
FUJITSU

Dynamic RAM Products

1991 FUJITSU

	NMOS DRAMs
2	CMOS DRAMs
3	Application-Specific DRAMs
4	Quality and Reliability
5	Ordering and Package Information
6	Sales Information
7	Appendices – Design Information

FUJITSU

Dynamic RAM Products

1991 Data Book

Fujitsu Limited Tokyo, Japan

Fujitsu Microelectronics, Inc. San Jose, California, U.S.A.

Fujitsu Mikroelektronik GmbH Frankfurt, Germany

Fujitsu Microelectronics Asia PTE Limited Singapore

Copyright© 1991 Fujitsu Microelectronics, Inc., San Jose, California

All Rights Reserved.

Circuit diagrams using Fujitsu products are included to illustrate typical semiconductor applications. Information sufficient for construction purposes may not be shown.

The information contained in this document has been carefully checked and is believed to be reliable. However, Fujitsu Microelectronics, Inc. assumes no responsibility for inaccuracies.

The information conveyed in this document does not convey any license under the copyrights, patent rights or trademarks claimed and owned by Fujitsu Limited, its subsidiaries, or Fujitsu Microelectronics, Inc.

Fujitsu Microelectronics, Inc. reserves the right to change products or specifications without notice.

No part of this publication may be copied or reproduced in any form or by any means, or transferred to any third party without prior written consent of Fujitsu Microelectronics, Inc.

This document is published by the Publications Department, Fujitsu Microelectronics, Inc., 3545 North First Street, San Jose, California, U.S.A. 95134–1804; U.S.A.

Printed in the U.S.A.

Edition 1.0

PREFACE

This data book contains the latest product information for Fujitsu's line of DRAM ICs. This year's edition, however, does not include a section for DRAM modules. Both DRAM and SRAM modules are now in a Modules Data Book which you can obtain from your nearest Fujitsu Sales Office or Sales Rep. (See the Sales Information listing in this book.)

In addition to the collection of DRAM data sheets, you will find valuable information on ordering and expanded packaging descriptions, both in the Order Information section.

The Design Information section contains two new technical papers. *The 3D Stacked Capacitor Cell for Mega Bit DRAM* is a reprint of a technical paper from the **Fujitsu Scientific and Technical Journal**. We are pleased to be able to include an article from this highly respected journal. The second new paper is *The Soft Error Rate for 4M DRAM Devices*, a significant article on these new DRAM devices.

If you are interested in obtaining other Fujitsu product information, you will find the publications listing on the following pages quite useful. Once again, call one of our sales offices to obtain a copy of any of the documents.

FUJITSU PRODUCT PUBLICATIONS

The following is a list of the product publications available from Fujitsu. Call your nearest Fujitsu Sales Office or Sales Representative to order any document(s) you need. (See the Sales Information section for phone numbers.)

MEMORY PRODUCTS

Dynamic RAM Products Data Book	Contains product data sheets for NMOS and CMOS DRAMs, including 1M and 4M devices, and MOS application-specific RAMs.
Static RAM Products Data Book	Contains product data sheets for high-speed CMOS and BiCMOS SRAMs, low-power CMOS SRAMs and application-specific SRAMs.
ECL RAM Products Data Book	Contains product data sheets for ECL and TTL bipolar ECL RAMs, BiCMOS ECL RAMs, and application-specific RAMS including self-timed RAMs (STRAMs).
Programmable Memory Products Data Book	Contains product data sheets for programmable ROMs (including registered and wide-temperature range PROMs); CMOS mask- programmable ROMS, OTP ROMs, erasable PROMs, and EE- PROMs; NMOS erasable PROMs and non-volatile RAMs.
Memory Modules Data Book	Contains product data sheets for CMOS DRAM modules (includ- ing high density and low profile) and CMOS SRAM modules.
Memory Card Products Data Book	Contains product data sheets and programming information for 68-pin JEIDA and PCMCIA standard memory cards and connec- tors and for 38-pin memory cards.
Power Transistor Products Data Book	Contains product data sheets for RETs, Darlington arrays, and FETs.
Linear Products Data Book	Contains product data sheets for op amps, comparators, automo- tive audio amps, power supply controls, motor drivers, disk driv- ers, and converters (A/D, D/A, A/D-D/A, and F/V).
Linear Products Selector Guide	Presents an overview of linear products.
Telecommunication Devices Data Book	Contains product data sheets for bipolar prescalers and VCOs, CMOS PLLs, BiCMOS single-chip PLLs and Prescalers, CODECs, CMOS telephone ICs, and cellular mobile radio ICs.
Telecommunication Devices Selector Guide	Presents an overview of telecommunication products and piezo- electric devices.
Interface and Logic Products Selector Guide	Presents an overview of logic and interface devices.
CMOS 4-bit Microcontrollers Data Book, Vol. I	Contains product information, including the development tool for the MB8850 and MB88200 families of 4-bit microcontrollers.
CMOS 4-bit Microcontrollers Data Book, Vol. II	Contains product information, including the development tool for the MB88500 family of 4-bit microcontrollers.
CMOS 4-bit Microcontrollers Selector Guide	Presents an overview of the MB88500 (high end), MB8850 (mid- range), and MB88200 (low end) families of 4-bit microcontrollers.

FUJITSU PRODUCT PUBLICATIONS (Continued)

ASIC PRODUCTS

CMOS Channeled Gate Arrays Data Book and Design Evaluation Guide	Contains product information for UHB Series High Drive CMOS Gate Arrays and CG10 Series High Drive CMOS Gate Arrays.
CMOS Channelless Gate Arrays Data Book and Design Evaluation Guide	Contains product information for AU Series CMOS Series Gate Arrays and CG21 Series CMOS Gate Arrays.
CMOS Standard Cell Data Book and Design Evaluation Guide	Contains product information for AU Series Standard Cells.
ASIC CMOS Products Selector Guide	Presents an overview of CMOS channeled and channelless gate arrays and standard cell products.
BiCMOS Gate Arrays Data Book and Design Evaluation Guide	Contains product information for BC Series BiCMOS Gate Arrays and BC-H Series BiCMOS Gate Arrays.
ECL Gate Arrays Data Book and Design Evaluation Guide	Contains product information for ET Series ECL Gate Arrays, H Series ECL Gate Arrays, Ultra-High Performance ECL Gate Arrays, and VH Series ECL Gate Arrays.
ASIC Bipolar Products Selector Guide	Presents an overview of BiCMOS and ECL gate array products.
ASIC SOFTWARE	

ASIC SOFTWARE

The ASIC Gallery (catalog)	Discusses the trend in ASICs: migration from using gates as primitives to using LSI and even VLSI macros as design ele- ments.
The ASIC Design Environment (catalog)	Provides an overview of the third-party tools that work in concert with Fujitsu's proprietary tools, ViewCAD TM , BankCAD TM , ZephCAD, and FAME. Also included are product profiles explain- ing how the third-party tools fit within the design framework.
ViewCAD User's Guide	Provides a basic understanding of Fujitsu's proprietary CAD/CAE system, ViewCAD. This book provides information necessary to design, test, simulate, and analyze circuits using Fujitsu's unit cell libraries for AU, UHB, CG10, CG21, and CG31 CMOS technologies.
ViewCAD Installation Guide	Explains how to install Fujitsu's proprietary CAD/CAE system, ViewCAD.
CMOS ASIC Reference Manual for Validation	Provides a basic understanding of the Valid System on the Sun platform as it interfaces with Fujitsu programs to build circuits using Fujitsu's unit cell libraries for AU and UHB CMOS technolo- gies.
FAME User's Guide	Provides a basic understanding of the Fujitsu ASIC Management Environment (FAME) software as it interfaces with third-party tools (Sun or PC) to build circuits using Fujitsu's unit cell libraries.
FAME Reference Manual	Provides installation and directory information for the Fujitsu ASIC Management Environment (FAME) software, which uses third-party tools (Sun or PC) to build circuits using Fujitsu's unit cell libraries.
Synopsys User's Guide	Provides a basic understanding of the Synopsys® system as it interfaces with Fujitsu programs to build circuits using Fujitsu's unit cell libraries.

FUJITSU PRODUCT PUBLICATIONS (Continued)

ASIC SOFTWARE (Continued)

Verilog-XL User's Guide	Provides a basic understanding of the Verilog-XL® system as it interfaces with Fujitsu programs to build circuits using Fujitsu's unit cell libraries.
Future Publications	
For Fujitsu Microelectronics, Inc.:	
Master Product Guide/Catalog (1991)	Presents an overview of the entire range of products offered by Fujitsu Microelectronics.
For Memory Products:	
Hybrid Products (1991)	Presents Fujitsu's hybrid products and discusses thick- and thin-film capabilities.
For ASIC Software:	
ASIC Design Environment Data Book (1991)	Provides detailed information about the ASIC Design Methodology at Fujitsu. It contains an overview of the third-party tools that work in concert with Fujitsu's proprietary tools, ViewCAD, BankCAD, ZephCAD, and FAME. Also included are product profiles explaining how the third-party tools fit within the design framework.
ASICOpen™ Catalog (1991)	Provides a small-scale ASIC Design Methodology at Fujitsu. It explains the design processes between two third-party tools, Syn- opsys and Verilog-XL, and Fujitsu's proprietary tools, ViewCAD, BankCAD, and ZephCAD.

Synopsys® is a registered trademark of Synopsys, Inc. Verilog-XL® is a registered trademark of Cadence Design Systems, Inc. ViewCAD[™] and BankCAD[™] are trademarks of Fujitsu Limited. ASICOpen[™] is a trademark of Fujitsu Microelectronics, Inc.

Contents and Alphanumeric Product List

DRAM PRODUCTS

Section 1 – NMOS DRAMs – At a Gl	ance
MB81256-10/-12/-15 MB81256-80 MB81257-10/-12/-15 MB81257-80 MB81464-10/-12/-15	262144 x 1 bit DRAM 1-3 262144 x 1 bit DRAM 1-25 262144 x 1 bit DRAM 1-45 262144 x 1 bit DRAM 1-69 65536 x 4 bits DRAM 1-93
Section 2 – CMOS DRAMs – At a Gl	ance
MB81C1000-70/-80/-10/-12 MB81C1000-70L/-80L/-10L/-12L MB81C1000A-60/-70/-80/-10 MB81C1000A-70L/-80L/-10L MB81C1001-70/-80/-10/-12 MB81C1001A-70L/-80L/-10L/-12L MB81C4256-70L/-80L/-10L MB81C4256-70L/-80L/-10L/-12L MB81C4256A-60/-70/-80/-10 MB81C4256A-70L/-80L/-10L MB81C4256A-70L/-80L/-10L MB81C4256A-70L/-80L/-10L MB81C4256A-70L/-80L/-10L MB81C4256A-70L/-80L/-10L MB81C4256A-70L/-80L/-10L MB81C4256A-70L/-80L/-10L MB81C4256A-70L/-80L/-10L MB81C4256A-70L/-80L/-10L MB81C4256A-70L/-80L/-10L/-12L MB81C4101-80L/-10L/-12L MB81C400-80L/-10L/-12L MB81C400-80L/-10L/-12L MB81C400-80L/-10L/-12L MB81C400-80L/-10L/-12L MB81C400-80L/-10L/-12L	1048576 x 1 bit Fast Page Mode DRAM2-351048576 x 1 bit Fast Page Mode Low Power DRAM2-251048576 x 1 bit Fast Page Mode DRAM2-471048576 x 1 bit Fast Page Mode Low Power DRAM2-471048576 x 1 bit Nibble Mode DRAM2-951048576 x 1 bit Nibble Mode DRAM2-951048576 x 1 bit Nibble Mode Low Power DRAM2-1351048576 x 1 bit Nibble Mode Low Power DRAM2-1351048576 x 1 bit Nibble Mode Low Power DRAM2-165262144 x 4 bits Fast Page Mode DRAM2-165262144 x 4 bits Fast Page Mode DRAM2-235262144 x 4 bits Fast Page Mode Low Power DRAM2-2614M x 1 bit Fast Page Mode DRAM2-2634M x 1 bit Fast Page Mode Low Power DRAM2-3054M x 1 bit Fast Page Mode Low Power DRAM2-3054M x 1 bit Nibble Mode DRAM2-3054M x 1 bit Sast Page Mode DRAM2-3054M x 1 bit Nibble Mode DRAM2-3254M x 1 bit Sast Page Mode DRAM2-3254M x 1 bit Sast Page Mode DRAM2-3254M x 1 bit Nibble Mode DRAM2-3264M x 1 bit Sast Page Mode DRAM2-3254M x 1 bit Sast Page Mode DRAM2-3254M x 1 bit Sast Page Mode DRAM2-3554M x 1 bit Sast Page Mode DRAM2-3554M x 1 bit Sast
Section 3 – MOS Application-Specif	i c RAMs — At a Glance
MB81461-12/-15 MB81461B-12/-15 MB81C1501	NMOS 65536 x 4 bits Dual-Port DRAM
Section 4 – Quality and Reliability	— At a Glance 4–1
Quality Control at Fujitsu Quality Control Processes at Fujit	

Contents and Alphanumeric Product List (Continued)

DRAM PRODUCTS

Section 5 – Ordering and Package Information — At a Glance
Product Marking 5–3 Ordering Code (Part Number) 5–3 Package Codes – Plastic 5–4 Package Codes – Ceramic 5–5
Section 6 – Sales Information — At a Glance 6–1
Introduction to Fujitsu 6–3 Fujitsu Limited (Japan) 6–3 Fujitsu Microelectronics, Inc. (U.S.A.) 6–4 Fujitsu Bectronics Devices Europe 6–6 Fujitsu Microelectronics Asia PTE Ltd. (Singapore) 6–8 Integrated Circuits Corporate Headquarters – Worldwide 6–9 FMI Sales Offices for North and South America 6–10 FMI Representatives – USA 6–11 FMI Representatives – Canada 6–13 FMI Representatives – Mexico 6–13 FMI Representatives – Nerico 6–13 FMI Representatives – Canada 6–14 FMI Distributors – USA 6–14 FMI Distributors – Canada 6–13 FMI Distributors – USA 6–14 FMI Distributors – Canada 6–16 FMG Sales Offices for Europe, FML and FMIL 6–19 FMG Sales Offices for Europe, FML and FMIL 6–20 FMAP Sales Offices for Asia, Australia, and Oceania 6–22 FMAP Representatives – Asia and Australia 6–24
Section 7 – Appendices – Design Information —At a Glance
Appendix 1. Application Note: Various Features of Fujitsu DRAMs 7–3 Appendix 2. Application Note: The Soft Error Rate for 4M DRAM Devices 7–27 Appendix 3. Technical Paper: 3D Stacked Capacitor Cell for Mega Bit DRAM 7–35

Contents and Alphanumeric Product List (Continued)

DRAM PRODUCTS

Alphanumeric List of Fujitsu Part Numbers

MB81256-10/-12/-15 1–3 MB81256-80 1–25 MB81257-10/-12/-15 1–45 MB81257-80 1–69
MB81461-12/-15
MB814100-80/-10/-12 2-287 MB814100-80L/-10L/-12L 2-307 MB814101-80/-10/-12 2-309 MB814101-80L/-10L/-12L 2-329 MB814400-80/-10/-12 2-331 MB814400-80L/-10L/-12L 2-353

$\begin{array}{llllllllllllllllllllllllllllllllllll$
MB81C4256-70/-80/-10/-12 2–187 MB81C4256-70L/-80L/-10L/-12L . 2–211 MB81C4256A-60/70/-80/-10 2–235 MB81C4256A-70L/-80L/-10L 2–261

x

Introduction

Page	Title
xiil	Fujitsu's Dynamic RAMs

Introduction

Dynamic RAM Data Book

Fujitsu's Dynamic RAM Products

Introduction

Fujitsu manufactures a wide range of integrated circuits that includes linear products, microprocessors, telecommunications circuits, ASICs, high–speed ECL logic, power components (consisting of both discrete transistors and transistor arrays), and both static and dynamic RAMs. An extensive line of memory products includes volatile and non-volatile CMOS and ECL devices.

Fujitsu's Dynamic RAM product line offers devices for use in a wide range of applications. These memories are manufactured to meet the high standard of quality and reliability that is found in all Fujitsu products.

This data book includes product information on all of Fujitsu's currently available DRAM products.

NMOS and CMOS DRAMs

Fujitsu manufactures a complete family of leading technology dynamic random access memories for the data processing, telecom, and industrial markets. This family consists of the highest density devices currently available with a broad selection of organizations, access modes, and packages.

Application-Specific DRAMs

Fujitsu offers a family of multi-port dynamic random access memories tailored for video imaging and graphics applications. These devices adhere to JEDEC standards where applicable and are available in the popular packages.

xiv

Section 1

1

THEOD DITAMS		111 u Om					
Page	Device	Maximum Access Time (ns)	Capacity	Package Options			
1–3	MB81256–10 –12 –15	100 120 150	262144 bits (262144 x 1)	16-pin Ce	istic ramic istic ramic	DIP, ZIP DIP PLCC LCC	
1–25	MB81256-80	80	262144 bits (262144 x 1)	16-pin Ce	istic ramic istic	DIP, ZIP DIP PLCC	
1-45	MB81257–10 –12 –15	100 120 150	262144 bits (262144 x 1)	16-pin Ce 18-pin Pla	astic ramic astic ramic	DIP, ZIP DIP PLCC LCC	
1–69	MB81257-80	80	262144 bits (262144 x 1)	16-pin Ce	astic ramic astic	DIP, ZIP DIP PLCC	
1–93	MB81464-12 -15	120 150	262144 bits (65536 x 4)	18-pin Ce	astic ramic astic	DIP, PLCC DIP ZIP	

NMOS DRAMs — At a Glance

DATA SHEET =

MB81256-10/-12/-15

MOS 262,144 BIT DYNAMIC RANDOM ACCESS MEMORY

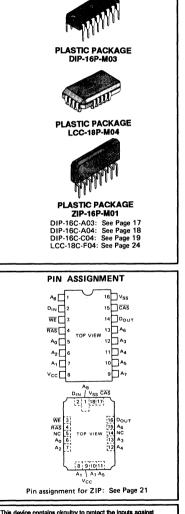
262,144 Bit Dynamic Random Access Memory

The Fujitsu MB81256 is a fully decoded, dynamic NMOS random access memory organized as 262,144 one-bit words. The design is optimized for high speed, high performance applications such as mainframe memory, buffer memory, peripheral storage, and environments where low power dissipation and a compact layout are required.

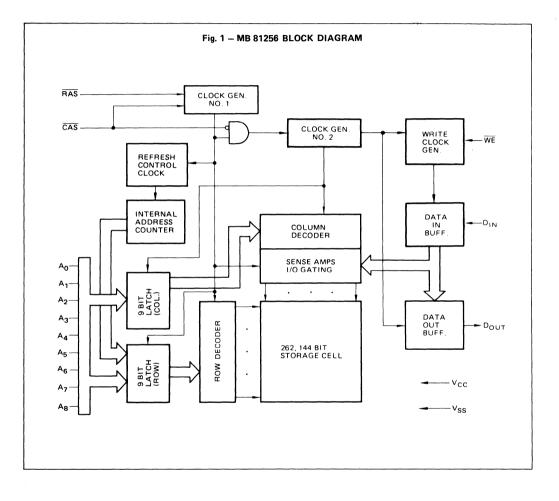
Multiplexed row and column address inputs permit the MB81256 to be housed in standard 16-pin DIP and ZIP packages or an 18-pin PLCC package. Pinouts conform to JEDEC-approved pinouts. Additionally, the MB81256 offers new functional enhancements that make it more versatile than previous dynamic RAMs. CAS-before-RAS refresh provides an on-chip refresh capability that is upwardly compatible with the MB8266A. The MB81256 also features page mode which allows high speed random access of up to 512 bits of data within the same row.

The MB81256 is fabricated using silicon gate NMOS and Fujitsu's advanced Triple-layer Polysilicon process. This process, coupled with single-transistor memory storage cells, permits maximum circuit density and minimal chip size. Dynamic circuitry is used in the design, including the sense amplifiers. Clock timing requirements are noncritical, and power supply tolerance is very wide. All inputs are TTL compatible.

- 262,144 x 1 RAM organization
- Silicon-gate, Triple Poly NMOS, single transistor cell
 - Row Access Time 100 ns max. (MB 81256-10) 120 ns max. (MB 81256-12) 150 ns max. (MB 81256-15)
- Cycle Time 200 ns min. (MB 81256-10) 220 ns min. (MB 81256-12) 260 ns min. (MB 81256-15)
- Page Cycle Time 100 ns max. (MB 81256-10) 120 ns max. (MB 81256-12) 145 ns max. (MB 81256-15)
- Single +5 V Supply, ±10% tolerance
- Low Power 385 mW max. (MB 81256-10) 358 mW max. (MB 81256-12) 314 mW max. (MB 81256-15) 25 mW max. (standby)


Absolute Maximum Ratings

Parameter		Symbol	Value	Unit
Voltage at any pin relative to V_{SS} Voltage of V_{CC} supply relative to V_{SS}		VIN, VOUT	-1 to +7	v
		V _{CC}	-1 to +7	v
Storage Temperature	Ceramic	T _{STG}	-55 to +150	°C
	Plastic		-55 to +125	
Power Dissipation	·	PD	1.0	w
Short Circuit Output Current			50	mA


Note: Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operation sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Copyright C 1990 by FUJITSU LIMITED and Fujitsu Microelectronics, Inc.

- 256 refresh cycles every 4 ms
- CAS-before-RAS, RAS-only, Hidden refresh capability
- High speed Read-white-Write cycle
- tAR, twcR, toHR, tRWD are eliminated
- Output unlatched cycle end allows two-dimensional chip select
- Common I/O capability using Early Write operation
- On-chip latches for Addresses and Data-in
 - Standard 16-Pin Plastic Packages: DIP (MB81256-XXP) ZIP (MB81256-XXPSZ) Standard 18-Pin Plastic Package: PLCC(MB81256-XXPV) Standard 16-Pin Ceramic Packages: DIP (MB81256-XXC) Seam Weld DIP (MB81256-XXZ) Cerdip Standard 18-Pad Ceramic Package: LCC (MB81256-XXTV)

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

CAPACITANCE $(T_A = 25^{\circ}C)$

Parameter	Symbol	Тур	Max	Unit
Input Capacitance A_0 to A_8 , D_{IN}	C _{IN1}		7	pF
Input Capacitance RAS, CAS, WE	C _{IN2}		10	pF
Output Capacitance D _{OUT}	Cout		7	pF

1

RECOMMENDED OPERATING CONDITIONS

(Referenced to V_{SS})

Parameter	Symbol	Min	Тур	Max	Unit	Operating Temperature
Supply Voltage	V _{cc}	4.5	5.0	5.5	v	
Suppry Voltage	V _{ss}	Q	0	0	v	
Input High Voltage, all inputs	V _{IH}	2.4		6.5	v	0°C to +70°C
Input Low Voltage, all inputs	VIL	-2.0		0.8	v	

DC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Parameter						
		Symbol	Min	Тур	Max	Unit
OPERATING CURRENT*	MB 81256-10				70	
Average Power Supply Current	MB 81256-12	I _{CC1}		65	mA	
(RAS, CAS cycling; t _{RC} = Min.)	MB 81256-15				57	
STANDBY CURRENT Standby Power Supply Current (RAS, CAS=V _{IH})		I _{CC2}			4.5	mA
REFRESH CURRENT 1* Average Power Supply Current (RAS cycling, CAS = V _{IH} ; t _{RC} = Min.)	MB 81256-10				60	
	MB 81256-12	I _{CC3}			5,5	mA
	MB 81256-15	1			50	
PAGE MODE CURRENT* Average Power Supply Current	MB 81256-10	I _{CC4}			35	
	MB 81256-12				30	mA
(RAS = V _{IL} , CAS cycling; t _{PC} = Min.)	MB 81256-15				25	
REFRESH CURRENT 2*	MB 81256-10				65	
Average Power Supply Current	MB 81256-12	I _{CC5}			60	mA
(CAS-before-RAS; t _{RC} = Min.)	MB 81256-15				55	
INPUT LEAKAGE CURRENT any input (V_{IN} = 0V to 5.5V, V_{CC} = 5.5V, V_{SS} = 0V, all other pins not under test = 0V)			-10		10	μΑ
OUTPUT LEAKAGE CURRENT (Data is disabled, $V_{OUT} = 0V$ to 5.5V)		I _{O(L)}	-10		10	μΑ
OUTPUT LEVEL Output Low Voltage (I _{OL} = 4.2 mA)		Vol			0.4	v
OUTPUT LEVEL Output high Voltage (I _{OH} = -5.0 mA)		V _{он}	2.4			v

NOTE *: I_{CC} is depended on output loading and cycle rates. Specified values are obtained with the output open.

AC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.) NOTES 1, 2, 3

Parameter NOTES	Symbol	MB 81256-10		MB 81256-12		MB 81256-15		Unit
		Min	Max	Min	Max	Min	Max	Onit
Time between Refresh	t _{REF}		4		4		4	ms
Random Read/Write Cycle Time	t _{RC}	200		220		260		ns
Read-Write Cycle Time	t _{RWC}	200		220		260		ns
Access Time from RAS 4 6	t _{RAC}		100		120		150	ns
Access Time from CAS 5 6	t _{CAC}		50		60		75	ns
Output Buffer Turn off Delay	t _{OFF}	0	25	0	25	0	30	ns
Transition Time	t _T	3	50	3	50	3	50	ns
RAS Precharge Time	t _{RP}	85		90		100		ns
RAS Pulse Width	t _{RAS}	105	100000	120	100000	150	100000	ns
RAS Hold Time	t _{RSH}	55		60		75		ns
CAS Pulse Width	t _{CAS}	55	100000	60	100000	75	100000	ns
CAS Hold Time	t _{сsн}	105		120		150		ns
RAS to CAS Delay Time 78	t _{RCD}	20	50	22	60	25	75	ns
CAS to RAS Set Up Time	t _{CRS}	10		10		10		ns
Row Address Set Up Time	t _{ASR}	0		0		0		ns
Row Address Hold Time	t _{RAH}	10		12		15		ns
Column Address Set Up Time	t _{ASC}	0		0		0		ns
Column Address Hold Time	t _{CAH}	15		20		25		ns
Read Command Set Up Time	t _{RCS}	0		0		0		ns
Read Command Hold Time Referenced g	t _{RCH}	0		0		0		ns
Read Command Hold Time Referenced g	t _{RRH}	20		20		20		ns
Write Command Set Up Time	twcs	0		0		0		ns
Write Command Pulse Width	t _{wP}	15		20		25		ns
Write Command Hold Time	t _{wcн}	15		20		25		ns
Write Command to RAS Lead Time	t _{RWL}	35		40		45		ns
Write Command to CAS Lead Time	t _{CWL}	35		40		45		ns
Data In Set Up Time	t _{DS}	0		0		0		ns
Data In Hold Time	t _{DH}	15		20		25		ns
CAS to WE Delay 10	tcwp	15		20		25		ns
Refresh Set Up Time for CAS Referenced to RAS (CAS-before-RAS cycle)	t _{FCS}	20		20		20		ns
Refresh Hold Time for CAS Referenced to RAS (CAS-before-RAS cycle)	t _{FCH}	20		25		30		ns

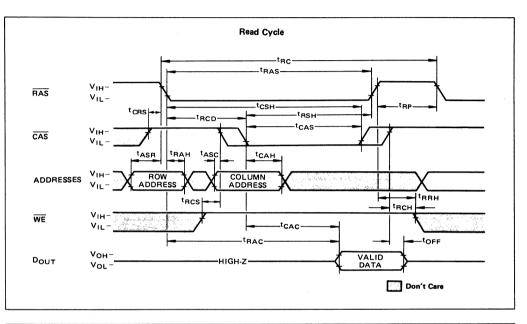
AC CHARACTERISTICS

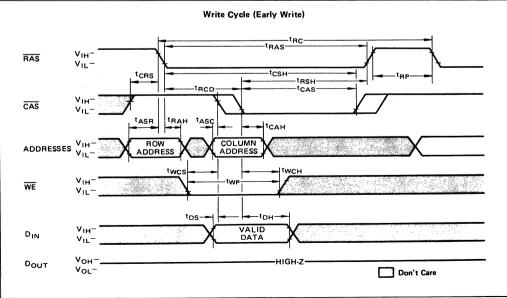
(Recommended operating conditions unless otherwise noted.)

Parameter NOTES	Symbol	MB 81256-10		MB 81256-12		MB 81256-15		Unit
		Min	Max	Min	Max	Min	Max	Unit
CAS Precharge Time (CAS-before-RAS cycle)	t _{CPR}	20		25		30		ns
RAS Precharge to CAS Active Time (Refresh cycles)	t _{RPC}	20		20		20		ns
Page Mode Read/Write Cycle Time	t _{PC}	100		120		145		ns
Page Mode Read-Write Cycle Time	t _{prwc}	100		120		145		ns
Page Mode CAS Precharge Time	t _{CP}	40		50		60		ns
Refresh Counter Test Cycle Time	t _{rtc}	330		375		430		ns
Refresh Counter Test RAS Pulse Width	t _{tras}	230	10000	265	10000	320	10000	ns
Refresh Counter Test CAS Precharge Time 11	t _{CPT}	50		60		70		ns

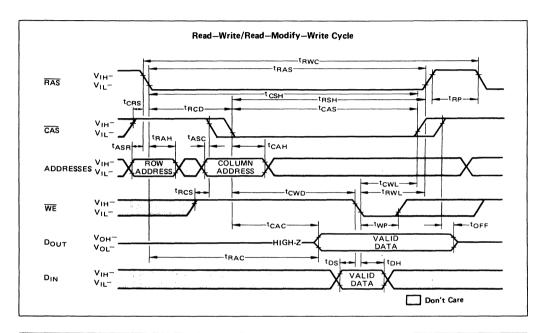
Notes:

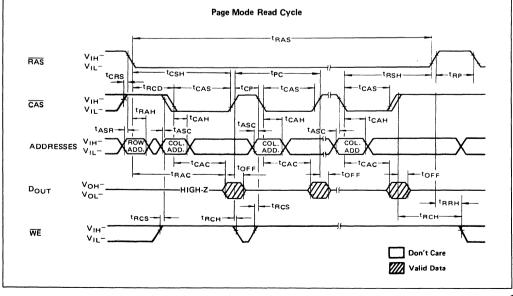
1 An initial pause of 200 μ s is required after power-up. And then several cycle (to which any 8 cycle to perform refresh are adequate) are required before proper device operation is achieved.

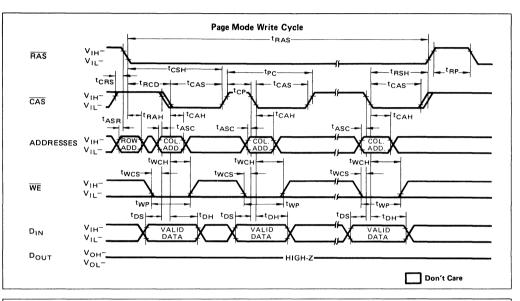

If internal refresh counter is to be effective, a minimum of 8 \overline{CAS} before \overline{RAS} refresh cycles are required.

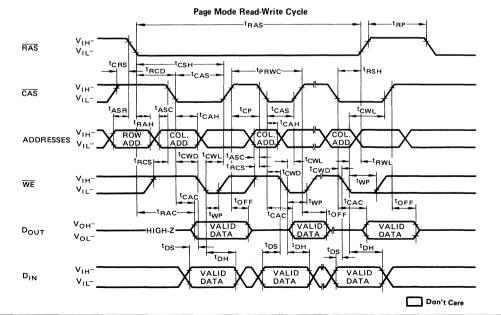

- 2 AC characteristics assume $t_T = 5$ ns.
- V_{IH} (min) and V_{IL} (max) are refrence levels for measuring timing of input signals. Also, transition times are measured between V_{IH} (min) and V_{IL} (max.).
- 4 Assumes that $t_{RCD} \leq t_{RCD}$ (max.) If t_{RCD} is greater than the maximum recommended value shown in this table, t_{RAC} will increase by the amount that t_{RCD} exceeds the value shown.
- 5 Assumes that $t_{RCD} \ge t_{RCD}$ (max.).
- 6 Measured with a load equivalent to 2 TTL loads and 100 pF.

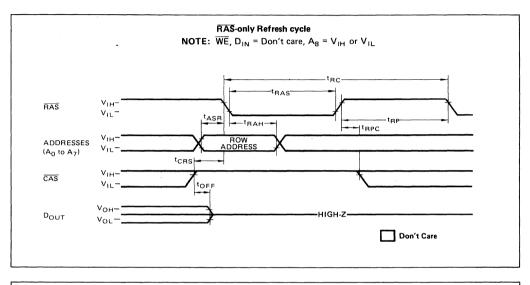
- 7 Operation within the t_{RCD} (max) limit insures that t_{RAC} (max) can be met. t_{RCD} (max) is specified as a reference point only; if t_{RCD} is greater than the specified t_{RCD} (max) limit, then access time is controlled exclusively by t_{CAC} .
- $B t_{RCD} (min) = t_{RAH} (min) + 2t_T (t_T = 5ns) + t_{ASC} (min).$
- 9 Either t_{RRH} or t_{RCH} must be satisfied for a read cycle.
- **10** t_{WCS} and t_{CWD} are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only. If $t_{WCS} \ge t_{WCS}$ (min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout entire cycle.

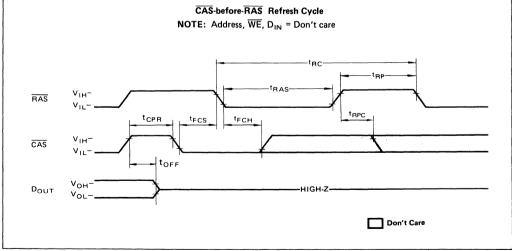

If $t_{CWD} \ge t_{CWD}$ (min) the cycle is a read-write cycle and data out will contain data read from the selected cell. If neither of the above sets of conditions is satisfied the condition of the data out is indeterminate.

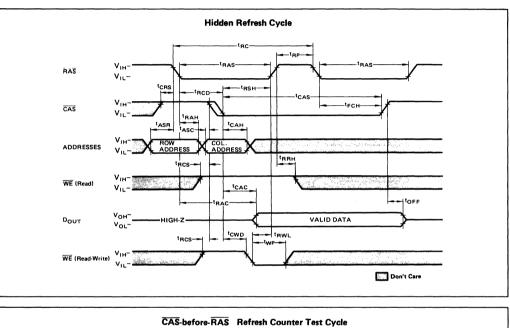

11 Test mode cycle only.

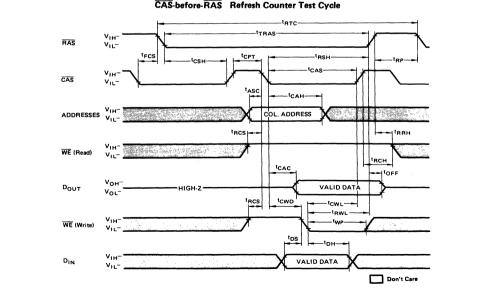





Í







DESCRIPTION

Simple Timing Requirement

The MB 81256 has improved circuitry that eases timing requirements for high speed access operations. The MB 81256 can operate under the condition of t_{RCD} (max) = t_{CAC} thus providing optimal timing for address multiplexing. In addition, the MB 81256 has the minimal hold time of Address (t_{CAH}), WE (twcH) and DIN (tpH). The MB 81256 provides higher throughput in inter-leaved memory system applications. Fujitsu has made timing requirements that are referenced to RAS nonrestrictive and deleted them from the data sheet, these include tAB, twcR, t_{DHR} and t_{RWD}. As a result, the hold times of the Column Address, D_{IN} and \overline{WE} as well as t_{CWD} (CAS to WE Delay) are not ristricted by tBCD.

Address Inputs:

A total of eighteen binary input address bits are required to decode any 1 of 262.144 cell locations within the MB 81256. Nine row-address bits are established on the input pins (An to A_{R}) and are latched with the Row Address Strobe (RAS), Nine columnaddress bits are established on the input pins and are latched with the Column Address Strobe (CAS). All row addresses must be stable on or before the falling edge of RAS. CAS is internally inhibited (or "gated") by RAS to permit triggering of CAS as soon as the Row Address Hold Time (t RAH) specification has been satisfied and the address inputs have been changed from row-addresses to column-address.

Write Enable:

The read mode or write mode is selected with the \overline{WE} input. A high on \overline{WE} selects read mode; low selects write mode. The data input is disable when read mode is selected.

Data input:

Data is written into the MB 81256 during a write or read-write cycle. The later falling edge of \overline{WE} or \overline{CAS} is a strobe for the Data In (D_{1N}) register. In a write cycle, if \overline{WE} is brought low before

 \overline{CAS} , D_{IN} is strobed by \overline{CAS} , and the set-up and hold times are referenced to \overline{CAS} . In a read-write cycle, \overline{WE} can be delayed after \overline{CAS} has been low and \overline{CAS} to \overline{WE} Delay Time (t_{CWD}) has been satisfied. Thus D_{IN} is strobed by \overline{WE} , and set-up and hold times are referenced to \overline{WE} .

Data Output:

The output buffer is three-state TTL compatible with a fan-out of two standard TTL loads. Data out is the same polarity as data-in. The output is in a high impedance state until CAS is brought low. In a read cycle, or read-write cycle, the output is valid after t_{RAC} from transition of RAS when the transition occurs after t_{RCD} (max) is satisfied, or after t_{CAC} from transition of CAS when the transition occurs after t_{RCD} (max). Data remain valid until CAS is returned to a high level. In a write cycle the identical sequence occurs, but data is not valid.

Fast Read-While-Write cycle

The MB 81256 has a fast read while write cycle which is achieved by precise control of the three-state output buffer as well as by the simplified timings described in the previous section. The output buffer is controlled by the state of WE when CAS goes low. When WE is low during CAS transition to low, the MB 81256 goes into the early write mode in which the output floats and the common I/O bus can be used on the system level. Whereas, when WE goes low after t_{CWD} following \overline{CAS} transition to low, the MB 81256 goes into the delayed write mode. The output then contains the data from the cell selected and the data from D_{IN} is written into the cell selected. Therefore, a very fast read write cycle $(t_{RWC} = t_{RC})$ is possible with the MB 81256.

Page Mode:

Page-mode operation permits strobing the row-address into the MB 81256 while maintaining RAS at a low throughout all successive memory operations in which the row-address doesn't change. Thus the power dissipated by the falling edge of RAS is saved. Access and cycle times are decreased because the time normally required to strobe a new row address is eliminated.

Refresh:

Refresh of the dynamic memory cells is accomplished by performing a memory cycle at each of the 256 row-addresses (A_0 to A_7) at least every 4ms. The MB 81256 offers the following 3 types of refresh.

RAS-only Refresh;

 \overline{RAS} -only refresh avoids any output during refresh because the output buffer is in the high impedance state unless \overline{CAS} is brought low.

Strobing each of 256 row-addresses $(A_0 \text{ to } A_7)$ with \overline{RAS} will cause all bits in each row to be refreshed. Further \overline{RAS} -only refresh results in a substantial reduction in power dissipation. During \overline{RAS} -only refresh cycle, either V_{1H} or V_{1L} is permitted to A_8 .

CAS-before-RAS Refresh;

 \overline{CAS} -before- \overline{RAS} refreshing available on the MB 81256 offers an alternate refresh method. If \overline{CAS} is held "low" for the specified period (t_{FCS}) before \overline{RAS} goes to "low", on-chip refresh control clock generators and the refresh address counter are enabled, and an internal refresh operation takes place. After the refresh operation is performed, the refresh address counter is automatically incremented in preparation for the next \overline{CAS} -before- \overline{RAS} refresh operation.

Hidden Refresh;

A hidden refresh cycle may takes place while maintaining the latest valid data at the output by extending \overline{CAS} active time.

For the MB 81256 a hidden refresh is a CAS-before-RAS refresh cycle. The internal refresh address counters provide the refresh addresses, as in a normal CAS-before-RAS refresh cycle.

CAS-before-RAS Refresh Counter Test Cycle:

A special timing sequence using CAS-

before-RAS counter test cycle provides a convenient method of verifying the functionality of the CAS-before-RAS refresh activated circuitry.

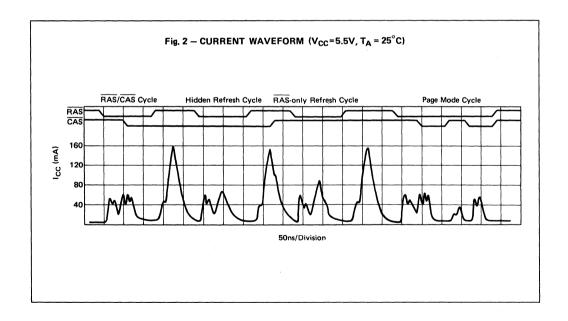
After the \overline{CAS} -befor- \overline{RAS} refresh operation, if \overline{CAS} goes to high and then goes to low again while \overline{RAS} is held low, the read and write operations are enabled.

This is shown in the CAS-before-RAS counter test cycle timing diagram. A memory cell address (consisting of a row address (9 bits) and column address (9 bits) to be accessed can be defined as follows:

*A ROW ADDRESS - Bits Ao to A7

are defined by the refresh counter. The bit A_8 is set high internally.

*A COLUMN ADDRESS – All the bits A_0 to A_8 are defined by latching levels on A_0 to A_8 at the second falling edge of CAS.

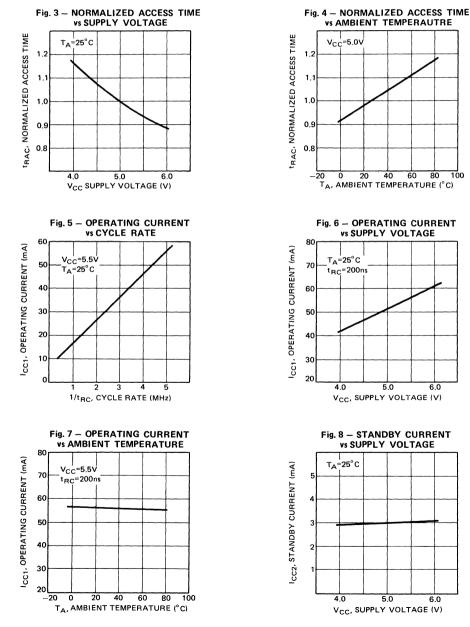

Suggested CAS-before-RAS Counter Test Procedure

The timing as shown in the CAS-before-RAS Counter Test cycles is used for the following operations:

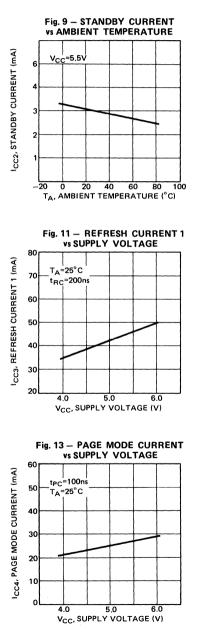
- (1) Initialize the internal refresh address counter by using eight CASbefore-RAS refresh cycles.
- (2) Throughout the test, use the same

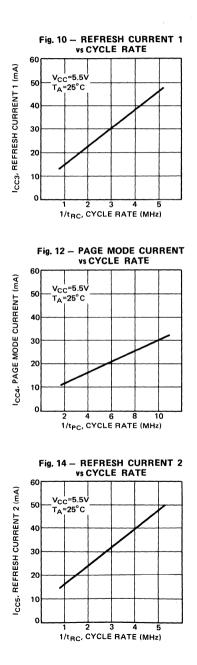
column address, and keep RA8 high.

- (3) Write "low" to all 256 row address on the same column address by using normal early write cycles.
- (4) Read "low" written in step 3) and check, and simultaneously write "high" to the same address by using internal refresh counter test readwrite cycles. This step is repeated 256 times, with the addresses being generated by internal refresh address counter.
- (5) Read "high" written in step 4) and check by using normal read cycle for all 256 locations.
- (6) Complement the test pattern and repeat step 3), 4) and 5).



80 100


6.0


6.0

TYPICAL CHARACTERISTICS CURVES

í

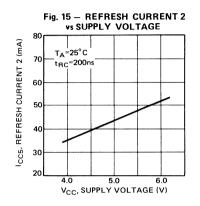


Fig. 17 – ADDRESS AND DATA INPUT VOLTAGE vs AMBIENT TEMPERATURE

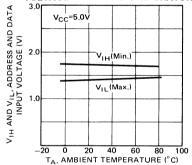


Fig. 19 – \overline{RAS} , \overline{CAS} AND \overline{WE} INPUT VOLTAGE vs AMBIENT TEMPERATURE

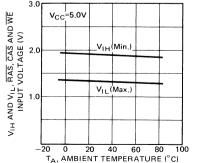
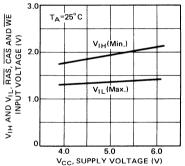
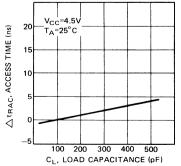
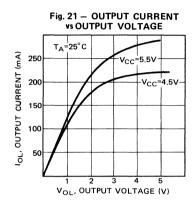
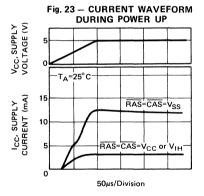
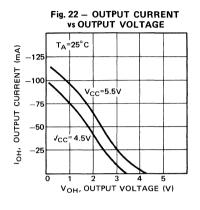


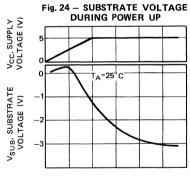
Fig. 16 – ADDRESS AND DATA INPUT VOLTAGE vs SUPPLY VOLTAGE 3.0 $T_A=25^{\circ}C$ (i) 30 2.0 VIH(Min.) VIL(Max.) 1.0 4.0 5.0 6.0

4.0 5.0 6.0 V_{CC}, SUPPLY VOLTAGE (V)

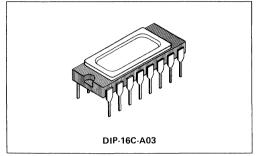
Fig. 18 – RAS, CAS AND WE INPUT VOLTAGE vs SUPPLY VOLTAGE

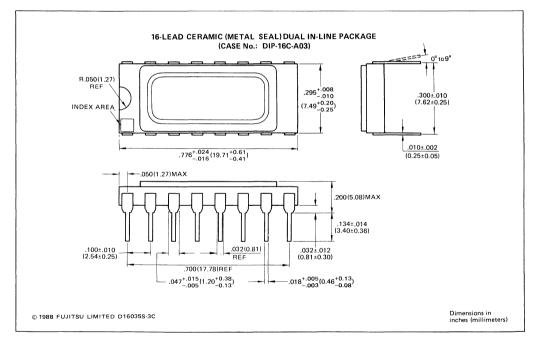






Fig. 20 – ACCESS TIME vs LOAD CAPACITANCE

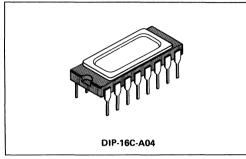


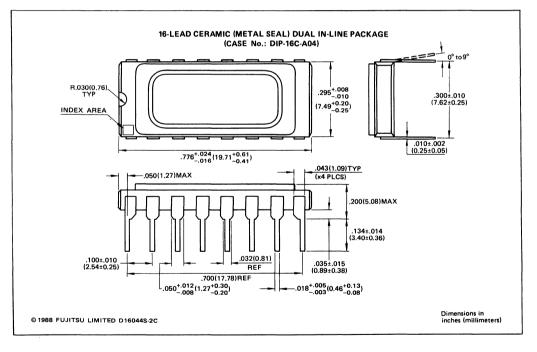
1



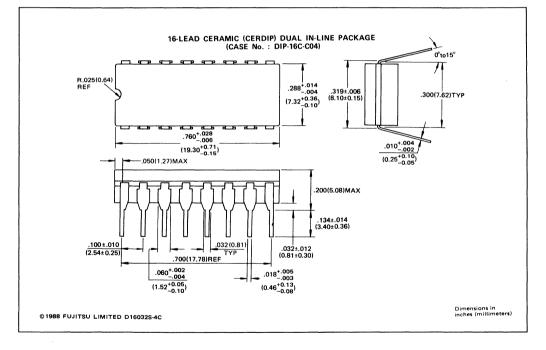

50µs/Division

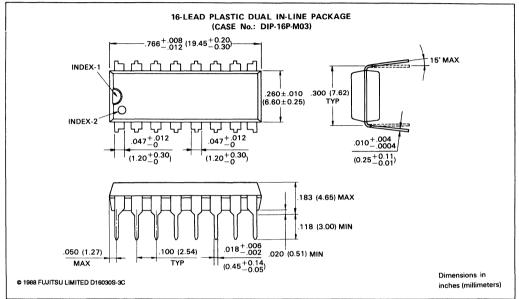
1-18


PACKAGE DIMENSIONS

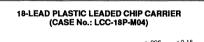

Standard 16-pin Ceramic DIP (Suffix: -C)

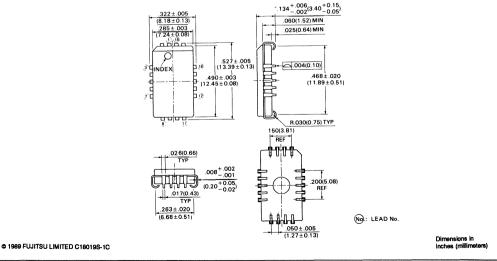



Standard 16-pin Ceramic DIP (Suffix: -C)

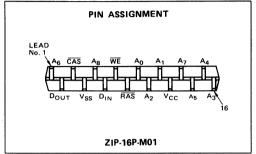


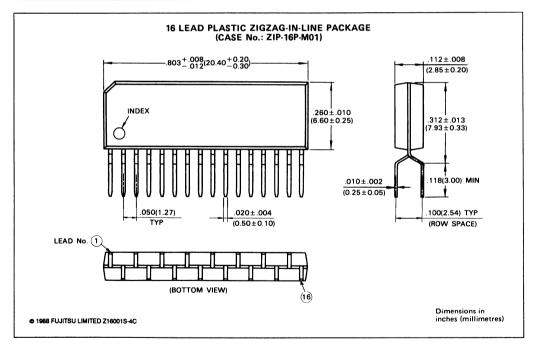
Standard 16-pin Ceramic DIP (Suffix: -Z)

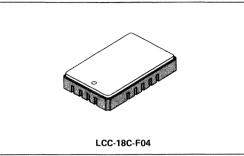


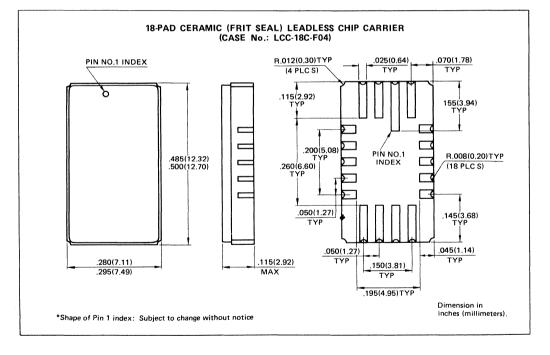


Standard 16-pin Plastic DIP (Suffix: -P)




Standard 18-pin Plastic LCC (Suffix: -PD)




Standard 16-pin Plastic ZIP (Suffix: -PSZ)

Standard 18-pad Ceramic LCC (Suffix: -TV)

DATA SHEET

MB81256-80 MOS 262,144 BIT DYNAMIC RANDOM ACCESS MEMORY

262.144 Bit Dynamic Random Access Memory

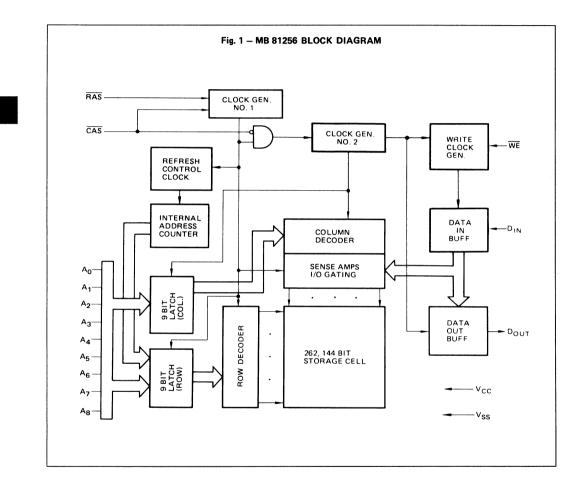
The Fujitsu MB81256 is a fully decoded, dynamic NMOS random access memory organized as 262,144 one-bit words. The design is optimized for high speed. high performance applications such as mainframe memory, buffer memory, peripheral storage, and environments where low power dissipation and a compact layout are required.

Multiplexed row and column address inputs permit the MB81256 to be housed in standard 16-pin DIP and ZIP packages or an 18-pin PLCC package. Pinouts conform to the JEDEC-approved pinouts. Additionally, the MB81256 offers new functional enhancements that make it more versatile than previous dynamic RAMs. CAS-before-RAS refresh provides an on-chip refresh capability that is upwardly compatible with the MB8266A. The MB81256 also features page mode which allows high speed random access of up to 512 bits of data within the same row.

The MB81256 is fabricated using silicon gate NMOS and Fujitsu's advanced Triple-layer Polysilicon process. This process, coupled with single-transistor memory storage cells, permits maximum circuit density and minimal chip size. Dynamic circuitry is used in the design, including the sense amplifiers. Clock timing requirements are noncritical, and power supply tolerance is very wide. All inputs are TTL compatible.

- 262.144 x 1 RAM organization •
- Silicon-gate, Triple Poly NMOS, single transistor cell
- Row Access Time (t_{RAC}) 80 ns max. (MB 81256-80)
- Random Cycle Time (t_{RC}) 175 ns min. (MB 81256-80)
- Page Mode Cycle Time (tpc) 100 ns max. (MB 81256-80)
- Single +5 V Supply, ±10% tolerance
- Low Power 385 mW max. (MB 81256-80) 25 mW max. (standby)
- 256 refresh cycles every 4 ms
- CAS-before-RAS, RAS-only, Hidden refresh capability

- High speed Read-white-Write cvcle
- tAR, twcs, tohn, tewo are eliminated Output unlatched cycle end allows two-dimensional chip select
- Common I/O capability using
- Early Write operation
- On-chip latches for Addresses and Data-in
- Standard 16-Pin Plastic Packages: DIP (MB81256-XXP) ZIP (MB81256-XXPSZ) ZIP (MB61250-AAF 3C/ Standard 18-Pin Plastic Package: PLCC(MB81256-XXPV) Standard 16-Pin Ceramic Package: DIP (MB81256-XXC)


Absolute Maximum Ratings (See	Note)
-------------------------------	-------

Parameter		Symbol	Value	Unit	
Voltage at any pin relative to V_{SS} Voltage of V_{CC} supply relative to V_{SS}		VIN, VOUT	-1 to +7	٧	
		Vcc	-1 to +7	v	
Storage Temperature	Ceramic	T _{STG}	-55 to +150	°C	
	Plastic	Γ	-55 to +125		
Power Dissipation		PD	1.0	w	
Short Circuit Output Current			50	mA	

Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operation sections of this data sheet. Exposure to absolute maximum rating conditions for ex-tended periods may affect device reliability.

Copyright C 1990 by FUJITSU LIMITED and Fujitsu Microelectronics, Inc.

CAPACITANCE $(T_A = 25^{\circ}C)$

Parameter	Symbol	Тур	Мах	Unit
Input Capacitance A_0 to A_8 , D_{IN}	C _{IN1}		7	pF
Input Capacitance RAS, CAS, WE	C _{IN2}		10	pF
Output Capacitance D _{OUT}	С _{оит}		7	pF

RECOMMENDED OPERATING CONDITIONS

(Referenced to V_{SS})

Parameter	Symbol	Min	Тур	Max	Unit	Operating Temperature
	V _{cc}	4.5	5.0	5.5	v	
Supply Voltage	V _{ss}	0	0	0	v	
Input High Voltage, all inputs	V _{IH}	2.4		6.5	v	0°C to +70°C
Input Low Voltage, all inputs	ViL	-2.0		0.8	v	

DC CHARACTERISTICS (Recommended operating conditions unless otherwise noted.)

Parameter		Complexed		11-14		
		Symbol	Min	Тур	Max	Unit
OPERATING CURRENT* Average Power Supply Current (RAS, CAS cycling; t _{RC} = Min.)	MB 81256-80	I _{CC1}			70	mA
STANDBY CURRENT Standby Power Supply Current (RAS, CA	<u> </u>	I _{CC2}			4.5	mA
REFRESH CURRENT 1* Average Power Supply Current (RAS cycling, CAS = V _{IH} ; t _{RC} = Min.)	MB 81256-80	I _{CC3}			60	mA
PAGE MODE CURRENT* Average Power Supply Current (RAS = V _{IL} , CAS cycling; t _{PC} = Min.)	MB81256-80	I _{CC4}			35	mA
REFRESH CURRENT 2* Average Power Supply Current (CAS-before-RAS; t _{RC} = Min.)	MB 81256-80	I _{CC5}			65	mA
INPUT LEAKAGE CURRENT any input $(V_{IN} = 0V \text{ to } 5.5V, V_{CC} = 4.5V \text{ to } 5.5V, T_{CC} = 4.5V \text{ to } 5.5V to$		I _{I(L)}	-10		10	μΑ
OUTPUT LEAKAGE CURRENT (Data is disabled, $V_{OUT} = 0V$ to 5.5V)			-10		10	μΑ
OUTPUT LEVEL Output Low Voltage (I _{OL} = 4.2mA)		Vol			0.4	v
OUTPUT LEVEL Output High Voltage (I _{OH} = -5.0mA)		V _{он}	2.4			v

NOTE* : I_{CC} is depended on output loading and cycle rates. Specified values are obtained with the output open.

AC CHARACTERISTICS (Recommended operating conditions unless otherwise noted.) NOTES 1, 2, 3

Parameter NOTES	Symbol	v	Unit	
Farameter NOTES	Symbol	Min	Max	Unit
Time between Refresh	t _{REF}		4	ms
Random Read/Write Cycle Time	t _{RC}	175		ns
Read-Write Cycle Time	t _{RWC}	180		ns
Access Time from RAS 4 6	tRAC		80	ns
Access Time from CAS 4 6	t _{CAC}		45	ns
Output Buffer Turn off Delay	t _{off}	0	25	ns
Transition Time	t _T	3	50	ns
RAS Precharge Time	t _{RP}	80		ns
RAS Pulse Width	tRAS	85	100000	ns
RAS Hold Time	t _{RSH}	50		ns
CAS Pulse Width	t _{cas}	50	100000	ns
CAS Hold Time	t _{сsн}	85		ns
RAS to CAS Delay Time 28	tRCD	20	35	ns
CAS to RAS Set Up Time	t _{CRS}	10		ns
Row Address Set Up Time	t _{ASR}	0		ns
Row Address Hold Time	t _{RAH}	10		ns
Column Address Set Up Time	t _{ASC}	0		ns
Column Address Hold Time	t _{CAH}	15		ns
Read Command Set Up Time	t _{RCS}	0		ns
Read Command Hold Time Referenced to CAS	t _{RCH}	0		ns
Read Command Hold Time Referenced to RAS	t _{RRH}	20		ns
Write Command Set Up Time 10	twcs	0		ns
Write Command Pulse Width	twp	15		ns
Write Command Hold Time	twcH	15		ns
Write Command to RAS Lead Time	tRWL	35		ns
Write Command to CAS Lead Time	tcwl	35		ns
Data In Set Up Time	t _{DS}	0		ns
Data In Hold Time	t _{он}	15		ns
CAS to WE Delay	tcwd	15		ns
Refresh Set Up Time for CAS Referenced to RAS (CAS-before-RAS cycle)	t _{FCS}	20		ns
Refresh Hold Time for CAS Referenced to RAS (CAS-before-RAS cycle)	t _{FCH}	20		ns

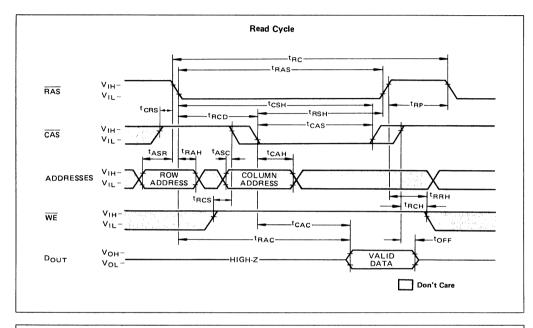
AC CHARACTERISTICS

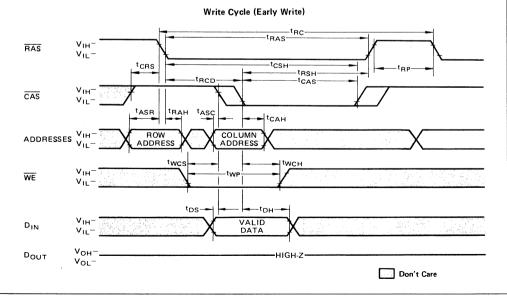
(Recommended operating conditions unless otherwise noted.)

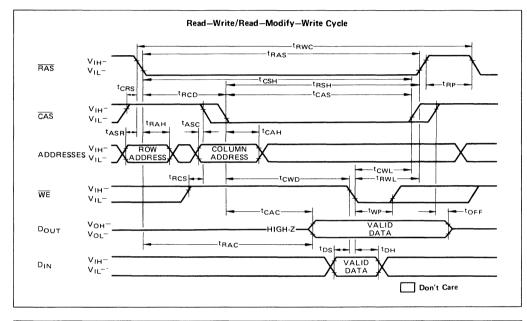
Devenues	Sumbal	Va	lue	11-1-
Parameter NOTES	Symbol	Min	Max	Unit
CAS Precharge Time (CAS-before-RAS cycle)	t _{CPR}	20		ns
\overline{RAS} Precharge to \overline{CAS} Active Time (Refresh cycles)	t _{RPC}	20		ns
Page Mode Read/Write Cycle Time	t _{PC}	100		ns
Page Mode Read-Write Cycle Time	t _{prwc}	100		ns
Page Mode CAS Precharge Time	t _{CP}	40		ns
Refresh Counter Test Cycle Time	t RTC	330		ms
Refresh Counter Test RAS Pulse Width	t _{TRAS}	230	10000	ns
Refresh Counter Test CAS Precharge Time	срт t срт	50		ns

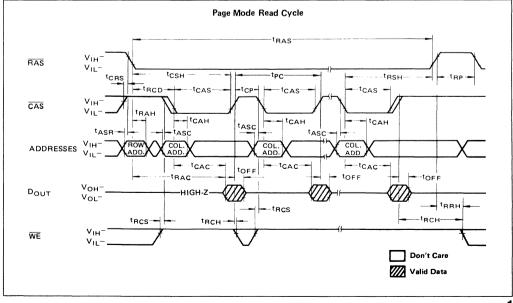
Notes:

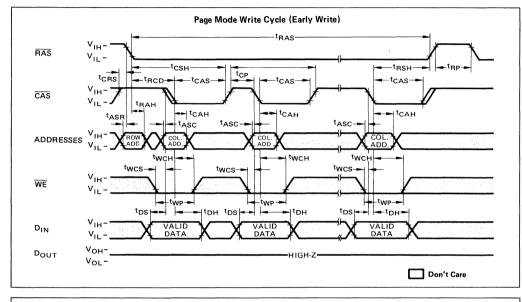
1 An initial pause of 200 μ s is required after power-up. And then several cycle (to which any 8 cycle to perform refresh are adequate) are required before proper device operation is achieved.

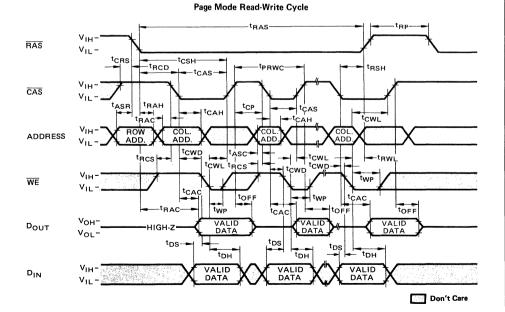

If internal refresh counter is to be effective, a minimum of 8 \overline{CAS} before \overline{RAS} refresh cycles are required.

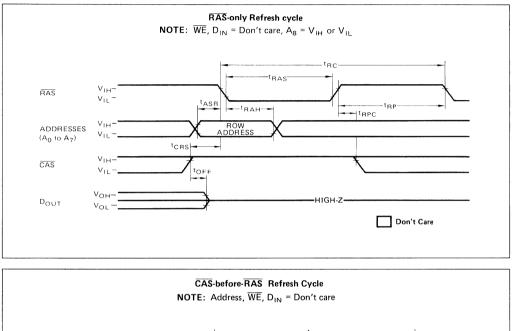

- 2 AC characteristics assume $t_T = 5$ ns.
- V_{IH} (min) and V_{IL} (max) are refrence levels for measuring timing of input signals. Also, transition times are measured between V_{IH} (min) and V_{IL} (max.).
- Assumes that $t_{RCD} \leq t_{RCD}$ (max.) If t_{RCD} is greater than the maximum recommended value shown in this table, t_{RAC} will increase by the amount that t_{RCD} exceeds the value shown.
- 5 Assumes that $t_{RCD} \ge t_{RCD}$ (max.).
- 6 Measured with a load equivalent to 2 TTL loads and 100 pF.

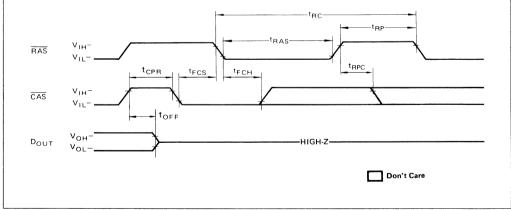

- 7 Operation within the t_{RCD} (max) limit insures that t_{RAC} (max) can be met. t_{RCD} (max) is specified as a reference point only; if t_{RCD} is greater than the specified t_{RCD} (max) limit, then access time is controlled exclusively by t_{CAC} .
- **B** t_{RCD} (min) = t_{RAH} (min) + $2t_T$ (t_T = 5ns) + t_{ASC} (min).
- 9 Either t_{RRH} or t_{RCH} must be satisfied for a read cycle.
- 10 t_{WCS} and t_{CWD} are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only. If $t_{WCS} \ge t_{WCS}$ (min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout entire cycle.

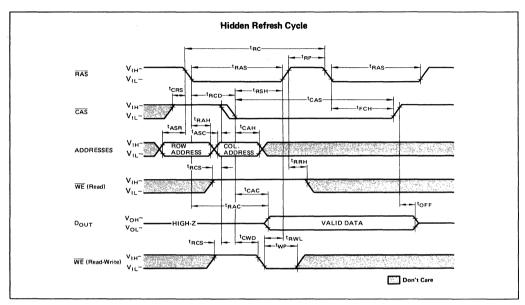

If $t_{CWD} \ge t_{CWD}$ (min) the cycle is a read-write cycle and data out will contain data read from the selected cell. If neither of the above sets of conditions is satisfied the condition of the data out is indeterminate.

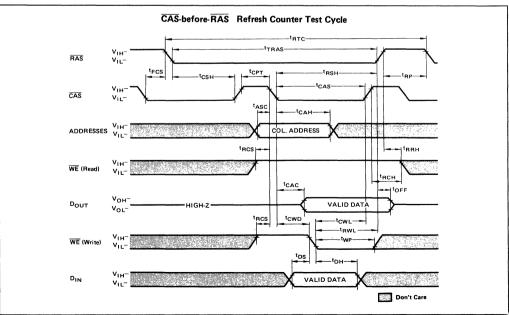

11 Test mode cycle only.











DESCRIPTION

Simple Timing Requirement

The MB 81256 has improved circuitry that eases timing requirements for high speed access operations. The MB 81256 can operate under the condition of t_{RCD} (max) = t_{CAC} thus providing optimal timing for address multiplexing. In addition, the MB 81256 has the minimal hold time of Address (t_{CAH}), WE (twcH) and DIN (tDH). The MB 81256 provides higher throughput in inter-leaved memory system applications. Fujitsu has made timing requirements that are referenced to **RAS** nonrestrictive and deleted them from the data sheet, these include t_{AB} , twcB, toHB and tBWD. As a result, the hold times of the Column Address, D_{IN} and \overline{WE} as well as t_{CWD} (\overline{CAS} to WE Delay) are not ristricted by taco.

Address Inputs:

A total of eighteen binary input address bits are required to decode any 1 of 262,144 cell locations within the MB 81256. Nine row-address bits are established on the input pins (An to A₈) and are latched with the Row Address Strobe (RAS). Nine columnaddress bits are established on the input pins and are latched with the Column Address Strobe (CAS). All row addresses must be stable on or before the falling edge of RAS. CAS is internally inhibited (or "gated") by RAS to permit triggering of CAS as soon as the Row Address Hold Time (t RAH) specification has been satisfied and the address inputs have been changed from row-addresses to column-address.

Write Enable:

The read mode or write mode is selected with the \overline{WE} input. A high on \overline{WE} selects read mode; low selects write mode. The data input is disable when read mode is selected.

Data input:

Data is written into the MB **81256** during a write or read-write cycle. The later falling edge of \overline{WE} or \overline{CAS} is a strobe for the Data In (D_{IN}) register. In a write cycle, if \overline{WE} is brought low before

 \overline{CAS} , D_{IN} is strobed by \overline{CAS} , and the set-up and hold times are referenced to \overline{CAS} . In a read-write cycle, WE can be delayed after \overline{CAS} has been low and \overline{CAS} to \overline{WE} Delay Time (t_{CWD}) has been satisfied. Thus D_{IN} is strobed by WE, and set-up and hold times are referenced to \overline{WE} .

Data Output:

The output buffer is three-state TTL compatible with a fan-out of two standard TTL loads. Data out is the same polarity as data-in. The output is in a high impedance state until CAS is brought low. In a read cycle, or read-write cycle, the output is valid after t_{RAC} from transition of RAS when the transition occurs after t_{RCD} (max) is satisfied, or after t_{CAC} from transition of CAS when the transition occurs after t_{RCD} (max). Data remain valid until CAS is returned to a high level. In a write cycle the identical sequence occurs, but data is not valid.

Fast Read-While-Write cycle

The MB 81256 has a fast read while write cycle which is achieved by precise control of the three-state output buffer as well as by the simplified timings described in the previous section. The output buffer is controlled by the state of WE when CAS goes low. When \overline{WE} is low during \overline{CAS} transition to low. the MB 81256 goes into the early write mode in which the output floats and the common I/O bus can be used on the system level. Whereas, when WE goes low after t_{CWD} following CAS transition to low, the MB 81256 goes into the delayed write mode. The output then contains the data from the cell selected and the data from D_{IN} is written into the cell selected. Therefore, a very fast read write cycle is possible with the MB 81256.

Page Mode:

Page-mode operation permits strobing the row-address into the MB 81256 while maintaining RAS at a low throughout all successive memory operations in which the row-address doesn't change. Thus the power dissipated by the falling edge of \overrightarrow{RAS} is saved. Access and cycle times are decreased because the time normally required to strobe a new row address is eliminated.

Refresh:

Refresh of the dynamic memory cells is accomplished by performing a memory cycle at each of the 256 row-addresses $(A_0 \text{ to } A_7)$ at least every 4ms. The MB 81256 offers the following 3 types of refresh.

RAS-only Refresh;

 \overline{RAS} -only refresh avoids any output during refresh because the output buffer is in the high impedance state unless \overline{CAS} is brought low.

Strobing each of 256 row-addresses $(A_0 \text{ to } A_7)$ with RAS will cause all bits in each row to be refreshed. Further RAS-only refresh results in a substantial reduction in power dissipation. During RAS-only refresh cycle, either V_{IH} or V_{IL} is permitted to A₈.

CAS-before-RAS Refresh;

 \overline{CAS} -before- \overline{RAS} refreshing available on the MB 81256 offers an alternate refresh method. If \overline{CAS} is held "low" for the specified period (t_{FCS}) before \overline{RAS} goes to "low", on-chip refresh control clock generators and the refresh address counter are enabled, and an internal refresh operation takes place. After the refresh operation is performed, the refresh address counter is automatically incremented in preparation for the next \overline{CAS} -before- \overline{RAS} refresh operation.

Hidden Refresh;

A hidden refresh cycle may takes place while maintaining the latest valid data at the output by extending \overline{CAS} active time.

For the MB 81256 a hidden refresh is a CAS-before-RAS refresh cycle. The internal refresh address counters provide the refresh addresses, as in a normal CAS-before-RAS refresh cycle.

CAS-before-RAS Refresh Counter Test Cycle:

A special timing sequence using CAS-1-35 before-RAS counter test cycle provides a convenient method of verifying the functionality of the CAS-before-RAS refresh activated circuitry.

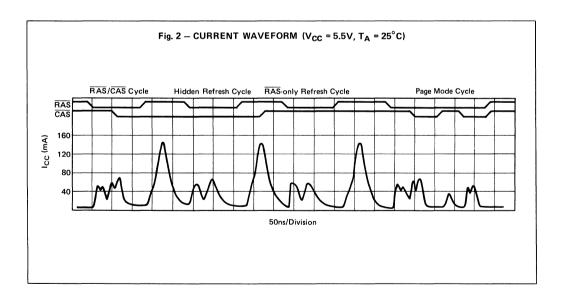
After the \overline{CAS} -befor- \overline{RAS} refresh operation, if \overline{CAS} goes to high and then goes to low again while \overline{RAS} is held low, the read and write operations are enabled.

This is shown in the CAS-before-RAS counter test cycle timing diagram. A memory cell address (consisting of a row address (9 bits) and column address (9 bits) to be accessed can be defined as follows:

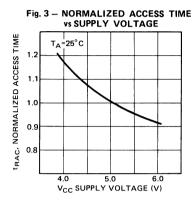
*A ROW ADDRESS - Bits Ao to A7

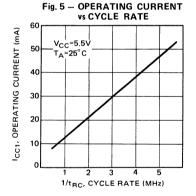
are defined by the refresh counter. The bit A_8 is set high internally.

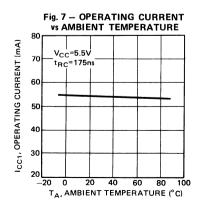
*A COLUMN ADDRESS – All the bits A₀ to A₈ are defined by latching levels on A₀ to A₈ at the second falling edge of CAS.


Suggested CAS-before-RAS Counter Test Procedure

The timing as shown in the CAS-before-RAS Counter Test cycles is used for the following operations:


- Initialize the internal refresh address counter by using eight CASbefore-RAS refresh cycles.
- (2) Throughout the test, use the same


column address, and keep RA8 high.


- (3) Write "low" to all 256 row address on the same column address by using normal early write cycles.
- (4) Read "low" written in step 3) and check, and simultaneously write "high" to the same address by using internal refresh counter test readwrite cycles. This step is repeated 256 times, with the addresses being generated by internal refresh address counter.
- (5) Read "high" written in step 4) and check by using normal read cycle for all 256 locations.
- (6) Complement the test pattern and repeat step 3), 4) and 5).

TYPICAL CHARACTERISTICS CURVES

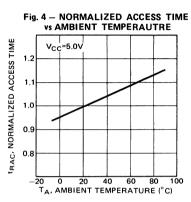


Fig. 6 – OPERATING CURRENT vs SUPPLY VOLTAGE

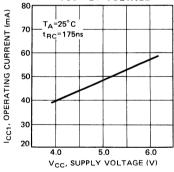
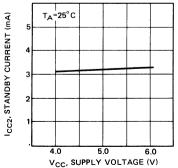
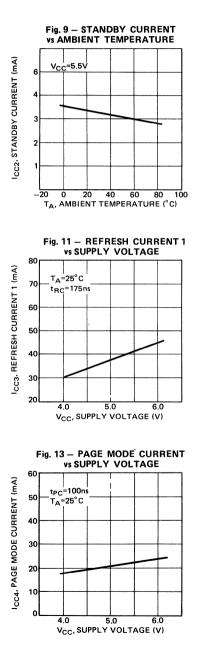
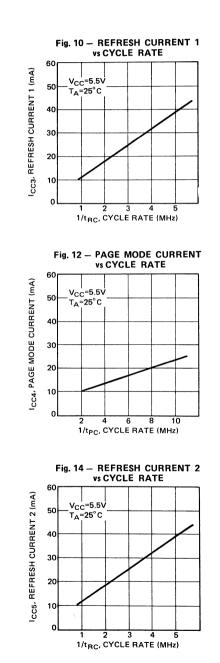





Fig. 8 – STANDBY CURRENT vs SUPPLY VOLTAGE

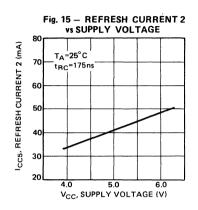


Fig. 17 – ADDRESS AND DATA INPUT VOLTAGE vs AMBIENT TEMPERATURE

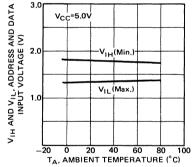


Fig. 19 - RAS, CAS AND WE INPUT VOLTAGE vs AMBIENT TEMPERATURE

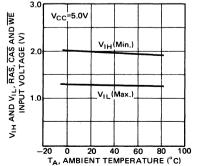


Fig. 16 – ADDRESS AND DATA INPUT VOLTAGE vs SUPPLY VOLTAGE

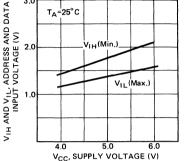
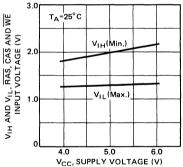
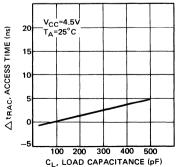
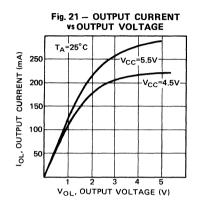
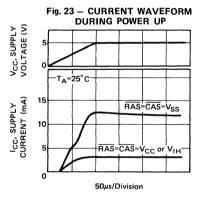
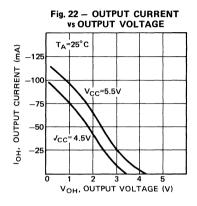
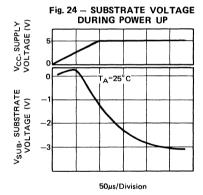
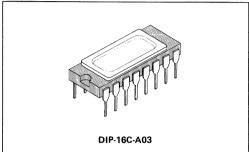
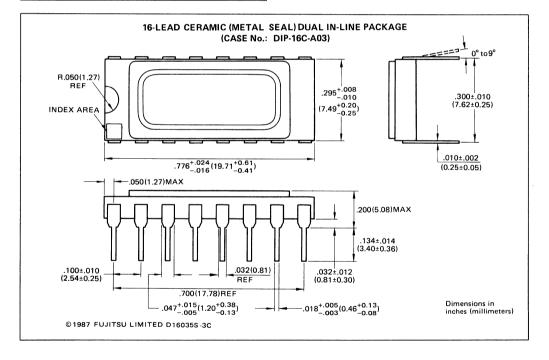


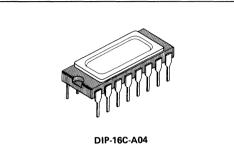
Fig. 18 – RAS, CAS AND WE INPUT VOLTAGE vs SUPPLY VOLTAGE

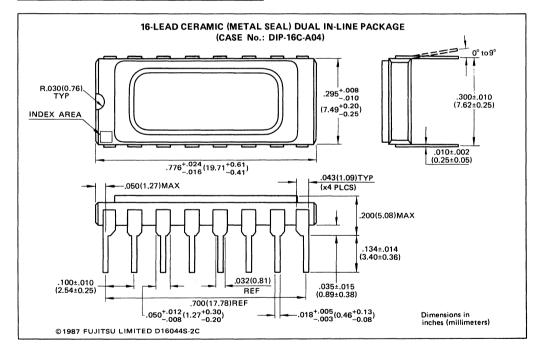






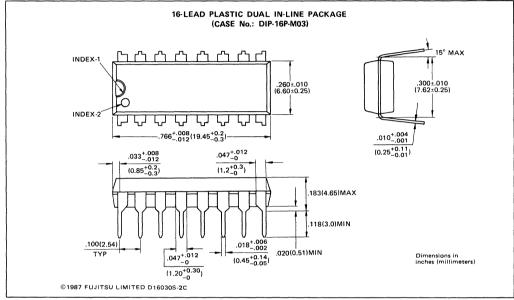

Fig. 20 – ACCESS TIME vs LOAD CAPACITANCE



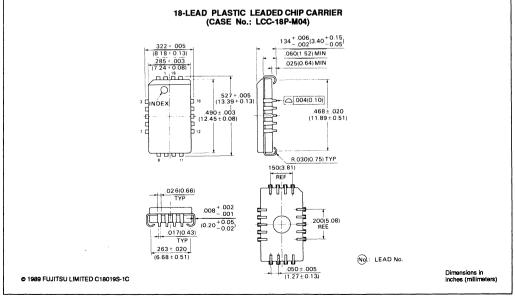


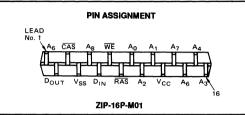


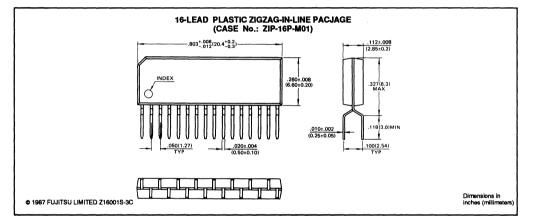

(Suffix: -C)



PACKAGE DIMENSIONS (Suffix: -C)




(Suffix: -P)



(Suffix: -PSZ)

DATA SHEET =

MB81257-10/-12/-15

MOS 262,144-BIT DYNAMIC RANDOM ACCESS MEMORY

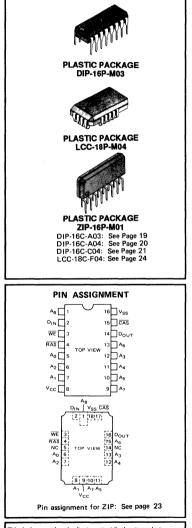
262,144-Bit Dynamic Random Access Memory

The Fujitsu MB81257 is a fully decoded, dynamic NMOS random access memory organized as 262,144 one-bit words. The design is optimized for high speed, high performance applications such as mainframe memory, buffer memory, peripheral storage, and environments where low power dissipation and a compact layout are required.

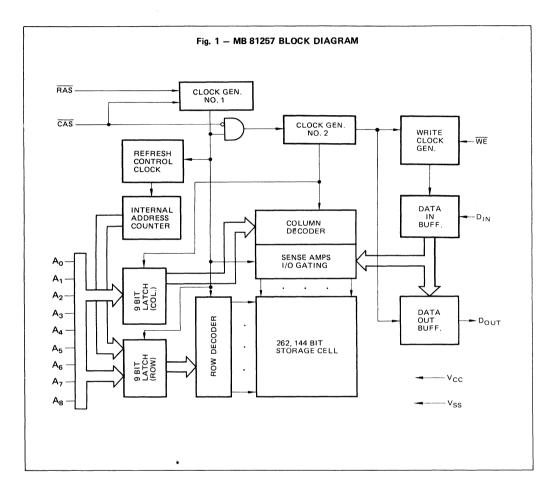
Multiplexed row and column address inputs permit the MB81257 to be housed in standard 16-pin DIP and ZIP packages or an 18-pin PLCC package. Pinouts conform to the JEDEC-approved pinouts. Additionally, the MB81257 offers new functional enhancements that make it more versatile than previous dynamic RAMs. CAS-before-RAS refresh provides an on-chip refresh capability that is upwardly compatible with the MB8266A. The MB81257 also features nibble mode which allows high speed serial access of up to 4 bits of data.

The MB81257 is fabricated using silicon gate NMOS and Fujitsu's advanced Triple-layer Polysilicon process. This process, coupled with single-transistor memory storage cells, permits maximum circuit density and minimal chip size. Dynamic circuitry is used in the design, including the sense amplifiers. Clock timing requirements are noncritical, and power supply tolerance is very wide. All inputs are TTL compatible.

- 262,144 x 1 RAM organization
- Silicon-gate, Triple Poly NMOS, single transistor cell
- Row Access Time 100 ns max. (MB 81257-10) 120 ns max. (MB 81257-12) 120 ns max. (MB 81257-15)
- Cycle Time 200 ns min. (MB 81257-10) 220 ns min. (MB 81257-12) 260 ns min. (MB 81257-15)
- Nibble Cycle Time 45 ns max. (MB 81257-10) 50 ns max. (MB 81257-12) 60 ns max. (MB 81257-15)
- Single +5 V Supply, ±10% tolerance
- Low Power 385 mW max. (MB 81257-10) 358 mW max. (MB 81257-12) 314 mW max. (MB 81257-15) 25 mW max. (standby)


Absolute Maximum Ratings

Parameter Voltage at any pin relative to V_{SS} Voltage of V_{CC} supply relative to V_{SS}		Symbol	Value	Unit	
		V _{SS} V _{IN} , V _{OUT} -1 to		v	
		V _{CC}	-1 to +7	v	
Storage Temperature	Ceramic	T _{STG}	-55 to +150	°C	
	Plastic	Ī	-55 to +125		
Power Dissipation		PD	1.0	w	
Short Circuit Output Curren	t	_	50	mA	


Note: Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operation sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Copyright C 1990 by FUJITSU LIMITED and Fujitsu Microelectronics, Inc.

- 256 refresh cycles every 4 ms
- CAS-before-RAS, RAS-only, Hidden refresh capability
- High speed Read-white-Write cycle
- tAR, twcR, tOHR, tRWD are eliminated
- Output unlatched cycle end allows two-dimensional chip select
- two-dimensional chip select
 Common I/O capability using Early Write operation
- On-chip latches for Addresses and Data-in
- Standard 16-Pin Plastic Packages: DIP (MB81257-XXP) ZIP (MB81257-XXPSZ)
 Standard 18-Pin Plastic Package: PLCC(MB81257-XXPV)
 Standard 16-Pin Ceramic Packages: DIP (MB81257-XXZ) Seam Weld DIP (MB81257-XXZ)
 - Standard 18-Pad Ceramic Package: LCC (MB81257-XXTV)

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

CAPACITANCE $(T_A = 25^{\circ}C)$

Parameter	Symbol	Тур	Max	Unit
Input Capacitance A ₀ to A ₈ , D _{IN}	C _{IN1}		7	pF
Input Capacitance RAS, CAS, WE	C _{IN2}		8	pF
Output Capacitance D _{OUT}	Cout		7	pF

RECOMMENDED OPERATING CONDITIONS

(Referenced to V_{SS})

Parameter	Symbol	Min	Тур	Max	Unit	Operating Temperature
Contraction Victoria	V _{cc}	4.5	5.0	5.5	v	
Supply Voltage	V _{SS}	0	0	0	v	
Input High Voltage, all inputs	V _{IH}	2.4		6.5	v	0°C to +70°C
Input Low Voltage, all inputs	VIL	-2.0		0.8	v	

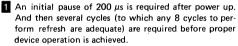
DC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Parameter		Combal		11-14		
		Symbol	Min	Тур	Max	Unit
OPERATING CURRENT*	MB 81257-10				70	
Average Power Supply Current	MB 81257-12	I _{CC1}			65	mA
(RAS, CAS cycling; t _{BC} = Min.)	MB 81257-15				57	
STANDBY CURRENT Standby Power Supply Current (RAS, $\overline{CAS} = V_{1H}$)		I _{CC2}			4.5	mA
REFRESH CURRENT 1*	MB 81257-10				60	
Average Power Supply Current	MB 81257-12	I _{CC3}			55	mA
(RAS cycling, CAS = V _{IH} ; t _{RC} = Min.)	MB 81257-15]			50	
NIBBLE MODE CURRENT* MB 81257-1					22	
Average Power Supply Current	MB 81257-12	I _{CC4}			20	mA
$(\overline{RAS} = V_{1L}, \overline{CAS} \text{ cycling}; t_{NC} = Min.)$	MB 81257-15				18	
REFRESH CURRENT 2*	MB 81257-10				65	
Average Power Supply Current	MB 81257-12	I _{CC5}			60	mA
(CAS-before-RAS; t _{RC} = Min.)	MB 81257-15				55	
INPUT LEAKAGE CURRENT any input ($V_{IN} = 0V$ to 5.5V, $V_{CC} = 5.5V$, $V_{SS} = 0V$, all o not under test = 0V)	other pins	ا _{ا (لـ)}	-10		10	μA
OUTPUT LEAKAGE CURRENT (Data is disabled, V _{OUT} = 0V to 5.5V)		I _{O (L)}	-10		10	μA
OUTPUT LEVEL Output Low Voltage (I _{OL} = 4.2 mA)		Vol			0.4	v
OUTPUT LEVEL Output high Voltage (I _{OH} = -5.0 mA)		V _{он}	2.4			v

NOTE *: I_{CC} is depended on output loading and cycle rates. Specified values are obtained with the output open.

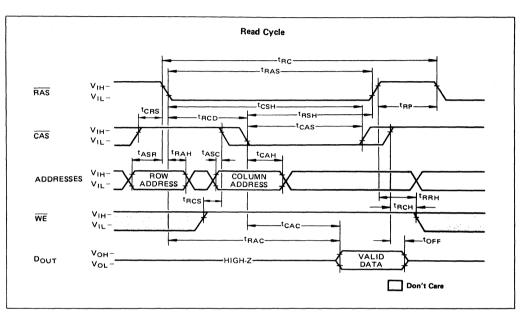
AC CHARACTERISTICS (Recommended operating conditions unless otherwise noted.) NOTES 1.2.3

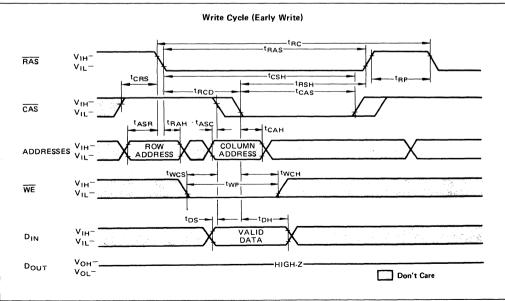

Paramater No.220	Symphol	MB 81	257-10	MB 81	257-12	MB 81	11.24	
Parameter NOTES	Symbol	Min	Max	Min	Max	Min	Max	Unit
Time between Refresh	t _{REF}		4		4		4	ms
Random Read/Write Cycle time	t _{RC}	200		220		260		ns
Read-Write Cycle Time	t _{RWC}	200		220		260		ns
Access Time from RAS	t _{RAC}		100		120		150	ns
Access Time from CAS 56	t _{CAC}		50		60		75	ns
Output Buffer Turn off Delay	t _{OFF}	0	25	0	25	0	30	ns
Transition Time	t _T	3	50	3	50	3	50	ns
RAS Precharge Time	t _{RP}	85		90		100		ns
RAS Pulse Width	t _{RAS}	105	100000	120	100000	150	100000	ns
RAS Hold Time	t _{RSH}	55		60		75		ns
CAS Pulse width	t _{CAS}	55	100000	60	100000	75	100000	ns
CAS Hold Time	t _{сsн}	105		120		150		ns
RAS to CAS Delay Time 78	t _{RCD}	20	50	22	60	25	75	ns
CAS to RAS Set Up Time	t _{CRS}	10		10		10		ns
Row Address Set Up Time	t _{ASR}	0		0		0		ns
Row Address Hold Time	t _{RAH}	10		12		15		ns
Column Address Set Up Time	t _{ASC}	0		0		0	·	ns
Column Address Hold Time	t _{CAH}	15		20		25		ns
Read Command Set Up Time	t _{RCS}	0		0		0		ns
Read Command Hold Time Referenced of CAS	t _{RCH}	0		0		0		ns
Read Command Hold Time Referenced of RAS	t _{RRH}	20		20		20		ns
Write Command Set Up Time 10	twcs	0		0		0		ns
Write Command Pulse Width	t _{WP}	15		20		25		ns
Write Command Hold Time	t _{wcн}	15		20		25		ns
Write Command to RAS Lead Time	t _{RWL}	35		40		45		ns
Write Command to CAS Lead Time	t _{CWL}	20		30		25		ns
Data In Set Up Time	t _{DS}	0		0		0		ns
Data In Hold Time	t _{DH}	15		20		25		ns
CAS to WE Delay 10	t _{CWD}	15		20		25		ns
Refresh Set Up Time for CAS Referenced to RAS (CAS-before-RAS cycle)	t _{FCS}	20		20		20		ns
Refresh Hold Time for CAS Referenced to RAS (CAS-before-RAS cycle)	t _{FCH}	20		25		30		ns

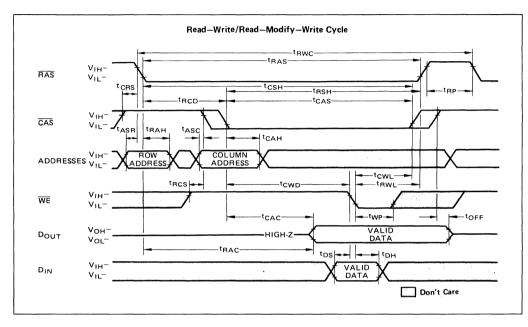
AC CHARACTERISTICS

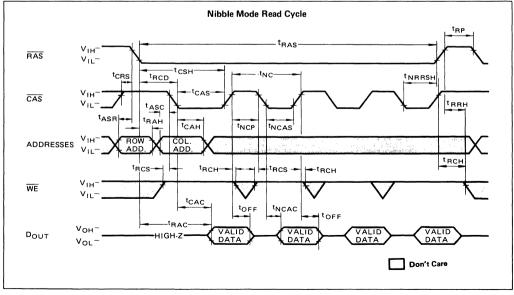
(Recommended operating conditions unless otherwise noted.)

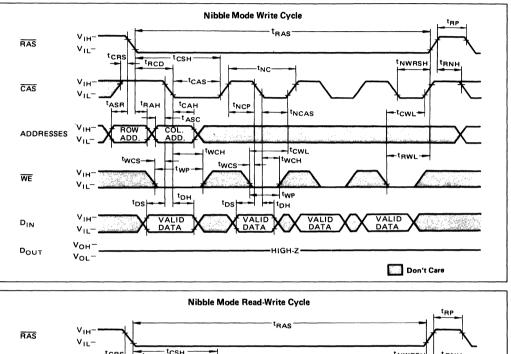
Parameter NOTES	Symbol	MB 81257-10		MB 81257-12		MB 81257-15		Unit
		Min	Max	Min	Max	Min	Max	Onit
CAS Precharge Time (CAS-before-RAS cycle)	t _{CPR}	20		25		30		ns
RAS Precharge to CAS Active Time (Refresh cycles)	t _{RPC}	20		20		20		ns
Nibble Mode Read/Write Cycle Time	t _{NC}	45		50		60		ns
Nibble Mode Read-Write Cycle Time	^t NRWC	45		50		60		ns
Nibble Mode Access Time	t _{NCAC}		20		25		30	ns
Nibble Mode CAS Pulse Width	t _{NCAS}	20		25		30		ns
Nibble Mode CAS Precharge Time	t _{NCP}	15		15		20		ns
Nibble Mode Read RAS Hold Time	tNRRSH	20		25		30		ns
Nibble Mode Write RAS Hold Time	t _{NWRSH}	35		40		45		
Nibble Mode CAS Hold Time Referenced to RAS	t _{RNH}	20		20		20		ns
Refresh Counter Test Cycle Time 11	t _{RTC}	330		375		430		ns
Refresh Counter Test RAS Pulse Width	t _{TRAS}	230	10000	265	10000	320	10000	ns
Refresh Counter Test CAS Precharge	t _{CPT}	50		60		70		ns

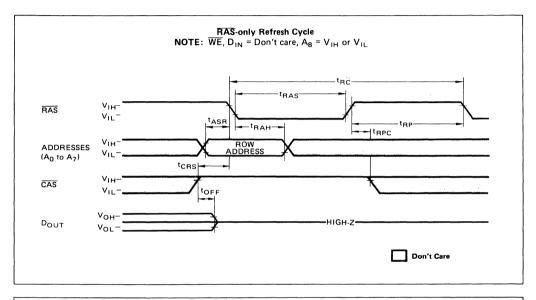

Notes:

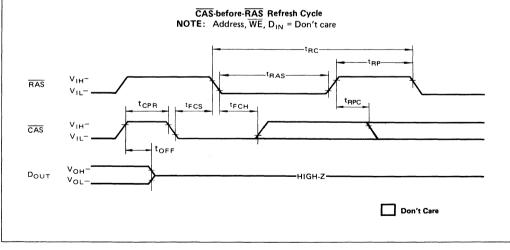


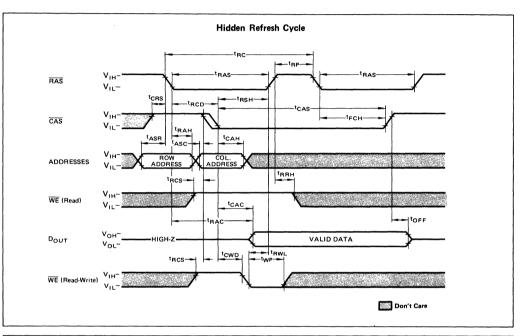

If internal refresh counter is to be effective, a minimum of 8 \overline{CAS} before \overline{RAS} refresh cycles are required. AC characteristics assume t_T = 5 ns.

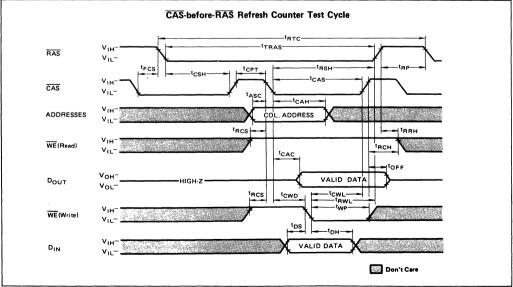

- **3** V_{IH} (min) and V_{IL} (max) are reference levels for measuring timing of input signals. Also, transition times are measured between V_{IH} (min) and V_{IL} (max.).
- 4 Assumes that $t_{RCD} \leq t_{RCD}$ (max). If t_{RCD} is greater than the maximum recommended value shown in this table, t_{RAC} will increase by the amount that t_{RCD} exceeds the value shown.
- 5 Assumes that $t_{RCD} \ge t_{RCD}$ (max).
- 6 Measured with a load equivalent to 2 TTL loads and 100 pF.


- 7 Operation within the t_{RCD} (max) limit insures that t_{RAC} (max) can be met. t_{RCD} (max) is specified as a reference point only; if t_{RCD} is greater than the specified t_{RCD} (max) limit, then access time is controlled exclusively by t_{CAC} . 8 t_{RCD} (min) = t_{RAH} (min) + $2t_{T}$ (t_{T} =5ns) + t_{ASC} (min)
- 3 t_{RCD} (min) = t_{RAH} (min) + 2t_T (t_T=5ns) + t_{ASC} (min)
 9 Either t_{RRH} or t_{RCH} must be satisfied for a read cycle.
 10 t_{WCS} and t_{CWD} are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only. If t_{WCS} ≥ t_{WCS} (min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout entire cycle. If t_{CWD} ≥ t_{CWD} (min), the cycle is a read-write cycle and data out will contain data read from the selected cell. If neither of the above sets of conditions is satisfied the condition of the data out is indeterminate.
 11 Test mode cycle only.









DESCRIPTION

Simple Timing Requirement

The MB 81257 has improved circuitry that eases timing requirements for high speed access operations. The MB 81257 can operate under the condition of t_{RCD} (max) = t_{CAC} thus providing optimal timing for address multiplexing. In addition, the MB 81257 has the minimal hold times of Address (t_{CAH}), WE (twcH) and DIN (tpH). The MB 81257 provides higher throughput in inter-leaved memory system applications. Fujitsu has made timing requirement that are referenced to RAS non-restrictive and deleted them from the data sheet. These include tAB, twcR, tohr and trwo. As a result, the hold times of the Column Address, D_{IN} and \overline{WE} as well as t_{CWD} (\overline{CAS} to WE Delay) are not ristricted by t_{RCD}.

Address Inputs:

A total of eighteen binary input address bits are required to decode any 1 of 262,144 cell locations within the MB 81257. Nine row-address bits are established on the input pins (Ao to A₈) and are latched with the Row Address Strobe (RAS). Nine columnaddress bits are established on the input pins and are latched with the Column Address Strobe (CAS). All row addresses must be stable on or before the falling edge of RAS. CAS is internally inhibited (or "gated") by RAS to permit triggering of CAS as soon as the Row Address Hold Time (tRAH) specification has been satisfied and the address inputs have been changed from row-addresses to column-addresses.

Write Enable:

The read mode or write mode is selected with the \overline{WE} input. A high on \overline{WE} selects read mode, low selects write mode. The data input is disabled when read mode is selected.

Data Input:

Data is written into the MB 81257 during a write or read-write cycle. The later falling edge of \overline{WE} or \overline{CAS} is a strobe for the Data In (D_{1N}) register. In a write cycle, if \overline{WE} is brought low

before $\overline{CAS},\ D_{IN}$ is strobed by $\overline{CAS},$ and the set-up and hold times are referenced to \overline{CAS} . In a read-write cycle, \overline{WE} can be delayed after \overline{CAS} has been low and \overline{CAS} to \overline{WE} Delay Time ($t_{CWD})$ has been satisfied. Thus D_{IN} is strobed by $\overline{WE},$ and set-up and hold times are referenced to $\overline{WE}.$

Data Output:

The output buffer is three-state TTL compatible with a fan-out of two standard TTL loads. Data out is the same polarity as data-in. The output is in a high impedance state until \overline{CAS} is brought low. In a read cycle, or read-write cycle, the output is valid after t_{RAC} (max) is satisfied, or after t_{CAC} from transition of \overline{CAS} when the transition occurs after t_{RCD} (max.) Data remain valid until \overline{CAS} is returned to a high level. In a write cycle, the identical sequence occurs, but data is not valid.

Fast Read-While-Write cycle

The MB 81257 has a fast read while write cycle which is achieved by precise control of the three-state output buffer as well as by the simplified timings, described in the previous section. The output buffer is controlled by the sate of WE when CAS goes low. When WE is low during CAS transition to low, the MB 81257 goes into the early write mode in which the output floats and the common I/O bus can be used on the system level. Whereas, when WE goes low after t_{CWD} following CAS transition to low, the MB 81257 goes into the delayed write mode. The output then contains the data from the cell selected and the data from DIN is written into the cell selected. Therefore, a very fast read write cycle (t_{BWC} = t_{BC}) is possible with the MB 81257.

Nibble Mode:

Nibble mode allows high speed serial read, write or read-modify-write access of 2, 3 or 4 bits of data. The bits of data that may be accessed during nibble mode are determined by the 8 row addresses and the 8 column addresses. The 2 bits of addresses (CA_B , RA_B) are

used to select 1 of the 4 nibble bits for initial access. After the first bit is accessed by normal mode, the remaining nibble bits may be accessed by toggling \overline{CAS} high then low while \overline{RAS} remains low. Toggling \overline{CAS} causes RA_8 and CA_8 to be incremented internally while all other address bits are held constant and makes the next nibble bit available for access. (See Table 1).

If more than 4 bits are accessed during nibble mode, the address sequence will begin to repeat. If any bit is written during nibble mode, the new data will be read on any subsequent access. If the write operation is executed again on subsequent access, the new data will be written into the selected cell location.

In nibble mode, the three-state control of the D_{OUT} pin is determined by the first normal access cycle.

The data output is controlled only by the WE state referenced at the CAS negative transition of the normal cycle (first nibble bit). That is, when twcs> twcs (min) is met, the data output will remain high impedance state throughout the succeeding nibble cycle regardless of the $\overline{\mathsf{WE}}$ state. Whereas, when t_{CWD} > town (min) is met, the data output will contain data from the cell selected during the succeeding nibble cycle regardless of the WE state. The write operation is done during the period in which the WE and CAS clocks are low. Therefore, the write operation can be performed bit by bit during each nibble operation regardless of timing conditions of \overline{WE} (t_{WCS} and t_{CWD}) during the normal cycle (first nibble bit). See Fig. 2.

Refresh:

Refresh of the dynamic memory cells is accomplished by performing a memory cycle at each of the 256 row-addresses $(A_0 to A_7)$ at least every 4 ms.

The MB 81257 offers the following 3 types of refresh.

RAS-only Refresh;

The \overline{RAS} only refresh aboids any output during refresh because the output buffer is in the high impedance state unless \overline{CAS} is brought low. Strobing each

of 256 row-addresses (A₀ to A₇) with RAS will cause all bits in each row to be refreshed. Further RAS-only refresh results in a substantial reduction in power dissipation. During RAS-only refresh cycle, either V_{1H} or V_{1L} is permitted to A₈.

CAS-before-RAS Refresh;

 \overline{CAS} -before- \overline{RAS} refreshing available on the MB 81257 offers an alternate refresh method. If \overline{CAS} is held low for the specified period (t_{FCS}) before \overline{RAS} goes to low, on-chip refresh control clock generators and the refresh address counter are enabled, and an internal refresh operation takes place. After the refresh operation is performed, the refresh address counter is automatically incremented in preparation for the next \overline{CAS} -before- \overline{RAS} refresh operation.

Hidden Refresh;

A hidden refresh cycle may takes place while maintaining latest valid data at the output by extending the CAS active time. For the MB 81257, a hidden refresh cycle is CAS-before-RAS refresh. The internal refresh address counters provide the refresh addresses, as in a normal CAS-before-RAS refresh cycle.

CAS-before-RAS Refresh Counter Test Cycle:

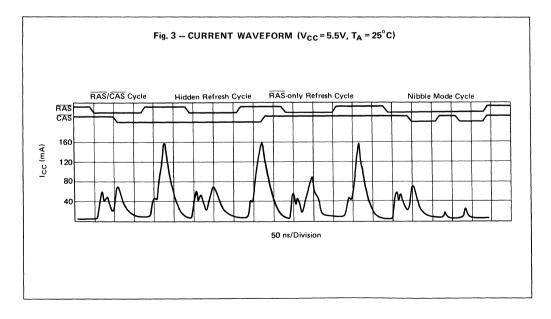
A special timing sequence using \overline{CAS} before \overline{RAS} counter test cycle provides a convenient method of verifying the functionality of \overline{CAS} -before \overline{RAS} refresh activated circuitry. After the \overline{CAS} -before \overline{RAS} refresh operation, if \overline{CAS} goes to high and goes to low again while \overline{RAS} is held low, the read and write operation are enabled. This is shown in the \overline{CAS} -before \overline{RAS} counter test cycle timing diagram. A memory cell address, consisting of a row address (9 bits) and a column address (9 bits), to be accessed can be defined as follows:

- *A ROW ADDRESS Bits A_0 to A_7 are defined by the refresh counter. The bit A_8 is set high internally.
- *A COLUMN ADDRESS All the bits A₀ to A₈ are defined by latching levels on A₀ to A₈ at the second falling edge of CAS.

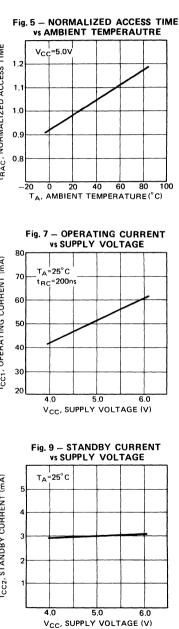
Suggested CAS-before-RAS Counter Test Procedure

The timing, as shown in the \overline{CAS} -before- \overline{RAS} Counter Test Cycle, is used for the following operations:

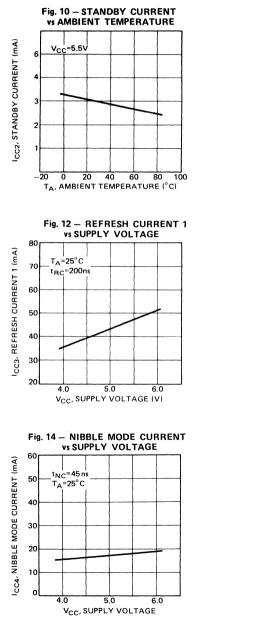
- 1) Initialize the internal refresh address counter by using eight CAS-before-RAS refresh cycles.
- 2) Throughout the test, use the same column address, and keep RA8 high.
- Write "low" to all 256 row address on the same column address by using normal early write cycles.
- 4) Read "low" written in step 3) and check, and simultaneously write "high" to the same address by using internal refresh counter test readwrite cycles. This step is repeated 256 times, with the addresses being generated by internal refresh address counter.
- Read "high" written in step 4) and check by using normal read cycle for all 256 locations.
- 6) Complement the test pattern and repeat step 3), 4) and 5).


Table 1 – NIBBLE MODE ADDRESS SEQUENCE EXAMPLE

SEQUENCE	NIBBLE BIT	RA ₈	ROW ADDRESS	CA ₈	COLUMN ADDRESS	
RAS/CAS (normal mode)	1	0	10101010	0	10101010	input addresses
toggle CAS (nibble mode)	2	1	10101010	0	10101010	
toggle CAS (nibble mode)	3	0	10101010	1	10101010 }	generated internally
toggle CAS (nibble mode)	4	1	10101010	1	10101010	
toggle CAS (nibble mode)	1	0	10101010	0	10101010)	sequence repeats



RAS	CAS	WE	D _{1N}	D _{OUT}	Read	Write	Refresh	Note
н	н	Don't Care	Don't Care	High-Z	No	No	No	Standby
L	L	н	Don't Care	Valid Data	Yes	No	Yes	Read
L	L	L	Valid Data	High-Z	No	Yes	Yes	Early Write t _{WCS} ≧t _{WCS} (min)
L	L	L	Valid Data	Valid Data	Yes	Yes	Yes	$\begin{array}{l} \mbox{Delayed Write or Read-Write} \\ (t_{WCS} \leq t_{WCS} \ (min) \ or \\ t_{CWD} \geq t_{CWD} \ (min)) \end{array}$
L	н	Don't Care	Don't Care	High-Z	No	No	Yes	RAS-only Refresh
L	L	Don't Care	Don't Care	Valid Data	No	No	Yes	CAS-before-RAS Refresh Valid data selected at previous Read or Read-Write cycle is held.
н	L	Don't Care	Don't Care	High-Z	No	No	No	CAS disturb.


Table-2 FUNCTIONAL TRUTH TABLE

TYPICAL CHARACTERISTICS CURVES Fig. 4 - NORMALIZED ACCESS TIME **vs SUPPLY VOLTAGE** t_{RAC}, NORMALIZED ACCESS TIME t_{RAC}, NORMALIZED ACCESS TIME ТА --25° C 1.2 1.1 1.0 0.9 0.8 4.0 5.0 6.0 VCC SUPPLY VOLTAGE (V) Fig. 6 - OPERATING CURRENT vs CYCLE RATE 60 (mA) I_{CC1}, OPERATING CURRENT (mA) V_{CC}=5.5V T_A=25°C 50 I_{CC1}, OPERATING CURRENT 40 30 20 10 0 2 3 4 5 1/tRC, CYCLE RATE (MHz) Fig. 8 - OPERATING CURRENT vs AMBIENT TEMPERATURE 80 I_{CC1}, OPERATING CURRENT (mA) I_{CC2}, STANDBY CURRENT (mA) V_Cc≈5.5V 70 t_{RC}=200ns 60 50 40 30 20 -20 0 20 40 60 80 100 TA, AMBIENT TEMPERATURE (°C)

1-59

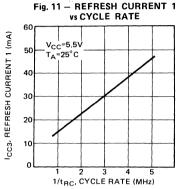


Fig. 13 – NIBBLE MODE CURRENT vs CYCLE RATE

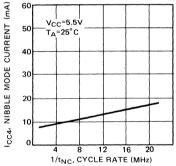
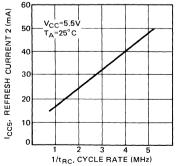



Fig. 15 – REFRESH CURRENT 2 vs CYCLE RATE

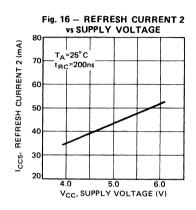


Fig. 18 - ADDRESS AND DATA INPUT VOLTAGE vs AMBIENT TEMPERATURE

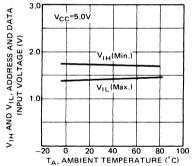
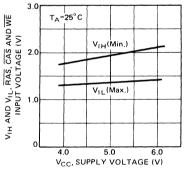
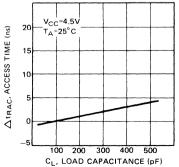
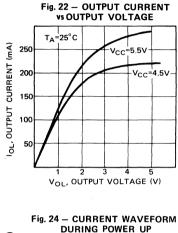
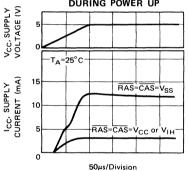
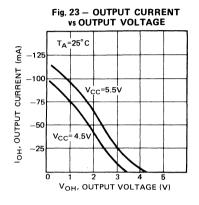
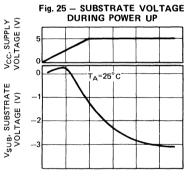
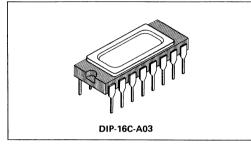


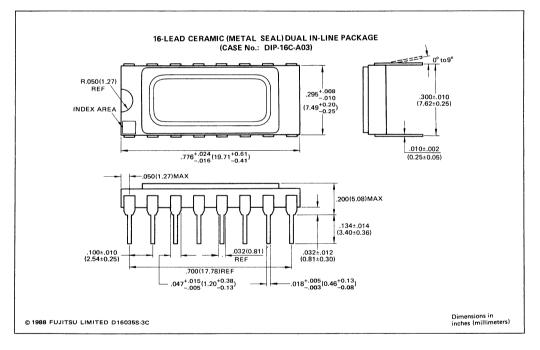
Fig. 17 – ADDRESS AND DATA INPUT VOLTAGE vs SUPPLY VOLTAGE

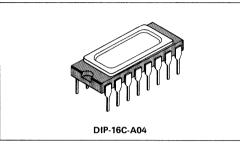
Fig. 19 – RAS, CAS AND WE INPUT VOLTAGE vs SUPPLY VOLTAGE

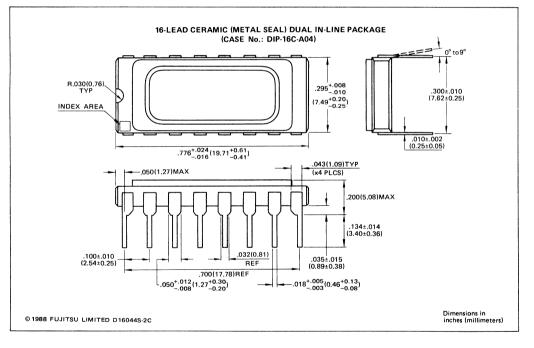






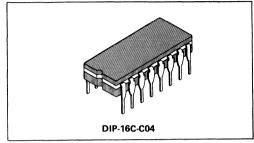

Fig. 21 – ACCESS TIME vs LOAD CAPACITANCE

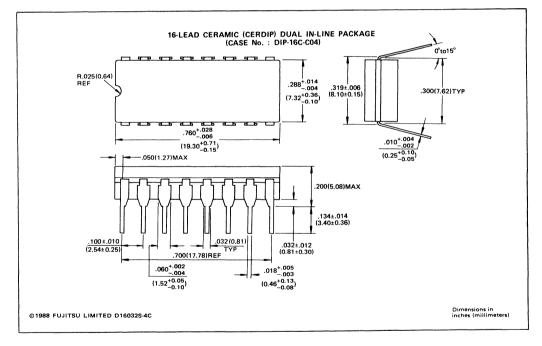


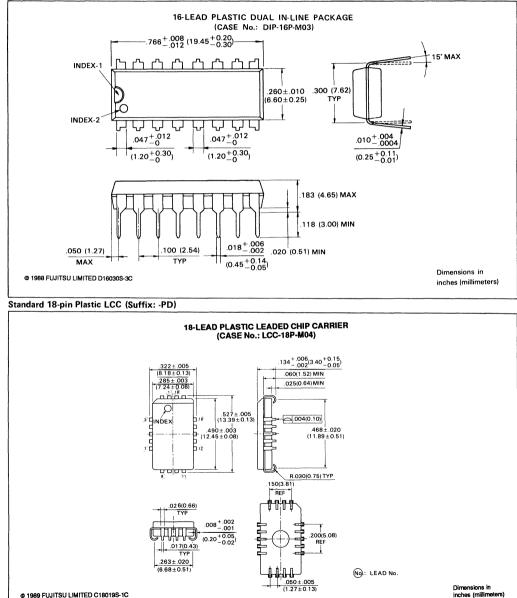



50µs/Division

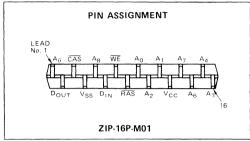

Standard 16-pin Ceramic DIP (Suffix: -C)

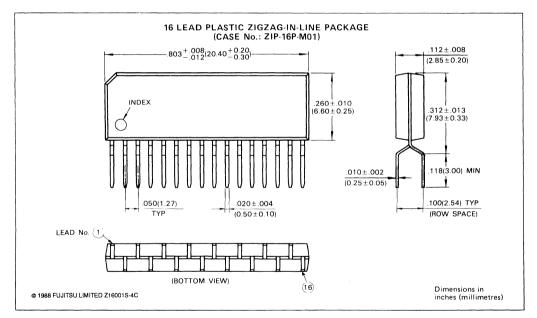


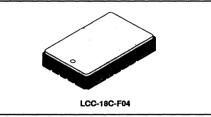

Standard 16-pin Ceramic DIP (Suffix: -C)

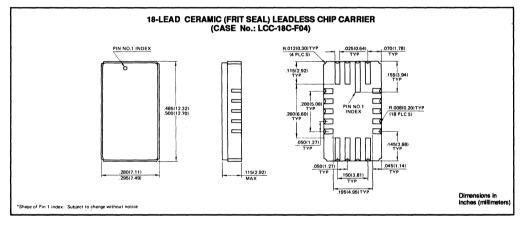


Standard 16-pin Ceramic DIP (Suffix: -Z)




Standard 16-pin Plastic DIP (Suffix: -P)


Dimensions in inches (millimeters)


Standard 16-Pin Plastic ZIP(Suffix: -PSZ)

PACKAGE DIMENSIONS Standard 18-pin Ceramic LCC (Suffix: -TV)

DATA SHEET

MB81257-80 MOS 262,144 BIT DYNAMIC RANDOM ACCESS MEMORY

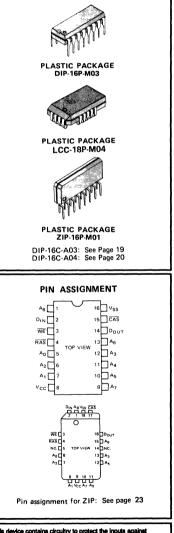
262,144 Bit Dynamic Random Access Memory

The Fujitsu MB81257 is a fully decoded, dynamic NMOS random access memory organized as 262,144 one-bit words. The design is optimized for high speed, high performance applications such as mainframe memory, buffer memory, peripheral storage, and environments where low power dissipation and a compact layout are required.

Multiplexed row and column address inputs permit the MB81257 to be housed in standard 16-pin DIP and ZIP packages or an 18-pin PLCC package. Pinouts conform to the JEDEC- approved pinouts. Additionally, the MB81257 offers new functional enhancements that make it more versatile than previous dynamic RAMs. CAS-before-RAS refresh provides an on-chip refresh capability that is upwardly compatible with the MB8266A. The MB81257 also features nibble mode which allows high speed serial access of up to 4 bits of data.

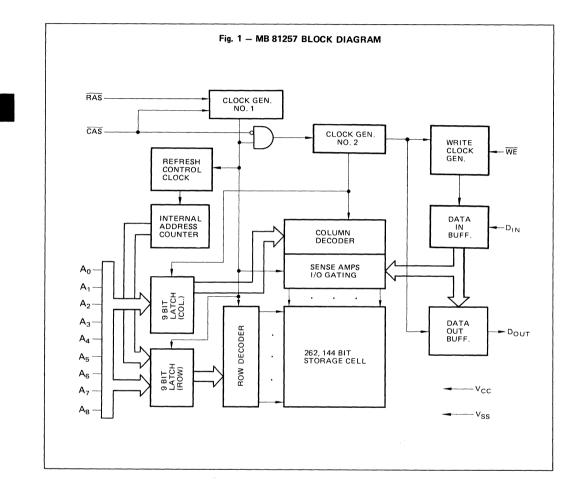
The MB81257 is fabricated using silicon gate NMOS and Fujitsu's advanced Triple-layer Polysilicon process. This process, coupled with single-transistor memory storage cells, permits maximum circuit density and minimal chip size. Dynamic circuitry is used in the design, including the sense amplifiers. Clock timing requirements are noncritical, and power supply tolerance is very wide. All inputs are TTL compatible.

- 262,144 x 1 RAM organization
- Silicon-gate, Triple Poly NMOS, single transistor cell
- Row Access Time (t_{RAC}) 80 ns max, (MB 81257-80)
- Random Cycle Time (t_{RC}) 175 ns min. (MB 81257-80)
- Nibble Cycle Time 45 ns max. (MB 81257-80)
- Single +5 V Supply, ±10% tolerance
- Low Power 385 mW max. (MB 81257-80) 25 mW max. (standby)
- 256 refresh cycles every 4 ms
 CAS-before-RAS, RAS-only, Hidden refresh capability


- High speed Read-white-Write cycle
- t_{AR}, t_{WCR}, t_{DHR}, t_{RWD} are eliminated
 Output unlatched cycle end allows two-dimensional chip select
- Common I/O capability using Early Write operation
- On-chip latches for Addresses and Data-in
- Standard 16-Pin Plastic Packages: DIP (MB81257-XXP) ZIP (MB81257-XXPSZ)
 Standard 18-Pin Plastic Package: PLCC(MB81257-XXPV)
- PLCC(MB81257-XXPV) Standard 16-Pad Ceramic Package: DIP (MB81257-XXC)

Absolute Maximum Ratings (See Note)

Parameter	Symbol	Value	Unit V		
Voltage at any pin relative to	VIN, VOUT	-1 to +7			
Voltage of V _{CC} supply relativ	Vcc	-1 to +7	v		
Storage Temperature	Ceramic	TSTG	-55 to +150	°C	
	Plastic	ſ	-55 to +125		
Power Dissipation		PD	1.0	w	
Short Circuit Output Curren	_	50	mA		


Note: Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operation sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Copyright C 1990 by FUJITSU LIMITED and Fujitsu Microelectronics, Inc.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

CAPACITANCE $(T_A = 25^{\circ}C)$

Parameter	Symbol	Түр	Мах	Unit
Input Capacitance A ₀ to A ₈ , D _{IN}	CINI		7	pF
Input Capacitance RAS, CAS, WE	C _{IN2}		10	pF
Output Capacitance D _{OUT}	C _{out}		7	pF

RECOMMENDED OPERATING CONDITIONS

(Referenced to V_{SS})

Parameter	Symbol	Min	Түр	Max	Unit	Operating Temperature
Supply Voltage	V _{CC} V _{SS}	4.5 0	5.0 0	5.5 0	v v	
Input High Voltage, all inputs	V _{IH}	2.4		6.5	v	0°C to +70°C
Input Low Voltage, all inputs	V _{IL}	-2.0		0.8	v	

DC CHARACTERISTICS (Recommended operating conditions unless otherwise noted.)

Parameter						
Parameter	Symbol	Min	Тур	Max	Unit	
OPERATING CURRENT* Average Power Supply Current (RAS, CAS cycling, t _{RC} = Min.)	MB 81257-80	I _{CC1}			70	mA
STANDBY CURRENT Standby Power Supply Current (RAS, CAS	<u>S</u> = V _{IH})	I _{CC2}			4.5	mA
REFRESH CURRENT 1* Average Power Supply Current (RAS cycling, CAS = V _{IH} ; t _{RC} = Min.)	MB 81257-80	I _{CC3}			60	mA
NIBBLE MODE CURRENT* Average Power Supply Current (RAS = V _{IL} , CAS cycling; t _{NC} = Min.)	MB 81257-80	I _{CC4}			22	mA
REFRESH CURRENT 2* Average Power Supply Current (CAS-before-RAS; t _{RC} = Min.)	MB 81257-80	I _{CC5}			65	mA
INPUT LEAKAGE CURRENT any input $(V_{IN} = 0V \text{ to } 5.5V, V_{CC} = 4.5V \text{ to } 5.5V, V_{all} \text{ other pins not under test = } 0V)$	Ι _{1(L)}	-10		10	μΑ	
OUTPUT LEAKAGE CURRENT (Data is disabled, V _{OUT} = 0V to 5.5V)	I _{O(L)}	-10		10	μΑ	
OUTPUT LEVEL Output Low Voltage (I _{OL} = 4.2mA)	Vol			0.4	v	
OUTPUT LEVEL Output High Voltage (I _{OH} = -5.0mA)	V _{OH}	2.4			v	

NOTE*: I_{CC} is depended on output loading and cycle rates. Specified values are obtained with the output open.

AC CHARACTERISTICS (Recommended operating conditions unless otherwise noted.) NOTES 1, 2, 3

Parameter	OTES	Symbol	Va	Unit	
Falanieler		Symbol	Min	Max	Onit
Time between Refresh		t _{ref}		4	ms
Random Read/Write Cycle Time		t _{RC}	175		ns
Read-Write Cycle Time		t _{RWC}	180		ns
Access Time from RAS	46	tRAC		80	ns
Access Time from CAS	46	t _{CAC}		45	ns
Output Buffer Turn off Delay		toff	0	25	ns
Transition Time		t _T	3	50	ns
RAS Precharge Time		t _{RP}	80		ns
RAS Pulse Width		t _{RAS}	85	100000	ns
RAS Hold Time		t _{RSH}	50		ns
CAS Pulse Width		t _{CAS}	50	100000	ns
CAS Hold Time		t _{сsн}	85		ns
RAS to CAS Delay Time	78	t _{RCD}	20	35	ns
CAS to RAS Set Up Time		t _{CRS}	10		ns
Row Address Set Up Time		t _{ASR}	0		ns
Row Address Hold Time		t _{RAH}	10		ns
Column Address Set Up Time		t _{ASC}	0		ns
Column Address Hold Time		t _{cah}	15		ns
Read Command Set Up Time		t _{RCS}	0		ns
Read Command Hold Time Referenced to CAS	9	t _{RCH}	0		ns
Read Command Hold Time Referenced to RAS	9	t _{RRH}	20		ns
Write Command Set Up Time	10	twcs	0		ns
Write Command Pulse Width		t _{WP}	15		ns
Write Command Hold Time		t _{wcн}	15		ns
Write Command to RAS Lead Time		t _{RWL}	35		ns
Write Command to CAS Lead Time		t _{CWL}	35		ns
Data In Set Up Time		t _{DS}	0		ns
Data In Hold Time		t _{он}	15		ns
CAS to WE Delay	10	tcwd	15		ns
Refresh Set Up Time for \overline{CAS} Referenced to \overline{RA} (\overline{CAS} -before- \overline{RAS} cycle)	S	t _{FCS}	20		ns
Refresh Hold Time for CAS Referenced to RAS (CAS-before-RAS cycle)		t _{FCH}	20		ns

AC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

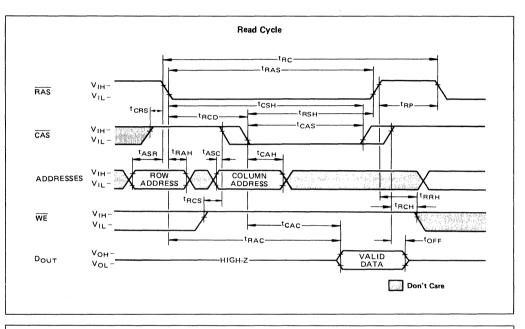
Parameter NOTES	Symbol	Va	llue	Unit
Farameter NOTES	NOTES Symbol		Max	Onit
CAS Precharge Time (CAS-before-RAS cycle)	t _{CPR}	20		ns
RAS Precharge to CAS Active Time (Refresh cycles)	t _{RPC}	20		ns
Nibble Mode Read/Write Cycle Time	t _{NC}	45		ns
Nibble Mode Read-Write Cycle Time	t _{NRWC}	45		ns
Nibble Mode Access Time	t _{NCAC}		18	ns
Nibble Mode CAS Pulse Width	t _{NCAS}	20		ns
Nibble Mode CAS Precharge Time	t _{NCP}	15		ns
Nibble Mode Read RAS Hold Time	t _{NRRSH}	20		ns
Nibble Mode Write RAS Hold Time	t _{NWRSH}	35		ns
Nibble Mode CAS Hold Time Referenced to RAS	t _{RNH}	20		ns
Refresh Counter Test Cycle Time	t _{RTC}	330		ns
Refresh Counter Test RAS Pulse Width	t _{TRAS}	230	10000	ns
Refresh Counter Test CAS Precharge Time	t _{cpt}	50		ns

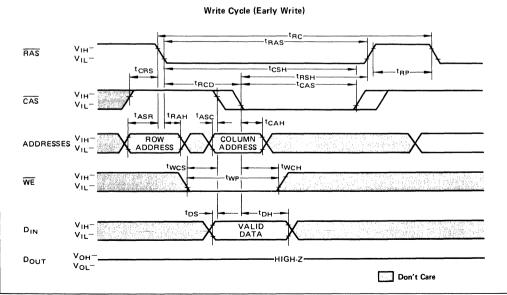
Notes:

1 An initial pause of 200 μ s is required after power up. And then several cycles (to which any 8 cycles to perform refresh are adequate) are required before proper device operation is achieved.

