection 
Is accomplished programmatically through an Intel 8253 
Interval timer. The 8253 also serves as a real·tlme clock 
for the entire system. I/O activity through both serial 
channels is signaled to the system through a second 
8259 interrupt controller, operating in a polied mode 
nested to the primary 8259. 

IOC Interface - The remainder of system I/O activity 
takes place in the IOC. The 10C provides interface for 
the CRT, keyboard, and standard Intellec peripherals 
including printer, high speed paper tape reader/punch, 
and universal PROM programmer. The 10C contains its 
own independent microprocessor, also an 8080A-2. The 
CPU controls all I/O operations as well as supervising 
communications with the IPB. 8K bytes of ROM contain 
all I/O control firmware. 8K bytes of RAM are used for 
CRT screen refresh storage. These do not occupy space 
in Intellec Series II main memory since the 10C is a 
totally independent microcomputer subsystem. 

Integral CRT 
Display - The CRT is a 12-lnch raster scan type monitor 
with a 50/60 Hz vertical scan rate and 15.5 kHz horizontal 
scan rate. Controls are provided for brightness and con­
trast adjustments. The interface to the CRT is provided 
through an Intel 8275 single chip programmable CRT 
controller. The master processor on the IPB transfers a 
character for display to the 10C, where it is stored in 
RAM. The CRT controller reads a line at a time into its 
line buffer through an Intel 8257 DMA controller and 
then feeds one character at a time to the character gen· 
erator to produce the video signal. Timing for the CRT 
control is provided by an Intel 8253 interval timer. The 
screen display is formatted as 25 rows of 80 characters. 
The full set of ASCII characters are displayed, including 
lower case alphas. 

Keyboard - The keyboard interfaces directly to the 10C 
processor via an 8·bit data bus. The keyboard contains 
an Intel UPI-41 Universal Peripheral Interface, which 
scans the keyboard, encodes the characters, and buf­
fers the characters to provide N-key rollover. The key­
board itself is a high quality typewriter style keyboard 
containing the full ASCII character set. An upperllower 
case switch allows the system to be used for document 
preparation. Cursor control keys are also provided. 

Peripheral Interface 
A UPI·41 Universal Peripheral Interface on the 10C board 
performs similar functions to the UPI-41 on the PIO 
board in the Model 210. It provides interface for other 
standard Intellec peripherals including a printer, high 
speed paper tape reader, high speed paper tape punch, 

and universal PROM programmer. Communication 
between the IPB and 10C Is maintained over a separate 
8-bit bidirectional data bus. Connectors for the four 
devices named above, as well as the two serial chan­
nels, are mounted directiy on the 10C itself. 

Control 
User control is maintained through a front panel, con· 
sisting of a power switch and indicator, reset/boot 
switch, run/halt light, and eight interrupt switches and 
indicators. The front panel circuit board is attached 
directly to the IPB, allowing the eight interrupt switches 
to connect to the primary 8259A, as well as to the Intellec 
Series II bus. 

Diskette System 
The Intellec Series II double density diskette system 
provides direct access bulk storage, intelligent control­
ler, and two diskette drives. Each drive provides V2 mil­
lion bytes of storage with a data transfer rate of 500,000 
bits/second. The controller is implemented with Intel's 
powerful Series 3000 Bipolar Microcomputer Set. The 
controller provides an interface to the Intellec Series II 
system bus, as well as supporting up to four diskette 
drives. The diskette system records all data in soft sec­
tor format. The diskette system is capable of performing 
seven different operations: recalibrate, seek, format 
track, write data, write deleted data, read data, and verify 
CRC. 

Diskette Controller Boards - The diskette controller 
conSists of two boards, the channel board and the inter· 
face board. These two PC boards reside iri the Intellec 
Series II system chassis and constitute the diskette 
controller. The channel board receives, decodes and 
responds to channel commands from the 8080A-2 CPU 
in the Model 230. The interface board provides the 
diskette controller with a means of communication with 
the diskette drives and with the Intellec system bus. The 
interface board validates data during reads using a 
cyclic redundancy check (CRC) polynomial and gener­
ates CRC data during write operations. When the disk­
ette controller requires access to Intellec system mem­
ory, the interface board requests and maintains DMA 
master control of the system bus, and generates the 
appropriate memory command. The interface board also 
acknowledges I/O commands as required by the Intellec 
bus. In addition to supporting a second set of double 
density drives, the diskette controller may co·reside 
with the Intel single density controller to allow up to 2.5 
million bytes of on·line storage. 

MUL TIBUS Capability 

All Intellec Series II models implement the industry 
standard MULTIBUS. MULTIBUS enables several bus 
masters, such as CPU and DMA devices, to share the 
bus and memory by operating at different priority levels. 
Resolution of bus exchanges is synchronized by a bus 
clock signal derived independently from processor 
clocks. Read/write transfers may take place at rates up 
to 5 MHz. The bus structure is suitable for use with any 
Intel microcomputer family. 
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MODEL 230 

SPECIFICATIONS 

Host Processor (IPB) 
RAM - 64K (system monitor occupies 62K through 64K) 
ROM - 4K (2K in monitor, 2K In boot/diagnostic) 

Diskette System Capacity (Basic Two Drives) 

Unformatted 
Per Disk: 6.2 megabits 
Per Track: 82.0 kiloblts 
Formatted 
Per Disk: 4.1 megabits 
Per Track: 53.2 kilobits 

Diskette Performance 
Diskette System Transfer Rate - 500 klloblts/sec 
Diskette System Access Time 
Track-to-Track: 10 ms 
Head Settling Time: 10 ms 
Average Random Positioning Time - 260 ms. 
Rotational Speed - 360 rpm 
Average Rotational Latency - 83 ms 
Recording Mode - M2FM 

Physical Characteristics 
Width - 17.37 In. (44.12 cm) 
Height - 15.81 in. (40.16 cm) 
Depth - 19.13 in. (48.59 cm) 
Weight - 73 Ib (33 kg) 

Keyboard 
Width - 17.37 in. (44.12 cm) 
Height - 3.0 in. (7.62 cm) 
Depth - 9.0 in. (22.86 cm) 
Weight - 6 Ib (3 kg) 

Dual Drive Chassis 
Width - 16.88 in. (42.88 cm) 
Height - 12.08 in. (30.68 cm) 
Depth - 19.0 in. (48.26 cm) 
Weight - 64 Ib (29 kg) 

Electrical Characteristics 
DC Power Supply 

Volts Amps Typical 
Supplied Supplied System Requirements 

+ 5:1:5% 30 1.4.25 
+12:1:5% 2.5 0.2 
-12±S% 0.3 0.05 
-10:1:5% 1.5 15 . +15:1:5% 1.5 1.3 . +24:1:5% 1.7 

·Not available on bus. 

ORDERING INFORMATION 
Part Number Description 
MDS-230 

MDS-231 

Intellec Series II Model 230 
microcornputer development system 
(110V/60 Hz) 

Intellec Series II Model 230 
microcomputer development system 
(220V/50 Hz) 

AC·Requlrements - 50/60 Hz, 115/230V AC 

Environmental Characteristics 
Operating Temperature - O· to 35·C (95·F) 

Equipment Supplied 
Model 230 chassis 
Integrated processor board (lPB) 
I/O controller board (IOC) 
32K RAM board 
CRT and keyboard 
Double density floppy disk controller (2 boards) 
Qual drive floppy disk chassis and cables 
2 floppy disk drives (512K byte capacity each) 
ROM-resident system monitor 

ISIS-II system diskette with MCS-80/MCS-85 
macroassembler 

Reference Manuals 
9800558 - A Guide to Microcomputer Development 
Systems (SUPPLIED) 

9800550 - Intellec Series II Installation and Service 
Guide (SUPPLIED) 

9800306 - ISIS-II System User's Guide (SUPPLIED) 

9800556 - Intellec Series II Hardware Reference Man­
ual (SUPPLIED) 

9800301 - 8080/8085 Assembly Language Program­
ming Manual (SUPPLIED) 

9800292 - ISIS-II 8080/8085 Assembler Operator's Man­
ual (SUPPLIED) 

9800605 - Intellec Series II Systems Monitor Source 
Listing (SUPPLIED) 

9800554 - Intellec Series II Schematic Drawings 
(SUPPLIED) 

Reference manuals are shipped with each product only 
if designated SUPPLIED (see above). Manuals may be 
ordered from any Intel sales representative, distributor 
office or from Intel Literature Department, 3065 BOwers 
Avenue, Santa Clara, California 95051. 

8-123 



MODEL 286 
INTELLEC® SERIES III 

MICROCOMPUTER DEVELOPMENT SYSTEM 
• Supports Intellec 432/100 Evaluation 

and Educational System 

• Compatible with iSBC-090 Series 90 
Memory System Upgrade: 512K Byte 
t01MByte 

• Complete 16-bit High Performance, 
Microcomputer Development Solution 
for Intel iAPX 86,88 Applications. Also 
Supports MCS-85™ , MCS-80 and 
MCS-48 Families 

• Supports Full Range of iAPX 86,88-
Resident, High-Level Languages:PLlM 
86/88, PASCAL 86/88, and FORTRAN 
86/88 

• 2 Host CPUs-iAPX 86 and 8085A-for 
Enhanced System Performance and 
Two Native Execution Environments 

II 96K Bytes of User Program RAM 
Memory Available for iAPX 86,88 
Programs 

• Series 11/80 and Series 11/85 
Upgradeable to 8085/iAPX 86 Series III 
Functionality 

II Intellec Model 800 Upgradeable to 
8080/iAPX 86 Series III Functionality 

.. Compatible with Intellec Distributed 
Development Systems 

II Compatible with Previous Intellec 
Systems 

• Software Applications Debugger for 
User iAPX 86,88 Programs 

• Upgradeable to a Complete Ethernet* 
Communications Development System 
Environment, Using the Model 677 
Upgrade 

The Intellec Series-III Microcomputer Development System is a high-performance system solution designed 
specifically for iAPX 86,88 microprocessor development. It contains two host CPUs, an iAPX 86 and an 8085, 
that provide two native execution environments for optimum performance and compatibility with the Intellec 
software packages for both CPUs. The basic system includes 96K bytes of iAPX 86,88 user RAM memory and a 
250K byte floppy disk drive. The powerful Disk Operating System maximizes system processing by utilizing the 
power of both host processors. Standard software includes a full range of iAPX 86,88 resident software. The 
high-level languages PLIM 86/88, PASCAL 86/88, and FORTRAN 86/88 are also available. A ROM resident 
software debugger not only provides self-test diagnostic capability, but also gives the user a powerful iAPX 
86,88 applications debugger. 

"Ethernet is a trademark of Xerox Corporation. 

The following are trademarks of Intel Corporation and jts affiliates and may be used only to identify Intel products: i, tntel, INTEL, INTELLEC, MeS, 1m, iCS, ICE, UPI. exp, iSBC, iSBX, 
Insite. iRMX, System 2000, CREDIT, iRMXJBO, MULTI BUS, PROMPT. Promware, Megachassis: library Manager, MAIN MUL TIMODULE, and the combination of MeS, ICE, iSBC, iAMX or 
iCS and a numerical suffix. © INTEL CORPORATION, 1981. AFN-01588B 
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intel' MODEL 286 

FUNCTIONAL DESCRIPTION 

Hardware Components 

The Intellec Series III is contained in a single pack­
age consisting of a CRT chassis with a 6-slot card 
cage, power supply, fans, cables, single floppy disk 
drive, detachable upper/lower case full ASCII key­
board, and four printed circuit cards. A block diag­
ram of the system is shown in Figure 1. 

System Components 

Two CPU cards reside on the Intellec MULTIBUS 
bus, each containing its own microprocessor, 
memory, I/O, interrupt and bus interface circuitry 
implemented with Intel's high technology LSI com­
ponents. The integrated processor card (IPC-85), 
occupies the first slot in the cardcage. A second 
CPU card, the resident processor board (RPB-86) 
contains Intel's 16-bit HMOS microprocessor. These 
CPUs provide the dual processor environment. 

A third CPU card performs all remaining I/O includ­
ing interface to the CRT, integral floppy disk, and 
keyboard. This card, mounted on the rear panel, 
contains its own microprocessors, RAM and ROM 
memory, and I/O interface logic. Known as the I/O 
controller (IOC), this slave CPU card communicates 
with the IPC-85 over an 8-bit bidirectional data bus.A 
64K byte RAM expansion memory board is also 
included. 

Expansion 

Two additional slots in the system cardcage are 
available for system expansion. The Intellec expan­
sion chassis Model 201 is available to provide 4 ad­
ditional expansion slots for either memory or I/O ex­
pansion. 

THE INTELLEC DEVELOPMENT SYSTEM FOR 
ETHERNET (DS/E) 

The Intellec Series III can be expanded to provide the 
user with the tools necessary to develop and test 

Figure 1, INTELLEC Series III Block Diagram 
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communications software and applications that will 
use Ethernet as a communications subsystem. The 
power of the Intellec Series III combined with Model 
677 allows the user to develop either 8e or 16-bit 
Ethernet-based applications. 

THE INTELLEC 432/100 EVALUATION'AND 
EDUCATIONAL SYSTEM 
The Intellec Series III provides a complete. system 
environment necessary for evaluation of the Intel 
iAPX 432 32-bit micromainframe. The iSBC 432/100 
board plugs into a Multibus slot in the Intellec Se­
ries III, sharing system. memory and resources. A 
comprehensive set of documentation,system 
software and hardware provides the evaluation and 
educational environment for the powerful iAPX 432. 

iAPX 286 Evaluation System 

The Intellec Series III provides a complete system 
environment for evaluation of the iAPX 286 micro­
processor's architecture and. its instruction set, seg­
mentation timing, memory mapping and protection 
features. A user can begin the development of com­
plex iAPX 286 programs, systems and operating sys­
tem nuclei with the Intellec Series III and iAPX 286 

. evaluation package. 

CPU Cards 

IPC-8S 
The heart of the IPC"85 is an Intel NMOS 8-bit micro­
processor, the 8085A-2, running at 4.0 MHz. 64K 
bytes of RAM niemory are provided on the board 
using 16K dynamic RAMs. 4K of ROM is provided, 
preprogrammed with system bootstrap "self-test" 
diagnostics and the Intellec System Monitor. The 

, eight-level vectored priority interrupt system allows 
interrupts to be! individually masked. Using Intel's 
versatile 8259A,interrupt controller; the interrupt 
system may be user programmed to respond to indi.-
vidual needs. . 

RPB-86 
The heart of the RPB-86 is an Intel HMOS 16-bit 
microprocessor, the iAPX 86 (8086), running at 5.0 
MHz. 64K bytes of RAM memory are provided on the 
board. 16K of ROM is provided on board, preproc 

grammed with an iAPX 88/86 applications debugger 
which provides .features necessary to debug and 
execute application software for the iAPX 88/86 
microprocessors .. 

The 8085A-2 and. iAPX 86 access two independent 
memory spaces. This allows the two processors to 
:execute concurrently when an iAPX 88/86 program 
is run. In this mode, the IPC-85 becomes an in­
tellegent I/O processor board to the RPB-86. 

Input/Output .. 

IPC-8S SERIAL CHANNELS 
The I/O subsystem in the Series III consists of two 
parts: the 10C card and two serial channels on the 
IPC-85 itself. Each serial channel is independently 
configurable. Both are RS232-compatible and is ca­
pable of running asynchronously from 110 to 9600 
baud or synchronously from 150 to 56K baud. Both 
may be connected to a user defined data set or ter­
minal. One channel contains current loop adapters. 
Both channels are implemented using Intel's 8251A 
USART. They can be programmed to perform a var­
iety of I/O functions. Baud rate selection is accom­
plished through an Intel 8253 interval timer. The 
8253 also serves as a real-time clock for the entire 
system. I/O activity through each serial channel is 
independently signaled to the system through a 
second 8259A (slave) interrupt controller, operating 
.in a polled mode nested to the master 8259A. 

IOC INTERFACE 
The remainder of the system I/O activity is handled 
by the 10C. The 10C provides the interface and con­
trol for the keyboard, CRT, integral floppy disk drive, 
and standard Intellec-compatable peripherals in­
cluding printer, high speed paper tape reader/ 
punch, and universal PROM programmer. The 10C 
contains its own independent microprocessor, an 
8080A-2. This CPU issues commands,receives 
status, and controls. all I/O operations as well as 
supervising communications with the IPC-85. The 
10C contains interval timers, its own 10C bus system 
controller, and 8K bytes of ROM for all I/O control 
firmware. The 8K bytes of RAM are used for CRT 
screen refresh storage. Neither the ROM'nor the 
RAM occupy space in the Intellec Series III main 
memory address range because the 10C is a totally 
independent microcomputer subsystem. 

Integral CRT 

DISPLAY 
The CRT is a 12-inch raster scan type monitor with a 
50/60 Hz vertical scan rate and 15.5 kHz horizontal 
scan rate. Controls are provided for brightness and 
contrast adjustments. The interface to the CRT is 
provided through an Intel 8275 single chip pro­
grammable CRT controller. The master processor 
on the IPC-85 transfers a character for display to the 
10C, where it is stored in RAM. The CRT controller 
reads a line at a time into its line buffer through an 
Intel 8257 DMA Controller. It then feeds one charac­
ter at a time to the character generator to produce 
the video signal. Timing for the CRT control is 
provided by an Intel 8253 programmable interval 
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timer. The screen display is formatted as 25 rows of 
80 characters. The full set of ASCII characters are 
displayed, including lower case alphas. 

KEYBOARD 
The keyboard interfaces directly to the IOC pro­
cessor via an 8-bit data bus. The keyboard contains 
an Intel U PI-41 A Universal Peri pheral Interface, 
which scans the keyboard and encodes the charac­
ters to provide N-key roll over. The keyboard itself is 
a typewriter style keyboard containing the full ASCII 
character set. An upper/lower case switch allows the 
system to be used for dor-l!ment preparation. Cursor 
control keys are also provided. 

Peripheral Interface 

A UPI-41A Universal Peripheral Interface on the IOC 
board provides built-in interface for standard 
Intellec-compatable peripherals including a printer, 
high speed paper tape reader, high speed paper 
tape punch, and universal PROM programmer. 
Communication between the IPC-85 and IOC is 
maintained over a separate 8-bit bidirectional data 
bus. Connectors for the four devices named above, 
as well as the two serial channels, are mounted di­
rectly on the IOC itself. 

Control 

User control is maintained through a front panel, 
consisting of a power switch and indicator, reset/ 
boot switch, run/halt light and eight interrupt 
switches and LED indicators. The front panel circuit 
board is attached directly to the IPC-85, allowing the 
eight interrupt switches to connect the master 
8259A, as well as to the Intellec Series III bus. 

User program control in the iAPX 88/86 environment 
of the Intellec Series III is also directed through key­
board control sequences to transfer control to the 
iAPX 88/86 applications debugger, abort a user pro­
gram or translator and returning control to the 
IPC-85. 

DISK SYSTEM 

Integral Floppy Disk Drive 

The integral floppy disk is controlled by an Intel 8271 
single chip, programmable floppy disk controller. 
The disk provides capacity of 250K bytes. It transfers 
data via an Intel 8257 DMA Controller between an 
IOC RAM buffer and the diskette. The 8271 handles 
reading and writing of data, formatting diskettes, 
and reading status, all upon appropriate commands 
from the IOC microprocessor. 

Dual Drive Floppy Disk System (Option) 

The Intellec Series III Double Density Diskette Sys­
tem provides direct access bulk storage, intelligent 
controller and two diskette drives. Each drive 
provides 1/2 million bytes of storage with a data 
transfer of 500,000 bits/second. The controller is 
implemented with Intel's powerful Series 3000 Bipo­
lar Microcomputer Set and supports up to four disk­
ette drives to allow more than 2 million bytes of 
on-I i ne storage. 

The diskette controller consists of two boards, the 
channel board and the interface board. These two 
PC boards reside in the Intellec Series III system 
chassis. The channel board receives, decodes and 
responds to channel commands from the 8085A-2 
CPU on the IPC-85. The interface board provides the 
diskette controller with a means of communication 
with the disk drives and with the Intellec system bus. 
The interface board also validates data during disk 
transactions. 

An additional cable and connectors are also 
supplied to optionally convert the integral floppy 
disk from single density to double density. 

Hard Disk System (Option) 

The Intellec Series III Hard Disk System provides 
direct access bulk storage, intelligent controller and 
a disk drive containing one fixed platter and one 
removable cartridge. Each provides approximately 
3.65 million bytes of storage with a data transfer rate 
of 2.5 Mbits/second. The controller is implemented 
with Intel's Series 3000 Bipolar Microcomputer Set. 
The controller provides an interface to the Intellec 
Series III system bus, as well as supporting up to 2 
disk drives. The disk system records all data in Dou­
ble Frequency (FM) on 2 surfaces per platter. Each 
platter can be write protected by a front panel 
switch. 

HARD DISK CONTROLLER BOARDS 
The disk controller consists of two boards which 
reside in the Intellec Series III system chassis. The 
disk system is capable of performing six operations: 
recalibrate, seek, format track, write data, read data, 
and verify CRC. In addition to supporting a second 
drive, the disk controller may co-exist with the 
double-density diskette controller to allow up to 17 
million bytes of on-line storage. 
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MULTI BUS Interface Capability 

All models of the Intellec Series III implement the 
industry standard MULTIBUS protocol. The MULTI­
BUS architecture allows several bus masters, such 
as CPU and DMA devices, to share the bus and 
memory by operating at different priority levels. 
Resolution of bus exchanges is synchronized by a 
bus clock signal derived independently from pro­
cessor clocks. Read/write transfers may take place 
at rates up to 5 MHz. The bus structure is suitable for 
use with any Intel microcomputer family. 

System Software Features 

The Mod.el 286 offers many key advantages for iAPX 
86,88 applications and Intellec Development Sys­
tems: enhanced system performance through a dual 
host CPU environment, a full spectrum of iAPX 
86,88-resident high-level languages, expanded user 
program space for iAPX 86,88programs, and a pow­
erful high-level software applications debugger for 
iAPX 86,88 microprocessor software. 

Dual Host CPU-The addition of a 16-bit 8086 to the 
existing 8-bit host CPU increases iAPX 86,88 com­
pilation speeds and provides fOr iAPX 86,88 code 
execution. When the 8086 is executing a program, 
the 8-bit CPU off-loads all I/O activity and operates 
as an intelligent I/O controller to double buffer data 
to and from the 8086. The 8086 also provides an 
execution vehicle for 8086 and 8088 object code. An 
added benefit of two host microprocessors is that 

SPECIFICATIONS 

Host.P.rocessor Boards 

INTEGRATED PROCESSOR CARD 
-(IPC-85) 8085A-2 based, operating at 4 MHz 
-64K RAM, 4K ROM (2K in monitor and 2K in boot/ 

diagnostic) 

RESIDENT PROCESSOR BOARD 
-(RPB-86) 8086 based, operating at 5 MHz, 64K 

RAM, 16K ROM (applications debugger) 

BUS 
-MULTIBUS bus, maximum transfer rate of 5 MHz 

DIRECT MEMORY ACCESS 
-(DMA) Standard capability on the MUL TIBUS bus; 

implemented for user seJected DMA devices 
through optional DMA module 

-Maximum transfer rate of 2 MHz 

8"bit translations and applications are handled by 
the 8-bit CPU, and 16-bit translations and applica­
tions are handled by the 8086. This feature provides 
complete compatibility for current systems and 
means that software running on current Intellec De­
velopment Systems will run on the new system. 

High-Level Languages for iAPX 86,88-The Model 
286 allows the current Intellec system user to take 
advantage of a breadth of new resident iAPX 86,88 
high-level languages: PUM 86/88, PASCAL 86/88, 
and FORTRAN 86/88. The iAPX8.6,88 Resident 
Macro Assembler and these high-level language 
compilers execute on the 8086 h.ost CPU, thereby 
increasing system performance. 

Expanded Program Memory-By adding a Model 
286 to an existing Intellec Development System, 96K 
bytes of user program RAM memory are made avail­
able .for iAPX 86,88 programs. System memory is 
expandable by adding additional RAM memory 
modules. This, combined with the two host CPU 
system architecture, dramatically increases the pro­
cessing power of the system. 

Software Applications Debugger-The RPB-86 
contains the applications debugger which allows 
iAPX 86,88 programs to be developed, tested, and 
debugged within the Intellec system. The debugger 
provides a subset of In-Circuit Emulator commands 
such as symbolic debugging, control structures and 
compound commands specifically oriented toward 
software debug needs. 

Integral Floppy Disk 

Capacity-250K bytes (formatted) 
Transfer Rate-160K bits/sec 
Access Time-
Track to Track: 10 ms max. 
Average Random Positioning: 260 ns 
Rotational Speed: 360 rpm 
Average Rotational Latency: 83 ms 
Recording Mode: FM 

Dual Floppy Disk Option 

Capacity- . 
Per Disk: 4.1 megabits (formatted) 
Per Track: 53.2 kilobits (formatted) 

Transfer Rate.....:.500·kilobits/sec 
Access Ti me- . 
Track.to Track: 10 ms 
Head Setting Time: 10 ms 

Average Random Positioning.Time-260ms 
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Rotational Speed-360 rpm 
Average Rotational Latency: 83 ms 
Recording Mode: M2 FM 

Hard Disk Drive Option 

Type-5440 top loading cartridge and one fixed 
platter 

Tracks per Inch-200 
Mechanical Sectors per Track-12 
Recording Technique-double frequency (FM) 
Tracks per Surface-400 
Density-2,200 bits/inch 
Bits per Track-62,500 
Recording Surfaces per Platter-2 
Capacity-

Per Surface-15M bits 
Per Platter-29M bits 
Per Drive-59M bits 
Per Drive-7.3M bytes (formatted) 

Transfer Rate-2.5M bits/sec 
Access Time-
Track to Track: 13 ms max 
Full Stroke: 100 ms 
Rotational Speed: 2,400 rpm 

Physical Characteristics 

Width-17.37 in. (44.12 cm) 
Height-15.81 in. (40.16 cm) 
Depth-19.13 in. (48.59 cm) 
Weight-81 lb. (37 kg) 

KEYBOARD 
Width-17.37 in. (44.12 cm) 
Height-3.0 in. (7.6 cm) 
Depth-9.0 in. (22.86 cm) 
Weight-6 lb. (3 kg) 

DUAL FLOPPY DRIVE SYSTEM (OPTION) 
Width-16.88 in. (42.88 cm) 
Height-12.08 in. (30.68 cm) 
Depth-1.0 in. (48.26 cm) 
Weight-64 lb. (29 kg) 

HARD DISK DRIVE SYSTEM (OPTION) 
Width-18.5 in. (47.0 cm) 
Height-34.0 in. (86.4 cm) 
Depth-29.75 in. (75.6 cm) 
Weight-202 lb. (92 kg) 
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ELECTRICAL CHARACTERISTICS 

DC Power Supply 

Volts Amps 
Typical 

Supplied Supplied 
System 

Requirements 

+ 5 ± 5% 30.0 17.0 

+1"2 ± 5% 2.5 1.1 

-12 ± 5% 0.3 0.1 

-10 ± 5% 1.0 0.08 

+15 ± 5%' 1.5 1.5 

+24 ± 5%' 1.7 1.7 

'Not available on bus 

AC Requirements for Mainframe 

110V, 60 Hz-5.9 Amp 
220V, 50 HZ-3.0 Amp 

ENVIRONMENAL CHARACTERISTICS 

System Operating Temperature-0° to 35°C 
(32°F to 95°F) 

Humidity-20% to 80% 

DOCUMENTATION SUPPLIED 

Intellec Series 1/1 Microcomputer Development Sys­
tem Product Overview, 121575 

A Guide to Intellec Series III Microcomputer Devel­
opment Systems, 121632-001 

Intellec Series /II Microcomputer Development Sys­
tem Console Operating Instructions, 121609 

Intellec Series /II Microcomputer Development Sys­
tem Pocket Reference, 121610 

Intellec Series /II Microcomputer Development Sys­
tem Programmer's Reference, 121618 

iAPX 88/86 Family Utilities User's Guide for 8086-
Based Development Systems, 121616 

8086/8087/8088 Macro Assembly Language Refer­
ence Manual for 8086-Based Development Systems, 
121627 

8086/8087/8088 Macro Assembly Language Pocket 
Reference, 9800749 
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8086/8087/8088 Macro Assembler Operating In­
structions for 8086-Based Development Systems, 
121628 

Intellec Series III Microcomputer Development Sys­
tem Installation and Checkout Manual, 121612 

Intellec Series III Microcomputer Development Sys­
tem Schematic Drawings, 121642 

ISIS-II CREDIT (CRT-Based Text Editor) User's 
Guide, 9800902 

ORDERING INFORMATION 

Part Number Description 

DS286 KIT 

DS287 KIT 

Intellec Series III Model 286 Micro­
computer Development System 
(110V/60Hz) 

Intellec Series III Model 287 Micro­
computer Development System 
(220V/SOHz) 

DS286FD KIT Intellec Series III Model 286 Micro-
computer Development System with 
Dual Double Density Flexible Disk 
System (110V/60Hz) 

ISIS-II CREDIT (CRT-Based Text Editor) Pocket Ref­
erence, 9800903 

The 8086 Family User's Manual, 9800722 

The 8086 Family User's Manual, Numeric Supple­
ment, 121S86 

For Series III Plus Hard Disk Systems Only: 

Model 740 Hard Disk Subsystem Operation and 
Checkout, 9800943 

DS287FD KIT Intellec Series III Model 287 Micro­
computer Development System with 
Dual Double Density Flexible Disk 
System (220V/SOHz) 

DS286HD KIT Intellec Series III Model 286 Micro­
computer Development System with 
Pedestal Mou nted Hard Disk. 
(110V/60Hz) 

DS287HD KIT Intellec Series III Model 287 Micro­
computer Development System with 
Pedestal Mounted Hard Disk. 
(220V/SOHz) 

Requires Software License 
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PL/M 86/88 SOFTWARE PACKAGE 

• Executes on Series III iAPX 86 m Improved Compiler Performance Now 
Processor for Fastest Compilations Supports More User Symbols and 

• Language Is Upward Compatible from Faster Compilation Speeds 

PL/M 80, Assuring MCS-80/85 Design II Produces Relocatable Object Code 
Portability Which Is Linkable to All Other 8086 

• Supports 16-Bit Signed Integer and Object Modules 

32-Bit Floating Point Arithmetic in 1:1 Code Optimization Assures Efficient 
Accordance with IEEE Proposed Code Generation and Minimum 
Standard Application Memory Utilization 

• Easy-To-Learn Block-Structured [] Built-In Syntax Checker Doubles 
Language Encourages Program Performance for Compiling Programs 
Modularity Containing Errors 

Like its counterpart for MCS-80/85 program development, PL/M 86/88 is an advanced, structured high-level 
programming language. The PL/M 86/88 compiler was created specifically for performing software develop­
ment for the Intel 8086and 8088 Microprocessors. 

PL/M is a powerful, structured, high-level system implementation language in which program statements can 
naturally express the program algorithm. This frees the programmer to concentrate on the logic of the pro­
gram without concern for burdensome details of machine or assembly language programming (such as regis­
ter allocation, meanings oiassembler mnemonics, etc.). 

The PL/M 86/88 compiler efficiently converts free-form PL/M language statements into equivalent 8088/8086 
machine instructions. Substantially fewer PL/M statements are necessary for a given application than if it were 
programmed at the assembly language or machine code level. 

The use of PL/M high-level language for system programming, instead of assembly languag'e, results in a high 
degree of engineering productivity during project development. Tflis translates into significant reductions in 
initial software development and follow-on maintenance costs for the user. 

NOTE: The Inteliee']; Microcomputer Development System pictur,ed her~ is not included with the PUM 86/88 Software Package but merely depicts a language in its operating 
environment. 

The following are trademarks of Inlel Corporation and may be used only to identify Intel products: i, Intel, INTEL, INTELLEC, MeS. im , les, ICE, UPI, BXP.-iSBC, iSBX, iNSITE, iRMX, 
CREDIT. RMXl60. p,Scope. Multibus, PROMPT, Promware, Megachassis, Library Manager, MAIN MULTI MODULE, and the combination of MeS,ICE, SBC, RMX or ieS and a numerical 
suffix; e.g., iSBC-BO. 
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FEATURES 

Major features of the Intel PUM 86/88 compiler and 
programming language include: 

Block Structure 

PUM source code is developed in a series of mod­
ules, procedures, and blocks. Encouraging program 
modularity in this manner makes programs more 
readable, arid easier to maintain and debug. The 
language becomes more flexible, by clearly defining 
the scope of user variables (local to a private proce­
dure, global to a public procedure, for example). 

The use of procedures to break down a large prob­
lem is paramount to productive software develop­
ment. The PUM 86/88 implementation of a block 
structure allows the use of REENTRANT (recursive) 
procedures, which are especially useful in system 
design. . 

Language CompatibiUty 

PUM 86/88 object modules are compatible with ob­
ject modules generated by all other 86/88 trans­
lators. This means that PL/M programs may be 
linked to programs written in any other 86/88 
language. 

Object modules are compatible with ICE-88 and 
ICE-86 units; DEBUG compiler control provides the 
In-Circuit Emulators with symbolic debugging 
capabilities. 

PL/M 86/88 Language is upward-compatible with 
PUM 80, so thatapplication programs may be easily 
ported to run on the iAPX 86 or 88. 

Supports Five Data Types 

PUM makes use of five data types for various appli­
cations. These data types range from one to four 
bytes, and facilitate various arithmetic, logic, and 
addressing functions: 

- Byte: 8-bit unsigned number 
- Word: 16-bit unsigned number 
-Integer: 16-bit signed number 
- Real: 32-bit floating point number 
- Pointer: 16-bit or 32-bit memory address 

indicator 

Another powerful facility allows the use of BASED 
variables that map more than one variable to the 
same memory location. This is especially useful for 
passing parameters, relative and absolute address­
ing, and memory allocation. 

Two· Data Structuring Facilities 

In addition to the five data types and based variables, 
PUM supports two data structuring facilities. These 
add flexibility to the referencing of data stQred in 
large groups. 

- Array: Indexed list of same type data elements 
- Structure: Named collection of same.or different 

type data elements 
- Combinations of Each: Arrays of structures or 

structures of arrays 

8087 Numerics Support 

PL/M programs that use 32-bit REAL data may be 
executed using the Numeric Data Processor for im­
proved performance. All floating"point operations 
supported by PUM may be executed.onthe iAPX 
86/20 or 88/20 NDP, or the 8087 Emulator (a software 
module) provided with the package. Determination 
of use of the chip or Emulator takes place at link­
tir:ne, allowing compilations to be run-time 
independent. 

Built-In String Handling FaciUties 

The PUM 86/88 language contains built-in functions 
for string manipulation. These byte and word func­
tions perform the following operations on character 
strings: MOVE, COMPARE, TRANSLATE, SEARCH, 
SKIP, and SET. 

Interrupt Handling 

PUM has the facility for generating interrupts to the 
iAPX 86 or 88 via software. A procedure may be 
defined with the INTERRUPT attribute, and the 
compiler will automatically initialize an interrupt 
vector at the appropriate memory location. The 
compiler will also generate code to same and re­
store the processor status, for execution of the 
user-defined interrupt handler routine. The pro­
cedure SET$INTERRUPT, the function retuning 
an INTERRUPT$PTR, and the PL/M statement 
CAUSE$INTERRUPT all add flexibility to user 
programs involving interrupt and handling. 
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Compiler Controls 

Including several that have been mentioned, the 
PL/M 86/88 compiler offers more than 25 controls 
that facilitate such features as: 

- Conditional compilation 
- Including additional PL/M source files from disk 
- Intra- and Inter-module cross reference 
- Corresponding assembly language code in the 

listing file 
- Setting overflow conditions for run-time handling 

Segmentation Control 

The PLiM 86/88 compiler takes full advantage of 
program addressing with the SMALL, COMPACT, 
MEDIUM, and LARGE segmentation controls. Pro­
grams with less than 64KB total code space can 
exploit the most efficient memory addressing 
schemes, which lowers total memory requirements. 
Larger programs can exploit the flexibility of ex­
tended one-megabyte addressing. 

Code Optimization 

The PL/M 86/88 compiler offers four levels of optimi­
zation for significantly reducing overall program 
size. 

- Combination or "folding" of constant ex­
pressions; and short-circuit evaluation of Boo­
lean expressions. 

- "Strength reductions" (such as a shift left rather 
than multiply by 2); and elimination of common 
sub-expressions within the same block. 

- Machine code optimizations; elimination of 
superfluous branches; re-use of duplicate code; 
removal of unreadable code. 

- Byte comparisons (rather than 20-bit address 
calculations) for pointer variables; optimization 
of based-variable operations. 

Error Checking 

The PL/M 86/88 compiler has a very powerful feature 
to speed up compilations. If a syntax or program 
error is detected, the compiler will skip the code 
generation and optimization passes. This usually 
yields a 2X performance increase for compilation of 
programs with errors. 

A fully detailed set of programming and compilation 
errors is provided by the compiler. 

Compiler Performance 

Performance benchmarks may provide valuable in­
formation in estimating compile times for various 
programs. It is extremely important to understand, 
however, the effect of varying conditions on com­
piler performance. Storage media, coding style, 
program length, and the use of INCLUDE files signif­
icantly change the compiler's overall performance. 
We tested typical PL/M programs of varying lengths. 
The resu Its are listed in Table 1. 

Table 1. PL/M Program Compile Times 

Program Size Compile Time(Sec) Lines/Minute 

SMALL (71) 20 213 

MEDIUM (610) 54 678 

LARGE (1710) 128 802 

LARGE (1403) 129 653 

(with very dense code, 
plus include file) 

NOTE: These programs were run on a Series III with ISIS 4.1 and a hard disk. The lines per minute figures reflect fifteen percent blank lines 
and comments. 

The compiler allows approximately 1000 ten-character user symbols. 
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M:DO: . Beginning of module' 
~ PUBLIC and EXTERNAL attributes promote 

SORTPROC: PROCEDURE (PTR, COUNT, RECSIZE, KEYINDEX)~; I program modularity, 
DECLARE·PTA POINTER, (COUNT, RECSIZE, KEYINDEX) INTEGER, 

• Parameters: 
PTR is pointer to first record. 
COUNT is number of records to be sorted. 
RECSIZE is.number of bytes in each record-max is 128. 
KEYINDEX is byte position within each record of a BYTE scalar "Bas,ed"" Variables allow manipulation of external data by 

passing the base of the data structure (a pointer). This 
minimizes ,the STACK space used for parameter passing, and 
the execution time to perform many STACK operations. 

SORT 

to be used as sort key .. 

DECLARE RECORD BASED PTR (1) BYTE, 
CURRENT (128) BYTE, 
(I, J) INTEGER: 

DO J 1 TO COUNT-1: 
CALL MOVB(@RECORD(J·RECSIZE),,,-,,,-=-=-,-,,-=---<.:.,RECSIZE): 
10 J: 

FIND: DO WHILE 10 
AND RECORD((I 1)'RECSIZE - KEYINDEX) 

·CURRENT(KEYINDEX): 
The "AT" operator returns the address o1'a 
variable, instead of its contents. This is very useful 
in passing pOinters for based variables. 

CALL MOVB(@RECORD((I 1j'RECSIZE), 
@RECORDWRECSIZE), 
RECSIZE): 

I~I 1: 
END FIND: 

(@CURRENT, @RECORD(I'RECSIZE), RECSIZE): 

END SORTPROC: 

END M: "End of module';' 
One of several PLIM built-in procedures for string 
manipulation. 

Figure 1, Sample PL/M 86/88 Program 

BENEFITS 

PUM 86/88 is designed to be an efficient, cost­
effective solution to the special requirements of 
iAPX 86 or 88 Microsystem Software Development, 
as illustrated by the following benefits of PUM use: 

Low Learning Effort 

PL/M 86/88 is easy to learn and to use, even for the 
novice programmer, 

Earlier Project Completion 

Critical projects are completed much earlier than 
otherwise possible because PUM 86/88, a struc­
tured high-level language, increases programmer 
productivity, 

Lower Development Cost 

Increases in programmer productivity translate im­
mediately into lower software development costs 

because less programming resources are required 
for a given programmed function, 

Increased Reliability 

PUM 86/88 is designed to aid in the development of 
reliable software (PUM 86/88 programs are simple 
statements of the program algorithm). This sUbstan­
tially reduces the risk of costly correction of errors in 
systems that have already reached full production 
status, as the more simply stated the program is, the 
more likely it is to perform its intended function. 

Easier Enhancements 
and Maintenance 

Programs written in PL/M tend to be self-document­
ing, thus easier to read and understand, This means 
it is easier to enhance and maintain PUM programs 
as the system capabilities expand and future prod­
ucts are developed. 
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PL/M 86/88 SOFTWARE PACKAGE 

SPECIFICATIONS 

Operating Environment 

REQUIRED HARDWARE: 
Intellec® Microcomputer Development System 
- Series III or equivalent 
Dual Diskette Drives 
- Single- or Double-Density 
System Console 
- CRT or Hardcopy Interactive Device 

OPTIONAL HARDWARE: 
Universal PROM Programmer 
Line Printer 
ICE-86rM 

ORDERING INFORMATION 

Part Number Description 

MDS-313' PLiM 86/88 Software Package 

Requires Software License 

REQUIRED SOFTWARE: 
ISIS-II Diskette Operating System, V4.1 or later 
Series III Operating System 

Documentation Package 

PL/M-86 User's Guide for 8086-based Development 
Systems (121636) 

'MOS is an ordering code only and is not used as a product name or trademark. MOS'" is a registered trademark of Mohawk Data Sciences 
Corporation. . 
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FORTRAN 86/88 
SOFTWARE PACKAGE 

• Features high-level language support 
for floating-point calculations, 
transcendentals, interrupt procedures, 
and run-time exception handling 

• Meets ANS FORTRAN 77 Subset 
Language Specifications 

• Supports iAPX 86/20, 88/20 Numeric 
Data Processor for fast and efficient 
execution of numeric instructions 

• Uses REALMATH Floating-Point 
Standard for consistent and reliable 
results 

• Offers powerful extensions tailored to 
microprocessor applications 

• Offers upward compatibility with 
FORTRAN 80 

• Provides FORTRAN run-time support for 
iAPX 86,88-based design 

• Provides users ability to do formatted 
and unformatted I/O with sequential or 
direct access methods 

FORTRAN 86/88 meets the ANS FORTRAN 77 Language Subset Specification and includes many features of 
the full standard. Therefore, the user is assured of portability of most existing ANS FORTRAN programs and of 
full portability from other computer systems with an ANS FORTRAN 77 Compiler. . . 

FORTRAN 86/88 programs developed and debugged on the iAPX 86 Resident Intellec Series III Microcomputer 
Development System may be: tested with the prototype using ICE symbolic debugging, and executed on an 
RMX-86 operating system, or on a user's iAPX 86,88-based operating system. 

FORTRAN 86/88 is one of a complete family of compatible programming languages foriAPX 86,88 develop­
ment: PUM, Pascal, FORTRAN, and Assembler. Therefore, users may choose the language best suited fora 
specific problem solution. 

© Intel Corporation, 1981. 8-136 APRIL 1981 
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FORTRAN 86/88 SOFTWARE PACKAGE 

FEATURES 

Extensive High-Level Language 
Numeric Processing Support 

Single (32-bit), double (64-bit), and double extended 
precision (80-bit) floating-point data types 

REALMATH Proposed IEEE Floating-Point Stan­
dard) for consistent and reliable results 

Full support for all other data types: integer, logical, 
character 

Ability to use hardware (iAPX 86/20, 88/20 Numeric 
Data Processor) or software (simulator) floating­
point support chosen at link time 

ANS FORTRAN 77 Standard 

Intel® Microprocessor Support 

FORTRAN 86/88 language features support of iAPX 
86/20, 88/20 Numeric Data Processor 

Compiler generates in-line iAPX 86/20, 88/20 Nu­
meric Data Processor object code for floating-point 
arithmetic (See Figu re 1) 

Intrinsics allow user to control iAPX 86/20, 88/20 
Numeric Data Processor 

iAPX 86,88 architectural advantages used for index­
ing and character-string handling 

Symbolic debugging of application using ICE-86 
and ICE-88 emulators 

FLOATING-POINT-STATMENT 

TEMPER = (PRESS - VOlUM I ~UEK) - 3.45 I (PRESS - VOlUM I QUEK) 
& - (PRESS - VDlUM I QUEK) * (PRESS - VDlUM I QUEK) 

OBJECT CODE GENERATED 

Intel FORTRAN-86 Compiler 

IAPX 86/20, 88/20 
ASSEMBLER MNEMONICS I. MACHINE CODE , STATEMENT # 2 

0013 9B09060COO FlJ VDlUM 
0018 9608360000 FDIV ::lUEK 
0010 9B082E0800 FSUB:< PRESS 
0022 9BOO01 FST T::JS+1H 
0025 962E083EOOOO FOIV~ CS:@CONST 
002B 9B09C9 FXCrlG TOS+1H 
002E 960002 ;:ST TOS+2H 
0031 9BOEE9 FSUBRP 
0034 9B09C1 FLO T:JS+1H 
0037 9608C8 FMUl TOS 
003A 9BOOC2 FFREE TOS+2H 
0030 960EE1 FSUBP 
0040 9B091E0400 FSTP TEMPER 
0045 98 WAIT 

Figure 1. Object Code Generated by FORTRAN 86/88 for a Floating-Point Calculation Using iAPX 86/20, 
88/20 Numeric Processor 
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FORTRAN 86/88 SOFTWARE PACKAGE 

Microprocessor Application Support 

-Direct byte- or word-oriented port I/O 

-Reentrant procedures 

-Interrupt procedures 

Flexible Run-Time Support 

Application object code may be executed in iAPX 86, 
88-based environment of user's choice: 

-a Series III Intellec Development System with Se­
ries III Operating System 

-an iAPX 86,88-basedsystem with iRMX-86 Operat­
ing System 

-an iAPX 86,88-based system with user-designed 
Operating System 

Run-time exception handling for fixed-point nu­
merics, floating-point numerics, and I/O errors 

Relocatable object libraries for complete run-time 
support of I/O and arithmetic functions. In-line code 
execution is generated for iAPX 86/20, 88/20 Nu­
meric Data Processor 

BENEFITS 

FORTRAN 86/88 provides a means of developing 
application software for the Intel iAPX 86,88 prod­
ucts lines in a familiar, widely accepted, and 
industry-standard programming language. FOR­
TRAN 86/88 will greatly enhance the user's ability to 
provide cost-effective software development for 
Intel microprocessors as illustrated by the 
following: 

SPECIFICATIONS 

Operating Environment 

REQUIRED HARDWARE 
Intellec® Series III Microcomputer Development 
System 

-System Console 

Early Project Completion 

FORTRAN is an industry-standard, high-level 
numerics processing language. FORTRAN pro­
grammers can use FORTRAN 86/88 on micropro­
cessor projects with little retraining. Existing FOR­
TRAN software can be compiled with. FORTRAN 
86/88 and programs developed in FORTRAN 86/88 
can run on other computers with ANS FORTRAN 77 
with little or no change. Libraries of mathematical 
programs using ANS 77 standards may be compiled 
with FORTRAN 86/88. 

Application Object Code 
Portability for a Processor Family 

FORTRAN 86/88 modules "talk" to the resident In­
tellec development operating system using Intel's 
standard interface for all development-system 
software. This allows an application developed on 
the Series III operating system to execute on iRMX/ 
86, or a user-supplied operating system by linking in 
the iRMX/86 or other appropriate interface library. A 
standard logical-record interface enables com­
munication with non-standard I/O devices. 

Comprehensive, Reliable 
and Efficient Numeric Processing 

The unique combination of FORTRAN 86/88, iAPX 
86/20, 88/20 Numeric Data Processor, and 
REALMATH (Proposed IEEE Floating-Point Stan­
dard) provide universal consistency in results of 
numeric computations and efficient object code 
generation. 

REQUIRED SOFTWARE 
ISIS-II Diskette Operating System V4.1 or later 

Documentation Package 

FORTRAN 86/88 User's Guide (121539-001) 

-Doubi~-Density Dual-Diskette Drive. A Hard Disk 
is recommended Shipping Media 

-Hard Disk' Flexible Diskettes 

'Recommended. -Single- and Double-Density 
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PASCAL 86/88 
SOFTWARE PACKAGE 

• Resident on iAPX 86 Based Intellec® III Supports iAPX86/20, 88/20 Numeric 
Series III Microcomputer Development Data Processors 
System for Optimal Performance II Strict Implementation of ISO Standard 

• Object Compatible and Linkable with Pascal 
PL/M 86/88, ASM 86/88 and FORTRAN III Useful Extensions Essential for 
86/88 Microcomputer Applications 

• ICE™ Symbolic Debugging Fully !Ill Separate Compilation with Type-
Supported Checking Enforced Between Pascal 

III Implements REALMATH for Consistent Modules 

and Reliable Results I!l Compiler Option to Support Full Run-
Time Range-Checking 

PASCAL 86/88 conforms to and implements the ISO Draft Proposed Pascal standard. The language is 
enhanced to support microcomputer applications with special features, such as separate compilation, inter­
rupt handling and direct port I/O. To assist the development of portable software, the compiler can be directed 
to flag all non-standard featu res. 

The PASCAL 86/88 compiler runs on the iAPX 86 Resident Intellec® Series III Microcomputer Development 
System. A well-defined I/O interface is provided for run-time support. This allows a user-written operating sys­
tem to support application programs as an alternate to the development system environment. Program mod­
ules compiled under PASCAL 86/88 are compatible and linkable with modules written in PUM 86/88, ASM 
86/88 or FORTRAN 86/88. With a complete family of compatible programming languages for the iAPX 86, 88 
one can implement each module in the language most appropriate to the task at hand. 

PASCAL 86/88 object modules contain symbol and type information for program debugging using ICE-86™ 
emulator. For final production version, the compiler can remove this extra information and code. 

Note: The Intellec~ microcomputer developme,nt system pictured here is not included with the Pascal 66/66 Software Package but merely depicts the language in its operating 
environment. 

The following are trademarks of Intel Corporation and may be used only to identity Intel products: BXP, CREDIT,lntellec, Multibus, i. iSSe, Multimodule, ICE, iSBX. PROMPT, iRMX, 
leS, Library Manager, Promware. Insite, MeS, RMX, Intel, Megachassis, UPI, lntelevision, Micromap, ,..,Scope and the combination of iCE, leS, iSBC, iSBX, MeS, or RMX and a numeri­
cal suffix. 

© Intel Corporation 1980 8-139 121660-001 Rev. A 



PASCAL 86/88 

FEATURES 

Includes all the language features of Jensen & Wirth 
Pascal as defined in the ISO Draft Proposed Pascal 
Standard. 

Supports required extensions for microcomputer 
applications. 

-Interrupt handling 

-Direct port I/O 

Separate compilation extensions allow: 

-Modular decomposition of large programs 

-Linkage with other Pascal modules as well as 
PUM 86/88, ASM 86/88 and FORTRAN 86/88. 

-Enforcement of type-checking at LINK-time 

BENEFITS 

Provides a standard Pascal for iAPX 86, 88 based 
applications. 

-Pascal has gained wide acceptance as the port­
able application language for microcomputer 
applications 

-It is being taught in many colleges and universities 
around the world 

-It is easy to learn, originally intended as a vehicle 
for teaching computer programming 

-Improves maintainability: Type mechanism is 
both strictly enforced and user extendable 

-Few machine specific language constructs 

Strict implementation of the proposed ISO standard 
for Pascal aids portability of application programs. A 
compile time option checks conformance to the 
standard making it easy to write conforming 
programs. 

PASCAL 86/88 extensions via predefined proce­
dures for interrupt handling and direct port I/O make 
it possible to code an entire application in Pascal 
without compromising portability. 

Standard Intel REALMATH is easy to use and pro­
vides reliable results, consistent with other Intel 
languages and other implementations of the IEEE 
proposed Floating-Point standard. 

Supports numerous compiler options to control the 
compilation process, to INCLUDE files, flag non­
standard Pascal statements and others to control 
program listings and object modules. 

Utilizes the IE.EE standard for Floating-Point Arith­
metic (the Intel REALMATH standard) for arithmetic 
operations. 

Well-defined and documented run-time operating 
system interfaces allow the user to execute the ap­
plications under user-designed operating systems. 

Provides run-time support for co-processors. All 
real-type arithmetic is performed on the 86/20 nu­
meric data processor unit or software emulator. 
Run-time library routines, common between Pascal 
and other Intel languages (such as FORTRAN), per­
mit efficient and consistently accurate results. 

Extended relocation and linkage support allows the 
user to link Pascal program modules with routines 
written in other languages for certain parts of the 
program. For example, real-time or hardware de­
pendent routines written in ASM 86/88 or PUM 86/88 
can be linked to Pascal routines, further extending 
the user's ability to write structured and modular 
programs. 

PASCAL 86/88 programs "talk" to the resident 
operating system using Intel's standard interface for 
translated programs. This allows users to replace 
the development operating system by their own 
operating systems in the final application. 

PASCAL 86/88 takes full advantage of iAPX 86, 88 
high level language architecture to generate 
efficient machine code without using time­
consuming optimization algorithms. 

Compiler options can be used to control the pro­
gram listings and object modules. While debugging, 
the user may generate additional information such 
as the symbol record information required and 
useful for debugging using ICE emulation. After de­
bugging, the production version may be streamlined 
by removing this additional information. 
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PASCAL 86/88 

SPECIFICATIONS 

Operating Environment 

REQUIRED HARDWARE 
Intellec® Series III Microcomputer Development 
System 
-System Console 
-Double Density Dual Diskette Drive OR Hard Disk 

ORDERING INFORMATION 

Part Number Description 

MDS*-314 PASCAL 86/88 Software Package 

Requires software license . 

