
Amazon Kinesis Data Streams
Developer Guide

Amazon Kinesis Data Streams Developer Guide

Amazon Kinesis Data Streams: Developer Guide
Copyright © 2019 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any manner
that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other trademarks not
owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to, or sponsored by
Amazon.

Amazon Kinesis Data Streams Developer Guide

Table of Contents
What Is Amazon Kinesis Data Streams? 1

What Can I Do with Kinesis Data Streams? 1
Benefits of Using Kinesis Data Streams 2
Related Services 2
Key Concepts 2

High-level Architecture 2
Terminology 3

Data Streams 5
Determining the Initial Size of a Kinesis Data Stream 5
Creating a Stream 6
Updating a Stream 6

Producers ... 7
Consumers 8

... 8
Limits ... 8

API limits ... 8
Increasing Limits ... 9

Getting Started 10
Setting Up 10

Sign Up for AWS 10
Download Libraries and Tools ... 10
Configure Your Development Environment 11

Tutorial: Visualizing Web Traffic 11
Kinesis Data Streams Data Visualization Sample Application 11
Prerequisites ... 12
Step 1: Start the Sample Application 12
Step 2: View the Components of the Sample Application 13
Step 3: Delete Sample Application 16
Step 4: Next Steps 16

Tutorial: Getting Started Using the CLI ... 17
Install and Configure the AWS CLI ... 17
Perform Basic Stream Operations 19

Tutorial: Analyzing Real-Time Stock Data 23
Prerequisites ... 24
Step 1: Create a Data Stream 25
Step 2: Create an IAM Policy and User ... 26
Step 3: Download and Build the Implementation Code 29
Step 4: Implement the Producer 30
Step 5: Implement the Consumer 32
Step 6: (Optional) Extending the Consumer 35
Step 7: Finishing Up 36

Creating and Managing Streams 38
Creating a Stream 38

Build the Kinesis Data Streams Client 38
Create the Stream 39

Listing Streams 40
Listing Shards 41
Retrieving Shards from a Stream 42
Deleting a Stream 42
Resharding a Stream 42

Strategies for Resharding 43
Splitting a Shard 44
Merging Two Shards 45
After Resharding 46

iii

Amazon Kinesis Data Streams Developer Guide

Changing the Data Retention Period 47
Tagging Your Streams 48

Tag Basics ... 48
Tracking Costs Using Tagging 49
Tag Restrictions 49
Tagging Streams Using the Kinesis Data Streams Console 49
Tagging Streams Using the AWS CLI ... 50
Tagging Streams Using the Kinesis Data Streams API ... 50

Monitoring Streams 51
Monitoring the Service with CloudWatch 51
Monitoring the Agent with CloudWatch 60
Logging Amazon Kinesis Data Streams API Calls with AWS CloudTrail .. 61
Monitoring the KCL with CloudWatch 65
Monitoring the KPL with CloudWatch 73

Controlling Access 77
Policy Syntax 78
Actions for Kinesis Data Streams 78
Amazon Resource Names (ARNs) for Kinesis Data Streams 79
Example Policies for Kinesis Data Streams 79

Using Server-Side Encryption 80
What Is Server-Side Encryption for Kinesis Data Streams? 81
Costs, Regions, and Performance Considerations 81
How Do I Get Started with Server-Side Encryption? 82
Creating and Using User-Generated KMS Master Keys 83
Permissions to Use User-Generated KMS Master Keys 84
Verifying and Troubleshooting KMS Key Permissions 85

Using Interface VPC Endpoints ... 85
Interface VPC endpoints for Kinesis Data Streams 85
Using interface VPC endpoints for Kinesis Data Streams 85
Availability ... 86

Managing Streams Using the Console 86
Writing Data to Streams 88

Using the KPL 88
Role of the KPL 89
Advantages of Using the KPL 89
When Not to Use the KPL 90
Installing the KPL 90
Transitioning to Amazon Trust Services (ATS) Certificates for the Kinesis Producer Library 90
KPL Supported Platforms 90
KPL Key Concepts 91
Integrating the KPL with Producer Code 92
Writing to your Kinesis data stream 94
Configuring the KPL 95
Consumer De-aggregation 96
Using the KPL with Kinesis Data Firehose 98

Using the API ... 98
Adding Data to a Stream 98

Using the Agent 102
Prerequisites ... 103
Download and Install the Agent 103
Configure and Start the Agent 104
Agent Configuration Settings 104
Monitor Multiple File Directories and Write to Multiple Streams 107
Use the Agent to Pre-process Data 107
Agent CLI Commands 110

Troubleshooting 111
Producer Application is Writing at a Slower Rate Than Expected 111

iv

Amazon Kinesis Data Streams Developer Guide

Unauthorized KMS master key permission error ... 112
Advanced Topics ... 112

Retries and Rate Limiting 112
Considerations When Using KPL Aggregation 113

Reading Data from Streams 115
Using Consumers 116

Using the Kinesis Client Library 1.x ... 116
Using the Kinesis Client Library 2.0 130
Using the API ... 134

Using Consumers with Enhanced Fan-Out 138
Using the Kinesis Client Library 2.0 139
Using the API ... 143
Using the AWS Management Console 144

Migrating from Kinesis Client Library 1.x to 2.x ... 145
Migrating the Record Processor ... 145
Migrating the Record Processor Factory 149
Migrating the Worker 149
Configuring the Amazon Kinesis Client ... 150
Idle Time Removal ... 153
Client Configuration Removals ... 153

Troubleshooting 154
Some Kinesis Data Streams Records are Skipped When Using the Kinesis Client Library 154
Records Belonging to the Same Shard are Processed by Different Record Processors at the
Same Time 154
Consumer Application is Reading at a Slower Rate Than Expected 155
GetRecords Returns Empty Records Array Even When There is Data in the Stream 155
Shard Iterator Expires Unexpectedly 156
Consumer Record Processing Falling Behind 156
Unauthorized KMS master key permission error ... 157

Advanced Topics ... 157
Tracking State 157
Low-Latency Processing 158
Using AWS Lambda with the Kinesis Producer Library 159
Resharding, Scaling, and Parallel Processing 159
Handling Duplicate Records 160
Recovering from Failures 161
Handling Startup, Shutdown, and Throttling 162

Document History 164
AWS Glossary 166

v

Amazon Kinesis Data Streams Developer Guide
What Can I Do with Kinesis Data Streams?

What Is Amazon Kinesis Data
Streams?

You can use Amazon Kinesis Data Streams to collect and process large streams of data records in real
time. You can create data-processing applications, known as Kinesis Data Streams applications. A typical
Kinesis Data Streams application reads data from a data stream as data records. These applications can
use the Kinesis Client Library, and they can run on Amazon EC2 instances. You can send the processed
records to dashboards, use them to generate alerts, dynamically change pricing and advertising
strategies, or send data to a variety of other AWS services. For information about Kinesis Data Streams
features and pricing, see Amazon Kinesis Data Streams.

Kinesis Data Streams is part of the Kinesis streaming data platform, along with Kinesis Data Firehose,
Kinesis Video Streams, and Kinesis Data Analytics.

For more information about AWS big data solutions, see Big Data on AWS. For more information about
AWS streaming data solutions, see What is Streaming Data?.

Topics
• What Can I Do with Kinesis Data Streams? (p. 1)
• Benefits of Using Kinesis Data Streams (p. 2)
• Related Services (p. 2)
• Kinesis Data Streams Key Concepts (p. 2)
• Creating and Updating Data Streams (p. 5)
• Kinesis Data Streams Producers (p. 7)
• Kinesis Data Streams Consumers (p. 8)
• Kinesis Data Streams Limits (p. 8)

What Can I Do with Kinesis Data Streams?
You can use Kinesis Data Streams for rapid and continuous data intake and aggregation. The type of
data used can include IT infrastructure log data, application logs, social media, market data feeds, and
web clickstream data. Because the response time for the data intake and processing is in real time, the
processing is typically lightweight.

The following are typical scenarios for using Kinesis Data Streams:

Accelerated log and data feed intake and processing

You can have producers push data directly into a stream. For example, push system and application
logs and they are available for processing in seconds. This prevents the log data from being lost if
the front end or application server fails. Kinesis Data Streams provides accelerated data feed intake
because you don't batch the data on the servers before you submit it for intake.

Real-time metrics and reporting

You can use data collected into Kinesis Data Streams for simple data analysis and reporting in real
time. For example, your data-processing application can work on metrics and reporting for system
and application logs as the data is streaming in, rather than wait to receive batches of data.

1

https://aws.amazon.com/streaming-data/
https://aws.amazon.com/kinesis/streams/
https://docs.aws.amazon.com/firehose/latest/dev/
https://docs.aws.amazon.com/kinesisvideostreams/latest/dg/
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/
https://aws.amazon.com/big-data/
https://aws.amazon.com/streaming-data/

Amazon Kinesis Data Streams Developer Guide
Benefits of Using Kinesis Data Streams

Real-time data analytics

This combines the power of parallel processing with the value of real-time data. For example,
process website clickstreams in real time, and then analyze site usability engagement using multiple
different Kinesis Data Streams applications running in parallel.

Complex stream processing

You can create Directed Acyclic Graphs (DAGs) of Kinesis Data Streams applications and data
streams. This typically involves putting data from multiple Kinesis Data Streams applications into
another stream for downstream processing by a different Kinesis Data Streams application.

Benefits of Using Kinesis Data Streams
Although you can use Kinesis Data Streams to solve a variety of streaming data problems, a common use
is the real-time aggregation of data followed by loading the aggregate data into a data warehouse or
map-reduce cluster.

Data is put into Kinesis data streams, which ensures durability and elasticity. The delay between the time
a record is put into the stream and the time it can be retrieved (put-to-get delay) is typically less than 1
second. In other words, a Kinesis Data Streams application can start consuming the data from the stream
almost immediately after the data is added. The managed service aspect of Kinesis Data Streams relieves
you of the operational burden of creating and running a data intake pipeline. You can create streaming
map-reduce–type applications. The elasticity of Kinesis Data Streams enables you to scale the stream up
or down, so that you never lose data records before they expire.

