4

High-speed CMOSLogic DataBook 1983

Silicon-gate Complementary MOS

GENERAL INFORMATION	1
RATINGS AND CHARACTERISTICS	2
DESCRIPTIVE INFORMATION	3
EXPLANATION OF LOGIC SYMBOLS	4

TI Sales Offices

ALABAMA: Huntsville, 500 W ynn Drive. Suite 514. Huntsville, AL 35805, (205) 837.7530.

ARIZONA: Phoenix, P.O. Bux 35160,8102 N. 23 rd Ave. Suire A, Phvenix, AZ 85021, (602)995-1007.

CALIFORNIA: El Scgundo, 831 S . Ihruglas St. . El Segundo, CA 90245, (213) 973 -2571; Irvine, 17891 Cartwright Rd. Irvine, CA 92714. (714) 660-1200; Sacramento, 1900 Povint West Way. Suite i71, Sacramento. CA 95815, (916) 929.1521 San Diego, 4333 View Ridge Ave., Suite B., San Diegu, CA 92123. (714) 278.9600. Santa Clar 5353 Betsy Russ 1) T Santa Clara. CA 95054, (408) 980-9000; Woodland Hills 21220 Erwin St., Woxulland Hills, CA 91367 , (213) 704.7759,

COLORADO: Denver, 9725 E. Hampden St., Suite 301. Denver, CO 80231 . (303) 695-2800.
CONNECTICUT: Wallingiford, 9 Rarnes Industrial Park Rd., Barnes Industrial Fark, Wallingford, CT (6492. (203) 269.0074.

FLORIDA: Clearwater, 2280 U.S. Hwy. 19 N. Suire 232 Clearwates Fl 33515 , (813) 796 -1426: Ft Louderdqe 276 N. W. 62 nd St. Ft. Lauderdale. $\mathrm{HL} 13309,13051973$ - 8502 : Maitland, 2601 Maitland Center Parkway. Maitland. FL. 3275 I. (305) 646.9600 .

GEORGIA: Atlanta, 3300 Nurtheast Expy. Building 9. Atlanta, GA 30341. (404) 452-4600.

ILLINOIS: Arlington Heights, 515 W. Algunquin, Arlingtun Heights. IL 60005. (312) 640.2934.

INDIANA: Ft. Wayne, 2020 Inwurxal It. Ft. Wayne. IN 46805, (219) 424-5174: Indianapolis, 2346 S . Lynhurst, Suite J-400, Indianapolis. IN 46241, (317) 248 -8555.

IOWA: Cedar Rapids, 373 Cilllins Rd. NE. Suite 200. Cedar Rapids, IA 52402, (319) 395-9550.

MARYLAND: Baltimore, 1 Rutherfird PJ. . 7133 Rutherfiond Rd., Baltimere, MI) 21207, (301) 944-8600.

MASSACHUSETTS: Wattham, 504 Turren Pond Rd. Walcham, MA 02154. (617) 890.7400 .

MICHIGAN: Farmington Hills, 33737 W. 12 Mile Rd. Farmington Hills, M1 48018. (313) 553-1500.

MINNESOTA: Edina, 7625 Parklawn. Edina. MN 55435 . (612) 830.1600 .

MISSOURI: Kansas City, 8080 Ward Pkwy.. Kansas Ciry. MC) 64114. (816) 523.2500 ; St. Louis, 11861 Westline Industrial Drive, St. Louis, MO 63141, (314) 569.7600.

NEW JERSEY: Clark, 292 Terminal Ave. West. Clark, NJ 07066, (201) 574.9800.

NEW MEXICO: Albuquerque, 5907 Alice NSE. Suire E., Albuquerque. NM 87110. (505) 265-8491.

NEW YORK: East Syracuse, 6700 Old Collamer Rd. , East Syracuse, NY 13057. (315) 463-9291: Endicott, 112 Nanticoke Ave.. P.O. Box 618. Endicort. NY 13760, (607) 754-3900: Ave... M . 2936 . Melville NY 11747 (516) 454.6600 . Pourike 2936. Melville, NY 11747 . (516) 454.6600: Pough heepsiie, R1 Selh 210 . Rochester,
424.5400.

NORTH CAROLINA: Charlote, 8 Windlawn Green Woxilawn Rd., Charlorte, NC 28210, (704) 527 -0930; Raleigh, 3000 Highwoxds Blvd., Suite 118, Raleigh NC 27625. (919) 876-2725.

OHIO: Beachwood, 23408 Cummerce Park Rd., Beachwixal. OH 44122 . (216) 464.6100; Dayton, Kingsley BlJg., 4124 Linden Ave.. Daytun. OH 45432 , (513) 258 -3877.

OKL AHOMA: Tulsa, 3105 E . Skelly IT. Suite I10, Tulsa. OK 74105, (918) 749-9547.

OREGON: Beaverton, 6700 SW 105th St. Suite 110 . Beavertun. OR 97005. (503) 643.6758.

PENNSYLVANIA: Ft. Washington, 575 Virginia Dr. Ft Washington, PA 19034, (215) 643-6450: Curarpentis, PA 15108 , 420 Ruser Rd., 3 Aimport Office PK, (412) 771-8550

TENNESSEE: Johnson City, P.O. Drawer 1255, Erwin Hwy.. Johnsin City, TN 37601. (615) 461-2191

TEXAS: Austin, 12501 Research Blvd, P.O. Bux 2909, Austin. TX 78723. (512) 250-7655; Dallas, P.O. Box 1087. Richardson, TX 75080; Houston, 9100 Surithwest Frwy., Suite
 Central Fark South, San Antonik), TX 78232. (512) 496-1779.

UTAH: Salt Lake City, 3672 West 2100 South, Salt Lake City. UT 84120. (801) 973.6310.

VIRGINIA: Fairfax, 3001 Prusperity, Fairfax, VA 22031, (703) 849-1400; Midlothian, 13711 Sutter's Mill Circle. Midlothian, VA 23113 , (804) 744-1007

WISCONSIN: Brookfield, 205 Bishops W/ay, Suite 214. Brokkfield. WI 53005 , (414) 784.3040.

WASHINGTON: Redmond, 2723 152nd Ave., N.E. Bldk 6. Redmond. WA 98052. (206) 881 -3080.

CANADA: Ottawa, 436 Mac Laren St., Otrawa, Canada. K2POM8. (613) 233-1177: Richmond Hill, 280 Cintre St. E.. Richmund Hill L4CIBI, Ontario, Canada. (416) 884.9181; St. Laurent, Ville St. Laurent (quehec, 9460 Trans Canada Hwy., St. Laurent, Quehec, Canada H4Si R7, (514) 334-3635. A

TI Distributors

ALABAMA: Hall-Mark (205) 837-8700.
ARIZONA: Phoenix, Kierulfi (602) 24)-4101; Marshall (602) 968-6181: Whle (602) 249-2232: Tucson, Kierulff (602) 624.9986.

CALIFORNIA: Los Angeles/Orange County, Arruw (213) 701.7500. (714) 851.8961; JACO (714) 540.5600, (213) $998-2200$; Kierulff (213) 725-0235, (174) 731-5711; Marshall (213) 499) 5001 , (213) 686 -C141, (714) 556-6400; R.V. Weatherfind (714) 634.9600. (213) 849.3451, (714) 623-1261: Wyle (213) 322-8100, (714) 641-1611; San Diego, Arruw (619) 565.4800 ; Kierulff (619) 278-2112: Marshall (619) 578.9600 ; R.V. Weatherfurd (619) $695-1700$; W'yle (6191) $565-9171$: San Francisco Bay Area, Arrow (408) 745-6600: Kierulff (415) 968-6292: Marshall (408) 732-1100: Wyle (408) $727-2500$:
Santa Barbara, R.V. Weathertird (805) 465-8551
COLORADO: Arrow (303) 758-2100; Kierulf (303) 790.4444: Wyle (303) 457.9953.

CONNECTICUT: Arrow (2031 265.7741: Diplumat (203) 797.9674; Kierulff (203) 265-1115; Marshall (203) 265-3822; Milgray (203) $795-0714$.

FLORIDA: Ft. Lauderdale, Arrow (305) 973-8502: Diplumat ($3551471-7160$: Hall-Mark (3055 971.4280; Kierulff (305) 652-6950. Orlando, Arrow (305) $725-1480$; Diplumat (305) 725.4520 : Hall-Mark (305) 855.4020; Mileray (305) 647.5747, Tampa, Diplumar (812) 443-4514: Kierulff (813) 576-1966.

GEORGIA: Arruw (404) 449-8252: Hall-Mark (404) 447-8000; Kierulff (404) 447-5252: Marshall (404) 923-5750.

ILLINOIS: Arrow (312) 397.3440: Diplomat (312) 595-1000; Hall-Mark (312) 860-3800; Kierulff (312) 640-0200; Newark (312) 638-4411.

Texas
Instruments

NDIANA: Indianapolis, Arrow (317) 243.9353; Graham (317) 634-8202; Ft. Wayne, Graham (219) 423-3422.

1OWA: Arrow (319) 395.7230.

KANSAS: Kansas City, Component Specialties (913) 492.3555: Hall-Mark (913) 888-4747; Wichita, LCOMP (316) 265.9507.

MARYLAND: Arruw (301) 247.5200; Diplomat (301) $995-1226$; Hall-Mark (301) 796-9300; Kierulff (301) 247.5020 Milgray (351) 468-6400.

MASSACHUSETTS: Atrow (617) 933-8130; Diplomat (617) 429.4120, Kie rult (617) 667-8331: Marshall (617) 272-8200: Time (617) $435 \cdot \mathrm{k} 8 \mathrm{RO}$.

MICHIGAN: Detroit, Arrıw (313) 971-8200; Newark (313) 967-0600; Grand Rapids, Newark (616) 243 -0912.

MINNESOTA: Arrow (612) 830-1800; Hall-Mark (612) 854-3223; Kienulff (612) 941.7500.

MISSOURT: Kansas City, LCOMP (816) 221-2400; St. Louis Afrow (314) 567-6888; Hall-Mark (314) 291-5350; Kierulff (314) 739 -085s.

NEW HAMPSHIRE: Artow (603) 668-6968.
NEW JERSEY: Arrow (201) 575.5300, (609) 235.1900; Diplumar (201) 785-1830; General Radu) (609) 964-8560; Hall-Mark (201) 575-4415, (609) 424-0880: IACO (201); 778-4722; Kierulff (201) 575-6750; Marshall (201) 340-1900: Milgray (609) 983.5010.

NEW MEXICO: Arrow (505) 243-4566; International Electronics (505) 345 -8127.

NEW YORK: Long Island. Arrou (516) 231-1000; Diplomat (516) 454.6400 ; Hall-Mark (516) 737.0600, JACO (516) 273-5500: Marshall (516) 273-2424: Milgray (516) 546-5600, (800) 645.3986; Hall-Mark (516) 737.0600; Rochester, Arriw (716) 275-0300; Marshall (716) 235.7620; Ruchester Radio Supply (716) 454-7800; Syracuse, Arrow (315) 652-1000 Diplomat (355) 652.5000; Marshall (607) 754-1570.

NORTH CAROLINA: Arrow (919) 876-3132, (919) 725-8711: Hall-Mark (919) 872-0712; Kierufff (919) 852-6261.

OHIO: Cincinnati, Graham (513) 772-1661; Hall-Mark (513) 563-5980; Cleveland, Arrow (216) 248-3990; Hall-Mark (216) 473-2907; Kierulff (216) 587-6558; Columbus, Hall-Mark (614) 846-1882; Dayton, Arrow (513) 435.5563: ESCO (513) 226-1133: Marshall (513) 236-8088.

OKLAHOMA: Component Specialties (918) 664-2820; Hall Mark (918) 665-3200; Kierulff (918) 252.7537

OREGON: Kıerulff (503) 641-9150; Wyle (503) 640.6000.
PENNSYLVANIA: Arrow (412) 856-7000, (215) 928-1800; General Radio (215) 922.7037; Hall-Mark (215) 355.7300.

TEXAS: Austin, Artow (512) 835-4180; Component Specialries (512) 837-8922; Hall-Mark (512) 258-8848; Kierulff (512) $835-209$: Dallas, Arrow (214) $386-7500$; Component Specialties (214) 357-6511; Hal!-Mark (214) 341-1147; International Electronics (214) 233-9323; Kierulff (214) 343-2400; El Paso, Intemational Electronics (915) 778.9761; Houston, Arrow (713) 491-4100; Component Specialties (713) 771-7237; Hall-Mark (713) 781-6100; Harrison Equipment (713) 879-2600; Kierulff (713) $530-7030$.

UTAH: Diplomat (801) 486-4134: Kierulff (801) 973-6913; Wyle (801) 974-9953.

WASHINGTON: Arrow (206) 643-4800, Kierulff (206) 575.4420; Wyle (206) 453.8100 .

WISCONSIN: Arrow (414) 764-6600; Hall-Mark (414) $761-3000$; Kierulff (414) 784-8160.

CANADA: Calgary, Future (403) 259.6408; Varah (403) 230-1235; Hamilton, Varah (416) 561-9311: Montreal, CESCO (514) 735-5511: Future (514) 694-7710: Ottawa, CESCO (613) $226-6905$; Future (613) 820-8313; Ouebec City, CESCO (418) 687-4231; Toronto, CESCO (416) 661-0220; Future (416) 663.5563 ; Vancouver, Future (604) 438-5545; Varah (604) 873.3211; Winnipeg, Varah (204) 633-6190.

High-Speed CMOS Logic

DataBook

IMPORTANT NOTICE

Texas Instruments reserves the right to make changes at any time in order to improve design and to supply the best product possible.

Texas Instruments assumes no responsibility for infringement of patents or rights of others based on Texas Instruments applications assistance or product specifications, since TI does not possess full access to data concerning the use or applications of customer's products. TI also assumes no responsibility for customer product designs.

ISBN 0-89512-114-X Library of Congress No. 82-074480

HIGH-SPEED CMOS LOGIC DATA BOOK
 1983

Texas Instruments is pleased to announce the SN74HC family of high-speed CMOS logic circuits. This versatile new family promises to be the product family of choice for many new logic systems, offering a unique combination of high-speed, low-power dissipation, high noise immunity, wide fanout capability, extended supply voltage range, and high reliability.

This data book describes the initial product line scheduled for introduction during 1983. Included are pinout and package information, logic symbols, maximum ratings and dc electrical characteristics. At the time of this edition, JEDEC recommendations for ac performance have not been finalized, consequently the timing requirements and switching characteristics for each device have been left blank. However, as each new family member is released, TI will publish the corresponding ac parameters, which may be obtained from your nearest TI field sales office or your local authorized TI distributor. Later editions of this data book will contain complete ac specifications.

TI Worldwide Sales Offices

ALABAMA: Huntsville, 500 W ynn Drive, Suite 514, Huntsville, AL 35805, (205) 837.7530.

ARIZONA: Phoenix, P.O. Box 35160, 8102 N. 23 rd Ave., Suite A, Phoenix, AZ 85021, (602) 995-1007.

CALIFORNIA: El Segundo, 831 S. Douglas St., El Segundo, CA 90245. (213) 973-2571; Irvine, 17891 Cartwright Rd., Irvine, CA 92714. (714) 660-1200; Sacramento, 1900 Point West Way, Suite 171, Sacramento, CA 95815, (916) 929.1521: San Diego, 4333 View Ridge Ave., Suite B., San Diego, CA 92123 , (714) 278.9600; Santa Clara, 5353 Bersy Russ Dr., Sant Clara, CA 95054, (408) 980-9000; Woodland Hills, 21220 Erwin St., Woodland Hills, CA 91367, (213) 704-7759.

COLORADO: Denver, 9725 E. Hampden St., Suite 301. Denver, CO 80231. (303) 695-2800.

CONNECTICUT: Wallingford, 9 Barnes Industrial Park Rd., Barnes Industrial Park, Wallingford. CT 06492, (203) 269-0074.

FLORIDA: Clearwater, 2280 U.S. Hwy. 19 N. Suite 232, Clearwater. FL. 33515, (813) 796-1926; Ft. Laudendale, 2765 N.W. 62nd St., Ft. Lauderdale, FL 33309, (305) 973.8502; Mitland, 2601 Maitland Center Parkway, Maitland. FL 32751. (305) 646-9600.

GEORGIA: Atlanta, 3300 Northeast Expy., Building 9. Atlanta, GA 30341. (404) 452-4600.

ILLINOIS: Arlington Heights, 515 W. Algonquin, Arlington Heights. IL 60005, (312) 640-2934.

INDIANA: Ft. Wayne, 2020 Inwood Dr., Ft. Wayne, IN 46805, (219) 424-5174: Indianapolis, 2346 S. Lynhurst, Suire J-400, Indianapolis. IN 46241, (317) 248-8555.

IOWA: Cedar Rapids, 373 Collins Rd. NE, Suite 200. Cedar Rapids, IA 52402, (319) 395.9550.

MARYLAND: Baltimore, I Rutherford PL., 7133 Rutherford Rd., Baltimore, MD 21207. (301) 944-8600.

MASSACHUSETTS: Waltham, 504 Totten Pond Rd. Waltham, MA 02154, (617) 890-7400.

MICHIGAN: Farmington Hills, 33737 W. 12 Mile Rd., Farmington Hills. M1 48018, (313) 553.1500 .

MINNESOTA: Edina, 7625 Parklawn. Elina, MN 55435 , (612) 830-1600.

MISSOURI: Kansas City, 8080 Ward Pkwy., Kansas City. MO 64114, (816) 523-2500; St. Louis, 11861 Westline Industrial Drive, St. Louis, MO 63141, (314) 569-7600.
NEW JERSEY: Clark, 292 Terminal Ave. West, Clark, N] 07066, (201) 574-9800.
NEW MEXICO: Albuquerque, 5907 Alice NSE, Suite E., Albuguerque, NM 871IC, (505) 265-8491.
NEW YORK: East Syracuse, 6700 OHd Collamer Rd. East Syracuse. NY 13057, (315) 463.9291, Endicott, 112 Nanticoke Ave., P.O. Box 618. Endicott, NY 13760, (607) 754-3900; Melville, 1 Huntington Quadrangle, Suite 3C10, P.O. Box 2936, Melville, NY 11747, (516) 454.6600; Poughkeepsie, 201 South Ave., Poughkeepsie, NY 12601, (914) 473.2900; Rochester, 1210 Jefferson Rd., Rochester, NY 14623. (716) 424.5400.

NORTH CAROLINA: Charlotte, 8 Woodtawn Green, Woodlawn Rd.. Charlotte, NC 28210. (704) $527-0930$ Raleigh, 3000 Highwoods Blvd., Suite 118, Raleigh, NC 27625. (919) 876-2725.

OHIO: Beachwood, 23408 Commerce Park Rd. , Beachwood, OH 44122, (216) 464-6100; Dayton, Kingsley Bldg., 4124 Linden Ave., Dayton. OH 45432, (513) 258-3877.
OKLAHOMA: Tulsa, 3105 E. Skelly Dr. Suite 110. Tulsa, OK 74105, (918) 749-9547.

OREGON: Beaverton, 6700 SW 105th St., Suite 110. Beaverton. OR 97005, (503) 643-6758.

PENNSYLVANIA: Ft. Washington, 575 Virginia Dr. Ft Washington. PA 19034, (215) 643-6450; Coraepolis, PA 15108. 420 Rouset Rd., 3 Aipporr Office PK, (412) 771-8550.

TENNESSEE: Johnson City, P.O. Drawer 1255, Erwin Hwy., Johnson City, TN 37601, (615) 461-2191.

TEXAS: Austin, 12501 Research Blvd., P.O. Box 2909. Austin, TX 78723, (512) $250-7655$: Dallas, P.O. Box 1087. Richardson. TX 75080 ; Houston, 9100 Southwest Frwy, Suite 237, Houston. TX 77036, (713) 778-6592; San Antonio, 1000 Central Park South. San Antonio, TX 78232, (512) 496-1779.

UTAH: Salt Lake City, 3672 West 2100 Sourh, Salt Lake City, UT 84120. (801) 973.6310.

VIRGINIA: Fairfax, 3001 Prosperity, Fairfax, VA 22031 (703) 849-1400; Midlothian, 13711 Sutter's Mill Circle. Midlorhian, VA 23113, (804) 744-1007.

WISCONSIN: Brookfield, 205 Bishops Way, Suite 214. Brookfield, WI 53005, (414) 784-3040.

WASHINGTON: Redmond, 2723 152nd Ave., N.E. Bldg 6, Redmond. W/A 98052. (206) $881-3080$.

CANADA: Ottawa, 436 Mac Laren St., Ottawa, Canada. K2POM8, (613) 233-1177: Richmond Hill, 280 Centre St. E. Richmond Hill L4C181. Ontario, Canada, (416) 884.9181; St. Laurent, Ville Sc. Laurent Quetec, 9460 Trans Canada Hwy., St. Laurent. Quehec, Canada H4SIR7. (514) 334.3635.

ARGENTINA, Texas Instruments Argentina S. A.I.C.F:
Esmeralda 130,15 th Fixor, 1035 Buenos Aires, Argentina, Esmeralda 130, 15 th Flowr, 1035 Buenos Aires, Argentina, 394-2963.

AUSTRALIA (\& NEW ZEALAND). Texas Instruments Australia Ltd.: Unit 1A, 9 Byfield St., North Ryde (Svdney), New South Wales, Australia 2113,02+887.1122; Sth Flex
418 St. Kilda Read. Mellourne, Vicroria, Australia 3004 $03+267-4677$; 171 Philip Highway, Elizaherh, South Australia $5112,08+255 \cdot 2066$.

AUSTRIA, Texas Instruments Ges.m. h. H. : Industriestrate B/16, A-2345 Brunn/Gebirge. 2236-846210.

BELGIUM, Texas Instruments N. V. Belgium S.A.: Mercure Centre. Raketstraat 100 , Rue de la Fusee. 1130 Brussels. Belgium, 02/720.80.00.
BRAZIL, Texas Instruments Electronicos du Brasil Leda.: Av. Faria Lima, 2003, 200 Andar-Pinheiros. Cep-01451 Sai Paulo, Brazil, 815-6166.

DENMARK, Texas Instruments A/S, Marielundvej 46E, DK- 2730 Herlev, Denmark, 2 - 917400.

FINLAND, Texas Instruments Finland OY: PL 56, 00510 Helsinki 5i, Finland, (90) 7013133.

FRANCE, Texas Instruments France: Headquarters and Prod Plant, BP 05,06270 Villeneuve-Louker, (93) 20-01-01; Paris Office, BP 678 8-10 A venue Morane-Saulnier, 78141 VelizyVillacoublay, (3) $946.97-12$; Lyon Sales Office, L'Oree D'Ecully. Batiment B, Chemin de la Forestiere, 69130 Ecully, (7) 833.04-40; Strastourg Sales Office, Le Sebastopol 3, Quai Kleber, 67055 'Strasbourg Cedex, (88) 22-12-66; Rennes, 23-25 Rue du Puits Mauger, 35100 Rennes, (99) 79-54-81: Toulouse Rue du Puits Mauger.
Sales Office, Le Peripole- 2 , Chemin du Pigeonnier de la Cepiere, 31100 Toulouse, (61) 44-18-19; Marseille Sales Office. Noilty Paradis-146 Rue Paradis. 13006 Marseille, (91) 37-25-30.

Texas
Instruments

GERMANY, Texas Instruments Deutschland GmbH: Hag-gerty-strasse 1, D.8050 Freising, 08161-801; Kurfuerstendamm 195/196, [). 1000 Berlin 15, 030-8827365; III, Hagen 43/Kitkelstrasse, D-4300 Essen, 0201-24250; Frankfurter Allee 6-8 [)-6236 Eschtwrn 1, 06196-43074; Hamburger Strasse 11. D-2000 Hamburg 76, 040-2201154, Kirchhorsterstrasse 2, D. 3000 Hannover 51, 0511 -648021; Arabellastrasse 15, D. 8000 Muenchen 81. 089-92341: Mayhachstrasse 11, D-7302 Os fildern 2 Nellingen, 0711-34030.
HONG KONG (+ PEOPLES REPUBLIC OF CHINA), Texas Instruments Asia Led. : 8th Floor World ShippingCt Harbour City, 7 Canton Rd., Kowloon, Hong Kong. $3+722-1223$.

IRELAND, Texas Instruments (1reland) Limited: 25 St . Stephens Green, Iublin 2, Eire, 01609222.

ITALY, Texas Instruments Semicondutrori Italia Spa: Viale Delle Scienze, L, 02015 Cirtaducale (Rieti), Italy, 0746694.1 Via Salaria KM 24 (Talazzo Cesma). Monterotondos Scalo (Rome), Italy, O6 9004395 : Viale Europa, 38-44, 20093 Cologno Monzese (Milano). 022532541 ; Corso Svizzera. 185, 10100 Torino, Italy. 011774545 ; Va J. Barozzi, 6, 45100 Bologna, Italy, 051355851 ; Via Nazareth, 7, 35100 Padova, Italy, 049850386.

JAPAN, Texas Instruments Asia Ltd. : 4F Aoyama Fuji Bldg., 6-12, Kita Aoyama 3.Chome. Minato-ku. Tokyo, Japan 107. 03-498-2111: Osaka Branch, 5F, Nissho Iwai Bldg., 30 Imabash 3-Chome, Higashi-ku, Osaka, Japan 541. $20-204-1881$; Nagoya
Branch, 7F Daini Toyota West Bldg., 10-27, Meieki 4.Chome, Nakamura-ku, Nageya, Japan 450, 0́s2-583-8691.

KOREA, Texas Instruments Supply Co.: Reom 201, Kwangroong Bitg., 24-1, Hwayand-Dong, Sung dong-ku, 133 Seoul, Korea. $02+464-6274 / 5$.
MEXICO, Texas Instruments de Mexico S.A.: Poniente 116 No. 489. Colonia Vallejo. Mexico, D.F. 02300, 567-9200.
MIDDLE EAST, Texas Instruments: No. 13, Ist Flewr Mannai Bldg., Diplomatic Area, Manama. P.O. Bux 26335, Bahrain, Arahian Gulf, 973-274681

NETHERLANDS, Texas Instruments Holland B. V., P.O. Box 12995, (Bullewijk) 1100 AZ Amsterdam, Zuid-Oost, Holland 1299), (Bullew
(020) 5602911.

NORWAY, Texas Instruments Norway A/S: Kr. Augustsgt. 13 Osto I, Norway. (2) 206040.

PHILIPPINES, Texas Instruments Asia Led.: 14th Fkor, Ba Lepanto Bldg., 8747 Paseo de Roxas, Makatı, Merro Manila, Philippines, 882465.
PORTUGAL, Texas Instruments Equipamento Electronico (Portugal). Lda.: Rua Eng. Fredericu Ulrich, 2650 Moreira Iha Maia, 4470 Maia, Portugal, 2.9481003

SCOTLAND, Texas Instruments Limited: 126-128 George Street, Edinburgh, Scotland, EHI 2AN, 0312262691.

SINGAPORE (+ INDIA, INDONESIA, MALAYS1A, THAlLAND), Texas Instruments Asia Led.: P.O. Box 138 , Unit \#02-08, Block 6, Kolam Ayer Industrial Est., Lorong
Bakar Batu, Singapore 1344, Republic of Singapore, 747-2255

SPAIN, Texas Instruments Espana, S.A.: CJJose Lazaru Gal diano No. 6, Madrid 16, 1/458.14.58.
SWEDEN, Texas Instruments Intertational Trade Corporation (Sverigefilialen): Box 39103, 10054 Stockholm, Sweden, 08 . 235480 .

SWITZERLAND, Texas Instruments, Inc. Riedstrasse 6. CH. 8953 Dietikon (Zuerich) Switzerland, 1.740 2220.
TAIWAN, Texas Instruments Supply Co. : 10th Flome, Fu Shing Bldg., 71 Sung-Kiang Rıad, Taipei, Taiwan, Regublic of China, $02+521.9321$.
UNITED KINGDOM, Texas Instruments Limited: Manton Lane, Bedford, MK41 7PA, England, 023467466 , 186 High Street, Slough, SL1 ILD, England, 075335545 St. James House. Wellington Road North, Stockport، SK4 2RT, England, 0614428448.

GENERALINFORMATION

Alphanumeric Index 1-2
Glossary 1-4
Functional Index/Selection Guide 1-7
Explanation of Function Tables 1-12
Parameter Measurement Information 1-14

ALPHANUMERIC INDEX

TYPE NUMBERS	RATINGS AND CHARACTERISTICS* TABLE PAGE	DESCRIPTIVE INFORMATION \dagger PAGE	TYPE NUMBERS	RATINGS AND CHARACTERISTICS* TABLE PAGE	DESCRIPTIVE INFORMATION PAGE
'HCOO	1 2-3	3-2	'HC173	III 2-5	3-80
'HCO2	1 2-3	3-3	'HC174	IV 2-6	3-82
'HCO4	2-3	3-4	'HC175	$11 \quad 2-4$	3-82
'HCO8	1 2-3	3-5	'HC189	III 2-5	3-84
'HC10	1 2-3	3-6	'HC190	IV 2-6	3-87
'HC11	$1 \quad 2-3$	3-7	'HC191	IV . 2.6	3-87
'HC14	1 2-3	3-8	'HC192	IV 2-6	3-91
'HC20	1 2-3	3-9	'HC193	IV 2-6	3-91
'HC21	1 2-3	3-10	'HC194	IV 2-6	3-95
'HC27	$1 \quad 2-3$	3-11	'HC195	IV 2-6	3-98
'HC30	1 2-3	3-12	'HC221	IV 2-6	3-100
'HC32	1 2-3	3-13	'HC240	III $2-5$	3-102
'HC36	$1 \quad 2-3$	3-14	'HC241	III 2-5	3-102
'HC42	IV 2.6	3.15	'HC242	III 2-5	3-104
'HC51	$1 \quad 2-3$	3-17	'HC243	III $2-5$	3-104
'HC73	$11 \quad 2-4$	3-18	'HC244	III 2-5	3-106
'HC74	$1112-4$	3-20	'HC245	III $2-5$	3-108
'HC75	$11 \quad 2.4$	3-22	'HC251	III $2-5$	3-110
'HC76	$11 \quad 2-4$	3-24	'HC253	III 2-5	3-112
'HC77	$11 \quad 2-4$	3-26	'HC257	III 2-5	3-114
'HC78	$11 \quad 2-4$	3-28	'HC258	III $2-5$	3-114
'HC85	IV $2-6$	3-30	'HC259	IV 2-6	3-116
'HC86	$1 \quad 2-3$	3-32	'HC266	1 2-3	3-118
'HC107	$11 \quad 2-4$	3-34	'HC273	IV 2-6	3-119
'HC109	$11 \quad 2-4$	3-36	'HC280	IV 2-6	3-121
'HC112	$11 \quad 2-4$	3-38	'HC299	III . $2-5$	3-123
'HC113	II $2-4$	3-40	'HC323	III 2-5	3-126
'HC114	$11 \quad 2-4$	3.42	'HC352	III 2-5	3-129
'HC123	IV 2-6	3-44	' $\mathrm{HC353}$	III 2-5	3-131
'HC132	1 2-3	3-46	'HC354	ill 2.5	3-133
'HC133	$1 \quad 2-3$	$3-47$	'HC356	III . 2-5	3-136
'HC137	IV 2-6	3-48	'HC365	III $2-5$	3-139
'HC138	IV 2-6	3-50	'HC366	III $2-5$	3-139
'HC139	IV 2-6	3-52	'HC367	III $2-5$	3-139
'HC147	IV 2-6	3-54	'HC368	III $2-5$	3-139
'HC151	III $2-5$	3.56	' HC 373	III $\quad 2-5$	3-141
'HC152	III $2-5$	3-58	' HC 374	III $2-5$	3-143
'HC153	III $\quad 2-5$	3-60	'HC377	IV 2-6	3-145
'HC154	IV 2-6	3-62	' HC 378	IV 2-6	3-145
'HC157	III $2-5$	3-64	' HC 379	II $\quad 2-4$	3-145
'HC158	III 2-5	3-64	'HC386	1 2-3	3-148
'HC160	IV 2-6	3-66	'HC390	IV 2-6	3-149
'HC161	IV 2-6	3-66	'HC393	IV $2-6$	3-149
'HC162	IV 2-6	3-66	'HC423	IV 2-6	3-152
'HC163	IV $2-6$	3-66	'HC490	IV 2.6	3-154
${ }^{\prime} \mathrm{HC164}$	IV 2-6	3.72	'HC533	III $2-5$	3-156
'HC165	IV 2-6	3-74	'HC534	III $2-5$	3-158
'HC166	IV 2-6	3.77	'HC563	III 2-5	3-160

*See these pages for absolute maximum ratings, recommended operating conditions, and electrical characteristics.
tSee these pages for description, pin assignments, timing requirements, and switching characteristics.

ALPHANUMERIC INDEX

TYPE numbers	RATINGS AND ChARACTERISTICS* TABLE PAGE	DESCRIPTIVE INFORMATION \dagger PAGE	TYPE NUMBERS	RATINGS AND CHARACTERISTICS* TABLE PAGE	DESCRIPTIVE INFORMATION \dagger PAGE
'HC564	III 2.5	3-162	'HC648	III 2-5	3-186
'HC573	III 2-5	3-164	'HC651	III 2-5	3-190
'HC574	III $2-5$	3-166	'HC652	III $2-5$	3.190
'HC590	III 2-5	3-168	'HC688	IV 2.6	3-194
'HC592	IV $2-6$	3-170	'HC4002	2-3	3-196
'HC593	111 2-5	3-170	'HC4017	IV $2-6$	3-197
'HC594	III 2-5	3-173	'HC4020	IV $2-6$	3-199
'HC595	III 2-5	3-175	'HC4040	IV $\quad 2-6$	3-201
'HC597	IV 2-6	3-177	'HC4060	IV 2-6	3-203
'HC598	III 2-5	3-177	'HC4075	2-3	3-205
'HC620	III 2-5	3-180	'HC4078	$1 \quad 2-3$	3-206
'HC623	III $2-5$	3-180	'HC4511	IV $\quad 2-6$	3-207
'HC640	III 2.5	3-183	'HC4514	IV 2-6	3-209
'HC643	III 2-5	3-183	'HC4515	IV 2-6	3-209
'HC645	III 2-5	3-183	'HC4538	IV 2-6	3-212
'HC646	III 2-5	3-186	'HC4724	IV 2-6	3-214

*See these pages for absolute maximum ratings, recommended operating conditions, and electrical characteristics.
tsee these pages for description, pin assignments, timing requirements, and switching characteristics.

INTRODUCTION

These symbols, terms, and definitions are in accordance with those currently agreed upon by the JEDEC Council of the Electronic Industries Association (EIA) for use in the USA and by the International Electrotechnical Commission (IEC) for international use.

OPERATING CONDITIONS AND CHARACTERISTICS (IN SEQUENCE BY LETTER SYMBOLS)

Cpd Power dissipation capacitance
Used to determine the no-load dynamic power dissipation per logic function (See individual circuit pages): $P_{D}=C_{p d} V_{C C}{ }^{2}+I_{C C} V_{C C}$.
$f_{\max } \quad$ Maximum clock frequency
The highest rate at which the clock input of a bistable circuit can be driven through its required sequence while maintaining stable transitions of logic level at the output with input conditions established that should cause changes of output logic level in accordance with the specification.

ICC Supply current
The current into* the V_{CC} supply terminal of an integrated circuit.
IIH High-level input current
The current into* an input when a high-level voltage is applied to that input.
ILL Low-level input current
The current into* an input when a low-level voltage is applied to that input.
IOH High-level output current
The current into* an output with input conditions applied that, according to the product specification, will establish a high level at the output.

IOL Low-level output current
The current into* an output with input conditions applied that, according to the product specification, will establish a low level at the output.

IOS Short-circuit output current
The current into* an output when that output is short-circuited to ground (or other specified potential) with input conditions applied to establish the output logic level farthest from ground potential (or other specified potential).

IOZ Off-state (high-impedance-state) output current (of a three-state output)
The current flowing into* an output having three-state capability with input conditions established that, according to the production specification, will establish the high-impedance state at the output.
$V_{\text {IH }} \quad$ High-level input voltage
An input voltage within the more positive (less negative) of the two ranges of values used to represent the binary variables.
NOTE: A minimum is specified that is the least-positive value of high-level input voltage for which operation of the logic element within specification limits is guaranteed.

[^0]
GLOSSARY
 SYMBOLS, TERMS, AND DEFINITIONS

VIL Low-level input voltage

An input voltage level within the less positive (more negative) of the two ranges of values used to represent the binary variables.
NOTE: A minimum is specified that is the most-positive value of low-level input voltage for which operation of the logic element within specification limits is guaranteed.

$V_{O H} \quad$ High-level output voltage

The voltage at an output terminal with input conditions applied that, according to product specification, will establish a high level at the output.

VOL Low-level output voltage
The voltage at an output terminal with input conditions applied that, according to product specification, will establish a low level at the output:
$\mathbf{V}_{\mathbf{T}+} \quad$ Positive-going threshold level
The voltage level at a transition-operated input that causes operation of the logic element according to specification as the input voltage rises from a level below the negative-going threshold voltage, V_{T}..
$\mathbf{V}_{\mathbf{T}} \quad$ Negative-going threshold level
The voltage level at a transition-operated input that causes operation of the logic element according to specification as the input voltage falls from a level above the positive-going threshold voltage, $\mathrm{V}_{\mathrm{T}+\text {. }}$

Access time

The time interval between the application of a specified input pulse and the availability of valid signals at an output.

Disable time (of a three-state output)
The time interval between the specified reference points on the input and output voltage waveforms, with the three-state output changing from either of the defined active levels (high or low) to a high-impedance (off) state. ($\mathrm{t}_{\mathrm{dis}}=\mathrm{tpHZ}_{\text {or }}$ tpLZ $)$.

Enable time (of a three-state output)

The time interval between the specified reference points on the input and output voltage waveforms, with the three-state output changing from a high-impedance (off) state to either of the defined active levels (high or low). (ten $=$ tPZH or tPZL).

Hold time
The time interval during which a signal is retained at a specified input terminal after an active transition occurs at another specified input terminal.
NOTES: 1. The hold time is the actual time interval between two signal events and is determined by the system in which the digital circuit operates. A minimum value is specified that is the shortest interval for which correct operation of the digital circuit is guaranteed.
2. The hold time may have a negative value in which case the minimum limit defines the longest interval (between the release of the signal and the active transition) for which correct operation of the digital circuit is guaranteed.
tPHL Propagation delay time, high-to-low level output
The time between the specified reference points on the input and output voltage waveforms with the output changing from the defined high level to the defined low level.

Disable time (of a three-state output) from high level
The time interval between the specified reference points on the input and the output voltage waveforms with the three-state output changing from the defined high level to a high-impedance (off) state.

tPLH Propagation delay time, low-to-high-level output

The time between the specified reference points on the input and output voltage waveforms with the output changing from the defined low level to the defined high level.
tPLZ Disable time (of a three-state output) from low level
The time interval between the specified reference points on the input and output voltage waveforms with the three-state output changing from the defined low level to a high-impedance (off) state.
tPZH Enable time (of a three-state output) to high level
The time interval between the specified reference points on the input and output voltage waveforms with the three-state output changing from a high-impedance (off) state to the defined high level.
tPZL Enable time (of a three-state output) to low level
The time interval between the specified reference points on the input and output voltage waveforms with the three-state output changing from a high-impedance (off) state to the defined low level.

Sense recovery time

The time interval needed to switch a memory from a write mode to a read mode and to obtain valid data signals at the output.

Setup time

The time interval between the application of a signal at a specified input terminal and a subsequent active transition at another specified input terminal.
NOTES: 1. The setup time is the actual time interval between two signal events and is determined by the system in which the digital circuit operates. A minimum value is specified that is the shortest interval for which correct operation of the digital circuit is guaranteed.
2. The setup time may have a negative value in which case the minimum limit defines the longest interval (between the active transition and the application of the other signal) for which correct operation of the digital circuit is guaranteed.

Pulse duration (width)
The time interval between specified reference points on the leading and trailing edges of the pulse waveform.

FUNCTIONAL INDEX/SELECTION GUIDE

FUNCTIONS PAGE
AND/NAND Gates and Inverters 1-8
OR/NOR/EXCLUSIVE-OR and A-O-I Gates 1-8
Schmitt-trigger NAND Gates and Inverters 1-8
Bus Drivers and Transceivers with 3-State Outputs 1-8
Dual J-K Flip-flops 1-9
D-Type Flip-flops 1-9
Latches and Registers 1-9
Monostable Multivibrators 1-9
Shift Registers 1-10
Asynchronous Counters 1-10
Synchronous Counters 1-10
Comparators, Parity Generators/Checkers, and Priority Encoders 1-10
Data Selectors/Multiplexers 1-11
Decoders/Demultiplexers 1-11
Display Decoders/Drivers 1-11
Random-Access Memories (RAM's) 1-11

FUNCTIONAL INDEX/SELECTION GUIDE

AND. NAND GATES AND INVERTERS
(for Maximum Ratings and Electrical Characteristics See Table I, Page 2-3)

DESCRIPTION	DEVICE TYPE	DESCRIPTIVE INFORMATION
Hex Inverters	'HCO4	$3-4$
Quad 2-Input NAND Gates	'HCOO	$3-2$
Quad 2-Input AND Gates	'HCO8	$3-5$
Triple 3-Input NAND Gates	'HC10	$3-6$
Triple 3-Input AND Gates	'HC11	$3-7$
Dual 4-Input NAND Gates	'HC20	$3-9$
Dual 4-Input AND Gates	'HC21	$3-10$
8-Input NAND Gate	'HC30	$3-12$
13-Input NAND Gate	'HC133	$3-47$

SCHMITT-TRIGGER GATES AND INVERTERS

(for Maximum Ratings and Electrical Characteristics See Table I,
Page 2-3)

DESCRIPTION	DEVICE TYPE	DESCRIPTIVE INFORMATION
Hex Inverters	'HC14	$3-8$
Quad 2-Input NAND Gates	${ }^{\prime}$ HC132	$3-46$

OR, NOR, EXCLUSIVE-OR, AND AND-OR-INVERT GATES

(for Maximum Ratings and Electrical Characteristics See Table I,

Page 2-3)		
DESCRIPTION	DEVICE TYPE	DESCRIPTIVE INFORMATION
Quad 2-Input NOR Gates	'HCO2	$3-3$
	'HC36	$3-14$
Quad 2-Input OR Gates	'HC32	$3-13$
Quad 2-Input EXCLUSIVE- NOR Gates	'HC266	$3-118$
Quad 2-Input EXCLUSIVE-OR Gates	'HC86	$3-32$
	'HC386	$3-148$
Dual 2-Wide 2-Input A-O-1 Gates	'HC51	$3-17$
Triple 3-Input NOR Gates	'HC27	$3-11$
Triple 3-Input OR Gates	'HC4075	$3-205$
Dual 4-Input NOR Gates	'HC4002	$3-196$
8-Input NOR Gate	'HC4078	$3-206$

BUS DRIVERS AND TRANSCEIVERS WITH 3-STATE OUTPUTS
(for Maximum Ratings and Electrical Characteristics See Table III, Page 2-5)

DESCRIPTION	OUTPUT DATA	CONTROL INPUTS	DEVICE TYPE	DESCRIPTIVE INFORMATION
Quad Bus Transceivers	Inverting	Independent Enables for A and B Buses	'HC242	3-104
	True		'HC243	
Hex Bus Drivers/Receivers	True	Common Enables	'HC365	3-139
	Inverting		'HC366	
	True	Symmetrical Enables	'HC367	
	Inverting		'HC368	
Octal Bus Drivers/Receivers	Inverting	Symmetrical Enables	'HC240	3-102
	True	Complementary Enables	'HC241	
		Symmetrical Enables	'HC244	3-106
Octal Bus Transceivers	Inverting	Independent Enables for A and B Buses	'HC620	3-180
	True		'HC623	
	Inverting	Enable and Direction Control	'HC640	3-183
	True and Inverting		'HC643	
	True		'HC645	
			'HC245	3-108
Octal Bus Transceivers with Registers	True	Enable andDirection Control	'HC646	3-186
	Inverting		'HC648	
	Inverting	Independent Enables for A and B Buses	'HC651	3-190
	True		'HC652	

FUNCTIONAL INDEX/SELECTION GUIDE

D-TYPE FLIP-FLOPS

DESCRIPTION	OUTPUT CONFIGUATION	OTHER FEATURES	DEVICE TYPE	RATINGS AND CHARACTERISTICS		DESCRIPTIVE INFORMATION
				TABLE	PAGE	
Dual D-type Flip-flops with Preset and Clear	Complementary	Independent Clocks	'HC74	11	2.4	3-20
Quad D-Type Flip-flops with	Complementary	Common Clear	'HC175			3-82
Common Clocks		Output Enable	'HC379			3-145
Hex D-Type Flip-flops with	Q only	Common Clear	'HC174	IV	2-6	3.82
Common Clocks		Output Enable	'HC378			3-145
Octal D-type Flip-flops with Common Clocks	Q only	Common Clear	'HC273			3-119
		Output Enable	'HC377			3-145
	3-State, Q only	Output Control	'HC374	III	2-5	3.143
			'HC574			3-166
	3-State, $\overline{\mathrm{Q}}$ only	Output Control	'HC534			3.158
			'HC564			3-162

DUAL J-K FLIP-FLOPS
(for Maximum Ratings and Electrical Characteristics See Table II,
Page 2-4)

DESCRIPTION	DEVICE TYPE	DESCRIPTIVE INFORMATION
Dual J-K Flip-flops with Clear	'HC73	$3-18$
	'HC107	$3-34$
Dual J-K Flip-flops with Preset	'HC113	$3-40$
Dual J-K Flip-flops with Preset, Common Clock, and Common Clear	'HC78	$3-28$
	'HC114	$3-42$
Dual J-K Flip-flops with Preset and Clear	'HC76	$3-24$
	'HC112	$3-38$
Dual J-다 and Clip-flops with Preset	'HC109	3.36

LATCHES AND REGISTERS

DESCRIPTION	OUTPUTS	DEVICE TYPE	RATINGS AND CHARACTERISTICS		DESCRIPTIVE INFORMATION
			TABLE	PAGE	
Quad D-type Latches	Complementary	'HC75	11	2-4	3-22
	O only	'HC77			$3-26$
Quad D-type Registers	Q only, 3-state	'HC173	III	$2-5$	3-80
Octal D-Type Latches	Q only, 3-state	${ }^{\prime} \mathrm{HC373}$			3.141
		'HC573			3.164
	$\overline{\mathrm{Q}}$ only, 3-state	'HC533			3-156
		'HC563			3-160
8-Bit Addressable Latches	O only	'HC4724	IV	2-6	3-214
		'HC259			3-116

MONOSTABLE MULTIVIBRATORS
(for Maximum Ratings and Electrical Characteristics See Table IV, Page 2-4)

DESCRIPTION	FEATURES		DEVICE TYPE	DESCRIPTIVE INFORMATION
Dual Monostable Multivibrators with Direct Clear, Postive and Negative Inputs, and complementary Outputs	Retriggerable		'HC221	3-100
			'HC123	3-44
		Will not trigger from clear	'HC423	3-152
		Wil not trigger from clear	'HC4538	3-212

FUNCTIONAL INDEX/SELECTION GUIDE

SHIFT REGISTERS						
DESCRIPTION	INPUTS	OUTPUTS	DEVICE TYPE	RATINGS AND CHARACTERISTIC		DESCRIPTIVE INFORMATION
				TABLE	PAGE	
4-Bit Shift Register with Clear	J- $\overline{\mathrm{K}} /$ Parallel	Parallel	'HC195	IV	2-6	3.98
4-Bit Bidirectional Shift Registers with Clear	Serial/Parallel	Parallel	'HC194			$3-95$
8-Bit Shift Registers	Serial/Parallel, Clock Inhibit, Shift/Load	2 Serial	'HC165			3-74
	2 Serial, Clear	Parallel	'HC164			3-72
	Serial/Parallel, Clear, Clock Inhibit, Shift/Load	Serial	'HC166			3.77
8-Bit Shift Registers with Input Registers	Serial/Parallel	Serial	'HC597			3-177
	Serial/Parallel	3-state Parallel (MultiplexedI/O)	'HC598	III	2-5	3-177
8-Bit Bidirectional Shift Registers with Storage and	Serial/Parallel	3-state Parallel	'HC299			3-123
Multiplexed 3-State I/O			'HC323			3-126
8-Bit Shift Registers with	Serial	Parallel	'HC594			3-173
Output Registers		3-State Parallel	'HC595			3-175

SYNCHRONOUS COUNTERS

DESCRIPTION	FEATURES		TYPE	RATINGS AND CHARACTERISTICS		DESCRIPTIVE. INFORMATION	
			TABLE	PAGE			
Decade	Async Clear	Sync Load		'HC160	IV	2-6	3-66
	Sync Clear		'HC162	3-66			
Decade Up/Down	Clock Inhibit	Async Load	'HC190	3.87			
	Async Clear		'HC192	3-91			
Divide-by-10 Johnson Counter	Async Clear		'HC4017	3-197			
4-Bit Binary	Async Clear	Sync Load	'HC161	3-66			
	Sync Clear		'HC163	3.66			
4-Bit Binary Up/Down	Clock Inhibit	Async Load	'HC191	3-87			
	Async Clear		'HC193	3.91			
8-Bit Binary with Input Registers	Sync Clear		'HC592	3-170			
		Multiplexed 3-state 1/0	'HC593	III	$2-5$	$3 \cdot 170$	
8-Bit Binary with Output Registers	Sync Clear	3-state Outputs	'HC590			3-168	

ASYNCHRONOUS (RIPPLE CLOCK) COUNTERS

(for Maximum Ratings and Electrical Characteristics See Table IV,
Page 2-6)

DESCRIPTION	FEATURES	DEVICE TYPE	DESCRIPTIVE INFORMATION
12-Bit Binary Counters		'HC4040	$3-201$
14-Bit Binary Counters		On-chip Oscillator	'HC4020
Dual Decade Counters	Bi-quinary or BCD	'HC390	$3-199$
	Set-to-9 Input	'HC490	$3-149$
Dual 4-Bit Bi- nary Counters		'HC393	$3-154$

COMPARATORS, PARITY GENERATORS/ CHECKERS, AND PRIORITY ENCODERS
(for Maximum Ratings and Electrical Characteristics See Table IV, Page 2-6)

DESCRIPTION	DEVICE TYPE	DESCRIPTIVE INFORMATION
4-Bit Magnitude Comparators	'HC85	$3-30$
8-Bit Magnitude Comparators	'HC688	$3-194$
9-Bit Odd/Even Parity Generator/Checker	'HC280	$3-121$
10-Line Decimal to 4-Line BCD Priority Encoder	'HC147	$3-54$

FUNCTIONAL INDEX/SELECTION GUIDE

DATA SELECTORS/MULTIPLEXERS
(for Maximum Ratings and Electrical Characteristics See Table III, Page 2-5)

DESCRIPTION	INPUTS	OUTPUTS	DEVICE TYPE	DESCRIPTIVE INFORMATION
8-Line-to-1-Line		Inverting	'HC152	3-58
	Enable	Complementary	'HC151	$3-56$
		Complementary, 3-state	'HC251	3-110
	Transparent Latches, Enable	Complementary3-state	'HC354	3-133
	Registers, Enable		'HC356	3-136
Dual 4-line-to-1-Line	Independent Enables	True, 3-state	'HC253	3-112
		Inverting, 3-state	'HC353	3-131
		True	'HC153	3-60
		Inverting	'HC352	3-129
Quad 2-Line-to-1-Line	Common Enable	True	'HC157	3-64
		Inverting	'HC158	3-64
		True, 3-state	'HC257	3-114
		Inverting, 3-state	'HC258	3-114

DECODERS/DEMULTIPLEXERS
(for Maximum Ratings and Electrical Characteristics See Table IV,
Page 2-6)

DESCRIPTION	FEATURES	DEVICE TYPE	DESCRIPTIVE INFORMATION
4-Line-to-16-Line	2 Enables	'HC154	$3-62$
	Input latches, Output Enable	'HC4514	$3-209$
4-Line-to-10-Line, BCD-to-Decimal		'HC42	$3-209$
3-Line-to-8-Line	3 Enables	'HC138	$3-15$
	3 Enables, Ad- dress Latches	'HC137	$3-48$
Dual 2-Line- to-4-Line	Independent Enables	'HC139	$3-52$

DISPLAY DECODERS/DRIVERS

DESCRIPTION	DEVICE TYPE	RATINGS ANDCHARACTERISTICS		DESCRIPTIVE INFORMATION
		TABLE	PAGE	
BCD-to-7-Segment Decoders/Drivers with Input Latches	'HC4511	IV	2-6	3-207

RANDOM ACCESS MEMORIES

DESCRIPTION	ORGANIZATION	FEATURES	DEVICE TYPE	RATINGS AND CHARACTERISTICS		DESCRIPTIVE
				TABLE	PAGE	
64 -Bit	16×4	3 -state Outputs	'HC189	111	$2-5$	$3-84$

EXPLANATION OF FUNCTION TABLES

The following symbols are now being used in function tables on TI data sheets:
$H=$ high level (steady state)
$L=$ low level (steady state)
$\dagger=$ transition from low to high level
$\downarrow=$ transition from high to low level
$X=$ irrelevant (any input, including transitions)
$Z=o f f$ (high-impedance) state of a 3-state output
a..h = the level of steady-state inputs at inputs A through H respectively
$\mathrm{O}_{0}=$, level of \mathbf{Q} before the indicated steady-state input conditions were established
$\overline{\mathrm{O}}_{0}=$ complement of O_{0} or level of $\overline{\mathrm{Q}}$ before the indicated steady-state input conditions were established
$a_{n}=$ level of Q before the most recent active transition indicated by \dagger or \downarrow

TOGGLE $=$ each output changes to the complement of its previous level on each active transition indicated by \dagger or \downarrow.
If, in the input columns, a row contains only the symbols H, L, and/or X, this means the indicated output is valid whenever the input configuration is achieved and regardless of the sequence in which it is achieved. The output persists so long as the input configuration is maintained.

