

Fairchild reserves the right to make changes in the circuitry or specifications in this book at any time without notice. Manufactured under one of the following U.S. Patents: 2981877, 3015048, 3064167, 3108359, 3117260, other patents pending.
Fairchild cannot assume responsibility for use of any circuitry described other than circuitry entirely embodied in a Fairchild product.
No other circuit patent licenses are implied.
Printed in U.S.A. 610000 100M January 1982

The Fairchild Hybrid Division was established to fulfill the high-volume, high-quality, low-cost requirements of a growing number of companies turning to hybrid technology. A broad range of precision hybrid voltage regulators is available off-the-shelf as well as automotive ignition systems. For custom hybrid programs we offer full design capability with rapid prototyping and translation to volume production.

No other hybrid manufacturer in the world can match Fairchild's total capabilities. Since Fairchild is one of the world's leading semiconductor manufacturers, there is no need to depend on outside suppliers for delivery, reliability or quality of semiconductor components. Our years of experience in developing and qualifying sources of passive components for the automotive hybrid market assure dependable performance in the finished product. Facilities in Northern California and Hong Kong can turn out more reliable hybrid products in a day than most hybrid suppliers can produce in a week.

Fairchild is equipped to produce hybrids for any company in any business that uses hybrid products in large quantities. The markets served include automotive, consumer electronics, computer, telecommunications, industrial controls, aerospace and military.
Chapter One Page
Capabilities Information
Design 1-3
Production 1-3
Chapter Two Reliability
What is Reliability? 2-3
Some Reliability Terms 2-3
How is Reliabilicy Obtained? 2-4
Design
Piece PartsWafer FabricationAssemblyEnvironmental Stresses
How is Reliability Tested and Maintained? 2-7
Die Related Tests
Package Related Tests
Conclusion 2-8
Chapter Three Cross Reference Guide
Ordering Information 3-3
Chapter Four Data Sheets
$\mu \mathrm{A} 78 \mathrm{H} 05, \mu \mathrm{~A} 78 \mathrm{H} 05 \mathrm{~A}$ 4-3
$\mu \mathrm{A} 78 \mathrm{H} 12 \mathrm{~A}$ 4-7
$\mu \mathrm{A} 78 \mathrm{HGA}$ 4-11
$\mu \mathrm{A} 78 \mathrm{P} 05$ 4-15
$\mu \mathrm{A} 79 \mathrm{HG}$ 4-19
SH323, SH223, SH123 4-23
SH1605 4-27
Chapter Five Applications
High Current Voltage Regulator Applications 5-3
Understanding the Switching Regulator 5-16
Power Supply Design 5-31
Thermal Considerations 5-41
Chapter Six
Fairchild Field Sales Offices
Representatives and Distributors 6-3

A Schlumberger Company

Capabilities Information	1
Reliability	2

Cross Reference Guide and Ordering Information

Data Sheets	4
Applications	5

Fairchild Field Sales Offices,6

FAIRCHILD

A Schlumberger Company

Chapter 1 Capabilities

Design

Hybrids offer all the advantages of other semiconductor components-small size, high reliability and low cost in high volume-while providing fully tested functions that readily interface with the user's overall system. In addition they offer unique advantages such as ability to mix technologies not achievable monolithically, ability to operate in extremely hostile environments, and improved ratios of reliability to complexity, while retaining their size advantage over the discrete approach. A broad range of process techniques has been developed from which to select the manufacturing method best suited to a specific objective. This variety of techniques provides for wide design flexibility with minimal process constraints. Also, since the semiconductors used in Fairchild hybrids are almost exclusively supplied internally, parameters can be selected and stringently controlled for compatibility with the overall circuit design.

New process development and materials research takes place on a continuous basis to ensure that our methods and materials are selected from the best alternatives available. Internal IC design compatibility exists for linear and other bipolar technologies, power transistors are also designed within the division. Design and production of custom products follow a thorough routine. Once a user's input is submitted, whether in the form of functional specifications, a circuit diagram or breadboard, a comprehensive cost analysis and circuit evaluation is made. Only when Fairchild is satisfied with the circuit/cost analysis is the paper design submitted. Upon approval, a breadboard is produced for user evaluation. A complete detailed layout is then constructed for use in producing preliminary parts for customer approval. When the customer gives the go-ahead, volume production begins. In either instance, standard or custom, a Fairchild hybrid subsystem, fabricated using mixed technologies, is fully tested and delivered on time, in volume quantities.

Production

Fairchild excels in high volume production of hybrid devices. Facilities include: complete thick film production; rubylith, photo reduction and screen manufacturing; active and passive laser trim; wafer sort and scribe; assembly and packaging; testing and quality control. (TCR) distributions. Furnace zones are

1

All materials are pre-tested and qualified before admission to the thick film process; pastes are subjected, on a lot basis, to stringent incoming tests using computer controlled equipment. The flatness and surface finish of the alumina substrates are rigidly controlled. Printing onto these substrates is accomplished using automatic magazine fed machines having a high degree of stability and print alignment. The substrates are then transferred by automatic collation equipment to a drying and firing furnace, in which the environment is moisture and oilfree to ensure the control required for maintenance of tight resistor temperature coefficient of resistance microprocessor controlled, and interfaced to a computer system capable of providing check profiles on demand. Post-firing offload is accomplished using automatic equipment eliminating handling damage. Base conductor and dielectric layers are individually printed and fired; subsequent resistor prints are dried between applications and finally co-fired to the desired pre-trim values. Process monitoring, again using computer controlled equipment, constantly verifies visual, electrical and dry-print thickness measurements, assuring high-yield low-cost production. Tailoring the substrate resistors to final value is achieved using active and passive laser trimming systems with carousel feeds and closedcircuit TV monitoring systems. Extensive computer control at this step provides flexibility and accuracy.

Capabilities

Total thick-film production capability encompasses gold and palladium-silver conductor systems, resistor prints in the range 1Ω to $10 \mathrm{M} \Omega$, high quality pinhole-free dielectric systems and multilayer techniques. Fairchild's thick film capability is complemented by wafer sort and scribing facilities employing diamond and saw techniques. Wafers are supplied to this area from the company's integrated circuit and discrete fabrication areas. Linear devices and power transistors can be supplied from the division's internal capability. The proximity of all facilities ensures rapid resolution of any technical or scheduling problems.

Hybrid production utilizes all the standard manufacturing methods plus a number of proprietary processes designed to meet exacting customer requirements. For example, an exclusive flip-chip solder reflow process has been developed to eliminate bonding steps in large-volume custom applications, while simultaneously providing an extemely rugged micro-interconnect capable of withstanding wide temperature excursions and the most demanding corrosion and vibration environments. For applications involving the use of LSI chips with large area and I/O counts, a versatile interconnect scheme using the latest tape automated
bonding techniques is currently under development. Because of its potential for computer controlled assembly when combined with automatic pick and place equipment, tape carrier appears to be the best solution for high volume production of reliable hybrids at minimum cost.

Many other advanced techniques in hybrid technology have been developed over the past decade to meet a variety of customer objectives. This trend will continue. Fairchild is committed to producing the highest quality hybrids possible to endure the most stringent environmental conditions in both commercial and military applications.

Capabilities Information $-5=5-5$
Reliability

Cross Reference Guide and Ordering Information

Data Sheets		

4

Chapter 2 Reliability

A Schlumberger Company

What Is Reliability

Reliability is defined as the behavior of a component, a machine, or a system, as a function of time. Statistically, it is also expressed as the probability that the item will perform a required function under established conditions for a given period of time.

This Time is a variable covering minutes, hours, months, or years. Some of the equipment in oil well logging operations must have, on the average, a useful life of only five minutes. At the other extreme, the telephone companies want their equipment to last a minimum of 25 years. Missiles are subjected to thousands of " g " (gravity) forces and the components must not lose their monitoring, telemetering, or sensing capabilities during the first critical seconds of their flight. Power supplies are constantly being thermally cycled as they are turned on and off. Voltage regulators undergo similar stresses, and both must provide thousands of hours of flawless operation.

Some Reliability Terms

Initial/Infant Failure

A failure occurring during the early stages of operation, the failure rate during infancy is higher than during long term operation.

Infant failures are caused by weaknesses not removed by the numerous inspection operations, if detectable at all.

Random Failure

A failure which occurs sometimes between the infant mortality and the wear-out periods; the failure rate during this period is generally constant.

Wear-Out Failure

This failure occurs as a result of degradation, physical or chemical.

- Repeated thermal cycling will cause electrical discontinuities between conductors having different coefficients of thermal expansion.
- Voltage incursions may cause shorting across a dielectric.
- Excessive current densities may introduce metal migration, causing shorts.
- Continuous vibrations may cause loss of contact or create loose conducting particles and subsequent shorting.
- Moisture is known to degrade components because of chemical reactions resulting in parameter changes.

Figure 1 suggests that, to obtain the lowest failure rate a removal of the infant mortality weaknesses is required. Traditionally, this removal was done, as a rule, on military products and for certain nonmilitary users requiring the highest reliability.

More recently, the growing complexities of various electronic systems, of multi-million dollar computers, some of which contain as many as a quarter million integrated circuits, have created demands by the commercial users for a reliability level similar to that of the military, the difference being only in the temperature range of operation.

Fig. 1 A Diagrammatic Representation of Failure Patterns

How Is Reliability Obtained?

Design

High Current voltage regulators are comprised of three major parts: Active components, substrate and package.

A linear integrated circuit (LIC) and a power transistor provide all the drives and controls: A start circuit, voltage regulation, current sourcing, shortcircuit protection, thermal shutdown and amplification.

The high current densities typical of high power devices and especially of power transistors, integrated on a chip or discrete, require uniform current distribution, especially along the emitter contacts, to prevent current hogging, hot spots and excessive heating. This joule heating can be sufficient to reach the aluminum-silicon eutectic temperature, melt the silicon and short the emitter and collector. This effect is minimized by large geometries that decrease the current densities and by diffusion and concentration profiles that insure better current distribution. Long term aluminum migration, a concern wherever large current densities exist, is also eliminated by the proper "sizing" of the conduction lines. This concept of safe margins and of conservative design rules applies also to all components procured from outside vendors.

Materials

The substrate provides a base for the thick film resistors, the connections for attaching the active components, and a means of heat dissipation.

The package connects to the equipment for both testing and usage and gives an additional path for heat dissipation.

In Table 1 the major component parts are listed with tests normally performed for conformance, and, for reliability.

Table 1 Test and Control of Major Component Parts

Piece Part	Test/Control
Substrate	Mechanical dimensions Mechanical strength Thermal conduction properties Electrical insulation Chemical composition Thermal cycling
Package	Mechanical dimensions and characteristics Solderability of leads Electrical insulation Lead seal check Lead strength
Solder Preform	Mechanical dimensions Chemical composition
Die	Visual inspection CapacitorMechanical dimensions Electrical properties Electrical stress on a sample

Process

Control of Wafer Fabrication Operations

Wafer fabrication is a very complex and disciplined operation and listing all the numerous control points and monitoring operations is beyond the scope of this Reliability section.

Reliability, quality and yield are major concerns for any wafer fab operation, and by extension, of any manufacturing operation. Only a few items will be mentioned here:

- Wafer purity
- Analysis of chemicals
- Dust particle concentrations
- Temperature/humidity
- Analysis of dopant sources
- Gas flows into furnaces
- Furnace profiles
- C/V plots for checking ionic drift
- Equipment calibration
- Exposure
- Development
- Etching
- Cleaning, etc. . .

Control of Assembly Operations

Completed wafers are electrically probed, and good dice are identified for assembly.

Every assembly operation is critical, and every effort is made to guarantee long term life of the product.

A typical assembly flow, shown in Table 2, shows both the operation and its control equivalent.

Environmental Testing

An additional level of reliability can be obtained by performing environmental and electrical tests along
the flow referenced in MIL-STD 883 (Test Methods \& Procedures for Microelectronics), Method 5008 (Test Procedures for Hybrids and Multichip Microcircuits). This "hi-rel" flow performs the following:

- Storage. Isolates product not capable, for mechanical reasons, of storage at $150^{\circ} \mathrm{C}$ for 24 hours.
- Temperature cycle. Eliminates product exhibiting mechanical damages that would cause functional failures.
- Constant acceleration. Eliminates structural and mechanical weaknesses:
- Poor wire-to-die bonding
- Poor substrate-to-package attach
- Poor die-to-substrate attach
- Seal. Prevents the components, active and passive, from being influenced by outside factors of the working environment, mostly humidity.
- Burn-In. Screens or eliminates all marginal devices, those with inherent defects resulting from manufacturing, aberrations which cause time and stress dependent failures. In the absence of burn-in, these defective units would result in infant/early mortality failures (see paragraph on "Some Reliability Terms').
- Electrical testing at temperature extremes. Removes all units not meeting functional and parametric criteria.

Standard and hi-rel flows are compared on Table 3.

Table 2 A Typical Assembly Operation

Operation	Control
Scribing (or sawing)	Maintenance
Separation of good \& bad die	Visual inspection, QC sample, conformance inspection
Die attach	Functional check for adherence and wetting; 100\% X-Ray; 100% visual check Push Test Functional check for adherence and wetting; 100\% X-Ray; Substrate attach Wire bonding Push Test chec Pus Incoming wiretest
Optical check (preseal)	Pull strength Visual check
Package seal	QC sample conformance inspection
Hermeticity check for fine \& gross leak	
100% Optical check (post-seal)	QC sample conformance inspection

Table 3 A Comparison of Hi Rel and Standard Flows
Fairchild Unique Level B

O = 100\% Operation
$Q=$ Quality Conformance Inspection

Reliability

How Is Reliability Tested And Maintained?
No product will be put on the market unless it meets the stringent reliability requirements determined by the procurement agency or by the factory. These requirements can be in terms of FITs (Failures In Time) or percent per thousand hours, quantities that give a mathematical limit to the failure rates resulting from a given stress. They can also be in terms of time, e.g., time to $10 \%, 20 \%$, or 50% failure of a given sample for a given test.

MIL-STD 883, previously mentioned, lists both the tests and the frequency of these tests performed to maintain qualification-or suitability for sale-of a given product. New products, new processes, new design, new materials, are all "qualified" along the lines originally established by MIL-STD-883.

Two major series of tests designed for periodic monitoring or for original qualification and are listed in Table 4, together with a brief description and the respective LTPD (Lot Tolerance Percent Defective) that gives sample size and allowed failures.

Table 4 Qualification and Monitor Testing
A. Die Related Tests - Group C

Test	Description	LTPD
Temperature Cycling	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	15
Constant Acceleration	10 kg along Y1 axis	
Heal Fine	Helium or Krypton	
Seal Gross	Fluorocarbon/bubble	
Electrical Test	Static and/or dynamic	10
Operating Life		

B. Package Related Tests - Group D

- Lead Integrity	Lead bending	15
Seal Fine	See Group C above	
Seal Gross	See Group C above	
- Thermal Shock	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C} \quad 15 \mathrm{X}$	15
Temperature Cycling	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ 100X	
Moisture Resistance	Variable temp/humidity 10x	
Seal Fine	See Group C above	
Seal Gross	See Group C above	
Visual Inspection		
- Mechanical Shock	$3000 \mathrm{~g} \quad .3 \mathrm{~ms}$	15
Constant Acceleration	$1 \mathrm{~kg} \quad \mathrm{Y} 1$ axis	
Seal Fine	See Group C above	
Seal Gross	See Group C above	
Visual Examination		
- Salt Atmosphere	Salt Atmosphere at $35^{\circ} \mathrm{C}$	15
Seal Fine	See Group C above	
Seal Gross	See Group C above	
Visual Examination		

Conclusion

The most critical area in any electrical/electronic system is the power supply. If the power supply fails, the system goes down. Power supply failure may result in loss of critical data or damage to other system components.

To the equipment user, this means idle labor hours and unexpected replacement, repair and service costs.

To the equipment manufacturer, it can mean customer dissatisfaction and excessive warranty and rework costs.

The power supply is critical to any system and the heart of the power supply is the voltage regulator. The Fairchild Hybrid Division recognizes the importance of quality and reliability to our customer . . . and to his customer. Quality and reliability standards are established before the product is designed and are rigidly adhered to throughout the production flow.

High Current Voltage Regulators are presently shipped to a guaranteed AQL of 0.1%, with an actual return rate far less. Fairchild shares its customers' concern for quality and reliability and will continue to improve its products to insure their equipment achieves optimum performance.

A Schlumberger Company
Capabilities Information $5=5$

Reliability

Cross Reference Guide and Ordering

| Data Sheets | 4 |
| :--- | :--- | :--- |

Chapter 3
 Cross Reference Guide and Ordering Information

Cross Reference Guide

| Voltage
 Regulator | Output
 Capability | Fairchild
 Device | Lambda | Cross Reference |
| :--- | :--- | :--- | :--- | :--- | :--- | (

(Step Down)

Cross Reference Guide Ordering Information

Ordering Information

Fairchild High Current Voltage Regulators may be ordered using a simplified purchasing code.

XXXXX \quad| C- Temperature Range Code |
| :--- |
| |
| |
| Package Code |

Device Type (5 to 8 Digits)

Temperature Range Code

Operating Junction Temperature
C = Commercial
$0^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
(unless otherwise specified)
$\mathrm{V}=$ Industrial (SH 223 only)

$$
-25^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}
$$

$\mathrm{M}=$ Military
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Package Code
S = Steel TO -3 Package
2-Lead
4-Lead $\} \quad$ Refer To Chapter 4
8-Lead

Device Type (5 to 8 Digits)

SH323 3 A, 5 V Fixed Regulator
78H05A $\quad 5$ A, 5 V Fixed Regulator
SH1605 * 5 A Switching Regulator

Examples

(a) SH 323 SC

This number code indicates a 3 amp, 5 volt fixed regulator packaged in a steel, 2 -lead TO -3 with an operating junction temperature range of $-25^{\circ} \mathrm{C}$ TO $+150^{\circ} \mathrm{C}$
(b) 78 HG ASM

This number code indicates a 5 amp , adjustable regulator with guaranteed maximum dropout voltage limits, packaged in a steel, 4-lead TO -3 with an operating junction temperature range of $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$.

Unique Level B Processing.

To meet the need for improved reliability in the military market, high current voltage regulators are available with special processing. Devices ordered to this program are subject to 100% screening as outlined in chapter 2. Devices may be ordered by simply adding the letters "QB" to the end of the ordering code.

Example

(a) 79 HG SM QB

This number code indicates a 5 amp , adjustable negative voltage regulator, packaged in a steel, 4-lead TO - 3 with an operating junction temperature range of $-55^{\circ} \mathrm{C}$ TO $+150^{\circ} \mathrm{C}$ and screened to the Fairchild unique level B program as outlined in Chapter 2.

A Schlumberger Company

Capabilities Information
Reliability 2
Cross Reference Guide and Ordering Information
Data Sheets 4
Applications5
Fairchild Field Sales Offices,6

FAIRCHILD
A Schlumberger Company

μ A78H05 • μ A78H05A 5-Volt 5-Amp Voltage Regulators

Hybrid Products

Description

The $\mu \mathrm{A} 78 \mathrm{HO} 0$ and $\mu \mathrm{A} 78 \mathrm{H} 05 \mathrm{~A}$ are hybrid regulators with 5.0 V fixed outputs and 5.0 A output capabilities. They have the inherent characteristics of the monolithic 3-terminal regulators, i.e., full thermal overload, short-circuit and safe-area protection. All devices are packaged in hermetically sealed TO-3s providing 50 W power dissipation. If the safe operating area is exceeded, the device shuts down rather than failing or damaging other system components (Note 1). This feature eliminates costly output circuitry and overly conservative heat sinks typical of highcurrent regulators built from discrete components.

- 5.0 A OUTPUT CURRENT
- INTERNAL CURRENT AND THERMAL OVERLOAD PROTECTION
- INTERNAL SHORT CIRCUIT PROTECTION
- LOW DROPOUT VOLTAGE (TYPICALLY 2.3 V @ 5.0 A)
- 50 W POWER DISSIPATION
- STEEL TO-3 PACKAGE
- ALL PIN-FOR-PIN COMPATIBLE WITH THE SH323

Note

1. These voltage regulators offer output transistor safe-area protection. However, to maintain full protection, the devices must be operated within the maximum input-to-output voltage differential ratings, as listed on this data sheet under "Absolute Maximum Ratings." For applications violating these limits, devices will not be fully protected.

Connection Diagram

TO-3 Metal Package

(Top View)
Order Information

Type	Package	Code	Part No.
μ A7805	Metal	GN	μ A78HO5SC
μ A7805A	Metal	GN	μ A78H05ASC
μ A7805	Metal	GN	μ A78HO5SM
μ A7805A	Metal	GN	μ A78H05ASM

Block Diagram

Absolute Maximum Ratings Input Voltage
Input-to-Output Voltage Input-to-Output Voltage
Differential, Output Short Circuited
Internal Power Dissipation
Operating Junction
Temperature
Military Temperature Range
$\mu \mathrm{A} 78 \mathrm{H} 05 \mathrm{SM}$
μ A78H05ASM

40 V

35 V
$50 \mathrm{~W} @ 25^{\circ} \mathrm{C}$ Case
$150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Commercial Temperature

Range

$\mu \mathrm{A} 78 \mathrm{H} 05 \mathrm{SC} \quad 0^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
μ A78H05ASC
Storage Temperature Range
Pin Temperature
(Soldering, 60 s)
$0^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$
$\mu \mathrm{A} 78 \mathrm{HO5} \cdot \mu \mathrm{~A} 78 \mathrm{HO5A}$
Electrical Characteristics $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=10 \mathrm{~V}$, IOUT $=2.0 \mathrm{~A}$ unless otherwise specified.

Symbol	Characteristic	Condition		Limits			Unit
				Min	Typ	Max	
V OUT	Output Voltage	lout $=2.0 \mathrm{~A}$		4.85	5.0	5.25	V
$\Delta \mathrm{V}_{\text {OUT }}$	Line Regulation (Note 2)	$\mathrm{V}_{\mathbb{N}}=8.5$ to $25 \mathrm{~V}(\mu \mathrm{~A} 78 \mathrm{H} 05)$			10	50	mV
		$\mathrm{V}_{\mathrm{IN}}=7.5$ to $25 \mathrm{~V}(\mu \mathrm{~A} 78 \mathrm{HO5A})$			10	50	mV
$\Delta \mathrm{V}_{\text {OUT }}$	Load Regulation (Note 2)	$10 \mathrm{~mA} \leq \mathrm{l}$ OUT $\leq 5.0 \mathrm{~A}$			10	50	mV
I_{Q}	Quiescent Current	IOUT $=0$			3.0	10	mA
RR	Ripple Rejection	lout $=1.0 \mathrm{~A}, \mathrm{f}=120 \mathrm{~Hz}, 5.0 \mathrm{~V}_{\mathrm{pk}-\mathrm{pk}}$		60			dB
$\underline{V_{n}}$	Output Noise	$10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}$			40		$\mu \mathrm{V}_{\text {RMS }}$
VDD	Dropout Voltage (Note 3)	$\mu \mathrm{A} 78 \mathrm{H05}$	IOUT $=5.0 \mathrm{~A}$		2.3		V
			lout $=3.0 \mathrm{~A}$		2.0		V
		$\mu \mathrm{A} 78 \mathrm{H05A}$	IOUT $=5.0 \mathrm{~A}$		2.3	2.5	V
			IOUT $=3.0 \mathrm{~A}$		2.0	2.3	V
los	Short-Circuit Current Limit				7.0	12.0	Apk

Notes

2. Load and line regulation are specified at constant junction temperature. Pulse testing is required with a pulse width $\leq 1 \mathrm{~ms}$ and a duty cycle of $\leq 5 \%$. Full Kelvin connection methods must be used to measure these parameters.
3. Dropout Voltage is the input-output voltage differential that causes the output voltage to decrease by 5% of its initial value.

Typical Performance Curves

Output Impedance

Output Noise Voltage

Maximum Power Dissipation

Short Circuit Current

Line Regulation

Load Regulation

Quiescent Current

Dropout Voltage

Ripple Rejection

Output Voltage

 Deviation vs Junction Temperature

Test Circuit

Fixed Output Voltage

Design Considerations

These devices have thermal-overload protection from excessive power and internal short-circuit protection which limits the circuit's maximum current. Thus, the devices are protected from overload abnormalities. Although the internal power dissipation is limited, the junction temperature must be kept below the maximum specified temperature $\left(150^{\circ} \mathrm{C}\right)$. It is recommended by the manufacturer that the maximum junction temperature be kept as low as possible for increased reliability. To calculate the maximum junction temperature or heat sink required, the following thermal resistance values should be used:

Package	Typ $\theta_{\text {JC }}$	Max $\theta_{\text {JC }}$
TO-3	1.8	2.5

$$
\begin{aligned}
P_{D(\max)} & =\frac{T_{J(\max)}-T_{A}}{\theta_{\mathrm{JC}}+\theta_{\mathrm{CA}}} \\
\theta_{\mathrm{CA}} & =\theta_{\mathrm{CS}}+\theta_{\mathrm{SA}}
\end{aligned}
$$

Solving for T_{J} :

$$
T_{J}=T_{A}+P_{D}\left(\theta_{\mathrm{JC}}+\theta_{\mathrm{CA}}\right)
$$

Where:
$\mathrm{T}_{\mathrm{J}} \quad=$ Junction Temperature
$\mathrm{T}_{\mathrm{A}}=$ Ambient Temperature
PD = Power Dissipation
$\theta_{\mathrm{JC}}=$ Junction-to-case thermal resistance
$\theta_{\text {CA }}=$ Case-to-ambient thermal resistance
$\theta_{\text {CS }} \quad=$ Case-to-heat sink thermal resistance
$\theta_{\text {SA }}=$ Heat sink-to-ambient thermal resistance
The devices are designed to operate without external compensation components. However, the amount of external filtering of these voltage regulators depends upon the circuit layout. If in a specific application the regulator is more than four inches from the filter capacitor, a $1 \mu \mathrm{~F}$ solid tantalum capacitor should be used at the input. A $0.1 \mu \mathrm{~F}$ capacitor should be used at the output to reduce transients created by fast switching loads, as seen in the basic test circuit. These filter capacitors must be located as close to the regulator as possible.

Caution: Permanent damage can result from forcing the output voltage higher than the input voltage. A protection diode from output to input should be used if this condition exists.

Package Outline (S Package - Steel)

Notes
All dimensions in inches bold and millimeters (parentheses) Pins are solder-dipped alloy 52

FAIRCHILD
 A Schlumberger Company

$\mu \mathrm{A} 78 \mathrm{H} 12 \mathrm{~A}$ 5-Amp Voltage Regulator

Hybrid Products

Description

The $\mu \mathrm{A} 78 \mathrm{H} 12 \mathrm{~A}$ is a hybrid regulator with 12.0 V fixed output and 5.0 A output capability. It has the inherent characteristics of the monolithic 3-terminal regulators; i.e., full thermal overload, short-circuit and safe-area protection. All devices are packaged in hermetically sealed TO-3s providing 50 W power dissipation. If the safe operating area is exceeded, the device shuts down, rather than failing or damaging other system components (Note 1). This feature eliminates costly output circuitry and overly conservative heat sinks typical of high-current regulators built from discrete components.

- 5.0 A OUTPUT CURRENT

- INTERNAL CURRENT AND THERMAL OVERLOAD PROTECTION
- INTERNAL SHORT CIRCUIT PROTECTION
- LOW DROPOUT VOLTAGE (TYPICALLY 2.3 V @ 5.0 A)
- 50 W POWER DISSIPATION
- STEEL TO-3 PACKAGE

Note

1. This voltage regulator offers output transistor safe-area protection. However, to maintain full protection, the device must be operated within the maximum input-to-output voltage differential ratings, as listed on this data sheet under "Absolute Maximum Ratings." For applications violating these limits, device will not be fully protected.

Connection Diagram TO-3 Metal Package

(Top View)

Order Information

Type	Package	Code	Part No.
$\mu \mathrm{A} 78 \mathrm{H} 12 \mathrm{~A}$	Metal	GN	$\mu \mathrm{A} 78 \mathrm{H} 12 \mathrm{ASC}$
$\mu \mathrm{A} 78 \mathrm{H} 12 \mathrm{~A}$	Metal	GN	$\mu \mathrm{A} 78 \mathrm{H} 12 \mathrm{ASM}$

Block Diagram

Absolute Maximum Ratings

 Input VoltageInput-to-Output Voltage
Differential, Output Short-
Circuited
Internal Power Dissipation
Operating Junction
Temperature
Military Temperature Range
μ A78H12ASM

```
40 V
40 V
35 V
\(50 \mathrm{~W} @ 25^{\circ} \mathrm{C}\) Case
\(150^{\circ} \mathrm{C}\)
\(-55^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
```

Commercial Temperature
Range
$\mu \mathrm{A} 78 \mathrm{H} 12 \mathrm{ASC} \quad 0^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range
Pin Temperature
(Soldering, 60 s)
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$
μ A7812A
Electrical Characteristics $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=19 \mathrm{~V}$, lout $=2.0$ A unless otherwise specified

Symbol	Characteristic	Condition	Limits			Unit
			Min	Typ	Max	
$V_{\text {OUT }}$	Output Voltage	lout $=2.0 \mathrm{~A}$	11.5	12	12.5	V
$\Delta \mathrm{V}_{\text {OUT }}$	Line Regulation (Note 2)	$\mathrm{V}_{\text {IN }}=16$ to 25 V		20	120	mV
$\Delta \mathrm{V}_{\text {OUT }}$	Load Regulation (Note 2)	$10 \mathrm{~mA} \leq \mathrm{l}$ OUT $\leq 5.0 \mathrm{~A}$		20	120	mV
IQ	Quiescent Current	$\mathrm{I}_{\text {OUT }}=0, \mathrm{~V}_{\text {IN }}=17 \mathrm{~V}$		3.7	10	mA
RR	Ripple Rejection	$\mathrm{I}_{\text {OUT }}=1.0 \mathrm{~A}, \mathrm{f}=120 \mathrm{~Hz}, 5.0 \mathrm{~V}$ pk-pk	60			dB
V_{n}	Output Noise	$10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}, \mathrm{V}_{\mathrm{IN}}=17 \mathrm{~V}$		75		$V_{\text {RMS }}$
VDD	Dropout Voltage (Note 3)	$\mathrm{IOUT}=5.0 \mathrm{~A}$		2.3	2.5	V
		lout $=3.0 \mathrm{~A}$		2.0	2.3	V
los	Short-Circuit Current Limit			7.0	12.0	Apk

Notes

2. Load and line regulation are specified at constant junction temperature. Pulse testing is required with a pulse width $\leq 1 \mathrm{~ms}$ and a duty cycle $\leq 5 \%$. Full Kelvin connection methods must be used to measure these parameters.
3. Dropout Voltage is the input-to-output voltage differential that causes the output voltage to decrease by 5% of its initial value.

