## CBT Bus Switches Crossbar Technology

## Data Book

## General Information

## CBT Octals

## CBT Octals With Integrated Diodes

CBT Widebus ${ }^{\text {TM }}$

## Application Note

# CBT Bus Switches Crossbar Technology Data Book 

性 TEXAS
INSTRUMENTS

## IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other inteltectual property right of Tl covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

## INTRODUCTION

Digital electronics are performing at ever higher speeds; therefore, every barrier to system performance must be removed. High-speed microprocessors, synchronous DRAMs, and new bus architectures require supporting logic that keeps data moving fast.
This edition of the Texas Instruments 1995 CBT Bus Switches Crossbar Technology Data Book includes the industry's most comprehensive line of integrated bus switches. With propagation delays of 250 ps , these high-speed bus switches bring greater system speed and reduced power consumption to today's advanced electronic equipment. These n-channel MOS transistors provide isolation (3-state) when the switch is open and near-zero propagation delay when the switch is closed. CBT switches also function as $5-\mathrm{V}$ to 3.3 - V level translators, helping designers mix low-cost DRAMs with high-performance $3-\mathrm{V}$ processors.
The CBT family of bus switches consists of $4-, 8$-, 10 -, 16 -, 18 -, and 24 -bit-wide switches, exchangers, and multiplexers. With pin-for-pin compatible devices, the migration from existing logic devices is easy. These products are offered in the industry's most extensive line of packaging including the world's smallest octal package and the distributed power and ground Widebus ${ }^{\top \mathrm{M}}$ package.
Most of the products in this data book are available in production quantities. Please contact your local authorized distributor or Texas Instruments representative for details on any of these devices. Some of the devices in this data book are not yet available in production quantities; information on these devices is included as Advanced Information or Product Preview. For more information on these products including availability dates, pricing, and final timing specifications, please contact your local Texas Instruments representative, authorized distributor, or call the Advanced System Logic hotline at (903) 868-5202.
We hope that you agree that Texas Instruments has the most complete line of bus-switch products in the industry. We also hope that these products meet your system and design needs.

## PRODUCT STAGE STATEMENTS

Product stage statements are used on Texas Instruments data sheets to indicate the development stage(s) of the product(s) specified in the data sheets.

If all products specified in a data sheet are at the same development stage, the appropriate statement from the following list is placed in the lower left corner of the first page of the data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.
ADVANCE INFORMATION concerns new products in the sampling or preproduction phase of development. Characteristic data and other specifications are subject to change without notice.

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.

If not all products specified in a data sheet are at the PRODUCTION DATA stage, then the first statement below is placed in the lower left corner of the first page of the data sheet. Subsequent pages of the data sheet containing PRODUCT PREVIEW information or ADVANCE INFORMATION are then marked in the lower left-hand corner with the appropriate statement given below:

UNLESS OTHERWISE NOTED this document contains PRODUCTION DATA information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.
ADVANCE INFORMATION concerns new products in the sampling or preproduction phase of development. Characteristic data and other specifications are subject to change without notice.

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.

## General Information

## CBT Octals

CBT Octals With Integrated Diodes
CBT Widebus ${ }^{\text {TM }}$
Application Note5
Mechanical Data ..... 6

## Contents

Page
Alphanumeric Index ..... 1-3
Cross-Reference Guide ..... 1-5
Glossary ..... 1-7
Thermal Information ..... 1-11
DEVICE PAGE CBT Octals
SN74CBT3125 ..... 2-3
SN74CBT3126 ..... 2-7
SN74CBT3244 ..... 2-11
SN74CBT3245 ..... 2-15
SN74CBT3251 ..... 2-19
SN74CBT3253 ..... 2-23
SN74CBT3257 ..... 2-27
SN74CBT3306 ..... 2-31
SN74CBT3345 ..... 2-35
SN54/74CBT3383 ..... 2-39
SN74CBT3384A ..... 2-43
SN74CBT3386 ..... 2-47
DEVICE ..... PAGE
SN74CBT3388 ..... 2-51
SN74CBT6800 ..... 2-55
CBT Octals With Integrated Dlodes
SN74CBTD3384 ..... 3-3
SN74CBTS3384 ..... 3-7
CBT Widebus
SN54/74CBT16209 ..... 4-3
SN74CBT16211 ..... 4-7
SN74CBT16212 ..... 4-11
SN74CBT16213 ..... 4-15
SN74CBT16214 ..... 4-19
SN74CBT16232 ..... 4-23
SN74CBT16233 ..... 4-27

## INTRODUCTION

Replacements are based on similarity of electrical and mechanical characteristics shown in currently published data. Interchangeability in particular applications is not ensured. Before using a device as a substitute, the user should compare the specifications of the substitute device with the specifications of the original.
Texas Instruments makes no warranty as to the information furnished and the buyer assumes all risk in the use thereof. No liability is assumed for damages resulting from the use of the information contained herein.

CBT octal function cross-reference guide

| TEXAS INSTRUMENTS | QUALITY | PERICOM |
| :---: | :---: | :---: |
| SN74CBT3125 | QS3125 | PI5C3125 |
| SN74CBT3126 $\dagger$ | - | PI5C3126 |
| SN74CBT3244 | QS3244 | PI5C3244 |
| SN74CBT3245 | QS3245 | PI5C3245 |
| SN74CBT3251 $\dagger$ | QS3251 | PI5C3251 |
| SN74CBT3253 $\dagger$ | QS3253 | PI5C3253 |
| SN74CBT3257 | QS3257 | PI5C3257 |
| SN74CBT3306 | - | - |
| SN74CBT3345 | - | - |
| SN74CBT3383 | QS3383, QS3L383 | PI5C3383 |
| SN74CBT3384A | QS3384, QS3L384 | PI5C3384 |
| SN74CBT3386 $\dagger$ | QS3386 | - |
| SN74CBT3388 $\dagger$ | QS3388 | - |
| SN74CBT6800 | QS3800 | - |

$\dagger$ Please contact the Advanced System Logic hotline at (903) 868-5202 to learn more about plans for these devices.

## package cross-reference guide

| TEXAS INSTRUMENTS | QUALITY | PERICOM |
| :---: | :---: | :---: |
| D | S 1 | W |
| DB | - | - |
| DW | SO | S |
| PW $\ddagger$ | - | L |

[^0]
## INTRODUCTION

These symbols, terms, and definitions are in accordance with those currently agreed upon by the JEDEC Council of the Electronic Industries Association (EIA) for use in the USA and by the International Electrotechnical Commission (IEC) for international use.

## OPERATING CONDITIONS AND CHARACTERISTICS (IN SEQUENCE BY LETTER SYMBOLS)

$C_{i} \quad$ Input capacitance
The internal capacitance at an input of the device
$C_{0} \quad$ Output capacitance
The internal capacitance at an output of the device
$\mathrm{C}_{\text {pd }} \quad$ Power dissipation capacitance
Used to determine the no-load dynamic power dissipation per logic function (see individual circuit pages): $P_{D}=C_{p d} V_{C C}{ }^{2}+I_{C c} V_{C C}$.
$\mathbf{f}_{\text {max }} \quad$ Maximum clock frequency
The highest rate at which the clock input of a bistable circuit can be driven through its required sequence while maintaining stable transitions of logic level at the output with input conditions established that should cause changes of output logic level in accordance with the specification
IcC Supply current
The current into* the $\mathrm{V}_{\mathrm{CC}}$ supply terminal of an integrated circuit
$\Delta \mathbf{I C C} \quad$ Supply current change
The increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0 V or $\mathrm{V}_{\mathrm{Cc}}$
ICEX Output high leakage current
The maximum leakage current into the collector of the pulldown output transistor when the output is high and the output forcing condition $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$
I(hold) Input hold current
Input current that holds the input at the previous state when the driving device goes to a high-impedance state
$\mathbf{I}_{\mathrm{IH}} \quad$ High-level input current
The current into* an input when a high-level voltage is applied to that input
IIL Low-level input current
The current into* an input when a low-level voltage is applied to that input
$\mathrm{I}_{\text {off }} \quad$ Input/output power-off leakage current
The maximum leakage current into/out of the input/output transistors when forcing the input/output to 4.5 V and $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$
$\mathrm{IOH} \quad$ High-level output current
The current into* an output with input conditions applied that, according to the product specification, establish a high level at the output
IOL Low-level output current
The current into* an output with input conditions applied that, according to the product specification, establish a low level at the output

[^1]| loz | Off-state (high-impedance-state) output current (of a 3-state output) |
| :---: | :---: |
|  | The current flowing into* an output having 3 -state capability with input conditions established that, according to the product specification, establish the high-impedance state at the output |
| $t_{a}$ | Access time |
|  | The time interval between the application of a specified input pulse and the availability of valid signals at an output |
| $t_{\text {dis }}$ | Disable time (of a 3-state or open-collector output) |
|  | The propagation time between the specified reference points on the input and output voltage waveforms with the output changing from either of the defined active levels (high or low) to a high-impedance (off) state. |
|  | NOTE: For 3-state outputs, $\mathrm{t}_{\text {dis }}=\mathrm{t}_{\text {PHZ }}$ or tpLZ. Open-collector outputs change only if they are low at the time of disabling so $\mathrm{t}_{\text {dis }}=$ tpLH. $^{\text {. }}$ |
| $t_{\text {en }}$ | Enable time (of a 3-state or open-collector output) |
|  | The propagation time between the specified reference points on the input and output voltage waveforms with the output changing from a high-impedance (off) state to either of the defined active levels (high or low). |
|  | NOTE: In the case of memories, this is the access time from an enable input (e.g., $\overline{\mathrm{OE}}$ ). For 3-state outputs, $t_{\text {en }}=t_{P Z H}$ or $t_{P Z L}$. Open-collector outputs change only if they are responding to data that would cause the output to go low so, for them $t_{e n}=t_{\text {PHL }}$. |
| $t_{n}$ | Hold time |
|  | The time interval during which a signal is retained at a specified input terminal after an active transition occurs at another specified input terminal. |
|  | NOTES: 1. The hold time is the actual time interval between two signal events and is determined by the system in which the digital circuit operates. A minimum value is specified that is the shortest interval for which correct operation of the digital circuit is to be expected. |
|  | 2. The hold time may have a negative value, in which case, the minimum limit defines the longest interval (between the release of the signal and the active transition) for which correct operation of the digital circuit is to be expected. |
| $t_{\text {pd }}$ | Propagation delay time |
|  | The time between the specified reference points on the input and output voltage waveforms with the output changing from one defined level (high or low) to the other defined level ( $t_{p d}=t_{\text {pHL }}$ or $\left.t_{\text {pLH }}\right)$ |
| ${ }_{\text {t PHL }}$ | Propagation delay time, high-to-low level output |
|  | The time between the specified reference points on the input and output voltage waveforms with the output changing from the defined high level to the defined low level |
| ${ }^{\text {tPHZ }}$ | Disable time (of a 3-state output) from high level |
|  | The time interval between the specified reference points on the input and the output voltage waveforms with the 3 -state output changing from the defined high level to a high-impedance (off) state |
| $t_{\text {PLH }}$ | Propagation delay time, low-to-high level output |
|  | The time between the specified reference points on the input and output voltage waveforms with the output changing from the defined low level to the defined high level |
| tpLZ | Disable time (of a 3-state output) from low level |
|  | The time interval between the specified reference points on the input and the output voltage waveforms with the 3 -state output changing from the defined low level to a high-impedance (off) state |


| $\mathbf{t}_{\text {PZH }}$ | Enable time (of a 3-state output) to high level |
| :---: | :---: |
|  | The time interval between the specified reference points on the input and output voltage waveforms with the 3 -state output changing from a high-impedance (off) state to the defined high level |
| $t_{\text {PZL }}$ | Enable time (of a 3-state output) to low level |
|  | The time interval between the specified reference points on the input and output voltage waveforms with the 3 -state output changing from a high-impedance (off) state to the defined low level |
| $\mathbf{t}_{\mathbf{s k}(0)}$ | Output skew |
|  | The difference between any two propagation delay times when a single switching input or multiple inputs switching simultaneously cause multiple outputs to switch, as observed across all switching outputs. This parameter is used to describe the fanout capability of a clock driver and is of concern when making decisions on clock buffering and distribution networks. |
| $\mathrm{t}_{\text {su }}$ | Setup time |
|  | The time interval between the application of a signal at a specified input terminal and a subsequent active transition at another specified input terminal. |
|  | NOTES: 1 . The setup time is the actual time interval between two signal events and is determined by the system in which the digital circuit operates. A minimum value is specified that is the shortest interval for which correct operation of the digital circuit is guaranteed. |
|  | 2. The setup time may have a negative value in which case the minimum limit defines the longest interval (between the active transition and the application of the other signal) for which correct operation of the digital circuit is guaranteed. |
| ${ }^{\text {w }}$ | Pulse duration (width) |
|  | The time interval between specified reference points on the leading and trailing edges of the pulse waveform |
| $\mathbf{V I H}_{\text {I }}$ | High-level input voltage |
|  | An input voltage within the more positive (less negative) of the two ranges of values used to represent the binary variables. |
|  | NOTE: A minimum is specified that is the least-positive value of high-level input voltage for which operation of the logic element within specification limits is to be expected. |
| $V_{\text {IL }}$ | Low-level input voltage |
|  | An input voltage within the less positive (more negative) of the two ranges of values used to represent the binary variables. |
|  | NOTE: A maximum is specified that is the most-positive value of low-level input voltage for which operation of the logic element within specification limits is to be expected. |
| $\mathrm{V}_{\mathrm{OH}}$ | High-level output voltage |
|  | The voltage at an output terminal with input conditions applied that, according to product specification, establish a high level at the output |
| $\mathrm{V}_{\mathbf{O L}}$ | Low-level output voltage |
|  | The voltage at an output terminal with input conditions applied that, according to product specification, establish a low level at the output |
| $\mathbf{V}_{\mathbf{T +}}$ | Positive-going threshold level |
|  | The voltage level at a transition-operated input that causes operation of the logic element according to specification as the input voltage rises from a level below the negative-going threshold voltage, $\mathrm{V}_{\mathrm{T} \text { - }}$ |
| $\mathbf{V}_{\text {T- }}$ | Negative-going threshold level |
|  | The voltage level at a transition-operated input that causes operation of the logic element according to specification as the input voltage falls from a level above the positive-going threshold voltage, $\mathrm{V}_{\mathrm{T}_{+}}$ |

In digital-system design, consideration must be given to thermal management of components. The small size of the small-outline package makes this even more critical. Figure 1 shows the thermal resistance of these packages for various rates of air flow.

The thermal resistances in Figure 1 can be used to approximate typical and maximum virtual junction temperatures for the CBT family. In general, the junction temperature for any device can be calculated using the following equation:

$$
T_{J}=R_{\Theta J A} \times P_{T}+T_{A}
$$

Where:

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{J}}=\text { virtual junction temperature } \\
& \mathrm{R}_{\theta \mathrm{JA}}=\text { thermal resistance, junction to ambient } \\
& \mathrm{P}_{\mathrm{T}}=\text { total power dissipation of the device } \\
& \mathrm{T}_{\mathrm{A}}=\text { free-air temperature }
\end{aligned}
$$



Figure 1
Figures 2 through 5 show power dissipation derating for the 8 -, $16,-20$-, and 24 -pin DB packages.

DERATING CURVES FOR 210-MIL SHRINK SMALL-OUTLINE PACKAGE (DB)


Figure 2


Figure 4


Figure 3


Figure 5
General Information
CBT Octals2
CBT Octals With Integrated Diodes ..... 3
CBT Widebus ${ }^{T N}$4
Application Note ..... 5
Mechanical Data6

## Contents

2
'CBT3125 Quadruple Bus Switch ..... 2-3
Page
'CBT3126 Quadruple Bus Switch ..... 2-7
'CBT3244 Octal Bus Switch ..... 2-11
'CBT3245 Octal Bus Switch ..... 2-15
'CBT3251 8-Bit to 1-Bit FET Multiplexer/Demultiplexer ..... 2-19
'CBT3253 Dual 4-Bit to 1-Bit FET Multiplexer/Demultiplexer ..... 2-23
'CBT3257 Quadruple 2-Bit to 1-Bit FET Multiplexer/Demultiplexer ..... 2-27
'CBT3306 Dual Bus Switch ..... 2-31
'CBT3345 8-Bit Bus Switch ..... 2-35
'CBT3383 10-Bit Bus-Exchange Switch ..... 2-39
'CBT3384A 10-Bit Bus Switch ..... 2-43
'CBT3386 10-Bit Bus-Exchange Switch With Extended Voltage Range ..... 2-47
'CBT3388 10-Bit Bus-Exchange Switch With Bus Hold
'CBT6800 10-Bit Bus Switch With Precharged Outputs for Live Insertion ..... 2-55

## - Standard '125-Type Pinout

- 5- $\Omega$ Switch Connection Between Two Ports
- TTL-Compatible Input and Output Levels
- Package Options Include Plastic Small-Outline (D), Shrink Small-Outline (DB), and Thin Shrink Small-Outline (PW) Packages


## description

The SN74CBT3125 quadruple bus switch features independent line switches. Each switch is disabled when the associated output-enable ( $\overline{\mathrm{OE}}$ ) input is high.
The SN74CBT3125 is available in Tl's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.
The SN74CBT3125 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
FUNCTION TABLE

| INPUT <br> $\overline{\mathrm{OE}}$ | INPUTS <br> OUTPUTS |
| :---: | :---: |
|  | $A, B$ |
| L | $\mathrm{~A}=\mathrm{B}$ |
| H | Z |

logic diagram (positive logic)


## absolute maximum ratings over operating free-air temperature range (unless otherwise noted) $\dagger$



Continuous channel current ........................................................................... 128 mA
Input clamp current, $\mathrm{I}_{\mathrm{K}}\left(\mathrm{V}_{\mathrm{I} / \mathrm{O}}<0\right)$.................................................................. 50 mA
Maximum power dissipation at $T_{A}=55^{\circ} \mathrm{C}$ (in still air) (see Note 2): D package $\ldots \ldots \ldots \ldots \ldots \ldots$.............. 1.5 W DB package ..................... 0.5 W
PW package .................... 0.5 W

$\dagger$ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. The maximum package power dissipation is calculated using a junction temperature of $150^{\circ} \mathrm{C}$ and a board trace length of 750 mils. For more information, refer to the Package Thermal Considerations application note in the 1994 ABT Advanced BiCMOS Technology Data Book, literature number SCBD002B.
recommended operating conditions

|  |  | MIN | MAX |
| :--- | :--- | ---: | :---: |
| $\mathrm{V}_{\mathrm{CC}}$ | UNIT |  |  |
| $\mathrm{V}_{\text {IH }}$ | High-level control input voltage | 4 | 5.5 |
| $\mathrm{~V}_{\text {IL }}$ | Low-level control input voltage | 2 |  |
| $\mathrm{~T}_{\mathrm{A}}$ | Operating free-air temperature | V |  |

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

| PARAMETER |  | TEST CONDITIONS |  |  | MIN | TYP $\ddagger$ | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {IK }}$ |  | $\mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}$, | $\boldsymbol{l}=-18 \mathrm{~mA}$ |  |  |  | -1.2 | V |
| II |  | $\mathrm{V}_{C C}=5.5 \mathrm{~V}$, | $\mathrm{V}_{1}=5.5 \mathrm{~V}$ to GND |  |  |  | $\pm 1$ | $\mu \mathrm{A}$ |
| ICC |  | $V_{C C}=5.5 \mathrm{~V}$, | $\mathrm{I}=0$, | $\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND |  |  | 3 | $\mu \mathrm{A}$ |
| $\mathrm{LlCC}^{\text {§ }}$ | Control pins | $\mathrm{V}_{C C}=5.5 \mathrm{~V}$, | One input at 3.4 V, | Other inputs at $\mathrm{V}_{\mathrm{CC}}$ or GND |  |  | 2.5 | mA |
| $\mathrm{C}_{i}$ | Control pins | $\mathrm{V}_{1}=3 \mathrm{~V}$ or 0 |  |  |  | 3 |  | pF |
| $\mathrm{CiO}_{\mathrm{io}}(\mathrm{OFF})$ |  | $\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}$ or 0 , | $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{CC}}$ |  |  | 4 |  | pF |
| ron ${ }^{\text {a }}$ |  | $\mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}$, | $\mathrm{V}_{1}=2.4 \mathrm{~V}$, | $\boldsymbol{I}=15 \mathrm{~mA}$ |  | 16 | 22 | $\Omega$ |
|  |  | $V_{C C}=4.5 \mathrm{~V}$ | $\mathrm{V}_{1}=0$, | $\boldsymbol{I}=64 \mathrm{~mA}$ |  | 5 | 7 |  |
|  |  | $\mathrm{V}_{1}=0$, | $\boldsymbol{I}=30 \mathrm{~mA}$ |  | 5 | 7 |  |
|  |  | $\mathrm{V}_{1}=2.4 \mathrm{~V}$, | $\mathrm{I}_{1}=15 \mathrm{~mA}$ |  | 10 | 15 |  |

$\ddagger$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.
TMeasured by the voltage drop between the $A$ and the $B$ terminals at the indicated current through the switch. On-state resistance is determined by the lower of the voltages of the two ( $A$ or $B$ ) terminals.
switching characteristics over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

| PARAMETER | FROM (INPUT) | TO (OUTPUT) | $\begin{gathered} V_{c c}=5 \mathrm{~V} \\ \pm 0.5 \mathrm{~V} \end{gathered}$ |  | $\mathrm{V}_{\text {cc }}=4 \mathrm{~V}$ | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | MIN | MAX | MIN MAX |  |
| $t_{\text {pd }}{ }^{\dagger}$ | A or B | B or A |  | 0.25 | 0.25 | ns |
| ten | $\overline{O E}$ | $A$ or B | 1.6 | 5.4 | 6 | ns |
| $t_{\text {dis }}$ | $\overline{\mathrm{OE}}$ | A or B | 1 | 4.7 | 5.1 | ns |

$\dagger$ This parameter is characterized but not tested. This propagation delay is based on the RC time constant of the typical on-state resistance of the switch and a load capacitance of 50 pF .