If, in the input columns, a row contains, H, L, and/or X together with i and/or \downarrow, this means the output is valid whenever the input configuration is achieved but the transition(s) must occur following the achievement of the steady-state levels. If the output is shown as a level (H, L, Q_{0}, or \bar{O}_{0}), it persists so long as the steady-state input levels and the levels that terminate indicated transitions are maintained. Unless otherwise indicated, input transitions in the opposite direction to those shown have no effect at the output. (If the output is shown as a pulse, \qquad or 7 , the pulse follows the indicated input transition and persists for an interval dependent on the circuit.)

Among the most complex function tables in this book are those of the shift registers. These embody most of the symbols used in any of the function tables, plus more. Below is the function table of a 4-bit bidirectional universal shift register, e.g., type SN74HC194.

FUNCTION TABLE

INPUTS										OUTPUTS			
CLEAR	MODE		CLOCK	SERIAL		PARALLEL				$\mathbf{O}_{\mathbf{A}}$	$\mathbf{O}_{\mathbf{B}}$	Q_{C}	OD
	S1	SO		LEFT	RIGHT	A	B	C	D				
L	x	X	X	X	x	X	X	X	X	L	L	L	L
H	X	X	L	x	x	X	X	X	x	$\mathrm{Q}_{\text {AO }}$	Q_{BO}	O_{CO}	$Q_{\text {DO }}$
H	H	H	\dagger	x	x	a	b	c	d	a	b	c	d
H	L	H	1	x	H	X	X	x	X	H	$\mathrm{OAn}_{\text {A }}$	$\mathrm{Q}_{8 n}$	$Q_{C n}$
H	L	H	1	X	L	x	X	X	X	L	$Q_{\text {An }}$	$\mathrm{O}_{8 n}$	$\mathrm{O}_{C n}$
H	H	L	\dagger	H	X	x	X	x	X	O_{Bn}	O_{Cn}	Q_{Dn}	H
H	H	L	1	L	x	X	X	x	X	$Q_{B n}$	O_{Cn}	$Q_{\text {D }}$	L
H	L	L	x	X	X	X	X	X	X	$\mathrm{QA}^{\text {n }}$	Q_{Bn}	a_{Cn}	$Q_{\text {DO }}$

The first line of the table represents a synchronous clearing of the register and says that if clear is low, all four outputs will be reset low regardless of the other inputs. In the following lines, clear is inactive (high) and so has no effect.

The second line shows that so long as the clock input remains low (while clear is high), no other input has any effect and the outputs maintain the levels they assumed before the steady-state combination of clear high and clock low was established. Since on other lines of the table only the rising transition of the clock is shown to be active, the second line implicitly shows that no further change in the outputs will occur while the clock remains high or on the high-to-low transition of the clock.
The third line of the table represents synchronous parallel loading of the register and says that if S 1 and SO are both high then, without regard to the serial input, the data entered at A will be at output Q_{A}, data entered at B will be at Q_{B}, and so forth, following a low-to-high clock transition.

The fourth and fifth lines represent the loading of high- and low-level data, respectively, from the shift-right serial input and the shifting of previously entered data one bit; data previously at Q_{A} is now at Q_{B}, the previous levels of Q_{B} and Q_{C} are now at Q_{C} and Q_{D} respectively, and the data previously at Q_{D} is no longer in the register. This entry of serial data and shift takes place on the low-to-high transition of the clock when S1 is low and SO is high and the levels at inputs A through D have no effect.

The sixth and seventh lines represent the loading of high- and low-level data, respectively, from the shift-left serial input and the shifting of previously entered data one bit; data previously at Q_{B} is now at Q_{A}, the previous levels of Q_{C} and Q_{D} are now at Q_{B} and Q_{C}, respectively, and the data previously at Q_{A} is no longer in the register. This entry of serial data and shift takes place on the low-to-high transition of the clock when S1 is high and SO is low and the levels at inputs A through D have no effect.

The last line shows that as long as both mode inputs are low, no other input has any effect and, as in the second line, the outputs maintain the levels they assumed before the steady-state combination of clear high and both mode inputs low was established.

PARAMETER MEASUREMENT INFORMATION

TOTEM POLE OUTPUTS

PARAMETER		$\mathbf{R}_{\mathbf{L} \ddagger}$	$\mathbf{C}_{\mathbf{L} \ddagger \ddagger} \ddagger$
tPLH t or	Standard outputs	∞	50 pF
	High-current outputs $\mathbf{5}$	∞	150 pF

${ }^{\dagger} C_{L}$ includes probe and test fixture capacitance.
\ddagger These values apply only when alternative values ($\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$) are not specified in the column heading in switching characteristics.
§High-current outputs are indicated by the D in the logic symbol.

3-STATE OUTPUTS

PARAMETER	$\mathbf{R}^{\ddagger}{ }^{\ddagger}$	$\mathbf{C L}^{\text {T}}$	S_{1}	S_{2}
tPZH	$1 \mathrm{k} \Omega$	5 pF	OPEN	CLOSED
tPZL			CLOSED	OPEN
tPHZ	$1 \mathrm{k} \Omega$	50 pF	OPEN	CLOSED
tPLZ			CLOSED	OPEN
tPLH or tPHL	∞	75 pF	CLOSED	OPEN

${ }^{\dagger} \mathrm{C}_{\mathrm{L}}$ includes probe and test fixture capacitance.
†These values apply only when alternative values ($\mathrm{R}_{\mathrm{L}}=667 \Omega, \mathrm{C}_{\mathrm{L}}=\mathbf{4 5} \mathrm{pF}$) are not specified in the column heading in switching characteristics.

VOLTAGE WAVEFORMS SETUP AND HOLD TIMES*

VOLTAGE WAVEFORMS PULSE WIDTHS*

* In the examples above, the phase relationships between inputs and outputs have been chosen arbitrarily.

All input pulses are supplied by generators having the following characteristics: PRR $\leq 1 \mathrm{MHz}_{\mathrm{ou}} \mathrm{Z}_{\mathrm{ouf}} 50 \Omega, \mathrm{t}_{\mathrm{r}}=6 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$.

PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES*

Note: 1. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.

- In the examples above, the phase relationships between inputs and outputs have been chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR $\leq 1 \mathrm{MHz}, Z_{\text {out }} \approx 50 \Omega, \mathrm{t}_{\mathrm{r}}=6 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$.

THIS PAGE
INTENTIONALLY LEFT BLANK

Ratings and

Characteristics

ATTENTION

These devices contain circuits to protect the inputs and outputs against damage due to high static voltages or electrostatic fields; however, it is advised that precautions be taken to avoid application of any voltage higher than maximum-rated voltages to these high-impedance circuits.

Unused inputs must always be connected to an appropriate logic voltage level, preferably either $V_{C C}$ or ground.
absolute maximum ratings over operating free-air temperature range \dagger

> Supply voltage range, V_{CC}
> -0.5 to 7 V

> Continuous current through V_{CC} or GND pins . $\pm 50 \mathrm{~mA}$
> Lead temperature $1,6 \mathrm{~mm}(1 / 16 \mathrm{in})$ from case: J package for 60 seconds $300^{\circ} \mathrm{C}$
> N package for 10 seconds . $260^{\circ} \mathrm{C}$
> Storage temperature range . $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
> \dagger Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions

		SN54HC'			SN74HC'			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
VCC Supply voltage		2	5	6	2	5	6	V
	$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$	3.15			3.15			
$\mathrm{V}_{\text {IH }}$ High-level input voltage	$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}$	3.50			3.50			v
	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	3.85			3.85			
	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$	0		0.9	0		0.9	
VIL Low-level input voltage	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	0		1.0	0		1.0	v
	$\mathrm{V}_{C C}=5.5 \mathrm{~V}$	0		1.1	0		1.1	
V_{1} Input voltage		-0.5		$\mathrm{V}_{\text {CC }}+0.5$	-0.5		$V_{\text {cc }}+0.5$	V
VO Output voltage		-0.5		$\mathrm{V}_{\mathrm{CC}}+0.5$	-0.5		$\mathrm{V}_{C C}+0.5$	V
IOH High-level output current				-4			-4	mA
IOL Low-level output current				3.4			4	mA
$t_{t} \quad \begin{aligned} & \text { Input transition (rise and } \\ & \text { (except Schmitt-trigger in }\end{aligned}$		0		500	0		500	ns
T_{A} Operating free-air temper		-55		125	-40		85	${ }^{\circ} \mathrm{C}$

electrical characteristics, VCC $=5 \mathrm{~V} \pm 10 \%$,
over recommended operating free-air temperature range (unless otherwise noted)

${ }^{\ddagger}$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

This parameter applies only to Schmitt-trigger inputs.
switching characteristics
See individual circuit pages.
absolute maximum ratings over operating free-air temperature range \dagger
Supply voltage range, V_{CC}
-0.5 to 7 V

Continuous current through V_{CC} or GND pins ... 50 mA
Lead temperature $1,6 \mathrm{~mm}(1 / 16 \mathrm{in})$ from case: J package for 60 seconds . $300^{\circ} \mathrm{C}$
N package for 10 seconds . $260^{\circ} \mathrm{C}$
Storage temperature range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
recommended operating conditions

		SN54HC'			SN74HC'			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
$V_{\text {CC }}$ Supply voltage		2	5	6	2	5	6	V
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	3.15			3.15			
V_{IH} High-level input voltage	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	3.50			3.50			v
	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	3.85			3.85			
	$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$	0		0.9	0		0.9	
V_{IL} Low-level input voltage	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	0		1.0	0		1.0	v
	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	0		1.1	0		1.1	
V_{1} Input voltage		-0.5		$\mathrm{V}_{\text {CC }}+0.5$	-0.5		$\mathrm{v}_{\text {CC }}+0.5$	V
V_{0} Output voltage		-0.5		$\mathrm{V}_{\text {CC }}+0.5$	-0.5		$\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{IOH}^{\mathrm{OH}}$ High-level output current				-4			-4	mA
IOL Low-level output current				3.4			4	mA
i_{t} Input transition (rise and		0		500	0		500	ns
$\mathrm{T}_{\text {A }}$ Operating free-air tempe		-55		125	-40		85	${ }^{\circ} \mathrm{C}$

electrical characteristics, VCC $=5 \mathrm{~V} \pm 10 \%$.
over recommended operating free-air temperature range (unless otherwise noted)

	TEST CONDITIONS	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54HC'		SN74HC'		UNIT
PARAMETER		MIN	TYP \ddagger	MAX	MIN	MAX	MIN	MAX	
$\mathrm{VOH}_{\mathrm{OH}}$	$\begin{aligned} & V_{1}=V_{I H} \text { or } V_{I L} \cdot V_{C C}=4.5 \mathrm{~V}, \\ & \mathrm{IOH}=-4 \mathrm{~mA} \end{aligned}$	3.86			3.56		3.70		V
	$\begin{aligned} & V_{1}=V_{I H} \text { or } V_{I L} \\ & I_{O H}=-200 \mu A \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}-0.2$	V_{Cc}		$V_{C C}-0.2$		$V_{\text {CC }}-0.2$		
	$\begin{aligned} & V_{1}=V_{I H} \text { or } V_{I L} \\ & I O H^{\prime \prime}=-20 \mu \mathrm{~A} \end{aligned}$	$\mathrm{V}_{\mathrm{Cc}}-0.1$	$\mathrm{V}_{\text {cc }}$		$V_{\text {cc }}{ }^{-0.1}$		$V_{C C}-0.1$		
VOL	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{1 H}$ or $\mathrm{V}_{\mathrm{IL}} \quad 1 \mathrm{OL}=3.4 \mathrm{~mA}$			0.27		0.4			v
	疗 $1 \mathrm{OL}=4 \mathrm{~mA}$			0.32				0.4	
	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{IOL}=20 \mu \mathrm{~A} \end{aligned}$		0	0.1		0.1		0.1	
1	$\mathrm{V}_{1}=\mathrm{V}_{\text {cc }}$ or O V			± 0.1		± 1		± 1	$\mu \mathrm{A}$
ICC	$\mathrm{V}_{1}=\mathrm{V}_{\text {cc }}$ or $0 \mathrm{~V}, 1 \mathrm{O}=0$			4		80		40	$\mu \mathrm{A}$
c_{i}			3	10		10		10	pF

\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

switching characteristics

See individual circuit pages.
absolute maximum ratings over operating free-air temperature range \dagger

> Supply voltage range, V_{CC} -0.5 to 7 V

> Continuous output current ($-0.5 \mathrm{~V}<\mathrm{V}_{\mathrm{O}}<\mathrm{V}_{\mathrm{C}}+0.5 \mathrm{~V}$) .. 25 mA
> Continuous current through V_{CC} or GND pins ... 50 mA
> Lead temperature $1,6 \mathrm{~mm}(1 / 16 \mathrm{in})$ from case: J package for 60 seconds . $300^{\circ} \mathrm{C}$
> N package for 10 seconds . $260^{\circ} \mathrm{C}$
> Storage temperature range
> $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
> \dagger Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
recommended operating conditions

		SN54HC'			SN74HC'			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
VCC Supply voltage		2	5	6	2	5	6	V
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	3.15			3.15			
$V_{\text {HH }}$ High-level input voltage	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	3.50			3.50			v
	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	3.85			3.85			
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	0		0.9	0		0.9	
VIL Low-level input voltage	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	0		1.0	0		1.0	V
	$V_{C C}=5.5 \mathrm{~V}$	0		1.1	0		1.1	
V_{1} Input voltage		-0.5		$\mathrm{V}_{\mathrm{CC}}+0.5$	-0.5		$\mathrm{V}_{\mathrm{CC}}+0.5$	V
Vo Output voltage		-0.5		$\mathrm{V}_{\mathrm{CC}}+0.5$	-0.5		$\mathrm{V}_{\mathrm{CC}}+0.5$	V
IOH High-level output current	High-current outputs d			-6			-6	mA
OH High-level output current	Standard outputs			-3.4			-4	mA
	High-current outputs 9			5.1			6	
'OL Low-level output current	Standard outputs			3.4			4	mA
ff_{1} Input transition (rise and fall	nes	0		500	0		500	ns
$\mathrm{T}_{\text {A }}$ Operating free-air tempera		-55		125	-40		85	${ }^{\circ} \mathrm{C}$

\$High-current outputs are indicated by the D in the logic symbol. All 3-state outputs are high-current outputs.
electrical characteristics, $V_{C C}=5 \mathrm{~V} \pm 10 \%$,
over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		$\mathrm{T}_{A}=25^{\circ} \mathrm{C}$			SN64HC'		SN74HC'		UNIT
			MIN	TYP \ddagger	MAX	MIN	MAX	MIN	MAX	
VOH	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \cdot \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} . \\ & \mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA} \end{aligned}$		3.86			3.56		3.70		V
	$\begin{aligned} & V_{1}=V_{I H} \text { or } V_{I L} \\ & I_{O H}=-200 \mu \mathrm{~A} \end{aligned}$		$\mathrm{V}_{\mathrm{Cc}}-0.2$	VCC		$V_{C C}-0.2$		$V_{C C}-0.2$		
	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{IOH}=-20 \mu \mathrm{~A} \end{aligned}$		$V_{\text {cc }}-0.1$	$V_{C C}$		$V_{C C}-0.1$		$V_{\text {cc }}-0.1$		
V_{OL}	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or V_{IL}	54HC'			0.27		0.4			v
	$\mathrm{I}_{\mathrm{OL}}=$ max rec.	74HC'			0.32				0.4	
	$\begin{aligned} & V_{1}=V_{1 H} \text { or } V_{I L} . \\ & I_{O L}=20 \mu \mathrm{~A} \end{aligned}$			0	0.1		0.1		0.1	
'02§	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$ or OV. $\mathrm{V}_{1}=\mathrm{V}_{\text {IH }}$ or V_{IL}				± 0.5		± 5		± 5	$\mu \mathrm{A}$
1	$V_{1}=V_{\text {CC }}$ or OV				± 0.1		± 1		± 1	$\mu \mathrm{A}$
ICC	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or $0 \mathrm{~V}, \mathrm{IO}_{0}=0$				8		160		80	$\mu \mathrm{A}$
C_{i}	(except transceiver 1/O pins)			3	10		10		10	pF

[^1]
switching characteristics

See individual circuit pages.

absolute maximum ratings over operating free-air temperature range \dagger

$$
\begin{aligned}
& \text { Supply voltage range, } \mathrm{V}_{\mathrm{CC}} \text {. } 0.5 \text { to } 7 \mathrm{~V}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Output diode current, } \mathrm{I}_{\mathrm{OK}}\left(\mathrm{~V}_{\mathrm{O}}<-0.5 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{C}}+0.5 \mathrm{~V} \text {) . } \pm 20 \mathrm{~mA}\right. \\
& \text { Continuous output current (}-0.5 \mathrm{~V}<\mathrm{V}_{\mathrm{O}}<\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V} \text {)... } 225 \mathrm{~mA} \\
& \text { Continuous current through } \mathrm{V}_{\mathrm{CC}} \text { or GND pins . } \pm 50 \mathrm{~mA} \\
& \text { Lead temperature } 1,6 \mathrm{~mm}(1 / 16 \mathrm{in}) \text { from case: } J \text { package for } 60 \text { seconds . } 300^{\circ} \mathrm{C} \\
& \text { N package for } 10 \text { seconds . } 260^{\circ} \mathrm{C} \\
& \text { Storage temperature range . }-65^{\circ} \mathrm{C} \text { to } 150^{\circ} \mathrm{C} \\
& \dagger \text { Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These } \\
& \text { are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated } \\
& \text { under "Recommended Operating Conditions" is not implied. Exposure to absolute-maximum-rated conditions for } \\
& \text { extended periods may affect device reliability. }
\end{aligned}
$$

recommended operating conditions

electrical characteristics, VCC $=5 \mathrm{~V} \pm 10 \%$,
over recommended operating free-air temperature range (unless otherwise noted)

[^2]See individual circuit pages.

Descriptive Information

- Package Options Include Both Plastic and

 Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs- Dependable Texas Instruments Quality and Reliability

description

These devices contain four independent 2 -input NAND gates. They perform the boolean functions $Y=\bar{A} \cdot \bar{B}$ or $Y=\bar{A}+\bar{B}$ in positive logic.

The SN54HCOO is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HCOO is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE (each gate)

INPUTS	
A	B
H	H
OUTPUT	
L	X
X	L

logic symbol
SN54HCOO . . . J PACKAGE
SN74HCOO . . J OR N PACKAGE (TOP VIEW)

$1 \mathrm{~A}, 1$		V_{CC}
1B 2	13	4B
$1 \mathrm{Y} \square^{3}$	12	4 A
2A-4	11	4 4
28	10	3B
2Y-6	9	3A
GND 7	7	-3Y

SN54HCOO . . FH OR FK PACKAGE SN74HCOO . . . FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection

Pin numbers shown are for J and N packages.
maximum ratings, recommended operating conditions, and electrical characteristics.
See Table I, page 2-3.
switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} . \\ & C_{L}=50 \mathrm{pF} \end{aligned}$							UNIT
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54HCO0		SN74HCOO		
			MIN TYP MAX	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
${ }^{\text {tPLH }}$	A or B	Y									ns
tPHL											
$\mathrm{C}_{\text {pd }}$	Power dissipation capacitance per gate				No load, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$				pF typ		

NOTE 1: For load circuit and voltage waveforms, see page 1-14. ments reserves the right to change or discontinue this product without notice.

Texas Instruments
INCORPORATED

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These devices contain four independent 2 -input NOR gates. They perform the boolean functions $Y=\overline{A+B}$ or $Y=\bar{A} \cdot \bar{B}$ in positive logic.

The SN54HCO2 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HCO2 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
logic symbol

Pin numbers shown are for J and N packages.

SN54HCO2 . . . J PACKAGE
SN74HC02 . . . J OR N PACKAGE (TOP VIEW)

1Y-	\cup_{14}	$\square \mathrm{V}_{\mathrm{CC}}$
1 AC 2	13	4 Y
1B \square^{3}	12	4B
$2 \mathrm{Y} \square^{4}$	11	4 A
2A-5	10	-3Y
2B-6		-3B
GND-7		$\bigcirc 3 A$

SN54HCO2 . . . FH OR FK PACKAGE SN74HCO2 . . . FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection

FUNCTION TABLE (each gate)

INPUTS		OUTPUT
\mathbf{A}	\mathbf{B}	
H	X	L
X	H	L
L	L	H

maximum ratings, recommended operating conditions, and electrical characteristics
See Table I, page 2-3.
switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

This document contains information on a product under development. Texas Instruments reserves the right to change or dissontinue this product without notice.

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These devices contain six independent inverters. They perform the boolean function $Y=\bar{A}$.

The SN54HCO4 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HCO4 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE
(each inverter)

INPUT	OUTPUT
A	Y
H	L
L	H

logic symbol

Pin numbers shown are for J and N packages.

SN54HC04 . . . J PACKAGE
SN74HCO4 . . .J OR N PACKAGE (TOP VIEW)

SN54HC04 . . FH OR FK PACKAGE SN74HC04 . . . FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection
maximum ratings, recommended operating conditions, and electrical characteristics
See Table I, page 2-3.
switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

C_{pd}	Power dissipation capacitance per inverter	No load, $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	pF typ

NOTE 1: For load circuit and voltage waveforms, see page 1-14. continue this product without notice.

Texas Instruments
 INCORPORATED

POST OFFICE BOX 225012 - DALLAS, TEXAS 75265

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These devices contain four independent 2 -input AND gates. They perform the boolean functions $Y=A \cdot B$ or $Y=\overline{\bar{A}+\bar{B}}$ in positive logic.

The SN54HCO8 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HCO8 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE (each gate)	
INPUTS OUTPUT A B Y H H H L X L X L L	

logic symbol

Pin numbers shown are for J and N packages.
 (TOP VIEW)

$1 \mathrm{~A}, 1$	U_{14}	$\square \mathrm{V}_{\mathrm{CC}}$
18-2	13	-4B
$1 \mathrm{Y} \square^{3}$	12	7A
2A-4	11	$\square 4 \mathrm{Y}$
2B-5	10	-3B
2Y-6	9	-3A
GND 7		-3Y

SN54HC08 . . FH OR FK PACKAGE SN74HC08 ... FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection
maximum ratings, recommended operating conditions, and electrical characteristics
See Table I, page 2-3.
switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These devices contain three independent 3 -input NAND gates. They perform the boolean functions $\mathbf{Y}=\overline{\mathbf{A} \cdot \mathbf{B} \cdot \mathbf{C}}$ or $\mathrm{Y}=\overline{\mathrm{A}}+\overline{\mathbf{B}}+\overline{\mathrm{C}}$ in positive logic.

The.SN54HC10 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC10 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE (each gate)

INPUTS			OUTPUT
A	B	C	Y
H	H	H	L
L	X	X	H
X	L	X	H
X	X	L	H

logic symbol

SN54HC10 . . .J PACKAGE SN74HC10 ...J OR N PACKAGE (TOP VIEW)

SN54HC10 . . FH OR FK PACKAGE
SN74HC10 . . FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection

Pin numbers shown are for J and N packages.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table I, page 2-3.
switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

C_{pd}	Power dissipation capacitance per gate	No load, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	pF typ

NOTE 1: For load circuit and voltage waveforms, see page 1-14. product under development. Texas instrucontinue this product without notice.

Copyright ©1982 by Texas Instruments Incorporated

Texas Instruments

 INCORPORATEDPackage Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs

- Dependable Texas Instruments Quality and Reliability

description

These devices contain three independent 3 -input AND gates. They perform the boolean functions $Y=A \cdot B \cdot C$ or $Y=\bar{A}+\bar{B}+\bar{C}$ in positive logic.

The SN54HC11 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC11 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

> FUNCTION TABLE (each gate)

INPUTS			OUTPUT
A	B	C	Y
H	H	H	H
L	X	X	L
X	L	X	L
X	X	L	L

logic symbol

Pin numbers shown are for J and N packages.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table I, page 2-3.
switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

This document contains information on a product under development. Texas Instruments reserves the right to change or discontinue this product without notice.

Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs

- Dependable Texas Instruments Quality and Reliability

description

These Schmitt-trigger devices contain six independent inverters. They perform the boolean function $Y=A$.

The SN54HC14 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC14 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE
(each inverter)

INPUT	OUTPUT
A	\mathbf{Y}
H	L
L	H

logic symbol

SN54HC14...J PACKAGE
SN74HC14 ... J OR N PACKAGE (TOP VIEW)

1	U_{14}	V_{CC}
$1 \mathrm{Y} \square_{2}$	13	6A
2A ${ }^{\text {P }}$	12	6 Y
$2 \mathrm{Y}-4$	11	5A
3A 5	10	5Y
3 Y -6	9	4A
GND.	8] 4

SN54HC14 ... FH OR FK PACKAGE SN74HC14 . . . FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection

Pin numbers shown are for J and N packages.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table I, page 2-3.
switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & C_{L}=15 \mathrm{pF}, \\ & R_{\mathrm{L}}=2 \mathrm{k} \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} . \\ & C_{L}=50 \mathrm{pF} \end{aligned}$						UNIT
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54HC14		SN74HC14		
			MIN TYP MAX	MIN	TYP MAX	MIN	MAX	MIN	MAX	
tPLH	A	Y								ns
tPHL	A	Y							.	ns
C_{pd}	Power dissipation capacitance per inverter			No load, $\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$				pF typ		

[^3]
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs

- Dependable Texas Instruments Quality and Reliability

description

These devices contain two independent 4 -input NAND gates. They perform the boolean functions $Y=\overline{A \cdot B \cdot C \cdot D}$ or $Y=\bar{A}+\bar{B}+\bar{C}+\bar{D}$ in positive logic.

The SN54HC2O is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC2O is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE (each gate)

INPUTS				OUTPUT
A	B	C	D	Y
H	H	H	H	L
L	X	X	X	H
X	L	X	X	H
X	X	L	X	H
X	X	X	L	H

logic symbol

SN54HC20 . . . J PACKAGE
 SN74HC20 . . J OR N PACKAGE (TOP VIEW)

1A ${ }^{1}$	\cup_{14}	V_{C}
18 2	13	2D
$\mathrm{NC}]^{3}$	12	2C
1CD 4	11] NC
10-5	10	2B
$1 Y 6$	9	2A
GND $\square^{\text {a }}$		2 Y

SN54HC20 . . FH OR FK PACKAGE
SN74HC20 . . FH OR FN PACKAGE
(TOP VIEW).

NC - No internal connection

Pin numbers shown are for J and N packages.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table 1, page 2-3.
switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

INCORPORATED

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These devices contain two independent 4-input AND gates. They perform the boolean functions $Y=A \cdot B \cdot C \cdot D$ or $Y=\overline{\bar{A}+\bar{B}+\bar{C}+\bar{D}}$ in positive logic.

The SN54HC21 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC21 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE (each gate)

INPUTS				OUTPUT
A	B	C	D	Y
H	H	H	H	H
L	X	X	X	L
X	L	X	X	L
X	X	L	X	L
X	X	X	L	L

logic symbol

Pin numbers shown are for J and N packages.

SN54HC21 . . . JPACKAGE
SN74HC21 . . J OR N PACKAGE (TOP VIEW)

SN54HC21 ... FH OR FK PACKAGE SN74HC21 ... FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection
maximum ratings, recommended operating conditions, and electrical characteristics
See Table I, page 2-3.
switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & C_{L}=15 \mathrm{pF}, \\ & R_{\mathrm{L}}=2 \mathrm{k} \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} . \\ & C_{L}=50 \mathrm{pF} \end{aligned}$					UNIT
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54HC21	SN74HC21		
			MIN TYP MAX	MIN	TYP MAX	MIN MAX	MIN	MAX	
tPLH	A, B, C, or D	Y							ns
tpHL									
$\mathrm{C}_{\text {pd }}$	Power dissipation capacitance per gate			No load, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			pF typ		

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

Copyright ©1982 by Texas Instruments Incorporated
Texas Instruments
INCORPORATED
POST OFFICE BOX 225012 - DALLAS. TEXAS 75265

Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs

Dependable Texas Instruments Quality and Reliability

description

These devices contain three independent 3 -input NOR gates. They perform the boolean functions $Y=\overline{A+B+C}$ or $Y=\bar{A} \cdot \bar{B} \cdot \bar{C}$ in positive logic.

The SN54HC27 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC27 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE (each gate)

INPUTS			OUTPUT
A	B	C	Y
H	X	X	L
X	H	X	L
X	X	H	L
L	L	L	H

logic symbol

SN54HC27 . . . J PACKAGE
SN74HC27 . . J OR N PACKAGE (TOP VIEW)

1 A	\cup_{14}	$V_{C C}$
18 2	13	1C
2A \square^{2}	12	$\square 1 \mathrm{Y}$
2B-4	11	3C
2C-5	10	3B
2Y-6	9]3A
GND \square_{7}] 3 Y

SN54HC27 . . . FH OR FK PACKAGE SN74HC27... FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection

Pin numbers shown are for J and N packages.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table I, page 2-3.
switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

[^4]- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These devices contain a single 8 -input NAND gate and perform the following boolean functions in positive logic:

$$
\begin{gathered}
Y=\overline{A \cdot B \cdot C \cdot D \cdot E \cdot F \cdot G \cdot H} \\
\text { or } \\
Y=\bar{A}+\bar{B}+\bar{C}+\bar{D}+\bar{E}+\bar{F}+\bar{G}+\bar{H}
\end{gathered}
$$

The SN54HC3O is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC30 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
logic symbol

Pin numbers shown are for J and N packages.

SN54HC30 . . . J PACKAGE
SN74HC30...J OR N PACKAGE (TOP VIEW)

SN54HC30 . . FH OR FK PACKAGE SN74HC30 ... FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection
function table

INPUTS A THRU H	OUTPUT Y
All inputs H	L
One or more inputs L	H

maximum ratings, recommended operating conditions, and electrical characteristics
See Table I, page 2-3.
switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These devices contain four independent 2 -input OR gates. They perform the boolean functions $Y=A+B$ or $Y=\overline{\bar{A}} \cdot \bar{B}$ in positive logic.

The SN54HC32 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC32 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
FUNCTION TABLE

(each gate) $|$| INPUTS | OUTPUT | |
| :---: | :---: | :---: |
| A | B | Y |
| H | X | H |
| X | H | H |
| L | L | L |

logic symbol

SN54HC32 . . FH OR FK PACKAGE SN74HC32 ... FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection

Pin numbers shown are for J and N packages.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table I, page 2-3.
switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & C_{L}=15 \mathrm{pF}, \\ & R_{L}=2 \mathrm{k} \Omega, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} . \\ & C_{L}=50 \mathrm{pF} \end{aligned}$							UNIT
					$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54HC32		SN74HC32		
			MIN TYP	MAX	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
${ }^{\text {tPLH }}$	A or B	Y										ns
${ }_{\text {t PHL }}$												
$\mathrm{C}_{\text {pd }}$	Power dissipation capacitance per gate					No load, $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$				pF typ		

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These devices contain four independent 2 -input NOR gates. They perform the boolean functions $Y=\overline{A+B}$ or $Y=\bar{A} \cdot \bar{B}$ in positive logic.

The SN54HC36 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to 125° C. The SN74HC36 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
logic symbol

Pin numbers shown are for J and N packages.
SN54HC36 . . J J PACKAGE
SN74HC36 ... JOR N PACKAGE
(TOP VIEW)

1 A	\cup_{14}	V_{CC}
18 2	13	4B
$1 \mathrm{Y} \square^{3}$	12	4A
2A-4	11] 4 Y
2B-5	10	-3B
2 Y 6	9	-3A
GND \square_{7}		-3Y

> SN54HC36 . . FH OR FK PACKAGE SN74HC36 . . FH OR FN PACKAGE (TOP VIEW)

NC — No internal connection

FUNCTION TABLE (each gate)

INPUTS		OUTPUT
A	B	
H	X	L
X	H	L
L	L	H

maximum ratings, recommended operating conditions, and electrical characteristics
See Table 1, page 2-3.
switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

[^5]
Texas Instruments
 INCORPORATED

POST OFFICE BOX 225012 • DALLAS, TEXAS 75265

- Full Decoding of Input Logic
- All Outputs Are Off for Invalid BCD Conditions
- Also for Application as 3-Line to 8-Line Decoders
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These monolithic decimal decoders consist of eight inverters and ten four-input NAND gates. The inverters are connected in pairs to make BCD input data available for decoding by the NAND gates. Full decoding of valid input logic ensures that all inputs remain off for all invalid input conditions.

The SN54HC42 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to 125° C. The SN74HC42 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

NO.	INPUTS				OUTPUTS									
	D	C	B	A	0	1	2	3	4	5	6	7	8	9
0	L	L	L	L	L	H	H	H	H	H	H	H	H	H
1	L	L	L	H	H	L	H	H	H	H	H	H	H	H
2	L	L	H	L	H	H	L	H	${ }^{+}$	H	H	H	H	H
3	L	L	H	H	H	H	H	L	H	H	H	H	H	H
4	L	H	L	L	H	H	H	H	L	H	H	H	H	H
5	L	H	L	H	H	H	H	H	H	L	H	H	H	H
6	L	H	H	L	H	H	H	H	H	H	L	H	H	H
7	L	H	H	H	H	H	H	H	H	H	H	L	H	H
8	H	L	L	L	H	H	H	H	H	H	H	H	L	H
9	H	L	L	H	H	H	H	H	H	H	H	H	H	L
$\begin{aligned} & \text { O} \\ & \frac{1}{x} \\ & \underline{z} \end{aligned}$	H	L	H	L	H	H	H	H	H	H	H	H	H	H
	H	L	H	H	H	H	H	H	H	H	H	H	H	H
	H	H	L	L	H	H	H	H	H	H	H	H	H	H
	H	H	L	H	H	H	H	H	H	H	H	H	H	H
	H	H	H	L	H	H	H	H	H	H	H	H	H	H
		H	H	H	H	H	H	H	H	H	H	H	H	H

SN54HC42 . . J PACKAGE
SN74HC42 . . J OR N PACKAGE (TOP VIEW)

$0 \square 1$	$\bigcirc 16$	V_{CC}
1 [2	15	A
$2 \square$	14	B
$3 \square 4$	13	c
4 -5	12	D
5 -6	11	$\square 9$
6 -7	10	8
GND 8		万7

SN54HC42 . . FH OR FK PACKAGE SN74HC42 . . . FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection
logic symbol

Pin numbers shown are for J and N packages.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table IV, page 2-6.

TYPES SN54HC42, SN74HC42
 4-LINE TO 10-LINE DECODERS (1-of-10)

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & C_{L}=15 \mathrm{pF}, \\ & R_{L}=2 \mathrm{k} \Omega, \\ & \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ & C_{L}=50 \mathrm{pF} \end{aligned}$			UNIT
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	SN54HC42	SN74HC42	
			MIN TYP MAX	MIN TYP MAX	MIN MAX	MIN MAX	
tPHL	A,B,C or D	0 thru 9					ns
tPLH							ns

C_{pd}	Power dissipation capacitance	Noload, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	pF typ

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

The 'HC51 provides 2-wide, 2-input, and 2-wide, 3input AND-OR-INVERT gates. The device performs the following boolean functions:

$$
\begin{aligned}
& 1 Y=\overline{(1 A \cdot 1 B \cdot 1 C)+(1 D \cdot 1 E \cdot 1 F)} \\
& 2 Y=\overline{(2 A \cdot 2 B \cdot)+(2 C \cdot 2 D)}
\end{aligned}
$$

The SN54HC51 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC51 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLES

INPUTS						OUTPUT
1A	1B	1C	1D	1E	1F	1Y
H	H	H	X	X	X	L
X	X	X	H	H	H	L
	Any other combination		H			

INPUTS				OUTPUT
$\mathbf{2 A}$	2B	2C	2D	2Y
H	H	X	X	L
X	X	H	H	L
Any other combination				H

SN54HC51 . . . J PACKAGE
SN74HC51 ...J OR N PACKAGE (TOP VIEW)

1A \square_{1}	\cup_{14}	$\mathrm{l}^{\mathrm{cc}} \mathrm{C}$
2A-2	13	1 C
2B ${ }^{\text {a }}$	12	1 B
2C $\square 4$	11	1 F
20 \square^{5}	10	1 E
2 Y -6	9]10
GND 7		D19

SN54HC51 . . . FH OR FK PACKAGE SN74HC51 . . . FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection
logic symbol

Pin numbers shown are for J and N packages.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table I, page 2-3.
switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & \mathrm{V}_{C C}=5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \\ & \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} . \\ & C_{L}=50 \mathrm{pF} \end{aligned}$						UNIT
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54HC51		SN74HC51		
			MIN TYP MAX	MIN	TYP MAX	MIN	MAX	MIN	MAX	
${ }^{\text {tPLH }}$	Any	Y		.						ns
tPHL										
C_{pd}	Power dissipation capacitance per AOI gate				No load, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			pF typ		

[^6]- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These devices contain two independent J-K negative-edge-triggered flip-flops. A low level at the clear input resets the outputs regardless of the levels of the other inputs. When clear is inactive (high), data at the J and K inputs meeting the setup time requirements are transferred to the outputs on the negative-going edge of the clock pulse. Clock triggering occurs at a voltage level and is not directly related to the rise time of the clock pulse. Following the hold time interval, data at the J and K inputs may be changed without affecting the levels at the outputs. These versatile flip-flops can perform as toggle flip-flops by tying J and K high.

The SN54HC73 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC73 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

(EACH FLIP.FLOP)

INPUTS				OUTPUTS	
$\overline{\text { CLR }}$	CLK	J	K	0	$\overline{\mathrm{Q}}$
L	X	X	X	L	H
H	1	L	L	0	$\overline{0}_{0}$
H	1	H	L	H	L
H	1	L	H	L	H
H	1	H	H		
H	H	X	X	00	$\overline{\mathrm{O}}_{0}$

SN54HC73 . . J PACKAGE
SN74HC73 . . . J OR N PACKAGE (TOP VIEW)

For chip carrier information, contact the factory.
logic symbol

Pin numbers shown are for J and N packages.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table II, page 2-4.
timing requirements (supplement to recommended operating conditions)

			SN54HC73			SN74HC73			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	
${ }^{\text {clock }}$	Clock frequency								MHz
	Pulse duration	CLK high or low							ns
t_{w}		$\overline{\text { CLR }}$ low							
${ }^{\text {t }}$ Su	Setup time before CLKI	High-level data							ns
		Low-level data							
		$\overline{\mathrm{CLR}}$ inactive							
th	Hold time, data after CLK								ns

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

[^7]Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs

- Dependable Texas Instruments Quality and Reliability

description

These devices contain two independent D-type positive-edgetriggered flip-flops. A low level at the Preset or Clear inputs sets or resets the outputs regardless of the levels of the other inputs. When Preset and Clear are inactive (high) data at the D input meeting the setup time requirements are transferred to the outputs on the the positive-going edge of the clock pulse. Clock triggering occurs at a voltage level and is not directly related to the rise time of the clock pulse. Following the hold time interval, data at the D input may be changed without affecting the levels at the outputs.

The SN54HC74 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC74

FUNCTION TABLE

INPUTS				OUTPUTS	
PRESET	CLEAR	CLOCK	D	0	$\bar{\square}$
L	H	X	X	H	L
H	L	X	X	L	H
L.	L	X	X	$\mathrm{H} \dagger$	$\mathrm{H} \dagger$
H	H	1	H	H	L
H	H	1	L	L	H
H	H	L	X	0_{0}	O_{0}

\dagger This configuration is nonstable; that is, it will not persist when Preset or Clear returns to its inactive (high) level.

SN54HC74 . . J PACKAGE
SN74HC74 . . J OR N PACKAGE
(TOP VIEW)

SN54HC74 . . FH OR FK PACKAGE SN74HC74 . . FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection
logic symbol

Pin numbers shown are for J and N packages.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table II, page 2-4.

Texas Instruments incorporated
 POST OFFICE 80×225012 - DALLAS, TEXAS 75265

TYPES SN54HC74, SN74HC74 DUAL D-TYPE POSITIVE-EDGE-TRIGGERED FLIP-FLOPS WITH CLEAR AND PRESET

timing requirements (supplement to recommended operating conditions)

			SN54HC74			SN74HC74			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	
$\mathrm{f}_{\text {clock }}$	Clock frequency								MHz
${ }^{\text {tw }}$	Pulse duration	$\overline{\text { PRE }}$ or CLER low							ns
		CLK high							
		CLK low							
${ }^{\text {tsu }}$	Setup time	Data							ns
	before CLKI	$\overline{\text { PRE or } \overline{C L R}}$ inactive							
th	Hold time, data after CLKi								ns

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

[^8]
- Complementary \mathbf{Q} and $\overline{\mathbf{Q}}$ Outputs

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These latches are ideally suited for use as temporary storage for binary information between processing units and input/output or indicator units. Information present at a data (D) input is transferred to the \mathbf{Q} output when the enable (C) is high and the Q output will follow the data input as long as the enable remains high. When the enable goes low, the information (that was present at the data input at the time the transition occurred) is retained at the \mathbf{Q} output until the enable is permitted to go high.

The SN54HC75 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC75 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

SN54HC75 . . . J PACKAGE
SN74HC75 . . J OR N PACKAGE (TOP VIEW)

For chip carrier information, contact the factory
FUNCTION TABLE
(Each Latch)

INPUTS		OUTPUTS	
D	C	Q	$\overline{\text { Q }}$
L	H	L	H
H	H	H	L
X	L	Q_{0}	$\overline{O_{O}}$

logic symbol

Pin numbers shown are for J and N packages.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table II, page 2-4.

TYPES SN54HC75, SN74HC75 4-BIT BISTABLE LATCHES

timing requirements (supplement to recommended operating conditions)

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & \mathrm{V}_{C C}=5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \\ & \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} . \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$						UNIT
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54HC75		SN74HC75		
			MIN . TYP MAX	MIN	TYP MAX	MIN	MAX	MIN	MAX	
tPLH	D	0								ns
tPHL										
tPLH	D	$\overline{\text { ® }}$								ns
tPHL										
tPLH	C	0								ns
tPHL										
tPLH	C	$\overline{0}$								ns
tPHL										
$\mathrm{C}_{\text {pd }}$	Power dissipation capacitance per latch			No load, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$				pF typ		

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These devices contain two independent J-K negative-edge-triggered flip-flops. A low level at the Preset or Clear input sets or resets the outputs regardless of the levels of the other inputs. When Preset and Clear are inactive (high), data at the J and K inputs meeting the setup time requirements are transferred to the outputs on the negative-going edge of the clock pulse. Clock triggering occurs at a voltage level and is not directly related to the rise time of the clock pulse. Following the hold time interval, data at the J and K inputs may be changed without affecting the levels at the outputs. These versatile flip-flops can also perform as toggle flip-flops by tying J and K

high.

The SN54HC76 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC76 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE
(EACH FLIP-FLOP)

INPUTS					OUTPUTS	
$\overline{\text { PRE }}$	$\overline{\text { CLR }}$	CLK	J	K	0	$\overline{\mathbf{0}}$
L	H	X	X	X	H	L
H	L	X	X	X	L	H
L	L	X	X	X	H^{*}	H^{*}
H	H	\downarrow	L	L	0_{0}	$\overline{\mathrm{a}}_{0}$
H	H	1	H	L	H	L
H	H	1	L	H	L	H
H	H	1	H	H		
H	H	H	X	X	00	O_{0}

*This configuration is nonstable; that is, it will not persist when either Preset or Clear returns to its inactive (high) level.

SN54HC76 . . J JACKAGE SN74HC76 . . . J OR N PACKAGE (TOP VIEW)

For chip carrier information, contact the factory.
logic symbol

Pin numbers shown are for J and N packages.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table II, page 2-4.

TYPES SN54HC76, SN74HC76 DUAL J-K FLIP-FLOPS WITH CLEAR AND PRESET

timing requirements (supplement to recommended operating conditions)

			SN54HC76			SN74HC76			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	
$\mathrm{f}_{\text {clock }}$	Clock frequency								MHz
${ }^{\text {tw }}$	Pulse duration	PRE or CLR low							ns
		CLK high							
		CLK low							
${ }^{\text {tsu }}$	Setup time before CLK!	Data							ns
		$\overline{\text { PRE or } \overline{C L R}}$ inactive							
th	Hold time, data after CLK!								ns

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{C C}=5 \mathrm{~V}, \\ & C_{L}=15 \mathrm{pF}, \\ & R_{\mathrm{L}}=2 \mathrm{k} \Omega . \\ & \mathrm{T}_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} . \\ & C_{L}=50 \mathrm{pF} \end{aligned}$							UNIT
				$\mathrm{T}_{A}=25^{\circ} \mathrm{C}$			SN54HC76		SN74HC76		
			MIN TYP MAX	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
$\mathrm{f}_{\text {max }}$											MHz
tPLH	$\overline{\text { PRE }}$ or $\overline{\mathrm{CLR}}$	Q or $\overline{\mathrm{Q}}$									ns
tpHL											
tPLH	CLK	Q or $\overline{\mathrm{Q}}$									ns
tphL											
C_{pd}	Power dissipation capacitance per flip-flop			No load, $\mathrm{T}_{\mathbf{A}}=25^{\circ} \mathrm{C}$					pF typ		

[^9]- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs

- Dependable Texas Instruments Quality and Reliability

description

These latches are ideally suited for use as temporary storage for binary information between processing units and input/output or indicator units. Information present at a data (D) input is transferred to the Q output when the enable (C) is high and the Q output will follow the data input as long as the enable remains high. When the enable goes low, the information (that was present at the data input at the time the transition occurred) is retained at the 0 output until the enable is permitted to go high.

The SN54HC77 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC77 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

SN54HC77 . . . J PACKAGE
SN74HC77 . . J OR N PACKAGE
(TOP VIEW)

NC - No internal connection

FUNCTION TABLE
(Each Latch)

INPUTS		OUTPUT
\mathbf{D}	C	\mathbf{Q}
L	H	L
H	H	H
X	L	Q_{O}

logic symbol

Pin numbers shown are for J and N packages.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table II, page 2-4.

Texas Instruments INCORPORATED
timing requirements (supplement to recommended operating conditions)

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \\ & \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} . \\ & C_{L}=50 \mathrm{pF} \end{aligned}$			UNIT
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	SN54HC77	SN74HC77	
			MIN TYP MAX	MIN TYP MAX	MIN MAX	MIN MAX	
tply	D	0					ns
tpHL							
tPLH	C	0					ns
tpHL							ns

C_{pd}	Power dissipation capacitance per latch	No load, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	pF typ

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These devices contain two independent J-K negative-edge-triggered flip-flops. A low level at the Preset or Clear input sets or resets the outputs regardless of the levels of the other inputs. When Preset and Clear are inactive (high), data at the J and K inputs meeting the setup time requirements are transferred to the outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a voltage level and is not directly related to the rise time of the clock pulse. Following the hold time interval, data at the J and K inputs may be changed without affecting the levels at the outputs. These versatile flip-flops can also perform as toggle flip-flops by tying J and K high.

The SN54HC78 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC78 is characterized for operaton from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
*This configuration is nonstable: that is, it will not persist when either Preset or Clear returns to its inactive (high) level.

FUNCTION TABLE (EACH FLIP-FLOP)

SN54HC78 . . J J PACKAGE SN74HC78 ...J OR N PACKAGE (TOP VIEW)

For chip carrier information, contact the factory.
logic symbol

Pin numbers shown are for J and N packages.
\qquad

D2684, DECEMBER 1982
maximum ratings, recommended operating conditions, and electrical characteristics
See Table II, page 2-4.

