

2019 MASTERs Conference

23075 IoT6

Simplifying TCP/IP Applications

with MPLAB® Harmony

Hands-On

Lab Manual
Instructors:

Martin Ruppert

Raji Shanmugasundaram

Niklas Larsson

Microchip Technology Inc.

23075 IoT6 Simplifying TCP/IP Applications with MPLAB® Harmony

2

Table of Contents
Introduction 3

Hardware Requirements 4

Software Requirements 5

How to connect the USB and the CAT5 Network cable to the board 6

Lab 1 7

Overview 7

Lab Procedure 8

Lab 2 27

Overview 27

Lab Procedure 31

Lab 3 49

Overview 49

Lab Procedure 52

MPLAB® Harmony TCP/IP Stack 55

TCP Module API Function List 55

UDP Module API Function List 56

Harmony TCP/IP API Subset For all Lab’s 57

TCP Socket Management Functions 57

UDP Socket Management Functions 61

 65

23075 IoT6 Simplifying TCP/IP Applications with MPLAB® Harmony

3

Introduction
This Lab Manual provides the step by step procedure to complete two labs in the MASTERs 23075 IoT6
Class.

If you don’t know how TCP/IP works but you have to add network connectivity to your product, this is the right class
for you. We will teach you the basics of TCP/IP, how the client-server model works, what ports and sockets are and
how applications use them to create TCP/IP connections. The class will also teach you the fundamentals of network
analysis with the well-known tool Wireshark. The hands-on part of the class utilizes Microchip's 32-bit MCUs with
MPLAB® Harmony. You can learn the architecture and the fundamentals of the Harmony TCP/IP stack to interface
your TCP/IP application with some common stack APIs. To make your life easier, the FreeRTOS™ task schedular is
used to simplify your application programming.

In Lab 1 we will open a TCP project, do some stack re-configuration and a connectivity check and in Lab 2 we will show an

Application integration for local access, using the example of a Vending machine. Finally in Lab 3 we will make an Application

integration for external access, using the example of a Weather Service.

23075 IoT6 Simplifying TCP/IP Applications with MPLAB® Harmony

4

Hardware Requirements
The following hardware is required:

• SAM E70 Xpained Ultra (Microchip Part Number: DM320113)

o https://www.microchip.com/DevelopmentTools/ProductDetails/PartNO/DM320113

• OLED1 Xplained Pro extension kit (Microchip Part Number: ATOLED1-XPRO)

o https://www.microchip.com/Developmenttools/ProductDetails/ATOLED1-XPRO

• Cat 5 Ethernet Patch Cable

• USB Male A to USB Male B Micro Cable

23075 IoT6 Simplifying TCP/IP Applications with MPLAB® Harmony

5

Software Requirements
The following software is required:

• Microchip MPLAB X IDE v5.20

o http://www.microchip.com/mplab

• Microchip MPLAB XC32 Compiler v2.15

o http://www.microchip.com/mplab/compilers

• Microchip MPLAB Harmony 3

o http://www.microchip.com/mplab/mplab-harmony

• Microchip MPLAB Harmony Configuration (MHC) Tool Plugin v3.3.0.1

• Tera Term v4.95

The Lab1, Lab2 and Lab3 class expects a Harmony 3 with the following subset of Versions (Tags)

To make it more easy in the class for the attendees, the folder C:/MASTERs/23075 already contains this H3 Checkout

In the (optional) case a standard Harmony 3 installation is used, in the MHC configuration the csp v3.2.1 and core v3.2.1 must be
selected. This can be done by clicking on the sub module and select in the drop down menu, the above mentioned version.
The following checkout could take several minutes. The checkout is only local, no external Github access will be used.

23075 IoT6 Simplifying TCP/IP Applications with MPLAB® Harmony

6

How to connect the USB and the CAT5 Network cable to the board

- Ensure the Erase jumper is open

- Open the J805 jumper

23075 IoT6 Simplifying TCP/IP Applications with MPLAB® Harmony

7

Lab 1
Overview
Lab 1 will show you how to open an existing TCP/IP MPLAB Harmony 3 Project and using the MPLAB Harmony Configuration (MHC)

Tool. The project will incorporate basic TCP/IP functionality to allow the SAM E70 Xplained Ultra to connect to an Ethernet Network,

along with a simple application to flash a “Heartbeat” LED every 500ms. Once the project is generated and programmed onto the

development kit, you will use a number of techniques to validate that the PIC is connected to a network and determine its IP

Address. The concepts that will be covered in this lab include:

• Open a SAM E70 MPLAB X Project

• Configuring the MPLAB Harmony path

• Configuring the TCP/IP Stack options, including:

o Network Configuration of the Host Name

o TCP/IP Services including Dynamic Host Configuration Protocol Client, ICMPv4 Server (for Ping testing) &

Announce Discovery Tool

o Bandwidth testing with “iperf”

• Configuring the Harmony Console and Command Service for monitoring and control of the TCP/IP stack via a Terminal

Client running on a USB CDC Interface (Emulated RS232 COM Port).

Toggling the IO Pin that drives USER_LED0 on the SAM E70 Xplained UltraSAM E70 Xplained Ultra

• Using the Windows Command Line Ping Tool and the Microchip TCP/IP Discovery tools to test connectivity of your SAM

E70 Xplained UltraSAM E70 Xplained Ultra on the network

• Use the Console and Command System to get help on available TCPIP Commands and execute a command to get

information about the network configuration.

23075 IoT6 Simplifying TCP/IP Applications with MPLAB® Harmony

8

Lab Procedure
Starting MPLAB X IDE

1.1. Start MPLAB X IDE by double clicking on the MPLAB X IDE v5.20 icon found on the Windows desktop.

23075 IoT6 Simplifying TCP/IP Applications with MPLAB® Harmony

9

Project Load, modify with MHC, Generate, build and run

1. Open Project by choosing File�Open Project… from the main menu and select lab1 project

2. Open Project Properties by choosing

a. File�Project Properties from the main menu

b. Or select with a right click the project node in the project windows and select at the bottom

c. Or select the toolbox in the Dashboard

23075 IoT6 Simplifying TCP/IP Applications with MPLAB® Harmony

10

3. Select the XC32 Compiler v2.15

4. Select the SAME70 Xplained by clicking on the SN: Number

5. Select from the Tools Menu the Harmony 3 Configurator

6. Ensure the H3 Path is set to “C:\MASTERs\23075\h3\”

23075 IoT6 Simplifying TCP/IP Applications with MPLAB® Harmony

11

7. Select “Launch”

The first time the MHC is started, it can take up to 2 Minutes before the Configuration Database is prepared

8. In the next window the H3 parts and their used Version Numbers are displayed

Click on “Launch”

9. Open the saved state file

23075 IoT6 Simplifying TCP/IP Applications with MPLAB® Harmony

12

10. The MHC is up and running

11. Select Active Components (left below)

23075 IoT6 Simplifying TCP/IP Applications with MPLAB® Harmony

13

12. Select the Instance 0 in Active Components

13. And change in the Configuration Options (on the right side) the Host Name to something meaningful for you.

The Host name can be identified in the Network.

