400 and 200 Mb/s LVDS Digital Waveform Generator/Analyzers

NI PXI-6562, NI PXI-6561

- 400 Mb/s (PXI-6562) or 200 Mb/s (PXI-6561) maximum data rate in double data rate (DDR) mode
- 200 MHz (PXI-6562) or 100 MHz (PXI-6561) maximum clock rate
- LVDS signaling for fast clock rates and low power consumption
- 16 channels with per-channel direction control (single data rate mode)
- 2, 16, or 128 Mb/channel onboard memory
- Interactive waveform and script editor software
- Synchronization and Memory Core (SMC) for tight synchronization with other SMC-based devices

Operating Systems

• Windows 2000/NT/XP

Recommended Software

- LabVIEW
- LabWindows/CVI

Driver and Editing Software (included)

- NI-HSDIO driver
- Express VIs for LabVIEW 7.1 and later
- Script Editor
- Digital Waveform Editor (included with 16 and 128 Mb/channel models)

Description

The National Instruments PXI-6562 and PXI-6561 are 400 and 200 Mb/s digital waveform generator/analyzers, respectively, for interfacing to LVDS digital electronics. These modules feature 200 and 100 MHz clock rates, respectively, single and double data rate modes, 16 channels with per-channel direction control (in single data rate mode) and deep onboard memory with triggering and pattern sequencing. You can also use the modules with the NI Digital Waveform Editor, an interactive software tool for creating and editing digital waveforms. With the SMC, you can create mixed-signal test systems with digitizers, arbitrary waveform generators, and other digital waveform generator/analyzers, or you can synchronize multiple digital devices to build low-skew multichannel systems for interfacing to high-pin-count digital ICs and electronics.

Applications

Aerospace/Defense

Surveillance systems Satellite testing

Analog-to-digital converters Digital-to-analog converters

Semiconductor

Avionic subsystem communications

Design High-Density Interfaces

- 400 Mb/s (NI 6562) or 200 Mb/s (NI 6561) maximum data rate in double data rate (DDR) mode
- 200 MHz (NI 6562) or 100 MHz (NI 6561) maximum clock rate
- Data delay for clock frequencies ≥ 25 MHz
- Data delay resolution as small as 60 ps (see specifications on following page for valid delay ranges)
- Internal or external clock sources
- Tight channel-channel skew of ± 215 ps (generation) or ± 330 ps (acquisition) (typical for clock frequencies at or above 25 MHz)
- 16 channels with per-channel direction control in single data rate (SDR) mode

Create and Edit Patterns Interactively with the Digital Waveform Editor

- Import existing waveforms into LabVIEW from VHDL simulation and spreadsheet tools in Value Change Dump (.VCD) or ASCII formats
- · Create new waveforms using built-in fill patterns
- · Edit waveforms interactively in the user interface

Ordering Information

NI PXI-6561 NI PXI-6562	
¹ Where M is: 1 (2 Mb/channel), 2 (16 Mb/channel), or 3 (128 M Includes NI-HSDIO driver and Script Editor. The 16 and 128 M also include the Digital Waveform Editor.	Mb/channel)
Software NI Digital Waveform Editor	778724-03
Cable SHB12X-B12X LVDS cable	192344-01
Accessories SMA-2164 prototyping board Mating connector for custom load boards	

BUY NOW!

For complete product specifications, pricing, and accessory information, call (800) 813-3693 (U.S. only) or go to ni.com/modularinstruments.

400 and 200 Mb/s LVDS Digital **Waveform Generator/Analyzers**

Specifications |

For detailed specifications, please visit ni.com/info and enter pxi6561 or pxi6562. These specifications are valid for PXI for the temperature range 0 to 55 $^{\circ}$ C.

Channel Characteristics

Data channels ..

Specification	Single Data	Rate (SDR)	Double Data	Rate (DDR)	Comments
Direction control	Data <015>	Per channel	Data <0:7>	Dedicated for	Using SDR, data
of data channels				data generation	is clocked using
			Data <8:15>	Dedicated for	the rising or
				data acqusition	falling edge of the
					Sample clock.
					Using DDR, data
					is clocked using
					both edges of the
					Sample clock.