PARAMETER MEASUREMENT INFORMATION


VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES


NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR $\leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement.

F. tpZL and tPZH are the same as ten.
G. $t_{P L H}$ and $\mathrm{t}_{\mathrm{PHL}}$ are the same as $\mathrm{t}_{\mathrm{pd}}$.

Figure 1. Load Circult and Voltage Waveforms

- Standard '126-Type Pinout
- 5- $\Omega$ Switch Connection Between Two Ports
- TTL-Compatible Input and Output Levels
- Package Options Include Plastic Small-Outline (D), Shrink Small-Outline (DB), and Thin Shrink Small-Outline (PW) Packages


## description

The SN74CBT3126 quadruple bus switch features independent line switches. Each switch is disabled when the associated output-enable (OE) input is low.
The SN74CBT3126 is available in Tl's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.

The SN74CBT3126 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

## FUNCTION TABLE

| INPUT <br> OE | INPUTS/ <br> OUTPUTS |
| :---: | :---: |
|  | $\mathrm{A}, \mathrm{B}$ |
| H | $\mathrm{A}=\mathrm{B}$ |
| L | Z |

logic diagram (positive logic)


## absolute maximum ratings over operating free-air temperature range (unless otherwise noted) $\dagger$


$\dagger$ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. The maximum package power dissipation is calculated using a junction temperature of $150^{\circ} \mathrm{C}$ and a board trace length of 750 mils. For more information, refer to the Package Thermal Considerations application note in the 1994 ABT Advanced BiCMOS Technology Data Book, literature number SCBD002B.

## recommended operating conditions

|  |  | MIN | MAX |
| :--- | :--- | ---: | :---: |
| $\mathrm{V}_{\mathrm{CC}}$ | UNIT |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | High-level control input voltage | 4 | 5.5 |
| $\mathrm{~V}_{\mathrm{IL}}$ | Low-level control input voltage | 2 |  |
| $\mathrm{~T}_{\mathrm{A}}$ | Operating free-air temperature | V |  |

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

| PARAMETER |  | TEST CONDITIONS |  |  | MIN | TYP $\ddagger$ | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {IK }}$ |  | $\mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}$, | $\mathrm{I}_{1}=-18 \mathrm{~mA}$ |  |  |  | -1.2 | V |
| 11 |  | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, | $\mathrm{V}_{1}=5.5 \mathrm{~V}$ to GND |  |  |  | $\pm 5$ | $\mu \mathrm{A}$ |
| ICC |  | $V_{C C}=5.5 \mathrm{~V}$, | $10=0$, | $\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND |  |  | 3 | $\mu \mathrm{A}$ |
| $\Delta \mathrm{lcc}{ }^{\text {§ }}$ | Control pins | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, | One input at 3.4 V, | Other inputs at $\mathrm{V}_{\text {CC }}$ or GND |  |  | 2.5 | mA |
| $\mathrm{C}_{i}$ | Control pins | $\mathrm{V}_{1}=3 \mathrm{~V}$ or 0 |  |  |  | 3 |  | pF |
| $\mathrm{CiO}_{\mathrm{io}}$ (OFF) |  | $\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}$ or 0 , | $\mathrm{OE}=\mathrm{V}_{\mathrm{CC}}$ |  |  | 6 |  | pF |
| ron ${ }^{\text {a }}$ |  | $\mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}$, | $\mathrm{V}_{1}=2.4 \mathrm{~V}$, | $1 /=15 \mathrm{~mA}$ |  |  |  | $\Omega$ |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | $V_{1}=0$, | $\boldsymbol{l}=64 \mathrm{~mA}$ |  | 5 | 7 |  |
|  |  | $\mathrm{V}_{1}=0$, | $1=30 \mathrm{~mA}$ |  | 5 | 7 |  |
|  |  | $\mathrm{V}_{1}=2.4 \mathrm{~V}$, | $l_{1}=15 \mathrm{~mA}$ |  | 10 | 15 |  |

$\ddagger$ All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.
${ }^{I}$ Measured by the voltage drop between the $A$ and the $B$ terminals at the indicated current through the switch. On-state resistance is determined by the lower of the voltages of the two ( $A$ or $B$ ) terminals.
switching characteristics over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

| PARAMETER | FROM (INPUT) | $\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$ | MIN MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: |
| $t_{p d}{ }^{\dagger}$ | A or B | B or A | 0.25 | ns |

$\dagger$ This parameter is characterized but not tested. This propagation delay is based on the RC time constant of the typical on-state resistance of the switch and a load capacitance of 50 pF .

## PARAMETER MEASUREMENT INFORMATION



VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES

| TEST | S1 |
| :---: | :---: |
| tpd $_{\text {pd }}$ | Open |
| tpLZ $^{\prime}$ tPZL | 7 V |
| tpHZ/tpZH | Open |



VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES

NOTES: A. $\mathrm{C}_{\mathrm{L}}$ includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement.
E. tPLZ and $t_{P H Z}$ are the same as $t_{d i s}$.
F. tPZL and tPZH are the same as ten.
G. tPLH andtPHL are the same as $t_{p d}$.

Figure 1. Load Circuit and Voltage Waveforms

- Functlonally Equivalent to QS3244
- Standard '244-Type Pinout
- 5- $\Omega$ Switch Connection Between Two Ports
- TTL-Compatible Control Input Levels
- Package Options Include Plastic Shrink Small-Outline (DB), Small-Outline (DW), and Thin Shrink Small-Outline (PW) Packages


## description

The SN74CBT3244 provides eight bits of high-speed TTL-compatible bus switching in a standard ' 244 device pinout. The low on-state resistance of the switch allows connections to be made with minimal propagation delay.


The device is organized as two 4-bit low-impedance switches with separate output-enable ( $\overline{\mathrm{OE}}$ ) inputs. When $\overline{\mathrm{OE}}$ is low, the switch is on and data can flow from port A to port B , or vice versa. When $\overline{\mathrm{OE}}$ is high, the switch is open and a high-impedance state exists between the two ports.
The SN74CBT3244 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
FUNCTION TABLE

| INPUTS |  | INPUTS/OUTPUTS |  |
| :---: | :---: | :---: | :---: |
| $1 \overline{O E}$ | $2 \overline{O E}$ | $1 A, 1 B$ | $2 A, 2 B$ |
| $L$ | $L$ | $1 A=1 B$ | $2 A=2 B$ |
| $L$ | $H$ | $1 A=1 B$ | $Z$ |
| $H$ | $L$ | $Z$ | $2 A=2 B$ |
| $H$ | $H$ | $Z$ | $Z$ |

logic diagram


## absolute maximum ratings over operating free-air temperature range (unless otherwise noted) $\dagger$


$\dagger$ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. The maximum package power dissipation is calculated using a junction temperature of $150^{\circ} \mathrm{C}$ and a board trace length of 750 mils. For more information, refer to the Package Thermal Considerations application note in the 1994 ABTAdvanced BiCMOS Technology Data Book, literature number SCBD002B.

## recommended operating conditions

|  |  | MIN | MAX |
| :--- | :--- | ---: | :---: |
| $\mathrm{V}_{\mathrm{CC}}$ | Uupply voltage | 4.5 | 5.5 |
| $\mathrm{~V}_{\mathrm{IH}}$ | High-level control input voltage | 2 | V |
| $\mathrm{~V}_{\mathrm{IL}}$ | Low-level control input voltage | V |  |
| $\mathrm{T}_{\mathrm{A}}$ | Operating free-air temperature | 0 | 0.8 |

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

| PARAMETER |  | TEST CONDITIONS |  |  | MIN | TYPt | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {IK }}$ |  | $\mathrm{V}_{C C}=4.5 \mathrm{~V}$, | $\_{1}=-18 \mathrm{~mA}$ |  |  |  | -1.2 | V |
| 1 |  | $V_{C C}=5.5 \mathrm{~V}$, | $\mathrm{V}_{1}=5.5 \mathrm{~V}$ to GND |  |  |  | $\pm 5$ | $\mu \mathrm{A}$ |
| ICC |  | $V_{C C}=5.5 \mathrm{~V}$, | $10=0$, | $\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND |  |  | 50 | $\mu \mathrm{A}$ |
| $\Delta_{l} \mathrm{Cc}{ }^{\ddagger}$ | Control pins | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, | One input at 3.4 V, | Other inputs at $\mathrm{V}_{\mathrm{CC}}$ or GND |  |  | 3.5 | mA |
| $\mathrm{C}_{i}$ | Control pins | $\mathrm{V}_{1}=3 \mathrm{~V}$ or 0 |  |  |  | 3 |  | pF |
| $\mathrm{CiO}_{\text {(OFF) }}$ |  | $\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}$ or 0 , | $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{CC}}$ |  |  | 6 |  | pF |
| ron§ |  | $\mathrm{V}_{C C}=4.5 \mathrm{~V}$ | $\mathrm{V}_{1}=0$, | $\eta=64 \mathrm{~mA}$ |  | 5 | 7 | $\Omega$ |
|  |  | $V_{1}=0$, | $l_{1}=30 \mathrm{~mA}$ |  | 5 | 7 |  |
|  |  | $\mathrm{V}_{1}=2.4 \mathrm{~V}$, | $I_{1}=15 \mathrm{~mA}$ |  | 10 | 15 |  |

$\dagger$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
$\ddagger$ This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.
§ Measured by the voltage drop between the $A$ and the $B$ terminals at the indicated current through the switch. On-state resistance is determined by the lower of the voltages of the two ( $A$ or $B$ ) terminals.
switching characteristics over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

| PARAMETER | FROM (INPUT) | TO (OUTPUT) | MIN MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: |
| $t_{p d}{ }^{\text {I }}$ | A or B | B or A | 0.25 | ns |
| ten | $\overline{O E}$ | A or B | 18.9 | ns |
| $t_{\text {dis }}$ | $\overline{O E}$ | A or B | 17.4 | ns |

TThis parameter is characterized but not tested. This propagation delay is based on the RC time constant of the typical on-state resistance of the switch and a load capacitance of 50 pF .

## PARAMETER MEASUREMENT INFORMATION




VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES

| TEST | S1 |
| :---: | :---: |
| ${ }^{t} \mathrm{pd}$ tpLz/tpZL tPHZ/tpZH | $\begin{aligned} & \text { Open } \\ & 7 \mathrm{~V} \\ & \text { Open } \end{aligned}$ |



NOTES: A. $C_{l}$ includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement.
E. tpLZ and tPHZ are the same as $\mathrm{t}_{\text {dis }}$.
F. tPZL and tPZH are the same as ten-
G. tpLH andtpHL are the same as tpd-

Figure 1. Load Circuit and Voltage Waveforms

- Functionally Equivalent to QS3245
- Standard '245-Type Pinout
- $5-\Omega$ Switch Connection Between Two Ports
- TTL-Compatible Control Input Levels
- Package Options Include Shrink Small-Outline (DB), Plastic Small-Outline (DW), and Thin Shrink Small-Outline (PW) Packages


## description

The SN74CBT3245 provides eight bits of high-speed TTL-compatible bus switching in a standard '245 device pinout. The low on-state resistance of the switch allows connections to be made with minimal propagation delay.
The device is organized as one 8-bit switch. When output enable $(\overline{\mathrm{OE}})$ is low, the switch is on and port A is connected to port B . When $\overline{\mathrm{OE}}$ is high, the switch is open and a high-impedance state exists between the two ports.

The SN74CBT3245 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
FUNCTION TABLE

| INPUT <br> $\overline{\mathrm{OE}}$ | INPUTS/ <br> OUTPUTS |
| :---: | :---: |
|  | $\mathrm{A}, \mathrm{B}$ |
| L | $\mathrm{A}=\mathrm{B}$ |
| H | Z |

logic diagram

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) $\dagger$

$\dagger$ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. The maximum package power dissipation is calculated using a junction temperature of $150^{\circ} \mathrm{C}$ and a board trace length of 750 mils. For more information, refer to the Package Thermal Considerations application note in the 1994 ABTAdvanced BiCMOS Technology Data Book, literature number SCBD002B.

## recommended operating conditions

|  |  | MIN | MAX |
| :--- | :--- | ---: | :---: |
| $\mathrm{V}_{\mathrm{CC}}$ | UNIT |  |  |
| $\mathrm{V}_{\text {IH }}$ | High-level control input voltage | 4 | 5.5 |
| $\mathrm{~V}_{\text {IL }}$ | Low-level control input voltage | 2 |  |
| $\mathrm{~T}_{\mathrm{A}}$ | Operating free-air temperature | V |  |

## electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

| PARAMETER |  | TEST CONDITIONS |  |  | MIN | TYP\# | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {IK }}$ |  | $\mathrm{V}_{C C}=4.5 \mathrm{~V}$, | $l_{1}=-18 \mathrm{~mA}$ |  |  |  | -1.2 | V |
| 1 |  | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, | $\mathrm{V}_{1}=5.5 \mathrm{~V}$ or GND |  |  |  | $\pm 5$ | $\mu \mathrm{A}$ |
| ICC |  | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, | $10=0$, | $\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND |  |  | 50 | $\mu \mathrm{A}$ |
| $\Delta^{\text {l }} \mathrm{CC}^{\text {§ }}$ | Control pins | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, | One input at 3.4 V , | Other inputs at $\mathrm{V}_{\mathrm{CC}}$ or GND |  |  | 3.5 | mA |
| $\mathrm{C}_{i}$ | Control pins | $\mathrm{V}_{1}=3 \mathrm{~V}$ or 0 |  |  |  | 3 |  | pF |
| $\mathrm{Cio}_{\text {(OFF) }}$ |  | $\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}$ or 0 , | $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{CC}}$ |  |  | 6 |  | pF |
| ron ${ }^{\text {a }}$ |  | $\mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}$, | $\mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}$, | $\boldsymbol{I}=15 \mathrm{~mA}$ |  |  |  | $\Omega$ |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | $\mathrm{V}_{1}=0$, | $l_{1}=64 \mathrm{~mA}$ |  | 5 | 7 |  |
|  |  | $\mathrm{V}_{1}=0$, | $\boldsymbol{I}=30 \mathrm{~mA}$ |  | 5 | 7 |  |
|  |  | $\mathrm{V}_{1}=2.4 \mathrm{~V}$, | $\boldsymbol{I}=15 \mathrm{~mA}$ |  | 10 | 15 |  |

[^2]§This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.
${ }^{\pi}$ Measured by the voltage drop between the $A$ and $B$ terminals at the indicated current through the switch. On-state resistance is determined by the lower of the voltages of the two ( A or B ) terminals.
switching characteristics over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

| PARAMETER | FROM (INPUT) | TO (OUTPUT) | MIN MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: |
| $t_{\text {pd }}{ }^{\dagger}$ | A or B | B or A | 0.25 | ns |
| ten | $\overline{\mathrm{OE}}$ | A or B |  | ns |
| $\mathrm{t}_{\text {dis }}$ | $\overline{\mathrm{OE}}$ | A or B |  | ns |

$\dagger$ This parameter is characterized but not tested. This propagation delay is based on the RC time constant of the typical on-state resistance of the switch and a load capacitance of 50 pF .

PARAMETER MEASUREMENT INFORMATION


NOTES: A. $C_{L}$ includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement.
E. tpLZ and $\mathrm{t}_{\mathrm{PHZ}}$ are the same as $\mathrm{t}_{\text {dis }}$.
F. tpZL and tpZH are the same as ten.
G. $\mathrm{tPLH}^{\text {and }}$ tPHL are the same as tpd.

Figure 1. Load Circuit and Voltage Waveforms

- Functionally Equivalent to QS3251
- 5- $\Omega$ Switch Connection Between Two Ports
- TTL-Compatible Control Input Levels
- Package Options Include Plastic Small-Outline (D), Shrink Small-Outline (DB), and Thin Shrink Small-Outline (PW) Packages


## description

The SN74CBT3251 is an 8-bit to 1-bit high-speed TTL-compatible FET multiplexer/ demultiplexer. The low on-state resistance of the switch allows connections to be made with minimal propagation delay.

When output enable $(\overline{O E})$ is low, the SN74CBT3251 is enabled. $S 0, S 1$, and $S 2$ select one of the B outputs for the A-input data.

The SN74CBT3251 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
FUNCTION TABLE

| S2 | S1 | SO | $\overline{\text { OE }}$ | FUNCTION |
| :---: | :---: | :---: | :---: | :---: |
| X | X | X | H | Disconnect |
| L | L | L | L | A to B1 |
| L | L | H | L | A to B2 |
| L | H | L | L | A to B3 |
| L | H | H | L | A to B4 |
| H | L | L | L | A to B5 |
| H | L | H | L | A to B6 |
| H | H | L | L | A to B7 |
| H | H | H | L | A to B8 |

## Texas

logic diagram

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) $\dagger$


Continuous channel current ................................................................................ 128 mA
Input clamp current, $\mathrm{I}_{\mathrm{K}}\left(\mathrm{V}_{\mathrm{I} / \mathrm{O}}<0\right)$..................................................................... 50 mA
Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air) (see Note 2): D package $\ldots \ldots . . \ldots \ldots . . . .1 .3 \mathrm{~W}$
DB package ................... 0.55 W
PW package .................... 0.5 W

$\dagger$ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. The maximum package power dissipation is calculated using a junction temperature of $150^{\circ} \mathrm{C}$ and a board trace length of 750 mils. For more information, refer to the Package Thermal Considerations application note in the 1994 ABT Advanced BiCMOS Technology Data Book, literature number SCBD002B.

## SN74CBT3251 8-BIT TO 1-BIT FET MULTIPLEXER/DEMULTIPLEXER

## recommended operating conditions

|  |  | MIN | MAX |
| :--- | :--- | ---: | :---: |
| $\mathrm{V}_{\mathrm{CC}}$ | Supply voltage | 4 | 5.5 |
| $\mathrm{~V}_{\text {IH }}$ | High-level control input voltage | V |  |
| $\mathrm{V}_{\text {IL }}$ | Low-level control input voltage | 2 |  |
| $\mathrm{~T}_{\mathrm{A}}$ | Operating free-air temperature | V |  |

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

| PARAMETER |  | TEST CONDITIONS |  |  | MIN | TYPt | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{IK}}$ |  | $\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$, | $I_{1}=-18 \mathrm{~mA}$ |  |  |  | -1.2 | V |
| 1 |  | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, | $\mathrm{V}_{1}=5.5 \mathrm{~V}$ to GND |  |  |  | $\pm 5$ | $\mu \mathrm{A}$ |
| ICC |  | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, | $10=0$, | $\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND |  |  | 3 | $\mu \mathrm{A}$ |
| $\Delta_{\text {l }} \mathrm{cc}^{\ddagger}$ | Control pins | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, | One input at 3.4 V, | Other inputs at $\mathrm{V}_{\mathrm{CC}}$ or GND |  |  | 2.5 | mA |
| $\mathrm{C}_{\mathrm{i}}$ | Control pins | $\mathrm{V}_{1}=3 \mathrm{~V}$ or 0 |  |  |  | 3 |  | pF |
| $\mathrm{Cio}_{\text {(OFF) }}$ | A port | $\mathrm{V} \mathrm{O}=3 \mathrm{~V}$ or 0 , |  | $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{CC}}$ |  |  |  |  | pF |
|  | B port |  |  |  |  | 6 |  |  |
| $\mathrm{ran}^{\text {§ }}$ |  | $\mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}$, | $\mathrm{V}_{1}=2.4 \mathrm{~V}$, | $1 \mathrm{l}=15 \mathrm{~mA}$ |  |  |  | $\Omega$ |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | $V_{1}=0$, | $\boldsymbol{I}=64 \mathrm{~mA}$ (optional) |  | 5 | 7 |  |  |
|  |  | $V_{1}=0$, | $\boldsymbol{I}=30 \mathrm{~mA}$ |  | 5 | 7 |  |  |
|  |  | $\mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}$, | $\mathrm{I}=15 \mathrm{~mA}$ |  | 10 | 15 |  |  |

$\dagger$ All typical values are at $\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
$\ddagger$ This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.
§ Measured by the voltage drop between the A and the B terminals at the indicated current through the switch. On-state resistance is determined by the lower of the voltages of the two ( A or B ) terminals.
switching characteristics over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

| PARAMETER | FROM <br> (INPUT) | TO <br> (OUTPUT) | MINMAX | UNIT |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{t}_{\text {pd }}{ }^{\text {I }}$ | A or B | B or A | 0.25 | ns |

TI This parameter is characterized but not tested. This propagation delay is based on the RC time constant of the typical on-state resistance of the switch and a load capacitance of 50 pF .

## PARAMETER MEASUREMENT INFORMATION



NOTES:
A. $C_{L}$ includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement.
E. $t_{P L Z}$ and $t_{P H Z}$ are the same as $t_{\text {dis. }}$.
F. tPZL and tPZH are the same as $t_{\text {en }}$.
G. tPLH and tPHL are the same as $t_{p d}$.

