Conducted Immunity Tests for Automotive Electronics Automotive EMC Seminar - IEEE HK

Jeffrey Tsang Jeffrey.tsang@teseq.com

Teseq Group

I IIISCHAFFNER

safety for electronic systems

27th November 2006

Teseq Group

Luterbach, Switzerland

- Our competence center for conducted equipment:
 - ESD

- Burst
- Surge
- Power Quality
- Automotive
- SCS Accredited Calibration Centre
 Headquarters

s (q_k)=-

Teseq Group

Berlin, Germany

- Our competence center for
 - RF Equipment
 - GTEM Cell, Reverberation Chamber
 - EMC System
 - DKD accredited Calibration Centre

Teseq Group

■Wokingham, UK

- Our competence center for
 - Compliance 3 Software
 - EMC System Project
 - Power Amplifier
 - UKAS accredited Calibration Centre

 $s(q_k) = -$

Turnkey Projects

- 3m Anechoic Chamber
- Radiated Emission System
- Radiated Immunity System
- ESD
- Conducted Emission
- Conducted Immunity

s (q_k)=-

Turnkey Projects

- CISPR25 Emission System x2
- 600V/m Radiated Immunity
 - System
- ESD
- BCI System
- Transient Immunity System
- Magnetic Field Immunity
- Stripline, TEM Cell
- Optical EUT Monitoring

Turnkey Projects

Alpine China

S

200V/m Radiated
 Immunity System
 Automatic EUT monitoring
 System

s (q_k)=-

Turnkey Projects

ESD

- BCI System up 400mA
- Transient Immunity
- Magnetic Immunity
- 1kW Power Amplifier 200V/m

Radiated Immunity System

What is EMC? Special Considerations for Motor Vehicles

- In ISO 7637 and variants, we are considering transients and voltage drops that are coupled over battery lines and signal lines
- Immunity Testing simulates 'Conducted EMC' that occurs during normal or error conditions in a motor vehicle.
- Emissions testing ensures that the noise created by a device is less than specified levels.
- Evaluates the performance of components during simulated real-world EMC events
- These failure conditions are documented and tests defined by International organizations (ISO, SAE) and manufacturers (Ford, VW)

Why EMC is important?

Causes:

- Alternators, Converters, Switching Processes
- Electric Motors, Fuel Pump, Fan Motors
- Lights, Radio
- Every kind of electronic device
- Coupled on Power Lines and Wiring Harnesses
- Engine Start

When devices shall be tested:

- Before production and sampling during production
- During redesigns or modifications
- During initial design phases

Distinct Characteristics in Automotive Conducted EMC

- DC 12V, 24V, 42V
- Lots of different Transients
 - Positive and Negative Transients
 - Emission and Immunity Tests
- Lots of Voltage Fluctuation
- Extremely detailed in test setup:
 - Harness height and length
 - Separation
- Test Fixture
- Load Simulator
- Very long test time

Automotive Conducted EMC Setup

- EUT is set to be in operation mode(s)Test Fixture
 - Load simulator

 $s(q_k)$

Photograph Courtesy of Intertek Automotive Services, Shanghai

EUT example: Climate Control Console

EMC Standards in Automotive Industry

Advanced Test Solutions for EMI

Manufacturers (OEM) **International Bodies** BMW ISO Daimler Chrysler IEC / CISPR Fiat Ford **General Motors** No so difficult Much more Honda complicated Hyundai Mazda Peugeot **Regional Requirement** Nissan Renault 2004/104/EC (e-mark) Toyota SAE (SAE J1113-11, SAE J1113-12) VolkswagenMore! JASO GB/T

ISO Standards on Automotive Electronics

ISO 7637-2: Conducted Transient on power line

7 tests

ISO 7637-3: Conducted Transient no non power line

4 tests

- ISO 16750-2: Environmental conditions and testing for electrical and electronic
 - 6 out 10 tests are voltage fluctuation

ISO 10605: ESD

Lots of the test cases are introduced and modified in OEM Standards

Usually in a more harsh way

All these tests simulate typical electrical environment in a full vehicle

Conducted Transient Immunity & Voltage Fluctuation

OEM standards refer to ISO but different

Different automotive standards require different transient pulses. The requirements are different in:

- Amplitude
- Impulse
- Frequency
- Pulse energy
- Test method, test setup

What are the causes of differences?

- Wiring harness
- Components
- Generators

etc.