If internal refresh counter is to be effective, a minimum of 8 CAS before RAS refresh cycles are required. 2 AC characteristics assume $t_T = 5$ ns.

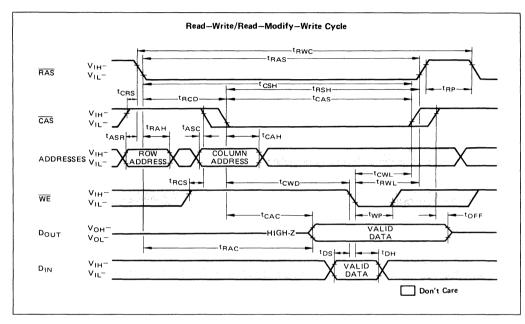
 \fbox{I} V $_{iH}$ (min) and V $_{iL}$ (max) are reference levels for measuring timing of input signals. Also, transition times are measured between V_{1H} (min) and V_{H} (max.).

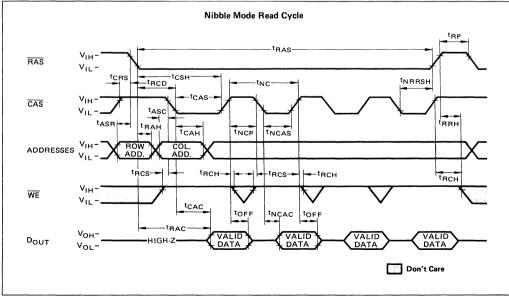

4 Assumes that $t_{\rm RCD} \leq t_{\rm RCD}$ (max). If $t_{\rm RCD}$ is greater than the maximum recommended value shown in this table, $t_{\rm RAC}$ will increase by the amount that $t_{\rm RCD}$ exceeds the value shown. 5

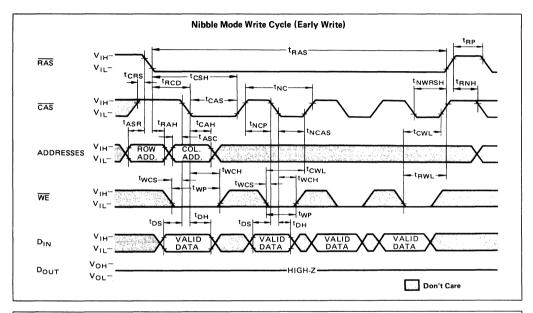

Assumes that $t_{\text{RCD}} \geq t_{\text{RCD}}$ (max).

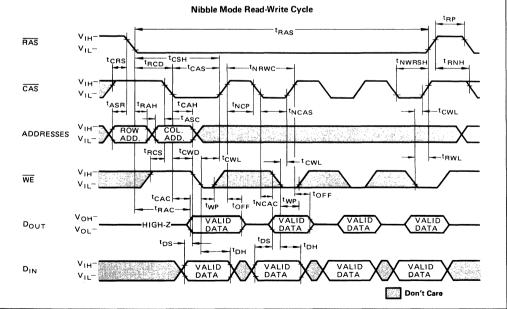
6 Measured with a load equivalent to 2 TTL loads and 100 pF.

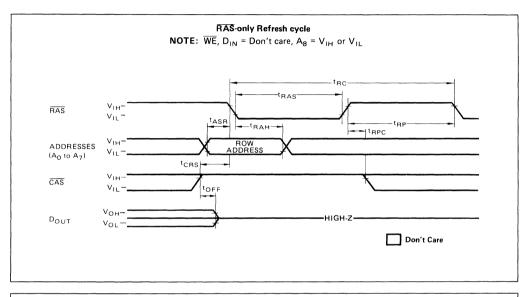
7 Operation within the t_{RCD} (max) limit insures that t_{RAC} (max) can be met. t_{RCD} (max) is specified as a reference point only; if t_{RCD} is greater than the specified t_{RCD} (max) limit, then access time is controlled to the specified that trolled exclusively by t_{CAC} . t_{BCD} (min) = t_{RAH} (min) + $2t_T$ (t_T =5ns) + t_{ASC} (min)

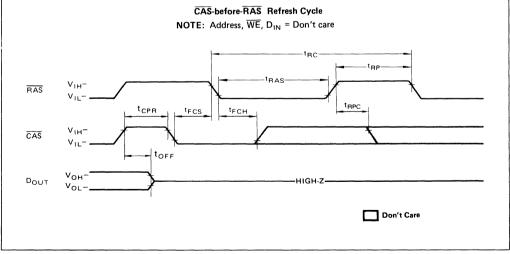

8 9 Either t_{RRH} or t_{RCH} must be satisfied for a read cycle. 10 twcs and tcwp are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only. If $t_{WCS} \ge t_{WCS}$ (min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout entire cycle. If $t_{CWD} \ge t_{CWD}$ (min), the cycle is a read-write cycle and data out will contain data read from the selected cell. If neither of the above sets of conditions is satisfied the condition of the data out is indeterminate. 11 Test mode cycle only.

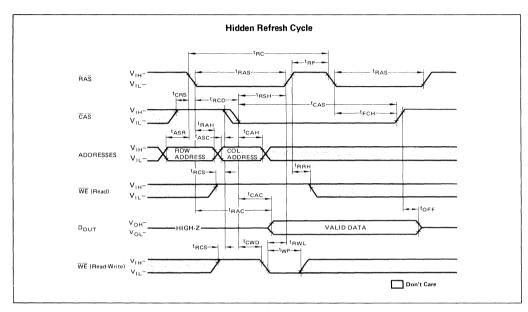


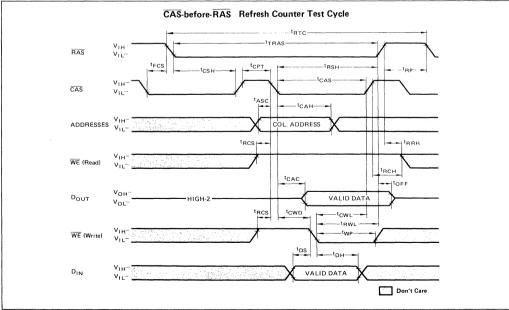



1


1-74







MB81257-80

DESCRIPTION

Simple Timing Requirement

The MB 81257 has improved circuitry that eases timing requirements for high speed access operations. The MB 81257 can operate under the condition of t_{RCD} (max) = t_{CAC} thus providing optimal timing for address multiplexing. In addition, the MB 81257 has the minimal hold times of Address (t_{CAH}), WE (twcH) and DIN (tpH). The MB 81257 provides higher throughput in inter-leaved memory system applications. Fujitsu has made timing requirement that are referenced to RAS non-restrictive and deleted them from the data sheet. These include tAB, twcs, t_{DHB} and t_{RWD}. As a result, the hold times of the Column Address, D_{IN} and \overline{WE} as well as t_{CWD} (\overline{CAS} to WE Delay) are not ristricted by tecn.

Address Inputs:

A total of eighteen binary input address bits are required to decode any 1 of 262,144 cell locations within the MB 81257, Nine row-address bits are established on the input pins (An to A_B) and are latched with the Row Address Strobe (RAS). Nine columnaddress bits are established on the input pins and are latched with the Column Address Strobe (CAS). All row addresses must be stable on or before the falling edge of RAS. CAS is internally inhibited (or "gated") by RAS to permit triggering of $\overline{\text{CAS}}$ as soon as the Row Address Hold Time (t_{RAH}) specification has been satisfied and the address inputs have been changed from row-addresses to column-addresses.

Write Enable:

The read mode or write mode is selected with the \overline{WE} input. A high on \overline{WE} selects read mode; low selects write mode. The data input is disabled when read mode is selected.

Data Input:

Data is written into the MB 81257 during a write or read-write cycle. The later falling edge of \overline{WE} or \overline{CAS} is a strobe for the Data In (D_{IN}) register. In a write cycle, if \overline{WE} is brought low before $\overline{CAS},\ D_{IN}$ is strobed by $\overline{CAS},$ and the set-up and hold times are referenced to $\overline{CAS}.$ In a read-write cycle, \overline{WE} can be delayed after \overline{CAS} has been low and \overline{CAS} to \overline{WE} Delay Time (t_{CWD}) has been satisfied. Thus D_{IN} is strobed by $\overline{WE},$ and set-up and hold times are referenced to $\overline{WE}.$

Data Output:

The output buffer is three-state TTL compatible with a fan-out of two standard TTL loads. Data out is the same polarity as data-in. The output is in a high impedance state until \overline{CAS} is brought low. In a read cycle, or read-write cycle, the output is valid after t_{RAC} from transition of \overline{RAS} when t_{RCD} (max) is satisfied, or after t_{CAC} from transition of \overline{CAS} when the transition occurs after t_{RCD} (max.) Data remain valid until \overline{CAS} is returned to a high level. In a write cycle, the identical sequence occurs, but data is not valid.

Fast Read-While-Write cycle

The MB 81257 has a fast read while write cycle which is achieved by precise control of the three-state output buffer as well as by the simplified timings, described in the previous section. The output buffer is controlled by the sate of WE when CAS goes low. When WE is low during CAS transition to low, the MB 81257 goes into the early write mode in which the output floats and the common I/O bus can be used on the system level. Whereas, when WE goes low after t_{CWD} following CAS transition to low, the MB 81257 goes into the delayed write mode. The output then contains the data from the cell selected and the data from DIN is written into the cell selected. Therefore, a very fast read write cycle is possible with the MB 81257.

Nibble Mode:

Nibble mode allows high speed serial read, write or read-modify-write access of 2, 3 or 4 bits of data. The bits of data that may be accessed during nibble mode are determined by the 8 row addresses and the 8 column addresses. The 2 bits of addresses (CA_B, RA_B) are

used to select 1 of the 4 nibble bits for initial access. After the first bit is accessed by normal mode, the remaining nibble bits may be accessed by toggling \overline{CAS} high then low while \overline{RAS} remains low. Toggling \overline{CAS} causes $\overline{RA_8}$ and CA_8 to be incremented internally while all other address bits are held constant and makes the next nibble bit available for access. (See Table 1).

If more than 4 bits are accessed during nibble mode, the address sequence will begin to repeat. If any bit is written during nibble mode, the new data will be read on any subsequent access. If the write operation is executed again on subsequent access, the new data will be written into the selected cell location.

In nibble mode, the three-state control of the $D_{\rm OUT}$ pin is determined by the first normal access cycle.

The data output is controlled only by the WE state referenced at the CAS negative transition of the normal cycle (first nibble bit). That is, when twcs> twcs (min) is met, the data output will remain high impedance state throughout the succeeding nibble cycle regardless of the \overline{WE} state. Whereas, when t_{CWD} > town (min) is met, the data output will contain data from the cell selected during the succeeding nibble cycle regardless of the WE state. The write operation is done during the period in which the \overline{WE} and \overline{CAS} clocks are low. Therefore, the write operation can be performed bit by bit during each nibble operation regardless of timing conditions of WE (twcs and tcwp) during the normal cycle (first nibble bit). See Fig. 2.

Refresh:

Refresh of the dynamic memory cells is accomplished by performing a memory cycle at each of the 256 row-addresses (A_0 to A_7) at least every 4 ms. The MB 81257 offers the following 3 types of refresh.

RAS-only Refresh;

The \overline{RAS} only refresh aboids any output during refresh because the output buffer is in the high impedance state unless \overline{CAS} is brought low. Strobing each

of 256 row-addresses (A_0 to A_7) with RAS will cause all bits in each row to be refreshed. Further RAS-only refresh results in a substantial reduction in power dissipation. During RAS-only refresh cycle, either V_{1H} or V_{1L} is permitted to A_8 .

CAS-before-RAS Refresh;

CAS before RAS refreshing available on the MB 81257 offers an alternate refresh method. If CAS is held low for the specified period (t_{FCS}) before RAS goes to low, on-chip refresh control clock generators and the refresh address counter are enabled, and an internal refresh operation takes place. After the refresh address counter is automatically incremented in preparation for the next CAS before RAS refresh operation.

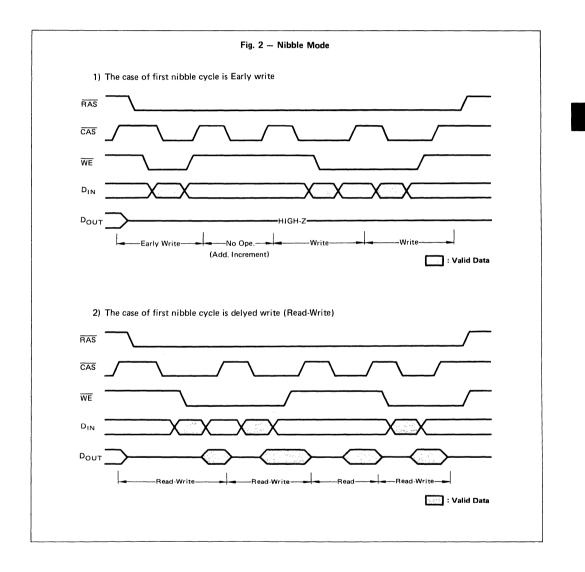
Hidden Refresh;

A hidden refresh cycle may takes place while maintaining latest valid data at the output by extending the CAS active time. For the MB 81257, a hidden refresh cycle is CAS-before-RAS refresh. The internal refresh address counters provide the refresh addresses, as in a normal CAS-before-RAS refresh cycle.

CAS-before-RAS Refresh Counter Test Cycle:

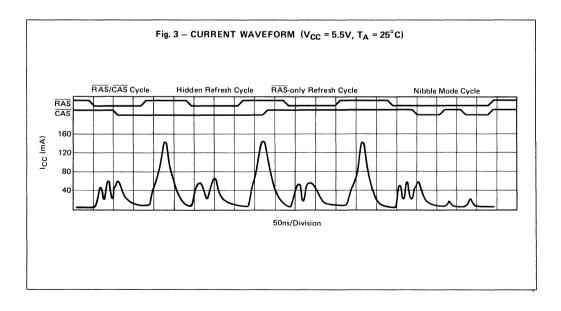
A special timing sequence using \overline{CAS} before- \overline{RAS} counter test cycle provides a convenient method of verifying the functionality of \overline{CAS} -before- \overline{RAS} refresh activated circuitry. After the \overline{CAS} -before- \overline{RAS} refresh operation, if \overline{CAS} goes to high and goes to low again while \overline{RAS} is held low, the read and write operation are enabled. This is shown in the \overline{CAS} -before- \overline{RAS} counter test cycle timing diagram. A memory cell address, consisting of a row address (9 bits), to be accessed can be defined as follows:

- *A ROW ADDRESS Bits A_0 to A_7 are defined by the refresh counter. The bit A_8 is set high internally.
- *A COLUMN ADDRESS All the bits A₀ to A₈ are defined by latching levels on A₀ to A₈ at the second falling edge of CAS.


Suggested CAS-before-RAS Counter Test Procedure

The timing, as shown in the \overline{CAS} -before- \overline{RAS} Counter Test Cycle, is used for the following operations:

- 1) Initialize the internal refresh address counter by using eight CAS-before-RAS refresh cycles.
- Throughout the test, use the same columⁿ address, and keep RA8 high.
- Write "low" to all 256 row address on the same column address by using normal early write cycles.
- 4) Read "low" written in step 3) and check, and simultaneously write "high" to the same address by using internal refresh counter test readwrite cycles. This step is repeated 256 times, with the addresses being generated by internal refresh address counter.
- 5) Read "high" written in step 4) and check by using normal read cycle for all 256 locations.
- 6) Complement the test pattern and repeat step 3), 4) and 5).


Table 1 -- NIBBLE MODE ADDRESS SEQUENCE EXAMPLE

SEQUENCE	NIBBLE BIT	RA ₈	ROW ADDRESS	CA ₈	COLUMN ADDRESS	
RAS/CAS (normal mode)	1	0	10101010	0	10101010	input addresses
toggle CAS (nibble mode)	2	1	10101010	0	10101010]	
toggle CAS (nibble mode)	3	0	10101010	1	10101010 >	generated internally
toggle CAS (nibble mode)	4	1	10101010	1	10101010	
toggle CAS (nibble mode)	1	0	10101010	0	10101010)	sequence repeats

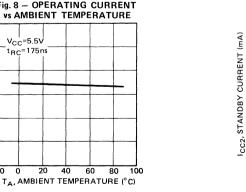

RAS	CAS	WE	D _{IN}	Dout	Read	Write	Refresh	Note
н	н	Don't Care	Don't Care	High-Z	No	No	No	Standby
L	L	н	Don't Care	Valid Data	Yes	No	Yes	Read
L	L	L	Valid Data	High-Z	No	Yes	Yes	Early Write t _{wcs} ≧t _{wcs} (min)
L	L	L	Valid Data	Valid Data	Yes	Yes	Yes	Delayed Write or Read-Write ($t_{CWD} \ge t_{CWD}$ (min))
L	н	Don't Care	Don't Care	High-Z	No	No	Yes	RAS-only Refresh
L	L	Don't Care	Don't Care	Valid Data	No	No	Yes	CAS-before-RAS Refresh Valid data selected at previous Read or Read-Write cycle is held.
н	L	Don't Care	Don't Care	High-Z	No	No	No	CAS disturb.

Table-2 FUNCTIONAL TRUTH TABLE

Fig. 4 - NORMALIZED ACCESS TIME vs SUPPLY VOLTAGE trac, NORMALIZED ACCESS TIME T_A=25°C 1.2 1.1 1.0 0.9 0.8 40 6.0 5.0 V_{CC} SUPPLY VOLTAGE (V) Fig. 6 – OPERATING CURRENT **vs CYCLE RATE** 60 Icc1, OPERATING CURRENT (mA) V_CC=5.5V 50 T_A=25°C 40 30 20 10 ol 4 2 3 5 1/t_{RC}, CYCLE RATE (MHz) Fig. 8 - OPERATING CURRENT vs AMBIENT TEMPERATURE 80 I_{CC1}, OPERATING CURRENT (mA) V_{CC}=5.5V 70 t_{RC}=175ns 60 50 40 30 20 20 -20 0

TYPICAL CHARACTERISTICS CURVES

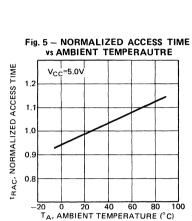


Fig. 7 - OPERATING CURRENT vs SUPPLY VOLTAGE

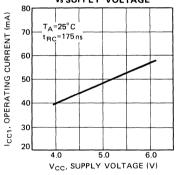
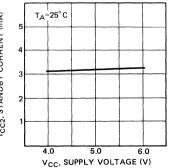
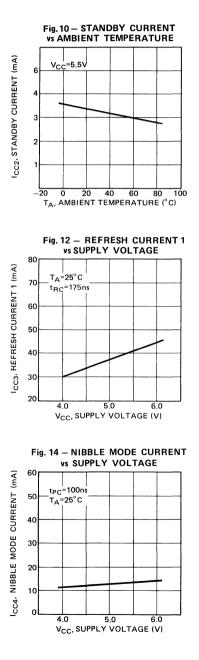
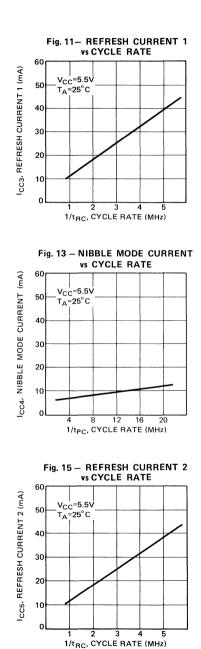





Fig. 9 - STANDBY CURRENT vs SUPPLY VOLTAGE

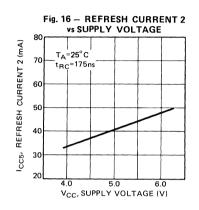


Fig. 18 – ADDRESS AND DATA INPUT VOLTAGE vs AMBIENT TEMPERATURE

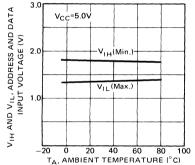
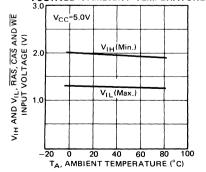
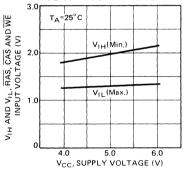
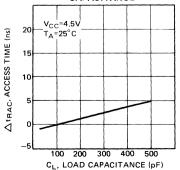
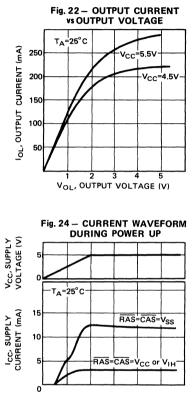
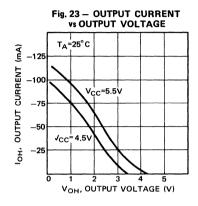



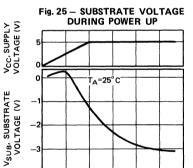
Fig. 20 – RAS, CAS AND WE INPUT VOLTAGE vs AMBIENT TEMPERATURE

VOLTAGE vs SUPPLY VOLTAGE $T_A=25^{\circ}C$ $V_{IH}(Min,)$ $V_{IL}(Max,)$ $V_{IL}(Max,)$ $V_{CC}, SUPPLY VOLTAGE (V)$

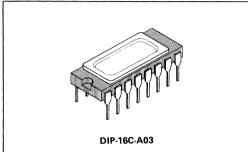
Fig. 17 - ADDRESS AND DATA INPUT

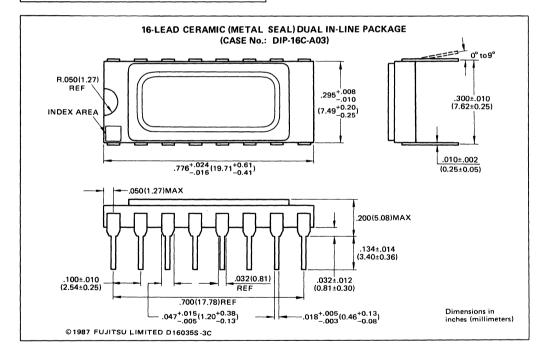
Fig. 19 – \overrightarrow{RAS} , \overrightarrow{CAS} AND \overrightarrow{WE} INPUT VOLTAGE vs SUPPLY VOLTAGE

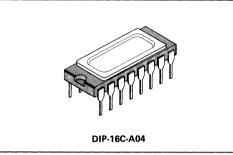

Fig. 21 – ACCESS TIME vs LOAD CAPACITANCE

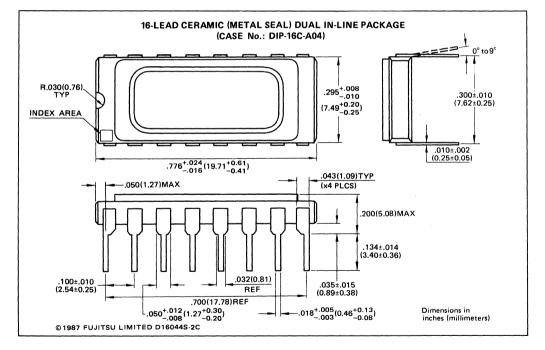
50µs/Division

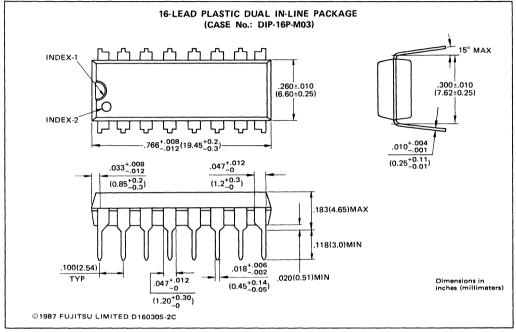




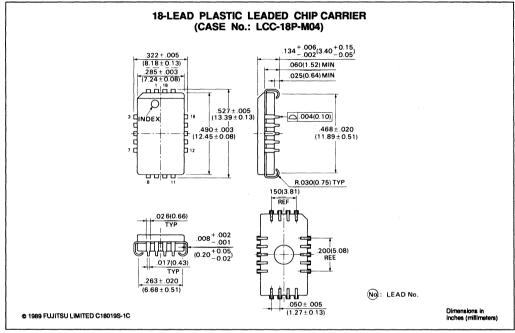
-3

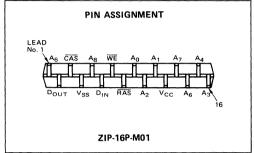

50µs/Division

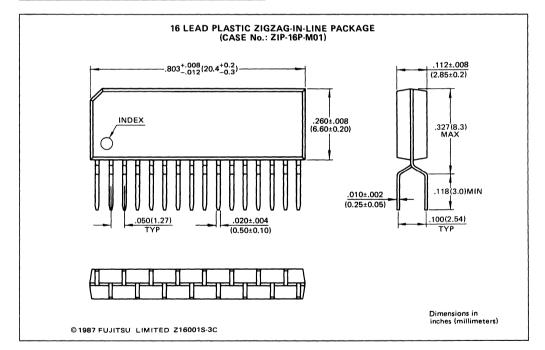

(Suffix: -C)



PACKAGE DIMENSIONS (Suffix: -C)




(Suffix: -P)



(Suffix: -PD)

(Suffix: -PSZ)

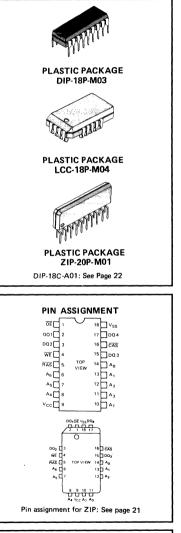
DATA SHEET

MB81464-12/-15 MOS 262,144 BIT DYNAMIC RANDOM ACCESS MEMORY

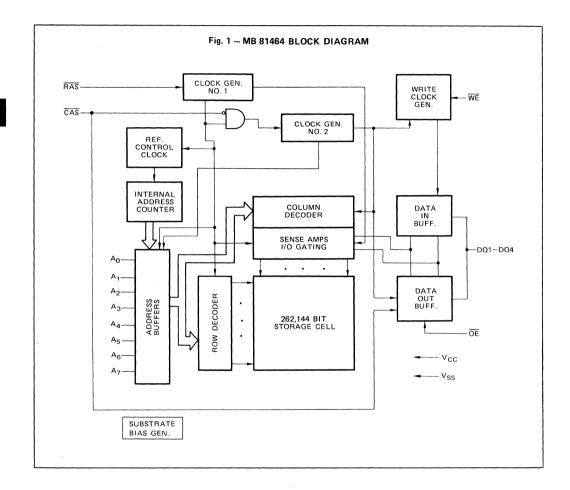
65,536 x 4 Bits Dynamic Random Access Memory

The Fujitsu MB81464 is a fully decoded, dynamic random access memory organized as 65,536 words by 4 bits. The design is optimized for high speed, high performance applications such as mainframe memory, buffer memory, peripheral storage, and system memory for microprocessor units where low power dissipation and a compact layout is required.

The multiplexed row and column address inputs permit the MB81464 to be housed in standard 18-pin DIP and PLCC, or 20-pin ZIP packages. Additionally, the MB81464 offers new functional enhancements that make it more versatile than previous dynamic RAMs. The CAS-before-RAS refresh cycle provides an on-chip refresh capability. The MB81464 also features page mode which allows high speed random access of up to 256 bits within the same row.


The MB81464 uses silicon gate NMOS and Fujitsu's advanced Triple-layer Polysilicon process technology. This process, coupled with single-transistor memory storage cells, permits maximum circuit density and minimal chip size. Dynamic circuitry is used in the design, including the sense amplifiers. Clock timing requirements are non critical, and power supply tolerance is very wide. All inputs are TTL compatible.

- 65,536 x 4 DRAM organization
- Silicon-gate, Triple Poly NMOS, single transistor cell
- Row Access Time (t_{RAC}) 120 ns max. (MB 81464-12) 150 ns max. (MB 81464-15)
- Cycle Time (t_{RC}) 220 ns min. (MB 81464-12) 260 ns min. (MB 81464-15)
- Page Cycle Time (t_{PC}) 120 ns max. (MB 81464-12) 145 ns max. (MB 81464-15)
- Single +5 V Supply, ±10% tolerance
- Low Power 358 mW max. (MB 81464-12) 314 mW max. (MB 81464-15) 27.5 mW max. (standby)


Absolute Maximum Ratings

- On-chip substrate bias generator for high performance
 All inputs/outputs are TTL compatible
- 4 ms/256 refresh cycles
- 4 ms/256 refresh cycles
 Early write or OE controlled write capacity
- CAS-before-RAS, RAS-only, Hidden refresh capability
- Read write capability
- On-chip latches for addresses and DQs
- Compatible with µPD41254, HM50464, and TM4464
- Standard 18-Pin Plastic Packages: DIP (MB81464-XXP) PLCC (MB81464-XXPV) Standard 20-Pin Plastic Package: ZIP (MB81464-XXPSZ) Standard 18-Pin Ceramic Package: DIP (MB81464-XXC) Metal Seal
- Parameter Symbol Value Unit Voltage at any pin relative to VSS VIN, VOUT -1 to +7 v v Voltage of V_{CC} supply relative to V_{SS} Vcc -1 to +7 Ceramic Storage Temperature °C TSTG -55 to +150 Plastic -55 to +125 Power Dissipation PD 1.0 w Short Circuit Output Current 50 mΔ
- Note: Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operation sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Copyright C 1990 by FUJITSU LIMITED and Fujitsu Microelectronics, Inc.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

CAPACITANCE $(T_A = 25^{\circ}C)$

Parameter	Symbol	Val	Unit		
ralanetei	Symbol	Тур	Max	Omt	
Input Capacitance A ₀ to A ₇	C _{IN1}	-	7	рF	
Input Capacitanct RAS, CAS, WE, OE	C _{IN2}	-	10	pF	
Data I/O Capacitance (DQ1 to DQ4)	CDQ	-	7	pF	

RECOMMENDED OPERATING CONDITIONS

(Referenced to V_{SS})

Parameter	Symbol		Value	Unit	Operating			
Falanteter	Symbol	Min	Тур	Max	Unit	Temperature		
Supply Voltage	V _{cc}	4.5	5.0	5.5	v			
Supply Voltage	V _{SS}	0	0	0	v			
Input High Voltage, all inputs	V _{IH}	2.4	-	6.5	v	0° C to 70° C		
Input Low Voltage, all inputs except DQ	VIL	-2.0	-	0.8	v			
Input Low Voltage, DQ	VILD.	1.0	-	0.8	٧			

* The device will withstand undershoots to the -2.0 V level with a maximum pulse width of 20 ns at the -1.5 V level.

DC CHARACTERISTICS

(At recommended operating conditions unless otherwise noted.)

			[Value		11-14	
Parameter		Symbol	Min	Тур	Max	Unit	
OPERATING CURRENT* Average Power Supply Current	MB 81464-12	I _{cc1}			65	mA	
(RAS, CAS cycling; t _{RC} = min)	MB 81464-15	'CC1			57		
STANDBY CURRENT Power Supply Current (RAS = CAS = V _{IH})		I _{CC2}			5.0	mA	
REFRESH CURRENT 1* Average Power Supply Current	MB 81464-12				55	m۸	
$(\overline{CAS} = V_{IH}, \overline{RAS} \text{ cycling; } t_{RC} = \min)$	MB 81464-15	ССЗ			50	mA	
PAGE MODE CURRENT* Average Power Supply Current	MB 81464-12	I _{CC4}			35	mA	
Average Power Supply Current (RAS = V _{IL} , CAS = cycling; t _{PC} = min)	MB 81464-15	,004			30		
REFRESH CURRENT 2* Average Power Supply Current	MB 81464-12				60	mA	
$(\overline{CAS}-before-\overline{RAS}; t_{RC} = min)$	MB 81464-15	I _{CC5}			55		
	INPUT LEAKAGE CURRENT any input $(0V \le V_{IN} \le 5.5V, 4.5V \le V_{CC} \le 5.5V, V_{SS} = 0V,$ all other pins not under test = 0V)				10	μA	
OUTPUT LEAKAGE CURRENT (Data out is disabled, 0 V \leq V _{OUT} \leq 5.5 V	OUTPUT LEAKAGE CURRENT (Data out is disabled, 0 V \leq V _{OUT} \leq 5.5 V)				10	μA	
OUTPUT LEVEL Output High Voltage (I _{OH} = -5 mA)		V _{он}	2.4			v	
OUTPUT LEVEL Output Low Voltage (L _{OL} = 4.2 mA)		Vol			0.4	v	

* : I_{CC} is dependent on output loading and cycle rates. Specified values are obtained with the output open. I_{CC} is dependent on input low voltage level V_{ILD}, V_{ILD} > -0.5 V.

AC CHARACTERISTICS (At recommended operating conditions unless otherwise noted.) NOTES 1,2,3

(At recommended operating conditions and	At recommended operating conditions unless otherwise noted.) NOTES 1,2,3									
Parameter	Symbol	MB 81	MB 81464-12		MB 81464-15					
Faranieten NOTES	Symbol	Min	Max	Min	Max	Unit				
Time between Refresh	t _{REF}		4		4	ms				
Random Read/Write Cycle Time	t _{RC}	220		260		ns				
Read-Modify-Write Cycle Time	t _{RWC}	305		345		ns				
Page Mode Cycle Time	t _{PC}	120		145		ns				
Page Mode Read-Modify-Write Cycle Time	t _{prwc}	195		225		ns				
Access Time from RAS 46	t _{RAC}		120		150	ns				
Access Time from CAS	t _{CAC}		60		75	ns				
Output Buffer Turn Off Delay	t _{OFF}	0	25	0	30	ns				
Transition Time	t _T	3	50	3	50	ns				
RAS Precharge Time	t _{RP}	90		100		ns				
RAS Pulse Width	t _{RAS}	120	100000	150	100000	ns				
RAS Hold Time	t _{RSH}	60		75		ns				
CAS Precharge Time (Page mode only)	t _{CP}	50		60		ns				
CAS Precharge Time (All cycles except page mode)	t _{cpn}	32		35		ns				
CAS Pulse Width	t _{CAS}	60	100000	75	100000	ns				
CAS Hold Time	t _{csH}	120		150		ns				
RAS to CAS Delay Time 28	t _{RCD}	22	60	25	75	ns				
CAS to RAS Set Up Time	t _{CRS}	10		10		ns				
Row Address Set Up Time	t _{ASR}	0		0		ns				
Row Address Hold Time	t _{RAH}	12		15		ns				
Column Address Set Up Time	tASC	0		0		ns				
Column Address Hold Time	t _{CAH}	20		25		ns				
Read Command Set Up Time	t _{RCS}	0		0		ns				
Read Command Hold Time Referenced to RAS	t _{RRH}	15		20		ns				
Read Command Hold Time Referenced to CAS	t _{RCH}	0		0		ns				
Write Command Set Up Time	twcs	-5		-5		ns				
Write Command Hold Time	t _{wCH}	30		35		ns				
Write Command Pulse Width	t _{WP}	30		35		ns				
Write Command to RAS Lead Time 10	t _{RWL}	40		45		ns				

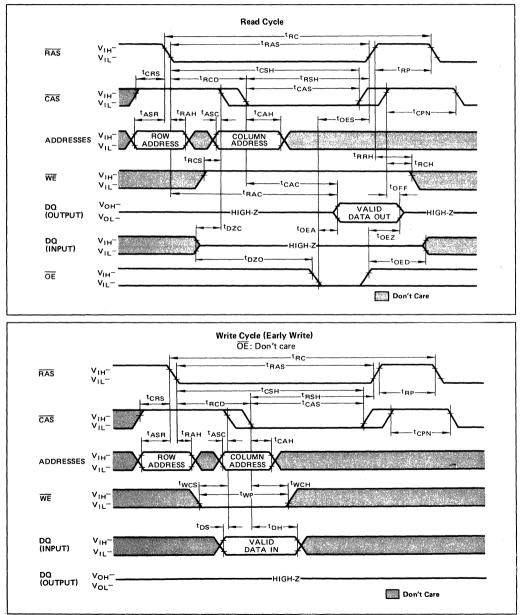
AC CHARACTERISTICS (cont'd)

(At recommended operating conditions unless otherwise noted.)

	Cumhal	MB 81	464-12	MB 81464-15		1
Parameter NOTES	Symbol	Min	Max	Min	Max	Unit
Write Command to CAS Lead Time	t _{cw∟}	40		45		ns
Data In Set Up Time	t _{DS}	0		0		ns
Data In Hold Time	t _{DH}	30		35		ns
Access Time from OE	t _{oea}		30		40	ns
OE to Data In Delay Time	t _{oed}	25		30		ns
Output Buffer Turn Off Delay from $\overline{\text{OE}}$	t _{oez}	0	25	0	30	ns
\overline{OE} Hold Time Referenced to \overline{WE}	t _{oeh}	0		0		ns
CAS Set Up Time Referenced to RAS (CAS-before-RAS refresh)	t _{FCS}	20		20		ns
CAS Hold Time Referenced to RAS (CAS-before-RAS refresh)	t _{FCH}	Ż5		30		ns
RAS Precharge to CAS Hold Time (Refresh cycles)	t _{RPC}	10		10		ns
CAS Precharge Time (CAS-before-RAS cycles)	t _{CPR}	30		30		ns
OE to RAS in active Set Up Time	t _{OES}	0		0		ns
D _{IN} to CAS Delay Time	t _{DZC}	0		0		ns
D _{IN} to $\overline{\text{OE}}$ Delay Time	t _{DZO}	0		0		ns
Refresh Counter Test Cycle Time 12	t _{ятс}	430		505		ns
Refresh Counter Test Cycle RAS Pulse Width	tras	330	10000	395	10000	ns
Refresh Counter Test CAS Precharge Time	t _{срт}	60		70		ns

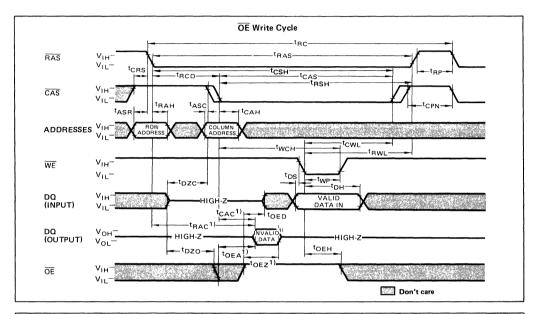
Notes:

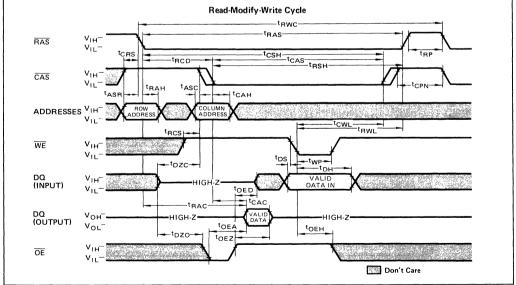
An initial pause of 200µs is required after power-up followed by any 8 RAS cycles before proper device operation is achieved. In case of using internal refresh counter, a minimum of 8 CAS-before RAS initialization cycles instead of 8 RAS cycles are required.

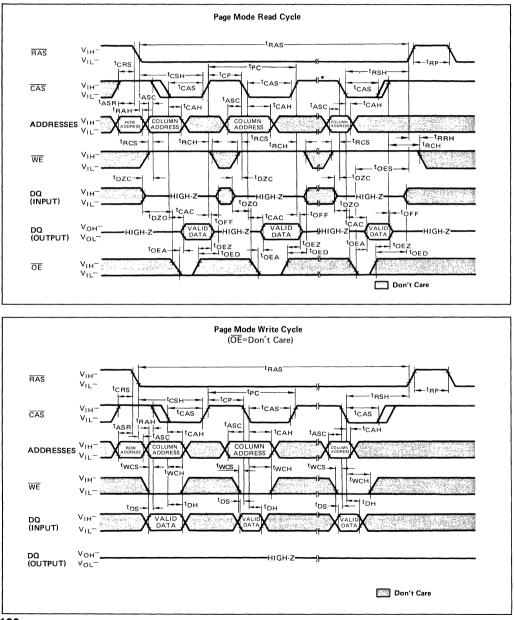

2 AC characteristics assume $t_T = 5$ ns.

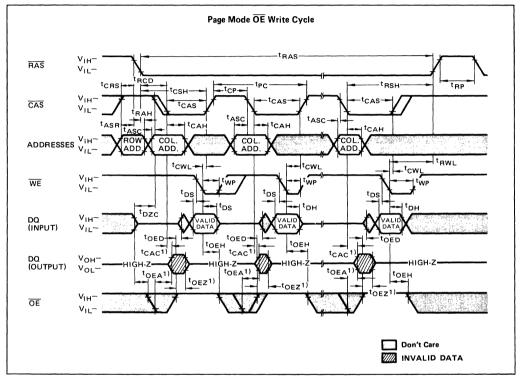
- V_{IH} (min) and V_{IL} (max) are reference levels for measuring timing of input signals. Also, transition times are measured between V_{IH} (min) and V_{IL} (max).
- Assumes that $t_{RCD} \leq t_{RCD}$ (max). If t_{RCD} is greater than the maximum recommended value shown in this table, t_{RAC} will be increase by the amount that t_{RCD} exceeds the value shown.
- **5** Assumes that $t_{RCD} \ge t_{RCD}$ (max).

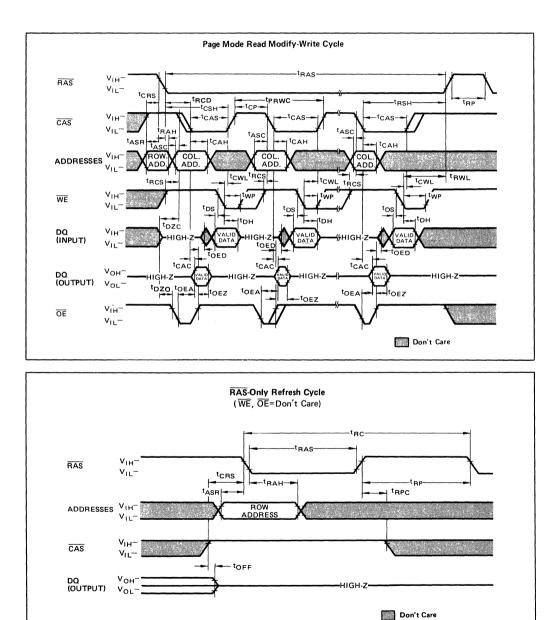
- 6 Measured with a load equivalent to 2 TTL loads and 100 pF.
- 7 Operation within the t_{RCD} (max) limit insures that t_{RAC} (max) can be met. t_{RCD} (max) is specified as a reference point only; if t_{RCD} is greater than the specified t_{RCD} (max) limit, then access time is controlled exclusively by t_{CAC} .

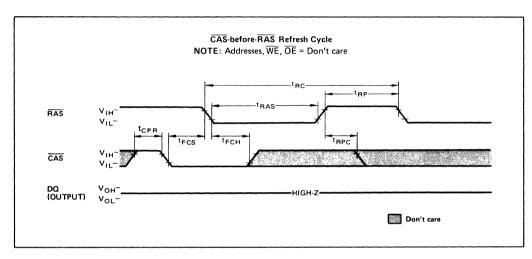

8 t_{RCD} (min) = t_{RAH} (min) + $2t_T$ (t_T = 5 ns) + t_{ASC} (min) 9 Either t_{RRH} or t_{RCH} must be satisfied for a read cycle.

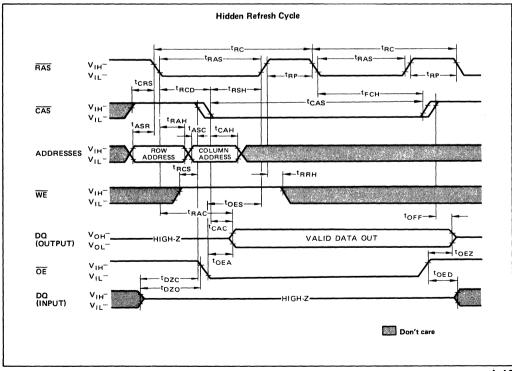

- 10 t_{WCS} is not restrictive operating parameter. It is included in the data sheet as electrical characteristics only. Even if $t_{WCS} \leq t_{WCS}(min)$, the write cycle can be excuted by satisfying t_{RWL} or t_{CWL} specification.
- Either t_{DZC} or t_{DRO} must be satisfied for all cycles.
- 12 Refresh Counter Test Cycle only.

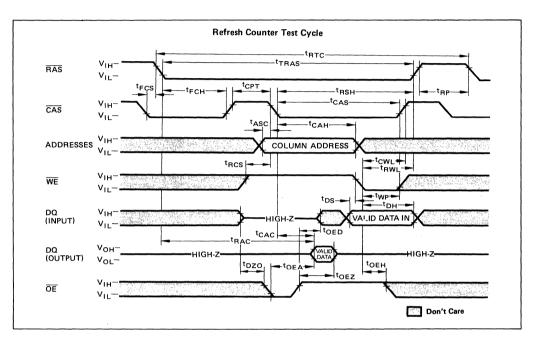

ĺ


1-98


Note: 1) When \overline{OE} is kept high through a cycle, the DQ pins are kept high-Z state.




Note: 1) When \overline{OE} is kept high through a cycle, the DQ pins are kept high-Z state.


MB81464-12 MB81464-15

1-102

DESCRIPTION

Address Inputs:

A total of sixteen binary input address bits are required to decode parallel 4 bits of 262,144 storage cell locations within the MB 81464.

Eight row-address bits are established on the input pins (Ao through A7) and latched with the Row Address Strobe (RAS). The eight column-address bits are established on the input pins (An through A7) and latched with the Column Address Strobe (CAS).

The row and column address inputs must be stable on or before the falling edge of RAS and CAS, respectively. CAS is internally inhibited (or "gated") by RAS to permit triggering of CAS as soon as the Row Address Hold Time (t_{RAH}) specification has been satisfied and the address inputs have been changed from row-addresses to columnaddresses.

Write Enable:

The read mode or write mode is selected with the Write Enable (WE) input. A high on WE selects read mode and low selects write mode. The data inputs are disabled when the read mode is selected. When WE goes low prior to CAS, dataouts will remain in the high-impedance state allowing a write cycle.

Data Pins:

Data Inputs;

Data are written during a write or readmodify-write cycle. The later falling edge of CAS or WE strobes data into the on-chip data latches. In an early-write cycle, WE is brought low prior to CAS and the data is strobed by CAS with setup and hold times referenced to \overline{CAS} . In a read-modify-write cycle, thus the data will be strobed by WE with set-up and hold times referenced to \overline{WE} .

In a read-modify-write cycle, OE must

be low after tDZO to change the data pins from input mode to output mode and then OE must be changed to low before tore to return the data pins to input mode. In an early write cycle, data pins are in input mode regardless of the status of \overline{OE} .

Data Outputs;

The three-state output buffers provide direct TTL compatibility with a fan out of two standard TTL loads. Data-out are the same polarity as data-in. The outputs are in the high-impedance state until CAS is brought low. In a read cycle, the outputs go active after the access time interval t_{RAC} and t_{OEA} are satisfied. The outputs become valid after the access time has elapsed and remain valid while CAS and OE are low. In a read operation, either OE or CAS returning high brings the outputs into the high impedance state.

Output Enable:

The \overline{OE} controls the impedance of the output buffers. In the high state on \overline{OE} , the output buffers are high impedance state. In the low state on \overline{OE} , the output buffers are low impedance state. But in early write cycle, the output buffers are in high impedance state even if \overline{OE} is low. In the page mode read cycle, \overline{OE} can be allowed low through the cycle. In the page mode early write cycle, \overline{OE} can be allowed high throughout the cycle. In the page mode read-modify-write or delayed write cycle, \overline{OE} must be changed from low to high with toren.

Page Mode:

Page Mode operation permits strobing the row-address into the MB 81464 while maintaining \overline{RAS} at a low throughout all successive memory operations in which the row-address doesn't change. Thus the power dissipated by the falling edge of \overline{RAS} is saved. Further, access and cycle times are decreased because the time normally required to strobe a new row-address is eliminated.

Refresh;

Refresh of the dynamic memory cells is accomplished by performing a memory cycle at each of the 256 row-addresses $(A_0 \text{ through } A_7)$ at least every four milliseconds.

The MB 81464 offeres the following three types of refresh.

RAS-Only Refresh:

 \overline{RAS} -only refresh avoids any output during refresh because the output buffuers are in the high impedance state unless \overline{CAS} is brought low. Strobing each of 256 row-addresses with \overline{RAS} will cause all bits in each row to be refreshed.

Further \overline{RAS} -only refresh results in a substantial reduction in power dissipation.

CAS-before-RAS Refresh;

 \overline{CAS} -before- \overline{RAS} refreshing available on the MB 81464 offers an alternate refresh method. If \overline{CAS} is held low for the specified period (t_{FCS}) before \overline{RAS} goes to low, on chip refresh control clock generators and the refresh address counter are enabled, and a internal refresh operation takes place.

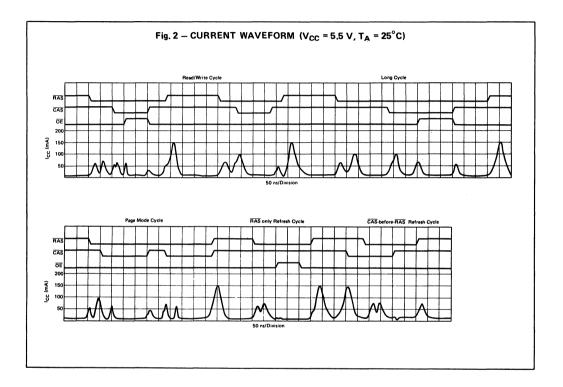
After the refresh operation is performed, the refresh address counter is automatically incremented in preparation for the next CAS-before-RAS refresh operation.

Hidden Refresh:

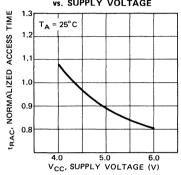
Hidden refresh cycle may take place while maintaining latest valid data at the output by extending \overline{CAS} active time.

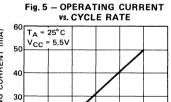
In MB 81464, hidden refresh means \overline{CAS} -before- \overline{RAS} refresh and the internal refresh addresses from the counter are used to refresh addresses i.e., it doesn't need to apply refresh addresses, because \overline{CAS} is always low when \overline{RAS} goes to low in the cycle.

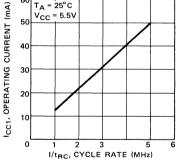
CAS-before-RAS Refresh Counter Test Cycle:


A special timing sequence using CASbefore-RAS counter test cycle provides a convenient method of verifying the functionality of CAS-before-RAS refresh activated circuitry. After the CAS-before-RAS refresh operation, if \overline{CAS} goes to high and goes to low again while \overline{RAS} is held low, the read and write operation are enabled. This is shown in the \overline{CAS} -before- \overline{RAS} counter test cycle timing diagram. A memory cell address, consisting of a row address (9 bits) and a column address (9 bits), to be accessed can be defined as follows:

- *A ROW ADDRESS All bits are defined by the refresh counter.
- *A COLUMN ADDRESS All the bits A₀ to A₇ are defined by latching levels on A₀ to A₇ at the second falling edge of CAS.


Suggested CAS-before-RAS Counter Test Procedure


The timing, as shown in the \overline{CAS} -before-RAS Counter Test Cycle, is used for the following operations:


- 1) Initialize the internal refresh address counter by using eight CAS-before-RAS refresh cycles.
- 2) Throughout the test, use the same column address.
- Write "low" to all 256 row address on the same column address by using normal early write cycles.
- 4) Read "low" written in step 3) and check, and simultaneously write "high" to the same address by using internal refresh counter test cycles. This step is repeated 256 times, with the addresses being generated by internal refresh address counter.
- 5) Read "high" written in step 4) and check by using normal read cycle for all 256 locations.
- 6) Complement the test pattern and repeat step 3), 4) and 5).

TYPICAL CHARACTERISTICS CURVES Fig. 3 - NORMALIZED ACCESS TIME vs. SUPPLY VOLTAGE

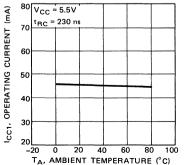


Fig. 4 - NORMALIZED ACCESS TIME vs. AMBIENT TEMPERATURE

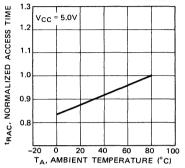


Fig. 6 - OPERATING CURRENT vs. SUPPLY VOLTAGE

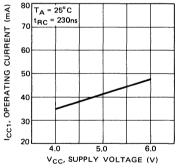
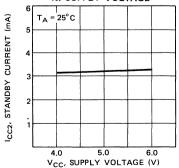
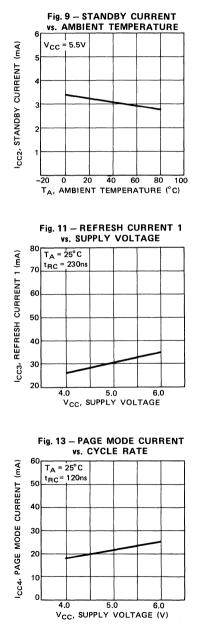
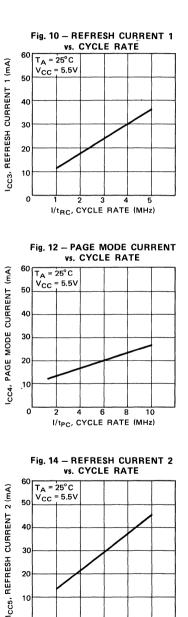





Fig. 8 -- STANDBY CURRENT vs. SUPPLY VOLTAGE

3 4 5

I/tRC, CYCLE RATE (MHz)

2

0

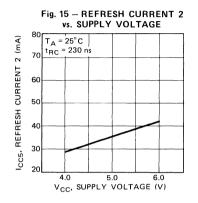


Fig. 17 – ADDRESS AND DATA INPUT VOLTAGE vs. AMBIENT TEMPERATURE

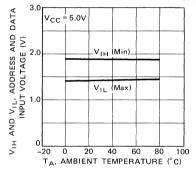


Fig. 19 – RAS, CAS, WE AND OE INPUT VOLTAGE vs. AMBIENT TEMPERATURE

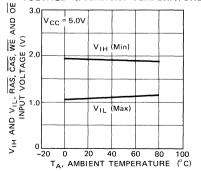


Fig. 16 – ADDRESS AND DATA INPUT VOLTAGE vs. SUPPLY VOLTAGE

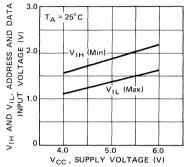


Fig. 18 – RAS, CAS, WE AND OE INPUT VOLTAGE vs. SUPPLY VOLTAGE

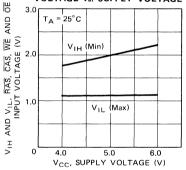
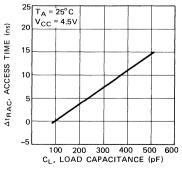
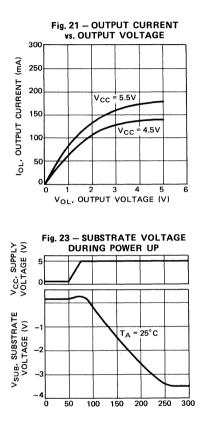
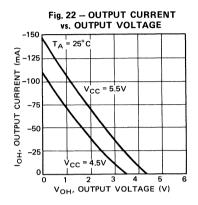
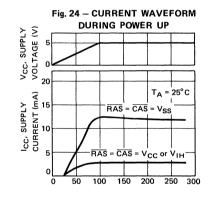
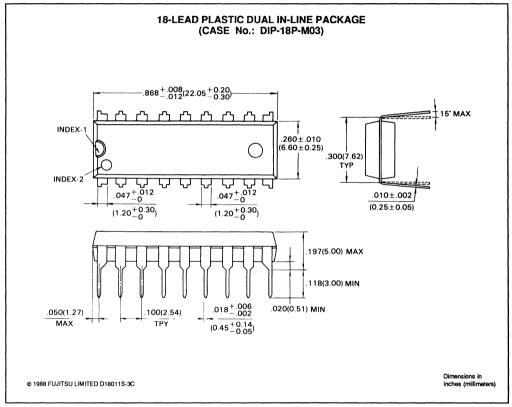






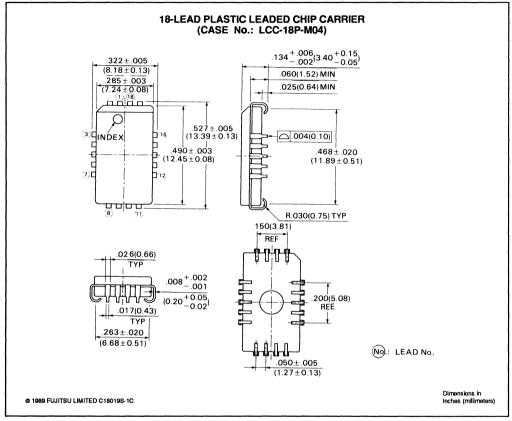
Fig. 20 – ACCESS TIME vs. LOAD CAPACITANCE



1-110

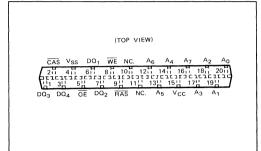
PACKAGE DIMENSIONS

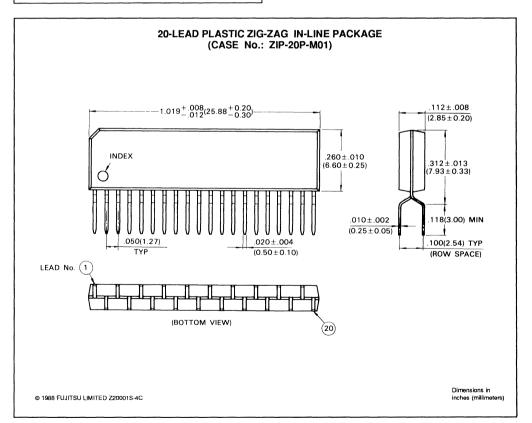
(Suffix: -P)

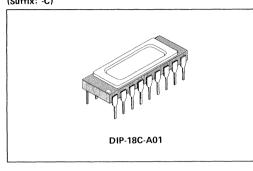


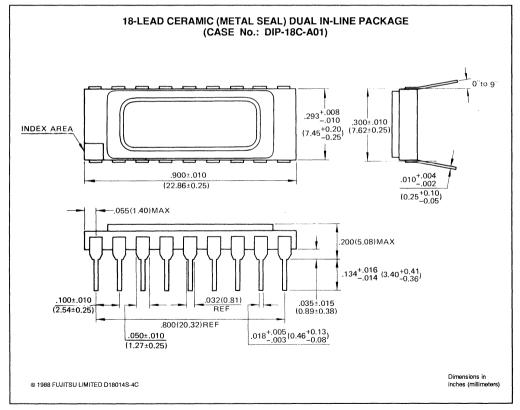
1

1-111


PACKAGE DIMENSIONS


(Suffix: -PD)


PACKAGE DIMENSIONS


(Suffix: -PSZ)

PACKAGE DIMENSIONS (Suffix: -C)

Maximum Access Package Page Device Time (ns) Capacity Options 2-3 MB81C1000-70 1048576 bits 18-pin Plastic DIP 70 80 (1048576 x 1) 18-pin Ceramic DIP --80 -10 100 20-pin Plastic ZIP -12 120 26-pin Plastic SOJ 70 2-25 MB81C1000-70L 1048576 bits 18-pin Plastic DIP -80L 80 (1048576 x 1) 18-pin Ceramic DIP -10L 100 20-pin Plastic ZIP -12L 120 Ceramic SOJ 26-pin 2-47 MB81C1000A-60 60 1048576 bits 18-pin Plastic DIP 70 (1048576 x 1) DIP -70 18-pin Ceramic _80 Plastic ZIP 80 20-pin -10100 24-pin Plastic FPT 26-pin Plastic SOJ 2-71 MB80C1000A-70L 70 1048576 bits 18-pin Plastic DIP -80L 80 (1048576 x 1) 18-pin Ceramic DIP -10L 100 Plastic ZIP 20-pin Plastic FPT 24-pin Plastic 26-pin SOJ 2-95 MB81C1001-70 70 1048576 bits 18-pin Plastic DIP -80 80 (1048576 x 1) 18-pin Ceramic DIP -10 100 20-pin Plastic ZIP -12 120 26-pin Plastic SOJ 2-117 MB81C1001-70L 70 1048576 bits 18-pin Plastic DIP -80L 80 (1048576 x 1) 18-pin Ceramic DIP Plastic -10L 100 20-pin ZIP 120 -12L Plastic 26-pin SOJ 2-139 MB81C1001A-60 1048576 bits Plastic 60 18-pin DIP -70 70 (1048576 x 1) 18-pin Ceramic DIP -80 80 20-pin Plastic ZIP 100 24-pin FPT -10 Plastic 26-pin Plastic SOJ 2-163 MB80C1001A-70L 70 1048576 bits 18-pin Plastic DIP -801 80 Ceramic DIP (1048576 x 1) 18-pin -10L 100 ZIP 20-pin Plastic 24-pin Plastic FPT 26-pin Plastic SOJ 2-187 MB81C4256-70 70 1048576 bits 20-pin Plastic DIP, ZIP 20-pin -80 80 (262144 x 4) Ceramic DIP -10 100 26-pin Plastic SOJ -12 120 2-211 MB81C4256-70L 1048576 bits DIP, ZIP 70 20-pin Plastic -80L 80 (262144 x 4) 20-pin Ceramic DIP -10L 100 26-pin Plastic SOJ -12L 120

CMOS DRAMs — At a Glance

CMOS DRAMs — At a Glance (Continued)

Page	Device	Maximum Access Time (ns)	Capacity	Package Options	
2-235	MB81C4256A-60 -70 -80 -10	60 70 80 100	1048576 bits (262144 x 4)	20-pin Plas 20-pin Cera 24-pin Plas 26-pin Plas	amic DIP tic FPT
2–261	MB81C4256A70L 80L 10L	70 80 100	1048576 bits (262144 x 4)	20-pin Plas 20-pin Cera 24-pin Plas 26-pin Plas	amic DIP tic FPT
2-287	MB814100-80 10 12	80 100 120	4194304 bits (4194304 x 1)	18-pin Plas 20-pin Plas 26-pin Plas	tic ZIP
2-307	MB814100-80L -10L -12L	80 100 120	4194304 bits (4194304 x 1)	18-pin Plas 20-pin Plas 26-pin Plas	tic ZIP
2–309	MB814101-80 -10 -12	80 100 120	4194304 bits (4194304 x 1)	18-pin Plas 20-pin Plas 26-pin Plas	tic ZIP
2329	MB814101-80L -10L -12L	80 100 120	4194304 bits (4194304 x 1)	18-pin Plas 20-pin Plas 26-pin Plas	tic ZIP
2-331	MB814400-80 -10 -12	80 100 120	4194304 bits (1048576 x 4)	20-pin Plas 26-pin Plas	
2-353	MB814400-80L 10L 12L	80 100 120	4194304 bits (1048576 x 4)	20-pin Plas 26-pin Plas	

FUĴITSU

= DATA SHEET =

MB81C1000-70/-80/-10/-12

CMOS 1,048,576 BIT FAST PAGE MODE DYNAMIC RAM

CMOS 1M x 1 Bit Fast Page Mode DRAM

The Fujitsu MB81C1000 is a CMOS, fully decoded dynamic RAM organized as 1,048,576 words x 1 bit. The MB81C1000 has been designed for mainframe memories, buffer memories, and peripheral storage applications requiring high speed, low power dissipation, or compact layout.

Fujitsu's advanced three-dimensional stacked capacitor cell technology gives the MB81C1000 high α -ray soft error immunity. CMOS technology is used in the peripheral circuits to provide low power dissipation and high speed operation.

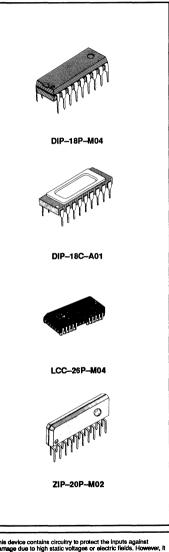
This specification applies to the BC die revision that was developed to realize faster access time. Faster speed versions (70 and 80 ns) are available on this chip.

Features

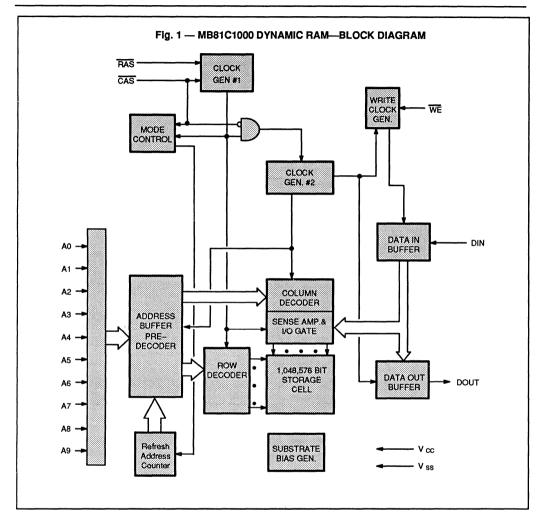
Parameter	MB81C1000 -70	MB81C1000 -80	MB81C1000 -10	MB81C1000 -12				
RAS Access Time	70 ns max.	80 ns max.	100 ns max.	120 ns max.				
Random Cycle Time	140 ns min.	155 ns min.	180 ns min.	210 ns min.				
Address Access Time	43 ns max.	45 ns max.	50 ns max.	60 ns max.				
CAS Access Time	25 ns max.	25 ns max.	25 ns max.	35 ns max.				
Fast Page Mode Cycle Time	53 ns min.	55 ns min.	60 ns min.	70 ns min.				
Low Power Dissipation Operating Current 	413 mW max.	385 mW max.	330 mW max.	275 mW max.				
 Standby Current 	11 mW max. (TTL level)/5.5 mW max. (CMOS level)							

 1,048,576 words x 1 bit organization

compatible

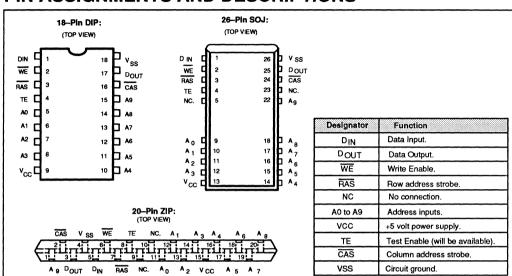

- RAS only, CAS-before-RAS, or Hidden Refresh
- Silicon gate, CMOS, 3D–Stacked Capacitor Cell
 All input and output are TTL
- Fast Page Mode, Read-Modify-Write capability
 - On-chip substrate bias generator for high performance
- 512 refresh cycles every 8.2 ms
- Common I/O capability by using early write

Absolute Maximum Ratings (See Note)


Parameter		Symbol	Value	Unit
Voltage at any pin relative to V	ss	VIN, VOUT	-1 to +7	v
Voltage of V _{CC} supply relative	to V _{SS}	Vcc	-1 to +7	v
Power Dissipation		PD	1.0	w
Short Circuit Output Current		-	50	mA
Storage Temperature	Ceramic	T _{STG}	-55 to +150	°C
	Plastic		-55 to +125	

Note: Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operation sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Copyright © 1990 by FUJITSU LIMITED and Fujitsu Microelectronics, Inc.



This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

CAPACITANCE (T_A = 25°C, f = 1MHz)

Parameter	Symbol	Тур	Max	Unit
Input Capacitance, A0 to A9, D _{IN}	C _{IN1}	·	5	рF
Input Capacitance, RAS, CAS, WE	C _{IN2}	_	5	pF
Output Capacitance, D OUT	Cout	_	5	pF

PIN ASSIGNMENTS AND DESCRIPTIONS

RECOMMENDED OPERATING CONDITIONS

Parameter	Notes	Symbol	Min	Тур	Max	Unit	Amblent Operating Temp
Supply Voltage	2	V _{cc}	4.5	5.0	5.5	v	
	Ш	V _{SS}	0	0	0	v	
Input High Voltage, all inputs	1	VIH	2.4	_	6.5	v	0 °C to +70 °C
Input Low Voltage, all inputs	1	VIL	-2.0	-	0.8	v	

FUNCTIONAL OPERATION

ADDRESS INPUTS

Twenty input bits are required to decode any one of 1,048,576 cell addresses in the memory matrix. Since only ten address bits are available, the column and row inputs are separately strobed by CAS and RAS as shown in Figure 1. First, nine row address bits are input on pins AO-through-A9 and latched with the row address strobe (FAS) then, ten column address bits are input and latched with the column address strobe (FAS). Both row and column addresses must be stable on or before the falling edge of CAS and RAS, respectively. The address latches are of the flow-through type; thus, address information appearing after t_{RA} (min)+ to is automatically treated as the column address.

WRITE ENABLE

The read or write mode is determined by the logic state of \overline{WE} . When \overline{WE} is active Low, a write cycle is initiated; when \overline{WE} is High, a read cycle is selected. During the read mode, input data is ignored.

DATA INPUT

Data is written into the MB81C1000 during write or read-modify-write cycle. The input data is strobed and latched by the later falling edge of CAS or WE. In an early write cycle, data input is strobed by CAS, and set up and hold times are referenced to CAS. In a delayed write or read-modify-write cycle, WE is set low after CAS. Thus, data input is strobed by WE, and set up and hold times are referenced to WE.

DATA OUTPUT

The three-state buffers are TTL compatible with a fanout of two TTL loads. Polarity of the output data is identical to that of the input; the output buffers remain in the high-impedance state until the column address strobe goes Low. When a read or read-modify-write cycle is executed, valid outputs are obtained under the following conditions:

- tRAC : from the falling edge of RAS when tRCD (max) is satisfied.
- tCAC : from the falling edge of CAS when tRCD is greater than tRCD, tRAD (max).
- tAA : from column address input when tRAD is greater then tRAD (max).

DC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted)

Notes 3

_							
Parame	ter Notes	Symbol	Conditions	Min	Тур	Max	Unit
Output high voltage		V _{OH}	IOH = -5 mA	2.4	-	_	v
Output low voltage		V _{OL}	IOL = 4.2 mA	_	_	0.4	
Input leakage current (any input)		۱ _{((L)}	0V ≤ VIN ≤ 5.5V; 4.5V ≤ VCC ≤ 5.5V; VSS=0V;All other pins not under test ≠0V	-10	_	10	μA
Output leakage current		I O(L)	$0V \leq VOUT \leq 5.5V;$ Data out disabled	-10	_	10	
	MB81C1000-70					75	
Operating current (Average power	MB81C1000-80	ICC1	RAS & CAS cycling;	-	-	70	mA
supply current) 2	MB81C1000-10		t _{RC} = min			60	
	MB81C1000-12					50	
Standby current	TTL level	1002	RAS=CAS=VIH			2.0	mA
(Power supply current)	CMOS level	1002	RAS=CAS ≥ VCC-0.2V	_	_	1.0	
	MB81C1000-70			_		70	
Refresh current	MB81C1000-80		CAS=VIH, RAS			65	
#1 (Average power supply current) 2	MB81C1000-10	1003	cycling; t _{RC} = min		_	55	mA
	MB81C1000-12					45	
	MB81C1000-70					47	
Fast Page Mode	MB81C1000-80	ICC₄	$\overline{RAS} = VIL, \overline{CAS}$			45	mA
current 2	MB81C1000-10	1004	cycling; t _{PC} = min	_		40	iiiA
	MB81C1000-12					33	
Defeath summer	MB81C1000-70		RAS cycling :			70	
Refresh current #2 (Average power	MB81C1000-80	ICC 5	CAS-before-RAS;	-	-	65	mA
supply current) 2	MB81C1000-10	.005	t _{RC} = min			55	
	MB81C1000-12					45	

AC CHARACTERISTICS

(At recommended operating conditions unless otherwise noted.) Notes 3, 4, 5

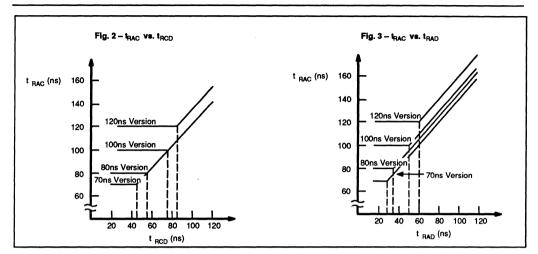
				1000-70		1000-80		1000-10	MB81C	1000-12	
No.	Parameter Notes	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit
1	Time Between Refresh	t _{REF}	—	8.2	—	8.2	-	8.2	—	8.2	ms
2	Random Read/Write Cycle Time	⁺t _{RC}	140	-	155	—	180		210	-	ns
3	Read-Modify-Write Cycle Time	t _{RWC}	167	—	182	-	210	-	245		ns
4	Access Time from RAS 6,9	t _{RAC}		70	-	80	-	100	—	120	ns
5	Access Time from CAS 7,9	t _{CAC}		25		25		25	-	35	ns
6	Column Address Access Time 8,9	t _{AA}	—	43		45	-	50	—	60	ns
7	Output Hold Time	t _{он}	7		7	_	7	-	7		ns
8	Output Buffer Turn on Delay Time	t _{on}	5	—	5		5	—	5		ns
9	Output Buffer Turn off Delay Time 10	t _{OFF}	—	25	_	25	-	25		25	ns
10	Transition Time	t _T	3	50	3	50	3	50	3	50	ns
11	RAS Precharge Time	t _{RP}	60	—	65	—	70	-	80	-	ns
12	RAS Pulse Width	t _{ras}	70	100000	80	100000	100	100000	120	100000	ns
13	RAS Hold Time	t _{RSH}	25	—	25		25		35	-	ns
14	CAS to RAS Precharge Time	t _{crp}	0	_	0	—	0		0	_	ns
15	RAS to CAS Delay Time 11,12	t _{RĆD}	20	45	22	55	25	75	25	85	ns
16	CAS Pulse Width	t _{CAS}	25		25		25		35		ns
17	CAS Hold Time	t _{CSH}	70		80	_	100		120	-	ns
18	CAS Precharge Time (C-B-R cycle) 17	t _{CPN}	10	-	10	_	10	-	15	-	ns
19	Row Address Set Up Time	t _{ASR}	0		0		0		0		ns
20	Row Address Hold Time	t _{RAH}	-10		12	—	15	-	15	-	ns
21	Column Address Set Up Time	t _{ASC}	0		0		0		0		ns
22	Column Address Hold Time	t _{cah}	15		15		15		20	_	ns
23	RAS to Column Address Delay Time 13	t _{RAD}	15	27	17	35	20	50	20	60	ns
24	Column Address to RAS Lead Time	t _{RAL}	43		45	-	50		60		ns
25	Read Command Set Up Time	t _{RCS}	0	-	0	-	0		0	_	ns
26	Read Command Hold Time 14	t _{RRH}	ο	-	0	—	0	_	0		ns
27	Read Command Hold Time Referenced to CAS	t _{RCH}	0	-	0	—	0	-	o	-	ns
28	Write Command Set Up Time 15	twcs	0		0		0		0		ns
29	Write Command Hold Time	twcн	15		15	—	15	—	20	_	ns
30	WE Pulse Width	t _{WP}	15		15	-	15		20	-	ns
31	Write Command to RAS Lead Time	t _{RWL}	22		22		25		30	-	ns
32	Write Command to CAS Lead Time	t _{cwL}	17	_	17		20	-	25		ns
33	DIN Set Up Time	t _{DS}	0	_	0	_	0	_	0	_	ns
34	DIN Hold Time	t _{DH}	15	_	15	_	15		20	_	ns

AC CHARACTERISTICS (Continued)

(At recommended operating conditions unless otherwise noted.) Notes 3, 4, 5

No.	Parameter	Notes	Symbol	MB81C1000-70		MB81C1000-80		MB81C1000-10		MB81C1000-12		Unit
				Min	Max	Min	Max	Min	Max	Min	Max	Unit
35	RAS to WE Delay Time	15	t _{RWD}	70	-	80	-	100		120	-	ns
36	CAS to WE Delay Time	15	t _{cwD}	25	-	25	_	25	-	35	—	ns
37	Column Address to WE Delay Time	15	t _{AWD}	43	-	45	_	50		60	-	ns
38	RAS Precharge Time to CAS Active Time (Refresh Cycles)		t RPC	0	-	0	—	0	-	0	—	ns
39	CAS Set Up Time for CAS-before - RAS Refresh		t csr	0	—	0	—	0	—	0	—	ns
40	CAS Hold Time for CAS-before - RAS Refresh		t сня	15	—	15	—	15	-	20	—	ns
41	Access Time from CAS (Counter Test Cycle)		t cat		43	—	45		50	—	60	ns
50	Fast Page Mode Read/Write Cycle Time		t PC	53	_	55	—	60	-	70	-	ns
51	Fast Page Mode Read-Modify- Write Cycle Time		t prwc	75	-	77	_	85	-	100	—	ns
52	Access Time from CAS Precharge	9,16	t cpa	-	53	-	55	_	60	_	70	ns
53	Fast Page Mode CAS Precharge Time		t cp	10	_	10	—	10	-	15	—	ns

Notes:

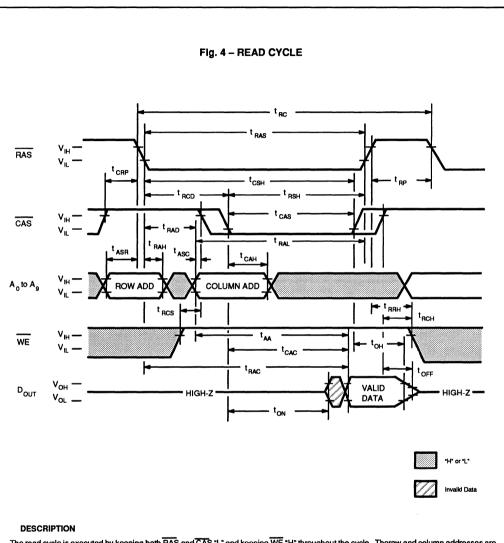

- 1. Referenced to VSS
- Icc depends on the output load conditions and cycle rates; The specified values are obtained with the output open. Icc depends on the number of address change as TAS = VIL and CAS = VIH.

Icc1, Icc2 and Iccs are specified at three time of address change during RAS = VII. and CAS = VII.

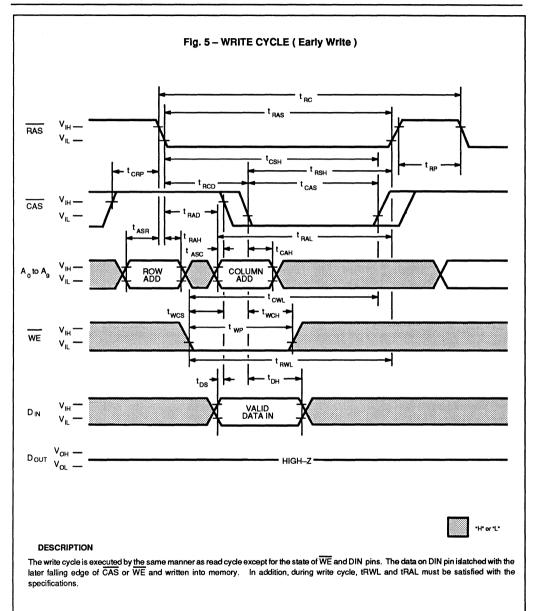
Icc4 is specified at one time of address change during $\overrightarrow{RAS} = VIL$ and $\overrightarrow{CAS} = VIH$.

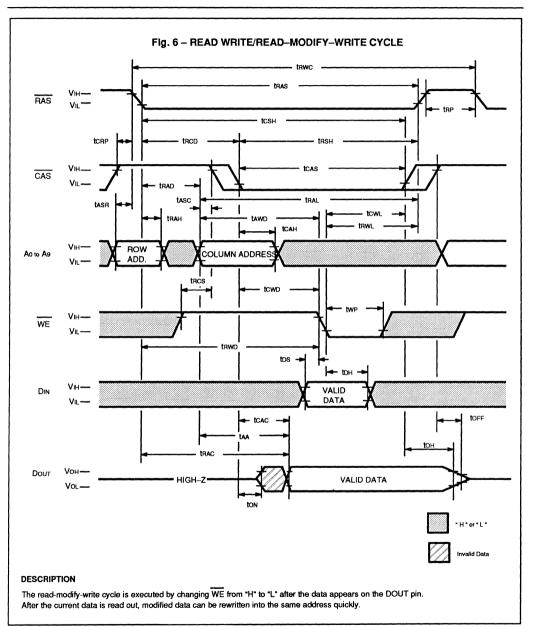
- 3. An Initial pause (HAS = CAS =VIH) of 200µs is required after power-up followed by any eight HAS -only cycles before proper device operation is achieved. In case of using internal refresh counter, a minimum of eight CAS -before-HAS initialization cycles instead of 8 HAS cycles are required.
- 4. AC characteristics assume t_T = 5ns.
- V_{IH} (min) and V_{IL} (max) are reference levels for measuring timing of input signals. Also transition times are measured between V_{IH} (min) and V_{IL} (max).
- 6. Assumes that tRcD≤ tRcD (max), tRAD≤ tRAD (max). If tRcD is greater than the maximum recommended value shown in this table, tRAC will be increased by the amount that tRcD exceeds the value shown. Refer to Fig. 2 and 3.
- If tRCD≥tRCD (max), tRAD≥tRAD (max), and tASC≥tAA -tCAC t T, access time is tCAC.
- 8. If tRAD \geq tRAD (max) and tASC \leq tAA tCAC t_T, access time is tAA .
- 9. Measured with a load equivalent to two TTL loads and 100 pF.
- toFF and toEz is specified that output buffer change to high impedance state.

- 11. Operation within the taco (max) limit ensures that trac (max) can be met. taco (max) is specified as a reference point only; if taco is greater than the specified taco (max) limit, access time is controlled exclusively by taco or tax.
- 12. t_{RCD} (min) = t_{RAH} (min)+ $2t_T$ + t_{ASC} (min).
- 13. Operation within the tRAD (max) limit ensures that tRAC (max) can be met. tRAD (max) is specified as a reference point only; if tRAD is greater than the specified tRAD (max) limit, access time is controlled exclusively by tCAC or tAA.
- 14. Either tRRH or tRCH must be satisfied for a read cycle.
- 15. t wcs, t cwD, t, RwD and tawD are not a restrictive operating parameter. They are included in the data sheet as an electrical characteristic only. If twcs > t wcs (min), the cycle is an early write cycle and Dout pin will maintain high impedance state thoughout the entire cycle. If t cwD > t cwD (min), tRWD > t RWD (min), and t AWD > t AWD (min), the cycle is a read modify—write cycle and data from the selected cell will apper at the Dout pin. If neither of the above conditions is satisfied, the cycle is a delayed write cycle and invalid data will appear the Dout pin , and write operation can be exected by satisfying tRWL , t cwL, and tRAL specifications.
- 16 t_{CPA} is access time from the selection of a new column address (that is caused by changing CAS from "L" to "H"). Therefore, if t_{CP} is long, t_{CPA} is longer than t_{CPA} (max).
- 17. Assumes that CAS -before- RAS refresh, CAS -before-RAS refresh counter test cycle only.



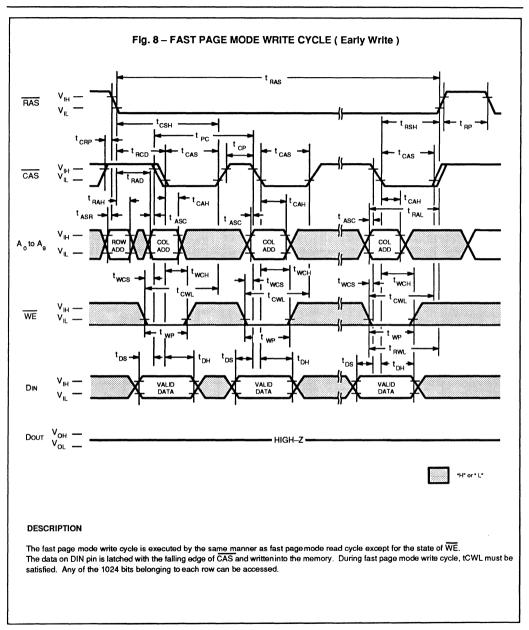
FUNCTIONAL TRUTH TABLE

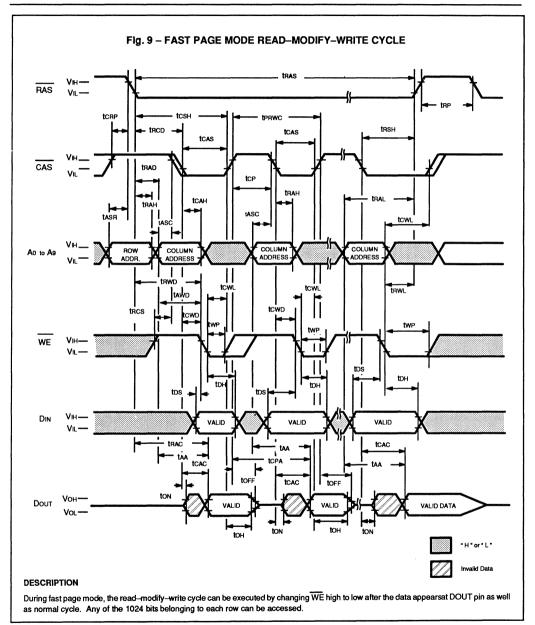

	Clock Input			Address Input		Deta				
Operation Mode	RAS	CAS	WE	Row	Column	Input	Output	Refresh	Note	
Standby	н	н	x	-	—	-	High-Z	—		
Read Cycle	L	L	н	Valid	Valid	-	Valid	*1 Yes	t _{RCS} ≥ t _{RCS} (min)	
Write Cycle (Early Write)	L	L	L	Valid	Valid	Valid	High-Z	Yes ^{*1}	t _{wcs} ≥ t _{wcs} (min)	
Read-Modify-Write Cycle	L	L	H→L	Valid	Valid	X → Valid	Valid	Yes *1	t _{cwD} ≥t _{cwD} (min)	
RAS-only Refresh Cycle	L	н	x	Valid		_	High-Z	Yes		
CAS-before-RAS Refresh Cycle	L	L	x	-			High-Z	Yes	t _{CSR} ≥t _{CSR} (min)	
Hidden Refresh Cycle	H→L	L	x	_	_	-	Valid	Yes	Previous data is kept	

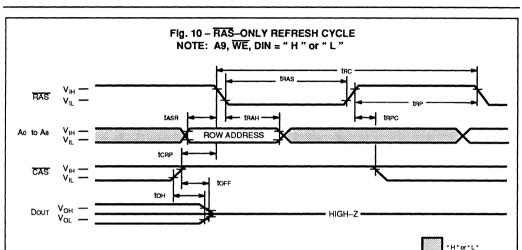

Notes:


X: "H" or "L" *1: It is impossible in Fast Page Mode.

The read cycle is executed by keeping both $\overline{\text{RAS}}$ and $\overline{\text{CAS}}$ "L" and keeping $\overline{\text{WE}}$ "H" throughout the cycle. Therow and column addresses are latched with $\overline{\text{RAS}}$ and $\overline{\text{CAS}}$, respectively. The data output remains valid with $\overline{\text{CAS}}$ "L", i.e., if $\overline{\text{CAS}}$ goes "H", the data becomes invalid after tOH is satisfied. The access time is determined by $\overline{\text{RAS}}$ (IRAC), $\overline{\text{CAS}}$ (tCAC), or Column address input (tAA). If tRCD ($\overline{\text{RAS}}$ to $\overline{\text{CAS}}$ delay time) is greater than the specification, the access time is tAA.

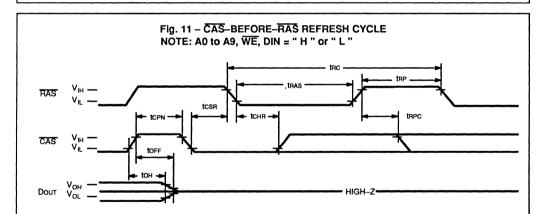




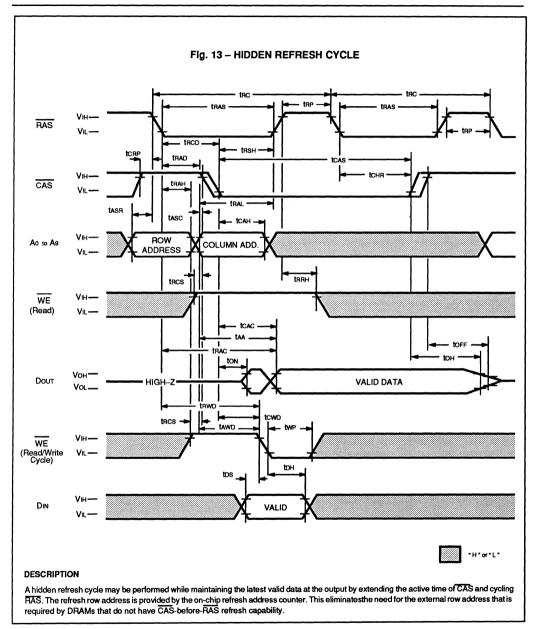

Any of the 1024 bits belonging to each row can be accessed.

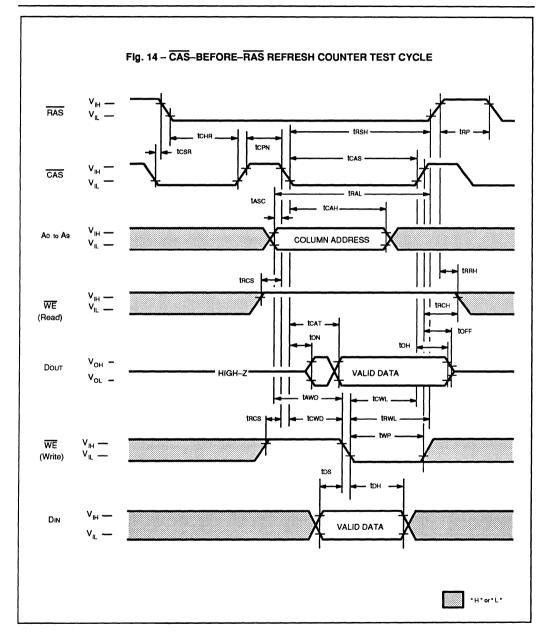
2

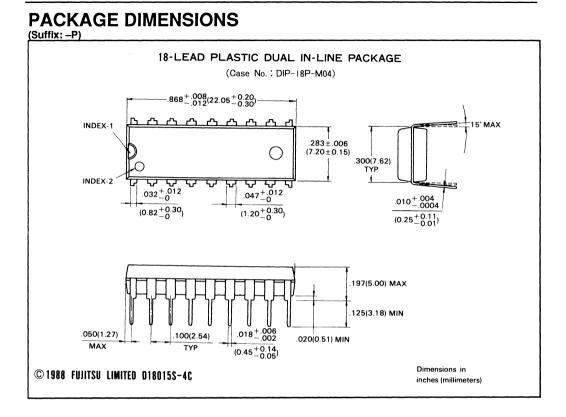
2-14

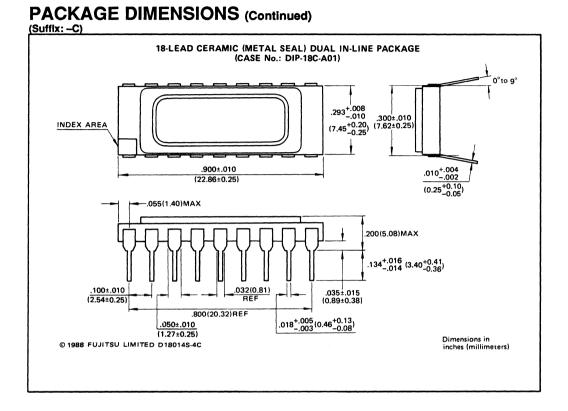


DESCRIPTION

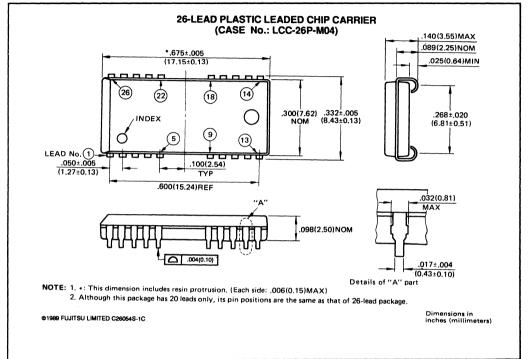

Refresh of RAM memory cells is accomplished by performing a read, a write, or a read-modify-write cycleat each of 512 row addresses every 8.2-milliseconds. Three refresh modes are available: RAS-only refresh, CAS-before-RAS refresh, and hidden refresh.

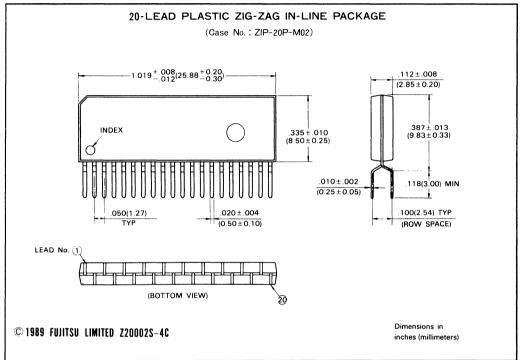

RAS-only refresh is performed by keeping RAS Low and CAS High throughout the cycle; the row address to be refreshed is latched on the falling edge of RAS. During RAS-only refresh, Dout pin is kept in a high-impedance state.




DESCRIPTION

CAS-before-RAS refresh is an on-chip refresh capability that eliminates the need for external refresh addresses. If CAS is held Low for the specified setup time (tcsR) before RAS goes Low, the on-chip refresh control clock generators and refresh address counter are enabled. An internal refresh operation automatically occurs and the refresh address counter is internally incremented in preparation for the next CAS-before-RAS refresh operation.




PACKAGE DIMENSIONS (Continued)

(Suffix: -PJ)

PACKAGE DIMENSIONS (Continued)

(Suffix: -PSZ)

DATA SHEET =

MB81C1000-70L/-80L/-10L/-12L

CMOS 1,048,576 BIT FAST PAGE MODE DYNAMIC RAM

RAS only, CAS-before-RAS, or

Fast Page Mode, Read-Modify-Write

On-chip substrate bias generator for

Hidden Refresh

high performance

capability

CMOS 1M x 1 Bit Fast Page Mode DRAM

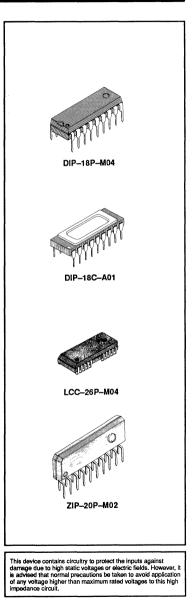
The Fujitsu MB81C1000 is a CMOS, fully decoded dynamic RAM organized as 1,048,576 words x 1 bit. The MB81C1000 has been designed for mainframe memories, buffer memories, peripheral storage and memory systems of battery operated computers requiring very low power dissipation.

Fujitsu's advanced three-dimensional stacked capacitor cell technology gives the MB81C1000 high α -ray soft error immunity and extended refresh time. CMOS technology is used in the peripheral circuits to provide low power dissipation and high speed operation.

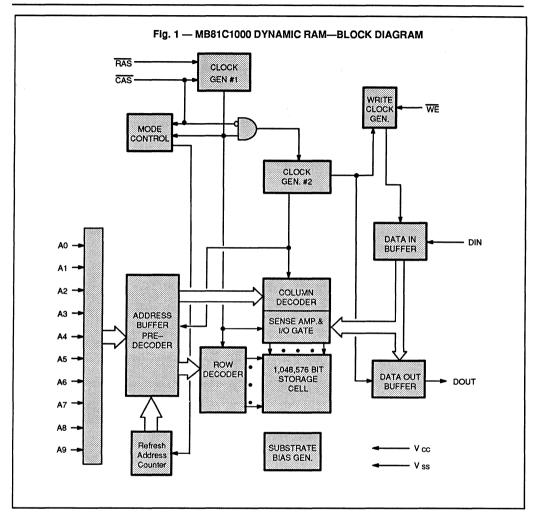
This specification applies to the BC die revision that was developed to realize faster access time. Faster speed versions (70 and 80 ns) are available on this chip.

Features

Parameter	MB81C1000 -70L	MB81C1000 -80L	MB81C1000 -10L	MB81C1000 -12L				
RAS Access Time	70 ns max.	80 ns max.	100 ns max.	120 ns max.				
Random Cycle Time	140 ns min.	155 ns min.	180 ns min.	210 ns min.				
Address Access Time	43 ns max.	45 ns max.	50 ns max.	60 ns max.				
CAS Access Time	25 ns max.	25 ns max.	. 25 ns max.	35 ns max.				
Fast Page Mode Cycle Time	53 ns min.	55 ns min.	60 ns min.	70 ns min.				
Low Power Dissipation Operating Current 	396 mW max.	358 mW max.	303 mW max.	259 mW max.				
 Standby Current 	8.3 mW max. (TTL level)/1.4 mW max. (CMOS level)							

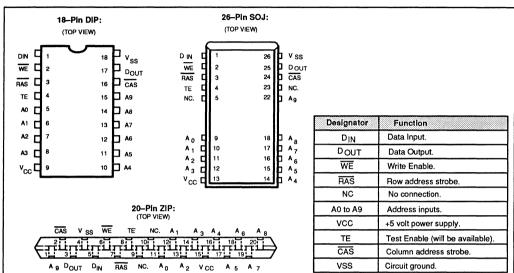

- 1,048,576 words x 1 bit organization
- Silicon gate, CMOS, 3D–Stacked Capacitor Cell
- All input and output are TTL compatible
- 512 refresh cycles every 64 ms
- Common I/O capability by using early write

Absolute Maximum Ratings (See Note)


Parameter		Symbol	Value	Unit
Voltage at any pin relative to V	ss	VIN, VOUT	-1 to +7	v
Voltage of V _{CC} supply relative	to V _{SS}	V _{CC}	-1 to +7	v
Power Dissipation		PD	1.0	w
Short Circuit Output Current		-	50	mA
Storage Temperature	Ceramic	T _{STG}	-55 to +150	°C
	Plastic	ľ	-55 to +125	

Note: Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operation sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Copyright C 1990 by FUJITSU LIMITED and Fujitsu Microelectronics, Inc.



CAPACITANCE (T_A= 25°C, f = 1MHz)

Parameter	Symbol	Тур	Max	Unit
Input Capacitance, A0 to A9, D _{IN}	C _{IN1}	_	5	pF
Input Capacitance, RAS, CAS, WE	C _{IN2}	_	5	ρF
Output Capacitance, D OUT	C _{OUT}		5	pF

PIN ASSIGNMENTS AND DESCRIPTIONS

RECOMMENDED OPERATING CONDITIONS

Parameter	Notes	Symbol	Min	Тур	Max	Unit	Amblent Operating Temp
Supply Voltage		V _{cc}	4.5	5.0	5.5	V	
	Ľ	V _{SS}	0	0	0	v	
Input High Voltage, all inputs	1	VIH	2.4	-	6.5	v	0 °C to +70 °C
Input Low Voltage, all inputs	1	VIL	-2.0	_	0.8	v	

FUNCTIONAL OPERATION

ADDRESS INPUTS

Twenty input bits are required to decode any one of 1,048,576 cell addresses in the memory matrix. Since only ten address bits are available, the column and row inputs are separately strobed by CAS and PAS as shown in Figure 1. First, nine row address bits are input on pins A0-through-A9 and latched with the row address strobe (RAS) then, ten column address bits are input and latched with the column address strobe(CAS). Both row and column addresses must be stable on or before the falling edge of CAS and RAS, respectively. The address latches are of the flow-through type; thus, address information appearing after t_{RAH} (min)+ t_T is automatically treated as the column address.

WRITE ENABLE

The read or write mode is determined by the logic state of WE. When WE is active Low, a write cycle is initiated; when WE is High, a read cycle is selected. During the read mode, input data is ignored.

DATA INPUT

Data is written into the MB81C1000 during write or read-modify-write cycle. The input data is strobed and latched by the later falling edge of CAS or WE. In an early write cycle, data input is strobed by CAS, and set up and hold times are referenced to CAS. In a delayed write or read-modify-write cycle, WE is set low after CAS. Thus, data input is strobed by WE, and set up and hold times are referenced to WE.

DATA OUTPUT

The three-state buffers are TTL compatible with a fanout of two TTL loads. Polarity of the output data is identical to that of the input; the output buffers remain in the high-impedance state until the column address strobe goes Low. When a read or read-modify-write cycle is executed, valid outputs are obtained under the following conditions:

- tRAC : from the falling edge of RAS when tRCD (max) is satisfied.
- tCAC : from the falling edge of CAS when tRCD is greater than tRCD, tRAD (max).
- tAA : from column address input when tRAD is greater then tRAD (max).

DC CHARACTERISTICS (Recommended operating conditions unless otherwise noted)

Notes 3

Parame	ter Notes	Symbol	Conditions	Min	Values Typ	Max	Unit
Output high voltage		V _{OH}	IOH = -5 mA	2.4			v
Output low voltage	·····	V _{OL}	IOL = 4.2 mA		_	0.4	v
Input leakage current (any input)		l _{I(L)}	$0V \le VIN \le 5.5V;$ $4.5V \le VCC \le 5.5V;$ VSS=0V;All other pins not under test =0V	10		10	μA
Output leakage current	:	I _{O(L)}	$0V \leq VOUT \leq 5.5V;$ Data out disabled	-10	—	10	
	MB81C100070L					72	
Operating current	MB81C1000-80L		RAS & CAS cycling;			65	
(Average power supply current) 2	MB81C1000-10L	ICC1	t _{RC} = min	_	_	55	mA
	MB81C1000-12L					47	
Standby current	TTL level	100				1.5	mA
(Power supply current)	CMOS level	1002	$\overline{RAS}=\overline{CAS} \ge VCC-0.2V$		_	250	μA
	MB81C1000-70L					60	
Refresh current	MB81C1000-80L	ICC 3	CAS=VIH, RAS cycling; t _{RC} = min			56	
#1 (Average power supply current)	MB81C1000-10L			_	_	50	mA
	MB81C1000-12L					45	
	MB81C1000-70L					39	
Fast Page Mode	MB81C1000-80L	ICC₄	RAS = VIL, CAS			37	
current 2	MB81C1000-10L	1004	cycling; t _{PC} = min		_	33	mA
	MB81C1000-12L					28	
	MB81C1000-70L		RAS cycling :			60	
Refresh current #2 (Average power	MB81C1000-80L	ICC 5	CAS-before-RAS;			56	
supply current) 2	MB81C1000-10L	100 5	$t_{BC} = min$		_	50	mA
	MB81C1000-12L					45	
Battery Back up	MB81C1000-70L		RAS cycling ; CAS-before-RAS ;				
current	MB81C1000-80L	ICC 6	t _{RC} =125 μs, t _{RAS} =min.			250	μA
(Average power	MB81C100010L	-	to 1 μs, D _{OUT} =open. Other pin ≥ Vcc–0.2V or		-		
supply current)	MB81C1000-12L		≤ 0.2V				

AC CHARACTERISTICS

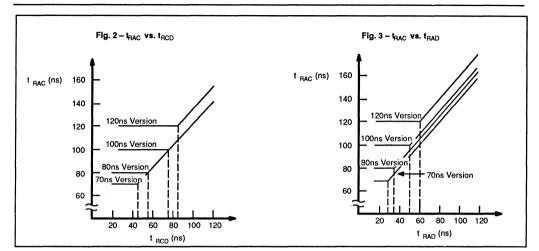
(At recommended operating conditions unless otherwise noted.) Notes 3, 4, 5

			MB81C1000-70L		MB81C1000-80L		MB81C1000-10L		_ MB81C1000-12L		
No.	Parameter Notes	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit
1	Time Between Refresh	t _{REF}	—	64	<u> </u>	64	-	64		64	ms
2	Random Read/Write Cycle Time	t _{RC}	140	-	155	—	180	—	210	—	ns
3	Read-Modify-Write Cycle Time	t _{RWC}	167	_	182		210	_	245		ns
4	Access Time from RAS 6,9	t _{RAC}	-	70	-	80	-	100	—	120	ns
5	Access Time from CAS 7,9	t _{CAC}		25		25	_	25		35	ns
6	Column Address Access Time 8,9	t _{AA}	·	43		45		50		60	ns
7	Output Hold Time	t _{он}	7		7		7		7	-	ns
8	Output Buffer Turn on Delay Time	t _{on}	5	—	5	—	5		5	—	ns
9	Output Buffer Turn off Delay Time 10	t _{OFF}	—	25	_	25	_	25	—	25	ns
10	Transition Time	t _T	з	50	3	50	3	50	3	50	ns
11	RAS Precharge Time	t _{RP}	60	1	65	-	70	-	80	-	ns
12	RAS Pulse Width	t _{RAS}	70	100000	80	100000	100	100000	120	100000	ns
13	RAS Hold Time	t _{RSH}	25	-	25	-	25	—	35	-	ns
14	CAS to RAS Precharge Time	t _{CRP}	0	-	0		0		0	-	ns
15	RAS to CAS Delay Time 11,12	t _{RCD}	20	45	22	55	25	75	25	85	ns
16	CAS Pulse Width	t _{CAS}	25		25	-	25	-	35	-	ns
17	CAS Hold Time	t _{csH}	70	—	80	-	100	—	120	-	ns
18	CAS Precharge Time (C-B-R cycle) 17	t _{CPN}	10	-	10		10	-	15	-	ns
19	Row Address Set Up Time	t _{ASR}	0		0		0		0	_	ns
20	Row Address Hold Time	t _{RAH}	10		12	-	15	—	15	_	ns
21	Column Address Set Up Time	t _{ASC}	0	·	0		0		0		ns
22	Column Address Hold Time	t _{CAH}	15		15		15		20	-	ns
23	RAS to Column Address Delay Time 13	t _{RAD}	15	27	17	35	20	50	20	60	ns
24	Column Address to RAS Lead Time	t _{RAL}	43	-	45	-	50	—	60	—	ns
25	Read Command Set Up Time	t _{RCS}	0	-	0		0	—	0	-	ns
26	Read Command Hold Time 14	t _{RRH}	0		0		0	—	0		ns
27	Read Command Hold Time Referenced to CAS	t _{RCH}	0	_	0	_	0	_	0	_	ns
28	Write Command Set Up Time 15	twcs	0		0		0		0		ns
29	Write Command Hold Time	twch	15		15	_	15		20	—	ns
30	WE Pulse Width	t _{wP}	15		15		15	—	20	—	ns
31	Write Command to RAS Lead Time	t _{RWL}	22		22		25		30		ns
32	Write Command to CAS Lead Time	t _{cwl}	17		17	—	20		25	_	ns
33	DIN Set Up Time	t _{DS}	0		0	_	0		0	_	ns
34	DIN Hold Time	t _{DH}	15		15		15	_	20		ns

AC CHARACTERISTICS (Continued)

(At recommended operating conditions unless otherwise noted.) Notes 3, 4, 5

		Notes		MB81C1	00070L	MB81C1	000-80L	MB81C1	000-10L	MB81C1000-12L		Unit
No.	Parameter	Notes	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit
35	RAS to WE Delay Time	15	t _{RWD}	70	-	80	_	100	-	120	-	ns
36	CAS to WE Delay Time	15	t _{CWD}	25		25	_	25	-	35	_	ns
37	Column Address to WE Delay Time	15	t _{AWD}	43		45	_	50	_	60	—	ns
38	RAS Precharge Time to CAS Active Time (Refresh Cycles)		t RPC	0	-	0	_	0	_	0	—	ns
39	CAS Set Up Time for CAS-before - RAS Refresh		t csr	0	-	0	-	0	-	0	-	ns
40	CAS Hold Time for CAS-before - RAS Refresh		t сня	15	_	15	—	15	_	20	-	ns
41	Access Time from CAS (Counter Test Cycle)		t cat	—	43		45		50	—	60	ns
50	Fast Page Mode Read/Write Cycle Time		t PC	53	-	55	—	60	-	70	—	ns
51	Fast Page Mode Read–Modify– Write Cycle Time		t prwc	75	_	77	-	85	-	100	-	ns
52	Access Time from CAS Precharge	9,16	t cpa	_	53	_	55	_	60	_	70	ns
53	Fast Page Mode CAS Precharge Time		t cp	10	_	10	_	10	_	15	_	ns

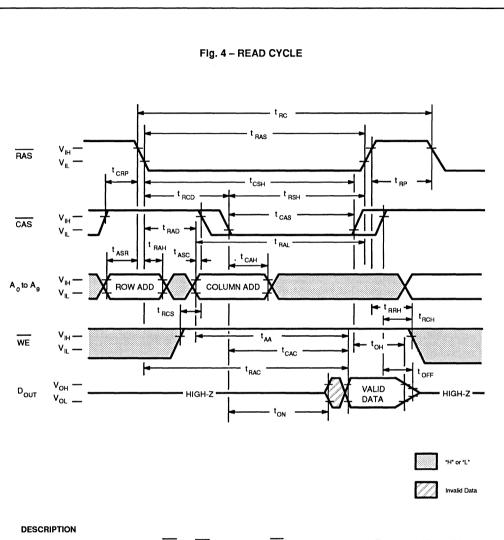

- Notes: 1. Referenced to VSS
 - Icc depends on the output load conditions and cycle rates: The 2 specified values are obtained with the output open. Icc depends on the number of address change as RAS = VIL and
 - CAS = VIH.

Icc1, Icc3 and Icc5 are specified at three time of address change during RAS = VIL and CAS = VIH.

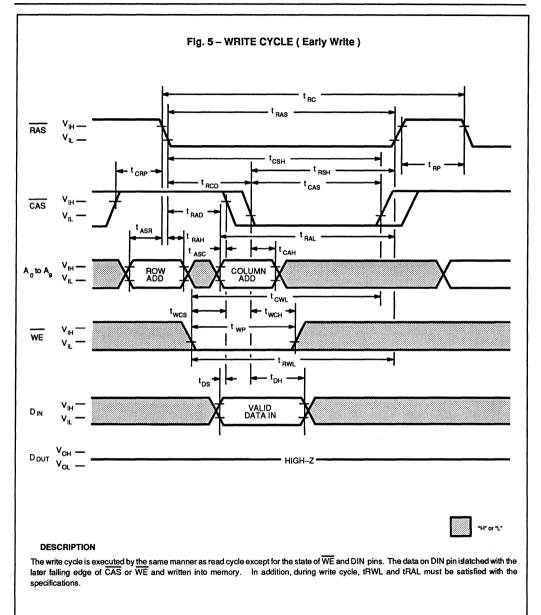
Icc4 is specified at one time of address change during RAS = VIL and CAS = VIH

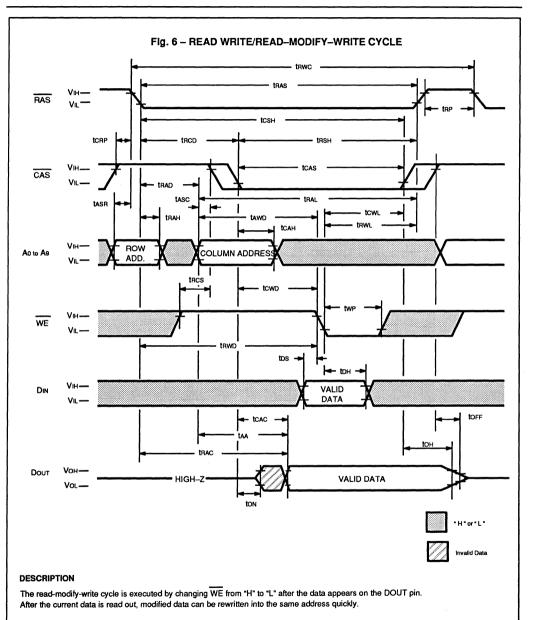
- 3. An Initial pause (RAS = CAS = VIH) of 200Ls is required after power-up followed by any eight RAS -only cycles before proper device operation is achieved. In case of using internal refresh counter, a minimum of eight CAS -before-RAS initialization cycles instead of 8 RAS cycles are required.
- AC characteristics assume $t_T = 5ns$. 4
- 5. V_{IH} (min) and V_{IL} (max) are reference levels for measuring timing of input signals. Also transition times are measured between V_{IH} (min) and V_{IL} (max).
- 6. Assumes that $t_{RCD} \leq t_{RCD}$ (max), $t_{RAD} \leq t_{RAD}$ (max). If t_{RCD} is greater than the maximum recommended value shown in this table, tRAC will be increased by the amount that tRCD exceeds the value shown. Refer to Fig. 2 and 3.
- 7. If tRCD \geq tRCD (max), tRAD \geq tRAD (max), and tASC \geq tAA tCAC t T, access time is tcac.
- 8. If $t_{RAD} \ge t_{RAD}$ (max) and $t_{ASC} \le t_{AA} t_{CAC} t_{T}$, access time is t AA
- 9 Measured with a load equivalent to two TTL loads and 100 pF.
- 10. tOFF and tOEZ is specified that output buffer change to high impedance state.

- 11. Operation within the tacp (max) limit ensures that take (max) can be met. tRCD (max) is specified as a reference point only; if tRCD is greater than the specified tRCD (max) limit, access time is controlled exclusively by tcac or t AA
- 12. tRCD (min) = tRAH (min)+ 2t T + tASC (min).
- 13. Operation wit10.toFF and toEz is specified that output buffer change to high impedance state hin the tRAD (max) limit ensures that tRAC (max) can be met. tRAD (max) is specified as a reference point only; if tRAD is greater than the specified tRAD (max) limit, access time is controlled exclusively by tCAC or t AA .
- 14. Either tRRH or tRCH must be satisfied for a read cycle.
- 15. t wcs, t cwp, t, Rwp and tawp are not a restrictive operating parameter. They are included in the data sheet as an electrical characteristic only. If twcs > t wcs (min), the cycle is an early write cycle and Dout pin will maintain high impedance state thoughout the entire cycle. If t cwD > t cwD (min), t RwD > tRWD (min), and tAWD > tAWD (min), the cycle is a read modify-write cycle and data from the selected cell will apper at the Dout pin. If neither of the above conditions is satisfied, the cycle is a delayed write cycle and invalid data will appear the Dout pin , and write operation can be exected by satisfying the , t
 - CWL , and tRAL specifications.
- 16 tCPA is access time from the selection of a new column address (that is caused by changing CAS from "L" to "H"). Therefore, if tcp is long, tcpa is longer than tcpa (max).
- 17. Assumes that CAS -before- RAS refresh, CAS -before-RAS refresh counter test cycle only.

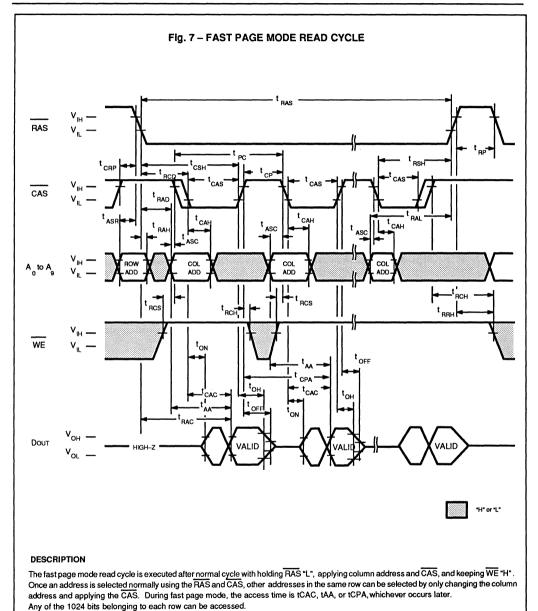


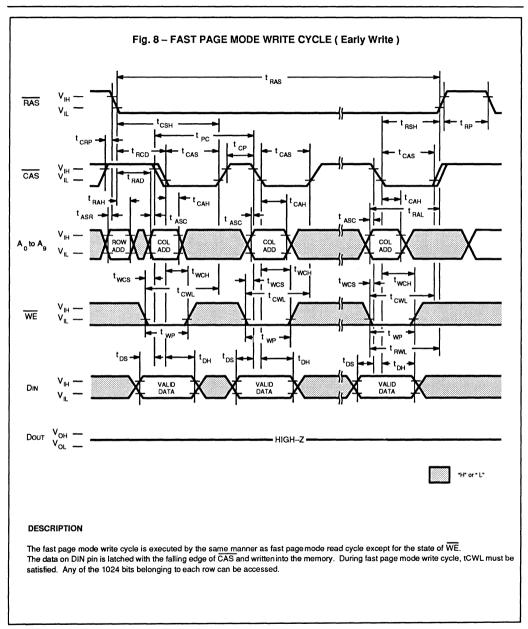
FUNCTIONAL TRUTH TABLE

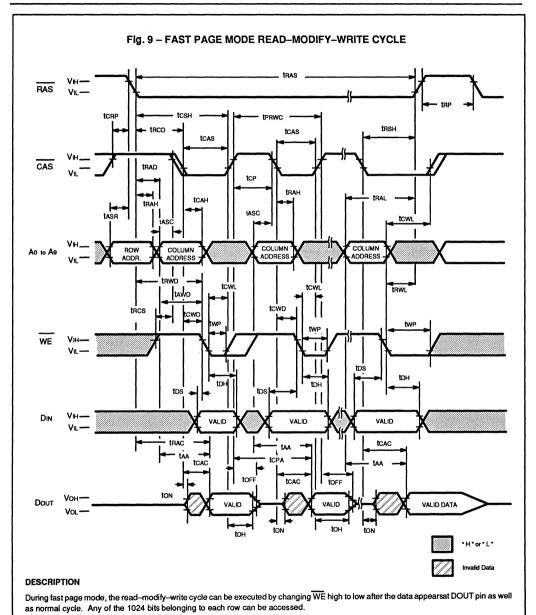

		Clock In	put	Addr	ess Input	D	ata		
Operation Mode	RAS	CAS	WE	Row	Column	Input	Output	Refresh	Note
Standby	н	н	x	-	—		High-Z		
Read Cycle	L	L	н	Valid	Valid	-	Valid	*1 Yes	t _{RCS} ≥ t _{RCS} (min)
Write Cycle (Early Write)	L	L	L	Valid	Valid	Valid	High-Z	Yes ^{*1}	t _{wcs} ≥ t _{wcs} (min)
Read–Modify–Write Cycle	L	L	H→L	Valid	Valid	X → Valid	Valid	Yes ^{*1}	t _{cwD} ≥t _{cwD} (min)
RAS-only Refresh Cycle	L	н	x	Valid		_	High-Z	Yes	
CAS-before-RAS Refresh Cycle	L	L	x	-	_		High-Z	Yes	$t_{CSR} \ge t_{CSR}$ (min)
Hidden Refresh Cycle	H→L	L	x		—		Valid	Yes	Previous data is kept

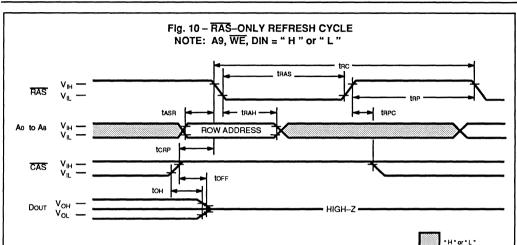

Notes:

X: "H" or "L" *1: It is impossible in Fast Page Mode.

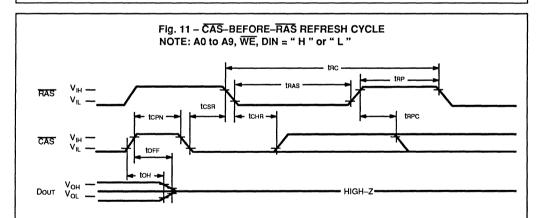

The read cycle is executed by keeping both \overline{RAS} and \overline{CAS} "L" and keeping \overline{WE} "H" throughout the cycle. Therow and column addresses are latched with \overline{RAS} and \overline{CAS} , respectively. The data output remains valid with \overline{CAS} "L", i.e., if \overline{CAS} goes "H", the data becomes invalid after tOH is satisfied. The access time is determined by \overline{RAS} (tRAC), \overline{CAS} (tCAC), or Column address input (tAA). If tRCD (\overline{RAS} to \overline{CAS} delay time) is greater than the specification, the access time is tAA.



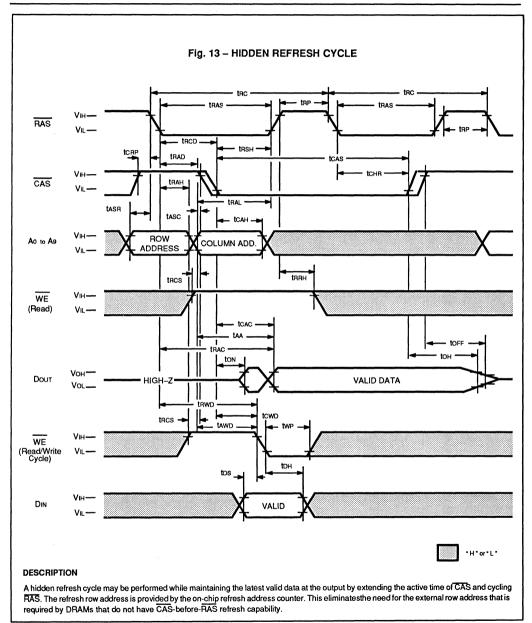

2

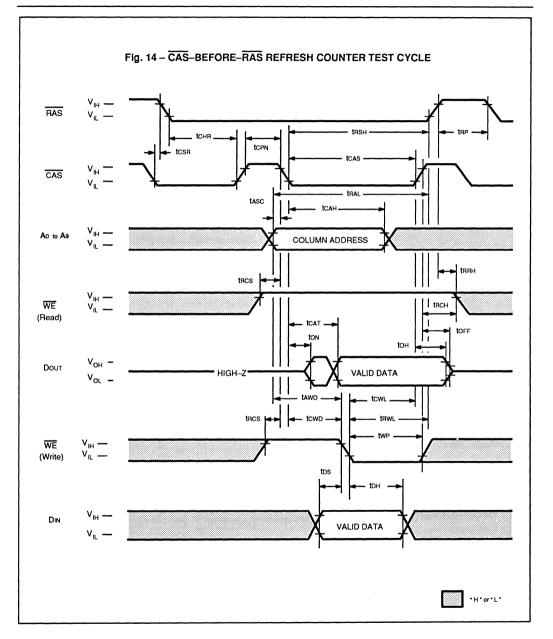

2-35

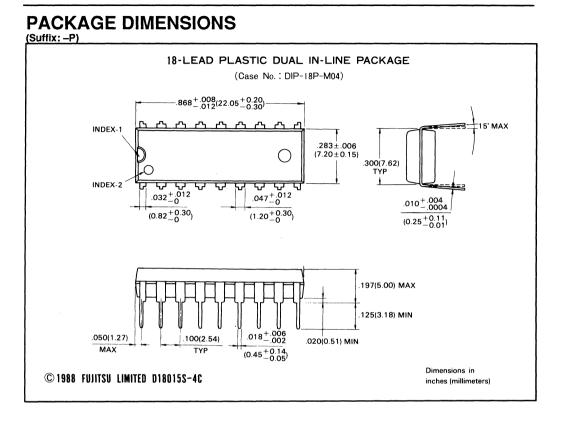
2-36



DESCRIPTION

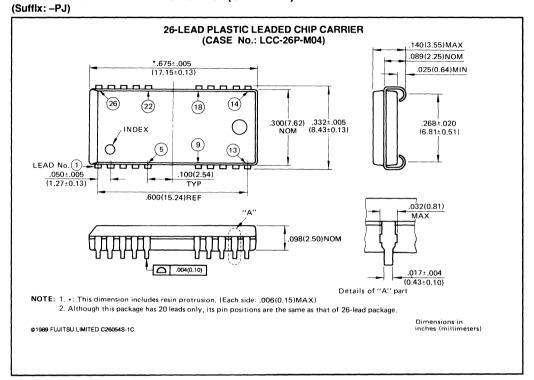

Refresh of RAM memory cells is accomplished by performing a read, a write, or a read-modify-write cycleat each of 512 row addresses every 64-milliseconds. Three refresh modes are available: RAS-only refresh, CAS-before-RAS refresh, and hidden refresh.


RAS-only refresh is performed by keeping RAS Low and CAS High throughout the cycle; the row address to be refreshed is latched on the falling edge of RAS. During RAS-only refresh, Dout pin is kept in a high-impedance state.



DESCRIPTION

CAS-before-RAS refresh is an on-chip refresh capability that eliminates the need for external refresh addresses. If CAS is held Low for the specified setup time (tcsR) before RAS goes Low, the on-chip refresh control clock generators and refresh address counter are enabled. An internal refresh operation automatically occurs and the refresh address counter is internally incremented in preparation for the next CAS-before-RAS refresh operation.



PACKAGE DIMENSIONS (Continued) (Suffix: -C) 18-LEAD CERAMIC (METAL SEAL) DUAL IN-LINE PACKAGE (CASE No.: DIP-18C-A01) 0° to 9° .293⁺.008 -.010 .300±.010 (7.45⁺0.20) (7.62±0.25) -0.25 INDEX AREA .010+.004 .900±.010 (22.86±0.25) (0.25+0.10) .055(1.40)MAX .200(5.08)MAX ŧ .134+.016 (3.40+0.41) .100±.010 .032(0.81) .035±.015 (0.89±0.38) (2.54±0.25) REF .800(20.32)REF .018+.005(0.46+0.13) .050±.010 (1.27±0.25) Dimensions in © 1988 FUJITSU LIMITED D18014S-4C inches (millimeters)

2-43

PACKAGE DIMENSIONS (Continued)

20-LEAD PLASTIC ZIG-ZAG IN-LINE PACKAGE (Case No.: ZIP-20P-M02) -1.019 + .008 (25.88 + 0.20) .112±.008 - (2.85 ± 0.20) .387±.013 (9.83±0.33) INDEX .335±.010 (8.50±0.25) റ ŧ I .010±.002 118(3.00) MIN (0.25±0.05) ł .050(1.27) .020±.004 100(2.54) TYP TYP (0.50 ± 0.10) (ROW SPACE) LEAD No. 12 ш (BOTTOM VIEW) 20 Dimensions in © 1989 FUJITSU LIMITED Z20002S-4C inches (millimeters)

PACKAGE DIMENSIONS (Continued) (Suffix: -PSZ)

FUĴITSU

MB81C1000A-60/-70/-80/-10

CMOS 1,048,576 BIT FAST PAGE MODE DYNAMIC RAM

DATA SHEET

CMOS 1M x 1 Bit Fast Page Mode DRAM

The Fujitsu MB81C1000A is a CMOS, fully decoded dynamic RAM organized as 1,048,576 words x 1 bit. The MB81C1000A has been designed for mainframe memories, buffer memories, and peripheral storage applications requiring high speed, low power dissipation, or compact layout.

Fujitsu's advanced three-dimensional stacked capacitor cell technology gives the MB81C1000A high α -ray soft error immunity. CMOS technology is used in the peripheral circuits to provide low power dissipation and high speed operation.