Figure 1. Load Circuit and Voltage Waveforms

- Functionally Equivalent to QS3253
- $5-\Omega$ Switch Connection Between Two Ports
- TTL-Compatible Control Input Levels
- Package Options Include Plastic Small-Outline (D), Shrink Small-Outline (DB), and Thin Shrink Small-Outline (PW) Packages


## description

The SN74CBT3253 is a dual 4-bit to 1-bit high-speed TTL-compatible FET multiplexer/ demultiplexer. The low on-state resistance of the switch allows connections to be made with minimal propagation delay.
$\overline{\mathrm{OE}}, \overline{\mathrm{OE} 2}, \mathrm{~S} 0$, and S 1 select the appropriate B output for the A -input data.
The SN74CBT3253 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
FUNCTION TABLE

| S1 | S0 | $\overline{\text { OE1 }}$ | $\overline{\text { OE2 }}$ | FUNCTION |
| :---: | :---: | :---: | :---: | :---: |
| X | X | X | H | Disconnect $1 A$ |
| X | X | H | X | Disconnect $2 A$ |
| L | L | L | L | 1A to 1B1 and 2A to 2B1 |
| L | H | L | L | 1A to 1B2 and 2A to 2B2 |
| $H$ | L | L | L | 1A to 1B3 and 2A to 2B3 |
| $H$ | $H$ | L | L | 1A to 1B4 and 2A to 2B4 |

## logic diagram


absolute maximum ratings over operating free-air temperature range (unless otherwise noted) $\dagger$


Continuous channel current .......................................................................... 128 mA

Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air) (see Note 2): D package $\ldots \ldots \ldots \ldots \ldots . .1 .3 \mathrm{~W}$
DB package ................... 0.55 W
PW package .................... 0.5 W

$\dagger$ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. The maximum package power dissipation is calculated using a junction temperature of $150^{\circ} \mathrm{C}$ and a board trace length of 750 mils. For more information, refer to the Package Thermal Considerations application note in the 1994 ABTAdvanced BiCMOS Technology Data Book, literature number SCBD002B.
recommended operating conditions

|  |  | MIN | MAX |
| :--- | :--- | ---: | :---: |
| $V_{C C}$ | Uupply voltage | 4 | 5.5 |
| $\mathrm{~V}_{\text {IH }}$ | High-level control input voltage | V |  |
| $\mathrm{V}_{\text {IL }}$ | Low-level control input voltage | 2 |  |
| $\mathrm{~T}_{\mathrm{A}}$ | Operating free-air temperature | V |  |

## electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

| PARAMETER |  | TEST CONDITIONS |  |  | MIN | TYP $\dagger$ | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| V ${ }^{\text {IK }}$ |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$, | $\boldsymbol{\}=-18 \mathrm{~mA}$ |  |  |  | -1.2 | V |
| 1 |  | $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, | $\mathrm{V}_{1}=5.5 \mathrm{~V}$ to GND |  |  |  | $\pm 5$ | $\mu \mathrm{A}$ |
| ICC |  | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, | $1 \mathrm{O}=0$, | $\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND |  |  | 3 | $\mu \mathrm{A}$ |
| $\Delta_{\text {l }} \mathrm{CC}^{\ddagger}$ | Control pins | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, | One input at 3.4 V , | Other inputs at $\mathrm{V}_{\mathrm{CC}}$ or GND |  |  | 2.5 | mA |
| $\mathrm{C}_{\mathrm{i}}$ | Control pins | $\mathrm{V}_{1}=3 \mathrm{~V}$ or 0 |  |  |  | 3 |  | pF |
| $\mathrm{C}_{\mathrm{io}}$ (OFF) | A port | $\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}$ or 0 , | $\overline{O E}=V_{C C}$ |  |  |  |  | pF |
|  | B port |  |  |  |  | 6 |  |  |
| ron§ |  | $\mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}$, | $\mathrm{V}_{1}=2.4 \mathrm{~V}$, | $\mathrm{l}=15 \mathrm{~mA}$ |  |  |  | $\Omega$ |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | $\mathrm{V}_{1}=0$, | $\boldsymbol{I}=64 \mathrm{~mA}$ (optional) |  | 5 | 7 |  |
|  |  | $\mathrm{V}_{1}=0$, | $\boldsymbol{I}=30 \mathrm{~mA}$ |  | 5 | 7 |  |
|  |  | $\mathrm{V}_{1}=2.4 \mathrm{~V}$, | $\mathrm{I}=15 \mathrm{~mA}$ |  | 10 | 15 |  |

$\dagger$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
$\ddagger$ This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.
§ Measured by the voltage drop between the A and the B terminals at the indicated current through the switch. On-state resistance is determined by the lower of the voltages of the two ( $A$ or $B$ ) terminals.
switching characteristics over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

| PARAMETER | FROM (INPUT) | TO (OUTPUT) | MIN MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: |
| $t_{p d}{ }^{\text {I }}$ | A or B | B or A | 0.25 | ns |

TThis parameter is characterized but not tested. This propagation delay is based on the RC time constant of the typical on-state resistance of the switch and a load capacitance of 50 pF .

## PARAMETER MEASUREMENT INFORMATION



NOTES: A. $C_{L}$ includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{ZO}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement.
E. tPLZ and $t_{P H Z}$ are the same as $\mathrm{t}_{\text {dis }}$.
F. tpZL and tpZH are the same as ten-
G. $\mathrm{t}_{\mathrm{PLH}}$ and $\mathrm{t}_{\mathrm{PHL}}$ are the same as $\mathrm{t}_{\mathrm{pd}}$ -

Figure 1. Load Circuit and Voltage Waveforms

- Functionally Equivalent to QS3257
- $5-\Omega$ Switch Connection Between Two Ports
- TTL-Compatible Control Input Levels
- Package Options Include Plastic Small-Outline (D), Shrink Small-Outline (DB), and Thin Shrink Small-Outline (PW) Packages


## description

The SN74CBT3257 is a quadruple 2-bit to 1-bit high-speed TTL-compatible FET multiplexer/ demultiplexer. The low on-state resistance of the switch allows connections to be made with minimal propagation delay.
$\overline{\mathrm{OE}}$ and S select the appropriate B 1 and B 2 outputs for the A-input data.
The SN74CBT3257 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
FUNCTION TABLE

| $\mathbf{S}$ | $\overline{O E}$ | FUNCTION |
| :---: | :---: | :---: |
| $X$ | $H$ | Disconnect |
| $L$ | $L$ | $1 A$ to $1 B 1,2 A$ to $2 B 1,3 A$ to $3 B 1$ and $4 B$ to $4 B 1$ |
| $H$ | $L$ | $1 A$ to 1B2, 2A to 2B2, 3A to 3B2 and 4A to 4B2 |

## logic diagram


absolute maximum ratings over operating free-air temperature range (unless otherwise noted) $\dagger$


Continuous channel current ...................................................................................... 128 mA
Input clamp current, $\mathrm{I}_{\mathrm{K}}\left(\mathrm{V}_{\mathrm{I} / \mathrm{O}}<0\right)$.................................................................. 50 mA
Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air) (see Note 2): D package .................... 1.3 W
DB package .................... 0.55 W
PW package .................... 0.5 W

$\dagger$ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. The maximum package power dissipation is calculated using a junction temperature of $150^{\circ} \mathrm{C}$ and a board trace length of 750 mils. For more information, refer to the Package Thermal Considerations application note in the 1994 ABTAdvanced BiCMOS Technology Data Book, literature number SCBD002B.
recommended operating conditions

|  |  | MIN | MAX |
| :--- | :--- | :---: | :---: |
| $V_{\text {CC }}$ | Uupply voltage | 4 | 5.5 |
| $\mathrm{~V}_{\text {IH }}$ | High-level control input voltage | V |  |
| $\mathrm{V}_{\text {IL }}$ | Low-level control input voltage | 2 |  |
| $\mathrm{~T}_{\mathrm{A}}$ | Operating free-air temperature | V |  |

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

| PARAMETER |  | TEST CONDITIONS |  |  | MIN | TYPt | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {IK }}$ |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$, | $\boldsymbol{I}=-18 \mathrm{~mA}$ |  |  |  | -1.2 | V |
| 11 |  | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, | $\mathrm{V}_{1}=5.5 \mathrm{~V}$ to GND |  |  |  | $\pm 5$ | $\mu \mathrm{A}$ |
| ICC |  | $\mathrm{V}_{C C}=5.5 \mathrm{~V}$, | $10=0$, | $\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND |  |  | 3 | $\mu \mathrm{A}$ |
| $\mathrm{Sl}_{\mathrm{lc}}{ }^{\ddagger}$ | Control pins | $\mathrm{V}_{C C}=5.5 \mathrm{~V}$, | One input at 3.4 V, | Other inputs at $\mathrm{V}_{\mathrm{CC}}$ or GND |  |  | 2.5 | mA |
| $\mathrm{C}_{i}$ | Control pins | $\mathrm{V}_{1}=3 \mathrm{~V}$ or 0 |  |  |  | 3 |  | pF |
| $\mathrm{Cio}_{\text {(OFF) }}$ | A port | $\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}$ or 0 , | $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{CC}}$ |  |  |  |  | pF |
|  | B port |  |  |  |  | 6 |  |  |
| ron§ |  | $\mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}$, | $\mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}$, | $\boldsymbol{I}=15 \mathrm{~mA}$ |  |  |  | $\Omega$ |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | $\mathrm{V}_{1}=0$, | I $=64 \mathrm{~mA}$ (optional) |  | 5 | 7 |  |
|  |  | $V_{1}=0$, | $\boldsymbol{I}=30 \mathrm{~mA}$ |  | 5 | 7 |  |
|  |  | $\mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}$, | $\mathrm{I}=15 \mathrm{~mA}$ |  | 10 | 15 |  |

$\dagger_{\text {All typical values are at }} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
$\ddagger$ This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.
§ Measured by the voltage drop between the A and the B terminals at the indicated current through the switch. On-state resistance is determined by the lower of the voltages of the two ( A or B ) terminals.
switching characteristics over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

| PARAMETER | FROM (INPUT) | TO (OUTPUT) | MIN MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: |
| $t_{p d}{ }^{\text {I }}$ | A or B | B or A | 0.25 | ns |
| ten | S | A or B |  | ns |
| $\mathrm{t}_{\mathrm{en}}$ | $\overline{\mathrm{OE}}$ | A or B |  | ns |
| ${ }_{\text {t }}$ dis | $\overline{\mathrm{OE}}$ | A or B |  | ns |

TThis parameter is characterized but not tested. This propagation delay is based on the RC time constant of the typical on-state resistance of the switch and a load capacitance of 50 pF .

## PARAMETER MEASUREMENT INFORMATION


VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES

| TEST | S1 |
| :---: | :---: |
|  | $\begin{aligned} & \text { Open } \\ & 7 \mathrm{~V} \\ & \text { Open } \end{aligned}$ |


VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES
NOTES: A. $C_{L}$ includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement.
E. tpLZ and tphZ are the same as $t_{\text {dis }}$.
F. tpZL and tpZH are the same as ten.
G. tPLH and tPHL are the same as tpd-

Figure 1. Load Circuit and Voltage Waveforms

- 5- $\Omega$ Switch Connection Between Two Ports
- TTL-Compatible Control Input Levels
- Package Options Include Plastic Small-Outline (D) and Thin Shrink Small-Outline (PW) Packages


## description

The SN74CBT3306 dual bus switch features independent line switches. Each switch is disabled when the associated output-enable ( $\overline{\mathrm{OE}}$ ) input is high.
The SN74CBT3306 is available in Tl's plastic small-outline package (D) and thin shrink small-outline package (PW).

The SN74CBT3306 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
FUNCTION TABLE

| INPUT <br> $\overline{O E}$ | INPUTS/ <br> OUTPUTS |
| :---: | :---: |
|  | $A, B$ |
| $L$ | $A=B$ |
| $H$ | $Z$ |

## logic diagram (positive logic)


absolute maximum ratings over operating free-air temperature range (unless otherwise noted) $\dagger$

$\dagger$ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. The maximum package power dissipation is calculated using a junction temperature of $150^{\circ} \mathrm{C}$ and a board trace length of 750 mils. For more information, refer to the Package Thermal Considerations application note in the 1994 ABTAdvanced BiCMOS Technology Data Book, literature number SCBD002B.
recommended operating conditions

|  |  | MIN | MAX |
| :--- | :--- | ---: | :---: |
| $\mathrm{V}_{\mathrm{CC}}$ | UNIT |  |  |
| $\mathrm{V}_{\text {IH }}$ | High-level control input voltage | 4 | 5.5 |
| $\mathrm{~V}_{\text {IL }}$ | Low-level control input voltage | 2 |  |
| $\mathrm{~T}_{\mathrm{A}}$ | Operating free-air temperature | V |  |

## electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

| PARAMETER |  | TEST CONDITIONS |  |  | MIN | TYP $\ddagger$ | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {IK }}$ |  | $\mathrm{V}_{C C}=4.5 \mathrm{~V}$, | $\boldsymbol{I}=-18 \mathrm{~mA}$ |  |  |  | -1.2 | V |
| 1 |  | $\mathrm{V}_{C C}=5.5 \mathrm{~V}$, | $\mathrm{V}_{1}=5.5 \mathrm{~V}$ to GND |  |  |  | $\pm 5$ | $\mu \mathrm{A}$ |
| ICC |  | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, | $\mathrm{l}=0$, | $\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND |  |  | 3 | $\mu \mathrm{A}$ |
| $\Delta^{1} \mathrm{CC}{ }^{\text {§ }}$ | Control pins | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, | One input at 3.4 V, | Other inputs at $\mathrm{V}_{\mathrm{CC}}$ or GND |  |  | 2.5 | mA |
| $\mathrm{C}_{i}$ | Control pins | $\mathrm{V}_{1}=3 \mathrm{~V}$ or 0 |  |  |  | 3 |  | pF |
| $\mathrm{CiO}_{\mathrm{io}}$ (OFF) |  | $\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}$ or 0 , | $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{CC}}$ |  |  | 6 |  | pF |
| ron ${ }^{\text {a }}$ |  | $\mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}$, | $\mathrm{V}_{1}=2.4 \mathrm{~V}$, | $\\|_{1}=15 \mathrm{~mA}$ |  |  |  | $\Omega$ |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | $V_{1}=0$, | I $=64 \mathrm{~mA}$ (optional) |  | 5 | 7 |  |
|  |  | $\mathrm{V}_{1}=0$, | $\boldsymbol{l}=30 \mathrm{~mA}$ |  | 5 | 7 |  |
|  |  | $\mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}$, | $\boldsymbol{\prime}=15 \mathrm{~mA}$ |  | 10 | 15 |  |

[^3]§This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.
II Measured by the voltage drop between the $A$ and the $B$ terminals at the indicated current through the switch. On-state resistance is determined by the lower of the voltages of the two ( $A$ or $B$ ) terminals.
switching characteristics over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

| PARAMETER | $\begin{gathered} \text { FROM } \\ \text { (INPUT) } \end{gathered}$ | TO (OUTPUT) | MIN MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: |
| $t_{\text {pd }}{ }^{\dagger}$ | A or B | B or A | 0.25 | ns |
| ten | $\overline{\mathrm{OE}}$ | A or B |  | ns |
| ${ }^{\text {d }}$ dis | $\overline{\mathrm{OE}}$ | A or B |  | ns |

$\dagger$ This parameter is characterized but not tested. This propagation delay is based on the RC time constant of the typical on-state resistance of the switch and a load capacitance of 50 pF .

PARAMETER MEASUREMENT INFORMATION


NOTES: A. $C_{L}$ includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement.
E. tplZ and tphZ are the same as $t_{\text {dis. }}$
F. $\mathrm{tPZL}^{2}$ and $\mathrm{t}_{\mathrm{PZ}} \mathrm{H}$ are the same as ten.
G. $\mathrm{tPLL}^{\mathrm{H}}$ and $\mathrm{tPHL}^{\text {are }}$ are same as $\mathrm{t}_{\mathrm{pd}}$.

Figure 1. Load Circuit and Voltage Waveforms

## - Standard '245-Type Pinout

- $5-\Omega$ Switch Connection Between Two Ports
- TTL-Compatible Control Input Levels
- Package Options Include Plastic Shrink Small-Outline (DB), Small-Outline (DW), and Thin Shrink Small-Outline (PW) Packages


## description

The SN74CBT3345 provides eight bits of high-speed TTL-compatible bus switching in a standard ' 245 device pinout. The low on-state resistance of the switch allows connections to be made with minimal propagation delay.


The device is organized as one 8-bit switch bank with dual output-enable (OE and $\overline{O E}$ ) inputs. When $\overline{O E}$ is low or $O E$ is high, the switch is on and port $A$ is connected to port $B$. When $\overline{O E}$ is high and $O E$ is low, the switch is open and a high-impedance state exists between the two ports.

The SN74CBT3345 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
FUNCTION TABLE

| INPUTS |  | INPUT/ <br> OUTPUTS |
| :---: | :---: | :---: |
| OE | $\overline{\mathrm{OE}}$ | $\mathrm{A}, \mathrm{B}$ |
| X | L | $\mathrm{A}=\mathrm{B}$ |
| H | X | $\mathrm{A}=\mathrm{B}$ |
| L | H | Z |

## logic diagram



## SCDS 027 - MAY 1995

## absolute maximum ratings over operating free-air temperature range (unless otherwise noted) $\dagger$

$$
\begin{aligned}
& \text { Continuous channel current ........................................................................ } 128 \mathrm{~mA}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Maximum power dissipation at } \mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C} \text { (in still air) (see Note 2): DB package .................... } 0.6 \mathrm{~W} \\
& \text { DW package ................... 1.6 W } \\
& \text { PW package ..................... } 0.7 \text { W } \\
& \text { Storage temperature range, } T_{\text {stg }} \\
& -65^{\circ} \mathrm{C} \text { to } 150^{\circ} \mathrm{C} \\
& \dagger \text { Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and } \\
& \text { functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not } \\
& \text { implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. } \\
& \text { NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed. } \\
& \text { 2. The maximum package power dissipation is calculated using a junction temperature of } 150^{\circ} \mathrm{C} \text { and a board trace length of } 750 \text { mils. } \\
& \text { For more information, refer to the Package Thermal Considerations application note in the } 1994 \text { ABTAdvanced BiCMOS Technology } \\
& \text { Data Book, literature number SCBD002B. }
\end{aligned}
$$

recommended operating conditions

|  |  | MIN | MAX |
| :--- | :--- | ---: | :---: |
| $\mathrm{V}_{\mathrm{CC}}$ | Supply voltage | 4.5 | 5.5 |
| $\mathrm{~V}_{\text {IH }}$ | High-level control input voltage | V |  |
| $\mathrm{V}_{\text {IL }}$ | Low-level control input voltage | 2 |  |
| $\mathrm{~T}_{\mathrm{A}}$ | Operating free-air temperature | V |  |

## electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

| PARAMETER |  | TEST CONDITIONS |  |  | MIN | TYP\# | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {IK }}$ |  | $\mathrm{V}_{C C}=4.5 \mathrm{~V}$, | $\boldsymbol{I}=-18 \mathrm{~mA}$ |  |  |  | -1.2 | V |
| I |  | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, | $\mathrm{V}_{1}=5.5 \mathrm{~V}$ or GND |  |  |  | $\pm 5$ | $\mu \mathrm{A}$ |
| ICC |  | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, | $\mathrm{O}=0$, | $\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND |  |  | 50 | $\mu \mathrm{A}$ |
| $\Delta_{\text {cc }}{ }^{\text {§ }}$ | Control pins | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, | One input | Other inputs at $\mathrm{V}_{\mathrm{CC}}$ or GND |  |  | 3.5 | mA |
| $\mathrm{C}_{\mathrm{i}}$ | Control pins | $\mathrm{V}_{1}=3 \mathrm{~V}$ or 0 |  |  |  | 3 |  | pF |
| $\mathrm{C}_{\mathrm{io} \text { (OFF) }}$ |  | $\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}$ or 0, | $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{CC}}$ or $\mathrm{OE}=\mathrm{GND}$ |  |  | 6 |  | pF |
| ron" |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | $\mathrm{V}_{1}=0$, | $1=64 \mathrm{~mA}$ |  | 5 | 7 | $\Omega$ |
|  |  | $\mathrm{V}_{1}=0$, | $\boldsymbol{I}=30 \mathrm{~mA}$ |  | 5 | 7 |  |
|  |  | $\mathrm{V}_{1}=2.4 \mathrm{~V}$, | $\boldsymbol{l}=15 \mathrm{~mA}$ |  | 10 | 15 |  |

$\ddagger$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.
I Measured by the voltage drop between the $A$ and $B$ terminals at the indicated current through the switch. On-state resistance is determined by the lower of the voltages of the two ( $\mathrm{A} \circ \mathrm{or} B$ ) terminals.
switching characteristics over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

| PARAMETER | FROM (INPUT) | TO (OUTPUT) | MIN MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: |
| $t_{\text {pd }}{ }^{\dagger}$ | A or B | B or A | 0.25 | ns |
| ten | $\overline{\mathrm{OE}}$ or OE | A or B | 19.1 | ns |
| $t_{\text {dis }}$ | $\overline{\mathrm{OE}}$ or OE | A or B | 18.7 | ns |

$\dagger$ This parameter is characterized but not tested. This propagation delay is based on the RC time constant of the typical on-state resistance of the switch and a load capacitance of 50 pF .

## PARAMETER MEASUREMENT INFORMATION



NOTES: A. $C_{L}$ includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{ZO}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{f} \leq 2.5 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement.
E. tpLZ and tPHZ are the same as $\mathrm{t}_{\text {dis. }}$.
F. tpZL and tpZH are the same as ten.

Figure 1. Load Circuit and Voltage Waveforms

- Functionally Equivalent to QS3383 and QS3L383
- $5-\Omega$ Switch Connection Between Two Ports
- TTL-Compatible Input and Output Levels
- Package Options Include Plastic Shrink Small-Outline (DB), Small-Outline (DW), Thin Shrink Small-Outline (PW), Ceramic DIPs (JT), and Ceramic Flat (W) Packages


## description

The 'CBT3383 provide ten bits of high-speed TTL-compatible bus switching or exchanging. The low on-state resistance of the switch allows connections to be made with minimal propagation delay.

SN54CBT3383... JT OR W PACKAGE SN74CBT3383...DB, DW, OR PW PACKAGE (TOP VIEW)


The devices operate as a 10-bit bus switch or a 5-bit bus exchanger, which provides swapping of the $A$ and $B$ pairs of signals. The bus-exchange function is selected when $B X$ is high. The switches are connected when $\overline{B E}$ is low.