Texas Instruments

INCORPORATED
POST OFFICE 8 OX 225012 - DALLAS, TEXAS 75265

TYPES SN54HC78, SN74HC78
 DUAL J-K FLIP-FLOPS WITH PRESET, COMMON CLEAR, AND COMMON CLOCK

timing requirements (supplement to recommended operating conditions)

			SN54HC78			SN74HC78			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	
$\mathrm{f}_{\text {clock }}$	Clock frequency								MHz
${ }^{\text {tw }}$	Pulse duration	$\overline{\text { PRE }}$ or CLR low							ns
		CLK high							
		CLK low							
${ }^{\text {tsu }}$	Setup time	Data							ns
	before CLKı	$\overline{\text { PRE or } \overline{C L R}}$ inactive							
th	Hold time, data after CLK!								ns

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & \mathrm{V}_{C C}=5 \mathrm{~V}, \\ & C_{L}=15 \mathrm{pF}, \\ & R_{\mathrm{L}}=2 \mathrm{k} \Omega, \\ & \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} . \\ & C_{L}=50 \mathrm{pF} \end{aligned}$						UNIT
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54HC78		SN74HC78		
			MIN TYP MAX	MIN	TYP MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$										MHz
${ }^{\text {tPLH }}$	$\overline{\text { PRE }}$ or $\overline{C L R}$	Q or $\overline{0}$								ns
tPHL										
tPLH	CLK	Q or $\overline{\mathrm{Q}}$								ns
tPHL										
C_{pd}	Power dissipation capacitance per flip-flop				No load, $T_{A}=25^{\circ} \mathrm{C}$			pF typ		

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These four-bit magnitude comparators perform comparison of straight binary and straight $B C D(8-4-2-1)$ codes. Three fully decoded decisions about two 4-bit words (P, Q) are made and are externally available at three outputs. These devices are fully expandable to any number of bits without external gates. Words of greater length may be compared by connecting comparators in cascade. The $\mathrm{P}>$ $\mathbf{Q}, \mathbf{P}<\mathbf{Q}$, and $\mathbf{P}=\mathbf{Q}$ outputs of a stage handling lesssignificant bits are connected to the corresponding $P>Q$, $P<Q$, and $P=\mathbf{Q}$ inputs of the next state handling moresignificant bits. The stage handling the least-significant bits must have a high-level voltage applied to the $P=0$ input. The cascading path of the 'HC85 is implemented with only a two-gate-level delay to reduce overall comparison times for long words.

The SN54HC85 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC85 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

SN54HC85 . . . J PACKAGE
SN74HC85 ...J OR N PACKAGE (TOP VIEW)

SN54HC85 . . FH OR FK PACKAGE SN74HC85 . . FH OR FN PACKAGE (TOP VIEW)

FUNCTION TABLE

COMPARING INPUTS				CASCADING INPUTS			OUTPUTS		
P3, 03	P2, 02	P1, 01	PO, 00	$\mathrm{P}>\mathbf{0}$	$\mathbf{P}<\mathbf{0}$	$\mathbf{P}=\mathbf{0}$	$\mathrm{P}>0$	$\mathbf{P}<\mathbf{0}$	$\mathbf{P}=0$
P3 $=03$	P2 $=02$	$\mathrm{P}_{1}=01$	$\mathrm{PO}=00$	\times	X	H	L	L	H
$\mathrm{P} 3=03$	$\mathrm{P} 2=02$	$\mathrm{P} 1=01$	$\mathrm{PO}=00$	H	H	L	L	L	L
P3 $=03$	$\mathrm{P} 2=02$	$P 1=01$	$P O=00$	L	L	L	H	H	L

logic symbol

Pin numbers shown are for J and N packages.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table IV, page 2-6. continue this product without notice.

Texas Instruments

INCORPORATED

TYPES SN54HC85, SN74HC85 4-BIT MAGNITUDE COMPARATORS

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	F.ROM (INPUT)	то (OUTPUT)	$\begin{aligned} & \mathrm{V}_{C C}=5 \mathrm{~V} . \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} . \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \\ & \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & C_{L}=50 \mathrm{pF} \end{aligned}$						UNIT
				$\mathrm{T}_{A}=25^{\circ} \mathrm{C}$		SN54HC85		SN74HC85		
			MIN TYP MAX	MIN	TYP MAX	MIN	MAX	MIN	MAX	
${ }^{\text {tPLH }}$	Any P or Q data input	$\mathrm{P}<\mathrm{Q}, \mathrm{P}>\mathrm{Q}$								ns
		$\mathrm{P}=0$								
tPHL	Any P or Q data input	$P<Q, P>Q$								ns
		$\mathrm{P}=0$								
tPLH	$\mathrm{P}<\mathrm{Q}$ or $\mathrm{P}=\mathrm{O}$	$P>0$								ns
tPHL										
tPLH	$\mathrm{P}=0$	$\mathrm{P}=0$								ns
tPHL										
tPLH	$\mathrm{P}>\mathrm{O}$ or $\mathrm{P}=\mathrm{O}$	$\mathrm{P}<0$								ns
tPHL										
$\mathrm{C}_{\text {pd }}$	Power dissipation capacitance			No load, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$				pF typ		

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs

- Dependable Texas Instruments Quality and Reliability

description

These devices contain four independent 2-input ExclusiveOR gates. They perform the boolean functions $Y=A \oplus B=\bar{A} B+A \bar{B}$ in positive logic.
A common application is as a true/complement element. If one of the inputs is low, the other input will be reproduced in true form at the output. If one of the inputs is high, the signal on the other input will be reproduced inverted at the output.
The SN54HC86 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC86 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

logic symbol

FUNCTION TABLE (each gatel	
INPUTS OUTPUT A B Y L L L L H H H L H H H L	

SN54HC86 . . . J PACKAGE
SN74HC86 ... OR N PACKAGE
(TOP VIEW)

1A \square_{1}	\square_{14}	$\square V_{C C}$
18-2	13] 4 B
$1 \mathrm{Y} \square^{3}$	12	- 4 A
2A \square^{4}	11	万4Y
28-5	10] 3 B
2Y 6	9] 3 A
GND \square_{7}	8	$\square 3 Y$

NC - No internal connection

Pin numbers shown are for J and N packages.

exclusive-OR logic

An exclusive-OR gate has many applications, some of which can be represented better by alternative logic symbols.
EXCLUSIVE-OR

These are five equivalent Exclusive-OR symbols valid for an 'HC86 gate in positive logic; negation may be shown at any two ports.

LOGIC IDENTITY ELEMENT

The output is active (low) if all inputs stand at the same logic level (i.e., $A=B$).

EVEN-PARITY

The output is active (low) if an even number of inputs (i.e., 0 or 2) are active.

ODD-PARITY ELEMENT

The output is active (high) if an odd number of inputs (i.e., only 1 of the 2) are active.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table I, page 2-3.

Texas Instruments
 INCORPORATED
 POST OFFICE BOX 225012 - DALLAS. TEXAS 75265

TYPES SN54HC86, SN74HC86 QUADRUPLE 2-INPUT EXCLUSIVE-OR GATES

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \\ & \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} . \\ & C_{L}=50 \mathrm{pF} \end{aligned}$			UNIT
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	SN54HC86	SN74HC86	
			MIN TYP MAX	MIN TYP MAX	MIN MAX	MIN MAX	
tPLH	. A or B	Y					ns
tPHL	(other input low)						ns
tPLH	A or B	Y					ns
tPLH	(other input high)						ns

C_{pd}	Power dissipation capacitance per gate	No load, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	pF typ

[^10]- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These devices contain two independent J-K negative-edge-triggered flip-flops. A low level at the $\overline{C L R}$ input resets the outputs regardless of the levels of the other inputs. When $\overline{C L \bar{R}}$ is inactive (high), data at the J and K inputs meeting the setup time requirements are transferred to the outputs on the negativegoing edge of the clock pulse. Clock triggering occurs at a voltage level and is not directly related to the rise time of the clock pulse. Following the hold time interval, data at the J and K inputs may be changed without affecting the levels at the outputs. These versatile flip-flops can perform as toggle flip-flops by tying J and K high.

The SN54HC107 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC107 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

INPUTS			OUTPUTS		
CLEAR	CLOCK	J	K	Q	$\overline{\mathbf{Q}}$
L	X	X	X	L	H
H	1	L	L	O O $_{0}$	\bar{Q}_{O}
H	I	H	L	H	L
H	1	L	H	L	H
H	1	H	H	TOGGLE	
H	H	X	X	Q O $^{\text {O }}$	$\overline{\mathrm{O}}_{0}$

SN54HC107 . . . J PACKAGE
SN74HC107...J OR N PACKAGE (TOP VIEW)

SN54HC107 . . FH OR FK PACKAGE
SN74HC107 . . FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection
logic symbol

Pin numbers shown are for J and N packages.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table II, page 2-4.

TYPES SN54HC107, SN74HC107 DUAL J-K NEGATIVE-EDGE-TRIGGERED FLIP-FLOPS WITH CLEAR

timing requirements (supplement to recommended operating conditions)

			SN54HC107			SN74HC107			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	
flock	Clock frequency								MHz
t_{w}	Pulse duration	$\overline{\text { CLR }}$ low							ns
		CLK high							
		CLK low							
${ }^{\text {'su }}$	Setup time before CLK!	Data							ns
		$\overline{\text { CLR }}$ inactive							
th	Hold time, data after CLKKI								ns

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V} . \\ & C_{L}=15 \mathrm{pF} . \\ & R_{L}=2 \mathrm{k} \Omega . \\ & \mathrm{T}_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} . \\ & C_{L}=50 \mathrm{pF} \end{aligned}$						UNIT
				$\mathrm{T}_{A}=25^{\circ} \mathrm{C}$		SN54HC107 ${ }^{\text {SN74 }}$ (${ }^{\text {a }}$				
			MIN TYP MAX	MIN	TYP MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$										MHz
tPLH	$\overline{\text { CLR }}$	Q or $\overline{0}$								ns
tPHL										
tPLH	CLK	0 or $\overline{0}$								ns
tPHL										
C_{pd}	Power dissipation capacitance per flip-flop			No load. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$				pF typ		

[^11]D2684, DECEMBER 1982

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs

- Dependable Texas Instruments Quality and Reliability

description

These devices contain two independent J-K positive-edge-triggered flip-flops. A low level at the Preset or Clear inputs sets or resets the outputs regardless of the levels of the other inputs. When Preset and Clear are inactive (high), data at the J and \bar{K} inputs meeting the setup time requirements are transferred to the outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a voltage level and is not directly related to the rise time of the clock pulse. Following the hold time interval, data at the J and \bar{K} inputs may be changed without affecting the levels at the outputs. These versatile flip-flops can perform as toggle flip-flops by grounding \bar{K} and tying J high. They also can perform as D-type flipflops if J and $\overline{\mathrm{K}}$ are tied together.

The SN54HC109 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC109 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE
(EACH FLIP-FLOP)

INPUTS					OUTPUTS	
PRESET	CLEAR	CLOCK	J	$\overline{\mathbf{K}}$	0	$\overline{\mathbf{0}}$
L	H	X	X	X	H	L
H	L	x	X	x	L	H
L	L	x	X	X	H^{*}	H^{*}
H	H	1	L	L	L	H
H	H	'	H	L	TOG	
H	H	1	L	H	Q_{0}	$\overline{\mathrm{Q}}_{0}$
H	H	1	H	H	H	L.
H	H	L	\times	\times	Q_{0}	\bar{Q}_{0}

*This configuration is nonstable; that is, it will not persist when Preset or Clear return to their inactive (high) level.

SN54HC109 . . . J PACKAGE SN74HC109 . . . J OR N PACKAGE (TOP VIEW)

SN54HC109 . . . FH OR FK PACKAGE SN74HC109 . . . FH OR FN PACKAGE (TOP VIEW)

NC - No Internal connection
logic symbol

Pin numbers shown are for J and N packages
maximum ratings, recommended operating conditions, and electrical characteristics.
See Table II, page 2-4.

Copyright 91982 by Texas instruments incorporated

TYPES SN54HC109, SN74HC109 DUAL J-K POSITIVE-EDGE-TRIGGERED FLIP-FLOPS WITH CLEAR AND PRESET

timing requirements (supplement to recommended operating conditions)

			SN54HC109			SN74HC109			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	
${ }^{\text {c }}$ clock	Clock frequency								MHz
${ }^{\text {tw }}$	Pulse duration	$\overline{\text { PRE }}$ or CLR low							ns
		CLK high							
		CLK low							
${ }^{\text {tsu }}$	Setup time	Data							ns
	before CLKI	PRE or CLR inactive							
t_{n}	Hold time, data after CLK								ns

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} . \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$						UNIT
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54HC109 SN74HC109				
			MIN TYP MAX	MIN	TYP MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$										M Hz
tPLH	$\overline{\text { PRE or }} \overline{\mathrm{CLR}}$	Q or $\overline{\mathbf{Q}}$								ns
tphL										
tPLH	CLK	Q or $\overline{\mathrm{Q}}$								ns
tPHL										
C_{pd}	Power dissipation capacitance per flip-flop			No load, $\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$				pF typ		

[^12]- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These devices contain two independent J-K negative-edge-triggered flip-flops. A low level at the Preset or Clear inputs sets or resets the outputs regardless of the levels of the other inputs. When Preset and Clear are inactive (high), data at the J and K inputs meeting the setup time requirements are transferred to the outputs on the negative-going edge of the clock pulse. Clock triggering occurs at a voltage level and is not directly related to the rise time of the clock pulse. Following the hold time interval, data at the J and K inputs may be changed without affecting the levels at the outputs. These versatile flip-flops can perform as toggle flip-flops by tying J and K high.
The SN54HC1 12 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC112 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
function table

INPUTS					OUTPUTS	
PRE	$\overline{\text { CLR }}$	CLK	J	K	0	$\overline{0}$
L	H	X	X	X	H	L
H	L	X	x	x	L	H
L	L	X	X	X	${ }^{*}$	H^{*}
H	H	\downarrow	L	L	O_{0}	$\overline{\mathrm{a}}_{0}$
H	H	\downarrow	H	L	H	L
H	H	\downarrow	L	H	L	H
H	H	i	H	H		
H	H	H	X	X	00	$\overline{0}_{0}$

"This configuration is nonstable; that is, it will not persist when either
Preset or Clear returns to its inactive (high) level.

SN54HC112...JPACKAGE
SN74HC112... J OR N PACKAGE
(TOP VIEW)

SN54HC112 . . FH OR FK PACKAGE SN74HC112... FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection
logic symbol

Pin numbers shown are for J and N packages.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table II, page 2-4.

This document contains information on a continue this product without notice.

POST OFFICE BOX 225012 - DALLAS, TEXAS 75265

TYPES SN54HC112, SN74HC112 DUAL J-K NEGATIVE-EDGE-TRIGGERED FLIP-FLOPS WITH CLEAR AND PRESET

timing requirements (supplement to recommended operating conditions)

			SN54HC112			SN74HC112			
			MIN	NOM	MAX	MIN	NOM	MAX	
fclock	Clock frequency								MHz
${ }^{\text {tw }}$	Pulse duration	$\overline{\text { PRE }}$ or CLR low							ns
		CLK high							
		CLK low							
${ }^{\text {tsu }}$	Setup time before CLK!	Data							ns
		$\overline{\text { PRE }}$ or CLR inactive							
th	Hoid time, data after CLK!								ns

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & C_{L}=15 \mathrm{pF}, \\ & R_{L}=2 \mathrm{k} \Omega, \\ & \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$						UNIT
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54HC112		SN74HC112		
			MIN TYP MAX	MIN	TYP MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$										MHz
tPLH	$\overline{\text { PRE or }} \overline{C L R}$	Q or $\overline{\mathrm{Q}}$								ns
tPHL										
tPLH	CLK	Q or $\overline{\mathrm{Q}}$								ns
tPHL										
C_{pd}	Power dissipation capacitance per flip-flop			No load, $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$				pF typ		

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs

Dependable Texas Instruments Quality and Reliability

description

These devices contain two independent J-K negative-edgetriggered flip-flops. A low level at the Preset input sets the outputs regardless of the levels of the other inputs. When Preset $(\overline{P R E})$ is inactive (high), data at the J and K inputs meeting the setup time requirements are transferred to the outputs on the negative-going edge of the clock pulse. Clock triggering occurs at a voltage level and is not directly related to the rise time of the clock pulse. Following the hold time interval, data at the J and K inputs may be changed without affecting the levels at the outputs. These versatile flip-flops can perform as toggle flip-flops by tying J and K high.
The SN54HC113 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN 74 HC 113 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE					
INPUTS				OUTPUTS	
$\overline{\text { PRE }}$	CLK	J	K	0	$\bar{\square}$
L	X	X	X	H	L.
H	1	L	L	Q_{0}	$\overline{\mathrm{O}}_{0}$
H	\downarrow	H	L	H	L
H	\downarrow	L	H	L	H
H	\downarrow	H	H	TOG	GLE
H	H	\times	\times	a_{0}	$\overline{\mathrm{a}}_{0}$

maximum ratings, recommended operating conditions, and electrical characteristics
See Table II, page 2-4.

TYPES SN54HC113, SN74HC113 DUAL J-K NEGATIVE-EDGE TRIGGERED FLIP-FLOPS WITH PRESET

timing requirements (supplement to recommended operating conditions)

			SN54HC113			SN74HC113			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	
$f_{\text {clock }}$	Clock frequency								MHz
${ }^{\text {tw }}$	Pulse duration	$\overline{\text { PRE }}$ low							ns
		CLK high							
		CLK low							
${ }^{\text {tsu }}$	Setup time	Data							ns
	before CLK !	$\overline{\text { PRE }}$ inactive							
	Hold time, data after CLK								ns

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & C_{L}=15 \mathrm{pF}, \\ & R_{L}=2 \mathrm{k} \Omega, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} . \\ & C_{L}=50 \mathrm{pF} \end{aligned}$			UNIT
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	SN54HC113 SN74HC113		
			MIN TYP MAX	MIN TYP MAX	MIN MAX	MIN MAX	
$f_{\text {max }}$							
tPLH	$\overline{\text { PRE }}$	Q or $\overline{0}$					ns
tPHL							
tPLH	CLK	0 or $\overline{0}$					ns
tPHL							
C_{pd}	Power dissipation capacitance per flip-flop			No load, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		pF typ	

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These devices contain two independent J-K negative-edgetriggered flip-flops. A low level at the Preset or Clear inputs sets or resets the outputs regardless of the levels of the other inputs. When Preset and Clear are inactive (high), data at the J and K inputs meeting the setup time requirements are transferred to the outputs on the negative-going edge of the clock pulse. Clock triggering occurs at a voltage level and is not directly related to the rise time of the clock pulse. Following the hold time interval, data at the J and K inputs may be changed without affecting the levels at the outputs. These versatile flip-flops can perform as toggle flip-flops by tying J and K high.

The SN54HC114 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC114 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

SN54HC114...J PACKAGE SN74HC114...J OR N PACKAGE (TOP VIEW)

SN54HC114 . . FH OR FK PACKAGE SN74HC114... FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection
logic symbol

Pin numbers shown are for J and N packages.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table II, page 2-4.

TYPES SN54HC114, SN74HC114
 DUAL J-K NEGATIVE-EDGE TRIGGERED FLIP-FLOPS WITH PRESET, COMMON CLEAR, AND COMMON CLOCK

timing requirements (supplement to recommended operating conditions)

			SN54HC114			SN74HC114			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	
${ }^{\text {f clock }}$	Clock frequency								MHz
${ }^{\text {tw }}$	Pulse duration	$\overline{\text { PRE or } \overline{C L T}}$							ns
		CLK high							
		CLK low							
${ }^{\text {tsu}}$	Setup time	Data							ns
	before CLK 1	$\overline{\text { PRE or }} \overline{C L E}$ inactive							
$t_{\text {h }}$	Hold time, data after CLK								ns

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} . \\ & C_{L}=15 \mathrm{pF}, \\ & R_{\mathrm{L}}=2 \mathrm{k} \Omega, \\ & \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} . \\ & C_{L}=50 \mathrm{pF} \end{aligned}$						UNIT
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54HC114 SN74HC114				
			MIN TYP MAX	MIN	TYP MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$										MHz
tPLH		Q or $\overline{\mathrm{Q}}$								ns
tPHL										
tpli	CL.K	Q or $\overline{\mathrm{Q}}$								ns
tPHL										
C_{pd}	Power dissipation capacitance per flip-flop			No load, $\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$				pF typ		

NOTE 1: For load circuit and voltage waveforms,.see page 1-14.

TYPES SN54HC123, SN74HC123
 RETRIGGERABLE MONOSTABLE MULTIVIBRATORS

- D-C Triggered by Active-High or Active-Low Inputs

SN54HC123 . . J JACKAGE SN74HC123 . . J OR N PACKAGE

- Retriggerable for Very Long Output Pulses, Up to 100\% Duty Cycle
- Overriding Clear Terminates Output Pulse
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These d-c triggered multivibrators feature output pulse duration control by three methods. The basic pulse duration is programmed by selection of external resistance and capacitance values. Once triggered, the basic pulse duration may be extended by retriggering the gated low-level-active (A) or high-level-active (B) inputs, or be reduced by use of the overriding clear. Figure 1 illustrates pulse control by retriggering and early clear.

The SN54HC123 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC123 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

INPUTS			OUTPUTS	
CLEAR	A	B	0	$\overline{\mathrm{O}}$
L	X	X	L	H
X	H	X	L \dagger	H \dagger
X	X	L	L†	Ht
H	L	\dagger	Ω	凹
H	1	H	Ω	U
1	1	H	Ω	U

\dagger The second and third lines each indicate the logic levels the outputs will take on after the completion of any pulse already started.

1A	$1 \cup_{16}$	V_{CC}
18	$2 \quad 15$	$1 \mathrm{R}_{\text {ext }} / C_{\text {ext }}$
1 CLR	314	${ }^{1 C_{e x t}}$
1 $\overline{\mathrm{Q}}$	413	10
20.5	512	2区
$2 \mathrm{C}_{\text {ext }}{ }^{6}$	611	- $2 \overline{C L R}$
$2 \mathrm{Rext} / \mathrm{C}_{\text {ext }} \mathrm{C}^{7}$	710	2B
GND \square^{8}	89	$2 A$

SN54HC123 . . FH or FK PACKAGE SN74HC123 . . FH or FN PACKAGE

logic symbol

Pin numbers shown are for J and N packages.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table IV, page 2-6.
Note: The minimum recommended supply voltage for this device is 3 V . ments reserves the right to change or discontinue this product without notice.

Texas Instruments
INCORPORATED

FIGURE 1 - TYPICAL INPUT/OUTPUT PULSES
timing requirements (supplement to recommended operating conditions)

		SN54HC123			SN74HC123			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
t_{w}	Pulse duration, A low, B high, or CLR low							ns
$\mathrm{R}_{\text {ext }}$	External timing resistance							$\mathrm{k} \Omega$
$\mathrm{C}_{\text {ext }}$	External timing capacitance							$\mu \mathrm{F}$
	Wiring capacitance at $\mathrm{R}_{\text {ext }} / \mathrm{C}_{\text {ext }}$ terminal							pF

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & C_{L}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \\ & \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} . \\ & C_{L}=50 \mathrm{pF} \end{aligned}$						UNIT
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54HC123 SN74HC123				
			MIN TYP MAX	MIN	TYP MAX	MIN	MAX	MIN	MAX	
${ }^{\text {PPLH }}{ }^{+}$	A	0								ns
	B									
	A	$\overline{\mathrm{a}}$								ns
tphLt	B									
tPHL \dagger	$\overline{\text { CLR }}$	Q								ns
tPLH ${ }^{\text {+ }}$		$\overline{\mathrm{a}}$								
$\mathrm{t}_{\text {wol }}$ (min) ${ }^{\text {a }}$	A or B	Q								ns
twat	A or B	Q								$\mu \mathrm{s}$
$\mathrm{C}_{\text {pd }}$	Power dissipation capacitance per monostable			No load, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$				pF typ		

$+C_{\text {ext }}=0, R_{\text {ext }}=5 \mathrm{k} \Omega$
$\ddagger t_{\text {wQ }}=$ duration of pulse at output $Q . C_{\text {ext }}=400 \mathrm{pF}, R_{\text {ext }}=10 \mathrm{k} \Omega$
NOTE 1: For load circuit and voltage waveforms, see page 1-14.

- Operation from Very Slow Transitions
- Temperature-Compensated Threshold Levels
- High Noise Immunity
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

Each circuit functions as a NAND gate, but because of the Schmitt action, it has different input threshold levels for positiveand negative-going signals.

These circuits are temperature compensated and can be triggered from the slowest of input ramps and still give clean jitterfree output signals.
The SN54HC132 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN 74 HC 132 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
logic symbol

SN54HC132 . . . J PACKAGE
SN74HC132...J OR N PACKAGE (TOP VIEW)

[1	${ }_{1} \cup_{14}$	V_{CC}
$1 \mathrm{~B} \square^{2}$		4B
$1 \mathrm{Y} \square^{3}$	12	4 A
2A-4	411	4Y
28 \square^{5}	10]B
$2 Y 6$	-9	3A
GND $\square 7$	7	$3 Y$

SN54HC132 . . FH OR FK PACKAGE SN74HC132 ... FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection

Pin numbers shown are for J and N packages.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table I, page 2-3.
switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & C_{L}=15 \mathrm{pF}, \\ & R_{\mathrm{L}}=2 \mathrm{k} \Omega, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} . \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$			UNIT
				$\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$	SN54HC132 SN74HC132		
			MIN TYP MAX	MIN TYP MAX	MIN MAX	MIN MAX	
${ }^{\text {tPLH }}$	A or B	Y					ns
${ }^{\text {P PHL }}$							
$\mathrm{C}_{\text {pd }}$	Power dissipation capacitance per gate			No load. $T_{A}=25^{\circ} \mathrm{C}$		pF typ	

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

Texas Instruments
 INCORPORATED

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These devices contain a single 13 -input NAND gate.
They perform the boolean functions in positive logic:

$$
\begin{gathered}
Y=\overline{A \cdot B \cdot C \cdot D \cdot E \cdot F \cdot G \cdot H \cdot 1 \cdot J \cdot K \cdot L \cdot M} \text { or } \\
Y=\bar{A}+\bar{B}+\bar{C}+\bar{D}+\bar{E}+\bar{F}+\bar{G}+\bar{H}+\bar{I}+\bar{J}+\bar{K}+\bar{L}+\bar{M}
\end{gathered}
$$

The SN54HC133 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC133 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
logic symbol

Pin numbers shown are for J and N packages.

```
SN54HC133 . . . J PACKAGE
SN74HC133 . . J OR N PACKAGE (TOP VIEW)
```


SN54HC133 . . FH OR FK PACKAGE SN74HC133 . . . FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection

FUNCTION TABLE

INPUTS A THRU M	OUTPUT \mathbf{Y}
All inputs H	L
One or more inputs L	H

maximum ratings, recommended operating conditions, and electrical characteristics
See Table I, page 2-3.
switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & C_{L}=15 \mathrm{pF}, \\ & R_{L}=2 \mathrm{k} \Omega . \\ & \mathrm{T}_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} . \\ & C_{L}=50 \mathrm{pF} \end{aligned}$			UNIT
				$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$	SN54HC133 SN74HC133		
			MIN TYP MAX	MIN TYP MAX	MIN MAX	MIN MAX	
tPLH	Any	Y					ns
tPHL							
C_{pd}	Power Dissipation capacitance per gate			No load, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		pF typ	

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

- Combines Decoder and 3-Bit Address Latch

- Incorporates 2 Output Enables to Simplify Cascading
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

The 'HC137 is a three-line to eight-line decoder/demultiplexer with latches on the three address inputs. When the latch-enable input ($\overline{\mathrm{G}}$) is low, the 'HC137 acts as a decoder/demultiplexer. When $\overline{\mathrm{GL}}$ goes from low to high, the address present at the select inputs (A, B, and C) is stored in the latches. Further address changes are ignored as long as $\overline{\mathrm{GL}}$ remains high. The output enable controls, G1 and $\overline{\mathrm{G}} 2$, control the outputs independently of the select or latch-enable inputs. All of the outputs are forced high if G1 is low or $\overline{\mathrm{G}} 2$ is high. The 'HC137 is ideally suited for implementing glitch-free decoders in strobed (storedaddress) applications in bus-oriented systems.

The SN54HC137 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC137 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

SN54HC137 . . .J PACKAGE SN74HC137...JOR N PACKAGE (TOP VIEW)

SN54HC137 . . . FH OR FK PACKAGE SN74HC137. . . FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection
logic symbols (alternatives)

Pin numbers shown are for J and N packages.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table IV, page 2-6.

POST OFFICE BOX 225012 - DALLAS, TEXAS 75265

INPUTS		OUTPUTS							
ENABLE	SELECT								
$\overline{\mathrm{GL}} \mathrm{G1}$ G2	C B A	Yo	Y1	Y2	Y3	Y4	Y5	Y6	Y7
$\mathrm{X} \quad \mathrm{X} \quad \mathrm{H}$	$\mathrm{X} \times \mathrm{X}$	H	H	H	H	H	H	H	H
$X \quad L \quad X$	$\times \times \times$	H	H	H	H	H	H	H	H
L H L	L L L	L	H	H	H	H	H	H	H
L H L	L L H	H	L	H	H	H	H	H	H
L H L	L H L	H	H	L	H	H	H	H	H
L H L	L H H	H	H	H	L	H	H	H	H
L H L	H L L	H	H	H	H	L	H	H	H
L H L	H L H	H	H	H	H	H	L	H	
L H L	H HL	H	H	H	H	H	H	L	H
L H L	HHH	H	H	H	H	H	H	H	L
H H L	$\times \times \times$		$\begin{aligned} & \text { tput } \\ & \text { iress. } \end{aligned}$	$\begin{aligned} & \text { corre } \\ & \text { L; al } \end{aligned}$	espor $11 \mathrm{otr}$	din	$\begin{aligned} & 3 \text { tos } \\ & \mathrm{H} \end{aligned}$		

timing requirements (supplement to recommended operating conditions)

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & C_{L}=15 \mathrm{pF}, \\ & R_{L}=2 \mathrm{k} \Omega, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} . \\ & C_{L}=50 . \mathrm{pF} \end{aligned}$						UNIT
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54HC137 ${ }^{\text {SN74HC137 }}$				
			MIN TYP MAX	MIN	TYP MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$										MHz
tPLH	A, B, C	Y								ns
tPHL										
tPLH	$\overline{\mathrm{G}} 2$	Y								ns
tpHL										
tPLH	G1	Y								ns
tPHL										
tPLH	$\overline{\mathrm{GL}}$	Y								ns
tPHL										
$\mathrm{C}_{\text {pd }}$	Power dissipation capacitance			No load, $\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$				pF fyp		

[^13]- Designed Specifically for High-Speed Memory Decoders and Data Transmission Systems
- Incorporates 3 Enable Inputs to Simplify Cascading and/or Data Reception
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

The 'HC138 circuit is designed to be used in high-performance memory-decoding or data-routing applications requiring very short propagation delay times. In high-performance memory systems this decoder can be used to minimize the effects of system decoding. When employed with high-speed memories utilizing a fast enable circuit, the delay times of this decoder and the enable time of the memory are usually less than the typical access time of the memory. This means that the effective system delay introduced by the decoder is negligible.
The conditions at the binary select inputs and the three enable inputs select one of eight input lines. Two active-low and one active-high enable inputs reduce the need for external gates or inverters when expanding. A 24 -line decoder can be implemented without external inverters and a 32 -line decoder requires only one inverter. An enable input can be used as a data input for demultiplexing applications.

The SN54HC138 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC138 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

SN54HC138 . . . J PACKAGE SN74HC138 . . J OR N PACKAGE (TOP VIEW)

SN54HC138 . . . FH OR FK PACKAGE SN74HC138 . . . FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection

logic symbols (alternatives)

Pin numbers shown are for J and N packages.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table IV, page 2-6.

Copyright 91982 by Texas Instruments Incorporated
Texas Instruments
INCORPORATED
POST OFFICE BOX 225012 - DALLAS. TEXAS 75265

TYPES SN54HC138, SN74HC138
 3-LINE TO 8-LINE DECODERS/DEMULTIPLEXERS

FUNCTION TABLE

ENABLE INPUTS	SELECT			OUTPUTS								
G1	G2*	C	B	A	Yo	Y1	Y2	Y3	Y4	Y5	Y6	Y7
X	H	X	X	X	H	H	H	H	H	H	H	H
L	X	X	X	X	H	H	H	H	H	H	H	H
H	L	L	L	L	L	H	H	H	H	H	H	H
H	L	L	L	H	H	L	H	H	H	H	H	H
H	L	L	H	L	H	H	L	H	H	H	H	H
H	L	L	H	H	H	H	H	L	H	H	H	H
H	L	H	L	L	H	H	H	H	L	H	H	H
H	L	H	L	H	H	H	H	H	H	L	H	H
H	L	H	H	L	H	H	H	H	H	H	L	H

$\cdot \overline{\mathrm{G}} 2=\overline{\mathrm{G}} 2 \mathrm{~A}+\overline{\mathrm{G}} 2 \mathrm{~B}$
switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

[^14]- Designed Specifically for High-Speed Memory Decoders and Data Transmission Systems
- Incorporates 2 Enable Inputs to Simplify Cascading and/or Data Reception
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
Dependable Texas Instruments Quality and Reliability

description

The 'HC139 circuit is designed to be used in high-performance memory-decoding or data-routing applications requiring very short propagation delay times. In high-performance memory systems, this decoder can be used to minimize the effects of system decoding. When employed with high-speed memories utilizing a fast-enable circuit, the delay times of this decoder and the enable time of the memory are usually less than the typical access time of the memory. This means that the effective system delay introduced by the decoder is negligible.

The 'HC139 is comprised of two individual two-line to four-line decoders in a single package. The active-low enable input can be used as a data line in demultiplexing applications. These decoders/demultiplexers feature fully buffered inputs, each of which represents only one normalized load to its driving circuit.
The SN54HC139 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN 74 HC 139 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

logic symbols (alternatives)

SN54HC139 . . . J PACKAGE SN74HC139 . . J OR N PACKAGE (TOP VIEW)

SN54HC139 . . FH OR FK PACKAGE
SN74HC139 . . FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection

Pin numbers shown are for J and N packages.
maximum ratings, recommended operating conditions, and electrical characteristics

[^15]
TYPES SN54HC139, SN74HC139 DUAL 2-LINE TO 4-LINE DECODERS/DEMULTIPLEXERS

INPUTS			OUTPUTS			
$\begin{gathered} \text { ENABLE } \\ \overrightarrow{\mathbf{G}} \\ \hline \end{gathered}$	SELECT					
	B	A	Yo	Y1	Y2	Y3
H	X	X	H	H	H	H
L	L	L	L	H	H	H
L	L	H	H	L	H	H
L	H	L	H	H	L	H
L	H	H	H	H	H	L

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & C_{L}=50 \mathrm{pF} \end{aligned}$						UNIT
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54HC139		SN74HC139		
			MIN TYP MAX	MIN	TYP MAX	MIN	MAX	MIN	MAX	
tPLH	A or B	Y								ns
tphL										
tPLH	$\overline{\mathrm{G}}$	Y								ns
tPHL										ns
$\mathrm{C}_{\text {pd }}$	Power dissipation capacitance per decoder				No load, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			pF typ		

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

- Encodes 10-Line Decimal to 4-Line BCD
- Applications Include:

Keyboard Encoding Range Selection

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These encoders feature priority decoding of the inputs to ensure that only the highest-order data line is encoded. The 'HC147 encodes nine data lines to four-line (8-4-2-1) BCD. The implied decimal zero condition requires no input condition as zero is encoded when all nine data lines are at a high logic level. The data inputs and outputs are active at the low logic level.
The SN54HC147 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC147 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

SN54HC147 . . . J PACKAGE
SN74HC147 . . J OR N PACKAGE (TOP VIEW)

$4 \square^{4}$	\square_{16}	V_{CC}
$5 \square 2$	15	NC
$6 \square$	14	$\square \mathrm{D}$
$7 \square$	13	3
8 -5	12	$\square 2$
$c \square 6$	11	\square^{1}
$8 \square$	10	\square
GND 8		$\square \mathrm{A}$

SN54HC147 ... FH OR FK PACKAGE SN74HC147... FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection
logic symbol

Pin numbers shown are for J and N packages.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table IV, page 2-6.
switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \\ & \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} . \\ & C_{L}=50 \mathrm{pF} \end{aligned}$			UNIT
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	SN54HC147 ${ }^{\text {SN74HC147 }}$		
			MIN TYP MAX	MIN TYP MAX	MIN MAX	MIN MAX	
tPLH	Any	Any (in phase with input)					ns
tPHL.							
tPLH	Any	Any (out of phase with input)					ns
tPHL							

C_{pd}	Power dissipation capacitance	No load, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	pF typ

[^16]- 3-Line to 1-Line Multiplexers

Can Perform As:
Boolean Function Generators
Parallel-to-Serial Converters
Data Source Selectors

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These monolithic data selectors/multiplexers provide full binary decoding to select one of eight data sources. The strobe input (\bar{G}) must be at a low logic level to enable the inputs. A high level at the strobe terminal forces the W output high and the Y output low.

The SN54HC151 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC151 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

INPUTS				OUTPUTS	
SELECT			STROBE		
C	B	A	$\overline{\mathrm{G}}$	Y	W
X	X	\times	H	L	H
L	L	L	L	DO	$\overline{\mathrm{DO}}$
L	L	H	L	D1	$\overline{\mathrm{D} 1}$
L	H	L	L	D2	$\overline{\mathrm{D} 2}$
L	H	H	L	D3	$\bar{\square} \overline{3}$
H	L	L	L	D4	$\overline{\text { D4 }}$
H	L	H	L	D5	$\overline{\text { D5 }}$
H	H	L	L	D6	D6
H	H	H	L	D7	$\overline{0} 7$

$H=$ high level, $L=$ low level. $X=$ irrelevant D0. $D 1 \ldots, \mathrm{D} 7=$ the level of the D respective input

SN54HC151 ... J PACKAGE
SN74HC151 . . . J OR N PACKAGE (TOP VIEW)

D3		$\square V_{C C}$
D2 2	15	$\square \mathrm{D} 4$
D1 \square^{2}	14	D5
DO 4	13	口D6
Y Y 5	12]07
W \square^{6}	11	$\square \mathrm{A}$
$\overline{\mathrm{G}} \mathrm{\square}$	10] B
GND 8] C

SN54HC151 . . . FH OR FK PACKAGE SN74HC151 . . FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection
logic symbol

Pin numbers shown are for J and N packages.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table III, page 2-5.

TYPES SN54HC151, SN74HC151
 DATA SELECTORS/MULTIPLEXERS

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & C_{L}=15 \mathrm{pF}, \\ & R_{L}=2 \mathrm{k} \Omega, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}$ See Note 1			UNIT
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	SN54HC151	SN74HC151	
			MIN TYP MAX	MIN TYP MAX	MIN MAX	MIN MAX	
tPLH	A, B, or C	Y					ns
tPHL							
tPLH	A, B, or C	W					ns
tPHL							
tPLH	Any D	Y					ns
tPHL							
tPLH	Any D	W					ns
tPHL							
tPLH	$\stackrel{\text { G }}{ }$	Y					ns
tPHL							
tPLH	$\overline{\mathrm{G}}$	W					ns
tPHL							

C_{pd}	Power dissipation capacitance	No load, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	pF typ

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

- Selects One-of-Eight Data Sources

- Performs Parallel-to-Serial Conversion
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These monolithic data selectors/multiplexers contain full on-chip binary decoding to select the desired one-of-eight data sources.

The SN54HC152 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC152 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$,

SN54HC152 . . J PACKAGE
SN74HC152 . . J OR N PACKAGE (TOP VIEW)

D4 1	${ }_{1} \cup_{14}$	V_{CC}
D3 \square^{2}	213	D5
D2 \square_{3}	312	D6
D1 - 4	$4 \quad 11$	D7
DO 5	510	A
w \square^{6}	69	B
GND 7	7.8]

SN54HC152 . . FH OR FK PACKAGE
SN74HC152 . . FH OR FN PACKAGE (TOP VIEW)

logic symbol

Pin numbers shown are for J and N packages.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table III, page 2-5.
switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			$V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}$ See Note 1							UNIT
						$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$			SN54HC152		SN74HC152		
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	A, B, or C	W											ns
tPHL													ns
tPLH	Any D	W											ns
tPHL													
C_{pd}	Power dissipation capacitance					No load, $T_{A}=25^{\circ} \mathrm{C}$					pF typ		

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

- Permits Multiplexing from N Lines to 1 Line
- Performs Parallel-to-Serial Conversion
- Strobe (Enable) Line Provided for Cascading (N lines to n lines)
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

Each of these data selectors/multiplexers contains inverters and drivers to supply full binary decoding data selection to the AND-OR gates. Separate strobe inputs ($\overline{\mathrm{G}}$) are provided for each of the two four-line sections.
The SN54HC153 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN $74 \mathrm{HC153}$ is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE							
SELECT INPUTS		DATA INPUTS				STROBE	OUTPUT
B	A	CO	C 1	C 2	C3	$\overline{\mathbf{G}}$	Y
\times	X	X	x	x	x	H	L
L	L	L	x	X	X	L.	L
L	L	H	X	X	x	L	H
L	H	x	L	x	X	L	L
L.	H	x	H	x	x	L	H
H	L	x	x	L	x	L	L
H	L	x	x	H	x	L	H
H	H	x	x	x	L	L	L
H	H	X	X	x	H	L	H

Select inputs A and B are common to both sections.

SN54HC153 . . . J PACKAGE
SN74HC153 . . J OR N PACKAGE (TOP VIEW)

SN54HC153 ... FH OR FK PACKAGE SN74HC153 ... FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection
logic symbol

Pin numbers shown are for J and N packages.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table III, page 2-5.

TYPES SN54HC153, SN74HC153 DUAL 4-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & C_{L}=15 \mathrm{pF}, \\ & R_{\mathrm{L}}=2 \mathrm{k} \Omega, \\ & \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} .$ See Note 1						UNIT
				$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$		SN54HC153		SN74HC153		
			MIN TYP MAX	MIN	TYP MAX	MIN	MAX	MIN	MAX	
${ }^{\text {tPLH }}$	A or B	Y								ns
tPHL										
tPLH	Data (Any C)	Y								ns
tPHL										
iPLH	G	Y								ns
tPHL										
$\mathrm{C}_{\text {pd }}$	Power dissipation capacitance per multiplexer			No load, $T_{A}=25^{\circ} \mathrm{C}$				pF typ		

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

- Decodes 4 Binary-Coded Inputs into One of

 16 Mutually Exclusive Outputs- Performs the Demultiplexing Function by Distributing Data From One Input Line to Any One of 16 Outputs
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

Each of these monolithic, 4-line-to-16-line decoders decodes four binary-coded inputs into one of sixteen mutually exclusive outputs when both the strobe inputs, $\overline{\mathrm{G}} 1$ and $\overline{\mathrm{G}} 2$, are low. The demultiplexing function is performed by using the 4 input lines to address the output line, passing data from one of the strobe inputs with the other strobe input low. When either strobe input is high, all outputs are high. These demultiplexers are ideally suited for implementing high-performance memory decoders.

The SN54HC154 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC154 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

logic symbols (alternatives)

SN54HC154 . . . JT PACKAGE SN74HC154 . . JT OR NT PACKAGE (TOP VIEW)

0		\cup_{24}	V_{CC}
1	2	23	A
2	3	22	B
3	4	21	C
4	5	20	D
5	6	19	G72
6	7	18	G ${ }^{\text {G }}$
7	8	17	15
8		16] 14
9	10	15	$\bigcirc 13$
	11	14	$\square 12$
GND	-12	13	$\square 11$

SN54HC154 . . . FH OR FK PACKAGE SN74HC154 ... FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection

[^17]
Texas Instruments

 INCORPORATED
TYPES SN54HC154, SN74HC154 4-LINE-TO-16-LINE DECODERS/DEMULTIPLEXERS

function table

OUTPUTS						OUTPUTS															
$\overline{\mathbf{G} 1}$	G72	D	C	B	A	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
L	L	L	L	L	1	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
L	L	L	L	L	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H
L	L	L	L	H	L	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H
L	L	L	L	H	H	H	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H
L	L	L	H	L	L	H	H	H	H	L	H	H	H	H	H	H	H	H	H	H	H
L	L	L	H	L	H	H	H	H	H	H	L	H	H	H	H	H	H	H	H	H	H
L	L	L	H	H	L	H	H	H	H	H	H	L	H	H	H	H	H	H	H	H	H
L	L	L	H	H	H	H	H	H	H	H	H	H	L	H	H	H	H	H	H	H	H
L	L	H	L	L	L	H	H	H	H	H	H	H	H	L	H	H	H	H	H	H	H
L	L	H	L	L	H	H	H	H	H	H	H	H	H	H	L	H	H	H	H	H	H
L	L	H	L	H	L	H	H	H	H	H	H	H	H	H	H	L	H	H	H	H	H
L	L	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H	L	H	H	H	H
L	L	H	H	L	L	H	H	H	H	H	H	H	H	H	H	H	H	L	H	H	H
L	L	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	L	H	H
L	L	H	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	L	H
L	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	L
L	H	X	X	X	X	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
H	L	X	X	x	x	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
H	H	X	X	x	X	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H

$H=$ high level. $L=$ low level. $X=$ irrelevant
maximum ratings, recommended operating conditions, and electrical characteristics
See Table IV, page 2-6.
switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs

- Dependable Texas Instruments Quality and Reliability

description

These monolithic data selectors/multiplexers contain inverters and drivers to supply full data selection to the four output gates. A separate strobe input (\bar{G}) is provided. A 4-bit word is selected from one of two sources and is routed to the four outputs. The 'HC157 presents true data whereas the ' HC 158 presents inverted data.

The SN54HC157 and SN54HC158 are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC157 and SN74HC158 are characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE					
INPUTS				OUTPUT Y	
	$\begin{aligned} & \text { SELECT } \\ & \bar{A} / B \end{aligned}$	DATA		'HC157	'HC158
		A	B		
H	\times	X	x	L	H
L	L	L	\times	L	H
L	L	H	\times	H	L
L	H	x	L	L	H
L	H	X	H	H	L

SN54HC157, SN54HC158 . . . J PACKAGE
SN74HC157, SN74HC158 . . J OR N PACKAGE (TOP VIEW)

SN54HC157, SN54HC158 . . . FH OR FK PACKAGE SN74HC157, SN74HC158 . . . FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection
logic symbols
'HC157

'HC158

Pin numbers shown are for J and N packages.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table III, page 2-5.

TYPES SN54HC157, SN54HC158, SN74HC157, SN74HC158 QUADRUPLE 2-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS

'HC157 switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & C_{L}=15 \mathrm{pF}, \\ & R_{\mathrm{L}}=2 \mathrm{k} \Omega, \\ & \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$V_{C C}=4.5 \mathrm{~V}$ to 5.5 V . See Note 1			UNIT
				$\mathrm{T}_{A}=25^{\circ} \mathrm{C}$	SN54HC157	SN74HC157	
			MIN TYP MAX	MIN TYP MAX	MIN MAX	MIN MAX	
tPLH	A or B	Y					ns
tPHL							
tPLH	$\bar{A} / 8$	Y					ns
tPHL							
tPLH	$\overline{\mathrm{G}}$	Y					ns
tPHL							

C_{pd}	Power dissipation capacitance per multiplexer	No load, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	pF typ

NOTE 1: For load circuit and voltage waveforms, see page 1-14.
'HC158 switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \\ & \mathrm{~T}_{\mathbf{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} .$ See Note 1						UNIT
				$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$		SN54HC158 ${ }^{\text {SN74HC158 }}$				
			MIN TYP MAX	MIN	TYP MAX	MIN	MAX	MIN	MAX	
tPLH	A or B	Y								ns
tPHL										
tPLH	\bar{A} / B	Y				.				ns
tPHL										
tPLH	$\overline{\mathbf{G}}$	Y								ns
tPHL										
C_{pd}	Power dissipation capacitance per multiplexer				No load, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			pF typ		

[^18]
- Internal Look-Ahead for Fast Counting

- Carry Output for n-Bit Cascading
- Synchronous Counting
- Synchronously Programmable
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These synchronous, presettable counters feature an internal carry look-ahead for application in high-speed counting designs. The 'HC160 and 'HC162 are decade counters, and the 'HC161 and ' HC 163 are 4 -bit binary counters. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each other when so instructed by the count-enable inputs and internal gating. This mode of operation eliminates the output counting spikes that are normally associated with synchronous (ripple clock) counters. A buffered clock input triggers the four flip-flops on the rising (positive-going) edge of the clock input waveform.

These counters are fully programmable; that is, the outputs may be preset to either level. As presetting is synchronous, setting up a low level at the load input disables the counter and causes the outputs to agree with the setup data after the next clock pulse regardless of the levels of the enable inputs.

SN54HC' . . . FH or FK PACKAGE SN74HC' . . . FH or FN PACKAGE (TOP VIEW)

NC - no internal connection

The clear function for the 'HC160 and 'HC161 is asynchronous and a low level at the clear input sets all four of the flip-flop outputs low regardless of the levels of the clock, load, or enable inputs.

The clear function for the ' HC 162 and ' HC 163 is synchronous and a low level at the clear input sets all four of the flip-flop outputs low after the next clock pulse, regardless of the levels of the enable inputs. This synchronous clear allows the count length to be modified easily as decoding the maximum count desired can be accomplished with one external NAND gate. The gate output is connected to the clear input to synchronously clear the counter to 0000 (LLLL).
The carry look-ahead circuitry provides for cascading counters for n-bit synchronous applications without additional gating. Instrumental in accomplishing this function are two count-enable inputs and a ripple carry output. Both count-enable inputs (ENP and ENT) must be high to count, and ENT is fed forward to enable the ripple carry output. The ripple carry output (RCO) thus enabled will produce a high-level pulse while the count is maximum (9 or 15 with \mathbf{Q}_{A} high). This high-level overflow ripple carry pulse can be used to enable successive cascaded stages. Transitions at the ENP or ENT are allowed regardless of the level of the clock input.
These counters feature a fully independent clock circuit. Changes at control inputs (ENP, ENT, or $\overline{\operatorname{LOAD}}$) that will modify the operating mode have no effect on the contents of the counter until clocking occurs. The function of the counter (whether enabled, disabled, loading, or counting) will be dictated solely by the conditions meeting the stable setup and hold times.