REQUIRED SOFTWARE 
ISIS-II Diskette Operating System V4.1 or later 

Documentation Package 

PASCAL 86 User's Guide (121539-001) 

Shipping Media 

Flexible Diskettes 
-Single and Double Density 

• MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered trademark of Mohawk Data Science. 
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8086/8088 SOFTWARE DEVELOPMENT PACKAGE 

PL/M-86 high level programming lan­
guage 

ASM86 macro assembler for 8086/8088 
assembly language programming 

LlNK86 and LOC86 linkage and 
relocation utilities 

CONV86 converter for conversion of 
8080/8085 assembly language source 
code to 8086/8088 assembly language­
source code 

OH86 object-to-hexadecimal converter 

LI B86 ,library manager 

The 8086/8088 software development package provides a set of software development tools for the 8086 and the 8088 
microprocessors and iSSC 86/12 single board computer. The package operates under the ISIS·II operating system on 
Intellec Microcomputer Development Systems-Model 800 or Series II-thus minimizing requirements for additional 
hardware or training for Intel Microcomputer Development System users. 

The package permits 8080/8085 users to efficiently convert existing programs into 8086/8088 object code from either 
8080/8085 assembly language source code or PLlM·80 source code. 

For the new Intel Microcomputer Development System user, the package operating on an Intellec Model 230 Micro· 
computer Development System provides total 8086/8088 software development capability. 
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8086/8088 SOFTWARE DEVELOPMENT PACKAGE 

PL/M·86 HIGH LEVEL PROGRAMMING LANGUAGE 

Sophisticated new complier design 
allows user to achieve maximum benefits 
of 8086/8088 capabilities 

Language Is upward compatible from 
PL/M·80, assuring MCS·80/8S design 
portability 

Supports 16·bit signed integer and 32·bit 
floating point arithmetic 

Produces relocatable and linkable object 
code 

Supports full extended addressing 
features of the 8086 and the 8088 
microprocessors 

Code optimization assures efficient code 
generation and minimum application 
memory utilization 

Like its counterpart for MCS·80/85 program development, PLiM·86 is an advanced structured high level programming 
language. PLlM·86 is a new compiler created specifically for performing software development for the Intel 8086 and 
8088 Microprocessors. 

PLlM·86 has significant new capabilities over PLlM·80 that take advantage of the new facilities provided by the 8086 
and the 8088 microprocessors, yet the PLlM·86 language remains upward compatible from PLlM·80. 

With the exception of interrupts, hardware flags, and tlme·critical code sequences, PLlM·80 programs may be recom· 
piled under PLM·86 with little or no conversion required. PLlM·86, like PLlM·80, is easy to learn, facilitates rapid pro· 
gram development, and reduces program maintenance costs. 

PLiM is a powerful, structured high level algorithmic language in which program statements can naturally express the 
program algorithm. This frees the programmer to concentrate on the system implementation without concern for bur· 
densome details of assembly language programming (such as register allocation, meanings of assembler mnemonics, 
etc.). 

The PLlM·86 compiler efficiently converts free·form PLiM language statements into equivalent 8086/8088 machine in· 
structions. Substantially fewer PLiM statements are necessary for a given application than if it were programmed at 
the assembly language or machine code level. 

Since PLiM programs are implementation problem oriented and more compact, use of PLiM results in a high degree of 
engineering productivity during project development This translates into significant reductions in Initial software 
development and follow·on maintenance costs for the user. 

FEATURES 

Major features of the Intel PLlM·86 compiler and pro· 
gramming language include: 

• Supports Five Data Types 

- Byte: 8·bit unsigned number 
- Word: 16·bit unsigned number 

Integer: 16·blt signed number 
- Real: 32·bit floating point number 
- Pointer: 16·bit or 32·bit memory address indicator 

• Block Structured Language 

- Permits use of structured programming tech· 
niques 

• Two Data Structuring Facilities 

Array: I ndexed list of same type data elements 
- Structure: Named collection of same or different 

type data elements 
- Combinations of Each: Arrays of structures or 

structures of arrays 

• Relocatable and Linkable Object Code 

- Permits PLlM·86 programs to be developed and 
debugged in small modules. These modules can 
be easily linked with other PLlM·86 or ASM86 ob· 
ject modules andlor library routines to form a com· 
plete application system. 

• Bullt·ln String Handling Facilities 

- Operates on byte strings or word strings 
- Six Functions: MOVE, COMPARE, TRANSLATE, 

SEARCH, SKIP, and SET 

• Automatic Support for 8086 Extended Addressing 

- Three compiler options offer a separate model of 
computation for programs up to 1·Megabyte In 
size 

- Language transparency for extended addressing 

• Support for ICE·86 Emulator and Symbolic Debugging 

- Debug option for Inclusion of symbol table In ob· 
ject modules for In·Clrcult Emulation with sym· 
bolic debugging 
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8086/8088 SOFTWARE DEVELOPMENT PACKAGE 

o Numerous Complier Options 

- A host of 26 compiler options including: 

o Conditional compilation 
o Included file or copy facility 
o 'Two'leveis of optimization 
o Intra-module and inter-module cross reference' 
o Arbitrary placement of compiler and user files 

on any available combination of disk drives 

o Reentrant and Interrupt Procedures 

- May be specified as user options 

BENEFITS 

PLlM-86 is designed to be an efficient, cost-effective 
solution to the special requirements of 8086/8088 
Microcomputer Software Development, as illustrated by 
the following benefits of PLlM-86 use: 

o Reduced Learnlrig Effort - PLlM-86is easy to learn 
and to use, even for the novice programmer. 

o Earlier Project Completion - Critical projects are 
completed much earlier than otherwise possible 
because PLlM-86, a structured high-level language, in­
creases programmer productivity. 

o Lower Development Cost - Increases in programmer 
productivity translate immediately into lower soft- , 
ware development costs because less programming 
resources are required for a given programmed func­
tion. 

o Increased Reliability - PLlM.-86 is designed to aid in 
the development of reliable software (PLlM-86 pro­
grams are simple statements of the program 
algorithm). This substantially reduces the risk of cost­
ly co'rrection of errors, in systems that have already 
reached full production status, as the more simply 
stated the program is, the more likely it is to perform 
its intended function. 

o Easier Enhancements and Maintenance - Programs 
written in PLiM tend to be self-documenting, thus 
easier to read and understand. This means it is easier 
to enhance and maintain PLiM programs as the 
system capabilities expand and future products are 
developed. 

o Simpler Project Development - Thelntellec Develop­
ment Systems offer a cost-effective hardware base 

for the development of 8086 and 8088 designs. 
PLlM-86 and other elements of ',SIS-i1 and the 80861 
8088 Software Development Package are all that is 
needed for development of software for the 8086 and 
the 8088 microcomputers and iSBC 86/12 single board 
computer_ This further reduces development time and 
costs because expensive (and remote) time sharing of 
large computers is not required. Present users of Intel 
Intellec Development Systems can begin to develop 
8086 and 8088 designs without expensive hardware 
reinvestment or costly,retraining. 

SAMPLE PROGRAM 

STATISTICS: DO; 

I*The procedure in this mOdule computes the mean and 
variance of an array of data, X, of length N + 1, according 
to the method of Kahan and Parlett (University of Cali­
fornia, Berkeley, Memo no. UCB/ERL M77/21.*1 

STAT: PROCEDURE(X$PTR,N,MEAN$PTR, 
VARIANCE$PTR) PUBLIC; 

DECLARE 
(X$PTR,MEAN$PTR.VARIANCE$PTR) 
POINTER,X BASED X$PTR (1) REAL, 
N INTEGER, 
MEAN BASED MEAN$PTR REAL, 
VARIANCE BASED VARIANCE$PTR REAL, 
(M,Q,DIFF) REAL, 
I INTEGER; 

M=X(O); 
M=O.O; 

DO 1= 1 TO N; 
DIFF=X(I)- M; 
M = M + DIFF/FLOAT(I + 1); 
Q= Q+ DIFF*DIFF*FLOAT(I)/FLOAT(I + 1); 

END; 

MEAN=M; 
VARIANCE = Q/FLOAT(N); 

END STAT; 

END STATISTICS; 
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8086/8088 SOFTWARE DEVELOPMENT PACKAGE 

ASM86 MACRO ASSEMBLER 

Powerful and flexible text macro facility 
with three macro listing options to aid 
debugging 

Highly mnemonic and compact 
language, most mnemonics represent 
several distinct machine instructions 

"Strongly typed" assembler helps detect 
errors at assembly time 

High-level data structuring facilities 
such as "STRUCTUREs" and 
"RECORDs" 

Over 120 detailed and fully documented 
error messages 

Produces relocatable and linkable object 
code 

ASM86 is the "high-level" macro assembler for the 8086/8088 assembly language. ASM86 translates symbolic 
8086/8088 assembly language mnemonics into 8086/8088 machine code. 

ASM86 should be used where maximum code efficiency and hardware control is needed. The 8086/8088 assembly 
language includes approximately 100 instruction mnemonics. From these few mnemonics the assembler can generate 
over 3,800 distinct machine instructions. Therefore, the software development task is simplified, as the programmer 
need know only 100 mnemonics to generate all possible 8086/8088 machine instructions. ASM86 will generate the 
shortest machine instruction possible given no forward referencing or given explicit information as to the 
characteristics of forward referenced symbols. 

ASM86 offers many features normally found only in high-level languages. The 8086/8088 assembly language is strong­
ly typed. The assembler performs extensive checks on the usage of variables and labels. The assembler uses the at­
tributes which are derived explicitly when a variable or label is first defined, then makes sure that each use of the sym­
bolln later instructions conforms to the usage defined for that symbol. This means that many programming errors will 
be detected when the program is assembled, long before it is being debugged on hardware. 

FEATURES 

Major features of the Intel 8086/8088 assembler and 
assembly language include: 

• Powerful and Flexible Text Macro Facility 
Macro calls may appear anywhere 
Allows user to define the syntax of each macro 
Built-in functions 
• conditional assembly (IF-THEN-ELSE, WHILE) 
• repetition (REPEAT) 
• string processing functions (MATCH) 
• support of assembly time I/O to console (IN, 

OUT) 
Three Macro Listing Options include a GEN mode 
which provides a complete trace of all macro calls 
and expansions 

• High-Level Data Structuring Capability 

STRUCTURES: Defined to be a template and then 
used to allocate storage. The familiar dot notation 
may be used to form instruction addresses with 
structure fields. 
ARRAYS: Indexed list of same type data elements. 
RECORDS: Allows bit-templates to be defined and 
used as instruction operands andlor to allocate 
storage. 

• Fully Supports 8086/8088 Addressing Modes 

Provides for complex address expressions involv­
ing base and indexing registers and (structure) 
field offsets. 

Powerful EQU facility allows complicated expres­
sions to be named and the name can be used as a 
synonym for the expression throughout the 
module. 

• Powerful STRING MANIPULATION INSTRUCTIONS 

Permit direct transfers to or from memory or the 
accumulator. 
Can be prefixed with a repeat operator for 
repetitive execution with a count-down and a con­
dition test. 

• Over 120 Detailed Error Messages 
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8086/8088 SOFTWARE DEVELOPMENT PACKAGE 

• Generates Relocatable and Linkable Object Code­
Fully Compatible with LlNK86, LOC86 and LIB86 

- Permits ASM86 programs to be developed and 
debugged in small modules. These mOdules can 
be easily linked with other ASM86 or PLlM-86 ob­
ject modules and/or library routines to form a com­
plete application system. 

• Support for ICE-86 Emulation and Symbolic Oebug­
glng 

- Debug options for inclusion of symbol table in 
object modules for In-Circuit Emulation with sym­
bolic debugging. 

BENEFITS 

The 8086/8088 macro assembler allows the extensive 
capabilities of the 8086/8088 to be fully exploited. In any 
application, time and space critical routines can be 
effectively written in ASM86. The 8086/8088 assembler 
outputs relocatable and linkable object modules. These 
object modules may be easily combined with object 
modules written in PLlM-86-lntel's structured, high­
level programming language. ASM86 compliments 
PLM-86 as the programmer may choose to write each 
module in the language most appropriate to the task 
and then combine the modules into the complete appli­
cations program using the 8086/8088 relocation and 
linkage utilities. 

CONV86 

MCS-BO/aS to MCS-B6 ASSEMBLY LANGUAGE 
CONVERTER UTILITY PROGRAM 

Translates 8080/8085 Assembly 
Language Source Code to 8086/8088 
Assembly Language Source Code 

Provides a fast and accurate means to 
convert 8080/8085 programs to the 8086 
and the 8088, faCilitating program 
portability 

Automatically generates proper ASM·86 
directives to set up a "virtual 8080" 
environment that is compatible with 
PLM·86 

In support of Intel's commitment to software portability, CONV86 is offered as a tool to move 8080/8085 programs to 
the 8086 and the 8088. A comprehensive manual, "MCS-86 Assembly Language Converter Operating Instructions for 
ISIS-II Users" (9800642), covers the entire conversion process. Detailed methodology of the conversion process is fully 
described therein. 

CONV86 will accept as input an error-free 8080/8085 assembly-language source file and optional controls, and produce 
as output, optional PRINT and OUTPUT files. 

The PRINT file is a formatted copy of the 8080/8085 source and the 8086/8088 source fiie with embedded caution 
messages. 

The OUTPUT file is an 8086/8088 source file. 

CONV86 issues a caution message when it detects a potential problem in the converted 8086/8088 code. 

A transliteration of the 8080/8085 programs occurs, with each 8080/8085 construct mapped to its exact 8086/8088 
counterpart: 

-Registers 
-Condition flags 
-I nstructions 
-Operands 
-Assembler directives 
-Assembler control lines 
-Macros 
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8086/8088 SOFTWARE DEVELOPMENT PACKAGE 

Because CONV86 Is a transliteration process, there Is the possibility of as much as a 15%-20% code expansion over 
the 8080/8085 code. For compactness and efficiency It is recommended that critical portions of programs be re-coded 
In 8086/8088 assembly language. 

Also, as a consequence of the transliteration, some manual editing may be required for converting instruction se­
quences dependent on: 

·instruction length, timing, or encoding 
-Interrupt processing l mechanical editing procedures 
-PLIM parameter passing conventions ~ for these are suggested in the converter manual. 

The accompanying diagram illustrates the flow of the conversion process. Initially, the abstract program may be repre· 
sented in 8080/8085 or 8086/8088 assembly language to execute on that respective target machine. The conversion 
process is porting a source destined for the 8080/8085 to the 8086 or the 8088 via CONV86. 

SOURCE CODE ABSTRACT PROGRAM SOURCE CODE 
IN 8080/80BS ------ IN 808618088 

ASSEMBLY LANG ALGORITHM ASSEMBLY LANG 

ASSEMBLE 

II II 
ASSEMBLE 

FOR CONva6 . FOR 
BOBOl8085 808616088 

EXECUTE f-------- EQUIVALENT f-------- EXECUTe 
ON ON 

B08016085 f-------- FUNCTION f-------- 6086/8088 

PORTING 80BO/8085 SOURCE CODe TO THE 808618088 
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LINK86 

Automatic combination . of separately 
complied or assembled 8086/8088 
programs into a relocatable module 
Automatic.selectlon ()f required modules 
from specified libraries to satisfy . 
symbolic references 
Exten·sive debug symbol manipulation, 
allowing line numbets,local symbols, 
and public symbols to be purged and 
listed selectively 

Automatic generation of a summary map 
giving results of the LINK86 process . 

Abbreviated control syntax 
Relocatable modules .may be merged 
Into a single module suitable for 
inclusion in a library 
Supports "incremental" linking 
Supports type checking of public and 
external symbols 

LINK86 combines object modules specified in the LINK86 input list into a single output module. LlNK86 combines 
segments from the input modules according to the order in which the modules are listed. 

Support for incremental linking is provided since an output module produced by LlNK86 can be an input to another 
link. At each stage in the. Incremental linking process,unnEleded public symbols may be purged. 

LlNK86 supports type checking of public and external symbols reporting an error If their types are not consistent. 

LlNK86 will link any valid set of input modules without any controls. However, controls are available to control the out­
put of diagnostic information in the LlNK86 process and to control the content of the output module. 

LlNK86 allows the user to create a large program as the combination of several smaller, separately compiled modules. 
After development and debugging of these component modules the user can link them together, locate them using 
LOC86, and enter final testing with much of the work accomplished. 

LOC86 

Automatic and independent relocation 
of segments. Segments may be 
relocated to best match users memory 
configuration 

Extensive debug symbol manipulation, 
allowing line numbers, local symbols, 
and public symbols to be purged and. 
listed selectively 

Automatic generation of a summary map 
giving starting address, segment 
addresses and lengths,. and debug 
symbols and their addresses 

Extensive capability to .manipulate the 
order and placement of segments in 
8086/8088 memory 

Abbreviated control syntax 

Relocatability allows the· programmer to code programs or sections of programs without having to know the final ar-
rangement of the object code in memory.· . . 

LOC86 converts relative addresses In an input module to absolute addresses. LOC86 orders the segments in the input 
module and assigns absolute addresses to the segments. The sequence In which the segments in the input module 
are assigned absolute addresses is determined by their order In the Input module and the controls supplied with the 
command. 

LOC86 will relocate any valid input module without any controls. However, controls are available to control the output 
of diagnostic Information in the LOC86 process, to control the content of the output module, or both. 

The program you are developing will almost certainly use some mix of random access memory (RAM), read-only 
memory (ROM), and/or programmable read-only memory (PROM). Therefore, the location of your program affects both 
cost and performance In your application. The relocation feature allows you to develop your program on the Intellec 
development system and then simply relocate the object code to suit your application. 
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Converts an 8086/8088 absolute object 
module to symbolic hexadecimal format 

Facilitates preparing a file for later 
loading by a symbolic hexadecimal 
loader, such as the iSBC Monitor or 
Universal PROM Mapper 

OH86 

Converts an absolute module to a more 
readable format that can be displayed 
on a CRT or printed for debugging 

The OH86 command converts an 8086/8088 absolute object module to the hexadecimal format. This conversion may 
be necessary to format a module for later loading by a hexadecimal loader such as the ISBC 86/12 monitor or Universal 
Prom Mapper. The conversion may also be made to put the module in a more readable format that can be displayed or 
printed. 

The module to be converted must be in absolute format; the output from LOC86 is in absolute format. 

LlB86 is a library manager program 
which allows you to: 

Create specially formatted files to 
contain libraries of object modules 

Maintain these libraries by adding or 
deleting modules 

Print a listing of the modules and 
public symbols in a library file 

UB86 

Libraries can be used as input to LINK86 
which will automatically link modules 
from the library that satisfy external 
references in the modules being linked 

Abbreviated control syntax 

Libraries aid in the Job of building programs. The library manager program, LlB86, creates and maintains files contain­
ing object modules. The operation of LlB86 is controlled by commands to Indicate which operation LlB86 is to per­
form. The commands are: 

CREATE - creates an empty library file 
ADD - adds object modules to a library file 
DELETE - deletes modules from a library file 
LIST - lists the module directory of library files 
EXIT - terminates the LlB86 program and returns control to ISIS-II 
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PLlM·86 
SOURCE 

ASM86 
SOURCE 

RELOCAT ABLE 
OBJECT MODULE 

RELOCATABLE 
OBJECT MODULE 

87150 

lINK86 
AND 

LOCSS 

USER 
SYSTEM 

ICE·86 

SDK·B6 

iSBC 86112 

UPM 



8086/8088 SOFTWARE DEVELOPMENT PACKAGE 

SPECIFICATIONS 
Operating Environment 
Required Hardware 

Intellec Microcomputer Development System 

- MDS-BOO, MDS-B88 
- Series II MDS-220 or MDS-230 
64K Bytes of RAM Memory 

Dual Diskette Drives 

- Single or Double' Density 

System Console 

- CRT or Hardcopy Interactive Device 

Optional Hardware 

Universal PROM Programmer 
Line Printer' 
ICE-86lM' 

Raqulred Software 

ISIS-II Diskette Operating System 

- Single or Double' Density 

• Recommended 

ORDERING INFORMATION 
Part Number Description 
MDS-311 BOB6/B088 Software Development 

Package 

Also available In the following development support 
packages: 

Part Number Description 
SP86A-KIT 

SPB6B-KIT 

SPB6A Support Package (for Intellec 
Model BOO) 

Includes ICE-B6 In-Circuit Emulator 
(MDS-86-ICE) and BOB6/BOBB Software 
Development Package (MDS-311) 

SPBBB Support Package (for Series II) 

Includes ICE-B6 In-Circuit Emulator 
(MDS-86-ICE), BOB6/BOBB Software 
Development Package (MDS-31l), 
and Series II Expansion Chassis 
(MDS-201) 

8-151 

Documentation Package 

PLlM-86 Programming Manual (9800466) 
ISIS-II PL/M-B6 Complier Operator's Manual (9B0047B) 
MCS-B6 User's Manual (9800722) 
MCS-86 Software Development Utilities Operating 

Instructions for ISIS-II Users (9800639) 
MCS-86 Macro Assembly Language Reference Manual 

(9800640) 
MCS-B6 Macro Assembler Operating Instructions for 

ISIS-II Users (9B00641) 
MCS-86 Assembly Language Converter Operating 

Instructions for ISIS-II Users (9B00642) 
Universal PROM Programmer User's Manual 

(9800B19A) 

Flexible Diskettes 

- Single and Double' Density 



8087 
SOFTWARE SUPPORT PACKAGE' 

• ProgriJm Generation for the 8087 . 
Numeric Data Processor on the. 
Intellec® Microcomputer Development 
System 

• Consists of: 8086/8087/8088 Macro 
Assembler, 8087 Software Emulator 

• Macro Assembler Generates Code for 
8087 Processor or Emulator, While 
Also Supporting the 8086/8088 
Instruction Set 

• 8087 Emulator Duplicates Each 8087 .. 
Floating-Point Instruction in Software, 
for Evaluation of Prototyping, or for 
Use in an End Product 

• Macro Assembierand 8087 Emulator 
are Fully Compatible with Other 
8086/8088 Development Software 

• Implementation of the IEEE Proposed 
Floating-Point Standard (the Intel® 
Realmath Standard) 

The 8087 Software Support Package is an optional extention of Intel's 8086/8088 Software Development 
Package that runs under ISIS"" on an Intellec or Series II Microcomputer Development System. 

The 8087 Software Support Package consists of the 8086/8087/8088 Macro Assembler, and the Full 8087 
Emulator. The assembler is a functional superset of the 8086/8088 Macro Assembler, and includes instruc­
tions for over sixty new floating-point operations, plus new data types supported.by the 8087 .. 

The 8087 Emulator is an 8086/8088 object module that simulates the environment of the 8087, and executes 
each floating-point operation using software algorithms. This emulator functionally duplicates the operation 
of the 8087 Numeric Data Processor. .... 

Also included in this package are interface libraries to link with 8086/8087/8088 object modules, which are 
used for specifying whether the 8087 Processor or the 8087 Emulator is to be used. This enables the run-time 
environment to be invisible to the programmer at assembly time. 

