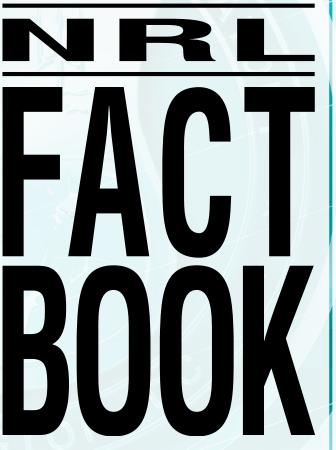
NAVAL RESEARCH LABORATORY LABOR PROPRIE RESEARCH 2014

MASHINGTON

the NAVY's corporate laboratory

The NRL Fact Book is a reference source for information about the Naval Research Laboratory (NRL). It is updated and placed on NRL's Web site (http://www.nrl.navy.mil) annually. It is printed every other year. To provide additional information to the reader, a point of contact is listed for each activity.


NRL has a continuing need for physical scientists, mathematicians, engineers, and support personnel. Vacancies are filled without regard to age, race, creed, sex, or national origin. Information concerning current vacancies is furnished on request. Address all such inquiries to:

Human Resources Office Personnel Operations Branch (Code 1810) Naval Research Laboratory Washington, DC 20375-5320

http://www.nrl.navy.mil

Quick Reference Telephone Numbers					
	NRL WASHINGTON	NRL- SSC	NRL- MONTEREY	NRL CBD	NRL VXS-1 Patuxent River
Hotline	(202) 767-6543	(202) 767-6543	(202) 767-6543	(202) 767-6543	(202) 767-6543
Personnel Locator	(202) 767-3200	(228) 688-3390	(831) 656-4763	(410) 257-4000	(301) 342-3751
DSN	297- or 754-	828	878	_	342
Direct-in-Dialing	767- or 404-	688	656	257	342
Public Affairs	(202) 767-2541	(228) 688-5328	(202) 767-2541	_	(202) 767-2541

NAVAL RESEARCH LABORATORY WASHINGTON, DC 20375-5320

Contents

1 INTRODUCTION TO THE NAVAL RESEARCH LABORATORY

- 1 Mission
- 3 The Naval Research Laboratory in the Department of the Navy
- 4 NRL Functional Organization
- 5 Current Research
- 8 Major Research Capabilities and Facilities
- 15 NRL Sites and Facilities

17 EXECUTIVE DIRECTORATE

- 19 Executive Directorate Code 1000 and Code 1001
- 20 Commanding Officer
- 21 Director of Research
- 23 Executive Council
- 24 Research Advisory Committee
- 25 Office of Technology Transfer
- 26 Office of Program Administration and Policy Development
- 27 Office of Counsel
- 28 Institute for Nanoscience
- 30 Command Support Division
- 32 Military Support Division
- 34 Scientific Development Squadron ONE (VXS-1)
- 36 Laboratory for Autonomous Systems Research
- 38 Human Resources Office
- 40 Ruth H. Hooker Research Library

41 BUSINESS OPERATIONS DIRECTORATE

- 43 Business Operations Directorate Code 3000
- 44 Associate Director of Research for Business Operations
- 46 Contracting Division
- 48 Financial Management Division
- 50 Supply and Information Services Division
- 52 Research and Development Services Division

55 SYSTEMS DIRECTORATE

- 57 Systems Directorate Code 5000
- 58 Associate Director of Research for Systems
- 60 Radar Division
- 62 Information Technology Division
- 64 Optical Sciences Division
- 66 Tactical Electronic Warfare Division

69 MATERIALS SCIENCE AND COMPONENT TECHNOLOGY DIRECTORATE

- 71 Materials Science and Component Technology Directorate Code 6000
- 72 Associate Director of Research for Materials Science and Component Technology
- 74 Laboratories for Computational Physics and Fluid Dynamics
- 76 Chemistry Division
- 78 Materials Science and Technology Division
- 80 Plasma Physics Division
- 82 Electronics Science and Technology Division
- 84 Center for Bio/Molecular Science and Engineering

87 OCEAN AND ATMOSPHERIC SCIENCE AND TECHNOLOGY DIRECTORATE

- 89 Ocean and Atmospheric Science and Technology Directorate Code 7000
- 90 Associate Director of Research for Ocean and Atmospheric Science and Technology
- 92 Office of Research Support Services (NRL-SSC)
- 94 Acoustics Division
- 96 Remote Sensing Division
- 98 Oceanography Division
- 100 Marine Geosciences Division
- 102 Marine Meteorology Division
- 104 Space Science Division

107 NAVAL CENTER FOR SPACE TECHNOLOGY

- 109 Naval Center for Space Technology Code 8000
- 110 Director of Naval Center for Space Technology
- 112 Space Systems Development Department
- 114 Spacecraft Engineering Department

117 TECHNICAL OUTPUT, FISCAL, AND PERSONNEL INFORMATION

- 119 Technical Output
- 120 FY 2012/2013 Sources of New Funds (Actual)
- 121 FY 2012/2013 Uses of Funds
- 122 FY 2012 Total New Funds by Category
- 123 FY 2013 Total New Funds by Category
- 124 Personnel Information

125 PROFESSIONAL DEVELOPMENT

- 127 Programs for NRL Employees
- 129 Programs for Non-NRL Employees

131 GENERAL INFORMATION

- 133 Maps
- 140 Key Personnel

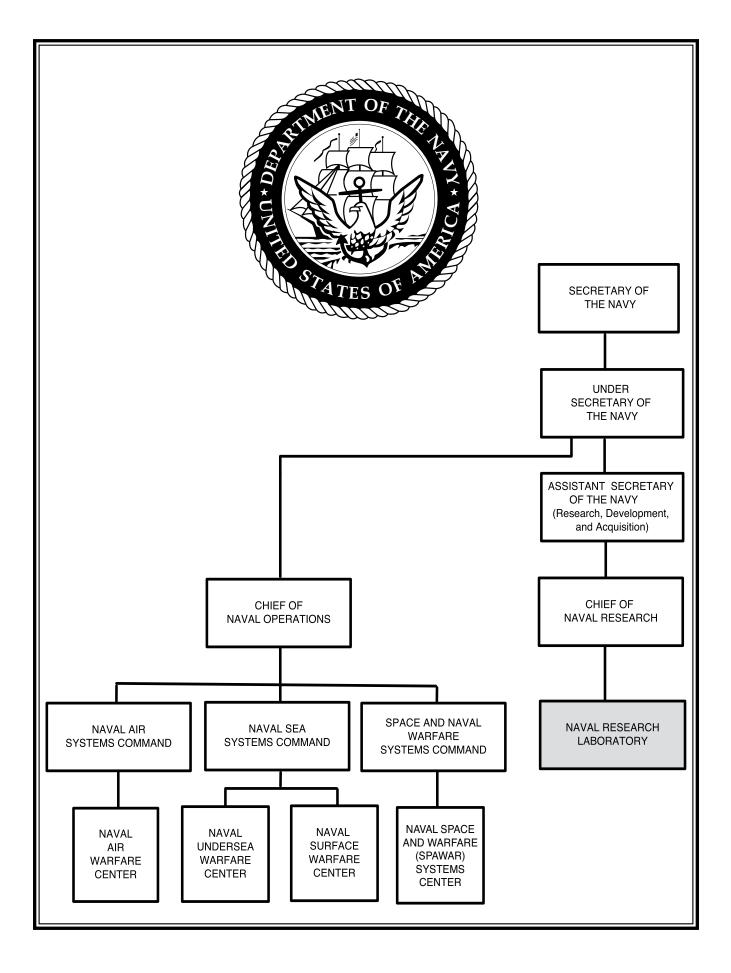
Introduction to the Naval Research Laboratory

Mission

To conduct a broadly based multidisciplinary program of scientific research and advanced technological development directed toward maritime applications of new and improved materials, techniques, equipment, systems, and ocean, atmospheric, and space sciences and related technologies.

The Naval Research Laboratory

- Provides primary in-house research for the physical, engineering, space, and environmental sciences;
- Provides broadly based exploratory and advanced development programs in response to identified and anticipated DON needs;
 - Provides broad multidisciplinary support to the Naval Warfare Centers;
- Provides space and space systems technology development and support; and
- Assumes responsibility as the Navy's corporate laboratory.


The Naval Research Laboratory is located in Washington, DC, on the east bank of the Potomac River.

The NRL Marine Meteorology Division is located in Monterey, California (NRL-MRY).

The Naval Research Laboratory Detachment is located at Stennis Space Center, Bay St. Louis, Mississippi (NRL-SSC).

The Naval Research Laboratory in the Department of the Navy

The Naval Research Laboratory is the Department of the Navy's corporate laboratory, and it reports to the Chief of Naval Research. As the corporate laboratory of the Navy, NRL is the principal in-house component in the Office of Naval Research's (ONR) effort to meet its science and technology responsibilities.

NRL has had a long and fruitful relationship with industry as a collaborator, contractor, and through Cooperative Research and Development Agreements (CRADAs). NRL values this linkage and continues to develop it.

NRL is an important link in the Navy Research, Development, and Acquisition (RD&A) chain. Through NRL, the Navy has direct ties with sources of fundamental ideas in industry and the academic community throughout the world and provides an effective coupling point to the R&D chain for ONR.

SPACECRAFT ENGINEERING DEPARTMENT 1830 DEEOO 3005 DEP FOR SMALL BUS 3540 SAFETY OFFICER *DIRECT ACCESS NAVAL CENTER FOR SPACE TECHNOLOGY 8000 HS-IRB CHAIR RESEARCH ADVISORY COMMITTEE SPACE SYSTEMS DEVELOPMENT DEPARTMENT EXECUTIVE ASSISTANT TO THE DIRECTOR OF RESEARCH 1001.1 FOR FOR TECHNOLOGY DEPLOYMENT 1001.2 1003 ADMINISTRATIVE RESOURCES MANAGER EXECUTIVE ASSISTANT 7600 7200 7400 MARINE GEOSCIENCES DIVISION REMOTE SENSING DIVISION SPACE SCIENCE DIVISION OCEAN AND ATMOSPHERIC SCIENCE AND TECHNOLOGY DIRECTORATE ASSOC DIRECTOR OF RESEACH 7000 LAB FOR AUTONOMOUS SYSTEMS RESEARCH 1700 1004 1006 1100 1800 OFFICE OF TECHNOLOGY TRANSFER OFFICE OF PROGRAM ADMIN & POLICY DEVELOPMENT HUMAN RESOURCES OFFICE OFFICE OF RESEARCH SUPPORT SERVICES 7030 7100 7300 7500 INSTITUTE FOR NANOSCIENCE OCEANOGRAPHY DIVISION MARINE METEOROLOGY DIVISION ACOUSTICS DIVISION CENTER FOR BIOMOLECULAR SCIENCE & ENGINEERING 6900 6300 6700 MATERIALS SCIENCE AND TECHNOLOGY DIVISION DIRECTOR OF RESEARCH PLASMA PHYSICS DIVSION NAVAL RESEARCH LABORATORY MATERIALS SCIENCE AND COMPONENT TECHNOLOGY DIRECTORATE ASSOC DIRECTOR OF RESEARCH 6000 COMMANDING OFFICER * SCIENTIFIC DEVEL SQUADRON ONE 1600 LABORATORIES FOR COMPUTATIONAL PHYSICS & FLUID DYNAMICS 6040 ELECTRONICS SCIENCE AND TECHNOLOGY DIVISION 6800 6100 6400 LAB FOR COMPUTATIONAL PHYSICS & FLUID DYNAMICS CHEMISTRY DIVISION PUBLIC AFFAIRS OFFICE 1030 OFFICE OF COUNSEL 1008 5700 CHIEF STAFF OFFICER 1002 5500 TACTICAL ELECTRONIC WARFARE DIVISION 1400 INFORMATION TECHNOLOGY DIVISION MILITARY SUPPORT DIVISION SYSTEMS DIRECTORATE ASSOC DIRECTOR OF RESEARCH 5000 1200 COMMAND SUPPORT DIVISION 5600 5300 OPTICAL SCIENCES DIVISION RADAR DIVISION EXECUTIVE COUNCIL 3500 3300 RESEARCH & DEVELOPMENT SERVICES DIVISION FINANCIAL MANAGEMENT DIVISION INSPECTOR GENERAL 1000.1 ASSOC DIRECTOR OF RESEARCH 3000 BUSINESS OPERATIONS DIRECTORATE MANAGEMENT INFORMATION SYSTEMS OFFICE 3030 SUPPLY AND INFORMATION SERVICES DIVISION 3400 3200 CONTRACTING DIVISION

NRL Functional Organization

Current Research

The following areas represent broad fields of NRL research. Under each, more specific topics that are being investigated for the benefit of the Navy and other sponsoring organizations are listed. Some details of this work are given in the *NRL Review*, published annually. More specific details are published in reports on individual projects provided to sponsors and/or presented as papers for professional societies or their journals.

Advanced Radio, Optical, and IR Sensors

Advanced optical sensors EM/EO/meteorological/oceanographic sensors Satellite meteorology Precise space tracking Radio/infrared astronomy Infrared sensors and phenomenology UV sensors and middle atmosphere research Image processing VLBI/astrometry Optical interferometry Imaging spectrometry Liquid crystal technology

Autonomous Systems

Algorithms for control of autonomous systems Cognitive robotics Human-robot interaction Perception hardware and algorithms High-level reasoning algorithms Machine learning and adaptive algorithms Sensors for autonomous systems Power and energy for autonomous systems Networking and communications for mobile systems Swarm behaviors Test and evaluation of autonomous systems

Computer Science and Artificial Intelligence

Standard computer hardware, development environments, operating systems, and run-time support software Methods of specifying, developing, documenting, and maintaining software Human-computer interaction Intelligent systems for resource allocation, signal identification, operational planning, target classification, and robotics Parallel scientific libraries Algorithms for massively parallel systems Digital progressive HDTV for scientific visualization Adaptive systems: software and devices Advanced computer networking Simulation management software for networked high performance computers Interactive 3D visualization tools and applications Real-time parallel processing Scalable, parallel computing Petaflop computing, globally distributed file systems, terabit-per-second networking

Directed Energy Technology

High-energy lasers Laser propagation Solid-state and fiber lasers High-power microwave sources RAM accelerators Pulse detonation engines Charged-particle devices Pulse power DE effects

Electronic Electro-optical Device Technology

Integrated optics Radiation-hardened electronics Nanotechnology Microelectronics Microwave and millimeter-wave technology Hydrogen masers for GPS Aperture syntheses Electric field coupling Vacuum electronics Focal plane arrays Infrared sensors Radiation effects and satellite survivability Molecular engineering

Electronic Warfare

EW/C2W/IW systems and technology COMINT/SIGINT technology EW decision aids and planning/control systems Intercept receivers, signal processing, and identification systems Passive direction finders Decoys and offboard countermeasures (RF and IR) Expendable autonomous vehicles/UAVs Repeaters/jammers and EO/IR active countermeasures and techniques Platform signature measurement and management Threat and EW systems computer modeling and simulations Visualization Hardware-in-the-loop and flyable ASM simulators Missile warning infrared countermeasures RF environment simulators EO/IR multispectral/hyperspectral surveillance

Enhanced Maintainability, Reliability, and Survivability Technology

Coatings Friction/wear reduction Water additives and cleaners Fire safety Laser hardening Satellite survivability Corrosion control Automation for reduced manning Radiation effects Mobility fuels Chemical and biological sensors Environmental compliance

Environmental Effects on Naval Systems

Meteorological effects on communications Meteorological effects on weapons, sensors, and platform performance Air quality in confined spaces Electromagnetic background in space Solar and geomagnetic activity Magnetospheric and space plasma effects Nonlinear science Ionospheric behavior Oceanographic effects on weapons, sensors, and platforms EM, EO, and acoustic system performance/ optimization Environmental hazard assessment Contaminant transport **Biosensors** Microbially induced corrosion

Imaging Research/Systems

Remotely sensed signatures analysis Real-time signal and image processing algorithms/ systems Image data compression methodology Image fusion Automatic target recognition Scene/sensor noise characterization Image enhancement/noise reduction Scene classification techniques Radar and laser imaging systems studies Coherent/incoherent imaging sensor exploitation Remote sensing simulation Hyperspectral imaging Microwave polarimetry

Information Technology

High-performance, all-optical networking Antijam communication links Next-generation, signaled optical network architectures Integrated voice and data Information security (INFOSEC) Voice processing High performance computing High performance communications Requirements specification and analysis Real-time computing Wireless mobile networking Behavior detection Machine learning Information filtering and fusion Integrated internet protocol (IP) and asynchronous transfer mode (ATM) multicasting Reliable multicasting Wireless networking with directional antennas Sensor networking Communication network simulation Bandwidth management (quality of service) High assurance software Distributed network-based battle management High performance computing supporting uniform and nonuniform memory access with single and multithreaded architectures Distributed, secure, and mobile information infrastructures Simulation-based virtual reality High-end, progressive HDTV imagery processing and distribution Defensive information warfare Virtual reality/mobile augmented reality 3D multimodal interaction Model integration (physical, environmental, biological, psychological) for simulation Command decision support Data fusion

Marine Geosciences

Marine seismology, including propagation and noise measurement Geoacoustic modeling in support of acoustic performance prediction

Geomagnetic modeling in support of nonacoustic system performance prediction

Static potential field measurement and analysis (gravity and magnetic) in support of navigation and geodesy

Geotechnology/sediment dynamics affecting mine warfare and mine countermeasures

- Foreshore sediment transport
- Geospatial information, including advanced seafloor mapping, imaging systems, and innovative object-oriented digital mapping models, techniques, and databases

Materials

Superconductivity Magnetism Biological materials Materials processing Advanced alloy systems Solid free-form fabrication Environmental effects Energetic materials/explosives Aerogels and underdense materials Nanoscale materials Nondestructive evaluation Ceramics and composite materials Thin film synthesis and processing Electronic and piezoelectric ceramics Thermoelectric materials Active materials and smart structures Computational material science Paints and coatings Flammability Chemical/biological materials Spintronic materials and half metals Biomimetic materials Multifunctional materials Power and energy Synthetic biology

Meteorology

Global, theater, tactical-scale, and on-scene numerical weather prediction Data assimilation and physical initialization Atmospheric predictability and adaptive observations Adjoint applications Marine boundary layer characterization Air/sea interaction; process studies Coupled air/ocean/land model development Tropical cyclone forecasting aids Satellite data interpretation and application Aerosol transport modeling Meteorological applications of artificial intelligence and expert systems On-scene environmental support system development/nowcasting Tactical database development and applications

Meteorological tactical decision aids Meteorological simulation and visualization

Ocean Acoustics

Underwater acoustics, including propagation, noise, and reverberation Fiber-optic acoustic sensor development Deep ocean and shallow water environmental acoustic characterization Undersea warfare system performance modeling, unifying the environment, acoustics, and signal processing Target reflection, diffraction, and scattering Acoustic simulations Tactical decision aids Sonar transducers Dynamic ocean acoustic modeling Underwater acoustic communications

Oceanography

Oceanographic instrumentation Open ocean, littoral, polar, and nearshore oceanographic forecasting Shallow water oceanographic effects on operations Modeling, sensors, and data fusion Bio-optical and fine-scale physical processes Oceanographic simulation and visualization Coastal scene generation Waves, tides, and surf prediction Coupled model development Sea-ice modeling Coastal ocean characterization Oceanographic decision aids Global, theater, and tactical-scale modeling Remote sensing of oceanographic parameters Satellite image analysis

Space Systems and Technology

Space systems architectures and requirements Advanced payloads and optical communications Controllers, processors, signal processing, and VLSI Precision orbit estimation Onboard autonomous navigation Satellite ground station engineering and implementation Tactical communication systems Spacecraft antenna systems Launch and on-orbit support Precise Time and Time Interval (PTTI) technology Atomic time/frequency standards/instrumentation Passive and active ranging techniques Design, fabrication, and testing of spacecraft and hardware Structural and thermal analysis Attitude determination and control systems Reaction control Propulsion systems Navigation, tracking, and orbit dynamics Spaceborne robotics applications

Surveillance and Sensor Technology

Point defense technology Imaging radars Surveillance radars Multifunction RF systems High-power millimeter-wave radar Target classification/identification Airborne geophysical studies Fiber-optic sensor technology Undersea target detection/classification EO/IR multispectral/hyperspectral detection and classification Sonar transducers Electromagnetic sensors, gamma ray to RF wavelengths SQUID for magnetic field detection Low observables technology Ultrawideband technology Interferometric imagery Microsensor system Digital framing reconnaissance canvas Biologically based sensors Digital radars and processors

Undersea Technology

Autonomous vehicles Bathymetric technology Anechoic coatings Acoustic holography Unmanned undersea vehicle dynamics Weapons launch

Major Research Capabilities and Facilities

Institute for Nanoscience (Code 1100)

Clean room (5000 sq ft), quiet (4000 sq ft), and ultraquiet (1000 sq ft) laboratories 35 dB and 25 dB acoustically isolated zones $20^{\circ}C \pm 0.5^{\circ}C$ and $0.1^{\circ}C$ controlled temperature zones Vibration isolation Vertical (mm, pp) <0.1 @ 70-500 Hz Horizontal (mm, pp) <0.1 @ 70–500 Hz Clean electrical power, free from SCR spikes and other interferences, and $< \pm 10\%$ voltage change <0.5 mG at 60 Hz EMI $45 \pm 5\%$ relative humidity Class 100 clean room Source of water meeting ASTM D5127 spec. Type E1.2 Clean Room Major Equipment Monitoring system (toxic gas, hazmat, temperature) Laminar flow wet benches for localized Class 1/10 ambient in clean room Air purification unit to remove local organic contamination DI water system Wire bonder Two electron-beam writers Two scanning electron microscopes Atomic force microscope Metallurgical optical microscopes 3D optical profiler Mask aligners (2, 1, and 0.2 µm) Electron beam evaporation systems Low pressure chemical vapor deposition (LPCVD) system Magnetron sputter deposition system Reactive ion etching systems Dual-beam focused ion beam workstation Optical pattern generating system Laser micromachining system Plasma-enhanced chemical vapor deposition (PECVD) system Plasma-enhanced atomic layer deposition system Chlorine reactive ion etching system Other Major Equipment Transmission electron microscope UHV multi-tip scanning tunneling microscope/ nanomanipulator

Laboratory for Autonomous Systems Research (Code 1700)

- Prototyping High Bay: (150 ft by 75 ft by 30 ft), contains real-time motion capture system, directional environmental sounds, GPS repeater and simulator
- Four human-systems interaction labs contain eye trackers and multiuser, multitouch monitors
- Littoral High Bay with 45 ft by 25 ft by 5.5 ft deep pool with 16-channel wave generator and slope that allows simulation of littoral environments; multiple sediment tanks (from 5 ft to 16 ft); GPS repeater and simulator; portable tank 4 ft by 36 ft

- Desert High Bay with a 40 ft by 14 ft area of sand 2.5 ft deep, and 18 ft high rock walls; high speed fans and variable lighting
- Tropical High Bay, a 60 ft by 40 ft greenhouse, contains a re-creation of a southeast Asian rain forest with native plants; nominal 80 degrees temperature and 80% humidity; can generate rain events up to 6 in. per hour; Rainforest contains waterfall, stream, and pond
- Outdoor test range is a 1/3 acre highland forest with a waterfall, stream and pond, and terrain of differing difficulty including large bolder structures and earthen berms
- Sensor lab contains environmental chambers (small and walk-in) with maximum temperature range of -50°F to 375°F, relative humidity from 10% to 95% and for smaller chamber, barometric pressure of -9000 feet to 100,000 feet; lab also contains various fume hoods, biosafety cabinet, anechoic chamber, vapor generators, and other specialized equipment
- Power and energy lab contains specialized equipment including a battery dry room, glove box, isolation room, and fume hoods

Research and Development Services Division (Code 3500)

Military construction

Research support engineering

Planning

- Full range of facility contracting, including construction, architect/engineering services, facilities support, and reserved parking
- Transportation
- Telephone services
- Maintenance and repair of buildings, grounds, and communication and alarm systems

Shops for machining, sheet metal, carpentry, and welding

- Safety and Occupational Health/Industrial Hygiene Explosives safety
- Health physics

Environmental Program

Radar Division (Code 5300)

Shipboard radar research and development test beds: FlexDAR demonstration system (every element digital beamforming)

AN/SPS-49-A(V)1

S-Band radar wavefrom development testbed

Airborne research radar facility, AN / APS-137D(V)5

High Power 94 GHz radar system

Ultra-high resolution radar (Microwave Microscope)

- Radar signature calculation facility
- Electromagnetic numerical computational facility
- Compact range and nearfield antenna measurement laboratory

- Electronic Protection (EP) and adaptive pulse compression (APC) testbed
- Electronics and mechanical computer aided design facility
- High Frequency (HF) Multiple-Input Multiple-Output (MIMO) testbed
- HF Surface Wave Radar Testbed

Microwave and RF instrumentation laboratories

Information Technology Division (Code 5500)

Extended Spectrum Experimentation Laboratory Robotics and Autonomous Systems Laboratory Immersive Simulation Laboratory Warfighter Human-Systems Integration Laboratory Audio Laboratory Mobile and Dynamic Network Laboratory Integrated Communications Technology Test Lab General Electronics Environmental Test Facility Key Management Laboratory Crypto Technology Laboratory Navy Cyber Defense Research Laboratory Communications Security (COMSEC) Laboratory Navy Shipboard Communications Testbed **Behavior Detection Laboratory** Virtual Reality Laboratory Service Oriented Architecture Laboratory **Distributed Simulation Laboratory** Motion Imagery Laboratory Laboratory for Large Data Research Affiliated Resource Center for High Performance Computing Ruth H. Hooker Research Library

Optical Sciences Division (Code 5600)

- Optical probes laboratory to study viscoelastic, structural, and transport properties of molecular systems
- Short-pulse excitation apparatus for kinetic mechanisms investigations
- IR laser facility for optical characterization of semiconductors
- Facilities for synthesis and characterization of optical glass compositions and for the fabrication of optical fibers
- Silica and IR fluoride/chalcogenide fiber fabrication facilities
- Environmental testing of fiber sensors (acoustic, magnetic, electric field, etc.)
- Laser diode pumped solid-state lasers
- Mid-IR, low-phonon crystal growth facility
- Infrared countermeasure techniques laboratory
- Mobile, high-precision optical tracker
- EO/IR technology/systems modeling and simulation capabilities
- Field-qualified EO/IR measurement devices Focal plane array evaluation facility
- Facilities for fabricating and testing integrated optical devices

Panchromatic and multi- and hyperspectral digital imaging processing facilities NRL P-3 aircraft sensor pallet

Airborne EO/IR and radar sensors VNIR through SWIR hyperspectral systems VNIR, MWIR, and LWIR high-resolution systems Wideband SAR systems

RF and laser data links

High-speed, high-power photodetector characterization Communication link characterization to >100 Gbps RF phase noise, noise figure, and network analysis Ultrahigh-speed A/O converters

Tactical Electronic Warfare Division (Code 5700)

Visualization display room Transportable step frequency radar Vehicle development laboratory Offboard test platform Compact antenna range facility Millimeter-Wave Antenna Range Facility **TEWD Mechanical Fabrication Shop** RFCM techniques development chamber facility Low-power anechoic chamber High-power microwave research facility Electro-optics mobile laboratory Infrared-electro-optical calibration and characterization laboratory Infrared missile simulator and simulator development laboratory Secure supercomputing facility CBD/Tilghman Island IR field evaluation facility Ultrashort pulse laser effects research and analysis laboratory Central Target Simulator facility Flying Electronic Warfare laboratory High-power RF explosive laboratory Classified material lay-up facility Classified computing facilities RF measurement laboratory Wet chemistry laboratory Ultra-near-field test facility RF and millimeter-wave laboratory Optical laboratory Paint room Secure laboratories for classified projects

Laboratories for Computational Physics and Fluid Dynamics (Code 6040)

- 1120-core x86 cluster (3) 64-core SGI Altix systems 184-core x86 cluster
- 256-core SGI ICE
- 256-processor Opteron cluster
- More than sixty SGI, Apple, and Intel workstations
- Three-quarter-terabyte RAID disk storage systems
- All computers and workstations have network connections to NICENET and ATDnet allowing access

to the NRL CCS facilities (including the DoD HPC resources) and many other computer resources both internal and external to NRL

Chemistry Division (Code 6100)

Synthesis/processing facilities Paint formulation and coating Functional polymers/elastomers/composites Nanotubes/Nanofibers Surface modification Thin film deposition/etching with in situ control Marine Corrosion Facility (at Key West, FL) Fire/Damage Control Test Facility (at Mobile, AL) Wave pool (at Mobile, AL) Large and small boat test platforms (at Mobile, AL) Characterization facilities General-purpose chemical analysis/trace analysis Surface diagnostics Nanometer scale composition/structure/properties Magnetic resonance NDI Tribology Polymer structure/function/dynamics Special-purpose capability Environmental monitoring/remediation Combustion and fire research Alternate and petroleum-derived fuels Trace explosive detection test beds Trace vapor generation and detection test beds Simulation/modeling Synchrotron radiation beam lines (at NSLS, Brookhaven, NY) Pressurized test chambers (small, medium, large)