23075 IoT6 Simplifying TCP/IP Applications with MPLAB® Harmony

14

14. Select “TCP/IP Application Layer Configuration” in Active Components

15. Ensure that ANNOUNCE and IPERF are selected

23075 IoT6 Simplifying TCP/IP Applications with MPLAB® Harmony

15

16. Select ICMPv4 in the Active Components

17. And ensure that the “Use ICMPv4 Client” is selected

23075 IoT6 Simplifying TCP/IP Applications with MPLAB® Harmony

16

18. Select “Code” (Generate Code)

19. Select Don’t Save

20. Select Generate

23075 IoT6 Simplifying TCP/IP Applications with MPLAB® Harmony

17

21. Some Files will be changed and the MHC is asking in a “diff” window, if the changes should be taken over.

Accept all changes in the file by clicking on the Arrow in the middle above.

22. Then click on close in the upper right corner

23. Same for the next 2 diff windows

23075 IoT6 Simplifying TCP/IP Applications with MPLAB® Harmony

18

24. The whole process is displayed with a progress bar

25. Back again in the main window of MPLABX, click on the “Make and Program Device” button

26. After successful build, the SAME70 is programmed automatically

23075 IoT6 Simplifying TCP/IP Applications with MPLAB® Harmony

19

27. The programming take about 30 seconds with on Board Debugger Check whether the USER_LED0 Activity is Blinking

23075 IoT6 Simplifying TCP/IP Applications with MPLAB® Harmony

20

28. Open Terra Term Terminal Program and select under Setup->Serial Port the COM Port and the Baudrate

115200 (in this case a COM96, but could be a different COM Port number in your case).

The press the Reset Button of the Board and let the Firmware restart. You should see the start message with the Lab

name and the build timestamp at first, followed by the MAC Address from EEPROM.

29. After some small time, the IP Address should be change from 0.0.0.0 to a valid address

23075 IoT6 Simplifying TCP/IP Applications with MPLAB® Harmony

21

30. To check the basic information about the network enter the netinfo command and press Enter .

23075 IoT6 Simplifying TCP/IP Applications with MPLAB® Harmony

22

31. A help shows the available commands

23075 IoT6 Simplifying TCP/IP Applications with MPLAB® Harmony

23

32. As a first simple test you can ping an external Server or anything else you like (Maybe the board of your class neighbor?)

23075 IoT6 Simplifying TCP/IP Applications with MPLAB® Harmony

24

33. Select the tcpip_discoverer tool from

23075 IoT6 Simplifying TCP/IP Applications with MPLAB® Harmony

25

34. If Windows is asking for permissions allow the access

35. The TCP Discover should list all boards in the classroom. We have made this tool to help you to find your board in the

network. The source codes of this tool (Java) are part of the H3.

You can identify your board by the Host Name that has select in an earlier step. The Host Name is also known to the

DHCP server and is listed in their typical Web Interfaces as a connected device.

Press the Discover Devices button: The tool will send a UDP broadcast on port 30303, with the packet “Discovery,

who is out there?” All H3 devices running the Announce service will respond to this broadcast, by sending a return

broadcast on port 30303. The broadcast packet contains data on the type of interface used, the Host Name, MAC and IP

Address. The Discover tool listens to all broadcasts on port 30303 and will show found devices under the Microchip

23075 IoT6 Simplifying TCP/IP Applications with MPLAB® Harmony

26

Devices tree. You can identify your device by looking for the host name that you entered in MHC Setup process. The

Microchip TCPIP Discoverer tool also shows the IP address for your board.

36. A double click on the MAC-Address line will put you in your default Internet Browser

37. And the Webpage is displayed. Please take some time an play with the sub menus to find out the capabilities of or H3

Web Server

37. Congratulations, you have completed Lab 1!

23075 IoT6 Simplifying TCP/IP Applications with MPLAB® Harmony

27

Lab 2
Overview

You will be implementing an embedded network application to update and track status of an Vending Machine (VM).

The implementation is sectioned into two modules.

TASK 1:

The task is to interface the up/down and select buttons and an OLED of a

Vending Machine to the HTTP-Server. The HTTP-Server keeps track of the

items in the Vending Machine.

 The HTTP- Client (PC-web page) talks to the HTTP- server and displays the

status of the Vending Machine. The HTTP-Client also sends out an update

request to the HTTP- server using Ethernet Interface.

TASK 2:

 The task is to make all the VMs in the class network to talk to a server. When a

Bay of a VM is empty it sends out a message to a common server.

An example Message:

 “Message: 1 from Martin: The Pepsi Bay is empty”

The Message number (1) and the Host name (Martin) together forms a unique

Message and makes it easy to differentiate your message from other VMs on the

network server and the number helps to find the recent ones.

Data Protocol

E70 HTTP- SERVER
/Vending Machine -1

Ethernet Switch

PC – HTTP-Client (1)

E70 HTTP-SERVER

/Vending Machine-(n)

PC- HTTP-Client (n)

Ethernet Switch

E70 HTTP-SERVER /

Vending Machine (1)

SERVER

E70 HTTP- SERVER /

Vending Machine (n)

23075 IoT6 Simplifying TCP/IP Applications with MPLAB® Harmony

28

TASK1

VM-1

VM-1

VM-1

TASK 2

VM-1

VM-2

VM-3

GET /VM.htm?ITEM=2&COUNT=5

TCP HTTP Port 80

Sends the request “GET /MY_Data.xml

HTTP/1.1” for every 500ms

PC HTTP-Client-1

TCP HTTP Port 80

HTTP/1.1 200 OK
Sends the MY_Data.xml file to

update the web page with

PC -HTTP-Client-1

TCP HTTP Port 80

PC HTTP-Client-1

 BAY Empty Message

 BAY Empty Message

 BAY Empty Message

CLASS SERVER

23075 IoT6 Simplifying TCP/IP Applications with MPLAB® Harmony

29

Application Implementation

The Vending Machine demo (Task 1 and 2) is implemented using “SAM E70 Xplained Ultra Evaluation Kit “and “OLED1 Xplained Pro

Extension Kit”. The OLED Xplained pro has three buttons, LEDs and an OLED.

