
PASCAL US~kS GKuUP

Pascal News
NUMtiEK 17

COMMUNICATIONS ABOUT THE PROGRAMMING LANGUAGE PASCAL BY PASCALERS

SE PTI::JVlbEK" 19HO

- "" -

~
u .--o
c.

POLICY: PASCAL NEWS (15-Sep-80)

* Pascal News is the official but informal publication of the User's Group.

* Pascal News contains all we (the editors) know about Pascal; we use it as
the vehicle to answer all inquiries because our physical energy and
resources for answering individual requests are finite. As PUG grows, we
unfortunately succumb to the reality of:

1. Having to insist that people who need to know "about Pascal" join PUG
and read Pascal News - that is why we spend time to produce it!

2. Refusing to return phone calls or answer letters full of questions - we
will pass the questions on to the readership of Pascal News. Please
understand what the collective effect of individual inquiriBshas at the
"concentrators" (our phones and mailboxes). We are trying honestly to say:
"We cannot promise more that we can do."

* Pascal News is produced 3 or 4 times during a year; usually in March, June,
Septemb~and December.

* ALL THE NEWS THAT'S FIT, WE PRINT. Please send material (brevity is a
virtue) for Pascal News single-spaced and camera-ready (use dark ribbon and
18.5 cm lines!) ----

* Remember: ALL LETTERS TO US WILL BE PRINTED UNLESS THEY CONTAIN A REQUEST
TO THE CONTRARY.

* Pascal News is divided into flexible sections:

POLICY - explains the way we do things (ALL-PURPOSE COUPON, etc.)

EDITOR'S CONTRIBUTION - passes along the opinion and point of view of the
editor together with changes in the mechanics of PUG operation, etc.

HERE AND THERE WITH PASCAL - presents news from people, conference
announcements and reports, new books and articles (including reviews),
notices of Pascal in the news, history, membership rosters, etc.

APPLICATIONS - presents and documents source programs written in Pascal
for various algorithms, and software tools for a Pascal environment; news
of significant applications programs. Also critiques regarding
program/algorithm certification, performance, standards conformance,
style, output convenience, anq general design.

ARTICLES - contains formal, submitted contributions (such as Pascal
philosophy, use of Pascal as a teaching tool, use of Pascal at different
computer installations, how to promote Pascal, etc.).

OPEN FORUM FOR MEMBERS - contains short, informal correspondence among
members which is of interest to the readership of Pascal News.

IMPLEMENTATION NOTES - reports news of Pascal implementations: contacts
for maintainers, implementors, distributors, and documentors of various
implementations as well as where to send bug reports. Qualitative and
quantitative descriptions and comparisons of various implementations are
publicized. Sections contain information about Portable Pascals, Pascal
Var iant s, Feature-Implementat ion Notes, and Machine-Dependent
Implementations.

- - - - ALL-PURPOSE COUPON - - - - - - (15-Sep-8o)

Pascal User's Group, c/o Rick Shaw
P.O. Box 888524

Atlanta, Georgia 30338 USA

NOTE

Membership fee and All Purpose Coupon is sent to your Regional
Representative.
SEE THE POLICY SECTION ON TH~ REVERSE SIDE FOR PRICES AND
AL TERNATi:: ADDRESS if you are located in the European or
Australasian Regions.
Membership and Renewal are the same price.
Note the discounts below, for multi-year subscription and renewal.
The U. S. Postal Service does not forward Pascal News.

- - - - - - - - - - - - - - - - - ------ - - - - - - - - -
USA Euro~e Aust.

[] 1 year $10. £6. A$ 8.
Enter me as a new member for:

[] 2 years $18. £10. A$ 15.
[) Renew my subscription for:

[] 3 years $25. £14. A$ 20.

[] Send Back Issue(s)

[) My new address/phone is listed below

[] Enclosed please find a contribution, idea, article or opinion
which is submitted for publication in the Pascal News.

[] Comments: ________ --

NAME

$
ENCLOSED PLEASE FIND: A$

£
CHECK no.

ADDRESS __ __

PHONE

COM PUT ER _______________________ _

DATE

JOINING PASCAL USER'S GROUP?

Membership is open to anyone: Particularly the Pascal user, teacher,
maintainer, implementor, distributor, or just plain fan.

- Please enclose the proper prepayment (check payable to "Pascal User's
Group"); we will not bill you.

- Please do not send us purchase orders; we cannot endure the paper work!
- When you join PUG any time within a year: January 1 to December 31, you

will receive all issues of Pascal News for that year.
- We produce Pascal News as a means toward the end of promoting Pascal and

communicating news of events surrounding Pascal to persons interested in
Pascal. We are simply interested in the news ourselves and prefer to share
it through Pascal News. We desire to minimize paperwork, because we have
other work to do. --

- American Region (North and South America): Send $10.00 per year to the
address on the reverse side. International telephone: 1-404-252-2600.

- European Re1ion (Europe, North Africa, Western and Central Asia): Join
through PUG UK). Send £5.00 per year to: Pascal Users Group, c/o Computer
Studies Group, Mathematics Department, The University, Southampton S09 5NH,
United Kingdom; or pay by direct transfer into our Post Giro account
(28 513 4000); International telephone: 44-703-559122 x700.

- Australasian Region (Australia, East Asia - incl. Japan): PUG(AUS). Send
$AIO.OO per year to: Pascal Users Group, c/o Arthur Sale, Department of
Information Science, University of Tasmania, Box 252C GPO, Hobart,' Tasmania
7001, Australia. International telephone: 61-02-23 0561 x435

PUG(USA) produces Pascal News and keeps all mailing addresses on a common
list. Regional representatives collect memberships from their regions as a
service, and they reprint and distribute Pascal News using a proof copy and
mailing labels sent from PUG(USA). Persons in the Australasian and European
Regions must join through their regional representatives. People in other
places can join through PUG(USA).

RENEWING?

- Please renew early (before November and please write us a line or two to
tell us what you are doing with Pascal, and tell us what you think of PUG
and Pascal News. Renewing for more than one year saves us time.

ORDERING BACK ISSUES OR EXTRA ISSUES?

- Our unusual policy of automatically sending all issues of Pascal News to
anyone who joins within a year means that we eliminate many requests for
backissues ahead of time, and we don't have to reprint important information
in every issue--especially about Pascal implementations!

- Issues 1 •• 8 (January, 1974 - May 1977) are out of print.
(A few copies of issue 8 remain at PUG(UK) available for £2 each.)

- Issues 9 •• 12 (September, 1977 - June, 1978) are available from PUG(USA)
all for $15.00 and from PUG(AUS) all for $A15.00

- Issues 13 •• 16 are available from PUG(UK) all for £10; from PUG(AUS) all
for $A15.00; and from PUG(USA) all for $15.00.

- Extra single copies of new issues (current academic year) are: $5.00 each
- PUG(USA); £3 each - PUG(UK); and $A5.00 each - PUG(AUS).

SENDING MATERIAL FOR PUBLICATION?

Your experiences with Pascal (teaching and otherwise), ideas, letters,
opinions, notices, news, articles, conference announcements, reports,
implementation information, applications, etc. are welcome. Please send
material single-spaced and in camera-ready (use a dark ribbon and lines 18.5
em. wide) form.

- All letters will be printed unless they contain a request to the contrary.

Index
PASCAL NEWS #19 SEPTEMBER, 1980 INDEX

o POLICY, COUPONS, INDEX, ETC.

1 EDITOR'S CONTRIBUTION

3 HERE AND THERE WITH Pascal
3 Tidbits
7 Pascal in the News
9 Gossip
9 Books and Articles
23 Book review: "Pascal with Style: Programming Proverbs"
24 Review of all back issues of Pascal News (1 •• 16) 11
27 Pascal Users Group finances: 1978-1979
28 Computer systems represented by PUG -- a summary

29 APPLICATIONS
29 Corrections to the XREF program (PN#17)
30 Pascal-S Subset Pascal written in Pascal
41 Notes on System Dependent Code in Pascal-S & Pascal-I
44 LISP Lisp Interpreter written in Pascal

48 ARTICLES
49 "An Implementation of NEW and DISPOSE Using

Boundary Tags" Branko J. Gerovac

60 "A Simple Extension to Pascal for Quasi
Parellel Processing" -- Terje Noodt

67 OPEN FORUM FOR MEMBERS

71 PASCAL STANDARDS

85 IMPLEMENTATION NOTES
85 Editorial
85 Validation Suite Reports
112 Checklists

125 ONE PURPOSE COUPON, POLICY

Contributors to this issue (#19) were:

EDITOR
Here & There
Books & Articles
Applications
Standards
Implementation Notes
Administration

Rick Shaw
John Eisenberg
Rich Stevens
Rich Cichelli, Andy Mickel
Jim Miner, Tony Addyman
Bob Dietrich, Greg Marshall
Moe Ford, Kathy Ford, Jennie Sinclair

APPLICATION FOR LICENSE TO USE VALIDATION SUITE FOR PASCAL

Name and address of requestor:
(Company name if requestor is a company)

Phone Number:

Name and address to which information should
be addressed (Write "as above" if the same) --------------

Signature of requestor:

Date:

In making this application, which should be signed by a responsible person in the
case of a company, the requestor agrees that:

a) The Validation Suite is recognized as being the copyrighted, proprietary prop
erty of R. A. Freak and A.H.J. Sale, and

b) The requestor will not distribute or otherwise make available machine-readable
copies of the Validation Suite, modified or unmodified, to any third party
without written permission of the copyright holders.

In return, the copyright holders grant full permission to use the programs and doc
umentation contained in the Validation Suite for the purpose of compiler validation,
acceptance tests, benchmarking, preparation of comparative reports, and similar pur
poses, and to make available the listings of the results of compilation and execution
of the programs to third parties in the course of the above activities. In such doc
uments, reference shall be made to the original copyright notice and its source.

~ Distribution charge: $50.00

~ Make checks payable to ANPA/RI in US dollars drawn on a US bank.
Remittance must accompany application.

Source Code Delivery Medium Specification:
9-track, 800 bpi, NRZI, Odd Parity, 600' Magnetic Tape

() ANSI-Standard

a) Select character code set:
() ASCII () EBCDIC

b) Each logical record is an 80 character card image.
Select block size in logical records per block.

() 40 () 20 () 10

() Special DEC System Alternates:
() RSX-IAS PIP Format·
() DOS-RSTS FLX Format

Office use only

Mail request to:

ANPA/RI
P.O. Box 598
Easton, Pa. 18042
USA
Attn: R.J. Cichelli

Signed ________ --' ___ _
Date

Richard J. Cichelli
On behalf of A~H.J. Sale & R.A. Freak

Editor's Contribution
SO WHATS NEW

Well lots! We have extended the subscriptions of all members
by 6 months. The effect of this change is that we align the
subscription year to the calendar year instead of an academic
year. So now, it should be easier to know when your
subscription expires. Note that our policy of sending all
back issues for the year has not changed. Therefore the year
marked on the labels is the year through which your
subscription is effective. ~~~~~~~~~_~~~ __ ~~~~~~l£ll~~~
expire on December 31.

Also, as you can see -if you have read the new APC, the price
of Pascal News is going up. Sorry. We resisted as long as we
could. But note that we offer a good price break for multiple
year subscriptions. Subscribing for more than one year saves
us a great deal of work. Please, please help us save paper
work! The new prices will go into effect I-January-BO. Until
then, we will accept renewals and subscriptions at the old
price. So if you have not yet renewed, do it now, while the
price is low low low! We also have a new address! (note the
new APC again) You may recognize it as the return address for
issues 17 and lB. The address is simple and does not include
a company name. (yes the box number really does have six
digits and three are B' s) I hope the new address mollifies
those people who worried about vendor bias. By the way, my
employer prov ides no support for Pascal Users Group, in any
way shape or form. Which leads me to the next subject.

HELP -- I'M BEGGING

Pascal Users Group needs its own computer. It has become a
necessity, to be able to maintain our ever increasing data
base, and do all of our record keeping. If your company can
offer any type of a product for our use either as a gift, for
long term use, or at a substantial discount we would like to
hear from you. We are not very ambitious. Our thoughts are to
secure a micro processor, a terminal, a small line printer, a
hard disk, and a set of floppys. Small potatoes! Right? The
system must be in place by December in order for us to be on
time for the next issue. So, please, won't you call right
away. (Jerry Lewis, eat your heart out) I have exausted all
my favors in Atlanta.

CHANGE OF ADDRESS -- A REAL PROBLEM

I just can not believe how many people change there address
and do not inform Pascal News! The expense is phenominal.
Bulk mail is not forward able by the post office. It costs

$.15 to send a change of address card to us, and $1.43 just
in return postage if you do not. That does not include the
postage to get it to you at your new address. This is a
tremendous expense to PUG when 142 people "just forgot".
Please help us get Pascal News to you on time. OK? So if you
suspect we may have your back copies, send us a stamped
self-addressed envelope with a note telling us which issues
you have not recieved and we will give you your copies or a
new set, no questions asked. Simple, right?

THE GOOD STUFF -- WHAT~S IN THIS ISSUE

As usual, we have a gigantic "HERE AND THERE" section this
issue. it is chock full of feedback from the readers. If you
put anything on the "comments" section of the APC or sent
anything to me or John that was not a letter, it ends up
here. So keep up the notes and comments.

I would also like to call your attention to the section on
"BOOKS AND ARTICLES" if you are looking for some side reading
on Pascal there are over 300 citings. Wow! And Rich has
collected together a very complete list of the text books
available on subject of Pascal. If your favorite is not there
please drop us a line on an APC. OK?

Since Andy Mickel has a few spare moments lately, he has
contributed 3 fine tidbits of information. The first is a
thumbnail review of all the back issues of Pascal News
(1 .• 16). Second, he has rolled up the 78-79 finances. And
third, is a summary of all the machines represented by the
PUG membership, derived from the old APCs. Very interesting.

The "APPLICATIONS" section contains Wirth's Pascal-S, the
subset Pascal compiler. It has been around for a while but
many new users have never seen it. We also have included a
LISP interpreter, for those who need the power and
flexibility?! Enjoy.

The "ARTICLES" are really great too. Both show a solid
approach to making a good thing better.

Jim Miner reports on the standards turmoil. The facts are
laid out, and testimony from both sides is presented. You be
the judge. And Let us know what you think.

And finally "IMPLEMENTATION NOTES". Fourty pages of them.
Note IBM's offical entry. 'Nuff said.

Hope you like it.

Here
TTTTTTT

T
T
T
T
T
T !DBITS

and There With Pascal

Peter C. Akwai, IBM Kst. 3787, Postfach 33 09,6000 Frankfurt/M1 l~est
Gennany: "We are willing to assume some of the unassigned Pascal Newsletter
work caused by Andy Hickel's retirement. Let us know what we can do to
help. Pasteup, Selectric composer facilities available, Some
graphics/cartooning, etc." (*79/05/05*)

Hairn Avni, Givat Brenner, Israel 60948: "We are a rather new software group,
very keen Pascalers and eager to have this line of communication with other
Pascal users." (*80/05/09*)

David P. Babcock, 508 First Street, Alamosa, CO 81101: 'TIisappointed to note
address is now DEC. Please try to maintain at least a semhlance of
independence in any case." (*80/01/20*)

John l~. Baxter, 1830 Avenida del Hundo, Apt. 1710, Coronado, CA 92118 is
using Pascal on an Apple at hooe, and also uses "an offspring of PASCAL -_
called NCR language -- in my work at NCR Corp." (*79/12/28*)

Hank Becker, Yourdon - Software Products Group, 1133 Ave. of the Americas,
New York, NY 10036: "He will be distributing a Concurrent Pascal (compiler
is transportable) with P-codes to run on 8080/8085/Z80 and eventually other
[microsl." (*80/02/23*)

Paul J. Beckmann, 1907 Bohland, St. Paul, MN 55116: "PN outstanding!
Tharu,s to Andy and the U of H Pascal Think Tank. Good luck to you, Rick, in
Georgia." (*80/02/23*)

Norman Belssner, 9616 Thunderbird Drive, San Ramon, CA 94583 is interested
in implementations of Pascal on TRS-80. (*80/01/05*)

K.S. ~, 22828 76th Ave. IV. Apt. 1/33, Edmonds, l~A 98020 is using the
NBS Pascal Compiler on a PDP 11/70 to generate code which is executed on a
stand-alone LSI-II for real-time applications. (*80/01/21*)

K. Brauer, Universitaet Onasbrueck, 45 Onasbrueck, Postfach 4469 uses and
teaches Pascal at University, and is very much iterested in getting further
issues of the newsletter. (*80/01/03*)

Frank 11. Brewster, 1 North Vista Ave., Bradford, PA 16701: "If you live up
to Andy's standards, you'll deserve the same huge thanks we owe to him.
Goiod luck." (*80/02/06*)

Frank Bush, Tennessee Tech. Univ., Box 5071, Cookeville, TN 38501 has just
started using UCSD B-6700 Pascal. (*80/05/06*)

R. Bush, P.O. Box F, North Bend, OR 97459: "yeah 'Applications', Validation
Suite et al. Kudos to AM for service ••• is nasty K. Bowles really that bad?"
(*80/01/23*)

Larry H. Buss, 101 South U St., Apt,. 1, Lompoc, CA 93436: "I have a system
running under standard CP/M with 48K.... I would like to examine the latest
Pascal documentation. It seems that there are so many different versions of
Pascal out. Is the standard Pascal from UCSD the best one?" (*80/01/17*)

Robert Caldwell, Scientific/Humanistic Interfaces, 2939 Governor Dr., San
Diego, CA 92122: "Superb job - hang in there!" (*80/01/21*)

Dan Cantley, 3423 Carpenter Rd. Lot 10, Ypsilanti, MI 48197: "Just found the
Pascal News - it's GREAT. Learned Pascal six months ago ••• our Accounting
Department wanted an AIR package - our system didn't have the time or space
- so I wrote the AIR package on our mm micro - stuck it in Accounting
Department. They love the package, and I love PASCAL." (*80/01/20*)

Chip Chapin, 3960 La Jolla Village Dr., La Jolla, CA 92037: "Should have
joined long ago - have worked with UCSD Pascal project for 3 years."
(*80/01/02*)

Les Cline, 1235 Hildwood Ave. 1/361, Sunnyvale, CA 94086: "I know not what
others say, but as for me, give me Pascal, or give me Assembler!!"
(*80/05/06*)

Roger A. Collins, 1653 Olmeda St., Encinitas, CA 92024: "I have found Pascal
News very informative and helpful. Brought up an interpreter (* on a
Perkin-Elmer 8/32 *) but found it unworkable in our environment, am now
looking for a cO!!lpiler." (*80/01/23*)

Stan Crouch, Technicon Medical Information Systems Corp., 3255-1 Scott
Blvd., Santa Clara, CA 95051: "I am doing a study on the feasibility of
converting some on-line programs to Pascal. I need to know whether or not
Pascal programs can be made re- entrant and what is required in the
operating system. Also, if you have any information on ADA capabilities I
would appreciate any input in that area." (*80/04/08*)

Jeff Davis, 1515-J Tivoli Court, Raleigh, NC 27604 belongs to a local Apple
users group that has started a Pascal Special Interest Group '<lith good
response. (*80/02/06*)

Tony DiCenzo, Digital Equipment, MR1-1/M40, Marlboro, MA 01752: "Good luck
Rick - I'm sure this publication will flourish in your capable hands. n
(*80/02/03*)

George B. Diamond, Diamond Aerosol Corporation, R.D. #1, Glen Gardner, NJ
08826: "If we had this kind of effort in other fields we would not be a 3rd
rate power." (*80/01/23*)

John Dickinson, Dept. of Elec. Engr., Univ. of Idaho, Moscow, Idaho 83843 is

running Pascal on an IBM 370/145 and an HPI000 model 40. (*80/04/01*)

M. F. Doore, 1015 E. 10th St., Long Beach, CA 90813 is a Pascal Ivatcher in
Electrical Engineering hoping to be the owner of a Hestern Digitial P
Machine soon. (*80/03/31*)

Donald L. Dunstan, CogLtronics Corpor.ation, 5470 N.T,i]. Innisbrook Place,
Portland, OR 97229: "Cogitronics develops software for microprocessor
development systems. !;urrently we are \wrking with a GenRad/Futuredata 8085
development systm and have generated a Pascal compiler for this system. II
(*80/01/23*)

Hank Feeser, 644B Washington Ave., Ft. Lawton, Seattle, WA 98199 owns an
Apple II with Pascal and would greatly appreciate "any additional
information on the implementation of Pascal on the Apple II". (*80/01/23*)

William A. Freberg, COClputer Sciences Corporation, 2753 Highland Dr., Las
Vegas, NV 89109: "Implementing Pascal 6000 from Zurich on CDC 6400 owned by
Department of Energy at Las Vegas NV (NOS/BE operating system)."
(*80/05/06*)

Edward R. Friedman, CIMS/New York Univ., 251 Mercer Street, New York, NY
10012: "Pascal is curren-tly being used in courses devoted to programming
languages. PROSE is also popular among researchers." Versions in use are
Pascal 6000 Release 3 and Pascal from Sweden. (*80/01/23*)

Stuart H. -Gage, Department of Entomology, Michigan State Univ .. , East
Lansing, MI 48824 is "currently running UCSD Pascal on a Terak 8510/a and a
CRDS MF-211, along >11 th CDC Pascal on a Cyber 750/175. Our applications
deal with delivery of agricultural information using micro-coI!lputer networks
wi th an emphasis on graphics." (*80/01/23*)

Stephen Gerke, 1646 Parkcrest Cir. #301, Reston, VA 22090 says we should
l1 cons ider publishing smaller bu.t mor-e regular PNs. Validation reports are
very helpful." (*80/05/05*)

Pete Gifford, Allegheny College, }Ieadville, PA 16335 is running Pascal on an
IBM 4331. (*79/12/26*)

Paul J. Gillian, P.O. Ilox 2202 C,S" Pullman, HA 99163: "finally got my
computer~stern Digital Pascal micro-Engine) and it'5 great! It
(*80/01/23*)

Thomas Giventer, 127 Linden Ave., Ithaca, NY 14850: '~ou might be interested
to know that the latest version of Ithaca Inter5ysterns' .,..Pascal/Z now runs
under CP/M (instead of K2) and supports real numbers and point.er
variables •••• See Byte, Jan. '80, page 14." (*80/01/23*)

R. Steven Glanville, Silicon Valley Software, Inc., 1531 Sandpiper Ct.,
Sunnyvale, CA 94087 is currently implementing an MC68000 Pascal compiler
(*80/03/04*)

Steven K. Harr, Ohio State University, University Hospitals, 410 W. 10th
Avenue, Columbus, OR 43210: "We are currently in the process of evaluating

PASCAL compilers for use at our installation. We are running VS2 Release
1.7J on an IBM 370 Model 158J wi th 1.5 Mbytes of memory •••• Any literature
you may have concerning PASCAL compilers for IBM 370 computers would be
extremely helpful to us at this point." (*80/01/16*)

Michael 8. Harris, 407 W. Calhoun 1117, Springfield, IL 62702: "I heartily
agree with the PUG direction. I hope to be installing PASCAL on my Z-80
S100 system later this year. The main thing that I would like to see happen
relative to PASCAL would be the establishment of an lilli/AMDAHL 370/3033/470
vendor supported standardized version of the language. Anybody out there
have a Sperry-Univac/Varian V77-600 PASCAL that an individual could afford?"

Sassan Hazeghi, P.O. Ilox 4526, Stanford, CA 94305:"How about setting up a
Pascal Program Library (a la SHARE)?" (*80/04/01*)

Thomas Hickey, 295 Garden Rd., Columbus, OH 43214:"Enjoy Pascal News very
much. Have brought up llrinch-Hansen's Sequential on (*Xerox*) Sigma-9:
limited implementation & very slow!" (*80/04/01*)

Jean Philippe Hilsz, 77 rue Vergniaud, 75013 Paris, France would like ·to
know \mO supplies PASCAL compilers for Interdata 8/32, Interdata 8/16,
Perkin Elmer DS 3220 and 3240. (*80/01/23*)

William T. Hole, M.D., 260 Collingwood, San Francisco, CA 94114 has Pascal/M
and is hoping to "unleash the power of Pascal on my massive behavioral
research observation files, which deal with premature babies in an intensive
care nursery." (*80/04/23*)

Kenneth R. Jacobs, 10112 Ashwood Dr., Kensington, tlaryland 20795 is using
Pascal on a DEC-I0 and Xitan (Z-80) (*79/02/13*)

Steve ~~ Computer Genter, University of Arizona, Tucson, AZ 85721: "1 am
manager of software for the University's Computer Center. He provide PASCAL
for use by any of our custOl'lers (* on a CDC Cyber 175 and a DEC-iO *). So
far, they seem happy with it." (*80/01/21*)

R. L. Jenkins, Hartman Technica, 11612-S15-1st St. S \>I, Calgary, Alberta,
Canada T2P IN3: "Ive are particularly interested in PASCAL for
microprocessors. As an electronics design consultancy we produce -a lot of
microprocessor machine code, and would prefer to leave this uninspiring task
to a compiler." (*80/02/14*)

Mort Jonas,P.O. Box 390874, Miami Beach, FL 33139: "I've been using Pascal
on the Apple II, and would be most interested in seeing how it would do on
the validation suite, though I'm afraid I don't have time to do it myself."
(*80/01/23*)

Berneta ££E., 2206 NE 197th Place #D, Seattle, WA, 98155: "I am a programmer
for Boeing writing my first PASCAL program to update a Iloeingcost
accounting data entry system." (*80/01/20*)

Les Kitchen, Computer Science Center, University of Maryland, College Park,
MIl 20742: "We're using National Bureau of Standards compiler (PDP-ll /Unix),
Naval Undersea Lab compiler and University of Hisconsin compiler (both

o

" -,

I
U
o
c

" :Io
C
rr

Univac 1108,1100/40) for computer vision research and for teaching
programming." (*80/04/03*)

Richard U. Kreutzer, 644 Elizabeth St., Salt Lake City, UT 84102: "I would
like to see updates/corrections to the Pascal validation suite published
regularly. I think what you are doing is great." (*80/01/23*)

Peter Kugel, Fulton Hall, Computer Science Department, Boston Colege,
Chestnut Hill, MA 02167: "I like Pascal News. (This validation issue is
fiendish. Compliment, not insult.) I use Pascal for teaching. Hhy do I
keep hearing so much about Tasmania?" (*80/05/06*)

B. Kumar, 420 Persian Dr., Sunnyvale, CA 94086 would like information on any
Pascal compilers available for PRIME systems. (*80/01/23*)

Karl P. Lacher, 1132 W. Skillman Ave., Roseville, MN 55113: "I am an
undergraduate at the Univ. of Minnesota in CSci. I was told about PASCAL
NEWS by Andy Mickel who taught a SNOBOL short course I attended. PASCAL is
definitely superior to FORTRAN." (*80/05/05*)

Carroll R. Lindholm, P.O. Box 3007, Santa Monica, CA 90403: "Please do not
attempt to push state-of-the-art in print size reduction. My eyes are out
for days after receiving an issue." (*80/01/21*)

Thomas J. Loeb, 2106 E. Park St., Arlington Heights, IL 60004: "We have
formed a small user's group here in ArIngton Heights. The majority of us
are firmly based in BASIC and are finding the transition to Pascal most
iteresting •••• We are unable to find any books that explain how to put the
language to practical application. All the information we have been able to
locate seems to be directed to the classroom or beginning programmers .• "
(*80/04/06*)

Gary Loitz, 575 S. Rengstorff Ave. #157, Mountain View, CA 94040: '~sing

OMSI Pascal V1.2 as the primary implementation language for the
Watkins-Johnson Magnetic Bubble Memory test system." (*80/02/06*)

Robert S. Lucas, 6941 N. Olin Ave., Portland, OR 97203: "Keep up the good
work!!" (*80/05/05*)

James W. Lynch, Computer Services Marketing, Babcock & Hilcox, P.O. Box
1260, Lyn.chburg, VA 24505: "New to PUG; have Pascal available on NOS &
NOS/BE; used by our service bureau customers & limited internal
applications; use here is growing but not widespread; am looking forward to
7600 version." (*80/05/05*)

George A. Martinez, 654 1/2 S. Soto St., Los Angeles, CA 90023: '~eep up the
good work. You guys are just great." (*80/01/05*)

David Paul McCarthy, 1532 Simpson /II, Madison, WI 53713: '~eep up the fine
work." (*80/04/01*)

John J. McCandliss, 12164 Wensley Road, Florissant, MO 63033: "I am very
happy to know that you are continuing the 'Pascal News' in the same fashion
as before." (*80/01/20*)

Fred McClelland, 5319 Northridge Ave., San Diego, CA 92117: "Would it be
possible for you to reprint the first eight issues of Pascal News?? I would
be very interested in purchasing them. (*80/01/21*)

Paul McJones, Xerox Corp., 3333 Coyote Hill Road, Palo Alto, CA 94304: "I
would like to see more on languages derived from Pascal, such as 110dula and
Mesa." (*80/04/03*)

Tony Meadow, P.O. Box 5421, Oxnard, CA 93031: "The PUG Newsletter is one
(*of*) the most enjoyable & readable journals/books/ ••• in the computer
field - and it's not stuffy at all! Keep it up! Some of the features in it
which I find of especial interest is the software exchange and information
on current implementations of PASCAL." (*80/01/03*)

Bert Mendelson, McConnell Hall, Smith College, Northampton, MA 01063: "We
have switched our introductory course to PASCAL, originally using ~!SI
PASCAL and '>ill change to DEC's version on our VAX." (*80/03/31*)

Paul~, 3141 Rhode Island Ave. S" St. Louis Park, MN 55426: "Leaving
a Concurrent Pascal compiler project & finding myself in an assembly
language world has made the benefits of Pascal very clear. I finally have
the OMSI compiler & will send more as we use Pascal in the CAD/CAM world.
My new company is National Computer Sys. CDM Division." (*80/02/14*)

C. W. Misner, Dept of PhYSiCS, Univ. of Maryland, College Park, MD 20742:
"Teaching myself programming after 15 years away from it by writing a
gradebook editor/analyser." (*80/01/04*)

David V. ~, Rt. 7 Box 52A, Chapel Hill, NC 27514: "At N.C.S.U., we run
several Pascals: A.A.E.C., Stony Brook, on 370; sequential & concurrent, on
PDP-II; soon will try Ga. Tech & U. of Hull on a PRIME, and somebody's (?)
on the VAX. There is a movement here to use Pascal in intra courses when a
friendly, informative, cheap compiler is found." (*80/01/04*)

Hugh W. Morgan, 7725 Berkshire Blvd., Powell, TN 37849: "I have recently
purchased Pascal from North Star ••• since this is my first experience with
PASCAL and since I am a computer novice with no experience with machine or
assembly language this has been a real experience for me, or perhaps I
should say ordeal ••• If you have any information, or can refer me to any
published articles which may help me get the terminal options worked out I
would be very grateful to you... Now that PASCAL is running I am very much
like the dog which finally caught the school bus. The dog didn't know what
to do with the bus and I don't know what to do with PASCAL. That's where I
hope the PASCAL NE\o1S and User's Group may help." (*80/01/05*)

Morgan Morrison, Unicorn Systems Company, Suite 402, 3807 Wilshire Blvd.,
Los Angeles, CA 90010: "We are engaged in the implementation of a software
product that is being written in PASCAL. We are interested in CDC Cyber
PASCAL implementations." (*80/02/24*)

Timothy A. Nicholson, 97 Douglass Ave., Atherton, CA 94025: "Will be using
SLAC Pascal on IBM & UCSD Pascal on Apple." (*80/05/05/*)

l
e:
C'
c

Bill Norton, M.H.S. Div., Harnischfeger Corp., 4400 W. National, Milwaukee,
WI 53201: "Keeping the present PUG structure and mission is the best way to
go. Best of luck to Rick Shaw and friends. Can't use Pascal much right
now, but want to stay current." (*80/01/21*)

Thomas J. Oliver, Blue Hills, Dewey, AZ 86327 has a micro and plans to
mainly work on alpha numeric, gray scale, pictorial maps and some LANDSAT
satellite algorithms." (*80/03/20*)

Ross R. W. Parlette, Chemical Systems, United Technologies, P.O. Box 35B,
Sunnyvale, CA 94086: "I went to a I day seminar to introduce Pascal; it was
very helpful. We hope to have the Validation Suite ready on the VAX for DEC
Pascal in Feb. '80. (*80/01/23*)

Jeff Pepper, 5512 Margaretta St. 113, Pittsburgh, PA 15206: "Glad you exist!"
(*80/02/24*)

James G. Peterson, 1446 6th St., Manhattan Beach, CA 90266: "Keep up the
good work! Some form of advertising might be worthwhile, so that more people
would know about PUG. I am writing a large CAD system with PASCAL at TRH
DSSG." (*80/01/21*)

Gregory N. Pippert, 1200 Columbia Ave., Riverside, CA 92507: "I am using
Electro Science Ind. Pascal to drive an ESI Laser system which is used to
trim thick-film potentiometers." (*80/02/14*)

Fred Pospeschil, 3108 Jackson St., Bellevue, NC 68005: "I am looking for
Pascal implementations on Heath H8 computers" (* That's a PDP-8 architecture
*) (*80/04/03*)

Hardy J. Pottinger, EE Dept., Univ. of Missouri, Rolla, MO 65401: '~eep up
the good work! I am using Pascal as a microcomputer syst~ development
language." (* 80/01/23*)

Fred H. Powell, P.O. Box 2543, Staunton, VA 24401: "I am now using Pascal on
a TI 990~Thanks for such a tremendous job with Pascal News."
(*80/01/08*)

Charles A. Poynton, 113 Chaplin Cr, Toronto, Canada M5P lA6: "I anxiously
and eagerly await each issue; keep up the excellent work!" (*80/02/14*)

Robert M. Pritchett, Trans-National Leasing, Inc., Box 7245, Dallas, TX
75209 is looking for Pascal for the IBM Series/1 running the EDX operating
system, or for source code for a Pascal compiler/interpreter on IBM standard
8-inch single-density diskettes, 128 bytes per sector, single or double
sided.

Paul Rabin, Philadelphia Health Mgmt. Corp., 530 Walnut St., 14th Floor,
Philadelphia, PA 19106: "I am interested in using Concurrent Pascal to
implement a real-time dispatch system for the Phila. fire dept. I am
looking for D.G. implementations or help converting another to D.G."
(*80/04/03*)

Armando R. Rodriguez, c/o S.P. Hovda, Armanspeergstrasse 15, 8000 Muenchen

90, West Germany: "Coming soon: I'll have all PUG software tools in diskette
(8 inch, single density, one-sided) to distribute and/or exchange for other
tools." (*80/01/07*)

Bernie Rosman, 864 Watertown St., W. Newton, HA 02165: "lye use Pascal
heavily at Framingham State College and all in-house software at Paramin,
Inc •••• is written in Pascal. Keep up the good work!" (*80/01/21*)

Ira L. Ruben, 2104 Lincoln Dr. East, Ambler, PA 19002: "Have used Pascal to
code a Floyd-Evans production metacompiler, also currently designing and
coding a communications system (Univac 'DCA') in Pascal. The language is
the best I have ever used for implementation except for its lack of data
alignment control and packing control, which is needed "men processing
bit-oriented protocols. PUG is good, but it would be nice if the news came
out at more predictable intervals!" (*80/01/21*)

Hil1iam John Schaller, 4309 28th Ave. S" Minneapolis MN 55406: "I 'lOrk for
Sperry Univac. He are developing a graphics system on a color terminal
(Chromatics). We are using UCSD Pascal on a z80 to accomplish this."
(*80/05/05*)

G. A. Schram, Dr. Neher-Laboratories, P.O. box 421, 2260 AK Leidschendam,
The Netherlands would like to know about the availahlility of a DEC-I0 or
PDP-II Pascal cross-compiler for the M6800 or z-80. (*79/11/07*)

Herbert Schulz, 5820 Oakwood Dr., Lisle, IL 6fJ532: "I've been very excited
about Pascal ever since reading about it in BYTE. Have had UCSD Apple
Pascal since it came out and just got UCSD Pascal for our H-11/A at the
Community College where I teach. Will be teaching Pascal to the faculty
next term. I'd appreciate any help for that task!" (*80/04/01 *)

Ted Shapin, 5110 E. Elsinore Ave, Orange, CA 92669 sends word that Dr.
Donald Knuth and Dr. Luis Trabb Pardo at Stanford University are working on
a typesetting system, to be implemented in Pascal.

Richard Siemborski, Communicatons & Computer Sciences Dept., Exxon Corp_,
Box 153, Florham Park, NJ 07932: "I would like a copy of the listing of ALL
known PASCAL implementations for micro's, mini's, and mainframes."
(*80/02/03*)

Seymour Singer, Bldg. 606/M.S. KIlO, Hughes Aircraft Co, P.O. Box 3310,
Fullerton, CA 92634: "He are offering a 12-week class on PASCAL programming
to Hughes personnel using Grogono's text. We have installed both the SLAC
and HITAC compilers on our twin Amdahl 470 V/8 computers. The response to
this class has been overwhelming! Many students have bought the UCSD system
on the Apple microcomputer." (*80/01/10*)

K R Smith, 1632 Hialeah St., Orlando, FL 32808: "Have just ordered HP /l000
(RTE IVB) Pascal. I'll let you-all know as I start using it." (*80/05/05*)

Jon L. Spear, 1007 S.E. 13th Ave., Minneapolis, }IN 55414: "I am working with
Prof. S. Bruell and G. M. Schneider on a text: "Advanced Programming and
Problem Solving with Pascal" which may be available from Hiley by the fall."
(*80/05/06*)

G
r

>-
1..:
o
C

E. L. Stechmann, ARH272, Control Data Corp., 4201 N. Lexington Ave., St.
Paul, MN 55112: "I enjoy PUG very much: Pascal News is a high point in a
day •••• Question: How can we get the big mainframe manufacturers to accept &
support Pascal to the same extent as FORTRAN & COBOL?" (*80/05/06*)

Andrew Stewart, 11 Woodstock Rd., Mt. Waverley, VIC 3149, Australia:
"Pascal is a marvellous language because it is so simple and Elegant. I
think Pascal News is an excellent means of communication (when it comes!)"
(*80/04/14*)

Frank M. ~, Mathematics Department, Brown University, Providence, RI
02912: "I have only today learned of your invaluable organization."
(*80/03/31*)

Jerry S. Sullivan, Philips Laboratories, 345 Scarborough Road, Briarcliff
Manor, NY 10510: We have made extensive use of the UCSD Pascal System,
written a MODULA compiler in Pascal, (* and *) written a number of micro
operating systems in MODULA." (*80/03/31*)

Anthony J. Sutton, 1135 W. 4th St., Winston-Salem, NC 27101 is lonking for a
Pascal implementation under VM/370 CMS (conversational monitor).
(*80/01/23*)

K. Stephen Tinius, 1016 Halsey Drive, Monterey, CA 93940: "I am a student at
the Naval Postgraduate School here in Monterey •••• PASCAL is taught in
our ••• Introduction to programming course, which follows (usually) intros to
COBOL and FORTRAN. We run UCSD PASCAL on Altos microprocessors •••• For my
thesis, I'm (trying) to implement NPS-Pascal on Intel hardware to run under
CP/M." (*80/01/23*)

Mike Trahan, University Computing Company, 1930 Hi Line Drive, Dallas, TX
75207: '~CC is using PASCAL Release 3.0.0 on a CDC Cyber 175 and CDC 6600
running the NOS/BE v.l.3 - PSR 498 operating system. l~e use PASCAL for
applications programs, utility programs and general programming."
(*80/01/05*)

Transmatic Company, Rt. 2, Box 86, Hamlin, TX 79520 has been moving some
programs from other machines onto Texas Instruments Pascal with great
difficulty because it does not meet the minimum conformance standards.
However, it takes less than two seconds to do a job which takes over three
and a half minutes on the same machine in BASIC. (*80/04/22*)

Frederick John Tydeman, 3901 Northfield Road, Austin, TX 78759: "Finished
my master's in computer science: 'Abstract Machines, Portability, and a
Pascal Compiler'. Defined M-code (mobile code) as an intermediate language
and impleP.lented a portable Pascal compiler using it." (*80/03/31*)

Stan Veit, Veit's Diversified Operating Systems Ltd., 19 W. 34th St., Room
1113, New York, NY 10001: "We are eastern reps for A.C.I. (* Pascal
microengine *) and a Pascal software house." (*80/02/24*)

Ray Vukcevich, 7840 N. 7th St. Ill, Phoenix, AZ 85020 would like to know
where to get Pascal on a single density PerSci 8" disc for an Imsai 8080

with 56K. (*79/12/28*)

Howard White, Jr., 799 Clayton St., San Francisco, CA 94117 would like
information on Pascal 8000 as developed by the Australian Atomic Energy
Commission; he is especially interested in references, bibliographies, and
user feedback. (*80/03/18*)

Jerome P. Wood, 6105 Harris, Raytown, MO 64133 is interested in Pascal
compilers for an IBM S/370 at work. (*80/02/03*)

Stephen Woodbridge, 642 Stearns Ave., Palm Bay, FL 32905: "Please keep up
the great work. 1113 is my 1st issue and I can't get enough of it."
(*79/12/28*)

R. P. Wolff, Ajax Corp., W154 N8105 Elm La., Menomonee Falls, WI, 53051:
"Are any cOl!lpilers available for a 'Microdata Reality or Royale' system?"
(*80/01/23*)

George O. Wright, 700 7th St. SW 635, Washington, DC 20024: ''Please be
friendly to UCSD PASCAL and micro users!" (*80/02/23*)

Earl M. Yavner, 195 Varick Rd., Newton, MA 02168: ''Have just heard that
Hewlett Packard will have PASCAL for HP1000 systems in a few months. Will
send info as I get it." (*80/04/01*)

Dr. Richard Yensen, 2403 Talbot Road, Baltimore, MIl 21216: ''LOVE screen
interactive features of UCSD Pascal. We need an interchange format for
screen control on different CRT terminals." (*80/05/06*)

PPPPPP
P P
P P
PPPPPP
P
P
PASCAL IN THE NEWS

JOBS:

(* Note-these listings are intended primarily
openings for Pascal programmers "out there".
listings, the jobs may well be filled. *)

to show that there are indeed
By the time you see these

Allen-Bradley, 747 Alpha Drive, Highland Heights, OR 44143, wants software
engineers to "apply your software experience - assembly languages, PASCAl,
FORTRAN" on a VAX 11/780, DEC 11/34 or TEKTRONIX Development system.
(*80/04/24*)

Control Data Corporation, 4201 N. Lexington Ave., Arden Hills, liN 55112 is
looking for diagnostic engineers to "utilize both ••• hardware and softare

CI ,... .,

>
u
C
c

aptitudes ••• in maintenance software systems development and PASCAL
applications programming."

Medtronic, Inc. 3055 Old Highway Eight, P.O. Box 1453, Minneapolis, MN 55440
"has a position that recognizes your BSEE, and 6-8 years experience with
PASCAL-based computer simulation ••• " (*80/03/24*)

MTS Systems Corp. P.O. Box 24012, Hinneapolis, MN 55424 is looking for a
software development engineer for products "based upon latest microprocesor
technology. PASCAL and assembly language will be ·used for implementation."
(*80/03/10*)

The New York State Legislature, 250 Broadway - 25th Floor, New York NY 10007
wants a demographer, cartographer, and junior programmers. All applicants
"should have practical computer programming experience in FORTRAN, COBOL, or
PASCAL." (*80/03/10*)

Northern Telecom, P.O. Box 1222, Hinneapolis, MN 55440 is looking for a
senior programmer/ analys t wi th "high-level programming language (PASCAL,
.COBOL, BASIC) and compiler writing." (*80/03/24*)

Texas Instruments, P.O. Box 401628, Dallas, TX 75240, has openings in Dallas
and LewisVille, Texas, to work "with real-time software applications for
mini/micro computer based systemss and on distributed computer architectures
and tmi-processor systems .. " One of the languages: Pascal.

(* Andy Mickel passed on to me the following Want Ad, which appeared in the
March 1980 issue of the Pug Press, published by Maryanne Johnson of
Excelsior, MN 55331. It is offered here, verbatim, without further
comment *)

WANTED - Small PUG stud to breed with the Classiest Bitch in Town. Stud
must be experienced yet gentle, loving, and discreet. Contact Ron or Marlys
Hampe (612)-890-4141

MANUFACTURERS' ADVERTIS~ENTS:

(* A lot of these advertisements appear in several publications; this list
is gleaned from a' "spot check" of several months' worth of magazines and
trade journals. Where a product description is much more detailed than the
information given here, a reference is provided. *)

Associated Computer Industries, Inc. 17751 Sky Park East, Suite G, Irvine,
CA 92714, announced a Pascal Video terminal for use with UCSD Pascal. It
accomodates several international languages character displays by internal
switch changes, with no optional ROM required. They also sell the ACI-90
Pascal Professional Performance Computer, based on the Western Digital
Microengine. Includes the UCSD Pascal operating system, and business
software: General Ledger, Accounts Payable, Accounts Receivable, Payroll,
and Order Entry Inventory.

Hewlett-Packard Data Systems Divison, Dept. 370, 1100 Wolfe Road, Cupertino,
CA 95014 offers Pascal for the HP/1000 computer; it has added double-word
integer, double-precision data types, random access I/O, and external

FORTRAN and assembly language capability.

Intel Corporation of Santa Clara now has Pascal for its Intellec development
systems, as reported in the Intel Preview of February 1980. It "encompasses
the full standard ••• as defined in Pasc~l User Manual and Report by Jensen
and Wirth", and " offers several more extensions to the UCSD Standard."
The blurb also notes, "The UCSD Pascal implementation has become the
industry standard and was the first such implementation of this relatively
new programming language." (* The person who sent Me this noted, in the
margin, "1!! ". I agree. *)

Heta Tech, 8672-1 Via Ma1lorca, La Jolla, CA 92037 advertises Pascal/MT, a
compiler running under CPM in 32K bytes or more. Compiles a subset of
Pascal into ROMabie 8080/Z80 code. Object code cos ts $100, source code
costs you OEMs $5000.

North Star, 1440 Fourth St., Berkeley, CA 94710, advertises Pascal for its
Horizon system.

Oregon Software, 2340 S.W. Canyon Road, Portland, Oregon 92701 announced
OMSI Pascal V1.2 with symbolic debugger and profiler, for any RSTS/E, RT-11,
RSX-11, or lAS operating system. (* Computerworld 80/01/28*)

Rational Data Systems, 245 W. 55th St., New York, NY 10019 has Pascal for
Data General computers, and also puts out a small Pascal Newsletter. (*
And, in my opinion, it looks very nice! *)

Renaissance Systems, Inc., Suite H, 11760 Sorrento Valley Rd., San Diego, CA
92121 offers Proff and Forml, word processing support programs for
formatting and printing text files and aiding in document generation.
Written in UCSD Pascal, the combination costs $500. Documentation costs
$25. (* Computerworld 80/01/14 p. 50 *)

SofTech Hicrosystems, 9494 Black Mountain Road, San Diego, CA 92126, offers
UCSD Pascal "with full documentation and support."

Valley Software Inc., 390-6400 Roberts Street, Burnaby, B.C. Canada VSG 4G2
is a systems/design, programming and consulting service offering Pascal
compilers for DEC and Data General.

NEWSLETTERS & ARTICLES:

Brown University Computer Center has arranged to lease a new PASCAL compiler
developed at the University of Waterloo; it is the PASCAL described in the
British Standards Institute DPS/14/3 Working Draft/3 ••• it offers extended
I/O capabilities to allow convenient acces to CMS files. (* March 1980 *)

The Institue for Information Systems, Hail Code C-021, University of
California at San Diego, La Jolla, CA 92093 is publishing newsletters
describing the UCSD Pascal System.

Mr. Jim McCord sends a "UCSD Pascal Hobby Newsletter 111." (* Sorry, I have
no address on this; could someone out there please provide it? *)

The University of Michigan Computing Center presented a short course on
Pascal this April. In the blurb, the newsletter states that ••• ''Pascal
offers significant advantages over other languages for general purpose
programming." (*80/03/19*)

(* Ah-ha! Here's the article that answers just about all of the "can I get a
version of Pascal for my [fill- in-the-blank] microcomputer?" questions. *)

Mini-Micro Systems April 1980 Issue has a lengthy article (pp. 89-110)
entitled "High-level languages for microcomputers", by Mokurai Cherlin.
Along with the article is a table of microcomputer high-level language
suppliers; there are over 40 suppliers of Pascal for fifteen different
chips.

The Northwestern University newsletter announced the arrival of the Pascal
Release 3 compiler for the Cyber, with compiler options for selecting
run-time tests and post-mortem dumps; and defining file buffer and central
memory sizes. (*April 1980*)

The University of Southern California is forming a Users Group for PASCAL
and ALGOL users. (*Feburary 1980*)

GGGGG
G G
G
G GGG
G G
G G

GGGGG OSSIP

Commodore displayed a version of Pascal for their PET personal computer at
Nee. The compiler was developed in Great Britain.

While at Nee, I heard a rumor that someone is developing a version of Pascal
for the Atari 800 personal computer.

I have seen an advert [in Japanese, unfortunately, so I can't give details]
for UCSll Pascal for the NEe PC-8000 personal computer, which has colour
graphics. The PC-8000 has been on the market in Japan for some months now,
and it appears they may be marketing in the U.S. by year's end.

There was a session on Pascal at Nee, according to one of the attendees, it
was fairly interesting. He said Ken Bowles spent some of his speaking time
trying to defend his position re UCSD Pascal and Softech. Those who are
interested in this subject may wish to take a look at past issues of
INFOWORLD. Adam Osborne recently wrote a column which seems to address the
issue quite objectively and unemotionally. (* NO, I am NOT going to say
what I think of the whole thing. Mom always told me not to discuss religion

and politics. *)

The Canadian Information Processing Society held their "Session '80" in
Victoria, British Columbia in early May. A good time was had by all. While
working the booth for Apple, I noticed that most of the people from
universities had an interest in Pascal or were using it in their classes.
The business community was aware of Pascal, more so than they may have been
in the past, but didn't seem to be as familiar with its capabilities and
wide usage. (* Unabashed plug: Victoria is a very beautiful city, and all
the people I met were very friendly. It was great. *)

Rick Shaw, Edito~

Pascal News

Digital Equipment co~po~ation

Atlanta, Geo~gia

IIr. Shaw:

Enclosed is a copy of "A Pascal Bibliog~aphy

6 August, 1980

(June 1980) If.

Although it excludes ~efe~ences to a~ticles on Pascal appea~ing

in magazines such as BYTE dnd Datamation, it may be of some

inte~est to you~ !'eade!'s. (* See Page 12 -ed. *)

If anyone wishes to info~m me of erro!'s o~ omitted articles, I

would be g~ateful to hea~ from him.

Respectfull y,

Department of Computer Science

North Carolina state university

Raleigh, North Carolina 27650

CD

BOOKS ABOUT PASCAL

(* This is a complete listing of all known books aoout Pasc"l *)

Alagic, S. and 14. S. Arbib, The Design of Well-Structured and
Corre,-,t Programs, Springer-Verlag, 1978, 292 pag~ST2. 8cr:-

Bowles, K. L., Hicrocomputer Problem Solving Using Pascal:.,
Springer-Verlag, 1977, 563 pages, $9.80.

Bowles, K. L., 'gegtnner's Guil'le for the UCSD Pasc.::lt System,
Books, 198~~95~

Byte

Brinch-Hansen, P.,
Prentice-Hall,

The Architecture
1977, S22.00.

of Concurrent Programs,

Coleman, D., A Structured Programming Approach to Data, HacMillan
Press, London, 1978, 222 pages.

Conway, R. W., Gries, D. and E. C.' Zimmerman, A Primer on Pascal,
Winthrop Publisher.s, 1976, 433 pages.

Conway, R., Archer, ,J, anC! R. Conway, programming for Poets: I\.
Gentle Introduction Using Pascal, Wint"hr.op Publishers;-r979-;
352 pages, $11.95.

Findlay, B. and D. Watt, Pascal: An
Programming, Computer Science
International), 1978.

Introduction to 11ethod i,-,al
Press TU~dition by Pitman

Grogono, P., programming in Pascal, Addison-TJ.lesley,
pages, $11. 50.

359

Hartmann, A. C., A Concurrent Pascal Compiler for Ilinicomputers,
Springer-Verlag Lecture Notes in Computer-Science, No. 50,
1977, $8.40 •

. Jensen, K. and N. lVirth, Pascal User Manual and Report,
Springer-Verlag Lecture Notes in Computer Science, No: 18,
2nd Edition, 1975, 167 pages, $6.80.

Kieburtz, R. B., Structured Programming and problem-Solving with
Pascal, prentice-Hall, 1978, 365 pages, $12.95.

Ledgard, H. F. and . .1. F. Rueras, Pascal IVith Style: programming
Proverbs, Heyden, 1980, 224 pages, $6.95.

Li ffick, B. 11. (Ed), The BYTE Book of Pascal, Bvte
342 pages, $25.0cr:-

Books, 1980,

Rohl, ,J, S. and H. ,J. Barrett, programming via Pascal,
University Press, in press.

CambricJ.ge

Schneider, G. M., Weingart, S. '<iT. and D. H. Perlman, An
Introduction to programming and Problem Solving with Pascal,
Wiley and Sons, 1978, 394 pages.

Webster, C. A. G., Introduction to Pascal, Heyden,
pages, Sl1.00.

1976, 152

I

Wegner, P., Programmin9 with ADA: I\.n IntroC!uction by Heans of
Graduat,ed Examples, Prentice-Hall, 1980, 211 Dages.

Welsh, LT. "InC! .T, 1':lder, Introd~'::.t:.:i..0n to Pascal, Prentice-Hall, in
press.

Wilson, I. R. and A. M. Addyman, ,I\. Practical Introduction to
Pascal, Springer-Verlag, 1978,-144 pages, $7.90.

Wirth, N., Systematic Programming:
Hall, 1973, 169 pages, $19.50.

I\.n Introduction,

Wirth, N., Algorithms + Data Structures
Hall, 1976, 366 pages, $20.95.

Programs,

Prentice-

Prentice-

tt
IT.
A

A~TICLES ABOUT PASCAL

(* These articles nave appeared since the preparation of #17. *)

Addyman, A. M., "A Draft Proposal for pascal",
Vol. 15, No.4, April 1980.

SIGPLAJq Notices,

Addyman, .11.. M., "Pascal Standarnization", SIGPLAN Notices, Vol.
15, No.4, April 1980.

Baker, Henry G., II A Source of Redunnant Identifiers in Pascal
Programs", SIGPLAN Notices, Vol. 15, No.2, Feh. 198"1.

Bond, Reford, "Another Note on Pascal Indention",
tices, Vol. 14, No. 12, Dec. 19"79.

SIGPLAN No-

Bron, C. ann E. ,1. Dijkstra, "A Discipline for the Programming of
Interactive I!C; in Pascal", SIGPLAN Notices, Vol. 14, No.
12, Dec. 1979.

Byrnes, John L., "NPS-Pascal: A Pascal Implementation for
Microprocessor-Based Computer Systems", Naval Postgraduate
School, June 1979, 283 pages, Jq'1'IS Report AD-A(PI 9 7 2/4WC.

Cichelli, Richard ,J., "Pascal-I Interactive, Conversational
Pascal-S", SIGPLAN Notices, Vol. 1.5, No.1, Jan. 198"1.

Cichelli, Richar~ J., "Fixing Pascal's I/O",
Vol. 15, No.5, May 1980.

SIGPLAN Notices,

Cornelius, B. ,.1., Robson, D. J. 3.nd M.
of the Pasca1-P Compiler for
address Minicomputer", Software -
Vol. 10, 241-246, 198"1.

Kaye, Douglas R., "Interactive Pascal
Vol. 15, No.1, ,Jan. 1980.

I. Thomas, IIModification
a Single-accumulator One
Practice an~ Experience,

Inputll, SIGPLAN Notices,

Ljungkvist, Sten, "Pascal and Existing Fortran Files",
1\)otices, Vol. 15, No. 5, ~lay 198"1.

SIGPLAN

Luc'<ham, David C. ann Norihisa Suzuki, "Veri fication of Arr'3.Y,
Recorn and Pointer Operati0ns i11 Pascal ll , ACM Trans3.f'!tions
on Programming Languages and Systems, Vol. 1, No.2, Oct.
197').

Luckham, D. C., German, S. f\1., Henke, F. W. V., Karp, R. A. 3.n<1
P. w. ~!ilne, "Stanford Pascal Verifier User H"nual", Stan
ford Univ. Deot. of Comouter Science, Mar. 197 9, 121 pages,
NTIS Report AD-A"I7l <l"l0!5WC.

t1achura, Marek, "Implementation of a Special-Purpose Language Us
ing Pascal Implementation ~!ethodology", Software-Practice
and Experience, Vol. 9, 931-945, 1979.

Mateti, P., "Pascal Versus C: l\ Subjective Comparison", Proceed
ings of the Symposium on Language Desi,]n an," Progra"lminq

Methodology, Sydney, Austr'3.1ia, Sept. 1979.

Mattsson, Sven Erik, "Implementation of
LSI-II", Software Practice ann
205-217, 1980.

Concurrent
Experience,

Pascal
Vol.

on
10,

Runciman, Colin, "Scarcely Variabled Programmina "" Pascal",
PLAN Notices, Vol. 14, No. 11, Nov. 1979.

8IG-

Sale, Arthur I "Hiniscules and M'3..juscules ll , Software
and Experience, Vol. 9, 915-919, 197 9.

Practice

Shimasaki, M., Fukaya, S., Ikeda, lZ. and T. F:iyono, "An ~"laIysi"

of Pascal Programs in Compiler Writing", Software - Practice
and Experience, Vol. 10, 149-157, 198"1.

Shrivastava, S. K., "Concurrent Pascal with Bi=ickwari Error
Recovery: Language F",atures ann Examples", Software - Prac
tice ann Experience, Vol. 9, H'J01-1 02"1 , 1979.

Shrivastava, S. K., "Concurrent Pascal with Rackwarn Error
Recovery: Implementation", Software - Practice and Experi
ence", Vol. 9, 1021-1033, 1979.

Simpson, D., "Structured Programming and the Teaching of Comout
ing: Experience with Pascal", Sheffieln City Polytechnic
Dept. of Computer Studies, Sheffieln, England, 1979.

Si tes, Richar·' L. ;:tnri Daniel R. Perkins I

ition, Version (O.3)", Univ. of
Dept. of Electrical Engineering,
UCSD/CS-79/"I37, NTIS PB-29g 577/8V1C.

"Universal P-Code Defin
California at San Diego
,July 197 9, 45 pages,

Smith, G. an~ R. .An~erson, "LSI-II l'iritah1e Control Store
Enhancements to TJCSD Pascal", Lawrence Livermore Labs, Oct
1978, 112 pages, UCRL-81808 (Sup) , NTIS UCID-18046.

Wegner, Peter,
Graduated
1979.

"Programming with ADA: An Introduction by t1eans of
Exarnples ll

, ·SIGPLAN Notices, Vol. 14, No. 12, Dec.

Welsh, ,1. an~ D. W. Bustar,i, "Pascal-Plus - ."mother Language for
Modular Multiprogramming", Software - Practice ann Exoeri
ence, Vol. 9, 947-957, 1979.

Wirth, Nicklaus, "The Monule: A System Structuring Pacilit.y in
High Level Programming L'3.nguages", Proceenings of the Sympo
sium on L'3.nguage Design and Programming lleth01010gy, Sydney,
Australi'3., Sept. 1979.

tt
fT.
:;c

[1]

[2]

(3]

[4]

[5]

[6]

[7]

[8]

[9]

PO]

! g!~£!b ~!~IQQli!!'.tiX
{June, 1980)

David V. Moffat
North Carolina state University

Ealeigh, North Carolina

A. M. Addrman, "On the Suitability of a
compiler ~n an Undergraduate Environment",
li£lli~11~£. 6. 35-36 (November 1976)

Pascal
Pas!;;!!.l

A. M. Addyman, et al., "The 851/150 Working Draft of
Standard Pascal by the BSI DPS/13/4 Working Group".
g~~l M~~§, 14 (entire issue), (January 1979)

A. M. Addyman, et
Pascal", ;aof~£g::::
381-424 (1979)

al., "A
f£acti!;;~

Description
JaE..!lrien~,

of
2,

A. M. Addyman, "A Draft Proposal for Pascal", SIGP1!!!
liQ!i~§, 12. 4, 1-66 (1980)

A. M. l,ddyman, "Pascal Standardisation", SIGPLAN
~Qti~§. 12, 4, 67-69 (1980)

A. M. Addyman. "A Draft Proposal for Pascal", Pascal
!i~§. 18, 2-70 (May 1980)

L. iliello,
;ag,!!ll!.ll.!:i!;;§ Qt
(August 1974)

M. Aiello
Pascal ill

and R. Ii. Weyhrauch, The
1£!, Stanford University

S. Alagic and M. A. Arbib. Th~ Q.!l.§igl.l. Qf K.!lll
~1~ty£g4 illlQ £Q~~ !'.£ogra.!!l..§, Springer-Verlag,
York (1978)

New

A. L. Ambler and C. G. Boch, "A Study of Protection
in programming Languages", gli!'.l:.ll!. !!Q!i!;;~§. 11, 3,
25-40 (1977)

U. Ammann, "The !'lethod of Structured
Applied to the Development of a
11l.!.g,£!J.ational Computillg ~2~ 1211,

programming
Compiler" •

Gunther. et

al., eds., 93-99, North Holland (1974)

i 11 J U. Ammann. "On Code Generation in d Pascal Compiler",

[12]

;aQ£1~~U:::: f£acti~ ~nd };;l\.l!gj,.!l!l!;;.!l. I, 391-423 (1977)

U~ Ammann, "Error Recovery in
Pal:sel:s", ETH Zurich, Berichte
Infol:matik, No. 25 (May 1978)

Recursive Descent
des Instituts fur

[13] K. R. Apt, "Equivalence of Operational and

(111]

D,enota tional Seman tics for a Fragment of Pasca 1".
g£Q'4g,gj,!l~ Qf 1h~ H'll lio£Hllil ~!lfe~!l.!;;~ Q!l ~l
Q~cri£lions Qf progr!!!llJ!!.illil ~!!£.!ll!.!:.§. ~!:.. A!ldre~§.
~illl~4~. Augy§1. 1911. 139-63. North-Holland, Amsterdam
(1978)

K. B. Apt and J. Ii. De Bakker. "Semantics and Proof
'l'heory of Pascal Procedures", (preprintl. Mathematics
~!l!~£. Department of Computer Science, --AmSterdam
(1977)

[15 J J. Q. Arnold, "I Novel ~,pproach to Compiler Design",
g~§cal ~~§, 11, 34-36 (February 1978)

(16 J L. V. Atkinson, "Know the State You Are In", Pas£l!l

[17]

~~§, 13, 66-69 (December 1978)

L. v. Atkinson, "Pascal Scalars as State Indicators",
~2f~!!.£~== f£~icg !!'UQ !!£§~!l~. ~, 427-431 (1979)

[18] L. Atkinson, "A Contribution to Minimal Subranges".
fl!.§£al l!§c~, 15, 60-61 (September 1979)

(19) J. W. Atwood and T. M. Pham, "A Concurrent Pascal

[20 J

(21 J

Interpreter for the Texas Instruments 9808".
!'.£Qceg!1J,U9:2 of lhg lnternational ~Y!!l£Q§J,J!.!!I. Q.!l 11ini and
11i££Q S;Q!!lE.1!1ers, !121.1.lr eal, S;anad~, !iQ:!g]!be£, 1977.
41-48, IEEE (1978)

B. Austermuehl and H.-J. Hoffman, "G€:neric Routines
and variable Types in Pascal". fi!.§!;;al ~~~§, 9 & 10,
43-46 (September 1977)

H. G. Baker. Jr., "A Source of Redundant Identifiers
in Pascal Programs", ll!il!il!i !i2!.ill.§, 12, 2, 14-16
(1980)

[22] T. P. Baker and A. C. Fleck, "Does Scope=Block in
Pascal?", Pascal !!ew§, 17, 60-61 (!'larch 1980)

(23] T. P. Baker and A. C. Fleck, "A Note on Pascal
Scopes", gas cal ~l!2, 17, p.62 (!'larch '980)

[24) M. S. Ball, ~al llQQ: All Implementation

Pascal ~~nguage fo~ Qniv~£ l1QQ ~~~i~2 Compute~s,
Naval Ocean Systems center, San Diego (July 1978)

(25] D. Bar, "A Methodology for Simultaneously Developing
and Verif ying Pascal prog.~amsll, £!ill§!&l!£!.ing ~ill:I
~of!XJ!!;~. !2l!.sibirsk, YSS.!l.. l1U, 1977, !12=48, North
Holland, Amsterdam, Netherlands (1978)

(26] W. Bat:abesh, C. R. Hill. and R. B. Kieburtz, "A
P~oposal for Increased security in the Use of variant
Records". f!!§£al !lewslett~£, 8, 15-15 (May 1977)

(27] D. Barron, "On programming Style, and Pascal".
~2mEY!~ ~Ylletin. 1, 21, (September 1979)

[28] D. W. Barron and J. M. Mull ins. "What to do After a
lihile", !'.~al ~~§!, 1" 48-50 (February 1978)

(29]

(30]

(31 J

D. W. Bar~on and J. M. Mullins,
the Pursuit of Unformatted Input",
7, 8-9 (February 1977)

"Life. Liberty and
~§!£al Newsletll!:.

D. W. Ba~ron and J. Mullins (eds.). "Pascal, The
Language and Its Implementation", !!£.2£~~g~ of .!J!!i
~Qy!hampt2n ~ZmEQsiYm, University of Southampton.
24-25 March 1977 (1977)

D. Bates. Lette~ to the Editor (on formatting Pascal
programs). ~lQf1A! !2!ig~. 11. 3, 12-15 (1978)

(32] D. Bates and R. cailliau. "Experience vith Pascal
Compilers on Mini-Computers". ~lQ!!!.A!i Notice§.. 11. 1,.
10-22 (1977)

[33] D. Bates and P. Cailliau. li§=!!!!§!cal ~~!:!§. Guig~.
CERN Note PS/CCI 77/3 (1977)

(34] D. M. Berry. "Pascal or Algol-68?". ~rc!!
~!!:~g!!Qn2 in S6ft~£~ ~ghnolQgZ, (P. Wegner, ed.),
641-46, MIT Press, Cambridge Massachusetts (1979)

[35] R. E. Ber~y. "Experience with the pascal p-Compiler".
~Qftwar~== !'.~ice ~nd ~xperience. ~. 617-627 (1978)

[36] A. Biedl, "An Extension of programming Languages for
Numerical Computation in Science and Engineering with
Special Reference to Pascal", ~IGg1!! Noti£es, 1~. 4,
31-33 (1977)

[37] C. Bishop. "Some Comments on Pascal I/O", .gascal
Newslet!~£. 8, 18-18 (May 1977)

[38] c. Bishop. "Pascal: standards and Fxtensions", Pascal
~§!, 11. 54-56 (Feb~uary 1978)

(39]

[40]

[41]

[42]

.1. M. Bishop, "Subranges and Conditional Loops",
~2g~1 ~~~2' 12, 37-38 (June 1978)

J. 1'1. Bishop, "On Publication Pascal". Sottwarg::=
f£!!ctig~ !!nd ~~£i~~~. 2. 711-717 (1979)

J. M. Bishop. "Implementing Strings in Pdscdl",
Sof!XJ!££== f£!!£1ic~ !!ng ~~£££i~n~. 2. 779-788 (1979)

R. Bond, "Anothe~ Note on Pascal Indention", llGP!,AN
li21ig~§!, jj, 12. 47-49 (1979)

[43] T. M. Donham, "'Minor' Problems in Pascal", ~§£!!l
!ewslet te£, ~, 20- 22 (Septem be~ 1976)

(44]

(45]

[46]

(47]

H. J. Bo011l and E. DeJong. "A critical Compa~ison of
Several pro'J~amming Languages", ~oft~g~.§l== ~ctig~
and EXE~£ien£~, lQ. 435-473 (1980)

K. Boot, "comparable Computer Languages for
Linguistic and Lite~ary Data processing, II: SIKULA
and Pascal", A§2QciatiQn fo£ LitergU ~!lg I.inguistig
~QmpY!illg nYlletin. 1, 2, 137-46 (1979)

K. L. Bodes, Microc2mIUl~!: probl~!!!. ~olving Using
f!!§£!!l. sprin'Jer Verlag, New york (1977)

K. L. Bowles. nUpdate on UCSD Pascal
g~2£al Mewslettet, 8. 16-18 (May 1977)

Activities".