Generation Signal Characteristics (data, and PFI <0:3> channels)

Generation Signal Type	Data<0:15>, PFI<1:2>	PFI 0	PFI 3
Generation	LVDS	LVCMOS	LVCMOS or LVDS
voltage families			(software selectable)

Generation		Offset (Vos)		Differ	ential Volta	age (V _{od})	
Voltage Levels	Typical	Min	Max	Min	Max	Typical	Comments
Generation	1.2 V	1.125 V	1.375 V	247 mV	454 mV	305 mV	Into 100 Ω
voltage levels							differential load,
							TIA/EIA-644
							compliant

Output impedance (LVDS channels).....

100 Ω differential Drivers disabled, 100 Ω differential impedance

(Settable to 200 MHz / N; $1 \le N \le 4,194,304$)

Acquisition Signal Characteristics (Data, Strobe, and PFI <0:3> Channels)

Acquisition	Data<0:15>, PFI<1:2>		
Voltage Families (V)	and Strobe	PFI 0	PFI 3
Acquisition voltage families	LVDS	LVCMOS	LVCMOS or LVDS
			(software selectable)

Acquisition	Voltage Threshold	Voltage Range		
Voltage Levels	Max	Min	Max	Comments
Acquisition voltage	±50 mV	0 V	2.4 V	TIA/EIA-644
levels (LVDS)				compliant

...... 100 Ω differential Input impedance......

Timing Characteristics

Sample Clock

Sample clock sources 1. Onboard clock (internal VCXO with divider) 2. CLK IN (SMB) 3. PXI STAR (PXI only) 4. STROBE (DDC connector) - acquisition only On board clock frequency range ... NI 6561: 48 Hz to 100 MHz. (Settable to 200 MHz / N; $2 \le N \le 4,194,304$) NI 6562: 48 Hz to 200 MHz.

Exported Sample Clock Delay Range

Sample Clock Frequency (f)	Delay Range (Sample Clock Period)
50 MHz $\leq f \leq$ maximum clock rate	0 to 1 sample clock period
25 MHz ≤ f < 50 MHz	0 to 1 sample clock period except
	[0.25 ± (0.25 - 5 ns x f)] and [0.75 ± (0.25 - 5 ns x f)]

Exported sample clock delay resolution 1/256 of sample clock period for clock frequencies ≥ 25 MHz or 60 ps, whichever is greater

Exported Sample Clock Jitter (Typical Using Onboard Clock)

Period jitter	Cycle-to-cycle jitter
19 ps (rms)	29 ps (rms)

Generation Signal Characteristics (Data, DDC Clk Out LVDS, DDC Clk Out PECL,

unu i i i <0.52 onumicis,	
Data channel-to-channel skew	±215 (typical across all data channels and PFI <1:2>)
Maximum data channel toggle rate	NI 6561: 100 MHz; NI 6562: 200 MHz
Data position modes	Rising edge, falling edge, delayed relative to sample clock
Generation data delay range	See Exported Sample Clock Delay Range table
Generation data delay resolution	1/256 of sample clock period for clock frequencies ≥ 25 MHz
	or 60 ps, whichever is greater

Acquisition Signal Characteristics (L	Jata, Strobe, and PFI <0:3> Channels)
Data channel-to-channel skew	±600 ps for sample clock rates < 25
	±330 ps for sample clock rates ≥25 MHz
	(typical across all data channels and PFI<1:2>)
Acquisition data delay range	See Exported Sample Clock Delay Range table
Acquisition data delay resolution	1/256 of sample clock period for clock frequencies ≥ 25 MHz
	or 60 ps, whichever is greater

Waveform Characteristics

Triggers (Inputs to the NI 656x)	
Trigger types	Start trigger, pause trigger, script trigger <0:3>
	(generation sessions only), reference trigger
	(acquisition sessions only), advance trigger
	(acquisition sessions only)
Sources	1. PFI <0> (SMB jack connectors)
	2. PFI <1:3> (DDC connector)
	3. PXI_TRIG<0:7> (PXI backplane, PXI only)
	PXI STAR (PXI backplane, PXI only)
	Pattern match (acquisition sessions only)
	Software (user function call)
	Disabled (do not wait for a trigger)
Trigger detection	Start trigger (edge detection: rising or falling)
	Pause trigger (level detection: high or low)
	 Script trigger <0:3> (edge detection: rising or falling Level detection: high or low)
	4. Reference triggers (edge detection: rising or falling)
	5. Advance trigger (edge detection: rising or falling)
Minimum required trigger pulse width	30 ns
Destinations	1. PFI <0> (SMB jack connector)
	2. PFI <1:3> (DDC connector)
	3. PXI_TRIG <0:6> (PXI backplane)
	Each of the triggers can be routed to any of the

Events (Outputs from the NI 656x)

Marker <0..3>, data active event, ready for start event, Event types.. ready for advance event, End of Record Event

1. PFI <0> (SMB jack connectors) 2. PFI <1:3> (DDC connector) 3. PXI_TRIG <0:6> (PXI backplane)

Each of the events can be routed to any of the destinations with the exception of data active event. Data active event can only be routed to the PFI channels.

destinations with the exception of pause trigger.