Multiple Kinesis Data Streams applications can consume data from a stream, so that multiple actions, like
archiving and processing, can take place concurrently and independently. For example, two applications
can read data from the same stream. The first application calculates running aggregates and updates an
Amazon DynamoDB table, and the second application compresses and archives data to a data store like
Amazon Simple Storage Service (Amazon S3). The DynamoDB table with running aggregates is then read
by a dashboard for up-to-the-minute reports.

The Kinesis Client Library enables fault-tolerant consumption of data from streams and provides scaling
support for Kinesis Data Streams applications.

Related Services
For information about using Amazon EMR clusters to read and process Kinesis data streams directly, see
Kinesis Connector.

Kinesis Data Streams Key Concepts
As you get started with Amazon Kinesis Data Streams, you can benefit from understanding its
architecture and terminology.

Kinesis Data Streams High-Level Architecture
The following diagram illustrates the high-level architecture of Kinesis Data Streams. The producers
continually push data to Kinesis Data Streams, and the consumers process the data in real time.
Consumers (such as a custom application running on Amazon EC2 or an Amazon Kinesis Data Firehose

2

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-kinesis.html

Amazon Kinesis Data Streams Developer Guide
Terminology

delivery stream) can store their results using an AWS service such as Amazon DynamoDB, Amazon
Redshift, or Amazon S3.

Kinesis Data Streams Terminology

Kinesis Data Stream
A Kinesis data stream is a set of shards (p. 4). Each shard has a sequence of data records. Each data
record has a sequence number (p. 4) that is assigned by Kinesis Data Streams.

Data Record
A data record is the unit of data stored in a Kinesis data stream (p. 3). Data records are composed of a
sequence number (p. 4), a partition key (p. 4), and a data blob, which is an immutable sequence
of bytes. Kinesis Data Streams does not inspect, interpret, or change the data in the blob in any way. A
data blob can be up to 1 MB.

Retention Period
The retention period is the length of time that data records are accessible after they are added
to the stream. A stream’s retention period is set to a default of 24 hours after creation. You can
increase the retention period up to 168 hours (7 days) using the IncreaseStreamRetentionPeriod
operation, and decrease the retention period down to a minimum of 24 hours using the
DecreaseStreamRetentionPeriod operation. Additional charges apply for streams with a retention period
set to more than 24 hours. For more information, see Amazon Kinesis Data Streams Pricing.

Producer
Producers put records into Amazon Kinesis Data Streams. For example, a web server sending log data to a
stream is a producer.

Consumer
Consumers get records from Amazon Kinesis Data Streams and process them. These consumers are
known as Amazon Kinesis Data Streams Application (p. 4).

3

https://docs.aws.amazon.com/kinesis/latest/APIReference/API_IncreaseStreamRetentionPeriod.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_DecreaseStreamRetentionPeriod.html
https://aws.amazon.com/kinesis/pricing/

Amazon Kinesis Data Streams Developer Guide
Terminology

Amazon Kinesis Data Streams Application
An Amazon Kinesis Data Streams application is a consumer of a stream that commonly runs on a fleet of
EC2 instances.

There are two types of consumers that you can develop: shared fan-out consumers and enhanced fan-
out consumers. To learn about the differences between them, and to see how you can create each type
of consumer, see Reading Data from Amazon Kinesis Data Streams (p. 115).

The output of a Kinesis Data Streams application can be input for another stream, enabling you to create
complex topologies that process data in real time. An application can also send data to a variety of other
AWS services. There can be multiple applications for one stream, and each application can consume data
from the stream independently and concurrently.

Shard
A shard is a uniquely identified sequence of data records in a stream. A stream is composed of one or
more shards, each of which provides a fixed unit of capacity. Each shard can support up to 5 transactions
per second for reads, up to a maximum total data read rate of 2 MB per second and up to 1,000 records
per second for writes, up to a maximum total data write rate of 1 MB per second (including partition
keys). The data capacity of your stream is a function of the number of shards that you specify for the
stream. The total capacity of the stream is the sum of the capacities of its shards.

If your data rate increases, you can increase or decrease the number of shards allocated to your stream.

Partition Key
A partition key is used to group data by shard within a stream. Kinesis Data Streams segregates the data
records belonging to a stream into multiple shards. It uses the partition key that is associated with each
data record to determine which shard a given data record belongs to. Partition keys are Unicode strings
with a maximum length limit of 256 bytes. An MD5 hash function is used to map partition keys to 128-
bit integer values and to map associated data records to shards. When an application puts data into a
stream, it must specify a partition key.

Sequence Number
Each data record has a sequence number that is unique within its shard. Kinesis Data Streams assigns the
sequence number after you write to the stream with client.putRecords or client.putRecord.
Sequence numbers for the same partition key generally increase over time. The longer the time period
between write requests, the larger the sequence numbers become.

Note
Sequence numbers cannot be used as indexes to sets of data within the same stream. To
logically separate sets of data, use partition keys or create a separate stream for each dataset.

Kinesis Client Library
The Kinesis Client Library is compiled into your application to enable fault-tolerant consumption of
data from the stream. The Kinesis Client Library ensures that for every shard there is a record processor
running and processing that shard. The library also simplifies reading data from the stream. The Kinesis
Client Library uses an Amazon DynamoDB table to store control data. It creates one table per application
that is processing data.

There are two major versions of the Kinesis Client Library. Which one you use depends on the type
of consumer you want to create. For more information, see Reading Data from Amazon Kinesis Data
Streams (p. 115).

4

Amazon Kinesis Data Streams Developer Guide
Data Streams

Application Name
The name of an Amazon Kinesis Data Streams application identifies the application. Each of your
applications must have a unique name that is scoped to the AWS account and Region used by the
application. This name is used as a name for the control table in Amazon DynamoDB and the namespace
for Amazon CloudWatch metrics.

Server-Side Encryption
Amazon Kinesis Data Streams can automatically encrypt sensitive data as a producer enters it into a
stream. Kinesis Data Streams uses AWS KMS master keys for encryption. For more information, see Using
Server-Side Encryption (p. 80).

Note
To read from or write to an encrypted stream, producer and consumer applications must have
permission to access the master key. For information about granting permissions to producer
and consumer applications, see the section called “Permissions to Use User-Generated KMS
Master Keys” (p. 84).

Note
Using server-side encryption incurs AWS Key Management Service (AWS KMS) costs. For more
information, see AWS Key Management Service Pricing.

Creating and Updating Data Streams
Amazon Kinesis Data Streams ingests a large amount of data in real time, durably stores the data,
and makes the data available for consumption. The unit of data stored by Kinesis Data Streams is a
data record. A data stream represents a group of data records. The data records in a data stream are
distributed into shards.

A shard has a sequence of data records in a stream. When you create a stream, you specify the number
of shards for the stream. The total capacity of a stream is the sum of the capacities of its shards. You
can increase or decrease the number of shards in a stream as needed. However, you are charged on a
per-shard basis. For information about the capacities and limits of a shard, see Kinesis Data Streams
Limits (p. 8).

A producer (p. 7) puts data records into shards and a consumer (p. 8) gets data records from
shards.

Determining the Initial Size of a Kinesis Data Stream
Before you create a stream, you need to determine an initial size for the stream. After you create the
stream, you can dynamically scale your shard capacity up or down using the AWS Management Console
or the UpdateShardCount API. You can make updates while there is a Kinesis Data Streams application
consuming data from the stream.

To determine the initial size of a stream, you need the following input values:

• The average size of the data record written to the stream in kibibytes (KiB), rounded up to the nearest
1 KiB, the data size (average_data_size_in_KiB).

• The number of data records written to and read from the stream per second (records_per_second).
• The number of Kinesis Data Streams applications that consume data concurrently and independently

from the stream, that is, the consumers (number_of_consumers).
• The incoming write bandwidth in KiB (incoming_write_bandwidth_in_KiB), which is equal to the
average_data_size_in_KiB multiplied by the records_per_second.

5

https://docs.aws.amazon.com/kms/latest/developerguide/
http://aws.amazon.com/kms/pricing
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_UpdateShardCount.html

Amazon Kinesis Data Streams Developer Guide
Creating a Stream

• The outgoing read bandwidth in KiB (outgoing_read_bandwidth_in_KiB), which is equal to the
incoming_write_bandwidth_in_KiB multiplied by the number_of_consumers.

You can calculate the initial number of shards (number_of_shards) that your stream needs by using
the input values in the following formula:

number_of_shards = max(incoming_write_bandwidth_in_KiB/1024,
 outgoing_read_bandwidth_in_KiB/2048)

Creating a Stream
You can create a stream using the Kinesis Data Streams console, the Kinesis Data Streams API, or the
AWS Command Line Interface (AWS CLI).

To create a data stream using the console

1. Sign in to the AWS Management Console and open the Kinesis console at https://
console.aws.amazon.com/kinesis.

2. In the navigation bar, expand the Region selector and choose a Region.
3. Choose Create data stream.
4. On the Create Kinesis stream page, enter a name for your stream and the number of shards you

need, and then click Create Kinesis stream.

On the Kinesis streams page, your stream's Status is Creating while the stream is being created.
When the stream is ready to use, the Status changes to Active.

5. Choose the name of your stream. The Stream Details page displays a summary of your stream
configuration, along with monitoring information.

To create a stream using the Kinesis Data Streams API

• For information about creating a stream using the Kinesis Data Streams API, see Creating a
Stream (p. 38).

To create a stream using the AWS CLI

• For information about creating a stream using the AWS CLI, see the create-stream command.

Updating a Stream
You can update the details of a stream using the Kinesis Data Streams console, the Kinesis Data Streams
API, or the AWS CLI.

Note
You can enable server-side encryption for existing streams, or for streams that you have recently
created.

To update a data stream using the console

1. Open the Amazon Kinesis console at https://console.aws.amazon.com/kinesis/.
2. In the navigation bar, expand the Region selector and choose a Region.
3. Choose the name of your stream in the list. The Stream Details page displays a summary of your

stream configuration and monitoring information.