Ø The VM application uses Button 1(Down) and 2(UP) to scroll through the VM items and Button 3 to select an item

from the Vending Machine.

Ø The LEDs above the button indicates a button press with a blink.

Ø The OLED is used to display the name and their corresponding number of the items in a Vending Machine.

Ø When select button(B3) is pressed the HTTP-Server will decrement the count of an item and updates the HTTP-

Client(Web page)through ethernet interface.

E70 WEB SERVER

/Vending Machine

23075 IoT6 Simplifying TCP/IP Applications with MPLAB® Harmony

30

The Vending machine demo runs the below user applications in conjunction with MPLAB Harmony TCP/IP Stack:

• OLED and Button Contoller (MMI_Tasks): Manages the operation of the OLED display , Buttons and LEDs.

• Application Contoller (app_Tasks()): manages all high level network communications with client and server.

SYS_FS_TASKS()

NET_PRES_Tasks ()

TCPIP_STACK_Tasks ()

APP_Tasks ()

SYS_CMD_TASKS()

SYS_FS_TASKS()

DRV_MIIM_TASKs ()

NET_PRES_Tasks ()

23075 IoT6 Simplifying TCP/IP Applications with MPLAB® Harmony

31

Lab Procedure
In Lab 1, you configured a new MPLAB Harmony Project from scratch that included the TCP/IP Stack middleware and a LED

Flasher. The project you created in Lab 1 will be used as the starting point for Lab 2.. The source code for the OLED and Button

Controller are included into the project.

You will learn about several Harmony TCP/IP API functions by adding the necessary APIs into the application source code to

manage the TCP Sockets and data exchanged with socket. You will also learn how the dynamic variables in a web page are

handled by the server. Finally, you will get to use the Packet Sender software tool to perform isolated testing of the embedded

application prior to connecting your VM implementation to the server on the network.

Lab Procedure

Project Setup

1.2. Close Lab 1 project by choosing File�Close Project(lab1) in the main menu.

1.3. The project for Lab 2 has already been setup in advance. The project is a working implementation of Lab 1 that has been

renamed to web_net_server_nvm_mpfs_lab2, and has a number of files added including mmi.c and modified app.c file

are added to the project. To open the Lab 2 project, choose File�Open Project in the main menu.

1.4. In the Open Project window, enter C:\MASTERs\21070\ web_net_server_nvm_mpfs_lab2\firmware into the File name

text box or navigate to the file .

1.5. Click on sam_e70_xult_freetos.X icon in the file list.

23075 IoT6 Simplifying TCP/IP Applications with MPLAB® Harmony

32

1.6. Press Open Project .

1.7. The source and header structure for the project is shown below.

23075 IoT6 Simplifying TCP/IP Applications with MPLAB® Harmony

33

MHC Code Generation

1.8. The project configurations are already set, and we are going to look on the configurations and generate the code. (steps

1.8 -1.22)

1.9. Before the MHC Configuration tool can be used, you need to set lab2 as the main project, by right clicking on the

web_net_server_nvm_mpfs_lab2 folder under the Projects window, and choosing Set as Main Project in the popup

menu.

1.10. To launch MHC, choose Tools�Embedded�MPLAB Harmony 3 Configurator in the main menu.

1.11. In the MPLAB Harmony Launcher dialog box, make sure the path states

C:\MASTERs\23075\h3 and click on Launch .

23075 IoT6 Simplifying TCP/IP Applications with MPLAB® Harmony

34

1.12. In the nest window the H3 parts and their used Version Number are displayed. Click on Launch

1.13. Open the saved state file

1.14. Explore and look on the configurations tree by clicking on the modules under Active Components (step 1.14 and 1.15- can

be skipped and continue from 1.16).

1.15. Click and check the “Core” option under Active Components. On right hand side the Configuration options are displayed,

check the “Number of Applications “options under Configuration Options which is set to 2.Expand both Application 0 and

1 Configuration trees, and the Application Name is set to app (Application Interface) for Application 0, and mmi(Man

Managed Interface for buttons, leds and OLED)for Application 1.

1.16. Check on TCP/IP Stack under Active components and its configuration under Configuration options.

23075 IoT6 Simplifying TCP/IP Applications with MPLAB® Harmony

35

1.17. Select the Instance 0 in the TCP/IP stack under Active Components to enter the HOST Name (TCP/IP STACK->BASIC

CONFIGURATION->Instance 0). And change in the Configuration Options (displayed on the right side of MPlabx) the Host

Name to your firstname_lastname. The Host name can be identified in the Network.

1.18. Select “Code” (Generate Code) which is under the menu tabs.

1.19. Select Don’t Save

23075 IoT6 Simplifying TCP/IP Applications with MPLAB® Harmony

36

1.20. Select Generate

1.21. Some Files will be changed, and the MHC is asking in a “diff” window, if the changes should be taken over. Accept all

changes in the file by clicking on the Arrow in the middle above and then close.

1
2

23075 IoT6 Simplifying TCP/IP Applications with MPLAB® Harmony

37

1.22. The whole process is displayed with a progress bar

1.23. After the MHC has finished generating the project, go to the Projects Window and expand the Header Files and Source

Files to see the source/header files for the app and mmi application file and TCP/IP stack files.

Ø The WEB page source code for the VM application is found under the folder web-pages->VM.htm

Ø The hex file for the web page is in mpfs_net_img.c which is generated using the utility MPFS- generator which

comes along with Harmony net package.

23075 IoT6 Simplifying TCP/IP Applications with MPLAB® Harmony

38

Application Source and Header File SetupTASK1:

In the VM application when an VM ITEM update is initiated by the HTTP- client (WEB PAGE) it sends out a GET command that

needs to be processed by the HTTP-Server. The get command is sent along with the argument of the VM “Item” to be updated

and its “Count” which are processed by the HTTP-Server. In Harmony TCP/IP stack GET command is handled by the function

TCPIP_HTTP_NET_ConnectionGetExecute ().

Follow the procedure under to include the code that process the GET request from HTTP-CLient: -

1.24. Click and Open the file custom_http_net_app.c. Search for the function TCPIP_HTTP_NET_ConnectionGetExecute ()

(Approx. Line.No. 247) in which the below code snippets need to be inserted.