Typical Performance Curves

Output Impedance

Output Noise Voltage

Maximum Power Dissipation

Short Circuit Current

Quiescent Current

Line Transient Response

Dropout Voltage

Ripple Rejection

Output Voltage Deviation vs Junction Temperature

Basic Test Circuit

Design Considerations

This device has thermal-overload protection from excessive power and internal short-circuit protection which limits the circuit's maximum current. Thus, the device is protected from overload abnormalities. Although the internal power dissipation is limited, the junction temperature must be kept below the maximum specified temperature $\left(150^{\circ} \mathrm{C}\right)$. It is recommended by the manufacturer that the maximum junction temperature be kept as low as possible for increased reliability. To calculate the maximum junction temperature or heat sink required, the following thermal resistance values should be used:

Package	Typ $\theta_{J C}$	Max $\theta_{J C}$
TO-3	1.8	2.5

$P_{D(\max)}=\frac{T_{J(\max)}-T_{A}}{\theta_{J C}+\theta_{C A}}$
$\theta_{\mathrm{CA}}=\theta_{\mathrm{CS}}+\theta_{\mathrm{SA}}$
Solving for T_{J} :
$\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{A}}+\mathrm{P}_{\mathrm{D}}\left(\theta_{\mathrm{JC}}+\theta_{\mathrm{JA}}\right)$
Where:
$\mathrm{T}_{\mathrm{J}}=$ Junction Temperature
$\mathrm{T}_{\mathrm{A}}=$ Ambient Temperature
$\mathrm{P}_{\mathrm{D}}=$ Power Dissipation
$\theta_{\mathrm{JC}}=$ Junction-to-case thermal resistance
$\theta_{C A}=$ Case-to-ambient thermal resistance
$\theta_{\text {CS }}=$ Case-to-heat sink thermal resistance
$\theta_{\mathrm{SA}}=$ Heat sink-to-ambient thermal resistance
The devices are designed to operate without external compensation components. However, the amount of external filtering of these voltage regulators depends upon the circuit layout. If in a specific application the regulator is more than four inches from the filter capacitor, a $1 \mu \mathrm{~F}$ solid tantalum capacitor should be used at the input. A $0.1 \mu \mathrm{~F}$ capacitor should be used at the output to reduce transients created by fast switching loads, as seen in the basic test circuit. These filter capacitors must be located as close to the regulator as possible.

Caution: Permanent damage can result from forcing the output voltage higher than the input voltage. A protection diode from output to input should be used if this condition exists.

Package Outline

(S Package - Steel)

Notes

All dimensions in inches bold and millimeters (parentheses) Pins are solder-dipped alloy 52

FAIRCHILD
 A Schlumberger Company

$\mu A 78 \mathrm{HGA}$
 Positive Adjustable 5-Amp Voltage Regulator

Hybrid Products

Description

The $\mu \mathrm{A} 78 \mathrm{HGA}$ is an adjustable 4-terminal positive voltage regulator capable of supplying in excess of 5.0 A over a 5.0 V to 24 V output range. Only two external resistors are required to set the output voltage.

The $\mu \mathrm{A} 78 \mathrm{HGA}$ is packaged in a hermetically sealed TO-3, providing 50 W power dissipation. The regulator consists of a monolithic chip driving a discrete seriespass element. A beryllium-oxide substrate is used in conjunction with an isothermal layout to optimize the thermal characteristics of each device and still maintain electrical isolation between the various chips. This unique circuit design limits the maximum junction temperature of the power output transistor to provide full automatic thermal overload protection. If the safe operating area is ever exceeded (Note 1), the device simply shuts down rather than failing or damaging other system components. This feature eliminates the need to design costly regulators built from discrete components.

- 5.0 A OUTPUT CURRENT
- INTERNAL CURRENT AND THERMAL LIMITING
- INTERNAL SHORT CIRCUIT CURRENT LIMIT
- LOW DROPOUT VOLTAGE (TYPICALLY 2.3 V @ 5.0 A)
- 50 W POWER DISSIPATION
- ELECTRICALLY NEUTRAL CASE
- STEEL TO-3 PACKAGE
- ALL PIN-FOR-PIN COMPATIBLE WITH μ A78HG

Connection Diagram

TO-3 Metal Package

(Top View)

Order Information

Type	Package	Code	Part No.
μ A78HGA	Metal	JA	μ A78HGASC
μ A78HGA	Metal	JA	μ A78HGASM

Block Diagram—Positive Adjustable Voltage Regulator

Absolute Maximum Ratings			
Input Voltage	40 V		
Internal Power Dissipation	$50 \mathrm{~W} @ 25^{\circ} \mathrm{C}$ Case	Commercial Temperature Range	
Maximum Input-to-Output		$\mu \mathrm{A} 78 \mathrm{HGASC}$ Voltage	Storage Temperature Range Pin Temperature (Soldering, 60 s$)$
Differential Output Short Circuit	35 V	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	

Electrical Characteristics $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=2.0 \mathrm{~A}$ unless otherwise specified

Symbol	Characteristic	Condition (Note 3)	Limits			Unit
			Min	Typ	Max	
V OUT	Output Voltage (Note 4)	$\mathrm{l}_{\text {OUT }}=2.0 \mathrm{~A}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {OUT }}+3.5 \mathrm{~V}$	5.0		24	V
$\Delta \mathrm{V}_{\text {OUT }}$	Line Regulation (Note 2)	$\mathrm{V}_{\mathrm{IN}}=7.5$ to 25 V		0.2\%	1\%	V
$\Delta \mathrm{V}_{\text {OUT }}$	Load Regulation (Note 2)	$10 \mathrm{~mA} \leq$ IOUT $\leq 5.0 \mathrm{~A}$		0.2\%	1\%	V
IQ	Quiescent Current	IOUT $=0$		3.4	10	mA
RR	Ripple Rejection	IOUT $=1.0 \mathrm{~A}, \mathrm{f}=210 \mathrm{~Hz}, 5.0 \mathrm{~V}$ pk-pk	60			dB
V_{n}	Output Noise	$\begin{aligned} & 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}, \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\text {OUT }}+5.0 \mathrm{~V} \end{aligned}$		50		$\mu \mathrm{V}_{\text {RMS }}$
$V_{\text {DD }}$	Dropout Voltage (Note 5)	IOUT $=5.0 \mathrm{~A}$		2.3	2.5	V
		IOUT $=3.0 \mathrm{~A}$		2.0	2.3	V
Ios	Short-Circuit Current Limit	$\mathrm{V}_{\text {IN }}=15 \mathrm{~V}$		7.0	12.0	Apk
V_{C}	Control Pin Voltage		4.85	5.0	5.25	V

Notes

1. This voltage regulator offers output transistor safe-area protection. However, to maintain full protection, the device must be operated within the maximum input-to-output voltage differential rating listed on the data sheet under "Absolute Maximum Ratings." For applications violating these limits, device will not be fully protected.
2. Load and line regulation are specified at constant junction temperature. Pulse testing is required with a pulse width $\leq 1 \mathrm{~ms}$ and a duty cycle $\leq 5 \%$. Full Kelvin connection methods must be used to measure these parameters.
3. The performance characteristics of the adjustable series ($\mu \mathrm{A} 78 \mathrm{HGA}$) is specified for $\mathrm{V}_{\text {OUT }}=5.0 \mathrm{~V}$, unless otherwise noted.
4. $V_{\text {OUT }}$ is defined as $V_{\text {OUT }}=\frac{R 1+R 2}{R 2} \quad\left(V_{\text {CONT }}\right)$ where $R 1$ and R2 are defined in the Basic Test Circuit diagram.
5. Dropout Voltage is the input-output voltage differential that causes the output voltage to decrease by 5% of its initial value.

Typical Performance Curves

Output Impedance

Output Noise Voltage

Maximum Power Dissipation

Typical Performance Curves (Cont.)

Short Circuit Current

Quiescent Current

Line Regulation

Line Transient Response

Load Transient Response

Dropout Voltage

Ripple Rejection

Output Voltage Deviation vs Junction Temperature

Test Circuit

Adjustable Output Voltage

Design Considerations

This device has thermal-overload protection from excessive power and internal short-circuit protection which limits the circuit's maximum current. Thus, the device is protected from overload abnormalities.
Although the internal power dissipation is limited, the junction temperature must be kept below the maximum specified temperature $\left(150^{\circ} \mathrm{C}\right)$. It is recommended by the manufacturer that the maximum junction temperature be kept as low as possible for increased reliability. To calculate the maximum junction temperature or heat sink required, the following thermal resistance values should be used:

Package	Typ $\theta_{\text {JC }}$	Max θ_{JC}
TO-3	1.8	2.5

$$
\begin{aligned}
P_{D(M A X)} & =\frac{T_{J(\max)}-T_{A}}{\theta_{J C}+\theta_{C A}} \\
\theta_{C A} & =\theta_{\mathrm{CS}}+\theta_{\mathrm{SA}}
\end{aligned}
$$

Solving for T_{J} :

$$
\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{A}}+\mathrm{P}_{\mathrm{D}}\left(\theta_{\mathrm{JC}}+\theta_{\mathrm{CA}}\right)
$$

Where:
$\mathrm{T}_{\mathrm{J}} \quad=$ Junction Temperature
$\mathrm{T}_{\mathrm{A}}=$ Ambient Temperature
PD $\quad=$ Power Dissipation
$\theta_{\mathrm{JC}} \quad=$ Junction-to-case thermal resistance
$\theta_{\mathrm{CA}}=$ Case-to-ambient thermal resistance
$\theta_{\text {SA }}=$ Heat sink-to-ambient thermal resistance
$\theta_{\text {CS }} \quad=$ Case-to-heat sink thermal resistance
This device is designed to operate without external compensation components. However, the amount of external filtering of this voltage regulator depends upon the circuit layout. If in a specific application the regulator is more than four inches from the filter capacitor, a $1 \mu \mathrm{~F}$ solid tantalum capacitor should be used at the input. A $0.1 \mu \mathrm{~F}$ capacitor should be used at the output to reduce transients created by fast switching loads, as seen in the basic test circuit. These filter capacitors must be located as close to the regulator as possible.

Caution: Permanent damage can result from forcing the output voltage higher than the input voltage. A protection diode from output to input should be used if this condition exists.

Voltage Output

The device has an adjustable output voltage from 5.0 V to 24 V which can be programmed by the external resistor network (potentiometer or two fixed resistors) using the relationship

$$
\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CONTROL}}\left(\frac{\mathrm{R} 1+\mathrm{R} 2}{\mathrm{R} 2}\right)
$$

Example: If $R 1=0 \Omega$ and $R 2=5 \mathrm{k} \Omega$, then
$\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$ nominal.
Or, if R1 $=10 \mathrm{k} \Omega$ and $R 2=5 \mathrm{k} \Omega$, then
$\mathrm{V}_{\text {OUT }}=15 \mathrm{~V}$.
Package Outline
(S Package - Steel)

All dimensions in inches bold and millimeters (parentheses)

$\mu \mathrm{A78P05}$
 5-Volt 10-Amp Voltage Regulator

Hybrid Products

Description

The $\mu \mathrm{A} 78 \mathrm{P} 05$ 3-terminal positive 5 V regulator, consisting of a monolithic control chip driving a seriespass transistor, is capable of delivering 10 A . This hybrid device is virtually blow-out proof and contains all the protection features inherent in monolithic regulators such as internal short-circuit current limiting, thermal overload and safe-area protection. If the safe-operating area is exceeded, the device shuts down rather than failing or damaging other system components (Note 1). This feature eliminates costly output circuitry and overly conservative heat sinks typical of high-current regulators built with discrete components. The $\mu \mathrm{A} 78 \mathrm{P} 05$ is packaged in a hermetically sealed TO-3 providing 70 W power dissipation.

- 10 A OUTPUT CURRENT

- INTERNAL THERMAL OVERLOAD PROTECTION
- INTERNAL SHORT CIRCUIT CURRENT LIMIT
- LOW DROPOUT VOLTAGE (TYPICALLY 2.3 V @ 10 A)
- 70 W POWER DISSIPATION
- PIN-FOR-PIN COMPATIBLE WITH THE μ A78H05, μ A78H05A AND SH323
- STEEL TO-3 PACKAGE

Note

1. This voltage regulator offers output transistor safe-area protection. However, to maintain full protection, the device must be operated within the maximum input-to-output voltage differential ratings as listed on this data sheet under "Absolute Maximum Ratings." For applications violating these limits, device will not be fully protected.

Connection Diagram TO-3 Metal Package

(Top View)
Order Information

Type	Package	Code	Part No.
μ A78P05	Metal	6 N	μ A78PO5SC
μ A78P05	Metal	6 N	μ A78P05SM

Absolute Maximum Ratings Input Voltage Input-to-Output Voltage Differential, Output Short-
Circuited Internal Power Dissipation Operating Junction Temperature

40 V

35 V
70 W @ $25^{\circ} \mathrm{C}$ Case
$150^{\circ} \mathrm{C}$

Military Temperature Range

$$
\text { Range } \mu \mathrm{A} 78 \mathrm{P} 05 \mathrm{SC}
$$

Storage Temperature Range Pin Temperature
(Soldering, 60 s)
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

MA78P05

Electrical Characteristics $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{I N}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=2.0 \mathrm{~A}$ unless otherwise specified

Symbol	Characteristic	Condition	Limits			Unit
			Min	Typ	Max	
$\mathrm{V}_{\text {OUT }}$	Output Voltage	lout $=2.0 \mathrm{~A}$	4.85	5.0	5.25	V
$\Delta \mathrm{V}_{\text {OUT }}$	Line Regulation (Note 2)	$\mathrm{V}_{\mathrm{IN}}=8$ to 25 V		10	50	mV
$\Delta \mathrm{V}_{\text {OUT }}$	Load Regulation (Note 2)	$10 \mathrm{~mA} \leq \mathrm{IOUT} \leq 5 \mathrm{~A}$		25	40	mV
$\Delta \mathrm{V}_{\text {OUT }}$	Load Regulation (Note 2)	$10 \mathrm{~mA} \leq$ IOUT $\leq 10 \mathrm{~A}$		50	75	mV
IQ	Quiescent Current	lout $=0$		3.4	10	mA
RR	Ripple Rejection	lout $=1.0 \mathrm{~A}, \mathrm{f}=120 \mathrm{~Hz}, 5.0 \mathrm{~V}_{\text {pk-pk }}$	60			dB
V_{n}	Output Noise	$10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}$		40		$\mu \mathrm{V}_{\text {RMS }}$
	Dropout Voltage (Noter	IOUT $=5.0 \mathrm{~A}$		2.0	2.3	V
VDD	Dropout Voltage (Note 3)	IOUT $=10 \mathrm{~A}$		2.5	3.0	V
Ios	Short-Circuit Current Limit			14		Apk

Notes

2. Load and line regulation are specified at constant junction temperature. Pulse testing is required with a pulse width $\leq 1 \mathrm{~ms}$ and a duty cycle $\leq 5 \%$. Full Kelvin connection methods must be used to measure these parameters.
3. Dropout Voltage is the input-output voltage differential that causes the output voltage to decrease by 5% of its initial value.

Typical Performance Curves

Output Impedance

Maximum Power Dissipation

Typical Performance Curves (Cont.)

Short Circuit Current

Quiescent Current

Line Transient Response

Load Transient Response

Dropout Voltage

Ripple Rejection

Output Voltage Deviation vs Junction Temperature

Basic Test Circuit

Design Considerations

This device has thermal-overload protection from excessive power and internal short-circuit protection which limits the circuit's maximum current. Thus, the devices are protected from overload abnormalities. Although the internal power dissipation is limited, the junction temperature must be kept below the maximum specified temperature $\left(150^{\circ} \mathrm{C}\right)$. It is recommended by the manufacturer that the maximum junction temperature be kept as low as possible for increased reliability. To calculate the maximum junction temperature or heat sink required, the following thermal resistance values should be used:

Package	Typ $\theta_{J C}$	Max $\theta_{J C}$
TO-3	1.5	1.8

$$
\begin{aligned}
P_{D(\max)} & =\frac{T_{J(\max)}-T_{A}}{\theta_{\mathrm{JC}}+\theta_{\mathrm{CA}}} \\
\theta_{\mathrm{CA}} & =\theta_{\mathrm{CS}}+\theta_{\mathrm{SA}}
\end{aligned}
$$

Solving for T_{J} :

$$
T_{J}=T_{A}+P_{D}\left(\theta_{J C}+\theta_{C A}\right)
$$

Where:
$T_{\mathrm{J}} \quad=$ Junction Temperature
$\mathrm{T}_{\mathrm{A}}=$ Ambient Temperature
$P_{D}=$ Power Dissipation
$\theta_{\mathrm{JC}} \quad=$ Junction-to-case thermal resistance
$\theta_{C A} \quad$ Case-to-ambient thermal resistance
$\theta_{\mathrm{CS}} \quad=$ Case-to-heat sink thermal resistance
$\theta_{\text {SA }} \quad=$ Heat sink-to-ambient thermal resistance
The $\mu \mathrm{A} 78 \mathrm{P} 05$ is designed to operate without external compensation components. However, the amount of external filtering of this voltage regulator depends upon the circuit layout. If in a specific application the regulator is more than four inches from the filter capacitor, a $1 \mu \mathrm{~F}$ solid tantalum capacitor should be used at the input. A $0.1 \mu \mathrm{~F}$ capacitor should be used at the output to reduce transients created by fast switching loads, as seen in the basic test circuit. These filter capacitors must be located as close to the regulator as possible.

Caution: Permanent damage can result from forcing the output voltage higher than the input voltage. A protection diode from output to input should be used if this condition exists.

Package Outline

(S Package - Steel)

Notes

All dimensions in inches bold and millimeters (parentheses) Pins are solder-dipped alloy 52

FAIRCHILD

A Schlumberger Company

«A79HG
 5 A Negative Adjustable Voltage Regulator

Hybrid Products

Description

The $\mu \mathrm{A} 79 \mathrm{HG}$ is an adjustable 4 -terminal negative voltage regulator capable of supplying in excess of -5 A over a -24 V to -2.11 V output range. The $\mu \mathrm{A} 79 \mathrm{HG}$ hybrid voltage regulator has been designed with all the inherent characteristics of the monolithic 4-terminal regulator; i.e., full thermal overload and short circuit protection. The $\mu \mathrm{A} 79 \mathrm{HG}$ is packaged in a hermetically-sealed 4-pin TO-3 package providing 50 W power dissipation. The regulator consists of a monolithic chip driving a discrete-series pass element and short circuit detection transistors.

■ -5.0 A OUTPUT CURRENT

- INTERNAL CURRENT AND THERMAL OVERLOAD PROTECTION
- INTERNAL SHORT CIRCUIT CURRENT LIMIT

■ LOW DROP-OUT VOLTAGE (TYPICALLY 2.2 V @ 5.0 A)
■ 50 W POWER DISSIPATION

- ELECTRICALLY NEUTRAL CASE
- STEEL TO-3 CASE

Connection Diagram
4-Pin Metal Package

(Top View)
Order Information

Type	Package	Code	Part No.
μ A79HG	Metal	JA	μ A79HGSC
μ A79HG	Metal	JA	μ A79HGSM

Block Diagram

Absolute Maximum Ratings Input Voltage Internal Power Dissipation Maximum Input-to-Output Voltage Differential Operating Junction Temperature Range
-40 V
$50 \mathrm{~W} @ 25^{\circ} \mathrm{C}$ Case
$-35 \mathrm{~V}$
$0^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Storage Temperature Range $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Pin Temperature (Soldering, 60 s)
$300^{\circ} \mathrm{C}$

4A79HG
Electrical Characteristics $\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{I N}=-10 \mathrm{~V}$ and $\mathrm{I}_{\mathrm{OUT}}=-2.0 \mathrm{~A}$ unless otherwise specified.

Characteristic	Limits			Unit	Condition
	Min	Typ	Max		
Input Voltage Range	-40		-7.0	V	
Nominal Output Voltage Range	-24		-2.11	V	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT }}-5 \mathrm{~V}$
Output Voltage Tolerance			4	\%(VOUT)	$-40 \mathrm{~V} \leq \mathrm{V}_{\mathbb{N}} \leq-7 \mathrm{~V}$
Line Regulation		0.4	1.0	\%(VOUT)	$-40 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq-7 \mathrm{~V}$
Load Regulation		0.7	1.0	\%(VOUT)	$\begin{aligned} & \mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\text {OUT }}-10 \mathrm{~V}, \\ & -10 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{OUT}} \leq-5.0 \mathrm{~A} \end{aligned}$
Control Pin Current			3.0	$\mu \mathrm{A}$	
Quiescent Current			-5.0	mA	$\mathrm{V}_{\mathrm{IN}}=-10 \mathrm{~V}$
Ripple Rejection		50		dB	$\begin{aligned} & -18 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq-8.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OUT}}=-5 \mathrm{~V}, \mathrm{f}=120 \mathrm{~Hz} \end{aligned}$
Output Noise Voltage		200		$\mu \mathrm{V}$	$\begin{aligned} & 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}, \\ & \mathrm{~V}_{\text {OUT }}=-5.0 \mathrm{~V} \\ & \hline \end{aligned}$
Dropout Voltage		2.2		V	IOUT $=-5 \mathrm{~A}$
Short Circuit Current Limit		-8	-12	A	$\mathrm{V}_{\mathrm{IN}}=-15 \mathrm{~V}$
Control Pin Voltage (Reference)	-2.35		-2.11	V	$\mathrm{V}_{\mathrm{IN}}=-10 \mathrm{~V}$

Typical Performance Curves

Short Circuit Current

Quiescent Current

Dropout Voltage

Typical Performance Curves (Cont.)

Line Transient Response

Output Voltage Deviation vs Junction Temperature

Load Regulation

Control Current

 vs Temperature

Load Transient Response

Differential Control Voltage vs Input Voltage

Maximum Power Dissipation

Basic Test Circuit, Adjustable Output Voltage

Design Considerations

This device has thermal overload protection from excessive power and internal short circuit protection which limits the circuit's maximum current. Thus, the device is protected from overload abnormalities. Although the internal power dissipation is limited, the junction temperature must be kept below the maximum specified temperature ($150^{\circ} \mathrm{C}$). It is recommended by the manufacturer that the maximum junction temperature be kept as low as possible for increased reliability. To calculate the maximum junction temperature or heat sink required, the following thermal resistance values should be used.

Package	Typ	Max
	θ_{JC}	θ_{JC}
TO-3	1.8	2.5

$P_{D(M A X)}=\frac{T_{J(M A X)}-T_{A}}{\theta_{J C}+\theta_{C A}}$
$\theta_{\mathrm{CA}}=\theta_{\mathrm{CS}}+\theta_{\mathrm{SA}}$
Solving for T_{J} :
$\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{A}}+\mathrm{P}_{\mathrm{D}}\left(\theta_{\mathrm{JC}}+\theta_{\mathrm{CA}}\right)$
Where:
$\mathrm{T}_{\mathrm{J}}=$ Junction Temperature
$\mathrm{T}_{\mathrm{A}}=$ Ambient Temperature
$P_{D}=$ Power Dissipation
$\theta_{\mathrm{JC}}=$ Junction-to-case thermal resistance
$\theta_{\mathrm{CA}}=$ Case-to-ambient thermal resistance
$\theta_{\mathrm{CS}}=$ Case-to-heat sink thermal resistance
$\theta_{S A}=$ Heat sink-to-ambient thermal resistance
The device is designed to operate without external compensation components. However, the amount of external filtering of these voltage regulators depends upon the circuit layout. If in a specific application the regulator is more than four inches from the filter capacitor, a $2 \mu \mathrm{~F}$ solid tantalum capacitor should be used at the input. A $1 \mu \mathrm{~F}$ capacitor should be used at the output to reduce transients created by fast switching loads, as seen in the basic test circuit. These filter capacitors must be located as close to the regulator as possible.

Caution: Permanent damage can result from forcing the output voltage higher than the input voltage. A protection diode from output to input should be used if this condition exists.

Voltage Output

The device has an adjustable output voltage from
-2.11 to -24 V which can be programmed by the external resistor network (potentiometer or two fixed resistors) using the relationship:

$$
V_{\text {OUT }}=V_{\text {CONTROL }}\left(\frac{R_{1}+R_{2}}{R_{2}}\right)
$$

Example: If $\mathrm{R} 1=0 \Omega$ and $\mathrm{R} 2=5 \mathrm{k} \Omega$, then
$\mathrm{V}_{\text {OUT }}=-2.11 \mathrm{~V}$ nominal.
Or, if R1 $=12.8 \mathrm{k} \Omega$ and $\mathrm{R} 2=2.1 \mathrm{k} \Omega$ then $\mathrm{V}_{\text {OUT }}=-15 \mathrm{~V}$.

Package Outline

(S Package - Steel)

Notes
All dimensions in inches bold and millimeters (parentheses)
Pins are solder-dipped alloy 52

FAIRCHILD
 A Schlumberger Company

SH323•SH223•SH123 3 A, 5 V
 Voltage Regulator

Hybrid Products

Description

The SH 323 is a hybrid regulator with 5.0 V fixed output and 3.0 A output capability. It has the inherent characteristics of the monolithic 3-terminal regulators, i.e., full thermal overload, short circuit and safe area protection. All devices are packaged in hermetically sealed TO-3s providing 50 W power dissipation. If the safe operating area is exceeded, the device shuts down rather than failing or damaging other system components (Note 1). This feature eliminates costly output circuitry and overly conservative heat sinks typical of high-current regulators built from discrete components.

- 3.0 A OUTPUT CURRENT
- INTERNAL CURRENT AND THERMAL OVERLOAD PROTECTION
- INTERNAL SHORT CIRCUIT PROTECTION LOW DROPOUT VOLTAGE (TYPICALLY 2.0 V @ 3.0 A)
- 50 W POWER DISSIPATION
- STEEL TO-3 PACKAGE
- ALL PIN-FOR-PIN COMPATIBLE WITH THE LM323, SG323

Connection Diagram 2-Pin Metal Package

Order Information

Type	Package	Code	Part No.
SH323	Metal	GN	SH323SC
SH223	Metal	GN	SH223SV
SH123	Metal	GN	SH123SM

Block Diagram

Absolute Maximum Ratings	
Input Voltage	40 V
Input-to-Output Voltage	
Differential	35 V
\quad Output Short Circuited	$50 \mathrm{~W} @ 25^{\circ} \mathrm{C}$ Case
Internal Power Dissipation	$150^{\circ} \mathrm{C}$
Operating Junction Temperature Industrial Temperature Range SH223SV	$-25^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Military Temperature Range SH123SM
Commercial Temperature Range SH323SC
Storage Temperature Range
Pin Temperature
(Soldering, 60 s)
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Electrical Characteristics $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=10 \mathrm{~V}$, IOUT $=2.0 \mathrm{~A}$ unless otherwise specified.

Symbol	Characteristic	Limits			Unit	Condition
		Min	Typ	Max		
V OUT	Output Voltage	4.85	5.0	5.25	V	IOUT $=2.0 \mathrm{~A}$
$\Delta \mathrm{V}_{\text {OUT }}$	Line Regulation (Note 2)		10	25	mV	$\mathrm{V}_{\text {IN }}=7.5$ to 25 V
$\Delta \mathrm{V}_{\text {OUT }}$	Load Regulation (Note 2)		10	50	mV	$10 \mathrm{~mA} \leq \mathrm{l}$ OUT $\leq 3.0 \mathrm{~A}$
IQ	Quiescent Current		3.0	10	mA	IOUT $=0$
RR	Ripple Rejection	60			dB	IOUT $=1.0 \mathrm{~A}, \mathrm{f}=120 \mathrm{~Hz}, 5.0 \mathrm{~V}_{\text {pk-pk }}$
V_{n}	Output Noise		40		$\mu \mathrm{V}_{\text {RMS }}$	$10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}, \mathrm{V}_{\mathrm{IN}}=10 \mathrm{~V}$
$\mathrm{V}_{\text {DD }}$	Dropout Voltage (Note 3)		2.0	2.3	V	IOUT $=3 \mathrm{~A}$
Ios	Short Circuit Current Limit		7.0	12.0	Apk	$\mathrm{V}_{\mathrm{IN}}=10 \mathrm{~V}$

Notes

1. This voltage regulator offers output transistor safe area protection. However, to maintain full protection, the device must be operated within the maximum input-to-output voltage differential ratings, as listed on this data sheet under "Absolute Maximum Ratings." For applications violating these limits, device will not be fully protected.
2. Load and line regulation are specified at constant junction
temperature. Pulse testing is required with a pulse width $\leq 1 \mathrm{~ms}$ and a duty cycle $\leq 5 \%$. Full Kelvin connection methods must be used to measure these parameters.
3. Dropout Voltage is the input-output voltage differential that causes the output voltage to decrease by 5% of its initial value.