Features

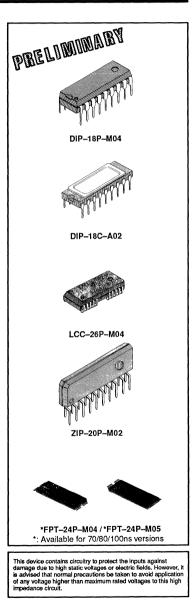
Parameter	MB81C1000A -60	MB81C1000A -70	MB81C1000A -80	MB81C1000A -10				
RAS Access Time	60 ns max.	70 ns max.	80 ns max.	100 ns max.				
Random Cycle Time	130 ns min.	140 ns min.	155 ns min.	180 ns min.				
Address Access Time	30 ns max.	35 ns max.	40 ns max.	50 ns max.				
CAS Access Time	15 ns max.	20 ns max.	20 ns max.	25 ns max.				
Fast Page Mode Cycle Time	45 ns min.	50 ns min.	55 ns min.	65 ns min.				
Low Power Dissipation Operating Current 	407 mW max.	374 mW max.	341 mW max.	297 mW max.				
 Standby Current 	11 mW max. (TTL level)/5.5 mW max. (CMOS level)							

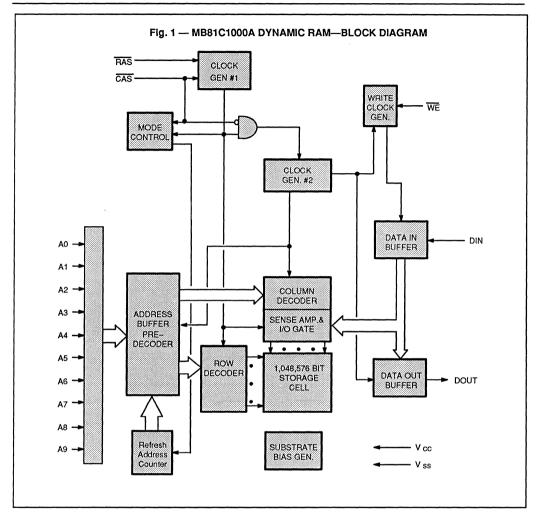
- 1,048,576 words x 1 bit organization
- RAS only, CAS-before-RAS, or Hidden Refresh
 Fast Page Mode, Read-Modify-Write

On-chip substrate bias generator for

capability

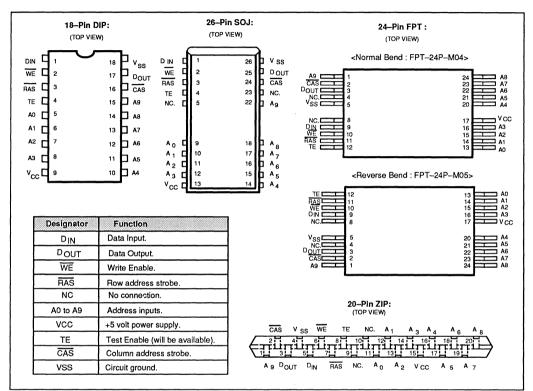
high performance


- Silicon gate, CMOS, 3D–Stacked Capacitor Cell
- All input and output are TTL compatible
 - 512 refresh cycles every 8.2 ms
- Common I/O capability by using early write


Absolute Maximum Ratings (See Note)

Parameter		Symbol	Value	Unit
Voltage at any pin relative to	V _{SS}	V _{IN,} V _{OUT}	-1 to +7	v
Voltage of V _{CC} supply relativ	e to V _{SS}	V _{CC}	-1 to +7	v
Power Dissipation		PD	1.0	w
Short Circuit Output Current			50	mA
Storage Temperature	Ceramic	T _{STG}	-55 to +150	°C
	Plastic		-55 to +125	

Note: Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operation sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


Copyright C 1990 by FUJITSU LIMITED and Fujitsu Microelectronics, Inc.

CAPACITANCE (T_A = 25°C, f = 1MHz)

Parameter	Symbol	Тур	Мах	Unit
Input Capacitance, A0 to A9, D _{IN}	C _{IN1}		5	pF
Input Capacitance, RAS, CAS, WE	C _{IN2}	_	5	pF
Output Capacitance, D OUT	C _{OUT}	_	6	pF

PIN ASSIGNMENTS AND DESCRIPTIONS

RECOMMENDED OPERATING CONDITIONS

Parameter	Notes	Symbol	Min	Тур	Мах	Unit	Amblent Operating Temp	
Currely Vellage		V _{CC}	4.5	5.0	5.5	V		
Supply Voltage	Ľ	V _{SS}	0	0	0	v		
Input High Voltage, all inputs	1	VIH	2.4	1	6.5	v	0 °C to +70 °C	
Input Low Voltage, all inputs	1	VIL	-2.0		0.8	v		

FUNCTIONAL OPERATION

ADDRESS INPUTS

Twenty input bits are required to decode any one of 1,048,576 cell addresses in the memory matrix. Since only ten address bits are available, the column and row inputs are separately strobed by CAS and RAS as shown in Figure 1. First, nine row address bits are input on pins A0-through-A9 and latched with the row address strobe (FAS) hen, ten column address bits are input and latched with the column address strobe (FAS). Both row and clumn addresses must be stable on or before the falling edge of CAS and RAS, respectively. The address latches are of the flow-through type; thus, address information appearing after t_{RAH} (min)+ tr is automatically treated as the column address.

WRITE ENABLE

The read or write mode is determined by the logic state of \overline{WE} . When \overline{WE} is active Low, a write cycle is initiated; when \overline{WE} is High, a read cycle is selected. During the read mode, input data is ignored.

DATA INPUT

Data is written into the MB81C1000A during write or read-modify-write cycle. The inputdata is strobed and latched by the later falling edge of \overline{CAS} or \overline{WE} . In an early write cycle, data input is strobed by \overline{CAS} , and set up and hold times are referenced to \overline{CAS} . In a delayed write or read-modify-write cycle, \overline{WE} is set low after \overline{CAS} . Thus, data input is strobed by \overline{WE} , and set up and hold times are referenced to \overline{WE} .

DATA OUTPUT

The three-state buffers are TTL compatible with a fanout of two TTL loads. Polarity of the output data is identical to that of the input; the output buffers remain in the high-impedance state until the column address strobe goes Low. When a read or read-modify-write cycle is executed, valid outputs are obtained under the following conditions:

- tRAC : from the falling edge of RAS when tRCD (max) is satisfied.
- tCAC : from the falling edge of CAS when tRCD is greater than tRCD, tRAD (max).
- tAA : from column address input when tRAD is greater then tRAD (max).

DC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted)

Notes 3

					Values			
Parame	ter Notes	Symbol	Conditions	Min	Тур	Max	Unit	
Output high voltage		V _{он}	IOH = -5 mA	2.4	_	—	v	
Output low voltage		V _{OL}	IOL ≈ 4.2 mA		_	0.4		
Input leakage current	(any input)	ا _{ا(ل)}	$0V \le VIN \le 5.5V;$ $4.5V \le VCC \le 5.5V;$ VSS=0V;All other pins not under test =0V	-10	_	10	μA	
Output leakage current		I O(L)	$0V \leq VOUT \leq 5.5V;$ Data out disabled	-10	1	10		
	MB81C1000A-60			74		74		
Operating current (Average power	MB81C1000A-70	ICC1	RAS & CAS cycling;			68	mA	
supply current) 2	MB81C1000A-80	1001	t _{RC} = min			62	ino.	
	MB81C1000A-10					54		
Standby current	TTL level	ICC 2	RAS=CAS=VIH			2.0	mA	
(Power supply current)	CMOS level	1002	RAS=CAS ≥ VCC-0.2V	1	-	1.0		
	MB81C1000A-60					74		
Refresh current	MB81C1000A-70	ICC 3	CAS=VIH, RAS			68		
#1 (Average power supply current) 2	MB81C1000A-80	1003	cycling; t _{RC} = min		_	62	mA	
	MB81C1000A-10					54		
	MB81C1000A-60					60		
Fast Page Mode	MB81C1000A-70	ICC 4	$\overline{RAS} = VIL, \overline{CAS}$			55	mA	
current 2	MB81C1000A-80	1004	cycling; t _{PC} = min		_	50		
	MB81C1000A-10					43		
Defeash summert	MB81C1000A-60		RAS cycling ;			74		
Refresh current #2 (Average power	MB81C1000A-70	ICC 5	CAS-before-RAS:	_		68	mA	
supply current) 2	MB81C1000A-80		$t_{RC} = min$	_	_	62		
	MB81C1000A-10					54		

AC CHARACTERISTICS

(At recommended operating conditions unless otherwise noted.) Notes 3, 4, 5

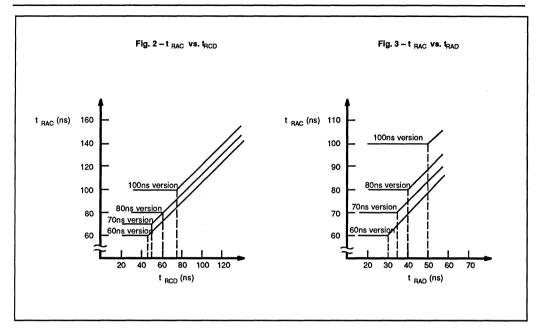
	recommended operating conditio		MB81C1		MB81C1			000A-80	MB81C1	000A-10	
No.	Parameter Notes	Symbol	Min	Max	Min	Max	Min	Max	Min	Мах	Unit
1	Time Between Refresh	t _{REF}		8.2		8.2	—	8.2	—	8.2	ms
2	Random Read/Write Cycle Time	t _{RC}	130	-	140	1	155	-	180	-	ns
3	Read-Modify-Write Cycle Time	t _{RWC}	150	-	160	1	180	-	210	-	ns
4	Access Time from RAS 6,9	t _{RAC}	-	60	-	70	-	80	—	100	ns
5	Access Time from CAS 7,9	t _{CAC}		15	-	20	—	20	—	25	ns
6	Column Address Access Time 8,9	t _{AA}		30	-	35	_	40		50	ns
7	Output Hold Time	t _{oH}	0	-	0		0	-	0	-	ns
8	Output Buffer Turn on Delay Time	t _{on}	0	—	0	<u> </u>	0		0	—	ns
9	Output Buffer Turn off Delay Time 10	t _{OFF}	_	15	_	15	_	20	_	25	ns
10	Transition Time	t _T	2	50	2	50	2	50	2	50	ns
11	RAS Precharge Time	t _{RP}	60	-	60	-	65	1	70	_	ns
12	RAS Pulse Width	t _{RAS}	60	100000	70	100000	80	100000	100	100000	ns
13	RAS Hold Time	t _{RSH}	15	-	20	-	20	-	25	—	ns
14	CAS to RAS Precharge Time	t _{CRP}	0	-	0	-	0	—	0	—	ns
15	RAS to CAS Delay Time 11,12	t _{RCD}	20	45	20	50	22	60	25	75	ns
16	CAS Pulse Width	t _{cas}	15	-	20	-	20		25	-	ns
17	CAS Hold Time	t _{CSH}	60		70	-	80		100		ns
18	CAS Precharge Time (C-B-R cycle) 17	t _{CPN}	20		20		20		20	-	ns
19	Row Address Set Up Time	t _{ASR}	0		0		0		0		ns
20	Row Address Hold Time	t _{RAH}	10	-	10	-	12		15	-	ns
21	Column Address Set Up Time	t _{ASC}	0		0	-	0	-	0		ns
22	Column Address Hold Time	t _{cah}	12		12	-	15	-	15		ns
23	RAS to Column Address Delay Time 13	t _{RAD}	15	30	15	35	17	40	20	50	ns
24	Column Address to RAS Lead Time	t _{RAL}	30	-	35	—	40	-	50	—	ns
25	Read Command Set Up Time	t _{RCS}	0		0		0	_	0	—	ns
26	Read Command Hold Time 14	t _{RRH}	0	—	0		0	_	0		ns
27	Read Command Hold Time Referenced to CAS	t _{RCH}	0	_	0	-	0	_	0	-	ns
28	Write Command Set Up Time 15	t _{wcs}	0		0		0		0		ns
29	Write Command Hold Time	t _{wcн}	10		10		12	-	15	-	ns
30	WE Pulse Width	t _{wP}	10		10		12	_	15	-	ns
31	Write Command to RAS Lead Time	t _{RWL}	15	_	15		20		25	_	ns
32	Write Command to CAS Lead Time	t _{cwL}	12		12		15		20	_	ns
33	DIN Set Up Time	t _{DS}	0		0		0		0	-	ns
34	DIN Hold Time	t _{DH}	10	_	10		12		15	-	ns

AC CHARACTERISTICS (Continued)

(At recommended operating conditions unless otherwise noted.) Notes 3, 4, 5

		Natas	0	MB81C1	000A-60	MB81C1	000A-70	MB81C1	000A-80	MB81C1	000A-10	Unit
No.	Parameter	Notes	Symbol	Min	Мах	Min	Мах	Min	Мах		Unit	
35	RAS to WE Delay Time	15	t _{RWD}	60	-	70	—	80	—	100	—	ns
36	CAS to WE Delay Time	15	t _{CWD}	15	_	20	_	20	-	25		ns
37	Column Address to WE Delay Time	15	t _{AWD}	30	_	35	-	40	_	50	_	ns
38	RAS Precharge Time to CAS Active Time (Refresh Cycles)		t rpc	0	-	0	_	0	_	0	-	ns
39	CAS Set Up Time for CAS-before - RAS Refresh		t csr	0	-	0	—	0	-	0	—	ns
40	CAS Hold Time for CAS-before - RAS Refresh		t chr	10	-	10	-	12	-	15	—	ns
50	Fast Page Mode Read/Write Cycle Time		t PC	45	-	50	—	55	-	65	—	ns
51	Fast Page Mode Read–Modify– Write Cycle Time		t prwc	62	-	67	-	75	-	90	-	ns
52	Access Time from CAS Precharge	9,16	t cpa	_	40	-	45	_	50		60	ns
53	Fast Page Mode CAS Precharge Time		t cp	10		10	_	10	—	10	-	ns

Notes:

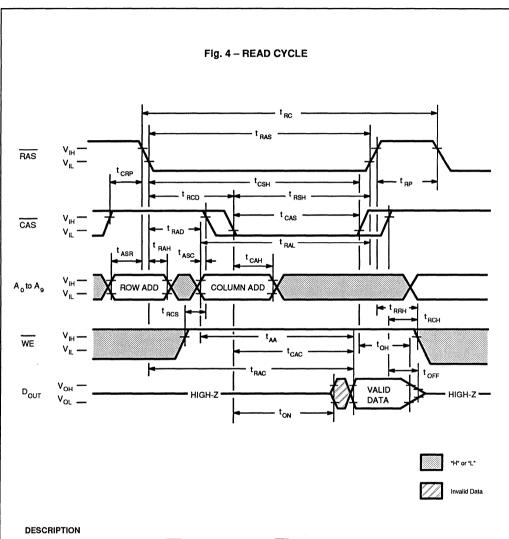

- 1. Referenced to VSS
- 2. Icc depends on the output load conditions and cycle rates; The specified values are obtained with the output open. Icc depends on the number of address change as $\overrightarrow{RAS} = V_{IL}$ and $\overrightarrow{CAS} = V_{IH}$.

Icc1, Icc3 and Icc5 are specified at three time of address change during $\overrightarrow{RAS} = ViL$ and $\overrightarrow{CAS} = ViH$.

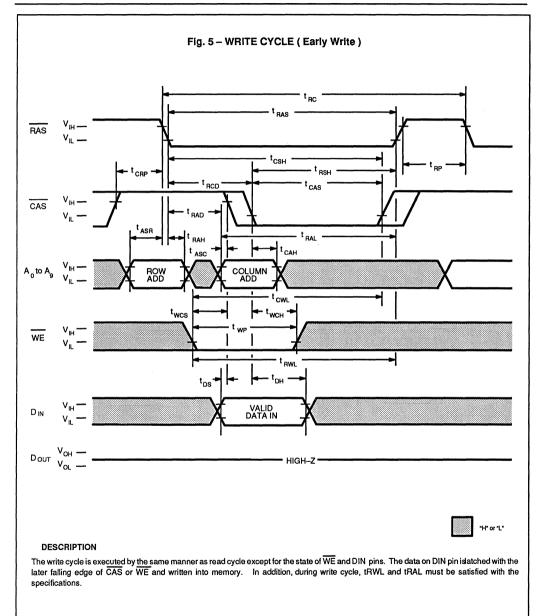
Icc4 is specified at one time of address change during $\overrightarrow{RAS} = V_{IL}$ and $\overrightarrow{CAS} = V_{IH}$.

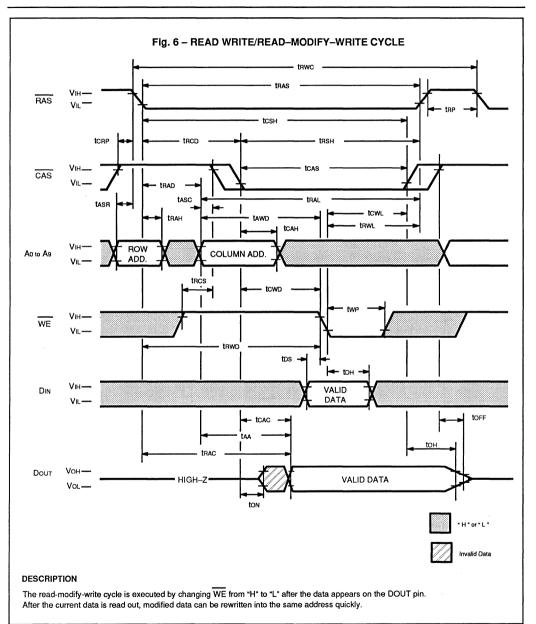
- 3. An Initial pause (PAS = CAS =VIH) of 200µs is required after power-up followed by any eight PAS -only cycles before proper device operation is achieved. In case of using internal refresh counter, a minimum of eight CAS -before-PAS initialization cycles instead of 8 PAS cycles are required.
- 4. AC characteristics assume t_T = 5ns.
- V_{IH} (min) and V_{IL} (max) are reference levels for measuring timing of input signals. Also transition times are measured between V_{IH} (min) and V_{IL} (max).
- Assumes that tRcD≤ tRcD (max), tRAD≤ tRAD (max). If tRcD is greater than the maximum recommended value shown in this table, tRAC will be increased by the amount that tRcD exceeds the value shown. Refer to Fig. 2 and 3.
- 7. If tRCD \geq tRCD (max), tRAD \geq tRAD (max), and tASC \geq tAA -tCAC t_T, access time is tCAC.
- 8. If tRAD \geq tRAD (max) and tASC \leq tAA tCAC t T, access time is tAA.
- 9. Measured with a load equivalent to two TTL loads and 100 pF.
- toFF and toEz is specified that output buffer change to high impedance state.

- 11. Operation within the tRCD (max) limit ensures that tRAC (max) can be met. tRCD (max) is specified as a reference point only; if tRCD is greater than the specified tRCD (max) limit, access time is controlled exclusively by tCAC or tAA.
- 12. tRCD (min) = tRAH (min)+ 2t T + tASC (min).
- 13. Operation within the tRAD (max) limit ensures that tRAC (max) can be met. tRAD (max) is specified as a reference point only; if tRAD is greater than the specified tRAD (max) limit, access time is controlled exclusively by tCAC or t tA .
- 14. Either tRRH or tRCH must be satisfied for a read cycle.
- 15. t wcs, t cwp, t,Rwp and tAwp are not a restrictive operating parameter. They are included in the data sheet as an electrical characteristic only. If twcs > t wcs (min), the cycle is an early write cycle and Dout pin will maintain high impedance state thoughout the entire cycle. If t cwp > t cwp (min), t Rwp > t Rwp (min), and t Awp > t Awp (min), the cycle is a read modify—write cycle and data from the selected cell will apper at the Dout pin. If neither of the above conditions is satisfied, the cycle is a delayed write cycle and invalid data will appear the Dout pin , and write operation can be exected by satisfying tww_, t cwt_, and tRAL specifications.
- 16 t_{CPA} is access time from the selection of a new column address (that is caused by changing CAS from "L" to "H"). Therefore, if t_{CP} is long, t_{CPA} is longer than t_{CPA} (max).
- 17. Assumes that CAS -before- RAS refresh, CAS -before-RAS refresh counter test cycle only.

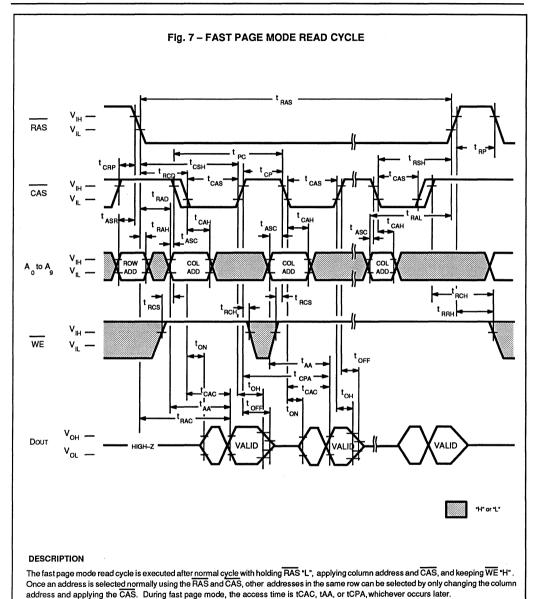


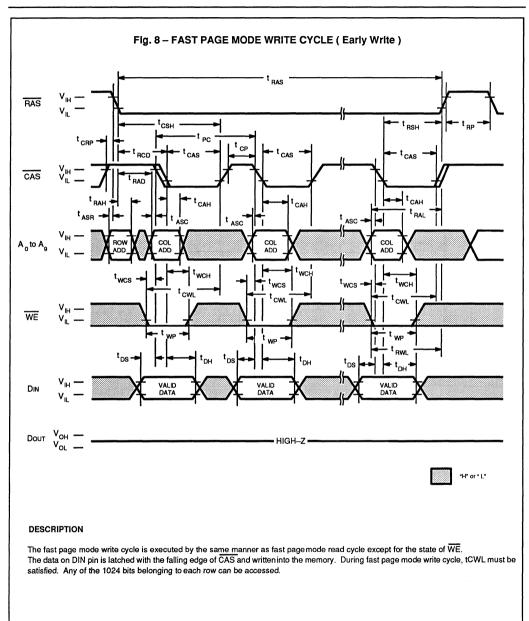
FUNCTIONAL TRUTH TABLE

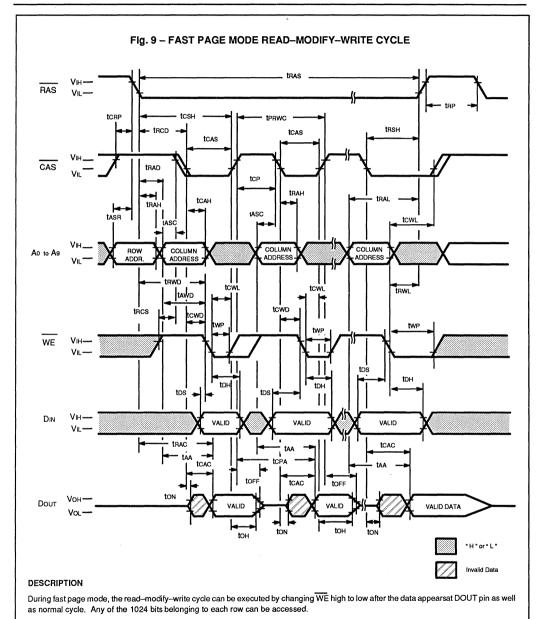

		Clock In	put	Addr	ess Input	D	ata		
Operation Mode	RAS	CAS	WE	Row	Column	Input	Output	Refresh	Note
Standby	н	н	x	-		-	High-Z		
Read Cycle	L	L	н	Valid	Valid	_	Valid	Yes *1	t _{RCS} ≥ t _{RCS} (min)
Write Cycle (Early Write)	L	L	L	Valid	Valid	Valid	High-Z	Yes *1	t _{wcs} ≥ t _{wcs} (min)
Read–Modify–Write Cycle	L	L	H→L	Valid	Valid	$X \rightarrow Valid$	Valid	Yes *1	t _{cwD} ≥t _{cwD} (min)
RAS-only Refresh Cycle	L	н	x	Valid	-	_	High-Z	Yes	
CAS-before-RAS Refresh Cycle	L	L	x	_			High-Z	Yes	$t_{CSR} \ge t_{CSR}$ (min)
Hidden Refresh Cycle	H→L	L	x			_	Valid	Yes	Previous data is kept

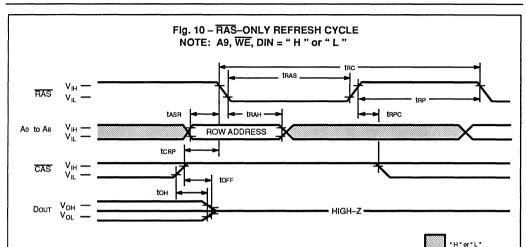

Notes:

X: "H" or "L" *1: It is impossible in Fast Page Mode.


The read cycle is executed by keeping both $\overline{\text{RAS}}$ and $\overline{\text{CAS}}$ "L" and keeping $\overline{\text{WE}}$ "H" throughout the cycle. Therow and column addresses are latched with $\overline{\text{RAS}}$ and $\overline{\text{CAS}}$, respectively. The data output remains valid with $\overline{\text{CAS}}$ "L", ie., if $\overline{\text{CAS}}$ goes "H", the data becomes invalid after tOH is satisfied. The access time is determined by $\overline{\text{RAS}}$ (tRAC), $\overline{\text{CAS}}$ (tCAC), or Column address input (tAA). If tRCD ($\overline{\text{RAS}}$ to $\overline{\text{CAS}}$ delay time) is greater than the specification, the access time is tAA.

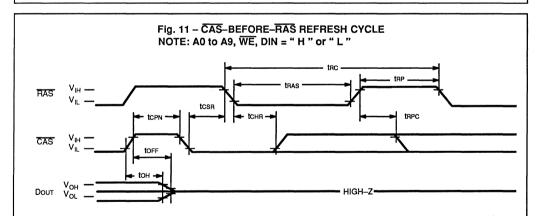

2


2-57

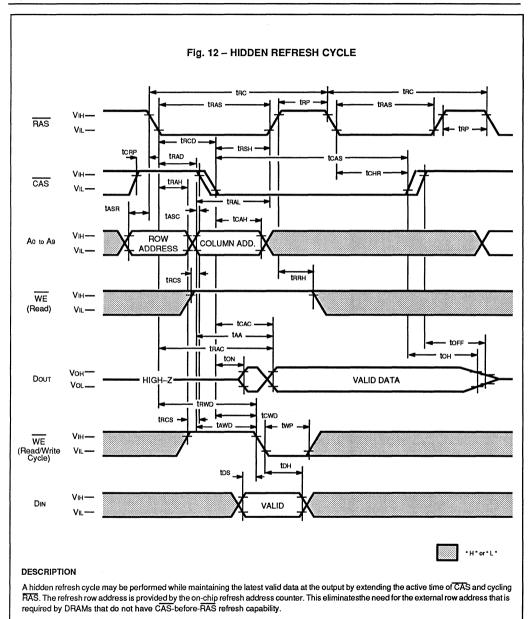


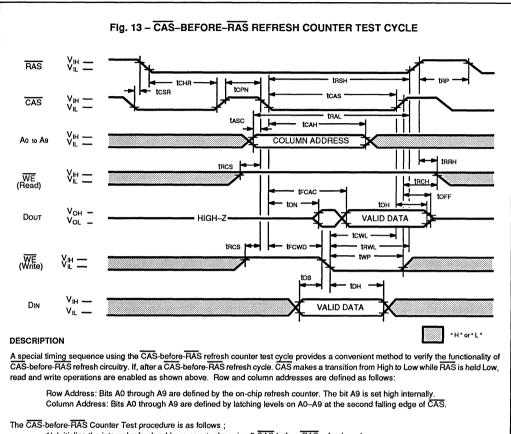
2

Any of the 1024 bits belonging to each row can be accessed.



DESCRIPTION

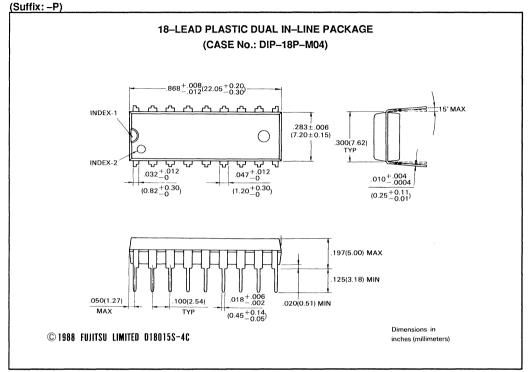

Refresh of RAM memory cells is accomplished by performing a read, a write, or a read-modify-write cycleat each of 512 row addresses every 8.2-milliseconds. Three refresh modes are available: RAS-only refresh, CAS-before-RAS refresh, and hidden refresh.


RAS-only refresh is performed by keeping RAS Low and CAS High throughout the cycle; the row address to be refreshed is latched on the falling edge of RAS. During RAS-only refresh, DOUT pin is kept in a high-impedance state.

DESCRIPTION

CAS-before-RAS refresh is an on-chip refresh capability that eliminates the need for external refresh addresses. If CAS is held Low for the specified setup time (tcsR) before RAS goes Low, the on-chip refresh control clock generators and refresh address counter are enabled. An internal refresh operation automatically occurs and the refresh address counter is internally incremented in preparation for the next CAS-before-RAS refresh operation.

1) Initialize the internal refresh address counter by using 8 CAS-before-RAS refresh cycles.

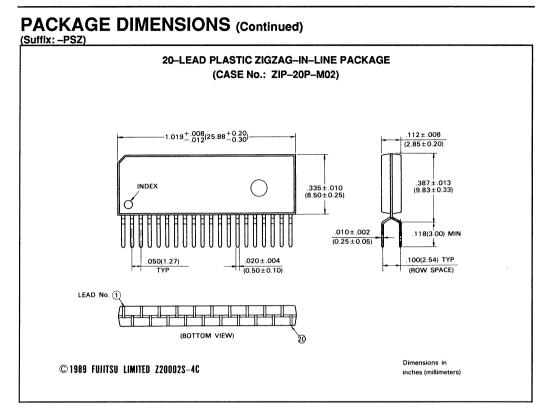

- 2) Use the same column address throughout the test.
- 3) Write "0" to all 512 row addresses at the same column address by using normal write cycles.
- 4) Read "0" written in procedure 3) and check; simultaneously write "1" to the same addresses by using CAS-before-RAS refresh counter test (read-modify-write cycles). Repeat this procedure 512 times with addresses generated by the internal refresh address counter.
- 5) Read and check data written in procedure 4) by using normal read cycle for all 512 memory locations.
- 6) Complement test pattern and repeat procedures 3), 4), and 5).

(At recommended operating conditions unless otherwise noted.)

	-		MB81C1	000A-60	MB81C1	000A-70	MB81C1	000A80	MB81C1	000A-10	.
NO.	Parameter	Symbol	Min	Мах	Min	Max	Min	Max	Min	Мах	Unit
90	Access Time from CAS	t FCAC	-	40	—	45	—	50	—	60	ns
91	CAS to WE Delay Time	t _{FCWD}	40	_	45	-	50	-	60	—	ns

Note . Assumes that CAS-before-RAS refresh counter test cycle only.

PACKAGE DIMENSIONS


(Suffix: -C) 18-LEAD CERAMIC (METAL SEAL) DUAL IN-LINE PACKAGE (CASE No.: DIP-18C-A02) 0° to 9° R.050(1.27)REF .293^{+.008} -.010 (7.45^{+0.20} -0.25) .300±.010 (7.62±0.25) INDEX AREA .900±.010 .010+.004 (22.86±0.25) (0.25 + 0.10) - 0.05).055(1.40)MAX 200(5.08)MAX .018+.005 .134+.016 (3.40+0.41) (0.46+0.13) .100±.010 .032(0.81) (2.54 ± 0.25) .032±.015 (0.81±0.38) REF .047±.010 (1.20 ± 0.25) .800(20.32)REF Dimensions in inches (millimeters). © 1989 FUJITSU LIMITED D18018S-1C

PACKAGE DIMENSIONS (Continued)

2-65

(Suffix: -PJ) 26-LEAD PLASTIC LEADED CHIP CARRIER (SOJ-26) (CASE No.: LCC-26P-M04) 140(3.55) MAX. * .675±.005 .089(2.25) NOM. (17.15 ± 0.13) .025(0.64) MIN. 26 (22) 1 1 .332±.005 (8.43±0.13) 268±.020 .300(7.62) (6.81±0.51) INDEX NOM Q (5) (13) LEAD No.① .100(2.54) .050±.005 (1.27 ± 0.13) TYP .600(15.24) REF. Details of "A" part .032(0.81) MAX 'A .098(2.50) NOM. ŧ $.017 \pm .004$.004(0.10) (0.43±0.10) NOTE: 1. *: This dimension includes resin protrusion. (Each side: .006(0.15)MAX) 2 Atthough this package has 20 leads only, its pin positions are the same as that that of 26 lead package. © 1990 FUJITSU LIMITED C26054S-1C

PACKAGE DIMENSIONS (Continued)

2-67

(Suffix: -PFTN) 24-LEAD PLASTIC FLAT PACKAGE (CASE No.: FPT-24P-M04) Details of "A" part .006 (0.15) MAX LEAD No. Q .014 (0.35) INDEX MAX .006 (0.15) .010 (0.25) .630±.008 (16.00 ± 0.20) .236±.008 (6.00±0.20) $.567 \pm .008$.006±.002 .217 (5.50) (14.40 ± 0.20) (0.15 ± 0.05) REF .047 (1.20) MAX (SEATED HEIGHT) .0197 (0.50) \bigcirc .004 (0.10) TYP 0 (0) MIN (STAND OFF) 591±.008 .020±.004 .008±.004 (0.20±0.10) .003 (0.08) 🕅 (15.00 ± 0.20) (0.50 ± 0.10) Dimensions in © 1990 FUJITSU LIMITED F24020S-2C inches (millimeters)

PACKAGE DIMENSIONS (Continued)

2

(Suffix: -PFTR) 24-LEAD PLASTIC FLAT PACKAGE (CASE No.: FPT-24P-M05) Details of "A" part .006 (0.15) LEAD No. (1) MAX ō, .014 (0.35) MAX INDEX .010 (0.25) .006 (0.15) .008±.004 (0.20±0.10) ① .003(0.08) @ .591±.008 .020±.004 (15.00±0.20) (0.50±0.10) 0 (0) MIN (STAND OFF) .0197 (0.50) .004 (0.10) \Box TYP .047 (1.20) MAX (SEATED HEIGHT) ÅÅNNN .217 (5.50) $.006 \pm .002$ 567±.008 (0.15 ± 0.05) REF (14.40±0.20) .236±.008 .630±.008 (6.00 ± 0.20) (16.00±0.20) Dimensions in © 1990 FUJITSU LIMITED F24021S-2C inches (millimeters)

PACKAGE DIMENSIONS (Continued)

2-69

MB81C1000A-70L/-80L/-10L

CMOS 1,048,576 BIT FAST PAGE MODE DYNAMIC RAM

CMOS 1M x 1 Bit Fast Page Mode DRAM

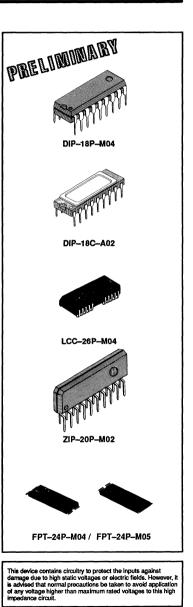
The Fujitsu MB81C1000A is a CMOS, fully decoded dynamic RAM organized as 1,048,576 words x 1 bit. The MB81C1000A has been designed for mainframe memories, buffer memories, peripheral storage and memory systems of battery operated computers requiring very low power dissipation.

Fujitsu's advanced three-dimensional stacked capacitor cell technology gives the MB81C1000A high α -ray soft error immunity and extended refresh time. CMOS technology is used in the peripheral circuits to provide low power dissipation and high speed operation.

Features

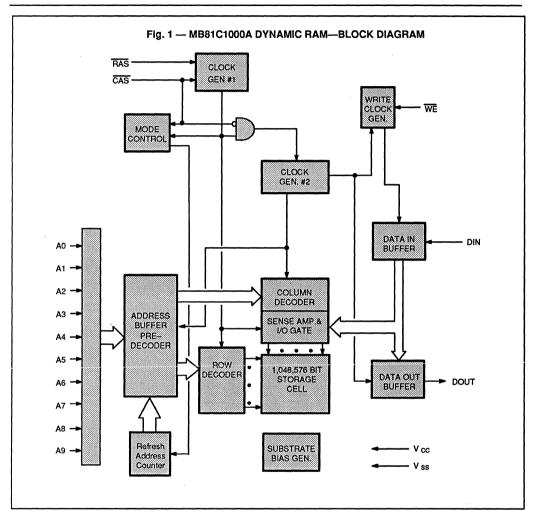
Parameter	MB81C1000A -70L	MB81C1000A -80L	MB81C1000A -10L
RAS Access Time	70 ns max.	80 ns max.	100 ns max.
Random Cycle Time	140 ns min.	155 ns min.	180 ns min.
Address Access Time	35 ns max.	40 ns max.	50 ns max.
CAS Access Time	20 ns max.	20 ns max.	25 ns max.
Fast Page Mode Cycle Time	50 ns min.	55 ns min.	65 ns min.
Low Power Dissipation Operating Current 	374 mW max.	341 mW max.	297 mW max.
 Standby Current 	5.5 mW max. (T	FL level)/1.4 mW m	ax. (CMOS level)

- 1,048,576 words x 1 bit organization
- Silicon gate, CMOS, 3D–Stacked Capacitor Cell
- All input and output are TTL compatible
- 512 refresh cycles every 64 ms
- Common I/O capability by using early write

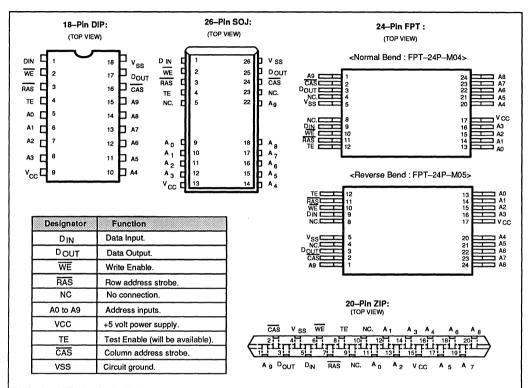

Absolute Maximum Ratings (See Note)

Parameter		Symbol	Value	Unit
Voltage at any pin relative to V	SS	VIN, VOUT	-1 to +7	ν
Voltage of V _{CC} supply relative t	o V _{SS}	V _{CC}	-1 to +7	v
Power Dissipation		PD	1.0	w
Short Circuit Output Current		_	50	mA
Storage Temperature	Ceramic	T _{STG}	-55 to +150	°C
	Plastic		-55 to +125	

Note: Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operation sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


Copyright C 1990 by FUJITSU LIMITED and Fujitsu Microelectronics, Inc.

- RAS only, CAS-before-RAS, or Hidden Refresh
- Fast Page Mode, Read-Modify-Write capability
- On-chip substrate bias generator for high performance


ISU

FU

CAPACITANCE (T_A= 25°C, f = 1MHz)

Parameter	Symbol	Түр	Max	Unit
Input Capacitance, A0 to A9, D _{IN}	C _{IN1}	_	5	ρF
Input Capacitance, RAS, CAS, WE	C _{IN2}	_	5	рF
Output Capacitance, D OUT	С _{оит}		6	ρĖ

PIN ASSIGNMENTS AND DESCRIPTIONS

RECOMMENDED OPERATING CONDITIONS

Parameter	Notes	Symbol	Min	Тур	Мах	Unit	Amblent Operating Temp
Supply Veltere	Ē	V _{CC}	4.5	5.0	5.5	V	
Supply Voltage	Ľ	V _{SS}	0	0	0	v	
Input High Voltage, all inputs	1	VIH	2.4	_	6.5	v	0 °C to +70 °C
Input Low Voltage, all inputs	1	VIL	-2.0		0.8	v	

FUNCTIONAL OPERATION

ADDRESS INPUTS

Twenty input bits are required to decode any one of 1,048,576 cell addresses in the memory matrix. Since only ten address bits are available, the column and row inputs are separately strobed by CAS and TAS as shown in Figure 1. First, nine row address bits are input on pins A0-through-A9 and latched with the row address strobe (FAS) then, ten column address bits are input and latched with the column address strobe(TAS). Both row and column addresses must be stable on or before the falling edge of CAS and TAS, respectively. The address latches are of the flow-through type; thus, address information appearing after tstrat (min)+ tr is automatically treated as the column address.

WRITE ENABLE

The read or write mode is determined by the logic state of WE. When WE is active Low, a write cycle is initiated; when WE is High, a read cycle is selected. During the read mode, input data is ignored.

DATA INPUT

Data is written into the MB81C1000A during write or read-modify-write cycle. The input data is strobed and latched by the later falling edge of CAS or WE. In an early write cycle, data input is strobed by CAS, and set up and hold times are referenced to CAS. In a delayed write or read-modify-write cycle, WE is set low after CAS. Thus, data input is strobed by WE, and set up and hold times are referenced to WE.

DATA OUTPUT

The three-state buffers are TTL compatible with a fanout of two TTL loads. Polarity of the output data is identical to that of the input; the output buffers remain in the high-impedance state until the column address strobe goes Low. When a read or read-modify-write cycle is executed, valid outputs are obtained under the following conditions:

- tRAC : from the falling edge of RAS when tRCD (max) is satisfied.
- tCAC : from the falling edge of CAS when tRCD is greater than tRCD, tRAD (max).
- tAA : from column address input when tRAD is greater then tRAD (max).

DC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted)

Parame	ter Notes	Symbol	Conditions		Values		Unit
				Min	Тур	Max	onn
Output high voltage		V _{он}	IOH = -5 mA	2.4	-		v
Output low voltage		V _{OL}	IOL = 4.2 mA			0.4	
Input leakage current	(any input)	Ι _{((L)}	$0V \le VIN \le 5.5V;$ $4.5V \le VCC \le 5.5V;$ VSS=0V; All other pins not under test =0V	-10	-	10	μA
Output leakage current	:	l _{O(L)}	$0V \leq VOUT \leq 5.5V;$ Data out disabled	-10		10	
Operating current	MB81C1000A70L					68	
(Average power supply current) 2	MB81C1000A-80L	ICC1	RAS & CAS cycling; t _{BC} = min			62	mA
	MB81C1000A-10L					54	
Standby current	TTL level	ICC 2	RAS=CAS=VIH			1.0	
(Power supply current)	CMOS level	100 2	RAS=CAS ≥ VCC-0.2V	_	_	0.25	mA
	MB81C1000A-70L		68		68		
Refresh current #1 (Average power	MB81C1000A-80L	ICC 3	CAS=VIH, RAS cycling; t _{BC} = min		-	62	mA
supply current) 2	MB81C1000A10L		Cycling, t _{RC} = min	i		54	
	MB81C1000A-70L					55	
Fast Page Mode current	MB81C1000A-80L	ICC₄	RAS = VIL, CAS cycling; t _{PC} = min	-	-	50	mA
	MB81C1000A-10L					43	
Refresh current	MB81C1000A-70L		RAS cycling ;			68	
#2 (Average power	MB81C1000A-80L	ICC 5	CAS-before-RAS; t _{BC} = min	-	-	62	mA
supply current) 2	MB81C1000A-10L					54	
Battery Back up	MB81C1000A-70L		RAS cycling ; CAS-before-RAS ;				
current Average power	MB81C1000A-80L		$t_{RC} = 125 \ \mu s, t_{RAS} = min.$ to 1 $\ \mu s, \ D_{OUT} = open.$	-	-	250	μ۸
supply current)	MB81C1000A-10L		Other pin \geq Vcc-0.2V or \leq 0.2V				

Notes 3

AC CHARACTERISTICS

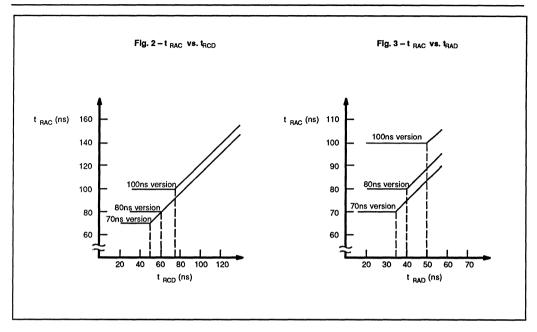
(At recommended operating conditions unless otherwise noted.) Notes 3, 4, 5

	recommended operating conditio		MB81	C1000A	MB81	C1000A BOL	MB81	C1000A	
No.	Parameter Notes	Symbol	/ Min	OL Max	- Min	Max	 Min	IOL Max	Unit
1	Time Between Refresh	t _{REF}	-	64	—	64	-	64	ms
2	Random Read/Write Cycle Time	t _{RC}	140	—	155		180	-	ns
3	Read-Modify-Write Cycle Time	t _{RWC}	160	_	180		210	-	ns
4	Access Time from RAS 6,9	t _{RAC}	-	70		80	_	100	ns
5	Access Time from CAS [7,9]	t _{cac}	-	20		20	-	25	ns
6	Column Address Access Time 8,9	t _{AA}	-	35	-	40	_	50	ns
7	Output Hold Time	t _{он}	0	—	0		0	-	ns
8	Output Buffer Turn on Delay Time	t _{on}	0		0	. —	0		ns
9	Output Buffer Turn off Delay Time 10	t _{off}		15	_	20	-	25	ns
10	Transition Time	t _T	2	50	2	50	2	50	ns
11	RAS Precharge Time	t _{RP}	60	—	65		70		ns
12	RAS Pulse Width	t _{RAS}	70	100000	80	100000	100	100000	ns
13	RAS Hold Time	t _{RSH}	20	_	20		25	_	ns
14	CAS to FAS Precharge Time	t _{CRP}	0	_	0	—	0	_	ns
15	RAS to CAS Delay Time 11,12	t _{RCD}	20	50	22	60	25	75	'ns
16	CAS Pulse Width	t _{cas}	20	—	20		25		ns
17	CAS Hold Time	t _{сsн}	70	_	80		100	—	ns
18	CAS Precharge Time (C–B–R cycle) 17	t _{CPN}	20	—	20		20	—	ns
19	Row Address Set Up Time	t _{ASR}	0	—	0		0	_	ns
20	Row Address Hold Time	t _{RAH}	10		12	-	15		ns
21	Column Address Set Up Time	t _{ASC}	0		0	-	0	_	ns
22	Column Address Hold Time	t _{cah}	12		15	_	15	—	ns
23	RAS to Column Address Delay Time 13	t _{RAD}	15	35	17	40	20	50	ns
24	Column Address to RAS Lead Time	t _{RAL}	35		40	-	50	-	ns
25	Read Command Set Up Time	t _{RCS}	0		0	-	0	-	ns
26	Read Command Hold Time 14 Referenced to RAS	t _{RRH}	0	_	0		0	_	ns
27	Read Command Hold Time Referenced to CAS	t _{RCH}	o		0		0		'ns
28	Write Command Set Up Time 15	t _{wcs}	0		0		0		ns
29	Write Command Hold Time	t _{wcн}	10		12		15	—	ns
30	WE Pulse Width	t _{WP}	10		12	-	15		ns
31	Write Command to RAS Lead Time	t _{RWL}	15	_	20		25		ns
32	Write Command to CAS Lead Time	t _{cwL}	12		15		20	_	ns
33	DIN Set Up Time	t _{DS}	0	_	0		0		ns
34	DIN Hold Time	t _{DH}	10	-	12	-	15	-	ns

AC CHARACTERISTICS (Continued)

(At recommended operating conditions unless otherwise noted.) Notes 3, 4, 5

No.	Parameter	Notes	Symbol		C1000A 0L		C1000A 30L		C1000A 10L	Unit
			.,	Min	Max	Min	Max	Min	Мах	Unit
35	RAS to WE Delay Time	15	t _{RWD}	70		80	-	100	—	ns
36	CAS to WE Delay Time	15	t _{cwD}	20	_	20	-	25		ns
37	Column Address to WE Delay Time	15	t _{AWD}	35		40		50	—	ns
38	RAS Precharge Time to CAS Active Time (Refresh Cycles)		t rpc	0	—	0	—	0		ns
39	CAS Set Up Time for CAS-before – RAS Refresh		t csr	0	—	0	—	0	—	ns
40	CAS Hold Time for CAS-before - RAS Refresh		t chr	10		12		15		ns
50	Fast Page Mode Read/Write Cycle Time		t pc	50	—	55		65	_	ns
51	Fast Page Mode Read–Modify– Write Cycle Time		t prwc	67	-	75	_	90	—	ns
52	Access Time from CAS Precharge	9,16	t cpa	_	45	_	50	_	60	ns
53	Fast Page Mode CAS Precharge Time		t cp	10	_	10	_	10		ns

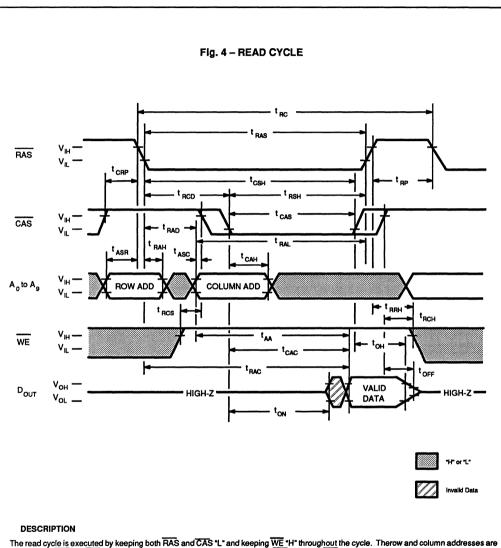

- Notes: 1. Referenced to VSS
 - Icc depends on the output load conditions and cycle rates; The 2. specified values are obtained with the output open Icc depends on the number of address change as $\overline{RAS} = V_{IL}$ and

CAS = VIH. Icc1, Icc3 and Icc5 are specified at three time of address change during $\overline{RAS} = VIL and \overline{CAS} = VIH.$

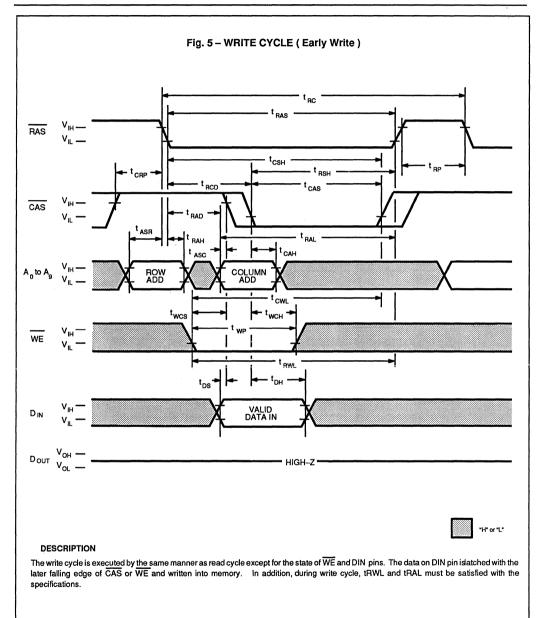
Icc4 is specified at one time of address change during RAS = VIL and CAS = VIH.

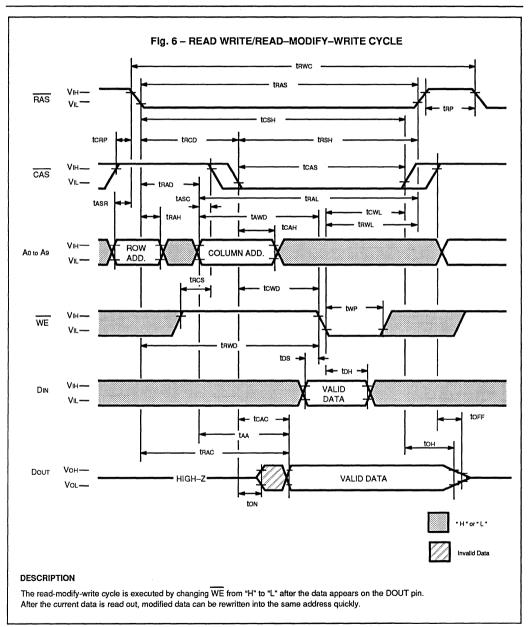
- 3. An Initial pause (RAS = CAS = VIH) of 200µs is required after power-up followed by any eight RAS -only cycles before proper device operation is achieved. In case of using internal refresh counter, a minimum of eight CAS -before-RAS initialization cycles instead of 8 RAS cycles are required.
- AC characteristics assume tr = 5ns.
- 5. V_{IH} (min) and V_{IL} (max) are reference levels for measuring timing of input signals. Also transition times are measured between V_{IH} (min) and V_{IL} (max).
- 6. Assumes that $t_{RCD} \leq t_{RCD}$ (max), $t_{RAD} \leq t_{RAD}$ (max). If t_{RCD} is greater than the maximum recommended value shown in this table. tRAC will be increased by the amount that tRCD exceeds the value shown. Refer to Fig. 2 and 3.
- 7. If tRCD \geq tRCD (max), tRAD \geq tRAD (max), and tASC \geq tAA tCAC t T, access time is tCAC.
- 8. If $t_{RAD} \ge t_{RAD}$ (max) and $t_{ASC} \le t_{AA} t_{CAC} t_T$, access time is t AA
- Measured with a load equivalent to two TTL loads and 100 pF. 9
- toFF and toEz is specified that output buffer change to high 10. impedance state.

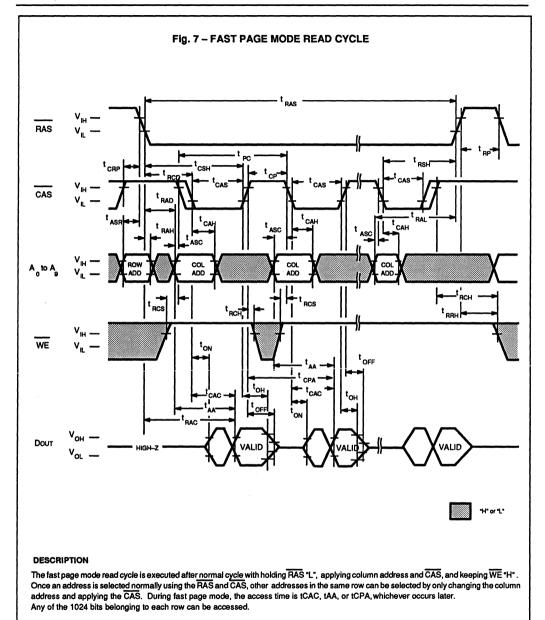
- 11. Operation within the tRCD (max) limit ensures that tRAC (max) can be met. tRCD (max) is specified as a reference point only; if tRCD is greater than the specified tRCD (max) limit, access time is controlled exclusively by tCAC or t AA
- 12. t_{RCD} (min) = t_{RAH} (min)+ $2t_T$ + t_{ASC} (min).
- 13. Operation within the tRAD (max) limit ensures that tRAC (max) can be met. tRAD (max) is specified as a reference point only; if tRAD is greater than the specified tRAD (max) limit, access time is controlled exclusively by tCAC or t AA
- 14. Either tRRH or tRCH must be satisfied for a read cycle.
- 15. t wcs., t cwp., t, Rwp and tawp are not a restrictive operating parameter. They are included in the data sheet as an electrical characteristic only. If twcs > t wcs (min), the cycle is an early write cycle and Dout pin will maintain high impedance state thoughout the entire cycle. If t cwp > t cwp (min), t Rwp > t RWD (min), and t AWD > t AWD (min), the cycle is a read modify-write cycle and data from the selected cell will apper at the Dout pin. If neither of the above conditions is satisfied, the cycle is a delayed write cycle and invalid data will appear the Dout pin, and write operation can be exected by satisfying tawe, t CWL , and tRAL specifications.
- 16 tCPA is access time from the selection of a new column address (that is caused by changing CAS from "L" to "H"). Therefore, if tCP is long, tCPA is longer than tCPA (max).
- Assumes that CAS -before- RAS refresh, CAS -before-RAS 17. refresh counter test cycle only.

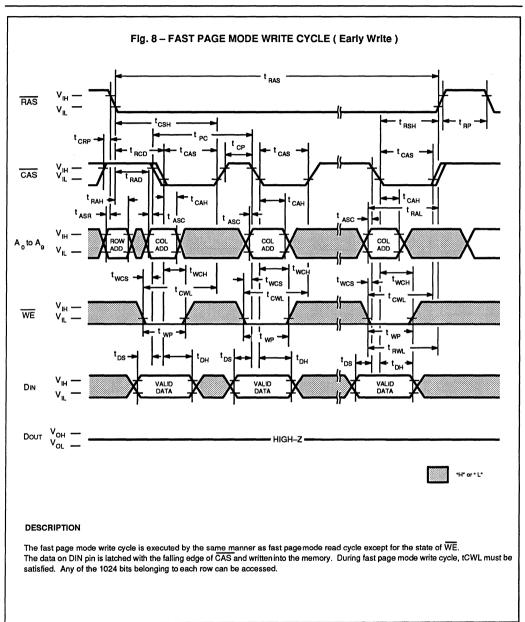


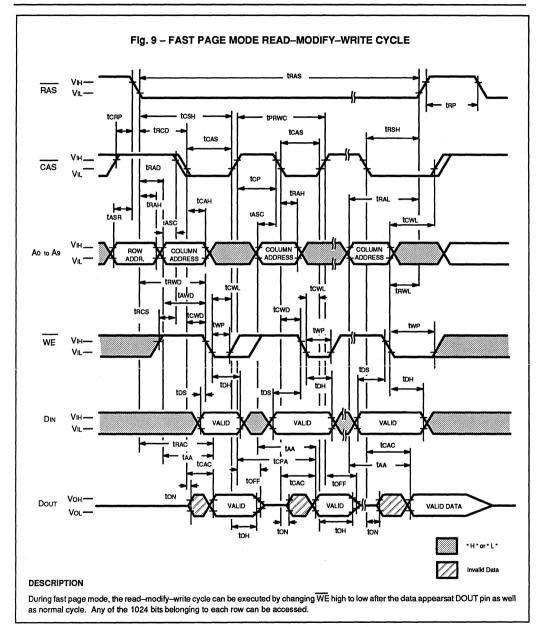
FUNCTIONAL TRUTH TABLE

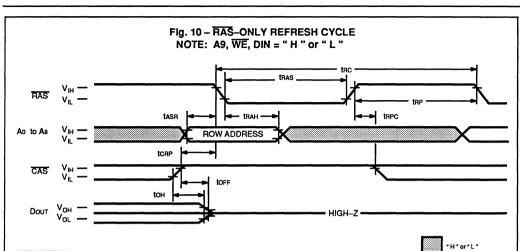

Operation Mode	Clock Input			Address Input		Data			
	RAS	CAS	WE	Row	Column	Input	Output	Refresh	Note
Standby	н	н	x	-	-	-	High-Z	-	
Read Cycle	L	L	н	Valid	Valid	-	Valid	Yes *1	$t_{RCS} \ge t_{RCS}$ (min)
Write Cycle (Early Write)	L	L	L	Valid	Valid	Valid	High-Z	Yes *1	t _{wcs≥} t _{wcs} (min)
Read–Modify–Write Cycle	L	L	H→L	Valid	Valid	X → Valid	Valid	Yes *1	$t_{CWD} \ge t_{CWD}$ (min)
RAS-only Refresh Cycle	L	н	x	Valid			High-Z	Yes	
CAS-before-RAS Refresh Cycle	L	L	x	_	-		High-Z	Yes	$t_{CSR} \ge t_{CSR}$ (min)
Hidden Refresh Cycle	H→L	L	x	-	-	_	Valid	Yes	Previous data is kept

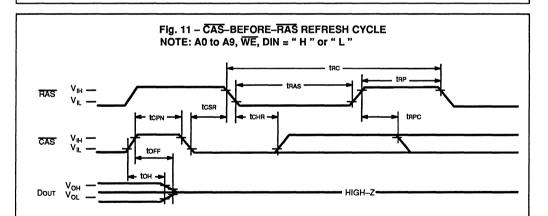

Notes:


X : "H" or "L" *1: It is impossible in Fast Page Mode.



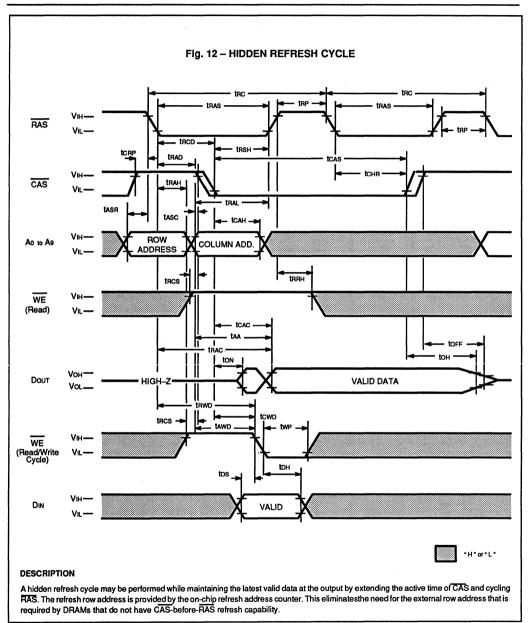

The read cycle is executed by keeping both FAS and CAS "L" and keeping <u>WE</u>"H" throughout the cycle. I herow and column addresses are latched with RAS and CAS, respectively. The data output remains valid with CAS "L", i.e., if CAS goes "H", the data <u>becomes invalid</u> after tOH is satisfied. The access time is determined by RAS (IRAC), CAS (ICAC), or Column address input (IAA). If IRCD (RAS to CAS delay time) is greater than the specification, the access time is IAA.

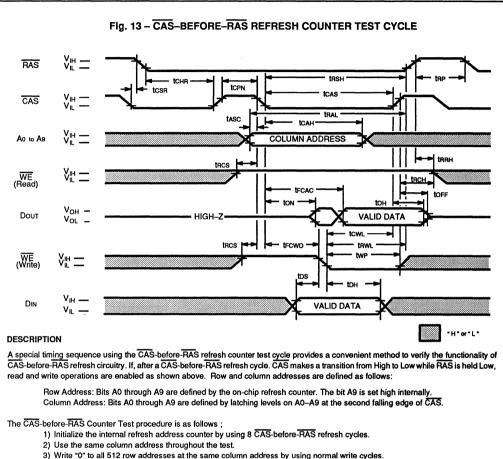




DESCRIPTION

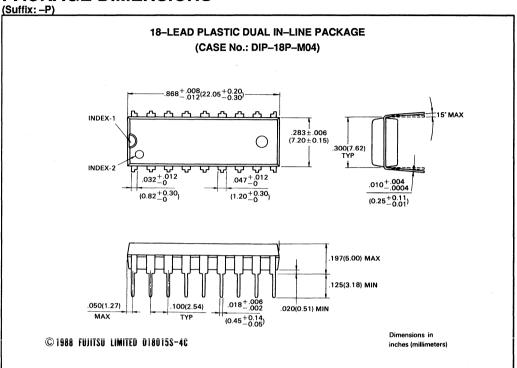
Refresh of RAM memory cells is accomplished by performing a read, a write, or a read-modify-write cycleat each of 512 row addresses every 8.2-milliseconds. Three refresh modes are available: RAS-only refresh, CAS-before-RAS refresh, and hidden refresh.


RAS-only refresh is performed by keeping RAS Low and CAS High throughout the cycle; the row address to be refreshed is latched on the falling edge of RAS. During RAS-only refresh, Dout pin is kept in a high-impedance state.

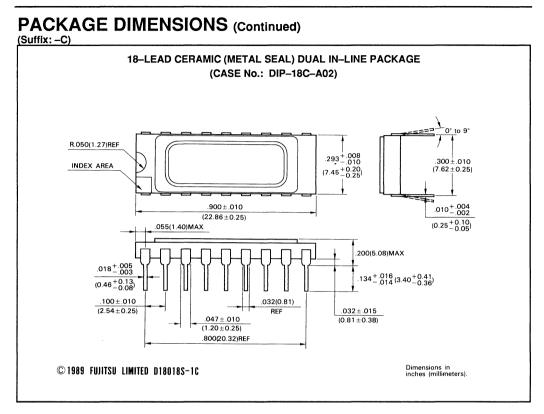

DESCRIPTION

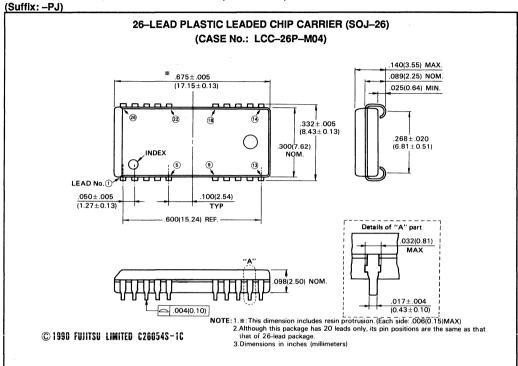
CAS-before-RAS refresh is an on-chip refresh capability that eliminates the need for external refresh addresses. If CAS is held Low for the specified setup time (tcsR) before RAS goes Low, the on-chip refresh control clock generators and refresh address counter are enabled. An internal refresh operation automatically occurs and the refresh address counter is internally incremented in preparation for the next CAS-before-RAS refresh operation.

MB81C1000A-70L MB81C1000A-80L MB81C1000A-10L

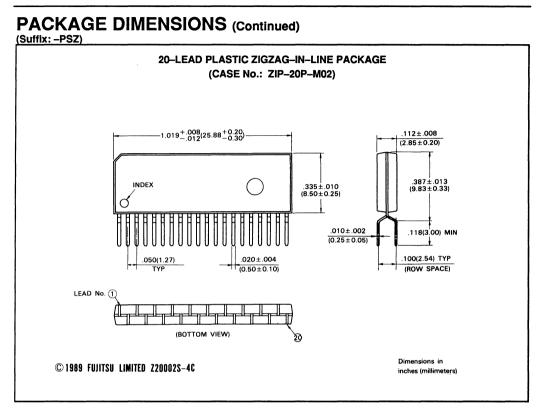


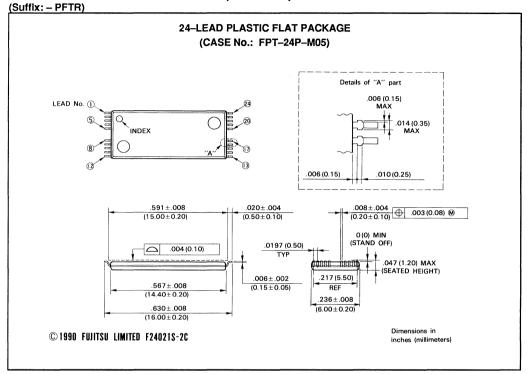
MB81C1000A-70L MB81C1000A-80L MB81C1000A-10L


- write of to an 512 row addresses at the same colorin address by using hormal write cycles.
 Read "0" written in procedure 3) and check; simultaneously write "1" to the same addresses by using CAS-before-RAS refresh
- 4) Read of whitem in proceeding s) and creek, simultaneously while in to the same addresses by dsing CAS-bender-AAS remest counter test (read-modify-write cycles). Repeat this procedure 512 times with addresses generated by the internal refresh address counter.
- 5) Read and check data written in procedure 4) by using normal read cycle for all 512 memory locations.
- 6) Complement test pattern and repeat procedures 3), 4), and 5).


			(A1	recommen	ded operati	ng conditio	ns unless o	otherwise no	ted.)	
No.	n	0 - 1 •	MB81C1000A MB81C1000A MB81C1000A -70L -80L -10L							
INO.	Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	
90	Access Time from CAS	t _{FCAC}	_	45		50	_	60	ns	
91	CAS to WE Delay Time	t _{FCWD}	45	-	50	— ·	60		ns	
	Note . Assumes that CAS-before-RAS refresh counter test cycle only.									

PACKAGE DIMENSIONS


MB81C1000A-70L MB81C1000A-80L MB81C1000A-10L


PACKAGE DIMENSIONS (Continued)

MB81C1000A-70L MB81C1000A-80L MB81C1000A-10L

PACKAGE DIMENSIONS (Continued) (Suffix: -PFTN) 24-LEAD PLASTIC FLAT PACKAGE (CASE No.: FPT-24P-M04) Details of "A" part .006 (0.15) MAX LEAD No. 1 Q 6 .014 (0.35) INDEX MAX .006 (0.15) .010 (0.25) .630±.008 .236±.008 (16.00 ± 0.20) (6.00±0.20) .567±.008 .006±.002 .217 (5.50) (14.40±0.20) (0.15 ± 0.05) REF .047 (1.20) MAX (SEATED HEIGHT) Come unu .0197 (0.50) \frown .004 (0.10) TYP 0 (0) MIN (STAND OFF) .008±.004 (0.20±0.10) ① .003 (0.08) @ .591±.008 .020±.004 (15.00 ± 0.20) (0.50 ± 0.10) Dimensions in © 1990 FUJITSU LIMITED F24020S-2C inches (millimeters)

PACKAGE DIMENSIONS (Continued)

Dynamic RAM Data Book

DATA SHEET =

MB81C1001-70/-80/-10/-12

CMOS 1,048,576 BIT NIBBLE MODE DYNAMIC RAM

CMOS 1M x 1 Bit Nibble Mode DRAM

The Fujitsu MB81C1001 is a CMOS, fully decoded dynamic RAM organized as 1,048,576 words x 1 bit. The MB81C1001 has been designed for mainframe memories, buffer memories, and peripheral storage applications requiring high speed, low power dissipation, and compact layout.

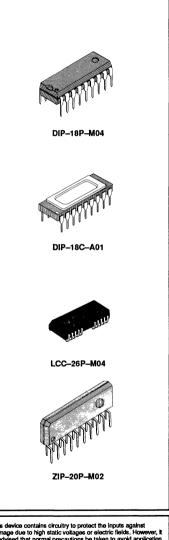
Fujitsu's advanced three-dimensional stacked capacitor cell technology gives the MB81C1001 high α -ray soft error immunity. CMOS technology is used in the peripheral circuits to provide low power dissipation and high speed operation.

This specification applies to the BC die revision that was developed to realize faster access time. Faster speed versions (70 and 80 ns) are available on this chip.

Features

Parameter	MB81C1001 -70	MB81C1001 -80	MB81C1001 -10	MB81C1001 -12				
RAS Access Time	70 ns max.	80 ns max.	100 ns max.	120 ns max.				
Random Cycle Time	140 ns min.	155 ns min.	180 ns min.	210 ns min.				
Address Access Time	43 ns max.	45 ns max.	50 ns max.	60 ns max.				
CAS Access Time	25 ns max.	25 ns max.	25 ns max.	35 ns max.				
Nibble Mode Cycle Time	50 ns min.	50 ns min.	55 ns min.	60 ns min.				
Low Power Dissipation Operating Current 	413 mW max.	385 mW max.	330 mW max.	275 mW max.				
Standby Current 11 mW max. (TTL level)/5.5 mW max. (CMOS level)								

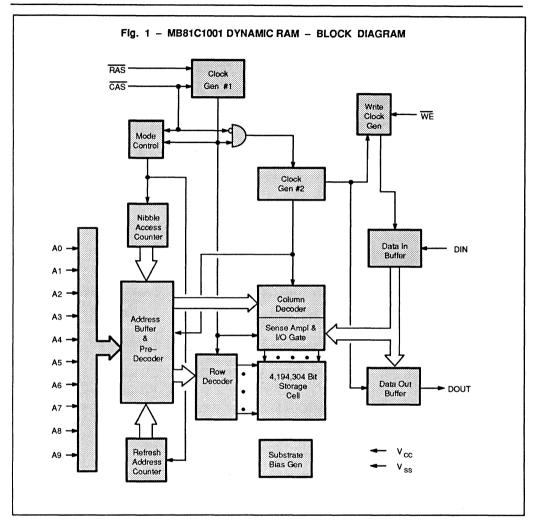
- 1,048,576 words x 1 bit organization
- Silicon gate, CMOS, 3D–Stacked Capacitor Cell
- All input and output are TTL compatible
- 512 refresh cycles every 16.4 ms
- Common I/O capability by using early write


Absolute Maximum Ratings (See Note)

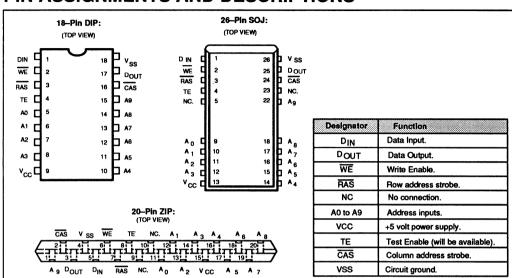
Parameter		Symbol	Value	Unit
Voltage at any pin relative to V	ss	V _{IN,} V _{OUT}	-1 to +7	v
Voltage of V _{CC} supply relative	to V _{SS}	Vcc	-1 to +7	v
Power Dissipation	PD	1.0	w	
Short Circuit Output Current		_	50	mA
Storage Temperature	Ceramic	T _{STG}	-55 to +150	°C
	Plastic		-55 to +125	

Note: Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operation sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Copyright C 1990 by FUJITSU LIMITED and Fujitsu Microelectronics, Inc.


- RAS only, CAS-before-RAS, or Hidden Refresh
- Nibble Mode, Read-Modify-Write capability
- On-chip substrate bias generator for high performance

FL


This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

2-95

CAPACITANCE (T_A = 25°C, f = 1MHz)

Parameter	Symbol	Тур	Max	Unit
Input Capacitance, A0 to A9, D _{IN}	C _{IN1}		5	pF
Input Capacitance, RAS, CAS, WE	C IN2	—	5	ρF
Output Capacitance, D OUT	Cout		5	pF

PIN ASSIGNMENTS AND DESCRIPTIONS

RECOMMENDED OPERATING CONDITIONS

Parameter	Notes	Symbol	Min	Тур	Max	Unit	Amblent Operating Temp
Supely Veltere	5	V _{CC}	4.5	5.0	5.5	v	
Supply Voltage	Ľ	V _{SS}	0	0	0	v	
Input High Voltage, all inputs	1	VIH	2.4	_	6.5	v	0 °C to +70 °C
Input Low Voltage, all inputs	1	VIL	-2.0	-	0.8	v	

FUNCTIONAL OPERATION

ADDRESS INPUTS

Twenty input bits are required to decode any one of 1,048,576 cell addresses in the memory matrix. Since only ten address bits are available, the column and row inputs are separately strobed by CAS and TAS as shown in Figure 1. First, nine row address bits are input on pins A0-through-A9 and latched with the row address strobe (TAS) then, ten column address bits are input and latched with the column address strobe (TAS). Both row and column addresses must be stable on or before the falling edge of CAS and TAS, respectively. The address latches are of the flow-through type; thus, address information appearing after tray. (min)+ tr is automatically treated as the column address.

WRITE ENABLE

The read or write mode is determined by the logic state of WE. When WE is active Low, a write cycle is initiated; when WE is High, a read cycle is selected. During the read mode, input data is ignored.

DATA INPUT

Data is written into the MB81C1001 during write or read-modify-write cycle. The input data is strobed and latched by the later falling edge of CAS or WE. In an early write cycle, data input is strobed by CAS, and set up and hold times are referenced to CAS. In a delayed write or read-modify-write cycle, WE is set low after CAS. Thus, data input is strobed by WE, and set up and hold times are referenced to WE.

DATA OUTPUT

The three-state buffers are TTL compatible with a fanout of two TTL loads. Polarity of the output data is identical to that of the input; the output buffers remain in the high-impedance state until the column address strobe goes Low. When a read or read-modify-write cycle is executed, valid outputs are obtained under the following conditions:

- tRAC: from the falling edge of RAS when tRCD (max) is satisfied.
- tCAC : from the falling edge of CAS when tRCD is greater than tRCD, tRAD (max).
- tAA : from column address input when tRAD is greater then tRAD (max).

DC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted)

Notes 3

	ar Notes		A		Values		Unit
Parame		Symbol	Conditions	Min	Тур	Max	Unit
Output high voltage		V _{он}	IOH = -5 mA	2.4		_	v
Output low voltage		V _{OL}	IOL = 4.2 mA	-		0.4	
Input leakage current (any input)		۱ _{((L)}	$\begin{array}{llllllllllllllllllllllllllllllllllll$	-10	-	10	μA
Output leakage current		I _{O(L)}	$0V \leq VOUT \leq 5.5V;$ Data out disabled	-10	-	10	
	MB81C1001-70					75	
Operating current (Average power	MB81C1001-80		RAS & CAS cycling;	_		70	mA
supply current) 2	MB81C1001-10	1001	t _{RC} = min			60	
	MB81C1001-12					50	
Standby current	TTL level	100	RAS=CAS=VIH			2.0	mA
(Power supply current)	CMOS level	ICC 2	$\overline{RAS} = \overline{CAS} \ge VCC - 0.2V$	_	_	1.0	ma
	MB81C1001-70			_	-	70	mA
Refresh current	MB81C1001-80	ICC 3	CAS=VIH, RAS			65	
#1 (Average power supply current) 2	MB81C1001-10	1003	cycling; t _{RC} = min			55	
	MB81C1001-12					45	
	MB81C1001-70					45	
Nibble Mode	MB81C1001-80	ICCA	RAS = VIL, CAS			45	
current 2	MB81C1001-10	1004	cycling; t _{NC} = min	_	_	35	mA
	MB81C1001-12					25	
B ()	MB81C1001-70		RAS cycling :			70	
Refresh current #2 (Average power	MB81C100180	ICC 5	CAS-before-RAS;			65	mA
supply current)		1005	t _{RC} = min		-	55	
	MB81C1001-12					45	

AC CHARACTERISTICS

(At recommended operating conditions unless otherwise noted.) Notes 3, 4, 5

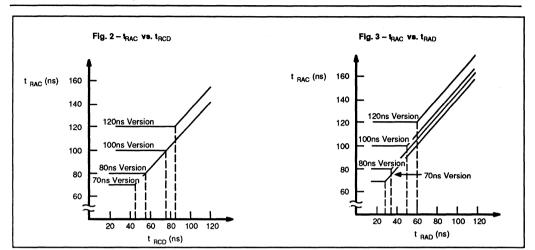
	recommended operating conditio		MB81C		****************	1001-80		1001-10	MB81C	001-12	
No.	Parameter Notes	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit
1	Time Between Refresh	t _{REF}		8.2	-	8.2	-	8.2	-	8.2	ms
2	Random Read/Write Cycle Time	t _{RC}	140	-	155		180	—	210	-	ns
3	Read-Modify-Write Cycle Time	t _{RWC}	167	—	182	-	210	—	245	—	ns
4	Access Time from RAS 6,9	t _{RAC}	-	70		80	-	100	-	120	ns
5	Access Time from CAS 7,9	t _{CAC}		25	-	25		25		35	ns
6	Column Address Access Time 8,9	t _{AA}		43	_	45		50	_	60	ns
7	Output Hold Time	t _{он}	7	—	7	—	7	—	7	—	ns
8	Output Buffer Turn on Delay Time	t _{on}	5	-	5	-	5	-	5	-	ns
9	Output Buffer Turn off Delay Time 10	toFF	-	25	-	25	-	25	—	25	ns
10	Transition Time	t _T	3	50	3	50	3	50	3	50	ns
11	RAS Precharge Time	t _{RP}	60	—	65	—	70	-	80	-	ns
12	RAS Pulse Width	t _{RAS}	70	100000	80	100000	100	100000	120	100000	ns
13	RAS Hold Time	t _{RSH}	25	-	25	-	25	-	35	-	ns
14	CAS to RAS Precharge Time	t _{CRP}	0		0		0	-	0	_	ns
15	RAS to CAS Delay Time 11,12	t _{RCD}	20	45	22	55	25	75	25	85	ns
16	CAS Pulse Width	t _{CAS}	25		25		25		35		ns
17	CAS Hold Time	t _{CSH}	70	-	80		100	-	120	-	ns
18	CAS Precharge Time (C-B-R cycle) 17	t _{CPN}	10	_	10	-	10	-	15	-	ns
19	Row Address Set Up Time	t _{asr}	0	_	0		0	-	0		ns
20	Row Address Hold Time	t _{RAH}	10	-	12	-	15	-	15	-	ns
21	Column Address Set Up Time	t _{ASC}	0	-	0	-	0	-	0	-	ns
22	Column Address Hold Time	t _{cah}	15	_	15		15	_	20	—	ns
23	RAS to Column Address Delay Time 13	t _{RAD}	. 15	27	17	35	20	50	20	60	ns
24	Column Address to RAS Lead Time	t _{RAL}	43	-	45	-	50	-	60	-	ns
25	Read Command Set Up Time	t _{RCS}	0	-	0	—	0	-	0	—	ns
26	Read Command Hold Time 14 Referenced to RAS	t _{RRH}	0	—	0	-	0	-	o	_	ns
27	Read Command Hold Time Referenced to CAS 14	t _{RCH}	0	-	0	-	0	-	0	-	ns
28	Write Command Set Up Time 15	twcs	0		0		0		0		ns
29	Write Command Hold Time	twch	15	-	15	-	15	-	20	-	ns
30	WE Pulse Width	t _{wP}	15	_	15	-	15	-	20	-	ns
31	Write Command to RAS Lead Time	t _{RWL}	22	_	22	_	25	_	30		ns
32	Write Command to CAS Lead Time	t _{CWL}	17	_	17	_	20	_	25	_	ns
33	DIN Set Up Time	t _{DS}	0	_	0	-	0	_	0		ns
34	DIN Hold Time	t _{DH}	15	_	15	-	15		20	-	ns

AC CHARACTERISTICS (Continued)

(At recommended operating conditions unless otherwise noted.) Notes 3, 4, 5

No.	Parameter	Nee		MB81C	1001-70	MB81C1001-80		MB81C1001-10		MB81C1001-12		Unit
NO.		Notes	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Oim
35	RAS to WE Delay Time	15	t _{RWD}	70	_	80	-	100		120	—	ns
36	CAS to WE Delay Time	15	t _{CWD}	25	-	25	-	25	_	35	-	ńs
37	Column Address to WE Delay Time	15	t _{AWD}	43	—	45	-	50	_	60	_	ns
38	RAS Precharge Time to CAS Active Time (Refresh Cycles)		t rpc	0	-	0	-	0		o	—	ns
39	CAS Set Up Time for CAS-before - RAS Refresh		t csr	0		0		0	-	0	—	ns
40	CAS Hold Time for CAS-before - RAS Refresh		t chr	15	-	15	-	15	_	20	—	ns
41	Access Time from CAS (Counter Test Cycle)		t cat		43	—	45		50	-	60	ns
50	Nibble Mode Read/Write Cycle Time		t NC	45	_	45		45	_	60	—	ns
51	Nibble Mode Read–Modify– Write Cycle Time		t NRWC	67	-	67		70	—	85	—	ns
52	Access Time from CAS Precharge	9,16	t npa		40	_	40		40		55	ns
53	Nibble Mode CAS Precharge Time		t NCP	10	_	10	_	10	_	15	-	ns

Notes:

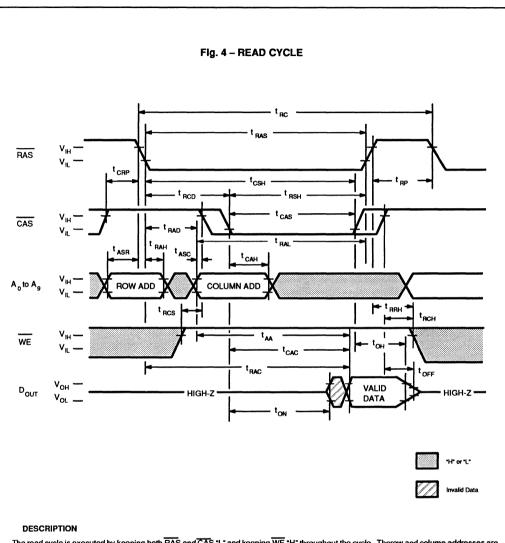

- 1. Referenced to VSS
- Icc depends on the output load conditions and cycle rates; The specified values are obtained with the output open. Icc depends on the number of address change as RAS = VIL and CAS = VIH.

lcc1, lcc3 and lccs are specified at three time of address change during \overrightarrow{RAS} = VIL and \overrightarrow{CAS} = VIH.

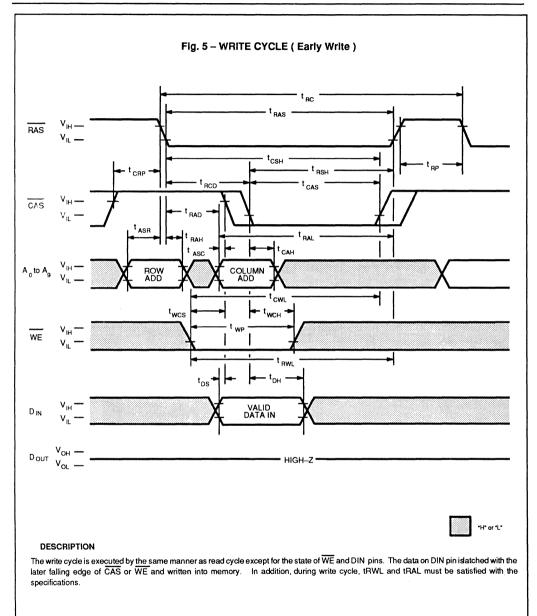
Icc4 is specified at one time of address change during $\overrightarrow{RAS} = V_{IL}$ and $\overrightarrow{CAS} = V_{IH}$.

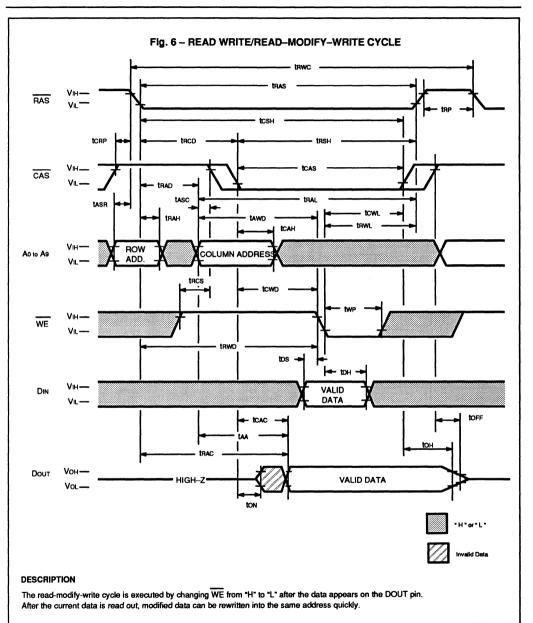
- An Initial pause (RAS =CAS =VIH) of 200µs is required after power-up followed by any eight RAS -only cycles before proper device operation is achieved. In case of using internal refresh counter, a minimum of eight CAS -before-RAS initialization cycles instead of 8 RAS cycles are required.
- 4. AC characteristics assume $t_T = 5ns$.
- V_{IH} (min) and V_{IL} (max) are reference levels for measuring timing of input signals. Also transition times are measured between V_{IH} (min) and V_{IL} (max).
- 6. Assumes that tRcD≤ tRcD (max), tRAD≤ tRAD (max). If tRcD is greater than the maximum recommended value shown in this table, tRac will be increased by the amount that tacD exceeds the value shown. Refer to Fig. 2 and 3.
- If tRCD≥tRCD (max), tRAD≥tRAD (max), and tASC≥tAA -tCAC t T, access time is tCAC.
- 8. If tRAD \geq tRAD (max) and tASC \leq tAA tCAC tT, access time is tAA.
- 9. Measured with a load equivalent to two TTL loads and 100 pF.
- toFF and toEz is specified that output buffer change to high impedance state.

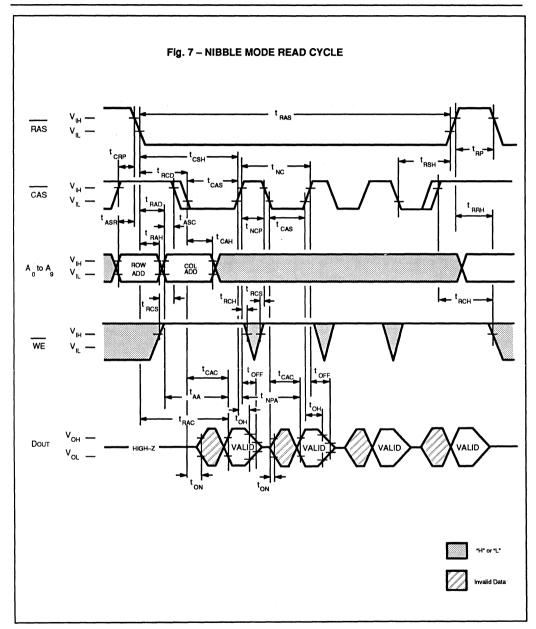
- 11. Operation within the tacb (max) limit ensures that trac (max) can be met. tacb (max) is specified as a reference point only; if tacb is greater than the specified tacb (max) limit, access time is controlled exclusively by tcac or t tak.
- 12. tRCD (min) = tRAH (min)+ 2t T + tASC (min).
- 13. Operation within the tRAD (max) limit ensures that tRAC (max) can be met. tRAD (max) is specified as a reference point only; if tRAD is greater than the specified tRAD (max) limit, access time is controlled exclusively by tCAC or t AA.
- 14. Either tRRH or tRCH must be satisfied for a read cycle.
- 15. t wcs , t cwp , t,Rwp and tawp are not a restrictive operating parameter. They are included in the data sheet as an electrical characteristic only. If twcs > t wcs (min), the cycle is an early write cycle and Dout pin will maintain high impedance state thoughout the entire cycle. If t cwp > t cwp (min), t Rwp > t Rwp (min) , and t Awp > t Awp (min), the cycle is a read modify—write cycle and data from the selected cell will apper at the Dout pin . If neither of the above conditions is satisfied, the cycle is a delayed write cycle and invalid data will appear the Dout pin , and write operation can be exected by satisfying tww_ , t cwp_ , and tak_ specifications.
- 16 t NPA is access time from the selection of a new column address (that is caused by changing CAS from "L" to "H"). Therefore, if tNCP is long, tNPA is longer than tNPA (max).
- 17. Assumes that CAS -before- RAS refresh, CAS -before-RAS refresh counter test cycle only.

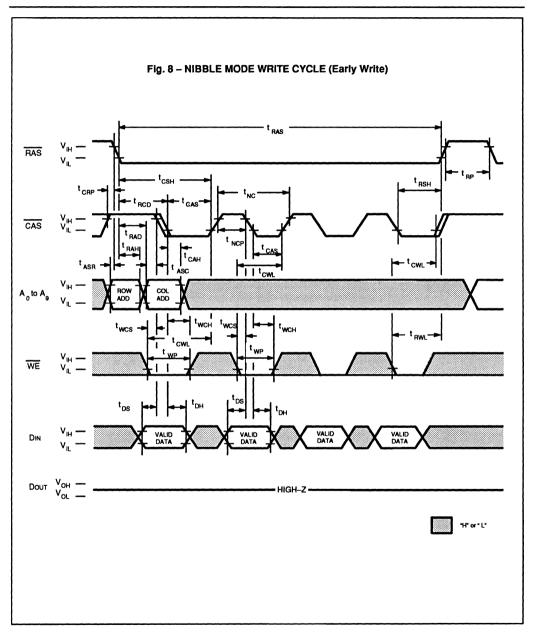


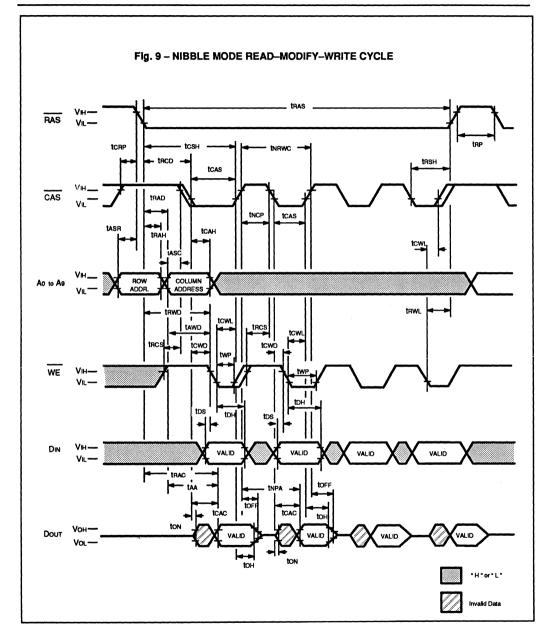
FUNCTIONAL TRUTH TABLE

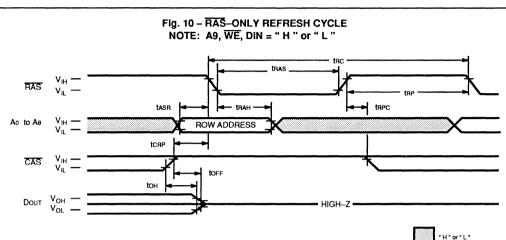

		Clock In	put	Addr	ess Input	D	eta			
Operation Mode	RAS	CAS	WE	Row	Column	Input	Output	Refresh	Note	
Standby	н	н	x	—	—	-	High-Z	_		
Read Cycle	L	L	н	Valid	Valid	_	Valid	Yes ^{*1}	t _{RCS} ≥ t _{RCS} (min)	
Write Cycle (Early Write)	L	L	L	Valid	Valid	Valid	High-Z	Yes *1	t _{wcs≥} t _{wcs} (min)	
Read-Modify-Write Cycle	L	Ŀ	H→L	Valid	Valid	X → Valid	Valid	Yes *1	t _{cwD} ≥t _{cwD} (min)	
RAS-only Refresh Cycle	L	н	x	Valid	-	-	High-Z	Yes		
CAS-before-RAS Refresh Cycle	L	L	x	-		_	High-Z	Yes	$t_{CSR} \ge t_{CSR}$ (min)	
Hidden Refresh Cycle	H→L	L	x	—	_		Valid	Yes	Previous data is kept	

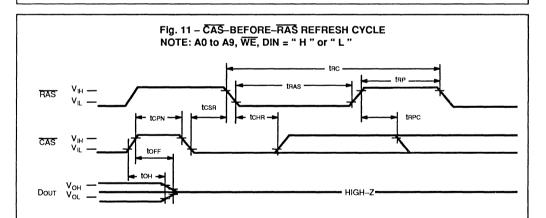

Notes:


X : "H" or "L" *1: It is impossible in Nibble Mode.

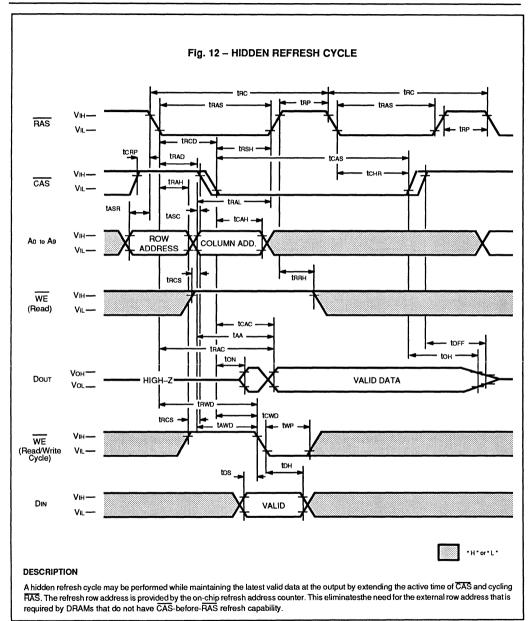


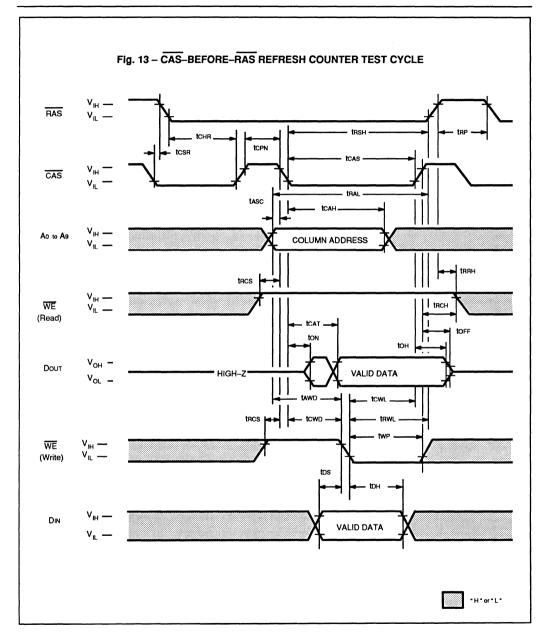

The read cycle is executed by keeping both FAS and CAS "L" and keeping WE "H" throughout the cycle. Therow and column addresses are latched with FAS and CAS, respectively. The data output remains valid with CAS "L", i.e., if CAS goes "H", the data becomes invalid after tOH is satisfied. The access time is determined by FAS (tRAC), CAS (tCAC), or Column address input (tAA). If tRCD (FAS to CAS delay time) is greater than the specification, the access time is tAA.

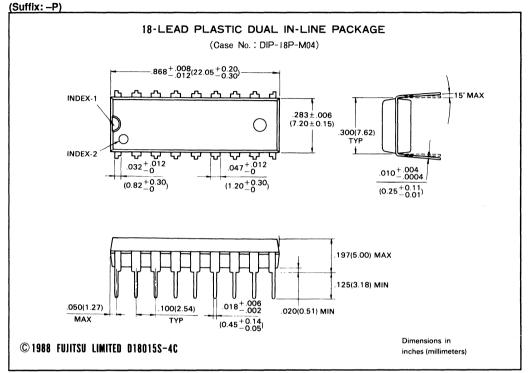


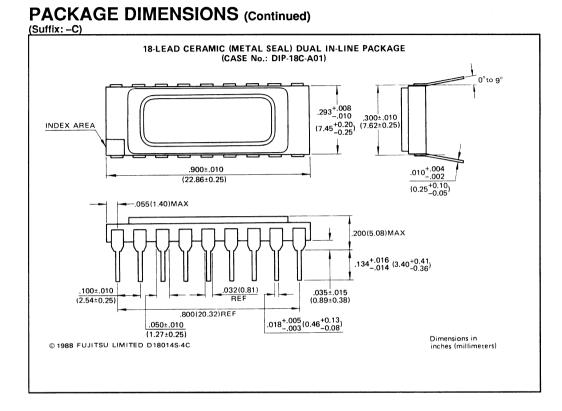


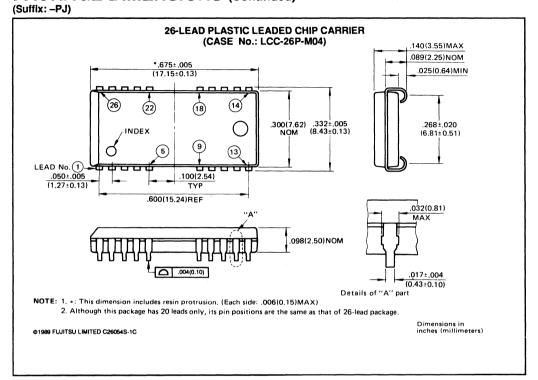
DESCRIPTION


Refresh of RAM memory cells is accomplished by performing a read, a write, or a read-modify-write cycleat each of 512 row addresses every 8.2-milliseconds. Three refresh modes are available: RAS-only refresh, CAS-before RAS refresh, and hidden refresh.

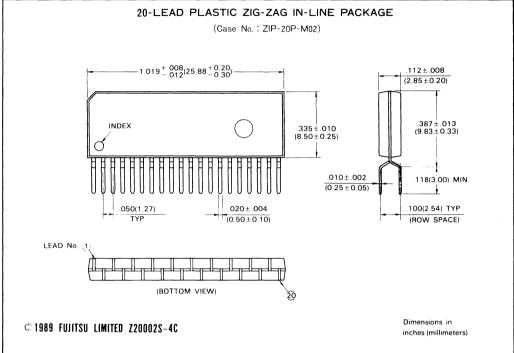

RAS-only refresh is performed by keeping RAS Low and CAS High throughout the cycle; the row address to be refreshed is latched on the falling edge of RAS. During RAS-only refresh, Dout pin is kept in a high-impedance state.


DESCRIPTION


CAS-before-RAS refresh is an on-chip refresh capability that eliminates the need for external refresh addresses. If CAS is held Low for the specified setup time (tcsR) before RAS goes Low, the on-chip refresh control clock generators and refresh address counter are enabled. An internal refresh operation automatically occurs and the refresh address counter is internally incremented in preparation for the next CAS-before-RAS refresh operation.



PACKAGE DIMENSIONS



PACKAGE DIMENSIONS (Continued)

PACKAGE DIMENSIONS (Continued) (Suffix: -PSZ)

FUĴITSU

= DATA SHEET =

MB81C1001-70L/-80L/-10L/-12L

CMOS 1,048,576 BIT NIBBLE MODE DYNAMIC RAM

RAS only, CAS-before-RAS, or

Nibble Mode, Read-Modify-Write

On-chip substrate bias generator for

Hidden Refresh

high performance

capability

CMOS 1M x 1 Bit Nibble Mode DRAM

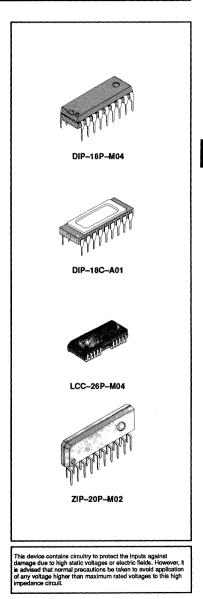
The Fujitsu MB81C1001 is a CMOS, fully decoded dynamic RAM organized as 1,048,576 words x 1 bit. The MB81C1001 has been designed for mainframe memories, buffer memories, and peripheral storage and memory systems of battery operated computers requiring very low power dissipation.

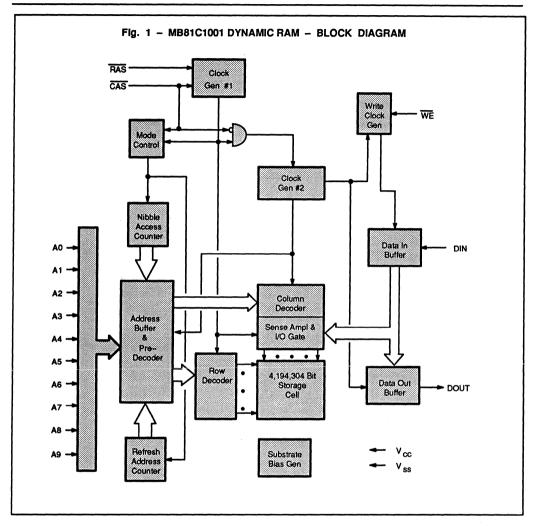
Fujitsu's advanced three-dimensional stacked capacitor cell technology gives the MB81C1001 high α -ray soft error immunity and extended refresh time. CMOS technology is used in the peripheral circuits to provide low power dissipation and high speed operation.

This specification applies to the BC die revision that was developed to realize faster access time. Faster speed versions (70 and 80 ns) are available on this chip.

Features

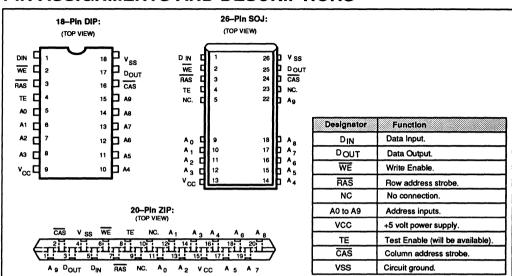
Parameter	MB81C1001 -70L	MB81C1001 -80L	MB81C1001 -10L	MB81C1001 -12L						
RAS Access Time	70 ns max.	80 ns max.	100 ns max.	120 ns max.						
Random Cycle Time	140 ns min.	155 ns min.	180 ns min.	210 ns min.						
Address Access Time	43 ns max.	45 ns max.	50 ns max.	60 ns max.						
CAS Access Time	25 ns max.	25 ns max.	25 ns max.	35 ns max.						
Nibble Mode Cycle Time	50 ns min.	50 ns min.	55 ns min.	60 ns min.						
Low Power Dissipation Operating Current 	396 mW max.	358 mW max.	303 mW max.	259 mW max.						
 Standby Current 	8.3 mW max. (TTL level)/1.4 mW max. (CMOS level)									


- 1,048,576 words x 1 bit organization
- Silicon gate, CMOS, 3D–Stacked Capacitor Cell
- All input and output are TTL compatible
- 512 refresh cycles every 64 ms
- Common I/O capability by using early write


Absolute Maximum Ratings (See Note)

Parameter		Symbol	Value	Unit
Voltage at any pin relative to	V _{SS}	VIN, VOUT	-1 to +7	v
Voltage of V _{CC} supply relativ	ve to V _{SS}	V _{cc}	-1 to +7	v
Power Dissipation		PD	1.0	w
Short Circuit Output Current		-	50	mA
Storage Temperature	Ceramic	T _{STG}	-55 to +150	°C
	Plastic		-55 to +125	

Note: Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operation sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


Copyright C 1990 by FUJITSU LIMITED and Fujitsu Microelectronics, Inc.

CAPACITANCE (T_A= 25°C, f = 1MHz)

Parameter	Symbol	Тур	Max	Unit
Input Capacitance, A0 to A9, D _{IN}	C _{IN1}		5	pF
Input Capacitance, RAS, CAS, WE	C _{IN2}	_	5	ρF
Output Capacitance, D OUT	C _{OUT}		5	pF

PIN ASSIGNMENTS AND DESCRIPTIONS

RECOMMENDED OPERATING CONDITIONS

Parameter	Notes	Symbol	Min	Тур	Max	Unit	Ambient Operating Temp	
Supply Voltage	1	Vcc	4.5	5.0	5.5			
		V _{SS}	0	0	0	v	0 °C to +70 °C	
Input High Voltage, all inputs	1	VIH	2.4	-	6.5	×		
Input Low Voltage, all inputs	1	VIL	-2.0	-	0.8	v		

FUNCTIONAL OPERATION

ADDRESS INPUTS

Twenty input bits are required to decode any one of 1,048,576 cell addresses in the memory matrix. Since only ten address bits are available, the column and row inputs are separately strobed by CAS and RAS as shown in Figure 1. First, nine row address bits are input on pins AO-through-A9 and latched with the row address strobe (RAS) then, ten column address bits are input and latched with the column address strobe(CAS). Both row and column addresses must be stable on or before the falling edge of CAS and RAS, respectively. The address latches are of the flow-through type; thus, address information appearing after t_{RAH} (min)+ tr is automatically treated as the column address.

WRITE ENABLE

The read or write mode is determined by the logic state of \overline{WE} . When \overline{WE} is active Low, a write cycle is initiated; when \overline{WE} is High, a read cycle is selected. During the read mode, input data is ignored.

DATA INPUT

Data is written into the MB81C1001 during write or read-modify-write cycle. The input data is strobed and latched by the later falling edge of CAS or WE. In an early write cycle, data input is strobed by CAS, and set up and hold times are referenced to CAS. In a delayed write or read-modify-write cycle, WE is set low after CAS. Thus, data input is strobed by WE, and set up and hold times are referenced to WE.

DATA OUTPUT

The three-state buffers are TTL compatible with a fanout of two TTL loads. Polarity of the output data is identical to that of the input; the output buffers remain in the high-impedance state until the column address strobe goes Low. When a read or read-modify-write cycle is executed, valid outputs are obtained under the following conditions:

- tRAC: from the falling edge of RAS when tRCD (max) is satisfied.
- **tCAC :** from the falling edge of \overline{CAS} when t_{RCD} is greater than t_{RCD}, t_{RAD} (max).
- tAA : from column address input when tRAD is greater then tRAD (max).

DC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted)

Notes 3

Parameter Notes		Symbol	Conditions	Yslues			11.15
		Symool	Conditiona	Min	Тур	Max	Unit
Output high voltage		v _{он}	IOH ≃ –5 mA	2.4	_	—	v
Output low voltage		V _{OL}	IOL = 4.2 mA	-	_	0.4	
Input leakage current (any input)		۱ _{((L)}	$ I_{I(L)} \qquad \begin{array}{l} 0V \leq VIN \leq 5.5V; \\ 4.5V \leq VCC \leq 5.5V; \\ VSS=0V; All other pins \\ not under test = 0V \end{array} $		_	10	μA
Output leakage current		I _{O(L)}	$0V \leq VOUT \leq 5.5V;$ Data out disabled	-10	-	10	
Operating current (Average power supply current) 2	MB81C1001-70L	ICC1	RAS & CAS cycling; t _{RC} = min	_	_	72	mA
	MB81C1001-80L					65	
	MB81C1001-10L					55	
	MB81C1001-12L					47	
Standby current (Power supply current)	TTL level	ICC 2	RAS=CAS=VIH		-	1.5	mA
	CMOS level		RAS=CAS ≥ VCC-0.2V	-		250	μA
Refresh current #1 (Average power supply current) 2	MB81C1001-70L	ICC 3	CAS=VIH, RAS cycling; t _{RC} = min	_	_	60	
	MB81C1001-80L					56	mA
	MB81C1001-10L					50	
	MB81C1001-12L					45	
Nibble Mode current 2	MB81C1001-70L	ICC 4	RAS = VIL, CAS cycling; t _{NC} = min	_	_	38	mA
	MB81C1001-80L					38	
	MB81C1001-10L					28	
	MB81C1001-12L					20	
Refresh current #2 (Average power supply current)	MB81C1001-70L	ICC 5	RAS cycling ; CAS-before-RAS; t _{RC} = min		_	60	mA
	MB81C1001-80L					56	
	MB81C1001-10L					50	
	MB81C1001-12L					45	
Battery Back up current (Average power supply current)	MB81C1001-70L	ICC 6	$\label{eq:response} \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	_	250	μA
	MB81C1001-80L						
	MB81C1001-10L						
	MB81C1001-12L						

AC CHARACTERISTICS

(At recommended operating conditions unless otherwise noted.) Notes 3, 4, 5

$\begin{array}{c c c c c c c c c c c c c c c c c c c $				MB81C1	001-70L		1001-80L		001–10L	MB81C1	001–12L	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	No.	Parameter Notes	Symbol								Max	Unit
3 Read-Modify-Write Cycle Time I R_{NC} 167 - 182 - 210 - 245 - 4 Access Time from TAS [9.9] t_{AAC} - 70 - 80 - 100 - 120 5 Access Time from TAS [9.9] t_{AA} - 43 - 25 - 35 0 100000 100 100 100 10 100 10 10 100 100	1	Time Between Refresh	t _{REF}	-	64		64	· —	64		64	ms
4 Access Time from TAS 5.9 l_{RAC} - 70 - 80 - 100 - 120 5 Access Time from TAS T.9 t_{CAC} - 25 - 25 - 25 - 35 6 Column Address Access Time 8.9 t_{AA} - 43 - 45 - 50 - 60 7 Output Buffer Turn on Delay Time t_{OH} 7 - 7 - 7 - 25 - 25 - 25 - 25 - 25 - 25 - 25 - 25 - 25 - 25 - 25 - 25 - 25 - 25 - 25 - 25 - 25 - 35 0 - 100000 100 100000 120 100000 13 TASA bid Time t_{RBH} 25 - 25	2	Random Read/Write Cycle Time	t RC	140	-	155	_	180	_	210	-	ns
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3	Read-Modify-Write Cycle Time	t _{RWC}	167	—	182	-	210	-	245	—	ns
Direct of the intervention of the interventinte terevention of the intervention of	4	Access Time from RAS 6,9	t _{RAC}		70	-	80	-	100		120	ns
7 Output Hold Time ton 7 - 25 - 25 - 25 - 25 - 25 - 25 - 25 - 25 - 25 - 25 - 25 - 35 - 100 10000 120 10000 120 10000 120 10000 120 10000 120 10000 120 10000 120 10000 120 120 120 120 120 <	5	Access Time from CAS 7,9	t _{CAC}	_	25	-	25	_	25		35	ns
1 Couput Huld Infine Construct 1	6	Column Address Access Time 8,9	t _{AA}	-	43		45		50	—	60	ns
O Output Buffer Turn off Delay Time IO To Z5 Z5 <thz5< th=""> <thz5< th=""> Z5</thz5<></thz5<>	7	Output Hold Time	t _{он}	7	-	7	_	7	—	7	· · •	ns
Instrume It 3 50 70	8	Output Buffer Turn on Delay Time	t _{on}	5	—	5	—	5	—	5		ns
11 RAS Precharge Time 1 1 Ras Number of the	9	Output Buffer Turn off Delay Time 10	t _{off}	-	25	-	25	-	25	—	25	ns
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10	Transition Time	t _T	3	50	3	50	3	50	3	50	ns
13 RAS Hold Time t RBS 25 - 25 - 25 - 35 - 14 CAS to RAS Precharge Time t CRP 0 - 10 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 -	11	RAS Precharge Time	t _{RP}	60	1	65	1	70	-	80	-	ns
14 CAS to FAS Precharge Time t_{CRP} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 10 15 Fasts 5 25 75 25 85 55 16 CAS Problem Width t_{CAS} 25 26 20 10 10 10 1	12	RAS Pulse Width	t _{RAS}	70	100000	80	100000	100	100000	120	100000	ns
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	13	RAS Hold Time	t _{RSH}	25	-	25	-	25	-	35	-	ns
Induit	14	CAS to RAS Precharge Time		0	-	0	—	0	—	0	-	ns
16 CAS Pulse Width t_{CAS} 25 25 25 35 17 CAS Hold Time t_{CSH} 70 80 100 120 18 CAS Precharge Time (C-B-R cycle) 17 t_{CPN} 10 10 10 10 15 15 15 15 15 15 15 16 0 20 20 20 20 20 60 20 20 </td <td>15</td> <td>RAS to CAS Delay Time 11,12</td> <td></td> <td>20</td> <td>45</td> <td>22</td> <td>55</td> <td>25</td> <td>75</td> <td>25</td> <td>85</td> <td>ns</td>	15	RAS to CAS Delay Time 11,12		20	45	22	55	25	75	25	85	ns
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	16	CAS Pulse Width		25	-	` 2 5	-	25	_	35	_	ns
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17	CAS Hold Time		70	-	80	—	100	-	120	-	ns
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18	CAS Precharge Time (C-B-R cycle) 17		10	-	10	-	10		15	_	ns
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19	Row Address Set Up Time	t _{asr}	0	_	0	—	0	_	0	-	ns
22 Column Address Hold Time t_{CAH} 15 - 15 - 15 - 20 - 23 RAS to Column Address Delay Time 13 t_{RAD} 15 27 17 35 20 50 20 60 24 Column Address to RAS Lead Time t_{RAL} 43 - 45 - 50 - 60 - 25 Read Command Hold Time t_{RCS} 0 - 10 - 20 -	20	Row Address Hold Time		10	-	12	-	15	-	15	-	ns
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21	Column Address Set Up Time	t _{ASC}	0	-	0	-	0	_	0	-	ns
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22	Column Address Hold Time		15		15	-	15		20	_	ns
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	23	RAS to Column Address Delay Time 13		15	27	17	35	20	50	20	60	ns
26 Read Command Hold Time Referenced to RAS 14 t_{RRH} 0 10 10 10 10 10 10 10 10 10 <t< td=""><td>24</td><td>Column Address to RAS Lead Time</td><td></td><td>43</td><td>-</td><td>45</td><td>-</td><td>50</td><td>-</td><td>60</td><td>-</td><td>ns</td></t<>	24	Column Address to RAS Lead Time		43	-	45	-	50	-	60	-	ns
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	25	Read Command Set Up Time	t _{RCS}	0	-	0	-	0	—	0	-	ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	26			0	-	0		0		0	-	ns
29 Write Command Hold Time 1wcH 15 15 15 20 30 WE Pulse Width t wP 15 15 15 20 31 Write Command to RAS Lead Time t RML 22 22 25 30 32 Write Command to CAS Lead Time t CML 17 17 20 25 25	27		t _{RCH}	0	-	0	-	0	_	0	—	ns
30 WE Pulse Width t WP 15 15 15 20 31 Write Command to RAS Lead Time t RML 22 22 25 30 32 Write Command to CAS Lead Time t CML 17 17 20 25 25	28	Write Command Set Up Time 15	twcs	0		0		0		0		ns
31 Write Command to RAS Lead Time t _{RML} 22 22 25 30 32 Write Command to CAS Lead Time t _{CWL} 17 17 20 25 30	29	Write Command Hold Time	t _{wcн}	15	-	15	-	15	-	20	-	ns
32 Write Command to CAS Lead Time t _{CWL} 17 _ 17 _ 20 _ 25 _	30	WE Pulse Width	t _{WP}	15	-	15	-	15	-	20	-	ns
32 Write Command to CAS Lead Time t _{CWL} 17 _ 17 _ 20 _ 25 _	31	Write Command to RAS Lead Time	t _{RWL}	22	_	22	-	25	_	30	_	ns
33 DIN Set Up Time t _{DS} 0 _ 0	32	Write Command to CAS Lead Time		17		17	-	20	_	25	_	ns
	33	DIN Set Up Time	t _{DS}	0	-	0		0		0		ns
34 DIN Hold Time t _{DH} 15 _ 15 _ 20 _	34	DIN Hold Time		15		15		15	_	20		ns

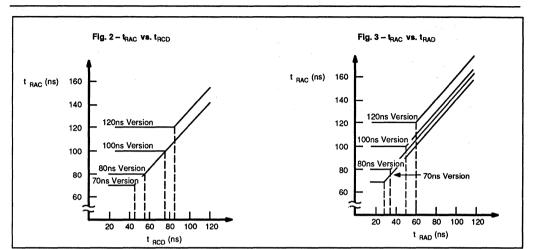
AC CHARACTERISTICS (Continued)

(At recommended operating conditions unless otherwise noted.) Notes 3, 4, 5

	B. A. Note		MB81C1	1001-70L	MB81C1	001-80L	MB81C1	001-10L	MB81C1	001-12L	Unit
No.	Parameter Note	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit
35	RAS to WE Delay Time 15] t _{RWD}	70	_	80	-	100	-	120	-	ns
36	CAS to WE Delay Time 15] t _{cwD}	25	-	25	_	25		35	_	ns
37	Column Address to WE Delay Time 15] t _{AWD}	43	-	45	-	50	-	60	-	ns
38	RAS Precharge Time to CAS Active Time (Refresh Cycles)	t RPC	0	—	0	-	0	-	0	—	ns
39	CAS Set Up Time for CAS-before - RAS Refresh	t csr	0	—	0	-	0	—	0	—	ns
40	CAS Hold Time for CAS-before - RAS Refresh	t chr	15	—	15	-	15	-	20	—	ns
41	Access Time from CAS (Counter Test Cycle)	t cat	—	43	—	45	_	50	_	60	ns
50	Nibble Mode Read/Write Cycle Time	t NC	45	_	45	I	45	-	60	—	ns
51	Nibble Mode Read-Modify- Write Cycle Time	t NRWC	67	_	67	-	70	-	85	-	ns
52	Access Time from CAS Precharge] t _{npa}	_	40	_	40	_	40	_	55	ns
53	Nibble Mode CAS Precharge Time	t _{NCP}	10	_	10	_	10	—	15	-	ns

Notes:

1. Referenced to VSS

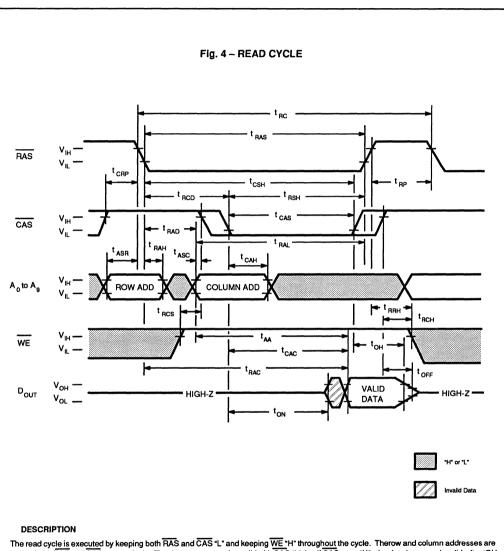

2. Icc depends on the output load conditions and cycle rates; The specified values are obtained with the output open. Icc depends on the number of address change as $\overline{RAS} = VIL$ and $\overline{CAS} = VIH$.

lcc1, lcc3 and lcc5 are specified at three time of address change during $\overrightarrow{RAS} = VIL$ and $\overrightarrow{CAS} = VIH$.

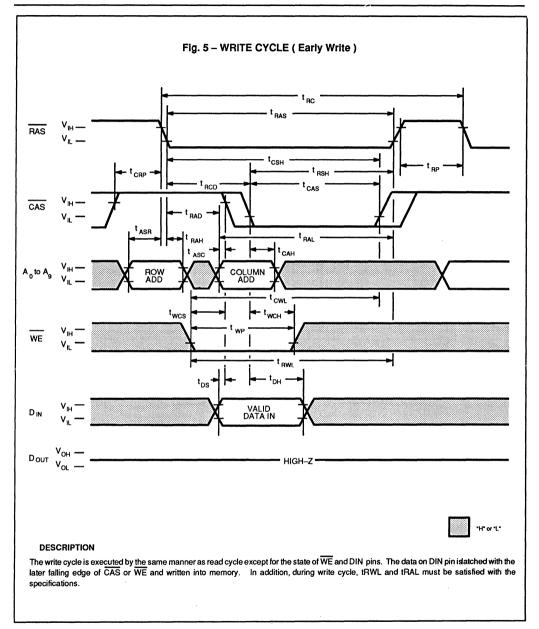
Icc4 is specified at one time of address change during \overline{RAS} = VIL and \overline{CAS} = VIH.

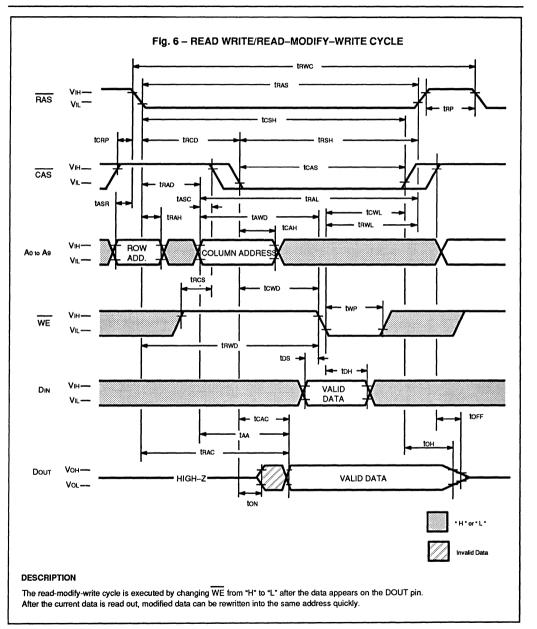
- An Initial pause (RAS =CAS =VIH) of 200µs is required after power-up followed by any eight RAS -only cycles before proper device operation is achieved. In case of using internal refresh counter, a minimum of eight CAS -before-RAS initialization cycles instead of 8 RAS cycles are required.
- 4. AC characteristics assume t_T = 5ns.
- V_{IH} (min) and V_{IL} (max) are reference levels for measuring timing of input signals. Also transition times are measured between V_{IH} (min) and V_{IL} (max).
- 6. Assumes that $t_{RCD} \le t_{RCD}$ (max), $t_{RAD} \le t_{RAD}$ (max). If t_{RCD} is greater than the maximum recommended value shown in this table, t_{RAC} will be increased by the amount that t_{RCD} exceeds the value shown. Refer to Fig. 2 and 3.
- 7. If tRCD \geq tRCD (max), tRAD \geq tRAD (max), and tASC \geq tAA -tCAC t_T, access time is tCAC.
- 8. If tRAD \geq tRAD (max) and tASC \leq tAA tCAC tT, ACCESS time is tAA.
- 9. Measured with a load equivalent to two TTL loads and 100 pF.
- 10. toFF and toEz is specified that output buffer change to high impedance state.

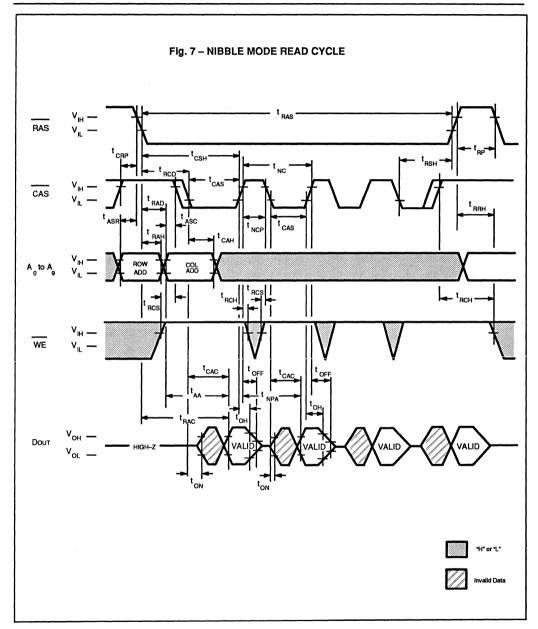
- Operation within the tacb (max) limit ensures that trac (max) can be met. tacb (max) is specified as a reference point only; if tacb is greater than the specified tacb (max) limit, access time is controlled exclusively by tcac or t aa.
- 12. t_{RCD} (min) = t_{RAH} (min)+ 2t T + t_{ASC} (min).
- 13. Operation within the t_{RAD} (max) limit ensures that t_{RAC} (max) can be met. t_{RAD} (max) is specified as a reference point only; if t_{RAD} is greater than the specified t_{RAD} (max) limit, access time is controlled exclusively by t_{CAC} or t_{AA}.
- 14. Either tRRH or tRCH must be satisfied for a read cycle.
- 15. t wcs , t cwD , t,RwD and tAwD are not a restrictive operating parameter. They are included in the data sheet as an electrical characteristic only. If twcs > t wcs (min), the cycle is an early write cycle and Dout pin will maintain high impedance state thoughout the entire cycle. If t cwD > t cwD (min), t RwD > t AwD (min), and t AwD > t AwD (min), the cycle is a read modify—write cycle and data from the selected cell will apper at the Dout pin . If neither of the above conditions is satisfied, the cycle is a delayed write cycle and invalid data will appear the Dout pin , and write operation can be exected by satisfying tww_, t cwL , and trAL specifications.
- 16 t NPA is access time from the selection of a new column address (that is caused by changing CAS from "L" to "H"). Therefore, if twosic long, two is longer than NPA (max).
- t_{NCP} is long, t_{NPA} is longer than t_{NPA} (max). 17. Assumes that CAS –before– RAS refresh, CAS –before–RAS refresh counter test cycle only.

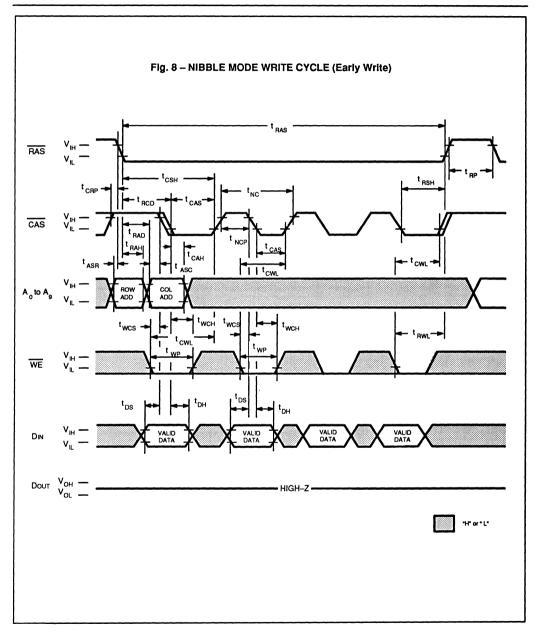


FUNCTIONAL TRUTH TABLE

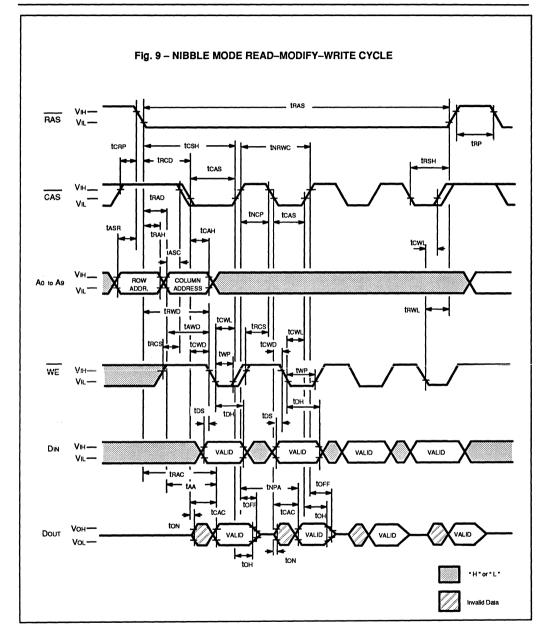

		Clock In	put	Addre	ess Input	D	eta		
Operation Mode	RAS	CAS	WE	Row	Column	Input	Output	Refresh	Note
Standby	ЪН	н	x	_	—	-	High-Z		
Read Cycle	L	L	н	Valid	Valid	-	Valid	Yes *1	t _{RCS} ≥ t _{RCS} (min)
Write Cycle (Early Write)	L	L.	L	Valid	Valid	Valid	High-Z	Yes *1	t _{wcs} ≥ t _{wcs} (min)
Read–Modify–Write Cycle	L	L	H→L	Valid	Valid	X → Valid	Valid	Yes *1	t _{cwD} ≥t _{cwD} (min)
RAS-only Refresh Cycle	L	н	x	Valid	—		High-Z	Yes	
CAS-before-RAS Refresh Cycle	L	L	x	-	_		High-Z	Yes	t _{csr} ≥t _{csr} (min)
Hidden Refresh Cycle	H→L	L	x	_	_		Valid	Yes	Previous data is kept

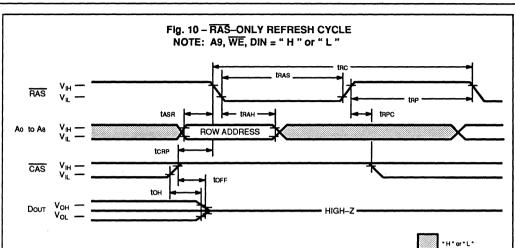

Notes:


X : "H" or "L" *1: It is impossible in Nibble Mode.