6

https://console.aws.amazon.com/kinesis
https://console.aws.amazon.com/kinesis
https://docs.aws.amazon.com/cli/latest/reference/kinesis/create-stream.html
https://console.aws.amazon.com/kinesis/

Amazon Kinesis Data Streams Developer Guide
Producers

4. To edit the number of shards, choose Edit in the Shards section, and then enter a new shard count.

5. To enable server-side encryption of data records, choose Edit in the Server-side encryption section.
Choose a KMS key to use as the master key for encryption, or use the default master key, aws/
kinesis, managed by Kinesis. If you enable encryption for a stream and use your own AWS KMS
master key, ensure that your producer and consumer applications have access to the AWS KMS
master key that you used. To assign permissions to an application to access a user-generated AWS
KMS key, see the section called “Permissions to Use User-Generated KMS Master Keys” (p. 84).

6. To edit the data retention period, choose Edit in the Data retention period section, and then enter a
new data retention period.

7. If you have enabled custom metrics on your account, choose Edit in the Shard level metrics section,
and then specify metrics for your stream. For more information, see the section called “Monitoring
the Service with CloudWatch” (p. 51).

Updating a Stream Using the API
To update stream details using the API, see the following methods:

• AddTagsToStream

• DecreaseStreamRetentionPeriod

• DisableEnhancedMonitoring

• EnableEnhancedMonitoring

• IncreaseStreamRetentionPeriod

• RemoveTagsFromStream

• StartStreamEncryption

• StopStreamEncryption

• UpdateShardCount

Updating a Stream Using the AWS CLI
For information about updating a stream using the AWS CLI, see the Kinesis CLI reference.

Kinesis Data Streams Producers
A producer puts data records into Amazon Kinesis data streams. For example, a web server sending log
data to a Kinesis data stream is a producer. A consumer (p. 8) processes the data records from a
stream.

Important
Kinesis Data Streams supports changes to the data record retention period of your data stream.
For more information, see Changing the Data Retention Period (p. 47).

To put data into the stream, you must specify the name of the stream, a partition key, and the data blob
to be added to the stream. The partition key is used to determine which shard in the stream the data
record is added to.

All the data in the shard is sent to the same worker that is processing the shard. Which partition key you
use depends on your application logic. The number of partition keys should typically be much greater
than the number of shards. This is because the partition key is used to determine how to map a data
record to a particular shard. If you have enough partition keys, the data can be evenly distributed across
the shards in a stream.

7

https://docs.aws.amazon.com/kinesis/latest/APIReference/API_AddTagsToStream.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_DecreaseStreamRetentionPeriod.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_DisableEnhancedMonitoring.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_EnableEnhancedMonitoring.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_IncreaseStreamRetentionPeriod.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_RemoveTagsFromStream.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_StartStreamEncryption.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_StopStreamEncryption.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_UpdateShardCount.html
https://docs.aws.amazon.com/cli/latest/reference/kinesis/index.html

Amazon Kinesis Data Streams Developer Guide
Consumers

For more information, see Adding Data to a Stream (p. 98) (includes Java example code), the
PutRecords and PutRecord operations in the Kinesis Data Streams API, or the put-record command.

Kinesis Data Streams Consumers
A consumer, known as an Amazon Kinesis Data Streams application, is an application that you build to
read and process data records from Kinesis data streams.

If you want to send stream records directly to services such as Amazon Simple Storage Service (Amazon
S3), Amazon Redshift, Amazon Elasticsearch Service (Amazon ES), or Splunk, you can use a Kinesis
Data Firehose delivery stream instead of creating a consumer application. For more information, see
Creating an Amazon Kinesis Firehose Delivery Stream in the Kinesis Data Firehose Developer Guide.
However, if you need to process data records in a custom way, see Reading Data from Amazon Kinesis
Data Streams (p. 115) for guidance on how to build a consumer.

When you build a consumer, you can deploy it to an Amazon EC2 instance by adding to one of your
Amazon Machine Images (AMIs). You can scale the consumer by running it on multiple Amazon EC2
instances under an Auto Scaling group. Using an Auto Scaling group helps automatically start new
instances if there is an EC2 instance failure. It can also elastically scale the number of instances as the
load on the application changes over time. Auto Scaling groups ensure that a certain number of EC2
instances are always running. To trigger scaling events in the Auto Scaling group, you can specify metrics
such as CPU and memory utilization to scale up or down the number of EC2 instances processing data
from the stream. For more information, see the Amazon EC2 Auto Scaling User Guide.

Kinesis Data Streams Limits
Amazon Kinesis Data Streams has the following stream and shard limits.

• There is no upper limit on the number of shards you can have in a stream or account. It is common for
a workload to have thousands of shards in a single stream.

• There is no upper limit on the number of streams you can have in an account.
• A single shard can ingest up to 1 MiB of data per second (including partition keys) or 1,000 records per

second for writes. Similarly, if you scale your stream to 5,000 shards, the stream can ingest up to 5 GiB
per second or 5 million records per second. If you need more ingest capacity, you can easily scale up
the number of shards in the stream using the AWS Management Console or the UpdateShardCount
API.

• The default shard limit is 500 shards for the following AWS Regions: US East (N. Virginia), US West
(Oregon), and EU (Ireland). For all other Regions, the default shard limit is 200 shards.

• The maximum size of the data payload of a record before base64-encoding is up to 1 MiB.
• GetRecords can retrieve up to 10 MiB of data per call from a single shard, and up to 10,000 records per

call. Each call to GetRecords is counted as one read transaction.
• Each shard can support up to five read transactions per second. Each read transaction can provide up

to 10,000 records with an upper limit of 10 MiB per transaction.
• Each shard can support up to a maximum total data read rate of 2 MiB per second via GetRecords.

If a call to GetRecords returns 10 MiB, subsequent calls made within the next 5 seconds throw an
exception.

API limits
Like most AWS APIs, Kinesis Data Streams API operations are rate-limited. For information about API call
rate limits, see the Amazon Kinesis API Reference. If you encounter API throttling, we encourage you to
request a limit increase.

8

https://docs.aws.amazon.com/kinesis/latest/APIReference/API_PutRecords.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_PutRecord.html
https://docs.aws.amazon.com/cli/latest/reference/kinesis/put-record.html
https://docs.aws.amazon.com/firehose/latest/dev/basic-create.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_UpdateShardCount.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_GetRecords.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_GetRecords.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/

Amazon Kinesis Data Streams Developer Guide
Increasing Limits

Increasing Limits
To increase your shard limit or API call rate limit

1. Sign in to the AWS Management Console at https://console.aws.amazon.com/.
2. Use the Kinesis Data Streams limits form to request a limit increase.

9

https://console.aws.amazon.com/
https://console.aws.amazon.com/support/v1#/case/create%3FissueType=service-limit-increase%26limitType=service-code-kinesis

Amazon Kinesis Data Streams Developer Guide
Setting Up

Getting Started Using Amazon
Kinesis Data Streams

This documentation helps you get started using Amazon Kinesis Data Streams. If you are new to Kinesis
Data Streams, start by becoming familiar with the concepts and terminology presented in What Is
Amazon Kinesis Data Streams? (p. 1).

Topics
• Setting Up for Amazon Kinesis Data Streams (p. 10)
• Tutorial: Visualizing Web Traffic Using Amazon Kinesis Data Streams (p. 11)
• Tutorial: Getting Started With Amazon Kinesis Data Streams Using AWS CLI (p. 17)
• Tutorial: Analyzing Real-Time Stock Data Using Kinesis Data Streams (p. 23)

Setting Up for Amazon Kinesis Data Streams
Before you use Amazon Kinesis Data Streams for the first time, complete the following tasks.

Tasks
• Sign Up for AWS (p. 10)
• Download Libraries and Tools (p. 10)
• Configure Your Development Environment (p. 11)

Sign Up for AWS
When you sign up for Amazon Web Services (AWS), your AWS account is automatically signed up for all
services in AWS, including Kinesis Data Streams. You are charged only for the services that you use.

If you have an AWS account already, skip to the next task. If you don't have an AWS account, use the
following procedure to create one.

To sign up for an AWS account

1. Open https://aws.amazon.com/, and then choose Create an AWS Account.

Note
If you previously signed in to the AWS Management Console using AWS account root user
credentials, choose Sign in to a different account. If you previously signed in to the console
using IAM credentials, choose Sign-in using root account credentials. Then choose Create
a new AWS account.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code using
the phone keypad.

Download Libraries and Tools
The following libraries and tools will help you work with Kinesis Data Streams:

10

https://aws.amazon.com/

Amazon Kinesis Data Streams Developer Guide
Configure Your Development Environment

• The Amazon Kinesis API Reference is the basic set of operations that Kinesis Data Streams supports.
For more information about performing basic operations using Java code, see the following:

• Developing Producers Using the Amazon Kinesis Data Streams API with the AWS SDK for
Java (p. 98)

• Developing Consumers Using the Kinesis Data Streams API with the AWS SDK for Java (p. 134)

• Creating and Managing Streams (p. 38)

• The AWS SDKs for Go, Java, JavaScript, .NET, Node.js, PHP, Python, and Ruby include Kinesis Data
Streams support and samples. If your version of the AWS SDK for Java does not include samples for
Kinesis Data Streams, you can also download them from GitHub.

• The Kinesis Client Library (KCL) provides an easy-to-use programming model for processing data. The
KCL can help you get started quickly with Kinesis Data Streams in Java, Node.js, .NET, Python, and
Ruby. For more information see Reading Data from Streams (p. 115).

• The AWS Command Line Interface supports Kinesis Data Streams. The AWS CLI enables you to control
multiple AWS services from the command line and automate them through scripts.

Configure Your Development Environment
To use the KCL, ensure that your Java development environment meets the following requirements:

• Java 1.7 (Java SE 7 JDK) or later. You can download the latest Java software from Java SE Downloads
on the Oracle website.

• Apache Commons package (Code, HTTP Client, and Logging)

• Jackson JSON processor

Note that the AWS SDK for Java includes Apache Commons and Jackson in the third-party folder.
However, the SDK for Java works with Java 1.6, while the Kinesis Client Library requires Java 1.7.

