

sensors expo & conference

Wireless Power for Battery-Free Wireless Sensors

Overview

Powercast technology overview

Applications for wireless sensors

Battery-free reference design

About Powercast

- Driving innovation and commercialization of wireless power based on RF energy
- Custom engineering and components

- Applications / Markets
 - Wireless sensors and devices
 - Defense
 - Aerospace
 - Manufacturing
 - Others

Wireless Power (over distance)

- Dedicated source transmits common radio waves
 - Ambient sources augment when available: Cellular, TV, Radio, etc.
- Receiver
 - Captures the RF energy with an antenna
 - Converts the RF energy to the appropriate DC voltage
 - Stores the DC energy
- Energy transfer is controllable and predictable by design

Multiple forms of "wireless power"

Wireless

Batteries

Laser / Infrared

Harvesting

Solar

Vibration

tion

Thermal

powercastco.com

wireless power for a wireless world

Ambient Energy Harvesting

Benefits

- "Free" Energy
- Multiple methods with many sources
 - Solar
 - Vibration
 - Thermal
 - RF

Drawbacks

- Energy received is dependent on the source
- Sources may be predictable but they are uncontrollable
- No source = No energy

EH is fine for some applications, but not all.

Dedicated Source – Controllable by Design

System Parameters

- RF Power Level
- Frequency
- Transmit Antenna
- Number of Transmitters
- Distance
- Receive Antenna
- Device Duty Cycle
- Cost

Wireless Power Transfer with Radio Waves...

Governed by Friis Equation

$$P_{R} = P_{T} \frac{G_{T}(\theta_{T}, \phi_{T})G_{R}(\theta_{R}, \phi_{R})\lambda^{2}}{(4\pi r)^{2}} (1 - \left|\Gamma_{T}\right|^{2})(1 - \left|\Gamma_{R}\right|^{2})\left|\hat{\mathbf{p}}_{T} \cdot \hat{\mathbf{p}}_{R}\right|^{2}$$

 P_R -received power

 P_T – transmit power

 $G_{\mathbb{R}}(\theta_{\mathbb{R}},\phi_{\mathbb{R}})$ – angular dependent receiver gain

 $G_T(\theta_T, \phi_T)$ – angular dependent transmitter gain

 Γ_{τ} -transmitter reflection coefficent

 Γ_{R} -receiver reflection coefficent

 $\hat{\mathbf{p}}_{\tau}$ -transmitter polarization vector

 $\hat{\mathbf{p}}_R$ - receiver polarization vector

r – distance between the transmitter and receiver

 λ – wavelength

...Simplified

After parameter selection equation simplifies to:

$$P_{R} = \frac{eC}{r^{2}}$$

C - System level constant

e – Efficiency of the harvester

... There are many parameters to adjust for system optimization but after selection, calculations are straight forward.

Antennas have a significant impact on power transfer

Sample Antennas Designs

7.26 x 5.78cm

2.45GHz Patch Gain =4.9 Beam= 32deg

2.45GHz Rx Array

Gain =12

Beam=~90deg

2.45GHz Tx Array

Gain =43

Beam = ~20deg

powercastco.com

wireless power for a wireless world

System Comparison

Achieving Higher Performance with Lower Power

- Single Tx
- One-to-Many
- Uneven coverage
- Higher Tx Power

Minimum desired power

Not enough power

- - Multiple Tx
 - Any-to-Any
 - Even coverage
 - Lower total Tx power
 - More robust

Wireless Power distribution is similar to a cellular network

- Any to Any
- Redundancy
- Enables Mobility
- Distributed
- Area Coverage

powercastco.com

13

Vision: Unified Power and Communications for a Ubiquitous Sensor Network

The Opportunity – Wireless Sensors

Applications

- Building automation
- Energy management
- Location tracking
- Condition monitoring
- Rotational Machinery

Benefits of Wireless Power

- Reduced wiring
- Sealed devices
- Reduced maintenance
- Controllable power
- Difficult locations

Application – Building Automation

- Indoor sensors
- Low light areas
- Behind walls
- Above ceilings

Application – Location Tracking

- Battery-Free Beacons
- Active Inside
- Inactive Outside
- Longer range "RFID"
- Battery-Free "RTLS"

Application – Industrial Monitoring

- Lack of vibration or heat source
- Hazardous areas
- Distance
- Battery trickle-charge
- Non-critical

Application – Rotating Machinery

powercastco.com

wireless power for a wireless world

Issues with Primary Batteries in Wireless Sensor Networks

Size of Sensor Network

- Intentional constraints to save power
 - Design, Operation, Implementation
 - Majority of energy consumed sleeping
- Reliability
 - Retransmissions
 - Lifetime vs. cell/pack size
 - Shelf life?
 - Temperature performance
- Battery replacement cost
- Device location / placement
- Ecology
- Limitations of scale

Majority of battery life is consumed in sleep mode

Average energy ≈ Sleep energy

Battery-Free Concept

Send power as needed - 1) On-Demand, 2) Scheduled, or 3) Continuously

Battery-Free Reference System

Simple "2 wire" hardware integration for any RF module

powercastco.com

wireless power for a wireless world

Powerharvester[™] **Module**

P2100 – 915MHz, Charge & Fire

Features

- High Conversion Efficiency
- Internal Charge Management
- High Sensitivity
- Configurable Output Voltage
- 50mA Output Current
- Capacitor Overvoltage Protection
- Internally Matched to 50 ohms
- Low Quiescent Current (<1μA)
- Simple Integration
- Small Footprint

Energy StorageChoosing the Supercap Value

Energy Available

$$E = \frac{1}{2}C(V_{MAX}^2 - V_{MIN}^2) = \frac{1}{2}C(1.16^2 - 1.03^2)$$

$$E = 0.142C$$

Capacitor Value

$$C=7.02E/e$$
 $epprox 0.82$ DC-DC conversion efficiency $C=8.57E$

0.5712

E =required load energy

Voltage Window (Hysteresis)

GZ115 cap size = 0.16F (measured) Stored energy = 22.7 mJ

TI eZ430-RF2500T

powercastco.com

Note: V1.5 Software

P2100 Charge Current

P2100 Capacitor Charge Current at 1.1V

Module Input Power (dBm)

Energy Harvesting Performance

Reference System Summary

- Stored energy = 22.7 mJ
- Usable energy = 18.6 mJ (current design)
- Initial start-up and data transmission = 3.7 mJ
- 20ft range (3W source, sleeve-dipole Rx antenna)
- Temperature and voltage sensing
- Extremely long life NO BATTERIES!!!

Reference System On-Going Efforts

Optimizing Performance

- Reduce the capacitor size by modifying the software startup sequence
 - Target joule usage of 100uJ will require less than 1000uF capacitor
- Improve charge management efficiency
- Lower the harvester sensitivity to extend range

Targets

- 100uJ per activation
- Credit card form factor
- 100+ ft range (2-4X increase)
- 3Q09 timeframe

Summary

- Wireless power via RF energy harvesting is capable of powering wireless sensors over distance
- Capacitors offer an attractive alternative to disposable batteries
- Wireless power uniquely provides controllable power options: on-demand, scheduled, continuous
- Zero Stand-By operation eliminates design concerns of driving down sleep current:
 Average Current ≈ Sleep Current ≈ 0

Thank You

Visit us in Booth #1026

www.powercastco.com