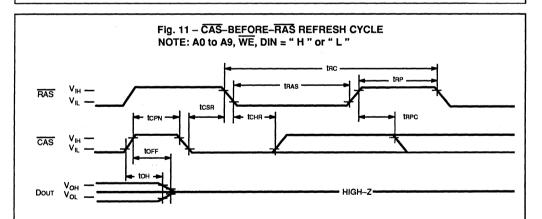
The read cycle is executed by keeping both $\overline{\text{RAS}}$ and $\overline{\text{CAS}}$ "L" and keeping $\overline{\text{WE}}$ "H" throughout the cycle. Therow and column addresses are latched with $\overline{\text{RAS}}$ and $\overline{\text{CAS}}$, respectively. The data output remains valid with $\overline{\text{CAS}}$ "L", ie., if $\overline{\text{CAS}}$ goes "H", the data becomes invalid after tOH is satisfied. The access time is determined by $\overline{\text{RAS}}$ (tFAC), $\overline{\text{CAS}}$ (tCAC), or Column address input (tAA). If tRCD ($\overline{\text{RAS}}$ to $\overline{\text{CAS}}$ delay time) is greater than the specification, the access time is tAA.



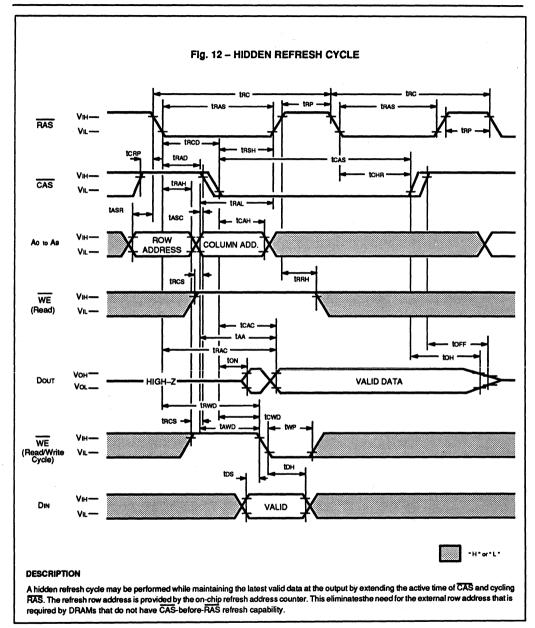


2

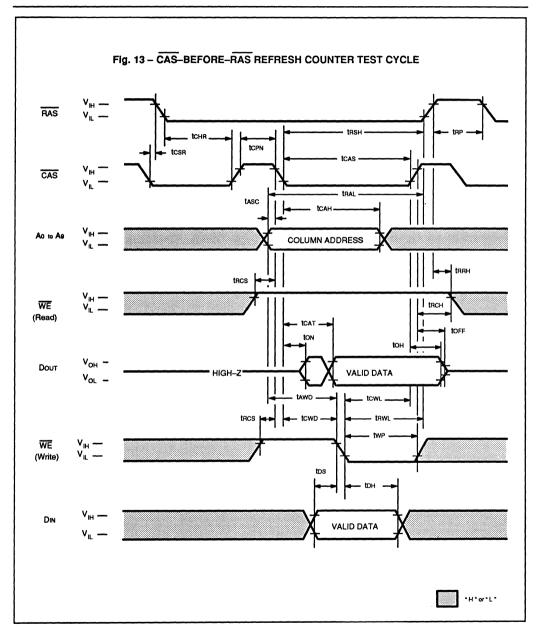
2-129

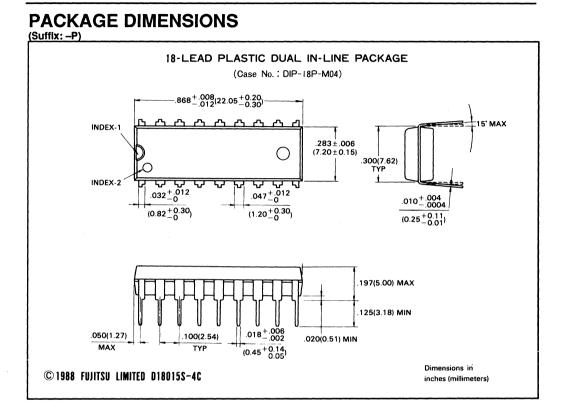


DESCRIPTION


Refresh of RAM memory cells is accomplished by performing a read, a write, or a read-modify-write cycleat each of 512 row addresses every 64-milliseconds. Three refresh modes are available: RAS-only refresh, CAS-before-RAS refresh, and hidden refresh.

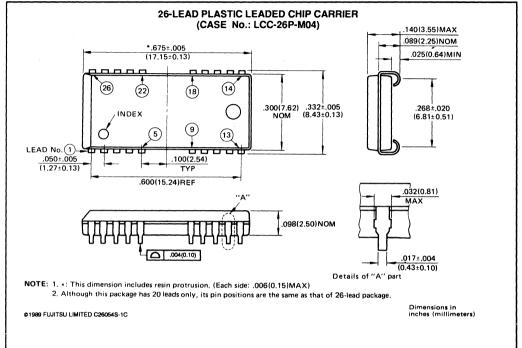
RAS-only refresh is performed by keeping RAS Low and CAS High throughout the cycle; the row address to be refreshed is latched on the falling edge of RAS. During RAS-only refresh, Dout pin is kept in a high-impedance state.


DESCRIPTION


CAS-before-RAS refresh is an on-chip refresh capability that eliminates the need for external refresh addresses. If CAS is held Low for the specified setup time (tcsR) before RAS goes Low, the on-chip refresh control clock generators and refresh address counter are enabled. An internal refresh operation automatically occurs and the refresh address counter is internally incremented in preparation for the next CAS-before-RAS refresh operation.

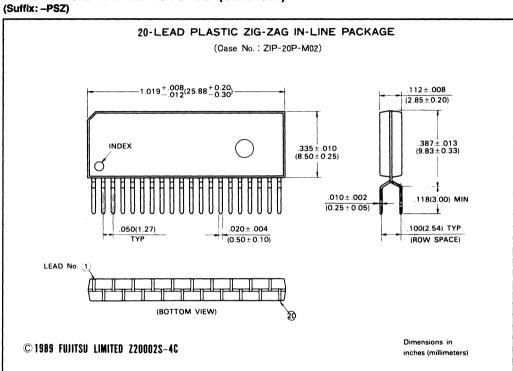
2

i


(Suffix: -C) 18-LEAD CERAMIC (METAL SEAL) DUAL IN-LINE PACKAGE (CASE No.: DIP-18C-A01) 0° to 9 .293^{+.008} -.010 .300±.010 (7.45^{+0.20}) (7.62±0.25) INDEX AREA .900±.010 .010+.004 (22.86±0.25) (0.25+0.10) -.055(1.40)MAX .200(5.08)MAX .134+.016 (3.40+0.41) .032(0.81) .100±.010 .035±.015 (0.89±0.38) (2.54±0.25) REF .800(20.32)REF .018+.005(0.46+0.13) .050±.010 (1.27±0.25) Dimensions in inches (millimeters) © 1988 FUJITSU LIMITED D18014S-4C

PACKAGE DIMENSIONS (Continued)

2-135


PACKAGE DIMENSIONS (Continued)

(Suffix: -PJ)

2

2-136

PACKAGE DIMENSIONS (Continued) (Suffix: -PSZ)

9

1. B.

FUĴÎTSU

= DATA SHEET ====

MB81C1001A-60/-70/-80/-10

CMOS 1,048,576 BIT NIBBLE MODE DYNAMIC RAM

CMOS 1M x 1 Bit Nibble Mode DRAM

The Fujitsu MB81C1001A is a CMOS, fully decoded dynamic RAM organized as 1,048,576 words x 1 bit. The MB81C1001A has been designed for mainframe memories, buffer memories, and peripheral storage applications requiring high speed, low power dissipation, or compact layout.

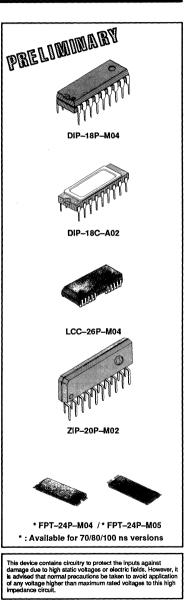
Fujitsu's advanced three-dimensional stacked capacitor cell technology gives the MB81C1001A high α -ray soft error immunity. CMOS technology is used in the peripheral circuits to provide low power dissipation and high speed operation.

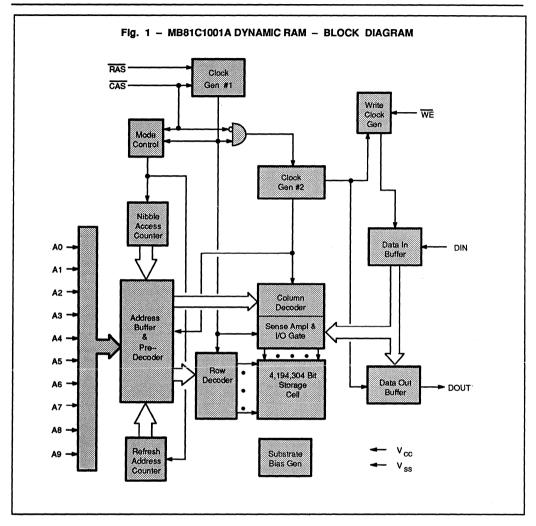
Features

Parameter	MB81C1001A -60	MB81C1001A -70	MB81C1001A -80	MB81C1001A -10				
RAS Access Time	60 ns max.	70 ns max.	80 ns max.	100 ns max.				
Random Cycle Time	130 ns min.	140 ns min.	155 ns min.	180 ns min.				
Address Access Time	30 ns max.	35 ns max.	40 ns max.	50 ns max.				
CAS Access Time	15 ns max.	20 ns max.	20 ns max.	25 ns max.				
Fast Page Mode Cycle Time	45 ns min.	40 ns min.	40 ns min.	45 ns min.				
Low Power Dissipation Operating Current 	407 mW max.	374 mW max.	341 mW max.	297 mW max.				
 Standby Current 	11 mW max. (TTL level)/5.5 mW max. (CMOS level)							

1,048,576 words x 1 bit organization
Silicon gate, CMOS, 3D–Stacked

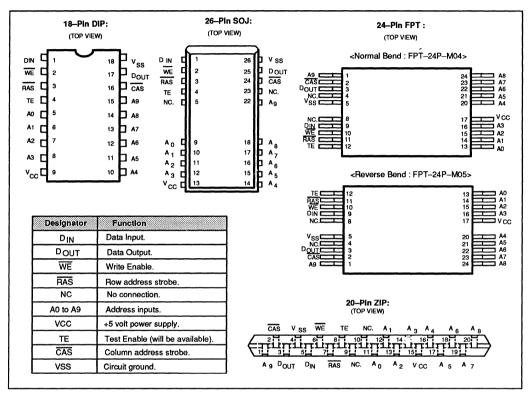
Capacitor Cell


- RAS only, CAS-before-RAS, or Hidden Refresh
- Fast Page Mode, Read-Modify-Write capability
 - On-chip substrate bias generator for high performance
- All input and output are TTL compatible
 512 refresh cycles every 8.2 ms
- Common I/O capability by using early write


Absolute Maximum Ratings (See Note)

Parameter		Symbol	Value	Unit
Voltage at any pin relative to V	ss	V _{IN,} V _{OUT}	-1 to +7	v
Voltage of V _{CC} supply relative	to V _{SS}	Vcc	-1 to +7	v
Power Dissipation		PD	1.0	w
Short Circuit Output Current		-	50	mA
Storage Temperature	Ceramic	T _{STG}	-55 to +150	°C
	Plastic		-55 to +125	

Note: Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operation sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


Copyright © 1990 by FUJITSU LIMITED and Fujitsu Microelectronics, Inc.

CAPACITANCE (T_A = 25°C, f = 1MHz)

Parameter	Symbol	Тур	Max	Unit
Input Capacitance, A0 to A9, D _{IN}	C _{IN1}	_	5	pF
Input Capacitance, RAS, CAS, WE	C _{IN2}	_	5	рF
Output Capacitance, D out	C _{OUT}	_	6	рF

PIN ASSIGNMENTS AND DESCRIPTIONS

RECOMMENDED OPERATING CONDITIONS

Parameter	Notes	Symbol	Min	Тур	Max	Unit	Ambient Operating Temp
Sunch Voltage		Vcc	4.5	5.0	5.5	v	
Supply Voltage	Ľ	V _{SS}	0	0	0	v	
Input High Voltage, all inputs	1	VIH	2.4	-	6.5	v	0 °C to +70 °C
Input Low Voltage, all inputs	1	VIL	-2.0	-	0.8	v	

FUNCTIONAL OPERATION

ADDRESS INPUTS

Twenty input bits are required to decode any one of 1,048,576 cell addresses in the memory matrix. Since only ten address bits are available, the column and row inputs are separately strobed by CAS and RAS as shown in Figure 1. First, nine row address bits are input on pins A0-through-A9 and latched with the row address strobe (RAS) then, ten column address bits are input and latched with the column address strobe (RAS) then, ten column address bits are input and latched with the column address strobe (RAS). Both row and column addresses must be stable on or before the falling edge of CAS and RAS, respectively. The address latches are of the flow-through type; thus, address information appearing after trand (min)+ tr is automatically treated as the column address.

WRITE ENABLE

The read or write mode is determined by the logic state of WE. When WE is active Low, a write cycle is initiated; when WE is High, a read cycle is selected. During the read mode, input data is ignored.

DATA INPUT

Data is written into the MB81C1001A during write or read-modify-write cycle. The inputdata is strobed and latched by the later falling edge of CAS or WE. In an early write cycle, data input is strobed by CAS, and set up and hold times are referenced to CAS. In a delayed write or read-modify-write cycle, WE is set low after CAS. Thus, data input is strobed by WE, and set up and hold times are referenced to WE.

DATA OUTPUT

The three-state buffers are TTL compatible with a fanout of two TTL loads. Polarity of the output data is identical to that of the input; the output buffers remain in the high-impedance state until the column address strobe goes Low. When a read or read-modify-write cycle is executed, valid outputs are obtained under the following conditions:

- tRAC : from the failing edge of RAS when tRCD (max) is satisfied.
- tCAC : from the falling edge of CAS when tRCD is greater than tRCD, tRAD (max).
- tAA : from column address input when tRAD is greater then tRAD (max).

DC CHARACTERISTICS (Recommended operating conditions unless otherwise noted)

Notes 3

	Notes		a		Values			
Parame	ter Notes	Symbol	Conditions	Min	Тур	Max	Unit	
Output high voltage		V _{OH}	IOH =5 mA	2.4	-	-	v	
Output low voltage		V _{OL}	IOL = 4.2 mA		_	0.4	1	
Input leakage current	(any input)	ا _{الال}	$0V \leq VIN \leq 5.5V;$ 4.5V $\leq VCC \leq 5.5V;$ VSS=0V;All other pins not under test =0V	-10	-	10	μA	
Output leakage current	1	I _{O(L)}	$0V \leq VOUT \leq 5.5V;$ Data out disabled	-	10			
	MB81C1001A-60					74		
Operating current (Average power	MB81C1001A70	ICC1	RAS & CAS cycling;	_	_	68	mA	
supply current) 2	MB81C1001A-80	1001	t _{RC} = min	_		62		
	MB81C1001A10					54		
Standby current	TTL level	ICC 2	RAS=CAS=VIH			2.0	mA	
(Power supply current)	CMOS level	1002	$\overline{RAS}=\overline{CAS} \ge VCC-0.2V$	_	_	1.0		
	MB81C1001A-60					74		
Refresh current	MB81C1001A-70	100 3	CAS=VIH, RAS			68		
#1 (Average power supply current) 2	MB81C1001A-80	1003	cycling; t _{RC} = min	_	_	62	mA	
	MB81C1001A-10					54		
	MB81C1001A-60					60		
Nibble Mode	MB81C1001A-70	ICC₄	RAS = VIL, CAS			55	mA	
current 2	MB81C1001A-80	1004	cycling; t _{NC} = min	_	_	50	ma	
	MB81C1001A-10					43		
	MB81C1001A-60		RAS cycling ;			74		
Refresh current #2 (Average power	MB81C1001A-70	ICC 5	CAS-before-RAS;			68	mA	
supply current) 2	MB81C1001A-80		t _{RC} = min	-	-	62		
	MB81C1001A-10					54		

AC CHARACTERISTICS

(At recommended operating conditions unless otherwise noted.) Notes 3, 4, 5

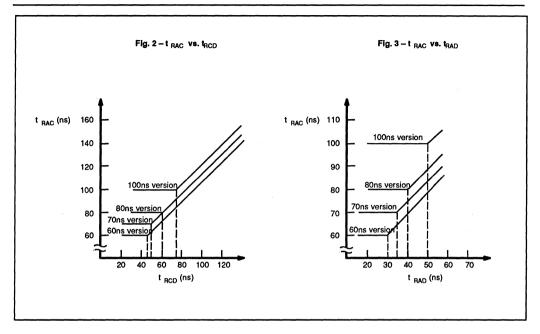
No. Parameter Notes Symbol Max		recommended operating conditio				****************			001A80	MB81C1001A-10		
2 Random Read/Write Cycle Time l_{RD} 130 - 140 - 155 - 180 - ns 3 Read-Modify-Write Cycle Time l_{RWC} 150 - 160 - 180 - 210 - ns 4 Access Time from TAS E.20 l_{AA} - 30 - 20 - 25 ns 6 Column Address Access Time E.00 l_{AA} - 30 - 35 - 40 - 50 ns 7 Output Buffer Tum on Delay Time l_{OH} 0 - 0 - 0 - 0 - 25 ns 10 Transition Time l_{TP} 2 50 2 50 2 50 2 50 2 50 ns ns 11 Transito Time l_{TP} 2 50 2 50 2 50 2 50 2 50<	No.	Parameter Notes	Symbol									Unit
3 Read-Modify-Write Cycle Time t_{RAC} 150 160 180 210 ns 4 Access Time from RAS 6.3 t_{RAC} 60 70 80 100 ns 5 Access Time from RAS C3 t_{AA} 30 35 40 20 25 ns 6 Column Address Access Time 89 t_{AA} 30 0 0 0 0 0 ns ns 0 Output Buffer Tum on Delay Time 10 t_{OFF} 15 15 20 25 ns ns 11 RAS Procharge Time t_{PA} 60 60 80 100000 100 100000 100 10000 ns 118 RAS Procharge Time t_{PA} 60 20 20 25	1	Time Between Refresh	t _{REF}		8.2		8.2	-	8.2	-	8.2	ms
4 Access Time from FAS 69 f_{AAC} 60 70 80 100 ns. 5 Access Time from GAS TA TA 15 20 25 ns. 6 Column Address Access Time 69 tha 30 35 40 50 ns. 7 Output Buffer Tum on Deley Time tow 0 0 0 0 20 25 ns. 9 Output Buffer Tum on Deley Time top top 15 15 20 25 ns. 10 Transition Time top top 60 60 65 70 ns. 11 RAS Precharge Time top top 0 0 0 0 ns. ns. 15 RAS top Reharge Time (top Reharge Time (top Reharg	2	Random Read/Write Cycle Time	t _{RC}	130	-	140	-	155		180	-	ns
Image: series of the form CAS TO To <thto< th=""> To To</thto<>	3	Read-Modify-Write Cycle Time	t _{rwc}	150	-	160	—	180		210	-	ns
6 Column Address Access Time 8.9 t _{AA} 30 35 40 50 ns. 7 Output Hold Time t _{OH} 0 0 0 00 00 ns. 8 Output Buffer Turn on Delay Time t _{ON} 0 15 15 20 25 ns. 10 Transition Time t _T 2 50 2 50 2 50 2 50 0 ns. 11 RAS Precharge Time t _{RB} 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 70 80 60 70 80 100 100 <	4	Access Time from RAS 6,9	t _{RAC}	—	60	-	70		80		100	ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	Access Time from CAS 7,9	t _{CAC}		15	_	20	_	20	_	25	ns
7 Couput Hole India Couput Hole India Couput Hole India Couput Hole India Couput Buffer Turn on Delay Time To Couput Buffer Turn on Delay Time To To To O To O To O To O To O To O To Image: Couput Buffer Turn on Delay Time To Image: Couput Buffer Turn on Delay Time To To To To To To To To To Image: Couput Buffer Turn on Delay Time To To To Sold To Sold Sold <td>6</td> <td>Column Address Access Time 8,9</td> <td>t_{AA}</td> <td>_</td> <td>30</td> <td>-</td> <td>35</td> <td></td> <td>40</td> <td></td> <td>50</td> <td>ns</td>	6	Column Address Access Time 8,9	t _{AA}	_	30	-	35		40		50	ns
a Couput Buffer Turn off Delay Time 10 tope 15 15 20 25 ns 9 Output Buffer Turn off Delay Time 10 toper 15 15 20 25 ns 10 Transition Time transition Time transition Time transition Time 15 60 65 70 ns 11 RAS Procharge Time transite transite 60 100000 70 100000 80 100000 100 100000 ns 12 RAS Procharge Time transite transite 15 20 25 ns 14 CAS belay Time 11.12 trace 20 45 20 50 22 60 25 75 ns 15 RAS to CAS belay Time 11.12 trace 20 20 20 25 ns 16 CAS pulse Width trace	7	Output Hold Time	t _{он}	0		0		0		0	-	ns
Observe Characteristication Time Line Line <thline< th=""> Line Line<td>8</td><td>Output Buffer Turn on Delay Time</td><td>t_{on}</td><td>0</td><td></td><td>0</td><td>-</td><td>0</td><td>—</td><td>0</td><td></td><td>ns</td></thline<>	8	Output Buffer Turn on Delay Time	t _{on}	0		0	-	0	—	0		ns
INDEX TAS Precharge Time trap 60 - 60 - 65 - 70 - ns 12 FAS Pulse Width trass 60 100000 70 100000 80 100000 100 100000 ns 13 FAS Hold Time trass 15 - 20 - 25 - ns 14 CAS to FAS Precharge Time trass 0 - 0 - 0 - 0 - 0 - ns 15 FAS to CAS Delay Time 11,12 trace 20 45 20 50 22 60 25 75 ns 16 CAS Polse Width t_CAB 15 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 100 - ns 18 CAS Precharge Time (C-B-R cycle) 17 t_CPN 20 - 20 - 20 - 20 - 100 - ns 12	9	Output Buffer Turn off Delay Time 10	t _{off}	-	15	-	15	-	20	—	25	ns
Image: Constraint of the second sec	10	Transition Time	t _T	2	50	2	50	2	50	2	50	ns
13 RAS Hold Time t_{RSH} 15 20 20 25 ns 14 CAS to RAS Precharge Time t_{CRP} 0 100 10 100 10 10 10 10 10 10 10 10 10 10 10 10 10 10 <t< td=""><td>11</td><td>RAS Precharge Time</td><td>t_{RP}</td><td>60</td><td>_</td><td>60</td><td>—</td><td>65</td><td>1</td><td>70</td><td>—</td><td>ns</td></t<>	11	RAS Precharge Time	t _{RP}	60	_	60	—	65	1	70	—	ns
13 FAX Hold Time transmit 15 20 20 25 ns 14 CAS to FAS Precharge Time to CRP 0 15 15 20 20 20 20 20 20 20 20 20 20 100 100 100 100 100 100 100 100 100 100 100 100 100 <td< td=""><td>12</td><td>RAS Pulse Width</td><td>t_{RAS}</td><td>60</td><td>100000</td><td>70</td><td>100000</td><td>80</td><td>100000</td><td>100</td><td>100000</td><td>ns</td></td<>	12	RAS Pulse Width	t _{RAS}	60	100000	70	100000	80	100000	100	100000	ns
14 CAS to FAS Precharge Time t_{CRP} 0 0 0 n ns 15 RAS to CAS Delay Time [11,12] t_{RCD} 20 45 20 50 22 60 25 75 ns 16 CAS Pulse Width t_{CAS} 15 20 20 25 ns 17 CAS Hold Time t_{CAS} 60 70 80 100 ns 18 CAS Precharge Time (C-B-R cycle) 17 t_{CPN} 20 20 0 ns 19 Row Address Set Up Time t_{ASR} 0 0 0 ns ns 20 Row Address Hold Time t_{ASR} 0 10 12 15 ns 21 Column Address Hold Time t_{ARD} 15 30 15 35 17 40 20	13	RAS Hold Time		15	-	20	—	20	-	25	-	ns
15 \overline{RAS} to \overline{CAS} Delay Time 11,12 t_{RCD} 20 45 20 50 22 60 25 75 ns 16 \overline{CAS} Pulse Width t_{CAS} 15 20 20 25 ns 17 \overline{CAS} Hold Time t_{CSH} 60 70 80 100 ns 18 \overline{CAS} Precharge Time (C-B-R cycle) 17 t_{CFN} 20 20 20 20 100 100 100 10 10 10 15 15 ns 20 Row Address Set Up Time t_{ASR} 0 10 10 15 ns 15 20 13 15 15 ns 15 30 15 35 17 40 20 50 ns 15 15 16	14	CAS to RAS Precharge Time		0	-	0	-	0	-	0	—	ns
16 \overline{CAS} Pulse Width t_{CAS} 15 - 20 - 20 - 25 - ns 17 \overline{CAS} Hold Time t_{CSH} 60 - 70 - 80 - 100 - ns 18 \overline{CAS} Precharge Time (C-B-R cycle) 17 t_{CPN} 20 - 20 - 20 - 20 - 00	15	RAS to CAS Delay Time 11,12		20	45	20	50	22	60	25	75	ns
17 CAS Hold Time t_{CSH} 60 - 70 - 80 - 100 - ns 18 CAS Precharge Time (C-B-R cycle) 17 t_{CPN} 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 80 - 100 100 100 100 100 100 100 100 100 100 100	16	CAS Pulse Width		15		20	_	20	—	25	-	ns
19 Row Address Set Up Time t_{ASR} 0 0 0 0 ns 20 Row Address Hold Time t_{RAH} 10 10 12 15 ns 21 Column Address Set Up Time t_{ASC} 0 0 0 0 ns 22 Column Address Set Up Time t_{ASC} 0 12 15 ns 23 RAS to Column Address Delay Time 13 t_{ARD} 15 30 15 35 17 40 20 50 ns 24 Column Address to RAS Lead Time t_{RAL} 30 35 40 50 ns 25 Read Command Set Up Time t_{RCS} 0 0 0 0 ns 26 Read Command Hold Time 14 t_{RCH} 0 0 0	17	CAS Hold Time		60		70	-	80	-	100	-	ns
19 Row Address Set Up Time t_{ASR} 0 - 0 - 0 - 0 - ns 20 Row Address Hold Time t_{RAH} 10 - 10 - 12 - 15 - ns 21 Column Address Set Up Time t_{ASC} 0 - 0 - 0 - 0 - ns 22 Column Address Hold Time t_{ASC} 0 - 12 - 15 - ns 23 RAS to Column Address Delay Time 13 t_{RAD} 15 30 15 35 17 40 20 50 ns 24 Column Address to RAS Lead Time t_{RAL} 30 - 35 - 40 - 50 - ns 25 Read Command Hold Time 14 t_{RCS} 0 - 0 - 0 - ns 26 Read Command Hold Time 14 t_{RCH} 0 - 0 - 0 - ns <t< td=""><td>18</td><td>CAS Precharge Time (C-B-R cycle) 17</td><td></td><td>20</td><td>-</td><td>20</td><td>-</td><td>20</td><td>-</td><td>20</td><td>-</td><td>ns</td></t<>	18	CAS Precharge Time (C-B-R cycle) 17		20	-	20	-	20	-	20	-	ns
20 Row Address Hold Time t_{RAH} 10 10 12 15 ns 21 Column Address Set Up Time t_{ASC} 0 0 0 0 ns 22 Column Address Hold Time t_{CAH} 12 12 15 15 ns 23 RAS to Column Address Delay Time 13 t_{RAD} 15 30 15 35 17 40 20 50 ns 24 Column Address to RAS Lead Time t_{RAL} 30 35 40 50 ns 25 Read Command Set Up Time t_{RAH} 30 0 0 0 0 ns 26 Read Command Hold Time t_{RCS} 0 0 0 ns ns 27 Read Command Hold Time 14 t_{RCH} 0	19	Row Address Set Up Time	and the second se	0	-	0	_	0	-	0	_	ns
22 Column Address Hold Time t_{CAH} 12 - 12 - 15 - 15 - ns 23 RAS to Column Address Delay Time 13 t_{RAD} 15 30 15 35 17 40 20 50 ns 24 Column Address to RAS Lead Time t_{RAL} 30 - 35 - 40 - 50 - ns 25 Read Command Set Up Time t_{RAS} 0 - 0 - 0 - 0 - ns 26 Read Command Hold Time 14 t_{RRH} 0 - 0 - 0 - ns 27 Read Command Hold Time 14 t_{RCH} 0 - 0 - 0 - ns 28 Write Command Set Up Time 15 t_{RCH} 10 - 10 - 12 - 15 - ns 30 WE Pul	20	Row Address Hold Time		10		10	-	12	-	15		ns
22 Column Address Hold Time t_{CAH} 12 12 15 15 ns 23 RAS to Column Address Delay Time 13 t_{RAD} 15 30 15 35 17 40 20 50 ns 24 Column Address to RAS Lead Time t_{RAL} 30 35 40 50 ns 25 Read Command Set Up Time t_{RAS} 0 0 0 0 ns 26 Read Command Hold Time 14 t_{RCH} 0 0 0 ns 27 Read Command Hold Time 14 t_{RCH} 0 10 12 15 ns 28 Write Command Set Up Time 15 t_{RCH} 00 10 12 15 ns 39 Write Command Set Up Time 15 t_{RCH} 10 10<	21	Column Address Set Up Time	t _{ASC}	0	-	0	-	0		0		ns
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22	Column Address Hold Time		12	-	12	-	15	-	15	-	ns
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	23	RAS to Column Address Delay Time 13		15	30	15	35	17	40	20	50	ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	24			30	-	35	-	40	-	50	-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	25	Read Command Set Up Time	t _{RCS}	0	-	0	-	0	-	0	-	ns
27 Referenced to \overline{CAS} 14 ${}^{1}RCH$ 0 - 0 - 0 - 0 - ns 28 Write Command Set Up Time 15 t_{WCS} 0 0 0 0 0 0 0 ns 29 Write Command Hold Time t_{WCH} 10 - 10 - 12 - 15 - ns 30 WE Pulse Width t_{WP} 10 - 10 - 12 - 15 - ns 31 Write Command to \overline{RAS} Lead Time t_{RWL} 15 - 15 - 20 - 25 - ns 32 Write Command to \overline{CAS} Lead Time t_{CWL} 12 - 12 - 15 - 20 - ns 33 DIN Set Up Time t_{DS} 0 - 0 - 0 - ns	26			0	-	0		0	—	0		ns
29 Write Command Hold Time t_{WCH} 10 - 10 - 12 - 15 - ns 30 WE Pulse Width t_{WP} 10 - 10 - 12 - 15 - ns 31 Write Command to RAS Lead Time t_{RWL} 15 - 15 - 20 - 25 - ns 32 Write Command to CAS Lead Time t_{CWL} 12 - 12 - 15 - 20 - 20 - ns 33 DIN Set Up Time t_{DS} 0 - 0 - 0 - ns	27		t _{RCH}	0	-	0	-	0	-	0	-	ns
30 WE Pulse Width twp 10 10 12 15 ns 31 Write Command to FAS Lead Time t _{RWL} 15 15 20 25 ns 32 Write Command to CAS Lead Time t _{CWL} 12 12 15 20 ns 33 DIN Set Up Time t _{DS} 0 0 0 ns	28	Write Command Set Up Time 15	twcs	0		0		0		0		ns
31 Write Command to FAS Lead Time t 15 15 20 25 ns 32 Write Command to CAS Lead Time t 12 12 15 20 ns 33 DIN Set Up Time t t 0 0 ns	29	Write Command Hold Time	twch	10	-	10	-	12	-	15	-	ns
31 Write Command to FAS Lead Time t 15 15 20 25 ns 32 Write Command to CAS Lead Time t 12 12 15 20 ns 33 DIN Set Up Time t t 0 0 ns	30	WE Pulse Width	t _{wP}	10		10	—	12	-	15		ns
33 DIN Set Up Time t _{DS} 0 0 0 ns	31	Write Command to RAS Lead Time		15		15		20	-	25		ns
33 DIN Set Up Time t _{DS} 0 0 0 ns	32	Write Command to CAS Lead Time	t _{cwL}	12		12	_	15	-	20		ns
34 DIN Hold Time t _{DH} 10 _ 10 _ 12 _ 15 _ ns	33	DIN Set Up Time		0	_	0	_	0	_	0		ns
	34	DIN Hold Time		10	_	10	_	12	_	15	_	ns

AC CHARACTERISTICS (Continued)

(At recommended operating conditions unless otherwise noted.) Notes 3, 4, 5

No.	Parameter Notes		Course had	MB81C1	001A-60	MB81C1	001A-70	MB81C1	001A-80	MB81C1	001A-10	Unit
NO.		Notes	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unin
35	RAS to WE Delay Time	15	t _{RWD}	60	—	70	-	80	—	100	—	ns
36	CAS to WE Delay Time	15	t _{cwD}	15	-	20		20	_	25	_	ns
37	Column Address to WE Delay Time	15	t _{AWD}	30	_	35	-	40	_	50	_	ns
38	RAS Precharge Time to CAS Active Time (Refresh Cycles)		t RPC	0	_	0	-	0	_	0	-	ns
39	CAS Set Up Time for CAS-before		t csr	0	—	0	—	0	-	0	-	ns
40	CAS Hold Time for CAS-before - RAS Refresh		t сня	10	—	10	-	12	-	15	—	ns
50	Nibble Mode Read/Write Cycle Time		t NC	35	-	40	-	40	_	45	-	ns
51	Nibble Mode Read-Modify- Write Cycle Time		t NRWC	52	—	60		60	_	70	-	ns
52	Access Time from CAS Precharge	9,16	t _{NPA}	-	30		35	_	35		40	ns
53	Nibble Mode CAS Precharge Time		t NCP	10	-	10	—	10	-	10	-	ns

Notes:


- 1. Referenced to VSS
- 2. Icc depends on the output load conditions and cycle rates; The specified values are obtained with the output open. Icc depends on the number of address change as $\overline{RAS} = V_{IL}$ and $\overline{CAS} = V_{IH}$.

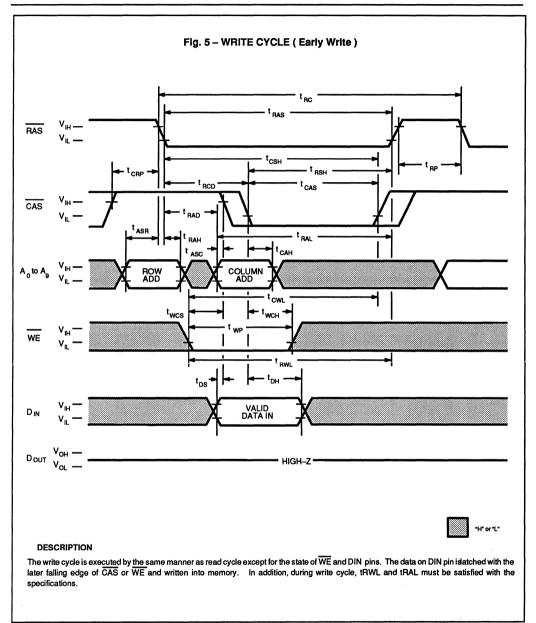
Icc1, Icc3 and Icc5 are specified at three time of address change during $\overrightarrow{RAS} = VIL$ and $\overrightarrow{CAS} = VIH$.

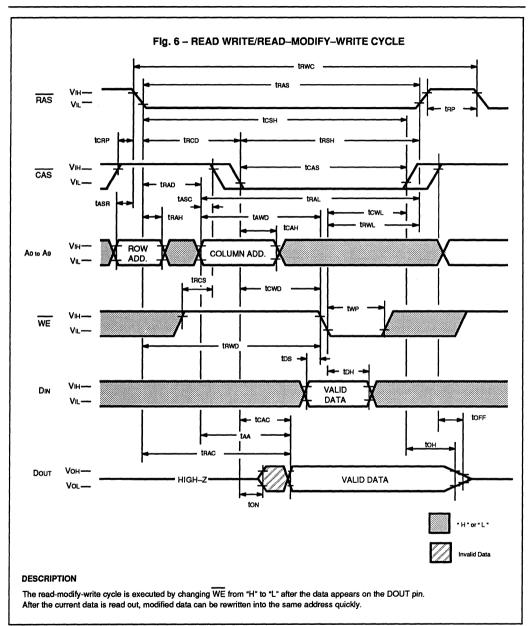
Icc4 is specified at one time of address change during $\overrightarrow{RAS} = VIL$ and $\overrightarrow{CAS} = VIH$.

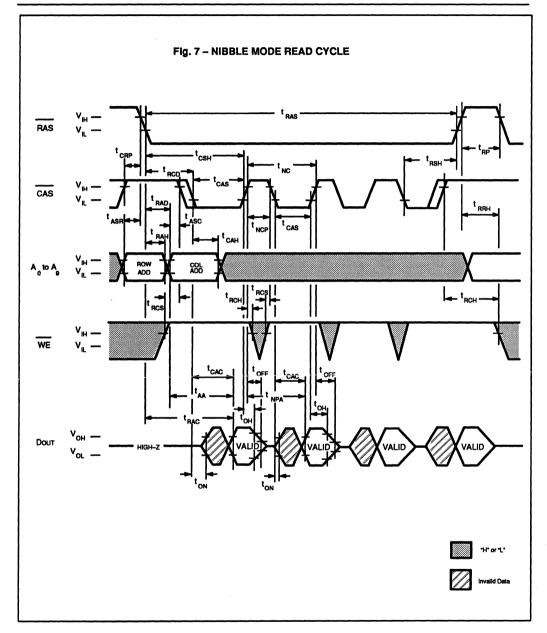
- An Initial pause (RAS =CAS =VIH) of 200µs is required after power-up followed by any eight RAS -only cycles before proper device operation is achieved. In case of using internal refresh counter, a minimum of eight CAS -before-RAS initialization cycles instead of 8 RAS cycles are required.
- 4. AC characteristics assume t_T = 5ns.
- V_{IH} (min) and V_{IL} (max) are reference levels for measuring timing of input signals. Also transition times are measured between V_{IH} (min) and V_{IL} (max).
- 6. Assumes that tRcD≤ tRcD (max), tRAD≤ tRAD (max). If tRcD is greater than the maximum recommended value shown in this table, tRAC will be increased by the amount that tRcD exceeds the value shown. Refer to Fig. 2 and 3.
- 7. If tRCD \geq tRCD (max), tRAD \geq tRAD (max), and tASC \geq tAA tCAC t_{T}, access time is tCAC.
- 8. If $t_{RAD} \ge t_{RAD}$ (max) and $t_{ASC} \le t_{AA} t_{CAC} t_{T}$, access time is
- 9. Measured with a load equivalent to two TTL loads and 100 pF.
- 10. toFF and toEz is specified that output buffer change to high impedance state.

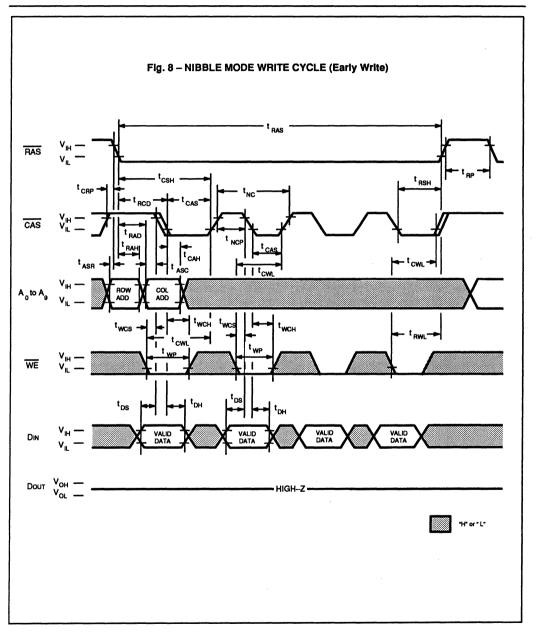
- 11. Operation within the tacb (max) limit ensures that trac (max) can be met. tacb (max) is specified as a reference point only; if tacb is greater than the specified tacb (max) limit, access time is controlled exclusively by tcac or t tac.
- 12. t_{RCD} (min) = t_{RAH} (min)+ 2t T + t_{ASC} (min).
- 13. Operation within the t_{RAD} (max) limit ensures that t_{RAC} (max) can be met. t_{RAD} (max) is specified as a reference point only; if t_{RAD} is greater than the specified t_{RAD} (max) limit, access time is controlled exclusively by t_{CAC} or t_{AA}.
- 14. Either tRRH or tRCH must be satisfied for a read cycle.
- 15. t wcs, t cwo, t, Rwo and tawo are not a restrictive operating parameter. They are included in the data sheet as an electrical characteristic only. If twos > t wcs (min), the cycle is an early write cycle and Dout pin will maintain high impedance state thoughout the entire cycle. If t cwo > t cwo (min), t Rwo > t Rwo (min), and t Awo > t Awo (min), the cycle is a read modify—write cycle and data from the selected cell will apper at the Dout pin. If neither of the above conditions is satisfied, the cycle is a delayed write cycle and invalid data will appear the Dout pin , and write operation can be exected by satisfying tww, t cwu, and tRAL specifications.
- 16 t_{NPA} is access time from the selection of a new column address (that is caused by changing CAS from "L" to "H"). Therefore, if t_{NCP} is long, t_{NPA} is longer than t_{NPA} (max).
- 17. Assumes that CAS -before- RAS refresh, CAS -before-RAS refresh counter test cycle only.

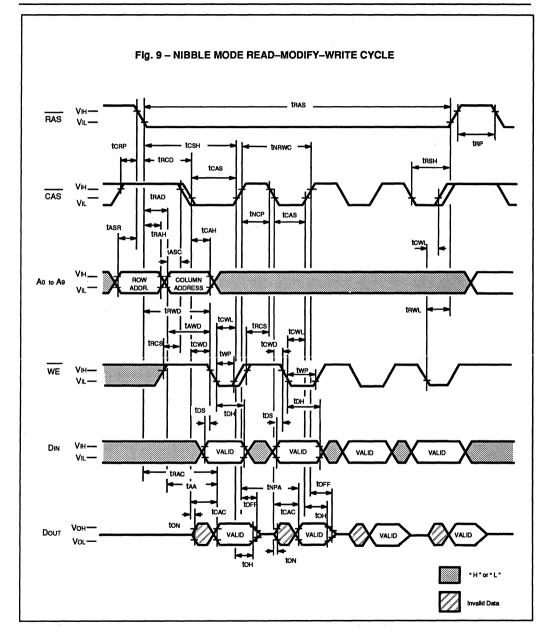
FUNCTIONAL TRUTH TABLE

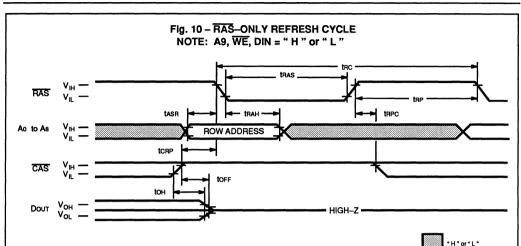

A		Clock Input		Addr	ess Input	D	ata		
Operation Mode	RAS	CAS	WE	Row	Column	Input	Output	Refresh	Note
Standby	н	н	x	1		-	High-Z	-	
Read Cycle	L	L	н	Valid	Valid		Valid	Yes *1	t _{RCS} ≥ t _{RCS} (min)
Write Cycle (Early Write)	L	L	L	Valid	Valid	Valid	High-Z	Yes *1	t _{wcs≥} t _{wcs} (min)
Read-Modify-Write Cycle	L	L	H→L	Valid	Valid	X → Valid	Valid	Yes *1	t _{cwD} ≥t _{cwD} (min)
RAS-only Refresh Cycle	L	н	x	Valid	-	-	High-Z	Yes	
CAS-before-RAS Refresh Cycle	L	L	x		-	_	High-Z	Yes	t _{csr} ≥t _{csr} (min)
Hidden Refresh Cycle	H→L	L	x	-	·	_	Valid	Yes	Previous data is kept

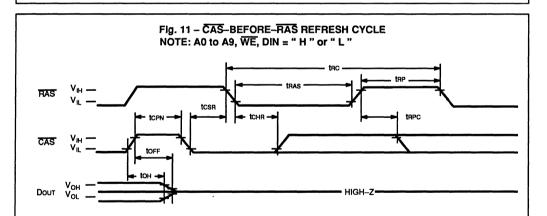

Notes:


X: "H" or "L" *1: It is impossible in Nibble Mode.

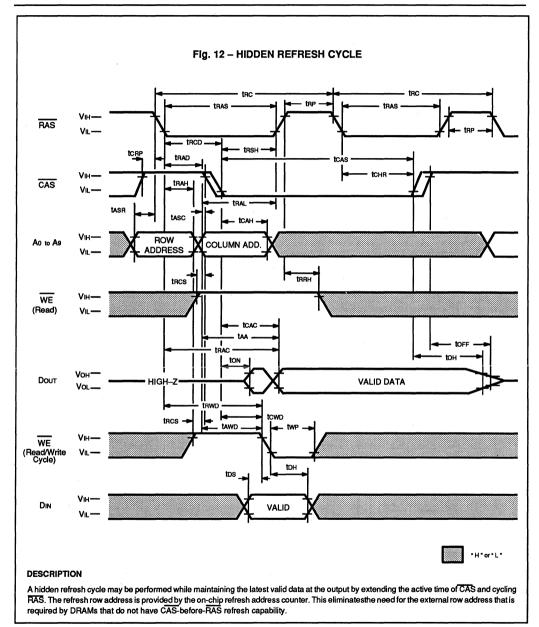


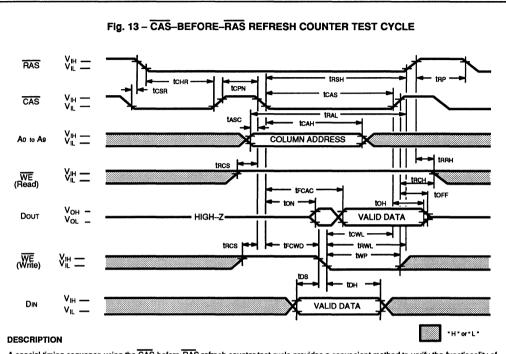

Increade cycle is executed by Reeping both RAS and CAS L and Reeping <u>we</u> in through the cycle. Therefore and continue dollesses are latched with RAS and CAS, respectively. The data output remains valid with CAS "L", ie., if CAS goes "H", the data becomes invalid after tOH is satisfied. The access time is determined by RAS (tRAC), CAS (tCAC), or Column address input (tAA). If tRCD (RAS to CAS delay time) is greater than the specification, the access time is tAA.





DESCRIPTION


Refresh of RAM memory cells is accomplished by performing a read, a write, or a read-modify-write cycleat each of 512 row addresses every 8.2-milliseconds. Three refresh modes are available: RAS-only refresh, CAS-before-RAS refresh, and hidden refresh.

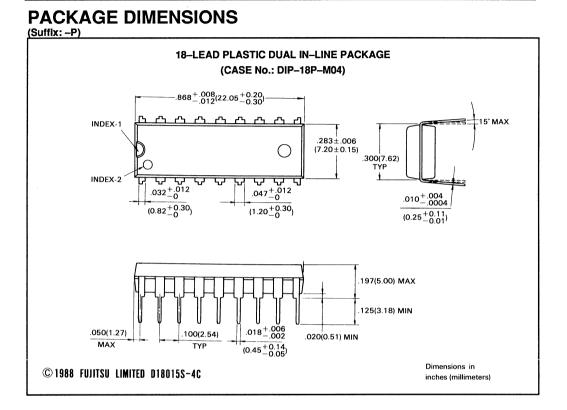

RAS-only refresh is performed by keeping RAS Low and CAS High throughout the cycle; the row address to be refreshed is latched on the falling edge of RAS. During RAS-only refresh, Dout pin is kept in a high-impedance state.

DESCRIPTION

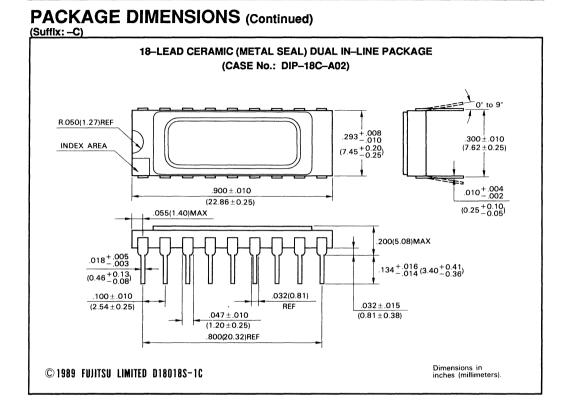
CAS-before-RAS refresh is an on-chip refresh capability that eliminates the need for external refresh addresses. If CAS is held Low for the specified setup time (tcsn) before RAS goes Low, the on-chip refresh control clock generators and refresh address counter are enabled. An internal refresh operation automatically occurs and the refresh address counter is internally incremented in preparation for the next CAS-before-RAS refresh operation.

A special timing sequence using the CAS-before-RAS refresh counter test cycle provides a convenient method to verify the functionality of CAS-before-RAS refresh circuitry. If, after a CAS-before-RAS refresh cycle. CAS makes a transition from High to Low while RAS is held Low, read and write operations are enabled as shown above. Row and column addresses are defined as follows:

Row Address: Bits A0 through A9 are defined by the on-chip refresh counter. The bit A9 is set high internally. Column Address: Bits A0 through A9 are defined by latching levels on A0-A9 at the second falling edge of CAS.

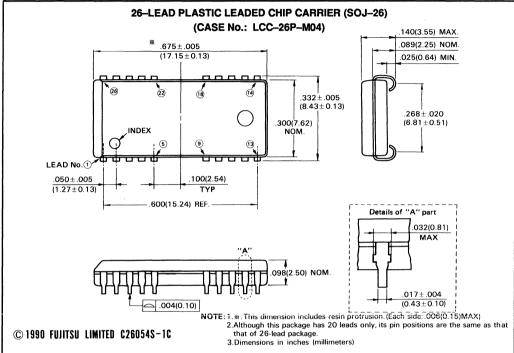

The CAS-before-RAS Counter Test procedure is as follows ;

- 1) Initialize the internal refresh address counter by using 8 CAS-before-RAS refresh cycles.
- 2) Use the same column address throughout the test.
- 3) Write "0" to all 512 row addresses at the same column address by using normal write cycles.
- 4) Read "0" written in procedure 3) and check; simultaneously write "1" to the same addresses by using CAS-before-RAS refresh counter test (read-modify-write cycles). Repeat this procedure 512 times with addresses generated by the internal refresh address counter.

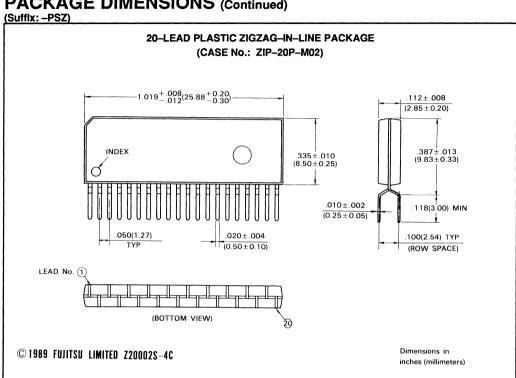

5) Read and check data written in procedure 4) by using normal read cycle for all 512 memory locations.

6) Complement test pattern and repeat procedures 3), 4), and 5).

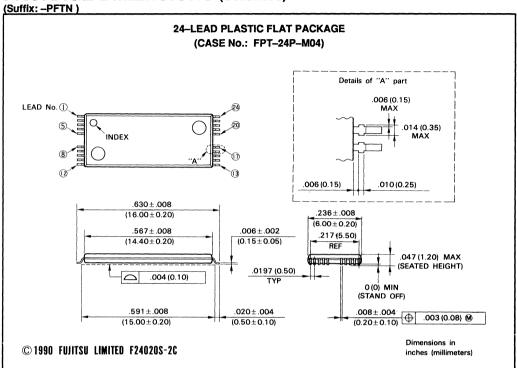
	(At recommended operating conditions unless otherwise noted.)													
	No. Parameter Symbol MB81C1001A-60 MB81C1001A-70 MB81C1001A-80 MB81C1001A-10 Un													
NO.	Parameter	Symbol	Min	Мах	Min	Max	Min	Мах	Min	Max	Unit			
90	Access Time from CAS	t _{FCAC} - 40 - 45 - 50 - 60 ns												
91	CAS to WE Delay Time	t _{FCWD}	40		45	_	50		60	-	ns			
				Note . As	sumes tha	t CAS-be	fore-RAS	refresh co	ounter test	cycle only	<i>ı</i> .			



2-156

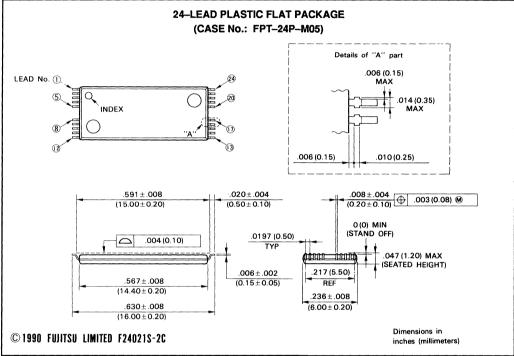


PACKAGE DIMENSIONS (Continued)


(Suffix: -PJ)

MB81C1001A-60 MB81C1001A-70 MB81C1001A-80 MB81C1001A-10

PACKAGE DIMENSIONS (Continued)



PACKAGE DIMENSIONS (Continued)

MB81C1001A-60 MB81C1001A-70 MB81C1001A-80 MB81C1001A-10

PACKAGE DIMENSIONS (Continued)

(Suffix: -PFTR)

CMOS DRAMs

Dynamic RAM Data Book

MB81C1001A-70L/-80L/-10L

CMOS 1,048,576 BIT NIBBLE MODE DYNAMIC RAM

• RAS only, CAS-before-RAS, or

Fast Page Mode, Read-Modify-Write

On-chip substrate bias generator for

Hidden Refresh

high performance

capability

CMOS 1M x 1 Bit Nibble Mode DRAM

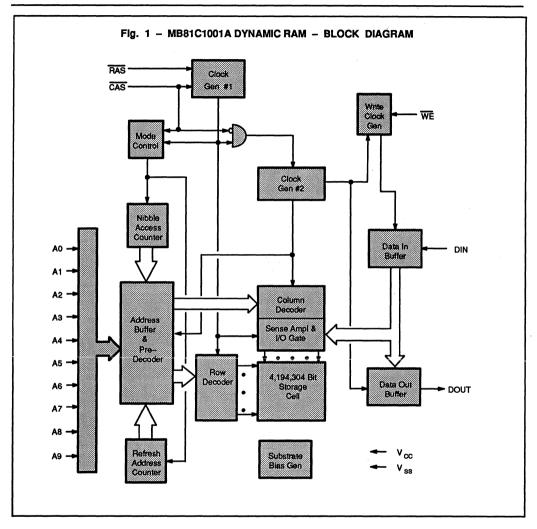
The Fujitsu MB81C1001A is a CMOS, fully decoded dynamic RAM organized as 1,048,576 words x 1 bit. The MB81C1001A has been designed for mainframe memories, buffer memories, and peripheral storage applications requiring high speed, low power dissipation, or compact layout.

Fujitsu's advanced three-dimensional stacked capacitor cell technology gives the MB81C1001A high α -ray soft error immunity. CMOS technology is used in the peripheral circuits to provide low power dissipation and high speed operation.

Features

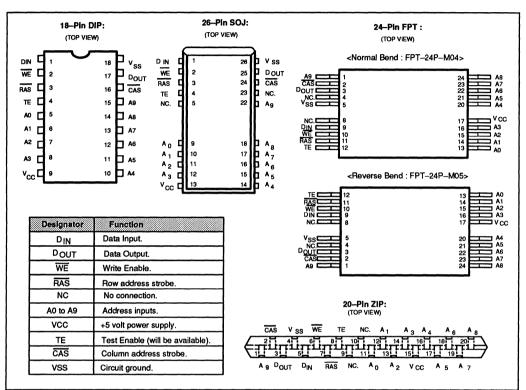
Parameter	MB81C1001A -70L	MB81C1001A -80L	MB81C1001A -10L					
RAS Access Time	70 ns max.	80 ns max.	100 ns max.					
Random Cycle Time	140 ns min.	155 ns min.	180 ns min.					
Address Access Time	35 ns max.	40 ns max.	50 ns max.					
CAS Access Time	20 ns max.	20 ns max.	25 ns max.					
Fast Page Mode Cycle Time	40 ns min.	40 ns min.	45 ns min.					
Low Power Dissipation Operating Current 	374 mW max.	341 mW max.	297 mW max.					
Standby Current	5.5 mW max. (TTL level)/1.4 mW max. (CMOS level							

- 1,048,576 words x 1 bit organization
- Silicon gate, CMOS, 3D–Stacked Capacitor Cell
- All input and output are TTL compatible
- 512 refresh cycles every 8.2 ms
- Common I/O capability by using early write


Absolute Maximum Ratings (See Note)

Parameter		Symbol	Value	Unit
Voltage at any pin relative to V	ss	VIN, VOUT	-1 to +7	V [·]
Voltage of V _{CC} supply relative	to V _{SS}	V _{CC}	-1 to +7	v
Power Dissipation		PD	1.0	w
Short Circuit Output Current		-	50	mA
Storage Temperature	Ceramic	T _{STG}	-55 to +150	°C
	Plastic		-55 to +125	

Note: Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operation sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


Copyright C 1990 by FUJITSU LIMITED and Fujitsu Microelectronics, Inc.

CAPACITANCE (T_A= 25°C, f = 1MHz)

Parameter	Symbol	Тур	Max	Unit
Input Capacitance, A0 to A9, D _{IN}	C _{IN1}		5	pF
Input Capacitance, RAS, CAS, WE	C _{IN2}	_	5	pF
Output Capacitance, D OUT	C _{OUT}	_	6	рF

PIN ASSIGNMENTS AND DESCRIPTIONS

RECOMMENDED OPERATING CONDITIONS

Parameter	Notes	Symbol	Min	Тур	Max	Unit	Amblent Operating Temp
Supely Veltere		Vcc	4.5	5.0	5.5	V	
Supply Voltage	Ш	V _{SS}	0	0	0	v	
Input High Voltage, all inputs	1	VIH	2.4	_	6.5	v	0 °C to +70 °C
Input Low Voltage, all inputs	1	VIL	-2.0	_	0.8	v	

FUNCTIONAL OPERATION

ADDRESS INPUTS

Twenty input bits are required to decode any one of 1,048,576 cell addresses in the memory matrix. Since only ten address bits are available, the column and row inputs are separately strobed by CAS and TAS as shown in Figure 1. First, nine row address bits are input on pins A0-through-A9 and latched with the row address strobe (TAS) then, ten column address bits are input and latched with the column address strobe (TAS). Both row and column addresses must be stable on or before the falling edge of CAS and TAS, respectively. The address latches are of the flow-through type; thus, address information appearing after t_{RAL} (min)+ tr is automatically treated as the column address.

WRITE ENABLE

The read or write mode is determined by the logic state of WE. When WE is active Low, a write cycle is initiated; when WE is High, a read cycle is selected. During the read mode, input data is ignored.

DATA INPUT

Data is written into the MB81C1001A during write or read-modify-write cycle. The inputdata is strobed and latched by the later falling edge of CAS or WE. In an early write cycle, data input is strobed by CAS, and set up and hold times are referenced to CAS. In a delayed write or read-modify-write cycle, WE is set low after CAS. Thus, data input is strobed by WE, and set up and hold times are referenced to WE.

DATA OUTPUT

The three-state buffers are TTL compatible with a fanout of two TTL loads. Polarity of the output data is identical to that of the input; the output buffers remain in the high-impedance state until the column address strobe goes Low. When a read or read-modify-write cycle is executed, valid outputs are obtained under the following conditions:

- tRAC : from the falling edge of RAS when tRCD (max) is satisfied.
- tCAC : from the falling edge of CAS when tRCD is greater than tRCD, tRAD (max).
- tAA : from column address input when tRAD is greater then tRAD (max).

DC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted) Notes 3

Parame	ter Notes	Symbol	Conditions	Min	Values Typ	Max	Unit
Output high voltage		V _{OH}	10H = -5 mA	2.4		-	v
Output low voltage		V _{OL}	IOL = 4.2 mA	_		0.4	,
Input leakage current (any input)		Ι _{((L)}	L) $0V \le VIN \le 5.5V;$ $4.5V \le VCC \le 5.5V;$ VSS=0V;All other pins not under test =0V		-10 — 10		μA
Output leakage current		I _{O(L)}	$0V \leq VOUT \leq 5.5V;$ Data out disabled	-10	-	10	
Operating current	MB81C1001A-70L					68	
(Average power supply current) 2	MB81C1001A-80L	ICC1	RAS & CAS cycling; t _{RC} = min	-		62	mA
	MB81C1001A-10L					54	
Standby current TTL level		RAS=CAS=VIH				1.0	
(Power supply current)	CMOS level	1002	RAS=CAS ≥ VCC-0.2V	—	-	0.25	mA
Refresh current	MB81C1001A-70L					68	
#1 (Average power	MB81C1001A-80L	ICC 3	CAS=VIH, RAS cycling; t _{RC} = min	-	-	62	mA
supply current) 2	MB81C1001A-10L					54	
Att	MB81C1001A-70L					55	
Nibble Mode current 2	MB81C1001A-80L	ICC₄	RAS = VIL, CAS cycling; t _{NC} = min	—	-	50	mA
	MB81C1001A-10L					43	
Refresh current	MB81C1001A-70L		RAS cycling ;			68	
#2 (Average power supply current)	MB81C1001A-80L	ICC 5	CAS-before-RAS;	-		62	mA
supply current) 2	MB81C1001A-10L		t _{RC} = min			54	
Battery Back up	MB81C1001A-70L		RAS cycling ; CAS-before-RAS ;				
current (Average power	MB81C1001A-80L	ICC 6	$t_{RC} = 125 \ \mu s, t_{RAS} = min.$ to 1 $\ \mu s, D_{OUT} = open.$		-	250	μA
supply current)	MB81C1001A-10L		Other pin \geq Vcc–0.2V or \leq 0.2V				

AC CHARACTERISTICS

(At recommended operating conditions unless otherwise noted.) Notes 3, 4, 5

No.	Commended operating conditions Parameter Notes	Symbol	MB81	C1001A	MB81	C1001A 80L	MB81C1001A -10L		
		eynioer	Min	Мах	Min	Мах	Min	Мах	Unit
1	Time Between Refresh	t _{REF}	—	64	—	64		64	ms
2	Random Read/Write Cycle Time	t _{RC}	140	-	155	_	180	—	ns
3	Read-Modify-Write Cycle Time	t _{RWC}	160	-	180	—	210	—	ns
4	Access Time from RAS 6,9	t _{RAC}	—	70	-	80	—	100	ns
5	Access Time from CAS 7,9	t _{CAC}	_	20	_	20	-	25	ns
6	Column Address Access Time 8,9	t _{AA}		35		40		50	ns
7	Output Hold Time	t _{oH}	0	—	0	-	0	-	ns
8	Output Buffer Turn on Delay Time	t _{on}	0	-	0		0		ns
9	Output Buffer Turn off Delay Time 10	t _{off}	_	15	_	20		25	ns
10	Transition Time	t _T	2	50	2	50	2	50	ns
11	RAS Precharge Time	t _{RP}	60	-	65	—	70	—	ns
12	RAS Pulse Width	t _{RAS}	70	100000	80	100000	100	100000	ns
13	RAS Hold Time	t _{RSH}	20	-	20	—	25		ns
14	CAS to RAS Precharge Time	t _{CRP}	0		0	_	0	-	ns
15	RAS to CAS Delay Time 11,12	1	20	50	22	60	25	75	ns
16	CAS Pulse Width	t _{CAS}	20		20	—	25		ns
17	CAS Hold Time	t _{csн}	70	-	80		100	-	ns
18	CAS Precharge Time (C-B-R cycle) 17	t _{CPN}	20	-	20	-	20	_	ns
19	Row Address Set Up Time	t _{ASR}	0	—	0	_	0	—	ns
20	Row Address Hold Time	t _{RAH}	10	-	12	—	15		ns
21	Column Address Set Up Time	t _{ASC}	0		0	-	0		ns
22	Column Address Hold Time	t _{cah}	12	-	15	_	15	-	ns
23	RAS to Column Address Delay Time 13	t _{RAD}	15	35	17	40	20	50	ńs
24	Column Address to RAS Lead Time	t _{ral}	35	-	40	—	50	-	ns
25	Read Command Set Up Time	t _{RCS}	0		0	_	0	-	ns
26	Read Command Hold Time Referenced to RAS	t _{RRH}	0		0		0		ns
27	Read Command Hold Time Referenced to CAS	t _{RCH}	0	-	0	-	0	. —	ns
28	Write Command Set Up Time 15	twcs	0		0		0		ns
29	Write Command Hold Time	twcH	10	-	12	-	15	-	ns
30	WE Pulse Width	t _{wP}	10		12	-	15	-	ns
31	Write Command to RAS Lead Time	t _{RWL}	15		20	_	25	_	ns
32	Write Command to CAS Lead Time	t _{cwL}	12	-	15	_	20	-	ns
33	DIN Set Up Time	t _{DS}	0	-	0	_	0	_	ns
34	DIN Hold Time	t _{DH}	10		12	_	15	-	ns
		L	L		L	L	L	L	L

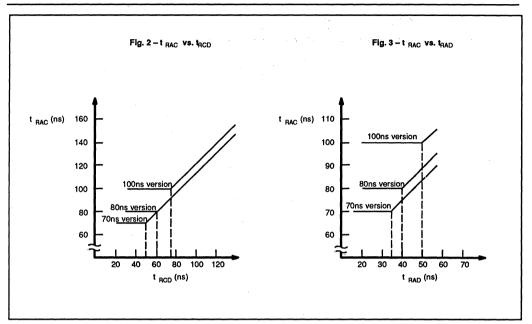
AC CHARACTERISTICS (Continued)

(At recommended operating conditions unless otherwise noted.) Notes 3, 4, 5

No.	Parameter	Notes	Symbol	MB81C1001A -70L		MB81C1001A -80L		MB81C1001A -10L		Unit
			,	Min	Max	Min	Max	Min	Мах	Unit
35	RAS to WE Delay Time	15	t _{RWD}	70	-	80	_	100	-	ns
36	CAS to WE Delay Time	15	t _{cwD}	20	-	20		25		ńs
37	Column Address to WE Delay Time	15	t _{AWD}	35	_	40	-	50	-	ns
38	RAS Precharge Time to CAS Active Time (Refresh Cycles)		t RPC	0	-	0	_	0	-	ns
39	CAS Set Up Time for CAS-before - RAS Refresh		t csr	0	-	0	—	0		ns
40	CAS Hold Time for CAS-before -RAS Refresh		t chr	10	-	12	-	15	1	ns
50	Nibble Mode Read/Write Cycle Time		t NC	40	1	40	-	45	-	ns
51	Nibble Mode Read-Modify- Write Cycle Time		t NRWC	60	-	60	-	70		ns
52	Access Time from CAS Precharge	9,16	t npa	_	35	_	35	_	40	ns
53	Nibble Mode CAS Precharge Time		t NCP	10	_	10	-	10	-	ns

Notes:

- 1. Referenced to VSS
- Icc depends on the output load conditions and cycle rates; The specified values are obtained with the output open.

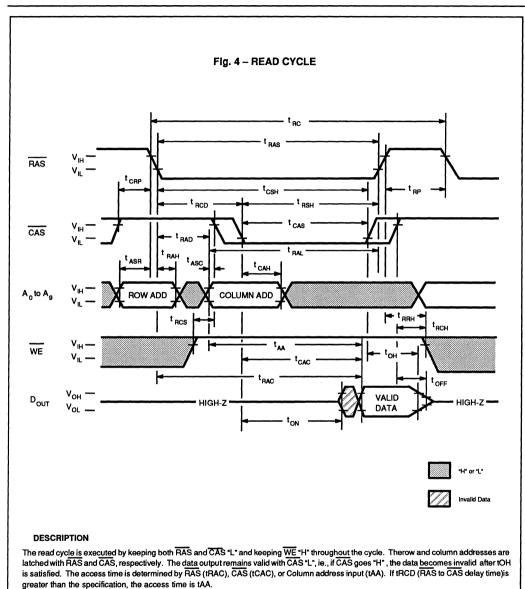

Icc depends on the number of address change as $\overline{RAS} = V_{IL}$ and $\overline{CAS} = V_{IH}$.

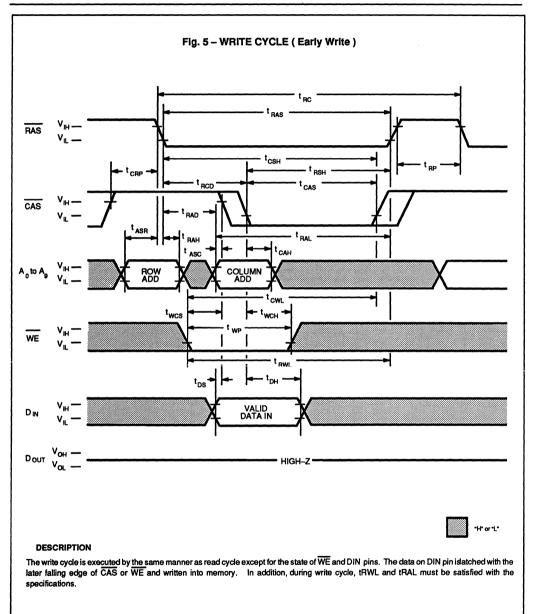
Icc1, Icc3 and Icc5 are specified at three time of address change during $\overrightarrow{RAS} = VIL$ and $\overrightarrow{CAS} = VIH$.

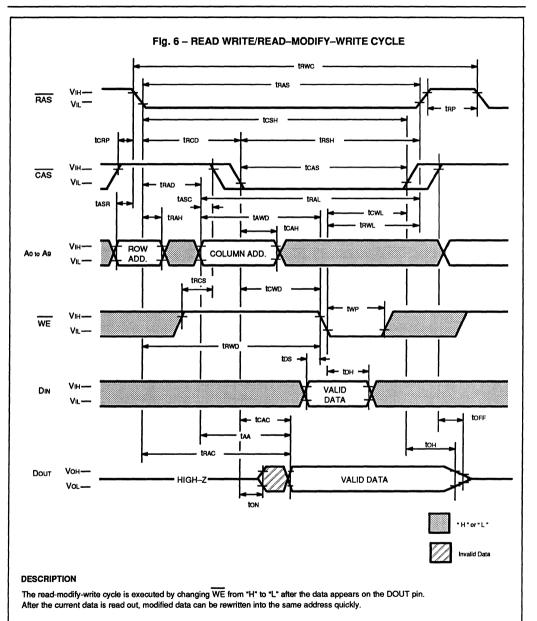
Icc4 is specified at one time of address change during $\overrightarrow{RAS} = VIL$ and $\overrightarrow{CAS} = VIH$.

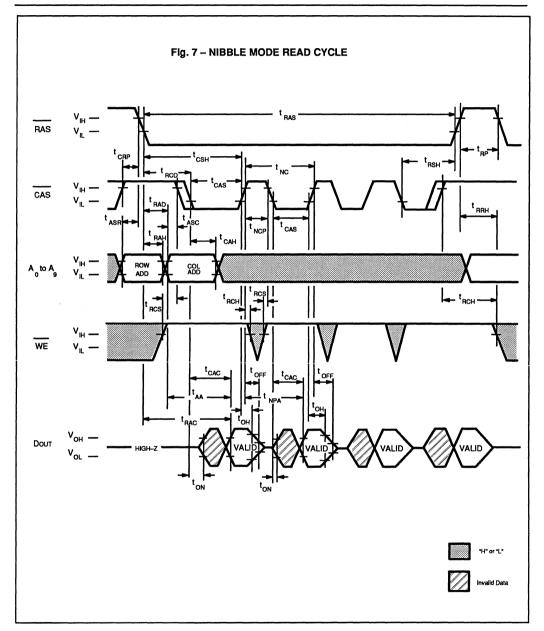
- An Initial pause (RAS =CAS =VIH) of 200µs is required after power-up followed by any eight RAS -only cycles before proper device operation is achieved. In case of using internal refresh counter, a minimum of eight CAS -before-RAS initialization cycles instead of 8 RAS cycles are required.
- AC characteristics assume t_T = 5ns.
- V_{IH} (min) and V_{IL} (max) are reference levels for measuring timing of input signals. Also transition times are measured between V_{IH} (min) and V_{IL} (max).
- 6. Assumes that tRcD≤ tRcD (max), tRAD≤ tRAD (max). If tRcD is greater than the maximum recommended value shown in this table, tRac will be increased by the amount that tRcD exceeds the value shown. Refer to Fig. 2 and 3.
- If tRCD≥tRCD (max), tRAD≥tRAD (max), and tASC≥tAA -tCAC t T, access time is tCAC.
- 8. If trad \geq trad (max) and tasc \leq taa $-t_{CAC} t_{T}$, access time is taa .
- 9. Measured with a load equivalent to two TTL loads and 100 pF.
- toFF and toEz is specified that output buffer change to high impedance state.

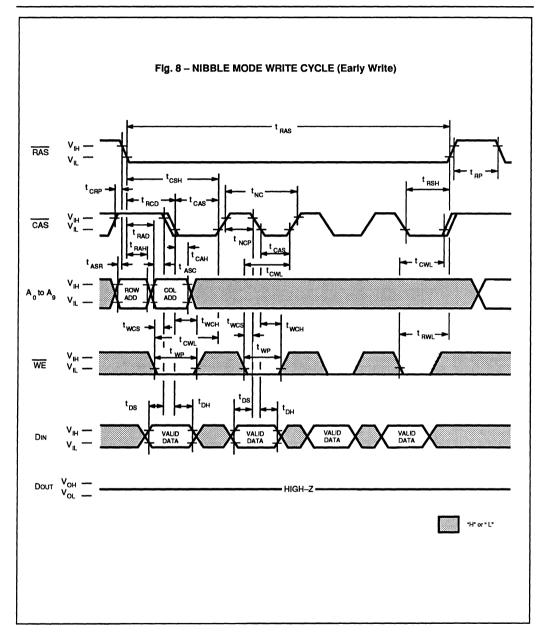
- 11. Operation within the trcp (max) limit ensures that trac (max) can be met. trcp (max) is specified as a reference point only; if trcp is greater than the specified trcp (max) limit, access time is controlled exclusively by tcac or t tat.
- 12. t_{RCD} (min) = t_{RAH} (min)+ $2t_T$ + t_{ASC} (min).
- 13. Operation within the tRAD (max) limit ensures that tRAC (max) can be met. tRAD (max) is specified as a reference point only; if tRAD is greater than the specified tRAD (max) limit, access time is controlled exclusively by tCAC or tAA.
- 14. Either tRRH or tRCH must be satisfied for a read cycle.
- 15. t wcs, t cwo, t, rwo and tawo are not a restrictive operating parameter. They are included in the data sheet as an electrical characteristic only. If twcs > t wcs (min), the cycle is an early write cycle and Dout pin will maintain high impedance state thoughout the entire cycle. If t cwo > t cwo (min), t rwo > t awo (min), and t awo > t awo (min), the cycle is a read modify—write cycle and data from the selected cell will appear the Dout pin. If neither of the above conditions is satisfied, the cycle is a delayed write cycle and invalid data will appear the Dout pin, and write operation can be exected by satisfying trwL, t cwL, and traL specifications.
- 16 tNPA is access time from the selection of a new column address (that is caused by changing CAS from "L" to "H"). Therefore, if tNCP is long, tNPA is longer than tNPA (max).
- 17. Assumes that CAS -before- RAS refresh, CAS -before-RAS refresh counter test cycle only.

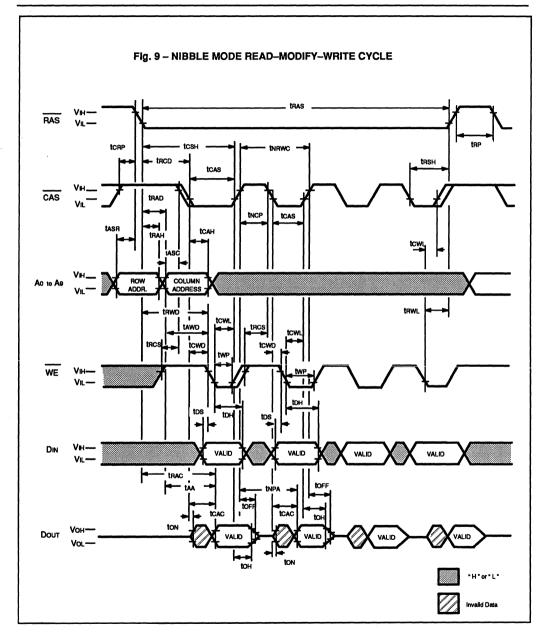


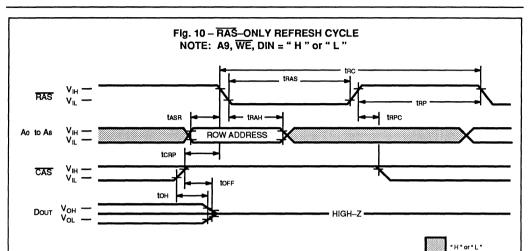

FUNCTIONAL TRUTH TABLE


		Clock Input			Address Input		ata			
Operation Mode	RAS	CAS	WE	Row	Column	Input	Output	Refresh	Note	
Standby	н	н	X	-	-	-	High-Z	-		
Read Cycle	L	L	н	Valid	Valid	-	Valid	Yes *1	$t_{RCS} \ge t_{RCS}$ (min)	
Write Cycle (Early Write)	L	L	L	Valid	Valid	Valid	High-Z	Yes *1	t _{wcs} ≥ t _{wcs} (min)	
Read-Modify-Write Cycle	L	L	H → L	Valid	Valid	X → Valid	Valid	Yes *1	$t_{CWD} \ge t_{CWD}$ (min)	
RAS-only Refresh Cycle	L	н	x	Valid	—	_	High-Z	Yes		
CAS-before-RAS Refresh Cycle	L	L	x	_			High-Z	Yes	$t_{CSR} \ge t_{CSR}$ (min)	
Hidden Refresh Cycle	H→L	L	x		-	-	Valid	Yes	Previous data is kept	

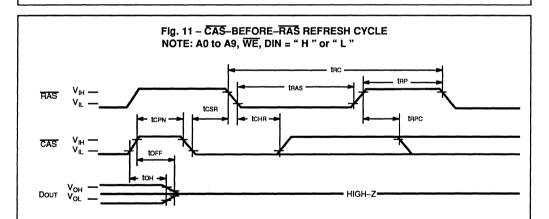

Notes:


X : "H" or "L" *1: It is impossible in Nibble Mode.

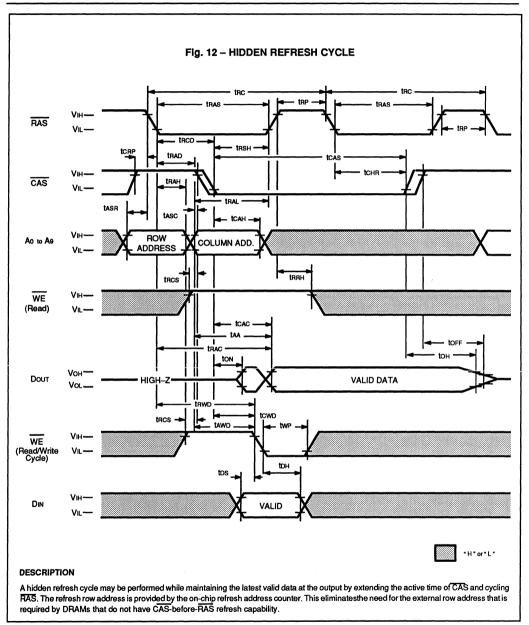


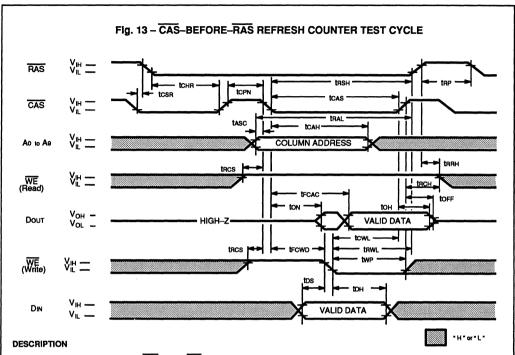


and the second second second


.

DESCRIPTION

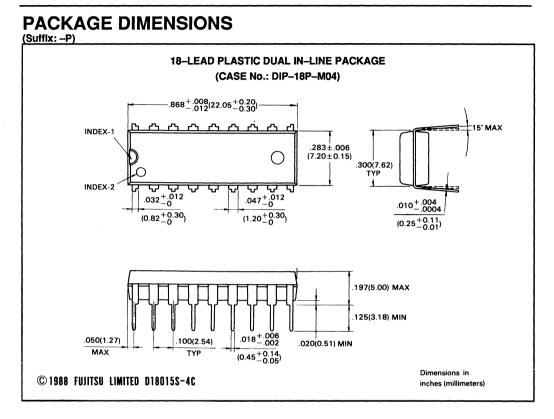

Refresh of RAM memory cells is accomplished by performing a read, a write, or a read-modify-write cycleat each of 512 row addresses every 8.2-milliseconds. Three refresh modes are available: RAS-only refresh, CAS-before-RAS refresh, and hidden refresh.


RAS-only refresh is performed by keeping RAS Low and CAS High throughout the cycle; the row address to be refreshed is latched on the falling edge of RAS. During RAS-only refresh, Dout pin is kept in a high-impedance state.

DESCRIPTION

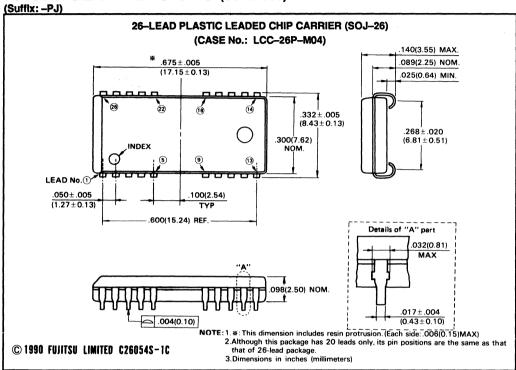
CAS-before-RAS refresh is an on-chip refresh capability that eliminates the need for external refresh addresses. If CAS is held Low for the specified setup time (tcsn) before RAS goes Low, the on-chip refresh control clock generators and refresh address counter are enabled. An internal refresh operation automatically occurs and the refresh address counter is internally incremented in preparation for the next CAS-before-RAS refresh operation.

A special timing sequence using the CAS-before-RAS refresh counter test cycle provides a convenient method to verify the functionality of CAS-before-RAS refresh circuitry. If, after a CAS-before-RAS refresh cycle. CAS makes a transition from High to Low while RAS is held Low, read and write operations are enabled as shown above. Row and column addresses are defined as follows:


Row Address: Bits A0 through A9 are defined by the on-chip refresh counter. The bit A9 is set high internally. Column Address: Bits A0 through A9 are defined by latching levels on A0-A9 at the second falling edge of CAS.

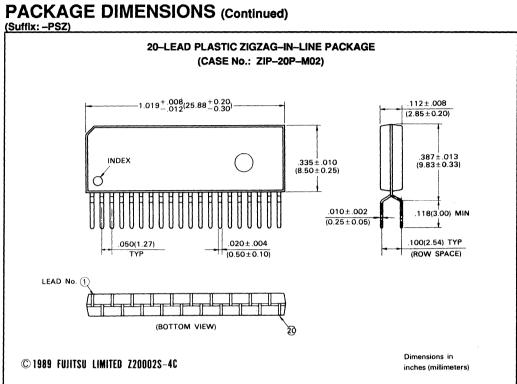
The CAS-before-RAS Counter Test procedure is as follows ;

- 1) Initialize the internal refresh address counter by using 8 CAS-before-RAS refresh cycles.
- 2) Use the same column address throughout the test.
- 3) Write "0" to all 512 row addresses at the same column address by using normal write cycles.
- 4) Read "0" written in procedure 3) and check; simultaneously write "1" to the same addresses by using CAS-before-RAS refresh counter test (read-modify-write cycles). Repeat this procedure 512 times with addresses generated by the internal refresh address counter.
- 5) Read and check data written in procedure 4) by using normal read cycle for all 512 memory locations.
- 6) Complement test pattern and repeat procedures 3), 4), and 5).

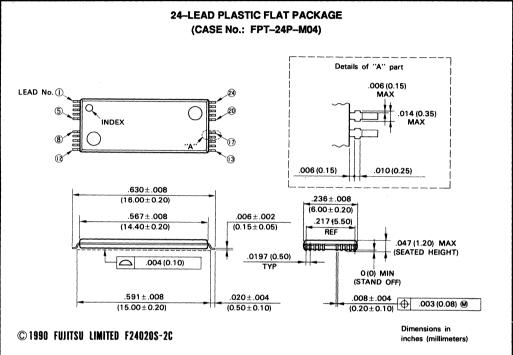

A	t recommend	led o	perating	conditions	unless of	herwise no	led.)

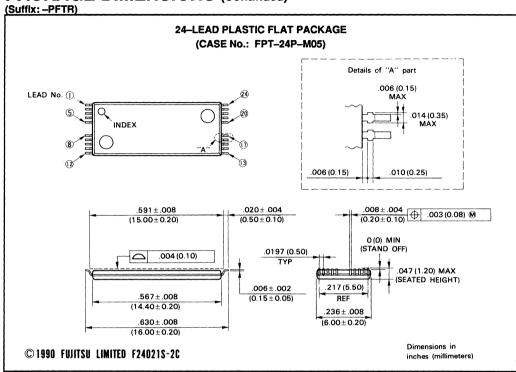
No.	Parameter	Symbol		C1001A	MB81	C1001A 80L		10L	Unit	
90	Access Time from CAS	t _{FCAC}		45		50	-	60	ns	
91	CAS to WE Delay Time	t _{FCWD}	45	-	50		60	-	ns	
Note . Assumes that CAS-before-RAS refresh counter test cycle on										

(Suffix: --C) 18-LEAD CERAMIC (METAL SEAL) DUAL IN-LINE PACKAGE (CASE No.: DIP-18C-A02) 0° to 9° R.050(1.27)REF .293+.008 .300±.010 (7.62±0.25) INDEX AREA (7.45+0.20) .900±.010 .010+.004 (22.86±0.25) (0.25+0.10) .055(1.40)MAX 200(5.08)MAX .018+.005 $.134^{+.016}_{-.014}$ (3.40^{+0.41}) (0.46+0.13) .100±.010 .032(0.81) (2.54±0.25) REF $.032 \pm .015$ (0.81±0.38) .047 ± .010 (1.20±0.25) .800(20.32)REF Dimensions in inches (millimeters). © 1989 FUJITSU LIMITED D18018S-1C


PACKAGE DIMENSIONS (Continued)

PACKAGE DIMENSIONS (Continued)


2


2-182

PACKAGE DIMENSIONS (Continued)

(Suffix: -PFTN)

PACKAGE DIMENSIONS (Continued)

Dynamic RAM Data Book

FUĴITSU

MB81C4256-70/-80/-10/-12

CMOS 1,048,576 BIT FAST PAGE MODE DYNAMIC RAM

RAS only, CAS-before-RAS, or

Fast Page Mode, Read-Modify-Write

On-chip substrate bias generator for

Hidden Refresh

high performance

capability

CMOS 256 x 4 Bits Fast Page Mode DRAM

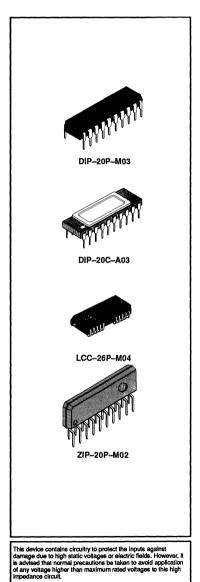
The Fujitsu MB81C4256 is a CMOS, fully decoded dynamic RAM organized as 262,144 words x 4 bits. The MB81C4256 has been designed for mainframe memories, buffer memories, and video image memories requiring high speed and high bandwidth output with low power dissipation.

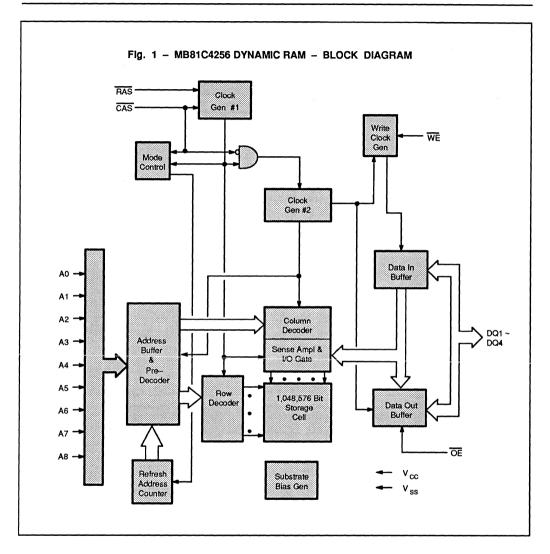
Fujitsu's advanced three-dimensional stacked capacitor cell technology gives the MB81C4256 high α -ray soft error immunity. CMOS technology is used in the peripheral circuits to provide low power dissipation and high speed operation.

This specification applies to the BC die revision that was developed to realize faster access time. Faster speed versions (70 and 80 ns) are available on this chip.

Features

Parameter	MB81C4256 -70	MB81C4256 -80	MB81C4256 -10	MB81C4256 -12				
RAS Access Time	70 ns max.	80 ns max.	100 ns max.	120 ns max.				
Random Cycle Time	140 ns min.	155 ns min.	180 ns min.	210 ns min.				
Address Access Time	43 ns max.	45 ns max.	50 ns max.	60 ns max.				
CAS Access Time	25 ns max.	25 ns max.	25 ns max.	35 ns max.				
Fast Page Mode Cycle Time	53 ns min.	55 ns min.	60 ns min.	70 ns min.				
Low Power Dissipation Operating Current 	413 mW max.	385 mW max.	330 mW max.	275 mW max.				
 Standby Current 	11 mW max. (TTL level)/5.5 mW max. (CMOS level)							

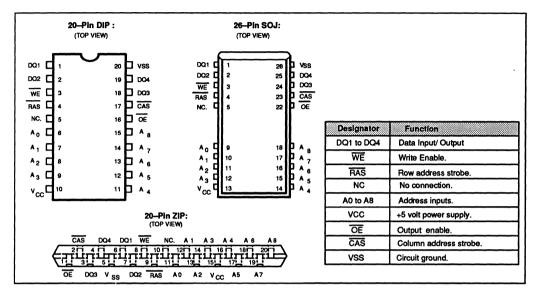

- 262,144 words x 4 bits organization
- Silicon gate, CMOS, 3D-Stacked Capacitor Cell
- All input and output are TTL compatible
- 512 refresh cycles every 8.2 ms
- Early write or OE controlled write capability


Absolute Maximum Ratings (See Note)

Parameter		Symbol	Value	Unit
Voltage at any pin relative to V	ss	VIN, VOUT	-1 to +7	v
Voltage of V _{CC} supply relative	to V _{SS}	Vcc	-1 to +7	V
Power Dissipation		PD	1.0	W
Short Circuit Output Current		-	50	mA
Storage Temperature	Ceramic	T _{STG}	-55 to +150	°C
	Plastic		-55 to +125	

Note: Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operation sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Copyright C 1990 by FUJITSU LIMITED and Fujitsu Microelectronics, Inc.



CAPACITANCE (T_A= 25°C, f = 1MHz)

Parameter	Symbol	Тур	Max	Unit
Input Capacitance, A0 to A8	C _{IN1}	·—	5	pF
Input Capacitance, RAS, CAS, WE, OE	C _{IN2}	·	5	ρF
Input/Output Capacitance, DQ1 to DQ4	CDQ	-	6	pF

PIN ASSIGNMENTS AND DESCRIPTIONS

RECOMMENDED OPERATING CONDITIONS

Parameter	Notes	Symbol	Min	Тур	Max	Unit	Ambient Operating Temp
Currely Voltage	5	Vcc	4.5 5.0 5.5	v			
Supply Voltage	Ш	V _{SS}	0	0	0	v	
Input High Voltage, all inputs	1	VIH	2.4	-	6.5	v	0 °C to +70 °C
Input Low Voltage, all inputs	1	VIL	-2.0	-	0.8	v	
Input Low Voltage, DQ(*)	1	VILD	-1.0		0.8	v	

*: Undershoots of up to -- 2.0 volts with a pulse width not exceeding 20ns are acceptable.

FUNCTIONAL OPERATION

ADDRESS INPUTS

Eighteen input bits are required to decode any four of 1,048,576 celladdresses in the memory matrix. Since only nine address bits are available, the column and row inputs are separately strobed by CAS and TAS as shown in Figure 1. First, nine row address bits are input on pins AO-through-A8 and latched with the row address strobe (TAS) then, nine column address bits are input and latched with the column address strobe (TAS). Both row and column addresses must be stable on or before the fallingedge of CAS and TAS, respectively. The address latches are of the flow-through two: thus, address information appearing after taAt (min)+ tr is automatically treated as the column address.

WRITE ENABLE

The read or write mode is determined by the logic state of WE. When WE is active Low, a write cycle is initiated; when WE is High, a read cycle is selected. During the read mode, input data is ignored.

DATA INPUT

Input data is written into memory in either of three basic ways—an early write cycle, an \overrightarrow{OE} (delayed) write cycle, and a read-modify—write cycle. The falling edge of \overrightarrow{WE} or \overrightarrow{CAS} , whichever is later, serves as the input data-latch strobe. In an early write cycle, the input data (DQ1–DQ4) is strobed by \overrightarrow{CAS} and the setup/hold times are referenced to \overrightarrow{CAS} because \overrightarrow{WE} goes Low before \overrightarrow{CAS} . In a delayed write or a read-modify—write cycle, \overrightarrow{WE} goes Low after \overrightarrow{CAS} ; thus, input data is strobed by \overrightarrow{WE} and all setup/hold times are referenced to the write—enable signal.

DATA OUTPUT

The three-state buffers are TTL compatible with a fanout of two TTL loads. Polarity of the output data is identical to that of the input; the output buffers remain in the high-impedance state until the column address strobe goes Low. When a read or read-modify-write cycle is executed, valid outputs are obtained under the following conditions:

- tRAC: from the falling edge of RAS when tRCD (max) is satisfied.
- tCAC : from the falling edge of CAS when tRCD is greater than tRCD, tRAD (max).
- tAA : from column address input when tRAD is greater than tRAD (max).
- tOEA : from the falling edge of OE when OE is brought Low after tRAC, tCAC, or tAA

The data remains valid until either CAS or OE returns to a High logic level. When an early write is executed, the output buffers remain in a high-impedance state during the entire cycle.

MB81C4256-70 MB81C4256-80 MB81C4256-10 MB81C4256-12

DC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted) Notes 3

Paramter Notes		Symbol	Conditions		Unit			
		Symbol		Min	Тур	Max	Unit	
Output high voltage		v _{он}	I _{ОН} = –5 mA	2.4			v	
Output low voltage		V _{OL}	l _{OL} = 4.2 mA	_		0.4		
Input leakage current (any input)		$ \begin{array}{c} 0V \leq V_{IN} \leq 5.5V; \\ 4.5V \leq V_{CC} \leq 5.5V; \\ V_{SS} = 0V; \mbox{All other pins} \\ under test = 0V \end{array} $		-10		10	μА	
Output leakage curren	ıt	_{O(L)}	0V≤V _{OUT} ≤ 5.5V; Data out disabled	-10	_	10		
	MB81C4256-70					75		
Operating current	MB81C4256-80		RAS & CAS cycling;			70		
(Average Power supply Current)	MB81C4256-10	I _{CC1}	trc = min	_		60	mA	
2	MB81C4256-12					50		
Standby current (Power supply	TTL level	I ^{CC5}	RAS = CAS ≖V _{IH}			2.0		
current)	CMOS level	.005	$\overline{\text{RAS}} = \overline{\text{CAS}} \ge V_{\text{CC}} = -0.2V$			1.0	mA	
	MB81C4256-70					70		
Refresh current #1	MB81C4256-80		CAS = V⊮, RAS cycling;			65	mA	
(Average power sup- ply current) 2	MB81C4256-10	I _{CC3}	trc = min			55		
	MB81C4256-12					45		
	MB81C4256-70					47		
Fast Page Mode	MB81C4256-80		RAS =VIL, CAS cycling;			45		
current 2	MB81C4256-10	I _{CC4}	tPC = min		-	40	mA	
	MB81C4256-12					33		
	MB81C4256-70					70		
Refresh current #2	MB81C4256-80		RAS cycling;			65		
(Average power sup- ply current) 2	MB81C425610	I _{CC5}	CAS-before-RAS; trc = min	-	-	55	mA	
ك	MB81C4256-12					45		

AC CHARACTERISTICS

(At recommended operating conditions unless otherwise noted.) Notes 3, 4, 5

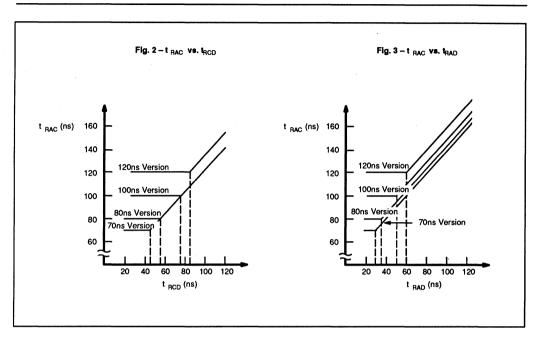
			MB81C4	256-70	MB81C4256-80		MB81C4256-10		MB81C4256-12		
No.	Parameter Notes	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit
1	Time Between Refresh	t _{REF}		8.2	_	8.2	-	8.2	—	8.2	ms
2	Random Read/Write Cycle Time	t _{RC}	140	-	155	—	180		210	-	ns
з	Read-Modify-Write Cycle Time	t _{RWC}	197		212	-	240		275	—	ns
4	Access Time from RAS 6,9	t _{RAC}	_	70		80		100		120	ns
5	Access Time from CAS 7,9	t _{CAC}	_	25	_	25	_	25		35	ns
6	Column Address Access Time 8,9	t _{AA}		43		45		50		60	ns
7	Output Hold Time	t _{OH}	7		7		7		7		ns
8	Output Buffer Turn On Delay Time	t _{ON}	5	—	5		5		5	—	ns
9	Output Buffer Turn off Delay Time 10	t _{OFF}		25	_	25	_	25		25	ns
10	Transition Time	t _T	3	50	3	50	3	50	3	50	ns
11	RAS Precharge Time	t _{RP}	60	1	65	-	70	-	80	-	ns
12	RAS Pulse Width	t _{RAS}	70	100000	80	100000	100	100000	120	100000	ns
13	RAS Hold Time	t _{RSH}	25	1	25	-	25	-	35	-	ns
14	CAS to RAS Precharge Time	t _{CRP}	0		0	_	0	_	0	-	ns
15	RAS to CAS Delay Time [11,12]	t _{RCD}	20	45	22	55	25	75	25	85	ns
16	CAS Pulse Width	t _{CAS}	25		25		25	_	35		ns
17	CAS Hold Time	t _{CSH}	70	-	80	1	100	I	120	-	ns
18	CAS Precharge Time (C–B–R cycle) 19	t _{CPN}	10	_	10		10	-	15	_	ns
19	Row Address Set Up Time	t _{ASR}	0		0	_	0	-	0	-	ns
20	Row Address Hold Time	t _{RAH}	10	-	12	-	15	—	15	_	ns
21	Column Address Set Up Time	t _{ASC}	0	-	0	—	0	-	0		ns
22	Column Address Hold Time	t _{CAH}	15		15	—	15		20	—	ns
23	RAS to Column Address Delay Time 13	t _{RAD}	15	27	17	35	20	50	20	60	ns
24	Column Address to RAS Lead Time	t _{RAL}	43		45	-	50	-	60		ns
25	Read Command Set Up Time	t _{RCS}	0	-	0	-	0		0	-	ns
26	Read Command Hold Time Referenced to RAS	t _{RRH}	0	-	0	-	0	-	0	-	ns
27	Read Command Hold Time Referenced to CAS	t _{RCH}	0	-	0	—	0	-	0	-	ns
28	Write Command Set Up Time 15	twcs	0		0	-	0		0	-	ns
29	Write Command Hold Time	t _{wCH}	15		15	-	15	-	20	-	ns
30	WE Pulse Width	t _{WP}	15		15	_	15	-	20	-	ns
31	Write Command to RAS Lead Time	t _{RWL}	22	-	22	-	25	_	30	_	ns
32	Write Command to CAS Lead Time	t _{CWL}	17		17		20	_	25	-	ns
33	DIN set Up Time	t _{DS}	0		0	-	0		0		ns
34	DIN Hold Time	t _{DH}	15		15		15	—	20	-	ns

AC CHARACTERISTICS (Continued)

(At recommended operating conditions unless otherwise noted.) Notes 3, 4, 5

No.		0	MB81C4256-70		MB81C425680		MB81C425610		MB81C4256-12		
NO.	Parameter Notes	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit
35	RAS Precharge time to CAS Active Time (Refresh cycles)	t _{RPC}	0	—	0	-	0	-	0	-	ns
36	CAS Set Up Time for CAS-before- RAS Refresh	t _{CSR}	0		0	-	0	1	0	-	ns
37	CAS Hold Time for CAS-before- RAS Refresh	t _{CHR}	15	-	15	-	15	-	20	-	ns
38	Access Time from OE 9	t _{OEA}	-	22		22	-	22	-	30	ns
39	Output Buffer Turn Off Delay 10 from OE	t _{OEZ}	_	25	-	25	_	25	_	25	ns
40	OE to RAS Lead Time for Valid Data	t _{OEL}	10	_	10	_	10	-	10	_	ns
41	OE Hold Time Referenced to WE 16	t _{OEH}	0		0	-	0	-	0	-	ns
42	OE to Data In Delay Time	t _{OED}	25		25	-	25	-	25	_	ns
43	DIN to CAS Delay Time 17	t _{DZC}	0	—	0		0	—	0	-	ns
44	DIN to OE Delay Time 17	t _{DZO}	0	—	0	-	0	-	0	_	ns
45	Access Time from CAS (Counter Test Cycle)	t _{CAT}	—	43		45	—	50	-	60	ns
50	Fast Page Mode Read/Write Cycle Time	t _{PC}	53	—	55	_	60	-	70	-	ns
51	Fast Page Mode Read-Modify-Write Cycle Time	t _{PRWC}	105	-	107	-	115	_	130	-	ns
52	Access Time from CAS Precharge 9,18	t _{CPA}	-	53	_	55	—	60	_	70	ns
53	Fast Page Mode CAS Precharge Time	t _{CP}	10	-	10	_	10	_	15	_	ns

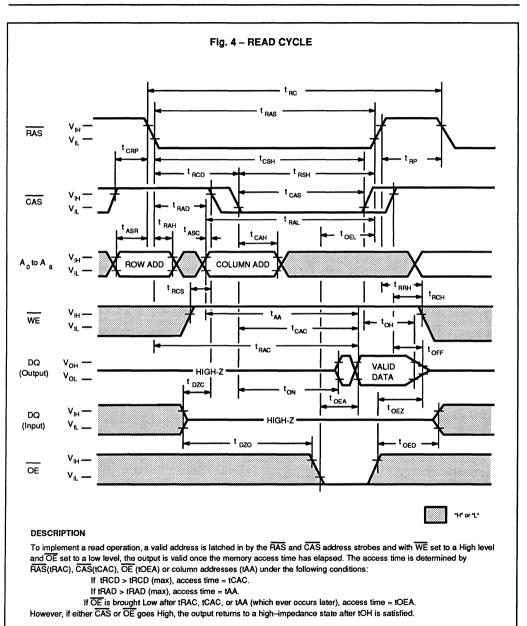
Notes:

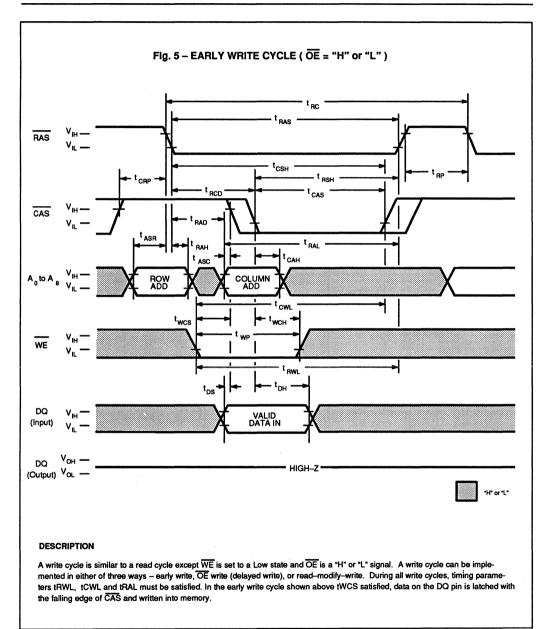

- 1. Referenced to VSS
- 2. Icc depends on the output load conditions and cycle rates; The specified values are obtained with the output open. Icc depends on the number of address change as FAS = VIL and $\overline{CAS} = VIH$.

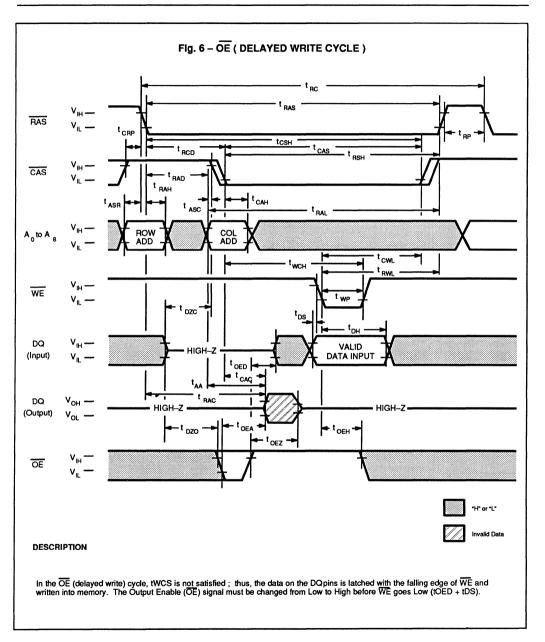
Icc1, Icc3 and Icc5 are specified at three time of address change during $\overrightarrow{RAS} = VIL$ and $\overrightarrow{CAS} = VIH$.

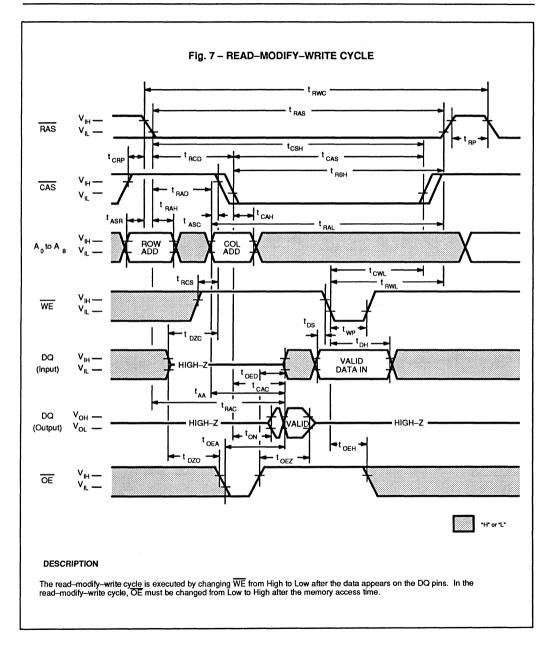
Icc4 is specified at one time of address change during $\overrightarrow{RAS} = VIL$ and $\overrightarrow{CAS} = VIH$.

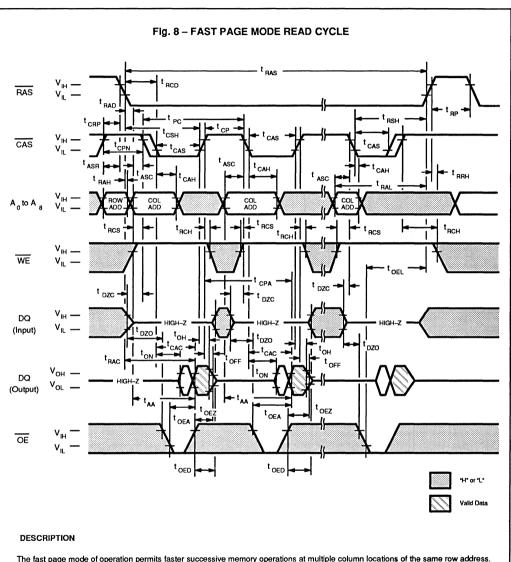
- An Initial pause (RAS =CAS =VIH) of 200µs is required after power-up followed by any eight RAS -only cycles before proper device operation is achieved. In case of using internal refresh counter, a minimum of eight CAS -before-RAS initialization cycles instead of 8 RAS cycles are required.
- 4. AC characteristics assume t_T = 5ns
- 5. V_{IH} (min) and V_{IL} (max) are reference levels for measuring timing of input signals. Also transition times are measured between V_{IH} (min) and V_{IL} (max).
- Assumes that tRcD≤ tRcD (max), tRAD≤ tRAD (max). If tRcD is greater than the maximum recommended value shown in this table, tRAC will be increased by the amount that tRcD exceeds the value shown. Refer to Fig. 2 and 3.
- Assumes that t_{RCD} ≥ t_{RCD} (max), t_{RAD} ≥ t_{RAD} (max). If t_{ASC} ≥ t_{AA} t_{CAC} t_T, access time is t_{CAC}.
- 8. If tRAD \geq tRAD (max) and tASC \leq tAA tCAC tT, access time is tAA.

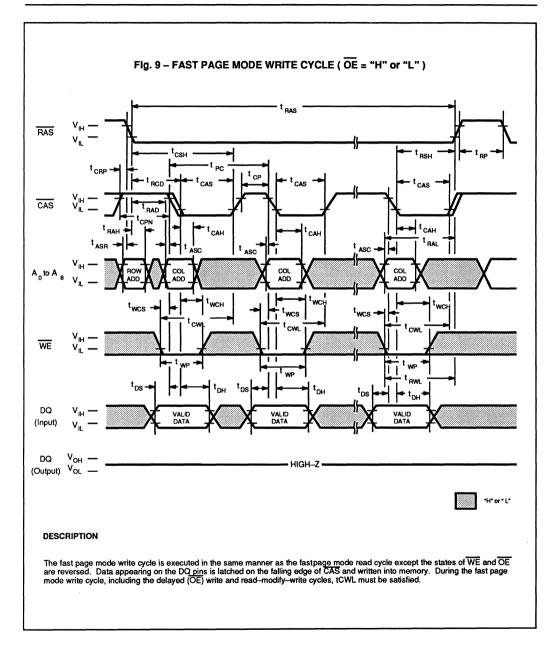

- 9. Measured with a load equivalent to two TTL loads and 100 pF.
- 10. torr and to z is specified that output buffer change to high impedance state.
- 11. Operation within the tRCD (max) limit ensures that tRAC (max) can be met. tRCD (max) is specified as a reference point only; if tRCD is greater than the specified tRCD (max) limit, access time is controlled exclusively by tCAC or t AA.
- 12. tRCD (min) = tRAH (min)+ 2t T + tASC (min)
- 13. Operation within the t_RAD (max) limit ensures that t_RAC (max) can be met. t_RAD (max) is specified as a reference point only; if t_RAD is greater than the specified t_RAD (max) limit, access time is controlled exclusively by t_CAC or t_AA.
- 14. Either tRRH or tRCH must be satisfied for a read cycle.
- twcs is specified as a reference point only. If twcs ≥ twcs (min) the data output pin will remain High-Z state through entire cycle.
- 16. Assumes that twcs < twcs (min)
- 17. Either tozc or tozo must be satisfied.
- tCPA is access time from the selection of a new column address (that is caused by changing CAS from "L" to "H"). Therefore, if tCP is shortened, tCPA is longer than tCPA (max).
- 19. Assumes that CAS -before-RAS refresh, CAS -before-RAS refresh counter test cycle only.

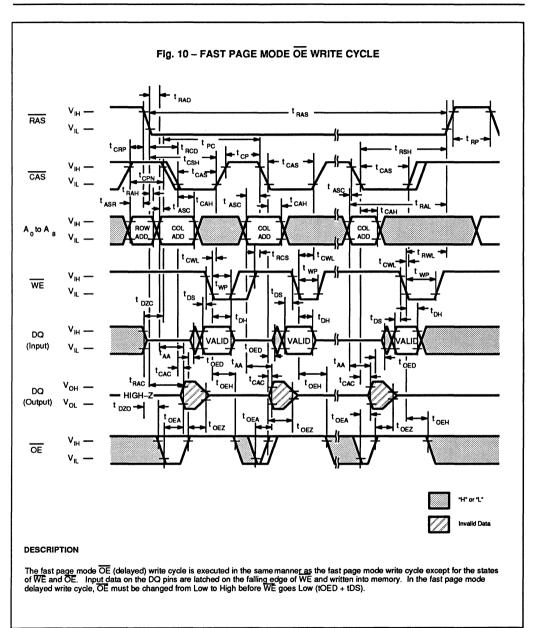


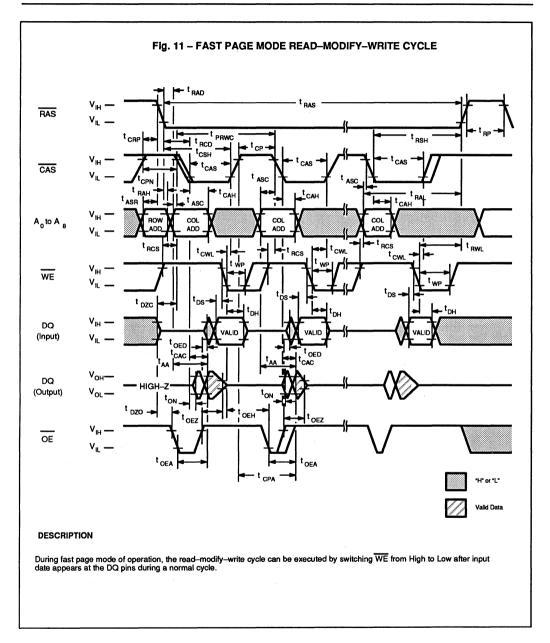

FUNCTIONAL TRUTH TABLE

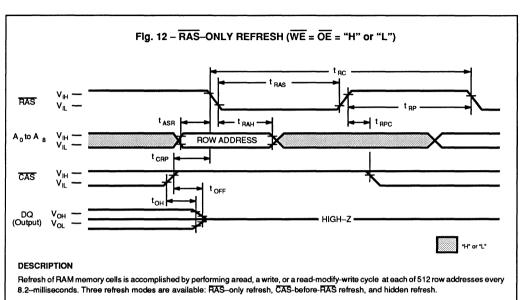

Operation Mode	Clock Input			Ad	Address		Input Data		Note	
	RAS	CAS	WE	ŌE	Row	Column	Input	Output	Refresh	
Standby	н	н	х	x	—	_	_	High–Z	_	
Read Cycle	L	L	н	L	Valid	Valid	—	Valid	Yes *	tacs <u>≥</u> tacs (min)
Write Cycle (Early Write)	L	L	L	x	Valid	Valid	Valid	HighZ	Yes *	twcs≥twcs (min)
Read–Modify– Write Cycle	Ľ	L	H-→L	L→H	Valid	Valid	Valid	Valid	Yes *	
RAS-only Refresh Cycle	L	н	x	x	Valid	_	_	High–Z	Yes	
CAS-before- RAS Refresh Cycle	L	L	x	x		_	_	High–Z	Yes	tcsn <u>≥</u> twcsn (min)
Hidden Refresh	H-→L	L	x	L		_	-	Valid	Yes	Previous data is kept.


X; "H" or "L" *; It is impossible in Fast Page Mode

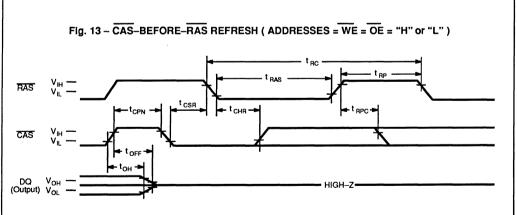


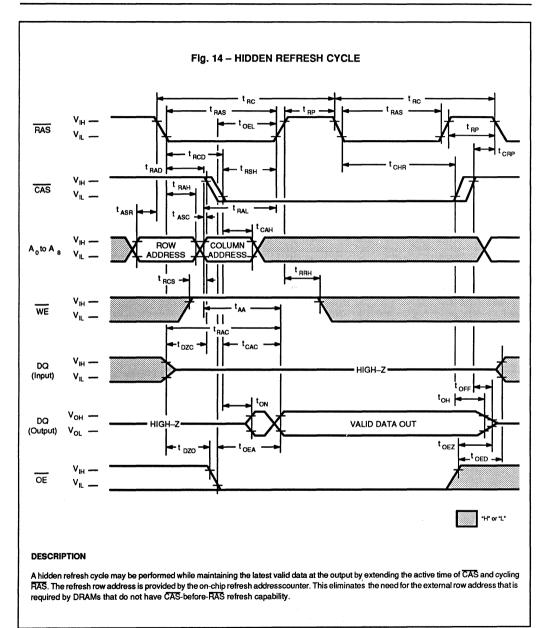


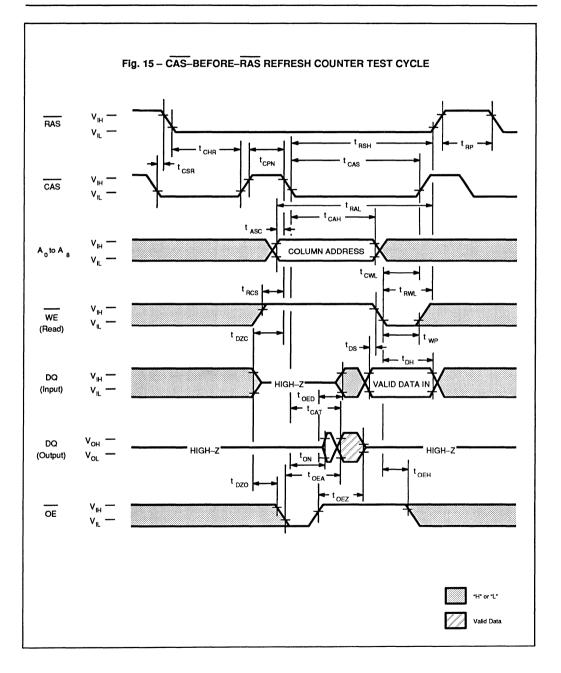




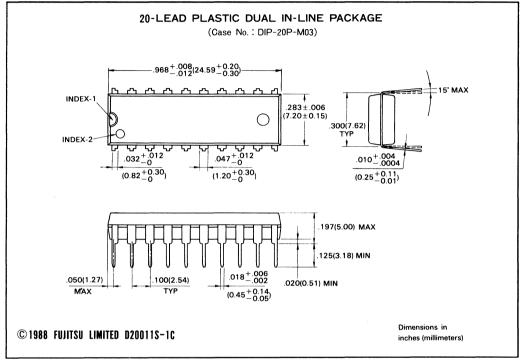
The fast page mode of operation permits faster successive memory operations at multiple column locations of the same row address. This operation is performed by strobing in the row address and maintaining RAS at a Low level and WE at a High level during all successive memory cycles in which the row address is latched. The access time is determined by tCAC, tAA, tCPA, or tOEA, which ever one is the latest in occuring.

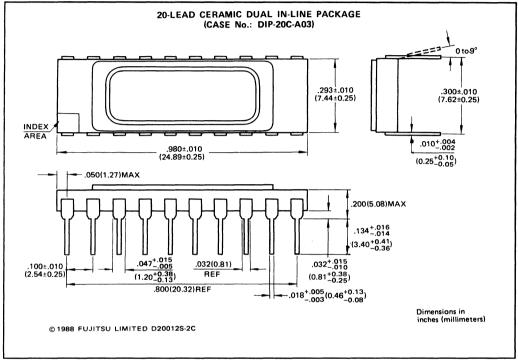




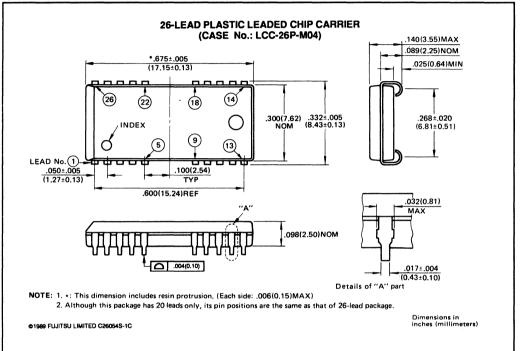

RAS-only refresh is performed by keeping RAS Low and CAS High throughout the cycle; the row address to be refreshed is latched on the falling edge of RAS. During RAS-only refresh, Dout pin is kept in a high-impedance state.

DESCRIPTION

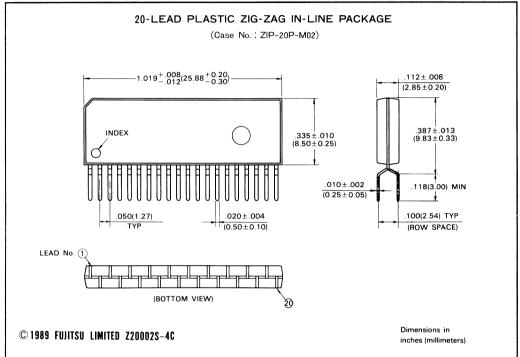

CAS-before-RAS refresh is an on-chip refresh capability that eliminates the need for external refresh addresses. If CAS is held Low for the specified setup time (tcsn) before RAS goes Low, the on-chip refresh control clock generators and refresh address counter are enabled. An internal refresh operation automatically occurs and the refresh address counter is internally incremented in preparation for the next CAS-before-RAS refresh operation.


PACKAGE DIMENSIONS

(Suffix : -P)


PACKAGE DIMENSIONS (Continued)

(Suffix : -C)


PACKAGE DIMENSIONS (Continued)

(Suffix : -PJ)

PACKAGE DIMENSIONS (Continued)

(Suffix : --PSZ)

CMOS DRAMs

Dynamic RAM Data Book

DATA SHEET

FUĴĨTSU

MB81C4256-70L/-80L/-10L/-12L

CMOS 1,048,576 BIT FAST PAGE MODE DYNAMIC RAM

RAS only, CAS-before-RAS, or

Fast Page Mode, Read-Modify-Write

On-chip substrate bias generator for

Hidden Refresh

high performance

capability

CMOS 256 x 4 Bits Fast Page Mode DRAM

The Fujitsu MB81C4256 is a CMOS, fully decoded dynamic RAM organized as 262,144 words x 4 bits. The MB81C4256 has been designed for mainframe memories, buffer memories, and video image memories requiring high speed and high bandwidth output with very low power dissipation for battery operated applications.

Fujitsu's advanced three-dimensional stacked capacitor cell technology gives the MB81C4256 high α -ray soft error immunity and extended refresh time. CMOS technology is used in the peripheral circuits to provide low power dissipation and high speed operation.

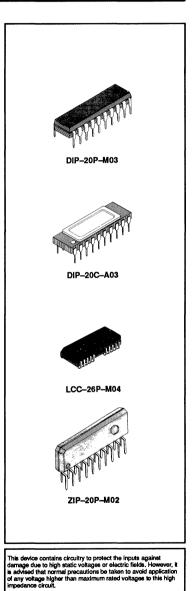
This specification applies to the BC die revision that was developed to realize faster access time. Faster speed versions (70 and 80 ns) are available on this chip.

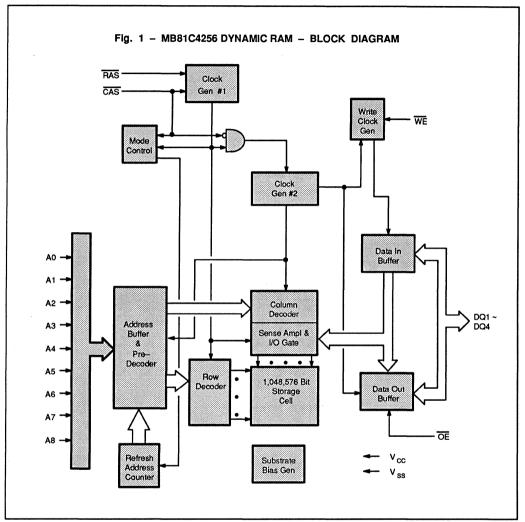
Features

Parameter	MB81C4256 -70L	MB81C4256 -80L	MB81C4256 -10L	MB81C4256 -12L			
RAS Access Time	70 ns max.	80 ns max.	100 ns max.	120 ns max.			
Random Cycle Time	140 ns min.	155 ns min.	180 ns min.	210 ns min.			
Address Access Time	43 ns max.	45 ns max.	50 ns max.	60 ns max.			
CAS Access Time	25 ns max.	25 ns max.	25 ns max.	35 ns max.			
Fast Page Mode Cycle Time	53 ns min.	55 ns min.	60 ns min.	70 ns min.			
Low Power Dissipation Operating Current 	396 mW max.	358 mW max.	303 mW max.	259 mW max.			
 Standby Current 	8.3 mW max. (TTL level)/1.4 mW max. (CMOS level)						

.

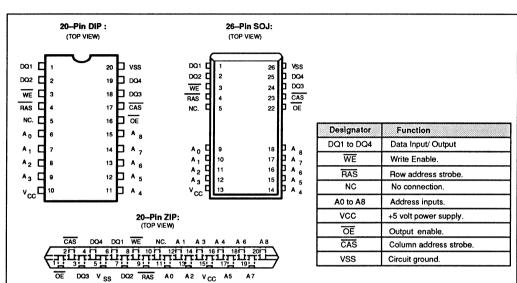
• 262,144 words x 4 bits


- organization
- Silicon gate, CMOS, 3D–Stacked Capacitor Cell
- All input and output are TTL compatible
- 512 refresh cycles every 64 ms
- Early write or OE controlled write capability


Absolute Maximum Ratings (See Note)

Parameter		Symbol	Value	Unit
Voltage at any pin relative to	V _{SS}	V _{IN,} V _{OUT}	-1 to +7	v
Voltage of V _{CC} supply relative	to V _{SS}	V _{CC}	-1 to +7	v
Power Dissipation		PD	1.0	w
Short Circuit Output Current		_	50	mA
Storage Temperature	Ceramic	T _{STG}	-55 to +150	°C
	Plastic		-55 to +125	

Note: Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operation sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


Copyright C 1990 by FUJITSU LIMITED and Fujitsu Microelectronics, Inc.

CAPACITANCE (T_A = 25°C, f = 1MHz)

Parameter	Symbol	Тур	Max	Unit
Input Capacitance, A0 to A8	C _{IN1}	_	5	pF
Input Capacitance, RAS, CAS, WE, OE	C IN2	—	5	pF
Input/Output Capacitance, DQ1 to DQ4	CDQ		6	pF

PIN ASSIGNMENTS AND DESCRIPTIONS

RECOMMENDED OPERATING CONDITIONS

Parameter	Notes	Symbol	Min	Тур	Max	Unit	Ambient Operating Temp
Susahi Valtara	[V _{cc}	4.5	5.0	5.5	v	
Supply Voltage	Ľ	V _{SS}	0	0	0	v	
Input High Voltage, all inputs	1	VIH	2.4	_	6.5	v	0 °C to +70 °C
Input Low Voltage, all inputs	1	VIL	-2.0		0.8	v	
Input Low Voltage, DQ(*)	1	VILD	-1.0		0.8	v	

*: Undershoots of up to -2.0 volts with a pulse width not exceeding 20ns are acceptable.

FUNCTIONAL OPERATION

ADDRESS INPUTS

Eighteen input bits are required to decode any four of 1,048,576 cell addresses in the memory matrix. Since only nine address bits are available, the column and row inputs are separately strobed by CAS and RAS as shown in Figure 1. First, nine row address bits are input on pins A0-through-A8 and latched with the row address strobe (RAS) is then, nine column address bits are input and latched with the column address strobe (CAS). Both row and column addresses must be stable on or before the falling edge of CAS and RAS, respectively. The address latches are of the flow-through type; thus, address information appearing after tran (min)+ tr is automatically treated as the column address.

WRITE ENABLE

The read or write mode is determined by the logic state of WE. When WE is active Low, a write cycle is initiated; when WE is High, a read cycle is selected. During the read mode, input data is ignored.