Tutorial: Visualizing Web Traffic Using Amazon
Kinesis Data Streams

This tutorial helps you get started using Amazon Kinesis Data Streams by providing an introduction
to key Kinesis Data Streams constructs; specifically streams (p. 5), data producers (p. 7), and data
consumers (p. 8). The tutorial uses a sample application based upon a common use case of real-time data
analytics, as introduced in What Is Amazon Kinesis Data Streams? (p. 1).

The web application for this sample uses a simple JavaScript application to poll the DynamoDB table
used to store the results of the Top-N analysis over a slide window. The application takes this data and
creates a visualization of the results.

Kinesis Data Streams Data Visualization Sample
Application
The data visualization sample application for this tutorial demonstrates how to use Kinesis Data Streams
for real-time data ingestion and analysis. The sample application creates a data producer that puts
simulated visitor counts from various URLs into a Kinesis data stream. The stream durably stores these
data records in the order they are received. The data consumer gets these records from the stream, and
then calculates how many visitors originated from a particular URL. Finally, a simple web application
polls the results in real time to provide a visualization of the calculations.

11

https://docs.aws.amazon.com/kinesis/latest/APIReference/
https://docs.aws.amazon.com/sdk-for-go/api/service/kinesis/
https://aws.amazon.com/developers/getting-started/java/
https://aws.amazon.com/sdkforbrowser/
https://aws.amazon.com/developers/getting-started/net/
https://aws.amazon.com/developers/getting-started/nodejs/
https://aws.amazon.com/developers/getting-started/php/
https://github.com/boto/boto
https://aws.amazon.com/developers/getting-started/ruby/
https://github.com/aws/aws-sdk-java/tree/master/src/samples
https://docs.aws.amazon.com/cli/latest/userguide/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://aws.amazon.com/sdkforjava/

Amazon Kinesis Data Streams Developer Guide
Prerequisites

The sample application demonstrates the common stream processing use-case of performing a sliding
window analysis over a 10-second period. The data displayed in the above visualization reflects the
results of the sliding window analysis of the stream as a continuously updated graph. In addition, the
data consumer performs Top-K analysis over the data stream to compute the top three referrers by
count, which is displayed in the table immediately below the graph and updated every two seconds.

To get you started quickly, the sample application uses AWS CloudFormation. AWS CloudFormation
allows you to create templates to describe the AWS resources and any associated dependencies or
runtime parameters required to run your application. The sample application uses a template to create
all the necessary resources quickly, including producer and consumer applications running on an Amazon
EC2 instance and a table in Amazon DynamoDB to store the aggregate record counts.

Note
After the sample application starts, it incurs nominal charges for Kinesis Data Streams usage.
Where possible, the sample application uses resources that are eligible for the AWS Free Tier.
When you are finished with this tutorial, delete your AWS resources to stop incurring charges.
For more information, see Step 3: Delete Sample Application (p. 16).

Prerequisites
This tutorial helps you set up, run, and view the results of the Kinesis Data Streams data visualization
sample application. To get started with the sample application, you first need to do the following:

• Set up a computer with a working Internet connection.

• Sign up for an AWS account.

• Additionally, read through the introductory sections to gain a high-level understanding of
streams (p. 5), data producers (p. 7), and data consumers (p. 8).

Step 1: Start the Sample Application
Start the sample application using a AWS CloudFormation template provided by AWS. The sample
application has a stream writer that randomly generates records and sends them to an Kinesis data
stream, a data consumer that counts the number of HTTPS requests to a resource, and a web application
that displays the outputs of the stream processing data as a continuously updated graph.

To start the application

1. Open the AWS CloudFormation template for this tutorial.

2. On the Select Template page, the URL for the template is provided. Choose Next.

3. On the Specify Details page, note that the default instance type is t2.micro. However, T2
instances require a VPC. If your AWS account does not have a default VPC in your region, you must
change InstanceType another instance type, such as m3.medium. Choose Next.

4. On the Options page, you can optionally type a tag key and tag value. This tag will be added to the
resources created by the template, such as the EC2 instance. Choose Next.

5. On the Review page, select I acknowledge that this template might cause AWS CloudFormation
to create IAM resources, and then choose Create.

Initially, you should see a stack named KinesisDataVisSample with the status CREATE_IN_PROGRESS.
The stack can take several minutes to create. When the status is CREATE_COMPLETE, continue to the
next step. If the status does not update, refresh the page.

12

https://console.aws.amazon.com/cloudformation/
https://aws.amazon.com/free
https://console.aws.amazon.com/cloudformation/home?region=us-east-1#/stacks/new?stackName=KinesisDataVisSampleApp&templateURL=https:%2F%2Fs3.amazonaws.com%2Fkinesis-demo-bucket%2Famazon-kinesis-data-visualization-sample%2Fkinesis-data-vis-sample-app.template

Amazon Kinesis Data Streams Developer Guide
Step 2: View the Components of the Sample Application

Step 2: View the Components of the Sample
Application
Components

• Kinesis Data Stream (p. 13)

• Data Producer (p. 14)

• Data Consumer (p. 15)

Kinesis Data Stream

A stream (p. 5) has the ability to ingest data in real-time from a large number of producers, durably store
the data, and provide the data to multiple consumers. A stream represents an ordered sequence of data
records. When you create a stream, you must specify a stream name and a shard count. A stream consists
of one or more shards; each shard is a group of data records.

AWS CloudFormation automatically creates the stream for the sample application. This section of the
AWS CloudFormation template shows the parameters used in the CreateStream operation.

To view the stack details

1. Select the KinesisDataVisSample stack.

2. On the Outputs tab, choose the link in URL. The form of the URL should be similar to the following:
http://ec2-xx-xx-xx-xx.compute-1.amazonaws.com.

3. It takes about 10 minutes for the application stack to be created and for meaningful data to show
up in the data analysis graph. The real-time data analysis graph appears on a separate page, titled
Kinesis Data Streams Data Visualization Sample. It displays the number of requests sent by the
referring URL over a 10 second span, and the chart is updated every 1 second. The span of the graph
is the last 2 minutes.

13

https://github.com/awslabs/amazon-kinesis-data-visualization-sample/blob/master/src/main/static-content/cloudformation/kinesis-data-vis-sample-app.template#L74-80
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_CreateStream.html

Amazon Kinesis Data Streams Developer Guide
Step 2: View the Components of the Sample Application

To view the stream details

1. Open the Kinesis console at https://console.aws.amazon.com/kinesis.

2. Select the stream whose name has the following form: KinesisDataVisSampleApp-
KinesisStream-[randomString].

3. Choose the name of the stream to view the stream details.

4. The graphs display the activity of the data producer putting records into the stream and the data
consumer getting data from the stream.

Data Producer

A data producer (p. 7) submits data records to the Kinesis data stream. To put data into the stream,
producers call the PutRecord operation on a stream.

Each PutRecord call requires the stream name, partition key, and the data record that the producer
is adding to the stream. The stream name determines the stream in which the record will reside. The
partition key is used to determine the shard in the stream that the data record will be added to.

14

https://console.aws.amazon.com/kinesis
https://docs.aws.amazon.com/kinesis/latest/APIReference//API_PutRecord.html

Amazon Kinesis Data Streams Developer Guide
Step 2: View the Components of the Sample Application

Which partition key you use depends on your application logic. The number of partition keys should
be much greater than the number of shards. in most cases. A high number of partition keys relative to
shards allows the stream to distribute data records evenly across the shards in your stream.

The data producer uses six popular URLs as a partition key for each record put into the two-shard stream.
These URLs represent simulated page visits. Rows 99-132 of the HttpReferrerKinesisPutter code send
the data to Kinesis Data Streams. The three required parameters are set before calling PutRecord. The
partition key is set using pair.getResource, which randomly selects one of the six URLs created in
rows 85-92 of the HttpReferrerStreamWriter code.

A data producer can be anything that puts data to Kinesis Data Streams, such as an EC2 instance, client
browser, or mobile device. The sample application uses an EC2 instance for its data producer as well
as its data consumer; whereas, most real-life scenarios would have separate EC2 instances for each
component of the application. You can view EC2 instance data from the sample application by following
the instructions below.

To view the instance data in the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. On the navigation pane, choose Instances.
3. Select the instance created for the sample application. If you aren't sure which instance this is, it has

a security group with a name that starts with KinesisDataVisSample.
4. On the Monitoring tab, you'll see the resource usage of the sample application's data producer and

data consumer.

Data Consumer
Data consumers (p. 8) retrieve and process data records from shards in a Kinesis data stream. Each
consumer reads data from a particular shard. Consumers retrieve data from a shard using the
GetShardIterator and GetRecords operations.

A shard iterator represents the position of the stream and shard from which the consumer will read. A
consumer gets a shard iterator when it starts reading from a stream or changes the position from which
it reads records from a stream. To get a shard iterator, you must provide a stream name, shard ID, and
shard iterator type. The shard iterator type allows the consumer to specify where in the stream it would
like to start reading from, such as from the start of the stream where the data is arriving in real-time. The
stream returns the records in a batch, whose size you can control using the optional limit parameter.

The data consumer creates a table in DynamoDB to maintain state information (such as checkpoints and
worker-shard mapping) for the application. Each application has its own DynamoDB table.

The data consumer counts visitor requests from each particular URL over the last two seconds. This type
of real-time application employs Top-N analysis over a sliding window. In this case, the Top-N are the
top three pages by visitor requests and the sliding window is two seconds. This is a common processing
pattern that is demonstrative of real-world data analyses using Kinesis Data Streams. The results of this
calculation are persisted to a DynamoDB table.

To view the Amazon DynamoDB tables

1. Open the DynamoDB console at https://console.aws.amazon.com/dynamodb/.
2. On the navigation pane, select Tables.
3. There are two tables created by the sample application:

• KinesisDataVisSampleApp-KCLDynamoDBTable-[randomString]—Manages state information.
• KinesisDataVisSampleApp-CountsDynamoDBTable-[randomString]—Persists the results of the

Top-N analysis over a sliding window.