Pause trigger can not be exported.

Miscellaneous

Onboard Clock Characteristics (Only Valid When PLL Reference Source is Set to None)

Frequency accuracy	±100 ppm (typical)
Temperature stability	±30 ppm (typical)
Aging	±5 ppm first year (typical)
Power Requirements	
Maximum	16.4 W

Physical

I/O Panel Connectors

Label	External Function(s)	Connector Type
CLK IN	External sample clock, External PLL	SMB jack
	reference input	
PFI 0	Events, triggers	SMB jack
CLK OUT	Exported sample clock,	SMB jack
	exported reference clock	
Digital data and control (DDC)	Digital data channels, exported sample clock, STROBE, events, triggers	12X InfiniBand
CONTROL (DDC)	Sample Clock, STROBE, events, triggers	

PXI	Single 3U CompactPCI slot. PXI Compatible
Environment	
Operating temperature	0 to 45 °C when installed in an NI PXI-1000/B and
Storage temperature	PXI-101x chassis. (Meets IEC-60068-2-1 and IEC-60068-2-2 -20 to 70 °C
Relative humidity	10 to 90%, noncondensing (meets IEC-60068-2-56) 5 to 95%, noncondensing (meets IEC-60068-2-56)

Compliance

Safety

NI 656x devices meet the requirements of the following standards for safety and electrical equipment for measurement, control, and laboratory use:

IEC 61010-1, EN 61010-1 UL 3111-1, UL 61010B-1 CAN/CSA C22.2 No. 1010.1

Note: For full FMC compliance, you must operate this device with shielded cabling. In addition, all covers and filler panels must be installed. See the Declaration of Conformity (DoC) for this product for any additional regulatory compliance information. To obtain the DoC for this product, visit ni.com/hardref.nsf

NI Services and Support

NI has the services and support to meet your needs around the globe and through the application life cycle – from planning and development through deployment and ongoing maintenance. We offer services and service levels to meet customer requirements in research, design, validation, and manufacturing. Visit ni.com/services.

Training and Certification

NI training is the fastest, most certain route to productivity with our products. NI training can shorten your learning curve, save development time, and reduce maintenance costs over the application life cycle. We schedule instructor-led courses in cities worldwide, or we can hold a course at your facility. We also offer a professional certification program that identifies individuals who have high levels of skill and knowledge on using NI products. Visit ni.com/training.

Professional Services

Our Professional Services Team is comprised of NI applications engineers, NI Consulting Services, and a worldwide NI Alliance

Partner Program of more than 600 independent consultants and integrators. Services range from start-up assistance to turnkey system integration. Visit ni.com/alliance.

OEM Support

We offer design-in consulting and product integration assistance if you want to use our products for OEM applications. For information about special pricing and services for OEM customers, visit ni.com/oem.

Local Sales and Technical Support

In offices worldwide, our staff is local to the country, giving you access to engineers who speak your language. NI delivers industry-leading technical support through online knowledge bases, our applications engineers, and access to 14,000 measurement and automation professionals within NI Developer Exchange forums. Find immediate answers to your questions at ni.com/support.

We also offer service programs that provide automatic upgrades to your application development environment and higher levels of technical support. Visit ni.com/ssp.

Hardware Services NI Factory Installation Services

NI Factory Installation Services (FIS) is the fastest and easiest way to use your PXI or PXI/SCXI combination systems right out of the box. Trained NI technicians install the software and hardware and configure the system to your specifications. NI extends the standard warranty by one year on hardware components (controllers, chassis, modules) purchased with FIS. To use FIS, simply configure your system online with ni.com/pxiadvisor.

Calibration Services

NI recognizes the need to maintain properly calibrated devices for high-accuracy measurements. We provide manual calibration procedures, services to recalibrate your products, and automated calibration software specifically designed for use by metrology laboratories. Visit ni.com/calibration.

Repair and Extended Warranty

NI provides complete repair services for our products. Express repair and advance replacement services are also available. We offer extended warranties to help you meet project life-cycle requirements. Visit ni.com/services.