The following are trademarks of Intel Corporation and may,be used only to identify Intel products: BXP, CREDIT,lntellec, Multibus, i, iSeC, Multimodule, ICE, iSeX, PROMP:r, iRMX, 
ICS, Library Manager. Prom ware, Insite, MeS. RMX, Intel. Megachassis, UPI. Intelevision, Micromap, "Scope and the combination of iCE, ICS, ISeC, iSeX, MeS, or AMX and a 

~~~~:C~~~~~f:=tion 1980 8-152 121653-001 Rev. A 



8087 SOFTWARE SUPPORT PACKAGE 

FUNCTIONAL DESCRIPTION 

8086/8087/8088 Macro Assembler 

The 8086/8087/8088 Macro Assembler translates 
symbolic macro assembly language instructions 
into appropriate machine instructions. It is an ex­
tended version of the 8086/8088 Macro Assembler, 
and therefore supports all of the same features and 
functions, such as limited type checking, condi­
tional assembly, data structures, macros, etc. The 
extensions are the new instructions and data types 
to support floating-point operations. Realmath 
floating-point instructions (see Table 1) generate 
code capable of being converted to either 8087 in­
structions or interrupts for the 8087 Emulator. The 
Processor/Emulator selection is made via interface 
libraries at LINK-time. In addition to the new 

floating-point instructions, the macro assembler 
also introduces two new 8087 data types: aWORD 
(8 bytes) and TBYTE (ten bytes). These support the 
highest precision of data processed by the 8087. 

Full 8087 Emulator 

The Full 8087 Emulator is a 16-kilobyte object mod­
ule that is linked to the application program for 
floating-point operations. Its functionality is identi­
cal to the 8087 chip, and is ideal for prototyping and 
debugging floating-point applications. The 
Emulator is an alternative to the use of the 8087 chip, 
although the latter executes floating-point applica­
tions up to 100 times faster than an 8086 with the 
8087 Emulator. Furthermore, since the 8087 is a 
"co-processor," use of the chip will allow many. op­
erations to be performed in parallel with the 8086. 

Table 1. 8087 Instructions 

Arith metic Instructions Processor Control Instructions 

Addition FINIT/FNINIT Initialize processor 

FADD Add real FDISI/FNDISI Disable interrupts 
FADDP Add real and pop 
FIADD Integer add 

Subtraction 

FENI/FNENI Enable interrupts 

FLDCW Load control word 

FSUB Subtract real 
FSTCW/FNSTCW Store control word 

FSUBP Subtract real and pop FSTSW/FNSTSW Store status word 

FISUB Integer subtract 
FSUBR Subtract real reversed 
FSUBRP Subtract real reversed and 

FCLEX/FNCLEX Clear exceptions 

FSTENV/FNSTENV Store environment 

pop FLDENV Load environment 
FISUBR Integer subtract reversed FSAVE/FNSAVE Save state 

Multiplication FRSTOR Restore state 
FMUL Multiply real 
FMULP Multiply real and pop 
FIMUL Integer multiply 

FINCSTP Increment stack pointer 

FDECSTP Decre,ment stack pointer 

Division FFREE Free reg ister 

rDIV Divide real FNOP No operation 
FDIVP Divide real and pop FWAIT CPU wait 
FIDIV Integer divide 
FDIVR Divide real reversed 
FDIVRP Divide real reversed .and Comparison Instructions 

pop 
FIDIVR Integer divide reversed FCOM Compare real 

Other Operations FCOMP Compare real and pop 
FSQRT Square root 
FSCALE Scale 
FPREM Partial remainder 

FCOMPP Compare real and pop 
twi.ce 

FRNDINT Round to integer FICOM Integer com pare 
FXTRACT Extract exponent and 

significand 
FABS Absolute value 

FicOMP Integer compare and pop 

FTST Test 

FCHS Change sign FXAM Examine 
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Table 1, ,8087 Instructions (cont'd) 

Transcendental Instructions 

FPTAN Partial tangent 

FPATAN Partial arctangent 

F2XM1 2'-1 

FYL2X y. 10g,X 

FYL2XP1 y. 10g,(X+ 1) 

Constant Instructions 

FLDZ Load +0,0 

FLD1 Load +1,0 

FLDPI Load 11' 

FLDL2T Load log,10 

FLDL2E Load log,e 

FLDLG2 Load log 102 

FLDLN2 Load log,2 

SPECIFICATIONS 

Operating Environment 

REQUIRED HARDWARE 
Intellec® Microcomputer Development System 
-Model 800 
-Series, II (Models 220, 225 or equivalent) 

64K Bytes of RAM Memory 

Minimum One Diskette Drive 
-Single or Double' Density 

System Console 
-CRT or Hardcopy Interactive Device 

OPTIONAL HARDWARE 
Universal PROM Programmer' 
Line Printer' 

'Recommended 

ORDERING INFORMATION 

Part Number Description 

MDS'-38? 808? Software Support Package 

Requires Software License 

Data .. Transfer Instructions 

Real Transfers 

FLD Load real 
FST Store real 
FSTP Store real and pop 
FXCH Exchange registers 

Inleger Transfers 

FILD Integer load 
FIST Integer store 
FISTP Integer store and pop 

Packed Decimal Transfers 

FBLD Packed decimal (BCD) 
load 

FBSTP Packed decimal (BCD) 
store and pop 

REQUIRED SOFTWARE 
ISIS-II Diskette Operating System 
-Single or Double Density 

8086/8088 Software Development Package 

Documentation Package 

8086/8087/8088 Macro Assembly Language Refer­
ence Manual for 8080/808S-Based Development 
Systems (121623-001) 

8086/8087/8088 Macro Assembler Operating In­
structions for 8080/808S-Based Development Sys­
tems (121624-001) 

The 8086 Family Users Manual Supplement for the 
8087 Numeric Data Processor (121586-001) 

Shipping Media 

1 Single and 1 Double Density Diskette 

*MDS is an ordering code only and is not used as a product name or trademark, MDS" is a registered trademark of Mohawk Data Sciences 
Corporation, 

B-154 AFN-01574A 



8089 ASSEMBLER SUPPORT PACKAGE 

8089 I/O processor program generation 
on the Intellec Microcomputer 
Development System. 

Relocatable object module compatible 
with the 8086 and 8088 Microprocessors. 

Supports 8089·based addressing modes 
with a structure facility that enables easy 
access to based data. 

Fully detailed set of error messages. 

Includes software development utilities 
to facilitate 8089 design. 

-LIN K86: Combines 8086 or 8088 object 
modules with 8089 object 
modules and resolves 
external references. 

-LOC86: Assigns absolute memory 
addresses to 8089 object 
modules. 

-OH86: Converts 8086/8088/8089 
object code to symbolic 
hexadecimal format. 

-UPM86: . A PROM programming aid 
which has been updated to 
support PROM programming 
for 8086, 8088 and 8089 
applications. 

The 8089 Assembler Support Package extends Intellec microcomputer development system support to the 8089 i/O 
Processor. The assembler translates 8089 assembly language source instructions into appropriate machine opera­
tion codes. The 8089 Assembler Support Package allows the programmer to fully utilize the capabilities of the 80891/0 
Processor. 
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FUNCTIONAL DESCRIPTION 

The 8089 Assembler Support Package contains the 8089 
assembler (ASM89) as well as LlNK86 and LOC86-
relocation and linkage utilities, OH86-8086/8088/8089 
object code to hexadecimal converter, and UPM86-
PROM programming software updated to program object 
code in the 8086 formats. ASM89 translates symbolic 
8089 assembly language instructions into the appro­
priate machine operation codes. The ability to refer to . 
program addresses with symbolic names eliminates the 
errors of hand translation and makes it easier to modify 
programs when adding or deleting instructions. 

ASM89 provides relocatable object module compat­
ibility with the 8086 and 8088 microprocessors. This 
object module compatibility, along with the 8086/8088 
relocation and.linkage utilities, facilitates the designing 
of the 8089 into an 8086 or 8088 system. 

ASM89 fully supports the based addressing modes of 
the 8089. A structure facility in the assembler provides 
easy access to based data. The structure facility allows 
the user to define a template that enables accessing of 
based data symbolically. 

SPECIFICATIONS 

Operating Environment 

Required Hardware 

Intellec Microcomputer Development System 

-MDS-800, MDS-888 

-Series II Models 220 or 230 

64K Bytes of RAM Memory 

Minimum One Diskette Drive 

-Single or Double" Density 

System Console 

-CRT or Hardcopy Interactive Device 

Optional Hardware 

Universal PROM Programmer· 
Line Printer· 

ORDERING INFORMATION: 

Part Number 
MDS-312 

Description 
8089 Assembler Support Package 

A sample assembly listing is shown in table 1. 
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l , INITIUIZE U1S tRT AND 8H9 UUOUD tQNnOLLUS . 
'CONTROL 
, 18U5'OIl'S 

1 .. 1 
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...... ue 12 II 
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21 IIOY81 rCAIPAR!l75.611" 
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IIIC U4C" 31 
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" .. 
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Table 1. Sample 8089 Assembly listing 

Required Software 

ISIS-II Diskette Operating System 

-Single or Double· Density 

Documentation Package 

8089 Assembler User's Guide (9800938) 

8089 Assembler Pocket Reference (9800936) 

MCS-86 Software Development Utilities 
Operating Instructions for ISIS-II User's (9800639) 

MCS-86 Absolute Object File Formats (9800821) 

Universal PROM Programmer User's Manual (9800819) 

Flexible Diskettes 
-Single and Double· Density 6Recommended 
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ICE-86ATM 
iAPX 86 IN-CIRCUIT EMULATOR 

• Real-Time In-Circuit Emulation of iAPX 
86 Microsystems 

• Emulate Both Minimum and Maximum 
Modes of 8086 CPU 

• Full Symbolic Debugging 
• Breakpoints to Halt Emulation on a 

Wide Variety of Conditions 
• Comprehensive Trace of Program 

Execution . 

• Disassembly of Trace or Program 
Memory from Object Code into 
Assembler Mnemonics 

.. Software Debugging With or Without 
User System 

.. Handles Full 1 Megabyte 
Addressability of iAPX 86 

• Enhance Existing ICE-86 ™ Emulators 
to ICE-86A ™ Capabilities with . 
ICE-86L1™ Upgrade Package 

The Intel® ICE-86A In-Circuit Emulator provides sophisticated hardware and software debugging capabilities 
for iAPX 86 microsystems and iAPX 86 Single-Board Computers. These capabilities include In-Circuit Emula­
tion for the 8086 Central Processing Unit plus extensions to debug systems including the 80891/0 Processor 
and 8087 Numeric Processor Ex~ension. The emulator includes three circuit boards which reside in any 
Intellec® Microcomputer Development System. A cable and buffer box connect the Intellecsystem to the user. 
system by replacing the user's 8086, thus extending powerful Intellec system debugging functions into the 
user system. Using the ICE-86A module, the designer can execute prototype 8086 or 8089 software in 
continuous or single~step modes and can substitute blocks of Intellec system memory for user equival~nts. 
Breakpoints allow the user to stop emulation on user-specified conditions of the iAPX 86 system, and the trace 
capability gives a detailed history of the program execution prior to the break. All user access to the prototype 
system software may be done symbolically by referring to the source program variables and labels. 

The ICE-86Uln-Circuit Emulator upgrade package converts any existing ICE-86 module (non"A version) tothe 
capabilities of an ICE-86A module. 



ICE-86A™ IN-CIRCUIT EMULATOR 

INTEGRATED HARDWARE/SOFTWARE 
DEVELOPMENT 

The ICE-86A emulator allows hardware and software 
development to proceed interactively. This is more 
effective than the traditional method of independent 
hardware and software development followed by 
system integration. With the ICE-86A module, pro­
totype hardware can be added to the system as it is 
designed. Software and hardware testing occurs 
while the product is being developed. 

Conceptually, the ICE-86A emulator assists three 
stages of development: 

1. It can be operated without being connected to 
the user's system, so the ICE-86A module's 
debugging capabilities can be used to facilitate 
program development before any of the user's 
hardware is available. 

2. Integration of software and hardware can begin 
when any functional element of the user system 
hardware is connected to the 8086 socket. 
Through ICE-86A emulator mapping capabilities, 
Intellec memory, ICE module memory, or diskette 
memory can be substituted for missing prototype 
memory. Time-critical program modules are 
debugged before hardware implementation by 
using the 2K-bytes of high-speed ICE-resident 
memory. As each section of the user's hardware is 
completed, it is added to the prototype. Thus 
each section of the hardware and software is 
"system" tested as it becomes available. 

3. When the user's prototype is complete, it is tested 
with the final version of the user system software. 
The ICE-86A module is then used for real-time 
emulation of the 8086 to debug the system as a 
completed unit. 

Thus the ICE-86A module provides the user with the 
ability to debug a prototype or production system at 
any stage in its development without introducing 
extraneous hardware or software test tools. 

SYMBOLIC DEBUGGING 

Symbols and PUM statement numbers may be sub­
stituted for numeric values in any of the ICE-86A 
emulator commands. This allows the user to make 
symbolic references to I/O ports, memory ad­
dresses, and data in the user program. Thus the user 
need not remember the addresses of variables or 
program subroutines. 

Symbols can be used to reference variables, pro­
cedures, program labels, and source statements. A 
variable can be displayed or changed by referring to 
it by name rather than by its absolute location in 
memory. Using symbols for statement labels, pro­
gram labels, and procedure names simplifies both 
tracing and breakpoint setting. Disassembly of a 
section of code from either trace or program 
memory into its assembly mnemonics is readily 
accomplished. 

BUFFER BOX 
PLUG INTO 
USER 
8086 SOCKET 

,-___ Y~.C~AB~L~E ~X~.C~A~BL~E ______________________ --, 

r------------- ------------------------ --, 
I .... ____ -, T·CABLE I 
I I I I 
I I I I 
I I I " I I I I IN~~~TEC I I 
I I I AUXILLIARY CONNECTOR I 
I I I 
I I , I 
I L ____ -I I 
L ____________________________ ~~L~~T.=.MJ 

Figure 1. ICE-86A™ Eniulator Block Diagram 
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ICE-86A ™ IN-CIRCUIT EMULATOR 

A typical iAPX 86 development configuration. It is based on Intellec® Series III Development System, which 
hosts the ICE-86ATM emulator. The ICE-86ATM module is shown connected to a user prototype system, In this 
case, an SDK-86. 

Furthermore, each symbol may have associated 
with it one of the data types BYTE, WORD, INTEGER, 
SINTEGER (for short, 8-bit integer), POINTER, 
REAL, OREAL, or TREAL. Thus the user need not 
remember the type of a source program variable 
when examining or modifying it. For example, the 
command "!VAR" displays the value in memory of 
variable VAR in a format appropriate to its type, whiie 
the command "!VAR = !VAR + 1" increments the 
value of the variable. 

The user symbol table generated along with the ob­
ject file during a PUM-86, PASCAL-86 or FORTRAN-
86 compiiation or an ASM-86 assembly is loaded into 
memory along with the user program which is to be 
emulated. The user can utilize the avaiiable symbol 
table space more efficiently bl using the SELECT 
option to choose which program modules-will have 
symbols loaded in the symbol table. The user may 
also add to this symbol table any additional symbolic 
values for memory add resses, constants, or 
variables that are found useful during system 
debugging. 

The ICE-86A module provides access through sym­
bolic definition to all of the 8086 registers and flags. 
The READY, NMI, TEST, HOLD, RESET, INTR, 
MN/MX, and RQ/GT pins of the 8086 can also be 
read. Symbolic references to key ICE-86A emulation 
information are also provided. 
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MACROS AND COMPOUND COMMANDS 

The ICE-86A module provides a programmable diag­
nostic facility which allows the user to tailor its oper­
ation using macro commands and compound 
commands. 

A macro is a set of ICE-86A commands which is given 
a single name. Thus, a sequence of commands 
which is executed frequently may be invoked simply 
by typing in a single command. The user first defines 
the macro by entering the entire sequence of com­
mands which he wants to execute. He then names 
the macro and stores it for future use. He executes 
the macro by typing its name and passing up to ten 
parameters to the commands in the macro. Macros 
may be saved on a disk file for use in subsequent 
debugging sessions. 

Compound commands provide conditional execu­
tion of commands (IF). and execution of commands 
until a condition is met or until they have been ex­
ecuted a specified number of times (COUNT, 
REPEAT). 

Compound commands and macros may be nested 
any number of times. 

AFN-01950A 



ICE-86A ™ IN-CIRCUIT EMULATOR 

MEMORY MAPPING 

Memory for the user system can be resident in the 
user system or "borrowed" from the Intellec System 
through the ICE-86A emulator's mapping capability. 
The speed of run emulation by the ICE-86A module 
depends on which mapping options are being used. 

The ICE-86A emulator allows the memory which is 
addressed by the 8086 to be mapped in 1 K-byte 
blocks to: 

1. Physical memory in the user's system, which pro­
vides 100 percent real-time emulation at the user­
system clock rate (up to 5 MHz) with no wait 
states. 

2. Either of two 1 K-byte blocks of ICE-86A module 
high-speed memory, which allow nearly full­
speed emulation (with two additional wait states 
per 8086-controlled bus cycle). 

3. Intellec System memory, which provides emula­
tion at approxi mately 0.02 percent of real-ti me with a 
5 MHz clock. 

4. A random-access diskette file, with emulation 
speed comparable to Intellec System memory, ex­
cept the emulation must wait when a new page is 
accessed on the diskette. 

The user can also designate a block of memory as 
non-existent. The ICE-86A module issues an error 
message when any such "guarded" memory is ad­
dressed by the user program. 

As the user prototype. progresses to include 
memory, emulation becomes real time. 

OPERATION MODES 

The ICE-86A software is a RAM-based program that 
provides the user with easy-to-use commands for 
initiating emulation, defining breakpoints, control­
ling trace data collection, and displaying and con­
trolling system parameters. ICE-86A commands are 
configured with a broad range of modifiers which 
provide the user with maximum flexibility in describ­
ing the operation to be performed, 

Emulation 

Emulation commands to the ICE-86A emulator con­
trol the process of setting up, running and halting an 
emulation of the user's iAPX 86 System. Breakpoints 
and tracepoints enable the ICE-86A module to halt 
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emulation and provide a detailed trace of execution 
in any part of the user's program. A summary of the 
emulation commands is shown in Table 1. 

Table 1. Summary of ICE-86ATM Emulation 
Commands 

Command Description 

GO Initializes emulation and allows the user to 
specify the starting point and breakpoints. 
Example: 

GO FROM .STARTTILL .DELAY EXECUTED 

where START and DELAY are statement 
labels. 

STEP Allows the user to single-step through the 
program. 

Breakpoints: The ICE-86A module has two break­
point registers that allow the user to halt emulation 
when a specified condition is met. The breakpoint 
registers may be set up for execution or non­
execution breaking. An execution breakpoint con­
sists of a single address which causes a break 
whenever the 8086 executes from its queue an .in­
struction byte which was obtained from the address. 
A non-execution breakpoint causes an emulation 
break when a specified condition other than an in­
struction execution occurs. A non-execution break­
point condition, using one or both breakpoint 
registers, may be specified by anyone of or a combi­
nation of: 

1. A set of address values. Break on a set of address 
values has three valuable features: 

a. Break on a single address. 

b. The ability to set any number of breakpoints 
within a limited range (1024 bytes maximum) 
of memory. 

c. The ability to break in an unlimited range. Ex­
ecution is halted on any memory access to an 
address greater than (or less than) any 20-bit 
breakpoint address. 

2. A particular status of the 8086 bus (one or more 
of: memory or I/O read or write, instruction fetch, 
halt, or interrupt acknowledge). 

3. A set of data values (features comparable to 
break on a set of address values, explained in 
point one). 

4. A segment register (break occurs when the regis­
ter is used in an effective address calculation). 
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Emulation break can also be set to occur on an 
external signal condition. An external breakpoint 
match output and emulation status lines are pro­
vided on the buffer box. These allow synchronization 
of other test equipment when a break occurs or 
when emulation is begun. 

Tracepoints: The ICE-86A module has two 
tracepoint registers which establish match condi­
tions to conditionally start and stop trace collection. 
The trace information is gathered at least twice per 
bus cycle, first when the address signals are valid 
and second when the data signals are valid. If the 
8086 execution queue is otherwise active, additional 
frames of trace are collected. 

Each trace frame contains the 20 address/data lines 
and detailed information on the status of the 8086. 
The trace memory can store 1,023 frames, or an 
average of about 300 bus cycles, providing ample 
data for detemining how the 8086 was reacting prior 
to emulation break. The trace memory contains the 

last 1,023 frames of trace data collected, even if this 
spans several separate emulations. The user has the 
option of displaying each frame of the trace data or 
displaying by instruction in actual ASM-86 Assem­
bler mnemonics. Unless the user chooses to disable 
trace, the trace information is always available after 
an emulation. 

Interrogation and Utility 

Interrogation and utility commands give th'euser 
convenient access to detailed information about the 
user program and the state of the 8086 that is useful 
in debugging hardware and software. Changes can 
be made in both memory and the 8086 registers, 
flags, input pins, and I/O ports. Commands are also 
provided for various utility operations such as load­
ing and saving program files, defining symbols and 
macros, displaying trace data, setting up the 
memory map, and returning control to ISIS-II.A sum­
mary of the basic interrogation and utility Com­
mands is shown in Table 2. 

Table 2. Selected ICE-BSA ™ Module Interrogation and Utility Commands 

Memory/Register Commands 
Display or change the contents of: 
• Memory 
• BOB6 Registers 
• 8086 Status flags 
• 8086 Input pins 
• 80B6 I/O ports 
• ICE-86A Pseudo-Registers (e.g. emulation timer) 

Memory Mapping Commands 
Display, declare, set, or reset the ICE-86A memory mapping. 

Symbol Manipulation Commands 
Display any or all symbols, program modules, and program 
line numbers and their associated values (locations in 
memory). 

Set the domain (choose the particular program module) for 
the line numbers. 

Define new symbols as they are needed in debugging. 

Remove any or all symbols, modules, and program 
statements. 

Change the value of any symbol. 

Select program modules whose' symbols will be used in 
debugging. 

TYPE 
Assign or change the type of any symbol in the symbol table. 

DASM 
Disassemble user program memory intoASM-86Assembler 
mnemonics. 
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RQ/GT 
Set or display the status of the Request/Grant facility which' 
enables the ICE-8SA module to share the system bus with 
coprocessors. 

BUS 
Display which device in the user's iAPX 86 system is cur­
rently master of the system bus. 

CAUSE 
Display the cause of the most recent emu lation break. 

PRINT 
Display the specified portion of the trace memory. 

LOAD 
Fetch user symbol table and object code from the inputfile. 

EVALUATE 
Display the value of an expression in binary, octal, decimal, 
hexadecimal, and ASCII. 

CLOCK 
Select the internal (ICE-86A module provided, for stand­
alone mode only) or an external (user-provided)· system 
clock. 

RWTIMEOUT 
Allows the user to time out READ/WRITE command signals 
based on the time taken by the 8086 to access lritellec 
memory or diskette memory. 

ENABLE/DISABLE RDY 
Enable or disable logical AND of ICE-BSA emulator Ready 
with the user Ready signal for accessing Intellec memory, 
ICE memory, or diskette memory. 
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iAPX 86/20 DEBUGGING 

The ICE-86A module has the extended capabilities to 
debug iAPX 86/20 microsystems which contain both 
the 8086 microprocessor and the 8087 Numeric 
Processor Extension (NPX). An iAPX 86/20 system is 
configured in the 8086's "maximum" mode and 
communication between the processors is accom­
plished through the RQ/GT signals. Debugging can 
be done either using the 8087 chip itself (in which 
case the 8086 ESCAPE instruction is interpreted as a 
floating point instruction) or using the 8087 
software emulator E8087 (where the 8086 INTER­
RUPT instruction is interpreted as a floating point 
instruction). Three ne\l\l data types are defined to use 
the NPX: 

REAL (4 byte Short Real) 
OREAL (8 byte Long Real) 
TREAL (10 byte Temporary Real) 

While the 8087 NPX is not a programmable part, it 
does interact closely with the 8086 and can execute 
instructions in parallel with it. The ICE-86A module 
provides information abo.ut the relative timing of 
instruction execution in each processor so that the 
complete system can be debugged. Other debug­
ging capabilities available through the ICE-86A 
module are: symbolically disassemble NPX call in­
structions from memory or trace history; display or 
change the control, status and flag values of the 
NPX; display the NPX stack either in hexadecimal or 
disassembled form; and display the last instruction 
address, last operand, and last operand address. 

iAPX 86/11 DEBUGGING 

The 8089 Real-Time Breakpoint Facility (RBF-89) is 
an extension of the ICE-86A emulator that aids in 
testing and trouble-shooting iAPX 86/11 systems de­
signed around a combination of the 8086 CPU and 
the 8089 Input/Output Processor'(IOP). RBF-89 in­
terrogates 8089 registers, sets breakpoints in 8089 
programs, and performs its other functions by pre­
paring special control blocks in application system 
memory. It then issues input/output channel­
attention commands to the 8089 in the user's system 
to perform these functions. While using the RBF-89 
extension, the user can also enter and execute the 
other standard ICE-86A emulator commands. 

RBF~89 allows the user to load his application 
(channel) program from diskette into 8089 lOP 
memory and execute it in real time. The program can 
reside in either local (system) RAM (accessible by 

both the 8086 and 8089 microprocessors), or remote 
RAM (accessible by the 8089 lOP only). The user may 
request execution to begin at any location and con­
tinue until normal termination, a specified break­
point is reached, or the program is otherwise 
aborted. If a program is modified during a debug­
ging session, RBF-89 can save the latest version by 
copying it from application system memory to a disk­
ette fi.le. 

Breakpoints 

RBF-89 supports setting up to twelve breakpoints 
(six per 8089 channel) in the user program. RBF-89 
implements each breakpoint by inserting a HALT 
instruction at the breakpoint location, while saving 
the overwritten instruction in temporary storage. 
When a breakpoint is reached during program ex­
ecution the program halts. At this point the user can 
examine 8089 registers, flags, and memory, and op­
tionally resume program execution. The invoked 
breakpoint address is recorded in one of two break­
point registers-one register for each 8089 channel. 
Through simple RBF-89 commands the user can 
display or change the contents of these registers. 

Symbolic Debugging 

As in the ICE-86A emulator, the RBF-89 extension 
accepts symbolic references for variables and 
labels, including symbols in the symbol table 
generated by the ASM-89 assembler. 

Through RBF-89, the user can display and change 
the contents of : 

- memory, which can be displayed as either 
numeric data or disassembled (8089 assembly­
language mnemonic) code. 

- all 8089 registers except the channel control 
pointer (CCP) and status flags. 

Multiprocessor Operation 

The ICE-86A emulator and RBF-89 support 8089 
configurations in both local and remote modes. The 
ICE-86A emulator may be operating either in mini­
mum or maximum mode. In maximum mode, the 
8086 RQ/GT lines are employed. This is required for 
the 8089 local mode configuration to provide local 
bus arbitration between the two processors. Using 
RBF-89, the user can: 
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Set RQ/GT to operate for a local or remote 
configuration. 

Display status to determine which processor con­
trols the system bus. 

Start and halt 8089 channel programs. 

RBF-89 permits the 8089 and emulated 8086 to run 
simultaneously as well as sequentially. The user can 
specify breakpoints and begin program execution in 
three operating sequences: 

Set breakpoints, start the 8089, and return control 
to the console until a breakpoint is reached or the 
program runs to completion or is aborted. Use this 
sequence when the 8086 and 8089 programs do 
not need to be executed simultaneously. 

Set breakpoints, start the 8089, return control to 
the console, and start the 8086. This sequence lets 
both microprocessors run simultaneously. 

Set breakpoints, start the 8086, and allow that 
program to drive the 8089 program in a mas­
ter/slave relationship. This sequence would be 
used, for instance, to verify the 8086 communica­
tion driver program. 

RBF-89 System Components 

RBF-89 is furnished as a superset of the ICE-86A 
emulator software. Its main components are: 

A HOST PROGRAM that resides in Intellec devel­
opment system RAM, where it serves as an exten­
sion of the ICE-86A emulator's software driver. 
This program, executed by the development sys­
tem, translates the user's keyboard input into low­
level directives that can be processed by the 
RBF-89 control program (described below), and 
converts information supplied by the control pro­
gram into easily understood display output. 

A CONTROL PROGRAM that resides in 'ICE-86A 
emulator memory. Running on the emulator's 8086 
microprocessor, the control program monitors 
such operations as preparing program control 
blocks for communication with the 8089 micro­
processor; issuing commands to the 8089 to start, 
terminate, and continue the 8089 task program; 
and directing the 8089 to start execution of the 
RBF-89 utility program (described below). 

A UTILITY PROGRAM that resides in the 8089 RAM 
in the user's prototype application system. This 
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program, running on the 8089, reads and writes 
data to and from 8089 memory and registers, and 
sets and removes breakpoints in the user's task 
program. 

The 200 bytes of RAM required by the utility pro­
gram must be accessible to both the ICE-86A 
emulator and the 8089. 

DC CHARACTERISTICS OF THE 
ICE-86A ™ MODULE USER CABLE 

1. Output Low Voltages [VodMax)=O.4V] 

ADO-AD15 

A16/S3-A19/S7, BHE/S7, RD, 
lOCK, QSO, QS1, SO, S1, S2, 
WR, M/iQ, DT/R, DEN, ALE, 
INTA 

HlDA 

IOL (Min) 

12 mA 
(24 mA @ 0.5V) 

8 mA 
(16 mA @ 0.5V) 

7 mA 

16 mA 

2. Output High Voltages [VOH (Min)=2.4V] 

ADO-AD15 

A16/S3-A19/S7, BHE/S7, RD, 
lOCK, QSO, QS1, SO, S1, S2, 
WR, M/IO, DT/R, DEN, ALE, 
INTA, HlDA 

RQ/GT 

IOH (Min) 

-3 mA 

-2.6 mA 

250 mA 

3. Input Low Voltages [VIL (Max)=O.8V] 

ADO-AD15 
NMI, ClK 
READY 
INTR, HOLD, TEST, RESET 
MN/MX (0.1 J.Lf to GND) 

IlL (Max) 

-0.2 mA 
-0.4 mA 
-0.8 mA 
-1.4 mA 
-3.3 mA 

4. Input High Voltages [VIH (Min)=2.0V] 

ADO-AD15 
NMI, ClK 
READY 
INTR, HOLD, TEST, RESET 
MN/MX (0.1 J.LF to GND) 

IIH (Max) 

80J.LA 
20 J.LA 
40J.LA 

-0.4 mA 
-1.1 mA 

5. No current is taken from the user circuit at 
Vee pin. 
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SPECI FICATIONS 

ICE-86A Operating Environment 

REQUIRED HARDWARE 
Intellec microcomputer development system with: 

1. Three adjacent slots for the ICE-86A module. 

2. 64K bytes of Intellec memory. If user prototype 
program memory is desired, additional memory 
above the basic 64K is required. 

System console 
Intellec diskette operating system 
ICE-86A module . 

REQUIRED SOFTWARE 
System Monitor 
ISIS-II, version 3.4 or subsequent 
ICE-86A software 

Equipment Supplied 

Printed circuit boards (3) 
Interface cable and emulation buffer module 
Operator's manual 
ICE-86A software, diskette-based 

Emulation Clock 

User system clock up to 5 MHz or 2 MHz ICE-86A 
internal clock in stand-alone mode 

ORDERING INFORMATION 

Part Number Description 

Physical Characteristics 

PRINTED CIRCUIT BOARDS 
Width: 12.00 in (30.48 cm) 
Height: 6.75 in (17.15 cm) 
Depth: 0.50 in (1.27 cm) 
Packaged Weight: 9.00 Ib (4.10 kg) 

Electrical Characteristics 

DC POWER 
Vcc = +5V +5%-1% 
Icc = 17A maximum; 11A typical 
VDD = +12V ±5% 
100 = 120 mA maximum; 80 mA typical 
Vee = -10V ±5% or -12V ±5% (optional) 
ise = 25 mA maximum; 12mA typical 

Environmental Characteristics 

OPERATING TEMPERATURE 
0° to 400C 

OPERATING HUMIDITY 
Up to 95% relative humidity without condensation. 

MDS*-86A-ICE iAPX 86 microsystem in-circuit emulator, cable assembly, and interactive software 

MDS*-86U-ICE Upgrade kit to convert ICE-86 emulators to ICE-86A emulator capabilities. 

*MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered trademark of Mohawk Data 
Sciences Corporation. 
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ICE 86A™, ICE 88A™ 
iAPX 86, 88 IN-CIRCUIT EMULATOR 

• iAPX 86, 88 in-circuit emulation • Disassembly of trace or memory from 
object code into assembler mnemonics 

• Upgradable from ICE-86/88 

• 2K bytes of high-speed memory 

• Full symbolic debugging support for all 
languages • Software debugging with or without user 

system 

• Supports iAPX 86/21, 88/21 
configurations • Handles full 1 megabyte address ability 

of iAPX 86, 88 

• Breakpoints to halt emulation 

• Comprehensive trace of program 
execution, both conditional and 
unconditional 

The ICE-86A(88A) module provides in-circuit emulation for the 8086(88) microprocessor and the iSBC 86/ 12A single 
board computer. It includes three circuit boards which reside in Intellec Series II or Series III Microcomputer Development 
System. A cable and buffer box connect the Intellec system to the user system by replacing the user's 8086(88). Powerful 
Intellec debug functions are thus extended into the user system. Using the ICE-86A(88)A module, the designer can execute 
prototype software in continuous or single-step mode and can substitute blocks of Intellec system memory for user equiv­
alents. Breakpoints allow the user to stop emulation on user-specified conditions, and the trace capability gives a detailed 
history of the program execution prior to the break. All user access to the prototype system software may be done 
symbolically by referring to the source program variables and labels for all languages. 

PLUG INTO 
USER 
8086 SOCKET 
(8088) 

r------------- ------------------------ --, 
I r- ____ -, T·CABLE I 
I I I I 
I I I I 
I I I I 
I I INTELLEC® I I 

I HOST I I 
I I I I 
I I I 
I I I I I L ____ .....l I 
L ______________________________ ....!N~L~CJ 

Figure 1. ICE-86AI88A™ Block Diagram 
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INTEGRATED HARDWARE/SOFTWARE 
DEVELOPMENT 

The ICE-86A(88A) emulator allows hardware and soft­
ware development to proceed interactively. This is more 
effective than the traditional method of independent hard­
ware and software development followed by system inte­
gration. With the ICE-86A(88A) module, prototype 
hardware can be added to the system as it is designed. 
Software and hardware testing occurs while the product is 
being developed. 

Conceptually, the ICE-86A(88A) emulator assists three 
stages of development: 

1. It can be operated without being connected to the us­
er's system, so ICE-86A(88A) debugging capabilities can 
be used to facilitate program development before any of 
the user's hardware is available. 

2. Integration of software and hardware can begin when 
any functional element of the user system hardware is con-

nected to the 8086(88) socket. Through ICE-86A(88A) 
mapping capabilities,lntellec memory, ICE memory, or dis­
kette memory can be substituted for missing prototype 
memory. Time-critical program modules are debugged be­
fore hardware implementation by using the 2K-bytes of 
high-speed ICE-resident memory. As each section of the 
user's hardware is completed, it is added to the prototype. 
Thus each section of the hardware and software is "sys­
tem" tested as it becomes available. 

3. When the user's prototype is complete, it is tested with 
the final version of the user system software. The ICE-
86A(88A) module is then used for real-time emulation of 
the 8086(88) to debug the system as a completed unit. 

Thus the ICE-86A(88A) module provides the user with the 
ability to debug a prototype or production system at any 
stage in its development without introducing extraneous 
hardware or software test tools. 
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THE 8087 NUMERIC DATA PROCESSOR 

This supplement describes the8087 Numeric Data 
Processor (NDP). Its organization is similar to 
chapters 2 and 3 of The 8086 Family User's 
Manual: 

1. Processor Overview 

2. Processor Architecture 

3. Computation Fundamentals 

4. Memory 

5. Multiprocessing Features 

6. Processor Control and Monitoring 

7. Instruction Set 

8. Programming Facilities 

9. Special Features 

10. Programming Examples 

Section 1 covers both hardware and software 
topics at a general level. Sections 2 and 4 through 
6 are largely hardware-oriented, while sections 3 
and 7 through 10 are of greatest interest to pro­
grammers. Section 9 describes features of the 
NDP that will be of interest to specialized groups 
of users; it is not necessary to understand this sec­
tion to successfully use the 8087 in most applica­
tions. Hardware coverage in this supplement is 
limited to discussing processor facilities in func­
tional terms. Timing, electrical characteristics, 
and other physical interface data may be found in 
Appendix B, as well as in Chapter 4 of The 8086 
Family User's Manual. 

Note that throughout this supplement the term 
"CPU" refers to either an 8086 or 8088 con­
figured in maximum mode. To make best use of 
the material in this publication, readers should 
have a good understanding of the operation of the 
8086/8088 CPUs. 

5.1 Processor Overview 

The 8087 Numeric Data Processor is a 
coprocessor that performs arithmetic and com­
parison operations on a variety of numeric data 
types; it also executes numerous built-in 
transcendental functions (e.g., tangent and log 
functions). As a coprocessor to a maximum mode 
8086 or 8088, the NDP effectively extends the 
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register and instruction sets of the host CPU and 
adds several new data types as well. The pro­
grammer generally does not perceive the 8087 as a 
separate device; instead, the computational 
capabilities of the CPU appear greatly expanded. 

The 8087 is the only chip required to add exten­
sive high-speed numeric processing capabilities to 
an 8086- or 8088-based system. It is specifically 
designed to deliver stable, correct results when 
used in a straightforward fashion by program­
mers who are not expert in numerical analysis. Its 
applicability to accounting and financial 
environments, in addition to scientific and 
engineering settings, further distinguishes the 
8087 from the "floating point accelerators" 
employed in many computer systems, including 
minicomputers and mainframes. The NDP is 
housed in a standard 40-pin dual in-line package 
(figure S-I) and requires a single +5V power 
source. 

The description of the 8087 in this section 
deliberately omits some operating details in order 
to provide a coherent overall view of the 
processor's capabilities. Subsequent sections of 
the supplement describe these capabilities, and 
others, in more detail. 

Evolution 

The performance of first- and second-generation 
microprocessor-based systems was limited in 
three principal areas: storage capacity, 
input/output speed, and numeric computation. 
The 8086 and 8088 CPUs broke the 64k memory 
barrier, allowing larger and more time-critical 
applications to be undertaken. The 8089 
Input/Output Processor eliminated many of the 
I/O bottlenecks and permitted microprocessors 
to be employed effectively in I/O-intensive 
designs. The 8087 Numeric Data Processor clears 
the third roadblock by enabling applications with 
significant computational requirements to be 
implemented with microprocessor technology. 

Figure S-2 illustrates the progression of Intel 
numeric products and events that have led to the 
development of the 8087. In the mid-1970's, Intel 
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Figure 8-1. 8087 Numeric Data Processor Pin 
Diagram 

made the commitment to expand the computa­
tional capabilities of microprocessors from 
addition and subtraction of integers to an array of 
widely useful operations on real numbers. (Real 
numbers encompass integers, fractions, and 
irrational numbers such as nand V2.) In 1977, 
the corporation adopted a standard for repre­
senting real numbers in a "floating point" 
format. Intel's Floating Point Arithmetic Library 
(FPAL) was the first product to utilize this stan­
dard format. FP AL is a set of subroutines for the 
8080/8085 microprocessors. These routines per­
form arithmetic and limited standard functions 
on single precision (32-bit) real numbers; an 
FP AL multiply executes in about 1.5 ms (1.6 
MHz 8080A CPU). The next product, the iSBC 
31O™ High Speed Math Unit, essentially 
implements FPAL in a single iSBC™ card, 
reducing a single-precision multiply to about 100 
/AS. The Intel® 8232 is a single-chip arithmetic pro­
cessor for the 8080/8085 family. The 8232 accepts 
double precision (64-bit) operands as well as 
single precision numbers. It performs a single 
precision multiply in about 100 /AS and mUltiplies 
double precision numbers in about 875 /As (2 MHz 
version). 
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Figure 8-2. 8087 Evolution and Relative. 
Performance 

In 1979, a working committee of the Institute for 
Electrical and Electronic Engineers (IEEE) pro­
posed an industry standard for minicomputer and 
microcomputer floating point arithmetic*. The 
intent of the standard is to promote portability of 
numeric programs between computers and to pro­
vide a uniform programming environment that 
encourages the development of accurate, reliable 
software. The proposed standard specifies 
requirements and options for number formats as 
well as the results of computations on these 
numbers. The floating point number formats are 
identical to those previously adopted by Intel and 
used in the products described in this section. 

The 8087 Numeric Data Processor is the most 
advanced development in Intel's continuing effort 
to provide improved tools for numerically­
oriented microprocessor applications. It is a 
single-chip hardware implementation of the 
proposed IEEE standard, including all its options 
for single and double precision numbers. As such, 
it is compatible with previous Intel numerics 
products; programs written for .the 8087 will be 
transportable to future products that conform to 

* J. Coonen, W. Kahan, LPalmer, T. Pittman, D. Stevenson, "A Proposed Standard for Binary Floating 
Point Arithmetic," A eM SIGNUM Newsletter, October 1979. 
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the proposed IEEE standard. The NDP also pro­
vides many additional functions that are 
extensions to the proposed standard. 

Performance 

As figure S-2 indicates, the 8087 provides about 
10 times the instruction speed of the 8232 and a 
100-fold improvement over FP AL. The 8087 
multiplies 32-bit and 64-bit real numbers in about 
19 lAs and 27 lAs, respectively. Of course, the actual 
performance of the NDP in a given system 
depends on numerous application-specific 
factors. 

Table S-l compares the execution times of several 
8087 instructions with the equivalent operations 
executed in software on a 5 MHz 8086. The soft­
ware equivalents are highly optimized assembly 
language procedures from the 8087 emulator, an 
NDP development tool discussed later in this 
section. 

The performance figures quoted in this section 
are for operations on real (floating point) 
numbers. The 8087 also has instructions that 
enable it to utilize fixed point binary and decimal 
integers of up to 64 bits and 18 digits; respec­
tively. Using an 8087, rather than multiple preci­
sion software algorithms for integer operations, 
can provide speed improvements of 10-100 times. 

The 8087's unique coprocessor interface to the 
CPU can yield an additional performance incre­
ment beyond that of simple instruction speed. No 
overhead is incurred in setting up the device for a 
computation; the 8087 decodes its own instruc­
tions automatically in parallel with the CPU. 
Moreover, built-in coordination facilities allow 
the CPU to proceed with other instructions while 
the 8087 is simultaneously executing its numeric 
instruction. Programs can exploit this processor 
parallelism to increase total system throughput. 

Usability 

Viewed strictly from the standpoint of raw speed, 
the 8087 enables serious computation-intensive 
tasks to be performed by microprocessors for the 
first time. The 8087 offers more than just high 
performance, however. By synthesizing advances 
made by numerical analysts in the past several 
years, the NDP provides a level of usability that 
surpasses existing minicomputer and mainframe 
arithmetic units. In fact, the charter of the 8087 
design team was first to achieve exceptional func­
tionality and then to obtain high performance. 

The 8087 is explicitly designed to deliver stable, 
accurate results when programmed using 
straightforward "pencil and paper" algorithms. 
While this statement may seem trivial, experi­
enced users of "floating point processors" will 

Table S-I. 8087 Emulator Speed Comparison 

Approximate Execution Time (JAs) 
(5 MHz Clock) 

Instruction 

8087 
8086 

Emulation 

Multiply (single precision) 19 1,600 

Multiply (double precision) 27 2,100 

Add 17 1,600 

Divide (single preciSion) 39 3,200 

Compare 9 1,300 

Load (single precision) 9 1,700 

Store (single precision) 18 1,200 

Square root 36 19,600 

Tangent 90 13,000 

Exponentiation 100 17,100 
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recognize its fundamental importance. For 
example, most computers can overflow when two 
single precision floating point numbers are 
multiplied together and then divided by a third, 
even if the final result is a perfectly valid 32-bit 
number. The 8087 delivers the correctly rounded 
result. Other typical examples of undesirable 
machine behavior in straightforward calculations 
occur when solving for the roots of a quadratic 
equation: 

-b+vb2 -4ac 
2a 

or computing financial rate of return, which 
involves the expression: (1 +i:)n. Straightforward 
algorithms will not deliver consistently correct 
results (and will not indicate when they are incor­
rect) on most machines. To obtain correct results 
on traditional machines under all conditions 
usually requires sophisticated numerical tech­
niques that are foreign to most programmers. 
General application programmers using straight­
forward algorithms will produce much more 
reliable programs on the 8087. This simple fact 
greatly reduces the software investment required 
to develop safe, accurate computation-based 
products. 

Beyond traditional numerics support for "scien­
tific" applications, the 8087 has built-in facilities 
for "commerical" computing. It can process 
decimal numbers of up to 18 digits without round­
off errors, and it performs exact arithmetic on 
integers as large as 264 • Exact arithmetic is vital in 
accounting applications where rounding errors 
may introduce money losses that cannot be 
reconciled. 

The NDP contains a number of facilities that can 
optionally be invoked by sophisticated users. 
Examples of these advanced features include two 
models of infinity, directed rounding, gradual 
underflow, and traps to user-written exception 
handling software. 

Applications 

The NDP's versatility and performance make it 
appropriate to a broad array of numerically­
oriented applications. In general, applications 
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that exhibit any of the following characteristics 
can benefit by implementing numeric processing 
on the 8087: 

• Numeric data vary over a wide range of 
values, or include non-integral values; 

• Algorithms produce very large or very small 
intermediate results; 

• Computations must be very precise, i.e., a 
large number of significant digits must be 
maintained; 

• Performance requirements exceed the 
capacity of traditional microprocessors; 

• Consistently safe, reliable results must be 
delivered using a programming staff that is 
not expert in numerical techniques. 

Note also that the 8087 can reduce software 
development costs and improve the performance 
of systems that do not utilize real numbers but 
operate on multi-precision binary or decimal 
integer values. 

A few examples, which show how the 8087 might 
be utilized in specific numerics applications, are 
described below. In many cases, these types of 
systems have been implemented in the past with 
minicomputers. The advent of the 8087 brings the 
size and cost savings of microprocessor 
technology to these applications for the first time. 

• Business data processing-The NDP's ability 
to accept decimal operands and produce 
exact decimal results of up to 18 digits greatly 
simplifies accounting programming. Finan­
cial calculations which use power functions 
can take advantage of the 8087's 
exponentiation and logarithmic instructions. 

• Process control-The 8087 solves dynamic 
range problems automatically and its 
extended precision allows control functions 
to be fine-tuned for more accurate and effi­
cient performance. C.ontrol algorithms 
implemented with the NDP also contribute 
to improved reliability and safety, while the 
8087's speed can be exploited in real-time 
operations. 

• Numerical control-The 8087 can move and 
position machine tool heads with extreme 
accuracy. Axis positioning also benefits from 
the hardware trigonometric support provided 
by the 8087. 
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• Robotics-Coupling small size and modest 
power requirements with powerful computa­
tional abilities, the NDP is ideal for on-board 
six-axis positioning. 

• Navigation-Very small, light weight, and 
accurate inertial guidance systems can be 
implemented with the 8087. Its built-in 
trigonometric functions can speed and 
simplify the calculation of position from 
bearing data. 

• Graphics terminals-The 8087 can be used in 
graphics terminals to locally perform many 
functions which normally demand the atten­
tion of a main computer; these include rota­
tion, scaling, and interpolation. By also 
including an 8089 Input/Output Processor to 
perform high speed data transfers, very 
powerful and highly self-sufficient terminals 
can be built from a relatively small number 
of 8086 family parts. 

• Data acquisition-The 8087 can be used to 
scan, scale, and reduce large quantities of 
data as it is collected, thereby lowering 
storage requirements as well as the time 
required to proce:;s the data for analysis. 

The preceding examples are oriented toward 
"traditional" numerics applications. There are, 
in addition, many other types of systems that do 
not appear to the end user as "computational," 
but can employ the 8087 to advantage. Indeed, 
the 8087 presents the imaginative system designer 
with an opportunity similar to that created by the 
introduction of the microprocessor itself. Many 
applications can be viewed as numerically-based 
if sufficient computational power is available to 
support this view. This is analogous to the 
thousands of successful products that have been 
built around "buried" microprocessors, even 
though the products themselves bear little 
resemblance to computers. 

Programming Interface 

The combination of an 8086 or 8088 CPU and an 
8087 generally appears to the programmer as a 
single machine. The 8087, in effect, adds new 
data types, registers, and instructions to the CPU. 
The programming languages and the coprocessor 
architecture take care of most interprocessor 
coordination automatically. 
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Table 8-2 lists the seven 8087 data types. Inter­
nally, the 8087 holds all numbers in the temporary 
real format; the extended range and precision of 
this format are key contributors to the NDP's 
ability to consistently deliver stable, expected 
results. The 8087's load and store instructions 
convert operands between the other formats and 
temporary real. The fact that these conversions 
are made, and that calculations may be per­
formed on converted numbers, is transparent to 
the programmer. Integer operands, whether 
binary or decimal, yield correct integer results, 
just as real operands yield correct real results. 
Moreover, a rounding error does not occur when 
a number in an external format is converted to 
temporary real. 

Computations in the 8087 center on the pro­
cessor's register stack. These eight 80-bit registers 
provide the equivalent capacity of 40 of the 16-bit 
registers found in typical CPUs. This generous 
register space allows more constants and 
intermediate results to be held in registers during 
calculations, reducing memory access and conse­
quently improving execution speed as well as bus 
availability. The 8087 register set is unique in that 
it can be accessed both as a stack, with instruc­
tions operating implicitly on the top one or two 
stack elemeIlts, and as a fixed register set, with 
instructions operating on explicitly designated 
registers. 

Table 8-3 lists the 8087's major instructions by 
class. Assembly language programs are written in 
A8M-86, the 8086/8088/8087 common assembly 
language. A8M-86 provides directives for defin­
ing all 8087 data types and mnemonics for all 
instructions. The fact that some instructions in a 
program are executed by the 8087 and others by 
the CPU is usually of no concern to the pro­
grammer. All 8086/8088 addressing modes may 
be used to access memory-based 8087 operands, 
enabling convenient processing of numeric 
arrays, structures, based variables, etc. 

NDP routines may also be written in PL/M-86, 
Intel's high-level language for the 8086 and 8088 
CPUs. PLlM-86 provides the programmer with 
access to many 8087 facilities while reducing 
the programmer's need to understand the 
architecture of the chip. 

Two features of the 8087 hardware further 
simplify numeric application programming. First, 
the 8087 is invoked directly by the programmer's 
instructions. There is no need to. write instructions 
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Table S-2. Data Types 

Data Type. Bits 
Significant 

Approximate Range (Decimal) Digits (Decimal) 

Word integer 16 4 -32,768 ~ X ~ + 32,767 

Short integer 32 9 -2x109 ~ X ~ +2x109 

Long integer 64 18 -9x1018 ~ X ~ +9x1018 

Packed decimal 80 18 -99 ... 99 ~ X ~ + 9~ ... 99 (18 digits) 

Short real' 32 6-7 8.43x10-37 ~ Ixi ~ 3.37x1038 

Long real' 64 15-16 4.19x10-307 ~ Ixl ~ 1.67x10308 

Temporary real 80 19 3.4x10-4932.~ Ixl ~ 1.2x104932 

"The short and long real data types correspond to the single and double precision data types 
defined in other Intel numerics products. . 

Table S-3. Principal Instructions 

Class Instructions 

Data Transfer Load (all data types), Store (all data types), Exchange . 
Arithmetic Add, Subtract, Multiply, Divide, Subtract Reversed, 

Divide Reversed, Square Root, Scale, 'Remainder, 
Integer Part, Change Sign, AbsoluteValue, Extract 

Comparison Compare, Examine, Test 

Transcendental Tangent, Arctangent, 2X -1, yeLog2(X + 1), YeLog2(X) 

Constants 0,1,n, Log102, Loge2,Log210, Log2e 

Processor Control Load Control Word, Store Control Word, Store Status 
Word, Load Environment, Store Environment, Save, 
Restore, Enable Interrupts, Disable Interrupts, Clear 
Exceptions, Initialize 

that "address" the NDP as an "I/O device", or 
to incur the overhead of setting up a DMA opera­
tion to perform data transfers. Second, the NDP 
automatically detects exception conditions that 
can potentially damage a calculation at run-time. 
On-chip exception handlers are automatically 
invoked by default to field these exceptions so 
that a reasonable result is produced and execution 
may proceed without program intervention. 
Alternatively, the 8087 can interrupt the CPU and 
thus trap to a user procedure when an exception is 
detected. 

Besides the assembler and compiler, Intel 
provides a software emulator for the 8087. The 
8087 emulator (E8087) is a software package that 
provides the functional equivalent of an 8087; it 
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executes entirely on an 8086 or 8088 CPU. The 
emulator allows 8087 routines to be developed 
and checked out on an 8086/8088 execution 
vehicle before prototype 8087 hardware is opera­
tional. At the source code level, there is no 
difference between a routine that will ultimately 
run on an 8087 or on a CPU emulation of an 
8087. At link time, the decision is made whether 
to use the NDP or the software emulator; no re­
compilation or re-assembly is necessary. Source 
programs are independent of the numeric execu­
tion vehicle: except for timing, the operation of 
the emulated NDP is the same as for "real hard­
ware". The emulator also makes it simple fora 
product to offer the NDP as a "plug-in" 
performance option without the necessity of 
maintaining two sets of source code. 
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Hardware Interface 

As a coprocessor to an 8086 or 8088, the 8087 is 
wired directly to the CPU as shown in figure S-3. 
The CPU's queue status lines (QSO and QSl) 
enable the NDP to obtain arid decode instructions 
in synchronization with the CPU. The NDP's 
BUSY signal informs the CPU that the NDP is 
executing; the CPU WAIT instruction tests this 
signal to ensure that the NDP is ready to execute a 
subsequent instruction. The NDP can interrupt 
the CPU when it detects an exception. The NDP's 
interrupt request line is typically routed to the 
CPU through an 82S9A Programmable Interrupt 
Controller. 

The NDP uses one of its host CPU's 
request/grant lines to obtain control of the local 
bus for data transfers (loads and stores). The 
other CPU request/ grant line is available for 
general system use, for example, by a local 8089 
Input/Output Processor. A local 8089 may also 
be connected to the 8087's RQ/GTl line. In this 
configuration, the 8087 passes the request/grant 
handshake signals between the CPU and the lOP 
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when the 8087 is not in control of the local bus. 
When it is in control of the bus, the 8087 relin­
quishes the bus (at the end of the current bus 
cycle) upon a request from the connected lOP, 
giving the lOP higher priority than itself. In this 
way, two local 8089's can be configured in a 
module that also includes a CPU and an 8087. 

All processors utilize the same clock generator 
and system bus interface components (bus con­
troller, latches, transceivers, ·and bus arbiter). 
Thus, no additional hardware beyond the 8087 
is required to add powerful computational 
capabilities to an 8086- or 8088-based system. 

8.2 Processor Architecture 

As shown in figure S-4, the NDP is internally 
divided into two processing elements, the control 
unit (CU) and the numeric execution unit (NEU). 
In essence, the NEU executes all numeric instruc­
tions, while the CU fetches instructions, reads 
and writes memory operands, and executes the 
processor control class of instructions. The two 
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elements are able to operate independently of 
one another, allowing the CU to maintain 
synchronization with the CPU while the NEU 
executes numeric instructions. 

Control Unit 

The CU keeps the 8087 operating in synchroniza­
tion with its host CPU. 8087 instructions are 
intermixed with CPU instructions in a single 
instruction stream fetched by the CPU. By 
monitoring the status signals emitted by the CPU, 
the NDP control unit can determine when an 
instruction is being fetched. When the instruction 
byte or word becomes available on the local bus, 
the CU taps the bus in parallel with the CPU and 
obtains that portion of the instruction. 

The CU maintains· an instruction queue that is 
identical to the queue in the host CPU. By 
monitoring the CPU's queue status lines, the CU 
is able to obtain and decode instructions from the 
queue in synchronization with the CPU. In effect, 
both processors fetch and decode the instruction 
stream in parallel. 

DATA"-~~ 

I 
STATUS I 

ADDRESS I 

The two processors execute the instruction stream 
differently, however. The first five bits of all 8087 
machine instructions are identical; these bits 
designate the coprocessor escape (ESC) class of 
instructions. The control unit ignores all instruc­
tions that do not match these bits, since these 
instructions are directed to the CPU only. When 
the CU decodes an instruction containing the 
escape code, it either executes the instruction 
itself, or passes it to the NEU, depending on the 
type of instruction. 

The CPU distinguishes between ESC instructions 
that reference memory and those that do not. If 
the instruction refers to a memory operand, the 
CPU calculates the operand's address and then 
performs a "dummy read" of the word at that 
location. This is a normal read cycle, except that 
the CPU ignores the data it receives. If the ESC 
instruction does not contain a memory reference, 
the CPU simply proceeds to the next instruction. 

A given 8087 instruction (an ESC to the CPU) will 
either require loading an operand from memory 
into the 8087, or will require storing an operand 
from the 8087 into memory, or will not reference 
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memory at all. In the first two cases, the CU 
makes use of the "dummy read" cycle initiated 
by the CPU. The CU captures and saves the 
operand address that the CPU places on the bus 
early in the "dummy read". If the instruction is 
an 8087 load, the CU additionally captures the 
first (and possibly only) word of the operand 
when it becomes available on the bus. If the 
operand to be loaded is longer than one word, the 
CU immediately obtains the bus from the CPU 
and reads the rest of the operand in consecutive 
bus cycles. In a store operation, the CU captures 
and saves the operand address as in a load, and 
ignores the data word that follows in the "dummy 
read" cycle. When the 8087 is ready to perform 
-the store, the CU obtains the bus from the CPU 
·and writes the operand at the saved address using 
as many consecutive bus cycles as are necessary to 
store the operand. 

Numeric Execution Unit 

The NEU executes all instructions that involve 
the register stack; these include arithmetic, 
comparison, transcendental, constant, and data 
transfer instructions. The data path in the NEU is 
68 bits wide and allows internal operand transfers 
to be performed at very high speeds. 

Register Stack 

Each of the eight registers in the 8087's register 
stack is 80 bits wide, and each is divided into the 
"fields" shown in figure S-5. This format 
corresponds to the NDP's temporary real data 
type that is used for all calculations. Section S.3 
describes in detail how numbers are represented in 
the temporary real format. 

At a given point in time, the ST field in the status 
word (described shortly) identifies the current 
top-of-stack register. A load ("push") operation 
decrements ST by 1 and loads a value into the new 
top register. A store-and-pop operation stores the 
value from the current top register and then 
increments ST by 1. Thus, like 8086/8088 stacks 
in memory, the 8087 register stack grows "down" 
toward lower-addressed registers. 

Instructions may address registers either implic­
itlyor explicitly. Many instructions operate on the 
register at the top of the stack. These instructions 
implicitly address the register pointed to by ST. 
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SIGNIFICAND 

Figure 8-5. Register Structure 

For example, the ASM-86 instruction FSQRT 
replaces the number at the top of the stack with its 
square root; this instruction takes no operands 
because the top-of-stack register is implied as the 
operand. Other instructions allow the program­
mer to explicitly specify the register that is to be 
used. Explicit register addressing is "top­
relative" where the ASM-86 expression ST 
denotes the current stack top and ST(i) refers 
to the ith register from ST in the stack (O~ i ~7). 
For example, if ST contains OllB (register 3 is the 
top of the stack), the following instruction would 
add registers 3 and 5: 

FADD ST, ST(2) 

In typical use, the programmer may conceptually 
"divide" the registers into a fixed group and an 
adjustable group. The fixed registers are used like 
the conventional registers in a CPU, to hold con­
stants, accumulations, etc. The adjustable group 
is used like a stack, with operands pushed on and 
results popped off. After loading, the registers in 
the fixed group are addressed explicitly, while 
those in the adjustable group are addressed 
implicitly. Of course, all registers may be 
addressed using either mode, and the "defini­
tion" of the fixed versus the adjustable areas may 
be altered at any time. Section S.8 contains a pro­
gramming example that illustrates typical register 
stack use. 

The stack organization and top-relative address­
ing of the registers simplify subroutine 
programming. Passing subroutine parameters on 
the register stack eliminates the need for the 
subroutine to "know" which registers actually 
contain the parameters and allows different 
routines to call the same subroutine without 
having to observe a convention for passing 
parameters in dedicated registers. So long as the 
stack is not full, each routine simply loads the 
parameters on the stack and calls the subroutine. 
The subroutine addresses the parameters as ST, 
ST(l), etc., even though ST may, for example, 
refer to register 3 in one invocation and register 5 
in another. 
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Status Word 

The status word reflects the overall condition of 
the 8087; it may be examined by storing it into 
memory with an NDP instruction and then 
inspecting it with CPU code. The status word is 
divided into the fields shown in figure S-6. The 
busy field (bit 15) indicates whether the NDP is 
executing an instruction (B=I) or is idle (B=O). 

Several 8087 instructions (for example, the com­
parison instructions) post their results. to the 
condition code (bits 14 and 10-8 of the status 
word). The principal use of the condition code is 
for conditional· branching. This may be 
accomplished by executing an instruction that sets 
the condition code, storing the status word in 
memory and then examining the condition code 
with CPU instructions. 

Bits 13-11 of the status word point to the 8087 
register that is the current stack top (ST). Note 
that if ST=OOOB, a "push" operation, which 
decrements ST, produces ST=l11B; similarly, 
popping the stack with ST=IIIB yields ST=OOOB. 

Bit 7 is the interrupt request field. TheNDP sets 
this field to record a pending interrupt to the 
CPU. 

Bits 5-0 are set to indicate that the NEU has 
detected an exception while executing an instruc­
tion. Section S.3 explains these exceptions. 

Control Word 

To satisfy a broad range of application 
requirements, the NDP provides several process­
ing options which are selected by loading a word 
from memory into the control word. Figure S-7 
shows the format and encoding of the fields in the 
control word; it is provided here for reference. 
Section S.3 explains the use of each .of these 8087 
facilities except the interrupt-enable control field, 
which is covered in section S.6. 

Tag Word 

The tag word marks the content of each register 
as shown in figure S-8. The principal fUnction 

15 7 0 

I ST I I c21 C1 I CO I'R I I PE I UE I OE I ZE I DEl,E I 

@ EXCEPTION FLAGS (1 = EXCEPTION HAS OCCURRED) 

INVALID OPERATION 

DENORMALIZED OPERAND 

ZERODIVIDE 

OVERFLOW 

UNDERFLOW 

PRECISION 

(RESERVED) 

INTERRUPT REQUEST 

CONDITION CODE(l) 

STACK TOP PO)NTER(2) 

BUSY 

(1). See descriptions of compare, test, examine and remainder instructions in section S.7 for 
condition code interpretation. 

(2) ST values: 
000 = register 0 is stack top 
0~1 = register 1 is stack top 

. 
111 = register 7 is stack top 

Figure S-6. Status Word Format 

S-lO 
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15 7 o 

I I 
IIC I RC 

I I 
-r-- -r--

~ 
EXCEPTION MASKS (1 = EXCEPTION IS MASKED) 

INVALID OPERATION 

DENORMALIZED OPERAND 

ZERODIVIDE 

OVERFLOW 

UNDERFLOW 

PRECISION 

(RESERVED) 

INTERRUPT-ENABLE MASK(l) 

PRECISION CONTROLl2) 

ROUNDING CONTROLl3) 

INFINITY CONTROLl4) 

(RESERVED) 

(1) Interrupt-Enable Mask: 
o = Interrupts Enabled 
1 = Interrupts Disabled (Masked) 

(2) Precision Control: 
00 = 24 bits 
01 = (reserved) 
10 = 53 bits 
11 = 64 bits 

(3) Rounding Control: 
00 = Round to Nearest or Even 
01 = Round Down (toward -00) 
10 = Round Up (toward +00) 
11 = Chop (Truncate Toward Zero) 

(4) Infinity Control: 
o = Projective 
1 = Affme 

Figure S-7. Control Word Format 

of the tag word is to optimize the NDP's 
performance under certain circumstances and 
programmers ordinarily need not be concerned 
with it. 

Exception Pointers 

The exception pointers (see figure S-9) are pro­
vided for user-written exception handlers; 
Whenever the 8087 executes an instruction, the 
CU saves the instruction address and the instruc­
tion opcode in the exception pointers. In 
addition, if the instruction references a memory 
operand, the address of the operand is retained 
also. An exception handler can store these 
pointers in memory and thus obtain information 
concerning the' instruction that caused the 
exception. 

S-ll 

5.3 Computation 
Fundamentals 

This section covers 8087 programming concepts 
that are common to all applications. It describes 
the 8087's internal number system and the various 
types of numbers that can be employed in NDP 
programs. The most commonly used options for 
rounding, precision and infinity (selected by fields 
in the control word) are described, with 
exhaustive coverage of less frequently used 
facilities deferred to section S.9. Exception condi­
tions which may arise during execution of NDP 
instructions are also described along with the 
options that are available for responding to these 
exceptions. 
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Tag values: 
00 = Valid (Normal Dr Unnormal) 
01 = Zero (True) 
10 = Special (Not·A·Number, 00, Dr Denormal) 
11 = Empty _ 

Figure S-8. Tag Word Format 

I OPERAND ADDRESS(1) 

I INSTRUCTION OPCODE(2) 

I INSTRUCTION ADDRESS(1) 

-10 o 

(1) 20.blt physical address 

(2) 11 least significant bits of opcode; 5 most significant bits are aiwaysSOS7 hook (110118) 

Figure S-9. Exception Pointers Format 

Number System 

The system of real numbers that people use for 
pencil and paper calculations is conceptually 
infinite and continuous. There is no upper or 
lower limit to the magnitude of the numbers one 
ellD employ in a calculation, or to the precision 
(number of significant digits) that the numbers 
can represent. When considering any real 
number, there are always an infinity of numbers 
both larger and smaller. There is also an infinity 
of numbers between (Le., with more significant 
digits than) any two real numbers. For example, 
between 2.5 and 2.6 are 2.51,2.5897,2.500001, 
etc. 

While ideally it would be desirable for a computer 
to be able to operate on the entire real number 
system, in practice this is not possible. Com­
puters, no matter how large, ultimately have 
fixed-size registers and memories that limit the 
system of numbers that can be accommodated. 
These limitations proscribe both the range and the 
precision of numbers. The result is a set of 
numbers that is finite and discrete, rather than 
infinite and continuous. This sequence is a subset 
of the real numbers which is designed to form a 
useful approximation of the real number system. 
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Figure S-IO superimposes the basic 8087 real 
number system on a real number line (decimal 
numbers are shown for clarity, although the 8087 
actually represents numbers in binary). The dots 
indicate the subset of real numbers the 8087 can 
represent as data and final results of calculations. 
The 8087's range is approximately ±4.19xlO-307 
to ±1.67x10308 . Applications that are required to 
deal With data and final results outside this range 
are rare. By comparison, the range of the IBM 
370 is about ±0.54xlO-78 to ±O. 72xI076. 

The finite spacing in figure S-IO illustrates that 
the NDP can represent a great many, but not all, 
of the real numbers in its range. There is always a 
"gap" between two "adjacent" 8087 numbers; 
and it is possible for the result of a calculation to 
fall in this space. When this occurs, the NDP 
rounds the true result to a number that it can 
represent. Thus, a real number that requires more 
digits than the 8087 can accommodate (e.g., a 20 
digit number) is represented with some loss of 
accuracy. Notice also that the 8087's represent­
able numbers are not distributed evenly along the 
real number line. There are, in fact, an equal 
number of representable numbers between suc­
cessivepowers of 2 (i.e., there are as many 
representable numbers between 2 and 4 as 
between 65,536 and 1-31,072). Therefore, the 
"gaps" between representable numbers are 
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.... NEGATIVE RANGE 
(NORMALIZED) •• 

-5 -4 -3 -2 -1 
I I 
[ • • .c_-... t ................... ,.] 

-1.67x10308 -4.19x10-307 

o 

... POSITIVE RANGE 
(NORMALIZED) 

4 

., 
I 
I 

I 

~~~~~~~~.-~-.--.-----.--~~ 

1.67x10308 

2.00000000000000000 

(NOT REPRESENTABLE) 

...... ---- 1.99999999999999999 

PRECISION: 1+-18 DIGITS--I 

Figure S-10. 8087 Number System 

"larger" as the numbers increase in magnitude. 
All integers in the range ±264, however, are 
exactly representable. 

In its internal operations, the 8087 actually 
employs a number system that is a substantial 
superset of that shown in figure S-1O. The internal 
format (called temporary real) extends the 8087's 
range to about ±3.4x1O-4932 to ±1.2x104932, and 
its precision to about 19 (equivalent decimal) 
digits. This format is designed to provide extra 
range and precision for constants and 
intermediate results, and is not normally intended 
for data or final results. 

From a practical standpoint, the 8087's set of real 
numbers is sufficiently "large" and "dense" so 
as not to limit the vast majority of microprocessor 
applications. Compared to most computers, 
including mainframes, the NDP provides a very 
good approximation of the real number system. It 
is important to remember, however, that it is not 
an exact representation,. and that arithmetic on 
real numbers is inherently approximate. 
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Conversely, and equally important, the 8087 does 
perform exact arithmetic on its integer subset of 
the reals. That is, an operation on two integers 
returns an exact integral result, provided that the 
true result is an integer and is in range. For exam­
ple, 4+2 yields an exact integer, 1 +3 does not, and 
240 x 230 + 1 does not, because the result requires 
greater than 64 bits of precision. 

Data Types and Formats 

The 8087 recognizes seven numeric data types, 
divided into three classes: binary integers, packed 
decimal integers, and binary reals. Section S.4 
describes how these formats are stored in memory 
(the sign is always located in the highest- address~ 
ed byte). Figure S-l1 summarizes the format of 
each data type. In the figure, the most significant 
digits of all numbers (and fields within numbers) 
are the leftmost digits. Table S-2 provides the 
range and number of significant (decimal) digits 
that each format can accommodate. 
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__ INCREASING SIGNIFICANCE 

WORD INTEGER lsi MAGNITUDE I g~~~tEMENT) 
15 o 

SHORT INTEGER I~I MAGNITUDE I (TWO'S I. . ... ,~ __________ ... COMPLEMENT) 

31 0 

II I (TWO'S 
LONG INTEGER S MAGNITUDE COMPLEMENT) 

~6~3------------------------------------~0 

PACKED DECIMAL 

79 

SHORT REAL 

LONG REAL S 

63 

MAGNITUDE 
d17 d16 d1S d14 d13 d12 d11 d10 dg ds d7 d6 ds d4 d3 d2 d1 do 

72 

BIASED 
EXPONENT 

I' 

o 

SIGNIFICAND 

o 

o 

TEMPORARY REAL .. IS ... I~ ___ E_:_J_~_~E_t_N_T ___ .bj_I~ _______ S_IG_N_I_F_IC_A_N_D _____________ ... 

79 6463 1 0 

NOTES: 
S = Sign bit (0 = positive, 1 = negative) 
dn = Decimal digit (two per byte) 
X = Bits have no significance; 8087 ignores when loading, zeros when storing. 
, = Position of impliCit binary point 
I = Integer bit of significand; stored in temporary real, implicit in short and long real 
Exponent Bias (normalized values): 

Short Real: 127 (7FH) 
Long Real: 1023 (3FFH) 
Temporary Real: 16383 (3FFFH) 

Figure S-ll. Data Formats 

Binary Integers 

The three binary integer formats are identical 
except for length, which governs the range that 
can be accommodated in each format. The left­
most bit is interpreted as the number's 
sign: O=positive and 1 =negative. Negative 
numbers are represented in standard two's com­
plement notation (the binary integers are the only 
8087 format to use two's complement). The quan­
tity zero is represented with a positive sign (all bits 
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are 0). The 8087 word integer format is identical 
to the 16-bit signed integer data type of the 8086 
and 8088. 

Decimal Integers 

Decimal integers are stored in packed decimal 
notation, with two decimal digits "packed"into 
each byte, except the leftmost byte, which carries 
the sign bit (0 = positive, 1 = negative). Negative 



8087 NUMERIC DATA PROCESSOR 

numbers are not stored in two's complement form 
and are distinguished from positive numbers only 
by the sign bit. The most signifiCant digit of the 
number is the leftmost digit. All digits must be in 
the range OH-9H. 

Real Numbers 

The 8087 stores real numbers in a three-field 
binary format that resembles scientific, or 
exponential, notation. The number's significant 
digits are held in the significand field,· the 
exponent field locates the binary point within the 
significant digits (and therefore determines the 
number's magnitude), and the sign field indicates 
whether the number is positive or negative. (The 
exponent and significand are analogous to the 
terms "characteristic" and "mantissa" used to 
describe floating point numbers on some com­
puters.) Negative numbers differ from positive 
numbers only in their sign bits. 

Table S-4 shows how the real number 178.125 
(decimal) is stored in the 8087 short real format. 
The table lists a progression of equivalent nota­
tions that express the same value to show how a 
number can be converted from one form to 
another: The ASM-86 and PLlM-86 language 
translators perform a similar process when they 
encounter programmer-defined real number con­
stants. Note that not every decimal fraction has 
an exact binary equivalent. The decimal number 
1110, for example, cannot be expressed exactly 
in binary (just as the number 113 cannot be 

expressed exactly in decimal). When a translator 
encounters such a value, it produces a rounded 
binary approximation of the decimal value. 

The NDP usually carries the digits of the signifi­
cand in normalized form. This means that, except 
for the value zero, the significand is. an integer 
and airaction as follows: 

ItJff...ff 

where A indicates an assumed binary point. The 
number of fraction bits varies according to the 
real format: 23 for short, 52 for long and 63 for 
temporary real. By normalizing real numbers so 
that their. integer bit is always a 1, the .8087 
eliminates leading zeros in small values (lxl < 1). 
This technique maximizes the number of signifi­
cant digits that can be accommodated in a 
significand of a given width. Note that in the 
short and long real formats the integer bit is 
implicit and is not actually stored; the integer bit 
is physiCally present in the temporary real format 
only .. 

If one were to examine only the signifiCand with 
its assumed binary point, all normalized real 
numbers would have values between l.and 2. The 
exponent field locates the actual binary point in 
the significant digits. Just as in decimal scientific 
notation, a positive exponent has the effect of 
moving the binary point to the right and a 
negative exponent effectively moves the binary 
point to the left, inserting leading zeros as 
necessary. An unbiased exponent of zero 

Table 8-4. Real Number Notation 

Notation Value 

Ordinary Decimal 178.125 

Scientific Decimal 1f:,.78125E2 

Scientific Binary 1 f:,.011 001 0001 E111 

Scientific Binary 
1 f:,. 0110010001 E10000110 (Biased Exponent) 

Sign 
Biased Significand 

Exponent 
8087 Short Real 
(Normalized) 0 10000110 01100100010000000000000 

L 1 f:,. (implicit) 

S-15 
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indicates that the position of the assumed binary 
point is also the position of the actual binary 
point. The exponent field, then, determines a real 
number's magnitude. 

In order to simplify comparing real numbers 
(e.g., for sorting), the 8087 stores exponents ina 
biased form. This means that a constant is'added 
to the true exponent described above. The value 
of this bias is different for each real format (see 
figure S-l1). Ithas been chosen so as to force the 
biased exponent to be a positive value. This 
allows two real numbers (of the same format and 
sign) to be compared as if they are unsigned 
binary integers. That is, when comparing them 
bitwis..e from left to right (beginning with the left­
most exponent bit), the first bit position that 
differs orders the numbers; there is no need to 
proceed further with the comparison. A number's 
true exponent can be determined simply by sub­
tracting the. bias value of its format. 

The short and long real formats exist in memory 
only. If a number in one of these formats is 
loaded into a register, it is automatically 
converted to temporary real, the format used for 
all internal operations. Likewise,data in reg~sters 
can be converted to short or long reaJ'for storage 
in memory. The temporary real format may be 
used in memory also, typically to store 
intermediate results that cannot be held in 
registers. 

Most applications should use the long real form 
to store real number data and results; it provides 
sufficient range and precision to return correct 
results with a minimum of programmer attention. 
The short real format is appropriate for applica­
tions that are constrained by memory, but it 
should be recognized that this format provides a 
smaller margin of safety. It is also useful for 
debugging algorithms because roundoff problems 
will manifest themselves more quickly in this for­
mat. The temporary real format should normally 
be reserved for holding intermediate results, loop 
accumulations, and constants. Its extra length is 
designed to shield final results from the effects 
of rounding and overflow/underflow in inter­
mediate calculations. When the temporary real 
format is used to hold data or to deliver final 
results, the safety features built into the 8087 are 
compromised. Furthermore, the range and preci­
sion of the long real form are adequate for most 
microcomputer applications. 
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Special Values 

Besides, being able to represent positive and 
negative numbers, the 8087 data formats may be 
used to describe other entities. These special 
values provide extra flexibility but most users do 
not need to understand them in detail to use the 
8087 successfully. Accordingly, they are discussed 
here only briefly; expanded coverage, including 
the bit encoding of each value, is provided in 
section S.9. 

The value zero may be signed positive or negative 
in the real and decimal integer formats; the sign 
of a binary integer zero is always positive. The 
fact that zero rnay be 'signed, however, is 
transparent to the programmer. 

The real number formats allow for the representa­
tion of the special values +00 and -00. The 8087 
may generate these values as its built-in response 
to exceptions such as division by zero, or the 
attempt to store a result, that exceeds the upper 
range limit of the destination format. Infinities 
may participate in arithmetic and comparison 
operations, and in fact the processor provides two 
different conceptual models for handling these 
special values. 

If a programmer attempts an operation for which 
the 8087 cannot deliver a reasonable result, it will, 
at the programmer's discretion, either request an 
interrupt, or return the special value indefinite. 
Taking the square root of a negative number is an 
example of this type of invalid, operation. The 
recommended action in this situation is to stop 
the computation by trapping to a user-written 
exception handler. If, however, the programIl}.er 
elects to continue the computation, the specially 
coded indefinite value will propagate through the 
calculation and thus flag the erroneous computa­
tion when it is eventually delivered as the result. 
Each format has an encoding that represents the 
special value indefinite. 

In the real formats,a: whole range of special 
values, both positive and negative, is designated 
to represent a class of values called NAN (Not-A­
Number). The special value indefinite is a 
reserved NAN encoding, but all other encodings 
are made available to be defined in any way by 
application software. Using a NAN as an operand 
raises the invalid operation exception, and can 
trap to a user-written routine to process the NAN. 
Alternatively, the 8087's built-in exception 
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Table S-5. Rounding Modes 

RC Field Rounding Mode Rounding Action 

00 Round to nearest Closertob ota are; it 
equally close, select even 
number (the one whose 
least significant bit is zero). 

01 Round down (toward -00) a 

10 Round up (toward + 00) e 

11 Chop (toward 0) Smaller in magnitude of 
a are 

Note: a < b < e; a and e are representable, b is not. 

handler will simply return the NAN itself as the 
result of the operation; in this way NANs, 
including indefinite, may be propagated through 
a calculation and delivered as a final, special­
valued, result. One use for NANs is to detect 
uninitialized variables. 

As mentioned earlier, the 8087 stores non-zero 
real numbers in "normalized floating point" 
form. It also provides for storing and operating 
on reals that are not normalized, i.e., whose 
significands contain one or more leading zeros. 
Nonnormals arise when the result of a calculation 
yields a value that is too small to be represented in 
normal form. The leading zeros of nonnormals 
permit smaller numbers to be represented, at the 
cost of some lost precision (the number of signifi­
cant digits is reduced by the leading zeros). In 
typical algorithms, extremely small values are 
most likely to be generated as intermediate, rather 
than final results. By using the NDP's temporary 
real format for holding intermediates, values as 
small as ±3.4xlO-4932 can be represented; this 
makes the occurrence of nonnormal numbers a 
rare phenomenon in 8087 applications. Never­
theless, the NDP can load, store and operate on 
nonnormalized real numbers. 

Rounding Control 

Internally, the 8087 employs three extra bits 
(guard, round and sticky bits) which enable it to 
represent the infinitely precise true result of a 
computation; these bits are not accessible to 
programmers. Whenever the destination can 
represent the infinitely precise true result, the 
8087 delivers it. Rounding occurs in arithmetic 
and store operations when the format of the 
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destination cannot exactly represent the infinitely 
precise true result. For example, a real number 
may be rounded if it is stored in a shorter real for­
mat, or in an integer format. Or, the infinitely 
precise true result may be rounded when it is 
returned to a register. 

The NDP has four rounding modes, selectable by 
the RC field in the control word (see figure S-7). 
Given a true result b that cannot be represented 
by the target data type, the 8087 determines the 
two representable numbers a and c that most 
closely bracket b in value (a < b < c). The pro­
cessor then rounds (changes) b to a or to c 
according to the mode selected by the RC field as 
shown in table S-5. Rounding introduces an error 
in a result that is less than one unit in the last 
place to which the result is rounded. "Round to 
nearest" is the default mode and is suitable for 
most applications; it provides the most accurate 
and statistically unbiased estimate of the true 
result. The "chop" mode is provided for integer 
arithmetic applications. 

"Round up" and "round down" are termed 
directed rounding and can be used to implement 
interval arithmetic. Interval arithmetic generates 
a certifiable result independent of the occurrence 
of rounding and other errors. The upper and 
lower bounds of an interval may be computed by 
executing an algorithm twice, rounding up in one 
pass and down in the other. 

Precision Control 

The 8087 allows results to be calculated with 64, 
53, or 24 bits of precision as selected by the PC 
field of the control word. The default. setting, and 
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the one that is best-suited for most applications, is 
the full 64 bits. The other settings are required by 
the proposed IEEE standard, and are provided to 
obtain compatibility with the specifications of 
certain existing programming languages. Specify­
ing less precision nullifies the advantages of the 
temporary real format's extended fraction length, 
and does not improve execution speed. When 
reduced precision is specified, the rounding of the 
fraction zeros the unused bits on the right. 

Infinity Control 

The 8087's system of real numbers may be closed 
by either of two models of infinity. These two 
means of closing the number system, projective 
and affine closure, are illustrated schematically in 
figure S-12. The setting of the IC field in the con­
trol word selects one model or the other. The 
default means of closure is. projective, and this is 
recommended for most computations. When pro~ 
jective closure is selected, the NDP treats the 
special values +00 and -00 as a single unsigned 
infinity (similar to its treatment of signed zeros). 
In the affine mode the NDP respects the signs of 
+00 and -00. 

While affine mode may provide more informa­
tion than projective, there are occasions when the 
sign may in fact represent mi~information. For 
example, consider an algorithm that yields an 
intermediate result x of +0 and -0 (the same 
numeric value) in different executions. If IIx 
were then computed in affine mode, two entirely 
different values (+00 and -00) would result from 
numerically identical values of x. Projective 
mode, on the other hand, provides less informa­
tion but never returns misinformation. In general, 
then, projective mode should be used globally, 

o 
PROJECTIVE CLOSURE 

+'" 
.~.~-----r------.. . 

o 
AFFINE CLOSURE 

Figure S-12. Projective Versus Affine Closure 
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with affine mode reserved for local computations 
where the programmer can take advantage of the 
sign and knows for certain that the nature of the 
computation will not produce a misleading result. 

Exceptions 

During the execution of most instructions, 
the 8087 checks for six classes of exception 
conditions. 

The 8087 reports invalid operation if any of the 
following occurs: 

• An attempt to load a register that is not 
empty, (e.g., stack overflow), 

• An attempt to pop an operand from an 
empty register (e.g., stack underflow), 

• An operand is a NAN, 

• The operands cause the operation to be 
indeterminate (0/0, square root of a negative 
number, etc.). 

An invalid operation generally indicates a pro­
gram error. 

If the exponent of the true result is too large for 
the destination real format, the 8087 signals 
overflow. Conversely, a true exponent that is too 
small to be represented results in the underflow 
exception. If either of these occur, the result of 
the operation is outside the range of the destina­
tion real format. 