1.25. Find the TODO[1] and insert the below code starting from the line mentioned as “//<--Insert the solution for TODO[4]

starting on this line” . Code can be inserted either by typing or copy and paste which is provided for your convenience at

the end of the file (custom_http_net_app.c).

 ptr = TCPIP_HTTP_NET_ArgGet(httpDataBuff, (const uint8_t *)"ITEM");

1.26. Find the TODO[2] and insert the code snippet starting from the line mentioned as “//<--Insert the solution for Item 2

starting on this line” . Code can be inserted either by typing or copy and paste which is provided for your convenience at

the end of the file (custom_http_net_app.c).

ptr = TCPIP_HTTP_NET_ArgGet(httpDataBuff, (const uint8_t *)"COUNT");

 VM_Count[Update_Item]=*ptr;

 TASK 2:

23075 IoT6 Simplifying TCP/IP Applications with MPLAB® Harmony

39

When a Bay of the VM is empty it sends out the message to the common server. The sate machine to open a socket to send

message and close socket is shown below

In this section, you will gain some experience with the use of Harmony TCP/IP API functions. The app.c source is missing lines

of code. All missing code specifically relates to management of the setting up the TCP Client such as opening or closing the

socket, checking if the socket is connected, checking if data is available, and writing data to the socket. Your task is to read the

description for each missing item, select the appropriate Harmony TCP/IP API, and fill in the missing line of code.

1.27. The first step to do is get the common server’s IP address. Get the address from the presenter and make a note.

1.28. Click and Open the file app.c. and find the function APP_Tasks (). (Approx. Line.No. 200) in which the below code snippets

are inserted.

Stack

Initialized

NO

YES

File Mounted

No link found

If new link

found

Stack not

Initialized

MAC address

READ

Mount

file

If WEB file is not

mounted

 not mounted

READ
MAC address

TCP/IP stack Int

Link is established

Wait to

read

MAC

Connection

Established

If wait time out

Send out the TCP

message

Close connection

Set-up TCP

client

Wait for

link
Wait for

TCP

If a VM Bay

is empty

Error

check for

any new

link

Display the IP

address

23075 IoT6 Simplifying TCP/IP Applications with MPLAB® Harmony

40

1.29. Find the TODO[3] in which common SERVER IP address is entered. Replace the x with the common server IP address ().

For example: if the server IP address is 192.168.0.108 replace

 * x1 with 192

 * x2 with 168

 * x3 with 0

 * x4 with 108

1.30. Find TODO[4] and add the below snippet to Open a socket for TCP_Client . Code can be inserted either by typing or copy

and paste the code which is provided for your convenience at the end of the file (app.c).

appData.socket = TCPIP_TCP_ClientOpen(IP_ADDRESS_TYPE_IPV4,

 appData.port,

 (IP_MULTI_ADDRESS*) & addr);

1.31. Find TODO[5] and add the below snippet to check the TCP connection is established 0.

Insert the code in the line mentioned as “//<--Insert the solution for TODO[5] starting on this line”

Code can be inserted either by typing or copy and paste the code which is provided for your convenience at the end of

the file (app.c).

23075 IoT6 Simplifying TCP/IP Applications with MPLAB® Harmony

41

if (!TCPIP_TCP_IsConnected(appData.socket))

1.32. Find TODO[6] and add the below snippet to check the TCP connection is established .

Insert the code in the line mentioned as “//<--Insert the solution for TODO[6] starting on this line”

Code can be inserted either by typing or copy and paste the code which is provided for your convenience at the end of

the file (app.c).

if (TCPIP_TCP_PutIsReady(appData.socket) == 0)

1.33. Find TODO[7] and add the below snippet to send the message to the common server once a TCP connection at port 80 is

established .

Insert the code in the line mentioned as “//<--Insert the solution for TODO[7] starting on this line”

Code can be inserted either by typing or copy and paste the code which is provided for your convenience at the end of

the file (app.c).

sprintf(buffer, "MSG:%d from %s : %s is empty", (int) MessageCounter++, (char *)

TCPIP_HOSTS_CONFIGURATION[0].macAddr, (char *) VM_Items[bay_index - 1]);

 SYS_CONSOLE_PRINT("Sending message: %s\r\n", buffer);

 TCPIP_TCP_ArrayPut(appData.socket, (uint8_t*) buffer, strlen(buffer));

1.34. Find TODO[8] and add the below snippet to close the TCP Client socket.

 Insert the code in the line mentioned as “//<--Insert the solution for TODO[8] starting on this line”

Code can be inserted either by typing or copy and paste the code which is provided for your convenience at the end of

the file (app.c).

 TCPIP_TCP_Close(appData.socket);

23075 IoT6 Simplifying TCP/IP Applications with MPLAB® Harmony

42

Hardware Setup

This hardware setup is common to both TASK1 and TASK2. After adding the required code for the application, make the hardware

connections to programme the device and to see the output

1.35. Network Connection

Cable: CAT5 Ethernet Cable supplied with Starter Kit
Connection: RJ45 Jack from the class network to PCB Top RJ45 Jack(make sure the jumper below the
Ethernet PHY module is taken off)

1.36. Programming and Console Connection

Cable USB Male A to USB Male B Micro cable
Connection: USB Debug Port on PCB Top to Laptop USB Port

1.37. OLED1 Xplained Pro Connection

OLED1 X PLAINED PRO
Connection: Connect the OLED x PLAINED PRO to the EXT 2 of the board (Extension close to Ethernet
PHY)

1.38. PC

PC needs to be connected to the Class network or
It can be connected to the wireless network

2

3

1

CLASS

ETHERNET

NETWORK

3
2

1

4

4

23075 IoT6 Simplifying TCP/IP Applications with MPLAB® Harmony

43

1.39. In the main window of MPLABX, click on the “Make and Program Device” button

1.40. After successful build, the SAME70 is programmed automatically. Build and Programming are monitored on the output

window at the bottom of the MPLAB X IDE screen.

1.41. Immediately after programming, you can see the text on the OLED screen in series like the screens below.

Use the Buttons 1 and 2 (Previous and Next item) on the OLED1 Xplained pro to scroll through the items of the Vending

Machine.

Welcome to

23075 IoT6
Vending

 Machine

B1-UP, B2-Down

B3-Select
1.Coco-Cola 9

23075 IoT6 Simplifying TCP/IP Applications with MPLAB® Harmony

44

1.42. Now open a Tera Term to see the status of the HTTP server and its IP address.

If Tera Term is still open from Lab 1, click on the window title bar to make it active. If Tera Term needs to be re-opened

and configured, refer the below steps.

Open Terra Term Terminal Program and select under” Setup->Serial Port” (in this
case a COM14, but could be a different COM Port number in your case) set the speed to
115200.Match the below set-up and click “OK ”

1.43. Reset the Board and let the Firmware restart.

1.44. After some small time, the IP Address should change from 0.0.0.0 to a valid address. Take time to go through the

Initialization messages, MAC address, Host name and the IP address of the HTTP- server displayed on the tera term

terminal.