The SN54CBT3383 is charaterized for operation from $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74CBT3383 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

FUNCTION TABLE

| $\overline{B E}$ | $B X$ | $1 A 1-5 A 1$ | $1 A 2-5 A 2$ |
| :---: | :---: | :---: | :---: |
| $L$ | $L$ | $1 B 1-5 B 1$ | $1 B 2-5 B 2$ |
| $L$ | $H$ | $1 B 2-5 B 2$ | $1 B 1-5 B 1$ |
| $H$ | $X$ | $Z$ | $Z$ |

## logic diagram


absolute maximum ratings over operating free-air temperature range (unless otherwise noted) $\dagger$

$\dagger$ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. The maximum package power dissipation is calculated using a junction temperature of $150^{\circ} \mathrm{C}$ and a board trace length of 750 mils. For more information, refer to the Package Thermal Considerations application note in the 1994 ABTAdvanced BiCMOS Technology Data Book, literature number SCBD002B.
recommended operating conditions

|  |  | SN54CBT3383 |  | SN74CBT3383 |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | MAX | MIN | MAX |  |
| $\mathrm{V}_{\mathrm{CC}}$ | Supply voltage | 4.5 | 5.5 | 4.5 | 5.5 | V |
| $\mathrm{V}_{\mathrm{IH}}$ | High-level control input voltage | 2 |  | 2 |  | V |
| $\mathrm{V}_{\text {IL }}$ | Low-level control input voltage |  | 0.8 |  | 0.8 | V |
| $\mathrm{T}_{\text {A }}$ | Operating free-air temperature | -55 | 125 | 0 | 70 | ${ }^{\circ} \mathrm{C}$ |

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)


[^4]switching characteristics over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

| PARAMETER | FROM(INPUT) | TO (OUTPUT) | SN54CBT3383 |  | SN74CBT3383 |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | MIN | MAX | MIN | MAX |  |
| $t_{\text {pd }}{ }^{\dagger}$ | A or B | B or A |  | 1.5 |  | 0.25 | ns |
| ten | BX | A or B | 1 | 10.2 | 1 | 9.2 | ns |
| ten | $\overline{B E}$ | A or B | 1 | 10.8 | 1 | 8.6 | ns |
| ${ }^{\text {dis }}$ | $\overline{B E}$ | A or B | 1 | 8.2 | 1 | 7.5 | ns |

$\dagger$ This parameter is characterized but not tested. This propagation delay is based on the RC time constant of the typical on-state resistance of the switch and a load capacitance of 50 pF .

PARAMETER MEASUREMENT INFORMATION


NOTES: A. $C_{L}$ includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement.
E. $t_{P L Z}$ and $\mathrm{t}_{\mathrm{PHZ}}$ are the same as $\mathrm{t}_{\text {dis }}$.
F. tpZL and tPZH are the same as ten-
G. $\mathrm{t}_{\mathrm{PLH}}$ and $\mathrm{tPHL}^{2}$ are the same as $\mathrm{t}_{\mathrm{pd}}$ -

Figure 1. Load Circuit and Voltage Waveforms

- Functionally Equivalent to QS3384 and QS3L384
- $5-\Omega$ Switch Connection Between Two Ports
- TTL-Compatible Input and Output Levels
- Package Options Include Plastic Shrink Small-Outline (DB), Small-Outline (DW), and Thin Shrink Small-Outline (PW) Packages


## description

The SN74CBT3384A provides ten bits of high-speed TTL-compatible bus switching. The low on-state resistance of the switch allows connections to be made with minimal propagation delay.


The device is organized as two 5 -bit switches with separate output-enable ( $\overline{O E}$ ) inputs. When $\overline{O E}$ is low, the switch is on and port A is connected to port B . When $\overline{O E}$ is high, the switch is open and a high-impedance state exists between the two ports.
The SN74CBT3384A is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
FUNCTION TABLE

| $1 \overline{\mathrm{OE}}$ | $2 \overline{\mathrm{OE}}$ | $1 \mathrm{~B} 1-1 \mathrm{~B} 5$ | $2 \mathrm{~B} 1-2 \mathrm{B5}$ |
| :---: | :---: | :---: | :---: |
| L | L | $1 \mathrm{~A} 1-1 \mathrm{~A} 5$ | $2 \mathrm{~A} 1-2 A 5$ |
| $L$ | $H$ | $1 A 1-1 A 5$ | $Z$ |
| $H$ | $L$ | $Z$ | $2 A 1-2 A 5$ |
| $H$ | $H$ | $Z$ | $Z$ |

## logic diagram


absolute maximum ratings over operating free-air temperature range (unless otherwise noted) $\boldsymbol{\dagger}$

|  |  |  |
| :---: | :---: | :---: |
| Input voltage range, $\mathrm{V}_{1}$ (see Note 1) |  | -0.5 V to 7 V |
| Continuous channel current ............................................................... 128 mA |  |  |
|  |  |  |
|  |  |  |
|  | DW package | 1.6 W |
|  | PW package | 0.7 W |
| Storage temperature range, $\mathrm{T}_{\text {stg }}$ |  | $5^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ |

$\dagger$ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. The maximum package power dissipation is calculated using a junction temperature of $150^{\circ} \mathrm{C}$ and a board trace length of 750 mils. For more information, refer to the Package Thermal Considerations application note in the 1994 ABT Advanced BiCMOS Technology Data Book, literature number SCBD002B.

## recommended operating conditions

|  |  | MIN | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{CC}}$ | Supply voltage | 4 | 5.5 | V |
| $\mathrm{V}_{\mathrm{IH}}$ | High-level control input voltage | 2 |  | V |
| $\mathrm{V}_{\text {IL }}$ | Low-level control input voltage |  | 0.8 | V |
| $\mathrm{T}_{\mathrm{A}}$ | Operating free-air temperature | -40 | 85 | ${ }^{\circ} \mathrm{C}$ |

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

| PARAMETER |  | TEST CONDITIONS |  |  | MIN TYPt | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {IK }}$ |  | $\mathrm{V}_{C C}=4.5 \mathrm{~V}$, | $\mathrm{I}_{1}=-18 \mathrm{~mA}$ |  |  | -1.2 | V |
| I |  | $\mathrm{V}_{C C}=5.5 \mathrm{~V}$, | $\mathrm{V}_{1}=5.5 \mathrm{~V}$ or GND |  |  | $\pm 1$ | $\mu \mathrm{A}$ |
| ICC |  | $\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$, | $\mathrm{l}=0$, | $\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND |  | 3 | $\mu \mathrm{A}$ |
| $\Delta_{\text {l }} \mathrm{Cl}^{\ddagger}$ | Control pins | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, | One input at 3.4 V , | Other inputs at $\mathrm{V}_{\mathrm{CC}}$ or GND |  | 2.5 | mA |
| $\mathrm{C}_{\mathrm{i}}$ | Control pins | $\mathrm{V}_{1}=3 \mathrm{~V}$ or 0 |  |  | 4 |  | pF |
| $\mathrm{CiO}_{\mathrm{io}}$ (OFF) |  | $\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}$ or 0 , | $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{CC}}$ |  | 4.5 |  | pF |
| ron§ |  | $\mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}$, | $\mathrm{V}_{1}=2.4 \mathrm{~V}$, | $11=15 \mathrm{~mA}$ | 14 | 20 | $\Omega$ |
|  |  | $\mathrm{V}_{C C}=4.5 \mathrm{~V}$ | $V_{1}=0$, | $\boldsymbol{I}=64 \mathrm{~mA}$ | 5 | 7 |  |
|  |  | $V_{1}=0$, | $l_{1}=30 \mathrm{~mA}$ | 5 | 7 |  |
|  |  | $\mathrm{V}_{1}=2.4 \mathrm{~V}$, | $\mathrm{I}_{1}=15 \mathrm{~mA}$ | 10 | 15 |  |

$\dagger$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
$\ddagger$ This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.
§ Measured by the voltage drop between the $A$ and $B$ terminals at the indicated current through the switch. On-state resistance is determined by the lower of the voltages of the two (A or B) terminals.
switching characteristics over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

| PARAMETER | FROM (INPUT) | TO (OUTPUT) | $\begin{gathered} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ \pm 0.5 \mathrm{~V} \end{gathered}$ |  | $\mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}$ |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | MIN | MAX | MIN | MAX |  |
| $t_{p d}{ }^{\text {IT }}$ | A or B | B or A |  | 0.25 |  | 0.25 | ns |
| ten | $\overline{\mathrm{OE}}$ | A or B | 1.9 | 5.7 |  | 6.2 | ns |
| ${ }^{\text {dis }}$ | $\overline{\mathrm{OE}}$ | $A$ or B | 2.1 | 5.2 |  | 5.5 | ns |

TThis parameter is characterized but not tested. This propagation delay is based on the RC time constant of the typical on-state resistance of the switch and a load capacitance of 50 pF .

PARAMETER MEASUREMENT INFORMATION


NOTES: A. $C_{L}$ includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement.
E. $t_{P L Z}$ and $t_{P H Z}$ are the same as $t_{\text {dis. }}$.
F. tpZL and tPZH are the same as ten.
G. tPLH and tPHL are the same as tpd.

Figure 1. Load Circuit and Voltage Waveforms

## - Functionally Equivalent to QS3386

- $5-\Omega$ Switch Connection Between Two Ports
- TTL-Compatible Input and Output Levels
- Package Options Include Plastic Small-Outline (DB), Shrink Small-Outline (DW), and Thin Shrink Small-Outline (PW) Packages
- Uses $V_{C C}$ of 5 V and $\mathrm{V}_{\mathrm{DD}}$ of -2 V


## description

The SN74CBT3386 provides ten bits of high-speed TTL-compatible bus switching or exchanging. The input signals can range from -2 V to 5 V . The low on-state resistance of the switch allows connections to be made with minimal propagation delay.

DB, DW, OR PW PACKAGE (TOP VIEW)


The device operates as a 10 -bit bus switch or a 5-bit bus exchanger, which allows swapping of the $A$ and $B$ pairs of signals. The bus-exchange function is selected when $B X$ is high. The switches are disconnected when $\overline{B E}$ is high.

The SN74CBT3386 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
FUNCTION TABLE

| $\overline{B E}$ | $B X$ | $1 A 1-5 A 1$ | $1 A 2-5 A 2$ |
| :---: | :---: | :---: | :---: |
| $L$ | $L$ | $1 B 1-5 B 1$ | $1 B 2-5 B 2$ |
| $L$ | $H$ | $1 B 2-5 B 2$ | $1 B 1-5 B 1$ |
| $H$ | $X$ | $Z$ | $Z$ |

## logic diagram


absolute maximum ratings over operating free-air temperature range (unless otherwise noted) $\boldsymbol{\dagger}$

$$
\begin{aligned}
& \text { Continuous channel current ......................................................................... } 128 \mathrm{~mA}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Maximum power dissipation at } \mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C} \text { (in still air) (see Note 2): DB package } \ldots \ldots \ldots \ldots \ldots . .0 .6 \mathrm{~W} \\
& \text { DW package .................. 1.6 W } \\
& \text { PW package ...................... } 0.7 \text { W } \\
& \text { Storage temperature range, } \mathrm{T}_{\text {stg }} \\
& \dagger \text { Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and } \\
& \text { functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not } \\
& \text { implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. } \\
& \text { NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed. } \\
& \text { 2. The maximum package power dissipation is calculated using a junction temperature of } 150^{\circ} \mathrm{C} \text { and a board trace length of } 750 \text { mils. } \\
& \text { For more information, refer to the Package Thermal Considerations application note in the } 1994 \text { ABT Advanced BiCMOS Technology } \\
& \text { Data Book, literature number SCBD002B. }
\end{aligned}
$$

recommended operating conditions

|  |  | MIN | MAX |
| :--- | :--- | :---: | :---: |
| $\mathrm{V}_{\mathrm{CC}}$ | Uupply voltage | 4 | 5.5 |
| $\mathrm{~V}_{\text {IH }}$ | High-level control input voltage | V |  |
| $\mathrm{V}_{\text {IL }}$ | Low-level control input voltage | 2 |  |
| $\mathrm{~T}_{\mathrm{A}}$ | Operating free-air temperature | V |  |

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

| PARAMETER |  | TEST CONDITIONS |  |  | MIN | TYP $\ddagger$ | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {IK }}$ |  | $\mathrm{V}_{C C}=4.5 \mathrm{~V}$, | $l_{1}=-18 \mathrm{~mA}$ |  | $\mathrm{V}_{\mathrm{DD}}-1.2$ |  |  | V |
| $1 /$ |  | $\mathrm{V}_{C C}=5.5 \mathrm{~V}$, | $\mathrm{V}_{1}=5.5 \mathrm{~V}$ or GND |  |  |  | $\pm 5$ | $\mu \mathrm{A}$ |
| ICC |  | $\mathrm{V}_{C C}=5.5 \mathrm{~V}$, | $\mathrm{O}=0$, | $\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND |  |  | 3 | $\mu \mathrm{A}$ |
| $\Delta \mathrm{CCC}{ }^{\text {® }}$ | Control pins | $\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$, | One input at 3.4 V , | Other inputs at $\mathrm{V}_{\mathrm{CC}}$ or GND |  |  | 5 | mA |
| $\mathrm{C}_{i}$ | Control pins | $\mathrm{V}_{1}=3 \mathrm{~V}$ or 0 |  |  |  | 3 |  | pF |
| $\mathrm{CiO}_{\mathrm{io}}$ (OFF) |  | $\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}$ or 0, | $\overline{\mathrm{BE}}=\mathrm{V}_{\mathrm{CC}}$ |  |  | 6 |  | pF |
| ron ${ }^{\text {a }}$ |  | $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$, | $\mathrm{V}_{1}=0$, | $\boldsymbol{I}=64 \mathrm{~mA}$ (optional) |  | 7 | 9 | $\Omega$ |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$, | $\mathrm{V}_{1}=0$, | $\boldsymbol{l}=30 \mathrm{~mA}$ |  | 7 | 9 |  |
|  |  | $\mathrm{V}_{C C}=4.75 \mathrm{~V}$, | $\mathrm{V}_{1}=2.4 \mathrm{~V}$, | $1 \mathrm{l}=15 \mathrm{~mA}$ |  | 12 | 17 |  |

[^5]
## SN74CBT3386 <br> 10-BIT BUS-EXCHANGE SWITCH WITH EXTENDED VOLTAGE RANGE <br> SCDS022 - MAY 1995

switching characteristics over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Note 3)

| PARAMETER | FROM (INPUT) | TO (OUTPUT) | MIN MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: |
| $t_{p d}{ }^{\dagger}$ | A or B | B or A | 0.25 | ns |
| ten | BX | A or B |  | ns |
| ten | $\overline{\mathrm{BE}}$ | A or B |  | ns |
| $\mathrm{t}_{\text {dis }}$ | $\overline{\mathrm{BE}}$ | A or B |  | ns |

$\dagger$ This parameter is characterized but not tested. This propagation delay is based on the RC time constant of the typical on-state resistance of the switch and a load capacitance of 50 pF .

## PARAMETER MEASUREMENT INFORMATION



NOTES: A. $C_{L}$ includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR $\leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement.
E. $t^{t} P L Z$ and $t_{P H Z}$ are the same as $t_{\text {dis }}$.
F. $t_{P Z L}$ and $t_{P Z H}$ are the same as $t_{e n}$.
G. $t_{P L H}$ and $t_{P H L}$ are the same as $t_{p d}$.

Figure 1. Load Circuit and Voltage Waveforms

## - Functionally Equivalent to QS3388

- 5- $\Omega$ Switch Connection Between Two Ports
- TTL-Compatible Input and Output Levels
- Bus Hold on I/O Pins
- Package Options Include Plastic Small-Outline (DB), Shrink Small-Outline (DW), and Thin Shrink Small-Outline (PW) Packages


## description

The SN74CBT3388 provides ten bits of high-speed TTL-compatible bus switching or exchanging with bus hold on all I/Os. The low on-state resistance of the switch allows connection to be made with minimal propagation delay. When the switch is turned off, the bus-hold circuit pulls all I/Os to $\mathrm{V}_{\mathrm{CC}}$ or to GND, depending on the last-known state of the pin. The bus-hold feature holds unused buses in a known TTL state, away from threshold. The bus-hold circuit can hold the bus in the last-known state as long as its leakage does not exceed $100 \mu \mathrm{~A}$. If the leakage on the bus exceeds this value, the bus hold switches states. The bus-hold feature is active only when the SN74CBT3388 //Os are in the high-impedance state.
The device operates as a 10 -bit bus switch or a 5 -bit bus exchanger, which provides swapping of the $A$ and $B$ pairs of signals. The bus-exchange function is selected when $\overline{B E}$ is low. The switches are open when $B X$ is high.
The SN74CBT3388 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
FUNCTION TABLE

| $\overline{B E}$ | $B X$ | $1 A 1-5 A 1$ | 1A2-5A2 |
| :---: | :---: | :---: | :---: |
| $L$ | $L$ | $1 B 1-5 B 1$ | $1 B 2-5 B 2$ |
| $L$ | $H$ | $1 B 2-5 B 2$ | $1 B 1-5 B 1$ |
| $H$ | $X$ | $Z$ | $Z$ |

## logic diagram



## absolute maximum ratings over operating free-air temperature range (unless otherwise noted) $\dagger$



Continuous channel current .......................................................................... 128 mA

Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air) (see Note 2): DB package $\ldots \ldots . \ldots . . . . . .$. DW package .................. 1.6 W
PW package .................... 0.7 W

$\dagger$ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. The maximum package power dissipation is calculated using a junction temperature of $150^{\circ} \mathrm{C}$ and a board trace length of 750 mils. For more information, refer to the Package Thermal Considerations application note in the 1994 ABT Advanced BiCMOS Technology Data Book, literature number SCBD002B.
recommended operating conditions

|  |  | MIN | MAX |
| :--- | :--- | ---: | :---: |
| $\mathrm{V}_{\mathrm{CC}}$ | Supply voltage | 4 | 5.5 |
| $\mathrm{~V}_{\text {IH }}$ | High-level control input voltage | V |  |
| $\mathrm{V}_{\text {IL }}$ | Low-level control input voltage | 2 |  |
| $\mathrm{~T}_{\mathrm{A}}$ | Operating free-air temperature | V |  |

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

| PARAMETER |  | TEST CONDITIONS |  |  | MIN | TYPt | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {IK }}$ |  | $\mathrm{V}_{C C}=4.5 \mathrm{~V}$, | $1 \mathrm{l}=-18 \mathrm{~mA}$ |  |  |  | -1.2 | V |
| 1 |  | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, | $\mathrm{V}_{1}=5.5 \mathrm{~V}$ or GND |  |  |  | $\pm 5$ | $\mu \mathrm{A}$ |
| II(hold) |  | $\mathrm{V}_{C C}=4.5 \mathrm{~V}$, | $\mathrm{V}_{1}=2 \mathrm{~V}$ or 0.8 V |  | 100 |  | 500 | $\mu \mathrm{A}$ |
| ICC |  | $\mathrm{V}_{C C}=5.5 \mathrm{~V}$, | $\mathrm{I} \mathrm{O}=0$, | $\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND |  |  | 3 | $\mu \mathrm{A}$ |
| $\mathrm{SlCC}^{\ddagger}$ | Control pins | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, | One input at 3.4 V, | Other inputs at $\mathrm{V}_{\mathrm{CC}}$ or GND |  |  | 2.5 | mA |
| $\mathrm{C}_{\mathrm{i}}$ | Control pins | $\mathrm{V}_{1}=3 \mathrm{~V}$ or 0 |  |  |  | 3 |  | pF |
| $\mathrm{Cio}_{\text {io(OFF) }}$ |  | $\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}$ or 0 , | $\overline{B E}=V_{C C}$ |  |  | 6 |  | pF |
| ron§ |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$, | $V_{1}=0$, | $1 /=64 \mathrm{~mA}$ |  | 5 | 7 | $\Omega$ |
|  |  | $\mathrm{V}_{C C}=4.5 \mathrm{~V}$, | $V_{1}=0$, | $1=30 \mathrm{~mA}$ |  | 5 | 7 |  |
|  |  | $\mathrm{V}_{C C}=4.5 \mathrm{~V}$, | $\mathrm{V}_{1}=2.4 \mathrm{~V}$, | $1 /=15 \mathrm{~mA}$ |  | 10 | 15 |  |

$\dagger$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
$\ddagger$ This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.
§ Measured by the voltage drop between the input terminal and the output terminal at the indicated current through the switch. On-state resistance is determined by the lower of the voltages of the two terminals.
switching characteristics over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

| PARAMETER | FROM <br> (INPUT) | TO <br> (OUTPUT) | MIN | MAX |
| :---: | :---: | :---: | :---: | :---: | UNIT | $\mathrm{t}_{\text {pd }}{ }^{\\|}$ | A or B |
| :---: | :---: |

[^6]PARAMETER MEASUREMENT INFORMATION


| TEST | S1 |
| :---: | :---: |
| ${ }^{\text {t pd }}$ | Open |
| tPLZ $^{\text {tpZL }}$ | 7 V |
| $\mathrm{t}_{\mathrm{tPHZ}} / \mathrm{t}_{\mathrm{PZH}}$ | Open |

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES


VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES
NOTES: A. $\mathrm{C}_{\mathrm{L}}$ includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement.
E. $t_{P L Z}$ and $t_{P H Z}$ are the same as $t_{\text {dis }}$.
F. $\mathrm{tPZL}^{\text {and }} \mathrm{t}_{\mathrm{tPZH}}$ are the same as $\mathrm{t}_{\mathrm{en}}$ -
G. tPLH and tPHL are the same as $t_{p d}$.