Conducted Immunity Tests Summary

ISO7637-2	Ford	Nissan	Volkswagen
	ES-XW7T-1A278-AC	28401NDS02	TL 82066
Pulse 1	CI 210	EQ/TE 01	Pulse 1
Pulse 2a	CI 220	EQ/TE 02	Pulse 2
Pulse 3a	Pulse A1	EQ/TE 03	Pulse 3
Pulse 3b	Pulse A2	EQ/TE 04	Pulse 4
Pulse 4	Pulse B1	EQ/TE 05	Pulse 4b
Pulse 5a	Pulse B2	EQ/IC 01	Pulse 5b
Pulse 5b	Pulse C	pulse 1	Pulse 6
	Pulse D	pulse 2	
	Pulse E	EQ/IC 02	
	Pulse F	pulse 3a	
	Pulse G	pulse 3b	
	CI 230	EQ/IC 03	
	CI 250	EQ/IC 04	
	CI 260	EQ/IC 05	
	Waveform A	EQ/IC 06	
	Waveform B		
	Waveform C		
	Waveform D		
	Waveform E		
	CI 270		

Test Purpose of ISO 7637-2 Test Pulse 1

12 V system

Parameter

24 V system

This test is a simulation of transients due to supply disconnection from inductive loads; it applies to a DUT if as used in the vehicle, it remains connected directly in parallel with an inductive load.⁽¹⁾

Test Purpose of ISO 7637-2 **Test Pulse 1 Variant**

TISEO

dvanced Test Solutions for EMC

Generato

R (Ω) 12 V 42 V

24V

10

4

10

Test Purpose of ISO 7637-2 Test Pulse 2a

Pulse 2a simulates transients due to sudden interruption of currents in a device connected in parallel with the DUT due to the inductances of the wiring harness.

Parameter	12 V system	24 V system	
$U_{\rm S}$	+ 37 V to + 50 V		
R _i	2Ω		
'd	0,05 ms		
t _r	(1 ⁰ _{-0,5}) μs		
11 a	0,2 s	to 5 s	

Test Purpose of ISO 7637-2 Test Pulse 2a Variant

	24 V system	12 V system	Parameter	
	o + 50 V	+ 37 V to	Us	
	Ω	2	R _i	
	ms	0,05	r _d	
	.5) µs	(1 _0	t _r	
	to 5 s	0,2 s	71 ^a	
	ISO 7637-2			
			U .	
Pulse Nun	/		0,422,42	

Ford ES-XW7T-1A278-AC Cl220 pulse F (12V only)

Nissan 28401NDS02 EQ/IC 01 Pulse 2a (12V only)

Volkswagen TL 82066

Pulse	Number	U _s (V)	t _d (μs)	t _r (μs)	Gene	rator (Ω)
					12 V	42 V
Pulse 2	5,000 pulses	+50	50	1	4	10
			_		2	24V
Pulse 2	5,000	+75	200	1	$\left(\right)$	10

pulses

Test Purpose of ISO 7637-2 Test Pulse 2b

Pulse 2b simulates transients from dc motors acting as generators after the ignition is switched off

It is more like a voltage fluctuation test. Most car manufacturers had withdrawn this because it is covered by other voltage fluctuation tests

Test Purpose of ISO 7637-2 Test Pulse 3a/3b

Pulse 3 occurs as the result of switching processes. The characteristics of this pulse are influenced by distributed capacitance and inductance of the wiring harness.

10 ms

90 ms

s (q

Parameters for test pulse 3a

Parameter	12 V system	24 V system
$U_{\rm S}$	- 112 V to - 150 V	- 150 V to - 200 V

Parameters for test pulse 3b

Parameter	12 V system	24 V system	
U_{\S}	+ 75 V to + 100 V	+ 150 V to + 200 V	

Test Purpose of ISO 7637-2 Test Pulse 3a/3b Variant

Advanced Test Solutions for EMC

Most manufacturers bring these tests into their own EMC standards except Ford

Test Purpose of ISO 7637-2 Test Pulse 4

Pulse 4 is the voltage reduction caused by energizing the starter motor circuits of the internal combustion engines

Test Purpose of ISO 7637-2 Test Pulse 4

All manufacturers requires Starting Profile test but in more complicated way

	Pulse	Number	U _B (V)	U, (V)	U _a (V)	t ₁₀ (ms)	te (ms)
4	12 V	10	12	7	5,5	≤5	2,000
4b	12 V	10	12	9	7	≤5	1,000
4	24 V	10	24	18	12	≤ 10	3,000
4	42 V	10	36	18	15	≤ 10	2,000

Volkswagen TL 82066 Pulse 4/4b

Test Purpose of ISO 7637-2 Test Pulse 4 Variant

Very Complicated Starting Profile tests

³⁰ Power Cycling

urop resistant

......

Test Purpose of ISO 7637-2 Test Pulse 5a/5b

Pulse 5 is a simulation of a load dump transient occurring in the event of a discharged battery being disconnected while the alternator is generating charging current with other loads remaining on the alternator circuit at this moment

Test Purpose of ISO 7637-2 Test Pulse 5a/5b variant

Test pulse G - Parameters

- All manufacturers requires Load Dump test but almost all of them are specified in different ways
- This pulse generate high energy and often destructive

s (q_k) - Const Purpose of ISO 7637-2 Test Pulse 5a/5b

Manufacturer EMC Standards Tests

Ford ES-XW7T-1A278-AC CI220

s (

These pulses are caused by actual mechanical relay with defined circuitry

s (q_k)=

0

Nissan 28401NDS02 EQ/IC 04 : Resistance to power supply micro-interruptions

s (q_k) = 1 q_k-Q Manufacturer EMC Tests

Siemens VDO Fuel Pump Transient test for IPC

Pulse Generation System Typical Setup

Teseq Pulse Generation System

Teseq Conducted Immunity System Automotive Electronics

s (

ISO SAE JASO BMW Daimler Chrysler Fiat Ford General Motors Honda Hyundai Mazda Peugeot Nissan Renault Toyota Volkswagen Etc., T35E0