Materials Science and Technology Division (Code 6300)

Synthesis and Processing Hot and cold isostatic presses Isothermal heat treating facility Vacuum arc melting facility Rapid Solidification System Composites processing autoclave 200 keV ion-implantation facility Class 1000 clean room Metallic film deposition systems Laser direct write system Excimer laser film deposition facility Dip pen lithography 3D-printing of polymers Polymer synthesis and characterization Polymer extruder Channel reactors for fuels synthesis Tape caster Laser cutting facility Biomechanical surrogate fabrication facility Physical Property Characterization Conductive AFM Magnetometry Cryogenic facilities High-field magnets

High-resolution analytical scanning transmission electron microscope (STEM) High-energy dispersive X-ray analytical system Electron microprobe, SEM, SAM, and STEM systems Quantitative metallography Accelerator mass spectrometry facility Thermal analysis characterization suite (TGA/DSC/ DMA/DEA/rheometer) Dielectric characterization facility Microwave device test facility Bomen infrared spectrometer facility Diffuse light scattering facility Femtosecond laser facility Surface characterization facility Gas chromatography X-ray computed microtomography X-ray diffractometers Powder characterization Contact angle and surface tension analyzer Mechanical Property Characterization Robotic multiaxial loading system Stress corrosion cracking measurement systems Computer-aided experimental stress analysis 2D and 3D strain imaging and measurement Material drop tower test facility Helmet drop tower test facility Shock tube Gas gun Portable, high speed data acquisition system Imaging, Modeling, and Simulation High speed video cameras Infrared camera Quantum cascade lasers Live biological cell confocal imaging and manipulation system Live biological cell mechanical loading system High performance computer clusters

Plasma Physics Division (Code 6700)

Mercury, 6 MV, 360 kA, magnetically insulated inductive voltage adder Gamble II, 1 MV, 1 MA pulsed power generator HAWK, 1 MA inductive storage facility Table-Top Terawatt (T³) laser system Table-Top Ti: Sapphire Femtosecond Laser (TFL) systems (10 Hz and 1 kHz) NIKE krypton fluoride laser facility Space Physics Simulation Chamber Plasma Applications Laboratory Microwave facility for processing of advanced materials (2.45, 35, 83, and 60-120 GHz) ELECTRA, test bed for high-rep 5 Hz KrF laser **Railgun Materials Testing Facility Directed Energy Physics Facility** SWOrRD laser facility

Electronics Science and Technology Division (Code 6800)

Solar Cell Characterization Laboratory

Optoelectronic Scanning Electron Characterization Facility Infrared Sensor Characterization Laboratory Ultrafast Laser Facility Millimeter-Wave Vacuum Electronics Fabrication Facility Ultraviolet Photolithography Laboratory for Sub-millimeter-Wave Devices Compound Semiconductor Processing Facility Atomic Layer Deposition System Epicenter Laboratory for Advanced Materials Synthesis Advanced Silicon Carbide Epitaxial Research Laboratory High Pressure Laboratory

Center for Bio/Molecular Science and Engineering (Code 6900)

Optical equipment Confocal microscope Raman microscope UV-visible absorption spectrophotometers Transmission electron microscope Scanning electron microscope Microscope/atomic force microscope Nanosight (nanoparticle tracking analysis) Analytical instruments Gas chromatography mass spectrometer HPLC LC/MS/MS system FluroMax-3 spectrofluorometer Titration workstation General facilities X-ray scattering Cold room for storage and preparation High-speed and microanalytical ultracentrifuges Inert atmosphere dry box NMR FTIR Ellipsometer Dynamic mechanical analyzer Differential scanning calorimeter Circular dichroism Minimill injection mold machine Multi RF centrifuge Perkin Elmer BioChip Arrayer I Freeze-dry system Affymetrix Gene Chip system Surface plasmon resonance (SPR) Isothermal calorimeter High-resolution 3D Printer

Acoustics Division (Code 7100)

Laboratory Measurements

One-million-gallon, vibration-isolated underwater acoustic holographic/3D laser vibrometer facility for studying structural acoustic phenomena Large, sandy-bottom, acoustic holographic pool facil-

ity for investigating echo characteristics of under-

water buried/near-bottom targets and sediment acoustics

In-air structural acoustics facility with high spatial density near-field acoustic holography and 3D laser vibrometry for diagnosing large structures, including aircraft interiors and rocket payload fairings

Salt water acoustic tank (20 ft by 20 ft by 10 ft deep) with environmental control and substantial optical access for studying the acoustics of bubbly media, acoustic metamaterials, and laser induced sound

Micro-Nanostructure Dynamics Laboratory to study the structural dynamics and performance of high Q oscillators and other micromechanical systems using laser Doppler vibrometers, super resolution nearfield scanning optical microscope, and low temperature calorimeter

Model Fabrication Laboratory to fabricate rough topographical surfaces in various materials for acoustic scattering and propagation studies and measurements.

Sonomagnetic Laboratory with doubly insulated Faraday cage for conducting experiments to measure weak electromagnetic fields generated by mechanical/acoustic vibrations of a conducting medium in an arbitrary magnetic field

Seagoing Assets

Acoustic arrays (towed/moored/suspended)

64-channel broadband source–receiver array with time-reversal mirror functionality over a frequency band of 500 to 3500 Hz

High-powered sound sources and source arrays Autonomous acoustic sources

Acoustic communications array and data acquisition buoy

Portable, ocean-deployable synthetic aperture acoustic measurement system (100-meter rail with precise positioning)

Containerized, seagoing multichannel data acquisition system

High-speed, maneuverable towed body with MK-50 and synthetic aperture sonars to measure high frequency scattering and coherence

Remote Sensing Division (Code 7200)

WindSAT satellite instrument (joint with Code 8000) WindSat processing facility

Hyperspectral Imager for the Coastal Ocean (HICO) International Space Station (ISS) instrument

Ground-based water vapor millimeter-wave spectrometer (WVMS)

SAR processing facility

SCI processing facility

SEALAB

SAP facility

Hyperspectral imaging, sensors, and processing Optical remote sensing calibration lab/facility Navy Precision Optical Interferometer (NPOI) NRL/NRAO 74 MHz Very Large Array long-wave

radio receiver system

Free surface hydrodynamics laboratory (including a 10 m wave tank)

In-water lidar facility

Aerosol and field measurement facility

NRL RP-3A aircraft sensors

Airborne polarimetric microwave imaging radiometer (APMIR)

Millimeter-wave imager Interferometric synthetic aperture radar (InSAR) Flight-level meteorological sensors

Visible/near infrared (VNIR) hyperspectral imaging systems

VNIR polarimetric multispectral imager Short-wave IR (SWIR) hyperspectral imaging

systems

Midwave infrared (MWIR) indium antimonide (InSb) imaging system

Long-wave infrared (LWIR) quantum well IR photodetector (QWIP) imaging system

Oceanography Division (Code 7300)

Towed sensor and advanced microstructure profiler systems for studying upper ocean fine and microstructure

Integrated absorption cavity and optical profiler systems for studying ocean optical characteristics

Self-contained bottom-mounted upward-looking acoustic profilers for measuring ocean variability

Acoustic Doppler profiler for determining ocean currents while under way

Remotely operated underwater vehicle (ROV)

Bottom-mounted acoustic Doppler profilers

Towed hyperspectral optical array

SCI processing facility

Satellite receiving stations for AVHRR, MODIS, DMSP, and JPASS ocean color processing facility

Environmental scanning electron microscope, confocal laser scanning microscope, and Inspect S low vacuum scanning electron microscope for detailed studies of biocorrosion in naval materials

Real-time Ocean Observations and Forecast Facility for monitoring and tracking of ocean physical and bio-optical conditions

Slocum Electric Gliders for performing wide-area ocean surveys of temperature, salinity, and optical characteristics

SCANFISH MKII, a towed undulating vehicle system, designed for collecting 3D TS profile data of the water column

Bottom-mounted Shallow water Environmental Profiler in Trawl-safe Real-time configuration (SEPTR) for measuring temperature, salinity, and optical parameters in addition to current profiles and pressure

Bio-optical Physical Pop-up Environmental Reconnaisance System to measure bio-optical and physical properties of the water column Cytosense Scanning Flow Cytometer to identify individual phytoplankton and zooplankton for ecological model development and validation

Shipboard Lidar Optical Profiler to measure optical properties of the water

Raleigh Bernard Convective Tank and a Hybrid Underwater Camera for providing object detection and identification in extremely turbid underwater environments

Collaborative system for propagating environment error distributions through disparate dynamical systems

Marine Geosciences Division (Code 7400)

Airborne gravimetry, magnetics, and topographic measurements suite coupled with differential GPS yielding position accuracies of <1.0 meter

100 and 500 kHz sidescan sonar with 2–12 kHz chirp profiler and Cs magnetometer for seafloor characterization/imaging and shallow subbottom profiling

Deep-towed acoustic geophysical system operating at 220–1000 Hz characterizes subseafloor structure including gas clathrate accumulations and dissociation of methane hydrates

Acoustic seafloor classification system operating at 8–50 kHz provides underway, real-time prediction of sediment type and physical properties

Seafloor probes for measuring sediment pore water pressures, permeability, electrical resistivity, acoustic compressional and shear wave velocities and attenuations, and dynamic penetration resistance

300 kV transmission electron microscope with environmental cell for study of sediment fabric, especially impact of organic matter

Map data formatting facility compresses map information onto CD-ROM media for masters for use in aircraft digital moving map systems

Comprehensive geotechnical and geoacoustics laboratory capability

Airborne electromagnetic (AEM) bathymetry system Ocean bottom magnetometer system

3D, multispectral, subbottom swath imaging system Ocean bottom seismographs (OBS)

In situ sediment acoustic measurement system (IS-SAMS)

Instrumented mine shapes to measure hydrodynamics of free-fall in the water column, dynamics of deceleration in seafloor sediments, and rates and depths of scour burial

Hydrothermal plume imaging data acquisition and analysis system

Integrated digital databases analysis and display system for bathymetric, meteorological, oceanographic, geoacoustic, and acoustic data

Stereometric video image processing system for use in foreshore morphology measurement

Sediment gas-content sampler

Acoustic tomographic probes for surf zone sands and gassy muds

Computed tomography (CT) system and real-time radiography unit with a 0–225 keV @ 0–1 mA micro-focus X-ray tube and a 225 mm image intensifier

Patented Geospatial Information Data Base (GIDB™) for rapidly accessing disparate geospatial content on the Internet. http://dmap.nrlssc.navy.mil

Human-centered display design through the application of human factors principles in the design of geospatial displays (e.g., analysis of clutter in electronic displays)

GPS-based survey vehicles and equipment to measure foreshore and nearshore bathymetry (camera towers, jet ski, and push cart)

Geospatial lab for rapid 2D and 3D visualization, analysis, and prototyping

Small oscillatory flow tunnel to observe sediment dynamics under forcing from waves and currents

Tomographic particle image velocimetry system for three-dimensional volumetric velocity measurements of fluid flow

Marine Meteorology Division (Code 7500)

The USGODAE Data Server (Global Ocean Data Assimilation Experiment) for collection and broad distribution of near-real-time METOC data and higher-level products from Navy, DoD, and other providers to the global ocean and atmospheric research community

A Cray Xe-6 Supercomputer for numerical weather prediction systems development provided by the DoD High Speed Computing Modernization Program (HPCMP) through a Dedicated HPC Project Investment (DHPI) grant

Bergen Data Center with an extensive disk file storage capacity and research data tape backup/archival capability

Data visualization center for developing shipboard briefing tools, displaying individual and merged observations and model output, and integrating meteorological parameters into tactical simulations

Classified and unclassified radar and satellite data processing facility

Two Mobile Atmospheric Aerosol and Radiation Characterization Observatories (MAARCO) used to collect atmospheric data around the world

Technical research library

New Marine Meteorology Center for the Meteorological Applications Development Branch, Secure IT Facility, Division Administrative support, and Front Office Management Team

Space Science Division (Code 7600)

Development and test facilities for satellite, sounding rocket, and balloon instruments, to perform solar terrestrial, astrophysical, astronomical, solar, upper/ middle atmospheric, and space environment sensing Solar Coronagraph Optical Test Chamber (SCOTCH) Vacuum Ultraviolet Calibration Facility (VUCF) Gamma Ray Imaging Laboratory (GRIL) Rocket Assembly and Checkout Facility Neutron Characterization Laboratory Semiautomatic Probe Station

Solar Irradiance Calibration Facility

- Suborbital Instrument Assembly and Test Facility
- SuperMISTI reconfigurable and adaptable stand off gamma ray and neutron radiation detection systems for detection of special nuclear material and other radiological/nuclear Weapons of Mass Destruction
- Very high angular Resolution Imaging Spectrometer (VERIS) sounding rocket instrument
- Helium Resonance Scattering in the Corona and Heliospheric (HERSCHEL) sounding rocket instrument

Remote Atmospheric and Ionospheric Detection System (RAIDS) International Space Station instrument

Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) satellite instrument

- Extreme Ultraviolet Imaging Spectrometer (EIS) satellite instrument
- Large Angle Spectrometric Coronagraph (LASCO) satellite instrument

Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) satellite instrument suite

Solar Orbiter Heliospheric Imager (SoloHI) satellite instrument

Wide-field Imager (WISPR) satellite instrument

- Compact Coronograph (CCOR) satellite instrument
- Special Sensor Ultraviolet Limb Imager (SSULI) satellite instrument
- Winds Ions Neutrals Composition Suite (WINCS) small satellite instrument suite
- Extensive computer-assisted data manipulation, interpretive, and theoretical capabilities for space science instrumentation operations, data imaging, and modeling

SECCHI Payload Operations Center (POC)

- Fermi Gamma-ray Space Telescope (formerly GLAST) Science Analysis Center (SAC)
- SoftWare for Optimization of Radiation Detectors (SWORD)

Mountain Wave Forecast Model (MWFM)

Mass Spectrometer and Incoherent Scatter Radar empirical atmospheric model (NRLMSISE)

- Horizontal Wind Model (HWM)
- Ground to Space empirical atmospheric model (G2S)

Navy Gloval Environmental Model (NAVGEM) Integrating the Sun-Earth System for the Operational Environment (ISES-OE)

Space Systems Development Department (Code 8100)

Payload test facility and processor development laboratory

Laser communications and electro-optics

laboratories

Tactical Technology Development Laboratory (TTDL)

Precision oscillator (clock) test facility

RF payload development laboratory with anechoic chamber

Precision high-frequency RF compact range anechoic chamber facility

Transportable ground station development, assembly, and test facility

Multiplatform FPGA/ASIC/VLSI development laboratory

Satellite telemetry, tracking, and satellite control at Blossom Point, MD

L/C/S/X-band fixed antenna resources Connectivity to the Air Force Satellite Control Network (AFSCN)

Pomonkey field site: large antenna, space communications, and research facility

Midway Research Center space communications and research facility

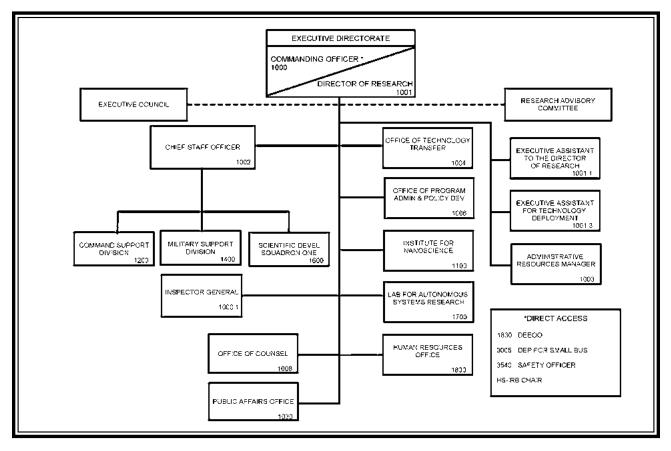
Optical telescope facility

Spacecraft Engineering Department (Code 8200)

Chambers:

Thermal-vacuum Acoustic reverberation Large, tapered horn, RF anechoic chamber EMI/EMC testing chamber Facilities: Spacecraft high-reliability electronic and electrical rework facility Spacecraft electronic systems integration and test facility Radio frequency (RF) system development facility RF microcircuit fabrication clean room facility Large tapered horn RF anechoic chamber facility Frequency sources laboratory Shock and vibration test Clean rooms (multiple classes and sizes) Spacecraft fabrication and assembly Fuels testing Autoclave Space robotics laboratory Proximity operations testbed CAD/CAM Propulsion system welding Static loads test Star tracker characterization Spacecraft spin balance Modal analysis Computational astrodynamic simulation and visualization

NRL Sites and Facilities


	ACREAGE			
SITE	LAND OWNED/LEASED	EASEMENT/ LICENSE- PERMIT	BUILDINGS/ STRUCTURES	
District of Columbia				
NRL and				
Joint Base Anacostia-Bolling*	131/0	0/10.13	93/33	
Virginia				
Midway Research Center				
Quantico*	162/0	0/0	7/11	
Maryland				
NRL Scientific Development				
Squadron One (VXS-1), NAS				
Patuxent River*	Tenant			
Chesapeake Bay Section				
and Dock Facility				
Chesapeake Beach*	168/0	.6/.02	44/73	
Multiple Research Site	a 10	0.40	2.12	
Tilghman Island*	3/0	0/0	3/3	
Free Space Antenna Range	1.41./0	0.10	11/10	
Pomonkey*	141/0	0/0	11/10	
Blossom Point Satellite Tracking				
and Command Station	0.10	0/265	21/23	
Blossom Point* Florida	0/0	0/265	21/23	
Marine Corrosion Facility	Tenant			
Key West California	Tenant			
NRL Monterey	Tenant			
Monterey*	IChant			
Mississippi Stannia Space Center				
Stennis Space Center Bay St. Louis*	Tenant			
Alabama				
	Tenant			
Ex-USS Shadwell (LSD-15)				
Mobile Bay				
Decommissioned 457-ft vessel use				

PROPERTY

Land:	605 acres	Buildings:		Replacement Costs:	
		RDT&E	3,138,104 ft ²	Buildings Plant Replacen	nent
		Administrative	$276,246 \text{ ft}^2$	Value $(PRV)^1$	\$1,184.7 million
		Other	280,190 ft ²	Equipment Costs ²	\$523.7 million

¹Per DON Facilities Asset Data System standard cost factors. ²NRL Accountable Property Acquisition Costs *See maps in the General Information section (page 131).

Key Personnel

Name

Title

Code

CAPT A.J Ferrari, USN Dr. J.A. Montgomery	Commanding Officer Director of Research	1000 1001
Mr. D.J. DeYoung	Executive Assistant to the Director of Research	1001.1
Ms. C.L. Downing	Head, Strategic Workforce Planning	1001.2
Dr. G. Sandhoo	Executive Assistant for Technology Deployment/STILO	1001.3
Dr. L. Slater	NRL Historian	1001.15
CAPT K. Szczublewski, USN	Chief Staff Officer / Inspector General	1002/1000.1
Ms. B.L. Gibson*	Command Management Review	1000.12
Dr. R.C. Manak	Head, Office of Technology Transfer	1004
Ms. M.E. Dixon	Head, Office of Program Administration and	
	Policy Development	1006
Mr. J.N. McCutcheon	Head, Office of Counsel	1008
Mr. R.L. Thompson	Head, Public Affairs Office	1030
Dr. E.S. Snow ⁺	Director, Institute for Nanoscience	1100
Mr. T. Brewer	Head, Command Support Division	1200
CDR D.A. Ursini, USN*	Head, Military Support Division	1400
CDR J. Plaisance, USN	Commanding Officer, Scientific Development	
	Squadron One (VXS-1)	1600
Mr. A.C. Schultz ⁺	Director, Laboratory for Autonomous Systems Research	1700
Ms. C.L. Downing*	Director, Human Resources Office	1800
Ms. L.L. Hill	Deputy Equal Employment Opportunity Officer	1830
Vacant	Deputy for Small Business	3005
Mr. K.J. Pawlovich	Head, Safety Branch	3540

*Acting

+Additional Duty

EXECUTIVE DIRECTORATE

Code 1000 and Code 1001

The Commanding Officer (Code 1000) and the Director of Research (Code 1001) share executive responsibility for the management of the Naval Research Laboratory. In accordance with Navy requirements, the Commanding Officer is responsible for the overall management of the Laboratory and exercises the usual functions of command including compliance with legal and regulatory requirements, liaison with other military activities, and the general supervision of the quality, timeliness, and effectiveness of the technical work and of the support services.

The Commanding Officer delegates line authority and assigns responsibility to the Director of Research for the Laboratory's technical program, its planning, conduct, and staffing; evaluation of the technical competence of personnel; liaison with the scientific community; selection of subordinate technical personnel; exchange of technical information; and the effective execution of the NRL mission.

Within the limits of Navy regulations, the Commanding Officer and the Director of Research share authority and responsibility for the internal management of the Laboratory. The Commanding Officer retains all authority and responsibility specifically assigned to him by higher authority.

The mission of the Laboratory is carried out by three science and technology directorates and the Naval Center for Space Technology, supported by the Business Operations Directorate and the Executive Directorate. In addition, the Laboratory's operating staffs provide assistance in their special fields to the Commanding Officer and to the Director of Research. The operating staffs are listed on the following pages of this publication.

Commanding Officer

Captain Mark Bruington is the 38th Commanding Officer of the Naval Research Laboratory, assuming command on August 1, 2014. As NRL's Commanding Officer, he directs the activities of more than 2,500 scientists, engineers, and support personnel in their mission to conduct leading-edge research and provide new technological capabilities to the Navy and Marine Corps. Prior to his assumption of command of NRL, he was the Principal Director, Programs at the Defense Security Cooperation Agency where he led a team charged with DoD humanitarian assistance, building partnership capacity and Foreign Military Training and Equipping U.S. partner nations.

Captain Bruington, a native of California, received his commission through the Aviation Officer Candidate School program after graduating from San Francisco State University with a B.S. in physics. He received his Wings of Gold at NAS Beeville, Texas, in 1992 and is a graduate of the United States Naval Test Pilot School, Class 117, in 2000. He also holds an M.S. in systems engineering from Johns Hopkins University and an M.S. in national resource strategy from the Industrial College of the Armed Forces (ICAF).

His sea tours include an assignment in the A-6 Intruders with VA-165, "The Boomers," aboard USS *Nimitz* (CVN 68) in support of Operation Southern Watch. Following the decommissioning of the A-6E, Captain Bruington transitioned to the F-14 Tomcat. He next reported to VF-11, "The Red Rippers," aboard the USS *John C. Stennis* (CVN 74) for its maiden,

around-the-world cruise, again in support of Operation Southern Watch. Following the events of September 11th, Captain Bruington joined VF-211, "The Fighting Checkmates," again aboard USS *John C. Stennis*, in the initial phases of Operation Enduring Freedom, where he led numerous strikes in support of coalition troops in Afghanistan. Following his Department Head tour in VF-211, Captain Bruington transitioned to the Aerospace Engineering Duty Officer community.

His shore tours include attendance at United States Naval Test Pilot School (USNTPS), and upon graduation, he reported to Air Test and Evaluation Squadron 23 (VX-23) as the squadron's Safety Officer and F-14 project officer. At VX-23 he worked on numerous F-14 and F/A-18 A-F projects including F-14 digital flight controls systems, envelope expansion and LANTIRN pod integration. His next shore assignment was as the senior fixed wing instructor at USNTPS where he led curriculum development and was integral in the introduction of the F/A-18 Hornet out-of-control flight syllabus implemented at all F/A-18 Fleet Replacement Squadrons. He next spent three years in the F-35 Lightning II Joint Strike Fighter program office as the Vehicle Systems Integrated Product Team (IPT) lead. He was responsible for developing the F-35 A/B/C flight controls, propulsion integration, aircraft subsystems and all aircrew systems. He led his IPT through three F-35 Preliminary Design Reviews (PDRs) and Critical Design Reviews (CDRs), directly leading to the flight clearances and first flights of the F-35A Conventional Take-Off and Landing (CTOL) and F-35B Short Take-Off and Vertical Landing (STOVL) variants. Following this tour, he attended ICAF where he earned distinguished graduate honors. Following his tour at ICAF, he was assigned as the "Deputy CAG," as part of the OPNAV N88 staff, responsible for development of requirements and budget submissions for all Naval tactical aircraft, E-2/C-2, unmanned combat air systems and weapons programs across the Naval Aviation Enterprise. Following his tour on the Navy staff, Captain Bruington next served as the Deputy Program Manager for the F/A-18 E/F and EA-18G air vehicle and Royal Australian Air Force (RAAF) F/A-18F programs as part of Program Manager AIR (PMA) 265 in NAS Patuxent River, Maryland. He led a diverse team of over 1,000 government and industry professionals to execute a \$2.7B annual budget, delivering 40-plus Super Hornets and Growlers to the fleet each year. He was also instrumental in the final delivery of all 24 F/A-18F aircraft to the RAAF.

Captain Bruington has flown more than 70 combat missions above Iraq and Afghanistan, flown 41 different types of aircraft while amassing 3,200 flight hours and over 500 carrier-arrested landings. His decorations include the Defense Meritorious Service Medal, Meritorious Service Medal, four Air Medals (Strike/Flight), and numerous personal, campaign, and unit level awards.

Director of Research

r. John A. Montgomery joined the Naval Research Laboratory in 1968 as a research physicist in the Advanced Techniques Branch of the Electronic Warfare Division, where he conducted research on a wide range of Electronic Warfare (EW) topics. In 1980, he was selected to head the Off-Board Countermeasures Branch. In May 1985, he was appointed to the Senior Executive Service and was selected as Superintendent of the Tactical Electronic Warfare Division. He has been responsible for numerous systems that have been developed/approved for operational use by the Navy and other services. He has had great impact through the application of advanced technologies to solve unusual or severe operational deficiencies noted during world crises, most recently in Afghanistan, Iraq, and for Homeland Defense and in the Pacific theater. Dr. Montgomery has accumulated 45 years of civilian service to-date at the Naval Research Laboratory.

Dr. Montgomery received the Department of Defense Distinguished Civilian Service Award in 2001. He was recognized by the Department of the Navy Distinguished Civilian Service Award in 1999 and by the Department of the Navy Meritorious Civilian Service Award in 1986. As a member of the Senior Executive Service, he received the Presidential Rank Award of Distinguished Executive in 1991 and again in

2002, and the Presidential Rank Award of Meritorious Executive in 1988, 1999 and again in 2007. He also received the 1997 Dr. Arthur E. Bisson Prize for Naval Technology Achievement, awarded by the Chief of Naval Research in 1998. Further, he has received the Association of Old Crows (Electronic Defense Association) Joint Services Award in 1993. He was an NRL Edison Scholar, and is a member of Sigma Xi. He served as the U.S. National Leader of The Technical Cooperation Program's multinational Group on Electronic Warfare from 1987 to 2002, and served as its Executive Chairman. In 2006, Dr. Montgomery received the Laboratory Director of the Year award for the Federal Laboratory Consortium for Technology Transfer, and in 2011, he received the Roger W. Jones Award for Executive Leadership from American University's School of Public Affairs. In 2013, he was elected to membership in the National Academy of Engineering.

Dr. Montgomery received his bachelor's of science degree in physics from North Texas State University in 1967 and his master's degree, also in physics, in 1969. He received his PhD in physics from the Catholic University of America in 1982. As Director of Research at the Naval Research Laboratory, Dr. Montgomery oversees research and development programs with expenditures of approximately \$1.2 billion per year.

Executive Council

The Executive Council consists of executive, management, and administrative personnel. Executive Council members include the following:

Commanding Officer, Chairperson Director of Research Executive Assistant to the Director of Research Associate Directors of Research Chief Staff Officer Director, Naval Center for Space Technology Associate Director, Naval Center for Space Technology Heads of Divisions Director, Laboratories for Computational Physics and Fluid Dynamics Director, Center for Bio/Molecular Science and Engineering Director, Human Resources Office Public Affairs Officer Deputy Equal Employment Opportunity Officer Administrative Resources Manager Head, Office of Program Administration and Policy Development Safety Officer Head, Office of Counsel Head, Office of Technology Transfer Head, Management Information Systems Staff Head, Office of Research Support Services Representative, Administrative Advisory Council Director, Institute for Nanoscience Director, Laboratory for Autonomous Systems Research

Research Advisory Committee

The Research Advisory Committee advises the Commanding Officer and the Director of Research on scientific programs and the administration of the Laboratory. The committee assists in planning the long-range scientific program, coordinating the scientific work, reviewing the budget, accepting or modifying problems, considering personnel actions, and initiating such studies as may be necessary or desirable. The membership consists of the following:

Director of Research, Chairperson Commanding Officer Associate Directors of Research Director, Naval Center for Space Technology Chief Staff Officer (Observer)

Chief Staff Officer/Inspector General Code 1002/1000.1

CAPT K. Szczublewski, USN

The Chief Staff Officer serves as the Deputy to the Commanding Officer and acts for the Commanding Officer in his absence. The Command Support Division (Code 1200), the Military Support Division (Code 1400), and the Scientific Development Squadron One (VXS-1) (NAS Patuxent River, MD, Code 1600) report directly to the Chief Staff Officer. When directed, the Laboratory's Inspector General investigates, inspects, and/or inquires into matters that affect the operation and efficiency of NRL. These matters include but are not limited to: effectiveness, efficiency, and economy; management practices; and fraud, waste, and abuse. He serves as principal advisor to the Commanding Officer on all inspection matters and audits and is the principal point of contact and liaison with all agencies outside NRL.