RESET SW401

23075 IoT6 Simplifying TCP/IP Applications with MPLAB® Harmony

45

23075 IoT6 Simplifying TCP/IP Applications with MPLAB® Harmony

46

1.45. Open a web browser and enter the HTTP- Server IP address that you got on the tera term in the previous step. This opens

a web page (HTTP-Client)

1.46. Click on the Vending Machine tab to see the page for the Vending Machine Demo.

23075 IoT6 Simplifying TCP/IP Applications with MPLAB® Harmony

47

1.47. Use the Button 3 on the OLED to pick an item from the VM. The count of the corresponding item on the OLED scren

will be decremented by 1 and is reflected on the Web page as well as on the OLED screen.

1.48. Check on the VM update. Pick an item and the count to be changed on the WEB page from the ITEM and COUNT drop

down menu. Select update. When an update is selected the WEB page will send a GET command along with the ITEM

number and COUNT to the HTTP-server. The HTTP-server decodes the GET command and displays it on the VM diaply

(OLED).

 1.Coco-Cola 8

23075 IoT6 Simplifying TCP/IP Applications with MPLAB® Harmony

48

Example:

 On the web page ITEM 4 and its count will be changed to 4 and, also on the OLED.

You have successfully completed TASK 1 and let’s move on to TASK 2.

1.49. To test Task 2, one or more Bay of the VM machine must be Zero. Press the select Button 3 and make one or more item to

zero count. After few second you can see the messages ” Sending VM status “ , “Starting Connection” and “TCP Socket

Connected” and the “BAY Empty message” and TCP client closed on the tera term.

1.50. Look at the presenter’s screen to identify your message.

MSG:338 from fc:c2:3d:0d:21:d7 : 2.Diet-Coke is empty

Message No. MAC address which is unique for each VM Bay empty message

4. Dr Pepper 4

23075 IoT6 Simplifying TCP/IP Applications with MPLAB® Harmony

49

Lab 3
Overview
In many IoT applications, JSON is commonly used as a format in order to transport high-level data in an effective way. It is generally

an alternative to XML. Consider the following example of describing a person named Raji-Niklas Ruppert in JSON-format:

{

 “firstName” : “Raji-Niklas”,

 “lastName” : “Ruppert”,

 “age” : 30,

 “address” : {

 “streetAddress” : “2355 W Chandler Blvd”,

 “city” : “Chandler”,

 “state” : “AZ”,

 “postalCode” : “85224”,

 }

}

Using this format makes it very easy to communicate between applications requiring information about Raji-Niklas Ruppert.

The advantage of using JSON in embedded applications is that because it is easy to read for humans, it is simple to parse and make

use of. Due to this, it is commonly used to transmit data between a server and a web application. In this lab we are going to

implement an embedded application fetching weather data from a web server. When the application accesses a specific URL

specifying a command with a geographic location, the web server will respond by sending the current weather in JSON-format to

the web application. The application will be running on our SAME70-boards.

In this lab we will only do very simple parsing (which is one of the strengths using JSON), using standard string operations. There

are however more sophisticated parsers which can be used for more robust and complex applications, while still only consuming a

very limited footprint.

The weather service used in this lab is https://openweathermap.org/. With OpenWeatherMap, there are several services such as

hourly forecast, UV Index, Air pollution and more, all outputting in JSON. With the free account there are limited option to only use

the “Current Weather Data” service. With this service you can request the current weather from different geographic locations.

Depending on by which method (City ID, ZIP Code, Coordinates etc.) the URL call will be slightly different. A full description of the

API can be found here: https://openweathermap.org/current. For this lab we will fetch current weather by city. The following URL

for this is:

23075 IoT6 Simplifying TCP/IP Applications with MPLAB® Harmony

50

http://api.openweathermap.org/data/2.5/weather?q={CITY}&APPID={API Key}
The API Key is unique to each user. This is also how OpenWeatherMap tracks how many requests you attempt. The API Key is a 15-

byte long hexadecimal string. It can look like this:

ed3da58111974261002c2af4f8e8e81f

In most JSON API:s there is also a well defined format specified, which tells you where the different objects and strings are located

in the JSON-message. From OpenWeatherMap:

{"coord":{"lon":-122.09,"lat":37.39},

"sys":{"type":3,"id":168940,"message":0.0297,"country":"US","sunrise":1427723751,"sunset":14
27768967},

"weather":[{"id":800,"main":"Clear","description":"Sky is Clear","icon":"01n"}],

"base":"stations",

"main":{"temp":285.68,"humidity":74,"pressure":1016.8,"temp_min":284.82,"temp_max":286.48},

"wind":{"speed":0.96,"deg":285.001},

"clouds":{"all":0},

"dt":1427700245,

"id":0,

"name":"Mountain View",

"cod":200}

23075 IoT6 Simplifying TCP/IP Applications with MPLAB® Harmony

51

Application Flow

Lab Outline
• In the the source code file app,c are TODO’s. At this places you have to change the source codes. At the bottom of the app.c

you find the solutions. Either you think about what you have to change, or you just copy the solution at the right place.

• The main purpose of this class is to point you to the crucial points in an Harmony 3 application and not to let you write a

complete TCP application

• The pre-made template is built from the Harmony example project, tcpip_tcp_client.

• First, we will need to declare the APPID_KEY.

• We will then set the host & port of the remote connection static as we will only connect to OpenWeatherMap.

• After this, we will redirect the user input from the command console to a char* buffer to be used in the application.

• Now we have all information required to build the URL from the introduction.

• When we have connected and requested the data, we need to parse the resulting JSON- string (the whole JSON containing

the current weather will be in one string).

• Typically, good practice when you debug JSON-strings is to print the resulting string for you to view with your own eyes that

it looks correct.

• At last, redirect the application to go back to accepting user input.

23075 IoT6 Simplifying TCP/IP Applications with MPLAB® Harmony

52

Lab Procedure
1. Start by closing any open projects in MPLAB X IDE.

2. Open a new project and choose lab3 -> Firmware -> sam_e70_xult_freertos.X.

3. Open the file app.c located under source files.

4. Go to (CTRL+F) “TODO A”. Enter the correct APPID_KEY. Either you create your own account on OpenWeatherMap or you

take the one written I the class.

5. Now scroll down to “TODO B”, the function APP_Initialize.

6. Set the application to connect to the host api.openweathermap.org and the port to 80. This is set to 80 because this call will

be over HTTP.

7. Re-direct the user input from APP_URL_BUFFER to the cityBuffer array. This can be done in several ways, but one is to use

the built-in C function snprintf(char* dest, size_t size, const char *format, …). The first argument is the destination buffer

(cityBuffer), the second one is the max size to be copied (128, because that is specified in the declaration) and the

formatted input in this scenario is APP_URL_BUFFER. This can be found in “TODO C”.