L 46] K. L. Bowles. "An Int~oduction to the UCSD Pascal
system", JlshaYloral R~!;S<l! ~rt.l!Qg§. ang !n2t!:Yl!!£ll1§.
lQ. 4, 531-,+ (1978)

[49] K. L. Bowles. "Status of UCSD project". !!ascal ~§.,
11, 36-40 (February 1978)

[50] K. L. Bowles • .§€.!linnll!§. liYide !Q~ t.l!~ Q~Q !!~2£al
~§.!~m, BYTE/McGraW-Hill (1979)

(51]

[52]

P. Brinch Hansen. "Universal Types in
pascal". lnfOll!!tion pr~ssing Lette£2'
(1975)

Concurrent
1. 165-166

P. Brinch Hansen, "Concur~ent Pascal, A programming
Language for Ope~ating Systems Design". Techni~l
.!l.eport lQ, Information Science. California Institute
of Technology (Ap~il 1974)

[53] P. B~inch Hansen, "The Purpose of Concurrent Pascal",
.il!illAM Notl£~2' lQ, 6, 305-309 (1975)

[54] P. B~inch Hansen.
Concu~rent Pascal",

"The p~ogramming

!EE~ 1!:!!n2actiQ!l2 QIl
Language
~oftw~

i55]

[56]

[57]

[58]

En[in~J::inq, 1, No.2, 199-207 (1975)

P. BJ::incl, Hansen, "ExpeJ::ience with ModulaJ:: ConcuJ::J::ent
PJ::og raIDming". lllF! I!:iU!.2actj,Q!l§ 2li softl!.ar.!!
~~!l.!!§J::inq, 1, 2, 156-159 (1977)

P. BJ::inch Hansen, The AJ::chi1ectQJ::e 21
££Q~~!§. Prentice Hall; Englewood Cliffs,
(1977)

\,;.Qli!<.Jl££en1
New JeJ::sey

P. llJ::inch Hansen, "ConcuJ::rent Pascal Machine".
InfQ£~~1io!l ~~'!!li£§, California Institute of
Technology (1975)

P. Brinch Hansen, "The SOLO Operating
ConcurJ::ent Pascal program", ~2ftl!.ll~=
Expe£i€li£.!!. ~, 141-149 (1976)

system: A
Practi£Sl ~nd

[59] P. BJ::inch Hansen and A. C. HaJ::tman, "Sequential

(60]

r 61]

[62]

[G 3]

Pascal Report", 'l.:~ch!li£l!.!. R€ICQ£1, In fOJ::mation Science,
Califo.r:nia Institute of Technology (1975)

P. Brinch Hansen, "!I iCJ::ocomputeJ:: comparison",
i!.2ftl!.l!.£~= f£l!.Q1i£§ l!.1:H! g.!E§ri§!l£§ • .2. 211-217 (1979)

C. Bron and W. de Vries, "A Pascal
PDP-l1 Minicomputers", Softwa£§==
~.!Eerie!l.£~, ~, 1, 109-116 (1976)

Compiler
!!Ua ic£

for
and

C. Bron and E. J. Dijkstra, "A Discipline for the
programming of InteJ::active I/O in Pascal", '§!Q£1.!!
!iQ.1~£.!!§, 1:1., 12, 59- b 1 (1979)

D. M. Bulman, "Stack Computers", £Q!l!.h!.1.!!£, (!lay 1977)

[64] W. F. Burger, f~£§.!!£ generl!.1iQ!l 19.£ ~j,££Q=Compute£§,
1li=11, Department of computer Sciences, University of
Texas at Austin (March 1978)

(65] Ii. F. BUJ::geJ:: and D. Lynch, £l!.§£l!.l l:!l!.!l.h!.l!..!, ComputeJ::

[66]

[67J

[68]

Center of the state UniveJ::sity of New YOJ::k at Buffalo.
Buffalo (197 3)

D. W. BustaJ::d, ~l!.§£l!..!-P!.Q§ Qse£~ tll!.!lh!.l!..!,
Uni versHy of Belfast (1978)

Queen's

J. L. Byrnes, !H:i!.:.fas£l!.l: A £i!.€cal 1!ru2.1.!!!.!!litll~Q!l 1Q£
tli££Q~£Q£gssQ£ BaQ'!!Q CO~QQ1~£ ~Y§1§~§, Naval
\,ostijraduate School, MonteJ::€Y, California (1979)

&. H. Campbell and R. B. Kolstad.
in pascal", f.£2£§edi!!,g§ Q1 .ill.!!
conte£gQ£§ Qi .§Qftwl!.£~ ~n.giQ§erj,Q!l,
IEEE. New York (1979)

"Path Expressions
~th l!l.t.!!£!ll!.tiQ!ll!.l

.!1J!.Qi£h, GeuiUlY,

[69]

(70]

[71]

[72]

A. Celentano, P. Della Vigna, C. Ghezzi, and
D.Mandrioli, "Mod~larization of Block-Structured
Languages: The Case of\Pascal", fLQ£§§~U!!g§ 21 th.!!
~Q£!shQ£ Qli lieliagle ~Qitwg£.!!, ~Q!l.!!., 2s£illl!.liY, 167-79,
carl Hasser verlag. Munich (1979)

A. Celentano, P. Della Vigna, C. Ghezzi, and
D.MandJ::ioli, "sepaJ::ate compilation and PaJ::tial
Specification in Pascal", U;£;'!;; 'l.:£!!!l.§gction§ QIl
.§Qf1~£§]!!.g1!l.ee£i!l.!l, SE-b, 4, 320-328 (1980)

A. Celentano, P. Della Vigna, C. Ghezzi, and
D.Mandrioli, "SIMPLE: A PJ::ogJ::am Development System",
~2~£h!.1§£ 1!!!l.GYl!.!l.!!§. 2, 2, 103-114 (1980)

G. Ii. Cherry, fi!2£l!.l £!:Q.S!£ammi!l.!l ~1£Q£1Q££§: A!l.
Int!:QQ~£!ioU to ~te!l!.ti£ ££Q.S!£l!.~!j,n.g, Reston
Publishing, Reston, ViJ::ginia (1980)

[73] R.Cichelli, "Pascal-I-- InteJ::active, Conversational

[74]

[75]

[76 J

[77]

Pascal-SIt, £l!.§£l!.l li.!!l!:§, 15, 63-67 (September 1979)

R.Cichelli, "Pascal-I-- Interactive, Conversational
Pascal-S", .§.11il!1!.!i liQ1i£.!!§, 1.2, 1, 34-44 (1980)

E. J. Cichelli,
E§l!:sl~!te£, 6. 36-41

"Pascal Potpourri".
(NovembeJ:: 1976)

B. J. Cichelli, "Fixing Pascal's I/O",
liQti£~§, 12, 5, p.19 (1980)

R. J. Cicilelli, "Fixing Pascal's I/O", Rl!.§£l!..! 1:!.!!l!:§,
17, l'.b5 (Mal:ch 1980)

[78] R. G. Clark, "Interactive Input In Pascal", ~l!ig!.AN
~Q.1ic§§. 1:1., 2, 9-13 (1979)

(79] R. G. Clark, "Input in Pascal", ~1&£1!li liQti£§:§, 1.!±,
11, 7-8 (1979)

(80] D. Coleman, A ll!:.!!ctured f.£Q!l£l!.!~i!l.g AEEI:oa£h 12

(81]

[82]

(83]

Qi!~, MacMillan PJ::ess (1978)

D. Coleman, B. M. Gallimore, J. W. Hughes, and
ft. S. Powell, "An Assessment of ConcuJ::J::ent Pascal",
So11l!:a£§:':' ££l!.cti£§ aUg]!£€I:ieIl£§. 2, 827-837 (1979)

C. Coleman, J. W. Hughes and M. S. Powell,
"Developing a Programming Methodology for
Multiproqr:ams", Q£E!!rt!.!!llt 21 £Q~~~1l!.tiQ!l. li~£!
.!iQ.-ll1l, Ul'llST (1978)

C. ComeJ::, "MAP: A Pascal Macro PJ::eprocessoJ:: for Large
Pcogram Development", ~Qitl!:l!.£.!i== f£!!£!i£§ iUlQ

if.

(84]

(85]

ff. N. Condict, "The Pascal Dynamic Array Controversy
and a ffethod for Enforcing Global Assertions", SI~g1.A.!!
.!!oti£~§. 1~, 11, 23-21 (1917)

R. Conradi, "Further Critical Comments on pascal,
particularly as a Systems programming Language",
SIQPLAli liQii~§, 11, 11, 8-25 (1976)

[86] R. Conway, J. Archer, and R. conway, g[Qg[~ing for
gQ.gts; A Q!illile Int[Qductj,on USj,llil g~§£i!!, Winthrop,
Emglewood Cliffs, New Jersey (19RO)

(87]

[88]

[89]

(90)

[91)

l 92 J

R. Conway, D. Gries and E. C. Zimmerman, ! gril!lti £!l
f~£!!!, Winthrop, Cambridge, Massachusetts (1976)

B. J. Cornelius, D. J. Robson, and 1'1. I. Thomas.
"Modification of the Pascal-P compiler for a Single
!Icc umillator one-lIddress Minicompu ter", Softw~~::::

gI.9.cti£~ ~Ug ~lUH~[m£~, lQ, 241-46 (1980)

(;. Cox and J. Tobias, Pascal 8000 Reference Manua!
(Hi:! 36QL37Q Y~[§io!l), --Austj:iiian--Atoiiiic Energy
Commission, Australia (February 1978)

J. E. Crider. "Structured Formatting of Pascal
Programs", !?llif.!.A.li Noli£!2§, 11, 11, 15-22 (1978)

J. Crider, "Why Use Structured Formatting", Pa2£.9.!
liQ.!!§, 15, 68-70 (September 1979)

J. Deminet and J. wisniewska, "SIMPASCAL",
liu§, 17, 66-68 (March 1980)

[93J P. Desjardins, "I Pascal Compiler for the Xe~ox Sigma
6", .:?.l&f.!.Ali liQ1i£~§, .£!, 6, 34- 3 6 (1 973)

[94 J

(95]

[90]

P. DeSjardins, "Dynamic Data Structure Mapping",
;iQftw.9.Ig:::: £Iacti£~ !!ng it~£j&n£Q, ii, 155-162 (1974)

P. Desjd~dins, "Type compatibility Checking in Pascal
Compilers". Pasc!!!. liQ~§, 11, 33-34 (February 1978)

R. S. Deverill and A. C. Hartmann, "Inte~pretive

Pascdl for the IB!'! 370", IUfo[~iQU ~£i~n£~ lrunica!
!i.§l.£Q[l liQ· ii, California Institute of Technology
(1973)

[97] P. Edwards, "Is Pascal a Logical Subset of Algol 68
or Not?", ~IQg1.Ali lioti£~§, 11, 6, 184-191 (1977)

[98] J. EisE·nberg, "In Defense of Formatted Inpllt". g~£i!!
lig.!(§l~il~£, 5, 14-15 (september 1976)

[99]

[100]

H. Erleio, J. Sajanienu, and A. Salava, "1n
Implementation of Pascal on the Burroughs B6100",
li~Q£1 !-1977~1. Department of Computer Science,
uni versity of Helsinki, Finland (1977)

E. N. Faiman and A. A. Kortesoja, "An Optimizing
Pdscal Compiler", g~ding§ of ~E.~A.S; (IEEE Third
International Computer Software and Applications
Conference), IEEE, 624-28 (1979)

[101] L. Feiereisen. "Implementation of Pascal on the
PDP-l1/45", DECU2 coUf~£~U£&, ~.!!£i£.l!, pp. 259 (1974)

[102] E. E. Ferguson dnd G. T. Ligler. "The TI Pascal
system: Run-Time support", grQ£~~ging§ of th~

~!~nlh Hdw~ii Ini~atioual £Q!lf~[~!l£~ QU 2Y§tem
~£i~!l£~§, g~i Ill, 69-84, Western Periodicals Co.,
North Hollywood, Calitornia (197B)

[103] ~_ Findlay, "The Performance of Pascal Programs on
the MULTlJi1", Re2Q[i liQ. ii, Computing Department,
university of Glasgow, Scotland (July 1974)

L 104] W. Findlay and D. F. Watt, Pa§cal: An Illi[Q~uction ~Q
J:l§.ll1Qgi.\::al prQ9.£ilming, Pittman. London (1978)

[105]

[106]

C. N. Fischer and R. J. LeBlanc. Q~~g~cal Reference
Manual, Madison Academic Computing Center, ~adison;
Wisconsin (Cctober 1977)

C. N. Fischer and R. J. LeBlanc, "Efficient
Implementation and optimisation of Run-time Checkin~
in Pascal", SIGP1.U. liQti~, 1~, 3, 19-24 (1977)

[1()7] C. N. Fischer and R. J. LeBlanc, "I DiagnostiC

[lU8 J

i 109]

[110 J

Compiler for the P~ogramming Language Pascal", US);;
.[9.!! S;Q!!fe[~£.§. l~hni.£!!l I:~~, Lake Buena Vista,
Florida (October 1976)

C. N. Fischer dnd R. J. LeBlanc, "The Implementation
ot Run-Time Diagnostics in Pascal", litllJ:; ':I!:9.~ti2n§
QU ~2ft'!!!![Q Engi~~iD.E, SE-ii, 4, 313-319 (1980)

B. A. F~aley, "Suggested Extensions
f!!§£!!! liQ~§, 11, 41- 4 8 (Febl: uar y 1978)

to Pascdl",

R. A_ Fraley, "SYSPAL: A Pascal-Based Language for
Ope ra ting S ,stem Implemen ta tions", g£Q£Qedj,D.E§ 2£
~£Iin~ S;Qill££Qll l~, ~!l Francis£Q, 32-35, IE~E (1978)

[111] G. Friesland, et al., "I Pascal ComFiler Bootstrapped
on a DEC-System 10", Miiteillllig nr • .-2, Institllt fur
I~formdtik der Universitat Hamburg, 13 (Mdrch 1974)

[112] A. J. Gerber, "Pascal at Sydney University", pas£!!l
~§, 9 & 10, 39-~0 (September 1977)

(113] J. C. Gracida and R. R. Stilwell, lifS-Eg§£gl. !
fg£1igl lmElem§nlg1iQ~ of ~§£el 19n9y~ for g
fli£~Q£IQ£es§Q£-Ba§§g ~Qill£uter ~~§1§m, !D-AO~~QL~
Naval postgraduate School (June 1(78)

[114] N. Graef, H. Kretschm ar, K. P. Loehr, and
13. Morawetz, "How to Design and Implement Small Time
sharing systems Using Concurl:ent Pascal", Softwllt=
Kll£1icg and 1U£tli§U£§, 2, 17-2" (1979)

(115] N. Graham, Inl£Qg~!iQn 12 Eg§ggl, West, St. Paul,
Minnesota (1980)

[116] D. Gries and N. Gehani, "some Ideas on Data Types in
High Level Languages", CAg[~Q, 6, 411+-1+20 (1977)

[117] G. R. Grinton, "Converting an Application Program
from OMSI Pascal 1.1F to AAEC pascal 8000/1.2", Eg§£!!l
!:!il..!:§, 17, p.59 (Harch 1980)

[118] P. Grogono, "On Layout, Identifiers and Semicolons in
Pascal Programs", ~llill!.!!. .!!.Q1j,ce§, 1!i 4, 35-40 (1976)

[119] P. Grogono, f.£Q~~j,llil i!l E~l, Addison-Wesley,
Reading, Mass. (1978, revised 1(80)

[120] C. C. Grosse-Lindemann, P. W. Lorenz, H. H. Nagel,
and P. J. Stirl, "A Pascal Compiler Bootstrapped on a
DEC-System 10", ~§£1y£§ .!!.Q!~ j,!l ~Qm£!!l§£ SCience 1,
springer-Verlag (197~)

[121] C. O. Grosse-Lindemann and H. H. Nagel, "Postlude to
a pascal-Compiler Bootstrapped on a DEC-System 10",
§.Qitwg£g== r.£~cti£§ gftg ~!l?~rien£~, §, 29-42 (1976)

[122] T. R. Grove, Waterloo Pascal User's Guide and
~gng!!~ Q§§£ri£tiQn:-Unive~sitY-of-wat;rloo~tario
(January 1(80)

[123] G. G. Gustafson, "Some Practical Experiences
Formatting Pascal Programs", ~!QE1AN .!!.otj,£§2, 1~, 9,
42-,.9 (1979)

[124] A. N. Habermann, "Critical
Programming Language Pascal",
47-57 (1973)

Comment s on the
A~.'rA l!liQ£~ic!!, 1,

£125] M. P. Hagerty, "The Case for Extending Pascal's I/O",
f2§£al .!!.€wslett~, 6, 42-45 (November 1(76)

[126] G. J. Hansen and C. E. Lindahl,

~£~ciii£~tion of li2gl-ti~2 f2§£el, Florida University
(July 1(76)

[127] G. J. Hansen, G. A. Shoults, and J. D. Cointment,
"Construction of a Transportable, Multi-Pass Compiler
fOI: Extended Pascal", .§litl!li liQti£§§, l!i, 8, 117-26
(1979)

(128] S. Hanson, Eo Jullig, P. Jackson, P. Levy, and
T. Pittman, "Summary of the Characteristics of Several
"Modern" Pl:ogramming Languages", ~Ilif!.AN ll.Q!;.ices, l!i,
5, 28-45 {1979)

[129] L C. Hartman, "A Concurrent Pascal Compiler for
Minicomputers", l,ectlO£§ Nol§§ in ~Q~l?!!J;&£ ~£ien£§, .2Q,
springer-verlag, New York (1977)

(130] D. Heimbigner, "Writing Device Drivers in Concurrent
Pascal", SIGOP§., 11 (1978)

[131] E. Heistad, "Pascal-- Cyber Version", TeJmi§! JiQta1
S-305 IQ£2~g£§l§ E2£§~ningsin§lit!!11, Norwegian
Defense Research Establishment, Kjeller, Norway (June
1(73)

[132] F. W. v.Henke and D. C. Luckham, Automati~ ~£ogram
Ve£iii£gtion Ill: ! ~!;.hodo12gy iQ£ Ytlifying
f£Q9.£e!!!§, Stanford University (DeCember 1971!)

[133] T. Hikita and K. Ishihata,
Han ual" , .'r§£hni£gl Rel?Q£:-i
Information Science, Faculty
Tokyo (March 1976)

"Pascal 8000 Reference
76=Ql, Department of

of science, University of

[13~] T. Hikita and K. Ishihata, "An Extended Pascal and
Its Implementation Using a Trunk", !i§£2£1 of th§.
~Q~£l!1g£ Ce!ltr!l., 2, 23-51, University of Tokyo, (1976)

(135] C. A. H. Hoare and N. Wirth, "An Axiomatic Definition
of the programming Language Pascal", !!;;I! Informatii<g,
~, 335-355 (1973)

(136] R. C. Holt and J. N. P. Hume, prQg£Y!!!illil Standa£g
fil§cal, Reston Publishing Co., Reston, Virginia (1980)

[137] J. HUE ras and H. Ledgard, "An Automatic Formatting
program for Pascal", SIGPLAN .!!.Qlic!l.§, ll, 7, 82-84
(1977)

[138] M. Iglewski, J. Madey and S. Matwin, "A Contribution
to an Improvement of Pascal", SIGP~Ali liQ1j,£~, 11, 1,
48-58 (1978)

[139] T. Irish, "What to do After a While ••• Longer",

f~al Ne~§, 13, 65-65 (December 1978)

[1 ~O] K_ Ishihata and T. Hiki ta, .!!Q.Q.~lilling Pascal .!!liing
~ Trun~, Department of Information Science, Faculty of
Science, University of Tokyo (1976)

[141] eh_ Jacobi, "Dynamic Array Parameters",
!~§letl~£. 5, 23-25 (September 1976)

[142] K. Jensen. and N. Wirth, "Pascal-
Report", !,ectu!:g Notes in !;;ompuler
Springer-Verlag, New York (1974)

User lIanual and
Sciel)~, 1!!.

(143] K. Jensen, and N. Wirth, fi!§£al== us~£ lIanual ~£
RQ£Q£l, springer-Verlag, New York (1974)

(144] 0_ G_ Johnson, "A Generalized Instl:umentation
procedul:e for Concurrent Pascal Systems", f~eding§

Q!. 1!!~ 1112 l!lte!:!lational £Q!li~~!l~ Q.!l. Pacallel
prQc€s§ing, 205-7, I~EE (1979)

[145] D. A. Joslin, "A Case fOI: Acquil:ing Pascal",
~oftw~!:§~~ f!:actic~ ~!l.g ~grience, 2, 691-2 (1979)

[146] W. N. Joy, S. L. Graham, and C. B. Haley, Berkeley
~~l]~~§ ~~1!al ~siQ.!l. 1.1, computel: Science
Division, University of California at Bel:keley (April
1979)

[147] W. H. Kaubisch, R. H. Perrott, and C. A. R. Hoare,
"Quasiparallel Programming", Softw1!!:~== Practic~ ~g
1A~ig~, 2, 341-356 (1976)

[148] D. R. Kaye,
liQ.tice s, 12.

"Interactive
1, 66-68 (1980)

Pascal Input",

[149] W. Kempton, "sugjestions for Pascal Implementations",
f~§£~l N~§, 11, 40-41 (February 1978)

[150] H. Kieburtz, ~1!:1!£lured P~og!:i!~~1!l.g i!nd Problem
Solvi!l.g wit~ f~£i!l, Prentice-Hall, Englewood Cliffs;
New Jersey (1977)

[151]

(152]

[153]

R. B. KieDurtz, W. Barabash and C. R. Hill, "A Type
checking Program Linkage system for Pascal",
£!;Q£ggginSL2 Q!. thg I!!ird l!l.ternatiQ!l.1!l £Qnfere!!.~ Q!l.
~Q!.tw5!!;g EnSli~£i!lg, Atlanta. Georgia, Kay 10-12
(1978)

P. B. Kieburtz, W. Barabesh and C. R. Hill, StQ.!l.Y
.!!!:QQ~ Eg,§£i!lLJ60 y'§.g£~ Guid~, Department of computer
Science, SUNY, Stony Brook (February 1979)

E. N. Kittlitz, "Block Statements and Synonyms fo~

Pascal", 12!J!.tlAN Noti£~. 11. 10, 32-35 (1976)

[154] E. N. Kittlitz, "Another proposal for Variable Size
Arrays in Pascal", ~lfi£il!i Notice§, 1~, 1, 82-86
(1977)

[155] B. Knobe and G. Yuval. "Some steps Toward a Better
Pascal", ,zQJlllli!l Q£ CO!!lE.ute!: La!l.g!!.i!g~§, 1, 277-286
(1976)

[156] S. Knudsen, "Indexed Files".
33-33 (November 1976)

~~l Newsletter, 6,

(157] G. A. Korn, "programming Continuous-System Simulation
in Pascal", lIal!!Qll1ics 1!nd £Q.ll1!.t~ i!l Simulation,
ll, 276-81 (November 1979)

[158] B. B. Kristensen, o. L. lIadsen and B. B. Jensen, "A
Pascal Environment lIachine (p-Code)", .!!1!i.!!!i pB-28,
University of Aarhus, Denmark (April 1974)

[15"] C. Lakos and A. H. J. Sale, "Is disciplined
programmin<j Transfecable, and Is It Insightful?",
Au~li5!!l. comput~£ ,zQJll!l.al, lQ, 3, 87-97 (1978)

(160] Ii. R. Lalonde, "The Zero Ovecsight", ~12E!.!li .!l.Qtic~.
H, 7, 3-4 (1979)

(161] l. R. Lawrence and D. Schofield, "SFS-- A File System
Supporting Pascal Files, Design and Implementation",
Np~ ~~Qrt !!£ ~~, National Physics Laboratory
(February 1978)

[162] R. J. LeBlanc, "Extensions to Pascal for Separate
eompila tion" # SI§.PLAli !ioti£!;l.§, .11, 9, 30-33 (1978)

[163] R. J. LeBlanc and J. J. Coda, ! ~!!.1gg tQ. Pascal
IQ!tQQ.ok§, School of Info~mation and computer science,
Georgia Institute of Technology, Atlanta, Georgia

[164] o. Lecarme, "Structured programming, Progl:amming

[165]

[166]

[167]

Teaching and the Language Pascal", ~12E!'!! l!oti£g§, ~,
7, 15-21 (1974)

O. Lecarme, "Development of a Pascal Compiler fo~ the
elr IRIS 50. A Pa~tial History", fi!§.cal !~§le~!:. a,
8-11 (llay 1977)

O. Lecarme, "Is Algol 68 a Logical Subset of Pascal
or Not?", SIQfilli l!oti£g§, ll, 6, 33-35 (1977)

O. Lecarme and p. Desjardins,
programming Language Pascal",
231-244 (1975)

"lIore
!£IA

Comments on the
In!.Q£!!!a t ici!, !,

1-.

'" o
c

r 168]

(109]

[170]

[171]

[172 J

[173]

[174 J

[175]

[176]

[177]

(178)

[179]

[180]

O. Lecarme and P. Desjardins, "Reply to a Paper by
A. N. Habermann on the programming Language Pascal",
~~g1AN Noti£§§, 2, 21-27 (1974)

O. Lecal'me and M-C. Peyrolle-Thomas, "Self-Compiling
Com pileI's: An Appraisal of their Implementation and
POl'tailility", Soii~re:.:. f~tice i!nd ~K~rielli<~, !l.,
149-170 (1978)

L. l. Liddiard, "Yet Anothel' Look at Code Generation
for Pascal on CDC 6000 and Cybel' Machines", Pas£gl
lig~§1~11~£, 7, 17-23 (February 1977)

B. W. LifficK (ed.), Ihe ~YT~
BYTE/MCGraw-Hill (1979)

S. Ljungkvist, "Pascal and Existing FORTRAN Files",
~IGPL!E li211~, 12, 5, 54-55 (1980)

K. P. Loehr, "Beyond Concun:ent Pascal", groce§di.!l.li§
Qi th§ ,2ixth !£li 2:imposiJ!ID. Qll 21!§Htillil ~teJ!!
f£bn~i£le§, 173-180 (1977)

D. C. Luckham, S. M. German, F. Ii. V. Henke,
R. A. Karp, and P. W. Milne, Stanfol'd Ei!~al Verifi~
~~£ lil!llQl!l, STAN-CS-79-731, Depal'tment of computer
science, Stanford University, California (1979)

D. C. Luckham and N. Suzuki, "Verification of Array,
Record, and pointer Operations in Pascal", ~ IOP1!~,
1, 2, 226-244 (1979)

W. I. MaCGregor, "An Alternate Approach to Type
Egui va lence". ~~al ~, 17, 63-65 (March 1980)

M. lIachura, "Implementation of a Special-Purpose
Language Using Pascal Implemen tat ion Methodology",
~oftwar~:.:. f£actb£s gnd ~Kperisn~, 2, 931-945 (1979)

B. J. MacLennan, "A Note on Dynamic Arrays in
Pascal", llGPLAli Noti~§§, 1Q, 9, 39-40 (1975)

C. D. Mal'lin, "A Model fol' Data Control in the
programming Language Pascal", i'l'oceeJ:linJl2 of 1l!!i
!~§1£~li~u ~olleqes of iJ:lxanced EdY£G1i2n Computing
£Qnf~rs:n£~, !J!.9.l!§!: 12.11. (A. K. Duncan, Ed.), 293-306
(1977)

C. D. Marlin, "A Heap-based
Programming Language Pascal",
g~p~£i~n~~, 2, 101-119 (1979)

Implementation of the
~ftwi!£g:.= Practice ~

(181] E. Mal'mier,
Iuf Ol'!g tion

"A Progl'am
.pro£~in!l 1!±,

Verifier for Pascal",
(IFIP Congress 1974),

(182]

(183]

[184]

[185]

(186]

[187 J

[188]

(189J

{ 190]

{ 191]

(192]

[193]

[194]

NOl'th-Holland (1974)

S. E. Mattsson, "Implementation of ConCUl'rent Pascal
on LSI-11", ~of1l!~:':' ££~ti~ ~!!'Q EXE.gi~!l~, lQ.,
205-217 (1980)

S. Matwin and M. Missala, "A Simple, Machine
Independent Tool for Obtaining Rough Measul'es of
Pascal Pl'oyrams", §.1l!tlAli li~ti~§, 11. 8, 42-45 (1976)

B. A. E. Meetings, "A Furthel' Defence of Formatted
Input", g~l!lli~l!§lett~£, 8, p.ll (May 1977)

A. Mickel, £ascal Ne~le~£, Univel'sity of Minnesota
ComputeI' Center, Minneapolis: No. 5 {Septemher 1976),
No. 6 (Novemher 197b), No. 7 (February 1977), No. 8
(May 1977). £g~! li~l!§ (change of name): No. 9 and
10 (Septemher 1977), No. 11 (Februal'Y 1978), No. 12
(June 1978), No. 13 (December 1978), No. 14 (January
1979), No. 15 (SEPTEMBER 1979), No. 16 (OCTOBER 1979)
(SeE also G. Richmond and R. Shaw)

D. D. Miller, "Adapting Pascal for the PDP 11/45",
fl!§£~l M~l!§' 11, 51-53 (Fehrual'y 1978)

F. Minol', "Overlays: A proposal", fl!§~al Newslett~r,
5, 16-19 (Septemhel' 1976)

D. V. Moffat, "A categorized Pascal Bibliography
(June, 1980) ", I§.~hnb£al .!l.sp2!:1 TR80=Q~, Depal'tment of
computer Science, NOl'th Carolina State University,
Raleigh (1980)

P. R. Mohilner, "PI:ettyprinting Pascal Programs",
~1~1!! liQiic~§, 11. 7, 34-40 (1978)

P. R. Mohilner, "Using Pascal in a FORTRAN
Environment", ~oftliar~:.= ££l!rtice i!!!.Q J;;KI2~£iel!£~, I,
357-3b2 (1977)

T. MoIster and V. Sundvor,
the Univac 1108 Computer",
Institutt for Datallehandling,
Norway (Fehrual'Y 1974)

"Un it Pascal System for
I~!Ui§! liQiat ~,

Univeritetet I Tronheim,

H. H. Nagel, "Pascal
Expel'iences and Further
Institut ful' Informatik,
1975)

for the DEC-System 10,
Plans", !1it teil!!n.9: 1!£. 11,
Universitat Hamburg (NOVember

J. Nagle, "A Few Proposed Deletions", Eascal li~,
12, 39-39 (June 1978)

K. T. Nal'ayana, V. R. Prasad, and M.Joseph, "Some

Aspects 0.£ Concurrent Programming in
Software-- Practice snd EXEerienc~, 2,
(1979)---- --------

CCNPASCAL",
9, 749-70

[195] D. Neal and V. Wallen tine, "Experiences with the
portability of Concurrent pascal", softw~re-- gI.acticSi
~Ug t!Egrience, ~, 341-353 (1978)

[196] P. A. Nelson, "A Comparison of Pascal Intermediate
Languages", 21GPLAN NoticSi§., .1!!., 8, 208-13 (1979)

(197] T. Noodt, "Pascal Environment Interface",
!!~~§., 12, 35-37 (June 1978)

[198] T. Noodt and D. Belsnes,
Pascal for Quasi-Parallel
lioti~§., ~, 5, 56-65 (1980)

"A Simple Extension to
processing", ~1!!!

{199]

[200]

[201]

[202]

[203]

K. V. Nori, U. Ammann, K. Jensen, H. H. Nageli, and
Ch. Jacobi, 'Ihe f~£lll ~ Compile£: I.!!IUSil!!§!!.tation
No1g§. (~vi2ed ~ditioU), Berichte Nr. 10, Institut fur
Informatik, Eidgenossische Techniscne Hochschule,
Zurich, Switzerland, 1976

K. v. Nori, U. Ammann, K. Jensen, H. H. Nageli, and
ch. Jacobi, COI.recti2!l§.!Q the "Pll§.£al Compiler:
lillplemSin1ati2n liot§2!, Berichte Nr. 10, Institut fur
InfoI:matik, Eidgenossische Technische Hochschule,
zurich, SwitzeI:land, 1976

G. J. Nutt, "A Comparison of Pascal and FORTRAN as
Introductory PI:ogI:amming Languages", §llilUdili MQti£.Si2,
11, 2, 57-62 (1978)

J. S. ParI:Y, "The
InfouatiQU ;l.cie!!.£§
Tasmania (1978)

Pascal String
ia1ud.€!!.i !i§PQU,

Library Notes",
University of

A. L. PaI:sons, "A Microcomputer Pascal Cross
Compiler", Proceeding§. <;!l ~ing ComE£2n 1~, ~n
rranci§£Q, febrJ!a£y::March, 1978, IEEE, 1'16-50 (1978)

[204] S. Pemberton, "Comments on an Error-recovery Scheme
by HaI:tmann". softwa£~ pr~£1ice ~Ug EXI!~ien~. 1Q,
231-2'10 (1980)

[205] D. F. Perkins and R. L. Sites, "Machine-Independent
Pascal Code Optimization", ~PLM!. !iQ1i£§§, .1!!.. 8.
201-7 (1979)

(206] G. Persch and G. WinteI:stein, "Symbolic
In terpI:etation and T I:acing of Pascal Programs", lrd
.lnilllns!ional ~onfe~£g Qn Softwa£§ J;<nqineerinq,
Atlant~, QSiQ£gia, ~~y, 111~, IEEE, 312-19 (1978)

[207] J. L. Peterson, "On the Formatting of Pascal
Programs". ~~AN lioti~§., 11, 12, 83-86 (1977)

[208] S. Pokrovsky, "Formal Types and their Application to
Dynamic Arrays in Pascal", SIGPLil !!oti£~§., 11, 10,
36-42 (1976)

[209] B ••• Pollack and R. A. Fraley, f~slL~BC Q§§~§.
2uigg, Technical Manual TM-2, Department of computer
Science, UniverSity of British Columbia (1977)

[210] M. S. Powell, "Experience of Transporting and using
the SOLO Operating System", Sof1~£~== Eracti£Si MQ
t!E~rigg£g, 2, 7, 561-569 (1979)

[211] T_ W. Pratt, "Control computations and the Design of
LOOp Control struc tures", .1ilg Tr~ug£tigl!§. gIl
~Qf1~aI.§ ~iueerinq, ~=!!., 2 (1978)

(212]

(21 3]

[214]

[215]

[216]

[217]

W. C. PI:ice, "What is a Textfile?", ~£al li§!.§, 9 &
10, 42-42 (SeptembeI: 1977)

J. Pugh and D. Simpson, "Pascal
Evidence", ~2.!!U?J!1SiI. Bulletin, 1,
1979)

ErI:oI:s-- Empirical
19, 26-28 (March

P. P. Fansom, "Pascal SUI:vey", ~~l lill§., 17, 57-58
(MaI:ch 1980)

B. W. Ravenel, "TowaI:d a Pascal StandaI:d",
~ompute~, ll, 4, 68-82 (1979)

8. W. Ravenel, "Will Pascal be the Next Standard
Language?", £QIIP£ON 12 12i.9§st of ~§£2' IEEE, 14'1-1116
(1979)

W. Femmele, "Design and Implementation of a
pI:ogramming System to SUppOI:t the Development of
Eeliable Pascal PI:o\jrams", prQ£eeding§. Q1 1he !!QI:kshoE
2n B£l~sQle Sofi~~§, Bonu, ~£msn~, 73-87, Carl
Hanser VeI:lag, Munich (1979)

[218] G. H. Richmond, "PI:Oposals for
liSi~§1§11§I., 8, 12-14 (May 1977)

Pascal",

(219]

[220]

G. Richmond (ed.), ~~~l New§.lett§£, University of
Colorado Computinj Center, BouldeI:: No. 1 (January
1974), §IGPLAli Nol~£g§., 2, 3, 21-28 (1974); No.2 (May
1974), ';;lli~l.AN lioticSi§, 2, 11, 11-17 (1974); No. 3
(February 1975). §IGP!,AN Notices, .11, 2, 33-48 (1976);
No. 11 (July 1976) (See also A. Mickel and R. Shaw)

M. Roberts and E. Macdonald, "A Resolution of the
Boolean-Evaluation Question --OI:-- if not Partial

(221 J

[222]

[223]

Eval~ation .then Conditional Expressions", Pascal !g!§,
13, 63-65 (December 1978)

P. Roy, "Linear Flowchart Generator for a Struct~red
Lang~age", ~IQ.f!.!l!. Notic~, 11, 1" 58-64 (1976)

H. Rubenstein, "Pascal Printer Plotter",
~§l~~, 1, 9-16 (February 1977)

A. audmik, "Compiler Design for Efficient Code
Genera tion and Program optim ization", 3.llin!.!! Notices,
H, 8, 127-38 (1919)

[224] C. Runciman, "Scarcely Yariabled Programming
Pascal", SIGPLAN Noti~, 1!, 1" 97-106 (1979)

and

(225]

[226J

(227]

(228]

[229]

A. H. J. Sale, "Stylistics in Languages with Compound
Statements", Australian Comput~ .il2YU!al, 12, 2 (1978)

A. H. J. Sale, "strings and the Sequence Abstraction
in Pascal", softva~~ fractice ~ ilmerienc~. 2,
671-683 (1979j

A. H. J. Sale, "Implementing Strings in
pascal--Again", Soft!~ Practi£e and ~rien~, 2,
839-841 (1979)

A. H. J. Sale, "A Note on Scope, One-Pass Compilers,
and Pascal", AYstralian £Qmputer Scien~§
£2.!lll!l!mi£a Hons 1, 1, 80- 82 (1979)

A. H. J. Sale, "Conformant Arrays in Pascal". Pascal
Nel!§, 17, 54-56 (!larch 1980)

[230] A. Sale, "A Note on scope, One-pass Compilers, and
Pascal", Pascal ~§, 15, 62-63 (September 1979)

[231] A. Sale, "The Pascal Validation Suite-- Aims and
Methods", Pascal !~, 16, 5-9 (October 1979)

[232] A. Sale, "Scope and Pascal", SIGPLAN Noti£es, j!. 9,
61-63 (1979)

[233] A. Sale, "General Thoughts on Pascal Arising out of
Correspondence Between Southampton and Tasmania·,
~al l!ewslet!~, 6, 45-47 (November 1976)

[234 J A. Sale, "Pascal Stylistics and Reserved Words".
softvar~~ Rractice ~ ~rience, 2, 821-825 (1979)

[235J A. Sale. "Some Observations on Pascal and Personal
Style", Rll!i£lll Nev§. 17, 68-71 (March 1980)

{236] Y. Santhanam, "A Hardware-Independent Virtual

[231]

[238]

[239]

Archi tecture for Pascal",
f&Q£~di~g§, !ft, 637-48 (1979)

J. B. Saxe and A. Hisgen, "Lazy Eval~ation of the
File Buffer for Interactive I/O", ~!i£al ~!.§, !2. 1J,
(December 1979)

S. schach, "Tracing the Heap", Rascal !~!§, 15, 67-68
(September 1979)

S. R. Scaach, "A portable Trace for. the Pascal Heap",
Softwa~~~ f~~ ~ag ixperience, 1Q, 421-426 (1980)

[240] H. Schauer, "Micropascal-- A Portable
Processor for Microprogramming Ed~cation",
.I.. (!!.!i!l!gillnds), 2, 2, 89-92 (1979)

Language
iuromigQ

(241]

[242 J

[243]

[244]

H. Schild, "Implementation of
Language pascal", Lectur£ ~
UihemaUcal ~yste!!l§, 12. (1972)

the Programming
in !conomi£s ~

J. w. Schmidt, "Some High Level Language Constructs
for Data of Type Relation", .!Q! TrgnsactiolUi .lm
Database ~yst£ms, ~, 3, 247-261 (1977)

F. B. Schneider and A. J. Bernstein, "Scheduling in
Concurrent pascal", Q~at~ SYstems Rgy~, 11, 2,
15-20 (1978)

G. M. Schneider, "The Need for Heirarchy and
Structure in Language Management", ~gl ~§l~,
6, 34-34 (November 1976)

{245J G. 1'1. Schneider, "Pascal:
£2!!l2~!g!, ~, 4, 61-65 (1979)

An Overv iev",

[246J G. M. Schneider, s. W. weingart and D. ft. Perlman. An
.l!l.troggction to proqrammin.g and ~!!lem ~olviqg with
fll§£lll, Wiley, New York (1978)

(247] M. J. R. Shave, "The Programming o:f
Belationships in Dynamic Environments",
g~acti~ and ~~er~£~, ~, 199-211 (1978)

Structural
softllare--

[248] R. Shaw (ed.). ~!~, Digital Equipment corp.,
Atlanta, Georgia: No. 17 (March 1980), No. 18 (!lay
1980) (see also A. Mickel and G. Richmond)

[249J K. A. Shillington and G. M. Ackland (ed.s). UCSD
Pa~~a1 X~~2n 1.2, Institute for Information systems,
uni versity of California, San Diego (1978)

{250] M. Shimasaki, S. F~kaya. K. Ikeda. and T. Kiyono. "An
AnalYSis of Pascal Programs in Compiler Writing",

tv
a

20ft~~== Practice ~nd Experience, 1Q, 149-157 (1980)

(251] S. K. Shrivastava, "Seguential Pascal with Recovery
Blocks", 2oftwar!C= f£~cti£~ img ~peJ;:i!:l!l9l, ft.
177-185 (1978)

(252] s. K. Shrivastava, "Concurrent Pascal with Backward
Error Recovery: Language Features and Examples",
Software-- Practice llllg ~~ien£~. 2. 1001-1020 (1979)- -----

[253] s. K. Shrivastava. "Concurrent Pascal with Backward
Error F.ecovery: Implemen tation", Softllar~ practic~
gnd EXP!:lrien£!:l, 2. 1021-1033 (1979)

[254] A. Silberschatz, "On the Safety of the I/O Primitive
in Concurrent Pascal", £2mguter ~Jll. 22. 142-45
(May 1979)

(255] A. silberschatz. R. B. Kieburtz and A. J. Bernstein.
"Extending Concurrent Pascal to Allow Dynamic Resource
Management", lEE.!:; Tra!l.§a,ctio!!.2 Q!! Software
Enll~ri!l9.. SE-,2, No. 3 (May 1977)

[256] A. Singer, J. Hueras and H. Ledgard. "A Basis for
Executing pascal Programmers", SIGPLAN !Qtices. 11. 7.
101-105 (1 977)

[257] R. L. Sites, "Programming Tools: Statement Counts and
Procedure Timings". ~AN Noti~. 11, 12, 98-101
(1978)

[258J f. L. Sites, "Moving a Large Pascal Program from an
LSI-l1 to a Cray-l". !:~cal JigJ!§. 13. 59-60 (December
1978)

[259] R. L. Sites and D. R. Perkins, [ni~!:l£2al f=£od~
Q~finitiQ!!. Y!:l£§iQ!! (Q.£), California University, San
Diego (January 1979)

[260] N. Solntseff, "/lcMaster Modifications to the Pascal
6000 3.4 System", !:;2!!illJl.!:~!: Scie!!£ji :r~chni£Jll !Qte
74=~1, /lcMaster University, Ontario, Canada
(November 1974)

[261] N. Solntseff and D. Wood, "Pyramids: A Data Type for
!'latrix Representation in Pascal". lilT. 11. 3, 344-350
(1977)

[262] A. Springer. "A Comparison o.f Language C and Pascal",
IBM Technical Report EQ. G3l0-~. IBM Cambridge
$cientific-Center, Cambridge. Massachusetts (August
1979)

[263] J. Steensgaard-Madsen, "More on Dynamic Arrays in
Pascal", ~~.N 1i2.ti£ji§, 11, 5, 63-64 (1976)

(264] J. Steensgaard-Madsen. "Pascal-- Clarifications and
Recommended Extensions", !~ Informati£g, 1£. 73-94
(1979)

[265] N. Suzuki and K. Ishihata, "Implementation of an
Array Bound Checker", ~!!ternal .R.!:lPQf..!: 511 the
Q~pg£tm!:lnt 51f compute£ Scienc!:l, carnegie-Mellon
University (1976)

[266] M. Takeichi, ~al compile£ for .!:1!~ FA£Q!1 23Q
QS2/V2, University of Tokyo (1975)

(267] A. S. Tanenbaum, Pa§£Jll-U ~~l, Vrije University.

[268J

1269]

[270]

[271]

[272]

Amsterdam (1977)

A. S. Tanenbaum. "A Comparison of Pascal and Algol
68", The ~p!!te£ ,LQ!!rnal, n. 4. 316-323 (1978)

H. D. Tennent. "Another Look at Type Compatibility in
Pascal", 2of~= l' racti£!:l llllg ~er iell£ji. ft.
'129-437 (1978)

1<. D. Tennent, "A Denotational definition of the
Programming Language Pascal". ~chIli£al ~ort 77-47.
computing and Information Science, Queen's University,
Canada (1977)

R. D. Tennent, "Language Design Methods
Semantic principles", ACI! Informatica, ft,
(1977)

Based on
2, 97-112

F. D. Tennent, "\ Note on Files in Pascal", lilT. 11.
3, 362-306 (1977)

[273] D. Thibaalt and p. Mancel, "Implementation of a
Pascal Compiler for the CII Iris 80 computer", ~IGpll!
liQ.!:i£2§. §, 6, 89-90 (1973)

[274] E. D.Vavra, "What Are Pascal's Design Goals?", Pa§£Jll
li~§, 12, 34-35 (June 1978)

[275]

[276]

[277]

T. Venema and J. des Rivieres, "Euclid and Pascal".
SI§gb!! EQti~§. 11, 3, 57-69 (1978)

W. de Vries, "An
Pascal for the PDP
Pascal compiler",
Enschede (March 1975)

Implementation of the Language
11 series. Based on a Portable
I§£t~isc1!!:l ~~§£1!QQl I~nte,

S. P. Wagstaff, "Disposing of Dispose", ~al l!~![§,
9 & 10, 40-41 (Septem ber 1977)

tt
1'.
ox

[278] B. wallace, "More on Interactive Input in Pascal".
~lg£LAli Noticg~, lj, 9, p.76 (1979)

(279] A. I. Wasserman, "Testing and Verification Aspects of
Pascal-liKe Languages", Com(!uter 1angu2gg~, !i, 155-169
(1979)

(280] D. A. Watt, "An Extended Attribute Grammar for
Pascal", ~PLAN 1l.Qtices, 1.!!, 2, 60-74 (1979)

[281] c. A. G. Webster, IUlIoduction !Q. g~£gl,
London (1976)

Heyden,

[282] J. welsh, "Economic .Range Checks in Pascal",
~I1'!!5H:~ f£!!cti£~ s!l.!! Experience, .§, 85-97 (1978)

(283 J J. We Ish and D. W. Bustard. "Pascal-plus-- Another
Language for Modular Multiprogramming", Software--
fI!!cticg .snd ~tii~~, 2, 947-957 (1979)

(284J J. Welsh and J. Elder, Introduction 12 Pascal,
Prentice-Hall International, LOndon-(1979)

[285] J. Welsh and R. M. McKeag, st£J!£lJ!Ied System
ProgI!!!!!.!lli!l9. Prentice-Hall, Englewood CliffS, New
Jersey (1980)

[286] J. Welsh and C. Quinn, "A Pascal compile.r for the ICL
1900 Series Computers", ~oft!.s~== Practicg !!!lg
:t:;.li£tilgll£g, ~, 73-77 (1972)

[287) J. Welsh, W. J .• Sneeringer and C. A. R. Hoare,
"Ambiguities and Insecurities in Pascal", Softwar~=
pr!!£li£~ 2!1!l l<,lil2.§£i~£g, 1, 685-696 (1977)

[288] B. A. Wichmann and A. H. J. Sale, "A Pascal Pcocessor
Validation Suite", Pas£al 1!!2J!§, 16, 12-24 (October
1979)

(289) K. Wickman, "Pascal is a Natural",
(March 1979)

(290] R. wilsker, "On the Article' What to do After a
While"', ~! New§, 13, 61-62 (December 1978)

[291 J I. R. Wilson
Introduction
(1979)---

and A. M. Addyman, I
to f!!§£!!!, springer-Verlag,

Practical
New York

[292J N. Wirth, "The Design of a Pascal compiler",
~ftw!!.J;§':::: fracti~ snd E,lilliie!!£§, 1. 309-333 (1971)

(293J N. Wirth, "The Programming Language Pascal and its
Design criteria", High Level LangU!!sg§, Infotech State

I

of the Art Report 7 (1972)

[294] N. Wirth, Pasca!-s: ! subs§l ~nd !~ implementation,
Berichte Nr. 12, Institut fur Informatik,
Eidgenossische Technische Hochschule, Zurich,
switzerland, 1975

(295] N. wirth, "The Programming Language Pascal". ACTA
IntQ£m2!i~, 1, 35-63 (1971)

[296] N. Wirth, "The Programm in g Lan guage Pascal (Revised
Re port) .. , Berich!!2 .!!g£ FacMIYJ1£§ ~Q!!£JUgr-
.Ri§§gU§£n211,gu. 2., zurich, 49 (November 1972)

[297J N. Wirth, "Comment on a Note on Dynamic Arrays in
Pascal", ~rgPL!li lioti~§, 11, 1, 37-38 (1976)

(298J N. Wirth, ~n ~asca!~, £Qgg g~~~liQ!l' and the CDC
§.QQQ ~Q!llill!1ti, STAN-CS-72-257, computer science
Department, Stanford University, Stanford, 28 (1972)

[299] N. Wirth. "An Assessment of the Programming Language
Pascal", ~ti!l!. liotices, lQ, 23-30 (1975)

[300J N. Wirth, Algorilhms ± Qll~ Strill<l:.J!~2 .:: f£Qgram§,
Prentice Hall (1976)

[301} N. Wirth, 2.Y2tem~tic f£QG£!!!!!.!ll;i!l9.: !!llnirodu£tillll,
Prentice Hall, E9g1ewood CliffS, New Jersey (1973)

(302) D. Wupper, "Some Remarks on
Pascal'''. Softwace-- practice
247-48 (1980)----- ---

• A Case for Acquiring
.snd ~.li£grience, 1~,

[303] M. Yasumura, "Evolution of Loop Statements", SIGPLA.!!
Noti£~§, 1~, 9, 124-129 (1977)

N
N

REVIEW: PASCAL With Stsle! Programming Proverbs

"PASCAL With St~le: Programmirls Proverbs" (Ha~den Book Compans?
Rochelle Park, New ,Jerses, USA, 1979) is afl addition to R[BASIC, C0801_,
FORTRAN] With Style: F)ro~ramming Proverbs" b~ Hel1ry Led~ard (with
various others). "PASCALH is co"-alJthored by Paul Na~in, and John He~Jrasl

All three 3uth!Jrs are at the lJniversity of MassachlJSettSt This volume,
like its predecessors, is Hirltended 'for ••• pro~rarnmers who want to
wl'ite carefulls constructed, readable proSrams". feel compelled to
poirlt out that "PASCAL R is used throughol,Jt this book ifl place ()f the
tr;3ditional, and correct, "Pascal-, 311d that this error is s~mptomatic
of nl~ mairf criticism of °PASCAL With StylpU (PWS for short).

What [_edgard, et al, have done is to sli~htl~ rework the previo!Js
books (I believe 9BASIC.t. B was fi,rst), 'fhe Pr()verbs are pith~~,

~~ometimes witty~ urulesB fOJ' pro~,·ammers. 'fhe present booiz shares the
F>poverbs with the others in the series~ This is all to the ~cJod. But
P3s~a] has beer! treated here as thou~tl is were like [BASIC~ F'()R'fRAN~
COBOL_]. And this is where Ledsard, et aI, have not done so well. 'rheY
have failed to address the crlaracteristics of Pascal which lnake it
differer1t from other langua~es. 'rhus~ they treat Pascal's name as thous~~

j,t were an a~ronsm~ because "F'ORTRAN s and IBASIC a al')d ·COBOl,a are
acr(1f1Ymso l'his app!'oa(~h is ~~lso reflected :in some suprising assertions.
On page 35 the~~ state that one Si'lould make SIJre all cOr)stal1t data i'tems
ar0 declarated as such. Finet In the next sel')tence~ thO~J~hr they say
that no e>:ecIJtable statemen't should Hmodifs u (redefille1) t~le value of a
cons'tant. Ir! Pascal, of course, constants simplY can nat be Hmodifiedn~

On page 82~ and elsewhere, identifiers such as uGAME_MOVF" are IJsed.
Pe~haps this WQ{Jld be l~~al :irl F'L/J, bllt not in Pascal I

Fl(perienced Pascal PT'osrRmmer~; readin~ I~WS would spot most (J'r 'tilese
(~!Jirks~ make a mental notey ~Ir)d ITlove alor~~t Tile novice, th()u~i1' CQIJld
ronceivabl~ be mislead, and that would be Inos't aI1no~iI1~~

F)WS is ~ letdawrl' not so mucil be(~alJSe of -the (trivial) errors o'f
cornmissior., but because of t~~p gaps le'P-l unfilled. Recursiol1' for
e~a;nple, is disR!is3ed witf1 10 shor't para~raphs. There is ~3 reference to
Us good deal of the literatt.!rp" being devoted to recursion (p.138)~ b!,Jt,
no specific references are siverl. But at least reclJrsion is mentioned:
~ointer t~pes (and their proper use) are totall~ iSnoret(. Structured
t~pps treated include only ar,·~?ys. I~er~,aps I Inisinterpret the alJttlors'
jnt€:;r';tion'::~~1 Ol.lt it. dops:, ~:;(?'(0n! t,hat in Pa~~cal~ (;;~~5.P":?!ci~3l1·3~ t.1-::~td

,'epresentation is an impoI'tilr1t psr-t (If makinS prOSralDS c()I~pretle~sible to
the h~Jrn2n mind, And m2kin~ pr(j~rams comprehensible (al1d correct) is what
p~o~rammjrl~ stYle is all abot,lt. Sets~ subranSesv i~'1d record tspps al'e
simpl~~ not treated.

Therp D~e a few rlisslir)~ !syntax erY'C)T'Sf Or) pa~e 118, f()T example, a
U(H is oOlffiitted in a prO(~edllre declaration. This is curious, and I
~er)tiorl it Qnl~ because parts of the book appear to have been printed by

Decwriter, implsin~ the text was machine-'-readable. Wh\~ not all of :it1

'fhat wa~~ the~ could have done some editing and had a compiler look at
the e}(amples a ~ood wa~ to eliminate errors. (In fact, Kerni~h3n and
Plall~er used this techni8lJe if1 "Sof'tware 'TaoIs H (McGraw'-Hill), whereil')
RATFOR was preserlted.)

ne~;pjte the above. PWS is not ~ IJseless book. I 'fOl,Jnd the secti()n
tl'eat,j,n~ tc)p-down techniaues to be useful. PWS de!;cribes o'lher
3Ppro5ches to problen! definitjooll/so1~Jtion and e~plains why thes fail so
often~ The authors l~~~~ (J~Jt in detail the process of sljccessive
refinement+ This is clear and to the p(J:intt 'file biblio~"aphs contains
the standard references to Wi,'tl" DiJkstra, etc., as wel:L as several
less well krlown sotJPces. The Pr(Jsramrnin~ Proverbs are warth readirl~ and
k_nowins. The~ are presented witt) explanations of wh~~ the\J 2l'e j,mpartdl~t~
and e}{amples are ~ivenl L_ed~ard's pretty--~rinting pro~r2'fi is presellted
in an appendix~ This js written in fine style, as it should be~ Sadl~~~
no information is ~iverl Of1 the possibilit~ o'P aCG'Jirin~ 2
machine--readable versic)n of -the pro~rBmt A lis-t of stsle rl_JIes is
develc)ped bs the alJthors. M~lnY people writin~ Pascal ~ol,lld benefit from
readintl and followins them. Others mi~ht Inake use af tt1em as a s'tarting
point if1 developin~ their own stsle pl,J:Les.t

Final]_~, there ~Ire a lot of pe()p}e who do not ever~ 'til:il')k abolJt
s;tyle? o~ who think it is not impor'ti~n't, or wors't of all, who tl'lil1~ 'lhes
employ it bllt don't. PWS is cc)ncise, e2s~-to-re2dy 3nd tr0~ts s't~~le il~
reSaJ'd to a],~orjttlmic isslJes with reas()nablp SIJ(~cess~ Fc){ the pr()~r3'Dlner

who MRS learned the Synt3Y of I:)~~;cal, but Wt1(J 11as not learrled to express
alsorithms clearls, or how to 3PPT'()aC~1 problem~ in 311 or~2r)izeMY
mettlodj,cal fashiorl PWS c~ould be 2 revelation. Sa evel') if SlltJ lise ~n0fi
-::~t~:~le (ar-f:': ~:~ou '£!;ur€-~ ~~DU dD-'r how CID ~:~D:.J Vnnl,.,J°'j:')!1 ~::IOU IYI:i~,~ht I,"ant too '::';'-:'i~n(.1
$6.95 fDr PWS to lero,d to SO!Jr colleaglJes ,- after all, YOU might h::lve to
read their code somedaso

Christopher Amles
8 t)/02/()9

Universits of Mir)nesc)ta
A g r- i CI..; 1. tlJ 1'.31 [;< t(-:,:·n~:,"i. oro! :::;f'~ r'-.. - i 0:' i:~

·ne',; LnTfC"" HaJ J
St~P2ul? M:inne!io'ta 55108 lJSA

--------r • ~-------

~-

I

cr

Backissues of Pascal News(letter) from Time Zero - Andy Mickel 80/07/11.

Pascal Newsletter was started by George Richmond at the University of Colorado Computing
Center in early 1974 primarily to spread information about the distribution of the CDC
Pascal compiler and the Pascal-P compiler and to answer questions about other issues.
He edited issues 1 through 4. In 1976 Pascal User's Group assumed control of Pascal
Newsletter. I changed the name to Pascal News with issue 9. Below are some facts about

issues 1 through 16.

Date Issue pages (numbered) Estimated printed copies

III 8 (8) 200+SIGPLAN Notices 1974 Mar
Jan 1974 Pascal Newsletter

1974 Pascal Newsletter 112 18 (18) 250+SIGPLAN Notices 1974 Nov
May
Feb 1975 Pascal Newsletter 113 19 (19) 400+SIGPLAN Notices 1976 Feb

Aug 1976 Pascal Newsletter 114 103 (103) 500+230 sent by PUG

Sep 1976 Pascal Newsletter 115 124 (65) 1150+350 UK

Nov 1976 Pascal Newsletter 116 180 (91) 1150+350 UK

Feb 1977 Pascal Newsletter 117 90 (45) 1150+350 UK

May 1977 Pascal Newsletter 118 128 (65) 1150+450 UK

Sep 1977 Pascal News 119/l0(combined) 220 (113) 3500+600 UK+150 AUS

Feb 1978 Pascal News 1111 202 (105) 3500+600 UK+150 AUS

Jun 1978 Pascal News 1112 135 (69) 3500+600 UK+150 AUS

Dec 1978 Pascal News 1113 239 (123) 4000+750 UK+250 AUS

Jan 1979 Pascal News 1114 61 (61) 4100+750 UK+250 AUS

Sep 1979 Pascal News 1115 247 (125) 4000+750 UK+250 AUS

Oct 1979 Pascal News 1116 305 (155) 4000+750 UK+250 AUS

At PUG (USA) there are approximately 700 copies of 9-12 and 1100 copies of 13-16 left.

119/10, page 11 describes the contents of Pascal Newsletters 1-8.
1111, pages 16-19 completely describe Pascal Newsletters 5-8.
1113, pages 16-18 completely describe Pascal News 9-12.

If yqci want indexed information about Pascal compilers, the story behind the Pascal
Stan(dards activity, the complete set of listings of software tools, and ~ :omplete
roster of the PUG membership 1976-1979, there is ~o substitute for obtalnlng all the
available backissues: 9-16.

Review of Pascal News 13, 14, 15, and 16. - Andy Mickel 80/07/11.

I would like to urge all new PUG members to consider obtaining backissues 13-16 so
that you will be better oriented to events in our recent past.

To describe the highlights: 1113 and 1115 are the meaty issues. 1113 contains the most
recent, complete summary of all Pascal compilers to present. The articles in 1113 are
mostly centered on a lively discussion of control structures. 1115 describes a lot of
standards activity and the resolution of the future of Pascal News and PUG.

1114 is completely devoted to Working Draft 3 of the Pascal Standard, and 1116 is
completely devoted to a Validation Suite of more than 300 Pascal programs.

Pascal News 1113, December, 1978, Pascal User's Group, University of Minnesota Computer
Center, 239 pages (123 numbered pages), edited by Andy Mickel.

Editor's Contribution: Thanks to those people at the University of Minnesota who have
given Pascal News the shadow of their smile, FORTRAN - The End at Last? Recent
events: Employment opportunity, Concurrent Pascal, NASA and the Galileo Project,
Conventionalized Extensions, Standards, Pascal Machines, Pascal Usage, Explosion

in Industry Literature. Pascal User's Group / Pascal News status: why we are behind.

Here and There; News from Pascalers; a very large Pascal in the News; another Pascal
T-shirt; Pascal in Teaching; Books and Articles; Conference reports: French AFCET
Pascal Group, Australian Computer Science Conference, SIGPLAN ACM meeting, UCSD Pascal
Workshop. A Review of Pascal News 9/10, 11, and 12. Roster Increment 78/04/22 - 10/31.

Applications: A review of Software Tools by Rich Cichelli; Algorithm A-I comments, A-3
Determine Real Number Environment. Software Tool S-3 Prettyprint; S-4 Format.

Articles:
"Moving a Large Pascal Program from an LSI-II to a Cray-l"
- Richard L. Sites
[A 2400-line Pascal program was moved between 2 machines whose CPU speed ratio is
150 to 1. The task proved easy and 6 portability problems are outlined. Lack of
adherence to standards and incompatibilities in the run-time environment were the
major areas of difficulty.]

"On the Article
-Roy A. Wilsker
[An examination
"psychological
"efficiency. 11

original paper

'What to do After a While'"

of a table search algorithm is made with respect to considerations of
set," "proving programs correct,11 "the spirit of Pascal," and
Conditional evaluation of Boolean expressions as advocated in the
is not necessarily the solution.]

"A Resolution of the Boolean Expression-Evaluation Question or If Not Partial
Evaluation Then Conditional Expressions"

- Morris W. Roberts and Robert N. Macdonald
[The language features of case expression, value block and the conditional expression
are recommended as additions to Pascal taken from the precedents of ALGOL-60 and
ALGOL-W. An analysis of several control structure constructs is given.]

"What to do After a While .. Longer"
- T.M.N. Irish
[A thorough reply to Mullins and Barron's article "What to do After a While"
arguing against conditional Boolean expression evaluation. He says we should not
l) write programs that rely on ill-defined factors, side-effects of functions, or
undefined values, 2) depend on implementors to let us get away with them, 3) tell
implementors to let us get away with them, or 4) complain if implementors use any
means they can devise to prevent us getting away with them.]

"Know the State You Are In"
- Laurence V. Atkinson
[A number of recent articles have highlighted problems with multiple exit loops
in Pascal. Many of these problems disappear when a loop is controlled by a user
defined scalar. The state transition technique is applicable to a number of
programming situations and to multi-exit loops in particular.]

Open Forum:

78/05/25 Sam Calvin to Andy Mickel: [Department of Defense Dependents schools use
of Pascal in Math programs to teach K-12 students with personal instruction]

78/06/08 Dave Rasmussen to Andy Mickel: [Building Automation Systems process control
language using Pascal, at Johnson Controls in Milwaukee]

78/04/24 C. Edward Reid to Andy Mickel: [corrections to letter of 78/03/16 in PN 1112 p47]
78/12/01 Andy Mickel to PUG members: [The future of PUG and Pascal News; turning the

editorship over to someone else. A proposed constitution]
78/07/17 Charles L. Hethcoat III to Andy Mickel: [The reference to "Implications of

Structured Programming for Machine Architecture" by Andrew Tanenbaum in CACM
describing EM-l a compact instruction machine.]

78/07/28 C. Edward Reid to Andy Mickel: [Pointing attention to Dijkstra's article
"DOD-I: The Summing Up"in SIGPLAN Notices and highlighting shortcomings]

78/07/29 Ralph D. Jeffords to Andy Mickel: [Annoucing the construction of 2 software
tools in Pascal: LEXGEN and LALR1 for Syntax Parsing and Generating.]

J:

" ("

J:
r

u

78/08/23 Jim Merritt to Andy Mickel· [The impact and future of Pl· 1 .
on personal computer systems. ·Very optimistic.] asea lmp ementatlons

78/08/2Q Chuck Beauregard to Andy Mickel: [Pascal jobs on the West Coast]
78/09/08 Eiiti Wada to Arthur Sale: [Experience with teaching Pascal at the u· . of Tokyo) nlverslty

78/09/23 Rod Montgom r tAd M· k 1 [. e yon y ~c e: News 1n New Jersey about recent microcomputer
Pascal events and the blossoming interest in UCSD Pascal]

78/07/10 Kenneth Wadland to Andy Mickel: [News about teaching Pascal at Fitchburg State
Colle~e ~nd support for Charles Fischer's method of standardization)

78/10/18 ~llilam C. Moore to Andy Mickel: [Need for a Pascal book with complete compiler
speclfics.)

78/10/10 ~. J. Maine to Andy Mickel: [Pascal developments at Computer Automation-
complIers and jobs)

78/09~25 H.H.Nag:l to Andy Mickel: [General reactions to PUG's work; the DECSystem 10
lmplementatlon and incorporation of otherwise)

78/? Karl Fryxell to Andy Mickel: [Reaction to Judy Bishop's discussion
and conditional loops] of subranges

78/08/16 Richard Hendrickson to Andy Mickel: [Problems with performance of CRAY Pascal
compared to CRAY Fortran and problems with Pascal in general.)

78/09/04 Laure~ce Atkinson to Andy Mickel: [Comments on programming logic--use of
Booleans l~stead of two-state scalars; negative logic]

78/09/27 Ju~y B1Shop to T.M.N.lrish: [Clarification of points of agreement and disagreement
about What to do after a While.")