Figure 1. Load Circuit and Voltage Waveforms

- $5-\Omega$ Switch Connection Between Two Ports
- Near-Zero Propagation Delay
- TTL-Compatible Input and Output Levels
- Outputs Are Precharged by Bias Voltage to Minimize Signal Distortion During Live Insertion
- Package Options Include Plastic Small-Outline (DB), Plastic Small-Outline (DW), and Thin Shrink Small-Outline (PW) Packages


## description

The SN74CBT6800 provides ten bits of highspeed TTL-compatible bus switching. The low on-state resistance of the switch allows bidirectional connections to be made while adding near-zero propagation delay. The device also precharges the B port to a user-selectable bias voltage (BIASV) to minimize live-insertion noise.
The SN74CBT6800 is organized as one 10-bit switch with a single enable $(\overline{\mathrm{ON}})$ input. When $\overline{\mathrm{ON}}$ is low, the switch is on and port $A$ is connected to port $B$. When $\overline{O N}$ is high, the switch between port $A$ and port $B$ is open and the B port is precharged to BIASV through the equivalent of a $10-\mathrm{k} \Omega$ resistor.
The SN74CBT6800 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
FUNCTION TABLE

| $\overline{\mathrm{ON}}$ | B1-B10 | FUNCTION |
| :---: | :---: | :---: |
| L | A1-A10 | Connect |
| H | BIASV | Precharge |

## logic diagram



## absolute maximum ratings over operating free-air temperature range (unless otherwise noted) $\ddagger$

Supply voltage range, $\mathrm{V}_{\mathrm{CC}}$ ..... -0.5 V to 7 V
Bias voltage range, BIASV ..... $-0.5 \mathrm{~V} 6 \mathrm{~V}$
Input voltage range, $\mathrm{V}_{1}$ (see Note 1) ..... -0.5 V to 7 V
Continuous channel current ..... 128 mA
Input clamp current, $\mathrm{I}_{\mathrm{IK}}\left(\mathrm{V}_{1}<0\right)$ ..... $-50 \mathrm{~mA}$
Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air) (see Note 2): DB package ..... 0.6 W
DW package ..... 1.7 W
PW package ..... 0.7 W
Storage temperature range, $\mathrm{T}_{\text {stg }}$ ..... $150^{\circ} \mathrm{C}$
$\ddagger$ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. The maximum package power dissipation is calculated using a junction temperature of $150^{\circ} \mathrm{C}$ and a board trace length of 750 mils. For more information, refer to the Package Thermal Considerations application note in the 1994 ABT Advanced BiCMOS Technology Data Book, literature number SCBD002B.
recommended operating conditions

|  |  | MIN | MAX |
| :--- | :--- | ---: | :---: |
| UNIT |  |  |  |
| $V_{\text {CC }}$ | Supply voltage | 4 | 5.5 |
| BIASV | Supply voltage | 1.3 | $\mathrm{~V}_{\mathrm{CC}}$ |
| $\mathrm{V}_{\mathrm{IH}}$ | High-level input voltage | $\mathbf{V}$ |  |
| $\mathrm{V}_{\mathrm{IL}}$ | Low-level input voltage | 2 |  |
| $\mathrm{~T}_{\mathrm{A}}$ | Operating free-air temperature | -40 | 8 |

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

| PARAMETER | TEST CONDITIONS |  |  | MIN | TYPt | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {IK }}$ | $\mathrm{V}_{C C}=4.5 \mathrm{~V}$, | $l_{1}=-18 \mathrm{~mA}$ |  |  |  | -1.2 | V |
| $1 /$ | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, | $\mathrm{V}_{1}=5.5 \mathrm{~V}$ or GND |  |  |  | $\pm 5$ | $\mu \mathrm{A}$ |
| 10 | $\mathrm{V}_{C C}=4.5 \mathrm{~V}$, | BIASV $=2.4 \mathrm{~V}$, | $\mathrm{V}_{\mathrm{O}}=0$ | 0.25 |  |  | mA |
| ICC | $\mathrm{V}_{C C}=5.5 \mathrm{~V}$, | $10=0$, | $\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND |  |  | 50 | mA |
| $\mathrm{SICC}^{\ddagger}$ | $\mathrm{V}_{\text {CC }}=3.6 \mathrm{~V}$, | One input at 2.7 V , | Other inputs at $\mathrm{V}_{\mathrm{CC}}$ or GND |  |  | 2.5 | mA |
| $\mathrm{C}_{\mathrm{i}}$ Control pins | $\mathrm{V}_{1}=3 \mathrm{~V}$ or 0 |  |  |  | 3.5 |  | pF |
| $\mathrm{C}_{0}$ (OFF) | $\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}$ or 0 , | Switch off |  |  | 4.5 |  | pF |
|  | $\mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}$, | $\mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}$, | $l_{1}=15 \mathrm{~mA}$ |  | 14 | 20 |  |
| ron |  | $\mathrm{V}_{1}=0$, | $I_{1}=30 \mathrm{~mA}$ |  | 5 | 7 | $\Omega$ |
| ron | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | $\mathrm{V}_{1}=0$, | $\boldsymbol{I}=64 \mathrm{~mA}$ |  | 5 | 7 | $\Omega$ |
|  |  | $\mathrm{V}_{1}=2.4 \mathrm{~V}$, | $\mathrm{I}=15 \mathrm{~mA}$ |  | 10 | 15 |  |

$\dagger$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
$\ddagger$ This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.
§ Measured by the voltage drop between the $A$ and $B$ terminals at the indicated current through the switch. On-state resistance is determined by the lower of the voltages of the two (A or B) terminals.
switching characteristics over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

| PARAMETER | FROM (INPUT) | TO (OUTPUT) | $\begin{gathered} \mathrm{VCC}=5 \mathrm{~V} \\ \pm 0.5 \mathrm{~V} \end{gathered}$ |  | $\mathrm{VCC}=4 \mathrm{~V}$ |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | MIN | MAX | MIN | MAX |  |
| $t_{\text {pd }}{ }^{\text {I }}$ | A or B | B or A |  | 0.25 |  | 0.25 | ns |
| tpZH ${ }^{\text {\# }}$ | $\overline{O N}$ | A or B | 3.1 | 8.1 |  | 9.1 | ns |
| tPZL ${ }^{\text {I }}$ |  |  | 3.6 | 8.6 |  | 9.6 |  |
| tPHZ ${ }^{\text {\# }}$ | $\overline{O N}$ | A or B | 2.7 | 6.1 |  | 5.9 | ns |
| tplz ${ }^{\text {II }}$ |  |  | 3 | 7.3 |  | 6.4 |  |

TThis parameter is characterized but not tested. This propagation delay is due to the RC time constant of the on-state resistance of the switch and the load capacitance.
\#BIASV = GND
IIBIASV $=3 \mathrm{~V}$

## PARAMETER MEASUREMENT INFORMATION



VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES

| TEST | S1 |
| :---: | :---: |
| ${ }^{\text {t pd }}$ | Open |
| tpLz/tpZL $^{\text {tpHz }}$ | 7 V |
| tPHZ $^{\text {tPZH }}$ | Open |



NOTES: A. $C_{L}$ includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{ZO}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement.
E. tplZ and tphz are the same as $t_{\text {dis }}$.
F. $t_{P Z L}$ and $\mathrm{t}_{\mathrm{PZH}}$ are the same as $\mathrm{t}_{\mathrm{en}}$.
G. $\mathrm{t}_{\mathrm{PLH}}$ and $\mathrm{t}_{\mathrm{PHL}}$ are the same as $\mathrm{t}_{\mathrm{pd}}$.

Figure 1. Load CIrcult and Voltage Waveforms

## General Information

## CBT Octals

## CBT Octals With Integrated Diodes

## CBT Widebus ${ }^{\text {TM }}$

Application Note

## Contents

Page
'CBTD3384 10-Bit Bus Switch With Level Shifting ..... 3-3
'CBTS3384 10-Bit Bus Switch ..... 3-7

- 5- $\Omega$ Switch Connection Between Two Ports
- TTL-Compatible Input and Output Levels
- Designed to Be Used in Level-Shifting Applications
- Package Options Include Plastic Small-Outline (DB), Shrink Small-Outline (DW), and Thin Shrink Small-Outline (PW) Packages


## description

The SN74CBTD3384 provides ten bits of high-speed TTL-compatible bus switching with a diode to $\mathrm{V}_{\mathrm{CC}}$. The diode enables the bus switch to be used for level translation between a $5-\mathrm{V}$ system and a $3.3-\mathrm{V}$ system with minimal propagation delay.
The device is organized as two 5-bit bus switches with separate output-enable ( $\overline{\mathrm{OE}}$ ) inputs. When $\overline{\mathrm{OE}}$ is low, the switch is on, and port A is connected to port B . When $\overline{\mathrm{OE}}$ is high, the switch is open and a high-impedance state exists between the two ports.
The SN74CBTD3384 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
FUNCTION TABLE

| 1 $\overline{O E}$ | $2 \overline{\mathrm{OE}}$ | 1B1-1B5 | 2B1-2B5 |
| :---: | :---: | :---: | :---: |
| $L$ | $L$ | $1 A 1-1 A 5$ | $2 A 1-2 A 5$ |
| $L$ | $H$ | $1 A 1-1 A 5$ | $Z$ |
| $H$ | $L$ | $Z$ | $2 A 1-2 A 5$ |
| $H$ | $H$ | $Z$ | $Z$ |

logic diagram

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) $\dagger$

Input voltage range, $\mathrm{V}_{1}$ (see Note 1) ............................................................. -0.5 V to 7 V
Continuous channel current $\ldots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .$.

Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air) (see Note 2): DB package .................... 0.6 W DW package .................. 1.6 W
PW package ..................... 0.7 W

$\dagger$ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. The maximum package power dissipation is calculated using a junction temperature of $150^{\circ} \mathrm{C}$ and a board trace length of 750 mils. For more information, refer to the Package Thermal Considerations application note in the 1994 ABT Advanced BiCMOS Technology Data Book, literature number SCBD002B.
recommended operating conditions

|  |  | MIN | MAX |
| :--- | :--- | ---: | :---: |
| $\mathrm{V}_{\text {CC }}$ | UNIT |  |  |
| $\mathrm{V}_{\text {IH }}$ | High-level control input voltage | 4 | 5.5 |
| $\mathrm{~V}_{\text {IL }}$ | Low-level control input voltage | 2 |  |
| $\mathrm{~T}_{\mathrm{A}}$ | Operating free-air temperature | V |  |

electrical characteristics over recommended operating free－air temperature range（unless otherwise noted）

| PARAMETER |  | TEST CONDITIONS |  |  | MIN | TYPt | MAX | $\begin{gathered} \hline \text { UNIT } \\ \hline \mathrm{V} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {IK }}$ |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ ， | $\mathrm{I}_{1}=-18 \mathrm{~mA}$ |  | －1．2 |  |  |  |
| VOH |  | $\mathrm{V}_{C C}=4.5 \mathrm{~V}$ ， | $\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ |  |  |  |  | V |
|  |  | $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ ， | $V_{1}=V_{C C}$ |  |  |  |  |  |
|  |  | $\mathrm{V}_{C C}=5.5 \mathrm{~V}$ ， | $V_{1}=V_{C C}$ |  |  |  |  |  |
| 11 |  | $\mathrm{V}_{C C}=5.5 \mathrm{~V}$ ， | $\mathrm{V}_{1}=5.5 \mathrm{~V}$ or GND |  |  |  | $\pm 5$ | $\mu \mathrm{A}$ |
| los |  | $\mathrm{V}_{C C}=4.5 \mathrm{~V}$ ， | $\mathrm{V}_{1}(\mathrm{~A})=0$ ， | $\mathrm{V}_{1}(\mathrm{~B})=4.5 \mathrm{~V}$ |  | 250 |  | mA |
| ICC |  | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ ， | $1 \mathrm{O}=0$ ， | $\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND |  |  | 1.5 | $\mu \mathrm{A}$ |
| $\mathrm{DlCC}^{\ddagger}$ | Control pins | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ ， | One input at 3．4 V， | Other inputs at $\mathrm{V}_{\mathrm{CC}}$ or GND |  |  | 2.5 | mA |
| $\mathrm{C}_{\mathrm{i}}$ Control pins |  | $\mathrm{V}_{1}=3 \mathrm{~V}$ or 0 |  |  |  | 3 |  | pF |
| $\mathrm{C}_{\mathrm{io}}$（OFF） |  | $\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}$ or 0 ， | $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{CC}}$ |  |  | 6 |  |  |
| $\mathrm{ron}^{\text {§ }}$ |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | $\mathrm{V}_{1}=0$ ， | $I_{1}=64 \mathrm{~mA}$ |  | 5 | 7 | $\Omega$ |
|  |  | $\mathrm{V}_{1}=0$, | $I_{1}=30 \mathrm{~mA}$ |  | 5 | 7 |  |
|  |  | $\mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}$ ， | $\boldsymbol{I}=15 \mathrm{~mA}$ |  | 10 | 15 |  |

$\dagger$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ．
$\ddagger$ This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND．
$\S$ Measured by the voltage drop between the A and B terminals at the indicated current through the switch．On－state resistance is determined by the lower of the voltages of the two（ $A$ or $B$ ）terminals．
switching characteristics over recommended operating free－air temperature range， $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ （unless otherwise noted）（see Figure 1）

| PARAMETER | FROM （INPUT） | TO （OUTPUT） | MIN MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: |
| $t_{p d}{ }^{\text {IT }}$ | A or B | B or A | 0.25 | ns |
| ten | $\overline{\mathrm{OE}}$ | A or B |  | ns |
| $\mathrm{t}_{\text {dis }}$ | $\overline{\mathrm{OE}}$ | A or B |  | ns |

TThis parameter is characterized but not tested．This propagation delay is based on the RC time constant of the typical on－state resistance of the switch and a load capacitance of 50 pF ．

PARAMETER MEASUREMENT INFORMATION


| TEST | S1 |
| :---: | :---: |
| $\begin{gathered} \mathrm{t}_{\text {pd }} \\ \mathrm{tpLz}^{\prime} \mathrm{tpZL}^{\text {tpHz/tpZH }} \end{gathered}$ | $\begin{aligned} & \text { Open } \\ & 7 \mathrm{~V} \\ & \text { Open } \end{aligned}$ |


VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES
NOTES：A．$C_{L}$ includes probe and jig capacitance．
B．Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control．
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control．
C．All input pulses are supplied by generators having the following characteristics： $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$ ．
D．The outputs are measured one at a time with one transition per measurement．
E．tpLZ and tphZ are the same as $\mathrm{t}_{\text {dis．}}$
F．tPZL and tPZH are the same as ten．
G．tPLH and tPHL are the same as $\mathrm{t}_{\mathrm{pd}}$ ．

Figure 1．Load Circuit and Voltage Waveforms

## - Functionally Equivalent to QS3384

- $5-\Omega$ Switch Connection Between Two Ports
- TTL-Compatible Input and Output Levels
- Package Options Include Plastic Small-Outline (DB), Shrink Small-Outline (DW), and Thin Shrink Small-Outline (PW) Packages


## description

The SN74CBTS3384 provides ten bits of high-speed TTL-compatible bus switching with Schottky diodes on the I/Os to clamp undershoot. The low on-state resistance of the switch allows connections to be made with minimal propagation delay.


The device is organized as two 5 -bit bus switches with separate output-enable ( $\overline{O E}$ ) inputs. When $\overline{O E}$ is low, the switch is on and port A is connected to port B . When $\overline{\mathrm{OE}}$ is high, the switch is open and a high-impedance state exists between the two ports.
The SN74CBTS3384 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
FUNCTION TABLE

| $1 \overline{O E}$ | $2 \overline{O E}$ | $1 B 1-1 B 5$ | $2 B 1-2 B 5$ |
| :---: | :---: | :---: | :---: |
| $L$ | $L$ | $1 A 1-1 A 5$ | $2 A 1-2 A 5$ |
| $L$ | $H$ | $1 A 1-1 A 5$ | $Z$ |
| $H$ | $L$ | $Z$ | $2 A 1-2 A 5$ |
| $H$ | $H$ | $Z$ | $Z$ |

## logic diagram



## absolute maximum ratings over operating free-air temperature range (unless otherwise noted) $\dagger$

|  |  |  |
| :---: | :---: | :---: |
| Input voltage range, $\mathrm{V}_{\text {I }}($ see Note 1$)$. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 3 V to 7 V |  |  |
| Continuous channel current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 mA |  |  |
|  |  |  |
| Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air) (see Note 2): DB package . . . . . . . . . . . . . . . . 0.6 W |  |  |
|  | DW package | 1.6 W |
|  | PW package | 0.7 W |
| Storage temperature range, $\mathrm{T}_{\text {stg }}$ |  | $5^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ |

$\dagger$ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. The maximum package power dissipation is calculated using a junction temperature of $150^{\circ} \mathrm{C}$ and a board trace length of 750 mils. For more information, refer to the Package Thermal Considerations application note in the 1994 ABT Advanced BiCMOS Technology Data Book, literature number SCBD002B.

## recommended operating conditions

|  |  | MIN | MAX |
| :--- | :--- | ---: | :---: |
| $\mathrm{V}_{\mathrm{CC}}$ | UNPDIT |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | High-level control input voltage | 4 | 5.5 |
| $\mathrm{~V}_{\mathrm{IL}}$ | Low-level control input voltage | 2 |  |
| $\mathrm{~T}_{\mathrm{A}}$ | Operating free-air temperature | V |  |

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

| PARAMETER |  | TEST CONDITIONS |  |  | MIN | TYPt | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {IK }}$ |  | $\mathrm{V}_{C C}=4.5 \mathrm{~V}$, | $\boldsymbol{I}=-18 \mathrm{~mA}$ |  |  |  |  | V |
| 1 | IIL | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, | $\mathrm{V}_{1}=5.5 \mathrm{~V}$ or GND |  |  |  | $\pm 5$ | $\mu \mathrm{A}$ |
|  | IIH | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, | $\mathrm{V}_{1}=5.5 \mathrm{~V}$ or GND |  |  |  |  | $\mu \mathrm{A}$ |
| Ios |  | $\mathrm{V}_{C C}=4.5 \mathrm{~V}$, | $\mathrm{V}_{1}(\mathrm{~A})=0$, | $\mathrm{V}_{1(\mathrm{~B})}=4.5 \mathrm{~V}$ |  | 250 |  | mA |
| ICC |  | $\mathrm{V}_{C C}=5.5 \mathrm{~V}$, | $\mathrm{l}=0$, | $\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND |  |  | 3 | $\mu \mathrm{A}$ |
| $\Delta^{\text {l }} \mathrm{CC}^{\ddagger}$ | Control pins | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, | One input at 3.4 V , | Other inputs at $\mathrm{V}_{\mathrm{CC}}$ or GND |  |  | 2.5 | mA |
| $\mathrm{C}_{\mathrm{i}}$ | Control pins | $\mathrm{V}_{1}=3 \mathrm{~V}$ or 0 |  |  |  |  |  | pF |
| $\mathrm{C}_{\mathrm{io}}$ (OFF) |  | $\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}$ or 0 , | $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{CC}}$ |  |  |  |  | pF |
| ron§ |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | $\mathrm{V}_{1}=0$, | I $=64 \mathrm{~mA}$ (optional) |  | 5 | 7 | $\Omega$ |
|  |  | $\mathrm{V}_{1}=0$, | $\boldsymbol{I}=30 \mathrm{~mA}$ |  | 5 | 7 |  |
|  |  | $\mathrm{V}_{1}=2.4 \mathrm{~V}$, | $\boldsymbol{I}=15 \mathrm{~mA}$ |  | 10 | 15 |  |

$\dagger$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
$\ddagger$ This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.
§ Measured by the voltage drop between the $A$ and $B$ terminals at the indicated current through the switch. On-state resistance is determined by the lower of the voltages of the two ( $A$ or $B$ ) terminals.
switching characteristics over recommended operating free-air temperature range, $C_{L}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

| PARAMETER | FROM <br> (INPUT) | TO <br> (OUTPUT) | MIN | MAX |
| :---: | :---: | :---: | :---: | :---: | UNIT 

TThis parameter is characterized but not tested. This propagation delay is based on the RC time constant of the typical on-state resistance of the switch and a load capacitance of 50 pF .

PARAMETER MEASUREMENT INFORMATION


NOTES: A. $C_{L}$ includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement.
E. $t_{P L Z}$ and $\mathrm{tPHZ}^{2}$ are the same as $t_{\text {dis. }}$.
F. tPZL and tPZH are the same as ten.
G. tPLH and tPHL are the same as $t_{p d}$.

Figure 1. Load Circult and Voltage Waveforms

# General Information 

## CBT Octals

## CBT Octals With Integrated Diodes

CBT Widebus ${ }^{\text {TM }}$
Application Note5

Mechanical Data

## Contents

Page
'CBT16209 18-Bit Bus-Exchange Switch ..... 4-3
'CBT16211 24-Bit Bus-Exchange Switch ..... 4-7
'CBT16212 24-Bit Bus-Exchange Switch ..... 4-11
'CBT16213 24-Bit Bus-Exchange Switch ..... 4-15
'CBT16214 3-to-1 Bus-Select Switch ..... 4-19
'CBT16232 Synchronous 16-Bit to 32-Bit FET Multiplexer/Demultiplexer ..... 4-23
0 'CBT16233 16-Bit to 32-Bit FET Multiplexer/Demultiplexer ..... 4-27

## SN54CBT16209, SN74CBT16209

 18-BIT BUS-EXCHANGE SWITCHSCDSO06D - NOVEMBER 1992 - REVISED MAY 1995

- 5- $\Omega$ Switch Connection Between Two Ports
- TTL-Compatible Input and Output Levels
- Package Options Include Plastic Thin Shrink Small-Outline (DGG), 300-mil Shrink Small-Outline (DL), and 380-mil Fine-Pitch Ceramic Flat (WD) Packages


## description

The 'CBT16209 provide 18 bits of high-speed TTL-compatible bus switching or exchanging. The low on-state resistance of the switch allows connections to be made with minimal propagation delay.

The devices operate as an 18-bit bus switch or a 9 -bit bus exchanger, which provides data exchanging between the four signal ports via the data-select (S0-S2) terminals.