8. Scroll down to “TODO D”, the state APP_TCPIP_WAIT_FOR_CONNECTION. In this state we will wait for a connection to be

established. Once established we will send a GET command with the full URL in the format specified in the introduction:

http://api.openweathermap.org/data/2.5/weather?q={CITY}&APPID={API Key}.

9. Once the request is sent to the server, the application will go into the APP_TCIPIP_WAIT_FOR_RESPONSE state.

Once the connection is closed, set the next state to be APP_STATE_JSON_PARSE_RETRIEVED_DATA.

23075 IoT6 Simplifying TCP/IP Applications with MPLAB® Harmony

53

10. Now go down in the state APP_STATE_JSON_PARSE_RETRIEVED_DATA. One of the first things we want to do after we

have sorted out the JSON-part of the retrieved data is to print the raw JSON-string. This helps us debug & analyse.

11. In a real application, we would need to first know the format of the JSON message in order to be able to parse it correctly.

To make this lab more efficiently, we will do this backwards. If you look at this example piece of API response from

OpenWeatherMap found in the introduction section to this lab. Looking at the format from the API, we need to calculate

in what position the value of humidity start. The function strstr will cut the resulting Json string at the first occurrence of

“humidity”. A hint is to look at the other blocks where you parse the temperature, pressure and main weather.

12. Once the parsing is done, we wish to print the values of the main weather, pressure, temperature and humidity.

13. Now to complete the loop, we want to go back to the APP_TCPIP_WAITING_FOR_COMMAND state once the JSON-

parsing and printing is done.

23075 IoT6 Simplifying TCP/IP Applications with MPLAB® Harmony

54

14. When the build process was correct, then program the E70

15. Open the Terminal program, press the Reset Button

16. When “>” is prompter you can put in “requestWeather <city>”

Or the short form: ”rw <city>”

For ex. “rw Phoenix”

17. At this point you reached the end of the class and can walk outside to check if the current weather report was correct

23075 IoT6 Simplifying TCP/IP Applications with MPLAB® Harmony

55

MPLAB® Harmony TCP/IP Stack
TCP Module API Function List
Socket Management Functions

TCPIP_TCP_ServerOpen Opens a TCP socket as a server.

TCPIP_TCP_ClientOpen Opens a TCP socket as a client.

TCPIP_TCP_Close Disconnects an open socket and destroys the socket handle, releasing the associated resources.

TCPIP_TCP_Connect Connects a client socket.

TCPIP_TCP_Bind Binds a socket to a local address.

TCPIP_TCP_RemoteBind Binds a socket to a remote address.

TCPIP_TCP_IsConnected Determines if a socket has an established connection.

TCPIP_TCP_WasReset Self-clearing semaphore indicating socket reset.

TCPIP_TCP_Disconnect Disconnects an open socket.

TCPIP_TCP_Abort Aborts a connection.

TCPIP_TCP_OptionsGet Allows getting the options for a socket like: current RX/TX buffer size, etc.

TCPIP_TCP_OptionsSet Allows setting options to a socket like adjust RX/TX buffer size, etc.

TCPIP_TCP_SocketInfoGet Obtains information about a currently open socket.

TCPIP_TCP_SocketNetGet Gets the current network interface of an TCP socket.

TCPIP_TCP_SocketNetSet Sets the interface for an TCP socket

TCPIP_TCP_SignalHandlerDeregister Deregisters a previously registered TCP socket signal handler.

TCPIP_TCP_SignalHandlerRegister Registers a TCP socket signal handler.

TCPIP_TCP_Task Standard TCP/IP stack module task function.

Transmit Data Functions

TCPIP_TCP_Put Writes a single byte to a TCP socket.

TCPIP_TCP_PutIsReady Determines how much free space is available in the TCP TX buffer.

TCPIP_TCP_StringPut Writes a null-terminated string to a TCP socket.

TCPIP_TCP_ArrayPut Writes an array from a buffer to a TCP socket.

TCPIP_TCP_Flush Immediately transmits all pending TX data.

TCPIP_TCP_FifoTxFullGet Determines how many bytes are pending in the TCP TX FIFO.

TCPIP_TCP_FifoTxFreeGet Determines how many bytes are free and could be written in the TCP TX FIFO.

Receive Data Transfer Functions

TCPIP_TCP_ArrayFind Searches for a string in the TCP RX buffer.

TCPIP_TCP_Find Searches for a byte in the TCP RX buffer.

TCPIP_TCP_Get Retrieves a single byte to a TCP socket.

TCPIP_TCP_Peek Peaks at one byte in the TCP RX buffer/FIFO without removing it from the buffer.

TCPIP_TCP_Discard Discards any pending data in the RCP RX FIFO.

TCPIP_TCP_FifoRxFreeGet Determines how many bytes are free in the RX buffer/FIFO.

TCPIP_TCP_FifoSizeAdjust Adjusts the relative sizes of the RX and TX buffers.

TCPIP_TCP_FifoRxFullGet Determines how many bytes are pending in the RX buffer/FIFO.

TCPIP_TCP_GetIsReady Determines how many bytes can be read from the TCP RX buffer.

TCPIP_TCP_ArrayGet Reads an array of data bytes from a TCP socket's RX buffer/FIFO.

TCPIP_TCP_ArrayPeek Reads a specified number of data bytes from the TCP RX buffer/FIFO without removing them from
the buffer.

23075 IoT6 Simplifying TCP/IP Applications with MPLAB® Harmony

56

UDP Module API Function List
Socket Management Functions

TCPIP_UDP_ServerOpen Opens a UDP socket as a server.

TCPIP_UDP_ClientOpen Opens a UDP socket as a client.

TCPIP_UDP_IsOpened Determines if a socket was opened.

TCPIP_UDP_IsConnected Determines if a socket has an established connection.

TCPIP_UDP_Bind Bind a socket to a local address and port. This function is meant for client sockets. It assigns
a specific source address and port for a socket.

TCPIP_UDP_RemoteBind Bind a socket to a remote address This function is meant for server sockets.

TCPIP_UDP_Close Closes a UDP socket and frees the handle.

TCPIP_UDP_OptionsGet Allows getting the options for a socket such as current RX/TX buffer size, etc.

TCPIP_UDP_OptionsSet Allows setting options to a socket like adjust RX/TX buffer size, etc

TCPIP_UDP_SocketInfoGet Returns information about a selected UDP socket.

TCPIP_UDP_SocketNetGet Gets the network interface of an UDP socket

TCPIP_UDP_SocketNetSet Sets the network interface for an UDP socket

TCPIP_UDP_TxOffsetSet Moves the pointer within the TX buffer.