Typical algorithms are most likely to produce 
extremely large and small numbers in the calcula­
tion of intermediate, rather than final, results. 
Because of the great range of the temporary real 
format (recommended as the destination format 
for intermediates); overflow and underflow are 
relatively rare events in most 8087 applications; 

If division of a finite non-zero operand by zero is 
attempted, the 8087 reports the zerodivide 
exception. 

If an instruction attempts to operate on a denor· 
mal, the NDP reports the denormalized 
exception. This exception is provided for users 
who wish to implement, in software, an option of 
the proposed IEEE standard which specifies that 
operands must be prenormalized before they are 
used. 
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If the result of an operation is not exactly 
representable in the destination format, the 8087 
rounds the number and reports the precision 
exception. This exception occurs frequently and 
indicates that some (generally acceptable) 
accuracy has been lost; it is provided for applica­
tions that need to perform exact arithmetic only. 

Invalid operation, zerodivide, and denormalized 
exceptions are detected before an operation 
begins, while overflow, underflow, and precision 
exceptions are not raised until a true result has 
been computed. When a "before" exception is 
detected, the register stack and memory have not 
yet been updated, and appear as if the offending 
instruction has not been executed. When an 
"after" exception is detected, the register stack 
and memory appear as if the instruction has run 
to completion, i.e., they may be updated. 
(However, in a store or store and pop operation, 
unmasked over/underflow is handled like a 
"before" exception; memory is not updated and 
the stack is not popped.) In cases where multiple 
exceptions arise simultaneously,one exception is 
signalled according to the 'following precedence 
sequence: 

• Denormalized (if unmasked), 

• Invalid operation, 

• Zerodivide, 

• Denormalized (if masked), 

• Over/underflow, 

• Precision. 

(The terms "masked" and "unmasked" are 
explained shortly.) This means, for example, that 
zero divided by zero will result in an invalid 
operation and not a zerodivide exception. ' 

The 8087 reports an exception by setting the cor­
responding flag in the status word to 1. It then 
checks the corresponding exception mask in the 
control word to determine if it should "field" the 
exception (mask=I), or if it should issue an inter­
rupt request to invoke a user-written exception 
handler (mask=O). In the first case, the exception 
is said to be masked (from user software) and the 
NDP executes its on-chip masked response for 
that exception. In the second case, the exception 
is unmasked, and the processor performs its 
unmasked response. The masked response always 
produces a standard result and then proceeds with 
the instruction. The unmasked response always 
traps to user software by interrupting the CPU 
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(assuming the interrupt path is clear). These 
responses are summarized in table S-6. Section 
S.9 contains a complete description of all excep­
tion conditions and the NDP's masked responses. 

Note that when ,exceptions are masked, the NDP 
may detect multiple exceptions in a single instruc­
tion, since it continues executing the instruction 
after performing its masked response. For 
example, the 8087 could detect a denormalized 
operand, perform its masked response to this 
exception, and then detect an underflow. 

By writing different values into the exception 
masks of the control word, the user can accept 
responsibility for handling exceptions, or delegate 
this to the NDP. Exception handling software is 
often difficult to write, and the 8087's masked' 
responses have been tailored to deliver the most 
"reasonable" result for each condition. The 
majority of applications will find that masking all 
exceptions other than invalid operation will yield 
satisfactory results with the least programming 
investment. An invalid operation exception 
normally indicates a fatal error in a program that 
must be corrected; this exception should not 
normally be masked. 

The exception flags are "sticky" and can be 
cleared only by executing the FCLEX (clear 
exceptions) instruction, by reinitializing the pro­
cessor, or by overwriting the flags with an 
FRSTOR or FLDENV instruction. This means 
that the flags can provide a cumulative record of 
the exceptions encountered in a long calculation. 
A program can therefore mask all exceptions (ex­
cept, typically, invalid operation), run the 
calculation and then inspect the status word to see 
if any exceptions were detected at any point in the 
calculation. Note that the 8087 has another set of 
internal exception flags that it clears before each 
instruction. It is these flags and not those in the 
status word that actually trigger the 8087's excep­
tion response. The flags in the status word pro­
vide a cumulative record of exceptions for the 
programmer only. 

If the NDP executes an unmasked response to an 
exception, it is assumed that a user exception 
handler will be invoked via an interrupt from the 
8087. The 8087 sets the IR (interrupt request) bit 
in the status word, but this, in itself,. does not 
guarantee an immedjate CPU interrupt. The 
interrupt request may be blocked by the !EM 
(interrupt-enable mask) in the 8087 ,control word, 
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Table S~6. Exception and Response Summary 

Exception Masked Response Unmasked Response 

Invalid 
Operation 

If one operand is NAN, return it; if 
both are NANs; return NAN with 
larger absolute value; if neither is 
NAN, return indefinite. 

Request interrupt. 

Zerodivide Return co signed with "exclusive 
or" of operand,~igns. 

Request interrupt. 

Denormalized Memory operand: proceed as 
usual. Register operand: convert 
to valid unnormal, then re-evaluate 
for exceptions. 

Request interrupt. 

'Overflow' 

Underfl()w 

Precision 

Return properly signed 00. 

Denormalize result. 

Return rounded result. 

Register destination: adjust 
exponent', store result, request. 
interrupt., Memory destination: 
request interrupt. 

Register destination: adjust 
exponent', store result, request 
interrupt. Memory destination:, 
request interrupt. 

Return rounded result, request 
interrupt. 

~On overflow, 24,576 decimal is subtracted from the true result's exponent; this forces tlie exponent back 
into range arid permits a user exception handler to ascertain the true result from the adjusted result that 
is returned. On underflow, the same constant is added to the true result's exponent. 

by the 8259A Programmable Interrupt Con­
troller ,or by the CPU itself. If any exception flag 
is unmasked, it is imperative that the interrupt 
path to the CPU is eventually cleared so that the 
user's software can field the exception and the 
offending task can resume execution. Interrupts 
are covered iIi detail in section S.6. 

A user-written exception handler takes the form 
of an 8086/8088', inte~rupt procedure. Although 
exception handlers will vary widely from one 
application to the next, most will include these 
basic steps: 

• Store the 8087 environment (control, status 
and tag -words, operand and instruction 
pointers) as it existed at the time of the 
exception; 

• Clear the exception bits in the status word; 

• Enable interrupts on the CPU; 

• Identify the exception by exammmg the 
status and control words in the saved 
environment; 

• Take application-dependent action; 

• Return to the point of interruption, resuming 
normal execution. 

Possible "application-dependent actions" 
include: 

• Incrementing a'n exception counter for later 
display or printing; 

• Printing or displaying diagnostic 
information (e.g., the 8087 environment and 
registers) ; 

• Aborting further execution of the calculation 
causing the exception; 

• Aborting all furthe~ execution; 

• U sing the. exception pointers to build an 
instruction that will run without exception 
and executing it. 

• Storing a diagnostic value (a NAN) in the 
result and continuing with the computation. 
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Notice that an exception mayor may not con­
stitute an error depending on the application. For 
example, an invalid operation caused by a stack 
overflow could signal an ambitious exception 
handler to extend the register stack to memory 
and continue running. 

5.4 Memory 
The 8087 can access any location in its host 
CPU's megabyte memory space. Because it relies 
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on the CPU to generate the addresses of memory 
operands, the NDP can take advantage of the 
CPU's memory addressing modes and its ability 
to relocate code and data during execution. 

Data Storage 

Figures S-13 and S-14 show how the 8087 data 
types are stored in memory. The sign bit is always 
located in the highest-addressed byte. The least 
significant binary or decimal digits in a number 
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(or in a field in the case of reals) are those with the 
lowest addresses. The word integer format is 
stored exactly like an 8086/8088 16-bit signed 
integer, and is directly usable by instructions 
executed on either the CPU or the NDP. 

A few special instructions access memory to load 
or store formatted processor control and state 
data. The formats of these memory operands are 
provided with the discussions of the instructions 
in section S. 7. 

Storage Access 

The host CPU always generates the address of the 
first (lowest-addressed) byte of a. memory 
operand. The CPU interprets an 8087 instruction 
that references memory as an ESC (escape), and 
generates the operand's effective and physical 
addresses normally as discussed in section 2.3. 
Any 8086/8088 memory addressing mode­
direct, register indirect, based, indexed or based 
indexed-can be used to access an 8087 operand 
in memory. This makes the NDP easy to use with 
data structures sU'ch as arrays, structures, and 
lists. 

When the CPU emits the 20-bit physical address 
of the memory operand, the 8087 captures the 
address and saves it. If the instruction loads 
information into the NDP, the 8087 captures the 
lowest-addressed word when it becomes available 
on the bus as a result of the CPU's "dummy 
read." (The "dummy read" .may require either 
one or two bus cycles depending on the CPU type 
and the alignment of the operand.) If the operand 
is longer than one word (all 8087 operands are an 
integral number of words), the 8087 immediately 
requests use of the local bus by activating its CPU 
request! grant (RQ/GTO) line, as described in 
section S.6. When the NDP obtains the bus! it 
runs consecutive bus cycles incrementing the 
saved address until the rest of the operand has 
been .obtained, returns the local bus to the CPU, 
and then executes the instruction. 

If an operation stores data from ~he NDP to 
memory, the NDP and the CPU both ignore the 
data placed on the bus by the CPU's "dummy 
read." The NDP does not request the bus from 
the CPU until it is ready to write the result of the 
instruction to memory. When it obtains the bus, 
the NDP writes the operand in successive bus 
cycles, incrementing the saved address as in a 
load. 
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As described in section S.6, the 8087 automati­
cally determines the identity of its host CPU. 
When the NDP is wired to an 8088, it transfers 
one byte per bus cycle in the same manner as the 
CPU. When used with an 8086, the NDP again 
operates like the CPU, accessing odd-addressed 
words in two bus cycles and even-addressed words 
in one bus cycle. If the 8087 is reading or writing 
more than one word of an odd-addressed operand 
in 8086 memory, it optimizes the transfer by 
accessing a byte on the first transfer, forcing the 
address to even, and then transferring words up 
to the last byte of the operand. 

To minimize operand transfer time and 8087 use 
Qf the system bus, it is advantageous to align 8087 
memory operands on even addresses when the 
CPU is an 8086. Following the same practice for 
8088-based systems will ensure top performance 
without reprogramming if the application is 
transferred to an 8086. The ASM-86 EVEN direc­
tive can be used to force word alignment. 

Dynamic Relocation 

Since the host CPU takes care of both instruction 
fetching and memory operand addressing, the 
NDP may be utilized in systems that alter pro­
gram addresses during execution. The only 
restriction on the CPU is that it should not change 
the address of an 8087 operand while the 8087 is 
executing an instruction which stores a result to 
that address. If this is done, the 8087 will store to 
the operand's old address (the one it picked up 
during the "dummy read"). 

Dedicated and Reserved 
Memory Locations 

The 8087 does not require any addresses in 
memory to be set aside for special purposes. Care 
should be taken, however, to respect the 
dedicated and reserved areas associated with the 
CPU and the lOP (see sections 2.3 and 3.3). 
Using any of these areas may inhibit compatibility 
with current or future Intel hardware and soft­
ware products. 

S.5 Multiprocessing Features 

As a coprocessor to an 8086 or 8088 CPU, the 
NDP is by definition always used in a 
multiprocessing environment. This section 
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describes the facilities built into the 8087 that 
simplify the coordinaton of mUltiple processor 
systems. Included are descriptions of instruction 
synchronization, local and system bus arbitra­
tion, and shared resource access control. 

Instruction Synchronization 

In the execution of a typical NDP instruction, the 
CPU will complete the ESC long before the 8087 
finishes its interpretation of the same machine 
instruction. For example, the NDP performs a 
square root in about 180 clocks, while the CPU 
will execute its interpretation of this same instruc­
tion in 2 clocks. Upon completion of the ESC, the 
CPU will decode and execute the next instruction, 
and the NDP's CU, tracking the CPU, will do the 
same. (The NDP "executes" a CPU instruction 
by ignoring it). If the CPU has work to do that 
does not affect the NDP, it can proceed with a 
series of instructions while the NDP is executing 
in parallel; the NDP's CU will ignore these CPU­
only instructions as they do not contain the 8087 
escape code. This asynchronous execution of the 
processors can substantially improve the 
performance of systems that can be designed to 
exploit it. 

There are two cases, however, when it is necessary 
to synchronize the execution of the CPU to the 
NDP: 

1. An NDP instruction that is executed by the 
NEU must not be started if the NEU is still 
busy executing a previous instruction. 

2. The CPU should not execute an instruction 
that accesses a memory operand being 
referenced by the NDP until the NDP has 
actually accessed the location. 

The 8086/8088 WAIT instruction allows software 
to synchronize the CPU to the NDP so that the 
CPU will not execute the following instruction 
until the NDP is finished with its current (if any) 
instruction. 

Whenever the 8087 is executing an instruction, it 
activates its BUSY line. This signal is wired to the 
CPU's TEST input as shown in figure S-3. The 
NDP ignores the WAIT instruction, and the CPU 
executes it. The CPU interprets the WAIT 
instruction as "wait while TEST is active." The 
CPU examines the TEST pin every 5 clocks; if 
TEST is inactive, execution proceeds with the 
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instruction following the WAIT. If TEST is 
active, the CPU examines the pin again. Thus, the 
effective execution time of aWAIT can stretch 
from 3 clocks (3 clocks are required for decoding 
and setup) to infinity, as long as TEST remains 
active. The WAIT instruction, then, prevents the 
CPU from decoding the next instruction until the 
8087 is not busy. The instruction following a 
WAIT is decoded simultaneously by both 
processors. 

To satisfy the first case mentioned above, every 
8087 instruction that affects the NEU should be 
preceded by aWAIT to ensure that the NEU is 
ready. All instructions except the processor 
control class affect the NEU. To simplify pro­
gramming, the 8086 family language translators 
provide the WAIT automatically. When an 
assembly language programmer codes: 

FMUL 

FDlV 

;(multiply) 

;(divide) 

the assembler produces four machine 
instructions, as if the programmer had written: 

WAIT 
FMUL 
WAIT 
FDIV 

This ensures that the multiply runs to completion 
before the CPU and the 8087 CU decode the 
divide. 

To satisfy the second case, the programmer 
should explicitly code the FW AIT instruction 
immediately before a CPU instruction that 
accesses a memory operand read or written by a 
previous 8087 instruction. This will ensure that 
the 8087 has read or written the memory operand 
before the CPU attempts to use it. (The FW AIT 
mnemonic causes the assembler to create a CPU 
WAIT instruction that can be eliminated at link 
time if the program is to run on an 8087 emulator. 
See section S.8 for details.) 

Figure S-15 is a hypothetical sequence of 
instructions that illustrates the effect of the 
WAIT instruction and parallel execution of the 
NDP with a CPU. 

The first two instructions in the sequence (FMUL 
and FSQRT) are 8087 instructions that illustrate 
the ASM-86 assembler's automatic generation of 
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;ASSUME 8087 REGISTER STACK IS LOADED WITH OPERANDS, 
, NEU IS NOT BUSY, . 
, AND THAT 'ALPHA' AND 'BETA' ARE WORD 
, INTEGERS. 

FMUL 

FSQRT 
CMP 
J G 
MOV 

CONTINUE: FIST 
FWA IT 

MOV 

ALPHA,100 
CONTINUE 
ALPHA,100 
BETA 

AX,BETA 

;MULTIPLY TOP STACK 
;ELEMENTS 
;SQUARE ROOT OF PRODUCT 
;ALPHA> 100? 
;YES, LEAVE UNALTERED 
;NO, SET TO 100 
;STORE ROOT AS INTEGER WORD 
;WAIT FOR 8087 TO COMPLETE 
;STORE OF BETA 
;PROCEED TO PROCESS BETA 

NDP: FMUL I I..-I _____ FS_Q_R_T ____ ..... II FIST I 

BUSV .. TEST: _---'I V V"'--~'---

NOTES: 

.[ W~~ = Assembler·generated instruction . 

• Instruction execution times are not drawn to scale. 

Figure S-15. Synchronizing Execution With WAIT 

a preceding WAIT, and the effect of the WAIT 
when the NDP is, and is not, busy. Since the NDP 
is not busy when the first WAIT is encountered, 
the CPU executes it and immediately proceeds to 

. the next instruction; the NDP ignores the WAIT. 
The next instruction is decoded simultaneously by 
both processors. The NDP starts the multiplica­
tion and raises its BUSY line. The CPU executes 
the ESC and then the second WAIT. Since TEST 
is active (it is tied to BUSY), the CPU effectively 
stretches execution of this WAIT until the NDP 
signals completion of the multiply by lowering 
BUSY. The next instruction is interpreted as a 
square root by the NDP and another escape by 
the CPU. The CPU finishes the ESC well before 
the NDP completes the FSQRT. This time, in­
stead of waiting, the CPU executes three instruc­
tions (compare, jump if greater, and move) while 
the 8087 is working on the FSQRT. The 8087 
ignores these CPU-only instructions. The CPU 
then encounters the third WAIT, generated by the 
assembler immediately preceding the FIST (store 
stack top into integer word). When the NDP 
finishes the FSQRT, both processors proceed to 
the next instruction, FIST to the NDP and ESC to 
the CPU. The CPU completes the escape quickly 
and then executes an explicit programmer-coded 
FWAIT to ensure that the 8087 has updated 
BETA before it moves BETA's new value to 
register AX. 

Mnemonics © Inle11978, 1980 
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The 8087 CU can execute most processor control 
instructions by itself regardless of what the NEU 
is doing: thus the 8087 can, in these cases, poten­
tially execute two instructions at once. The 
ASM-86 assembler provides separate "wait" and 
"no wait" mnemonics for these instructions. For 
example, the instruction that sets the 8087 inter­
rupt enable mask, and thus disables interrupts, 
can be coded as FDISI or FNDISI. The assembler 
does not generate a preceding WAIT if the second 
form is coded, so that interrupts can be disabled 
while the NEU is busy executing a previous 
instruction. The no~wait forms are principally 
used in exception handlers and operating systems. 

Local Bus Arbitration 

Whenever an NDP instruction writes data to 
memory, or reads more than one word from 
memory, the NDP forces the CPU to relinquish 
the local bus. It does this by means of the 
request/grant facility built into all 8086 family 
processors. For memory reads, the NDP requests 
the bus immediately upon the CPU's completion 
of its "dummy read" cycle; it follows from this 
that the CPU may "immediately" update a 
variable read by the NDP in the previous instruc­
tion with the assurance that the NDP will have 
obtained the old value before the CPU has altered 
it. For memory writes, the NDP performs as 
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much processing as possible before requesting the 
bus. In all cases, the 8087 transfers the data in 
back-to-back bus cycles and then immediately 
releases the bus. 

The 8087's RQ/GTO line is wired to one of the 
CPQLrequest/grant lines. Connecting it to 
RQ/GTI on th~PU (see figure S-3) leaves the 
higher priority RQ/GTO open for possible attach­
ment of a local 8089 to the CPU. Note that an 
8089 on RQ/GTO will obtain the bus if it requests 
it simultaneously with an 8087 attached to 
RQ/GTl; it cannot, however, preempt the 8087 if 
the 8087 has the bus. The NDP requests the local 
bus by pulsing its RQ/GTO line. If the CPU has 
the bus, it will grant it to the NDP by pulsing the 
same request/grant line. The CPU grants the bus 
immediately unless it is running a bus cycle, in 
which case the grant is delayed until the bus cycle 
is completed. The NDP releases the bus back to 
the CPU by sending a final pulse on RQ/GTO 
when it has completed the transfer. 

The 8087 provides a second request/grarit line, 
RQ/GTl, that may be used to service local bus 
requests from an 8089 Input/Output Processor 
(see figure S-3). By using this line, a CPU, two 
lOPs (one is attached directly to the CPU) and an 
NDP can all reside on the same local bus, sharing 
a single set of system bus interface components. 

When the 8087 detects a bus request pulse on 
RQ/GTl, its response depends on whether it is 
idle, executing, or running a bus cycle. If it is idle 
or executing, the 8087 passes the bus request 
through to the CPU via RQ/GTO. The sub­
sequent grant and release pulses are also passed 
between the CPU and the requesting device. If the 
8087 is running a bus cycle (or a series of bus 
cycles), it has already obtained the bus from the 
CPU so it grants the bus directly at the end of the 
current bus cycle rather than passing the request 
on to the CPU. When the 8089 releases the bus, 
the 8087 resumes the series of bus cycles it was 
running before it granted the bus to the 8089. 
Thus, to an 8089 attached to the 8087's RQ/GTI 
line, the NDP appears to be a CPU. An lOP 
attached to an NDP also effectively has higher 
local bus priority than the NDP, since it can force 
the NDP to relinquish the bus even in the midst of 
a multi-cycle transfer. This satisfies the typical 
system requirement for 1/0 transfers to be ser­
viced as soon as possible. 
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System Bus Arbitration 

A single 8288 Bus Controller (plus latches and 
tranceivers as required) links both the host CPU 
and the NDP to the system bus. The 8087 per­
forms system bus transfers exactly the same as its 
CPU; status, address, and data signals and timing 
are identical. 

In systems that allow multiple processing modules 
on separate local buses common access to a public 
system bus, the 8087 also shares its host CPU's 
8289 Bus Arbiter. The 8289 operates identically 
regardless of whether the system bus request is 
initiated by the CPU or the NDP. Since only one 
of the processors in the module will have control 
of the local bus at the time of a request to access 
the system bus, the transfer will be between the 
controlling processor and the system bus. If the 
8289 does not obtain the system bus immediately, 
it causes the bus to appear "not ready" (as if a 
slow memory were being accessed), and the 8087 
will stretch the bus cycle by adding the wait states. 

Because it presents the same system bus interface 
as a maximum mode 8086 family CPU, the NDP 
is also electrically compatible with lntel's 
Multibus™ shared system bus architecture. This 
means that the 8087 can be utilized in systems that 
are based on the broad line of iSBCTM single 
board computers, controllers, and memories. 

Controlled Variable Access 

If an 8087 and a processor other than its host 
CPU can both update a variable, access to that 
variable should be· controlled so that one 
processor at a time has exclusive rights to it. This 
may be implemented by a semaphore convention 
as described in section 2.5. However, since the 
8087 has no facility for locking the system bus 
during an instruction, the host CPU should 
obtain exclusive rights to the variable before the 
8087 accesses it. This can be done using an XCHG 
instruction prefixed by LOCK as discussed in 
section 2.5. When the NDP no longer needs the 
controlled variable the CPU should clear the 
semaphore to signal other processors that the 
variable is again available for use. 
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5.6 Processor Control and 
Monitoring 

Initialization 

The NDP may be initialized by hardware or soft­
ware. Hardware initialization occurs in response 
to a pulse on the 8087's RESET line. When the 
processor detects RESET going active, it suspends 
all activities. When RESET subsequently goes 
inactive, the NDP initializes itself. The state of 
the NDP following initialization is shown in table 
S-7. Hardware initialization also causes the 8087 
to identify its host CPU and begin to track its 
instruction fetches and execution. Initialization 
does not affect the content of the registers or of 
the exception pointers (these have indeterminate 
values immediately following power up). 
However, since the stack is effectively emptied by 
initialization (ST = 0, all registers tagged empty), 
the contents of the registers should normally be 
considered "destroyed" by initialization. 

The FINIT (intialize) and FSA VE (save state) 
instructions also initialize the processor. Unlike a 
RESET pulse, software initialization does not 
affect the 8087's tracking of the CPU. 

CPU Identification 

The 8087's bidirectional BHE (bus high enable) 
line is tied to pin 34 of the CPU (BHE on the 
8086, SSO on the 8088). The 8088 always holds 
SSO = 1 . The 8086 emits a 0 on BHE whenever it 
is accessing an even-addressed word or an odd­
addressed byte. 

Following RESET, the CPU always performs a 
word fetch of its first instruction from the 
dedicated memory location: FFFFOH. The 8087 
identifies its host CPU by monitoring BHE 
during the CPU's first fetch following RESET. If 
BHE =1, the CPU is an 8088; if BHE =0, the 
CPU is an 8086 (because the first fetch is an even­
addressed word). Note that to ensure proper 
operation, the same pulse must reset both the 
8087 and its host CPU. 

Table S-7. Processor State Following Initialization 

Field Value Interpretation 

Control Word 
Infinity Control 0 Projective 
Rounding Control 00 Round to nearest 
Precision Control 11 64 bits 
Interrupt-enable Mask 1 Interrupts disabled 
Exception Masks 111111 All exceptions masked 

Status Word 
Busy 0 Not busy 
Condition Code ???? (indeterminate) 
Stack Top 000 Empty stack 
Interrupt Request 0 No interrupt 
Exception Flags 000000 No exceptions 

Tag Word 
Tags 11 Empty 

Registers N.C. Notchanged 

Exception Pointers 
Instruction Code N.C. Notchanged 
Instruction Address N.C. Not changed 
Operand Address N.C. Not chan\jed 
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Interrupt Requests 

The 8087 can request an interrupt of its host CPU 
via the 8087 INT (interrupt request) pin. This 
signal is normally routed to the CPU's INTR 
input via an 8259A Programmable Interrupt 
Controller (PIC). The 8087 should not be tied to 
the CPU's NMI (non-maskable interrupt) line. 

All 8087 interrupt requests originate in the detec­
tion of an exception. The interrupt request logic is 
illustrated in figure S-16. The interrupt request 
is made if the exception is unmasked and 8087 
interrupts are enabled, i.e .. , both the relevant 
exception mask and the interrupt-enable mask are 
clear (0). If the exception is masked, the processor 
executes its masked response and does not set the 
interrupt request bit. 

If the exception is unmasked but interrupts are 
disabled (IBM = 1), the 8087's action depends on 
whether the CPU is waiting (the 8087 "knows" if 
the CPU is waiting because it decodes the WAIT 
instruction in parallel with the CPU). If the CPU 
is not waiting, the 8087 assumes that the CPU 
does not want to be interrupted at present and 
that it will enable interrupts on the 8087 when it 
does. The 8087 sets the interrupt request bit and 
holds its BUSY line active. The 8087 CU con­
tinues to track the CPU, and if an 8087 
instruction (without a preceding WAIT) comes 
along, it will be executed. Normally in this situa­
tion the instruction would be FNENI (enable 
interrupts without waiting). This will clear the 
interrupt-enable mask and the 8087 will then 
activate INT. However, any instruction will be 
executed, and it is therefore conceivably possible 
to abort the interrupt request before it is ever 
handled. Aborting an interrupt request in this 
manner, however, would normally be considered 
a program error. 

If the CPU is waiting, then the processors are in 
danger of entering an endless wait condition 
(discussed shortly). To prevent this condition, the 
8087 ignores the fact that interrupts are disabled 
and activates INT even though the interrupt­
enable mask is set. 

The interrupt request bit remains set until it is 
explicitly cleared (if INT is not disabled by IBM, 
it will remain active also). This can be done by the 
FNCLEX, FNSA VE, or FNINT instructions. The 
interrupt procedure that fields the 8087's inter­
rupt request, i.e., the exception handler, must 

S-27 

clear the interrupt request bit before returning to 
normal execution on the 8087. If it does not, the 
interrupt will immediately be generated again and 
the program will enter an endless loop. 

Interrupt Priority 

Most systems can be viewed as consisting of two 
distinct classes of software: interrupt handlers 
and application tasks. Interrupt handlers execute 
in response to external events; in the 8086 family 
they are implemented as interrupt service 
procedures. (Of course, the CPU interrupt 
instructions allow interrupt handlers to respond 
to internal "events" also.) A hardware interrupt 
controller, such as the 8259A, usually monitors 
the external events and invokes the appropriate 
interrupt handler by activatiog the CPU INTR 
line, and passing a code to the CPU that identifies 
the interrupt handler that is to service the event. 
Since the 8259A typically monitors several events, 
a priority-resolving technique is used to select one 

Figure S-16. Interrupt Request Logic 
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event when several Occur simultaneously. Many 
systems allow higher-priority interrupts to 
preempt lower-priority interrupt handlers. The 
8259A supports several priority-resolving techni­
ques; a system will normally select one of these by 
programming the 8259A at initialization time. 

Application tasks execute only when no external 
event needs service, i.e., when no interrupt 
handler is running. Application tasks are invoked 
by software, rather "than hardware; typically a 
scheduling or dispatching algorithm is used to 
select one task for execution. In effect, any inter­
rupt handler has higher priority than any applica­
tion task, since the recognition of an interrupt will 
invoke the interrupt handler, preempting the 
application task that was running. 

There are two important questions to consider 
when assigning a priority to the 8087's interrupt 
request: 

• Who can cause 8087 exceptions-only 
application tasks, or interrupt handlers as 
well? 

• Who should be preempted by NDP 
exceptions-only applications tasks, or inter­
rupt handlers as well? 

Given these considerations, the 8087 should 
normally be assigned the lowest priority of any 
interrupting device in the system. This allows the 
interrupt handler (Le., the NDP exception 
handler) to preempt any application task that 
generates an 8087 exception, and at the same time 
prevents the exception NDP handler from 
interfering with other interrupt handlers. 

If an interrupt handler uses the 8087 and requires 
the service of the exception handler, it can effec­
tively "raise" the priority of the exception 
handler by disabling all interrupts lower than 
itself and higher than the 8087. Then,any un­
masked exception caused by the interrupt handler 
will be fielded without interference from lower­
priority interrupts. 

If, for some reason, the 8087 must be given higher 
priority than another interrupt source, the inter­
rupt handler that services the lower-priority 
device may want to prevent interrupts from the 
8087 (which may originate in a long instruction 
still running on the 8087 when the interrupt 
handler is invoked) from preempting it. This 
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should be done by executing the FNSTCW and 
FNDISI instructions before enabling CPU inter­
rupts. Before returning, the interrupt handler 
should restore the original control word in the 
8087 by executing FLDCW. 

Users should consult "Using the 8259A Program­
mable Interrupt ControlJer", Intel Application 
Note No. AP-59, for a description of the 8259A's 
various modes of operation. 

Endless Wait 

The 8087 and its host CPU can enter an endless 
wait condition when the CPU is executing a 
WAIT instruction and a pending interrupt request 
from the 8087 is prevented from being recognized 
by the CPU. Thus, the CPU will wait for the 8087 
to lower its BUSY line, while the NDP will wait 
for the CPU to invoke the exception handler 
interrupt procedure, and the task which has 
generated the exception will be blocked from 
further execution. 

Figure S-17 shows the typical path of an interrupt 
request from the· 8087 to the interrupt procedure 
which is design&ted to field NDP exceptions. The 
interrupt request can be potentially blocked at 
three points. along the path, creating an endless 
wait if the CPU is executing a WAIT instruction. 
The first block can occur at the 8087's interrupt­
enable mask (lEM). If this mask is set, the inter­
rupt request is blocked except that the 8087 will 
override the mask if the CPU is waiting (the 8087 
decodes the WAIJ' instruction simultaneously 
with the CPU). Thus, the 8087 detects apd 
prevents one of the endless wait conditions. 

A given interrupt request, IRn, can be masked on 
the 8259A by setting the corresponding bit in the 
PIC's interrupt mask register (IMR). This will 
prevent a request from the 8087 from being 
passed to the CPU. (The 8259A's normal priority­
resolving activity can also block an interrupt 
request.) Finally, the CPU can exclude all 
interrupts tied to INTR by clearing its interrupt­
enable flag (IF). In these two cases, the CPU can 
"escape" the endless wait only if another inter­
rupt is recognized (if IF is cleared, the interrupt 
must arrive on NMI, the CPU's non-maskable 
interrupt line). Following execution of the inter­
rupt procedure and resumption of the WAIT; the 
endless wait will be entered again, unless, as part 
of its response to the interrupt it recognizes, the 
CPU clears the interrupt path from the 8087, 
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A user-written exception handler can itself cause 
an unending .wait. When the exception handler 
starts to run, the 8087 is suspended with its BUSY 
line active, waiting for the exception to be 
cleared, and interrupts on the CPU are disabled. 
If, in this condition, the exception handler issues 
any 8087 instruction, other than a no-wait form, 
the result will be an unending wait. To prevent 
this, the exception handler should clear the excep­
tion on the 8087 and enable interrupts on the 
CPU before executing any instruction that is 
preceded by aWAIT. 

More generally, an instruction that is preceded by 
aWAIT (or an FW AIT instruction) should never 
be executed when CPU interrupts are disabled 
and there is any possibility that the 8087's BUSY 
line is active. 

Status Lines 

When the 8087 has control of the local bus, it 
emits signals on status lines S2-S0 to identify 
the type of bus cycle it is running. The 8087 
generates the restricted (compared to a CPU) set 
of encodings shown in table S-8. These lines 
correspond exactly to the signals output by the 
8086 and 8088 CPU's, and are normally decoded 
by an 8288 Bus Controller. 

Table S-8. Bus Cycle Status Signals 

-
S2 Sl So Type of Bus Cycle 

1 0 1 Read Memory 

1 1 0 Write Memory 

1 1 1 Passive; no bus cycle 

Status line S7 is currently identical to BHE of the 
same bus cycle, while S4 and S3 are both currently 
1; however, these signals are reserved by Intel for 
possible future use. Status line S6 emits 1 and S5 
emits 0.·· . 

S.7 Instruction Set 
This section describes the operation of each of the 
8087's 69 instructions. The first part of the 
section describes the function of each instruction 
in detail. For this discussion, the instructions are 
divided into six functional groups: data transfer, 
arithmetic, comparison, transcendental, con­
stant, and processor controL The second part 
provides instruction attributes such as execution 
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speed, bus transfers, and exceptions, as well 
as a coding example for each combination of 
operands accepted by the instruction. This 
information is concentrated in a table, organized 
alphabetically by instruction mnemonic, for easy 
reference. 

Throughout this section, the instruction set is 
described as it appears to the ASM-86 program­
mer who is coding a program. Appendix A covers 
the actual machine instruction encodings, which 
are principally of use to those reading unfor­
matted memory dumps, monitoring instruction 
fetches on the bus, or writing exception handlers. 

The instruction descriptions in this section con­
centrate on describing the normal function of 
each operation. Table S-19 lists the exceptions 
that can occur for each instruction and table S-32 
details the causes of exceptions as well· as the 
8087's masked responses. 

The typical NDP instruction accepts one or tW( 
operands as "inputs", operates on these, anc 
produces a result as an "output". Operands are 
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Figure S-17. Interrupt Request Path 
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most ,often (the contents of) register or memory 
locations. The, operands of some instructions are 
predefined; for example, FSQRT always tai<es the 
square root of the number in, the top stack ele­
ment. Others allow, or require, the programmer 
to explicitly code the operand(s) along with the 
instruction mnemonic. Still others accept one 
explh:it oPerand and one implicit operand, which 
is uS~!lliy: the top stack element. ',' 

Whether supplied by the programmer or utilized 
automatically, there, are two basic types of 
operands, , sources, and destinations. A ,source 
operand simply supplies one of the "inputs" to 
an instruction; it is not altered by the instruction. 
Even, when an instruction converts" the source 
opera,nd from~me format to another (e.g., real to 
integer), the conversion is actually Performed in 
an internal work area to ,avoid, altering the source 
operand'. A destination operand may also provide 
an "input" to an instruction. It isdisfinguished 
from a source operand, however, because its con­
tent may be altered when it receives ,the result 
produced by the operation; that is, the destination 
is replaced by the result:' 

Many instructions allow 'their operands to be cod­
ed in more than one way. For example, FADD 
(add real) may be written without operands, with 
only a source or with a destination and a source. 
The instruction descriptions in this section 
employ the simple convention of separating alter­
native operand forms with slashes; the slashes, 
however, are not coded. Consecutive slashes in­
dicate an option of-itO' explicit operands. The 
operands for FADD arethus described as: 

Iisourceidestination, source 

This means that FADD may be written in any of 
three ways: 

FADD 
FADDsource 
FADD destination, source 

When reading this section, it is important 
to bear in mind that memory operands may be 
coded with any of the CPU's memory addressing 
modes. To review these modes-direct, register 
indirect, based, indexed, based indexed-refer to 
sections 2.8 and 2.9. Table S-22 in this chapter 
also provides seyeral addressing mode examples. 
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Data Transfer Instructions 

These instructions (summarized in table ,S"9) 
move operands among elements ,of the ,register 
stack, and between, the stack top ,and memory. 
Any of the seven data types can:be converted to 
temporary, real and loaded (pushed) onto' the 
stack in a single operation; they can be stored to 
memory in the same manner. The data transfer 
instructions automatically update the 8087 tag 
word to reflect the register contents following'the 
instruction. 

FLO 'source 

FLD (load real) loads (pushes) the source operand 
onto the top of the register stack. This is done by 
decrementing the stack pointer by one and then 
copying the content of the source to the newsti;lck 
top. The source may be a register on the stack 
(ST(i» or any of the real data types in memory. 
Short and long real source operands are converted 
to temporary, real automatically. CodingFLD 
ST(O) duplicates the stack top. 

Table S~9. Data Transfer Instructions 

Real Transfers 
" 

FLD Load real 
FST Store real 
FSTP Store real and pop 
FXCH 'Exchange registers 

Integer Transfers 
" 

FILD Integer load 
FIST Integer store 
FISTP, Integer store and pop 

Packed Decimal Transfers 

FBLD Packed decimal (BCD) load 
FBSTP Packed decimal (BCD)store and p,op 

FST destination: 

FST (store real) transfers the stack top' to the 
destination, which may be another register on the 
stack or a short or long real memory operand. If 
the destination is short or long real; the signifi­
cand is rounded to the width' of the, destination 
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according to the RC field of the control word, 
and the exponent is converted to the width and 
bias of the destination format. 

If, however, the stack top is tagged special (it con­
tains 00, a NAN, or a denormal) then the stack 
top's significand is not rounded but is chopped 
(on the right) to fit the destination. Neither is the 
exponent converted, but it also is chopped on the 
right and transferred "as is". This preserves the 
value's identification as 00 or a NAN (exponent 
all ones) or a denormal (exponent all zeros) so 
that it can be properly loaded and tagged later in 
the program if desired. 

FSTP destination 

FSTP (store real and pop) operates identically to 
FST except that the stack is popped following the 
transfer. This is done by tagging the top stack 
element empty and then incrementing ST. FSTP 
permits storing to a temporary real memory 
variable while FST does not. Coding FSTP ST(O) 
is equivalent to popping the stack with no data 
transfer. 

FXCH / /destination 

FXCH (exchange registers) swaps the contents of 
the destination and the stack top registers. If the 
destination is not coded explicitly, ST(l) is used. 
Many 8087 instructions operate only on the stack 
top; FXCH provides a simple means of effectively 
using these instructions on lower stack elements. 
For example, the following sequence takes the 
square root of the third register from the top: 

FXCH ST(3) 
FSQRT 
FXCHST(3) 

FILDsource 

FILD (integer load) converts the source memory 
operand from its binary integer format (word, 
short, or long) to temporary real and loads 
(pushes) the result onto the stack. The (new) stack 
top is. tagged zero if all bits in the source were 
zero, and is tagged valid otherwise. 
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FIST destination 

FIST (integer store) rounds the content of the 
stack top to an integer according to the RC field 
of the control word and transfers the result to the 
destination. The destination may define a word or 
short integer variable. Negative zero is stored in 
the same encoding as postive zero: 0000 ... 00. 

FISTP destination 

FISTP (integer store and pop) operates like FIST 
and also pops the stack following the transfer. 
The destination may be any of the binary integer 
data types. 

FBLD source 

FBLD (packed decimal (BCD) load) converts the 
content of the source operand from packed 
decimal to temporary real and loads (pushes) the 
result onto the stack. The sign of the source is 
preserved, including the case where the value is 
negative zero. FBLD is an exact operation; the 
source is loaded with no rounding error. 

The packed decimal digits of the source are 
assumed to be in the range 0-9H. The instruction 
does not check for invalid digits (A-FH) and the 
result of attempting to load an invalid encoding is 
undefined. 

FBSTP destination 

FBSTP (packed decimal (BCD) store and pop) 
converts the content of the stack top to a packed 
decimal integer, stores the result at the destination 
in memory, and pops the stack. FBSTP produces 
a rounded integer from a non-integral value by 
adding 0.5 to the value and then chopping. Users 
who are concerned about rounding may precede 
FBSTP with FRNDINT. 

Arithmetic Instructions 

The 8087's arithmetic instruction set (table S-10) 
provides a wealth of variations on the basic add, 
subtract, multiply, and divide operations, and a 
number of other useful functions. These range 
from a simple absolute value toa square root 
instruction that executes faster than ordinary divi-

Mnemonics © Intel 19BO 



8087 NUMERIC DATA PROCESSOR 

Table S-1 0 _ Arithmetic Instructions 

Addition 

FADD Add real 
FADDP Add real and pop 
FIADD Integer add 

Subtraction 

FSUB Subtract real 
FSUBP Subtract real and pop 
FISUB Integer subtract 
FSUBR Subtract real reversed 
FSUBRP Subtract real reversed and pop 
FISUBR Integer subtract reversed 

Multiplication 

FMUL Multiply real 
FMULP Multiply real and pop 
FIMUL Integer multiply 

Division· 
-

FDIV Divide real 
FDIVP Divide real and pop 
FIDIV Integer divide 
FDIVR Divide real reversed 
FDIVRP Divide real reversed and pop 
FIDIVR Integer divide reversed 

Other Operations 

FSQRT Square root 
FSCALE Scale 
FPREM Partial remainder 
FRNDINi Round to integer 
FXTRACT Extract exponent and significand 
FABS Absolute value 
FCHS Change sign 

sion; 8087 programmers no longer need to spend 
valuable time eliminating square roots from 
algorithms because they run too slowly_ Other 
arithmetic instructions perform exact modulo 
division, round real numbers to integers, and 
scale values by powers of two. 

The 8087's basic arithmetic instructions (addi­
tion, subtraction, multiplication, and division) 
are designed to encourage the development of 
very efficient algorithms. In particular, they allow 
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the programmer to minimize memory references 
and to make optimum use of the NDP register 
stack. 

Table S-llsummarizes the available opera­
tion/operand forms that are provided for basic 
arithmetic. In addition to the four normal opera­
tions, two "reversed" instructions make sub­
traction and division "symmetrical" like addition 
and multiplication. The variety of instruction and 
operand forms give the programmer unusual 
flexibility: 

• operands may be located in registers or 
memory; 

• results may be deposited in a choice of 
registers; 

e operands may be a variety of NDP data 
types: temporary real, long real, short real, 
short integer or word integer, with automatic 
conversion to temporary real performed by 
the 8087. 

Five basic instruction forms may be used across 
all six operations, as shown in table S-ll. The 
classical stack form may be used to make the 8087 
operate like a classical stack machine. No 
operands are coded in this form, only the instruc­
tion mnemonic. The NDP picks the source 
operand from the stack top and the destination 
from the next stack element. It then pops the 
stack, performs the operation, and returns the 
result to the new stack top, effectively replacing 
the operands by the result. 

The register form is a generalization of the 
classical stack form; the programmer specifies the 
stack top as one operand and any register on the 
stack as the other operand. Coding the stack top 
as the destination provides a convenient way to 
access a constant, held elsewhere in the stack, 
from the stack top. The converse coding (STis the 
source operand) allows, for example, adding the 
top into a register used as an accumulator. 

Often the operand in the stack top is needed for 
one operation but then is of no further use in the 
computation. The register pop form can be used 
to pick up the stack top as the source operand, 
and then discard it by popping the stack. Coding 
operands of ST(1),ST with a register pop 
mnemonic is equivalent to a classical stack opera­
tion: the top is popped and the result is left at the 
new top. 
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Table S-II. Basic Arithmetic Instructioris and Operands 

Instruction Form 
Mnemonic Operand Forms 

ASM-86 Example Form destination, source 

Classical stack Fop {ST(1),Sn FADD 

Register Fop ST(i),ST or ST,ST(i) FSUB ST,ST(3) 

Register pop FopP ST(i),ST FMULP ST(2),ST 

Real memory Fop {ST,} short-real/long-real FDIV AZIMUTH 

Integer memory Flop {ST,} word-integerlshort-integer FIDIV N_PULSES 

NOTES: Braces { } surround implicit operands; these are not coded, and are shown 
here for information only. 

op = ADD destination ~ destination + source 
SUB destination ~ destination - source 
SUBR Clestination ... source - destination 
MUL destination ~ destination • source 
DIV destination ~ destination 7 source 
DIVR destination ~ source 7 destination 

The two memory forms increase the flexibility of 
the 8087's arithmetic instructions. They permit a 
real number or a binary integer in memory to be 
used directly as a source operand. This is a very 
useful facility in situations where operands are 
not used frequently enough to justify holding 
them in registers. Note that any memory address­
ing mode may be used to define these operands, 
so they may be elements in arrays, structures or 
other data organizations, as well as simple 
scalars. 

The six basic operations are discussed further in 
the next paragraphs, and descriptions of the 
remaining seven arithmetic operations follow. 

Addition 
FADD 
FADDP 
FIADD 

/ / source/destination, source 
destination, source 
source 

The addition instructions (add real, add real and 
pop, integer add) add the source and destination 
operands and return the sum to the destination. 
The operand at the stack top may be doubled by 
coding: 

FADD ST,ST(O) 
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Normal Subtraction 
FSUB / /source/destination,source 
FSUBP destination, source 
FISUB source 

The normal subtraction instructions (subtract 
real, subtract real and pop, integer subtract) sub­
tract the source operand from the destination and 
return the difference to the destination. 

Reversed Subtraction 
FSUBR / /source/destination,source 
FSUBRP destination, source 
FISUBR source 

The reversed subtraction instructions (subtract 
real reversed, subtract real reversed and pop, 
integer subtract reversed) subtract the destination 
from the source. and return the difference to the 
destination. 

Multiplication 
FMUL / /source/destination,source 
FMULP destination, source 
FIMUL source 

The multiplication instructions (multiply real, 
multiply real and pop, integer multiply) multiply 
the source and destination operands and return 
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the product to the destination. Coding 
FMUL ST,ST(O) squares the content of the 
stack top. 

Normal Division 
FDIV Iisourceidestination, source 
FDIVP destination, source 
FIDIV source 

The normal division instructions (divide real, 
divide real and pop, integer divide) divide the 
destination by the source and return the quotient 
to the destination. 

Reversed Division 
FDIVR Iisourceidestination, source 
FDIVRP destination,source 
FIDIVR source 

The reversed division instructions (divide real 
reversed, divide real reversed and pop, integer 
divide reversed) divide the source operand by 
the destination and return the quotient to the 
destination. 

FSQRT 

FSQRT (square root) replaces the content of the 
top stack element with its square root. (Note: the 
square root of -0 is defined to be -0.) 

FSCALE 

FSCALE (scale) interprets the value contained in 
ST(1) as an integer, and adds this value to the 
exponent of the number in ST. This is equivalent 
to: 

ST ~ ST • 2ST(1) 

thus, FSCALE provides rapid multiplication or 
division by integral powers of 2. It is particularly 
useful for scaling the elements of a vector. 

Note that FSCALE assumes the scale factor 
in ST(l) is an integral value in the range 
_215~X< 215. If the value is not integral, but is 
in-range and is greater in magnitude than 1, 
FSCALE uses the nearest integer smaller in 
magnitude, i.e., it chops the value toward O. If the 
value is out of range, or 0 < I X I < 1, the instruc­
tion will produce an undefined result and will not 
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signal an exception. The recommended practice is 
to load the scale factor from a word integer to 
ensure correct.operation. 

FPREM 
FPREM (partial remainder) performs modulo 
division of the top stack element by the next stack 
element, i.e., ST(1) is the modulus. FPREMpro­
duces an exact result; the precision exception does 
not occur. The sign of the remainder is the same 
as the sign of the original dividend. 

FPREM operates by performing successive scaled 
subtractions; obtaining the exact remainder when 
the operands differ greatly in magnitude can con­
sume large amounts of execution time. Since the 
8087 can only be preempted between instructions, 
the remainder function could seriously increase 
interrupt latency in these cases. Accordingly, the 
instruction is designed to be executed iteratively in 
a software-controlled loop. 

FPREM can reduce a magnitude difference of up 
to 264 in one execution. If FPREM produces a 
remainder that is less than the modulus, the func­
tion is complete and bit C2 of the status word 
condition code is cleared. If the function is 
incomplete, C2 is set to 1; the result in ST is then 
called the partial remainder. Software can inspect 
C2 by storing the status word following execution 
of FPREM and re-execute the instruction (using 
the partial remainder in ST as the dividend), until 
C2 is cleared. Alternatively, a program can deter­
mine when the function is complete by comparing 
ST to ST(1). If ST>ST(1) then FPREM must be 
executed again; if ST=ST(1) then the remainder is 
0; if ST<ST(l) then the remainder is ST. A higher 
priority interrupting routine which needs the 8087 
can force a context switch between the instruc­
tions in the remainder loop. 

An important use for FPREM is to reduce 
arguments (operands) of periodic transcendental 
functions to the range permitted by these 
instructions. For example, the FPT AN (tangent) 
instruction requires its argument to be less than 
n14. Using nl4 as a modulus, FPREM will reduce 
an argument so that it is in range of FPT AN. 
Because FPREM produces an exact result, the 
argument reduction does not introduce roundoff 
error into the calculation, even if several itera­
tions are required to bring the argument into 
range. (The rounding of n does not create the 
effect of a rounded argument, but of a rounded 
period.) 
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FPREM also provides the least-significant three 
bits of the quotient generated by FPREM (in C3, 

C1, Co), This is also important for transcendental 
argument reduction since it locates the original 
angle in the correct one of eight Tl/4 segments of 
the unit circle. 

FRNDINT 

FRNDJNT (round to integer) rounds the top 
stack element to an integer. For example, assume 
that ST contains the 8087 real number encoding 
of the decimal value 155.625. FRNDINT will 
change the value to 155 if the RC field of the con­
trol word is set to down or chop, or to 156 if it is 
set to up or nearest. 

FXTRACT 

FXTRACT (extract exponent and significand) 
"decomposes" the number in the stack top into 
two numbers that represent the actual value of the 
operand's exponent and significand fields. The 
"exponent" replaces the original operand on the 
stack and the "significand" is pushed onto the 
stack. Following execution of FXTRACT, ST 
(the new stack top) contains the value of the 
original significand expressed as a real number: 
its sign is the same as the operand's, its exponent 
is 0 true (16,383 or 3FFFH biased), and its signifi­
cand is identical to the original operand's. ST(l) 
contains the value of the original operand's true 
(unbiased) exponent expressed as a real number. 
If the original operand is zero, FXTRACT pro­
duces zeros in ST and ST(1) and both are signed 
as the original operand. 

To clarify the operation of FXTRACT, assume 
ST contains a number whose true exponent is +4 
(i.e., its exponent field contains 4003H). After 
executing FXTRACT, ST(1) will contain the real 
number +4.0; its sign will be positive, its exponent 
field will contain 4001H (+2 true) and its signifi­
cand field will contain lLlOO ... OOB. In other 
words, the value in ST(l) will be 1.0 x 22 = 4. If 
ST contains an operand whose true exponent is 
-7 (i.e., its exponent field contains 3FF8H), then 
FXTRACT will return an "exponent" of -7.0; 
after the instruction executes, ST(1)'s sign and 
exponent fields will contain COOIH (negative 
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sign, true exponent of 2) and its significand will 
be 1 LllI00 ... OOB. In other words the value in 
ST(l) will be -1.11 x 22 = -7.0. In both cases, 
following FXTRACT, ST's sign and significand 
fields will be the same as the original operand's, 
and its exponent field will contain 3FFFH, 
(0 true). 

FXTRACT is useful in conjunction with FBSTP 
for converting numbers in 8087 temporary real 
format to decimal representations (e.g., for 
printing or displaying). It can also be useful for 
debugging since it allows the exponent and signifi­
cand parts of a real number to be examined 
separately. 

FABS 

F ABS (absolute value) changes the top stack ele­
ment to its absolute value by making its sign 
positive. 

FCHS 

FCHS (change sign) complements (reverses) the 
sign of the top stack element. 

Comparison Instructions 

Each of these instructions (table S-12) analyzes 
the top stack element, often in relationship to 
another operand, and reports the result in the 
status word condition code. The basic operations 
are compare, test (compare with zero), and 
examine (report tag, sign, and normalization). 
Special forms of the compare operation are pro­
vided to optimize algorithms by allowing direct 
comparisons with binary integers and real 
numbers in memory, as well as popping the stack 
after a comparison. 

The FSTSW (store status word) instruction may 
be used following a comparison to transfer the 
condition code to memory for inspection. Section 
S.1O contains an example of using this technique 
to implement conditional branching. 

Note that instructions other than those in the 
comparison group may update the condition 
code. To insure that the status word is not altered 
inadvertently, store it immediately following a 
comparison operation. 
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FCOM / /source 

FCOM (compare real) compares the stack top to 
the source operand. The source operand may be a 
register on the stack, or a short or long real 
memory operand. If an operand is not coded, 
ST is compared to ST(l). Positive and negative 
forms of zero compare identically as if they were 
unsigned. Following the instruction, the condi­
tion codes reflect the order of the operands as 
follows: 

C3 CO Order 

0 0 ST > source 
0 1 ST < source 
1 0 ST= source 
1 1 ST? source 

NANs and 00 (projective) cannot be compared 
and return C3=CO= 1 as shown above. 

Table S-12. Comparison Instructions 

FCOM 
FCOMP 
FCOMPP 
FICOM 
FICOMP 
FTST 
FXAM 

Compare real 
Compare real and pop 
Compare real and pop twice 
Integer compare 
Integer compare and pop 
Test 
Examine 

FCOMP / /source 

FCOMP (compare real and pop) operates like 
FCOM, and in addition pops the stack. 

FCOMPP 

FCOMPP (compare real and pop twice) operates 
like FCOM and additionally pops the stack twice, 
discarding both operands. The comparison is of 
the stack top to ST(I); no operands may be 
explicitly coded. 