Advanced Test Solutions for EMC

ISO 7637-2 Emission

Automotive EMI

- CISPR12, 25 -> Continuous Interference
- ISO 7637-2 -> Transient due to switching process

ISO 7637-2

- Must do test
- Test procedure is straight forward
- Lots of details in test setup
- Lots of mal-practice in the market

ISO7637-2 Emissions Test Layout

Cable lengths, 50 -0/+10 mm above GND plane, disturbance voltage shall be measured as close to the DUT terminals as possible

41

ISO 7637-2 Emissions Test Layout

For applications where the DUT is far from the switch, the setup should have the AN between the switch (simulating the wiring harness) and the DUT. "Slow Pulse Setup" Millisecond range or slower

ISO 7637-2 Emissions Test Layout

Advanced Test Solutions for EMC

Emissions Relay or Electronic Switch?

When to use a relay and when the electronic switch:

в

Е

Relay

- Voltages over 400V
- Usually must be approved by OEM
- Poor Repeatability, Slow/Chattering
- Must be replaced
- Should be production relay from the vehicle containing the DUT

Electronic Switch

- Less than 400V
- Fast and Repeatable
- Voltage Drop Must be Accounted For $\Delta U \leq 1V$ at 25 A

Potter & Brumfield

Bosch

Differences: AN(LISN) defined in ISO7637-2 & CISPR25

ISO 7637 and CISPR 25 Artificial Network are NOT the same

Differences Between ISO 7637 and CISPR25 Artificial Networks

How to measure?

- Test procedure is quiet straight forward but has to be done manually
- Search for the worst cases (highest amplitude) by:
 - Changing the switch on/off time
 - Changing the switching repetition

Typical Measurement Result

Advanced Test Solutions for EMC

Very Heavily Inductive

s (q

Mixed R/L Load

Much more severe pulses from DUTs with high inductance

ISO7637-2 Emissions Limits

Table C.2 — Suggested limits for the classification of 12 V equipment

Pules amplitude (17.)		Suggested limit	for $U_{\rm g}$ for sever	ity level	
Puise ampitude (0 _S)	Va	IV	ш	Ш	1
Positive	-	+ 100 V	+ 75 V	+ 50 V	+ 25 V
Negative	-	- 150 V	- 100 V	– 50 V	- 25 V

Table C.3 — Suggested	l limits for the classific	ation of 24 V equipment
-----------------------	----------------------------	-------------------------

Pulse amplitude (17.)	Suggested limit for U_s for severity level						
Puise amplitude (0 _S)	Va	IV	III	11	1		
Positive	-	+ 200 V	+ 150 V	+ 100 V	+ 50 V		
Negative	2 <u>17</u> 5	- 600 V	- 450 V	- 300 V	- 150 V		
a Values to be determined by vel	nicle manufacture	r and equipment supp	dier,				

Ford ES-XW7T-1A278-AC CE410 Limits <+100V, >-150V Only use Fast Pulse setup

Volkswagen TL 82066 Maximum permissible transient emission

Only use Fast Pulse setup

S

Table 7 – Maximum permissible transient emission for 12-V and 42-V interference sources

Pulse	U _s (V)	t _d (μs)	t _r (μs)
Pulse 1	≥ -100	≤ 2,000	≥ 1
Pulse 2	≤ +50	≤ 50	≥ 1
Pulse 3a	≥ -150	≤ 0.1	≥ 0.005
Pulse 3b	≤ +100	≤ 0.1	≥ 0.005
Pulse 4	not applicable		
Pulse 5b (only 42 V)	≤ 16	≤ 300,000	10,000

Table 8 – Maximum permissible transient emission for 24-V interference sources

Pulse	U _s (V)	t _d (μs)	t _r (μs)
Pulse 1	≥ -150	≤ 2,000	≥ 1
Pulse 2	≤ +75	≤ 200	≥ 1
Pulse 3a	≥ -150	≤ 0.1	≥ 0.005
Pulse 3b	≤ +100	≤ 0.1	≥ 0.005
Pulse 4	not applicable		
Pulse 5	not applicable		

Nissan 28401NDS02 EQ/MC 01 Measurement of conducted transient emission

s (q_k) Nissan 28401NDS02 EQ/MC 01 Measurement of conducted transient emission

Complicated Measurement Setup

Teseq Transient Emission System

s (q_k

AES 5500

Advanced Test Solutions for EMC

www.teseq.com

Jeffrey Tsang Jeffrey.tsang@teseq.com Thank you!

Your Teseq partner: Hong Kong Denetron International Limited T+852 2 707 9132 dhk@denetron.com.hk