Pascal Standards:
Report by Andy Mickel on: corrections to EBNF by 'Niklaus Wirth; Distribution plans
for the Validation Suite; Working Draft/3 will appear as Pascal News #14; News from
the Internation Working Group on Pascal Extensions.

78/01~30 Niklaus Wirt~ to Andy Mickel: [Suggesting the formation of a small group of
lmplementors to lmplement agreed-upon extensions]

78/07 Arthu: Sal:: Consensus Position on Case defaults--adding an otherwise clause.
78/06~12 Brlan Wlchmann to Andy Mickel: [Announcement of a Pascal Test Suite which

lS under development.)
78/09/15 Tony Addyman:'Progress Report on the Standard Number 1. Plans for producing

a draft for public comment by the BSI and submission to ISO.
:8/09/~2 Rick Shaw to Andy.Mickel: [Will act as USA Standards liason to Tony Addyman;

wlll draw up program lnterchange guidelines and gather test programs)
78/09/27 Andy Mickel to William Hanrahan: [Urge that Pascal standardizati~n be left

to the BSI and not undertaken separately by ANSI.)
78/10/23 News Release by CBEMA on behalf of ANSI of the formation of ANSI committee

X3J9 for Pascal standardization.
78/11/10 News Release by CBEMA on behalf of ANSI regarding first X3J9 meeting.

Implementation Notes:
General Information, Implementors Group Report, Checklist, Portable Pascals:
Pascal-P, Pascal P4--Bug Reports, Pascal Trunk, Pascal J; Pascal Variants:
Pascal-S, Concurrent Pascal; Modula; Feature Implementation Notes: INPUT and
OUTPUT, Improved Checking of Comments, Lazy I/O; Machine-Dependent Implementations:
Altos ACS-8000, Amdahl 470, BESM-6, BTl 8000, Burroughs 5700, 6700, 7700,
CDC 6000, Cyber 70,170, 7600, Cyber 76, Cyber 203, Data General Nova, Eclipse,
DEC PDP-8, PDP-II, VAX 11/780, DECsystem 10,20, Heathkit H-ll, Hewlett Packard
21MX, 2100, Honeywell H3l6, IBM 360/370, Series 1, ICL 1900, 2900, Intel 8080,
Int:rdata 7/32, 8/32, Marinchip M9900, MOSTEK 6502, Motorola 68000, North Star
Horlzon, Northwest Micro 85/P, Prime P-300, Processor Technology SOL, Radio
Sh~ck TRS-80, SEL 8600, Siemens 4004,7000, Telefunken TR-440, TI-ASC, 980,990,9900,
Unlvac 90/70, 1100, Western Digital Microengine, Zilog Z-80,Z-8000; Index.

Pascal News # ~4, January, 1979, Pascal User's Group, University of Minnesota Computer
Center, 61 pages (61 numbered pages), edited by Andy Mickel.

Editor's Contribution: A special issue devoted to the Draft Pascal Standard. Notes
that Pascal the language and its development have been unique. The appropriateness
of letting Europeans standardize a; language with European origins.

The BSI / ISO Working Draft of Standard Pascal by the BSI DPS/13/4 Working Group.
Letter, Covering Note and Commentary by Tony Addyman; The Draft (6 sections +
index); Related Documents: A history, members of DPS/13/4 and the ISO proposal.

Pascal News #15, September, 1979, Pascal User's Group, University of Minnesota Computer
Center, 247 pages (125 numbered pages), edited by Andy Mickel.

Editor's Contribution: Why Pascal News #15 is so late and thanks for not glvlng up hope.
The future of PUG and Pascal News. Voting on the proposed constitution. Rick Shaw
~s new editor. Jottings on the standard, Validation Suite, Distribution problems,

and Pascal on Micros.

Here and There: Tidbits (news from Pascalers), a very large Pascal in the News,
Ada, Books and Articles including a Textbook survey, Conferences and Seminars
(4 Industry Seminars to be given on Pascal), Announcements for ACM 79 and IFIP 80
2 reports on the DECUS Pascal SIG ; Pascal session at ACl'. 78. PUG Finances 77-78;
Roster Increment to 79/05/14.

Applications: News: Business Packages available, Data Base Management Systems, Interpreters
Inter-language translators, Bits and Pieces. Software Tools: changes to S-l
Compare, S-2 Augment and Analyze on the Dec 10, S-3 Prettyprint clarifications,
8-4 Format confessions, S-5 ID2ID documentation + program, S-6 Prose documentation +
program. Programs: P-l PRINTME, Algorithms: A-3 Perfect Hashing Function.

Articles:
"A Contribution to Minimal Subranges"
_ Laurence V. Atkinson
[Enumerated and subrange types are two of the most important features of Pascal.
Their contribution to transparency, security and efficiency is often not fully
appreciated. Their under-utilization is one of the (many!) features I repeatedly
criticize when reviewing Pascal books. Minimal sub ranging is desirable in Pascal.
One benefit of a state transition approach to dynamic processes, is that minimal
sub ranging can be achieved.]

"A Note on Scope, One-Pass Compilers, and Pascal"
- Arthur Sale
[The scope rules set out in section 2 and now incorporated into the draft Pascal
Standard are sufficient to permit even one-pass compilers to reject incorrect programs.
The suggested algorithm adds an overhead at every defining occurrence, but since

uses exceed definitions in general it may not be too expensive in time to implement.
In any case, what price can be put on correctness?]

lip as ca1-1 - Interactive, Conversational Pascal-Sl!
- Richard Cichelli
[Pascal-I is a version of the Wirth Pascal-S system designed to interact with the
terminal user. The system contains a compiler, interpreter, text editor, formatter,
and a run-time debugging system. A description of commands and a terminal sesstion

are given.)

I1Tracing the Heap"
- Steve Schach
[The package HEAP TRACE outlined in this paper aids the user to debug his programs
by providing information as to the contents of the records on the heap. Each
field is named, and its value is given in what might be termed Ilhigh-1evel format".]

"Why Use St.ructured Form'ltting"
~, John Crider
["Structured Formatting" is a technique for prettyprinting Pascal programs. It is
based on a single indented display pattern which is used to display almost all of
the structured statements in a Pascal program.]

Open Forum:

79/01/30 David Barron to Andy Mickel: [Thoughts on the future of PUG prompted by Open
Letter in #13. PUG has succeeded beyond all reasonable expectation because it
has been informal and unconventional.]

79/03/12 Paul Brainerd to Andy Mickel: [Understands the time to produce Pascal News
and we should pick a new editor carefully and perhaps be realistic about price.)

79/03/19 John Earl Crider to Andy Mickel: [Pascal News has become an impressive journal
that .". ,I' am sure serves most other PUG members as their major link to Pascal
developments.)

79/03/19 John Eisenberg to Andy Mickel: [The Bald Organization--An Anti-Constitution
For Pascal User's Group)

79/05/01 Jim ,Miner to Friends of PUG: [Save the PUG! What is PUG? On the Proposed
Constitution. Where Now, PUG?]

79/05/12 Rich Stevens to Jim Miner: [I agree with Save the PUG. Would rather see a
smaller, more frequent publication.]

79/05/18 Arthur Sale to Jim Miner: [I agree with Save the PUG. Constitution would
effectively eliminate international cooperation by ignoring it.]

79/05/20 David Barron to PUG membership: [I agree with Save the PUG. The only real
function of PUG is t.o publish Pascal News.]

79/05/11 Gregg Marshall to Andy Mickel: [I oppose any movements which advocate
dissolution, or radical change from the current editorial policies.]

79/05/30 Bill Heidebrecht to Andy Mickel: [PUG must be kept alive, independent, and
international--it has not outlived its usefulness.]

78/09/30 Tom King to Andy Mickel: [Use of Pascal on an AM-lOO system in Winnemucca,
Nevada with varied applications]

78/11/02 John Eisenberg to Andy Mickel: [Arguments over the use of Pascal and Pascal,
Standards and extensions.]

'78/10/16 Robert Cailliau to Andy Mickel: [Comments 'on Pascal News #12 standards and
extensions.]

78/10/22 C. Roads to Andy Mickel: [Pascal in Music applications in the Computer Music
journaL]

78/11/07 Laurent 0; Gelinier to Andy Mickel: [Applications on a large file processor
and intelligent terminals network)

78/11/08 Eugene Miya to Andy Mickel: [Jet Propulsion Labs and Pascal on their 300
computers: the Deep Space Network and need for validation programs.]

78/11/27 Paul Lebreton to Andy Mickel: [News on the Motorola 68000 and Pascal and
Bus standards and other hardware conventions.]

78/11/21 Sergei Pokrovsky to Andy Mickel: [Use of a double-variant node in Pascal
used to create a syntax for graph structures.]

79/03/26 Bill Marshall to Andy Mickel: [Deviations in 4 compilers for TRUNC and ROUND]
79/02/09 Curt Hill to Andy Mickel: [Pascal at the University of Nebraska: good

report on the Stanford 360/370 compiler.]
79/03/08 James Cameron to Andy Mickel: [The problems of extensions might be solved by

also providing a superset language "PascalII"]
79/03/13 Roger Gulbranson to Andy Mickel: [Reply to Richard Cichelli's claim that

complex numbers are easy to create in Pascal. Probably need an Operator declaration]
79/04/30 B. J. Smith to Andy Mickel: [The production of various Software Tools in

Pascal by Interactive Technology INC. including a DBMS and business applications.]
79/07/20 Peter Humble to Andy Mickel: [Need for conformant arrays in Pascal for numerical

applications]
79/06/05 George Richmond to Andy Mickel: [Pascal at Storage Technology Corp. Errors

in the Pascal-P compiler.]
79/06/07 Bob Schor to PUG: [Pascal at Rockefeller University and on PDP-II's]

79/06/29 Jack Dodds to Tony Addyman; [The need for conformant arrays in Pascal for
the, uS,e of li,brari,es and a better definition of EXTERNAL]

79/09/20 Andy Mickel to Ken Bowles: [Pascal~P is public~domain software and UCSD Pascal
is based on Pascal~P, yet Improper modification history and credit is made.)

Pascal Standards.

Progress Report by Jim Miner, with help from Tony Addyman, Andy Mickel, Bill Price and
Arthur Sale. Progress of the BSI/ISO standard. Standards activity in the United
States. Other National Standards Efforts. ANSI charter documents for 2 committees.

Report of the ANSI X3J9 meeting in Washington by Richard Cichelli. Lots of politics.

Statement by Niklaus Wirth supporting the ISO Standards activity by Tony Addyman.

79/03/19 News Release by CBEMA on behalf of ANSI regarding the solicitation of public
comments on the ISO draft standard for Pascal.

79/08/31 Experiences at the Boulder, Colorado meeting of lEEE/X3J9 committee by Andy
Mickel. More politics.-

Validation Suite.

Announcement by Arthur Sale of the distribution centers and prices for the forthcoming
Pascal Validation Suite.

Implementation Notes:
Portable Pascals: Pascal-P, Pascal-E. Pascal Variants: Tiny Pascal, Pascal-S,
Pascal-I, Concurrent Pascal, MODULA, Pascal-Plus. Hardware Notes: Pascal
Machines. Feature Implementation Notes: Comment on Lazy I/O; Wish list to
implementors; Note to all implementors; The for statement. Checklist. Machine
Dependent Implementations: Apple II, BESM-6~urroughs B5700, CDC 6000iCyber 70,170
Data General Eclipse, DEC PDP-II, LSI-II, Digico Micro l6E, Facom 230-45S, GEC 4082,
Honeywell Leve16, Level 66, IBM Series I, IBM 360/370, ICL 1900, Intel 8080,8085,
8086, MODCOMP II/IV, Norsk Data NORD-lO, Perkin Elmer 7/16, 3220, RCA 1802,
SWTP 6800, Sperry V77, TRS-80, TI-9900, Zilog A-80.

Pascal News #16, October, 1979, Pascal User's Group, University of Minnesota Computer
Center, 305 pages (155 numbered pages), edited by Andy Mickel.

Editor's Contribution: A special issue devoted to the Pascal Validation Suite. Rick
Shaw is new editor of Pascal News; Thanks to everyone. How we put together an
issue of Pascal News. Final thoughts on the PUG phenomenon. Greetings from the
new editor and predictions of the next two issues.

The Pascal Validation Suite. Introduction to the special issue by Arthur Sale. Aims
and Methods of the Validation Suite. Version 2.2 of the Validation Suite.
Distribution Information, Distribution tape format and addresses.
"A Pascal Processor Validation Suite" by Brian A. Wichmann and Arthur H. J. Sale.
Listing of the 300+ test programs.
Four Safuple Validation Reports: introduction, UC B6700 compiler, Tas B6700
compiler, OMSI PDP-II compiler, Pascal-P4 compiler.
Stamp out bugs T-Shirt.

PUG FINANCES 1978-1979 (Actually through 79/12/12 just before transfer to Atlanta)

Here are the details for PUG(USA)'s finances for the 78-79 academic year. We have not
included PUG(UK) because they will report separately. PUG(AUS) never has reported.

PUG(USA) Summary of Accounts:
Income:

$ 196.53 1977-78 Surplus
334.94 1976-77 Surplus (forgot to include on 77-78 accounting!)
197.20 Interest on Bank Account
87.30 Contributions

5130.00 Sale of 513 sets of backissues (9 .. 12) @ $10
66.00 Sale of 33 miscellaneous backissues (5 .. 8) @ $2

132.00 Sale of 44 miscellaneous backissues (9 .. 14) @ $3
2500.00 625 subscriptions @ $4

10950.00 1825 subscriptions @ $6

$19593.97 Total income.

Expenses:
$ 181.00 People who still owe us money (bounced checks)

104.91 Mailing SIGPLAN meeting notices
319.45 Advance printing #14 - 200 copies

1541.00 Printing #14 - 3000 copies
3538.92 Printing #13 - 3000 copies
4650.95 Printing #15 - 4000 copies
6050.55 Printing #16 - 4000 copies

122.86 Postage due from returned issues
414.76 Postage #13
307.96 Postage #14
534.65 Postage #15
629.02 Postage #16
34.27 Miscellaneous photocopying costs, postage
50.48 UPS shipping of the files to Atlanta from Minneapolis

935.24 PUG(UK) 1977-78 rebate
784.90 Reprinting #12 - 500 copies

$20200.92 Total expenditure. Excess expenditure = $606.95

An attempt to assess the financial health of PUG:

Assets: $ 2988.86
1930.43
7000.00
4448.50

Bank Account Liabilities:

$16363.79

Computer Center Account
Cash sent to Atlanta to start up
Face value of 3566 backissues

on hand (=cost to print)

Total assets.

$ 606.95
6858.00

1808.00

830.00

78-79 defi c it
79-80 subscriptions collected

(132 @ $4 + 1055 @ $6)
80-81 subscriptions collected

(26 @ $4 + 284 @ $6)
81-82 subscriptions collected

(11 @ $4 + 131 @ $6)

$10102.95 Total liabilities.

I claim we didn't do too bad. Since 79/12/12 we have spent almost all of the remaining
cash here in Mi nneapo 1 is on repri nti ng backi ssues 9 .. 14. These details will be reported
with the 79-80 report by Rick.

Andy Mickel 80/06/24.

Computer Systems Represented by the PUG Membership 1976-1979.

Here is a list of the computer systems listed on All-Purpose Coupons by the 4676 different
members of Pascal User's Group from 76/03/03 through 79/11/01 (the last date for which
I processed PUG memberships). Duplicate listings from the same people on different
(renewal, change of address, etc.) coupons were eliminated.

Unfortunately I don't know all these computer systems so I may have many misplaced
(alphabetically by manufacturer); check through the whole list if you are looking for a
system in particular.

As PUG member A. J. Sutton so aptly stated on his 78/10/15 coupon: "cheers, but what does
this [computer system(s)] mean? Owned? Operated? Programmed? DeSigned? Delivered?
Desired?" I guess I meant using, so take these figures with a grain of salt!

Andy Mickel 80/06/24.

(Note: the notation (+n) indicates additional quantity for micros under a different name.)

1 ACOS-800
1 AIM/65
1 ALGO 2100

18 Alpha Micro AM-100
6 Altos ASC-8000
1 AMC System 29

52 Amdahl 470
1 American Microsystems S6800
1 AMTELCO
1 Andromeda

36 Apple II
1 Astrocom S760
2 Basin-4
1 BESM-6
1 Beta WS-lOOO
1 Bi 11 i ngs 8080
1 BTI-4000
2 BTI-8000

19 Burroughs B1700/1800
5 Burroughs B2700

14 Burroughs B3700/3800-B4700/4800
6 Burroughs B5500/5700

79 Burroughs B6700/6800-B7700/7800
21 CDC 1700/Cyber 18
15 CDC 3000

562 CDC 6000,7000/Cyber 70,170
6 CDC Cyber 200/Star-100
1 CDC MP-32
3 CDC MP-60
3 CDC Omega 480
1 CII Iris 50
3 CII Iris 80/10070
6 Commodore Pet
2 Computer Automation 216
7 Computer Automation LSI-2
6 Computer Automation LSI-4
3 Comten (NCR)
1 COSMAC ELF
1 CPS-03 (M6800)

17 Cray Research CRAY-1
5 Cromemco Z-80
2 CTL Modular One

16 Data-l00 (Northern Telecom) 78
132 Data General 600/Nova + microNova
74 Data General Eclipse
13 Datapoint
32 DEC PDP-8

746 DEC PDP-ll
95 DEC LSI-II (+114)
2 DEC PDP-15

59 DEC VAX 11/780
189 DECsystem 10
61 DECsystem 20
1 Diehl/CTM
3 Dietz MINCAL 621
9 Digital Group Z-80
1 Digital System SD3
1 Dynabyte DB 8/1
2 ECD Micromind
1 ES-1022
2 Exidy Sorcerer Z-80
2 Ferranti Argus 700
7 Four-Phase Systems
2 Foxboro FOX-1
1 Fujitsu FA COM M190
5 Fujitsu FACOM 230
1 Futuredata Z-80
1 Gal axy 5
2 General Automation 18/30
1 General Automation 100
5 General Automation 220

10 General Automation 440
7 GEC 4080
1 Gimix 6800
2 GOLEM B
1 GRI Sys tem 99
7 Harris 4/6
6 Harris S135
8 Harris S200
5 Harris S500
7 Heathkit H-8

15 Heathkit H-ll

~
c
r

16 Hewlett Packard 1000
30 Hewlett Packard 2000/2100
23 Hewlett Packard 21MX
80 Hewlett Packard 3000
1 HEX-29
4 Hitachi 8000
1 Honeywell H316

77 Honeywell Level 6
63 Honeywell 6000/Level 66/68
11 IBM Series 1
5 IBM System 3
7 IBM System 32/34

14 IBM 1130
430 IBM System 360/370

36 IBM 3030
2 IBM 4330

44 ICL 1900
23 ICL 2900
2 ILLIAC IV
1 IMSAI VDP 40
6 IMSAI VDP 80

31 IMSAI 8080/8085
118 Intel 8080 (+73)

16 Intel 8085 (+5)
18 Intel 8086
16 !tel (National) AS 456
2 Ithaca Audio
1 ITT 1652
1 ITT 2020
1 Jacqua il J-lOO
8 KIM-1
1 LEC-16
2 Lockheed Sue
3 Manchester MU-5
1 Marinchip 9900
1MDS-800
1 MEMBRAIN
2 Microdata 32/5
1 Microdata 1630
2 MITS Altair 680

17 MITS Altair 8800
1 MITS Altair Z-80
2 Mitsubishi MELCOM 7700
4 3M Linolex

15 MODCOMP II
9 MODCOMP IV

14 Mostek 6502 (+44)
67 Motorola 6800 (+10)
10 Motorola 6809
8 Motorola 68000
4 Nanodata QM-1
2 National Semiconductor S-400
4 National Semiconductor 2900
4 National Semiconductor PACE

16 NCR Century
10 NCR 8000
1 NEAC-900
1 NEAC-3200

14 Norsk Data NORD-10
19 North Star Horizon (Z-80l
5 Northwest Micro 85/P

1 Odell System 85
11 Ohio Scientific Challenger
2 Ontel OP-1
1 PDS-4
1 Pertec PCC XL40
8 Pertec PCC 2000

45 Perkin Elmer Interdata 7/16
30 Perkin Elmer Interdata 7/32
1 Perkin Elmer Interdata 8/16

28 Perkin Elmer Interdata 8/32
7 Perkin Elmer 3200
4 Polymorphics 88

11 Prime P-300
34 Prime P~400
4 Prime P-500

12 Processor Technology SOL-20
1 Quasar 6800
1 Quotron 801

20 Radio Shack TRS-80
1 RCA 301
5 RCA 1802
1 Rockwell 6502
3 ROLM 1600
1 RP-16
2 SBC 80/20

20 Systems Engineering SEL 32
3 Systems Engineering SEL 8600
1 SEMS SOLAR
1 SEMS T1600
5 Siemens 4000
8 Siemens 7000
1 Singer GP-4B
1 Singer Librascope
2 Singer System 10
1 SORD M-222
2 SPC-16
1 Sperry SDP-175
5 SWTP 6800
2 Sycor (Northern Telecom) 445
6 Tandem 16
1 TDL Z-80
1 TDS-8 (Z-80)
7 Tektronix 8002
3 Telefunken 80
2 Telefunken TR-440

67 Terak 8510
3 Three Rivers PERQ

10 Texas Instruments 980
53 Texas Instruments 990
19 Texas Instruments 9900
5 Texas Instruments ASC
1 Texas Instruments DX-10
1 Time Machine TM-600
1 Univac 418

32 Univac 90/9000
156 Univac 1100

36 Univac V70/77
3 Univac UYK-7
3 Vector Graphics MZ

2 Wang WPS-30
2 Wang WPS-40
2 Wang 928
1 Wang 2200

36 Western Digital Microengine
12 Xerox (Honeywell) 560
2 Xerox (Honeywell) Sigma 3
4 Xerox (Honeywell) Sigma 5

11 Xerox (Honeywell) Sigma 6
16 Xerox (Honeywell) Sigma 7
1 Xerox (Honeywell) Sigma 8

10 Xerox (Honeywell) Sigma 9
3 Xitan Z-80

176 Zilog Z-80 (+78)
2 Zilog Z-8000

53 unspecified microprocessors

N
00

PASCAL Nt.W!:i tHY !:it. t' I t.M bt.le 1 ~8 u PAGE 29

Applications

Corrections for Xref program. Pascal News #17

**
1> XREF,PAS,1
4b4 . LinesOnPage := LinesPerPaQe1 MoveTolndx:= 0 (* compress tAble *),
4&5 for TblIndx := 0 to HashTblSize - 1 do

2) XREF,PASJ2
4b4 MoveTolndx := 0 (* compress table *)~
4&5 for TblIndx := H to HashTblStze - 1 do

**
P XREF,PAS,l

115& OutputSeetion := listing: scan, OutputSection:= idents;
1157 DUMPTubles, writeln(tty,'· End CrossRef'), writeln(tty,' ');

2) XREF,PAS,2

115& LineaOnPage := LinesPerPaqeJ
1151 OutputSectfon := listing1 scan,
1158 LinesOnPage := LinesPerPage,
1159 DumpTables; writeln(tty,'· End

2 DIFFERENCES FOUND
LP:=DP1: XREF.PAS,1,DP1:XREF.PAS:2

OutputSection := idents,

CrossHef')1 writeln(tty,

All occurences of ChrCatagory should be changed to ChrCategory.

, '),

1 program pa.cals(input, output, tty);
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

AuthQr: N. Wirth, E.r.H .• CH_8Q92 Zurich, 1.3.76 l

Pascal-s,: OOIJlP'iler and interpreter for a subset of Pascal

* Pt:!rpose:
Thi s program compiles and interprets Pascal programs which
are written in a, subset of standard Pascal called Pascal-so

* Editors:
R. J. Ciehelli with corrections and enhancements from D. Baccus.

* References:
Niklaus Wirth, "PASCAL-3: A subset and it' 5 implementation",

lnsti tut fUr In formatik t Eidgenossische
Technische Hochschule, Zuerich (1975).

• Method:
Rec1.,1rsl,ve decent compilation into stack code for internal
stack machine interpreter.

* Input:
Pascal-s so·urce programs and input data for them.

* Output:
Listing and execution results (post mortum dump on errors.)

* Limitations:
THE LANGUAGE PASCAL-S (by N. Wirth)

The choice of features to be included in the subset now
called PASCAL-S was mainly guided by the contents of
traditional in·troductory pr'ogramming courses. Beyond this
it is subject to personal experience. judgement, and
prejudice. A firm guideline was provided by the demand that
the system must process a strict sl)bset of PASCAL, i.e. that
every PASCAL-S program must also be acceptable by the
compiler of Standard PASCAL without being subjected to the
slightest change. This rule makes it possible for students
to switch over to the regular system in later courses
"without noticing". A language's power and its range of
applications largely depend on its data types and associated
operato·rs. They also determine the amount of effort
required to master a language. pASCAL-S adheres in this
respect largely to the tradition of ALGOL 60. Its primitive
data types are the integers, the real numbers, and the
Boolean truth v.alue-s. They are augmented in a most
important and' crucial way by the type char, representing the
available set of printable characters. Qnitted from PASCAL
are the scalar types and subrange types.

PASCAL-S included only two kinds of data structures:
the array and the record (without variants). <Anitted are
the set and the file structure. The exceptions are the two
standard textfiles input and output which are declared
implicitly (but must be listed in the program heading). A
very essential omission is the absence of pointer types and
thereby of all dynamic structures, Of course, also all
packing options (packed records, packed arrays) are omitted.

The choice of data types and structures essentially
determines the- complexity of a processing system. Statement
and control structures contribute but little to it. Hence,
PASCAL-S includes- most of PASCAL's statement structures
('compound", condi tional, selective, and repeteti ve
statements) • The only omissions are the with and the goto
statements. 'the latter was omitted very deliberately
because of the pr incipal use of PASCAL-S in teaching the
systematic design of well-structured programs. Procedures
and fun-ctions are included in their full generality. The
only exception is that procedures and functions cannot be
used as parameters.

It Computer system:
Pascal-s was origionally installed on the CDC 6000
E. T. H. The program was modified to compile on DEC
using the Swedish Compiler.
Scalar types were added using Don Baccus' changes.

systems at
PDP 11'5

84. {$W- no warning messages
85 [$R- no runtime testing
86
87
88 label
89 -W-[abort target);
90
91 const
92 --ri'kW = 27 [no. of key words);
93 alng = 10 [no. of significant chars in identifiers);
94 llng = 120 [input line length);
95 em ax = 38 [max exponent of real numbers);
96 emi" - 3,8 { min exponen.t };
97 km_x = 15! max no. of significant digits);
98 tmax = 100 (size of table);
99 bmax" 20 { size of block-table);

100 amax = 30 { size Q·f array-table);
101 c2max = 20 { size of real constant table);
102 csmax = 30 { max no. of cases l;
103 cmax = 500 { size of code l;
104 lma. = 7 { maximum level l;
105 smax " 300 { /lize of string_table l;
106 ermax = 58 { max error no. l;
107 oma. = 64 { highest order code l;
108 xmax = 32767;
109 "max " 3,767;
110 l ineleng = 13, output line length l;

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

l inel imit = 132
stacksize 600

~
symbol

maximum output line size
run-time stack size };

l;

(inteon, reaLeon, f:h$reon, string, notsy, pLus, minus, ti-mes, idiv,
rdiv, imod, andsy, orsy, eqL, neq, gtr, geq, Lss, Leq, Lparent,
rparent, Lbrack, rbrack, comma, semicoLon, period, coLon, becomes,
constsy, typesy, varsy, functionsy, proceduresy, arraysy, recordsy,
programsy, ident, beginsy, if-sY, casesy, repeatsy, whiLesy, forsy,
endsy, eLsesy, untiLsy, ofsy, dosy, tosy, downtosy, thensy);

index = - xmax •• + xmax;
alfa = packed array [1 .. alngJ of char;
object ;--- -.-- -

(konstant, variabLe, type1, prozedure, funktion);
types =

(notyp, ints, reaLs, booLs, chars, arrays, records, scalars);
symset :; set of symboL;
typset = set 01 types;
item = reOOrd-'-

typo types;
ref: index

end;
order = Packed record --- --:r:-= omax

x: - Lmax
y: - nmax

~

var

+ omax;
+ Lmax;
+ nmax

sy: symbol { last symbol read by insymbol l;
; d: a L fa { identi fier from insympol };
inlll1: integer { integer from in symbol };
rnum: reaL { real number from in symbol };
sleng: integer { string length l;
ch: char { last character read from source program };
Line: array [1 •• LlngJ of char;
cc: integer { charactercounter };
Lc: integer { program location counter };
L L: integer { length of current line };
errs: set o·f 0 •• ermax;
errposTinteger;
progname: a L fa;
ifLag, oftag, skipfLag: boolean;
constbegsys, typebegsys, blockbegsys, facbegsys, statbegsys: sym.set;
key: array [1 •• nkwJ of al fa;
ksy: a;:ray [1 .. nkwJ Of symbol;
sps: array [charJ of symbol { special symbols l;
t, a,b,S"x, c1, c'2": integer { indices to tables };
stantyps:· typset;
display: array [0 .. lmaxJ of integer;
tab: arraY"EQ tmaxJ of {-identifier table

-- packed record
--_. name: a-l fa;

Link: index;
obj: object;
typo types;
ref: index;
normaL: booLean;
Lev: 0 •• Lmax;
adr: integer
~

atab: array [1 .. amaxJ of { array-table l
packedrecord

---:rii'Xt yp, e L t yp: type s;
eLre·f, low, high, eLsize, size: index

end'
btab: ~ [1 bmaxJ on block-table l

packedrecord
Last, Lastpar, psize, vsi~e: index

~
stab: packed array [0 •• smaxJ of char string table J;
rconst:-a;:ray~. c2maxJ of reaL;
code: array (Q •• cmaxJ of 'O"'rder;

procedure abend;

begin
{ goto 99

) halt
e~d;

procedure errormsg;

var
--""k: integer;

msg: array [0 ermaxJ £!. aL fa;

begin
'undef id ,. msg[1 J msg[oJ := , :=

msg[2J :=, 'identifier' ; msg[3J :=
msg[4J := ') ,. msg[5J := ,
msg[6J := ' syntax ,. msgC7J := ,
msg[8J := 'of ,. msg[9J := ,
msg[10J := • id, array , . msg[llJ ,
msg[12J := 'J ' ; msg[13J
msg[14J := ,. ,. msg[15J , ,
msg[16J := '= ' ; msg[l7J
msg[18J := , conv-ar typ' ; msg[19J
msg[20J := 'prog.param' ; msg[21J
msg[22J := ,. msg[23J ,
msg[24J := 'character I; msge25J
msg[26J := 'index type' ; msg[27J
msg[28J := 'no array '; msg[29J
msg[3OJ := 'undef type' ; msg[31J
msg[32J := 'boole type' ; msg[33J
msg[34J := , integer , msg[35J
msg[36J := 'param type' ; msg[37J

'muL ti def ,. ,
Iprogram ' ;
': ' ;
, ideht, var' ;
'(, ;

:= , [, ;
:= , ;
:= 'func. type ' ;
:= 'booLean ' ;
:= 'type ,. ,
:= 'too big ,
:::; 'typ (ca,se) I;
:= • const id ' ;
:= 'indexbound ' ;
:~ 'type id ,
:= 'no record' ;
:= 'arith type' ;
:= 'types ' ;
:= 'vari,ab id ' ;

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330

"'LI I LflJJLI\.1 .1:JUU •. " UI,.

m.gC38] := 'string , ; msgC39] := 'no.of pars';
msgC40] := 'type ' ; msgC41] := 'type ' ;
msgC42] := 'real type ' ; msgC43] := , integer ' ;
msgC44] := 'var, canst' ; msgC45] := 'var, proc '. ,
msgC46] := 'types (:=)' ; ",sgC47] := 'typ (case)' ;
m.gC48] := 'type ' ; mogC49] := 'store ovfl';
m.gC50] := Iconstant ' ; ",sgC51] := 1:= , ;
msgC52] := 'then ' ; ",sgC53] := 'until ' ;
mogC54] := 'do ' ; msgC55] := Ito downto ' ;
msgC56] := 'begin ' ; msgC57] := 'end ,. ,
m.gC58] := 'factor ' ; k := 0; writeln;
writeln(, key words');
wh; le errs <> [] do

begin
while not (k in errs) ~k := k + 1; writeln(k, , , , msgCk]);
e;:;:s:~rrs =-Ck]

end
~ ierronnsg J;

procedure endski p;

beg~n { underline skipped psrt of input
~ errpos < cc !!.2. begin write('-'); errpos:= errpos + 1 ~
skipflag := fal.e
~ { endskip I;

procedure nextch { read next character; process line end };

function uppercase(ch: char): char;

belj1n
, (ch >= 'a') and (ch <= 'z')
!F!!!. -

uppercase := chr(ord(ch) - ord('.') + ord('A'»
ASCII case conversion routine ••• EBCDIC requires a

more elaborate test }
el se uppercase := ch

en'dT'uppercase I;

begin { nextch
-,rcc = II

tnen
"""'lieg;n

-Weof(input) then
begi,

w"r teln; writelnC I program incomplete'); errormsg;
abend;

end;
ifer rpos <> 0 then
-bn3in i!. skipfraij .!!!!'2 endskip; writeln; errpos:= 0
~

writeCLc: 5,' I); ll:= 0; cc::;t 0;
whi le not eoln(input) do
~fnTl := II + 1; -read(ch); write(ch); lineell]:= ch

end;
wrmln; ll:= II + 1; read(lineCllll

end;
cc-;;;- cc + 1; ch:= uppercase(line[cc]);
~ { nextch I;

procedure error(n: integer);

be~in
,f errpos = 0 then writeC' ****');
if cc > errpos then
-begin

write(' ': cc ~ errpos, n: Z); errpos:= cc + 3;
errs := errs + [nJ

end
end terror I;

procedure fatal(n: integer);

var
mSg: array C1 7] ~ alfa;

begin
writeln; errormsg; msg[1J:- 'identifier';
msgC2] := 'procedures'; m.gC3]:" 'reals
msgC4] := 'array. '; ",sgC5]:= 'levels
msgC6] := 'code '; msg[7]:= 'strings
writeln(' eompi ler tab l~ for " msg[n:l, , is
abend { terminate compilation I

end { fatal I;

, ;
, ;
'.

too'small');

{ --_-____ ----insymbol-

procedure insymbol reads next symbol I;

var
1, j, k, e: integer;

procedure readseale;

var
s, sign: integer;

begin
nextch; sign;= 1; s := 0;

331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440

if ch = '+' then nextch
else if ch = ,:-;- then begin nextch; s;gn:= - 1 end;
iiiiITech in C'O' •• """1'9'] do

begin s:= 10 * s + ordCCh) - ord('O'); nextch end;
e := s * sign + e

end { read sc a1 e };

procedure adjustscale;

~
s: integer;
d, t: real;

begin
if k + e > emax .!!!!'2 error(21)
eLse
~ k + e < emin .!!!!'2 rnum := 0.0

eLse
~gin

s := abs(e); t:= 1.0; d:= 10.0;

rePh~~
~ not odd(s) ~ begin s := s ~ 2; d:= sqr(d) ~
s := s - 1; t:= d * t

until s = 0;
we>= 0 then rnum := rnurn * t else rnum := rnurn f t

end --
~ {'SiI"justscale I;

begin { insymbol
1: while ch = , , do nextch;

if ch in C'A' .:-'Z']
then -

begin { identifier or word symbol
k:=O; id:=' ';
repeat

if k < alng .!!!!'2 begin k:" + 1; idCk]:= ch end;
nexteh'

until not (ch in ['A' •• IZ'" 'A' •• '9'J);
i := f;" j :=nkw;
{ binary search I
repeat

. k := (i + j) div 2; if id <= keyCk] then j := k - 1;
if id >= keYCi('J" then i := k +

unTIL i > j; --
TrT- 1 > j ~ sy .'" ksyCk] !!!!. sy := iclent

end
else
~ ch in ('0' .. '9']

then -
begin (number I

k := 0; inum:= 0; sy:= intcan;
repe~t

inum := inurn * 10 + ord(ch) - ord('O');
nexteh

until not Cch in ~'O' •• '9']);
if (k ITmax) or (inum > nmax)

:= k + 1;

then begin error(21); inurn:= 0; := 0 end;
'if'"Ch = '.'
tnen
~gin

nextch;
1 f c;h = I' l!!!!l C!h :;;: ';'
orse
~gin

$Y := realeon;
while ch in t'O'

besin -
e :;: e - 1;

rn~ :::; inUlt;
'9'] .2!!.

e :;; Q;

rnurn := 10.0 * rnurn + (Qrd(ch) - ord('O'»;
nextch
~

if ch = 'E' then readscale;
if e <> 0 then adjustscale

end
end --

else
~ ch " 'E' .!!!!'2

-begin

end
else

sy := realeon; rn~:= in~; e:= 0;
if e <> 0 then adjustscale
~ --

~se ch of ---r:1: -
begin

nextc;h;

readscale;

if ch = '=' .!!!!!!. beSin sy := becomes; nextch ~
eL.e sY := colon
~.

1(':

begin
nextch;
if ch "'=' then begin sy := leq; nextch end
else
~ ch '>' .!!!!'2 begin oy := neq; nextch ~

else sy := lss
!!22,;--

1>1:
begin

nexteh;
if ch = ,,,' then begin sy := geq; nextch ~
eLse sy := gtr-- ---

encr;--
.iT'
begin

nexteh;
.if. ch '.' then begin sy := colon; nextch ~

441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550

'~I'U~I\I .LJUU I nUl-

else sy := period

II~
be~in

:= 0; 2: nextch;
if ch = II II
then begt nextch; if ch <> "" then ~ 3 ~
iTSx + = smax then fatal(7); stab[sx + kJ := ch;
k:= k + 1; --
if cc = 1 then begin { end of line 1 k := 0; !!!!!
erse ~2;--

3: if k = 1
then ~ sy := charcon; in",,:= ordCstab[sxJ) !!!!!
else
-rfk=O

then begin error(38); sy:= charcon; in ... := 0 end
er.e

begin
sy := string; inum:= SX; sLeng:= k;
sx := sx + k

end

'(~
begin
--nei"tch;

if ch <> '*' ~ sy := lparent
erse
~gin { comment

--nei"tchi
repeat whi Le ch <> '.' ~ nextch; nextch
~ch = ')1;

nextch; ~ 1
end

end·-
'+~-" '*', 'I', I)', '=', .,., 1[1, 'J', ';':

begin sy := sps[chJ; nextch end;
'$', , I}', ,0" ,u', '{I, 'X-';-'&lI, '\':

end
begin error(24); nextch; ~ 1 end

!!!!! 1nsymbol 1;

{ --- enter --- 1

procedure enterCxO: alfa; x1: object; x2: types; x3: integer);

begin
---"t:= t + 1;

{ enter standard identifier
with tab[tJ do
---segin -

--riiiiiie := xO; link:= t - 1; obj := x1; typ:= x2;
ref := 0; normal:= true;

end
lev := 0; adr:= x3

end {enter 1;

procedure enterarrayCtp: types; l, h: integer);

begin
--;Tl > h ~ errorC271;

11 CabsC II > xmax) or CabsCh) > xmax)
then begin errorC271; l:= 0; h:= 0; end;
iTS;-a,;;ax then fatal(4)
erse --
---segin

--;:= a + 1;
with atab[aJ do begin inxtyp := tp; low:= 'l;

en;r-
end {enter array 1;

procedure enterblock;

begin
'"1T"b = bmax ~ fatal(2)

erse

high := h end

---segin b := b + 1; btab[bJ.last:= 0; btab[bJ.lastpar:= 0 end
end teiiterblock 1;

procedure enterrealCx: reaL>;

begin
if c2 = c2max - 1 then fatal(3)
erse

begin
rconst[c2 + 1J := x; c1:= 1;
while rconst[c1 J <> x do c1 := c1 + 1;
'iTCf > c2 then c2 : -;;-c1

end --
end I enterreal 1;

procedure emitCfct: integer);

be~;n
, lc = cmax ~ fatal(6); code[lcJ.f:= fct; lc := lc + 1

end { emit 1;

procedure emit1Cfct, b: integer);

~
if lc = cmax then fataL(6);
ii'fth code[lcJ do begin f := fct; y:= b ~

enat emit1 1;-

procedure emit2Cfct, a, b: integer);

lc := lc + 1

551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
59'
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
6'0
6"
6'2
613
6'4
6'5
6'6
617
618
619
620
62'
622
623
624
625
626
627
628
629
630
63'
632
633
634
635
636
637
638
639
640
64'
642
643
644
645
646
647
648
649
650
65'
652
653
654
655
656
657
658
659
660

begin
then fatal(6); if lc = cmax

wi th code[lcJ
lC:= lc + ,

~ begin f := fct; x := a; y := b !!!!!;

!!!!! { emit2 1;

procedure printtab les;

var
1: integer;

0: order;

begin
writeln;
writelnC' identifiers link obj typ ref nrm lev adr');
for i := btab['J.last + , to t do
with tab[iJ do

--writelnCi,' " name, link: 5, ordCobj): 5, ordCtyp): 5, ref: 5,
ordCnormall: 5, lev: 5, adr: 5);

writeln; writeln(' blocks last Lpar psze vsze');
for i :=, to b do
with btab[iJ do

--.;f"iteLnCi, List: 5, lastpar: S, psize: S, vsize: 5);
writelni writeln(' arrays xtyp etyp eref low high elsz size');
for i :=, to a do
with atabITJ do

--writelnCi, ordCinxtyp): 5, ordCeltyp): 5, elref: 5, low: 5, high
: 5, elsize: 5, size: 5);

writeln; writeln(' code:');
for i := 0 to lc - , do

begin - -
if i mod 5 = 0 then begin writeln; writeCi: 5) !!!!!;
0:= COde[iJ; writeCo.f: 5);
ifo.f<3'
then
-rf o.f < 4 then writeCo.x: 2, o.y: 5) else writeCo.y: 7)
else write(' --');
write(',')

!!!!!;
writeln

!!!!! { printtables 1;
{ __ -----bl ock-

procedure block(fsys: symset; isfun: boolean; leveL: integer);

~
conrec = record

----;::-:r:-integer;
case tp: types of
---:rrl'ts, chars, bools, scalars: (i: integer);

reals: Cr: real)

var
d.: integer {

prt: integer
prb: integer
x: integer;

data allocation index 1·
t-index of this procedu~e 1·
b-index of this procedure };

procedure skip(fsys: symset; n: integer);

begin
error(n); skipflag:= true;
while not Csy in fsys) do insymbol; if skipflag then endskip

endlskip 1;-

procedure testCs', s2: symset; n: integer);

begin if not Csy in s') then skipCs' + s2, n) end

procedure testsemi colon;

begin
if sy = semicolon then insymbol
erse

test 1;

~gin errorC'4); if sy in [comma, colonJ then insymbol ~
testC[identJ + blockbegsys, fsys, 6)

end { testsemicolon 1;

procedure enterCid: alfa; k: object);

!!!.
j, l: integer;

be?~n
, t = tmax then fataLell
erse

begibt ta OJ.name:= id; j:= btab[display[LevelJJ.last; := j;
while tab[jJ.name <> id do j := tab[jJ.link;
ifT<> 0 then errorCl)
else --

begin
t := t + ';
with tab[tJ do

begin
name := id; link:= l; obj:= k; typ:= notyp;
ref := 0; lev:= level; adr:= 0

bt~isPlay[leVelJJ.last := t
I!!!!!

end

661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770

"''-, 'L.nlJ~1\1 J.::IOU rAbt))

end enter};

~ loc(id: alfa): integer;

var
---', j: integer;

begin { locate id in table
i := level; tab[OJ.name:= id sentinel};
re~eat

J := btab[di splay[nJ .last;
while tab[jJ.name <> id do j := tab[jJ.link;

until (i < 0) or (j <> 0);-
if j = 0 thenerror(O); loc:= j

end { loc };-

procedure entervariable;

begin
--rt"sy = ident then begin enter(id, variable);

else error(2)
en'if'"'r entervariable };

procedure constantCfsys: symset; .!!!!. c: canree);

.2!.
x, sign: integer;

begin
c.tp := notyp; c.i:= 0; c.rf:= 0;
test (constbegsys, fsys, 50);
if sy in constbegsys
then -

beg1n
i sy = charcon

:= - 1;

insymbol end

tli'en begin c.tp := chars; c.;:= inun; insymboL end ers;;--
begin

sign := 1;
if sy in [plus, minusJ then
-beginif sy minus then sign := - 1; insyrnbol end;
if sy = ident
tlien
---oi"gin

-X:= loc(id);
if x <> 0
tlien
---rf tab[xJ .obj <> konstant then error(25)

erse
---oi"gin

-c:tp := tab[xJ.typ; c.rf:= tab[xJ.ref;
if c.tp = reals
then c.r := sign * rconst[tab[xJ.adrJ
else
~gin

--rt"(c.tp <> ints) and (sign = - 1)
then error(50); -
"C:'1:= sign * tab[xJ.adr

end
~-

insymbol
end

else -n- sy = intcon
tlien

end;

begin c.tp := ints; c.i:= sign * inum; insymbol
~

else
if sy = realeon

then
begin

c.tp := reals; c.r:= sign * rnum; insymbol
end

else skip(fsys, 50)

teSt<fsys, n, 6)
end

end Iconstant };

procedure typCfsys: symset; .!!!!. tp: types; ~ rf, 5Z: integer);

~
x: integer;
el tp: types;
elrf: integer;
elsz, offset, to, t1: integer;

procedure arraytyp(~ aref, arsz: integer);

var
itscaLar: boolean;

el tp: types;
low, high: ccnree;
elrf, elsz, i: integer;

bev in
,tscalar := false;
if sy = ident then
-begin --

i := loc(id);
itscalar := (tab[il .obj
~

if not itscalar
then

begin

type1) and (tab[il.typ scalars)

771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880

constant([colon, rbrack, rparent, ofsyJ + fsys, low);
if low.tp = reals
then begin error(27); low.tp:= ints; low.i:= 0 ~
if sy = colon then insymbol else error(13);
constant([rbrack-;COmma, rparent;c;fsyJ + fsys, high);
if (high.tp <> low.tp) or. (high.rf <> low.rf)
then begin error(27); high.i := low.i ~

end
else
-with tab[il do

begin
insymbol; low.tp:= typ; low.i:= 0;
high.i := tab[refJ.adr
~

enterarrayClow.tp, low.i, high.;); aref:= a;
if sy = comma
then

begin insymbol; eltp:= arrays; arraytyp(elrf, elsz) end
else

begin
if sy = rbrack then insymbol
else begi, error(12); if sy = rparent ..!.!!!.!!. insymboL ~
iTSy = 0 sy then insymbol else error(8);
tYP(fsys, eltP,--errf, elsz) --

wi~tab[arefJ do
begin -

arsz := (high - Low + 1) * eLsz; size:= arsz;
eltyp := eltp; elref:= elrf; elsize:= elsz

end·
end rarraytyp };

begin typ}
tp := notyp; rf:= 0; sz:= 0; test<typebegsys, fsys, 10);
if sy in typebegsys
then -

begin
if sy = ident
then

begin
x := locCid);
if x <> 0 then
-with tab"EiiJdo

-n- obj <> tYpe1 then error(29)
erse
--regin

tp := typ; rf:= ref; sz:= adr;
if tp = notyp ~ error(30)

end;
insymbOL

end
eLse--
--,-r sy = arraysy

tlien
begin

insymboL;
if sy = lbrack ~ insymbol
erse

beain error(11); if sy = lparent then insymbol
.!!!....;

tp := arrays; arraytyp(rf, sz)
end

else -n- sy = lparent scalar types
then
--"'begi n

SZ:= 0; to:= t;
repeat

insymboL;
if sy <> ident then error(2)
erse

begin
enter(id, konstant);
wi th t.b[tJ do

begin -
adr := sz; ref:= rf; typ:= scaLars
~

sz := sz + 1; insymboL
end

unti"'l"Sy <> comma;
iTSy = rparent then insymbol else error(4);
while to < t do --

begin to :=to + 1; tabroJ.ref:= t end;
rf := t; sz:= 1; tp:= scaLars

end
eLse

begin records
insymboL; enterbLock; tp:= records; rf:= b;
if level = lmax then fata l (5); level:= level + 1;
display[levelJ := ~ offset := 0;
while sy <> endsy do

bev?n (field section
, sy = ident
then

beg6n
t := t; entervariabLe;
while sy comma do
~in insymboL;- entervariabLe end;
if....-y-;; colon then insymbol else error(5);
IT:= t; --
typ(fsys + [semicoLon, endsy, comma, ident],

eLtp, eLrf, eLsz);
whi le to < t1 do
~in -

-W:= to + 1;
wi th tab[tOJ do

begin -
typ := el tp; ref:= el rf;
normaL := true; adr:= offset;

881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
93.
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
9711
979
980
981
982
983
984
985
986
987
988
989
990

~I-I Il-nUL.l\1 ;JUV

end

offset := offset + eLsz
end

i f e;~; :-endSY then
-begin --

iTsy = semicoLon ~ insymboL
else
"t>egin

---';:;:-Qr (14);
if sy ~ comma .!!!.!!! insymbol

end-"
temrident, endsy, semicoLon], hy., 6)

end
end;-

btab[rfJ .vsi ze := offset; sz:= offset;
btab[rfJ.psize := 0; insymboL; LeveL:= LeveL - 1

end;
test<fsys, Cl, 6)

end
~ T"typ I;

procedure parameterl ist formal parameter list };

var
tp: types;

rf, sz, x, to: integer;
valpar: boolean;

begin
insymbol; tp:= notyp; rf:= 0; sz:= 0;
test([ident, varsy], fsys + [rparent], 7);
while sy in [ident, varsy] do

cegin - -
iTSY <> varsy then valpar ;= true

else begin insymbot; vaLpar := faLse end;
to:= t; entervariable;
whi le sy = comma !!2 be~in insymbol; entervariable; end;
if sy " coLon
then

. begin
insymboL;
if sy <> ident then error(2)
else

besin
x :;; Loe(id,;
if x <> 0 then
-with tab'Lxl"do

insymboL;

--rr obj <> tYPe1 ~ error(29)
orse
~gin

til:= typ; rf:= ref;
if valpar then sz := adr ~ sz :=

end;
end;

test; ([semicolon,
end

eLse-error(5l;
ii1i1Te to < t do
--,;eoin -
~:= to + 1;

with tabCtO] dQ
"t>egin -

tYP := tp;
adr := dx;

end
end;--

ifsy <> rparent
then

rparent], [comma, ident] + fsys, 14)

ref
Lev

;= rf; normal:= valpar;
:= LeveL; dx:= dx + 82

oey~n
, sy = semicolon then insymbol
erse ~~in error(14);-if sy = comma then insymboL ~
teSte i ent, varsy], [rparent] + hys, 6-)-

end
end {while I;

ifTy;: rparent
lli!!. begin insymboL; test<[semicolon, colon], hys, 6) end
eLse error(4)

endT parameterlist I;

procedure constantdec leration:

!!!:.
c: conrec;

be~in
,"symboL; test«ident]~ bLockbegsys, 2);
whi te sy = ident ~
""begin

--.rit'er(id, konstant); i nsymbol;
if sy = eql then insymboL
erse begi[erro;:(16); if sy "becomes then· in.symbol end;
C"i,;'MStantC semicolon, comnl identJ +. fsys,'C'5;
tabCt).typ ,= c.tp; tab[t].ref:", 0;
1.f c.tp = reals
t1ien be9t enterreaUc.r}; tab[t).adr ,= c1 ~
erse tab tl.adr ,= c.i;
teStsemicolon

end
~ tCQnst.antdeelaration I;

procedure- typede-claration;

var
tp: types;

rf .. szo" t1: integer;:

991
992
993
994
995
996
997
998
999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1.055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
t.Q91
1092
1093
1094
1095
1096
1097
1098
1Q99
1100

begin
insymboL; test«(ident], blockbegsys, 2);
whi Le sy = ident .!!2.

begin
entedid, type1); t1:= t; insymbol;
if sy = eqL then insymboL
else begin erro;:(16); ii sy ;; becomes then insymbol end;
typC[semicolon, comma, identJ + fsys, tp, r:r,-sz): -
with tab(t1J do begin typ := tp; ref:= rf; adr:= sz end;
testsemicolon- --

end
~ Itypedeclaration I;

procedure variab ledec laration:,

var
to, t1, rf, sz: integer;

tp: types;

begin
insymbol:
whi le sy = ident ~
--"be9in

---rtJ:= t; entervariable;
~ sy = comma ~ begin insymbol; entervariable-: end:
if sy "coLon then insymboL eLse error(5); t1 := t;
tYpC[semicQlon" C"Oiilma, identJ + fsys, tp, rf, 5Z);
while to < t1 do

begin -
to := to + 1;
with tab(tO] do

begin -
typ := tp; ref:= rf; lev:= level: adr:= dx;
normal := true; dx:= dx + sz

end
end:-

testsemi colon
end

end tvariabledeclaration };

procedure procdec l a rat i on;

var
i5foo: boolean;

begin
isfun := sy = functionsy: insym-bol;
if sy <> ident then begin error(2); id:= t • .!.')!!;
if isfun then enterCid, funktion) ~ enterCidl! prozedure):
tab[tJ.normaL:= true; insymbol;
bLock«(semicoLon] + fsys, isfun, Le\lel + 1>;
if sy = semicolon then insymbol else error(14);
;;mit(32 + ord(isfun»)T" exit I --

.!!!!! { proceduredeclaration };

__ ---st a temen t-

procedure statement Cfsys: symset);

var
i: integer;

x: item:

procedure expressionCfsys: symset; ~ x: i tern).;
forward:

procedure selectorCfsys: symset; ~ v: item);

var
x: item;

a, j: integer;

begin { sy in [lparent, lbrack, period]
repeat
---:rfSy :: period

then
begin

insymbol;
{ field selector
if sy <> ident then errorC2}
else --

end
eLse-

begin
if v.typ <> records ~ error(31)
erse

toegin { search field identifier
j := btab(v.refJ.Last; tabrD].name:= id;
while tabCj).name <> id do j := tab(jJ.Link;
if j = 0 then error(Ol; v.typ := tabCj].typ;
v.-ref := tab[j].ref; a:= tab[j].adr;
if a <> 0 then em it 1<9, a)

end; --
insymbol

end

beg·in { array selector
if sy <> Lbra·ck then error(11);
repeat

insymbol; expressionCfsys'" (comma, rhrackl, x->-;
if v .. typ <> arrays t-hen e.r"rorC28l
erse

begin
a := v.ref;
if atab[al.inxtyp <> x.typ ~ error(26)
erse

1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210

,>c. r I C.I'I DC. K, 1 ~l:SU PAGE 35
~ emit1 (20, a) if atab[aJ.elsize =

else emit1<21, a);
v.tYi):= atab[al.eltyp; v.ref:= atab[al.elref

end
untir-sy <> comma;
if sy = rbrack then insymboL
else --

end
begin error(12); i.!. sy = rparent ~ insymbol end

untirriot (sy in [lbrack,
tesHfsys, [l,6)

lparent, periodl);

~ (selector l;

procedure call (fsys: symset; i: integer);

~
x: item;
lastp, cp, k: integer;

begin
emit1<18, i) (mark stack l;
lastp := btab[tab[il.refJ.lastpar; cp:= i;
if sy = lparent
tilen
""begin actual parameter list

--repeat
insymboLi
if cp >= lastp then error(39)
else

begin
cp := cp + 1;
if tab[cpl.normal
tilen

begin (value parameter
expression(fsys + [comma, coLon, rparentJ, x);
if x. typ = tab[cpl. typ
then
~g;n

iTx.ref <> tab[cpJ.ref then error(36)
else
--rf x. typ = arrays

tilen emit1<22, atab[x.refl.size)
else
--rf x. typ = record s

tilen emit1<22, btab[x.refl.vsize)
end

else-
--rf (x.typ = ints) and (tab[cpl.typ = reals)

tilen emit1 (26, Q) -

else 2.!. x.typ <> notyp ~ error(36);
end

else-
~g in { variable parameter

iTSY <> ident then error(2)
else
""begin
k:= loc(id);

if k <> 0
then

insymbol;

-,;e~~n
, tab[kJ.obj <> variable
tilen error(37);
x.typ := tab[kJ.typ;
x.ref := tab[kJ.ref;
if tab[kJ .normal
then emit2<O, tab[kJ.lev, tab[kJ.adr)
else emit2(1, tab[kl.lev, tab[kl.adr);
iTSy in [[brack, lparent, periodJ then
-selector(fsys + [comma, colon, rparentJ,

x) ;

if (x.typ <> tab[cpJ.typ) £!:. (x. ref <> tab
- [cpJ.ref)
then error(36)

en-d-
end

end
~-

test([comma, rparentJ, fsys, 6)
unti l sy <> comma:
Tf""SY = rparent then insymbol ~ error(4)

end; --
ifcp < lastp then error(39) (too few actual parameters l;
emit1<19, btab[ta!i'ETJ.refJ.psize - 1>;
if tab[il.lev < level then emit2(3, tab[iJ.lev, level>

end (call l; --

~ resulttype(a, b: types): types;

beg;n
i (a > reals) or (b > reals)
then begin error(33); resul ttype := notyp end
else
--rf (a = notyp) £!:. (b = notyp) then resul ttype := notyp

else
--rf a = ints

tilen
-n: b = ints then resul ttype := ints
~ begin resul ttype := reals; emit1<26, 1) end

else
""begin

-;:;;Sul ttype := reals; i.!. b ints then emit1 (26, 0)
end

~ (resulttype l;

procedure expression;

1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320

y: item;
op: symbol;

procedure simpleexpression(fsys: symset; y!!:. x: item);

var
y: item;

op: symbol;

procedure termCfsys: symset; var x: item);

.Y.!!:.
y: item;
op: symboL;
ts: typset;

procedure factorCfsys: symset; ~ x: item);

var
i, f: integer;

procedure standfctCn: integer);

var
ts: typset;

be~;n { standard function no. n
, sy = lparent then insymboL ~ error(9);
ITn<17
then

begin
expression(fsys + [rparentJ, x);
case n of
-0, 2:-

begin abs, sqrt
ts:= Lints, reals]; tabCiJ.typ:= x.typ;

if x.typ =' reals then n := n + 1
end-"

4,5:' ts := tints] { odd, chr };
6: ts := Cints, bools, chars, scalars] ord};
7, 8:

begin
ts := Lints, bools, chars, scaLars]

{ succ, pred };
tab[iJ.typ := x.typ

end;
9, 10, 11, 12, 13, 14, 15, 16,

{ round,trunc,sin,cos, •.• }
begin
---:rs-:= [ints, reals];

if x.typ = ints then emit1(26, 0)
end --

end·-
Tf~.typ in ts then emit1 (8, n)
eLse if i:typ <> notyp then error(48);

en-d--
el~{ eof,eoln
""begin (n in [17,18]

iTSY <> ident then error(2)
erse
-n: id <> 'INpUT then errorW)

else insymbol;
emi't1T8, n);

end;
x.typ := tab[iJ.typ;
if sy = rparent then insymbol ~ error(4)

end { standfct l;--

begin factor
----x:typ := notyp; x.ref:= 0; test<facbegsys, fsys, 58);

while sy in facbegsys £!2
--,;-.gin -

iTSY = ident
then

begin
i := loc<id); insymbol;
with tab[iJ do
----case obj of
~nstant:

begin
--;:typ := typ; x.ref:= 0;

if x.typ = reals then emit1<25, adr)
else emit1 (24, adr)

encr;-
variable:

begin
x.typ := typ; x.ref:= ref;
if sy in [lbrack, lparent, periodJ
then

begin
if normal then f := 0 else f := 1;
emit2(f, lev~r>;
selectorCfsys, x);
if x.typ in stantyps ~ emit(34)

end -
else-
-segin

1fx.typ in stantyps
then
-n: normal ~ f :=

else f := 2
else---rr normal ~ f := 0

else f := 1;
emTI2tf, lev, adr)

1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430

end
end'-

tyfef, prozedure: error(44);
funktion:

begin
x.typ := typ;
if lev <> 0 then call(fsys, i)
erse standfct('ii'dr)

en-d-
end (case,with)

end
else
---rf sy in [charcon, intcon, realconl

then -
----,;egin

---rf'Sy = realcon
tnen

begin
x.typ := reals; enterreal(rnlJll);
emit1C25, c1)

end
else
----,;egin

if sy = charcon then x.typ := chars
erse x.typ := ints;-
emit1C24, inum)

end;
x.ref := 0; insymbol

end
else
--,-:r sy = Lparent

tnen
----,;egin

insymbol; expression(fsys + [rparentJ, x);
if sy = rparent then insymbol
erse error(4)

en-d-
else
---rf sy = notsy then

-begin --
insymbol; factor(fsys, x);
if x.typ = bools then emit(35)
erse if x.typ <> not'Yi> then error(32)

!!!.!!; -
test (fsys, facbegsys, 6)

end { while)
end "'tfactor);

begin { term)
~tor(fsys + [times, rdiv, idiv, imod, andsyJ, x);

while sy in [times, rdiv, idiv, imod, andsyJ ~
-,;eQin -

-op:= SYi insymboli
factor(fsys + [times, rdiv, idiv, imod, andsyJ, y);
if op = times
Bien
----,;egin

---.:typ := resulttype(x.typ, y.typ);
case x.typ of
--notYP:i -

into: emit (57);
reals: emit(60l

end
ena

else
---rf op = rdiv

tnen

end

begin
if x.typ = ints
then begin emit1C26, 1); x.typ:= reals !!!.!!;
if y.typ = ints
then begin emit1C26, 0); y.typ:= reals end;
'iT"'Cx.typ = reals) and (y.typ = reals)
Bien emit(61) -
else
----,;e~in

,f (x.typ <> notyp) and (y.typ <> notyp)
tnen error(33);
x.typ := notyp

end
end

elSe'""
---rf op = and s y

then
----,;egin

---rf'(x.typ = bools) ~ (y.typ = bools)
then emit (56)
eTSe

end
else

begin
if (x.typ <> notyp) and (y.typ <> notyp)
tnen error(32);
x.typ := notyp

~

begin { op in [idiv,imod])
if (x.typ = ints) and (y.typ = ints)
then -
---rf op = idiv ~ emit(58) else emit(59)
elSe"

begt
i (x.typ <> notyp) and (y.typ <> notyp)
tnen error(34);
x:tYP := notyp

end
end-

end {term);

1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540

begin { simpleexpression
if sy in [plus, !linusJ
tnen

begin
op := sy; insymbol; term(fsys + [plus, minusJ, x);
if x.typ > reals then error(33)
erse
---rf op = mi nus

tnen if x.typ = reals then emit(64) else emit(36)
end ---

elseterm(fsys + [plus, minus, orsyJ, x);
iiliITe sy in [plus, minus, orsyJ do

begin - -
op := sy; insymbol;
term(fsys + [plus, minus, orsyJ, y);
if op = orsy
then

begin
if (x.typ = bools) and (y.typ = bools)
then emit(51) -
erse

begin
if (x.typ <> notyp) and (y.typ <> notyp)
tnen error(32);
x.typ := notyp

end
end

elSe'""

end

begin
x.typ := resulttype(x.typ, y.typ);
case x.typ of
-riOtyp:; -

ints: if op = plus then emit(52) else emit(53);
reals:,f op = plus """t'i1e"n emit(54) etSe emit(55)

end -
end

~ {slmpleexpression 1;

begin expression)
simpleexpression(fsys + [becomes, eql, neq, lss, leq, gtr, geqJ,

x) i
if sy in [becomes, eql, neq, lss, leq, gtr, geqJ
tnen -

begin
if sy = becomes then begin error(6); op:= eql ~
erse op := sy;
inSyinbol; simpleexpression(fsys, y);
if (x.typ in [notyp, ints, bools, chars, scalarsJ) ~ (x.
- typ = y:typ) and (x.ref = y.ref)
then -
---case op of

---eql: eiiiit(45);
neq: emit(46);
lss: emit(47);
leq: emit(48);
gtr: emit(49);
geq: emit(50)

end
elSe'""

begin
if x.typ = ints
then begin x .typ := reals; emit1C26, 1) ~
else
---rf y.typ = ints

then begin y.typ := reals; emit1C26, Ol !!!.!!;
if (x.typ = reals) and (y.typ = reals)
then -
----case op of

---eql: eiiiit (39);
neq: emit(40);
lss: emit(41);
leq: emit(42);
gtr: emit(43);
geq: emit(44)

end
elSe'""error(35)

!!!2;
x.typ := bools

end
end {expression);

procedure assigment(lv, ad: integer);

var
X, y: item;

f: integer;
{ tab[i].obj in [variable ,prozedure]

begin
x.typ := tab[iJ.typ; x.ref:= tab[iJ.ref;
if tab[iJ.normal then f := 0 else f := 1;
emit2(f, lv, ad);
if sy in [Lbrack, lparent, periodJ
tnen serector([becomes, eqlJ + fsys, x);
iTSy = becomes then insymbol
else E.!ii!!. error(5~ ii sy = eql ~ insymbol !!!.!!;
expression(fsys, y);
if x.typ = y.typ
tnen
---rf x.typ in stantyps ~ emit(38)

erse -
---rf x.ref <> y.ref ~ error(46)

erse --:rr x.typ = arrays then emit1C23, atab[x.refJ.size)
erse emit1C23, btab['X':"refl.vsize)

1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
157.5
1576
15n
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650

if (x.typ = reals) and (y.typ = ints)
then begin emit1<26;1i); emit(38)!!!!!.
else
"""'"iT (x.typ <> notyp) !!!!! (y.typ <> notyp) !!!!!2 error(46)

end (assigment l;

procedure cornpoundstatement;

bev in
,nsymbol; statement([semicolon, endsyJ + fsys);
while sy in [semicolonJ + statbegsys do

beg~n -
i sy = semicolon then insymbol else error(14);
itatement([semicolon;e;idsyJ + fsys)--

end·
if~ = endsy then insymbol !!:.!.!. error(571

end (compoundsta"'teiiienet l;

procedure ; fstatement;

var
x: item;

lc1, lc2: integer;

begin
i"iiSymbol; expression(fsys + [thensy, dosyJ, x);

if not (x.typ in [bools, notypJ) then error(17); lc1:= lc;
emiTI'f1) (jmpcl;
if sy = thensy then insymbol
erse begin error(52); if sy = dosy !!!!!2 insymbol !!!!!,;
'Stii'tementCfsys + [elsesy!);
if sy = elsesy
tnen

begin
insymbol; lc2:= lc; emit(10); code[lc1J.y:= lc;
statement (fsys); code[lc2J.y:= lc

end
else-code[lc1J.y := lc

end{""" ifstatement l;

procedure casestatement;

var
-X: item;

i, j, k, Lc1: integer;
casetab: ~ [1 csmaxJ of packed record

- --- --v.r; lc: index

exittab: array [1 •• csmaxJ

procedure caseLabeli

var
lab: conree;

k: integer;

begin

~ integer ~nd;