FICOM source 

FICOM (integer compare) converts the source 
operand, which may Jeference a word or short 
binary integer variable, to temporary real and 
compares the stack top to it. 
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FICOMP source 

FICOMP (integer compare and pop) operates 
identically to FICOM and additionally discards 
the value in ST by popping the stack. 

FTST 

FTST (test) tests the top stack element by compar­
ing it to zero. The result is posted to the condition 
codes as follows: 

C3 CO Result 

0 0 ST is positive and 
nonzero 

0 1 ST is negative and 
nonzero 

1 0 STiszero(+ or-) 
1 1 ST is not com-

parable (i.e., it is a 
NAN or projective 
00) 

FXAM 

FXAM (examine) reports the content of the top 
stack element as positive/negative and NAN/ 
unnormalldenormallnormallzero, or empty. 
Table S-13 lists and interprets all the condition 
code values that FXAM generates. Although four 
different encodings may be returned for an empty 
register, bits C3 and CO of the condition code are 
both 1 in all encodings. Bits C2 and Cl should be 
ignored when examining for empty. 

Transcendental Instructions 

The instructions in this group (table S-14) per­
form the time-consuming core calculations for all 
common trigonometric, inverse trigonometric, 
hyperbolic, inverse hyperbolic, logarithmic and 
exponential functions. Prologue and epilogue 
software may be used to reduce arguments to the 
range accepted by the instructions and to adjust 
the result to correspond to the original arguments 
if necessary. The transcendentals operate on the 
top one or two stack elements and they return 
their results to the stack also. 
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Table S-13. FXAM Condition Code Settings 

Condition Code 

C3 C2 C1 CO 
Interpretation 

0 0 0 0 + Unnormal 

0 0 0 1 + NAN 

0 0 1 0 - Unnormal 

0 0 1 1 -NAN 

0 1 0 0 + Normal 

0 1 0 1 +00 

0 1 1 0 - Normal 

0 1 1 1 - 00 

1 0 0 0 + 0 

1 0 0 1 Empty 

1 0 1 0 -0 

1 0 1 1 Empty 

1 1 0 0 + Denormal 

1 1 0 1 Empty 

1 1 1 0 - Denormal 

1 1 1 1 Empty 

Table S-14. Transcendental Instructions 

FPTAN Partial tangent 

FPATAN Partial arctangent 

F2XM1 2X-1 

FYL2X Y -IOQ2X 

FYL2XP1 Y - IOQ2(X + 1) 

The transcendental instructions assume that their 
operands are valid and in-range. The instruction 
descriptions in this section provide the range of 
each operation. To be considered valid, an 
operand to a transcendental must be normalized; 
denormals, unnormals, infinities and NANs are 
considered invalid. (Zero operands are accepted 
by some functions and are considered out-of­
range by others.) If a transcendental operand is 
invalid or out-of -range, the instruction will 
produce an undefined result without signalling an 
exception. It is the programmer's responsibility to 
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ensure that operands are valid and in-range 
before executing a transcendental. For periodic 
functions, FPREM may be used to bring a valid 
operand into range. 

FPTAN 

FPT AN (partial tangent) computes the function 
Y IX = TAN (0). 0 is taken from the top stack 
element; it must lie in the range 0 < 0 < 11/4. The 
result of the operation is a ratio; Y replaces 0 in 
the stack and X is pushed, becoming the new 
stack top. 

The ratio result of FPT AN and the ratio argu­
ment of FP AT AN are designed to optimize the 
calculation of the other trigonometric functions, 
including SIN, COS, ARCSIN and ARCCOS. 
These can be derived from TAN and ARCTAN 
via standard trigonometric identities. 

FPATAN 

FP AT AN (partial arctangent) computes the func­
tion 0 = ARCTAN (Y IX). X is taken from the 
top stack element and Y from ST(l). Y and X 
must observe the inequality 0 < Y < X < 00. The 
instruction pops the stack and returns 0 to the 
(new) stack top, overwriting the Y operand. 

F2XM1 

F2XM1 (2 to the X minus 1) calculates the func­
tion Y = 2x -1. X is taken from the stack top and 
must be in the range 0 ~ X ~ 0.5. The result Y 
replaces X at the stack top. 

This instruction is designed to produce a very 
accurate result even when X is close to zero. To 
obtain Y =2x, add 1 to the result delivered by 
F2XMl. 

The following formulas show how values other 
than 2 may be raised to a power of X: 

10X = 2xoLOG210 

eX = 2xoLOG2e 

yX = 2xoLOG2Y 
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As shown in the next section,the 8087 has built-in 
instructions for loading the constants LOG21O 
and LOG2e, and the FYL2X instruction may be 
used to calculate XeLOG2Y. 

FYL2X 

FYL2X (Y log base 2 of X) calculates the function 
Z ~ YeLOGz'{. Xis taken from the stack top and 
Y from ST(1). The operands must be in the ranges 
0< X < 00 and - 00 < Y < + 00. The instruction 
pops the stack and returns Z at the (new) stack 
top, replacing the Y operand. 

This function optimizes the calculation of log to 
any base other than two since a multiplication is 
always required: 

FYL2XP1 

FYL2XPI (Y log base 2 of (X + I)) calculates 
the function Z = YeLOG2 (X+I). X is taken 
from the. stack top and must be in the range 
0< IXI< (l -('\[ii2)). Y is taken from ST(l) and 
must be in the range - 00 < Y < 00. FYL2XPI 
pops the stack and returns Z at the (new) stack 
top, replacing Y. 

This instruction provides improved accuracy over 
FYL2X when computing the log of a number very 
close to I, for example I + E where E < < 1. 
Providing E rather than I + E as the input to the 
function allows more significant digits to be 
retained. 

Constant Instructions 

Each of these instructions (table S-15) loads 
(pushes) a commonly-used constant onto the 
stack. The values have full temporary real preci­
sion (64 bits) and are accurate to approximately 
19 decimal digits. Since a temporary real constant 
occupies 10 memory bytes, the constant instruc­
tions, which are only two bytes long, save storage 
and improve execution speed, in addition to 
simplifying programming. 
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Table 8-15. Constant Instructions 

FLDZ Load +0.0 

FLD1 Load +1.0 

FLDPI Loadrr 

FLDL2T Load IOQ21O 

FLDL2E Load IOQ2e 

FLDLG2 Load IOQ102 

FLDLN2 Load IOQe2 

FLDZ 

FLDZ (load zero) loads (pushes) +0.0 onto the 
stack. 

FLD1 

FLDl (load one) loads (pushes) + 1.0 onto the 
stack. 

FLOPI 

FLDPI (load rr) loads (pushes) rr onto the stack. 

FLDL2T 

FLDL2T (load log base 2 of 10) loads (pushes) the 
value LOG21O onto the stack. 

FLOL2E 

FLDL2E (load log base 2 of e) loads (pushes) the 
value LOG2e onto the stack. 

FLDLG2 

FLDLG2 (load log base 10 of 2) loads (pushes) 
the value LOG 102 onto the stack. 

FLDLN2 

FLDLN2 (load log base e of 2) loads (pushes) the 
value LOGe2 onto the stack. 
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Processor Control Instructions 

Most of these instructions (table S-16) are not 
used in computations; they are provided prin­
cipally for system-level activities. These include 
initialization, exception handling and task 
switching. 

As shown in table S-16, an alternate mnemonic is 
available for many of the processor control 
instructions. This mnemonic, distinguished by a 
second character of "N", instructs the assembler 
to not prefix the instruction with a CPU WAIT 
instruction (instead, a CPU NOP precedes the 
instruction). This "no-wait" form is intended for 
use in critical code regions where a WAIT instruc­
tion might precipitate an endless wait. Thus, 
when CPU interrupts are disabled, and the NDP 
can potentially generate an interrupt, the no-wait 
form should be used. When CPU interrupts are 
enabled, as will normally be the case when an 
application task is running, the "wait" forms of 
these instructions should be used. 

Except for FNSTENV and FNSA VE, all instruc­
tions which provide a no-wait mnemonic are self­
synchronizing and can be executed back-to-back 
in any combination without intervening FWAITs. 
These instructions can be executed by the 8087 
CU while the NEU is busy with a previously 
decoded instruction. To insure'that the processor 
control instruction executes after completion of 
any operation in progress in the NEU, the \'wait" 
form of that instruction should be used. 

FINIT IFNINIT 

FINIT IFNINIT (initialize processor) performs 
the functional equivalent of a hardware RESET 
(see section S.6), except that it does not affect the 
instruction fetch synchronization of the 8087 and 
its CPU. 

For compatibility with the 8087 emulator, a 
system should call the INIT87 procedure in lieu of 
executing FINIT IFNINIT when the processor is 
first initialized (see section S.8 for details). Note 
that if FNINIT is executed while a previous 8087 
memory referencing instruction is running, 8087 
bus cycles in progress will be aborted. 
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FDISI/FNDISI 

FDlSIIFNDlSI (disable interrupts) sets the inter­
rupt enable mask in the control word and 
prevents the NDP from issuing an interrupt 
request. 

Table S-16. Processor Control Instructions 

FINIT I FNINIT Initialize processor 

FDISII FNDISI Disable interrupts 

FENI/FNENI Enable interrupts 

FLDCW Load control word 

FSTCW I FNSTCW Store control word 

FSTSW I FNSTSW Store status word 

FCLEX/FNCLEX Clear exceptions 

FSTENV I FNSTENV Store environment 

FLDENV Load environment 

FSAVE/FNSAVE Save state 

FRSTOR Restore state 

FINCSTP Increment stack pointer 

FDECSTP Decrement stack pointer 

FFREE Free register 

FNOP No operation 

FWAIT CPU wait 

FENI/FNENI 

FENIIFNENI (enable interrupts) clears the inter­
rupt enable mask in the control word, allowing 
the 8087 to generate interrupt requests. 

FLDCW source 

FLDCW (load control word) replaces the current 
processor control word with the word defined by 
the source operand. This instruction is typically 
used to establish, or change, the 8087's mode of 
operation. Note that if an exception bit in the 
status word is set, loading a new control word 
that unmasks that exception and clears the inter­
rupt enable mask will generate an immediate 
interrupt request before the next instruction is 
executed. When changing modes, the recom­
mended procedure is to first clear any exceptions 
and then load the new control word. 
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FSTCW IFNSTCW destination 

FSTCW IFNSTCW (store control word) writes 
the current processor control word to the memory 
10catiQn defined by the destination. 

FSTSW IFNSTSW destination 

FSTSW IFNSTCW (store status word) writes the 
current value of the 8087 status word to the 
destination operand in memory. The instruction 
has many uses: 

• to implement conditional branching 
following a comparison or FPREM instruc­
tion (FSTSW); 

• to poll the 8087 to determine if it is busy 
(FNSTSW); 

• to invoke exception handlers in environments 
that do not use interrupts (FSTSW). 

FCLEX/FNCLEX 

FCLEX/FNCLEX (clear exceptions) clears all 
exception flags, the interrupt request flag and the 
busy flag in the status word. As a consequence, 
the 8087's INT and BUSY lines go inactive. An 
exception handler must issue this instruction 
before returning to the interrupted computation, 
or another interrupt request will be generated 
immediately, and an endless loop may result. 

FSAVE/FNSAVE destination 

FSA VE/FNSA VE (save state) writes the full 8087 
state-environment plus register stack-to the 
memory location defined by the destination 
operand. Figure S-18 shows the layout of the 94-
byte save area; typically the instruction will be 
coded to save this image on the CPU stack. If an 
instruction is executing in the 8087 NEU when 
FNSA VE is decoded, the CPU queues the 
FNSA VE and delays its execution until the run­
ning instruction completes normally or 
encounters an .unmasked exception. Thus, the 
save image reflects the state of the NDP following 
the completion of any running instruction. After 
writing the .state image to memory, 
FSA VE/FNSA VE initializes the 8087 as if 
FINIT IFNINIT had been executed. 
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FSA VE/FNSA VE is useful whenever a program 
wants to save the current state of the NDP and 
initialize it for a new routine. Three examples are: 

• an operating system needs to perform a 
context switch (suspend the task that had 
been running and give control to a new task); 

• an interrupt handler needs to use the 8087; 

• an application task wants to pass a "clean" 
8087 to a subroutine. 

FNSAVE must be "protected" by executing it in 
a critical region, i.e., with CPU interrupts dis­
abled. This prevents an interrupt handler from 
executing a second FNSA VE (or other "no-wait" 
processor control instruction that references 
memory) which could destroy the first FNSA VE 
if it is queued in the 8087. An FW AIT should be 
executed before CPU interrupts are enabled or 
any subsequent 8087 instruction is executed. 
(Because the FNSA VE initializes the NDP, there 
is no danger of the FW AIT causing an endless 
wait.) Other CPU instructions may be executed 
between the FNSA VE and the FW AIT; this 
parallel execution will reduce interrupt latency if 
the FNSA VE is queued in the 8087. 

FRSTOR source 

FRS TOR (restore state) reloads the 8087 from the 
94-byte memory area defined by the source 
operand. This information should have been writ­
ten by a previous FSA VE/FNSA VE instruction 
and not altered by any other instruction. CPU 
instructions (that do not reference the save image) 
may immediately follow FRSTOR, but no NDP 
instruction should be without an intervening 
FW AIT or an assembler-generated WAIT. 

Note that the 8087 "reacts" to its new state at the 
conclusion of the FRSTOR; it will for example, 
generate an immediate interrupt request if the 
exception and mask bits in the memory image so 
indicate. 

FSTENV IFNSTENV destination 

FSTENV IFNSTENV (store environment) writes 
the 8087's basic status-control, status and tag 
words, and exception pointers-to the memory 
location defined by the destination operand. 
Typically the environment is saved on the CPU 
stack. FSTENV IFNSTENV is often used by 
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exception handlers because it provides access to 
the exception pointers which identify the offend­
ing instruction and operand. After saving the 
environment, FSTENV IFNSTENV sets all excep­
tion masks in the processor; it does not affect the 
interrupt-enable mask. Figure S-19 shows the for­
mat of the environment data in memory. If 
FNSTENV is decoded while another instruction is 
executing concurrently in the NEU, the 8087 
queues the FNSTENV and does not store the 
environment until the other instruction has com­
pleted. Thus, the data saved by the instruction 
reflects the 8087 after any previously decoded 
instruction has been executed. 

INSTRUCTION { 
POINTER 

OPERAND { 
POINTER 

TOP STACK { 
ELEMENT:ST 

NEXT STACK { 
ELEMENT:ST(1) 

LASTSTACK { 
ELEMENT:ST(7) 

NOTES: 
S; Sign 

INCREASING ADDRESSES 

15 

CONTROL WORD +0 

STATUS WORD +2 

TAG WORD +4 

IP1S-0 +6 

IP19-16 101 OPCODE +8 

OP15-0 +10 

OP19-161 0 +12 

SIGNIFICAND 15-0 +14 

SIGNIFICAND 31-16 +16 

SIGNIFICAND 47-32 +18 

SIGNIFICAND 63-48 +20 

sl EXPONENT 14-0 +22 

SIGNIFICAND 15-0 +24 

SIGNIFICAND 31-16 +26 

SIGNIFICAND 47-32 +28 

SIGNIFICAND 63-48 +30 

sl EXPONENT 14-0 +32 

~ 

SIGNIFICAND 15-0 +84 

SIGNIFICAND 31-16 +86 

SIGNIFICAND 47-32 +88 

SIGNIFICAND 63-48 +90 

sl EXPONENT 14-0 +92 

Bit 0 of each field is rightmost, least significant bit of corresponding 
register field. 
Bit 63 of significand is integer bit (assumed binary point is immediately 
to the right)_ 

Figure S-18. FSAVE/FRSTOR Memory 
Layout 
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FSTENV IFNSTENV must be allowed to com­
plete before any other 8087 instruction is 
decoded. When FSTENV is coded, an explicit 
FW AIT, or assembler-generated WAIT, should 
precede any subsequent 8087 instruction. An 
FNSTENV must be executed in a critical region 
that is protected from interruption, in the same 
manner as FNSA VE. (There is no risk of the 
following FW AIT causing an endless wait, 
because FNSTENV masks all exceptions, thereby 
preventing an interrupt request from the 8087.) 

15 

INCREASING ADDRESSES 

:=iJ H::! CONTROL WORD 

STATUS WORD 

TAG WORD +4 

IP1S-0 +6 
INSTRUCTION { 

POINTER 
IP19-16I 01 OPCODE +8 

OPERAND { 
POINTER 

OP19-16I 

OP1S-0 +10 

0 +12 

Figure S-19. FSTENV IFLDENV Memory 
Layout 

FLDENV source 

FLDENV (load environment) reloads the 8087 
environment from the memory area defined by 
the source operand. This data should have been 
written by a previous FSTENV IFNSTENV 
instruction. CPU instructions (that do not 
reference the environment image) may 
immediately follow FLDENV, but no subsequent 
NDP instruction should be executed without an 
intervening FW AIT or assembler-generated 
WAIT. 

Note that loading an environment image that con­
tains an unmasked exception will cause an 
immediate interrupt request from the 8087 
(assuming IEM=O in the environment image). 

FINCSTP 

FINCSTP (increment stack pointer) adds 1 to the 
stack top pointer (ST) in the status word. It does 
not alter tags or register contents, nor does it 
transfer data. It is not equivalent to popping the 
stack since it does not set the tag of the previous 
stack top to empty. Incrementing the stack 
pointer when ST=7 produces ST=O. 
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FDECSTP 

FDECSTP (decrement stack pointer) subtracts 1 
from ST, the stack top pointer in the status word. 
No tags or registers are altered, nor is any data 
transferred. Executing FDECSTP when ST=O 
produces ST=7. 

FFREE destination 

FFREE (free register) changes the destination 
register's tag to empty; the content of the register 
is unaffected. 

FNOP 

FNOP (no operation) stores the stack top to the 
stack top (FST ST ,ST(O» and thus effectively 
performs no operation. 

FWAIT (CPU instruction) 

FW AIT is not actually an 8087 instruction, but an 
alternate mnemonic for the CPU WAIT instruc­
tion described in section 2.8. The FWAIT 
mnemonic should be coded whenever the pro­
grammer wants to synchronize the CPU to the 
NDP, that is, to suspend further instruction 
decoding until the NDP has completed the current 
instruction. A CPU instruction should not 
attempt to access a memory operand that has 
been read. or written by a previous 8087 instruc-

tion until the 8087 instruction has completed. The 
following coding shows how FW AIT can be used 
to force the CPU instruction to wait for the 8087: 

FNSTSW STATUS 
FWAIT ;Wait for FNSTSW 
MOV AX,STATUS 

Programmers should not code WAIT to 
synchronize the CPU and the NDP. The routines 
that alter an object program for 8087 emulation 
eliminate FW AITs (and assembler-generated 
WAITs) but do not change any explicitly coded 
WAITs. The program will wait forever if aWAIT 
is encountered in emulated execution, since there 
is no 8087 to drive the CPU's TEST pin active. 

Instruction Set Reference Information 
Table S-19 lists the operating characteristics of all 
the 8087 instructions. There is one table entry for 
each instruction mnemonic; the entries are in 
alphabetical order for quick lookup. Each entry 
provides the general operand forms accepted by 
the instruction as well as a list of all exceptions 
that may be detected during the operation. 

There is one entry for each combination of 
operand types that can be coded with the 
mnemonic. Table S-17 explains the operand iden­
tifiers allowed in table S-19. Following this entry 
are columns that provide execution time in clocks, 
the number of bus transfers run during the opera­
tion, the length of the instruction in bytes, and an 
ASM-86 coding sample. 

Table S-17. Key to Operand Types 

Identifier Explanation 

ST Stack top; the register currently at the top of the stack. 

ST(i) A register in the stack i (0..;i..;7) stack elements from the 
top. ST(1) is the next-on-stack register, ST(2) is below 
ST(1), etc. 

Short-real A short real (32 bits) number in memory. 

Long-real A long real (64 bits) number in memory. 

Temp-real A temporary real (80 bits) number in memory. 

Packed-decimal A packed decimal integer (18 digits, 10 bytes) in memory. 

Word-integer A word binary integer (16 bits) in memory. 

Short-integer A short binary integer (32 bits) in memory. 

Long-integer A long binary integer (64 bits) in memory. 

nn-bytes A memory area nn bytes long. 
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Execution Time 

The execution of an 8087 instruction involves 
three principal activities, each of which may con­
tribute to the total duration (execution time) of 
the operation: 

• Instruction fetch 

• Instruction execution 

• Operand transfer 

The CPU and NDP simultaneously prefetch and 
queue their common instruction stream from 
memory. This activity is performed during spare 
bus cycles and proceeds in parallel with the execu­
tion of instructions from the queue. Because of 
their complexity, 8087 instructions typically take 
much longer to execute than to fetch. This means 
that in a typical sequence of 8087 instructions the 
processors have a relatively large amount of time 
available to maintain full instruction queues. 
Instruction fetching is therefore fully overlapped 
with execution and does not contribute to the 
overall duration of a series of instructions. Fetch 
time does become apparent when a CPU jump or 
call instruction alters the normal sequential 
execution. This empties the queues and delays 
execution of the target instruction until it is 
fetched from memory. The time required to fetch 
the instruction depends on its length, the type of 
CPU, and, if the CPU is an 8086, whether the 
instruction is located at an even or odd address. 
(Slow memories, which force the insertion of wait 
states in bus cycles, and the bus activities of other 
processors in the system, may also lengthen fetch 
time.) Section 2.7 covers this topic in more detail. 

Table S-19 quotes a typical execution time and a 
range for each instruction. Dividing the figures in 
the table by5 (assuming a 5 MHz clock) produces 
execution time in microseconds. The typical case 
is an estimate for operand values that normally 
characterize most applications. The range 
encompasses best- and worst-case operand values 
that may be found in extreme circumstances. 
Where applicable, the figures include all overhead 
incurred by the CPU'.5 execution of the ESC 
instruction, local bus arbitration (request! grant 
time), and the average overhead imposed by a 
preceding WAIT instruction (half of the 5-clock 
cycle that it uses to examine the TEST pin). 

The execution times assume that no exceptions 
are detected. Invalid operation, denormalized 
(unmasked), and zero divide exceptions usually 
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decrease execution time from the typical figure, 
but it will still fall within the quoted range. The 
precision exception has no effect on execution 
time. Unmasked overflow and underflow, and 
masked denormalized exceptions, impose the 
penalties shown in table S-18. Absolute worst­
case execution time is therefore the high range 
figure plus the largest penalty that may be 
encountered. 

For instructions that transfer operands to or from 
memory, the execution times in table S-19 show 
that the time required for the CPU to calculate 
the operand's effective address (EA) should be 
added. Effective address calculation time varies 
according to addressing mode; table 2-20 supplies 
the figures. 

Table S-18. Execution Penalties 

Exception Additional Clocks 

Overflow (unmasked) 14 

Underflow (unmasked) 16 

Denormalized (masked) 33 

Bus Transfers 

Instructions that reference memory execute bus 
cycles to transfer operands. Each transfer 
requires one bus cycle. The number of transfers 
depends on the length of the operand, the type of 
CPU, and the alignment of the operand if the 
CPU is an 8086. The figures in table S-19 include 
the "dummy read" transfer(s) performed by the 
CPU in its execution of the escape instruction that 
corresponds to the 8087 instruction. The first 
8086 figure is for even-addressed operands, and 
the second is for odd-addressed operands. 

A bus cycle (transfer) consumes four clocks if the 
bus is immediately available and if the memory is 
running at processor speed, without wait states. 
Additional time is required if slow memories are 
employed, because these insert wait states into the 
bus cycle. In multiprocessor environments, the 
bus may not be available immediately if a higher 
priority processor is using it; this also can increase 
effective transfer time. 
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Instruction Length 

Instructions that do not reference memory are 
two bytes long. Memory reference instructions 
vary between two and four bytes. The third and 
fourth bytes are used for 8- or 16-bit displacement 
values; the assembler generates the short displace­
ment whenever possible. No displacements are 
required in memory references that use only CPU 
register contents to calculate an operand's effec­
tive address. 

Note that the lengths quoted in table 8-19 do not 
include the one byte CPU WAIT instruction that 
the assembler automatically inserts in front of all 
NDP instructions (except those coded with a "no­
wait" mnemonic). 

Table 8-19. Instruction 8et Reference Data 

FABS FABS (no operands) 
Exceptions: I Absolute value 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

(no operands) 14 10-17 0 o . 2 FABS 

FADD FADD //source/destination,source. 
Add real 

Exceptions: I, D, 0, U, P 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

I1ST,ST(i)/ST(i),ST 85 70-100 0 0 2 FADD ST,ST(4) 
short-real 105+EA 90-120+EA 2/4 4 2-4 FADD AIR_TEMP [SI] 
long-real 110+EA 95-125+EA 4/6 8 2-4 FADD [BX].MEAN 

... 

FADDP FADDP destination,source 
Exceptions: I,D, 0, U, P Add real and pop 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

ST(i),ST 90 75-105 0 0 2 FADDP ST(2),St 

FBLD FBLD source 
Exceptions: I Packed decimal (BCD) load 

Execution"Clocks Transfers" 
Operands 

Typical Range 8086 8088 
Byte~ Coding Example 

packed-decimal 300+EA 290-310+EA 5/7 10 2-4 FBLD YTD_SALES 
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Table S-19. Instruction Set Reference Data (Cont'd.) 

FBSTP FBSTP destination 
Exceptions: I Packed decimal (BCD) store and pop 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

packed-decimal 530+EA 520-540+EA 6/8 12 2-4 FBSTP [BX).FORECAST 

FCHS FCHS (no operands) 
Exceptions: I Change sign 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

(no operands) 15 10-17 0 0 2 FCHS 

FCLEX/FNCLEX FCLEX (no operands) 
Exceptions: None Clear exceptions 

Execution Clocks Transfers 
Operands' 

Typical Range 8086 8088 
Bytes Coding Example 

(no operands) 5 2-8 0 0 2 FNCLEX 

FCOM FCOM IIsource 
Exceptions: I, D 

Compare real 

Execution Clocks Transfers 
Operands 

Typical. Range 8086 8088 
Bytes Coding Example 

IIST(i) 45 40-50 0 0 2 FCOM ST(1) 
short-real 65+EA· 60-70+EA 2/4 4 2-4 FCOM [BP).UPPEFL-LIMIT 
long-real 70+EA 65-75+EA 4/6 8 2-4 FCOM WAVELENGTH 

'FCOMP FCOMP Iisource 
Exceptions: I, D Compare real and pop 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

IIST(i) 47 42-52 0 0 2 FCOMP ST(2) 
short-real 68+EA 63-73+EA 2/4 4 2-4 FCOMP [BP+2).N_READINGS 
long-real 72+EA 67-77+EA 4/6 8 2-4 FCOMP DENSITY 
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Table S-19. Instruction Set Reference Data (Cont'd.) 

FCOMPP FCOMPP (no operands) 
Exceptions: I, D Compare real and pop twice 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

(no operands) 50 45-55 0 0 2 FCOMPP 

FDECSTP FDECSTP (no operands) 
Exceptions: None Decrement stack pointer 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

(no operands) 9 6-12 0 0 2 FDECSTP 

FDISI/FNDISI FDISI (no operands) 
Exceptions: None Disable interrupts 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

(no operands) 5 2-8 0 0 2 FDISI 

FDIV FDIV !!source!destination,source 
Exceptions: I, D, Z, 0, U, P Divide real 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

!!ST(i),ST 198 193-203 0 0 2 FDIV 
short-real 220+EA 215-225+EA 2!4 4 2-4 FDIV DISTANCE 
long-real 225+EA 220-230+EA 4!6 8 2-4 FDIV ARC [DIJ 

FDIVP FDIVP destination,source 
Exceptions: I, D, Z, 0, U, P Divide real and pop 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

ST(i),ST 202 197-207 0 0 2 FDIVP ST(4),ST 
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Table S-19. Instruction Set Reference Data (Cont'd.) 

FDIVR FDIVR Iisource/destination,source 
Exceptions: I, D, Z, 0, U, P Divide real reversed 

Execut,ion Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

IIST,ST(i)/ST(i),ST 199 194-204 0 0 ,2 FDIVR ST(2),ST 
short-real 221+EA 216-226+EA 2/4 6 2-4 FDIVR [BX].PULSLRATE 
10flg-real 226+EA 221-23,1 +EA 4/6 8 2-4 FDIVR RECOROER.FREQUENCY 

FDIVRP FDIVRP destlnation,source 
Exceptions: I, D, Z, 0, U, P Divide real reversed and pop 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

ST(I),ST 203 198-208 0 0 2 FDIVRP ST(1 ),ST 

FENI/FNENI FENI (no operands) 
Exceptions: None 

Enable interrupts 

Execution Clocks Transfers 
Operands 

Typical Range ,8086 8088 
Bytes Coding Example 

(no operands) 5 2-8 ' 0 0 2 FNENI 

FFREE FFREE destination 
. Exceptions: None 

Free register 

Execution Clock,s Transfers " 
Operands 

Typical. 'Range 8086 8088 
Bytes Coding Example 

,ST(i) 11 9-16 0 0 2 FFREE ST(1) 

FIADD FI,II.DD source 
Exceptions: I, D, 0, P Integer add 

Execution Clocks Transfers 
Operands" 

Typical Range 8086 8088 
Bytes Coding Example, 

word-integer 120+EA 102-137+EA 112 2. 2-4 FIADD DISTANCE_TRAVELLED 
short-integer 125+EA 108-143+EA 2/4 .4 2-4 FIADD PULSE_COUNT [SI] 
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Table S-19. Instruction Set Reference Data (Cont'd.) 

FICOM FICOM source 
Exceptions: I, 0 Integer compare " 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding,Example 

word-integer 80+EA 72-8S+EA 1/2 2 2-4 FICOM TOOL.N_PASSES 
short-integer 85+EA 78-91+EA 2/4 4 2-4 FICOM [BP+4].PARM_COUNT 

FICOMP FICOMP source 
Exceptions: I,D 

Integer compare and pop 
" 

Execution Clocks' , Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

word-integer 82+EA 74-8B+EA 1/2 2 2-4 FICOMP [BP].LlMIT [SI] 
short-integer B7+EA BO-93+EA 2/4 4 2-4 FICOMP N_SAMPLES 

FIDIV FIDIV source 
Exceptions: I,D, Z, 0, U, P Integer divide 

Execution Clocks Transfers 
Operands 

Typical Range 80B6 808B' 
Bytes Coding Example 

word-integer 230+EA 224-23B+EA 1/2 2 2-4 FIOIV SURVEY.OBSERVATIONS 
short-integer 23S+EA 230-243+EA 2/4 4 2-4 FIOIV RELATIVE_ANGLE [01] 

FIDIVR FIDIVR source 
Exceptions: I, 0, Z, 0, U, P 

Integer divide reversed 

Execution' Clocks Transfers 
Operands 

Typical Range BOB6 80BB 
Bytes Coding Example .. 

word-integer 230+EA 225-239+EA 1/2 2 2-4 FIOIVR [BP].X_COORO 
short-integer 237+.EA 231-245+EA 2/4 ,4 2"4 FIOIVR FREQUENCY 

FILD FILD source 
Exception: I 

Integer load 

Execution Clocks Transfers 
Opera!1ds 

Typical' Range 80B6 BOBB 
Bytes Coding Example 

word-i nteger 50+EA 4S-54+EA 1/2, 2 2-4 FILO [BX].SEQUENCE 
short-integer 56+EA 52-60+EA 2/4 4 2-4 FILD STANDOFF [01] 
long-integer S4+EA SO-S8+EA 4/S 8 2-4 FILO RESPONSE.COUNT 
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Table S-19. Instruction Set Reference Data (Cont'd.) 

FIMUL FIMUL source 
Exceptions: I, D, 0, P 

Integer multiply 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

word-integer 130+EA 124-138+EA 1/2 2 2-4 FIMUL BEARING 
short-integer 136+EA 130-144+EA 2/4 4 2-4 FIMUL POSITION.LAXIS 

FINCSTP FINCSTP (no operands) 
Exceptions: None 

Increment stack pointer 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

(no operands) 9 6-12 0 0 2 FINCSTP 

FINIT IFNINIT FINIT (no operands) 
Exceptions: None Initialize processor 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

(no operands) 5 2-8 0 0 2 FINIT 

FIST FIST destination 
Exceptions: I, P 

Integer store 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

word-integer 86+EA 80-90+EA 2/4 4 2-4 FIST OBS.COUNT [SI] 
short-integer 88+EA 82-92+EA 3/5 6 2-4 FIST [BP].FACTORED_PULSES 

FISTP FISTP destination 
Exceptions: I, P 

Integer store and pop 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

word-integer 88+EA 82-92+EA 2/4 4 2-4 FISTP [BX].ALPHA_COUNT [SI] 
short-integer 90+EA 84-94+EA 3/5 6 2-4 FISTP CORRECTED_TIME 
long-integer 100+EA 94-105+EA 5/7 10 2-4 FISTP PANEL.N_READINGS 

-- --
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Table S-19. Instruction Set Reference Data (Cont'd;) 

FISUB FISUB source 
Exceptions: I, D, 0, P Integer subtract 

Execution Clocks Transfers·· 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

word-integer 120+EA 102-137+EA 1/2 2 2-4 FISUB BASE_FREQUENCY 
short-integer 125+EA 108-143+EA 2/4 4 2-4 FI5UB TRAIN_SIZE [01) 

FISUBR FISUBR source 
Exceptions: I, D, 0, P Integer subtract reversed 

Execution Clocks Transfers 
Operands 

Typical· Range 8086 8088 
Bytes Coding.Example 

word-integer 120+EA 103-139+EA 1/2 2 2-4 . FISUBR FLOOR [BX) [SI) 
short-integer 125+EA 109-144+EA 2/4 4 2-4 FISUBR BALANCE 

FLO FLD source 
Exceptions: I, D Load real 

EXecution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

5T(i) 20 17-22 0 0 2 FlO ST(O) 
short-real 43+EA 38-5S+EA 2/4 4 2-4 FLD READING [SI).PRESSURE 
long-real 46+EA 40-S0+EA 4/6 8 2-4 FLD [BP).TEMPERATURE 
temp-real 5HEA 53-S5+EA 5/7 10 2-4 FLD SAVEREADING 

FLOCW FLDCW source 
Exceptions: None Load control word 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

2-bytes 10+EA 7-14+EA 1/2 2 2-4 FLDCW CONTROLWORD 

FLOENV FLDENV source 
t:xceptions: None Load environment 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

14-bytes 40+EA 35-45+EA 7/9 14 2-4 FLDENV [BP+S) 
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Table S-19. Instruction Set Reference Data (Cont'd.) 

FLOLG2 FLDLG2 (no operands) 
Exceptions: 1 

Load log10 2 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

(no operands) 21 18-24 0 0 2 FLOLG2 

FLOLN2 FLDLN2 (no operands) 
Exceptions: 1 

Load loge 2 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

(no operands) 20 17-23 0 0 2 FLOLN2 

FLOL2E FLDL2E (no operands) 
Exceptions: 1 

Load 1092 e 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

(no operands) 18 15-21 0 0 2 FLOL2E 

FLOL2T FLDL2T (no operands) 
Exceptions: 1 

Load log21O 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

(no operands) 19 16-22 0 0 2 FLOL2T 

FLOPI FLDPI (no operands) 
Exceptions: 1 

Load n 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

(no operands) 19 16-22 0 0 2 FLOPI 
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. Table S-19. Instruction Set Reference Data (Cont'd.) 

FLDZ FLDZ (no operands) 
Exceptions: I Load +0.0 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8081! 
Bytes Coding Example 

(no operands) 14 11-17 0 0 2 FLDZ 

FLD1 FLD1 (no operands) 
Exceptions: I 

Load +1.0 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Codin!! Example 

(no operands) 18 15-21 0 0 2 FLD1 

FMUL FMUL Iisource/destination,source 
Exceptions: I, D, 0, U, P Multiply real 

Execution Clocks Transfers 
Operands, 

Typical Range 8086 8088 
Bytes Coding Example 

IIST(i),ST/ST,ST(i)' 97 90-105 0 0 2 FMUL ST,ST(3) 
IIST(i),ST/ST,ST(i) 138 130-145 0 0 2 FMUL ST,ST(3) 
short-real 118+EA 110-125+EA 2/4 4 2-4 FMUL SPEED_FACTOR 
long-real' 120+EA 112-126+EA 4/6 8 2-4 FMUL [BPj.HEIGHT 
long-real 161+EA 154-168+EA 4/6 8 2-4 FMUL [BPj.HEIGHT 

, 
occurs when one or both operands is "short"-it has 40 trailing zeros in its fraction. (e.g., it was loaded from a short-real 

memory operand). 

FMULP FMULP destination,source 
Exceptions: I, D, 0, U, P Multiply real and pop 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

ST(i),ST' 100 94-108 0 0 2 FMULP ST(1),ST 
ST(i),ST 142 134-148 0 0 2 FMULP ST(1),ST 

, 
occurs when one or both operands is "short"-it has 40 trailing zeros in its fraction (e.g., it was loaded from a short-real 

memory operand). 
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Table S-19. Instruction Set Reference Data (Cont'd.) 

FNOP FNOP (no operands) 
Exceptions: None No operation 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

(no operands) 13 10-16 0 0 2 FNOP 

FPATAN FPATAN (no operands) 
Exceptions: U, P (operands not checked) Partial arctangent 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

(no operands) 650 250-800 0 0 2 FPATAN 

FPREM FPREM (no operands) 
Exceptions: I, D, U Partial remainder 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

(no operands) 125 15-190 0 0 2 FPREM 

FPTAN FPTAN (no operands) 
Exceptions: I, P (operands not checked) Partial tangent 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

(no operands) 450 30-540 0 0 2 FPTAN 

FRNDINT FRNDINT (no operands) 
Exceptions: I, P Round to integer 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

(no operands) 45 16-50 0 0 2 FRNDINT 
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Table S-19. Instruction Set Reference Data (Cont'd.) 

FRSTOR FRSTOR source 
Exceptions: None Restore saved state 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

94-bytes 210+EA 205-215+EA 47/49 96 2-4 FRSTOR [SP] 

FSAVE/FNSAVE FSAVE destination 
Exceptions: None Save state 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

94-bytes 210+EA 205-215+EA 48/50' 94 2-4 FSAVE [SP] 

FSCALE FSCALE (no operands) 
Exceptions: 1,0, U 

Scale 

Execution Clocks Transfers 
Operands· 

Typical Range 8086 8088 
Bytes Coding Example 

(no operands) 35 32-38 0 0 2 FSCALE 

FSQRT FSQRT (no operands) 
Exceptions: I, 0, P 

Square root 

Execution Clocks Transfers 
·Operands 

Typical Range 8086 8088 
Bytes Coding Example 

(no operands) 183 180-186 0 0 2 FSQRT 

FST FST destination 
Exceptions: 1,0, U, P 

Store real 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

ST(i) 18 15-22 0 0 2 FST ST(3) 
short-real 87+EA 84-90+EA 3/5 6 2-4 FST CORRELATION [01] 
long-real 100+EA 96-104+EA 5/7 10 2-4 FST MEAN_READING 
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Table S-19. Instruction Set Reference Data (Cont'd.) 

FSTCW IFNSTCW FSTCW destination 
Exceptions: None 

Store control word 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

2-bytes 15+EA 12-18+EA 2/4 4 2-4 FSTCW SAVE_CONTROL 

FSTENV/FNSTENV FSTENV destination 
Exceptions: None 

Store environment 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

14-bytes 45+EA 40-50+EA 8/10 16 2-4 FSTENV [BP] 

FSTP FSTP destination 
Exceptions: 1,0, U, P 

Store real and pop 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

ST(i) 20 17-24 0 0 2 FSTP ST(2) 
short-real 89+EA 86-92+EA 3/5 6 2-4 FSTP [BX].ADJUSTED_RPM 
long-real 102+EA· 98-106+EA 5/7 10 2-4 FSTP TOTAL_DOSAGE 
temp-real 55+EA 52-58+EA 6/8 12 2-4 FSTP REG_SAVE [SI] 

FSTSW IFNSTSW FSTSW destination 
Exceptions: None 

Store status word 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

2-bytes 15+EA 12-1B+EA 2/4 4 2-4 FSTSW SAVE_STATUS 

FSUB FSUB Iisource/destination,source 
Exceptions: I,D,O,U,P Subtract real 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

IIST,ST(i)/ST(i),ST 85 70-100 0 0 2 FSUB ST,ST(2) 
short-real 105+EA 90-120+EA 2/4 4 2-4 FSUB BASE_VALUE 
long-real 110+EA 95~125+EA 4/6 8 2-4 FSUB COORDINATE.X 
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Table 8-19; Instruction 8et Reference Data (Cont'd.) 

FSUBP FSUBP destination,source 
Exceptions: I,D,O,U,P 

Su btract real and pop 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

ST(i),ST 90 75-105 0 0 2 FSUBP ST(2),ST 

FSUBR FSUBR //source/destination,source 
Exceptions: I,D,O,U,P 

Subtract real reversed 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

//ST,ST(i)/ST(i),ST 87 70-100 0 0 2 FSUBR ST,ST(1) 
short-real 105+EA 90-120+EA 2/4 4 2-4 FSUBR VECTOR[Sll 
long-real 110+EA 95-125+EA 4/6 8 2-4 FSUBR [BX1.INDEX 

FSUBRP FSUBRP destination,source 
Exceptions: I,D,O,U,P 

Subtract real reversed and pop 

Executon Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

ST(i),ST 90 75-105 0 0 2 FSUBRP ST(1),ST 

FTST FTST (no operands) 
Exceptions: I, D 

Test stack top against lO.O 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

(no operands) 42 38-48 0 0 2 FTST 

FWAIT FWAIT (no operands) 
Exceptions: None (CPU instruction) 

(CPU) Wait while 8087 is busy 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

.. 

(no operands) 3+5n' 3+5n' 0 0 1 FWAIT 

'n = numberof times CPU examines TEST line before 8087 lowers BUSY. 
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Table S-19. Instruction Set Reference Data (Cont'd.) 

FXAM FXAM (no operands) 
Exceptions: None Examine stack top 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

(no operands) 17 12-23 0 0 2 FXAM 

FXCH FXCH Ildestination 
Exceptions: I Exchange registers 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

IIST(i) 12 10-15 0 0 2 FXCH ST(2) 

FXTRACT FXTRACT (no operands) 
Exceptions: I Extract exponent and significand 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

(no operands) 50 27-55 0 0 2 FXTRACT 

FYL2X FYL2X (no operands) 
Exceptions: P (operands not checked) yo Log2 X 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

(no operands) 950 900-1100 0 0 2 FYL2X 

FYL2XP1 FYL2XP1 (no operands) 
Exceptions: P (operands not checked) 

Y oI092(X+1) 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

(no operands) 850 700-1000 0 0 2 FYL2XP1 
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Table S-19. Instruction Set Reference Data (Cont'd.) 

F2XM1 F2XM1 (no operands) 
2 x_1 

Execution Clocks 
Operands 

Typical Range 

(no operands) 500 310-630 
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S.8 Programming Facilities 
Writing programs for the 8087 is a natural exten­
sion of the process described in section 2.9, just as 
the NDP itself is an extension to the CPU. This 
section describes how PLlM-86 and ASM-86 pro­
grammers work with the 8087 in these languages. 
It also covers the 8087 software emulators 
provided for both translators. 

The level of detail in this section is intended to 
give programmers a basic understanding of the 
software tools that can be used with the 8087, but 
this information is not sufficient to document the 
full capabilities of these facilities. The definitive 
description of ASM-86 and the full 8087 emulator 
is provided in MCS-86 Assembly Language 
Reference Manual, Order No. 9800640, and 
MCS-86 Assembler Operating Instructions for 
ISIS-II Users, Order No. 9800641. PLlM-86 and 
the partial emulator are documented in PL/M-86 
Programming Manual, Order No. 9800466 and 
ISIS-II PL/M-86 Compiler Operator's Manual, 
Order No. 9800478. These publications may be 
ordered from Intel's Literature Department. 

Readers should be familiar with section 2.9 of the 
8086 Family User's Manual in order to benefit 
from the material in this section. 

PL/M-86 

High level language programmers can access a 
useful subset of the 8087's (real or emulated) 
capabilities. The PLlM-86 REAL data type 
corresponds to the NDP's short real (32-bit) for­
mat. This data type provides a range of about 
8.43*10-37 ". Ixl ". 3.38*1038, with about seven 
significant decimal digits. This representation is 
adequate for the data manipulated by many 
microcomputer applications. 
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Exceptions: U, P (operands not checked) 

Transfers 

8086 8088 
Bytes Coding Example 

0 0 2 F2XM1 

The utility of the REAL data type is extended by 
the PLlM-86 compiler's practice of holding 
intermediate results in the 8087's temporary real 
format. This means that the full range and preci­
sion of the processor may be utilized for 
intermediate results. Underflow, overflow, and 
rounding errors are most likely to occur during 
intermediate computations rather than during 
calculation of an expression's final result. 
Holding intermediate results in temporary real 
format greatly reduces the likelihood of overflow 
and underflow and eliminates roundoff as a 
serious source of error until the final assignment 
of the result is performed. 

The compiler generates 8087 code to evaluate 
expressions. that contain REAL data types, 
whether variables or constants or both. This 
means that addition, subtraction, multiplication, 
division, comparison, and assignment of REALs 
will be performed by the NDP. INTEGER expres­
sions, on the other hand,are evaluated on the 
CPU. 

Five built-in procedures (table S-20) give the 
PLlM-86 programmer access to 8087 functions 
manipulated by the processor control instruc­
tions. Prior to any arithmetic operations, a 
typical PLlM-86 program will setup the NDP 
after power up using the INIT$REAL$MA TH 
$UNIT procedure and then issue 
SET$REAL$MODE to configure the NDP. 
SET$REAL$MODE loads the 8087 control word, 
and its 16-bit parameter has the· format shown in 
figure S-7. The recommended value of this 
parameter is 033EH (projective closure, round to 
nearest, 64-bit precision, interrupts enabled, all 
exceptions masked except invalid operation). 
Other settings may be used at the programmer's 
discretion. 



8087 NUMERIC DATA PROCESSOR 

Table S-20. PLlM-86 Built-In Procedures 

Procedure 8087 Instruction Description 

INIT$REAL$MATH$UNIT(1) FINIT Initialize processor. 

SET$REAL$MODE FLDCW Set exception masks, rounding 
precision, and infinity controls. 

GET$REAL$ERROR(2) FNSTSW & FNCLEX Store, then clear, exception 
flags. 

SAVE$REAL$ST ATUS FNSAVE Save processor state. 

RESTORE$REAL$STATUS FRSTOR Restore processor state. 

(1)Also initializes interrupt pOinters for emulation. 

(2)Returns low-order byte of status word. 

If any exceptions are unmasked, an exception 
handler must be provided in the form of an inter­
rupt procedure that is designated to be invoked by 
CPU interrupt pointer (vector) number 16. The 
exception handler·· can use the GET$REAL 
$ERROR procedure to obtain the low-order byte 
of the 8087 status word and to then clear the 
exception flags. The byte returned by 
GET$REAL$ERROR contains the exception 
flags; these can be examined to determine the 
source of the exception. 

The SA VE$REAL$ST ATUS and RESTORE 
$REAL$ST A TUS procedures are provided for 
multi-tasking environments where a running task 
that uses the 8087 may be preempted by another 
task that also uses the 8087. It is the responsibility 
oft h e pre e mp tin g t ask t 0 iss u e 
SA VE$REAL$ST ATUS before it executes any 
statements that affect the 8087; these include the 
INIT$REAL$MATH$UNIT and SET$REAL 
$MODE procedures as well as arithmetic expres­
sions. SAVE$REAL$STATUS saves the 8087 
state (registers, status, and control words, etc.) on 
the CPU's stack. RESTORE$REAL$STATUS 
reloads the state information; the preempting task 
must invoke this procedure before terminating in 
order to restore the 8087 to its state at the time the 
running task was preempted. This enables the 
preempted task to resume execution from the 
point of its preemption. 

Note that the PL/M-86 compiler prefixes every 
8087 instruction with a CPU WAIT. Therefore, 
programmers should not code PL/M-86 
statements that generate 8087 instructions if the 
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NDP can request an interrupt and that interrupt is 
blocked (this may result in the endless wait 
condition described in section S.6.) 

ASM-86 

The ASM-86 assembly language provides a single 
uniform set of facilities for all combinations of 
the 8086/8088/8087 processors. Assembly 
language programs can be written to be com­
pletely independent of the processor set on which 
they are destined to execute. This means that a 
program written originally for an 8088 alone will 
execute on an 8086/8087 combination without 
re-assembling. The programmer's view of the 
hardware is a single machine with these resources: 

• 160 instructions 

• 12 data types 

• 8 general registers 

• 4 segment registers 

• 8 floating-point registers, organized as a 
stack 

The combination of the assembly language and 
the 8087 emulator decouple the source code from 
the execution vehicle. For example, the assembler 
automatically inserts CPU WAIT instructions in 
front of those 8087 instructions that require them. 
If the program actually runs with the emulator 
rather than the 8087, the WAITs are auto­
matically removed at link time (since there is no 
NDP for which to wait). 
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Defining Data 

The ASM-86 directives shown in table S-21 
allocate storage for 8087 variables and constants. 
As with other storage allocation directives, the 
assembler associates a type with any variable 
defined with these directives. The type value is 
equal to the length of the storage unit in bytes (10 
for DT, 8 for DQ, etc.). The assembler checks the 
type of any variable coded in an instruction to be 
certain that it is compatible with the instruction. 
For example, the coding FIADD ALPHA will be 
flagged as an error if ALPHA's type is not 20r 4, 
because integer addition is only available for 
word and short integer data types. The operand's 
type also tells the assembler which machine 
instruction to produce; although to the pro­
grammer there is only an FIADD instruction, a 
different machine instruction is required for each 
operand type. 

On occasion it is desirable to use an instruction 
with an operand thal has no declared type. For 
example, if register BX points to a short integer 
variable, a programmer may want to code 
FIADD [BX]. This can be done by informing the 
assembler of the operand's type in theinstruction, 
coding FIADD DWORD· PTR· [BX]. The 
corresponding. overrides for the other storage 
allocations are WORD PTR, QWORD PTR, and 
TBYTEPTR. 

The assembler does not, however, check the types 
of operands .used in processor control instruc­
tions. Coding FRSTOR [BP] implies that the pro" 
grammer has set up register BP to point to the 
stack location where the processor's 94-byte state 
record has been previously saved. 

The initial values for 8087 constants may be 
coded in several different ways. Binary integer 
constants may be specified asbit strings, decimal 
integers, octal integers, or hexadecimal strings. 
Packed decimal values are normally written as 

decimal integers, although the assembler will 
accept and convert other representations of 
integers. Real values may be written as ordinary 
decimal real numbers (decimal point re·quired), as 
decimal numbers in scientific notation,or as hex­
adecimal strings. Using hexadecimal strings is 
primarily intended for defining special values 
such as infinities, NANs, and nonnormalized 
numbers. Most programmers will find that 
ordinary decimal and scientific decimal provide 
the simplest way to initialize 8087 constants. 
Figure S-20 compares several ways of setting the 
various 8087 data types to the same initial value. 

Note that preceding 8087 variables and constants 
with the ASM-86 EVEN directive ensures that the 
operands will be word-aligned in memory. This 
will produce the best performance in 8086-based 
systems, and is good practice even for 8088 soft~ 
ware, in the event that the programs are trans~ 
ferred to an 8086. All 8087 data types occupy 
integral numbers of words so that no storage is 
"wasted" if blocks of variables are defined 
together and preceded by asiI1gle EVEN 
declarative. 

Records and Structures 

The ASM-86 RECORD and STRUC(structure) 
declaratives can be very useful in NDP program­
ming. The record facility can be used to define the 
bit fields of the control, status, and tag words. 
Figure S-21· shows one definition of the status 
word and how it might be used in a routine that 
polls the 8087· until it has completed an instruc~ 
tion. 

Because structures allow different but related 
data types to be grouped together, they often pro­
vide a natural way to represent "real world" data 
organizations. The fact that the structure 
template may be "moved" about in memory adds 
to its flexibility. Figure S-22 shows a simple struc-

Table S-21. 8087 Storage P.llocation Directives 

Directive Interpretation 8087 Data Types 

DW Define Word Word integer 

DD Define Doubleword Short integer, short real 

DO Define Ouadword Long integer, long real 

DT Define Tenbyte Packed decimal, temporary real 
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THE FOLLOWING ALL ALLOCATE THE CONSTANT: -126 
NOTE TWO'S COMPLEMENT STORAGE OF NEGATIVE BINARY INTEGERS. 

; EVEN FORCE WORD ALIGNMENT 
WORD INTEGER OW 111111111000010B BIT STRING 
SHORT INTEGER DO OFFFFFF82H HEX STRING MUST START WITH DIGIT 
LONG INTEGER DQ -126 ORDINARY DECIMAL 
SHORT REAL DO -126.0 NOTE PRESENCE OF ' , 
LONG REAL DO -1.26E2 "SCIENTIFIC" 
PACKED_DECIMAL DT -126 ; ORDINARY DECIMAL INTEGER 

IN THE FOLLOWING, SIGN AND EXPONENT IS 'COOS', 
SIGNIFICAND IS '7E00 ... 00', 'R' INFORMS ASSEMBLER THAT 
THE STRING REPRESENTS A REAL DATA TYPE. 

TEMP REAL DT OCOOS7EOOOOOOOOOOOOOOR ; HEX STRING 

Figure S-20. Sample 8087 Constants 

; RESERVE SPACE FOR STATUS WORD 
STATUS_WORD OW ? 