The SN54CBT16209 is characterized for operation form $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74CBT16209 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

| S2 | S1 | S0 | A1 | A2 | FUNCTION |
| :---: | :---: | :---: | :---: | :---: | :---: |
| L | L | L | Z | Z | Disconnect |
| L | L | H | B1 | Z | A1 to B1 |
| L | H | L | B2 | Z | A1 to B2 |
| L | H | H | Z | B1 | A2 to B1 |
| H | L | L | Z | B2 | A2 to B2 |
| H | L | H | Z | Z | Disconnect |
| H | H | L | B1 | B2 | A1 to B1, A2 to B2 |
| H | H | H | B2 | B1 | A1 to B2, A2 to B1 |

SN54CBT16209 ... WD PACKAGE SN74CBT16209...DGG OR DL PACKAGE (TOP VIEW)


## logic diagram



## absolute maximum ratings over operating free-air temperature range (unless otherwise noted) $\dagger$

| Supply voltage range, $\mathrm{V}_{\mathrm{CC}}$ | 0.5 V to 7 V |
| :---: | :---: |
| Input voltage range, $\mathrm{V}_{\mathrm{I}}$ (see Note 1) | . 0.5 V to 7 V |
| Continuous channel current | 128 mA |
| Input clamp current, $\mathrm{I}_{\mathrm{K}}\left(\mathrm{V}_{1}<0\right)$ | -50 mA |
| Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=$ | DGG package ................. 0.85 W DL package ....................... 1.2 W |
| Storage temperature range, $\mathrm{T}_{\text {stg }}$ | $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ |

$\dagger$ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. The maximum package power dissipation is calculated using a junction temperature of $150^{\circ} \mathrm{C}$ and a board trace length of 750 mils. For more information, refer to the Package Thermal Considerations application note in the 1994 ABTAdvanced BiCMOS Technology Data Book, literature number SCBD002B.
recommended operating conditions

|  |  | SN54CBT16209 |  | SN74CBT16209 |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | MAX | MIN | MAX |  |
| $V_{\text {CC }}$ | Supply voltage | 4 | 5.5 | 4 | 5.5 | V |
| $\mathrm{V}_{\mathrm{IH}}$ | High-level input voltage | 2 |  | 2 |  | V |
| $\mathrm{V}_{\text {IL }}$ | Low-level input voltage |  | 0.8 |  | 0.8 | V |
| $\mathrm{T}_{\text {A }}$ | Operating free-air temperature | -55 | 125 | -40 | 85 | ${ }^{\circ} \mathrm{C}$ |

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

$\dagger$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
$\ddagger$ This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.
§ Measured by the voltage drop between the $A$ and $B$ terminals at the indicated current through the switch. On-state resistance is determined by the lower of the voltages of the two ( A or B ) terminals.
switching characteristics over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

| PARAMETER | FROM (INPUT) | TO (OUTPUT) | SN54CBT16209 |  |  |  | SN74CBT16209 |  |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{gathered} \mathrm{V}_{\text {CC }}=5 \mathrm{~V} \\ \pm 0.5 \mathrm{~V} \end{gathered}$ |  | $V_{C C}=4 \mathrm{~V}$ |  | $\begin{gathered} \mathrm{VCC}=5 \mathrm{~V} \\ \pm 0.5 \mathrm{~V} \end{gathered}$ |  | $\mathrm{V}_{C C}=4 \mathrm{~V}$ |  |  |
|  |  |  | MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX |  |
| $t_{\text {pd }}{ }^{\text {I }}$ | A or B | B or A |  | 0.8 |  |  |  | 0.25 |  | 0.25 | ns |
| $t_{\text {pd }}$ | S |  | 2 | 13.1 |  | 14 | 2.6 | 10.2 |  | 11.3 |  |
| $t_{\text {en }}$ | S | A or B | 1.7 | 15.3 |  | 16 | 2.7 | 10.6 |  | 11.5 | ns |
| ${ }^{\text {dis }}$ | S | A or B | 1 | 13.2 |  | 14.5 | 1.2 | 11.3 |  | 12.1 | ns |

[^7]
## PARAMETER MEASUREMENT INFORMATION



VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES

| TEST | S1 |
| :---: | :---: |
| $\begin{gathered} \mathrm{t}_{\mathrm{pd}} \\ \mathrm{tPLz}^{\prime / t_{P Z L}} \\ \mathrm{t}_{\mathrm{PHZ}} / \mathrm{tPZH}^{2} \end{gathered}$ | $\begin{gathered} \text { Open } \\ 7 \mathrm{~V} \\ \text { Open } \end{gathered}$ |



VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES

NOTES: A. $C_{L}$ includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR $\leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$, $\mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement.
E. $t_{P L Z}$ and $t_{P H Z}$ are the same as $t_{\text {dis. }}$.
F. tpZL and tPZH are the same as ten.
G. $\mathrm{t}_{\mathrm{PLH}}$ and $\mathrm{t}_{\mathrm{PHL}}$ are the same as $\mathrm{t}_{\mathrm{pd}}$.

Figure 1. Load Circuit and Voltage Waveforms

- 5- $\Omega$ Switch Connection Between Two Ports
- TTL-Compatible Input and Output Levels
- Packaged in Plastic Thin Shrink

Small-Outline (DGG) and 300-mil Shrink Small-Outline (DL) Packages

## description

The SN74CBT16211 provides 24 bits of high-speed TTL-compatible bus switching or exchanging. The low on-state resistance of the switch allows connections to be made with minimal propagation delay.
The device operates as a 12 - or 24 -bit bus exchange switch. When $1 \overline{O E}$ is low, 1 A is connected to 1 B . When $2 \overline{\mathrm{OE}}$ is low, 2 A is connected to 2B.

The SN74CBT16211 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
FUNCTION TABLE

| $1 \overline{0 E}$ | $2 \overline{0} E$ | $1 A, 1 B$ | $2 A, 2 B$ |
| :---: | :---: | :---: | :---: |
| $L$ | $L$ | $1 A=1 B$ | $2 A=2 B$ |
| $L$ | $H$ | $1 A=1 B$ | $Z$ |
| $H$ | $L$ | $Z$ | $2 A=2 B$ |
| $H$ | $H$ | $Z$ | $Z$ |


| DGG OR DL PACKAGE (TOP VIEW) |  |
| :---: | :---: |
|  | $56 \text { ■ } 1 \overline{0}$ |
|  | ${ }_{55}{ }^{1}$ |
|  |  |
|  | 531 B 2 |
|  | 521 B 3 |
|  | $1 \mathrm{B4}$ |
| A6 7 | 1 B 5 |
| GND 8 | GND |
|  | 48 1B6 |
| 10 | 47 187 |
|  | 461 188 |
| 12 | 45189 |
| 13 | 44 1810 |
| 12 | 43 |
| 15 | ${ }_{4} 1$ 1812 |
| 16 | 41 2B1 |
|  | 2B2 |
| 18 | B3 |
| GND 19 | GND |
| 20 | 2B4 |
| 21 | 2B5 |
| 622 | 35 2B6 |
| 23 | $2 \mathrm{B7}$ |
| [24 | ${ }^{33}$ 2B8 |
| A9 25 | 32 2B9 |
| 2A10 26 | 31 2B10 |
| 27 | 30 2B1 |
| 2 A 12 [28 | $29]$ |

## logic diagram


absolute maximum ratings over operating free－air temperature range（unless otherwise noted）$\dagger$


Continuous channel current ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 128 mA

Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$（in still air）（see Note 2）：DGG package $\ldots \ldots \ldots \ldots \ldots \ldots .1 \mathrm{~W}$
DL package ．．．．．．．．．．．．．．．．．．．．．1．4 W

$\dagger$ Stresses beyond those listed under＂absolute maximum ratings＂may cause permanent damage to the device．These are stress ratings only，and functional operation of the device at these or any other conditions beyond those indicated under＂recommended operating conditions＂is not implied．Exposure to absolute－maximum－rated conditions for extended periods may affect device reliability．
NOTES：1．The input and output negative－voltage ratings may be exceeded if the input and output clamp－current ratings are observed．
2．The maximum package power dissipation is calculated using a junction temperature of $150^{\circ} \mathrm{C}$ and a board trace length of 750 mils． For more information，refer to the Package Thermal Considerations application note in the 1994 ABTAdvanced BiCMOS Technology Data Book，literature number SCBD002B．

## recommended operating conditions

|  |  | MIN | MAX |
| :--- | :--- | ---: | :---: |
| $\mathrm{V}_{\text {CC }}$ | Uupply voltage | 4 | 5.5 |
| $\mathrm{~V}_{\text {IH }}$ | High－level control input voltage | 2 |  |
| $\mathrm{~V}_{\text {IL }}$ | Low－level control input voltage | V |  |
| $\mathrm{T}_{\mathrm{A}}$ | Operating free－air temperature | -40 | 85 |

## electrical characteristics over recommended operating free-air temperature range (unless

 otherwise noted)| PARAMETER | TEST CONDITIONS |  |  | MIN | TYPT | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| V IK | $\mathrm{V}_{C C}=4.5 \mathrm{~V}$, | $\mathrm{I}_{1}=-18 \mathrm{~mA}$ |  |  |  | -1.2 | V |
| 11 | $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$, | $\mathrm{V}_{1}=5.5 \mathrm{~V}$ |  |  |  | 10 | $\mu \mathrm{A}$ |
|  | $\mathrm{V}_{C C}=5.5 \mathrm{~V}$, | $\mathrm{V}_{1}=5.5 \mathrm{~V}$ or GND |  |  |  | $\pm 1$ |  |
| $\mathrm{ICC}^{\ddagger}$ | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, | $\mathrm{O}=0$, | $\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND |  |  | 3 | $\mu \mathrm{A}$ |
| $\Delta \mathrm{l}$ C | $\mathrm{V}_{C C}=5.5 \mathrm{~V}$, | One input at 3.4 V, | Other inputs at $\mathrm{V}_{\mathrm{CC}}$ or GND |  |  | 2.5 | mA |
| $\mathrm{C}_{\mathrm{i}}$ Control pins | $\mathrm{V}_{1}=3 \mathrm{~V}$ or 0 |  |  |  | 4 |  | pF |
| $\mathrm{C}_{\mathrm{io}}$ (OFF) | $\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}$ or 0 , | $\overline{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$ |  |  | 6 |  | pF |
| ron§ | $\mathrm{V}_{C C}=4.5 \mathrm{~V}$ | $V_{1}=0$, | $I_{1}=64 \mathrm{~mA}$ |  | 5 | 6 | $\Omega$ |
|  |  | $\mathrm{V}_{1}=2.4 \mathrm{~V}$, | $I_{1}=15 \mathrm{~mA}$ |  |  | 12 |  |

[^8]$\ddagger$ This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.
§ Measured by the voltage drop between the $A$ and $B$ terminals at the indicated current through the switch. On-state resistance is determined by the lower of the voltages of the two ( $A$ or $B$ ) terminals.

## - 5- $\Omega$ Switch Connection Between Two Ports

- TTL-Compatible Input and Output Levels
- Package Options Include Plastic Thin Shrink Small-Outline (DGG) and 300-mil Shrink Small-Outline (DL) Packages


## description

The SN74CBT16212 provides 24 bits of high-speed TTL-compatible bus switching or exchanging. The low on-state resistance of the switch allows connections to be made with minimal propagation delay.
The device operates as a 24-bit bus switch or a 12-bit bus exchanger, which provides data exchanging between the four signal ports via the data-select (SO-S2) terminals.
The SN74CBT16212 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

| S2 | S1 | S0 | A1 | A2 | FUNCTION |
| :---: | :---: | :---: | :---: | :---: | :---: |
| L | L | L | Z | Z | Disconnect |
| L | L | H | B1 | Z | A1 to B1 |
| L | H | L | B2 | Z | A1 to B2 |
| L | H | H | Z | B1 | A2 to B1 |
| H | L | L | Z | B2 | A2 to B2 |
| H | L | H | Z | Z | Disconnect |
| H | H | L | B1 | B2 | A1 to B1, A2 to B2 |
| H | H | H | B2 | B1 | A1 to B2, A2 to B1 |


| DGG OR | OR DL PACK (TOP VIEW) | AGE |
| :---: | :---: | :---: |
|  |  |  |
| SOL 1 | 156 | S1 |
| 1A1 2 | 255 | S2 |
| 1A2 3 | 354 | 1 B 1 |
| 2A1 4 | 453 | 1B2 |
| 2A2 5 | 552 | 2B1 |
| 3 A 10 | 651 | 2B2 |
| 3A2 7 | 750 | 3B1 |
| GND 8 | 849 | ] GND |
| 4A1 9 | 948 | 3B2 |
| 4A2 1 | $10 \quad 47$ | 4B1 |
| 5A1 1 | 1146 | 4B2 |
| 5A2 12 | 1245 | 5B1 |
| 6A1 1 | $13 \quad 44$ | 5B2 |
| 6A2 1 | $14 \quad 43$ | 6B1 |
| 7A1 1 | 1542 | 6B2 |
| 7A2 1 | $16 \quad 41$ | 7B1 |
| $\mathrm{V}_{\text {CC }} 1$ | $17 \quad 40$ | 7B2 |
| 8A1 18 | $18 \quad 39$ | 8B1 |
| GND 19 | 1938 | ] GND |
| 8A2 2 | $20 \quad 37$ | 8B2 |
| 9A1 2 | $21 \quad 36$ | 9B1 |
| 9A2 2 | 2235 | 9B2 |
| 10A1 2 | $23 \quad 34$ | 10B1 |
| 10A2 2 | $24 \quad 33$ | 10B2 |
| 11A1 2 | $25 \quad 32$ | 11B1 |
| 11A2 2 | $26 \quad 31$ | 11B2 |
| 12A1 2 | $27 \quad 30$ | 12B1 |
| 12A2 [28 | $28 \quad 29]$ | 12B2 |


absolute maximum ratings over operating free-air temperature range (unless otherwise noted) $\boldsymbol{\dagger}$

Input voltage range, $\mathrm{V}_{1}$ (see Note 1) ............................................................ -0.5 V to 7 V
Continuous channel current .......................................................................... 128 mA

Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air) (see Note 2): DGG package ................... 1 W
DL package ...................... 1.4 W

$\dagger$ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. The maximum package power dissipation is calculated using a junction temperature of $150^{\circ} \mathrm{C}$ and a board trace length of 750 mils. For more information, refer to the Package Thermal Considerations application note in the 1994 ABT Advanced BiCMOS Technology Data Book, literature number SCBD002B.
recommended operating conditions

|  |  | MIN | MAX |
| :--- | :--- | ---: | :---: |
| $\mathrm{V}_{\mathrm{CC}}$ | UnPply voltage | 4 | 5.5 |
| $\mathrm{~V}_{\text {IH }}$ | High-level input voltage | 2 | V |
| $\mathrm{~V}_{\mathrm{IL}}$ | Low-level input voltage | V |  |
| $\mathrm{T}_{\mathrm{A}}$ | Operating free-air temperature | -40 | 85 |

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

| PARAMETER | TEST CONDITIONS |  |  | MIN TYPt | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{IK}}$ | $\mathrm{V}_{C C}=4.5 \mathrm{~V}$, | $\mathrm{I}=-18 \mathrm{~mA}$ |  |  | -1.2 | V |
| リ | $\mathrm{V}_{\mathrm{CC}}=0$, | $\mathrm{V}_{1}=5.5 \mathrm{~V}$ |  |  | 10 | $\mu \mathrm{A}$ |
|  | $\mathrm{V}_{C C}=5.5 \mathrm{~V}$, | $\mathrm{V}_{1}=5.5 \mathrm{~V}$ or GND |  |  | $\pm 1$ |  |
| ICC | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, | $1 \mathrm{O}=0$, | $\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND |  | 3 | $\mu \mathrm{A}$ |
| $\mathrm{DICC}^{\ddagger}$ | $\mathrm{V}_{C C}=5.5 \mathrm{~V}$, | One input at | Other inputs at $\mathrm{V}_{\mathrm{CC}}$ or GND |  | 2.5 | mA |
| $\mathrm{C}_{\mathrm{i}}$ Control pins | $\mathrm{V}_{1}=3 \mathrm{~V}$ or 0 |  |  | 4 |  | pF |
| $\mathrm{C}_{\mathrm{io}}$ (OFF) | $\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}$ or 0 , | $\mathrm{S} 0, \mathrm{~S} 1$, or S2 = $\mathrm{V}_{\mathrm{CC}}$ |  | 7.5 |  | pF |
| ron§ | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | $V_{1}=0$ | $1 /=64 \mathrm{~mA}$ | 4 | 7 | $\Omega$ |
|  |  |  | $1=30 \mathrm{~mA}$ | 4 | 7 |  |
|  |  | $\mathrm{V}_{1}=2.4 \mathrm{~V}$, | $\boldsymbol{I}=15 \mathrm{~mA}$ | 6 | 12 |  |

$\dagger$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
$\ddagger$ This is the increase in supply current for each input that is at the specified TTL voltage level rather than $\mathrm{V}_{\mathrm{CC}}$ or GND.
§ Measured by the voltage drop between the $A$ and $B$ terminals at the indicated current through the switch. On-state resistance is determined by the lower of the voltages of the two ( A or $B$ ) terminals.
switching characteristics over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

| PARAMETER | FROM (INPUT) | TO (OUTPUT) | $\begin{gathered} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ \pm 0.5 \mathrm{~V} \end{gathered}$ |  | $\mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}$ |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | MIN | MAX | MIN | MAX |  |
| $t_{p d}{ }^{\text {I }}$ | A or B | B or A |  | 0.25 |  | 0.25 | ns |
| tpd | S |  | 2.6 | 10.2 |  | 11.3 |  |
| ten | S | A or B | 2.7 | 10.6 |  | 11.5 | ns |
| $\mathrm{t}_{\text {dis }}$ | S | A or B | 1.2 | 11.3 |  | 12.1 | ns |

[^9]
## PARAMETER MEASUREMENT INFORMATION



VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES

| TEST | S1 |
| :---: | :---: |
| $\mathrm{t}_{\text {pd }}$ | Open |
| tpLz $^{\prime}$ tpZL | 7 V |
| tpHZ $^{\text {tPZZ }}$ | Open |



VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES

NOTES: A. $C_{L}$ includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement.
E. $\mathrm{t}_{\mathrm{PL}} \mathrm{Z}$ and $\mathrm{t}_{\mathrm{P}} \mathrm{ZZ}$ are the same as $\mathrm{t}_{\text {dis }}$.
F. tpZL and tpZH are the same as ten.
G. $\mathrm{tPLH}^{2}$ and $\mathrm{tPHL}^{\text {are }}$ are same as $\mathrm{t}_{\mathrm{pd}}$ -

Figure 1. Load Circuit and Voltage Waveforms

- $5-\Omega$ Switch Connection Between Two Ports
- TTL-Compatible Input and Output Levels
- Package Options Include Plastic Thin Shrink Small-Outline (DGG) and 300-mil Shrink Small-Outline (DL) Packages


## description

The SN74CBT16213 provides 24 bits of high-speed TTL-compatible bus switching or exchanging. The low on-state resistance of the switch allows connections to be made with minimal propagation delay.

The device operates as a 24 -bit bus switch or a 12-bit bus exchanger, which provides data exchanging between the four signal ports via the data-select ( $\mathrm{SO}-\mathrm{S} 2$ ) terminals.
The SN74CBT16213 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

| S2 | S1 | S0 | A1 | A2 | FUNCTION |
| :---: | :---: | :---: | :---: | :---: | :---: |
| L | L | L | Z | Z | Disconnect |
| L | L | H | B1 | Z | A1 to B1 |
| L | H | L | B2 | Z | A1 to B2 |
| L | H | H | Z | B1 | A2 to B1 |
| H | L | L | Z | B2 | A2 to B2 |
| H | L | H | A2 and B2 | Z | A1 to A2 and B2 |
| H | H | L | B1 | B2 | A1 to B1, A2 to B2 |
| H | H | H | B2 | B1 | A1 to B2, A2 to B1 |



## SCDSO26 - MAY 1995

logic diagram


## absolute maximum ratings over operating free-air temperature range (unless otherwise noted) $\dagger$

| Supply voltage | -0.5 V to 7 V |
| :---: | :---: |
| Input voltage range, $\mathrm{V}_{1}$ (see Note 1) | -0.5 V to 7 V |
| Continuous channel current | 128 mA |
| Input clamp current, $\mathrm{I}_{\mathrm{IK}}\left(\mathrm{V}_{1}<0\right)$ | -50 m |
| Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}$ | .. 1.4 W |
| Storage temperature range, $\mathrm{T}_{\text {stg }}$ | ${ }^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ |

$\dagger$ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. The maximum package power dissipation is calculated using a junction temperature of $150^{\circ} \mathrm{C}$ and a board trace length of 750 mils. For more information, reier to the Package Thermal Considerations application note in the 1994 ABT Advanced BiCMOS Technology Data Book, literature number SCBD002B.