The SN54HC160 through SN54HC163 are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC160 through SN74HC163 are characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

TYPES SN54HC160 THRU SN54HC163 SN74HC160 THRU SN74HC163 SYNCHRONOUS 4-BIT DECADE AND BINARY COUNTERS

logic symbols

HC160 DECADE COUNTER
WITH DIRECT CLEAR

HC162 DECADE COUNTER WITH SYNCHRONOUS CLEAR

'HC161 BINARY COUNTER

 WITH DIRECT CLEAR
'HC163 BINARY COUNTER WITH SYNCHRONOUS CLEAR

TYPES SN54HC160, SN54HC162,
 SN74HC160, SN74HC162
 SYNCHRONOUS 4-BIT DECADE COUNTERS

' 160 and ' 162 output sequence
Illustrated below is the following sequence:

1. Clear outputs to zero (SN54HC160 and SN74HC160 are asynchronous; SN54HC162 and SN74HC162 are synchronous)
2. Preset to $B C D$ seven
3. Count to eight, nine, zero, one, two, and three
4. Inhibit

TYPES SN54HC161, SN54HC163, SN74HC161, SN74HC163 SYNCHRONOUS 4-BIT BINARY COUNTERS

'161 and '163 output sequence

Illustrated below is the following sequence:

1. Clear outputs to zero (SN54HC161 and SN74HC161 are asynchronous; SN54HC163 and SN74HC163 are synchronous)
2. Preset to binary twelve
3. Count to thirteen, fourteen, zero, one, and two
4. Inhibit

TYPES SN54HC160 THRU SN54HC163
 SN74HC160 THRU SN74HC163
 SYNCHRONOUS 4-BIT DECADE AND BINARY COUNTERS

maximum ratings, recommended operating conditions, and electrcical characteristics
See Table IV, page 2-6.
timing requirements (supplement to recommended operating conditions)

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & \mathrm{V}_{C C}=5 \mathrm{~V}, \\ & C_{L}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \\ & \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} . \\ & C_{L}=50 \mathrm{pF} \end{aligned}$			UNIT
				$\mathrm{T}_{A}=25^{\circ} \mathrm{C}$	SN54HC'	SN74HC'	
			MIN TYP MAX	MIN TYP MAX	MIN MAX	MIN MAX	
$I_{\text {max }}$							MHz
tPLH	CLK	RCO					ns
tPHL							
tPLH	CLK	Any 0					ns
tPHL							
tPLH	ENT	RCO					ns
tPHL							
tPHL	$\overline{\text { CLR }}$	Any 0					ns
tPHL	$\overline{\text { CLİ }}$	RCO					ns

[^19]
TYPES SN54HC160 THRU SN54HC163 SN74HC160 THRU SN74HC163 SYNCHRONOUS 4-BIT DECADE AND BINARY COUNTERS

TYPICAL APPLICATION DATA

N-BIT SYNCHRONOUS COUNTERS

This application demonstrates how the look-ahead carry circuit can be used to implement a high-speed n -bit counter. The 'HC160 and ' $\mathrm{HC1} 62$ will count in BCD, and the ' $\mathrm{HC1} 161$ and ' $\mathrm{HC1} 163$ will count in binary. Virtually any count mode (modulo-N, N_{1}-to- $\mathrm{N}_{2}, \mathrm{~N}_{1}$-to-maximum) can be used with this fast look-ahead circuit.

- AND-Gated (Enable/Disable) Serial Inputs

- Fully Buffered Clock and Serial Inputs
- Direct Clear
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These 8-bit shift registers feature AND-gated serial inputs and an asynchronous clear. The gated serial inputs (A and B) permit complete control over incoming data as a low at either input inhibits entry of the new data and resets the first flip-flop to the low level at the next clock pulse. A high-level input enables the other input, which will then determine the state of the first flip-flop. Data at the serial inputs may be changed while the clock is high or low, provided the minimum setup time requirements are met. Clocking occurs on the low-to-high-level transition of the clock input.

The SN54HC164 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC164 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE						
InPUTS				OUTPUTS		
CLEAR	CLOCK	A	B	O_{A}	O_{8}.	O_{H}
L	X	X	X	L	L	L
H	L	X	x	$\mathrm{Q}_{\text {AO }}$	$\mathrm{O}_{\text {BO }}$	O_{HO}
H	\uparrow	H	H	H	$\mathrm{Q}_{\text {An }}$	O_{Gn}
H	\uparrow	L	\times	L	$\mathrm{a}_{\text {An }}$	o_{Gn}
H	\uparrow	\times	1	L	$\mathrm{a}_{\text {An }}$	O_{Gn}

$H=$ high level (steady state). $L=$ low level (steady state)
$X=$ irrelevant (any input, including transitions)
$t=$ transition from low to high level.
$Q_{A O}, Q_{B O}, Q_{H O}=$ the level of Q_{A}, Q_{B}, or Q_{H}, respectively, before the indicated steady-state input conditions were established.
$\mathrm{Q}_{\mathrm{An}}, \mathrm{Q}_{\mathrm{Gn}}=$ the level of Q_{A} or Q_{G} before the most-recent \uparrow transition of the clock: indicates a one-bit shift.

SN54HC164 ...J PACKAGE
SN74HC164... J ORN PACKAGE (TOP VIEW)

SN54HC164 . . . FH OR FK PACKAGE SN74HC164 ... FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection
logic symbol

Pin numbers shown are for J and N packages.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table IV, page 2-6.

TYPES SN54HC164, SN74HC164 8-BIT PARALLEL-OUT SERIAL SHIFT REGISTERS

typical clear, shift, and clear sequences

timing requirements (supplement to recommended operating conditions)

			SN54HC164			SN74HC164			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	
$\mathrm{f}_{\text {clock }}$	Clock frequency								MHz
${ }^{\text {tw }}$	Pulse duration	$\overline{\text { CLR }}$ low							ns
		CLK high							
		CLK low							
${ }^{\text {tsu}}$	Setup time	Data							ns
	before CLKI	$\overline{\mathrm{CLR}}$ inactive							
th	Hold time, data after CLK ${ }^{\text {¢ }}$								ns

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & C_{L}=15 \mathrm{pF}, \\ & R_{L}=2 \mathrm{k} \Omega . \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} . \\ & C_{L}=50 \mathrm{pF} \end{aligned}$						UNIT
				$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$		SN54HC164 SN74HC164				
			MIN TYP MAX	MIN	TYP MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$										MHz
tPHL	$\overline{\text { CLR }}$	Any 0								ns
tPLH	CLK	Any 0								ns
tPHL										
$\mathrm{C}_{\text {pd }}$	Power dissipation capacitance			No load, $\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$				pF typ		

[^20]- Complementary Outputs
- Direct Overriding Load (Data) Inputs
- Gated Clock Inputs
- Parallel-to-Serial Data Conversion
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

The ' HC 165 is an 8 -bit serial shift register that, when clocked, shifts the data toward serial output Q_{H}. Parallel-in access to each stage is provided by eight individual direct data inputs that are enabled by a low level at the SH/ $\overline{L D}$ input. The 'HC165 also features a clock inhibit function and a complementary serial output Q_{H}.
Clocking is accomplished by a low-to-high transition of the CLK input while SH/ $\overline{L D}$ is held high and CLK INH is held low. The functions of the CLK and CLK INH (clock inhibit) inputs are interchangeable. Since a low CLK input and a low-to-high transition of CLK INH will also accomplish clocking, CLK INH should be changed to the high level only while the CLK input is high. Parallel loading is inhibited when $S H / \overline{L D}$ is held high. The parallel inputs to the register are enabled while $\mathrm{SH} / \overline{\mathrm{LD}}$ is low independently of the levels of CLK, CLK INH, or SER inputs.

The SN54HC165 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC165 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

INPUTS			FUNCTION
SH/LD	CLK	CLK INH	
L	X	x	PARALLEL LOAD
H	H	X	NO CHANGE
H	X	H	NO CHANGE
H	L	\uparrow	SHIFT
H	\uparrow	L	SHIFT

SHIFT - content of each internal register shifts toward serial output Q_{H}. Data at serial input is shifted into first register.

SN54HC165 . . . J PACKAGE SN74HC165 . . . J OR N PACKAGE (TOP VIEW)

SN54HC165 . . . FH OR FK PACKAGE SN74HC165 . . FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection
logic symbol

Pin numbers shown are for J and N packages.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table IV, page 2-6.

TYPES SN54HC165, SN74HC165 PARALLEL-LOAD 8-BIT SHIFT REGISTERS

typical shift, load, and inhibit sequences

timing requirements (supplement to recommended operating conditions)

TYPES SN54HC165, SN74HC165

PARALLEL-LOAD 8-BIT SHIFT REGISTERS
switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & R_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & C_{L}=50 \mathrm{pF} \end{aligned}$			UNIT
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	SN54HC165	SN74HC165	
			MIN TYP MAX	MIN TYP MAX	MIN MAX	MIN MAX	
$f_{\text {max }}$							MHz
tPLH	SH/ $\overline{L D}$	O_{H}					ns
tPHL							
tPLH		$\overline{\mathrm{o}}_{\mathrm{H}}$					
tPHL							
tPLH	CLK	O_{H}					ns
tPHL							
tPLH		$\overline{\mathrm{a}}_{\mathrm{H}}$					
tPHL							
tPLH	H	O_{H}					ns
tPHL							
tPLH		$\overline{\mathrm{a}}_{\mathrm{H}}$					
tPHL							

$\mathrm{C}_{p d}$	Power dissipation capacitance	No load, $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$	CF typ

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

- Synchronous Load

- Direct Overriding Clear

- Parallel to Serial Conversion

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

The 'HC166 parallel-in or serial-in, serial-out registers feature gated clock inputs and an overriding clear input. The parallel-in or serial-in modes are established by the shift/load input. When high, this input enables the serial data input and couples the eight flip-flops for serial shifting with each clock pulse. When low, the parallel (broadside) data inputs are enabled and synchronous loading occurs on the next clock pulse. During parallel loading, serial data flow is inhibited. Clocking is accomplished on the low-to-high-level edge of the clock pulse through a twoinput positive NOR gate permitting one input to be used as a clock-enable or clock-inhibit function. Holding either of the clock inputs high inhibits clocking; holding either low enables the other clock input. This, of course, allows the system clock to be free-running and the register can be stopped on command with the clock input. The clock-inhibit input should be changed to the high level only when the clock input is high. A direct clear input overrides all other inputs, including the clock, and sets all flipflops to zero.

The SN54HC166 is characterized for operation over the fuil military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC166 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

INPUTS						INTERNAL OUTPUTS		$\begin{gathered} \text { OUTPUT } \\ a_{H} \end{gathered}$
CLEAR	SHIFT/ LOAD	CLOCKINHIBIT	CLOCK	SERIAL	PARALLEL			
					A... H	$\mathrm{O}_{\mathbf{A}}$	O_{B}	
L	X	X	X	X	\times	L	L	L
H	x	L	L	x	\times	$\mathrm{O}_{\text {AO }}$	O_{80}	O_{HO}
H	L	L	i	X	a. . . h	a	b	h
H	H	L	1	H	x	H	$Q_{A n}$	a_{Gn}
H	H	L	\dagger	L	x	L	$Q_{A n}$	$Q_{G n}$
H	X	H	\dagger	\times	x	O_{AO}	O_{BO}	Q_{HO}

SN54HC166 . . J JPACKAGE
SN74HC166 . . J OR PACKAGE
(TOP VIEW)

SN54HC166... FH OR FK PACKAGE SN74HC166 .. . FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection
logic symbol

Pin numbers shown are for J and N packages.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table IV, page 2-6.

TYPES SN54HC166, SN74HC166 PARALLEL-LOAD 8-BIT SHIFT REGISTERS

typical clear, shift, load, inhibit, and shift sequences

timing requirements (supplement to recommended operating conditions)

			SN54HC166			SN74HC166			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	
'clock	Clock frequency								MHz
${ }^{\text {tw }}$	Pulse duration	$\overline{\text { CLR }}$ low							ns
		SH/ $\overline{\mathrm{LD}}$ low							
		CLK high							
		CLK low							
${ }^{\text {tsu }}$	Setup time before CLKI	SH/[̄] high before CLKI							ns
		SER before CLKI							
		CLK INH before CLK ${ }^{\text {f }}$							
		Data before SH/EDt							
		$\overline{\text { CLR }}$ inactive							
t_{h}	Hold time, SER after CLKI								ns

TYPES SN54HC166, SN74HC166 PARALLEL-LOAD 8-BIT SHIFT REGISTERS

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

C_{pd}	Power dissipation capacitance	No load, $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$	pF typ

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

- High-Current 3-State Outputs Interface Directly with System Bus or Can Drive up to 15 LSTTL Loads
- Gated Output-Control Lines for Enabling or Disabling the Outputs
- Fully Independent Clock Virtually Eliminates Restrictions for Operating in One of Two Modes
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

The 'HC173 four-bit registers include D-type flip-flops featuring totem-pole three-state outputs capable of driving highly capacitive or relatively low-impendance loads. The high-impedance third state and increased drive provide these flip-flops with the capability of being connected directly to and driving the lines in a busorganized system without need for interface or pull-up components.

Gated enable inputs are provided on these devices for controlling the entry of data into the flip-flops. When both data-enable inputs are low, data at the D inputs are loaded into their respective flipflops on the next positive transition of the clock input. Gate output control inputs are also provided. When both are low, the normal logic states (high or low levels) of the four outputs are available for driving the loads or bus lines. The outputs are disabled independently from the level of the clock by a high logic level at either output control input. The outputs then present a high impedance and neither load nor drive the bus line. Detailed operation is given in the function table.

The SN54HC173 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC173 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

INPUTS					$\begin{gathered} \text { OUTPUT } \\ \text { Q } \end{gathered}$
CLEAR	CLOCK	DATA ENABLE		$\begin{gathered} \hline \text { DATA } \\ \text { D } \end{gathered}$	
		$\overline{\text { G }} 1$	$\overline{\mathbf{G} 2}$		
H	X	X	X	X	L
L	L	X	X	X	0_{0}
L	1	H	X	X	0
L	1	X	H	X	0
L	1	L	L	L	L
L	1	L	L	H	H

When either M or N (or both) is (are) high the output is disabled to the high-impedance state; however sequential operation of the flip-flops is not affected.

SN54HC173 . . . J PACKAGE SN74HC173 . . J OR N PACKAGE (TOP VIEW)

SN54HC173 . . FH OR FK PACKAGE SN74HC173 . . . FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection
logic symbol

Pin numbers shown are for J and N packages.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table III, page 2-5.

TYPES SN54HC173, SN74HC173 4-BIT D-TYPE REGISTERS WITH 3-STATE OUTPUTS

timing requirements (supplement to recommended operating conditions)

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & C_{L}=45 \mathrm{pF}, \\ & R_{L}=667 \Omega, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}$ See Note 1						UNIT
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54HC173 SN74HC173				
			MIN TYP MAX	MIN	TYP MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$										MHz
tPHL	CLR	Any								ns
tPLH	CLK	Any								ns
tPHL										ns
tPZ	M or N	Any								ns
tPZL										
tPHZ	M or N	Any								ns
tPLZ										
C_{pd}	Power dissipation capacitance			No load, $\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$				pF typ		

[^21]- 'HC174 Contains Six Flip-Flops with Single-Rail Outputs
- 'HC175 Contains Four Flip-Flops with Double-Rail Outputs
- Applications Include:

Buffer/Storage Registers
Shift Registers
Pattern Generators

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These monolithic, positive-edge-triggered D-type flip-flops have a direct clear input and the 'HC175 features complementary outputs from each flip-flop.

Information at the D inputs meeting the setup time requirements is transferred to the outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a particular voltage level and is not directly related to the transition time of the positive-going edge of the clock pulse. When the clock input is at either the high or low level, the D input signal has no effect at the output.

The SN54HC174 and SN54HC175 are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC174 and SN74HC175 are characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE
(EACH FLIP-FLOP)

INPUTS			OUTPUTS	
CLR	CLK	D	Q	$\overline{\text { Qu}} \dagger$
L	X	X	L	H
H	L	H	H	L
H	L	L	L	H
H	L	X	Q_{O}	\bar{Q}_{0}

t'HC175 only

SN54HC174 . . . J PACKAGE
SN74HC174 . . . J OR N PACKAGE (TOP VIEW)

CLP ${ }^{1}$	$\cup_{16} \mathrm{~V}_{\mathrm{cc}}$
$10{ }^{1} 2$	15 -60
10 l	14 ¢0
2 D 4	13 50
$20{ }^{2} 5$	$12 \bigcirc 50$
$30-6$	$11{ }^{1} 4 \mathrm{D}$
$30 \square 7$	$10 \bigcirc 40$
Gnd 8	$9]$ clk

SN54HC174 . . FH OR FK PACKAGE SN74HC174 . . . FH OR FN PACKAGE (TOP VIEW)

SN54HC175 . . . J PACKAGE SN74HC175 . . J OR N PACKAGE (TOP VIEW)

$\overline{C L R}{ }^{1}$	\cup_{16}	V_{Cc}
10 2	15	$4 Q$
1吅 ${ }^{\text {c }}$	14	$4 \overline{\mathrm{Q}}$
10 4	13	40
$20-5$	12	30
2 $\bar{Q} \square^{6}$	11	$3 \overline{0}$
20-7	10	30
GND 8		-CLK

SN54HC175 .. . FH OR FK PACKAGE SN74HC175 . . FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection

TYPES SN54HC174, SN54HC175, SN74HC174, SN74HC175 HEX/QUADRUPLE D-TYPE FLIP-FLOPS WITH CLEAR

logic symbols
'HC174

Pin numbers shown are for J and N packages.
'HC175

maximum ratings, recommended operating conditions, and electrical characteristics
'HC174 See Table IV, page 2-6.
'HC175 See Table II, page 2-4.
timing requirements (supplement to recommended operating conditions)

			SN54HC174 SN54HC175			SN74HC174 SN74HC175			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	
$\mathrm{f}_{\text {clock }}$	Clock frequency								MHz
${ }^{\text {tw }}$	Pulse duration	$\overline{\text { CLR }}$ low							ns
		CLK high							
		CLK low							
${ }^{\text {t }}$ su	Setup time before CLKi	Data							ns
		$\overline{C L R}$ inactive							
$\mathrm{th}^{\text {n }}$	Hold time, data after CLKi								ns

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \\ & \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \end{aligned}$			$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} . \\ & C_{L}=50 \mathrm{pF} \end{aligned}$							UNIT
						$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\begin{array}{l\|} \hline \text { SN54HC174 } \\ \text { SN54HC175: } \end{array}$		SN74HC174SN74HC175		
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$													MHz
tPLH	$\overline{\text { CLR }}$	Any $\overline{\mathrm{O}}$ ('HC175)											ns
tPHL		Any 0											
tPLH	CLK	$\begin{gathered} \text { Any O } \\ \text { (or } \overline{\mathrm{Q}}, \mathrm{HC175} \text {) } \end{gathered}$											ns
tPHL													
$\mathrm{C}_{\text {pd }}$	Power dissipation capacitance per flip-flop						No load, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$				pF typ		

[^22]
- Organized as 16 Words of Four Bits Each

- High-Current 3-State Inverting Outputs Can Drive up to 15 LSTTL Loads
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

Information to be stored in the memory is written into the selected address location when the chipselect ($\overline{\mathbf{S}}$) and the write-enable ($\mathrm{R} / \overline{\mathrm{W}}$) inputs are low. While the write-enable input is low, the memory outputs are off ($\mathrm{Hi}-\mathrm{Z}$). When a number of outputs are bus-connected, this off state neither loads nor drives the data bus; however, it permits the bus line to be driven by other active outputs or a passive pull-up.

Information stored in the memory (see function table for input/output phase relationship) is available at the outputs when the write-enable input is high and the chip-select input is low. When the chip-select input is high, the outputs will be off.

The SN54HC189 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC189 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

SN54HC189 . . . J PACKAGE
SN74HC189 . . . J OR N PACKAGE
(TOP VIEW)

AO 1	\cup_{16}	$\mathrm{V}_{C C}$
$\overline{\text { S }}$	15	A1
R/W \square_{3}	14	${ }^{\text {A }}$
D1 4	13	A3
-1 5	12	D4
D2 6	11	$\overline{0}_{4}$
O2 7	10	DD3
GND 8	9	$\overline{\mathrm{a}} 3$

SN54HC189 . . . FH OR FK PACKAGE SN74HC189 . . FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection
logic symbol

Pin numbers shown are for J and N packages.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table III, page 2-5.

TYPES SN54HC189, SN74HC189 64-BIT RANDOM-ACCESS MEMORIES

timing requirements (supplement to recommended operating conditions)

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

- Single Down/Up Count Control Line

- Look-Ahead Circuitry Enhances Speed of Cascaded
Counters
- Fully Synchronous in Count Modes
- Asynchronously Presettable with Load Control
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

The 'HC190 and 'HC191 are synchronous, reversible up/down counters. The 'HC190 is a 4-bit decade counter and the 'HC191 is a 4 -bit binary counter. Synchronous counting operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each other when so instructed by the steering logic. This mode of operation eliminates the output counting spikes normally associated with asynchronous (ripple clock) counters.

The outputs of the four flip-flops are triggered on a low-to-highlevel transition of the clock input if the enable input ($\overline{C T E N}$) is low. A high at CTEN inhibits counting. The direction of the count is determined by the level of the down/up (D/U) input. When D / \bar{U} is low, the counter counts up and when D / \bar{U} is high, it counts down.

SN54HC190, SN54HC191 . . J J PACKAGE SN74HC190. SN74HC191 . . J OR N PACKAGE (TOP VIEW)

SN54HC190, SN54HC191 . . . FH OR FK PACKAGE SN74HC190, SN74HC191 . . . FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection

These counters feature a fully independent clock circuit. Changes at the control inputs ($\overline{\mathrm{CTEN}}$ and $\mathrm{D} / \overline{\mathrm{U}}$) that will modify the operating mode have no effect on the contents of the counter until clocking occurs. The function of the counter will be dictated solely by the condition meeting the stable setup and hold times.

These counters are fully programmable; that is, the outputs may each be preset to either level by placing a low on the load input and entering the desired data at the data inputs. The output will change to agree with the data inputs independently of the level of the clock input. This feature allows the counters to be used as modulo- N dividers by simply modifying the count length with the preset inputs.

Two outputs have been made available to perform the cascading function: ripple clock and maximum/minimum count. The latter output produces a high-level output pulse with a duration approximately equal to one complete cycle of the clock while the count is zero (all outputs low) counting down or maximum (9 or 15) counting up. The ripple clock output produces a low-level output pulse under those same conditions but only while the clock input is low. The counters can be easily cascaded by feeding the ripple clock output to the enable input of the succeeding counter if parallel clocking is used, or to the clock input if parallel enabling is used. The maximum/minimum count output can be used to accomplish look-ahead for high-speed operation.

The SN54HC190 and SN54HC191 are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC190 and SN74HC191 are characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table IV, page 2-6.

TYPES SN54HC190, SN74HC190 SYNCHRONOUS 4-BIT UP/DOWN DECADE COUNTERS

'HC190 logic symbol

Pin numbers shown are for J and N packages.

typical load, count, and inhibit sequences
Illustrated below is the following sequence:

1. Load (preset) to BCD seven.
2. Count up to eight, nine (maximum), zero, one, and two.
3. Inhibit.
4. Count down to one, zero (minimum), nine, eight, and seven.

TYPES SN54HC191, SN74HC191 SYNCHRONOUS 4-BIT UP/DOWN BINARY COUNTERS

'HC191 logic symbol

Pin numbers shown are for J and N packages.

typical load, count, and inhibit sequences
lliustrated below is the following sequence:

1. Load (preset) to binary thirteen.
2. Count up to fourteen, fifteen (maximum), zero, one, and two.
3. Inhibit.
4. Count down to one, zero (minimum), fifteen, fourteen, and thirteen.

TYPES SN54HC191, SN74HC191
SYNCHRONOUS 4-BIT UP/DOWN BINARY COUNTERS
timing requirements (supplement to recommended operating conditions)

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$							UNIT
						$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54HC190 SN54HC191		$\begin{aligned} & \text { SN74HC190 } \\ & \text { SN74HC191 } \end{aligned}$		
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$	'HC190												MHz
	'HC191												
tPLH	$\overline{\text { LOAD }}$	Any 0											ns
tPHL													
tPLH	A, B, C, D	Any 0											ns
tPHL													
tPLH	CLK	$\overline{\text { RCO }}$											ns
tPHL													
tPLH	CLK	Any 0											ns
tPHL													
tPLH	CLK	MAX/MIN											ns
tPHL													
tPLH	D/	$\overline{\mathrm{RCO}}$											ns
tPHL													
tPLH	D/	MAX/MIN											ns
tPHL													
tPLH	CTEN	$\overline{\text { RCO }}$											ns
tPHL													
$\mathrm{C}_{\text {pd }}$	Power dissipation capacitance					No load, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$					pF typ		

[^23]
TYPES SN54HC192, SN54HC193, SN74HC192, SN74HC193 SYNCHRONOUS 4-BIT UP/DOWN COUNTERS (DUAL CLOCK WITH CLEAR)

HIGH-SPEED
CMOS LOGIC

- Look-Ahead Circuitry Enhances Cascaded Counters
- Fully Synchronous in Count Modes
- Parallel Asynchronous Load for Modulo-N Count Lengths

- Asynchronous Clear

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

The 'HC192 and 'HC193 are synchronous, reversible up/down counters. The 'HC192 is a 4-bit decade counter and the 'HC193 is a 4 -bit binary counter. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincidently with each other when so instructed by the steering logic. This mode of operation eliminates the output counting spikes normally associated with asynchronous (ripple clock) counters.

The outputs of the four flip-flops are triggered by a low-to-highlevel transition of either count (clock) input (Up or Down). The direction of counting is determined by which count input is pulsed while the other count input is high.

All four counters are fully programmable; that is, each output may be preset to either level by placing a low on the load input and entering the desired data at the data inputs. The output will change to agree with the data inputs independently of the count pulses. This feature allows the counters to be used as modulo-N dividers by simply modifying the count length with the preset inputs.

SN54HC192, SN54HC193 . . . J PACKAGE SN74HC192, SN74HC193 . . J JR N PACKAGE (TOP VIEW)

SN54HC192, SN54HC193 . . . FH OR FK PACKAGE SN74HC192, SN74HC193 . . . FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection

A clear input has been provided that forces all outputs to the low level when a high level is applied. The clear function is independent of the count and the load inputs.
These counters were designed to be cascaded without the need for external circuitry. The borrow output ($\overline{\mathrm{BO}}$) produces a low-level pulse while the count is zero (all outputs low) and the count-down is low. Similarly, the carry output ($\overline{\mathrm{CO}}$) produces a low-level pulse while the count is maximum (9 or 15) and the count-up input is low. The counters can then be easily cascaded by feeding the borrow and carry outputs to the count-down and count-up inputs, respectively, of the succeeding counter.

The SN54HC192 and SN54HC193 are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC192 and SN74HC193 are characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table IV, page 2-6.

TYPES SN54HC192, SN74HC192
 SYNCHRONOUS 4-BIT UP/DOWN DECADE COUNTERS
 (DUAL CLOCK WITH CLEAR)

'HC192 logic symbol

Pin numbers shown are for J and N packages.

typical clear, load, and count sequences
Illustrated below is the following:

1. Clear outputs to zero.
2. Load (preset) BCD seven.
3. Count up to eight, nine, carry, zero, one, and two.
4. Count down to one, zero, borrow, nine, eight, and seven.

NOTES: A. Clear overrides load, data, and count inputs.
B. When counting up, count-down input must be high; when counting down, count-up input must be high.

TYPES SN54HC193, SN74HC193 SYNCHRONOUS 4-BIT UP/DOWN BINARY COUNTERS (DUAL CLOCK WITH CLEAR)

'HC193 logic symbol

Pin numbers shown are for J and N packages.

typical clear, load, and count sequences
Illustrated below is the following:

1. Clear outputs to zero.
2. Load (preset) to binary thirteen.
3. Count up to fourteen, fifteen, carry, zero, one, and two.
4. Count down to one, zero, borrow, fifteen, fourteen, and thirteen.

NOTES: A. Clear overrides load, data, and count inputs.
B. When counting up, count-down input must be high; when counting down, count-up input must be high.

TYPES SN54HC192, SN54HC193, SN74HC192, SN74HC193 SYNCHRONOUS 4-BIT UP/DOWN COUNTERS (DUAL CLOCK WITH CLEAR)

timing requirements (supplement to recommended operating conditions)

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & R_{\mathrm{L}}=2 \mathrm{k} \Omega, \\ & \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \end{aligned}$			$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} . \\ & C_{L}=50 \mathrm{pF} \end{aligned}$							UNIT
						$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$			SN54HC192 SN74HC192 SN54HC193 SN74HC193				
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$	'HC192												MHz
tPLH	UP	$\overline{\mathrm{Co}}$											ns
tPHL													
${ }^{\text {tPLH }}$	DOWN	$\overline{\text { BO }}$											ns
tPHL													
tPLH	UP or DOWN	Any 0											ns
tPHL													
tPLH	$\overline{\text { LOAD }}$	Any 0											ns
tPHL													
tPHL	CLR	Any 0											ns
$\mathrm{C}_{\text {pd }}$	Power dissipation capacitance					No load, $T_{A}=25^{\circ} \mathrm{C}$					pF typ		

[^24]
- Parallel Inputs and Outputs

- Four Operating Modes:

Synchronous Parallel Load
Right Shift
Left Shift
Do Nothing

- Positive Edge-Triggered Clocking
- Direct Overriding Clear
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These bidirectional shift registers are designed to incorporate virtually all of the features a system designer may want in a shift register. The circuit features parallel inputs, parallel outputs, rightshift and left-shift inputs, operating-mode-control inputs, and a direct overriding clear line. The register has four distinct modes of operation, namely:

Parallel (broadside) load
Shift right (in the direction Q_{A} toward Q_{D})
Shift left (in the direction Q_{D} toward Q_{A})
Inhibit clocking (do nothing)
Synchronous parallel loading is accomplished by applying the four bits of data and taking both mode control inputs, SO and S1, high. The data are loaded into the associated flip-flops and appear at the outputs after the positive transition of the clock input. During loading, serial data flow is inhibited.

Shift right is accomplished synchronously with the rising edge of the clock pulse when S 0 is high and S 1 is low. Serial data for this mode is entered at the shift-right data input. When SO is low and S 1 is high, data shifts left synchronously and new data is entered at the shift-left serial input.
Clocking of the shift register is inhibited when both mode control inputs are low.

The SN54HC194 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC194 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

SN54HC194 . . . JPACKAGE
SN74HC194 . . J OR N PACKAGE
(TOP VIEW)

SN54HC194 ... FH OR FK PACKAGE SN74HC194 ... FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection
logic symbol

[^25]
TYPES SN54HC194, SN74HC194
 4-BIT BIDIRECTIONAL UNIVERSAL SHIFT REGISTERS

FUNCTION TABLE

INPUTS										OUTPUTS			
CLEAR	MODE		CLOCK	SERIAL		PARALLEL				$\mathbf{O}_{\mathbf{A}}$	O_{B}	0 C	O_{D}
	S1	So		LEFT	RIGHT	A	B	C	D				
L	X	X	X	X	X	X	X	X	X	L	L	L	L
H		X	L	x	X	X	X	X	X	$\mathrm{a}_{\text {AO }}$	O_{BO}	O_{CO}	$\mathrm{O}_{\text {D }}$
H		H	1	X	X	a	b	c	d	a	b	c	d
H	L	H	1	x	H	X	X	x	x	H	$Q_{A n}$	O_{Bn}	O_{Cn}
H	L	H	1.	X	L	X	X	X	x	L	$\mathrm{Q}_{\text {An }}$	O_{Bn}	a_{Cn}
H	H	L	1	H	X	X	X	X	x	O_{Bn}	O_{C}	$Q_{\text {Dn }}$	H
H	H	L	1	L	X	X	X	X	x	O_{Bn}	O_{Cn}	O_{Dn}	L
H	L	L	X	X	X	X	X	X	X	$\mathrm{O}_{\text {An }}$	O_{Bn}	O_{Cn}	a_{DO}

typical clear, load, right-shift, left-shift, inhibit, and clear sequences

TYPES SN54HC194, SN74HC194 4-BIT BIDIRECTIONAL UNIVERSAL SHIFT REGISTERS

maximum ratings, recommended operating conditions, and electrical characteristics
See Table IV, page 2-6.
timing requirements (supplement to recommended operating conditions)

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{C C}=5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} . \\ & C_{L}=50 \mathrm{pF} \end{aligned}$						UNIT
				$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$		SN54HC194 ${ }^{\text {SN74HC194 }}$				
			MIN TYP MAX	MIN	TYP MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$										MHz
tPHL	$\overline{\text { CLR }}$	Any 0								ns
tPLH	CLK	Any 0								ns
tPHL										
C_{pd}	Power dissipation capacitance			No load, $\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$				pF typ		

[^26]
- Synchronous Parallel Load

- Positive-Edge-Triggered Clocking
- J and \bar{K} Inputs to First Stage
- Complementary Outputs from Last Stage
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These 4-bit registers feature parallel inputs, parallel outputs, $\mathrm{J}-\mathrm{K}$ serial inputs, shift/load control input, and a direct overriding clear. The registers have two modes of operation: parallel (broadside) load, and shift (in the direction Q_{A} toward Q_{D}).

Parallel loading is accomplished by applying the four bits of data and taking the shift/load control input low. The data is loaded into the associated flip-flop and appears at the outputs after the positive transition of the clock input. During loading, serial data flow is inhibited.

Shifting is accomplished synchronously when the shift/load control input is high. Serial data for this mode is entered at the $J-K$ inputs. These inputs permit the first stage to perform as a J-K, D-, or T-type flip-flop as shown in the function table.

The SN54HC195 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN 74 HC 195 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
function table

INPUTS									OUTPUTS				
CLEAR	$\begin{aligned} & \text { SHIFT/ } \\ & \text { LOAD } \end{aligned}$	CLOCK	SERIAL		PARALLEL				$\mathrm{O}_{\mathbf{A}}$	O_{8}	O_{C}	O_{D}	$\overline{\mathbf{O}}_{\mathbf{D}}$
			J	$\overline{\mathbf{K}}$	A	B	C	D					
L	X	X	X	X	X	X	X	X	L	L	L	L	H
H	L	+	X	X	a	b	c	d	a	b	c	d	d
H	H	L	X	X	X	X	X	X	$\mathrm{a}_{\text {AO }}$	$\mathrm{a}_{\text {BO }}$	Q_{CO}	O_{00}	$\overline{0}_{00}$
H	H	1	L	H	x	x	x	X	$\mathrm{a}_{\text {AO }}$	$\mathrm{Q}_{\text {AO }}$	$\mathrm{O}_{8 \mathrm{n}}$	O_{Cn}	$\overline{\mathrm{a}}_{\mathrm{C}}$
H	H	1	L	L	X	X	x	x	L	$Q_{\text {An }}$	O_{Bn}	O_{Cn}	$\overline{\mathrm{a}}_{\mathrm{C}}$
H	H	1	H	H	X	X	X	x	H	$0_{\text {An }}$	O_{Bn}	O_{Cn}	$\overline{\mathrm{O}}_{\mathrm{Cn}}$
H	H	1	H	L	x	X	x	X	$\overline{\mathrm{a}}_{\text {An }}$	$\mathrm{O}_{\text {An }}$	O_{Bn}	O_{Cn}	$\overline{\mathrm{a}}_{\mathrm{Cn}}$

SN54HC195 . . . FH OR FK PACKAGE SN74HC195 ... FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection
logic symbol

[^27]
TYPES SN54HC195, SN74HC195 4-BIT PARALLEL-ACCESS SHIFT REGISTERS

typical clear, shift, and load sequences

maximum ratings, recommended operating conditions, and electrical characteristics
See Table IV, page 2-6.
timing requirements (supplement to recommended operating conditions)

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} . \\ & C_{L}=50 \mathrm{pF} \end{aligned}$						UNIT
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54HC195 SN74HC195				
			MIN TYP MAX	MiN	TYP MAX	MIN	MAX	MIN	MAX	
$\mathrm{f}_{\text {max }}$										MHz
${ }^{\text {P PLH }}$	CLK	Q_{A} thru $Q_{\text {d }}$								ns
tPHL										ns
tPLH	CLK	$\overline{\mathrm{O}}_{\mathrm{D}}$								ns
tPHL										
tPLH	$\overline{\mathrm{CLR}}$	$\overline{\mathrm{O}}_{\mathrm{D}}$								ns
tPHL		Q_{A} thru Q_{D}								
$\mathrm{C}_{\text {pd }}$	Power dissipation capacitance			No load, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$				pF typ		

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

- Overriding Clear Terminates Output Pulse

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These devices are monolithic dual multivibrators featuring a negative-transition-triggered input and a positive-transitiontriggered input either of which can be used as an inhibit input.

Pulse triggering occurs at a particular voltage level and is not directly related to the transition time of the input pulse. Schmitttrigger input circuitry for the B input allows jitter-free triggering from inputs with slow transition rates.

Once fired, the outputs are independent of further transitions of the A and B inputs and are a function of the timing components, or the output pulses can be terminated by the overriding clear. Input pulses may be of any duration relative to the output pulse. Output rise and fall times are independent of pulse length.

Pulse duration stability is achieved through internal compensation and is virtually independent of V_{CC} and temperature. In most applications, pulse stability will be limited only by the accuracy of external timing components.

The SN54HC221 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74 HC 221 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

SN54HC221 . . . FH OR FK PACKAGE
SN74HC221 . . FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection
logic symbol
FUNCTION TABLE (EACH MONOSTABLE)

INPUTS			OUTPUTS	
CLEAR	A	B	0	$\overline{\mathbf{Q}}$
L	X	x	L	H
X	H	X	L \dagger	H \dagger
X	X	L	Lt	H \dagger
H	L	1	\square	凹
H	1	H	Ω	L-
1	L	H	\square	\square

\dagger The second and third lines each indicate the logic levels the outputs will take on after the completion of any pulse already started.

Texas Instruments incorporated

TYPES SN54HC221, SN74HC221 DUAL MONOSTABLE MULTIVIBRATORS WITH SCHMITT-TRIGGER INPUTS

maximum ratings, recommended operating conditions, and electrical characteristics
See Table IV, page 2-6.
Note: The minimum recommended supply voltage for this device is 3 V .
timing requirements (supplement to recommended operating conditions)

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	то (OUTPUT)	TIMING COMPONENTS		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} . \\ & C_{L}=60 \mathrm{pF} \end{aligned}$							UNIT			
					$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	SN54HC221 ${ }^{\text {SN74HC221 }}$												
			$\mathrm{C}_{\text {ext }}$	$\mathrm{R}_{\text {ext }}$				MIN	TYP	MAX	MIN		MAX	MIN		MAX	MIN	MAX
${ }_{\text {tPLH }}$	A	0	80 pF	$2 \mathrm{k} \Omega$											ns			
	B																	
${ }^{\text {tPHL }}$	A	$\overline{\mathrm{o}}$	80 pF	$2 \mathrm{k} \Omega$											ns			
	B																	
tPHL	$\overline{\mathrm{CLR}}$	0	$80 \mathrm{pF} \quad 2 \mathrm{k} \Omega$												ns			
tPLH		$\overline{\mathrm{a}}$																
$t_{\text {W }}$ (out)	A or B	Q or $\overline{\mathrm{Q}}$	80 pF	$2 \mathrm{k} \Omega$											ns			
			0 pF	$2 \mathrm{k} \Omega$														
			100 pF	$10 \mathrm{k} \Omega$														
			$1 \mu \mathrm{~F}$	$10 \mathrm{k} \Omega$											ms			
C_{pd}	Power dissipation capacitance per multivibrator							No load, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$					pF typ					

[^28]
TYPES SN54HC240, SN54HC241, SN74HC240, SN74HC241 OCTAL BUFFERS AND LINE DRIVERS

HIGH-SPEED

- 3-State Outputs Drive Bus Lines or Buffer Memory Address Registers

- High-Current Outputs Drive up to 15 LSTTL Loads
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These octal buffers and line drivers are designed specifically to improve both the performance and density of three-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. The designer has a choice of selected combinations of inverting and noninverting outputs, symmetrical $\overline{\mathbf{G}}$ (active-low output control) inputs, and complementary G and $\overline{\mathbf{G}}$ inputs. These devices feature high fan-out.

The SN54HC' family is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC' family is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

SN54HC' . . J PACKAGE
SN74HC' . . .J OR N PACKAGE
(TOP VIEW)

SN54HC' . . FH OR FK PACKAGE SN74HC' . . FH OR FN PACKAGE (TOP VIEW)

- $2 \overline{\mathrm{G}}$ for 'HC24O. or 2 G for 'HC241
logic symbols
'HC240

'HC241

Pin numbers shown are for J and N packages.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table III, page 2-5.

This document contains information on a

TYPES SN54HC240, SN54HC241, SN74HC240, SN74HC241 OCTAL BUFFERS AND LINE DRIVERS WITH 3-STATE OUTPUTS

'HC240 switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & C_{L}=45 \mathrm{pF}, \\ & R_{L}=667 \Omega, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V},$ See Note 1.						UNIT
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54HC240 SN74HC240				
			MIN TYP MAX	MIN	TYP MAX	MIN	MAX	MIN	MAX	
tPLH	A	Y								ns
tPHL										
tPZH	$\overline{\mathrm{G}}$	Y								ns
tPZL										
tPLZ	$\overline{\mathrm{G}}$	Y								ns
tPLI										
C_{pd}	Power dissipation capacitance per buffer			No load, $\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$				pF typ		

NOTE 1: For load circuit and voltage waveforms, see page 1-14.
'HC241 switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=45 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}$ See Note 1						UNIT
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54HC241 ${ }^{\text {SN74HC241 }}$				
			MIN TYP MAX	MIN	TYP MAX	MIN	MAX	MIN	MAX	
tPLH	A	Y								ns
tPHL										
tPZH	1 G	$1 Y$								ns
tPZL										
tPHZ	$1 \overline{\mathbf{G}}$	1 Y								ns
tPLZ										
tPZH	2G	2 Y								ns
tPZL										
tPHZ	2G	2 Y								ns
tPLZ										
C_{pd}	Power dissipation capacitance per buffer			No load, $T_{A}=25^{\circ} \mathrm{C}$				pF typ		

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

- 2-Way Asynchronous Communication Between Data Buses
- High-Current Outputs Can Drive up to 15 LSTTL Loads
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These four-data-line transceivers are designed for asynchronous two-way communications between data buses. The SN74HC' devices can be used to drive terminated lines down to 133 ohms.

The SN54' family is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74' family is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

INPUTS		'HC242	'HC243
GAB	GBA		\bar{A} to B
L	L	\bar{B} to B	
H	H	B to A	
H	\dot{L}	Isolation	Isolation
L	H	Latch A and B $(A=\bar{B})$	Latch A and B $(A=B)$

SN54HC242, SN54HC243 . . . J PACKAGE SN74HC242, SN74HC243 . . J OR N PACKAGE (TOP VIEW)

$\overline{\mathrm{G}} \mathrm{AB} \square_{1}$	\cup_{14}	$V_{C C}$
NC 2	13	GBA
A 1	12	NC
A2 \square_{4}	11	B1
A3 5	10	B2
A4 - 6	9	- B3
GND \square^{7}	8	- B 4

SN54HC242, SN54HC243 . . . FH OR FK PACKAGE SN74HC242, SN74HC243 . . FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection
logic symbol

Pin numbers shown are for J and N packages.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table III, page 2-5.

TYPES SN54HC242, SN54HC243, SN74HC242, SN74HC243 QUADRUPLE BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

'HC242 switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

NOTE 1: For load circuit and voltage waveforms, see page 1-14.
'HC243 switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=45 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \\ & \mathrm{~T}_{\mathbf{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}$ See Note 1						UNIT
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54HC243 SN74HC243				
			MIN TYP MAX	MIN	TYP MAX	MIN	MAX	MIN	MAX	
tPLH	A or B	B or A								ns
tPHL										
tPZH	$\overline{\mathrm{G}}$ AB	B								ns
tPZL										
tPHZ	$\overline{\mathrm{G}} \mathrm{AB}$	B								ns
tPLZ										
tPZH	GBA	A								ns
tPZL										
tPHZ	GBA	A								ns
tPLZ										
C_{pd}	Power dissipation capacitance per transceiver			No load, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$				pF typ		

[^29]
- 3-State Outputs Drive Bus Lines or Buffer Memory Address Registers

- High-Current Outputs Can Drive up to 15 LSTTL Loads
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These octal buffers and line drivers are designed specifically to improve both the performance and density of the three-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. Taken together with the 'HC240 and 'HC241, these devices provide the choice of selected combinations of inverting outputs, symmetrical $\overline{\mathrm{G}}$ (active-low input control) inputs, and complementary G and \bar{G} inputs.

The SN54HC244 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC244 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

SN54HC244 . . . FH OR FK PACKAGE SN74HC244 . . . FH OR FN PACKAGE (TOP VIEW)

Pin numbers shown are for J and N packages.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table III, page 2-5.
switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & C_{L}=45 \mathrm{pF}, \\ & R_{L}=667 \Omega, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{V}_{\mathbf{C C}}=4.5 \mathrm{~V}$ to 5.5 V . See Note 1			UNIT
				$\mathrm{T}_{A}=25^{\circ} \mathrm{C}$	SN54HC244 ${ }^{\text {SN74HC244 }}$		
			MIN TYP MAX	MIN TYP MAX	MIN MAX	MIN MAX	
tPLH	A	Y					ns
tPHL							
PPZH	$\overline{\mathrm{G}}$	Y					ns
tPZL							
tPLZ	$\overline{\mathbf{G}}$	Y					ns
tPHZ							
$\mathrm{C}_{\text {pd }}$	Power dissipation capacitance per buffer			No load, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		pF typ	

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

- High-Current 3-State Outputs Drive Bus Lines Directly or Up to 15 LSTTL Loads

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These octal bus transceivers are designed for synchronous twoway communication between data buses. The control function implementation minimizes external timing requirements.

The devices allow data transmission from the A bus to the B bus or from the B bus to the A bus depending upon the logic level at the direction control (DIR) input. The enable input (\bar{G}) can be used to disable the device so that the buses are effectively isolated.

The SN54HC245 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN 74 HC 245 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

SN54HC245 . . . J PACKAGE
SN74HC245 . . J OR N PACKAGE (TOP VIEW)

SN54HC245 . . . FH OR FK PACKAGE SN74HC245 . . . FH OR FN PACKAGE (TOP VIEW)

logic symbol

Pin numbers shown are for J and N packages.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table III, page 2-5.

TYPES SN54HC245, SN74HC245 OCTAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

switching characteristics over recommended operating free-air temperature range (uniess otherwise noted)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & C_{L}=45 \mathrm{pF}, \\ & R_{\mathrm{L}}=667 \Omega \\ & \mathrm{~T}_{\mathbf{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} .$ See Note 1			UNIT
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	SN54HC245 SN74HC245		
			MIN TYP MAX	MIN TYP MAX	MIN MAX	MIN MAX	
tPLH	A or B	B or A					ns
tpHL							
tPZH	$\overline{\mathrm{G}}$	A or B					ns
tPZL							
tPHZ	$\overline{\mathbf{G}}$	A or B					ns
tPLZ							

C_{pd}	Power dissipation capacitance per transceiver	No load, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	pF typ

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

- 3-State Version of 'HC151

- High-Current 3-State Outputs Interface Directly with System Bus or Can Drive up to 15 LSTTL Loads
- Performs Parallel-to-Serial Conversion
- Complementary Outputs Provide True and Inverted Data
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These data selectors/multiplexers contain full binary decoding to select one-of-eight data sources and feature strobe-controlled complementary three-state outputs.

The three-state outputs can interface with and drive data lines of bus-organized systems. With all but one of the common outputs disabled (at a high-impedance state), the low-impedance of the single enabled output will drive the bus line to a high or low logic level. Both outputs are controlled by the strobe $(\overline{\mathrm{G}})$. The outputs are disabled when $\overline{\mathrm{G}}$ is high.

The SN54HC251 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC251 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

SN54HC251 . . . FH OR FK PACKAGE SN74HC251 ... FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection
logic symbol

Pin numbers shown are for J and N packages.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table III, page 2-5.

Texas Instruments
 INCORPORATED

TYPES SN54HC251, SN74HC251 DATA SELECTORS/MULTIPLEXERS WITH 3-STATE OUTPUTS

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & C_{L}=45 \mathrm{pF}, \\ & R_{\mathrm{L}}=667 \Omega, \\ & \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \end{aligned}$			$V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} .$ See Note 1							UNIT
						$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54HC251 ${ }^{\text {SN74HC251 }}$				
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
PPLH	A, B or C	Y											ns
tPHL													
tPLH	A, B or C	W											ns
tPHL													
tPLH	Any D	Y											ns
tPHL													
tPLH	Any D	W											ns
tPHL													
tPZH	$\overline{\mathrm{G}}$	Y											ns
TPZL													
tPZH	$\overline{\mathrm{G}}$	W											ns
tPZL,													
tPHZ	$\stackrel{\rightharpoonup}{\mathrm{G}}$	Y											ns
tPLZ													
tPHZ	$\overline{\mathrm{G}}$	W											ns
tPL2													
C_{pd}	Power dissipation capacitance					No load, $\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$							pF typ

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

- 3-State Versions of 'HC153

- High-Current Outputs Drive up to 15 LSTTL Loads
- Permits Multiplexing from N Lines to 1 Line
- Performs Parallel-to-Serial Conversion
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

Each of these data selectors/multiplexers contains inverters and drivers to supply full binary decoding data selection to the AND-OR gates. Separate output control inputs are provided for each of the two four-line sections.

The three-state outputs can interface with and drive data lines of bus-organized systems. With all but one of the common outputs disabled (at a high-impedance state) the low-impedance of the single enabled output will drive the bus line to a high or low logic level. Each output has its own strobe ($\overline{\mathrm{G}})$. The output is disabled when its strobe is high.

The SN54HC253 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC253 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

SN54HC253 . . . J PACKAGE
SN74HC253 . . . J OR N PACKAGE (TOP VIEW)

SN54HC253 . . . FH OR FK PACKAGE SN74HC253 . . . FH OR FN PACKAGE (TOP VIEW)

SELECT INPUTS		DATA INPUTS				$\begin{gathered} \text { OUTPUT } \\ \text { CONTAOL } \end{gathered}$	OUTPUT
B	A	CO	C1	C2	C3	$\overline{\mathbf{G}}$	Y
X	X	X	X	X	X	H	Z
L	L	L	X	x	X	L	L
L	L	H	X	x	X	L	H
L.	H	X	L	x	X	L	L
L	H	x	H	X	X	L	H
H	L	x	x	L	X	L	L
H	L	x	x	H	\times	L	H
H	H	X	X	X	L	L	L
H	H	X	\times	\times	H	L	H

Address inputs A and B are common to both sections.

NC - No internal connection
logic symbol

Pin numbers shown are for J and N packages.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table III, page 2-5.

TYPES SN54HC253, SN74HC253 DUAL 4-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS WITH 3-STATE OUTPUTS

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

- High-Current 3-State Outputs Interface Directly with System Bus or Can Drive up to 15 LSTTL Loads
- Provides Bus Interface from Multiple Sources in HighPerformance Systems
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These devices are designed to multiplex signals from four-bit data sources to four-output data lines in bus-organized systems. The 3-state outputs will not load the data lines when the output control pin $(\overline{\mathrm{G}})$ is at a high-logic level..
The SN54HC257 and SN54HC258 are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC257 and SN74HC258 are characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

INPUTS				OUTPUT Y	
OUTPUT CONTROL $\overline{\mathbf{G}}$	$\begin{gathered} \text { SELECT } \\ \bar{A} / B \end{gathered}$	DATA		HC2	HC258
		A	B	H25	HC258
H	X	X	x	Z	Z
L	L	L	x	L	H
L	L	H	X	H	L
L	H	X	1	L	H
L	H	\times	H	H	L

SN54HC257, SN54HC258 . . . FH OR FK PACKAGE SN74HC257, SN74HC258 . . . FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection
logic symbols
'HC257

SN54HC257, SN54HC258 . . . J PACKAGE SN74HC257. SN74HC258 . . J J OR N PACKAGE (TOP VIEW)

Pin numbers shown are for J and N packages.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table III, page 2-5.