; LAY OUT STATUS WORD FIELDS 
STATUS RECORD 
& BUSY: 1, 
& COND COOE3: 1, 
& STACK TOP: 3, 
& COND COOE2: 1, 
& COND-CODE1: 1, 
& COND-CODEO: 1, 
& INTREQ: 1, 
& RESERVED: 1, 
& P FLAG: 1, 
& U-FLAG: 1, 
& O-FLAG: 1, 
& Z-FLAG: 1, 
& D-FLAG: 1, 
& I-FLAG: 1 
; POLL-STATUS WORD UNTIL 8087 IS NOT BUSY 
POLL: FNSTSW STATUS WORD 

TEST STATUS=WORD, MASK BUSY 
JNZ POLL 

Figure S-21, Status Word RECORD Definition 

SAMPLE STRUC 

N OBS DO ;SHORT INTEGER 
MEAN DQ ;LONG REAL 
MODE OW ;WORD INTEGER 
STD DEV DQ ;LONG REAL 
;ARRAY OF OBSERVATIONS WORD INTEGER 
TEST SCORES OW 1000 DUP (1) 

SAMPLE ENOS 

Figure S-22. Structure Definition 

ture that might be used to represent data con­
sisting of a series of test score samples. A struc­
ture could also be used to define the organization 
of the information stored and loaded by the 
FSTENV and FLDENV instructions. 

Addressing Modes 

8087 memory data can be accessed with any of the 
CPU's five memory addressing modes. This 
means that 8087 data types can be incorporated in 
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data aggregates ranging from simple to complex 
according to the needs of the application. The 
addressing modes, and the ASM-86 notation used 
to specify them in instructions, make the access­
ing of structures, arrays, arrays of structures, and 
other organizations direct and straightforward. 
Table S-22 gives several examples of 8087 instruc­
tions coded with operands that illustrate different 
addressing modes. 

8087 Emulators 

Intel offers two software products that provide 
the functional equivalent of· an 8087, 
implemented in 8086/8088 software. The full 
emulator (E8087) emulates all 8087 instructions. 
The partial emulator (PE8087) is a smaller version 
that implerrients only the instructions needed to 
support PL/M-86 programs. The full emulator 
adds about 16k bytes to a program, while the 
partial e!llulator executes in about 8k. Any 
emulated program will deliver the same results 
(except for timing) if it is executed on 8087 
hardware. 

The emulators may be viewed as consisting of 
emulated hardware and emulated instructions. 
The emulators establish in CPU memory the 
equivalent of the 8087 register stack, control, and 
status words and all other programmer-accessible 
elements of the NDP architecture. The emulator 
instructions utilize the. same algorithms as their 
hardware counterparts. Emulator instructions are 
actually implemented as CPU interrupt pro­
cedures. During relocation and linkage the 8087 
machine instructions generated by the ASM-86 
and PLlM-86 translators are changed to software 
interrupt (lNT) instructions which invoke these 
procedures as the CPU processes its instruction 
stream. 
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Table S-22. Addressing Mode Examples 

Coding 

FIAOO ALPHA 

FOIVR ALPHA.BETA 

FMUL aWORO PTA [BX] 

FSUB ALPHA [SI] 

FILO [BP].BETA 

FBLO TBYTE PTR [BX] [01] 

Since the decision to produce real or emulated 
8087 instructions is made at link time, a program 
may be switched from one mode to the other 
without retranslating the source code. When the 
PLlM-86 compiler or ASM-86 assembler places 
an 8087 machine instruction into an object 
module, it also inserts a special external reference. 
This reference is satisfied by linking the object 
module to one of two Intel-supplied libraries: the 
real library, or the emulator library. If the real 
library is specified, LlNK-86 simply deletes the 
external references, leaving the original 8087 
machine instructions. 

To run on an emulated 8087, the object program 
is linked to the emulator library and to a file con­
taining the code of either the full or the partial 
emulator. LlNK-86 then adds the emulator code 
to the program and changes the 8087 machine 
instructions (and their preceding WAITs) to CPU 
software interrupt instructions. Any FW AIT 
instructions are also changed to CPU NOPs. 

Note that an explicitly-coded CPU WAIT instruc­
tion will not be changed; if it is executed under 
emulation, the CPU will wait forever. This is why 
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Interpretation 

ALPHA is a simple scalar (mode is 
direct). 

BETA is a field in a structure that is 
"overlaid" on ALPHA (mode is 
direct). 

BX contains the address of a long real 
variable (mode is register indirect). 

ALPHA is an array and SI contains the 
offset of an array element from the 
start of the array (mode is indexed). 

BP contains the address of a 
structure on the CPU stack and BETA 
is a field in the structure (mode is 
based). 

BX contains the address of a packed 
decimal array and 01 contains the off­
set of an array element (mode is 
based indexed). 

the FW AIT mnemonic should always be used 
when the external processor that the CPU is to 
wait for is an 8087. 

In order to be compatible with E8087, ASM-86 
programs should observe the following 
conventions: 

• Their stack segment and class should be 
named STACK. 

• Interrupt pointer (vector) 16 should be 
designated for the user's exception handler 
interrupt procedure. 

• The external procedure INIT87 should be 
called in the program's initialization (power­
up) sequence. If the emulator is being used, 
this procedure will initialize CPU interrupt 
pointers 20-31 to the addresses of emulator 
procedures and will execute an (emulated) 
FINIT instruction. If the program is not 
being emulated, INIT87 simply executes the 
FINIT instruction. 

PL/M-86 automatically observes corresponding 
conventions. 
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Programming Example 

Figures S-23 and S-24 show the PLlM-86 and 
ASM-86 code for a simple 8087 program, called 
ARRSUM. The program references an array 
(X$ARRA Y), which contains 0-100 short real 
values; the integer variable N$OF$X indicates the 
number of array elements the program is to 
consider. ARRSUM steps through X$ARRA Y 
accumulating three sums: 

• SUM$X, the sum of the array values; 

• SUM$INDEXES, the sum of each array 
value times its index, where the index of the 
first element is 1, the second is 2, etc.; 

• SUM$SQUARES, the sum of each array 
element squared. 

(A true program, of course, would go beyond 
these steps to store and use the results of these 
calculations.) The control word is set with the 
recommended values: projective closure, round to 
nearest, 64-bit precision, interrupts enabled, and 
all exceptions masked except invalid operation. It 

PLfM-86 COMPILER ARRAYSUM 

is assumed that an exception handler has been 
written to field the invalid operation, if it occurs, 
and that it is invoked by interrupt pointer 16. 
Either version of the program will run on an 
actual or an emulated 8087 without altering the 
code shown. 

The PLlM-86 version of ARRSUM (figure S-23) 
is very straightforward and illustrates how easily 
the 8087 can be used in this language. After 
declaring variables the program calls built-in 
procedures to initialize the processor (or its 
emulator) and to load the control word. The pro­
gram clears the sum variables and then steps 
through X$ARRAY with a DO-loop. The loop 
control takes into account PL/M-86's practice of 
considering the index of the first element of an 
array to be O. In the computation of 
SUM$INDEXES, the built-in procedure FLOAT 
converts 1+1 from integer to real because the 
language does not support "mixed mode" 
arithmetic. One of the strengths of the NDP, of 

ISIS-II PLfl~-86 DE.BUG V2.1 COMPILATION OF I~ODULE ARRAYSUM 
OBJECT MODULE PLACED IN :F4:ARRSUM.OBJ 
COMPILER INVOKED BY: : FO: PLM86 : F4: ARRSUM. P86 XREF 

1****" ** 11-******** ***** II- It .. * ** * .... *** •• **** 
* * A R RAY SUM • MOD 

... ** Mo*.******** .... ***************** ***** .. / 

ARRAY$SUM: DO; 

2 DECLARE (SUM$X,SUM$INDEXES,SUM$SQUARES) REAL; 
3 DECLARE X$ARRAY (100) REAL; 
4 DECLARE (N$OF$X,I) INTEGER; 
5 DECLARE CONTROL$87 LITERALLY '033EH'; 

f* ASSUME X$ARRAY AND N$OF$X ARE INITIAJ,IZED *f 

f* PREPARE THE 8087, OR ITS EMULATOR *f 
6 CALL INIT$REAL$MATd$UNIT; 
7 CALL SET$REAL$MODE(CONTROL$87); 

f* CLEAR SUMS *f 
8 SUM$X, SUM$INDEXES, SUM$SQUARES = 0.0; 

9 1 
10 2 
11 2 

12 2 
13 2 

f* LOOP THROUGH X$ARRAY, ACCUMULATING SUMS *f 
DO I = 0 TO N.tOF$X - 1; 

SUM$X = SUM$X + X$ARRAY(I); 
SUM$INDEXES = SUM$INDEXES + 

(X$ARRAY(I) * FLOAT(I + 1)); 
SUM$SQUARES = SUMtSQUARES + (X$ARRAY(I) * X$ARRAY(I)); 

END; 

f* ETC •• • *f 
14 END ARRAY$SU~; 

Figure S-23. Sample PL/M-86 Program 
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PL/M-86 COMPILER ARRAYSUM 

CROSS-REFERENCE LISTING 

DEFN ADDR SIZE !lAME, ATTRIBUTES, AND REFERENCES 

0002H 151 ARRAYSUM • 
CONTROLB? 
FLOAT. 

4 019EH 2 r. 
INITREALMATRUNIT 

019CH 2 NOFX • 
SETREALMODE. 

2 0004H 4 SUtUNDEXES 
2 OOOBH 4 SUt~SQUARES 
2 OOOOH 4 SUt1X • 
3 OOOCR 400 XARRAY • 

MODULE INFORMATION: 

CODE AREA SIZE 
CONSTANT AREA SIZE = 
VARIABLE AR.EA SIZ8 = 
MAXIMUM STACK SIZE = 
33 LINES READ 
o PROGRAM ERROR(S) 

END Or' PL/M-86 COMPILATION 

0099H 
0004H 
01 AOH 
0002H 

153D 
4D 

416D 
2D 

PROCEDURE STACK=0002H 
LITERALLY 7 
BUILTIN 11 
INTEGER 9 
BUILTIN 6 
INTEGER 9 
BUILTIN 7 
REAL B 11 
REAL 8 12 
REAL B 10 
REAL ARRAY( 1 00) 

10 11 12 

10 11 12 

Figure S-23. Sample PLlM-86 Program (Cont'd.) 

course, is that it does support arithmetic on mixed 
data types, and assembly language programmers 
can take advantage of this facility. 

ment registers and stack pointer, the program 
calls INIT87 and loads the control word. The 
computation begins with the next three instruc­
tions, which clear three registers by loading 
(pushing) zeros onto the stack. As shown in figure 
S-25, these registers remain at the bottom of the 
stack throughout the computation while tem­
porary values are pushed on and popped off the 
stack above them. 

The ASM-86 version (figure S-24) defines the 
external procedure INIT87, which makes the dif­
ferent initialization requirements of the processor 
and its emulator transparent to the source code. 
After defining the data, and setting up the seg-

8086/8087/8088 MACRO ASSEI1BLER ARRSUM 

ISIS-II 8086/8087/B088 MACRO ASSEMBLER V3.0 ASSEMBLY OF HODUI,E ARRSUM 
OBJECT MODULE PLACED IN :Fl :ARRSUM.OBJ 
ASSEMBLER INVOKED BY: :FO:AS1186 :Fl :ARRSUH.A86 XREF 

LOC OBJ 

0000 3E03 
0002 ???? 

0004 ii66 
???????? 
j""""" " 

0194 ???????? 
0198 ???????? 
019C ???????? 
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LINE 

1 
2 
3 
4 
5 
6 
7 
8 

9 
10 
11 
12 

SOURCE 

;DEFINE INITIALIZATION ROUTINE 
EXTRN INITB7:FAR 

;ALLOCATE SPACE FOR DATA 
DATA SEGMENT PUBLIC' DATA' 
CONTROL 87 DW 033EH 
N OF X - DW ? 
X=ARRAY DD 100 DUP (?) 

SUM X DD 
SUM-INDEXES DD 
SUM-SQUARES DD 
DATA ENDS 

Figure S-24. Sample ASM-86 Program 
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8086/8087/8088 MACRO ASSEMBLgR ARRSUM 

LOC OBJ LINE SOURCE 
13 
14 ;ALLOCATE CPU STACK SPACE 
15 STACK SEGMENT STACK 'STACK' 

0000 (200 16 DW 200 DUP (?) 
1??? 
) 

17 
18 ;LABEL INITIAL TOP OF STACK 

0190 19 STACK TOP LABEL WORD 
20 STACK- ENDS 
21 
22 CODE SEGI~ENT PUBLIC 'CODE' 
23 ASSUME CS:CODE,DS:DATA,SS:STACK,ES:NOTHING 
24 

0000 25 START: 
0000 B8---- R 26 MOV AX,DATA 
0003 8ED8 27 MOV DS,AX 
0005 B8---- R 28 110V AX,STACK 
0008 SEDO 29 110V SS,AX 
OOOA BC9001 R 30 MOV SP,OFFSET STACK_TOP 

31 
32 ; ASSUME X ARRAY & N OF X ARE INITIALIZED. 
33 ; NOTE: PROGRAM ZEROS N OF X 
34 ; PREPARE THE 8087 OR ITS EMULATOR. 
35 

OOOD 9AOOOO---- E 36 CALL INIT87 
0012 9BD92EOOOO R 37 FLDCII CONTROL_87 

38 
39 ;CLEAR 3 REGISTERS TO HOLD RUNNING SUMS. 
40 

0017 9BD9EE 41 FLDZ 
001 A 9BD9EE 42 FLDZ 
001D 9BD9EE 43 FLDZ 

44 
45 ;SETUP CX AS 
46 

LOOP COUNTBR & SI AS INDEX TO X_ARRAY. 

0020 8BOE0200 R 47 MOV CX,N_OF_X 
0024 E329 48 JCXZ POP RESULTS ; EXIT EARLY IF X_ARRAY EMPTY 
0026 B80400 49 MOV AX,'I'YPE X_ARRAY 
0029 F7E9 50 IMUL CX 
002B 8BFO ·51 MOV SI,AX 

52 
53 ;SI NOli CO~TAINS INDEX OF LAST ELEMENT + 1. 
54 ;LOOP THRU X_ARRAY ACCUMULATING SUMS. 

002D 55 SUM_NEXT: 
002D 83EE04 56 SUB SI, TYPE X ARRAY BACKUP ONE ELEMENT 
0030 9BD9840400 R 57 FLD X ARRAY[ sY] PUSH IT ONTO STACK 
0035 9BDCC3 58 FADD s'I'(3) ,ST ADD INTO SUM OF X 
0038 9BD9CO 59 FLD ST DUPLICATE X ON TOP 
003B 9BDCC8 60 FMUL ~i(n,ST SQUARE IT 
003E 9BDEC2 61 FADDP ADD INTO SUM OF SQUARES 

62 AND DISCARD 
0041 9BDEOE0200 R 63 FIMUL N OF X GET X TIMES ITS INDEX 
0046 9BDEC2 64 FADDP s'I'( 2T, ST ADD INTO SUM OF (INDEX * X) 

65 AND DISCARD 
0049 FFOE0200 R 66 DEC N OF X REDUCE INDEX FOR NEXT ITERATION 
004D E2DE 67 LOOP SUM_NEXT CO~TINUE 

68 
69 ;POP RU:lNING SUMS INTO ~IEI~ORY 

004F 70 POP_RESULTS: 
004F 9BD91 E9COI R 71 FSTP SUM SQUARES 
0054 9BD91 E9801 R 72 FSTP SUM-INDEXES 
0059 9BD91 E9401 R 73 FSTP SUM:::X 

74 
75 

;ETC .•• 76 
77 

CODE 78 ENDS 
79 

0000 80 BND START 

Figure S-24. Sample ASM-86 Program (Cont'd.) 
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8086/8087/8088 MACRO ASSEMBLER ARRSUM 

XREF SYMBOL TABLE LISTING 

NAME TYPE 

SEGMENT 
SEGMENT 
V WORr;­
SEGMENT 
L FAR 

VALUE ATTRIBUTES, XREFS 

??SEG 
CODE. 
CONTROL 87. 
DATA. -
INIT87. 

OOOOH 

SIZE=OOOOH PARA PUBLIC 
SIZE=005EH PARA PUBLIC 'CODE' 
DATA 6# 37 

22# 23 78 

3# 12 23 26 
00001! 
0002H 
004FH 

SIZE=Ol AOH PARA PUBLIC 'DATI.' 
EXTRN 2# 36 

N OF X ••• 
pllp l!ESULTS 
STAUK • 
STACK TOP • 
START-. 

V WORD 
L NEAR 
SEGMENT 
V WORD 
L NEAR 
V DWORD 
L NEAR 
V DWORD 
V DiiORD 
V DWORD 

DATA 7# 47 63 66 
CODE 48 70# 

0190H 
OOOOH 
0198H 
002DH 
019CH 
0194H 
0004H 

SIZE=0190H PARA STACK 'STACK', 
STACK 19# 30 
CODE 25# 80 

SUM INDEXES 
SUJoINEXT •• 
SUM-SQUARES 
SUJoIX ••• 
X_Al!RAY • 

DATA 10# 72 
CODE 55# 67 
DATA 11# 71 
DATA 9# 73 
DATA 8# 49 56 57 

ASSEMBLY COMPLETE, NO ERRORS FOUND 

Figure S-24. Sample ASM-86 Program (Cont'd.) 

The program uses the epu LOOP instruction to 
control its iteration through X_ARRAY; register 
ex, which LOOP automatically decrements, is 
loaded with N_OF _X, the number of array 
elements to be summed. Register 81 is used to 
select (index) the array elements. The program 
steps through X_ARRAY from "back to 
front", so 81 is initialized to point at the element 
just beyond the first element to be processed. The 
A8M-86 TYPE operator is used to determine the 
number of bytes in each array element. This per­
mits changing X_ARRAY to a long real array by 
simply changing its definition (DD to DQ) and 
re-assembling. 

Figure 8-25 shows the effect of the instructions in 
the program loop on the NDP register stack. The 
figure assumes that the program is in its 
first iteration, that N_OF _X is 20, and that 
X_ARRAY(l9) (the 20th element) contains the 
value 2.5. When the loop terminates, the three 
sums are left as the top stack elements so that the 
program ends by simply popping them into 
memory variables. 

Mnemonics © Intel 1978, 1980 
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S.9 Special Topics 

This section describes features of the 8087 which 
will be of interest to groups of users who have 
special requirements. Most users will not need to 
understand this material in detail in order to 
utilize the NDP successfully. Most readers, then, 
can either browse this section, or skip it altogether 
in favor of the programming examples in section 
8.10. 

The first four topics in this section cover the 
8087's generation and handling of nonnormalized 
real values, zeros, infinities and NANs. In the 
great majority of applications, these special 
values will either not appear at all, or in the case 
of zeros, will function according to the normal 
niles of arithmetic. Next the bit encodings of each 
data type are summarized in table form, including 
special values. This information may be of use to 
programmers who are sorting these data types or 
are decoding unformatted memory dumps or data 
monitored from the bus. At the end of the section 
is a table that lists all 8087 exception conditions 
by class, and the processor's masked response to 
each exception. This information will principally 
be of use to writers of exception handlers and to 
anyone else interested in ascertaining the exact 
conditions under which the NDP signals a given 
type of exception. 



8087 NUMERIC DATA PROCESSOR 

ST(O) 

ST(1) 

ST(2) 

FLDZ,FLDZ,FLDZ 

0.0 

0.0 

0.0 

FADD 5T(3) 5T , 

2.5 

0.0 

0.0 

S 

S 

S 

UM_SQUARES 

UM_INDEXES 

--

ST(O) 

ST(1) 

ST(2) 

ST(3) 

-

FLO X ARRAY[5Il -
2.5 

0.0 

0.0 

FLO 5 T -----X_A RRAY (19) ST (0) 2.5 

SUM _.SQUARES ST (1) 2.5 

SUM _INDEXES ST (2) 0.0 

X._ARRAY (19) 

SUM_SQUARES 

SUM_INDEXES 

SUM_X 

X_ARRAY (19) 

X_ARRAY (19) 

SUM_SQUARES 

ST(O) 

ST(1) 

ST(2) 

ST(3) 2.5 SUM X ST (3) 0.0 

ST (4) 2.5 --FMUL 5T 5T ----- -
FADDP 5H2) 5T , 

ST(O) 2.5 ST(O) 6.25 X_ARRAY(19)2 X_ARRAY(19) 
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Figure S-25. Instructions and Register Stack 

Nonnormal Real Numbers 

As discussed in section S.3, the 8087 generally 
stores nonzero real numbers in normalized 
floating point form; that is, the integer (leading) 
bit of the significand is always a 1. This bit is 
explicitly stored in the temporary real format, and 
is implicit in the short and long real forms. Nor­
malized storage allows the maximum number of 
significant digits to be held in a significand of a 
given width, because leading zeros are eliminated. 
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Denormals 

A denormal is the result of the NDP's masked 
response to an underflow exception. Underflow 
occurs when the exponent of a true result is too 
small to be represented in the destination format. 
For example, a true exponent of -130 will cause 
underflow if the destination is short real, because 
-126 is the smallest exponent this format can 
accommodate. (No underflow would occur if the 
destination were long or temporary real since 
these can handle exponents down to -1023 and 
-16,383, respectively.) 
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The NDP's unmasked response to underflow is to 
stop and request an interrupt if the destination is 
a memory operand. If the destination is a register, 
the processor adds the constant 24,576 (decimal) 
to the true result's exponent, returns the result, 
and then requests an interrupt. The constant 
forces the exponent into the range of the tem­
porary real format, and an exception handler can 
subtract out the constant to ascertain the true 
exponent. Thus, execution always stops when 
there is an unmasked underflow. 

The intent of the masked response to underflow is 
to allow computation to continue without pro­
gram intervention, while introducing an error that 
carries about the same risk of contaminating the 
final result as roundoff error. Roundoff (preci­
sion) errors occur frequently in real number 
calculations; sometimes they spoil the result of 
computation, but often they do not. Recognizing 
that roundoff errors are often non-fatal, com­
putation usually proceeds and the programmer 
inspects the final result to see if these errors have 
had a significant effect. The 8087's masked 
underflow response allows programmers to treat 
underflows in a similar manner; the computation 
continues and the programmer can examine the 
final result to determine if an underflow has had 
important consequences. (If the underflow has 
had a significant effect, an invalid operation will 
probably be signalled later in the computation.) 

Most computers underflow "abruptly"; they 
simply return a zero result, which is likely to pro­
duce an unacceptable final result if computation 
continues. The 8087, on the other hand, 
underflows "gradually" when the underflow 

exception is masked. Gradual underflow is 
accomplished by denormalizing the result until it 
is just within the exponent range of the destina­
tion. Denormalizing means incrementing the true 
result's exponent and inserting a corresponding 
leading zero in the significand, shifting the rest of 
the significand one place to the right. Table S-23 
illustrates how a result might be denormalized to 
fit a short real destination. 

Denormalization produces a denormal or a zero. 
Denormals are readily identified by their 
exponents, which are always the minimum for 
their formats; in biased form, this is always the 
bit string: 00 ... 00. This same exponent value is 
also assigned to the zeros, but a denormal has a 
nonzero significand. A denormal in a register is 
tagged special. 

The denormalization process may cause the loss 
of low-order significand bits as they are shifted 
off the right. In a severe case, all the significand 
bits of the true result are shifted out and replaced 
by the leading zeros. In this case, the result of 
denormalization is a true zero, and if the value is 
in a register, it is tagged as such. However, thi$ is 
a comparatively rare occurrence, and in any case 
is no worse than "abrupt" underflow. 

Denormals are rarely encountered in most 
applications. Typical debugged algorithms 
generate extremely small results during the 
evaluation of intermediate subexpressions; the 
final result is usually of an appropriate magnitude 
for its short or long real destination. If 
intermediate results are held in temporary real, as 
is recommended, the great range of this format 

Table S-23. Denormalization Process 

Operation Sign Exponent(l) Significand 

True Result 0 -129 1/\01011100 ... 00 

Denormalize 0 -128 0/\101011100 ... 00 

Denormalize 0 -127 0/\0101011100 ... 00 

Denormalize 0 -126 0/\00101011100 ... 00 

Denormal Result(2) 0 -126 0/\00101011100 ... 00 

Notes: 
(1)expressed as unbiased,decimal number 

(2)Before storing, significand is rounded to 24 bits, integer bit is dropped, and exponent is 
biased by adding 126. 
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makes underflow very unlikely. Denormals are 
likely to arise only when an application generates 
a great many intermediates, so many that they 
cannot be held on the register stack or in 
temporary real memory variables. If storage 
limitations force the use of short or long reals for 
intermediates, and small values are produced, 
underflow may occur, and if masked, may 
generate denormals. 

Accessing a denormal may produce an exception 
as shown in table S-24. (The denormalized excep­
tion signals that a denormal has been fetched.) 
Denormals may have reduced significance due to 
lost low-order bits, and an option of the proposed 
IEEE standard precludes operations on non­
normalized operands. This option may be 
implemented in the form of an exception handler 
that responds to unmasked denormalized excep­
tions. Most users will mask this exception so that 
computation may proceed; any loss of accuracy 
will be analyzed by the user when the final result 
is delivered. 

As table S-24 shows, the division and remainder 
operations do not accept denormal divisors and 
raise the invalid operation exception. Recall, also, 
that the transcendental instructions require 
normalized operands and do not check for excep­
tions. In all other cases, the NDP converts denor­
mals to unnormals, and the unnormal arithmetic 
rules then apply. 

Unnormals 

An unnormal is the "descendent" of a denormal 
and therefore of a masked underflow response. 
An unnormal may exist only in the temporary real 
format; it may have any exponent that a normal 
may have, but it is distinguished from a normal 
by the integer bit of its significand, which is 
always O. An unnormal in a register is tagged 
valid. 

Unnormals allow arithmetic to continue follow­
ing an underflow while still retaining their identity 
as numbers which may have reduced significance. 
That is, unnormal operands generate unnormal 
results, so long as their unnormality has a signifi­
cant effect on the result. Unnormals are thus 
prevented from "masquerading" as normals, 
numbers which have full significance. On the 
other hand, if an unnormal has an insignificant 
effect on a calculation with a normal, the result 
will be normal. For example, adding a small 
unnormal to a large normal yields a normal 
result. The converse situation yields an unnormal. 

Table S-25 shows how the instruction set deals 
with unnormal operands. Note that the unnormal 
may be the original operand or a temporary 
created by the 8087 from a denormal. 

Table S-24. Exceptions Due to Denormal Operands 

Operation Exception Masked Response 

FLD (short/long real) D Load as equivalent un normal 

arithmetic (except following) D Convert (in a work area) denormal to equivalent 
un normal and proceed 

Compare and test D Convert (in a work area) denormal to equivalent 
unnormal and proceed 

Division or FPREM with I Return real indefinite 
denormal divisor 

Mnemonics © Intel 19BO 
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Table S-25. Unnormal Operands and Results 

Operation 

Addition I subtraction 

Multiplication 

Division (unnormal dividend only) 

FPREM (un normal dividend only) 

Division IFPREM (unnormal 
divisor) 

Compare I FTST 

FRNDINT 

FSQRT 

FST, FSTP (short/long real 
destination) 

FSTP (temporary real destination) 

FIST, FISTP, FBSTP 

FLD 

FXCH 

Transcendental instructions 

Zeros and Pseudo-Zeros 

As discussed in section S.3, the real and packed 
decimal data types support signed zeros, while the 
binary integers represent a single zero, signed 
positive. The signed zeros behave, however, as 
though they are a single unsigned quantity. If 
necessary, the FXAM instruction may be used to 
determine a zero's sign. 

The zeros discussed above are called true zeros; if 
one of them is loaded or generated in a register, 
the register is tagged zero. Table S-26 lists the 
results of instructions executed with zero 
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Result 

Normalization of operand with larger absolute 
value determines normalization of result. 

If either operand is unnormal, result is 
unnormal. 

Result is unnormal. 

Result is normalized. 

Signal invalid operation. 

Normalize as much as possible before making 
comparison. 

Normalize as much as possible before 
rounding. 

Signal .invalid operation. 

If value is above destination's underflow 
boundary, then signal invalid operation; else 
signal underflow. 

Store as usual. 

Signal invalid operation. 

Load as usual. 

Exchange as usual. 

Undefined; operands must be normal and are 
not checked. 
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operands and also shows how a true zero may be 
created from nonzero operands. (Nonzero 
operands are denoted "X" or "Y" in the table.) 

Only the temporary real format may contain a 
special class of values called pseudo-zeros. A 
pseudo-zero is an unnormal whose significand is 
all zeros, but whose (biased) exponent is nonzero 
(true zeros have a zero exponent). Neither is a 
pseudo-zero's exponent all ones, since this 
encoding is reserved for infinities and NANs. A 
pseudo-zero result will be produced if two 
unnormals, containing a total of more than 64 
leading zero bits in their significands, are 
multiplied together. This is a remote possibility in 
most applications, but it can happen. 
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Table S-26. Zero Operands and Results 

Operation/Operands Result Operation/Operands Result 

FLD, FBLD (1) Division 
+0 +0 ±O-;- ±O Invalid operation 
-0 -0 ±X-;-±O Zerodivide 

FILD (2) +0 -;- +X, -O-;--X +0 
+0 +0 +O-;--X,-O-;-+X -0 

FST,FSTP -X -;- -Y, +X -;- +Y +0, underflow (8) 

+0 +0 -X -;- +Y, +X -;--Y -0, underflow (8) 

-0 -0 
+X (3) +0 FPREM 
-X (3) -0 ±O rem ±O Invalid operation 

FBSTP ±X rem ±O Invalid operation 
+0 +0 +0 rem +X, +0 rem -X +0 
-0 -0 -0 rem +X, -0 rem-X -0 

FIST, FISTP +X rem +Y, +X rem-Y +0 (9) 

+0 +0 -X rem -Y, -X rem +Y ":'0 (9) 

-0 +0 
+X (4) +0 FSQRT 
-X (4) +0 -0 -0 

+0 +0 
Addition 

+0 plus +0 +0 Compare 
-0 plus-O -0 ±O:+X A<B 
+0 plus -0, -0 plus +0 '0 (5) ±O:±O A=B 
-X plus +X, +X plus-X '0 (5) ±O:-X A>B 
±O plus ±X, ±X plus ±O tx (6) 

FTST 
Subtraction ±O Zero 

+0 minus-O +0 FCHS 
-0 minus+O -0 +0 -0 
+0 minus +0, -0 minus -0 '0 (5) -0 +0 
+X minus +X, -X minus-X '0 (5) FABS 
±O minus ±X, ±X minus ±O tx (6) ±O +0 

F2XM1 
Multiplication +0 +0 

+0· +0, -0·-0 +0 -0 -0 
+0· -0, -0· +0 -0 FRNDINT 
+0· +X, +X· +0 +0 +0 +0 
+0. -X, -X. +0 -0 -0 -0 
-0· +X, +X·-O -0 FXTRACT 
-0· -X, -X·-O +0 +0 Both +0 
+X·+Y,-X·-Y +0, underflow (7) -0 Both -0 
+X· -Y, -X. +Y -0, underflow (7) 

Notes: 
(1) Arithmetic and compare operations with real memory operands interpret the memory operand signs in 

the same way. 
(2) Arithmetic and compare operations with binary integers interpret the integer sign in the same manner. 

(3) Severe underflows in storing to short or long real may generate zeros. 

(4) Small values (IXI < 1) stored into integers may round to zero. 

(5) Sign is determined by rounding mode: 
• = + for nearest, up or chop 
• = - for down 

(6) t = sign of X. 
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(7) Very small values of X and Y may yield zeros, after rounding of true result. NDP signals underflow to 
warn that zero has been yielded by nonzero operands. 

(8) Very small X and very large Y may yield zero, after rounding of true result. NDP signals underflow to 
warn that zero has been yielded from nonzero operands. 

(9) When Y divides into X exactly. 

Pseudo-zero operands behave like unnormals, 
except in the following cases where they produce 
the same results as true zeros: 

• compare and test instructions 

• FRNDINT (round to integer) 

• division, where the dividend is either a true 
zero or a pseudo-zero (the divisor is a 
pseudo-zero) . 

In addition and subtraction of a pseudo-zero and 
a true zero or another pseudo-zero, the pseudo­
zero(s) behave like unnormals, except for the 
determination of the result's sign. The sign is 
determined as shown in table S-26 for two true 
zero operands. 

. Infinities 

The real formats support signed representations· 
.of infinities. These values are encoded with a 
biased exponent of all ones and a significand of 

'ADD ..• DD; if the infinity is in a register, it is 
tagged special. The significand distinguishes 
infinities from NANs, induding realindefinite. 

A programmer may code an infinity, or-it may be 
created by the NDP as its masked response to an 
overflow or a zerodivide exception. Note that 
when rounding is up or down,_ the masked 
response may create the largest valid value 
representable in the destination rather than infin­
ity. See table S-33 for details. As operands, 
infinities behave somewhat differently depending 
on how the infinity control field in the control 
word is set (see table S-27). When the projective 
model of infinity is selected, the infinities behave 
as a single unsigned representation; because of 
this; infinity cannot be compared with any value 
except infinity. In affine mode, the signs of the 
infinities are observed, and comparisons are 
possible. 

Table S-27. Infinity Operands and Results 

Operation Projective Result Affine Result 

Addition 
+00 plus +00 Invalid operation +00 
-00 plus-oo Invalid operation -00 
+00 plus-oo Invalid operation Invalid operation 
-00 plus +00 Invalid operation Invalid operation 
±oo plus ±X '00 '00 
±X plus ±oo '00 '00 

Subtraction 
+00 minus -00 Invalid operation +00 
-00 minus +00 Invalid operation -00 

. +00 minus +00 Invalid operation Invalid operation 
-00 mirius -00 Invalid operation Invalid operation 
±oo minus±X '00 '00 
±X minus±oo too too 

Multiplication 
±OO. ±oo E900 E900 
±oo. ±Y E900 E900 
±O. ±oo, ±oo' ±O Invalid operation Invalid operation 

S-72 



NANs 

8087 NUMERIC DATA PROCESSOR 

Table S·27. Infinity Operands and Results (Cont'd.) 

Operation Projective Result 

Division 
±oo -;- ±oo Invalid operation 
±oo';- ±X (1)00 
±X.;- ±oo (1)0 

FSQRT 
-00 Invalid operation 
+00 Invalid operaton 

FPREM 
±oo rem ±oo Invalid operation 
±oorem ±X Invalid operation 
±Y rem ±oo ·Y 
±O rem ±oo ·0 

FRNDINT 
±oo ·00 

FSCALE 
±oo scaled by ±oo Invalid operation 
±oo scaled by ±X ·00 
±O scaled by ±oo *0 
±Y scaled by ±oo Invalid operation 

FXTRACT 
±oo Invalid operation 

Compare 
±oo: ±oo A=B 
±oo: ±Y A ? B (and) invalid 

operation 
±oo: ±O A ? B (and) invalid 

operation 

FTST A? B (and) invalid 
±oo operation 

Notes: X = zero or nonzero operand 

Y = nonzero operand 

• = sign of original operand 

Affine Result 

Invalid operation 
(1)00 
(1)0 

Invalid operation 
+00 

Invalid operation· 
Invalid operation 
·Y 
·0 

·00 

Invalid operation 
*00 
*0 
Invalid operation 

Invalid operation 

-00 < +00 

-00 < Y <+00 

-00 < 0 < +00 

·00 

t = sign is complement of original operand's sign 

(1)= sign is "exclusive or" original operand signs (+ if operands had same sign, 
- if operands had different signs) 

A NAN (Not-A-Number) is a member of a class 
of special values that exist in the real formats 
only. A NAN has an exponent of ll...llB, may 
have either sign, and may have any significand 
except lAOO ... OOB, which is assigned to the 
infinities. A NAN in a register is tagged special. 

negative; its significand is encoded 1 A100 ... 00. 
All other NANs represent programmer-created 
values. 

Whenever the NDP uses an operand that is a 
NAN, it signals invalid operation. Its masked 
response to this exception is to return the NAN as 
the operation's result. If both operands of an 
instruction are NANs, the result is the NAN with 
the larger absolute value. In this way, a NAN that 
enters a computation propagates through the 
computation and will eventually be delivered as 

The 8087 will generate the special NAN, real 
indefinite, as its masked response to an invalid 
operation exception. This NAN is signed 
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the final result. Note, however, that the tran­
scendental instructions do not check their 
operands, and a NAN will produce an undefined 
result. 

By unmasking the invalid operation exception, 
the programmer· can use NANs to trap to the 
exception handler. The generality of this 
approach and the large number of NAN values 
that are available, provide the sophisticated pro­
grammer with a tool that can be applied to a 
variety of special situations. 

For example, a compiler could use NANs to 
references to uninitialized (real) array elements. 
The compiler could pre-initialize each array ele­
ment with a NAN whose significand contained 
the index (relative position) of the element. If an 
application program attempted to access an ele­
ment that it had not initialized, it would use the 
NAN placed there by the compiler. If the invalid 
operation exception were unmasked, an interrupt 
would occur, and the exception handler would be 
invoked. The exception handler could determine 
which element had been accessed, since the 
operand address field of the exception· pointers 
would point to the NAN, and the NAN would 
contain the index number of the array element. 

NANs could also be used to speed up debugging. 
In its early testing phase a program often contains 
multiple errors. An exception handler could be 
written to save diagnostic information in memory 
whenever it was invoked. After storing the 
diagnsotic data, it could supply a NAN as the 
result of the erroneous instruction, and that NAN 
could point to its associated diagnostic area in 
memory. The program would then continue, 
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creating a different NAN for each error. When 
the program ended, the NAN results could be 
used to access the diagnostic data saved at the 
time the errors occurred. Many errors could thus 
be diagnosed and corrected in one test run. 

Data Type Encodings 

Tables 8-28 through 8-31 summarize how various 
types of values are encoded in the seven NDP data 
types. In all tables, the less significant bits are to 
the right and are stored in the lowest memory 
addresses. The sign bit is always the left-most bit 
of the highest-addressed byte. 

Notice that in every format one encoding is inter­
preted as representing the special value indefinite. 
The 8087 produces this encoding as its response to 
a masked invalid operation exception. In the case 
of the reals, indefinite can be loaded and stored 
like any NAN and it always retains its special 
identity; programmers are advised not to use this 
encoding for any other purpose. Packed decimal 
indefinite may be stored by the NDP in a FBSTP 
instruction; attempting to use this encoding in 
a FBLD instruction, however, will have an 
undefined result. In the binary integers, the same 
encoding may represent either indefinite or the 
la,rgest negative number supported by the format 
(-215 , -231 or -263). The 8087 will store this 
encoding as its masked response to an invalid 
operation, or when the value in a source register 
represents, or rounds to, the largest negative 
integer representable by the destination. In situa­
tions where its origin may be ambiguous, the 
invalid operation exception flag can be examined 
to see if the value was produced by an exception 
response. When this encoding is loaded, or used 
by an integer arithmetic or compare operation, it 
is always interpreted as a negative number; thus 
indefinite cannot be loaded from a packed 
decimal or binary integer. 
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Table 8-28. Binary Integer Encodings 

Class 

(Largest) 

(Small~st) 

Zero 
(Smallest) 

(Largest/Indefinite· ) 

Sign Magnitude 

0 11 ... 11 
• • 
• • 
• • 
0 00 ... 01 

0 00 ... 00 

1 11...11 
• • 
• • 
• • 
1 00 ... 00 

Word: 1.--15 bits-.l 
Short: ~31 bits .... 1 
Long: ~ 63 bits----t 

* If this encoding is used as a source operand 
(as in an integer load or integer arithmetic 
instruction), the 8087 interprets it as the 
largest negative number representable in the 
format: _215, _231 , or _263. The 8087 will deliver 
this encoding to an integer destination in two 
cases: 

1) if the result is the largest negative 
number, 

2) as the response to a masked invalid 
operation exception, in which case it 
represents the special value integer 
indefinite. 
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Exception Handling Details 

Table 8-32 lists every exception condition that the 
NDP detects and describes the processor's 
response when the relevant exception mask is set. 
The unmasked responses are described in table 
S-6. Note that if an unmasked overflow or 
underflow occurs in an FST or FSTP instruction, 
no result if stored, and the stack and memory are 
left as they existed before the instruction was 
executed. This gives an exception handler the 
opportunity to examine the offending operand on 
the stack top. 

When rounding is directed (the RC field of the 
control word is set to "up" or "down"), the 8087 
handles a masked overflow differently than it 
does for the "nearest" or "chop" rounding 
modes. Table S-33 shows the NDP's masked 
response when the true result is too large to be 
represented in it's destination real format. For a 
normalized result, the essence of this response is 
to deliver 00 or the largest valid number represen­
table in the destination format, as dictated by the 
rounding mode and the sign of the true result. 
Thus, when RC=down, a positive overflow is 
rounded down to the largest positive number. 
Conversely, when RC=up, a negative overflow is 
rounded up to the largest negative number. A 
properly signed 00 is returned for a positive 
overflow with RC=up, or a negative overflow 
with RC=down. For an unnormalized result, the 
action is similar except that the the unnormal 
character of the result is preserved if the sign and 
rounding mode do not indicate that 00 should be 
delivered. 

In all masked overflow re~ponses for directed 
rounding, the overflow flag is not set, but the 
precision exception is raised to signal that the 
exact true result has not been returned. 
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Table S-29. Packed Decimal EncodiIigs 

~ r_------~-----r------r_----------~------------------------------~ 
> 

:0:: 
«I 
I:Il 
CD 
Z 

• The packed decimal indefinite encoding is stored by FBSTP in response to a masked invalid 
operation exception. Attempting to load this value via FBLD produces an undefined result. 

Note: "UUUU" means bit values are undefined and may contain any value. 

Table S~30. Real and Long Real Encodings 

. Class ' Sign 
Biased Significand* 

Exponent Aff ... ff 

0 11 ... 11 11 ... 11 
• • • 

NANs • • • 
• • • 
0 11 ... 11 00 ... 01 

co 0 11 ... 11 00 ... 00 
UI 0 11...10 11...11 CD 
> • • • :0:: 

Normals ·iii • • • 
0 • • • 11. 

0 00 ... 01 00 ... 00 
III 
iii 0 00 ... 00 11 ... 11 
CD 
a:: • • • 

Denormals • • • 
• • • 
0 00 ... 00 00 ... 01 

Zero 0 00 ... 00 00 ... 00 
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Table S-30. Real and Long Real Encodings (Cont'd.) 

Class 

Zero 

Denormals 
If) 

'iii 
(]l 
a: 

Normals 

00 

If) 

~ I Indefinite 
z 

Sign 
Biased Significand* 

Exponent lIff...ff 

1 00 ... 00 00 ... 00 

1 00 ... 00 00 ... 01 
0 0 0 

0 0 0 

0 0 0 

1 00 ... 00 11...11 

1 00 ... 01 00 ... 00 
0 0 0 

0 0 0 

0 0 0 

1 11...10 11...11 

1 11...11 00 ... 00 

1 11...11 00 ... 01 
0 0 0 

0 0 0 

0 0 0 

1 11...11 10 ... 00 
0 0 0 

0 0 0 

0 0 0 

1 11...11 11...11 

Short: 1<- 8 bits -l>1<l-23 bits---i>l 
Long: 1<-11 bits-l>I~52 bits--l>j 

* Integer bit is implied and not stored. 

Table S-31. Temporary Real Encodings 

Class Sign 
Biased Significand 

Exponent 11Iff .. ff 

0 11...11 111...11 
Ul 0 0 0 
(]l NANs 0 0 0 

~ 
'iii 0 0 0 

0 0 11...11 100 ... 01 
Q. 

00 0 11...11 100 ... 00 
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Table S-31. Temporary Real Encodings (Cont'd.) 

Class Sign 
Biased Significand 

Exponent 11Iff ..• ff 

0 11 ... 10 Normals 

• • 111 ... 11 
• • • 
• • • 
• • • 
• • • 
• • 100 ... 00 
• • 
• • Un normals 

UI • CD • 
~ • • 011 ... 11 
'iii • • • 0 
D.. • • • 

• • • 
0 00 ... 01 000 ... 00 

Denormals 

0 00 ... 00 011 ... 11 
• • • 
• • • 
• • • 
0 00 ... 00 000 ... 01 

I Zero 0 00 ... 00 000 ... 00 
I-- Reals l Z 1 00 ... 00 000 ... 00 ero 

Denormals 

1 00 ... 00 000 ... 01 
• • • 
• • • 
• • 0 

1 00 ... 00 011 ... 11 

1 00 ... 01 Unnormals 
UI • • 000 ... 00 CD 
> • • • :;: 
III • • • 
Cl • CD • • 
Z • • 011 ... 11 

• • 
• • Normals 

• • 
• • 100 ... 00 
• • • 
• • • 
• • • 
1 11 ... 10 111 ... 11 

00 1 11 ... 11 100 ... 00 
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Table 8-31. Temporary Real Encodings (Cont'd.) 

Class Sign Biased Significand 
Exponent IAff ... ff 

1 11 ... 11 100 ... 00 
• • • 
• • • 

UI • • • CII 

~ NANs I Indefinite 1 11 ... 11 110 ... 00 
m 
CI • • • CII 
Z • • • 

• • • 
1 11 ... 11 111 ... 11 

-15 bits ~. 6<1 bits~ 

Table 8-32. Exception Conditions and Masked Responses 

Condition Masked Response 

Invalid Operation 

Source register is tagged empty (usually Return real indefinite. 
due to stack underflow). 

Destination register is not tagged empty 
(usually due to stack overflow). 

One or both operands is a NAN. 

(Compare and test operations only): 
one or both operands is a NAN. 

(Addition operations only): closure is 
affine and operands are opposite-signed 
infinities; or closure is projective and both 
operands are 00 (signs immaterial). 

(Subtraction operations only): closure is . 
affine and operands are like-signed 
infinities; or closure is projective and both' 
operands are 00 (signs immaterial). 

(Multiplication operations only): 00' 0; or 
O' 00. 

(Division operations only): 00 .;. 00; or 0.;. 0; 
or 0 .;. pseudo-zero; or divisor is denormal 
or unnormal. 

(FPREM instruction only): modulus 
(divisor) is unnormal or denormal; 
or dividend is 00. 

(FSQRT instruction only): operand is 
nonzero and negative; or operand is 
denormal or unnormal; or closure is affine 
and operand is -00; or closure is projective 
and operand is 00. 

8-79 

Return real indefinite (overwrite 
destination value). 

Return NAN with larger absolute value 
(ignore signs). 

Set condition codes "not comparable". 

Return real indefinite 

Return real indefinite. 

Return real indefinite. 

Return real indefinite. 

Return real indefinite, set condition code 
= "complete remainder" . 

Return real indefinite. 
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Exception Conditions and Masked Responses (Cont'd.) 

Invalid Operation 

(Compare operations only): closure is Set condition code = "not comparable" 
projective and 00 is being compared with 0 
or a normal, or 00. 

(FTST instruction only): closure is Set condition code = "not comparable". 
projective and operand is 00. 

(FIST, FISTP instructions only): source Store integer indefinite. 
register is empty, or a NAN, or denormal, 
or unnormal, or 00, or exceeds represent-
able range of destination. 

(FBSTP instruction only): source register Store packed decimal indefinite. 
is empty, or a NAN, or denormal, or 
unnormal, or 00, or exceeds 18 decimal 
digits. 

(FST, FSTP instructions only): destination Store real indefinite. 
is short or long real and source register is 
an unnormal with exponent in range. 

(FXCH instruction only): one or both Change empty register(s) to real indefinite 
registers is tagged empty. and then perform exchange: 

Denormalized Operand 

(FLO instruction only): source operand is No special action; load as usual. 
denormal. 

(Arithmetic operations only): one or both Convert (in a work area) the operand to the 
operands is denormal. equivalent unnormal and proceed. 

(Compare and test operations only): one Convert (in a work area) any denormal to 
or both operands is denormal or un normal the equivalent unnormal; normalize as 
(other than pseudo-zero). much as possible, and proceed with 

operation. 

Zerodivide .. __ ...... _ ....... 
(Division operations only): divisor = O. Return 00 signed with "exclusive or" of 

operand signs. 

Overflow 

(Arithmetic operations only): rounding is Return properly signed ooand signal 
nearest or chop, and exponent of true precision exception. 
result> 16,383. 

(FST, FSTP instructions only): rounding is Return properly signed·oo and signal 
nearest or chop, and exponent of true precision exception. 
result> +127 (short real destination) 
or> +1023 (long real destination). 

Mnemonics © Intel 1980 
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Exception Conditions and Masked Responses (Cont'd.) 

Underflow 

(Arithmetic operations only): exponent of Denormalize until exponent rises to 
true result <-16,382 (true). -16,382 (true), round significand to 64 bits. 

If denormalized rounded significand = 0, 
then return true 0; else, return denormal 
(tag = special, biased exponent =0). 

(FST, FSTP instructions only): destination Denormalize until exponent rises to -126 
is short real and exponent of true result (true), round significand to 24 bits, store 
<-126 (true). true 0 if denormalized rounded significand 

= 0; else, store denormal (biased expo-
nent = 0). 

(FST, FSTP instructions only): destination Denormalize until exponent rises to -1022 
is long real and exponent of true result (true), round significand to 53 bits, store 
< -1022 (true). true 0 if rounded denormalized significand 

= 0; else, store denormal (biased expo-
nent = 0). 

Precision 

True rounding error occurs. No special action. 

Masked response to overflow exception No special action. 
earlier in instruction. 

Table S-33. Masked Overflow Response for Directed Rounding 

True Result Rounding 
Result Delivered Normalization Sign Mode 

Normal + Up +00 

Normal + Down Largest finite positive number(l) 

Normal - Up Largest finite negative number(1) 

Normal - Down -00 

Un normal + Up +00 

Unnormal - Down Largest exponent, result's significand(2) 

Unnormal + Up Largest exponent, result's significand(2) 

Unnormal - Down -00 

(1) The largest valid representable reals are encoded: 
exponent: 11 ... 108 
significand: (1)lI11 ... 108 

(2) The significand retains its identity as an unnormal; the true result is rounded as usual 
(effectively chopped toward 0 in this case). The exponent is encoded 11 ... 108. 

S-Sl 
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5.10 Programming Examples 

Conditional Branching 

As discussed in section S. 7, the comparison 
instructions post their results to the condition 
code bits of the 8087 status word. Although there 
are many ways to implement conditional branch­
ing following a comparison, the basic approach is 
as follows: 

• execute the comparison, 

• store the status word, 

• inspect the condition code bits, 

• jump on the result. 

Figure S-26 isa code fragment that illustrates how 
two memory-resident long real numbers might be 
compared (similar code could be used with the 
FTST instruction). The numbers are called A and 
B, and the comparison is A toB. The comparison 
itself simply requires loading A onto the top of 
the 8087 register stack and then comparing it to B 
and popping the stack in the same instruction. 
The status word is written to memory and the 
code waits for completion of the store before 
attempting to use the result. 

There are four possible orderings of A and B, and 
bits C3 and CO of the condition code indicate 
which ordering holds. These bits are positioned in 
the upper byte of the status word so as to corres-

A OQ? 
B OQ? 
STAT 87 o.W ? 

pond to the CPU's zero and carry flags (ZF and 
CF), if the byte is written into the flags (see 
figures 2-32 and S-6). The code fragment, then, 
sets ZF and CF to the values of C3 and CO and 
then uses the CPU conditional jumps to test the 
flags. Table 2-15 shows how each conditional 
jump instruction tests the CPU flags. 

The FXAM instruction updates all four condition 
code bits. Figure S-27 shows how a jump table 
can be used to determine the characteristics of the 
value .examined. The jump table (FXAM_TBL) 
is initialiied to contain the 16-bit displacement of 
16 labels, one for each possible condition code 
setting. Note that four of the table entries contain 
the same value, since there are four condition 
code settings that correspond to "empty." 

The program fragment performs the FXAM and 
stores the status word. It then manipulates the 
condition code bits to finally produce a number in 
register BX that equals the condition code times 
2. This involves zeroing the unused bits in the byte 
that contains the code, shifting C3 to the right so 
that it is adjacent to C2, and then shifting the 
code to mUltiply it by. 2. The resulting value is 
used as an index which selects one of the 
displacements from FXAM_ TBL (the 
multiplication of the condition code is required 
because of the 2-byte length of each value in 
FXAM_TBL). The unconditional JMP instruc­
tion effectively vectors through the jump table to 
the labelled routine that contains code (not shown 
in the example) to process each possible result of 

• the FXAM instruction. 

FLO A 
FCOMP B 

;LDAO A ONTO TOP OF 87 STACK 
;COMPARE A:B, POP A 
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FSTSW STAT 87 
FWA IT 

;STORE RESULT 
;WAIT FOR STORE 

Figure S-26. Conditional Branching for Compares 
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, 
iLOAD CPU REGISTER AH WITH BYTE OF 

STATUS WORD CONTAINING CONDITION CODE 
MOV AH, BYTE PTR STAT_87+1 
, 
iLOAD CONDITION CODES INTO CPU FLAGS 
SAHF 
, 
iUSE CONDITIONAL JUMPS TO DETERMINE 

ORDERING OF A AND B 
JB A_LESS_OR_UNORDERED 
iCF (CO) = 0 
JNE A_GREATER 

A_EQUAL: 
iCF (CO) = 0, ZF (C3) = 

A_GREATER: 
iCF (CO) = 0, ZF (C3) = 0 

A_LESS_OR_UNORDERED: 
iCF (CO) = 1, TEST ZF (C3) 
JNE A_LESS 

A_B_UNORDERED: 
iCF (CO) = 1, ZF (C3) = 1 

A_LESS: 
iCF (CO) = 1, ZF (C3) = 0 

Figure S-26. Conditional Branching for Compares (Cont'd.) 