Public Affairs Officer Code 1030

MR. R.L. THOMPSON

The Public Affairs Officer (PAO) advises the Commanding Officer and Director of Research on public affairs matters, including external and internal relations and community outreach, and serves as the Commanding Officer's principal assistant in the area of public affairs. To do this, the PAO plans and directs a program of public information dissemination on official NRL activities. The PAO coordinates responses to requests from the news media and the public for unclassified information or materials dealing with the Laboratory, coordinates participation in community relations activities, and directs the internal information programs. The PAO is also responsible for coordinating all actions within the Laboratory that respond to requirements of the Freedom of Information Act (FOIA).

Ms. L.L. HILL

Deputy Equal Employment Opportunity Officer Code 1830

The Deputy Equal Employment Opportunity Officer (DEEOO) is the EEO program manager and the advisor to the Commanding Officer on all EEO matters. The DEEOO manages the discrimination complaint and reasonable accommodation processes and directs the Laboratory's affirmative action plans and special emphasis programs (Federal Women's, Hispanic Employment, African American Employment, Asian-Pacific Islanders, American Indian Employment, Individuals with Disabilities, including Disabled Veterans). The DEEOO recruits quality candidates for those areas when underrepresentation exists. Duties also include reviewing, coordinating, and monitoring implementation of EEO policies and developing local guidance, directives, and implementation procedures for the EEO programs.

Office of Technology Transfer

Code 1004

Dr. R.C. Manak

Basic Responsibilities

The Technology Transfer Office (TTO) is responsible for NRL's implementation of the Federal Technology Transfer Act of 1986 (Public Law 99-502). The law requires the transfer of Government innovative technologies to industry for commercialization as products and services for public benefit. TTO negotiates Cooperative Research and Development Agreements (CRADAs) under which NRL investigators collaborate with investigators from industry, academia, state or local governments, or other Federal agencies to develop NRL technologies for government and/or commercial use. It markets NRL's patented inventions, negotiates patent license agreements under which the Navy grants a licensee the right to make, use, and sell NRL inventions (in exchange for receiving licensing fees and a percentage of sales), and enforces licenses to assure diligence in commercialization efforts.

Personnel: 5 full-time civilian; 1 SCEP student

Key Personnel

Title	Code
Head, Technology Transfer	1004
Sr. Licensing Associate	1004
Sr. Licensing Associate	1004
Licensing Associate	1004
Management Analyst	1004
Administrative Assistant (SCEP)	1004

Point of contact: Code 1004, (202) 767-7229

Office of Program Administration and Policy Development

Code 1006

Ms. M.E. DIXON

Basic Responsibilities

The Office of Program Administration and Policy Development provides managerial, technical, and administrative support to the Director of Research (DOR) in such areas as program and policy development, intra-Navy and inter-Service Science and Technology (S&T) program coordination; liaison with other Navy, DoD, and government activities on matters of mutual concern; and support to the Executive Directorate in planning and directing NRL's S&T (6.1, 6.2) program. Specific functions include: monitoring and providing background information on technical and policy matters that come under the purview of the DOR; representing NRL, ONR, and/or the Navy on tri-Service or DoD-wide coordination matters; performing special studies or chairing ad hoc study groups regarding program decisions or policy positions; performing special studies involving major NRL programs and resource issues; providing administrative support in the areas of personnel, budget, facilities, equipment, and security; providing executive management information and analyses for various aspects of the S&T program effort; coordinating VIP visits to NRL; managing the NRL directives system; administering the NRL response to Congressional requests; maintaining the NRL R&D achievements file; developing the S&T guidance for monitoring and reporting the NRL S&T program; administering NRL's various postdoctoral fellowship programs; and managing the Facility Modernization Program.

Personnel: 16 full-time civilian

Key Personnel

Title	Code
Head, Office of Program Administration and Policy Development Head, Program Administration Staff VIP Coordinator/Protocol Officer/Administrative Officer Head, Executive Management & Policy Development Staff Directives Head, NRL Facilities Staff Special Assistant	1006 1006.1 1006.2 1006.3 1006.31 1006.4 1006.6
opecial risolotati	1000.0

Point of contact: Code 1006.2, (202) 767-3370

^{*}Acting

Office of Counsel

Code 1008

MR. J.N. MCCUTCHEON

Basic Responsibilities

The Office of Counsel is responsible for providing legal services to NRL's management in all areas of general, administrative, intellectual property, and technology transfer law. The Office reviews all procurement-related actions; reviews NRL scientific papers prior to publication; prepares patent applications and prosecutes the applications through the Patent and Trademark Office; defends against contract protests, other contract litigation, and personnel cases; and advises on other legal matters relating to technology transfer, personnel, fiscal, and environmental law.

NRL Counsel also serves as legal advisor to the Commanding Officer and Director of Research.

Personnel: 30 full-time civilian

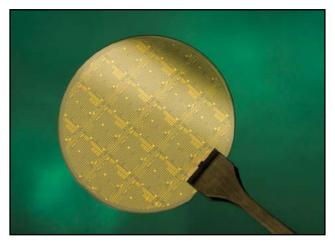
Key Personnel

Title	Code
Head, Office of Counsel Associate Counsel/General Law Associate Counsel/Intellectual Property Associate Counsel/SSC Legal Matters	1008 1008.1 1008.2 1008.3
Associate Couriser/ SSC Legar Matters	1000.5

Point of contact: Code 1008.1, (202) 767-7605

Institute for Nanoscience

Code 1100 Staff Activity Areas


• Interdisciplinary nanoscience that enables: Low-power, high-speed electronics Lightweight, high-strength materials Highly sensitive molecular sensors Efficient energy generation and storage

NRL researchers working in the Class 100 clean room in the Institute for Nanoscience.

Transmission electron microscope located in one of the Institute for Nanoscience's environmentally controlled laboratories.

Wafer on graphene transistors.

Code 1100

DR. E.S. SNOW⁺

Basic Responsibilities

The Institute for Nanoscience has two primary responsibilities: to administer an interdisciplinary research program in nanoscience and to provide NRL scientists with high-quality laboratory space and state-ofthe-art nanofabrication facilities.

The mission of the research program is to conduct highly innovative, interdisciplinary research at the intersections of the fields of materials, electronics, and biology in the nanometer size domain. The Institute exploits the broad multidisciplinary character of NRL to bring together scientists and engineers with disparate training and backgrounds to attack common goals at the intersection of their respective fields at this length scale. The Institute's S&T programs provide the Navy and DoD with scientific leadership in this complex, emerging area and help to identify opportunities for advances in future defense technology.

The Institute also operates a nanoscience research building containing nanofabrication facilities and environmentally controlled measurement laboratories. The central core of the building, a 5000 sq ft Class 100 clean room, has been outfitted with the newest tools to permit nanofabrication, measurement, and testing of devices. In addition to the clean room facility, the building also contains 5000 square feet of controlled-environment laboratory space, which is available to NRL researchers whose experiments are sufficiently demanding to require this space. There are 12 of these laboratories within the building. They provide shielding from electromagnetic interference, and very low floor vibration and acoustic levels. Eight of the laboratories control the temperature to within \pm 0.5 °C and four to within \pm 0.1 °C.

Personnel: 3.5 full-time civilian

Key Personnel

Title	Code
Director, Institute for Nanoscience	1100
Position Assistant	1100
Facilities Manager	1100
Facilities Manager	1100

Point of Contact: Code 1100, (202) 767-1804

⁺Additional Duty

Command Support Division

Code 1200 Staff Activity Areas


• Security

Incoming visitor reception area

Security monitoring

Basic Responsibilities

The Command Support Division is responsible for NRL security policy, management, and enforcement. The Division Head is the NRL Security Manager. The primary areas of security are: information assurance, information security, personnel security, industrial security, classification management, public release, foreign disclosure, physical security, force protection, antiterrorism, operations security, special security programs, and communications security. Provides security education across all security disciplines. Conducts local inspections for compliance with current internal and external policies. Provides advice and guidance to senior NRL management concerning the security posture of the Command. Provides administrative budget support to the Military Support Division (Code 1400) and Scientific Development Squadron One (VXS-1, Code 1600).

Personnel: 66 full-time civilian

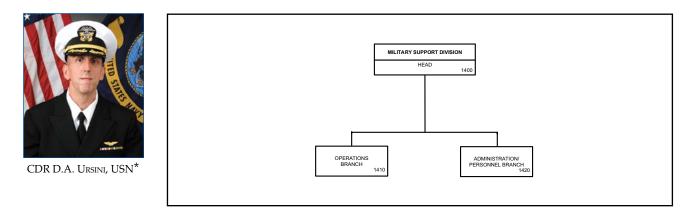
Key Personnel

Title	Code
Head, Command Support Division	1200
Administrative Officer	1202
Head, Stennis Space Center Security Staff	1203
Head, Force Protection and Physical Security Branch	1210
Head, Information Assurance and Communications Security Branch	1220
Head, Information Security and Special Programs Branch	1230
Head, Personnel Security and Visitor Control Branch	1240

Point of contact: Code 1202, (202) 767-6987

Military Support Division

Code 1400 **Staff Activity Areas**


- Operations Administrative Operations

P-3 airborne research platform

Administration

The Military Support Division provides military operational and administrative services to NRL. The Operations Branch assists NRL research directorates in planning and executing project flight missions, develops deployment schedules and military operational and training objectives, and coordinates the Research Reserve Program within NRL.

The Military Administration Branch is responsible for the coordination and efficient functioning of all military administrative operations for NRL (including site detachments). These duties specifically include: personnel actions, maintenance of personnel records, performance evaluations, awards and training; advising the Chief Staff Officer on manpower matters and organization issues; and preparing and administering the military operational budget.

Personnel: 1 full-time contractor; 7 military

Key Personnel

Code
1400
1410
1410
1410
1420
1420

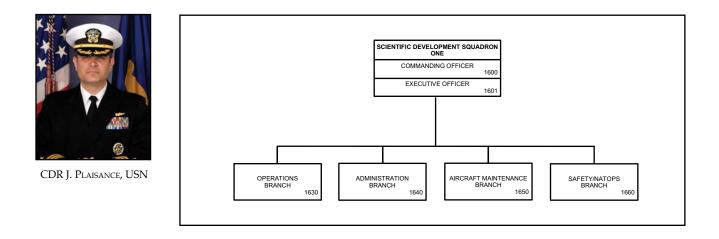
Point of contact: Code 1420, (202) 767-2103

Scientific Development Squadron ONE (VXS-1)

Code 1600 Staff Activity Areas

- Projects
 - Operations
 - Safety / NATOPS / Training
- Administration
- Maintenance
 - Quality assurance
- Configurations
- Project Liaison Officer

VXS-1 maintains two RC-12 aircraft dedicated to airborne research. They are smaller, more cost-efficient alternatives to the P-3 Orion. Each aircraft is outfitted with a research electrical load center and has a roll-on roll-off capability, which enables it to be equipped with project stations. The RC-12s can support a broad spectrum of project configurations.


Aircraft maintenance

Scientific Development Squadron One hangar

583

P-3 airborne research platform

The Scientific Development Squadron ONE (VXS-1) located at NAS Patuxent River, Maryland, operates and maintains three uniquely configured P-3 Orion aircraft and one C-12 aircraft. The men and women of the squadron provide the Naval Research Laboratory with airborne research platforms, conducting flights worldwide in support of a broad spectrum of projects and experiments. These include magnetic variation mapping, electro-optic infrared research, hydroacoustic research, bathymetry, electronic countermeasures, gravity mapping, data link, and radar research. The squadron annually logs approximately 1000 flight hours, and in its 51 years, Scientific Development Squadron ONE (VXS-1) has amassed 72,000 hours of mishap-free flying.

Personnel: 1 full-time civilian; 63 military; 7 full-time contractors

Key Personnel

Title	Code
Commanding Officer, VXS-1	1600
Executive Officer	1601
Senior Enlisted Leader	1600.2
Executive Secretary	1600.4
Projects Director	1630
Operations Officer	1630.1
Safety/Quality Insurance Officer	1630.2/1650.3
NATOPS/Training Officer	1630.2
Administrative Officer/Public Affairs Officer	1640
Maintenance Officer	1650
Assistant Maintenance Officer	1650.1
Maintenance/Material Control Officer	1650.2
Projects Liaison Officer	1660
Projects Liaison Officer	1660

Point of contact: Code 1640, (301) 995-4122

Laboratory for Autonomous Systems Research

Code 1700 Staff Activity Areas

Multidisciplinary research, development, and integration in autonomous systems, including:

- Software for intelligent autonomy
- Novel human-systems interaction technology
- Mobility and platforms
- Sensor systems
- Power and energy systems
- Networking and communications
- Trust and assurance

The Laboratory for Autonomous Systems Research integrates S&T components into research prototype systems.

The Prototyping High Bay can be used for small autonomous air vehicles, autonomous ground vehicles, and of course the people who interact with them.

The Tropical High Bay provides a simulated jungle terrain and rain forest including a flowing water feature in an enclosed greenhouse. Rain up to 6" per hour can be generated.

The Littoral High Bay features a 45 ft by 25 ft by 5.5 ft deep pool. This pool has a 16-channel wave generator, allowing us to create directional waves. The Littoral High Bay has a variety of sediment tanks for testing sensors and energy-harvesting devices.

The Desert High Bay contains a 40 ft by 14 ft area of sand 2 feet deep, and contains 18-foot-high rock walls that allow testing of robots and sensors in a desert-like environment. We can introduce blowing sand, and can control the lighting in that environment.

Code 1700

MR. A.C. SCHULTZ⁺

Basic Responsibilities

The Laboratory for Autonomous Systems Research provides specialized facilities to support highly innovative, interdisciplinary research in autonomous systems, including software for intelligent autonomy, sensor systems, power and energy systems, human-systems interaction, networking and communications, and platforms and mobility. The Laboratory capitalizes on the broad multidisciplinary character of NRL, bringing together scientists and engineers with disparate training and backgrounds to advance the state of the art in autonomous systems at the intersection of their respective fields. The Laboratory provides unique facilities and simulated environments (littoral, desert, tropical) and instrumented reconfigurable high bay spaces to support integration of science and technology components into research prototype systems. The objective of the laboratory is to enable Naval and DoD scientific leadership in this complex, emerging area and to identify opportunities for advances in future defense technology.

The facility includes a Reconfigurable Prototyping High Bay that allows real-time, accurate tracking of many entities (vehicles and humans) for experimental ground truth. Small UAVs and ground vehicles can simultaneously operate within the large high bay, which is viewable from four adjacent Human-System Interaction labs. The Tropical High Bay emulates a rainforest with appropriate terrain and plants, and includes flowing water features. An outdoor Highland Forest provides an additional forest environment, and also includes interesting water and terrain features. The Desert High Bay provides a simulated desert environment featuring as sand pit, natural rock walls, and appropriate lighting and wind. The Littoral High Bay provides a simulated coastal environment featuring sediment tanks, large pool with a sloping floor, and small flow tanks. In addition to the environmental high bays, the facility also has a Power and Energy Laboratory, a Sensor Laboratory, and a mechanical and electrical shop.

The facility is open to use by all NRL scientists contributing to the science and technology of autonomous systems and will host many NRL scientists as needed.

Personnel: 3.5 full-time civilian

Key Personnel

Title	Code
Director, Laboratory for Autonomous Systems Research	1700
Facilities Manager	1700
Secretary	1700

Point of contact: Code 1700, (202) 767-0792

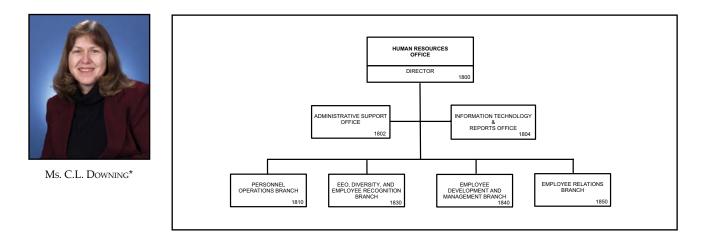
⁺Additional Duty

Human Resources Office

Code 1800 **Staff Activity Areas**

- Personnel Operations (Staffing and Classification)
- Employee Relations
- Employee Development
- Equal Employment Opportunity and Manpower
 Compensation, Reports, and Demonstration Project
- Information Technology and Reports

Diversity and Employee Recognition Branch



Employee Relations Branch

Personnel Operations Branch

Employee Development and Management Branch

The Human Resources Office (HRO) provides civilian personnel, manpower, and Equal Employment Opportunity (EEO) services to the Naval Research Laboratory. The Human Resources Program provides the full range of operating civilian personnel management in the staffing and placement, position classification, employee relations, labor relations, employee development, EEO functional areas, manpower management, and morale, welfare, and recreation programs.

The HRO at NRL's main site in Washington, DC, services approximately 2,500 employees and provides a centralized capability to perform managerial, service, and advisory functions in support of field office operations. These include issuing policy and procedural directives; developing, designing, and maintaining automated systems; and monitoring and evaluating product effectiveness to develop and maintain efficient, cost-effective, service-oriented methods.

Personnel: 30 full-time civilian

Key Personnel

Title	Code
Director, Human Resources Office	1800
Administrative Officer	1802
Head, Information Technology and Reports Office	1804
Head, Personnel Operations Branch	1810
Head, EEO, Diversity, and Employee Recognition Branch	1830
Head, Employee Development and Management Branch	1840
Head, Employee Relations Branch	1850

Point of contact: Code 1802, (202) 404-2797

^{*}Acting

Ruth H. Hooker Research Library

Code 5596

MS. S.M. RYDER

Basic Responsibilities

NRL's Ruth H. Hooker Research Library supports NRL and ONR scientists in conducting their research by making a comprehensive collection of the most relevant scholarly information available and useable; by providing direct reference and research support; by capturing and organizing the NRL research portfolio; and by creating, customizing, and deploying a state-of-the-art digital library. Traditional library resources include extensive technical report, book, and journal collections dating back to the 1800s housed within a centrally located research facility that is staffed by subject specialists and information profession-als. The collections include 44,000 books; 80,000 digital books; 80,000 bound historical journal volumes; more than 3,500 current journal subscriptions; and approximately 2 million technical reports in paper, microfiche, or digital format (classified and unclassified). Research Library staff members provide advanced information consulting; literature searches against all major online databases including classified databases; circulation of materials from the collection including classified literature up to the Secret level; and retrieval of articles, reports, proceedings, or documents through our interlibrary loan and document delivery network. The digital library provides desktop access to thousands of journals, books, proceedings, reports, databases, and reference sources.

Personnel: 21 full-time civilian

Key Personnel

Title	Code
Chief Librarian	5596
Head, Research Reports and Bibliography	5596.3
Library IT Director	5596.2

Point of contact: Code 5596, (202) 767-2357

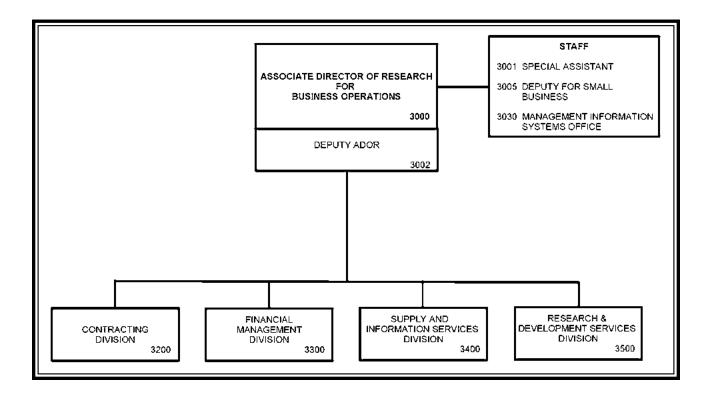
BUSINESS OPERATIONS DIRECTORATE

Code 3000

The Business Operations Directorate provides executive management, policy development, and program administration for business programs needed to support the activities of the scientific directorates. This support is in the areas of financial management, supply management, technical information services, contracting, research and development services, and management information systems support.

Associate Director of Research for Business Operations

Mr. Therning was born in Modesto, California. He graduated from Washington State University with a bachelor's degree in finance in 1983 and earned a master's degree in business administration from George Mason University in 1993. Mr. Therning has accumulated extensive experience in the financial business management of research, development, test, and evaluation (RDT&E) activities within the Department of the Navy (DON) beginning at the Naval Weapons Center, China Lake, California, where he served as a budget analyst in the Public Works Department and then in the Weapons Department. In 1984, he became the Financial Management Advisor to the Ordnance Systems Department. In 1985, under the auspices of


the Naval Scientist Training and Exchange Program, he was selected for a one-year assignment in the Office of the Director of Naval Laboratories (DNL), Washington, DC. He remained on the DNL staff as a budget analyst until 1987, when he was appointed Budget Officer of the DNL's seven Navy Industrial Fund R&D laboratories.

As the DON reorganized the R&D laboratories and T&E activities, Mr. Therning oversaw the financial reorganization of the DNL labs with other activities into the Naval warfare centers. Upon the disestablishment of DNL, Mr. Therning remained in the Space and Naval Warfare Systems Command as the Director of the Defense Business Operations Fund (DBOF) Resources Management Division, with collateral duty as the Financial Manager of the Naval Command, Control, and Ocean Surveillance Center (NCCOSC). During this time, he managed the conversion of nine appropriated fund engineering activities to DBOF and the financial consolidation of these activities with NCCOSC.

In 1995, Mr. Therning served as Head of the Revolving Funds Branch of the Office of the Assistant Secretary of the Navy (Financial Management and Controller), where he was responsible for the budget formulation and execution processes of all DON DBOF activities, which includes the RDT&E activities, shipyards, aviation depots, ordnance centers, and supply centers.

Mr. Therning was appointed Head, Financial Management Division/Comptroller of NRL in July 1996. In October 1996, in addition to leading the Financial Management Division, he assumed responsibilities for the Management Information Systems office. In January 1999, as an additional duty to his role as Comptroller, Mr. Therning was appointed to the newly established position of Deputy Associate Director of Research for Business Operations to assist in the management and administration of the Business Operations Directorate.

Mr. Therning was Acting Associate Director of Research for Business Operations from April 1999 until March 2000, when he was appointed the Associate Director of Research for Business Operations.

Key Personnel

Title	Code
Associate Director of Research for Business Operations	3000
Special Assistant	3001
Deputy Associate Director of Research for Business Operations	3002
Deputy for Small Business	3005
Head, Management Information Systems Office	3030
Head, Contracting Division	3200
Head, Financial Management Division	3300
Head, Supply and Information Services Division	3400
Director, Research and Development Services Division	3500

Point of contact: Code 3000A, (202) 404-7461

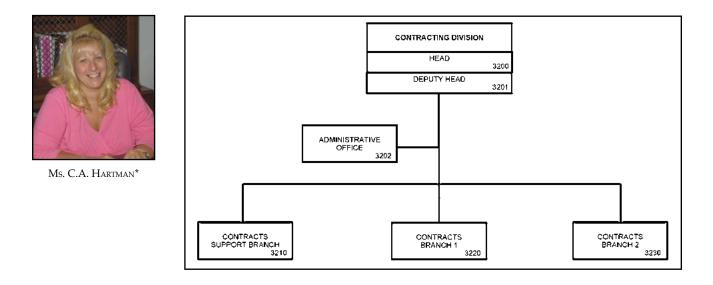
^{*}Acting

Contracting Division

Code 3200 **Staff Activity Areas**

- Advance Acquisition Planning
- Acquisition Strategies
- Acquisition Training
- Contract NegotiationsContractual Execution
- Contract Administration
- Acquisition Policy Interpretation and Implementation

Customers are greeted at the receptionist station.


Contracting personnel attend training session.

Procurement Technician reviews contract file.

Specialist and Division Head discuss small business programs.

The Contracting Division is responsible for the acquisition of major research and development materials, services, and facilities where the value is in excess of \$150,000. It also maintains liaison with the ONR Procurement Directorate on procurement matters involving NRL. Specific functions include: providing consultant and advisory services to NRL division personnel on acquisition strategy, contractual adequacy of specifications, and potential sources; reviewing procurement requests for accuracy and completeness; initiating and processing solicitations for procurement; awarding contracts; performing contract administration and post-award monitoring of contract terms and conditions, delivery, contract changes, patents, etc., and taking corrective actions as required; providing acquisition-related training to division personnel; and interpreting and implementing acquisition-related Federal, Department of Defense, and Navy regulations.

Personnel: 40 full-time civilian

Key Personnel

Title	Code
Head, Contracting Division Deputy Head Administrative Officer Contracts Support Branch Head, Contracts Branch 1 Head, Contracts Branch 2 Team Lead, Contracts Section, SSC	3200 3201 3202 3210 3220 3230 3235

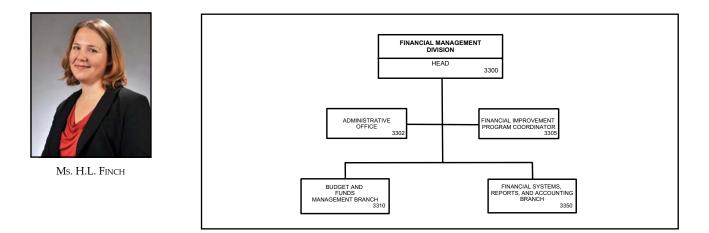
Point of contact: Code 3202, (202) 767-3749

^{*}Acting

Financial Management Division

Code 3300 Staff Activity Areas

- Budget
- Reports and Statistics
- Accounting
- Travel Services
- Payroll Liaison
- Audit Readiness


The Financial Improvement and Audit Readiness team ensures that NRL is ready for a independent financial audit in accordance with Secretary of Defense and congressional mandates. They perform independent audit readiness testing, develop corrective action recommendations, and serve as NRL's liaison with the Navy's Financial Management Operations office.

The Budget Branch prepares various financial analyses, reports, and studies in response to external data calls and/or management requests.

The Financial Systems, Reports, and Accounting Branch ensures that NRL's financial system satisfies user requirements and is in compliance with applicable rules and regulations, maintains official accounting records, and coordinates efforts with DFAS to complete payment transactions related to NRL business.

The Financial Management Division (FMD) develops, coordinates, and maintains an integrated system of financial management that provides the Comptroller, Commanding Officer, Director of Research, and other officials of NRL the information and support needed to fulfill the financial and resource management aspects of their responsibilities. FMD translates the NRL program requirements into the financial plan, formulates the NRL budget, monitors and evaluates performance with the budget plan, and provides recommendations and advice to NRL management for corrective actions or strategic program adjustments. FMD maintains the accounting records of NRL's financial and related resources transactions and prepares reports, financial statements, and other documents in support of NRL management needs and/or to comply with external reporting requirements. FMD provides financial management guidance, policies, advice, and documented procedures to ensure that NRL operates in compliance with Navy and DoD regulations and with economy and efficiency. FMD coordinates efforts with the Defense Finance and Accounting Service (DFAS) to complete payment transactions related to NRL business (e.g., the payment of NRL personnel for payroll and travel expenses and the payment to NRL's contractors and vendors for goods and services purchased by NRL). FMD coordinates Financial Improvement and Audit Readiness efforts to ensure NRL is ready for an independent financial audit. Additionally, FMD develops, operates, and maintains automated business and management information systems supporting the lab-wide administrative and business processes, including financial management, procurement and contracting, stores and inventory, asset management, human resources, facilities, and security.

Personnel: 68 full-time civilian

Key Personnel

Title	Code
Head, Financial Management Division	3300
Administrative Officer	3302
Financial Improvement and Audit Readiness Coordinator	3305
Head, Budget and Funds Management Branch	3310
Head, Funding Section	3311
Head, Internal Budget Section	3312
Head, Corporate Budget Section	3313
Head, Financial Systems, Reports, and Accounting Branch	3350
Head, Cost Accounting Section	3351
Cost and Analysis Unit	3351.1
Head, Vendor Pay Unit	3351.2
Head, Financial Services Section	3352
Head, Payroll Services Unit	3352.1
Head, Travel Services Unit	3352.2
Head, Accounting Systems and Reports Section	3353
Head, Asset Management and Accounting Section	3354

Point of contact: Code 3302, (202) 767-2950

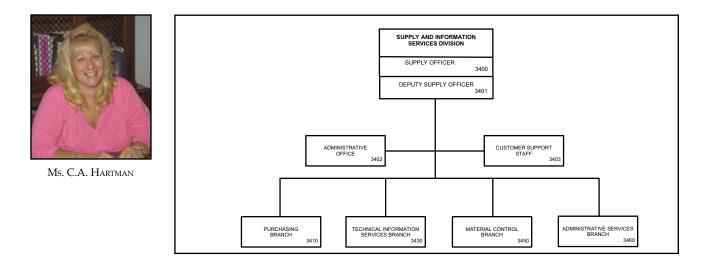
Supply and Information Services Division

Code 3400 Staff Activity Areas

- Purchasing
- Technical Information Services
- Customer Support and Program Management
- Material Control
- Administrative Services
- Automated Inventory Management System
- Disposal and Storage

Woodworkers prepare boxes for shipping.