-COOstant(fsys + [comma, colonJ, lab);
if (lab.tp <> x.typ) or (lab.rf <> x.ref) then error(471
irse -
---rT i = csmax then fatal(6)

erse
begin

i := i + 1; k:= 0; casetab[iJ.val:= lab.i;
casetab[iJ.lc := lc;
repeat k := k + 1 ~ casetab[kJ. val = lab.i;
if k < i then error(1) multiple definition l;

end --
end (Caselabel l;

procedure onecase;

begin
---n'""sy in constbegsys

tnen -
~gin

---caselabel;
whi le sy = comma ~ begin insymbol; caselabel!!!!!,;.
if sy = colon then insymbol else error(5);
statement([semicolon, endsyJ + fsys); i:= i + 1;
exittab[iJ := lc; emit(10)

end
!!!!!. T onecase l;

be~in (casestatement
,nsymbol; i:= 0; i:= 0;
expression(fsys + [ofsy, comma, colonJ, x);
if not (x.typ in tints, bools, chars, notyp, scalarsJ)
theiierror(23);
lcr:= lc; emit(12) (jmpx l;
if sy = of5Y then insymbol else errorCS); anecase;
iiiii le sy = semiCOlo"n ~ begin insymbol; onecase!!!!!,;
code[lc1J.y := lc;
for k := 1 to i do

begin emit1(13;-casetabtkJ.vall; emit1<13, casetabtkJ.lc)
!!!!!,;

emit1<10, 0>; for k := 1 to i do code[exittab[kJJ.y := lc;
if sy = endsy then insymbol else error(571

end { casestateme~};

procedure repeatstatementi

1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760

x: item;
lc1: integer;

befn
c1 := lc; insymbol; statement([semicolon, untilsyJ + fsys);

while sy in [semicolonJ + statbegsys do
begin -

if sy = semicolon then insymbol else error(14);
sratement([semicolon;uiitilsyJ + fsysr-

end·
ifTy = untilsy
then

begin
insymbol; expression(fsys, x);
if not (x.typ in [bools, notypJ) .!!!!!2 error(17);
emiffi11, lc1)-

end
else-error(53) •

endr repeatstatement l;

procedure whi Lestatement;

var
--x: item;

lc1, lc2: int.eger;

begin
insymbol; lc1:= lc; expression(fsys + [dosyJ, x);
if not (x.typ in [bools, notypJ) then error(17); lc2:= lc;
emiTI'f1); ifsy = dosy then insymbol else error(54);
statementCfsys); emitH10;-rt1); code[lc2J.y:= lc

end (while.tatement l;

procedure forstatement;

var
cvt: types;

cvr: integer;
x: item;
i, f, le1, le2: integer;

begin
insymbol;
if sy = ident
then

beqin
, := loc(id); insymbol;
if i = 0 .!!!!!2 begin cvt := ints; cvr:= 0 end
else
"""'"iT tab[n .obi = variable

then
begin

cvt := tab[iJ. typ; cvr:= tab[iJ. ref;
if not tab[iJ .normal then error(37)
erseemit2(0, tab[iJ .lev,-tab[iJ.adr);
iTiiot. (cvt in [notyp, ints, bools, chars, scalarsJ)
tiieiie r ro r (18)

en-d-

end
el~ error(371; evt := ints; cvr := 0 !!!!!.

else-skip([becomes, tosy, downtosy, dosyJ + fsys, 2);
iT$y = becomes
then

begin
insymbol; expression([tosy, downtosy, dosyJ + fsys, x);
if (x.typ <> cvt) !!!!! (x.ref <> cvr) then error(19);

end
else-skip(rtosy, downtosy, dosyJ + 'tsys, 51);
f := 14;
if sy in [tosy, downtosy]
then -

begin
then f := 16;

+--r.ys, x);
insymbol; if sy = downtosy

expressi on ([dosyJ
if (x.typ <> cvt) and (x.ref <> evr) .!!!!!2 error(19)

end
else-skip([dosyJ + fsys, 55);
lcr:= lc; emit (f);
if sy = dosy then insymbol else error(54); lc2:= lc;
statellent(fsys);---emitHf + 1,"Lal; code[lc1J.y:= lc

end (forstatement l;

procedure standproc(n: integer);

var
i, f: integer;

x, y: item;

begin
case n of
---".2:-

begt (read
i not iflag then begin error(20); iflag:= true !!!!!,;
iT sy-= lparent--
then

begin
repeat

insymbol;
if sy <> ident then error(2)
erse

begin
i := loc(id); insymbol;
if i <> 0
then
---rt tab[iJ.obj <> variable .!!!!!2 error(371

erse
begin

1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1172
1773
1774
1775
1776
1777
1778
1779
1180
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1192
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870

r l'\;)l.lH. I~l:."';) It J.:I

£!!i;

x.typ := tabtiJ.typ:
x.ref := tab[iJ.ref;
if tabtiJ .normaL then f := 0
else f := 1; _.-
eiiiTt2(f, tabtiJ.Lev, tab[iJ.adr):
if sy in [lbratk, Lparent, period)
then seTector(fsys + tcomma, rparentJ, x);
TI"X.typ in tints, reals, thars; notypJ
then emitTIZ7; ord(x.typ))
else error(40) encr-

test([comma, rparentJ, fsys, 6);
uhti.l sy <> comma;
if sy = rparent then iMymbol else error(4)

end-" --
if";;-~ 2 ~ emit(6Z)

end;
3,4:

begin write
iTsy = Lparent

then
-segin

repeat
insymbol;
if sy = string
then

begin
em,t1(24, sLeng): emit1<28, inurn): insyrnbol

end
elS;-
""'""be"gin

--;xpr"ession(fsys + (comma, colon, rparentJ, x);
if not (x.typ in (stantyps - [scalarsJ))
thenerror(41);
iT$y = colon
then
""'""be"gin

iiiSymbol;
express;on(fsys + (comma, coLon, "parent], y

) :
if y.typ <> ints then error(43):
if sy = colon
then

begin
if x.typ <> reals then error(42):
insymbol;
expression(fsys + (comma, rparentJ, y);
if y.typ <> ints ~ error(43):
emit(371

end
el"'emitl (30, ord(x.typ))

en-d-
el"'emitl (29, ord(x.typ»

encr-
untfLsy <> comma:
iTS'Y = rparelit t.hen insymbol else error(4)

end; --
if n "4 then emit(63)

end
end Icase

end { standproc }i

begin statement
----rr-s y in statbegsys + [identJ

then -
--case sy bf

--:rdent:-
begin
---r-i"= LocCid)i insymboLi

if i <> 0
then
----case tab[iJ .obi of

k"Onstant, typeT: error(45):
variab leo assi gnmenHtab[iJ .lev, tabtiJ .adr):
prozedure:

if tabtiJ.lev <> 0 then call(fsys, i)
else standproc(tabtiJ:a'i3:r):

funktion:
if tab[iJ.ref = display[levelJ
then assignment(tabtiJ.lev + 1, Q)
eLSe" error(45)

end --
ehd;-

beginsy: tompoundstatemerit;
ifsy: ifstatement;
casesy: casestatement;
whi Lesy: wHi Lestatement;
repeatsy: repeatstatemerit;
forsy: forstatement

end;
teSt<fsys, tJ, 14)

end { statement l:

begin block
dx := 5: prt:= t:
testCCLparent, coLon,
displaytlevel) := b;
tabtprtJ.ref := prb:

if level> lmax the.n fatal(5):
semicolon], fsy's, 1~ etlterbLock;
prb := b: tabtprtJ.typ:= notyp:

if (sy = Lparent) and (level" 1> then parameterlist:
titabCprbJ .lastpar := t; btabtprbJ .psrz. := dx:
if isfun
then --rr sy = colon

then
""'""be"gin

insymbol { function type l;
.ii sy " ident

1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1891
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
192~
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1941
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1913
1974
1975
1976
1977
1978
1919
19110

then
-seg;n

x := loc(id): insymbol;
i.!. x <> 0 then

if tabtxr.olii <> typel ~ error(29)
else

end

---rr tabtx).typ in stantyps
then tabtprtJ. typ := tabtxJ. typ
else error(15)

.l"'skip(tsemicolonJ + fsys, 2)
en-d-

elS;-error(5):
Hoy= semicolon ~ insymbol else error(14):
repeat
--:r:rsy :: constsy then, const:antdeclarationi

iT sy typesy thentypedeclaration:
iT sy varsy then variabledeclaration: btab[prbJ.vs1ze:= dx:
While. sy in tproCFuresy, functionsyJ do procdeclaration:
test([begTrisyJ, blockbegsys + statbegsys, 56)

until sy in statbegsys:
t'iib[prtJ.adr := lc: insymbol:
statement C (sem; ooLon, endsyJ + fsys);
while sy in [semicolonJ + statbegsys do
--segih - -

----rr-sy = semicolon then insymbol else error(14):
Statement([semicolon~dsyJ + fsys)

enQ;
if 9y = endsy then insymbol elSe error(57):
test (fsys + [periodJ, tJ, 6)

end { block l;

{ ---~-----~------~-----------~--~-----------------------interpret---

procedure interpret;
{ global code t tab, btab

label
---"98 Wirth used a 'trap label' (non-standard) here

to catch rurt time errors. See notes for alternat.e solution. };

var
ir: order { instruction buffer };

pc: integer { program coun ter };
ps:

(run, fin, caschk, divchk, ;nxchk, stkchk, Linchk, lngchk, redchki

t: 1 nteger i top stack index };
b: i nt:eger { base index };
Lncnt, oent, bLkcnt, chrent: integer collnters};
hl, h2, h3, h4: integer:
fld: array t1 .. 4) of integer { default field widths l:
display:array t1 •• [maxJ of integer:
s: array IT'":":" stacksizeJ or {blockmark:
-- record -

----c;;se types of s[b+O] fct result
---:rr1'ts: (i :integer),;

{ s[b+1] return adr
reaLs: (r: reaL) ;

{ s[b+2] static link
boOl .. (b: booLean) ;

{ s[b+3] dynamic link
chars: (c: char) { s[b+4] table index

end;

begt { interpret l
s lJ.i := 0: s[2J.i:= 0: st3J.i:= - 1:
st4J.i := btabtlJ.last: b:= 0: displayt1):= 0:
t := btab[2J.vsize - 1: pc:= tabts[4J.iJ.adr: ps:= run;
lncnt := 0; ocnt:= 0; chrcnt:= 0; fldtlJ:= 10;
fldt2J := 22; fld[3J:= 10; fldt4J:= 1:
repeat

i r := codetpcJ; pc:= pc + 1;
if oent < maxint then Gent := ocnt + 1;
Case ir.f of
"Ci'l -

begi n { load address
t := t + 1;
if t > stacksize then ps := stkchk
else sttJ.i ;= dispTaYE"ir.xJ + ir.y
en~

1:-
begin { load value

t := t + 1:
if t > stacksi ze then ps := stkahk
else s[tJ := s[display[ir.xJ + ir.yJ
en~

2:-'
begin { load indirect
~=t+l:

if t > stacksize then ps := stkchk
else sttJ := s[s[diSpLaytir.xJ + ;r.y).iJ
en~

3:"-'

8:

begin { update display l
-h-l-:= ir.y; h2:= ir.x; h3 ~= b;

rep~at
diS'PlaythlJ := h3: h1;" hl ~ 1: h3 ,= sth3 + 2j.i
until h1 = h2
~

~ ir.y Of
0: sttJ.i := abs(sttJ.i):
1: sttJ.r := abs(sttJ.f);
2: sttJ.; := sqr'(sttJ.il:
3: stt).r := sqr(sttJ.rlj
4: sttJ.b := odd(sttJ.i):
5:

begin { s[t].c:. dhr(s[t1.1l;

1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090

if (s[tJ.i < 0) or (s[tJ.i > 127) then ps := inxchk
end;

6: { s[t].i := ord(s[t].c));
7: s[tJ.c := succ(s[tJ.c);
8: s[tJ.c := pred(s[tJ.c);
9: s[tJ.i := round(s[tJ.r);
10: s[tJ.i := trunc(s[tJ.r);
11: s[tJ.r := sin(s[tJ.r);
12: s[tJ.r := cos(s[tJ.r);
13: s[tJ.r := exp(s[tJ.r);
14: s[tJ.r := In(s[tJ.r);
15: s[tJ.r := sqrt(s[tJ.r);
16: s[tJ.r := arctan(s[tJ.r);
17:

begin
----:r:-:::: t + 1;

if t > stacksize then ps := stkchk
else s[tJ.b := eof(input)
en~

18:'
begin

t:=t+1;
if t > stacksize then ps ::::: stkchk
else s[tJ.b := eoln(input)

en-d-
end·-

9:SI~J.i := s[tJ.i + ir.y { offset);
10: pc := ir.y { jump);
11 :

begin { conditional jump
iTnot s(t].b then pc :=
end; -

12:
begin { switch

i r.y; t := t - 1

-h-l-:= s[tJ.;; := t - 1; h2:= ir.y; h3:= 0;
repeat
ifCode[h2J.t <> 13

then begin h3 := 1· ps:= caschk end ers;--
----rr codeCh2J.y = hl

then begin h3 := 1; pc:= code[h2 + 1J.y end
ecse h2 := h2 + 2

unt iT"li3 <> 0
encr;--

14:
begin { forlup)
-h-l-:= sCt - lJ.i;

if h1 <= s[tJ.i
else begin t := t

ena;---
then sCs[t - 2J.iJ.i := h1

15:
begin { for2up
~:= set - 2J.i;

if hl <= sCtJ.i

=--3"; pc:= ir.y end

hl := s[h2J.i + 1;

then begin s[h2J. i :=
eLse t := t - 3;

hl ; pc := ir.y end

end;
16:

begin { for1down
~:= set - lJ.;;

if hl >= s[tJ.i
else begin pc :=

encr;---
then s[s[t - 2J.;J.; := hl

; r. y ; t:::: t - 3 end

17:
begin { for2down
~:= sCt - 2J.i; hl:= s[h2J.i - 1;

it hl >= sCtJ.i
then begin s[h2J.i := hl; pc:= ir.y end
eLSe" t ::: t - 3;

ena;-
18:-

begin { mark stack
~:= btab[tabCir.yJ.refJ.vsize;

if t + h1 > stacksize then ps := stkchk
eLse
--"6egin

end;
19:

-:r:= t + 5;
end

begin { call

sCt - lJ.; := hl - 1;

-h-l-:= t - ir.y { h1 points to base };

s[tJ.; := ;r.y

h2 := s[hl + 4J.i { h2 points to tab J; h3:= tab[h2J.lev;
d;splay[h3 + lJ := hl; h4:= s[hl + 3J.i + hl;
sthl + lJ.; := pc; sChl + 2J.; := displayCh3J;
s[hl + 3J.i := b; for h3 := t + 1 to h4 do sCh3J.; := o·
b := h1; t:= h4; pc := tab[h2J.adr

20~nd;
begin {
-h-l-:=

h3 :=
; f h3
else

index 1
ir.y { hl points
s[tJ. i;
< h2 ~ ps :=

to atab };

inxchk

----rr h3 > atabCh1J.h;gh
else begin t := t - 1;

end;-----

then ps
SEtJ.i

21:
begin {
~:=

h3 :=
; f h3
else

index }
ir.y { h1 points to atab };
s[tJ.;;
< h2 then ps := inxchk

h2 :" atab[h1J .low;

:= inxchk
:= s[tJ. i + (h3 - h2) end

h2 := atab[hlJ.low;

----rr h3 > atab[hlJ.h;gh
else

then ps := inxchk

""""beg in
-:r:=

sCtJ. i
end

- 1;
:= s[tJ.i + (h3 - h2) * atabChlJ.els;ze

2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200

22:
begin load block
-h-l-:= sEtJ.i; t:= t ~ 1: hZ :=' ;:r.y ..,:. t;

if h2 > stacksize then, ps ::;:: s'tkchk
else
---wi); le t < h2 do

begin t := t+ 1; s[tJ:" s[h1J; hl:= hl + 1 end
end;

23:
begin { copy block)
-h-1-:= sCt - lJ.i; h2:= setJ. i; h3 := hl + ;r.y;

while hl < h3 do
~;n s[h1J := sCh2J; hl := h1 + 1; h2 := h2 +
t := t - 2

end:
24:

begin
t :=
; f t >

end;
25:

Ii teral
+ 1;
stacksize

begin load real
-----:t: = t + 1;

:= stkchk

.i.:!.. t > stacksize then ps := stkchk
eLse s(tJ.r := rcon"'S"t'ETr.yJ

encr;-

~ s[tJ.i := i r.y

26:-ti"eg;n { float) hl ,= t - ir.y; s[hlJ.r;= s[h1J.; end;
27: --

begin { read)
if eof(;nput) then ps := redchk
else
-case ; r.y of ---r: read(Scs[tJ.iJ.;);

2: read(sCsCtJ.;J.r);
4: begin sCs[tJ.iJ.; := 0; read(s[sCtI.i1.c) end

end;
:= t - 1

28~nd;
begin { write str'ing
-h-1-:= s(tJ.;; h2:= ir.y: t:= t - 1;

chrcnt := chrcnt + h1;
if chrcnt > L ;neLeng then ps := Lngchk:
repeat write(stab[h2J);--hl := h1 - 1; h2:= h2 + 1
until hl = 0
en~

29:
begin { write1
---cii'rcn-t := chrcnt + fld[;r ... yJ;

if chrcnt > L ineleng then ps := tngchk
eTse --
----case i r.y of ---r: writeTS"CtJ.;: fldC1J);

2: wr;te(sCtJ.r: fldE2JJ;
3, write(sCtJ.b, fld(3));
4: write(chr(s[tJ.i mod 121 ASCII)))

end;
:= t - 1

end·
30:'

begin write2
--cFi"rcnt := chrcnt + s[tJ.i;

;'f chrcnt > L;neLeng then ps := Lng'chk
else --
-case ir.y of ---r: writeTS"Ct - 1J.;: s[tJ.;);

2: wr;te(s[t - lJ .. r-: s[tJ.;);
3: wr;te(sCt n.b: sCtJ.i);
4: write(chr(s[t - 1J.; ~ 127 ASCII JJ: s[tJ.;)

~~d~ _ 2

end·
31:p; := fin;
32:

begin { exit procedure
-:r:= b - 1; pc:= s[b + 1J.;:
~nd;

b := 5[b + 3).;

33:
begin { exit function
t:= b; pc:= s[b + 1J.1;
end;

34:s[tJ ,= s[sEtJ.;J;
35: s[tJ.b := not s[tJ.b;
36: sCtJ.; := =-S[tJ.i;
37:

begin

b := sCb + 3J.;

~cnt := chrcnt + sEt ... 1J.i';
if chr'cnt > l ;neLeng th-e:n ps := Lng-chk
else write(s[t - ZJ.r: ~- 1J.;: s[tJ .. l);
~t -3

end;
38:-begin { store
39: begin t := t - 1;
40: begin t:= - 1;
41: begin t := - 1;
42: begin t :=
43: begin t :=
44: beg; n t :=
45: begin t :=
46: begin t :=
47: begin t :=
48: begin t :=
49: begin t :=
50: begin t :=
51: begin t :=
52': begin t :=
53: begin t :=
54: be,;n t :=
55: begin t :=
56: begin t :=

- 1;
- 1;
- 1;
- 1;
- 1;
- 1;
- 1;
- 1;
... 1;
- 1;
- 1;
- 1;:

t - 1:
- 1;
- 1;

sCs[t • 1J.iJ := sCtJ; t ::;;' t - 2 end;
s[tJ.b
sCtJ .b
sttJ.b
s[t] .b
s[tJ .b
sttJ .b
s[U.b
s[t] .b
s[tJ.b
s[t].b
s[tJ .b
sCt] .b
set] .b
sCt).;
sCtJ. ;
sCtJ.r
s[tJ.r
sCtJ .b

:= s[U.r ., SLt .. n.r end;
:= s[tl.r <> set + 1J.r7od;
:= sCt}.r < sCt + 1l.r end;
:= s[tJ .. r <= sEt + 1J.rend;
;= s[tJ .. r > set + 1J .. r end:
:= sEtl.r >;::: sEt: + 1J.rend;
:= s[tJ.i '" set .. n.; end;
:= s[t}.; <> set + n.;7oo;
:" s[t).; < sCt + 11.; end;
,= sEt}.i <= sLt + 1J.feri"d;
:= sCtJ. i > sCt + 1]. i end;
:= s[tJ.; >= sCt + lJ.;7od;
:= sEtJ.b or sCt + 1J.b end;
:= s[tJ.; +s[t + 1).i end;
:= sttJ.; - sCt + n.l end;

sttJ.r + sCt + 1J.r end;
s[tJ.r - sEt + 1J.r;end;

= sCtJ.b and set + 1 J.b end;

2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305

PASCAL NEWS #19 SEPTEMBER, 1980 PAGE

57: begin t := t - 1;
58: --

sCt].i := sCt].i * sCt • 1].i end;

begin
t:= t - 1;

if sCt • 1].i = 0 then ps := divchk
else sCt].i := sCt].i div sCt • 1].i
en~

59:
begin
t:= t - 1;

if sCt • 1].i = 0 then ps := divchk
else s[t].i := s[t].TIiiOd set • 1].i

encr;- -
60:--6"egin t := t - 1; s[t].r:= s[t].r * set • 1].r; end;
61:--

begin
t := t - 1;
if set • 1].r = 0.0 then ps := divchk
else s[t]. r := set]. r TSft • 1]. r

end;
62: if eofCinput) then ps := redchk eLse readLn;
63: -

begin
---writeln: Lncnt:= lncnt + 1; chrcnt:= 0:

if Lncnt > L ineL imit then ps := L inchk
end:

64:S[t].r := - s[t].r
end { case };

until ps <> run;
98: if ps <> fin

then
~gin

----wr:i"teln; writeln: write(' haLt at', pc: 5, I because of I):
case ps of
----run: wMtelnClerror (see dayfile)');

caschk: writeLnC'undefined casel);
divchk: writeLnC'division by 0'>:
inxchk: writeLnC'invalid index'):
stkchk: writeLnC' storage overfLow');
linchk: writeLn('too much output'):
Lngchk: writeLn('Line too Long');
redchk: writeLn('reading past end of file')

end:
1i'r:= b; bLkcnt:= 10;
{ post mortem dump
repeat
Wi'ifeLn; bLkcnt:= bLkcnt - 1;

if bLkcnt = 0 then h1 := 0; h2:= s[h1 .4].i;
'IT h1 <> 0
then writeLnC' I, tab(h2J.name, I called at', s[h1 + 1J.;: 5):
h2:= btabCtab[h2]. ref]. Last;
while h2 <> 0 do
---with tab[h2]do

--"begin
----rr-obj = variabLe

then
----rf typ in stantyps

then -
--"begin

--w-rTte(1 , name, I = I):
if normal then h3 := h1 + adr
else h3 := sTI1. adr]. i;
case typ of
-rnts: wrlteLn(s[h3].i);

reaLs: writeLn(s[h3].r);
booLs: writeLn(s[h3].b);
chars:

end
encr;

h2 :?"fink
end:

writeLn(chr(s[h3].i mod 127

h1 := s[h1 .3].i
until h1 < 0;

en-d-· -

ASCII I»

wrmLn:
if Dent = maxint then writeC' many') !.!:.!!. writeCocnt);
writelnC' steps.');--

end { interpret };

[--main----

begin { main
---writeLn(tty, pascaLs (10.2.76)'); keyC1]:= 'AND ';

key[2J := 'ARRAY I; key[3J:= 'BEGIN I:
key[4] := 'CASE '; key[5]:= 'CONST ';
key[6] := 'DIV '; key[?]:= 'DO ';
key[8] := 'DOWNTO ,. key[9]:= 'ELSE ';
key[1OJ := 'END '; key[11]:= 'FOR ';
key[12] := 'FUNCTION '; key[13]:= 'IF ';
key[14] := 'MOD '; key[15]:= 'NOT ';
key[16] := 'OF '; key[1?]:= 'OR ';
key[18]:= 'PROCEDURE '; key[19]:= 'PROGRAM ';
key[20] := 'RECORD '; key[21]:= 'REPEAT ';
key[22J, := 'THEN '; key[23]:= 'TO ';
key[24] := 'TYPE '; key[25]:= 'UNTIL ';
key[26] := 'VAR '; key[27]:= 'WHILE '; ksy[1]:= andsy;
ksy[2] arraysy; ksy[3]:= beginsy; ksy[4]:= casesy;
ksy[5] = constsy; ksy[6]:= idiv; ksy[7]:= dosy;
ksy[8] = downtosy; ksy[9]:= eLsesy; ksy[1OJ:= endsy;
ksy[11J forsy; ksy[12]:= functionsy; ksy[13]:= ifsy;
ksy[14] imod; ksy[15]:= notsy; ksy[16]:= ofsy;
ksy[17] orsy; ksyC18]: = proceduresy; ksy[19]: = programsy;
ksy[20] recordsy; ksy[21J:= repeatsy; ksyC22]:= thensy;

2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410

ksy[23] := tosy; ksy[24]:= typesy; ksy[25]:= untiLsy;
ksy[26] := varsy; ksy[27J:= whiLesy; sps['.']:= pLus;
sps['-'J := minus; sps['*']:= times; SpS['/I]:= rdiv:
SpsCIC1J := lparent: SpS[I)']:= rparent: SpS['=IJ:= eql;
sps[','] := comma: SpS['[I]:= lbrack: sps[']']:= rbrack:
SpS[I:'J := semicolon:
constbegsys := [plus, minus, intcon, realcon, char can, identJ;
typebegsys := [lparent, ident, arraysy, recordsyJ:
blockbegsys := [constsy, typesy, varsy, proceduresy, functionsy,

beginsyJ:
facbegsys := [intcon, realcon, charcon, ident, Lparent, notsyJ:
statbegsys := [beginsy, ifsy, whiLesy, repeatsy, forsy, casesy]:
stantyps := [notyp, ints, reals, boals, chars, scaLarsJ: Lc:= 0;
II := 0; cc:= 0: ch:=' ': errpos:= 0: errs:= [l:
[I reset<input, 'MYPROG.PAS' ,,'DPO: ');
insymbol; t:= - 1: a:= a:
b := 1; sx:= 0; c2:= 0; dispLay[Q]:= 1; i flag := faLse;
oflag := faLse; skipflag:= faLse;
if sy <> programsy then error(3)
else --
""begin

---:rns ym bo L:
if !\.Y <> ident then error(2)
else

begin
progname := id; i nsymboL:
if sy <> Lparent then error(9)
eLse
---;:epeat

insymboL:
if sy <> ident then error(2)
else

begin
if id
else

, INPUT then iflag := true

----rf id = 'OUTPUT
else error CO);,

insymboL
end

unti"'lSy <> comma:

then ofl ag := true

if sy = rparent then insymboL else error(4);
if not oflag the;:;-error(20)

end- --
end:

en"t"e'rC'
enter('FALSE
enter('TRUE
enter (' REAL
enter< 'CHAR
enter ('BOOLEAN
enter (' INTEGER
enterC' ABS
enter< ISQR
enter('ODD
enter(' CHR
enter('ORD
enter('SUCC
enter(' PRED
enter(' ROUND
enter('TRUNC
enter('SIN
enter('COS
enter('EXP
enter('LN
enter('SQRT
enter(' ARCTAN
enter('EOF
enter('EOLN
enter (' READ
enter('READLN
enter('WRITE
enter(' WRITELN
enter(I
with btab[1J do

" variabLe, notyp, Q) { sentinel }:
" konstant, boals, a):
I, konstant, boaLs, 1):
I, type1, reaLs, 1):
" type1, chars, 1);
" type1, boaLs, 1);
" type1, ints, 1):
I, funktion, reaLs, a):
I, funktion, reaLs, 2):
" funktion, boaLs, 4);
" funktion, chars, 5);
" funktion, ints, 6):
" funktion, chars, 7):
" funktion, chars, 8):
" funktion~ ints, 9):
" funktion, ints, 10):
., funktion, reaLs, 11):
I, funktion, reaLs, 12);
., funktion, reaLs, 13):
., funktion, reaLs, 14):
" funktion, reals, 15):
" funktion, reals, 16):
" funktion, boaLs, 17):
" funktion, boaLs, 18):
., prozedure, notyp, 1):
" prozedure, notyp, 2):
:', prozedure, notyp, 3):

prozedure, notyp, 4):
., prozedure, notyp, 0):

be,ig Last :;- t; lastpar:= 1; psize:= a: vsi ze := a ~
bLoc Lockbegsys. statbegsys, faLse, 1);
if sy <> period then error(22); emit(31) [halt I;
'IT btab[2].vsize >""""Stiicksize then error(49);
'IT progname = 'TESTO thenprinttabLes;
if errs = [] --
then
--"begin

----rr-i flag
then
~gin

resetCinput, 'MYPROG.DAT'" IDPO: I):
if eof(input) then writeLn(' input data missing')
else
~gin

---writeLn(' (eor)') [copy input data I;
while not eofCinputl ~
~in

---write (I I);

whi Le not eoLnCinput) do
~inread(ch); wr"ITe(ch) end;
writeLn; read(ch)

~
reset<input);

end
~-

writeLn(' Ceof)'); writeLn:
end

el~errormsg:
99.,.--;;riteLn
end [pascals I.

interpret

Notes on system dependent code in Pascal-S and Pascal-I.

by Richard J. Cichelli

Pascal-S had a 'trap label' to recover (just once) from user
error~ that cause abor~s: In Pascal-I, John McGrath, Curt
Loughln and I solved sImIlar problems with what we think
ar~ cl~aner, simpler and more generally useful techniques.
We d lIke to share them with you here.

Pascal-I ••. Interactive, conversational Pascal-So
These code fragments from Pascal-I show nearly all
of the non-standard and lor system dependent parts
of the 7500 line program that is Pascal-I.

The COd~ illustrates how functionality, which must
be provIded for the system to work in its given
envIronment and obviously cannot be specified in
a standard way, can be isolated so that reasonable
portability can be obtained.

Of particular note is the method for recovering from timeouts
and u~e: ~borts. On a user abort, Pascal-I terminates the
user InItIated action, recovers and accepts the next user
command request. Pascal-I also does interactive 1/0.

program pascali(textin, textout, input/+, output+);

label

The '1+' and '+' declare these files interactive.
On input, the initial 'get' is supressed and on
output, buffers can be flushed explicitly.
If Pascal 6000 had 'Lazy 1/0', then this non-standard code
would be unnecessary.

1, 2, 3, { recovery labels ••. targets for low level error
handling routines.

13
}

Note: This is where you really need those gotos out
of procedures.

{ terminate program on multiple aborts.
This is so you can abort Pascal-I itself.
(You ~ig~t"think that we software giants never
code InfInIte loops. Well, this is just in case
the compiler generates bad code for perfect 10gl"C
Right?) .

const

lots of these

type

lots of these

abortcodes
(timelimit, userabort); The types of aborts that are processed

abortset = set of abortcodes;

var

lots of these

aborted, timeout: boolean;
abtcnt: integer;
lastabort: real;

procedure rename(var f: textfile; lfn: scopelfn); extern;
{ This procedure changes scope file names by modifying

their FETs.
I really think this is the right way to specify the dynamic
(run-time) association of a system file with a Pascal file.
Overloading the reset and rewrite procedures and adding
standards violating parameters to them seems so messy.

procedure interupt(procedure inproc(reasons: abortset»; extern;
This procedure arms the SCOPE system routine 'reprieve' with
a user supplied recovery routine. Time-outs and aborts are
handled by this routine. Upon interrupt, the procedure passed
as a parameter to the interrupt routine is invoked. After
it executes, the program is restarted at the instruction where
it was interrupted. By having the interrupt routine set global
flags, controlled recovery is possible. }

about 140 additional procedures here.
all written in quite Standard Pascal.

Note: Pascal-I has an interpreter that is similar
to that of Pascal-So In it, and in other procedures
where the user might want to quit the actions of the
program, loop terminators include a test of the
aborted flag. Since Pascal-I has control of when
aborts are acted upon, it does so only at convenient
stopping places. For example, the interpreter only
tests for aborts on user program statement boundaries.
The state of Pascal-I and the interpreting user
program always appear well defined. }

procedure timeoutsavej
{ This routine is called if a time out occurs. It is called

by the main routine if the timeout flag is set during a
recovery. Upon 'reprieve' invocation, enough additional
time is allocated so that a user can save his/her program
to a file. After exiting Pascal-I, more time can be
requested (with ETL) or another login session started.

var

The saved file allows the user to procede from where he/she
left off.

lfn: scopelfn j

begin
writeln(' You are out of time. Please enter the name of')j
writeln(' the file to which you want your program saved -')j

[putseg(output); flush buffer l
if eos(input) then getseg(input)j getchj
[The eos (end of segment) and getseg (get segment) are

rather unpleasent ways to interface to terminals.
Fortunately, only a very few other places in Pascal-I

l

have such code. Porting the program usually only requires
defining null procedures for getseg and putseg and making
eos return false. At one place, eos may need to be changed to
ear.

getlfn (lfn) j rename (textout, Ifn) j rewrite (textout) j
{ get the file name and associate it with textout l
saveblk(btabmax - 1, true)j reset(textout)j
[write the program to it and rewind it for next time

end { timeoutsave lj

procedure intproc(reasons: abortset)j
[No Pascal procedure in Pascal-I calls this routine.

It is invoked by the 'reprieve' service routine which
is invoked by the system montior when a time-out or
user abort occurs.

Incidentally, Pascal 6000 version 2 didn't have reentrant
system routines. (The fault of using the RJ (return jump)
to implement the calls.) Because this routine doesn't
require any of the system routines to be accessed
reentrantly, we can use a very simple version of the
recovery routines in Pascal-I. Pascal-I is distributed
with fully re-entrant recovery capabilities in its systems
routines.

const
abtmintime

maxabtwocmd

2.0j

4 • ,

minimum time limit allowed between
user recoverable aborts (2 sees.)
If less, then kill Pascal-I, cause
he wants us dead.

maximum user aborts allowed between
commands. If more then kill Pascal-I.

var
now: realj

function rtime: real;
extern { real time clock

Returns time in seconds, accurate to milliseconds.
l j

begin { intproc l
timeout := timelimit in reasons;
aborted := userabort in reasonsj
if aborted
then

begin
abtcnt := abtcnt + 1; now:= rtimej
if now - lastabort < abtmintime
then

begin message('* multiple aborts. ')j
end

goto 13 [bag it

else lastabort := nowj
endj

writeln; ich:=" j
{ clear and restart I/O
if abtcnt < maxabtwocmd then interupt(intproc)j
(Set up for the next user abort or time-out l

end [intproc l j

begin Pascal-I - - - Main Routine

ini tialize the world

lastcommand := badcommandj interupt(intproc)j
repeat [the commmand loop l

if timeout
else

then begin timeoutsavej command._

begin
[prompt
writelnj
getlnj

for user command l
writeln(' :')j [putseg(output)j

if eos(input) then getseg(input)j getchj
[Another instance of that I/O mess.

enditallj end

flush buffer

getnbj

Note: The Pascal programs that are interpreted by
Pascal-I run interactively (how else) and have
none of this garbage.

}
3: getcommand(command)j
1: case command of

bottom: botcomj
change: ccom(false)j
compilecom: compcomj
continue: execom(true)j

there are about thirty more commands

question; qmcom;
end;

end;

command loop wrap-up stuff here

aborted ;= false; abtcnt;= 0;
until command in [bye, enditall];

13; { terminate program on multiple aborts and fatal errors
if abend <> not fatal then printfatal(abend);
message('- End Pascal-I');

end { Pascal-I }.

The entire sUPPlemental system routines are presented here.
Bill Cheswick coded these for CDC's NOS operating system.

ident pi-aid
syscom bl
title pi-aid - Pascal-I helper routines.
space 4,10

*
ren~me - change local file name.

* rename(ifet, name)

entry rename
rename ps

bx6 xl new file name
sa6 xO+13+1 efet + 1
eq rename exit

interup

space 4,10
interup - set user-abort interupt address.

*
*

*

interup(procaddr)

entry interup
interup ps

sx6
sa6
distc
eq

xO get proc address
inta
on,intl,int
interup exit

intl

inta

entry on user abort.

bss
sbl

20B
1

sal inta get procedure address
sb7 xl
zr x7,*+400000B if no address to jump to
sx6 bl reason code = user abort
jp b7 exi t to processor

data o address of interupt procedure

} ;

*
*
* It

*

space 4,10
rtime - get realtime since deadstart.

x := rtime

returns the time since deadstart as a real number,
to milliseconds.

entry rtime

""D
::I'>
(.,r:.

accurate ~
r

rtime ps
rtime rtia
sal rtia
mxO -36
bx6 -xO*xl millisecs
px6
nx6
sal =0.001
fx6 x6*xl
nx6
eq rtime exit

rtia bss 1 rtime status word
space 4,10
end

Of all the complex functions described, getting the real
time took the most code to implement. Implementing Pascal-I
on IBM DEC and other systems proved easy because of the
simpli~ity and isolation of the system dependent interface.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110

~ LISP(input, output);

l

The essence of a LISP Interpreter.
Written by W. Taylor and L. Cox
First date started 10/29176
Last date modified : 12/1017.6

label
---r,-{ used to recover after an error by the user

2 { in case the end . the 'file is reached before a fin card

const
--;;;ax node = 600;

type
~putsymbol

(atom, period, lparen, rparen);
reservedwords =

l;

(replacehsym, replacetsym, headsym, tailsym, eqsym, quotesym,
atomsym, condsym, labelsym, lambdasym, copysym, appendsym, concsynl,
conssym)i

statustype =
(unmarked, left, right, marked);

symbexpptr = "symbol i cexpression;
al fa = array (1 .. 10J ~ char;
symbolicexpression = record

l

var

--status: statustype;
next: symbexpptr;
case anatom: boolean ~
""""""true: (name: alfa;

~

case isareservedword: boolean of
true: (ressym: reservedwordsIT;

false: (head, tail: symbexpptr)

Symbolicexpression is the record structure used
to implement a LISP list. This record has a tag
field 'anatom' which tells which kind of node
a particular node represents (i.e. an atom or
a pair of pointers 'head' and 'tail').
'Anatom' is always checked before accessing
either the name field or the head and tail
fields of a node. Two pages ahead there are
three diagrams which should clarify the data
structure.

The global variables

Variables which pass information from the scanner to the read
routine

lookaheadsym, { used to save a symbol when we back up
sym: inputsymbol { the symbol that was last scanned l;
id: al fa { name of the atom that was last read l;
alreadypeeked: boolean { tells 'nextsym' whether we have peeked l;
ch: char { tne last character read from input l;
ptr: symbexpptr { the pointer to the expression being evaluated l;

the global lists of LISP nodes

freellst, { pointer to the linear list of free nodes
nodelist, { pointer used to make a linear scan of all

the nodes during garbage collection l
al ist: symbexpptr;

two nodes which have constant values
nilnode, tnode: symbolicexpression;

variables used to identify atoms with pre-defined meanings
resword: reservedwords;
reserved: boolean;
reswords: array (reservedwordsJ of al fa;
freenodes: integer { number of currently free nodes known l;
numberofgcs: integer { nt.mtber of garbage collections made l;

the atom 'a' is
represented by ->

the dotted pair
'(a • b)' is
represented by -->

\
\

\

\
\

\
---\----
i i
i a i
i i

-------\-------
iii
iii
iii \ i
--/:...--------\--

1 \
----1---- --\----
iii
i a i b i
iii

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

the list '(a b)'
is represented
by -->

\
\
\

------\------
iii
i i \ i
iii \ i
-1----\--

1 \
---1---- \
i i \
i a i -----\-------
iii i i

i i \ i
iii \ i
--1-------\--

1 \
----1--- ----\---
iii i
i b i i nil i
iii

the garbage collector

irocedure garbageman;

In general there are two approaches to maintaining lists of
available space in list processing systems... The reference
counter technique and the garbage collector technique.

The reference counter technique requires that for each node
or record we maintain a count of the nt.mtber of nodes which
reference or point to it, and update this cOlJnt continuously.
(i.e. wi th every manipulation.) In general, if circular or ring
structures are permitted to develop this technique will not be
able to reclaim rings which are no longer in use and have been
isolated from the active structure.

The alternative method, garbage collection, does not function
continuously, but is activated only when further storage is
required and none is available. The oomplete process consists
of two stages. A marking stage which identifies nodes still
reachable (in use) and a collection stage where all nodes in
the system are examined and those not in use are merged into
a list of available space. This is the technique we have chosen
to implement here for reasons of simplicity and to enhance the
interaotive nature of our system.

The marking stage is theoretically simple, especially in LISP
progranming systems where all records are essentially the same
size. All that is required is a traversal of the active list
structures. The most obvious marking system consists of a prooedure
which makes a number of succ'!.ssive passes through the data
structure, each time marking nodes 1 level deeper into the tree
on each pass. This is both crude and inefficient.

Another alternative procedure which could be used would use a
recursive walk of the tree structure to mark the nodes in use.
This requires the use of a stack to store back pointers to
branches not taken. This algorithm is efficient, but tends to
be self defeating in the following manner. The requisite stack could
become quite large (requiring significant amounts of storage).
However, the reason we are performing garbage collection in the
first place is due to an insufficiency of storage space. Therefore
an undesirable situation is likely to arise where the garbage
collector's stack cannot expand to perform the marking pass.
Even though there are significant amounts of free space waiting
to be reclaimed.

A solution to this dilemma came when it was realized that space
in the nodes themselves (Le. the left· and right pointers) could
be used in lieu of the explicit stack. In this way the stack
information can be embedded into the list itself as it is traversed.
This algorithm has been discussed in Knuth and in Berztiss: Data
Structures, Theory and Practice (2nd ed.). and is implemented below.

Since Pascal does not allow structures to be addressed both wi th
pointers and as indexed arrays, an additional field has been added
to sequentially link the nodes. This pointer field is set on initial
creation, and remains invarient throughout the run. Using this field,
we can simUlate a linear pass through the nodes for the collection
stage. Of course, a marker field is also required.
l

procedure markeList: symbexpptr);

var
rather, son, current: symbexpptr;

begin
father :=.!!.!.!:; current:= list; son:= current;
while current <> nil do
""""iiTth current" do-

--case status of
--urimarked: -

if anatom .!!!!!!. status := marked
else
--rf (head" .status <> unmarked) or (head = current)

then -
--rf (t.i l" "status <> unmarked) 2!. (tai l = current)

then status := marked
eLSe
--regin

status := right; son:= tail; tail := father;

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330

I nvvnL.. l1l-nv rr.L.J

father := current; current:= son

')L....!""" I CI'IDCI\J 1::10U

331

r/-\ lJt.

end
else-

begin
status := left; son:= head; head:= father;
father := current; current:= son

end;
left:

if taiL status <> unmarked
then
~gin

----st'atus := marked; father:= head; head:= son;
son := cu'rrent

end
else

begin
status := right; current:= tai l; tai l := head;
head := son; son:= current

end;
right:

begin
---status := marked;

son := current
father := tai l; tai l := son;

end;
marked: current := father

end { case 1
end mark };

procedure collectfreenodes;

var
temp: symbexpptr;

begin
---w-;:-:rteln(' number of free nodes before colLection = ., freenodes:

, '. I);

freel ist := ni l; freenodes:= 0; temp:= nodel ist;
whi Le temp <>ni l do
~in --

--;rtemp" .status <> unmarked then temp" .status := unmarked
else

begin
freenodes := freenodes + 1; temp".head:= freeList;
freeList := temp

end;
te~:= temp" .next

end;
writeLn(1 number of free nodes after coLLection I, freenodes: 1,

I. I >;
end { collectfreenodes };

begin garbageman
writeLn; numberofgcs := numberofgcs + 1;

writeLn(1 garbage coLLection. '>; writeLn; mark(aList);
if ptr <> nil then mark(ptr);

end{ garbageman J;

procedure pOP(..y.!!:. sRtr: symbexpptr);

begin
iffreel ist = nil then

-begin

coL Lectfreenodes

---w-;:-:rteLn(1 not enough space to evaLuate the expression. I);
goto 2 1

end;
freenodes := freenodes - 1; sptr:= freeL ist;
freel ist := freel ist" .head

end { pop 1;

nput/output ut ty routines

procedure error(number: integer);

begin
writeln; write(1 Error I, number: 1, ',1);
case number of
--:r: writeLn{T atom or Lparen expected in the s-expr. I);

2: writeLn(1 atom, Lparen, or rparen expected in the s-expr. '>;
3: writeLn(' LabeL and Lambda are not names of functions. '>;
4: writeLn(' rparen expected in the s-expr. I>;
5: writeLn(1 1st argument of repLaceh is an atom. I>;
6: writeLn(1 1st argument of repLacet is an atom. I>;
7: writeLn(1 argument of head is an atom. I);

8: writeLn(' argument of tail is an atom. I>;
9: writeLn(' 1st argument of append is not a List. I);
10: writeLnC I comma or rparen expected in concatenate. I);

11: writelnC ' end of fiLe encountered before a "finll card. I);

12: writeln(' lambda or"label expected. ')
end { case };

if number in [11] then goto 2
else goto 1

end { error };

Procedure backupinput puts--a left parenthesis
into the stream of input symbols. This makes
procedure readexpr easier than it otherwise
would be_

procedure backupinput;

beQi{ alreadypeeked := true;
end backupinput 1;

lookaheadsym := sym; sym := lparen

332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440

Procedure nextsym reads the next symbol from
the input file. A symbol is defined by the
global type I inputsymbol I. The global variable
I sym I returns the type of the next symbol read.
The global variable lid' returns the name of an
atom if the symbol is an atom. If the symbol is
a reserved word the global variable I reserved I
is set to true and the global variable 'resword I
tells which reserved word was read.

procedure nextsym;

var
i: integer;

begin
ifa l readypeeked

then begin sym := Lookaheadsym;
else

a l readypeeked :~ fa Lse end

begin
whi Le ch = , , do

begin ii eolnTI""nput) then writeln; read(ch); writeCch>;
end;

if"""""Ch in [1(1, '.1, '>IJ
then -

begin
case ch of
-'-CI: sym := Lparen;

I. I: sym := period;
') I: sym := rparen

end { case };
Tf""eoln(input)

end
eLse

begin
sym := atom;
repeat

then writeLn;

id := ,

read(ch);

I
I i := 0;

i := i + 1; if i < 11 then idE;] := chi
if eolnCinput) then writeln; readCch);

unITL ch in [I " '~'.I, I>IJ;
re5WOrd :~replacehsym;

write(ch)

write(ch)

whi le (id <> reswords[reswordJ) and Cresword <> conssym) do
--r:e5word := succ (resword); -
reserved := id = reswords[reswordJ

end
end

end {nextsym };

procedure readexprCvar sptr: symbexpptr);
(

This procedure recursively reads in the next symbolic expression
from the input file. When this procedure is called the global
variable'sym' must be the first symbol in the symbolic expression
to be read. A pointer to the symbolic expression read is returned
via the variable parameter sptr.
Expressions are read and stored in the appropriate structure
using the following grammar for symbolic expressions :

<s-expr) :: = <atom>
or (<s-expr> . <s-expr))
or (<s-expr) <s-expr) ... <s-expr>)

Where ••• means an arbitrary number of. (i.e. zero or more.)
To parse using the third rule, the identity

(a be __ • z) = (a _ (b c ___ z»

is utilized. An extra left parenthesis is inserted into
the input stream as if it occured after the imaginary dot.
When it comes time to read the imaginary matching
right parenthesis it is just not read (because it is not there).

var
nxt: symbexpptr;

begin
---pop(sptr); > nxt := sptr" .next;

case sym of
rparen,period: errorC1 >;

atom:
with sptr" do
~gin { <atom>

----anitom := true; name:= id; i sareservedword := reserved;
if reserved then ressym := resword
~ --

lparen:
with sptr" do

begin
nextsym;
if sym = period then error(2)
else
---:rf sym = rparen then sptr A := ni Lnode {

else
begin

anatom := faLse;
if sym = period
then

readexprChead) ;

()

nextsym;

begin {
nextsym;
if sym <>

end

«s-expr> • <s-expr»
readexprCtai l); nextsym;

rparen then error(4)

eLse-

nil

begin (<s-expr> <s-expr> _ •• <s-expr>)
backupinput; readexprCtaiL>

end
end

441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550

end { ,with
end {case I;
s,ptr" __ next :::= nxt
~ { reade~!>r I;

proced{lre printnameCname: a L fa};
!

Proced.ure printname prints the name of
an atom 'With one trailing blank.

var
""'""'T: integer;

begin
--r:= 1;

.rep.e,at write(nameCi]); i:= ; + 1
"ntH (nam"en = • ') or(i = 11);
writ.e(' ') -
~ { printname I;

pro.cedure printexprCsptr: symbexpptr);
{

The algorithm for this procedure was provided by
Weissman'S LISP 1.5 Primer, p.125. This
procedure prints the symbolic expression pointed
to by the argument 'sptr' in the lisp list
notation. (The same notation in which expressions
are read.)

label
""""1T

beg;"
; .sptr" ",anatom then printname(sptr" .name)
irse

be~i,:,
wrlte(1 et >;

1: with sptr' do
be9i~ -

',prlntexpr(head) ;
if tail' .anatom and (tail' .name
tnen write{')') -
em-
'""""ff tail" .anatom

tnen

'NIL

~g;n write('.'); printexpr(ta;L>;
el'se begin sptr := tail; goto 1 end

end -.~---
end -

end t printexpr I· ,

.)

write(-')') ~

end of ilo ~t lity rout nes

The Expression Evaluater Eval

functjon eval(e, alist: symbexpptr): symbexpptr;
T~

Function eval eval'\..ij3.tes the LISP expression 1 e' using the
association list .' alist'. This function uses the following
$eve,ral local functions to do so. The algorithm is a
Pasc~l ver~iQn of the classical LISP problem of writing
the LISP eval routine in pure LISP. The LISP version of
the code is as follows:

Oambda (e alist)
cond

«atom e) (lookup e alist))
«atom (car ell

(cond (Ceg (car e) (quote quote))
(cadr ell

«eq (car e) (quote atom))
(atom (eval (cadr e) alist)

«eq (car e) (quote eq))
(eq (eval (cadr e) alist)))

«eq (car e) (quote car))
(car (eval (cadr e) alist)))

«eq (car e) (q~ote cdr»
(cdr (eval (cadr e) alist»)

«eq (car e) (quote cons)
(cons (eval (cadr e) alist)

(eval (caddr e) alist)
«eq (car e) (quote cond)

(evcon (cdr ell
(t (eval (cons (lookup (car e) alist)

(cdr ell alist»))
«eq (caar e) (quote label))

(eval (oons (caddar e)
(cdr e)

(oons (cons (cadar e) (car ell
alist)))

«eq (caar e) (quote lambda))
(eval (caddar e)

(bindargs (cadar e) (cdr e))))

'l'he re$ul ting Pascal code follows:

va.r
temp, carofe, eaarofe: symbexpptr;

The first ten of the following local functions implement
ten of the primitives which operate on the LISP data
struet.ure. The last three local functions, 'lookup',
'bin4~rgs' and 'eveon', are used by 'eval' to interpret

551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660

a LISP expression.
I

function replaceh(sptr1, sptr2: symbexpptr): symbexpptr;

begin
if sptr1' .anatom then error(5) else sptr1" .head ,= sptr2;
replaceh := sptr1
~ { replaceh I;

function replaceHsptr1, sptr2: symbexpptr): symbexpptr;

begin
iTsptr1".anatom ~ error(6) ~ sptr1·.tail := sptr2;

replacet := sptr1
~ { replacet I;

function head(sptr: symbexpptr): symbexpptr:

begi7 if sptr'" .anatom .!!J.!!:'. error(7) ~ head := sptr'" .head
end -head I;

~ tai l(sptr: symbexpptr): symbexpptr;

begin if sptr" .anatom ~ error(8) else tai l :. spt," .tai l
end { tail I;

function cons(sptr1, sptr2: symbexpptr): symbexpptr;

var
temp: symbexpptr:

begin
----poj)(temp) ;

temp" .tai L
~ { cons

temp" .anatom := false;
:= sptr2: cons:= temp

I;

temp" .head

function copy(sptr: symbexpptr): symbexpptr;
{---

This function creates a copy of the structure
pointed to by the parameter t sptr t

var
temp, nxt: symbexpptr;

begin
iTsptr" .anatom

then
begin

:= sptr1:

pop (temp) ; nxt:= temp" .next: temp"'::c sptr"':
temp'" .r)ext := nxt; copy:= temp

end
else-copy := cons(copy(sptr" .head), copy(sptr" .tail))

en;rr- copy I;

function append(sptr1, sptr2: symbexpptr): symbexpptr;

The recursive algorithm is from Weissman, p.97.

begin
iTsptr1" .anatom

then -n sptr1' .name <> 'NIL then error(9)
erse append := sptr2

else-
-append := cons (copy(sptr1" .head), append(spt r1' • tai l, sptr2))
~ { append I;

~ conc (sptr1: symbexpptr): symbexpptr;

This fUnction serves as the basic concatenation mechanism
for variable numbers of list expressions in the input stream.
The concatenation is handled recursively t using the identity:

conc(a ,b, c "d) = cons(a ,cons(b ,cons(c ,cons(d ,nil»»

The routine is called when a conc(.... command has been
recognized on input, and its single argument is the first
expression in the chain. It has the side effect of reading
all following input up to the parenthesis closing the
conc command.

The proceQure consists of the following -steps-
1. call wi th 1st expression as argument.
2. read the next expression.
3. if the expression just read was not the last, recurse.
4. otherwise ... unwind.

var
sptr2, nilptr: symbexpptr;

begin
iTsym <> rparen

then
begin

nextsym; readexpr(sptr2); nextsym;
.,c0nc := cons(sptr1, conc(sptr2));

end
else
. if sym rparen

661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770

then
""""begin

>I I I 1...1'11)1...1\ I J.:10 U

771 taiLCtailCe))), aList»;
repLacehsym:

t"Abt Lj/

--newCn; lptr);
with nilptr' do
--,;e'gin anatom:= true; name:= 'NIL
cone := cons(sptr1, nilptr);

end
eL5e""error(10)

end r-conc];

function eqq{sptr1, sptr2: s)(.mbexpptr): symbexpptr;

var
temp, nxt: symbexpptr;

begin
----poj){temp); nxt:= temp" .next;

if sptr1" .anatom and sptr2'" .anatom
then -

I end;

----:rt sptr1 A .name = sptr2" .name then temp" := tnode
else temp" := nilnode --

eLse-
--err sptr1 = sptr2 then temp' := tnode

er se temp'" := ni Lnode;
temp" .next := nxt; eqq:= temp

end (eqq J;

function atom{sptr: symbexpptr): symbexpptr;

var
temp, nxt: symbexpptr;

begin
----poj)(temp); nxt:= temp" .next;

if sptr'" .anatom then temp" := tnode else temp'" := ni lnode;
temp" .next := nxt;--atom := temp

end { atom };

function lookup(key, alist: symbexpptr): symbexpptr;

var
temp: symbexppt r;

begin
-remp := eqq(headCheadCal ist)), key);

if temp·.name = 'T then lookup := tailCheadCaList))
erse lookup := lookupCkey, tailTaITst))

endT lookup J;

function bindargs(names, values: symbexpptr): symbexpptr;

var
temp, temp2: symbexpptr;

begin
----:rfnames'" .anatom and (names'" .name- = 'NIL I)

then bindargs := arrst
erse
-,;egin

teiitp := cons(head(names), evaL<head(values), alist));
temp2 := bindargsCtaiLCnames), tail (vaLues));
bindargs := cons(temp, temp2)

end
end {bindargs J;

function evcon(condpairs: symbexpptr): symbexpptr;

var
temp: symbexppt r;

begin
-remp := evalCheadCheadCcondpairs)), alist);

if temp'" .anatom and (temp'" .name = 'NIL ')
then evcon := eVCOnCtailCcondpairs))
erse evcon := evalCheadCtailCheadCcondpairs))), aList)

end{ eveon };

begin e v a
---:r'te'" .anatom ~ eval := lookup(e, alist)

else
begin

----carofe := head(e);
if carofe" .anatom
then
--rr not carofe'" .isareservedword

then-
---eiiaL := evaLCconsClookupCcarofe, aList), tail(e)), aList)
else
-case carofe'" .ressym of

---rabeLsym, Lambdasym: error(3);
quotesym: eval := head(tai l(e));
atomsym: evaL := atomCevalCheadCtail(e)), aList));
eqsym:

evaL := eqqCevalCheadCtaiLCe)), aList), evaLCheadCtaiLC
taiLCe))), aList));

headsym: evaL := headCevaLCheadCtailCe», aList));
taiLsym: eval := tailCevaLCheadCtailCe)), alist));
conssym:

eval := consCevaLCheadCtaiLCe)), aList), evaLCheadCtaiLC
tailCe))), aList));

condsym: eval := evcon(tail(e));
concsym: ;
appendsym:

evaL := appendCevaLCheadCtaiLCe)), aL ist), evaLCheadC

772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880

evaL := repLacehCevaLCheadCtaiLCe)),
taiLCtaiLCe))), alist));

replacetsym:

al ist), evaLCheadC

eval := replacet(evaL<head(tai l (e»,
taiLCtailCe))), aList))

alist), eval(head(

end
eLse-

begin

ease }

caarofe := head(carofe);
if caarofe" .anatom and caarofe". i sareservedword
then -
--:rt not (caarofe". ressym in [label sym, lambdasym])

thenerror(12) -
erse
---case caarofe'" .ressym of

---rabelsym:
begin

temp := consCconsCheadCtaiLCcarofe)), headCtailC
tailCcarofe)))), aList);

evaL := evaL CconsCheadCtaiL CtaiL C carofe))), tail Ce
)), temp)

end;
lambdasym:

begin
""""te.iip := bindargsCheadCtaiL Ccarofe)), tail Ce));

evaL := evaLCheadCtaiLCtaiLCcarofe))), temp)
end

end I case
else-
---eiiaL := evalCconsCevaLCcarofe, aList), taiLCe)), aList)

end
end

end I e val J;

procedure initial ize;

var
i: integer;

temp, nxt: symbexpptr;

begin
---aLr'eadypeeked := false; read(ch); write(ch); numberofgcs:= 0;

freenodes := maxnode;
with nilnode do
-,;egin -

----aii'atom := true; next:= ni l; name:= 'NIL I;
status := unmarked; isareservedword:= false

end;
witfl""tnode do
~gin

----aii'atom := true; next:= ni l; name:= 'T ,.
status := unmarked; i sareservedword := fa lse

allocate storage and mark it free
freelist := nil;
for i := 1 tomaxnode do
negin - -

new(nodelist); nodelist next:= freelist;
nodeli st'" .head := freel i st; nodel i st" .status := unmarked;
f reel i st := nodel i st

initialize reserved word table
reswords[replacehsymJ := 'REPLACEH ';
reswords[repLacetsymJ := 'REPLACET ';
reswords[headsymJ := 'CAR ';
reswordsCtai lsym] := 'CDR ,.
reswordsCcopysym] := 'COpy I;
reswords[appendsymJ := 'APPEND ';
reswords[concsym] := 'CONC ';
reswords[conssym] := 'CONS ,.
reswords[eqsym] := IEQ ';

reswords[quotesymJ := 'QUOTE
reswords[atomsym] := 'ATOM
reswords[condsym] := 'COND
reswordsClabelsym] := 'LABEL
reswords[LambdasymJ := 'LAMBDA

,. , ,. , ,. , , ;

ini tialize the a-list with and nil
pop(alist); alist anatom:= false; alist status:= unmarked;
pop(alist taiD; nxt:= alist ... tail next;
alist tail ... := nilnode; alist tail next:= nxt;
popCa List' .head);

bind nil
with aL ist' .head· !!2

begin

to the atom nil

status := unmarked; pop(head); anatom := false;
nxt := head'" .next;
popCtai Ll; nxt:=
tai l" .next := nxt

head'" := ni lnode; head'" .next := nxt;
tai L'" .next; tai l'" := ni lnode;

end;
pop(temp); temp'" .anatom := false;
temp".tail := alist; alist:= temp;

temp" .status := unmarked;
popCa List' .head);

bind t to the atom t
with aL ist' .head· do

begin -
anatom := false;
nxt := head'" .next;
popCtai Ll; nxt:=
tai l'" .next := nxt

end;
end! initialize J;

status := unmarked; pop(h'ead);
head'" := tnode; head'" .next :=

tail".next; tail":= tnode;
nxt;

PASCA L NEW S #19 SEPTEMBER, 198u PAGE 48

881 begin { LISP }
882 writeLn(1 * EVAL * I); initiaLize; nextsym; readexpr(ptr);
883 readLn; writeLn;
884 whiLe not ptrft.anatom ~ (ptrft.name <> IFIN I) do
885 begi-n-
886 writeLn; writeLn(1 * vaLue * I); printexpr(evaL(ptr, aList»;
887 1: writeLn; writeLn; if eof(input) then error(11);
888 ptr := niL;
889 {cal~he} garbageman; writeLn; writeLn;
890 writeLn(1 * EVAL * I); nextsym; readexpr(ptr); readLn;
891 writeLn;
892 end;
893 2: writeLn; writeLn;
894 writeLn(1 totaL number of garbage coLLections = I, numberofgcs: 1,· 1.1
895);
896 writeLn;
897 writeLn(1 free nodes Left upon exit = I, freenodes: 1, 1.1);
898 writeLn;
899 end { LISP }.

Articles

An Implementation of New and Dispose
using Boundary Tags

Branko J. Gerovac

The standard Pascal procedures New and Dispose are implemented using boundary-.tag
memory management. This implementation replaces the original New and Dispose module in
the run-time library of Oregon Minicomputer Software, Inc. Pascal-l which executes on
Digitsl Equipment Corp. PDP-II computers. Design details, although aimed at this
confLguration, should be generally useful. Performance of the original and
boundary-tag implementations are analyzed and compared.

Key words: Pascal, New and Dispose, memory management, boundary tag.

1. Introduction

Many Pascal systems do not fully implement New and Dispose. One can speculate
that (1) the full generality of New and Dispose was deemed unnecessary or undesirable,
or that (2) efficient algorithms for New and Dispose are not readily available. This
paper addresses the latter issue.

The standard Pascal run-time environment has two functionally different data
st(;>~age areas: the stack and the heap.

The number of accessible data items on the stack is designated by the declarations
of a program, and all operations that allocate and release stack storage and access
stack data are implicit in program syntax. In addition, the block structure of a
program designates the period (lifetime) during which stack storage is set aside.

In contrast, the number and lifetime of items on the heap are largely independent
of program declarations, and heap operations are programmed explicitly. At run time, a
program must (1) maintain access to heap data, by using pointers, and (2) allocate and
release heap storage, by using New and Dispose.

Some Pascal systems implement the heap as a second stack (e.g., P-code Pascal
[NAJNJ76). A second stack requires that a program maintain the information necessary
to release heap storage, and that heap storage is released in the reverse order from
which it was allocated. This restriction may prevent the programmer from implementing
algorithms that use a non-stack-like data structure [cf., HS76, HS78, W76).

Here, a boundary-tag scheme for managing free blocks permits an efficient
implementation of New and nispose. This module has many advantages over the original
New and Dispose module in the run-time library of OMS I-Pas cal-l [1). OMSI-Pascal's
original New and Dispose provided some insight into the problems of heap management.
With the original module, examples of wide varIation in memory efficiency and execution
time are apparent. Since one of OMSI-Pascal's strong features is its applicability to
real-time programming, many design decisions for the boundary-tag module were aimed at
decreasing execution time. Memory efficiency improved also.

Performance analyses of each New and Dispose module are compared. Analyses of
specific heap operations were carried out by calculating run times of each
implementation. Simulation tests were run to obtain comparative performance during

Author's address: Behavioral Sciences Department, Eunice Kennedy Shriver Center for
Mental Retardation, 200 Trapelo Road, Waltham, Massachusetts 02154; Phone:
(617)893-3500.
[1) Oregon Minicomputer Software, Inc. distributes and maintains
that was implemented by Electro Scientific Industries. An
OMSI-Pascal-l was known as ESI-Pascal. This Pascal was one of the
Dispose. OMSI-Pascal runs on Digitai Equipment Corp. PDP-II
standard operating system facilities.

the Pascal system
earlier version of
first to implement
computers and uses

actual execution.
Although a specific hardware-software environment is discussed

rationale would be appropriate for other systems. Pascal
implementation of New and Dispose and assembly language sources for
module are provided to promote general use.

here, the design
sour:es for each

the boundary-tag

2. Description of the Original New and Dispose Module

The run-time memory configuration of
OMSI-Pascal-l [ESI77), under DEC's RT-ll real-time
operating system, is typical for block structured
languages [NAJNJ76, AU77). The operating aystem
maintains areas of memory for interrupt vectors,
system communication, the resident monitor and
peripheral device registers [DEC78). When a Pascal
program is run, the program code is loaded into low
memory, and then a Pascal run-time library routine
initializes the data areas. The heap is located in
low memory just above the program code and global
storage, and the stack is located in high memory.
The heap grows upward and the stack grows downward;
the unused memory between the heap and the stack is
available for expansion of either. No automatic
memory-disk swapping of data occurs.

Two pointers are maintained by New and Dispose
to manage heap memory: (1) $KORE points to the
beginning of the unused area above the heap, and
(2) $FREB points to a list of free blocks in the
heap. The free list is a singly linked list of
blocks that have been disposed [2). Each free block
contains (1) a pointer to the next block in the list
(a nil pointer if it is the last block in the list)
and (2) the block's size. An advantage of the free
list is that the information needed to managp a free
block is contained within the block, thus no
additional memory overhead is required for
free-block management. (Computers with virtual
memory may benefit from a separate table of free
blocks to avoid excessive memory-disk swapping.)

Diagram of Memory Layout:

Peripheral Device
Registers

Resident Monitor

Pascal Stack
-------~-------

_______ 1. _______

Pascal Heap

Pascal Global Variables

Pascal Run-time Library

User's Pascal Program Code

System Communication
and

Interrupt Vectors
000000

New. To allocate storage on the heap, program code passes the size needed to New
[3). --rAppendix A contains Pascal sources of New and Dispose.) If one word is
requested, it is allocated by extending the top of the heap by one word; one-word
blocks do not fit on the free list because two words are necessary to contain pointer
and size information. For a request of more than one word, the free list is searched
for a block of the exact size (exact-fit) of the block requested. If such a block is
found, it is unlinked from the list and allocated; if 110 such block is found or the
free list is empty, the heap is extended by the number of words needed to allocate the
block. If collision with the stack results from extending the heap, program execution
is terminated. The newly allocated block is zeroed to provide a clean slate and to
help prevent inadvertant violation of the free list. New returns the address of the
new block, and program code assigns this address to s pointer.

DilEoshe To release storage to the heap, program code passes the address and the
size 0 t block to Dispose. A block that is larger than one word is linked to the

[2) Since New and Dispose may be called in any sequence, the heap can contain a mix of
allocated and free blocks. The free list permits New to reuse free blocks.
[3) The size is always an even number of bytes due to the PDP-II's restriction that
word based data, e.g., integers, be stored at even byte (word) locations.

-c
:to.
c
1'.

beginning of the free list and its size is recorded; a one-word block effectively is
not released. Then, the free list is searched for a block adjacent to the top of the
heap. If a block is found, it is released from the heap by unlinking it from the free
list and decrementing $KORE. This search is repeated until a full scan of the list is
made without a decrease in the upper bound of the heap.