FXAM_TBL 
& 
& 
& 
& 
STAT_87 

DW POS_UNNORM, POS_NAN, NEG_UNNORM, 
NEG_NAN, POS_NORM, POS_INFINITY, 
NEG_NORM, NEG_INFINITY, POS_ZERO, 
EMPTY, NEG_ZERO, EMPTY, POS_DENORM, 
EMPTY, NEG_DENORM, EMPTY 

DW ? 

. Figure S-27. Conditional Branching for FXAM 
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;EXAMINE ST, STORE RESULT, WAIT FOR COMPLETION 
FXAM 
FSTSW STAT_8? 
FWA IT 

;CLEAR UPPER HALF OF BX, LOAD CONDITION CODE 
IN LOWER HALF 
MOV BH,O 
MOV BL, BYTE PTR STAT_8?+1 

;COPY ORIGINAL IMAGE 
MOV AL,BL 

;CLEAR ALL BITS EXCEPT C2-CO 
AND BL,00000111B 

;CLEAR ALL BITS EXCEPT C3 
AND AL,01000000B 

;SHIFT C3 TWO PLACES RIGHT 
SHR AL,1 
SHR AL,1 

;SHIFT C2-CO" ONE PLACE LEFT (MULTIPLY BY 2) 
SAL BX,1 

;DROP C3 BACK IN ADJACENT TO C2 (OOOXXXXO) 
OR BL,AL 

;JUMP TO THE ROUTINE' 'ADDRESSED" BY CONDITION CODE 
JMP FXAM_TBL[BX] 

iHERE ARE THE JUMP TARGETS, ONE TO HANDLE 
EACH POSSIBLE RESULT OF FXAM 

POS UNNORM: 

Figure S-27. Conditional Branching for FXAM (Cont'd.) 
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POS ZERO: 

EMPTY: 

NEG ZERO: 

POS DENORM: 

NEG DENORM: 

Figure S-27. Conditional Branching for FXAM (Cont'd.) 

Exception Handlers 

There are many approaches to writing exception 
handlers. One useful technique is to consider the 
exception handler interrupt procedure as con­
sisting of "prologue," "body" and "epilogue" 
sections of code. (For compatibility with the SOS7 
emulators, this procedure should be invoked by 
interrupt pointer (vector) number 16.) 

At the beginning of the prologue, CPU interrupts 
have been disabled by the CPU's normal interrupt 
response mechanism. The prologue performs all 
functions that must be protected from possible 
interruption by higher-priority sources. Typically 
this will involve saving CPU registers and 
transferring diagnostic information from the SOS7 
to memory. When the critical processing has been 
completed, the prologue may enable CPU inter­
rupts to allow higher-priority interrupt handlers 
to preempt the exception handler. 

The exception handler body examines the 
diagnostic information and makes a response that 
is necessarily application-dependent. This 
response may range from halting execution, to 
displaying a message, to attempting to repair the 
problem and proceed with normal execution. 

The epilogue essentially reverses the actions of the 
prologue, restoring the CPU and the NDP so that 
normal execution can be resumed. The epilogue 

S-S5 

must not load an unmasked exception flag into 
the SOS7 or another interrupt will be requested 
immediately (assuming SOS7 interrupts are also 
loaded as unmasked). 

Figures S-2S through S-30 show the ASM-S6 
coding of three skeleton exception handlers. They 
show how prologues and epilogues can be written 
for various situations, but only provide comments 
indicating where the application-dependent 
exception handling body should be placed. 

Figures S-2S and S-29 are very similar; their only 
substantial difference is their choice of instruc­
tions to save and restore the SOS7. The tradeoff 
here is between the increased diagnostic infor­
mation provided by FNSA VE and the faster 
execution of FNSTENV. For applications that are 
sensitive to interrupt latency, or do not need to 
examine register contents, FNSTENV reduces the 
duration of the "critical region," during which 
the CPU will not recognize another interrupt 
request (unless it is a non-maskable interrupt). 

After the exception handler body, the epilogues 
prepare the CPU and the NDP to resume execu­
tion from the point of interruption (i.e., the 
instruction following the one that generated the 
unmasked exception). Notice that the exception 
flags in the memory image that is loaded into the 
SOS7 are cleared to zero prior to reloading (in 
fact, in these examples, the entire status word 
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image is cleared). The prologue also provides for 
indicating to the interrupt controller hardware 
(e.g., 8259A) that the interrupt has been pro­
cessed. The actual processing done here is 
application-dependent, but might typically 
involve writing an "end of interrupt" command 
to the interrupt controller. 

the general approach shown in figure S-30 can be 
employed. The basic technique is to save the full 
8087 state and then to load a new control word in 
the prologue. Note that considerable care should 
be taken when designing an exception handler of 
this type to prevent the handler from being 
reentered endlessly. 

The examples in figures S-28 and S-29 assume 
that the exception handler itself will not cause an 
unmasked exception. Where this is a possibility, 

SAVE ALL PROC 
, 
;SAVE CPU REGISTERS, ALLOCATE STACK SPACE 
;FOR 8087 STATE IMAGE 

PUSH BP 

MOV BP,SP 
SUB SP,94 

;SAVE FULL 8087. STATE, WAIT FOR COMPLETION, 
;ENABLE CPU INTERRUPTS 

FNSAVE [BP-941 
FWAIT 
STI 

, 
;APPLICATION-DEPENDENT EXCEPTION HANDLING 
;CODE GOES HERE 

;CLEAR EXC£PTION FLAGS IN STATUS WORD 
;RESTORE MODIFIED STATE 
;IMAGE 

MOV BYTE PTR [BP-921, OH 
FRSTOR [BP-941 

;WAIT FOR RESTORE TO FINISH BEFORE RELEASING MEMORY 
FWAIT 

;DE-ALLOCATE STACK SPACE, RESTORE CPU REGISTERS 
MOV SP,BP 

POP .BP 
, 
;CODE TO SEND' 'END OF INTERRUPT" COMMAND TO 
; 8259A GOES ,HERE 
, 
;RETURN TO INTERRUPTED CALCULATION 

IRET 
SAVE_ALL ENDP 

Figure S-28. Full State Exception Handler 
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SAVE_ENVIRONMENT PROC 
, 
iSAVE CPU 
iFOR 8087 

REGISTERS, ALLOCATE STACK SPACE 
ENVIRONMENT 

PUSH BP 

MOV BP,SP 
SUB SP,14 

iSAVE ENVIRONMENT, WAIT FOR COMPLETION, 
iENABLE CPU INTERRUPTS 

FNSTENV [BP-141 
FWAIT 

.STI 
, 
i A P P LI C AT I ON EX C E P T I ON-HAN 0 LI N G COD EGO E SHE R E 

iCLEAR EXCEPTION FLAGS IN STATUS WORD 
iRESTORE MODIFIED 
iENVIRONMENT IMAGE 

MOV BYTE PTR [BP-121, OH 
FLDENV [BP-141 

iWAIT FOR LOAD TO FINISH BEFORE ·RELEASING MEMORY 
FWA IT 

iDE-ALLOCATE STACK SPACE, RESTORE CPU REGISTERS 
MOV SP,BP 

POP BP 
, 
iCODE TO SEND' 'END OF INTERRUPT" COMMAND TO 
i8259A GOES HERE 
, 
iRETURN TO INTERRUPTED CALCULATION 

IRET 
SAVE_ENVIRONMENT ENDP 

Figure 8-29. Reduced Latency Exception Handler 
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LOCAL_CONTROL DW ? ;ASSUME INITIALIZED 

REENTRANT PROC 
, 
;SAVE CPU REGISTERS, ALLOCATE STACK SPACE FOR 
;8087 STATE IMAGE 

PUSH BP 

MOV BP,SP 
SUB SP,94 

;SAVE STATE, LOAD NEW CONTROL WORD, WAIT 
;FOR COMPLETION, ENABLE CPU INTERRUPTS 

FNSAVE [BP-94] 
FLDCW LOCAL_CONTROL 
FWA IT 
STI 

;CODE TO SEND' 'END OF INTERRUPT" COMMAND TO 
;8259A GOES HERE 

;APPLICATION EXCEPTION HANDLING CODE GOES HERE. 
;AN UNMASKED EXCEPTION GENERATED HERE WILL 
;CA~SE THE EXCEPTION HANDLER TO BE REENTERED. 
;IF LOCAL STORAGE IS NEEDED, IT MUST BE 
;ALLOCATED ON THE CPU STACK. 

;CLEAR EXCEPTION FLAGS IN STATUS WORD 
iRESTORE MODIFIED STATE IMAGE 

MOV BYTE PTR [BP-92], OH 
FRSTOR [BP-94] 

;WAIT FOR RESTORE TO FINISH BEFORE RELEASING MEMORY 
FWA IT 

;DE-ALLOCATE STACK SPACE, RESTORE CPU REGISTERS 
MOV SP,BP 

POP BP 
;RETURN TO POINT OF INTERRUPTION 

I RET 
REENTRANT ENDP 

Figure S-30. Reentrant Exception Handler 
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inter iAPX 86/20 
iAPX 88/20 

NUMERIC DATA PROCESSOR 

• High Performance 2-Chip Numeric 
Data Processor 

• Standard iAPX 86/10,88/10 Instruction 
Set Plus Arithmetic, Trigonometric, 
Exponential, and Logarithmic 
Instructions For All Data Types 

• All 24 iAPX 86/10,88/10 Addressing 
Modes Available 

• Conforms To Proposed IEEE Floating 
Point Standard 

• Support 8 Data Types: 8-, 16-, 32-, 64-
Bit Integers, 32-, 64-, 80-Bit Floating 
Point, and 18-Digit BCD Operands 

• 8x80-Bit Individually Addressable 
Register Stack plus 14 General 
Purpose Registers 

• 7 Built-in Exception Handling 
Functions 

• MULTI BUS System Compatible 
Interface 

The Intel iAPX 86/20 and iAPX 88/20 are two-chip numeric data processors (NDP's). They provide the instruc­
tions and data types needed for high-performance numeric applications. The NDP provides 100 times the 
performance of an iAPX 86/10, 88/10 CPU alone for numeric processing. The iAPX 86/20 cQnsists of an iAPX 
86/10 (16-bit 8086 CPU) and a numeric processor extension (NPX), the 8087. The iAPX 88/20 consists of the 
NPX in conjunction with the iAPX 88/10 (8-bit 8088 CPU). The NDP conforms to the proposed IEEE Floating 
Point Standard. 

Both components of the iAPX 86/20 and iAPX 88/20 are implemented in N-channel, depletion load, silicon gate 
technology (HMOS), housed in two 40-pin packages. The iAPX .86/20, 88/20 adds 68 numeric processing 
instructions to the iAPX 86/10, 88/10 instruction set and eight 80-bit registers to the register set. 

MAX {~~E} MODE 
B086 

GND Vee GND 

r::--------, (A14) AD14 AD15 (A14) AD14 

(A13) AD13 A16/S3 (A13)AD13 3 A16/S3 

I (A12)AD12 A17/S4 (A12) AD12 4 A17/S4 

8088 I (A11) AD11 A1BiS5 (A11)AD11 5 

" I (A10) AD10 A19iS6 (A10)AD10 , 
8088 

REQUESTI QUEUE I (A9)AD9 BHEiS7 (AB) AD9 7 34 " BHE/S7 (HIGH) 
GRANT STATUS (AS)ADB RQIGT1 (AS) ADS , MN/MX 

I AD7 INT AD7 9 Rii 
AD6 RQ,mo AD6 " RQ/GTO 

ADS Ne RQIGTi 

AD4 Ne LoCK 
REQUEST/ QUEUE 

52 52 GRANT STATUS AD3 

~ 
AD2 51 51 

NPX AD1 so So 
ADO QSO QSO 

______ --1'86120,88120 
Ne QS1 QS1 

L Ne BUSY TEST 

eLK READY READY 

GND RESET RESET 

Figure 1. iAPX 86/20, 88/20 Block Diagram Figure 2. iAPX 86l20, 88/20 Pin Configuration 

Intel Corporation Assumes No Responsibilly for the Use of Any Circuitry Other Than Circuitry Embodied in an Intel Product. No Other Circuit Patent Licenses are Implied. 
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Symbol 

AD15-ADO 

A19/56. 
A18/55. 
A17/54. 
A16/53 

BHE/57 

52. 51. SO 

RQ/GTO 

iAPX 86/20, 88/20 

Table 1. 8087 Pin Description 

lYpe Name and Function 

I/O Address Data: These Ii nes constitute the time mu Iti plexed memory add ress (T 1) and data (T 2. 
T3. TW. T4) bus. AO is analogous to BHE for the lower byte of the data bus. pins D7-DO. It is 
LOW during T1' when a byte is to be transf.erred on the lower portion of the bus in memory 
operations. Eight·bit oriented devices tied to the lower half of the bus would normally use AD 
to condition chip select functions. These lines are active HIGH~ They are input/output lines for 
8087 driven bus cycles and are inputs which the 8087 monitors when the 8086/8088 is in 
control of the bus. A15·A8:do not require an address latch in an iAPX 88/20. The 8087 will 
supply an address for the T1·T4 period: 

I/O Address Memory: During T1 these are the four most significant address lines 
for memory operations. During memory operations. status information is available on 
these lines during T2. T3. Tw. and T4. For 8087 controlled bus cycles. 56. 54. and 53 
are reserved and currently one (HIGH). while 55 is always LOW. These lines are inputs which 
the 8087 monitors when the 8086/8088 is in control of the bus. 

I/O Bus High Enable: DuringT1 the bus high enable signal (BHE) should be used to enable data 
onto the most significant half of the data bus. ~ D15-D8. Eight·bit oriented devices tied to 
the upper half of the bus would normally use BHE to condition chip select functions. BHE is 
LOW during T1 for read and write cycles when a byte isto be transferred on the high portion of 
the bus. The 57 status information is available during T 2. T3. Tw. and T 4. The signal is active 
LOW. 57 is an input which the 8087 monitors during 8086/8088 controlled bus cycles. 

I/O' Status: For 8087 driven bus cycles. these status lines are encoded as follows: 

S2 S1 SO 
o (LOW) X X Unused 

-1 (HIGH) 0 0 Unused 
1 0 1 Read Memory 
1 1 0 Write Memory 
1 1 1 Passive 

5tatus is driven active during T4. remains valid during T1 and T2. and is returned to the 
passive state (1.1.1) during T3 orduring Tw when READY is HIGH. This status is used by the 
8288 Bus Controller to generate all memory access control signals. Any change in 52. 51. or 
50 during T 4 is used to indicate the beginning of a bus cycle. and the return to the passive 
state in T3 orTw is used to indicatetheend of a bus cycle. These signals are monitored by the 
8087 when the 8086/8088 is in control of the bus. 

I/O Request/Grant:This request/grant pin is used by the NPX to gain control of the local bus from 
the CPU for operand transfers or on behalf of another bus master. It must be. connected to one 
of the two processor request/grant pins. The request grant sequence on 'this pin is as follows: 
1. A pulse one clock wide is passed to the CPU to indicate a local bus request by either the, 
, 8087 or the master connected to the 8087 RQ/GT1 pin. ' 

2. The 8087 waits for the grant pulse and when it is received will either initiate bus transfer 
activity in the clock cycle following the grant or pass the grant out on the RQ/GT1 pin in this 
clock if the initial request was for another bus master. 

3. The 8087 will generate a release pulse to the CPU one clock cycle after the completion of 
the last 8087 bus cycle or on rec:eipt of the release pulse from the bus master on RQ/GT1. 
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Table 1. 8087 Pin Description (Continued) 

Symbol 'TYpe Name and Function 

RQ/GT1 110 RequestlGrant:This request/grant pin is used by another local bus master to force the 8087 to 
request the local bus. If the 8087 is not in control of the bus when the request is made the 
request/grant sequence is passed through the 8087 on the RQ/GTO pin one cycle later. 
Subsequent grant and release pulses are also passed through the 8087 with a two and one 
.clock delay, respectively, for resynchronization. RQ/GT1 has has an internal pullup resistor, 
·andso may be left unconnected. If the 8087 has control of the bus the request/grant sequence 
is as follows: 
1. A pulse 1 ClK wide from another local bus master indicates a local bus request to the 8087 

(pulse 1). 
- -- -

2. During the 8087's next T4 or T1 a pulse 1 ClK wide from the 8087 to the requestin_g master 
(pulse-2) indicates that the 8087 has allowed the local bus to-float and that it will entedhe 
"RQ/GT acknowledge" state at the next ClK. The 8087's control unit is disconnected 
logically from the local bus during "RQ/GTacknowledge." 

3. A pulse 1 ClK wide from the requesting master indicates to the 8087 (pulse 3) that the 
"RQ/GT" request is about tq end and that the 8087 can reclaim the local bus at the next 
ClK, 

Each master·master exchange of the local bus is a sequence of 3 pulses. There must be one 
dead ClK cycle after each bus exchange. Pulses are active lOW. 

QS1, I OSl, OSO: Q-S1 and QSO provide the 8087 with status to allow tracking of the CPU 
QSO instruction queue. -----------

OSl OSO 
o (lOW) 0 No Operation 
0 1 First Byte of Op Code from Queue 
1 (HIGH) 0 Empty the Queue 
1 1 Subsequent Byte from Queue 

INT 0 Interrupt: This line is used to indicate that an unmasked exception has occurred during 
numeric instruction execution when 8087 interrupts are enabled. This Signal is typically 
routed to an 8259A. INT is active HIGH. 

BUSY 0 Busy: This signal indicates that the 8087 NEU is executing a numeric instruction. It is con-
nected to the CPU's TEST pin to provide synchronization. In the case of an unmasked 
exception BUSY remains active until the exception is cleared. BUSY is active HIGH. 

READY I Ready: READY is the acknowledgment from the addressed memory device that it will 
complete the data transfer. The ROY Signal from memory is synchronized by the 8284A Clock 
Generator to form READY. This Signal is active HIGH. 

RESET I Reset: RESET causes the processor to immediately terminate its present activity. The signal 
must be active HIGH for at least four clock cycles. RESET is internally synchronized. 

ClK I Clock: The clock provides the basic timing for the processor and bus controller. It is asym-
metric with a 33% duty cycle to provide optimized internal timing. 

Vcc Power: VCC is the +5V power supply pin. 

GND Ground: GND are the ground pins. 

NOTE: 
For the pin descriptions of the 8086 and 8088 CPU's reference those respective data sheets (iAPX 86/10, iAPX 88/10). 
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APPLICATION AREAS 

. The iAPX 86/20 and iAPX 88/20 provide functions 
meant specifically for high performance numeric 
processing requir~ments. Trigonometric, logarith~ 
mic, and exponential functions are built into the 

. processor hardware. These functions are essential 
in scientific, engineering, navigational, or military 
applications. 

The NDP also has capabilities meant for business or 
commercial computing. An iAPX 86/20, 88/20 can 
process Binary Coded Decimal (BCD) numbers up 
to 18 digits without roundofferroi"s. It can also per­
form arithmetic on integers as large as ·64 bits 
(±1018). 

PROGRAMMING LANGUAGE SUPPORT 

Programs for the iAPX 86/20 and iAPX 88/20 can be 
written in A8M-86, the iAPX 86,88 assembly lan­
guage, PUM-86, FORTRAN-86, and PA8CAL~86, In­
tel's high-level languages for iAPX 86, 88 systems. 

Details 

The remainder of the data sheet will concentrate on 
the numeric processor extension (refered to as NPX 
or 8087); For iAPX 86/10 or iAPX 88/10 CPU details 
refer to those respective data sheets. 

FUNCTIONAL DESCRIPTION 

The iAPX 86/20, 88/20 Numeric DataProcessor's ar­
chitecture is designed for high performance 
numeric computing in· conjunction with general 
purpose proce~sing . 

The·8087 is a numeric processor extension that 
provides arithmetic and logical instruction support 
for a variety of numeric data types in iAPX 86/20, 
88/20 systems. It also executes numerous built-in 
transcendental functions (e.g., tangent and log 
functions). The 8087 executes instructions as a 
coprocessor to a maximum mode 8086 or 8088. It 
effectively extends the· register and instruction set of 
an iAPX 86/10 or 88/10 b·ased system and adds 

. several new data types as well. Figure 3 presents the 
registers of the iAPX 86/20. Table 2 shows the range 
of. data types supported by the NDP. The 8087 is 
treated as an extension to the iAPX 86/10 or 88/10, 
providing register; data types, control, and instruc­
tion capabilities at the hardware level. At the pro­
grammers level the iAPX 86/20, 88/20 is viewed as a 
single unified processor. 

iAPX 86/20, 88/20 System Configuration 

As a coprocessor to an 8086 or 8088, the 8087 is 
wired in parallel with the CPU as shown in Figure4. 
The CPU's status (80-82) and queue status lines 
(080-081) enable the 8087 to monitor and de.code 

8087. 
IAPX 86110, 68110 DATA FIELD TAG FIELD 

AX 1~6 FILE:··· 0 I R1 S:N 78 EXPONENT 84 83 SIGNIFICAND 0 ~1 0 
ax . I R2 !-=::::.:..I--'==::...-t-,----==:.::::::.::...---I 
CX . . I R3 I--t----t-,---------I 

ox .: R4 .. 

SI I R5 I--t----t-,---------I 
01 I R6 

ap . I R7 t===t=======t================l SP . .. I RI 1.-_'--___ .1.--_______ ..... 

L __ , 

"'--""'I""P--'" I 
I 
I 

FLAGS 
L.. ____ -., 

~~ 1-1------1 
I 
I 
I 
1 
I 

15 
CONTROL REGISTER 
STATUS REGISTER 

iNSTRUCTION POINTER 

DATA POINTER 

Figure 3. iAPX 86/20 Architecture 
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Table 2. iAPX 86/20, 88/20 Data Types 

Data Range Precision 
Most Significant Byte 

Formats 
7 017 017 017 017 017 017 017 017 017 01 

Byte Integer 102 8 Bits 17 10J Two's Complement 

Word Integer 104 16 Bits 115 10J Two's Complement 

Short Integer 109 32 Bits 131 101 Two's Complement 

Long Integer 1018 64 Bits 163 

Packed BCD 1018 18 Digits SI- 0 170 16 1 

Short Real 10±38 24 Bits SI E7 EoIF1 F231 FO Implicit 

Long Real 10±308 53 Bits S I E10 E~1 

Temporary Real 10±4932 64 Bits S I E14 EolFo 

Integer: I Real: (-1 )8(2E-BIA8)(Fo'F1' .. ) 

Packed BCD: (-1 )8(017 ... 00) Bias=127 for Short Real 

r - - -a 

8284A 
CLOCK 

GENERATOR 

82S9A 
PIC 

INT t-----.INTR 

ClK 1-t-------1 ...... --.ClK ~OJ~ 

'----+---IINT I 
Ra~GT1 : 

I I 

r 'iG'i-" I 

I I: 
'- -'ClK 8089 

lOP ~-~ 

1023 for Long Real 
16383 for Temp Real 

IAPX86 
BUS 

INTERFACE 
COMPONENTS 

Figure 4. NDP System Configuration 
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>1 Two's 
10 Complement 

101 Dol 

F521 FO Implicit 
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instructions in synchrohization with. the CPU and 
without any CPU overhead. Once started the 8087 
can process in parallel with and independent of the 
host CPU. For resynchronization, the NPX's BUSY 
signal informs the CPU that the NPX isexecuting an 
instruction and the CPU WAIT instruction tests this 
signal to insure that the NPX is ready to execute 
subsequent instructions. The NPX can interrupt the 
CPU when it detects an error or exception. The 
8087's interrupt request .line is typically routed to 
the CPU through an 8259A Programmable Inter­
rupt Controller. (See Figure 2 for 8087 pinout 
information.) 

The 8087 uses one of the request/grant lines of the 
iAPX 86, 88 architectu re (typically RQ/GTi) to obtain 
control of the local bus for data transfers. The other 
request/grant line is available for general system use 
(for instance by an I/O processor in LOCAL mode). A 
bus master can also be connected to the 8087's 
RQ/GT1 line. In this configuration the 8087 will pass 
the request/grant handshake signals between the 
CPU and the attached master when the 8087 is not in 
control of the bus and will relinquish the bus to the 
master directly when the 80~7 is in control. In this 
way two additional masters can be configured in an 
iAPX 86/20, 88/20 system; one will share the 8086 
bus with the 8087 on a first come first served basis, 
and the second will be guaranteed to be higher in 
priority than the 8087. 

As Figure 4 shows, all processors utilize the same 
clock generator and system bus interface compo­
nents (bus controller, latches, transceivers and bus 
arbiter). 

Bus Operation 

The 8087 bus' structure, operation and timing are 
identical to all other processors in the iAPX 86, 88 
series (maximum mode configuration). The address 
is time multiplexed with the data on the first 16/8 
lines of the address/data bus. Ai6 through A19 are 
time multiplexed with four status lines 53-56. 53, 54 
and 56 are always one (high) for 8087 driven bus 
cycles while 55 is always zero (low). When the 8087 
is monitoring CPU bus cycles (passive mode) 56 is 
also monitored by the 8087 to differentiate 
8086/8088 activity from that of a local I/O processor 
or any other local bus master. (The 8086/8088 must 
be the only processor on the local bus to drive 56 
low.) 57 is multiplexed with and has the same value 
as BHE for all 8087 bus cycles. 

The first threestatus lines, SO-52, are used with an 
8288 bus controller to determine the type of bus 
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cycle being run: 

S2 
o 
1 
1 
1 
1 

S1 
X 
o 
o 
1 
1 

so 
X 
o 
1 
o 
1 

Programming Interface 

Unused 
Unused 
Memory Data Read 
Memory Data Write 
Passive (no bus 
cycle) . 

The NDP includes the standard iAPX86/10, 88/10 
instruction set for general data manipulation and 
program control. It also includes 68 numeric 
instructions for extended precision integer, floating 
point,trigonometric, logarithmic, and exponential 
functions. Sample execution times for several NDP 
functions are shown in Figure 4. Overall iAPX86/20 
system performance is 100 times that of an iAPX 
86/10 class processor for numeric instructions. 

Any instruction executed by the NDP is the 
combined result of the CPU and NPX activity. The 
CPU and the NPX have specialized functions and 
registers providing fast concurrent operation. The 
CPU controls overall program execution while the 
NPX uses the coprocessor interface to recognize 
and perform numeric operations. 

Table 2 lists the eight data types the iAPX 86/20, 
88/20 supports and presents the format for each 
type. Internally, the NPX holds all numbers in the 

. temporary real format. Load and store instructions 
automatically convert operands represented in 
memory as 16-, 32-, or 64-bit integers, 32- or 64-bit 
floating point numbers or i8-digit packed BCD 
numbers into temporary real format and vice versa. 
The NDP also provides the capability to control 
round off, underflow, and. overflow errors in· each 
calculation. 

Computationsin the NPX use the processor's regis­
ter stack. These eight 80-bit registers provide the 
equivalent capacity of 20 32-bit registers. The NPX 
register set can be accessed as a stack, with instruc­
tions operating on the top one or two stack ele­
ments, or as a fixed register set, with instructions 
operating on explicitly designated registers. 

Table 5 lists the 8087's instructions by class. All ap­
pear as ESCAPE instructions to the host. Assembly 
language programs are written in A5M-86, the iAPX 
86, 88 assembly language. Table 3 gives the execu­
tion times of some typical numeric instructions. 
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Table 3. Execution Times for Selected iAPX 86/20 
Numeric Instructions and Corresponding 
iAPX 86/10 Emulation 

Approximate Execution 
Time (p,s) 

Floating Point 
Instruction iAPX 86/20 iAPX 86/10 

(5 MHz 
Clock) Emulation 

Add/Subtract 17 1,600 
Multiply (single' 

precision) 19 1,600 
Multiply (extended 

precision) 27 2,100 
Divide 39 3,200 
Compare 9 1,300 
Load (double precision) 10 1,700 
Store (double precision) 21 1,200 
Square Root 36 19,600 
Tangent 90 13,000 
Exponentiation 100 17,100 

DATA 

, I 
I 
I 

STATUS I 
EXCEPTION I ADDRESS POINTERS 

- - - L - - -

NUMERIC PROCESSOR 
EXTENSION ARCHITECTURE 

As shown in Figure 5, the 8087 is internally divided 
into two processing elements, the control unit (CU) 
and the numeric execution unit (NEU). The NEU 
executes all numeric instructions, while the CU 
receives and decodes instructions, reads and writes 
memory operands and executes NPX control in­
structions. The two elements are able to operate 
independently of one another, allowing theCU to 
maintain synchronization with the CPU while the 
NEU is busy processing a numeric instruction. 

Control Unit 

The CU keeps the 8087 operating in synchronization 
with its host CPU. 8087 instructions are intermixed 
with CPU instructions in a single instruction stream. 
The CPU fetches all instructions from memory; by 
monitoring the status signals (80-82, 86) emitted by 
the CPU, the NPX control unit determines when an 

16 

I 
I 
I 

(6) I 
T 

(5) A I G 
REGISTER STACK 

(4) 

W (3) I 0 
R (2) 
D 

I (1) 

(0) 

,- ao BITS -, ~ - - - - - --

Figure 5. 8087 Block Diagram 
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8086 instruction is being fetched. The CU monitors 
the Data bus in parallel with the CPU to obtain in­
structions that pertain to the 8087. 

The CU maintains an instruction queue that is identi­
cal to the queue in the host CPU. The CU automatic­
ally determines if the CPU is an 8086 or an 8088 
immediately after reset (by monitoring the BHE/ S7 
line) and matches its queue length accordingly. By 
monitoring the CPU's queue status lines (OSO, OS1), 
the CU obtains and decodes instructions from the 
queue in synchronization with the CPU. 

A numeric instruction appears as an ESCAPE in­
struction to the 8086 or 8088 CPU. Both the CPU and 
NPX decode and execute the ESCAPE instruction 
together. The 8087 only recognizes the numeric in­
structions shown in Table 5. The start of a numeric 
operation is accomplished when the CPU executes 
the ESCAPE instruction. The instruction mayor may 
not identify a memory operand. 

The CPU does, however, distinguish between ESC 
instructions that reference memory and those that 
do not. If the instruction refers to a memory operand, 
the CPU ca,lculates the operand's address using any 
one of its available addressing modes, and then per­
forms a "dummy read" of the word at that location. 
(Any location within the 1 M byte address space is 
allowed.) This is a normal read cycle except that the 
CPU ignores the data it receives. If the ESC instruc­
tion does not contain a memory reference (e.g. an 
8087 stack operation), the CPU simply proceeds to 
the next instruction. 

An 8087 Instruction can have one of three memory 
reference options; (1) not reference memory; (2) 
load an operand word from memory into the 8087; or 
(3) store an operand word from the 8087 into 
memory. If no memory reference is required, the 
8087 simply executes its instruction. If a memory 
reference is required, the CU uses a "dummy read" 
cycle initiated by the CPU to capture and save the 
address that the CPU places on the bus. If the in­
struction is a load, the CU additionally captures the 
data word when it becomes available on the local 
data bus. If data required is longer than one word, 
the CU immediately obtains the bus from the CPU 
using the requesVgrant protocol and reads the rest 
of the information in consecutive bus cycles. In a 
store operation, the CU captures and saves the store 
address as in a load, and ignores the data word that 
follows in the "dummy read" cycle. When the 8087 is 
ready to perform the store, the CU obtains the bus 
from the CPU and writes the operand starting at the 
specified address. 

Numeric Execution Unit 

The NEU executes all instructions that involve the 
register stack; these include arithmetic, logical, 
transcendental, constant and data transfer instruc­
tions. The data path in the NEU is 84 bits wide (68 
fraction bits, 15 exponent bits and a sign bit) which 
allows internal operand transfers to be performed at 
very high speeds. 

When the NEU begins executing an instruction, it 
activates the 8087 BUSY signal. This signal can be 
used in conjunction with the CPU WAIT instruction 
to resynchronize both processors when the NEU has 
completed its current instruction. 

Register Set 

The iAPX 86/20 register set is shown in Figure 3. 
Each of the eight data registers in the 8087's register 
stack is 80 bits wide and is divided into "fields" 
corresponding to the NDP's temporary real data 
type. 

At a given point in time the TOP field in the control 
word identifies the current top-of-stack register. A 
"push" operation decrements TOP by 1 and loads a 
value into the new top register. A "pop" operation 
stores the value from the current top register and 
then increments TOP by 1. Like iAPX 86/10, 88/10 
stacks in memory, the 8087 register stack grows 
"down" toward lower-addressed registers. 

Instructions may address the data registers either 
implicitly or explicitly. Many instructions operate on 
the register at the top of the stack. These instruc­
tions implicitly address the register pointed to by the 
TOP. Other instructions allow the programmer to 
explicitly specify the register which is to be used. 
Explicit register addressing is "top-relative." 

Status Word 

The status word shown in Figure 6 reflects the over~ 
all state of the 8087; it may be stored in memory and 
then inspected by CPU code. The status word is a 
16-bit register divided into fields as shown in Figure 
6. The busy bit (bit 15) indicates whether the NEU is 
either executing an instruction or has an interrupt 
request pending (B = 1), or is idle (B = 0). Several 
instructions which store and manipulate the status 
word are executed exclusively by the CU, and these 
do not set the busy bit themselves. 

S-96 AFN.()1B20C 



iAPX 86/20, 88/20 

15 

I B I c, ITO piC, I c, I C, IIR I X I PE I UE I OE I ZE I DE liE I 

l'liR is set if any unmasked exception bit Is set, cleared otherwise. 

(2lSee Table 3 for condition code interpretation. 

(3)Top Values: 
000 - Register 0 is Top of Stack. 
001 ;0 Register ~ is Top of Stack. 

111 = Register 7 is Top of Stack. 

I 
EXCEPTION FLAGS (1 = EXCEPTION HAS OCCURRED) 

INVALID OPERATION 

DENQRMALIZED OPERAND 

ZERO DIVIDE 

OVERFLOW 

UNDERFLOW 

PRECISION 

(RESERVED) 

INTERRUPT REQUEST(l) 

CONDITION CODE(2) 

TOP OF STACK POINTER(3) 

NEU BUSY 

Figure 6. 8087 Status Word 

The four numeric condition code bits (CO-C3) are 
similar to the flags in a CPU: various instructions 
update these bits to reflect the outcome of NDP 
operations. The effect of these instructions on the 
condition code bits is summarized in Table 4. 

Bits 14-12 of the status word point to the 8087 regis­
ter that is the current top-of-stack (TOP) as 
described above. 

Bit 7 is the interrupt request bit. This bit is set if any 
unmasked exception bit is set and cleared other­
wise. 

Bits 5-0 are set to indicate that the NEU has 
detected an exception while executing an instruc­
tion. 
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Tag Word 

The tag word marks the content of each register as 
shown in Figure 7. The principal function of the tag 
word is to optimize the NDP's performance. The tag 
word can be used, however, to interpret the contents 
of 8087 registers. 

Instruction and Data Pointers 

The instruction and data pointers (see Figure 8) are 
provided for user-written error handlers. Whenever 
the 8087 executes an NEU instruction, the CU saves 
the instruction address, the operand address (if 
present) and the instruction opcode. 8087 instruc­
tions can store this data into memory. 
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Table 4. Condition Code Interpretation 

Instruction C3 C2 Cl Co Interpretation 

Compare, Test 0 X X 0 A>8 
0 X X 1 A<8 
1 X X 0 A=8 
1 X X 1 A? 8 (not comparable) 

Remainder 0, 0 00 02 Complete reduction 
0, 1 00 02 Incomplete reduction 

Examine 0 0 0 0 Valid, positive, unnormalized 
0 0 0 1 Invalid, positive, exponent"" 0 
0 0 1 0 Valid, negative, unnormalized 
0 0 1 1 Invalid, negative, exponent"" 0 
0 1 0 0 . Valid, positive, normalized 
0 1 0 1 Infinity, positive 
0 1 1 0 Valid, negative, normalized 
0 1 1 1 Infinity, negative 
1 0 0 0 Zero, positive 
1 0 0 1 Empty 
1 0 1 0 Zero, negative 
1 0 1 1 Empty 
1 1 0 0 Invalid, positive, exponent=O 
1 1 0 1 Empty 
1 1 1 0 Invalid, negative, exponent = 0 
1 1 1 1 Empty 

x = value is not affected by instruction. 
o = Co, ~, C, hold 3 LSBs of the quotient generated during a remainder operation. 

15 

TAG VALUES: 
00 = VALID 
01 = ZERO 
10 = SPECIAL 
11 = EMPTY 

15. 

INSTRUCTION POINTER (15-0) 

INSTRUCTION POINTER I 0 I 
(19-16) 

INSTRUCTION OPCODE "(10.0) 

DATA POINTER (15-0) 

DATA POINTER (19-16) I 0 

Figure 7. 8087 Tag Word Figure 8. 8087 Instruction and Data Pointers 
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Control Word 

The 8087 provides several processing options which 
are selected by loading a word from memory into the 
control word. Figure 9 shows the format and encod­
ing of the fields in the control word. 

The low order byte of this control word configures 
8087 interrupts and exception masking. Bits 5-0 of 
the control word contain individual masks for each 
of the six exceptions that the 8087 recognizes and 
bit 7 contains a general mask bit for all 8087 in­
terrupts. The high order byte of the control word 
configures the 8087 operating mode including 
precision, rounding, and infinity controls. The preci­
sion control bits (bits 9-8) can be used to set the 
8087 internal operating precision at less than the 
default of temporary real precision. This can be use­
ful in providing compatibility with earlier generation 
arithmetic processors of smaller precision than the 
8087. The rounding control bits (bits 11-10) provide 
for directed rounding and true chop as well as the 
unbiased round to nearest mode specified in the 
proposed IEEE standard. Control over closure of the 
number space at infinity is also provided (either 
affine closure, ±oo, or projective closure, 00, is treated 
as unsigned, may be specified). 
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Exception Handling 

The 8087 detects six different exception conditions 
that can occur during instruction execution. Any or 
all exceptions will cause an interrupt if unmasked 
and interrupts are enabled. 

If interrupts are disabled the 8087 will simply con­
tinue execution regardless of whether the host 
clears the exception. If a specific exception class is 
masked and that exception occurs, however, the 
8087 will post the exception in the status register 
and perform an on-chip default exception handling 
procedure, thereby allowing processing to continue. 
The exceptions that the 8087 detects are the 
following: 

1. INVALID OPERATION: Stack overflow, stack un­
derflow, indeterminate form (0/0, 00- 00, etc.) or 
the use of a Non-Number (NAN) as an operand. 
An exponent value is reserved and any bit pattern 
with this value in the exponent field is termed a 
Non-Number and causes this exception. If this 
exception is masked, the 8087's default response 
is to generate a specific NAN called INDEFINITE, 
or to propagate already existing NANs as the cal­
culation result. 

I x x X II C I R C I P C I M I x I PM I UM I OM I ZM I DM 11M I 

(1)Precision Control 
00 = 24 bits 
01 = Reserved 
10 = 53 bits 
11 = 64 bits 

{2lRounding Control 
00.:: Round to Nearest or Even 
01 = Round Down (toward _ 10) 
10:: Round Up (toward + ac) 
11 = Chop {truncate toward zero) 

I 

Figure 9. 8087 Control Word 
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EXCEPTION MASKS (1 = EXCEPTION IS MASKED) 

INVALID OPERATION 

DENORMALIZED OPERAND 

ZERO DIVIDE 

OVERFLOW 

UNDERFLOW 

PRECISION 

(RESERVED) 

INTERRUPT MASK (1 0 INTERRUPTS ARE MASKED) 

PRECISION CONTROL(1) 

ROUNDING CONTROL(2) 

INFINITY CONTROL (0 0 PROJECTIVE, 1 0 AFFINE) 

(RESERVED) 
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2. OVERFLOW: The result is too large in magnitude 
to fit the specified format. The 8087 will generate 
an encoding for infinity if this exception is 
masked. 

3. ZERO DIVISOR: The divisor is zero while the divi­
dend is a non-infinite, non-zero number. Again, 
the 8087 will generate an encoding for infinity if 
this exception is masked. 

4. UNDERFLOW: The result is non-zerO but too 
small in magnitude to fit in the specified format. If 
this exception is masked the 8087 will 
denormalize (shift right) the fraction until the ex­
ponent is in range. This process is called gradual 
underflow. . 

5. DENORMALIZED OPERAND: At. least one of the 
operands or the result is denormalized; it has the 
smallest exponent but a non-zero significand. 
Normal processing continues if this exception is 
masked off. 

6. INEXACT RESULT: If the true result is not exactly 
representable in the specified format, the result 
is rounded according to the rounding mode, and 
this flag is set. If this exception is masked, pro­
cessing will simply continue. 
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ABSOLUTE MAXIMUM RATINGS* 

Ambient Temperature Under Bias ........... O°C to 70°C 
Storage Temperature ................. -65°C to +150°C 
Voltage on Any Pin with 

Respect to Ground .................... -1.0V to +7V 
Power Dissipation ............................ 3.0 Watt 

-NOTICE: Stresses above those listed under Absolute 
Maximum Ratings may cause permanent damage to the 
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above 
those indicated in the operational sections of this 
specification is not implied. Exposure to absolute maxi­
mum rating conditions for extended periods may affect 
device reliability. 

D.C. CHARACTERISTICS (TA = O°C to 70°C, VCC =+5V ±10%) 

Symbol Parameter Min. Max. 

Vil Input low Voltage -0.5 +0.8 

VIH Input High Voltage 2.0 Vee +0.5 

VOL Output low Voltage 0.45 

VOH Output High Voltage 2.4 

Icc Power Supply Current 475 

III Input leakage Current ±10 

ILO Output leakage Current ±10 

Vel Clock Input low Voltage -0.5 +0.6 

VCH Clock Input High Voltage 3.9 Vce + 1.0 

CIN Capacitance of Inputs 10 

CIO Capacitance of I/O Buffer 
(ADO-15, A16-A19, BHE, S2-S0, 15 
RQ/GT) and ClK 

COUT Capacitance of Outputs 
BUSY,INT 10 

A.C. CHARACTERISTICS (TA = O°C to 70°C, Vee = +5V ±10%) 

TIMING REQUIREMENTS 

Symbol Parameter Min. Max. 
TClCl ClK Cycle Period 200 500 

TClCH ClK low Time (21.3 TClCl) - 15 

TCHCl ClK High Time (V3 TClCl) + 2 

TCH1CH2 ClK Rise Time 10 

TCl2Cl1 ClK Fall Time 10 

TDVCl Data In Setup Time 30 

TClDX Data In Hold Time 10 

TRYHCH READY Setup Time (2h TClCl) - 15 

TCHRYX READY Hold Time 30 

TRYlCl READY Inactive to ClK (See Note 3) -8 

TGVCH RQ/GT Setup Time 30 

TCHGX RQ/GT Hold Time 40 

TQVCl QSO-1 Setup Time 30 

TClQX QSO-1 Hold Time 10 

TSACH Status Active Setup Time 30 

TSNCl Status Inactive Setup Time 30 

TILIH Input Rise Time (Except ClK) 20 

TIHll Input Fall Time (Except ClK) 12 

S-101 

Units Test Conditions 

V 

V 

V IOl = 2.0 mA 

V IOH = -400 !LA 

mA TA = 25°C 

!LA OV.;;; VIN';;; Vee 

!LA 0.45V .;;; VOUT .;;; Vee 

V 

V 

pF fc = 1 MHz 

pF fc = 1 MHz 

pF fc = 1 MHz 

Units Test Conditions 
ns 

ns 

ns 

ns From 1.0V to 3.5V 

ns From 3.5V to 1.0V 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns From 0.8V to 2.0V 

ns From 2.0V to 0.8V 
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A.C; CHARACTERISTICS (Continued) 

TIMING RESPONSES 

Symbol Parameter 
TClMl Command Active Delay (See Note 1) 

TClMH Command Inactive Delay (See Note 1) 

TRYHSH Ready Active to Status Passive (See Note 2) 

TCHSV Status Active Delay 

TClSH Status Inactive Delay 

TClAV Address Valid Delay 

TClAX Address Hold Time 

TClAZ Address Float Delay 

TSVlH Status Valid to ALE High (See Note 1) 

TCllH ClK low to ALE Valid (See Note 1) 

TCHll ALE inactive Delay (See Note 1) 

TClDV Data Valid Delay 

TCHDX Data Hold Time 

TCVNV Control Active Delay (See Note 1) 

TCVNX Control Inactive Delay (See Note 1) 

TCHBV BUSYand INT Valid Delay 

TCHDTl Direction Control Active Delay (See Note 1) 

TCHDTH Direction Control Inactive Delay (See Note 1) 

TClGl RQ/GT Active Delay 

TClGH RQ/GT Inactive Delay 

TOlOH Output Rise Time 

TOHOl Output Fall Time 

NOTES: 
1. Signal at 8284A or 8288 shown for reference only. 
2. Applies only to T 3 and wait states. 
3. Applies only to T2 state (8 ns into T3)' 

A.C. TESTING INPUT, OUTPUT WAVEFORM 

INPUTfOUTPUT 

A,C. TESTING: INPUTS ARE DRIVEN AT 2AV FOR A LOGIC "1" AND O.45V FDA 
A LOGIC "0." THE CLOCK IS DRIVEN AT 4.3V AND Q,25V. TIMING MEASURE-
MENTS ARE MADE AT 1.5V FOR BOTH A LOGIC ''1'' AND "0." . 

S-102 

Min. Max. Units Test Conditions 
10 35 ns 

10 35 ns 

110 ns 

10 110 ns 

10 130 ns 

10 110 ns 

10 ns 

TClAX 80 ns 

15 ns 

15 ns 

15 ns CL= 20-100 pF for all 

10 110 ns 8087 Outputs (in addition 

10 ns to 8087 self-load) 

5 45 ns 

10 45 ns 

10 150 ns 

50 ns 

30 ns 

0 85 ns CL = 40 pF (in 

0 85 ns addition to 8087 self-load) 

20 ns From 0.8V to 2.0V 

12 ns From 2.0V to 0.8V 

A.C. TESTING LOAD CIRCUIT 

DEVICE 
UNDER 

~CL~100PF TEST 

-= 
CL INCLUDES JIG CAPACITANCE 

AFN·0182OC 



WAVEFORMS 

MASTER MODE 

CLK 

ALE (8288 OUTPUT) 
(SEE NOTES 4, 6) 

READY (8087 INPUT) { 
(SEE NOTE 2) 