Employees of the Administrative Services Branch discuss NRL electronic forms.


Customers and employee at the Supply store.

Disposal and storage in Building 49.

Photographer and videographer capture footage for a technical presentation.

The Supply and Information Services Division provides the Laboratory and its field activities with contracting, supply management, logistics, administrative, and technical information services. Specific functions include: procuring required equipment, material, and services; receiving, inspecting, storing, and delivering material and equipment; packing, shipping, and traffic management; surveying and disposing of excess and unusable property; operating various supply issue stores and performing stock inventories; providing technical and counseling services for the research directorates in the development of specifications for a complete procurement package; and obtaining and providing guidance in the performance stages of contractual services. Services also include publications, visual information, exhibits, photography, editing, and mailroom services and correspondence management.

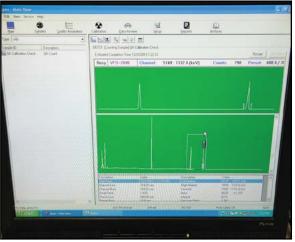
Personnel: 81 full-time civilian; 1 part-time civilian

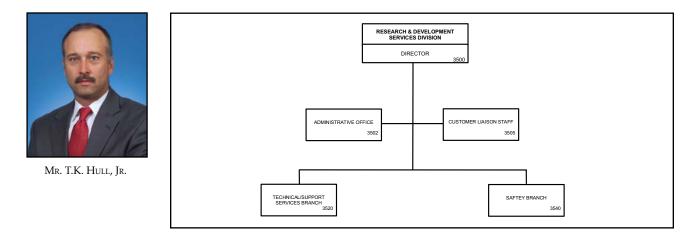
Key Personnel

Title	Code
Supply Officer	3400
Deputy Supply Officer	3401
Administrative Officer	3402
Head, Customer Support Staff	3403
Head, Purchasing Branch	3410
Head, Technical Information Services Branch	3430
Head, Material Control Branch	3450
Head, Administrative Services Branch	3460

Point of contact: Code 3402, (202) 404-1701

Code 3500 Staff Activity Areas


- Engineering
- Production Control and Transportation
- Shop Services
- Chesapeake Bay Facilities Management
- Customer Liaison
- Safety and Occupational Health/Industrial Hygiene
- Explosives Safety
- Health Physics
- Environmental
- Utilities
- Telephones
- Facilities Planning and Operations



Safety and Occupational Health — respirator fit testing for research support personnel.

Health physics — analyzing samples for radioactive material.

The Research and Development Services Division is responsible for the physical plant of the Naval Research Laboratory and subordinate field sites. The responsibilities include military construction, engineering, and coordination of construction; facility support services, planning, maintenance/repair/operation of all infrastructure systems; transportation; and occupational safety, health and industrial hygiene, and environmental safety.

The Division provides engineering and technical assistance to research divisions in the installation and operation of critical equipment in support of the research mission.

Personnel: 154 full-time civilian

Key Personnel

Title	Code
Title Director, Research and Development Services Division Administrative Officer Customer Liaison Head, Technical/Support Services Branch Head, Engineering Section Head, Chesapeake Bay Section Head, Shop Services Section Head, Production Control Section Head, Facilities, Planning and Operations Section Head, Safety Branch Occupational Safety and Health/Industrial Hygiene Section Explosives Safety Health Physics Section	3500 3502 3505 3520 3521 3522 3523 3524 3525 3540
Environmental Section Environmental Response Unit	3546 3546.1
-	

Point of contact: Code 3502, (202) 404-4312

^{*}Acting

SYSTEMS DIRECTORATE

Code 5000

The Systems Directorate applies the tools of basic research, concept exploration, and engineering development to expand operational capabilities and to provide materiel support to Fleet and Marine Corps missions. Emphasis is on technology, devices, systems, and know-how to acquire and move warfighting information and to deny these capabilities to the enemy. Current activities include:

• New and improved radar systems to detect and identify ever smaller targets in the cluttered littoral environment;

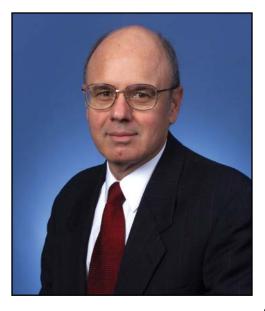
• Optical sensors and related materials to extract elusive objects in complex scenes when both processing time and communications bandwidth are limited;

• Unique optics-based sensors for detection of biochemical warfare agents and pollutants, for monitoring structures, and for alternative sensors;

• Advanced electronic support measures techniques for signal detection and identification;

• Electronic warfare systems, techniques, and devices including quick-reaction capabilities;

• Innovative concepts and designs for reduced observables;

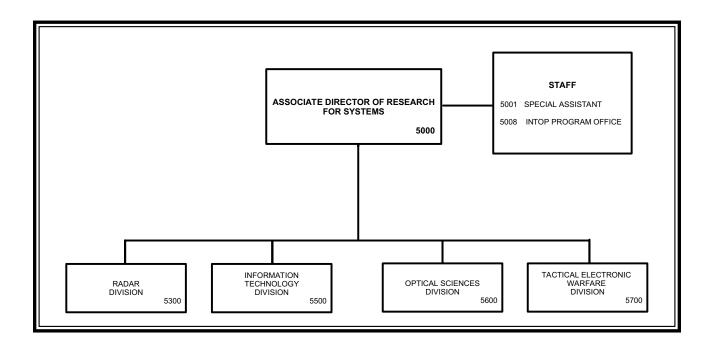

• Techniques and devices to disable and/or confuse enemy sensors and information systems; • Small "intelligent"/autonomous land, sea, or air vehicles to carry sensors, communications relays, or jammers; and

• High performance/high assurance computers with right-thefirst-time software and known security characteristics despite commercial offthe-shelf components and connections to public communications media.

Many of these efforts extend from investigations at the frontiers of science to the support of deployed systems in the field, which themselves provide direct feedback and inspiration for applied research and product improvement and/or for quests for new knowledge to expand the available alternatives.

In addition to its wide-ranging multidisciplinary research program, the Directorate provides support to the corporate laboratory in shared resources for high performance computing and networking, technical information collection and distribution, and in coordination of Laboratory-wide efforts in signature technology, countersignature technology, Theater Missile Defense, and the Naval Science Assistance Program.

Associate Director of Research for Systems



Dr. G.M. Borsuk is the Associate Director of Research for Systems at the Naval Research Laboratory (NRL) in Washington, DC. In this position he provides executive direction and leadership to four major NRL research divisions that conduct a broad multidisciplinary program of scientific research and advanced technological development in the areas of optics, electromagnetics, information technology, and radar. He is responsible for the conduct and effectiveness of research programs conducted within these divisions and for the overall administration of activities throughout the Systems Directorate. He is also the Focus Area Coordina-

tor for all NRL base programs in electronics science and technology. Prior to this appointment, Dr. Borsuk served for 23 years as the Superintendent of the Electronics Science and Technology Division at NRL where he was responsible for the in-house execution of a multidisciplinary program of basic and applied research in electronic materials and structures, solid state devices, vacuum electronics, and circuits. Dr. Borsuk also serves as the Technical Chair of the DDR&E's Electronic Warfare Technology Task Force (EWTTF). He was the Navy Deputy Program Manager and Technical Director for the now completed DARPA/Tri-Service MIMIC and MAFET Programs. He was the Department of Defense (DoD) technical representative for Electronics to the Wassenaar Arrangement dealing with export control. He has also served as the DoD representative to the President's National Science and Technology Council's Electronic Materials Working Group.

Dr. Borsuk joined the ITT Electro-Physics Laboratory in Columbia, Maryland, as a staff physicist in 1973, where he worked on the application of charge-coupled devices (CCDs) for imaging and signal processing. In 1976 he joined the Westinghouse Advanced Technology Laboratory in Baltimore, Maryland, developing advanced silicon VLSI integrated circuits and performing device physics research. He performed original work in the design and fabrication of CCDs for signal processing and photodetectors for use with acousto-optic signal processors. He headed the Westinghouse VHSIC effort in advanced sub-micron VLSI device technology. Dr. Borsuk was department manager of Solid State Sciences at the Advanced Technology Laboratory when he left Westinghouse in 1983 to join the Naval Research Laboratory as the Superintendent of the Electronics Science and Technology Division.

Dr. Borsuk received a Ph.D. in physics from Georgetown University in Washington, DC, in 1973. He is a Fellow of the IEEE, a member of the American Physical Society, a member of the AVS, and is a member of Sigma Xi. He has 37 technical publications, four patents, and eleven invention disclosures. He is the recipient of four Presidential Rank Senior Executive Awards, the Distinguished, the most recent awarded in 2010. He is also the recipient of the IEEE Frederik Philips Award, the IEEE Harry Diamond Memorial Award, the IEEE Millennium Medal, and an IR-100 Award for his work on high-speed CCDs. Dr. Borsuk also served on the editorial board of the IEEE Proceedings.

Key Personnel

Title	Code
Associate Director of Research for Systems	5000
Special Assistant	5001
Special Consultant	5007
Ĥead, InTop Program Office	5008
Superintendent, Radar Division	5300
Superintendent, Information Technology Division	5500
Superintendent, Optical Sciences Division	5600
Superintendent, Tactical Electronic Warfare Division	5700

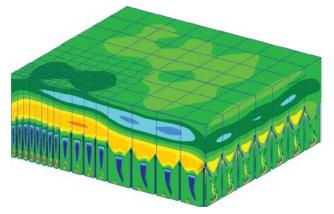
Point of contact: Code 5000A, (202) 767-3324

Radar Division

Code 5300 Staff Activity Areas

Shipboard radar systems Small target detection Maritime Domain Awareness Networked Radar Concepts (FlexDAR) High-power millimeter-wave radar

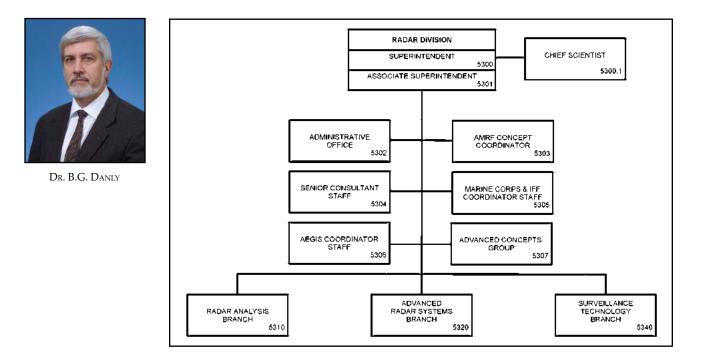
Radar Analysis


Target signature prediction Electromagnetics and antennas Airborne early-warning radar (AEW) Inverse synthetic aperture radar (ISAR) Sea clutter modeling Periscope detection Wideband array simulation and fabrication

Advanced Radar Systems

High-frequency over-the-horizon radar systems HF Radar Technology Signal analysis Real-time signal processing and equipment Computer-aided engineering (CAE) Optimization techniques FPGA-based digital processing

Surveillance Technology


Shipboard surveillance radar
Ship self-defense
Electronic counter-countermeasures and electronic protection (EP)
Target signature and information extraction T/R module technologies
Asymmetric and expeditionary warfare spectrum management
Ultrawideband technology
Dynamic waveform diversity
Multistatic radar network information
Ballistic missile defense
Mine detection

Wavelength scaled array: an ultrawideband array concept providing constant beamwidth across 8:1 bandwidth; designed using NRL-developed Domain Decomposition Algorithm.

The Advanced Multifunction RF Concept (AMRFC) test bed is a proof-of-principle demonstration system capable of simultaneously transmitting and receiving multiple beams from common transmit and receive array antennas for radar, electronic warfare, and communications. This testbed will be expanded to support the FlexDAR program.

The Radar Division conducts research on basic physical phenomena of importance to radar and related sensors, investigates new engineering techniques applicable to radar, demonstrates the feasibility of new radar concepts and systems, performs related systems analyses and evaluation of radar, and provides special consultative services. The emphasis is on new and advanced concepts and technology in radar and related sensors that are applicable to enhancing the Navy's ability to fulfill its mission.

Personnel: 80 full-time civilian

Key Personnel

Title	Code
Superintendent, Radar Division	5300
Chief Scientist	5300.1
Associate Superintendent Administrative Officer	5300.1 5301 5302
AEGIS Coordinator	5306
Head, Advanced Concepts Group	5307
Head, Radar Analysis Branch	5310
Head, Advanced Radar Systems Branch	5320
Head, Surveillance Technology Branch	5340

Point of contact: Code 5300, (202) 404-2700

Information Technology Division

Code 5500 Research Activity Areas

Freespace Photonics Communications Office

Extended spectrum communications

- Atmospheric channel effects on photonic transfer
- Studies in marine miraging Analog modulation techniques on freespace optical
- carriers

Modulating retroreflector based communications Signature studies for ISR

Adaptive optics for freespace optical communications

Adversarial Modeling and Exploitation Office

Behavioral indicators of hostile intent Suspicious behavior detection research Behavioral modeling, analysis, and metrics Deception detection research Geospatial modeling and simulation Spatially integrated social science Automated video analysis and retrieval

Navy Center for Applied Research in Artificial Intelligence

Intelligent decision aids Natural language and multimodal interfaces Intelligent software agents Machine learning and adaptive systems Robotics software and computer vision Neural networks Novel devices/techniques for HCI Spatial audio Immersive simulation Autonomous and intelligent systems Case-based reasoning and problem-solving methods Machine translation technology evaluation Cognitive architectures Human-robot interaction

Transmission Technology

Communication system architecture Communication antenna/propagation technology Communications intercept systems Virtual engineering Secure voice technology Satellite and tactical networking Satellite communications research Satellite architecture analysis RF systems analysis

Center for High Assurance Computer Systems

Secure Enterprise Architectures (SEA) Formal specification/verification of system security COMSEC application technology Technology and solutions to secure networks and databases Software engineering for secure systems Key management and distribution solutions Information systems security (INFOSEC) engineering Formal methods for requirements specification and verification Security product development Secure wireless network and wireless sensor technology Network security protocol modeling, simulation, and verification Cross-domain solution technology development Computer Network Defense (CND) technology Hardware/software co-design

Malicious code analysis Information hiding (watermarking, covert channel analysis, etc.) Anonymizing systems Quantum information science Logical foundations of security

Networks and Communication Systems

Communication system engineering Mobile, wireless networking technology Bandwidth management (quality of service) Joint service tactical networking Integration of communication and C2 applications Automated testing of highly mobile tactical networks Reliable multicast protocols and applications Communication network simulation Networking protocols for directional antennas Policy-based network management Tactical voice-over IP Sensor networks Advanced tactical data links Cognitive radio technology

Information Management and Decision Architectures

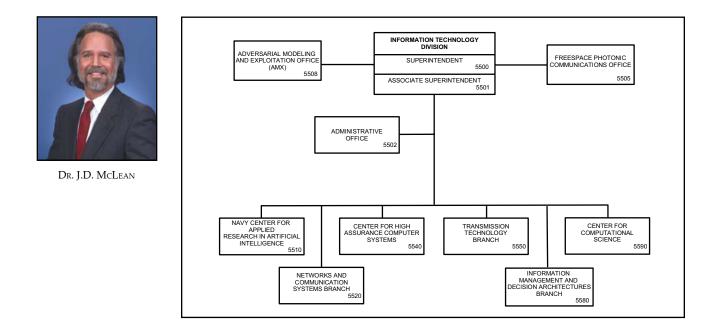
Virtual reality/mobile augmented reality Visual analytics Scientific visualization Computer graphics Human-computer interaction Service oriented architecture Service orchestration Data and information management Human-centered design Parallel and distributed computation Distributed modeling and simulation Natural environments for distributed simulation Intelligent decision support Information sharing Semantic web technology Data mining Software agents for data fusion

Center for Computational Science

- Transparent optical network research and design
- Parallel computing
- Scalable high performance computing and networking for Navy and DoD
- Large data in distributed computing

Scientific visualization

- High-performance file systems
- High-definition video technology
- NRL labwide computer network and related services Labwide support for web, email, and other information
- services
- ATDnet and leading-edge WAN research networks


Ruth H. Hooker Research Library

Desktop/workbench access to relevant scientific resources NRL scientific digital archive (TORPEDO)

Authoritative database of NRL-produced publications (NRL Online Bibliography)

Comprehensive literature/citation/classified searches

Extensive collection of print and digital books, journals, and technical reports

The Information Technology Division conducts basic research, exploratory development, and advanced technology demonstrations in the collection, transmission, processing, presentation, and distribution of information to provide information superiority and distributed networked force capabilities that improve Naval operations across all mission areas. The Division provides immediate solutions to current operational needs as required while developing those technologies necessary to implement the Navy after next.

Personnel: 204 full-time civilian

....

Key Personnel

Title	Code
Superintendent/NRL Chief Information Officer ⁺	5500
Associate Superintendent	5501
Administrative Officer	5502
Head, Freespace Photonic Communications Office	5505
Head, Adversarial Modeling and Exploitation Office	5508
Director, Navy Center for Applied Research in Artificial Intelligence	5510
Head, Networks and Communication Systems Branch	5520
Director, Center for High Assurance Computer Systems	5540
Head, Transmission Technology Branch	5550
Head, Information Management and Decision Architectures Branch	5580
Director, Center for Computational Science	5590
Chief Librarian, Ruth H. Hooker Research Library	5596

Point of contact: Code 5501, (202) 767-2954

⁺Additional Duty

Optical Sciences Division

Code 5600 Staff Activity Areas

Program analysis and development Special systems analysis Technical study groups Technical contract monitoring Theoretical studies

Research Activity Areas

Optical Materials and Devices

Advanced infrared optical materials IR fiber-optic materials and devices IR fiber chemical and environmental sensors IR transmitting windows and domes Transparent ceramic armor materials Planar waveguide devices IR nonlinear materials and devices Ceramic laser gain materials Advanced solar cell materials Fiber lasers/sources and amplifiers Radiation effects

Optical Physics

Laser materials diagnostics Nonlinear frequency conversion Optical instrumentation and probes Optical interactions in semiconductor superlattices and organic solids Laser-induced reactions Organic light-emitting devices Nanoscale electro-optical research Aerosol optics

Applied Optics

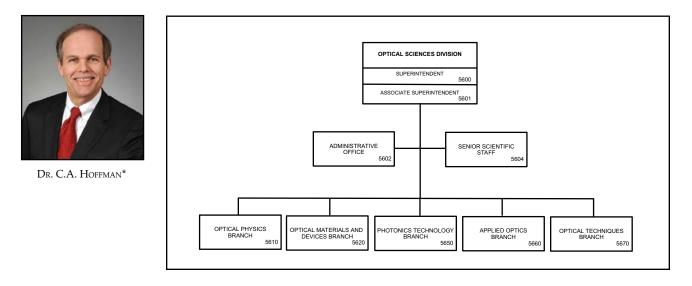
UV, optical, and IR countermeasures Ultraviolet component development Missile warning sensor technology UV, visible, and IR imager development Multispectral/hyperspectral sensors Multispectral/hyperspectral/detection algorithms Framing reconnaissance sensors Novel optical components Sensor control and exploitation system development IR low observables EO/IR systems analysis Atmospheric IR measurements

Airborne IR search and track technology

Photonics Technology

Fiber and solid-state laser/sources High-speed (<100 fs) optical probing High-power fiber amplifiers High-speed fiber-optic communications Antenna remoting Free space communication Photonic control of phased arrays Micro-electro-optical-mechanical systems Optical clocks Microwave photonics

Optical Techniques


Fiber-optic materials and fabrication Fiber Bragg grating sensors/systems Fiber-optic sensors/systems (acoustic, magnetic, gyroscopes) Integrated optics

The Advanced Optical Materials Fabrication Laboratory, a state-of-theart high vacuum cluster system, consists of a series of interconnected chambers allowing vacuum deposition of complex, multilayer films to be deposited and patterned without breaking vacuum during processing.

The Optical Fiber Preform Fabrication Facility includes computer control of the glass composition and standard fiber-optic dopants as well as rare earths, aluminum, and other components for specialty fibers.

The Optical Sciences Division carries out a variety of research, development, and application-oriented activities in the generation, propagation, detection, and use of radiation in the wavelength region between nearultraviolet and far-infrared wavelengths. The research, both theoretical and experimental, is concerned with discovering and understanding the basic physical principles and mechanisms involved in optical devices, materials, and phenomena. The development effort is aimed at extending this understanding in the direction of device engineering and advanced operational techniques. The applications activities include systems analysis, prototype system development, and exploitation of R&D results for the solution of optically related military problems. In addition to its internal program activities, the Division serves the Laboratory specifically and the Navy generally as a consulting body of experts in optical sciences. The work in the Division includes studies in quantum optics, laser physics, optical waveguide technologies, laser-matter interactions, atmospheric propagation, holography, optical data processing, fiber-optic sensor systems, optical systems, optical materials, radiation damage studies, IR surveillance and missile seeker technologies, IR signature measurements, and optical diagnostic techniques. A portion of the effort is devoted to developing, analyzing, and using special optical materials.

Personnel: 132 full-time civilian

Key Personnel

Title	Code
Superintendent, Optical Sciences Division	5600
Associate Superintendent	5601
Administrative Officer	5602
Head, Senior Scientific Staff	5604
Head, Optical Physics Branch	5610
Head, Optical Materials and Devices Branch	5620
Head, Photonics Technology Branch	5650
Head, Applied Optics Branch	5660
Head, Optical Techniques Branch	5670

Point of contact: Code 5602, (202) 767-9306

Tactical Electronic Warfare Division

Code 5700 Staff Activity Areas

EW Strategic Planning Signature Technology Office Effectiveness of Naval EW Systems (ENEWS)

Research Activity Areas

Offboard Countermeasures

Expendable technology and devices Unmanned air vehicles Offboard payloads Decoys

Airborne Electronic Warfare Systems

Counter ISR Wireless network analysis Jamming technology and deception Communications CM

Ships Electronic Warfare Systems

Ships systems development Jamming technology and deception EW antennas High power microwaves (HPM) research

Electronic Warfare Support Measures

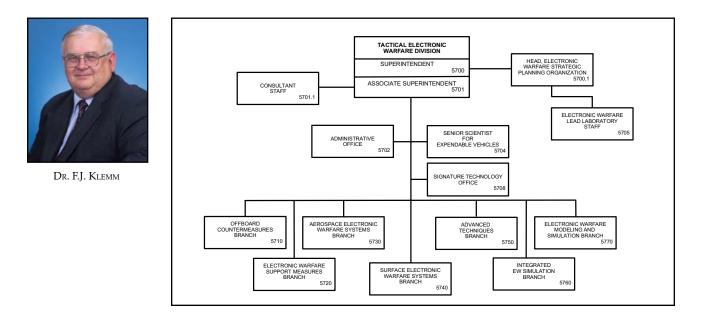
Intercept systems and direction finders RF signal simulators Systems integration Command and control interfaces Signal processing

Advanced Techniques

Analysis and modeling simulation Experimental systems EW concepts Infrared technology

Integrated EW Simulation

Hardware-in-the-loop simulation Data management technology Flyable ASM seeker simulators Foreign materiel exploitation (FME)


EW Modeling and Simulation

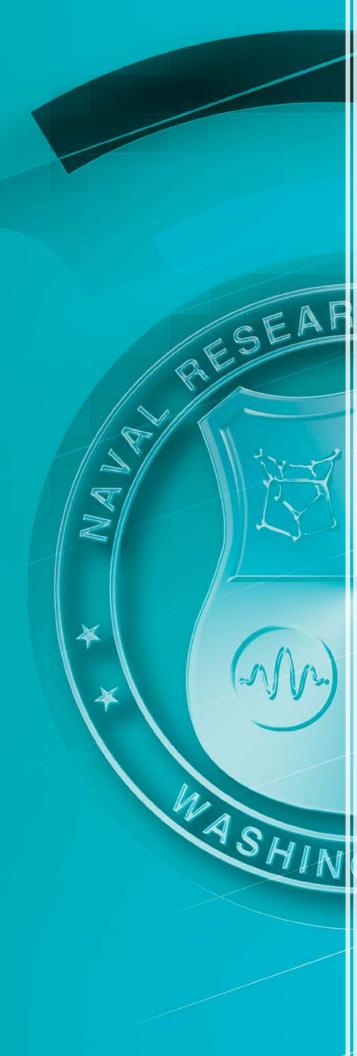
High-fidelity threat models and simulations Advanced system visualization EW tactical decision aids RF environmental and propagation modeling

Using the latest composite, MMIC, and processing technologies, the Tactical Electronic Warfare Division has developed a small, lightweight, and inexpensive ESM receiving system for use on frigates, Coast Guard vessels, and various patrol aircraft.

The Central Target Simulator (CTS) Programmable Array is part of a large hardware-in-the-loop simulation facility whose purpose is to test and evaluate electronic warfare systems and techniques used to counter radar-guided missile threats to Navy forces.

The Tactical Electronic Warfare Division (TEWD) is responsible for research and development in support of the Navy's tactical electronic warfare requirements and missions. These include electronic warfare support measures, electronic countermeasures, and supporting counter-countermeasures, as well as studies, analyses, and simulations for determining and improving the effectiveness of these systems.

Personnel: 269 full-time civilian


Key Personnel

Title	Code
Superintendent, Tactical Electronic Warfare Division Head, Electronic Warfare Strategic Planning Organization Associate Superintendent Administrative Officer Senior Scientist for Expendable Vehicles Head, Electronic Warfare Lead Laboratory Staff Head, Signature Technology Office Head, Offboard Countermeasures Branch Head, Electronic Warfare Support Measures Branch Head, Aerospace Electronic Warfare Systems Branch Head, Surface Electronic Warfare Systems Branch	5700 5700.1 5701 5702 5704 5705 5708 5710 5720 5730 5730 5740
Head, Advanced Techniques Branch Head, Integrated Electronic Warfare Simulation Branch	5750 5760
Head, Integrated Electronic Warfare Simulation Branch Head, Electronic Warfare Modeling and Simulation Branch	5760 5770
Thead, Electronic manage modeling and omitalation pranet	0,70

Point of contact: Code 5701, (202) 767-5974

^{*}Acting

FECHNOLOGY DIRECTORATE MATERIALS SCIENCE AND COMPONENT

MATERIALS SCIENCE AND COMPONENT TECHNOLOGY DIRECTORATE

Code 6000

The Materials Science and Component Technology Directorate carries out a multidisciplinary research program whose objectives are the discovery, invention, and exploitation of new improved materials, the generation of new concepts associated with materials behavior, and the development of advanced components based on these new and improved materials and concepts. Theoretical and experimental research is carried out to determine the scientific origins of materials behavior and to develop procedures for modifying these materials to meet important naval needs for advanced platforms, electronics, sensors, and photonics.

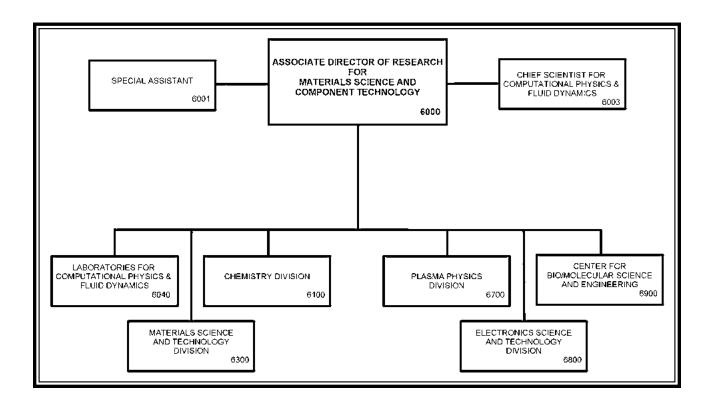
The program includes investigations of a broad spectrum of materials including insulators, semiconductors, superconductors, metals and alloys, optical materials, polymers, plastics, artificially structured bio/molecular materials and composites, and energetic materials, which are used in important naval devices, components, and systems. New techniques are developed for producing, processing, and fabricating these materials for crucial naval applications.

The synthesis, processing, properties, and limits of performance of these new and improved materials in natural or radiation environments, and under deleterious conditions such as those associated with the marine environment, neutron or directed energy beam irradiation, or extreme temperatures and pressures, are established. For new materials design, emphasis is placed on protection of the environment.