TCPIP_UDP_SourceIPAddressSet Sets the source IP address of a socket

TCPIP_UDP_BcastIPV4AddressSet Sets the broadcast IP address of a socket Allows an UDP socket to send broadcasts.

TCPIP_UDP_DestinationIPAddressSet Sets the destination IP address of a socket

TCPIP_UDP_DestinationPortSet Sets the destination port of a socket

TCPIP_UDP_Disconnect Disconnects a UDP socket and re-initializes it.

TCPIP_UDP_SignalHandlerDeregister Deregisters a previously registered UDP socket signal handler.

TCPIP_UDP_SignalHandlerRegister Registers a UDP socket signal handler.

TCPIP_UDP_Task Standard TCP/IP stack module task function.

Transmit Data Functions
TCPIP_UDP_PutIsReady Determines how many bytes can be written to the UDP socket.

TCPIP_UDP_TxPutIsReady Determines how many bytes can be written to the UDP socket.

TCPIP_UDP_ArrayPut Writes an array of bytes to the UDP socket.

TCPIP_UDP_StringPut Writes a null-terminated string to the UDP socket.

TCPIP_UDP_Put Writes a byte to the UDP socket.

TCPIP_UDP_TxCountGet Returns the amount of bytes written into the UDP socket.

TCPIP_UDP_Flush Transmits all pending data in a UDP socket.

Receive Data Transfer Functions

TCPIP_UDP_GetIsReady Determines how many bytes can be read from the UDP socket.

TCPIP_UDP_ArrayGet Reads an array of bytes from the UDP socket.

TCPIP_UDP_Get Reads a byte from the UDP socket.

TCPIP_UDP_RxOffsetSet Moves the read pointer within the socket RX buffer.

TCPIP_UDP_Discard Discards any remaining RX data from a UDP socket.

23075 IoT6 Simplifying TCP/IP Applications with MPLAB® Harmony

57

Harmony TCP/IP API Subset For all Lab’s
TCP Socket Management Functions
TCPIP_TCP_ArrayGet Function

This function reads an array of data bytes from a TCP socket's RX buffer/FIFO. The data is removed from the FIFO in the process.

Function Prototype

uint16_t TCPIP_TCP_ArrayGet(
 TCP_SOCKET hTCP,
 uint8_t* buffer,
 uint16_t len
);

Preconditions
TCP is initialized.

Parameters
Parameter Description
hTCP The socket from which data is to be read.
buffer Pointer to the array to store data that was read.
len Number of bytes to be read.

Returns
Type Description
uint16_t The number of bytes read from the socket. If less than len, the RX FIFO

buffer became empty or the socket is not connected.

TCPIP_TCP_ClientOpen Function

Provides a unified method for opening TCP client sockets. Sockets are created at the TCP module initialization, and can be

claimed with this function and freed using TCPIP_TCP_Abort or TCPIP_TCP_Close. If the remoteAddress != 0 (and the address

pointed by remoteAddress != 0) then the socket will immediately initiate a connection to the remote host.

Function Prototoype

TCP_SOCKET TCPIP_TCP_ClientOpen(
 IP_ADDRESS_TYPE addType,
 TCP_PORT remotePort,
 IP_MULTI_ADDRESS* remoteAddress
);

Preconditions
TCP is initialized.

22075 IoT6 Simplifying TCP/IP Applications with MPLAB® Harmony

58

Parameters
Parameter Description

addType The type of address being used. Valid values are: IP_ADDRESS_TYPE_IPV4 or

IP_ADDRESS_TYPE_IPV6

remotePort TCP port to connect to. The local port for client sockets will be automatically

picked by the TCP module.

remoteAddress The remote address to be used

Returns
Type Description

TCP_SOCKET Handle - Save this handle and use it when calling all other TCP APIs. If no

sockets of the specified type were available to be opened, the handle will

contain a value equal to INVALID_SOCKET.

TCPIP_TCP_Close Function

Graceful Option Set: If the graceful option is set for the socket (default), a TCPIP_TCP_Disconnect will be tried. If the linger option

is set (default) the TCPIP_TCP_Disconnect will try to send any queued TX data before issuing FIN. If the FIN send operation fails or

the socket is not connected the abort is generated.

Graceful Option Not Set: If the graceful option is not set, or the previous step could not send the FIN, a TCPIP_TCP_Abort is

called, sending a RST to the remote node. Communication is closed, the socket is no longer valid and the associated resources are

freed.

Function Prototype

void TCPIP_TCP_Close(
 TCP_SOCKET hTCP
);

Preconditions
TCP socket should have been opened with TCPIP_TCP_ServerOpen/TCPIP_TCP_ClientOpen.

hTCP - valid socket

Parameters
Parameter Description

hTCP Handle to the socket to disconnect and close.

Returns
Type Description

Void None

TCPIP_TCP_GetIsReady Function

Call this function to determine how many bytes can be read from the TCP RX buffer. If this function returns zero, the application

must return to the main stack loop before continuing in order to wait for more data to arrive.

23075 IoT6 Simplifying TCP/IP Applications with MPLAB® Harmony

59

Function Prototype

uint16_t TCPIP_TCP_GetIsReady(
 TCP_SOCKET hTCP
);

Preconditions
TCP is initialized.

Parameters
Parameter Description

hTCP The socket to check.

Returns
Type Description

uint16_t The number of bytes available to be read from the TCP RX buffer.

TCPIP_TCP_IsConnected Function

This function determines if a socket has an established connection to a remote node. Call this function after calling

TCPIP_TCP_ServerOpen()/TCPIP_TCP_ClientOpen() to determine when the connection is set up and ready for use.

Function Prototype

bool TCPIP_TCP_IsConnected(
 TCP_SOCKET hTCP
);

Preconditions
TCP is initialized.

Parameters
Parameter Description

hTCP The TCP socket to check.

Returns
Type Description

bool True: the socket is connected

False: the socket is disconnected

TCPIP_TCP_PutIsReady Function

Call this function to determine how many bytes can be written to the TCP TX buffer. If this function returns zero, the application

must return to the main stack loop before continuing in order to transmit more data.

Function Prototype

uint16_t TCPIP_TCP_PutIsReady(
 TCP_SOCKET hTCP
);

22075 IoT6 Simplifying TCP/IP Applications with MPLAB® Harmony

60

Preconditions
TCP is initialized.

Parameters
Parameter Description

hTCP The socket from which data is to be written.

Returns
Type Description
uint16_t The number of bytes available to be written in the TCP TX buffer.

TCPIP_TCP_StringPut Function

This function writes a null-terminated string to a TCP socket. The null-terminator is not copied to the socket.