READ CYCLE 

8288 OUTPUTS 
(SEE NOTES 6, 7) 

AD15-ADo 

{M::: 
DEN 

iAPX 86/20, 88/20 

T, , 
-+- TClCl ~H1CH2 __ ~-I 

::c If""' H 
~~~CHCl ' 

VCl 

TClAV ~ ~OV TCLAX .... 

BHE, Au -A'5 A 
TSVlH .... c=- rtCHll 

TCllH'" 

I 
TRYl~t 

I: 
TClAV- ,t:. -- rrAZ 

A A'5-AO 
.11 FL7 

TCHOTL_ .r-
\ 

TClML ___ .r--
TCVNV- II-

II 

T, 

i--TCl2Cl1 
Tw 

V~~~ 
W;;, V/(SEE NOTE 5) \ 

.~ 
-- ---

--- TCHOX 

57-53 \I 
./' FLOAT 

(SEE NOTE 3) 

,..--, 
I ----

l-

:+-.... of- TCHRYX 

ijl 
TRYHCH __ 

I~TOVCl TCLOX 

III OATAIN 
FLOAT 

TCHOTH'" \y 
TCLMH-+ F \ 

1 

TCVNX~ " WRITE CYCLE TCLAV :::-I TClOV ::I -+ ll-TC HOX 

8288 OUTPUTS 
(SEE NOTES 6, 7) 

NOTES: 

{
AM::: 

MWTC 

)K A,,-A. )K 
TCVNV_ 

TClML_ 

1\ 
TClML 

1. ALL SIGNALS SWITCH BETWEEN VOL ANa VOH UNLESS OTHERWISE SPECIFIED. 

OATAOUT 
FLOAT 

TCVNX rc 
TCLMH 

~ 
~ 

TCLMH 11 
2. READY IS SAMPLED NEAR THE END OFT2, T3 ANDTw TO DETERMINE IFTW MACHINE STATE8ARETO BE INSERTED. 

3. THE LOCAL BUS FLOATS ONLY IFTHE 8OB7 IS RETURNING CONTROL TO THE B068/B066. 

4. ALE RISES AT LATER OF (TSVLH, TCLLH). 

5. STATUS INACTIVE IN STATE JUST PRIOR TO T 4. 

6. SIGNALS AT B2B4A OR B2BB ARE SHOWN FOR REFERENCE ONLY. 

7. THE ISSUANCE OF B2BB COMMAND AND CONTROL SIGNALS (MRDc, MWi'C, AMWC AND DEN) LAGS THE ACTIVE HIGH B2BB CEN. 

B. ALL TIMING MEASUREMENTS ARE MADE AT 1.5V UNLESS OTHERWISE NOTED. 

S-103 
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WAVEFORMS (Continued) 

PASSIVE MODE T, T, 

ClK 

\ 
'-----

FLOAT 

I++---;~o-----;o-i TClDX 

AD,s-AD o 
FLOAT' 

READY ( 
IN~&~ 

RESET TIMING 

1"1 ~o------> 50 ~sec-:-----t 

VCC 

ClK 

RESET 

REQUEST/GRANTo TIMING 

ClK 

ROtGTO 

AO,s-ADo 

A'9/Se-A16/S3 
82,$1'50 

SHE/S7 

_t-'b~g:~ -0-
TClGl 

~ 

:;:::4 elK CYCLES 

CPU 

1_---- ~20 ClK CYClES-----I 

8087 TRACKS 
CPU ACTIVITY 

8087 READY TO 
EXECUTE INSTRUCTIONS 

NOTE: THE CPU PROVIDES ACTIVE PUllUP OF RQ/GTO. SEE TClGH SPEC. 
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WAVEFORMS (Continued) 

REQUEST/GRANT1 TIMING 

ClK 

AD,s-AD o 
A,·iS,-A,s/S3 
52,5,,50 

BHE/S7 (SEE NOTE) 

NOTE: ALTERNATE MASTER MAY NOT DRIVE THE BUSES OUTSIDE OF THE REGION 
SHOWN WITHOUT RISKING BUS CONTENTION. 

BUSY AND INTERRUPT TIMING 

ClK \'------~£f 
BUSY,INT ------

TCHBV ------
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Table 5. 8087 Extensions to the 8086/8088 Instruction Set (Continued) 

Arithmetic 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 

FADD = Addition 

Integer/Aeal Memory with ST(O) ESCAPE MF IMOD 0 0 RIM IDISP-LO) IDISP-HI) 

ST(i) and ST(O) ESCAPE d P 11 0 0 0 STII) 

FSUB " Subtraction 

IntegerlReal Memory with ST(O) ESCAPE MF IMOD 0 R RIM IDISP-LO) IDISP-HI) 

ST(i) and ST(O) ESCAPE d P 11 1 R RIM 

FMUL " Multiplication 

Integer/Real Memory with ST(O) ESCAPE MF o 1 MOD 0 1 RIM IDISP-LO) IDISP-HI) 

ST(i) and ST(O) ESCAPE d P 11 0 1 RIM 

FDIV = Division 

Integer/Aeal Memory with ST(O) ESCAPE MF 01 MOD R RIM IDISP-LO) IDISP-HI) 

ST(i) and ST(O} ESCAPE d P o 11 1 R RIM 

FSQRT = Square Root of ST(O) ESCAPE 1 11 1 1 1 0 0 
1 

FSCALE'" Scale SI(O) by ST(l) ESCAPE 11 1 1 1 0 1 
1 

FPREM " Partial Remainder of 
ST(OI ~ ST(l) 1 ESCAPE 0 0 1 11 1 1 1 0 0 0 

FRNDINT = Round ST(O} 
to Integer ESCAPE 0 0 1 11 1 1 1 0 0 

FXTRACT = Extract Components 
of ST(O) ESCAPE 11 1 0 

FABS " Absolute Value of ST(O) ESCAPE 0 0 1 11 1 0 0 0 0 1 
1 

FCHS =: Change Sign of ST(O) ESCAPE 111 1 0 0 0 
1 

Transcendental 

FPTAN =: Partial Tangent of ST(O) ESCAPE 0 0 111 1 0 0 1 0 1 

FPATAN = Partial Arctangent of 
ST(O) ~ ST(l) ESCAPE 0 0 111 1 1 0 1 1 I 

F2XM1 = 2 8T(0)_1 ESCAPE 0 0 111 1 

FYL2X = ST(l)' L092 [ST(O)] ESCAPE 11 1 0 1 1 

FYL2XP1 = ST(1)' L092 [ST(O) + 1J ESCAPE 0 0 1 11 0 0 1 I 

Constants 

FLOZ = LOAD + 0.0 into ST(O) ESCAPE 0 1 1 o 1 

FLD1 = LOAD + 1.0 into ST(O) ESCAPE 0 1 o I 
FLOPI = LOAD 11" into ST(O) ESCAPE 0 0 1 1 1 0 1 0 1 1 

1 

FLOL2T = LOAD 1092 10 into ST(O) ESCAPE 0 0 1 1 0 1 1 

FLOL2E = LOAD 1092 e into ST(O) ESCAPE 0 1 0 1 I 
FLDLG2 = LOAD 10910 2 into ST(O) ESCAPE 1 1 1 0 1 1 0 I 
FLOLN2 = LOAD 10ge 2 into ST(O) ESCAPE 0 1 1 

Mnemonics © Intel 1980 
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. Table 5 •. 8087 Extensions to the 8086/8088 Instruction Set (Continued) 

7 ·6 5 4 3 2 1 0 7 6 5 4 3 2 1 ·0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 

Processor Control 

FINIT = Initialize NDP ESCAPE 0 1 1 11 1 

FENI = Enable Interrupts ESCAPE 0 1 1 11 1 

FDISI '" Disable Interr~pts ESCAPE 0 1 1 11 1 

FLDCW = Load Control Word ESCAPE 0 0 1 I MOD 1 

FSTew = Store Control Word ESCAPE ·0 0 1 MOD 1 

FSTSW = Store Status Word ESCAPE 1 0 1 MOD 1 

FCLEX = Clear Exceptions ESCAPE 0 1 1 1 

FSTENY ::: Store Environment ESCAPE 0 1 MOD 1 

FLDENV = Load Environment ESCAPE 0 0 1 MOD 1 

FSAYE = Save State ESCAPE· 1 .0 1 MOD 1 

FASTOR = Restore State ESCAPE 1 0 1 MOD 1 

FINeSTP = Increment Stack Pointer ESCAPE 0 0 1 1 

FDECSTP = Decrement Stack Pointer I ESCAPE 0 1 1 

FFREE =" Free ST(i) ESCAPE 1 0 1 11 
FNOP = No Operation I ESCAPE 1 11 0 

FWAIT = CPU Wait for NDP 11 0 0 1 1 0 1 1 I 

FOOTNOTES: 

If mod = 00 then DISP = 0', disp-Iow and disp-high are absent 
If mod = 01 then DISP = disp-Iow sign-extended to 16-bits, 

dlsp-high Is absent' 
If mod = 10 then DISP= disp-hlgh; disp-Iow 
if mod = 11 then rIm is treated as an ST(I) field 

If rIm = 000 then EA = (BX) + (51) + DISP 
if rIm = 001 then EA = (BX) + (01) + DISP 
if rIm = 010 then EA = (BP) + (51) + DISP 
if rIm = 011 then EA = (BP) + (01) + DISP 
if rIm = 100 then EA = (51) + DISP 
if rIm = 101 then EA = (01) + DISP 
if rIm = 110 then EA = (BPl + DISP' 
if rIm = 111 then EA = (BX) + DISP 

'except if mod = 000 and rIm = 110 then EA = dlsp-high: disp-Iow. 

MF = Memory Format 
00 - 32-bit Real 
01 - 32-bit Integer 
10 - 64-bit Real 
11 - 16-bit Integer 

Mnemonics ©·lnteI1980 

0 0 0 1 1 

0 0 0 0 0 

0 0 0 0 1 

0 1 RIM (DISP-LO) (DISP-HI) 

1 1 .,R/M (DISP-LO) (DISP-HI) 

1 1 ··H/M (DISP-LO) (DISP-HI) 

0 0 0 1 0 

1 0 RIM (DISP-LO) (DISP-HI) 

0 0 RIM (DISP-LO) (DISP-HI) 

1 0 RIM (DISP-LO) (DISP-HI) 

o . 0 RIM (DISP-LO) (DISP-HI) 

1 

1 

0 

1 

0 1 1 

0 1 1 

0 ·ST(i) 

0 0 O· 

ST(O) = 
ST(i) = 

d= 

P= 

R= 

1 

0 

0 

Current stack top 
Ith register beloY\' stack top 

Destination 
o -Destination is ST(O) 
1 - Destination is ST(i) 

Pop 
0- No pop 
1 - Pop ST(O) 

Reverse: When d = 1 reverse the sense of R 
o - Destination (op) Source 
1 - Source (op) Destination 

For FSQRT: -0:5 8T(0) :5 +'" 
For FSCALE: 
For F2XM1: 
For FYL2X: 

For FYL2XP1: 

For FPTAN: 
For FPATAN: 

_2 15 $ ST(ll < +2'5 and ST(ll integer 
0:5 8T(0) :5 2-1 

0.< 8T(0) < '" 
-"'< 8T(1) < + '" 
o "'18T(O)l < (2 -' ..;2)/2 
-co < ST(1) < co 

o '" ST(O) < nl4 
Os ST(O) < ST(1) < +co 

I 
I 

I 
I 
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APPENDIX A 
MACHINE INSTRUCTION ENCODING 

AND DECODING . 

8087 machine instructions assume one of five 
different forms as shown in table A-I. In all 
cases, the instructions are at least two bytes long 
and begin with the bit pattern 110118, which 
identifies the escape class of instructions. Instruc­
tions which reference memory operands are 
encoded much like similar CPU instructions, 
since the CPU must calculate the operands effec­
tive address from the information contained in 
the instruction. Section 4.2 discusses this 

encoding scheme in more detail, and in particular, 
shows how each memory addressing mode is 
encoded. 

(1) 

(2) 

(3) 

(4) 

(5) 

Note that all instructions (except those coded with 
a "no-wait" mnemonic) are preceded by an 
assembler-generated CPU WAIT instruction 
(encoding: 100110118). Segment override 
prefixes may also precede 8087 instructions in the 
instruction stream. 

Table A-I. Instruction Encoding 

Lower-addressed Byte Higher-addressed Byte 
~ 

O,1,o~ 
.~-

2
r
bytes 

1 1 0 1 1 OP-A 1 MOD 1 OP-S RIM DISPLA9 ~MENT 
J J 

1 1 0 1 1 FORMAT OP-A MOD OP-S RIM DISPLAC EMENT 

1 0 OP-A 1 REG 
J 

1 1 1 R P 1 OP-S 

1 1 0 1 1 0 0 1 1 1 1 OP 

1 1 0 1 1 0 1 1 1 1 1 OP 

7 6 5 4 3 2 0765432 o 

(1)Memory transfers, including applicable processor control instructions; 0, 1, or 2 displacement bytes may 
follow. 

(2)Memory arithmetic and compilrison instructions; 0, 1, or 2 displacement bytes may follow. 

(3)Stack arithmetic and comparison instructions. 

(4)Constant, transcendental, some arithmetic instructions. 

(5)Processor control instructions that do not reference memory. 

OP, OP-A, OP-S: Instruction opcode, possibly split into two fields. 

MOD: Same as CPU mode field; see table 4-8. 

RIM: Sames as CPU registerlmemory field; see table 4-10. 
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MACHINE INSTRUCTION ENCODING AND DECODING 

Table A-I. Instruction Encoding (Cont'd.) 

FORMAT: Defines memory operand 
00 = short real 
01 = short integer 
10 = long real 
11 = word integer 

R: 0 = return result to stack top 
1 = return result to other register 

P: 0 = do not pop stack 
1 = pop stack after operation 

REG: register stack element 
000 = stack top 
001 = next on stack 
010 = third stack element, etc. 

Table A-2 lists all 8087 machine instructions in 
binary sequence. This table may be used to 
"disassemble" instructions in unformatted 
memory dumps or instructions monitored from 

the data bus. Users writing exception handlers 
may also find this information useful to identify 
the offending instruction. 

Table A-2. Machine Instruction Decoding Guide 

1st Byte 
2nd Byte Bytes 3, 4 

ASM-86 Instruction 

Hex Binary Format 

08 1101 1000 MOOOO OR/M (disp-Io),(disp-hi) FADO short-real 
08 1101 1000 MOOOO 1R/M (disp-Io),(disp-hi) FMUL short-real 
08 1101 1000 MOO01 OR/M (disp-Io),(disp-hl) FCOM short-real 
08 1101 1000 MOO01 1R/M (disp-Io),(dlsp-hi) FCOMP short-real 
08 1101 1000 M0010 OR/M (disp-Io),(disp-hi) F5UB short-real 
08 1101 1000 M0010 1R/M (dlsp-Io),(dlsp-hl) F5UBR short-real 
08 1101 1000 M0011 OR/M (disp-Io),(disp-hl) FOIV short-real 
08 1101 1000 M0011 1R/M (dlsp-Io),(dlsp-hl) FOIVR short-real 
08 1101 1000 1100 OREG FAOO 5T,5T(I) 
08 1101 1000 1100 1REG FMUL 5T,5T(i) 
08 1101 1000 1101 OREG FCOM ,5T(I) 
08 1101 1000 1101 1REG FCOMP 5T(i) 
08 1101 1000 1110 OREG F5UB .5T,5T(i) 
08 1101 1000 1110 1REG F5UBR 5T,5T(I) 
08 1101 1000 1111 OREG FOIV . 5T,5T(I) 
08 1101 1000 .1111 1REG FOIVR 5T,5T(I) 
09 1101 1001 MODOO OR/M (disp-Io),(dlsp-hi) FLO . short-real 
09 1101 1001 "·MOOOO 1R/M reserved 
09 1101 1001 M.OO01 OR/M (dlsp-Io),(dlsp-hi) F5T short-real 
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MACHINE INSTRUCTION ENCODING AND DECODING 

Table A-2. Machine Instruction Decoding Guide (Cont'd.) 

1st Byte ASM-86 Instruction 

Hex Binary 
2nd Byte Bytes 3,4 

Format 

09 1101 1001 MOO01 1R/M (disp-Io),(disp-hi) FSTP short-real 
09 1101 1001 M0010 OR/M (disp-Io),(disp-h i) FLOENV 14-bytes 
09 1101 1001 M0010 1R/M (disp-Io),(disp-hi) FLOCW 2-bytes 
09 1101 1001 M0011 OR/M (disp-Io),(disp-hi) FSTENV 14-bytes 
09 1101 1001 M0011 1R/M (disp-Io):(disp-hi) FSTCW 2-bytes 
09 1101 1001 1100 OREG FLO ST(i) 
09 1101 1001 1100 1REG FXCH ST(i) 
09 1101 1001 1101 0000 FNOP 
09 1101 1001 1101 ·0001 reserved 
09 1101 1001 1101 001- reserved 
09 1101 1001 1101 01-- reserved 
09 1101 1001 1101 1REG *(1 ) 
09 1101 1001 1110 0000 FCHS 
09 1101 1001 1110 0001 FABS 
09 1101 1001 1110 001- reserved 
09 1101 1001 1110 0100 FTST 
09 1101 1001 1110 0101 FXAM 
09 1101 1001 1110 011- reserved 
09 1101 1001 1110 1000 FL01 
09 1101 1001 1110 1001 FLOL2T 
09 1101 1001 1110 1010 FLOL2E 
09 1101 1001 1110 1011 FLOPI 
09 1101 1001 1110 1100 FLOLG2 
09 1101 1001 1110 1101 FLOLN2 
09 1101 1001 1110 1110 FLOZ 
09 1101 1001 1110 1111 reserved 
09 1101 1001 1111 0000 F2XM1 
09 1101 1001 1111 0001 FYL2X 
09 1101 1001 1111 0010 FPTAN 
09 1101 1001 1111 0011 FPATAN 
09 1101 1001 1111 0100 FXTRACT 
09 1101 1001 1111 0101 reserved 
09 1101 1001 1111 0110 FDECSTP 
09 1101 1001 1111 0111 FINCSTP 
09 1101 1001 1111 1000 FPREM 
09 1101 1001 1111 1001 FYL2XP1 
09 1101 1001 1111 1010 FSQRT 
09 1101 1001 1111 1011 reserved 
09 1101 1001 1111 1100 FRNOINT 
09 1101 1001 1111 1101 FSCALE 
09 1101 1001 1111 111- reserved 
OA 1101 1010 MOOOO OR/M (disp-Io),(d isp-hi) FIAOO short-integer 
OA 1101 1010 MODOO 1R/M (disp-Io),(d isp-hi) FIMUL short-integer 
DA 1101 1010 MOO01 OR/M (disp-Io),(disp-hi) FICOM short-integer 
OA 1101 1010 MOO01 1R/M (disp-Io),(disp-hi) FICOMP short-integer 
OA 1101 1010 M0010 OR/M (disp-Io),(disp-hi) FISUB short-integer 
OA 1101 1010 M0010 1R/M (disp-Io),(disp-hi) FISUBR short-integer 
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MACHINE INSTRUCTION ENCODING AND DECODING 

Table A-2. Machine Instruction Decoding Guide (Cont'd.) 

, 1st Byte 
2nd Byte Bytes 3,4 

ASM-86 Instruction 

Hex Binary Format 

DA 1101 1010 MOD11 OR/M (disp-Io),(disp-hi) FIDIV short-integer 
DA 1101 1010 MOD11 1R/M (d isp-Io),(disp-hi) FIDIVR shorHnteger 
DA 1101 1010 11-- ---- reserved 
DB 1101 1011 MODOO OR/M (disp-Io) ,(disp-hi) FILD short-integer 
DB. 1101 1011 MODOO 1R/M (d isp-Io) ,(disp-hi) reserved 
DB 1101 1011 MOD01 OR/M (d isp-Io) ,(d isp-hi) FIST short-integer 
DB 1101 1011 MOD01 1R/M (d isp-Io),(d isp-hi) FISTP short-integer 
DB 1101 1011 MOD10 OR/M (d isp-Io), (disp-hi) reserved 
DB 1101 1011 MOD10 1R/M (d isp-Io),(d isp-hi) FLD temp-real 
DB 1101 1011 MOD11 OR/M (d isp-Io),(disp-hi) reserved 
DB 1101 1011 MOD11 1R/M (d isp-Io), (disp-h i) FSTP temp-real 
DB 1101 1011 110- ---- reserved 
DB 1101 1011 1110 0000 FENI 
DB 1101 1011 1110 0001 FDISI 
DB 1101 1011 1110 0010 FCLEX 
DB 1101 1011 1110 0011 FINIT 
DB 1101 1011 1110 01-- reserved 
DB 1101 1011 1110 1--- reserved 
DB 1101 1011 1111 ---- reserved 
DC 1101 1100 MODOO OR/M (disp-Io), (d isp-hi) FADD long-real 
DC 1101 1100 MODOO 1R/M (d isp-Io) ,(disp-h i) FMUL long-real 
DC 1101 1100 MOD01 OR/M (disp-Io),(d isp-h i) FCOM long-real 
DC 1101 1100 MOD01 1R/M (d isp-Io), (d isp-h i) FCOMP long-real 
DC 1101 1100 MOD10 OR/M (disp-Io),(disp-hi) FSUB long-real 
DC 1101 1100 MOD10 1R/M (disp-Io) ,(d isp-h i) FSUBR long-real 
DC 1101 1100 MOD11 OR/M (disp-Io),(d isp-h i) FDIV long-real 
DC 1101 1100 MOD11 1R/M (disp-Io),(disp-hi) FDIVR long-real 
DC 1101 1100 1100 OREG FADD ST(i),ST 
DC 1101 1100 1100 1REG FMUL ST(i),ST 
DC 1101 1100 1101 OREG *(2) 
DC 1101 1100 1101 1REG *(3) 
DC 1101 1100 1110 OREG FSUB ST(i),ST 
DC 1101 1100 1110 1REG FSUBR ST(i),ST 
DC 1101 1100 1111 OREG FDIV ST(i),ST 
DC 1101 1100 1111 1REG FDIVR ST(i),ST 
DD 1101 1101 MODOO OR/M (disp-Io), (disp-hi) FLD long-real 
DD 1101 1101 MODOO 1R/M reserved 
DD 1101 1101 MOD01 OR/M (disp-Io),(d isp-hi) FST long-real 
DD 1101 1101 MOD01 1R/M (disp-Io), (disp-hi) FSTP long-real 
DD 1101 1101 MOD10 OR/M (disp-Io),(disp-hi) FRSTOR 94-bytes 
DD 1101 1101 MOD10 1R/M (disp-Io),(disp-hi) reserved 
DD 1101 1101 MOD11 OR/M (disp-Io),(disp-hi) FSAVE 94-bytes 
DD 1101 1101 MOD11 1R/M (disp-Io),(disp-hi) FSTSW 2-bytes 
DD 1101 1101 1100 OREG FFREE ST(i) 
DD 1101 1101 1100 1REG *(4) 
DD 1101 1101 1101 OREG FST ST(i) 
DD 1101 1101 1101 1REG FSTP ST(i) 
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MACHINE INSTRUCTION ENCODING AND DECODING 

Table A-2. Machine Instruction Decoding Guide (Cont'd.) 

1st Byte 
2nd Byte Bytes 3,4 

ASM-86 Instruction 

Hex Binary Format 

DD 1101 1101 111- ---- reserved 
DE 1101 1110 MODOO OR/M (disp-Io),(disp-hi) FIADD word-integer 
DE 1101 1110 MODOO 1R/M (disp-Io),(disp-hi) FIMUL word-integer 
DE 1101 1110 MOD01 OR/M (disp-Io),(disp-hi) FICOM word-integer 
DE 1101 1110 MOD01 1R/M (disp-Io),(disp-hi) FICOMP word-integer 
DE 1101 1110 MOD10 OR/M (disp-Io),(disp-hi) FISUB word-integer 
DE 1101 1110 MOD10 1R/M (disp-Io),(disp-hi) FISUBR word-integer 
DE 1101 1110 MOD11 OR/M (disp-Io),(disp-hi) FIDIV word-integer 
DE 1101 1110 MOD11 1R/M (disp-Io),(disp-hi) FIDIVR word-integer 
DE 1101 1110 1100 OREG FADDP ST(i),ST 
DE 1101 1110 1100 1REG FMULP ST(i),ST 
DE 1101 1110 1101 0--- *(5) 
DE 1101 1110 1101 1000 reserved 
DE 1101 1110 1101 1001 FCOMPP 
DE 1101 1110 1101 101- reserved 
DE 1101 1110 1101 11-- reserved 
DE 1101 1110 1110 OREG FSUBP ST(i),ST 
DE 1101 1110 1110 1REG FSUBRP ST(i),ST 
DE 1101 1110 1111 OREG FDIVP ST(i),ST 
DE 1101 1110 1111 1REG FDIVRP ST(i),ST 
DF 1101 1111 MODOO OR/M (disp-Io),(d isp-h i) FILD word-integer 
DF 1101 1111 MODOO 1R/M (disp-Io),(d isp-h i) reserved 
DF 1101 1111 MOD01 OR/M (disp-Io),(disp-hi) FIST word-integer 
DF 1101 1111 MOD01 1R/M (disp-Io ),(d isp-hi) FISTP word-integer 
DF 1101 1111 MOD10 OR/M (disp-Io),(disp-hi) FBLD packed-decimal 
DF 1101 1111 MOD10 1R1M (disp-Io), (d isp-h i) FILD long-integer 
DF 1101 1111 MOD11 OR/M (disp-Io),(disp-hi) FBSTP packed-decimal 
DF 1101 1111 MOD11 1R/M (disp-Io),(disp-hi) FISTP long-integer 
DF 1101 1111 1100 OREG *(6) 
DF 1101 1111 1100 1REG *(7) 
DF 1101 1111 1101 OREG *(8) 
DF 1101 1111 1101 1REG *(9) 
DF 1101 1111 111- ---- reserved 

* The marked enco~ings are not generated by the language translators. If, however, the 8087 
encounters one one these encodings in the instruction stream, it will execute it as follows: 

(1) FSTP ST(i) 

(2) FCOM ST(i) 

(3) FCOMP ST(i) 

(4) FXCH ST(i) 

(5) FCOMP ST(i) 

(6) FFREE ST(i) and pop stack 

(7) FXCH ST(i) 

(8) FSTP ST(i) 

(9) FSTP ST(i) 
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inter 
3065 Bowors Avenue 
Sanla Clara, California 95051 
Tel: (408) 987·8080 
TWX: 910·338·0026 
TelEX: 34·6372 

ALABAMA 

Intol Corp. 
303 Williams Avenue. S.w. 
Suite 1422 
Huntsville 35801 
Tal: (205) 533·9353 

ARIZONA 

Intol Corp. 
10210 N. 25th Avenue, Suite 11 
Phoenix 65021 
Tel: (602) 669·4980 

CALIFORNIA 
Inial Corp. 
7670 Opportunity Rd. 
Suila 135 
San Diego 92111 
Tel: (714) 268·3563 

Intel Corp.' 
2000 East 4th Street 
Suile 100 
Santa Ana 92705 
Tel: (714) 635·9642 
TWX: 910·595·1114 
Intel Corp," 
5530 Corbin Ava. 
Suita 120 
Tarzana 91356 
Tel: (213) 708-0333 
TWX: 910·495·2045 
Intel Corp," 
3375 Scott Blvd. 
Santa Clara 95051 
Tel: (408) 987·808e 
TWX: 910·339·9279 
910-338-0255 

Earle Associates, Inc. 
4617 Ruffner Street 
Suite 202 
San Diego 92111 
Tel: (714) 278·5441 

Mac·1 
2576 Shatluck Ave. 
Suile 4B 
Berkeley, CA 94704 

Mac·1 
558 Valley Way 
Calaveras Business Park 
Milpitas 95035 
Tel: (408) 946·8885 

Mac·1 
P.O. Box 8763 
Fountain Valley 92708 
Tel: (714) 839·3341 

Mac·1 
25 Village Parkway 
Santa Monica 90409 
Tel: (213) 452·7611 

Mac·1 
20121 Ventura Blvd., Suile 240E 
Woodland Hills 91364 
Tel: (213) 347·5900 

COLORADO 
Intel Corp." 
650 S. Cherry Street 
SUite 720 
Denver 60222 
TeJ: (303) 321·8086 
TWX: 910·931·2289 

CONNECTICUT 

Intel Corp. 
36 Padanaram Road 
Danbury 06810 
Tel: (203) 792·8368 
TWX: 710·456·1199 

EMC Corp. 
48 Purnell Place 
Manchester 06040 
Tel: (203) 846·8085 

U.S. AND CANADIAN SALES OFFICES 

FLORIDA 

Intel Corp. 
1500 N.W. 62nd Street, Suite t04 
FI. Lauderdale 33309 
Tel: (305) 771·0600 
TWX: 510·958·9407 

Intel Corp. 
600 N. Mailland, Suite 205 
Maitland 32761 
Tel: (305) 828·2393 
TWX: 810·853·9219 

GEORGIA 
Intel Corp. 
3300 Holcomb Bridge Rd. 
Norcr08S 30092 
Tel: (404) 449·0541 

ILLINOIS 

Intel Corp." 
2550 Golf Road, Suite 815 
Rolling Mesdows 60008 
Tel: (312) 981·7200 
TWX: 910·651·5881 

INDIANA 
Intel Corp. 
9101 Wesleyan Road 
Suite 204 
Indianapolis 46268 
Tel: (317) 875·0623 

IOWA 

Inlel Corp. 
S!. Andrews Building 
1930 SI. Andrews Drive N.E. 
Cedar Rapids 52402 
Tel: (319) 393·5510 

KANSAS 
Intel Corp. 
9393 W. 110th St., Ste. 265 
Overland Park 66210 
Tel: (913) 642·8080 

MARYLAND 

Inlel Corp." 
7257 Parkway Drive 
Hanover 21076 
Tel: (301) 796·7500 
TWX: 710·862·1944 

MASSACHUSETTS 
Intel Corp.' 
27 Industrial Ave. 
Chelmsford 01824 
Tel: (617) 256·1800 
TWX: 710·343·6333 

EMC Corp. 
381 Elliot Street 
Newton 02164 
Tel: (617) 244·4740 
TWX: 922531 

MICHIGAN 

Intel Corp.' 
26500 Northwestern Hwy. 
Suite 401 
Southfield 48075 
Tel: (313) 353·0920 
TWX: 610·244·4915 

MINNESOTA 
Intel Corp. 
7401 Metro Blvd. 
Suite 355 
Edina 55435 
Tel: (612),835·6722 
TWX: 910·576·2867 

MISSOURI 
Intel Corp. 
502 Earth City Plaza 
Suite 121 
Earth City 63045 
Tel: (314) 291-1990 

NEW JERSEY 

Intel Corp.' 
Raritan Plaza 
2nd Floor 
Raritan Center 
Edison 08837 
Tel: (201) 225·3000 
TWX: 710·480·6238 
M. T.I. 
383 Route 46 Weat 
Fairfield, NJ 07006 

NEW MEXICO 

BFA Corporation 
P.O. Box 1237 
Las Cruces 88001 
Tel: (505) 523·0601 
TWX: 910·983·0543 

BFA Corporation 
3705 Westerfield, N.E. 
Albuquerque 87111 
Tel: (505) 292·1212 
TWX: 910·989·1157 

NEW YORK 
Intel Corp.' 
300 Molar Pkwy. 
Hauppauge 11767 
Tel: (516) 231·3300 
TWX: 510·227·6236 
Intel Corp. 
80 Washington St. 
Poughkeepsie 12601 
Tel: (914) 473-2303 
TWX: 510·248-0060 

Intel Corp.' 
2255 Lyell Avenue 
Lower Floor East Suite 
Rochesler 14606 
Tel: (716) 254·6120 
TWX: 510·253·7391 
T·Squared 
4054 Newcourt Avenue 
Syracuse 13206 
Tel: (315) 463-8592 
TWX: 710·541·0554 
T·Squared 
7353 Pittsburgh 
Victor Road 
Victor 14564 
Tel: (716) 924·9101 
TWX: 510·254·8542 

NORTH CAROLINA 

Intel Corp. 
2306 W. Meadowview Rd. 
Suite 206 
Greensboro 27407 
Tel: (919) 294·1541 

OHIO 
Inlel Corp.' 
6500 Poe Avenue 
Dayton 45414 
Tel: (513) 890-5350 
TWX: 810'450-2526 

Intel Corp.' 
Chagrin' Brainard Bldg .• No. 300 
26001 Chagrin Blvd. 
Cleveland 44122 
Tel: (216) 464-2736 
TWX: 610·427·9298 

OREGON 

Intel Corp. 
10700 S.W. Beaverton 
Hillsdale Highway 
Suite 324 
Beaverton 97005 
Tel: (503) 641·8066 
TWX: 910-467-8741 

PENNSYLVANIA 
Inlel Corp.' 
510 Pennsylvania Avenue 
Fort Washington 19034 
Tel: (215) 641-1000 
TWX: 510-661,2077 

Intel Corp.' 
201 Penn Cenler Boulevard 
Suite 301W 
Pittsburgh 15235 
Tel: (412) 823·4970 
Q.E.D. Electronics 
300 N. York Road 
Hatboro 19040 
Tel: (215) 674·9600 

TEXAS 
Intel Corp.' 
2925 L.B.J. Freeway 
Suite 175 
Dallas 75234 
Tel: (214) 241·9521 
TWX: 910·860·5617 

Intel Corp.' 
6420 Richmond Ave. 
Suite 280 
Houston 77057 
Tel: (713) 784·3400 
TWX: 910·881·2490 
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Industrial Digital SyslemS Corp. 
5925 Sovereign 
Suite 101 
Houston 77036 
Tel: (713) 988-9421 

Inlel Corp. 
313 E. Anderson Lane 
Suita 314 
Austin 78752 
Tel: (512) 454·3628 

UTAH 
Intal Corp. (temporary) 
3519 Lexington Dr. 
Bountiful, UT 84010 
Tel: (801) 292·2164 

VIRGINIA 

Intel Corp. 
1501 Santa Rosa Road 
Suite C-7 
Richmond, VA 23288 
Tel: (804) 282-5668 

WASHINGTON 

Intel Corp. 
Suite 114, Bldg. 3 
1603 116th Ave. N.E. 
Bellevue 98005 
Tel: (206) 453·8066 
TWX: 910·443·3002 

WISCONSIN 
Intel Corp. 
150 S. Sunnyslope Rd. 
Brookfield 53005 
Tel: (414) 784·9060 

CANADA 
Inial Semiconductor Corp .• 
Suite 233, Bell Mews 
39 Highway 7, Belts Corners 
Ottawa. Ontario K2H 8R2 
Tel: (613) 829·9714 
TELEX: 053·4115 

Intel Semiconductor Corp. 
50 Galaxy Blvd. 
Unit 12 
Aexdale, Ontario 
M9W 4Y5 
Tel: (416) 675-2105 
TELEX: 06963574 
Multllek, Inc." 
15 Grenfell Crescent 
Ottawa, Ontario K2G OG3 
Tel: (613) 226·2365 
TELEX: 053-4565 
Multilak, Inc.' 
Toronlo 
Tel: 1·800·267-1070 

Multilek.lnc. 
Monlreal 
Tal: 1·800·267·1070 

'Field Application Location 



3065 Bowers Avenue 
Santa Clara, Celifornia 95051 
Tel: (408) 987·8080 
TWX: 910·338·0026 
TELEX: 34·6372 

ALABAMA 
Arrow Electronics 
4717 University Dr. 
Suite 102 1/2 D. 
Huntsville 35405 
Tel: (205) 830·1103 

tHemiltonl Avnet Electronics 
4812 Commercial Drive N.W. 
Huntsville 35805 
Tel: (205) 837·7210 
TWX: 810·726·2162 
tPioneer / Huntsville 
1207 Putnam Drive N.W. 
Huntsville 35805 . 
Tel: (205) 837·9300 
TWX: 810·726·2197 

ARIZONA 
tHemilton/ Avne! Electronics 
505 S. Madison Drive 
Tempe, AZ 85281 
Tel: (602) 231·5140 
TWX: 910·950·0077 
tWyle Distribution Group 
8155 N. 24th Streat 
Phoenix 85021 
Tel: (602) 995·9185 
TWX: 910·951·4282 

CALIFORNIA 
Arrow Electronics, Inc. 
521 Weddell Dr. 
Sunnyvale 94086 
Tel: (408) 745·6600 
TWX: 910·339·9371 
tAvne! Electronics 
350 McCormick Avenue 
Costa Mesa 92626 
Tel: (714) 754·6051 
TWX: 910·595·1928 
Hamilton/ Avnet Electronics 
1175 Bordeaux Dr. 
Sunnyvale 94086 
Tel: (408) 743·3300 
TWX: 910·339·9332 
tHemilton/ Avnet Electronica 
4545 Viewridge Ave 
San Diego 92123 
Tel: (714) 563-1969 
TWX: 910·335·1216 
tHamillonl Avne! Electronics 
10912 W. Washington Blvd. 
Culver City 90230 
Tel: (213) 558·2193 
TWX: 910·340·6364 or 7073 
tHemilton Electro Sales 
3170 Pullman Street 
Costa Mesa 92626 
Tel: (714) 641·4109 
TWX: 910·595·2638 
tWyle Distribution Group 

~~~~~~~~~n~o~~;et 
Tel:,1(213) 322-8100 
TWX: 910·348·7140 or 7111 

~~l~ec~:~~~~~~~ g~~uP 
San Diego 92123 
Tel: (714) 565·9171 
TWX: 910·335-1590 
tWyle Distribution Group 
3000 Bowers Avenue 
Santa Clara 95052 
Tel: (408) 727-2500 
TWX: 910-338-0451 or 0296 
Wyle Distribution Group 
17872 Cowan Avenue 
Irvine 92713 
Tel: (714) 641-1600 
TWX: 910·595·1572 

COLORADO 
tWyle Distribution Group 
451 E 124th Avenue 
Thornton, CO 80241 
Tel: (303) 457·9953 
TWX: 910-936-0770 

tHamilion / Avnet Electronics 
8765 E. Orchard Road 
Suite 708 
Englewood 80111 
Tel: (303) 740-1017 
TWX: 910-935·0787 

U.S. AND CANADIAN DISTRIBUTORS 

CONNECTICUT 
tArrow Electonics 
12 Beaumont Road 
Wallingford 06512 
Tel: (203) 265·7741 
TWX: 710·476·0162 
tHamiltonl Avnet Electronics 
Commerce Industrial Park 
Commerce Drive 
Danbury 06810 
Tel: (203) 797·2800 
TWX: 710-456·9974 
tHarvey Electronics 
112 Main Street 
Norwalk 06851 
Tel: (203) 853·1515 
TWX: 710·468·3373 

FLORIDA 
t Arrow Electronics 
1001 N.W. 62nd Street 
Suite 108 
Ft. Lauderdale 33309 
Tel: (305) 776·7790 
TWX: 510·955·9456 
t Arrow Electronics 
115 Palm Bay Road, N.W. 
Suite 10, Bldg. 200 
Palm Bay 32905 
Tel: (305) 725-1480 
TWX: 510·959·6337 
tHamilion / Avnet Electronics 
6800 Northwest 20th Ave. 
FI. Lauderdale 33309 
Tel: (305) 971·2900 
TWX: 510·956,3097 
Hamilton I Avnet Electronics 
3197 Tech. Drive North 
St. Petersburg 33702 
Tel: (813) 576·3930 
TWX: 810·863·0374 
tPioneerlOrlando 
6220 S. Orange Blossom Trail 
Suite 412 
Orlando 32809 
Tel: (305) 859·3600 
TWX: 810·850·0177 

GEORGIA 
Arrow Electronics 
2979 Pacific Drive 
Norcross 30071 
Tel: (404) 449·8252 
TWX: 810·766·0439 
tHamiltonl Avnet Electronics 
5825 D. Peachtree Corners 
Norcross 30092 
Tel: (404) 447·7500 
TWX: 810·766·0432 
Pioneer I Georgia 
5835 8 Peachtree Corners E 
Norcross 30092 
Tel: (404) 448·1711 
TWX: 810·766·4515 

ILLINOIS 
Arrow Electronics 
492 Lunt Avenue 
P.O. Box 94248 
Schaumburg 60172 
Tel: (312) 893·9420 
TWX: 910·291·3544 
tHamiitonl Avnet Electronics 
3901 No. 25th Avenue 
Schiller Park 60176 
Tel: (312) 678·6310 
TWX: 910·227,0060 
Pioneer/Chicago 
1551 Carmen Drive 
Elk Grove 60007 
Tel: (312) 437·9680 
TWX: 910·222'1834 

INDIANA 
Arrow Electronics 
2718 Rand Road 
Indianapolis 46241 
(317) 243·9353 
TWX: 810·341·3119 
tHamilton/ Avnet Electronics 
485 Gradle Drive 
Carmel 46032 
Tel: (317) 844·9333 
TWX: 810·260·3966 

INDIANA (Cont.) 
Pioneer /Indiana 
6408 Castleplace Drive 
Indianapolis 46250 
Tel: (317) 849·7300 
TWX: 810·260·1794 

KANSAS 
tHamillon I Avne! Electronics 
9219 Quivera Road 
Overland Park 66215 
Tel: (913) 888·8900 
TWX: 910-743·0005 
tComponent Speclalllea, Inc. 
8369 Nieman Road 
lenexa 66214 
Tel: (913) 492·3555 

MARYLAND 
tHamiJtonl Avnet Electronics 
6822 Oak Hall Lane 
Columbia, MD 21045 
Tel: (301) 995·3500 
TWX: 710·862-1861 
Mesa 
16021 Industrial Dr. 
Gaithersburg 20760 
Tel: (301) 948,4350 
tPioneer /Washington 
9100 Gaither Road 
Gaithersburg 20760 
Tel: (301) 948·0710 

, TWX: 710·828,0545 

MASSACHUSETTS 
tHamiltonl Avnet Electronics· 
50 Tower Office Park 
Woburn 01801 
Tel: (617) 935·9700 
TWX: 710·393·0382 
tArrow Electronics 
Arrow Dr. 
Woburn 01801 
Tel: (617) 933·8130 
TWX: 710·393·6770 
Harvey / 80slon 
44 Hartwell Ave. 
Lexington 02173 
Tel: (617) 863,1200 
TWX: 710·326·6617 

MICHIGAN 
t Arrow Electronics 
3810 Varsity Drive 
Ann Arbor 48104 
Tel: (313) 971·8220 
TWX: 810·223·6020 
tPioneer/Michigan 
13485 Stamford 
Livonia 48150 
Tel: (313) 525-1800 
TWX: 810-242·3271 
tHamilton / Avnet Electronics 
32487 SchOOlcraft Road 
Livonia 48150 
Tel: (313) 522-4700 
TWX: 810-242'8775 

MINNESOTA 
tArrow Electronics 
5230 W. 73rd Street 
Edina 55435 
Tel: (612) 830·1800 
TWX: 910·576·3125 
tlndustrial Components 
5229 Edina Induatrial Blvd. 
MinneapOlis 55435 
Tel: (612) 831-2666 
TWX: 910·576·3153 
Hamiltonl Avnet Electronics 
10300 Bren Ad. East 
Minnetonka 55343 
Tel: (612) 932·0666 
TWX: (910) 576·2720 
tHamiltonl Avnet Electronics 
7449 Cahill Road 
Edina 55435 
Tel: (612) 941-3801 
TWX: 910·576,2720 

MISSOURI 
tArrow Electronics 
2380 Schuetz 
St. Louis, MO 63141 
Tel: (314) 567·6888 
tHamilton/ Avnet Electronics 
13743 Shorline Ct. 
Earth City 63045 
Tel: (314) 344·1200 
TWX: 910·762·0684 

NEW HAMPSHIRE 
t Arrow Electronics 
1 Perimeter Drive 
Manchester 03103 
Tel: (603) 668·6968 
TWX: 710·220'1664 

NEW JERSEY 
tArrow Electronics 
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Pleesant Valley Avenue 
Moorestown 08057 
Tel: (215) 928·1800 
TWX: 710·897·0829 
tArrow Electronics 
265 Midland AVenue 
Saddle Brook 07662 
Tel: (201) 797·5800 
TWX: 710·998·2206 
tHamilton/ Avnet Electronics 
1 Keystone Ave. 
Bldg. 38 
Cherry Hill 08003 
Tel: (609) 424·0100 
TWX: 710·940·0262 
Hamilton/ Avnet Electronics 
10 Industrial Road 
Fairfield 07006 
Tel: (201) 575·3390 
TWX: 710·734·4388 
tHarvey Electronics 
45 Route 46 
Pinebrook 07058 
Tel: (201) 227-1262 
TWX: 710-734'4382 
Measurement Technology Sales Corp'., 
383 Route 46 W 
Fairfield, NJ 07006 
Tel: (201) 227·5552 

NEW MEXICO 
tAliiance Electronics Inc. 
11030 Cochiti S.E. 
Albuquerque 87123 
Tel: (505) 292·3360 
TWX: 910·989'1151 
tHamilton/ Avnet Electronics 
2524 Baylor Drive S.E. 
Albuquerque 87119 
Tel: (505) 765·1500 
TWX: 910-989'0614 

NEW YORK 
tArrow Electronics 
900 Broad Hollow Rd, 
Farmingdale, NY 11735 
Tet: (516) 694·6800 
TWX: 510·224·6494 
tArrow Electronics 
3000 South Winton Road 
Rochester 14623 
Tel: (716) 275·0300 
TWX: 510·253·4766 
t Arrow Electronics 
7705 Maltage Drive 
Liverpool 13068 
Tel: (315) 652·1000 
TWX: 710·545,0230 
Arrow Electronics 
20 Oser Avenue 
Hauppauge 11787 
Tel: (516) 231·1000 
TWX: 510·227·6623 
tHamilton / Avnet Electronics 
333 Metro Park 
Rochester 14623 
Tel: (716) 475·9130 
TWX: 510·253·5470 
tHamittonl Avnet Electronics 
16 Corporate Circle 
E. Syracuse 13057 
Tel: (315) 437·2641 
TWX: 710·541·1560 
tHamilton I Avnet Electronics 
5 Hub Drive 
Melville, Long Island 11746 
Tel: (516) 454·6000 
TWX: 510·224·6166 
Harvey Electronics 
P.O. Box 1208 
Binghampton 13902 
Tel: (607) 748·8211 
TWX: 510·252·0893 

tMicrocomputer System Technical Demonstrator Centers 



intJ 
3065 Bowers Avenue 
Santa Clara, California 95051 
Tel: (408) 987·8080 
TWX: 910·338·0026 
TELEX: 34·6372 

NEW YORK (Cont.) 
tHarvey Electronics 
60 Crossways Park Wesl 
Woodbury, Long Island 11797 
Tel: (516) 921·8920 
TWX: 510·221·2184 
Harvey IRochester 
840 Fairport Park 
Fairport 14450 
Tel: (716) 381·7070 
TWX: 510·253-7001 

Measurement Technology Salos Corp. 
169 Northern Blvd 
Grealneck 11021 
Tel: (516) 482·3500 
TWX: 510·223·0846 

NORTH CAROLINA 
Arrow Electronics 
938 Burke Sireet 
Winston' Salem 27102 
Tel: (919) 725,8711 
TWX: 510·931·3169 
tHamillonl Avnel Electronics 
2803 Industrial Drive 
Raleigh 27609 
Tel: (919) 829·8030 
TWX: 510·928·1836 
Pioneer /Carolina 
106 Industrial Ave. 
Greensboro 27406 
Tel: (919) 273-4441 
TWX: 510-925-1114 

OHIO 

Arrow Electronics 
10 Knolkrest Dr. 
Reading, OH 45237 
Tel: (513) 761-5432 
TWX: 810-461-2670 

Arrow Electronics 
7620 McEwen Road 
Centerville 45459 
Tel: (513) 435-5583 
TWX: 810-459'1611 

Arrow Electronics 
6238 Cochran Ad. 
Solon 44139 
Tel: (216) 248·3990 
TWX: 810'427-9409 

tHamiltonf Avnet Electronics 
954 Senate Drive 
Dayton 45459 
Tel: (513) 433-0610 
TWX: 910-450-2531 

tHamiltonf Avnet Electronics 
4588 Emery Industrial Parkway 
Warrensl/ille Heights 44128 
Tel: (216) 831-3500 
TWX: 810-427-9452 

tPioneerfDayton 
4433 Interpoint BII/d. 
Daylon 45424 
Tel: (513) 236-9900 
TWX: 810'459-1622 

tPioneer f Cleveland 
4800 E. 131s1 Street 
Cleveland 44105 
Tel: (216) 587·3600 
TWX: 810·422-2211 

OKLAHOMA 

tComponenls Specialties, Inc. 
7920 E. 401h Street 
Tulsa 74145 
Tel: (918) 664·2820 
TWX: 910-845-2215 

u.s. AND CANADIAN DISTRIBUTORS 

OREGON 

tAlmacfStroum Electronics 
8022 S.W. Nimbus, Bldg. 7 
Beaverton 97005 
Tel: (503) 641-9070 
TWX: 910-467-8743 

tHamillonl Avnet Electronics 
6024 S.W. Jean Rd. 
Bldg. C, Suite 10 
Lake Oswego 97034 
Tel: (503) 635-7848 
TWX: 910-455-8179 

PENNSYLVANIA 

Arrow Electronics 
650 Seco Rd. 
Monroeville, PA 15146 
Tel: (412) 856-7000 

tArrow Electronics 
650 Seco Rd. 
Monroeville 15148 
Tel: (412) 856-7000 

Pioneer fPittsburgh 
259 Kappa Drive 
Pittsburgh 15238 
Tel: (412) 782-2300 
TWX: 710-795-3122 

Pioneer/Delaware Valley 
261 Gibralter Road 
Horsham 19044 
Tel: (215) 674-4000 
TWX: 510·665-6778 

TEXAS 

Arrow Electronics 
13715 Gsms Road 
Dallas 75234 
Tel: (214) 386-7500 
TWX: 910-660-5377 

Arrow ElectroniCS, Inc. 
10700 Corporate Drive, Suite 100 
Stafford 77477 
Tel: (713) 491-4100 
TWX: 910·880-4439 

Component SpeCialties, Inc. 
8222 Jamestown Drive 
Suite 115 
Austin 78756 
Tel: (512) 837-8922 
TWX: 910-874-1320 

tCcmponent Speciallies, Inc. 
10907 Shady Trail, Suite 101 
Dallas 75220 
Tel: (214) 357-6511 
TWX: 910-861-4999 

tComponent Speciallies, Inc. 
8181 Commerce Park Drive, Suite 700 
Houston 77036 
Tel: (713) 771-7237 
TWX: 910-881-2422 

Hamilton! Avnet Electronics 
10508A Boyer Blvd. 
Austin 78757 
Tel: (512) 837-8911 
TWX: 910-874-1319 

tHamillonl Avnet Electronics 
2111 W. Walnut Hilt lane 
Iving 75062 
Tel: (214) 659-4100 
TWX: 910-860-5929 

tHamillonl Avnet Electronics 
3939 Ann Arbor Drive 
Houston 77063 
Tel: (713) 780-1771 
TWX: 910-881-5523 

UTAH 

tHamillonf Avnet Electronics 
1585 West 2100 South 
Salt Lake City 84119 
Tel: (801) 972-2800 
TWX: 910-925·4018 

WASHINGTON 

tAlmacl Stroum Electronics 
5811 Sixth Ave. South 
Seallie 98108 
Tel: (206) 763-2300 
TWX: 910-444-2087 

tHamilton! Avnet Electronics 
14212 N.E. 21st Street 
Bellevue 98005 
Tel: (206) 453-5844 
TWX: 910-443-2489 

tWyle Distribution Group 
1750 132nd Avenue N.E. 
Bellevue 96005 
Tel: (208) 453-8300 
TWX: 910-443-2526 

WISCONSIN 

tArrow Electronics 
430 W. Rausson Avenue 
Oakcreek 53154 
Tel: (414) 764-6600 
TWX: 910-262-1193 

tHamilton! Avnet Electronics 
2975 Moorland Road 
New Berlin 53151 
Tel: (414) 784-4510 
TWX: 910-262-1182 

CANADA 

ALBERTA 

tL.A. Varah Ltd. 
4742 14th Street N.E. 
Calgary T20 617 
Tel: (403) 230-1235 
TWX: 038-258-97 

Zentronics 
9224 27th Avenue 
Edmonton T6N lB2 
Tel: (403) 463·3014 
Telex: 03742841 

Zentronics 
3651 21st N.E. 
Calgary T2E 6T5 
Tel: (403) 230- 1422 

BRITISH COLUMBIA 

tL.A. Varah Ltd. 
2077 Albarta Street 
Vancouver V5Y lC4 
Tel: (604) 873-3211 
TWX: 610-929-1068 

Zentronics 
550 Cambie SI. 
Vancouver V6B 2N7 
Tel: (604) 688-2533 
TWX: 04-5071-89 

MANITOBA 

L.A. Varah 
1-1632 King Edward Street 
Winnipeg R2R ONI 
Tel: (204) 633·6190 
TWX: 07-55-365 

Zentronics 
590 Berry 51. 
Winnipeg R3H 051 
Tel: (204) 775-8661 

NOVA SCOTtA 

Zentronics 
30 Simmonds Dr., Unit B 
Dartmouth, B3B lR3 
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ONTARIO 

tHamiltonl Avnet Eleclronics 
6845 Rexwood Roed, Units G & H 
Missies8uga L4V lM5 
Tel: (416) 671-4732 
TWX: 610'492-8867 

tHamiltonl Avnet Electronics 
1735 Courtwood Cresent 
Ottawa K2C 3J2 
Tel: (613) 226-1700 
TWX: 053-4971 

tL.A. Varah, Ltd. 
505 Kenora Avenue 
Hamilton L8E 3P2 
Tel: (416) 561-9311 
TWX: 061-8349 

tZentronics 
141 Catherine Street 
Ottawa K2P lC3 
Tel: (613) 238-6411 
TWX: 053-3636 

tZentronics 
6 Kilbury CI. 
Brampton, Ontario 
Toronto, l6T 3T4 
Tel: (416) 451-9600 
Telex: 06-976-78 

Zentronics 
564 f 10 Weber St., N. 
Walerloo, NAL 5C6 
Tel: (519) 884-5700 

QUEBEC 

tHamillonl Avnet Electronics 
2670 Sabourin Streel 
SI. laurent H4S 1M2 
Tel: (514) 331·6643 
TWX: 610-421·3731 

Zentronics 
50tO Rue Pare Street 
Monlreel H4P 1 P3 
Tel: (514) 735-5361 
TWX: 05-827-535 

tMicrocomputer System Technical Demonstrator Centere 



inter 
3065 Bowers Avenue 
Santa Clara, Calilornia 95051 
Tel: (408) 987·8080 
TWX: 910·338·0026 
TELEX: 34·6372 

CALIFORNIA 

Intel Corp. 
1601 Old Bayahora Hwy. 
Suite 345 
Burlingame 94010 
Tel: (415) 692·4762 
TWX: 910·375·3310 
Inlel Corp. 
2000 E. 4th Street 
Suite 110 
Santa Ana 92705 
Tel: (714) 835·2870 
TWX: 910-595'2475 
Intel Corp. 
7670 Opportunity Road 
San Diego 92111 
Tel: (71.) 268·3563 
Inlel Corp. 
5530 N. Corbin Ave. 
Suite 120 
Tarzana 91358 
Tel: (213) 708·0333 

COLORADO 

Inlel Corp. 
850 South Cherry 
Suite 720 
Denver 80222 
Tel: (303) 321·8086 
TWX: 910·931·2289 

CONNECTICUT 

Inlel Corp. 
36 Padanaram Rd. 
Danbury, CT 06810 
Tel: (203) 792-8366 

FLORIDA 

Inlel Corp. 
1500 N. W. 62nd Street 
Suite 104 
Ft. Lauderdale 33309 
Tel: (305) 771-0600 
TWX: 510·956·9407 

Inlel Corp. 
500 N. Maitland Ave. 
SLlile 205 
Maitland, FL 32751 
Tel: (305) 628·2393 
TWX: 810·853·9219 
Inlel Corp. 
5151 Adanson SI. 
Orlando 32804 
Tel: (305) 628·2393 
GEORGIA 
Inlel Corp. 
3300 Holcomb Bridge Rd. #225 
Norcross, GA 30092 
Tel: (404) 449,0541 

ILLINOIS 
Inlel Corp. 
2550 Golf Road 
Suile 815 
Rolling Meadows 80008 
Tel: (312) 981-7230 
TWX: 910·253-1825 

KANSAS 
Inlel Corp. 
9393 W. 110lh Street 
Suile 265 
Overland Park 66210 
Tel: (9t3) 842-8080 

MARYLAND 
Inlel Corp. 
7257 Parkway Drive 
Hanover 21078 
Tel: (301) 796·7500 
TWX: 710-862'1944 

u.s. AND CANADIAN SERVICE OFFICES 

MASSACHUSETTS 
Intel Corp. 
27 Industrial Avenue 
Chelmsford 01824 
Tel: (617) 256·1800 
TWX: 710·343-6333 

MICHIGAN 
Intel Corp. 
26500 Northwestern Hwy. 
Suite 401 
Southfield 48075 
Tel: (313) 353-0920 
TWX: 810-244-4915 

MINNESOTA 
Intel Corp. 
7401 Metro Blvd. 
SLlile 355 
Edina 55435 
Tel: (612) 835-6722 
TWX: 910-576-2867 

MISSOURI 
Intel Corp. 
502 Earth City Plaza 
Suite 121 
Earth City 63045 
Tel: (314) 291-1990 

NEW JERSEY 
Intel Corp. 
2460 Lemoine Avenue 
1st Floor 
Ft. Lee 07024 
Tel: (201) 947·6287 
TWX: 710·991-6593 

NEW YORK 
Intel Corp. 
2255 Lyell Avenue 
Rochester, NY 14606 
Tel: (718) 254·6120 

NORTH CAROLINA 
Intel Corp. 
2306 W. Meadowview Rd. 
Suite 206 
Greensboro, NC 27407 
Tel: (919) 294-1541 

OHIO 
Intel Corp. 
Chagrin·Brainard Bldg. Suite 300 
28001 Chagrin Blvd. 
Cleveland 44122 
Tel: (216) 464·2736 
TWX: 810-427·9298 
Intel Corp. 
6500 Poe Avenue 
Dayton 45414 
Tel: (513) 890-5350 
TWX: 810·450-2528 

OREGON 
Intel Corp. 
10700 S.W. Beaverton-Hillsdale Hwy. 
SLlite 22 
Beaverton 97005 
Tel: (503) 641·8086 
TWX: 910·467·8741 

PENNSYLVANIA 
Inlel Corp. 
500 Pennsylvania Avenue 
Fort Washington 19034 
Tel: (215) 641-1000 
TWX: 510·661,2077 

Intel Corp. 
201 Penn Center Blvd. 
Suite 301 W. 
PittsbLlrgh, PA 15235 
Tel: (412) 823-4970 

TEXAS 
Intel Corp. 
313 E. Anderson Lane 
SLlite 314 
Austin 78752 
Tel: (512) 454·8477 
TWX: 910·874·1347 
Intel Corp. 
2925 L.B.J. Freeway 
Suite 175 

. Dallas 75234 
Tel: (214) 241-2820 
TWX: 910·860-5817 
Intel Corp. 
6420 Richmond AvenLle 
Suite 280 
Houston 77057 
Tel: (713) 784-1300 
TWX: 910-881-2490 

VIRGINIA 
Intel Corp. 
7700 Leesburg Pike 
Suite 412 
Falls Church 22043 
Tel: (703) 734-9707 
TWX: 710·931-0625 

WASHINGTON 
Intel Corp. 
1603 116th Ave. N.E. 
Suite 114 
BellevLle 98005 
Tel: (206) 232-7823 
TWX: 910-443-3002 

WISCONSIN 
Inlel Corp. 
150 S. SLlnnyslope Road 
Suite 148 
Brookfield 53005 
Tel: (414) 784-9060 

CANADA 
Intel Corp. 
50 Galaxy Blvd. 
Unit 12 
Raxdale. Ontario 
M9W4Y5 
Tel: (416) 675·2105 
Telex: 069·89278 
Intel Corp. 
39 Bells Corners 
Ottawa, Ontario 
K2H 8R2 
Tel: (613) 829·9714 
Telex: 053·4115 
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inter In'tel Corporation 
30,65 Bowers Awnue 
Sahta Clara, CA 95051 

In,tel Corporation S.A. 
Pare Seny 
Rue du ~1oulin a Papier 51 
B6ite 1 
B~1160 Brussels 
B~lgium 

ln~el Japan K.K. 
5-6 Tokodai Toyosato-maehi 
Tsukuba-gun, lbaraki-ken 300-26 
Japan 
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