The original implementation of New and
Dispose is uncomplicated, requires little
code, and seems as though it would work
well with typical Pascal programs.
Generally, only a few different data sizes
are specified in a program. The exact-fit
allocation scheme often finds the size
block needed in the free list; the size of
the last disposed block is likely to be the
same as the size of the next requested
block, hence, placement of the disposed
block at the beginning of the free list may
speed allocation. However, problems arise
when worst-case memory-space and
execution-time performance are considered.

For example, since the free list does
not keep track of disposed one-word blocks,
one-word blocks limit the extent to which
the upper bound of the heap can be reduced.
Free blocks that are below a one-word block
will never be adjacent to the top of the
heap and cannot be released. Even so,
Dispose continues to scan these free
blocks. A simple solution would allocate
two words for a one-word request so that
the block would fit on the free list.

Another problem, easily fixed, is the
unnecessary search that Dispose makes when
a block is first linked to the free list.
The free list need be searched only if the
block currently being disposed is adjacent
to the top of the heap.

Even with these changes, certain
configurations of the free list generate
inefficient memory use and a wide range of
execution times.

Consider a program that places 100
blocks of one size in the free list.
Suppose the program then requests a block
of some different size. Since New employs
an exact-fit algorithm, a search of the
free list will not produce a block of the
correct size and the heap will be extended
for the new block. Effectively. 100 blocks
of storage are not usable, the total size
of the heap is larger than necessary, and
the execution time of New has increased by
the amount of time required to search 100
blocks.

Diagram of Heap, original module:

$KORE-

Pascal
pointer2-+

$FREE-+

Pascal
pointerl-+

size=12
next

size-16
next=nil --

size=12
next 1-----

Now consider that the 100 blocks were disposed in the reverse order from which
they were allocated (last allocated, first freed). In other words, the blocks nearer
the top of the heap are farther from the beginning of the free list. When the final
block (keystone) between the top of the heap and the 100 blocks on the free list is
disposed, a chain reaction releases all 100 blocks from the heap. However, the full
depth of the free list must be scanned for each block to be released. This results in

a single call of Dispose that performs 5,050 comparisons, i.e., a complexity of
O[Sqr(N)/2 j.

3. Selection and Design of a Heap Management Algorithm

In both cases described above, the
large number of free blocks causes
worst-case performance. This number can
be reduced by merging adjacent free
blocks. The resulting larger block
would be available for allocation when
its constituent blocks would have been
too small. By allocating a portion of a
large block and returning the remainder
to the free list, the larger block is
available for a variety of smaller size
allocations. Thus, reusability of
available memory is enhanced.

Diagram of a Heap. boundary-tag module:

Since the heap grows toward the
stack, the upper extent of the heap
should be kept as low as possible. To
accomplish this, blocks in the free list
can be ordered by memory location;
blocks which are nearer the bottom of
the heap are placed closer to the
beginning of the list. New, employing a
first-fit search algorithm, allocates
the lowest free block of sufficient
size. If the block exceeds the
requested size, only the lower portion
is allocated, and the remainder is
returned to the free list. Biasing heap
allocations toward lower memory helps
avoid collision with the stack.

Dispose, then, maintains the
ordered free list, and merges adjacent
free blocks. Simply, when a block is
disposed, a comparison with blocks
already in the free list would determine
whether to merge the disposed block with
a free block or to insert the disposed
block into the free list; potentially,
a full scan of the free list would be
needed. However, literature on
memory-allocation strategies [K73, S74,
G76, H76, HS76j indicates that a dispose
operation can be performed without
scanning the free list by employing
Knuth's "Boundary Tag" scheme for
free-block management [K73j. The
implementation presented here differs
from Knuth's presentation in order to

$KORE-

Pascal
pointerl-

Pascal
pointer2-+

$ FREE--+-

size-O
slze=12

size-12
size 28

!!revious
next

size-28
SlZe 16

size=16
slZe-I2

!!revious
ne~t

size-12
slZe-2
!!revious

next
size=2

F
r;.

A
F

- ~ F
r;.

A
F'

- r+
K

++- t-'
A

maintain the ordered free list.
The boundary-tag scheme uses two additional words of storage to mark the

boundaries of each block; lower and upper boundary words are identical. Each boundary
word contains the size of the block and a one-bit tag that signifies whether the block
is allocated or free. Since the size is always an even number of bytes, bit zero can
be used to tag the block. Bit zero is clear to indicate that the block is free and is
set to indicate that the block is allocated. Dispose need check only the boundary

words of the blocks adjacent to the block being disposed to determine Whether a merge
can be performed.

Each free block contains two pointers Which enable access to the next and previous
free blocks during insert and merge operations. Placement and referencing of the
pointers was chosen to facilitate access using the auto-increment/auto-decrement
addressing modes of the PDP-II instruction set. Also, placement at the bottom of the
block corresponds to Pascal pointer referencing. (Although, placement of the pointers
at the top of the bl.ck would seem advantageous when the lower portion is allocated,
preliminary coding indicated a marked increase in code size and a very slight decrease
in execution time.)

The heap is initialized with boundary blocks at the bottom and top of the heap.
$FREE points to the lower boundary block, which is tagged as being allocated, and links
the bottom and top of the free list into a circular list; the list can be traversed in
either direction. $KORE pOints to the upper boundary block, which is tagged as free
and has a size of zero. This is a pseudo block in that it is not linked into the .free
list· it serves only to provide a boundary word to check when the block sdjacent to
$KORE is being disposed. The boundary blocks eliminate the need for tests Which
otherwise would have to check boundary conditions during insertion on and removal from
the free list. Without boundary blocks, Dispose would have required as many as 8
conditional tests to select from 12 separate operations. With the boundary blocks,
only 4 tests and 6 operations are needed.

4. Description of the Boundary-Tag New and Dispose Module

The boundary-tag module was written so that no changes to the compiler or the rest
of the run-time librar} would be needed (see Appendix Notes).

New. To allocate storage on the heap, program code passes the size of the block
to New. (Appendix B contains Pascal sources of New and Dispose, and Appendix D,
Macro-II sources.) A request for one word is changed to two words. The free list is
searched starting at the bottom. If a large enough block is not found, then the heap
is extended, providing that the heap does not collide with the stack. If a block which
is larger than needed is found, the lower portion is allocated and the upper portion
(remainder) is returned to the free list. However, if the remainder would be too small
to fit in the free list, the entire block is allocated. Then, the tags of the new
block are set, the block is zeroed, snd its address returned.

Dispose. To release storage to the heap, progrsm code passes the address and the
size -or--the block to Dispose; the size parameter is ignored since the actual size of
the block is contained in the boundary word. The block's tag is checked to see that it
is allocated and the block's address is checked to see that it is within the heap
(OMSI-Pascal has been extended to permit pointers to data which are not stored on the
heap). Then its tags are set to free, and the addresses of the lower- and
upper-adjacent words are calculated. If the lower-adjacent block is free, the two
blocks are merged; a merge with a lower-adjacent block is rapid, since the next and
previous links are not changed. If the upper-adjacent word is the top of the heap
($KORE) the block is released from the heap. If the upper-adjacent block is free, the
blocks are merged snd the links are adjusted; link sdjustment depends on whether a
merge with the lower-adjacent block had occurred. If neither adjacent block is free,
the free list is scanned to compare the address of the block being disposed with the
addresses of blocks in the free list. The disposed block is inserted in proper order,
maintaining the ordered free list.

Problems in the original module have been corrected. One-word requests return a
two-word block that will fit in the free list without special handling. Allocations
are made from the lowest possible free block; the upper free blocks are more likely to
be released from the heap. Free blocks are merged; the larger blocks are avsilable
for a variety of allocation sizes, and the shorter free list is more rapidly scanned.
Boundary tags permit most blocks to be disposed without a scan through the free list.

5. Static Analysis

The additional operations of the boundary-tag module require more than twice the
instruction space of the original. The number of storage words for each procedure is:

New
Dispose

original
38
33

boundary tag
103

78

Execution-time equations for both New and Dispose modules were calculated using
the instruction execution times given by the manufacturer for an LSI-II with a 350
nanosecond microcycle time [DEC77J. Representative data, based on simulation tests
(N-4, random) presented in the next section, are shown in brackets; all execution
times are in microseconds (us). Subsequent references to the original implementation
of New and Dispose and the bOundary-tag implementation of New and Dispose are indicated
respectively by New-org, Dispose-org, New-tag and Dispose-tag.

New-org performs three likely forms of allocation: (1) the free list is empty,
allocate by extending the heap, (2) a free block of the correct size is found, allocate
this block, and (3) the free list contains blocks that are not the correct size,
allocate by extending the upper bound of the heap. The execution-time equations for
New-org are:

1. free list empty
2. allocate free block
3. extend heap

89.25 + 28.70*L
76.30 + 30.80*Korg + 28.70*L

117.95 + 30.80*Norg + 28.70*L

Norg [25J the number of blocks on the free lis~.

[433.65usJ
[497. 70us]
[1232.35~sJ

Korg [2.5J the number of blocks searched to find one of the correct size.
L [12J the size in words of the newly allocated block, represents the time

required to zero the block (the 28.7*L term could be recoded to ll.9*L).

The New-tag algorithm also performs three forms of allocation: (1) allocate an
entire block from the free list, (2) allocate the lower portion of a block from the
free list, and (3) allocate by extending the heap. New-tag:

1. entire free block 160.65 + 26.60*Ktag + 11.9O*L 303. 45usJ
2. portion of free block 207.90 + 26.60*Ktag + 11.90*L 350.7OUsJ
3. extend heap 176.05 + 26.60*Ntag + 11.90*L 531.65~s]

Ntsg [8J the number of blocks on the free list.
Ktag [3] the number of blocks searched to find one of the correct size.
L [12J the size in words of the newly allocated block.

The advantage cf New-tag results from the fewer blocks contained on its free list.
In the 100 free-block example given in section 2, a single call of New-org runs
3,542.35 us., while New-tag runs 378.00 us. The free list for New-tag contains only
one block. Remember that New-org is extending the heap, while New-tag is reusing
memory from the free list.

The Dispose-org algorithm has two major forms of releasing storage: (1) add the
block to the free list and do not decrease the upper bound of the heap, and
(2) decrease the upper bound of the heap by the size of the block being disposed.
Also, (3) worst-case execution time for a single call is the dispose of the keystone
block described in section 2; representative time is given with Norg-25 for comparison
with (1) and (2). Dispose-org:

1. add to free list
2. decrease heap
3. worst-case

72.45 + 42.00*Norg
92.05 + 42.00*Norg

72.45 + 42*(Sqr(Norg)/2) + 61.60*Norg

[l,122.45usJ
[l,142.0SUsJ
[14, 737 .45~s]

-c
:x>
c-;
r,-,

The Dispose-tag algorithm has six forms of releasing storage: (1) scan the free
list and insert the block without a merge, and (2) five forms of merging the block
without a scan, the range and average of these are given. (3) The keystone dispose is
not. worst case for Dispose-tag; it would execute as a merge operation. Instead, worst
case is a full scan of the free list to insert the block at the bottom of the free
list. ·Dispose-tag:

1. scan and insert
2. merge
3. worst-case

143.85 + 14.70*(Ntag/2)
range (134.05 •• 205.10)

143.85 + 14.70*Ntag

[202.65us]
[average l73.74us]

[261.45~s]

An examination of the time needed to dispose an entire list shows the effect that
multiple Dispose operations have on program execution. Assume a list of blocks is
allocated and numbered in order of allocation (l,2,3 •• X); the free list is initially
empty. TWo simple cases of disposing the list are: (1) LAFF--last allocated, first
freed--blocks are disposed in the reverse order from which they were allocated
(X •• 3,2,l). Each call of Dispose decreases the upper bound of the heap. And,
(2) FAFF--first allocated, first freed--b10cks are disposed in the same order as
allocation (l,2,3 •• X). Each call of Dispose adds the block to the free list; the last
call decreases the upper bound of the heap by the extent of the entire list. Also,
worst case for each version of Dispose is: (3) LAFF-keystone, described in section 2
«X-1) •• 3,2,l,X), is worst case for Dispose-org. And, (4) odd-LAFF/even-FAFF is worst
case for Dispose-tag. The odd numbered blocks are disposed in reverse order, then all
even numbered blocks are disposed in increasing order «X-l) •• 5,3,l,2,4,6 •• X); assume
X is an even number. Each dispose of an odd numbered block must scan the entire free
list to insert the block in order, the even numbered blocks merge with both lower- and
upper-adjacent, and the Xth block decreases the upper bound of the heap by the extent
of the list.

Dispose a list with X blocks [X-100]:

original boundary tag

1. LAFF 134.05 * X 134.05 * X
[l3,405~s] [l3,405~s]

2. FAFF (134.05*X)+(42*(Sqr(X)-X)/2) 355. 60+(142. 80*(X-2»
[22l,305~s] [14,350~s]

3. LAFF- (134.05*X)+(42*(Sqr(X)-(X/2») 134.05 * X
keystone [43l,305~s] [13,405~s]

4. odd-LAFF/ (134.05*X)+ (174.48*X)-(8.05)+
even-FAFF (42*«3/4)*Sqr(X)-X» (14.70*«Sqr(X)/8)-(X/4»)

[324,205~s] [35,447~]

LAFF and LAFF-keystone are respectively the best- and worst-case examples for the
original Dispose. The similarity of ordering between the two complicates the
evaluation of run time for programs using the original module.

While the original implementation of New and Dispose exhibits a wide range of
execution times, the boundary-tag implementation is orderly even in the extreme
examples.

6. Dynamic Analysis

Simulation tests were run to collect additional information on the comparative
performance of the original and boundary-tag implementations of New and Dispose. The
simulation program is similar to the one recommended by Knuth [K73] and is based on
Monte Carlo techniques.

The test program runs in simulated time; the major loop of the program defines a
simulated-clock tick. Briefly, at each clock tick: (1) All blocks that are at their
lifetime limit are disposed. (2) Then, a single block is allocated, its size and
lifetime determined by generator functions. The allocated block is placed on a list
that is ordered by lifetime limit. (3) Statistics on heap size and utilization and the
numbers of allocated and free blocks are recorded. Periodically, statistics and an
optional picture of memory are output. The program continues until a simulated-time, a
real-time, or a heap-size limit is reached; all tests reported here ran the full
simulated-time limit of 25,000 ticks. At the end of the program, summary statistics
and a frequency plot of memory use are output.

All tests were run with the same mai~ program; only the generator functions for
size and lifetime differed. A variety of generator functions were used. The functions
were chosen so that the average allocated-block size was 12 words and so that the
average number of allocated blocks was 50. A random number generator (0 •• 0.99999)
serves as the basis for size and lifetime selection; the same sequence of random
numbers was used for all tests.

Seventeen size functions were used. Each generated an even distribution of N
block sizes (N - 1 •• 17) centered around 12 words. These 17 size functions are of the
form:

size(N) : Trunc((random*N) + (12-Trunc(N/2»)

The function for N-5 requests allocations of 10, 11, 12, 13, or 14 words with equal
probabi1ty. For N-4, allocations of 10, 11, 12, or 13 are requested; functions for
even values of N request blocks whose average size is 11.5 words.

Four lifetime functions were used: (1) Random, evenly distributed from 1 to 100
simulated-clock ticks, (2) Queue, fixed value of 50 ticks, (3) Stack, allocate 100
blocks, one per tick, then dispose all of them in the reverse order from which they
were allocated, LAVF, and (4) 80% Stack, lifetimes are 80% stack-like and 20% random.
The equations for these functions are (simtime is the value of the simulated clock in
ticks):

1. Random:
2. Queue:
3. Stack:
4. 80% Stack:

Trunc(random*lOO) +1
50
100 - (simtime mod 100)
80 - (simtime mod 80) + Trunc(random*20) [if 0 then 1]

Each size function (17) was paired with each lifetime function (4) to produce a
test (1 of 68) performed with each New and Dispose module. (Other tests produced
similar results.) Statistics were gathered separately for each test-module
combination.

Figure 1 plots the average number of blocks on the free list versus the size
function for each test. Data points of the same lifetime function and New and Dispose
module are connected Each data point is the sum of the free-block counts from each
simulated-clock tick averaged over 25,000 ticks. The free-block counts for the
stack-lifetime tests were always zero and are not plotted.

Another way to view the results is to consider the ratio (~ of free blocks to
allocated blocks; the average number of allocated blocks is approximately 50 for all
tests. In the random-lifetime curves, the boundary-tag module starts with ~5.4% when
N-l and increases to ~-20.3% when N-7 where a plateau develops not rising above 24%;
results with the original module begin with 1:10.7% when N-1, ~-72.6% when N-7 and
continues to increase until ~130.2% when N-17. The other lifetime functions show an
even greater difference between the two modules.

Figure 2 shows the average of total heap size divided by the number of allocated
words, a measure of a module's memory-space efficiency. A value of 100% means that all
words (average 600) are allocated and that there is no additional overhead; the
stack-lifetime tests with the original module show this performance. Even though there
are no free blocks, stack-lifetime tests with the boundary-tag module show a 17%
overhead due to the two boundary words needed for each block. Since the average
allocated block is 12 words, 14 words actually are used; smaller or larger blocks

70 -
- 80% Stack

- ~eue

60 - -- Random

50 -

~ 40-

30 -

20 -

10- ._-+----<---+--+--I---+--+--<-----+---+ - Random

/.;,;:"..~=::==S::::::==:::t:=::::~=:;::=~=::=:;::=~::::=:::::::;~:::: - 80% Stack ~ - Queue

0-
1 1 1 1 1 1 1

No. 1 10 11 12 13 14 15 16 17

240 -

~
" 220-

:i: 200-

~

o 180-

<

160 -

~

::e 140-

Size Function

FIGURE 1. FREE BLOCK COUNT

- 80% Stack

- Random
- Queue

J¢.:::~---+---+--+--+--+----+------+--:--+ - 80% Stack

7f:'-,>--+--,,-<--+--+----<--+---'--+--+----+ -- Random

./,~_->--<__-+--+--I---+_-+-_<__-+_+--I---+--+--+ - Queue

120 - '"7'-1'--+--+--+--+--+--+--+--1---+--+--1---+--+--1---+ __ Stack

Original
Module

Boundary-tag
Uodule

Original
Module

BOWldary-tag
Module

100 - .. I--:---.,~-+--+--.,f---+-+--.,_-+-I -+-_"1--+-1 -+1--11--+-1 -+ - Stack - Original

N .. 1 10 11 12 13 14 15 16

5:20 -

5:00 -

4:40 -

~ 4:20 -

! 4:00 -

~

Size Function

FIGURE 2. HEAP UTILIZATION

17

- 80% Stack

-Queue
- Random

. ~ 3:40 -

" !~::~:=::=:E3:==:=:E3=::::=E=:=::::=E=:==E::=: - 80% Stack
+ - Queue

~ 3:20 - +-- I I - Random

~ 3:00 -

Original
Module

Boundary-tag
Module

1: SO - !""' =:::::=~~=:::=::::::::=::::::::=::::::=:::::=:'=:::::=:::::::::::=~=:+ _ Stack -.original 1;47 - +" I I - Stack - BOmldary-eag

1 1 1 1 1
N- 1 10 11 12 13 14 15 16 17

Size Function

FIGURE 3. TOTAL RUNTIME OF TESTS

respectively raise or lower this overhead. The other lifetime tests show a
correspondence between overhead and free blocks. The original module's overhead
increases with increasing N while the boundary-tag module's overhead stabilizes.

Maximum heap size also closely corresponds to the number of free blocks and to the
average heap size for the various tests. The maximum heap size for the original module
was about 17% greater than average heap size, and the maximum for the boundary-tag
module was 20% greater. However, maximum heap size for the original module was
generally more than 20% greater than maximum heap size for the boundary-tag module.

Figure 3 presents the total run time of each test. Special hardware to measure
only the run time of the New and Dispose operations was not available. The simulation
program was revised to provide more meaningful run times; specifically, free blocks
were not counted and statistics were not gathered since these measures vary between
modules. The same random number sequence was used so that these statistical measures
would be the same as in the previous tests with the unrevised program. The revised
simulation program still included test-specific operations, such as calculation of
lifetime and size of the block to be allocated and maintenance of the
ordered-by-lifetime list of allocated blocks; however, since the test specific
operations depend on the test performed rather than the New and Dispose module, a
comparison between modules is meaningful even though comparisons between different test
types may not be. Note that the run time difference between the original and
boundary-tag modules on the same test is entirely due to the run times of New and
Dispose.

The stack-lifetime tests contain the fewest test-specific operations and are
considerably shorter than the other tests. The tests with other lifetime functions
contain more test-specific operations and exhibit a shape similar to the previous two
figures.

The boundary-tag module frequently maintains a smaller heap even though the two
additional boundary words are needed per block. Thus, programs using the boundary-tag
module are less likely to terminate from heap-stack collision. The boundary-tag module
executes faster even though it involves more computation to allocate a portion of a
larger block and to doubly link and order the free list.

The boundary-tag module's performance can be explained by the "systematic"
memory-management strategy employed. The effects of the ordered free list, the
first-fit allocation, and the allocation of the lower portion of a free block ensure
that allocations are made as low as possible in memory; this results in a smaller heap
and in maximal reuse of free memory. The boundary tags permit a merge of adjacent free
blocks without a scan of the free list, and the resulting shorter free list permits a
faster scan, when necesssry. Similar results are analyzed more fully by Shore [577].

7. Future Directions

The boundary-tag New and Dispose module shows improved performance in execution
time and free block count. However, the two boundary words per block sometimes can use
a significant proportion of total memory. This is true only when the heap contains
many small blocks. Can this overhead be reduced?

The current module optimizes execution time with the added boundary words;
however, much of the boundary-tag module's improved performance can be attributed to
merged adjacent free blocks, the ordered free list and first-fit allocation. It may be
possible to modify or eliminate the boundary words with only a slight increase in
execution time •

To permit separate tests of each modification, the module should be revised in
stages that progressively simplify the structure of a heap block. First, remove the
upper boundary word. Without this boundary tag, the dispose operation must always scan
the free list. Second, remove the backward pointer and singly link the free list.
Now, the free list can be scanned only forward. Currently, Dispose scans the free list
from top to bottom in order to minimize the average depth of a scan; a block being
disposed would seem to be nearer the top of the heap (a test of this supposi~ion is

necessary. cf •• [S77]). Finally. remove the lower boundary word. This lower boundary
word contains the actual size of the block which may be slightly larger than the
requested block. Remember that while a free block is being allocated if the upper
portion is too small to fit on the free list. the entire block is allocated.
Therefore. the elimination the lower boundary word is not recommended.

Alternately. other methods of allocating small size blocks could be explored.
Architectures which have large word sizes (32 •• 64 bits) and restricted byte addressing
exhibit a greater memory-space overhead when small blocks are requested. One possible
method (described using a 16-bit architecture) allocates a larger block. e.g •• 16
words. and allocates successive requests of one word from this same block; an
additional word in the block would "bit map" the allocated portions. When the block is
full. another 16-word block would be allocated. This method would require a separate
free list of these partially allocated blocks. This two-tier structure could be
considered for 2. 3 •••• word blocks. also. Such an arrangement of heap structure could
reduce memory-space overhead for small blocks while maintaining the advantages of
boundary tags. Other improvements in the boundary-tag module may be possible in a
different implementation environment.

Extensions

The boundary-tag module provides a fully general facility. permitting all typical
uses of memory management. The heap becomes a perfect place to store objects whose
size is run-time dependant.

The run-time system can make extensive use of the heap for I/O buffers. queues.
etc. Small processor systems can use the heap for external code swapping instead of
using the traditional overlay scheme. Demand paging (with random access files) can be
used for virtual arrays and data base files.

The Pascal set type need not be restricted to the typical 64 or 256 elements.
Extensions to standard Pascal (i.e •• dynamic arrays. strings. etc.) are easily

implemented. For example. an Allocate procedure has been written with which a program
can request any size block from the heap at run time. Allocate has been used to
implement dynamic arrays accessed via a pointer.

The boundary-tag module provides the programmer with a powerful and efficient heap
structure that not only implements standard Pascal effectively. but also permits
applications that extend Pascal's scope.

Acknowledgment

I would like to thank William J. McIlvane and F. Garth Fletcher for their helpful
comments on drafts of this paper.

[AU77]

[DEC77]

[DEC78]

[ESI76]

[FL77]

[G76]

References

Aho. Alfred V" and Ullman. Jeffery D.. Principles of Compiler Design.
chapt. 10. Addison-Wesley. Reading. MA. 1977.
Microcomputer Handbook. Digital Equipment Corporation. Maynard. MA. 1977.
pp. B1-B5.
RT-I1 Advanced Programmer's ~. Digital Equipment Corporation. Maynard.
MA. 1978.
"ESI-Pascal Supplement to the User Manual and Report." Electro-Scientific
Industries. 13900 NW Science Park Drive. Portland. OR. 1976. 1977.
Fischer. Charles N •• and LeBlanc. Richard J.. "Run-Time Checking of Data
Access in Pascal-Like Languages." in Lecture Notes in Computer Science.
Vol. 54. Springer-Verlag. New York. 1977. pp. 215-~--
GrIffiths. M •• "Run-Time Storage Management." in ~ Notes in Computer
~. Vol. 21. Springer-Verlag. New York. 1976. pp. 195=!2r.

[H76]

[HS76]

[HS78]

[JW74]

[K73]

[NAJNJ76]

[OMSI78]

[574]

[S77]

[W76]

Notes

Hill. Ursula. "Special Run-Time Organization Techniques for Algol-68, " in
Lecture Notes in Computer Science. Vol. 21. Springer-Verlag, New York. 1976,
pp;-!IT-TIz. -- --- -- --
Horowitz. Ellis. and Sahni. Sartaj, Fundamentals of Data Structures,
Computer Science Press. Woodland Hills. CA. 1976. pp. 14!-1~
Horowitz. Ellis. and Sahni. Sartaj, Fundamentals of Computer Algorithms.
Computer Science Press. Woodland Hills. CA. 1978.
Jensen. Kathleen. and Wirth. Niklaus. Pascal User Manual' and Report.
Springer-Verlag. New York. 1974. 1978. ------
Knuth. D.E.. The Art of Computer Programming. Vol.!. 2nd ed ••
Addison-Wes1ey.-aeading. MA. 1973. pp. 435-463.
K.V. Nori. U. Amman. K. Jensen. H.H. Nageli. Ch. Jacobi, "The Pascal <P>
Compiler: Implementation Notes. Revised Edition." Eidgenossische
Technische. Hochschule. Zurich. 1976.
"OMSI-Pascal-1 User's Manual." Oregon Minicomputer Software. Inc •• 2340 SW
Canyon Road. Portland. OR 97201. 1978.
Shaw. Alan C" The Logical Design of Operating Systems. Prentice-Hall.
Englewood CliffS;-NJ~ p~-l11.
Shore. John E •• "Anomalous Behavior of the Fifty-Percent Rule in Dynamic
Memory Allocation." Com. ACM 20.11 (Nov. 1977). pp. 812-820.
Wirth. Niklaus. AlgorithmS + Data Structures Programs. chapt. 4.
Prentice-Hall. Englewood Cliffs. NJ. 1976.

Appendix

--The Pascal code in Appendixes A and B closely mirrors the actual run-time library
sources which are in Macro-II assembler code. The original New and Dispose Pascal
sources are translated from OMSI-Pascal's run-time library.

--Extensions to standard Pascal are used.
(1) Pointer arithmetic is used where necessary. A pointer is evaluated as a
positive 16-bit integer. i.e.. range 0 •• 64K. Although addresses are actually in
bytes. word addressing is generally used. The comment. {A}. at the left margin marks
pointer arithmetic.
(2) The construct. "@"<identifier>. evaluates as the
where the named object. <identifier>. is stored.
will recognize this extension. The comment. {@}. at
usage.

address of the storage location
Those familiar with OMSI-Pascal

the left margin marks this

--In Appendix D. much of the documentation text has been removed. Most of the
information has been covered in the body of this paper.

--Persons wishing to install the boundary-tag module in their
that file open code (in S3 or SUPOPN) uses storage on the
This code should be changed so that storage is allocated by

OMSI-Pascal should note
heap without calling New.
an explicit call to New.

----------Appendix A--Driginal New and Dispose

type
~ockptr - Ablock;

block - record
----next

bsize
filler

blockptr; {--link to next free block--}
integer; {--size in words of block--}

~ array [3 •• bsize) of word

var
Free, {--pointer to beginning of free list--}

{--pointer to beginning of unused area--} Kore : blockptr;

function New (size{in words) : inceger) : blockptr;
{ calling sequence: P :- New size)--}

var
scan, lastscan blockptr;
i : integer;

begin{~
--scan :- nil;

if ((Free-<> nil) and (size >= 2{words})
titen {--free-Tist1s not empty--}
-oe8in {--search for exact-fit--}

{@} --ra8tscan :- @Free; {--i.e., lastscanA - Free--}
scan :- Free;
while ((scanA.bsize <> size) and (scan <> nil) do
-segin

--raBtscan :- scan;
scan :- scanA.next

end
end;--

if ((scan <> nil) and (size >- 2{words}))
then {--free~oc~ound, unlink it from list--}
---rastscanA.next :- scanA.next
else {--no free block found or size is 1 word--}

begin {--extend heap for new block--}
--scan : .. Kore;

{A} Kore :_ Kore + size;
if (Kore >- Stack Pointer)
-rhen {--collision with stack--}
---ratal_error('Heap overwriting Stack')

end;

New :- scan; {--return address--}
{--clear the new block--}
for i:-size downto 1 do scanA.filler[iJ :- 0

end'TNew}; ----

procedure Dispose (P : blockptr; size{in words)
var
--Scan : blockptr:
begin{Dispose}

if ((P 0 n11) and (size >- 2{words})
-- {-no actionfor 1 word block--}

then
begin

Be'an :- P; {--set Up free block--}
scan bsize :- size;

}
-}

{@}

{@}

scan next :- Free;
Free :- scan; {--link to beginning--}

{-- of free list--} scan :=-= @Free;

{--search free list to release blocks from heap--}
while (scanA.next <> nil) do
-----if ((scanA.next ~canA.nextA.bsize) - Kore

end

-rhen {--release block and try again--}
-oe8in

Kore :- scan-.next;
scan next :- scan next next;
scan :- @Free

end
else

scan :- scan next

end {Dispose};

{ ----}
{-------·-----Appendix B--Boundary-Tag New and Dispose-------------}

const
--arLoc a true: {--bit set--}

freed - false; {--bit clear--}
type
~ockptr = Ablock;

block - record
---r8ize

ltag

end;

next
prev
filler:
usize
utag

integer, {--only bits<l •• lS)--}
boolean: {--only bit<O)--}
blockptr; {--up link by address--}
blockptr: {--down link by address--}
array [3 •• lsize) of word:
integer, {--onlY-bits<l •• lS)--}
bOOlean {--only bit<O)--}

var
Free,

Kore: blockptr:
{--pointer to boundary block at bottom of heap--}
{--pointer to boundary block at top of heap--)

function New (size{in words) : integer) : blockptr:
var

scan, remscan : blockptr:
i : integer:

procedure initialize heap;
begin {--only called once, to set up boundary blocks--)
---rree : - Kore + If word} :

FreeA.lsize :- 2{words}, FreeA.ltag:- alloc;
Free next :- Free;
Free prev :- Free;
FreeA.usize :- 2{words}, FreeA.utag:- alloc;
Kore :- Kore + 4{words):
KoreA.Isize :- 0 KoreA.ltsg :- freed;

end;

begin{New)
--rr-(size < 2{words})

titen size:- 2{words);

scan :. Free;

{--a request of one word--}
{--will return two words--}

if (Free - nil)
~hen {--thIS is the first New ca11--}
----initialize heap;
else {--search free list for first-fit--}
---r-epeat

----SCan :- scanA.next
until ((scan - Free) or (scanA.1size >- size));

if (scan - Free)
~hen {--did not find a large enough free b10ck--}

begin {--must increase heap size--}
--scan :- Kore + l{word};

Kore :- Kore + size + 2{words};
{--stack is moved for some system ca11s--}
if ((Stack <- Kore) and (Stack > Free))
~hen {--collision with stack--}
----fatal error('Out of Memory');

KoreA.1size :- 0, KoreA.1tag:- freed;
end

else if (scanA.lsize >- (size + 2{words} + 2{words})
-eEen--{--found a free block that is too 1arge--}
~in {--split into remainder--}

--remscan :- scan + size + 2{words};
remscanA.usize :- scanA.usize - size - 2{words},
remscanA.utag :- freed;
remscanA.lsize :- remscanA.usize t

remscanA.1tag :- remscanA.utag;

remscanA.next :- scanA.next;
remscanA.prev :- scanA.prev;

remscanA.nextA.prev :- remscanj
remscanA.prevA.next :- remscan

end

else {--found a free block just about the right size--}
begin {--use the entire block--}
--siZe :- scan A .lsize;

scanA.nextA.prev :- scanA.prev;
scanA.prevA.next :- scanA.next

end;

New :- sca~;

scanA.lsize :- size, scanA.ltag:- a1loc;
scanA.usize :- size, scanA.utag:- al1oc;
{--clear the new block--}
for i:-size downto 1 do scanA.fi1ler[i] := 0

eniJ'{"New}; --

procedure Dispose (P : blockptr);
{ do not need size parameter because--}
{--boundary words contain actual size--}

var
--rA, UA, scan: b10ckptr;
begin{Dispose}
--rr-((P < Free) or (P > Kore))

then warning('not a heap pointer')
{--OMS! permits pointers--}
{-- to non-heap objects--}

else if ((P <> nil) and (pA.ltag <> freed))

{--block better not be free already--}
then
beg~n

p .1tag :- freed;
PA. utag :- freed;
LA :- P - 2{words} - LAA.usize;
UA :- p + PA.1size + 2{words};

{--lower adjacent of P--}
{--upper adjacent of p--}

if (LAA.utag - freed)
~hen {--merge P with LA--}

begi1!
LA .lsize :- LAA.1size + PA.1size + 2{words};
LAA.usize :- LAA.lsize;
P :- LA

~;

if (UAA.ltag - freed)
then {--decrement or merge?--}
--if (UA - Kore)

~hen {--decrement Kore--}
begin

if (P - LA)
~hen {--remove P from free 1ist--}

begin
~prevA.next :- Free;

FreeA.prev :- PA.prev
end;

Kore-:- P - l{word};
KoreA.lsize :- 0, KoreA.ltag:- freed

end
else {--merge P with UA--}

begin
--rf(P <> LA)

-rhen {--also link P to previous--}
beg~n

P .prev :- UAA.prev;
pA.prevA.next :- P

end;
pA.next :- UAA.next;
PA.lsize:- PA.lsize + UAA.lsize + 2{words};
PA.usize:- PA.1size;
pA .nextA• prev : _ P

end

else if (P <> LA)

end

then--{--must search to insert P in order--}
begin
--scan :,. Free;

repeat
scan :- scanA.prev {--search from top to bottom--}

until (scan < P);
pA.next :- scanA.nextj
scan next :- P;
P prev :- scan;
pA.nextA.prev :- P

end

end {i5Iipose};

---------------------Appendix C--Remark on Error Handling:--------------------

Error handling receives only brief mention since its implementation depends
on the facilities of the total Pascal system; however, a few problems with
memory management and pOinters, in general, are worth consideration (cf.,
[FL77 J).

Correct operation depends on the integrity of the information stored to
manage memory; a program that writes outside of an allocated block can corrupt
management information. To prevent corruption, bounds checking should be
incorporated in the Pascal implementation (bounds checking is available in
OMS I-Pascal VI. 1). However, a few additional tests in the boundary-tag module
may provide information on the cause of a failure and possibly show how to
continue program execution.

During Dispose, a block's upper and lower boundary words can be compared;
a difference indicates an out-of-bounds access. The size parameter, which
approximates the actual block size, can be used to examine adjacent blocks and
possibly to reconstruct the boundary words. In addition, since the free list is
ordered, the pOinters can be checked for proper order. With a short free list,
these tests would not incur a great time overhead. If the free-list links have
been overwritten, the entire heap could be scanned by use of the size field in
the boundary words. Sometimes regeneration of the free-list links and
correction of mismatched boundary words may be possible; in most cases though,
little can be done, except to terminate program execution.

Dangling pointer references also pose a problem. Compiler generated code
passes the address of the block to be disposed and leaves the pointer to this
block unchanged. In other words, the pointer points to a free block giving the
program direct access to the free list. Dispose should be able to reference the
pointer so that its value can be set to nil. When there are multiple pointers
to the same block, however, the other pointers continue to reference the free
list, even though the disposed pointer may be set to nil. A solution requires
redesign of pointer implementation.

--------------,Appendix D--Boundary-Tag New and Dispose, Macro-ll--------------

.TITLE NEWDIS : NEW&DISPOSE w/boundary tag

.IDENT /VOlOlC/

.ENABL LC,REG

.REPT 0

Module Version l.lc: 20-Jan-80 Tested

Module Version l.lb: l7-Nov-79 Tested
Module Version 1.1 l6-Mar-79 Tested
Module Version 1.0 : 03-oct-78 Tested

Branko J Gerovac
Eunice Kennedy Shriver Center
200 Trapelo Road
Waltham, Massachusetts 02154
(617) 893-3500 ext 157

.ENDR

26-Jan-80

24-Nov-79
30-Mar-79
l6-oct-78

.SBTTL Heap Initialization

Initag Version : 1.0 03-oct-78

;
INTHEP:

.PSECT $$$NEW

.GLOBL $FREE,$KORE

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
CLR
MOV
RTS

RO,-(SP)
@II$KORE,RO
1f5., (RO)+
RO,@II$FREE
RO, (RO)
(RO)+, (RO)+
115.,(RO)+
RO,@II$KORE
(RO)
(SP)+,RO
PC

;- - - - - -

{# import global pointers #}

proc init heap;
begin -

{If RO--$KORE e}{ $KORE is first of heap
$FREEA.lsize:-2w $FREEA.ltsg:-alloc;
$FREE:-$KORE+lw;
$FREEA.bot:-$FREE;
$FREE A .top:-$FREE;
$FREE A .usize:-2w $FREEA.utag:-alloc;
$KORE:-$KORE+4w;
$KOREA:-O;

end;

.SBTTL $B70 New with boundary tag

Newtag Version: l.lc: 2D-Jan-80 ; change in memory overflow test
r Newtag Version: l.lb: l7-Nov-79 ; change in memory overflow test

--option call to debugger, Pascal Vl.l
Newtag Version: 1.1 l6-Mar-79; minor changes to improve speed
Newtag Version: 1.0 : 03-oct-78

Calling Sequence

NEW(P);

MOV
JSR
MOV

SIZE,-(SP)
PC,$B70
(SP)+,P(Rx)

even size in bytes

register 5 or 6 offset

!l.l

Stack Image during call : ,
,:------s"'"i-z-e------' <- return new block address
'---PC re-t--'

.PSECT $$$NEW

.ENABL LSB

.GLOBL $B70,$NEW

.GLOBL $FREE, $KORE

.GLOBL ERRl.l
• MCALL • EXIT, • PRINT

'--RO-sav--'
'--Rl-sav--'
'--R2-sav--'
'--R3-sav--' <- SP
,-- - --I

{If export global procedure #}
{# import global pointers #}
{II import global conditional #}
{t import system macros If}

11.1
Il.l

IB

{ for Pascal Vl.l, debugger, set true} IB
.IIP NDF,ERRl.l,ERRl.l-O; (undef(errl.l)'errl.l-false); IB

"""1
:t
u
c-
:t
r

'" " " u

" >-

"

>
<.:
0<
c

$B70:
$NEW:

1$:

2$:
3$:

4$:

41$:

5$:

.IF NE, ERR1.1
• GLOBL RTERR
.GLOBL COROVR
.ENDC

MOV RO,-(SP)
MOV R1,-(SP)
MOV R2,-(SP)
MOV R3,-(SP)
MOV 10.(SP),RO
CMP RO,#4.
BHIS 1$
MOV 114. ,RO

MOV @#$FREE,R1
MOV Rl,R3

BNE 2$
JSR PC, INTHEP
BR 4$

MOV (R1),R1

CMP R1,R3
BEQ 4$
CMP -2.(R1),RO
BHIS 5$
BR 3$

MOV
TST
MOV
TST
ADD
MOV
BCS
CMP
BHI
CMP
BHI

CLR
BR

MOV
ADD
CMP
BLO
MOV
MOV
SUB
SUB
ADD
MOV
SUB
MOV
MOV

@#$KORE,R1
(Rl)+
R1,R2
(R2)+
RO,R2
R2,@#$KORE
OUTMEM
SP,R2
41$
SP,@II$FREE
OUTMEM

(R2)
7$

#8. ,R2
RO,R2
-(R1) ,R2
6$
(R1)+,R2
R2,R3
RO,R3
114.,R3
Rl,R2
R3, (R2)
R3,R2
R3,-2. (R2)
(R1)+,R3

lIif (err1.1<>O) IIthen
{II import global proc II}
{N import global label II}

lIendif

proc NEW(size:int):pointer;
begin

(II save registers #}
(II RO-size II}
if size < 2w

then
size:-2w

endif;
{II Rl-scan II}
{II R3==$FREE II}
if (scan:-$FREE)-nil

then
init heap;
goto-alloc from $KORE

endif; -
repeat

scan :- scan·.next
until

(
scan-$FREE

or
scanA.size>-size

);
if scan-$FREE

then allocate_from_$KORE

scan:-$KORE+lw;
{II R2--$KORE II}

if carry set($KORE:-$KORE+size+2w)
or «SP<-$KORE)

and
(SP>$FREE))

then error(out of memory)
endif;
$KOREA:-o;

else if scanA.size >- size+2w+2w
then

alloc_lower_portion_of_scanblock

{# R3--scanA.size-size-Zw #}

!B
IB
IB
IB

11.1
11.1

IB
IB
!B

!C
!B
!B
!B
!B
!B

!l.1
11.1
11.1
! 1.1

11.1
!1.1
11.1

{I R2--remscan II}
remscanA .usize:-scanA .slze-size-2wj 11.1

11.1
remscanA .ls1ze: a remscanA .uslze;
(II R3=-scanA.next #}

11.1

6$:

MOV
MOV
CMP
MOV
MOV
BR

R3, (R2)+
(R1),(R2)
-(R1),-(R2)
R2,2.(R3)
R2,@2.(R2)
7$

remscanA.next:sscanA.next;
remscanA.prev:-scanA.prev;

remscanA.nextA.prev:-remscanj
remscanA.prevA.next:aremscanj

else allocate entire Bcanblock :
MOV
MOV
MOV
MOV

(R1)+,RO
(R1) ,@2.(R1)
(R1),R2

size:-scanA~size; - 11.1

7$:

8$:

OUTMEM:

ERRO:

MOV
INC
MOV
ADD
DEC
MOV
CCC
ROR

CLR
SOB

MOV
MOV
MOV
MOV
RTS

2. CR1), 2. (R2)

R1, 10. (SP)
RO
RO,-(Rl)
(R1)+,R1
R1
RO, (R1)

RO

-(RI)
RO,8$

(SP)+,R3
(SP)+,R2
(SP)+,RI
(SP)+,RO
PC

• IF NE, ERR1. 1
JSR R5,RTERR
• WORD COROVR
• IFF
.PRINT ERRO
.EXIT

,

scanA.prevA.next:-scanA.nexti

scanA.nextA.prev:sscanA.preVj
endif;

New:-scan;

scanA.usize:-size, scanA.utag:-allocj
{ff clear carry et al II}

for i:-size in words down to 1 do
scanA[iJ:-O-

endfor;

{II pop registers II}

end;

#if (err1.1<>0) #then
rterr(corovr)

HeIse
print('out of memory')

.ASCIZ /?Pas1ib-F-NEW-out of Memory/

.EVEN

.ENDC lend if

.DSABL LSB

!B
IB
IB
!B

!B

!L1

;- -

.SBTTL $B72: Dispose with boundary tag

Distag Version: 1.1
Distag Version: 1.0

Calling Sequence

16-Mar-79 ; check for pointer not to heap
03-oct-78

DISPOSE (P);

MOV
MOV
JSR

P(RX),-(SP)
SIZE,RO
pc,$Bn

register 5 or 6 offset
even size in bytes

Vl
00

Stack Image during call

RO ' ___ size ___ '

;
$B72:
$DISPO:

21$:

.PSECT $$$DIS

.ENABL LSB

.GLOBL $B72,$DISPO

.GLOBL $FREE,$KORE

.GLOBL WRNDI

.MCALL .PRINT

.IIF NDF,WRND1,WRND1-1

MOV
MOV
MOV
BEQ

.IF NE,
CMP
BLO
CMP
BHI
.ENDC

BIT
BEQ

DEC
MOV
MOV
ADD
DEC

BIT
BNE
SUB
ADD
ADD
ADD
MOV
MOV

BIT
BNE
CMP
BNE
CMP
BNE
MOV
MOV
MOV

R1,-(SP)
R2,-(SP)
6. (SP),R1
27$

WRND1
R1,@I$FREE
NOHEAP
R1,@I$KORE
NOHEAP

11. ,-(Rl)
27$

(Rl)
R1,RO
(Rl)+,R2
R1,R2
(R2)+

11. ,-(RO)
21$
(RO),RO
-(Rl),-(RO)
14. ,(RO)
(Rl)+,R1
(RO)+, (Rl)
RO,R1

11.,(R2)
25$
R2,@#$KORE
23$
Rl,RO
22$
(Rl),@2.(R1)
(R1) ,R2
2.(Rl),2;(R2)

,
"-'b""i""oc""kl:"'"::a:':ldr:i'a=r-'
,- PC ret -,
'--Rl-sav--'
'--R2-sav--' <- SP
,-- - --I

{I export global procedure I}
{I import global pointers I}
{# import global conditional I}
{# import system macro I}

(uodef(warn_dl)'warn_d1-true);

proc DISPOSE(P:pointer);
begin

{I Rl-·P I}
if P-ntl then goto return endif;

lif (warn d1<>O) #then
if P<$FREE
or

P>$KORE
then warn(not a heap ptr) endif;

'endif

{ use physical size }
if PA.ltag-free then goto return endif;

pA.ltag:-free;
{I RO--LA--Iower_adjacent(P) I}

pA.utag:-free;
{f R2--UA--upper adjacent(P) #}
if LAA.utag-free-

then
{ merge(LA,P) }

LAA.usize:-LAA.Isize;
P:-LA

endif;

if UAA.ltag-free
then
if UA-$KORE

then {merge(P,$KORE)
if P-LA

then
p4.prevA.next:-P~.next;

11.1
11.1

11.1
11.1

11.1

11.1
11.1
11.1
11.1
11.1
11.1

11.1

22$:

23$:

24$:

25$:

26$:

27$:

NOHEAP:

WRNl:

CLR
MOV
BR

CMP
BEQ
MOV
MOV

MOV
ADD
ADD
ADD
MOV
H()V
MOV
BR

CMP
BEQ
MOV

MOV
CMP
BHIS
MOV
MOV
MOV
MOV
MOV

MOV
MOV
MOV
RTS

-(Rl)
Rl,@#$KORE
27$

Rl,RO
24$
4.(R2),2.(Rl)
R1,@2.(R1)

2.(R2),(Rl)
(R2) ,-(Rl)
#4., (Rl)
(R2)+,R2
(Rl)+,(R2)
(R1),R2
R1,2.(R2)
21$

Rl,RO
27$
@1$FREE,R2

2. (R2),R2
R2,R1
26$
(R2),(Rl)
R1, (R2)'
R2,2.(R1)
(Rl),R2
Rl,2.(R2)

(SP)+,R2
(SP)+,Rl
(SP)+, (SP)
PC

.IF NE, WRND1

.PRINT WP.N1
BR 27$

;

endit;
(P-lw)A:-o;
$KORE:-P-lw;

else {merge(P,UA)
if POLA

then
PA.prev:auAA.prev;
pA.prevA.next:-P

,mdif;
~~.next:-UAA.next;

endit;
else if POLA

chen {scan and insert(P) }
scan:-$FREE; {I R2--scan f}
repeat

scan:-scanA.prev
until:

(scan<P);
pA.next:-scanA.next;
scanA.next:-P;
PA.prev:-scan;

PA.nextA.prcv:aP;
endi!;

return

end;

.ASCIZ !?Paslib-W-DISPOSE-not a heap point~r!
• EVEN
.ENDC

.DSABL LSB

11.1

11.1
11.1
11.1
11.1
li.,l
11.1
11.1
11.1

11.1

t
r
;;

>

" c
c

J
c
r

UNIVERSITETET I OSLO

EDB . SENTRET

POSTBOKS 1059 - BLiNDERN
OSLO 3 _ NORWAY

PHONE (47) 2 - 46 68 00

BLINDERN. June 18, 1980

L

Mr. Richard J. Cichelli

ANPA

1350 Sullivan Trail,

P.O. Box 598, Easton

Pennsylvania 18042

Dear Mr. Cichelli,

1!re are of course happy to submit the QPP article for

publication in Pascal News. (Aotually, being a member of PUG

myself, I should have thought of sending you the article

earlier.)

Enclosed is a copy of the SIGPLAN article together with the

code implementing the external procedures on the- Nord.

1 Introduction

A Simple Extension of Pascal
for Quasi-Parallel Processing

Terje Noodt
Dag Belsnes

Computing Center
University of Oslo

The University of Oslo has for a number of years been engaged
in the development of systems for data communications. The
main work investments have been the design of suitable
protocols, and the implementation of these in network node
machines. Most of the node machines have been of the Nord
family, produced by the Norwegian manufacturer Norsk Data A.S.

There exists no suitable language on the Nord for programming
real-time stand-alone systems. Therefore, all programming has
been done in assembly code. Even though we have felt the need
for a high-level language tool, the cost of developing and/or
implementing a suitable language was thought to be high.

Some time ago, we looked into the possibility of using the
existing Pascal compiler for our purposes. It proved that a
simple but usable language tool could be made from Pascal very
cheaply. We have called this extension of Pascal for QPP
(Quasi-Parallel Pascal). This article descr ibes QPP and its
implementation.

.? Basic primitives

The present section first discusses how to establish a
suitable process concept. Then the sequencing of processes is
treated.

2.1 Processes

The most important task in the design of QPP was to establish
a process concept without deviating from Standard Pascal. In
this context, a process is a sequential program together with
a set of data on which the program operates. We call this set
of data the attributes of the process.

In several respects, the Pascal procedure has the
characteristics of a process. We have managed to use the
procedure as a process, by overcoming the following two
obstacles:

1. It is necessary that several processes can be executed
simultaneously - that is, the processes must be able to
have active phases in quasi-parallel.

2. It must be possible for processes to exchange
information that is, one process must be able to
access the attributes of another process.

To transform the procedure concept into a process, point 1.
requires that the attributes of a "process-procedure" must be
retained while it has a passive phase. That is, a
"process-procedure" cannot execute on the stack top as usual,
but must have some permanent space in memory.

Point 2. requires some form of looking "into" a procedure. In
Pascal, a similar mechanism is given by the record concept.
Consider the following program fragment:

record
x, y: T

end;
PTRPROCESS~tPROCESS;

var
--p: PTRPROCESS;

proced~ processprogram;
var
~OCALS: PROCESS;
begin
--wIth LOCALS do

begin

end
ena-

within the with statement in processprogram the attributes x
and y may be accessed directly.

A process is created by calling the function

function NEWPROCESS(proceiure PROG);

This function allocates data spa~e for the procedure PROG on
the heap. The function value 1S a pointer to the record
containing the process attributes. In reality, the pointer is
a reference to the inside of the procedure object. The Pascal
system, however, treats the pointer as if it were generated by
the NEW function.

The main program (or another process) may access
attributes through the pointer generated by NEWPROCESS.

The following program fragment shows how a process
generated, and its attributes accessed from the outside:

p := NEWPROCESS(processprogram);

the

is

pt.y :=

with pt do
--rfx=.

Several processes of the same type may be generated as
follows:

var
--Pl, p2: PTRPROCESS;

pl := NEWPROCESS(processprogram);
p2 := NEWPROCESS(processprogram);

Processes of different types may be defined by declaring
different PROCESS types, or by defining a variant part for
each type of process within PROCESS.

Thus, a usable process concept has been established by

1. Implementation of the function NEWPROCESS. In Nord-l0
Pascal this is an assembly routine of 15 instructions.

2. Requiring that the programmer stick to the following
rules:

a. Define a record type PROCESS which contains those
variables of a process which are to be visible from
outside the process.

b. Declare a variable LOCALS of type PROCESS as the
first variable within the process procedure.

c. Surround the statements of the procedure by
with LOCALS do begi~ end

2.2 Seque~cing

It must be possible to start and stop the execution of any
process, in order that operations occur in the sequence
required by the actual application. For this purpose, two
operations are implemented (these are modelled after the
corresponding primitives in Simula 67):

procedure RESUME(p: PTRPROCESS);

This procedure transfers
process given by the actual
is resumed at the place
passive. The caller becomes

procedure DETACH;

control from the caller to the
parameter p. The execution of p

where the process last became
passive.

1-..

<.r
ex
c

When <;I proces., p c<;I11s DETACH, it becomes passive, Control
goes to th.e l.ast process .~ whicl) .called RESUME(p),

The following ljIethod has been u$ee to implement RESUMj;: <;InQ
PET.ACH effic iently and with ease.

A Pascal procedure o~ject will normally contain one location
for the return address (RA) , and on.e 'Location for the dynamic
lil)k (OL). Let CP be a pointer to the currently aGtive
process, . and consider the main progr<;lm to be a process with
the name MAIN ..

The operation RESUME(p) leaves the current program address in
CP.RA, and the address of the currently active object (which
may be CP itself or all. ordinary pr ocedure called by CP) in
CP.OL. p.DL becomes the new active object, and execution is
resumed at p.RA.

The OETACH .operation is restricted to be used to give control
back to the main program. It leaves the current program
address in CP.RA, and the address of the currently active
Object in CP.DL. MAIN.OL becomes the new active object, and
execution is resumed at MAIN.RA.

The DL location of
executing. Thus, CP
DL eql,lals zero. The
the Pascal program to

a process is zero while the process is
is found by following the DL chain until
following function is provided to enable
find CP:

function THISrRQCESS: PTRPROCESS;

~ Summary

with a very small effort a primitive but usable process
concept has been implemented within Pascal. On the Nord-10,
the routines NEWPROCESS, RESUME, DETACH and THISPROCESS
consist of ca 60 assembly instructions. No changes have been
made to the Pascal compiler or the Pascal run-time library.
Although Pascal may operate differently on other computers,
the authors believe that our method of implementation may be
adapted to most Pascal systems.

On the Nord-10, all. ordinary procedure called from a process
will execute in the memory space allocated to that process.
This requires that the process objeGt be large enough to
accommodate such procedure calls. We have solved this problem
by letting NEWPROCESS have one extra parameter, giving the
largest necessary space for the process.

1 Process Scheduling

Section
concept
program

2 defines and indicates how to implement a process
and the basic primitives for process sequencing. To
a real-time system or a simulation model, some

additi.onal c9PCeptS are needed .• Also in tl)is case .8IM.lILA f')7 is
l,Ised '1$ a SOl,lrce of inspiration. The new prograjllming platform
contains:

." a system time concept.

." a ·seql;lencing set" c.ontaining the processes scheduled for
fl,lture execution. .

* Primitives for process scheduling.

In this section we show how these concepts may be implemented
in Standard Pascal, using the basic primitives of section 2.

3.1 .Simulated time, Real tim~

In the case of Simulations, the system time is introduced as
in SIMULA, but in a real-time environment thEl._system time
corres~onds closely to the time defined by the computer"s
real-tIme clock. The system time is represented by a variable
in the main program: .

SYSTIME:real;

The execution of all. active phase of a process, called all.
event, is regarded as not c.onsuming system time. That is,
SYSTIME is only updated between the events. How SYSTIME is
updated is described below.

~ The sequencing set

A process
event. All.
when the
variable

may be scheduled
event is associated

event will occur.
local to each process:

EVTIME:real;

for the execution of a future
with a system time, indicating
This time is represented by a

All scheduled processes are collected in a set, the sequencing
set, sorted on the EVTIME variable. The sequencing set-r5
represented by a main program variable:

SQS:P'rRPROCESS;
which points to the first member of the set, and a variable

NEXTPR:PTRPROCESS;
in each process pointing to the next element of the sequencing
set.

When all. active phase of a process ends, the first proGess P in
the SQS will be the next process to execute all. event. The
value of SYSTIME is changed to EVTIME of p. If simulated time
is used, the simulation is carried on by resuming the process
P.

I~ a real-time ~ystem the new value of SYSTIME is compared
WIth the computer s clock. If the difference is positive, the
Pascal program makes a monitor call to release the use of the

0)

N

CPU for the given amount of time. On return from the monitor
call the procedure RESUME(P) is called.

3.3 pro~",-~~ sch",-duli~

The following procedures define a small but convenient set of
operations for discrete event scheduling. All procedures are
written in Standard Pascal. The amount of Pascal code is about
40 lines. For a detailed description see the appendix.

procedure PASSIVATE;

The caller process ends its active phase, and the next
event is given by the first element of the SQS. SYSTIME is
updated, and in the real-time case the program may request
a pause before the next process is resumed.

proced~ HOLD(del:real):

Equivalent to PASSIVATE, except that the caller is put into
the SQS with an event time equal to SYSTIME+del.

procedure ACTIVATE(p:PTRPROCES: del:real):

The process p is scheduled to have an event at the time
SYSTIME+del.

procedure CANCEL (p:PTRPROCESS) :

If the process p is scheduled to have an event, this event
is cancelled. That is, p is removed from the SQS.

Based on the basic primitives discussed in section 2, we have
defined a set of additional primitives suitable for discrete
event scheduling. These primitives are implemented by Standard
Pascal procedures and data structures. The system time concept
is introduced in two variations: simulated time and real time.
In the implementation the difference between the two time
concepts is only visible as a small modification of the
procedure PASSIVATE. An important consequence is that it is
possible to test out a program by simulation and afterwards
use the same program as a part of a real time system.

i Concluding remarks

As an example, the Bounded Buffer problem has been programmed
in the append ix •

At the University of Oslo, QPP has been used to program the
UNINETT node. UNINETT is a computer network of the central
computers of all universities in Norway, plus several other
governmental computers. Each institution has a node machine

which hooks one or more computers into the network. At the
University of Oslo, this node is a Nord-10. The size of the
UNINETT node program is about 2200 lines of QPP code. In the
development of this program, keeping to the restrictions of
QPP was neither hampering nor the cause for any serious
problems. The UNINETT project has shown that a considerable
amount of development time may be gained by going from
assembly code to a "primitive" high-level language tool. In
cases where a full-fledged language tailored to the actual
application (such as Concurrent Pascal) is not available,
there seems to be good reason to select a solution such as
our s.

The UNINETT node program was developed on a Nord-10 running
the MOSS operating system. The first step in testing the
program was to run it under MOSS as a simulation, using
simulated time. Then the program was run in real time under
MOSS. Finally, the program was transported to the UNINETT node
machine, where it runs in real time. The node machine has a
rUdimentary operating system only, which supports stand-alone
systems of this kind. The small size of the code which
implements the QPP process primitives, has allowed us to
easily make different versions to adapt to the environment in
which the UNINETT program was to be run. It has proved very
valuable to run the program as a simulation before it was run
in real time. Development time was also saved by testing under
an operating system with utilities such as interactive
debugging, a file system etc. The errors remaining after
transporting the program to the node machine have been few.

The reader who compares QPP with for instance Concurrent
Pascal, will remark that QPP contains no primitives for the
protection of shared data. Such a mechanism could be useful in
QFP, but is not strictly necessary. The reason is that
processes run in quasi-parallel rather than true parallel. An
active phase of a process is regarded to take zero time, and
thus is an indivisible operation. Time increases only when
control is transferred from one process to another. It is the
programmer who decides at which points in the program this may
occur.

Appendix

This appendix contains a simple example of the use of QPP. A
producer process generates characters which are read by a
consumer process. The rate of production/consumption is up to
the processes themselves, and in order to remove some of the
time dependency between the processes, they are connected by a
bounded buffer. However, since the buffer may get full (or
empty) there is still need for some synchronization of the
processes. This is achieved by the use of the ACTIVATE and
PASSIVATE primitives. m

W

The program also
concepts defined in
and primitives in
small letters are
example.

contains a complete implementation of the
section 3. Names corresponding to concepts

QPP are written in capital letters, while
used for variables particular for the

program prodcon;
const

buflength = 16;
buflgml = 15;

type

(* definition of bounded ring buffer *)

bufindex = 0 •• buflgml;
buf=record

p,c:bufindex;
txt:packed array[bufindex] of char;

end;
ptrbuf=tbuf;

(* definition of the data structure of the processes *)

PTRPROCESS=tPROCESS;
processtype=(producer,consumer) ;
PROCESS=record

var

NEXTPR:PTRPROCESS; EVTIME:real; INSQS:boolean;
case processtype of

end;

producer: (outbuf:ptrbuf; outcha:char);
consumer:(inbuf :ptrbuf; incha :char);

SQS:PTRPROCESS; SYSTIME:real;
ptrpro,ptrcon:PTRPROCESS;

(** basic primitives **)

function NEWP(procedure p; siz:integer) :PTRPROCESS; extern;
function THISP:PTRPROCESS; extern;
procedure RESUME(p:PTRPROCESS); extern;
procedure DETACH; extern;

(** sequencing routines

procedure INTOSQS(p:PTRPROCESS);
var rp,rpo:PTRPROCESS;

begin
with pt do
begin

rp:=SQs; rpo:=nil;

**)

while (rp<>nil) and (rpt.EVTIME<EVTIME) do
begin rpo:=rp; rp:=rpt.NEXTPR end;
if rpo=nil then SQS:=p else rpot.NEXTPR:=p;
NEXTPR:=rp; INSQS:=true

end i
end;

procedure CANCEL (p:PTRPROCESS) ;
var rp,rpo:PTRPROCESS;

begin
with pt do
if INSQS then

beg in
INSQS:=false; rp:=SQS; rpo:=nil; g:',
while rp<>p do begin rpo:=rp; rp:=rpt.NEXTPR end; ~
if rpo=nil then SQS:=rpt.NEXTPR else rpot.NEXTPR:=rpt.NEXTPR; ~,

e~; ~
end; ~

procedure PASSIVATE;
var p:PTRPROCESS;

begin
p:=SQS; if p=nil then DETACH else SYSTIME:=pt.EVTIME;
(* if realtime then monitor call PAUSE(SYSTIME-CLOCK)
SQS:=pt.NEXTPR; pt.INSQS:=false; RESUME(p)

end;

procedure HOLD(del:real);
var p:PTRPROCESS;

*)

begin p:=THISP; pt.EVTIME:=SYSTIME+del; INTOSQS(p); PASSIVATE end;

procedure ACTIVATE(p:PTRPROCESS; del:real);
begin CANCEL(p); pt.EVTIME:=SYSTIME+del; INTOSQS(p) end;

(** buffer routines **)

function bufempty(bp:ptrbuf) :boolean:
begin bufempty:=(bpt.p=bpt.c) end:

function buffull(bp:ptrbuf) :boolean:
begin buffull:=«(bpt.p+l) mod buflength)=bpt.c) end:

function putchar(bp:ptrbuf: ch:char):boolean:
begin with bpt do

if «p+l) mod buflength)=c then putchar:=false else
begin txt[p] :=ch: p:=(p+l) mod buflength: putchar:=true end:

end:
function getchar(bp:ptrbuf: var ch:char):boolean:

begin with bpt do
if p=c then getchar:=false else
begin ch:=txt[c]: c:=(c+l) mod buflength: getchar:=true end:

end:

(** processes

procedure pproducer:
var LOCALS:PROCESS:
begin DETACH:

wi th LOCALS do
while true do

begin

**)

(* produce next character *)
if bufempty(outbuf) then ACTIVATE(ptrcon,0):
while not putchar(outbuf,outcha) do PASSIVATE

end
end:

procedure pconsumer:
var LOCALS:PROCESS:
begin DETACH:

with LOCALS do
while true do

begin
if buffull(inbuf) then ACTIVATE(ptrpro,0):
while not getchar(inbuf,incha) do PASSIVATE:
(* consume character *)

end
end:

(**

begin

main program **)

ptrpro:=NEWP(pproducer,100): ptrcon:=NEWP(pconsumer,100):
new(ptrprot.outbuf): ptrcont.inbuf:=ptrprot.outbuf:
RESUME (ptrpro)

end.

%%%
% %
% Q P P %
% %
% RUN-TIME ROUTINES TO TRICK THE NORD PASCAL SYSTEM %
% INTO TREATING QUASI-PARALLEL PROCESSES %
% %
% (IN THIS VERSION THE RESTRICTION THAT DETACH MAY RELINQUISH %
% CONTROL TO THE MAIN PROGRAM ONLY, HAS BEEN REMOVED) %
% %
% PROGRAMMER: T. NOODT, COMPUTING CENTER, UNIV. OF OSLO %
% DATE: JUNE, 1980 %
% %
%%%
%
% NOTE:
%
% l.
%
%
%
%
%
%
%
% 2.
%
% 3.
%
% 4.
%

THE NORD-10/100 REGISTERS ARE:
P PROGRAM COUNTER
L LINK REGISTER
X POST-INDEX REGISTER
B PRE-INDEX REGISTER
T TEMPORARY REGISTER
A ACCUMULATOR
D EXTENDED ACCUMULATOR
THE B REGISTER CONTAINS
OBJECT + 200 OCTAL.

A POINTER TO THE CURRENTLY ACTIVE

WHEN A ROUTINE IS CALLED, THE PARAMETERS ARE FOUND AT ADDRESS
(B) + (A) + N, WHERE N=4 FOR FUNCTIONS, N=3 FOR PROCEDURES.
A FUNCTION RESULT IS TRANSFERRED IN A.