15

https://github.com/awslabs/amazon-kinesis-data-visualization-sample/blob/master/src/main/java/com/amazonaws/services/kinesis/samples/datavis/producer/HttpReferrerKinesisPutter.java#L99-132
https://github.com/awslabs/amazon-kinesis-data-visualization-sample/blob/d7fbcb994caad606635414b01c4eeada15c04f0b/src/main/java/com/amazonaws/services/kinesis/samples/datavis/HttpReferrerStreamWriter.java#L85-92
https://console.aws.amazon.com/ec2/
https://docs.aws.amazon.com/kinesis/latest/APIReference//API_GetShardIterator.html
https://docs.aws.amazon.com/kinesis/latest/APIReference//API_GetRecords.html
https://console.aws.amazon.com/dynamodb/

Amazon Kinesis Data Streams Developer Guide
Step 3: Delete Sample Application

4. Select the KinesisDataVisSampleApp-KCLDynamoDBTable-[randomString] table. There are two
entries in the table, indicating the particular shard (leaseKey), position in the stream (checkpoint),
and the application reading the data (leaseOwner).

5. Select the KinesisDataVisSampleApp-CountsDynamoDBTable-[randomString] table. You can see the
aggregated visitor counts (referrerCounts) that the data consumer calculates as part of the sliding
window analysis.

Kinesis Client Library (KCL)

Consumer applications can use the Kinesis Client Library (KCL) to simplify parallel processing of the
stream. The KCL takes care of many of the complex tasks associated with distributed computing, such
as load-balancing across multiple instances, responding to instance failures, checkpointing processed
records, and reacting to resharding. The KCL enables you to focus on writing record processing logic.

The data consumer provides the KCL with position of the stream that it wants to read from, in this
case specifying the latest possible data from the beginning of the stream. The library uses this to call
GetShardIterator on behalf of the consumer. The consumer component also provides the client
library with what to do with the records that are processed using an important KCL interface called
IRecordProcessor. The KCL calls GetRecords on behalf of the consumer and then processes those
records as specified by IRecordProcessor.

• Rows 92-98 of the HttpReferrerCounterApplication sample code configure the KCL. This sets up the
library with its initial configuration, such as the setting the position of the stream in which to read
data.

• Rows 104-108 of the HttpReferrerCounterApplication sample code inform the KCL of what logic to use
when processing records using an important client library component, IRecordProcessor.

• Rows 186-203 of the CountingRecordProcessor sample code include the counting logic for the Top-N
analysis using IRecordProcessor.

Step 3: Delete Sample Application
The sample application creates two shards, which incur shard usage charges while the application runs.
To ensure that your AWS account does not continue to be billed, delete your AWS CloudFormation stack
after you finish with the sample application.

To delete application resources

1. Open the AWS CloudFormation console at https://console.aws.amazon.com/cloudformation.
2. Select the stack.
3. Choose Actions, Delete Stack
4. When prompted for confirmation, choose Yes, Delete.

The status changes to DELETE_IN_PROGRESS while AWS CloudFormation cleans up the resources
associated with the sample application. When AWS CloudFormation is finished cleaning up the resources,
it removes the stack from the list.

Step 4: Next Steps
• You can explore the source code for the Data Visualization Sample Application on GitHub.
• You can find more advanced material about using the Kinesis Data Streams API in the Developing

Producers Using the Amazon Kinesis Data Streams API with the AWS SDK for Java (p. 98),
Developing Consumers Using the Kinesis Data Streams API with the AWS SDK for Java (p. 134), and
Creating and Managing Streams (p. 38).

16

https://github.com/awslabs/amazon-kinesis-client
https://github.com/awslabs/amazon-kinesis-data-visualization-sample/blob/master/src/main/java/com/amazonaws/services/kinesis/samples/datavis/HttpReferrerCounterApplication.java#L92-98
https://github.com/awslabs/amazon-kinesis-data-visualization-sample/blob/master/src/main/java/com/amazonaws/services/kinesis/samples/datavis/HttpReferrerCounterApplication.java#L104-108
https://github.com/awslabs/amazon-kinesis-data-visualization-sample/blob/d7fbcb994caad606635414b01c4eeada15c04f0b/src/main/java/com/amazonaws/services/kinesis/samples/datavis/kcl/CountingRecordProcessor.java#L186-203
https://console.aws.amazon.com/cloudformation/
https://github.com/awslabs/amazon-kinesis-data-visualization-sample

Amazon Kinesis Data Streams Developer Guide
Tutorial: Getting Started Using the CLI

• You can find sample application in the AWS SDK for Java that uses the SDK to put and get data from
Kinesis Data Streams.

Tutorial: Getting Started With Amazon Kinesis
Data Streams Using AWS CLI

This tutorial shows you how to perform basic Amazon Kinesis Data Streams operations using the AWS
Command Line Interface. You will learn fundamental Kinesis Data Streams data flow principles and the
steps necessary to put and get data from an Kinesis data stream.

For CLI access, you need an access key ID and secret access key. Use IAM user access keys instead of AWS
account root user access keys. IAM lets you securely control access to AWS services and resources in your
AWS account. For more information about creating access keys, see Understanding and Getting Your
Security Credentials in the AWS General Reference.

You can find detailed step-by-step IAM and security key set up instructions at Create an IAM User.

In this tutorial, the specific commands discussed will be given verbatim, except where specific values will
necessarily be different for each run. Also, the examples are using the US West (Oregon) region, but this
tutorial will work on any of the regions that support Kinesis Data Streams.

Topics

• Install and Configure the AWS CLI (p. 17)

• Perform Basic Stream Operations (p. 19)

Install and Configure the AWS CLI

Install AWS CLI
Use the following process to install the AWS CLI for Windows and for Linux, OS X, and Unix operating
systems.

Windows

1. Download the appropriate MSI installer from the Windows section of the full installation
instructions in the AWS Command Line Interface User Guide.

2. Run the downloaded MSI installer.

3. Follow the instructions that appear.

Linux, macOS, or Unix

These steps require Python 2.6.5 or higher. If you have any problems, see the full installation instructions
in the AWS Command Line Interface User Guide.

1. Download and run the installation script from the pip website:

curl "https://bootstrap.pypa.io/get-pip.py" -o "get-pip.py"
sudo python get-pip.py

2. Install the AWS CLI Using Pip.

17

https://aws.amazon.com/developers/getting-started/java/
https://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html
https://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/get-set-up-for-amazon-ec2.html#create-an-iam-user
https://docs.aws.amazon.com/general/latest/gr/rande.html#ak_region
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/
https://pip.pypa.io/en/latest/installing.html

Amazon Kinesis Data Streams Developer Guide
Install and Configure the AWS CLI

sudo pip install awscli

Use the following command to list available options and services:

aws help

You will be using the Kinesis Data Streams service, so you can review the AWS CLI subcommands related
to Kinesis Data Streams using the following command:

aws kinesis help

This command results in output that includes the available Kinesis Data Streams commands:

AVAILABLE COMMANDS

 o add-tags-to-stream

 o create-stream

 o delete-stream

 o describe-stream

 o get-records

 o get-shard-iterator

 o help

 o list-streams

 o list-tags-for-stream

 o merge-shards

 o put-record

 o put-records

 o remove-tags-from-stream

 o split-shard

 o wait

This command list corresponds to the Kinesis Data Streams API documented in the Amazon Kinesis
Service API Reference. For example, the create-stream command corresponds to the CreateStream
API action.

The AWS CLI is now successfully installed, but not configured. This is shown in the next section.

Configure AWS CLI
For general use, the aws configure command is the fastest way to set up your AWS CLI installation.
This is a one-time setup if your preferences don't change because the AWS CLI remembers your settings
between sessions.

18

https://docs.aws.amazon.com/kinesis/latest/APIReference/
https://docs.aws.amazon.com/kinesis/latest/APIReference/

Amazon Kinesis Data Streams Developer Guide
Perform Basic Stream Operations

aws configure
AWS Access Key ID [None]: AKIAIOSFODNN7EXAMPLE
AWS Secret Access Key [None]: wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
Default region name [None]: us-west-2
Default output format [None]: json

The AWS CLI will prompt you for four pieces of information. The AWS access key ID and the AWS secret
access key are your account credentials. If you don't have keys, see Sign Up for Amazon Web Services.

The default region is the name of the region you want to make calls against by default. This is usually the
region closest to you, but it can be any region.

Note
You must specify an AWS region when using the AWS CLI. For a list of services and available
regions, see Regions and Endpoints.

The default output format can be either JSON, text, or table. If you don't specify an output format, JSON
will be used.

For more information about the files that aws configure creates, additional settings, and named
profiles, see Configuring the AWS Command Line Interface in the AWS Command Line Interface User
Guide.

Perform Basic Stream Operations
This section describes basic use of an Kinesis data stream from the command line using the AWS CLI.
Be sure you are familiar with the concepts discussed in Kinesis Data Streams Key Concepts (p. 2) and
Tutorial: Visualizing Web Traffic Using Amazon Kinesis Data Streams (p. 11).

Note
After you create a stream, your account incurs nominal charges for Kinesis Data Streams usage
because Kinesis Data Streams is not eligible for the AWS free tier. When you are finished with
this tutorial, delete your AWS resources to stop incurring charges. For more information, see
Step 4: Clean Up (p. 23).