DATA INPUT

Input data is written into memory in either of three basic ways—an early write cycle, an \overline{OE} (delayed) write cycle, and a read-modify—write cycle. The falling edge of \overline{WE} or \overline{CAS} , whichever is later, serves as the input data–latch strobe. In an early write cycle, the input data (DQ1–DQ4) is strobed by \overline{CAS} and the setup/hold times are referenced to \overline{CAS} because \overline{WE} goes Low before \overline{CAS} ; thus, input data is strobed by \overline{WE} and all setup/hold times are referenced to the write–enable signal.

DATA OUTPUT

The three-state buffers are TTL compatible with a fanout of two TTL loads. Polarity of the output data is identical to that of the input; the output buffers remain in the high-impedance state until the column address strobe goes Low. When a read or read-modify-write cycle is executed, valid outputs are obtained under the following conditions:

- tRAC : from the falling edge of RAS when tRCD (max) is satisfied.
- tCAC : from the falling edge of CAS when tRCD is greater than tRCD, tRAD (max).
- tAA : from column address input when tRAD is greater than tRAD (max).
- tOEA: from the falling edge of OE when OE is brought Low after tRAC, tCAC, or tAA

The data remains valid until either CAS or OE returns to a High logic level. When an early write is executed, the output buffers remain in a high-impedance state during the entire cycle.

DC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted)

Notes 3

Perami	er Notes	Symbol	Conditions	Min	Values Typ	Mex	Unit	
Output high voltage		V _{он}	I _{OH} = -5 mA	2.4	-	—		
Output low voltage		V _{OL}	l _{OL} = 4.2 mA	-	—	0.4	v	
Input leakage current (any input)		^ו ו(L)	$0V \le V_{IN} \le 5.5V;$ $4.5V \le V_{CC} \le 5.5V;$ $V_{SS} = 0V;$ All other pins under test = 0V	-10		10	μА	
Output leakage currer	nt	1 _{0(L)}	0V≤V _{OUT} ≤ 5.5V; Data out disabled	-10	-	10		
	MB81C425670L					72		
Operating current	MB81C4256-80L		RAS & CAS cycling;			65		
(Average Power supply Current)	MB81C4256-10L	I _{CC1}	tac = min	_	_	55	mA	
2	MB81C4256-12L					47		
Standby current	TTL level		RAS = CAS =V			1.5	mA	
(Power supply current)	CMOS level	I _{CC2}	$\overline{\text{RAS}} = \overline{\text{CAS}} \ge V_{\text{CC}} = 0.2V$		-	250	μA	
	MB81C425670L						60	
Refresh current #1	MB81C4256-80L	I _{CC3}	CAS = VIH, RAS cycling; trc = min	_	_	56	mA	
(Average power sup- ply current) 2	MB81C4256-10L					50	mA	
	MB81C4256-12L					45		
	MB81C425670L					39		
Fast Page Mode	MB81C4256-80L		RAS =VIL, CAS cycling;			37		
current 2	MB81C425610L	I _{CC4}	tpc = min	-		33		
	MB81C4256-12L					28		
	MB81C4256-70L					60		
Refresh current #2 (Average power sup-	MB81C4256-80L		RAS cycling; CAS-before-RAS;			56	mA	
ply current) 2	MB81C4256-10L	I _{CC5}	trc = min	-	_ [50		
	MB81C4256-12L					45		
Battery Back up	MB81C4256-70L		RAS cycling ; CAS-before-RAS ;					
current	MB81C4256-80L		t_{RC} =125 µs, t_{RAS} =min.			250	μА	
(Average power supply current)	MB81C4256-10L	I _{CC6}	to 1 μ s, DQ1 to 4 \geq Vcc -0.2V or \leq 0.2V or Open Other pin \geq Vcc-0.2V or	-	-	200	μ.,	
	MB81C425612L		Other pin ≥vcc-0.2v or ≤ 0.2V					

2-215

AC CHARACTERISTICS

(At recommended operating conditions unless otherwise noted.) Notes 3, 4, 5

No. Parameter Notes Symbol Min Max					1256-70L	***************	256-80L		256-10L	MB81C4	256-12L	
Index Inc. Int. Int. <thint.< th=""> Int. Int. <t< th=""><th>No.</th><th>Parameter Notes</th><th>Symbol</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>*******</th><th>Unit</th></t<></thint.<>	No.	Parameter Notes	Symbol								*******	Unit
3 Read-Modify-Write Cycle Time t_{RVC} 197 - 212 - 240 - 275 - nm 4 Access Time from RAS 6.9 t_{RAC} - 70 - 80 - 100 - 120 nm 5 Access Time from RAS 6.9 t_{RAC} - 25 - 25 - 25 - 35 - 36 nm 6 Column Address Access Time 8.9 t_{AA} - 43 - 45 - 50 - 60 nm 7 Output Buffer Tum On Delay Time 10 t_{OF} - 25 5 25 25	1	Time Between Refresh	t _{REF}	_	64	—	64	_	64	—	64	ms
4 Access Time from RAS 6.9 i_{AAC} - 70 - 80 - 100 - 120 nm 5 Access Time from \overline{CAS} $\overline{T.9}$ i_{CAC} - 25 - 25 - 25 - 35 nm 6 Column Address Access Time 8.9 i_{AA} - 43 - 45 - 50 - 60 nm 7 Output Buffer Tum On Delay Time 100 tops 5 - 5 - 5 - 25 - 25 - 25 - 25 - 25 - 25 - 25 - 25 - 25 - 25 - 25 - 25 - 80 - mm 100000 100 100000 120 100000 101 120 100 111 RAS Procharge Time i_{BAS} 70 100 0 - 100	2	Random Read/Write Cycle Time	t _{RC}	140		155		180		210	-	ns
Image: series of the form CAS T.J. t_{AC} - 25 - 25 - 25 - 38 nm 6 Column Address Access Time B.J. t_{AA} - 43 - 45 - 50 - 60 nm 7 Output Buffer Tum On Delay Time t_{OH} 7 - 25 - 25 - 25 - 25 - 25 - 25 - 35 0 nm 100000 100 100 100 120 100000 100 120 100 10	3	Read-Modify-Write Cycle Time	t _{RWC}	197		212		240	—	275		ns
6 Column Address Access Time $\overline{0.0}$ t_{AA} - 43 - 45 - 50 - 60 nm 7 Output Hold Time t_{OH} 7 - 80 7 7 - 7 7 - 80 7 7 - 7 7 - 80 7 <td>4</td> <td>Access Time from RAS 6,9</td> <td>t_{RAC}</td> <td></td> <td>70</td> <td></td> <td>80</td> <td></td> <td>100</td> <td> ·</td> <td>120</td> <td>ns</td>	4	Access Time from RAS 6,9	t _{RAC}		70		80		100	·	120	ns
7 Output Hold Time ton 7 - 7 7 - 8 7 0 1 7 7 - 7 7 - 7 7 - 7 7 - 8 7	5	Access Time from CAS [7,9]	t _{CAC}		25		25		25		35	ns
Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>	6	Column Address Access Time 8,9	t _{AA}		43		45		50		60	ns
Description of balley Time 10 10pr - 25 25 26	7	Output Hold Time	t _{OH}	7		7	-	7		7		ns
Solution Time Construction <	8	Output Buffer Turn On Delay Time	t _{ON}	5	_	5		5		5		ns
Interpretation t_{BP} 60 65 70 80 nn 12 FAS Pulse Width t_{BAS} 70 100000 80 100000 100 100000 120 100000 nn 13 FAS Hold Time t_{BSH} 25 25 35 nn 14 CAS to FAS Precharge Time t_{CBP} 0 0 0 0 0 nn 15 RAS to CAS Delay Time II.12 t_{CBP} 0 0	9	Output Buffer Turn off Delay Time 10	t _{OFF}		25		25	_	25		25	ns
12 $\overline{\text{RAS}}$ Pulse Width t_{RAS} 70 100000 80 100000 100 100000 120 100000 nm 13 $\overline{\text{RAS}}$ Hold Time t_{RBH} 25 25 35 nm 14 $\overline{\text{CAS}}$ to $\overline{\text{RAS}}$ Precharge Time t_{CRP} 0 0 0 0 nm nm 15 $\overline{\text{RAS}}$ to $\overline{\text{CAS}}$ Delay Time $\overline{11,12}$ t_{RCD} 20 45 22 55 25 75 25 85 nm 16 $\overline{\text{CAS}}$ Delay Width t_{CAS} 25 25 35 nm 17 $\overline{\text{CAS}}$ Hold Time t_{CBH} 70 80 100 120 nm 18 $\overline{\text{CAS}}$ Precharge Time (C-B-R cycle) t_{CPN} 10 10 15 nm	10	Transition Time	tT	3	50	3	50	3	50	3	50	ns
13 RAS Hold Time t_{RSH} 25 25 25 35 nm 14 CAS to RAS Precharge Time t_{CRP} 0 0 0 0 0 0 nm	11	RAS Precharge Time	. t _{RP}	60	—	65		70	_	80	_	ns
14 CAS to FAS Precharge Time t_{CRP} 0 0 0 n n 15 RAS to CAS Delay Time [1],12 t_{RCO} 20 45 22 55 25 75 25 85 ns 16 CAS Pulse Width t_{CAS} 25 25 25 35 ns 17 CAS Hold Time t_{CSH} 70 80 100 120 ns 18 CAS Precharge Time (C-B-R cycle) 19 t_{CPN} 10 10 10 10 15 ns 19 Row Address Set Up Time t_{ASR} 0 0 0 0 15 15 ns ns 1 ns 15 15 15 16 ns 16 13 15 15 15 20 50 20	12	RAS Pulse Width	t _{RAS}	70	100000	80	100000	100	100000	120	100000	ns
15 RAS to CAS Delay Time 11,12 t_{RCD} 20 45 22 55 25 75 25 85 nm 16 CAS Pulse Width t_{CAS} 25 - 25 - 25 - 35 - nm 17 CAS Hold Time t_{CAS} 70 - 80 - 100 - 120 - nm 18 CAS Precharge Time (C-B-R cycle) 19 t_{CPN} 10 - 10 - 0 - 0 - nm 19 Row Address Set Up Time t_{ASR} 0 - 0 - 0 - 0 - nm 20 Row Address Set Up Time t_{ASC} 0 - 0 - 0 - 0 - nm 15 - nm 21 Column Address Hold Time t_{ASC} 0 - 0 - 0 - 0 - nm 15 20 50 20 60 nm 16 16 16	13	RAS Hold Time	t _{RSH}	25	—	25		25	I	35	-	ns
16 CAS Pulse Width t_{CAS} 25 - 25 - 25 - 35 - ns 17 CAS Hold Time t_{CSH} 70 - 80 - 100 - 120 - ns 18 CAS Precharge Time (C-B-R cycle) 19 t_{CPH} 10 - 100 - 100 - 15 - ns 19 Row Address Set Up Time t_{ASR} 0 - 0 - 0 - 0 - ns 20 Row Address Hold Time t_{ARA} 10 - 12 - 15 - 15 - ns 21 Column Address Bold Time t_{ASC} 0 - 0 - 0 - 0 - ns 20 - ns 22 Column Address Bolay Time 13 t_{RAD} 15 27 17 35 20 50 20 60 ns 23 RAS to Column Address Delay Time 13 t_{RAD} 15 27 17 <td>14</td> <td>CAS to RAS Precharge Time</td> <td>t_{CRP}</td> <td>0</td> <td>-</td> <td>0</td> <td>-</td> <td>0</td> <td>-</td> <td>0</td> <td>-</td> <td>ns</td>	14	CAS to RAS Precharge Time	t _{CRP}	0	-	0	-	0	-	0	-	ns
16 \overline{CAS} Pulse Width t_{CAS} 25 25 35 ns 17 \overline{CAS} Hold Time t_{CSH} 70 80 100 120 ns 18 \overline{CAS} Precharge Time (C-B-R cycle) 19 t_{CPN} 10 10 10 10 15 ns 19 Row Address Set Up Time t_{ASR} 0 0 0 15 15 ns 20 Row Address Set Up Time t_{RAH} 10 15 15 15 15 ns 21 Column Address Set Up Time t_{ABL} 15 15 15 15 15 160 ns 20 ns 22 Column Address Delay Time 13 t_{ARL} 43 45 50 60 <td< td=""><td>15</td><td>RAS to CAS Delay Time [11,12]</td><td>t _{RCD}</td><td>20</td><td>45</td><td>22</td><td>55</td><td>25</td><td>75</td><td>25</td><td>85</td><td>ns</td></td<>	15	RAS to CAS Delay Time [11,12]	t _{RCD}	20	45	22	55	25	75	25	85	ns
18 CAS Precharge Time (C-B-R cycle) 19 t_{CPN} 10 - 10 - 10 - 15 - ns 19 Row Address Set Up Time t_{ASR} 0 - 0 - 0 - 00 - 00 - 00 - 00 - ns 20 Row Address Hold Time t_{RAH} 10 - 12 - 15 - 15 - ns 21 Column Address Set Up Time t_{RAS} 0 - 0 - 0 - 00 - 00 - 00 - 00 - ns 22 Column Address Delay Time t_{RAS} 0 - 15 - 15 - 15 - 160 - ns 23 RAS to Column Address Delay Time t_{RAL} 43 - 45 - 50 - 60 - ns 24 Column Address to RAS Lead Time t_{RCS} 0 - 0 - 0 -	16	CAS Pulse Width		25		25		25	_	35		ns
10 Order Forwards and (or binding) 10 110	17	CAS Hold Time	t _{CSH}	70	-	80		100	-	120	-	ns
20 Row Address Hold Time t_{RAH} 10 - 12 - 15 - 15 - ns 21 Column Address Set Up Time t_{ASC} 0 - 0	18	CAS Precharge Time (C-B-R cycle) 19	t _{CPN}	10	_	10		10	_	15	-	ns
21 Column Address Set Up Time t ASC 0 0 0 0 0 0 ns 22 Column Address Hold Time t CAH 15 15 15 20 ns 23 RAS to Column Address Delay Time 13 t RAD 15 27 17 35 20 50 20 60 ns 24 Column Address to RAS Lead Time t RAL 43 45 50 60 ns 25 Read Command Set Up Time t RAS 0 0 0 0 ns 26 Read Command Hold Time 14 t RRH 0 0 0 0 ns 27 Read Command Hold Time 14 t RCH 0 0 0 0 0 ns 28 Write Command Set Up	19	Row Address Set Up Time	t _{ASR}	0		0		0		0	—	ns
22 Column Address Hold Time t_{CAH} 15 - 15 - 15 - 20 - ns 23 RAS to Column Address Delay Time 13 t_{RAD} 15 27 17 35 20 50 20 60 ns 24 Column Address to RAS Lead Time t_{RAL} 43 - 45 - 50 - 60 - ns 25 Read Command Set Up Time t_{RCS} 0 - 0 - 0 - 0 - ns 26 Read Command Hold Time 14 t_{RCH} 0 - 0 - 0 - ns 27 Read Command Hold Time 14 t_{RCH} 0 - 0 - 0 - ns ns 28 Write Command Set Up Time 15 t_{RCH} 0 - 15 - 15 - 16 - ns 29 Write Command Set Up Time 15 t_{RCH} 15 - 15 - <	20	Row Address Hold Time	t _{RAH}	10		12	-	15	_	15	-	ns
22 Column Address Hold Time t_{CAH} 15 - 15 - 20 - ns 23 RAS to Column Address Delay Time 13 t_{RAD} 15 27 17 35 20 50 20 60 ns 24 Column Address to RAS Lead Time t_{RAL} 43 - 45 - 50 - 60 - ns 25 Read Command Set Up Time t_{RAS} 0 - 0 - 00	21	Column Address Set Up Time	t ASC	0		0		0	_	0	-	ns
24 Column Address to \overrightarrow{RAS} Lead Time t_{RAL} 43 45 50 60 ns 25 Read Command Set Up Time t_{RCS} 0 0 0 0 ns 26 Read Command Hold Time 14 t_{RCH} 0 0 0 ns 27 Read Command Hold Time 14 t_{RCH} 0 0 0 0 ns 28 Write Command Set Up Time 15 t_{RCH} 0 0 0 ns 29 Write Command Hold Time twos 0 15 15 15 ns 30 WE Pulse Width twos 15 15 15 20 ns 31 Write Command to \overrightarrow{FAS} Lead Time twos 17 17 20 ns </td <td>22</td> <td>Column Address Hold Time</td> <td></td> <td>15</td> <td>—</td> <td>15</td> <td></td> <td>15</td> <td>_</td> <td>20</td> <td>-</td> <td>ns</td>	22	Column Address Hold Time		15	—	15		15	_	20	-	ns
25 Read Command Set Up Time t_{RCS} 0 0 0 0 ns 26 Read Command Hold Time Referenced to RAS 14 t_{RRH} 0 0 0 0 ns 27 Read Command Hold Time Referenced to CAS 14 t_{RCH} 0 0 0 0 ns 28 Write Command Set Up Time 15 t_{RCH} 0 0 0 0 ns 29 Write Command Hold Time t_{WCH} 15 15 15 16 16 ns 30 WE Pulse Width t_{WP} 15 15 15 20 ns 31 Write Command to FAS Lead Time t_{RWL} 22 22 25 30 ns 32 Write Command to CAS Lead Time	23	RAS to Column Address Delay Time 13	t _{RAD}	15	27	17	35	20	50	20	60	ns
26 Read Command Hold Time Referenced to RAS 14 t_{RRH} 0 0 0 0 ns 27 Read Command Hold Time Referenced to RAS 14 t_{RCH} 0 0 0 0 ns 28 Write Command Set Up Time 15 t_{RCH} 0 0 0 ns 29 Write Command Hold Time t _{WCH} 15 15 20 ns 30 WE Pulse Width t _{WP} 15 15 15 20 ns 31 Write Command to RAS Lead Time t _{RWL} 22 22 25 30 ns 32 Write Command to CAS Lead Time t _{CWL} 17 17 20 ns 33 DIN set Up Time t _{DS} 0 0 0 0	24	Column Address to RAS Lead Time	t _{RAL}	43		45		50	_	60	-	ns
26 Referenced to RAS 14 1 RRH 0 - 15 - 15 - 15 - 15 - 15 - 15 - 15 - 15 - 15 - 15 - 15 <td>25</td> <td>Read Command Set Up Time</td> <td>t _{RCS}</td> <td>0</td> <td>-</td> <td>0</td> <td></td> <td>0</td> <td></td> <td>0</td> <td></td> <td>ns</td>	25	Read Command Set Up Time	t _{RCS}	0	-	0		0		0		ns
27 Referenced to \overline{CAS} 14 t_{RCH} 0 - 0 - 0 - 0 - 0 - ns 28 Write Command Set Up Time 15 t_{WCS} 0 - 0 - 0 - 0 - ns 29 Write Command Hold Time t_{WCH} 15 - 15 - 15 - 20 - ns 30 WE Pulse Width t_{WP} 15 - 15 - 15 - 20 - ns 31 Write Command to \overline{RAS} Lead Time t_{RWL} 22 - 22 - 25 - 30 - ns 32 Write Command to \overline{CAS} Lead Time t_{CWL} 17 - 17 - 20 - 25 - ns 33 DIN set Up Time t_{DS} 0 - 0 - 0 - 0 - ns	26		t _{RRH}	0	_	0	—	0	—	0	-	ns
29 Write Command Hold Time t_{WCH} 15 15 15 20 ns 30 WE Pulse Width t_{WP} 15 15 15 20 ns 31 Write Command to RAS Lead Time t_{RWL} 22 22 25 30 ns 32 Write Command to CAS Lead Time t_{CWL} 17 17 20 ns 33 DIN set Up Time t_{DS} 0 0 0 0 ns	27		t _{RCH}	0	_	0		0	-	0	-	ns
30 WE Pulse Width t_{WP} 15 15 15 20 ns 31 Write Command to FAS Lead Time t_{RWL} 22 22 25 30 ns 32 Write Command to CAS Lead Time t_{CWL} 17 17 20 25 ns 33 DIN set Up Time t_{DS} 0 0 0 ns	28	Write Command Set Up Time 15	twcs	0		0		0		0		ns
31 Write Command to $\overline{\text{PAS}}$ Lead Time t_{RWL} 22 - 22 - 25 - 30 - ns 32 Write Command to $\overline{\text{CAS}}$ Lead Time t_{CWL} 17 - 17 - 20 - 25 - ns 33 DIN set Up Time t_{DS} 0 - 0 - 0 - ns	29	Write Command Hold Time	t _{WCH}	15		15		15		20	-	ns
32 Write Command to \overline{CAS} Lead Time t_{CWL} 17 17 20 25 ns 33 DIN set Up Time t_{DS} 0 0 0 ns	30	WE Pulse Width	t _{WP}	15		15		15	-	20	-	ns
33DIN set Up Time t_{DS} 000ns	31	Write Command to RAS Lead Time	t _{RWL}	22	_	22		25	-	30	-	ns
	32	Write Command to CAS Lead Time	t _{CWL}	17		17		20	-	25	-	ns
34 DIN Hold Time tou 15 - 15 - 20 - ns	33	DIN set Up Time	t _{DS}	0		0		0	-	0		ns
	34	DIN Hold Time	t _{DH}	15		15		15	—	20	-	ns

AC CHARACTERISTICS (Continued)

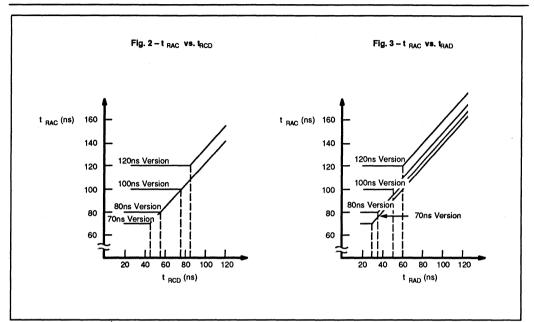
(At recommended operating conditions unless otherwise noted.) Notes 3, 4, 5

			MB81C4				100000000000000000000000000000000000000	256-10L	MB81C4	256-12L	
No.	Parameter Notes	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit
35	RAS Precharge time to CAS Active Time (Refresh cycles)	t _{RPC}	0	—	0	—	0	-	0	-	ns
36	CAS Set Up Time for CAS-before- RAS Refresh	t _{CSR}	0	-	0	—	0	-	0	—	ns
37	CAS Hold Time for CAS-before- RAS Refresh	t _{CHR}	15	—	15	—	15	-	20	—	ns
38	Access Time from OE 9	t _{OEA}	-	22	-	22	-	22	-	30	ns
39	Output Buffer Turn Off Delay [10] from QE	t _{OEZ}	-	25	—	25	_	25	_	25	ns
40	OE to RAS Lead Time for Valid Data	t _{OEL}	10	-	10		10	-	10	-	ns
41	OE Hold Time Referenced to WE 16	t _{OEH}	0	—	0	-	0	—	0	—	ns
42	OE to Data In Delay Time	t _{OED}	25	-	25	-	25		25	_	ns
43	DIN to CAS Delay Time 17	t _{DZC}	0	—	0	-	0	-	0		ns
44	DIN to OE Delay Time 17	t _{DZO}	0	—	0	-	0	-	0	-	ns
45	Access Time from CAS (Counter Test Cycle)	t _{CAT}	-	43	-	45		50	—	60	ns
50	Fast Page Mode Read/Write Cycle Time	t _{PC}	53	—	55	-	60	-	70	-	ns
51	Fast Page Mode Read-Modify-Write Cycle Time	t _{PRWC}	105	-	107		115	-	130	-	ns
52	Access Time from CAS Precharge 9,18	t _{CPA}	_	53	_	55	_	60	—	70	ns
53	Fast Page Mode CAS Precharge Time	t _{CP}	10	-	10	_	10	-	15	-	ns

Notes:

- 1. Referenced to VSS
- Icc depends on the output load conditions and cycle rates; The specified values are obtained with the output open. Icc depends on the number of address change as PAS = VIL and

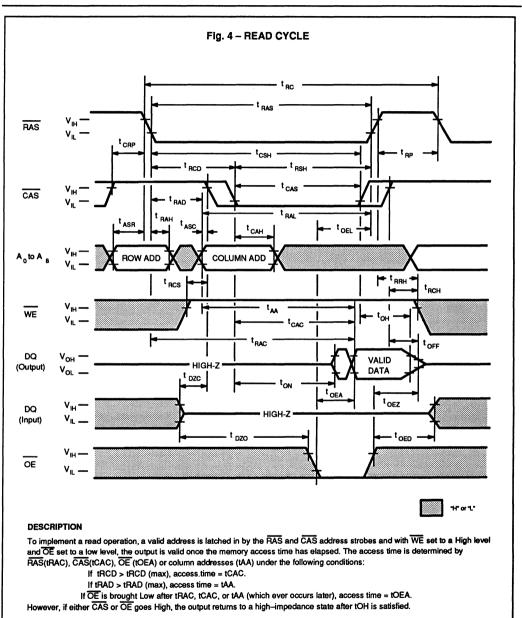
CAS = VIH.

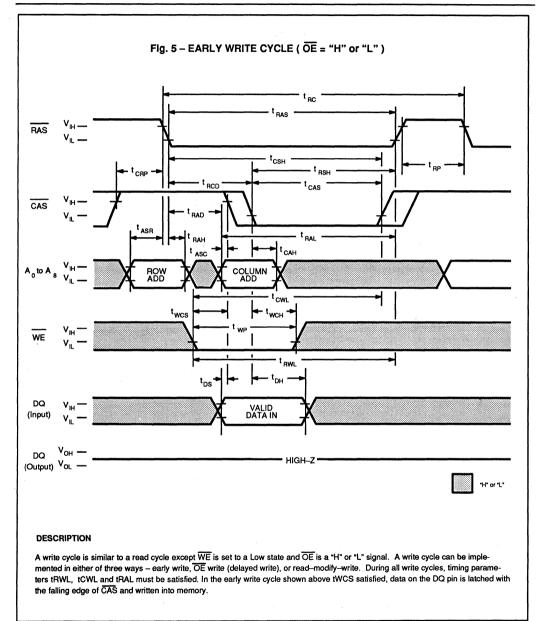

Icc1, Icc3 and Icc5 are specified at three time of address change during $\overrightarrow{RAS} = V_{IL}$ and $\overrightarrow{CAS} = V_{IH}$.

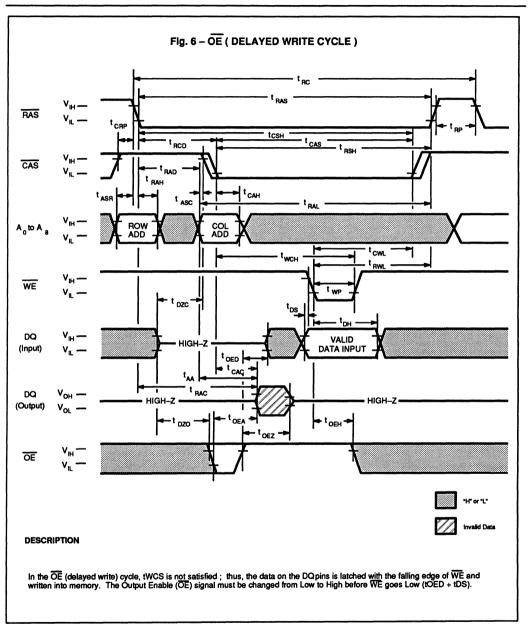
Icc4 is specified at one time of address change during $\overrightarrow{RAS} = VIL$ and $\overrightarrow{CAS} = VIH$.

- 3. An Initial pause (RAS = CAS =VIH) of 200µs is required after power-up followed by any eight RAS -only cycles before proper device operation is achieved. In case of using internal refresh counter, a minimum of eight CAS -before-RAS initialization cycles instead of 8 RAS cycles are required.
- 4. AC characteristics assume t_T = 5ns
- V_{IH} (min) and V_{IL} (max) are reference levels for measuring timing of input signals. Also transition times are measured between V_{IH} (min) and V_{IL} (max).
- 6. Assumes that tRcD≤ tRcD (max), tRAD≤ tRAD (max). If tRcD is greater than the maximum recommended value shown in this table, tRAC will be increased by the amount that tRcD exceeds the value shown. Refer to Fig. 2 and 3.
- 7. Assumes that $t_{RCD} \ge t_{RCD}$ (max), $t_{RAD} \ge t_{RAD}$ (max). If $t_{ASC} \ge t_{AA} t_{CAC} t_T$, access time is t_{CAC} .
- 8. If trad \geq trad (max) and tasc \leq tak tcac t $_{T}$, access time is t ak .

9. Measured with a load equivalent to two TTL loads and 100 pF.

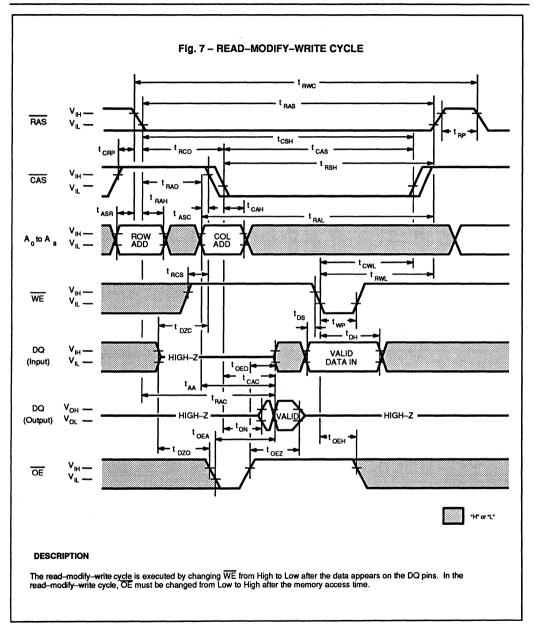

- torr and torz is specified that output buffer change to high impedance state.
- 11. Operation within the tRCD (max) limit ensures that tRAC (max) can be met. tRCD (max) is specified as a reference point only; if tRCD is greater than the specified tRCD (max) limit, access time is controlled exclusively by tCAC or tAA.
- 12. t_{RCD} (min) = t_{RAH} (min)+ $2t_T$ + t_{ASC} (min)
- 13. Operation within the tRAD (max) limit ensures that tRAC (max) can be met. tRAD (max) is specified as a reference point only; if tRAD is greater than the specified tRAD (max) limit, access time is controlled exclusively by tCAC or t AA.
- 14. Either tRRH or tRCH must be satisfied for a read cycle.
- twcs is specified as a reference point only. If twcs ≥ twcs (min) the data output pin will remain High-Z state through entire cycle.
- 16. Assumes that twcs < twcs (min)
- 17. Either tozc or tozo must be satisfied.
- tCPA is access time from the selection of a new column address (that is caused by changing CAS from "L" to "H"). Therefore, if tcp is shortened, tcPA is longer than tCPA (max).
- 19. Assumes that CAS -before-RAS refresh, CAS -before-RAS refresh counter test cycle only.

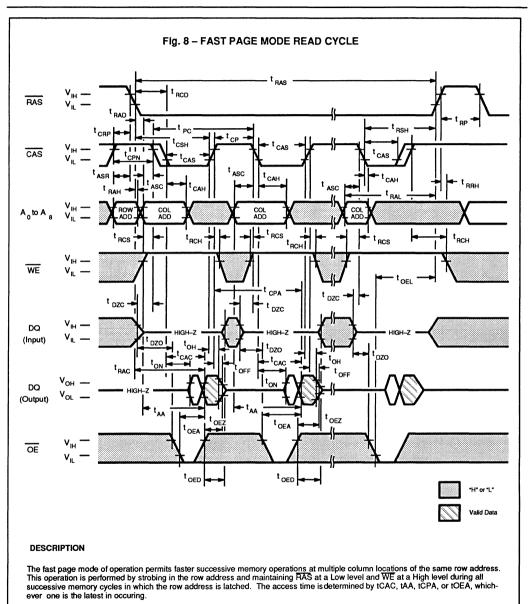


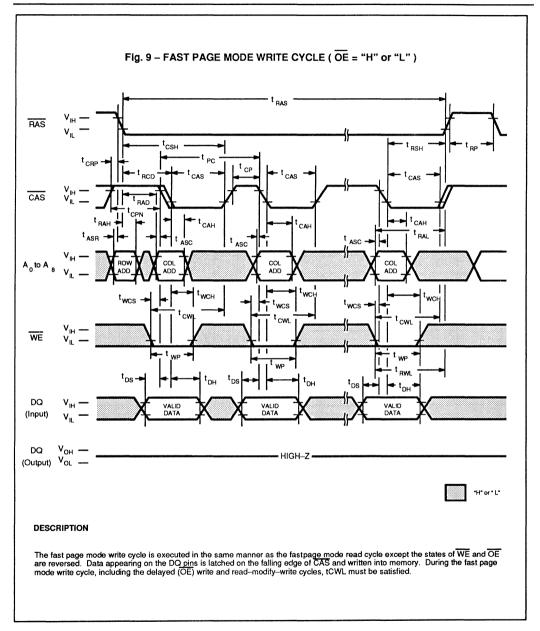

FUNCTIONAL TRUTH TABLE

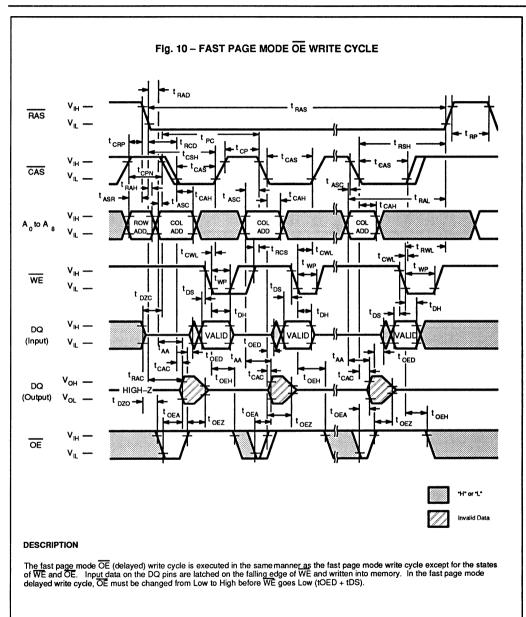
Operation Mode		Clock Input				dress	Inpu	it Data	Refresh	Note
·	HAS	CAS	WE	OE	Row	Column	Input	Output	neiresn	Note
Standby	н	н	х	х	-	-		HighZ	—	
Read Cycle	L	L	н	L	Valid	Valid		Valid	Yes *	tacs <u>≥</u> tacs (min)
Write Cycle (Early Write)	L	L	L	x	Valid	Valid	Valid	HighZ	Yes *	twcs <u>≥</u> twcs (min)
Read-Modify- Write Cycle	L	L	H-→L	L-→H	Valid	Valid	Valid	Valid	Yes *	
RAS-only Refresh Cycle	L	н	x	x	Valid	-	_	HighZ	Yes	
CAS-before- RAS Refresh Cycle	L	L	x	x		-	-	High–Z	Yes	tcsя≥twcsя (min)
Hidden Refresh	H→L	L	x	L	-	_		Valid	Yes	Previous data is kept.

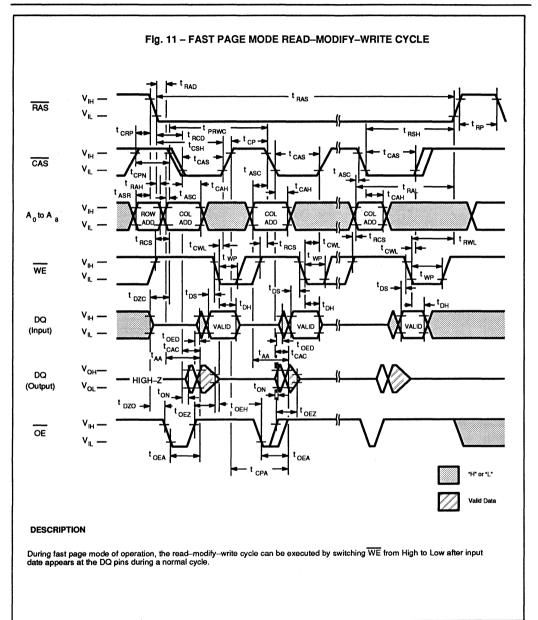
X; "H" or "L" *; It is impossible in Fast Page Mode

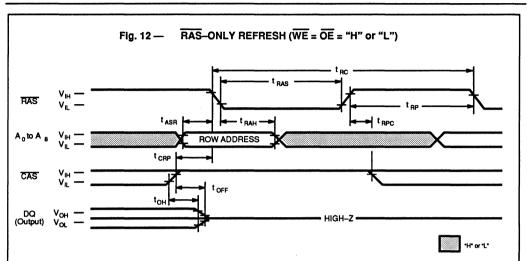


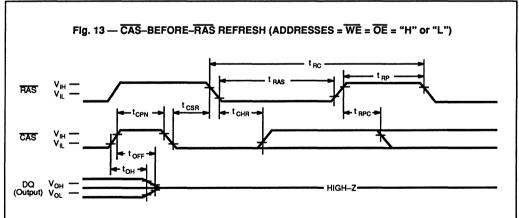




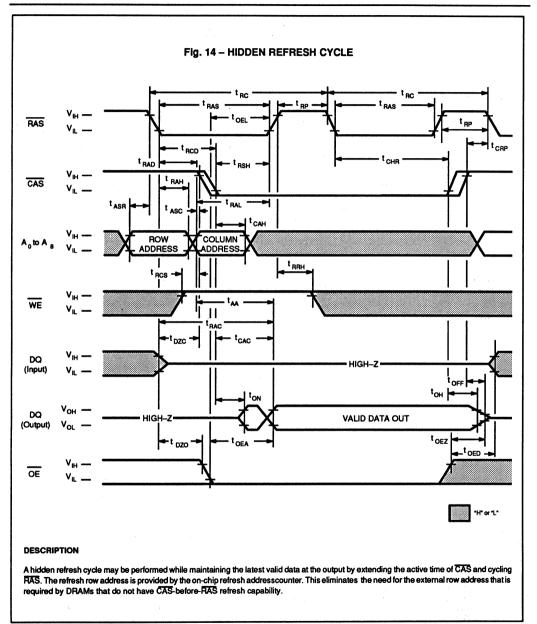

2


2-221

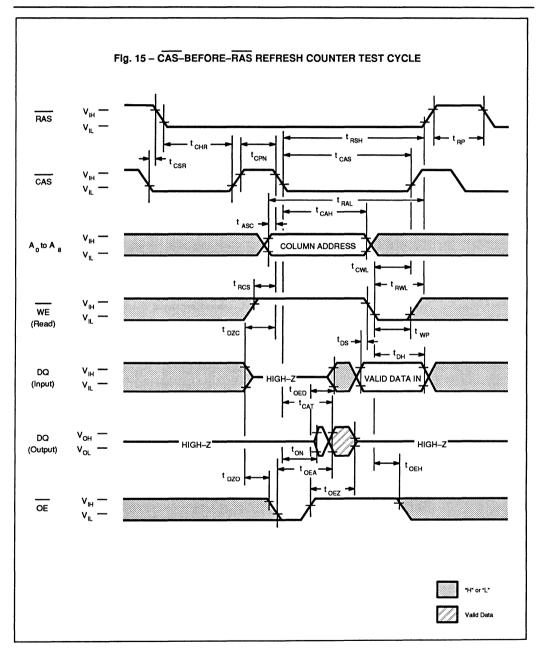




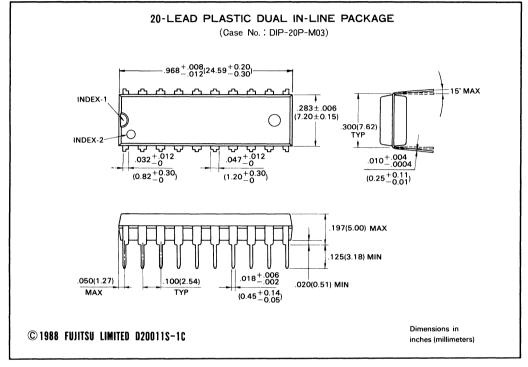
DESCRIPTION


Refresh of RAM memory cells is accomplished by performing aread, a write, or a read-modify-write cycle at each of 512 row addresses every 64-milliseconds. Three refresh modes are available: RAS-only refresh, CAS-before-RAS refresh, and hidden refresh.

RAS-only refresh is performed by keeping RAS Low and CAS High throughout the cycle; the row address to be refreshed is latched on the falling edge of RAS. During RAS-only refresh, Dout pin is kept in a high-impedance state.

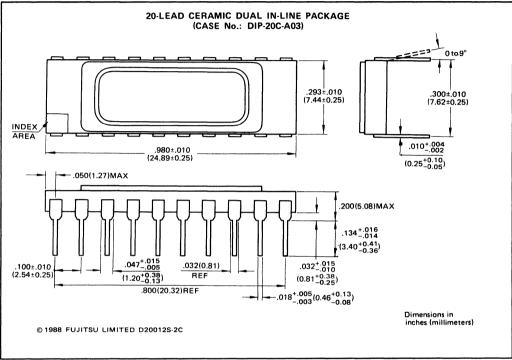

DESCRIPTION

CAS-before-RAS refresh is an on-chip refresh capability that eliminates the need for external refresh addresses. If CAS is held Low for the specified setup time (tcsn) before RAS goes Low, the on-chip refresh control clock generators and refresh address counter are enabled. An internal refresh operation automatically occurs and the refresh address counter is internally incremented in preparation for the next CAS-before-RAS refresh operation.

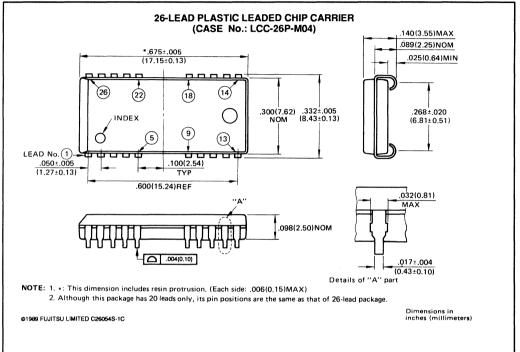

2

i

PACKAGE DIMENSIONS

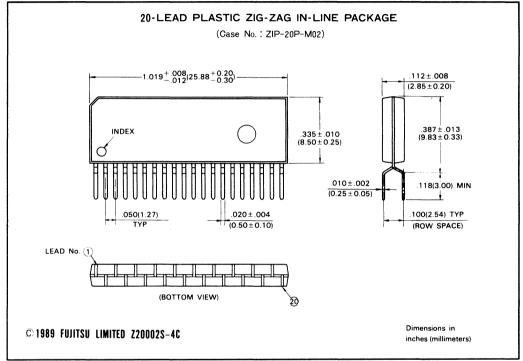

(Suffix : --P)

MB81C4256-70L MB81C4256-80L MB81C4256-10L MB81C4256-12L


PACKAGE DIMENSIONS (Continued)

(Suffix : -C)

PACKAGE DIMENSIONS (Continued)


(Suffix : -PJ)

MB81C4256-70L MB81C4256-80L MB81C4256-10L MB81C4256-12L

PACKAGE DIMENSIONS (Continued)

(Suffix : -PSZ)

DATA SHEET

MB81C4256A-60/-70/-80/-10

CMOS 1,048,576 BIT FAST PAGE MODE DYNAMIC RAM

CMOS 256 x 4 Bits Fast Page Mode DRAM

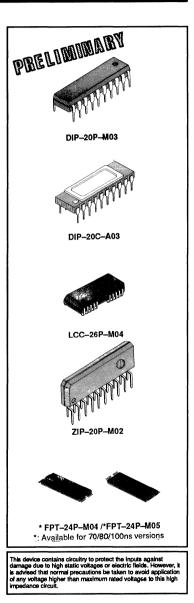
The Fujitsu MB81C4256A is a CMOS, fully decoded dynamic RAM organized as 262,144 words x 4 bits. The MB81C4256A has been designed for mainframe memories, buffer memories, and video image memories requiring high speed and high bandwidth output with low power dissipation.

Fujitsu's advanced three-dimensional stacked capacitor cell technology gives the MB81C4256A high a-ray soft error immunity. CMOS technology is used in the peripheral circuits to provide low power dissipation and high speed operation.

This specification applies to the BC die revision that was developed to realize faster access time. Faster speed versions (70 and 80 ns) are available on this chip.

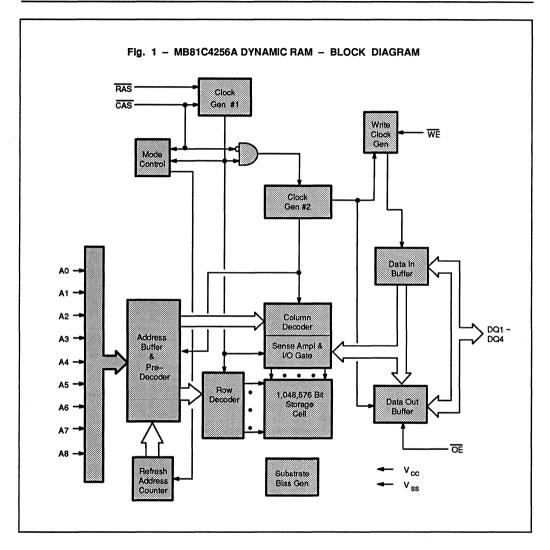
Features

Parameter	MB81C4256A -60	MB81C4256A -70	MB81C4256A -80	MB81C4256A -10				
RAS Access Time	60 ns max.	70 ns max.	80 ns max.	100 ns max.				
Random Cycle Time	130 ns min.	140 ns min.	155 ns min.	180 ns min.				
Address Access Time	30 ns max.	35 ns max.	40 ns max.	50 ns max.				
CAS Access Time	15 ns max.	20 ns max.	20 ns max.	25 ns max.				
Fast Page Mode Cycle Time	45 ns min.	50 ns min.	50 ns min. 55 ns min.					
Low Power Dissipation Operating Current 	407 mW max.	374 mW max.	341 mW max.	297 mW max.				
Standby Current	11 mW m	nax. (TTL level)/5	.5 mW max. (CM	IOS level)				
 262,144 words x 4 bits organization Silicon gate, CMOS, 3D–Stacked Capacitor Cell Early write or OE controlled write capability Basicon gate, CMOS, 3D–Stacked Hadden Befresh 								


- All input and output are TTL compatible
- 512 refresh cycles every 8.2 ms
- Fast Page Mode, Read-Modify-Write capability
- On-chip substrate bias generator for high performance

Absolute Maximum Ratings (See Note)

Parameter		Symbol	Value	Unit
Voltage at any pin relative to V	ss	VIN, VOUT	-1 to +7	V
Voltage of V _{CC} supply relative	to V _{SS}	V _{CC}	-1 to +7	v
Power Dissipation		PD	1.0	w
Short Circuit Output Current		_	50	mA
Storage Temperature	Ceramic	T _{STG}	-55 to +150	°C
	Plastic		-55 to +125	


Note: Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operation sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Copyright C 1990 by FUJITSU LIMITED and Fujitsu Microelectronics, Inc.

FU

SU

CAPACITANCE (T_A= 25°C, f = 1MHz)

Parameter	Symbol	Тур	Max	Unit
Input Capacitance, A0 to A8	C _{IN1}	—	5	рF
Input Capacitance, RAS, CAS, WE, OE	C _{IN2}	_	5	pF
Input/Output Capacitance, DQ1 to DQ4	CDQ	_	6	рF

20-Pin DIP : 26-Pin SOJ: 24-Pin FPT : (TOP VIEW) (TOP VIEW) (TOP VIEW) <Normal Bend : FPT-24P-M04> DQ1 DQ1 VSS VSS 1 20 п 26 DQ2 2 25 ь DQ4 DQ2 2 19 🗖 DQ4 OF ۸R 24 23 22 21 20 b DQ3 CAS A7 A6 WE E з 24 DQ3 003 WE 3 18 RAS C 23 b CAS 4 A5 A4 RAS 4 17 п h OE NC. 5 22 NC. 5 16 b OE Vcc DO: DO: WE 17 A3 A2 16 **⊢** ^ " A o г 6 15 10 11 15 PAS 14 A1 7 A 7 A 0 Α 1 14 18 ۸۵ 8 A 1 þ þ A 7 10 17 Α₆ A 2 8 13 Г п A 2 h A 6 11 16 L ∧₅ <Reverse Bend : FPT-24P-M05> Aз 5 9 12 A 3 12 15 Α₅ v_{cc} 11 v_{cc} 10 A 12 13 14 15 RAS A1 11 10 9 12 A3 DO2 16 17 Designator Function 5 4 3 2 20 21 22 23 24 A5 A6 A7 DQ1 to DQ4 Data Input/ Output WE Write Enable. BAS Row address strobe. NC No connection. 20-Pin ZIP: A0 to A8 Address inputs. (TOP VIEW) +5 volt power supply. vcc DQ4 DQ1 WE CAS NC. A 1 A 3 OE Output enable. CAS Column address strobe. OE DQ3 V SS DQ2 RAS A 0 A2 V_{CC} A5 A 7 vss Circuit ground.

PIN ASSIGNMENTS AND DESCRIPTIONS

RECOMMENDED OPERATING CONDITIONS

Parameter	Notes	Symbol	Min	Тур	Мах	Unit	Ambient Operating Temp	
Supply Voltage		V _{CC}	4.5	5.0	5.5	v		
Supply Voltage	Ľ	V _{SS}	0	0	0	v		
Input High Voltage, all inputs	1	VIH	2.4	_	6.5	v	0 °C to +70 °C	
Input Low Voltage, all inputs	1	VIL	2.0	_	0.8	v		
Input Low Voltage, DQ(*)	1	VILD	-1.0	_	0.8	v		

*: Undershoots of up to -2.0 volts with a pulse width not exceeding 20ns are acceptable.

FUNCTIONAL OPERATION

ADDRESS INPUTS

Eighteen input bits are required to decode any four of 1,048,576 celladdresses in the memory matrix. Since only nine address bits are available, the column and row inputs are separately strobed by CAS and RAS as shown in Figure 1. First, nine row address bits are input on pins A0-through-A8 and latched with the row address strobe (RAS) then, nine column address bits are input and latched with the column address strobe (RAS) beth row and column addresses must be stable on or before the fallingedge of CAS and RAS, respectively. The address latches are of the flow-through type; thus, address information appearing after t_{RAH} (min)+ t_T is automatically treated as the column address.

WRITE ENABLE

The read or write mode is determined by the logic state of WE. When WE is active Low, a write cycle is initiated; when WE is High, a read cycle is selected. During the read mode, input data is ignored.

DATA INPUT

Input data is written into memory in either of three basic ways—an early write cycle, an \overline{OE} (delayed) write cycle, and a read-modify-write cycle. The falling edge of \overline{WE} or \overline{CAS} , whichever is later, serves as the input data-latch strobe. In an early write cycle, the input data (DQ1-DQ4) is strobed by \overline{CAS} and the setup/hold times are referenced to \overline{CAS} because \overline{WE} goes Low before \overline{CAS} . In a delayed write or a read-modify-write cycle, \overline{WE} goes Low after \overline{CAS} ; thus, input data is strobed by \overline{WE} and all setup/hold times are referenced to the write-enable signal.

DATA OUTPUT

The three-state buffers are TTL compatible with a fanout of two TTL loads. Polarity of the output data is identical to that of the input; the output buffers remain in the high-impedance state until the column address strobe goes Low. When a read or read-modify-write cycle is executed, valid outputs are obtained under the following conditions:

- tRAC : from the falling edge of RAS when tRCD (max) is satisfied.
- tCAC : from the falling edge of CAS when tRCD is greater than tRCD, tRAD (max).
- tAA : from column address input when tRAD is greater than tRAD (max).
- tOEA: from the falling edge of OE when OE is brought Low after tRAC, tCAC, or tAA

The data remains valid until either CAS or OE returns to a High logic level. When an early write is executed, the output buffers remain in a high-impedance state during the entire cycle.

DC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted)

Notes 3

Parami	er Notes	Symbol	Conditions		Values		Unit	
Param	BF NOLES	Symbol		Min	Тур	Max	Unit	
Output high voltage		V _{он}	I _{ОН} = –5 mA	2.4			v	
Output low voltage		V _{OL}	l _{OL} = 4.2 mA	_		0.4	·	
Input leakage current (any input)		۱ (L)	0V≤V _{IN} ≤5.5V; 4.5V≤V _{CC} ≤5.5V; V _{SS} = 0V; All other pins under test = 0V		_	10	μА	
Output leakage currer	nt	I _{O(L)}	0V≤V _{OUT} ≤ 5.5V; Data out disabled	-10	_	10		
	MB81C4256A-60			_		74		
Operating current	MB81C4256A-70	I _{CC1}	RAS & CAS cycling;			68		
(Average Power supply Current)	MB81C4256A-80		trc = min		_	62	mA	
2	MB81C4256A-10					54		
Standby current	TTL level	I _{CC2}	RAS = CAS =V _{IH}			2.0	mA	
(Power supply current)	CMOS level	.005	$\overline{\text{RAS}} = \overline{\text{CAS}} \ge V_{\text{CC}} = -0.2V$			1.0		
	MB81C4256A-60					74	mA	
Refresh current #1	MB81C4256A-70	,	CAS = V⊮, RAS cycling;	_		68		
(Average power sup- ply current) 2	MB81C4256A-80	l ^{CC3}	tRC = min			62		
	MB81C4256A10					54		
	MB81C4256A-60					60		
Fast Page Mode	MB81C4256A-70		RAS =VIL, CAS cycling;			55		
current 2	MB81C4256A-80	I _{CC4}	tPC = min	_	_	50	mA	
	MB81C4256A-10					43		
	MB81C4256A60					74		
Refresh current #2	MB81C4256A-70		RAS cycling;			68	- mA	
(Average power sup- ply current) 2	MB81C4256A-80	I _{CC5}	CAS-before-RAS; trc = min	-	-	62		
	MB81C4256A-10					54		

AC CHARACTERISTICS

(At recommended operating conditions unless otherwise noted.) Notes 3, 4, 5

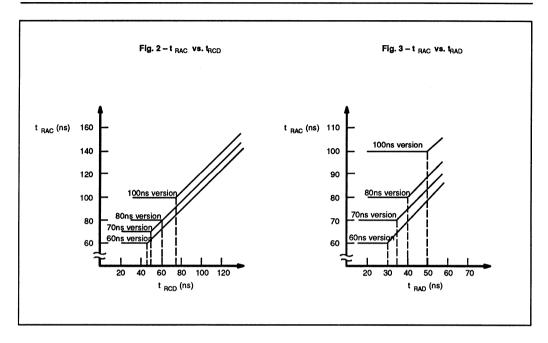
			MB81C4	256A-60	MB81C4	256A70	MB81C4	256A80	MB81C4	256A-10	
No.	Parameter Notes	Symbol	Min	Мах	Min	Max	Min	Max	Min	Max	Unit
1	Time Between Refresh	t _{REF}		8.2	—	8.2		8.2	_	8.2	ms
2	Random Read/Write Cycle Time	t _{RC}	130		140	-	155	—	180	-	ns
3	Read-Modify-Write Cycle Time	t _{RWC}	170	—	180	—	205	—	240	_	ns
4	Access Time from RAS 6,9	t _{RAC}		60	—	70		80		100	ns
5	Access Time from CAS 7,9	t _{CAC}		15		20		20		25	ns
6	Column Address Access Time 8,9	t _{AA}	-	30		35		40		50	ns
7	Output Hold Time	t _{OH}	0	—	0	—	0		0		ns
8	Output Buffer Turn On Delay Time	t _{ON}	0	—	0	_	0	—	0		ns
9	Output Buffer Turn off Delay Time 10	t _{OFF}		15		15		20		25	ns
10	Transition Time	t _T	2	50	2	50	2	50	2	50	ns
11	RAS Precharge Time	t _{RP}	60	-	60		65		70	-	ns
12	RAS Pulse Width	t _{RAS}	60	100000	70	100000	80	100000	100	100000	ns
13	RAS Hold Time	t _{RSH}	15	_	20	_	20	-	25	—	ns
14	CAS to RAS Precharge Time	t _{CRP}	0		0	—	0		0		ns
15	RAS to CAS Delay Time [11,12]	t _{RCD}	20	45	20	50	22	60	25	75	ns
16	CAS Pulse Width	t _{CAS}	15	_	20	—	20		25		ns
17	CAS Hold Time	t _{CSH}	60		70	—	80	_	100		ns
18	CAS Precharge Time (C-B-R cycle) 19	t _{CPN}	20	—	20	-	20		20	-	ns
19	Row Address Set Up Time	t _{ASR}	0	-	0		0		0	-	ns
20	Row Address Hold Time	t _{RAH}	10	-	10	-	12	-	15		ns
21	Column Address Set Up Time	t ASC	0	-	0	—	0	-	0	_	ns
22	Column Address Hold Time	t _{CAH}	12		12		15		15		ns
23	RAS to Column Address Delay Time 13	t _{RAD}	15	30	15	35	17	40	20	50	ns
24	Column Address to RAS Lead Time	t _{RAL}	30		35	-	40	—	50	_	ns
25	Read Command Set Up Time	t _{RCS}	0		0	—	0		0	_	ns
26	Read Command Hold Time Referenced to RAS	t _{RRH}	0		0	—	0	_	0	_	ns
27	Read Command Hold Time Referenced to CAS	t _{RCH}	0	-	0		0	-	0	—	ns
28	Write Command Set Up Time 15	t _{wcs}	0		0		0		0		ns
29	Write Command Hold Time	twch	10		10		12	_	15	—	ns
30	WE Pulse Width	t _{WP}	10		10	_	12		15		ns
31	Write Command to RAS Lead Time	t _{RWL}	15		15	_	20		25	_	ns
32	Write Command to CAS Lead Time	t _{CWL}	12	_	12		15	_	20	-	ns
33	DIN set Up Time	t _{DS}	0		0	_	0	-	0	_	ns
34	DIN Hold Time	t _{DH}	10		10		12		15	—	ns
And the owner of the owner own		the second se							the second second		

AC CHARACTERISTICS (Continued)

(At recommended operating conditions unless otherwise noted.) Notes 3, 4, 5

No.	December Notes	Cumber	MB81C4	256A60	MB81C4	256A70	MB81C4	256A80	MB81C4	256A10	Unit
INO.	Parameter Notes	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Out
35	RAS Precharge time to CAS Active Time (Refresh cycles)	t _{RPC}	0		o	_	o	—	o		ns
36	CAS Set Up Time for CAS-before- RAS Refresh	t _{CSR}	0	—	0	—	0	1	0		ns
37	CAS Hold Time for CAS-before- RAS Refresh	t _{CHR}	10	—	10	_	12	-	15	-	ns
38	Access Time from OE 9	t _{OEA}	-	15	—	20		20		25	ns
39	Output Buffer Turn Off Delay 10 from OE	t _{OEZ}		15	—	15	—	20	—	25	ns
40	OE to RAS Lead Time for Valid Data	t _{OEL}	10	_	10	-	10		10		ns
41	OE Hold Time Referenced to WE 16	t _{OEH}	0		0	-	0	—	0		ns
42	OE to Data In Delay Time	t _{OED}	15	_	15	-	20		25	-	ns
43	DIN to CAS Delay Time 17	t _{DZC}	0	-	0	-	0	_	0	-	ns
44	DIN to OE Delay Time 17	t _{DZO}	0	-	0	-	0	-	0		ns
50	Fast Page Mode Read/Write Cycle Time	t _{PC}	45	_	50	_	55	—	65	—	ns
51	Fast Page Mode Read-Modify-Write Cycle Time	t PRWC	82	-	87	_	100	_	120	_	ns
52	Access Time from CAS Precharge 9,18	t _{CPA}		40	_	45	_	50	-	60	ns
53	Fast Page Mode CAS Precharge Time	t _{CP}	10	_	10	—	10	—	10	—	ns

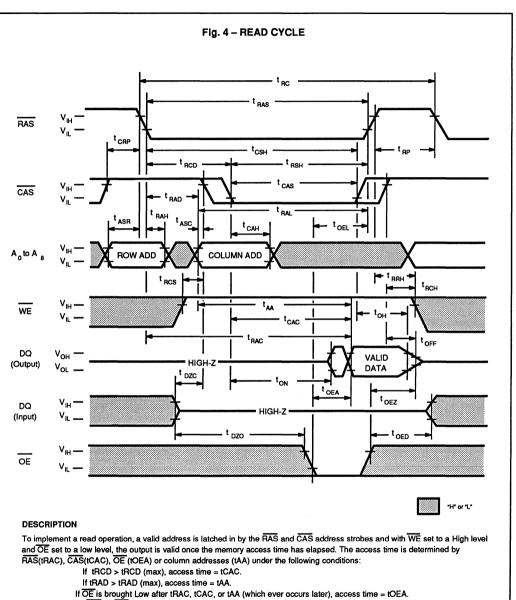
Notes:

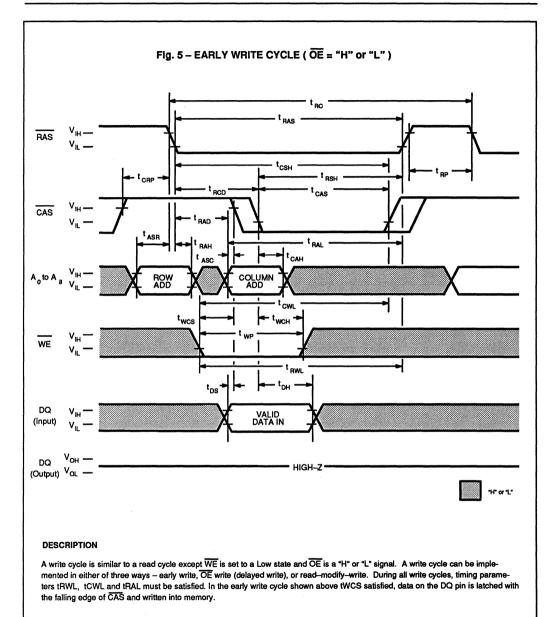

- 1. Referenced to VSS
- 2. Icc depends on the output load conditions and cycle rates; The specified values are obtained with the output open. Icc depends on the number of address change as $\overline{RAS} = V_{IL}$ and $\overline{CAS} = V_{IH}$.

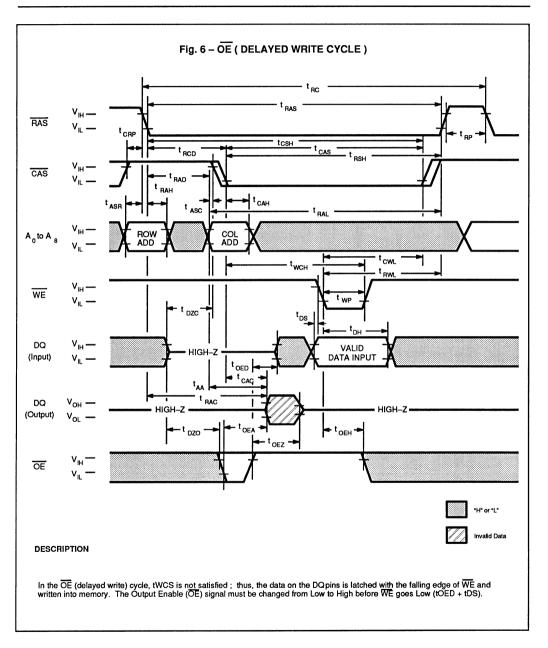
lcc1, lcc3 and lcc5 are specified at three time of address change during $\overrightarrow{RAS} = VIL$ and $\overrightarrow{CAS} = VIH$.

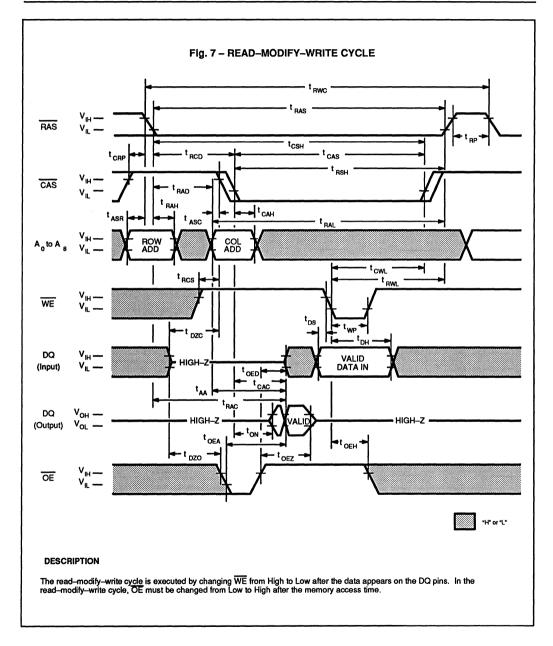
Icc4 is specified at one time of address change during $\overline{RAS} = VIL$ and $\overline{CAS} = VIH$.

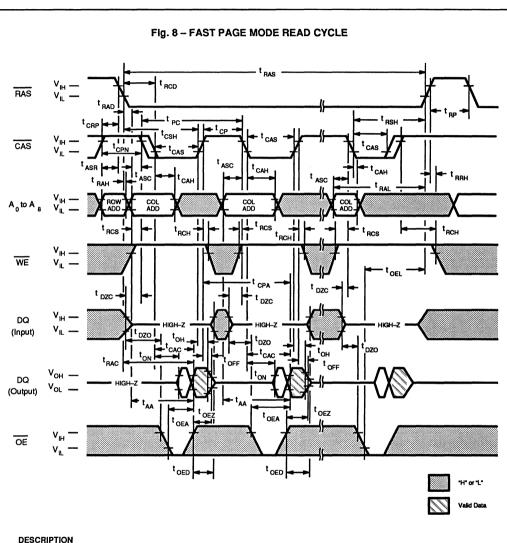
- An Initial pause (RAS =CAS =VIH) of 200µs is required after power-up followed by any eight RAS -only cycles before proper device operation is achieved. In case of using internal refresh counter, a minimum of eight CAS -before-RAS initialization cycles instead of 8 RAS cycles are required.
- 4. AC characteristics assume tr = 5ns
- V_{IH} (min) and V_{IL} (max) are reference levels for measuring timing of input signals. Also transition times are measured between V_{IH} (min) and V_{IL} (max).
- Assumes that tRcD≤ tRcD (max), tRAD≤ tRAD (max). If tRcD is greater than the maximum recommended value shown in this table, tRaC will be increased by the amount that tRcD exceeds the value shown. Refer to Fig. 2 and 3.
- 7. Assumes that tRCD \ge tRCD (max), tRAD \ge tRAD (max). If tASC \ge tAA tCAC tT, access time is tCAC.
- 8. If $t_{RAD} \ge t_{RAD}$ (max) and $t_{ASC} \le t_{AA} t_{CAC} t_{T}$, access time is t t_{AA} .


- 9. Measured with a load equivalent to two TTL loads and 100 pF.
- 10. to FF and to Ez is specified that output buffer change to high impedance state.
- 11. Operation within the tRCD (max) limit ensures that tRAC (max) can be met. tRCD (max) is specified as a reference point only; if tRCD is greater than the specified tRCD (max) limit, access time is controlled exclusively by tCAC or t AA.
- 12. t_{RCD} (min) = t_{RAH} (min)+ $2t_T$ + t_{ASC} (min)
- 13. Operation within the tRAD (max) limit ensures that tRAC (max) can be met. tRAD (max) is specified as a reference point only; if tRAD is greater than the specified tRAD (max) limit, access time is controlled exclusively by tCAC or t AA.
- 14. Either tRRH or tRCH must be satisfied for a read cycle.
- twcs is specified as a reference point only. If twcs ≥ twcs (min) the data output pin will remain High-Z state through entire cycle.
- 16. Assumes that twcs < twcs (min)
- 17. Either tozc or tozo must be satisfied.
- tCPA is access time from the selection of a new column address (that is caused by changing CAS from "L" to "H"). Therefore, if tcp is shortened, tcpA is longer than tcpA (max).
- 19. Assumes that CAS -before-RAS refresh, CAS -before-RAS refresh counter test cycle only.

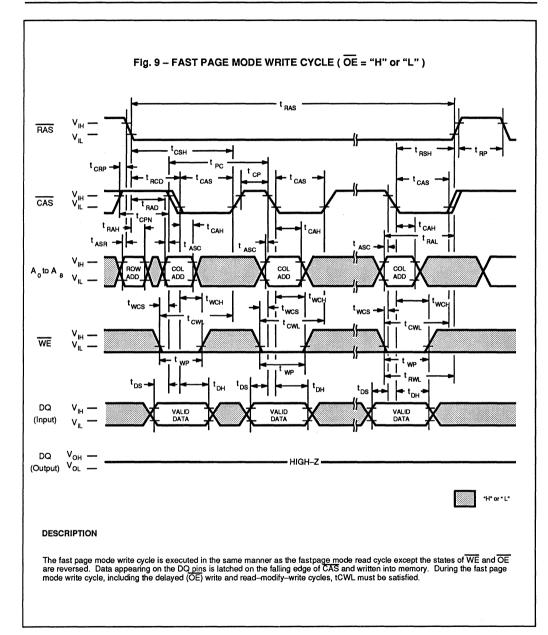

FUNCTIONAL TRUTH TABLE

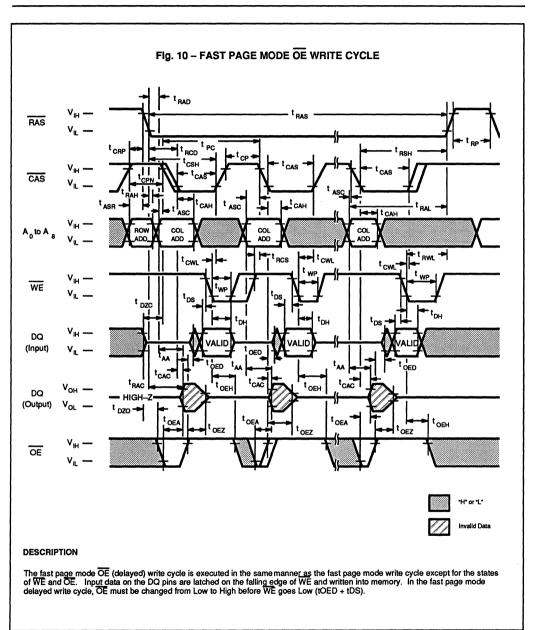

Operation Mode		Cloc	cinput		Ade	dress	Inpu	t Data	Refresh	Note	
	RAS	CAS	WE	ŌE	Row	Column	Input	Output	110110511	noie	
Standby	н	н	х	x	_	-	_	High–Z			
Read Cycle	L	L	н	L	Valid	Valid	-	Valid	Yes *	trcs≥trcs (min)	
Write Cycle (Early Write)	L	L	L	x	Valid	Valid	Valid	HighZ	Yes *	twcs <u>≥</u> twcs (min)	
Read-Modify- Write Cycle	L	L	H→L	L→H	Valid	Valid	Valid	Valid	Yes *		
RAS-only Refresh Cycle	L	н	x	x	Valid	_		HighZ	Yes		
CAS-before RAS Refresh Cycle	L	L	x	x		_	_	High–Z	Yes	tcsn≥twcsn (min)	
Hidden Refresh	H→L	L	x	L	-	_	-	Valid	Yes	Previous data is kept.	

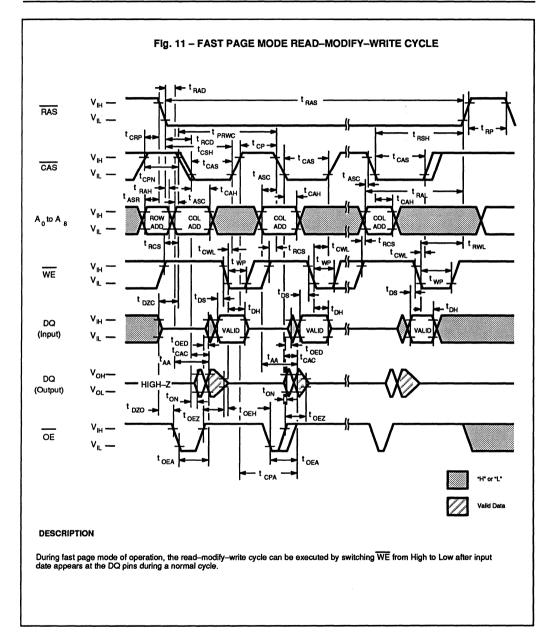

X; "H" or "L" *; It is impossible in Fast Page Mode

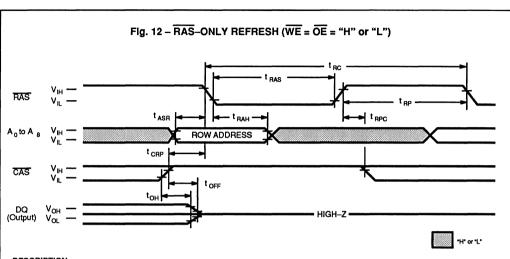


However, if either TAS or OE goes High, the output returns to a high-impedance state after tOH is satisfied.

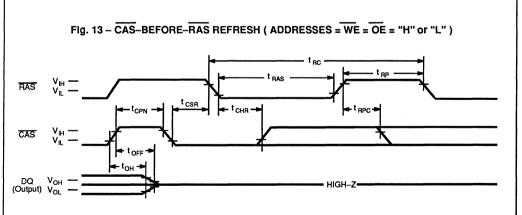




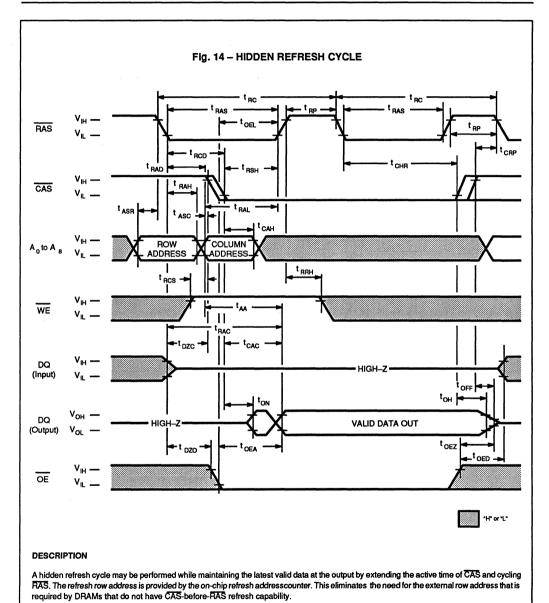


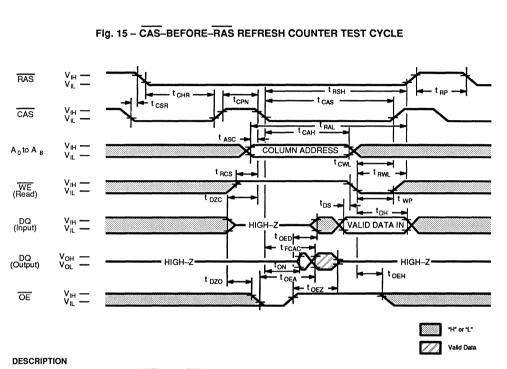


The fast page mode of operation permits faster successive memory operations at multiple column locations of the same row address. This operation is performed by strobing in the row address and maintaining RAS at a Low level and WE at a High level during all successive memory cycles in which the row address is latched. The access time is determined by tCAC, tAA, tCPA, or tOEA, whichever one is the latest in occuring.



DESCRIPTION


Refresh of RAM memory cells is accomplished by performing aread, a write, or a read-modify-write cycle at each of 512 row addresses every 8.2-milliseconds. Three refresh modes are available: RAS-only refresh, CAS-before-RAS refresh, and hidden refresh.


RAS-only refresh is performed by keeping RAS Low and CAS High throughout the cycle; the row address to be refreshed is latched on the falling edge of RAS. During RAS-only refresh, Dout pin is kept in a high-impedance state.

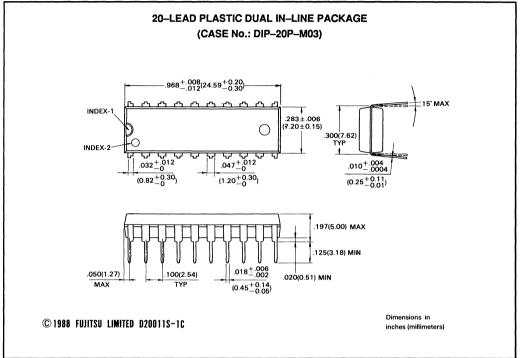
DESCRIPTION

CAS-before-RAS refresh is an on-chip refresh capability that eliminates the need for external refresh addresses. If CAS is held Low for the specified setup time (tcsR) before RAS goes Low, the on-chip refresh control clock generators and refresh address counter are enabled. An internal refresh operation automatically occurs and the refresh address counter is internally incremented in preparation for the next CAS-before-RAS refresh operation.

A special timing sequence using the CAS-before-RAS refresh counter test cycle provides a convenient method to verify the functionality of CAS-before-RAS refresh circuitry. If, after a CAS-before-RAS refresh cycle. CAS makes a transition from High to Low while RAS is held Low, read and write operations are enabled as shown above. Row and column addresses are defined as follows:

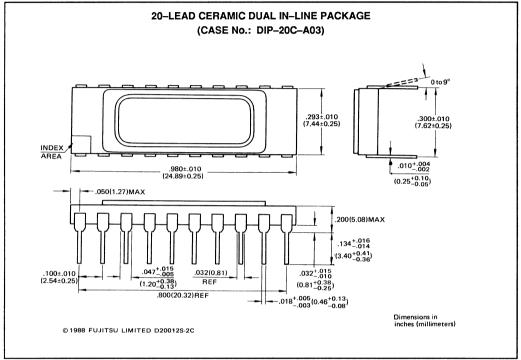
Row Address: Bits A0 through A8 are defined by the on-chip refresh counter. Column Address: Bits A0 through A8 are defined by latching levels on A0-A8 at the second falling edge of CAS.

The CAS-before-RAS Counter Test procedure is as follows ;

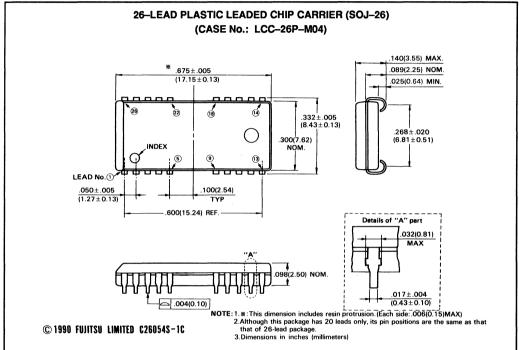

- 1) Initialize the internal refresh address counter by using 8 CAS-before-RAS refresh cycles.
- 2) Use the same column address throughout the test.
- 3) Write "0" to all 512 row addresses (DQ1 to DQ4) at the same column address by using normal write cycles.
- 4) Read "0" written in procedure 3) and check; simultaneously write "1" to the same addresses by using CAS-before-RAS refresh counter test (read-modify-write cycles). Repeat this procedure 512 times with addresses generated by the internal refresh address counter.
- 5) Read and check data written in procedure 4) by using normal read cycle for all 512 (DQ1 to DQ4) memory locations.
- 6) Complement test pattern and repeat procedures 3), 4), and 5).

Na	Deservator		MB81C4	256A60	MB81C4				MB81C4	256A-10	Linit
NO.	Parameter	Symbol	Min	Мах	Min	Max	Min	Max	Min	Max	
90	Access Time from CAS	t _{FCAC}	—	40	_	45		50	_	60	ns

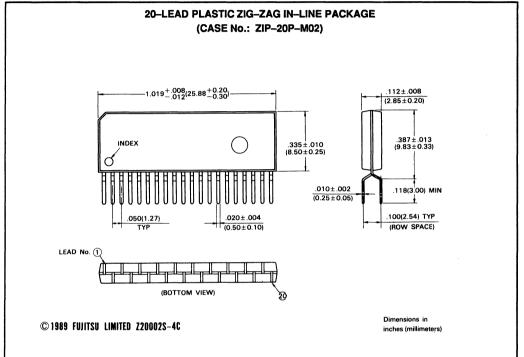
Note . Assumes that CAS-before-RAS refresh counter test cycle only.


PACKAGE DIMENSIONS

(Suffix : -P)

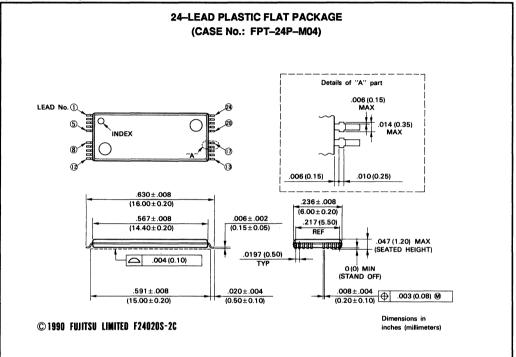

PACKAGE DIMENSIONS (Continued)

(Suffix : --C)

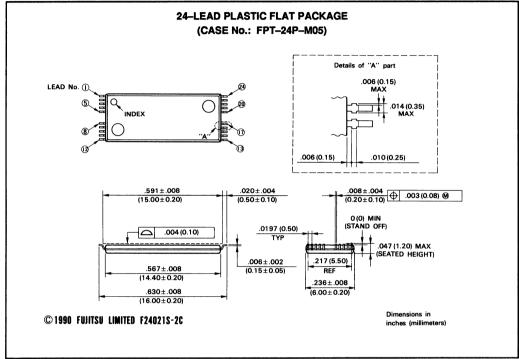

PACKAGE DIMENSIONS (Continued)

(Suffix : -PJ)

PACKAGE DIMENSIONS (Continued)


(Suffix : --PSZ)

2-257


PACKAGE DIMENSIONS (Continued)

(Suffix: - PFTN)

PACKAGE DIMENSIONS (Continued)

(Suffix: - PFTR)

FUĬĪTSU

DATA SHEET

MB81C4256A-70L/-80L/-10L

CMOS 1,048,576 BIT FAST PAGE MODE DYNAMIC RAM

RAS only, CAS-before-RAS, or

Fast Page Mode, Read-Modify-Write

On-chip substrate bias generator for

Hidden Refresh

high performance

capability

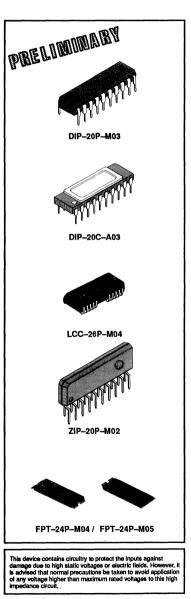
CMOS 256K x 4 Bits Fast Page Mode DRAM

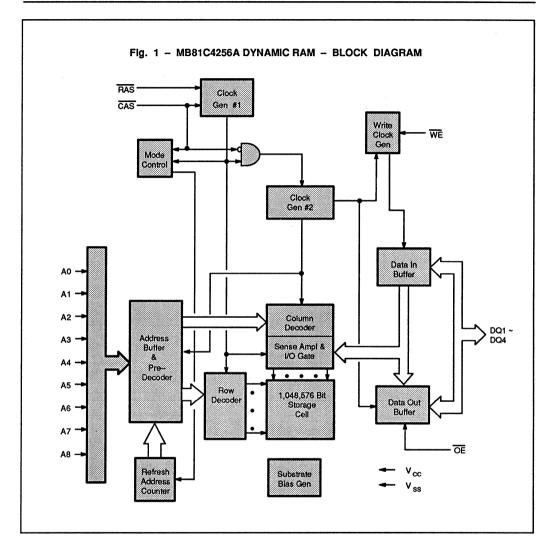
The Fujitsu MB81C4256A is a CMOS, fully decoded dynamic RAM organized as 256K words x 4 bits. The MB81C4256A has been designed for mainframe memories, buffer memories, and video image memories requiring high speed and high bandwidth output with low power dissipation, as well as for memory systems of battery operated computers requiring very low power dissipation.

Fujitsu's advanced three-dimensional stacked capacitor cell technology gives the MB81C4256A high α -ray soft error immunity and extended refresh time. CMOS technology is used in the peripheral circuits to provide low power dissipation and high speed operation.

Features

Parameter	MB81C4256A -70L	MB81C4256A -80L	MB814256A -10L					
RAS Access Time	70 ns max.	80 ns max.	100 ns max.					
Random Cycle Time	140 ns min.	155 ns min.	180 ns min.					
Address Access Time	35 ns max.	40 ns max.	50 ns max.					
CAS Access Time	20 ns max.	20 ns max.	25 ns max.					
Fast Page Mode Cycle Time	50 ns min.	55 ns min.	65 ns min.					
Low Power Dissipation Operating Current 	374 mW max.	341 mW max.	297 mW max.					
Standby Current	Current 5.5 mW max. (TTL level)/1.4 mW max. (CMOS level)							


- 262,144 words x 4 bits organization
- Silicon gate, CMOS, 3D-Stacked Capacitor Cell
- All input and output are TTL compatible
- 512 refresh cycles every 64 ms Early write or OE controlled
- write capability


Absolute Maximum Ratings (See Note)

Parameter		Symbol	Value	Unit
Voltage at any pin relative to V	ss	VIN, VOUT	-1 to +7	v
Voltage of V _{CC} supply relative t	o V _{SS}	Vcc	-1 to +7	v
Power Dissipation		PD	1.0	w
Short Circuit Output Current			50	mA
Storage Temperature	Ceramic	T _{STG}	-55 to +150	°C
	Plastic		-55 to +125	

Note: Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operation sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Copyright © 1990 by FUJITSU LIMITED and Fujitsu Microelectronics, Inc.

CAPACITANCE (T_A = 25°C, f = 1MHz)

Parameter	Symbol	Тур	Max	Unit
Input Capacitance, A0 to A8	C _{IN1}		5	pF
Input Capacitance, RAS, CAS, WE, OE	C _{IN2}	_	5	рF
Input/Output Capacitance, DQ1 to DQ4	C _{DQ}	-	6	ρF

20-Pin DIP : 26-Pin SOJ: 24-Pin FPT : (TOP VIEW) (TOP VIEW) (TOP VIEW) <Normal Bend : FPT--24P--M04> DQ1 🗅 vss DQ1 Г 20 26 Vss DO2 Ь DO4 r 2 25 DO2 **D** DQ4 24 23 22 21 **E** 2 19 WE 24 b DQ3 A7 A6 C 3 18 003 DQ3 DQ4 WE 3 q CAS RAS 23 Þ 4 Δ5 RAS h OE 2 17 22 4 NC 5 D OE NC. 5 16 Vcc 17 DO ā A3 Ь^, 16 15 14 A 0 E 15 Ŵ 6 10 11 A2 **∆**1 A 7 A 0 Α. 7 14 9 18 12 A AO 8 A 7 A 1 10 17 Þ A 2 13 A 6 8 b 16 ٨, 11 A 6 Α3 Α₅ <Reverse Bend : FPT-24P-M05> Г 9 12 A 3 12 15 b A 5 v_{cc} 10 11 13 14 ۸ cr 12 IA: W 14 11 10 9 8 A2 DQ2 16 43 DO Vcc Designator Function 5 4 3 2 20 21 22 23 24 DQ1 to DQ4 Data Input/ Output A6 Δ7 WF Write Enable. RAS Row address strobe. NC No connection. 20-Pin ZIP: (TOP VIEW) A0 to A8 Address inputs. vcc +5 volt power supply. DQ4 DQ1 WE CAS NC. A 1 A 3 A 4 AE OE Output enable. 16 CAS Column address strobe. DQ3 V SS OE DQ2 RAS A 0 A2 V_{CC} A5 A 7 vss Circuit ground.

PIN ASSIGNMENTS AND DESCRIPTIONS

RECOMMENDED OPERATING CONDITIONS

Parameter	Notes	Symbol	Min	Тур	Мах	Unit	Amblent Operating Temp
Supply Voltage	1	Vcc	4.5	5.0	5.5	v	
		V _{SS}	0	0	0	v	
Input High Voltage, all inputs	1	VIH	2.4	-	6.5	v	0 °C to +70 °C
Input Low Voltage, all inputs	1	VIL	-2.0	-	0.8	v	
Input Low Voltage, DQ(*)	1	VILD	-1.0	_	0.8	v	

*: Undershoots of up to -2.0 volts with a pulse width not exceeding 20ns are acceptable.

FUNCTIONAL OPERATION

ADDRESS INPUTS

Eighteen input bits are required to decode any four of 1,048,576 celladdresses in the memory matrix. Since only nine address bits are available, the column and row inputs are separately strobed by CAS and RAS as shown in Figure 1. First, nine row address bits are input on pins A0-through-A8 and latched with the row address strobe (RAS) then, nine column address bits are input and latched with the column address strobe (RAS) then, nine column address bits are input and latched with the column address strobe (RAS). Both row and column addresses must be stable on or before the fallingedge of CAS and RAS, respectively. The address latches are of the flow-through type; thus, address information appearing after tRAH (min)+ tr is automatically treated as the column address.

WRITE ENABLE

The read or write mode is determined by the logic state of WE. When WE is active Low, a write cycle is initiated; when WE is High, a read cycle is selected. During the read mode, input data is ignored.

DATA INPUT

Input data is written into memory in either of three basic ways—an early write cycle, an \overline{OE} (delayed) write cycle, and a read-modify-write cycle. The falling edge of \overline{WE} or \overline{CAS} , whichever is later, serves as the input data-latch strobe. In an early write cycle, the input data (DQ1-DQ4) is strobed by \overline{CAS} and the setup/hold times are referenced to \overline{CAS} because \overline{WE} goes Low before \overline{CAS} . In a delayed write or a read-modify-write cycle, \overline{WE} goes Low after \overline{CAS} ; thus, input data is strobed by \overline{WE} and all setup/hold times are referenced to the write-enable signal.

DATA OUTPUT

The three-state buffers are TTL compatible with a fanout of two TTL loads. Polarity of the output data is identical to that of the input; the output buffers remain in the high-impedance state until the column address strobe goes Low. When a read or read-modify-write cycle is executed, valid outputs are obtained under the following conditions:

- tRAC : from the falling edge of RAS when tRCD (max) is satisfied.
- tCAC : from the falling edge of CAS when tRCD is greater than tRCD, tRAD (max).
- tAA : from column address input when tRAD is greater than tRAD (max).
- tOEA : from the falling edge of OE when OE is brought Low after tRAC, tCAC, or tAA

The data remains valid until either CAS or OE returns to a High logic level. When an early write is executed, the output buffers remain in a high-impedance state during the entire cycle.

MB81C4256A-70L MB81C4256A-80L MB81C4256A-10L

DC CHARACTERISTICS (Recommended operating conditions unless otherwise noted)

Notes 3

Paramter Notes		6 . L.L. 6 . IV		Values			
Parami	er Notes	Symbol	Conditions	Min	Тур	Max	Unit
Output high voltage		V _{он}	I _{OH} = –5 mA	2.4	-	—	v
Output low voltage		VOL	l _{oL} = 4.2 mA	_	-	0.4	·
Input leakage current (any input)		י _{ו(L)}	0V≤V _{IN} ≤5.5V; 4.5V≤V _{CC} ≤5.5V; V _{SS} = 0V; All other pins under test = 0V	-10	-	10	μА
Output leakage currer	nt	I _{O(L)}	0V≤V _{OUT} ≤ 5.5V; Data out disabled	-10	-	10	
Operating current (Average Power supply Current) 2	MB81C4256A-70L	I _{CC1}	RAS & CAS cycling; tac = min	_	_	68	mA
	MB81C4256A-80L					62	
	MB81C4256A-10L					54	
Standby current (Power supply current)	TTL level	I _{CC2}	RAS = CAS =V		-	1.0	mA
	CMOS level		$\overline{RAS} = \overline{CAS} \ge V_{CC} - 0.2V$	_		0.25	
Refresh current #1 (Average power sup- ply current) 2	MB81C4256A-70L	I _{CC3}	САЗ = VH, RAS cycling; trc = min	_	-	68	mA
	MB81C4256A-80L					62	
	MB81C4256A-10L					54	
Fast Page Mode current 2	MB81C4256A-70L		TAS =VIL, CAS cycling; tpc = min	_	-	55	mA
	MB81C4256A-80L					50	
	MB81C4256A-10L					43	
Refresh current #2 (Average power sup- ply current) 2	MB81C4256A-70L	I _{CC5}	RAS cycling; CAS-before-RAS; tRc = min	_	_	68	mA
	MB81C4256A-80L					62	
	MB81C4256A-10L					54	
Battery Back up current (Average power supply current)	MB81C4256A-70L	I _{CC6}	$\begin{array}{l} \hline \hline \textbf{RAS} \mbox{ cycling }; \\ \hline \textbf{CAS-before-RAS}; \\ t_{RC} = 125 \ \mbox{ \mus, } t_{RAS} = min. \\ to 1 \ \mbox{ \mu s, } DQ1 \ to 4 \ge Vcc \\ -0.2V \ or \ \ \le 0.2V \ or \ Open \\ \hline \textbf{Other pin } \ge Vcc-0.2V \ or \\ \le 0.2V \end{array}$	_	_	250	μA
	MB81C4256A-80L						
	MB81C4256A-10L						

2-265

AC CHARACTERISTICS

(At recommended operating conditions unless otherwise noted.) Notes 3, 4, 5

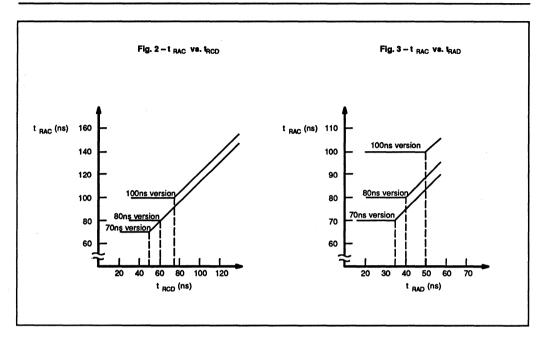
No.	Parameter Notes	Symbol		C4256A 70L	MBa	IC4256A 30L		1C4256A -10L	Unit
		-,	Min	Max	Min	Max	Min	Max	
1	Time Between Refresh	t _{REF}		64	. —	64	-	64	ms
2	Random Read/Write Cycle Time	t _{RC}	140	—	155	-	180	_	ns
3	Read-Modify-Write Cycle Time	t _{RWC}	180	-	205		240	-	ns
4	Access Time from RAS 6,9	t _{RAC}	-	70	-	80	_	100	ns
5	Access Time from CAS 7,9	t _{CAC}		20		20	_	25	ns
6	Column Address Access Time 8,9	t _{AA}	_	35		40	_	50	ns
7	Output Hold Time	t _{OH}	0	_	0	-	0	-	ns
8	Output Buffer Turn On Delay Time	t _{ON}	0	—	0	—	0	-	ns
9	Output Buffer Turn off Delay Time 10	t _{OFF}	_	15	—	20		25	ns
10	Transition Time	t _T	2	50	2	50	2	50	ns
11	RAS Precharge Time	t _{RP}	60	_	65		70	_	ns
12	RAS Pulse Width	t _{RAS}	70	100000	80	100000	100	100000	ns -
13	RAS Hold Time	t _{RSH}	20	-	20	_	25		ns
14	CAS to RAS Precharge Time	t _{CRP}	0	. —	0	—	0	-	ns
15	RAS to CAS Delay Time [11,12]	t _{RCD}	20	50	22	60	25	75	ńs
16	CAS Pulse Width	t _{CAS}	20		20	_	25		ns
17	CAS Hold Time	t _{CSH}	70		80		100		ns
18	CAS Precharge Time (C-B-R cycle) 19	t _{CPN}	20	-	20	-	20	-	ns
19	Row Address Set Up Time	t _{ASR}	0	-	. 0	—	0		ns
20	Row Address Hold Time	t _{RAH}	10	-	12	—	15	-	ns
21	Column Address Set Up Time	t ASC	0	_	0	_	0	— ·	ns
22	Column Address Hold Time	tCAH	12		15	-	15	-	ns
23	RAS to Column Address Delay Time 13	t _{RAD}	15	35	17	40	20	50	ns
24	Column Address to RAS Lead Time	t _{RAL}	35		40		50	-	ns
25	Read Command Set Up Time	t _{RCS}	0	—	0		0.	-	ns
26	Read Command Hold Time Referenced to RAS	t _{RRH}	0	_	0	_	0	<u> </u>	ns
27	Read Command Hold Time Referenced to CAS	t _{RCH}	0	-	0	-	0	-	ns
28	Write Command Set Up Time 15	twcs	0	-	0	-	0	-	ns
29	Write Command Hold Time	t _{WCH}	10	_	12		15	-	ns
30	WE Pulse Width	t _{WP}	10	_	12		15	-	ns
31	Write Command to RAS Lead Time	t _{RWL}	15		20		25		ns
32	Write Command to CAS Lead Time	t _{CWL}	12		15	_	20	-	ns
33	DIN set Up Time	t _{DS}	0	_	0	-	0	-	ns
34	DIN Hold Time	t _{DH}	10	-	12	-	15	-	ns

AC CHARACTERISTICS (Continued)

(At recommended operating conditions unless otherwise noted.) Notes 3, 4, 5

No.	Parameler Note			C4256A 70L	MB81 8	C4256A		C4256A	Unlt
NO.	Parameter Note	Symbol	Min	Max	Min	Max	Min	Max	Onix
35	RAS Precharge time to CAS Active Time (Refresh cycles)	t _{RPC}	0	—	0		0	_	ns
36	CAS Set Up Time for CAS-before- RAS Refresh	t _{CSR}	0	_	0	-	0	-	ns
37	CAS Hold Time for CAS-before- RAS Refresh	t _{CHR}	10	-	12	-	15	-	ns
38	Access Time from OE 9		-	20	-	20	-	25	ns
39	Output Buffer Turn Off Delay 10 from OE	t _{OEZ}	-	15	-	20	—	25	ns
40	OE to RAS Lead Time for Valid Data	t OEL	10	-	10	-	10		ns
41	OE Hold Time Referenced to WE 16		0	-	0	-	0	-	ns
42	OE to Data In Delay Time	t _{OED}	15	-	20	—	25	-	ns
43	DIN to CAS Delay Time 17	t DZC	0	-	0		0	-	ns
44	DIN to OE Delay Time 17	t _{DZO}	0	-	0	-	0	-	ns
50	Fast Page Mode Read/Write Cycle Time	t _{PC}	50	-	55	_	65	-	ns
51	Fast Page Mode Read-Modify-Write Cycle Time	t PRWC	87	-	100	-	120	-	ns
52	Access Time from CAS Precharge 9,18	t _{CPA}	-	45	-	50	-	60	ns
53	Fast Page Mode CAS Precharge Time	t _{CP}	10	_	10		10	_	ns

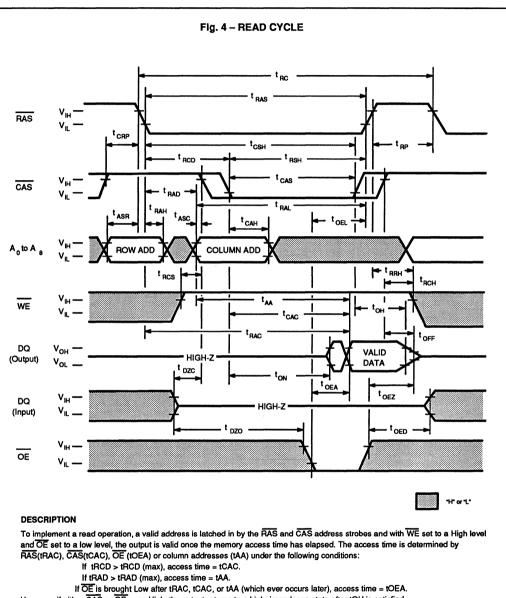
Notes:

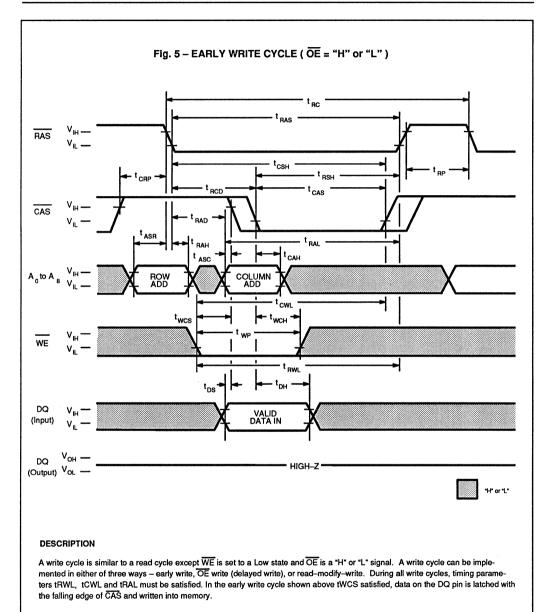

- 1. Referenced to VSS
- Icc depends on the output load conditions and cycle rates; The specified values are obtained with the output open. Icc depends on the number of address change as RAS = VIL and CAS = VIH.

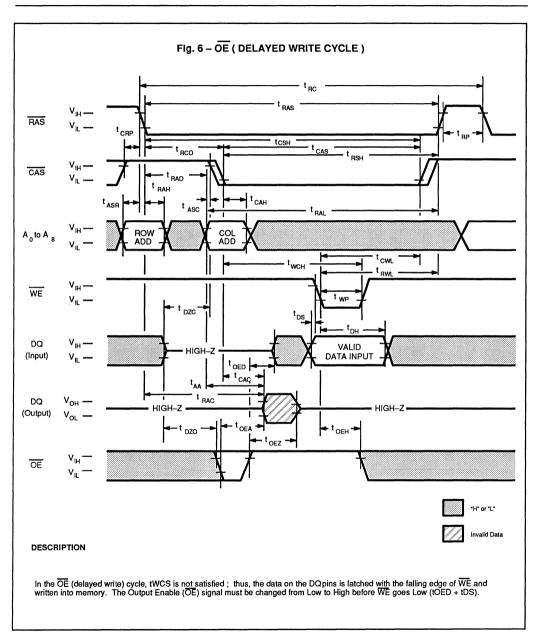
lcc1, lcc3 and lcc5 are specified at three time of address change during $\overrightarrow{HAS} = V_{IL}$ and $\overrightarrow{CAS} = V_{IH}$.

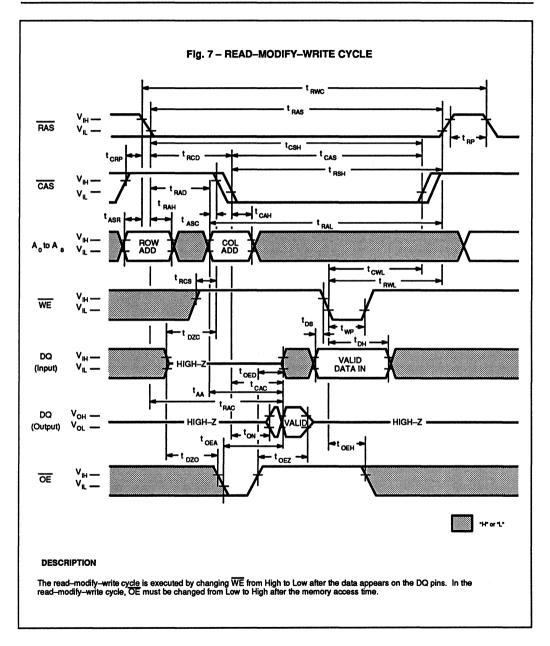
Icc+ is specified at one time of address change during $\overrightarrow{RAS} = VIL$ and $\overrightarrow{CAS} = VIH$.

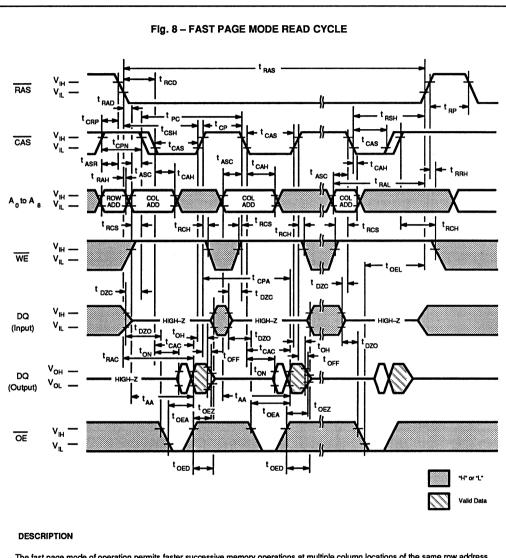
- An Initial pause (RAS = CAS =VIH) of 200µs is required after power-up followed by any eight RAS -only cycles before proper device operation is achieved. In case of using internal refresh counter, a minimum of eight CAS -before-RAS initialization cycles instead of 8 RAS cycles are required.
- 4. AC characteristics assume tr = 5ns
- V_{IH} (min) and V_{IL} (max) are reference levels for measuring timing of input signals. Also transition times are measured between V_{IH} (min) and V_{IL} (max).
- Assumes that tRcD≤ tRcD (max), tRAD≤ tRAD (max). If tRcD is greater than the maximum recommended value shown in this table, tRAC will be increased by the amount that tRcD exceeds the value shown. Refer to Fig. 2 and 3.
- 7. Assumes that $t_{RCD} \ge t_{RCD}$ (max), $t_{RAD} \ge t_{RAD}$ (max). If $t_{ASC} \ge t_{AA} t_{CAC} t_{T}$, access time is t_{CAC} .
- 8. If trad \geq trad (max) and tasc \leq tas $-t_{CAC} t_T$, access time is tas .

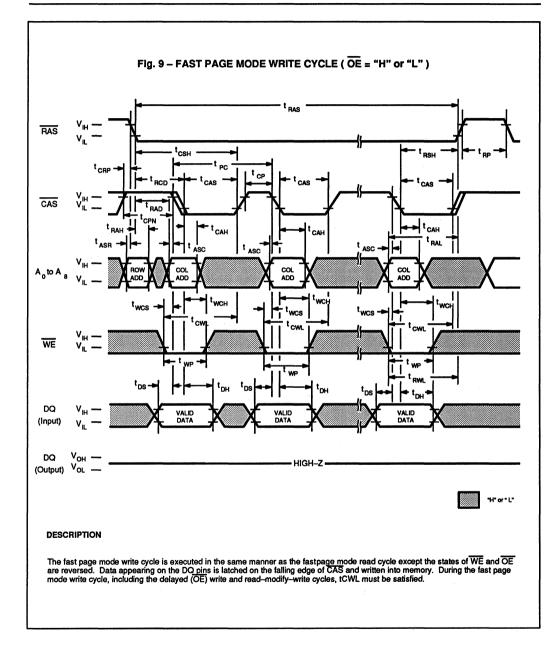

- 9. Measured with a load equivalent to two TTL loads and 100 pF.
- toFF and toEz is specified that output buffer change to high impedance state.
- 11. Operation within the tRCD (max) limit ensures that tRAC (max) can be met. tRCD (max) is specified as a reference point only; if tRCD is greater than the specified tRCD (max) limit, access time is controlled exclusively by tCAC or t AA.
- 12. tRCD (min) = tRAH (min)+ 2t T + tASC (min)
- 13. Operation within the tRAD (max) limit ensures that tRAC (max) can be met. tRAD (max) is specified as a reference point only; if tRAD is greater than the specified tRAD (max) limit, access time is controlled exclusively by tCAC or t AA.
- 14. Either tRRH or tRCH must be satisfied for a read cycle.
- twcs is specified as a reference point only. If twcs ≥ twcs (min) the data output pin will remain High-Z state through entire cycle.
- 16. Assumes that twcs < twcs (min)
- 17. Either tozc or tozo must be satisfied.
- tCPA is access time from the selection of a new column address (that is caused by changing CAS from "L" to "H"). Therefore, if tcp is shortened, tcpA is longer than tcPA (max).
- 19. Assumes that CAS -before-RAS refresh, CAS -before-RAS refresh counter test cycle only.

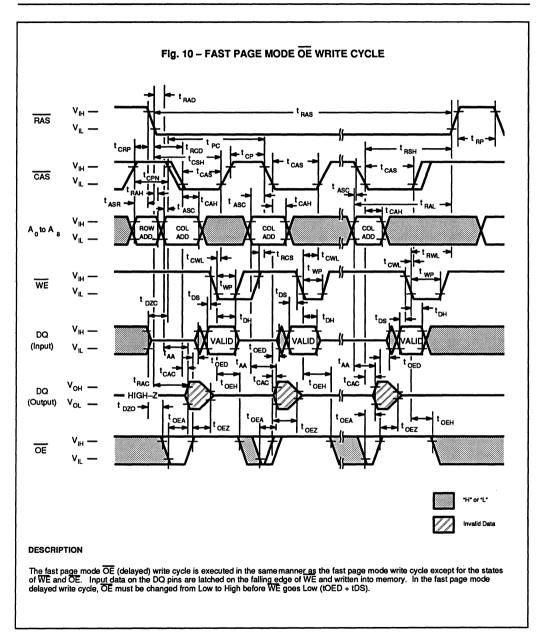


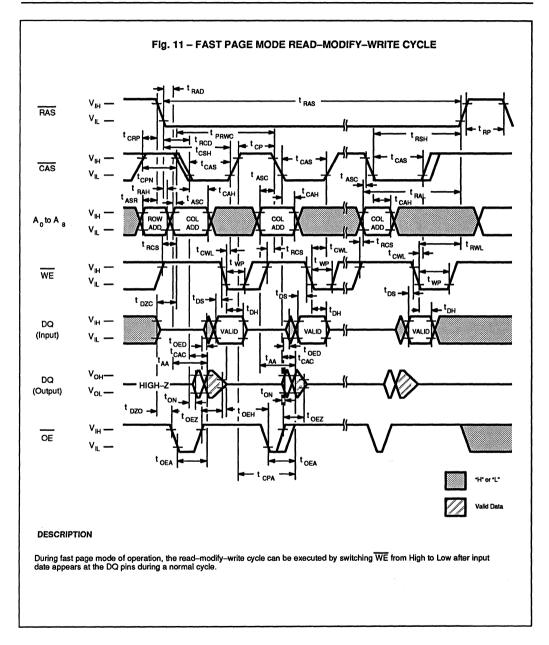

FUNCTIONAL TRUTH TABLE

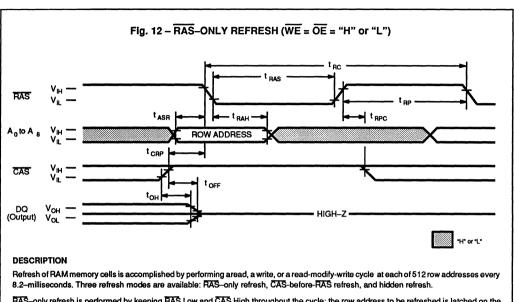

Operation Mode			cinput		0.0000000000000000000000000000000000000	lress		Data	Refresh	Note
	RAS	CAS	WE	OE	Row	Column	Input	Output		
Standby	н	н	×	x				High–Z		
Read Cycle	L	L	н	L	Valid	Valid	_	Valid	Yes *	tacs≥tacs (min)
Write Cycle (Early Write)	L	L	L	x	Valid	Valid	Valid	High–Z	Yes *	twcs≥twcs (min)
Read-Modify- Write Cycle	·L	L	H-→L	L→H	Valid	Valid	Valid	Valid	Yes *	
RAS-only Refresh Cycle	L	н	x	x	Valid	_	_	High–Z	Yes	
CAS-before- RAS Refresh Cycle	L	L	x	x	-	_	·	High–Z	Yes	tcsn <u>></u> twcsn (min)
Hidden Refresh	H→L	L	x	L	—	_	-	Valid	Yes	Previous data is kept.


X; "H" or "L" "; It is impossible in Fast Page Mode

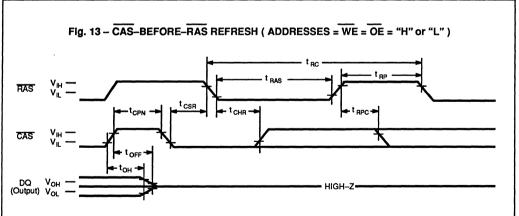


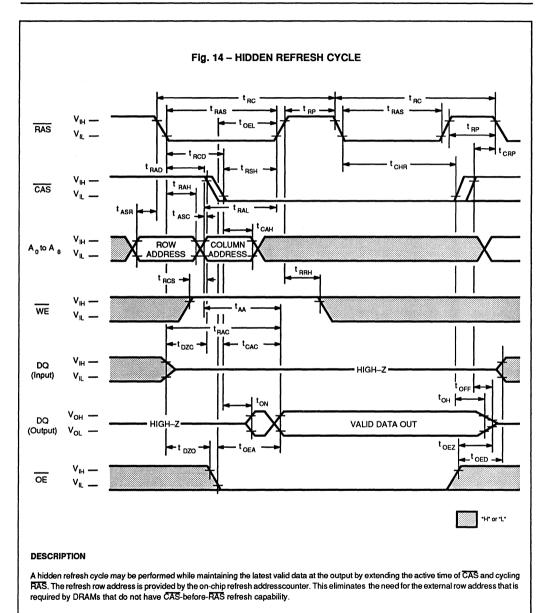


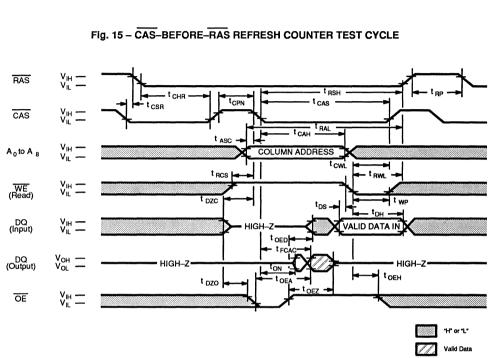




The fast page mode of operation permits faster successive memory operations at multiple column locations of the same row address. This operation is performed by strobing in the row address and maintaining $\overline{\text{PAS}}$ at a Low level and $\overline{\text{WE}}$ at a High level during all successive memory cycles in which the row address is latched. The access time is determined by tCAC, tAA, tCPA, or tOEA, whichever one is the latest in occuring.






RAS-only refresh is performed by keeping RAS Low and CAS High throughout the cycle; the row address to be refreshed is latched on the falling edge of RAS. During RAS-only refresh, Dout pin is kept in a high-impedance state.

DESCRIPTION

CAS-before-RAS refresh is an on-chip refresh capability that eliminates the need for external refresh addresses. If CAS is held Low for the specified setup time (tcsR) before RAS goes Low, the on-chip refresh control clock generators and refresh address counter are enabled. An internal refresh operation automatically occurs and the refresh address counter is internally incremented in preparation for the next CAS-before-RAS refresh operation.

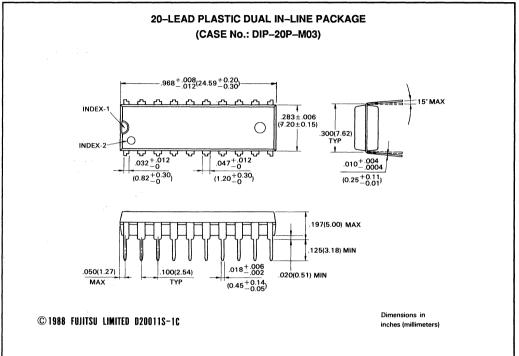
DESCRIPTION

A special timing sequence using the CAS-before-RAS refresh counter test cycle provides a convenient method to verify the functionality of CAS-before-RAS refresh circuitry. If, after a CAS-before-RAS refresh cycle. CAS makes a transition from High to Low while RAS is held Low, read and write operations are enabled as shown above. Row and column addresses are defined as follows:

Row Address: Bits A0 through A8 are defined by the on-chip refresh counter.

Column Address: Bits A0 through A8 are defined by latching levels on A0-A8 at the second falling edge of CAS.

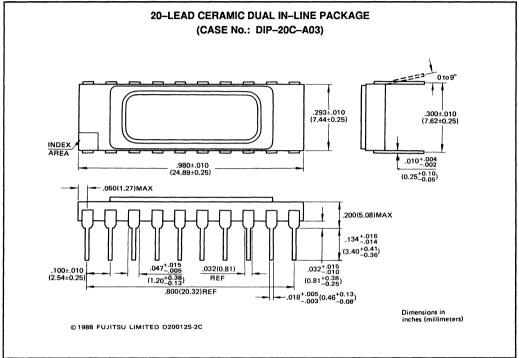
The CAS-before-RAS Counter Test procedure is as follows ;


- 1) Initialize the internal refresh address counter by using 8 CAS-before-RAS refresh cycles.
- 2) Use the same column address throughout the test.
- 3) Write "0" to all 512 row addresses (DQ1 to DQ4) at the same column address by using normal write cycles.
- 4) Read "0" written in procedure 3) and check; simultaneously write "1" to the same addresses by using CAS-before-RAS refresh counter test (read-modify-write cycles). Repeat this procedure 512 times with addresses generated by the internal refresh address counter.
- 5) Read and check data written in procedure 4) by using normal read cycle for all 512 (DQ1 to DQ4) memory locations.
- 6) Complement test pattern and repeat procedures 3), 4), and 5).

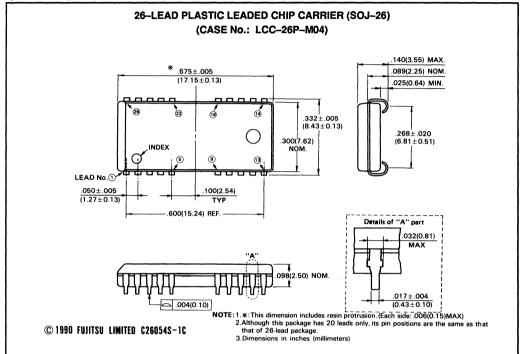
No.	Parameter	Symbol				C4256A 0L	MB810 -1	C4256A OL	Unit
		- cymodi	Min	Max	Min	Max	Min	Мах	ļ
90	Access Time from CAS	t _{FCAC}	-	45	—	50	—	60	ns
	L			Note . Ass	umes that C	AS-before-F	AS refresh o	ounter test c	ycle

(At recommended operating conditions unless otherwise noted.)

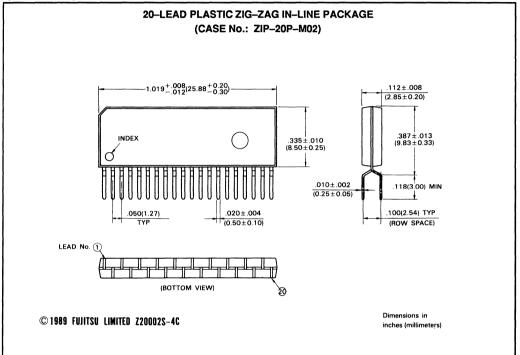
PACKAGE DIMENSIONS


(Suffix : -P)

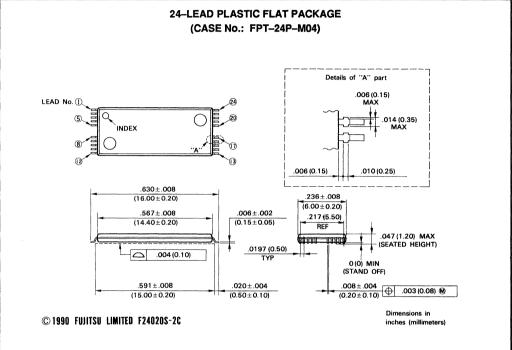
١


PACKAGE DIMENSIONS (Continued)

(Suffix : -C)


PACKAGE DIMENSIONS (Continued)

(Suffix : -PJ)


PACKAGE DIMENSIONS (Continued)

(Suffix : -PSZ)

PACKAGE DIMENSIONS (Continued)

(Suffix: -PFTN)

(Suffix: - PFTR) 24-LEAD PLASTIC FLAT PACKAGE (CASE No.: FPT-24P-M05) Details of "A" part .006 (0.15) MAX LEAD No. (). Q, .014 (0.35) MAX INDEX ().006 (0.15) .010 (0.25) .591±.008 .020±.004 .008±.004 (0.20±0.10) ⊕ .003(0.08) ₪ (15.00±0.20) (0.50±0.10) 0 (0) MIN (STAND OFF) .0197 (0.50) .004 (0.10) TYP .047 (1.20) MAX (SEATED HEIGHT) anno ionta .217 (5.50) .006±.002 $.567 \pm .008$ (0.15±0.05) REF (14.40±0.20) .236±.008 .630±.008 (6.00±0.20) (16.00±0.20) Dimensions in © 1990 FUJITSU LIMITED F24021S-2C inches (millimeters)

PACKAGE DIMENSIONS (Continued)

DATA SHEET

MB814100-80/-10/-12 CMOS 4,194,304 BIT FAST PAGE MODE DYNAMIC RAM

CMOS 4,194,304 x 1 Bit Fast Page Mode Dynamic RAM

The Fujitsu MB814100 is a fully decoded CMOS dynamic RAM (DRAM) that contains a total of 4,194,304 memory cells in a x 1 configuration. The MB814100 features a fast page mode of operation whereby high-speed, random access of up to 2,048-bits of data within the same row can be selected. The MB814100 DRAM is ideally suited for mainframes, buffers, hand-held computers, and other memory applications where very low power dissipation and compact layout are basic requirements of the design. Since the standby current of the MB814100 is very low, the device can be used in equipment that uses batteries for primary and/or auxiliary power.

The MB814400 is fabricated using silicon gate CMOS and Fujitsu's advanced Four-layer Polysilicon process. This process, coupled with three-dimensional stacked capacitor memory cells, reduces the possibility of soft errors and extends the time interval between memory refreshes. Clock timing requirements for the MB814100 are not critical and all inputs are TTL compatible.

Features

Parameter	MB814100-80	MB814100-10	MB814100-12			
RAS Access Time	80 ns max.	100 ns max.	120 ns max.			
Random Cycle Time	155 ns min.	180 ns min.	210 ns min.			
Address Access Time	45 ns max.	50 ns max.	60 ns max.			
CAS Access Time	25 ns max.	30 ns max.	35 ns max.			
Fast Page Mode Cycle Time	55 ns min.	60 ns min.	70 ns min.			
Low Power Dissipation Operating Current 	413 mW max.	358 mW max.	303 mW max.			
 Standby Current 	11 mW max. (TTL level)/5.5 mW max. (CMOS level)					

.

•

Hidden Řefresh

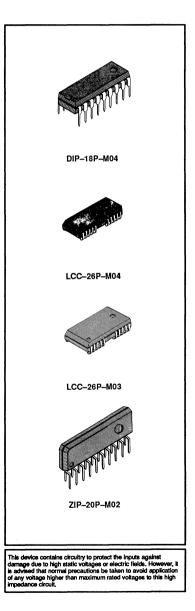
high performance

capability

Fast page Mode, Read-Modify-Write

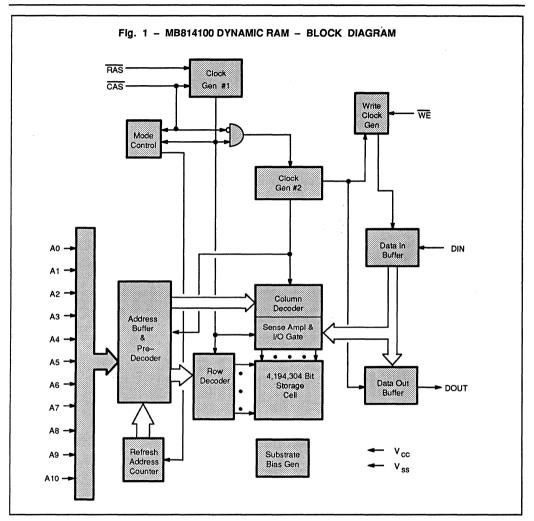
On-chip substrate bias generator for

4,304 words x 1 bit • RAS only, CAS-before-RAS, or


- 4,194,304 words x 1 bit organization
- Silicon gate, CMOS, 3D–Stacked Capacitor Cell
- All input and output are TTL compatible
- 1024 refresh cycles every 16.4 ms
- Common I/O capability by using early write

Absolute Maximum Ratings (See Note)

Parameter	Symbol	Value	Unit
Voltage at any pin relative to V_{SS}	V _{IN,} V _{OUT}	-1 to +7	v
Voltage of V_{CC} supply relative to V_{SS}	Vcc	-1 to +7	v
Power Dissipation	PD	1.0	w
Short Circuit Output Current	_	50	mA
Storage Temperature	T _{STG}	-55 to +125	°C


Note: Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operation sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Copyright C 1990 by FUJITSU LIMITED and Fujitsu Microelectronics, Inc.

SU

FU

CAPACITANCE (T_A = 25°C, f = 1MHz)

Parameter	Symbol	Тур	Max	Unit
Input Capacitance, A0 to A10, DIN	C _{IN1}		5	pF
Input Capacitance, RAS, CAS, WE	C _{IN2}		5	рF
Output Capacitance, DOUT	C _{OUT}	_	5	рF

PIN ASSIGNMENTS AND DESCRIPTIONS

RECOMMENDED OPERATING CONDITIONS

Parameter	Notes	Symbol	Min	Тур	Max	Unit	Ambient Operating Temp
Supply Voltore	L.	V _{cc}	4.5	5.0	5.5	, v	
Supply Voltage	ப்	V _{SS}	0	0	0	v	
Input High Voltage, all inputs	1	VIH	2.4	_	6.5	v	0 °C to +70 °C
Input Low Voltage, all inputs	1	VIL	-2.0	_	0.8	v	

FUNCTIONAL OPERATION

ADDRESS INPUTS

Twenty-two input bits are required to decode any one of 4, 194,304 cell addresses in the memory matrix. Since only eleven address bits (A0–A10) are available, the column and row inputs are separately strobed by FAS and CAS as shown in Figure 4. First, eleven row address bits are applied on pins A0-through–A10 and latched with the row address strobe (FAS) hen, eleven column address bits are applied and latched with the column address strobe (FAS). Both row and column addresses must be stable on or before the falling edge of FAS and CAS, respectively. The address latches are of the flow-through type; thus, address information appearing after type. (min)+ tr is automatically treated as the column address.

WRITE ENABLE

The read or write mode is determined by the logic state of WE. When WE is active Low, a write cycle is initiated; when WE is High, a read cycle is selected. During the read mode, input data is ignored.

DATA INPUT

Input data is written into memory in either of two basic ways—an early write cycle and a read-modify—write cycle. The falling edge of \overline{WE} or \overline{CAS} , whichever is later, serves as the input data-latch strobe. In an early write cycle, the input data is strobed by \overline{CAS} and the setup/hold times are referenced to \overline{CAS} because \overline{WE} goes Low before \overline{CAS} . In a delayed write or a read-modify—write cycle, \overline{WE} goes Low after \overline{CAS} ; thus, input data is strobed by \overline{WE} and all setup/hold times are referenced to the write-enable signal.

DATA OUTPUT

The three-state buffers are TTL compatible with a fanout of two TTL loads. Polarity of the output data is identical to that of the input; the output buffers remain in the high-impedance state until the column address strobe goes Low. When a read or read-modify-write cycle is executed, valid outputs are obtained under the following conditions:

- tRAC : from the falling edge of RAS when t_{RCD} (max) is satisfied.
- tCAC : from the falling edge of CAS when t_{RCD} is greater than t_{RCD} (max).
- tAA : from column address input when tRAD is greater than tRAD (max).

The data remains valid until either CAS returns to a High logic level. When an early write is executed, the output buffers remain in a high-impedance state during the entire cycle.

FAST PAGE MODE OF OPERATION

The fast page mode of operation provides faster memory access and lower power dissipation. The fast page mode is implemented by keeping the same row address and strobing in successive column addresses. To satisfy these conditions, **FAS** is held Low for all contiguous memory cycles in which row addresses are common. For each fast page of memory, any of 2,048–bits can be accessed and, when multiple MB 814100s are used, **CAS** is decoded to select the desired memory fast page. Fast page mode operations need not be addressed sequentially and combinations of read, write, and/or ready-modify-write cycles are permitted.