 Function Prototype

const uint8_t* TCPIP_TCP_StringPut(
 TCP_SOCKET hTCP,
 const uint8_t* Data
);

Preconditions
TCP is initialized.

Parameters
Parameter Description

hTCP The socket from which data is to be written.

const uint8_t* Data

Returns
Type Description

const uint8_t* Pointer to the byte following the last byte written to the socket. If this

pointer does not dereference to a NULL byte, the buffer became full or

the socket is not connected.

TCPIP_TCP_WasReset Function

This function is a self-clearing semaphore indicating whether or not a socket has been disconnected since the previous call. This

function works for all possible disconnections: a call to TCPIP_TCP_Disconnect, a FIN from the remote node, or an

acknowledgment timeout caused by the loss of a network link. It also returns true after the first call to TCPIP_TCP_Initialize.

Applications should use this function to reset their state machines.

Function Prototype

bool TCPIP_TCP_WasReset(
 TCP_SOCKET hTCP
);

Preconditions
TCP is initialized.

23075 IoT6 Simplifying TCP/IP Applications with MPLAB® Harmony

61

Parameters
Parameter Description

hTCP The TCP socket to check.

Returns
Type Description

bool true: the socket was disconnected since the previous call

false: the socket remained connected since the previous call

UDP Socket Management Functions
TCPIP_UDP_ArrayGet Function

This function reads an array of bytes from the UDP socket, while adjusting the current read pointer and decrementing the

remaining bytes available. TCPIP_UDP_GetIsReady should be used before calling this function to get the number of the available

bytes in the socket.

Function Prototype

uint16_t TCPIP_UDP_ArrayGet(
 UDP_SOCKET hUDP,
 uint8_t * cData,
 uint16_t wDataLen
);

Preconditions
UDP socket should have been opened with TCPIP_UDP_ServerOpen/TCPIP_UDP_ClientOpen.

hUDP - valid socket

Parameters
Parameter Description

hUDP UDP Socket Handle

cData The buffer to receive the bytes being read. If NULL, the bytes are simply

discarded

wDataLen Number of bytes to be read from the socket.

Returns
Type Description

uint16_t The number of bytes successfully read from the UDP buffer. If this value is

less than wDataLen, then the buffer was emptied and no more data is

available.

TCPIP_UDP_Close Function

Closes a UDP socket and frees the handle. Call this function to release a socket and return it to the pool for use by future

communications.

22075 IoT6 Simplifying TCP/IP Applications with MPLAB® Harmony

62

Function Prototoype

void TCPIP_UDP_Close(
 UDP_SOCKET hUDP
);

Preconditions
UDP socket should have been opened with TCPIP_UDP_ServerOpen/TCPIP_UDP_ClientOpen.

hUDP - valid socket

Parameters
Parameter Description

hUDP UDP Socket Handle

Returns
Type Description

void None

TCPIP_UDP_GetIsReady Function

This function will return the number of bytes that are available in the specified UDP socket RX buffer. The UDP socket

queues incoming RX packets in an internal queue. If currently there is no RX packet processed (as a result of retrieving all

available bytes with TCPIP_UDP_ArrayGet, for example), this call will advance the RX packet to be processed to the next

queued packet. If a RX packet is currently processed, the call will return the number of bytes left to be read from this

packet.

Function Prototype

uint16_t TCPIP_UDP_GetIsReady(
 UDP_SOCKET hUDP
);

Preconditions
UDP socket should have been opened with TCPIP_UDP_ServerOpen/TCPIP_UDP_ClientOpen.

hUDP parameter is a valid socket

Parameters
Parameter Description

hUDP UDP Socket Handle

Returns
Type Description

uint16_t The number of bytes that can be read from the socket.

23075 IoT6 Simplifying TCP/IP Applications with MPLAB® Harmony

63

TCPIP_UDP_ServerOpen Function

Provides a unified method for opening UDP server sockets.

Function Prototype

UDP_SOCKET TCPIP_UDP_ServerOpen(
 IP_ADDRESS_TYPE addType,
 UDP_PORT localPort,
 IP_MULTI_ADDRESS* localAddress
);

Preconditions
UDP is initialized.

Parameters
Parameter Description
IP_ADDRESS_TYPE addType The type of address being used.

IP_ADDRESS_TYPE_IPV4 or IP_ADDRESS_TYPE_IPV6.
UDP_PORT localPort UDP port on which to listen for connections
IP_MULTI_ADDRESS* localAddress Local IP address to use. Can be 0 (NULL) if any incoming interface will do.

Returns
Type Description

UDP_SOCKET Handle - Save this handle and use it when calling all other UDP APIs. If no

sockets of the specified type were available to be opened, the handle will

contain a value equal to INVALID_SOCKET.

TCPIP_UDP_SocketInfoGet Function

This function will fill a user passed UDP_SOCKET_INFO structure with status of the selected socket

Function Prototype

bool TCPIP_UDP_SocketInfoGet(
 UDP_SOCKET hUDP,
 UDP_SOCKET_INFO* pInfo
);

Preconditions
UDP socket should have been opened with TCPIP_UDP_ServerOpen()/TCPIP_UDP_ClientOpen()().

hUDP - valid socket

pInfo - valid address of a UDP_SOCKET_INFO structure

Parameters
Parameter Description

hUDP UDP Socket Handle

pInfo Pointer to UDP_SOCKET_INFO to receive socket information

22075 IoT6 Simplifying TCP/IP Applications with MPLAB® Harmony

64

Returns
Type Description

bool true if call succeeded

false if no such socket or invalid pinfo.

UDP_SOCKET_INFO Structure

Holds information about a UDP Socket

Structure

typedef struct {
 IP_ADDRESS_TYPE addressType;
 IP_MULTI_ADDRESS remoteIPaddress;
 IP_MULTI_ADDRESS localIPaddress;
 IP_MULTI_ADDRESS sourceIPaddress;
 IP_MULTI_ADDRESS destIPaddress;
 UDP_PORT remotePort;
 UDP_PORT localPort;
 TCPIP_NET_HANDLE hNet;
} UDP_SOCKET_INFO;

Members
Type Member Name Description
IP_ADDRESS_TYPE addressType address type of the socket
IP_MULTI_ADDRESS remoteIPaddress current socket destination address
IP_MULTI_ADDRESS localIPaddress current socket source address
IP_MULTI_ADDRESS sourceIPaddress source address of the last packet
IP_MULTI_ADDRESS destIPaddress destination address of the last packet
UDP_PORT remotePort Port number associated with remote node
UDP_PORT localPort local port number
TCPIP_NET_HANDLE hNet associated interface