Topics
• Step 1: Create a Stream (p. 19)
• Step 2: Put a Record (p. 20)
• Step 3: Get the Record (p. 21)
• Step 4: Clean Up (p. 23)

Step 1: Create a Stream
Your first step is to create a stream and verify that it was successfully created. Use the following
command to create a stream named "Foo":

aws kinesis create-stream --stream-name Foo --shard-count 1

The parameter --shard-count is required, and for this part of the tutorial you are using one shard in
your stream. Next, issue the following command to check on the stream's creation progress:

aws kinesis describe-stream --stream-name Foo

You should get output that is similar to the following example:

{

19

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-set-up.html#cli-signup
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/
https://docs.aws.amazon.com/cli/latest/userguide/

Amazon Kinesis Data Streams Developer Guide
Perform Basic Stream Operations

 "StreamDescription": {
 "StreamStatus": "CREATING",
 "StreamName": "Foo",
 "StreamARN": "arn:aws:kinesis:us-west-2:account-id:stream/Foo",
 "Shards": []
 }
}

In this example, the stream has a status CREATING, which means it is not quite ready to use. Check again
in a few moments, and you should see output similar to the following example:

{
 "StreamDescription": {
 "StreamStatus": "ACTIVE",
 "StreamName": "Foo",
 "StreamARN": "arn:aws:kinesis:us-west-2:account-id:stream/Foo",
 "Shards": [
 {
 "ShardId": "shardId-000000000000",
 "HashKeyRange": {
 "EndingHashKey": "170141183460469231731687303715884105727",
 "StartingHashKey": "0"
 },
 "SequenceNumberRange": {
 "StartingSequenceNumber":
 "49546986683135544286507457935754639466300920667981217794"
 }
 }
]
 }
}

There is information in this output that you don't need to be concerned about for this tutorial. The main
thing for now is "StreamStatus": "ACTIVE", which tells you that the stream is ready to be used, and
the information on the single shard that you requested. You can also verify the existence of your new
stream by using the list-streams command, as shown here:

aws kinesis list-streams

Output:

{
 "StreamNames": [
 "Foo"
]
}

Step 2: Put a Record
Now that you have an active stream, you are ready to put some data. For this tutorial, you will use the
simplest possible command, put-record, which puts a single data record containing the text "testdata"
into the stream:

aws kinesis put-record --stream-name Foo --partition-key 123 --data testdata

This command, if successful, will result in output similar to the following example:

{
 "ShardId": "shardId-000000000000",

20

Amazon Kinesis Data Streams Developer Guide
Perform Basic Stream Operations

 "SequenceNumber": "49546986683135544286507457936321625675700192471156785154"
}

Congratulations, you just added data to a stream! Next you will see how to get data out of the stream.

Step 3: Get the Record
Before you can get data from the stream you need to obtain the shard iterator for the shard you are
interested in. A shard iterator represents the position of the stream and shard from which the consumer
(get-record command in this case) will read. You'll use the get-shard-iterator command, as
follows:

aws kinesis get-shard-iterator --shard-id shardId-000000000000 --shard-iterator-type
 TRIM_HORIZON --stream-name Foo

Recall that the aws kinesis commands have a Kinesis Data Streams API behind them, so if you are
curious about any of the parameters shown, you can read about them in the GetShardIterator
API reference topic. Successful execution will result in output similar to the following example (scroll
horizontally to see the entire output):

{
 "ShardIterator": "AAAAAAAAAAHSywljv0zEgPX4NyKdZ5wryMzP9yALs8NeKbUjp1IxtZs1Sp
+KEd9I6AJ9ZG4lNR1EMi+9Md/nHvtLyxpfhEzYvkTZ4D9DQVz/mBYWRO6OTZRKnW9gd+efGN2aHFdkH1rJl4BL9Wyrk
+ghYG22D2T1Da2EyNSH1+LAbK33gQweTJADBdyMwlo5r6PqcP2dzhg="
}

The long string of seemingly random characters is the shard iterator (yours will be different). You will
need to copy/paste the shard iterator into the get command, shown next. Shard iterators have a valid
lifetime of 300 seconds, which should be enough time for you to copy/paste the shard iterator into the
next command. Notice you will need to remove any newlines from your shard iterator before pasting to
the next command. If you get an error message that the shard iterator is no longer valid, simply execute
the get-shard-iterator command again.

The get-records command gets data from the stream, and it resolves to a call to GetRecords in the
Kinesis Data Streams API. The shard iterator specifies the position in the shard from which you want to
start reading data records sequentially. If there are no records available in the portion of the shard that
the iterator points to, GetRecords returns an empty list. Note that it might take multiple calls to get to
a portion of the shard that contains records.

In the following example of the get-records command (scroll horizontally to see the entire command):

aws kinesis get-records --shard-iterator
 AAAAAAAAAAHSywljv0zEgPX4NyKdZ5wryMzP9yALs8NeKbUjp1IxtZs1Sp+KEd9I6AJ9ZG4lNR1EMi
+9Md/nHvtLyxpfhEzYvkTZ4D9DQVz/mBYWRO6OTZRKnW9gd+efGN2aHFdkH1rJl4BL9Wyrk
+ghYG22D2T1Da2EyNSH1+LAbK33gQweTJADBdyMwlo5r6PqcP2dzhg=

If you are running this tutorial from a Unix-type command processor such as bash, you can automate the
acquisition of the shard iterator using a nested command, like this (scroll horizontally to see the entire
command):

SHARD_ITERATOR=$(aws kinesis get-shard-iterator --shard-id shardId-000000000000 --shard-
iterator-type TRIM_HORIZON --stream-name Foo --query 'ShardIterator')

aws kinesis get-records --shard-iterator $SHARD_ITERATOR

If you are running this tutorial from a system that supports PowerShell, you can automate acquisition of
the shard iterator using a command such as this (scroll horizontally to see the entire command):

21

https://docs.aws.amazon.com/kinesis/latest/APIReference/API_GetShardIterator.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_GetRecords.html

Amazon Kinesis Data Streams Developer Guide
Perform Basic Stream Operations

aws kinesis get-records --shard-iterator ((aws kinesis get-shard-iterator --shard-id
 shardId-000000000000 --shard-iterator-type TRIM_HORIZON --stream-name Foo).split('"')[4])

The successful result of the get-records command will request records from your stream for the shard
that you specified when you obtained the shard iterator, as in the following example (scroll horizontally
to see the entire output):

{
 "Records":[{
 "Data":"dGVzdGRhdGE=",
 "PartitionKey":"123”,
 "ApproximateArrivalTimestamp": 1.441215410867E9,
 "SequenceNumber":"49544985256907370027570885864065577703022652638596431874"
 }],
 "MillisBehindLatest":24000,

 "NextShardIterator":"AAAAAAAAAAEDOW3ugseWPE4503kqN1yN1UaodY8unE0sYslMUmC6lX9hlig5+t4RtZM0/
tALfiI4QGjunVgJvQsjxjh2aLyxaAaPr
+LaoENQ7eVs4EdYXgKyThTZGPcca2fVXYJWL3yafv9dsDwsYVedI66dbMZFC8rPMWc797zxQkv4pSKvPOZvrUIudb8UkH3VMzx58Is="
}

Note that get-records is described above as a request, which means you may receive zero or more
records even if there are records in your stream, and any records returned may not represent all the
records currently in your stream. This is perfectly normal, and production code will simply poll the
stream for records at appropriate intervals (this polling speed will vary depending on your specific
application design requirements).

The first thing you'll likely notice about your record in this part of the tutorial is that the data appears to
be garbage –; it's not the clear text testdata we sent. This is due to the way put-record uses Base64
encoding to allow you to send binary data. However, the Kinesis Data Streams support in the AWS CLI
does not provide Base64 decoding because Base64 decoding to raw binary content printed to stdout can
lead to undesired behavior and potential security issues on certain platforms and terminals. If you use a
Base64 decoder (for example, https://www.base64decode.org/) to manually decode dGVzdGRhdGE= you
will see that it is, in fact, testdata. This is sufficient for the sake of this tutorial because, in practice, the
AWS CLI is rarely used to consume data, but more often to monitor the state of the stream and obtain
information, as shown previously (describe-stream and list-streams). Future tutorials will show
you how to build production-quality consumer applications using the Kinesis Client Library (KCL), where
Base64 is taken care of for you. For more information about the KCL, see Developing Consumers Using
the Kinesis Client Library 1.x (p. 116).

It's not always the case that get-records will return all records in the stream/shard specified. When
that happens, use the NextShardIterator from the last result to get the next set of records. So if
more data were being put into the stream (the normal situation in production applications), you could
keep polling for data using get-records each time. However, if you do not call get-records using the
next shard iterator within the 300 second shard iterator lifetime, you will get an error message, and you
will need to use the get-shard-iterator command to get a fresh shard iterator.

Also provided in this output is MillisBehindLatest, which is the number of milliseconds the
GetRecords operation's response is from the tip of the stream, indicating how far behind current time
the consumer is. A value of zero indicates record processing is caught up, and there are no new records
to process at this moment. In the case of this tutorial, you may see a number that's quite large if you've
been taking time to read along as you go. That's not a problem, data records will stay in a stream
for 24 hours waiting for you to retrieve them. This time frame is called the retention period and it is
configurable up to 168 hours (7 days).

Note that a successful get-records result will always have a NextShardIterator even if there are
no more records currently in the stream. This is a polling model that assumes a producer is potentially
putting more records into the stream at any given time. Although you can write your own polling

22

https://www.base64decode.org/
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_GetRecords.html

Amazon Kinesis Data Streams Developer Guide
Tutorial: Analyzing Real-Time Stock Data

routines, if you use the previously mentioned KCL for developing consumer applications, this polling is
taken care of for you.

If you call get-records until there are no more records in the stream and shard you are pulling from,
you will see output with empty records similar to the following example (scroll horizontally to see the
entire output):

{
 "Records": [],
 "NextShardIterator": "AAAAAAAAAAGCJ5jzQNjmdhO6B/YDIDE56jmZmrmMA/r1WjoHXC/
kPJXc1rckt3TFL55dENfe5meNgdkyCRpUPGzJpMgYHaJ53C3nCAjQ6s7ZupjXeJGoUFs5oCuFwhP+Wul/
EhyNeSs5DYXLSSC5XCapmCAYGFjYER69QSdQjxMmBPE/hiybFDi5qtkT6/PsZNz6kFoqtDk="
}

Step 4: Clean Up
Finally, you'll want to delete your stream to free up resources and avoid unintended charges to your
account, as previously noted. Do this in practice any time you have created a stream and will not be using
it because charges accrue per stream whether you are putting and getting data with it or not. The clean-
up command is simple:

aws kinesis delete-stream --stream-name Foo

Success results in no output, so you might want to use describe-stream to check on deletion
progress:

aws kinesis describe-stream --stream-name Foo

If you execute this command immediately after the delete command, you will likely see output similar to
the following example:

{
 "StreamDescription": {
 "StreamStatus": "DELETING",
 "StreamName": "Foo",
 "StreamARN": "arn:aws:kinesis:us-west-2:account-id:stream/Foo",
 "Shards": []
 }
}

After the stream is fully deleted, describe-stream will result in a "not found" error:

A client error (ResourceNotFoundException) occurred when calling the DescribeStream
 operation:
Stream Foo under account 112233445566 not found.