%%%

RETB=
RETP=
STLK=
DYLK=

LSC=
PARAM=
SAVB=
SAVL=
SAVX=

)9BEG
) 9LIB
)9ENT
)9EXT
%

-2
-1
o
1

2
4
10
11
12

NEWP
NEWP 5PESH
5PNEW

% RETURN B
% RETURN P
% STATIC LINK
% DYNAMIC LINK
% POINTS "INWARD" IN PROCESSES
% LOCAL SEQUENCE CONTROL
% RELATIVE LOCATION OF PARAMETERS
% SAVE LOCATIONS

% FUNCTION NEWP(PROCEDURE P: SIZE:INTEGER):PTRPROCESS:
%
%
%
%
%
NEWP=

GENERATE NEW PROCESS
P IS THE PROCESS CODE
SIZE IS THE OBJECT SIZE

*
SWAP
RADD
STA
COpy

SA DB
SA DB
SAVB,B
SL DA

% B IS NOW TOP OF STACK
% SAVE POINTER TO CALLER OBJECT

STA
COPY
LOA
AAA
JPL I
LOX
AAX
LDA
STA
LOA
STA
LDA
STA
STZ
LDT
AAT

COpy
AAA

COpy
AAB
COpy

)FILL

SAVL,B
SB OX
PARAM+3,B
2
(5PNEW
0,B
2
PARAM+1,B
STLK,X
SAVL,B
RETP,X
SAVB,B
RETB,X
OYLK,X
PARAM+2,B
4

SX DA
3

SA DB
175
ST DP

% SAVE POINT OF CALL

% GET SIZE
% ADO SPACE FOR RETB AND RETP
% CALL NEW TO GET OBJECT
% OBJECT POINTER
% ADJUST POINTER PAST RETB AND RETP
% P'S STATIC LINK

% INDICATE ACTIVE PROCESS
% P'S CODE
% SKIP FIRST 4 INSTRUCTIONS OF P
% (THEY DO NON-RELEVANT CHECKS)

% "RECORD" POINTER
% (REFERS TO FIRST LOCAL VARIABLE)

% STACK POINTER
% EXECUTE PROCESS

% (GENERATE LITERALS)

5PESH= *
EXIT

% IGNORE THE USUAL STACK-HEAP OVERFLOW CHECK

)9ENO

)9BEG
)9LIB THISP
)9ENT THISP
%
% FUNCTION THISP: PTRPROCESS;
%
THISP= *

) 9END

)9BEG

COPY
LOA
JAZ
COPY
JMP
COPY
AAA
EXIT

)9LIB RESUME
)9ENT RESUME
%

SB OX
DYLK-200,X
*+3
SA DX
*-3
SX DA
-175

% PROCEDURE RESUME(PTR: PTRPROCESS);
%
RESUME= *

COPY SA DX
LDX 3,X,B
AAX -3
COPY SL DA
STA RETP,X

% FOLLOW DYNAMIC LINK
% UNTIL IT IS ZERO (=PROCESS FOUND)

% ADJUST POINTER BY -200+3

% PTR
% TOP OF OBJECT

% RETURN POINT

)9END

)9BEG

COpy
STA
LDA
COPY
STZ
LDA
COpy

)9LIB DETACH
)9ENT DETACH
%
% FUNCTION DETACH:
%
DETACH= *

)9END

)9BEG
)9LIB
)9ENT
) 9EXT
%

COPY
LDA
JAZ
COPY
JMP
AAX
COPY
STA
COPY
STA
LDA
COPY
LOT
COPY
1'.1'.1'.
COPY

DISPP
DISPP

5PDSP

SB DA
RETB,X
DYLK,X
SA DB
DYLK,X
LSC,X
SA DP

PTRPROCESS;

sa OX
OYLK-200,X
*+3
SA DX
*-3
-200
SB DA
DYLK,X
SL DA
LSC,X
RETB,X
SA DB
RETP,X
SX DA
3
ST DP

% RETURN OBJECT
% ACTIVE OBJECT INSIDE PROCESS

% INDICATE ACTIVE PROCESS

% JUMP

% FOLLOW DYNAMIC LINK
% UNTIL PROCESS OBJECT IS FOUND

% ADJUST X TO TOP OF OBJECT

% SET "INWARD" DYNAMIC LINK

% SAVE PROGRAM POINT
% CALLER'S OBJECT

% PROCESS PTR (FUNCTION RESULT)
% RETURN TO CALLER

%
%
%
%
%

PROCEDURE DISPP(VAR PTR: PTRPROCESS);

DISPOSE PROCESS

%
%
DISPP=

MAY BE INCLUDED IF DYNAMIC DEALLOCATION OF PROCESSES IS
WANTED, AND THE PASCAL SYSTEM HAS THE DISPOSE PRIMITIVE.

*
COpy SA DX
LOX 3,X,B % GET POINTER TO PTR
LDA 0,X % GET PTR
STZ 0,X % PTR := NIL

C/O rr.
"'t;
-I
rr
""" t<=
rr
::r.;

~-'

LD
oc
c

t7>
C\

AAA -5 % ADJUST TO TOP OF ALLOCATED OBJECT
SAX 177
RADD SB DX
STA 0,X % TRANSFER PARAMETER TO DISPOSE
JMP I (5PDSP % CALL DISPOSE

) FILL
)9END

)9EOF

Open Forum For Members

Lawrence Berkeley Laboratory

Pascal Users Group
c/o Rick Shaw
DOC
5775 Peachtree Dunwcxxly Road
Atlanta, GA 30342

Hi,

University of California
Berkeley, California 94720

Telephone 415/486-4000
FTS: 451-4000

I understand that the Pascal Users Group is interested in putti.ng
together a package of software tools. He of the Software Tools
Users Group are doing much the same thing. He have sane 50-60
tools (eniting, text manipulation, formatting, sorting, comnand
line interpreter, etc.) which simulate the Unix environment and
originated fwm the little book Software Tools by Brian Kernighan
and P. J. Plauger. The tools are curren"tly written in ratfor, a
portable Fortran-preprocessor language, and running on everything
fran an 8080 to a Cray. Our users gwup has a mailing list of
almost 700 and holds meetings twice a year.

There have been several people in the group interested in
translating the tools into Pascal. One man has a] ready hand-coded
a few of them in Pascal. Another group in England has used a
mechanical translator written in Sno001 to transfer the tools
into BCPL. I think a similar translator could be developed to
translate into Pascal. If people in your group were interested in
our tools, perhaps we could work together to build such a
translator.

I've enclosed an LBL Progra'fmers Manual to give you an idea of
what we have available. other sites also have nice
tools--University of Arizona and Georgia Tech. have good packages
too. I've also sent along our newsletters to give you an idea of
what the users group is doing.

Even if translation of our tools into Pascal doesn't seem
feasible, do let me know if you think there might be other ways
our groups could work together.

Sincerely,

Debbie Scherrer
Co-ordinator, Software Tools

Users Group

~ il'lfl Tirnfl-rnr.[)l'Iirtfl Lill .
•• '!]'ia I'rn'!]-[]"li

Dear Editor,

I am happy to have(at last) PUGN #15.

It arrived only in July, 1980, but better late than never. 2 Questions:

1) What happened to #14? I've never seen it.

2) How do I renew my membership for the next year (starting June-1980)?

PUG #15 does not have any "all-purpose coupons". I am very interested

in PUGN, just let me know how to pay for it.

Now,for the PASCAL issues. We use the FORMAT prgram published in PUGN #13,

and all our sources have to pass it,so we achieve uniform layouts.

There were several problems setting up FORMAT,some of them were real bugs.

But now it is well and running with all the options operative" I must mcntior.

its portability. We moved it from RSX-llM to UNIX within half an hour,just

by changing the file handling part.

We do almost all our development in PASCAL and have several utilities

to offer to anyone interested:

1) File copying between CP/M and UCSD in both directions

2) File copying between RSX-llM and UNIX in both directions

3) The debugged FORMAT on RSX and on UNIX

4) File copying from an IBM diskette to UCSD

5) A big (CMD) disk driver for a Z80 under UCSD

By the way ,UCSD software seems very unportable,due to lots of non

standard tricks which are heavily used.

Best regards Y"~ ,

\
Gershon Shamay

Mgr. Software Development

Eder St. 49a, P.O.B. 72, Haifa, Israel. Phone: 04- 24'6033.
Telex 46400 BXHA IL, For No. 8351

1-'
<.!"'
ex;
C

SDC INTEGRATED SERVICES, INC

PASCAL USER'S GROUP
c/o Rick Shaw
Digital Equipment Corporation
5775 Peachtree Dunwoody Road
Atlanta, Georgia 30342

Dear Mr. Shaw:

System
Development
CorpO!'stion

I maintain PASCAL 6000 Version 2 and Version 3 at NASA, Langley Research
Center, Hampton, Virginia. I have made several modifications to our com
pilers to enhance the usability of the compilers without changing the
language itself. I am writing to describe briefly one such modification
because it is easily implemented and may be useful to other installations.
This modification introduces a new option to the compiler which displays
the locations of the fields within a record when invoked. Following
each record type declaration, the field identifiers with their relative
locations in the record are given. The following is an example of the
output generated by our compiler with the option invoked:

3 REC = PACKED RECORD
4 FIELD1! CHAR;
5 FIEL02: CHA~;

6 FIELO~: INEGEp;
7 FIELD4! PACKEO ARRAY[1 •• 2001 OF BOOLEAN;
8 END;

----------------------~------------------------------- ------------------
FIELD1
FIELD3

9
10 VAl"
it VREC:
12
13
14
15
16

STORAGE1
STOpAGE3

17

0:<59,54>
1:<59, 0>

RECORD
STORAGE1 :
STOpAG€2:
STORAGE 3:
STOPAGE4:
END;

0:<59, 0>
2:< 0, 0>

INTEG~R:

CHA9;
W10L" AN;
REAL;

FIEL02
F IElO"

STORAGE2
STORAGE4

0:< 5, 0>
2:<59, > - 5:<

1t< 5, 0>
3:<59, 0>

The formats used above have the following meanings:

W: <Bl,B2>

Wl:<Bl, >-W2: <, B2>

Indicates the field is in word W relative to
the start of the record and uses bits Bl
through B2.

Indicates the field is longer than 1 word
beginning at word WI, bit position Bl and
going through word W2 bit position B2.

This type of information can be very helpful when interfacing with other
languages such as CO~WASS or' FORTRAN and also when trying to minimize the
size of a record by rearrangement of its fields.

Sincerely,

Ricky W. Butler
Systems Programming
SDC-Integrated Services, Inc.

for

NASA, Langley Research Center
Hampton, Virginia
MS 157B

RWB/ghf

P.S. To obtain more information or the update mods for this option contact:

Rudeen S. Smith
MS 125A
NASA/Langley Research Center
Hampton, Virginia 23665
(804) 827-2886

Rick Shaw

THE UNIVERSITY OF KANSAS LAWRENCE, KANSAS 66045

Department of Computer Science
114 Strong Hall
913 864,4482

Pascal User's Group
Digital Equipment Corporation
5775 Peachtree Dunwoody Road
Atlanta, Georgia 30342

Dear Rick:

Since the last time I wrote to PUGN (PUGN #11 - February 1978), many
things have happened both here at KU and with Pascal on Honeywell/GCOS.
I'll start off with the new happenings with Honeywell Pascal (under GCOS
not MULTICS).

Pascal version 7 is available and is finally complete (up to now the
PROGRAM statement was not recognized). This version has much better error
messages and is very stable (at the moment there are only a very few ~nown
bugs and those are minor). It fully implements the Pascal de~cribed ~n •
Jensen and Wirth (except for file of file). There are two major extensions.
and "else" clause in the case statement and the variant record, and a
relaxation of the type checking when applied to variables and con~tants of
"packed array of char" (the first elements of each are made ~o allgn and .
the shorter is logically blank extended for compares and ass~gnments; ~tr~ngs
can be read using read). Pascal is available through Honeywell market~ng,
but was written and is maintained at the University of Waterloo. Anyone
interested in obtaining a copy of the documentation should write to:
The Oread Bookstore / Kansas Union / The University of Kansas I Lawrence,
Kansas 66045 and request a copy of "Pascal on the Honeywell Computer
System" ($3.00 plus $1.00 postage).

I have been promoting Pascal in the Honeywell Large System Users .
Association (HLSUA). I am the chairman of the Scientific Language co~ttee
and have given 3 talks about Pascal over the last 2 year~; one a tuto~~al
about Pascal, and the other 2 comparisons of Pascal comp~le and run t~mes
versus FORTRAN, Band C (unfortunately Pasca~ came out ~n the sh~rt end most
of the time). I will include a copy of the comparison paper w~th this
letter.

Pascal has been in use at the University of Kansas since 1976. Almost
all the undergraduate computer science classes use Pascal. We teach a
university wide service course which serves as an introduction to programming
to over 900 students a semester. For the past two years some portion (at
least 1/3) of these students were taught Pascal '(the others were taught
FORTRAN). This coming Fall semester, the Pascal portion will be slightly
greater than a half. Myself, another graduate student, and a faculty member

have put together a brochure which we are distributing to the faculty of
other schools within the university who use our introductory class. The
purpose of the brochure is to introduce the other faculty members to Pascal
and to explain why we (CS) want to teach Pascal, instead of FORTRAN, in the
introductory course. After sending the brochure, we meet with the faculty
from the other department or school and answer any questions they want to
ask and further expand upon the reasons for teaching Pascal outlined in the
brochure. (Within the CS department, our little group is known as the "Pascal
Road Show".) Thus far, we have only met with faculty from the School of
Engineering. We have had some success. If they can find 1 more credit hour
in the majors involved, they have tenatively agreed to allow their students
to take Pascal as their first language if we also offer a 1 hour course for
their students in which they would learn FORTRAN. We currently have plans
to meet with the faculties of Business and Journalism next fall.

If any other schools have done this, I would very much appreciate
hearing from you. If anyone is interested in our brochure or in talking
about our experiences t I'd be happy to do whatever I can.

Other Pascal news from KU: we have a student oriented Pascal syntax
checker (written in Busing YACC - probably not portable except to another
Honeywell). The syntax checker runs much faster than the compiler and
generates much more explanative error messages. It explicitly looks for
many of the mistakes commonly made by novice programmers and diagnoses them.
There should be a paper written on this project (by Jim Hoch and Uwe Pleban)
in the upcoming months. I have ported the Path Pascal compiler (written
at the University of Illinois and acquired through Dr. Edwin Foudriat at
NASA-Langly) to the Honeywell and am currently porting a newer version of
the compiler (we have to change 112 out of 7562 lines in the source). We
have almost all of the programs that have appeared in PUGN up and running,
most of which required only minor changes. (The portability of Pascal and
its availab~lity on micro computers have been the most important arguments
to others in convincing them of the value of Pascal, let's keep it standard!)

I'd like to thank everyone at PUG central (Andy, Rick, and all the others
whom I don't know) for the great job you're doing. PUGN is a tremendous
help in promoting Pascal and the standards efforts by PUG-USA and Tony
Addyman with BSI are extremely important to the vitality Pascal currently
enjoys. Again, thanks.

Sincerely,

Gregory F. Wetzel
Assistant Instructor

I i
Ihunteci
. ('70) LlMI lED i
1011"",,," -1

Dr. A. M. Addyman,
Dept. of- Computer Science,
University of Manchester,
Oxford Road,
Hanchester M13 9PL
England

Dear Dr. Addyman:

This is a conunent on the proposed Pascal standard.

It is good to see that conformant array parameters are to be
inc;:luded in the Pascal standard in a neat and carefully
considered manner. This will prevent the proliferation of non
standard implementations (an alarming thought) .

1. do wish to take issue with the proposal to exclude the
"packed II attribute from the conformant array schema (Pascal
News 17, p. 54). My reasoning is this.

1. A problem with Pascal perceived by a number of applications
programmers is the difficulty of manipUlating strings and
of formatting text output (and interpreting printable input) •

2. The logical response is to make available a library written
in standard Pascal which will perform formatting and string
manipulation. (Some can be found in Pascal News 17.)

3~ If conformant packed arrays are not permitted, such a- library
must use standard length strings, longer than the longest actual
string which is to be processed. Alterna.tively strings must be
processed in unpacked arrays. In either case, there is- a wastage
of st.oraqe space, ",;hich i.s a sign":"ficant pron:i.em for some users ~
Or, space can be allocated dynamically in chunks for strings .
This complicates the library routines, resulting in a wastage
of program storage, again a significant problem.

4. The problems cited by A.J. Sale which lead him to recommend
against packed conformant arrays are really no more serious
than the implementation of packed arrays themselves. When
referencing any packed array, information on the bit-length
of the component type is always needed. When the packed array
is a conformant packed array of conformant packed arrays, the
bit length will have to be passed by the calling procedure,
rather than being a constant. Since the array dimensions already
must be passed, this is hardly a serious problem!

5. More generally, packed arrays should be permitted to be
used anywhere that unpacked arrays are permitted, unless
there is a very powerful reason to forbid that use. One
place where there is a real problem is in the use of
a component of a packed array as a var~able argwnent to
a procedure. That is the only place where packed arrays
arelimited, at present. If more limitations are introduced,
the result, as Sale suggests, will be non-standard
compilers which support conformant packed arrays. This
will have a detrimental effect on portru)ility.

My reasoning may appear highly dependent on the perceived
need for easy string manipUlation facilities. But articles
too numerous to mention have :t-ee~ appe.arir.g on the "topic of
strings, and the reason is thdt this is a problem which is
encountered by virtually every applications programmer. So
please - let's not go halfway on the conformant array problem.

Thank you for considering my comments.

cc A. J. Sale
J. Niner
Pascal News

Yours truly,

7

'Cl0~ J~1.
J
Jack Dodds

~rtec inc. / '" JENKINS AV<, LANSDALE, PA. 1_

~ ~ Phone: (215)-362-0966

Piscal Usersl Group
c 0 Rick Shaw
Digital Equipment Corporation
5775 Peachtree Dunwoody Road
Atlanta, Georgia 30342

Dear Rick:

This letter is to inform you and all PUG members of the intro
duction of a Pascal-based real-time applications programming language
called l;jicro Concurrent Pascal {mCP}. mCP was developed and has been
used by ENEFITEC over the past two years. ENERTEC is a small systems
software house which uses and develops Pascal-based software tools for
our programming needs.

l'Iicro Concurrent Pascal was developed from Per Brinch Hansen I s
Concurre~t Pa~cal; however mCP is a language in its own right. The
mCP compkler kS a stand-alone program and interpreter/kernels presently
exist for the Z80 and 8080/8085 microprocessors.

Brinch Hansen's Concurrent Pascal extends Pascal with the real
time programming constructs called processes, monitors and classes.
In addition to the process, monitor and class constructs, r·,\icro Con
current Pascal contains the device monitor construct.

A.devic; monitor is a variant of a monitor which permits the writing
of devkce drkvers directly in mCP. Each device driver is associated
with a specific interrupt. Processes call device monitors to do I/o.
The DOID s~atement, permissable on~y in a device monitor, blocks the
process whkch palled the device drkver until the associated interrupt
occurs. Other statements restricted to device monitors allow an mCP
prog~am to access absolute hardware addresses and perform bit manip
ulatkons on data. Among other ElffiRTECadditions are:

- a drop-to- assembly lan,guage capability
- separate data types for 8 and 16 bit integers
- string manipulatkon intrinsic routines
- hexadecimal constants .

Additionally, P-code output by the fIlicro Concurrent Pascal compiler is
approximately one third the size of the P-code output by Brinch Hansen's
Concurrent Pascal compiler.

Ilve enclosed a technical article which walks through the pro
grannning of a simple real-time operating system in l-li.cro Concurrent
Pascal. Anyone interested in mCP is invited to call or write to
ENERTEC.

Keep up the great work with Pascal!

CF/cc
enc.

PASCAL USERS' GROUP

Gentlemen:

Sincerely,
~

~ ·~u .~C:<
I

Cynthia Fulton

I am a deputy district attorney in a rural area at the foot
of the Rocky Mountains. The Institute for Law and Research,
Washington, D.C., has implemented a Prosecution Hanagement
Information System (PROrnS) in COBOL for Big tlachines and for
minicomputers.

I am interested in adapting at least part of that system to
microcomputers, especially in vie\\' of the availability of 8" hard
disc drives. Pascal may be the ideal language for it. Can any of
your readers provide insights into the process of creating data
base management systems with Pascal, and with practical, if not
optimum, algorithms for using hard disc storage? I'm fluent in
fclBASIC and the CP/11 systems, but Pascal is new to me. I would
appreciate hearing from anyone interested in the PROlUS project,
as well as anyone \\'ho can recoffil!lend books or articles for the
study of Pascal. The Pascal available to me presently is the UCSD
Pascal for microcomputers.

Finally, I would be interested in comments concerning the
relative strengths and ~leaknesses of the llicrocomputer COBOLs for
data base management vis-a-vis Pascal (assuming a Pascal
implementation which includes random disc files, and reasonable
interactive facilities for on-line terminal I/O).

Thank you. I look forward to seeing my first copy of the
newsletter.

)

SinCer?, ,/ <'

(- ~//ff~// /
Denn1 • Faun c"?t ,'----
9 arrison Ave.
Canon City, CO 81212
(303) 275-1097

>
<.r
oc
C

,
c
r

DataMed
RES EAR C H

The Pascal User's Group, c/o Rick Shaw
Digital Equipment Corporation
5n5 Peachtree Dunwoody Road
Atlanta, Georgia 30342

Dear Rick:

I am enclosing with this letter notices of two new projects of which I am very ex
cited: the UCSD Pascal Users' Group and SOFTDOC, a medical software network featuring
Pascal as the preferred language.

Fundamentally, the reason behind the UCSD users' group is that to date, it is the
best Pascal system for microcomputers, trading somewhat slower execution for speedy disk
access (three times faster than CP/M), a superb development and operating system, and
compact code, allowing macro programs in mini memories. As we all recognize, because
Pascal is so close to the machine, there is a great need to develop a library of commonly
used routines SO we don't have to continually "reinvent the wheel" each time we program.
I and my friends have been using the UCSD system a great deal, and a fair amo~nt of
software is beginning to be exchanged -- enough to fill up two volumes. I have Included
the two Pascal farmatters/prettyprinters published in the Pascal News No. 13, as well, and
plan to enter the other superb Pascal software tools you publish as time permits.

We microcomputer users receive little benefit from software offered on 9-track tapes
(I suspect the tape drive costs more than my entire system); so machine-readable software
must be shared an floppy disks. Because UCSD' has been so careful (almost paranoid) about
preserving the integrity of their RT -II-like disk and directory format , it turns out that
anyone running UCSD Pascal on a system with access to an 8-inch floppy drive can share
software inexpensively, regardless of the host CPU.

I do have a question about software published in the Pascal News. Programs pub
lished in magazines or journals are generally considered to be in the public domain.

Would the members of the Pascal User's Group have any objection to my offering, as inex
pensively as possible, the software published in the Pascal News to anyone who can utilize
an 8-inch floppy disk? Of course, the source will be acknowleged, and I am including suf
ficient documentation on the disk so that users need not refer elsewhere to be able to use
the software. I have made the minimal changes necessary for the programs to run on a
UCSD system. I would like specifically to inquire whether there is an objection to my
making available the Validation Suite published in No. 16.

SOFTDOC is more ambitious than the users group project. Medical computing has
been at an impasse almost since its inception: medically trained people tend not to use
tools developed by nonmedical personnel, including programmers, beca~se th~se tools ra~ely
fit into the pecularities of medical thinking and practice. So there IS a hIstory of failure,
and not a little bitterness on the part of computer professionals. Few accepted uses of
computers in the health sciences exist outside of the laboratory.

As you can see in the enclosed material, the aim of SOFTDOC is to form a net
work of health care professionals, via a floppy-disk journal, so th~t. t?gether we ~an de~el
op medical applications for computers that are truly valued by clinICIans. I am informing
the members of the PUG of SOFTDOC because UCSD Pascal. i? the pre!erred language for

b 'Itted to SOFTDOC for disk publication. In addItIon, I belIeve the enormous progroms su m ., . . . bl
potential of Pascal for medical computing (exclusive of appllc.atlons requIring slzea e
mathematical power and speed) has been insufficiently emphaSIzed.

I would be interested in hearing from anyone with further ideas on sharing micro
computer software inexpensively, especially in the area of medical computing. Let me
know, too, if you would like to work out some sort of reciprocal sharing arrangement.
P.erh~ps I would send the PUG a copy of each disk as it was released, and you would pub
lIsh Items of interest to the broader PUG.

~
Jim Gagn~ M.D.
President

SOFTDOC is a new service recently announced by Datamed Research to aid
health professionals who are interested in utilizing computer systems in their prac
tices.

Small computers have the potential to serve a myriad of needs in health care
practices. Such applications as obtaining the routine portions of histories directly
from patients, patient education, and limited assistance with diagnosis or treatment
are readily achievable. To date, most authors of medical computer programs have not
taken into account the true needs of health care professionals, and the programs have
not been utilized by those they were designed to serve. Effective medical computing
requires a network of health professionals writing progr::HT'S and sharing their software.

In the past fifteen years, over a hundred health professional office business sys
tems have reached the market. While the majority have failed, a few have trans
formed the business office into a streamlined, highly accurate system. Unfortunately
for the small office, the cost of the better systems usually exceeds $30,000. Now,
however, with the advent of quality hardware systems for well under $10,000, new,
less expensive medical business packages are being released. The difficulty is to lo
cate software of quality amid a rain of inadequate programs.

SOFTDOC will support the emergence of high-quality, low-cost medical comput
ing in the following manner:

I) We are now issuing a call for health-related software to be published in a
quarterly machine-readable software journal.

2) The journal will also contain in-depth user reviews of both SOFTDOC and
commercial software, so that together we can determine just which programs are the
most effective and why.

3) Datamed Research will collect and evaluate vendor's descriptions of Commer
cial software. In addition, user evaluations of software will be collated and summar
ized. Our findings will be published semiannually in the SOFTDOC journal. Vendors
and users who participate in the evaluation will also receive a summary of the find
ings. Because to date the focus of software products for health professionals has been
the business office, our initial concentration will be in this area.

The preferred medium of SOFTDOC is IBM-compatible floppy disks; for the con
venience of those without 8-inch floppy drives, it will also be issued in printed form.
Material on a disk may be submitted to SOFTDOC for inclusion in the first issue un
til May I, 1980; all programs must be in source code form and contain adequate doc-
umentation. Publication will take place on June I, 1980, and quarterly thereafter.
Subscriptions will cost $55 per year, or $18 per individual diskette. Those who donate
software, reviews or articles will receive a one-issue credit per item published.

Subscribers must indicate which they prefer: 8-inch, single-density, single-sided,
IBM-compotible floppy disk available in CP/M or UCSD Pascal format (specify) or hord
copy. We would like to find someone who can copy the material on 5-1/2 inch disk
ettes for distribution in that format. However, these are not avai lable at the present.

If you are interested in promoting valid medical uses for microcomputers, we in
vite you to send us programs you have written. Your software will be given the wid
est possible distribution. Together, we may change the long overdue promise of medical
computing to a reality.

A New, Minimal-Cost Software Club for Users of UCSD Pascal

Introduction.

The UCSD Pascal language system is one of the most sophisticated microcomputer
software systems available today. Because of the ease with which one can write and
maintain high quality programs of most types, from systems software to business appli
cations to games, it promises to be the vanguard of an enormous interest in Pascal in
the coming decade. Already a number of other Pascal implementations have appeared for
microprocessors, though none so complete.

UCSD Pascal compiles its programs to P-code, designed for a hypothetical 16-bit
stack machine that must be emulated in software on most microprocessors. As a result,
once the P-code interpreter has been installed, programs written in UCSD Pascal may be
run on any microprocessor without modification. Even the disk formats are the same,
except for the minifloppies used for the Apple, North Star, or TRS-80. So disk soft
ware in either source or object form may be freely shared among users of such diverse
machines as a PDP-II or an 8080.

The Pascal Users Group.

It would seem natural for a large users group to arise to share software. To
date, however, only the original Pascal Users Group ("PUG") serves this function. Pri
marily, they support the standard language based on the Jensen and Wirth Pascal User
Manual and Report and report on available Pascal implementations and programmer oppor
tunities. Only secondarily does the PUG disseminate software (based on Jensen and
Wirth Pascal), although since 1978 the PUG has published several superb "software
tools". The major difficulty with the PUG newsletter is that it is offered only on
paper; any machine-readable software is offered on 9-track tapes, which are not sup
ported by the majority of microcomputers. So a microcomputer user must type the soft
ware into the machine on his/her own.

A UCSD Pascal Users Group on machine-readable media.

Datamed Research is announcing the formation of a UCSD Pascal users' group. It
will take a form very similar to the highly respected CP/M Users Group: all offerings
will be on 8-inch, single density, IBM-compatible soft-sectored floppies, offered vir
tually at cost ($10 per disk). Software will be donated by interested users. Software
donors will receive a free disk volume of their choice in acknowledgement of their do
nation. For software to be accepted for distribution it MUST come with adequate docu
mentation on the disk. Further, with rare exceptions it must be supplied in source code
to allow other users to adapt it to their systems.

Potential sources of Pascal software abound; by no means must one donate only ori
ginal work. There is a mountain of public-domain Basic software that is easily adapted
to Pascal. In the process, one can usually spruce up the program a good deal, because
Pascal is so much easier to work with than Basic. It will be important, in addition,
for the users to begin a library of Pascal procedures and functions to handle the more
common programming problems. For example, we need a set of mathematical functions for
complex variables, statistical functions, and basic business software support (routines
to translate integers into dollars and cents and vice versa) to realize the full power
of the language.

You can find out more about the present status of the users group by sending a
self-addressed, stamped envelope to the following address:

DATAMED RESEARCH
1433 Roscomare Road
Los Angeles, CA 90024

Alternatively, 8-inch floppies can be ordered at $10 per volume; there are two vol
umes available at the present time. Because the BIOS for the 512-byte sectors is writ
ten for Digital Research's CP/M-based macroassembler, the second volume contains both a
CP/M- and a UCSD-format disk (though if you prefer, both disks can be of the same type;
the volume. is of use primari ly to those who have both CP/M and the UCSD system, however)
and costs $20. California residents must add 6% sales tax. Be sure to ~pecify UCSD or
CP/M format.

Protection
Systems

2103 Greenspring Dr.

Pascal User's Group
c/o Rick Shaw

Timonium, Md.
21093

Digital Equipment Corp
5775 Peachtree Dunwoody Rd
Atlanta, GA 30342

Dear Rick:

(301) 252-1454

24-June-1980

Thanks for all your work to help keep the lines of communication
open between all us Pascal user's. It's good to hear that all
the moving and setup is now complete.

I am currently using Pascal in developing small real-time process
control systems based around Z80 micros. At present I am using
Pascal/Z runNing under CP/M and MP/M although I am also interested
in finding more out about using a concurrent Pascal compiler for
the same application. Also I use UCSD Pascal for other development
on the side although I am disappointed at Pascal/Z incompatability
with the UCSD Pascal. May the standard come soon.

I would very much like to hear from others in the Baltimore-Wash
ington-Philadelphia area using Pascal/Z and/or doing real-time
multi-task applications with Pascal in order to swap stories.
Also would like to borrow if possible any of issues 1 .. 8 of PN
to look through or copy from someone close by.

Thank you.

Sincerely,

David McKibbin
c/o Sygnetron
2103 Greenspring Drive
Timonium, MD 21093

***********************************~
Pascal Standards

Pascal Standard: Progress Report
by Jim Miner (1980-07-01)

A serious disagreement over conformant array parameters is the only majo~
remaining obstacle to obtaining an ISO standard., Hopef';llly both s1des w11l
quickly resolve this impasse in a friendly and d1plomat1c way, because there
is a real possibility that one or more national groups will be compelled by
time constraints to break with the international effort and seek to obtain
their own standard.

RECENT EVENTS

voting on OP 7185
The latest draft standard ("OP 7185") was published in Pascal News i18 and
in SIGPLAN Notices (April 1980). Votes cast by specific national bodies on
this draft are as follows.

Approval

Finland
Hungary
Italy
Romania *
Sweden

votes on OP 7185

Approval
with comments

Australia **
Czechoslovakia *
Denmark *
France
Netherlands
U.K.

* "ObserlTer" member -- lTote is adlTisory.

Disapproval

Canada
Germany
Japan
U.S.A.

** Australia has become a "Principal" member since
this vote.

Working Group 4 Meeting

The comments accompanying the lTotes relTealed selTeral
well as some issues on which there is disagreement.
"The Pascal Standard: Progress and Problems" (below)
these issues.

technical inadequacies as
Tony Addyman~s report
discusses selTeral of

The ISO Working Group on Pascal (WG4) met in Manchester England during June in
an effort to resolve these issues and to prepare a second Draft Proposal.
(See Pascal Ne'tls i17, pages 83-84, regarding the origins of WG4.) Attendees
were:

Tony Addyman (U.K.)
Burkhard Austermuehl (Germany)
Albrecht Biedl (Germany)
Coen Bron (Netherlands)
Joe Cointment (U.S.A.)
Christian Craff (France)
Jacques Farre (France)
Charles Haynes (U.S.A.)
Ruth Higgins (U.S.A.)
Mike Istinger (Germany)

Pierre Maurice (France)
Jim Miner (U.S.A.)
Kohei Noshita (Japan)
Bill Price (U.S.A.)
Helmut Sandmayr (Switzerland)
Karl-Heinz Sarges (Germany)
Barry Smith (U.S.A.)
Alain Tisserant (France)
David Williams (Canada)

JPC Meeting

A few days after the Manchester meeting, the U.S.A. committee (JPC) met in
Portland Oregon. Out of that meeting came the memos from DalTid Jones to WG4
and to the National Bureau of Standards which are reproduced below.

THE PROBLEM

As Tony~s article points out, the most difficult problem which the standard
now faces is the disagreement olTer "conformant array parameters". It has been
clear to many of us who are deeply inlTollTed in the standardization work for
some time that this topic could give us much trouble. The extent of the
present difficulty became more obvious at the Working Group 4 meeting in
June. No conclusion was reached by WG4 regarding conformant array parameters.

The papers by Tony Addyman and David Jones, together with Arthur Sale~s
article in Pascal News i17 (pages 54-56), provide much insight into the
nature of the disagreement.

In falTor of conformant arrays

The capability to allow formal array parameters to halTe "adjustable" index
ranges is deemed necessary for the construction of libraries of separately
compiled procedures, especially numerical routines. It is argued that failure
to standardize now on the form of such a capability will make future
standardization impractical due to many incompatible extensions which will be
made to prolTide the capability.

Based on statements made in the WG4 meeting, the following member bodies are
likely to lTote "No" on a Draft Proposal which does not contain a conformant
array feature: Germany, Netherlands, U.K.

Against conformant arrays

Those opposing the inclusion of conformant arrays in the standard argue that
the proposal is technically flawed and as a result that its inclusion in the
draft will delay the entire standard. (The attachment to David Jones~ memo to
Working Group 4 contains a technical assessment of the existing proposal.) It
is also argued that conformant arrays are not needed more than other
extensions which have not been included in the draft proposal.

Based on statements made in the WG4 meeting, member bodies likely to lTote "No"
if conformant arrays remain are Canada, Japan, U.S.A.

variations on the theme

Some member bodies have expressed a preference for generalizations of the
conformant array feature; Germany, for example, voted "No" partly because
lTalue and packed conformant arrays are not allowed.

The U.S.A., which has expressed opposition to conformant arrays on selTeral
occasions, proposed a compromise in its vote. The compromise would make
conformant arrays optional for an implementation, but with the requirement
that any such capability supported by an implementation have the syntax and
semantics specified in the standard. SelTeral members of WG4 expressed dislike
of this proposal.

CONCLUSION

The standard has been stalled by the disagreement over conformant array
parameters. In order to obtain an ISO standard, it is necessary that a
compromise of some kind be reached. At this time it is hard to predict what
the nature of that compromise will be.

The Pascal Standard : Progress and Problems,
May, 1980

A. M. Addyman

University of Manchester

1. Introduction

Within the International Standards Organization (ISO), there is
a work item which is to result in the production of a standard for
the programming language Pascal. This work began in ISO in Octobet1978
as the result of a proposal from the United Kingdom. Work in the
United Kingdom began early in 1977. At the time of writing this report,
a ballot is taking place within ISO on the acceptability of the first
Draft Proposal for the Pascal standard. This report, written immediately
after the April 1980 meeting of the U.S. Joint Pascal Committee (X3J9),
contains a sunnnary of the substantial progress made to date and
discusses the few remaining problems which stand in the way of inter
national agreement.

2. Progress

There is now agreement on the details of all the main areas,
although in one or two areas the wording is being improved or drafting
errors are being corrected. The areas in which agreement has been
reached include:

lexical issues,
scope rules,
type rules,
the syntax and semantics of the statements and declarations,
almost all of the input and output facilities.

Indeed, since there is agreement on so much, it would be better to devote
space to the consideration of those issues which have yet to be resolved.
Before doing so it should be noted that there is agreement that a
standard is needed without delay. This attitude has helped to resolve
minor differences of view, since neither party has wanted to risk the
standard on such issues.

3. Problems

The outstanding problems will be divided into two categories -
minor and major. The major problems are the ones which could substantially
delay the production of the standard. The category into which a problem
has been placed is necessarily a matter of personal judgement.

3.1 Minor Problems

3.1.1 Alternative Lexical Tokens

The issue is simply that (.and.) should be accepted as alternatives
fore and 1. There are strong feelings both for and against this. The
strongest opposition appears to be from the U.K. The probably outcome
will be acceptance of the alternative tokens.

3.1.2 String Truncation on writing

This is a request which involves a change from the current de facto
definition. Its advocates cite efficiency, utility and frequent vio1ation
of the de facto definition as justification for the change. Opponents
argue that

(a) this is a change and consequently must be rejected, and

(b) that a truncated representation of the array cannot in any yay
represent the array.

The possible outcome is unclear, but will undoubtedly be influenced by
the U.S.A. position on the major problem (see later).

3.1.3 Tag-fields

There are three loosely related problems in this area:

(a) a change to prohibit use of tag-fields as var-parameters

(b) a relaxation of the syntax to replace "type" by "type-identifier"

(c) a change which would disallow the creation of tag-less variants

Each of these is a change to the de facto definition and as such
provoke opposition.

The first is proposed in the interests of promoting the implementation
of certain checks desired by the Draft Proposal. It will probably be
accepted.

The second change is a change to the syntax to eliminate ~ of
the circumstances in which a type-identifier is necessary ama type
definition is unacceptable. The change yas strongly opposed at the
Pascal Experts meeting in Turin. I expect this opposition to continue ..

The third change is proposed on the grounds that its only uses are
in implementation dependent "dirty tricks". While this is untrue, the
wording of the Draft Proposal suggests that an implementation which
performs checks in this area will have to provide a tag-field if the
programmer does not. The only justification for this feature which is
within the proposed standard is associated with the saving of storage
space for variables. Since a large number of implementations incorporate
this restriction, which is aimed at improving security, there is a
possibility that it will be accepted.

u;

"" <.r-
C'
C

3.1.4 New and Dispose

There is a form of these standard procedures which may be used to
reduce the storage requirements of a program. The use of this feature
may lead to errors which are difficult for the programmer to detect,
furthermore an implementation can detect such errors only by using
additional stomge! There is pressure to have this form of new and dispose
removed.

Given the increasing usage of Pascal on microcomputers it is likely
that the definition of new will be unchanged. There is a much stronger
case for changing dispose since most implementations maintain enough
information to ensure the security of the heap. The final irony is that
the Draft Proposal identifies two error conditions which can only be
detected by maintaining enough information to make this form of dispose
redundant.

3.1.5 The Rest

There are a number of minor problems which have been raised by
various parties and subsequently dropped e.g. the U.K. Pascal group has
expressed a desire to remove pack, unpack and page from the language;
other European groups have requested extensions to the case-statement
and changes to the syntax of a block etc. There is a danger that
decisions to make changes in any of the areas cited above may provoke
more requests.

3.2 The Major Problem

3.2.1 Introduction

There appears to be only one substantial problem which may prevent
agreement being reached on a Pascal standard. This is the problem of
adjustable array parameters.

In the de facto definition of Pascal, a parameter of a procedure
must have a specific type which in the case of an array will include a
specification of the bounds of the array. This is viewed by many
people as an unacceptable restriction in a language that is being
proposed for international standardisation. As a result of the comments
received on the document ISO/TC97/SCS N462, the U.K. Pascal group resolved
to introduce into the draft a minimal facility which would address the
problem. The U.K. solution provided for var-parameters but not value
parameters and also excluded packed arrays. The proposal from the U.K.
has received objections on two counts:

(a) it is a change to the language - in particular, more work should
be done on the details of such a feature before it is added to the
language.

(b) the feature is too restrictive - value parameters and/or packed
arrays should also be allowed.

To clarify matters the arguments which support the three positions will
be presented separately.

~2.2 In favour of the Draft Proposal

1. There is great demand for the feature to be added to the language,
and those making the demands have not specified any particular syntax
or semantics. Those supporting the addition include Prof. Hoare and
Prof. Wirth.

2. In the interests of portability the feature should be required in
any implementation of a Pascal processor.

3. There are no technical difficulties with implementing the feature
in the Draft Proposal since all the "run-time" operations that are
required already exist.

4. Requiring value adjustable array parameters has an impact on the
procedure calling mechanism - the amount of space required by a
procedure cannot always be determined at compile-time. There is concern
that there may be existing implementations which rely on such a
determination at compile-time and which would therefore be destroyed
by the introduction of value adjustable array parameters.

5. Requiring packed adjustable array parameters places increased over
heads on an implementation which packs multidimensional arrays. Such
overheads may result in a reduction in the extent to which a packing
request is heeded.

6. If action is not taken at this time a number of vendors will surely
introduce incompatible extensions to fulfill this obvious need. Such
action would effectively prevent future standardisation of this feature.

7. Of all the requests for extensions received during the comment
period on ISO/TC97/SCS N462, this is the only one which adds to the
functionality of the language. All the other requests addressed
issues of convenience and/or efficiency.

3.2.3 In favour of a less restrictive proposal

1. All the above arguments are accepted apart from 4 and 5.

2. Those in favour of value adjustable array parameters claim that
no existing implementations will be embarassed and claim (correctly)
that there are no technical problems.

3. Those in favour of packing fall into two distinct groups:

(a) those who believe that there are no implementation problems and
that in the interests of generality the restriction should be
removed.

(b) those who wish to use string constants as actual parameters.
They appear to need both value (since a constant is not permitted
as an actual var-parameter) and packed (since the Draft Proposal
specifies that string constants are of a packed type). An
alternative solution to this problem is to change the specification
so that the type of string constant is context dependent (as is
the case for set-constructors) in which case a string constant
could also be a constant of an unpacked type. The same proposal
also requires that those operators which apply to packed
character arrays also apply to unpacked character arrays. This
has the considerable merit of removing the only case in which

the prefix "packed ll is used for reasons other than storage
reduction.

3.2.4 In favour of the feature being optional

This is a view expressed by the U,S.A. Pascal committee (X3J9).

1. A language designer must not add to a language any feature that
is not very well understood, that has not been implemented, or that
has not been used in real programs. The proposed adjustable array
parameter feature is just such a feature. This feature should be widely
implemented and used before it is incorporated into a standard for
Pascal.

2. By placing the proposal in an appendix entitled "Recommended
Extensiontt we derive the benefit of having the opportunity to
implement the feature before casting it in concrete.

3. Implementors who add a f~ature which performs this function are
required to comply with the recommended extension. This will make
compatability with any future extended Pascal more likely without
foregoing the possibility of learning more about the feature in the
interim.

3.2.5 The Probable Outcome

There is considerable pressure from several ISO member bodies (the
U. K. excepted) to remove the restrictions whic.h the Draft Proposal
incorporates relating to adjustable array parameters. The probable
conclusion will be to permit value but prohibit packed and at the same
time introduce the changes described above relating to the operations
etc. available for character arrays. Unfortunately the proposal from
the U.S.A. for removal of the feature to an appendix is likely to be
opposed strongly by one or more member bodies. This view is based on
the comments received from other ISO member bodies since the April X3J9
meeting. The strength of support for removal of the restrictions is
unlikely to be compatible everywhere with a willingness to accept less
than is contained in the Draft Proposal. One possible solution would
be for X3J9 to accept the feature as part of the language. At this
stage this does not seem likely since the X3J9 position was taken for
largely non-technical reasons. This observation is justified as
follows:

1. X3J9 is requesting changes to the existing de facto definition
while objecting to this extension.

2. X3J9 is currently soliciting extension proposals - it is unlikely
that any such proposals will be acceptable by their criteria in
3.2.4. 1 above.

3. To promote portability and improve the probability of agreement
in a future standard, the extension must be implemented as specified
in the appendix. An implementor may only experiment with an alternative
if the recommended extension is also implemented. This adds no new
freedom to the implementor since language extensions are not prohibited
by the Draft Proposal!

4. X3J9 also supports the removal of some of the restrictions
mentioned earlier.

3.3 Conclusions

The meeting of ISO/TC97/SC5/WG4(Pascal) to be held in June 1980
will be a crucial one. There is pressure within the United States to
move on to consideration of extensions - this is being delayed by the
current act1v1t1es. In the United Kingdom there is a government
funded project to create a validating mechanism for Pascal. This
clearly needs a standard to validate against. Significant progress
is required on this project by April 1981!

A negative vote by any member body on the second Draft Proposal,
later this year, will probably terminate the internaknm standardisation
effort because it will introduce delays which are unacceptable to one
or more member bodies who will have little alternative but to produce
national standards instead.

There is a real danger that one of more ISO member bodies will
find the removal of adjustable array parameters to an appendix as
unacceptable as the United States finds their inclusion in the body
of the standard.

JI

'" 1--
<.r

0--'
<S'
ec
c

27 June 1980

MEMO

To: ISO/TC97/SC5/WG4
Re: U. S. concerns on Pascal Standardization With Respect to the

Conformant-array Extensions

The Joint X3J9/IEEE Pascal Standards Committee has resolved to
express its concern that the issue of conformant array parameters
may significantly delay the acceptance of the draft proposed
standard for Pascal as an international standard. The committee
is anxious to explore any option which will lead to a solution of
the conflict over this issue acceptable to all member bodies of
SC5.

As you know, the US member body of ISO TC97/SC 5 voted against the
acceptance of the first draft proposal, on the grounds that the
conformant array feature should be described in an appendix to the
standard. This position was a compromise offered in the hope that
it would be acceptable to the other member bodies of SC 5 and
thereby an international consensus could be quickly achieved. The
position did not, in fact, reflect the true sentiment of the JPC,
as expressed in a number of formal and informal votes, which was
that a conformant array feature should not be included in the
current standard for Pascal. In the beginning there was no
proposal available to evaluate technically, and the committee's
view was based on strategic considerations. These were that the
introduction of a new and largely untried feature at such a late
date would introduce technical problems which could not be
resolved in time to avoid delaying the acceptance of the standard.
This has in fact turned out to be the case, since the first
proposal for a conformant array feature was sufficiently
technically flawed to justify its repl.acement by a quite different
proposal. There are still major technical objections to the
latter so that the view of the.JPC on conformant arrays remains
unchanged, although it is now based on technical considerations.
These are described in the attachment (which was accepted
unanimously) •

U. S. concerns on Pascal Standardization

This committee understands .and shares the view that the conformant
array feature attempts to solve a significant technical deficiency
in Pascal. However, it feels that the technical objections should
be resolved before such a feature is included in an International
or American National Standard. The committee believes that this
leaves two possible courses of action if a failure to agree on an
International standard is to be avoided. The first is that a
major international effort through the Working Group must be
mounted to prepare a technically sound proposal. The committee
believes that this is likely to require yet another complete
revision of the proposed feature. Sufficient time must be made
available for such work to be completed and properly evaluated.
The second approach is that we should proceed as quickly as
possible to standardize the language at a level at which it has
been widely used for a number of years.

It is clear that the second offers the quickest route to a
standard and we strongly recommend that it be adopted. However,
we further recommend that the effort identified in the first
approach be simultaneously initiated and that an acceptable
conformant array proposal should be defined and included in a
subsequent standard for Pascal as soon as possible.

Yours sincerely,

D. T. Jones
International Representative
Joint ANSI/X3J9 - IEEE Pascal Committee

Enclosure

C/ ,,-
-c

l
V
C
C

o

Attachment: Conformant Array Ad hoc Task Group Final Report
U.S. Objections to Conformant Array Extension

1.0 Overview and general problems

The U.S. Joint Pascal Committee (X3J9) created an ad hoc
task group to investigate the conformant array extension
appearing in JPC/80-161 (Working draft/6) (6.6.3.1). This
report together with JPC international liaison David Jones'
cover letter to the international working group (WG4) is the
result of the task group's investigation. Contributing
members of the task group included Bob Dietrich, Hellmut
Golde, Steve Hiebert, Ruth Higgins, Al Hoffman ,Leslie
Klein, Bob Lange, Jim Miner, Bill Price, Sam Roberts, Tom
Rudkin, Larry Weber (chairperson), and Tom Wilcox.

1.1 Lack of implementation experience

The current proposal has no widely known implementations.
Various portions of the extension have been implemented in
different compilers, but the group of features proposed here
have never been combined together, except on paper.
Furthermore, the implementations of the various parts of the
extension have not (of course!) been in the context of the
proposed standard. Since this is a new feature to the
language, the introduction of this extension in the standard
document is especially distressing.

1.2 Large change to text of standard

The conformant-array extension requires a large amount of
text in the standard in order to describe it. Moreover, it
requires modifications to sections outside of section 6.6.3
on parameters. In other words, the extension interacts -
at least in its description -- with many other parts of the
language. For example, in section 6.7.1 the alternative
"bound-identifier" has to be added

This means that the extension is major, with wide impact on
the language. This is especially unfortunate in view of the
fact that it only provides a single capability that of
array parameters with adjustable bounds. A broader
capability, might not require a significantly larger
description.

1.3 Conformant-array concept not defined

It is of the essence of the Pascal language,
principal distinguishing characteristic, that it
on certain fundamental concepts clearly and
reflected by the language" (page 1, section 0,
the Draft ISO/DP 7185). It is difficult, at

and its
is "based
naturally

forward to
best, to

identify a fundamental concept that this extension is to
support. The best approximation yet suggested is the
adjustability of the bounds of a scalar-type used as the
index-type of an array-type under certain circumstances of
parameter usage. Inasmuch as this concept is founded on at
least five identifiable concepts, it is difficult to see how
it may be considered fundamental.

This absence of fundamental underlying abstraction is
foreign to the nature of the language. This absence leads
inexorably to user confusion and to language-designer
confusion. The user is not provided a concept on which to
base his understanding; the designer, likewise, is given no
guidance in his language design. Since user experience is
lacking, no evidence exists from which to draw any
conclusions with respect to the lack of user
understandability. However, the lack of guidance to the
language designer is quite nicely evident from the volume of
technical objection: the most acute examples are the
dilemmas of packing and of value-parameters.

2.0 Problems with existing proposal

2.1 Set of types that may have to conform is unrestricted

The conformant-array extension provides no way to identify,
at the point of declaration, the array types that may have
to conform to some conformant-array parameter.
Consequently, an implementation must ensure, a priori, that
ALL array types can be handled correctly by the
implementation of the conformant-array parameter extension.
Hence, a user may have to endure severe implementation
inefficiencies even though he does not use the
conformant-array parameter extension. For example, an
implementation of packed conformant-array parameters (an
almost irresistible evolution of the present extension) may
make many of the possible forms of data packing totally
impractical. A solution that is integrated with the type
naming mechanism would alleviate this problem.

2.2 Structural Compatibility

One of the fundamental clarifying decisions made in
developing the draft standard from Jensen and wirth was the
rejection of so-called "structural type-compatibility" in
favor of the more natural "name compatibility" (or a
variation thereon). Such decisions have had a profound
effect on the resulting language; it is important that such
principles be applied consistently throughout the language.

Unfortunately, two areas of the existing (Jensen and
language resisted consistent application of
compatibility": set-types and string-types. Both of

Wirth)
II name
these

u

~
l!"
C
C

problems are directly attributable to the existence of
inadequately typed value designators (i.e., character-string
constants and set-constructors). It was deemed necessary to
violate "name compatibility" in these two cases in order to
avoid introducing new (and incompatible) language features.

The conformant-array extensions introduced in N510 and in DP
7185 both violate the underlying principle of
"name-compatibility"; we have seen no attempt to justify
this violation. This is inexcusable in the absence of
problems of upward-compatibility, very simply because
conformant-arrays are an extension.

One practical effect of this unnatural regression to
stuctural-compatibility, as discussed elsewhere in more
detail, is the difficulty encountered in extending the
conformant-array capability to allow multi-dimensional
packed arrays.

2.3 Parameter List Congruency

In the comments from the French member body (p.3, 6.6.3.6),
they note that "the parameter lists (x,y:t) and (x:t, y:t)
seem to be not congruent" and that this is the only part of
the language where these two notations are not entirely
equivalent. It is a correct observation that these are not
congruent. However, given the current form of the
conformant-array proposal, this surprising and aesthetically
unpleasant inconsistency is absolutely necessary. If the
two parameter list forms were congruent (as in N510) , then
the following example would be a legal program fragment:

type t = integer;
proc pl(var fl,f2: array[i •. j: t] of u);

begin fl:= f2 end; {end - pI}

proc p2 (proc fp(var fl: array[il .. jl:t] of u;
var f2: array[i2 .. j2:t] of u»;

var a: array[1 .• 2] of u;
b: array[l. .3] of u;

begin fp(a,b) end; {end - p2}

begin p2(pl) end;

It is impossible to know at compile time that the assignment
(fl:= f2) is an error. To remove the necessity of this
run-time check, a seemingly unrelated aspect of the language
had to be altered. The alteration has been recognized as
undesirable and the reason for it was certainly not obvious.
It took some time to detect the effect of
conformant-array-schemas on parameter-list congruency. In
addition, there may be other apparently unrelated aspects

that, as yet, have not been discovered.

2.4 Need to name a conformant array schema

There is no construct to allow the use of an identifier to
denote a conformant array schema:

TYPE varray = array[i .. j: integer] of integer;

PROCEDURE p(var param: varray);

The lack of this construct makes the proposed conformant
array schema weaker, due to considerations of consistency
and user convenience.

Before proceeding, it must be noted that the naming
construct above must be accompanied some means of
distinguishing the array bounds" [i. .j]" for each individual
usage. it is not clear that the currently proposed
conformant array extension allows such a capability: this
is a general problem in itself as well as a limitation on
extensability (see section 3.5).

The first objection to the proposed conformant array
e~tension is the bulkiness of the construct. The parameter
11st of a procedure or function is frequently placed on one
line. The use of a conformant array schema makes this
vi:tually impossible when more than one parameter exists.
Th1s and the added user cost of retyping the schema become
significant when the same schema is used over and over
again, as, say, in a library of mathematical routines.

When one conformant array uses another, in the following
manner, the lack of an identifier becomes a clear oversight
in the language:

procedure p(var a: array[lowa •. higha: atype]
of arecord;
var b,c: array[xlow .. xhigh: integer;

clow .. chigh: color] of
array [lowa2 .. higha2: atype]

of arecord);

Here it is desireable that the type of "a" in
the components of "b" and "c" to be the same.

the type of

The unfortunate consequence of adding the inadequately
?onceived conformant array schema to Pascal is a reduction
1n the prime desirabilities of convenience of usage and
clarity of the printed program.

00
CI

The lack of an identifier construct for conformant array
schemas results in user, language, and implementation
inconsistencies. Except for procedure and function
parameters, the conformant array schema is the only
construct in the parameter list that is not a single word.
To new students of the language, it will always appear
inconsistent. And, since the parsing of conformant array
schemas is so different from other
parameter-type-identifiers, it becomes an exception case,
resulting in added complexity in the compiler.

The proposed conformant array schema
that it does not permit the use of a
as a part of a record, to be passed
example, many programs make use
implemented as records, i.e.

is also shortsighted in
conformant array schema
as a parameter. For
of dynamic "strings"

type string = record
length: O .. SO;
chars: array[l •• SO] of char

end;

for a dynamic "string" of maximum length SO. Supposing it
were necessary to write a string-handling routine to handle
records with differing maximum lengths, one could, with the
help of a schema label, construct the following:

type natural = l .. maxint;
dynamicarray = array[i .. j: natural]
string = record

length: integer;
chars: dynamicarray

end;

procedure concat (var a,b,c: string);

of char;

This concise construct is absolutely unimplementable under
the current proposal. On the other hand, the above type of
construct could lead to some interesting extensions (not
that they should be dealt with here) •

Finally, note that making a change to a conformant array
schema, used allover a program, is much more involved than
changing the definition of a single conformant array schema
identifier.

2.4 Separator ";"

The abbreviated form for contained conformant-array-schemata
introduces the character ";" as an abbreviation for the
sequence "]" "of" "array" "[" (6.6.3.1), thus allowing the
form

array[u .. v:Tl; j •• k:T2] of T3

to be equivalent to

array[u .. v:Tl] of array[j .. k:T2] of T3

This conflicts with the use of the character "," to express
a similar equivalence for array types (6.4.3.2), where

array [T4, T5] of T6

is equivalent to

array [T4] of array [T5] of T6

One might therefore argue that for uniformity and possibly
as an aid in compiler error recovery, the character
should be used in the conformant-array extension.

However, there is unresolved disagreement as to whether the
separator should be a comma or a semicolon. The existence
of this disagreement demonstrates that the nature of the
object to be separated is not well understood nor well
specified.

2.5 Required Runtime checking of types

The proposed scheme specifies that the
parameter is the same as the type of
This presents serious difficulties
parameter is further used as an
illustrated in the following example.

program example;

type of the formal
the actual parameter.
when a conformant

actual parameter, as

type arraytype = array[l .. lO] of integer;
var

a : arraytype;
b : array[l .. lO] of integer;
c : array[l .. ll] of integer;

procedure simplearray (var a:arraytype);
begin end;

procedure fancyarray(var a:array[m •• n:integer]
of integer);

begin
simplearry(a)

end;
begin {main

fancyarray(a)
fancyarray(b)
fancyarray(c)

end.

program} !legal}
illegal - name incompatible}
illegal- structure incompatible}

Another illustration of runtime type checking is shown in
the following example.

type
natural O •• maxint;

procedure pl(var b:array[i .. j:natural] of u);
begin end;

procedure p2(var a:array[i •• j:integer] of u);
begin plea) end;

In this example, the passing of the variable "a" to "pI" may
or may not be valid, depending on the actual parameter
passed to "p2"

This problem is not addressed by the UK Member Body comments
on DP 7815.

3.0 Limitations of existing proposal

The following items are brief descriptions of features that
could someday be considered as possible extensions to the
language. An evaluation and rationale for their
desirability has not been completed at this time. The
process of including these is impacted by the current
definition of the conformant array extension. It is felt
that unifying fundamental abstractions must be developed to
cover the total set of any newly defined features.

3.1 Leading index types

Only leading index types of conformant-array-schemata are
adjustable. Thus,

array[j •. k:Tl] of array[T2] of T3

is acceptable, while

array[T2] of array[j .. k:Tl] of T3

is not (6.6.3.1). This introduces an asymmetry into the
definition. While a relaxation of this restriction does not
offer any additional functionality, it would allow a more
natural expression of certain relationships between index
types.

3.2 The lack of packing

The conformant-array extension, as defined in Working

Draft/6, restricts the allowable actual parameters to arrays
not having the attribute "packed". This restriction
eliminates the direct use of conformant arrays for string
handling under the current limitation that the only arrays
of char-type that may be compared, written to files or
declared as constants are those arrays having the attribute
"packed". This particular problem could be corrected by
removing the "packed" restriction on string type although
care would still be required on the part of the programmer
to use only arrays with lower bounds of one and run-time
checks would be required to ensure this care had been taken.
Even if this string-type problem were resolved, the lack of
orthogonality contradicts the Jensen-Wirth Report in which
the obvious intent is that packed and unpacked arrays be
generally equivalent except for the possible differences in
storage requirements.

3.3 Value conformant-arrays

Introduction of a value parameter as part of the
conformant-array extension is a natural addition, and there
seem to be good reasons to consider this aspect of the
conformant-array parameter. However, if this feature were
to be added to the extension, then this is the first
instance of a case where the size of the activation record
is not known during compilation. The unknown size of the
activation record causes a problem in an implementation that
relies on knowing the activation record size in order to
handle activation stack overflow. This is not to say that
efficient implementations are impossible, but the two
situations must be treated efficiently by compilers.

3.4 Conformant-arrays and bounds limitations

The conformant-array extension is not sufficiently general
nor extensible: it does not provide the ability to fix
either the lower or upper bound of a given index
specification. Nor does it allow the user to equate the
extent of one index specification with the extent of
another, be it within the same conformant-array parameter or
a different conformant-array parameter. This deficiency
results in increased time and space complexity and hinders
compiler optimization. Moreover, it requires an author to
either validate one or more conditions cr trust the caller.
The former introduces further deterioration of efficiency
while the latter is inconsistent with the strongly-typed
nature of Pascal. In addition, this lack in the
conformant-array extension is in conflict with one of its
primary uses: the construction of independent array
manipulation routines. For example, possible uses of
conformant-array parameters include general matrix
multiplication and inversion routines where one would like
to place restrictions on the bounds and interrelationship

f
<..£
o
C

between index types of the actual parameters.

3.5 Conformant scalar-types

The conformant-array extension addresses only the role of a
scalar-type as an index-type of an array-type parameter. It
ignores the many other roles where it is desirable to
conform a scalar-type parameter. A few such roles where
such conformance might be desirable are:

1. as the type of a parameter;

2. as the base type of a set;

3. as the component type of an array;

4. as the type of a field;

5. as the index-type of an array used as the type of a
field.

TO: National Bureau of Standards

FROM: David Jones
X3J9 International Liaison

SUBJECT: Report by A.M. Addyman

The Joint ANSI/X3J9 - IEEE Pascal Standards Committee (JPC)
has received a copy of a report, "The Pascal Standard: Progress
and Problems," written by A.M. Addyman of the University of
Manchester. This report, hereafter referred to as JPC/80-164,
presents an interpretation of the current impasse in the Pascal
standardization effort with which JPC does not agree. I have
been charged, as the JPC International Liaison, to present the
committee's point of view.

The primary issue over which Mr. Addyman and the committee
disagree is discussed in sections 3.2.5 and 3.3 of JPC/80-164,
although JPC takes issue with remarks in other sections. Before
addressing the comments specifically, however, I shall present a
summary of JPC's point of view.

The true sentiment of the committee is that a conformant
array parameter feature should not be included in the version of
Pascal being standardized through the current effort. This view
has been repeatedly documented, by both formal and informal
resolutions passed either unanimously or by large majorities,
beginning with the first time JPC became aware that the BSI group
was considering the introduction of this feature. Initially, the
opposition was based on strategic grounds (i.e., there was no
proposal to formally evaluate). These were that the delay
introduced by requiring a technical evaluation prior to
acceptance of the feature would substantially postpone the
adoption of a standard. The JPC does believe that the conformant
array extension attempts to solve a real problem that will have
to be eventually solved, and that finding such a solution is a
matter of urgency.

The pesslmlsm of JPC was justified in that the initial
proposal offered by BSI was so flawed that it was withdrawn and
replaced by an entirely new proposal at the Experts Group Meeting
in Turin in November 1979. It is the position of JPC that this
second proposal still contains technical errors and deficiencies
sufficiently grave that yet another complete revision of the
proposal will probably be required before an acceptable solution

to the problem is found. Consequently, the strategic objections
remain, but are now substantiated by technical considerations.

Nevertheless, when the committee voted in April, 1980 to
recommend that the u.s. position should be to disapprove the
draft proposal identifying conformant array parameters as being
the only issue, it only required that this feature be removed to
an appendix so that its implementation could be made optional.
This represented a major compromise which, from the JPC point of
view, was far from the real sentiment requiring that the feature
be removed entirely from the proposal.

JPC is convinced that it is in the best interests of the
Pascal User Community that any revision or extension to the
language be supported by sound technical grounds, and that it is
better to take the time to do it correctly or to accept a
standard without conformant array parameters than to accept a
technically inadequate proposal merely because it is timely to do
so.

As far as the actual comments in JPC/80-l64 are concerned,
the remark in section 3.3.2 on support by Professors Hoare and
wirth should be qualified by the results of the discussions
members of JPC had with them before and during the April meeting,
of which Mr. Addyman was aware. Both indicated that the U. S.
compromise was preferable to delaying the standard, and Professor
Hoare himself was the source of this method of introducing this
extension. The substitution of the word "standardizer" for
"designer" in 3.2.4, paragraph 1, line 1, would accurately
reflect the U. S. position. Without the substitution, it does
not. Thus 3.2.5, paragraph 2, is also misleading. The use of
the term "(correctly)" in 3.2.3, paragraph 2, is difficult to
substantiate. The JPC is particularly at odds with the position
that non-technical reasons were the justification for its
disapproval. We cannot assume Mr. Addyman is referring to our
strategic reasons because these reasons have a technical basis.
Even in the beginning, the basic issues were technical although
they could not yet be identified. Consequently, Mr. Addyman's
remark must be construed as implying a political basis for the
JPC's position. This is certainly not the case and we disagree
with Mr. Addyman's justification for his point of view as
expressed in 3.2.5, paragraphs numbered 1 to 4. The following
numbered paragraphs discuss our corresponding disagreement:

1. There have been many changes to the de facto
definition of Pascal which have not been regarded as
extensions and have been the subject of wide
implementation and use. This does not apply to the
feature in question, reflecting consistency in JPC's
position in this regard.

2. It is a sUbjective op1n10n that the criteria
of 3.2.4, item 1, would preclude other extensions. It
is stated quite clearly within the proposed standard
that implementation dependent features are allowed, and
that by implication a user is free to provide one or
more versions of any given feature. By this means, an
extension could become widely implemented before
acceptance in a standard. In particular, an Appendix
could be created for such a feature for the reasons in
3.2.4, paragraph 2, of JPC/80-l64.

3. The JPC would prefer that the conformant-array
extension be removed entirely from this standard for
technical reasons. However, we recognized the claims
of the other member bodies that they require this
capability in the language. Therefore, the JPC
proposed that the extension be in an appendix to
address our concerns and we proposed that if the
extension were implemented, it was to be implemented in
the format specified to encourage acceptance by the
other member countries. Since it is our preference to
remove the extension entirely, it would be consistent
with our position to soften the wording from a
requirement to a recommendation.

4. JPC does indeed support the removal of these
restrictions, but feels that the technical issues
raised by doing so would introduce an unjustifiable
delay into the standardization process.

Addressing section 3.3, it is the view of JPC that the
position taken by Mr. Addyman (i.e., a negative vote would
terminate the standardization process) is unduly pessimistic. In
addition, this statement represents unwarranted pressure on the
U.s. and the other two countries which voted against the
conformant array extension due to significant technical
deficiencies.

~

u
C
C

Implementation Notes

Editor1s comments
Well, it was bound to happen. 1'\:1 section of issue +17 got scrambled.
The right half of page 88 shouldn't have appeared at all, the 21log 2-80
reports became recursive, and the machine-dependent section was all out
of sequence. 1'\:1 sincerest apologies go to Arthur Sale, whose letter on
the Burroughs B67BB17700 ilrfllementation was dropped cOlrflletely, and to
my co-ed I tor Greg Marshall, whose hard IIIOrk on the One-Purpose Coupon
went without credit. Things should be straightened out with this issue
(l hope).

Just to add to the overall confusion, I've changed my address and phone
number within Tektronix. This move is not intended to make It more
difficult to reach me. Mall to my old address will be forwarded for the
next few years, and if my phone rings more than four times now, the
secretary (Edie) should answer (theoretically). Here's my new address
and phone:

Bob Dietrich
MS 92-134
Tektronix, Inc.
P. O. Box 5I!l0
Beaverton, Oregon 97077
U.S.A.

phone: (503) 645-6464 ext 1727

For those of you that are still trying to convince other people that
Pascal has 'arrived', I put together this short list of cOlrflanles. It
consists solely of those cOlrflanles that both manufacture processors and
have announced a version of Pascal on one or more of their products.
Hopefully I have not left out anyone. Due to my own lack of Information
only U.S. cOlrflanles are listed.

American Microsystems
~Tlmesharing
Contro I Data Corporat ion
Data General
Digital Equipment Corporation
General Automation
Hewlett-f'ackard
Honeywell
191
Intel
Motorola
National Semiconductor
Texas Instruments
Three Rivers Colrfluter
Varian division of Sperry Univac
Western Digital
2110g

Of course, this list does not Include the many
supply Pascals for the xyz cOlrfluter. Often
cOlrflanies do a much better Job than the cOlrflanles
the processors. You can draw your own conclusions

more cOlrflan i es that
(and why not?) these
that actually build
from this list.