Additionally, major thrusts are directed in advanced sensing, detection, reactive flow physics, computational physics, and plasma sciences. Areas of particular emphasis include nanoscience and technology, fluid mechanics and hydrodynamics, nuclear weapon effects simulations, high energy density materials including fuels, propellants, explosives, and storage devices, interactions of various types of radiation with matter, survivability of materials and components, and directed energy devices.

Associate Director of Research for Materials Science and Component Technology

Dr. B.B. Rath was born in Banki, India. He received a B.S. degree in physics and mathematics from Utkal University, an M.S. in metallurgical engineering from Michigan Technological University, and a Ph.D. from the Illinois Institute of Technology.


Dr. Rath was Assistant Professor of Metallurgy and Materials Science at Washington State University from 1961 to 1965. From 1965 to 1972, he was with the staff of the Edgar C. Bain Laboratory for fundamental research of the U.S. Steel Corporation. From 1972 to 1976, he headed the Metal Physics Research Group of the McDonnell Douglas Research Laboratories in St. Louis, Missouri, until he came to NRL as Head of the Physical Metallurgy Branch. During this period, he was adjunct professor at Carnegie-Mellon University, the University of Maryland, and the Colorado School of Mines. Dr. Rath served as Superintendent of the Materials Science and Technology Division from 1982 to 1986, when he was appointed to his present position.

Dr. Rath is recognized in the fields of solid-state transformations, grain boundary migrations, and structure-property relationships in metallic systems. He has published over 140 papers in these fields and edited several books and conference proceedings.

Dr. Rath serves on several planning, review, and advisory boards for both the Navy and the Department of Defense, as well as for the National Materials Advisory Board of the National Academy of Sciences, National Science Foundation, University of Virginia, Colorado School of Mines, and the University of Florida. He is currently the Navy representative to the DOE Deputy Assistant Secretary's advisory and planning committee on methane hydrates, and the Navy representative to the Indo-U.S. Joint Commission on Science and Technology. He previously served as the Navy representative to the panel of The Technical Cooperation Program (TTCP) countries.

Dr. Rath is a member of the National Academy of Engineering. He is a fellow of the Minerals, Metals and Materials Society (TMS), American Society for Materials-International (ASM), Washington Academy of Sciences, Materials Research Society of India, the Institute of Materials of the United Kingdom, and the American Association for the Advancement of Science (AAAS). In 2007, Dr. Rath received an honorary doctorate in engineering from the Michigan Technological University and was elected to deliver the commencement address to the 2007 graduating class. In 2008, he received the Illinois Institute of Technology Mechanical Materials & Aerospace Engineering Department 2008 Alumni Recognition Award. In 2010, he received an honorary doctorate from Ravenshaw University and Indian Institute of Technology.

Dr. Rath has received a number of honors and awards, most recently the Michigan Technological University Distinguished Alumni Award, the Padma Bhushan Award of Honors and Excellence bestowed by the President of India, and the Acta Materialia J. Herbert Hollomon Award. His other awards include the DoD Distinguished Civilian Service Award which is presented by the Secretary of Defense for distinguished accomplishments and sustained superior service, the 2005 Fred Saalfeld Award for Outstanding Lifetime Achievement in Science, the Presidential Rank Award for Distinguished Executive (2005), the NRL Lifetime Achievement Award (2004), National Materials Advancement Award from the Federation of Materials Societies (2001), the Presidential Rank of Meritorious Executive Award (1999 and 2004), the S. Chandrasekhar Award and Medal, and the Award of Merit for Group Achievement from the Chief of Naval Research. He received the 1991 George Kimball Burgess Memorial Award, the Charles S. Barrett Medal, and the prestigious TMS Leadership Award for his contributions to materials research. The American Society for Materials-International and The Metals, Minerals, and Materials Society have jointly recognized him with the TMS/ASM Joint Distinguished Lectureship in Materials & Society Award and the 2001 ASM Distinguished Life Membership Award. He has served as the 2004–2005 President of the American Society for Materials. He also has served as a member of the Boards of Directors/Trustees of TMS, ASM-International, and the Federation of Materials Society (FMS), as a member of the editorial boards of several international materials research journals, and as chairman of many committees of TMS, ASM, FMS, and American Association of Engineering Societies.

Key Personnel

Title	Code
Associate Director of Research for Materials Science and	
Component Technology	6000
Special Assistant	6001
Chief Scientist for Computational Physics and Fluid Dynamics	6003
Director, Laboratories for Computational Physics and	
Fluid Dynamics	6040
Superintendent, Chemistry Division	6100
Superintendent, Materials Science and Technology Division	6300
Superintendent, Plasma Physics Division	6700
Superintendent, Electronics Science and Technology Division	6800
Director, Center for Bio/Molecular Science and Engineering	6900

Point of contact: Code 6000, (202) 767-2538

Laboratories for Computational Physics and Fluid Dynamics

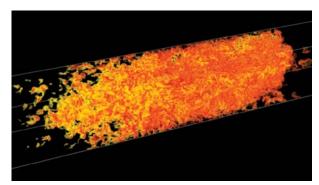
Code 6040 Research Activity Areas

Reactive Flows


Fluid dynamics in combustion Turbulence in compressible flows Multiphase flows Turbulent jets and wakes Jet noise S&T Detonation engines Propulsion systems analysis Contaminant transport modelling Fuel cells Fire and explosion mitigation

Computational Physics Developments

Laser-plasma interactions Inertial confinement fusion Space debris elimination Solar physics modeling Dynamical gridding algorithms Advanced graphical and parallel processing systems Solar & Heliospheric Modeling Microfluidics Fluid structure interaction Shock and blast containment


Rotating Detonation Engine research for reducing fuel consumption and improving performance.

Unstructured grid technology has been used to design and develop a flying unmanned underwater vehicle (UUV) for long range deployment.

CT-Analyst plumes displayed in Google Earth, showing the same colors and density information as in the CT-Analyst program.

Detailed simulations have led to new understanding of high-intensity, nonequilibrium, inhomogeneous, anisotropic reactive turbulent flows.

Dr. K. Kailasanath

The Laboratories for Computational Physics and Fluid Dynamics (LCP&FD) are responsible for the research leading to and the application of advanced analytical and numerical capabilities that are relevant to NRL, Navy, DoD, and other Government agencies. This research is pursued in the fields of compressible and incompressible fluid dynamics, reactive flows, fluid/structure interactions including submarine and aerospace applications, atmospheric and solar geophysics, magnetoplasma dynamics, application of parallel processing to large-scale problems such as unsteady flows of contaminants in and around cities, advanced propulsion concepts, flame dynamics for shipboard fire safety, jet noise reduction, and other disciplines of continuum computational physics as required to further the overall mission of NRL. The specific objectives of the LCP&FD are to develop and maintain state-of-the-art analytical and computational capabilities in fluid dynamics and related fields of physics; to establish in-house expertise in parallel processing for large-scale scientific computing; to perform analyses and computational experiments on specific relevant problems using these capabilities; and to transfer this technology to new and ongoing projects through cooperative programs with the research Divisions at NRL and elsewhere.

Personnel: 22 full-time civilian

Key Personnel

Title	Code
Director, Laboratories for Computational Physics and	
Fluid Dynamics	6040
Administrative Officer	6040.2
Chief Scientist for Computational Physics and	
Fluid Dynamics	6003
Head, Laboratory for Propulsion, Energetic, and	
Dynamic Systems	6041
Head, Laboratory for Advanced Computational Physics	6042
Head, Laboratory for Multiscale Reactive Flow Physics	6043

Point of contact: Code 6040, (202) 404-1064

Chemistry Division

Code 6100 Research Activity Areas

Chemical Diagnostics

Alternate energy sources Atmosphere analysis and control Environmental chemistry/microbiology Ion/molecule processes Kinetics of gas phase reactions Laboratory on a chip Methane hydrates Optical diagnostics of chemical reactions Trace analysis

Materials Chemistry

Bio-inspired materials Degradation and stabilization mechanisms Functional organic coatings High-temperature resins Magnetic resonance Novel nanotubes and nanofibers Polymer characterization Reactive nanometals Synthesis and evaluation of innovative polymers and composites

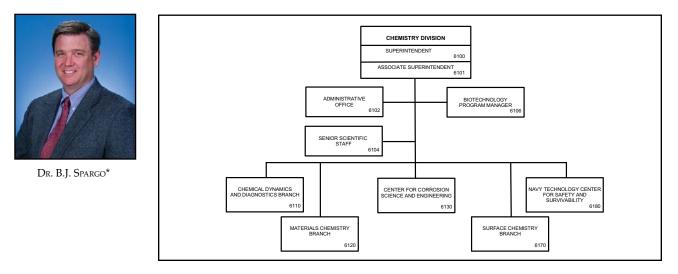
Center for Corrosion Science and Engineering

Aquatic invasive organism control Biofouling control Cathodic protection

The ex-USS *Shadwell* (LSD 15), moored in Mobile Bay, Alabama, is NRL's full-scale, advanced research and full-scale demonstration vessel operated by the Chemistry Division.

Corrosion control engineering Corrosion science Environmental fracture and fatigue Marine coatings Materials failure analysis

Surface/Interface Chemistry


Adhesion Bio/organic interfaces Chemical/biological sensors Diamond films Electrochemistry Plasmonics Energy storage materials Nanostructured materials and interfaces Surface/interface analysis Surface properties of materials Surface reaction dynamics Synchrotron radiation applications Tribology

Safety and Survivability

Chemometrics/data fusion Combustion dynamics Fire protection and suppression Mobility fuels Modeling and scaling of combustion systems Personnel protection System automation Trace analysis

The Key West site of the NRL Center for Corrosion Science and Engineering specializes in understanding and modeling the marine environment's impact on naval materials. A complete laboratory for the study of corrosion control technologies provides sponsors with prototypical seawater exposure of their systems.

The Chemistry Division conducts basic research, applied research, and development studies in the broad fields of chemical/structural diagnostics, reaction rate control, materials chemistry, surface and interface chemistry, corrosion passivation, environmental chemistry, and ship safety/survivability. Specialized programs within these fields include coatings, functional polymers/elastomers, clusters, controlled release of energy, physical and chemical characterization of surfaces, electrochemistry, assembly and properties of nanometer structures, tribology, chemical vapor deposition/etching, atmosphere analysis and control, environmental protection/reclamation, prevention/ control of fires, mobility fuels, modeling/simulation, and miniaturized sensors for chemical, biological, trace analysis and data fusion, and explosives.

To enhance protection of Navy personnel and platforms from damage and injury in peace and wartime, the Navy Technology Center for Safety and Survivability performs RDT&E on fire and personnel protection, fuels, chemical defense, submarine atmospheres, and damage control aspects of ship and aircraft survivability; supports Navy and Marine Corps requirements in these areas; and acts as a focus for technology transfer in safety and survivability.

To address problems in corrosion and marine fouling, a Marine Corrosion Facility is located in Key West, Florida. This laboratory resides in an unparalleled site for natural seawater exposure testing and marine related materials evaluation. The tropical climate is ideal for marine exposure testing. Along with the high quality seawater, the location provides small climatic variation and a stable biomass throughout the year.

Personnel: 113 full-time civilian; 1 military; 5 intermittent; 3 part-time

Key Personnel

Title	Code
Superintendent, Chemistry Division	6100
Associate Superintendent	6101
Administrative Officer	6102
Senior Scientific Staff	6104
Senior Scientific Staff	6104
Biotechnology Program Manager	6106
Head, Chemical Dynamics and Diagnostics Branch	6110
Head, Materials Chemistry Branch	6120
Head, Center for Corrosion Science and Engineering	6130
Head, Surface Chemistry Branch	6170
Head, Navy Technology Center for Safety and Survivability	6180
Senior Scientist for Theoretical Chemistry	6189

Point of contact: Code 6102, (202) 767-2460

Materials Science and Technology Division

Code 6300 Research Activity Areas

Materials and Sensors

Laser direct write THz sources, devices, and sensors Spintronic materials and devices Magnetic materials Superconducting materials **Optoelectronic materials** Electroceramic materials Multiferroic materials Radar absorbing materials Analysis of extrasolar materials Chemical sensors Nonlinear dynamics and chaos theory Nanoplasmonic biosensors Thin film deposition for devices Ion implantation Glass fiber processing and characterization Polymer synthesis and characterization Personal protective equipment Remote explosives detection Automated learning

Multifunctional Materials

3D Materials Science Image-based microstructural modeling Materials by design Nano-, micro-, mesoscale material characterization Grain boundary engineering Atom probe tomography Physical metallurgy Ferrous, nonferrous, and intermetallic alloys Powder metallurgy Microwave sintering Rapid solidification Rail gun materials

Friction stir welding and joining technologies Heat treating and phase transformations Biomechanical surrogate development for warfighter protection Biomechanical simulation Personal protective equipment Composite material systems Multifunctional structures Armor Porovascular structures Corrosion simulation and control Modeling of electrochemical corrosion systems Evaluation of cathodic protection performance Advanced ceramics High energy density dielectrics High temperature ceramics Thermal barrier coatings **Computational Materials Science** Condensed matter theory Electronic structure of solids and clusters Molecular dynamics Quantum many-body theory Theory of magnetic materials

The Secondary Ion Mass Spectrometer/Single-Stage Accelerator Mass Spectrometer performs spatially resolved composition analysis using secondary ion mass spectrometer (SIMS) to sputter atoms, and single stage accelerator mass spectrometer (SSAMS) to reduce background interferences from commonly present molecular ions. Provides high-sensitivity and high-precision measurements.

Theory of alloys

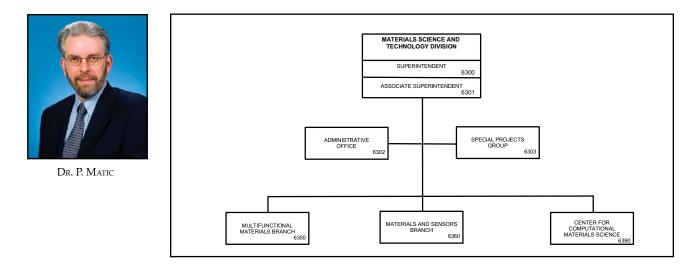
Atomic physics theory

Reduced order modeling

Protein modeling

methods

Materials for power and energy


Semiconductor and surface physics

Continuum multiphysics modeling

Theoretical studies of phase transitions

Multiphysics simulation of materials behavior

Development of high-performance computational

The Materials Science and Technology Division conducts basic and applied research and engages in exploratory and advanced development of materials having substantive value to the Navy. The Division is composed of multidisciplinary teams of materials scientists, metallurgists, ceramists, physicists, chemists, and engineers using the most advanced testing facilities and diagnostic techniques. R&D programs encompass the intrinsic behavior of metals, semiconductors, insulators, composites, and ceramics, including efforts in ferrous alloys, intermetallic compounds, superconducting, dielectric, and magnetic materials, films and coatings, and multifunctional materials systems. The programs encompass advanced synthesis and processing techniques, as well as postprocessing techniques to fabricate sensors, devices, structures, and components. A variety of state-of-the-art characterization tools are used to probe the atomic, grain, and defect structure (composition and microstructure) of the materials as well as to delineate the fundamental properties of the material or material system. Response of materials and material systems to a variety of external influences (mechanical, chemical, optical, electromagnetic radiation, high-power lasers, temperature, etc.) is integral to the Division's programs, as are performance and reliability projections for military service lifetime. The program includes strong theoretical, experimental, computational, and simulation efforts to predict, guide, and explain the behavior of materials and materials systems. Studies conducted in the Division provide guidance for the selection, design, certification, and life-cycle management of material in Naval vehicles and systems.

Personnel: 100 full-time civilian

Key Personnel

Title	Code
Superintendent, Materials Science and Technology Division Associate Superintendent Administrative Officer Senior Scientist Head, Special Projects Group Head, Multifunctional Materials Branch Head, Materials and Sensors Branch Head, Center for Computational Materials Science	6300 6301 6302 6300.1 6300.2 6350 6360 6390
fieud, center for computational filaterials belence	0070

Point of contact: Code 6302, (202) 767-2458

*Acting

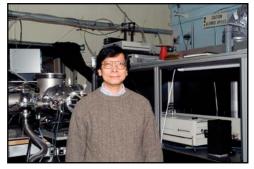
Plasma Physics Division

Code 6700 Research Activity Areas

Radiation Hydrodynamics

Radiation hydrodynamics of Z-pinches and laser-produced plasmas X-ray source development Cluster dynamics in intense laser fields Plasma kinetics for directed energy and fusion Plasma discharge physics Dense plasma atomic physics, equation of state Numerical simulation of high-density plasma

Laser driven ion/neutron sources


Laser Plasma

Nuclear weapons stockpile stewardship Laser fusion, inertial confinement Megabar high-pressure physics Rep-rate KrF laser development High power electron beam applications Laser fusion technology Laser fusion energy Detection of chemical/biological/nuclear materials

Charged Particle Physics

Applications of modulated electron beams Rocket, satellite, and ISS natural and active experiments

Laboratory simulation of space plasmas Large-area plasma processing sources

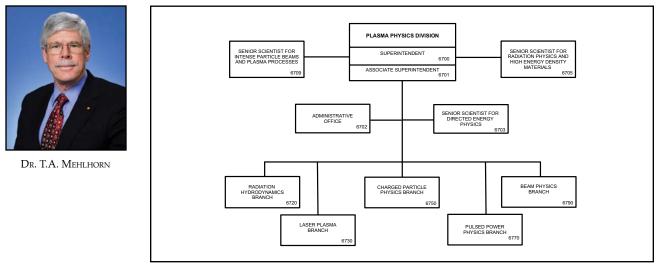
The NRL Ti:Sapphire Femtosecond Laser (TFL) currently operates at 40 fs, 15 TW and provides a facility to conduct research in intense laser-plasma interactions, ultrashort intense laser propagation in the atmosphere, remote sensing of chem/bio agents, and laser-induced electrical discharges.

Surface modification of energy sensitive materials Atmospheric and ionospheric GPS sensing Ionospheric effects on communications Electromagnetic launchers Radiation belt remediation

Pulsed Power Physics

Production, focusing, and propagation of intense electron and ion beams High-power, pulsed radiography Plasma and bremsstrahlung radiation sources Capacitive, inductive, and battery energy storage Nuclear weapons effects simulation Electromagnetic launchers Detection of Special Nuclear Materials Advanced energetics via stimulated nuclear decay

Beam Physics


Directed energy and laser propagation in the atmosphere

Advanced accelerators and radiation sources Microwave, plasma, and laser processing of materials Microwave sources: magnicons and gyrotrons Nonlinear stochastic dynamical systems Ultrahigh-intensity laser-matter interactions Free electron lasers and laser synchrotrons Theory and simulation of space and solar plasmas Global ionospheric and space weather modeling Underwater laser interactions

Nike is the world's largest krypton fluoride (KrF) laser and is used to explore physics issues for laser fusion. Shown is the propagation bay where 56 shortduration (4–5 ns) beams are directed by mirrors first to the electron-beam-

pumped amplifiers and then to the target facility. The Nike KrF system achieves extremely uniform high-intensity illumination of planar targets by overlapping numerous smoothed laser beams. Typical experiments include studies of the ablative acceleration of matter to high velocities (up to 1000 km/s) and studies of the reaction of materials to very high pressures (10 million atmospheres) produced by the laser light.

The Plasma Physics Division conducts a broad theoretical and experimental program of basic and applied research in plasma physics, laboratory discharge, and space plasmas, intense electron and ion beams and photon sources, atomic physics, pulsed power sources, laser physics, advanced spectral diagnostics, and nonlinear systems. The effort of the Division is concentrated on a few closely coordinated theoretical and experimental programs. Considerable emphasis is placed on large-scale numerical simulations related to plasma dynamics; ionospheric, magnetospheric, and atmospheric dynamics; nuclear weapons effects; inertial confinement fusion; atomic physics; plasma processing; nonlinear dynamics and chaos; free electron lasers and other advanced radiation sources; advanced accelerator concepts; and atmospheric laser propagation. Areas of experimental interest include laser-plasma, laser-electron beam, and laser-matter interactions, high-energy laser weapons, laser shock hydrodynamics, thermonuclear fusion, electromagnetic wave generation, the generation of intense electron and ion beams, large-area plasma processing sources, electromagnetic launchers, high-frequency microwave processing of ceramic and metallic materials, advanced accelerator development, inductive energy storage, laboratory simulation of space plasma phenomena, high-altitude chemical releases, and in situ and remote sensing space plasma measurements.

Personnel: 85 full-time civilian

Key Personnel

Title	Code
Superintendent, Plasma Physics Division	6700
Associate Superintendent	6701
Administrative Officer	6702
Senior Scientist, Directed Energy Physics	6703
Senior Scientist, Radiation Physics and High Energy	
Density Materials	6705
Senior Scientist, Intense Particle Beams and Plasma Processes	6709
Head, Radiation Hydrodynamics Branch	6720
Head, Laser Plasma Branch	6730
Head, Charged Particle Physics Branch	6750
Head, Pulsed Power Physics Branch	6770
Head, Beam Physics Branch	6790

Point of contact: Code 6700, (202) 767-2723

Electronics Science and Technology Division

Code 6800 Research Activity Areas

Nanoscience and Nanotechnology

Nanoelectronics Plasmonics Energy harvesting Quantum information Sensing

Surface and Interface Sciences

Epitaxial growth of graphene Growth of hyper-abrupt junctions Atomic layer deposition of dielectrics

Electronic Materials

Advanced elemental and compound semiconductors, high-κ dielectrics, and second-order materials Unique materials characterization Fabrication of electronic devices with high degree of complexity and precision

Computational Modeling and Simulation

Fast principles atomistic calculations Device modeling activities Modeling coherent interaction of electromagnetic fields with electron beams

Power Electronics

SiC and GaN epitaxial growth research Characterization of defects in SiC and GaN Development of advanced SiC and GaN power device processes Reliability of SiC and GaN power devices

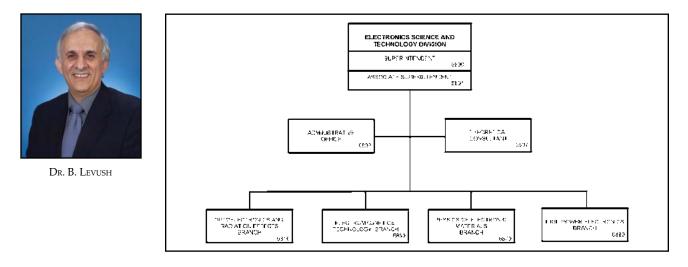
Microwave, Millimeter, and Sub-Millimeter Technology

Millimeter-wave, sub-millimeter-wave and terahertz technology Vacuum electronics Solid-state electronics Filters and control components

Optoelectronics

Design and synthesis of new materials in the IR spectrum region

Photovoltaics


High-efficiency technologies for portable photovoltaic power systems

Radiation Effects

Particle irradiation Photons irradiation Displacement damage dose effects in materials and devices

The EPICENTER specializes in molecular beam epitaxial growth of nanostructures created by alternating layers of narrow bandgap materials made available from four ultrahigh-vacuum chambers. These structures are expected to improve the performance of far-infrared detectors, midwave lasers, and superhigh frequency transistors and resonant tunneling diodes.

The Electronics Science and Technology Division conducts programs of basic science and applied research and development in nanoscience and nanotechnology, surface and interface sciences, electronic materials, computational modeling and simulation, power electronics, microwave, millimeter, and sub-millimeter technology, optoelectronics, photovoltaic and radiation effects. The activities of the Division integrate device research with basic materials investigations and with systems research and development needs.

Personnel: 107 full-time civilian

Key Personnel

Title	Code
Superintendent, Electronics Science and Technology Division Associate Superintendent Administrative Officer Senior Scientist for Nanoelectronics Head, Optoelectronics and Radiation Effects Branch Head, Electromagnetics Technology Branch Head, Physics of Electronic Materials Branch	6800 6801 6802 6877 6810 6850 6850
Head, High Power Electronics Branch	6880

Point of contact: Code 6802, (202) 767-3416

Center for Bio/Molecular Science and Engineering

Code 6900 Research Activity Areas

Biologically Derived Microstructures

Self-assembly, molecular machining Synthetic membranes Nanocomposites Tailored electronic materials Molecular engineering, biomimetic materials Molecular imprinting Viral scaffolds Multifunctional decontamination coatings

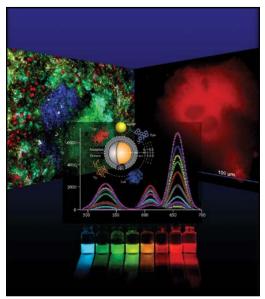
Biosensors

Binding polypeptides and proteins Cell-based biosensors DNA biosensors Fiber-optic biosensors Flow immunosensors Array-based sensors Optical biosensors Microfluidics and Microarrays

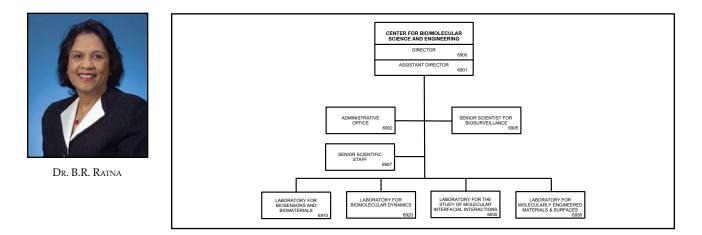
Novel Materials

Soil/groundwater explosives detection Single chain and single domain antibodies Nanoparticles and quantum dots Nano- and mesoporous materials Quantum dot and protein conjugates Biomimetic materials

Molecular Biology


Genomics and proteomics of marine bacteria Tissue engineering Gene arrays, biomarkers System and synthetic biology

Energy Harvesting


Biomaterials for charge storage Ocean floor biofuel cell Photo-induced electron transfer

Porphyrin-functionalized organosilicate sorbents provide capture and neutralization of vapor phase TIC/TIM targets. These materials offer the potential for new approaches to air filtration applicable to personal and facility protection.

5-color quantum dot immunohistochemical labeling of mouse splenic tissue and an image of live HEK cells microinjected with quantum dots. Center: 3-color quantum dot immunoassay results along with a schematic showing quantum dot potential to function as both a donor or as an acceptor in different types of energy transfer biosensing configurations. Bottom: Quantum dot solutions highlighting their size-tunable photoluminescence.

The Center for Bio/Molecular Science and Engineering is using the tools of modern biology, physics, chemistry, and engineering to develop advanced materials and sensors. The long-term research goal is first to gain a fundamental understanding of the relationship between molecular architecture and the function of materials, then apply this knowledge to solve problems for the Navy and DoD community. The key theme is the study of complex bio/molecular systems with the aim of understanding how "nature" has approached the solution of difficult structural and sensing problems. Technological areas currently being studied include molecular and microstructure design, molecular biology, imaging of cells using nanoparticles, sensor design and prototype development for biosurveillance or underwater chemical detection, and energy harvesting. Much of the research deals with the engineering of peptides, proteins, and nanoparticles into complex microstructures for use in advanced material applications, and the harnessing of the recognition functions of proteins and cells for the development programs. The Center provides a stimulating environment for cross-disciplinary programs in the areas of immunology, biochemistry, systems biology, electrochemistry, synthetic chemistry, microbiology, microlithography, photochemistry, biophysics, spectroscopy, advanced diagnostics, organic synthesis, and electro-optical engineering.

Personnel: 57 full-time civilian

Key Personnel

Title	Code
Director, Center for Bio/Molecular Science and Engineering	6900
Assistant Director	6901
Administrative Officer	6902
Senior Scientist for Biosurveillance	6905
Head, Laboratory for Biosensors and Biomaterials	6910
Head, Laboratory for Biomolecular Dynamics	6920
Head, Laboratory for the Study of Molecular Interfacial	
Interactions	6930

Point of contact: Code 6902, (202) 404-6012

TECHNOLOGY DIRECTORATE OCEAN AND ATMOSPHERIC SCIENCE AND

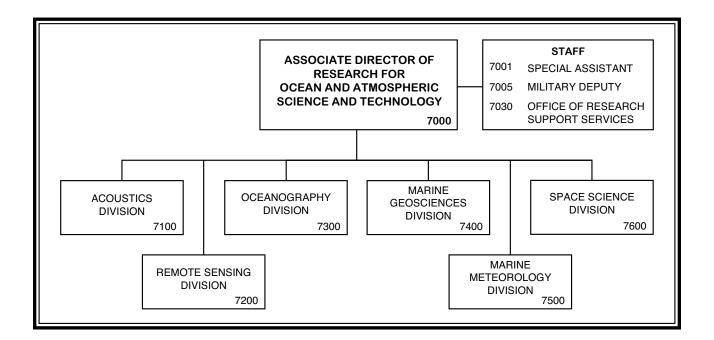
OCEAN AND ATMOSPHERIC SCIENCE AND TECHNOLOGY DIRECTORATE

Code 7000

The Ocean and Atmospheric Science and Technology Directorate performs research and development in the fields of acoustics, remote sensing, oceanography, marine geosciences, marine meteorology, and space science. Areas of emphasis in acoustics include advanced acoustic concepts and computation, acoustic signal processing, physical acoustics, acoustic systems, ocean acoustics, and acoustic simulation and tactics. Areas of emphasis in remote sensing include radio, infrared, and optical sensors, remote sensing physics and hydrodynamics, remote sensing simulation, and imaging systems. Areas of emphasis in oceanography include coastal and open ocean dynamics, ocean modeling and prediction, coastal and open ocean processes, remote sensing applications to oceanography, and marine biocorrosion processes. Areas of emphasis in marine geosciences include

marine physics, seafloor sciences, geospatial information science and technology, and mapping, charting, and geodesy. Areas of emphasis in marine meteorology include atmospheric dynamics for theater-wide, tacticalscale prediction systems and forecast support, and meterological applications development. Areas of emphasis in space science include middle and upper atmosphere physics, solar terrestrial relationships, solar physics, and higher energy astronomy. Senior naval officers are assigned as military advisors to help maintain the directorate focus on operational Navy and other DoD requirements in these areas of emphasis. The directorate is responsible for administrative and technical support to major activities in Washington, DC; Stennis Space Center, Mississippi; and Monterey, California.