Tutorial: Analyzing Real-Time Stock Data Using
Kinesis Data Streams

The scenario for this tutorial involves ingesting stock trades into a data stream and writing a simple
Amazon Kinesis Data Streams application that performs calculations on the stream. You will learn how
to send a stream of records to Kinesis Data Streams and implement an application that consumes and
processes the records in near-real time.

23

Amazon Kinesis Data Streams Developer Guide
Prerequisites

Important
After you create a stream, your account incurs nominal charges for Kinesis Data Streams
usage because Kinesis Data Streams is not eligible for the AWS Free Tier. After the consumer
application starts, it also incurs nominal charges for Amazon DynamoDB usage. The consumer
application uses DynamoDB to track processing state. When you are finished with this
application, delete your AWS resources to stop incurring charges. For more information, see Step
7: Finishing Up (p. 36).

The code does not access actual stock market data, but instead simulates the stream of stock trades. It
does so by using a random stock trade generator that has a starting point of real market data for the
top 25 stocks by market capitalization as of February 2015. If you have access to a real-time stream of
stock trades, you might be interested in deriving useful, timely statistics from that stream. For example,
you might want to perform a sliding window analysis where you determine the most popular stock
purchased in the last 5 minutes. Or you might want a notification whenever there is a sell order that
is too large (that is, it has too many shares). You can extend the code in this series to provide such
functionality.

You can work through the steps in this tutorial on your desktop or laptop computer and run both
the producer and consumer code on the same machine or any platform that supports the defined
requirements, such as Amazon Elastic Compute Cloud (Amazon EC2).

The examples shown use the US West (Oregon) Region, but they work on any of the AWS Regions that
support Kinesis Data Streams.

Tasks
• Prerequisites (p. 24)
• Step 1: Create a Data Stream (p. 25)
• Step 2: Create an IAM Policy and User (p. 26)
• Step 3: Download and Build the Implementation Code (p. 29)
• Step 4: Implement the Producer (p. 30)
• Step 5: Implement the Consumer (p. 32)
• Step 6: (Optional) Extending the Consumer (p. 35)
• Step 7: Finishing Up (p. 36)

Prerequisites
The following are requirements for completing the Tutorial: Analyzing Real-Time Stock Data Using
Kinesis Data Streams (p. 23).

Amazon Web Services Account
Before you begin, ensure that you are familiar with the concepts discussed in Kinesis Data Streams Key
Concepts (p. 2) and Tutorial: Visualizing Web Traffic Using Amazon Kinesis Data Streams (p. 11),
particularly streams, shards, producers, and consumers. It is also helpful to have completed Tutorial:
Visualizing Web Traffic Using Amazon Kinesis Data Streams (p. 11) and Tutorial: Getting Started With
Amazon Kinesis Data Streams Using AWS CLI (p. 17).

You need an AWS account and a web browser to access the AWS Management Console.

For console access, use your IAM user name and password to sign in to the AWS Management Console
using the IAM sign-in page. IAM lets you securely control access to AWS services and resources in your
AWS account. For more information about creating access keys, see How Do I Get Security Credentials? in
the AWS General Reference.

For more information about IAM and security key setup instructions, see Create an IAM User.

24

https://docs.aws.amazon.com/general/latest/gr/rande.html#ak_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#ak_region
https://console.aws.amazon.com/console/home
https://docs.aws.amazon.com/IAM/latest/UserGuide/console.html
https://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/get-set-up-for-amazon-ec2.html#create-an-iam-user

Amazon Kinesis Data Streams Developer Guide
Step 1: Create a Data Stream

System Software Requirements
The system used to run the application must have Java 7 or higher installed. To download and install the
latest Java Development Kit (JDK), go to Oracle's Java SE installation site.

If you have a Java IDE, such as Eclipse, you can open the source code, edit, build, and run it.

You need the latest AWS SDK for Java version. If you are using Eclipse as your IDE, you can install the
AWS Toolkit for Eclipse instead.

The consumer application requires the Kinesis Client Library (KCL) version 1.2.1 or higher, which you can
obtain from GitHub at Kinesis Client Library (Java).

Next Steps
Step 1: Create a Data Stream (p. 25)

Step 1: Create a Data Stream
In the first step of the Tutorial: Analyzing Real-Time Stock Data Using Kinesis Data Streams (p. 23),
you create the stream that you will use in subsequent steps.

To create a stream

1. Sign in to the AWS Management Console and open the Kinesis console at https://
console.aws.amazon.com/kinesis.

2. Choose Data Streams in the navigation pane.
3. In the navigation bar, expand the Region selector and choose a Region.
4. Choose Create Kinesis stream.
5. Enter a name for your stream (for example, StockTradeStream).
6. Enter 1 for the number of shards, but leave Estimate the number of shards you'll need collapsed.
7. Choose Create Kinesis stream.

On the Kinesis streams list page, the status of your stream is CREATING while the stream is being
created. When the stream is ready to use, the status changes to ACTIVE. Choose the name of your
stream. In the page that appears, the Details tab displays a summary of your stream configuration. The
Monitoring section displays monitoring information for the stream.

Additional Information About Shards
When you begin to use Kinesis Data Streams outside of this tutorial, you might need to plan the stream
creation process more carefully. You should plan for expected maximum demand when you provision
shards. Using this scenario as an example, US stock market trading traffic peaks during the day (Eastern
time) and demand estimates should be sampled from that time of day. You then have a choice to
provision for the maximum expected demand, or scale your stream up and down in response to demand
fluctuations.

A shard is a unit of throughput capacity. On the Create Kinesis stream page, expand Estimate the
number of shards you'll need. Enter the average record size, the maximum records written per second,
and the number of consuming applications, using the following guidelines:

Average record size

An estimate of the calculated average size of your records. If you don't know this value, use the
estimated maximum record size for this value.

25

http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.eclipse.org/downloads/
https://aws.amazon.com/sdk-for-java/
https://aws.amazon.com/eclipse/
https://github.com/awslabs/amazon-kinesis-client
https://console.aws.amazon.com/kinesis
https://console.aws.amazon.com/kinesis

Amazon Kinesis Data Streams Developer Guide
Step 2: Create an IAM Policy and User

Max records written

Take into account the number of entities providing data and the approximate number of records per
second produced by each. For example, if you are getting stock trade data from 20 trading servers
and each generates 250 trades per second, the total number of trades (records) per second is 5000/
second.

Number of consuming applications

The number of applications that independently read from the stream to process the stream in a
different way and produce different output. Each application can have multiple instances running on
different machines (that is, run in a cluster) so that it can keep up with a high volume stream.

If the estimated number of shards shown exceeds your current shard limit, you might need to submit
a request to increase that limit before you can create a stream with that number of shards. To request
an increase to your shard limit, use the Kinesis Data Streams Limits form. For more information about
streams and shards, see Creating and Updating Data Streams (p. 5) and Creating and Managing
Streams (p. 38).

Next Steps
Step 2: Create an IAM Policy and User (p. 26)

Step 2: Create an IAM Policy and User
Security best practices for AWS dictate the use of fine-grained permissions to control access to different
resources. AWS Identity and Access Management (IAM) allows you to manage users and user permissions
in AWS. An IAM policy explicitly lists actions that are allowed and the resources on which the actions are
applicable.

The following are the minimum permissions generally required for a Kinesis Data Streams producer and
consumer.

Producer

Actions Resource Purpose

DescribeStream Kinesis data stream Before attempting to write records, the producer should check if the stream exists and is active.

PutRecord, PutRecords Kinesis data stream Write records to Kinesis Data Streams.

Consumer

Actions Resource Purpose

DescribeStream Kinesis data stream Before attempting to read records, the consumer checks if the stream exists and is active, and if the shards
are contained in the stream.

GetRecords,
GetShardIterator

Kinesis data stream Read records from a Kinesis Data Streams shard.

CreateTable, DescribeTable,
GetItem, PutItem, Scan,
UpdateItem

Amazon DynamoDB
table

If the consumer is developed using the Kinesis Client Library (KCL), it needs permissions to a DynamoDB
table to track the processing state of the application. The first consumer started creates the table.

DeleteItem Amazon DynamoDB
table

For when the consumer performs split/merge operations on Kinesis Data Streams shards.

26

https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-kinesis
https://docs.aws.amazon.com/IAM/latest/UserGuide/PoliciesOverview.html

Amazon Kinesis Data Streams Developer Guide
Step 2: Create an IAM Policy and User

Actions Resource Purpose

PutMetricData Amazon CloudWatch
log

The KCL also uploads metrics to CloudWatch, which are useful for monitoring the application.

For this application, you create a single IAM policy that grants all of the preceding permissions. In
practice, you might want to consider creating two policies, one for producers and one for consumers.

To create an IAM policy

1. Locate the Amazon Resource Name (ARN) for the new stream. You can find this ARN listed as Stream
ARN at the top of the Details tab. The ARN format is as follows:

arn:aws:kinesis:region:account:stream/name

region

The Region code; for example, us-west-2. For more information, see Region and Availability
Zone Concepts.

account

The AWS account ID, as shown in Account Settings.

name

The name of the stream from Step 1: Create a Data Stream (p. 25), which is
StockTradeStream.

2. Determine the ARN for the DynamoDB table to be used by the consumer (and created by the first
consumer instance). It must be in the following format:

arn:aws:dynamodb:region:account:table/name

The Region and account are from the same place as the previous step, but this time name is the
name of the table created and used by the consumer application. The KCL used by the consumer
uses the application name as the table name. Use StockTradesProcessor, which is the
application name used later.