Texas Instruments
 INCORPORATED

'HC257 switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & C_{L}=45 \mathrm{pF}, \\ & R_{L}=667 \Omega, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}$ See Note 1			UNIT
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	SN54HC257	SN74HC257	
			MIN TYP MAX	MIN TYP MAX	MIN MAX	MIN MAX	
tPLH	A or B	Any Y					ns
tPHL							
tPLH	$\bar{A} / 8$	Any Y					ns
tPHL							
tPZH	$\overline{\mathrm{G}}$	Any Y					ns
tPZL							
tPHZ	$\overline{\mathrm{G}}$	Any Y					ns
tPLZ							

C_{pd}	Power dissipation capacitance per multiplexer	No load, $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$	pF typ

NOTE 1: For load circuit and voltage waveforms, see page 1-14.
'HC258 switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & C_{L}=45 \mathrm{pF}, \\ & R_{L}=667 \Omega, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}$ See Note 1			UNIT
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	SN54HC258 ${ }^{\text {SN74HC258 }}$		
			MIN TYP MAX	MIN TYP MAX	MIN MAX	MIN MAX	
tPLH	A or B	Any Y					ns
tPHL							
tPLH	\bar{A} / B	Any Y					ns
tPHL							ns
tPZH	$\overline{\mathrm{G}}$	Any Y					ns
tpZL							
tPHZ	$\overline{\mathbf{G}}$	Any Y					ns
tPLZ							
C_{pd}	Power dissipation capacitance per multiplexer			No load, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		pF typ	

[^30]- 8-Bit Parallel-Out Storage Register Performs Serial-toParallel Conversion with Storage
- Asynchronous Parallel Clear
- Active-High Decoder
- Enable Input Simplifies Expansion
- Expandable for \mathbf{N}-Bit Applications
- Four Distinct Functional Modes
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs

- Dependable Texas Instruments Quality and Reliability

description

These 8-bit addressable latches are designed for general purpose storage applications in digital systems. Specific uses include working registers, serial-holding registers, and active-high decoders or demultiplexers. They are multifunctional devices capable of storing single-line data in eight addressable latches, and being a 1 -of -8 decoder or demultiplexer with active-high outputs.

Four distinct modes of operation are selectable by controlling the clear ($\overline{C L R})$ and enable (\bar{G}) inputs as enumerated in the function table. In the addressable-latch mode, data at the data-in terminal is written into the addressed latch. The addressed latch will follow the data input with all unaddressed latches remaining in their previous states. In the memory mode, all latches remain in their previous states and are unaffected by the data or address inputs. To eliminate the possibility of entering erroneous data in the latches, enable \bar{G} should be held high (inactive) while the address lines are changing. In the 1 -of -8 decoding or demultiplexing mode, the addressed output will follow the level of the D input with all other outputs low. In the clear mode, all outputs are low and unaffected by the address and data inputs.

The SN54HC259 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN 74 HC 259 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
function table

INPUTS	OUTPUT OF ADDRESSED LATCH		FUNCTION
$\overline{\text { CLA }} \overline{\mathrm{G}}$		OTHER OUTPUT	
H L	0	O_{10}	Addressable Latch
H H	a_{iO}	a_{i}	Memory
L L	0	L	8-Line Demultiplexer
L	1	L	Clear

Latch selection table

SELECT			LNPUTS		LATCH	
S2	S1	SO	ADDRESSED			
L	L	L	O			
L	L	H	1			
L	H	L	2			
L	H	H	3			
H	L	L	4			
H	L	H	5			
H	H	L	6			
H	H	H	7			

SN54HC259 . . . FH OR FK PACKAGE SN74HC259 . . FH OR FN PACKAGE (TOP VIEW)

logic symbol

maximum ratings, recommended operating conditions, and electrical characteristics
See Table IV, page 2-6.

This document contains information on a ments reserves the right to change or discontinue this product without notice.

Texas Instruments
INCORPORATED
POST OFFICE BOX 225012 - DALLAS, TEXAS 75265

TYPES SN54HC259, SN74HC259 8-BIT ADDRESSABLE L.ATCHES

timing requirements (supplement to recommended operating conditions)

			SN54HC259			SN74HC259			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	
	Pulse duration	$\overline{\text { CLR }}$ low							
${ }_{\text {w }}$	Pulse duration	G low							ns
$\mathrm{t}_{\text {su }}$	Setup time before $\overline{\mathbf{G}} \boldsymbol{1}$								ns
$t_{\text {h }}$	Hold time after								ns

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & C_{L}=15 \mathrm{pF}, \\ & R_{L}=2 \mathrm{k} \Omega, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} . \\ & C_{L}=50 \mathrm{pF} \end{aligned}$			UNIT
				$T_{A}=25^{\circ} \mathrm{C}$	SN54HC259 SN74HC259		
			MIN TYP MAX	MIN TYP MAX	MIN MAX	MIN MAX	
tPHL	$\overline{\text { CLR }}$	Any Q					ns
tPLH	Data	Any ${ }^{\text {a }}$					ns
tPHL							
tPLH	Address	Any 0					ns
tPHL							
tPLH	$\overline{\mathrm{G}}$	Any 0					ns
tPHL							
C_{pd}	Power dissipation capacitance per latch			No load, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		pF typ	

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

- Can Be Used as a 4-Bit Digital Comparator
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

The 'HC266 is composed of four independent 2input exclusive-NOR gates. While pin-compatible with the 'LS266, the 'HC266 has totem-pole outputs rather than open-collector.

The SN54HC266 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC266 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
logic symbol

Pin numbers shown are for J and N packages.

SN54HC266 . . . J PACKAGE
SN74HC266 . . J OR N PACKAGE (TOP VIEW)

1A 1	${ }_{1} \cup_{14}$] $v_{C C}$
18 \square^{2}	213	4B
$1 \mathrm{Y} \square^{3}$	312	4 A
$2 \mathrm{Y} \square^{4}$	411	\square^{4}
2A 5	10] 3
28-6	9] 3
GND 7	8	3 A

SN54HC266 . . . FH OR FK PACKAGE
SN74HC266 . . FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection
FUNCTION TABLE

INPUTS		OUTPUT
A	B	
L	L	H
L	H	L
H	L	L
H	H	H

maximum ratings, recommended operating conditions, and electrical characteristics
See Table I, page 2-3.
switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & C_{L}=15 \mathrm{pF}, \\ & R_{\mathrm{L}}=2 \mathrm{k} \Omega . \\ & \mathrm{T}_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} . \\ & C_{L}=50 \mathrm{pF} \end{aligned}$						UNIT
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54HC266 ${ }^{\text {SN74HC266 }}$				
			MIN TYP MAX	MIN	TYP MAX	MIN	MAX	MIN	MAX	
tPLH	A or B	Y								ns
tPHL										
C_{pd}	Power dissipation capacitance per gate			No load, $T_{A}=25^{\circ} \mathrm{C}$				pF typ		

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

D2684, DECEMBER 1982

- Contains Eight Flip-Flops with Single-Rail Outputs

- Direct Clear Input

- Individual Data Input to Each Flip-Flop

- Applications Include:

Buffer/Storage Registers
Shift Registers
Pattern Generators

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These circuits are positive-edge-triggered D-type flip-flops with a direct clear input.

Information at the D inputs meeting the setup time requirements is transferred to the Q outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a particular voltage level and is not directly related to the transition time of the positivegoing pulse. When the clock input is at either the high or low level, the D input signal has no effect at the output.
The SN54HC273 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC273 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

SN54HC273 . . J JACKAGE
SN74HC273...J OR N PACKAGE (TOP VIEW)

SN54HC273 . . FH OR FK PACKAGE SN74HC273 ... FH OR FN PACKAGE (TOP VIEW)

logic symbol

Pin numbers shown are for all packages.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table IV, page 2-6.

[^31]Texas Instruments
INCORPORATED

TYPES SN54HC273, SN74HC273

OCTAL D-TYPE FLIP-FLOPS WITH CLEAR
timing requirements (supplement to recommended operating conditions)

			SN54HC273			SN74HC273			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	
${ }^{\text {f clock }}$	Clock frequency								MHz
${ }^{\text {tw }}$	Pulse duration	CLR low							ns
		CL.K high							
		CLK low							
$t_{\text {su }}$	Setup time before CLKt	Data							ns
		$\overline{\mathrm{C}} \overline{\bar{L}}$ inactive state							
$t_{\text {h }}$	Hold time, data after CLK								ns

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} . \\ & C_{L}=50 \mathrm{pF} \end{aligned}$						UNIT
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54HC273 SN74HC273				
			MIN TYP MAX	MIN	TYP MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$										MHz
tPHL	$\overline{\text { CLR }}$	Any 0								ns
tPLH	CLK	Any 0								ns
tPHL										
C_{pd}	Power dissipation capacitance per flip-flop				No load, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			pF typ		

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

- Generates Either Odd or Even Parity for Nine Data Lines

Cascadable for n-Bits

- Can Be Used to Upgrade Existing Systems Using MSI Parity Circuits
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These universal, monolithic, nine-bit parity generators/checkers feature odd and even outputs to facilitate operation of either odd or even parity application. The word-length capability is easily expanded by cascading.

The SN54HC280 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC280 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
SN54HC280 . . J J PACKAGE
SN74HC280 ... ORN PACKAGE
(TOP VIEW)

G 1	$1 \cup_{14}$	V_{CC}
H 2	$2 \quad 13$	7 F
NC 3	$3 \quad 12$	E
$1 \square 4$	$4 \quad 11$]
$\Sigma \operatorname{EVEN} 5$	510	¢
г ODD 6	69	口 B
GND 7	78	\square

SN54HC280 . . . FH OR FK PACKAGE SN74HC280 . . . FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection
logic symbol

Pin numbers shown are for J and N packages.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table IV, page 2-6.
switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & C_{L}=15 \mathrm{pF}, \\ & R_{L}=2 \mathrm{k} \Omega, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} . \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$			UNIT
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	SN54HC280	SN74HC280	
			MIN TYP MAX	MIN TYP MAX	MIN MAX	MIN MAX	
tPLH	Data	Σ Even					ns
tPHL							
tPLH	Data	Σ Odd					ns
tPHL							
C_{pd}	Power dissipation capacitance			No load, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		pF typ	

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

- Multiplexed I/O Ports Provide Improved Bit Density
- Four Modes of Operation: Hold (Store), Shift Right, Shift Left, and Load Data
- High-Current 3-State Outputs Drive Bus Lines Directly or up to 15 LSTTL Loads
- Can Be Cascaded for N-Bit Word Lengths
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These eight-bit universal registers feature multiplexed I/O ports to achieve full eight-bit data handling in a single 20-pin package. 'HC299 applications are as stacked or push-down registers, buffer storage, and accumulator registers.

Two function-select inputs and two output control inputs can be used to choose the modes of operation listed in the function table.

Synchronous parallel loading is accomplished by taking both function-select lines, S0 and S1, high. This places the three-state outputs in a high-impedance state, which permits data that is applied on the I/O ports to be clocked into the register. Reading out of this register can be accomplished while the outputs are enabled in any mode. A direct overriding input is provided to clear the register whether the outputs are enabled or off. Taking either of the output controls, $\overline{\mathrm{G}} 1$ or $\overline{\mathrm{G}} 2$, high disables the outputs but this has no effect on shifting or storage of data.
The SN54HC299 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC299 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
SN54HC299 . . . JPACKAGE
SN74HC299 ... OR N PACKAGE
(TOP VIEW)

So [1	\cup_{20}	V_{C}
G1 \square_{2}	19	S1
G2 ${ }^{\text {G }}$	18	SL
$\mathrm{G} / \mathrm{O}_{\mathrm{G}} \mathrm{H}_{4}$	17	$\mathrm{O}_{\mathrm{H}^{\prime}}$
E/ $\mathrm{OE}_{\mathrm{E}} \square_{5}$	16	$\mathrm{H} / \mathrm{O}_{\mathrm{H}}$
$\cdots / Q_{C}-6$	15	$\mathrm{F} / \mathrm{OF}_{\mathrm{F}}$
$\mathrm{AO}_{A} \mathrm{O}_{4} 7$	14	D/ O_{D}
$\mathrm{a}_{\mathrm{A}^{\prime}} \square^{8}$	13	$\square B / O_{B}$
$\overline{\text { CLR }} \square^{\square} 9$	12	$\square \mathrm{CLK}$
GND 10	11	- SR

SN54HC299 . . FH OR FK PACKAGE SN74HC299 . . FH OR FN PACKAGE (TOP VIEW)

Pin numbers shown are for J and N packages.

TYPES SN54HC299, SN74HC299
 8-BIT UNIVERSAL SHIFT/STORAGE REGISTERS
 WITH 3-STATE OUTPUTS

FUNCTION TABLE

\dagger When one or both output controls are high the eight input/output terminals are disabled to the high-impedance state; however, sequential operation or clearing of the register is not affected.
a... $h=$ the level of the steady-state input at inputs A through H, respectively. These data are loaded into the flip-flops while the flip-flop outputs are isolated from the input/output terminals.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table III, page 2-5.
timing requirements (supplement to recommended operating conditions)

TYPES SN54HC299, SN74HC299 8-BIT UNIVERSAL SHIFT/STORAGE REGISTERS WITH 3-STATE OUTPUTS

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & C_{L}=\text { Note } 2, \\ & R_{L}=\text { Note } 2, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$			$V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}$ See Note 1							UNIT
						$\mathrm{T}_{A}=25^{\circ} \mathrm{C}$			SN54HC299 SN74HC299				
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$													MHz
tPLH	CLK	$\mathrm{O}_{A^{\prime}}$ or $\mathrm{O}_{H^{\prime}}$											ns
tPHL													
tPHL	CLT	$\mathrm{O}_{A^{\prime}}$ or $\mathrm{O}_{H^{\prime}}$											ns
tPLH	CLK	a_{A} thru a_{H}											ns
tPHL													
tPHL	CLR	a_{A} thru a_{H}											ns
tPZH	$\overline{\mathrm{G}} 1 . \mathrm{G} \mathbf{2}$	O_{A} thru O_{H}											ns
tPZL													
tPHZ	$\overline{\mathbf{G}} 1 . \overline{\mathrm{G}} 2$	O_{A} thru O_{H}											ns
tPLZ													
tPZH	S0, S1	O_{A} thru O_{H}											ns
tPZL													
tPHZ	So. S1	O_{A} thru O_{H}											ns
tPLZ													
C_{pd}	Power dissipation capacitance					No load, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$					pF typ		

NOTES: 1. For load circuit and voltage waveforms, see page 1-14.
2. $C_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ for outputs $\mathrm{Q}_{A^{\prime}}$ or $Q_{H^{\prime}}$;
$C_{L}=45 \mathrm{pF}, R_{L}=667 \Omega$ for outputs Q_{A} thru Q_{H}

TYPES SN54HC323, SN74HC323 8-BIT UNIVERSAL SHIFT/STORAGE REGISTERS WITH 3-STATE OUTPUTS

D2684, DECEMBER 1982

- Multiplexed I/O Ports Provide Improved Bit Density
- Four Modes of Operation: Hold (Store), Shift Right, Shift Left, and Load Data
- High-Current 3-State Outputs Drive Bus Lines Directly or up to 15 LSTTL Loads
- Can Be Cascaded for N-Bit Word Lengths
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These eight-bit universal registers feature multiplexed I/O ports to achieve full eight bit data handling in a single 20-pin package. 'HC323 applications are as stacked or push-down registers, buffer storage, and accumulator registers.

Two function-select inputs and two output control inputs can be used to choose the modes of operation listed in the function table.

Synchronous parallel loading is accomplished by taking both function-select lines S0 and S1, high. This places the three-state outputs in a high-impedance state, which permits data that is applied on the I/O ports to be clocked into the register. Reading out of this register can be accomplished while the outputs are enabled in any mode. The clear function is synchronous, and a low level at the clear input clears the register on the next low-to-high transition of the clock.

The SN54HC323 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC323 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

SN54HC323 . . . J PACKAGE SN74HC323 . . J OR N PACKAGE (TOP VIEW)

SN54HC323 . . . FH OR FK PACKAGE SN74HC323 . . . FH OR FN PACKAGE (TOP VIEW)

logic symbol

Pin numbers shown are for J and N packages.

TYPES SN54HC323, SN74HC323 8-BIT UNIVERSAL SHIFT/STORAGE REGISTERS WITH 3-STATE OUTPUTS

FUNCTION TABLE

MODE	INPUTS								INPUTS/OUTPIJTS								OUTPUTS	
	Clear	$\begin{gathered} \text { FUNCTION } \\ \text { SELECT } \end{gathered}$		OUTPUT CONTROL		CLOCK	SERIAL SL SR		$A / Q_{A} B / Q_{B} C / Q_{C} D / Q_{D} E / Q_{E} F / Q_{F} G / Q_{G} H / Q_{H}$								$\mathbf{O}_{\mathbf{A}^{\text {. }} \text {. }}$	$\mathbf{O}_{\mathbf{H}}{ }^{\text {, }}$
		S1	SO	G̈1t	$\overline{\mathbf{G}} 2 \dagger$													
Clear	L	X	L	L	L	1			L	L	L	L	L	L	L	L	L	L
	L	L	X		L	1			L	L	L	L	L	L	L	L	L	L
	L	H	H	X	X	1	X	x	x	x	x	x	x	x	X	\times	L	L
Hold	H	L	L	L	L	X	X	x	$\mathrm{Q}_{\text {AO }}$	$\mathrm{Q}_{\text {B0 }}$	O_{CO}	$Q_{\text {DO }}$	O_{EO}	O_{FO}	Q_{GO}	O_{HO}	$\mathrm{a}_{\text {AO }}$	O_{HO}
	H	X	X	L	L	L	X	X	$\mathrm{O}_{\text {AO }}$	O_{BO}	$\mathrm{a}_{\text {co }}$	$Q_{\text {DO }}$	$\mathrm{O}_{\text {EO }}$	O_{FO}	Q_{GO}	O_{HO}	$\mathrm{O}_{\text {AO }}$	O_{HO}
Shift Right	H	L	H	L.	L	i			H	$Q_{\text {An }}$	O_{Bn}	O_{C}	On	QEn	O_{Fn}	O_{G}	H	O_{Gn}
	H	L	H	L	L	1	X	L	L	$\mathrm{O}_{\text {An }}$	O_{Bn}	$Q_{\text {cn }}$	$Q_{\text {Dn }}$	O_{En}	Q_{Fn}	Q_{Gn}	L	O_{Gn}
Shift Left	H	H	L	L	L	1	H	X	O_{Bn}	Q_{C}	ODn	Q_{En}	O_{Fn}	Q_{G}	O_{Hn}	H	C_{Bn}	H
	H	H	L	L	L	1	L	X	O_{Bn}	Q_{C}	O_{Dn}	QEn	O_{Fn}	Q_{Gn}	O_{Hn}	L	O_{Bn}	L
Load	H	H	H	X	X	1	X	X	a	b	c	d	e	1	g	h	a	h

\dagger When one or both output controls are high the eight input/output terminals are disabled to the high-impedance state; however, sequential operation or clearing of the register is not affected.
a... $h=$ the tevel of the steady-state input at inputs A through H. respectively These data are loaded into the flip-flops while the flip-flop outputs are isolated from the input/output terminals.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table III, page 2-5.
timing requirements (supplement to recommended operating conditions)

TYPES SN54HC323, SN74HC323
 8-BIT UNIVERSAL SHIFT/STORAGE REGISTERS WITH 3-STATE OUTPUTS

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & C_{L}=\text { Note } 2, \\ & R_{L}=\text { Note } 2, \\ & T_{A}=25^{\circ} C \end{aligned}$	$V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} .$ See Note 1			UNIT
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	SN54HC323 SN74HC323		
			MIN TYP MAX	MIN TYP MAX	MIN MAX	MIN MAX	
$f_{\text {max }}$							MHz
tplH	CLK	$\mathrm{O}_{A^{\prime}}$ or $\mathrm{O}_{H^{\prime}}$					ns
tPHL							
tPLH	CLK	a_{A} thru O_{H}					ns
tPHL							
tPZH	$\overline{\mathrm{G}} 1 . \mathrm{G} 2$	$\mathrm{a}_{\text {A }}$ thru a_{H}					ns
tPZL							ns
tPHZ	$\overline{\mathrm{G}} 1 . \overline{\mathrm{G}} 2$	Q_{A} thru O_{H}					ns
tplZ							
tPZH	SO or S1	O_{A} thru $\mathrm{O}_{\mathbf{H}}$					ns
tpZL							
tPHZ	SO or S1	Q_{A} thru 0_{H}			.		ns
tPLZ							ns

2. $C_{L}=45 \mathrm{pF}$ and $\mathrm{R}_{L}=667 \Omega$ for outputs Q_{A} thru Q_{H};
$C_{L}=15 \mathrm{pF}$ and $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ for outputs $Q_{A^{\prime}}$ and $Q_{H^{\prime}}$.

- Inverting Versions of 'HC153

- Permits Multiplexing from N Lines to 1 Line

- Performs Parallel-to-Serial Conversion
- Strobe (Enable) Line Provided for Cascading (N Lines to n Lines)
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

Each of these data selectors/multiplexers contains inverters and drivers to supply fully complementary binary decoding data selection to the AND-OR-invert gates. Separate strobe inputs ($\overline{\mathrm{G}}$) are provided for each of the two four-line sections.

The SN54HC352 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC352 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

SELECT INPUTS		DATA INPUTS				STROBE	OUTPUT
B	A	CO	C1	C2	C3	$\overline{\mathbf{G}}$	Y
X	X	X	x	x	x	H	H
L	L	L	x	x	x	L	H
L	L	H	X	x	x	L	L.
L.	H	x	L	x	x	L	H
L	H	X	H	x	x	L	L
H	L	x	x	L	x	L	H
H	L	x	x	H	\times	L	L
H	H	x	x	x	L	L	H
H	H	X	X	\times	'H	L	L

Select inputs A and B are common to both sections.

SN54HC352 . . . J PACKAGE
SN74HC352 ...J OR N PACKAGE (TOP VIEW)

SN54HC352 . . . FH OR FK PACKAGE SN74HC352 ... FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection
logic symbol

Pin numbers shown are for J and N packages.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table III, page 2-5.

TYPES SN54HC352, SN74HC352
 DUAL 4-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \\ & \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}$ See Note 1			UNIT
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	SN54HC352 ${ }_{\text {SN74HC352 }}$		
			MIN TYP MAX	MIN TYP MAX	MIN MAX	MIN MAX	
tPLH	A or B	Y					ns
tPHL							
tPLH	Data (Any C)	Y					ns
tPHL							
tPLH	$\overline{\mathrm{G}}$	Y					ns
tPHL							

$\mathrm{C}_{\text {pd }}$	Power dissipation capacitance per data selector	No load, $\mathrm{T}_{\mathbf{A}}=\mathbf{2 5 ^ { \circ } \mathrm { C }}$	pF typ

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

- Inverting Versions of 'HC253

- Permits Multiplexing from \mathbf{N} Lines to 1 Line

- Performs Parallel-to-Serial Conversion
- High-Current Outputs Can Drive up to 15 LSTTL Loads
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

Each of these data selectors/multiplexers contains inverters and drivers to supply full binary decoding data selection to the AND-OR-invert gates. Separate strobe inputs (\bar{G}) are provided for each of the two four-line sections.

The three-state outputs can interface with and drive data lines of bus-organized systems. With all but one of the common outputs disabled (at a high-impedance state) the low-impedance of the single enable output will drive the bus line to a high or low logic level. Each output has its own strobe ($\overline{\mathrm{G}}$). The output is disabled when its strobe is high.

The SN54HC353 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC353 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

SN54HC353 . . . J PACKAGE SN74HC353... J OR N PACKAGE (TOP VIEW)

1 $\overline{\mathrm{G}}$-1	J_{16}	V_{Cc}
B \square^{2}	15	$2 \bar{G}$
1C3 ${ }^{\text {a }}$	14	A
1c2-4	13	2 C
$1 \mathrm{C1} \square^{5}$	12	2C2
1co 6	11	2C1
$1 \mathrm{Y} \square^{7}$	10	2 CO
GND 8	9	$\square 2 \mathrm{r}$

SN54HC353 . . . FH OR FK PACKAGE SN74HC353 .. . FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection

FUNCTION TABLE

SELECT INPUTS	DATA INPUTS					OUTPUT CONTROL	OUTPUT
B	A	CO	C1	C2	C3	G	Y
X	X	X	X	X	X	H	Z
L	L	L	X	X	X	L	H
L	L	H	X	X	X	L	L
L	H	X	L	X	X	L	H
L	H	X	H	X	X	L	L
H	L	X	X	L	X	L	H
H	L	X	X	H	X	L	L
H	H	X	X	X	L	L	H
H	H	X	X	X	H	L	L

[^32]logic symbol

Pin numbers shown are for J and N packages.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table III, page 2-5.

TYPES SN54HC353, SN74HC353

DUAL 4-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS WITH 3-STATE OUTPUTS
switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & C_{L}=45 \mathrm{pF}, \\ & R_{\mathrm{L}}=667 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \text {. }$ See Note 1						UNIT
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54HC353 ${ }_{\text {SN74HC353 }}$				
			MIN TYP MAX	MIN	TYP MAX	MIN	MAX	MIN	MAX	
tPLH	A or B	Y								ns
tPHL										
tPLH	Data (Any C)	Y								ns
tpHL										
tPZH	$\overline{\text { G }}$	Y								ns
tpZL										
tpHz	$\overline{\mathrm{G}}$	Y								ns
tPHL										
$\mathrm{C}_{\text {pd }}$	Power dissipation capacitance			No load, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$				pF typ		

[^33]- Transparent Latches on Data Select Inputs
- Transparent Data Registers
- High-Current 3-State Outputs Can Drive up to 15 LSTTL Loads
- Complementary Outputs
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These monolithic data selectors/multiplexers contain full on-chip binary decoding to select one of eight data sources. The data-select is stored in transparent latches that are enabled by a low level on pin $11, \overline{\mathrm{SC}}$. A similar enable for data is obtained by a low level on pin 9, $\overline{\mathrm{DC}}$.

The SN54HC354 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC354 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
logic symbol

SN54HC354 . . . J PACKAGE
SN74HC354 . . . J OR N PACKAGE (TOP VIEW)

D7 1	U_{20}	V_{CC}
D6 2	19	Y
D5 3	18	W
D4 4	17	G3
D3 ${ }^{5}$	16	G2
D2 6	15	G1
Di 7	14	so
D0 8	13	S1
$\overline{\mathrm{DC}} 9$	12	- 2
GND 10	11	$\overline{\mathrm{sc}}$

SN54HC354 . . . FH OR FK PACKAGE SN74HC354 ... FH OR FN PACKAGE (TOP VIEW)

Pin numbers shown are for J and N packages.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table III, page 2-5.

TYPES SN54HC354, SN74HC354
 8-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS/ TRANSPARENT REGISTERS WITH 3-STATE OUTPUTS

FUNCTION TABLE

INPUTS							OUTPUTS	
SELECT \dagger			DATA CONTROL	OUTPUT ENABLES				
S2	S1	So	$\overline{\mathbf{D C}}$	$\overline{\mathbf{G} 1}$	$\overline{\mathbf{G}} 2$	G3	W	Y
X	X	X	X	H	X	X	Z	2
x	X	x	x	X	H	x	Z	z
x	X	x	x	X	X	L	z	z
L	L	L	L	L	L	H	Do	D0
L	L	L	H	L	L	H	$\overline{\mathrm{D}} \mathrm{O}_{\mathrm{n}}$	DOn
L	L	H	L	L	L	H	D1	D1
L	L	H	H	L	L	H	D1n	D1n
L	H	L	L	L	L	H	D2	D2
L	H	L	H	L	L	H	$\overline{\mathrm{D}} \mathrm{n}^{\mathrm{n}}$	D2n
L	H	H	L	L	L.	H	D3	D3
L	H	H	H	L	L	H	$\overline{\mathrm{D}} \mathbf{3}_{\mathrm{n}}$	D3n
H	L	L	L	L	L	H	D4	D4
H	L	L	H	L	L	H	$\overline{\mathrm{D}} \mathrm{n}_{\mathrm{n}}$	D4n
H	L	H	L	L	L	H	$\overline{\text { D }}$	D5
H	L	H	H	L	L	H	$\overline{\mathrm{D}} 5_{\mathrm{n}}$	D5 n
H	H	L	L	L	L	H	$\overline{\text { D }} 6$	D6
H	H	L	H	L	L	H	$\overline{\mathrm{D}} \mathrm{n}_{\mathrm{n}}$	D6n
H	H	H	L	L	L	H	D7	D7
H	H	H	H	L	L	H	$\overline{\mathrm{D}} \mathrm{n}_{\mathrm{n}}$	D7n

$\mathrm{H}=$ high level (steady state)
$L=$ low level (steady state)
$X=$ irrelevant (any input, including transitions)
$Z=$ high-impedance state (off state)
I = transition from low to high level
DO . . . D7 = the level of stead-state inputs at inputs $D 0$ through D7, respectively
$D 0_{n} \ldots D 7_{n}=$ the level of steady state inputs at inputs $D 0$ through D7, respectively, before the most recent low-to-high transition of data control
\dagger This column shows the input address setup with $\overline{\mathrm{SC}}$ low.
timing requirements (supplement to recommended operating conditions)

			SN54HC354			SN74HC354			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	
${ }^{\text {tsu}}$	Setup time (with respect to 1 at pin 9)	High-level or low-level data							ns
th	Hold time (with respect to 1 at pin 9)	High-level or low-level data							ns

TYPES SN54HC354, SN74HC354 8-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS/ TRANSPARENT REGISTERS WITH 3-STATE OUTPUTS

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & C_{L}=45 \mathrm{pF}, \\ & R_{\mathrm{L}}=667 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			$V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}$ See Note 1							UNIT
						$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54HC354 SN74HC354				
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	D0-D7	Y											ns
tPHL													
tPLH		W											
tPHL													
tPLH	$\overline{\mathrm{DC}}$	Y											ns
tPHL													
tPLH		W											
tPHL													
tPLH	S0, S1, S2	Y											ns
tPHL													
tPLH		W											
tPHL													
tPLH	$\overline{\mathrm{SC}}$	Y											ns
tPHL													
tPLH		W											
tPHL													
tPZH	$\overline{\mathrm{G}} 1 . \overline{\mathrm{G}} 2$	Y											ns
tPZL													
tPHZ													
tPLZ													
tPZH		w											
tPZL													
tPHZ.													
tPLZ													
tPZH	G3	Y											ns
tPZL													
tPHZ													
tPLZ													
tPZH		w											
tPZL													
tphz													
tPLZ													
C_{pd}	Power dissipation capacitance					No load, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$					pF typ		

[^34]- Transparent Latches on Data Select Inputs
- Edge-Triggered Data Registers
- High-Current 3-State Outputs Can Drive up to 15 LSTTL Loads
- Complementary Outputs
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These monolithic data selectors/multiplexers contain full on-chip binary decoding to select one of eight data sources. The data-select address is stored in transparent latches that are enabled by a low level on pin 11, $\overline{\mathrm{SC}}$. The edgetriggered data registers are clocked by a low-to-high transition on pin 9, CLK. Both true and complementary outputs are available.
The SN54HC356 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC356 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
logic symbol

Pin numbers shown are for J and N packages.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table III, page 2-5.

FUNCTION TABLE

INPUTS							OUTPUTS	
SELECT \dagger			CLOCK	OUTPUT ENABLES				
S2	S1	S0		$\overline{\mathbf{G} 1}$	G2	G3	W	Y
X	X	X	X	H	X	X	z	Z
x	x	x	x	X	H	X	Z	2
X	X	x	x	X	X	L	z	z
L	L	L	1	L	L	H	DO	DO
L	L	L	H or L	L	L	H	$\overline{\mathrm{D}} \mathrm{O}_{\mathrm{n}}$	DO_{n}
L	L	H	1	L	L	H	D1	D1
L	L	H	HorL	L.	L	H	D1 ${ }^{\text {n }}$	D1 ${ }^{\text {n }}$
L	H	L	1	L	L	H	$\overline{\mathrm{D}} 2$	D2
L	H	L	H or L	L	L	H	$\overline{\mathrm{D}} 2^{\mathrm{n}}$	D2 ${ }^{\text {n }}$
L	H	H	1	L	L	H	D3	D3
L	H	H	Hor L	L	L	H	$\overline{\mathrm{D}} 3_{\mathrm{n}}$	D3n
H	L	L	1	L	L	H	$\overline{\mathrm{D}} 4$	D4
H	L	L	H or L	L	L	H	$\overline{\mathrm{D}} 4_{\mathrm{n}}$	D4n
H	L	H	1	L	L	H	D5	D5
H	L	H	Hor L	L	L	H	$\overline{\mathrm{D}} \mathrm{n}_{\mathrm{n}}$	DF_{n}
H	H	L	1	L	L	H	D6	D6
H	H	L	H or L	L	L	H	$\overline{\mathrm{D}} \mathrm{n}_{\mathrm{n}}$	D6n
H	H	H	+	L	L	H	D7	D7
H	H	H	H or L	L	L	H	$\overline{\mathrm{D}} \mathrm{n}_{\mathrm{n}}$	D7n

timing requirements (supplement to recommended operating conditions)

			SN54HC356			SN74HC356			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	
$f_{\text {clock }}$	Clock frequency								MHz
${ }^{\text {t }}$ u	Setup time before CLK \dagger	High-level or low-level data							ns
${ }^{\text {th }}$	Hold time after CLKI	High-level or low-level data							ns

TYPES SN54HC356, SN74HC356

8-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS/

EDGE-TRIGGERED REGISTERS WITH 3-STATE OUTPUTS

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

NOTE 1: For load circuit and voltage waveforms, see page 1-14.
－High－Current 3－State Outputs Drive Bus Lines，Buffer Memory Address Registers，or up to 15 LSTTL．Loads
－Choice of True or Inverting Outputs
－Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
－Dependable Texas Instruments Quality and Reliability
＇HC365，＇HC367 True Outputs ＇HC366，＇HC368 Inverting Outputs

description

These Hex buffers and line drivers are designed specifically to improve both the performance and density of three－state memory address drivers，clock drivers，and bus－oriented receivers and transmitters． The designer has a choice of selected combinations of inverting and noninverting outputs，symmetrical G（active－low control）inputs．

The SN54＇family is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ ．The SN74＇family is characterized for opera－ tion from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ ．
maximum ratings，recommended operating conditions， and electrical characteristics

See Table III，page 2－5．

SN54HC365，SN54HC366 ．．J PACKAGE SN74HC365，SN74HC366．．．J OR N PACKAGE （TOP VIEW）

$\overline{\mathrm{G}} 1 \square_{1}$	$U_{16} \square \mathrm{VCC}$
A $1 \mathrm{C}_{2}$	${ }_{15}$ ¢ G 2
Y $1 \square^{2}$	14 A6
A2 \square_{4}	13 Y 6
Y2 5	${ }_{12} \mathrm{~A} 5$
A3 6	${ }_{11} \mathrm{Y}_{5}$
Y3－7	${ }_{10}$ A4
GND 8	9］Y4

SN54HC367．SN54HC368 ．．FH OR FK PACKAGE SN74HC367，SN74HC368 ．．FH OR FN PACKAGE
（TOP VIEW）
『に号

SN54HC367，SN54HC368 ．．．JPACKAGE SN74HC367，SN74HC368 ．．．J OR N PACKAGE （TOP VIEW）

SN54HC365，SN54HC366 ．．．FH OR FK PACKAGE SN74HC368，SN74HC366 ．．．FH OR FN PACKAGE （TOP VIEW）

[^35]
TYPES SN54HC365 THRU SN54HC368, SN74HC365 THRU SN54HC368 HEX BUS DRIVERS WITH 3-STATE OUTPUTS

logic symbols
'HC365

HC367

Pin numbers shown are for J and N packages.
'HC365. 'HC367 switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=45 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}$ See Note 1						UNIT
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54HC365 SN54HC367		$\begin{array}{\|l\|} \hline \text { SN74HC365 } \\ \text { SN74HC367 } \\ \hline \end{array}$		
			MIN TYP MAX	MIN	TYP MAX	MIN	MAX	MIN	MAX	
tPLH	A	Y								ns
tpHL										
tPZH	$\overline{\mathrm{G}}$	Y								ns
tPZL										
tPHz	$\overline{\mathrm{G}}$	Y								ns
tPLZ										
C_{pd}	Power dissipation capacitance per driver			No load, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$				pF typ		

'HC366, 'HC368 switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=45 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}$ See Note 1						UNIT
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54HC366 SN54HC368		$\begin{aligned} & \text { SN74HC366 } \\ & \text { SN74HC368 } \end{aligned}$		
			MIN TYP MAX	MIN	TYP MAX	MIN	MAX	MIN	MAX	
tPLH	A	Y								ns
tPHL										
tPZH	$\overline{\mathrm{G}}$	Y								ns
tPZL										
tPHZ	$\overline{\mathrm{G}}$	Y								ns
tPLZ										
C_{pd}	Power dissipation capacitance per driver			No load, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$				pF typ		

[^36]
- 8 High-Current Latches in a Single Package

- High-Current 3-State True Outputs Can Drive up to 15 LSTTL Loads
- Full Parallel Access for Loading
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These 8-bit latches feature three-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing buffer registers, 1/O ports, bidirectional bus drivers, and working registers.

The eight latches of the 'HC373 are transparent D-type latches. While the enable (C) is high the Q outputs will follow the data (D) inputs. When the enable is taken low, the Q outputs will be latched at the levels that were set up at the D inputs.

An output-control input ($\overline{\mathrm{OC}}$) can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state the outputs neither load nor drive the bus lines significantly. The highimpedance third state and increased drive provide the capability to drive the bus lines in a bus-organized system without need for interface or pull-up components.

The output control $\overline{O C}$ does not affect the internal operations of the latches. Old data can be retained or new data can be entered while the outputs are off.

The SN54HC373 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC373 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE (EACH LATCH)

INPUTS			OUTPUT
$\mathbf{O C}$	ENABLE C	\mathbf{D}	\mathbf{Q}
L	H	H	H
L	H	L	L
L	L	X	Q_{O}
H	X	X	Z

SN54HC373 . . . J PACKAGE
SN74HC373 . . J J OR N PACKAGE
(TOP VIEW)

SN54HC373 . . . FH OR FK PACKAGE SN74HC373 . . . FH OR FN PACKAGE (TOP VIEW)

logic symbol

Pin numbers shown are for J and N packages.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table III, page 2-5.

TYPES SN54HC373, SN74HC373
 OCTAL D-TYPE TRANSPARENT LATCHES WITH 3-STATE OUTPUTS

timing requirements (supplement to recommended operating conditions)

	SN54HC373		SN74HC373	UNIT
	MIN NOM MAX	MIN NOM MAX		
	Pulse duration, enable C high			ns
$\mathrm{t}_{\mathbf{s u}}$	Setup time, data before enable Cl			ns
t_{h}	Hold time, data after enable Cl			ns

switching characteristics over recommended. operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & \mathrm{V}_{C C}=5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=45 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega, \\ & \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} .$ See Note 1						UNIT
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54HC373 ${ }^{\text {SN74HC373 }}$				
			MIN TYP MAX	MIN	TYP MAX	MIN	MAX	MIN	MAX	
tPLH	D	0								ns
tPHL										
tPLH	C	Any 0								ns
tPHL										
${ }^{\text {tPZH }}$	OC	Any 0								ns
tPZL										
tPHZ	OC	Any 0								ns
tPLZ										
C_{pd}	Power dissipation capacitance per latch			No load, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$				pF typ		

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

D latch signal conventions

It is TI practice to name the outputs and other inputs of a D-type latch and to draw its logic symbol based on the assumption of true data (D) inputs. Then outputs that produce data in phase with the data inputs are called Q and those producing complementary data are called $\overline{\mathrm{Q}}$. An input that causes a Q output to go high or a $\overline{\mathrm{Q}}$ output to go low is called Preset; an input that causes a $\overline{\mathrm{Q}}$ output to go high or a Q output to go low is called Clear. Bars are used over these pin names ($\overline{\mathrm{PRE}}$ and $\overline{\mathrm{CLR}}$) if they are active-low.

In some applications it may be advantageous to redesignate the data input $\overline{\mathrm{D}}$. In that case all the other inputs and outputs should be renamed as shown below. Also shown are corresponding changes in the graphical symbol. Arbitrary pin numbers are shown in parentheses.

Notice that Q and $\overline{\mathrm{Q}}$ exchange names, which causes Preset and Clear to do likewise. Also notice that the polarity indicators (\triangle) on $\overline{\text { PRE }}$ and $\overline{C L R}$ remain since these inputs are still active-low, but that the presence or absence of the polarity indicator changes at $\overline{\mathrm{D}}, \mathrm{Q}$, and $\overline{\mathrm{Q}}$. Of course pin $5(\overline{\mathrm{Q}})$ is still in phase with the data input $\overline{\mathrm{D}}$, but now both are considered active-low.

- 8 D-Type Flip-Flops in a Single Package
- High-Current 3-State True Outputs Can Drive up to 15 LSTTL Loads
- Full Parallel Access for Loading
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These 8-bit flip-flops feature three-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing buffer registers, 1/O ports, bidirectional bus drivers, and working registers.

The eight flip-flops of the 'HC374 are edge-triggered D-type flipflops. On the positive transition of the clock the Q outputs will be set to the logic levels that were set up at the D inputs.

An output-control input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a highimpedance state. In the high-impedance state the outputs neither load nor drive the bus lines significantly. The highimpedance third state and increased drive provide the capability to drive the bus lines in a bus-organized system without need for interface or pull-up components.
The output control (OC) does not affect the internal operation of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

The SN54HC374 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN 74 HC 374 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE (EACH FLIP-FLOP)

INPUTS			OUTPUT
OC	CLK	D	0
L	\uparrow	H	H
L	\uparrow	L	L
L	L	x	O_{0}
H	X	x	Z

SN54HC374 . . J JACKAGE
SN74HC374... J OR N PACKAGE
(TOP VIEW)

SN54HC374 . . FH OR FK PACKAGE SN74HC374 . . . FH OR FN PACKAGE (TOP VIEW)

logic symbol

Pin numbers shown are for J and N packages.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table III, page 2-5.

timing requirements (supplement to recommended operating conditions)

			SN54HC374			SN74HC374			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	
${ }^{\text {clock }}$	Clock frequency								MHz
t_{w}	Pulse duration	CLK high							ns
		CLK low							
$\mathrm{t}_{\text {Su }}$	Setup time, data before CLK Hold time, data after CLKI								ns
$t_{\text {h }}$									ns

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=45 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega, \\ & \mathrm{~T}_{\mathbf{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}$ See Note 1						UNIT
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54HC374 SN74HC374				
			MIN TYP MAX	MIN	TYP MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$										MHz
tPLH	CLK	0								ns
tPHL										
tPZH	$\overline{O C}$	0								ns
tPZL										
tPHZ	$\overline{O C}$	0								ns
tPLZ										
C_{pd}	Power dissipation capacitance per flip-flop			No load, $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$				pF typ		

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

D flip-flop signal conventions

It is Tl practice to name the outputs and other inputs of a D-type flip-flop and to draw its logic symbol based on the assumption of true data (D) inputs. Then outputs that produce data in phase with the data inputs are called Q and those producing complementary data are called $\overline{\mathrm{Q}}$. An input that causes a Q output to go high or a $\overline{\mathrm{Q}}$ output to go low is called Preset; an input that causes a $\overline{\mathrm{Q}}$ output to go high or a Q output to go low is called Clear. Bars are used over these pin names ($\overline{\mathrm{PRE}}$ and $\overline{\mathrm{CLR}}$) if they are active-low.

In some applications it may be advantageous to redesignate the data input $\overline{\mathrm{D}}$. In that case all the other inputs and outputs should be renamed as shown below. Also shown are corresponding changes in the graphical symbol. Arbitrary pin numbers are shown in parentheses.

Notice that Q and $\overline{\mathrm{Q}}$ exchange names, which causes Preset and Clear to do likewise. Also notice that the polarity indicators $\{\triangle$) on $\overline{P R E}$ and $\overline{C L R}$ remain since these inputs are still active-low, but that the presence or absence of the polarity indicator changes at \bar{D}, Q, and \bar{Q}. Of course $\operatorname{pin} \overline{(\bar{Q})}$ is still in phase with the data input \bar{D}, but now both are considered active-low.

- 'HC377 and 'HC378 Contain Eight and Six Flip-Flops, Respectively, with Single-Rail Outputs
- 'HC379 Contains Four Flip-Flops with Double-Rail Outputs

Individual Data Input to Each Flip-Flop

- Applications Include:

Buffer/Storage Registers
Shift Registers
Pattern Generators

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These circuits are positive-edge-triggered D-type flip-flops with an enable input. The 'HC377, 'HC378, and 'HC379 devices are similar to 'HC273, 'HC174, and 'HC175 respectively, but feature a common clock enable ($\overline{\mathrm{G}}$) instead of a common clear.

Information at the D inputs meeting the setup time requirements is transferred to the Q outputs on the positive-going edge of the clock pulse if \vec{G} is low. Clock triggering occurs at a particular voltage level and is not directly related to the transition of the positive-going pulse. When the clock input is at either the high or low level, the D input signal has no effect at the output. The circuits are designed to prevent false clocking by transitions at the $\overline{\mathrm{G}}$ input.

The SN54HC377, SN54HC378, and SN54HC379 are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC377, SN74HC378, and SN74HC379 are characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE
(EACH FLIP-FLOP)

INPUTS			OUTPUTS	
\bar{G}	CLOCK	DATA	Q	$\overline{\mathrm{O}} \dagger$
H	X	X	O_{0}	$\overline{\bar{O}_{0}}$
L	I	H	H	L
L	I	L	L	H
X	L	X	O_{0}	$\overline{\mathrm{O}}_{0}$

\dagger †'HC379 only

SN54HC377... FH OR FK PACKAGE SN74HC377 . . . FH OR FN PACKAGE (TOP VIEW)

SN54HC378 . . . J PACKAGE SN74HC378 ... J OR N PACKAGE (TOP VIEW)

G	J_{16}	$\square \mathrm{V}_{\mathrm{CC}}$
10.2	15	-60
10 ${ }^{3}$	14	6D
20-4	13	5D
20-5	12	50
3D 6	11	4D
$30 \square 7$	10	40
GND \square^{8}	9	$\square \mathrm{CLK}$

SN54HC378 .. FH OR FK PACKAGE SN74HC378 . . . FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection

TYPES SN54HC377, SN54HC378, SN54HC379
SN74HC377, SN74HC378, SN74HC379
OCTAL, HEX, AND QUAD D-TYPE FLIP-FLOPS WITH ENABLE

SN54HC379 . . . J PACKAGE SN74HC379 . . J OR N PACKAGE
(TOP VIEW)

SN54HC379 . . . FH OR FK PACKAGE SN74HC379 . . FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection
logic symbols
'HC377

'HC378

'HC379

Pin numbers shown are for J and N packages.
maximum ratings, recommended operating conditions, and electrical characteristics
'HC377, 'HC378: See Table IV, page 2-6.
'HC379: See Table II, Page 2-4.
timing requirements (supplement to recommended operating conditions)

			SN54HC'			SN74HC'			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	
$f_{\text {clock }}$	Clock frequency								MHz
${ }^{\text {tw }}$	Pulse duration, CLK high or low								ns
${ }^{\text {tsu }}$	Setup time before CLKI	D							ns
		$\overline{\mathrm{G}}$ low							
		$\overline{\mathbf{G}}$ high							
th	Hold time after CLKI								ns

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & C_{L}=15 \mathrm{pF}, \\ & R_{L}=2 \mathrm{k} \Omega, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$			$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} . \\ & C_{L}=60 \mathrm{pF} \end{aligned}$							UNIT
						$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54HC'		SN74HC'		
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$													MHz
PPLH	CLK	Any											ns
tPHL													
C_{pd}	Power dissipation capacitance per flip-flop					No load, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$					pF typ		

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs

- Dependable Texas Instruments Quality and Reliability

description

These devices contain four independent 2 -input ExclusiveOR gates. They perform the boolean functions $Y=A \oplus B=\bar{A} B+A \bar{B}$ in positive logic.

A common application is as a true/complement element. If one of the inputs is low, the other input will be reproduced in true form at the output. If one of the inputs is high, the signal on the other input will be reproduced inverted at the output.

The SN54HC386 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC386 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

logic symbol

SN54HC386 . . . J PACKAGE
SN74HC386 . . J OR N PACKAGE (TOP VIEW)

SN54HC386 .. . FH OR FK PACKAGE SN74HC386 ... FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection

Pin numbers shown are for J and N packages.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table I, page 2-3.
switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} . \\ & C_{L}=50 \mathrm{pF} \end{aligned}$						UNIT
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54HC386		SN74HC386		
			MIN TYP MAX	MIN	TYP MAX	MIN	MAX	MIN	MAX	
tPLH	A or B	Y								ns
tPHL	(other input low)									
tPLH	A or B	Y								ns
tPLH	(other input high)									
$\mathrm{C}_{\text {pd }}$	Power dissipation capacitance per gate			No load, $\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$				pF typ		

NOTE 1: For load circuit and voltage waveforms, see pages 1-14.

- 'HC390 . . Individual Clocks for A and B

Flip-Flops Provide Dual $\div 2$ and $\div 5$ Counters

- 'HC393 . . . Dual 4-Bit Binary Counter with Individual Clocks
- All Have Direct Clear for Each 4-Bit Counter
- Dual 4-Bit Versions Can Significantly Improve System Densities by Reducing Counter Package Count by 50\%
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

Each of these monolithic circuits contains eight flipflops and additional gating to implement two individual four-bit counters in a single package. The 'HC390 incorporates dual divide-by-two and divide-by-five counters, which can be used to implement cycle lengths equal to any whole and/or cumulative multiples of 2 and/or 5 up to divide-by-100. When connected as a bi-quinary counter, the separate divide-by-two circuit can be used to provide symmetry (a square wave) at the final output stage. The 'HC393 comprises two independent four-bit binary counters each having a clear and a clock input. N -bit binary counters can be implemented with each package providing the capability of divide-by-256. The 'HC390 and 'HC393 have parallel outputs from each counter stage so that any submultiple of the input count frequency is available for system-timing signals.