DC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted) Notes 3

Paramt	er Notes	Symbol	Conditions	Min	Values Typ	Max	Unit	
Output high voltage		V _{OH}	l _{OH} = −5 mA	2.4	-	—		
Output low voltage		V _{OL}	l _{OL} = 4.2 mA	-	_	0.4	v	
Input leakage current	(any input)	۱ _{I(L)}	$0V \le V_{IN} \le 5.5V;$ $4.5V \le V_{CC} \le 5.5V;$ $V_{SS} = 0V;$ All other pins not under test = 0V	-10	_	10	μА	
Dutput leakage current		I _{O(L)}	0V≤V _{OUT} ≤ 5.5V; Data out disabled	-10	-	10		
Operating current	MB814100-80					75		
Average Power MB814100-10		I _{CC1}	RAS & CAS cycling; trc = min	-	-	65	mA	
2	2 MB814100-12				55			
Standby current	TTL level		RAS = CAS =V _{IH}			2.0		
(Power supply current)	CMOS level	I _{CC2}	$\overline{\text{RAS}} = \overline{\text{CAS}} \ge V_{\text{CC}} = -0.2V$	_	_	1.0	mA	
Refresh current #1	MB814100-80					75		
(Average power sup-	MB814100-10	I _{CC3}	CAS = V⊮, RAS cycling; trc = min	-	-	65	mA	
ply current) 2	MB814100-12					55		
Fast Page Mode	MB814100-80		RAS =VIL, CAS cycling;			75		
current 2	MB814100-10	I _{CC4}	tpc = min	-	_	65	mA	
	MB814100-12					55		
Refresh current #2	MB81410080		RAS cycling;			75		
(Average power sup-	MB814100-10	I _{CC5}	RAS cycling; CAS-before-RAS;		_	65	mA	
ply current) 2	MB814100-12		trc = min			55]	

AC CHARACTERISTICS

(At recommended operating conditions unless otherwise noted.) Notes 3, 4, 5

	commended operating conditions			410080		4100-10	MB81	4100-12	
No.	Parameter Note:	Symbol	Min	Max	Min	Max	Min	Max	Unit
1	Time Between Refresh	t _{REF}	_	16.4	-	16.4	_	16.4	ms
2	Random Read/Write Cycle Time	t _{RC}	155	-	180	—	210	_	ns
3	Read-Modify-Write Cycle Time	t _{RWC}	185		210		245	_	ns
4	Access Time from RAS 6,9] t _{RAC}		80	—	100	—	120	ns
5	Access Time from CAS 7,9			25		30		35	ns
6	Column Address Access Time 8,9] t _{AA}		45		50		60	ns
7	Output Hold Time	t _{OH}	5		5		5		ns
8	Output Buffer Turn On Delay Time	t _{ON}	5	-	5	—	5	—	ns
9	Output Buffer Turn off Delay Time 10	t _{OFF}		25		25	_	25	ns
10	Transition Time	t _T	3	50	3	50	3	50	ns
11	RAS Precharge Time	t _{RP}	65	-	70	—	80	_	ns
12	RAS Pulse Width	t _{RAS}	80	100000	100	100000	120	100000	ns
13	RAS Hold Time	t _{RSH}	25	-	30		35	—	ns
14	CAS to RAS Precharge Time	t _{CRP}	0		0	-	0	-	ns
15	RAS to CAS Delay Time 11,1	_	22	55	25	70	25	85	ns
16	CAS Pulse Width	t _{CAS}	25	_	30	_	35	—	ns
17	CAS Hold Time	t _{CSH}	80	-	100		120		ns
18	CAS Precharge Time (Normal) 17] t _{CPN}	15		15		15		ns
19	Row Address Set Up Time	t _{ASR}	0		0		0	_	ns
20	Row Address Hold Time	t _{RAH}	12		15	_	15		ns
21	Column Address Set Up Time	t ASC	0		0		0	—	ns
22	Column Address Hold Time	t _{CAH}	15		20		25		ns
23	RAS to Column Address Delay Time 13] t _{RAD}	17	35	20	50	20	60	ns
24	Column Address to RAS Lead Time	t _{RAL}	45		50		60	—	ns
25	Read Command Set Up Time	t _{RCS}	0		0		0	—	ns
26	Read Command Hold Time Referenced to RAS] t _{RRH}	0		0		0	—	ns
27	Read Command Hold Time Referenced to CAS] t _{RCH}	0		0	_	0	-	ns
28	Write Command Set Up Time 15] t _{wcs}	0	-	0		0		ns
29	Write Command Hold Time	t _{WCH}	15		20		25	—	ns
30	WE Pulse Width	t _{WP}	15	_	20		25	`	ns
31	Write Command to RAS Lead Time	t _{RWL}	25		25		30		ns
32	Write Command to CAS Lead Time	t _{CWL}	20	_	20		25	_	ns
33	DIN set Up Time	t _{DS}	0	—	0	-	0	—	ns
34	DIN Hold Time	t _{DH}	15	-	20		25	-	ns

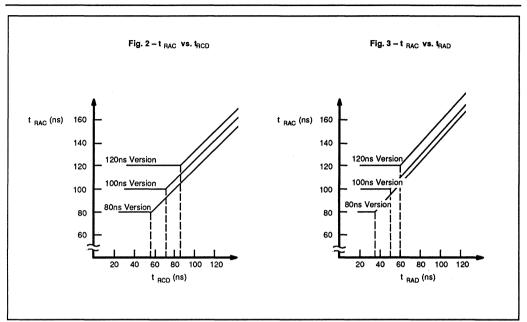
AC CHARACTERISTICS (Continued)

(At recommended operating conditions unless otherwise noted.) Notes 3, 4, 5

No.	Parameter	Notes		MB814	10080	MB814	100-10	MB814	100-12	Unit
NO.	Farameter	Notes	Symbol	Min	Max	Min	Max	Min	Max	Unit
35	RAS to WE Delay Time	15	t _{RWD}	80		100	—	120		ns
36	CAS to WE Delay Time	15	t _{CWD}	25		30	—	35		ns
37	Column Address to WE Delay Time	15	t _{AWD}	45	_	50	1	60	—	ns
38	RAS Precharge time to CAS Active Time (Refresh cycles)		t _{RPC}	10	_	10	-	10	—	ns
39	CAS Set Up Time for CAS-before- RAS Refresh		t _{CSR}	0	_	0	_	0	-	ns
40	CAS Hold Time for CAS-before- RAS Refresh		t _{CHR}	15	-	15	_	20	-	ns
41	WE Set Up Time from RAS		t _{WSR}	0	_	0	_	0	_	ns
42	WE Hold Time from RAS		t _{WHR}	15	-	15		20	-	ns
51	Fast Page Mode Read/Write Cycle Time		t _{PC}	55	_	60	_	70	-	ns
52	Fast Page Mode Read-Modify-Write Cycle Time		t _{PRWC}	85	—	90	_	105	—	ns
53	Access Time from CAS Precharge	9,16	t _{CPA}		55	—	60		70	ns
54	Fast Page Mode CAS Precharge Tim	ne	t _{CP}	15	_	15	—	15		ns

Notes:

- 1. Referenced to VSS
- 2. Icc depends on the output load conditions and cycle rates; The specified values are obtained with the output open. Icc depends on the number of address change as $\overline{RAS} = VIL$ and $\overline{CAS} = VIH$.

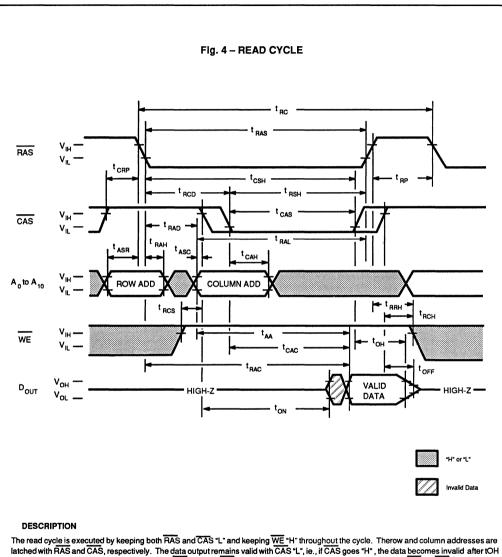

lcc1, lcc3 and lcc5 are specified at three time of address change during \overrightarrow{RAS} = VIL and \overrightarrow{CAS} = VIH.

Icc4 is specified at one time of address change during $\overline{RAS} = VIL$ and $\overline{CAS} = VIH$.

- An Initial pause (RAS =CAS =VIH) of 200µs is required after power-up followed by any eight RAS –only cycles before proper device operation is achieved. In case of using internal refresh counter, a minimum of eight CAS –before–RAS initialization cycles instead of 8 RAS cycles are required.
- 4. AC characteristics assume $t_T = 5ns$.
- V_{IH} (min) and V_{IL} (max) are reference levels for measuring timing of input signals. Also transition times are measured between V_{IH} (min) and V_{IL} (max).
- Assumes that t_{RCD}≤ t_{RCD} (max), t_{RAD}≤ t_{RAD} (max). If t_{RCD} is greater than the maximum recommended value shown in this table, t_{RAC} will be increased by the amount that t_{RCD} exceeds the value shown. Refer to Fig. 2 and 3.
- If tRCD≥tRCD (max), tRAD≥tRAD (max), and tASC≥tAA -tCAC t T, access time is tCAC.
- 8. If tRAD \geq tRAD (max) and tASC \leq tAA tCAC tT, access time is tAA.
- 9. Measured with a load equivalent to two TTL loads and 100 pF.
- 10. toFF and toEz is specified that output buffer change to high impedance state.

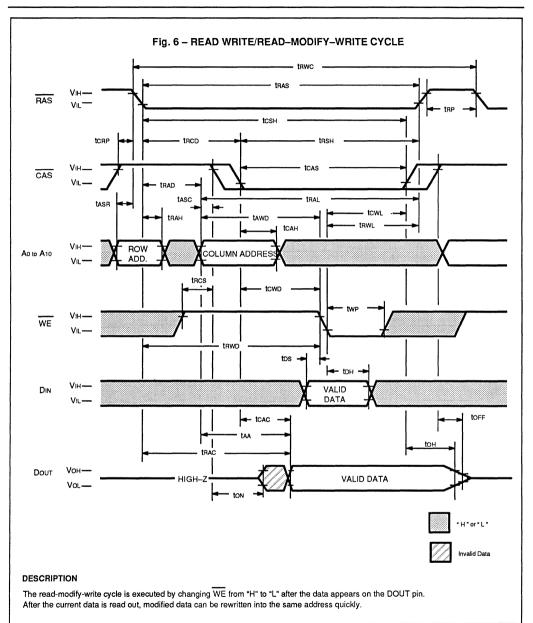
- 11. Operation within the tRCD (max) limit ensures that tRAC (max) can be met. tRCD (max) is specified as a reference point only; if tRCD is greater than the specified tRCD (max) limit, access time is controlled exclusively by tCAC or t AA.
- 12. t_{RCD} (min) = t_{RAH} (min)+ 2t T + t_{ASC} (min).
- 13. Operation within the tRAD (max) limit ensures that tRAC (max) can be met. tRAD (max) is specified as a reference point only; if tRAD is greater than the specified tRAD (max) limit, access time is controlled exclusively by tCAC or tAA.
- 14. Either tRRH or tRCH must be satisfied for a read cycle.
- 15. t wcs, t cwo, t, rwo and tawo are not a restrictive operating parameter. They are included in the data sheet as an electrical characteristic only. If twcs > t wcs (min), the cycle is an early write cycle and Dout pin will maintain high impedance state thoughout the entire cycle. If t cwo > t cwo (min), t Rwo > t Rwo (min), and t awo > t awo (min), the cycle is a read modify—write cycle and data from the selected cell will appear at the Dout pin. If neither of the above conditions is satisfied, the cycle is a delayed write cycle and invalid data will appear the Dout pin , and write operation can be exected by satisfying twu, t
 - cwL , and tRAL specifications.
- 16 t_{CPA} is access time from the selection of a new column address (that is caused by changing CAS from "L" to "H"). Therefore, if t_{CP} is long, t_{CPA} is longer than t_{CPA} (max).
- 17. Assumes that CAS -before- RAS refresh.

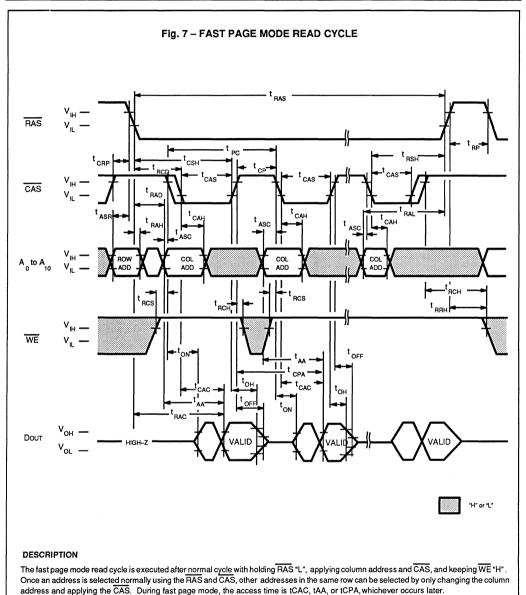
2

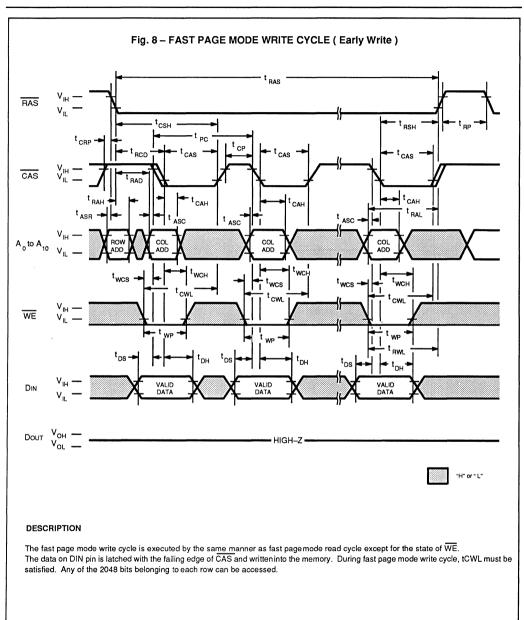


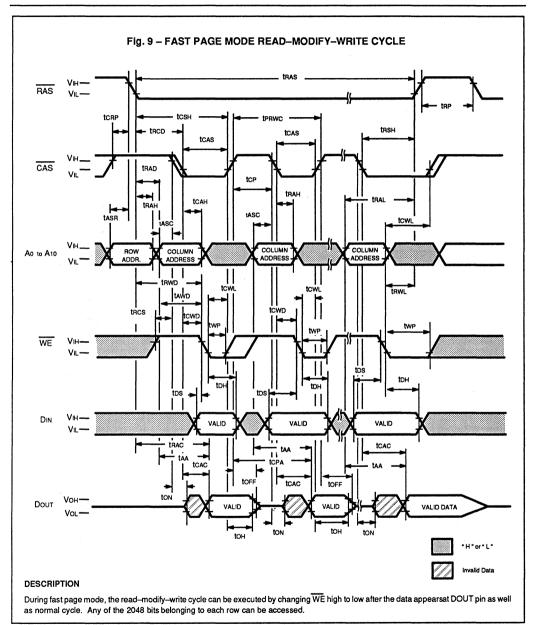
FUNCTIONAL TRUTH TABLE

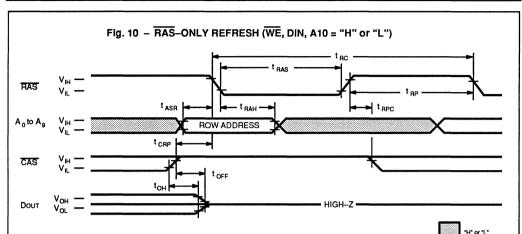
		Clock In	put	Addre	əss input	D	ata	.	
Operation Mode	RAS	CAS	WE	Row	Column	Input	Output	Refresh	Note
Standby	н	н	x	-	—	-	High-Z		
Read Cycle	L	L	н	Valid	Valid	_	Valid	Yes *1	$t_{RCS} \ge t_{RCS}$ (min)
Write Cycle (Early Write)	L	Ľ	L	Valid	Valid	Valid	High-Z	Yes *1	t _{wcs≥} t _{wcs} (min)
Read–Modify–Write Cycle	L	L	H→L	Valid	Valid	$X \rightarrow$ Valid	Valid	Yes *1	$t_{CWD} \ge t_{CWD}$ (min)
RAS-only Refresh Cycle	L	н	x	Valid	-	_	High-Z	Yes	
CAS-before-RAS Refresh Cycle	L	L	н	_	_	_	High-Z	Yes	$t_{CSR} \ge t_{CSR}$ (min)
Hidden Refresh Cycle	H→L	L	н	_	-	_	Valid	Yes	Previous data is kept


Notes:

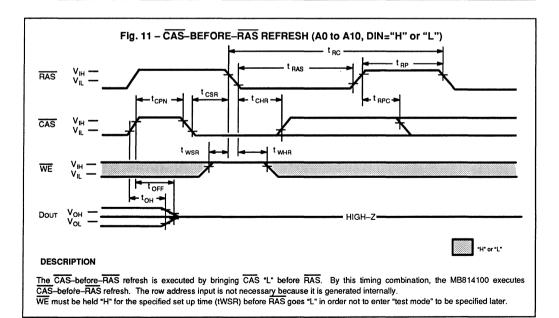

X: "H" or "L" *1: It is impossible in Fast Page Mode.

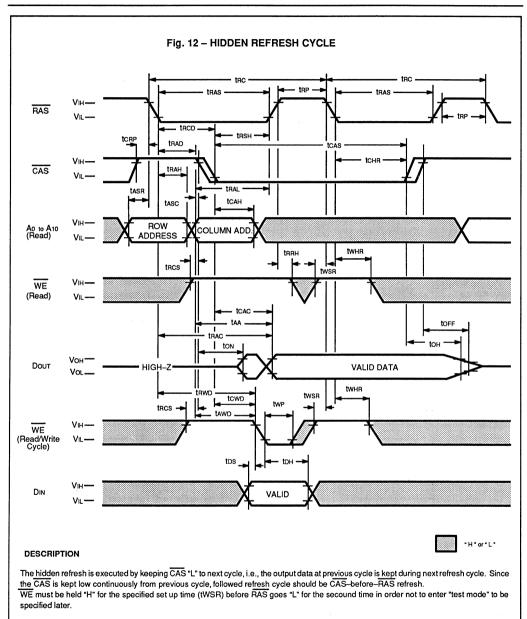

Ine read cycle is executed by keeping both RAS and CAS *L and keeping weer in throughout the cycle. Therow and column addresses are latched with RAS and CAS, respectively. The data output remains valid with CAS *L*, ie., if CAS goes *H*, the data becomes invalid after tOH is satisfied. The access time is determined by RAS (tRAC), CAS (tCAC), or Column address input (tAA). If tRCD (RAS to CAS delay time) is greater than the specification, the access time is tAA.





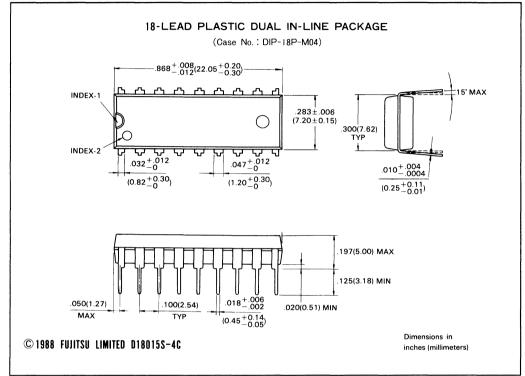
address and applying the CAS. During fast page mode, the access tin Any of the 2048 bits belonging to each row can be accessed.

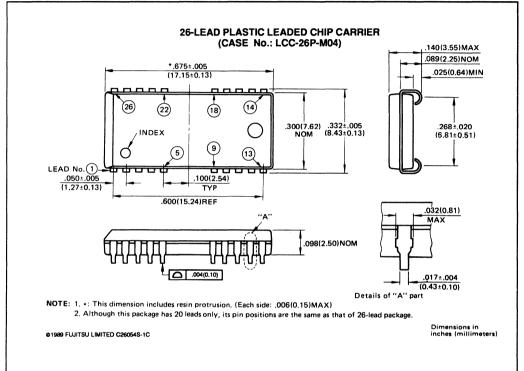




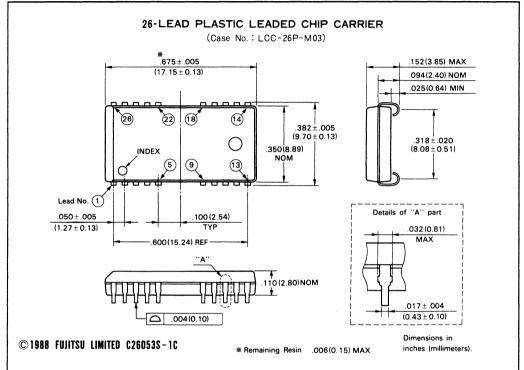
DESCRIPTION

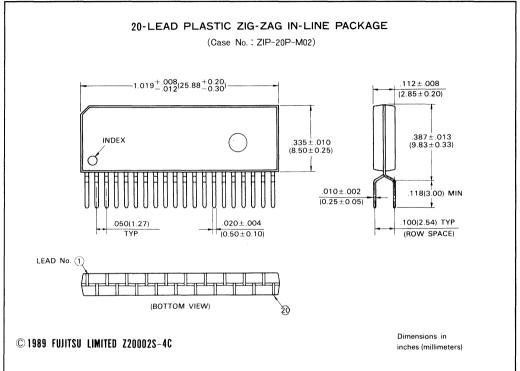
The refresh of DRAM is executed by normal read, write or read-modify-write cycle, i.e., the cells on the one row line are also refreshed by executing one of three cycles. 1024 row address must be refreshed every 16.4ms period. During the refresh cycle, the cell data connected to the selected row are sent to sense amplifier and re-written to the cell. The MB814100 has three types of refresh modes, RAS-only refresh, CAS-before-RAS refresh, and Hidden refresh.


The RAS only refresh is executed by keeping RAS "L" and CAS "H" throughout the cycle. The row address to be refreshed is latched on the falling edge of RAS. During RAS-only refresh, the DOUT pin is kept in a high impedance state.



PACKAGE DIMENSIONS


(Suffix : -P)


(Suffix : -PJN)

(Suffix : -PJ)

(Suffix : -PSZ)

FUĴĨTSU

MB814100-80L/-10L/-12L

CMOS 4M x 1 BIT FAST PAGE MODE LOW POWER DYNAMIC RAM

RAS only, CAS-before-RAS, or

Fast page Mode, Read-Modify-Write

On-chip substrate bias generator for

Hidden Refresh

high performance

capability

CMOS 4M x 1 Bit Fast Page Mode Low Power Dynamic RAM

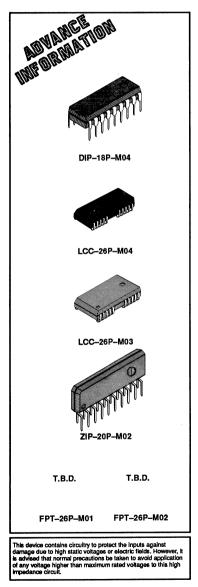
The Fujitsu MB814100 is a fully decoded CMOS dynamic RAM (DRAM) that contains a total of 4, 194,304 memory cells in a x 1 configuration. The MB814100 features a fast page mode of operation whereby high-speed, random access of up to 2,048-bits of data within the same row can be selected. The MB814100 DRAM is ideally suited for mainframes, buffers, hand-held computers, and other memory applications where very low power dissipation and compact layout are basic requirements of the design. Since the standby current of the MB814100 is very low, the device can be used in equipment that uses batteries for primary and/or auxiliary power.

The MB814400 is fabricated using silicon gate CMOS and Fujitsu's advanced Four-layer Polysilicon process. This process, coupled with three-dimensional stacked capacitor memory cells, reduces the possibility of soft errors and extends the time interval between memory refreshes. Clock timing requirements for the MB814100 are not critical and all inputs are TTL compatible.

Features

Parameter	MB814100-80L	MB814100-10L	MB814100-12L			
RAS Access Time	80 ns max.	100 ns max.	120 ns max.			
Random Cycle Time	155 ns min.	180 ns min.	210 ns min.			
Address Access Time	45 ns max.	50 ns max.	60 ns max.			
CAS Access Time	25 ns max.	25 ns max.	30 ns max.			
Fast Page Mode Cycle Time	55 ns min.	60 ns min.	70 ns min.			
Low Power Dissipation Operating Current 	413 mW max.	358 mW max.	303 mW max.			
 Standby Current 	11 mW max. (TTL level)/1.1 mW max. (CMOS level)					

•


- 4,194,304 words x 1 bit organization
- Silicon gate, CMOS, 3D–Stacked Capacitor Cell
- All input and output are TTL compatible
- 1024 refresh cycles every 128 ms
- Common I/O capability by using early write

Absolute Maximum Ratings (See Note)

Parameter	Symbol	Value	Unit
Voltage at any pin relative to V_{SS}	VIN, VOUT	-1 to +7	v
Voltage of V_{CC} supply relative to V_{SS}	Vcc	-1 to +7	v
Power Dissipation	PD	1.0	w
Short Circuit Output Current	-	50	mA
Storage Temperature	T _{STG}	-55 to +125	°C

Note: Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operation sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Copyright C 1990 by FUJITSU LIMITED and Fujitsu Microelectronics, Inc.

DATA SHEET

MB814101-80/-10/-12 CMOS 4,194,304 BIT NIBBLE MODE DYNAMIC RAM

CMOS 4,194,304 x 1 Bit Nibble Mode Dynamic RAM

The Fujitsu MB814101 is a fully decoded CMOS dynamic RAM (DRAM) that contains a total of 4, 194, 304 memory cells in a x 1 configuration. The MB814101 features a nibble mode of operation whereby high-speed serial access of up to 4 bits of data can be selected. The MB814101 DRAM is ideally suited for mainframes, buffers, hand-held computers, and other memory applications where very low power dissipation and compact layout are basic requirements of the design. Since the standby current of the MB814101 is very low, the device can be used in equipment that uses batteries for primary and/or auxiliary power.

The MB814101 is fabricated using silicon gate CMOS and Fujitsu's advanced Four-layer Polysilicon process. This process, coupled with three-dimensional stacked capacitor memory cells, reduces the possibility of soft errors and extends the time interval between memory refreshes. Clock timing requirements for the MB814101 are not critical and all inputs are TTL compatible.

Features

Parameter	MB814101-80	MB814101-10	MB814101-12			
RAS Access Time	80 ns max.	100 ns max.	120 ns max.			
Random Cycle Time	155 ns min.	180 ns min.	210 ns min.			
Address Access Time	45 ns max.	50 ns max.	60 ns max.			
CAS Access Time	25 ns max.	30 ns max.	35 ns max.			
Nibble Mode Cycle Time	50 ns min.	55 ns min.	60 ns min.			
Low Power Dissipation Operating Current 	413 mW max.	358 mW max.	303 mW max.			
 Standby Current 	11 mW max. (TTL level)/5.5 mW max. (CMOS level)					

11 mW max. (TTL level)/5.5 mW max. (CMOS level)

· RAS only, CAS-before-RAS, or

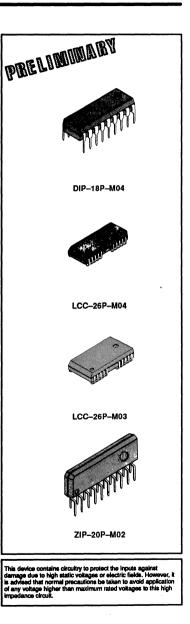
Nibble Mode, Read-Modify-Write

On-chip substrate bias generator for

Hidden Refresh

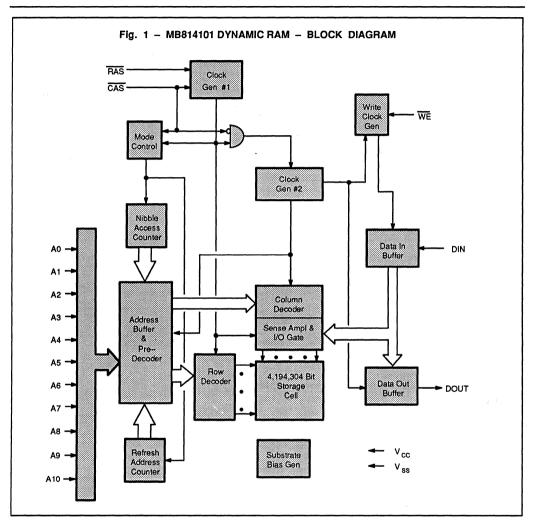
high performance

capability

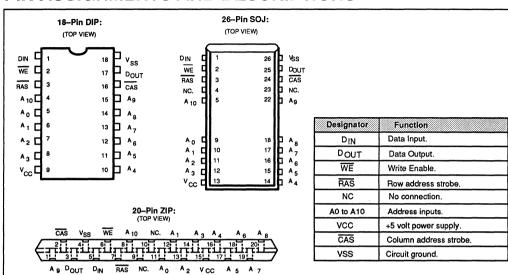

- 4,194,304 words x 1 bit organization
- Silicon gate, CMOS, 3D-Stacked **Capacitor Cell**
- All input and output are TTL compatible
- 1024 refresh cycles every 16.4 ms
- Common I/O capability by using early write

Absolute Maximum Ratings (See Note)

Parameter	Symbol	Value	Unit
Voltage at any pin relative to V_{SS}	VIN, VOUT	-1 to +7	V
Voltage of V_{CC} supply relative to V_{SS}	Vcc	-1 to +7	V
Power Dissipation	PD	1.0	w
Short Circuit Output Current	-	50	mA
Storage Temperature	TSTG	-55 to +125	°C


Note: Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operation sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Copyright C 1990 by FUJITSU LIMITED and Fulitsu Microelectronics. Inc.


rsu

FU

CAPACITANCE (T_A = 25°C, f = 1MHz)

Parameter	Symbol	Тур	Max	Unit
Input Capacitance, A0 to A10, DIN	C _{IN1}	_	5	pF
Input Capacitance, RAS, CAS, WE	C _{IN2}	_	5	pF
Output Capacitance, DOUT	Cout	_	5	pF

PIN ASSIGNMENTS AND DESCRIPTIONS

RECOMMENDED OPERATING CONDITIONS

Parameter	Notes	Symbol	Min	Тур	Max	Unit	Ambient Operating Temp
Supply Voltage	Ŀ	V _{cc}	4.5	5.0	5.5	N	
	Ľ	V _{SS}	0	0	0	v	
Input High Voltage, all inputs	1	VIH	2.4	-	6.5	v	0 °C to +70 °C
Input Low Voltage, all inputs	1	VIL	-2.0	-	0.8	v	

FUNCTIONAL OPERATION

ADDRESS INPUTS

Twenty-two input bits are required to decode any one of 4, 194,304 cell addresses in the memory matrix. Since only eleven address bits (A0–A10) are available, the column and row inputs are separately strobed by FAS and CAS as shown in Figure 4. First, eleven row address bits are applied on pins A0-through-A10 and latched with the row address strobe (FAS) then, eleven column address bits are applied and latched with the column address strobe (CAS). Both row and column addresses must be stable on or before the falling edge of FAS and CAS as the column address latches are of the flow-through type; thus, address information appearing after f_{ABH} (min)+ tr is automatically treated as the column address.

WRITE ENABLE

The read or write mode is determined by the logic state of WE. When WE is active Low, a write cycle is initiated; when WE is High, a read cycle is selected. During the read mode, input data is ignored.

DATA INPUT

Input data is written into memory in either of two basic ways—an early write cycle and a read-modify—write cycle. The falling edge of \overline{WE} or \overline{CAS} , whichever is later, serves as the input data-latch strobe. In an early write cycle, the input data is strobed by \overline{CAS} and the setup/hold times are referenced to \overline{CAS} because \overline{WE} goes Low before \overline{CAS} . In a delayed write or a read-modify—write cycle, \overline{WE} goes Low after \overline{CAS} ; thus, input data is strobed by \overline{WE} and all setup/hold times are referenced to the write-enable signal.

DATA OUTPUT

The three-state buffers are TTL compatible with a fanout of two TTL loads. Polarity of the output data is identical to that of the input; the output buffers remain in the high-impedance state until the column address strobe goes Low. When a read or read-modify-write cycle is executed, valid outputs are obtained under the following conditions:

- tRAC : from the falling edge of RAS when tRCD (max) is satisfied.
- tCAC : from the falling edge of CAS when tRCD is greater than tRCD (max).
- tAA : from column address input when tRAD is greater than tRAD (max).

The data remains valid until either CAS returns to a High logic level. When an early write is executed, the output buffers remain in a high-impedance state during the entire cycle.

DC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted) Notes 3

Values Paramter Notes Symbol Conditions Unit Min Typ Max I_{OH} = -5 mA Output high voltage V_{OH} 2.4 ____ ____ v VOL 1_{OL} = 4.2 mA Output low voltage ____ ____ 0.4 $0V \le V_{IN} \le 5.5V;$ $4.5V \le V_{CC} \le 5.5V;$ $V_{SS} = 0V; All other pins not under test = 0V$ Input leakage current (any input) 1 (L) -10 10 ____ μA 0V≤V_{OUT}≤ 5.5V; Data out disabled 1_{0(L)} Output leakage current -10 10 -----75 MB814101-80 Operating current RAS & CAS cycling; (Average Power MB814101-10 65 I_{CC1} -----____ mΑ trc = min supply current) 2 55 MB814101-12 Standby current TTL level RAS = CAS =V 2.0 I_{CC2} (Power supply ____ ____ mΑ RAS = CAS ≥ V_{CC} -0.2V current) 1.0 CMOS level MB814101-80 75 Refresh current #1 CAS = VIH, RAS cycling; (Average power sup-MB814101-10 1_{CC3} 65 mΑ ____ tRC = minply current) 2 MB814101-12 55 50 MB814101-80 Nibble Mode current RAS =VIL, CAS cycling; I_{CC4} tNC = min 2 mΑ MB814101-10 45 MB814101-12 40 MB814101-80 75 Refresh current #2 RAS cycling; (Average power supmA MB814101-10 I_{CC5} CAS-before-RAS: 65 ply current) 2 tac = min MB814101-12 55

AC CHARACTERISTICS

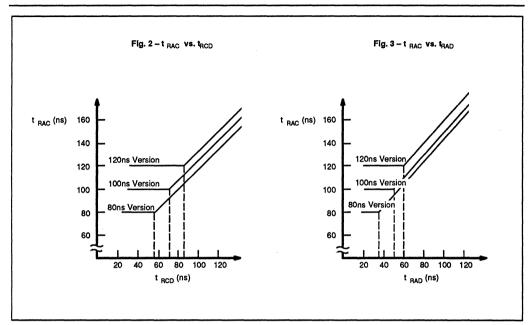
(At recommended operating conditions unless otherwise noted.) Notes 3, 4, 5

No.	Parameter No	tes	Symbol	MB81	4101-80		4101-10	MB81	1101-12	Unit
	(aloniola)		oj	Min	Max	Min	Max	Min	Max	
1	Time Between Refresh		t _{REF}		16.4	_	16.4		16.4	ms
2	Random Read/Write Cycle Time		t _{RC}	155		180		210		ns
3	Read-Modify-Write Cycle Time		t _{RWC}	185	-	210	—	245		ns
4		<u>;,9</u>	t _{RAC}		80		100		120	ns
5		',9 	t _{CAC}		25	-	30	_	35	ns
6	Column Address Access Time	9,9	t _{AA}	-	45	-	50		60	ns
7	Output Hold Time	_	t _{он}	5		5		5	-	ns
8	Output Buffer Turn On Delay Time		t _{ON}	5	_	5	_	5		ns
9	Output Buffer Turn off Delay Time	0	t _{OFF}		25		25		25	ns
10	Transition Time		t _T	3	50	3	50	3	50	ns
11	RAS Precharge Time		t _{RP}	65	—	70	-	80	—	ns
12	RAS Pulse Width		t _{RAS}	80	100000	100	100000	120	100000	ns
13	RAS Hold Time		t _{RSH}	25	_	30	_	35	-	ns
14	CAS to RAS Precharge Time		t _{CRP}	0	_	0	_	0	-	ns
15	RAS to CAS Delay Time 11	,12	t _{RCD}	22	55	25	70	25	85	ns
16	CAS Pulse Width		t _{CAS}	25	_	30		35		ns
17	CAS Hold Time		t _{CSH}	80		100		120	_	ns
18	CAS Precharge Time (Normal)	7	t _{CPN}	15	_	15	-	15	_	ns
19	Row Address Set Up Time		t _{ASR}	0	_	0	_	0	_	ns
20	Row Address Hold Time		t _{RAH}	12	_	15	-	15	-	ns
21	Column Address Set Up Time		t ASC	0	_	0	—	0		ns
22	Column Address Hold Time		t _{CAH}	15	-	20	-	25		ns
23	RAS to Column Address Delay Time	3	t _{RAD}	17	35	20	50	20	60	ns
24	Column Address to RAS Lead Time		t _{RAL}	45		50		60		ns
25	Read Command Set Up Time		t _{RCS}	0	—	0	_	0		ns
26	Read Comman <u>d H</u> old Time Referenced to RAS	4	t _{RRH}	0	_	0		0	_	ns
27	Read Command Hold Time Referenced to CAS	4	t _{RCH}	0	_	0	_	0	-	ns
28	Write Command Set Up Time	5	twcs	0	—	0	_	0		ns
29	Write Command Hold Time		t _{WCH}	15		20		25		ns
30	WE Pulse Width		t _{WP}	15	_	20	-	25		ns
31	Write Command to RAS Lead Time		t _{RWL}	25	_	25	_	30	_	ns
32	Write Command to CAS Lead Time	T	t _{CWL}	20	-	20	-	25	-	ns
33	DIN set Up Time		t _{DS}	0	-	0	-	0	-	ns
34	DIN Hold Time		t _{DH}	15		20		25	_	ns

MB814101-80 MB814101-10 MB814101-12 No Parameter Notes Symbol Unit Min Max Min Max Min Max RAS to WE Delay Time 15 t _{RWD} 80 100 120 35 ____ ____ ns 36 CAS to WE Delay Time 15 t _{cwD} 25 30 35 _ ____ _ ns Column Address to WE Delay Time 15 37 t AWD 45 50 60 ----_ ns RAS Precharge time to CAS 38 t apc 10 10 10 ns Active Time (Refresh cycles) 39 CAS Set Up Time for CAS-before-RAS Refresh t _{CSR} ٥ 0 ٥ ns CAS Hold Time for CAS-before-40 t _{CHB} 15 15 20 ns RAS Refresh WE Set Up Time from RAS 0 41 t _{WSR} 0 ٥ ns WE Hold Time from BAS 42 t WHR 15 15 20 ns 51 t _{NC} Nibble Mode Read/Write Cycle Time 50 55 60 ____ ns Nibble Mode Read-Modify-Write 52 t NRWC 75 80 90 ns Cycle Time 53 Access Time from CAS Precharge 9,16 45 50 55 t _{NPA} _ _____ ns Nibble Mode CAS Precharge Time 54 15 15 15 t NCD ns

AC CHARACTERISTICS (Continued) (At recommended operating conditions unless otherwise noted.) Notes 3, 4, 5

Notes: 1. Refere


- Referenced to VSS
 Icc depends on the output load conditions and cycle rates; The specified values are obtained with the output open.
 - lcc depends on the number of address change as $\overrightarrow{RAS} = V_{IL}$ and $\overrightarrow{CAS} = V_{IH}$.

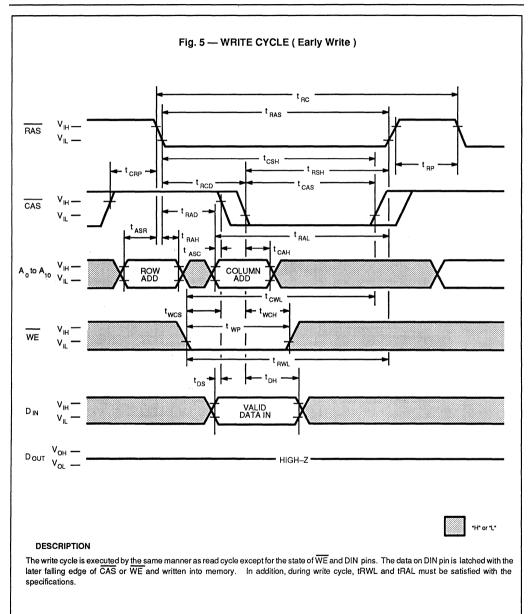
Icc1, Icc3 and Icc5 are specified at three time of address change during \overrightarrow{RAS} = VIL and \overrightarrow{CAS} = VIH.

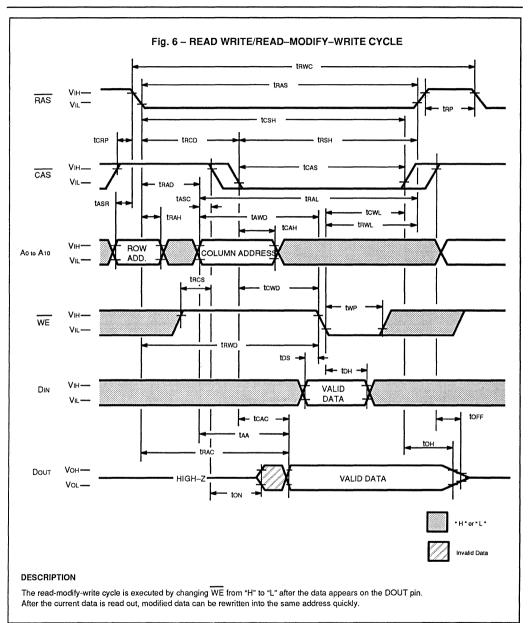
Icc4 is specified at one time of address change during $\overline{RAS} = V_{IL}$ and $\overline{CAS} = V_{IH}$.

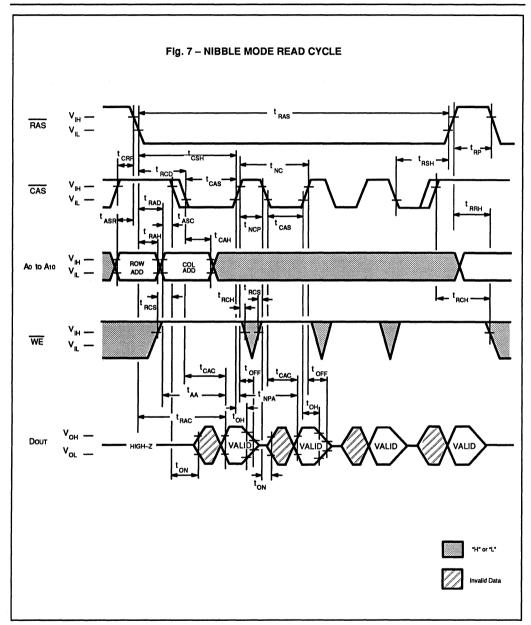
- An Initial pause (RAS = CAS = VIH) of 200µs is required after power-up followed by any eight RAS -only cycles before proper device operation is achieved. In case of using internal refresh counter, a minimum of eight CAS -before-RAS initialization cycles instead of 8 RAS cycles are required.
- 4. AC characteristics assume t_T = 5ns.
- V_{IH} (min) and V_{IL} (max) are reference levels for measuring timing of input signals. Also transition times are measured between V_{IH} (min) and V_{IL} (max).
- 6. Assumes that tRCD \leq tRCD (max), tRAD \leq tRAD (max). If tRCD is greater than the maximum recommended value shown in this table, tRAC will be increased by the amount that tRCD exceeds the value shown. Refer to Fig. 2 and 3.
- If tRCD≥tRCD (max), tRAD≥tRAD (max), and tASC≥tAA -tCAC t_T, access time is tCAC.
- 8. If $t_{RAD} \ge t_{RAD}$ (max) and $t_{ASC} \le t_{AA} t_{CAC} t_T$, access time is t t_{AA} .
- 9. Measured with a load equivalent to two TTL loads and 100 pF.
- 10. toFF and toEz is specified that output buffer change to high impedance state.

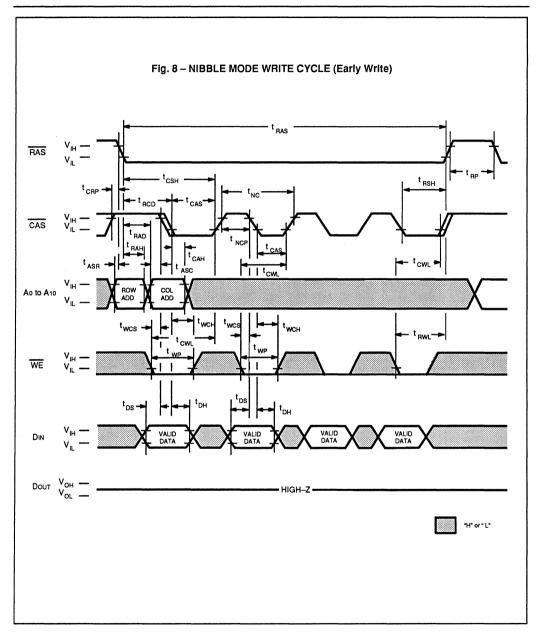
- 11. Operation within the t_{RCD} (max) limit ensures that t_{RAC} (max) can be met. t_{RCD} (max) is specified as a reference point only; if t_{RCD} is greater than the specified t_{RCD} (max) limit, access time is controlled exclusively by t_{CAC} or t_{AA}.
- 12. t_{RCD} (min) = t_{RAH} (min)+ 2t T + t_{ASC} (min).
- 13. Operation within the tRAD (max) limit ensures that tRAC (max) can be met. tRAD (max) is specified as a reference point only; if tRAD is greater than the specified tRAD (max) limit, access time is controlled exclusively by tCAC or tAA.
- 14. Either tRRH or tRCH must be satisfied for a read cycle.
- 15. t wcs , t cwD , t,RwD and tAwD are not a restrictive operating parameter. They are included in the data sheet as an electrical characteristic only. If twcs > t wcs (min), the cycle is an early write cycle and Dout pin will maintain high impedance state thoughout the entire cycle. If t cwD > t cwD (min), t RwD > t AwD (min), and t AwD > t AwD (min), the cycle is a read modify—write cycle and data from the selected cell will apper at the Dout pin. If neither of the above conditions is satisfied, the cycle is a delayed write cycle and be exected by satisfying tawL , t cwL , and tRAL specifications.
- 16 t_{NPA} is access time from the selection of a new column address (that is caused by changing CAS from "L" to "H"). Therefore, if t_{CP} is long, t_{CPA} is longer than t_{CPA} (max).
- 17. Assumes that CAS -before- RAS refresh.

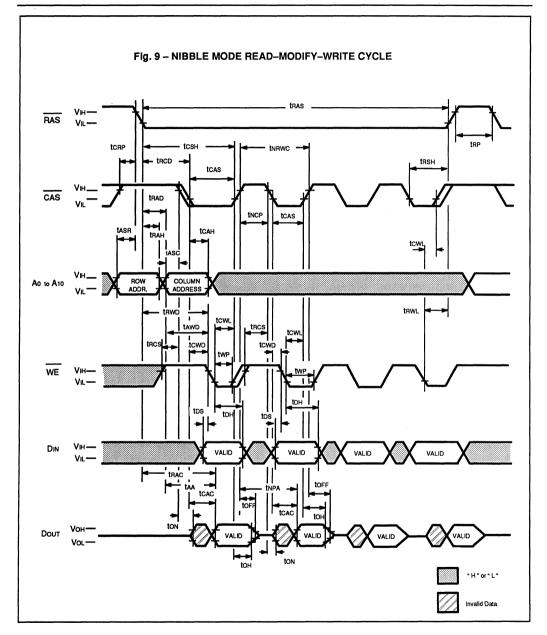
FUNCTIONAL TRUTH TABLE

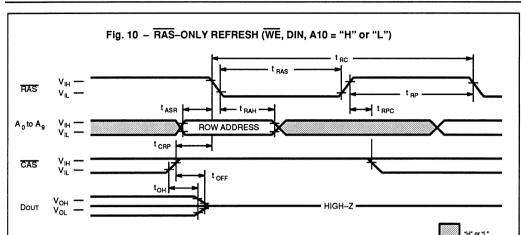

	Clock Input		Addre	Address Input		Data			
Operation Mode	RAS	CAS	WE	Row	Column	Input	Output	Refresh	Note
Standby	н	н	x				High-Z		
Read Cycle	L	L	н	Valid	Valid	-	Valid	Yes *1	$t_{RCS} \ge t_{RCS}$ (min)
Write Cycle (Early Write)	L	L	L	Valid	Valid	Valid	High-Z	Yes *1	t _{wcs} ≥ t _{wcs} (min)
Read-Modify-Write Cycle	L	L	H→L	Valid	Valid	X → Valid	Valid	Yes *1	t _{cwD} ≥t _{cwD} (min)
RAS-only Refresh Cycle	L	н	x	Valid	-	_	High-Z	Yes	
CAS-before-RAS Refresh Cycle	L	۰ L	н	-	-	—	High-Z	Yes	$t_{CSR} \ge t_{CSR}$ (min)
Hidden Refresh Cycle	H→L	L	н	-	_	_	Valid	Yes	Previous data is kept

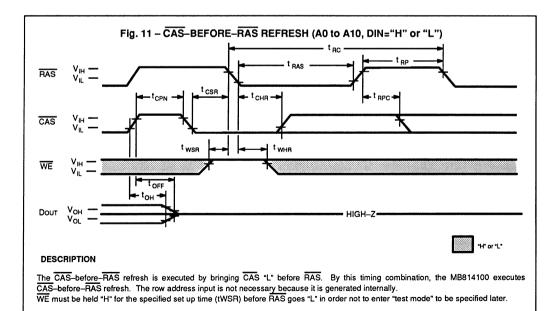

Notes:


X: "H" or "L" *1: It is impossible in Nibble Mode.



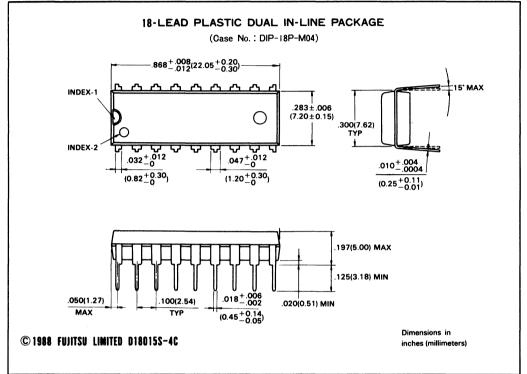

The read cycle is executed by keeping both $\overline{\text{RAS}}$ and $\overline{\text{CAS}}$ "L" and keeping $\overline{\text{WE}}$ "H" throughout the cycle. Therow and column addresses are latched with $\overline{\text{RAS}}$ and $\overline{\text{CAS}}$, respectively. The data output remains valid with $\overline{\text{CAS}}$ "L", ie., if $\overline{\text{CAS}}$ goes "H", the data becomes invalid after tOH is satisfied. The access time is determined by $\overline{\text{RAS}}$ (tRAC), CAS (tCAC), or Column address input (tAA). If tRCD (RAS to $\overline{\text{CAS}}$ delay time) is greater than the specification, the access time is tAA.

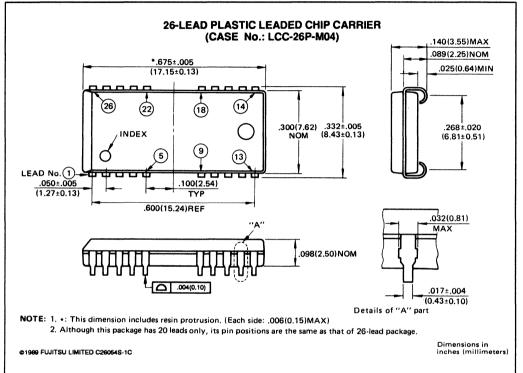




DESCRIPTION

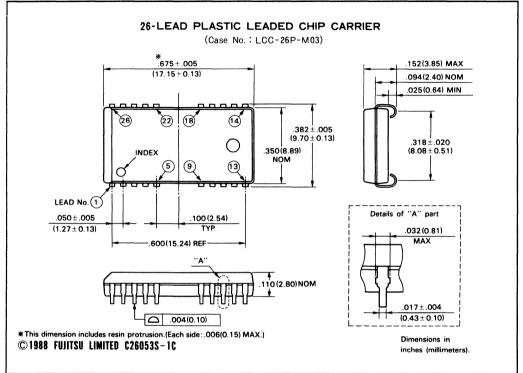
The refresh of DRAM is executed by normal read, write or read-modify-write cycle, i.e., the cells on the one row line are also refreshed by executing one of three cycles. 1024 row address must be refreshed every 16.4ms period. During the refresh cycle, the cell data connected to the selected row are sent to sense amplifier and re-written to the cell. The MB814100 has three types of refresh modes, RAS-only refresh, CAS-before-RAS refresh, and Hidden refresh.


The RAS only refresh is executed by keeping RAS "L" and CAS "H" throughout the cycle. The row address to be refreshed is latched on the falling edge of RAS. During RAS-only refresh, the DOUT pin is kept in a high impedance state.

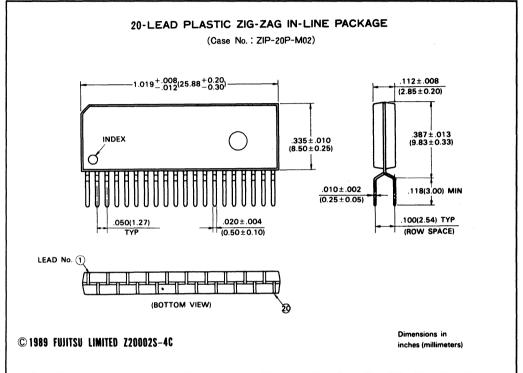


PACKAGE DIMENSIONS

(Suffix : -P)



(Suffix : -PJN)



PACKAGE DIMENSIONS (Continued)

(Suffix : -PJ)

(Suffix : -PSZ)

= DATA SHEET ==

MB814101-80L/-10L/-12L CMOS 4M x 1 BIT NIBBLE MODE LOW POWER DYNAMIC RAM

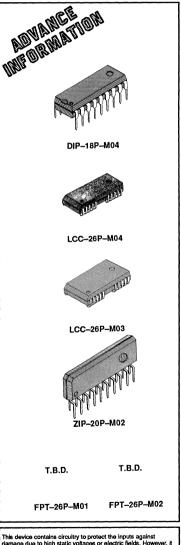
CMOS 4M x 1 Bit Nibble Mode Low Power Dynamic RAM

The Fujitsu MB814101 is a fully decoded CMOS dynamic RAM (DRAM) that contains a total of 4, 194,304 memory cells in a x 1 configuration. The MB814101 features a nibble mode of operation whereby high-speed serial access of up to 4 bits of data can be selected. The MB814101 DRAM is ideally suited for mainframes, buffers, hand-held computers, and other memory applications where very low power dissipation and compact layout are basic requirements of the design. Since the standby current of the MB814101 is very low, the device can be used in equipment that uses batteries for primary and/or auxiliary power.

The MB814101 is fabricated using silicon gate CMOS and Fujitsu's advanced Four-layer Polysilicon process. This process, coupled with three-dimensional stacked capacitor memory cells, reduces the possibility of soft errors and extends the time interval between memory refreshes. Clock timing requirements for the MB814101 are not critical and all inputs are TTL compatible.

Features

Parameter	MB814101-80L	MB814101-10L	MB814101-12L			
RAS Access Time	80 ns max.	100 ns max.	120 ns max.			
Random Cycle Time	155 ns min.	180 ns min.	210 ns min.			
Address Access Time	45 ns max.	50 ns max.	60 ns max.			
CAS Access Time	20 ns max.	25 ns max.	30 ns max.			
Nibble Mode Cycle Time	50 ns min.	55 ns min.	60 ns min.			
Low Power Dissipation Operating Current 	413 mW max.	358 mW max.	303 mW max.			
 Standby Current 	11 mW max. (T	TL level)/1.1 mW ma	x. (CMOS level)			
• Standby Current 11 mW max. (TTL level)/1.1 mW max. (CMOS level) • 4,194,304 words x 1 bit organization • RAS only, CAS-before-RAS, or Hidden Refresh • Silicon gate, CMOS, 3D–Stacked Capacitor Cell • Nibble Mode, Read-Modify-Write capability • All input and output are TTL compatible • On-chip substrate bias generator for high performance						


- Common I/O capability by
- using early write

Absolute Maximum Ratings (See Note)

Parameter	Symbol	Value	Unit
Voltage at any pin relative to $V_{\mbox{SS}}$	VIN, VOUT	-1 to +7	v
Voltage of V_{CC} supply relative to V_{SS}	V _{CC}	-1 to +7	V
Power Dissipation	PD	1.0	w
Short Circuit Output Current	-	50	mA
Storage Temperature	T _{STG}	-55 to +125	°C

Note: Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operation sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Copyright © 1990 by FUJITSU LIMITED and Fujitsu Microelectronics, Inc.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

SU

2

2-330

MB814400-80/-10/-12

CMOS 4,194,304 BIT FAST PAGE MODE DYNAMIC RAM

RAS only, CAS-before-RAS, or

Fast page Mode, Read-Modify-Write

On-chip substrate bias generator for

Hidden Refresh

high performance

capability

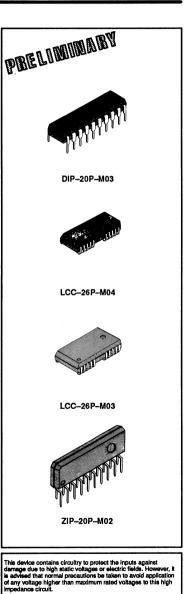
CMOS 1,048,576 x 4 Bits Fast Page Mode Dynamic RAM

The Fujitsu MB814400 is a fully decoded CMOS Dynamic RAM (DRAM) that contains a total of 4,194,304 memory cells accessible in 4-bit increments. The MB814400 features a fast page mode of operation whereby high-speed, random access of up to 1,024-bits of data within the same row can be selected. The MB814400 DRAM is ideally suited for mainframes, buffers, hand-held computers, video imaging equipment, and other memory applications where very low power dissipation and high bandwidth are basic requirements of the design. Since the standby current of the MB814400 is very low, the device can be used in equipment that uses batteries for primary and/or auxiliary power.

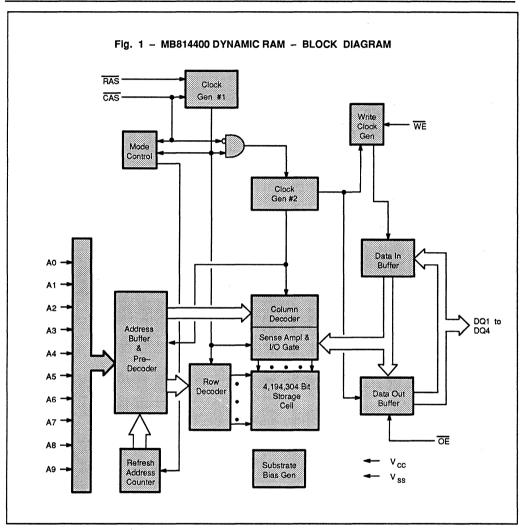
The MB814400 is fabricated using silicon gate CMOS and Fujitsu's advanced Four-layer Polysilicon process. This process, coupled with three-dimensional stacked capacitor memory cells, reduces the possibility of soft errors and extends the time interval between memory refreshes. Clock timing requirements for the MB81400 are not critical and all inputs are TTL compatible.

Features

Parameter	MB814400-80	MB814400-10	MB814400-12			
RAS Access Time	80 ns max.	100 ns max.	120 ns max.			
Random Cycle Time	155 ns min.	180 ns min.	210 ns min.			
Address Access Time	45 ns max.	50 ns max.	60 ns max.			
CAS Access Time	25 ns max.	30 ns max.	35 ns max.			
Fast Page Mode Cycle Time	55 ns min.	60 ns min.	70 ns min.			
Low Power Dissipation Operating Current 	413 mW max.	358 mW max.	303 mW max.			
Standby Current	11 mW max. (TTL level)/5.5 mW max. (CMOS level)					

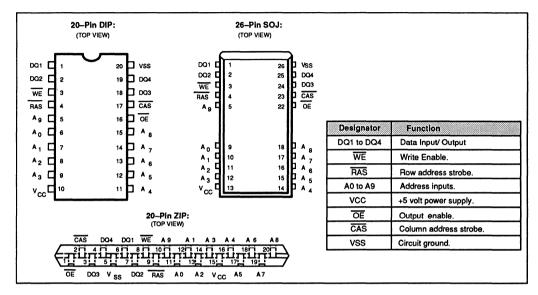

- 1,048,576 words x 4 bits organization
- Silicon gate, CMOS, 3D–Stacked Capacitor Cell
- All input and output are TTL compatible
- 1024 refresh cycles every 16.4 ms
- Early write or OE controlled write capability

Absolute Maximum Ratings (See Note)


Parameter	Symbol	Value	Unit
Voltage at any pin relative to V_{SS}	VIN, VOUT	-1 to +7	v
Voltage of V_{CC} supply relative to V_{SS}	Vcc	-1 to +7	v
Power Dissipation	PD	1.0	w
Short Circuit Output Current		50	mA
Storage Temperature	T _{STG}	-55 to +125	°C

Note: Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operation sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Copyright C 1990 by FUJITSU LIMITED and Fujitsu Microelectronics, Inc.


ΓSU

CAPACITANCE (T_A = 25°C, f = 1MHz)

Parameter	Symbol	Тур	Max	Unit
Input Capacitance, A0 to A9	C _{IN1}	—	5	pF
Input Capacitance, RAS, CAS, WE, OE	C _{IN2}	_	5	pF
Input/Output Capacitance, DQ1 to DQ4	CDQ	_	6	pF

PIN ASSIGNMENTS AND DESCRIPTIONS

RECOMMENDED OPERATING CONDITIONS

Parameter	Notes	Symbol	Min	Тур	Max	Unit	Amblent Operating Temp	
Supply Voltage		V _{cc}	4.5	5.0	5.5	v		
	Ľ	V _{SS}	0	0	0	V		
Input High Voltage, all inputs	1	ИН	2.4	_	6.5	v	0 °C to +70 °C	
Input Low Voltage, all inputs	1	VIL	-2.0	_	0.8	v		
Input Low Voltage, DQ(*)	1	VILD	-1.0	_	0.8	v		

*: Undershoots of up to -2.0 volts with a pulse width not exceeding 20ns are acceptable.

FUNCTIONAL OPERATION

ADDRESS INPUTS

Twenty input bits are required to decode any four of 4,194,304 cell addresses in the memory matrix. Since only ten address bits are available, the column and row inputs are separately strobed by CAS and RAS as shown in Figure 1. First, tenrow address bits are input on pins A0-through-A9 and latched with the row address strobe (RAS) then, ten column address bits are input and latched with the column address strobe (CAS). Both row and column addresses must be stable on or before the falling edge of CAS and RAS, respectively. The address latches are of the flow-through type; thus, address information appearing after t_{RAL} (min)+ tr is automatically treated as the column address.

WRITE ENABLE

The read or write mode is determined by the logic state of WE. When WE is active Low, a write cycle is initiated; when WE is High, a read cycle is selected. During the read mode, input data is ignored.

DATA INPUT

Input data is written into memory in either of three basic ways—an early write cycle, an \overline{OE} (delayed) write cycle, and a read—modify—write cycle. The falling edge of \overline{WE} or \overline{CAS} , whichever is later, serves as the input data–latch strobe. In an early write cycle, the input data (DQ1–DQ4) is strobed by \overline{CAS} and the setup/hold times arereferenced to \overline{CAS} because \overline{WE} goes Low after \overline{CAS} ; thus, input data is strobed by \overline{WE} and all setup/hold times are referenced to the write–enable signal.

DATA OUTPUT

The three-state buffers are TTL compatible with a fanout of two TTL loads. Polarity of the output data is identical to that of the input; the output buffers remain in the high-impedance state until the column address strobe goes Low. When a read or read-modify-write cycle is executed, valid outputs are obtained under the following conditions:

- tRAC : from the falling edge of RAS when tRCD (max) is satisfied.
- tCAC : from the falling edge of CAS when t_{RCD} is greater than t_{RCD} (max).
- tAA : from column address input when tRAD is greater than tRAD (max).
- tOEA: from the falling edge of OE when OE is brought Low after tRAC, tCAC, or tAA .

The data remains valid until either CAS or OE returns to a High logic level. When an early write is executed, the output buffers remain in a high-impedance state during the entire cycle.

FAST PAGE MODE OF OPERATION

The fast page mode of operation provides faster memory access and lower power dissipation. The fast page mode is implemented by keeping the same row address and strobing in successive column addresses. To satisfy these conditions, FAS is held Low for all contiguous memory cycles in which row addresses are common. For each fast page of memory, any of 1,024-bits can be accessed and, when multiple MB 814400s are used, CAS is decoded to select the desired memory fast page. Fast page mode operations need not be addressed sequentially and combinations of read, write, and/or ready-modify-write cycles are permitted.

MB814400-80 MB814400-10 MB814400-12

DC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted) No

Notes 3

_								
Parami	er Notes	Symbol	Conditions	Min	Тур	Мах	Unit	
Output high voltage		V _{OH}	I _{OH} = -5 mA	2.4	—	—	v	
Output low voltage		V _{ol}	l _{OL} = 4.2 mA	-	-	0.4	1	
Input leakage current (any input)		(L)	$0V \le V_{IN} \le 5.5V;$ 4.5V ≤ $V_{CC} \le 5.5V;$ $V_{SS} = 0V;$ All other pins not under test = 0V	-10		10	μА	
Output leakage curren	ıt	l _{DQ(L)}	0V≤V _{OUT} ≤ 5.5V; Data out disabled	-10	—	10		
Operating current	MB814400-80			_	_	75	mA	
(Average Power supply current)	MB814400-10	I _{CC1}	RAS & CAS cycling; trc = min			65		
2	MB81440012					55		
Standby current	TTL level		RAS = CAS = V _{IH}	_	_	2.0	mA	
(Power supply current)	CMOS level	CC2	$\overline{\text{RAS}} = \overline{\text{CAS}} \ge V_{\text{CC}} = -0.2V$			1.0		
Refresh current #1	MB814400-80		CAS = VIH, RAS cycling; trc = min			75	mA	
(Average power sup-	MB81440010	I _{CC3}				65		
ply current) 2	MB814400-12					55		
Fast Page Mode	MB814400-80		RAS =VIL, CAS cycling;			75	mA	
current 2	MB814400-10	^I CC4	tpc = min			65		
	MB814400-12					55		
Refresh current #2	MB814400-80		RAS cycling;		_	75		
(Average power sup-	MB814400-10	I _{CC5}	CAS-before-RAS;	-		65	mA	
ply current) 2	MB814400-12		tRc = min			55		

AC CHARACTERISTICS

(At recommended operating conditions unless otherwise noted.) Notes 3, 4, 5

			MB814	40080		4400-10		4400-12	
No.	Parameter Notes	Symbol	Min	Max	Min	Max	Min	Max	Unit
1	Time Between Refresh	t _{REF}	-	16.4		16.4	_	16.4	ms
2	Random Read/Write Cycle Time	t _{RC}	155	—	180	—	210		ns
3	Read-Modify-Write Cycle Time	t _{RWC}	220	—	245		280		ns
4	Access Time from RAS 6,9	t _{RAC}	—	80		100		120	ns
5	Access Time from CAS 7,9	t _{cac}		25		30	—	35	ns
6	Column Address Access Time 8,9] t _{AA}		45		50		60	ns
7	Output Hold Time	t _{OH}	5	—	5	—	5		ns
8	Output Buffer Turn On Delay Time	t _{ON}	5	—	5	—	5	—	ns
9	Output Buffer Turn off Delay Time 10	t OFF		25		25	_	25	ns
10	Transition Time	tT	3	50	3	50	3	50	ns
11	RAS Precharge Time	t _{RP}	65	-	70	_	80	_	ns
12	RAS Pulse Width	t _{RAS}	80	100000	100	100000	120	100000	ns
13	RAS Hold Time	t _{RSH}	25	_	30	-	35	—	ns
14	CAS to RAS Precharge Time	t _{CRP}	0	-	0	—	0	_	ns
15	RAS to CAS Delay Time 11,12	t _{RCD}	22	55	25	70	25	85	ns
16	CAS Pulse Width	t _{CAS}	25		30	_	35		ns
17	CAS Hold Time	t _{CSH}	80	-	100	-	120	-	ns
18	CAS Precharge Time (Normal) [19	t _{CPN}	15	_	15		15	-	ns
19	Row Address Set Up Time	t _{ASR}	0		0	_	0	_	ns
20	Row Address Hold Time	t _{RAH}	12		15		15	_	ns
21	Column Address Set Up Time	t ASC	0		0	_	0		ns
22	Column Address Hold Time	t _{CAH}	15		20	—	25	-	ns
23	RAS to Column Address Delay Time 13	t _{RAD}	17	35	20	50	20	60	ns
24	Column Address to RAS Lead Time	t _{RAL}	45	—	50		60	_	ns
25	Read Command Set Up Time	t _{RCS}	0	_	0	-	0		ns
26	Read Command Hold Time Referenced to RAS] t _{RRH}	0		0		0		ns
27	Read Command Hold Time Referenced to CAS 14	t _{RCH}	0		0	-	0	-	ns
28	Write Command Set Up Time 15] t _{wcs}	0	-	0		0		ns
29	Write Command Hold Time	t _{WCH}	15	_	20	-	25	_	ns
30	WE Pulse Width	t _{WP}	15		20	_	25	-	ns
31	Write Command to RAS Lead Time	t _{RWL}	25		25	_	30	-	ns
32	Write Command to CAS Lead Time	t _{CWL}	20	_	20	-	25	_	ns
33	DIN set Up Time	t _{DS}	0	—	0	-	0	-	ns
34	DIN Hold Time	t _{DH}	15		20	-	25		ns

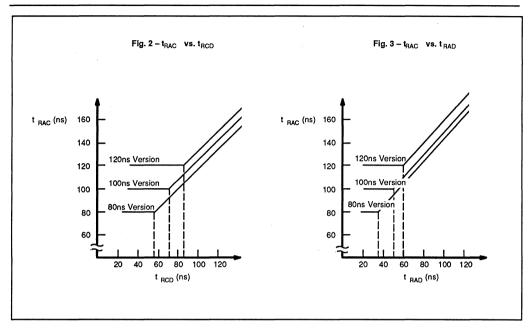
MB814400-80 MB814400-10 MB814400-12 No. Parameter Notes Symbo Unit Min Max Max Min Max Min RAS Precharge time to CAS t ppc ns 35 10 10 10 Active Time (Refresh cycles) CAS Set Up Time for CAS-beforet _{CSR} --36 ٥ -0 0 ns BAS Befresh CAS Hold Time for CAS-beforet _{CHR} 37 15 -----15 _ 20 ____ ns RAS Refresh 38 WE Set Up Time from RAS t _{WSR} 0 0 0 ----ns WF Hold Time from BAS t wHB 30 15 15 20 ns 22 25 30 4٨ Access Time from OE 9 t OEA _ ____ ns Output Buffer Turn Off Delay 10 41 t OFZ 25 25 25 ns from OE t OEL 42 OE to RAS Lead Time for Valid Data 10 10 10 ns OE Hold Time Referenced to WE 16 t OFH 43 10 _ 10 -----10 ----ns 44 OE to Data In Delay Time t OED 25 -----25 25 _ ns DIN to CAS Delay Time 17 45 t _{DZC} 0 0 0 ns DIN to OE Delay Time 17 t _{DZO} 0 ----ns 46 ٥ -----٥ Fast Page Mode Read/Write 50 t PC 55 _ 60 _ 70 ns Cycle Time Fast Page Mode Read-Modify-Write 51 t PRWC 120 ____ 140 ns 125 Cycle Time 52 Access Time from CAS Precharge 9 18 t _{CPA} 55 60 . 70 ns Fast Page Mode CAS Precharge Time 53 t_{CP} 15 15 15 ns

AC CHARACTERISTICS (Continued)

(At recommended operating conditions unless otherwise noted.) Notes 3, 4, 5

Notes:

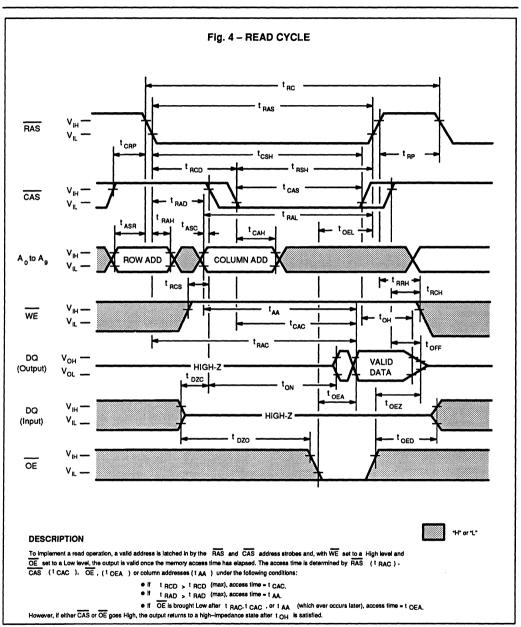
Referenced to VSS.

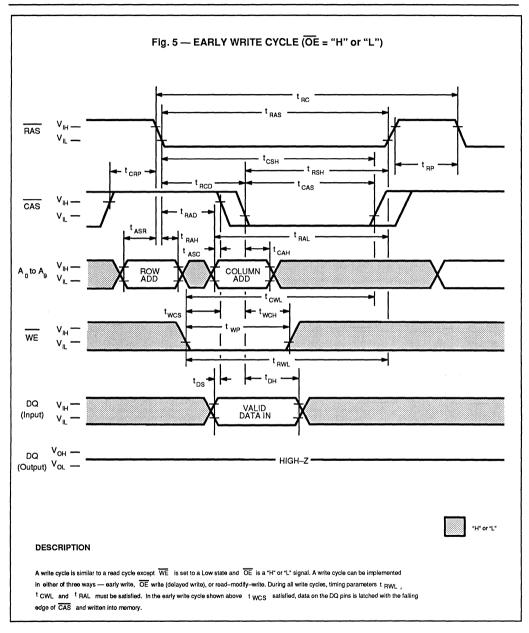

2 Icc depends on the output load conditions and cycle rates; The specified values are obtained with the output open. Icc depends on the number of address change as RAS = VIL and CAS = VIH, VIL > -0.5V.

Icc1, Icc3 and Icc5 are specified at three time of address change during TRAS = VIL and TCAS = VIH.

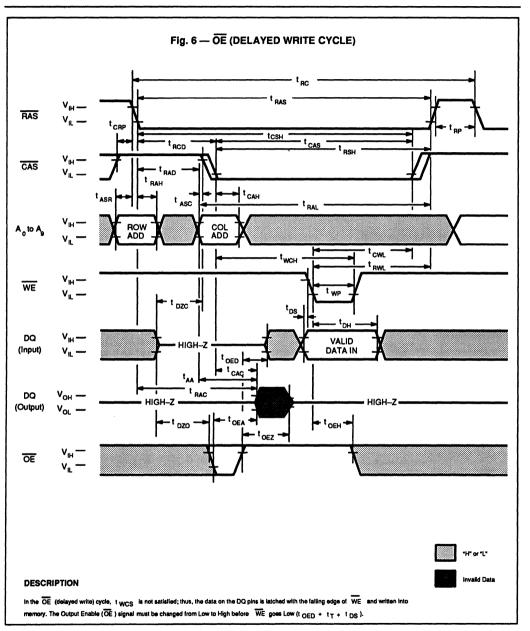
ICC4 is specified at one time of address change during RAS = VIL and CAS = VIH.

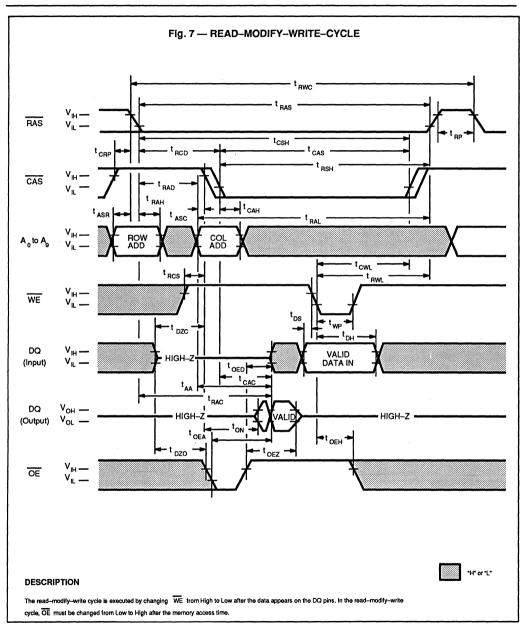
- 3. An Initial pause (RAS = CAS = VIH) of 200µs is required after power-up followed by any eight RAS -only cycles before proper device operation is achieved. In case of using internal refresh counter, a minimum of eight CAS -before-RAS initialization cycles instead of 8 RAS cycles are required.
- 4. AC characteristics assume tr = 5ns.
- 5. $V_{I\!H}$ (min) and $V_{I\!L}$ (max) are reference levels for measuring timing of input signals. Also transition times are measured between VIH (min) and VIL (max).
- 6. Assumes that $tRCD \leq tRCD$ (max), $tRAD \leq tRAD$ (max). If tRCD is greater than the maximum recommended value shown in this table, trac will be increased by the amount that tacp exceeds the value shown. Refer to Fig. 2 and 3.
- 7. If tRCD \geq tRCD (max), tRAD \geq tRAD (max), and tASC \geq tAA -tCAC t T. access time is toac.

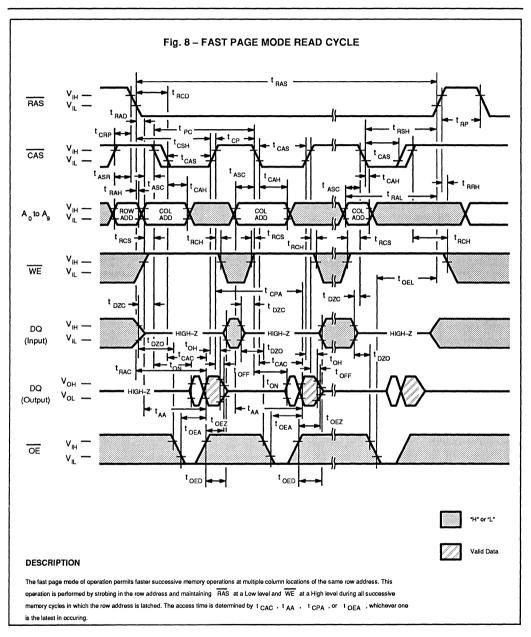

- 8. If $t_{RAD} \ge t_{RAD}$ (max) and $t_{ASC} \le t_{AA} t_{CAC} t_{T}$, access time is t 🗛
- 9 Measured with a load equivalent to two TTL loads and 100 pF.
- 10. tope and topz is specified that output buffer change to high impedance state.
- 11. Operation within the tech (max) limit ensures that teac (max) can be met. tRCD (max) is specified as a reference point only; if tRCD is greater than the specified tRCD (max) limit, access time is controlled exclusively by tCAC or t AA .
- 12. t_{RCD} (min) = t_{RAH} (min)+ 2t T + t_{ASC} (min).
- 13. Operation within the tRAD (max) limit ensures that tRAC (max) can be met. tRAD (max) is specified as a reference point only; if tRAD is greater than the specified tRAD (max) limit, access time is controlled exclusively by tcac or t AA .
- 14. Either tRRH or tRCH must be satisfied for a read cycle.
- 15. twcs is specified as a reference point only. If twcs ≥ twcs (min) the data output pin will remain High-Z state through entire cycle.
- 16. Assumes that twcs < twcs (min).
- 17. Either tozo or tozo must be satisfied.
- 18. t_{CPA} is access time from the selection of a new column address (that is caused by changing CAS from "L" to "H"). Therefore, if tCP is long, tCPA is longer than tCPA (max).
- 19. Assuemes that CAS -before-RAS refresh.

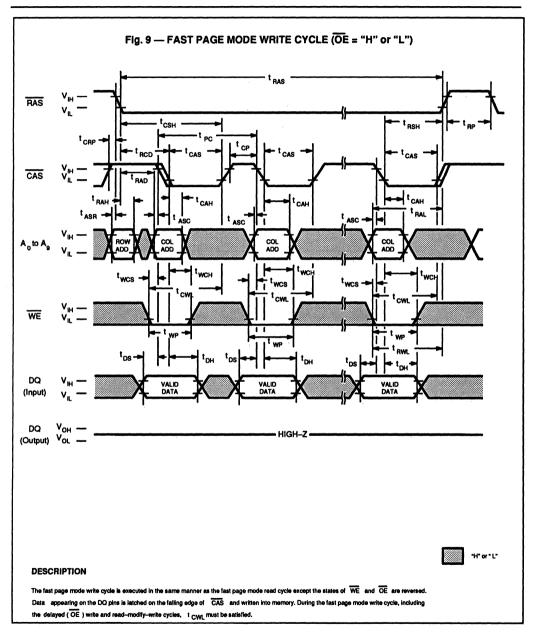


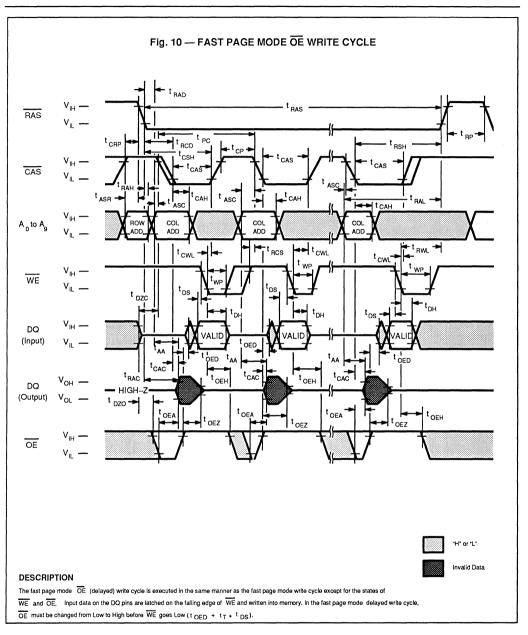
FUNCTIONAL TRUTH TABLE

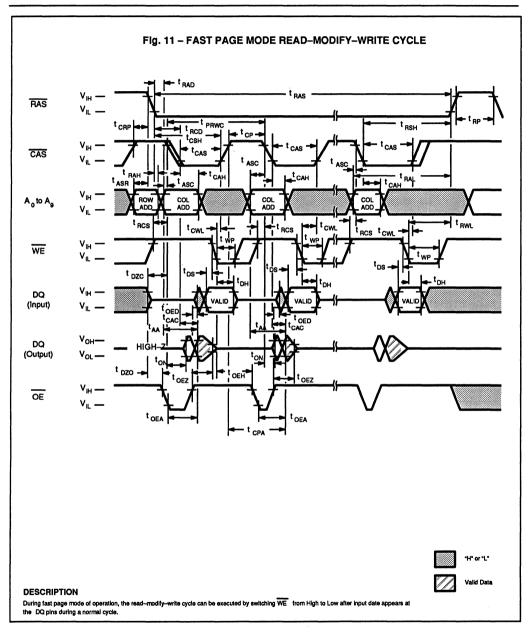

Operation Mode			cInput			Iress	Input Data		Refresh	Note
	RAS	CAS	WE	ŌE	Row	Column	Input	Output	nerresti	
Standby	н	н	x	x	—	-	—	High–Z	-	
Read Cycle	L	L	н	L	Valid	Valid	-	Valid	Yes *	trcs <u>≥</u> trcs (min)
Write Cycle (Early Write)	L	L	L	x	Valid	Valid	Valid	High–Z	Yes *	twcs≥twcs (min)
Read–Modify– Write Cycle	L	L	H-→L	L→H	Valid	Valid	Valid	Valid	Yes *	
RAS-only Refresh Cycle	L	н	x	x	Valid	_	_	High–Z	Yes	
CAS-before- RAS Refresh Cycle	L	L	Η	×	_	-	_	High–Z	Yes	tcsn≥twcsn (min)
Hidden Refresh Cycle	H→L	L	н	L		_		Valid	Yes	Previous data is kept.

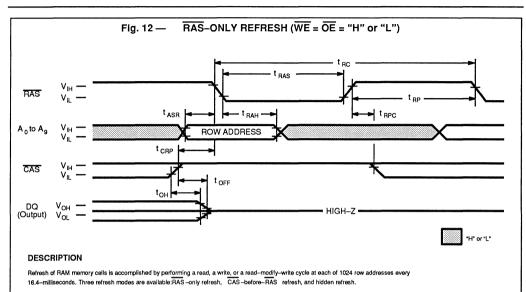

X; "H" or "L" *; It is impossible in Fast Page Mode

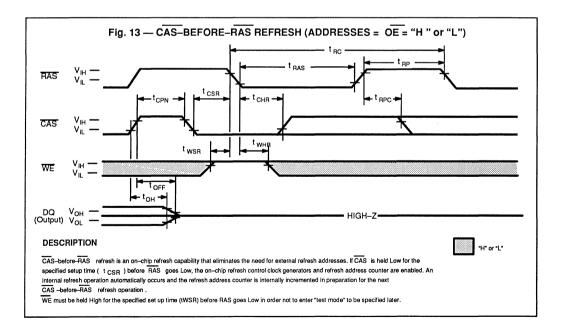


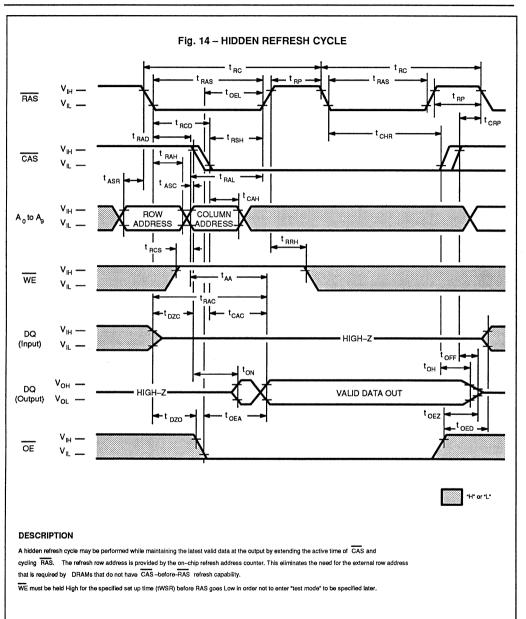


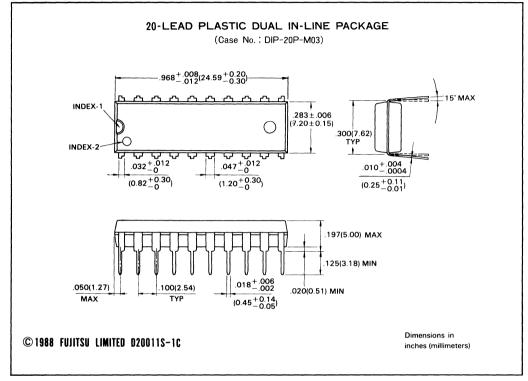


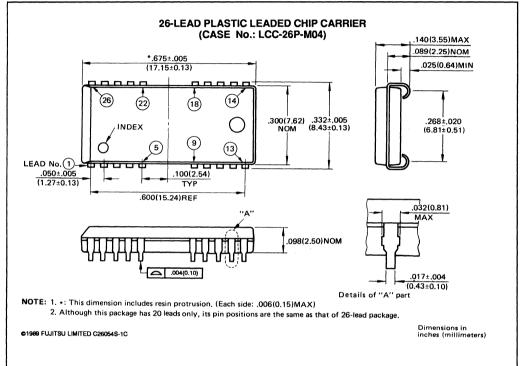




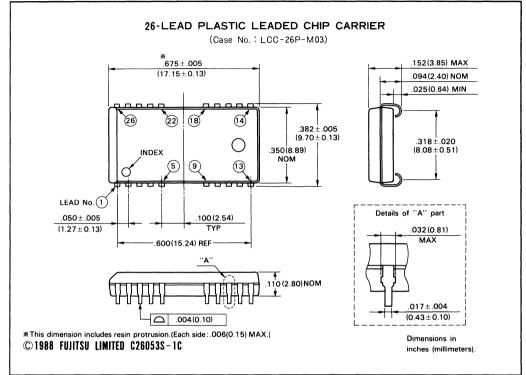




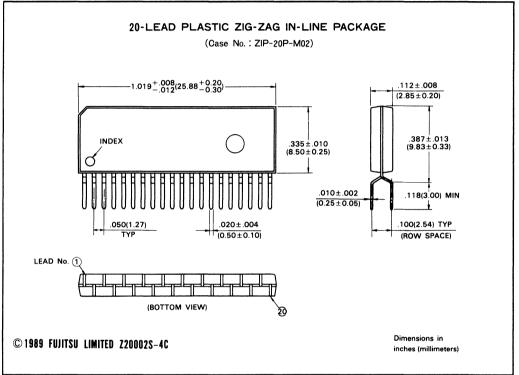

RAS-only refresh is performed by keeping RAS Low and CAS High throughout the cycle; the row address to be refreshed is latched on the tailing edge of RAS. During RAS-only refresh, DO pins are kept in a high-impedance state.


PACKAGE DIMENSIONS

(Suffix : --P)


PACKAGE DIMENSIONS (Continued)

(Suffix : -PJN)


PACKAGE DIMENSIONS (Continued)

(Suffix : -PJ)

PACKAGE DIMENSIONS (Continued)

(Suffix : -PSZ)

2

DATA SHEET

FUĴĨTSU

MB814400-80L/-10L/-12L

CMOS 1M x 4 BITS FAST PAGE MODE DYNAMIC RAM

CMOS 1M x 4 Bits Fast Page Mode Low Power Dynamic RAM

The Fujitsu MB814100 is a fully decoded CMOS dynamic RAM (DRAM) that contains a total of 4, 194, 304 memory cells in a x 1 configuration. The MB814100 features a fast page mode of operation whereby high-speed, random access of up to 2,048-bits of data within the same row can be selected. The MB814100 DRAM is ideally suited for mainframes, buffers, hand-held computers, and other memory applications where very low power dissipation and compact layout are basic requirements of the design. Since the standby current of the MB814100 is very low, the device can be used in equipment that uses batteries for primary and/or auxiliary power.

The MB814400 is fabricated using silicon gate CMOS and Fujitsu's advanced Four-layer Polysilicon process. This process, coupled with three-dimensional stacked capacitor memory cells, reduces the possibility of soft errors and extends the time interval between memory refreshes. Clock timing requirements for the MB814100 are not critical and all inputs are TTL compatible.

Features

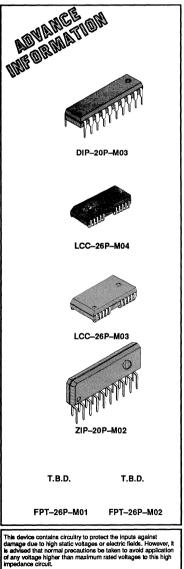
Parameter	MB814100-80L	MB814100-10L	MB814100-12L		
RAS Access Time	80 ns max.	100 ns max.	120 ns max.		
Random Cycle Time	155 ns min.	180 ns min.	210 ns min.		
Address Access Time	45 ns max.	50 ns max.	60 ns max.		
CAS Access Time	20 ns max.	25 ns max.	30 ns max.		
Fast Page Mode Cycle Time	55 ns min.	60 ns min.	70 ns min.		
Low Power Dissipation Operating Current 	413 mW max.	358 mW max.	303 mW max.		
 Standby Current 	11 mW max. (TTL level)/1.1 mW max. (CMOS level)				

- 4,194,304 words x 1 bit organization
- RAS only, CAS-before-RAS, or Hidden Refresh
 Fast page Mode, Read-Modify-Write

high performance

On-chip substrate bias generator for

capability


- Silicon gate, CMOS, 3D–Stacked Capacitor Cell
- All input and output are TTL compatible
- 1024 refresh cycles every 128 ms
- Common I/O capability by using early write

Absolute Maximum Ratings (See Note)

Parameter	Symbol	Value	Unit
Voltage at any pin relative to V_{SS}	V _{IN} , V _{OUT}	-1 to +7	v
Voltage of V_{CC} supply relative to V_{SS}	Vcc	-1 to +7	V
Power Dissipation	PD	1.0	w
Short Circuit Output Current	-	50	mA
Storage Temperature	T _{STG}	-55 to +125	°C

Note: Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operation sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Copyright C 1990 by FUJITSU LIMITED and Fujitsu Microelectronics, Inc.

2

L.

Page Device		Maximum Access Time (ns)	Capacity	Package Options
3-3	MB81461-12 -15	120 150	DRAM: 262144 bits (64K x 4) SAM: 1024 bits (256 x 4)	24-pin Plastic DIP, ZIP
3–35	MB81461B-12 -15	120 150	DRAM: 262144 bits (64K x 4) SAM: 1024 bits (256 x 4)	24-pin Plastic DIP, ZIP
3–67	MB81C1501	25	Write: 1175040 bits (293760 x 4 x 1) Read: 1175040 bits (293760 x 4 x 2)	38-pin Plastic FPT

Application Specific DRAMs — At a Glance

I.

DATA SHEET

MB81461-12/-15

262,144-BIT DUAL PORT DYNAMIC RANDOM ACCESS MEMORY

262.144 Bit Dual Port DRAM

The Fujitsu MB81461 is a fully decoded, dynamic NMOS random access memory organized as 65,536 words by 4 bits dynamic RAM port and 256 words by 4 bits serial access memory (SAM) port.

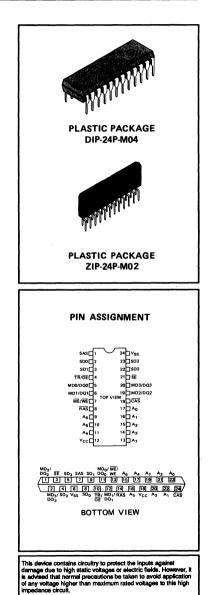
The DRAM port is identical to the Fujitsu MB81464 with four bits of parallel random access I/O while the SAM port is designed as four 256-bit registers, each operating as a serial I/O. The four serial registers operate in parallel with each other during SAM port operation. Internal interconnects give the device the capability to transfer data bi-directionally between the DRAM memory array and the SAM data registers.

The MB81461 offers complementary asynchronous access of both the DRAM and SAM ports, except when data is transferred between them internally. The design is optimized for high speed and performance making the MB81461 the most efficient solution for implementing the frame buffer of a bit-mapped video display system. Multiplexed row and column address inputs permit the MB81461 to be housed in a 400-mil wide 24-pin DIP or ZIP package. Pinouts conform to the JEDEC-approved pinouts.

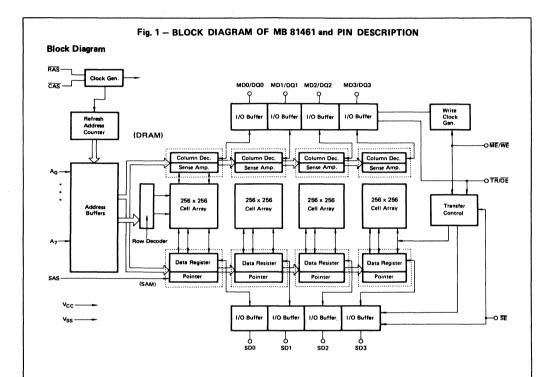
The MB81461 is fabricated using silicon gate NMOS and Fujitsu's advanced Triple-layer Polysilicon process technology. This process, coupled with single transistor memory storage cells, permits maximum circuit density and minimum chip size. All inputs and outputs are TTL compatible.

- Dual Port Organization 64 K x 4 Dynamic RAM port (DRAM) 256 x 4 Serial Access Memory port (SAM)
- 24-pin DIP and ZIP packages
- Silicon-gate, Triple Poly NMOS, single transistor cell
- DRAM Port
 - Access Time (t_{RAC}) 120 ns max. (MB 81461-12) 150 ns max. (MB 81461-15)

 - Cycle Time (t_{SAC}) 230 ns max. (MB 81461-12) 260 ns max. (MB 81461-15)
- SAM Port Access Time (t_{SAC}) 40 ns max. (MB 81461-12) 60 ns max. (MB 81461-15)
 - Cycle Time (t_{SC}) 40 ns max. (MB 81461-12) 60 ns max. (MB 81461-15)
- Single +5 V Supply, ±10% tolerance
- Real Time, Read Transfer capability
- Page Mode capability


Absolute Maximum Ratings (See Note)

Parameter	Symbol	Value	Unit
Voltage at any pin relative to V_{SS}	VIN, VOUT	-1 to +7	v
Voltage of V _{CC} supply relative to V _{SS}	V _{cc}	-1 to +7	v
Storage Temperature	T _{STG}	-55 to +125	°C
Power Dissipation	PD	1.0	W
Short Circuit Output Current	_	50	mA


Note: Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operation sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Copyright C 1990 by FUJITSU LIMITED and Fujitsu Microelectronics, Inc.

- Power Dissipation DRAM; Act/SAM; Stby 523 mW max. (MB 81461-12) 468 mW max. (MB 81461-15) DRAM; Stby/SAM; Act 275 mW max. (MB 81461-12) 220 mW max. (MB 81461-15) DRAM; Stby/SAM; Stby 110 mW max 110 mW max.
- Bi-directional data transfer between DRAM and SAM
- Fast serial access asynchronous to DRAM except transfer operation
- Bit Masked Write Mode capability
- 256 refresh cycles every 4 ms
- RAS-only, CAS-before-RAS, Hidden Refresh capability
- Delayed write and Read-Modify-Write capability
- Standard 24-Pin Plastic Packages: DIP (MB81461-XXP) ZIP (MB81461-XXPSZ)

FU

Pin Description

Pin N	umber	Symbol Parameter		Mode
DIP	ZIP	Symbol	Parameter	Mode
1	7	SAS	Serial Access Memory Strobe	Input
2,3,22,23	8,9,4,5	SD0 to SD3	Serial Data I/O	1/0
4	10	TR/OE	Transfer Enable/ Output Enable	Input
5,6,19,20	11,12,1,2	MD0/DQ0 to MD3/DQ3	Mask Data/Data I/O	1/0
· 7	13	ME/WE	Mask Mode Enable/Write Enable	Input
8	14	RAS	Row Address Strobe	Input
17, 16, 15 14, 11, 10 9, 13	23,22,21, 20,17,16, 15,19	A ₀ to A ₇	Address Input	Input
12	18	Vcc	Supply Voltage +5 V	Power Supply
18	24	CAS	Column Address Strobe	Input
21	3	SE	Serial port Enable	Input
24	6	V _{SS}	Ground	Power Supply

3-4

i

DESCRIPTION DRAM OPERATION

RAS;

This pin is used to strobe eight row-address inputs from A0 to A7 pins and is used to select the operation mode of subsequent cycle, such as DRAM operation or transfer operation (by $\overline{TR}/\overline{OE}$ and bit mask write cycle or not (by $\overline{ME}/\overline{WE}$ and MD0/D00 to MD3/D03). Since $\overline{RAS} = "L"$ is the active condition of circuit, to maintain $\overline{RAS} = "H"$ (standby condition) is effective to save power dissipation.

CAS;

This pin is used to strobe eight column address inputs at the falling edge, \overline{CAS} pin has the function to enable and disable the output at "L" and "H" respectively during the read operation.

Another function of \overline{CAS} is to select "early write" mode conditioned by $\overline{ME}/\overline{WE} = "L"$.

ME/WE;

This pin is used to select read or write cycle. ME/WE = "L" select write mode and ME/WE = "H" select read mode. This pin is also used to enable bit mask write cycle. If ME/WE = "L" at the falling edge of \overline{RAS} , bit mask write is enabled.

TR/OE;

This pin is used to select Transfer operation or not at the falling edge of RAS, TR/OE = "H" enables DRAM operation and TR/OE = "L" enables Transfer operation between DRAM and SAM. After the falling of RAS with t_{YH} , this pin is used for output enable.

The $\overline{TR}/\overline{OE}$ controls the impedance of the output buffers. $TR/\overline{OE} = "H"$ forces the output buffers at high impedance state. $\overline{TR}/\overline{OE} = "L"$ leads the output buffers at low impedance state. But in early write cycle, the output buffers are high impedance state even if $\overline{TR}/\overline{OE}$ is low.

A0 to A7;

These are multiplexed address input

pins and used to select 4 bits of 262,144 memory cell locations in parallel within the MB 81461. The eight row address inputs are strobed by $\overrightarrow{\text{RAS}}$ and followed eight column address inputs are strobed by CAS. These are used to select the start address of serial access memory also.

MD0/DQ0 to MD3/DQ3

These are common I/O pins of DRAM port. I/O mode is as specified for each function mode in the truth table.

Data Outputs:

The output buffers have three-state capability "H", "L" and "High-Z". To get valid output data on the pins, one of the read operations is selected such as "read" or "read-modify-write" mode. During a refresh cycle, either RAS-only or CAS-before-RAS mode is selected, output buffers are set in "High-Z" state.

Data inputs:

These are used as data input pins when a data write mode such as "Early-Write", "Delayed Write" or "Read-modify-Write" is selected. In any of the above cases, these pins are set at "High-Z" state to enable data-in without any bus conflict.

In any operation mode, read, write, refresh, transfer and their combined functions, output states "H", "L", "High-Z" are set by control signals RAS, CAS, ME/WE and/or TR/OE. When "Bit mask write" mode is set, these pins are used as a control signal for write inhibit with MDi/DQi = "L" on the selected bit i.

Page Mode;

The page mode operation is to strobe the column address by CAS while RAS is maintained at "L" through all the successive memory operations if the row address doesn't change. This mode can save power dissipation and get the faster access time due to the elimination of RAS falling edge function.

Refresh;

Refresh of the DRAM cells is performed for every 256 rows per every 4 milliseconds.

The MB 81461 offers the following three types of refresh.

- RAS-Only refresh; The RAS-Only refresh is performed with CAS="H" condition. Strobing every 256 row addresses with RAS will complete all bits of memory cell to be refreshed while all outputs are invalid due to "High-Z" state. Further RAS-only refresh saves the power dissipation substantially.
- 2) CAS-before-RAS refresh; The CASbefore-RAS refresh offers an alternate refresh method. If CAS is set low for the specified period (t_{FCS}) before the falling edge of RAS, refresh control clock generator and refresh address counter are enabled, and an refresh operation is performed. After the refresh operation is performed, the refresh address counter is incremented automatically for the next CAS-before-RAS refresh.
- 3) Hidden refresh; The hidden refresh is performed by maintaining the valid data of last read cycle at MD/DQ pins while extending CAS low. The hidden refresh is equivalent to CASbefore-RAS refresh because CAS stays low when RAS goes to low in the next cycle.

Bit Mask Write;

This mode is used when some of the bits should be inhibited to be written into cells. The bit mask write mode is executed by setting $\overline{ME}/\overline{WE} = "L"$ at the falling edge of \overline{RAS} during write mode (early, delayed write or read-modifywrite cycle). The bits to be masked (or inhibited to write) is determined by MD/DQ state at the falling edge of \overline{RAS} , for example, if MD0/DQ0 and $\overline{ME}/\overline{WE}$ are both low at the falling edge of \overline{RAS} , the data on MD0/DQ0 pin is not written into the cell during the cycle. Refer to the Fig. 2.

EXAMPLE OF BIT MASK WRITE OPERATION

		Falling	edge of RAS			Function
TR/OE	ME/WE	MD0/DQ0	MD1/DQ1	MD2/DQ2	MD3/DQ3	Punction
	н	х	х	x	х	Write enable
н	L	Н	L	Н	L	Write enable for DQ0 and DQ2 Write disable for DQ1 and DQ3

FUNCTIONAL TRUTH TABLE FOR DRAM OPERATION

RAS	CAS	ME/WE	TR/OE	ADDRESSES	MD0/DQ0 to MD3/DQ3	Function
Н	Н	X	x	х	X	Standby
L	L	н	H→L	Valid	Valid Data Out	Read
L	L	L*	H→X	Valid	Valid Data In	Early Write
L	L	H→L	$H \rightarrow X \rightarrow H$	Valid	Valid Data In	Delayed Write
L	L	H→L	H→L→H	Valid	Valid Data Out → Valid Data In	Read-Modify-Write
L	н	x	H→X	Row address	High-Z	RAS-Only Refresh
H→L	L	х	H→X	x	High-Z	CAS-before-RAS Refresh

*: If ME/WE = "L" at the falling edge of RAS, bit mask write mode is enabled.

TRANSFER OPERATION:

The transfer operation is featured in the MB 81461B. This mode is used to transfer simultaneously 256x4 data from DRAM to SAM or from SAM to DRAM. The direction of transfer is determined by the state of $\overline{\text{ME}/\text{WE}}$ at the falling edge of $\overline{\text{RAS}}$. $\overline{\text{ME}/\text{WE}}$ at the falling (Read Transfer Cycle) and $\overline{\text{ME}/\text{WE}}$ ="1"." defines the transfer from SAM to DRAM (Write Transfer Cycle).

I/O mode of SD0 to SD3 determined while the transfer operation is set ($\overline{TR}/\overline{OE}$ =""L") conjunctioned with $\overline{ME}/\overline{WE}$ state.

After Read Transfer Cycle, please apply two or more SAS Clock.

TR/OE;

This pin is used to enable transfer operation at the falling edge of $\overline{\text{RAS}}.$

ME/WE;

This pin is used to select the direction of transfer at the falling edge of \overline{RAS} . A0 to A7;

These pins are used to select the row address of DRAM port to be transfered from or to, and the start address of SAM port for the serial read or write operation. The row address is strobed by RAS and the start address is strobed by CAS.

Pseudo Write Transfer:

To start serial write cycle, the SD pins must be set in input mode. To do this, write transfer cycle should be executed. The pseudo write transfer cycle is to change the SD pins into input mode without data transfer from SAM to DRAM. Refer to Fig. 3.

Refresh during transfer cycle;

DRAM and SAM are refreshed during transfer cycle as shown below.

1) Read transfer cycle:

During read transfer cycle, the selected row address of DRAM to be transfered to SAM is refreshed. SAM data are kept by applying 256 SAS clocks within 4 ms after the read transfer cycle.

2) Write transfer cycle:

During write transfer cycle, the new data are written from SAM to DRAM and this row address should be refreshed within 4 ms.

But SAM data are not refreshed during write transfer cycle. Therefore, the SAM refresh (applying 256 SAS clocks within 4 ms) must be executed. Especially, when the write transfer cycle is executed continuously, 256 SAS clock should be applied within 4 ms.

SERIAL ACCESS OPERATION:

X : Don't Care

The MB 81461 has 256 words by 4 bits Serial Acess Memory (SAM) corresponding to 64K words by 4 bits DRAM and the fast serial read/write access is achieved by SAM architecture. Read or write cycle is determined when the last read or write transfer operation is executed. If the last transfer operation was read transfer, the serial read cycle is performed until the next write or pseudo write transfer cycle is executed. On the other hand, if the last transfer operation was write or pseudo write or pseudo write transfer, the serial write cycle is performed. In the serial write operation, 256 words by 4 bits data stored in the SAM can be transfered to DRAM under SE="L" condition, and SE="H" condition disables data transfer from SAM to DRAM. The serial access operation can be done asynchronously from DRAM port.

SAS;

This pin is used as a shift clock for SAM port. The serial access is triggered by the rising edge of SAS. In the write cycle, the data of the SD pins are strobed by the rising edge of SAS and written into the selected cell. In the read cycle, out-

MB81461-12 MB81461-15

put data become valid after t_{SAC} from the rising edge of SAS and the data remain valid until the next cycle is defined. The SAS clock increments the SAM address automatically. When the SAM address exceeds #255 (Most Significant Address) it returnes to #0 (Least Significant Address)

SD0 to SD3:

for SAM port. Input or output mode is determined by last occured transfer operation, if last transfer operation was read transfer mode, they are output mode. If the write transfer mode was set, SD pins are enabled to write data into SAM.

These are used as data input/output pins

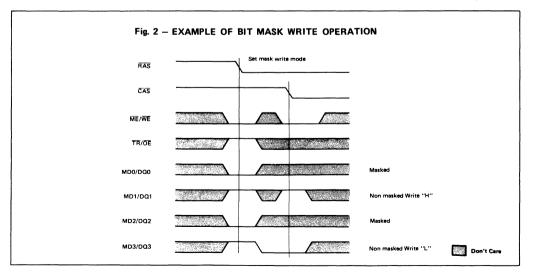
Refresh:

Since the SAM is constructed by dynamic circuitry, the refresh is necessary to maintain the data in it. The refresh of SAM must be done by 256 cycles of SAS clock/4ms in either output or input mode. \overline{SE} = "H" allows refresh of SAM with SD pins at "High-Z" state. Real Time Read Transfer:

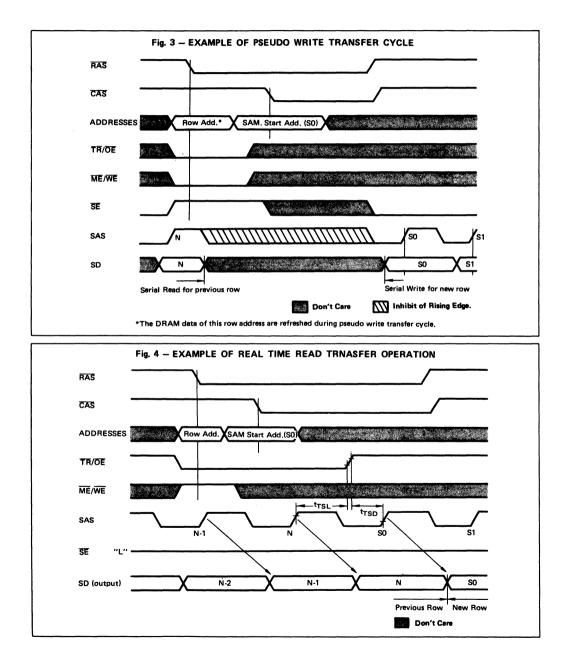
This feature is applicable to obtain valid

data continuously when row address is changed without any timing loss from the last bit of previous row to the first bit of new row. Data transfer from DRAM to SAM is triggered by rising edge of TR/OE after the preparation of internal circuit for this operation, while SAM port can continue read operation asynchronously from the above mentioned internal move. Once TR/OE returns to "H" with the restricted timing specification t_{TSL} and t_{TSD} refered to SAS clock, SD pins can get the valid output data continuously as shown in Fig. 4. The key issue to achieve this feature is to apply SAS clock continuously with the timing consideration to the rising edge of TR/OE.

SE


This pin is used to enable serial access operation by bit to bit. $\overline{SF} = "H"$ disables serial access operation. In the serial read operation, this pin is used for output enable, i.e., $\overline{SE} = "H"$ leads SD pins to "High-Z" state. SE = "L" leads SD pins to valid data with specified access time. In the serial write operation, this pin works as write enable control pin.

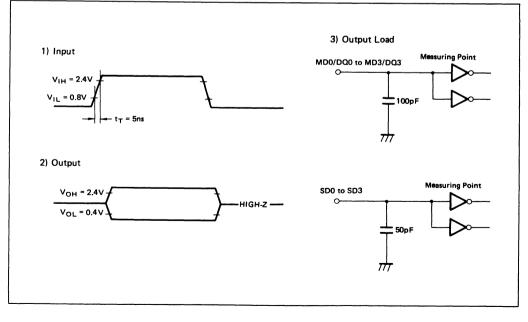
FUNCTIONAL TRUTH TABLE FOR SERIAL ACCESS (Asynchronous from DRAM port)


Falling ed	Falling edge of RAS		SE	SD0 to SD3	Function	
TR/OE	R/OE ME/WE	- SAS	36	300 10 303	T unction	
<u>ц</u>	~	Clock	L	Input/Output*	Sequential access enable	
1	н х	Clock	н	Input/Output*	Sequential access disable	

*: The read or write operation of SAM port is pre-determined by the last occurred transfer cycle. Input mode is for write operation. Output mode is for read operation.

X; Don't Care

MB81461-12 MB81461-15


$\underset{(\text{Referenced to }V_{SS})}{\text{Referenced to }V_{SS})} \text{ OPERATING CONDITIONS}$

Parameter	Symbol	Min.	Тур.	Max.	Unit	Operating Temperature
Supply Voltage	V _{cc}	4.5	5.0	5.5	v	
	V _{SS}	0	0	0	v	
Input High Voltage	VIH	2.4		6.5	v	0°C to +70°C
Input Low Voltage	VIL	-2.0		0.8	v	1

CAPACITANCE (TA=25°C)

Paramter	Sumbal	Tur	M	Unit	
Faramter	Symbol	Тур	DIP	ZIP	
Input Capacitance (A0 to A7)	C _{IN1}		7	8	pF
Input Capacitance (RAS, CAS, ME/WE, SE, TR/OE)	C _{IN2}		10	12	pF
Input Capacitance (SAS)	CIN3		7	7	pF
Input/Output Capacitance (MD0/DQ0 to MD3/DQ3)	C _{IO1}		7	8	pF
Input/Output Capacitance (SD0 to SD3)	C102		7	8	pF

AC TEST CONDITIONS

DC CHARACTERISTICS (Recommended operating conditions unless otherwise noted.)

Parameter		Symbol	Min	Max	Unit
SAM STANDBY $\overline{SE} = V_{IH}$, SAS = V_{IL}					
OPERATING CURRENT*	MB 81461-12			95	
Average power supply current (RAS, CAS cycling; t _{RC} = min)	MB 81461-15			85	- mA
STANDBY CURRENT Power supply current ($\overline{RAS} = \overline{CAS} = V_{1H}$)		I _{CC2}		20	mA
REFRESH CURRENT 1*	MB 81461-12			77	
Average power supply current (CAS = V _{IH} , RAS cycling; t _{RC} = min)	MB 81461-15	ССЗ		70	- mA
PAGE MODE CURRENT*	MB 81461-12			50	
Average power supply current $(\overline{RAS} = V_{IL}, \overline{CAS} = cycling, t_{PC} = min)$	MB 81461-15	lcc4		45	- mA
REFRESH CURRENT 2*	MB 81461-12			77	
Average power supply current (CAS-before-RAS; t _{RC} = min)	MB 81461-15	l _{CC5}		70	- mA
TRANSFER MODE CURRENT Average power supply current (RAS, CAS cycling; t _{RC} = min)	MB 81461-12			110	
	MB 81461-15	I CC6		100	- mA
SAM ACTIVE $\overline{SE} = V_{1L}$, $t_{SC} = min$					
OPERATING CURRENT*	MB 81461-12			130	
Average power supply current (RAS, CAS cycling; t _{RC} = min)	MB 81461-15	I _{CC7}		110	- mA
STANDBY CURRENT	MB 81461-12			50	
Power supply current (RAS = CAS = V _{IH})	MB 81461-15	I _{CC8}		40	- mA
REFRESH CURRENT 1*	MB 81461-12			112	
Average power supply current (CAS = V _{IH} , RAS cycling; t _{RC} = min)	MB 81461-15	l _{cc9}		95	- mA
PAGE MODE CURRENT*	MB 81461-12			85	
Average power supply current (RAS = V _{IL} , CAS cycling, t _{PC} = min)	MB 81461-15	l _{cc10}		70	- mA
REFRESH CURRENT 2*	MB 81461-12			112	
Average power supply current (CAS-before-RAS; t _{RC} = min)	MB 81461-15	lcc11		95	- mA
TRANSFER MODE CURRENT	MB 81461-12			145	
Average power supply current (RAS, CAS cycling; t _{RC} = min)	MB 81461-15	- I _{CC12}		125	- mA

DC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Parameter	Symbol	Min	Max	Unit
INPUT LEAKAGE CURRENT Input leakage current, any input (0V \leq V _{IN} \leq 5.5V, V _{CC} =5.5V, V _{SS} =0V, all other pins not under test=0V)	ار(_)	-10	10	μΑ
OUTPUT LEAKAGE CURRENT (Data out is disabled, $0 \vee \leq V_{OUT} \leq 5.5 \vee$)	I _{O(L)}	-10	10	μΑ
OUTPUT LEVELS Output high voltage (I_{OH} =-5mA/-2mA for DQi/SDi) Output low voltage (I_{OL} =4.2mA)	V _{он} V _{ol}	2.4	0.4	v

Note: I_{CC} is dependent on output loading and cycle rates. Specified values are obtained with the output open.

AC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.) NOTES 1 2 3

Parameter NO		Sumbol	MB 81461-12		BM 81461-15		Linit	
	NOTES	NOTES Symbol	Min	Max	Min	Max	Unit	
Time between Refresh (RAM/SAM)		t _{REF}		4		4	ms	
Random Read/Write Cycle Time		t _{RC}	230		260		ns	
Read-Modify-Write Cycle Time		t _{RWC}	305		345		ns	
Page Mode Cycle Time		t _{PC}	120		145		ns	
Page Mode Read-Modify-Write Cycle Time		^t prwc	195		225		ns	
Access Time from RAS	4 6	t _{RAC}		120		150	ns	
Access Time from CAS	5 6	t _{CAC}		60		75	ns	
Output Buffer Turn Off Delay		toff	0	25	0	35	ns	
Transition Time		t _T	3	50	3	50	ns	
RAS Precharge Time		t _{RP}	90		100		ns	
RAS Pulse Width		t _{RAS}	120	60000	150	60000	ns	
RAS Hold Time		t _{RSH}	60		75		ns	

AC CHARACTERISTICS

Parameter NOTES	NOTES Symbol	MB 8	MB 81461-12		461-15	11-14
Farameter NOTES	Symbol	Min	Max	Min	Max	Unit
CAS Precharge Time (Normal cycle)	t _{CPN}	40		50		ns
CAS Precharge Time (Page mode only)	t _{CP}	50		60		ns
CAS Precharge Time (CAS-before-RAS)	t _{CPR}	25		30		ns
CAS Pulse Width	t _{CAS}	60	60000	75	60000	ns
CAS Hold Time	t _{CSH}	120		150		ns
RAS to CAS Delay Time 🛛 🛛	t _{RCD}	22	60	25	75	ns
CAS to RAS Set Up Time	t _{CRS}	10		10		ns
Row Address Set Up Time	t _{ASR}	0		0		ns
Row Address Hold Time	t _{RAH}	12		15		ns
Column Address Set Up Time	t _{ASC}	0		0		ns
Column Address Hold Time	t _{CAH}	20		25		ns
Read Command Set Up Time	t _{RCS}	0		0		ns
Read Command Hold Time Referenced to RAS	t _{BRH}	20		20		ns
Read Command Hold Time Referenced to CAS	t _{RCH}	0		0		ns
Write Command Set Up Time	twcs	-5		-5		ns
Write Command Hold Time	twcн	30		35		ns
Write Command Pulse Width	t _{wP}	30		35		ns
Write Command to RAS Lead Time	t _{RWL}	40		45		ns
Write Command to CAS Lead Time	t _{CWL}	40		45		ns
Data In Set Up Time	t _{DS}	0		0		ns
Data In Hold Time	t _{DH}	30		35		ns
Access Time from TR/OE	t _{OEA}		35		40	ns
TR/OE to Data In Delay Time	toed	25		30		ns

MB81461-12 MB81461-15

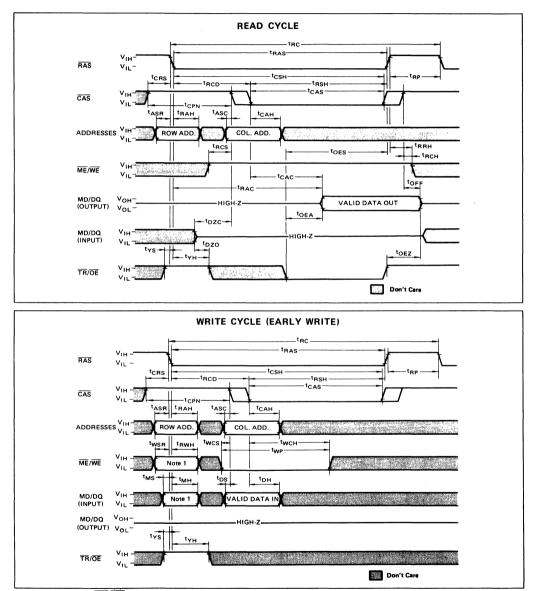
AC CHARACTERISTICS

		MB 81461-12		MB 81461-15		
Parameter NOTES	Symbol	Min	Max	Min	Max	Unit
Output Buffer Turn Off Delay from TR/OE	toez	0	25	0	30	ns
TR/OE Hold Time Referenced to ME/WE	t _{оен}	0		0		ns
$\overline{\text{TR}}/\overline{\text{OE}}$ to $\overline{\text{RAS}}$ inactive Set Up Time	t _{OES}	0		0		ns
Data In to CAS Delay Time 16	t _{DZC}	0		0		ns
Data In to TR/OE Delay Time	t _{DZO}	0		0		ns
Refresh Set Up Time Referenced to RAS (CAS-before-RAS)	t _{FCS}	25		30		ns
Refresh Hold Time Referenced to RAS (CAS-before-RAS)	t _{FCH}	25		30		ns
RAS Precharge to CAS Active Time	t _{RPC}	20		20		ns
Serial Clock Cycle Time	t _{sc}	40	50000	60	50000	ns
Access Time from SAS 10	t _{SAC}		40		60	ns
Access Time from SE	t _{SEA}		40		50	ns
SAS Precharge Time	t _{SP}	10		20		ns
SAS Pulse Width	t _{SAS}	10		20		ns
SE Precharge Time	t _{SEP}	25		45		ns
SE Pulse Width	t _{SE}	25		45		ns
Serial Data Out Hold Time after SAS High	t _{soн}	10		10		ns
Serial Output Buffer Turn Off Delay from SE	t _{sez}	0	25	0	30	ns
Serial Data In Set Up Time 11	t _{SDS}	0		0		ns
Serial Data In Hold Time 11	t _{SDH}	20		25		ns

AC CHARACTERISTICS

Parameter NOTES		MB 81461-12		MB 81461-15		
	Symbol	Min	Max	Min	Мах	Unit
Transfer Command (\overline{TR}) to \overline{RAS} Set Up Time	t _{TS}	0		0		ns
Transfer Command (TR) to RAS Hold Time	t _{RTH}	90		110		ns
Write Transfer Command (TR) to RAS Hold Time	^t втнw	12		15		ns
Transfer Command (\overline{TR}) to \overline{CAS} Hold Time	^t стн	30		35		ns
Transfer Command (\overline{TR}) to SAS Lead Time	t _{TSL}	5		10		ns
Transfer Command (TR) to RAS Lead Time	t _{trl}	130		140		ns
Transfer Command (TR) to RAS Delay Time	t _{trd}	-65		-50		ns
First SAS Edge to Transfer Command Delay Time	t _{tsd}	25		35		ns
ME/WE to RAS Set Up Time	twsR	0		0		ns
ME/WE to RAS Hold Time	t _{RWH}	12		15		ns
Mask Data (MD) to RAS Set Up Time	t _{MS}	0		0		ns
Mask Data (MD) to RAS Hold Time	t _{мн}	35		45		ns
Serial Output Buffer Turn Off Delay from RAS	t _{sdz}	10	60	10	75	ns
Serial Output Buffer Turn On Delay from RAS	tsro	0		0		ns
SAS to RAS Set Up Time 11	t _{SRS}	40		60		ns
RAS to SAS Delay Time 12	t _{SRD}	30		45		ns
Serial Data Input to SE Delay Time	t _{sze}	0		0		ns
Serial Data Input Delay from RAS	t _{SDD}	60		75		ns

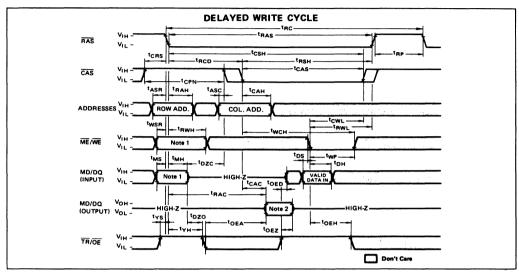
MB81461-12 MB81461-15


AC CHARACTERISTICS

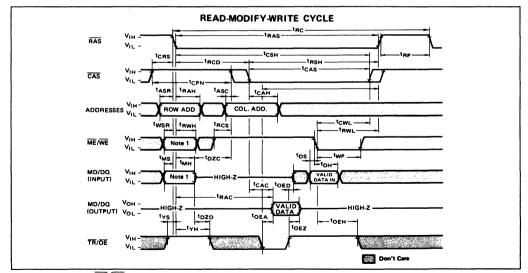
Parameter NOTE		Symbol	MB 81461-12		MB 81461-15		
	NOTES		Min	Max	Min	Max	Unit
Serial Data Input to RAS Delay Time	13	t _{szs}	0		0		ns
Pseudo Transfer Command (\overline{SE}) to RAS Set up Time	14	t _{esr}	0		0		ns
Pseudo Transfer Command (SE) to RAS Hold Time	14	t _{reh}	12		15		ns
Serial Write Enable Set up Time	11	tsws	20		30		ns
Serial Write Enable Hold Time	11	^t swн	80		120		ns
Serial Write Disable Set Up Time	11	tswis	20		30		ns
Serial Write Disable Hold Time	11	t _{swiн}	40		60		ns
Asynchronous Command (TR) to RAS Set Up Time		t _{YS}	0		0		ns
Asynchronous Command (\overline{TR}) to RAS Hold Time		t _{YH}	12		15		ns
Time between Transfer	15	t _{reft}		4		4	ms

NOTES;

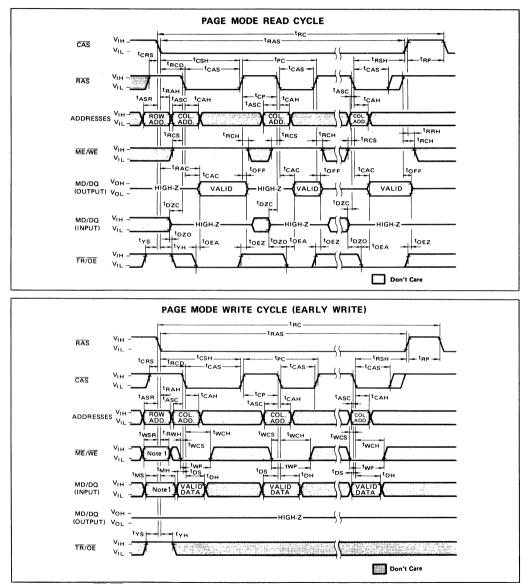
- An initial pause of 200µs is required after power-up followed by any 8 RAS, 8 transfer, and 8 SAS cycle before proper device operation is achieved. In case of using internal refresh counter, a minimum of 8 CAS-before-RAS initialization cycles instead of 8 RAS cycle are required
- 2 AC characteristics assume
- V_{IH} (min) and V_{IL} (max) are reference levels for measuring timing of input signals. Also, transition times are measured between V_{IH} (min) and V_{IL} (max).
- 4 Assumes that $t_{RCD} \le t_{RCD}$ (max). If t_{RCD} is greater than the maximum recommended value shown in this table, t_{RAC} will be increased by the amount that t_{RCD} exceeds the value shown.
- 5 Assumes that $t_{RCD} \ge t_{RCD}$ (max).
- 6 Measured with a load equivalent to 2 TTL loads and 100pF.


- 7 Operation within the t_{RCD} (max) limit insures that t_{RAC} (max) can be met. t_{RCD} (max) is specified as a reference point only; if t_{RCD} is greater than the specified t_{RCD} (max) limit, then access time is controlled exclusively by t_{CAC} .
- 8 t_{RCD} (min) = t_{RAH} (min) + $2t_T$ (t_T =5ns) + t_{ASC} (min)
- 9 Either t_{RRH} or t_{RCH} must be satisfied for a read cycle.
- Measured with a load equivalent to 2 TTL loads and 50pF.
- Input mode only
- 12 Write transfer and pseuso write transfer only.
- Read transfer only in the case that the previous transfer was write transfer.
- 14 Pseudo write transfer only.
- 15 If t_{REFT} is not satisfied, 8 transfer and 8 SAS cycles before proper device operation is needed.
- 16 Either t_{DZC} or t_{DZO} must be satisfied.

Note 1) When ME/WE = "H", all data on the MD/DQ can be written into the cell.

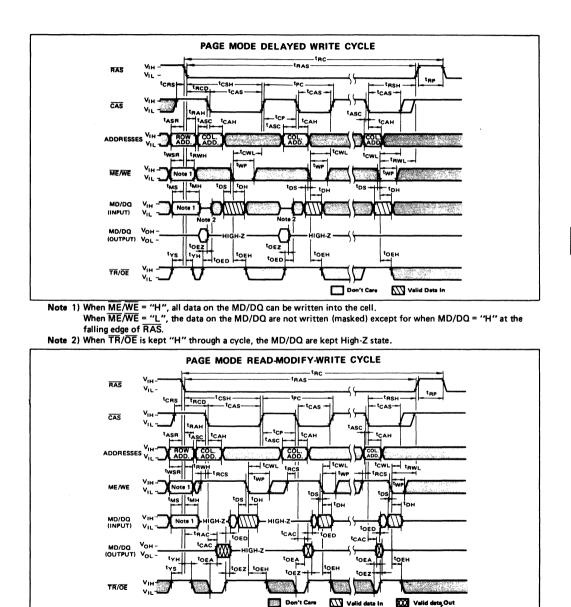

When $\overline{ME}/\overline{ME} = "L"$, the data on the MD/DQ are not written (masked) except for when MD/DQ = "H" at the falling edge of \overline{RAS} .

MB81461-12 MB81461-15

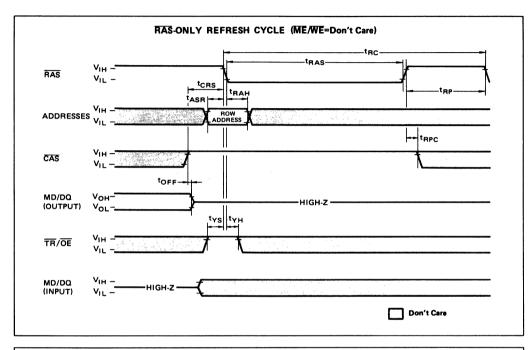


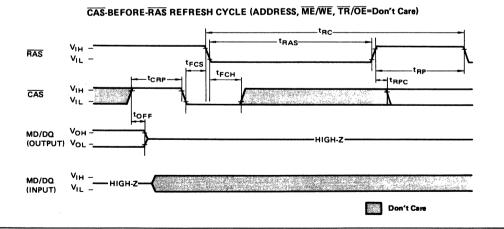
Note 1) When ME/WE = "H", all data on the MD/DQ can be written into the cell. When ME/WE = "L", the data on the MD/DQ are not written (masked) except for when MD/DQ = "H" at the falling edge of RAS.