## recommended operating conditions

|  |  | MIN | MAX |
| :--- | :--- | ---: | :---: |
| $\mathrm{V}_{\mathrm{CC}}$ | UNPDly voltage | 4 | 5.5 |
| $\mathrm{~V}_{\text {IH }}$ | High-level input voltage | 2 | V |
| $\mathrm{~V}_{\mathrm{IL}}$ | Low-level input voltage | V |  |
| $\mathrm{T}_{\mathrm{A}}$ | Operating free-air temperature | -40 | 8.8 |

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

| PARAMETER |  | TEST CONDITIONS |  |  | MIN | TYP $\dagger$ | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {IK }}$ |  | $V_{C C}=4.5 \mathrm{~V}$, | $Y_{1}=-18 \mathrm{~mA}$ |  |  |  | -1.2 | V |
| 1 |  | $\mathrm{V}_{\mathrm{CC}}=0$, | $\mathrm{V}_{1}=5.5 \mathrm{~V}$ |  |  |  | 10 | $\mu \mathrm{A}$ |
|  |  | $V_{C C}=5.5 \mathrm{~V}$, | $\mathrm{V}_{1}=5.5 \mathrm{~V}$ or GND |  |  |  | $\pm 1$ |  |
| ICC |  | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, | $10=0$, | $\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND |  |  | 3 | $\mu \mathrm{A}$ |
| $\mathrm{SICC}^{\ddagger}$ |  | $\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$, | One input at 3.4 V, Other inputs at $\mathrm{V}_{\mathrm{CC}}$ or GND |  |  |  | 2.5 | mA |
| $\mathrm{C}_{i}$ | Control pins | $\mathrm{V}_{1}=3 \mathrm{~V}$ or 0 |  |  |  | 4 |  | pF |
| $\mathrm{CiO}_{\mathrm{io}}$ (OFF) |  | $\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}$ or 0 , | S0, S1, or S2 = VCC |  |  | 7.5 |  | pF |
| $r_{0 n}{ }^{\text {¢ }}$ | $A$ to $B$ | $V_{C C}=4 \mathrm{~V}$ | $V_{1}=0$ | $y_{1}=30 \mathrm{~mA}$ |  |  |  | $\Omega$ |
|  |  |  |  | $l_{1}=64 \mathrm{~mA}$ |  |  |  |  |
|  |  |  | $\mathrm{V}_{1}=2.4$ | $!=15 \mathrm{~mA}$ |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | $V_{1}=0$ | $\mathrm{I}_{1}=30 \mathrm{~mA}$ |  | 4 | 7 |  |
|  |  |  |  | $1 /=64 \mathrm{~mA}$ |  | 4 | 7 |  |
|  |  |  | $\mathrm{V}=2.4 \mathrm{~V}$, | $Y=15 \mathrm{~mA}$ |  | 6 | 12 |  |
|  | A1 to A2 | $\mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}$ | $V_{1}=0$ | $4=30 \mathrm{~mA}$ |  |  |  | $\Omega$ |
|  |  |  |  | $l_{1}=64 \mathrm{~mA}$ |  |  |  |  |
|  |  |  | $\mathrm{V}_{1}=2.4 \mathrm{~V}$, | $I=15 \mathrm{~mA}$ |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | $V_{1}=0$ | M $=30 \mathrm{~mA}$ |  |  |  |  |
|  |  |  |  | $\boldsymbol{H}=64 \mathrm{~mA}$ |  |  |  |  |
|  |  |  | $\mathrm{V}=2.4 \mathrm{~V}$, | $\mathrm{l}=15 \mathrm{~mA}$ |  |  |  |  |

$\dagger$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
$\ddagger$ This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.
§ Measured by the voltage drop between the $A$ and $B$ terminals at the indicated current through the switch. On-state resistance is determined by the lower of the voltages of the two ( $A$ or $B$ ) terminals.
switching characteristics over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

| PARAMETER | FROM (INPUT) | TO (OUTPUT) | $\begin{gathered} \mathrm{V}_{C C}=5 \mathrm{~V} \\ \pm 0.5 \mathrm{~V} \end{gathered}$ | UNIT |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | MIN MAX |  |
| $t_{p d}{ }^{\text {d }}$ | A or B | B or A | 0.25 | ns |
| ${ }^{\text {tpd }}$ | A1 | A2 |  |  |
|  | S | B or A |  |  |
| ten | S | A or B |  | ns |
| ${ }_{\text {dis }}$ | S | A or B |  | ns |

[^10]
## PARAMETER MEASUREMENT INFORMATION




VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES

| TEST | S1 |
| :---: | :---: |
| tpd $_{\text {pd }}$ | Open |
| tpLZ/tpZL | 7 V |
| tpHZ/tPZH | Open |



VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
NOTES: A. $\mathrm{C}_{\mathrm{L}}$ includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement.
E. $t_{P L Z}$ and $t_{P H Z}$ are the same as $t_{d i s}$.
F. $\mathrm{t}_{\mathrm{PZL}}$ and tPZH are the same as ten.
G. tPLH and tPHL are the same as tpd.

Figure 1. Load Circuit and Voltage Waveforms

- 5- $\Omega$ Switch Connection Between Two Ports
- TTL-Compatible Input and Output Levels
- Package Options Include Plastic Thin Shrink Small-Outline (DGG) and 300-mil Shrink Small-Outline (DL) Packages


## description

The SN74CBT16214 provides 12 bits of highspeed TTL-compatible bus switching between three separate ports. The low on-state resistance of the switch allows connections to be made with minimal propagation delay.
The SN74CBT16214 operates as a 12-bit bus-select switch via the data-select ( SO - S 2 ) terminals.

The SN74CBT16214 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

| S2 | S1 | S0 | A | FUNCTION |
| :---: | :---: | :---: | :---: | :---: |
| L | L | L | Z | Disconnect |
| L | L | H | B1 | A to B1 |
| L | $H$ | L | B2 | A to B2 |
| L | $H$ | $H$ | Z | Disconnect |
| $H$ | L | L | Z | Disconnect |
| $H$ | L | H | B3 | A to B3 |
| H | $H$ | L | B1 | A to B1 |
| $H$ | $H$ | $H$ | B2 | A to B2 |


| dGG OR DL PACKAGE (TOP VIEW) |  |
| :---: | :---: |
|  |  |
|  | 56 |
|  | 55 |
| $1 \mathrm{B3} 3$ | 54 1B1 |
| 2A[4 | ${ }_{53} 1$ 1B2 |
| 2B3 | 52 2B1 |
|  | 51 2B2 |
| $3 \mathrm{B3}{ }^{\text {-7 }}$ | 50 3B1 |
| GND | 49 GND |
| 4 A , 9 | 48 3B2 |
| $4 \mathrm{B3}$ - 10 | 47 4B1 |
| 5A 11 | 46 4B2 |
| $5 \mathrm{B3}$ [12 | 45 5B1 |
| 13 | 44 5B2 |
| 6B3 14 | 43 6B1 |
| 15 | 42 6B2 |
| 7B3 16 | 41 7B1 |
| $\mathrm{V}_{\mathrm{CC}}{ }^{17}$ | 40.7 B 2 |
| 8 A | 39 8B1 |
| GND | 38 GND |
| $8 \mathrm{B3} 20$ | 37 8B2 |
| 21 | 36 9B1 |
| $9 \mathrm{B3}{ }^{22}$ | 35 9B2 |
| 10A 23 | 3410 B 1 |
| 1083 24 | 3310 B 2 |
| 25 | 3211 B 1 |
| 1183 26 | 3111 B 2 |
| 12A 27 | 30.12 B 1 |
| $12 \mathrm{B3}$ [28 | 29] 12 B 2 |

## logic diagram



## absolute maximum ratings over operating free-air temperature range (unless otherwise noted) ${ }^{\boldsymbol{\dagger}}$

Supply voltage range, VCC ..... -0.5 V to 7 V
Input voltage range, $\mathrm{V}_{1}$ (see Note 1) ..... -0.5 V to 7 V
Continuous channel current ..... 128 mA
input ciamp current, $\mathrm{i}_{\mathrm{IK}}\left(\mathrm{V}_{1}<0\right)$ ..... $-50 \mathrm{~mA}$
Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air) (see Note 2): DGG package ..... 1 W
DL package ..... 1.4 W
Storage temperature range, $\mathrm{T}_{\text {stg }}$ ..... $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
$\dagger$ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. The maximum package power dissipation is calculated using a junction temperature of $150^{\circ} \mathrm{C}$ and a board trace length of 750 mils. For more information, refer to the Package Thermal Considerations application note in the 1994 ABT Advanced BiCMOS Technology Data Book, literature number SCBD002B.
recommended operating conditions

|  |  | MIN | MAX |
| :--- | :--- | ---: | :---: |
| $\mathrm{V}_{\mathrm{CC}}$ | UNIT |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | High-level input voltage | 4 | 5.5 |
| $\mathrm{~V}_{\mathrm{IL}}$ | Low-level input voltage | 2 | V |
| $\mathrm{~T}_{\mathrm{A}}$ | Operating free-air temperature | V |  |

## electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

| PARAMETER | TEST CONDITIONS |  |  | MIN TYP\# | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {IK }}$ | $\mathrm{V}_{C C}=4.5 \mathrm{~V}$, | $l_{1}=-18 \mathrm{~mA}$ |  |  | -1.2 | V |
| 11 | $\mathrm{V}_{\mathrm{CC}}=0$, | $\mathrm{V}_{1}=5.5 \mathrm{~V}$ |  |  | 10 | $\mu \mathrm{A}$ |
|  | $\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$, | $\mathrm{V}_{1}=5.5 \mathrm{~V}$ or GND |  |  | $\pm 1$ |  |
| ICC | $\mathrm{V}_{C C}=5.5 \mathrm{~V}$, | $10=0$, | $\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND |  | 3 | $\mu \mathrm{A}$ |
| $\Delta l_{\text {cc }}{ }^{\text {§ }}$ | $\mathrm{V}_{C C}=5.5 \mathrm{~V}$, | One input at 3.4 V, | Other inputs at $\mathrm{V}_{\mathrm{CC}}$ or GND |  | 2.5 | mA |
| $\mathrm{C}_{\mathrm{i}}$ Control pins | $\mathrm{V}_{1}=3 \mathrm{~V}$ or 0 |  |  | 4 |  | pF |
| $\mathrm{CiO}_{\mathrm{io} \text { (OFF) }}$ | $\mathrm{V} \mathrm{O}=3 \mathrm{~V}$ or 0 , | A = Z |  | 7.5 |  | pF |
| ron ${ }^{1}$ | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | $V_{1}=0$, | $I_{1}=64 \mathrm{~mA}$ | 4 | 7 | $\Omega$ |
|  |  |  | $\boldsymbol{I}=30 \mathrm{~mA}$ | 4 | 7 |  |
|  |  | $\mathrm{V}_{1}=2.4 \mathrm{~V}, \quad \quad \mathrm{I}=15 \mathrm{~mA}$ |  | 6 | 12 |  |

[^11]switching characteristics over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

| PARAMETER | FROM (INPUT) | TO (OUTPUT) | $\begin{gathered} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ \pm 0.5 \mathrm{~V} \end{gathered}$ |  | $\mathrm{V}_{\text {cc }}=4 \mathrm{~V}$ |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | MIN | MAX | MIN | MAX |  |
| $t_{\text {pd }}{ }^{\dagger}$ | A or B | B or A |  | 0.25 |  | 0.25 | ns |
| tpd | S |  | 5.5 | 13.9 |  | 15.3 |  |
| ten | S | A or B | 5.1 | 14.5 |  | 16 | ns |
| $\mathrm{t}_{\text {dis }}$ | S | A or B | 3.6 | 11.7 |  | 12.1 | ns |

$\dagger$ This parameter is characterized but not tested. This propagation delay is based on the RC time constant of the typical on-state resistance of the switch and a load capacitance of 50 pF .

PARAMETER MEASUREMENT INFORMATION


Input


VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES

| TEST | S1 |
| :---: | :---: |
| $\mathbf{t}_{\text {pd }}$ | Open |
| tPLz $^{\prime}$ tPZL | 7 V |
| t PHZ $^{\prime} \mathbf{t P Z H}^{2}$ | Open |



VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES

NOTES: A. $C_{L}$ includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{f} \leq 2.5 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement.
E. $\operatorname{tpL}^{2}$ and $\mathrm{t}_{\mathrm{PH}} \mathrm{Z}$ are the same as $\mathrm{t}_{\text {dis }}$.
F. tpZL and tPZH are the same as ten-
G. $\mathrm{t}_{\mathrm{PLH}}$ and $\mathrm{tPHL}^{\text {are }}$ are same as $\mathrm{t}_{\mathrm{pd}}$ -

Figure 1. Load Circuit and Voltage Waveforms

- $5-\Omega$ Switch Connection Between Two Ports
- 0.25-ns Maximum Propagation Delay
- TTL-Compatible Input and Output Levels
- Package Options Include Plastic Thin Shrink Small-Outline (DGG) and 300-mil Shrink Small-Outline (DL) Packages


## description

The SN74CBT16232 is a 16 -bit to 32 -bit synchronous switch used in applications in which two separate data paths must be multiplexed onto, or demultiplexed from, a single path.
Two select inputs (SO and S1) control the data flow. A clock (CLK) and a clock enable (CLKEN) synchronize the device operation. When CLKEN is high, the bus switch remains in the last clocked function.

The SN74CBT16232 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

| S1 | S0 | CLK | CLKEN | FUNCTION |
| :---: | :---: | :---: | :---: | :---: |
| X | X | X | H | Last state |
| L | L | $\uparrow$ | L | Disconnect |
| L | H | $\uparrow$ | L | A to B1 and A to B2 |
| H | L | $\uparrow$ | L | A to B1 or B1 to A |
| H | H | $\uparrow$ | L | A to B2 or B2 to A |



## logic diagram（positive logic）


absolute maximum ratings over operating free－air temperature range（unless otherwise noted）$\dagger$


Continuous channel current ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 128 mA

Maximum power package dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$（in still air）：DGG package $\ldots \ldots \ldots \ldots \ldots \ldots \ldots .1 \mathrm{~W}$
DL package ．．．．．．．．．．．．．．．．．．．．．．．．．． 1.4 W

$\dagger$ Stresses beyond those listed under＂absolute maximum ratings＂may cause permanent damage to the device．These are stress ratings only，and functional operation of the device at these or any other conditions beyond those indicated under＂recommended operating conditions＂is not implied．Exposure to absolute－maximum－rated conditions for extended periods may affect device reliability．
NOTES：1．The input and output negative－voltage ratings may be exceeded if the input and output clamp－current ratings are observed．
2．The maximum package power dissipation is calculated using a junction temperature of $150^{\circ} \mathrm{C}$ and a board trace length of 750 mils． For more information，refer to the Package Thermal Considerations application note in the 1994 ABTAdvanced BiCMOS Technology Data Book，literature number SCBD002B．
recommended operating conditions

|  |  | MIN | NOM |
| :--- | :--- | ---: | :---: |
| $\mathrm{V}_{\mathrm{CC}}$ | Supply voltage | 4 | 5.5 |
| $\mathrm{~V}_{\text {IH }}$ | High－level input voltage | 2 | V |
| $\mathrm{~V}_{\text {IL }}$ | Low－level input voltage |  | V |
| $\mathrm{T}_{\mathrm{A}}$ | Operating free－air temperature | -40 | 0.8 |

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

| PARAMETER |  | TEST CONDITIONS |  |  | MIN | TYP $\dagger$ | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {IK }}$ |  | $V_{C C}=4.5 \mathrm{~V}, \quad \_{1}=-18 \mathrm{~mA}$ |  |  |  |  | -1.2 | V |
| 11 |  | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, | $\mathrm{V}_{1}=5.5 \mathrm{~V}$ or GND |  |  |  | $\pm 5$ | $\mu \mathrm{A}$ |
| ICC |  | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, | $10=0$, | $\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND |  |  | 3 | $\mu \mathrm{A}$ |
| $\Delta_{l C C}{ }^{\ddagger}$ | Control pins | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, | One input a | Other inputs at $\mathrm{V}_{\text {CC }}$ or GND |  |  | 2.5 | mA |
| $\mathrm{C}_{1}$ | Control pins | $\mathrm{V}_{1}=3 \mathrm{~V}$ or 0 |  |  |  | 4.5 |  | pF |
| Ciooff |  | V O $=3 \mathrm{~V}$ or 0 |  |  |  | 4 |  | pF |
| $\mathrm{ran}^{\text {§ }}$ |  | $\mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}$, | $\mathrm{V}_{1}=2.4 \mathrm{~V}$, | $\boldsymbol{I}=15 \mathrm{~mA}$ |  |  |  | $\Omega$ |
|  |  | $\mathrm{V}_{C C}=4.5 \mathrm{~V}$ | $V_{1}=0$, | $\boldsymbol{Y}=64 \mathrm{~mA}$ |  |  |  |  |
|  |  | $V_{1}=0$, | $l_{1}=32 \mathrm{~mA}$ |  |  |  |  |
|  |  | $\mathrm{V}_{1}=2.4 \mathrm{~V}$, | $1 \mathrm{l}=15 \mathrm{~mA}$ |  |  |  |  |

$\dagger$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
$\ddagger$ This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.
§ Measured by the voltage drop between the $A$ and $B$ terminals at the indicated current through the switch. On-state resistance is determined by the lower of the voltages of the two ( A or B ) terminals.
switching characteristics over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

| PARAMETER | FROM <br> (INPUT) | TO <br> (OUTPUT) | MIN $\quad$ TYP | MAX |
| :---: | :---: | :---: | :---: | :---: | UNIT 

TThis parameter is characterized but not tested. This propagation delay is based on the RC time constant of the typical on-state resistance of the switch and a load capacitance of 50 pF .

PARAMETER MEASUREMENT INFORMATION


LOAD CIRCUIT


VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES

| TEST | S1 |
| :---: | :---: |
| $\begin{gathered} \mathrm{t}_{\mathrm{pd}} \\ \mathrm{tpLz}^{\prime} \mathrm{tpZL}^{\prime} \\ \mathrm{t}_{\mathrm{PHZ}} / \mathrm{tpZH}^{2} \end{gathered}$ | Open 7 V Open |



VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES

NOTES：A．$C_{L}$ includes probe and jig capacitance．
B．Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control． Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control．
C．All input pulses are supplied by generators having the following characteristics： $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$ ．
D．The outputs are measured one at a time with one transition per measurement．
E．tPLZ and tPHZ are the same as $t_{\text {dis }}$ ．
F．tPZL and tPZH are the same as ten．
G． $\mathrm{tpLL}^{\text {and }}$ tpHL are the same as $\mathrm{t}_{\mathrm{pd}}$ ．
Figure 1．Load Circuit and Voltage Waveforms

- $5-\Omega$ Switch Connection Between Two Ports
- 0.25-ns Maximum Propagation Delay
- TTL-Compatible Input and Output Levels
- Package Options Include Plastic Thin Shrink Small-Outline (DGG) and 300-mil Shrink Small-Outline (DL) Packages


## description

The SN74CBT16233 is a 16 -bit to 32 -bit switch used in applications in which two separate data paths must be multiplexed onto, or demultiplexed from, a single path. This device can be used for memory interleaving, where two different banks of memory need to be addressed simultaneously. The SN74CBT16233 can be used as two 8-bit to 16 -bit multiplexers or as one 16 -bit to 32 -bit multiplexer.
Two select inputs (SELO and SEL1) control the data flow. When the TEST inputs are asserted, the A port is connected to both the 1 B and the 2 B ports. SELO, SEL1, and the TEST inputs can be driven with a $5-\mathrm{V}$ CMOS, a $5-\mathrm{V}$ TTL, or a low-voltage TTL driver.

The SN74CBT16233 is specified by design not to have through current when switching directions.
The SN74CBT16233 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

FUNCTION TABLE

| SELO, | TEST 0,1 | FUNCTION |
| :---: | :---: | :---: |
| $L$ | $L$ | $A$ to $1 B$ or $1 B$ to $A$ |
| $H$ | $L$ | $A$ to $2 B$ or $2 B$ to $A$ |
| X | $H$ | $A$ to $1 B$ and $A$ to $2 B$ |


| DGG OR DL PACKAGE (TOP VIEW) |  |
| :---: | :---: |
|  |  |
| OA1 1 | 56 1B1 |
| 1B2 ${ }_{2}$ | $55] 2 \mathrm{~B} 1$ |
| $2 \mathrm{B2} \mathrm{Cl}_{3}$ | 54 OA2 |
| OA3 4 | 53 1B3 |
| $1 \mathrm{B4}{ }_{5}$ | 52 [2B3 |
| 2B4 6 | 51 OA4 |
| OA5 ${ }^{7}$ | $50 / 1 \mathrm{B5}$ |
| $1 \mathrm{B6}$ [8 | 49 2B5 |
| $2 \mathrm{B6} \mathrm{Cl}_{9}$ | 48 J0a |
| OA7 10 | 47 1B7 |
| 188 11 | $46{ }^{4} \mathbf{2 B 7}$ |
| $2 \mathrm{B8}{ }^{12}$ | 45 OA8 |
| GND 13 | 44 GND |
| $\mathrm{V}_{\text {CC }} 14$ | 43 V ${ }_{\text {cc }}$ |
| 1A9 15 | $421 \mathrm{B9}$ |
| 1810 16 | 41 2B9 |
| $2 \mathrm{B10} 17$ | 40 1A10 |
| 1A11 18 | 391 1811 |
| 1812 19 | 38 2B11 |
| 2B12 20 | 371 1412 |
| 1A13[21 | 361 1813 |
| 1814 22 | 35 2B13 |
| 2B14 23 | 34 1A14 |
| 1A15 24 | 331815 |
| 1816 25 | ${ }^{32} 2{ }^{2815}$ |
| 2B16[26 | 31 1A16 |
| TESTO[27 | 30 SELO |
| TEST1 28 | 29.3 SEL1 |

## logic diagram (positive logic)


absolute maximum ratings over operating free-air temperature range (unless otherwise noted) $\boldsymbol{\dagger}$

 Continuous channel current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 mA

Maximum power package dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air) (see Note 2): DGG package .......... 1 W
DL package ............ 1.4 W

$\dagger$ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. The maximum package power dissipation is calculated using a junction temperature of $150^{\circ} \mathrm{C}$ and a board trace length of 750 mils.