Associate Director of Research for Ocean and Atmospheric Science and Technology


Dr. E.R. Franchi was born in Huntington, New York. He graduated from Clarkson University in 1968 with a bachelor of science degree in mathematics. He received his master of science (1970) and Ph.D. (1973) degrees, both in applied mathematics, from Rensselaer Polytechnic Institute. After completing his graduate studies, Dr. Franchi accepted a research position with Bolt, Beranek, and Newman where he performed validation studies of underwater acoustic propagation and noise models.

Dr. Franchi joined the Naval Research Laboratory in 1975 as a research mathematician in the Acoustics Division. In this position, he conducted and directed research in low frequency acoustic reverberation and scattering, including design and conduct of field experiments, development of signal processing techniques, data analysis and interpretation, computer prediction models, and active sonar performance studies. In 1986, he was named Head of the Acoustic Systems Branch where he was responsible for programs that emphasized theoretical, experimental, and computational research to understand the physical mechanisms of acoustic propagation, scattering, and ambient noise that control the design and performance of large-aperture passive sonar

systems, low frequency active sonar systems, and shallow water sonar systems.

In July 1988, Dr. Franchi was appointed to the Senior Executive Service and selected as the Associate Technical Director of the Naval Ocean Research and Development Activity (NORDA) and its Director of Ocean Acoustics and Technology. The Directorate conducted basic, exploratory, and advanced research and development and program management in the areas of acoustic model development and simulation, ocean acoustics measurements, and ocean engineering in support of all undersea warfare missions. In October 1992, the Directorate became the Center for Environmental Acoustics in the Acoustics Division of the Naval Research Laboratory, with Dr. Franchi as Director. Dr. Franchi was selected to the position of Superintendent of the Acoustics Division in October 1993. The Acoustics Division conducts basic, exploratory, and applied research and development in areas of acoustic modeling and simulation, ocean acoustics measurements, acoustic systems development, acoustic signal processing, and physical acoustics. He was responsible for the technical/ scientific management of division resources including the activities of approximately 110 civilian personnel. He served as Acting Associate Director of Research for the Ocean and Atmospheric Science and Technology Directorate from October 2001 to May 2002 and from June 2007 to April 2008. In April 2008, he was selected as the Associate Director of Research.

Dr. Franchi received the Presidential Rank Award of Meritorious Executive in 2003. He has over 35 years experience in underwater acoustics research and is the author/co-author of over 35 publications. He is recognized as an authority on underwater acoustic scattering and reverberation and has played major roles in Navy low frequency active sonar programs as both performer and advisor/consultant. He served as the U.S. National Leader of The Technical Cooperation Program's multinational Panel on ASW Systems and Technology from 1996 to 2002, and served as its Panel Chairman from 2002 to 2009. In 2011, Dr. Franchi received the TTCP Personal Achievement Award in recognition of his significant contributions and strategic vision in leading the ASW Panel. He represents the United States to the NATO Maritime Science and Technology Experts Committee and served as its Committee Chairman from 2010 to the present. In 2011, he was appointed to the NATO Science and Technology Reform Implementation Team. He was elected to Pi Mu Epsilon, the Honorary National Mathematics Society, while an undergraduate at Clarkson University. Dr. Franchi is a member of the Acoustical Society of America and past member of the Mathematical Association of America. From 2004 to 2013, he volunteered his time to serve on the Board of Directors of the NRL Federal Credit Union.

Key Personnel

Title	Code
Associate Director of Research for Ocean and Atmospher	ic
Science and Technology	7000
Special Assistant	7001
Military Deputy	7005
Head, Office of Research Support Services	7030
Superintendent, Acoustics Division	7100
Superintendent, Remote Sensing Division	7200
Superintendent, Oceanography Division	7300
Superintendent, Marine Geosciences Division	7400
Superintendent, Marine Meteorology Division	7500
Superintendent, Space Science Division	7600

Point of contact: Code 7000A, (202) 404-8174

Office of Research Support Services (NRL-SSC)

Code 7030 Staff Activity Areas

Office of Research Support

Conference coordination, video teleconferencing Directives, reports, forms

Facilities Office

Facilities planning and maintenance Vehicles

HPC Management Office

Supercomputing interface management

Safety/Environmental Office

Industrial/laboratory safety Specialized safety training Hazard abatement Mishap prevention Hazardous materials program Hazardous waste disposal

Public Affairs Office

Community relations News releases Exhibits Information Freedom of Information Act

NRL-SSC Network Management Office

Data communications Data networking Computer network maintenance

DR. H.C. EPPERT, JR.

The Office of Research Support Services is responsible for the operational and management support necessary for the day-to-day operations at NRL Stennis Space Center, Mississippi (NRL-SSC). The Head of NRL-SSC acts for the Commanding Officer in dealing with local Navy, Federal, and civil activities and personnel on matters relating to NRL-SSC support activities and facilities, community and multicommand issues, and safety and disaster control measures.

Support functions include public affairs, network support, safety, high performance computer management, and support services to include management, administration, and facilities.

Personnel: 8 full-time civilian

Key Personnel

Title	Code
Head, Office of Research Support Services	7030
Administrative Officer Head, Facilities Office	7030.2 7030.3
Public Affairs Officer	7030.4
Safety/Environmental Officer	7030.5
HPC Management Office NRL-SSC Network Management Office	7030.6 7030.8

Point of contact: Code 7030, (228) 688-4010; DSN 828-4010

Acoustics Division

Code 7100 Research Activity Areas

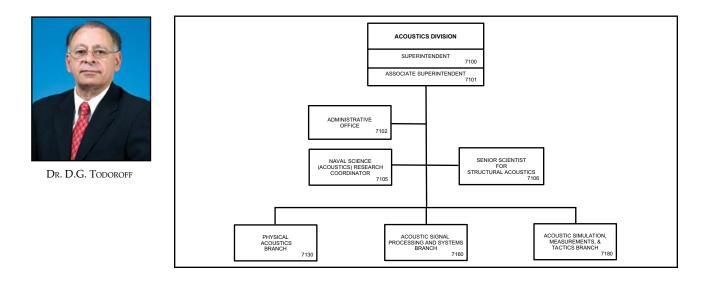
Physical Acoustics

Structural acoustics Quantum effects in phononic crystals Nanomechanical devices Fiber-optic acoustic sensors Acoustic transduction Inverse scattering Target strength/radiation modeling Flow-induced noise and vibration Active sonar classification Underwater distributed, networked sensing AUV-based sensing

NRL's "Reliant" unmanned undersea vehicle with towed acoustic array being deployed during a long range active acoustics experiment.

Structural acoustic studies are conducted in the onemillion-gallon Acoustic Holographic Pool Facility.

Acoustic Signal Processing and Systems


- Underwater acoustic communications and networking Limits of array performance Waveguide invariant processing Acoustic field uncertainty Acoustic interactions with transonic/ supersonic flows Acoustic noise forecasting Long-range underwater communications Underwater distributed sensing networks Ocean boundary scattering Acoustic propagation Acoustic inversion Characterization of reverberation Acoustic metamaterials Acoustics of microfluidic bubbly emulsions Active sonar performance modeling Compressive sensing Acoustic classification Nonlinear propagation
- Underwater acoustic network warfare

Acoustic Simulation, Measurements, and Tactics

- Ocean acoustic propagation and scattering models
- Fleet application acoustic models
- High-frequency seafloor and ocean acoustic measurements
- **Riverine** acoustics

Distributed sensing networks

Incorporating uncertainty in predictive models Tactical acoustic simulations and databases Warfare effectiveness studies and optimization Environmental assessment and planning tools

The Acoustics Division conducts basic and applied research addressing the physics of acoustic signal generation, propagation, scatter, and detection with the objective of improving the strategic and tactical capabilities of the Navy and Marine Corps in the ocean and land operational environment. The Division's scientists and engineers perform collaborative research with scientists affiliated with national and international academic, private, and governmental research organizations. The Division's research spans classical and quantum physics, signal processing, the impact of fluid dynamics on the oceans sound speed field, the propagation and scatter of acoustic signals in the ocean and land environments, structural and physical acoustics including the development of MEMS and nanotechnology based sensors, and the application of networked unmanned underwater vehicles and associated sensors to the Navy's ASW, MCM, and ISR missions.

Personnel: 61 full-time civilian

Key Personnel

Title	Code
Superintendent, Acoustics Division	7100
Associate Superintendent	7101
Administrative Officer	7102
Naval Science (Acoustics) Research Coordinator	7105
Senior Scientist for Structural Acoustics	7106
Head, Physical Acoustics Branch	7130
Head, Acoustic Signal Processing and Systems Branch	7160
Head, Acoustic Simulation, Measurements, and Tactics Branch	7180

Point of contact: Code 7100, (202) 767-3482

Remote Sensing Division

Code 7200 Research Activity Areas

Remote Sensing

Sensors SAR Imaging radar Passive microwave imagers CCDs and focal plane arrays Thermal IR cameras Fabry-Perot spectrometers **Imaging spectrometers** Radio interferometers **Optical interferometers** Adaptive optics Lidar Spaceborne and airborne systems Research Areas Radiative transfer modeling Coastal oceans Marine ocean boundary layer Polar ice Middle atmosphere Global ocean phenomenology Environmental change Ocean surface wind vector Soil moisture Ionosphere Data assimilation

Astrophysics

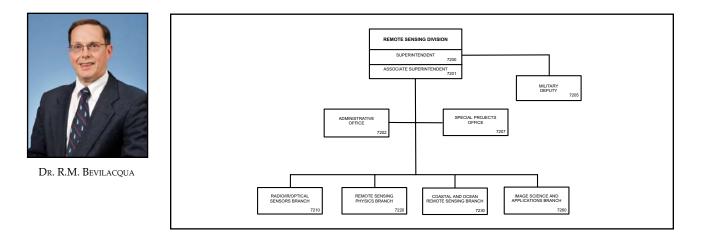
Optical interferometry Radio interferometry Fundamental astrometry and reference frames Fundamental astrophysics Star formation Stellar atmospheres and envelopes Interstellar medium, interstellar scattering pulsars Low-frequency astronomy

The WindSat polarimetric radiometer prior to spacecraft integration.

Physics of Atmospheric/Ocean Interaction

Mesoscale, fine-structure, and microstructure Aerosol and cloud physics Mixed layer and thermocline applications Sea-truth towed instrumentation techniques Turbulent jets and wakes Nonlinear and breaking ocean waves Stratified and rotating flows Turbulence modeling Boundary layer hydrodynamics Marine hydrodynamics Computational hydrodynamics

Imaging Research/Systems


Remotely sensed signatures analysis/simulation Real-time signal and image processing algorithm/systems Image data compression methodology Image fusion Automatic target recognition Scene/sensor noise characterization Image enhancement/noise reduction Scene classification techniques Radar and laser imaging systems studies Coherent/incoherent imaging sensor exploitation Numerical modeling simulation Environmental imagery analysis

The Hyperspectral Imager for the Coastal Ocean, or HICO, is optimized to image the coastal ocean and adjacent land in 128 contiguous color bands. This spectral data is used to develop maps of water depth, water optical properties,

Index vegetation, and soil bearing strength. HICO was deployed to the International Space Station in September 2009, providing scientific imagery of varied coastal types worldwide.

The Remote Sensing Division is the Navy's center of excellence for remote sensing research and development, conducting a program of basic research, science, and applications aimed at the development of new concepts for sensors and imaging systems for objects and targets on the Earth, in the near-Earth environment, and in deep space. The research, both theoretical and experimental, deals with discovering and understanding the basic physical principles and mechanisms that give rise to target and background emission and to absorption and emission by the intervening medium. The accomplishment of this research requires the development of sensor systems technology. This development effort includes active and passive sensor systems to be used for the study and analysis of the physical characteristics of phenomena that give rise to naturally occurring background radiation, such as that caused by the Earth's atmosphere and oceans, as well as manmade or induced phenomena, such as ship/submarine hydrodynamic effects. The research also includes theory, laboratory, and field experiments leading to ground-based, airborne, and space-based systems for use in such areas as environmental remote sensing (including improved meteorological support systems for the operational Navy), astrometry, astrophysics, surveillance, and nonacoustic ASW. Special emphasis is given to developing space-based platforms and exploiting existing space systems.

Personnel: 97 full-time civilian

Key Personnel

Code
7200
7201
7202
7205
7210
7220
7230
7260

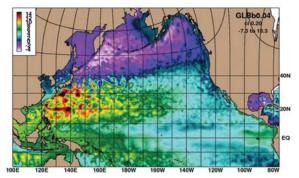
Point of contact: Code 7200, (202) 767-3391

Oceanography Division

Code 7300 Research Activity Areas

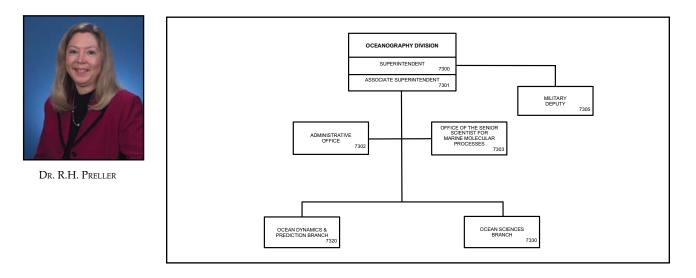
Ocean Dynamics and Prediction

Circulation Global resolution of circulation and mesoscale fields Littoral circulation at the coast, bays, and estuaries Satellite observation processing and assimilation UUV adaptive sampling Observation system simulation experiments Ice volume and ice drift Tidal currents and heights Surface effects Surface wave effects globally and into bays Wave breaking Mixed layer dynamics Swell propagation and dynamics Phase averaged wave evolution Phase resolved wave dynamics Nearshore Wave breaking at the shore Rip currents at the shore Tidal currents and heights into rivers Nonlinear wave interaction Sensor deployment optimization Acoustic effects Sound speed variation for acoustic propagation Internal waves, solitons, and bores for beam focusing


Wave bubble entrainment and noise generation

Rayleigh Bernard Convective Tank provides a controlled environment capable of generating turbulent microstructures at various repeatable intensities.

Ocean Sciences


Dynamical processes Optical turbulence Biological sensing and modeling Optical thin layers Coastal current systems Waves and bubbles Coupled systems Air/ocean/acoustic coupling Coupled bio/optical/physical processes Coupled physical/sediment processes Remote sensing applications 3D optical profiling Color/hyperspectral signatures Ocean optics Sea surface salinity Microbiologically influenced corrosion Metal-microbe interaction

Sea surface height from the 1/25° Global Hybrid Coordinate Ocean Model (HYCOM) for the Northern Pacific Ocean.

Environmental scanning electron microscope with focused ion beam (ESEM/FIB) coupled with an energy dispersive X-ray detector.

The Oceanography Division conducts basic and applied research in description and modeling of biological, physical, and dynamical processes in open ocean, regional, and littoral areas; in exploitation of satellite, airborne, and in situ sensors for environmental characterization; and in investigation and application of microbial processes to Navy problems. The oceanographic research is both theoretical and experimental in nature and is focused on understanding and modeling ocean, coastal, and littoral area hydro/thermodynamics, circulation, waves, ice dynamics, air-sea exchange, optics, and small and microscale processes. Analytical methods and algorithms are developed to provide quantitative retrieval of geophysical parameters of Navy interest from state-of-the-art sensor systems. The Division work includes analysis of biological processes that mediate and control optical properties of the oceans, coastal, and littoral regions, and microbially induced corrosion/metal-microbe interaction. The Division programs are designed to be responsive to and to anticipate Naval needs. Transition of Division products to the DoD, Navy systems developers, operational Navy, and civilian (dual use) programs is a primary goal. The Division's programs are coordinated and interactive with other NRL programs and activities, ONR's research programs, and other government agencies involved in oceanographic activities. The Division also collaborates and cooperates with scientists from the academic community and other U.S. and foreign laboratories.

Personnel: 78 full-time civilian; 1 military

Key Personnel

Title	Code
Superintendent, Oceanography Division	7300
Associate Superintendent	7301
Administrative Officer	7302
Office of the Senior Scientist for Marine Molecular Processes	7303
Military Deputy	7305
Head, Ocean Dynamics and Prediction Branch	7320
Head, Ocean Sciences Branch	7330

Point of contact: Code 7301, (228) 688-4704; DSN 828-4704

Marine Geosciences Division

Code 7400 Research Activity Areas

Marine Geology

Sedimentary processes Sediment microstructure Pore fluid flow Diapirism, volcanism, faulting, mass movement Biogenic and thermogenic methane Hydrate distribution, formation, and dissociation Small-scale granular/fluid dynamics

Marine Geophysics

Seismic wave propagation Physics of low-frequency acoustic propagation Acoustic energy interaction with topography and inhomogeneities Gravimetry and geodesy Geomagnetic modeling

Marine Geotechnique

Acoustic seafloor characterization Geoacoustic modeling Geotechnical properties and behavior of sediments Measurement and modeling of high-frequency acoustic propagation and scattering Mine burial processes Marine biogeochemistry

Animal-microbe-sediment interactions Early sediment diagenesis Biomineralization of palladium species

- Physics-based and numerical modeling of
- sediment strength

Geospatial Sciences and Technology

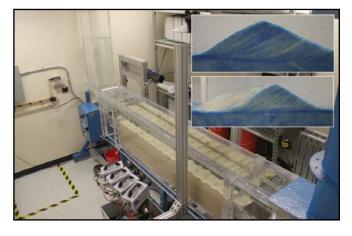
Digital database design Digital product analysis and standardization Data compression techniques and exploitation Hydrographic survey techniques Bathymetry extraction techniques from remote and acoustic imagery Modeling of nearshore morphodynamics Geospatial portal design with 2D and 3D interfaces Characterization of the littoral from airborne platforms

In Situ and Laboratory Sensors

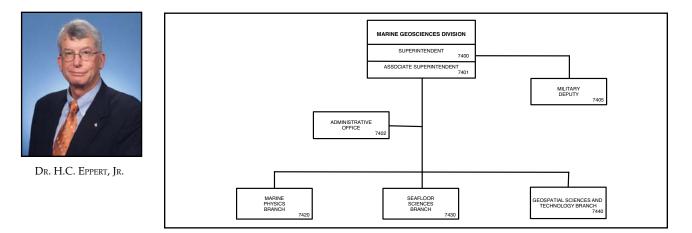
High-resolution subseafloor 2D and 3D seismic imaging

Laser/hyperspectral bathymetry/topography Swath acoustic backscatter imaging

Sediment pore water pressure, permeability, and undrained shear strength


Compressional and shear wave velocity and attenuation

Airborne geophysics, gravity, and magnetics Seafloor magnetic fluctuation


Sediment microfabric change with pore fluid and/or gas change

Instrumented mine shapes

Bottom currents and pressure fluctuations

In the Marine Geosciences Division, scientists perform laboratory experiments with a small oscillatory flow tunnel (S-OFT) to study the formation and migration of sand ripples. Rippled sand beds are ubiquitous on the seafloor in shallow water. Understanding the complex response of the seafloor to forcing from surface waves and currents is important for Naval operations from amphibious landings to mine warfare. Shown in the image is the S-OFT including a mounted laser and four high-speed video cameras to perform tomographic particle image velocimetry (Tomo-PIV) measurements, which estimate the three-dimensional fluid velocity in a volume up to 10 cm³. The upper inset is a picture of a sand ripple formed using a bimodal distribution of sand where the smaller sand particles are darker and the larger sand particles are lighter in color. The lower inset is a profile image of a sand ripple from the same experiment where the sorting processes between large and small grains have formed visible strata. Ripple migration is from right to left in both inset images.

The Marine Geosciences Division conducts a broadly based, multidisciplinary program of scientific research, advanced technology development, and applied research in marine geosciences, geodesy, geospatial information, and related technologies. This includes investigations of basic processes within ocean basins, littoral regions and adjacent land areas, and arctic regions; development of models, sensors, and techniques; and the exploitation of this knowledge and technology to enhance Navy and Marine Corps systems, plans, and operations, and to meet national needs.

As the Navy's subject matter expert in the areas of Geospatial Information and Services (GI&S), the Division provides vital technical support to the Oceanographer/Navigator of the Navy, CNO, N2/N6E, the National Geospatial-Intelligence Agency (NGA) and the Tri-Service Community. NRL also contributes to the development of leading-edge geospatial technology by reviewing emerging GI&S standards and products.

Close coordination and interactions with the Commander, Naval Meteorology and Oceanography Command, Naval Oceanographic Office, CNO, Office of Naval Research (ONR), Systems Commands, Warfare Centers, NGA, and the other DoD and national organizations are essential to the success of Division programs, with transition of Division technology to systems developers and to the operational Navy a primary goal. The Division program is coordinated and interactive with other NRL programs and activities, ONR's Research Program Department, NOAA, USGS, NSF, and other government agencies involved in seafloor activities. The Division collaborates and cooperates with scientists from the academic community, other U.S. and foreign laboratories, and industry.

Personnel: 62 full-time civilian; 2 military

Key Personnel

Title	Code
Superintendent, Marine Geosciences Division	7400
Associate Superintendent	7401
Administrative Officer	7402
Head, Office of Geospatial Science and Technology Innovation	7403
Military Deputy	7405
Head, Marine Physics Branch	7420
Head, Seafloor Sciences Branch	7430
Head, Geospatial Sciences and Technology Branch	7440

Point of contact: Code 7402, (228) 688-4660; DSN 828-4660

Marine Meteorology Division

Code 7500 **Research Activity Areas**

Atmospheric Dynamics and Prediction

Global to tactical scale Deterministic and probabilistic forecasting Large eddy simulation Boundary layer processes Land surface processes and modeling Cloud microphysics and radiative processes Coastal processes and modeling Arctic processes and modeling Urban effects Coupled ocean/atmosphere phenomena Madden Julian oscillation Atmospheric waves and scale interactions Coupled littoral prediction Hydrology and hydrological cycle Tropical cyclones Aerosol particles Gravity waves Predictability Ensembles design Advanced numerical methods **GPU-based** computing

Data Assimilation

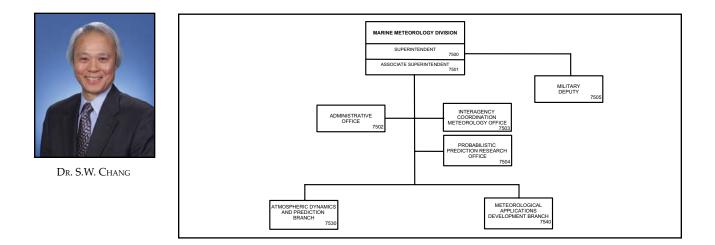
Hybrid ensemble-variational techniques 3D and 4D variational analysis Ensemble Kalman Filter (EnKF) Quality control and bias correction Tropical cyclone initialization Remotely sensed data assimilation Adjoint technique and applications Radar data assimilation Targeted observing strategies Data selection techniques Aerosol and trace gas assimilation UAV/UAS data assimilation Observing system assimilation experiment

Tactical Environmental Support

Rapid environmental assessment Through-the-sensor measurements Atmospheric impact on weapons systems Data fusion Nowcasting Visualization Verification and Validation Information Assurance

Expert systems Aviation risk assessment

Atmospheric Physics


Air-sea interaction Cloud and aerosol microphysics Radiative transfer Cloud and aerosol radiative properties Aerosol characterization Tropical cyclone structure Gravity wave drag

Measurement Capabilities Atmospheric **Physics**

Mobile Atmospheric Aerosol and Radiation Laboratory Platform Coastal Facility for Atmospheric Research Aircraft Aerosol and Radiation Instrumentation Packages Aerosol and Radiation Instrumentation Calibration Facilities Satellite Data/Imagery

Automated cloud properties Sensor calibration/validation Nighttime environmental analysis Multisensor data fusion Tropical cyclone characterization Dust/aerosols monitoring Satellite imagery analysis and enhancement Rain rate and snow cover Precipitation and cloud climatology Future satellite/constellation assessment Tactical meteorology Training and public outreach **Decision Aids**

Probabilistic Decision aids Refractivity/ducting Ceiling/visibility Fog/turbulence/icing Atmospheric acoustics EM/EO propagation Tropical cyclones/consensus forecasts Port studies Typhoon havens Forecaster handbooks Quantification of uncertainty Counter-piracy guidance Tropical cyclone sortie guidance Forecast difficulty guidance Ship wind and wave limits Optimal ship routing – fuel savings

The Marine Meteorology Division conducts a basic and applied research and development program designed to improve scientific understanding of atmospheric processes that impact Fleet operations and to develop automated systems that analyze, simulate, predict, and interpret the structure and behavior of these processes and their effect on naval weapons systems. Basic and applied research includes work in air-sea interaction, aerosol and cloud physics, atmospheric turbulence, orographically forced flow, atmospheric predictability, scale interactions observation impact, advanced data assimilation, ensemble prediction, tropical dynamics, and numerical methods. Research and development ranges from development of atmospheric analysis/forecast systems and satellite data products to the development of tactical decision aids for operations support. Interdisciplinary research supports the development of coupled analysis/forecast systems, including components for ocean, wave, land surface, aerosol, chemistry, and middle atmosphere prediction. NRL-Monterey (NRL-MRY) is co-located with the Fleet Numerical Meteorology and Oceanography Center (FNMOC) and has developed and transitioned to FNMOC and other operational centers the data assimilation, global, and mesoscale weather forecast models, aerosol prediction systems, and satellite applications products that form the backbone of the Navy's worldwide environmental forecasting capability. Specialties of the Division include numerical weather prediction, data assimilation, tropical cyclones, marine boundary layer processes, aerosols, rapid environmental assessment, environmental decision aids, and satellite data analysis, interpretation, and application.

Personnel: 74 full-time civilian; 1 military

Key Personnel

Title	Code
Superintendent, Marine Meteorology Division Associate Superintendent Administrative Officer Lead Scientist, Probabilistic Prediction Research Office Military Deputy Head, Atmospheric Dynamics and Prediction Branch	7500 7501 7502 7504 7505 7530
Head, Meteorological Applications Development Branch	7540

Point of contact: Code 7500, (831) 656-4721; DSN 878-4721

Space Science Division

Code 7600 Research Activity Areas

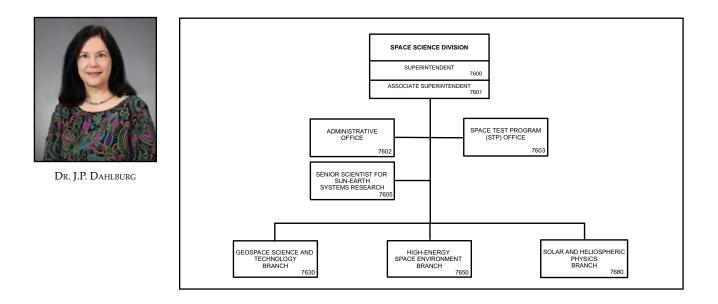
Geospace Science and Technology

Conduct research to observe, understand, model, and forecast the Earth's geospace environment and its connections to its lower and upper boundaries, to facilitate and create functional capabilities.

NRL's MIGHTI will launch in 2017 aboard NASA's Ionospheric Connection Explorer to measure the winds in the thermosphere/ ionosphere, needed for accurate research and reliable operational forecasts.

Solar and Heliospheric Physics


Develop improved heliospace environment understanding, awareness, sensors, forecast capabilities, and monitoring tools that predict operational impacts and enable real-time threat warning, and transition these developments as needed.



With SuperMISTI (Mobile Imaging & Spectroscopic Threat Identification) in two 20-ft ISO shipping containers, SSD demonstrates detection and identification of radiological/ nuclear materials at relevant operational standoff distances.

High-Energy Space Environment

Advance the understanding of the high-energy environment through development and deployment of advanced detectors, simulation of the environments and operations concepts, and interpretation and theoretical modeling of the observed phenomena, to address priority S&T goals.