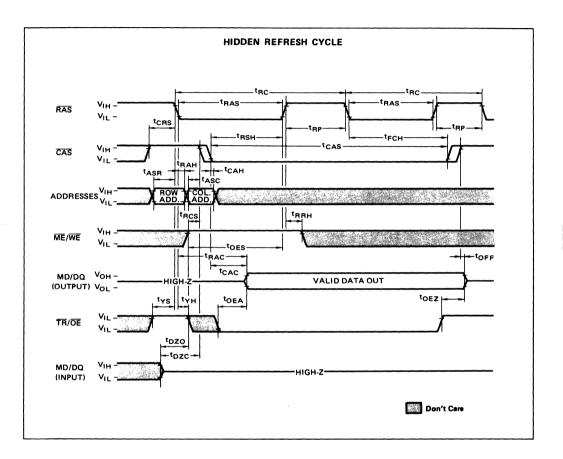
Note 2) When TR/OE is kept "H" through a cycle, the MD/DQ are kept High-Z state.

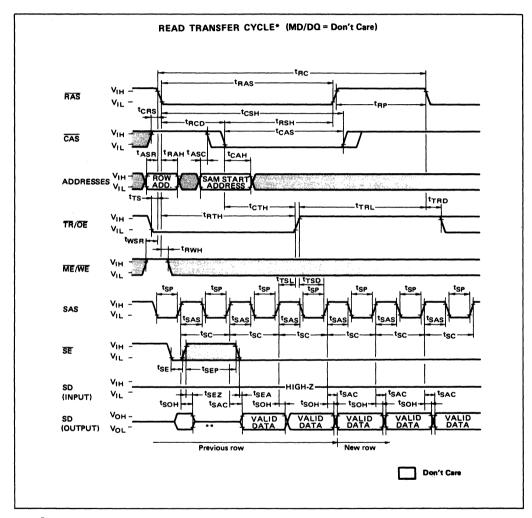


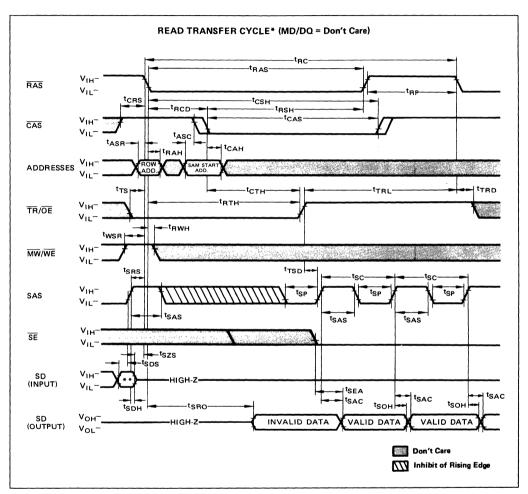
Note 1) When ME/WE = "H", all data on the MD/DQ can be written into the cell. When ME/WE = "L", the data on the MD/DQ are not written (masked) except for when MD/DQ = "H" at the falling edge of RAS.


Note 1) When $\overline{ME/WE} = "H"$, all data on the MD/DQ can be written into the cell.

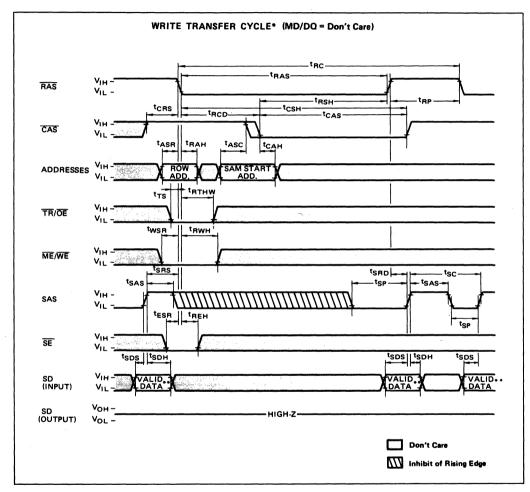

When $\overline{ME}/WE = "L"$, the data on the MD/DQ are not written (masked) except for when MD/DQ = "H" at the falling edge of \overline{RAS} .


Note 1) When ME/WE = "H", all data on the MD/DQ can be written into the cell. When ME/WE = "L", the data on the MD/DQ are not written (masked) except for when MD/DQ = "H" at the falling edge of RAS.


MB81461-12 MB81461-15

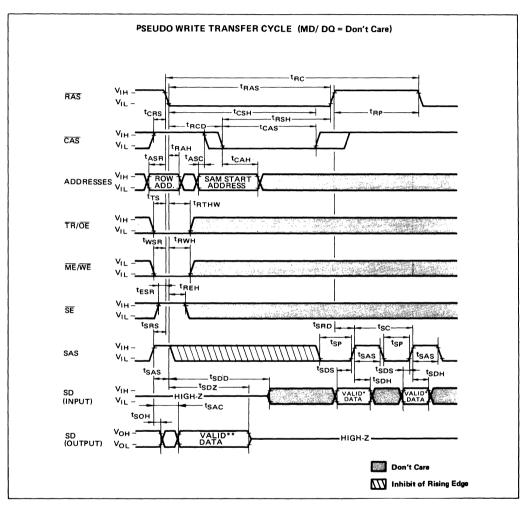

MB81461-12 MB81461-15

*: In the case that the previous transfer is read transfer.


**: If SE is low, the valid data will appear within t_{SAC} or t_{SEA} .

*; In the case that the previous transfer is write transfer.

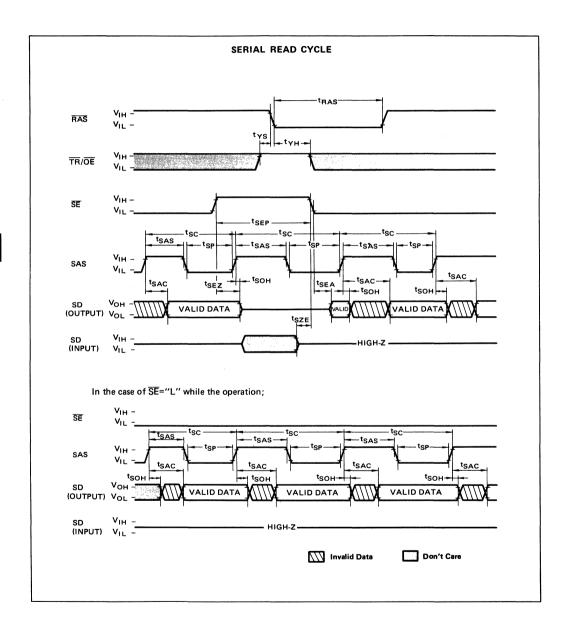
**; If SE is low and the previous cycle is serial write cycle, this should be valid data input.


MB81461-12 MB81461-15

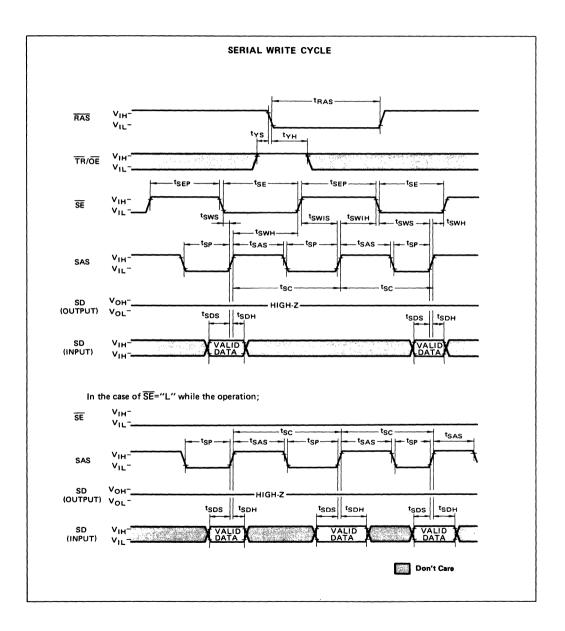
*; In the case that the previous transfer is write transfer.

**; If SE is high these data are not written into the SAM.

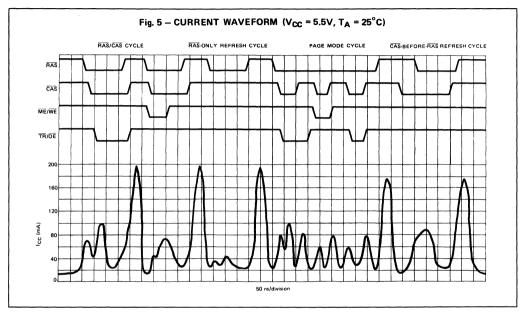
3

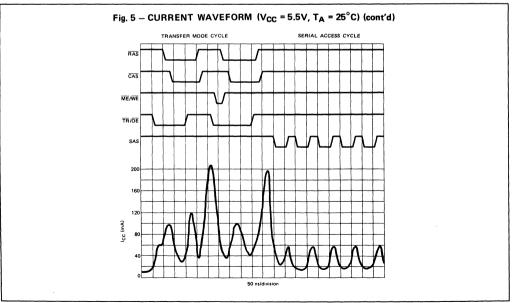


*: If SE is high, these data are not written into SAM.

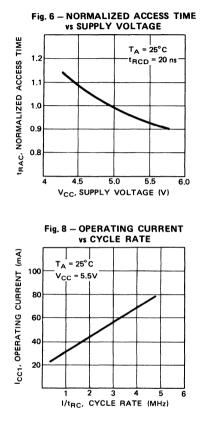

**: If SE is high, SD (SD0 to SD3) are in High-Z state after t_{SEZ}.

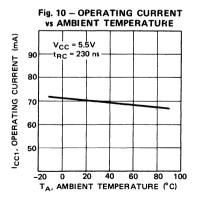
If $\overline{\text{SE}}$ becomes low, the valid data will appear meeting t_{SAC} and t_{SEA}


MB81461-12 MB81461-15



3


1.12



3

TYPICAL CHARACTERISTICS CURVES

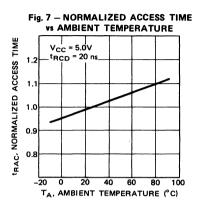


Fig. 9 – OPERATING CURRENT vs SUPPLY VOLTAGE

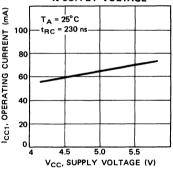
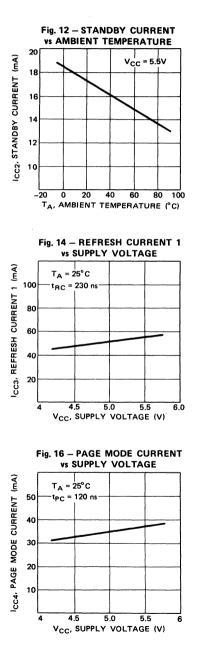
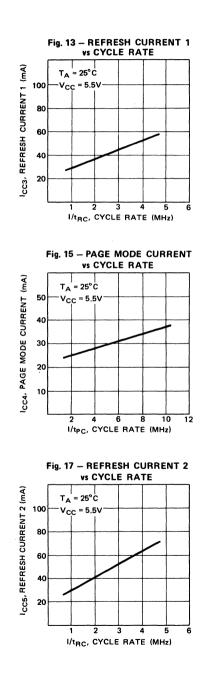
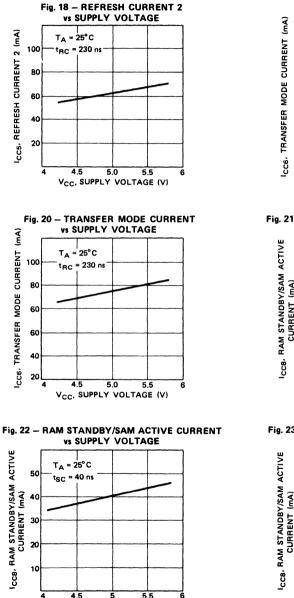


Fig. 11 – STANDBY SURRENT vs SUPPLY VOLTAGE $T_A = 25^{\circ}C$ 18

5.0


V_{CC}, SUPPLY VOLTAGE (V)


4.5


5.5

6

Icc2, STANDBY CURRENT (mA)

VCC, SUPPLY VOLTAGE (V)

Fig. 19 – TRANSFER MODE CURRENT vs CYCLE RATE $T_A = 25^{\circ}$ C $V_{CC} = 5.5V$ $V_{CC} = 5.5V$ $V_{CC} = 5.5V$ $V_{CC} = 1.5V$ $V_{CC} = 1.5V$

Fig. 21 – RAM STANDBY/SAM ACTIVE CURRENT vs CYCLE RATE

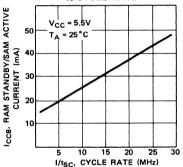
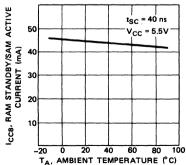



Fig. 23 - RAM STANDBY/SAM ACTIVE CURRENT vs AMBIENT TEMPERATURE

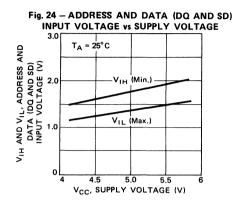
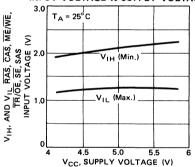
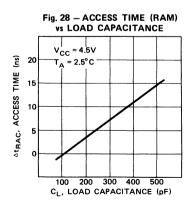




Fig. 26 – RAS, CAS, ME/WE, TR/OE, SE, SAS INPUT VOLTAGE vs SUPPLY VOLTAGE

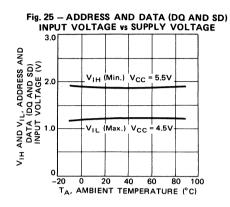


Fig. 27 – RAS, CAS, ME/WE, TR/OE, SE, SAS INPUT VOLTAGE vs AMBIENT TEMPERATURE

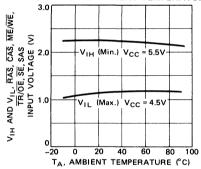
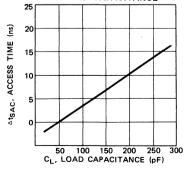
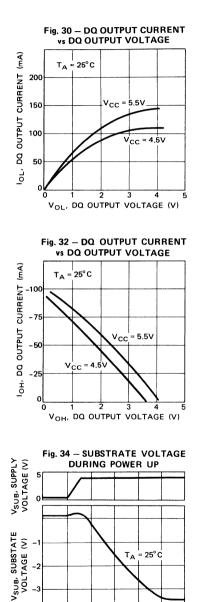




Fig. 29 – ACCESS TIME (SAM) vs LOAD CAPACITANCE

50 µs/Division

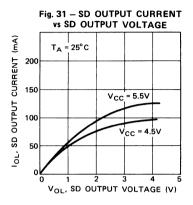
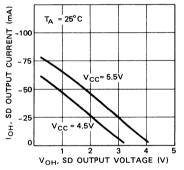
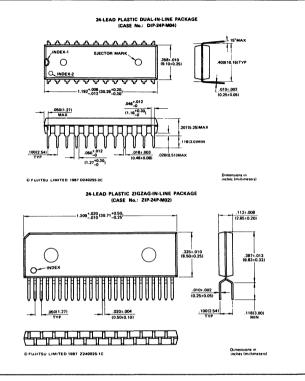



Fig. 33 – SD OUTPUT CURRENT vs SD OUTPUT VOLTAGE



3

MB81461-12 MB81461-15

PACKAGE DIMENSIONS

PLASTIC DIP (Suffix: -P) PLASTIC ZIP (Suffix: -PSZ)

Januarv 1990 Edition 2.0

DATA SHEET

MB81461B-12/-15

262,144-BIT DUAL PORT DYNAMIC RANDOM ACCESS MEMORY

262.144 Bit Dual Port DRAM

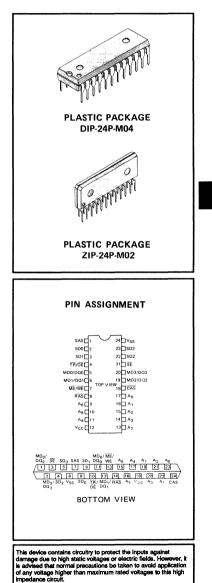
The Fujitsu MB81461B is a fully decoded, dynamic NMOS random access memory organized as 65.536 words by 4 bits dynamic RAM port and 256 words by 4 bits serial access memory (SAM) port.

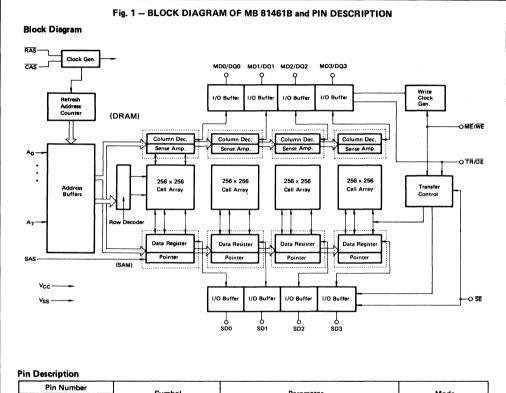
The DRAM port is identical to the Fujitsu MB81464 with four bits of parallel random access I/O while the SAM port is designed as four 256-bit registers, each operating as a serial I/O. The four serial registers operate in parallel with each other during SAM port operation. Internal interconnects give the device the capability to transfer data bi-directionally between the DRAM memory array and the SAM data reaisters.

The MB81461B offers complementary asynchronous access of both the DRAM and SAM ports, except when data is transferred between them internally. The design is optimized for high speed and performance making the MB81461B the most efficient solution for implementing the frame buffer of a bit-mapped video display system. Multiplexed row and column address inputs permit the MB81461B to be housed in a 400-mil wide 24-pin DIP or ZIP package. Pinouts conform to the JEDEC-approved pinouts.

The MB81461B is fabricated using silicon gate NMOS and Fujitsu's advanced Triple-layer Polysilicon process technology. This process, coupled with single transistor memory storage cells, permits maximum circuit density and minimum chip size. All inputs and outputs are TTL compatible. Some transfer cycle timing specifications are different from MB81461.

- Dual Port Organization 64 K x 4 Dynamic RAM port (DRAM) 256 x 4 Serial Access Memory port (SAM)
- 24-pin DIP and ZIP packages
- Silicon-gate, Triple Poly NMOS, single transistor cell
- DRAM Port
 - HAM Port Access Time (t_{RAC}) 120 ns max. (MB 81461B-12) 150 ns max. (MB 81461B-15) Cycle Time (t_{SAC}) 230 ns max. (MB 81461B-12) 260 ns max. (MB 81461B-15)
- SAM Port
 - Access Time (t_{SAC}) 40 ns max. (MB 81461B-12) 60 ns max. (MB 81461B-15) Cycle Time (t_{SC}) 40 ns max. (MB 81461B-12) 60 ns max. (MB 81461B-15)
- Single +5 V Supply, ±10% tolerance
- Real Time, Read Transfer capability Page Mode capability


Absolute Maximum Ratings (See Note)


ADSOLUCE MAXIMUM Mating	ga (See Mole)		
Parameter	Symbol	Value	Unit
Voltage at any pin relative to V_{SS}	VIN, VOUT	-1 to +7	v
Voltage of V _{CC} supply relative to V _{SS}	Vcc	-1 to +7	v
Storage Temperature	T _{STG}	-55 to +125	°C
Power Dissipation	PD	1.0	w
Short Circuit Output Current	_	50	mA

Note: Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operation sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Copyright C 1990 by FUJITSU LIMITED and Fujitsu Microelectronics, Inc.

- Power Dissipation DRAM; Act/SAM; Stby 523 mW max. (MB 81461B-12) 468 mW max. (MB 81461B-15) DRAM; Stby/SAM; Act 275 mW max. (MB 81461B-12) 220 mW max. (MB 81461B-15) DRAM; Stby/SAM; Stby 110 mW max 110 mW max.
- Bi-directional data transfer between DRAM and SAM
- Fast serial access asynchronous to DRAM except transfer operation
- Bit Masked Write Mode capability
- 256 refresh cycles every 4 ms
- RAS-only, CAS-before-RAS, Hidden Refresh capability
- Delayed write and Read-Modify-Write capability
- Standard 24-Pin Plastic Packages: DIP (MB81461B-XXP) ZIP (MB81461B-XXPSZ)

Pin N	Pin Number Symbol Paran		Parameter	Mode
DIP	ZIP	Symbol	Parameter	wode
1	7	SAS	Serial Access Memory Strobe	Input
2,3,22,23	8,9,4,5	SD0 to SD3	Serial Data I/O	1/0
4	10	TR/OE	Transfer Enable/ Output Enable	Input
5,6,19,20	11,12,1,2	MD0/DQ0 to MD3/DQ3	Mask Data/Data I/O	1/0
7	13	ME/WE	Mask Mode Enable/Write Enable	Input
8	14	RAS	Row Address Strobe	Input
17, 16, 15 14, 11, 10 9, 13	23,22,21, 20,17,16, 15,19	A ₀ to A ₇	Address Input	Input
12	18	V _{cc}	Supply Voltage +5 V	Power Supply
18	24	CAS	Column Address Strobe	Input
21	3	SE	Serial port Enable	Input
24	6	V _{SS}	Ground	Power Supply

DESCRIPTION

DRAM OPERATION

RAS;

This pin is used to strobe eight row-address inputs from A0 to A7 pins and is used to select the operation mode of subsequent cycle, such as DRAM operation or transfer operation (by $\overline{TR}/\overline{OE}$ and bit mask write cycle or not (by $\overline{ME}/\overline{WE}$ and MD0/D00 to MD3/D03). Since $\overline{RAS} = "L"$ is the active condition of circuit, to maintain $\overline{RAS} = "H"$ (standby condition) is effective to save power dissipation.

CAS;

This pin is used to strobe eight column address inputs at the falling edge. \overline{CAS} pin has the function to enable and disable the output at "L" and "H" respectively during the read operation.

Another function of \overline{CAS} is to select "early write" mode conditioned by $\overline{ME}/\overline{WE} = "L"$.

ME/WE;

This pin is used to select read or write cycle. $\overline{ME}/\overline{WE} = "L"$ select write mode and $\overline{ME}/\overline{WE} = "H"$ select read mode. This pin is also used to enable bit mask write cycle. If $\overline{ME}/\overline{WE} = "L"$ at the falling edge of \overline{RAS} , bit mask write is enabled.

TR/OE;

This pin is used to select Transfer operation or not at the falling edge of RAS, $\overline{TR}/\overline{OE} = "H"$ enables DRAM operation and $\overline{TR}/\overline{OE} = "L"$ enables Transfer operation between DRAM and SAM. After the falling of RAS with t_{YH}, this pin is used for output enable.

The $\overline{TR}/\overline{OE}$ controls the impedance of the output buffers. $\overline{TR}/\overline{OE} = "H"$ forces the output buffers at high impedance state. $\overline{TR}/\overline{OE} = "L"$ leads the output buffers at low impedance state. But in early write cycle, the output buffers are high impedance state even if $\overline{TR}/\overline{OE}$ is low.

A0 to A7;

These are multiplexed address input

pins and used to select 4 bits of 262,144 memory cell locations in parallel within the MB81461B The eight row address inputs are strobed by \overline{RAS} and followed eight column address inputs are strobed by \overline{CAS} . These are used to select the start address of serial access memory also.

MD0/DQ0 to MD3/DQ3

These are common I/O pins of DRAM port. I/O mode is as specified for each function mode in the truth table.

Data Outputs:

The output buffers have three-state capability "H", "L" and "High-Z". To get valid output data on the pins, one of the read operations is selected such as "read" or "read-modify-write" mode. During a refresh cycle, either RAS-only or CAS-before-RAS mode is selected, output buffers are set in "High-Z" state.

Data inputs:

These are used as data input pins when a data write mode such as "Early-Write", "Delayed Write" or "Read-modify-Write" is selected. In any of the above cases, these pins are set at "High-Z" state to enable data-in without any bus conflict.

In any operation mode, read, write, refresh, transfer and their combined functions, output states "H", "L", "High-Z" are set by control signals RAS, CAS, ME/WE and/or TR/OE. When "Bit mask write" mode is set, these pins are used as a control signal for write inhibit with MDi/DQi = "L" on the selected bit i.

Page Mode;

The page mode operation is to strobe the column address by \overline{CAS} while \overline{RAS} is maintained at "L" through all the successive memory operations if the row address doesn't change. This mode can save power dissipation and get the faster access time due to the elimination of \overline{RAS} falling edge function.

Refresh;

Refresh of the DRAM cells is performed for every 256 rows per every 4 milliseconds.

The MB81461B offers the following three types of refresh.

- RAS-Only refresh; The RAS-Only refresh is performed with CAS="H" condition. Strobing every 256 row addresses with RAS will complete all bits of memory cell to be refreshed while all outputs are invalid due to "High-Z" state. Further RAS-only refresh saves the power dissipation substantially.
- 2) \overline{CAS} -before- \overline{RAS} refresh; The \overline{CAS} before- \overline{RAS} refresh offers an alternate refresh method. If \overline{CAS} is set low for the specified period (t_{FCS}) before the falling edge of \overline{RAS} , refresh control clock generator and refresh address counter are enabled, and an refresh operation is performed. After the refresh peration is performed, the refresh address counter is incremented automatically for the next \overline{CAS} -before- \overline{RAS} refresh.
- 3) Hidden refresh; The hidden refresh is performed by maintaining the valid data of last read cycle at MD/DQ pins while extending CAS low. The hidden refresh is equivalent to CASbefore RAS refresh because CAS stays low when RAS goes to low in the next cycle.

Bit Mask Write;

This mode is used when some of the bits should be inhibited to be written into cells. The bit mask write mode is executed by setting $\overline{\text{ME}}/\overline{\text{WE}} = "L"$ at the falling edge of $\overline{\text{RAS}}$ during write mode (early, delayed write or read-modifywrite cycle). The bits to be masked (or inhibited to write) is determined by MD/DQ state at the falling edge of $\overline{\text{RAS}}$, for example, if MD0/DQ0 and $\overline{\text{ME}}/\overline{\text{WE}}$ are both low at the falling edge of $\overline{\text{RAS}}$, the data on MD0/DQ0 pin is not written into the cell during the cycle. Refer to the Fig. 2.

EXAMPLE OF BIT MASK WRITE OPERATION

		Falling	edge of RAS			Function
TR/OE	ME/WE	MD0/DQ0	MD1/DQ1	MD2/DQ2	MD3/DQ3	Function
	н	х	×	х	х	Write enable
н	L	Н	L	Н	L	Write enable for DQ0 and DQ2 Write disable for DQ1 and DQ3

FUNCTIONAL TRUTH TABLE FOR DRAM OPERATION

MD0/DQ0 to BAS CAS ME/WE TR/OE ADDRESSES Eunction MD3/DQ3 н н х х х Standby х L L н H→L Valid Valid Data Out Read L L 1* н→х Valid Valid Data In Early Write L $H \rightarrow X \rightarrow H$ Valid Data In **Delayed Write** L H→L Valid Valid Data Out H→L→H L L H→L Valid Read-Modify-Write → Valid Data In х L н H→X Row address High-Z RAS-Only Refresh H→L х Н→Х High-Z L. х CAS-before-RAS Refresh

*: If $\overline{ME}/\overline{WE}$ = "L" at the falling edge of \overline{RAS} , bit mask write mode is enabled.

TRANSFER OPERATION:

The transfer operation is featured in the MB 81461B. This mode is used to transfer simultaneously 256x4 data from DRAM to SAM or from SAM to DRAM. The direction of transfer is determined by the state of $\overline{\text{ME}/\text{WE}}$ at the falling edge of $\overline{\text{RAS. ME}}/\overline{\text{ME}}$ defines the transfer from DRAM to SAM (Read Transfer Cycle) and $\overline{\text{ME}/\text{WE}}$ "L" defines the transfer transfer from SAM to DRAM (Write Transfer Cycle).

I/O mode of SD0 to SD3 determined while the transfer operation is set (TR/ $\overline{\text{OE}}$ =""L") conjunctioned with $\overline{\text{ME}}/\overline{\text{WE}}$ state.

After Read Transfer Cycle, please apply two or more SAS Clock.

TR/OE;

This pin is used to enable transfer oper ation at the falling edge of \overline{RAS} .

ME/WE;

This pin is used to select the direction of transfer at the falling edge of \overline{RAS} . A0 to A7;

These pins are used to select the row address of DRAM port to be transfered from or to, and the start address of SAM port for the serial read or write operation. The row address is strobed by RAS and the start address is strobed by \overline{CAS} .

Pseudo Write Transfer:

To start serial write cycle, the SD pins must be set in input mode. To do this, write transfer cycle should be executed. The pseudo write transfer cycle is to change the SD pins into input mode without data transfer from SAM to DRAM, Refer to Fig. 3.

Refresh during transfer cycle;

DRAM and SAM are refreshed during transfer cycle as shown below.

Read transfer cycle:

During read transfer cycle, the selected row address of DRAM to be transfered to SAM is refreshed. SAM data are kept by applying 256 SAS clocks within 4 ms after the read transfer cycle.

2) Write transfer cycle:

During write transfer cycle, the new data are written from SAM to DRAM and this row address should be re-freshed within 4 ms.

But SAM data are not refreshed during write transfer cycle. Therefore, the SAM refresh (applying 256 SAS clocks within 4 ms) must be executed. Especially, when the write transfer cycle is executed continuously, 256 SAS clock should be applied within 4 ms.

SERIAL ACCESS OPERATION:

X: Don't Care

The MB 81461Bhas 256 words by 4 bits Serial Acess Memory (SAM) corresponding to 64K words by 4 bits DRAM and the fast serial read/write access is achieved by SAM architecture. Read or write cycle is determined when the last read or write transfer operation is executed. If the last transfer operation was read transfer, the serial read cycle is performed until the next write or pseudo write transfer cycle is executed. On the other hand, if the last transfer operation was write or pseudo write or pseudo write transfer, the serial write cycle is performed. In the serial write operation, 256 words by 4 bits data stored in the SAM can be transfered to DRAM under SE="L" condition, and SE="H" condition disables data transfer from SAM to DRAM. The serial access operation can be done asynchronously from DRAM port.

SAS;

This pin is used as a shift clock for SAM port. The serial access is triggered by the rising edge of SAS. In the write cycle, the data of the SD pins are strobed by the rising edge of SAS and written into the selected cell. In the read cycle, output data become valid after t_{SAC} from the rising edge of SAS and the data remain valid until the next cycle is defined. The SAS clock increments the SAM address automatically. When the SAM address exceeds #255 (Most Significant Address) it returnes to #0 (Least Significant Address).

SE;

This pin is used to enable serial access operation by bit to bit. $\overline{SE} = "H"$ disables serial access operation. In the serial read operation, this pin is used for output enable, i.e., $\overline{SE} = "H"$ leads SD pins to "High-Z" state. $\overline{SE} = "L"$ leads SD pins to valid data with specified access time. In the serial write operation, this pin works as write enable control pin.

SD0 to SD3;

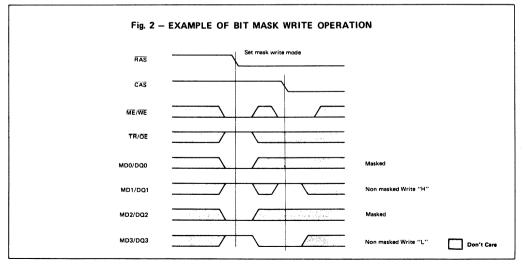
These are used as data input/output pins for SAM port. Input or output mode is determined by last occured transfer operation, if last transfer operation was read transfer mode, they are output mode. If the write transfer mode was set, SD pins are enabled to write data into SAM.

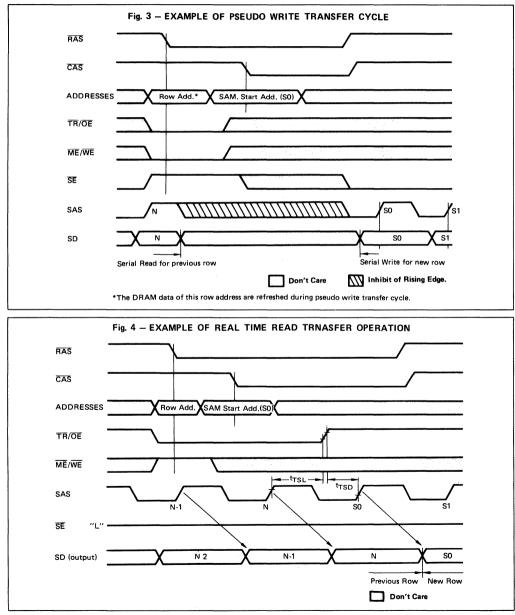
Refresh;

Since the SAM is constructed by dynamic circuitry, the refresh is necessary to maintain the data in it. The refresh of SAM must be done by 256 cycles of SAS clock/4ms in either output or input mode. $\overline{SE} = "H"$ allows refresh of SAM with SD pins at "High-Z" state.

Real Time Read Transfer;

This feature is applicable to obtain valid


data continuously when row address is changed without any timing loss from the last bit of previous row to the first bit of new row. Data transfer from DRAM to SAM is triggered by rising edge of TR/OE after the preparation of internal circuit for this operation, while SAM port can continue read operation asynchronously from the above mentioned internal move. Once TR/OE returns to "H" with the restricted timing specification t_{TSL} and t_{TSD} refered to SAS clock, SD pins can get the valid output data continuously as shown in Fig. 4. The key issue to achieve this feature is to apply SAS clock continuously with the timing consideration to the rising edge of TR/OE.

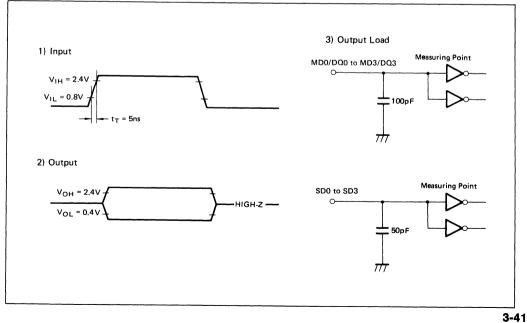

FUNCTIONAL TRUTH TABLE FOR SERIAL ACCESS (Asynchronous from DRAM port)

Falling ed	ge of RAS	SAS	SE	SD0 to SD3	Function
TR/OE	ME/WE	343	SE SD0 to SD	300 10 303	T unction
11	v	Clock	L	Input/Output*	Sequential access enable
	^	Clock	н	Input/Output*	Sequential access disable

*: The read or write operation of SAM port is pre-determined by the last occurred transfer cycle. Input mode is for write operation. Output mode is for read operation.

X; Don't Care

RECOMMENDED OPERATING CONDITIONS


(Referenced to V_{SS})

Parameter	Symbol	Min.	Тур.	Max.	Unit	Operating Temperature
Cumples Maltana	V _{cc}	4.5	5.0	5.5	v	
Supply Voltage	V _{SS}	0	0	0	v	
Input High Voltage	V _{IH}	2.4		6.5	v	0°C to +70°C
Input Low Voltage	VIL	-2.0		0.8	v	1

CAPACITANCE (TA=25°C)

Paramter	Sumbol	Tun	M	Unit	
Farantei	Symbol	Тур	DIP	ZIP	Unit
Input Capacitance (A0 to A7)	C _{IN1}		7	8	pF
Input Capacitance (RAS, CAS, ME/WE, SE, TR/OE)	C _{IN2}		10	12	pF
Input Capacitance (SAS)	C _{IN3}		7	7	pF
Input/Output Capacitance (MD0/DQ0 to MD3/DQ3)	C _{IO1}		7	8	pF
Input/Output Capacitance (SD0 to SD3)	C _{IO2}		7	8	pF

AC TEST CONDITIONS

DC CHARACTERISTICS (Recommended operating conditions unless otherwise noted.)

Parameter		Symbol	Min	Max	Unit
SAM STANDBY $\overline{SE} = V_{1H}$, SAS = V_{1L}					
OPERATING CURRENT* Average power supply current (RAS, CAS cycling; t _{RC} = min)	MB 81461B-12 MB 81461B-15	- I _{cc1}		95 85	- mA
STANDBY CURRENT Power supply current (RAS = CAS = V _{IH})		I _{CC2}		20	mA
REFRESH CURRENT 1*	MB 81461B-12			77	
Average power supply current ($\overline{CAS} = V_{IH}$, \overline{RAS} cycling; $t_{RC} = min$)	MB 81461B-15	- Icc3		70	- mA
PAGE MODE CURRENT* Average power supply current	MB 81461B-12			50	mA
$(\overline{RAS} = V_{IL}, \overline{CAS} = cycling, t_{PC} = min)$	MB 81461B-15	l _{CC4}		45	
REFRESH CURRENT 2* Average power supply current	MB 81461B-12	I _{CC5}		77	mA
(CAS-before-RAS; t _{RC} = min)	MB 81461B-15	1005		70	
TRANSFER MODE CURRENT Average power supply current (RAS, CAS cycling; t _{RC} = min)	MB 81461B-12	61B-12		110	mA
	MB 81461B-15			100	
SAM ACTIVE $\overline{SE} = V_{1L}$, $t_{SC} = min$	-				- -
OPERATING CURRENT* Average power supply current	MB 81461B-12			130	mA
(RAS, CAS cycling; t _{RC} = min)	MB 81461B-15	- ^I cc7		110	
STANDBY CURRENT Power supply current	MB 81461B-12	- L		50	mA
$(\overline{RAS} = \overline{CAS} = V_{IH})$	MB 81461B-15	Гссв		40	
REFRESH CURRENT 1* Average power supply current	MB 81461B-12	- 1 _{CC9}		112	- mA
$(\overline{CAS} = V_{IH}, \overline{RAS} \text{ cycling; } t_{RC} = \min)$	MB 81461B-15	•669		95	
PAGE MODE CURRENT* Average power supply current	MB 81461B-12	- I _{CC10}		85	- mA
$(\overline{RAS} = V_{1L}, \overline{CAS} \text{ cycling, } t_{PC} = \min)$	MB 81461B-15	10010		70	
REFRESH CURRENT 2*	MB 81461B-12	- I _{cc11}		112	mA
Average power supply current (CAS-before-RAS; t _{RC} = min)	MB 81461B-15	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		95	
TRANSFER MODE CURRENT MB 81461B-12		- I _{CC12}		145	mA
Average power supply current $(\overline{RAS}, \overline{CAS} \text{ cycling}; t_{RC} = \min)$	MB 81461B-15	·CC12		125	

DC CHARACTERISTICS (Recommended operating conditions unless otherwise noted.)

Parameter	Symbol	Min	Max	Unit
INPUT LEAKAGE CURRENT Input leakage current, any input (0V \leq V_{IN} \leq 5.5V, V _{CC} =5.5V, V _{SS} =0V, all other pins not under test=0V)	l _{1 (L)}	-10	10	μΑ
OUTPUT LEAKAGE CURRENT (Data out is disabled, $0 V \leq V_{OUT} \leq 5.5V$)	I _{O(L)}	-10	10	μΑ
OUTPUT LEVELS Output high voltage (I _{OH} =5mA/-2mA for DQi/SDi) Output low voltage (I _{OL} =4.2mA)	V _{oh} V _{ol}	2.4	0.4	v

Note: I_{CC} is dependent on output loading and cycle rates. Specified values are obtained with the output open.

AC CHARACTERISTICS (Recommended operating conditions unless otherwise noted.) NOTES 1 2 3

Parameter	NOTES	Sumbal	MB 81	461B-12	MB 814	461B-15	Unit
Parameter	NOTES	Symbol	Min	Max	Min	Max	Unit
Time between Refresh (RAM/SAM)		t _{REF}		4		4	ms
Random Read/Write Cycle Time		t _{RC}	230		260		ns
Read-Modify-Write Cycle Time		t _{RWC}	305		345		ns
Page Mode Cycle Time		t _{PC}	120		145		ns
Page Mode Read-Modify-Write Cycle Time		^t prwc	195		225		ns
Access Time from RAS	4 6	tRAC		120		150	ns
Access Time from CAS	56	t _{CAC}		60		75	ns
Output Buffer Turn Off Delay		toff	0	25	0	35	ns
Transition Time		t _T	3	50	3	50	ns
RAS Precharge Time		t _{RP}	90		100		ns
RAS Pulse Width		t _{RAS}	120	60000	150	60000	ns
RAS Hold Time		t _{RSH}	60		75		ns

AC CHARACTERISTICS

Parameter	NOTEO	Cumhal	MB 81	461B-12	MB 81	461B-15	
rarameter	NOTES	Symbol	Min	Max	Min	Max	Unit
CAS Precharge Time (Normal cycle)		t _{CPN}	40		50		ns
CAS Precharge Time (Page mode only)		t _{CP}	50		60		ns
CAS Precharge Time (CAS-before-RAS)		t _{CPR}	25		30		ns
CAS Pulse Width		t _{CAS}	60	60000	75	60000	ns
CAS Hold Time		t _{сsн}	120		150		ns
RAS to CAS Delay Time	78	t _{RCD}	22	60	25	75	ns
CAS to RAS Set Up Time		t _{CRS}	10		10		ns
Row Address Set Up Time		t _{ASR}	0		0		ns
Row Address Hold Time		t _{RAH}	12		15		ns
Column Address Set Up Time		t _{ASC}	0		0		ns
Column Address Hold Time		t _{CAH}	20		25		ns
Read Command Set Up Time		t _{RCS}	0		0		ns
Read Command Hold Time Referenced to RAS	9	t _{RRH}	20		20		ns
Read Command Hold Time Referenced to CAS	9	t _{RCH}	0		0		ns
Write Command Set Up Time		twcs	-5		-5		ns
Write Command Hold Time		^t wcн	30		35		ns
Write Command Pulse Width		t _{WP}	30		35		ns
Write Command to \overline{RAS} Lead Time		t _{RWL}	40		45		ns
Write Command to \overline{CAS} Lead Time		^t cw∟	40		45		ns
Data In Set Up Time		t _{DS}	0		0		ns
Data In Hold Time		t _{DH}	30		35		ns
Access Time from TR/OE	6	t _{OEA}		35		40	ns
TR/OE to Data In Delay Time		toed	25		30		ns

MB81461B-12 MB81461B-15

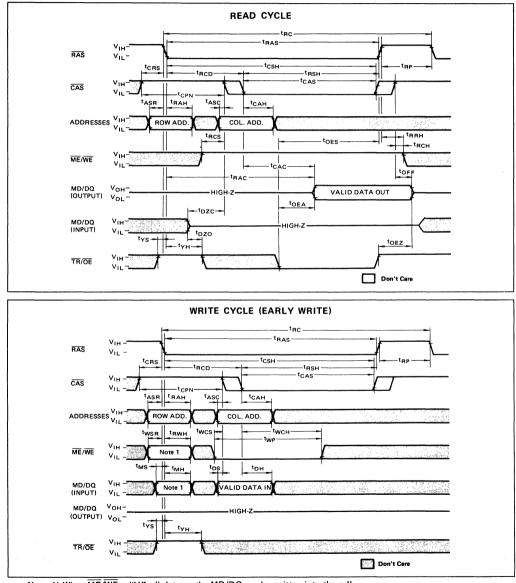
			MB 81	461B-12	MB 814	461B-15	
Parameter	NOTES	Symbol	Min	Max	Min	Max	Unit
Output Buffer Turn Off Delay from TR/OE		toez	0	25	0	30	ns
TR/OE Hold Time Referenced to ME/V	VE	t _{оен}	0		0		ns
$\overline{TR}/\overline{OE}$ to \overline{RAS} inactive Set Up Time		t _{OES}	0		0		ns
Data In to CAS Delay Time	16	t _{DZC}	0		0		ns
Data In to $\overline{TR}/\overline{OE}$ Delay Time	16	t _{DZO}	0		0		ns
Refresh Set Up Time Referenced to RAS (CAS-before-RAS)		t _{FCS}	25		30		ns
Refresh Hold Time Referenced to RAS (CAS-before-RAS)		t _{FCH}	25		30		ns
RAS Precharge to CAS Active Time		t _{RPC}	20		20		ns
Serial Clock Cycle Time		t _{SC}	40	50000	60	50000	ns
Access Time from SAS	10	t _{SAC}		40		60	ns
Access Time from SE	10	t _{SEA}		40		50	ns
SAS Precharge Time		t _{SP}	10		20		ns
SAS Pulse Width		t _{SAS}	10		20		ns
SE Precharge Time		t _{SEP}	25		45		ns
SE Pulse Width		t _{SE}	25		45		ns
Serial Data Out Hold Time after SAS High		^t soн	10		10		ns
Serial Output Buffer Turn Off Delay from SE		t _{sez}	0	25	0	30	ns
Serial Data In Set Up Time	11	t _{SDS}	0		0		ns
Serial Data In Hold Time	00	t _{sdh}	20		25		ns

AC CHARACTERISTICS

AC CHARACTERISTICS

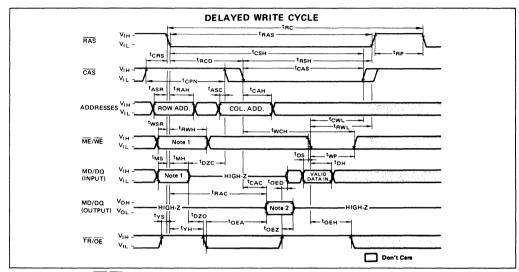
D		Sumbri	MB 814	461B-12	MB 814	61B-15	Unit
Parameter	NOTES	Symbol	Min	Max	Min	Max	Unit
Transfer Command (\overline{TR}) to \overline{RAS} Set Up Time		t _{TS}	0		0		ns
Transfer Command (TR) to RAS Hold Time		t _{втн}	90		110		ns
Write Transfer Command (TR) to RAS Hold Time	12	t _{втнw}	12		15		ns
Transfer Command (\overline{TR}) to \overline{CAS} Hold Time		^t стн	30		35		ns
Transfer Command (TR) to SAS Lead Time		t _{tsl}	5		10		ns
Transfer Command (\overline{TR}) to \overline{RAS} Lead Time	17	t _{trri}	25		35		ns
Transfer Command (TR) Hold Time from RAS	07	^t тввн	25		35		ns
First SAS Edge to Transfer Command Delay Time		t _{tsd}	25		35		ns
ME/WE to RAS Set Up Time		twsr	0		0		ns
ME/WE to RAS Hold Time		t _{RWH}	12		15		ns
Mask Data (MD) to RAS Set Up Time		t _{MS}	0		0		ns
Mask Data (MD) to RAS Hold Time		t _{мн}	35		45		ns
Serial Output Buffer Turn Off Delay from RAS	12	t _{sdz}	10	60	10	75	ns
Serial Output Buffer Turn On Delay from RAS	13	tsro	0		0		ns
SAS to RAS Set Up Time	00	t _{SRS}	40		60		ns
RAS to SAS Delay Time	12	t _{srd}	30		45		ns
Serial Data Input to SE Delay Time		tsze	0		0		ns
Serial Data Input Delay from RAS	12	t _{sdd}	60		75		ns

And the second							
Parameter	NOTES	Symbol	MB 81461B-12		MB 81461B-15		11-14
			Min	Max	Min	Max	Unit
Serial Data Input to RAS Delay Time	13	tszs	0		0		ns
Pseudo Transfer Command (SE) to RAS Set up Time	14	t _{esr}	0		0		ns
Pseudo Transfer Command (\overline{SE}) to RAS Hold Time	14	t _{reh}	12		15		ns
Serial Write Enable Set up Time	0	t _{sws}	20		30		ns
Serial Write Enable Hold Time	00	^t swн	80		120		ns
Serial Write Disable Set Up Time	00	tswis	20		30		ns
Serial Write Disable Hold Time	00	t _{swih}	40		60		ns
Asynchronous Command (TR) to RAS Set Up Time		t _{YS}	0		0		ns
Asynchronous Command (\overline{TR}) to RAS Hold Time		t _{YH}	12		15		ns
Time between Transfer	15	t _{reft}		4		4	ms

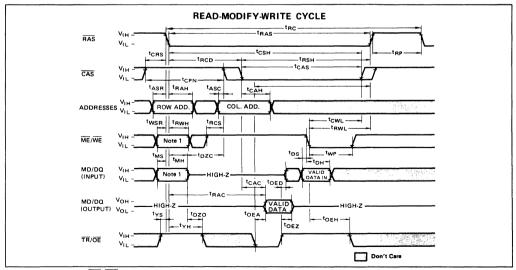

AC CHARACTERISTICS

NOTES:

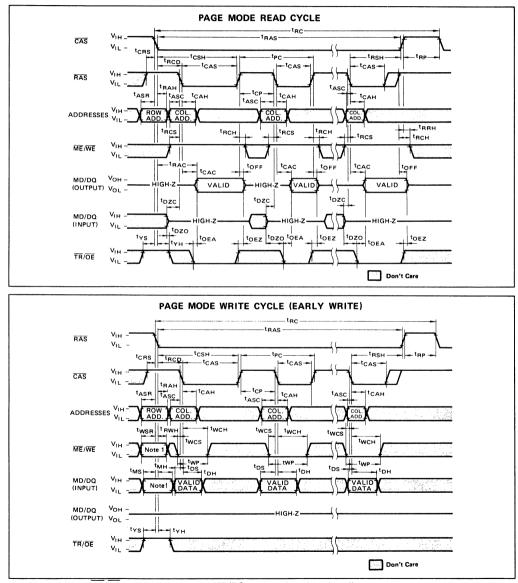
- An initial pause of 200µs is required after power-up followed by any 8 RAS, 8 transfer, and 8 SAS cycle before proper device operation is achieved. In case of using internal refresh counter, a minimum of 8 CASbefore-RAS initialization cycles instead of 8 RAS cycle are required.
- 2 AC characteristics assume.
- 3 V_{IH} (min) and L_{IL} (max) are reference levels for measuring timing of input signals. Also, transition times are measured between V_{IH} (min) and V_{IL} (max).
- 4 Assumes that $t_{RCD} \le t_{RCD}$ (max). If t_{RCD} is greater than the maximum recommended value shown in this table, t_{RAC} will be increased by the amount that t_{RCD} exceeds the value shown.
- 5 Assumes that $t_{RCD} \ge t_{RCD}$ (max).
- 6 Measured with a load equivalent to 2 TTL loads and 100pF.


- 7 Operation within the t_{RCD} (max) limit insures that t_{RAC} (max) can be met. t_{RCD} (max) is specified as a reference point only; if t_{RCD} is greater than the pecified t_{RCD} (max) limit, then access time is controlled exclusively by t_{CAC} .
- **13** t_{RCD} (min) = t_{RAH} (min) + $2t_T$ (t_T =5ns) + t_{ASC} (min)
- **9** Either t_{RRH} or t_{RCH} must be satisfied for a read cycle. **10** Measured with a load equivalent to 2 TTL loads and
 - 50pF.
- 111 Input mode only
- 2 Write transfer and pseuso write transfer only.
- Read transfer only in the case that the previous transfer was write transfer.
- 14 Pseudo write transfer only.
- II If t_{REFT} is not satisfied, 8 transfer and 8 SAS cycles before proper device operation is needed.
- Either t_{DZC} or t_{DZO} must be satisfied.
- This timing specification is different from that of MB 81461.

MB81461B-12 MB81461B-15


Note 1) When $\overline{ME}/\overline{WE}$ = "H", all data on the MD/DQ can be written into the cell.

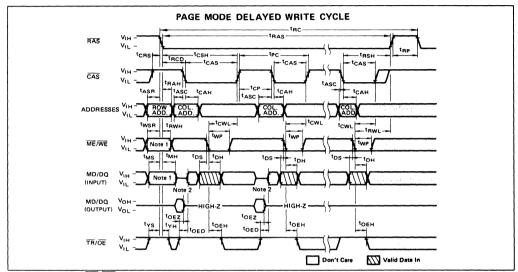
When ME/WE = "L", the data on the MD/DQ are not written (masked) except for when MD/DQ = "H" at the falling edge of RAS.



Note 1) When ME/WE = "H", all data on the MD/DQ can be written into the cell. When ME/WE = "L", the data on the MD/DQ are not written (masked) except for when MD/DQ = "H" at the falling edge of RAS.

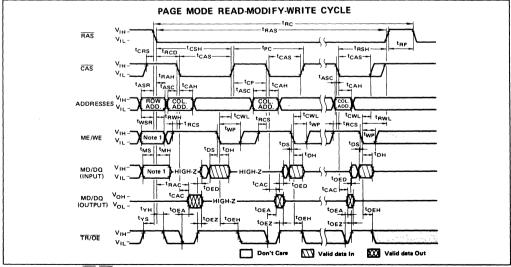
Note 2) When TR/OE is kept "H" through a cycle, the MD/DQ are kept High-Z state.

Note 1) When ME/WE = "H", all data on the MD/DQ can be written into the cell. When ME/WE = "L", the data on the MD/DQ are not written (masked) except for when MD/DQ = "H" at the falling edge of RAS.

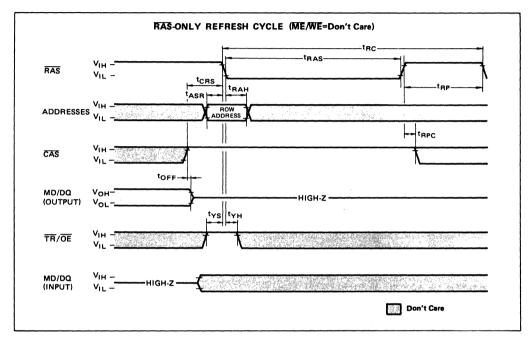


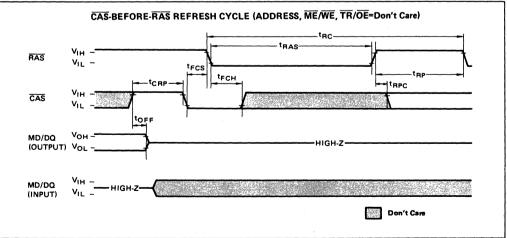
Note 1) When $\overline{ME}/\overline{WE}$ = "H", all data on the MD/DQ can be written into the cell.

When $\overline{\text{ME}}/\overline{\text{ME}} = "L"$, the data on the MD/DQ are not written (masked) except for when MD/DQ = "H" at the falling edge of $\overline{\text{RAS}}$.

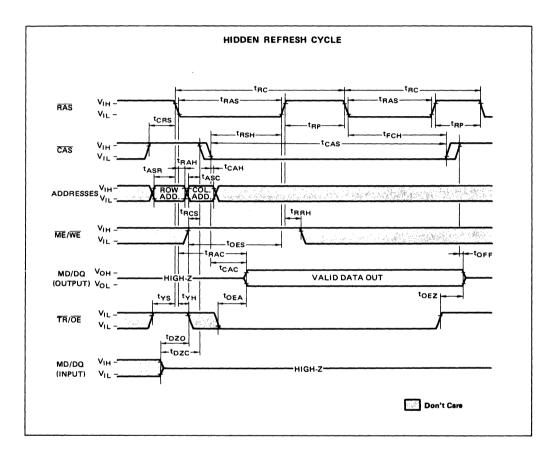

3-50

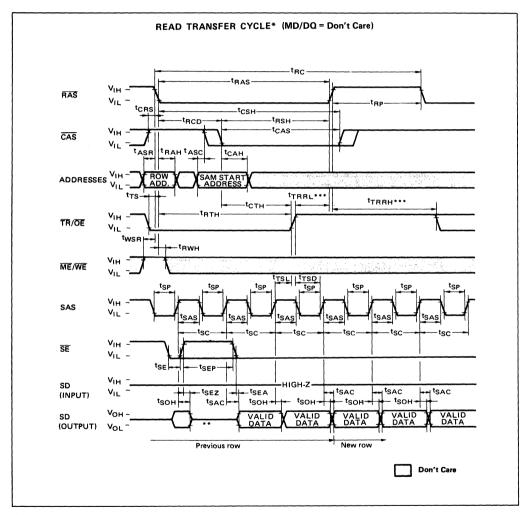
3



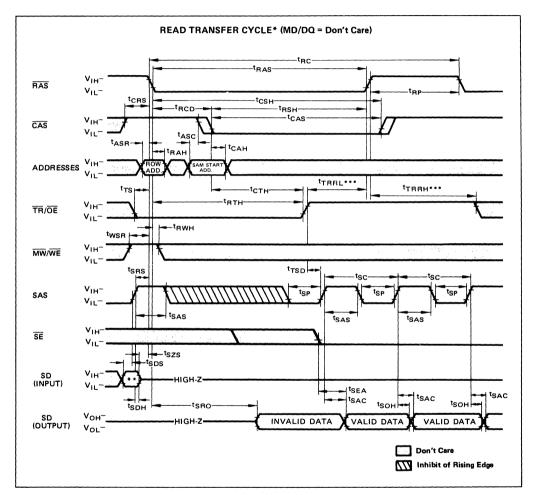

Note 1) When ME/WE = "H", all data on the MD/DQ can be written into the cell. When ME/WE = "L", the data on the MD/DQ are not written (masked) except for when MD/DQ = "H" at the falling edge of RAS.

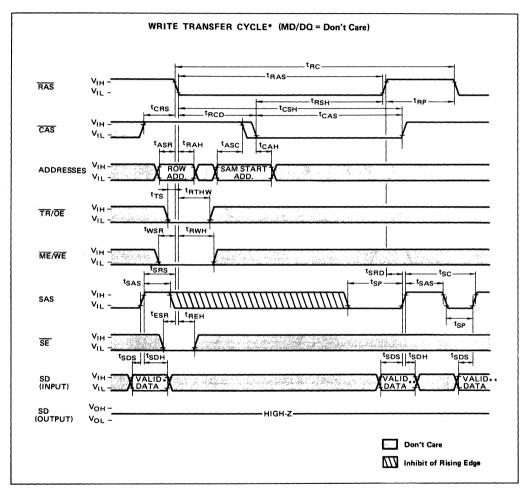
Note 2) When TR/OE is kept "H" through a cycle, the MD/DQ are kept High-Z state.




Note 1) When ME/WE = "H", all data on the MD/DQ can be written into the cell. When ME/WE = "L", the data on the MD/DQ are not written (masked) except for when MD/DQ = "H" at the falling edge of RAS.

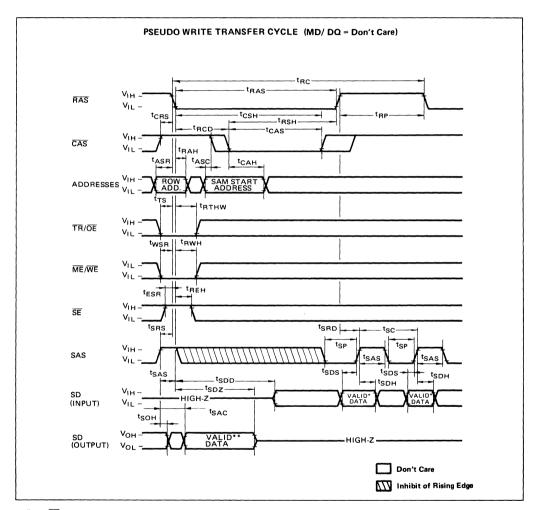
MB81461B-12 MB81461B-15

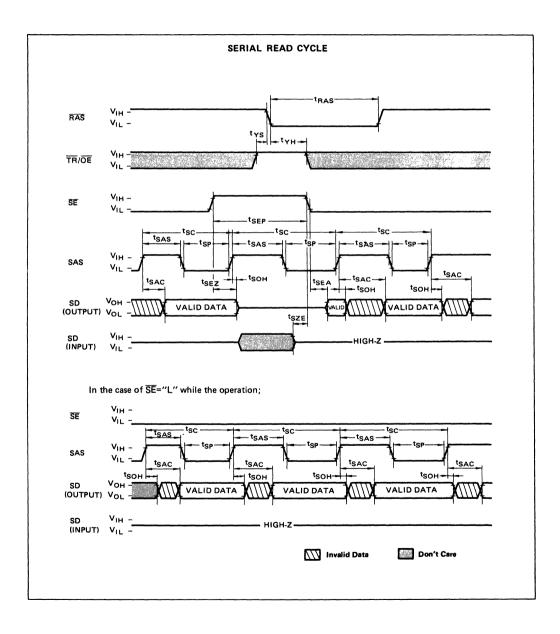



- *: In the case that the previous transfer is read transfer. **: If SE is low, the valid data will appear within t_{SAC} or t_{SEA} . ***: These parameters are different from that of MB 81461.

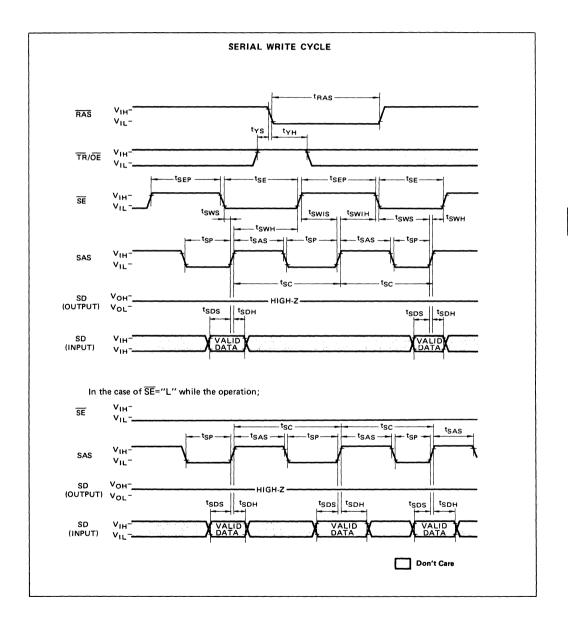
3

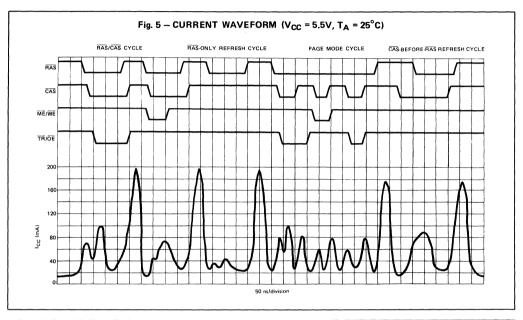
MB81461B-12 MB81461B-15

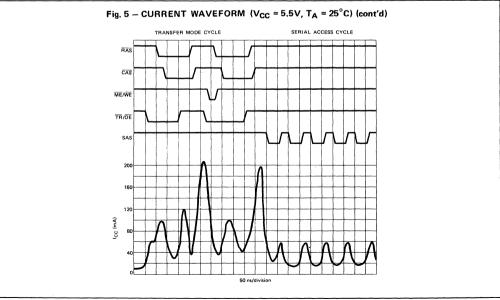

*: In the case that the previous transfer is write transfer. **; If SE is low and the previous cycle is serial write cycle, this should be valid data input. ***; These parameters are different from that of MB 81461.


*; In the case that the previous transfer is write transfer.

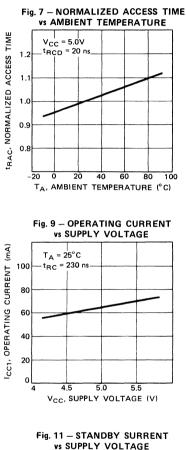
**; If SE is high these data are not written into the SAM.

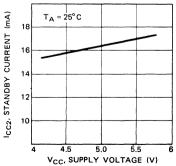

MB81461B-12 MB81461B-15

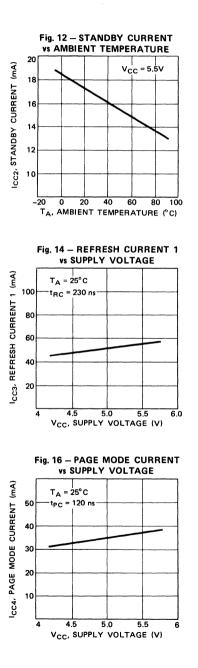

*: If \overline{SE} is high, these data are not written into SAM. **: If \overline{SE} is high, SD (SD0 to SD3) are in High-Z state after t_{SEZ} . If \overline{SE} becomes low, the valid data will appear meeting t_{SAC} and t_{SEA} .



3


MB81461B-12 MB81461B-15




Fig. 6 – NORMALIZED ACCESS TIME vs SUPPLY VOLTAGE t_{RAC}, NORMALIZED ACCESS TIME T_A = 25°C 1.2 t_{RCD} = 20 ns 1.1 1.0 0.9 0.8 4 4.5 5.0 5.5 6.0 VCC, SUPPLY VOLTAGE (V) Fig. 8 - OPERATING CURRENT vs CYCLE RATE ICC1, OPERATING CURRENT (mA) $T_A = 25^{\circ}C$ 100 V_{CC} = 5.5V 80 60 40 20 3 4 5 6 I/tRC, CYCLE RATE (MHz) Fig. 10 – OPERATING CURRENT vs AMBIENT TEMPERATURE ICC1, OPERATING CURRENT (mA) $V_{CC} = 5.5V$ t_{RC} = 230 ns 90 80 70 60 50 -20 0 20 40 60 80 100 TA, AMBIENT TEMPERATURE (°C)

TYPICAL CHARACTERISTICS CURVES

MB81461B-12 MB81461B-15

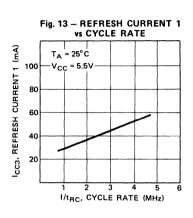


Fig. 15 – PAGE MODE CURRENT vs CYCLE RATE $T_A = 25^{\circ}C$

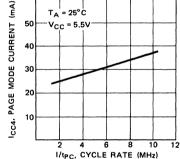
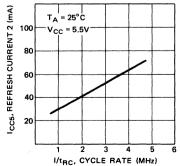
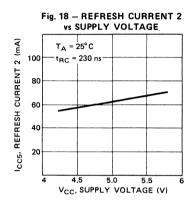




Fig. 17 - REFRESH CURRENT 2 vs CYCLE RATE

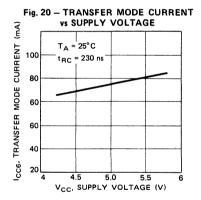


Fig. 22 – RAM STANDBY/SAM ACTIVE CURRENT vs SUPPLY VOLTAGE

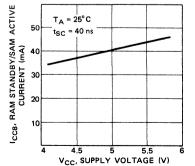


Fig. 19 – TRANSFER MODE CURRENT vs CYCLE RATE T_A = 25°C V_{CC} = 5.5V V_{CC} = 5.5V

Fig. 21 – RAM STANDBY/SAM ACTIVE CURRENT vs CYCLE RATE

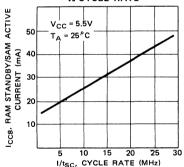
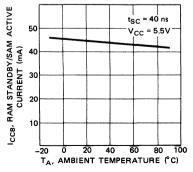



Fig. 23 - RAM STANDBY/SAM ACTIVE CURRENT vs AMBIENT TEMPERATURE

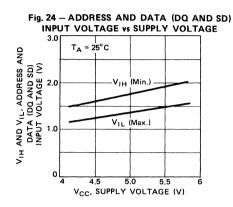


Fig. 26 – RAS, CAS, ME/WE, TR/OE, SE, SAS INPUT VOLTAGE vs SUPPLY VOLTAGE

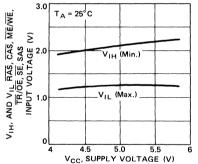
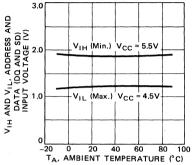
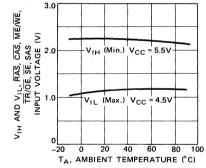
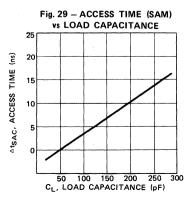
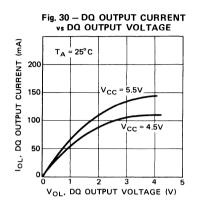
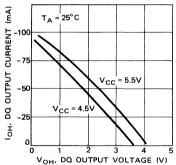
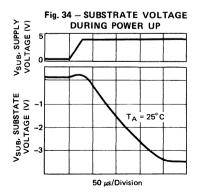


Fig. 28 - ACCESS TIME (RAM) vs LOAD CAPACITANCE V_{CC} = 4.5V ^{At_{RAC}, ACCESS TIME (ns)} 20 -= 2.5°C Тд 15 10 5 0 200 300 400 500 100 CL, LOAD CAPACITANCE (pF),

Fig. 25 – ADDRESS AND DATA (DQ AND SD) INPUT VOLTAGE vs SUPPLY VOLTAGE


Fig. 27 – RAS, CAS, ME/WE, TR/OE, SE, SAS INPUT VOLTAGE vs AMBIENT TEMPERATURE



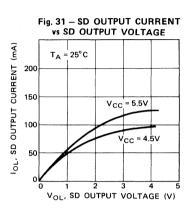
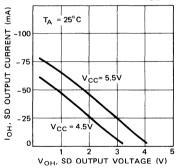
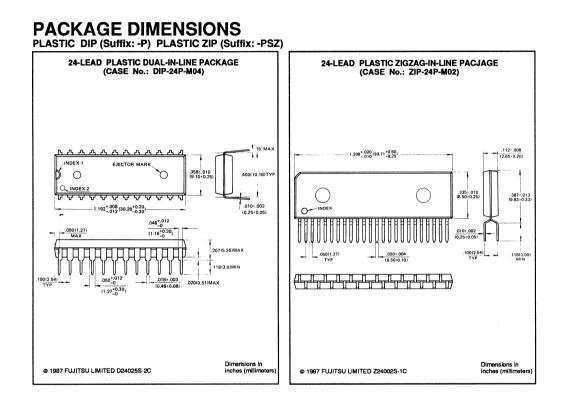




Fig. 33 – SD OUTPUT CURRENT vs SD OUTPUT VOLTAGE

DATA SHEET

MB81C1501 1 M BIT 3 PORT CMOS DYNAMIC FIELD MEMORY

1, 175, 040 Bit 3 Port CMOS Dynamic Field Memory

The Fujitsu MB81C1501 is a 293, 760-word x 4 bit (960 pixels x 306 lines) field memory. The MB81C1501 has a 3-port set-up (serial input: 1 port, serial output: 3 ports) allowing completely asynchronous and independent operation.

This device supports both the FIFO image operation mode which requires no external address input, and memory mapping in 60 bits units.

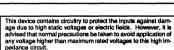
The MB81C1501 memory cell contains a dynamic refresh circuit. Refresh is performed during the routine read operation, eliminating the need for a special refresh cycle. When used, this device facilitates digital imagery processing for TV and VTR, which allows plotting of high resolution multi-functions.

When two MB81C1501 units are used, (8 bit) field images compatible with both NTSC and PAL systems can be stored.

The MB81C1501 features a three-dimensional stacked capacitor cell, which has exceptional tolerance to alpha ray soft error and uses CMOS processing technology and high performance CMOS circuitry in peripheral circuits for low power consumption and high speed.

FEATURES

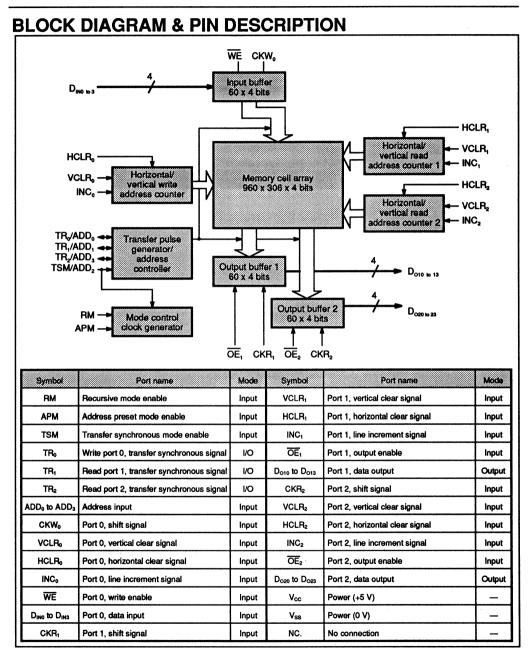
- 3 port organization One-293,760 word x 4 bit (serial write port) Two-293,760 word x 4 bit (serial read port) . for common memory cell array 960 x 306 x 4 bit
- · Asynchronous input and output operation
- NTSC and PAL compatible
- Recursive mode: .
- Automatic increment for vertical and horizontal address counter
- Nonrecursive mode: Specifiable vertical address and hori- . Internal substrate bias generator zontal address


- Synchronous signal transfer capability between multiple chips.
- Gate function for input clock on the write side using WE
- Silicon gate 3-layer polysilicon CMOS, 1-transistor cell
- Power : +5 V +10%
- Input and output are TTL compatible. Low input capacitance
- 293,760 bit refresh cycle / 21 ms •
- Standard 38-pin flat package

	em.	Symbol	Min.	Max.	Unit
Acces	is time	tsac	-	25	ns
Cycle time	Read port	t _{sca}	30	70 (Note 9)	ns
	Write port	t _{scw}	50	2t _{SCR} (Note 10)	ns

ABSOLUTE MAXIMUM RATINGS (see NOTE.)

Parameter	Symbol	Value	Unlt
Voltage at any pin relative to VSS	VIN, VOUT	-1 to + 7	V
Voltage of VCC supply relative to VSS	Vcc	-1 to+ 7	v
Power Dissipation	PD	1.0	v
Short Circuit Output Current	lour ·	50	V
Storage Temperature	Tstg	-55 to + 125	°C


Note : Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

	PIN A		GNN VIEV		IT	
		<u> </u>	* 12 *	•/		
TR ₀ /ADD ₀	dı.			38	þ	Vss
TR ₁ /ADD ₁	d 2			37	þ	TR ₂ /ADD ₃
TSM/ADD2	ц з_			36	þ	CKR₂
CKR ₁	4			35	Þ	D ₀₂₀
Dote	Ц5			34	Þ	D _{O21}
D ₀₁₁	口 6		Read	33	Þ	D _{O22}
D ₀₁₂	4 7 F	۲ lead		32	Þ	D ₀₂₃
D ₀₁₃	4 8 p	ort 1		31	Þ	OE₂
OE, I	Цэ			30	Þ	VCLR₂
VCLR _I	口 10			29	Þ	INC ₂
INC _t	[11			28	þ	HCLR₂
HCLR,	L 12			27	Þ	DINO
WE	[13	W	rite	26	Þ	DINI
VCLR₀ I	[14	ро	rt 0	25	Þ	D _{IN2}
INC ₀	[15		 -	24.	Þ	DIN3
HCLR₀ I	[16			23	Þ	RM
CKW₀ I	Ц17.			22	Þ	APM
NC.	[18			21	Þ	NC.
V _{cc} I	[19			20	Þ	Vss
					•	

(FPT-38P-M01)

Copyright® 1990 by FUJITSU LIMITED

EXPLANATION OF FUNCTIONS

RM

Depending on the state of this pin, the operation mode of the MB81C1501 splits into two paths: recursive mode when "H" and nonrecursive mode when "L".

- Recursive mode: This mode is used to access the 960 x 306 memory cell sequentially from 0 to 293,759. Initialization is performed by input to the VCLR₀ to 2 pin. When writing, serial data is input when "H" on VCLR₀ is latched to CKW₀ and is treated as 0 line 0 block data input. When reading, serial data is output as 0 line 0 block data after a 64 clock delay from when an "H" on VCLR, to 2 is latched to CKR, to 2.
- Nonrecursive mode: This mode treats the 960 x 306 memory cell as 1 line and 16 blocks (60 bits). This mode controls lines with VCLR₀ to 2 and INC₀ to 2, and controls blocks with HCLR₀ to 2. The difference between the two modes is as follows: for write operations, serial data input when an "H" on HCLR₀ is latched to CKW₀ is treated as data for line 0 block 0 in nonrecursive mode. In read operations, serial data output, delayed 64 clocks from when an "H" on HCLR₁ to 2 is latched to CKR₁ to 2, is output as data for line 0 block 0 from read port 1 and 2 respectively in nonrecursive mode.

APM

This pin is required for the mode in which block addresses are present in one line of the write port. The address preset mode is valid only when RM is "L" (nonrecursive mode). When HCLR₀ is latched to CKW₀ and this pin is "H", one of the sixteen blocks is selected by the 4 bits of ADD₀ to ₃. The pin must be "L" when the address-preset mode is not used. Multi-function pins (TR_0/ADD_0 , TR_1/ADD_1 , TSM/ADD₂, and TR_2/ADD_3 ,) can be used in this case for TSM and TR_0 to $_2$.

TR₀/ADD₀, TR₁/ADD₁, TSM/ADD₂, and TR₂/ADD₃

These pins act as block address preset pins in the nonrecursive mode (RM = "L"), and when APM is "H" (address preset mode). When APM is "L", the pins act as synchronous transfer mode pins.

- In address preset mode, using 4-bit binary data fed to input pins ADD₀ to ₃, a horizontal line block (60 bits) of the write port can be selected from among sixteen blocks.
- When TSM is "L" (master chip), a synchronizing signal for internal transfer timing with another MB81C1501 is output from TR₀ to 2. When TSM is "H" (slave chip), the synchronizing signal is received from the other device.
- TRo is an input-output pin for synchronous write transfer of the write port...
- TR, is an input-output pin for synchronous read transfer of read port 1.
- TR₂ is an input-output pin for synchronous read transfer of read port 2.
- When synchronous transfer mode is used, all of TRo, TR1, and TR2, must be connected between master chip and slave chip.
- But when there are unused ports (for example, in case that read port isn't used), slave side synchronous transfer signal input
 pins (for example, TR₂) of the ports must be set "L" certainly.

CKW₀

The rise timing of this pin generates the signal that latches data onto the shift register of the input pins D_{IN0} to $_3$ and the input of each internal address point control pin (VCLR₀, HCLR₀, INC₀). This signal is also the basic signal for activation control of the internal clock-synchronization logic circuit and of the dynamic RAM. Therefore, the clock must operate whether there is a write operation or not.

MB81C1501

VCLR₀

This pin has different functions for recursive mode (when RM = "H") and for nonrecursive mode (when RM = "L").

The number of VCLR_o is not counted until "H" is latched to each CKW_o after "L" is recognized. Even if "H" continues, it will only be counted once.

In recursive mode: When the "H" on VCLR₀ is latched to CKW₀, serial write data input is read as (0, 0). Input data of less than one block (60 bits) entered is disregarded. In nonrecursive mode: When the "H" on VCLR₀ is latched to CKW₀, the shift register advances until the block (60 bits) during the current serial write operation is filled. Then the line is cleared. When VCLR₀ is input during serial write operations, after the input of 60 bits is completed, the serial write data is transferred to the memory cell of (v, h), and the subsequent data for serial write operation is transferred to the memory cell of (0, h+1).

HCLR₀

When an "H" on this pin is latched to CKW₀, the input data is read as data of (v, 0) data from the input data at that time. Data of less than one block (60 bits) entered up to that point is eliminated. But, input to this pin is invalid in recursive mode (when RM = "H"). The count number of HCLR₀ is not counted unless the "H" is latched to each CKW₀ after "L" is recognized. Even if "H" continues, it is only counted once.

INC₀

A line is incremented for each time this pin's "H" is latched to CKW_o . There are two ways that the incremented line can be valid: first, when an "H" on $HCLR_o$ is latched, and second, when the shift register advances up to the end of a block after the "H" on $VCLR_o$ is latched. But, signals to this pin have no meaning in recursive mode (when RM = "H").

The count number of INC₀ is not counted unless the "H" is latched to each CKW₀ after "L" is recognized. Even if "H" continues, it is only counted once.

When combined with VCLR₀, the next 60 bits data is input into the (n, h+1) memory cell. n is the count number of INC₀ counted from the status that VCLR₀ is latched to CKW₀ until the current write in shift register is filled up to 60 bits.

But, if INC_0 and $VCLR_0$ occur at the same time, INC_0 is invalid. When combined with HCLR₀, the next 60 bits data is input into the (v+n, 0) memory cell. n is the count number of INC_0 counted from the status that HCLR₀ is latched to CKW₀ last time to the current latch status.

But, if INC, and HCLR, occur at the same time, INC, is invalid.

CKR1, 2

At the rise timing of this pin the shift register of the read port operates, and the signals to output data to the output pins D_{oto} to ₁₃ and D_{oxo} to ₂₃, and to latch the input of each internal address pointer control pins (VCLR_{1,2}, HCLR_{1,2}, INC_{1,2}) are generated.

VCLR_{1,2}

This terminal has different functions in the recursive mode (RM = "H") and the nonrecursive mode (RM = "L"). The VCLR_{1,2} count number is not counted unless the "H" is latched to each $CKR_{1,2}$ after "L" is recognized. Even if "H" continues, it is only counted once.

In recursive mode:	When the "H" on VCLR _{1,2} is latched to CKR _{1,2} , (0, 0) data is output with 64 clocks delay from that time. Meanwhile the shift register data (60 bits) in shift is output to its end, and the final output is saved.
In nonrecursive mode:	When the "H" on VCLR _{1,2} is latched to CKR _{1,2} , the current serial read block is output, and after output of the next 60 bit block, the block which continues the cleared line begins to be output. Therefore, VCLR _{1,2} is latched and a line of the internal address counter is cleared. At this time, data for the next serial output (v, h+1) has already been transferred to the data register from the memory cell, and the data (0, h+2) is transferred with the data (v, h+1) is output, and next the (0, h+2) data is output.

HCLR_{1,2}

When the "H" of this pin is latched to $CKR_{1,2}$, the data (v, 0) is output with 64 clocks delay from that time. Meanwhile, shift register data in shift is output to its end and the last output is saved. When the RM pin is "H", signals to this pin have no meaning. The HCLB count number is not counted unless the "H" is latched to each CKB after "I" is recognized. Even if "H" continues it is

The HCLR_{1,2} count number is not counted unless the "H" is latched to each CKR_{1,2} after "L" is recognized. Even if "H" continues, it is only counted once.

INC1, 2

A line is incremented for each time this pin's "H" is latched to CKR_{1,2}. There are two ways for the incremented line to be valid: first, when the "H" on HCLR_{1,2} is latched, and second, when the line address is latched at 56 clocks of the block after the "H" on VCLR_{1,2} is latched. But, signals to this pin have no meaning in recursive mode (when RM = "H").

The INC, 2 count number is not counted unless the "H" is latched to each CKR, 2 after "L" is recognized. Even if "H" continues, it is only counted once.

When combined with VCLR_{1,2}, after the next data from the shift register should be output into the (n, h+2) memory cell. n is the count number of INC_{1,2} counted while VCLR_{1,2} is latched to each CKR_{1,2} before 55 clocks block.

When INC_{1,2} and VCLR_{1,2} occurs at the same time, INC_{1,2} is invalid.

When combined with HCLR_{1,2} the shift register data is output from HCLR_{1,2} with 64 clocks delay into (v+n, 0) memory cell. n is count number of INC_{1,2} counted from when HCLR_{1,2} is latched to each CKR_{1,2} last time until HCLR_{1,2} is latched at this time. When INC_{1,2} and HCLR_{1,2} occur at the same time, INC_{1,2} is valid.

DATA INPUT (D_{INO} to 3)

Information to the data input pin is accepted and input into the shift register on the rising edge timing of CKW₀ with WE is the "L" state. When WE is "H", input data is not accepted and the write shift register does not operate (gate function of write clock).

Shift register input is executed immediately but after one block (60 bits) has been input into the memory cell, it is loaded into the data register, and is transferred from the data register to the memory cell until the shift register is fulled with new data. Thus, serial write data input delay serial write, is transferred to the memory cell with a one block delay.

INPUT CONTROL (WE)

 \overline{WE} excutes input control to D_{IN0} to ₃. When \overline{WE} is "L", synchronous input to CKW₀ is enabled. When \overline{WE} is "H", input is not acceptable and the operation of the shift of the write shift register is stopped. This is used when data input is sparse (\overline{WE} gate function of on the write side of the input cycle (CKW₀)).

DATA OUTPUT (Do10 to 13, Do20 to 23)

The output buffer employs a three state TTL level, output is enabled when $\overline{OE}_{1,2}$ is "L" and data is output synchronous with CKR_{1,2}. Output goes to high impedance for "H", the shift register operates synchronously with CKR_{1,2} and executes transfer between memory cell and data register and loading between data register and shift register.

Output from the shift register is always executed, data during output is data transferred to the shift register from a memory cell one block before the current output block.

OUTPUT CONTROL (OE1, 2)

 \overline{OE}_1 controls only the output pins D_{o10} to $_{13}$. \overline{OE}_2 controls only the output of pins D_{o20} to $_{23}$ and does not stop the operation of the read port shift register. When $\overline{OE}_{1,2}$ is "L", D_{o10} to $_{13}$ and D_{o20} to $_{23}$ output is enabled, a synchronous with CKR_{1,2}. When $\overline{OE}_{1,2}$ is "H", the output is high impedance state, and a synchronous with CKR_{1,2}.

FUNCTION TABLE

FUNCTION TABLE-1 <OPERATION MODE>

Occurries and	Co	ontrol in	put	Address input	Transfer synchronous I/O
Operation mode	RM	TSM	APM	ADD _{tos}	TR _{owa}
Recursive mode, transfer synchronous mode output	н	L	L	-	Valid Data Output
Recursive mode, transfer synchronous mode input	н	н	L		Valid Data Input
Nonrecursive mode, transfer synchronous mode output	L	L	L		Valid Data Output
Nonrecursive mode, transfer synchronous mode input	L	н	L		Valid Data Input
Nonrecursive mode, address preset mode	· L	-	н	Valid Data Input	

H: High level L: Low level

ADDRESS – BLOCK CORRESPONDENCE TABLE

Block number	ADD,	ADD ₂	ADD,	ADD _o
0	L	L	L	L
1	L	L	L	Н
2	L	L	Н	L
3	L	L	Н	Н
4	L	Н	L	L
5	L	н	L	Н
6	L	Н	Н	L
7	L	н	Н	Н
8	Н	L	L	L
9	Н	L	L	Н
10	н	L	Н	L
11	Н	L	Н	Н
12	н	н	L	L
13	Н	н	L	Н
14	н	н	н	L
15	Н	Н	Н	Н

H: High level L: Low level

NOTE: The block number increases with each write or read of a line.

Mode description	No.	Cycle description	RM	VCLR	HCLR.	inc.	APM	ADD ₀₋₃	Internal address pointer
Recursive mode	1	Initial cycle	н	н					(v, h) is cleared to (0, 0).
Hecuisive mode	2	Normal cycle		L		_			Cycles from (0, 0) to (305, 15).
	1	Initial cycle		н	н	L			(v, h) is cleared to (0, 0).
	2	Normal cycle		L	L	L			Stops at (v, 15).
	3	First block cycle		L	н	L	L	-	(v, h)h is cleared to (v, 0).
Nonrecursive mode	4	Line address cycle		L	н	nH			(v, h)v is set and h is cleared to (v+n, 0).
		VCLR ₀ special cycle No. 1		н	L	L			(v, h)v is cleared to (0, h+1).
	5	VCLR ₀ special cycle No. 2		н	L	nH			(v, h)v is set to (v+n, h+1).
1		VCLR₀ special cycle No. 3	,	н	н	nH]		(v, h)v is set and h is cleared to (n, 0).
	1	Initial cycle		н	н	L		Valid data	(v, h)v is cleared and h is set to (0, ADD).
	2	Normal cycle		L	L	L		_	Stops at (v, 15).
Nonrecursive	3	First block cycle		L	н	L		Valid data	(v, h)h is set to (v, ADD).
address preset mode	4	Line address cycle		L	н	nH	н	Valid data	(v, h)v and h are set to (v+n, ADD).
		VCLR₀ special cycle No. 1		н	L	L		_	(v, h)v is cleared to (0, h+1).
	5	VCLR₀ special cycle No. 2		н	L	nH		_	(v, h)v is set to (n, h+1).
		VCLR ₀ special cycle No. 3		н	н	nH		Valid data	(v, h)v and h are set to (n, ADD)

FUNCTION TABLE-2 <WRITE>

Note.

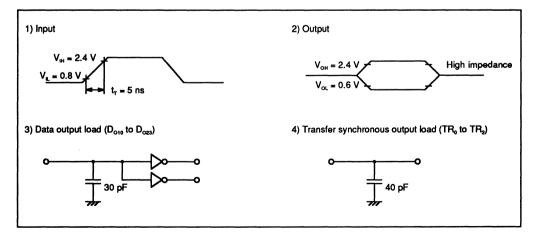
- 1. (v, h)v : Line address (0 to 305) at control signal input
- (v, h)h : Block address (0 to 15) at control signal input
- 2. Directly set the mode design signal (RM, APM) to "H" or "L".
- 3. H : "H" level is latched by CKW.
 - nH : "H" level is latched n times by CKW₀.
- 4. 60 bits of input data are read from VCLR₀, in recursive mode. In nonrecursive mode, data read starts with the data latched by CKW simultaneously with HCLR₀. If VCLR₀ and HCLR₀ are input before the full 60 bits of data is input, the data is invalid.
- 5. When the APM signal is low, the TSM pin is invalid and both the read port and the write port enter the transfer synchronous mode. A low on the TSM pin puts the MB81C1501 into the master operation mode. In this mode the device outputs an internal transfer timing synchronization signal to the slave MB81C1501. A high on the TSM pin puts the device into the slave mode: and it receives the synchronization signal from the master MB81C1501.
- 6. Block address (ADD0 to 3) at address preset mode must be latched with CKW₀ and HCLR₀ at the same time.

Mode description	No.	Cycle description	RM	VCLR _{1,2}	HCLA	INC1.2	APM	ADD ₀₋₃	Internal address pointer
Recursive mode	1	Initial cycle	н	н	_				(v, h) is cleared to (0, 0).
neculaive filode	2	Normal cycle	<u> </u>	L		_			Cycles from (0, 0) to (305, 15
	1	Initial cycle		н	н	L			(v, h) is cleared to (0, 0).
	2	Normal cycle		L	L	L			Stops at (v, 15).
3	First block cycle		L	н	L	-	_	(v, h) h is cleared to (v, 0).	
Nonrecursive mode	4	Line address cycle	Ι.	L	н	nH			(v, h)v is set and h is cleared t (v+n, 0).
		VCLR _{1,2} special cycle No. 1	-	Н	L	L			Advances to (v, h) (v, h+1), and v is cleared to (0, h+2).
		VCLR _{1, 2} special cycle No. 2]	н	L	nH			Advances to (v, h) (v, h+1), and v is set to (n, h+2).
		VCLR _{1, 2} special cycle No. 3]	н	н	nH			(v, h)v is set and h are cleared to (n, 0).

FUNCTION TABLE_3 _READS

Note.

- *1.
- ***2**. 60 bits of output data are output from VCLR_{1, 2}, in recursive mode, or from HCLR_{1, 2} in nonrecursive mode with a 64-clock-cycle delay.
- *****3. If VCLR_{1,2} or HCLR_{1,2} is input during output of a block, the data of the output block or the next block is protected in 60 bit units. Until the new data is output, the latest data is protected.
- When the number of blocks (VCLR_{1,2} to VCLR_{1,2}, HCLR_{1,2} to HCLR_{1,2}) is set to a multiple of 60 clock cycles, continuous data ***4**. access is possible.


RECOMMENDED OPERATING CONDITIONS

Parameter Notes	Symbol	Min.	Тур.	Max.	Unit
Supply voltage 1	V _{cc}	4.5	5.0	5.5	v
Supply voltage 1	V _{ss}	0	0	0	v
Operating temperature	T,	0	-	70	°C

CAPACITANCE

				(T _A = 25°C
Parameter	Symbol	Min.	Max,	Unit
Input capacitance	C _{IN}	1	7	pF
Output capacitance (D ₀₁₀ to D ₀₂₃)	C _D	-	7	pF
VO capacitance (TR _o to TR ₂)	C _T	-	10	pF

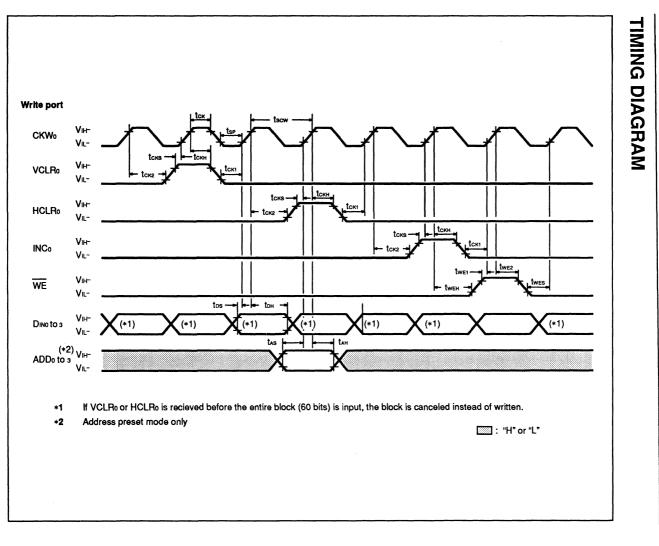
AC TEST CONDITIONS

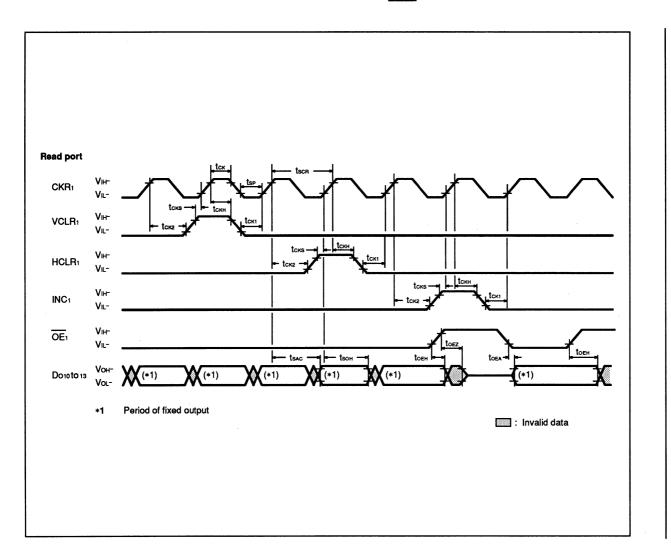
DC CHARACTERISTICS

(Under recommended operating conditions unless otherwise noted.) Notes 4

Parameter	Notes	Conditions				
Operating current #1	2	t _{scwo} = 70 ns, t _{scri, 2} = 70 ns		-	45	mA
Operating current #2	2	t _{scwo} = 70 ns, t _{scn1, 2} = 35 ns].	-	60	mA
Operating current #3	2	t _{scwo} = 50 ns, t _{scn1, 2} = 50 ns		-	60	mA
Operating current #4	2	t _{scwo} = 50 ns, t _{scni, 2} = 30 ns	7	-	75	mA
Refresh current	2.3	t _{scwo} = 420 ns, t _{scri, 2} = 70 ns	I _{CC2}	-	20	mA
Input leakage current		$0 \text{ V} \leq \text{V}_{IN} \leq 5.5 \text{ V}, \text{ VCC}=5.5 \text{V}, \text{ VSS}=0 \text{V}$	1 _{KL)}	10	10	μA
		All other pins not under test is 0V				
Output leakage current		output impedance, 0 V \leq V _{out} \leq 5.5 V	I _{o(L)}	-10	10	μA
Input High Voltage	٦	all input pins	V _{iH}	2.4	6.5	v
Input Low Voltage	D	all input pins	V _{IL}	-2.0	0.8	v
Output High Voltage	1	I _{он} = –2 mA	V _{он}	2.4	-	v
Output Low Voltage	1	l _{oL} = 4.2 mA	V _{oL}	-	0.4	v

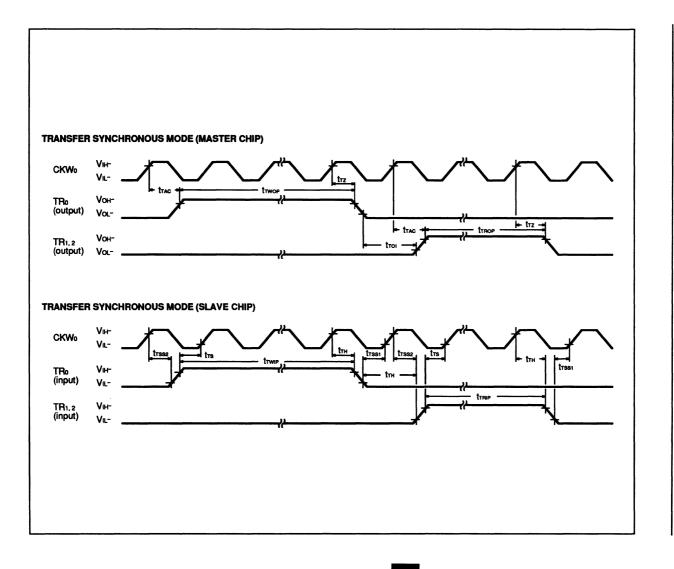
AC CHARACTERISTICS

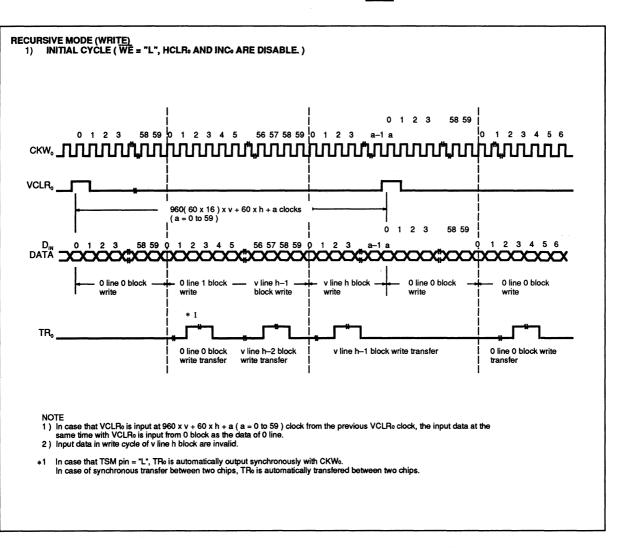

(Under recommended operating conditions unless otherwise noted.) Notes 4.5

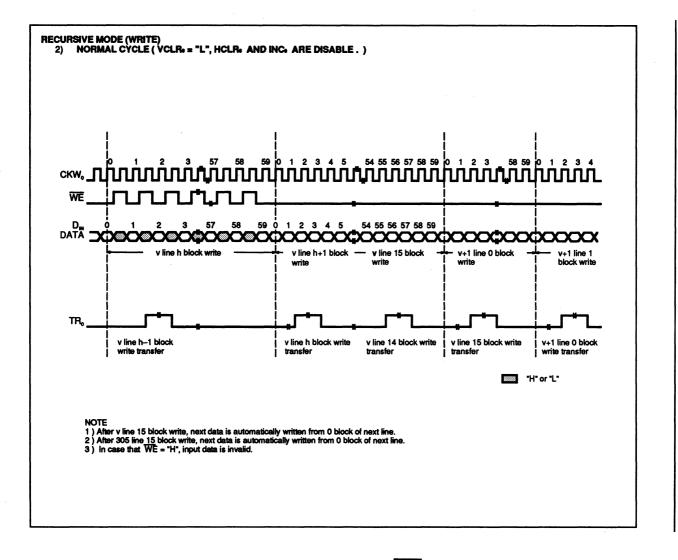

Parameter	Symbol	Min.	Мах	Unit	Notes
Time Between Refresh	t _{REF}	-	21	ms	
CKR Cycle time	t _{SCR}	30	70	ns	*9
Pulse width for CKW and CKR (CKW, CKR Pulse width)	tск	8	_	ns	
Precharge time for CKW and CKR (CKW, CKR Precharge time)	t _{SP}	8	-	ns	
Access time from CKR	tsac	-	25	ns	*6
Data output hold time from CKR	t _{son}	5	-	ns	*6
Access time from OE	t _{oea}	-	20	ns	*6
OE data output hold time	t _{oen}	5	-	ns	*6
Data output turn-off delay time from OE	toez	-	20	ns	+6
Active setup time for VCLR, HCLR, INC-CKR, and CKW	t _{скs}	5	-	ns	
Active hold time for VCLR, HCLR, INC-CKR, and CKW	t _{скн}	7	-	ns	
Inactive setup time for VCLR, HCLR, INC-CKR, and CKW	tскı	5	-	ns	
Inactive hold time for VCLR, HCLR, INC-CKR, and CKW	t _{ск2}	7	-	ns	
CKW Cycle time	tscw	50	2 t _{SCR}	ns	+10
Setup time for D _{IN} and CKW	t _{os}	5	- 1	ns	Τ
Hold time for D _{IN} and CKW	t _{DH}	7	-	ns	
Active setup time for WE and CKW	twes	5	-	ns	
Active hold time for WE and CKW	tweн	7	-	ns	
Inactive setup time for WE and CKW	t _{we1}	5	-	ns	
Inactive hold time for WE and CKW	t _{we2}	7	-	ns	
Setup time for ADD and CKW	t _{AS}	10	_	ns	
Hold time for ADD and CKW	t _{AH}	8	_	ns	
Access time for transfer synchronous output from CKW	t _{TAC}	-	25	ns	*7
Number of transfer synchronous output pulses TR_0 TR_1 , TR_2	t _{TWOP} t _{TROP}	5 4	5 4		*7, *8
Turn-off delay time for transfer synchronous output from CKW	t _{TZ}	-	25	ns	*7
Number of transfer synchronous output interval pulses	t _{T01}	1	-		*8
Active setup time for TR ₀ , TR ₁ , and TR ₂ -CKW	t _{TS}	15	-	ns	
Active hold time for TR ₀ , TR ₁ , and TR ₂ -CKW	t _{тн}	7	-	ns	
Inactive setup time for TR ₀ , TR ₁ , and TR ₂ -CKW	t _{TSS1}	7	-	ns	
Inactive hold time for TR ₀ , TR ₁ , and TR ₂ -CKW	t _{TSS2}	7	-	ns	
Number of transfer synchronous input pulses $$TR_{0}$$$TR_{1}, TR_{2}$$	t _{TWIP} t _{TRIP}	5 4	5 4		*8
Number of transfer synchronous input interval pulses	t _{tu}	1	-		*8
Rise and fall time for input pulse	t _T	3	40	ns	

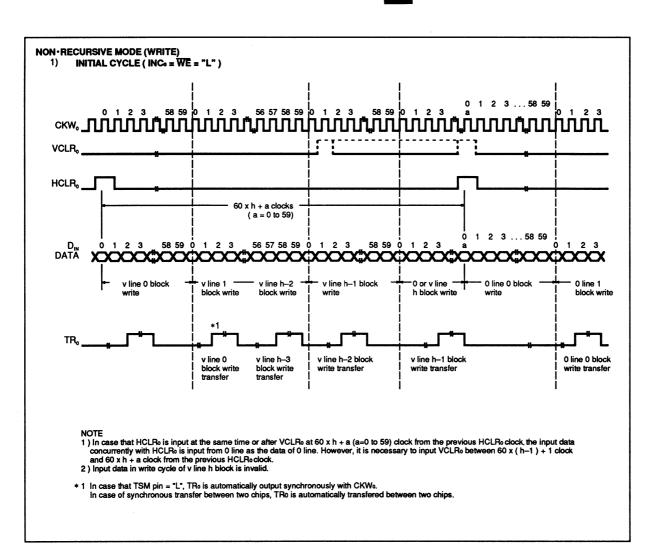
MB81C1501

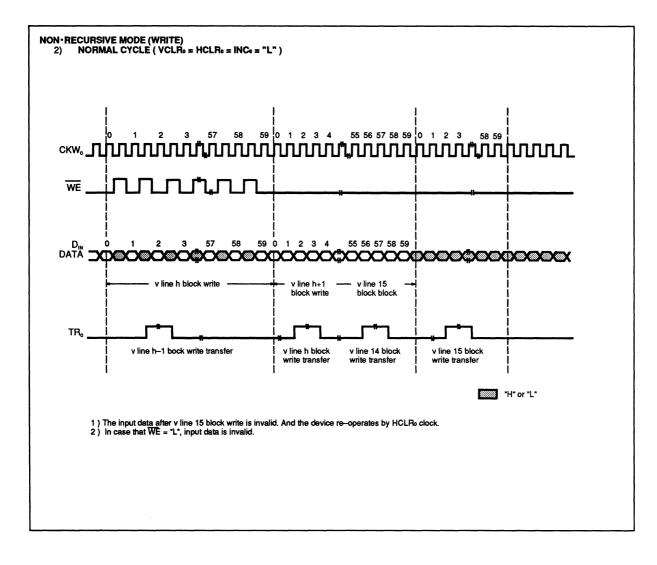
Notes :

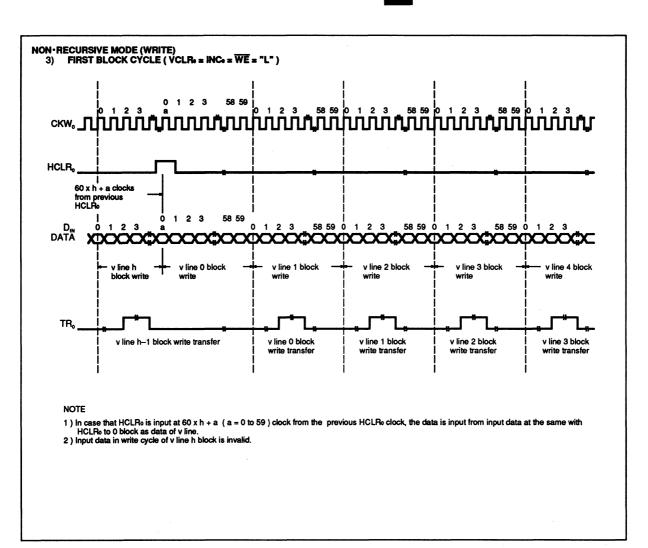

- Referenced to V_{ss} 1.
- 2. Icc depends on cycle time and output load conditions. The specified values are obtained with the output open.
- WE = "H" : one read port active 3.
- An initial pause of 200₄s is required after power-up followed by dummy cycle before proper device operation For dummy cycle, a minimum of one VCLR is required in recursive mode, and VCLR and HCLR for non-recursive mode. 4.
- : 0 V to 3 V 5 AC test conditions : Input pulse level $\begin{array}{l} 0 \ V \ IG \ S \ V \\ t_{T} = 5 \ ns \\ Input \ V_{H} = 2.4 \ V \\ V_{IL} = 0.8 \ V \\ Output \ V_{OH} = 2.4 \ V \\ V_{OL} = 0.6 \ V \end{array}$ Rise and fall time of input pulse Standard voltage level for timing calibrations
- 6 2 TTL + 30 pF load
- 40 pF load 7
- 8 Number of t_{scw} pulses
- 9 This parameter for a read port assures the refresh operation. When two read ports are used, one of them is controlled by this parameter, and the other one is not.
- The maximum cycle time of the write port (t_{scw}) can be extended to twice the cycle time (t_{scw}) of the faster read port. For the refresh operation, when WE is "H" and one of the read ports is active, the write cycle time (t_{scw}) can be extended to six times the read cycle time(t_{scw}). When refresh power is minimal, the read cycle time (t_{scw}) is 70 ns and write cycle time (t_{scw}) is 420 10 ns.


MB81C1501

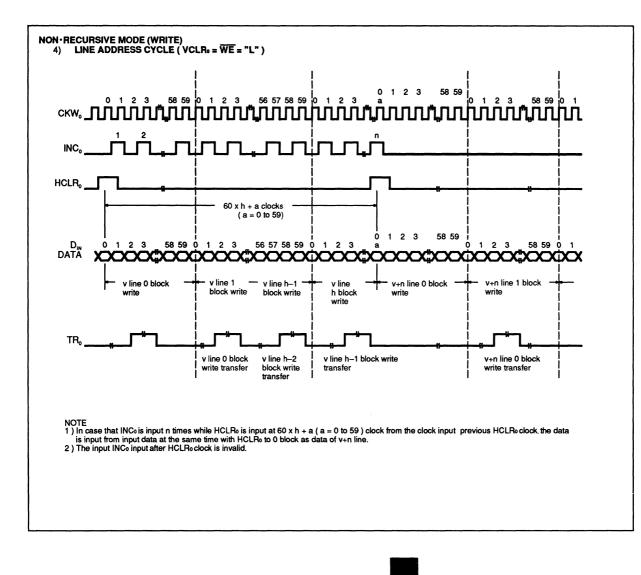

3-80


3-81





MB81C1501


3-84

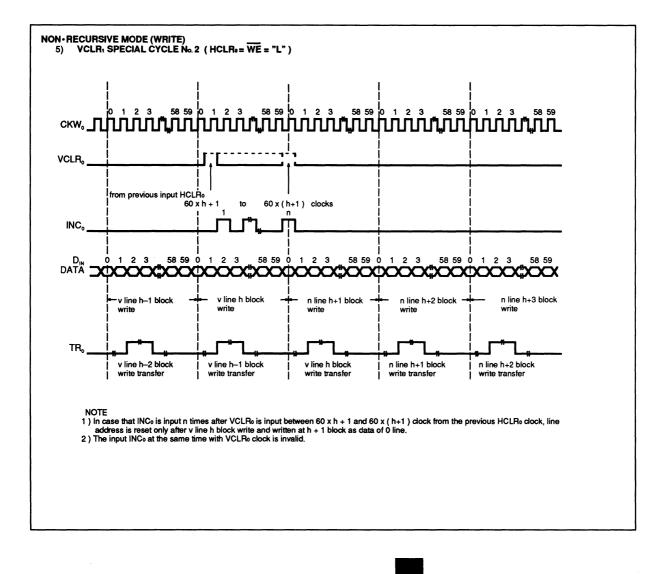
NON·RECURSIVE MODE (WRITE) 5) VCLR₁ SPECIAL CYCLE No. 1 (HCLRo = INCo = \overline{WE} = "L") ŴŴŧĨĨŴŶĨŶŦĨĨŶŶĬĬĬĨ 58 59 1 2 3 2 3 58 59 скw, _П 10805 10,0**0**,000 6-6 1 VCLR. from previous input HCLRo 60 x (h+1) clocks 60 x h +1 to 58 59 23 58 59 0 1 2 3 58 59 0 1 2 3 2 3 58 59 2 3 1 58 59 D, 0 1 0 DATÄ YY $\mathbf{C}\mathbf{T}$ ന \mathbf{C} 0 line h+2 block -0 line h+3 block v line h-1 block - v line h block write-0 line h+1 block write write write write TR_o 0 line h+2 block 0 line h+1 block v line h -- 2 block v line h-1 block v line h block

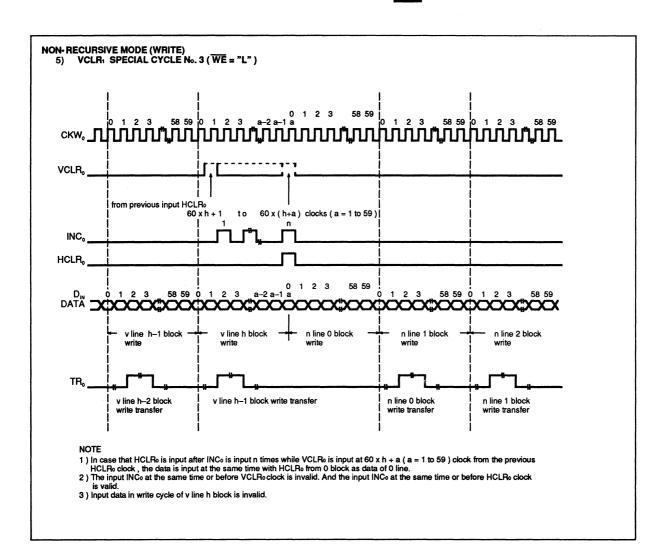
NOTE

write transfer

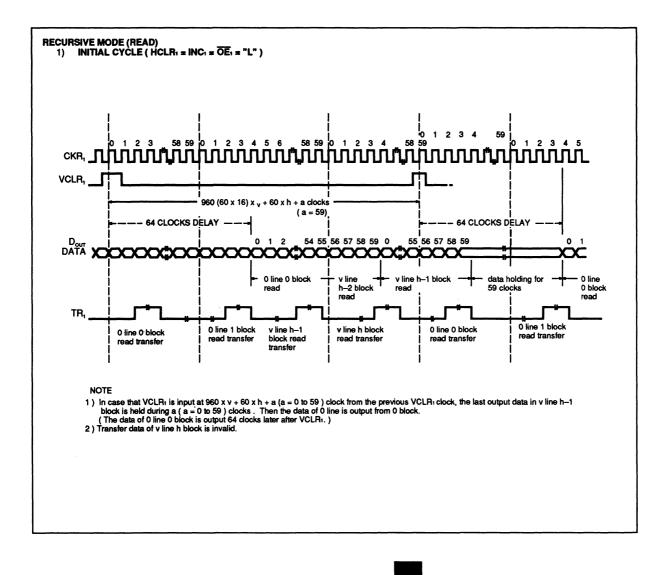
write transfer

In case that VCLR₀ is input between 60 x h + 1 and 60 x (h + 1) clock from the previous HCLR₀ clock, after v line h block write, line address is reset only and written at h + 1 block as the data of 0 line continuously.

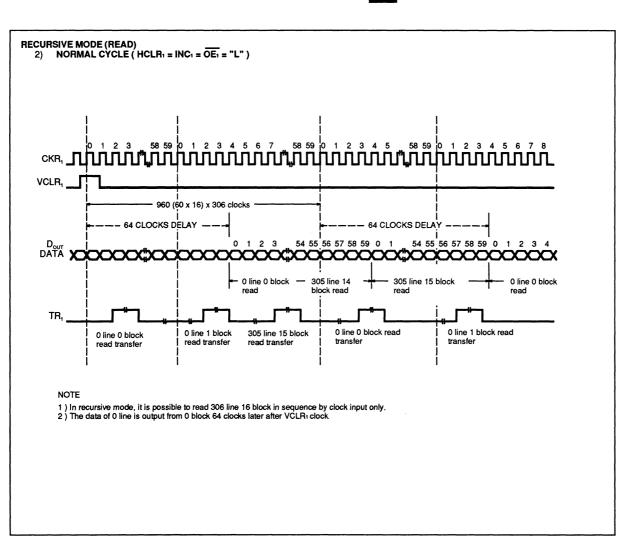

write transfer

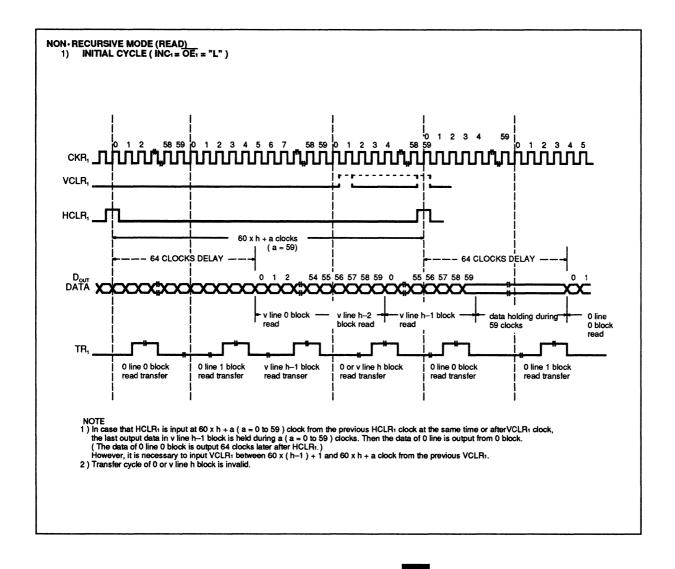

write transfer

write transfer


3-88

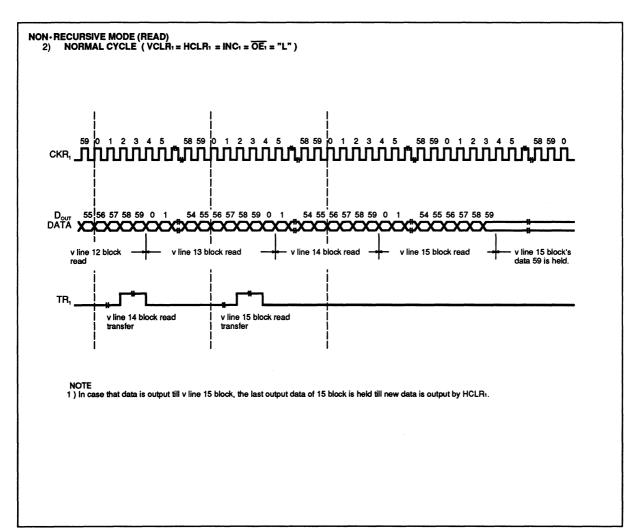
ω

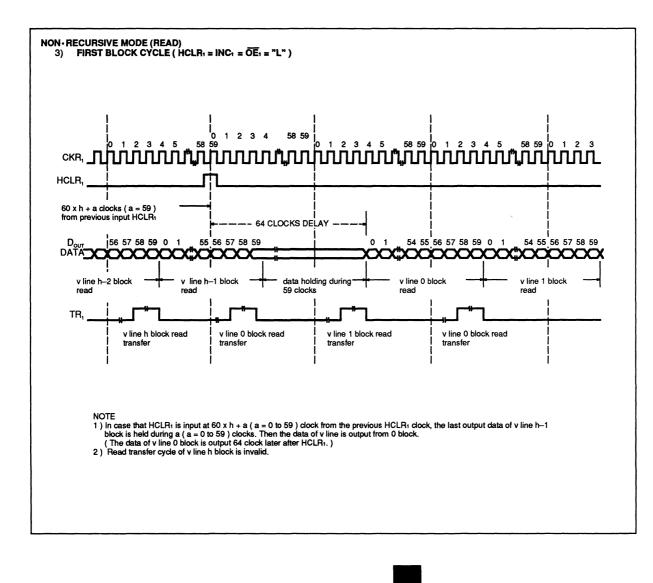




3-91

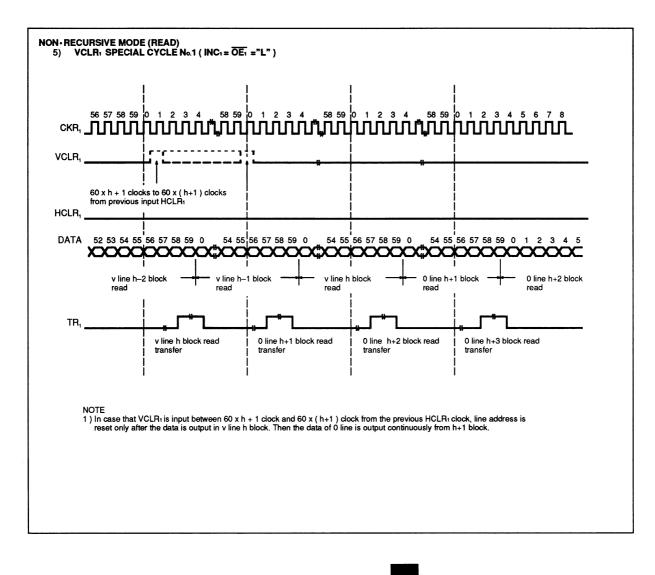
ω



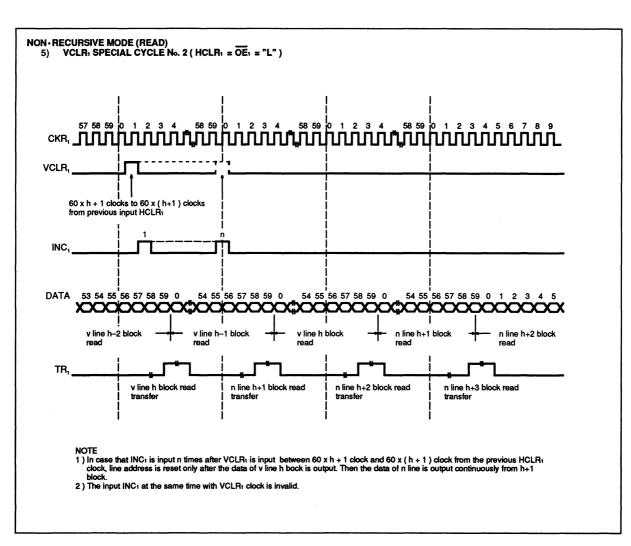


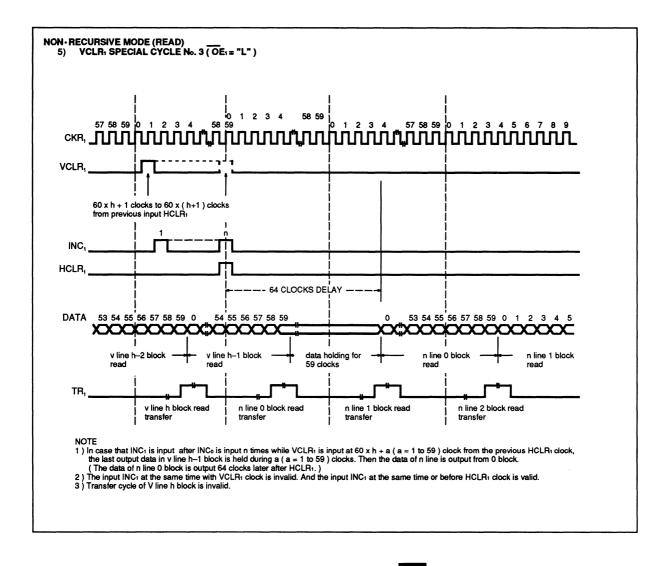
T

ω


3

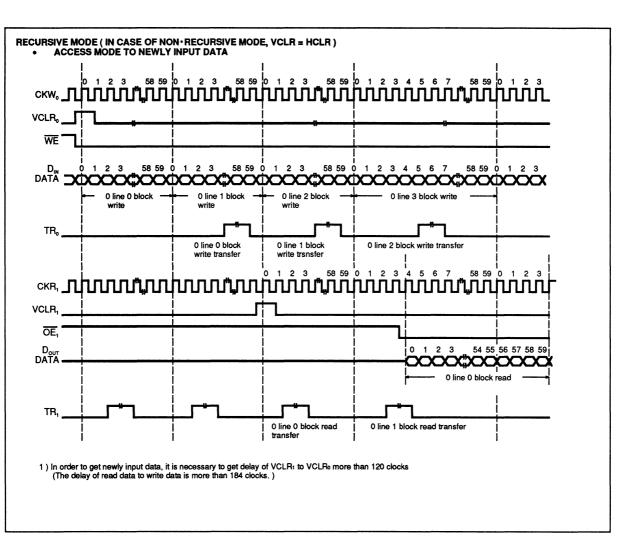
ω



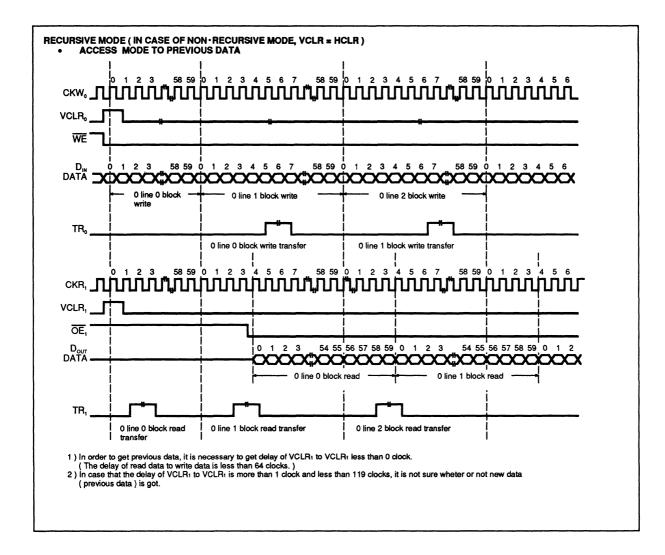


3-97

ω



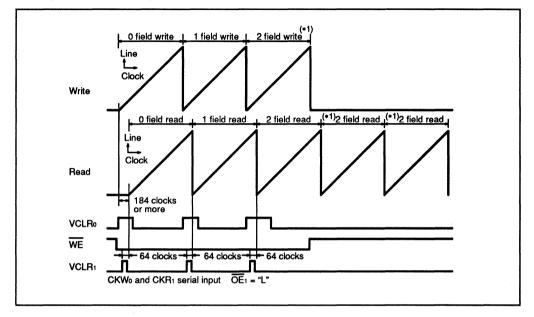
3-98



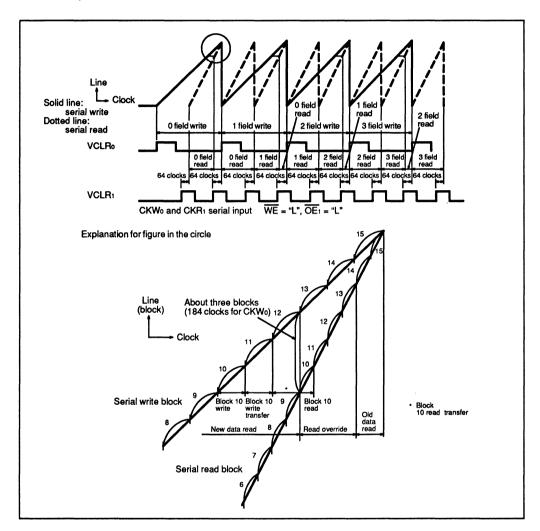
ω

MB81C1501

3-100



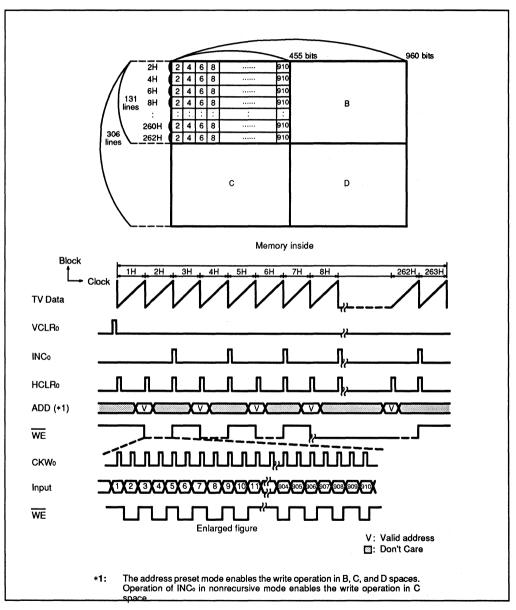
3-101


ω

APPLICATION EXAMPLE

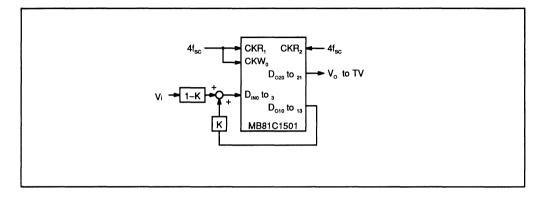
1. Delay line, field memory: In recursive mode

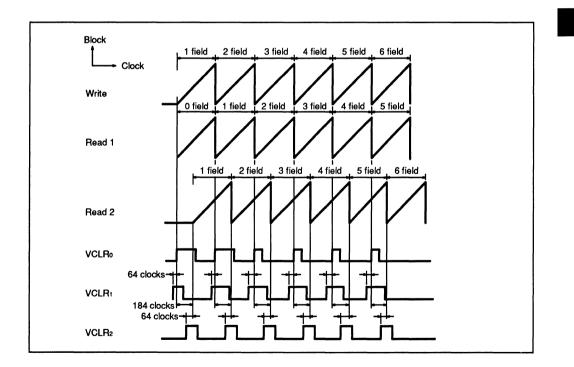
- If the cycle times of CKW_o and CKR₁ are the same, asynchronous operation is also possible.
- If the cycle times of CKW₀ and CKR₁ are different, see application example 2, where read override may occur.
- In nonrecursive mode, lines must be advanced for each line with combinations of INC and HCLR input.
- * 1: When using 306 line/16 block/60 bits, the serial read operation is possible only through input of CKR1 and CKW0, even if VCLR1 is not input.


2. Double-speed conversion: In recursive mode

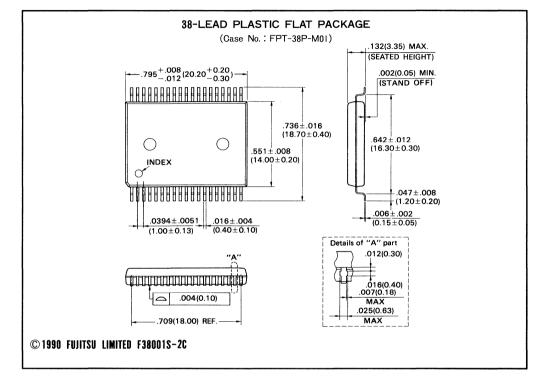
Read override

When block data written with double-speed conversion is read, the phase delay of the read operation versus the write operation requires about three write blocks (184 clocks for CKW).