The SN54HC390 and SN54HC393 are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC390 and SN74HC393 are characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

SN54HC390 . . . J PACKAGE
SN74HC390 . . J J OR N PACKAGE
(TOP VIEW)

SN54HC390 . . FH OR FK PACKAGE SN74HC390 . . . FH OR FN PACKAGE (TOP VIEW)

SN54HC393 . . . J PACKAGE
SN74HC393 . . J J OR N PACKAGE (TOP VIEW)

1CLK 1	$1 \cup_{14}$	v_{CC}
1CLR 2	213	2CLK
$10_{A} \square_{3}$	12	2CLR
$10_{B} \square^{4}$	11	$2^{20} A$
10^{1}	10	$2^{2} 0_{B}$
$10_{D} 6$	9	${ }^{20} \mathrm{C}$
GND $\square 7$	7 - 8	20D

SN54HC393 . . FH OR FK PACKAGE SN74HC393 . . . FH OR FN PACKAGE (TOP VIEW)

TYPES SN54HC390, SN54HC393, SN74HC390, SN74HC393
 DUAL 4-BIT DECADE AND BINARY COUNTERS

logic symbols

Pin numbers shown are for J and N packages.
'HC390
BCD COUNT SEQUENCE
(EACH COUNTER)
(See Note A)

COUNT	OUTPUT			
	$\mathbf{Q}_{\text {D }}$	$\mathbf{Q}_{\mathbf{C}}$	$\mathbf{Q}_{\mathbf{B}}$	$\mathbf{Q}_{\mathbf{A}}$
\mathbf{O}	L	L	L	L
1	L	L	L	H
2	L	L	H	L
3	L	L	H	H
4	L	H	L	L
5	L	H	L	H
6	L	H	H	L
7	L	H	H	H
8	H	L	L	L
9	H	L	L	H

FUNCTION TABLES
'HC390
BI-QUINARY (5-2)
(EACH COUNTER)
(See Note B)

COUNT	OUTPUT			
	$\mathbf{Q}_{\mathbf{A}}$	$\mathbf{Q}_{\mathbf{D}}$	$\mathbf{Q}_{\mathbf{C}}$	$\mathbf{Q}_{\mathbf{B}}$
$\mathbf{0}$	L	L	L	L
1	L	L	L	H
2	L	L	H	L
3	L	L	H	H
4	L	H	L	L
5	H	L	L	L
6	H	L	L	H
7	H	L	H	L
8	H	L	H	H
9	H	H	L	L

NOTES: A. Output Q_{A} is connected to input CKB for BCD count.
B. Output Q_{D} is connected to input CKA for bi-quinary count.

COUNT SEQUENCE
(EACH COUNTER)

COUNT	OUTPUT			
	$\mathbf{Q}_{\mathbf{D}}$	$\mathbf{Q}_{\mathbf{C}}$	$\mathbf{Q}_{\mathbf{B}}$	$\mathbf{a}_{\mathbf{A}}$
\mathbf{O}	L	L	L	L
1	L	L	L	H
2	L	L	H	L
3	L	L	H	H
4	L	H	L	L
5	L	H	L	H
6	L	H	H	L
7	L	H	H	H
8	H	L	L	L
9	H	L	L	H
10	H	L	H	L
11	H	L	H	H
12	H	H	L	L
13	H	H	L	H
14	H	H	H	L
15	H	H	H	H

maximum ratings, recommended operating conditions, and electrical characteristics
See Table IV, page 2-6.

TYPES SN54HC390, SN54HC393, SN74HC390, SN74HC393 DUAL 4-BIT DECADE AND BINARY COUNTERS

timing requirements (supplement to recommended operating conditions)

			SN54HC390 SN54HC393			$\begin{aligned} & \hline \text { SN74HC390 } \\ & \text { SN74HC393 } \\ & \hline \end{aligned}$			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	
${ }^{\text {f }}$ clock	Clock frequency	CKA or CLK							MHz
		CKB							
${ }^{\text {tw }}$	Pulse duration	CKA or CLK high or low							ns
		CKB high orlow							
		CLR high							
$\mathrm{t}_{\text {su }}$	Setup time, clear inactive								ns

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & \mathrm{V}_{C C}=5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} . \\ & C_{L}=50 \mathrm{pF} \end{aligned}$						UNIT
				$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$		SN54HC'		SN74HC'		
			MIN TYP MAX	MIN	TYP MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$	CKA or CLK	$\mathrm{O}_{\text {A }}$								MHz
	CKB	O_{B}								
tPLH	CKA or CLK	O_{A}								ns
tPHL										
tPLH	CKA or CLE	$\begin{aligned} & \mathrm{Q}_{\mathrm{C}} \text { of } \mathrm{HC} 390 \\ & \mathrm{Q}_{\mathrm{D} \text { of }} \mathrm{HC} 393 \\ & \hline \end{aligned}$								ns
tPHL										
tPLH	CKB	O_{B}								ns
tPHL										
tPLH	CKB	0_{C}								ns
tPHL										
tPLH	CKB	Q_{D}								ns
tPHL										
tPHL	CLR	Any								ns
$\mathrm{C}_{\text {pd }}$	Power dissipation capacitance per counter			No load, $\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$				pF typ		

[^37]
Retriggerable for Very Long Output Pulses,

 Up to 100\% Duty Cycle- Overriding Clear Terminates Output Pulse
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These dc-triggered multivibrators feature output-pulse-duration control by two methods. The basic pulse duration is programmed by selection of external resistance and capacitance values. Once triggered, the basic pulse duration may be extended by retriggering the gated low-level-active (A) or high-level-active (B) inputs, or be reduced by use of the overriding clear. Figure 1 illustrates pulse control by retriggering and early clear.

The B input is a Schmitt trigger enabling jitter-free triggering from input signals with slow transition rates.

The SN54HC423 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC423 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

INPUTS		OUTPUTS		
CLEAR	\mathbf{A}	\mathbf{B}	\mathbf{Q}	$\overline{\mathbf{0}}$
\mathbf{L}	\mathbf{X}	\mathbf{X}	L	\mathbf{H}
\mathbf{X}	\mathbf{H}	\mathbf{X}	\mathbf{L}^{*}	\mathbf{H}^{*}
\mathbf{X}	\mathbf{X}	\mathbf{L}	\mathbf{L}^{*}	\mathbf{H}^{*}
\mathbf{H}	\mathbf{L}	1	Ω	Ψ
\mathbf{H}	1	\mathbf{H}	Ω	$工$

*These are the logic levels the outputs will take on after the completion of any pulse already started.

SN54HC423 . . . J PACKAGE
SN74HC423 . . . J OR N PACKAGE (TOP VIEW)

$1 \mathrm{~A} \square 1$	$1 \square_{16}$	V_{CC}
18 C	215	$1 \mathrm{R}_{\text {ext }} / \mathrm{C}_{\text {ext }}$
$1 \overline{\text { CLR }} 3$	314	$1 \mathrm{C}_{\mathrm{ext}}$
$1 \overline{0}$	413	10
20-5	512	$2 \overline{0}$
$2 \mathrm{c}_{\text {ext }} 6$	611	- $2 \overline{C L R}$
2R $\mathbf{e x t} / \mathrm{C}_{\text {ext }} \square 7$	710	2B
GND 8	89	$2 A$

SN54HC423 . . FH OR FK PACKAGE SN74HC423 . . FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection
logic symbol

Pin numbers shown are for J and N packages.

Texas Instruments
 incorporated

POST OFFICE BOX 225012 - DALLAS, TEXAS 75265

TYPES SN54HC423, SN74HC423 dUAL RETRIGGERABLE MONOSTABLE MULTIVIBRATORS

FIGURE 1-TYPICAL INPUT/OUTPUT PULSES
maximum ratings, recommended operating conditions, and electrical characteristics
See Table IV, page 2-6.
Note: The minimum recommended supply voltage for this device is 3 V .
timing requirements (supplement to recommended operating conditions)

		SN54HC423		SN74HC423		UNIT
	MIN NOM MAX	MIN NOM MAX				
t_{w}	Pulse duration, A low, B high, or CLR low			ns		
$\mathrm{C}_{\text {ext }}$	External timing capacitance			$\mu \mathrm{F}$		
$\mathrm{R}_{\text {ext }}$	External timing resistance			$\mathrm{k} \Omega$		

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

[^38]- Individual Clock, Direct Clear, and Set-to-9 Inputs for Each Decade Counter
- Dual Counters Can Significantly Improve System Densities as Package Count Can Be Reduced by 50\%
Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

Each of these monolithic circuits contains eight master-slave flip-flops and additional gating to implement two individual 4-bit decade counters in a single package. Each decade counter has individual clock, clear, and set-to-9 inputs. BCD count sequences of any length up to divide-by- 100 may be implemented with a single 'HC490. The counters have parallel outputs from each counter stage so that submultiples of the input count frequency are available for system timing signals.

The SN54HC490 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC490 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

SN54HC490 . . . FH OR FK PACKAGE SN74HC490 . . . FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection
logic symbol

Pin numbers shown are for J and N packages.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table IV, page 2-6.

TYPES SN54HC490, SN74HC490 DUAL 4-BIT DECADE COUNTERS

timing requirements (supplement to recommended operating conditions)

		SN54HC490			SN74HC490			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
$\mathrm{f}_{\text {clock }}$	Clock frequency							MHz
t_{w}	Pulse duration (any input)							ns
${ }_{\text {tsu }}$	Setup time, clear or set-to-9 inactive							ns

switching, characteristics over recommended operating free-air temperature range (unless otherwise noted)

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

- 8 Latches In a Single Package

- High-Current 3-State Inverting Outputs Can Drive up to 15 LSTTL Loads
- Full Parallel Access for Loading
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These 8-bit latches feature three-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

The eight latches of the 'HC533 are transparent D-type latches. While the enable (C) is high, the $\overline{\mathrm{Q}}$ outputs will follow the complements of the D inputs. When the enable is taken low, the $\overline{\mathrm{Q}}$ outputs will be latched at the inverses of the levels that were set up at the D inputs. The 'HC533 is functionally equivalent to the 'HC373 except for having inverted outputs.

An output-control ($\overline{\mathrm{OC}}$) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state the outputs neither load nor drive the bus lines significantly. The highimpedance third state and increased drive provide the capability to drive the bus lines in a bus-organized system without need for interface or pull-up components.

The output control does not affect the internal operation of the latches. Old data can be retained or new data can be entered while the outputs are off.

The SN54HC533 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC533 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE (EACH LATCH)

INPUTS			$\begin{gathered} \text { OUTPUT } \\ \overline{0} \end{gathered}$
$\overline{\mathbf{O C}}$	ENABLE C	D	
L	H	H	L
L	H	L	H
L	L	X	$\overline{\mathrm{a}}_{0}$
H	X	X	z

SN54HC533 . . . J PACKAGE
SN74HC533 . . J OR N PACKAGE (TOP VIEW)

SN54HC533 . . . FH OR FK PACKAGE SN74HC533 . . FH OR FN PACKAGE (TOP VIEW)

logic.symbol

Pin numbers shown are for J and N packages.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table III, page 2-5.

Texas Instruments

INCORPORATED
POST OFFICE BOX 225012 - DALLAS, TEXAS 75265

TYPES SN54HC533, SN74HC533 OCTAL D-TYPE TRANSPARENT LATCHES WITH 3-STATE OUTPUTS

timing requirements (supplement to recommended operating conditions)

		SN54HC533			SN74HC533			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
${ }^{\text {c }}$ clock	Clock frequency							MHz
tw	Pulse duration, enable C high							ns
$\mathrm{t}_{\text {su }}$	Setup time, data before enable Cl							ns
$t_{\text {h }}$	Hold time, data after enable C \downarrow							ns

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=45 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \\ & \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V},$ See Note 1						UNIT
				$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$		SN54HC533 ${ }^{\text {SN74HC533 }}$				
			MIN TYP MAX	MIN	TYP MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$										MHz
tPLH	D	$\overline{\mathrm{Q}}$								ns
tPHL										
${ }_{\text {tPLH }}$	C	Any								ns
tPHL										
tPZH	$\overline{O C}$	Any								ns
tPZL										
tPHZ	$\overline{\text { OC }}$	Any								ns
tPLZ										
C_{pd}	Power dissipation capacitance per latch			No load, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$				pF typ		

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

D latch signal conventions

It is $T I$ practice to name the outputs and other inputs of a D-type latch and to draw its logic symbol based on the assumption of true data (D) inputs. Then outputs that produce data in phase with the data inputs are called Q and those producing complementary data áre called $\overline{\mathrm{D}}$. An input that causes a Q output to go high or a $\overline{\mathrm{Q}}$ output to go low is called Preset; an input that causes a $\overline{\mathrm{Q}}$ output to go high or a Q output to go low is called Clear. Bars are used over these pin names ($\overline{\mathrm{PRE}}$ and $\overline{\mathrm{CLR}}$) if they are active-low.
In some applications it may be advantageous to redesignate the data input $\overline{\mathrm{D}}$. In that case all the other inputs and outputs should be renamed as shown below. Also shown are corresponding changes in the graphical symbol. Arbitrary pin numbers are shown in parentheses.

Notice that Q and $\overline{\mathrm{Q}}$ exchange names, which causes Preset and Clear to do likewise. Also notice that the polarity indicators (\triangle) on $\overline{\operatorname{PRE}}$ and $\overline{C L R}$ remain since these inputs are still active-low, but that the presence or absence of the polarity indicator changes at \bar{D}, Q, and \bar{Q}. Of course pin $5(\overline{\mathrm{Q}})$ is still in phase with the data input $\overline{\mathrm{D}}$, but now both are considered active-low.

- High-Current 3-State Inverting Outputs Can Drive up to 15 LSTTL Loads

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs

- Dependable Texas Instruments Quality and Reliability

description

These 8-bit flip-flops feature three-state outputs designed specifically for driving highly capacitive or relatively low impedance loads. They are particularly attractive for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

The eight flip-flops of the 'HC534 are edge-triggered D-type flipflops. On the positive transition of the clock, the $\overline{\mathrm{Q}}$ outputs will be set to the complement of the logic states that were set up at the D inputs. The 'HC534 is functionally equivalent to the 'HC374 except for having inverted outputs.

An output-control input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a highimpedance state. In the high-impedance state the outputs neither load nor drive the bus lines significantly. The highimpedance third state and increased drive provide the capability to drive the bus lines in a bus-organized system without need for interface or pull-up components.

The output control does not affect the internal operation of the flip-flops. Old data can be retained or new data can be entered while the outputs are off.

The SN54HC534 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC534 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE (EACH FLIP-FLOP)

INPUTS			OUTPUT
$\mathbf{O C}$	CLK	\mathbf{D}	$\overline{\mathbf{Q}}$
L	\uparrow	H	\mathbf{L}
L	\uparrow	L	H^{2}
L	L	X	$\overline{\mathrm{Q}}_{\mathrm{O}}$
H	X	X	Z

SN54HC534 . . . J PACKAGE SN74HC534 ... J OR N PACKAGE (TOP VIEW)

$\overline{\mathrm{OC}}$	$\mathrm{V}_{20} \mathrm{JvCc}$
$1 \mathrm{C}{ }^{\text {a }}$	${ }_{19}{ }^{\text {® }} 8 \overline{0}^{\text {a }}$
$10{ }^{-3}$	18 -8D
$20{ }^{2}$	17 ¢7
$2 \bar{\square}{ }^{5}$	$16 \bigcirc 7$
30̄-6	15 - $6 \bar{\square}$
30 -7	14 60
4 D 8	13 - 50
$4 \overline{\mathrm{a}}$-9	12 - ${ }^{50}$
GND 10	11 - ${ }^{\text {CLK }}$

SN54HC534 . . . FH OR FK PACKAGE SN74HC534 ... FH OR FN PACKAGE (TOP VIEW)

logic symbol

Pin numbers shown are for J and N packages.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table III, page 2-5.

Texas Instruments

INCORPORATED

TYPES SN54HC534, SN74HC534 OCTAL D-TYPE EDGE-TRIGGERED FLIP-FLOPS WITH 3-STATE OUTPUTS

timing requirements (supplement to recommended operating conditions)

			SN54HC534			SN74HC534			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	
${ }^{\text {clock }}$	Clock frequency								MHz
		CLK high							
iw	Pulse duration	CLK low							ns
$\mathrm{t}_{\text {su }}$	Setup time, data before CLK				.				ns
th	Hold time, data after CLKI								ns

switching characteristics over recommended operating free-air temperature range lunless otherwise noted)

PARAMETER	FROM (INPUT)	ro (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=45 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V},$ See Note 1						UNIT
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54HC534 ${ }^{\text {SN74HC534 }}$				
			MIN TYP MAX	MIN	TYP MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$										MHz
tPLH	CLK	Any								ns
tPHL										
tPZH	$\overline{O C}$	Any								ns
tPZL										
tPHZ	$\overline{O C}$	Any								ns
tPLZ										
C_{pd}	Power dissipation capacitance per flip-flop			No load, $\mathrm{T}_{\mathbf{A}}=25^{\circ} \mathrm{C}$				pF typ		

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

D flip-flop signal conventions

It is TI practice to name the outputs and other inputs of a D-type flip-flop and to draw its logic symbol based on the assumption of true data (D) inputs. Then outputs that produce data in phase with the data inputs are called Q and those producing complementary data are called $\overline{\mathrm{Q}}$. An input that causes a Q output to go high or a $\overline{\mathrm{Q}}$ output to go low is called Preset; an input that causes a $\overline{\mathrm{Q}}$ output to go high or a Q output to go low is called Clear. Bars are used over these pin names ($\overline{\mathrm{PRE}}$ and $\overline{\mathrm{CLR}}$) if they are active-low.
In some applications it may be advantageous to redesignate the data input $\overline{\mathrm{D}}$. In that case all the other inputs and outputs should be renamed as shown below. Also shown are corresponding changes in the graphical symbol. Arbitrary pin numbers are shown in parentheses.

Notice that Q and $\overline{\mathrm{Q}}$ exchange names, which causes Preset and Clear to do likewise. Also notice that the polarity indicators () on $\overline{\text { PRE }}$ and $\overline{C L R}$ remain since these inputs are still active-low, but that the presence or absence of the polarity indicator changes at \bar{D}, Q, and \bar{Q}. Of course pin $5(\overline{\mathrm{Q}})$ is still in phase with the data input $\overline{\mathrm{D}}$, but now both are considered active-low.

TYPES SN54HC563, SN74HC563 OCTAL D-TYPE TRANSPARENT LATCHES WITH 3-STATE OUTPUTS

D2684, DECEMBER 1982

- High-Current 3-State Outputs Drive Bus-Lines Directly or up to 15 LSTTL Loads
- Bus-Structured Pinout
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These 8-bit latches feature three-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

The eight latches are transparent D-type latches. While the enable (C) is high the $\overline{\mathrm{Q}}$ outputs will follow the complements of data (D) inputs. When the enable is taken low the outputs will be latched at the inverses of the levels that were set up at the D inputs.

An output-control input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a highimpedance state. In the high-impedance state the outputs neither load nor drive the bus lines significantly. The highimpedance state and increased high-logic level provide the capability to drive the bus lines in a bus-organized system without need for interface or pull-up components.
The output control $(\overline{\mathrm{OC}})$ does not affect the internal operation of the latches. Old data can be retained or new data can be entered while the qutputs are in the high-impedance state.

The SN54HC563 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC563 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE
(Each Latch)

INPUTS			$\begin{aligned} & \text { OUTPUT } \\ & \overline{\mathbf{0}} \end{aligned}$
ENABLE			
$\overline{\mathrm{OC}}$	C	D	
L	H	H	L
L	H	L	H
L	L	X	O_{0}
H	X	X	Z

SN54HC563 ... JPACKAGE SN74HC563...J OR N PACKAGE (TOP VIEW)

$\overline{O C} 1^{\circ}$	207 VCC
10 2	$19] 10$
20 ${ }^{3}$	18 ¢ $2 \overline{0}$
$30 \square$	17 $3 \overline{\mathrm{a}}$
40 5	16 ¢ $4 \overline{\mathrm{Q}}$
5D \square^{6}	15 - $\overline{\mathrm{Q}}^{\text {}}$
$60 \square$	14 -6 $\overline{0}$
708	${ }^{13} 7{ }^{\text {® }}$
8 D	12 B -
GND 10	11 万 C

SN54HC563 . . . FH OR FK PACKAGE SN74HC563 ... FH OR FN PACKAGE (TOP VIEW)

logic symbol

Pin numbers shown are for J and N packages.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table III, page 2-5.

TYPES SN54HC563, SN74HC563 OCTAL D-TYPE TRANSPARENT LATCHES WITH 3-STATE OUTPUTS

timing requirements (supplement to recommended operating conditions)

	SN54HC563		SN74HC563		UNIT
	MIN NOM MAX	MIN NOM	MAX		

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	$\begin{gathered} \text { то } \\ \text { (OUTPUT) } \end{gathered}$	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & C_{L}=45 \mathrm{pF}, \\ & R_{L}=667 \Omega \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{v}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \text {. }$ See Note 1						UNIT
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54HC563 ${ }^{\text {SN74HC563 }}$				
			MIN. TYP MAX	MIN	TYP MAX	MIN	MAX	MIN	MAX	
tPLH	D	ō								ns
tPHL										
tPLH	c	Any								ns
tPHL										ns
tPZH	$\overline{\mathrm{O}}$	Any								ns
tPZL										ns
tPHZ	$\overline{\mathrm{O}}$	Any								ns
tPLZ										
$\mathrm{C}_{\text {pd }}$	Power dissipation capacitance per latch			No load, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$				pF typ		

D latch signal conventions

It is TI practice to name the outputs and other inputs of a D-type latch and to draw its logic symbol based on the assumption of true data (D) inputs. Then outputs that produce data in phase with the data inputs are called Q and those producing complementary data are called $\overline{\mathrm{Q}}$. An input that causes a \mathbf{Q} output to go high or a $\overrightarrow{\mathbf{Q}}$ output to go low is called Preset; an input that causes a $\overline{\mathrm{Q}}$ output to go high or a Q output to go low is called Clear. Bars are used over these pin names ($\overline{\mathrm{PRE}}$ and $\overline{\mathrm{CLR}}$) if they are active-low.

In some applications it may be advantageous to redesignate the data input $\overline{\mathrm{D}}$. In that case all the other inputs and outputs should be renamed as shown below. Also shown are corresponding changes in the graphical symbol. Arbitrary pin numbers are shown in parentheses.

Notice that Q and $\overline{\mathrm{Q}}$ exchange names, which causes Preset and Clear to do likewise. Also notice that the polarity indicators (\triangle) on $\overline{P R E}$ and $\overline{C L R}$ remain since these inputs are still active-low, but that the presence or absence of the polarity indicator changes at $\overline{\mathrm{D}}, \mathrm{Q}$, and $\overline{\mathrm{Q}}$. Of course pin $5(\overline{\mathrm{O}})$ is still in phase with the data input $\overline{\mathrm{D}}$, but now both are considered active-low.

High-Current 3-State Inverting Outputs Drive Bus-Lines Directly or up to 15 LSTTL Loads

- Bus-Structured Pinout
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These 8-bit registers feature inverting three-state outputs designed specifically for bus driving. They are particularly suitable for implementing buffer registers, $1 / \mathrm{O}$ ports, bidirectional bus drivers, and working registers.

The eight-bit edge-triggered D-type flip-flops enter data on the low-to-high transition of the clock.

The output control does not affect the internal operation of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.
The SN54HC564 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC564 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE
(EACH FLIP-FLOP)

INPUTS			OUTPUT
$\overline{\mathbf{O C}}$	CLK	\mathbf{D}	$\overline{\mathbf{O}}$
L	\uparrow	H	L
L	\uparrow	L	H
L	L	X	$\overline{\mathrm{Q}}_{\mathrm{O}}$
H	X	X	Z

SN54HC564 . . . J PACKAGE
SN74 HC564 . . J J OR N PACKAGE (TOP VIEW)

$\overline{O C} \square^{1}$	$\left.\mathrm{U}_{20}\right] \mathrm{V}_{\mathrm{CC}}$
10 2	$19 \square 1 \overline{0}$
20 \square^{3}	$18 \square 2 \overline{\mathrm{Q}}$
3D 4	17 ${ }^{\text {® }}$ 人
4D 5	16 4 $\overline{\mathrm{Q}}$
50 \square^{6}	15 - $\overline{\mathrm{Q}}$
60 \square^{7}	14] $6 \bar{\square}$
7D 8	13 万 $7 \overline{\mathrm{a}}$
80 9	$12] \overline{0}$
GND 10	11] CLK

SN54HC564 . . . FH OR FK PACKAGE SN74HC564 . . FH OR FN PACKAGE (TOP VIEW)

logic symbol

Pin numbers shown are for J and N packages.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table III, page 2-5.

TYPES SN54HC564, SN74HC564 OCTAL D-TYPE EDGE-TRIGGERED FLIP-FLOPS WITH 3-STATE OUTPUTS

timing requirements (supplement to recommended operating conditions)

			SN54HC564			SN74HC564			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	
$f_{\text {clock }}$	Clock frequency								MHz
${ }^{\text {tw }}$	Pulse duration	CLK high							ns
		CLK low							
${ }_{\text {t }}$ su	Setup time, data before CLKI								ns
th	Hold time, data								ns

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

NOTE 1: Frr l haad circuit and voltaoae wavelorms. see naae 1 -14.

D flip-flop signal conventions

It is TI practice to name the outputs and other inputs of a D-type flip-flop and to draw its logic symbol based on the assumption of true data (D) inputs. Then outputs that produce data in phase with the data inputs are called Q and those producing complementary data are called $\overline{\mathrm{Q}}$. An input that causes a Q output to go high or a $\overline{\mathrm{O}}$ output to go low is called Preset; an input that causes a $\overline{\mathrm{Q}}$ output to go high or a Q output to go low is called Clear. Bars are used over these pin names ($\overline{\operatorname{PRE}}$ and $\overline{\mathrm{CLR}}$) if they are active-low.

In some applications it may be advantageous to redesignate the data input $\overline{\mathrm{D}}$. In that case all the other inputs and outputs should be renamed as shown below. Also shown are corresponding changes in the graphical symbol. Arbitrary pin numbers are shown in parentheses.

Notice that Q and $\overline{\mathrm{Q}}$ exchange names, which causes Preset and Clear to do likewise. Also notice that the polarity indicators (\triangle) on $\overline{\text { PRE }}$ and $\overline{\mathrm{CLR}}$ remain since these inputs are still active-low, but that the presence or absence of the polarity indicator changes at \bar{D}, Q, and \bar{Q}. Of course pin $5(\bar{Q})$ is still in phase with the data input \bar{D}, but now both are considered active-low.

High-Current 3-State Outputs Drive Bus-Lines Directly or up to 15 LSTTL Loads

- Bus-Structured Pinout
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These 8-bit latches feature three-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing buffer registers, $1 / O$ ports, bidirectional bus drivers, and working registers.

The eight latches are transparent D-type latches. While the enable (C) is high the outputs (Q) will respond to the data (D) inputs. When the enable is taken low the outputs will be latched to retain the data that was set up.

An output-control input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a highimpedance state. In the high-impedance state the outputs neither load nor drive the bus lines significantly. The highimpedance state and increased drive provide the capability to drive the bus lines in a bus-organized system without need for interface or pull-up components.
The output control $(\overline{O C})$ does not affect the internal operation of the latches. Old data can be retained or new data can be entered while the outputs are at high impedance.

The SN54HC573 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC573 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
logic symbol

FUNCTION TABLE
(EACH LATCH)

FUNCTION TABLE (EACH LATCH)		
INPUTS OUTPUT ENABLE \mathbf{Q} $\overline{\mathbf{O C}}$ C D L H H H L H L L L L X Q_{O} H X X Z		

SN54HC573 . . . JPACKAGE
SN74HC்573 . . J OR N PACKAGE (TOP VIEW)

SN54HC573 . . FH OR FK PACKAGE SN74HC573 . . . FH OR FN PACKAGE (TOP VIEW)

Pin numbers shown are for J and N packages.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table III, page 2-5.

Texas Instruments

TYPES SN54HC573, SN74HC573 OCTAL D-TYPE TRANSPARENT LATCHES WITH 3-STATE OUTPUTS

timing requirements (supplement to recommended operating conditions)

		SN54HC573			SN74HC573			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
iw	Pulse duration, C high							ns
${ }_{\text {su }}$	Setup time, data before enable $\mathrm{C} \mid$							ns
th	Hold time, data after enable Ct							ns

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & C_{L}=45 \mathrm{pF}, \\ & R_{\mathrm{L}}=667 \Omega, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}$ See Note 1						UNIT
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54HC573 ${ }^{\text {SN74HC573 }}$				
			MIN TYP MAX	MIN	TYP MAX	MIN	MAX	MIN	MAX	
tPLH	D	$\overline{\mathrm{O}}$								ns
tPHL										
tPLH	C	Any								ns
tPHL										
tPZH	$\overline{\mathrm{OC}}$.	Any								ns
tPZL										
tPHZ	$\overline{O C}$	Any								ns
tPLZ										
C_{pd}	Power dissipation capacitance per latch			No load, $\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$				pF typ		

D latch signal conventions

It is TI practice to name the outputs and other inputs of a D-type latch and to draw its logic symbol based on the assumption of true data (D) inputs. Then outputs that produce data in phase with the data inputs are called Q and those producing complementary data are called $\overline{\mathrm{Q}}$. An input that causes a Q output to go high or a $\overline{\mathrm{Q}}$ output to go low is called Preset; an input that causes a $\overline{\mathrm{Q}}$ output to go high or a Q output to go low is called Clear. Bars are used over these pin names ($\overline{\mathrm{PRE}}$ and $\overline{\mathrm{CLR}}$) if they are active-low.

In some applications it may be advantageous to redesignate the data input $\overline{\mathrm{D}}$. In that case all the other inputs and outputs should be renamed as shown below. Also shown are corresponding changes in the graphical symbol. Arbitrary pin numbers are shown in parentheses.

Notice that \mathbb{Q} and $\overline{\mathrm{Q}}$ exchange names, which causes Preset and Clear to do likewise. Also notice that the polarity indicators (\triangle) on $\overline{\operatorname{PRE}}$ and $\overline{C L R}$ remain since these inputs are still active-low, but that the presence or absence of the polarity indicator changes at \bar{D}, Q, and \bar{Q}. Of course pin $5(\bar{Q})$ is still in phase with the data input \bar{D}, but now both are considered active-low.

High-Current 3-State Noninverting Outputs
Drive Bus-Lines Directly or up to 15 LSTTL Loads

- Bus-Structured Pinout
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These 8-bit registers feature three-state outputs designed specifically for bus driving. They are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

The eight edge-triggered D-type flip-flops enter data on the low-to-high transition of the clock.

The output-control does not affect the internal operation of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

The SN54HC574 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC574 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

SN54HC574 . . . J PACKAGE
SN74HC574...J OR NPACKAGE (TOP VIEW)

$\overline{\mathrm{OC}}$		\square_{20}	v_{CC}
10	2	19	10
20	3	18	20
3D	4	17	30
4D	5	16	40
50	6	15	50
60	7	14	60
	8	13	70
		12	80
GND		11	CLK

> SN54HC574 . . FH OR FK PACKAGE SN74HC574 . . FH OR FN PACKAGE (TOP VIEW)

FUNCTION TABLE
(EACH FLIP-FLOP)

INPUTS			OUTPUT
OC	CLK	D	Q
L	I	H	H
L	I	L	L
L	L	X	Q_{0}
H	X	X	Z

logic symbol

Pin numbers shown are for J and N packages.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table III, page 2-5.
timing requirements (supplement to recommended operating conditions)

			SN54HC574			SN74HC574			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	
$\mathrm{f}_{\text {clock }}$	Clock frequency								MHz
	Pulse duration	CLK high							ns
\%	Pulse duration	CLK low							ns
$\mathrm{t}_{\text {su }}$	Setup time, data before CLK1								ns
$t_{\text {h }}$	Hold time, data after CLKI								ns

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

D flip-flop signal conventions

It is TI practice to name the outputs and other inputs of a D-type flip-flop and to draw its logic symbol based on the assumption of true data (D) inputs. Then outputs that produce data in phase with the data inputs are called Q and those producing complementary data are called $\overline{\mathrm{Q}}$. An input that causes a Q output to go high or a $\overline{\mathrm{Q}}$ output to go low is called Preset; an input that causes a $\overline{\mathrm{Q}}$ output to go high or a Q output to go low is called Clear. Bars are used over these pin names ($\overline{\mathrm{PRE}}$ and $\overline{\mathrm{CLR}}$) if they are active-low.

In some applications it may be advantageous to redesignate the data input $\overline{\mathrm{D}}$. In that case all the other inputs and outputs should be renamed as shown below. Also shown are corresponding changes in the graphical symbol. Arbitrary pin numbers are shown in parentheses.

Notice that Q and $\overline{\mathrm{O}}$ exchange names, which causes Preset and Clear to do likewise. Also notice that the polarity indicators (\triangle) on $\overline{\text { PRE }}$ and $\overline{C L R}$ remain since these inputs are still active-low, but that the presence or absence of the polarity indicator changes at \bar{D}, Q, and \bar{Q}. Of course pin $5(\bar{Q})$ is still in phase with the data input \bar{D}, but now both are considered active-low.

- 8-Bit Counter with Register
- High-Current 3-State Parallel Register Outputs Can Drive up to 15 LSTTL Loads
- Counter Has Direct Clear
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These devices each contain an 8-bit binary counter that feeds an 8 -bit storage register. The storage register has parallel outputs. Separate clocks are provided for both the binary counter and storage register. The binary counter features a direct clear input $\overline{\mathrm{CCLR}}$ and a count enable input $\overline{\mathrm{CCKEN}}$. For cascading a ripple carry output $\overline{R C O}$ is provided. Expansion is easily accomplished by tying $\overline{\mathrm{RCO}}$ of the first stage to CCKEN of the second stage, etc.

Both the counter and register clocks are positiveedge triggered. If the user wishes to connect both clocks together, the counter state will always be one count ahead of the register. Internal circuitry prevents clocking from the clock enable.

The SN54HC590 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC590 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

SN54HC590 . . . J PACKAGE
SN74HC590 . . J OR N PACKAGE (TOP VIEW)

For chip carrier information. contact the factory
logic symbol

Pin numbers shown are for J and N packages.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table III, page 2-5.
timing requirements (supplement to recommended operating conditions)

\dagger This setup time ensures the register will see stable data from the counter outputs. The clocks may be tied together in which case the register state will be one clock pulse behind the counter.
switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & C_{L}=\text { Note } 2, \\ & R_{\mathrm{L}}=\text { Note } 2, \\ & T_{\mathbf{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$						UNIT
				$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$		SN54HC590		SN74HC590		
			MIN TYP MAX	MIN	TYP MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$	CCK or RCK									MHz
tPLH	CCK!	$\overline{\mathrm{RCO}}$								ns
tPHL										
tPLH	$\overline{\text { CCLR }}$!	RCO								ns
tpLH	RCKI	0								ns
tPHL										
tPZH	$\overline{\mathrm{G}}$	0								ns
TPZL										
tPHZ	$\overline{\mathrm{G}} \boldsymbol{\square}$	0								ns
tpLZ										
C_{pd}	Power dissipation capacitance			No load, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$				pF typ		

[^39]
$C_{L}=45 \mathrm{pF}$ and $\mathrm{R}_{\mathrm{L}}=667 \Omega$ for Q outputs.

- Parallel Register Inputs ('HC592)

- Parallel 3-State I/O: Register Inputs/Counter Outputs ('HC593)
- Counter Has Direct Overriding Load and Clear
- High-Current Outputs Can Drive up to 15 LSTTL Loads ('HC593)
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

The 'HC592 consists of a parallel input, 8-bit storage register feeding an 8-bit binary counter. Both the register and the counter have individual positive edge-triggered clocks. In addition, the counter has direct load and clear functions. Expansion is easily accomplished by connecting $\overline{\mathrm{RCO}}$ of the first stage to the count enable of the second stage, etc.

The 'HC593 has all the features of the 'HC592 plus 3 -state I/O, which provides parallel counter outputs.

The SN54HC592 and SN54HC593 are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC592 and SN74HC593 are characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

SN54HC592 . . . J PACKAGE
SN74HC592 . . .J OR N PACKAGE (TOP VIEW)

B 1	U16] vcc
c	15 A
$\bigcirc{ }^{-1}$	14.
E C_{4}	13 RCK
F 5^{5}	12 CCKEN
G_{6}	11 Cck
H^{-7}	$10 . \overline{\text { CCLL }}$
GND [18	$9] \frac{100}{\text { RCo }}$

SN54HC592 . . . FH OR FK PACKAGE SN74HC592 . . . FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection

SN54HC593 . . J PACKAGE SN74HC593... J OR N PACKAGE (TOP VIEW)

$\mathrm{A}^{\prime} \mathrm{O}_{4}-1$	U_{20}	V_{Cc}
$B / Q_{B}{ }^{2}$	219	G
	18] $\overline{\text { ch }}$
D/ $0_{0} \square^{4}$	17	RCKEN
$E / Q_{E} 5$	16	RCK
F/OF O_{6}	15	CCKEN
$\mathrm{G} / \mathrm{O}_{\mathrm{G}} \mathrm{C}_{7}$	14	CCKEN
$\mathrm{H} / \mathrm{O}_{\mathrm{H}} \mathrm{C}^{8}$	13	CCK
CLOAD 9	12	$\underline{\text { CCLR }}$
GNO 10	10	$\overline{\mathrm{RCO}}$

SN54HC593 . . . FH OR FK PACKAGE SN74HC593 . . . FH OR FN PACKAGE (TOP VIEW)

Texas Instruments INCORPORATED

TYPES SN54HC592, SN54HC593, SN74HC592, SN74HC593 8-BIT BINARY COUNTERS WITH INPUT REGISTERS

logic symbols

Pin numbers shown are for J and N packages.
maximum ratings, recommended operating conditions, and electrical characteristics
'HC592: See Table IV,page 2-6.
'HC593: See Table III, page 2-5.
timing requirements (supplement to recommended operating conditions)

	.		SN54HC'			SN74HC'			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	
$\mathrm{f}_{\mathrm{cloc}}$	Clock frequency,	CCK or RCK							MHz
${ }^{\text {w }}$ w	Pulse duration	CCK or RCK high or low							ns
		$\overline{\text { CCLR }}$ low							
		CLLOAD low							
${ }^{\text {t }}$ u	Setup time (see Note)	CCKEN low before CCK							ns
		$\overline{\text { CCLR }}$ high (inactive) before CCKI							
		RCKI before CCKI							
		Data A thru H before RCKI							
	Hold time								ns

[^40]
TYPES SN54HC592, SN54HC593, SN74HC592, SN74HC593 8-BIT BINARY COUNTERS WITH INPUT REGISTERS

'HC592 switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & C_{L}=15 \mathrm{pF}, \\ & R_{L}=2 \mathrm{k} \Omega, \\ & \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & C_{L}=50 \mathrm{pF} \end{aligned}$						UNIT
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54HC592 SN74HC592				
			MIN TYP MAX	MIN	TYP MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$	CCK or RCK									MHz
tPLH	CCKI	$\overline{\mathrm{RCO}}$								ns
tPHL										
tpLH	CLOAD	$\overline{\text { RCO }}$								ns
tPHL										
tPLH	CCLR!	$\overline{\mathrm{RCO}}$								ns
tPLH	RCK ${ }^{\text {¢ }}$	$\overline{\mathrm{RCO}}$								ns
tPHL										
C_{pd}	Power dissipation capacitance			No load, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$				pF typ		

NOTE 1: For load circuit and voltage waveforms, see page 1-14.
'HC593 switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & C_{L}=45 \mathrm{pF}, \\ & R_{\mathrm{L}}=667 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			$V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}$ See Note 1							UNIT
						$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54HC593 SN74HC593				
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$	CCK or RCK												MHz
tPLH	CCKI	0											ns
tPHL													
tPLH	$\overline{\text { CLOAD }}$	0											ns
tPHL													
tpHL	$\overline{\text { CCLR }}$!	0											ns
tPZH	G1	0											ns
tPZL													
tPZH	$\overline{\mathrm{G}}$!	0			-								ns
tPZL													
tPHZ	G!	0											ns
tPLZ													
tPHZ	$\overline{\mathrm{G}}$	0											ns
IPLZ													
tPLH	CCKı	RCO											ns
tPHL													
tPLH	CLOAD	$\overline{\mathrm{RCO}}$.											ns
tPHL													
tPLH	$\overline{\text { CCLR }}$	RCO											ns
tPLH	RCK:	$\overline{\mathrm{RCO}}$											ns
tPHL													
C_{pd}	Power dissipation capacitance					No load, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$					pF typ		

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

- 8-Bit Serial-In, Parallel-Out Shift Registers With Storage

- Independent Direct-Overriding Clears On Shift And Storage Registers
- Independent Clocks for Both Shift and Storage Registers
- High-Current Outputs Can Drive up to 15 LSTTL Loads
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These devices each contain an 8-bit serial-in, parallel-out shift register that feeds an 8-bit D-type storage register. Separate clocks and direct-overriding clears are provided on both the shift and storage registers. A serial output ($\mathrm{O}_{\mathrm{H}^{\circ}}$) is provided for cascading purposes.

Both the shift register and storage register clocks are positive-edge triggered. If the user wishes to connect both clocks together, the shift register will always be one clock. pulse ahead of the storage register.

The parallel outputs (O_{A} thru O_{H}) have high-current capability; output $\mathbf{O}_{H^{\prime}}$ is a standard output.

The SN54HC594 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC594 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

SN54HC594 . . . J PACKAGE
SN74HC594 . . . J OR N PACKAGE (TOP VIEW)

SN54HC594 . . . FH OR FK PACKAGE SN74HC594 . . . FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection
logic symbol

Pin numbers shown are for J and N packages.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table III, page 2-5.

Copyright © 1982 by Texas Instruments Incorporated

TYPES SN54HC594, SN74HC594
 8-BIT SHIFT REGISTERS WITH OUTPUT REGISTERS

timing requirements (supplement to recommended operating conditions)

			SN54HC594			SN74HC594			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	
f clock Clock frequency, RCK or SRCK									MHz
${ }^{\text {tw }}$	Pulse duration	RCK or SRCK high or low							ns
		SRCLR low							
${ }^{\text {suu}}$	Setup time	SRCLR high (inactive) before SRCKt							ns
		$\overline{\text { RCLR }}$ high (inactive) before RCKI							
		SER data before SRCK!							
		SRCKI before RCKI (see note)							
th	Hold time	SER after SRCKt							ns

NOTE: This setup time ensures the register will see stable data from the shift-register outputs. The clocks may be connected together in which case the storage register state will be one clock pulse behind the shift register.
switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

[^41]- 8-Bit Serial-In, Parallel-Out Shift

Registers with Storage

- High-Current 3-State Outputs Can Drive up to 15 LSTTL Loads
- Shift Register Has Direct Clear
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These devices each contain an 8-bit serial-in, parallel-out shift register that feeds an 8-bit D-type storage register. The storage register has parallel 3-state outputs. Separate clocks are provided for both the shift register and the storage register. The shift register has a direct-overriding clear, serial input, and serial output pins for cascading.
Both the shift register and storage register clocks are positiveedge triggered. If the user wishes to connect both clocks together, the shift register state will always be one clock pulse ahead of the storage register.

The SN54HC595 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC595 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

SN54HC595 .. . FH OR FK PACKAGE SN74HC595 . . . FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection
logic symbol

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics
See Table III, page 2-5.

TYPES SN54HC595, SN74HC595
 8-BIT SHIFT REGISTERS WITH 3-STATE OUTPUT REGISTERS

timing requirements (supplement to recommended operating conditions)

			SN54HC595			SN74HC595			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	
f ${ }_{\text {clock }}$ Clock frequency, RCK or SRCK	Clock frequency, RCK or SRCK								MHz
${ }^{\text {w }}$ w	Pulse duration	RCK or SRCK high or low							ns
		SRCLR low							
${ }^{\text {tsu }}$	Setup time	SRCLR high (inactive) before SRCK1							ns
		SER data before SRCKi							
		SRCK! before RCKIt							
$t_{\text {h }}$	Hold time	SER data after SRCKI							ns

\dagger This setup time ensures the register will see stable data from the shift-register outputs. The clocks may be connected together in which case the storage register state will be one clock pulse behind the shift register.
switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & C_{L}=\text { Note } 2, \\ & R_{L}=\text { Note } 2, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		$V_{C C}=4.5 \mathrm{~V} \text { to } 5.6 \mathrm{~V} .$ See Note 1						UNIT
					$\mathrm{T}_{A}=25^{\circ} \mathrm{C}$		SN54HC695		SN74HC595		
			MIN	TYP MAX	MIN	TYP MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$	RCK or SRCK	.									MHZ
tPLH	SRCK	$\mathrm{OH}^{\text {+ }}$									ns
tPHL											
tPHL	$\overline{\text { SRCLR }}$	$\mathrm{OH}^{\mathbf{\prime}}$									ns
tPLH	RCK	O_{A} thru $\mathrm{Q}_{\boldsymbol{H}}$									ns
tPHL											
tPZH	$\overline{\mathrm{G}}$	O_{A} thru O_{H}									ns
tPZL											
tPHZ	$\overline{\mathbf{G}}$	$\mathrm{O}_{\text {A }}$ thru O_{H}									ns
tPLZ											
C_{pd}	Power dissipation capacitance				No load, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$				pF typ		

NOTES: 1. For load circuit and voltage waveforms, see page 1-14.
2. $C_{L}=15 \mathrm{pF}$ and $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ for $\mathrm{Q}_{H^{\prime}}$ output;
$C_{L}=45 \mathrm{pF}$ and $\mathrm{R}_{\mathrm{L}}=667 \Omega$ for Q_{A} thru Q_{H} outputs.

- 8-Bit Parallel Storage Register Inputs ('HC597)
- Parallel 3-State I/O, Storage Register Inputs, Shift Register Outputs ('HC598)
- High-Current 3-State Outputs Can Drive up to 15 LSTTL Loads ('HC598)
- Shift Register Has Direct Overriding Load and Clear
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

The 'HC597 consists of an 8-bit storage latch feeding a parallel-in, serial-out 8 -bit shift register. Both the storage register and shift register have positive-edge triggered clocks. The shift register also has direct load (from storage) and clear inputs.

The 'HC598 has all the features of the 'HC597 plus 3-state 1/O ports that provide parallel shift register outputs. The 'HC598 also has multiplexed serial data inputs.

The SN54HC597 and SN54HC598 are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC597 and SN74HC598 are characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

SN54HC597 . . . J PACKAGE
SN74HC597 . . . J OR N PACKAGE
(TOP VIEW)

SN54HC597 . . . FH OR FK PACKAGE SN74HC597... FH OR FN PACKAGE (TOP VIEW)

SN54HC598 . . . JPACKAGE SN74HC598 . . J OR N PACKAGE (TOP VIEW)

AO_{A}	$1 \cup_{20}$	V_{cc}
$\mathrm{B} / \mathrm{O}_{\mathrm{B}}$	219	DS
$\mathrm{c} / \mathrm{O}_{\mathrm{c}}$	$3 \quad 18$	SERO
$\mathrm{D} / \mathrm{O}_{\mathrm{D}}$	417	SER1
$\mathrm{E} / \mathrm{O}_{\mathrm{E}}$	516	$\overline{\text { G }}$
$\mathrm{F}_{\text {/ }} \mathrm{O}_{\mathrm{F}}$	$6 \quad 15$	RCK
$\mathrm{G} / \mathrm{O}_{\mathrm{G}}$	714	SRCKEN
$\mathrm{H} / \mathrm{O}_{\mathrm{H}}$	$8 \quad 13$	SRCK
SRLOAD	$9 \quad 12$	$\overline{\text { SRCLR }}$
GND	$10 \quad 11$	$\square \mathrm{OH}^{\prime}$

SN54HंC598 . . . FH OR FK PACKAGE SN74HC598 . . . FH OR FN PACKAGE (TOP VIEW)

TYPES SN54HC597, SN54HC598, SN74HC597, SN74HC598 8-BIT SHIFT REGISTERS WITH INPUT LATCHES

logic symbols

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics
'HC597: See Table IV, page 2-6.
'HC598: See Table III, page 2-5.
timing requirements (supplement to recommended operating conditions)

NOTE: The RCK i before SRCKt setup time ensures that the shift register will see stable data coming from the input register.

TYPES SN54HC597, SN54HC598, SN74HC597, SN74HC598 8-BIT SHIFT REGISTERS WITH INPUT LATCHES

'HC597 switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & C_{L}=15 \mathrm{pF}, \\ & R_{L}=2 \mathrm{k} \Omega, \\ & \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} . \\ & C_{L}=50 \mathrm{pF} \end{aligned}$						UNIT
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54HC597 SN74HC597				
			MIN TYP MAX	MIN	TYP MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$	RCK or SRCK									MHz
tPLH	SRCKI	$\mathrm{O}_{\mathrm{H}}{ }^{\text { }}$								ns
tPHL										
tPLH	SRLOAD ${ }^{\text {d }}$	OH^{\prime}								ns
tPHL										
tPHL	SCLR!	OH^{+}								ns
tPLH	RCKI	OH^{+}								ns
tPHL										
C_{pd}	Power dissipation capacitance			No load, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$				pF typ		

NOTE 1: For load circuit and voltage waveforms, see page 1-14.
'HC598 switching characteristics over recommended operating free-air temperature range (unless otherwise noted)
 NOTES: 1. For load circuit and voltage waveforms, see page 1-14.
2. $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ and $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ for $\mathrm{O}_{\mathrm{H}^{\prime}}$ output;
$C_{L}=45 \mathrm{pF}$ and $\mathrm{R}_{\mathrm{L}}=667 \Omega$ for Q_{A} through Q_{H} outputs.

- Bus Transceivers in High-Density 20-Pin DIPs and also Plastic and Ceramic Chip Carriers
- Lock Bus-Latch Capability
- Choice of True or Inverting Logic
- High-Current 3-State Outputs Can Drive up to 15 LSTTL Loads
- Dependable Texas Instruments Quality and Reliability

DEVICE LOGIC
'HC620 Inverting
'HC623 True

description

These octal bus transceivers are designed for asynchronous two-way communication between data buses. The control function implementation allows for maximum flexibility in timing.

These devices allow data transmission from A bus to the B bus or from the B bus to the A bus depending upon the logic levels at the enable inputs ($\bar{G} B A$ and GAB).

The enable inputs can be used to disable the device so that the buses are effectively isolated.

The dual-enable configuration gives these devices the capability to store data by simultaneous enabling of ḠBA and GAB. Each output reinforces its input in this transceiver configuration. Thus, when both control inputs are enabled and all other data sources to the two sets of bus lines are at high impedance, both sets of bus lines (16 in all) will remain at their last states. The 8 -bit codes appearing on the two sets of buses will be identical for the 'HC623 or complementary for the 'HC62O.