Typical Performance Curves

Short Circuit Current

Maximum Power Dissipation

Dropout Voltage

Typical Performance Curves (Cont.)

Line Regulation

Load Regulation

Output Impedance

Line Transient Response

Load Transient Response

Output Noise Voltage

Ripple Rejection

VOut vs Junction Temperature

Quiescent Current

Test Circuit

Fixed Output Voltage

Design Considerations

This device has thermal overload protection from excessive power and internal short circuit protection which limits the circuit's maximum current. Thus, the device is protected from overload abnormalities. Although the internal power dissipation is limited, the junction temperature must be kept below the maximum specified temperature $\left(150^{\circ} \mathrm{C}\right)$. It is recommended by the manufacturer that the maximum junction temperature be kept as low as possible for increased reliability. To calculate the maximum junction temperature or heat sink required, the following thermal resistance values should be used.

Package	Typ	Max θ_{JC}
TO-3	1.8	2.5

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{D}(\mathrm{MAX})}=\frac{\mathrm{T}_{\mathrm{J}(\mathrm{MAX})}-\mathrm{T}_{\mathrm{A}}}{\theta_{\mathrm{JC}}+\theta_{\mathrm{CA}}} \\
& \theta_{\mathrm{CA}}=\theta_{\mathrm{CS}}+\theta_{\mathrm{SA}}
\end{aligned}
$$

Solving for T_{J} :

$$
\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{A}}+\mathrm{P}_{\mathrm{D}}\left(\theta_{\mathrm{JC}}+\theta_{\mathrm{CA}}\right)
$$

Where:
$\mathrm{T}_{\mathrm{J}}=$ Junction Temperature
$\mathrm{T}_{\mathrm{A}}=$ Ambient Temperature
$P_{D}=$ Power Dissipation
$\theta_{\mathrm{JC}}=$ Junction-to-case thermal resistance
$\theta_{C A}=$ Case-to-ambient thermal resistance
$\theta_{C S}=$ Case-to-heat sink thermal resistance
$\theta_{\mathrm{SA}}=$ Heat sink-to-ambient thermal resistance
The device is designed to operated without external compensation components. However, the amount of external filtering of this voltage regulator depends upon the circuit layout. If in a specific application the regulator is more than four inches from the filter capacitor, a $1 \mu \mathrm{~F}$ solid tantalum capacitor should be used at the input. A $0.1 \mu \mathrm{~F}$ capacitor should be used at the output to reduce transients created by fast switching loads, as seen in the basic test circuit. These filter capacitors must be located as close to the regulator as possible.

Caution: Permanent damage can result from forcing the output voltage higher than the input voltage. A protection diode from output to input should be used if this condition exists.

Package Outline

(S Package - Steel)

Notes

All dimensions in inches bold and millimeters (parentheses)
Pins are solder-dipped alloy 52

FAIRCHILD
 A Schlumberger Company

SH1605
 5-Amp, High-Efficiency Switching Regulator

Hybrid Products

Description

The SH1605 is a hybrid switching regulator with high output current capabilities. It incorporates a temperature-compensated voltage reference, a dutycycle controllable oscillator, error amplifier, high current-high voltage output switch, and a power diode. The SH1605 can supply 5 A of regulated output current over a wide range of output voltage.

- STEP-DOWN SWITCHING REGULATOR
- OUTPUT ADJUSTABLE FROM 3 TO 30 V
- 5 A OUTPUT CURRENT
- HIGH EFFICIENCY
- FREQUENCY UP TO 100 KHz
- UP TO 150 W OUTPUT POWER
- STANDARD 8-PIN, TO-3 PACKAGE

Connection Diagram 8-Pin TO-3 Type

(Bottom View)
Order Information

Output	Temperature	Part
Voltage	Range	Number
3 V To 30 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	SH1605SC
3 V To 30 V	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	SH1605SM

Block Diagram

Absolute Maximum Ratings

Vin $-V_{\text {out }}(\mathrm{Min})$	5 V
Input Voltage	35 V Max
Output Current	6 A
Operating Temperature $\left(\mathrm{T}_{J}\right)$	$150^{\circ} \mathrm{C}$
Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$	
$\quad 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	
\quad SH1605SC	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Storage Temperature Internal Power Dissipation Duty Cycle Steering Diode Reverse Voltage Steering Diode Forward Current
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ 20 W 20% to 80%

60 V
6 A

Electrical Characteristics: $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{T}_{\mathbb{N}}=15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=10 \mathrm{~V}$ unless otherwise specified.

Symbol	Characteristics	Conditions	SH1605SC/SH1605SM			Units
			Min	Typ	Max	
$V_{\text {OUT }}$	Output Voltage	$\mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{O}}+5 \mathrm{~V}, 10=2 \mathrm{~A}$	3.0		30.0	V
$\mathrm{V}_{\text {S }}$	Switch Saturation	$\begin{aligned} & \text { lout }=5.0 \mathrm{~A}, \\ & \text { lout }=2.0 \mathrm{~A} \end{aligned}$		$\begin{aligned} & 1.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.2 \end{aligned}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
V_{F}	Diode On Voltage	$\begin{aligned} & \text { lout }=5.0 \mathrm{~A}, \\ & \text { lout }=2.0 \mathrm{~A} \end{aligned}$		$\begin{aligned} & 2.2 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 2.8 \\ & 2.0 \end{aligned}$	V
$\mathrm{V}_{\text {cc }}$	Supply Voltage		10		35	V
$\mathrm{I}_{\text {RD }}$	Diode Reverse Current	$\mathrm{V}_{\mathrm{RD}}=25 \mathrm{~V}$		2.0		$\mu \mathrm{A}$
10	Quiescent Current	lout $=0.2 \mathrm{~A}$		30		mA

Reference and Oscillator Section

XY ${ }_{\text {REF }}$	Voltage on Pin 3			2.5		V
$\triangle \mathrm{V}_{3} / \mathrm{T}$	V_{3} Temperature Coefficient			150		ppm $/{ }^{\circ} \mathrm{C}$
XIc	Charging Current-Pin 4	$\mathrm{V}_{\text {IN }}=10 \mathrm{~V}$	20	25	50	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {IN }}=35 \mathrm{~V}$	20		70	
$\triangle \mathrm{V}_{\mathrm{c}}$	Voltage Swing-Pin 4			0.5		V
ID	Discharging Current - Pin 4	$\mathrm{V}_{\text {IN }}=10 \mathrm{~V}$	150	225	250	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {IN }}=35 \mathrm{~V}$	150		350	

Switching Characteristics (See Test Circuit)

Symbol	Characteristics	Conditions	Min	Typ	Max	Units
t_{r}	Voltage Rise Time	$\begin{aligned} & \text { lout }=2.0 \mathrm{~A} \\ & \text { lout }=5.0 \mathrm{~A} \end{aligned}$		$\begin{aligned} & 700 \\ & 1.8 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mu \mathrm{~s} \end{aligned}$
t_{f}	Voltage Fall Time	$\begin{aligned} & \text { lout }=2.0 \mathrm{~A} \\ & \mathrm{l}_{\text {lout }}=5.0 \mathrm{~A} \end{aligned}$		$\begin{aligned} & 700 \\ & 900 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{t}_{\text {s }}$	Storage Time	l OUt $=5.0 \mathrm{~A}$		2.6		$\mu \mathrm{S}$
t_{d}	Delay Time	lout $=2.0 \mathrm{~A}$		2.5		$\mu \mathrm{S}$

Thermal Characteristics

PD	Power Dissipation	$\begin{aligned} & \text { lout }=5.0 \mathrm{~A} \\ & \mathrm{~V}_{\text {OUT }}=10 \mathrm{~V} \end{aligned}$	16	W
η	Efficiency	$\begin{aligned} & \hline \text { lout }=10 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=5 \mathrm{~A} \\ & \hline \end{aligned}$	75	\%
$\theta_{\text {J-C }}$	Thermal Resistance		4.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Notes

1. Typical is $30^{\circ} \mathrm{C} / \mathrm{W}$ for natural convection cooling.
2. For heatsinking requirements see power derating curve.
3. $V_{\text {Out }}$ refers to the output voltage range of a switching supply the output LC filter as shown in the typical application circuit.

Switching Waveforms

WHERE $\mathrm{V}_{2} \leq 0.2 \mathrm{~V}$
$4.0 \mathrm{~V} \geq \mathrm{V}_{\mathbf{3}} \geq 2.0 \mathrm{~V}$
Switching Characteristics Test Circuit

Power Derating Curve

Design Equations

Efficiency $(\eta)=\frac{\text { Pout } \times 100}{\text { Pin }^{\prime}}$
Transistor DC Losses $\left(\mathrm{P}_{\mathrm{T}}\right)=$ lout $\times \mathrm{V}_{\mathrm{S}} \frac{\mathrm{t}_{\mathrm{S}}}{\text { toN }+ \text { toFF }}$
Diode DC Losses $\left(\mathrm{P}_{\mathrm{D}}\right)=$ Iout $\times \mathrm{V}_{\mathrm{F}} \frac{\text { tofF }}{\text { ton }+ \text { toFF }}$
Drive Circuit Losses $\left(D_{\mathrm{L}}\right)=\frac{\mathrm{V}_{\mathrm{IN}^{2}}}{300} \times \frac{\mathrm{t}_{\text {ON }}}{\text { ton }+ \text { toFF }}$
Switching Losses Transistor

$$
\left(P_{S}\right)=V_{\text {IN }} \times \text { IOUT } \frac{t_{r}+t_{f}}{2\left(t_{\text {ON }}+t_{\text {OFF }}\right)}
$$

Transistor Duty Cycle $=\frac{t_{\text {ON }}}{t_{\text {ON }}+t_{\text {OFF }}}=\frac{V_{\text {OUT }}}{V_{\text {IN }}}$
Diode Duty Cycle $=\frac{t_{\text {OFF }}}{t_{\text {ON }}+t_{\text {OFF }}}=1-\frac{V_{\text {OUT }}}{V_{\text {IN }}}$
Power Inductor
$\left(P_{L}\right)=$ lout $^{2} \times R_{L}$ (Winding Resistance)
Efficiency $(\eta)=$
$\frac{V_{\text {OUT }} \text { IOUT }}{V_{\text {OUT }} \text { IOUT }+P_{T}+P_{D}+D_{L}+P_{S}+P_{L}} \times 100$

$$
\text { Where: } \begin{aligned}
& \text { Pout }=\text { Output Power Dissipation } \\
& P_{\text {IN }}=\text { Input Power Dissipation } \\
& \text { lout }^{\prime}=\text { Output Current } \\
& V_{\mathrm{S}}=\text { Darlington Switching Saturation } \\
& \text { Voltage } \\
& \mathrm{t}_{\mathrm{on}}=\text { Regulator "On", Time } \\
& \mathrm{t}_{\text {off }}=\text { Regulator "Off" Time } \\
& \mathrm{V}_{\mathrm{F}}=\text { Steering Diode Forward } \\
& \text { Voltage Drop } \\
& \mathrm{V}_{\text {IN }}=\text { Input Voltage } \\
& \mathrm{t}_{\mathrm{r}}=\text { Regulator Switching Rise Time } \\
&=\text { Regulator Switching Fall Time } \\
& \mathrm{t}_{\mathrm{f}} \\
& \mathrm{~V}_{\text {OUT }}=\text { Output Voltage } \\
& \mathrm{R}_{\mathrm{L}}=\text { Inductor Winding Resistance }
\end{aligned}
$$

$$
V_{\text {OUT }} S_{E T} R_{\text {ESIITANCE }}=R_{S}
$$

$$
=\left[\frac{\mathrm{V}_{\text {OUT }}\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)}{\mathrm{V}_{\mathrm{REF}}}\right]-\left[\mathrm{R}_{1}+\mathrm{R}_{2}\right]
$$

$$
=\left[\frac{2 \times 10^{3} V_{\text {OUT }}}{V_{\mathrm{REF}}}-2 \times 10^{3}\right]
$$

$$
=8 \times 10^{2} V_{\text {OUT }}-2 \times 10^{3} \text { Typical }
$$

Where: Internal Resistors $=R_{1}=R_{2}$ $=1 \times 10^{3} \Omega$
Reference Voltage On Pin $3=\mathrm{V}_{\text {REF }}$ $=2.5 \mathrm{~V}$ Typical

Inductance $=L_{1}=\left(\frac{V_{\text {in(nom) }}-V_{\text {OUT }}}{\Delta I_{1}}\right) \times t_{\text {ON }}$
Where: \quad Change in Inductor Current $=\Delta I_{1}$ $=2 \times$ lout(Min)
Minimum Continuous Output Current $=$ lout(Min)
Time $=$ ton $_{\text {ON }}$
On Time $=$ ton $>$ (td + ts)
$t_{0 N}$ is determined by the design and depends upon the desired frequency of operation under constant load conditions where frequency $=1 /\left(t_{\text {on }}+t_{\text {off }}\right)$. Off Time, $\mathrm{t}_{\mathrm{off}}$, is determined by the ratio of input voltage and output voltage

$$
\mathrm{t}_{\mathrm{OFF}}=\mathrm{t}_{\mathrm{ON}} \times\left(\frac{\mathrm{V}_{\text {IN }}}{\mathrm{V}_{\mathrm{OUT}}}-1\right)
$$

Delay Time $=\mathrm{td}=2.5 \mu$ s Typical
Storage Time $=$ ts $=2.6 \mu$ s Typical
Nominal Input Voltage $=\mathrm{V}_{\text {IN(NOM) }}$
Output Voltage $=$ Vout
Timing Capacitance $\left(\mathrm{C}_{\mathrm{T}}\right)=\frac{\mathrm{t}_{\mathrm{ON}} \times \mathrm{I}_{\mathrm{C}}}{\Delta \mathrm{V}_{\mathrm{C}}}$
Where: Charging Current on Pin $4=I_{c}$ $=25 \mu \mathrm{~A}$ Typical
Voltage Swing on Pin $4=\Delta V_{c}$ $=0.5 \mathrm{~V}$ Typical

Frequency $=F=$

$$
\frac{1}{\frac{\mathrm{C}_{\mathrm{T}} \Delta V_{C}}{\mathrm{I}_{\mathrm{C}}}+\frac{\Delta \mathrm{I}_{1} \mathrm{~L}_{1}}{\mathrm{~V}_{\text {OUT }}+V_{F}}}
$$

Where: Steering Diode Forward Voltage Drop

$$
=V_{F}
$$

$$
\begin{aligned}
& =2.2 \mathrm{~V} @ 5 \mathrm{~A} \text { Typical } \\
& \text { (From Elect. Char.) } \\
& =1.6 \mathrm{~V} @ 2 \mathrm{~A} \mathrm{Typical}
\end{aligned}
$$

(From Elect. Char.)
Minimum Output Capacitance $=$ Cout $_{\text {(MIN }}$)

$$
=\frac{\Delta I_{1}}{\left(8 \times F_{\text {(MIN })} \times V_{\text {RIPPLE(MAX) }}\right)}
$$

Where: Minimum Expected Frequency $=F_{(\text {MIN })}$

$$
F_{(M I N)}=\frac{1}{\frac{C_{T} \Delta V_{C}}{I_{c}}+\frac{\Delta I_{1}(M A X) L}{V_{O U T}+V_{F}}}
$$

Maximum Change in Inductor Current

$$
=\Delta I_{1(M A X)}=\left(\frac{V_{I N(M A X)}-V_{O U T}}{L_{1}}\right) \times \mathrm{t}_{\mathrm{ON}}
$$

Maximum Expected Input Voltage

$$
=\mathrm{V}_{\text {IN(MAX }}
$$

Maximum Expected Ripple Voltage

$$
=\mathrm{V}_{\text {RIPPLE(MAX) }}
$$

Effective Series Resistance of $\mathrm{C}_{\mathrm{ONT}}=\mathrm{ESR}$

$$
=\frac{\mathrm{V}_{\text {RIPPLE(MAX) }}}{\Delta I_{1(\text { MAX })}}
$$

Typical Application

$\mathrm{R}_{\mathrm{S}}=\mathrm{V}_{\mathrm{OUT}}$ Set Resistor
$\mathrm{V}_{\mathrm{IN}}=12-18 \mathrm{~V}$
$\eta=70 \%$
Load Reg. $=50 \mathrm{mV}$
$\mathrm{R}_{\mathrm{S}}=\frac{2 \times 10^{3}\left(\mathrm{~V}_{\text {OUT }}-2.5\right)}{2.5}$

$$
\begin{aligned}
& \mathrm{V}_{\text {OUT }}=5 \mathrm{~V} \\
& \mathrm{I}_{\text {OUT }}=5 \mathrm{~A}(\mathrm{Max}) \\
& \mathrm{I}_{\text {OUT }}=1 \mathrm{~A}(\mathrm{Min})
\end{aligned}
$$

$$
\text { Line Reg. }=50 \mathrm{mV}
$$

$$
\text { Ripple }=100 \mathrm{mV}
$$

Package Outline

(S Package - Steel)

Notes

All dimensions in inches bold and millimeters (parentheses)
Pins are solder-dipped alloy 52

Following is a partial list of sockets and heat dissipators for use with the SH1605. Fairchild assumes no responsibility for their quality or availability.

8-Lead TO-3 Hardware

Sockets	Heat Sinks	Mica Washers
Robinson Nugent 0002011	Thermalloy 2266B $\left(35^{\circ} \mathrm{C} / \mathrm{W}\right)$	Keystone 4858
Azimuth 6028 (test	IERC LAIC 3B4CB	
socket)	IERC HP1-TO3-	
Augat 8112-AG6	$33 C B ~\left(7^{\circ} \mathrm{C} / \mathrm{W}\right)$	
	AAVID 5791B	

AAVID
ENGINEERING
30 Cook Court
Laconia, New Hampshire 03246
Azimuth Electronics
2377 S. El Camino Real
San Clemente, CA 92672
Augat
P.O. Box 779

Attleboro, MA 02703
IERC
135 W. Magnolia Blvd.
Burbank, CA 91502
Keystone Electronics Corp
49 Bleecker St.
New York, N.Y. 10012
ROBINSON
NUGENT INC.
800 E. 8th St.
New Albany, IN 47150
Thermalloy
P.O. Box 34829

Dallas, Texas 75234

Cross Reference Guide and Ordering

High Current Voltage
Regulator Applications

High Current Voltage
Regulator Applications

A Schlumberger Company
$\mathrm{V}_{\text {OUT(Max) }}=$ Maximum output voltage of regulator
$\mathrm{V}_{\mathrm{DD}(\text { max })}=$ Maximum dropout voltage
$\Delta V_{L}=$ Maximum line voltage change
$V_{R(p k)}=$ Peak ripple voltage
Also determine $T_{A(\max)}=$ Maximum ambient temperature and select $\mathrm{T}_{\boldsymbol{J}}<\mathrm{T}_{\boldsymbol{J}(\max)}$ from the data sheet and see the application note titled "Thermal Considerations" for heat sink requirements.

Design Precautions

When designing and laying out a regulator circuit, follow these guidelines to save time, money and simplify design.

- Keep all ground leads as short as possible. Use ground conductors sufficiently large enough to handle rated currents to reduce unwanted voltage drops across leads, and to minimize heating effects and lead inductance.
$\mathrm{V}_{\operatorname{IN}(\text { max })}=$ Maximum allowable input voltage
$\mathrm{V}_{\mathrm{IN}}=$ Regulator input voltage under load

This application note is to assist the user in designing power supplies and on card regulation systems using Fairchild's family of series pass High Current Voltage Regulators.

Selecting the Correct High Current Voltage

Regulator

The regulator selection guide (Table 1) provides a concise table of key regulator specifications by device number. Select the device that provides the desired output voltage and current, then proceed as follows.

Determine the required input voltage $\left(\mathrm{V}_{\mathbf{I N}}\right)$.
$\mathrm{V}_{\mathrm{IN}(\text { max })}>\mathrm{V}_{\mathrm{IN}}>\mathrm{V}_{\mathrm{OUT}(\text { max })}+\mathrm{V}_{\mathrm{DD}(\text { max })}+\Delta \mathrm{V}_{\mathrm{L}}+\mathrm{V}_{\mathrm{R}(\text { pk })}$ where

High Current Voltage Regulator Selection Guide

$$										Thermal Resistance Max (${ }^{\circ} \mathrm{C} / \mathrm{W}$)		
										θ_{Jc}	$\theta_{\text {JA }}$	
SH323	Fixed Positive	40	$\begin{aligned} & 4.85 \\ & 5.25 \end{aligned}$	3	0.2	0.2	3	60	2	2.5	38	$\left\lvert\, \begin{aligned} & 2-\mathrm{Pin} \\ & \mathrm{TO}-3 \end{aligned}\right.$
78H05A	Fixed Positive	40	$\begin{aligned} & 4.85 \\ & 5.25 \end{aligned}$	5	0.2	0.2	3	60	2.3	2.5	38	$\begin{aligned} & \text { 2-Pin } \\ & \text { TO-3 } \end{aligned}$
78H12A	Fixed Positive	40	$\begin{aligned} & 11.5 \\ & 12.5 \end{aligned}$	5	0.2	0.2	3.7	60	2.3	2.5	38	$\begin{array}{\|l} \text { 2-Pin } \\ \text { TO-3 } \end{array}$
78HGA	Adjustable Positive	40	$\begin{aligned} & 5 \\ & 24 \end{aligned}$	5	0.2	0.2	3.4	60	2.3	2.5	38	$\left\lvert\, \begin{aligned} & \text { 4-Pin } \\ & \text { TO-3 } \end{aligned}\right.$
79HG	Adjustable Negative	-40	-2.11	-5	0.4	0.7	-5	60	-2.2	2.5	38	$\begin{array}{\|l\|} \text { 4-Pin } \\ \text { TO-3 } \end{array}$
78P05	Fixed Positive	40	$\begin{aligned} & 4.85 \\ & 5.25 \end{aligned}$	10	0.2	1.0	3.4	60	2.5	1.8	38	$\begin{array}{\|l\|l} \text { 2-Pin } \\ \text { TO-3 } \end{array}$

- Use single-point grounding at the regulator common terminal whenever possible to prevent circulating currents or ground loops.
- When using the adjustable multi-terminal regulators, especially at high output current levels, derive the feedback sense voltage from across the load rather than from across the regulator to improve circuit performance.
- High Current Voltage Regulators are particularly attractive because of the small number of external components required. It is good practice, however to use bypass capacitors at all times. Input bypass capacitors ($1 \mu \mathrm{~F}$ for positive positive regulators and $2 \mu \mathrm{~F}$ for negative regulators) are especially critical if the regulator is located any appreciable distance from the power supply filter. Output bypass capacitors ($0.1 \mu \mathrm{~F}$ for positive regulators and $1.0 \mu \mathrm{~F}$ for negative regulators) are also required to improve transient response. These bypass capacitors should be mylar, ceramic or tantalum with good high frequency characteristics. If more than one bypass capacitor source or more than one type is used, stability should be checked on each source or type. Stable operation with one capacitor from one vendor may not necessarily result in stable operation with a capacitor of the same type from a second vendor, since the characteristics of the capacitors may vary.

Regulator output impedance is in the order of $100 \mathrm{~m} \Omega$ or less and increases as a function of frequency above 10 kHz due to the gain rolloff of the error amplifier. A tantalum electrolytic bypass capacitor connected to the regulator output will maintain low impedance for frequencies up to 1 MHz . A ceramic capacitor should be placed in parallel with the tantalum capacitor for driving fast switching loads to compensate for the rising impedance of the electrolytic capacitor above 1 MHz . If switching loads are distributed over a large area, additional ceramic bypass capacitors should be located at the loads. Very large-value output bypass capacitors should not be used unless adequate measures are taken to prevent the output from rising above the input, or to avoid discharging the bypass capacitor through the series-pass transistor of the regulator if the input is accidentally grounded. A reverse-biased diode connected from input to output is normally sufficient to achieve this protection.

- Internal protection circuits are provided in all High Current Voltage Regulators to improve reliability and make these regulators immune to certain types of overloads. These on-chip components protect the regulators against short-circuit conditions (current limit), excessive input-output voltage differential conditions (safe-area limit) and excessive junction temperatures (thermal limit). The protection circuits protect the device against
abuse and fault conditions that may be encountered occasionally. Continuous operation of the device under fault conditions such as a short or in a thermal shutdown mode is not a recommended procedure.

Proper attention must be paid to the safe-area protection network when these regulators are operating with excessive input voltage or excessive input-output differential-voltage conditions. In addition to reducing the available output current with high input-output differential conditions, the safe-area protection network may, under certain conditions, cause the device to latch-up if the output is shorted to ground. This situation is aggravated as the input voltage, load current or the operating junction temperature is increased. This mode of operation does not damage the device but power (input voltage or load current) must be interrupted momentarily for the device to recover from the latched condition.

Precautions must also be taken to avoid regulator operation beyond its absolute maximum ratings. Switching transients exceeding the maximum input voltage rating of a regulator, for instance, can destroy a regulator. These transients, which occur especially if the regulator input voltage is switched instantaneously rather than ramped by the natural smoothing provided by the ac line and the filter capacitors, are usually hard to track and normally caused by lead inductance and fast switching currents. Good quality bypass capacitors that have low series resistance cause the inrush current to increase further, thereby causing a higher magnitude transient at the input of the regulator. In such cases, a lower quality and cheaper bypass capacitor may be the answer.

Because of their output stage configurations, positive regulators source current and negative regulators sink current. These restrictions should be kept in mind and, under no circumstance, should a regulator output terminal be allowed to go more than a few volts higher than the regulated output of the regulator. The power should be turned off before removing or inserting a regulator into a test socket. However, if it is necessary to insert a regulator into a "live" socket, care must be taken to ensure that the common terminal connection is made prior to, or simultaneously with, the input terminal connection. In the absence of the common terminal connection, the output voltage of the regulator is 1 or 2 V below the input voltage. This type of fault condition can cause an excessive output voltage which may adversely affect the circuits supplied by the regulator. If the common terminal is quickly connected, the regulator can be destnyed. Also, damage to the regulator may result from the discharging of the bypass capacitor through the output and common terminals.

High Current Voltage Keguiator Applications

- The thermal properties and limitations of voltage regulators are extremely important in circuit design. Whether or not a heat sink is required should be determined before the circuit is laid out. See the application note entitled "Thermal Considerations."

Applications

A few of the most popular High Current Voltage Regulator Applications are illustrated in this section. These illustrations include both basic applications and some applications more exotic to extend the capabilities of the regulator.

Basic High Current Voltage Regulator Configurations

Figure 1 shows the basic connection diagram for fixed positive high current voltage regulators including the SH323, SH223, SH123, $\mu \mathrm{A} 78 \mathrm{H} 05$, $\mu \mathrm{A} 78 \mathrm{H} 05 \mathrm{~A}, \mu \mathrm{~A} 78 \mathrm{H} 12 \mathrm{~A}$ and the $\mu \mathrm{A} 78 \mathrm{P} 05$. The user may refer to Table 1 or the individual data sheets to determine which regulator satisfies his system needs.

Adjustable regulators are ideal for applications that require non-standard output voltages. Output voltages are determined by the following equation:

$$
\mathrm{V}_{\mathrm{OUT}}=\left(\frac{\mathrm{R}_{1}+\mathrm{R}_{2}}{\mathrm{R}_{2}}\right) \mathrm{V}_{\text {CONTROL }}
$$

Where: R_{1} and R_{2} are set resistors as shown in Figures 2 and 3.
$\mathrm{V}_{\text {CONTROL }}=5 \mathrm{~V}_{\text {(NOMINAL) }}$ for the $\mu \mathrm{A} 78 \mathrm{HGA}$ $=-2.23 \mathrm{~V}_{\text {(NOMINAL) }}$ for the $\mu \mathrm{A} 79 \mathrm{HG}$

Output voltage can be set anywhere between +5 V to +24 V for the $\mu \mathrm{A} 78 \mathrm{HGA}$ and -2.11 V to -24 V for the $\mu \mathrm{A} 79 \mathrm{HG}$. A trimpot may also be substituted for R_{1} and R_{2} to allow for either full range adjustments or output voltage trimming.

Fig. 1 Basic Fixed Positive High Current Voltage Regulator with Bypass Capacitors

[^0]Fig. 2 A Basic Positive Adjustable High Current Voltage Regulator

Notes

$\mathrm{V}_{\text {OUT }}=\frac{\mathrm{R} 1+\mathrm{R} 2}{\mathrm{R} 2} \mathrm{~V}_{\text {CONTROL }}$
$\mathrm{V}_{\text {Control }}$ Nominal $=5 \mathrm{~V}$
Recommended R2 current $\approx 1 \mathrm{~mA}$

Fig. 3 A Basic Negative Adjustable High Current Voltage Regulator

*May be necessary with long leads

$$
\mathrm{V}_{\mathrm{OUT}}=\left(\frac{\mathrm{R} 1+\mathrm{R} 2}{\mathrm{R} 2}\right) \mathrm{V}_{\text {CONTROL }} \quad \mathrm{V}_{\text {CONTROL }} \text { Nominal }=-2.23 \mathrm{~V}
$$

Fig. 4 Parallel Operation of Regulators For Very High Current

Parallel Regulators

To obtain even higher output current, several regulators in parallel may be used. Regulation of the overall system can be improved if the individual devices are matched for output voltages as shown in Figure 4. If the outputs are not matched, it is likely that the output current will not be shared between the regulators and, as a result, some of the regulators will operate at or near the current limit while others are at their quiescent no-load levels.