The Space Science Division conducts a broad-spectrum RDT&E program in solar-terrestrial physics, astrophysics, upper/middle atmospheric science, and astronomy. Instruments to be flown on satellites, sounding rockets and balloons, and ground-based facilities and mathematical models are conceived and developed. Researchers apply these and other capabilities to the study of the atmospheres of the Sun and Earth, including solar activity and its effects on the Earth's ionosphere, upper atmosphere, and middle atmosphere; laboratory astrophysics; and the unique physics and properties of celestial sources. The science is important to orbital tracking, radio communications, and navigation that affect the operation of ships and aircraft, utilitization of the near-space and space environment of the Earth, and the fundamental understanding of natural radiation and geophysical phenomena.

Personnel: 77 full-time civilian; 1 military

Key Personnel

Title	Code
Superintendent, Space Science Division	7600
Associate Superintendent	7601
Administrative Officer	7602
Space Test Program Officer, Kirtland AFB, NM	7603
Senior Scientist for Sun-Earth Systems Research	7605
Head, Geospace Science and Technology Branch	7630
Head, High-Energy Space Environment Branch	7650
Head, Solar and Helioshperic Physics Branch	7680

Point of contact: Code 7602, (202) 767-3248

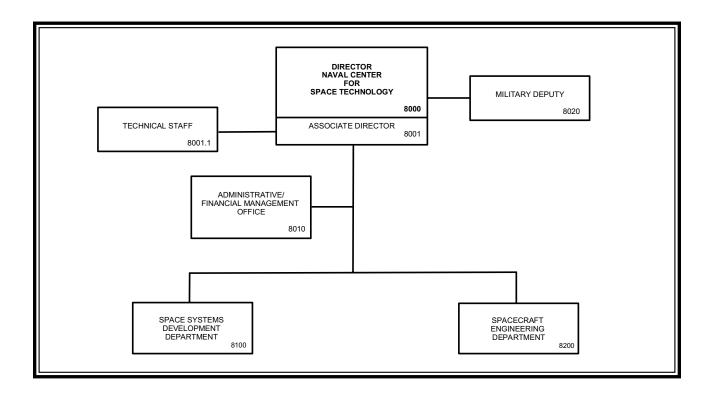
NAVAL CENTER FOR SPACE TECHNOLOGY

Code 8000

In its role to preserve and enhance a strong space technology base and provide expert assistance in the development and acquisition of space systems that support naval missions, the Naval Center for Space Technology performs basic and applied research through advanced development in all areas of interest to the Navy space program. The Center develops spacecraft, systems using these spacecraft, and ground command and control stations. Principal functions of the Center include understanding and clarifying requirements, recognizing and prosecuting promising research and development, analyzing and testing systems to quantify their capabilities, developing operational concepts that exploit new technical capabilities, per-

forming system engineering to allocate design requirements to subsystems, and performing engineering development and initial operation to test and evaluate selected spacecraft subsystems and systems. The Center is a focal point and integrator for those divisions at NRL whose technologies are used in space systems. The Center also provides systems engineering and technical direction assistance to system acquisition managers of major space systems. In this role, technology transfer is a major goal and motivates a continuous search for new technologies and capabilities and the development of prototypes that demonstrate the integration of such technologies.

Director, Naval Center for Space Technology



Mr. P.G. Wilhelm was born in New York City. He attended Purdue University, where he received a B.S.E.E. degree in 1957. By 1961, he had completed all the course work for an M.S.E. degree from George Washington University.

From 1957 to 1959, Mr. Wilhelm served as an electrical engineer with Stewart Warner Electronics where he was assigned to a project to redesign the UPM-70, a Navy radar test set. In March 1959, he joined the Naval Research Laboratory as an electrical scientist in the Electronics Division. In December 1959, he joined the Satellite Techniques Branch. In 1961, he became Head of the Satellite Instrument Section; in 1965, he became Head of the Satellite Techniques Branch; and in 1974, Head of

the Spacecraft Technology Center. In these positions, he performed satellite system design, equipment development, environmental testing, launch operations, and orbital data handling. In 1981, he was named Superintendent of the Space Systems and Technology Division, the Navy's principal organization, or lead laboratory, for space. He is credited with contributions in the design, development, and operation of more than 100 scientific and Fleet-support satellites. He has been awarded five patents. In October 1986, he was appointed Director of the newly established Naval Center for Space Technology. The Center's mission is to "preserve and enhance a strong space technology base and provide expert assistance in the development and acquisition of space systems which support naval missions."

Mr. Wilhelm has been recognized with numerous awards including the Navy's Meritorious Civilian Service Award, the DoD Distinguished Civilian Service Award, the Presidential Meritorious Executive Award, the Presidential Distinguished Rank Award, the Institute of Electrical and Electronics Engineers Aerospace and Electronic Systems Group Man of the Year Award, the NRL E.O. Hulburt Annual Science and Engineering Award, the Dexter Conrad Award, the Rotary National Stellar Award, the NRL Lifetime Achievement Award, and in May 1999, Mr. Wilhelm received the American Institute of Aeronautics and Astronautics (AIAA) Goddard Astronautics Award. He also has been elected a Fellow of the Washington Academy of Sciences and a Fellow of the American Institute of Aeronautics, and was elected to the National Academy of Engineering. Mr. Wilhelm is also the first recipient of the R.L. Easton Award for excellence in engineering.

Key Personnel

Title	Code
Director, Naval Center for Space Technology	8000
Associate Director	8001
Technical Staff	8001.1
Head, Administrative/Financial Management Office	8010
Military Deputy	8020
Superintendent, Space Systems Development Department	8100
Superintendent, Spacecraft Engineering Department	8200

Point of contact: Code 8010, (202) 767-6551

Space Systems Development Department

Code 8100 Research Activity Areas

Advanced Space/Airborne/Ground Systems Technologies

Space systems architectures and requirements Advanced payloads and optical communications Controllers, processors, signal processing, and VLSI data management systems and equipment Embedded algorithms and software Satellite laser ranging

Astrodynamics

Precision orbit estimation Onboard autonomous navigation Onboard orbit propagation GPS space navigation Satellite coverage and mission analysis Geolocation systems Orbit dynamics Interplanetary navigation

Command, Control, Communications, Computers, Intelligence, Surveillance, and Reconnaissance

- Communications theory and systems Satellite ground station engineering and implementation
- Transportable and fixed ground antenna systems High-speed fixed and mobile ground data collec-

tion, processing, and dissemination systems Tactical communication systems

The Space Systems Development Department, operates extensive laser communication test bed facilities at Quantico, Virginia; Tilghman Island, Maryland; and NRL's Chesapeake Bay Detachment (CBD). Optical communications equipment at CBD and Tilghman Island are separated by 16 km across the Chesapeake Bay, creating a fully instrumented laboratory in a maritime environment. Measurements made at this facility may be applied directly to ship-to-ship laser

communications applications. The optical test facility at Quantico, Virginia, hosts a 1-m telescope and satellite laser ranging equipment that is used for both precise orbit determination and space-toground laser communications research. Together, these facilities provide researchers the full spectrum of operating environments relevant to naval communications needs.

Space and Airborne Payload Development

Space and airborne system payload concept definition, design, and implementation including hardware and software

- Detailed electrical/electronic design of electronic and electromechanical payload and systems and components
- Design and verification of real-time embedded multiprocessor software

Payload antenna systems

- Space and airborne payload fabrication, test, and integration
- Launch and on-orbit payload support

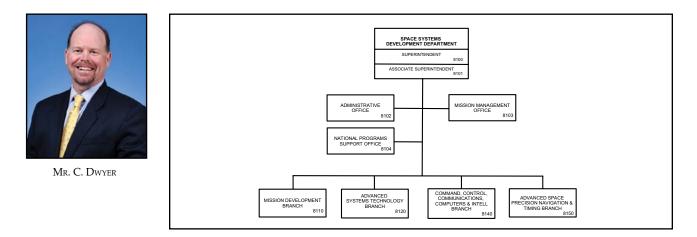
Laser Communications Research

Ship-to-ship laser communications Space-to-ground laser communications Satellite laser ranging for precise orbit determination

Space and Airborne Mission Development

Mission development and requirements definition Systems engineering and analysis Concepts of operations and mission simulations Mission evaluation and performance assessments

Precision Navigation and Time


Advanced navigation satellite technology Precise Time and Time Interval (PTTI) technology Atomic time/frequency standards/instrumentation

Passive and active ranging techniques

- Precision tracking of orbiting objects from space/ ground
- National and International standards for time keeping/Universal Coordinated Time/UTC (NRL)

One-meter SLR and Optical Test Facility in Quantico, Virginia.

The Space Systems Development Department (SSDD) is the space and ground support systems research and development organization of the Naval Center for Space Technology. The primary objective of the SSDD is to develop command, control, communications, computers, and intelligence, surveillance, and reconnaissance (C4ISR) hardware and software solutions to space, airborne, and ground applications to respond to Navy, DoD, and national mission requirements with improved performance, capacity, reliability, efficiency, and/or life cycle cost. The Department must derive system requirements from the mission, develop architectures in response to these requirements, and design and develop systems, subsystems, equipment, and implementation technologies to achieve the optimized, integrated operational space, airborne, and ground system. These development responsibilities extend across the entire space/airborne/ground spectrum of hardware, software, and advanced technologies, including digital processing and control, analog systems, power, communications, payload command and telemetry, radio frequency, optical, payload, and electromechanical systems, as well as systems engineering.

Personnel: 126 full-time civilian; 1 part-time civilian; 23 student civilian; 1 intermittent civilian

Key Personnel

Title	Code
Superintendent, Space Systems Development Department	8100
Associate Superintendent	8101
Administrative Officer	8102
Head, Mission Management Office	8103
Head, National Programs Support Office	8104
Head, Mission Development Branch	8110
Head, Advanced Systems Technology Branch	8120
Head, Command, Control, Communications, Computers,	
and Intelligence Branch	8140
Head, Advanced Space Precision Navigation and Timing	
Branch	8150

Point of contact: Code 8102, (202) 767-0432

Spacecraft Engineering Department

Code 8200 Research Activity Areas

Design, Test, and Processing

- Preliminary and detailed design of spacecraft mechanical components, structures, and mechanisms
- Fabrication, assembly, integration, and testing of spacecraft and payloads
- Vibration, shock, acoustic, and thermal vacuum testing of components, systems, payloads, and spacecraft
- Integration of spacecraft onto launch vehicles Systems engineering for new spacecraft proposals

Space Mechanical Systems Development

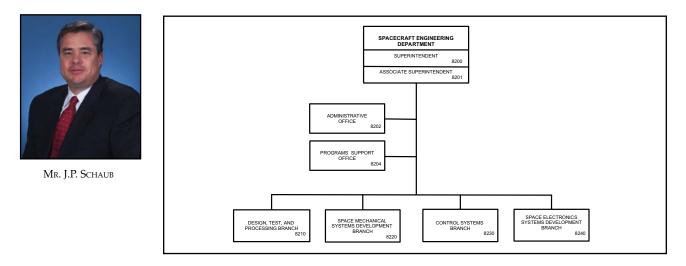
- Development, integration, and transition of prototype spacecraft systems and experimental payloads
- Structural design and analysis
- Large space structures
- Thermal design, analysis, fabrication, integration, test, and flight operation
- Pumped and advanced multiphase heat transfer devices
- Computational Fluid Dynamics (CFD) technique for space systems
- Integrated structural/thermal/optical or RF design and analysis
- Mission integration and development
- Mission assurance, configuration control, and safety
- Systems engineering and management

Control Systems

Attitude determination and control systems Precision pointing Optical line-of-sight stabilization Propulsion systems Precision cleaning and component testing Propellent and pressurization systems Hydraulic and pneumatics control Test systems and services Analytical design and mission planning Navigation, tracking, and orbit dynamics Expert systems Flight operations support Computer simulation and animation Computer animation Robotics systems engineering Proximity operations Autonomous servicing and inspection Autonomous inspection End effector design

Compliance control Trajectory planning Machine vision Fault detection, isolation, and recovery Electro-dynamic tethers Robotic control algorithms and software Robotic actuation and sensing

Space Electronic Systems Development


- Space system concept definition, design, and implementation including hardware and software
- Detailed electrical design of electronic and electromechanical systems and components
- Implementation of real-time flight software and embedded command, control, and telemetry software

Implementation of Spacecraft Ground system software, including integration and test as well as operations (Neptune/CGA)

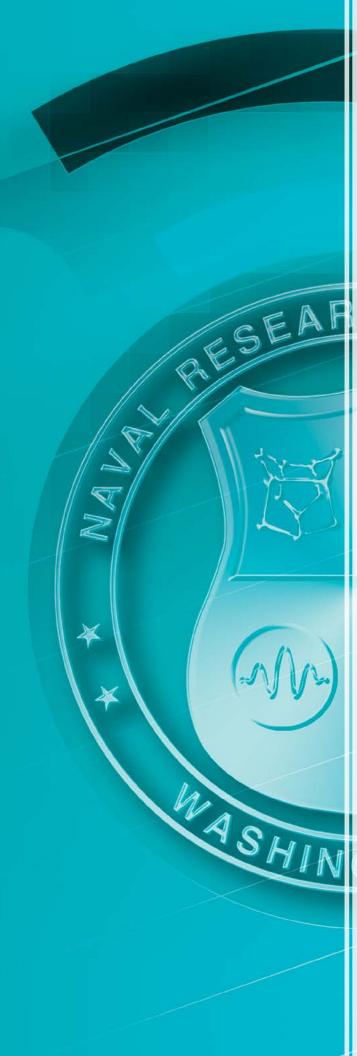
- Mission Tasking Software (VMOC)
- Spacecraft antenna systems, receivers, transmitters, and radiometers
- Space hardware design, fabrication, test, and integration
- Launch and on-orbit support
- Space test systems and electronic launch support equipment
- Spacecraft power systems– collection, storage, conversion, and distribution
- Spacecraft TT&C and control systems
- Space communications

Against the backdrop of a glowing morning sky, the TacSat-4 tactical satellite, carrying an experimental communications payload developed by NRL, successfully launched September 27, 2011, aboard an Orbital Sciences Minotaur-IV+ launch vehicle from the Alaska Aerospace Corporation's Kodiak Launch Complex, Kodiak Island, Alaska.

Basic Responsibilities

The Spacecraft Engineering Department (SED) is the focal point for the Navy's capability to design and build spacecraft. Activities range from concept and feasibility planning to on-orbit IOC for NRL's space systems.

The SED provides spacecraft bus expertise for the Navy and maintains an active in-house capability to develop satellites; manages Navy space programs through engineering support and technical direction; in concert with the Space Systems Development Department, designs, assembles, and tests spacecraft and space experiments, including all aspects of space, launch, and ground support; analyzes and designs structures, mechanisms, and a variety of control systems, including attitude, propulsion, reaction, and thermal; integrates satellite designs, launch vehicles, and satellite-to-boost stages; functions as a prototype laboratory to ensure that designs can be transferred to industry and incorporated into subsequent satellite hardware builds; and consults with the Navy Program Office on technical issues involving spacecraft architecture, acquisition, and operation.


Personnel: 128 full-time civilian; 2 part-time civilian; 26 student civilian

Key Personnel

Title	Code
Superintendent, Spacecraft Engineering Departmen	t 8200
Associate Superintendent	8201
Administrative Officer	8202
Head, Programs Support Office	8204
Head, Design, Test, and Processing Branch	8210
Head, Space Mechanical Systems Development Bran	nch 8220
Head, Control Systems Branch	8230
Head, Space Electronics Systems Development Bran	ich 8240

Point of contact: Code 8202, (202) 767-6412

FECHNICAL OUTPUT, FISCAL, AND PERSONNEL INFORMATION

Technical Output

Publications, Presentations, and Patents

The Navy continues to be a pioneer in science and engineering developments and a leader in applying these advancements to military requirements. The primary means of informing the scientific and engineering community of the advances made at NRL is through the Laboratory's technical output—reports, articles in scientific journals, contributions to books, papers presented to scientific societies and topical conferences, patents, and inventions.

The figures for calendar years 2012 and 2013 presented below represent the output of NRL facilities in Washington, DC; Bay St. Louis, Mississippi; and Monterey, California.

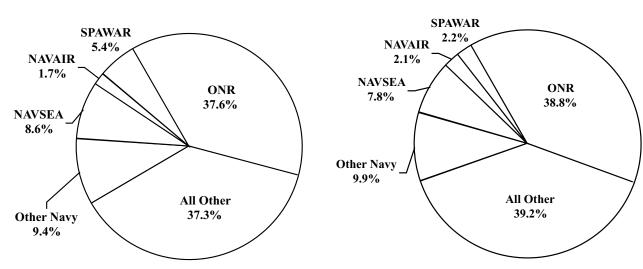
In 1986, Congress enacted the Federal Technology Transfer Act in an effort to encourage the commercial use of technology developed in Federal laboratories. The Act allows Government inventors and the laboratories where they work to share the royalties generated by commercial licensing of their inventions. Also, the Act encourages the establishment of Cooperative Research and Development Agreements (CRADAs) between laboratories such as NRL and non-Federal entities such as state and local governments, universities, and business corporations. Such cooperative R&D agreements can include the allocation in advance of patent rights on any inventions made under the joint research effort.

The 1986 Act has given additional impetus to the Laboratory's efforts to patent important inventions arising out of its various research programs.

Calendar Year 2012

Type of Contribution	Unclassified	Classified	Total
Articles in periodicals, chapters in books,			
and papers in published proceedings	1473*	0	1473*
Oral Presentations	1159	0	1159
NRL Formal Reports	7	4	11
NRL Memorandum Reports	61	1	62
Books	1	0	1
Patents granted	87	0	87
Trademarks registered	3	0	3

Calendar Year 2013


Type of Contribution	Unclassified	Classified	Total
Articles in periodicals, chapters in books,			
and papers in published proceedings	1260*	0	1260*
Oral Presentations	1016	0	1016
NRL Formal Reports	9	7	16
NRL Memorandum Reports	33	5	38
Books	6	0	6
Patents granted	114	2	116
Trademarks registered	1	0	1

*This is a provisional total based on information available to the Ruth H. Hooker Research Library on January 28, 2014. Total includes refereed and non-refereed publications.

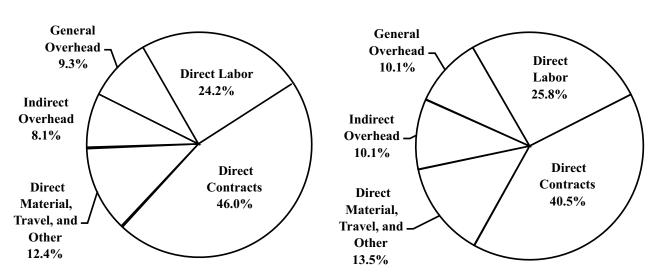
FY 2012/2013 Sources of New Funds (Actual)

FY 2013

FY 2012 Source of Funds

		\$M	
FY 2012	Reimbursable	Direct Cite	Total
Office of Naval Research (ONR)	347.6	56.8	404.4
Naval Sea Systems Command (NAVSEA)	48.1	44.3	92.4
Space and Naval Warfare Systems Command (SPAWAR)	29.5	28.9	58.4
Naval Air Systems Command (NAVAIR)	11.2	6.6	17.8
Other Navy	73.2	28.1	101.3
All Other	<u>286.9</u>	<u>113.6</u>	<u>400.5</u>
Total Funds	796.5	278.4	1074.8

FY 2013


Source of Funds

		\$M	
FY 2013	Reimbursable	Direct Cite	Total
Office of Naval Research (ONR)	316.4	38.4	354.8
Naval Sea Systems Command (NAVSEA)	46.2	25.0	71.2
Space and Naval Warfare Systems Command (SPAWAR)	18.4	1.6	20.0
Naval Air Systems Command (NAVAIR)	8.9	10.7	19.5
Other Navy	68.2	22.0	90.2
All Other	<u>275.0</u>	<u>83.3</u>	<u>358.3</u>
Total Funds	733.1	181.0	914.0

FY 2012/2013 Uses of Funds

FY 2013

FY 2012 Distribution of Funds

A B A

\$M
247.9
95.1
82.8
127.0
<u>472.4</u>
1025.2

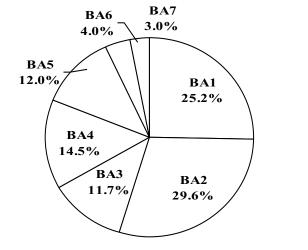

FY 2013

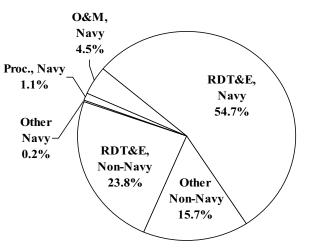
Distribution of Funds

	\$M
Direct Labor	240.1
General Overhead	93.7
Indirect Overhead	93.6
Direct Material, Travel, and Other	125.7
Direct Contracts	<u>377.3</u>
Total Costs*	930.4

^{*}Costs based on CFO statements; direct contracts include costs for reimbursable-funded contracts and obligations for direct cite-funded contracts.

FY 2012 Total New Funds by Category


(\$598.2)


Distribution of Total (%) (\$1074.8)

FY 2012

		\$M	
Category	Navy	Non-Navy	Total
BA1 Basic Research	128.8	5.3	134.1
BA2 Applied Research	166.3	37.4	203.7
BA3 Advanced Technology Development	92.3	106.1	198.5
BA4 Advanced Component Development Prototypes	77.9	31.1	109.1
BA5 System Development and Demonstration	87.8	22.3	110.1
BA6 RDT&E Management Support	17.2	14.5	31.7
BA7 Operational System Development	<u>27.9</u>	<u>13.3</u>	<u>41.2</u>
Subtotal RDT&E	598.2	230.0	828.4
Operations and Maintenance	47.4	54.2	101.5
Procurement	22.7	31.5	54.2
Other	<u>1.0</u>	<u>89.8</u>	<u>90.8</u>
Total New Funds	669.3	405.5	1074.9

FY 2013 Total New Funds by Category

Distribution of RDT&E, Navy (%) (\$499.8)

Distribution of Total (%) (\$914.2)

FY 2013

	-		
		\$M	
Category	Navy	Non-Navy	Total
BA1 Basic Research	125.8	3.5	129.2
BA2 Applied Research	148.2	30.6	178.9
BA3 Advanced Technology Development	58.7	128.4	187.1
BA4 Advanced Component Development Prototypes	72.3	17.4	89.7
BA5 System Development and Demonstration	60.1	(1.6)	58.5
BA6 RDT&E Management Support	19.8	7.8	27.6
BA7 Operational System Development	<u>15.0</u>	<u>31.8</u>	<u>46.8</u>
Subtotal RDT&E	499.9	217.9	717.8
	44.0	22 (= 1 0
Operations and Maintenance	41.2	33.6	74.8
Procurement	10.1	28.0	38.0
Other	<u>1.7</u>	<u>81.9</u>	<u>83.6</u>
Total New Funds	552.9	361.4	914.2

Personnel Information*

Civilian On-Board

Full-Time, Permane	nt (FTP)
Graded	2,298
Ungraded	88
Total	2,386
Temporary, Part-Tin	ne, Intermittent (TPTI)
TPTI	168
Total Civilian	2,554

FTP Breakdown	
Scientific/Engineering Professional	1,561
Scientific/Engineering Technical	83
Administrative Specialist/Professional	386
Administrative Support	232
Senior Executive Service	22
Scientific or Professional	14
General Schedule	0
Total	2,298

Military On-Board

Officers	31
Enlisted	52
Total Military On-Board	83
(Military Allowance)	106

Annual Civilian Turnover Rate (%) (permanent employees only)

	2004	2005	2006	2007	2008	2009	2010	2011	2012
Research divisions	6.8	7.2	9.5	8.5	6.9	4.7	5	5.3	6.0
Nonresearch areas	8.2	8.5	11.0	13.7	13.3	7.4	11	13.5	11.1
Entire Laboratory	6.5	7.4	9.7	9.6	8.2	5.3	6.2	6.9	7.0

Highest Academic Degrees Held by Civilian Permanent Employees

Bachelors	557
Masters	389
Doctorates	868

^{*}All data is as of 31 December 2013 unless otherwise noted.

Programs for NRL Employees

The Human Resources Office supports and provides traditional and alternative methods of training for employees. NRL employees are encouraged to develop their skills and enhance their job performance so they can meet the future needs of NRL and achieve their own goals for growth.

One common study procedure is for employees to work full time at the Laboratory while taking job-related courses at universities and schools local to their job site. The training ranges from a single course to undergraduate, graduate, and postgraduate course work. Tuition for training is paid by NRL. The formal programs offered by NRL are described here.

Graduate Programs

The Advanced Graduate Research Program (formerly the Sabbatical Study Program, which began in 1964) enables selected professional employees to devote full time to research or pursue work in their own or a related field for up to one year at an institution or research facility of their choice without the loss of regular salary, leave, or fringe benefits. NRL pays all travel and moving expenses for the employee. Criteria for eligibility include professional stature consistent with the applicant's opportunities and experience, a satisfactory program of study, and acceptance by the facility selected by the applicant. The program is open to employees who have completed six years of Federal service, four of which have been at NRL.

The **Edison Memorial Graduate Training Program** enables employees to pursue graduate studies in their fields at local universities. Participants in this program work 24 hours each workweek and pursue their studies during the other 16 hours. The criteria for eligibility include a minimum of one year of service at NRL, a bachelor's or master's degree in an appropriate field, and professional standing in keeping with the candidate's opportunities and experience.

To be eligible for the **Select Graduate Training Pro gram**, employees must have a bachelor's degree in an appropriate field and must have demonstrated ability and aptitude for advanced training. Students accepted into this program receive one-half of their salary and benefits and NRL pays for tuition and travel expenses.

The **Naval Postgraduate School (NPS)**, located in Monterey, California, provides graduate programs to

enhance the technical preparation of Naval officers and civilian employees who serve the Navy in the fields of science, engineering, operations analysis, and management. NRL employees desiring to pursue graduate studies at NPS may apply; thesis work is accomplished at NRL. Participants continue to receive full pay and benefits during the period of study. NRL also pays for tuition and travel expenses.

In addition to NRL and university offerings, application may be made to a number of noteworthy programs and fellowships. Examples of such opportunities are the **Capitol Hill Workshops**, the **Legislative Fellowship** (LEGIS) program, the **Federal Executive Institute (FEI)**, and the **Executive Leadership Program for Mid-Level Employees**. These and other programs are announced from time to time, as schedules are published.

Continuing Education

Undergraduate and graduate courses offered at local colleges and universities may be subsidized by NRL for employees interested in improving their skills and keeping abreast of current developments in their fields.

NRL offers **short courses** to all employees in a number of fields of interest including administrative subjects, and supervisory and management techniques. Laboratory employees may also attend these courses at nongovernment facilities. HRO advertises training opportunities on the online *Billboard*, HRO website, and in the email newsletter, *HRO Highlights*.

For further information on any of the above Graduate and Continuing Education programs, contact the Employee Development and Management Branch (Code 1840) at (202) 767-8306 or via email at Training@hro.nrl. navy.mil.

The **Scientist-to-Sea Program (STSP)** provides opportunities for Navy R&D laboratory/center personnel to go to sea to gain first-hand insight into operational factors affecting system design, performance, and operations on a variety of ships. NRL is a participant of this Office of Naval Research (ONR) program. Contact (202) 404-2701.

Professional Development

NRL has several programs, professional society chapters, and informal clubs that enhance the professional growth of employees. Some of these are listed below.

The Department of the Navy Civilian Employee Assistance Program (DONCEAP) provides confidential assessment, referral, and short-term counseling for employees (or their eligible family members) regarding personal concerns to help avoid adversely affecting job performance. Types of personal concerns may include challenging relationships (at work or at home); dealing with stress, anxiety, or depression; grief and loss; or substance abuse. The DONCEAP also provides work/life referral services such as live or on-demand webinars; discussion groups; and advice on parenting, wellness, financial and legal issues, education, and much more. Contact (844)-366-2327 or visit http://donceap.foh.hhs.gov/.

The NRL chapter of Women In Science and Engineering (WISE) was established to address current issues concerning the scientific community of women at the NRL such as networking, funding, work-life satisfaction, and effective use of our resources. We address these issues by empowering members through the establishment of a supportive and constructive network that serves as a sounding board to develop solutions that address said issues, and then serve as a platform in which members work together to implement these solutions. The NRL chapter of WISE has started several new initiatives for the 2013-2014 year, including a seminar series entitled "Working Smarter Not Harder at NRL - Effective Use of Our Resources" and a Science as Art competition, which is open to all NRL sites. Membership is open to all employees. For more information, contact (202) 404-3355.

Sigma Xi, The Scientific Research Society, encourages and acknowledges original investigation in pure and applied science. It is an honor society for research scientists. Individuals who have demonstrated the ability to perform original research are elected to membership in local chapters. The NRL Edison Chapter, comprising approximately 200 members, recognizes original research by presenting annual awards in pure and applied science to two outstanding NRL staff members per year. In addition, an award seeking to reward rising stars at NRL is presented annually through the Young Investigator Award. The chapter also sponsors several lectures per year at NRL on a wide range of topics of general interest to the scientific and DoD community. These lectures are delivered by scientists from all over the world. The highlight of the Sigma Xi Lecture Series is the Edison Memorial Lecture, which traditionally is given by an internationally distinguished scientist. Contact (202) 767-5528.