Validation Suite Reports

The U ni versity of Tasmania
Postal Address: Box 252C, G.p.a., Hobart, Tasmania, Australia 7001

Telephone: 230561. Cables'T.sun;' Telex: 58150 UNTAS

I N REPLY PLEASE QUOTE:

FILE NO

IF TELEPHONING OR CALLING

ASK FOR

The Editor,
Pascal News.

Validation Suite Report

14th March, 1980

This report to readers of PascaL NehlS is intended to let everyone know of our
intentions and plans. The demand for the validation package and response to
it has almost swamped our capability of replying.

The current version 2.2 of the Validation Suite has been distributed to about
150 organizations or individuals, not counting the several thousands reached
via PascaL News. As an indicator, the distribution list of our US distributor
Rich Cichelli, is enclosed. Some suppliers are using the ValidatioR Suite
results in their advertising, and many are using it as a development tool.
I have received a number of comparative reports, and have noticed a healthy
competition to achieve 100% on the conformance/deviance tests.

We have almost completed an update to Version 2.3, which will correct the
known errors in Version 2.2, and will include a few tests which were accidently
omitted in the first release. Unfortunately, even with the greatest care we
could muster, several erroneous programs slipped through into the release of
2.2, and a few had features which caused them to fail on some processors for
unrelated reasons. Version 2.3 is the response to such problems. However,
it is still derived from the version of the Draft Standard printed in Pascal
News and IEEE Computer, and known in ISO circles as ISO/TC97/SC5-N462.

As soon as this is tested and released, we begin work on updating the whole
package to the ISO Draft Standard now being circulated for voting. I estimate
that this will take us about 2-3 months, for completely checking over 300
programs is non-trivial, and the insertions will require to be carefully
drafted. The sources of change are primarily due to:

(i) areas in the earlier draft standards that were poorly drafted
now being more precisely defined,

(ii) areas in the draft standard which have been altered, usually
because N462 contained some mistake or ill-conceived change,

(iii) field experience with the package showing us weak spots in its
attack strategies on compilers.

should like to thank all those who have sent Brian, Rich or me copies of
their results, or better still concise swmnaries and comments for the future.
Your praise and criticisms help sustain us through a quite difficult piece
of software engineering. Indeed we now realize that we should perhaps have
written ourselves more tools at the start to carry through what I think to
be a most significant piece of change in the software industry, and I am very
much aware just how many contributions have gone up to make this effort.

May I simply continue to urge readers of Pascal News to keep on pushing the
view that "correct is right" (with apologies to T.H.White), and to refuse
to accept second-best.

Arthur Sale,
Professor of Information Science

PASCAL VALIDATION SUITE USERS

Oregon Software Inc.
Portland, Ore~:n 97201

Honeywell PHS;:
Phoenix, Arizona 85029

Rational Data Systems Inc.
rlew York City, NY 10019

Advanced Computer Techniques
Arlington, Virginia 22209

Prime Computer
Framingham, t-1ass 01701

Hewlett Packard
Palo Alto, Calif 94304

Systems Engineering Labs
Ft. Lauderdale, Fla 33310

General Automation Inc.
Anaheim, Calif 92805

University of California at Santa Barbara
Santa Barbara, Calif 93106

Texas Instruments
Dallas, Texas 75222

Na ti ona 1 Semi conductor Corporati on
Santa Clara, Calif 95051

Boeing Co.
Seattle, Washington 98124

Te~ em-porati-on
Scottsdale, Arizona 85254

Universi ty of Haterloo
Haterloo, Ontario, Canada

Sperry Univac
Blue Bell, Pa. 19424

Perkin Elmer Corporation
Tinton Falls, NJ 07724

Boston Systems Office loe.
Haltham, Mass 02154

Intel Corporation
Santa Clara, Calif 95051

General Research Corporation
-Santa Barbara, Calif 93111

University of Minnesota
r~inneapol is, ~linn 55455

Comshare Inc.
Ann Arbor, Michigan 48104

OCLC Inc.
Columbus, Ohio 43212

TRW CS&S
San Diego, Calif 92121

Medical Data Consultants
San Bernardino, Calif 92408

University of California at San Francisco
San Francisco, Calif 94143

Timeshare
Hanover, NH 03755

Fairchild Camera & Instrument Corp.
Mountainview, Calif 94042

NCR Corporation
Copenhagen, Denmark

University of California at San Diego Process Computer Systems
La Jolla, Calif 92093 Saline, Mich 48176

Intermetrics Inc.
Cambridge, Mass 02138

University of British Columbia
Vancouver, British Columbia, Canada

Vrije Universiteit
Amsterdam, The Netherl ands

Scientific Computer Services
Glenview, III 60025

Virginia Poly technical Institute & State University
Blacksburg, Va 24061

Digital Equipment Corporation
Tewksbury, Mass 01876

Philips Labcr=t:ries
Briarcliff M2~or, NY 10510

HoneYlvell WE2-3187
Ninneapolis, sinn 55408

RCA-HSRD 127-302
r'loorestown, i':J 08057

Boeing Co.
Seattle, Washington 98124

David Intersimone
Granada Hills, Calif 91344

Burroughs Corporation
Goleta, Calif 93017

Business Application Systems Inc.
Raleigh, NC 27607

University of Haterloo
Waterloo, Ontario, Canada N2L 3G1

Language Resources
Boulder, Colorado 80302

Jet Propulsion Lab
Pasadena, Calif 91103

Michigan State University
East Lansing, Nich 48824

G.
f'T'.

co
0'>

Beckman Instruments
Fullerton, Calif 92635

University of California
Los Alamos, NM 87545

Ford ~Iotor Co.
Dearborn, Mich 48121

Online Systems Inc.
Pittsburgh, Pa. 15229

Data General Corp.
Hestboro, Mass 01581

Northrop Research & Technology Center
Palos Verdes, Calif 90274

I~otorola Microsystems
r·lesa, Ari zona 85202

TRW DSSG
Redondo Beach, Calif 90278

Whitesmiths Ltd
New York, NY 10024

Sperry Univac
St. Paul, Minn 55116

University of Guelph
Guelph, Ontario, Canada N1G 2lH

t·lacDona 1 d Dettwil er & Associ ates
Richmond, British Columbia, Canada V6X 2Z9

The r~edlab Co.
Salt Lake City, Utah 84115

University of Illinois
Urbana, III 61801

University of Scranton
Scranton, Pa. 18510

BTl Compu ter Systems 1.1c.
Sunnyvale, Calif 94086

GTE Automati c El ectri c Laboratories Inc ~lodcomp
Northlake, III 60164 Ft. Lauderdale, Fla 33310

Tektronix Inc.
Beaverton, Oregon 97077

Enertec Inc.
Lansdale, Pa. 19446

Arthur A. Collins Inc.
Dallas, Texas 75240

RCA Laboratories
Princeton, NJ 08540

Renaissance Systems Inc.
San Diego, Calif 92121

University of Western Ontario
London, Ontar~o Canada N6A 5B9

Perkin Elmer Computer Systems Division
Tinton Falls, NJ 07724

Burroughs Corp.
Pasadena, Calif 91109

University of t1ichigan
Ann Arbor, Mich 48109

California Software Products Inc.
Santa Ana, Calif 92701

Control Data Corp.
La Jolla, Calif 92037

Jet Propulsion Laboratory
Pasadena, Calif 91103

California State University & Colleges
Los Angeles, Calif 90036

Computer Sales & Leasing
Denver, Colorado 80222

GTE Sylvania
110untain View, Cal if 94042

Amherst College
Amherst, Mass 01002

Gould Inc.
Andover, Mass 01810

Technical Analysis Corp.
Atlanta, Georgia 30342

University of Alabama in Birmingham
Birmingham, Alabama 35294

NASA
Hampton, Virginia 23501

Carnegi e 11ellon University
Pittsburgh, Pa. 15213

Digital Technology Inc.
Champaign, III 61820

System Development Corp.
Santa Honica, Calif 90405

IBt~ Corp.
San Jose, Calif 95150

RUNIT
Trondheim, Norway

University of Iowa
Iowa City, Iowa 52244

Bobs Software Systems
Austin, Texas 78745

General Electric Co.
Fairfield, Conn 05431

Viking Computer Corp
Lexington, Mass 02173

Cogitronics Corp.
Portland, Ore 97229

Hestern r~ichigan University
Kalamazoo, Mich 49008

Sperry Division Headquarters
Great Neck, NY 11020

Lambda Technology
New York; NY 10017

Rhintek Inc.
Columbia, Md. 21045

Tyrnshare Inc.
Cupertino, Calif 95014

Motorola Inc.
Austin, Texas 78721

'""C :rc-
Stanford Linear Accelerator Center ~
Stanford. Calif 94305 ~

Centre de Calcul EPFL
Lausanne Switzerland

Sperry Univac
Blue Bell, Pa. 19424

Procter & Gamble Co.
Cincinnati, Ohio 45201

Compagnie Belge Burroughs
Herstal Belgium

GENRAD Futuredata
Los Angeles, Calif 90045

Wayne Catlett
Santa Ana, Calif 92707

Western Digital Corp.
Newport Beach, Calif 92663

Three Rivers Computer Corp.
Pittsburgh, Pa. 15213

Singer-Librascope
Glendale, Calif 91201

Computer Translation Inc.
Provo, Utah 84602

NCR Corp.
San Diego, Calif 92127

Hestinghouse Electric Corp.
Pittsburgh, Pa. 15238

Chemical Systems Division
Sunnyvale, Calif 94086

>
u
o
co

THE PASCAL VALIDATION PROJECT

Validation Newsletter No 1

1980 March 28

Department of Information Science
University of Tasmania
GPO Box 252C,
HOBART, Tasmania; 7001 iflI:iiif

'nISCI

Some time ago you acquired a version of the Pascal Validation Suite, either from
us or from Rich Cichelli in the USA or from Brian Hichmann in the UK. ~f your
version is up to date, you should have Version 2.2.

To briefly explain our numbering system for versions, the first digit ia.'rrtifies
a major break in the evolution. Thus Version 1 related to the pre-1979 Hork
derived from the Pascal User Manual and Report, and Version 2 is the completely
revised package produced after receipt of the first public draft of a Pascal
Standard (ISO/TC97/SC5 N~62, known as Harking Draft 3). The second number
relates to a revision level within that major version.

I'lith the release of Version 2.0, and its subsequent rapid evolution through 2.1
to 2.2, we have achieved a relatively stable product. It is by now quite well
known that in the 350+ programs of the package there are a small set which are
incorrect (they do nbt test what they ought to, or have a syntax error, or a
convention error), and there is a small set which are not as well-designed as
they might be (failing for reasons which are unrelated to their purpose).
Accordingly, while I was on sabbatical leave from"'the University of Tasmania in
1979/80, Brian Hichmann and staff at the National Physical Laboratories in
England produced a new version 2.3 which attempts to correct these errors, and
wh.i.ch adds a number of new tests together with old ones which were omitted from
version 2 but were in version 1.

\le will not distribute this version, and it will remain purely an internal
revision level. Of necessity, the first production of a new level must be
tested before release, and our tes·ting of version 2 ~ 3 yields many issues which
would have to be clarified before we could distribute it with the confidence
in its quality that you are entitled to expect.

Even more cogently, we consider the revision of the validation p~~kage to conform
to the new Draft Proposal (DP7185) to be even more important t;,an tidying up the
loose ends of an obsolete version level, and accordingly o~~ efforTS are no~
going into producing that version as soon as possible. I·t will be known 3f,

Version 3.0, and will take us at least two or three months to complete.

In this way we think we can avoid delays in the production of 3.0 and minimize
the circulation of spurious tests and those which are relevant to N462 but not
to DP7185 (or wor-se, reversed in iDe two versions)

While undertaking the major revision required to produce the new version, we shall
also attempt t'o simplify some aspects of testing. Since Version 3.0 will be
a major revision, lie shall issue it complete (i.e. not an update iS1?ue), but we
intend in future to include a 1T1ast revision level" in the header of each test
to facilitate identifying the latest changes.

Thank you for your support of our e£:fort; we have over 150 subscribers now and
the activity is certainly paying off in terms of quality of software and
convenience to users. Best wishes for your future \-Jork.

Professor A.H.J. Sale

The University of Taslnania
Postal Address: Box 252C, G.P.D., Hobart, Tasmania, Australia 7001

Telephone: 230561, Cables'Tasuni' Telex: 58150 UNTAS

IN RE::>LY PLEASE QUOTE

F!LE NO

IF TELEPHONING OR CALLING

ASK FOR

Mr. P. Pickel~ann,

Computing Centre,
University of Michigan,
1075 Beal Avenue,
Ann Arbor, ~!ichigan
U.S.A. 48109

Dear Paul,

11th March, 1980

~ank you for your le~ter, which I have just read after returning to
Tas~anla from study leave ln USA and Europe. I was very excited to read it,
as lt seems a very thorough piece of work, and just the sort of thing \;e
hoped the package would do.

I have taken the liberty of sending a copy of your report to Pascal
News for reprinting; if Y011 Nant if kept private please write to Rick Shaw
and say S?, or send revisions. I have also sent a copy to the AAEC
(Jeff Toblas) as he h~s told me that his field test version passes all
conformance and pract:tcally all deviance tests' (or at least the correct
tests).

I do not think that a tape with all three tests would be of great use
to me at present as we are about to shift up one sub-level in the tests
and a new version level is three months away (to conform to the new Draft
Staadard). I think I can glean all I need from your very comprehensive
report.

On your "Distribution problems", etc:

1. Charset: will investigate.

00
CD

2. Printfiles: the distributed skeleton program will readily paginate;
I will not put control characters in for the few installations that
want them, at the expense of making 99% of installations strip them
off. The printed version was printed by a slight modification of the
skeleton.

Errors in test programs : will investigate; most have been reported
frequently (sigh; complete correctness of 350+ programs too much for us;
and flaws like 6.2.1-7 slip through.)

Specific suggestions

Clock would be less standard than process time. The name of a non
standard function is irrelevant; processtime is deliberately chosen
50 as not to be in anyone's system (except ours) and to return results
in standard metric units (seconds). Consequently inadvertent rubbish
results are unlikely.

The suggestion about [1 mod bitsperwordj illustrates only poor quality
compilation tec~llliques. Our compiler and the ICL 1900 one should realize
that the result is in the range 0 .. (bitsperword-l) anyway. Consequently I
"ould prefer to keep the algorithm transparent rather than introduce
extraneous var:'ables \;hose whole purpose is to optimize less-than-perfect
implementations. (As a matter of interest, I have been musing over a version
with very large sets here; our implementation will handle them too.)

6.3.1 & 6.4.5-5 are slips; our compiler has full significance, arid all
the others I used for testing had 10 or 12 or 16 characters up to release.
We also forgot to run the full package with our STANDARD switch set to
enable the compiler to report these.

6.8.5.5-4 Perhaps maxint is a bit severe? We are seeking implementations
which allow 'virtual infinity' of case, to show quality. (Our compiler will
handle maxint of course, but I wouldn't condemn a compiler that had a hash
table algorithm with packed one-word records and hence \~as limited to less
than maxint values as the key.)

LOOP. Agree. Didn't realize that anyone was foolish enough to use
loop-exit until talking with IBM implementors.

For-loops: you are tackling things which were left out of Version 2
because I could not resolve them in advance of the Draft Standard (or at
least tried to influence the Standard first).

VERSION indication is a good idea, which we had already noted, but not
in so clear a form. Thanks.

Finally, can you send me your size in shirts? We have a free gift to
validators who do good work for Pascal ...

Yours sincerely,

Arthur Sale,
Information Science Department

THE UNIVERSITY OF MICHIGAN

COMPUTING CENTER

1075 SE L AVE"IUE

ANN ARI"IOR. MICHIGAN 49109

January 22, 1980

Pascal Support
Department of Information Science
University of Tasmania
Box 252C, G.P.O.
Hobart 7000
Tasmania
Australia

Dear Sirs:

Here is a copy of my first version of a Validation
Rp.port for three IBM 360/370 compilers, and some comments
ans suggestions on the suite. I'll send another version after
I :i'inish adapting Release 3 of the Stony Brook compiler for
MTS, which should fix several of the problems.

If you are interested, I could send a tape with the
results for all three compilers.

Sincerely,

Paul Pickelmann

PP:kls

Enclosure

Dear Readers 01 Pascal Nevls,

I am sending these reports to Ne\vs to show an exa-nple (a gam one) of the

flood of i:.1forrrlation I am receiving on validation. See the report by me

hlSO ir~ the HeHs.

Arthur Sale

CCltf:utet: !?M 360/370, Amdahl 470

Imda~l 470/V7 used for tests

ProcesSors:

AAEC - Pascal/eCOO (MTS version) Version 1.2/n9

S'iBl1 - Stony Ereck Compiler (M'!S versicn) Release 2.1jCT125

!lEC - 'Jniversity of British Columbia Version Aug. 16/79

Tester: Pa ul F ickelmann CUni versi tl' of lIichiga n}

nata: January 1980

version: 2.2

1.1: it-.1.~L~~nt

Parameter 11 paralteter of any kind (value, var,
procedure, or function) of a procedure
or functicn.

Prcce~ure Parameter A para~eter of a prccedure or function
which is a procedure or fUDction.

The "Pascal valieation Suite" is a set of 318 Pascal programs
designed to test a compiler fer corerliance with the draft Pascal
standarn. A full 1isting of the suite alcng with Arther Sale's
delightful intrc~uction is in Pascal News,16 (October 1979 arrive~
Jan.3C). The rEsults of running tr.e 3 Pascal compilers avajlable
on ~TS are su:::::eri:zed belcw. A full report is in !lNSP:;/~SCAL.NEilS.

Version 2.2 of the suite was used. This ccrresFonds to the version
of thE :'!raft ir: Pascal Ne~s, 14 (Jan.79). There are at least two
newer drafts ara a nEw versicn of the suite is comming.

If the number ef tests failed seems disaFeinting, note that the
designers tack care to test these things which have changed from
one jefiniticn cf Pascal te the next, as well as those (mostly
errors) which are hard to deal with.

Test Type ftests Failed/Passed
AAFC STER DEC

Coformance 139 17/122 26/113 21/118
r:eviance 94 33/ 61 35/ '59 41/ 53
ErrorHandling 46 23/ ~.,

~- 22/ 24 24/ 22
Irrplmentaticn 1'5 1/ 14 0/ 15 1/ 14
QU3.lity 23 5/ 13 4/ 19 3/ 15
Extensions 1/ 0 1/ 0 1/ 0
Cest $lE.98 $10.20 $38.75

C/O
rr.
L
-<
~
cc·
rr
:::
I-
u
C
c

Numter of tests Fassed
~u~ter of tests failed

l\1\"C S'IER UEC

122113 118
11 26 21

r,.r,EC
6.1.2-3,
6. 4.3.5-1,
6.1:.3.9-1,

6.1.8-3, 6.2.2-3, 6.3-1,
6.4.3.~-2, 6.4.3.5-3, 6.5.1-1,
6.8.3.9-7, 6.9.2-3, 6.9.4-4,

6.4.3.3-1, 6.4.3.3-4,
6.6.3.1-5, 6.6.3.4-2,
6.9.4-7

S'IEE
6.1.6-2. 6.2.1-6.
6.4.3.3-10~6.4.3.5-1,

6.E~3.1-5. 6.6.3.2-1.
6.6.5.2-5, 6.6.6.2-3,
6.9.4-4, 6.9.4-15

tJEC
6.1.3-2,
6.5.1-1,
6.6.5.2-3,
6.9.4-15

AA~C

6.2.2-3,
6.5 • .3.4~1,
6.6. ':. 2-5,
E. 9. 4-6,

6.2.2-3,
6.4.3.5-2.
6. 6.3. 3:- 1 ,
6.6.6.4-1,

6.2.2-8,
6.6.3.1-1,
6.E.6.2-3,
6.9.4-7,

6.2.2-8,
6.4.3.5-3,
6.6.3.4-2,
6.6.6.5-1,

6.4.2.2-2,
6.4.5-1,
6.6.5.2-3,
6.7.2.4-3,

6.4.3.3-1,
6.6.3.1-1,
6.6.5.2-4,
6.8.3.9-7,

6.4.3.5-1, 6.4.3.5-2, 6.4.3.5-3,
6.6.3.1-3, 6.6.3.1-5, 6.6.3.4-2,
6.1.2.5-2, 6.8.3.9-7, 6.9.4-4,

Only the first eight characters of identifers and reserved words
are used. Some longer identifers look like reserved words.
Pailed 6.1.2-3 and 6.3-1

nBC
Up~er and lewer letters are ccnsidered distinct in identifers.
Pailed 6.1.3-2

STER
Latels are comFared as strings so leading zeros are significant.
Pailed 6 .. 1.6-2

l.AEC
In "{ •••• }" and "! ..• *l" the starting and ending delimiters don't
~atch but are considered the entire comment, which is what later
versions of the draft stardard require.
?ailed 5.1.8-~

STER
The program-Farameterspart of the program-heading is not optional.
Failed 5.2.1-6, 6.6.3.2-1, 6.6.3.3-1, and 6.6.6.5-1

hAEC, S'IE3, IJEC
Vhen declaraticn for a type which is the dcmain of a pointer typP
aPFears aftEr the declaraticn cf the poiLter tYFe and there is a
~cre global type with the saroe name, the more glotal type is used
=or the domain cf the pcirter inste~d of the lccally declared type.
Failed 6.2.2-3

STER, lJE'C
Assignment tc a function identifer is not Fermitted from within
nested procedures and functicns.
"ailed (;.2.2-8.

STER
~~e cardinalit, of sutrances must be less than Maxint. programs
~ill run as lc;g as these-are never assigned a value greater than
~in(subtYFe}+Ma~int.
Failed 6.4.2.2-2 (errcr uessage, but ~uns)

STER
The tag-field is required in varient records.
Failed 6.4.3.3-1

AAEC
EmFty record declarations containing a semicolon produce syntax
errors.
Failed 6.4.3.3-1

AAEC
The tag-field ~al not redefine an identifer elsewhere in the
declaration Fart.
Failed 6.4.3.3-4

STEB
~ase constants cutside the tag-field sub range are not allowed,
vhich is what later versicns of the draft standard require
methinks.
Failed 6.4.3.3-1C

AAEC, STEH, lJEC
Pointers are not allowed witbin files.
Failed 6.4.3.5-1

AAIC
Null and length one lines have a blank affended when vritten.
Failed 6.4.3.~-2

STEil, llloC
Null lines are replaced by length one lines when written.
~ailed 6.4.3.5-2, 6.4.3.5-3

5TE-B
To solve the "interactive file problem" fa is undefined until
eof is checked.
Failed 6.4.3.5-2, 6.6.5.2-4
There is a bug vhere an ecf cbeck is need when it shouldn't be.
Failed 6.4.3.5-3

USC
The end-of-line character is eol not I ,

Failed 6.4.3.5·2

"BC
Local files (thcse other than Frogram parameters) are not really
lccal. They must be Frovidea by tbe user and all files with the
same name use the same file.
Failed 6.4.3.5-2, 6.4.3.5-3, 6.5.3.4-1,6.6.3.1-3, 6.6.5.2-]

6.6.5.2-5, 6.9.4-15

u
rr
-c

>

" c
c

:l
c:
r

AAEC
Peset d~es nct dc an implicit writeln (except with output)
"'ailed 5.Q.3.5-3

STEP
Assignment to 2 .ar parameter whose type is an alis for the type
of the value assiqned gives an error message and causes the
co~~iler te Frcgram interupt.
Failed 6.4.5-1

AllEC, UBC
P.ecords may net contain files.
Failed 6.5.1-1

S'IER, 'l!!C
An actual paraaeter of sc_e type for a var parameter which is a
sub range of that type is net allewed. This is what the draft
standar~ requires; the test is in error.
Failed 6.6.3.1-1

AAEC, STER, nBC
Test has error. A parameter is included .ith a procedure param~ter.
Failed 6.6.3.1-5

AAFC, STBB
The syntax for the par-list cf procedure ~arameters is diferent.
UBC
Full specification (par-list) of procedure parameters is not allowed.
Failed 6.6.3.1-~, 6.6.3.4-~

AAEC, lIBC
Canntt have precedure para~eters with procedure parameters.
Failed 6.6.3.4-2

STEE, UEC
If the MTS-file which is used for a local file is not ecpty and
th~ first thing done is ~eset, the file is not empty and eof is
not true.
Failed 6.6.5.2-3

STER
~of used with file being written causes an erro~.
Failed 6.6.5.2-~

STEll
Test 6.6.6.2-3 requires tec much precisicn of ~ea1 functions.
TlEC
The experessicn Arctan(O)=O yeilds false even though Arctan (0)
veilis O.
~ailed 6.6.6.2-3

STER
Ord returns different values when applied to va~iables of a
subtype and it's base type which have the same value. Specifically
Ord(~in(subtYFe»=O.
Failed 6.6.6.4-1

STEll
~he expersion "} * [.•)" causes a rnn error.
~ailed ~.7.2.4-3

UBC
The expersion "(.C,'.) C= A" causes a run error.
Failed 6.7.2.~-2

AAFC
In ~ fcr loo~ the aS5ignme~t is dcne before the second ex~eression
is evalu3ted.
"'ailed 6.8.3.9-1

AAEC,S'IBR,UBC
Extreme val use in fer loops cause problems. UBC infinite loops,
AAEC and STBB C3use run errors.
Failed 6.8.3.';-'7

AAEC
Real numbers are converted diferently at ecmpile time than at run
tilre.
Failed 6.9.2-3.

AAEC,STBR,Ul!C
The fermating cf reals when the field width given is too small
is wrong. 'lest is likely wrong, as the draft standard is not
clear. This section is changEd in later drafts.
Failed 6.9.4-4

UBC
st~ings are left justified, not right justified as the should be.
Failed 6.9.4-6

AAEC,!lEC
, ~Fry~' instead of 'TRUE ' is used when writing booleans. This
~ay be changed in later vE~siens of the standa~d.
Failed 6.9.Q-'7

STER
Due to a bug. local files .hich are not global may not be used.
Release 3 will fix this and many other problems with files.
Failed 6.9.4-1~

~ucter of deviaticns detected
furter of urdetected exten~icns
Kurter of deviaticn~ not detected

Ar.EC
6.1.2-1, 6.1.7-7,
6.2.2-9, 6.3-5,
6. 4. 5- 1 3, E. II. 5- 4,
6.6.3.6-3, 6.6.3.6-4,
6.8.3.9-2, 6.E.3.9-3,
6.8.3.9-16,6.8.3.9-19

STEB
6.1.7-5,
6.3-2,
6. lI. 5- 13,
6.6.5.3-11,
6.E.3.9-2,
6.8.3.9-19

UBC

6.1.7-6,
6.3-3,
6.~.=-3,
6.7.2.2-9,
6.8.3.9-3,

6.1.7-8,
6.4.1"';2,
6.11.5-5,
6.6.3.E-5,
6.8.3.9-4,

5.10-1,
6.3-11,
6.4.~-4,
6.9.2.4-2,
6.8.3.9-11,

6.1.7-5, E.l.7-6, 6.10-1,
6.3-2, 6.3-3, 6.3-4,
6. 4. 3. 1- 2, E. 4. :::. 2- 5, 6. 4 .5- 3,
6.4.5-13, 6.E.2-5, 6.6.3.5-2,
6.6.3.6-5, 6.7.2.2-9, 6.8.2.4-2,
6.8.3.9-3, 6.8.3.9-4, 6.8.3.9-9,
6.E.3.9-16,6.E.3.9-19,

AAEC
6.9.11-9

STEB
6.1.5-E, 6.8.3.5-12,6.9.11-9,

TIDe
6.1.5-E,

D.:!'C

6.9.4-9,

Nil is not re~erv€d.
],c.iled 6.1.2-1

S'IF E, flEe

6.9.4- 12

AAEC STER 'lEC

6. 1.7- 11 ,
6.4.1-3,
6.6.2- 5,
6.8.2.4-2,
6.E.3.9-5,

6.10-3,
6.3-5,
6.4.5-5,
6.8.2.4-3,
6.8.3.9-9,

61 59
1 4

32 31

53
3

38

6.2.1-5, 6.2.2-4,
6.4.5-2, 6.4.5-3,
6.6.3.5-2, 6.6.3,6-2,
6.8.2.4-3, 6.8.2.4-4,
6.8.3.9-13,6.8.3.9-14,

6.2.1-5, 6.2.2-fl,
6.4.3.2-5,6.4.11-2,
6.6.1-6, 6.6.2-5,
6.8.2.4-4, 6.8.3.5-10,
6.8.3.9-14,6.8.3.9-16,

6.10-3, 6.2.1-5, 6.2.2-4,
6.3-5, 6.4.1-3, 6.4.3.1-1,
6.4.5-5, 6.4.5-10, 6.4.5-11,
6.6.3.6-2, 6.6.3.6-3, 6.6.3.6-4,
6.8.2.4-3, 6.B.2.4-4, 6.8.3.9-2,
6 • e. 3. 9- 11 r 6 • 8.3. 9- 1 3,6. 8. 3. 9-14,

6.9.4-12

?~cken 3~d unracked arr~ys are ccnsidered eguivalent.
Failed 6.1.7-5

S~ER,OBC

StIings are ccrrratiable with arrays of length n, not just those
with index 1 •• n.
Failed 5.1.7-6, 6.11.3.2-=

AAEC
Strings are cC~Fatiatle with arrays of subrange of char.
Failed 6.1.7-7 ~na 6.1.7-8

AAEC
Null string~ are accepted.
Failed 6.1.7-11

AAEC,S'IEB,1EC
Declared but unused labels aIe allowed.
"'ailed 6.2.1-=

AlIEC,STER,UEC
witb in a ~cope a global name may be used then redefined.
Failed 6.2.2-fI

AAEC
Fur.etion identifers may be assigned to outside the bounds (text)
of the function.
Failed 6.2.2-9

S'IEF,OEC
"+" (but not "-~) may be used on things cf type CHAR, string, and
scalars, not just integers and reals.
Failed 6.3-2, 6.3-3, 6.3-4, 6.3-5. and 6.7.2.2-9

AlIEC
A name may be used in it's cwn defi~itior e.g. "canst ten=ten;"
Failed 6.3-6, and 6.4.1-2

AAFC,UBC
A global name may be used within a record which redefines that
name.
Failed 6.4.1-3

UBC
Allcws packed anything not just (direct) structures.
Failed 6.4.3.1-1, and 6.4.3.1-2

STEF.
Pointers to undeclared types may be used, but not dereferenced.
Failed 6.4.4-2

UBC
CC~Farisons are allowed between diferent types.
Failed 6.4.5-1C and 6.4.5-11

AAFC,S'IER,UEC
~he PII definition at type equivalence rather than the stricter
current definition.
Failed 5.4.5-3, E.4.5-4 (l\AJ'C,S'IEll). 6.4.5-5, 6.11.5-13

AAFC
A cc~patible tYFe is allOWEd a~ a v~r parameter.
'"ailed 6.4.5-2

c
r<

u:
v

STB$
Missing FOP~AFt Frocedures go undetected.
Failed 5.6.1-6

AAEC,S1fR,~EC
~issinq assiqn7e=t to a furction identifer goes undetected.
~ailed 6.6.2-5

AAEC

Actual function faramaters returning types compatible with the
£or~al functic~ farameter are allowed.
Failed 6.6.3.5-2

AA~C,QBC

Actual and fc:~al precedure Fa~ameters may have Farameters which
are ccm~ati~le, ~ot just the same.
~ailed 6.6.3.E-2. and 6.E.;.E-3

STE9
Trune and Round with integer arguments get by.
Failed 6.6.6.3-4

AAEC,STER,uec
Gotc's are allowed between then and else Farts of if statements and
between cases in a case state&ent. A late~ draft alowed this, but
it looks like it's out of the current one. which is too bad at
lea~t in th~ ca~e of the case statements.
Failed 6.A.2.4-2, and 6.a.L.4-3

AA!C,S!ER,nEC
Gate's are ~llewed into structured statements. See the test for
sorre interesting implieaticns cf this and the definition in the
draft.
Failed 6.A.2.4-Q

STEF
Peal case selectcrs get by (when the case constants are reals).
~ailed 6.8.3.5-10

OBC
Components of records are allowed as fer loop variables.
Failed 6.8.3.9-11

hAFe,STER,nec
non-loc~l varia~les are allowed as for loop varia tIes.

Assignments tc fer loop variables inside the loep are allowed.

Nested fer leops vith the same variable a~e allowed. In STBR
trois doo.sn't cau~e infinite leeFs, since at the top of the loop
tte variable gets the value it vould have if not changed.
Failed 6.8.3.9-2, 6.8.3.S-3, 6.8.3.9-Q, 6.8.3.9-9, 6.8.3.9-14,
6.E.3.9-16, and E.8.3.9-19

srEF,~ec
0ut~ut mav te used even if it deesn't appear in the program header.
~ai]ed 6.10-1

S!=F,OBC
Qrite may be used without specifing a file even when output

has been decla~Ed.
!ailed 6.10-3

STff.,UBC
'e' for 'E' is alloved in real constants. Later drafts allow this.
Failed 6.1.5-E

s~eB

Suh~anges in case lists are nct flaged as extensions. (Version
2s of the cOI~iler doesn't allow them theugh) ..
Failed 6.8.3.~-12

AAEC,STBR,uec
Zero and negitive field widths are allowed. Later drafts may
allow this.
Failed 6.9.4-9,

STBR,nBC
~rite works with unpacked arrays of char, not just packed ones.
~ailed 6.9.4-1L

~BC

Fully specified Farameter lists are not allowed.
Failed 6.6.3.5-2, 6.6.3.6-2, 6.6.3.6-3, 6.6.3.6-4, and 6.6.3.6-5

AAEC
Procedure parameters may have only value parameters.
Failed 6.6.3.6-3, and 6.6.3.E-Q

AAEC,nBC
LOCF is a reserved word.
~ailed E.8.3.9-S, 6.8.3.9-13, and 6.8.3.9-14

RUIter of eIrc=s detected
Nuoher of errers Dot detected

AAl'C
6.2.1-7, 6.4.2.3-5 ,6.4.3.3-6,
6.4.6-7, E.4.E-8, 6.6.2-E,
6.E.5.3-4, 6.£.:.3-5, 6.6.5.3-6,
6.7.2. 2- 6, 6.7.:;.4-1, 6.8.3.5-5,

STEll
6.2.1-7, 6.4.3.3-5, 6.!j.3. J-6,
6.4.6-8, 6.6.2-6, 6.6.5.2-2,
6.6.5.3-4, 6.6.5.3-5, 6.6.:.3-E,
6.7.2.4-1, 6.8.3.9-5, 6.8.3.9-10,

IJBC
6.2.1-7, 6.4.3.3-5, 6.4.3.3-6,
6.6.2-6. 6.6.5.2-6, 6.6.:.2-7.
6.6.5.3-6, 6.6.5.3-7, 6.€.5.3-e,
6.7.2.2-6, €.7.2.2-7, 6.7.2.4-1,

AA F.C STIlE

23 24
23 22

6.4.3.3-7,
6.6.5.2-6,
6.6.5.3-7,
6.8.3.9-E,

6.4.3.3-7,
6.E.5.2-6,
6;6.5.3-7,
6.e.3.9-17

6.4.3.3-7,
6.6.5.3-3,
6.6.5.3-9,
6. e.3. 9-5,

variables is not detected.

GBC

22
24

6.4.3.3-8,
6.6.5.2-7,
6.6.5.3-8,
6.8.3.9-17

6.4.3.3-8,
6.6.5.2-7,
6.6.5.3-8,

6.!j.3.3-8,
6.6.5.3-!j,
6.6.6.3-2,
6.8.3.9-6,

6.11. 3. 3-12,
6.6.5.3-3,
6.6.5.3-Q,

E.4.6-7,
6 •. E.5.3-3,
6.6.5.3-9,

6. 4. 3. 3- 12,
6.6.5.3-5,
6.6.6.3-3,
6.8.].<;-17

AAJ:C,SIBR,OEC
Use of undefined
"'ailed 6.2.1-7,

6.8 • .3.9-5
6.4.3.3-E, 6.4.3.3-7. E.4.3.3-8, 6.6.2-6,
6.E.3.S-€

I
AlIfC
Use of an null record causes an operation exception.
STER
ryse of a null record is ccnsidered an inccmpatible assignment.
nBC
Use of a null record which is therefor an undefined variab~n is
no t detected.
Pails 6.4.3.3-12

lIA"C,S'IER,nBC
varient errors are undetected
Failed 6.4.3.3-5

AAEC,S'IEll,UBC
set assignments cut of range are not detected. Comments in
6.7.2.!j-1 say something abcut "operations on overlaping sets"
but r canott fiLd section e.7.2.4!
~ailed c.4.6-7{AA"C,STER), E.4.6-8(AAEC,STllR), 6.7.2.4-1

5TH
Get with eof true is not detected.
pailed 6.6.5.2-2

hAEC,S'IBR,OBC
Put while p~ iE a parameter tc a prccedure is net detected. 'Ihe
test has a value parameter and this ~ay not be an Error unless it
is a var par.
~ailed 6.6.5.2-E

AAl'C,S'IBR,nBC
~~ heing chana.e while it is in use by a ~ith statement is not
detected.
~ailed 6.6.5.2-7

AAEC,S'IER,UEC
Dis rose does netting so it dces not detect things which may not
be disposed, nil, undefined, or active variables.
Pailed 6.6.5.3-3, 6.6.5.3-4, 6.6.5.3-5, and 6.6.5.3-6

AAi'C,S'E!R,UBC
Pecords created ~ith the varient form of new have the same size
as ethers. Violations of the restrictions on use of these are
not detected.
Failed 6.6.5.3-7, 6.6.5.3-~, and 6.6.5.3-9

nBC
Trunc and rcund do not detect values greater than ~axint.
Failed 6.6.6.3-2, and 6.6.6.3-3

AAFC,UBC
Results of (scm e) operatiocs which are outside -maxint •• maxint
are not detected.
Failed 6.7.2.2-6, 6.7.2.2-7(UEC)

AA fC, SIEll, 'lEC
As with 6.8.3.5-19, no errcrs for nested fcr loeps with the same
variable. AAfC,U2C go inte infinite lOafS
~ailed 6.8.3.9-17

<.I
u

AAEC S'IER DEC

Humter of tests =~n =
Nu~ter incorrE~~ly handlEd

AAH
5.2.2-1, 5.1.3-3,
6. E. 3.9-18

6.1.8-4,

18
5

23
4

18
3

6.4.3.4-5, 6.6.1-7,

STEP
6.1.8-4, 6.4.3.2-4, 6.8.3.5-2, 6.8.3.5-6,

DIlC
6.1.8-4,

1'.A];C, UEC

E.4.3.2-4, 6.8.3.5-2

6.6.6.2-6, E.6.6.2-7, 6.6.E.2-8, 6.6.6.2-9, 6.6.6.2-10

AA:EC

6.8.3.5-2,

No warning is given for long identifers, and only the first eight
characters are used.
Failed 5.2.2-1, E.1.3-3

AAEC,S'IER,UEC
No warning is given for ~ (shert) comment with a missing "} ".
l"ailea 6.1.8-4

STER,UBC
Array(.inteqer.) confusses the co~piler and causes an obscure
things at run-tine.
Failed 6.4.3.2-4

1.1.1'C
(.1 mod bitsperwcr1 .l is net dcne correctly. Worked wben
changed to (.t.l ",here t \las O •• titsminu::1.
""ailed 6.4.3.4-5

AAEC
Procedure nesting is limited to 6 levels (main,P1 •• P5).
Failed 6.6.1-7

AA:C,S'IER,!J~C

Ho warning is given for an i~fessitle case, one whcse label is
outsine the sutrange of tpe ~el€ctor. This maybe an error in
later drafts.
'Failed 6.9.3.10_2

~urrter of tests run =
Nu~ter incorrEctly handled

AAEC

l,HC S'IER UEC

15 15
o

15

ThEre was an integer overflow evaluation trunc((a+b)-a) which
should have l:eturne·d 16.
Failed 6.6.E.2-11

IJBC
Set of char sheuld \lark,.· -t..ut doesn' t always
Failed 6.4.3_4-2

Test E.4.2.2-7
AAEC,S'IBR,:JBC
r,axint = 2,147,483,647

Test 6.4.3.4-2-
AAi:C,UBC
set of char is allo~ed.
!lBC
Set of char is allowed and sheuld work, tut the test fails.

Test E.4.3.Q-4
A1,IC
Sets of 0 •• 100e are allowed. Range is 0 •• 2047.
STElJ
sets of 0 •• 100e are allowed. Any subrange with 2048 or fewer
merrters can be the base type for a ~et. Set constructor works
only cn scalars and sutranges, not integers.
UBC
sets of 0 •• lODe not allowed. Base types may have upto 256
me~cers. Set ccnstructor only works with numbers in 0 •• 255*

Test E.6.6.2-11
AAl'C
7here is an integer overflow in trunc(expr:16.0), only with this
progra It (??).
STE3
Beta=i5, T=6, Fnd=O, Ngrd=l, Machep=-5, hegexp=-6, Iexp=7,
~inexp=-65, ma~exp=63, eps=9.536 7 4316e-07, epsneg=5.96046448e-03,
=min=5.397EC~35e-7q,xmax=7.2]7C0515e+75

'TIlC
Beta:16, T=16,Fnd=0, Ngrd=l, Machep=-13,Negexp=-14,Iexp=7,
~inExp=-65, maxexp=63, eF~=2,22044605e-16, epsneg=1.3877787ge-17,
xai~=5.3q76a53~e-'5,xrrax=7.237GC55Ee+75

~ests 6.7.2.3-2, F.7.2.3-3
?AfC,UEC
Eoclean experessians are fully evaluated. UBC has option to use

cD
CTl

partial evaluation.
STEP
~acCarthy evaluation of bcolean eXferessions is used.

Tests 6.8.2.2-1, 6.8.2.2-2
AlIEC, UEC
Tests show selection before evaluation.
STFF
First test shoos selecticn before evaluatio, second evaluation
befere selection.

Tests 6.9.4.5, 6.9.4-11
!\!\FC
Default field .idths for integers 12, reals 24, boeleans 5.
Exponents have 2 digits.
STEF
Default field .idths fer integers 12, reals 14, boeleans 6.
~xpcnents have 2 digits.
une
Default field widths for integers 10, reals 22, booleans 10.
EXFonents have 2 digits.

Test E.6.6.1-1
AAEC,UEC
No standard prccedures rray used as procedure parameters.
STER
Only Sin, Cos, F~p, Ln, sgrt, and Arctan may be used as procedure
parameters.

Test 6.10-2
AlIEe,STIlR
Rewrite [outFut) is not allowed.
UBC
Rewrite(output) is allo,"ed.

Test E.l1-1, 6.11-2, 6.11-3
l.AFC,S'IEP.,1JBC
~hese subistute symbols are allowed and nc others

"(*" n*)" for "} II "(n
"t. f ' f'.)" fer "[1' "]"

"~" for "f"

S'IER
There is a limit on the size of anyone Frocedure which is about
200 statements. ~his could be easily increased, but this is the
cnly Frogra~ k~=~r. to exceed it.
r.ailed 6.8.3.~-E

H."C, UEC
~hese tests used upper case identifers declared in lower case and
had 'e' in real constants.
6.E.6.2-6, c_6.6.2-7, 6.6.6.2-8, 6.6.6.2-~, 6.6.6.2-10

~est 6.1.3-3
AAEC
Only the first 8 characters of an identifer are used.
STER,UBC
Tests reForts ~ere than 20 characters of identifers used. STER
uses all ch~racters, DEC uses 32.

'rest 6.4.3.3-9
!\l\F.C,STER,OEC
The tag-field in records is not checked. Test reports 'exact
correlation'

'rest E.~.3.4-5
Measures the ti~e for Warshall's algorith~ en a 80x80 matrix.
original uses array(.O •• 7<:.) cf array(.0 •• 4.) of set of 0 •• 15.
Modified uses array (. c •• 7<;.J cf set of 0 •• 79.

Original llcdified
time (sec) size (words/ti tS) time (sec) size (words/bits)

AA:EC
STER

0.087 ~02/16064 0.021 388/12416
0.060 400/12880 0.020 310/ 9920

'lEC 0.089 E70/21440 0.03~ 562/17984

Test 6.7.2.2-4
AAFC,S'IER,l1EC
Div and mod with negative cFerands are as in the latest draft.
A div B = Trunc(A/B), and med returns the remainder of div, that
is it has the sarrE sign as the quotient.

Test 6.8.3.9-11:
AllEe
After a for loop the loop variable may have a value which is out
of range.
STER.OEC
lifter a for loep the loop variable has value of the finial
exrression~

Test *** (illl)
The total ccst cf running all 318 rrogra~s was:
HEC !16.98
STEP ;10.20
UEe $32.7'5

dene co~pile ane txecute, SEveral cOll1Filations per run
dcnE with lCIINGC

Burroughs 86700

PASCAL VALIDATION SUITE REPORT

Pascal Processor Identification

Computer:

Processor:

Test Conditions

Tester:

Date:

Burroughs B6700

B6700 Pascal version 3.0.001
(University of Tasmania compiler)

R.A. Freak (implementation/maintenance team member)

March 1980

Validation Suite Version: 2.2

COnformanc" Tests

Number of tests passed: 137

Number of tests failed: 1

Deviance Test

Details of failed tests:

Test 6,4.3.5-1 fails because a file Of pointers
or a file of sets is not p"rmitted.

Number of deviations correctly detected: 83

Number of tests

Ntunber of tests

Number of tests

showing true extensions: 2 (2 actual extensions)

not detecting erroneous deviations: 9 (5 basic causes)

cfailed: 0

Details of extensions:

Test 6.1.5-6 shows that the lower case e may be used
in real numbers (for example 1.602e-20). This feature
has been included in the new draft standard.

Test 6.10-1 shows that the file parameters in the
program heading are ignored in B6700 Pascal.

Error Handling

Details of deviations not detected:

Test 6.1.2-1 shows that nil may be redefined.

Tests 6.2.2-4, 6.3-6 and 6.4.1-3 show that a common
scope error was not detected by the compiler.

Tests 6.8.2.4-2, 6.8.2.4-3 and 6.4.2.4-4 show that
a goto between branches of a statement is permitted.

Test 6.9.4-9 shows that integers may be written with
a negative format.

Test 6.10-3 shows that the file output may be
redefined at the program level.

Number of errors correctly detected: 33

Number of errors not detected: 13 (4 basic causes)

Details of errors not detected: The errors not detected
fall into a nurrilier of categories -

Tests 6.4.3.3-5, 6.4.3.3-6, 6.4.3.3-7 and 6.4.3.3-8
indicate that no checking is performed on the tag
field of variant records.

Tests 6.6.5.2-1 and 6.6.5.2-7 indicate that a file
buffer variable can be altered illegally and a put
may be performed on an input file.

Tests 6.6.5.3-3, 6.6.5.3-4, 6.6.5.3-5 and 6.6.5.3-6
fail because dispose always returns a nil pointer in
B6700 Pascal and no check is performed on the pointer
parameter.

Tests 6.6.5.3-7, 6.6.5.3-8 and 6.6.5.3-9 fail because
no checks are inserted to check pointers after they
have been assigned a value using the variant form of new.

Implementationdefined

Number of tests run: 15

Number of tests incorrectly handled: o

LP ro

Details of implementation-dependence:

Test 6.4.2.2-7 shows maxint to be 549755813887.

Tests 6.4.3.4-2 and 6.4.3.4-4 show that large sets
are allowed. The maximum set size is 65536 elements.
A set of char is permitted.

Test 6.6.6.1-1 shows that some standard functions
can be passed as parameters. Those which use in-line
code cannot be passed as parameters.

Test 6.6.6.2-11 details some machir,e characteristics
regarding number formats.

Tests 6.7.2.3-2 and 6.7.2.3-3 show that boolean expres
sions are fully evaluated.

Tests 6.8.2.2-1 and 6.8.2.2-2 show that a variable is
selected before the expression is evaluated in an
assignment statement.

Tests 6.9.4-5 and 6.9.4-11 show that the default size
for an exponent field on output is 2; for a real number
it is 15; for a boolean 5 and the size varies for integers
according to the value being written.

Test 6.10-2 indicates that a rewrite on1he standard file
output is permissible.

Tests 6.11-1, 6.11-2 and 6.11-3 show that the alternative
comment delimiters have been implemented, as have the
alternative pointer symbols. No other equivalent symbols
have been implemented.

Quality Measurement

Number of tests run: 23

Number of tests in(!orrectly handled: o

Results of tests:

Test 5.2.2-1 shows that identifiers are distinguished
over their whole length.

Test 6.1.3-3 shows that more than 20 significant
characters may appear in an identifier, in fact, the
number of characters in a line is allowed.

A warning is produced if a semicolon is detected in
a comment (test 6.1.8-4).

Extensions

Tests 6.2.1-8, 6.2.1-9 and 6.5.1-2 indicate that large
lists of declarations may be made in each block.

An array with an integer indextype is not permitted
(test 6.4.3.2-4).

Test 6.4.3.3-9 shows that variant fields of a record
occupy the same space, using the declared order.

Test 6.4.3.4-5 (Warshall's algorithm) took 0.698304
sees CPU on the Burroughs B6700 and 158 bytes.

Tests 6.6.1-7, 6.8.3.9-20 and 6.8.3.10-7 show that
procedures, for statements and with statements may
each be nested to a depth greater than 15.

Tests 6.6.6.2-6, 6.6.6.2-7, 6.6.6.2-8, 6.6.6.2-9 and
6.6.6.2-10, tested the sqrt, atan, exp, sin/cos and
l~ functions ,;-nd.a:l tests were successfully completed,
w~thout any s~gn~f~cant errors in the values.

Test.6.7.2.2-4 shows that div has been implemented
cons~stently for negative operands, returning trunc.
mod returns for the remainder of div. ---

Test 6.8.3.5-2 shows that case constants must be of
the same type as the case-index, if the case-index is
a subrange, and a warning is given for case constants
which cannot be reached.

Test 6.8.3.5-8 shows that a large case statement
(256 selections) is permissible.

Test 6.8.3.9-18 indicates that range checking is
always used in a case statement after a for statement
to check the for variable. --

Test 6.9.4-10 shows that file buffers are flushed at
the end ofa block and test 6.9.3-14 indicates that
recursive I/O using the same file is allowed.

Number of tests run: 1

Test 6.8.3.5-14 shows that the otherwise clause in a
~ statement has been implemented according to the
accepted convention.

PASCAL VALIDATION SUITE REPORT

PASCAL Processor Identification

Computer:

Processor:

Test Conditions

Data General Eclipse S/130

Medical Data Consultants BLAISE
(PASCAL P4 v4 DEC 1979)

Tester: Ted C. Park

Date: April, 1980

Validation Suite Version: 2.2

General comments

1. The overall quality and completeness of the validation programs
is excellent.

2. The orthagonali ty of the programs is poor. Oftentimes many things
are checked in one test. For instance, my compiler supports
TRONC but not ROUND. Since these are checked in the same test,
this causes problems.

3. The skeleton program seems like a good idea but in actual practice
it did me very little good. I wonder if it's really helpful
to anyone else.

4. The skeleton program requires a "dummy" terminating program at the
end of the validation suite. There is none.

5. The first line of program 6.8.3.4-1 is miSSing a comma.

6. Program 6.6.1-6 is missing a semicolon on the next to the last statement.

The PASCALcP4 Subset

MOC "BLAISE" is based on PASCAL-P4 which is a known subset of
PASCAL as described in Jensen and hTirth. It was not clear at the
outset how a subset compiler would react to the validation programs.
All the programs were submitted to the compiler and although many were

invalid due to the known design restrictions, I am pleased to report
that the compiler either accepted each program or printed appropriate
diagnostic messages in every case. No program caused any system
failure or crash either at compile or run time.

The known design constraints of PASCAL-P4 (See PASCAL NEI'lS #11,
Page 70) are listed below.

NIL is a predeclared constant
FORWARD is a reserved word
Only the alternate form of comment delimiters are alla.led
No ~IAXINT
No TEXT
No ROUND
No PP£;E
No DISPOSE
No REI-lRITE
No RESET
No PACK
No UNPACK
The program heading is not required
Every variant record must have a tag field
No user declared files or associated features (BLAISE does not
support GET or PUT)
No output of BOOLEANs
No output of HEALs in fixed notation
No formal parameter functions or procedures
No subrange set constructors
64 character ASCII character set which implies upper case letters
only.
No literal text strings longer than 16 characters.
8 character limit on identifier lengths.

Since the upper case only and 16 character literal string length
restrictions applied universally to almost all programs, they were all
adjusted accordingly. Other than that, no changes were made to any of
the programs. The results are reported below.

Conformance Tests

Number of tests attempted: 139

Number of tests invalid due to known design restrictions: 31

Number of tests passed: 102

Number of tests failed: 6

u
J>
GO
1'.

I--'
0
0

Test 6.1.5-2 failed because long REALs are not accepted by the
compiler, however, a warning message ~las issued.

Test 6.2.2-3 failed due to a scoping error.

Test 6.4.3.5-4 failed because no end of line was inserted at
final buffer flush.

Test 6.8.2.4-1 failed because non-local GCmOs are not allowed.

Test 6.8.3.5-4 failed because of the large table generated for a
sparse CASE statement.

Test 6.8.3.9-1 failed because the index of a FOR statement was
set up before the final expression of the FOR statement was
eValuated.

Deviance Tests

Nunlber of tests attempted: 94

Number of tests invalid due to kn~~ design restrictions: 21

Number of tests passed: 50

Number of tests failed: 23

Test 6.1.7-8 failed because any character may be assigned to an
element whose type is subrange of CHAR.

Test 6.2.2-4 fails to detect the scope ~erlap.

Test 6.3-5 fails because it allows a signed character constant.

Test 6.3-6 fails because it allows a constant to be used in its = declaration.

Test 6.4.1-3 fails because it allows a type to be used in its =
declaration.

Test 6.4.5-2 fails because subranges of the same host are treated
as identical.

Test 6.4.5-3 fails because similar arrays are treated as identical.

*

Test 6.4.5-4 fails because similar records are treated as identical.

Test 6.4.5-5 fails because similar pointers are treated as identical.

Test 6.6.2-5 fails because assignment to the function identifier is
not required.

6.6.6.4-6 fails because SUCC and PRED are allowed for REALs.

Test 6.7.2.2-9 fails because the unary plus is a110vled for a
variable of type CHAR.

Test 6.8.2.4-2 fails because jumps between branches of an IF
statement are allowed.

Test 6.8.2.4-3 fails because jumps between branches of a CASE
statement are allowed.

Test 6.8.3.9-2 fails because assignment to the FOR index is
allowed.

Test 6.8.3.9-3 fails because assignment to the FOR index is allowed.

Test 6.8.3.9-4 fails because assignment to the FOR index is allowed.

Test 6.8.3.9-9 fails because a non-local variable is allowed as a
FOR index.

Test 6.8.3.9-14 fails because a global variable is allowed as a
FOR index.

Test 6.8.3.9-16 fails because the FOR index can be read.

TEST 6.8.3.9-19 fails because nested FORs with the same index
are not detected.

Test 6.9.4-9 fails because zero and negative field widths allowed
are for integer output.

Test 6.9.4-12 fails because output of non-packed arrays is allowed.

Error Handling Tests

Total tests attempted: 46

Number of tests invalid due to kn= design restrictions: 13

Number of tests passed: 8

Number of tests passed only if "DEBU;" option selected: 11

Number of tests failed: 14

Details of Failed Tests
,

Test 6.2.1-7 local values are not undefined prior to definition.

Test 6.4.3.3-5 other variants do not cease to exist when tag field
changed.

Test 6.4.3.3-6 variants are not undefined prior to definition.

Test 6.4.3.3-12 empty field is not flagged as undefined prior to
defini tion.

* Test 6.4.6-4 out of range not detected on integer assignment.

* Test 6.4.6-5 out of range not detected on integer parameter passing.

* Test 6.4.6-6 out of range not detected on integer array index.

* Test 6.4.6-7 out of range not detected on set assignment.

* Test 6.4.6-8 out of range not detected on set parameter passing.

* Test 6.5.3.2-1 out of range not detected on two dimensional integer
array index.

* Test 6.5.4-1 pointer equals NIL not detected at use.

Test 6.5.4-2 pointer undefined not detected at use.

Test 6.6.2-6 function having no value assigned to it as undetected.

Test 6.6.5.3-7 assignment compatibility of records not checked.

Test 6.6.5.3-8 assignment compatibility of records not checked.

Test 6.6.5.3-9 assignment compatibility of records not checked.

* Test 6.6.6.4-4 SUCC function applied to last value not detected.

* Test 6.6.6.4-5 PRED function applied to first value not detected.

* Test 6.6.6.4-7 character out of range not detected.

Test 6.7.2.2-3 divide by zero not detected.

Test 6.7.2.2-8 mod by zero not detected.

* Test 6.7.2.4-1 out of range SET values not detected.

Test 6.8.3.9-5 undefined FOR indexed after loop not detected.

Test 6.8.3.9-6 undefined FOR index after zero pass loop not detected.

Test 6.8.3.9-17 nested FOR using same index not detected.

ImPlementation-Defined Tests

Test 6.4.2.2-7 no ~~INT

Test 6.4.3.4-2 SET of CHAR al1a.led

Test 6.4.3.4-4 SET base-type size 0 ••• 63

Test 6.6.6.1-1 functions not alla.led as parameters

Test 6.6.6.2-11 all floating-point tests OK

Test 6.7.2.3-2 (A AND B) fully evaluated

Test 6.7.2.3-3 (A OR B) fully evaluated

Test 6.8.2.2-1 left side of array assignment evaluated before
right side

Test 6.8.2.2-2 left side of pointer aSSignment evaluated before
right side

Test 6.9.4-5 UiO digits written for exponent

Test 6.9.4-11 IFl'f:lO RFl'f:20 BFW not allwed

Test 6.10-2 rewrite not a110vled

Test 6.11-1 {} not allowed for comments

Test 6.11-2 equivalent symbols for ~ : = [1 not allOVled

Test 6.11-3 equivalent symbols for < > <= >= <> not a110vled

Quality Tests

Test 6.2.2-1 identifiers not distinguished past 8 characters

Test 6.1.3-3 identifier significance is 8 characters

Test 6.1.8-4 no help in locating unclosed comment

Test 6.2.1-8 >= 50 types allowed

Test 6.2.1-9 >= 50 labels allowed

Test 6.4.3.2-4 integer not allowed as index type

Test 6.4.3.3-9 reverse allocation of listed vars

Test 6.4.3.4-5 1.4 seconds - 916 bytes vs •• 8 seconds - 143 bytes

Test 6.5.1-2 long declaration lists allowed

Test 6.6.1-7 procedures may be nested only 10 deep

Test 6.6.6.2-6 SQRT is OK

Test 6.6.6.2-7 ARcrAN is OK

Test 6.6.6.2-8 EXP is OK

Test 6.6.6.2-9 SIN and COS are OK

Test 6.6.6.2-10 LN is OK

Test 6.7.2.2-4 DIV is OK -- I~ returns remainder

-Test 6.8.3.5-2 impossible branch of CASE not detected

Test 6.8.3.5-8 >= 256 CASES allowed

Test 6.8.3.9-18 FOR index is just bumped along \~ithout checking

Test 6.8.3.9-20 >= 15 nested FORs allowed

Test 6.8.3.10-7 >= 15 nested WITHs allOVled

Test 6.8.4-10 output is not flushed at end of job

Test 6.9.4-14 recursive I/O allowed

Extension Tests

Test 6.8.3.5-14 'OTHERWISE' extension not implemented

DECVAX.J1/78Q

VAX 11 Pascal Validation Report

Pascal Processor Identification

Computer: VAX 11/780
Processor: VAX 11 Pascal V1.0-1

Test Conditions

Time: 1980 01 21
Test runs carried out by S. Matwin and B. Silverman
Test annotation and analysis by S. Matwin
Validation Suite version: 2.2

Conformance Tests

Number of tests passed: 127
Number of tests failed: 12, 8 basic causes

Detaj Is of failed tests:

Test 6.4.3.3-1 shows that empty record is not implemented.
Test 6.4.3.3-4 shows that the processor does not allow ta9 field

redefinition
Tests 6.4.3.5-1 and 6.5.1-1 show that the function EX? does not pass

accuracy test
Test 6.8.3.5-4 shows that ~ label ranse is limited to 1000
Test 6.8.3.9--7 shows that MAXINT is too bi9 as an extreme value in a

f2c statement, leads to overflow
Test 6.8.4-3, 6.9.4-4, 6.9.4-7, and 6.9.5-1 fail with a component of

a packed structure as an actual variable parameter. This wi 11
happen in any compiler, written in Pascal, as the parameters
of READ will be variable. On the other hand the Standard prohibits
'the use of components of variables of any packed type as actual
variable parameters'

Test 6.9.4-15 shows that WRITE without the file parameter refers to a
locally defined fi Ie

Drviaoce Tests

Number of deviations correctly detected: 67
Number of tests not detect ins erroneous deviations: 24

(6 basic causes)

Details of deviations not detected:

Test 6.1.2-1 shows that the reserved word nil may be redefined
Test 6.1.5-6 shows that the processor allows small letter 'e' as an

exponent indicator (which is sometimes claimed to be an extension)
Tests 6.2.2-4 and 6.3-6 show that in some circumstances the processor

does not detect the use of an identifier prior to its definition

u
J>
e' ,,',

T~sts 6.4.5-2 thru 6.4.5-5 and 6.4.5-13 show that the processor r~quir~s
the compatibility of the types of formal and actual parameters,
rather than typ~ id~ntity

Test 6.6.2-5 shows that the processor does not ch"ck the occurr"nce of
at I"ast on~ asslgnllll!nt to th" function nallll! in the function block

Tests 6.8.2.4-2 thru 6.8.2.4-4 show that the processor allows JUmps
b"twe"n branch"s of an .if and a ~ stat"ment

T~sts 6.8.3.9-2 thru 6.8.3.9-5, 6.8.3.9-13 thru 6.8.3.9-16 and 6.8.3.9-19
show that th" processor omits some restrictions imposed on a fQc
stat~lIlI!nt. The processor prohibits neither the assignllll!nt to the
control variable nor th" use of that variable aft"r the completion
of the loop. Oth"r deviations of that class are

Error Hand 1 ins

- control variabl" can be a formal parallll!ter or a global
variabl"

- reading into a control variable is allowed
- non-local control variable combined with recursion leads

to an infinitely looping program

NUmber of errors corr"ctly d"tected: 13
NUmber of errors not d"tected: 31

Details of errors not det"cted

T~sts 6.2.1-7 and 6.4.3.3-12 show that the undefined values are not
detected by th" processor

Tests 6.4.3.3-5 thru 6.4.3.3-8 show that the existence of a particular
variant in a r"cord variable is not tested by the processor

T"sts 6.4.6-4 thru 6.4.6-8, 6.5.3.2-1 and 6.7.2.4-1 show that th"
processor tests only the static compatibility, without checking th"
appropriat~n"ss of the actual value during run-time (unlik~, e.g.,
Zurich Pascal-2 compiler)

T"st 6.6.2-6 show that th"re is no dynamic checking of the fact whether
th" name is aSSigned to the function name

Tests 6.6.2.5-6 and 6.6.5.2-7 show that the parallll!t"r called by valu"
can be chang"d insid" th" procedure in case of a buffer variable

Tests 6.6.5-3 and 6.6.5-4 show that the procedure DISPOSE does not check
correctn"ss of i ts parallll!t~r

Tests 6.6.5.3-5 and 6.6.5.3-6 show that both an actual variable parameter
and an "Iement of a record-variable-list of a l!!.i.1!:! statement can
b" ref~rred to by a pointer parameter of DISPOSE

T~sts 6.6.5.3-7 thru 6.6.5.3-9 show that the restrictions on the variabl",
cr~at"d by the s"cond form of NEW, ar" not implellll!nted

T"sts 6.6.6-4 and 6.6.6-5 show that SUCC and PRED can produc" values
from b"yond the enumeration type 1

Test 6.6.6.4-7 shows that the function Ci-f;i does not check th" corr~ctness
of its parallll!ter

T"sts 6.8.3.5-5 and 6.8.3.6-6 show that there is no dynamiC checking of
the value of th" ~ selector

T"st 6.8.3.9-17 shows that two nested fQc statements can use th" same
control variabl"

I!!I)l~mentation defined

NUmb"r of tests run: 16
NUmber of tests incorr"ctly handled:

Details of th" impl~mcntation-depend"ncies:

T"st 6.4.2.2-7 shows MAXINT to b" 2147483647
Tests 6.4.3.4-2 and 6.4.3.4-4 show that £tllli om is allowed, that the

negative "Iements in a set are not allowed, and that elements must
not ~xceed 255

Tests 6.6.6.1-1 fails because formal functions are impl"ment~d following
th~ Revised Report rather than the Standard

Tests 6.7.2.3-2 and 6.7.2.3-3 show that Boolean expressions are fully
evaluat~d

Tests 6.8.2.2-1 and 6.8.2.2-2 show that selection precedes evaluation
in the binding order

Tests 6.9.4-5 and 6.9.4-11 show that the default fields are:
- 10 for integer
- 16 for Boo lean
- 16 for real

Test 6.10-2 shows that REWRITE on the standard file OUTPUT is possible
Tests 6.11-1 thru 6.11-3 show that only alternate comment delimiters

(and no other equival"nt symbols) are p"rmitt"d

Qual itw Measur"mcnt

NUmb"r of tests run: 23
NUmber of tests incorr"ctly handled:

Details of r~sults

T"sts 5.2.2-1 and 6.1.3-3 show that there is no other limit on the I"ngth
of th" id"ntifiers than the length of the line, although only the
first 15 characters are significant

Test 6.18-4 shows that in case of an unc losed comment the text is
swallowed without any diagnostics

T~sts 6.1.2-8 and 6.1.2-9 show that large type- and label-lists are
allowed

Test 6.4.3.2-4 shows that INTEGER is not allowed as an index type
T"st 6.4.3.3-9 shows that fields in a record are stored in th" order of

their app"aranc~ in the field list
T~st 6.4.3.4-5 (Warshall's algorithm) took 129 milliseconds of CPU time
Tests 6.6.6.2-6 thru 6.6.6.2-10 were completed with some errors, requiring

separate analysis
T~st 6.7.2.2-4 shows that fu and mod have been implellll!nted consist~ntly

for negative op"rands: quotient = trunc(a/b), !!lQl! returns r~maind"r
of !Wi

Test 6.8.3.5-2 shows that 'impossible' paths through ~ statements are
not signall~d by the processor

Test 6.8.3.5-8 shows that a large number of case labels is allowed
T~st 6.8.3.9-18 shows that the value of th~ control variabl~ after the

completion of a f2c loop is in the range of its type (and is ~qual

f-'
I.e
c·
c

to the final value)
Tests 6.8.3.9-20 and 6.8.3.10-7 show that fgc and w1!b statements can be

nested to a depth exceeding 15
Test 6.9.4-10 sholllS that flush Ing of the buffer of the output file occurs

at the end of the program
Test 6.9.4-14 shOlllS that recursive I/O using the same file is not

possible

Extensions

Number of tests run:

Test 6.8.3-14 sholllS that otherwise clause is implemented, although
one statement (rather than a sequence of them) is permitted
between otherwise and ~

IBM~70

PASCAL VALIDATION SUITE REPORT

Pascal Processor Identification

Computer: IBM 370/158
Processor: Stony Brook Pascal/360

(Developed at SUNY Stony Brook
Dept. of Computer Science)
Release 3.2 CMS version

Test Conditions

Tester: Charles Hill (MTS Philips Labs)
(Member of original implementation team)

Date: March 1980
Validation Suite Version: 2.2

principal Deviations:

- Files use fixed length records, even for text files.
Compiler does not permit untagged variants
No run-time checking of tags on access to variant records

- FOR loop control variables can be altered
- PACKED and non-PACKED structures are indistinguishable
- Compiler uses structural equivalence rather than name

equivalence of types
- Syntax for specifying the types of the parameters of

procedural/functional parameters differs from
the standard

- DISPOSE is not implemented

Main Extensions

- Case labels may be a subrange
- OTHERWISE clause in CASE statement
- Linkage to FORTRAN or machine language programs
- External compilation with type checking across module

boundaries

Problems with the Validation Suite

Some syntax errors and invalid tests were
test programs; these are documented later
minor violations of the assumptions made
were found:

discovered in the
on. The following

by the skeleton

- Test 6.9.4-12 has a comment that begins "{This
causing the skeleton to mistake this comment for a header.