Excessive Input/Output Differential

When a regulator is operating with a large inputoutput differential, the addition of a series resistor with the input extends the operating range of the device by sharing the power dissipation, see Figure 5. The value of the series resistor R1 must be low enough so that, under worst-case conditions, (lowest supply voltage, highest output voltage, and highest load) the device remains in regulation. R1 can be calculated as follows.

$$
\mathrm{R} 1=\frac{\mathrm{V}_{\mathrm{S}(\text { min })}-\mathrm{V}_{\mathrm{OUT}(\text { Max })}-\mathrm{V}_{\mathrm{DD}(\text { max })}}{\mathrm{I}_{\mathrm{OUT}(\text { max })}+\mathrm{I}_{\mathrm{Q}(\text { max })}}
$$

where
$\mathrm{V}_{\mathrm{s}(\text { min })}$ is the minimum supply voltage $V_{D D(\text { max })}$ is the maximum dropout voltage $I_{Q(\text { max })}$ is the maximum quiescent current $V_{\text {OUT(max) }}$ is the maximum output voltage

Maximum regulator dissipation, however, occurs with highest supply voltage and highest load current.

$$
P_{D(\text { max })}=\left[\mathrm{V}_{\mathbb{I N}(\text { max })}-\mathrm{V}_{\text {OUT(min) }}\right] I_{\text {OUT(max })}
$$

where

$$
\mathrm{V}_{\mathrm{IN}(\text { max })}=\mathrm{V}_{\mathrm{S}(\text { max })}-\left[\mathrm{l}_{\text {OUT (max })}+\mathrm{I}_{\mathrm{Q}(\text { max })}\right] \mathrm{R} 1
$$

For a constant load, the regulator input voltage varies by the same amount as the supply voltage and consequently the line regulation of the device remains essentially the same.

For load regulation, assuming constant supply voltage, the combined effects of the change at the input due to the voltage change across R1 must be taken into consideration. In this configuration, as the load is increased, the regulator input voltage decreases and the net result, in most cases, is a slight degradation in the performance of the regulator since these two effects are additive.

The load regulation can therefore be calculated as follows.

Load regulation at constant $\mathrm{V}_{\mathrm{S}}=$ load regulation at constant $\mathrm{V}_{\mathrm{IN}}+$ line regulation

Example: Assume a supply range of 25 to 35 V used with a $\mu \mathrm{A} 78 \mathrm{HG} 12 \mathrm{~A}$ regulator delivering an output current of 1 to 3 Amps .

From the data sheet: $\mathrm{V}_{\text {Out(min) }}=11.5 \mathrm{~V}$

$$
\begin{aligned}
& V_{O U T(\max)}=12.5 \mathrm{~V} \\
& V_{D D(\max)}=2.5 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{Q}(\text { max })}=10 \mathrm{~mA}
\end{aligned}
$$

$$
\mathrm{R} 1=\frac{25-12.5-2.5}{3+.01}=3.3 \Omega
$$

With this value of R1 and a load varying from 1 to $3 A$, the input voltage to the regulator varies,

$$
\Delta V_{\text {IN }}=\Delta \text { IOUT } R 1=6.6 \mathrm{~V}
$$

Fig. 5 Reducing Power Dissipation in a Regulator with Dropping Resistor R1

The effect of the 6.6 V change at the regulator input under worst case conditions can be determined from a ratio of data sheet parameters:

$$
\begin{aligned}
& \frac{\text { Line Regulation (Max) }}{\triangle \mathrm{V}_{\mathrm{IN}}(\text { For Line Regulation Test })} \times \triangle \mathrm{V}_{\mathrm{IN}}= \\
& \frac{120 \mathrm{mV}}{25 \mathrm{~V}-16 \mathrm{~V}} \times 6.6 \mathrm{~V}=88 \mathrm{mV}
\end{aligned}
$$

The effect is 88 mV additional change at the output terminal.

The inclusion of the 33Ω reduces the maximum power dissipation of the regulator as shown below.

$$
\begin{aligned}
& \text { From } \mathrm{P}_{\mathrm{D}(\text { max })}=(35-11.5) \times 3= \\
& 70.5 \mathrm{~W} \text { (without } \mathrm{R} 1) . \\
& \text { To }_{\mathrm{P}_{\mathrm{D}(\text { max })}=(35-3.3 \times 3-11.5) \times 3=}^{40.8 \mathrm{~W}(\text { with } \mathrm{R} 1)} \mathrm{l}
\end{aligned}
$$

Note that the power dissipation is shared between the regulator and R1.

Although bypass capacitors are not shown in Figure 5 , it is recommended that they be incorporated in the design as illustrated in Figure 1.

Input Voltage $>\mathbf{V}_{\mathbf{I N}(\text { max })}$

When a regulator is used with supply voltages greater than the rated regulator maximum input voltage, the circuit shown in Figure 6 can be used. This circuit essentially provides a constant voltage to the regulator with supply voltage variations. The choice of Zener diode voltage is dictated by $\mathrm{V}_{\operatorname{IN}(\min)}$ of the regulator and $\mathrm{V}_{\mathrm{BE}(\max)}$ of Q 1 .

Fig 6 Regulator Input Circuit for Input Voltage Source Greater than $\mathrm{V}_{\mathrm{IN}(\text { max })}$

Fig. 7 High Output Voltage Regulator, No Short-Circuit Protection

Fig 8 High Output Voltage Regulator with Short-Circuit Protection

High Output Voltages

Figure 7 shows a simple circuit that can be used to obtain an output voltage greater than the standard fixed voltages available. The quiescent current biases Zener diode D1 and the regulator common terminal rides on the pedestal established by D1. If the Zener must be operated at currents greater than the quiescent current level of the regulator, then R1 can be used to increase the Zener current. If, on the other hand, lower Zener current is satisfactory, R1 can be placed in parallel with D1 to shunt some of the current. Caution: this circuit configuration cannot utilize the thermal shutdown or short-circuit protection features of the regulator if the input
voltage exceeds the maximum input voltage rating of the regulator.
Figure 8 can be used to take advantage of the protective features of the regulator. Here too, the regulator common terminal operates on the pedestal established by Zener diode D1. Zener diode D2 and the Darlington configuration of Q1, Q2 reduces the regulator input voltage to a safe value. The Darlington configuration prevents loading of Zener diode D2, and thus maintains a high level of regulation. Diode D3 protects the regulator against accidental shorts by clamping the common terminal of the regulator to a diode drop above the shorted output.

High Current Voltage Regulator Applications

Remote Shutdown

Electronic shutdown is used in some applications where, under certain conditions, the removal of power from the load is desired. The 3-terminal regulator circuit of Figure 9 has a remote shutdown feature. Under normal conditions, Q2 is on and provides the base current of Q1.

Q1 acts as a switch and is either in saturation, when the signal to the base of Q2 is high, or is off when the signal to the base of Q2 is low. It must have a current rating equal to the load current. Turn-off time is dependent on C2 and the load current; the higher the load current, the faster the turn-off time.

Constant Current Regulator

Any regulator can be used as a constant-current regulator as shown in Figure 10. The current lout which dictates the regulator type to be used is determined by this equation.

$$
\text { IOUT }=\frac{\mathrm{V}_{\text {OUT }}}{\mathrm{R} 1}+\mathrm{I}_{\mathrm{Q}}
$$

where $V_{\text {Out }}$ is the regulator output voltage and I_{Q} is the quiescent current.

The input voltage $\mathrm{V}_{\text {IN }}$ must be high enough to accommodate the dropout voltage at the low end, but must not exceed the maximum input voltage rating at the high end.

Positive and Negative Adjustable Regulators
The concepts used above for positive fixed regulators can easily be extended to the $\mu \mathrm{A} 78 \mathrm{HGA}$, positive adjustable regulator, by simply including the $\mathrm{R}_{1}, \mathrm{R}_{2}$ resistor network shown in Figure 2.

Also, since negative voltage regulators are complements of the positive voltage regulators, almost all the positive regulator applications can be converted into negative versions by appropriate changes in the polarity of the input voltages. If external active components such as series-pass transistors are used, they should be the complements of those used in the positive-regulator application, i.e., npn transistors replaced by pnp and vice versa. Finally, these concepts can be extended to the $\mu \mathrm{A} 79 \mathrm{HG}$, negative adjustable regulator, by simply including the $\mathrm{R}_{1}, \mathrm{R}_{2}$ Resistor Network shown in Figure 3.

Fig. 9 Remote Shutdown

Fig. 10 Constant Current Regulator (Positive Output)

$\mathrm{I}_{\text {OUT }}=\frac{V_{\text {OUT }}}{R_{1}}+I_{\text {Q }}$

High Current Voltage Regulator Applications

Dual Regulators

Dual regulators, or dual power supplies, are normally used for applications requiring two output voltages of opposite polarities that do not necessarily have equal magnitudes, for example, $+12 \mathrm{~V},-5 \mathrm{~V}$. However, the word dual can also imply two supplies of the same polarity but of different magnitudes, such as $+5 \mathrm{~V},+12 \mathrm{~V}$. With dual tracking, not only are the output voltages of different polarities, but one output voltage always follows the other one, i.e., an increase in the positive voltage results in a decrease in the negative output voltage.

Dual Supplies

The simplest dual-polarity high current supply can be obtained by using a positive and a negative adjustable regulator with a center-tapped
transformer as shown in Figure 11. The same type of dual supply can be achieved with two positive (or two negative) adjustable regulators if a transformer with two isolated windings is used as shown in Figure 12.

The reverse-biased diodes connected across the outputs of the dual regulator circuits are not necessary if the loads are referenced to ground. If the loads are tied between the two outputs, however, a latch-up may occur at the instant power is turned on, especially if one regulator input voltage rises faster than the second one. The diodes, that ensure proper start-up of the regulators by preventing a parasitic action from taking place when power is turned on, should have a current rating equal to half the load current.

Fig. 11 Dual Supply using a Center Tapped Transformer with a Positive and a Negative Adjustable High Current Voltage Regulator

Fig. 12 Dual Supply using a Transformer with Two Windings and Two Positive Adjustable High Current Voltage Regulators

SH1605

Absolute Maximum Ratings

$\mathrm{V}_{\text {in }}-\mathrm{V}_{\text {out }}(\mathrm{Min})$	5 V
Input Voltage	35 V Max
Output Current	6 A
Operating Temperature ($\left.\mathrm{T}_{\mathrm{J}}\right)$	$150^{\circ} \mathrm{C}$
Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$	
$\quad \mathrm{SH}^{\circ} \mathrm{T} 05 \mathrm{SC}$	
\quad to $+70^{\circ} \mathrm{C}$	
$\quad \mathrm{SH} 1605 \mathrm{SM}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Storage Temperature Internal Power Dissipation Duty Cycle Steering Diode Reverse Voltage Steering Diode Forward Current
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ 20 W 20\% to 80%

60 V
6 A

Electrical Characteristics: $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{T}_{\text {IN }}=15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=10 \mathrm{~V}$ unless otherwise specified.

Symbol	Characteristics	Conditions	SH1605SC/SH1605SM			Units
			Min	Typ	Max	
$V_{\text {OUT }}$	Output Voltage	$\mathrm{V}_{\text {IN }} \geq \mathrm{V}_{\mathrm{O}}+5 \mathrm{~V}, \mathrm{lo}=2 \mathrm{~A}$	3.0		30.0	V
V_{s}	Switch Saturation	$\begin{aligned} & \text { lout }=5.0 \mathrm{~A}, \\ & \text { lout }=2.0 \mathrm{~A} \end{aligned}$		$\begin{aligned} & 1.5 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.2 \end{aligned}$	$\begin{array}{\|l} \hline \mathrm{V} \\ \mathrm{~V} \end{array}$
V_{F}	Diode On Voltage	$\begin{aligned} & \text { lout }=5.0 \mathrm{~A}, \\ & \text { lout }=2.0 \mathrm{~A} \\ & \hline \end{aligned}$		$\begin{aligned} & 2.2 \\ & 1.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.8 \\ & 2.0 \\ & \hline \end{aligned}$	V
$\mathrm{V}_{\text {cc }}$	Supply Voltage		10		35	V
I_{RD}	Diode Reverse Current	$\mathrm{V}_{\mathrm{RD}}=25 \mathrm{~V}$		2.0		$\mu \mathrm{A}$
10	Quiescent Current	lout $=0.2 \mathrm{~A}$		30		mA

Reference and Oscillator Section

XY YEFF	Voltage on Pin 3			2.5		V
$\triangle \mathrm{V}_{3} / \mathrm{T}$	V_{3} Temperature Coefficient			150		ppm $/{ }^{\circ} \mathrm{C}$
XIc	Charging Current-Pin 4	$\mathrm{V}_{\mathrm{IN}}=10 \mathrm{~V}$	20	25	50	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{IN}}=35 \mathrm{~V}$	20		70	
$\triangle \mathrm{V}_{\mathrm{c}}$	Voltage Swing-Pin 4			0.5		V
ID	Discharging Current - Pin 4	$\mathrm{V}_{\mathrm{IN}}=10 \mathrm{~V}$	150	225	250	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {IN }}=35 \mathrm{~V}$	150		350	

Switching Characteristics (See Test Circuit)

Symbol	Characteristics	Conditions	Min	Typ	Max	Units
t_{r}	Voltage Rise Time	lout $=2.0 \mathrm{~A}$ lout $=5.0 \mathrm{~A}$		700		
		1.8	ns $\mu \mathrm{s}$			
t_{f}	Voltage Fall Time	lout $=2.0 \mathrm{~A}$ lout $=5.0 \mathrm{~A}$		700		ns ns
t_{s}	Storage Time	lout $=5.0 \mathrm{~A}$		2.6		$\mu \mathrm{~s}$
t_{d}	Delay Time	lout $=2.0 \mathrm{~A}$		2.5		$\mu \mathrm{~s}$

Thermal Characteristics

P_{D}	Power Dissipation	lout $=5.0 \mathrm{~A}$ $V_{\text {OUT }}=10 \mathrm{~V}$	16		W	
η	Efficiency	$\mathrm{I}_{\text {OUT }}=10 \mathrm{~V}$ $V_{\text {OUT }}=5 \mathrm{~A}$		75		$\%$
$\theta_{\text {J-C }}$	Thermal Resistance			4.5		${ }^{\circ} \mathrm{C} / \mathrm{W}$

Notes

1. Typical is $30^{\circ} \mathrm{C} / \mathrm{W}$ for natural convection cooling.
2. For heatsinking requirements see power derating curve.
3. $\mathrm{V}_{\text {OUT }}$ refers to the output voltage range of a switching supply the output LC filter as shown in the typical application circuit.

FAIRCHILD

A Schlumberger Company

SH1605

5-Amp, High-Efficiency Switching Regulator

Hybrid Products

Description

The SH1605 is a hybrid switching regulator with high output current capabilities. It incorporates a temperature-compensated voltage reference, a dutycycle controllable oscillator, error amplifier, high current-high voltage output switch, and a power diode. The SH1605 can supply 5 A of regulated output current over a wide range of output voltage.

- STEP-DOWN SWITCHING REGULATOR
- OUTPUT ADJUSTABLE FROM 3 TO 30 V
- 5 A OUTPUT CURRENT
- HIGH EFFICIENCY
- FREQUENCY UP TO 100 KHz
- UP TO 150 W OUTPUT POWER
- STANDARD 8-PIN, TO-3 PACKAGE

Connection Diagram
8-Pin TO-3 Type

(Bottom View)
Order Information

Output	Temperature	Part
Voltage	Range	Number
$3 \vee$ To 30 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	SH1605SC
3 V To 30 V	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	SH1605SM

Block Diagram

Fig. 13 A Dual Positive Supply with a +5 V and +10 V Output

Fig. 14 A Dual Polarity Supply from a Single Transformer Winding

$R_{L}+>R_{L}-$

Figure 13 shows a single positive-polarity dual supply with +5 and +10 V output. It uses two 5 V $\mu \mathrm{A} 78 \mathrm{HO5}$ regulators operating from a single positive voltage source. The +10 V output is achieved by connecting the common terminal of the top regulator A to the output of the bottom regulator B. Diode D1 ensures proper start-up of the top regulator and prevents a latch-up that may occur under a heavy load condition on regulator A. Resistor R1 provides a path for the quiescent current of regulator A and can be eliminated if regulator B has a minimum load current greater than the quiescent current of regulator A .

The concept of Figure 13 can be used to achieve a dual-polarity output from a floating single supply as shown in Figure 14. This circuit is restricted in that $R_{L}+>R_{L}-$, since all of the current provided by the positive regulator A must flow through $\mathrm{R}_{\mathrm{L}}-$.

Adjustble Dual Tracking Regulators

For applications requiring adjustble tracking outputs, the circuit of Figure 15 can be used. Tracking is accomplished by connecting a common resistor between the control terminals of the two 4-terminal
adjustable regulators. Because of the internal feedback of the 4 -terminal regulators, a constant voltage is developed across the resistor string R1, R2 and R3. Variations at one of the output nodes are reflected at the control nodes causing corresponding variations at the opposite output node. Note that tracking between the two outputs is not one to one but rather depends on the absolute value of the two references and the feedback resistors R1, R2, and R3. The output voltages are determined by

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{OUT}^{+}}=\mathrm{V}_{\mathrm{REF}^{+}}+\frac{\mathrm{R} 1}{\mathrm{R} 2}\left(\mathrm{~V}_{\mathrm{REF}^{+}}-\mathrm{V}_{\mathrm{REF}^{-}}\right) \\
& \mathrm{V}_{\mathrm{OUT}^{-}}=\mathrm{V}_{\mathrm{REF}}-\frac{\mathrm{R} 4}{\mathrm{R} 3}\left(\mathrm{~V}_{\mathrm{REF}^{+}}-\mathrm{V}_{\mathrm{REF}^{-}}\right)
\end{aligned}
$$

Tracking between the outputs can be improved by adding a μ A741 and modifying the circuit as shown in Figure 16. This circuit yields an adjustable true dualtracking regulator with internal short-circuit protection, safe-area limiting, thermal overload protection, and is capable of a 5 A maximum output current. The outputs of the regulators are independently adjustable by potentiometers R1 and

High Current Voltage Regulator Applications

R2. With the component values shown, the output voltage of the positive $\mu \mathrm{A} 78 \mathrm{HGA}$ can be varied from 5 to 24 V , and the negative $\mu \mathrm{A} 79 \mathrm{H} 6$ can be varied from -2.11 to -24 V .

This circuit has a positive and a negative regulator and an operational amplifier used as a comparator. Tracking is accomplished by connecting the two regulator common terminals to the output of the $\mu \mathrm{A} 741$ that provides a potential on which the common terminals of the regulators float. The summed regulator outputs, $\mathrm{V}_{\mathrm{O}}+$ and $\mathrm{V}_{\mathrm{O}}-$, are then compared to the power supply common.

The positive and negative regulator outputs track as
follows: any change in the positive regulator output causes an opposite change on the common terminals and also on the negative regulator output. For example, a decrease in the positive regulator output voltage causes a like change in the amplitude of the negative regulator output. Since each regulator has a reference, no slaving exists between the outputs and, as a result, tracking is true and independent of polarity.

Proper care must be taken to insure that the maximum supply voltage rating of the $\mu \mathrm{A} 741$ is not exceeded when the regulators are operating with high input voltage sources.

Fig. 15 Adjustble Dual Tracking Regulator

Fig. 16 Independently Adjustable True Dual Tracking Power Supply

Miscellaneous Applications

This section consists of a set of illustrations showing a variety of additional high current voltage regulator applications.

Fig. 17 Negative Output Voltage Circuit

Fig. 18 Programmable Supply

Output Waveform

High Current Voltage Regulator Applications

Fig. 19 Motor Speed Control

Use flyback diode across motor if necessary
Fig. 20 15+ Amp Regulator

Notes

a. No current limit in effect
b. At 10 A out 9.0 A passes 4.0 A
c. For 10 A output change, $\mathrm{V}_{\text {OUT }}$ changes approx. 80 mV

Fig. 21 Increased Output Voltage

$V_{\text {OUT }}=V_{R I}\left(1+\frac{R 2}{R 1}\right)+I_{Q} R 2$

Fig. 22 Signal Driver/Modulator

Fig. 23 High-Current ECL Regulator Using μ A79HG

*Solid Tantalum Close to Device
Fig. 24 Operational Amplifier Supply (± 15 V @ 5 A)

Understanding the Switching Regulator

A Schlumberger Company

A basic switching regulator is composed of four major components: a voltage source $\mathrm{E}_{\text {in }}$, a switch S 1 , a pulse generator E_{p}, and a filter $F 1$. The block diagram in Figure 1 shows the interconnection between these elements. The voltage source may be any dc supply needing conversion and/or regulation - a battery, an unregulated rectified and filtered supply, or even a regulated voltage to be converted into some other required voltage. The requirements for a voltage source are:

- It must be capable of supplying the required output power plus the losses associated with the switching regulator.

$$
\mathrm{P}_{\text {in }}=\frac{\mathrm{P}_{\text {out }}}{\eta}
$$

- The input voltage must be sufficiently high to overcome any IR drops and meet the minimum requirements of the system.
- The input voltage must be large enough to supply sufficient dynamic range for line and load variations.
- In a modern computer power supply, the input voltage may be required to store energy for a specified amount of time during brownouts or power failures.

Fig. 1 Basic Switching Regulator

Switch S is typically a transistor or thyristor connected as a power switch. The switch is inherently efficient because it is operated in the saturated mode. The pulse generator alternately turns S on and off. The pulse is generally an asymmetrical square wave varying in either frequency (frequency modulation) or pulse width (pulse with modulation). Theoretical analysis and formulas generally apply to both frequency or pulse width modulated systems. The frequency f_{1} of the pulse generator is usually in the tens of kilohertz to
keep components small and switching inaudible. Filter F serves as an averaging filter, converting the pulse from S into a dc voltage. Assuming no losses, the power in equals the power out:

$$
\mathrm{E}_{\text {in }} \mathrm{l}_{\text {in }}=\mathrm{E}_{\text {out }} \mathrm{l}_{\text {out }}
$$

This switching mechanism allows a conversion similar to transformers, thus the switching regulator has often been referred to as a dc transformer. The relationship of input and output voltage is a function of duty cycle. The duty cycle is the ratio of the ontime ($\mathrm{t}_{\text {on }}$) to the period ($\mathrm{t}_{\mathrm{p}}=\mathrm{t}_{\text {on }}+\mathrm{t}_{\text {off }}=1 / \mathrm{f}$). Thus, the duty cycle

$$
\sigma=\frac{\mathrm{t}_{\mathrm{on}}}{\mathrm{t}_{\mathrm{on}}+\mathrm{t}_{\mathrm{off}}}, \mathrm{E}_{\text {out }}=\sigma \mathrm{E}_{\text {in }}=\left(\frac{\mathrm{t}_{\mathrm{on}}}{\mathrm{t}_{\mathrm{on}}+\mathrm{t}_{\mathrm{off}}}\right) \mathrm{E}_{\text {in }}
$$

With ($\mathrm{t}_{\text {on }}+\mathrm{t}_{\text {off }}=\mathrm{t}_{\mathrm{p}}$) constant, the output voltage $\mathrm{E}_{\text {out }}$ is directly proportional to the on-time $t_{o n}$. Thus, varying t_{on} varies the output voltage (i.e., pulse width modulation).

With t_{on} held constant, the output voltage, $\mathrm{E}_{\text {out }}$, is inversely proportional to the period, $\mathrm{t}_{\mathrm{p}}=\mathrm{t}_{\mathrm{on}}+\mathrm{t}_{\text {off }}$, or directly proportional to the frequency, $f=1 /\left(\mathrm{t}_{\mathrm{on}}+\right.$ $\mathrm{t}_{\mathrm{tff}}$).

These techniques allow efficient generation of low voltages from high voltages in a stepdown regulator. Operating from voltages much too high for linear conversion affords a wide dynamic range and high energy input storage for brownouts and missing cycles.

The Filter

The filter or integrating network is of major importance in the proper design for the switching regulator. The filter basically has three forms:

RC filter RL filter RLC filter
While all these filters are used in switching regulators, the RLC filter is most often used in series switching regulators. A brief analysis of the RC and RL filters gives the foresight needed for understanding the RLC filter design.

Understanding the Switching Regulator

The RC Filter

A simple switching regulator employing an RC filter is shown in Figure 2. When a switch Q1 closes, the instantaneous current in capacitor C1 is very large and limited only by the series resistance R_{s} and the ESR* of the capacitor. This instantaneous current can be found from Kirchhoff's Voltage Law, using Laplace transforms.

$$
\begin{aligned}
& \frac{E}{S}=I_{S} R+\frac{I_{S}}{C S} ; \quad R=R_{S}+E S R^{*} \\
& \frac{E}{S}=I_{S}\left(R+\frac{1}{C S}\right)
\end{aligned}
$$

*ESR $=$ Effective Series Resistance $=\frac{X_{c}}{Q}$

$$
\begin{aligned}
& I_{S}=\frac{E}{R\left(S+\frac{1}{R C}\right)} ; \quad a=\frac{-1}{R C} \\
& \frac{1}{S-a}=e^{\text {at }} \\
& I_{S}=\frac{E}{R} e^{\frac{-t}{R C}}
\end{aligned}
$$

The resultant formula is the familiar equation for finding the current in an RC circuit. It can easily be seen that at $\mathrm{t}=0+$, the current is limited by R only. When switch Q1 is open, the voltage across C1 starts to decay in accordance with the formula:

$$
e_{c}=E\left[1-e^{\frac{-t}{R C}}\right]
$$

(See Figure 2)

In order to maintain the voltage on C1 (i.e., E out) relatively constant, it is necessary to make the charge time constant much shorter than the load time constant

$$
\mathrm{RC} 1 \ll \mathrm{R}_{\mathrm{L}} \mathrm{C} 1
$$

As R becomes smaller, the averaged square wave approaches a dc source. However, as R becomes smaller, the peak current I_{c} becomes larger. These peak currents are very high and impractical to switch reliably. As R is increased to limit the current, it becomes noticeably lossey and dissipates excessive power.

The RL Filter
A simple switching regulator employing an RL filter is shown in Figure 3. As switch Q1 closes, the voltage across the inductor is the full power supply voltage E. The current supplied to the load at $t=0+$ is approximately equal to zero and exponentially

Fig. 3 Simple Switching Regulator with RL Filter

Understanding the Switching Regulator

increases as shown in the curve in Figure 3. In a similar fashion, the instantaneous current can be found using Laplace transforms and Kirchhoff's Voltage Law:

$$
\begin{aligned}
& \frac{E}{S}=I_{S} R+I_{S} L S ; \quad R=R_{S}+R_{\text {inductor }} \\
& \text { Yielding: } i_{L}=\frac{E}{R}\left[1-e \frac{-R t}{L}\right]
\end{aligned}
$$

The resultant formula is the familiar equation for finding the current in an RL circuit. It can easily be seen that at $\mathrm{t}=0+$, the current is zero. Thus the time constant L/R must be smaller than the load time constant to average the square wave into a dc source.

$$
\frac{\mathrm{L} 1}{\mathrm{R}} \ll \frac{\mathrm{~L} 1}{\mathrm{R}_{\mathrm{L}}}
$$

While the inductor does overcome the large peak current phenomenon of the RC filter, there are three important disadvantages associated with the RL filter.

- Since the current cannot change instantaneously in an inductor, a sudden change in the load (R_{L}) will cause an abrupt change in the output voltage. This phenomenon is the limiting factor that determines the transient response of a switching regulator.
- The energy stored in an inductor is determined from the equation
$e=\frac{1}{2} L^{2}$.
Since the energy changes with the square of the current, the inductor must be very large to provide constant current flow when the load current is small.
- The disruption of current in Q1 (shutting Q1 off) causes the magnetic field associated with L1 to collapse and induce a potential in accordance with Lenz' law:

$$
e_{L}=-L \frac{d i}{d t}
$$

This negative voltage places a very large voltage across transistor switch Q1 and will probably result in its destruction.

$$
V_{C E(\text { off })}=E_{\text {in }}+\left|e_{L}\right|
$$

The RLC Filter

Combining the RC and RL filters gives all of the advantages of both, with few of the disadvantages. Figure 4 depicts the RLC filter in the simple switching regulator. The inductor L1 is used to limit the peak currents associated with the charging of capacitor C 1 . This current will be highest during the initial turnon of the power supply with all initial conditions set to zero. This circuit is shown in Figure 5. The peak current then is again derived by Laplace transforms from Kirchhoff's Voltage Law.

$$
\begin{aligned}
& \frac{E}{S}=I_{S} R_{S}+I_{S} L S+I_{S} R_{L} / / \frac{1}{C S} \\
& \frac{E}{S}=I_{S}\left[R_{S}+L_{s}+\frac{\frac{R_{L}}{C S}}{R_{L}+\frac{1}{C S}}\right] \\
& \mathrm{I}_{\mathrm{S}}=\left[\frac{\mathrm{E}}{\mathrm{~S}}\right] \times \\
& {\left[\frac{R_{L} C S+1}{R_{L} L C S^{2}+\left(R_{S} R_{L} C+L\right) S+R_{S}+R_{L}}\right]} \\
& I_{S}=\left[\frac{E}{S}\right]\left[\frac{R L C}{R_{L L C}}\right] \times \\
& {\left[\frac{S+\frac{1}{R_{L} C}}{S^{2}+S \frac{\left(R_{S} R_{L} C+L\right)}{R_{L} L C}+\frac{R_{S} R_{L}}{R_{L} L C}}\right]} \\
& I_{S}=\left[\frac{E}{L}\right]\left[\frac{1}{S}\right] \times \\
& {\left[\frac{S+\frac{1}{R_{L} C}}{S^{2}+S \frac{\left(R_{s} R_{L} C+L\right)}{R_{L L C}}+\frac{R_{s} R_{L}}{R_{L} L C}}\right]}
\end{aligned}
$$

Resulting in the form:

$$
f_{(s)}=\frac{S+d}{S(S-a)(S-b)}
$$

Understanding the Switching Regulator

Yielding the general equation: $\mathrm{I}=\mathrm{A} e^{a t}+B e^{b t}+K$

$$
\begin{aligned}
& A=\frac{a+d}{a(a-b)} \\
& B=\frac{b+d}{b(b-a)} \\
& K=\frac{d}{a b}
\end{aligned}
$$

This formula is used in the section analyzing a typical switching regulator. A typical curve for I_{s} is shown in Figure 6.