When two chips are used for the X8 configuration, if the two chips are operated independently, read override between the two
chips may shift. Therefore, caution should be exercised. To synchronize read override between two chips, the synchronous
transfer mode which sets one chip as a master chip and the other as a slave chip should be used.


MB81C1501

3. Write operation of 1/2 compressed data to memory: In nonrecursive mode, address preset mode


4. Noise reduces between fields

In the field memory (three ports) is used, stable output can be obtained, regardless of jitter from the write clock. In addition, the correlation between frames or lines can be calculated.

EXTERNAL DIMENSION

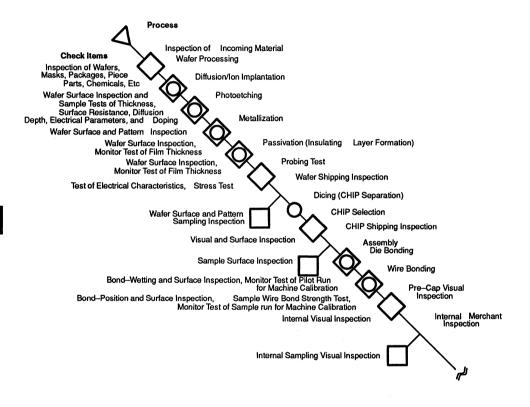
—— Section 4

Quality and Reliability — At a Glance

Page	Title
4-3	Quality Control at Fujitsu
4-4	Quality Control Processes at Fujitsu

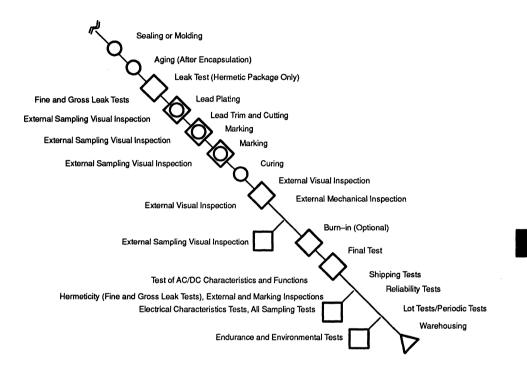
Quality Control at Fujitsu

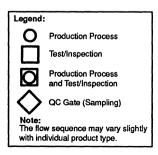
Built-in Quality and Reliability


Fujitsu's integrated circuits work. The reason they work is Fujitsu's single-minded approach to built-in quality and reliability, and its dedication to providing components and systems that meet exacting requirements allowing no room for failure.

Fujitsu's philosophy is to build quality and reliability into every step of the manufacturing process. Each design and process is scrutinized by individuals and teams of professionals dedicated to perfection.

The quest for perfection does not end when the product leaves the Fujitsu factory. It extends to the customer's factory as well, where integrated circuits are subsystems of the customer's final product. Fujitsu emphasizes meticulous interaction between the individuals who design, manufacture, evaluate, sell, and use its products.


Quality control for all Fujitsu products is an integrated process that crosses all lines of the manufacturing cycle. The quality control process begins with inspection of all incoming raw materials and ends with shipping and reliability tests following final test of the finished product. Prior to warehousing, Fujitsu products have been subjected to the scrutiny of man, machine, and technology, and are ready to serve the customer in the designated application.

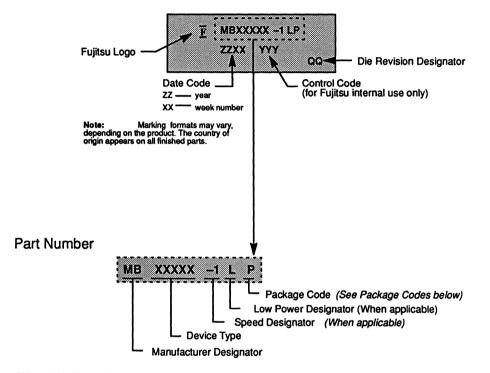

Quality Control Processes at Fujitsu

Continued on next page

Quality Control Processes at Fujitsu (Continued)

Quality and Reliability

Dynamic RAM Data Book


Section 5

Ordering Information — At a Glance

Page	Title
5-3	IC Package Marking
5-3	Part Number
5-4	IC Package Marking and Ordering Information – Plastic
55	IC Package Marking and Ordering Information – Ceramic

Dynamic RAM Data Book

IC Package Marking

MB Identifies an IC designed and manufactured by Fujitsu with a Fujitsu-designated device number.

MBM Identifies an IC designed and manufactured by Fujitsu with a device number, designated by the industry, that is the industry standard number.

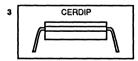
Note: Please contact your nearest Fujitsu sales office, representative, or distributor for exact part number/order information.

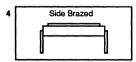
IC Package Marking and Ordering Information

This ordering information is presented as a guide to Fujitsu's package options. The codes shown here indicate the current selections available for IC packaging. Since device packages are subject to changes and updating, you should contact your closest Fujitsu Sales Office or Representative for the latest package information.

Plastic Package	S	
Description	Туре	Fujitsu Ordering Code ^{1,2,3}
Dual In-line Package, 600 mil Wide	DIP	P or M ³
Dual In-line Package, 300 mil Wide	Skinny DIP	P-SK or P
Dual In-line Package, 400 mil Wide	Slim DIP	P-SL or P
Dual In-line Package, 70 mil Lead Pitch	Shrink DIP	P-SH or P
Flatpack, 0.5 mm Lead Pitch	SSOP or SQFP	PFV
Leaded Chip Carrier	PLCC	PD or PV
Pin Grid Array Package	PGA	PR
Quad Flatpack	QFP	PFQ or PF
Single In-line Package	SIP	PS
Small Outline J-Leads	SOJ	PJ or PJN
Small Outline Package	SOP	PF or PNF
Thin Small Outline (with Normal Bend Leads) Package	TSOP	PFTN
Thin Small Outline (with Reverse Bend Leads) Package	TSOP	PFTR
Zig-zag In-line Package	ZIP	PSZ

¹Package ordering code appears as a suffix to Fujitsu's part number and speed designator (MBXXXXX-XXPKG). ²Package codes in the U.S.A do not use the "-"; e.g., PSK is the same as P-SK.


³M is used on bipolar devices only.


Continued on next page

IC Package Marking and Ordering Information (Continued)

Ceramic Packages		
Description	Туре	Fujitsu Ordering Code ^{1,2}
Dual In-line Package with CERDIP ³	CERDIP	Z
Dual In-line Package with Glass Frit Seal	DIP	Т
Dual In-line Package with Metal Seal (Side Brazed ⁴)	DIP	с
Dual In-line Package, 400 mil Wide	Slim DIP	Z-SL or Z T-SL or T C-SL or C
Dual In-line Package, 300 mil Wide	Skinny DIP	Z-SK or Z T-SK or T C-SK or C
Dual In-line Package, 1.778 mm Lead Pitch	Shrink DIP	Z-SH or Z T-SH or T C-SH or C
Flat Package with CERPACK	CERPACK	ZF
Flat Package with Glass Frit Seal	FPT	TF
Flat Package with Metal Seal	FPT	CF
Leadless Chip Carrier with Glass Frit Seal	LCC	тν
Leadless Chip Carrier with Metal Seal	LCC	CV
Pin Grid Array	PGA	CR
Quad Flat J-lead Package with CERPACK	QFJ	ZJ
Quad Flat, Gullwing Lead, Package with CERPACK	QFP	ZFL or ZF
Quad Flat, Gullwing Lead, Package with Metal Seal	QFP	CFL or CF
Small Outline, Gullwing Lead, Package with CERPACK	SOP	ZFL or ZF
Small Outline, Gullwing Lead, Package with Metal Seal	SOP	CFL or CF
Small Outline J-lead Package with Metal Seal	SOJ	CJ

¹Package ordering code appears as a suffix to Fujitsu's part number and speed designator (MBXXXXX–XXPKG) ²Package codes in the U.S.A do not use the "-"; e.g., ZSK is the same as Z–SK.

Dynamic RAM Data Book

----- Section 6

Page	Title
6-3	Introduction to Fujitsu
6-3	Fujitsu Limited (Japan)
6-4	Fujitsu Microelectronics, Inc. (U.S.A.)
66	Fujitsu Electronic Devices Europe
68	Fujitsu Microelectronics Asia PTE Ltd. (Singapore)
6-9	Integrated Circuits Corporate Headquarters - Worldwide
6-10	FMI Sales Offices for North and South America
6-11	FMI Representatives – USA
6-13	FMI Representatives - Canada, Mexico, and Puerto Rico
6-14	FMI Distributors – USA
6-18	FMI Distributors – Canada
619	FMG, FML, and FMIL Sales Offices for Europe
620	FMG, FML, and FMIL Distributors - Europe
6-22	FMAP Sales Offices for Asia, Australia and Oceania
6-23	FMAP Representatives – Asia and Australia
6-24	FMAP Distributors – Asia

Sales Information — At a Glance

Fujitsu Limited (Japan)

Fujitsu Limited was founded as a telecommunications equipment manufacturer in 1935, and today is not only one of Japan's leading telecommunications companies, but also one of the world's largest computer manufacturers.

This leadership has resulted, at least in part, from the superb quality of the company's semiconductors and electronic components. Manufactured by the company's Electronics Devices Operations Group, these vital electronic devices also contribute to the high reliability and performance of products made by many other manufacturers around the world.

Today, Fujitsu is one of the world's top manufacturers of semiconductors and electronic components. In Japan, Fujitsu's R&D laboratories for semiconductor and electronic components are situated in Kawasaki and Mie, and manufacturing works are located in lwate, Aizu, Wakamatsu and Suzaka. Fujitsu also has six affiliated manufacturing works in the country. Overseas facilities in the U.S, Europe, and Asia also help to meet the growing global demand for Fujitsu semiconductors and electronic components.

Fujitsu enforces strict quality control at all stages of production, from materials selection through manufacturing to final testing. As a result, Fujitsu's electronic devices are known for their extremely high reliability and excellent cost-to-performance ratio.

Fujitsu manufactures a full line of semiconductors and electronic components to meet the diverse applications of a wide variety of customers. Backed by Fujitsu's extensive R&D commitment equal to over 10 percent of annual sales, Fujitsu's electronic devices stay on the cutting edge of electronics technology.

Fujitsu Microelectronics, Inc. (U.S.A.)

Fujitsu Microelectronics, Inc. (FMI), with headquarters in San Jose, California, was established in 1979 as a wholly-owned Fujitsu Limited subsidiary for the marketing, sales, and distribution of Fujitsu integrated circuit and component products. Since 1979, FMI has grown to three marketing divisions, two manufacturing divisions and a subsidiary. FMI offers a complete array of semiconductor products for its customers throughout North and South America.

The Advanced Products Division (APD) is responsible for designing and selling a full line of SPARC processors and peripheral chips. APD also sells the EtherStar™ LAN controller that was designed by APD. It is the first VLSI device to integrate both StarLAN™ and Ethernet® protocols into one device. The core of APD's EtherStar chip was the result of APD's cooperative venture with Ungermann-Bass.

The Microwave and Optoelectronics Division (MOD) markets GaAs FETs and FET power amplifiers, lightwave and microwave devices, optical devices, emitters, and SI transistors.

The largest FMI marketing division is the Integrated Circuits Division (ICD) which markets the following standard devices, components, and ASICs.

Memory Products

DRAMS EPROMS EEPROMS NOVRAMS CMOS masked ROMS CMOS SRAMS BicMOS SRAMS Bipolar PROMS ECL RAMS STRAMS (self-timed RAM) Hi-Rel PROMs and SRAMS Memory cards Memory modules

Telecommunication Products

PLLs Prescalers Piezoelectric devices CODECs VCOs Telephone ICs Modems

Continued on next page

Microprocessor Products	4-bit microcontrollers DSPs
Logic Products	Ultra high-speed ECL/ECL TTL translator circuits
Analog Products	Linear ICs Transistors
Hybrid Products	Thick- and Thin-film Custom modules Stepper motor drivers
Special Purpose Controller	
Products	SCSI controllers Serial protocol controllers Video controllers (TV text, CRT, and picture-in-picture)
ASIC Products	CMOS gate arrays ECL gate arrays BiCMOS gate arrays GaAs gate arrays CMOS standard cells ASIC Gallery™ (SuperMacros™, Compiled Cells) ASICOpen™ CAD Software Framework (ViewCAD™, a design and verification tool that integrates with third-party CAD tools) Third-party EWS (engineering workstation) support
Customer support and cust	tomer training for ASIC products are

available through the following FMI design centers:

San Jose	Gresham
Dallas	Chicago
Atlanta	Boston

FMI's manufacturing divisions are in San Diego, California and Gresham, Oregon. The San Diego Manufacturing Division (SMD) assembles and tests memory devices. The Gresham Manufacturing Division (GMD) began manufacturing in 1988.GMD fabricates wafers, and produces ASIC products and DRAM memories. This facility, when completed, will have one million square feet of manufacturing—the largest Fujitsu manufacturing plant outside Japan.

FMI's subsidiary, Fujitsu Component of America, markets connectors, keyboards, thermal printers, plasma displays, and relays.

Continued on next page

Fujitsu Electronic Devices Europe:

Fujitsu Mikroelektronik GmbH (FMG), West Germany Fujitsu Microelectronics Limited (FML), U.K. Fujitsu Microelectronics Italia S.R.L (FMIL), Italy Fujitsu Microelectronics Ireland, Ltd. (FME), Ireland

> Fujitsu Mikroelektronik GmbH (FMG) was established in June 1980 in Frankfurt, West Germany, as Fujitsu's European headquarters and is a totally owned subsidiary of Fujitsu Limited, Tokyo. Fujitsu Microelectronics Limited (FML) is a sister company based in Maidenhead, England and dedicated to serving the U.K., Ireland, and Scandanavia. Fujitsu Microelectronics Italia (FMIL) is based in Milan, Italy and serves Italy, Spain, Portugal, and the rest of Southern Europe. Together, FMG, FML, and FMIL supply the European market with a full range of semiconductors and electronic components. Sales offices are located in Munich, Frankfurt, Stuttgart, Paris, Eindhoven, Milan, Maidenhead, and Stockholm.

Fujitsu Microelectronics Ireland, Ltd. (FME) was established in 1980, in Dublin, Ireland, as Fujitsu's European Assembly Center for integrated circuits. FME produces DRAMs, EPROMs, and other LSI memory products.

Fujitsu has two European VLSI design centers, both in the U.K. The Manchester Design Center, in operation since 1983, is equipped with two mainframe computers and is linked by satellite to production plants in Japan and the U.S. Staffed with a team of experienced engineers, the center is involved in the design of VLSI standard products, SuperMacros, CAD tools and ASICs. A second design center was set up in London in 1990 for designing telecommunication ICs. Additionally, Fujitsu offers a network of 17 ASIC design centers in eight European countries.

Fujitsu has further demonstrated its commitment to the European market by commencing construction of a full wafer fabrication plant in Durham in the North of England. The new plant is due to start production of 4 megabyte DRAMs and ASICs in 1991.

Continued on next page

The range of semiconductor products offered by FMG, FML, and FMIL for the European market includes:

Memory Products	DRAMs SRAMs EPROMs EEPROMs Mask ROMs Bipolar PROMs Video RAMs ECL RAMs Memory modules Memory cards	
ASIC Products	CMOS gate arrays BiCMOS gate arrays Bipolar (ECL) gate arrays Gallium Arsenide gate arrays CMOS standard cells ECL gate masterslice devices Wide range of ASIC design software	
Microprocessor Products	4-Bit Microcontrollers 4- 8- and 16-bit F ² MC [™] flexible Microcontrollers 32-Bit SPARC [™] RISC microprocessors 32-Bit GMICR0 [™] TRON-based CISC microprocessors	
Telecommunication Products	Prescalers PLLs CODECs LAN devices DSPs ISDN products SCSI and LAN devices ISDN products Telecom devices for the GSM Pan-European digital cellular telephone system.	
Analog Products	OP Amps Comparators A/D and D/A Converters Application Specific ICs	
The range of electronic components offered by FMG, FML, and FMIL incudes relays, connectors, keyboards, thermal printers, plasma displays, liquid crystal displays, hybrid ICs, and piezoelectric devices.		

Continued on next page

Fujitsu Microelectronics Asia PTE Ltd. (Singapore)

Fujitsu Microelectronics Asia PTE Ltd. (FMAP) opened in August 1986, in Hong Kong, as a wholly-owned Fujitsu subsidiary for sales of electronic devices to the Asian, Australian, and Southwest Pacific markets. In 1990, FMAP moved to a new location in Singapore.

FMAP offers memory, ASIC, microprocessor, and telecommunication products along with Fujitsu's wide range of electronic components.

SPARC[™] is a trademark of Sun Microsystems, inc. Ethernef[™] is a registered trademark of Xerox Corporation. EtherStar[™] is a trademark of Upitsu Microelectronics, Inc. StarLAN[™] is a trademark of Hitachi SuporMacro[™] is a trademark of Fujitsu Microelectronics, Inc. ASICOpe[™] is a trademark of Fujitsu Microelectronics, Inc. ViewCAD[™] is a trademark of Fujitsu Microelectronics, Inc.

Integrated Circuits Corporate Headquarters — Worldwide

International Corporate Headquarters

FUJITSU LIMITED Marunouchi Headquarters 6–1, Marunouchi 1–chome Chiyoda–ku, Tokyo 100 Japan Tel: (03) 216-3211 Telex: 781–22833 FAX: (03) 213-7174

For integrated circuits marketing information please contact the following:

Headquarters for Japan

FUJITSU LIMITED Integrated Circuits and Semiconductor Marketing Furukawa Sogo Bldg. 6–1, Marunouchi 2–chome Chiyoda–ku, Tokyo 100 Japan Tel: (03) 216-3211 Telex: 781–2224361 FAX: (03) 211-3987

Headquarters for North and South America

FUJITSU MICROELECTRONICS, INC. Integrated Circuits Division 3545 North First Street San Jose, CA 95134–1804 USA Tel: (408) 922–9000 Telex: 910–338–0190 FAX: (408) 432–9044

Headquarters for Europe

FUJITSU MIKROELEKTRONIK GmbH Lyoner Strasse 44–48 Arabella Centre 9. OG 6000 Frankfurt 71 Federal Republic of Germany Tel: (69) 66320 Telex: 411963 FAX: (69) 6632122

Headquarters for Asia, Australia and Oceania

FUJITSU MICROELECTRONICS ASIA PTE LIMITED 06-04/-07 Plaza By The Park No. 51 Bras Basah Road Singapore 0718 Tel: (65) 336–1600 Telex: RS 55573 FESPL FAX: (65) 336–1609

Fujitsu Microelectronics, Inc. (FMI) Sales Offices for North and South America

NORTHERN CALIFORNIA

Fujitsu Microelectronics, Inc. 10600 N. De Anza Blvd. Suite 225 Cupertino, CA 95014 Tel: (408) 996–1600 FAX: (408) 725–8746

SOUTHERN CALIFORNIA

Fujitsu Microelectronics, Inc. Century Centre 2603 Main Street Suite 510 Irvine, CA 92714 Tel: (714) 724–8777 FAX: (714) 724–8778

COLORADO (Denver)

Fujitsu Microelectronics, Inc. 5445 DTC Parkway Suite 300 Englewood, CO 80111 Tel: (303) 740–8880 FAX: (303) 740–8988

GEORGIA (Atlanta)

Fujitsu Microelectronics, Inc. 3500 Parkway Lane Suite 210 Norcross, GA 30092 Tel: (404) 449–8539 FAX: (404) 441–2016

ILLINOIS (Chicago)

Fujitsu Microelectronics, Inc. One Pierce Place Suite 910 Itasca, IL 60143–2681 Tel: (708) 250–8580 FAX: (708) 250–8591

MASSACHUSETTS (Boston)

Fujitsu Microelectronics, Inc. 75 Wells Avenue Suite 5 Newton Center, MA 02159–3251 Tel: (617) 964–7080 FAX: (617) 964–3301

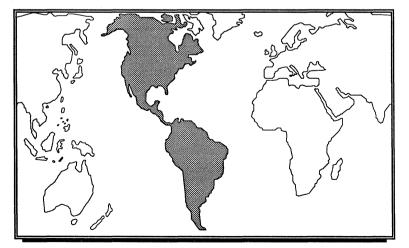
MINNESOTA (Minneapolis)

Fujitsu Microelectronics, Inc. 3460 Washington Drive Suite 209 Eagan, MN 55122–1303 Tel: (612) 454–0323 FAX: (612) 454–0601

NEW JERSEY (Cherry Hill)

Fujitsu Microelectronics, Inc. Horizon Corporate Center 3000 Atrium Way Suite 100 Mt. Laurel, NJ 08054 Tel: (609) 727–9700 FAX: (609) 727–9797

NEW YORK (Long Island)


Fujitsu Microelectronics, Inc. 898 Veterans Memorial Highway Bldg. 2, Suite 310 Hauppauge, NY 11788 Tel: (516) 582–8700 FAX: (516) 582–3855

OREGON (Portland)

Fujitsu Microelectronics, Inc. 15220 NW Greenbrier Pkwy. Suite 360 Beaverton, OR 97006 Tel: (503) 690–1909 FAX: (503) 690–8074

TEXAS (Dallas)

Fujitsu Microelectronics, Inc. 14785 Preston Road Suite 670 Dallas, TX 75240 Tel: (214) 233–9394 FAX: (214) 386–7917

FMI Representatives — USA

For product information, contact your nearest Representative.

Alabama

CSR Electronics 303 Williams Avenue Suite 931 Huntsville, AL 35801 Tel: (205) 533–2444 FAX: (205) 536–4031

Arizona

Aztech Component Sales Inc. 15230 N 75th Street Suite 1031 Scottsdale, AZ 85260 Tel: (602) 991–6300 FAX: (602) 991–0563

California

Harvey King, Inc. 6393 Nancy Ridge Drive San Diego, CA 92121 Tel: (619) 587–9300 FAX: (619) 587–0507

Infinity Sales, Inc. 4500 Campus Drive Suite 300 Newport Beach, CA 92660 Tel: (714) 833–0300 FAX: (714) 833–0303

Norcomp 3350 Scott Blvd., Suite 24 Santa Clara, CA 95054 Tel: (408) 727-7707 FAX: (408) 986-1947

Norcomp 2140 Professional Drive Suite 200 Roseville, CA 95661 Tel: (916) 782–8070 FAX: (916) 782–8073

Sonika Electronica of America 2240 Main Street Suite 19 Chula Vista, CA 92011 Tei: (619) 424–9190 FAX: (619) 424–9191

Colorado

Talisman Assoc. 6860 S. Yosemite Court Suite 2143 Englewood, CO 80112 Tel: (303) 773–2533 FAX: (303) 796–0545

Connecticut

Conntech Sales, Inc. 605 Washington Avenue Suite 33 New Haven, CT 06473 Tel: (203) 234–0577 FAX: (203) 234–0576

Florida

Semtronic Associates, Inc. 657 Maitland Avenue Altamonte Springs, FL 32701 Tel: (407) 831–8233 FAX: (407) 831–2844

Semtronic Associates, Inc. 1467 S. Missouri Avenue

Clearwater, FL 33516 Tel: (813) 461–4675 FAX: (813) 442–2234

Semtronic Associates, Inc. 3471 NW 55th Street Ft. Lauderdale, FL 33309 Tel: (305) 731–2484 FAX: (305) 731–1019

Georgia

CSR Electronics 1651 Mt. Vernon Road Suite 200 Tel: (404) 396–3720 FAX: (404) 394–8387

Idaho

Intermountain Technical Marketing 1406 E. First Street Suite 101 Meridan, ID 83642 Tel: (208) 888–6071 FAX: (208) 888 6074

Illinois

Beta Technology 1009 Hawthorne Drive Itasca, IL 60143 Tel: (708) 256–9586 FAX: (708) 256–9592

Indiana

Fred Dorsey & Associates 3518 Eden Place Carmel, IN 46032 Tel: (317) 844–4842 FAX: (317) 844–4843

lowa

Electromec Sales Executive Plaza 4403 First Avenue, S.E. Suite 302 Cedar Rapids, IA 52402 Tel: (319) 393–1637 FAX: (319) 393–1752

Kansas

Rothkopf & Associates, Inc. 1948 E. Santa Fe Suite H Olathe, KS 66062 Tel: (913) 829–8897 FAX: (913) 829–1664

Kentucky

Spectro-Com 303 UHL Road Melbourne, KY 41059 Tel: (606) 781–3904

Maryland

Arbotek Associates 1404 E. Joppa Road Towson, MD 21204 Tel: (301) 825–0775 FAX: (301) 337–2781

Massachusetts

Mill-Bern Associates 2 Mack Road Woburn, MA 01801 Tel: (617) 932-3311 FAX: (617) 932-0511

FMI Representatives — USA (Continued)

Michigan

Greiner Associates, Inc. 15324 E. Jefferson Avenue Suite 12 Grosse Point Park, MI 48230 Tol: (313) 499–0188 FAX: (313) 499–0665

Minnesota

Electromec Sales 1601 E. Highway 13 Suite 200 Burnsville, MN 55337 Tel: (612) 894–8200 FAX: (612) 894–9352

Missouri

Rothkopf & Associates, Inc. 8721 Manchester Road St. Louis, MO 63144 Tel: (314) 961–4485 FAX: (314) 961–4736

New Jersey

BGR Associates Evesham Commons 525 Route 73 Suite 100 Mariton, NJ 08053 Tel: (609) 983–1020 FAX: (609) 983–1879

Technical Applications & Marketing 91 Clinton Road Suite 1D Fairfield, NJ 07006 Tel: (201) 575-4130 FAX: (201) 575-4563

New York

Quality Components 3343 Harlem Road Buffalo, NY 14225 Tel: (716) 837–5430 FAX: (716) 837–0662 Quality Components 116 Fayette Street Manlius, NY 13104 Tel: (315) 682–8885 FAX: (315) 682–2277

Quality Components 2318 Titus Ave. Rochester, NY 14622 Tel: (716) 342–7229 FAX: (716) 342–7227

North Carolina

CSR Electronics 8020 Crockett Court Mathews, NC 28226 Tel: (704) 847–7878 FAX: (704) 847–0056

CSR Electronics 5848 Farington Place Suite 2 Raleigh, NC 27609 Tel: (919) 878–9200 FAX: (919 878–9117

Oregon

L–Squared Limited 15234 NW Greenbrier Pkwy Beaverton, OR 97006 Tel: (503) 629–8555 FAX: (503) 645–6196

Tennessee

CSR Electronics 3133 Curtis Lane Knoxville, TN 37918 Tel: (615) 698–7511 FAX: (615) 698–7932

Texas

Technical Marketing, Inc. 3320 Wiley Post Road Carrollton, TX 75006 Tel: (214) 387–3601 FAX: (214) 387–3605 Technical Marketing, Inc. 2901 Wilcrest Drive Suite 139 Houston, TX 77042 Tel: (713) 783–4497 FAX: (713) 783–5307

Technical Marketing, Inc. 1315 Sam Bass Circle Suite B–3 Round Rock, TX 78681 Tel: (512) 244–2291 FAX: (512) 338–1596

Utah

R-Squared Marketing 340 W. 500 South Suite 105 Salt Lake City, UT 84101 Tel: (801) 595-0631 FAX: (801) 595-0435

Washington

L-Squared Limited 105 Central Way Suite 203 Kirkland, WA 98033 Tel: (206) 827–8555 FAX: (206) 828–6102

Wisconsin

Beta Technology 9401 W Beloit Street Suite 304C Milwaukee, WI 53227 Tel: (414) 543–6609 FAX: (414) 543–9288

FMI Representatives — Canada, Mexico and Puerto Rico

Canada

Pipe-Thompson Limited 5468 Dundas Street W. Suite 206 Islington, Ontario M9B 6E3 Tel: (416) 236–2355 FAX: (416) 236–3387

Pipe-Thompson Limited 17 Brandy Creek Crescent Kandata, Ontario K2M 2B8 Tel: (613) 591–1821 FAX: (613) 591–0461

Mexico

Solano Electronica (Sonika) Ermita 1039-10 Colonia Chapalita Guadalajara, JAL. 45042 Tel: (52) 3647–4250 FAX: (52) 3647–3433

Solano Electronics, S.A. De C.V. Cienfuego #651–A 07300 Mexico City, D.F. FAX: (52) 5586–8443

Puerto Rico

Semtronic Associates Mercantil Plaza Building Suite 816 Hato Rey, Puerto Rico 00918 Tel: (809) 766–0700

FMI Distributors — USA

Alabama

Marshall Industries 3313 S. Memorial Highway Suite 150 Huntsville, AL 35801 (205) 881–9235

Repton Electronics 4950 Corporate Drive Suite 105C Huntsville, AL 35805 (205) 722–9565

Arizona

Insight Electronics 1515 W. University Drive Suite 103 Tempe, AZ 85281 (602) 829–1800

Marshall Industries 9830 S. 51st Street Suite B121 Phoenix, AZ 85044 (602) 496–0290

California

Bell Microproducts 18350 Mt. Langley Suite 207 Fountain Valley, CA 92708 (714) 963–0667

Bell Microproducts 550 Sycamore Drive Milpitas, CA 95035 (408) 434–1150

Insight Electronics 28035 Dorothy Drive Suite 2 Agoura, CA 91301 (818) 707–2100

Insight Electronics 15635 Alton Parkway Suite 120 Irvine, CA 92718 (714) 727–2111

Insight Electronics 6885 Flanders Drive Suite C San Diego, CA 92126 (619) 587–9757

Marshall Industries 9710 Desoto Ave. Chatsworth, CA 91311 (818) 407–4100 Marshall Industries 9320 Telstar Ave. El Monte, CA 91731 (818) 307–6094

Marshall Industries One Morgan Irvine, CA 92718 (714) 458–5308

Marshall Industries 336 Los Coches Street Milpitas, CA 95035 (408) 942–4600

Marshall Industries 3039 Kilgore Ave. Suite 140 Rancho Cordova, CA 95670 (916) 635–9700

Marshall Industries 10105 Carroll Canyon Road San Diego, CA 92131 (619) 578–9600

Merit Electronics 2070 Ringwood Avenue San Jose, CA 95131 (408) 434–0800

Micro Gensis, Inc. 2880 Lakeside Drive Suite 101 Santa Clara, CA 95054 (408) 727-5050

Milgray Electronics 912 Pancho Road Suite C Camarillo, CA 93010 (805) 484-4055

Milgray Electronics 16 Technology Drive Irvine, CA 92718 (714) 753–1282

Western Microtechnology 28720 Roadside Dr. Suite 175 Agoura Hills, CA 91301 (818) 356–0180

Western Microtechnology 1637 North Brian Orange, CA 92667 (714) 637–0200

Western Microtechnology 6837 Nancy Ridge Drive San Diego, CA 92121 (619) 453–8430 Western Microtechnology 12900 Saratoga Ave. Saratoga, CA 95070 (408) 725–1660

Colorado

Marshall Industries 12351 N. Grant Road Suite A Thornton, CO 80241 (303) 451–8383

Connecticut

Marshall Industries 20 Sterling Drive Wallingford, CT 06492 (203) 265–3822

Milgray Electronics 326 W. Main Street Milford, CT 06460 (203) 878–5538

Florida

Marshall Industries 380 S. Northlake Blvd Suite 1024 Altamonte Springs, FL 32701 (407) 767–8585

Marshall Industries 2700 W. Cypress Creek Rd. Suite D 114 Ft. Lauderdale, FL 33309 (305) 977–4880

Marshall Industries 2840 Sherer Drive St. Petersburg, FL 33716 (813) 573–1399

Milgray Electronics 1850 Lee Road Suite 104 Winter Park, FL 32789 (407) 647–5747

Reptron Electronics 3320 N.W. 53rd Street Suite 206 Ft. Lauderdale, FL 33309 (305) 735–1112

Reptron Electronics 14501 McCormick Drive Tampa, FL 33626 (813) 855–4656

FMI Distributors --- USA (Continued)

Georgia

Marshall Industries 5300 Oakbrook Pkwy Suite 140 Norcross, GA 30093 (404) 923–5750

Milgray Electronics 3000 Northwoods Parkway Suite 270 Norcross, GA 30071 (404) 446–9777

Reptron Electronics 3040 H Business Park Drive Norcross, GA 30071 (404) 446–1300

lilinois

Classic Components 3336 Commercial Ave. Northbrook, IL 60062 (312) 272–9650

Marshall Industries 50 E. Commerce Dr. Suite I Schaumburg, IL 60173 (312) 490–0155

Milgray Electronics 1530 E. Dundee Road Suite 310 Palatine, IL 60067 (708) 202–1900

Reptron Electronics 1000 E. State Hwy Suite K Schaumburg, IL 60173 (312) 882–1700

Indiana

Marshall Industries 6990 Corporate Drive Indianapolis, IN 46278 (317) 297–0483

Kansas

Marshall Industries 10413 W. 84th Terrace Lenexa, KS 66214 (913) 492–3121

Milgray Electronics 6400 Glenwood Suite 313 Overland Park, KS 66202 (913) 236–8800

Maryland

Marshall Industries 2221 Broadbirch Suite G Silver Springs, MD 20910 (301) 622–1118

Milgray Electronics 9801 Broken Land Parkway Columbia, MD 21045 (301) 995–6169

Vantage Components, Inc. 6925-R Oakland Mills Road Columbia, MD 21045 (301) 720–5100

Massachusetts

Bell Microproducts 16 Upton Drive Wilmington, MA 01887 (508) 658–0222

Interface Electronic Corp. 228 South Street Hopkinton, MA 01748 (508) 435–6858

Marshall Industries 33 Upton Drive Wilmington, MA 01887 (508) 658–0810

Milgray Electronics 187 Ballardvale Street Wilmington, MA 01887 (508) 657–5900

Vantage Components, Inc. 200 Bulfinch Drive Andover, MA 01810 (508) 687-3900

Western Microtechnology 20 Blanchard Road 9 Corporate Place Burlington, MA 01803 (617) 273–2800

Michigan

Marshall Industries 31067 Schoolcraft Road Livonia, MI 48150 (313) 525–5850

Reptron Electronics 34403 Glendale Livonia, MI 48150 (313) 525–2700

Minnesota

Marshall Industries 3955 Annapolis Lane Plymouth, MN 55447 (612) 559–2211

Reptron Electronics 5929 Baker Road Suite 360 Minnetonka, MN 55345 (612) 938–3995

Missouri

Marshall Industries 3377 Hollenberg Drive Bridgeton, MO 63044 (314) 291–4650

New Jersey

Marshall Industries 101 Fairfield Road Fairfield, NJ 07006 (201) 882--0320

Marshall Industries 158 Gaither Drive Mt. Laurel, NJ 08054 (609) 234–9100

Milgray Electronics 3001 Greentree Exec. Campus Suite C Marlton, NJ 08053 (609) 983–5010

Milgray Electronics 1055 Parsippany Blvd. Parsippany, NJ 07054 (201) 335–1766

Vantage Components, Inc. 23 Sebago Street P.O. Box 2939 Clifton, NJ 07013 (201) 777-4100

Western Microtechnology, Inc. 387 Passaic Avenue Fairfield, NJ 07006 (201) 882-4999

FMI Distributors — USA (Continued)

New York

Marshall Industries 275 Oser Avenue Hauppauge, NY 11788 (516) 273–2424

Marshall Industries 129 Brown Street Johnson City, NY 13790 (607) 798–1611

Marshall Industries 1250 Scottsville Road Rochester, NY 14624 (716) 235–7620

Mast Distributors 710–2 Union Parkway Ronkonkoma, NY 11779 (516) 471–4422

Micro Genesis 90–10 Colin Drive Holbrook, NY 11741 (516) 472–6000

Milgray Electronics 77 Schmitt Blvd. Farmingdale, NY 11735 (516) 420–9800

Milgray Electronics 1170 Pittsford Victor Road Pittsford, NY 14534 (716) 381–9700

Vantage Components, Inc. 1056 West Jericho Turnpike Smithtown, NY 11787 (516) 543–2000

North Carolina

Marshall Industries 5224 Greens Dairy Road Raleigh, NC 27604 (919) 878–9882

Reptron Electronics 5954-A Six Fork Road Raleigh, NC 27609 (919) 870–5189

Ohio

Marshall Industries 3520 Park Center Drive Dayton, OH 45414 (513) 898–4480

Marshall Industries 30700 Bain Bridge Road Unit A Solon, OH 44139 (216) 248–1788 Milgray Electronics 6155 Rockside Road Cleveland, OH 44131 (216) 447–1520

Reptron Electronics 404 E. Wilson Bridge Road Suite A Worthington, OH 43085 (614) 436–6675

Oklahoma

Radio Inc. 1000 South Main Tulsa, OK 74119 (918) 587–9123

Oregon

Marshall Industries 9705 S.W. Gemin Drive Beaverton, OR 97005 (503) 644–5050

Western Microtechnology 1800 N.W. 169th Place Suite B300 Beaverton, OR 97006 (503) 629–2082

Pennsylvania

Interface Electronic Corp. 7 Great Valley Parkway Malvern, PA 19355 (215) 889-2060

Marshall Industries 401 Parkway View Dr. Pittsburg, PA 15205 (412) 788–0441

Texas

Insight Electronics, Inc. 1778 Plano Road Suite 320 Richardson, TX 75081 (214) 783–0800

Marshall Industries 8504 Cross Park Drive Austin, TX 78754 (512) 837–1991

Marshall Industries 2045 Chenault Carrollton, TX 75006 (214) 233–5200 Marshall Industries 1200 Barranca Bidg. 5, Suite A El Paso, TX 79935 (915) 593–0706

Marshall Industries 2635 South Highway 77 Harlingen, TX 78550 (512) 421-4621

Marshall Industries 7250 Langtry Houston, TX 77040 (713) 895–9200

Milgray Electronics 16610 N. Dallas Pkwy Suite 1300 Dallas, TX 75248 (214) 248–1603

Western Microtechnology, Inc. 2545 Tarpley Road Suite 151 Dallas, TX 75006 (214) 416–0103

Western Microtechnology, Inc. 2500 Wilcrest, 3rd Floor Houston, TX 77042 (713) 954-4850

Utah

Marshall Industries 466 Lawndale Drive Suite C Salt Lake City, UT 84115 (801) 485–1551

Milgray Electronics 4190 S. Highland Drive Suite 102 Salt Lake City, UT 84124 (801) 272–4999

Washington

Insight Electronics, Inc. 12002 115th Avenue, NE Kirkland, WA 98034 (206) 820-8100

Marshall Industries 11715 N. Creek Parkway Suite 112 Bothwell, WA 9801 (206) 486–5747

FMI Distributors — USA (Continued)

Washington (Continued)

Marshall Industries 15359 NE 90th Street Redmond, WA 98052 (206) 869-7557

Western Microtechnology 14636 N.E. 95th Street Redmond, WA 98052 (206) 881–6737

Wisconsin

Classic Components 2925 S. 160th Street New Berlin, WI 53151 (414) 786–5300

Marsh Electronics 1563 S. 101st Street Milwaukee, WI 53214 (414) 475–6000

Marshall Industries 20900 Swenson Drive Suite 150 Waukesha, WI 53186 (414) 797–8400

FMI Distributors — Canada

British Columbia

ITT Industries 3455 Gardner Court Burnaby, B.C. V5G 4J7 (604) 291–8866

Active Components 1695 Boundry Road Vancouver, BC. V5K 4X7 (604) 294–1166

Ontario

ITT Industries 300 North Rivermede Road Concord, ON L4K 2Z4 (416) 736–1114 Marshall Industries 4 Paget Road Units 10 & 11 Bramton, ON L6T 5G3 (416) 458–8046

Milgray Electronics 150 Consumers Road Suite 502 Willowdale, ON M2J 4R4 (416) 756-4481

Quebec

Marshall Industries 148 Brunswick Blvd. Pointe Claire, QU H9R 5P9 (514) 683–9440

Active Components 237 Hymus Blvd. Point Claire, QU H9R 5CF (514) 694–7710

Fujitsu Electronic Devices Europe* Sales Offices for Europe

FMG - Benelux

Fujitsu Mikroelektronik, GmbH Europalaan 26A 5623 LJ Eindhoven The Netherlands Tel: (40) 447440 Telex: 59265 FAX: (40) 444158

FMG -- France

Fujitsu Mikroelektronik GmbH Immeuble le Trident 3-5, voie Félix Eboué 94024 Creteil Cedex Tel: (1) 42078200 Telex: 262861 FAX: (1) 42077933

FMG - Germany (Central)

Fujitsu Mikroelektronik GmbH Lyoner Strasse 44–48 Arabella Center 9, OG 6000 Frankfurt 71 Tel: (69) 66320 Telex: 411963 FAX: (69) 6632122

FMG - Germany (Southwest)

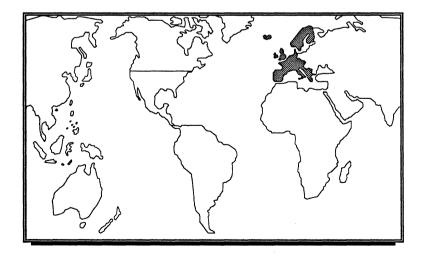
Fujitsu Mikroelektronik GmbH Am Joachimsberg 10–12 7033 Herrenberg Tel: (7032) 4085 Telex: 7265485 FAX: (7032) 4088

FMG - Germany (South)

Fujitsu Mikroelektronik GmbH Carl-Zeiss-Ring 11 8045 Ismaning Tel: (89) 9609440 Telex: (17) 897446 FAX: (89) 96094422

FMIL - Italy

Fujitsu Microelectronics Italia S.R.L. Centro Direzionale Milanofiori Strada 4 – Palazzo A/2 20094 Assago (Milano) Tel: (2) 8246170/176 Telex: 318546 FAX: (2) 8246189


FML - Scandinavia

Fujitsu Microelectronics Ltd. Torggatan 8 17154 Solna Swedon Tel: (8) 7646365 Telex: 13411 FAX: (8) 280345

FML - United Kingdom

Fujitsu Microelectronics Ltd. Hargrave House Belmont Road Maidenhead Berkshire SL6 6NE England Tel: (628) 76100 Telex: 848955 FAX: (628) 781484

*Fujitsu Mikroelektronik, GmbH (FMG) Fujitsu Microelectronics, Ltd. (FML) Fujitsu Microelectronic Italia S.R.L. (FMIL)

FMG, FML and FMIL Distributors — Europe

Austria

Eljapex Handelsges mbH Eitnergasse 6 1232 Wien Tel: (222) 861531 Telex: 133128 FAX: (222) 863211

MHV/EBV Elektronik Diefenbachgasse 35/6 1150 Wien Tel: (222) 838519 Telex: 134946 FAX: (222) 8941774

Belgium

MHV/EBV Elektronik Excelsiorlaan 35/ Avenue Excelsior 35 1930 Zaventem Tel: (2) 7209936 Telex: 62590 FAX: (2) 7208152

Denmark

Nordisk Elektronik AS* Transformervej 17 2730 Herlev Tel: (42) 842000 Telex: 35200 FAX: (44) 921552

Finland

Aspecs OY P.O. Box 75 01601 Vantaa Tel: (0)5668686 FAX: (0)5666051

France

F2S (Groupe ASAP) 2, avenue des Chaumes 78180 Montigny le Bretonneux Tel: (1) 30438233 Telex: 608887 FAX: (1) 30570719

Elbatex 4 bis Burospace 91571 Bievres Cedex Tel: (1) 69412800 FAX: (1) 69412846 Microram (Groupe SCAIB) 6, rue le Corbusier Silic 424 94583 Rungis Cedex Tel: (1) 46868170 Telex: 204674 FAX: (1) 45605549

Germany

Eljapex GmbH Felsenauerstr. 18 7890 Waldshut-Tiengen Tel: (7751) 2035 Telex: (7751) 6603

Micro Halbleiter GmbH* Jägerweg 10 8012 Ottobrunn Tel: (89) 6096068 Telex: 5213807 FAX: (89) 6093758

Italy

Malpassi S.R.L. Via Baravelli, 1 40012 Calderara di Reno (Bologna) Tel: (51) 727252 Telex: 583118 FAX: (51) 727515

Ireland

Allied Semiconductors International Ltd. Unit 1 Distribution Park Shannon Industrial Estate Shannon Co. Clare Tel: (61) 61777 Telex: 70358 FAX: (61) 363141

The Netherlands

MHV/EBV Elektronik Planetenbaan 2 3606 AK Maarssenbroek Tel: (3465) 60791 Telex: 76089 FAX: (3465) 64277 P & T Electronics b.v.* P.O. Box 329 2908 AH Capelle a/d lissel Tel: (10) 4501444 Telex: 26096 FAX: (10) 4507092

Norway

Odin Electronics AS P.O. Box 160 2020 Skedsmokorset Tel: (6) 875480 FAX: (6) 875430

Portugal

Niposom J. Nabais LDA Rua Humberto Cruz 4 1900 Lisboa Tel: (1) 894637 Telex: 14028 FAX: (1) 809517

Spain

Comelta S.A.

Pedro IV-84, 5° PI 08005 Barcelona Tel: (3) 3007712 Telex: 51934 FAX: (3) 3005156

Comelta S.A. Emilio Munoz 41 Nave 1–1–2 28037 Madrid Tel: (1) 7543001 Telex: 42007 FAX: (1) 7542151

Sweden

Martinsson Elektronik AB Instrumentvägen 16 P.O. Box 9060 12609 Hagersten Tel: (8) 7440300 Telex: 13077 FAX: (8) 7443403

FMG, FML and FMIL Distributors — Europe (Continued)

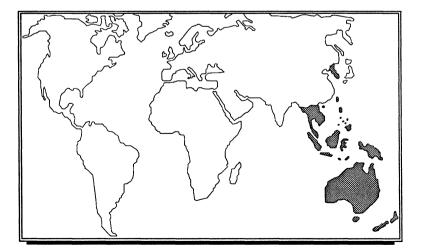
Switzerland

Eljapex AG* Hardstrasse 72 5430 Wettingen Tel: (56) 275777 Telex: 826300 FAX: (56) 261486

United Kingdom

Hawke Component Distribution Unit 26 Campbell Court Bramley Nr. Basingstoke Hants RG26 5EG Tel: (256) 880800 FAX: (256) 880325 Pronto Electronic Systems Ltd. City Gate House 399/425 Eastern Avenue Gants Hills Ilford Essex IG2 6LR Tel: (15) 546222 Telex: 8954213 FAX: (15) 183222

Fujitsu Microelectronics Asia PTE Limited (FMAP) Sales Offices for Asia, Australia and Oceania


Taiwan

Singapore

Fujitsu Microelectronics Pacific Asia Ltd. TW Branch 1906 No. 333 Keelung Road Sec. 1 Taipei 10548 Taiwan, Republic of China Tei: (02) 757–6548 Telex: 17312 FMPTPI FAX: (02) 757–6571 Fujitsu Electronics Asia PTE Ltd. #06–04/07 Plaza by the Park 51 Bras Basah Road Singapore 0718 Tel: (65) 336–1600 Telex: RS 55573 FESPL FAX: 336–1609

Hong Kong

Fujitsu Microelectronics Pacific Asia Ltd. 616–617, Tower B New Mandarin Plaza 14 Science Museum Road Tst East, Kowloon Hong Kong Tel: 7230393 FAX: 7216555

FMAP Representatives — Asia and Australia

Australia

Pacific Microelectronics PTY Ltd. Unit A20, Central Park 4 Central Avenue P.O. Box 189 Thornleigh NSW 2120 Australia Tel: (02) 481–0065 Telex: 24844460 FAX: (02) 484–4460

Korea

KML Corporation 3/F Bangbae Station Bldg. 981–15 Bangbae 3–Dong Shucho-gu, Seoul, Korea Tel: 0(2) 588–2011 Telex: K25981 KMLCORP FAX: (02) 588–2017

FMAP Distributors — Asia

Hong Kong

Famint (HK) Ltd. Room 1502,15/F No. 111 Leighton Road Causeway Bay, Hong Kong Tel: 5760130 / 5760146 FAX: 5765619

Mobicon Electronic Supplies Company Basement B10–14, Sino Centre 582–592 Nathan Road Mongkok, Kowleen Hong Kong Tel: 7801150 / 7801139 FAX: 7702472

Singapore

Cony Electronics (S) PTE Ltd. 10 Jalan Besar 03–25 Sim Lim Tower Singapore 0820 Tel: 296–2111 Telex: CONY RS34808 FAX: 296–0339

Taiwan

Faimint (Taiwan) Co., Ltd. Room 113, 10/F No. 246, Sec. 2 Chang An East Road Taipei Taiwan Tel. 025040822 FAX: 025051963

I

——— Section 7

Design Information — At a Glance

Page	Title
7–3	Appendix 1. Application Note: Various Features of Fujitsu's DRAMs
7–27	Appendix 2. Application Note: The Soft Error Rate for 4M DRAM Devices
7–35	Appendix 3. Technical Paper: 3D Stacked Capacitor Cell for Mega Bit DRAM

-7

----- Appendix 1

Application Note

FUĴITSU

APPLICATION NOTE

Dynamic RAMs

Various Features of Fujitsu DRAMs

Applications Engineering Department Fujitsu Microelectronics, Inc. Integrated Circuits Division

Abstract

DRAMs are not only becoming denser, but also increasingly varied in scope. This note comprehensively describes the assorted features and various refresh modes available in Fujitsu DRAMs. Also discussed are standard memory board design tips and a 32-bit microprocessor application.

Contents

Chapter Page
Introduction
DRAM Features
Fast Page Mode
Nibble Mode
Static Column Mode
Comparison of DRAMs
Internal DRAM Operation
Multiplexed Addressing 7-13
Word Line versus Bit Line
Sense Amplifiers
Memory Board Design Rules of Thumb
Decoupling and Isolation Capacitors
Power Up Recommendations
Undershoot and Ringing
The Difference Between Soft and Hard Errors
Soft Error Causes
Hard Error Causes
Latchup
Electrostatic Discharge 7-16
Dual-Port DRAMs
Bit Masking
DRAM Refresh Methods
RAS-Only Refresh
CAS Before RAS Refresh
Hidden CAS Before RAS On-Chip Refresh
DRAM Implementation in an MBL80286 Environment
DRAM Modules
Summary
References

Illustrations

Figure	\$	Page
1.	Fast Page Mode Read Cycle	7–10
2.	Typical Static Column Mode Read Cycle	7–12
3.	One Transistor (and One Capacitor) RAM Cell	7–13
4.	1-megabit CMOS DRAM Input Protection Circuit	7–17
5.	Bit Masking	7–18
6.	Typical RAS-Only Refresh Cycle	7–19
7.	CAS Before RAS Refresh Cycle	7–20
8.	Typical Hidden CAS before RAS Refresh Cycle	7–21
9.	Schematic of 1 Megabit x 32 DRAM With Zero Wait States	7–22
10.	RAS Timing of Interleaving Memory	7–23

Tables

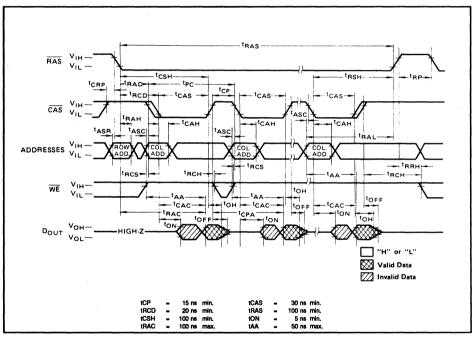
Page

1.	Address Generation Using Nibble Mode	7–10
2.	Comparison of DRAMs	7–13
3.	Failures Per Billion Device Hours	7–16
4.	Relationship Between BHE, A0, and Size of Operation	7–23
5.	MBL80286 Bus Cycle Status Definition	7–24

Introduction

DRAMs are almost as old as the first microprocessor-based computers, yet new features are continually being introduced to DRAM technology. This publication consolidates and explains many of the various features found on present day DRAMs. Although all these features are not found on a single DRAM, they are available in Fujitsu's extensive DRAM family.

DRAM Features


Fast Page Mode

Fast page mode (also known as ripple mode) is a unique mode designed to decrease power consumption and access times between memory read or write cycles. Quick access to different columns in the same row is accomplished by keeping the Row Address Strobe (\overline{RAS}) low throughout the operation. Then a new column address is applied and the Column Address Strobe (\overline{CAS}) is brought low and valid data is either read from or written to the memory cell depending upon the value of the Write Enable (\overline{WE}). \overline{CAS} is then brought high and a new address is applied. \overline{CAS} is again brought low to latch the address. A timing diagram for the CMOS 1-megabit DRAM (MB81C1000) is shown in Figure 1.

Nibble Mode

Nibble mode allows high-speed reading and writing of data. An example of 1-megabit DRAM address generation using nibble mode is shown in Table 1 where the starting address is 0. The procedure represented by this table is to access a memory cell, in either the normal read or write manner, then to toggle CAS, which enables an internal address generator that automatically sets row address (RA) 9 to high (1) yet leaves all other bits unchanged. By toggling CAS once more the internal address generator causes RA9 to go to low (0) and column address (CA) 9 to go to high (1). Another toggle of CAS causes RA9 to go to high (1) and CA9 to remain high (1). One last toggle of CAS causes RA9 and CA9 to return to their original state and the entire process repeats.

There are two advantages to using this method of internal address generation. The first advantage is that read/write cycle times are reduced to 50 ns (for Fujitsu's MB81C1001–80, a 1,048,576 x 1 bit Nibble Mode DRAM), which is faster than comparable DRAM cycle times by at least a factor of three. The second advantage is that the system chip count is reduced since there is no longer a need for external glue logic. One practical implementation of nibble mode is accomplished by grounding A9, thereby making RA9 and CA9 the least significant bits (LSBs) in an address. Once A9 is grounded, sequential memory accesses can be made simply by toggling \overline{CAS} .

Sequence	Bit Accessed	RA9	RA8	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RAO	CA9	САВ	CA7	CA6	CA5	CA4	САЗ	CA2	CA1	CAO
Normal CAS	1	0	0	o	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CAS	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	o	0	0
CAS	3	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
CAS	4	1	0	0	0	0	ò	0	0	0	o	1	0	0	0	0	0	0	0	0	0
Normal CAS	1	0	0	0	o	0	0	0	0	0	o	0	0	0	0	0	0	0	0	0	0

Table 1. Address Generation Using Nibble Mode

Static Column Mode

A Static Column DRAM (SCRAM) offers a significant speed advantage. Sequential accesses are made in nearly 50 percent of the time it takes to make random accesses. A typical read/write cycle can be done in 55 ns (Fujtsu's MB81C1002-10, a 1,048,576 x 1 bit Static Column DRAM). This is the closest a DRAM comes to being operated as a less complex, fast SRAM. The procedure followed by a SCRAM is to apply a row address, latch it by dropping the RAS, then apply a column address and latch it by dropping the CAS. To access more column addresses there is no need to strobe a column address anymore. Instead, the new column address is applied at any time and new data becomes available after a short delay time (tAA). To access any random column, apply the column address and the data appears after a short delay time. A comparison of static column mode versus fast page mode reveals that random column addresses for fast page mode are latched by dropping the CAS, while column addresses for the static column mode are randomly applied while the CAS is low. See Figure 2 for a timing diagram.

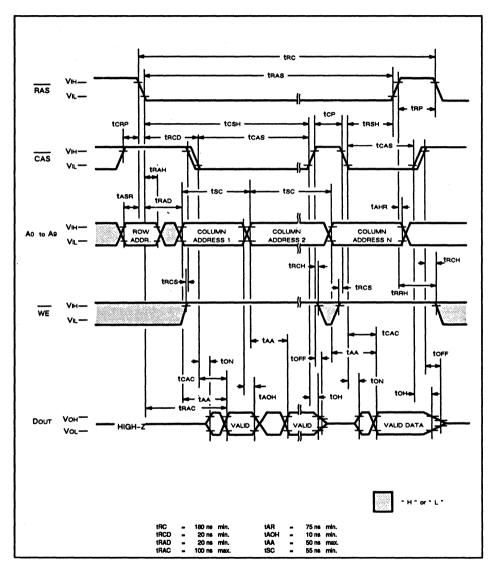


Figure 2. Typical Static Mode Read Cycle

Comparison of DRAMs

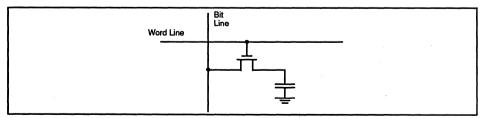
Table 2 lists the specifications of the various DRAM features.

Type of DRAM	Mode Access Time (ns)	Cycle Time (ns)	Type of Access	Total Accessible Bits		
Fast page mode (-80)	t _{cac} = 25 ns	t _{pc} = 55 ns	Random columns	1024		
Nibble mode (-80)	t _{cac} = 25 ns	t _{nc} = 50 ns	Sequential columns	4		
Static column mode (-80)	t _{AA} = 50 ns	t _{sc} = 55 ns	Random columns	1024		

Table 2. Comparison of DRAMs

Internal DRAM Operation

To the average user, DRAMs are thought of as a simple storage device. However, DRAMs consist not only of storage capacitors but also internal decoders, sense amplifiers, buffers and address transition detectors (ATD). The following paragraphs will discuss DRAM inner circuitry in more detail.


Multiplexed Addressing

Present day DRAMs have exactly half the number of actual address pins needed to address all the words in the DRAM. Clever use of multiplexed address pins makes it possible to address 1 megabit of words with only 10 actual addresses in the pin assignment. This is accomplished by latching RA0 through RA9 (the row address) on the fall of the RAS and then applying new addresses to CA0 through CA9 (the column address) and latching them on the fall of the CAS, thereby accessing 1 megabit of words by applying only 10 address lines at one time. This approach allows for more compact packages.

Word Line versus Bit Line

Even though a 1-megabit DRAM is physically arranged as 1024 rows and 1024 columns, for refresh purposes the operation is that of 512 rows and 2048 columns. This effectively halves the number of refresh cycles needed from 1024 to 512 thereby decreasing the amount of time the system wastes in refreshing.

A schematic of a single cell is given in Figure 3. Access to each cell in the DRAM is accomplished by connecting to one of 512 row lines (referred to as word lines), and to one of 2048 column lines (referred to as bit lines). The input row address is applied to a row decoder which selects one of the 512 rows. The input column address is applied to a column decoder which selects one of the 2048 columns. By this method one of the 1,048,576 storage cells is singled out.

Figure 3. One Transistor (and One Capacitor) RAM Cell

Sense Amplifiers

Sense amplifiers are necessary to correctly read the stored value in each cell storage capacitor. Since each cell capacitance has a value in the femtofarad $(10^{-15}$ farads) range, while the interconnecting lines have capacitance values in the picofarad $(10^{-12}$ farads) range, it is not difficult to understand why the stored voltage can be corrupted by noise during transfer to the output buffers. This obstacle is overcome by comparing the stored or unstored charge to a known charge in a "dummy cell." Once the comparison is completed the output is amplified by the sense amplifiers resulting in better noise immunity.

Memory Board Design Rules of Thumb

Decoupling and Isolation Capacitors

An inherent system-level problem in DRAM designs is transient noise resulting from switching internal currents during refresh cycles. During refresh, DRAMs can require peak currents in the 50- to 100-mA range. Most of the instantaneous current demand is supplied by the decoupling capacitor. In addition to supplying instantaneous current, the capacitor must also meet the following requirements:

- Low inductance and low effective series resistance to minimize the voltage drop across the device. (These parameters are a function of the capacitor type.)
- A capacity to absorb the voltage bumps that occur due to fast edge rates during DRAM access.

Ceramic capacitors have been found to best meet the above requirements. Using a $0.22 \,\mu\text{F}$ decoupling capacitor for each DRAM in a 1-megabit application yields the following acceptable voltage undershoot for a 250 ns cycle:

Vunder =
$$(I * t)/C = (100 \text{ mA} * 250 \text{ ns})/0.22 \,\mu\text{F} = 114 \,\text{mV}$$

Another necessary capacitor needed on a DRAM memory board is the isolation capacitor for the incoming main power bus. Since wiring from the power supply to the memory card can have significant resistance and inductance, which results in power supply ripple and noise, it is recommended that a 50- to 100-mF electrolytic capacitor be inserted.

Power Up Recommendations

DRAMs have historically needed multiple input voltages for substrate bias generation. Currently, all that is needed is 5 V because the substrate bias generator is internal to the chip. The bias generator takes approximately 200 ms to stabilize the substrate voltage hence it is recommended that the CAS and RAS be on high during this time period. There are two reasons for keeping the RAS and CAS high in a dense memory board. The first is that if the RAS and CAS were both low, the DRAMs would draw much larger currents, which could result in a system failure. The second reason is that all the DRAM output levels during power up are unknown, so if the RAS and CAS were low, there could be data contention in the case of wired AND outputs. However, if the RAS and CAS were high then the outputs would not conflict since they are guaranteed to be in the high-impedance state.

Once power up has been established, it is necessary to perform eight dummy cycles to stabilize the internal circuitry. The type of cycle (read, write, CAS-before-RAS, hidden refresh) required depends on

whether the internal refresh counter will be implemented or not. (Check the data sheet of the specific device.)

Undershoot and Ringing

Undershoot and ringing occur only when line voltages go from high to low or from low to high respectively and not during static state operation. Undershoot and ringing are caused by noise, inherent transistor switching characteristics, and mismatched impedances between the driver output, the signal line, and the load.

Undershoot and ringing due to mismatched impedances can be effectively eliminated by understanding their cause and implementing good design techniques. In present high-frequency applications, line impedance is a function of line capacitance and line inductance is as given by the following equation:

 $Z = (L/C)^{1/2}$

There is approximately 10 nH of inductance per inch in a 13-mil wide trace. Similarly, there is approximately 4 pF of capacitance per inch in a 13-mil wide trace. So it is easy to see how the impedance of traces can be 50 ohms.

From physics we know that if an initial voltage (Vo) meets a mismatch between the line impedance (Zo) and the load impedance (Zl), Vo will break into two separate components: transmitted voltage (Vt) and reflected voltage (Vr). The reflected voltage equation is as follows:

$$Vr = [Vo (Zl - Zo)]/(Zl + Zo)$$

When load impedance is equal to line impedance there is no reflected voltage wave. When there is mismatch between load and line impedance, the reflected wave causes oscillations in *Vo* resulting in ringing and undershoot.

The best way to prevent ringing and undershoot is to put a 20- to 30-ohm series damping resistor in all trace circuits to the DRAM. This generally decreases load and line impedance mismatch enough to significantly decrease undershoot and ringing.

The Difference Between Soft and Hard Errors

A soft error is a bit error that disappears when a system is rebooted. A hard error causes permanent damage to a particular cell, or group of cells, in a memory device. Consequently, random soft errors are much more difficult to trace and fix, whereas hard errors are only remedied by replacing the entire chip.

Soft Error Causes

There are two major causes of soft errors. The first cause is alpha particles emitted by radioactive impurities in memory component packages. The stray alpha particles cause ionization along their paths, thus changing the charge stored in the memory cell. The second cause of soft errors is internal noise in the die. Internal noise problems can only be eliminated by prudent and proven transistor design techniques such as those used by Fujitsu's Design Engineering Group in Kawasaki, Japan. Fujitsu has taken extensive steps to decrease soft errors due to alpha particles by implementing the following design techniques:

- Using metal bit lines which physically reduce the size of alpha particle-sensitive portions on the die.
- Applying a thin layer of polyamide (which is known to absorb alpha particles) to the die. For example, a 3.5-mil thick polyamide coating can stop most alpha particles from entering and corrupting cells.

Fujitsu has also designed and manufactured a full line of CMOS DRAMs since CMOS has better noise immunity and it is also inherently less prone to soft errors than NMOS.

The number of failures that can be expected due to soft and hard errors is minute. Table 3 displays the number of expected soft errors per device for a time period of one billion device hours. The industry nomenclature for device failures is failures in time (FITs).

Fujitsu Device	Soft Errors
256 k DRAM	<500 FITs
1 Mbit DRAM	<1000 FITs
4 Mbit DRAM	<1000 (target) FITs

Table 3. Failures Per Billion Device Hours

Hard Error Causes

Latchup

One of the disadvantages of CMOS is the inherent problem of latchup. Latchup occurs from parasitic bipolar actions and results in excessive current-sinking logic which destroys the device. Fujitsu reduces the possibility of latchup by using the following preventative measures:

- Incorporating substrate bias generators on the die so that uniform substrate potential of the transistors is maintained. This prevents the parasitic diodes from forward biasing (which would permit excess current to flow) when undershoot occurs.
- Clamping diodes on the inputs which prevents excessive undershoot voltages from occurring.

Electrostatic Discharge

Since MOS has high input impedance and low breakdown voltage, another inherent CMOS disadvantage is device sensitivity to electrostatic discharge (ESD). Fujitsu offers ESD protection in the thousands of volts range, in addition to undershoot and overshoot protection. The input protection circuitry for 1-megabit DRAMs is shown in Figure 4. Grounding any people or machinery that touch the device will nearly eliminate ESD failures.

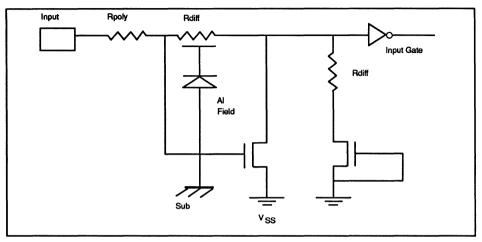
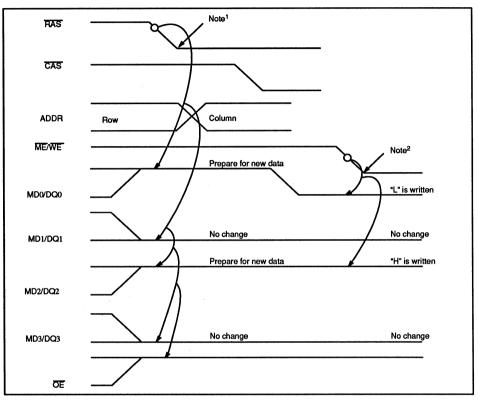


Figure 4. 1-megabit CMOS DRAM Input Protection Circuit


Dual-Port DRAMs

Since memory is inherently parallel and video data is inherently serial, graphics systems have always needed parallel-to-serial shift registers. The extra logic needed to perform graphics tasks increased delay times, used board space, and was not very efficient in high-end graphics applications. These drawbacks have completely vanished with the introduction of Dual-Port DRAMs.

Dual-Port DRAMs are designed to bridge the parallel-to-serial gap by having separate parallel and serial ports. This feature permits image memory to be updated while previous data is being shifted out to the display. The transfer of parallel data to serial data is accomplished by an on-board parallel-to-serial shift register. Conversely, because the serial port has its own clock, it is possible to load the serial port, then shift the data to the parallel access RAM. This type of data manipulation reduces the problem of bus contention especially apparent in display applications. In fact, the Dual-Port DRAM is almost exclusively used for video applications; it is also called a Video RAM.

Bit Masking

Bit masking is used to inhibit (mask) writing to certain bits of nibbles. It is found only in Dual-Port DRAMs where it is most useful in quickly manipulating and operating on individual pixel data. The advantage of bit masking is that instead of doing a read-compare-modify-write cycle, only a masked write is necessary. The pins used in masking are RAS, CAS, WE mask enable (ME), masked data (MD) <0...3>/data out (DQ) <0...3>, and output enable (OE). Figure 5 shows the timing for bit masking.

Figure 5. Bit Masking

Notes: ¹At the fall of RAS (and if OE = H and ME = H), all MD inputs that are high will be prepared to receive new data. MD inputs that are low at the fall of RAS will not be prepared to be rewritten.

²At the fall of ME the new data present on all MD pins that were high at the fall of RAS will be written to the appropriate bit of the memory.

DRAM Refresh Methods

DRAMs are basically made up of decoders, latches and capacitors. Capacitors store charges applied to them. Due to leakage, capacitors also dissipate that charge. Consequently, in order to retain their data, all DRAMs need to be periodically refreshed with a pulse to each cell. Methods of refreshing vary from device to device. Some of these methods are discussed in the following paragraphs.

RAS-Only Refresh

RAS-only refresh causes the output buffer to remain in a high-impedance state until certain RAS and CAS timing parameters are met. This type of refresh cycle is ideal for wired-OR outputs. External glue logic

generates row addresses and timing parameters so that all rows are refreshed within the allotted refresh cycle time. Also, whenever a row is accessed for a read or write operation it is refreshed. A two-step process is required to refresh all the cells.

- Initially the RAS and CAS are high. Then a row address is applied and the RAS is brought low, thereby refreshing all cells in that row.
- 2. After the RAS is brought high, a new row address is applied and the procedure repeats.

A timing diagram is shown in Figure 6.

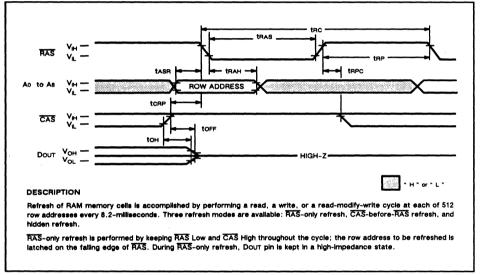


Figure 6. Typical RAS-Only Refresh Cycle

CAS Before RAS Refresh

CAS before RAS refresh eliminates the need for external logic to generate refresh addresses. When using the CAS before RAS refresh, a one-time start-up procedure must be undertaken enabling this feature and ensuring proper device operation. This procedure initializes the internal address generator. One requirement of the procedure is that when power is applied, the CAS and RAS should be high. After power stabilization, the CAS should go low before the RAS goes low. This cycle has certain setup and hold time constraints, depending on the particular chip being used, but generally speaking at least eight CAS before RAS cycles must occur to initialize the internal counter.

Once this procedure is completed the normal CAS before RAS refresh operation is as follows:

- 1. The \overline{CAS} is brought low then the \overline{RAS} is brought low.
- 2. The refresh address is supplied by an internal address generator.

A timing diagram is shown in Figure 7.

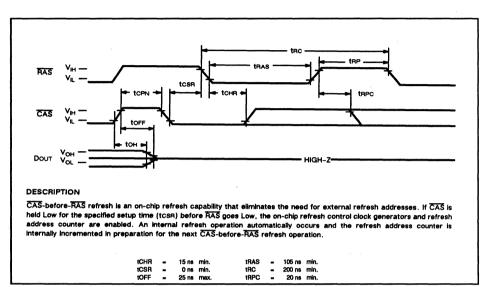


Figure 7. CAS Before RAS Refresh Cycle

Hidden CAS Before RAS On-Chip Refresh

Hidden CAS before RAS on-chip refresh is similar to a CAS before RAS refresh except that data remains valid on the data pins as long as the CAS is low. Because the internal address counter is used in this cycle, at least eight dummy CAS-before-RAS refresh cycles should occur immediately after power-up. For this type of refresh, keep the CAS low at the end of a normal read or read-write cycle, and then bring the RAS high, then back to low. Since data remains valid on the output until the CAS goes high, this cycle is an extended read or write cycle in the foreground and a "hidden" refresh cycle in the background. A timing diagram is shown in Figure 8.

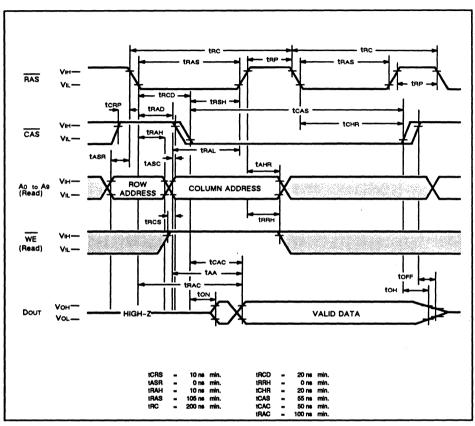


Figure 8. Typical Hidden CAS before RAS Refresh Cycle

DRAM Implementation in an MBL80286 Environment

Figure 9 shows a typical implementation of an MBL80286 microprocessor, an MB1430A DRAM controller, an MBL82288 bus controller and several 1-megabit DRAMs. The memory is organized in two banks; one bank contains the data of odd addresses and the other bank contains the data of even addresses. This type of configuration is known as interleaving memory. The main advantage to such an organization is that while one bank of memory is in tRP (RAS precharge time) the second bank is accessed by the bus. Then, while the second bank is in tRP the first bank is accessed by the bus. This decreases the perceived DRAM cycle time. Interleaving memory is an optimum configuration as long as the same bank of memory cells doesn't need to be accessed sequentially.

November 1989 Fujitsu Microelectronics

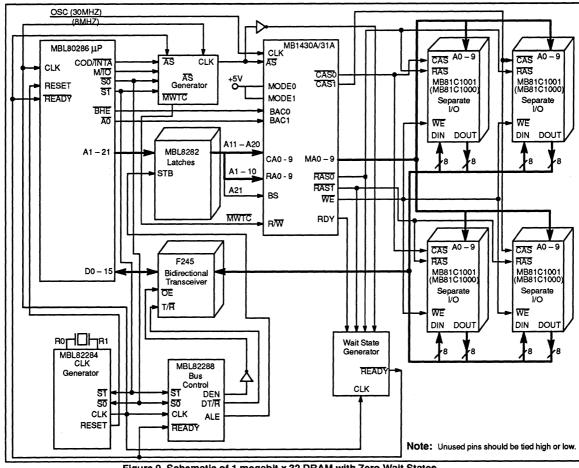


Figure 9. Schematic of 1 megabit x 32 DRAM with Zero Wait States

7-22

Figure 10 shows the RAS0 and RAS1 timing that allows interleaving. If the same bank is accessed sequentially then the microprocessor must generate wait states and endure the tRP. The odd or even bank is selected depending on the value of bus high enable (BHE) and A0. The size of the operation taking place (word or byte) can also be determined by polling BHE and A0. This relationship is shown in Table 4.

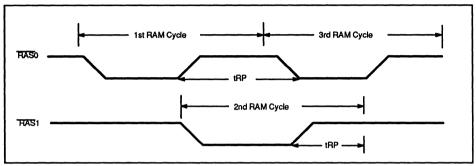


Figure 10. RAS Timing of Interleaving Memory

BHE	AO	Operation		
0	0	Word Transfer		
0	1	Byte Transfer on Upper Half of Data Bus (D15–D8)		
1	0	Byte Transfer on Lower Half of Data Bus (D7–D0)		
1	1	Reserved		

Table 4. Relationship Between BHE, A0, and Size of Operation

The purpose of the octal latches in the Figure 9 schematic (MBL8282) is two-fold: first to demultiplex the address lines and secondly to increase the total drive capability to 32 mA. Once the address lines have been demultiplexed they become inputs to a DRAM controller. The DRAM controller generates the necessary RAS and CAS timing on the RAS0, CAS0, RAS1, and CAS1 lines. The MB1430A DRAM controller can accommodate various microprocessors including the Motorola 68000. In addition, the MB1430A can drive up to 44 DRAMs without the use of drivers.

There are also two purposes for using the bus transceivers in the Figure 9 schematic is two-fold: first to demultiplex the data lines from the multiplexed address-data lines, and second to allow microprocessor read-writes. In the case of a write operation, once the data has been demultiplexed it is put through a bidirectional bus driver which allows data to be read and increases the drive capability. The direction of data flow is determined by the data transmit/receive (DT/R) pin. The bus controller in the Figure 9 schematic orchestrates the entire system under the control of the microprocessor, MBL80286. The signals output by the microprocessor determine the operation taking place (see Table 5).

COD/INTA	M710	<u>51</u>	SO	Bus Cycle Initiated
0 (low)	0	0	0	Interrupt Acknowledge
0	0	0	1	Reserved
0	0	1	0	Reserved
0	0	1	1	None: Not a Status Cycle
0	1	0	0	If A1 = 1 Then Halt; Else Shutdown
0	1	0	1	Memory Data Read
0	1	1	0	Memory Data Write
0	1	1	1	None: Not a Status Cycle
1 (high)	0	0	0	Reserved
1	0	0	1	I/O Read
1	0	1	0	I/O Write
1	0	1	1	None: Not a Status Cycle
1	1	0	0	Reserved
1	1	0	1	Memory Instruction Read
1	1	1	0	Reserved
1	1	1	1	None: Not a Status Cycle

Table 5. MBL80286 Bus Cycle Status Definition

DRAM Modules

DRAM modules are dense memory packages that are a fraction of the size of the same memory structure in a board design. Some of the common module sizes are $1M \times 9$, $256 \text{ k} \times 9$, and $16 \text{ k} \times 32$.

Summary

Fujitsu DRAMs offer a selection of features that include: fast page mode, nibble mode, and static column mode. Fujitsu also manufactures dual-port DRAMs and DRAM modules.

References

- Fujitsu Microelectronics, Inc. 8/16-Bit Microprocessors Microcomputers Peripherals, 1987 Data Book. Tokyo, Japan: Fujitsu Limited; San Jose, CA: Fujitsu Microelectronics, Inc., 1986.
- ____. Memories, 1986-87 Data Book. Tokyo, Japan: Fujitsu Limited; San Jose, CA: Fujitsu Microelectronics, Inc., 1986.
- Iqbal, Mohammad S. Effects of Soft Errors on Bipolar and MOS Memories. Application Note. San Jose, CA: Fujitsu Microelectronics, Inc., 1989.

Sedra, Adel S. and Kenneth C. Smith. Microelectronic Circuits. New York: CBS College Publishing, 1982.

Stone, Harold S. Microcomputer Interfacing. Reading, Massachusetts: Addison-Wesley Publishing Company, 1982.

- Appendix 2

Application Note

Application Note

Dynamic RAM Data Book

7

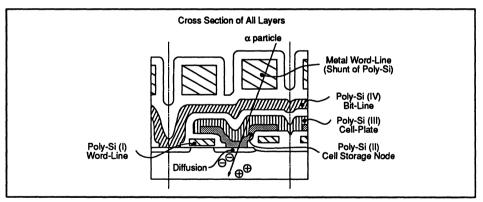
FUJITSU

APPLICATION NOTE

4M DRAM Devices

The Soft Error Rate for 4M DRAM Devices

By Adrian B. Cosoroaba Standard Products Marketing Department Fujitsu Microelectronics, Inc. Integrated Circuits Division Copyright© 1990 by Fujitsu Microelectronics, Inc.


Abstract

Alpha particles (helium nuclei) emitted by trace quantities of radiative elements in the DRAM packaging materials can cause temporary errors in a memory array and its operation. These errors result from changes in the amount of electron charge stored on the capacitor of the memory cell, as well as changes in voltage levels of activated bit lines. The changes are temporary, in that a write to the affected memory cell can correct the error, which is called a soft error. This application note explains the process of soft errors and estimates the soft error rate (SER) for Fujitsu's 4M DRAM devices under accelerated conditions. The 4M DRAM is compared with Fujitsu's 256K and 1M devices to show the improvement in soft error rate.

7

The Soft Error Phenomenon

The package material of DRAMs contains trace quantities of uranium and thorium which can emit alpha particles of various energy levels. These alpha particles (helium nuclei consisting of two protons and two neutrons), upon impact with the silicon crystal lattice, produce electron-hole pairs. The dislocated electrons can be attracted to the potential well (that forms the capacitor plates of the memory cell) and change the electrical state of the memory cell. The capacitor becomes charged and the logic state changes from "1" to "0" (Figure 1); i.e., the memory cell mode of producing a soft error.

Figure 1. 4M DRAM Stacked Capacitor Cell

Soft errors can also be produced by alpha particles through another mechanism, one that involves the bit lines. When the information in the memory cell is read out to the bit line, a potential comparison is made. When electrons generated by alpha particles flow into the bit line during this comparison process, they cause the reference potential to drop. As a result of this a "0" to "1" inversion occurs.

Soft errors caused by this bit line mode are inversely proportional to the cycle time: the longer the cycle, the less frequent are the bit line activations and resultant exposure time to alpha particles. The memory cell mode error rate is independent of the cycle time. The following figure (Figure 2) illustrates the composite rate.

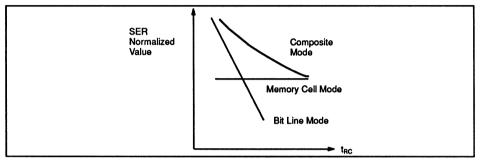


Figure 2. Soft Error Rate vs. Cycle Time

Soft Error Rate Estimation

The soft error rate of a particular device can be analyzed in relationship with other device parameters (V_{CC} and t_{RC}) using an accelerated test scheme. For an example of soft error rate estimation, see Figure 3 which shows a Fujitsu MB814100 4M DRAM die exposed to an americium 241 source.

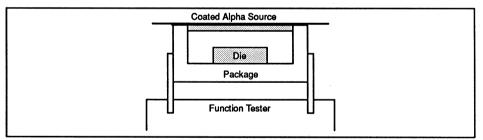


Figure 3. Alpha Source Acceleration Test

The alpha particles are generated by the americium source, and under the following conditions:

Alpha source element : Am 241 Alpha source intensity : 10μ Ci (1.4×10^9 alpha/cm²/hour) Alpha source energy : 5.35 MeV Geometrical condition: 2 mm vertically above the chip V_{CC} : 4.0 - 6.0 V t_{RC} : $0.5 - 10 \mu$ S Test data pattern : checkerboard

Test address pattern : linear sequence

The results can be expressed in two forms, SER vs. V_{CC} and SER vs. t_{RC} . The following graph (Figure 4) shows the soft error rate (normalized value) vs. V_{CC} (supply voltage) when cycle time $t_{RC} = 500$ ns.

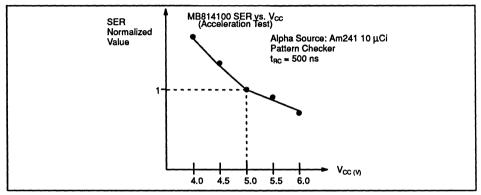
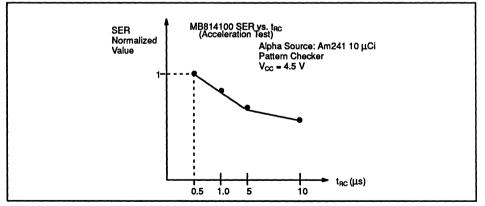



Figure 4. Soft Error Rate vs. V_{CC} (MB814100)

Figure 4 demonstrates that the lower the voltage V_{CC}, the higher the rate of soft errors. This is due to the lower potential that has to be changed by the alpha particle-induced electrons.

The next graph (Figure 5) shows the dependency of the composite soft error rate on the cycle time, t_{RC} .

Figue 5. Soft Error Rate vs. t_{RC} (MB814100)

In this case, the SER is inversely proportional to the cycle time. The longer the cycle, the less frequent are the bit line activations and resultant exposure time to alpha particles. Hence, the SER decreases with the increase in t_{RC} .

Soft Error Rate Comparison

The accelerated test data that has been compiled can be used to compare the SER of MB814100 to similar devices from other manufacturers or to compare the soft error rate of several Fujitsu DRAMs, from the 256K to the present 4M devices.

In order to compare the SER for the Fujitsu 256K, 1M and 4M devices, the SER values can be normalized to reflect the same alpha particle flux densities. The following figure, Figure 6, represents a comparison between the SER of 256K, 1M and 4M DRAM devices. The marked improvement shown between the 256K and 1M is due to the stacked capacitor cell design. This design technique was adopted by Fujitsu for DRAM cell designs and the 1M DRAM was the first device fabricated using this design technique.

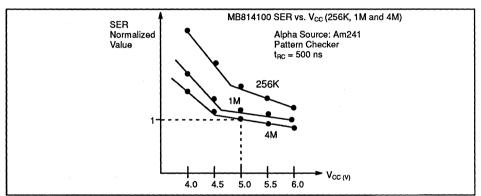


Figure 6. Relative Soft Error Rate vs. V_{CC} (256K, 1M, 4M)

To improve the 4M DRAM, various methods, including an advanced stacked capacitor cell design and an improved circuit design, were used to decrease the SER. Figure 6 shows the SER of the 4M DRAM significantly reduced when compared to that of the 1M and 256K DRAMs.

Conclusion

The soft error rate for the Fujitsu 4M DRAM, the MB814100, was estimated under accelerated conditions. The results were compared with the previous products, the 256K and 1M DRAMs. The SER for the 4M is an improvement over previous DRAM generations and this is due to various design methods used by Fujitsu such as:

- reduction of trace radioactive elements in package materials
- improved circuit design to minimize the impact of dislocated electrons.

Soft errors in DRAM devices cannot be completely eliminated, but they can be reduced to very small numbers. Fujitsu will continue to develop improved methods that will reduce the soft error rate of present and future DRAM memory products.

– Appendix 3

Technical Paper

7

Application Note

Dynamic RAM Data Book

.

3D Stacked Capacitor Cell for Mega Bit DRAM

• Tomio Nakano • Takashi Yabu (Manuscript received December 16, 1988)

This paper discusses the three-dimensional stacked capacitor (3D STC) cell technology that Fujistu used in 1-Mbit DRAMs (Fujitsu was the first to do this), and the development of 1-Mbit and 4-Mbit DRAMs using the 3D STC technology. 3D STC technology is the key to cell area reduction enabling densities higher than 1-Mbit. This technology provides mass production capability and a high immunity to alphaparticle-induced soft errors. To respond to market demands for low power consumption, high speed, and high reliability, 1-Mbit DRAMs were designed using CMOS technology. A 4-Mbit DRAM having an access time of 56 ns and low power consumption of 175 mW was also developed.

1. Introduction

Since the 1-Kbit dynamic memory (DRAM) was developed, the density and performance of MOS DRAMs have steadily improved and have led the semiconductor technologies of Fujitsu. In 1985, a three-dimensional stacked capacitor cell was developed ¹⁾ and first used in a 1-Mbit DRAM.

The three-dimensional design of a capacitor using this cell technology results in a large cell capacitance in a very small cell area and high scalability. These features have attracted much attention to this cell technology and it is being widely used for 4-Mbit DRAMs^{2),3)}. This report discusses the three-dimensional stacked capacitor cell (3D STC) technology and the 1-Mbit and 4-Mbit DRAMs that use this technology.

2. Development of DRAMs having capacities up to 256 Kbits

Figure 1 shows the DRAM developments by Fujitsu. Since the development of the 1-Kbit DRAM in 1971, integration has quadrupled every three years. A 4-Mbit DRAM may be introduced to the market in 1989. The major points of this steady progress in high integration is reviewed below.

Figure 2 shows that the cell area has been

reduced by a factor of 400 in the last 18 years. This area reduction was mainly due to the progress in fine lithography techniques, cell structure, and circuit technology. The standard DRAM design rule for fine lithography has been to make the lithography 0.7 times finer in each generation. The 4-Mbit DRAM must now be processed in units of submicrons. In each generation of DRAM, a cell area reduction technology has been developed (see Table 1).

The general progress of DRAMs can be viewed as the advance of memory cell technology. The memory cell of a 1-Kbit DRAM consists of three (or four) transistors (see Fig. $3a)^{4}$). Although this cell has a large area, it has the advantages of current amplification capability and is easy to read. In the single-transistor cell system that was first incorporated in the 4-Kbit DRAM, a one-bit memory cell consists of a transistor as a switch and a capacitor that stores information as an electric charge (see Fig. 3b).

Because the single-transistor cell does not have current amplification capability, the signal voltage on a bit line is very small (100 V to 200 mV). Advances in circuit technology, including the sense amplifier, has enabled this small signal to be detected at high speeds and has provided the basis for DRAMs ever since.

Table 1. Development of DRAM technology for each generation.

	Lithography technology				
Capacity (bit)	Design rule (µm)	Etching	Cell structure	Circuit technology	
1K	9	Wet	3 transistors	pMOS Dynamic	
4K	8	Wet	1 transistor	nMOS Dynamic	
16K	6	Wet	Double poly-Si	MPX add. 16 pin PKG	
64K	3	Dry	Double poly-Si	Single 5 V supply	
256K	2.5	Dry	Triple poly-Si	Redundancy, high speed	
1M	1.8	Dry	3D STC cell	CMOS Dynamic	
4M	0.8	Dry	4 layer poly-Si STC	Blocknized peripheral	

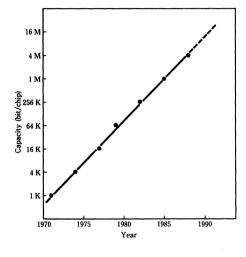


Fig. 1-DRAM development of Fujitsu.

The following section explains the principle of operation of the sense amplifier for the single-transistor cell using the circuit of the 256-Kbit DRAM MB81256⁵⁾ as an example.

2.1 Sense amplifier for single-transistor cell

Figures 4 and 5 show the major circuits of the sense amplifier and their operating waveforms. A sense amplifier consists of a dynamic flip-flop circuit having a pair of transistors (Q_1 and Q_2). A small differential voltage between the left and right bit lines is quickly amplified. That is, sense amplifier activation clocks A and B are set to a high level sequentially at time t_1

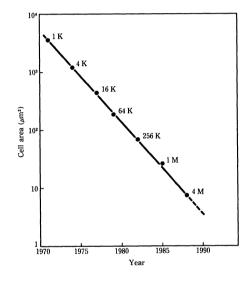
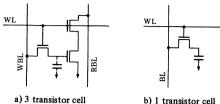



Fig. 2-History of cell area reduction (Cell area reduced by a factor of 400 in 18 years).

(see Fig. 5), and the differential voltage between nodes N_1 and N_2 increases. At time t_2 after amplification, the active restore circuit operates to recharge the bit line to the high level V_{CC} , and the series of read operations is completed.

The cell read signal voltage can significantly affect the stability of sense amplifier operation. This is analyzed in a simplified manner below. In Fig. 4, the bit line capacitance is C_{BL} , cell capacitance is C_S , dummy cell capacitance is C_D , and the cell potential at time t_0 is V_S . The

UDC 621.377.621:681.327.67

b) 1 transistor cell

Fig. 3-DRAM memory cell circuit.

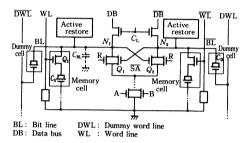


Fig. 4-Sense amplifier circuitry of 254-K DRAM.

potential difference (or signal voltage) Vsig between sense amplifier input nodes N_1 and N_2 at time t_1 is determined by the ratio of cell and bit line capacitances and is expressed as follows.

$$V_{sig} = -\frac{Cs}{C_{BL} + C_S} (V_{CC} - V_S) \bullet \gamma$$
$$+ \frac{C_D}{C_{BL} + C_D} V_{CC} \bullet \gamma \pm V_n$$

In the above expression, γ is the cell read efficiency and V_n is the noise voltage to the sense amplifier. From the above expression and the MB81256 cell capacity, the relation between cell potential $V_{\rm S}$ and signal voltage $V_{\rm sig}$ is obtained as shown in Fig. 6. In this example, the reference voltage is set to 2 V and the read margin at the high level is set above the read margin at the low level because of the leakage at the p-n junction and the cell charge loss due to alpha particles⁶⁾.

2.2 DRAMs and cell technology before 1-Mbit DRAM

The 64-Kbit DRAM can be operated by a

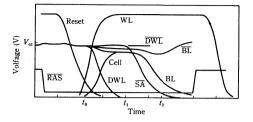


Fig. 5-Operational waveforms of sense amplifier.

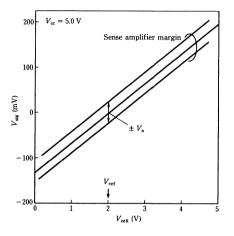


Fig. 6-Relation between V_{cell} and V_{sig} (Dummy cell is adjusted to fit $V_{ref} = 2 V$).

single 5 V power supply while conventional-DRAMs require three power supplies (+12 V ± 5 V). This design enabled the DRAM to be connected to peripheral circuitry more easily and expanded the field of DRAM applications from main storage in large computers to personal computers. This resulted in a dramatic increase in the demand for DRAMs nMOS technology, which had been used for DRAMs having capacities of 4 Kbits to 256 Kbits, was replaced by CMOS technology when 1-Mbit DRAMs were developed to reduce power consumption and increase speed.

The objective of cell structure development at this time was the promotion of multilayer and three-dimensional designs. For DRAMs having 4 Kbits or less, the capacitor and transistor consist of a single poly-silicon layer whose capacitor area occupies only a small portion of the cell area. Double poly-silicon layer technology was first used for a 16-Kbit DRAM. The double polysilicon layer structure provides the first-layer for the capacitor electrode and the second layer for the transistor gates. This increases the capacitor area occupancy ratio. In addition, the function of each poly-silicon layer can be limited. enabling the optimum gate oxide thickness for the capacitor transistor to be selected individually. Thus the maximum capacitance can be provided in a very small cell area.

The multilayer poly-silicon design was further advanced. The resulting three-layer polysilicon technology developed for the 256-Kbit DRAM has increased the speed even more. This technology provided the basis for the smooth development of 1-Mbit three-dimensional stacked capacitor (3D STC) cells. The cells of DRAMs having 256 Kbits or less use the surface of the silicon substrate for the capacitor and transistor and are classified as planar cells. If the cell area was reduced by using only fine lithography together with the planar technique to obtain capacities of 1 Mbits to 4 Mbits, the cell capacity required to guarantee immunity from alpha-particle-induced soft errors could not be achieved. To solve this problem, the three-dimensional design was employed based on the concept of a stacked capacitor cell which overlays the capacitor on the transistor for efficient use of the silicon surface.

3. Stacked capacitor cell technology 3.1 Features of mega bit DRAM cells

Various cell structures have been proposed for mega bit DRAM memory cells having threedimensional structures. The stacked cell forms a capacitor on a single-transistor cell access transistor. The trench cell forms a capacitor in a trench dug in the silicon substrate. Many of the suggested cell structures were trench cell types. but planar cells, which were mainly used

for DRAMs having capacities of 256 Kbits or less, are generally used for the 1-Mbit DRAMs now in mass production.

However, the planar cell is reaching the limit of its capability. When the future capacity of DRAMs is considered, it is now necessary to select other cell types as the memory cells for 4-Mbit to 16-Mbit DRAMs. Recently, the developments in stacked capacitor cells have gained attention for their applicability to fine lithography and high scalability.

Fujitsu led other manufacturers by developing the three-dimensional stacked capacitor cell and using it for 1-Mbit DRAMs. Fujitsu subsequently developed a memory cell for a 4-Mbit DRAM having the smallest cell area reported so far using fine lithography technology. Furthermore. Fujitsu has promoted the development of stacked capacitor cell technology combined with a dielectrically encapsulated trench (DIET) capacitor cell⁷⁾ which combines the advantages of trench cells and stacked cells.

3.2 Three-dimensional stacked capacitor cell

The memory cell structure is most important for the design of a DRAM. The memory cell almost determines the performance and mass producibility of the DRAM. The memory cell size of the 1-Mbit DRAM must be reduced to about one-third that of the 256-Kbit DRAM. The memory cell size of the 4-Mbit DRAM must be reduced to about one-third that of the 1-Mbit DRAM by using a scaling factor of 0.6 to 0.7. When Fujitsu developed the 1-Mbit DRAM, it planned to develop a basic structure for the memory cell that could be used for at least two After investigating various generations. memory cell structures such as the stacked cell. trench cell, and planar cell, Fujitsu selected the stacked capacitor cell structure due to its high scalability and thus the expandability to 4-Mbit DRAMs.

3.2.1 Folded bit line configuration The basic idea of stacked cell has existed since 1978^{8),9)}. This idea, however, simply stacks the capacitor on the access transistor of the cell and has an open bit line configuration.

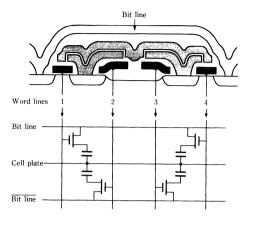


Fig. 7-3D stacked capacitor cell.

Fujitsu has also used the open bit line configuration for its 64-Kbit and 256-Kbit DRAMs. However, mega bit DRAMs which have reduced memory cell size require a cell structure that enables the folded bit line configuration for an improved noise margin. Fujitsu has improved the conventional stacked capacitor cell structure by locating word lines under the second polysilicon layer that forms the charge storage electrode (see Fig. 7). This structure forms a memory cell at every other intersection of a bit line and a word line and enables the folded bit line configuration.

3.2.2 Cell Size

A planar cell forms a flat capacitor on the surface of a substrate. The capacitor area is reduced in proportion to the reduction of memory cell size. Even when the fine lithography technique is fully implemented, it has a limited ability to provide a large capacitance in a small area. Because a trench cell has a trench in the substrate in which the capacitor is formed, the capacitor is also formed on the surface of the side walls within the trench. If the trench is deep, a relatively large memory cell capacitance can easily be provided.

A stacked cell forms the capacitor on the access transistor. Therefore, the memory cell capacitance can be increased because the



Fig. 8-Comparison of cell size for three types of cell structure.

capacitor is formed on the top and sides of the poly-silicon layer for storage node. The bent shape of the storage node also contributes to the capacitance increase.

The memory cell areas of the stacked cell, trench cell, and planar cell were compared when the same lithography technique was used and the capacitor areas were the same (see Fig. 8). The results show that the three-dimensional stacked capacitor cell is the best for reducing the memory cell size.

3.2.3 Soft error immunity

A soft error is an event in which cell information is destroyed. The charge generated by an alpha particle beneath the charge storage region of the cell is absorbed in the diffusion layer, and the voltage potential of the cell is lowered causing cell information to be destroyed.

The first method to prevent soft errors is to suppress the generation of alpha particles by increasing the purity of the package material or by preventing alpha particles from entering the silicon substrate. The second method is to increase the charge storage capacitance to reduce the adverse effect of the charges generated by the alpha particles. The third method is to design a memory cell structure having high resistance to soft errors by lowering the charge collection efficiency of the diffusion layer.

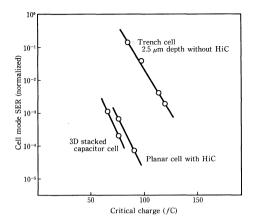


Fig. 9-Comparison of SER for three types of cell structure.

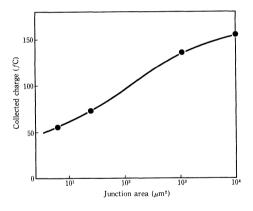


Fig. 10-Dependence of collected charge on junction area.

To increase the storage capacitance, the thickness of the capacitor film must be reduced and the storage electrode areas must be increased. To lower the charge collection efficiently, the diffusion layer area must be reduced or a potential barrier must be formed. For example, a HiC structure¹⁰⁾ or memory cell formation in a p-well¹¹⁾ is required.

When the stacked capacitor cell was developed, three test devices having the stacked capacitor cell, planar cell, and trench cell structure were made and actual soft error rates were measured (see Fig. 9). The results show that the stacked cell caused fewer soft errors even though it has a small memory cell capacitance.

Because the capacitor is formed on polysilicon in the stacked cell structure, its diffusion area is very small and the collected charge amount is reduced. On the other hand, the capacitor area in a planar or trench cell is equivalent to the diffusion layer area and the edge of the drain is added to this area. The diffusion layer in the charge storage region is therefore enlarged and the collected charge amount become large. Although a large memory cell capacity can theoretically be maintained by the trench cell structure, the critical charge amount must be increased because the diffusion layer area increases according to the increase in the capacity. For this reason, an additional countermeasure, including a potential barrier on the side walls of the capacitor, is required.

This characteristic can also be illustrated by the results of an experiment in which collected charge amounts are measured using test devices having various junction areas (see Fig. 10). If the junction area is small in comparison to the charge amount to be collected, the collected charge amount is reduced because the effective funneling length is shortened by the electric field distortion at the junction edges, and because adjacent cells partially absorb the charge.

3.2.4 Charge retention characteristic

The charge retention characteristic of the memory cell is important in relation to the refresh time of the DRAM. In a 256-Kbit DRAM, the refresh time is 256 cycles/4 ms. That is 1024 memory cells are refreshed by one refresh operation and the operation must be executed 256 times in 4 ms. In a 1-Mbit DRAM, the refresh time is 512 cycles/8 ms, and the refresh time of a 4-Mbit DRAM is 16 ms if the refresh overhead time is the same as that of the 1-Mbit DRAM. The refresh time doubles for each DRAM generation.

To prolong the charge storage time, all sources of leakage current must be reduced.

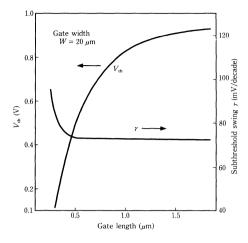


Fig.11 - Threshold voltage as a function of gate length.

When compared with other cell structures, the stacked capacitor cell has a small p-n junction area of the capacitor and lower leakage current. The stacked capacitor cell can also incorporate conventional isolation techniques, resulting in sufficient isolation width and a lower leakage current.

The leakage current of the capacitor dielectirc film on the poly-silicon is not more than 10^{-16} A per cell when the film thickness is 5 nm (effective oxide thickness) and the electric field in the insulating film is 5 MV/cm.

When the transistor becomes very small, the characteristic degradation due to hot carriers and short and narrow channel effects become a problem. The stacked cell can use a large access transistor in comparison with the planar and trench cells. Alternatively, if the same size transistor is used, the stacked cell can have a smaller memory cell size than that of other memory cell structures. Figure 11 shows that the subthreshold swing even in the submicron gate length is 80 mV/decade and the leakage current can be suppressed enough to eliminate the adverse effect on the charge retention characteristic.

3.3 Development of 4-Mbit DRAM memory cell

A 4-Mbit DRAM memory cell was developedby further scaling the three-dimensional stacked capacitor cell developed for 1-Mbit DRAMS. The basic memory cell structure is common to 1-Mbit and 4-Mbit DRAMS. The 1-Mbit DRAM incorporates three-layers poly-silicon and one-layer Al process technology, where polycide us used for word lines, and Al wiring is used for bit lines. The 4-bit DRAM uses further advanced technology having four-layer polysilicon and a one-layer Al process.

In the 4-Mbit DRAM, contacts with the Al word lines are made at eight positions in the cell array to minimize the delay time due to the polycide word lines on the first poly-silicon layer. The bit line is formed by the 4th layer of polycide on which it is easy to form a fine bit line pitch. This eliminates stray capacitances that would be occur if thick Al bit lines were formed. This design resulted in a ratio of bit line capacitance to cell capacitance $C_{\rm B}/C_{\rm S}$ of about eleven, which is sufficient for signal sensing.

In addition, a cell capacitance of 27fF was realized by the development of a capacitor insulating film having a thickness of 10 nm (effective exide thickness) or less and by virtue of the three-dimensional structure of the stacked cell. Thus, a 7.5 μ m² cell was developed and put into use in a practical device.

3.3.1 Four-layer poly-silicon process

Figure 12 shows the process to make the 4-Mbit DRAM memory cell. The substrate is ptype silicon. After isolation and formation of the n-well of CMOS for peripheral circuitry using conventional methods, gate electrodes, including those for the access transistor, are formed on the first poly-silicon layer (polycide). Then the source drain area is formed by ion implantation in Fig. 12a). After oxide film is grown by the CVD method and the contact holes are formed by imprinting a mask pattern, the second poly-silicon layer for the storage nodes is grown. To process the second poly-silicon layer, which affects the storage capacity, accurate patterning was performed while avoiding the influence of the first poly-silicon layer in Fig. 12b). For this process, new lithography and etching techniques to delineate an exact pattern of the reticule and a new

T. Nakano, and T. Yabu: 3 D Stacked Capacitor Cell for Mega Bit DRAM

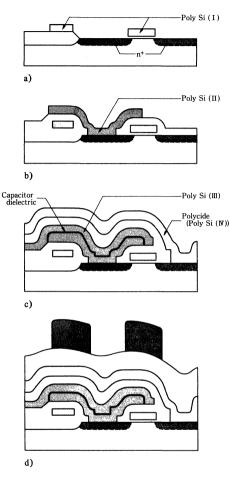


Fig. 12-Schematic veiw of 3D stacked capacitor cell and fabrication process.

technique of producing accurate and defectless reticules were developed.

After the capacitor dielectric film is formed, the third poly-silicon layer for the cell plate is grown. After the oxide films between layers are grown, the bit line contact holes are opened and bit lines are formed by the fourth silicon layer (polycide) in Fig. 12c). Then, aluminum word lines are formed by the conventional method in Fig. 12d). Figure 13 shows the cross-sectional SEM view.

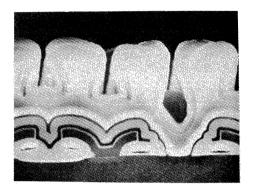


Fig. 13-SEM cross sectional view of 3D stacked capacitor cell.

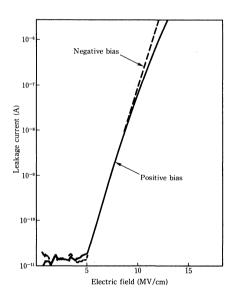


Fig. 14-Leakage current of capacitor film.

3.3.2 Capacitor dielectric film

A key technique of the process for the stacked capacitor cell is the formation of the capacitor dielectric film on the poly-silicon. The 4-Mbit DRAM requires a film thickness not more than10 nm (effective oxide thickness). There is also a physical limit for the silicon oxide film thickness. When the thickness becomes

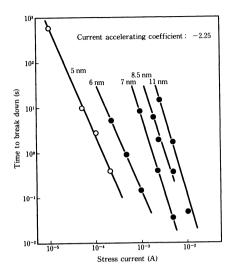


Fig. 15-Stress current on lifetime (0.1% cumulative failure).

5 nm or less, the conductivity mechanism of the film is changed and its dielectric characteristics rapidly deteriorate. Therefore, the film cannot be thinner than this limit.

To determine the minimum limit of film thickness, I-V characteristics were measured as shown in Fig. 14 using a film 5 nm thick (effective oxide thickness) which is close to the physical limit, and by using a test pattern having a 40 mm^2 capacitor area and having the equivalent steps as a 4-Mbit DRAM. This measurement confirmed that the leakage current per cell under the device operating conditions is not more than 10⁻¹⁶ A.

In addition, the time dependent dielectric breakdown (TDDB) of the capacitor film was estimated by an accelerated test using constantcurrent stress (see Fig. 15). The operating life of the capacitor film calculated using the current acceleration factor obtained from the test result was essentially infinite even for a film thickness of 5 nm.

The results of these measurements showed that the capacitor dielectric film on the poly-silicon has sufficient charge retention characteris-

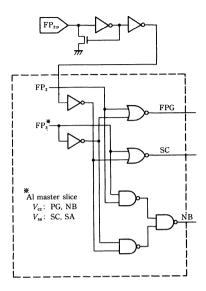


Fig. 16-Master slice/wire bond option control circuitry.

tics and operating life even when its thickness is close to the physical limit. Consequently, a capacitor film having a 7 nm to 8 nm thickness was selected considering fluctuations in the production process.

4. Development of mega bit CMOS DRAM

4.1 Eight types of 1-Mbit DRAM on the same chip

This section explains the circuits and features of Fujitsu's CMOS DRAMs that use the three-dimensional stacked capacitor cell and CMOS peripheral circuits described in the preceding chapter.

The MB81C1000/1/2/3 series having 1-Mbit x 1-bit organization and the MB81C4256/7/8/9 series having 256-Kbit x 4-bit organization from eight different types of 1-Mbit DRAM are fabricated on the same bulk chip. The type of DRAM product is selected by means of the aluminum master-slice and wire bonding in the assembly step. Figure 16 shows the control circuit for these DRAMs. When PF₂ and FP₃ are pulled up to V_{CC} or down to V_{SS}, the FAST PAGE (FPG), NIBBLE (NB), STATIC COLUMN (SC),

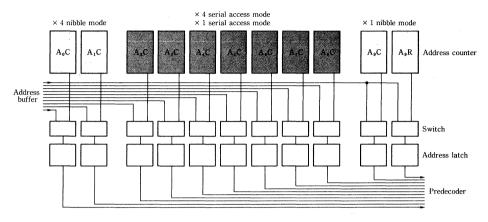


Fig. 17-Address counter block diagram for nibble mode and serial access mode.

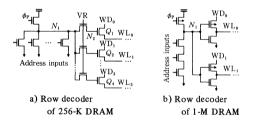


Fig. 18-Compariosn of row decoder between nMOS and

or SERIAL ACCESS (SA) mode can be selected.

Figure 17 shows the address counter connections to provide the SA mode. In the 256-Kbit x 41-bit organization, continuous 2-Kbit data can be accessed at high speed by operating all counter bits A_0C to A_8C . If two low order bits of this counter are used, the NB mode can provided. In the 1-Mbit x 1-bit organization, the counter operation is the same as in the 256-Kbit x 4-bit organization except that the address boundary is A_0C to A_9C .

4.1.1 Power consumption

The MB81C1000 series uses a p-type substrate and n-well CMOS technology to provide low power consumption and high speed operation at the same time. Figure 18a) shows the circuit of the row decoders used in MB81256 based on conventional nMOS technology. During address decoding in MB81256, all other decoders, except the selected one, repeat charging and discharging at every memory cycle. In the MB81C1000 shown in Fig. 18b), only the selected 1-bit decoder repeats charging and discharging. All other decoders are in the standby state (NODE $N_1 = H$). Because of this feature, the gate capacitances of large transistors Q_1 to Q_4 are not charged and discharged every cycle, and unnecessary power consumption is avoided. Furthermore, ground noise and substrate noise caused by discharging can be eliminated, resulting in stable operation of the sense amplifier.

Because the reset level of the bit lines is set to about $1/2 V_{CC}$, the charging and discharging current (which significantly affects the power consumption of the DRAM) is reduced to about 35 percent that of the conventional V_{CC} resetting method. In addition, each bit line is divided into four sections by the shared sense amplifiers located on both sides of the column decoder in the middle. This enables the elimination of charging and discharging bit lines that are not operated for reading and writing. With this design an effective reduction in power consumption is also achieved.

4.1.2 Reliability

Setting the bit line reset voltage to $1/2 V_{CC}$ results not only in low power consumption but also improved reliability.

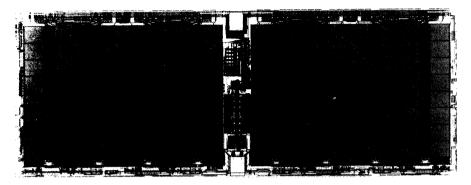


Fig. 19-Photomicrograph of 4M DRAM (Chip size is $(4.92 \times 13.22 \text{ mm}^2)$).

First, by making the voltage potential of the bit line reset level equal to that of the capacitor plate of the cell, the electric field at the capacitor film is reduced by half. This enables the capacitor film to be much thinner, reduces alpha-particle-induced soft errors, and improves the time dependent dielectric breakdown (TDDB) of the capacitor film itself.

Second, the potential of the capacitor plate of the cell and the bit line reset voltage are set to follow the fluctuation in the power supply (V_{CC}). This stabilizes the read signal voltage to the sense amplifiers regardless of fluctuations in V_{CC} , and makes the device highly resistant to V_{CC} noise (V bump).

Third, boost circuits, including the word driver, can be eliminated and fully static circuits are used for all internal circuits. As a result, the memory not only has the advantageous feature of a CMOS circuit that is highly resistive to small leakage current, but also eliminates the characteristic degradation, including that due to hot carriers.

The fourth advantage of the 1/2 V_{CC} reset system is the reduction in the peak current of V_{CC} power supply. Excessive peak current causes noise which adversely affects memory device operation. This has frequently caused troubles in users' boards.

In the MB81C1000 series, the peak current is lowered to 100 mA or less by using the 1/2 V_{CC}

reset system as well as other techniques, making it possible to produce a device easy to use.

4.2 Development of 4-Mbit DRAM MB814100/814400 series

A 4-Mbit DRAM that can be mounted in a 300 mil dual in-line package (DIP) has been developed¹²⁾ through the incorporation of a memory cell having the three-dimensional stacked capacitor structure using four-layers of poly-silicon and the scaling of CMOS devices. Figure 19 shows a photograph of the chip.

The major technical issue when mounting a 4-Mbit DRAM to a 300 mil DIP is how to assure the cell area under the restrictions imposed by the package while maintaining cell capacitance and immunity to alpha-particle-induced soft errors. Considering the immunity to alpha-particle-induced soft errors of the stacked capacitor cell, Fujitsu has set the cell area at $7.5 \,\mu\text{m}^2$; this is the minimum reported cell area for 4-Mbit DRAM. This cell area was selected because it enables a chip area of less than 70 mm² and because the memory device can be mounted in a conventional package.

The development of the 4-Mbit DRAM MB814100/814400 series had three objectives:

1) Electric characteristics, including the alpha-particle-induced soft error rate, must be at least equivalent to those of existing DRAMs.

2) The 4-Mbit DRAM must be compatible with various packages and capable of being

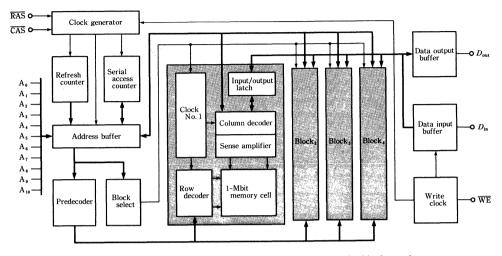


Fig. 20-Block diagram of 4M DRAM (Address clocks shape whole chip, but each 1-Mbit blocks has its own clock generator).

 High-quality and inexpensive memory must be supplied to users by using stacked capacitor cells which have already been mass produced.

4.2.1 Design concept fo 4-Mbit DRAM

The chip area of the newly developed 4-Mbit DRAM is small (65 mm). It can be mounted not only to the 300 mil DIP but also to various packages such as the Small Outline J-leaded package (SOJ) and Zigzag In-line Package (ZIP) which have the same size as a 1-Mbit DRAM. The circuit design followed that of the 1-Mbit DRAM as much as possible, but with improved power consumption and operating speed. The design improvements are the $1/2 V_{CC}$ reset system for the cell plate and bit lines, determination of word x bit organization by wire bonding, and positioning of partial peripheral circuits in the middle of the chip.

For large-capacity DRAMs of 1-Mbit or more, the division of the memory cell array is very important for determining the overall characteristics of the DRAM. This is because the length of aluminum wiring in a chip is increased from 10 mm to 20 mm and the delay time in wiring becomes an important factor in the DRAM speed. In many cases, the power supply and ground line may receive the noise generated when all decoders and sense amplifiers in the array are operated at the same time. This restricts the margin of device operation. In addition, electro-migration must be considered in order to determine the power line width.

4.2.2 1-Mbit blocking organization

Because the sense amplifier pitch in the 4-Mbit DRAM can be reduced due to the use of polycide bit lines, 1024 sense amplifiers are positioned in an array in the Y direction (direction of shorter side). Therefore, the length of the shorter side of the chip is 4.84 mm; this is less than the maximum length for a plastic 300 mil DIP. A cell array of 1024 columns x 512 words (512 Kbits) is considered a unit. Eight blocks of this array are laid in the X direction (direction of longer side) to configure a 4-Mbit array. When compared with the 1-Mbit DRAM, the chip area of the 4-Mbit DRAM is increased by only 28 percent (comparison between Fujitsu products).

Although the bit line reset voltage is set to $1/2 V_{CC}$ to reduce the power consumption, the charging or discharging current of bit lines reaches 70 mA (t_{RC} = 180 ns) when all arrays of

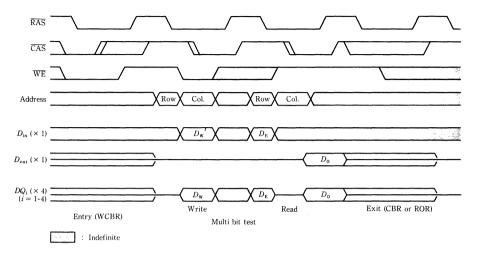


Fig. 21-Timing diagram of 16-bit multi bit test (D_W, D_R, D_E are write, read, expected data).

the 4-Mbit DRAM operate at the same time. In the 1-Mbit DRAM, the charge and discharge current were reduced to three-fourths of the conventional value through the divisional driving of arrays. In the 4-Mbit DRAM, only one-fourth of the arrays are driven and the current consumption by bit lines is reduced to about 18 mA. After current consumption by arrays is reduced, the power consumption of peripheral circuits becomes the next problem.

The increase in power consumption due to the increase of DRAM capacitance, and the deterioration in access time due to the wiring delay time have been suppressed by improving the DRAM performance through the scaling of the transistor size. However, for a large capacity of 4-Mbits, the improvement in memory device performance made only by scaling the transistor is approaching its limit. This is because the wiring delay time becomes the dominant performance factor as described before.

To solve this problem, the blocking of circuits, including peripheral circuits, is used and the power delay product in the peripheral circuits is greatly improved (see Fig. 20). A 1-Mbit array containing a cell array and a clock generator circuit to drive the array is considered a unit block. The 4-Mbit memory is configured by four such blocks. During normal reading or writing, only the selected 1-Mbit block is operated. Consequently, the chip can maintain high speed and low power consumption because it operates under an internal load as small as that of a 1-Mbit DRAM.

4.2.3 Test mode

Since the development of the 1-Mbit DRAM, the issue of increasing the test time as the memory capacity increases has arisen. This is a serious problem even for the 4-Mbit DRAM. For example, when a DRAM of 4-Mbit x 1-organization is tested with a cycle time of 300 ns, a test time of about 15 s is required even when a simple marching pattern is used. For the 1-Mbit DRAM, the parallel test mode is activated by applying a voltage higher than V_{CC} to the Test Enable (TE) pin which used to be an NC pin. However, for the 4-Mbit DRAM, reduction of the test time is strongly desired at the board level and there is no unused pin. Therefore, the 4-Mbit DRAM is designed to have an 8-bit parallel test mode controlled by the TTL logic input.

Table 2 lists the test functions employed for the 4-Mbit DRAM. Figure 21 shows their timing charts. The parallel test mode entry is done by

Table 2. Function of Multi bit test							
Organiza- tion	Test entry	Test exit	Result	No. of MBT			
4-M x 1	WE, CAS before RAS (WCBR)	CAS before RAS or RAS only refrech	$Pass = 1$ $Fail = 0$ from D_{out}	8			
1-M x 4	Ditto	above	Pass = 1 Fail = 0 fromDOs	8			

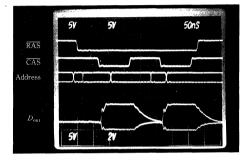


Fig. 22-Output wave form operating in a fast page mode.

the WE, CAS before RAS (WCBR) cycle. The exit cycle is done by the RAS only refresh or CAS before RAS cycle. During test mode operation, refresh can be executed in either the simple read cycle or WCBR entry cycle.

For the test result output, the Dout pin outputs "1" for "pass" when all data of the eight parallel read bits matches, and "0" for "fail" when at least one bit of data does not match. The 3-state output method which uses a high impedance state for test result output is not used, thus the test can be executed easily on the board.

4.3 Characteristics of 4-Mbit DRAM

The 4-Mbit DRAM designed as described above operates at high speed with low power consumption. Figure 22 shows the output waveform of the DRAM in the fast page mode. The measurement conditions are: power voltage V_{CC} is 5 V, ambient temperature is 25 °C, and RAS- $\overline{\text{CAS}}$ delay time t_{RCD} is t_{RCDmax} . As shown in the figure, the RAS access time is typically 56

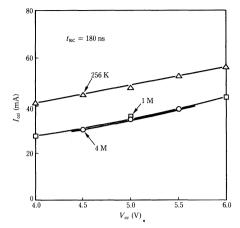
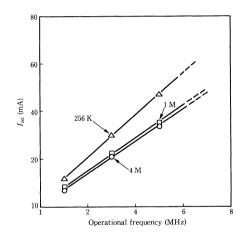
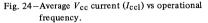




Fig. 23-Average V_{cc} current (I_{ccl}) vs V_{cc} voltage.

ns. This is faster than that of 256-Kbit and 1-Mbit DRAMs.

Figure 23 shows the average operating current (V_{CC}) dependency of the power voltage (I_{CC1}). Figure 24 shows the cycle time dependency of I_{CC1}. For reference, data of a 4-Mbit DRAM is compared with data of a 256-Kbit DRAM (MB81256) using nMOS technology. Under typical conditions, the operating current of the 4-Mbit DRAM is 34 mA, while that of the 256-Kbit

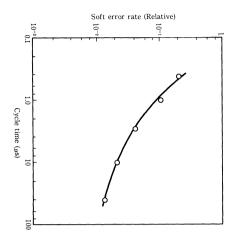


Fig. 25 – Accelerated alpha particle induced soft error result.

DRAM is 48 mA. The comparison reveals a large reduction in the operating current. This results from the array division. The memory cell array is divided into eight sections and configured in four blocks consisting of independent 1-Mbit blocks, including the peripheral circuits to drive the arrays.

The 4-Mbit DRAM has the same power consumption as a 1-Mbit DRAM because it executes operations equivalent to that of a 1-Mbit DRAM using its internal circuits, including peripheral circuits. This is a large advantage for PC board assembly. The memory board capacity can be increased four times by using the 4-Mbit DRAM without changing the power supply or cooling system.

The peak current of the 4-Mbit DRAM is rather low (100 mA) compared to a 256-Kbit DRAM.

Reduction of the alpha-particle-induced soft error rate is a large problem if the reliability of mega-bit DRAMs is to be increased. Figure 25 shows an example of the test results for soft errors using an accelerated test. In this test, alpha rays were irradiated onto the chip surface and the soft error rate was measured while altering the DRAM operation cycle time. As shown in the figure, the major cause of soft errors is the bit line mode. Few soft errors are observed in the cell mode partly because only a small charge is collected by the stacked capacitor cell¹³⁾: It has already been confirmed that the soft error rate of the 4-Mbit DRAM is lower than that of the 1-Mbit DRAM because of the scaling of the p-n junction area¹⁴⁾.

Regarding the packages for the MB814100/814400 series, the 300 x 675 mil^2 SOJ can be used as described previously. In addition, new 300 mil DIP and 400 mil ZIP are under development. The JEDEC standard for the 4-Mbit DRAM package has not yet been established (except 350 x 675 mil² SOJ) because of the large restriction imposed by the various chip sizes of different manufacturers. If the JEDEC standard is established. Fujitsu will develop the corresponding package. In addition, Fujitsu plans to study the possibility of using a 300 mil SOJ having compatibility with a 1-Mbit DRAM in order to realize a single in-line module (SIM) mounted with 4-Mbit DRAM.

5. Future objectives

Currently, 1-Mbit DRAMs are mass-produced, 4-Mbit DRAMs are being accepted in the market, and the concept of 16-Mbit DRAMs is being considered. In this age of mega-bit capacities, the device and process technologies are changing rapidly.

As the process technology improves, a new concept of memory cell technology is required. Fujitsu plans to promote the further miniaturization of stacked capacitor cells to be used for 16-Mbit DRAM memory cells.

As part of this advance in technology, Fujitsu presented a DIET capacitor cell at IEDM in 1986. DIET combines the advantages of both the stacked cell and trench cell. It can theoretically achieve a large cell capacitance and could be realized by burying a three-dimensional capacitor cell into an insulated trench capsule. In addition, a system to supply cell-plate voltage from the capsule layer in the substrate has been developed. To supply cell-plate voltage from inside the substrate is a new system.

As shown by the above discussion, the process technology to realize a new memory cell must be found by trying various process technologies and looking at all possibilities. Such methods of development do not determine one choice only, but also expand the overall potential. Fujitsu will continue to develop the technologies for those device designs that respond to the diverse needs of the market.

In device technology, Fujitsu plans to develop products having added value and more functions in the field of ASICs (including video products) that are based on the general purpose products described in this report. Fujitsu will continue to introduce high-quality, high-performance devices for the market.

6. Conclusion

Quadruple integration every three years has still been maintained in the Mega bit era. The 3D STC was the key technology for this steady progress of DRAM development. To develop this type of DRAM cell, overall process design was needed, such as fine lithography, ultra thin capacitor film, cell capacitance, and α -immune cell structure.

Combining the high performance CMOS DRAM circuits with the STC cell technology, we developed the industry's smallest 4-Mbit DRAM having an access time of 56 ns.

References

- Takamae, Y., Ema, T., Nakano, M., Baba, F.,Yabu, T., Miyasaka, K., and Shirai, K.: A 1MB DRAM with 3-Dimensional Stacked Capacitor Cells. ISSCC Dig. Tech. Papers, 1985, pp. 250-251.
- Mochizuki, H., Kodama, Y., Nakano, T., Ema, T., and Yabu, T.: A 70 ns 4Mb DRAM in a 300 mil DIP using 4-layer Poly. ISSCC Dig. Tech. Papers, 1987, pp. 284-285.

- Ishihara, M., Miyazaki, K., Shimohigashi, K., and Kimura, K.: An Experimental 4Mb DRAM with x1/x4 Organization. NIKKEI ELECTRONICS, 418, 1987-04-06, pp. 149–163
- Rigitz, W.M., and Karp, J.: A Three-Transistor cell, 1024 Bit, 500 ns MOS RAM. ISSCC Dig. Tech. Papers, 1970, pp. 42–42.
- Nakano, T., Yabu, T., Noguchi, E., Shirai, K., and Miyasaka, K.: A Sub-100 ns 256 K DRAM with Open Bit Line Scheme. *IEEE J. Solid-State Circuits*, SC-18, 5, pp. 452-456 (1983).
- May, T.C., and Woods, M.H.: A New Physical Mechanism for Soft Errors in Dynamic Memories. 16th Proc. 1978 Int. Reliab. Phys. Symp., 1978, pp. 33–40.
- 7) Taguchi, M., Ando, S., Higashi, N., Goto, G., Ema, T., Hashimoto, K., Yabu, T., and Nakano, T.: Dielec tri-cally Encapsulated Trench Capacitor Cell. IEEE Int.Electron Devices Meet. Tech. Dig., 1986, pp. 136-139.
- Koyanagi, M., Sunami, H., Hasimoto, N., and Ashi kawa, M.: Novel High Density, Stacked Capacitor MOS RAM. IEEE Int. Electron Devices Meet. Tech. Dig., 1978, pp. 348-351.
- Koyanagi, M., Sakai, Y., Ishihara, M., Tazunoki, M., and Hashimoto, N.: A 5-V Only 16 K bit Stacked Capacitor MOS RAM. *IEEE J. Solid-State Circuits* SC-15.4, pp. 661–666 (1980).
- 10) Yamada, M., Taniguchi, M., Yoshihara, T, Takano, S., Matsumoto, H., Nishimura, T., Nakano, T., and Gamou, Y.: Soft Error Improvement of Dynamic RAM with Hi-C Structure. IEEE Int. Electron De vices Meet. Tech. Dig., 1980, pp. 578-581.
- 11) Fu, S.W., Mohsen, A.M., and May, T.C.: Alpha Particle Induced Charge Collection Measurements and the Effectiveness of a Novel p-Well Protection Barrier on VLSI Memorics. *IEEE Trans. Electron Devices*, ED-32, 1, pp. 49–54 (1985).
- 12) Nakano, T., Mochizuki, H., Kodama, Y., and Ema, T.: 63.7 mm² 4Mb DRAM with Scaled Stacked Cell. NIK-KEI MICRODEVICE, Special Vol., 1987-05-15, pp. 117-130.
- 13) Ando, S., Taguchi, M., and Nakamura, T.: Comparison of DRAM Cell the Simulation of Soft Error Rates. Symp. VLSI Tech. Dig. Papers, 1985, pp. 90–91.
- 14) Takeda, E., Takeuchi, K., Yamasaki, E., Toyabe, T., Ohshima, K., and Ito, K.: The Scaling Law of Alpha-Particle Induced Soft Errors for VLSIs. Int. Electron Devices Meet. Tech. Dig., 1986, pp. 542–545.

Reprinted with permission from Fujitsu Scientific and Technical Journal.

FUJITSU LIMITED

Marunouchi Headquarters 6-1, Marunouchi 1-chome Chiyoda-ku, Tokyo 100, Japan Tel: (03) 216-3211 Telex: 781-22833 FAX: (03) 213-7174

For further information, please contact:

Japan

FUJITSU LIMITED Integrated Circuits and Semiconductor Marketing Furukawa Sogo Bldg. 6-1, Marunouchi 2-chome Chiyoda-ku, Tokyo 100, Japan Tel: (03) 3216-3211 Telex: 781-2224361 FAX: (03) 3211-3987

Europe

FUJITSU MIKROELEKTRONIK GmbH Lyoner Strasse 44-48 Arabella Centre 9. 0G D-6000 Frankfurt 71 Federal Republic of Germany Tel: (49) (069) 66320 Telex: 411-963 FAX: (069) 663-2122

Asia

FUJITSU MICROELECTRONICS ASIA PTE. LTD. 06-04/06-07 Plaza By the Park No. 52 Bras Basah Road Singapore 0718 Tel: (65) 336-1600 Telex: 55573 FAX: (65) 336-1609

North and South America

FUJITSU MICROELECTRONICS, INC. Integrated Circuits Division 3545 North First Street San Jose, CA 95134-1804 USA Tel: (408) 922-9000 Telex: 910-338-0190 FAX: (408) 432-9044

© 1991 FUJITSU LIMITED and Fujitsu Microelectronics, Inc.

Printed in USA