- The header for 6.8.3.4-1 is missing a comma.
The expected delimiter "999" did not appear in the

program file; the termination logic has to be altered
slightly anyway.

- The "END." for test 6.6.1-7 does not begin in column 1.

Conformance Tests

Number of tests passed: 113
Number of invalid tests: 3
Number of tests failed: 22 (14 causes)
Number of irrelevant tests: 3
Number of tests detecting bugs in compiler: 6

Inval id tests
6.4.3.5-1 PTRTOI, meant as a
6.6.3.1-1 contains an actual

type to the formal parameter.
when the error was corrected.

type, declared as a variable.
VAR parameter non-identical in

The compiler passed this test

6.9.4-7 TRUE is written in a
the program expects it to be
contrast to the standard which
written right justified.
Irrelevant tests

field of 5; when read back,
written left justified, in

says that values should be

6.1.3-2,6.4.2.2-6 Compiler uses upper case only.
6.6.6.5-1 not a test program.

Tests detecting bugs in compiler
6.2.2-3 When typing a pointer to a type NODE, the compiler

uses a definition of NODE from an outer block rather than a
new definition of NODE appearing later on in the same block.
6.4.3.3-3 causes a bad instruction to be generated.
6.4.5-1 produces an irrelevant error message relating to

file assignment.
6.6.5.2-3 blew up

file using Release
6.7.2.4-3 blew up

on a RESET to an un-initialized internal
3.1. The test passes using Release 3.2.
on the expression A * [] = [].

Details of Failed Tests
6.1.6-2~abels compared for equality as strings rather than

integers and thus labels "6" and "0006" are considered
distinct.
6.2.1-6,6.6.3.2-1,6.6.3.3-1 Compiler expects at least one

parameter in the program heading.
6.2.2-8 Compiler does not allow assignment to the value of

a function within an inner block of that function.
6.4.2.2-2 The maximum cardinality of a subrange is

restricted to the value of MAXINT; compiler gives a warning
and runs correctly, but only because the subrange is
subsequently treated as equivalent to type INTEGER.
6.4.3.3-1 Un tagged variants are not permitted.
6.4.3.3-10 Case constants outside the tag field subrange

are not allowed.
6.4.3.5-2,6.9.1-1 Implementation uses fixed length records,

even for text files; an empty line thus results in a record
of blanks, rather than a single line-marker character.

6.6.3.1-5,6.6.3.4-2 A different syntax is used for
declaring the parameter types of formal procedure/function
parameters - only the types of the parameters are expected.
6.6.6.2-3, which tests the real-valued standard arithmetic

functions, failed on the accuracy tests for EXP and SQRT.
6.6.6.4-1 Compiler computes ORD(x) with respect to the

declared subrange to which x belongs, rather than with
respect to the underlying base type.
6.8.3.9-7 When using values near MAXINT in a FOR loop,

compiler gave an INTEGER OVERFLOW run error.
6.9.4-4 The second width specifier for formatting reals is

not implemented.
6.9.4-6 The width specifier for strings must be a constant

in the current implementation.

Deviance

Number of tests passed: 54
Number of tests showing deviance: 34 (17 causes)
Number of tests failed: 5
Number of tests detecting bugs: 3

Details of tests showing deviance
6.1.7~5:6.9.4-12 because PACKED and UNPACKED structures are

treated as equivalent; Le., the compiler makes no
distinction between the two even for storage requirements.
6.1.7-6,6.4.3.2-5 Strings are compatible with all arrays of

CHAR provided the lengths match.
6.2.1-5 If an identifier is declared as a label no error is

produced if it is not subsequently referenced in a GOTO.
6.2.2-4 Use of a type identifier is permitted according to

its definition in an outer block despite its redefinition in
an inner block.
6.3-2,3,4,5, 6.7.2.2-9 shows signed constants of

inappropriate types (e.g. strings) are allowed.
6.4.3.3-11, which tries to assign a value to an empty field

in a record, blows up during semantic analysis (PASS 2 of
the compiler) .
6.4.5-3 (and 6.4.5-13, which is identical), 6.4.5-4,5 fail

because the compiler uses structural equivalence rather than
name equivalence of types.
6.4.4-2 The compiler fails to flag references to a pointer

variable that points to a record type that is never defined.
6.6.1-6 Shows that compiler does not catch the lack of a

subsequent full declaration for a procedure declared to be
FORWARD (the program is allowed to run, even though that
routine is actually called!); this is a bug. This test, as
supplied, contained a missing semicolon.
6.6.2-5 Compiler does not detect the lack of an assignment

of a value to a function within the function block.
6.6.6.3.4 Integer arguments to TRUNC and ROUND are

permitted. (Such arguments are coerced to real as they would
be in any other instance where reals are expected).

6.8.2.4-2,3,4 show the compiler allows jumps into IF and
ELSE parts, and into CASE branches.
6.8.3.5-10 Compiler allows real CASE labels with a

corresponding REAL CASE selector; test executes correctly.
6.8.3.9-2,3,4,14,16, 6.8.3.9-9,19 Show that there are

practically no ~estrictions on FOR loop control variables:
they can be asslgned to or read in within (or outside) the
loop body, and declared in any block. However, altering
~ontro~ variables do not affect the number of loop
7terat70ns~ an ~lte~ed.value is retained only throughout the
l~eratlon ln WhlCh l~ lS changed, since the compiler uses a
hldden temporary varlable as the true control variable.
.6.9.4-9 Shows the compiler treats negative field widths
Just as positive field widths that are too small - it uses
the smallest actual width possible.
6.10-1 OUTPUT is not required to be listed in the program

heading when output is directed to that file in the program.
6.10-3 Shows OUTPUT can be redefined as a variable within

the program block.
6.8.3.5-12 shows compiler allows ranges as case labels.

Tests showing bugs in compiler
6.4.3.3-11, 6.4.4-2, 6.6.1-6 (described above)

~ showing extensions
6.8.3.5-12,13, 6.8.3.9-10 show ranges are allowed as

labels, and that this extension is implemented safely.

Tests failed

case

~3~6.6.3.6-2,3,4,5 all failed because the compiler
expects a dlfferent syntax for declaring the parameter types
of formal procedure/function parameters.

Comments on passed tests
6.1.5-4 Decimal point not followed by a digit in a real

number flagged as an error, but the program is allowed to
run because no ambiguity is present in the case tested by
the program.
6.1.7-11 A null string is flagged, but the program is

allowed to run with a blank substituted.
6.1.8-5 Nested comments are permitted if the alternate

delimiter symbols are used.
6.9.4~8 When real format is used to output an integer, the

error lS flagged but the program is allowed to run.

~ handling tests

Number of tests passed: 25
Number of tests failed: 23
Number of invalid tests: 1

Details of failed tests
6.2.1-7--No--error-:message is given when an undefined

variable is used.
6.4.3.3-5,6 show no run-time check on tag values is

performed when referencing variants.
6.4.3.3-7,8 failed because the compiler does not allow

untagged variants.
6.4.6-7,8, 6.7.2.4-1 show the compiler does not complain

when the value of the expression in a set assignment lies
outside the subrange to which the variable belongs (but is
within the underlying base type).
6.6.2-6 Shows no check is made whether a function receives

a value.
6.6.5.2-2 No EOF error given. This test fails because the

implementation uses fixed length records for text files, and
thus short lines are padded with blanks.
6.6.5.2-6,7 No error is given if a file component variable

is an actual parameter to a procedure that does I/O to the
file and thus alters the file component.
6.6.5.3-3,4 fail because DISPOSE is not implemented; no

check is made on the validity of its arguments. Similarly,
6.6.5.3-6 shows no error is given when a pointer used in
selection of a WITH control variable is disposed.
6.6.5.3-5 would fail if the test program were valid; the

parameter A should be a VAR parameter.
6.6.5.3-7,8 show that no error is given if a variable

returned by NEW containing tagged variants is used in its
entirety.
6.8.3.5-5,6 When the value of a case selector <> any of the

labels, no error message is given.
6.8.3.9-5,6,17 show that a FOR loop control variable is

accessible outside the loop. After normal execution of the
loop, it has the final value of the range. No error is given
for nested FOR loops using the same control variable; the
program iterates the expected number of times.

Implementation defined tests

Number of tests run: 15
Number of tests detecting bugs: 1

Details of Implementation dependence
6.4.2.2-7 shows MAXINT - 2147483647.
6.4.3.4-2 shows sets of CHAR are allowed.
6.4.3.4-4 shows the maximum set cardinality> 1000.
6.6.6.1-1, in which ODD appears as an actual function

parameter, does not compile. The real-valued arithmetic
functions are the only standard functions able to be passed
in this way.
6.6.6.2-11 ran to completion, but some inconsistencies

occured (i.e., XMIN <> BETA**MINEXP).
6.7.2.3-2,3 show short circuit evaluation of expressions is

performed.
6.8.2.2-1 shows selection is performed before evaluation in

A[I] := SIDEEFFECT(I). By contrast, test 6.8.2.2-2 shows

evaluation occurs before selection in P@ := SIDEEFFECT(P}.
6.9.4 5 shov;s 2 digit exponents in output of real numbers.
6.9.4-11 detected a bug in RELEASES 3.0, 3.1. It shows the

default field widths to be:
integer: 12
boolean: 14
real: 9

in contrast to the User manual and earlier releases, in
which these formats are 12, 6, 14, respectively. This bug
has been repaired in RELEASE 3.2.
6.10-2 shows REWRITE (OUTPUT) is not allowed.
6.11-1 shows the alternate comment convention is allowed;

the delimiters must be pairwise matched, thus allowing code
sections to be commented out.
6.11-2,3 show equivalent symbols %, .=, GT, LT, GE, LE, NE,

are not allowed. @ is used instead of the EBCDIC
translation of up-arrow.

Quali ty tests

Number of tests run: 22
Number of tests detecting bugs in compiler: 6
Number of tests not performed: 1

5.2.2-1, 6.1.3-3 show identifiers are distinquished over
their whole length, but the compiler gives no indication the
programs do not conform (i.e., contain identifiers with> 8
character significance). The compiler permits identifiers of
up to 256 characters.
6.1.8-4 Shows compiler gives no indication of unclosed

comments.
6.2.1-8,9, 6.5.1-2, 6.6.1-7, 6.8.3.9-20, 6.8.3.10-7 show a

large number of label and type declarations, deeply nested
(>15 levels) procedures, FOR loops, and WITH statements are
permitted. However, test 6.8.3.5-8, which contains a heavily
populated CASE statement, caused a compile time data
structure to overflow at case 152.
6.7.2.2-4 shows DIV and MOD are implemented consistently,

and that MOD yields the remainder of DIV.
6.9.4-10 shows that the output buffer is flushed at the end

of the program.
6.8.3.5-2 shows the compiler does not detect that a case

label, while contained in the underlying type, lies outside
the subrange to which the selector belongs.
6.4.3.3.9 shows the ordering of the representation of

variant fields is the same as the order of declaration.
6.6.6.2-6,7,8,9,10, which test the standard real-valued

arithmetic functions, gave a mean relative error between
E-06 and and E-07 in the interval tests. The special
argument tests gave fairly good results. Most identity tests
gave zero, as required; those that did not were within E-06
relative to the arguments.
6.8.3.9-18 shows the value of a FOR statement control

variable after normal termination of the loop is the
specified upper limit.
6.9.4-14 shows "recursive" I/O is allowed.

Test not performed
6.4.3.4-5 could not be run because timing is currently not

implemented in the Ct1S version.

Tests demonstrating compiler bugs
6.4.3.2 4 shows compiler accepts an array with an index

type of INTEGER, but the resulting program does not run
correctly.
6.6.6.2-6,7,8,9,10 all crashed at run-time using Release

3.1. The bug has been fixed in Release 3.2.

Extensions

Number of tests run: 1

Test 6.8.3.5-14 did not compile; the compiler supports the
OTHERWISE extension to the CASE statement but OTHERWISE
<statement> replaces END rather than preceding it as in the
proposed standard extension.

UnivJlc. J100
PASCAL VAlIDIATION SUITE REPORT

Autho red by:
I.E. Johnson, E.N. Miya, S.K. Skedzieleweski

Pascal Processor Identification

Computer: univac 1100/81

Processor: University of Wisconsin Pascal version 3.0 release A

Test Conditions

Testers: I.E. Johnson, E.N. Miya.

Date: April 1980

Validation Suite Version: 2.2

General Introduction to the UW Implementation

The UW Pascal compiler has been developed by Prof. Charles N.
Fischer. The first work was done using the P4 compiler from
Trondheim, then the NOSC pascal compiler written by Mike Ball was
used, and now all development is done using the UW Pascal com
piler.

There are two UW Pascal compilers; one produces relocatable code
and has external compilation features, while the other is a
"load-and-go" compiler, which is cheaper for small programs.
Most tests were run on the "load-and-go" version. Both compilers
are I-pass and do local, but not global optimization. The UW
compiler is tenacious and will try to execute a program contain
ing compile-time errors. This causes problems when running the
Validation Suite, since programs that are designed to fail at
compile time will appear to have executed.

Conformance Tests

Number of Tests Passed: 123

Number of Tests Failed: 16

Details of Failed Tests -----
Test 6.4.3.5-1 failed on the declaration of an external
file of pointers (only internal files of pointers are
permitted).

Tests 6.4.3.5-2, 6.4.3.5-3 and 6.9.1-1 failed due to an
operating system "feature" which returns extra blanks at
the end of a line. This problem affects EOlN detection.

Test 6.5.1-1 failed because the implementation prohibits

The research described in this paper was carried out at the Jet Propulsion

Laboratory, California Institute of Technology, under NASA Contract NAS7-100.

files that contain files.

Tests 6.6.3.1-5 and 6.6.3.4-2 failed because the current
version of this implementation prohibits passing standard
functions and procedures as parameters.

Test 6.6.5.3~1 failed to assign an already locked tag
field in a variant record, but the standard disallows
such an assignment! (Error in test?)

Test 6.6.5.4-1 failed to pack because of a subscript out
of range. MACC notified.

Test 6.6.6.2-3 failed a nine-digit exp
Univac uses 8 digit floating point.

comparison.

Test 6.6.6.5-2 failed test of ODD function (error with
negative numbers) •

Test 6.8.2.4-1 failed because non-local GOTO statements
are not allowed by this implementation.

Test 6.8.3.4-1 failed to compile the "dangling else"
statement, giving an erroneous syntax error.

Tests 6.9.4-1 and 6.9.4-4 failed do unrecoverable I/O er
ror. Problem referred to MACC.

Test 6.9.4-7 failed to write boolean correctly. UW
right-justifies each boolean in its field; the proposed
ISO standard requires left-justification.

Extensions

Number of Tests Run:

Details of Tests ----
Test 6.8.3.5-14 shows that an OTHERWISE clause has been
implemented in the case stetement.

Deviance Tests

Number of Deviations Correctly Handled: 77

Number of Deviations Incorrectly Handled: 14

Number of Tests Showing True Extensions: 2

Details of Extensions

Test 6.1.5-6 shows that a lower case e may be used in
real numbers.

tt
rr,
:;c

Test 6.1.7-11 shows that a null string is accepted by
this implementation.

Details of Incorrect Deviations

Tests 6.2.2-4,6.3-6,6.4.1-3 show errors in name scope.
Global values of constants are used even though a local
definition follows; this should cause a compile-time er
ror.

Tests 6.4.5-3, 6.4.5-5 and 6.4.5-13 show that the imple
mentation considers types that resolve to the same type
to be "equivalent" and can be passed interchangeably to a
procedure.

Test 6.6.2-5 shows a function declaration without an as
signment to the function identifier.

Test 6.8.3.9-4 the for-loop control variable can be modi
fied by a procedure called within the loop. No error
found by implementation.

Tests 6.8.3.9-9, 6.8.3.9-13 and 6.8.3.9-14 show that a
non-local variable can be used as a for-loop control
variable.

Test 6.9.4-9 shows that a negative field width parameter
in a write statement is accepted. It is mapped to zero.

Test 6.10-1 shows that the implementation substitutes the
default file OUTPUT in the program header. No error mes
sage.

Test 6.10-4 shows that the implementation substitutes the
existence of the program statement. We know that the
compiler searched first but found source text (error
correction) •

Tests 6.1.8-5 and 6.6.3.1-4 appear to execute; this oc
cured after the error corrector made the obvious changes.

Error Handling

Number of Errors Correctly Detected: 29

Number of Error Not Detected: 17

Details of ~ Not Detected

Tests 6.2.1-7, 6.4.3.3-6, 6.4.3.3-7, 6.4.3.3-8 and
6.4.3.3-12 show that the use of an uninitialized variable
is not detected. Variant record fields are not invali
dated when the tag changes. 6.4.3.3-12 incorrectly
printed ·PASS· when it should have printed "ERROR NOT
DETECTED"

Test 6.6.2-6 shows the implementation does not detect
that a function identifier has not been assigned a value
within the function. The function should be undefined.
The quality of the test could be improved by writing the
value of CIRCLERADIUS.

Test 6.6.5.2-2 again runs into the EOLN problem.

Test 6.6.5.2-6 shows that the implementation fails to
detect the change in value of a buffer variable when used
as a global variable while its dereferenced value is
passed as a value parameter. This sould not cause an er
ror, and none was flagged. However, when the char was
changed to a var parameter no error was detected, either.

Test 6.6.5.2-7 shows that the implementation fails to
detect the change in a file pointer while the file
pointer is in use in a with statement. This is noted in
the implementation notes.

Test 6.6.5.3-5 shows the implementation failed to detect
a dispose error; but again, the parameter was passed by
value, not by reference! (Error in test)

Tests 6.6.5.3-7 and 6.6.5.3-9 show that the implementa
tion failed to detect an error in the use of a pointer
variable that was allocated with explicit tag values.

Tests 6.6.6.3-2 and 6.6.6.3-3 show that trunc or round of
some real values. 2**36 does not cause a run time error
or warning. In those cases, the value returned was nega
tive. Error reported to MACC.

Tests 6.7.2.2-6 and 6.7.2.2-7 show that the implementa
tion failed to detect integer overflow.

Tests 6.8.3.9-5 and 6.8.3.9-6 show that the implementa
tion does not invalidate the value of a for-loop control
variable after the execution of the for-loop. Value of
the variable is equal to the last value in the loop.
These tests could be improved by writing the value of m'

Implementation Defined

Number of Tests Run: 15

Number of Tests Incorrectly Handled: o

Deta 11 s of Implementat ion D·ef ini t ions

Test 6.4.2.2-7
(2**35-1).

shows max int equals 34359738367

Test 6.4.3.4-2 shows that a set of char is allowed.

Test 6.4.3.4-4 shows that 144 elements are allowed in a
set. and that all ordinals must be >= 0 and c= 143.

Test 6.6.6.1-1 shows that neither declared
·functions and .procedures (nor Assembler
.passedaspa~ameters.

Test 6.6.6.2-11 details a number of machine
tics such as

XMIN .. Smallest PO.sitive Floating Pt t

nor sta'ndare
routines) be

character is-

1. 4693679E -39

XMAX .. Largest Positive Floating Pt t 1.7014118E+38

Tests 6 .• 7.2 •. 3-2 and 6.7.2.3-3 show that boolean expres
sions ar.e fully evaluated.

Tests 6.8.2.2-1 and 6.8.2.2-2 show that expressions are
evaluated' before va:riable selection in assignment s·tate
ments.

Test 6.9.4-5 shows that the output format for the ex
ponent part of .rea1 number is 2 digits. Test 6.9.4-11
shows that the implementation de.fined default values are:

integers 12 characters
boolean 12 characters
reals 12 characters

Test 6.10-2 shows that a rewrite to the standard file
output is not permitt·ed.

Tests 6.11-1,6.11-2, and 6.11-3 show that the alterna
tive comment delimiter symbols have been implemented;
all other alternative symbols and notations have not been
implemented. In addition, it is interesting that the
compiler's error correction correctly substituted "[" for
"(." and ":=" for "'=" as well as a number of faulty sub
stitutions.

Quality Measurement

Number of Tests Runs:

Number of Tests Incorre.ctly Handl ed:

Results ~f ~

23

2

Test 5.2 • .2-1 sho.ws that the implementation was un.able to
distinguishve.ry long J(lentifiers (27 characters). Test
6.1.3-'3 shows that the implementation uses up to 20 char
acters in dist.inguishing identifiers.

Test 6.1. 8-4 shows that the implementat ion can d.etect the
presen.ce of possible unclosed comments (with a warning).
Statements enclosed by such comments are not c.ompiled.

Tests 6.2.1-8, 6.2.1-9, and 6.5.1-2 show that large
lists of declarations may be made in a block (Types, la
bels, and var).

Test 6.4.3.2-4
of "integer".
when the array
ror occurs.

attempts to declare an array index range
The declaration seems to be accepted, but

is accessed (All[maxintl), an internal er-

Test 6.4.3.3-9 shows that the variant fields of a record
occupy the same space, using the declared order.

Test 6.4.3.4-5 (Warshall's algorithm) took 0.1356 seconds
CPU time and 730 unpacked (36-bit) words on a Univac
1100/81.

Test 6.6.1-7 shows that procedures may not be nested to a
depth greater than 7 due to implementation restriction.
An anomolous error message occurred when the fifteenth
procedure declaration was encountered; the message "Logi
cal end of program reached before physical end" was is
sued at that time, but a message at the end of the pro
gram said "parse stack overflow".

Tests 6.6.6.2-6, 6.6.6.2-7, 6.6.6.2-8, 6.6.6.2-9, and
6.6.6.2-10 tested the sqrt, atan, exp, sin/cos, and In
functions. All tests ran, however, typical implmentation
answe.rs (which use the Univac standard assembler
routines) were slightly smaller than Suite computed. Er
ror typically occurred around the 8th digit (Univac
floating-point precision limit).

Test 6.7.2.2-4 The inscrutable message "inconsistent
division into negative operands" appears. We think it
means that I MOD 2 is NOT equal to I I div 2 • 2.
Problem reported to MACC.

Test 6 • 8.3.5-2 shows that case constants must be in the
same range .as the case-index.

Test 6.8.3.5-8 shows that a very large case statement is
not permissible (>=256 selections). A semantic stack
overflow occurred after 109 labels.

Test 6.8.3.5-18 shows the undefined state is the previous
state at the end of the for-loop. The range is checked.

Test 6.8.3.9-20 shows for-loops may be nested to a depth
of 6.

Test 6.8.3.10-7 shows with-loops may be nested to a depth
of 7.

Test 6.9.4-10 shows that the output buffer is flushed at
the end of a program.

Test 6.9.4-14 shows that recursive I/O is permitted using
the same file.

Concluding Comments

The general breakdown of errors is as follows:

These problems are intimately tied to the EXEC 1100
ing system and its penchant to pad blanks on the
line. There is no plan to try to correct this
Does an external file of pointers make sense!

Changes in the standard

operat
end of a
problem.

Jensen-and Wirth (second edition) was used as the standard
for development of this compiler. Since there are
discrepencies between it and the ISO proposed standard,
several deviations occured. The compiler will be brought
into conformance on most of these errors when some standard
is adopted.

Restrictions
Some restrictions will be kept, even after a standard is
adopted. GOTO's out of procedures will probably never be
implemented, but STOP and ABORT statements have been added
to the language to alleviate the problem.

Several previously
validation suite.
corrections should
compilers.

unknown bugs were found by running the
Professor Fischer has been notified, and

be included in the next release of the

One area that should be emphasized is the clarity of the diagnos
tics produced by the compiler. All diagnostics are self
explanatory, even to the extent of saying "NOT YOUR FAULT" when
an internal compiler error.is detected. A complete scalar walk
back is produced whenever a fatal error occurs. The compiler at
tempts error correction and generally does a very good job of
getting the program into execution.

The relocatable compiler has extensive external compilation
features. A program compiled using these facilities receives the
same compile-time diagnostics as if it were compiled in one
piece.

Machine-dependent Implementat ions
8urroughs 86700/7700 (Tasmania)

Dear Bob,

UNIVERSITY OF SOUTIIAMPTON

Faculty of Mathematical Studies

Southampton, S095NH. Telex 47661. T.10703 559122EXI

1979 November 6

Here is the latest information on the Pascal implementation
for the Burroughs B6700/77oo series, as developed at the
University of Tasmania. It still exists, and has been
distributed quite widely. A new manual has just been
produced which sets new standards of excellence for us,
and is available presumably to subscribers who have
paid our annual fee (to cover postage, etc).

We have been working on the compiler to make it conform to
the draft Standard (a moving target at present), and I
believe the current version includes the procedural
parameter feature now that this seems to have stabilized.
It is pleasing to note that our attitude towards checks
is paying off, as shown when we recently uncovered three
different usages in the P4 compiler where undefined values
of variables were tested against well-defined values.
No doubt these bugs are now widely distributed through the
Pascal community!

Enquiries should not be addressed to me here (where I am
on leave), but rather to Pascal Support, Dept of Information
Science, University of Tasmania, Box 252C GPO Hobart
Tasmania 7001. Don't forget the airmail stamp: '

Proressors: II.B. Grirfiths. S.A. Robertson (Pure Mathematics); p.r. undsberl (Applied Mathemalics);
l.W. Craggs (Engineering Mathematics); D.W. Bluon (Computer Studies); T.M.F. Smith (Slatistics).

The University of Tasmania
Postal Address: Box 252C, G.p.a., Hobart, Tasmania, Australia 7001

Telephone: 230561. Cables'Tasun;' Telex: 58150 UNTAS

IN REPLY PLEASE QUOTE

FILE NO

IF TELEPHONING OR CAll1NG

ASK FOR

Mr. R. Shaw,
Digital Equipment Corp.,
5775 Peachtree-Dunwoody Road,
Atlanta, Georgia.
U.S.A.

Dear Rick,

15th April, 19S0

I have recently updated the B6700/7700 Pascal compiler to level 3.0.001.
This compiler conforms to the Working Draft Standard, as published in Pascal
News #14, fairly well. A copy of the updated Pascal Validation Suite Report
concerning this compiler is enclosed.

We are in the process of distributing this compiler to all those
installations which are currently using our Pascal system. The distribution
should be complete by the time you receive/publish this letter.

We are also producing an updated Pascal Reference Manual to reflect the
new comDiler. The manual has just ~one to the Drinters and we will distribute
copies to users of our Pascal System when it returns. Allow a month or so.

Enclosed is an updated checklist describing the new compiler.

Yours sincerely,

Roy A. Freak,
Information Science Department

CHECKLIST

Burroughs B6700/B7700 (Tasmania)

O.

1.

2.

3.

4.

5.

DATE/VERSION April 19S0 Version 3.0.001

IMPLEMENTOR/DISTRIBUTOR/MAINTAINER

MACHINE

R.A. Freak & A.H.J. Sale;

Pascal Support,
Department of Information Science,
University of Tasmania,
Box 252C, GPO.,
HOBART, Tasmania 7001
Australia.

phone (002) 230561 ext 435

Burroughs Model III B6700, B7700

SYSTEM CONFIGURATION

Burroughs MCP version II.S (and later versions). Minimal system

to operate is not known, but there is not likely to be any B6700

that small. Storage demands are low and little else is critical.

DISTRIBUTION

Usually supplied on a 9-track PE tape but other forms on both 7

and 9-track tapes are available. An annual fee of SA100 is

charged to cover mailing (air mail), processing and maintenance.

DOCUMENTATION Available documentation:

RSO-4: Pascal Reference Manual (similar to Burroughs Algol Manual)

A Pascal language card

A Pascal System card

Pascal Validation Suite Report for B6700/B7700 Pascal.

6. MAINTENANCE

To be maintained for teaching within the university as well as

larger aims. Reported bugs will be fixed as soon as possible,

with patch notices being sent to users. Duration of support not

yet determined; several other developments are pending. Each

installation is issued with a supply of FTR-forms similar to those

used by Burroughs for use in corresponding with us, and we will

attempt to do a professional job in maintaining the system.

" r

7.

The compiler has been stable in code for some time, reflecting

its basic integrity. However, new features are added from time

to time, and notified to users as patches or as a new version

release. The department accepts FTR notices and will attempt

to fix those which warrant such attention. Some modifications

have taken place as a result of user feedback. The compiler

was especially designed not to generate dangerous code to the

MCr, and no system crashes have been attributed to it since the

first few months of testing, 3 years ago, and then only three.

STANDARD

The compiler conforms fairly well to the Pascal Standard as

published in Pascal News #14. We intend to update the compiler

when a Pascal standard is accepted by ISO. The compiler performs

better than most during testing by the Pascal Validation Suite.

Briefly, the following restrictions and extensions apply:

Restrictions: Program heading; reserved word program is synom

ymous with procedure; file parameters are ignored after program

heading.

Extensions: otherwise in case statement. Various reserved words,

character set transliterations. Burroughs comment facility.

File attributes in declaration. Format declarations and record

oriented i/o available. Extensive Burroughs-compatible compiler

options (Pascal control comment option mode not implemented).

Ability to link in externally compiled subprograms.

8. MEASUREMENT

Compiles about 20% slower than Fortran or Algol, but in about

2/3 their space (for test programs about 4-SK words on average

instead of 8-10K). Elapsed compilation times similar, though

Pascal slower. Speed should be improved by eventual tuning.

Executes at the same speed as Fortran and Algol (code is similar

and optimal) and takes generally longer elapsed residence time

primarily due to Mep intervention to create new segments for

record structures (not present in Fortran/Algol). Elapsed

residence time about 20% greater than equivalent Algol.

9. RELIABILITY

Excellent. Since the early testing three years ago, no system

crashes have been attributed to Pascal. The compiler is now

in use at 28 sites throughout the world. It has been in use

since 76/10 at University of Tasmania. First released to out

side sites in 77/4.

10. DEVELOPMENT ME'l'HOD

Compiler which generates B6700/B7700 code files which are

directly executed by the B6700 MCP. Written in B6700 Algol with

two intrinsics written in Espol. Hand-coded using Pascal-P as

a guide/model. All other paths offered much more difficulty due

to special nature of machine/system. Person-month details not

kept, but project proceeds in fits and starts as teaching and

other activities intervene. Project has been undertaken largely

by two people: Professor A.H.J. Sale and R.A. Freak with some

support from T.S. McDermott.

11. LIBRARY SUPPORT

With release 3.0.001 of the Pascal compiler, the system has the

ability to link in externally compiled subprograms written in

another language. There is no facility available for separately

compiling Pascal subprograms (not standard) so the only method

of binding involves a Pascal host and a subprogram written in

another language. The system contains an extended set of pre

defined mathematical functions.

CDC 6000 (Zuerich __ Minnesoto)

The new dIstributer for Pascal-6000 for East ASIa and Australia is now:

Pascal CoordInator
Uni'~ersIty Computing Centre: HOB
Un I ve,'s I I ty of Sydney
Sydne'd. t1.S.W. 2006 Austral ia
Phone: 61-02-292 3491

Tony Gerber IS fInIshing his studies and passed the responsibIlItIes on
to Br ian ROlos'"'e II.

DEC LSI-1L LSQflech)

The UCSD version of Pascal is available from SofTech for $3FJ0 (includes
operating system, compiler, editor, etc.). A FORTRAN that compiles to
P-code is also B'Jaiiable. For more information and processors that are
supported. contact:

SofTecb Mlcrosystems
9494 Black MountaIn Road
San DIego, Callfor-nia 92126

OEC~ VAXJ1/780

UNIVERSITY OF WASHINGTON
DEPARTMENT OF COMPUTER SCIENCE

VAX-II Pascal Compiler for the UNIX/32V Operating System

The Pascal compiler for the Digital Equipment VAX-II computer,
VAX-II Pascal, has recently been modified to execute under the
UNIX/32V operating system, version 1. The compiler, VAX-II
Pascal/Unix, will be distributed by the University of Washington,
Department of Computer Science (UW), on a sublicense basis, subject to
the following conditions.

1. All right, title, and interest in VAX-II Pascal/Unix are the
property of Digital Equipment Corporation (DEC).

2. Requestors for VAX-II Pascal/Unix must have a license for the VMS
version of VAX-II Pascal from DEC. An object code license is
required for the VAX-II Pascal/Unix object code, a source code
license for the VAX-II Pascal/Unix source code.

3. The VAX-II Pascal/Unix system will be distributed for a copy charge
of US $ 50.00, payable to the University of Washington.
Distribution will be on magnetic tape provided by UW. Please send
your request, together with a check or purchase order, to

Department of Computer Science
University of Washington
Mail Stop FR-35
Seattle, WA 98195

Further information can be obtained by contacting

Professor Hellmut Golde (206) 543-9264

4. Requestors must sign the sublicense agreement attached to
announcement and return it to UW with the order. Please use
proper site identification so that the VMS license can
verified.

this
the

be

5. UW welcomes comments, suggestions and bug reports from users.
Although no regular maintenance will be provided by either DEC or
UW, a best effort will be made by UW to correct bugs for subsequent
releases of VAX-II Pascal/Unix. Any updated versions will require
an additional copy fee.

of
DEC
are

The VAX-ll Pascal/Unix compiler does not implement all features
VAX-II Pascal. However, the VAX-II Pascal manuals available from
are sufficient to use VAX-II Pascal/Unix. The following features
not currently supported by VAX-II Pascal/Unix:

1. Value initialization.

2. %Include directive.

3. Calls to VtlS library routines and system services. However,
to the C library and Unix services are available.

calls

4. The VMS debugger, and hence the DEBUG option. However, users may
use the Unix absolute interactive debugger, adb(I).

5. The library functions/procedures DATE, TIME, and CLOCK.

6. Standard functions/procedures as procedure parameters.

In addition, a few restrictions are
Pascal/Unix, as fallows:

1. Since procedure linking is done by the Unix
names on nesting level (main program
procedure names must differ in their first
names should not contain the character '$'.

imposed under VAX-II

loader, all procedure
level) and all external

7 characters. These

2. The command language interface is different to conform with Unix.

3. Only standard Unix sequential files are supported.
statement is limited to the form

Hence the OPEN

OPEN«file variable>,<unix file name>,<file history»

The specifications of <record access mode>, <record type>, and
<carriage control> are ignored. Also, FORTRAN type carriage
control is not available. The VMS procedure FIND has not been
implemented.

Beyond these restrictions, every effort has been made to make the
two compilers compatible. There are some minor differences in
expressions using library procedures and in input-output conversions t

due to different algorithms.

Hewlett Packard now distributes a version of Pascal for
system. For details, contact a sales office.

their HI' 1000

IBM .. S~ies/ lLMossey U.)
IBM Series/l Pascal

Pascal has been implemented at Massey University, Palrnerston North, New 'Zealand
for the IBM Series/I.

Hardware Requirements

Ability to support a 64K byte user partition using the R.P.S. operating system.

.Major Restrictions

2.

3.

Structure

Files may not be declared. Four standard files are made
available. These may be used as input or output files
or (non standardly) as direct I/O files.

Some standard functions are not implemented - in particular
the mathematical functions SIN, COS etc. However, selected
functions may easily be implemented if required.

Limited to 16 bit sets, although some built in routines to
handle 48 bit sets are available.

The compiler is based on the P4 portable Pascal compiler written by:

Authors:

Address:

Urs Ammann, Kesav Nori and Christian Jacobi

Institut fuer Informatik
Eidg. Technische Hochschule
Ch-8096
Zuerich.

It runs in two passes, (production of the P4 code and conversion of the p4 code
to Series/1 code), and employs several storage overlays (not overlays as implemented
in R.P.S.). All of the compiler, except the special environment (small assembler
program) in which it runs, is written in Pascal. It can compile the main body of
the first pass (3700+ lines of Pascal) in about ten minutes.

Availability

The compiling system will be made available to any non-profit organisation, for the
cost of the distribution, from:

Computer Centre
Massey University
Palmers ton North
New Zealand.

:<
c
r

l
I
e

Although no support for the system can be provided by the Computer Centre, rough
implementation notes and advice are available from the author:

N. S. James
Computing Centre
University of Otago
P.O. Box 56
Dunedin
New Zealand.

10 January 19Rn

1BM ___ JZtliSionyBrookJ

From the release note accompanying Release 3.0

Release 3.0 of the Stony Brook Pascal/370 compiler completes
the ImplementatIon of Pascal files (for the production version), as well
as correctIng a few errors reported in Release 2. All further
maIntenance will be relative to Release 3.0, so it should be installed
immediately. If you have presently a Release 2 or Release 1
d i str 11 but 10n tape, p I ease return it to:

Ms. PatrIcIa Merson
Department of Computer Science
SUNY at Stony Brook
Stony Brook, New York 11794

FaIrly detailed internal documentation for Pass 2 and Pass 3 of
the Stony Brook complier is now avai lable on request from ~15. ~lerson.
If you plan to perform any modifications of the compiler itself, you
should obta.in these documents. Pass 1 internal documentation has not
yet been produced.

(Machine-dependent details concerning internal versus external flies
follows.)

IBM 370. 303x. 43xx (IBM) IBM PASGAL/VS

Pascal/VS is a compiler for a superset of the proposed ISO standard
Pascal language, operating under OS/VSl, OS/VS2, and Vl1/CMS. The compil
er was designed with the objective of producing reliable and efficient
code for production applications. Pascal/VS is an Extended Support IUP
(Installed User Program), program number 5796-PNQ.

The following information was supplied by David Pickens, IBM Corporation.

VERSION/DATE

Release 1.0, June 1980

DISTRIBUTOR and MAINTAINER

IBM Corporation

IMPLEMENTORS

Pascal/VS was implemented by J. David Pickens and Larry B. Weber at
the IBM Santa Teresa Laboratory in San Jose, California. Others
worked on the project for short periods of time. The comments and
suggestions of internal users throughout IBM have had a significant
influence in shaping the final product.

MACHINE and SYSTEM CONFIGURATION

Pascal/VS runs on System/370 including all models of the 370, 303x
and 43xx computers providing one of the following operating system
environments:

VM/C~IS

OS/VS2 (MVS) TSO

OS/VS2 (MVS) Batch

OS/VSl Batch

Under CMS, Pascal/VS requires a virtual machine of 768K to compile a
program. Execution of a compiled program can be performed in a 256K
CMS machine.

The compiler requires a 512K region for compilation under OS/VS2 and
OS/VSl. A compiled and link-edited program can execute in a 128K
region.

DISTRIBUTION

The compiler and documentation may be ordered through a local IBM
data processing branch office.

I
<.r
c
c

The basic material of the order consists of one copy each of the
Pascal/VS Language Reference Manual (SH20-6168) and the Pascal/VS
Programmer's Guide (SH20-6162). The machine-readable material con
sists of source code, program load modules, and catalogued proce
dures. When ordering the basic material, specify one of the
following numbers

Specify
Number

9029
9031

Track
Density
9/1600
9/6250

Description
Mag tape
Mag tape

User/
Volume
Reguirements
None/DTR
None/DTR

Monthly charges for this licensed Installed User Program will not be
waived. The designated machine type is System/370.

~T~yp~e~ ____ ~P~r~ogram Number/ AAS
5796 PNQ

Monthly Charge
$235.00 (in the USA)

Monthly charges shown above are provided for information and are
subject to change in accordance with the terms of the Agreement for
IBM Licensed Programs (Z120-2800).

DOCUMENTATION

The Pascal/VS documentation consists of:

Document Name
Pascal/VS Language Reference (164pp)
Pascal/VS Programmer's Guide (144pp)
Pascal/VS Reference Summary (16pp)
Pascal/VS Availability Notice

Order Number
SH20-6168
SH20-6162
GX20-2365
G320-6387

Price
$14.50
$12.50

no charge
no charge

The Reference manual describes the Pasca1/VS language. The Program
mer's Guide describes how to use the compiler in the OS/VSl, OS/VS2
and VM/CMS environments.

The documentation may be ordered through your local IBM branch
office.

MAINTENANCE

IBM will service this product through one central location known as
Central Service.

Central Service will be provided until otherwise notified. Users
will be given a minimum of six months notice prior to the discontin
uance of Central Service.

During the Central Service period, IBM, through the program
sponsorCs) will, without additional charge, respond to an error in
the current unaltered release of the compiler by issuing known error
correction information to the customer reporting the problem and/or
issuing corrected code or notice of availability of corrected code.

However, IBM does not guarantee service results or represent or war
rant that all errors will be corrected.

Anyon-site program service or assistance will be provided at a
charge.

Documentation concerning errors in the compiler may be submitted to:

IBM Corporation
555 Bailey Avenue
P.O. Box 50020
San Jose,
Attn:

California 95150
Larry B. Weber
M48/D25

Telephone: (408) 463-3159 or
8-543-3159 Tieline:

Marketing Sponsor

IBM Corporation
DPD, Western Region
3424 Wilshire Boulevard
Los Angeles, California 90010
Attn: Keith J. Warltier
Telephone: (213) 736-4645 or
Tieline: 8-285-4645

STANDARD

Pascal/VS supports the currently proposed International Standards
Organization (ISO) standard and includes many important extensions.
Among the extensions are:

Entry and external procedures to provide separate compilation

"Include" facility to provide a means for inserting source from
a library into a program

Varying length character strings, string concatenation, and
string handling functions

Static variables

The "ASSERT" statement

"LEAVE" and "CONTINUE" statements for more flexible loop control

"OTHERWISE" clause on the CASE statement

Subranges permitted as CASE statement "labels"

Integer, real, and character constants may be expressed in
hexadecimal

\-.

l.C
c~

C

Various predeclared system-interface routines such as HALT,
CLOCK, DATETIME, RETCODE, etc.

MEASUREMENTS

Under VM/CMS the compiler will compile a typical program of 1000
lines at the approximate rates shown below:

Host System
370/158
370/168
3033

Rate of compilation
10,000 lines p~r mi~ute
20,000
40,000

If the compiler listing is suppressed, the performance improves by
20 to 25 per cent.

RELIABILITY

Prior to external release, the compiler was distributed to over 60
test sites within IBM. The first internal shipment of the compiler
was in July of 1979. All errors reported prior to the release of
the compiler have been corrected.

DEVELOPMENT METHOD

The compiler consists of two passes which run as two separate pro
grams. The first pass is based on an extensively modified version
of the Pascal P4 compiler (authored by Urs Ammann, Kesav Nori, and
Christian Jacobi). The P4 compiler was re-targetted to produce
U-code instead of P-code, as an intermediate language. U-code is an
enhanced version of P-code that was designed by Richard L. Sites and
Daniel R. Perkins (Universal P-code Definition, U. C. San Diego,
UCSD/CS-79/037, 1979). The compiler employs the error recovery
algorithm described in A Concurrent Pascal Compiler for
Minicomputers by Alfred C. Hartmann (Springer-Verlag, 1977).

The second pass of the compiler translates the U-code directly into
an OS object deck. The translator performs local common subex
pres:sion elim-ination, local reg,ister opt:j..mization, dead store
removal, removal of redundant_ checking code) removal of cascading
jumps) and various p_eep-hole optimizations.

All but 5% of the execution library is written in Pascal/VS; the
remainder is in assembler languag~'. I/O and heap management is done
by calls to Pascal procedures.

The compiler, written in Pascal/VS, is shipped with all run time
checking enabled. The compiler eliminates unnecessary range checks
by keeping track of the lower and upper bounds of expressions
involving suhrange variables. The checking code in the compiler
cos,ts only 7 to 10% in performance.

The
the

development of Pascal/VS began in January, 1979. To bootstrap
compiler, an experiment,al Pascal compiler developed by Larry

Weber was used; it was a one pass compiler written in PL/l (believe
it or not!).

The first bootstrap was completed in June, 1979. Since that time,
the compiler has been tested, enhanced, and modified to conform to
the proposed ISO standard.

LIBRARY SUPPORT

Pascal/VS supports separate compilation of routines and uses stand
ard OS linkage conventions. A Pascal/VS program may call routines
written in FORTRAN, COBOL, and Assembler language.

DEBUGGER SUPPORT

Pascal/VS supports an interactive symbolic debugger which permits:

break points to be set

statement by statement walk-through of a procedure

variables to be displayed by name and in a form which correspond
to their type (pointers, field qualifiers and subscripts are
allowed) .

I
er
e
c

IBM 3033 (Metropolitan Life)

IMPLEMENTATION CHECKLIST

0. Date

1. Implementor/Maintainer/Distributer
Taiwan Chan9
Metropolitan Life Insurance Co.
20-Y
1 Mad i son Avenue
New York, New York 10010
(212) 578-7079

2. Machine/ ~stem confi9uration

3. Distr ibut ion
Taiwan Chan9
Metropolitan Life Insurance Co.
20-Y
1 Mad i son Avenue
New York, New York 10010
CMS tape, 1600 bpi

4. Documentat ion

3033 VM/CMS

Implementation 9uide, conversion 9uide

5. Maintenance
StonyBrook's OS Pascal Level III is not
converted yet.

6. Standard
Converted from StonyBrook' s OS Pasca I

7. Measurements

8. ReliabilitlJ
MIT okay, local okay

9. Development method
XPL imp I ementat ion

10. Library support
CMS macros

Motorola 6800ui[b11asoft) evoa P.Ll. I:::!UX ~1

sO f t ~;:::~: J~Ol~ ~v~
systen'lS 19021861-2202

Thank you for your inquiry about DYNASOFT PASCAL. I hope that
this will answer most of your questions and help you decide if
it will be a useful addition to your system.

DYNASOFT PASCAL was designed to make a practical subset of the
PASCAL language available to the users of relatively small
cassette-based 6800 and 6809 computers. Both versions occupy
slightly less than 8K bytes and require at least 12K of
continuous RAM beginning at $0020 to edit and compile programs
of reasonable size. The compiler will compile itself in 32K,
although the source code is not included in the package.

The 6800 vr~sion was designed for the SWTPC 6800 computer with
the SWTBUG monitor, but it can be adapted to run with most
other monitors with minor patching. The 6809 version is
completely self-contained with its own imbedded device drivers,
and is independent of any particular monitor. Both versions
include the compiler, p-code interpreter, and a line oriented
text editor, and are priced at $35.00. They are supplied on
a Kansas City Standard cassette in Motorola "Sl" format at 300
baud, and come with a 32 page user's manual.

The 6800 version is also available in ROM, intended for use
with the SWTBUGtm monitor on the SWTPC 1~-A2 processor board.
It occupies the 8K block at $COOO and is supplied in four
TMS2516 EPROM's. The price is $300.00. We do not keep a
stock of blank ROM's, so please allow 8 weeks for processing.

All orders should include $3.00 for postage and handling.
Payment can be made by postal money order, check, or VISA
account in either Canadian or U.S. funds.

Thank you again for your interest.

Allan G. Jost, Ph.D.

~~

lD
0-
C'

DATA TYPES:

DYNASOFT PASCAL SUMMARY, RELEASE l. 0

INTEGER (16 bit)
CHAR (8 bit)
BOOLEAN
ARRAY (one dimensional)

scalar (user defined)
subrange
pointer

ARITHMETIC AND LOGICAL OPERATORS:

+ * DIV MOD AND OR NOT

RELATIONAL OPERATORS:

<> < > <= >=

LANGUAGE FEATURES:

CONST CASE-OF-OTHERWISE
TYPE FOR-TO/DOWNTO-DO
VAR REPEAT- UNTIL
PROCEDURE WHILE-DO
FUNCTION READ
IF-THEN-ELSE WRITE
BEGIN-END WRITELN
Machine-language subroutines with parameters
80 character identifiers (first 4 unique)
Absolute memory addressing using pointers
LINK to other programs
Full recursion

PREDEFINED PROCEDURES AND FUNCTIONS:

ODD SHL SHR FIND HALT LINK MOVL MOVR SETF

SUPERVISOR COMMANDS:

Load, Save, Edit, Compile, Go, Move, Quit

EDITOR COMMANDS:

New, Top, Bottom, Up, Down, Find, Print, Insert,
Kill, Replace, Quit

Uotorola 6800/68000 (T.H.E.)
Technische Hogeschool

10 Andy Mickel,

eG!it-or ,,~ '"Pa.sco.l N~vJs

Uw kenmerk Ons kenmerk

Onderwerp

Den Dolech 2

Post bus 513
5600 M8 Eindhoven

Telefoon (040) 47 9111
Telex 51163

Datum

19800'319

Eindhoven

Doorkiesnummer

E...closed YDu. ti..d. c!.ecldists o~ tWO ~.R:al i ple. ... eVlb'l.tio ... r ~
l'1Ilat:Ie 0", HDWrolc>. MiuocoMp.....ws: QI'\ K 6800 a..d Q"" XC 6lboo~

wL.i cL. i.r i:kR. ex.pui.""e.J<J v.Lr.Dov\ or t~ M6ihoo.

1Lv.. Kbgoc · fle~"'ta.f:io... \."as alr.ea.d.y b..e.e.V\ iVl ope.n::ttiOln fer
~bot.d:: 2. y.eo..rs !'\Ow a",d du.rt"j "ws peried toke syste.... proved

1:0 b.sz.. .€Xh..ewtely reliable aw:! s-i:o.lal.z It.is s'jS:.eWo. i.r jVl~w\"d!y kl'lOw\.1
0..,$ -t~ 1'OHH6 sYSte.vv.. ('PGtJca1 01'\ Habra"" lMict"o<o","p..J:er '9U:'P"'""t-).
!he COMpiler '3.i!>\LrcJ:.es a. hvd or 'P-ccde wk<.ct...· ... 9w-t.. oli{f.er~t
fOM lli rp-codo.s of t~ povtable. 'P'l-- co""'filtu- C\\Ad {/....q UCSD -eocle.

lh.e. coMpiler- is "at {A. 'P-COMr·.l.c<r d.erLval:.\.V.e bed: is" wrl.tt.e... f,.""",
.S'c.rlAtc1.. 'Tke cocle 9.e>1.1Uctl.ecI 10'1 toke c:o""'pw if 'v.WpteW witkU><..t
t~ l>\!:er""""e....c.e. of ":" Opi:i tV2T, a. !i..ker or s cJ.,. i/.te iv.ter~r.eter is"
3.5 K'byees or Macl.i"'k. code a.,.d tow<' cO"::filR.r 11' b Kby1:e.! of 'P.cade

'D.ef4'ldiV\:J 0'" tk ..rco..t tOt"'5 of liles OVI fuPP::! d.<sk ~ co""t"i loloia-V\
-.lp.e.od is b.cl:~ 4-00 o.vJ 600 /ilA.U F ""i.w.te.

Tke.. l~""'j" w.,.~L.,d ~aM",S IJ...... propo.r.q.ol :1:,0 'ihsca.(. ~~
a.s a. sub..d:. 1l...... 0"[':1 r.estfictiOj,' is: t\\R.s IMM.$t b2 d..ec\G\A"<?d i.... ~
olAte.r6lock oAI~ (t:lR. p<if~te.rs 0(: procJ2d..w>u ~ f""",cbOlo<S o..r..e
of ~ pcsSi.ble). ~ ~siO\1S (Vlc.l....d.e:

- Q librClry .f"O.cilicy ("'" sOwce. /ev.e/)
- iV\t.erfClclV\5 "",.Id., ClSS.ew.k>~ l<W.tJ IACIj.e. ro..di"'-'!.5

_ ",-bJDlu.tz. adoIt:I!!ss s~i..k:cJ:;."", of: """,l.u..~J (to a..l[ow lM.Il "":-;- etp~& IllY'

~c".<i: 1:ke. k.2l<.cI oF" "'-SJ:elM.Io~ 'ode.).

_ s<A.lor~ <MA.a CfTrt€RWIS'Ei as l'l!.d... i", GL ~.t-sta.te e"t, .s<A.lorc;"""~.t'.r

cJS"o '''' tke. VOt.r~t-F of: r..eCDl"OlS.

iF tk ?rc~r-"" c-o:..w "- r~C6rOI"-cYF- cU.ti~i"'" li"'e
c0""Piex ~ RI<CORO r"j : f~(END

I L..ev.. tWa. ccl".J:r",-,* c.olM.pl~ (xJ,)/) i.r ~ e6<pr..us j"", 0(: type co pl.ex pr.""i cUd

)(."",,0{ j ,"'. "'- of t:lP"- f<2<>1,

- tt.... Jb -ca.!ied. "bo<.<....dless· a.rra:J pa.r .. ~/:e.r.r.
- i~ Qc:lct;io:o~ to ItMD """'" 01< tWa. sl.cr.t- c4rc. W CAND,(COR,

- r"vdolM. - o..c.(R.SJ" ~l~..r.

;"d:erac.b:.\Ie I/~ \llo.. RLe..r i .. pul- "'-<I o....ipt.d=

1k CO\M.p·~r w\.l[al""'"'is .r..e(ecl. !::L.£. IM.OJi: =""'PClc.-6" r.epr.ueAAto.:ti"", of sets (~
to 1£ b~u.s) ~e-.... a. £ets of' c1o..ra.ck.-rJ <V'~ poJ"J"i.IoLe.. fc.vrtke..-WlO>e c...

SET OF 0 .. T r4u..l.r.e.J ovJ'j 00<£. byte """,J ca.... Io.ecu.d:.iftly Ioe. <A.SLd. to

c""'"' ~te "",tL.. F~r~.r, ck.e.. to w ~""'1- "fF xi&:
rr pro:')r<>-..s an- r""", w\J.t, r~;~ ~us ,;.d .. A.cLo.d. ~ ~ d.o..ted:>"", of ~

eno.- vJi.U f.t.suJt ,;.., 0.. ,r~<Mlool'c. clL<M..p of ~ r~"""""J" .rta.c",", ;",cl.u.d.i"9 ;~t:l!i'.ut
o~ JMctbiJz..r cto..d fro~, <'tM.d- 2.:...e Iae.r.r of ~ UTor -.:! "CtA.rr~t"
18i-'~ cruLs. \b;i.olM error.r ",at: ~""""tUIy cJ...e~ (;,..,. wi.ll bt dR.i:.c.:cted I" ~
~ rWAtilN.Jl.. ~ aA.e -b . .ufI\Q.d 0"_ e.g. Gt ,r!:o.u:!e..t- proof: .w.cl>.""'("t,o c.~k C."'~4S
o~ a.. """,b-o(tid "Clrlalo:>l~ ,.. a.. t"., - Jta.te..ww..t.
Tv. order -to Jpero "-p SO""'-'L of. ~ der.:col ta.sk..r o~ ~~ \ .. I:J2r~_ ""

:rcIS ~..fl. ~ -1:0 ~ pt"ocu.ror. 11.u.. p...,c.uJa.- bo.::u-d:\ i.tow.e..ru-, is.rt(J1

co""'fo±.i.1:k. w\.& leW. ~i.....t Motorola.. EXORciser- bIAS. 1"k.a. ~fiO\A.r iA.llow t;,..

o. co.lII.-ti"'tADIJ..S cWLc.k "'" ~ ou.uHow, "'- c.Iuc.k wt..;cJ.. ... vJ~ d..o~ i", so~,
i.r -li<M4.- C<:>rtS~l",=, a....:;i ICN di rRo.<1t (tke. 'PI!- Gi"'c! lACSD .Jt:ta.t.eie.r ~ WllSCl.k!)..

(!.va Pot-fl-l/:; .sj~ 1II.<7Y~y op~J" i", ~le-t..4.ter ;;...."i.,."..~ ~ """

E;!(QIZi.<.e.r or- eKOR6erw- ~ a.. dvca.l floppy disk drive. Ii,S', however, po.r.nl..(€ i:o

:v,-\:.e..CO"-'\.<2c.t "'-I" -to b ,,~ tt.... ~JtcV<A..r to h,-r.... '" IMAA-fCi ~ ~~, JI.,,,,,"i4

-ii..a. ~.:sk ~pa.c..e.. T",,- PoMKE. S':J~ w\I{ I:W4. 'j",-~tee. 1IIMAl:: cJ. eo.cw...s.i..... "" H.iJz.
?.CCLSS, 0" N bG>.S\v 0+ ;,,<t""'.4.<a./ SJ2ctors.

0"'-'1. of k.t..e f'r~r~.r o..VC~ .. i1MLt. 0'" 1:t.....fl. 'POHH.e .r:J~ \..r cro.rs-

colMfiler ~ t:~ 'f...C f:,gcroc. lkiJ COfN\fi./tu-- (reals Q.",ct ftlev =.<2 "laC ':Jtt i

ilMfle~) ~I.ot.er",-t:e.r r.eloc.::U:c..b<L <Maa...;..... CJ1<k. ~ d.ou ",at f.€cJ~ ~

w.t..<prew _ r,",-",cilML paok~ or oper-o-t.i"':J syJtq.W\ -1:0 .l.X.-<!Ct..(.te. Tt..e co-d.e hi"

dooU to opt:.'""""-l ~ to ~ve. t(.,.i.r -I:k COlM.p..&.r ck.e.s ",at COVl.nJt or ~

,""",,:)1.0. FJS blAk. 't.r C!. 3 .. pt:t.tJ co<M.filv. "U..t.r proCfl.Sj NU.I.J.ro.l'll~ slow.r

dow.... co pi.W;"" , IM~~ b.e.ca.......u e>.Ll ~tu~ ca-cLz. i.r kepI:- 0..... ~

j:'IOPf~ di.sk, T~ outprM; or tk co "iLer ~ IIU7i: be. iMpc.J; to a..... ow, • ..ev.....bler-

0...J:; iJ"" 0(J<:c.W:.o..~I.e..... ~oslE:;o/A i..d€p.e.w:leIAJ: code.

Altk~(,. I ~ w,'r\h... c>..U .rottwCU".€. of. tL..e. 1'0MME. "'1sr-e.,.... ',t- ij- ...ow

"""'i t.ru~ """"'* ot.:str~bW=t by

E PO S C EFF!cie f: ra.sca.1 Or;e ... ted. {ysw..s)

benerC).GtI de Co..rislCl.Cln

6"623 GL Eindhove",
Tke Net..h~rlClvds
W. 0'+0 - 4-4-5552

60

.{O~ s~Vt. pro3r"",,",s wen<: r,,",", for ~ c~<",n:"'\s. 1?o~w~ ~i~. ~ ~
r

HGeoo sys&- co"-"'fwu o..t c:Joo..J:.. Ir- ti ... -es Q.V\d ~I(a.....tes o...t abo c twioc cl.-e
-sp-es>d of UC:;D -i~~~a..s "" LSI-~1 ~ :Z-lb. We. fJi2(t[N,s pre.t.ty ~
i""'f'ru.n.v.e fV,- 0... 1 H~td::& &' bit: proxSJOr: ~ croSs.cof\z,- ~ ~ XC6Sooo ~
is F\'\IAck sbw.u, ',t: =+'" a..t. kGt(f ~ spad of L~r-14 """,0('l-6'j (ACSP.

!;X:l!.CLLlioV\ tilM.U.) howe-vul vu:e :;VoovtL €.Gjv.,:;J -to D\.";.C -10 J hod!=' ~ sp-t-eol o~ ~
'B",-rr0'"'5t..s B:fioO a..v.oI C<. Cfl.Ul..t'f.er at: /:l...Q. sp-ud of CD::: Cybe.r 115. N<1tiC/t

-k.W t.W<. XC bgo~ t.r iYI'\{~ a.. Pf'Ol:Ot.)'P" o~ -l:.1.a. Kb&ooo r "",":3 cU: "'-",1+

l::k proj.ecled s~.

n~l~ II: s[..ot.ll.d be iltru.d ikctt Q Co-pic..r {;... -{;;ke. H£g":l alo"j ~ li....u

of tke XC (,8000 i""p!e 61;"'" wit! ~ ~ .rco",-.

Yo""fS si"ozuIy

U ,_il

~~L--~
JLA vavo. d.e S";tI.<Z.f'.rc.k<Ztd..

ti.J.koll.c", Uli\.i\IJUsit..~ 01' lec1"'-Olo3Y

Dept.. 0; Ha..t t.,.«:",,<>..tic.r

Ma..rJ.. 1'3, 1:)80

....
" "

EPOS

G~V\er<A.o..l ole. CClri.s/Q.a.n 60

5b'L"3 GL t:iV\dho"""" (Th~ }.kl:\"'erl",,,,c;b)

r0""3~(~ twiCl1.. tl.tc. s~ of l:t....z. LlCSD - j""'pleWle",ta.t.iOVzS

Ollt LSr-{~ ~ :z:: -60; co""'piiv<.:lioVl e"€", ~ !; ti......::s-.

j~~...f~ .sotM'~ ti.breviv '..,. "PClSGGt/

Checklist

li~ to a..ss~~ I~ ro<AOt.iV\£.S

MotorolO- XC 6Zooo

EPDS

0.enerD.Q.f cte C~-.sIa."-n

5b~3 GL Ejvv;;l.loov.e",

COV\.~ s~Jo..rd - 'Pas-c<>-I a..r a. J....bJ'.et witj" {'!"'e b'Gepb'o"

l:1w..t re"..IJ.e", fit'!.! a.f'e ",ot. yet i"'ple...e",ted

tk XC (;,8000 is a. PrototYf<2 of t~ t-1 (,gooo r",~",;~ cJ;

"'ali: u.z. fro j.ed:e<I ,sf)j2£c(, yet O<<2c,v.!.'OIA {i""es ",-re G\klo...e

~ua.l to DtC-IO .

eroS's - co"",~i(<>.I:ia... tilMe 0", a. 1-Ib800 I.s ru,o"d:. t.,.,iu "lS lo~

~ cO""filoJ:icn,.. iilMJl.s of: L(CSD· rcdca.l OIA W'l- 11 "-'4{ ~ 8:0

Motorolo.. xc. f,gooo

croJ"S- Co""'f'ilt:d:ioIA 0" Ho!:orola.. H bl?oo (POHKE Sl.jltew..)

(See the checklist in issue .17 under Intel 8080v8B85 (MetaTechl)

ZJIos--Z -80 (Digitol Marketing)

This co""iler runs under CP/M and is a Pascal-P descendant. The price
is $350.

Digital Marketing
2670 Cherr!,! Lane
Walnut Creek, CA 994596

Zilo9~ ___ 80j_lRS ___ 80JeeQple's~of twore)
nonprofit

computer information exchange,
.
Inc.

Bill McLalughlin, editor. pres., trcas.
John Ingram, executive vice president
Dorcas Edge, vice president, secretary

BOX 158, SAN LUIS REV CA 92068 (714) 757-4849

TRS-80 COMPUTING
TRS-80 BULLETIN

CTRS-80 is Tandy Corp. trademark)

December 26, 1979

PRESS RE LEASE:

TINY PASCAL COMPILER JUST $15

People's Software at nonprofit Computer Information Exchange is selling a
tiny Pascal compiler for $15.

Written in Basic, People's Pascal I runs on any 16K TRS-80 Level II
system. Compilers let computerists write fast, efficient machine code while
working with a higher-level language. Pascal is the structured language everyone
is talking about-and studying in college.

The People's Pascal I program development system comes on a tape with
14 programs, and 18 llx17" pages of documentation. Programs include editor/
compiler, interpreter, translator, run-time system and two demonstration
programs.

People's Pascal I compiler produces P codes, which the translator
converts to Z-80 code, the TRS-80 native language. The user is given the option
of optimizing for either speed or memory efficiency. Programs written via
People's Pascal I run three times faster than those in Level II Basic-graphics is
eight times faster.

To produce object programs, the computerist must use the People's
Pascal I programs, plus Tandy T-Bug. Use of Tandy editor/assembler is optional.

The People's Pascal I program development system, with editor/compiler
and interpreter written in Basic, and its multiple parts, is not the ultimate in speed
and Simplicity of ~use.

People's Pascal II, at $23, is easier to use and faster operating. It is all
one machine-language program. Programs written in Pascal II do not execute quite
as fast as those in Pascal I because the system does not produce Z-80 object
programs of the user's source program.

Both Pascal I and II compile user programs into P-codes. Both
systems work in an interpretive mode, interpreting P-codes into Z-80 codes.

(more)

(PEOPLE'S PASCAL, add 1)

But Pascal I has a translator for creating Z-80 native-code programs, and Pascal
II does not. In Pascal II, all user programs must be interpreted each time they

are executed. Pascal II is still said to be four to eight times faster than Level II
Basic.

Pascal I is only for 16K systems. Pascal II is for either 16K or 32K systems.
Pascal I has UCSD-like turtle graphics. Pascal I requires line numbers in the user
program, and Pascal II does not.

Dealer inquiries are invited. Computerists wishing to buy direct should
include 501'! for each tape ordered, and California residents should add 6 per cent
tax ($.90 and $1. 38, respectively, on Pascal I and 11). Computer Information
Exchange is at Box 158, San Luis Rey CA 92068.

Besides People's Pascal I and II, People's Pascal has three public
domain program tapes : in Level II, and two in Level I, at $7. 50 each (plus 50 cents
postage-handling, CA residents add 45 cents tax). The public domain tapes have
as many as 77 programs on them.

~
{J

c
c

IMPLEMENTATION NOTES ONE PURPOSE COUPON

o. DATE

1. IMPLEMENTOR/MAINTAINER/DISTRIBUTOR (* Give a person, address and phone number. *)

2. MACHINE/SYSTEM CONFIGURATION (* Any known limits on the configuration or support software required, e.g.

operating system. *)

3. DISTRIBUTION (* Who to ask, how it comes, in what options, and at what price. *)

4. DOCUMENTATION (* What is available and where. *)

5. MAINTENANCE (* Is it unmaintained, fully maintained, etc? *)

6. STANDARD (* How does it measure up to standard Pascal? Is it a subset? Extended? How. *)

7. MEASUREMENTS (* Of its speed or space. *)

8. RELIABILITY (* Any information about field use or sites installed. *)

9. DEVELOPMENT METHOD (* How was it developed and what was it wtitten in? *)

10. LIBRARY SUPPORT (* Any other support for compiler in the form of linkages to other languages, source libraries, etc. *)

(FOll;> HERE~

~~~-~~~-~-~-----------------------------------------

, ....... ".. PLACE 

POSTAGE . 
. ..... " HERE 

Bob Dietrich 
M.S. 92-.134 
Tektronix, lnc. 
P.O. Box 500 
Beaverton, Oregon 97077 
U,S.A. 

NOTI!;: Pli!:s<:aJ N~ws pu~lish~s aU the ch~Gklists it 
gets. lmplementors shou.td send us their c.hecklists 
fQ.~ their products so the thousc,mds of committed 
Pascalers can judge them for their merit. Otherwise 
we must rely on rumors. 

PJ.,~s~ feel fre$ to use, additlQnal sheets; of paper. 