For more information, refer to the Package Thermal Considerations application note in the 1994 ABT Advanced BiCMOS Technology Data Book, literature number SCBD002B.
recommended operating conditions

|  |  | MIN | NOM |
| :--- | :--- | ---: | :---: |
| $V_{C C}$ | Mupply voltage | 4.75 | 5.25 |
| $\mathrm{~V}_{\text {IH }}$ | High-level control input voltage | 2 |  |
| $\mathrm{~V}_{\mathrm{IL}}$ | Low-level control input voltage |  | V |
| $\mathrm{T}_{\mathrm{A}}$ | Operating free-air temperature | 0 | 0.8 |

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

| PARAMETER | TEST CONDITIONS |  |  | MIN | TYPt | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {IK }}$ | $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$, | $\mathrm{I}=-18 \mathrm{~mA}$ |  |  |  | -1.2 | V |
| 1 | $\mathrm{V}_{\mathrm{CC}}=0$ | $\mathrm{V}_{1}=5.25 \mathrm{~V}$ |  |  |  | 10 | $\mu \mathrm{A}$ |
|  | $\mathrm{V}_{\text {CC }}=5.25 \mathrm{~V}$, | $\mathrm{V}_{1}=5.25 \mathrm{~V}$ or GND |  |  |  | $\pm 1$ | $\mu \mathrm{A}$ |
| ICC | $\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$, | $\mathrm{I}=0$, | $\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND |  |  | 3 | $\mu \mathrm{A}$ |
| $\mathrm{Sl}_{\mathrm{Cl}}{ }^{\ddagger}$ | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, | One input at 3.4 V , | Other inputs at $\mathrm{V}_{\text {CC }}$ or GND |  |  | 2.5 | mA |
| $\mathrm{C}_{\text {l }}$ Control pins | $\mathrm{V}_{1}=3 \mathrm{~V}$ or 0 |  |  |  | 4.5 |  | pF |
| COFF | $\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}$ or 0 |  |  |  | 4 |  | pF |
| $\mathrm{ron}^{\text {§ }}$ | $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$, | $\mathrm{V}_{1}=0$, | $I_{1}=12 \mathrm{~mA}$ |  | 5 | 7 | $\Omega$ |
|  | $\mathrm{V}_{C C}=4.75 \mathrm{~V}$, | $\mathrm{V}_{1}=2.4 \mathrm{~V}$, | $l_{1}=8 \mathrm{~mA}$ |  | 10 | 15 |  |

$\dagger$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
$\ddagger$ This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.
§ Measured by the voltage drop between $A$ and $B$ terminals at the indicated current through the switch. On-state resistance is determined by the lower of the voltages of the two $(A, B)$ terminals.
switching characteristics over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

| PARAMETER | $\begin{aligned} & \text { FROM } \\ & \text { (INPUT) } \end{aligned}$ | TO (OUTPUT) | $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | MIN | TYP† | MAX |  |
| $t_{p d}{ }^{\text {I }}$ | A or B | B or A |  |  | 0.25 | ns |
| $t_{\text {pd }}$ | SELO, SEL1 | A | 1.6 | 3.6 | 5.3 | ns |
| $\mathrm{t}_{\text {en }}$ | TESTO, TEST1 OR SELO, SEL. 1 | B | 1.3 | 3.6 | 5.2 | ns |
| $\mathrm{t}_{\text {dis }}$ |  |  | 0.5 | 3.9 | 5.3 |  |

[^12]
## PARAMETER MEASUREMENT INFORMATION



NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR $\leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement.
E. $t_{P L Z}$ and $t_{P H Z}$ are the same as $t_{\text {dis }}$.
F. tPZL and tPZH are the same as ten.
G. tPLH and tPHL are the same as tpd-

Figure 1. Load Circuit and Voltage Waveforms

# General Information 

## CBT Octals

## CBT Octals With Integrated Diodes

## CBT Widebus ${ }^{\text {TM }}$

## Application Note

5
Mechanical Data


# Texas Instruments Crossbar Switches 

Ramzi Ammar<br>Advanced System Logic - Semiconductor Group

SCDA001A

## IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

Tl assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

## Contents

Page
What Are Texas Instruments Crossbar Switches? ..... 5-7
Bus Switches Provide 5-V to 3-V Translation When 3-V Supply Line Is Not Provided ..... 5-9
Bus Switches Can Be Used to Replace Drivers and Transceivers in Bus Applications ..... 5-9
Bus Switches Convert TTL Logic to Hot-Card Insertion Capability ..... 5-10
Conclusion ..... 5-11
List of Illustrations
Figure Page
1 Output Voltage Versus Supply Voltage ..... 5-7
2 Output Voltage Versus Input Voltage ..... 5-7
3 On-State Resistance Versus Input Voltage ..... 5-8
4 5-V TTL to 3-V TTL Translator System ..... 5-9
5 ACL Direction of Current Flow When $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ ..... 5-10
6 No ABT Current Flow When $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ ..... 5-10
7 Hot-Card Insertion Application ..... 5-11
8 Power-Up High-Impedance State With CBT ..... 5-11

## What Are Texas Instruments Crossbar Switches?

Crossbar switches are high-speed bus-connect devices. Each switch consists of an N-channel MOS transistor driven by a CMOS gate. When enabled, the N-channel transistor gate is pulled to $\mathrm{V}_{\mathrm{CC}}$ and the switch is on. These devices have an on-state resistance of approximately $5 \Omega$ and a propagation delay of 250 ps . They are capable of conducting a current of 64 mA each. The transistor clamps the output at $\approx 1 \mathrm{~V}$ less than the gate potential, regardless of the level at the input pin. This is one of the N -channel transistor characteristics (see Figures 1 and 2). Note the $\approx 1-\mathrm{V}$ difference between the gate $\left(\mathrm{V}_{\mathrm{CC}}\right)$ and the source $\left(\mathrm{V}_{\mathrm{O}}\right)$ at any point on the graph.


Figure 1. Output Voltage Versus Supply Voltage


Figure 2. Output Voltage Versus Input Voltage

The on-state resistance ( $\mathrm{r}_{\mathrm{on}}$ ) increases gradually with $\mathrm{V}_{\mathrm{I}}$ until $\mathrm{V}_{\mathrm{I}}$ approaches $\mathrm{V}_{\mathrm{CC}}-1 \mathrm{~V}$, where $\mathrm{r}_{\text {on }}$ rapidly increases, clamping $\mathrm{V}_{\mathrm{O}}$ at $\mathrm{V}_{\mathrm{CC}}-1 \mathrm{~V}$ (see Figure 3). Also, by the nature of the N -channel transistor design, the input and output terminals are fully isolated when the transistor is off. Leakage and capacitance are to ground and not between input and output, which minimizes feedthrough when the transistor is off.


Figure 3. On-State Resistance Versus Input Voltage

## Bus Switches Provide 5-V to 3-V Translation When 3-V Supply Line Is Not Provided

These devices also can provide bidirectional 5-V to 3-V translation with minimal propagation delay or direction control, using only a $5-\mathrm{V}$ supply line and a diode. Figure 4 illustrates this application. A $4.3-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$ can be created by placing a diode between $\mathrm{V}_{\mathrm{CC}}$ and the switch. This causes gate voltage of 4.3 V due to the diode drop of approximately 0.7 V . This drop, coupled with the gate-to-source drop of 1 V , brings $\mathrm{V}_{\mathrm{O}}$ to a maximum 3.3-V level that can be used to drive a signal in a 3-V environment.
These devices consume very little current ( $\mathrm{I}_{\mathrm{CC}}=3 \mu \mathrm{~A}$ ). This current is not satisfactory for the diode to operate. Using a resistor from the cathode of the diode to GND allows more current from the supply voltage, causing the diode to operate and to clamp at the specified 4.3 V (see Figure 4). The recommended value of the resistor is $1 \mathrm{~K} \Omega$ or less.


Figure 4. 5-V TTL to 3-V TTL Translator System

## Bus Switches Can Be Used to Replace Drivers and Transceivers in Bus Applications

Bus switches introduce near-zero propagation delay. They can replace drivers and transceivers in systems in which signal buffering is not required. They can be used in a multiprocessor system as a fast bus connect, or they can be used as a bus-exchange switch for crossbar systems, ping-pong memory connect, or bus-byte swap. These devices also can replace relays that are used in automated test equipment (ATE) to connect or disconnect load resistors in negligible time with the same low on-state resistance and without relay-reliability problems.

## Bus Switches Convert TTL Logic to Hot-Card Insertion Capability

This application is used mostly in systems that require hot-card insertion or removal of cards without disturbing or loading down the bus. These systems are designed to run continuously and cannot be shut down for any reason, such as telephone switches, manufacturing controls, real-time transaction systems, and airline-reservation networks. These systems/cards use some logic families like ACL, HCMOS, etc., which do not provide isolation from the bus when power is partially removed, causing system error. Also, connectors are designed so that the ground pins are connected first, followed by the signal pins, then $\mathrm{V}_{\mathrm{CC}}$ last. In this condition, the existing logic must ensure that the I/O signals do not disturb or load down the bus. This assurance cannot be achieved using CMOS logic since it contains P -channel transistors that provide an inherent diode between the I/O pins and $\mathrm{V}_{\mathrm{CC}}$. The diode is forward biased when driven above $\mathrm{V}_{\mathrm{CC}}$ (see Figure 5). In a situation where $\mathrm{V}_{\mathrm{CC}}$ is disconnected, these diodes are capable of pulling the system bus to approximately one diode drop above ground, leaving the bus disturbed.


Figure 5. ACL Direction of Current Flow When $\mathbf{V}_{\mathrm{CC}}=0 \mathrm{~V}$
Another issue to consider is that, when $\mathrm{V}_{\mathrm{CC}}$ is ramping but still below the device-operating voltage, the logic should ensure that the outputs are in the high-impedance state and that the bus is totally isolated until the card is ready for operation. Finally, the capacitance of the card must be seen by the system bus as low as possible so that when the card is inserted and the capacitance is charged up, disturbance or bus error does not occur.
There are two solutions to this problem; one is to use Texas Instruments BiCMOS technology (BCT) or advanced BiCMOS technology (ABT) families, since both ensure the input and output to be off when $\mathrm{V}_{\mathrm{CC}}$ is removed due to the absence of the clamping diodes to $\mathrm{V}_{\mathrm{CC}}$ (see Figure 6). They also provide an active circuit that ensures the output to be in the high-impedance state during part of the $\mathrm{V}_{\mathrm{CC}}$ power up or power down.


Figure 6. No ABT Current Flow When $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$

The second solution is to use the Texas Instruments CBT family. This can be done by placing the switch between the card logic and the connector to serve as an isolator when power is removed. The switch uses an $n$ channel that prevents the current from flowing into the switch when powered down (see Figure 7). One device in particular, the SN74CBT6800, is designed specifically for hot-card insertion. It has a built-in channel pullup tied to a bias voltage (BIASV) that is provided to ensure power up with the buses not connected. Other devices can be used in the same manner, however, to ensure the high-impedance state during power up or power down. The enable pins of the switch should be tied to $\mathrm{V}_{\mathrm{CC}}$ through a pullup resistor. The minimum value of the resistor is determined by the current-sinking capability of the driver (see Figure 8).


Figure 7. Hot-Card Insertion Application

$\dagger_{I_{\mathrm{OL}}}>\mathrm{I}_{\mathrm{R}}$, so the control signal can override the pullup resistor.
Figure 8. Power-Up High-Impedance State With CBT

## Conclusion

Texas Instruments crossbar switches can be used in several applications. Although they are simple N-channel transistors, they are capable of providing several important bus functions, such as hot-card insertion, near-zero-delay communication, $5-\mathrm{V}$ to $3-\mathrm{V}$ translation, and memory management in multiprocessor environments.

## General Information

CBT Octals

## 2

CBT Octals With Integrated Diodes
3
CBT Widebus ${ }^{\text {TM }}$
Application Note

## 5

Mechanical Data

## Contents

Page
Ordering Instructions ..... 6-3
Mechanical Data ..... 6-5
D (R-PDSO-G**) ..... 6-5
DB (R-PDSO-G**) ..... 6-6
DGG (R-PDSO-G**) ..... 6-7
DL (R-PDSO-G**) ..... 6-8
DW (R-PDSO-G**) ..... 6-9
JT (R-GDIP-T**) ..... 6-10
PW (R-PDSO-G**) ..... 6-11
W (R-GDFP-F24) ..... 6-12
WD (R-GDFP-F**) ..... 6-13

Electrical characteristics presented in this data book, unless otherwise noted, apply for the circuit type(s) listed in the page heading regardless of package. The availability of a circuit function in a particular package is denoted by an alphabetical reference above the pin-connection diagram(s). These alphabetical references refer to mechanical outline drawings shown in this section.
Factory orders for circuits described in this data book should include a three-part type number as explained in the following example.


Valid for surface-mount packages only. All orders for tape and reel must be for whole reels.

## MUST CONTAIN ONE TO TWO LETTERS

LE = Left-embossed tape and reel (required for DB and PW packages)
$R=$ Standard tape and reel (required for DGG; optional for D, DW, and DL packages)


| PIM | PINS ** | 8 | 14 |
| :---: | :---: | :---: | :---: |
| A MAX | 0.197 <br> $(5,00)$ | 0.344 <br> $(8,75)$ | 0.394 <br> $(10,00)$ |
| A MIN | 0.189 <br> $(4,80)$ | 0.337 <br> $(8,55)$ | 0.386 <br> $(9,80)$ |



NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$.
D. Four center pins are connected to die mount pad.
E. Falls within JEDEC MS-012


| PIM PINS $^{* *}$ | 14 | 16 | 20 | 24 | 28 | 30 | 38 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A MAX | 6,50 | 6,50 | 7,50 | 8,50 | 10,50 | 10,50 | 12,90 |
| A MIN | 5,90 | 5,90 | 6,90 | 7,90 | 9,90 | 9,90 | 12,30 |

4040065/B10/94

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15 .
D. Falls within JEDEC MO-150


NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.

DL (R-PDSO-G**)


NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$.


NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$.
D. Falls within JEDEC MS-013

JT (R-GDIP-T**)

## CERAMIC DUAL-IN-LINE PACKAGE

24 PIN SHOWN


NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
E. Falls within MIL-STD-1835 GDIP-T24 and GDIP-T28 and JEDEC MO-058AA and MO-058AB

PW (R-PDSO-G**)
14 PIN SHOWN


| PIMS ** | 8 | 14 | 16 | 20 | 24 | 28 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A MAX | 3,30 | 5,30 | 5,30 | 6,80 | 8,10 | 10,00 |
| A MIN | 2,90 | 4,90 | 4,90 | 6,40 | 7,70 | 9,60 |

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.


4040180-5/B 10/94
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Falls within MIL-STD-1835 GDFP2-F24 and JEDEC MO-070AD
E. Index point is provided on cap for terminal identification only.


NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for pin identification only.
E. Falls within MIL-STD-1835: GDFP1-F48 and JEDEC MO-146AA

GDFP1-F56 and JEDEC MO-146AB

## TI Worldwide Sales and Representative Offices

AUSTRALIA / NEW ZEALAND: Texas Instruments Australia Ltd.: Sydney [61] 2-910-3100, Fax 2-805-1186; Melbourne 3-696-1211, Fax 3-696-4446. BELGIUM: Texas Instruments Belgium S.A.IN.V.: Brussels [32] (02) 726-7580, Fax (02) 7267276.
BRAZIL: Texas Instrumentos Electronicos do Brasil Ltda.: Sao Paulo [55] 11-535-5133.
CANADA: Texas Instruments Canada Lid.: Mentreal (514) 335-0392; Ottawa (613) 726-3201; Toronto (416) 884-9181.
DENMARK: Texas Instruments A/S: Ballerup [45] (44) 687400.
FINLAND: Texas Instruments/OY: Espoo [358] (0) 43542033 ,
Fax (0) 467323.
FRANCE: Texas Instruments France: Vellizy-Villacoublay Cedex [33] (1) 30701001 , Fax (1) 30701054.
GERMANY: Texas Instruments Deutschland GmbH.: Freising
[49] (08161) 80-0, Fax (08161) 8045 16; Hannover (0511) 904960 , Fax (0511) 6490 331; Ostilldern (0711) 34030 , Fax (0711) 3403257. HONG KONG: Texas Instruments Hong Kong Ltd.: Kowioon [852] 29567288, Fax 2965-2200.
HUNGARY: Texas Instruments Representation: Budapest [36] (1) 2698310, Fax (1) 2671357.
IRELAND: Texas Instruments Ireland Ltd.: Dublin [353] (01) 4755233 , Fax (01) 4781463.
ITALY: Texas Instruments Italia S.p.A.: Agrate Brianza [39] (039) 68 42.1, Fax (039) 68 42.912; Rome (06) 6572651.
JAPAN: Texas Instruments Japan Ltd.: Tokyo [81] 03-769-8700, Fax 03-3457-6777; Osaka 06-204-1881, Fax 06-204-1895; Nagoya 052-5838691, Fax 052-583-8696; Ishikawa 0762-23-5471, Fax 0762-23-1583; Nagano 0263-33-1060, Fax 0263-35-1025; Kanagawa 045-338-1220, Fax 045-338-1255; Kyoto 075-341-7713, Fax 075-341-7724; Saltama 0485-222440,
Fax 0425-23-5787; Oita 0977-73-1557, Fax 0977-73-1583.
KOREA: Texas Instruments Korea Ltd.: Seoul [82] 2-551-2800,
Fax 2-551-2828.
MALAYSIA: Texas Instruments Malaysia Sdn Bhd: Kuala Lumpur [60] 3-208-6001, Fax 3-230-6605.
MEXICO: Texas Instruments de Mexico S.A. de C.V.: Colonia del Valle [52] 5-639-9740.
NORWAY: Texas Instruments Norge A/S: Oslo [47] (02) 2647570.
MAINLAND CHINA: Texas Instruments China inc.: Beiling [86] 1-500-2255, Ext. 3750, Fax 1-500-2705.
PHILIPPINES: Texas Instruments Asla Ltd.: Metro Manila [63] 2-817-6031, Fax 2-817-6096.
PORTUGAL: Texas Instruments Equipamento Electronico (Portugal)
LDA.: Maia [351] (2) 9481003 , Fax (2) 9481929.
SINGAPORE (\& INDIA, INDONESIA, THAILAND): Texas Instruments
Singapore (PTE) Ltd.: Singapore [65] 390-7100, Fax 390-7062.
SPAIN: Texas Instruments España S.A.: Madrid [34] (1) 3728051 , Fax (1) 37282 66; Barcelona (3) 3179180.
SWEDEN: Texas Instruments international Trade Corporation
(Sverigefilialen): Kista [46] (08) 75258 00, Fax (08) 7519715.
SWITZERLAND: Texas Instruments Switzerland AG: Dietikon
[41] 886-2-3771450.
TAIWAN: Texas Instruments Taiwan Limited: Taipel [886] (2) 378-6800, Fax 2-377-2718.
UNITED KINGDOM: Texas Instruments Ltd.: Northampton [44] (0234) 270 111, Fax (0234) 223459.

UNITED STATES: Texas Instruments incorporated: ALABAMA: Huntsville (205) 430-0114; ARIZONA: Phoenix (602) 224-7800; CALIFORNIA: Irvine (714) 660-1200; San Diego (619) 278-9600; San Jose (408) 894-9000; Woodland Hills (818) 704-8100; COLORADO: Denver (303) 488-9300; CONNECTICUT: Wallingiord (203) 265-3807; FLORIDA: Orlando (407) 667-5300; Fort Lauderdale (305) 425-7820; Tampa (813) 882-0017; GEORGiÁ: Âtianta (404) 662-7967; ILLINOIS: Arlington Heights (708) 640-2925; INDIANA: Indlanapolis (317) 573-6400; KANSAS: Kansas Clity (913) 451-4511; MARYLAND: Columbla (410) 312-7900;
MASSACHUSETTS: Boston (617) 895-9100; MICHIGAN: Detroit (313) 5531500; MINNESOTA: Minneapolis (612) 828-9300; NEW JERSEY: Edison (908) 906-0033; NEW MEXICO: Albuquerque (505) 345-2555; NEW YORK: Poughkeepsie (914) 897-2900; Long Island (516) 454-6601; Rochester (716) 385-6770; NORTH CAROLINA: Charlotte (704) 522-5487; Raleigh (919) 876-2725; OHIO: Cleveland (216) 765-7258; Dayton (513) 427-6200; OREGON: Portland (503) 643-6758; PENNSYLVANIA: Philadelphia (215) 825-9500; PUERTO RICO: Hato Rey (809) 753-8700; TEXAS: Austin (512) 250-6769; Dallas (214) 917-1264; Houston (713) 778-6592; WISCONSIN: Milwaukee (414) 798-1001.

North American Authorized Distributors
COMMERCIAL

| Almac / Arrow | $800-426-1410 / 800-452-9185$ Oregon only |
| :--- | :--- |
| Anthem Electronics | $800-826-8436$ |
| Arrow/ Schweber | $800-777-2776$ |
| Future Electronics (Canada) | $800-388-8731$ |
| Hamilton Hallmark | $800-332-8638$ |
| Marshall Industries | $800-522-0084$ or www.marshall.com |
| Wyle | $800-414-4144$ |
| OBSOLETE PRODUCTS |  |
| Rochester Electronics | $508-462-9332$ |
| MILITARY |  |
| Alliance Electronics Inc | $800-608-9494$ |
| Future Electronics (Canada) | $800-388-8731$ |
| Hamilton Hallmark | $800-332-8638$ |
| Zeus, An Arrow Company | $800-524-4735$ |
| CATALOG | $800-433-5700$ |
| Allied Electronics | $800-777-2776$ |
| Arrow Advantage | $800-367-3573$ |

For Distributors outside North America, contact your local Sales Office.
A040395

Important Notice: Texas Instruments (TI) reserves the right to make changes to or to discontinue any product or service identified in this publication without notice. TI advises its customers to obtain the latest version of the relevant information to verify, before placing orders, that the information being relied upon is current.
Please be advised that TI warrants its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. TI specifications applicable at the time of sale in accordance with Ti's standard warranty
assumes no liability for applications assistance, software performance, or third-party assumes no liability for applications assistance, software performance, or third-party
product information, or for infringement of patents or services described in this publication product information, or for infringement of patents or services described in this
TI assumes no responsibility for customers' applications or product designs.
© 1995 Texas Instruments Incorporated
Printed in the USA


[^0]:    $\ddagger$ Smallest CBT package

[^1]:    *Current out of a terminal is given as a negative value.

[^2]:    $\ddagger$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^3]:    $\ddagger$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^4]:    $\ddagger$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
    § For conditions shown as MIN or MAX use the appropriate values under recommended operating conditions.
    IT This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.
    \# Measured by the voltage drop between the input terminal and the output terminal at the indicated current through the switch. On-state resistance is determined by the lower of the voltages of the two terminals.

[^5]:    $\ddagger$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
    § This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.
    $\uparrow$ Measured by the voltage drop between the input terminal and the output terminal at the indicated current through the switch. On-state resistance is determined by the lower of the voltages of the two terminals.

[^6]:    IThis parameter is characterized but not tested. This propagation delay is based on the RC time constant of the typical on-state resistance of the switch and a load capacitance of 50 pF .

[^7]:    IThis parameter is characterized but not tested. This propagation delay is based on the RC time constant of the typical on-state resistance of the switch and a load capacitance of 50 pF .

[^8]:    $\dagger$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.

[^9]:    TThis parameter is characterized but not tested. This propagation delay is based on the RC time constant of the typical on-state resistance of the switch and a load capacitance of 50 pF .

[^10]:    IThis parameter is characterized but not tested. This propagation delay is based on the RC time constant of the typical on-state resistance of the switch and a load capacitance of 50 pF .

[^11]:    $\ddagger$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
    § This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.
    TMeasured by the voltage drop between the $A$ and $B$ terminals at the indicated current through the switch. On-state resistance is determined by the lower of the voltages of the two ( $A$ or $B$ ) terminals.

[^12]:    $\dagger$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
    IThis parameter is characterized but not tested. This propagation delay is due to the RC time constant of the typical on-state resistance of the switch and a $50-\mathrm{pF}$ load capacitance.