Under light load conditions, the capacitor C1 supplies the necessary current to the load in accordance with the equation $\mathrm{e}=\frac{1}{2} \mathrm{CE}^{2}$. Under heavy load conditions, the energy stored in L1 supplies the current in accordance with the equation $e=\frac{1}{2} \mathrm{LI}^{2}$. The energy stored in the magnetic field that resulted in the negative induced voltage can now be applied as an advantage. As shown in Figure 4,

Fig. 4 Basic Switching Regulator with RLC Filter

Fig. 5 Equivalent Circuit (Turn-On)

diode D1 steers the current developed by the collapsing magnetic field and charges capacitor C1 during the off-time; D1 also acts as a clamp and limits the negative potential to one diode drop. Diode D1 is called a steering diode, commutating diode or free wheeling diode. This circuit not only protects switch Q1, but also uses the energy stored in the magnetic field to charge capacitor C 1 ; thus, $\mathrm{LI}^{2}=\mathrm{CE}^{2}$.

Optimization of the RLC filter requires examination of the current loop equation for the RLC filter. Figure 5 depicts the RLC circuit used for the analysis.

$$
\begin{aligned}
& I=A e^{s 1 t}-A e^{s 2 t} ; A=\frac{V_{0}}{2 L} \\
& S_{1}=\frac{-R}{2 L}+\sqrt{\frac{R^{2}}{4 L^{2}}-\frac{1}{L C}} \\
& S_{2}=\frac{-R}{2 L}+\sqrt{\frac{R^{2}}{4 L^{2}}-\frac{1}{L C}}
\end{aligned}
$$

Fig. 6 Turn-On Peak Current

Fig. 7 Frequency Response Curve of an RLC Filter

Understanding the Switching Regulator

Examining the roots of the equation shows that three special conditions exist:

Underdamped case:

$$
\frac{\mathrm{R}^{2}}{4 \mathrm{~L}^{2}}<\frac{1}{\mathrm{LC}} ; \quad \sqrt{\frac{\mathrm{L}}{\mathrm{C}}}<0.5 \mathrm{R}
$$

The solution is complex and is exhibited as an oscillatory condition. This condition is undesirable due to the associated losses, i.e., energy in the ringing, and the RFI produced. See Figure 7.

Overdamped case:

$$
\frac{\mathrm{R}^{2}}{4 \mathrm{~L}^{2}}>\frac{1}{\mathrm{LC}} ; \quad \sqrt{\frac{\mathrm{L}}{\mathrm{C}}}>0.5 \mathrm{R}
$$

The solution for these roots is real. This condition is also undesirable in the extreme case due to its associated losses. See Figure 7.

Critically damped case:

$$
\frac{\mathrm{R}^{2}}{4 \mathrm{~L}^{2}}=\frac{1}{\mathrm{LC}} ; \quad \sqrt{\frac{\mathrm{L}}{\mathrm{C}}}=0.5 \mathrm{R}
$$

The equation has a real solution and is the most desirable case since losses are at a minimum. However, since this is not a practical case state, the circuit is operated in a slightly overdamped condition. See Figure 7.

During the off-condition of switch Q1, the circuit becomes the dual of Figure 5. This too has three similar conditions:
Underdamped case $\sqrt{\frac{C}{L}}>\frac{0.5}{\mathrm{R}}$
Overdamped case $\sqrt{\frac{C}{L}}<\frac{0.5}{\mathrm{R}}$
Critically damped case $\sqrt{\frac{C}{L}}=\frac{0.5}{R}$

The waveforms for the dual circuit are the same as those in Figure 7. Thus, to insure that for both on and off conditions of switch Q1, both circuits are slightly overdamped.

$$
\begin{aligned}
& \sqrt{\frac{L}{C}}<0.5 R_{S} \text { (on-condition) } \\
& \sqrt{\frac{C}{L}}<0.5 R_{L} \text { (off-condition) }
\end{aligned}
$$

In the on-condition, R_{s} is a fixed quantity and should be made small to minimize IR losses. Thus, a snubber network may be required to dampen any oscillations associated with a small R_{s}.

In the off-condition, R_{L} is variable, with the worst case occurring during light loads. This can be alleviated with a minimum R_{L} or a snubber network as used in the on-condition. As aforementioned, meeting these inequalities enhances both the RFI characteristics and the possibility of parasitic oscillations.

Overshoot and Undershoot

When the load is abruptly changed (i.e., load current), the output voltage changes accordingly. This is called overshoot for decreasing loads and undershoot for increasing loads. Expressions for overshoot and undershoot can be derived from the two equations:

$$
-e_{L}=L \frac{d i}{d t} \quad d t=\frac{L d i}{e_{L}}
$$

where
$e_{L}=E_{\text {in }}-E_{\text {out }}$ for increasing loads
$e_{L}=E_{\text {out }}$ for decreasing loads
$\mathrm{di}=\mathrm{i}_{\mathrm{c}}=$ change in load current $=\Delta \mathrm{I}$
$\mathrm{t}=$ transient time
$\mathrm{dv}=$ overshoot/undershoot voltage

$$
\begin{aligned}
& i_{C}=C \frac{d v}{d t}, i_{C}=d i \\
& d t=C \frac{d v}{d i} \\
& \frac{L d i}{e_{L}}=C \frac{d v}{d i} \\
& d v=\frac{L d i^{2}}{C e_{L}} \\
& \Delta E_{\text {out }}=\frac{L \Delta I^{2}}{C\left(E_{\text {in }}-E_{\text {out }}\right)} \text { for increasing loads } \\
& \Delta E_{\text {out }}=\frac{L \Delta I^{2}}{C E_{\text {out }}} \quad \text { for decreasing loads }
\end{aligned}
$$

Transient Response

The transient response, as mentioned earlier, is limited by the size of inductor L1. This transient response time t_{R} is the time necessary before the system can compensate for an abrupt change in the load, assuming zero loop response. Transient response time can be found from the equation:

$$
\begin{aligned}
& -e_{L}=L \frac{d i}{d t} \\
& t_{R}=\frac{2 L \Delta I}{E_{\text {in }}-E_{\text {out }}} \quad \text { for increasing loads } \\
& t_{R}=\frac{2 L \Delta I}{E_{\text {out }}} \quad \text { for decreasing loads }
\end{aligned}
$$

The Inductor

The inductor is perhaps the least understood of the switching regulator components and yet one of the most important. There are seven major areas with tradeoffs to be considered.

1. Energy storage for the regulator
2. Peak current limiting in Q1
3. Output ripple
4. Transient response
5. Overshoot
6. Size and cost limits
7. Radiated electric and magnetic fields

As inductance is increased, items 1 through 3 are enhanced. Item 1 , the energy $\left(e=\frac{1}{2} L 1^{2}\right)$ is directly proportional to the inductance. Item 2, the peak current,

$$
\left[\mathrm{I}_{\mathrm{pk}}=\left(\frac{\mathrm{E}_{\text {in }}-\mathrm{E}_{\text {out }}}{2 L}\right) \mathrm{t}_{\mathrm{on}}\right]
$$

is inversely proportional to the inductance. Item 3, the ripple voltage

$$
\left[E_{\text {RIPPLE }}=\frac{E_{\text {in }}-E_{\text {out }}}{4 \pi^{2} \mathrm{f}^{2} L C}\right]
$$

is also inversely proportional to the inductance.
However, as the increase in inductance enhances operation of items 1 through 3 , it is detrimental to items 4 through 6. In item 4, the transient response
is directly proportional to the inductance. Item 5, the circuit overshoot

$$
\left[\Delta E_{\text {out }}=\frac{L \Delta I^{2}}{C\left(E_{\text {in }}-E_{\text {out }}\right)}\right]
$$

is directly proportional to the inductance. Item 6, the size and cost are directly effected by the inductance as well as a host of other factors.

Item 7, the effect of the inductor on radiated electrical and magnetic noise is a function of geometry, frequency, size and cost. It becomes apparent that selecting the inductor requires careful consideration of the aforementioned tradeoffs. Applications of these tradeoffs are considered in the analysis of a typical switching regulator.

Inductor design has many philosophies associated with it. Size constraints are radiated electrical and magnetic fields may dictate a powder toroid or pot core; however, in most applications (computer and peripherals), the decision is left to the design philosophy. The three most common techniques employed in the industry are:

- Powdered permalloy toroids
- Ferrite EI, U and toroid cores
- Silicon steel El butt stacks

The first technique, the powdered permalloy toroid, yields perhaps the most stable and predictable inductor. Powdered permalloy toroids have low leakage inductance, high permeability and low core losses. The major disadvantage is the cost of manufacturing and mounting toroid inductors.

The ferrite EI, U and toroid cores exhibit low losses. The ferrite toroid has low leakage inductance but is as expensive to manufacture as its powdered permalloy counterpart. All ferrite cores have low permeability, poor high temperature performance and the expense in mounting. The silicon steel El butt stack offers one of the best tradeoffs in low voltage switching regulators. The silicon steel laminations exhibit high permeability, high flux densities, ease of construction and mounting. Core losses, while higher than the powdered permalloy and ferrite cores, are usually insignificant at low voltage levels. The silicon steel lamination is a common material in most magnetic houses and often can be found on the shelf.

$$
\left[\mathrm{t}_{\mathrm{R}}=\frac{2 \Delta I}{\mathrm{E}_{\text {in }}-\mathrm{E}_{\text {out }}}\right]
$$

Understanding the Switching Regulator

Inductor Design
Combining Faraday's Law and Lenz' Law yields:

$$
\begin{aligned}
& E=N \frac{d \phi}{d t} \times 10^{-8}=L \frac{d i}{d t} \\
& \int N \frac{d \phi}{d t} \times 10^{-8} \\
& =\int L \frac{d i}{d t}=L I=B A e N \times 10^{-8}
\end{aligned}
$$

Multiplying both sides by $\frac{1}{2}$ yields:

$$
\frac{1}{2} L L^{2}=\frac{B \mathrm{AeNI} \times 10^{-8}}{2}
$$

which is the energy stored in the inductor. Integrating Faraday's Law $E=N \frac{d \phi}{d t}$ yields the formula for ac flux in the core.

$$
\mathrm{B}_{\mathrm{ac}}=\frac{3.49 \mathrm{E} \times 10^{6}}{\mathrm{f} \mathrm{~A}_{\mathrm{c}} \mathrm{~N}} \text { Gauss }
$$

The dc flux is found from the equation:

$$
\mathrm{B}_{\mathrm{dc}}=\frac{0.6 \mathrm{NI}_{\mathrm{dc}}}{\mathrm{I}_{\mathrm{g}}} \text { Gauss }
$$

The magnetizing from Ampere's Law is found from the equation:

$$
\mathrm{H}_{\mathrm{dc}}=0.4 \mathrm{Ni}_{\mathrm{dc}}
$$

The inductance is found from the equation:

$$
\mathrm{L}=\frac{3.19 \mathrm{~N}^{2} \mathrm{~A}_{\mathrm{c}} \times 10^{-8}}{\mathrm{I}_{\mathrm{g}}+\frac{\mathrm{L}_{\mathrm{c}}}{\Delta_{\mu}}}
$$

Incremental permeability can be found from manufacturers' data sheets as shown in Figure 8. Linearity of the inductor can be enhanced by making I_{g} large.

Units:

$\mathrm{A}_{\mathrm{C}}=$ cross sectional area (in. ${ }^{2}$)
$\mathrm{B}_{\mathrm{ac}}=\mathrm{ac}$ flux (Gauss)
$\mathrm{B}_{\mathrm{dc}}=\mathrm{dc}$ flux (Gauss)
$\mathrm{f}=$ frequency (Hz)
$\mathrm{H}_{\mathrm{dc}}=$ magnetizing force (Oersteds)
$\mathrm{I}_{\mathrm{c}}=$ mean length of core (in.)
$\mathrm{I}_{\mathrm{g}}=\mathrm{gap}$ (in.)
$\mathrm{N}=$ number of turns
$\Delta \mu=$ incremental permeability
There are several off-the-shelf inductors manufactured by Sprague called Soft Inductors. The Soft Inductor is designed specifically for switching regulators, with a special variable reluctance gap.

Figure 8

a. Incremental permeability curve for AISI grade M22 laminations where H_{0} is the dc magnetizing force in core.
b. Effect of dc in a typical filter choke. Inductance drops linearly until rated dc is flowing through coil, then drops rapidly as core saturates. The linear portion of the curve has less slope for inductors that have larger air gaps.

Understanding the Switching Regulator

The Output Capacitor

Selection of the output capacitor also requires care. Consideration must be given to both the ESL and the ESR. Very often the ESR contributes more to ripple and noise than its reactance does. Desirable characteristics can be achieved by carefully paralleling three or four different types of capacitors such as tantalum, electrolytic and ceramic capacitors. Capacitors especially developed for switching regulators are now available in a multitude of ranges, sizes and types, with low ESR and low ESL at the switching frequencies. A curve of the 4terminal UFT capacitor (manufactured by Cornell Dubilier) compared to a conventional electrolytic is shown in Figure 9. The curve plots impedance versus frequency. The UFT capacitor remains quite flat beyond 1 MHz . The UPT capacitor, also manufactured by Cornell Dubilier, is designed for switching regulators and gives one of the best performance/cost tradeoffs available. A simplified equivalent circuit is shown in Figure 10.

Figure 9

Fig. 10 Simplified Equivalent Circuit of RLC Filter

$$
\begin{aligned}
& Z 1=R s+r s+j X_{L} \\
& Z 2=E S R+j X_{E S L}-j X_{C} \\
& Z 3=R_{L j_{o}} \\
& \gamma=\frac{Z 2 / / Z 3}{Z 1+Z 2 / / Z 3} \\
& \gamma \approx \frac{E S R+j\left(X_{\text {ESL }}-X_{C}\right)}{\left(R_{S}+r_{s}+E S R\right)+j\left(X_{2}+X_{E S L}-X_{C}\right)} \\
& E_{\text {RIPPLE }}= \\
& \quad E_{\text {in }}\left[\frac{E S R+j\left(X_{E S L}-X_{C}\right)}{\left(R_{S}+r_{s}+E S R\right)+j\left(X_{C}+X_{E S L}-X_{C}\right)}\right] \\
& E_{\text {RIPPLE }}=\gamma E_{\text {in }} \\
& \text { The formula: } \quad C 1=\frac{E_{\text {in }}-E_{\text {out }}}{4 \pi^{2 f 2} L E_{\text {RIPPLE }}}
\end{aligned}
$$

is a good approximation for finding the minimum capacitance; however, the preceding formula must be used to accurately determine the ripple voltage.

Closed Loop

In order for the switching regulator to maintain an output voltage relatively constant, some feedback mechanism must be employed. Figure 11 shows a typical feedback system.

- K3 represents the power switch, filter and all the associated losses.
- K2 represents the transfer function for the pulse generator.
- K1 is the open loop gain of the error amplifier.
- β is the attenuation factor usually determined by a simple voltage divider.
- Σ is a summing network that produces an error voltage Δe from the difference between the reference voltage $E_{\text {REF }}$ and the feedback voltage $\mathrm{Efb}_{\text {f }}$.

$$
\Delta \epsilon=E_{R E F}-\Delta E_{f D}
$$

The total loop gain will determine the percentage regulation of the switching regulator.

$$
A=\frac{\Delta E_{\text {out }}}{\Delta \epsilon}=\% \text { regulation }
$$

The error amplifier gain then is defined by:

$$
\mathrm{K} 1=\frac{\mathrm{A}-1}{\beta \mathrm{~K} 2, \mathrm{~K} 3}
$$

While this model is an approximation, it yields relatively close results.

Fig. 11 Typical Switching Regulator Feedback Loop

A Switching Regulator Using the SH1605

The SH1605 is a hybrid integrated circuit, designed specifically to be used as a major building block in high-current, step-down switching regulator systems. It contains a temperature-compensated voltage reference, comparator, oscillator, highcurrent Darlington and high-power steering diode. This device is capable of supplying up to 5 A continuous current; its package dissipation capability is 20 W maximum. This circuit provides excellent performance, with efficiencies up to 85%, for applications requiring high power densities and large operating currents.

Switching Regulator Theory

Figure 12 shows the basic switching regulator configuration. This circuit provides an output voltage $\mathrm{V}_{\text {Out }}$, related to the input voltage $\mathrm{V}_{\text {IN }}$ by the duty cycle of switch S1. Thus:

Therefore, a switching regulator maintains a constant output voltage against variations in input by appropriately modifying the system duty cycle. The basic switching regulator operates as follows. Control transistor S1 switches on when first energized, thereby applying a voltage approximately equal to the input across L 1 and C_{0}. This causes current I_{1} to increase linearly with time, supplying current to the load while storing energy in L1. Diode D1 insures that, when S1 switches off, current continues to flow to the load thereby achieving a continuous load-current flow.

At equilibrium, the average current through L1 is equal to the load current. The rate of current change

$$
V_{\text {OUT }}=V_{\text {IN }}\left(\frac{t_{\text {on }}}{t_{\text {on }}+t_{\text {off }}}\right)
$$

Fig. 12 Basic Switching Regulator

Understanding the Switching Regulator

through the inductor, Δl_{1}, during the on and off period is defined by Equations 1 and 2 below.

$$
\begin{align*}
& \Delta I_{1}=\left(\frac{V_{\mathrm{IN}}-V_{\text {OUT }}}{L 1}\right) t_{\mathrm{on}} \tag{1}\\
& \Delta I_{1}=\left(\frac{V_{\text {OUT }}}{\mathrm{L} 1}\right) \mathrm{t}_{\mathrm{off}} \tag{2}
\end{align*}
$$

Since, in a conventional switching regulator the excursions $I_{1(o n)}$ and $1_{1(\text { off })}$ are equal, Equations 1 and 2 can be written as follows:

$$
\begin{equation*}
\frac{V_{\text {IN }}}{V_{\text {OUT }}}-1=\frac{t_{\text {off }}}{t_{\text {on }}} \tag{3}
\end{equation*}
$$

Equation 3 shows the natural tendency for the on-tooff time ratios to remain proportional to the inputoutput voltage differential. Voltage regulation can be achieved when this information is properly fed back to the switch.

Since the duty cycle is dependent only upon the magnitude of the input-to-output voltage differential, it follows that variations of output voltage with load should be minimal. Basic switching regulator waveforms are shown in Figure 13.

Fig. 13 Typical Switching Regulator Waveforms

SH1605 Theory of Operation

The SH1605 simplified block diagram is shown in Figure 14. Circuit operation is as follows. When power is first applied, the output voltage Vout is low, thus forcing the comparator output into a HIGH state. As a result, the oscillator freely toggles the output switch on and off at a rate determined by the charge and discharge rate of the timing capacitor C_{T}. This is a temporary condition that continues until Vout has exceeded the reference voltage level times the factor set by $\mathrm{R}_{\mathrm{s}}, \mathrm{R} 2$ and L_{RS}. The output voltage can be expressed as follows.

$$
\begin{equation*}
V_{\text {OUT }}=V_{\text {REF }} \frac{\left(R_{S}+R 2+R s\right)}{(R 1+R 2)} \tag{4}
\end{equation*}
$$

Since the value of R1 and R2 (1 k Ω each) inside the SH1605 is established, R_{S} can be determined as follows.

$$
\begin{equation*}
\text { Rs }=\frac{\left(2 \times 10^{3}\right)(\text { Vout }-2.5)}{2.5} \text { for Rs in ohms } \tag{5}
\end{equation*}
$$

Equilibrium is reached at the completion of the on cycle when the comparator input has exceeded the reference level. When the comparator output goes LOW, the oscillator output is disabled and Q1 switches off. Vout then begins to fall at a rate determined by the ratio of the output voltage to the inductor value.

$$
\begin{equation*}
\frac{\Delta I_{1}}{t_{\text {off }}}=\frac{V_{\text {out }}+V_{D 1}}{L 1} \tag{6}
\end{equation*}
$$

Whenever Vout falls to the level specified in Equation 4, the comparator changes state and the output switches on. It remains in this state until the voltage across C_{T} reaches a positive threshold level. The rate of C_{T} charge is determined by the size of the timing capacitor and the magnitude of the constant current source inside the oscillator. Charging current is typically $25 \mu \mathrm{~A}$ and discharging current is $225 \mu \mathrm{~A}$. From the equation describing on and off time duration, the frequency of oscillation can be deduced:

$$
\begin{align*}
\mathrm{t}_{\text {on }} & =\frac{\mathrm{C}_{\mathrm{T}} \Delta \mathrm{v}}{\mathrm{I}_{\mathrm{C}}} \\
\mathrm{t}_{\text {off }} & =\frac{\Delta \mathrm{I}_{1} \mathrm{LI}}{\mathrm{~V}_{\text {OUT }}+\mathrm{V}_{\mathrm{F}}} \tag{8}
\end{align*}
$$

where:

$$
\begin{aligned}
\mathrm{L1} & =\text { Filter Inductance } \\
\triangle I_{1} & =\text { Change in Inductor Current } \\
V_{O U T} & =\text { Output Voltage } \\
C_{T} & =\text { Timing capacitor } \\
I_{C} & =\text { Oscillator charging current } \\
\triangle V & =0.5 \mathrm{~V} \text { Typical } \\
V_{F} & =\text { Steering Diode Forward Voltage Drop }
\end{aligned}
$$

Understanding the Switching

Regulator

Fig. 14 SH1605 Block Diagram

Notes:

1. Use a $47 \mu \mathrm{~F}$ input capacitor to minimize switching transients. SWITCH OFF COMMAND $=\uparrow\lceil\nu$
2. Maximum T_{C} for 5 A operation is $60^{\circ} \mathrm{C}$.
3. All measurements taken relate to ground unless otherwise shown.

$$
\begin{equation*}
\text { Nominal Frequency }=\frac{1}{\frac{C_{T} \Delta v}{I_{C}}+\frac{\Delta I_{1 \text { (nom) } L 1}}{V_{\text {OUT }}+V_{F}}} \tag{9}
\end{equation*}
$$

For improved system efficiency, the operating period should always be many times longer than the device transition times. A trade off must be sought between inductor size and efficiency when selecting the frequency of operation.

Design Example

Figure 15 is a typical design of a step-down switching regulator using the SH1605.

Nominal Design Objectives

$\mathrm{V}_{\text {OUt }}=+5 \mathrm{~V}$
Line Regulation $=2 \%$
lout(max) $=5.0 \mathrm{~A}$
lout(min) $=1.0 \mathrm{~A}$
$\mathrm{V}_{\mathrm{IN}}=12$ to 18 V
Load Regulation $=2 \%$
Ripple (max) $=0.1 \mathrm{~V}_{\text {pk-pk }}$
Efficiency $=70 \%$

Since the required lout(min) is 1 A to maintain continuous operation, the peak-to-peak current excursion must be equal to 2 A or less, i.e.,

$$
\Delta I_{1}=2 I_{\text {Out(min) }}
$$

To calculate the value of the inductor keeping the efficiency/component-size tradeoff in mind use Equation 1. For this example $\mathrm{t}_{\mathrm{n}}=60 \mu \mathrm{~s}$ is selected. $t_{\text {on }}$ is determined by the designer and depends upon the desired frequency of operation under expected constant load conditions where frequency $=1 /\left(\mathrm{t}_{\mathrm{on}}+\right.$ $\mathrm{t}_{\text {off }}$. t_{on} must always be greater than $\mathrm{ts}+\mathrm{td}=5.1 \mu \mathrm{~s}$, typically, from the SH1605 data sheet. Off time, $\mathrm{t}_{\text {off }}$, is determined by the ratio of input voltage to output voltage where

$$
t_{\mathrm{off}}=\mathrm{t}_{\mathrm{on}} \times\left(\frac{\mathrm{V}_{\mathrm{IN}}}{\mathrm{~V}_{\text {OUT }}}-1\right)
$$

First, R_{S} is calculated from Equation 5:

$$
\mathrm{Rs}=\frac{\left(2 \times 10^{3}\right)\left(\mathrm{V}_{\text {OUT }}-2.5\right)}{2.5}=2 \mathrm{k} \Omega
$$

Fig. 15 Design Example

Circuit Performance

$$
\text { Load Reg. }=50 \mathrm{mV}\left(1 \mathrm{~A} \leq \mathrm{I}_{\text {Out }} \leq 5 \mathrm{~A}\right)
$$

$\mathrm{V}_{\mathrm{IN}}=12-18 \mathrm{~V}$
$\mathrm{V}_{\text {OUT }}=5.06 \mathrm{~V}$

Note

In this example the SH1605 must be mounted on a heat sink with a maximum thermal resistance of $\phi_{\mathrm{CA}}>4^{\circ} \mathrm{C} / \mathrm{W}$.
(Equation 3). Thus with a known ratio of $\mathrm{V}_{\mathbb{I}} / V_{\text {OUT }}$ the designer is offered a trade-off between frequency of operation, efficiency and component size.

From Equation 1:

$$
\begin{aligned}
L 1 & =\left(\frac{V_{\text {IN(nom) })}-V_{\text {OUT }}}{\Delta I_{1}}\right) t_{\text {on }} \\
& =\frac{10}{2}\left(6 \times 10^{-5}\right)=300 \mu \mathrm{H}
\end{aligned}
$$

where $\mathrm{V}_{\mathrm{IN}(\text { nom })}=15 \mathrm{~V}, \mathrm{t}_{\text {on }}=60 \mu \mathrm{~s}$

$$
\Delta I_{1}=2 \mathrm{~A}
$$

One very important element in achieving the optimum performance in a switching regulator is to insure the inductor is kept below the specified saturation limits.

Since the timing capacitor controls the $60 \mu \mathrm{~S}$ on time, $\mathrm{C}_{\text {T }}$ can be determied using Equation 7:

$$
C_{T}=\frac{\left(\mathrm{t}_{\mathrm{on}}\right)\left(\mathrm{I}_{\mathrm{C}}\right)}{\Delta \mathrm{v}}=\frac{\left(6 \times 10^{-5}\right)\left(2.5 \times 10^{-5}\right)}{5 \times 10^{-1}}=3000 \mathrm{pF}
$$

where $I_{C}=25 \mu \mathrm{~A}$ nominal per data sheet.
The final step is to determine the requirements for the output capacitor C_{0} to obtain the desired value of ripple voltage. Consideration must be given to the absolute value of C_{0} as well as the internal effective series resistance (ESR). Since the capacitor size is inversely proportional to the operating frequency, the lowest frequency of operation must be calculated. Minimum operating frequency can be determined by using $\Delta I_{1 \text { (max) }}$ vs $\Delta I_{1 \text { (nom) }}$ in Equation 9.

$$
\begin{aligned}
& \text { Minimum Frequency }=\frac{1}{\frac{C_{T} \Delta V}{I_{c}}+\frac{\Delta I_{1(\text { max })} L_{1}}{V_{\text {out }}+V_{F}}} \\
& =\frac{1}{1.7 \times 10^{-4}}=5.9 \mathrm{kHz} \\
& \text { Where: } \begin{aligned}
\Delta I_{1(\text { max })} & =\left(\frac{V_{\text {IN(max })}-V_{\text {ouT }}}{L_{1}}\right) \times t_{\text {on }} \\
& =\left(\frac{18-5}{3 \times 10^{-4}}\right) \times 6 \times 10^{-5} \\
& =2.6 \mathrm{~A}
\end{aligned}
\end{aligned}
$$

From Equation 1

The output capacitor can now be determined as follows:

$$
\begin{aligned}
\mathrm{C}_{\mathrm{O}(\text { min })} & =\frac{\Delta \mathrm{I}_{1}}{\left(8 \mathrm{f}_{(\text {min })} \mathrm{V}_{\text {ripple(max })}\right)} \\
& =\frac{2}{\left(8 \times 5.9 \times 10^{3}\right) \times\left(1 \times 10^{-1}\right)} \\
& =423 \mu \mathrm{~F}
\end{aligned}
$$

The maximum acceptable ESR is therefore

$$
\begin{aligned}
\operatorname{ESR}(\text { max }) & =\frac{V_{\text {ripple(max) }}}{\Delta 1_{1(\text { max })}} \\
& =\frac{1 \times 10^{-1}}{2.6}=0.038 \Omega
\end{aligned}
$$

Understanding the Switching Regulator

Normally, the minimum capacitance value should be increased considerably if a low ESR capacitor is not used.

As a final step for minimizing switching transients at the device input, a low ESR capacitor must be used for decoupling purposes between the input terminal and ground.