The SN54HC620 and SN54HC623 are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC620 and SN74HC623 are characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
SN54HC' . . JPACKAGE
SN74HC' . J OR N PACKAGE
(TOP VIEW)

SN54HC' . . FH OR FK PACKAGE SN74HC' . . . FH OR FN PACKAGE (TOP VIEW)

FUNCTION TABLE

ENABLE INPUTS		OPERATION	
G̈BA	GAB	'HC620	'HC623
L	L	\bar{B} data to A bus	B data to A bus
H	H	\bar{A} data to B bus	A data to B bus
H	L	Isolation	Isolation
L	H	B data to A bus, $\overline{\mathrm{A}}$ data to B bus	B data to A bus, A data to B bus

Texas Instruments
 INCORPORATED

TYPES SN54HC620, SN54HC623, SN74HC620, SN74HC623 OCTAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

logic symbols
'HC820

'HC623

Pin numbers shown are for J and N packages.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table III, page 2-5.
'HC620 switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{v}, \\ & C_{L}=45 \mathrm{pF}, \\ & R_{\mathrm{L}}=667 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} .$ See Note 1						UNIT
				$\mathrm{T}_{A}=25^{\circ} \mathrm{C}$		SN54HC620 SN74HC620				
			MIN TYP MAX	MIN	TYP MAX	MIN	MAX	MIN	MAX	
tPLH	A	B								ns
tPHL										
tPLH	B	A								ns
tPHL										
tPZH	$\overline{\mathrm{G}} \mathrm{BA}$	A								ns
tPZL										
tPHZ	$\overline{\mathrm{G}} \mathrm{BA}$	A								ns
tPLZ										
tPZH	GAB	B								ns
tPZL										
tPHZ	GAB	B								ns
tPLZ										
C_{pd}	Power dissipation capacitance per transceiver			No load, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$				pF typ		

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

TYPES SN54HC620, SN54HC623, SN74HC620, SN74HC623
 OCTAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

'HC623 switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=45 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega, \\ & \mathrm{~T}_{\mathbf{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}$ See Note 1			UNIT
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	SN54HC623 ${ }^{\text {SN74HC623 }}$		
			MIN TYP MAX	MIN TYP MAX	MIN MAX	MIN MAX	
${ }^{\text {tPLH }}$	A	B					ns
tPHL							
tPLH	B	A					ns
tPHL							
tPZH	$\overline{\mathrm{G}} \mathrm{BA}$	A					ns
tPZL							
tPHZ	$\overline{\mathrm{G}} \mathrm{BA}$	A					ns
tplz							
tPZH	GAB	B					ns
TPZL							
tPHZ	GAB	B					ns
tpLZ							

C_{pd}	Power dissipation capacitance per transceiver	No load, $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$	pF typ

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

- Bus Transceivers in High-Density 20-Pin DIPs and also Plastic and Ceramic Chip Carriers
- Choice of True or Inverting Logic
- High-Current 3-State Outputs Can Drive up to 15 LSTTL Loads
- Dependable Texas Instruments Quality and Reliability

DEVICE	LOGIC
'HC640	Inverting
'HC643	True and Inverting
'HC645	True

description

These octal bus transceivers are designed for asynchronous two-way communication between data buses. The devices transmit data from the A bus to the B bus or from the B bus to the A bus depending upon the level at the direction control (DIR) input. The enable input (\bar{G}) can be used to disable the device so the buses are effectively isolated.

The SN54HC640, SN54HC643 and SN54HC645 are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC640, SN74HC643, and SN74HC645 are characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

SN54HC' . . J PACKAGE
SN74HC' . . J OR N PACKAGE (TOP VIEW)

DIR 1	U_{20}	$V_{C C}$
A $1 \square^{2}$	19	\bar{G}
A2 \square^{3}	18	B1
A3 \square^{4}	17	B2
A4 5	16	B3
A5 \square^{6}	15	B4
A6 -7	14	B5
A7 \square^{8}	13	B6
A8 9	12	B7
GND 10		\square^{88}

SN54HC' . . FH OR FK PACKAGE
SN74HC' . . FH OR FN PACKAGE (TOP VIEW)

FUNCTION TABLE

CONTROL INPUTS		OPERATION		
		'HC640	'HC645	'HC643
$\overline{\mathbf{G}}$	DIR			
L	L	\bar{B} data to A bus	B data to A bus	B data to A bus
L	H	$\overline{\mathrm{A}}$ data to B bus	A data to B bus	$\overline{\mathrm{A}}$ data to B bus
H	X	Isolation	Isolation	Isolation

TYPES SN54HC640, SN54HC643, SN54HC645 SN74HC640, SN74HC643, SN74HC645 OCTAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS
logic symbols
'HC64O

-HC643

'HC645

Pin numbers shown are for J and N packages
maximum ratings, recommended operating conditions, and electrical characteristics
See Table III, page 2-5.
'HC640 switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & C_{L}=45 \mathrm{pF}, \\ & R_{L}=667 \Omega, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}$ See Note 1			UNIT
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	SN54HC640	SN74HC640	
			MIN TYP MAX	MIN TYP MAX	MIN MAX	MIN MAX	
tPLH	A or B	B or A					תs
tPHL							
tPZH	$\overline{\mathrm{G}}$	A or B					ns
tPZL							
tPHZ	$\overline{\mathrm{G}}$	A or B	-				ns
tPLZ							
$\mathrm{C}_{\text {pd }}$	Power dissipation capacitance per transceiver			No load, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		pF typ	

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

TYPES SN54HC640, SN54HC643, SN54HC645 SN74HC640, SN74HC643, SN74HC645 OCTAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

'HC643 switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	$\begin{aligned} & \text { FROM } \\ & \text { (INPUT) } \end{aligned}$	TO (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & C_{L}=45 \mathrm{pF}, \\ & R_{L}=667 \Omega, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}$ See Note 1			UNIT
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	SN54HC643	SN74HC643	
			MIN TYP MAX	MIN TYP MAX	MIN MAX	MIN MAX	
tPLH	A	B					ns
tPHL							
tPLH	B	A					ns
tPHL							
tPZH	$\overrightarrow{\mathbf{G}}$	A					ns
tPZL							
tPHZ	$\overline{\mathbf{G}}$	A					ns
tPLZ							
tPZH	$\overline{\mathrm{G}}$	B					ns
tPZL							
tPHZ	$\overline{\mathrm{G}}$	B					ns
tPLZ							

C_{pd}	Power dissipation capacitance per transceiver	No load, $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5 ^ { \circ }} \mathrm{C}$	pF typ

NOTE 1: For load circuit and voltage waveforms, see page 1-14.
'HC645 switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=45 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} .$ See Note 1						UNIT
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54HC645 SN74HC645 $^{\text {a }}$				
			MIN TYP MAX	MIN	TYP MAX	MIN	MAX	MIN	MAX	
tPLH	A or B	B or A								ns
tPHL										
tPZH	$\overline{\text { G }}$	A or B								ns
tPZL										
tPHZ	$\overline{\mathrm{G}}$	A or B								ns
tplz										
C_{pd}	Power dissipation capacitance per transceiver				No load, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			pF typ		

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

- Independent Registers for A and B Buses

- Multiplexed Real-Time and Stored Data
- Choice of True or Inverting Data Paths
- High-Current 3-State Outputs Can Drive up to 15 LSTTL Loads
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These devices consist of bus transceiver circuits with 3-state outputs, D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the input bus or from the internal registers. Data on the A or B bus will be clocked into the registers on the low-to-high transition of the appropriate clock pin (CAB or CBA). The examples below demonstrate the four fundamental bus-management functions that can be performed with the 'HC646 or 'HC648.

Enable (\bar{G}) and direction (DIR) pins are provided to control the transceiver functions. In the transceiver mode, data present at the high-impedance port may be stored in either register or in both. The select controls (SAB and SBA) can multiplex stored and real-time (transparent mode) data. The direction control determines which bus will receive data when enable \bar{G} is active (low). In the isolation mode (enable $\overline{\mathrm{G}}$ high), A data may be stored in one register and/or B data may be stored in the other register.

When an output function is disabled, the input function is still enabled and may be used to store and transmit data. Only one of the two buses, A or B , may be driven at a time.

The SN54' family is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74' family is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

Pin numbers shown are for JT and NT packages.

TYPES SN54HC646, SN54HC648, SN74HC646, SN74HC648 OCTAL BUS TRANSCEIVERS AND REGISTERS WITH 3-STATE OUTPUTS

FUNCTION TABLE

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{INPUTS} \& \multicolumn{2}{|c|}{DATA I/ \(\dagger \dagger\)} \& \multicolumn{2}{|r|}{OPERATION OR FUNCTION} \\
\hline \(\overline{\mathbf{G}}\) \& DIR \& CAB \& CBA \& SAB \& SBA \& A1 THRU A8 \& B1 THRU B8 \& 'HC646 \& 'HC648 \\
\hline X \& \[
\begin{aligned}
\& \mathrm{X} \\
\& \mathrm{x}
\end{aligned}
\] \& \[
x
\] \& \[
\begin{gathered}
x \\
1
\end{gathered}
\] \& \[
\begin{aligned}
\& \mathrm{x} \\
\& \mathrm{x}
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{X} \\
\& \mathrm{x}
\end{aligned}
\] \& \begin{tabular}{l}
input \\
Not specified
\end{tabular} \& Not specified Input \& Store A, B unspecified Store B, A unspecified \& Store A, B unspecified Store B, A unspecified \\
\hline H

H \& | X |
| :--- |
| | \& H or L \& \& \[

$$
\begin{aligned}
& \hline x \\
& x \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \hline \mathrm{X} \\
& \mathrm{x} \\
& \hline
\end{aligned}
$$
\] \& Input \& Input \& Store A and B Data Isolation, hold storage \& Store A and B Data Isolation, hold storage

\hline L \& \& $$
\begin{aligned}
& \hline x \\
& x
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \bar{x} \\
& x
\end{aligned}
$$

\] \& \& \[

$$
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
$$
\] \& Output \& Input \& Real-Time B Data to A Bus Stored B Data to A Bus \& Real-Time \bar{B} Data to A Bus Stored $\overline{\mathrm{B}}$ Data to A Bus

\hline L \& H

H \& | X |
| :--- |
| X | \& \[

$$
\begin{aligned}
& \hline x \\
& x \\
& \hline
\end{aligned}
$$

\] \& L \& \[

$$
\begin{aligned}
& \hline x \\
& x
\end{aligned}
$$
\] \& Input \& Output \& Real-Time A Data to B Bus Stored A Data to B Bus \& Real-Time \bar{A} Data to B Bus Stored \bar{A} Data to Bus

\hline
\end{tabular}

\dagger The data output functions may be enabled or disabled by various signals at the \widetilde{G} and DIR inputs. Data input functions are always enabled, i.e., data at the bus pins will be stored on every low-to-high transition on the clock inputs.

logic symbols

Pin numbers shown are for JT and NT packages.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table III, page 2-5.

TYPES SN54HC646, SN54HC648, SN74HC646, SN74HC648 OCTAL BUS TRANSCEIVERS AND REGISTERS
 WITH 3-STATE OUTPUTS

timing requirements (supplement to recommended operating conditions)

'HC646 switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

[^42]\dagger These parameters are measured with the internal output state of the storage register opposite to that of the bus input.
'HC648 switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

[^43]\dagger These parameters are measured with the internal output state of the storage register opposite to that of the bus input.

- Bus Transceivers/Registers

- Independent Registers and Enables for A and B Buses
- High-Current 3-State Outputs Can Drive up to 15 LSTTL Loads
- Multiplexed Real-Time and Stored Data
- Choice of True and Inverting Data Paths
- Included Among the Package Options Are Compact 24-Pin 300-mil-wide DIPs and Both 28-Pin Plastic and Ceramic Chip Carriers
- Dependable Texas Instruments Quality and Reliability

description

These devices consist of bus transceiver circuits, D type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the data bus or from the internal storage registers. Enable GAB and $\bar{G} B A$ are provided to control the transceiver functions. SAB and SBA control pins are provided to select whether real-time or stored data is transferred. A low input level selects real-time data, and a high selects stored data. The following examples demonstrate the four fundamental busmanagement functions that can be performed with the 'HC651 and 'HC652.

SN54HC651, SN74HC652 . . . FH OR FK PACKAGE SN74HC651, SN74CH652 ... FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection

Texas Instruments

TYPES SN54HC651, SN54HC652, SN74HC651, SN74HC652 OCTAL BUS TRANSCEIVERS AND REGISTERS WITH 3-STATE OUTPUTS

Data on the A or B data bus, or both, can be stored in the internal D flip-flops by low-to-high transitions at the appropriate clock pins (CAB or CBA) regardless of the select or enable control pins. When SAB and SBA are in the real-time transfer mode, it is also possible to store data without using the internal D-type flip-flops by simultaneously enabling GAB and $\bar{G} B A$. In this configuration each output reinforces its input. Thus, when all other data sources to the two sets of bus lines are at high impedance, each set of bus lines will remain at its last state.
The SN54HC651 and SN54HC652 are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC651 and SN74HC652 are characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

INPUTS			DATA 1/0*		OPERATION OR FUNCTION	
GAB $\overline{\mathbf{G} B A}$	CAB CBA	SAB SBA	A1 THRU A8	B1 THRU B8	'HC651	'HC652
$\begin{array}{ll} \mathrm{L} & \mathrm{H} \\ \mathrm{~L} & \mathrm{H} \end{array}$	$\begin{array}{\|cc\|} \hline \text { H or } L & H \text { or } L \\ 1 & 1 \end{array}$	$\begin{array}{ll} \hline x & x \\ x & x \end{array}$	Input	Input	Isolation Store A and B Data	Isolation Store A and B Data
$\begin{array}{ll} \mathrm{X} & \mathrm{H} \\ \mathrm{H} & \mathrm{H} \end{array}$	1 H or L 1 1	$\begin{array}{ll} \hline x & x \\ x & x \end{array}$	Input Input	Not specified Output	Store A, Hold B Store A in both registers	Store A, Hold B Store A in both registers
$\begin{array}{ll} \mathrm{L} & \mathrm{X} \\ \mathrm{~L} & \mathrm{~L} \end{array}$	H or L 1 1 1 X	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \\ & \hline \end{aligned}$	Not specified Output	Inpu: Input	Hold A, Store B Store B in both registers	Hold A, Store B Store B in both registers
$\begin{array}{ll} \mathrm{L} & \mathrm{~L} \\ \mathrm{~L} & \mathrm{~L} \end{array}$	$\begin{array}{\|cc\|} \hline X & X \\ X & H \text { or } L \end{array}$	$\begin{array}{ll} \hline X & L \\ X & H \end{array}$	Output	Input	Real-Time \bar{B} Data to A Bus Stored \bar{B} Data to A Bus	Real-Time B Data to A Bus Stored B Data to A Bus
$\begin{array}{ll} \mathrm{H} & \mathrm{H} \\ \mathrm{H} & \mathrm{H} \end{array}$	$\begin{array}{cc} X & X \\ H \text { or } L & X \\ \hline \end{array}$	$\begin{array}{ll} \mathrm{L} & X \\ H & X \end{array}$	Input	Output	Real-Time \bar{A} Data to B Bus Stored \bar{A} Data to B Bus	Real-Time A Data to B Bus Stored A Data to B Bus
H L	Hor L HorL	H H	Output	Output	Stored A Data to B Bus and Stored \bar{B} Data to A Bus	Stored A Data to B Bus and Stored B Data to A Bus

*The data output functions may be enabled or disabled by various signals at the GAB and GBA inputs. Data input functions are always enabled, i.e., data at the bus pins will be stored on every low-to-high transition on the clock inputs.

logic symbols

Pin numbers shown are for JT and NT packages.
. HC652

maximum ratings, recommended operating conditions, and electrical characteristics
See Table III, page 2-5.
timing requirements (supplement to recommended operating conditions)

				$\begin{aligned} & 154 \mathrm{HC} \\ & 154 \mathrm{HC} \end{aligned}$			$\begin{aligned} & 174 \mathrm{HCE} \\ & 174 \mathrm{HC} \end{aligned}$		UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	
${ }^{\text {w }}$ w	Pulse duration	CBA or CAB high							ns
		CBA or CAB low							
${ }^{\text {tsu }}$	Set up time before CAB or CBAI	SBA or SAB							ns
		A or B							
${ }^{\text {tw }}$	Hold time after CAB or CBA	SBA or SAB							ns
		A or B							

'HC651 switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=45 \mathrm{pF}, \\ & R_{\mathrm{L}}=667 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}$ See Note 1						UNIT
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54HC651		SN74HC651		
			MIN TYP MAX	MIN	TYP MAX	MIN	MAX	MIN	MAX	
${ }^{\text {PPLH }}$	CBA or CAB	A or B								ns
tPHL			.							
tPLH	A or B	B or A								ns
tPHL										
tPLH	SBA or $S A B \dagger$(with A or B high)	A or B								ns
tPHL										
tPLH	SBA or SAB \dagger(with A or B low)	A or B								ns
tPHL										ns
tPZH	$\overline{\mathrm{G}} \mathrm{BA}$	A								ns
tPZL										
tPHZ	$\overline{\mathrm{G}} \mathrm{BA}$	A								ns
tPL										
tPZH	GAB	B								ns
tPZL										
tPHZ	GAB	B								ns
tPLZ										
$\mathrm{C}_{\text {pd }}$	Power dissipation capacitance			No load, $T_{A}=25^{\circ} \mathrm{C}$						typ

[^44]\dagger These parameters are measured with the internal output state of the storage register opposite to the that of the bus input.

TYPES SN54HC651, SN54HC652, SN74HC651, SN74HC652 OCTAL BUS TRANSCEIVERS AND REGISTERS WITH 3-STATE OUTPUTS

'HC652 switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

[^45]
- Compares Two Eight-Bit Words

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These identity comparators perform comparisons of two eightbit binary or BCD words. An enable input ($\overline{\mathrm{G}}$) may be used to force the output to the high level.
The SN54HC688 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN $74 \mathrm{HC688}$ is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

logic symbol

Pin numbers shown are for J and N packages.

SN54HC688 . . J PACKAGE SN74HC688 . . . J OR N PACKAGE (TOP VIEW)

$\overline{\mathrm{G}}{ }^{1}$	\bigcirc_{20}	V_{CC}
PO-2	19	$\bar{P}=0$
$00 \square 3$	18	07
P1 4	17	P7
Q1 5	16	Q6
P2 6	15	P6
22-7	14	05
P3-8	13	P5
03 \square^{1}	12	04
GND 10	11	P 4

SN54 HC688 . . . FH OR FK PACKAGE SN74HC688 . . FH OR FN PACKAGE (TOP VIEW)

FUNCTION TABLE

INPUTS		
DATA P, Q	ENABLE $\overline{\mathbf{G}}$	OUTPUT $\mathbf{P = \mathbf { Q }}$
$\mathrm{P}=\mathrm{Q}$	L	L
$\mathrm{P}>\mathrm{Q}$	L	H
$\mathrm{P}<\mathrm{Q}$	L	H
X	H	H

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & C_{L}=15 \mathrm{pF}, \\ & R_{L}=2 \mathrm{k} \Omega, \\ & \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \end{aligned}$			$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} . \\ & C_{L}=50 \mathrm{pF} \end{aligned}$							UNIT
						$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54HC688		SN74HC688		
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	P	$\overline{\mathrm{P}=0}$											ns
tPHL					,								
tPLH	0	$\overline{\mathrm{P}=0}$											ns
tPHL													
tPLH	$\overline{\mathrm{G}}$	$\overline{P=0}$											ns
tPHL													
$\mathrm{C}_{\text {pd }}$	Power dissipation capacitance					No load, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$					pF typ		

NOTE 1: for load circuit and voltage waveforms, see page 1-14.

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Coramic DIPs

- Dependable Texas Instruments Quality and Reliability
description
These devices contain two independent 4 -input positiveNOR gates. They perform the boolean functions $Y=\overline{A+B+C+D}$ or $Y=\bar{A} \cdot \bar{B} \cdot \bar{C} \cdot \bar{D}$ in positive logic.

The SN54HC4002 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC4002 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

INPUTS				OUTPUT
A	B	C	D	Y
L	L	L	L	H
H	X	X	X	L
X	H	X	X	L
X	X	H	X	L
X	X	X	H	L

logic symbol

SN54HC4002 . . . J PACKAGE
SN74HC4002 . . J OR N PACKAGE
(TOP VIEW)

19 [1	\square_{14}	V_{Cc}
$1 \mathrm{~A} \mathrm{~L}_{2}$	213	$\mathrm{T}^{2 Y}$
18 \square^{3}	12	72 D
1C	11	2C
10 5	10	2B
NC-6	9	2A
GND-7	8	NC

SN54HC4002 . . . FH OR FK PACKAGE SN74HC4002 ... FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection

Pin numbers shown are for J and N packages.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table I, page 2-3.
switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & C_{L}=15 \mathrm{pF}, \\ & R_{L}=2 \mathrm{k} \Omega, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} . \\ & C_{L}=50 \mathrm{pF} \end{aligned}$						UNIT
				$\mathrm{T}_{A}=25^{\circ} \mathrm{C}$		SN54HC'		SN74HC'		
			MIN TYP MAX	MIN	TYP MAX	MIN	MAX	MIN	MAX	
tPLH	A thru D	Y								ns
tPHL										
C_{pd}	Power dissipation capacitance per gate			No load, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$				pf typ		

NOTE 1: For load circuit and voltage waveforms, see page 1-14. continue this product without notice.

- Carry-Out Output for Cascading

- Divide-by-N Counting
- DC Clock Input Circuit Allows Slow Rise Times
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

The 'HC4017 is a 5 -stage divide-by-10 Johnson counter with ten decoded outputs and a carry-out bit. High-speed operation and spike-free outputs are obtained by use of the Johnson decade counter configuration.

The ten decoded outputs are normally low and go high only at their respective decimal time periods. A high signal on CLR asynchronously clears the decade counter and sets the carry output and YO high. With CLKEN low, the count is advanced on a low-to-high transition at CLK. Alternatively, if CLK is high, the count is advanced on a high-to-low transition at CLKEN. Each decoded output remains high for one full clock cycle. The carry output is high while $Y 0, Y 1, Y 2, Y 3$, or $Y 4$ is high, then is low while $\mathrm{Y} 5, \mathrm{Y} 6, \mathrm{Y} 7, \mathrm{Y}$, or Y 9 is high.

The SN54HC4017 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC4017 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

SN54HC4017 . . . J PACKAGE
SN74HC4017...J OR N PACKAGE (TOP VIEW)

SN54HC4017 . . . FH OR FK PACKAGE SN74HC4017 ... FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection
logic symbol

Pin numbers shown are for J and N packages.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table IV, page 2-6.

TYPES SN54HC4017, SN74HC4017
 DECADE COUNTERS/DIVIDERS

typical clear, count, and inhibit sequences

timing requirements (supplement to recommended operating conditions)

			SN54HC4017			SN74HC4017			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	
$f_{\text {clock }}$	Clock frequency								MHz
${ }^{\text {tw }}$	Pulse duration	CLK high or low							ns
		CLR high							
$\mathrm{t}_{\text {su }}$	Setup time, before CLKi	CLKEN Iow							ns
		CLR inactive							

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These devices are 14-stage binary ripple-carry counters that advance on the negative-going edge of the clock pulse. The counters are reset to zero (all outputs low) independently of the clock. when CLR goes high.

The SN54HC4020 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC4O2O is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
logic symbol

Pin numbers shown are for J and N packages.

SN54HC4020 . . . J PACKAGE
SN74HC4020 . . J OR N PACKAGE (TOP VIEW)

SN54HC4020 . . . FH OR FK PACKAGE SN74HC4020 . . FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection
maximum ratings, recommended operating conditions, and electrical characteristics
See Table IV, page 2-6.
timing requirements (supplement to recommended operating conditions)

			SN54HC4020			SN74HC4020			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	
$f_{\text {clock }}$	Clock frequency								MHz
t_{w}	Pulse duration	CLK high or low							ns
		CLR high							
$\mathrm{t}_{\text {su }}$	Setup time, CLR inactive before CLK 1								ns

Texas Instruments INCORPORATED

TYPES SN54HC4020, SN74HC4020
 ASYNCHRONOUS 14-BIT BINARY COUNTERS

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

[^46]- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

This device is an asynchronous 12 -stage binary counter with the outputs of all stages available externally. A high level at CLR asynchronously clears the counter and resets all outputs low. The count is advanced on a high-to-low transition at CLK. Applications include time delay circuits, counter controls, and frequency-dividing circuits.
The SN54HC4040 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC4040 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
logic symbol

SN54HC4040 . . . J PACKAGE
SN74HC4040 . . J OR N PACKAGE
(TOP VIEW)

> SN54HC4040 . . FH OR FK PACKAGE SN74HC4040... FH OR FN PACKAGE (TOP VIEW)

Pin numbers shown are for J and N packages.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table IV, page 2-6.
timing requirements (supplement to recommended operating conditions)

			SN54 HC4040			SN74 HC4040			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	
${ }_{\text {f clock }}$	Clock frequency								MHz
t_{w}	Pulse duration	CLK high or low							ns
		CLR high							
$\mathrm{t}_{\text {su }}$	Setup time, CLR inactive before CLK.								ns

POST OFFICE BOX 225012 - DALLAS, TEXAS 75265

TYPES SN54HC4040, SN74HC4040
 ASYNCHRONOUS 12-BIT BINARY COUNTERS

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \\ & \mathrm{~T}_{\mathbf{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} . \\ & C_{L}=50 \mathrm{pF} \end{aligned}$			UNIT
				$\mathrm{T}^{\prime}=25^{\circ} \mathrm{C}$	SN54HC'	SN74HC'	
			MIN TYP MAX	MIN TYP MAX	MIN MAX	MIN MAX	
$f_{\text {max }}$							MHz
tPLH	CLK	0_{A}					ns ${ }^{\prime}$
tPHL							
tPLH	On	Q_{n+1}					ns
tPHL				.			
tPHL	CLR	Any					ns

C_{pd}	Power dissipation capacitance	No load, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	pF typ

[^47]
- Allows Design of Either RC or Crystal Oscillator Circuits

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

The 'HC4060 consists of an oscillator section and 14 ripple-carry binary counter stages. The oscillator configuration allows design of either RC or crystal oscillator circuits. A negative transition on the clock input increments the counter. A high level at CLR disables the oscillator ($\overline{\mathrm{CKO}}$ goes high and CKO goes low) and resets the counter to zero (all Q outputs low).

The SN54HC4060 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC4060 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

logic symbol

Pin numbers shown are for J and N packages.

SN54HC4060 . . . J PACKAGE
SN74HC4060 . . J OR N PACKAGE
(TOP VIEW)

SN54 HC4060 . . . FH OR FK PACKAGE SN74HC4060 . . . FH OR FN PACKAGE (TOP VIEW)

maximum ratings, recommended operating conditions, and electrical characteristics
See Table IV, page 2-6.

TYPES SN54HC4060, SN74HC4060

ASYNCHRONOUS 14-STAGE BINARY COUNTERS AND OSCILLATORS
timing requirements (supplement to recommended operating conditions)

			SN54HC4060			SN74HC4060			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	
${ }^{\text {t }}$ w	Pulse duration	CKI high or low					.		
		CLR high							ns
$\mathrm{t}_{\text {su }}$	Setup time, CLR inactive before CKI'								ns

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & \mathrm{V}_{C C}=5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \\ & \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \end{aligned}$			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} . \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$							UNIT
						$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54HC'		SN74HC'		
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$													MHz
tPLH	CKI	0_{D}					.						ns
tPHL													ns
tPLH	On	Qn+1											ns
tPHL													
${ }^{\text {t PHL }}$	CLR	Any 0											ns
C_{pd}	Power dissipation capacitance						No load, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$				pF typ		

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These devices contain three independent 3 -input OR gates and perform the boolean functions $Y=A+B+C$ or $Y=\overline{\bar{A}} \cdot \bar{B} \cdot \bar{C}$ in positive logic.

The SN54HC4075 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC4075 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
logic symbol

Pin numbers shown are for J and N packages.

SN54HC4075 . . . J PACKAGE
SN74HC4075...J OR N PACKAGE (TOP VIEW)

1A 1	\cup_{14}	V_{CC}
1B 2	13	3C
$2 \mathrm{~A}-3$	12	3B
2B \square^{4}	11	3 A
2C $\square 5$	10	万3 ${ }^{\text {r }}$
2 Y [6	9	¢1Y
GND \square_{7}] 1 C

SN54HC4075 . . . FH OR FK PACKAGE SN74HC4075 ... FH OR FN PACKAGE (TOP VIEW)

> NC - No internal connection

FUNCTION TABLE

INPUTS			OUTPUT
A	B	C	\mathbf{Y}
H	X	X	H
X	H	X	H
X	X	H	H
L	L	L	L

maximum ratings, recommended operating conditions, and electrical characteristics
See Table I, page 2-3.
switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & C_{L}=15 \mathrm{pF}, \\ & R_{L}=2 \mathrm{k} \Omega, \\ & \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} . \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$							UNIT
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54HC'		SN74HC'		
			MIN TYP MAX	MIN	TYP	MAX	MIN	MAX	MIN		
tPLH	A, B, or C	Y									ns
tPHL											
$\mathrm{C}_{\text {pd }}$	Power dissipation capacitance per gate			No load, $\mathrm{T}_{\mathbf{A}}=25^{\circ} \mathrm{C}$					pF typ		

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs

Dependable Texas Instruments Quality and Reliability
description
These devices contain a single 8 -input NOR gate and perform the following boolean functions in positive logic:

$$
\begin{gathered}
Y=\overline{A+B+C+D+E+F+G+H} \text { or } \\
Y=\bar{A} \cdot \vec{B} \cdot \bar{C} \cdot \bar{D} \cdot \bar{E} \cdot \bar{F} \cdot \bar{G} \cdot \bar{H}
\end{gathered}
$$

The SN54HC4078 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC4078 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE	
INPUTS A	OUTPUT
THRU H	Y
All inputs L	H
One or more inputs H	-
L	

logic symbol

Pin numbers shown are for J and N packages.

SN54HC4078 . . . SPACKAGE SN74HC4078 . . . J OR N PACKAGE (TOP VIEW)

SN54HC4078 . . . FH OR FK PACKAGE SN74HC4078 . . . FH OR FN PACKAGE (TOP VIEW)

maximum ratings, recommended operating conditions, and electrical characteristics
See Table I, page 2-3.
switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & C_{L}=15 \mathrm{pF}, \\ & R_{L}=2 \mathrm{k} \Omega . \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & C_{L}=50 \mathrm{pF} \end{aligned}$						UNIT
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54HC'		SN74HC'		
			MIN TYP MAX	MIN	TYP MAX	MIN	MAX	MIN	MAX	
tPLH	A thru H	Y								ns
tPHL										
$\mathrm{C}_{\text {pd }}$	Power dissipation capacitance			No load, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$				pF typ		

Texas Instruments
 INCORPORATED

- Latch Storage of Code

- Blanking Input
- Lamp Test Provision
- Readout Blanking on All Illegal Input Combinations
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

The 'HC4511 provides the functions of a 4-bit storage latch, a BCD-to-seven-segment decoder, and an output driver. Lamp test ($\overline{\mathrm{LT}}$), blanking ($\overline{\mathrm{BI}}$), and latch enable $(\overline{\mathrm{LE}})$ inputs are used to test the display, to turn off or pulse-modulate the brightness of the display, and to store a BCD code, respectively.

The SN54HC4511 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC4511 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

INPUTS							OUTPUTS							DISPLAY
$\overline{\text { LE }}$	BI	$\overline{\text { LT }}$	D	C	B	A	a	b	c	d	e	f	g	
L	H	H	L	L	L	L	H	H	H	H	H	H	L	0
L	H	H	L	L	L	H	L	H	H	L	L	L	L	1
L	H	H	L	L	H	L	H	H	L	H	H	L	H	2
L	H	H	L	L.	H	H	H	H	H	H	L	1	H	3
L	H	H	L	H	L	L	L	H	H	L	L	H	H	4
L	H	H	L	H	L	H	H	L	H	H	L	H	H	5
L	H	H	L	H	H	L	L	L	H	H	H	H	H	6
L	H	H	L	H	H	H	H	H	H	L	L	L	L	7
L	H	H	H	L	L	L	H	H	H	H	H	H	H	8
L	H	H	H	L	L	H	H	H	H	L	L	H	H	9
L	H	H	H	L	H	L	L	L	L	L	L	L	L	Blank
L	H	H	H	L	H	H	L	L	L	L	L	L	L	Blank
L	H	H	H	H	L	L	L	L	L	L	L.	L	L	Blank
1	H	H	H	H	L	H	L	L	L	L	L	L	L	Blank
L	H	H	H	H	H	L	L	L	L	L	1	L	L	Blank
L	H	H	H	H	H	H	L	L	L	L	L	L	L	Blank
X	X	L	X	X	X	X	H	H.	H	H	H	H	H	8
X	L	H	X	X	X	X	L	L	L	L	L	L	L	Blank
H	H	H	X	X	X	X	All outputs remain in state existing before $\stackrel{\rightharpoonup}{\mathrm{E}} \dagger$							

SN54HC4511 ... FH OR FK PACKAGE SN74HC4511 ... FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection
logic symbol

Pin numbers shown are for J and N packages.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table IV, page 2-6.

TYPES SN54HC4511, SN74HC4511 BCD-TO-SEVEN-SEGMENT DECODERS/DRIVERS WITH LATCHED INPUTS

timing requirements (supplement to recommended operating conditions)

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & \mathrm{V}_{C C}=5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \\ & \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & C_{L}=50 \mathrm{pF} \end{aligned}$						UNIT
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54HC'		SN74HC'		
			MIN TYP MAX	MIN	TYP MAX	MIN	MAX	MIN	MAX	
tPLH	A thru D	a thrug								ns
tPHL										ns
tPLH	$\overline{\text { BI }}$	a thrug								ns
tPHL										
tPLH	$\overline{\text { LT }}$	a thrug								ns
- tPHL										
tpLH	$\overline{L E}$	a thrug								ns
tPHL										ns
C_{pd}	Power dissipation capacitance			No load, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$				pF typ		

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

TYPES SN54HC4514, SN54HC4515, SN74HC4514, SN74HC4515

Two Output Options:

'HC4514 Has Active-High Outputs
'HC4515 Has Active-Low Outputs

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These devices present two output options of a 4-to16 line decoder with latched inputs. The 'HC4514 presents a high level at the selected output. The 'HC4515 presents a low level at the selected output.

These devices consist of four storage latches with common latch enable (LE) and inhibit (\bar{G}) inputs. When a low signal is applied to the LE input, the input data is stored, decoded, and presented to the output. When LE is high, all sixteen 'HC4514 outputs are at a low logic level, or all 'HC4515 outputs are a high logic level.

The SN54HC4514 and the SN54HC4515 are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC4514 and SN54HC4515 are characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

INPUTS						OUTPUT SELECTED	OUTPUTS	
LE	$\overline{\mathbf{G}}$	D	C	B	A		'HC4514	'HC4515
H	L	L	L	L	L	0		
H	L	L	L	L	H	1		
H	L	L	L	H	L	2		
H	L	L	L	H	H	3		
H	L	L	H	L	L	4		
H	L	L	H	L	H	5	Selected	Selected
H	L	L	H	H	L	6	Output $=\mathrm{H}$	Output $=$ L
H	L	L	H	H	H	7	All others $=$ L	All others $=\mathrm{H}$
H	L	H	L	L	L	8		
H	L	H	L	L	H	9		
H	L	H	L	H	L	10		
H	L	H	L	H	H	11		
H	L	H	H	L	L	12		
H	L	H	H	L	H	13		
H	L	H	H'	H	L	14		
H	L	H	H	H	H	15		
X	H	X	X	X	X		All $=\mathrm{L}$	All $=\mathrm{H}$
L	L	X	X	X	X	All outputs rem	in in state exis	ting before LE!

SN54HC' . . . JT PACKAGE
SN74HC' . . . JT OR NT PACKAGE (TOP VIEW)

LE 1	$\left.U_{24}\right] \mathrm{VCC}$
A 2	23 歌
B \square^{3}	22
Y7-4	21
Y6 5	$20]$ Y10
Y5-6	19 Y 11
Y4 7	18 Y8
Y3-8	17 Y 9
Y1-9	$16 \square$ Y14
Y2 10	$15 \square \mathrm{Y} 15$
YO-11	$14 \bigcirc \mathrm{Y} 12$
GND 12	13.] Y13

SN54HC' . . . FH OR FN PACKAGE SN74HC' . . FH OR FN PACKAGE (TOP VIEW)

TYPES SN54HC4514, SN54HC4515, SN74HC4514, SN74HC4515 4-LINE TO 16-LINE DECODERS/DEMULTIPLEXERS WITH ADDRESS LATCHES

'HC4514 logic symbols (alternatives)

Pin numbers shown are for JT and NT packages.
'HC4515 logic symbols (alternatives)

Pin numbers shown are for JT and NT packages.

TYPES SN54HC4514, SN54HC4515, SN74HC4514, SN74HC4515 4-LINE TO 16-LINE DECODERS/DEMULTIPLEXERS WITH ADDRESS LATCHES

maximum ratings, recommended operating conditions, and electrical characteristics
See Table IV, page 2-6.
timing requirements (supplement to recommended operating conditions)

		SN54HC'			SN74HC'			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
t_{w}	Pulse duration, LE high							ns
$\mathrm{t}_{\text {su }}$	Setup time before LE!							ns
th	Hold time after LEI							ns

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} . \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} . \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega . \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} . \\ & C_{L}=50 \mathrm{pF} \end{aligned}$						UNIT
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54HC'		SN74HC'		
			MIN TYP MAX	MIN	TYP MAX	MIN	MAX	MIN	MAX	
tPLH	A thru D	Any								ns
tPHL										
tPLH	LE	Any								ns
tPHL										
tPLH	$\overline{\mathbf{G}}$	Any								ns
tPHL										
C_{pd}.	Power dissipation capacitance			No load, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$				pF typ		

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

Positive- and Negative-Edge Triggered Inputs with Hysteresis

- Complementary Outputs Available
- Independent Clear Inputs
- Wide Range of Output Pulse Durations
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

The 'HC4538 can be triggered by either the positiveor the negative edge of an input pulse. This device will produce an accurate output pulse over a wide range of pulse durations. The output pulse duration and accuracy are determined by the external timing components $\mathrm{C}_{\text {ext }}$ and Rext. Trigger and clear propagation delays are independent of $R_{\text {ext }}$ and $C_{\text {ext }}$.
A clear input is provided for immediate termination of the output pulse or to prevent output pulses when power is turned on.

The SN54HC4538 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC4538 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

SN54HC4538 . . . J PACKAGE
SN74HC4538 . . J OR N PACKAGE (TOP VIEW)

SN54HC4538 . . . FH OR FK PACKAGE SN74HC4538 . . . FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection
logic symbol

Pin numbers shown are for J and N packages.
maximum ratings, recommended operating conditions, and electrical characteristics
See Table IV, page 2-6.
Note: The minimum recommended supply voltage for this device is 3 V .

TYPES SN54HC4538, SN74HC4538 DUAL PRECISION RETRIGGERABLE/RESETTABLE MONOSTABLE MULTIVIBRATORS

timing requirements (supplement to recommended operating conditions)

	SN54HC4538		SN74HC4538	UNIT
	MIN NOM MAX	MIN NOM MAX		
t_{w} Pulse duration, A high or B low			MHz	
$\mathrm{R}_{\text {ext }}$	External timing resistance			$\mathrm{k} \Omega$
$\mathrm{C}_{\text {ext }}$	External timing capacitance			$\mu \mathrm{m}$

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & C_{L}=15 \mathrm{pF}, \\ & R_{L}=2 \mathrm{k} \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} . \\ & C_{L}=50 \mathrm{pF} \end{aligned}$						UNIT
					${ }^{\text {a }} 25^{\circ} \mathrm{C}$	SN5	HC'	SN7	HC'	
			MIN TYP MAX	MIN	TYP MAX	MIN	MAX	MIN	MAX	
${ }^{\text {PPLH }}{ }^{\dagger}$	A	0								ns
	B									
tPHL \dagger	A	0								ns
	B									
tPHL ${ }^{\text {+ }}$	$\overline{C L R}$	0								ns
tPLH †		0		.						
${ }_{\text {twa }}$ (min) \dagger	A or B	0								ns
${ }_{\text {two }} \ddagger$	A or B	0								$\mu \mathrm{s}$
C_{pd}	Power dissipation capacitance per monostable				No load, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			pF typ		

[^48]SN54HC4724 . . . J PACKAGE SN74HC4724 . . . J OR N PACKAGE (TOP VIEW)

SN54HC4724 . . . FH OR FK PACKAGE SN74HC4724 . . . FH OR FN PACKAGE (TOP VIEW)

These 8-bit addressable latches are designed for general purpose storage applications in digital systems. Specific uses include working registers, serial-holding registers, and activehigh decoders or demultiplexers. They are multifunctional devices capable of storing single-line data in eight addressable latches, and being a 1 -of- 8 decoder or demultiplexer with active-high outputs.

Four distinct modes of operation are selectable by controlling the clear (CLR) and enable ($\overline{\mathrm{G}}$) inputs as enumerated in the function table. In the addressable-latch mode, data at the datain terminal is written into the addressed latch. The addressed latch will follow the data input with all unaddressed latches remaining in their previous states. In the memory mode, all latches remain in their previous states and are unaffected by the data or address inputs. To eliminate the possibility of entering erroneous data in the latches, enable $\overline{\mathbf{G}}$ should be held high (inactive) while the address lines are changing. In the 1-of-8 decoding or demultiplexing mode, the addressed output will follow the level of the D input with all other outputs low. In the clear mode, all outputs are low and unaffected by the address and data inputs.

The SN54HC4724 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC4724 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

NC - No internal connection
logic symbol

Pin numbers shown are for J and N packages.

TYPES SN54HC4724, SN74HC4724 8-BIT ADDRESSABLE LATCHES

FUNCTION TABLE

INPUTS		OUTPUT OF ADDRESSED LATCH	EACH OTHER OUTPUT	FUNCTION
CLR	$\overline{\mathbf{G}}$			
L	L	D	a_{iO}	Addressable Latch
L	H	$\mathrm{a}_{\text {io }}$	a_{i}	Memory
H	L	D	L	8-Line Demultiplexer
H	H	L	L	Clear

$D=$ the level at the data input.
$\mathrm{O}_{\mathrm{i}}=$ the level of $\mathrm{a}_{\mathrm{i}}(\mathrm{i}=0,1, \ldots .7$, as appropriate) before the indicated steady-state input conditions were established.

LATCH SELECTION TABLE

SELECT INPUTS			LATCH
S2	S1	SO	ADDRESSED
L	L	L	0
L	L	H	1
L	H	L	2
L	H	H	3
H	L	L	4
H	L	H	5
H	H	L	6
H	H	H	7

maximum ratings, recommended operating conditions, and electrical characteristics
See Table IV, page 2-6.
timing requirements (supplement to recommended operating conditions)

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & C_{L}=15 \mathrm{pF}, \\ & R_{L}=2 \mathrm{k} \Omega, \\ & \mathrm{~T}_{\mathbf{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} . \\ & C_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$						UNIT
				$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$		SN54HC08		SN74HCO8		
			MIN TYP MAX	MIN	TYP MAX	MIN	MAX	MIN	MAX	
tPHL	CLR	Any								ns
tPLH	Data	Any								ns
tPHL										
tPLH	Address	Any								ns
tPHL										
tPLH	$\overline{\mathbf{G}}$	Any								ns
tPHL										
C_{pd}	Power dissipation capacitance			No load, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$				pf typ		

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

THIS PAGE

Explanation of Logic Symbols

TABLE OF CONTENTS

Title Page

1. INTRODUCTION 4-3
2. SYMBOL COMPOSITION 4-3
3. QUALIFYING SYMBOLS 4-5
3.1 General Qualifying Symbols 4-5
3.2 Qualifying Symbols for Inputs and Outputs 4-5
3.3 Symbols Inside the Outline 4-9
4. DEPENDENCY NOTATION 4-10
4.1 General Explanation 4-10
4.2 G, AND 4-10
4.3 Conventions for the Application of Dependency Notation in General 4-12
4.4 V, OR 4-13
4.5 N, Negate (Exclusive OR) 4-13
4.6 Z, Interconnection 4-14
4.7 C, Control 4-15
4.8 S, Set and R, Reset 4-15
4.9 EN, Enable 4-16
4.10 M , Mode 4-17
4.11 A, Address 4-19
5. BISTABLE ELEMENTS 4-22
6. CODERS 4-237. USE OF A CODER TO PRODUCE AFFECTING INPUTS4-24
7. USE OF BINARY GROUPING TO PRODUCE AFFECTING INPUTS 4-25
8. SEQUENCE OF INPUT LABELS 4-25
9. SEQUENCE OF OUTPUT LABELS 4-26
LIST OF TABLES
Table Title Page
I. General Qualifying Symbols 4-6
II. Qualifying Symbols for Inputs and Outputs 4-7
III. Symbols Inside the Outline 4-8
IV. Summary of Dependency Notation 4-21
If you have questions on this Explanation IEEE Standards may be purchased from: of Logic Symbols, please contact:
F.A. Mann MS 49

Texas Instruments Incorporated

P.O. Box 225012

Dallas, Texas 75265
Telephone (214) 995-2867

Institute of Electrical and Electronics Engineers, 345 East 47th Street
New York, N.Y. 10017

International Electrotechnical Commission (IEC) publications may be purchased from:

American National Standards Institute, Inc. 1430 Broadway
New York, N.Y. 10018

EXPLANATION OF LOGIC SYMBOLS

by F. A. Mann

1 INTRODUCTION

The International Electrotechnical Commission (IEC) has been developing a very powerful symbolic language that can show the relationship of each input of a digital logic circuit to each output without showing explicitly the internal logic. At the heart of the system is dependency notation, which will be explained in Section 4.

The system was introduced in the USA in a rudimentary form in IEEE/ANSI Standard Y32.14-1973. Lacking at that time a complete development of dependency notation, it offered little more than a substitution of rectangular shapes for the familiar distinctive shapes for representing the basic functions of AND, OR, negation, etc. This is no longer the case.

Internationally, Working Group 2 of IEC Technical Committee TC-3 is preparing a new document (Publication 617-12) that will consolidate the original work started in the mid 1960's and published in 1972 (Publication 117-15) and the amendments and supplements that have followed. Similarly for the USA, IEEE Committee SCC 11.9 is revising the publication IEEE Std 91/ANSI Y32.14. Texas Instruments is participating in the work of both organizations and this Data Book introduces

2 SYMBOL COMPOSITION

A symbol comprises an outline or a combination of outlines together with one or more qualifying symbols. The shape of the symbols is not significant. As shown in Figure 1, general qualifying symbols are used to tell exactly what logical operation is performed by the elements. Table I shows the general qualifying symbols used in this data book. Input lines are placed on the left and output lines are placed on the right. When an exception is made to that convention, the direction of signal flow is indicated by an arrow as shown in Figure 11.

All outputs of a single, unsubdivided element always have identical internal logic states determined by the function of the element except when otherwise indicated by an associated qualifying symbol or label inside the element.

EXPLANATION OF LOGIC SYMBOLS

*Possible positions for qualifying symbols relating to inputs and outputs

FIGURE 1 - SYMBOL COMPOSITION
The outlines of elements may be abutted or embedded in which case the following conventions apply. There is no logic connection between the elements when the line common to their outlines is in the direction of signal flow. There is at least one logic connection between the elements when the line common to their outlines is perpendicular to the direction of signal flow. The number of logic connections between elements will be clarified by the use of qualifying symbols and this is discussed further under that topic. If no indications are shown on either side of the common line, it is assumed there is only one connection.

When a circuit has one or more inputs that are common to more than one element of the circuit, the common-control block may be used. This is the only distinctively shaped outline used in the IEC system. Figure 2 shows that unless otherwise qualified by dependency notation, an input to the common-control block is an input to each of the elements below the common-control block.

FIGURE 2 - ILLUSTRATION OF COMMON. CONTROL BLOCK

EXPLANATION OF LOGIC SYMBOLS

A common output depending on all elements of the array can be shown as the output of a commonoutput element. Its distinctive visual feature is the double line at its top. In addition the commonoutput element may have other inputs as shown in Figure 3. The function of the common-output element must be shown by use of a general qualifying symbol.

FIGURE 3 - ILLUSTRATION OF COMMON-OUTPUT ELEMENT

3 QUALIFYING SYMBOLS

3.1 General Qualifying Symbols

Table I shows the general qualifying symbols used in this data book. These characters are placed near the top center or the geometric center of a symbol or symbol element to define the basic function of the device represented by the symbol or of the element.

3.2 Qualifying Symbols for Inputs and Outputs

Qualifying symbols for inputs and outputs are shown in Table II and will be familiar to most users with the possible exception of the logic polarity and analog signal indicators. The older logic negation indicator means that the external 0 state produces the internal 1 state. The internal 1 state means the active state. Logic negation may be used in pure logic diagrams; in order to tie the external 1 and 0 logic states to the levels H (high) and L (low), a statement of whether positive logic ($1=H, 0=L$) or negative logic $(1=L, 0=H)$ is being used is required or must be assumed. Logic polarity indicators eliminate the need for calling out the logic convention and are used in this data book in the symbology for actual devices. The presence of the triangular polarity indicator indicates that the L logic level will produce the internal 1 state (the active state) or that, in the case of an output, the internal 1 state will produce the external L level. Note how the active direction of transition for a dynamic input is indicated in positive logic, negative logic, and with polarity indication.

EXPLANATION OF LOGIC SYMBOLS

TABLE I - GENERAL QUALIFYING SYMBOLS

SYMBOL	DESCRIPTION	EXAMPLE
\&	AND gate or function.	'HCOO
>1	OR gate or function. The symbol was chosen to indicate that at least one active input is needed to activate the output.	'HCO2
$=1$	Exclusive OR. One and only one input must be active to activate the output.	'HC86
= .	Logic identity. All inputs must stand at same state.	'HC86
2k	An even number of inputs must be active.	'HC280.
2k+1	An odd number of inputs must be active.	'HC86
1	The one input must be active.	'HC04
\triangleright or \downarrow	A buffer or element with more than usual output capability (symbol is oriented in the direction of signal flow).	'HC240
-	Schmitt trigger; element with hysteresis.	${ }^{\text {HCl32 }}$
X/Y	Coder, code converter (DEC/BCD, BIN/OUT, BIN/7-SEG, etc.).	'HC42
mux	Multiplexer/data selector.	'HC151
DMUX or DX	Demultiplexer.	'HC138
Σ	Adder.	*
P-0	Subtracter.	*
CPG	Look-ahead carry generator.	*
π	Multiplier.	*
COMP	Magnitude comparator.	'HC85
ALU	Arithmetic logic unit.	*
Ω	Retriggerable monostable.	'HC123
1Ω	Non-retriggerable monostable (one-shot).	'HC221
ת	Astable element. Showing waveform is optional.	*
!	Synchronously starting astable.	*
¢!	Astable element that stops with a completed pulse.	*
SRGm	Shift register. $m=$ number of bits.	'HC164
CTRm	Counter. $m=$ number of bits; cycle length $=2 \mathrm{~m}$.	'HC590
CTR DIVm	Counter with cycle length $=\mathrm{m}$.	'HC160
RCTRm	Asynchronous (ripple-carry) counter; cycle length $=2 \mathrm{~m}$.	'HC4020
ROM	Read-only memory.	*
RAM	Random-access read/write memory.	'HC189
FIFO	First-in, first-out memory.	*
$\mathrm{l}=0$	Element powers up cleared to 0 state.	*
Φ	Highly complex function; "gray box" symbol with limited detail shown under special rules.	*

[^49]TABLE II - QUALIFYING SÝMBOLS FOR INPUTS AND OUTPUTS

The internal connections between logic elements abutted together in a symbol may be indicated by the symbols shown. Each logic connection may be shown by the presence of qualifying symbols at one or both sides of the common line and if confusion can arise about the numbers of connections, use can be made of one of the internal connection symbols.