The **NRL Mentor Program** was established to provide an innovative approach to professional and career training and an environment for personal and professional growth. It is open to permanent NRL employees in all job series and at all sites. Mentees are matched with successful, experienced colleagues having more technical and/or managerial experience who can provide them with the knowledge and skills needed to maximize their contribution to the success of their immediate organization, to NRL, to the Navy, and to their chosen career fields. The ultimate goal of the program is to increase job productivity, creativity, and satisfaction through better communication, understanding, and training. NRL Instruction 12400.1B provides policy and procedures for the program. For more information, please contact mentor@hro.nrl.navy.mil or (202) 767-6736.

Employees interested in developing effective selfexpression, listening, thinking, and leadership potential are invited to join the NRL Forum Toastmasters Club, a chapter of **Toastmasters International**. Members of this club possess diverse career backgrounds and talents and learn to communicate not by rules but by practice in an atmosphere of understanding and helpful fellowship. NRL's Commanding Officer and Director of Research endorse Toastmasters. Contact (202) 404-4670.

Equal Employment Opportunity (EEO) Programs

Equal employment opportunity (EEO) is a fundamental NRL policy for all employees regardless of race, color, national origin, sex, religion, age, sexual orientation, or disability. The NRL EEO Office is a service organization whose major functions include counseling employees in an effort to resolve employee/management conflicts, processing formal discrimination complaints, and requests for reasonable accommodation, providing EEO training, and managing NRL's MD-715 and affirmative employment recruitment programs. The NRL EEO Office is also responsible for sponsoring special-emphasis programs to promote awareness and increase sensitivity and appreciation of the issues or the history relating to females, individuals with disabilities, and minorities. Contact the NRL Deputy EEO Officer at (202) 767-2486 for additional information on any of their programs or services.

Other Activities

The award-winning **Community Outreach Program** directed by the NRL Public Affairs Office fosters programs that benefit students and other community citizens. Volunteer employees assist with and judge science fairs, give lectures, provide science demonstrations and student tours of NRL, and serve as tutors, mentors, coaches, and classroom resource teachers. The program sponsors student tours of NRL and an annual holiday party for neighborhood children in December. Through the program, NRL has active partnerships with three District of Columbia public schools. Contact (202) 767-2541.

Other programs that enhance the development of NRL employees include sports groups and the **Amateur Radio Club**. The **NRL Fitness Center** at NRL-DC, managed by Naval Support Activity Washington Morale, Welfare and Recreation (NSAW-MWR), houses a fitness room with treadmills, bikes, ellipticals, step mills, and a full strength circuit; a gymnasium for basketball, volleyball, and other activities; and full locker rooms. The Fitness Center is free to NRL employees and contractors. Various exercise classes are offered for a nominal fee. NRL employees are also eligible to participate in all NSAW-MWR activities held on Joint Base Anacostia–Bolling and Washington Navy Yard, less than five miles away.

Programs for Non-NRL Employees

Several programs have been established for non-NRL professionals. These programs encourage and support the participation of visiting scientists and engineers in research of interest to the Laboratory. Some of the programs may serve as stepping-stones to Federal careers in science and technology. Their objective is to enhance the quality of the Laboratory's research activities through working associations and interchanges with highly capable scientists and engineers and to provide opportunities for outside scientists and engineers to work in the Navy laboratory environment. Along with enhancing the Laboratory's research, these programs acquaint participants with Navy capabilities and concerns and may provide a path to full-time employment.

Postdoctoral Research Associateships

Every year, NRL hosts several postdoctoral research associates through the National Research Council (NRC) and American Society for Engineering Education (ASEE) postdoctoral associateship and fellowship programs. These competitive positions provide postdoctoral scientists and engineers the opportunity to pursue research at NRL in collaboration with NRL scientists and engineers. Research associates are guest investigators, not employees of NRL.

NRL/NRC Cooperative Research Associateship Program: The National Research Council conducts a national competition to recommend and make awards to outstanding scientists and engineers at recent postdoctoral levels for tenure as guest researchers at participating laboratories. The objectives of the NRC program are (1) to provide postdoctoral scientists and engineers of unusual promise and ability opportunities for research on problems, largely of their own choice, that are compatible with the interests of the sponsoring laboratories and (2) to contribute thereby to the overall efforts of the Federal laboratories. The program provides an opportunity for concentrated research in association with selected members of the permanent professional laboratory staff, often as a climax to formal career preparation.

NRL/NRC Postdoctoral Associateships are awarded to persons who have held a doctorate less than five years at the time of application and are made initially for one year, renewable for a second and possible third year. Information and applications may be found at http://www. national-academies.org/rap. To contact NRL's program coordinator, call (202) 404-7450 or email nrc@hro.nrl. navy.mil. **NRL/ASEE Postdoctoral Fellowship Program:** The ASEE program is designed to significantly increase the involvement of creative and highly trained scientists and engineers from academia and industry in scientific and technical areas of interest and relevance to the Navy. Fellowship awards are based upon the technical quality and relevance of the proposed research, recommendations by the Navy laboratory, academic qualifications, reference reports, and availability of funds.

NRL/ASEE Fellowship awards are made to persons who have held a doctorate for less than seven years at the time of application and are made for one year, renewable for a second and possible third year. Information and applications may be found at http://www.asee.org/nrl/. To contact NRL's program coordinator, call (202) 404-7450 or email asee@hro.nrl.navy.mil.

Faculty Member Programs

The Office of Naval Research Summer Faculty Research and Sabbatical Leave Program provides for university faculty members to work for ten weeks (or longer, for those eligible for sabbatical leave) with professional peers in participating Navy laboratories on research of mutual interest. Applicants must hold a teaching or research position at a U.S. college or university. Contact NRL's program coordinator at sfrp@hro.nrl.navy.mil.

The NRL/United States Naval Academy Cooperative Program for Scientific Interchange allows faculty members of the U.S. Naval Academy to participate in NRL research. This collaboration benefits the Academy by providing the opportunity for USNA faculty members to work on research of a more practical or applied nature. In turn, NRL's research program is strengthened by the available scientific and engineering expertise of the USNA faculty. Contact NRL's program coordinator at usna@hro. nrl.navy.mil.

Professional Appointments

Faculty Member Appointments use the special skills and abilities of faculty members for short periods to fill positions of a scientific, engineering, professional, or analytical nature at NRL.

Consultants and experts are employed because they are outstanding in their fields of specialization or because they possess ability of a rare nature and could not normally be employed as regular civil servants.

Intergovernmental Personnel Act Appointments temporarily assign personnel from state or local governments or educational institutions to the Federal Government (or vice versa) to improve public services rendered by all levels of government.

Student Programs

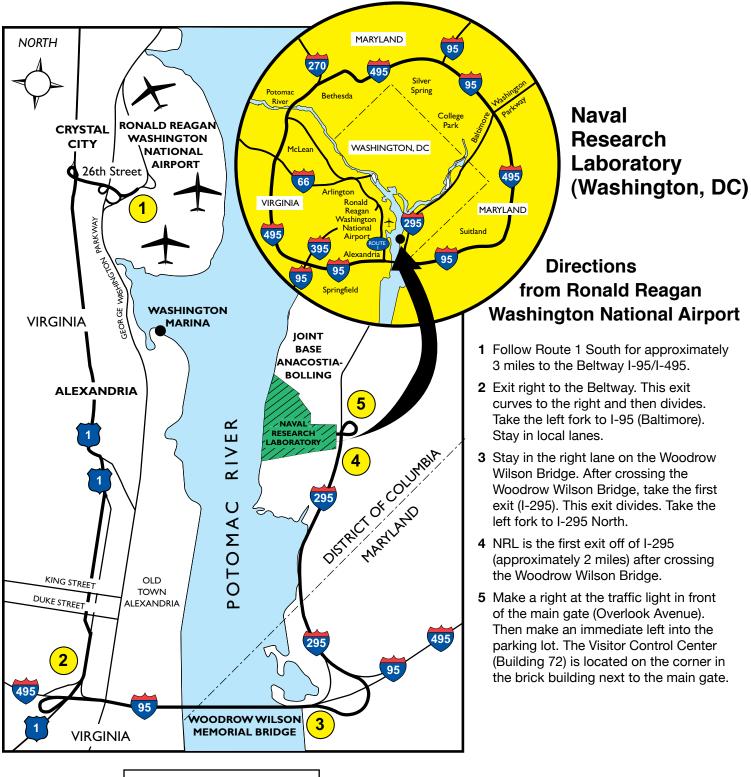
The student programs are tailored to high school, undergraduate, and graduate students to provide employment opportunities and work experience in naval research.

The Naval Research Enterprise Intern Program (NREIP) is a ten-week summer research opportunity for undergraduate sophomores, juniors, and seniors, and graduate students. The Office of Naval Research (ONR) offers summer appointments at Navy laboratories to current college sophomores, juniors, seniors, and graduate students from participating schools. Application is online at www.asee.org/nreip through the American Society for Engineering Education. Electronic applications are sent for evaluation to the point of contact at the Navy laboratory identified by the applicant. Contact NRL's program coordinator at nreip@nrl.navy.mil.

The National Defense Science and Engineering Graduate Fellowship Program helps U.S. citizens obtain advanced training in disciplines of science and engineering critical to the U.S. Navy. The three-year program awards fellowships to recent outstanding graduates to support their study and research leading to doctoral degrees in specified disciplines such as electrical engineering, computer sciences, material sciences, applied physics, and ocean engineering. Award recipients are encouraged to continue their study and research in a Navy laboratory during the summer. Contact NRL's program coordinator at (202) 404-7450 or ndseg@hro.nrl.navy.mil.

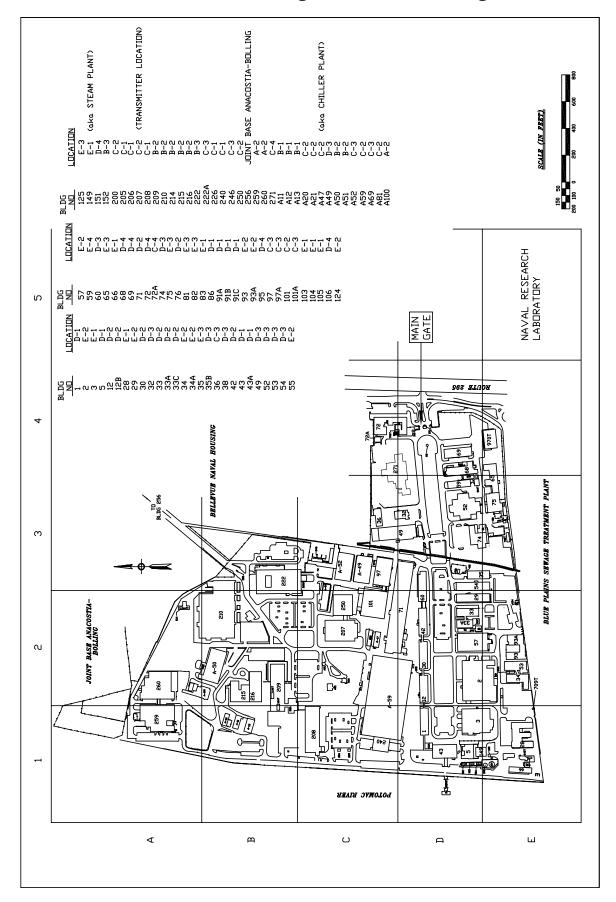
The Pathways Intern Program (formerly STEP and SCEP) provides students enrolled in a wide variety of educational institutions, from high school to graduate level, with opportunities to work at NRL and explore Federal careers while still in school and while getting paid for the work performed. Students can work full-time or part-time on a temporary or non-temporary appointment. Students must be continuously enrolled on at least a half-time basis at a qualifying educational institution and be at least 16 years of age. The primary focus of our Non-temporary intern appointment is to attract students enrolled in undergraduate and graduate programs in engineering, computer science, or the physical sciences. Students on non-temporary appointments are eligible to remain on their appointment until graduation and may be noncompetitively converted to a permanent appointment within 120 days after completion of degree requirements. Conversion is not guaranteed. Conversion is dependent on work performance, completion of at least 640 hours of work under the intern appointment before completion of degree requirements, and meeting the qualifications for the position. The Temporary intern appointment is initially a one year appointment. This program enables students to earn a salary while continuing their studies and offers them valuable work experience. NRL's Pathways Intern Program opportunities are announced on USAJOBS four times per

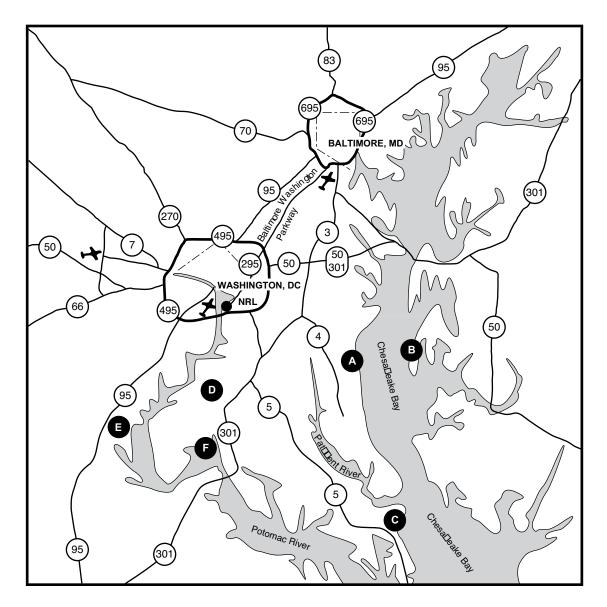
year. Visit USAJOBS at https://www.usajobs.gov/ to create an account, search for jobs, set up an e-mail notification alert of when positions of interest are posted (see "Saved Searches") and apply for our intern opportunities when posted. For additional information on NRL's Intern Program, contact (202) 767-8313.


The Department of Defense Science and Engineering Apprenticeship Program (SEAP) provides an opportunity for high school students who have completed at least Grade 9, and are at least 15 years of age, to serve as junior research associates. Under the direction of a mentor, for eight weeks in the summer, students gain a better understanding of research, its challenges, and its opportunities through participation in scientific, engineering, and mathematics programs. Criteria for eligibility are based on science and mathematics courses completed and grades achieved; scientific motivation, curiosity, the capacity for sustained hard work; a desire for a technical career; teacher recommendations; and exceptional test scores. The NRL program is the largest in the Department of Defense. For detailed information visit http://seap.asee.org/, or call (202) 767-8324, or email seap@hro.nrl.navy.mil.

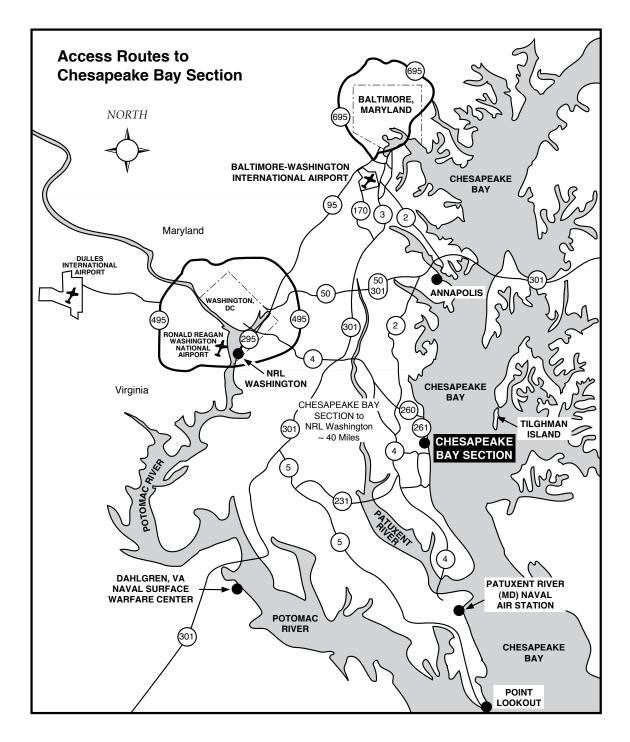
Volunteer Opportunities

The **Student Volunteer Program** helps students gain valuable experience by allowing them to voluntarily perform educationally related work at NRL. It provides exposure to the work environment and also provides an opportunity for students to make realistic decisions regarding their future careers. Applications are accepted year-round. For additional information, contact (202) 767-8313.

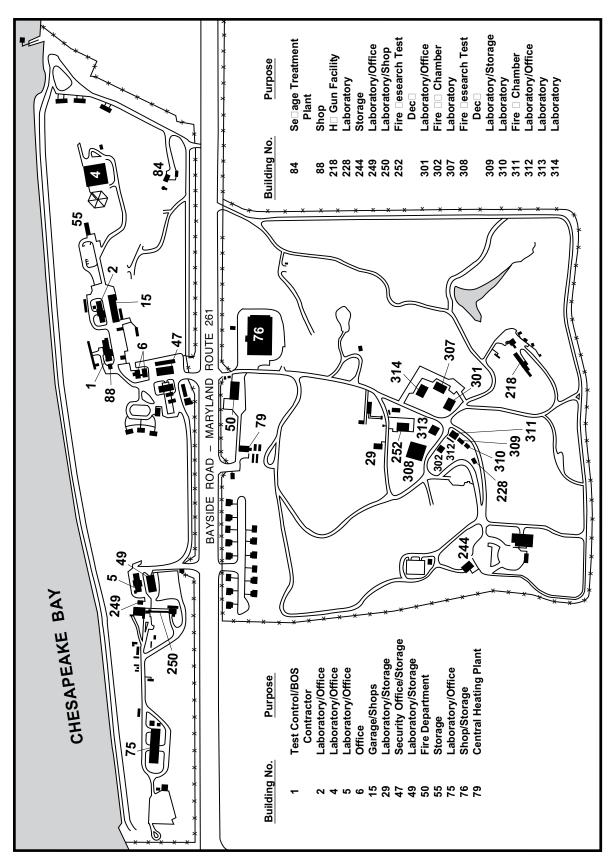

The **Voluntary Emeritus Program (VEP)** uses the services of highly skilled and uniquely qualified individuals who are retired from the Federal Service. Paticipants will work under the program without compensation.


Naval Research Laboratory 4555 Overlook Avenue, SW Washington, DC 20375-5320 (202) 767-3200 – DSN 297-3200

133

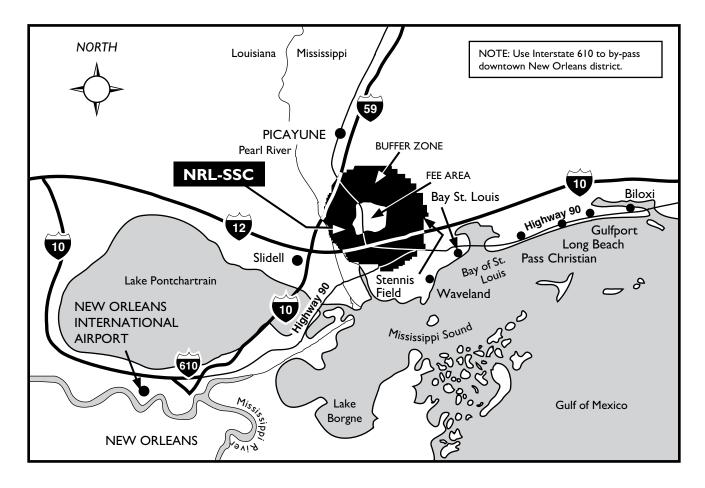

Location of Buildings at NRL Washington

Location of Field Sites in the NRL Washington Area

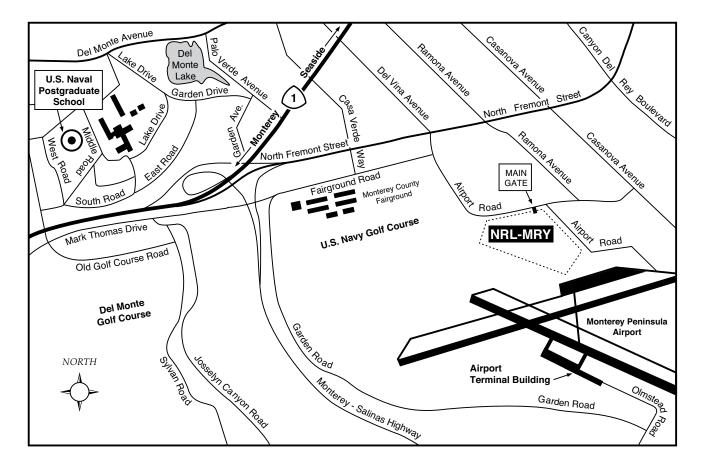


		Approximate Mileage from	Comizant
	Location	<u>NRL Washington</u>	Cognizant
	Location	INKL Washington	<u>Code</u>
A –	Chesapeake Bay Section, Chesapeake Beach, MD	40	3522
В –	Tilghman Island, MD	110	3522
С –	Patuxent River (MD) Naval Air Station	64	1600
D –	Pomonkey, MD	20	8124
Е —	Midway Research Center, Quantico, VA	38	8140
F –	Blossom Point, MD	40	8140

Chesapeake Bay Section (Chesapeake Beach, Maryland)



Naval Research Laboratory Chesapeake Bay Section 5813 Bayside Road Chesapeake Beach, MD 20732 (301) 257-4002



Location of Buildings at the Chesapeake Bay Section

John C. Stennis Space Center (Stennis Space Center, Mississippi)

Naval Research Laboratory John C. Stennis Space Center Stennis Space Center, MS 39529-5004 (228) 688-3390

Naval Research Laboratory Monterey (Monterey, California)

Naval Research Laboratory Marine Meteorology Division 7 Grace Hopper Avenue Monterey, CA 93943-5502 (831) 656-4721

Key Personnel

DSN: NRL Washington 297- or 754-; NRL/SSC 828-; NRL/Monterey 878-; NRL VXS-1/Patuxent River 342-

Code

Telephone

EXECUTIVE DIRECTORATE

1000	Commanding Officer	(202) 767-3403
1000.1	Inspector General	(202) 767-3621
1001	Director of Research	(202) 767-3301
1001.1	Executive Assistant to the Director of Research	(202) 767-2445
1001.2	Head, Strategic Workforce Planning	(202) 767-3421
1001.3	Executive Assistant for Technology Deployment	(202) 767-0851
1002	Chief Staff Officer	(202) 767-3621
1004	Head, Office of Technology Transfer	(202) 767-3083
1006	Head, Office of Program Administration and Policy Development	(202) 767-1312
1008	Head, Office of Counsel	(202) 767-2244
1030	Head, Public Affairs Office	(202) 767-2541
1100	Director, Institute for Nanoscience	(202) 767-1803
1200	Head, Command Support Division	(202) 767-3091
1400	Head, Military Support Division	(202) 767-2273
1600	Commanding Officer, Scientific Development Squadron One	
	(PAX River NAS)	(301) 342-3751
1700	Director, Laboratory for Autonomous Systems Research	(202) 767-0792
1800	Director, Human Resources Office	(202) 767-8322
1830	Deputy Equal Employment Opportunity Officer	(202) 767-8390
3005	Deputy for Small Business	(202) 767-0666
3540	Head, Safety Branch	(202) 767-2232

BUSINESS OPERATIONS DIRECTORATE

3000	Associate Director of Research for Business Operations	(202) 767-2371
3005	Deputy for Small Business	(202) 767-0666
3030	Head, Management Information Systems Office	(202) 404-3659
3200	Head, Contracting Division	(202) 767-5227
3300	Head, Financial Management Division	(202) 767-3405
3400	Head, Supply and Information Services Division	(202) 767-3446
3500	Director, Research and Development Services Division	(202) 404-4054

SYSTEMS DIRECTORATE

	Associate Director of Research for Systems	(202) 767-3525
5300	Superintendent, Radar Division	(202) 404-2700
5500	Superintendent, Information Technology Division/NRL Chief	
	Information Officer*	(202) 767-2903
5600	Superintendent, Optical Sciences Division	(202) 767-3171
5700	Superintendent, Tactical Electronic Warfare Division	(202) 767-6278
5500 5600	Superintendent, Information Technology Division/NRL Chief Information Officer* Superintendent, Optical Sciences Division	(202) 767-2903 (202) 767-317

MATERIALS SCIENCE AND COMPONENT TECHNOLOGY DIRECTORATE

6000	Associate Director of Research for Materials Science	
	and Component Technology	(202) 767-3566
6040	Director, Laboratories for Computational Physics	
	and Fluid Dynamics	(202) 767-3055
6100	Superintendent, Chemistry Division	(202) 767-3026
6300	Superintendent, Materials Science and Technology Division	(202) 767-2926
6700	Superintendent, Plasma Physics Division	(202) 767-2723
6800	Superintendent, Electronics Science and Technology Division	(202) 767-3693
6900	Director, Center for Bio/Molecular Science and Engineering	(202) 404-6000

*Additional duty

Code

Telephone

OCEAN AND ATMOSPHERIC SCIENCE AND TECHNOLOGY DIRECTORATE

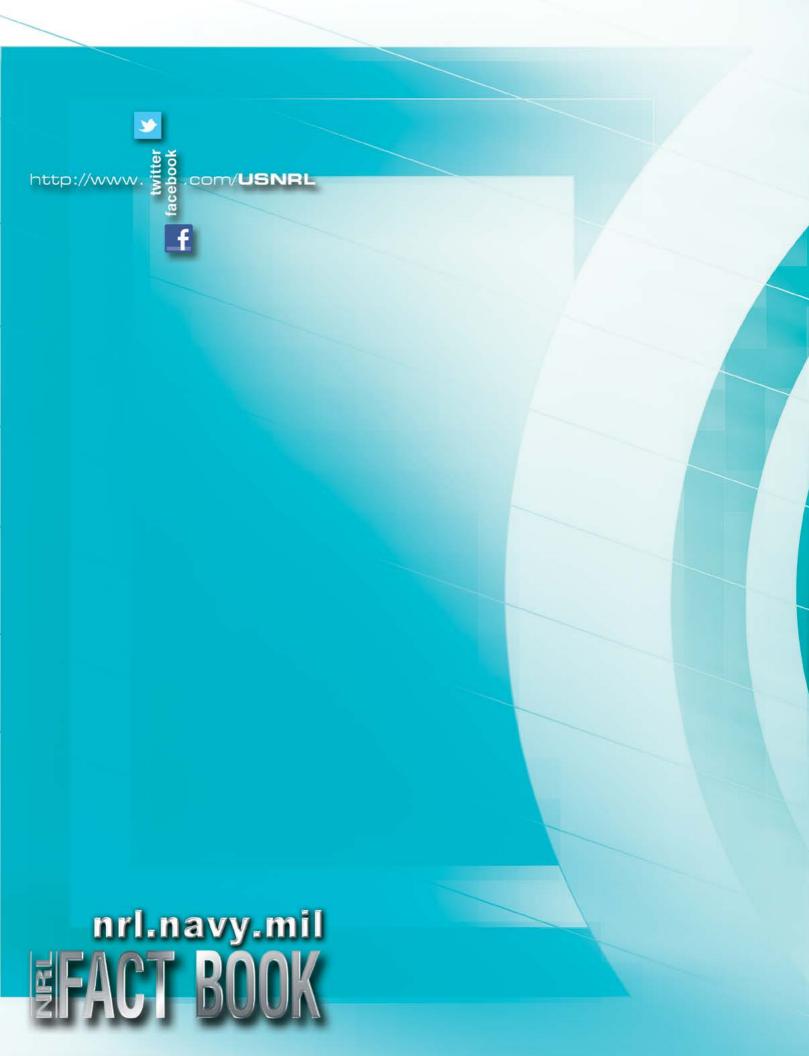
7000	Associate Director of Research for Ocean and Atmospheric	
	Science and Technology	(202) 404-8690
7030	Head, Office of Research Support Services	(228) 688-4010
7100	Superintendent, Acoustics Division	(202) 767-3482
7200	Superintendent, Remote Sensing Division	(202) 767-3391
7300	Superintendent, Oceanography Division	(228) 688-4670
7400	Superintendent, Marine Geosciences Division	(228) 688-4650
7500	Superintendent, Marine Meteorology Division	(831) 656-4721
7600	Superintendent, Space Science Division	(202) 767-6343

NAVAL CENTER FOR SPACE TECHNOLOGY

8000	Director, Naval Center for Space Technology	(202) 767-6547
8100	Superintendent, Space Systems Development Department	(202) 767-4593
8200	Superintendent, Spacecraft Engineering Department	(202) 404-3727

Technical Information Services Branch Production Staff

Editorial Assistance Saul Oresky


Coordination, Design, and Layout Jonna Atkinson

Photography Jamie Hartman, Gayle R. Fullerton, and James Marshall

The cooperation and assistance of others on the staffs of the Technical Information Services Branch and the Central Mail Processing Unit are also acknowledged and appreciated.

REVIEWED AND APPROVED NRL/PU/3430--14-595 RN: 14-1231-2388 May 2014

Anthony J. Ferrari, Captain, USN Commanding Officer