Conclusion

The SH1605 is a highly versatile building block for high current, step-down switching regulator systems. However, to attain optimum performance and reliability the following guidelines should be followed:

- Keep operating period long, relative to the device switching times, for optimum efficiency
- Insure that the inductor stays out of saturation and minimize the series resistance.
- Use high quality capacitors for input and output to minimize ripple and noise.

Designer's Note

As an aid in designing with the SH1605, 5 Amp Switching Regulator, the following is a review of several characteristics of the device which should be recognized and understood by the designer.

Short Circuit Current Limit

Space limitations and the already high packing density attained in the SH1605 prevent the inclusion of a short circuit current limit in the product. For those occasions where short circuit protection is required (i.e., prototype designs and lab testing), a schematic for an external protection network is shown in Figure 16.

Heatsink Designs

While heatsinking is generally not a problem with the SH1605 due to its high efficiency, mounting of the package can have a dramatic effect on θ_{JA}. Cutting a large hole or curved slot around all eight leads leaves only the package fringes for heat transfer. A $\theta_{\text {Cs }}$ thermal resistance of 4.0 to $4.5^{\circ} \mathrm{C} / \mathrm{W}$ will result from this type of mounting. A $\theta_{\text {cs }}$ thermal resistance of 0.3 to $0.4^{\circ} \mathrm{C} / \mathrm{W}$ can be obtained using a hole configuration similar to Thermalloy pattern 15 or IERC pattern LAIC, UP or HP and a good thermal conducting compound.

8 Pin TO-3 Sockets

Sockets are a definite convenience when prototyping, testing and even sometimes for small volume production runs. Standard sockets are commercially available from a number of manufacturers. For a partial list of suppliers refer to the SH1605 data sheet.

Figure 16. Switching Regulator with Short Circuit Protection

Understanding the Switching Regulator

Grounding

Switching power supplies are by nature more susceptible to grounding problems than linear power supplies because of larger ripple currents. It is generally recommended that a ground plane be used. An ideal connection diagram to minimize grounding problems is shown in Figure 17.

A common problem encountered with the SH1605 is excessive noise, or ripple, which is almost always generated by improper grounding. Care must be taken in the design and layout of the breadboard to eliminate any possible ground loops. This is accomplished by observing very standard layout procedures. The following diagram explicitly illustrates where the ground connections must be made to avoid potential problems.

Pin 7, which is the anode of the steering diode and which carries up to 5 A of ripple, must be tied to "input ground". . . not the case and not "output ground'. An incorrect connection here accounts for at least 80% of the field problems. To further improve system performance, the negative sides of both the timing capacitor and the decoupling capacitor should be tied together at the case with a single lead going to "output ground" and the negative side of the output filter capacitor should be connected directly to "input ground." Note that there are two distinct
grounding points in the system. "Input ground" is defined as the connection point between the negative side of the input filter capacitor and the incoming ground line. "Output ground" is a ground point as close to the load as possible. The input and output ground points are connected but distinctly separate thus minimizing system ground loops and their effect on output voltage regulation.

Frequency of Operation

The SH1605 is a frequency modulated switcher. Thus, frequency will vary somewhat during operation depending upon power demand. When frequency is designed to fall mostly within audio ranges, users may find the continuously varying tone an annoyance. It is, therefore, recommended that users either provide for sound insulation or design for frequencies outside the normal human audio range.

Although the SH1605 is capable of operating across a broad range of frequencies, it is recommended that the user design his system to operate between 20 KHz and 30 KHz for optimum efficiencies and performance.

For convenience, a circuit for frequency locking is shown in Figure 18.

Figure 17. An Ideal Connection Diagram

[^1]Figure 18. SH1605 Frequency Locking Network

Notes

1. Diode FDH600 in series with $33 \mathrm{~K} \Omega$ resistor are the frequency locking network which facilitates measurement and minimizes noise.
2. As input to output voltage ratio is increased, the operating frequency (fo), will decrease according to the expression shown below:

$$
\mathrm{F}(\mathrm{o})=\left(\frac{\mathrm{Vo}}{\mathrm{Vin}}\right)\left(\frac{1}{\text { Ton }}\right) \text { where Ton }=\frac{\mathrm{C}^{\top} \Delta \mathrm{V}}{\mathrm{c}}
$$

A power supply normally operates from an ac line. This ac input voltage must be converted to unregulated dc by some form of rectifier/filter combination and then to regulated dc using a voltage regulator. This chapter discusses the performance characteristics of the most common forms of rectifier/filter combinations and provides appropriate design equations for any output voltage and current.

Single Phase, Half Wave Rectifier

Figure 1 is a half wave rectifier and capacitor filter. Without the capacitor, peak current is

$$
I_{M}=\frac{V_{M}}{R_{S}+R_{L}}
$$

on the positive half cycle (or forward conduction cycle) of the input voltage. Some additional electrical characteristics follow.

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{rms}}=\frac{\mathrm{I}_{\mathrm{M}}}{\sqrt{2}} \quad \mathrm{I}_{\mathrm{O}}=\frac{\mathrm{IM}}{\pi} \\
& \mathrm{P}_{\mathrm{O}}=\frac{1}{\pi^{2}}\left(\frac{\mathrm{~V}_{\mathrm{M}}{ }^{2} \mathrm{R}_{\mathrm{L}}}{\left(\mathrm{R}_{\mathrm{S}}+\mathrm{R}_{\mathrm{L}}\right)^{2}}\right) \\
& \eta \mathrm{R}=\frac{40.6}{\left(1+\frac{\mathrm{R}_{\mathrm{S}}}{\mathrm{R}_{\mathrm{L}}}\right)} \%
\end{aligned}
$$

Note that for a resistive load, the maximum ripple factor is 121% which, under most circumstances, requires filtering. When the capacitor is added across the load resistor, the ripple is reduced proportionate to the $\mathrm{R}_{\mathrm{L}} \mathrm{C}$ product (Figure 2).

One possible problem with any capacitive filter is the high peak current drawn due to the diode back-bias present throughout most of the input cycle. This is a result of the voltage stored across the filter capacitor. The rectifier conducts only during that short period of time when the input voltage exceeds the capacitor voltage by one diode drop. During conduction, the rectifier must supply the capacitor with sufficient energy to hold the ripple within specification until the next conduction cycle. Figure 3 is a plot of the I_{M} / l_{0} ratio versus the $R_{L} C$ product with the R_{S} / R_{L} ratio as a variable. Notice that the surge-todc ratio of current increases as a function of both increasing capacitor value and of a reduced source-to-load impedance ratio.

Definition of Terms

Parameter	Definition
V_{M}	peak input voltage
V_{0}	dc output voltage
V_{pk}	transformer peak voltage
$V_{\text {S }}$	ac input voltage
F	form factor of the load current: $I_{\text {rms }} / l_{0}$
lac	effective value of all alternating components of load current, i.e., the current reading on an ac meter
I_{M}	peak current through each rectifier
10	average value of the load current, the reading on a dc meter
$\mathrm{I}_{\text {rms }}$	effective value of the total load
	$\text { current } \sqrt{1 \mathrm{ac}^{2}+1 \mathrm{o}^{2}}$
$P_{\text {in }}$	ac input power
Po	dc output power
R_{L}	load resistance
$\mathrm{R}_{\text {S }}$	total series resistance, or the source resistance plus any added resistance plus the diode series resistance
γ	ripple factor in all charts normalized as 100% equal to 1 ,
	$\gamma=\left(\mathrm{F}^{2}-1\right)=\left[\left(\frac{\mathrm{I}_{\mathrm{rms}}}{\mathrm{I}_{0}}\right)^{2}-1\right]^{1 / 2}$
$\eta \mathrm{R}$	rectification efficiency,
	$\frac{P_{0}}{P_{\text {in }}} \times 100 \%$
ω	$2 \pi f$ where $f=$ line frequency

Fig. 1 Half-Wave Rectifier Circuit with Capacitive Filtering

Fig. 2 Ripple Factor vs $\omega R_{L} C$

Fig. 3 IM/lovs $\omega R_{L} C$

Fig. 4 DC-to-Peak Ratio

Fig. 5 Half-Wave Rectifier

When the ripple factor, load impedance, and ω are known, the required capacitance can be determined from Figure 2. Because of the high turn-on surge, an external series limiting resistor is normally needed. Figure 4 is a plot of the dc-to-peak voltage ratio with the filter product as the X axis and the source/load impedance ratio as the third parameter. Note that the
dc output-to-peak input voltage ratio approaches unity as the filter factor goes up and also as the source-to-load impedance ratio decreases. Because of the relatively large value of the filter capacitor required for a given ripple factor, the use of the halfwave capacitor filter is usually limited to low current applications.

Half Wave Rectifier With Series Inductive Filter Figure 5 is a half-wave rectifier with series inductive filtering. The inductor, in series with the load, prevents any rapid changes in the current flow and thus reduces the ripple factor by acting as an energy storage device. When the current flow is above the average current required, energy is stored in the inductor, and when the current is below the average, the stored energy is released. Figure 6 is the plot of ripple factor versus filter product for the inductor input filter. Because of the energy storage available with an inductor, the peak current through the rectifier is little more than the average current. However, the peak inverse voltage PIV seen by the rectifier is simply V_{M}, the peak input voltage. Figure 7 is a plot of $\mathrm{V}_{\mathrm{O}} / \mathrm{V}_{\mathrm{M}}$ ratio as a function of the inductor filter product.

Fig. 6 Ripple Factor vs Filter Product

Fig. $7 \mathrm{~V}_{\mathrm{o}} / \mathbf{V}_{\mathbf{M}}$ Ratio

Single-Phase Full-Wave Rectifier

Figure 8, a basic full wave rectifier, has the following electrical characteristics.

$$
\begin{aligned}
& \mathrm{I}_{\text {rms }}=\frac{\mathrm{I}_{\mathrm{M}}}{\sqrt{2}} \quad \mathrm{I}_{0}=\frac{21 M}{\pi} \quad \gamma=0.48 \\
& \mathrm{P}_{\mathrm{O}}=\left(\frac{2}{\pi}\right)^{2} \frac{V_{M}{ }^{2} \mathrm{R}_{\mathrm{L}}}{\left(\mathrm{R}_{\mathrm{S}}+\mathrm{R}_{\mathrm{L}}\right)^{2}} \\
& \eta \mathrm{R}=\frac{81.2}{\left(1+\frac{\mathrm{R}_{\mathrm{S}}}{R_{\mathrm{L}}}\right)} \%
\end{aligned}
$$

Fig. 8 Basic Full-Wave Rectifier

There are two interesting features. Efficiency has doubled, as can be expected when doubling the number of rectifiers. In addition, the ripple factor has decreased from 121% to 48% in comparison with the half-wave circuit. Even with ripple reduction, a 48\% factor is normally too high to be useful and must be filtered. Figure 9 is the filter product plot for both capacitive and inductive filters, assuming $\mathbf{R}_{\mathbf{S}} \ll \mathbf{R}_{\mathrm{L}}$. High peak currrents are always associated with capacitive filters and Figure 10 plots the ratio of peak-to-dc current as a function of the filter product. The relationship between the filter product, the $\mathrm{R}_{\mathrm{S}} / \mathrm{R}_{\mathrm{L}}$ ratio and the dc output-to-peak input voltage is given in Figure 11 for the capacitive input filter. Load regulation may also be determined from Figure 11 by using the high and low limits for R_{L}.

Fig. 9 Filter Product

Fig. 10 Peak-to-DC Ratio

Fig. 11 Load Regulation

Design Example

For a full-wave circuit with the following requirements,

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{O}}=20 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{O}}=1 \mathrm{~A} \\
& \gamma<0.1 \\
& \text { with } \mathrm{R}_{\mathrm{S}}=1 \Omega
\end{aligned}
$$

proceed with the following steps.
Step 1 Find the filter product from Figure 9

$$
\text { for } \quad \gamma<0.1\left(\omega R_{L} C=10\right)
$$

Step 2 Calculate R_{L}

$$
\mathrm{R}_{\mathrm{L}}=\frac{20}{1}=20 \Omega
$$

Step 3 Calculate C

$$
\begin{aligned}
C & =\frac{10}{\omega R_{\mathrm{L}}}=\frac{10}{120 \times 20 \pi} \\
& =\frac{1}{240 \pi}=1300 \mu \mathrm{~F}
\end{aligned}
$$

Step 4 Calculate $\frac{R_{S}}{R_{L}}$

$$
\frac{R_{S}}{R_{L}}=\frac{1}{20}=5 \%
$$

Step 5 Find the transformer peak input voltage from the following.
$\mathrm{V}_{\mathrm{pk}}=$ diode forward voltage. One diode forward-voltage drop for a center-tapped fullwave input, two diode forward-voltage drops for a full-wave bridge

$$
+\frac{V_{O}}{V_{0} / V_{M}}
$$

using the filter values from Figure 11.

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{pk}}=0.7+\frac{.20}{0.82} \text { (intersection of } \\
& 5 \% \frac{R_{\mathrm{S}}}{R_{\mathrm{L}}} \text { and } \omega \mathrm{R}_{\mathrm{L}} \mathrm{C}=10 \text { from Figure 11.) } \\
& \begin{aligned}
& \mathrm{V}_{\mathrm{pk}}=0.7+25.3= 26 \mathrm{~V} \text { peak or } \\
& 52 \mathrm{Vpk-pk} \text { or } \\
& 18.6 \mathrm{~V} \text { rms }
\end{aligned}
\end{aligned}
$$

Step 6 Check peak diode current from Figure 10. For this example at a filter product of 10 , the peak current is seven times the dc current, or 7 A .

LC Section Filter

The LC section filter is one method of reducing ripple levels without the need for single, large value filter omponents. The basic circuit is shown in Figure 12. As a general rule, the capacitive reactance should always be less than 10% of the load resistance at the second harmonic of the incoming frequency. All the succeeding information is based upon this ratio. The ripple factor for an L-section filter has the form:

$$
\gamma=\frac{0.47}{4 \omega^{2} L C-1}
$$

or, if n L -section filters are cascaded, then the ripple factor is:

$$
\gamma=\frac{0.47}{\left(4 \omega^{2} \mathrm{~L} 1 \mathrm{C} 1-1\right)\left(4 \omega^{2} \mathrm{~L} 2 \mathrm{C} 2-1\right)-\left(4 \omega^{2} \mathrm{~L}_{n} \mathrm{C}_{n}-1\right)}
$$

Fig. 12 LC Filter

Figure 13 is a plot of the filter factor versus the ω^{2} LC product. The one additional requirement is continuous current flow through the inductance. This says, in effect, that there is a critical inductor size. To assure this continuous current flow, a bleeder resistor R_{k} must be used at the filter output. The critical value of inductance is

$$
\mathrm{L}_{\mathrm{c}}=\frac{\mathrm{R}_{\mathrm{S}}+\mathrm{R}_{\mathrm{eff}}}{3 \omega}
$$

where $\quad R_{\text {eff }}=\frac{R_{K} R_{L(\max)}}{R_{K}+R_{L(\max)}} \quad$ and $\quad R_{K}=\frac{V_{O}}{I_{K}}$
Bleeder current I_{k} may be assumed to be 10% of minimum load current or, if this is not a practical value, then some reasonable minimum bleeder current is selected. Once the critical inductance is found, then the capacitor value may be determined by the following steps: Set $\mathrm{L}=2 \mathrm{Lc}$. Determine $\omega^{2} \mathrm{LC}$ from Figure 13 for the required ripple factor. Solve for C from $\omega^{2} \mathrm{LC}=\mathrm{X}$, where X is the product from Figure 13.

The peak rectifier currents depend upon the size of the inductor selected such that if $L=L_{C}$ then I_{M} $=2 \mathrm{~L}_{\mathrm{L}}$ and if $\mathrm{L}=2 \mathrm{~L}_{\mathrm{C}}$ then $\mathrm{I}_{\mathrm{M}}=1.5 \mathrm{~L}$. The transformer secondary voltage is given by

$$
V_{\mathrm{rms}}=1.11\left[V_{\mathrm{O}}+R_{\mathrm{S}}\left(I_{(\max)} I_{\mathrm{K}}\right)\right]
$$

and the minimum PIV for the rectifier is $1.57 \mathrm{~V}_{\mathrm{O}(\text { max })}$ for a full-wave bridge rectifier.

Fig. 13 Filter Factor vs ω^{2} LC

For minimum power dissipation, R_{k} should be as large as possible. In some cases, since the value of critical inductance is proportional to the value of the bleeder resistor, the selection of a high value results in an inductance too large to be practical. In this case, a swinging choke or a choke whose inductance decreases with increasing current flow is needed.

Power Supply Design

Design Example

Full wave, single-section, choke input filter design,

$$
\begin{array}{ll}
\mathrm{V}_{\mathrm{O}}=50 \mathrm{~V} & \mathrm{I}_{\mathrm{K}}=100 \mathrm{~mA} \\
\mathrm{I}_{\mathrm{O}}=1 \mathrm{~A} & \mathrm{R}_{\mathrm{S}}=10 \Omega
\end{array}
$$

Step 1 Calculate R_{K}

$$
R_{K}=\frac{V_{O}}{I_{K}}=\frac{50 \mathrm{~V}}{100 \mathrm{~mA}}=500 \Omega
$$

Step 2 Calculate $\mathrm{R}_{\text {eff }}$

$$
R_{\text {eff }}=\frac{R_{K} R_{L(\max)}}{R_{K}+R_{L(\max)}}=500 \Omega\left(R_{L(\max)}=\infty\right)
$$

Step 3 Calculate L_{c}

$$
\begin{aligned}
\mathrm{L}_{\mathrm{c}} & =\frac{\mathrm{R}_{\text {eff }}+\mathrm{R}_{\mathrm{S}}}{3 \omega}=\frac{500+10}{1130} \\
& =\frac{510}{1130} \cong 0.5 \mathrm{H}
\end{aligned}
$$

Step 4 Calculate C

$$
\gamma=0.01
$$

then, $\quad \omega^{2} L_{C} C=12$ from Figure 13

$$
\begin{aligned}
C & =\frac{12}{\omega^{2} L_{c}}=\frac{12}{(120 \pi)^{2} 0.5}=\frac{2}{142 \times 10^{3} \times 0.5} \\
& =0.169 \times 10^{-3}=169 \mu \mathrm{~F}
\end{aligned}
$$

Step 5 Calculate I_{M}

$$
\begin{aligned}
& \text { Since } L=L_{C} \\
& \text { then } I_{M}=2\left(I_{O}+I_{K}\right) \\
& I_{M}=2 \times 1.1=2.2 \mathrm{~A}
\end{aligned}
$$

Step 6 Calculate voltage drop both at no load and full load

$$
\begin{aligned}
& V_{D} \text { no load }=I_{K}\left(R_{S}\right)=0.1 \times 10=1 \mathrm{~V} \\
& V_{D} \text { full load }=\left(I_{0}+I_{K}\right) R_{S}=1.1 \times 10=11 \mathrm{~V}
\end{aligned}
$$

Step 7 Calculate transformer minimum rms voltages

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{rms}}=1.11\left[\mathrm{~V}_{\mathrm{o}}+\mathrm{R}_{\mathrm{S}}\left(\mathrm{I}_{(\max)}+\mathrm{I}_{\mathrm{K}}\right)\right] \\
& \mathrm{V}_{\mathrm{rms}}=1.11(50+10 \times 1.1) \\
& \mathrm{V}_{\mathrm{rms}}=1.11(61) \\
& \mathrm{V}_{\mathrm{rms}}=67.5 \mathrm{~V}_{\mathrm{rms}}
\end{aligned}
$$

Step 8 Calculate maximum output voltage

$$
\begin{aligned}
& V_{O(\max)}=\frac{V_{\text {rms }}}{1.11}-I_{K} R_{S} \\
& V_{O(\max)}=\frac{67.5}{1.11}-0.1 \times 10=61-1=60 \mathrm{Vdc}
\end{aligned}
$$

Step 9 Calculate PIV rating required

$$
\begin{aligned}
& \mathrm{PIV}=(1.57) \mathrm{V}_{\mathrm{O}(\max)} \\
& \mathrm{PIV}=1.57 \times 60=94 \mathrm{~V}
\end{aligned}
$$

(See Table 4-1)

Transformer ratios are determined from Table 1.

Table 1. Electrical Reference Table and Rectifier Circuit Wave Shapes

Characteristic	Load	Single Phase Half Wave (See 1-A)	Single Phase Full Wave Center-Tap (See 1-B)	Single Phase Full Wave Bridge (See 1-C)	Three Phase Star (Half-Wave) (See 1-D)	Three Phase Full Wave Bridge (See 1-E)	Six-Phase Star (Three Phase Diametric) (See 1-F)	Three Phase Double Wave With Interphase Transformer (See 1-G)
RMS Input Voltage Per Transformer Leg $\left(V_{1}\right)$	Resistive \& Inductive Capacitive	$\begin{aligned} & 2.22 \mathrm{~V}_{\mathrm{O}} \\ & 0.707 \mathrm{~V}_{\mathrm{O}} \end{aligned}$	$\begin{aligned} & 1.11 \mathrm{~V}_{\mathrm{O}} \\ & 0.707 \mathrm{~V}_{\mathrm{O}} \end{aligned}$	$\begin{aligned} & 1.11 \mathrm{~V}_{\mathrm{O}} \\ & 0.707 \mathrm{~V}_{0} \end{aligned}$	$\begin{aligned} & 0.855 \mathrm{~V}_{0} \\ & 0.707 \mathrm{~V}_{0} \end{aligned}$	$\begin{aligned} & 0.428 \mathrm{~V}_{0} \\ & 0.408 \mathrm{~V}_{0} \end{aligned}$	$\begin{aligned} & 0.741 \mathrm{~V}_{0} \\ & 0.707 \mathrm{~V}_{0} \end{aligned}$	$\begin{aligned} & 0.855 \mathrm{~V}_{0} \\ & 0.707 \mathrm{~V}_{0} \end{aligned}$
Peak Inverse Voltage Per Rectifier ($\mathrm{P} \& \mathrm{~V}$)	$\begin{aligned} & R \& L \\ & C \end{aligned}$	$3.14 \mathrm{~V}_{\mathrm{o}}$ $2.00 \mathrm{~V}_{0}$	$\begin{aligned} & 3.14 \mathrm{~V}_{0} \\ & 2.00 \mathrm{~V}_{0} \end{aligned}$	$\begin{aligned} & 1.57 \mathrm{~V}_{0} \\ & 1.00 \mathrm{~V}_{0} \end{aligned}$	$\begin{aligned} & 2.09 \mathrm{~V}_{0} \\ & 2.00 \mathrm{~V}_{0} \end{aligned}$	$\begin{aligned} & 1.05 \mathrm{~V}_{0} \\ & 1.00 \mathrm{~V}_{0} \end{aligned}$	$\begin{aligned} & 2.09 \mathrm{~V}_{0} \\ & 2.00 \mathrm{~V}_{0} \end{aligned}$	$\begin{aligned} & 2.09 \mathrm{~V}_{0} \\ & 2.00 \mathrm{~V}_{0} \end{aligned}$
Average Current Through Through Rectifier IF	$\begin{aligned} & \text { R.L. } \\ & \text { \& C } \end{aligned}$	$1.00 \mathrm{I}_{0}$	0.50 l	0.50 Io	0.333 lo	0.333 ו	0.167 l	0.167 lo
Current Through Rectifier I_{M}	$\begin{aligned} & \mathrm{R} \\ & \mathrm{~L} \\ & \mathrm{C} \end{aligned}$	$3.14 \mathrm{I}$	$\begin{aligned} & 1.57 \mathrm{lo} \\ & 1.00 \mathrm{I} \end{aligned}$	$\begin{aligned} & 1.57 \mathrm{lo} \\ & 1.00 \mathrm{lo} \\ & \text { Depends on } \end{aligned}$	$\begin{aligned} & 1.21 \mathrm{lo} \\ & 1.00 \mathrm{lo} \\ & \text { Size of Capaci } \end{aligned}$	$\begin{aligned} & 1.05 \mathrm{lo} \\ & 1.00 \mathrm{I} \text { o } \end{aligned}$ tor	$\begin{aligned} & 1.05 \mathrm{lo} \\ & 1.00 \mathrm{l} \text { o } \end{aligned}$	0.52510 0.500 lo
Transformer Total Secondary PA	Sine Wave Sq. Wave	$\begin{aligned} & 3.49 \mathrm{Po}_{\mathrm{o}} \\ & 3.14 \mathrm{Po}_{\mathrm{o}} \end{aligned}$	$\begin{aligned} & 1.75 \mathrm{P}_{\mathrm{o}} \\ & 1.57 \mathrm{P}_{\mathrm{o}} \end{aligned}$	$\begin{aligned} & 1.23 \mathrm{Po}_{\mathrm{o}} \\ & 1.11 \mathrm{Po}_{\mathrm{o}} \end{aligned}$	$\begin{aligned} & 1.50 \mathrm{Po}_{\mathrm{o}} \\ & 1.48 \mathrm{Po}_{\mathrm{o}} \end{aligned}$	$\begin{aligned} & 1.05 \mathrm{Po}_{0} \\ & 1.05 \mathrm{Po}_{0} \end{aligned}$	$\begin{aligned} & 1.81 \mathrm{Po} \\ & 1.81 \mathrm{Po}_{0} \end{aligned}$	$\begin{aligned} & 1.49 \mathrm{Po}_{\mathrm{o}} \\ & 1.48 \mathrm{Po}_{\mathrm{o}} \end{aligned}$
Transformer Total Primary PA	Sine Wave Sq. Wave	$\begin{aligned} & 3.49 \mathrm{P}_{\mathrm{o}} \\ & 3.14 \mathrm{P}_{\mathrm{o}} \end{aligned}$	$\begin{aligned} & 1.23 \mathrm{PO}_{\mathrm{O}} \\ & 1.11 \mathrm{Po}_{0} \end{aligned}$	$\begin{aligned} & 1.23 \mathrm{Po}_{\mathrm{o}} \\ & 1.11 \mathrm{Po}_{\mathrm{o}} \end{aligned}$	$\begin{aligned} & 1.23 \mathrm{Po} \\ & 1.21 \mathrm{Po} \end{aligned}$	$\begin{aligned} & 1.05 \mathrm{Po}_{0} \\ & 1.05 \mathrm{Po}_{0} \end{aligned}$	$\begin{aligned} & 1.28 \mathrm{Po} \\ & 1.28 \mathrm{Po}_{0} \end{aligned}$	$\begin{aligned} & 1.06 \mathrm{Po} \\ & 1.05 \mathrm{Po} \end{aligned}$
\% Ripple Lowest Ripple Frequency Conversion Efficiency	Sine Wave Resistive Load	$\begin{aligned} & 121 \% \\ & 1 F_{1} \\ & 40.6 \% \end{aligned}$	47% $2 F_{1}$ 81.2%	$\begin{aligned} & 47 \% \\ & 2 F_{1} \\ & 81.2 \% \end{aligned}$	17% $3 F_{1}$ 97%	$\begin{aligned} & 4 \% \\ & 6 F_{1} \\ & 99.5 \% \end{aligned}$	4% $6 F_{1}$ 99.5%	4% $6 F_{1}$ 99.5%

Power Supply Design

Table 1. Electrical Reference Table and Rectifier Circuit Wave Shapes (Cont.)

SINGLE PHASE
HALF WAVE
(1-A)

SINGLE PHASE
FULL WAVE
CENTER TAP
(1-B)

THREE PHASE FULL WAVE BRIDGE $(1-E)$
SIX PHASE STAR (THREEPASE DIAMETRIC) $(1-F)$
THREE PHASE DOUBLE WAVE WITH INTERPHASE TRANSFORMER (1-G)

Swinging Choke LC Section Filter

When designing a swinging choke section filter, the inductance required at the minimum and maximum output currents can be determined as follows.

1. Find L_{C} (critical inductance)

$$
L_{c}=\frac{R_{S}+R_{\mathrm{eff}}}{3 \omega}
$$

where, as before:

$$
R_{\text {eff }}=\frac{R_{K} R_{L(\max)}}{R_{K}+R_{L(\max)}}
$$

2. Find L2 (inductance at maximum load current)

$$
\mathrm{L} 2=\frac{\mathrm{R}_{\mathrm{S}}+\mathrm{R}_{\mathrm{eff} 2}}{3 \omega}
$$

where:

$$
R_{\text {effi2 }}=\frac{R_{L(\text { min })} R_{K}}{R_{L(\text { min })}+R_{K}}
$$

When L_{c} has been determined, then the capacitor value may be calculated as before. The condition $\omega^{2} L_{c} \leq 1 / 4$ should be avoided due to possible filter instabilities.

Capacitive Input Filter Characteristics

$$
\mathrm{R}_{\mathrm{S}} / \mathrm{R}_{\mathrm{L}(\text { min })}=0.02 \quad \omega \mathrm{CR}_{\mathrm{L}(\text { min })}=12
$$

When the voltage and current levels are known, Table 2 can be used to select the optimum configuration and determine transformer and rectifier characteristics.

Voltage Doublers

Increased dc output voltage from a transformer winding can be obtained using a voltage multiplier circuit. However, this method requires additional components, i.e., two filter capacitors, and reduces the output current. A full-wave doubler and a halfwave doubler are shown in Figure 14. The half-wave doubler is generally preferred since it has a common input and output terminal. In operation, C2 is charged on one half cycle; on the second half cycle, C1 is charged thereby summing the voltages across each capacitor. This provides a doubling effect since the output voltage is approximately twice the input voltage.

