

Using Cross-Point Arrays to Achieve Fast Write Speeds

Christophe Chevallier

Rambus Inc. August 22, 2012

True Cross Point Arrays, without a transistor per cell, are necessary to achieve high density memories. Can they be fast too?

True Cross Point Arrays, without a transistor per cell, are necessary to achieve high density memories. Can they be fast too?

True Cross Point Arrays, without a transistor per cell, are necessary to achieve high density memories. Can they be fast too?

Cross Point Arrays can achieve high read and write bandwidth in high density memories

- Techniques:
 - Hierarchical Bit Line structure
 - IR drop compensation
 - Low current cell
 - Gain Stage Sensing
 - Parallelism
- Impact:
 - Improved read / write throughput
 - Improved read latency

Local Bitline Architecture

256 Mb arrays "Bricks" divided in 2Mb local blocks

Row IR Drop with ΔV and location compensation, plus counter bias

- Adjust Driver voltage depending on location of cells being programmed
- Added bias on unselected Word Lines will bias unselected Bit Lines
- Total Word Line current around 100 uA

Latency - constrained by sensing Small array → shorter latency Low current → longer latency

6

Power and Speed: Single Block Throughput

Power and Speed: Single Block Throughput

Power and Speed: Single Block Throughput

Power and Speed: 16 Block Throughput

Power and Speed: 16 Block Throughput

Power and Speed: 16 Block Throughput

512Gb/1Tb Storage Chip with Multi-Plane **Architecture**

© 2012 Rambus Inc.

10

© 2012 Rambus Inc.

Tuesday, August 28, 12