The internal (virtual) input is an input originating somewhere else in the circuit and is not connected directly to a terminal. The internal (virtual) output is likewise not connected directly to a terminal.

TABLE III - SYMBOLS INSIDE THE OUTLINE

J, K, R, S, T

$\mathrm{CT}=\mathrm{g} \longmapsto$

Postponed output (of a pulse-triggered flip-flop). The output changes when input initiating change (e.g., a C input) returns to its initial external state or level. See § 5.

Bi -threshold input (input with hysteresis)
NPN open collector or similar output that can supply a relatively low-impedance L level when not turned off. Requires external pull-up. Capable of positive-logic wired-AND connection.

Passive-pull-up output is similar to NPN open-collector output but
 is suplemented with a built-in passive pull-up.

NPN open-emitter or similar output that can supply a relatively lowimpedance H level when not turned off. Requires external pull-down. Capable of positive-logic wired-OR connection.

Passive-pull-down output is similar to NPN open-emitter output but is supplemented with a built-in passive pull-down.

3-state output
Output with more than usual output capability (symbol is oriented in the direction of signal flow).

Enable input
When at its internal 1-state, all outputs are enabled.
When at its internal 0 -state, open-collector and open-emitter outputs are off, three-state outputs are at normally defined internal logic states and at external high-impedance state, and all other outputs (e.g., totem-poles) are at the internal 0-state.

Usual meanings associated with flip-flops (e.g., $R=$ reset, $T=$ toggle)
Data input to a storage element equivalent to: \square_{--D}^{S}
Shift right (left) inputs, $m=1,2,3$ etc. If $m=1$, it is usually not shown.
Counting up (down) inputs, $m=1,2,3$ etc. If $m=1$, it is usually not shown.

Binary grouping. m is highest power of 2.

The contents-setting input, when active, causes the content of a register to take on the indicated value.

The content output is active if the content of the register is as indicated.
Input line grouping indicates two or more terminals used to implement a single logic input.
e.g., The paired expander inputs of SN7450.

Fixed-state output always stands at its internal 1 state. For example, see SN74185.

EXPLANATION OF LOGIC SYMBOLS

The application of internal inputs and outputs requires an understanding of dependency notation, which is explained in Section 4.

In an array of elements, if the same general qualifying symbol and the same qualifying symbols associated with inputs and outputs would appear inside each of the elements of the array, these qualifying symbols are usually shown only in the first element. This is done to reduce clutter and to save time in recognition. Similarly, large identical elements that are subdivided into smaller elements may each be represented by an unsubdivided outline. The SN54HC242 symbol illustrates this principle.

3.3 Symbols Inside the Outline

Table III shows some symbols used inside the outline. Note particularly that open-collector, openemitter, and three-state outputs have distinctive symbols. Also note that an EN input affects all of the outputs of the circuit and has no effect on inputs. When an enable input affects only certain outputs and/or affects one or more inputs, a form of dependency notation will indicate this (see 4.9). The effects of the EN input on the various types of outputs are shown.

It is particularly important to note that a D input is always the data input of a storage element. At its internal 1 state, the D input sets the storage element to its 1 state, and at its internal 0 state it resets the storage element to its 0 state.

The binary grouping symbol will be explained more fully in Section 8. Binary-weighted inputs are arranged in order and the binary weights of the least-significant and the most-significant lines are indicated by numbers. In this data book weights of input and output lines will be represented by powers of two usually only when the binary grouping symbol is used, otherwise, decimal numbers will be used. The grouped inputs generate an internal number on which a mathematical function can be performed or that can be an identifying number for dependency notation. See Figure 28. A frequent use is in addresses for memories.

Reversed in direction, the binary grouping symbol can be used with outputs. The concept is analogous to that for the inputs and the weighted outputs will indicate the internal number assumed to be developed within the circuit. .

Other symbols are used inside the outlines in this data book in accordance with the IEC/IEEE standards but are not shown here. Generally these are associated with arithmetic operations and are self-explanatory.

When nonstandardized information is shown inside an outline, it is usually enclosed in square brackets [like these].

EXPLANATION OF LOGIC SYMBOLS

4 DEPENDENCY NOTATION

4.1 General Explanation

Dependency notation is the powerful tool that sets the IEC symbols apart from previous systems and makes compact, meaningful, symbols possible. It provides the means of denoting the relationship between inputs, outputs, or inputs and outputs without actually showing all the elements and interconnections involved. The information provided by dependency notation supplements that provided by the qualifying symbols for an element's function.

In the convention for the dependency notation, use will be made of the.terms "affecting" and "affected". In cases where it is not evident which inputs must be considered as being the affecting or the affected ones (e.g., if they stand in an AND relationship), the choice may be made in any convenient way.

So far, ten types of dependency have been defined and all of these are used in this data book. They are listed below in the order in which they are presented and are summarized in Table IV following 4.14.

Section	Dependency Type or Other Subject
4.2	G, AND
4.3	General rules for dependency notation
4.4	V, OR
4.5	N, Negate, (Exclusive OR)
4.6	Z, Interconnection
4.7	C, Control
4.8	S, Set and R, Reset
4.9	EN, Enable
4.10	M, Mode
4.11	A, Address

4.2 G (AND) Dependency

A common relationship between two signals is to have them ANDed together. This has traditionally been shown by explicitly drawing an AND gate with the signals connected to the inputs of the gate. The 1972 IEC publication and the 1973 IEEE/ANSI standard showed several ways to show this AND relationship using dependency notation. While nine other forms of dependency have since been defined, the ways to invoke AND dependency are now reduced to one.

EXPLANATION OF LOGIC SYMBOLS

In Figure 4 input \mathbf{b} is ANDed with input \mathbf{a} and the complement of \mathbf{b} is ANDed with \mathbf{c}. The letter G has been chosen to indicate AND relationships and is placed at input b, inside the symbol. A number considered appropriate by the symbol designer (1 has been used here) is placed after the letter G and also at each affected input. Note the bar over the 1 at input \mathbf{c}.

FIGURE 4-G DEPENDENCY BETWEEN INPUTS

In Figure 5, output \mathbf{b} affects input \mathbf{a} with an AND relationship. The lower example shows that it is the internal logic state of \mathbf{b}, unaffected by the negation sign, that is ANDed. Figure 6 shows input a to be ANDed with a dynamic input b.

FIGURE 5 - G DEPENDENCY BETWEEN OUTPUTS AND INPUTS

FIGURE 6 - G DEPENDENCY WITH A DYNAMIC INPUT

The rules for G dependency can be summarized thus:

When a $\mathrm{G} m$ input or output (m is a number) stands at its internal 1 state, all inputs and outputs. affected by Gm stand at their normally defined internal logic states. When the Gm input or output stands at its 0 state, all inputs and outputs affected by Gm stand at their internal 0 states.

EXPLANATION OF LOGIC SYMBOLS

4.3 Conventions for the Application of Dependency Notation in General

The rules for applying dependency relationships in general follow the same pattern as was illustrated for G dependency.

Application of dependency notation is accomplished by:

1) labeling the input (or output) affecting other inputs or outputs with the letter symbol indicating the relationship involved (e.g., G for AND) followed by an identifying number, appropriately chosen; and
2) labeling each input or output affected by that affecting input (or output) with that same number.

If it is the complement of the internal logic state of the affecting input or output that does the affecting, then a bar is placed over the identifying numbers at the affected inputs or outputs. See Figure 4.

If two affecting inputs or outputs have the same letter and same identifying number, they stand in an OR relationship to each other. See Figure 7.

FIGURE 7 - OR'ED AFFECTING INPUTS
If the affected input or output requires a label to denote its function (e.g., " D "), this label will be prefixed by the identifying number of the affecting input. See Figure 12.

If an input or output is affected by more than one affecting input, the identifying numbers of each of the affecting inputs will appear in the label of the affected one, separated by commas. The normal reading order of these numbers is the same as the sequence of the affecting relationships. See Figure 12.

If the labels denoting the functions of affected inputs or outputs must be numbers, (e.g., outputs of a coder), the identifying numbers to be associated with both affecting inputs and affected inputs or outputs will be replaced by another character selected to avoid ambiguity, e.g., Greek letters. See Figure 8.

FIGURE 8 - SUBSTITUTION FOR NUMBERS

4.4 V (OR) Dependency

The symbol denoting OR dependency is the letter V. See Figure 9.

FIGURE 9 - V (OR) DEPENDENCY

When a Vm input or output stands at its internal 1 state, all inputs and outputs affected by Vm stand at their internal 1 states. When the Vm input or output stands at its internal 0 state, all inputs and outputs affected by Vm stand at their normally defined internal logic states.

4.5 N (Negate) (X-OR) Dependency

The symbol denoting negate dependency is the letter N. See Figure 10. Each input or output affected by an $\mathrm{N} m$ input or output stands in an exclusive-OR relationship with the $\mathrm{N} m$ input or output.

FIGURE 10 - \mathbf{N} (NEGATE) (X-OR) DEPENDENCY

EXPLANATION OF LOGIC SYMBOLS

When an Nm input or output stands at its internal 1 state, the internal logic state of each input and each output affected by Nm is the complement of what it would otherwise be. When an Nm input or output stands at its internal 0 state, all inputs and outputs affected by Nm stand at their normally defined internal logic states.

4.6 Z (Interconnection) Dependency

The symbol denoting interconnection dependency is the letter \mathbf{Z}.

Interconnection dependency is used to indicate the existence of internal logic connections between inputs, outputs, internal inputs, and/or internal outputs.

The internal logic state of an input or output affected by a Zm input or output will be the same as the internal logic state of the Zm input or output, unless modified by additional dependency notation. See Figure 11.

FIGURE 11 - Z (INTERCONNECTION) DEPENDENCY

EXPLANATION OF LOGIC SYMBOLS

4.7 C (Control) Dependency

The symbol denoting control dependency is the letter C .

Control inputs are usually used to enable or disable the data (D, J, K, R, or S) inputs of storage elements. They may take on their internal 1 states (be active) either statically or dynamically. In the latter case the dynamic input symbol is used as shown in the third example of Figure 12.

Input \mathbf{c} selects which of a or b is stored when digoes low.
FIGURE 12 - C (CONTROL) DEPENDENCY

When a Cm input or output stands at its internal 1 state, the inputs affected by Cm have their normally defined effect on the function of the element, i.e., these inputs are enabled. When a Cm input or output stands at its internal 0 state, the inputs affected by Cm are disabled and have no effect on the function of the element.

4.8 S (Set) and R (Reset) Dependencies

The symbol denoting set dependency is the letter S . The symbol denoting reset dependency is the letter R.

EXPLANATION OF LOGIC SYMBOLS

Set and reset dependencies are used if it is necessary to specify the effect of the combination $R=S=1$ on a bistable element. Case 1 in Figure 13 does not use S or R dependency.

When an $\mathrm{S} m$ input is at its internal 1 state, outputs affected by the Sm input will react, regardless of the state of an R input, as they normally would react to the combination $S=1$, $R=0$. See cases 2, 4, and 5 in Figure 13.

When an $\mathrm{R} m$ input is at its internal 1 state, outputs affected by the Rm input will react, regardless of the state of an S input, as they normally would react to the combination $\mathrm{S}=0$, $R=1$. See cases 3, 4, and 5 in Figure 13.

When an Sm or $\mathrm{R} m$ input is at its internal 0 state, it has no effect.

Note that the noncomplementary output patterns in cases 4 and 5 are only pseudo stable. The simultaneous return of the inputs to $\mathrm{S}=\mathrm{R}=0$ produces an unforeseeable stable and complementary output pattern.

4.9 EN (Enable) Dependency

CASE 1

S	R	\mathbf{Q}	$\overline{\mathbf{Q}}$
0	0	nc	nc
0	1	0	1
1	0	1	0
1	1	$?$	$?$

CASE 2

CASE 3

CASE 4

CASE 5

FIGURE 13 - S (SET) AND R (RESET) DEPENDENCIES

The symbol denoting enable dependency is the combination of letters EN.

An ENm input has the same effect on outputs as an EN input, see 3.1, but it effects only those outputs labeled with the identifying number m. It also affects those inputs labeled with the identifying number m. By contrast, an EN input affects all outputs and no inputs. The effect of an ENm input on an affected input is identical to that of a Cm input. See Figure 14.

EXPLANATION OF LOGIC SYMBOLS

When an ENm input stands at its internal 1 state, the inputs affected by ENm have their normally defined effect on the function of the element and the outputs affected by this input stand at their normally defined internal logic states, i.e., these inputs and outputs are enabled.

If $a=0, b$ is disabled and $d=c$ If $a=1, c$ is disabled and $d=b$

FIGURE 14 - EN (ENABLE) DEPENDENCY
When an ENm input stands at its internal 0 state, the inputs affected by EN m are disabled and have no effect on the function of the element, and the outputs affected by ENm are also disabled. Opencollector outputs are turned off, three-state outputs stand at their normally defined internal logic states but externally exhibit high impedance, and all other outputs (e.g., totem-pole outputs) stand at their internal 0 states.

4.10 M (Mode) Dependency

The symbol denoting mode dependency is the letter M.
Mode dependency is used to indicate that the effects of particular inputs and outputs of an element depend on the mode in which the element is operating.

If an input or output has the same effect in different modes of operation, the identifying numbers of the relevant affecting Mm inputs will appear in the label of that affected input or output between parentheses and separated by solidi. See Figure 19.

4.10.1 M Dependency Affecting Inputs

M dependency affects inputs the same as C dependency. When an $M m$ input or $M m$ output stands at its internal 1 state, the inputs affected by this Mm input or Mm output have their normally defined effect on the function of the element, i.e., the inputs are enabled.

When an Mm input or Mm output stands at its internal 0 state, the inputs affected by this Mm input or Mm output have no effect on the function of the element. When an affected input has several sets of labels separated by solidi (e.g., $\mathrm{C} 4 / 2 \rightarrow / 3+$), any set in which the identifying number of the Mm input or Mm output appears has no effect and is to be ignored. This represents disabling of some of the functions of a multifunction input.

EXPLANATION OF LOGIC SYMBOLS

The circuit in Figure 15 has two inputs, b and c, that control which one of four modes ($0,1,2$, or 3) will exist at any time. Inputs \mathbf{d}, \mathbf{e}, and \mathbf{f} are D inputs subject to dynamic control (clocking) by the a input. The numbers 1 and 2 are in the series chosen to indicate the modes so inputs e and f are only enabled in mode 1 (for parallel loading) and input \mathbf{d} is only enabled in mode 2 (for serial loading). Note that input a has three functions. It is the clock for entering data. In mode 2, it causes right shifting of data, which means a shift away from the control block. In mode 3, it causes the contents of the register to be incremented by one count.

FIGURE 15 - M (MODE) DEPENDENCY AFFECTING INPUTS

When an $M m$ input or $M m$ output stands at its internal 1 state, the affected outputs stand at their normally defined internal logic states, i.e., the outputs are enabled.

When an Mm input or Mm output stands at its internal O state, at each affected output any set of labels containing the identifying number of that Mm input or $\mathrm{M} m$ output has no effect and is to be ignored. When an output has several different sets of labels separated by solidi (e.g., 2,4/3,5), only those sets in which the identifying number of this Mm input or Mm output appears are to be ignored.

In Figure 16, mode 1 exists when the a input stands at its internal 1 state. The delayed output symbol is effective only in mode 1 (when input $\mathbf{a}=1$) in which case the device functions as a pulse-triggered flip-flop. See Section 5 . When input a $=0$, the device is not in mode 1 so the delayed output symbol has no effect and the device functions as a transparent latch.

FIGURE 16 - TYPE OF FLIP.FLOP DETERMINED BY MODE

EXPLANATION OF LOGIC SYMBOLS

In Figure 17, if input a stands at its internal 1 state establishing mode 1 , output \mathbf{b} will stand at its internal 1 state only when the content of the register equals 9 . Since output \mathbf{b} is located in the common-control block with no defined function outside of mode 1 , the state of this output outside of mode 1 is not defined by the symbol.

In Figure 18, if input a stands at its internal 1 state establishing mode 1 , output b will stand at its internal 1 state only when the content of the register equals 15 . If input a stands at its internal 0 state, output \mathbf{b} will stand at its internal 1 state only when the content of the register equals 0 .

In Figure 19 inputs \mathbf{a} and \mathbf{b} are binary weighted to generate the numbers $0,1,2$, or 3 . This determines which one of the four modes exists.

At output e the label set causing negation (if $\mathbf{c}=1$) is effective only in modes 2 and 3 . In modes 0 and 1 this output stands at its normally defined state as if it had no labels. At output f the label set has effect when the

FIGURE 17 - DISABLING AN OUTPUT OF THE COMMON.CONTROL BLOCK

FIGURE 18 - DETERMINING AN OUTPUT'S FUNCTION

FIGURE 19 - DEPENDENT RELATIONSHIPS AFFECTED BY MODE mode is not 0 so output e is negated (if $\mathbf{c}=1$) in modes 1,2 , and 3 . In mode 0 the label set has no effect so the output stands at its normally defined state. In this example 0,4 is equivalent to $(1 / 2 / 3) 4$. At output g there are two label sets. The first set, causing negation (if $c=1$), is effective only in mode 2 . The second set, subjecting g to AND dependency on d, has effect only in mode 3.

Note that in mode 0 none of the dependency relationships has any effect on the outputs, so \mathbf{e}, \mathbf{f}, and \mathbf{g} will all stand at the same state.

4.11 A (Address) Dependency

The symbol denoting address dependency is the letter A.

EXPLANATION OF LOGIC SYMBOLS

Address dependency provides a clear representation of those elements, particularly memories, that use address control inputs to select specified sections of a multidimensional array. Such a section of a memory array is usually called a word. The purpose of address dependency is to allow a symbolic presentation of the entire array. An input of the array shown at a particular element of this general section is common to the corresponding elements of all selected sections of the array. An output of the array shown at a particular element of this general section is the result of the OR function of the outputs of the corresponding elements of selected sections. If the label of an output of the array shown at a particular element of this general section indicates that this output is an open-circuit output or a three-state output, then this indication refers to the output of the array and not to those of the sections of the array.

Inputs that are not affected by any affecting address input have their normally defined effect on all sections of the array, whereas inputs affected by an address input have their normally defined effect only on the section selected by that address input.

An affecting address input is labelled with the letter A followed by an identifying number that corresponds with the address of the particular section of the array selected by this input. Within the general section presented by the symbol, inputs and outputs affected by an Am input are labelled with the letter A, which stands for the identifying numbers, i.e., the addresses, of the particular sections.

FIGURE 20 - A (ADDRESS) DEPENDENCY
Figure 20 shows a 3 -word by 2 -bit memory having a separate address line for each word and uses EN dependency to explain the operation. To select word 1 , input a is taken to its 1 state, which establishes mode 1. Data can now be clocked into the inputs marked " $1,4 \mathrm{D}$ ". Unless words 2 and 3 are also selected, data cannot be clocked in at the inputs marked " $2,4 \mathrm{D}$ " and " $3,4 \mathrm{D}$ ". The outputs will be the OR functions of the selected outputs, i.e., only those enabled by the active EN functions.

The identifying numbers of affecting address inputs correspond with the addresses of the sections selected by these inputs. They need not necessarily differ from those of other affecting dependencyinputs (e.g., G, V, N, \ldots), because in the general section presented by the symbol they are replaced by the letter A.

If there are several sets of affecting Am inputs for the purpose of independent and possibly simultaneous access to sections of the array, then the letter A is modified to $1 A, 2 A, \ldots$ Because they have access to the same sections of the array, these sets of A inputs may have the same identifying numbers.

Figure 21 is another illustration of the concept.

FIGURE 21
FIGURE 21 - ARRAY OF 16 SECTIONS OF FOUR TRANSPARENT LATCHES WITH 3-STATE OUTPUTS COMPRISING A 16-WORD X 4-BIT RANDOM-ACCESS MEMORY

TABLE IV - SUMMARY OF DEPENDENCY NOTATION

TYPE OF DEPENDENCY	LETTER SYMBOL*	AFFECTING INPUT AT ITS 1-STATE	AFFECTING INPUT AT ITS O.STATE
Address	A	Permits action (address selected)	Prevents action (address not selected)
Control	C	Permits action	Prevents action
Enable	EN	Permits action	Prevents action of inputs. ©outputs off. ∇ outputs at external high impedance, no change in internal logic state. Other outputs at internal 0 state.
AND	G	Permits action	Imposes 0 state
Mode	M	Permits action (mode selected)	Prevents action (mode not selected)
Negate (X-OR)	N	Complements state	No effect
RESET	R	Affected output reacts as it would to $S=0, R=1$	No effect
SET	S	Affected output reacts as it would to $S=1, R=0$	No effect
OR	V	Imposes 1 state	Permits action
Interconnection	Z	Imposes 1 state	Imposes 0 state

[^50]
BISTABLE ELEMENTS

The dynamic input symbol, the postponed output symbol, and dependency notation provide the tools to differentiate four main types of bistable elements and make synchronous and asynchronous inputs easily recognizable. See Figure 22. The first column shows the essential distinguishing features; the other columns show examples.

Transparent latches have a level-operated control input. The D input is active as long as the C input is at its internal 1 state. The outputs respond immediately. Edge-triggered elements accept data from D, J, K, R, or S inputs on the active transition of C. Pulse-triggered elements require the setup of data before the start of the control pulse; the C input is considered static since the data must be maintained as long as \mathbf{C} is at its 1 state. The output is postponed until C returns to its 0 state. The data-lock-out element is similar to the pulse-triggered version except that the C input is considered dynamic in that shortly after C goes through its active transition, the data inputs are disabled and data does not have to be held. However, the output is still postponed until the C input returns to its initial external level.

Notice that synchronous inputs can be readily recognized by their dependency labels (1D, $1 \mathrm{~J}, 1 \mathrm{~K}, 1 \mathrm{~S}$, $1 R$) compared to the asynchronous inputs (S, R), which are not dependent on the C inputs.

TRANSPARENT LATCHES

PULSE-TRIGGERED

DATA-LOCK.OUT

1/2 SN74HC75

SN74L71

1/2 SN74HC107

1/2 SN74107

1/2 SN74111

FIGURE 22 - FOUR TYPES OF BISTABLE CIRCUITS

EXPLANATION OF LOGIC SYMBOLS

6 CODERS

The general symbol for a coder or code converter is shown in Figure 23. X and Y may be replaced by appropriate indications of the code used to represent the information at the inputs and at the outputs, respectively.

FIGURE 23 - CODER GENERAL SYMBOL

Indication of code conversion is based on the following rule:

Depending on the input code, the internal logic states of the inputs determine an internal value. This value is reproduced by the internal logic states of the outputs, depending on the output code.

The indication of the relationships between the internal logic states of the inputs and the internal value is accomplished by:

1) labelling the inputs with numbers. In this case the internal value equals the sum of the weights associated with those inputs that stand at their internal 1 -state, or by
2) replacing X by an appropriate indication of the input code and labelling the inputs with characters that refer to this code.

The relationships between the internal value and the internal logic states of the outputs are indicated by:

1) labelling each output with a list of numbers representing those internal values that lead to the internal 1-state of that output. These numbers shall be separated by solidi as in Figure 24. This labelling may also be applied when Y is replaced by a letter denoting a type of dependency (see Section 7). If a continuous range of internal values produces the internal 1 state of an output, this can be indicated by two numbers that are inclusively the beginning and the end of the range, with these two numbers separated by three dots, e.g., $4 \ldots 9=$ 4/5/6/7/8/9, or by
2) replacing Y by an appropriate indication of the output code and labelling the outputs with characters that refer to this code as in Figure 25.

Alternatively, the general symbol may be used together with an appropriate reference to a table in which the relationship between the inputs and outputs is indicated. This is a recommended way to symbolize a PROM after it has been programmed.

EXPLANATION OF LOGIC SYMBOLS

FUNCTION TABLE

INPUTS			OUTPUTS			
\mathbf{c}	b	a	g	f	0	d
0	0	0	0	0	0	0
0	0	1	0	0	0	1
0	1	0	0	0	1	0
0	1	1	0	1	1	0
1	0	0	0	1	0	1
1	0	1	0	0	0	0
1	1	0	0	0	0	0
1	1	1	1	0	0	0

FIGURE 24 - AN X/Y CODE CONVERTER

FUNCTION TABLE

FIGURE 25 - AN X/OCTAL CODE CONVERTER
7 USE OF A CODER TO PRODUCE AFFECTING INPUTS

It often occurs that a set of affecting inputs for dependency notation is produced by decoding the signals on certain inputs to an element. In such a case use can be made of the symbol for a coder as an embedded symbol. See Figure 26.

If all affecting inputs produced by a coder are of the same type and their identifying numbers correspond with the numbers shown at the outputs of the coder, Y (in the qualifying symbol X / Y) may be replaced by the letter denoting the type of dependency. The indications of the affecting inputs should then be omitted. See Figure 27.

FIGURE 26 - PRODUCING VARIOUS TYPES OF DEPENDENCIES

FIGURE 27 - PRODUCING ONE TYPE OF DEPENDENCY

8 USE OF BINARY GROUPING TO PRODUCE AFFECTING INPUTS

If all affecting inputs produced by a coder are of the same type and have consecutive identifying numbers not necessarily corresponding with the numbers that would have been shown at the outputs of the coder, use can be made of the binary grouping symbol (see 3.1). k external lines effectively generate 2^{k} internal inputs. The bracket is followed by the letter denoting the type of dependency followed by $\frac{m 1}{m 2}$. The $m 1$ is to be replaced by the smallest identifying number and the $m 2$ by the largest one, as shown in Figure 28.

FIGURE 28 - USE OF THE BINARY GROUPING SYMBOL

9 SEQUENCE OF INPUT LABELS

If an input having a single functional effect is affected by other inputs, the qualifying symbol (if there is any) for that functional effect is preceded by the labels corresponding to the affecting inputs. The left-to-right order of these preceding labels is the order in which the effects or modifications must be applied. The affected input has no functional effect on the element if the logic state of any one of the affecting inputs, considered separately, would cause the affected input to have no effect, regardless of the logic states of other affecting inputs.

If an input has several different functional effects or has several different sets of affecting inputs, depending on the mode of action, the input may be shown as often as required. However, there are cases in which this method of presentation is not advantageous. In those cases the input may be shown once with the different sets of labels separated by solidi. See Figure 29. No meaning is attached to the order of these sets of labels. If one of the functional effects of an input is that of an unlabelled input of the element, a solidus will precede the first set of labels shown.

EXPLANATION OF LOGIC SYMBOLS

If all inputs of a combinational element are disabled (caused to have no effect on the function of the element), the internal logic states of the outputs of the element are not specified by the symbol. If all inputs of a sequential element are disabled, the content of this element is not changed and the outputs remain at their existing internal logic states.

FIGURE 29 - INPUT LABELS

Labels may be factored using algebraic techniques.

10

SEQUENCE OF OUTPUT LABELS

If an output has a number of different labels, regardless of whether they are identifying numbers of affecting inputs or outputs or not, these labels are shown in the following order:

1) if the postponed output symbol has to be shown, this comes first, if necessary preceded by the indications of the inputs to which it must be applied;
2) followed by the labels indicating modifications of the internal logic state of the output, such that the left-to-right order of these labels corresponds with the order in which their effects must be applied;
3) followed by the label indicating the effect of the output on inputs and other outputs of the element.

Symbols for open-circuit or three-state outputs, where applicable, are placed just inside the outside boundary of the symbol adjacent to the output line. See Figure 31.

FIGURE 31 - PLACEMENT OF 3-STATE SYMBOLS labels that represent alternative functions (e.g., depending on the mode of action), these sets may be shown on different output lines that must be connected outside the outline. However, there are cases in which this method of presentation is not advantageous. In those cases the output may be shown once with the different sets of labels separated by solidi. See Figure 32.

Two adjacent identifying numbers of affecting inputs in a set of labels that are not already separated by a nonnumeric character should be separated by a comma.

If a set of labels of an output not containing a solidus contains the identifying number of an affecting $\mathrm{M} m$ input standing at its internal 0 state, this set of labels has no effect on that output.

Labels may be factored using algebraic techniques.

FIGURE 32 - OUTPUT LABELS

FIGURE 33 - FACTORING OUTPUT LABELS

[^51]IEEE Standards may be purchased from:
Institute of Electrical and Electronics Engineers, Inc. 345 East 47th Street New York, N.Y. 10017

International Electrotechnical Commission (IEC) publications may be purchased from:

American National Standards Institute, Inc. 1430 Broadway
New York, N.Y. 10018

THIS PAGE
INTENTIONALLY LEFT BLANK

Ordering Instructions and Mechanical Data

ORDERING INSTRUCTIONS

Electrical characteristics presented in this data book, unless otherwise noted, apply for circuit type(s) listed in the page heading regardiess of package. The availability of a circuit function in a particular package is denoted by an alphabetical reference above the pin-connection diagram(s). These alphabetical references refer to mechanical outline drawings shown in this section.

Factory orders for circuits described in this catalog should include a four-part type number as explained in the following example.

2. Unique Circuit Description

MUST CONTAIN SIX TO NINE CHARACTERS
Examples:
54HCOO
74HC74
74HC4002

MUST CONTAIN ONE OR TWO LETTERS

J, JT, N, NT (Dual-in-line packages) \dagger
FH, FK, or FN (Chip carriers)
(From pin-connection diagram on individual data sheet)
4. Instructions (Dash No.)

MUST CONTAIN TWO NUMBERS

- 00 No special instructions
- 10 Solder-dipped leads (N and NT packages only)

TThese circuits in dual-in-line packages are shipped in one of the carriers shown below. Unless a specific method of shipment is specitied by the customer I with possible additional costs), circuits will be shipped in the most practical carrier. Please contact your Tisales representative for the method that will best suit vour particular needs.

Dual-in-line (J, JT, N, NT)

- Slide Magazines
- A-Channel Plastic Tubing
- Barnes Carrier (N only)
- Sectioned Cardboard Box
- Individual Plastic Box

FH and FK ceramic chip carrier packages

Both versions of these hermetically sealed chip carrier packages have ceramic bases. The FH package has a single-layer base with a ceramic lid and glass seal. The FK package has a three-layer base with a metal lid and braze seal.

The packages are intended for surface mounting on solder lands on 1,27 (0.050 -inch) centers. Terminals require no additional cleaning or processing when used in soldered assembly.

FH and FK packages are identical to the FC and FD packages, respectively. The new designations are used to indicate devices whose terminal assignments conform to a forthcoming JEDEC Standard.

FN plastic chip carrier package

Each of these chip carrier packages consists of a circuit mounted on a lead frame and encapsulated within an electrically nonconductive plastic compound. The compound withstands soldering temperatures with no deformation, and circuit performance characteristics remain stable when the devices are operated in high-humidity conditions. The packages are intended for surface mounting on solder lands on $1,27-\mathrm{mm}(0.050$-inch) centers. Leads require no additional cleaning or processing when used in soldered assembly.

FN PLASTIC CHIP CARRIER PACKAGE
(28-terminal package shown)

NO. OF	A		B		C	
TERMINALS	MIN	MAX	MIN	MAX	MIN	MAX
20	9,35	10,03	8,89	9,04	8,08	8,38
	(0.368)	(0.395)	(0.350)	(0.356)	(0.318)	(0.330)
28	11,89	12,57	11,43	11,58	10,62	10,92
	(0.468)	(0.495)	(0.450)	(0.456)	(0.418)	(0.430)
44	16,97	17,65	16,51	16,66	15,70	16,00
	(0.668)	(0.695)	(0.650)	(0.656)	(0.618)	(0.630)
52	19,51	20.19	19,05	19,20	18,24	18,54
	(0.768)	(0.795)	(0.750)	$(0.7561$	(0.718)	(0.730)
68	24,59	25,27	24.13	24,28	23,32	23,62
	(0.968)	(0.995)	(0.950)	(0.956)	(0.918)	(0.930)

(0.010)
MAX

ALL DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES.

J ceramic packages (including JT packages)

Each of these hermetically sealed dual-in-line packages consists of a ceramic base, ceramic cap, and a lead frame. Hermetic sealing is accomplished with glass. Once the leads are compressed and inserted sufficient tension is provided to secure the package in the board during soldering. Tin-plated ("bright-dipped") leads require no additional cleaning or processing when used in soldered assembly.

NOTE: For the 14-, 16-, and 20-pin packages, the letter J is used by itself since these packages are available only in the $7,62(0.300)$ row spacing.

NOTE: a. Each pin centerline is located within $0,25(0.010)$ of its true longitudinal position.

J ceramic dual-in-line packages (continued)

ALL DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES.

NOTE: a. Each pin centerline is located within $0,25(0.010)$ of its true longitudinal position.

N plastic packages (including NT package)

Each of these dual-in-line packages consists of a circuit mounted on a lead frame and encapsulated within an electrically conductive plastic compound. The compound will withstand soldering temperature with no deformation and circuit performance characteristics remain stable when operated in high-humidity conditions. Once the leads are compressed and inserted, sufficient tension is provided to secure the package in the board during soldering. Leads require no additional cleaning or processing when used in soldered assembly.

NOTE: For the 14-, 16-, 20-, and 28 -pin packages, the letter N is used by itself since these packages are available in only one row-spacing width $\mathbf{- 7 , 6 2}$ (0.300) for the 14 -, 16 -, 18 -, and 20 -pin packages and $15,24(0.600$) for the 28 -pin package.

Parts may be supplied in accordance with the altemate side view at the option of TI plants located in Europe. In this case, the overall length of the package is $22,1(0.870)$ max.

ALL DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES.
NOTES: a. Each pin centerline is located within 0,25 (0.010) of its true longitudinal position.
b. This dimension does not apply for solder-dipped leads.
c. When solder-dipped leads are specified, dipped area of the lead extends from the lead tip to at least 0,51 (0.020) above seating plane.

MECHANICAL DATA

N plastic dual-in-line packages (continued)

IC Sockets

IC SOCKETS

Texas Instruments lines of off-the-shelf interconnection products are designed specifically to meet the performance needs of volume commercial applications. They provide both the economy of a standard product line and performance features developed after many year's experience with custom designs. Foremost among these is our ability to selectively bond a wrought gold stripe at the contact point. No waste. Reduced cost. Reliable contacts.

Wrought Gold Contact

Plate a contact with gold and you get a better contact. More reliable, longer lasting. Increase the gold, you improve the contact. But gold is precious, so improved performance has to be costly - right? Wrong. Because now you can get the gold only where it is needed - at the point of contact.

How? With selective metallurgical bonding; a gold stripe inlay. Not porous plating, but durable wrought gold bonded to the contact by the same technology used to produce clad coins and thermostat metals.

Texas Instruments, Attleboro, Massachusetts, is the world's largest producer of these multimetal systems. We also know our way around electronics. The result? A full line of reliable, low cost, interconnection systems featuring an extra measure of gold where it's needed. Premium performance at no premium in price.

IC Sockets

Texas Instruments family of IC sockets includes every type and size in common use today, and as wide a choice of contact materials as you'll find anywhere. Choose from open or closed entry wire-wrapped ${ }^{\dagger}$ sockets, standard or low profile solder tail sockets, cable plugs, and component platforms. Sizes from 8 to 40 pins.

Additional information including pricing and delivery quotations may be obtained from your nearest TI Distributor, TI Representative, or:

[^52]
LOW PROFILE SOCKETS

 SOLDER TAIL

 SOLDER TAIL}

C-93 SERIES GOLD-CLAD CONTACTS

- Universal mounting and packaging
- Anti-wicking wafer
- Stand-off tabs on base for solder flush
- Redundant contact points for low contact resistance, high reliability and repetitive insertion
- Closed entry construction

STANDARD PROFILE SOCKET

SOLDER TAIL
 C-82 SERIES PLATED CONTACTS - C-92 SERIES GOLD CLAD CONTACTS

WIRE WRAP
C-81 SERIES PLATED CONTACTS - C-91 SERIES GOLD CLAD CONTACTS

- Designed for low cost, reliable, high density production packaging
- Universal mounting and packaging capabilities
- 8 to $\mathbf{4 0}$ pin lead configurations
- Contacts accommodate $.015^{\prime \prime}$ through $.024^{\prime \prime}$ rectangular or round dual-in-line leads
- Wire wrap posts held to true position of $\mathbf{. 0 1 5 "}$ providing a true position of .020" on boards for efficient automatic wire wrapping

MATERIAL: A. Body-glass filled nylon (GFN) B. Contact-phosphor bronze per QO-B-750 (C-81) copper nickel alloy (C-91) C. Finish-see part number schedule	NOTES: A. Sock Instru and B. Cont C. Cont D. Cover E. Cont plast possi F. Oper	seet req ts test port are rep have redu move design dy to ontact tempe	MAX \qquad ments cificatio 001 ble dant spr and orie rate max sure re -65°	exas -0003 element in the m $+150^{\circ}$	\qquad JMULATIVE TYPICAL LO UES USED \qquad G. S H. a I. J. K. S ca	ets are d ty on boa row to d entry natic ins t dama mmoda square act reten ets are c or semia	ned to a and ma centers is prov and p andard tangular -7 lbs le of be maticall	ve maxir mount to faci ct IC le ads up 024" dia n. utomat re wrap	
	8 Pin	14 Pin	16 Pin	18 Pin	20 Pin	24 Pin	28 Pin	36 Pin	40 Pin
Dimension $\mathrm{V} \pm 0.10$. 465	. 765	. 865	. 965	1.065	1.280	1.480	1.845	2.045
Dimension W (max)	. 400	. 400	. 400	. 400	. 400	. 700	. 700	. 700	. 700
Dimension $X \pm .005$. 300	. 300	. 300	. 300	. 300	. 600	. 600	. 600	. 600
Dimension $\mathrm{Y} \pm 0.10$	NA	. 400	. 400	. 400	. 400	. 500	. 500	. 800	1.000
Dimension $\mathrm{Z} \pm .005$. 280 .	. 280	. 280	. 280	. 280	. 280	. 280	. 325	. 325

WIRE WRAP

		OPEN ENTRY	CLOSED ENTRY
PART NUMBER schedule			
Contact Finish	Pins	Black Body	Black Cover
Series C－81 200－400 microinch \min tin per MIL－T－10727	$\begin{array}{r} \hline 8 \\ 14 \\ 16 \\ 18 \\ 20 \\ 24 \\ 28 \\ 36 \\ 40 \\ \hline \end{array}$	C810854 C811454 C811654 C811854 C812054 C812454 C812854	C810804 C811404 C811604 C811804 C812004 $C 812404$ $C 812804$ $C 813604$ $C 814004$
Series C－91 50 microinch min gold stripe inlay	$\begin{array}{r} 8 \\ 14 \\ 16 \\ 18 \\ 20 \\ 24 \\ 28 \\ 36 \\ 40 \\ \hline \end{array}$	C910850 C911450 C911650 C911850 C912050 C912450 C912850	C910800 C911400 C911600 C911800 C912000 C912400 C912800 C913600 C914000

SOLDER TAIL

		OPEN ENTRY	CLOSED ENTRY
PART NUMBER SCHEDULE		位	为化
Contact Finish	Pins	Black Body	Black Cover
Series C－82 30 microinch min gold per MIL－G－45204 over 50 microinch ． min nickel per QQ－N－290	8	C820850	C820800
	14	C821450	C821400
	16	C821650	C821600
	18	C821850	C821800
	24	C822450	C822400
	28	C822850	C822800
	36		C823600
	40		C824000
Series C－82 50 microinch min gold per MIL－G－45204 over 100 microinch min nickel per QQ－N－290	8	C820852	C820802
	14	C821452	C821402
	16	C821652	C821602
	18	C821852	C821802
	24	C822452	C822402
	28	C822852	C822802
	36		C823602
	40		C824002
Series C－82 200－400 microinch min tin per MIL－T－10727	8	C820854	C820804
	14	C821454	C821404
	16	C821654	C821604
	18	C821854	C821804
	24	C822454	C822404
	28	C822854	C822804
	36		C823604
	40		C824004
Series C－92 100－microinch min gold stripe inlay	8	C920850	C920800
	14	C921450	C921400
	16	C921650	C921600
	18	C921850	C921800
	24	C 922450	C922400
	28	C922850	C922800
	36		C923600
	40		C924000

SINGLE BEAM SOCKETS

LOW PRDFILE/HIGH RETENTION

C87 SERIES BERYLLIUM COPPER CONTACTS

The C87 socket utilizes a beryllium copper contact spring with a 200μ inch minimum tin alloy finish in the contact area. This contact system has been recognized as the standard high performance combination. The system maintains the highest withdrawal and normal forces, along with the ability to retain these properties after cycling.

C88 SERIES PHOSPHOR BRONZE CONTACTS
The C88 socket utilizes a specially processed high-strength copper alloy spring with a 200μ inch minimum tin alloy finish in the contact area. This uniquely engineered contact system has been designed to achieve the performance characteristics that normally require a beryllium copper spring. The device, available at a significantly lower cost than the beryllium copper version, offers the advantage of a substantial cost reduction without sacrificing critical performance requirements.

NOTES:
A. Operating temperature: $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
B. Contact rating: 1 amp
C. Contact capacitance: 2 picofarads max.
D. Contact resistance: $\mathbf{2 0}$ milliohms max.
E. Dielectric withstanding voltage: 1000 V.A.C. min.
F. Insulation resistance: 100,000 megohms min.
G. Insertion force - $\mathbf{1 6}$ position "blunt IC" (. 010 lead): .5\#/lead nominal
H. Withdrawal force (. .008 test blade) C87 Series
Initial: 155 gm nominal
After probing with a .014 blade: 98 gm nominal After probing with a .025 blade: 87 gm nominal C88 Series
Initial: $\mathbf{1 1 2} \mathbf{~ g m}$ nominal
After probing 2 times with .014 blade: 82 gm nominal
After probing 2 times with .025 blade: $\mathbf{2 9} \mathbf{g m}$ nominal
I. Normal force (. 010 deflection) : $\mathbf{2 5 0} \mathbf{g m} \mathbf{~ m i n}$.
J. Polarization identification: a white circle at the \#1 position.
K. Full test reports, \#TR 801015 for C87 Series and \#TR 810112 for C88 Series, are available from your local sales office.

	8 Pin	14 Pin	16 Pin	18 Pin	20 Pin	22 Pin	24 Pin	28 Pin	40 Pin
Dimension A	$(7,62)$	$(7,62)$	$(7,62)$	$(7,62)$	$(7,62)$	$(10,16)$	$(15,24)$	$(15,24)$	$(15,24)$
	.300	.300	.300	.300	.300	.400	.600	.600	.600
Dimension B	$(10,16)$	$(17,78)$	$(20,32)$	$(22,86)$	$(25,40)$	$(27,90)$	$(30,48)$	$(35,36)$	$(50,80)$
	.400	.700	.800	.900	1.000	1.100	1.200	1.400	2.000
Dimension C	$(9,40)$	$(9,40)$	$(9,40)$	$(9,40)$	$(9,40)$	$(11,94)$	$(17,02)$	$(17,02)$	$(17,02)$
	.370	.370	.370	.370	.370	.470	.670	.670	.670

PART NUMBER SCHEDULE

*Also available: C98-Gold Inlay, C89-Copper Alloy

SCREW MACHINE SOCKETS
 LOW PROFILE

C71 SERIES WIRE WRAP - C72 SERIES SOLDER TAIL

- Gold contacts with gold sleeve or tin sleeve

PART NUMBER SCHEDULE

MATERIAL:

A. Body - Thermoplastic, meeting UL specification 94-V-O
B. Contact - Beryllium copper QQ-C-530, finish gold over nickel per mil-G-45204
C. Sleeve - Brass QQ-B-626, finish - gold over nickel per mil-G-45204 or tin over nickel per mil-T-10727

NOTES:

A. Open body construction and high standoffs provide improved cleaning and heat dissipation
B. Accept standard I.C. leads $.010 \pm .003 \times .018 \pm$.003 or .010 to .022 dia.
C. Accept I.C. lead lengths from 090 to .155
D. Operating temperatures:

Gold sleeve $-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ Tin sleeve $-40^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$
E. Performance - meets req. of T.I. test spec. T.S. 0008 as shown in test report T.R. 1021.

GOLD SLEEVES		
Pins	$\begin{gathered} \text { C71 } \\ \text { Wire Wrap } \end{gathered}$	$\begin{gathered} C 72 \\ \text { Solder Tail } \end{gathered}$
6	C7106-03*	C7206-09*
8	C7108-03	c7208-09
14	C7114-03	C7214-09
16	C7116-03	C7216-09
18	C7118-03	C7218-09
20	C7120-03	C7220-09
22	C7122-03	C7222.09
24	C7124-03	C7224-09
28	C7128-03	C7228-09
40	C7140-03	C7240-09
64	C7164-03*	C7264-09*
TIN SLEEVES		
6	C7106-53*	C7206-59*
8	C7108-53	C7208-59
14	C7114-53	C7214-59
16	C7116.53	C7216-59
18	C7118-53	C7218-59
20	C7120-53	C7220-59
22	C7122-53	C7222-59
24	C7124.53	C7224-59
28	C7128-53	C7228-59
40	C7140-53	C7240-59
64	C7164-53*	'C7264.59*

Note: Contacts for one- and twolevel wire wrapping are also available. Contact the factory for details.
*Minimum order requirements on these parts. Alternate insulator materials may be used.

SPECIAL SOCKETS
 SLIM PACKAGE

C8424-03 - C9324.03

42 POSITION
C4742-11

GUAD PACKAGE

C4W64-11 SERIES 64 STAGGERED PINS

SHRINK PACKAGE
C4S SERIES 28 AND 40 POSITIONS

MATERIALS:

A. Body: 94V-0 glass filled polyester
B. Contacts: Copper alloy
C. Finish: Tin plating $125^{\prime \prime} \mathrm{min}$.

NOTES:
A. Operating temperature: $-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$

Part No.	Pos	A	B	C
C4S28-02	28	10.16	25.0	13.0
		$(.400)$	$(.984)$	$(.512)$
C4S40-02	40	15.24	35.7	18.0
		$(.600)$	(1.406)	$(.709)$

\square

[^0]: * Current out of a terminal is given as a negative value.

[^1]: \ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
 §This parameter, I OZ, the high impedance-state output current, applies only for three-state outputs and transceiver I/O pins.

[^2]: \ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
 TThis parameter applies only to Schmitt-trigger inputs.

 ## switching characteristics

[^3]: NOTE 1: For load circuit and voltage waveforms, see page 1-14.

[^4]: NOTE 1: For load circuit and voltage waveforms, see page 1-14.

[^5]: NOTE 1: For load circuit and voltage waveforms, see page 1-14.

[^6]: NOTE 1: For load circuit and voltage waveforms, see page 1-14.

[^7]: NOTE 1: For load circuit and voltage waveforms, see page 1-14.

[^8]: NOTE 1: For load circuit and voltage waveforms, see page 1-14.

[^9]: NOTE 1: For load circuit and voltage waveforms, see page 1-14.

[^10]: NOTE 1: For load circuit and voltage waveforms, see pages 1-14.

[^11]: NOTE 1: For load circuit and voltage waveforms, see page 1-14.

[^12]: NOTE 1: For load circuit and voltage waveforms, see page 1-14.

[^13]: NOTE 1: For load circuit and voltage waveforms, see page 1-14.

[^14]: NOTE 1: For load circuit and voltage waveforms, see page 1-14.

[^15]: See Table IV, page 2-6.

[^16]: NOTE 1: For load circuit and voltage waveforms, see page 1-14.

[^17]: Pin numbers shown are for JT and NT packages.

[^18]: NOTE 1: For load circuit and voltage waveforms, see page 1-14.

[^19]: $\mathrm{C}_{\mathrm{pd}} \quad$ Power dissipation capacitance
 NOTE 1: For load circuit and voltage waveforms, see page 1-14.

[^20]: NOTE 1: For load circuit and voltage waveforms, see page 1.14.

[^21]: NOTE 1: For load circuit and voltage waveforms, see.page 1-14.

[^22]: NOTE 1: For load circuit and voltage waveforms, see page 1-14.

[^23]: NOTE 1: For load circuit and voltage waveforms, see page 1-14.

[^24]: NOTE 1: For load circuit and voltage waveforms, see page 1-14.

[^25]: Pin numbers shown are for J and N packages.

[^26]: NOTE 1: For load circuit and voltage waveforms, see page 1-14.

[^27]: Pin numbers shown are for J and N packages.

[^28]: NOTE 1: For toad circuit and voltage waveforms, see page 1-14.

[^29]: NOTE 1: For load circuit and voltage waveforms, see page 1-14.

[^30]: NOTE 1: For foad circuit and voltage waveforms, see page 1-14.

[^31]: This document contains information on a product under development. Texas Instruments reserves the right to change or discontinue this product without notice.

[^32]: Select inputs A and B are common to both sections.

[^33]: NOTE 1: For load circuit and voltage waveforms, see page 1-14.

[^34]: NOTE 1: For load circuit and voltage waveforms, see page 1-14.

[^35]: NC－No internal connection

[^36]: NOTE 1: For load circuit and voltage waveforms, see page 1-14.

[^37]: NOTE 1: For load circuit and voltage waveforms, see page 1-14.

[^38]: NOTE 1: For load circuit and voltage waveforms, see page 1.14.

[^39]: NOTES: 1. For load circuit and voltage waveforms, see page 1-14.

[^40]: NOTE: The RCKt to CCKt setup time ensures the counter will see stable data from the register outputs.

[^41]: NOTE 1: For load circuit and voltage waveforms, see page 1-14.

[^42]: NOTE 1: For load circuit and voltage waveforms, see page 1-14.

[^43]: NOTE 1: For load circuit and voltage waveforms, see page 1-14.

[^44]: NOTE 1: For load circuit and voltage waveforms, see page 1-14.

[^45]: NOTE 1: For load circuit and voltage waveforms, see page 1-14.
 \dagger These parameters are measured with the internal output state of the storage register opposite to that of the bus input.

[^46]: NOTE 1: For load circuit and voltage waveforms, see page 1-14.

[^47]: NOTE 1: For load circuit and voltage waveforms, see page 1-14.

[^48]: $\dagger_{C_{e x t}}=0, R_{\text {ext }}=5 \mathrm{k} \Omega$
 $\ddagger{ }^{W} \mathbf{w Q}=$ duration of pulse at output Q.
 NOTE 1: For load circuit and voltage waveforms, see page 1-14.

[^49]: *Not all of the general qualifying symbols have been used in this book, but they are included here for the sake of completeness.

[^50]: * These letter symbols appear at the AFFECTING input (or output) and are foliowed by a number. Each input (or output) AFFECTED by that input is labeled with that same number. When the labels EN, R, and S appear at inputs without the following numbers, the descriptions above do not apply. The action of these inputs is described under "Symbols Inside The Outline", see 3.1.

[^51]: If you have questions on this Explanation of Logic Symbols, please contact:
 F.A. Mann MS 49

 Texas Instruments Incorporated
 P.O. Box 225012

 Dallas, Texas 75265
 Telephone (214) 995-2867

[^52]: ${ }^{\dagger}$ Registered trademark of Gardner-Denver