Fig. 14. Voltage Doublers

Table 2. Capacitive Input Filter Characteristics and Rectifier Circuit Wave Shapes

Characteristic	Single Phase Half Wave (See 2-A)	Single Phase Full Wave Center-Tap (See 2-B)	Single Phase Full Wave Bridge (See 2-C)	Single Phase Full Wave Voltage Doubler (See 2-D)
V_{1}	$0.910 \mathrm{~V}_{0}$	$0.825 \mathrm{~V}_{0}$	$0.805 \mathrm{~V}_{0}$	$0.552 \mathrm{~V}_{0}$
PIV	2.56 Vo	$2.34 \mathrm{~V}^{\circ}$	$1.14 \mathrm{~V}^{0}$	$1.56 \mathrm{~V}_{0}$
Ripple	$0.12 \mathrm{~V}_{0}$. 06 Vo	. $06 \mathrm{~V}_{0}$. 09 Vo
Im/Rect.	7.80 Io	4.75 Io	4.75 Io	3.00 Io
Imms/Rect.	2.50 lo	1.33 lo	1.33 lo	1.10 lo
SEC VA	2.35 Po	2.16 Po	2.16 Po	1.22 Po
PRI VA	2.35 Po	3.05 Po	2.16 Po	1.72 Po

Table 2. Capacitive Input Filter Characteristics and Rectifier Circuit Wave Shapes (Cont.)

References

1. Schade, O.H., "Analysis of Rectifier Operation," Proc IRE, July 1943, Vol. 31 \#7, pp. 341-361.
2. Ryder, John D., "Electronic Engineering Principles," Prentice Hall, Inc. 1947, pp. 94-125.
3. Seeley, Samuel, "Electron Tube Circuits," McGraw-Hill, 1958, pp. 194-230.
4. Gray, Truman, S., "Applied Electronics," John Wiley and Sons, Inc., 1954 pp. 250-277.
5. Martin, Thomas L., Jr., "Electronic Circuits," Prentice Hall, Inc., 1955, pp. 506-541.

To realize the full capabilities of the High Current Voltage Regulator, sufficient attention must be paid to proper heat removal. For efficient thermal management, the user must rely on important parameters supplied by the manufacturer, such as junction-to-case and junction-to-ambient thermal resistance and maximum operating junction temperature. The device temperature depends on the power dissipation level, the means for removing the heat generated by this power dissipation and the temperature of the body (heat sink) to which this heat is removed.

Figure 1 shows a simplified equivalent circuit for a typical semiconductor device in equilibrium. The power dissipation, which is analogous to current flow in electrical terms, is caused by a heat source similar to a voltage source. Temperature is analogous to voltage potential and thermal resistance to ohmic resistance. Extending the analogy of Ohm's law to

$$
\theta_{\mathrm{JA}(\mathrm{tot})}=\theta_{\mathrm{JC}}+\theta_{\mathrm{CS}}+\theta_{\mathrm{SA}}=\frac{\mathrm{T}_{\mathrm{J}}-\mathrm{T}_{\mathrm{A}}}{\mathrm{P}_{\mathrm{D}}}
$$

Thermal resistance, then, is the rise in the temperature of a package above some reference level per unit of power dissipation in that package, usually expressed in degrees in centigrade per watt. The reference temperature may be ambient or it may be the temperature of a heat sink to which the package is connected. There are several factors that affect thermal resistance including die size, the size of the heat source on the die (or substrate), dieattach material and thickness, substrate material and thickness, and package material, construction and thickness.

Fig. 1 Simplified Thermal Circuit

Thermal Evaluation of Regulators

To measure thermal resistance, the difference between the junction temperature and the chosen reference temperature, case, sink or ambient, must be determined. Ambient or sink temperature measurement is straightforward. For casetemperature measurement, the device should have a sufficiently large heat sink and the power level should be close to the specified rating of the package-die combination. The case temperature can be measured by an infrared microradiometer or by using a thermocouple soldered to a point in the center of the case heat-sink interface as close to the die as practical.

Measurement of the junction temperature, unfortunately, is not as simple and involves some calibrations. There are several methods available for junction-temperature measurement; the one most commonly used is described here.

Thermal Shutdown Method

With this method, the thermal shutdown temperature of each device is used as the thermometer in determining the thermal resistance. The device is first heated externally, with as little internal power dissipation as practical, until it reaches thermal shutdown. Then, with the device mounted on a heat sink, the regulator is powered externally until it reaches thermal shutdown again. In some cases, the ambient of the device and its heat sink may have to be elevated sufficiently to force the regulator into shutdown. The thermal resistance of the device can then be calculated by using

$$
\theta_{\mathrm{JC}}=\frac{T_{\mathrm{J}}-\mathrm{T}_{\mathrm{C}}}{P_{\mathrm{D}}}
$$

where θ_{Jc} is the junction-to-case thermal resistance
T_{J} is the measured thermal shutdown temperature
T_{C} is the measured case temperature
P_{D} is the power dissipated to force the device into shutdown and is equal to

$$
\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right) \text { Iout }+\mathrm{V}_{\text {IN }} \mathrm{I}_{\mathrm{Q}}
$$

I_{Q} is the quiescent current of the device and can be neglected for low thermal resistance packages such as the TO-3

Heat Sink Requirements

When is a heat sink necessary, and what type of a heat sink should one use? The answers to these questions depend on reliability and cost

Thermal Considerations

requirements. Heat sinking is necessary to keep the operating junction temperature T_{J} of the regulator below the specified maximum value. Since semiconductor reliability improves as operating junction temperature is lowered, a reliability/cost compromise is usually made in the device design.

Thermal characteristics of voltage-regulator chips and packages determine that some form of heat sinking is mandatory whenever the power dissipation exceeds 3.2 W for the high current voltage regulator TO-3 package at $25^{\circ} \mathrm{C}$ ambient or lower power levels at ambients above $25^{\circ} \mathrm{C}$.

To choose or design a heat sink, the designer must determine the following regulator parameters.
$\mathrm{P}_{\mathrm{D}(\max)}$ - Maximum power dissipation:
($\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUt }}$) $\mathrm{l}_{\text {OUt }}+\mathrm{V}_{\text {IN }} \mathrm{l}_{\text {Q }}$
$\mathrm{T}_{\mathrm{A}(\text { max })}$ - Maximum ambient temperature the regulator will encounter during operation.
$\mathrm{T}_{\mathrm{J}(\max)}$ - Maximum operating junction temperature, specified by the manufacturer.
$\theta_{\mathrm{Jc}}, \theta_{\mathrm{JA}}$ - Junction-to-case and junction-toambient thermal resistance values, also specified by the regulator manufacturer. $\left(\theta_{\mathrm{JA}}=38^{\circ} \mathrm{C} / \mathrm{W}\right.$ max. $\left.\theta_{\mathrm{JC}}=2.50^{\circ} \mathrm{C} / \mathrm{W} \max \right)$.
$\theta_{\text {Cs }}$ - Case-to-heat-sink thermal resistance which for large packages, can range from about $0.2^{\circ} \mathrm{C} / \mathrm{W}$ to about $1^{\circ} \mathrm{C} / \mathrm{W}$ depending on the quality of the contact between the package and the heat sink.
$\theta_{\text {SA }}$ - Heat-sink-to-ambient thermal resistance, specified by heat-sink manufacturer.
Maximum permissible dissipation without a heat sink is determined by

$$
P_{D(\max)}=\frac{T_{J(\max)}-T_{A(\text { max })}}{\theta_{\mathrm{JA}}}
$$

If the device dissipation P_{D} exceeds this figure, a heat sink is necessary. The total required thermal resistance may then be calculated.

$$
\theta_{\mathrm{JA}(\text { tot })}=\theta_{\mathrm{JC}}+\theta_{\mathrm{CS}}=\theta_{\mathrm{SA}}=\frac{\mathrm{T}_{\mathrm{J}(\text { max })}-\mathrm{T}_{\mathrm{A}(\text { max })}}{\mathrm{P}_{\mathrm{D}}}
$$

Case-to-sink and sink-to-ambient thermal resistance information on commercially available heat sinks is normally provided by the heat sink manufacturer. A summary of some commercially available heat sinks is shown in Table 1. However, if a chassis or other conventional surface is used as a heat sink, Figure 2 can be used as a guide to estimate the required surface area.

Fig. 2 Heat Sink Material Selection Guide
SURFACE AREA
(BOTH SIDES OF THE HEAT SINK)
SQUARE INCHES

To determine either area required or thermal resistance of a given area, draw a vertical line between the top (or area) line down to the material of interest.

Thermal Considerations

How to Choose a Heat Sink - Example

Determine the heat sink required for a regulator which has the following system requirements:

Operating ambient temperature range: $0^{\circ} \mathrm{C}-40^{\circ} \mathrm{C}$ Maximum junction temperature: $125^{\circ} \mathrm{C}$
Maximum output current: 3 A
Maximum input to output differential: 5 V
For this example assume the $\mu \mathrm{A} 78 \mathrm{HGA}, 5$ Amp Positive Adjustable High Current Voltage Regulator has been selected.

$$
\begin{aligned}
& \theta_{\mathrm{JC}}=2.5^{\circ} \mathrm{C} / \mathrm{W} \text { maximum (from data sheet) } \\
& \theta_{\mathrm{JA}(\mathrm{tot})}=\theta_{\mathrm{JC}}+\theta_{\mathrm{CS}}+\theta_{\mathrm{SA}}=\frac{\mathrm{T}_{\mathrm{J}}-\mathrm{T}_{\mathrm{A}}}{\mathrm{P}_{\mathrm{D}}} \\
& \theta_{\mathrm{CS}}+\theta_{\mathrm{SA}}=\frac{125-40}{3 \times 5}-2.5=3.16^{\circ} \mathrm{C} / \mathrm{W} \\
& \text { Assuming } \theta_{\mathrm{CS}}=.16^{\circ} \mathrm{C} / \mathrm{W} \text { then } \theta_{\mathrm{SA}}=3^{\circ} \mathrm{C} / \mathrm{W}
\end{aligned}
$$

This thermal resistance value can be achieved by using either 22 square inches of $3 / 16$ inch thick vertically mounted aluminum (Figure 2) or a commercial heat sink (Table 1).

Tips for Better Regulator Heat Sinking

Avoid placing heat-dissipating components such as power resistors next to regulators.

Keep lead lengths to a minimum and use the largest possible area of the printed board traces or mounting hardware to provide a heat dissipation path for the regulator.

Be sure the heat sink surface is flat and free from ridges or high spots. Check the regulator package for burrs or peened-over corners. Regardless of the smoothness and flatness of the package and heatsink contact, air pockets between them are unavoidable unless a lubricant is used. Therefore, for good thermal conduction, use a thin layer of thermal lubricant such as Dow Corning DC-340, General Electric 662 or Thermacote by Thermalloy.

If the regulator is mounted on a heat sink with fins, the most efficient heat transfer takes place when the fin is in a vertical plane, as this type of mounting forces the heat transfer from fin to air in a combination of radiation and convection.

If it is necessary to bend any of the regulator leads, handle them carefully to avoid straining the package. Furthermore, lead bending should be restricted since repeated bending will fatigue and eventually break the leads.

Table 1

Heat Sink Selection Guide

This list is only representative. No attempt has been made to provide a complete list of all heat sink manufacturers. All values are typical as given by manufacturer or as determined from characteristic curves supplied by manufacturer.

$\theta_{\text {SA }}$ Approx. (${ }^{\circ} \mathrm{C} / \mathrm{W}$)	Manufacturer and Type
0.4 (9" length)	Thermalloy (Extruded) 6590 Series
0.4-0.5 (6" length)	Thermalloy (Extruded) 6660, 6560 Series
0.56-3.0	Wakefield 400 Series
0.6 (7.5" length)	Thermalloy (Extruded) 6470 Series
$\begin{aligned} & 0.7-1.2 \\ & \left(5-5.5^{\prime \prime} \text { length }\right) \end{aligned}$	Thermalloy (Extruded) 6423, 6443, 6441, 6450 Series
$\begin{aligned} & 1.0-5.4 \\ & \left(3^{\prime \prime} \text { length }\right) \end{aligned}$	Thermalloy (Extruded) 6427, 6500, $6123,6401,6403,6421,6463$, $6176,6129,6141,6169,6135$, 6442 Series
1.9	IERC E2 Series (Extruded)
2.1	IERC E1, E3 Series (Extruded)
2.3-4.7	Wakefield 600 Series
4.2	IERC HP3 Series
4.5	Staver V3-5-2
4.8-7.5	Thermalloy 6001 Sries
5-6	IERC HP3 Series
5-10	Thermalloy 6013 Series
5.6	Staver V3-3-2
5.9-10	Wakefield 680 Series
6	Wakefield 390 Series
6.4	Staver V3-7-224
6.5-7.5	IERC Up SEries
8	Staver V1-5
8.1	Staver V3-5
8.8	Staver V3-7-96
9.5	Staver V3-3
9.5-10.5	IERC LA Series
9.8-13.9	Wakefield 630 Series
10	Staver V1-3
11	Thermalloy 6103, 6117 Series

A Schlumberger Company

Reliability	2

Cross Reference Guide and Ordering Information

Applications	5

Fairchild Field Sales Offices, Representatives and Distributors Distributors

United States and Canada

Alabama

Hall Mark Electronics
4900 Bradford Drive Huntsville, Alabama 35807
Tel: 205-837-8700 TWX: 810-726-2187
Hamilton/Avnet Electronics
4692 Commercial Drive
Huntsville, Alabama 35805
Tel: 205-837-7210 TWX: 810-726-2162

Arizona

Hamilton/Avnet Electronics
505 South Madison Drive
Tempe, Arizona 85281
Tel: 602-231-5100 TWX: 910-950-0077
Kierulff Electronics
4134 East Wood Street
Phoenix, Arizona 85040
Tel: 602-243-4101
Wyle Distribution Group
8155 North 24th Avenue
Phoenix, Arizona 85021
Tel: 602-249-2232 TWX: 910-951-4282

California

Anthem Electronics, Inc.
21730 Nordhoff Street
Chatsworth, California 91311
Tel: 213-700-1000 TWX: 910-493-2083
Anthem Electronics, Inc. 4125 Sorrento Valley Blvd.
San Diego, California 92121
Tel: 714-279-5200
Anthem Electronics, Inc.
174 Component Drive
San Jose, California 95131
Tel: 408-946-8000
Anthem Electronics, Inc.
2661 Dow Avenue
Tustin, California 92680
Tel: 714-730-8000
Arrow Electronics
9511 Ridge Haven Court
San Diego, California 92123
Tel: 714-565-4800 TWX: 910-335-1195
Arrow Electronics
521 Weddell Avenue
Sunnyvale, California 94086
Tel: 408-745-6600 TWX: 910-339-9371

Avnet Electronics

340 McCormick Avenue
Costa Mesa, California 92626
Tel: 714-754-6111 (Orange County)
213-558-2345 (Los Angeles)
TWX: 910-595-1928
Bell Industries
Electronic Distributor Division
1161 N. Fair Oaks Avenue
Sunnyvale, California 94086
Tel: 408-734-8570 TWX: 910-339-9378

Hamilton/Avnet Electronics
3170 Pullman Avenue
Costa Mesa, California 92626
Tel: 714-641-1850 TWX: 910-595-2638
Hamilton Electro Sales
10912 West Washington Blvd.
Culver City, California 90230
Tel: 213-558-2121 TWX: 910-340-6364
Hamilton/Avnet Electronics
4545 Viewridge Avenue
San Diego, California 92123
Tel: 714-571-7527 TWX: 910-335-1216
Hamilton/Avnet Electronics
1175 Bordeaux Drive
Sunnyvale, California 94086
Tel: 408-743-3355 TWX: 910-339-9332
**Sertech Laboratories
2120 Main Street, Suite 190
Huntington Beach, California 92647
Tel: 714-960-1403
Wyle Electronics
124 Maryland Street
El Segundo, California 90245
Tel: 213-322-8100 TWX: 910-348-7111
Wyle Distributor Group
17872 Cowan Avenue
Irvine, California 92714
Tel: 714-641-1600
Telex: 910-595-1572
Wyle Distributor Group
18910 Teller Avenue
Irvine, California 92715
Tel: 714-851-9955
Wyle Distribution Group
9525 Chesapeake
San Diego, California 92123
Tel: 714-565-9171 TWX: 910-335-1590
Wyle Distribution Group
3000 Bowers Avenue
Santa Clara, California 95051
Tel: 408-727-2500 TWX: 910-338-0541

Colorado

Arrow Electronics
2121 South Hudson
Denver, Colorado 80222
Tel: 303-758-2100 TWX: 910-331-0552
Bell Industries
8155 West 48th Avenue
Wheatridge, Colorado 80033
Tel: 303-424-1985 TWX: 910-938-0393
Hamilton/Avnet Electronics
8765 E. Orchard Rd., Suite 708
Englewood, Colorado 80111
Tel: 303-740-1000 TWX: 910-935-0787
Wyle Distribution Group
451 East 124th Avenue
Thornton, Colorado 80241
Tel: 303-457-9953 TWX: 910-936-0770

Connecticut
Arrow Electronics
12 Beaumont Road
Wallingford, Connecticut 06492
Tel: 203-265-7741 TWX: 710-476-0162
Hamilton/Avnet Electronics
Commerce Drive, Commerce Park
Danbury, Connecticut 06810
Tel: 203-797-2800 TWX: 710-546-9974
Harvey Electronics
112 Main Street
Norwalk, Connecticut 06851
Tel: 203-853-1515 TWX: 710-468-3373
Schweber Electronics
Finance Drive
Commerce Industrial Park
Danbury, Connecticut 06810
Tel: 203-792-3500 TWX: 710-456-9405

Florida

Arrow Electronics
1001 Northwest 62nd Street
Suite 108
Ft. Lauderdale, Florida 33309
Tel: 305-776-7790 TWX: 510-955-9456
Arrow Electronics
50 Woodlake Drive West
Building B
Palm Bay, Florida 32905
Tel: 305-725-1480
Hall Mark Electronics
1671 West McNab Road
Ft. Lauderdale, Florida 33309
Tel: 305-971-9280 TWX: 510-956-3092
Hall Mark Electronics
7233 Lake Ellenor Drive
Orlando, Florida 32809
Tel: 305-855-4020 TWX: 810-850-0183
Hamilton/Avnet Electronics
6801 N.W. 15th Way
Ft. Lauderdale, Florida 33309
Tel: 305-971-2900 TWX: 510-955-3097
Hamilton/Avnet Electronics
3197 Tech Drive, North
St. Petersburg, Florida 33702
Tel: 813-576-3930 TWX: 810-863-0374
Schweber Electronics
2830 North 28th Terrace
Hollywood, Florida 33020
Tel: 305-927-0511 TWX: 510-954-0304

Georgia

Arrow Electronics
2979 Pacific Drive
Norcross, Georgia 30071
Tel: 404-449-8252 TWX: 810-766-0439
Hall Mark Electronics
6410 Atlantic Blvd., Suite 115
Norcross, Georgia 30071
Tel: 404-447-8000 TWX: 810-766-4510
Hamilton/Avnet Electronics
5825-D Peachtree Corners East
Norcross, Georgia 30092
Tel: 404-447-7500 TWX: 810-766-0432

[^2]
Franchised Distributors

United States and Canada

Illinois

Arrow Electronics
492 Lunt Avenue
Schaumburg, Illinois 60193
Tel: 312-893-9420 TWX: 910-291-3544

Hall Mark Electronics
1177 Industrial Drive
Bensenville, Illinois 60106
Tel: 312-860-3800
Hamilton/Avnet Electronics
1130 Thorndale Avenue
Bensenville, Illinois 60106
Tel: 312-860-7780 TWX: 910-227-0060
Kierulff Electronics
1536 Landmeier Road
Elk Grove Village, Illinois 60007
Tel: 312-640-0200 TWX: 910-227-3166
Schweber Electronics
1275 Brummel Avenue
Elk Grove Village, Illinois 60007
Tel: 312-364-3750 TWX: 910-222-3453

Indiana

Arrow Electronics
2718 Rand Road
Indianapolis, Indiana 46241
Tel: 317-243-9353 TWX: 810-341-3119

Graham Electronics Supply, Inc.
133 S. Pennsylvania Street
Indianapolis, Indiana 46204
Tel: 317-634-8486 TWX: 810-341-3481
Hamilton/Avnet Electronics
485 Gradle Drive
Carmel, Indiana 46032
Tel: 317-844-9333 TWX: 810-260-3966
Pioneer Electronics
6408 Castle Place Drive
Indianapolis, Indiana 46250
Tel: 317-849-7300 TWX: 810-260-1794

Kansas

Hall Mark Electronics
10815 Lakeview Drive
Lenexa, Kansas 66215
Tel: 913-888-4747
Hamilton/Avnet Electronics
9219 Quivira Road
Overland Park, Kansas 66215
Tel: 913-888-8900 TWX: 910-743-0005

Maryland

Hall Mark Electronics
6655 Amberton Drive
Baltimore, Maryland 21227
Tel: 301-796-9300
Hamilton/Avnet Electronics
6822 Oak Hall Lane
Columbia, Maryland 21045
Tel: 301-995-3500 TWX: 710-862-1861

Pioneer Electronics
9100 Gaither Road
Gaithersburg, Maryland 20760
Tel: 301-948-0710 TWX: 710-828-9784
Schweber Electronics
9218 Gaither Road
Gaithersburg, Maryland 20760
Tel: 301-840-5900 TWX: 710-828-9749

Massachusetts

Arrow Electronics
Arrow Drive
Woburn, Massachusetts 01801
Tel: 617-933-8130 TWX: 710-392-6770
Cadence Electronics
15 Strathmore Road
Natick, Massachusetts 01760
Tel: 617-879-3000 TWX: 710-346-0397
Gerber Electronics
128 Carnegie Row
Norwood, Massachusetts 02062
Tel: 617-329-2400

Hamilton/Avnet Electronics
50 Tower Office Park
Woburn, Massachusetts 01801
Tel: 617-273-7500 TWX: 710-393-0382
Harvey Electronics
44 Hartwell Avenue
Lexington, Massachusetts 02173
Tel: 617-861-9200 TWX: 710-326-6617
Schweber Electronics
25 Wiggins Avenue
Bedford, Massachusetts 01730
Tel: 617-275-5100 TWX: 710-326-0268
**Sertech Laboratories
1 Peabody Street
Salem, Massachusetts 01970
Tel: 617-745-2450

Michigan

Arrow Electronics
3810 Varsity Drive
Ann Arbor, Michigan 48104
Tel: 313-971-8220 TWX: 810-223-6020
Hamilton/Avnet Electronics
2215 29th Street S.E
Space A5
Grand Rapids, Michigan 49508
Tel: 616-243-8805 TWX: 810-273-6921
Hamilton/Avnet Electronics
32487 Schoolcraft
Livonia, Michigan 48150
Tel: 313-522-4700 TWX: 810-242-8775

Pioneer Electronics
13485 Stamford
Livonia, Michigan 48150
Tel: 313-525-1800
Schweber Electronics
33540 Schoolcraft
Livonia, Michigan 48150
Tel: 313-525-8100 TWX: 810-242-2983

Minnesota

Arrow Electronics
5230 West 73rd Street
Edina, Minnesota 55435
Tel: 612-830-1800 TWX: 910-576-3125
Hamilton/Avnet Electronics
10300 Bren Road East
Minnetonka, Minnesota 55343
Tel: 612-932-0600 TWX: 910-576-2720
Schweber Electronics
7422 Washington Avenue S.
Eden Prairie, Minnesota 55344
Tel: 612-941-5280 TWX: 910-576-3167
Missouri
Hall Mark Electronics
13789 Rider Trail
Earth City, Missouri 63045
Tel: 314-291-5350
Hamilton/Avnet Electronics
13743 Shoreline Court, East
Earth City, Missouri 63045
Tel: 314-344-1200 TWX: 910-762-0606
New Hampshire
Arrow Electronics
1 Perimeter Road
Manchester, New Hampshire 03103
Tel: 603-668-6968 TWX: 710-220-1684
New Jersey
Arrow Electronics
Pleasant Valley Avenue
Moorestown, New Jersey 08057
Tel: 609-235-1900 TWX: 710-897-0829
Arrow Electronics
285 Midland Avenue
Saddle Brook, New Jersey 07662
Tel: 201-797-5800 TWX: 710-988-2206
Hall Mark Electronics
Springdale Business Center
2091 Springdale Road
Cherry Hill, New Jersey 08003
Tel: 609-424-0880
Hamilton/Avnet Electronics
10 Industrial Road
Fairfield, New Jersey 07006
Tel: 201-575-3390 TWX: 710-734-4388
Hamilton/Avnet Electronics
\#1 Keystone Avenue
Cherry Hill, New Jersey 08003
Tel: 609-424-0100 TWX: 710-940-0262
Harvey Electronics
45 Route 46
Pinebrook, New Jersey 07058
Tel: 201-575-3510 TWX: 710-734-4382
Schweber Electronics
18 Madison Road
Fairfield, New Jersey 07006
Tel: 201-227-7880 TWX: 710-734-4305
Sterling Electronics
774 Pfeiffer Blvd.
Perth Amboy, New Jersey 08861
Tel: 201-442-8000 Telex: 138-679

[^3]
Franchised Distributors

New Mexico

Arrow Electronics
2460 Alamo Avenue S.E.
Albuquerque, New Mexico 87106
Tel: 505-243-4566 TWX: 910-889-1679

Bell Industries

11728 Linn Avenue N.E.
Albuquerque, New Mexico 87123
Tel: 505-292-2700 TWX: 910-989-0625
Hamilton/Avnet Electronics
2524 Baylor Drive, S.E.
Albuquerque, New Mexico 87106
Tel: 505-765-1500 TWX: 910-989-0614

New York

Arrow Electronics
900 Broadhollow Road
Farmingdale, New York 11735
Tel: 516-694-6800
TWX: 510-224-6155 \& 510-224-6126
Arrow Electronics
20 Oser Avenue
Hauppauge, New York 11787
Tel: 516-231-1000

Arrow Electronics
P.O. Box 370

7705 Maltlage Drive
Liverpool, New York 13088
Tel: 315-652-1000 TWX: 710-545-0230
Components Plus, Inc.
40 Oser Avenue
Hauppauge, New York 11787
Tel: 516-231-9200 TWX: 510-227-9869
Hamilton/Avnet Electronics
5 Hub Drive
Melville, New York 11746
Tel: 516-454-6000 TWX: 510-224-6166
Hamilton/Avnet Electronics
333 Metro Park
Rochester, New York 14623
Tel: 716-475-9130 TWX: 510-253-5470
Hamilton/Avnet Electronics
16 Corporate Circle
E. Syracuse, New York 13057

Tel: 315-437-2642 TWX: 710-541-1560
Harvey Electronics
(mailing address)
P.O. Box 1208

Binghamton, New York 13902
(shipping address)
1911 Vestal Parkway East
Vestal, New York 13850
Tel: 607-748-8211
Harvey Electronics
60 Crossways Park West
Woodbury, New York 11797
Tel: 516-921-8920 TWX: 510-221-2184
Schweber Electronics
Jericho Turnpike
Westbury, L.I., New York 11590
Tel: 516-334-7474 TWX: 910-222-3660

Summit Distributors, Inc.
916 Main Street
Buffalo, New York 14202
Tel: 716-884-3450 TWX: 710-522-1692

North Carolina

Arrow Electronics
938 Burke Street
Winston-Salem, North Carolina 27102
Tel: 919-725-8711 TWX: 510-931-3169
Hall Mark Electronics
1208 Front Street, Bldg. K
Raleigh, North Carolina 27609
Tel: 919-823-4465 TWX: 510-928-1831
Hamilton/Avnet Electronics
2803 Industrial Drive
Raleigh, North Carolina 27609
Tel: 919-829-8030 TWX: 510-928-1836
Pioneer Electronics
103 Industrial Drive
Greensboro, North Carolina 27406
Tel: 919-273-4441
Ohio
Arrow Electronics
7620 McEwen Road
Centerville, Ohio 45459
Tel: 513-435-5563 TWX: 810-459-1611
Arrow Electronics
6238 Cochran Road
Solon, Ohio 44139
Tel: 216-248-3990 TWX: 810-427-9409
Hamilton/Avnet Electronics
954 Senate Drive
Dayton, Ohio 45459
Tel: 513-433-0610 TWX: 810-450-2531
Hamilton/Avnet Electronics
4588 Emery Industrial Parkway
Warrensville Heights, Ohio 44128
Tel: 216-831-3500 TWX: 810-427-9452
Pioneer Electronics
4800 E. 131st Street
Cleveland, Ohio 44105
Tel: 216-587-3600
Pioneer Electronics
4433 Interpoint Blva.
Dayton, Ohio 45424
Tel: 513-236-9900 TWX: 810-459-1622
Schweber Electronics
23880 Commerce Park Road
Beachwood, Ohio 44122
Tel: 216-464-2970 TWX: 810-427-9441
Oklahoma
Hall Mark Electronics
5460 S. 103rd East Avenue
Tulsa, Oklahoma 74145
Tel: 918-665-3200 TWX: 910-845-2290

Oregon

Hamilton/Avnet Electronics
6024 S.W. Jean Road
Building C, Suite 10
Lake Oswego, Oregon 97034
Tel: 503-635-8157 TWX: 910-455-8179

Pennsylvania
Arrow Electronics
650 Seco Road
Monroeville, Pennsylvania 15146
Tel: 412-856-7000
Pioneer Electronics
261 Gibraltar Road
Horsham, Pennsylvania 19044
Tel: 215-674-4000 TWX: 510-665-6778

Pioneer Electronics
259 Kappa Drive
Pittsburgh, Pennsylvania 15238
Tel: 412-782-2300 TWX: 710-795-3122
Schweber Electronics
101 Rock Road
Horsham, Pennsylvania 19044
Tel: 215-441-0600 TWX: 510-665-6540
Texas
Arrow Electronics
13715 Gamma Road
Dallas, Texas 75234
Tel: 214-386-7500 TWX: 910-860-5377
Arrow Electronics
10700 Corporate Drive, Suite 100
Stafford, Texas 77477
Tel: 713-491-4100 TWX: 910-880-4439
Hall Mark Electronics
12211 Technology Bivd.
Austin, Texas 78759
Tel: 512-258-8848
Hall Mark Electronics
11333 Page Mill Drive
Dallas, Texas 75243
Tel: 214-343-5000 TWX: 910-867-4721

Hall Mark Electronics
8000 Westglen
Houston, Texas 77063
Tel: 713-781-6100
Hamilton/Avnet Electronics
2401 Rutland Drive
Austin, Texas 78758
Tel: 512-837-8911 TWX: 910-874-1319
Hamilton/Avnet Electronics
8750 Westpark
Houston, Texas 77063
Tel: 713-780-1771 TWX: 910-881-5523
Hamilton/Avnet Electronics
2111 W. Walnut Hill Lane
Irving, Texas 75062
Tel: 214-659-4111 TWX: 910-860-5929

Schweber Electronics, Inc.
4202 Beltway Drive
Dallas, Texas 75234
Tel: 214-661-5010 TWX: 910-860-5493
Schweber Electronics, Inc.
10625 Richmond, Suite 100
Houston, Texas 77042
Tel: 713-784-3600 TWX: 910-881-4836

FAIRCHILD

A Schlumberger Company

Franchised Distributors

United States and Canada

Sterling Electronics
4201 Southwest Freeway
Houston, Texas 77027
Tel: 713-627-9800 TWX: 910-881-5042
Telex: STELECO HOUA 77-5299

Utah

Bell Industries
3639 West 2150 South
Salt Lake City, Utah 84120
Tel: 801-972-6969 TWX: 910-925-5686
Hamilton/Avnet Electronics
1585 West 2100 South
Salt Lake City, Utah 04119
Tel: 801-972-2800 TWX: 910-925-4018
Washington
Arrow Electronics
14230 N.E. 21st Street
Bellevue, Washington 98005
Tel: 206-643-4800 TWX: 910-443-3033
Hamilton/Avnet Electronics
14212 N.E. 21st Street
Bellevue, Washington 98005
Tel: 206-453-5844 TWX: 910-443-2469

Radar Electronic Co., Inc.
168 Western Avenue W.
Seattle, Washington 98119
Tel: 206-282-2511 TWX: 910-444-2052
Wyle Distribution Group
1750 132nd Avenue N.E.
Bellevue, Washington 98005
Tel: 206-453-8300 TWX: 910-444-1379

Wisconsin
Hall Mark Electronics
9657 South 20th Street
Oakcreek, Wisconsin 53154
Tel: 414-761-3000
Hamilton/Avnet Electronics
2975 South Moorland Road
New Berlin, Wisconsin 53151
Tel: 414-784-4510 TWX: 910-262-1182

Canada

Future Electronics Inc.
4800 Dufferin Street
Downsview, Ontario M3H 5S8, Canada
Tel: 416-663-5563

Future Electronics Inc
Baxter Center
1050 Baxter Road
Ottawa, Ontario, K2C 3P2, Canada
Tel: 613-820-8313
Future Electronics Inc.
237 Hymus Blvd.
Pointe Clare (Montreal), Quebec, H9R 5C7, Canada
Tel: 514-694-7710 TWX: 610-421-3251

Hamilton/Avnet Canada Ltd.
6845 Rexwood Road, Units 3-4-5
Mississauga, Ontario, L4V 1R2, Canada
Tel: 416-677-7432 TWX: 610-492-8867
Hamilton/Avnet Canada Ltd.
210 Colonnade Road
Nepean, Ontario K2E 7L5, Canada
Tel: 613-226-1700 Tlx: 0534-971

Hamilton/Avnet Canada Ltd
2670 Sabourin Street
St. Laurent, Quebec, H4S 1M2, Canada
Tel: 514-331-6443 TWX: 610-421-3731
Semad Electronics Ltd.
620 Meloche Avenue
Dorval, Quebec, H9P 2P4, Canada
Tel: 604-299-8866 TWX: 610-422-3048
Semad Electronics Ltd.
105 Brisbane Avenue
Downsview, Ontario, M3J 2K6, Canada
Tel: 416-663-5670 TWX: 610-492-2510
Semad Electronics Ltd.
864 Lady Ellen Place
Ottawa, Ontario K1Z 5M2, Canada
Tel: 613-722-6571 TWX: 610-562-1923

FAIRCHILD

A Schlumberger Company

Sales
Representatives

United States and Canada

California

Magna Sales, Inc.
3333 Bowers Avenue, Suite 295
Santa Clara, California 95051
Tel: 408-727-8753 TWX: 910-338-0241

Colorado

Simpson Associates, Inc.
2552 Ridge Road
Littleton, Colorado 80120
Tel: 303-794-8381 TWX: 910-935-0719

Illinois

Micro Sales, Inc.
54 W. Seegers Road
Arlington Heights, Illinois 60005
Tel: 312-956-1000 TWX: 910-222-1833

Maryiand

Delta III Associates
1000 Century Plaza, Suite 224
Columbia, Maryland 21044
Tel: 301-730-4700 TWX: 710-826-9654

Massachusetts

Spectrum Associates, Inc.
109 Highland Avenue
Needham, Massachusetts 02192
Tel: 617-444-8600 TWX: 710-325-6665

Missouri

Micro Sales, Inc.
514 Earth City Plaza, Suite 314
Earth City, Missouri 63045
Tel: 314-739-7446

Nevada

Magna Sales, Inc.
4560 Wagon Wheel Road
Carson City, Nevada 89701
Tel: 702-883-1471
New York
Tri-Tech Electronics, Inc.
3215 E. Main Street
Endwell, New York 13760
Tel: 607-754-1094 TWX: 510-252-0891
Tri-Tech Electronics, Inc. 590 Perinton Hills Office Park
Fairport, New York 14450
Tel: 716-223-5720 TWX: 510-253-6356
Tri-Tech Electronics, Inc.
6836 E. Genesee Street
Fayetteville, New York 13066
Tel: 315-446-2881 TWX: 710-541-0604
Tri-Tech Electronics, Inc.
19 Davis Avenue
Poughkeepsie, New York 12603
Tel: 914-473-3880 TWX: 510-253-6356
Oregon
Magna Sales, Inc.
8285 S.W. Nimbus Avenue, Suite 138 Beaverton, Oregon 97005
Tel: 503-641-7045 TWX: 910-467-8742

Utah

Simpson Associates, Inc.
7324 South 1300 East, Suite 350
Midvale, Utah 84047
Tel: 801-566-3691 TWX: 910-925-4031
Washington
Magna Sales, Inc.
Benaroya Business Park
Building 3, Suite 115
300 120th Avenue, N.E.
Bellevue, Washington 98004
Tel: 206-455-3190

Wisconsin

Larsen Associates
10855 West Potter Road
Wauwatosa, Wisconsin 53226
Tel: 414-258-0529 TWX: 910-262-3160

FAIRCHILD

A Schlumberger Company

Sales Offices

United States and Canada

Alabama

Huntsville Office
500 Wynn Drive, Suite 511
Huntsville, Alabama 35805
Tel: 205-837-8960

Arizona

Phoenix Office
2255 West Northern Road, Suite B112
Phoenix, Arizona 85021
Tel: 602-864-1000 TWX: 910-951-1544

California

Los Angeles Office*
Crocker Bank Bldg.
15760 Ventura Blvd., Suite 1027
Encino, California 91436
Tel: 213-990-9800 TWX: 910-495-1776

San Diego Office*
4355 Ruffin Road, Suite 100
San Diego, California 92123
Tel: 714-560-1332

Santa Ana Office*
1570 Brookhollow Drive, Suite 206
Santa Ana, California 92705
Tel: 714-557-7350 TWX: 910-595-1109
Santa Clara Office*
3333 Bowers Avenue, Suite 299
Santa Clara, California 95051
Tel: 408-987-9530 TWX: 910-338-0241

Colorado

Denver Office
7200 East Hampden Avenue, Suite 206
Denver, Colorado 80224
Tel: 303-758-7924

Connecticut

Danbury Office
57 North Street, \#206
Danbury, Connecticut 06810
Tel: 203-744-4010

Florida

Ft. Lauderdale Office
Executive Plaza, Suite 112
1001 Northwest 62nd Street
Ft. Lauderdale, Florida 33309
Tel: 305-771-0320 TWX: 510-955-4098

Orlando Office*
Crane's Roost Office Park
399 Whooping Loop
Altamonte Springs, Florida 32701
Tel: 305-834-7000 TWX: 810-850-0152

Georgia

Atlanta Sales Office
Interchange Park, Bldg. 2
4183 N.E. Expressway
Atlanta, Georgia 30340
Tel: 404-939-7683
Illinois
Itasca Office
500 Park Blva., Suite 575
Itasca, Illinois 60143
Tel: 312-773-3300

Indiana

Ft. Wayne Office
2118 Inwood Drive, Suite 111
Ft. Wayne, Indiana 46815
Tel: 219-483-6453 TWX: 810-332-1507
Indianapolis Office
7202 N. Shadeland, Room 205
Castle Point
Indianapolis, Indiana 46250
Tel: 317-849-5412 TWX: 810-260-1793

Kansas

Kansas City Office
8600 West 110th Street, Suite 209
Overland Park, Kansas 66210
Tel: 913-649-3974

Maryland

Columbia Office
1000 Century Plaza, Suite 225
Columbia, Maryland 21044
Tel: 301-730-1510 TWX: 710-826-9654

Massachusetts

Framingham Office
5 Speen Street
Framingham, Massachusetts 01701
Tel: 617-872-4900 TWX: 710-380-0599

Michigan

Detroit Office*
21999 Farmington Road
Farmington Hills, Michigan 48024
Tel: 313-478-7400 TWX: 810-242-2973

Minnesota

Minneapolis Office*
4570 West 77th Street, Room 356
Minneapolis, Minnesota 55435
Tel: 612-835-3322 TWX: 910-576-2944
New Jersey
New Jersey Office
Vreeland Plaza
41 Vreeland Avenue
Totowa, New Jersey 07511
Tel: 201-256-9006

New Mexico

Albuquerque Office
North Building
2900 Louisiana N.E. South G2
Albuquerque, New Mexico 87110
Tel: 505-884-5601 TWX: 910-379-6435

New York

Fairport Office
815 Ayrault Road
Fairport, New York 14450
Tel: 716-223-7700
Melville Office
275 Broadhollow Road, Suite 219
Melville, New York 11747
Tel: 516-293-2900 TWX: 510-224-6480

Poughkeepsie Office
19 Davis Avenue
Poughkeepsie, New York 12603
Tel: 914-473-5730 TWX: 510-248-0030

North Carolina

Raleigh Office
1100 Navaho Drive, Suite 112
Raleigh, North Carolina 27609
Tel: 919-876-9643

Ohio

Dayton Office
5045 North Main Street, Suite 105
Dayton, Ohio 45414
Tel: 513-278-8278 TWX: 810-459-1803

Oklahoma

Tulsa Office
9810 East 42nd Street, Suite 127
Tulsa, Oklahoma 74145
Tel: 918-627-1591

Oregon

Portland Office
8285 S.W. Nimbus Avenue, Suite 138
Beaverton, Oregon 97005
Tel: 503-641-7871 TWX: 910-467-7842

PennsyIvania

Philadelphia Office*
2500 Office Center
2500 Maryland Road
Willow Grove, Pennsylvania 19090
Tel: 215-657-2711

Tennessee

Knoxville Office
Executive Square II
9051 Executive Park Drive, Suite 502
Knoxville, Tennessee 37923
Tel: 615-691-4011

Texas

Austin Office
8240 Mopac Expressway, Suite 270
Austin, Texas 78759
Tel: 512-837-8931
Dallas Office
1702 North Collins Street, Suite 101
Richardson, Texas 75081
Tel: 214-234-3391 TWX: 910-867-4757
Houston Office
9896 Bissonnet-2, Suite 470
Houston, Texas 77036
Tel: 713-771-3547 TWX: 910-881-8278

Canada

Toronto Regional Office
2375 Steeles Avenue West, Suite 203
Downsview, Ontario M3J 3A8, Canada
Tel: 416-665-5903 TWX: 610-491-1283

FAIRCHILD

A Schlumberger Company

Franchised Distributors

International

Austria

BVG elektrot. bauelemente
vertriebsges.mbH
Rottstr. 8-10
1140 Wien
Tel: (0043) 0222/949373 TWX: 135123

Brazil

Alfatronic Imp Exp Repres Ltda.
Av. Repousas, 1498 - Sao Paulo, Brazil
Tel: (011) 852-8277
Comercial Radio Car Ltda.
Av. Alberto Bins, 615 - Porto Alegre, Brazil
Tel: (0512) 25-8879
Datatronix Eletr Ltda.
Av. Pacaembu, 746 - Sao Paulo, Brazil
Tel: (011) 826-0111
Eletropan Imp Repres Ltda.
R. Barra Bonita, 18 - Sao Pauio, Brazi

Tel: (011) 295-0293
Intertek Comp Eletr Ltda
R. Tagipuru, 235 - 80A - Sao Paulo, Brazil

Tel: (011) 67-0582
Karimex Imp Exp Ltda.
Rua Guararapes, 1826 - Sao Paulo, Brazil
Tel: (011) 241-2814
Semicon Sem E Comp Eletr Ltda
R. Coronel Oscar Porto, 841 - Sao Paulo, Brazil

Denmark

E Friis Mikkelsen AS
51 Krogshojvej
DK2880 Bagsvaerd, Denmark
Tel: (02) 986333 TWX: 37350
Multikomponent (Standard Electric) AS
Fabriksparken 31
DK 2600 Glostrup, Denmark
Tel: (02) 456645 TWX: 33355

Finland

Multikomponent
Kuortaneenkatu 1
SF-00520 Helsinki 52, Finland
Tel: 009358/073 9100 TWX: 121450

France

Almex
48, Rue De L'Aubepine
B.P. 102

Tel: 666-21-12 TWX: 250.067
Aufray
Centre De Gros
Zone Industrielle
76800 St Etienne Du Rouvray
Tel: (35) 65-22-22 TWX: 180.503
Bellion Electronique
Z.I. Kerscao Brest
B.P. 16

29219 Le Relecq Kerhuon
Tel: (98) 28-03-03 TWX: 940.930
Dimex (Stockiste)
12, Rue Du Seminaire
94516 Rungis Cedex
Tel: 686.52.10 TWX: 200.420

Feutrier

Avenue Trois Clorieuses
42270 St Priest En Jarez
Tel: (77) 74-67-33
Feutrier Ile De France
8, Rue Benoit Malon
92150 Suresnes
Tel: 772-46-46 TWX: 610.237
Gros Electronique
13, Avenue Victor Hugo
B.P. 63

59350 St Andre Lez Lille
Tel: (20) 51.21.33 TWX: 120.257

Paris Sud

1 Route De Champlan
91300 Massy
Tel: 920-66-99
R.E.A.

9, Rue Ernest Cognacq
B.P. 5

92300 Levallois
Tel: 758-11-11 TWX: 620.630

S.C.T. (Toutelectric)

15, Boulevard Bon Repos
B.P. 406

31008 Toulouse
Tel: (61) 62.11.33 TWX: 531.501

Scientech

11, Avenue Ferdinand Buisson
75016 Paris
Tel: 609-91-36 TWX: 260.042

S.R.D.

Chemin Des Pennes Au Pin
Plan De Campagne
13170 Les Pennes Mirabeau
Tel: (42) 02.91.08 TWX: 440.076

Germany

Astek GmbH
Carl-Zeiss-Str. 3
2085 Quickborn
Tel: (0049) 04106/71084 TWX: 0214082
Dr. G. Dohrenberg
Bayreuther Str. 3
1000 Berlin 30
Tel: (0049) 030/2138043 TWX: 0184860
E2000 Vertriebs GmbH
Neumarkter Str. 75
8000 Munchen 80
Tel: (0049) 089/434061 TWX: 0522561
Elcowa GmbH
Str. der Republik 17-19
6200 Wiesbaden
Tel: (0049) 06121/65005 TWX: 04186202
IBH
Gutenbergring 35
2000 Norderstedt
Tel: (0049) 040/5231933 TWX: 02174188
Protec GmbH
Franz-Liszt-Str. 4
Tei: (0049) 089/603006 TWX: 0529298

Positron Bauelem.
Vertriebs GmbH
Benzstr. 1
7016 Gerlingen
Tel: (0049) 07156/23051 TWX: 07245266
Spezial Electronic KG
Kreuzbreite 15
3062 Buckeburg
Tel: (0049) 05722/2030 TWX: 0971624
Technoprojekt
Heinrich-Baumann-Str. 30
7000 Stuttgart
Tel: (0049) 0711/280281 TWX: 0721437
Italy
Region Of Campania:
A.E.P.

Via Terracina. 311 - 80125 Napoli
Tel: 081-630006 TWX: 721129
Region Of Emilia Romagna:
Adelsy S.A.S.
Via Lombardia. 17/2 - 40139 Bologna
Tel: 051-540150 TWX: 510226 Adelsy
Hellis
P. ZZA Amendola. 1 - 41049 Sassuolo (MO)

Tel: 059/804104-864990
Region Of Lazio:
Pantronic S.R.L.
Via Flaminia Nuova. 219
00191 Roma
Tel: 06/3284866-3288048 TWX: 612405 Pantron
Region Of Lombardia:
Claitron S.P.A.
Viale Certosa 269 - 20151 Milano
Tel: 3088083/5/7/-3087330-3088506
3088030-306539-305580
TWX: 313843 Claimi

Comprel S.R.L.
Viale Romagna. 1
20092 Cinisello Balsamo (MI)
Tel: 6120641 TWX: 332484
Kontron S.P.A.
Via Fantoli. 16/15 - 20138 Milano
Tel: 50721 TWX: 315430 Kontmi I
Region Of Marche:
Comprel S.R.L.
Traversa Cario Moderno. 24
Casella Postale 9
60025 Loreto (AN)
Tel: (071) 977693
Region Of Piemonte:
Claitron S.P.A
Via Tazzoli. 158
10137 Torino
Tel: 011/3097173/306540
Pantronic S.R.L
Via Crevacuore. 65
10146 Torino
Tel: 011-790079-795981 TWX: 221420

FAIRCHILD

A Schlumberger Company

Franchised Distributors

International

Region Of 3 Venezie:
Comprel S.R.L.
Via V. Veneto. 33
36100 Vicenza
Tel: 0444-26912
Kontron S.P.A
Via Forcellini. 4
35100 Padova
Tel: 049/754717/850377

Japan

Alpha Denshi Corp.
Yamajin Bldg.
1-11, Esaka-Cho 2-Chome, Suita-Shi
Osaka 564, Japan
Tel: (06) 384-2281
Asahi Glass Corp.
Hankyu Terminal BIdg.
1-4, Shibata 1-Chome, Kita-Ku
Osaka 530, Japan
Tel: (06) 373-5895
Asahi Glass Corp.
Kishimoto Bldg.
2-1, Marunouchi 2-Chome, Chiyoda-Ku
Tokyo 100, Japan
Tel: (03) 218-5800
Ashitate Denki Corp.
Higashi-Nagasaki Bldg.
1-14, Kanda-Iwamoto-Cho, Chiyoda-Ku
Tokyo 101, Japan
Tel: (03) 255-5151
Ashitate Denki Corp.
Highness-Katahira 901
3-36. Katahira 1-Chome, Sendai-Shi
Miyagi 980, Japan
Tel: (0222) 66-8951
Dainichi Seigyo Kiki Corp
Kouraku Bldg.
1-8, Kouraku 1-Chome, Bunkyo-Ku
Tokyo 112, Japan
Tel: (03) 811-9205
Fuji Electronics Corp.
Fusou Bldg.
5-3, Nishi-Honmachi 1-Chome, Nishi-Ku
Osaka 550, Japan
Tel: (06) 541-7112
Fuji Electronics Corp.
New-Kourakuen Bldg.
22-3, Hongo 1-Chome, Bunkyo-Ku
Tokyo 113, Japan
Tel: (03) 815-0830
Futaba Denki Corp.
Sudou Bldg.
3-9, Shimizu 1-Chome
Matsumoto-Shi, Nagano 390 Japan
Tel: (0263) 35-2329
Futaba Denki Corp.
Shuwa-TBR Bldg.
5-7, Kohjimachi, Chiyoda-Ku
Tokyo 102, Japan
Tel: (03) 230-2171

Hakou Corp.
Daishin Bldg.
Gokisho-Dohri, Showa-Ku
Nagoya-Shi, Aichi 466, Japan
Tel: (052) 853-5621
Hamilton Avnet Electronics Corp.
Nishi-Honmachi Zennikku Bldg.
10-10, Nishi-Honmachi 1-Chome, Nishi-Ku
Osaka 550, Japan
Tel: (06) 533-5855
Hamilton Avnet Electronics Corp.
Yu and You Bldg.
1-4, Nihonbashi Horidome-Cho, Chuo-Ku
Tokyo 103, Japan
Tel: (03) 662-9911
Inaba Sangyo Kiki Corp.
4-6, Honda 1-Chome, Nishi-Ku
Osaka 550, Japan
Tel: (06) 582-8483
Kanematsu Semiconductor Corp.
Bingo-Cho Nomura Bldg.
2-5, Bingo-Cho, Higashi-Ku
Osaka 541, Japan
Tel: (06) 222-1851
Kanematsu Semiconductor Corp.
Daini-Nagaoka Bldg.
8-5, Hatchobori 2-Chome, Chuo-Ku
Tokyo 104, Japan
Tel: (03) 552-6091
Nakamura Denki Corp.
3-5, Soto-Kanda 1-Chome, Chiyoda-Ku
Tokyo 101, Japan
Tel: (03) 255-6831
Okamoto Musen Denki Corp.
7-28, Hatae Dohri, Nakamura-Ku
Nagoya-Shi, Aichi 453, Japan
Tel: (052) 461-4111
Okamoto Musen Denki Corp.
2-7, Ohsumi 1-Chome, Higashi-Yodogawa-Ku Osaka 533, Japan
Tel: (06) 327-1133
Okamoto Musen Denki Corp.
2-17, Nozawa 3-Chome, Setagaya-Ku
Tokyo 154, Japan
Tel: (03) 412-8211
Osaka Tokiwa Shoko
13-3, Nipponbashi 5-Chome, Naniwa-Ku
Osaka 556, Japan
Tel: (06) 643-3521
Mexico
Dicopel S.A.
Augusto Rodin No. 20
Mexico 18 D.F.
Tel: 687-18-00
Distele S.A.
Obrero Mundila 736
Mexico 13 D.F.
Tel: 538-05-00
Proveedora Electronica S.A.
Prolongacion Moctezuma Ote. No. 24
Mexico 21 D.F.
Tel: 554-83-00

Radio Industrial Del Norte, S.A.
Calle Del Cerro No. 18
H. Del Parral, Chih.

Tel: 2-18-38

The Netherlands

Inelco Components
and Systems bv
Turfstekerstraat 63
1431 GD-Aalsmeer
Tel: (0031) 02977/28855 TWX: 14693
Rodelco Electronics
Verrijn Stuartlaan 29
2280 AG-Rijswijk ZH
Tel: (0031) 070/995750 TWX: 32506
Rodelco Electronics
Rue de Genève 4
1140 Bruxelles
Tel: (0032) 02/2166330 TWX: 61415

Norway

Datamatik A/S
Jerikoveien 16
Oslo 10
Norway
Tel: 00947/230 1730 TWX: 16967

Sweden

ITT Multikomponent
Box 1330
S-171 25 Solna
Sweden
Tel: 00946/883 0020 TWX: 10516
Norqvist + Berg
Box 9145
S-102 72 Stockholm
Sweden
Tel: 00946/869 0400 TWX: 10407
Switzerland
Moor AG
Bahnstr. 58
8105 Regensdorf/Zurich
Tel: (0041) 01/8406644 TWX: 0045-52042
Primotec AG
Wettinger Str. 23
5400 Baden
Tel: (0041) 056/265262 TWX: 0045-58949
United Kingdom
Barlec Ltd.
Foundry Lane
Horsham
Sussex RH13 5PX
Tel: Horsham (0403) 51881 TWX: 877222
Celdis Ltd.
37/39 Loverock Road
Reading
Berkshire RG3 1DZ
Tel: Reading (0734) 585171 TWX: 848370
Comway Electronics Ltd.
Market Street
Bracknell
Berkshire RG12 1QP
Tel: Bracknell (0344) 24765 TWX: 847201
ITT Electronic Services
Edinburgh Way
Harlow CM20 2DF
Tel: Harlow (0279) 26777 TWX: 81525

FAIRCHILD

A Schlumberger Company

Franchised
Distributors

Lock Distribution
Neville Street
Chadderton
Oldham
Lancashire OL9 6LF
Tel: Manchester 061-652 0431 TWX: 669619

International

Jermyn-Mogul

Vestry Estate
Sevenoaks
Kent TN14 5EU
Tel: Sevenoaks (0732) 50144 TWX: 95142

Macro Marketing Ltd
Burnham Lane
Slough
Berkshire SL1 6LN
Tel: Burnham (062 86) 4422 TWX: 847945

Sales

Representatives

Argentina

Electroimpex S.A.
Guatemala 5991
1425 Buenos Aires, Argentina
Tel: 771-3773

Brazil

Sinchy Rokka's Do Brazil Com E Rep Ltda.
Rua Cambauba, 6 S/203, Rio De Janeiro, Brazil
Tel: (021) 393-1496
Transcontinental Marketing Ltda.
R. Correa Vasques, 58

Sao Paulo, Brazil
Tel: (011) 71-3607

International

Uruguay

Ricagni Importaciones Ltda.
Av. 18 De Julio, 1216
Montevideo, Uruguai
Tel: 90-3671

FAIRCHILD

A Schlumberger Company

Sales
Offices

International

Austria

Fairchild Electronics GmbH
Meidlinger Hauptstr. 46
1120 Wien
Tel: (0043) 0222/858682 TWX: 075096

Brazil

Fairchild Semicondutores Ltda.
R. Alagoas, 663

01242 Sao Paulo, Brazil
Tel: (011) 66-9092 (011) 67-3224

France

Fairchild
121 Avenue D'Italie
75013 Paris, France
Tel: 584-55-66

Germany

Fairchild Camera \& Instrument
(Deutschiand) GmbH
8046 Garching
Daimlerstr. 15
Tel: (0049) 089/320031 TWX: 0524831
Italy
Fairchild Semiconduttori S.P.A.
Viale Corsica, 7 - 20133 Milano
Tel: (02) 296001/5 - 2367741/5
Telegr: Fairsemco TWX: 330522 Fair I
Fairchild Semiconduttori S.P.A.
Via Francesco Saverio Nitti, 11 - 00191 Roma Tel: (06) 3287548-3282717 TWX: 612046 Fair Rom

Japan

Pola Shibuya Bldg.,
15-21, Shibuya 1-Chome, Shibuya-Ku,
Tokyo 150, Japan
Tel: (03) 400-8351
Yotsubashi Chuo Bldg.,
4-26, Shinmachi 1-Chome, Nishi-Ku,
Osaka 550, Japan
Tel: (06) 541-6138

Korea

Fairchild Semiconductor (Korea) Ltd.
No. 219-6, Gari Bong-Dong,
Guro-Ku, Seoul, Korea,
Tel: 855-0067, 6751

Mexico

Blvb. Pte. Adolfo Lopez Mateos No. 163
Col. Mixcoac
Delegacion B. Juarez
03910 Mexico D.F.
Tel: 563-54-11 Ext: 152, 153, 154, 155

The Netherlands

Fairchild Camera \& Instrument GmbH
Ruysdaelbaan 35
5613 DX-Eindhoven
Tel: (0031) 040/446909 TWX: 51024

Scandinavia

Fairchild Semiconductor AB
Svartensgatan 6
S-11620 Stockholm, Sweden
Tel: 46/8/449255 TWX: 854-17759

Switzerland

Fairchild Camera \& Instrument GmbH
Baumackerstr. 4
8050 Zurich
Tel: (0041) 01/3114230 TWX: 0045-58311

United Kingdom

Fairchild Camera and Instrument (UK) Ltd.
230 High Street

Potters Bar

Hertfordshire En6 5BU, England
Tel: Potters Bar (0707) 51111
TWX: 262835
Fairchild Camera and Instrument (UK) Ltd.
17 Victoria Street
Craigshill
Livingston
West Lothian EH54 5BG, Scotland
Tel: Livingston (0506) 32891 TWX: 72629
\square
A Schlumberger Company

Fairchild reserves the right to make changes in the circuitry or specifications in this book at any time without notice. Fairchild cannot assume responsibility for use of any circuitry described other than circuitry embodied in a Fairchild product. No other circuit patent licenses are implied. Printed in U.S.A. $1214-12-0002-116 / 50 \mathrm{M}$

[^0]: * Device Type SH323, SH223, SH123, $\mu \mathrm{A} 78 \mathrm{H} 05$, $\mu \mathrm{A} 78 \mathrm{H} 05 \mathrm{~A}, \mu \mathrm{~A} 78 \mathrm{H} 12 \mathrm{~A}$, or $\mu \mathrm{A} 78 \mathrm{P} 05$ depending upon desired system parameters. See Table 1.

[^1]: *Metal Film Resistor or Temp. Coef. $<100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$

[^2]: ** This distributor carries Fairchild die products only.

[^3]: * Minority Distributor
 ** This distributor carries Fairchild die products only.