3. In the IAM console, in Policies (https://console.aws.amazon.com/iam/home#policies), choose Create
policy. If this is the first time that you have worked with IAM policies, choose Get Started, Create
Policy.

4. Choose Select next to Policy Generator.

5. Choose Amazon Kinesis as the AWS service.

6. Select DescribeStream, GetShardIterator, GetRecords, PutRecord, and PutRecords as the
allowed actions.

7. Enter the ARN that you created in Step 1.

8. Use Add Statement for each of the following:

AWS Service Actions ARN

Amazon DynamoDB CreateTable, DeleteItem,
DescribeTable, GetItem,
PutItem, Scan, UpdateItem

The ARN you created in Step 2

Amazon CloudWatch PutMetricData *

27

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html#concepts-regions-availability-zones
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html#concepts-regions-availability-zones
https://console.aws.amazon.com/billing/home?#/account
https://console.aws.amazon.com/iam/home#policies

Amazon Kinesis Data Streams Developer Guide
Step 2: Create an IAM Policy and User

The asterisk (*) that is used when specifying an ARN is not required. In this case, it's because there is
no specific resource in CloudWatch on which the PutMetricData action is invoked.

9. Choose Next Step.
10. Change Policy Name to StockTradeStreamPolicy, review the code, and choose Create Policy.

The resulting policy document should look something like the following:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Stmt123",
 "Effect": "Allow",
 "Action": [
 "kinesis:DescribeStream",
 "kinesis:PutRecord",
 "kinesis:PutRecords",
 "kinesis:GetShardIterator",
 "kinesis:GetRecords"
],
 "Resource": [
 "arn:aws:kinesis:us-west-2:123:stream/StockTradeStream"
]
 },
 {
 "Sid": "Stmt456",
 "Effect": "Allow",
 "Action": [
 "dynamodb:*"
],
 "Resource": [
 "arn:aws:dynamodb:us-west-2:123:table/StockTradesProcessor"
]
 },
 {
 "Sid": "Stmt789",
 "Effect": "Allow",
 "Action": [
 "cloudwatch:PutMetricData"
],
 "Resource": [
 "*"
]
 }
]
}

To create an IAM user

1. Open the IAM console at https://console.aws.amazon.com/iam/.
2. On the Users page, choose Add user.
3. For User name, type StockTradeStreamUser.
4. For Access type, choose Programmatic access, and then choose Next: Permissions.
5. Choose Attach existing policies directly.
6. Search by name for the policy that you created. Select the box to the left of the policy name, and

then choose Next: Review.
7. Review the details and summary, and then choose Create user.

28

https://console.aws.amazon.com/iam/

Amazon Kinesis Data Streams Developer Guide
Step 3: Download and Build the Implementation Code

8. Copy the Access key ID, and save it privately. Under Secret access key, choose Show, and save that
key privately also.

9. Paste the access and secret keys to a local file in a safe place that only you can access. For this
application, create a file named ~/.aws/credentials (with strict permissions). The file should be
in the following format:

[default]
aws_access_key_id=access key
aws_secret_access_key=secret access key

To attach an IAM policy to a user

1. In the IAM console, open Policies and choose Policy Actions.

2. Choose StockTradeStreamPolicy and Attach.

3. Choose StockTradeStreamUser and Attach Policy.

Next Steps
Step 3: Download and Build the Implementation Code (p. 29)

Step 3: Download and Build the Implementation
Code
Skeleton code is provided for the the section called “Tutorial: Analyzing Real-Time Stock Data” (p. 23).
It contains a stub implementation for both the stock trade stream ingestion (producer) and
the processing of the data (consumer). The following procedure shows how to complete the
implementations.

To download and build the implementation code

1. Download the source code to your computer.

2. Create a project in your favorite IDE with the source code, adhering to the provided directory
structure.

3. Add the following libraries to the project:

• Amazon Kinesis Client Library (KCL)

• AWS SDK

• Apache HttpCore

• Apache HttpClient

• Apache Commons Lang

• Apache Commons Logging

• Guava (Google Core Libraries For Java)

• Jackson Annotations

• Jackson Core

• Jackson Databind

• Jackson Dataformat: CBOR

• Joda Time

4. Depending on your IDE, the project might be built automatically. If not, build the project using the
appropriate steps for your IDE.

29

https://console.aws.amazon.com/iam/home?#policies
https://github.com/awslabs/amazon-kinesis-learning/tree/learning-module-1

Amazon Kinesis Data Streams Developer Guide
Step 4: Implement the Producer

If you complete these steps successfully, you are now ready to move to the next section, the section
called “Step 4: Implement the Producer” (p. 30). If your build generates errors at any stage,
investigate and fix them before proceeding.

Next Steps
 (p. 30)

Step 4: Implement the Producer
The application in the Tutorial: Analyzing Real-Time Stock Data Using Kinesis Data Streams (p. 23)
uses the real-world scenario of stock market trade monitoring. The following principles briefly explain
how this scenario maps to the producer and supporting code structure.

Refer to the source code and review the following information.

StockTrade class

An individual stock trade is represented by an instance of the StockTrade class. This instance
contains attributes such as the ticker symbol, price, number of shares, the type of the trade (buy or
sell), and an ID uniquely identifying the trade. This class is implemented for you.

Stream record

A stream is a sequence of records. A record is a serialization of a StockTrade instance in JSON
format. For example:

{
 "tickerSymbol": "AMZN",
 "tradeType": "BUY",
 "price": 395.87,
 "quantity": 16,
 "id": 3567129045
}

StockTradeGenerator class

StockTradeGenerator has a method called getRandomTrade() that returns a new randomly
generated stock trade every time it is invoked. This class is implemented for you.

StockTradesWriter class

The main method of the producer, StockTradesWriter continuously retrieves a random trade and
then sends it to Kinesis Data Streams by performing the following tasks:

1. Reads the stream name and Region name as input.

2. Creates an AmazonKinesisClientBuilder.

3. Uses the client builder to set the Region, credentials, and client configuration.

4. Builds an AmazonKinesis client using the client builder.

5. Checks that the stream exists and is active (if not, it exits with an error).

6. In a continuous loop, calls the StockTradeGenerator.getRandomTrade() method and then
the sendStockTrade method to send the trade to the stream every 100 milliseconds.

The sendStockTrade method of the StockTradesWriter class has the following code:

private static void sendStockTrade(StockTrade trade, AmazonKinesis kinesisClient,
 String streamName) {

30

Amazon Kinesis Data Streams Developer Guide
Step 4: Implement the Producer

 byte[] bytes = trade.toJsonAsBytes();
 // The bytes could be null if there is an issue with the JSON serialization by the
 Jackson JSON library.
 if (bytes == null) {
 LOG.warn("Could not get JSON bytes for stock trade");
 return;
 }

 LOG.info("Putting trade: " + trade.toString());
 PutRecordRequest putRecord = new PutRecordRequest();
 putRecord.setStreamName(streamName);
 // We use the ticker symbol as the partition key, explained in the Supplemental
 Information section below.
 putRecord.setPartitionKey(trade.getTickerSymbol());
 putRecord.setData(ByteBuffer.wrap(bytes));

 try {
 kinesisClient.putRecord(putRecord);
 } catch (AmazonClientException ex) {
 LOG.warn("Error sending record to Amazon Kinesis.", ex);
 }
}

Refer to the following code breakdown:

• The PutRecord API expects a byte array, and you need to convert trade to JSON format. This
single line of code performs that operation:

byte[] bytes = trade.toJsonAsBytes();

• Before you can send the trade, you create a new PutRecordRequest instance (called putRecord
in this case):

PutRecordRequest putRecord = new PutRecordRequest();

Each PutRecord call requires the stream name, partition key, and data blob. The following code
populates these fields in the putRecord object using its setXxxx() methods:

putRecord.setStreamName(streamName);
putRecord.setPartitionKey(trade.getTickerSymbol());
putRecord.setData(ByteBuffer.wrap(bytes));

The example uses a stock ticket as a partition key, which maps the record to a specific shard. In
practice, you should have hundreds or thousands of partition keys per shard such that records are
evenly dispersed across your stream. For more information about how to add data to a stream, see
Adding Data to a Stream (p. 98).

Now putRecord is ready to send to the client (the put operation):

kinesisClient.putRecord(putRecord);

• Error checking and logging are always useful additions. This code logs error conditions:

if (bytes == null) {
 LOG.warn("Could not get JSON bytes for stock trade");
 return;
}

Add the try/catch block around the put operation:

31

Amazon Kinesis Data Streams Developer Guide
Step 5: Implement the Consumer

try {
 kinesisClient.putRecord(putRecord);
} catch (AmazonClientException ex) {
 LOG.warn("Error sending record to Amazon Kinesis.", ex);
}

This is because a Kinesis Data Streams put operation can fail because of a network error, or due
to the stream reaching its throughput limits and getting throttled. We recommend carefully
considering your retry policy for put operations to avoid data loss, such using as a simple retry.

• Status logging is helpful but optional:

LOG.info("Putting trade: " + trade.toString());

The producer shown here uses the Kinesis Data Streams API single record functionality, PutRecord.
In practice, if an individual producer generates many records, it is often more efficient to use the
multiple records functionality of PutRecords and send batches of records at a time. For more
information, see Adding Data to a Stream (p. 98).

To run the producer

1. Verify that the access key and secret key pair retrieved earlier (when creating the IAM user) are saved
in the file ~/.aws/credentials.

2. Run the StockTradeWriter class with the following arguments:

StockTradeStream us-west-2

If you created your stream in a Region other than us-west-2, you have to specify that Region here
instead.

You should see output similar to the following:

Feb 16, 2015 3:53:00 PM
com.amazonaws.services.kinesis.samples.stocktrades.writer.StockTradesWriter sendStockTrade
INFO: Putting trade: ID 8: SELL 996 shares of BUD for $124.18
Feb 16, 2015 3:53:00 PM
com.amazonaws.services.kinesis.samples.stocktrades.writer.StockTradesWriter sendStockTrade
INFO: Putting trade: ID 9: BUY 159 shares of GE for $20.85
Feb 16, 2015 3:53:01 PM
com.amazonaws.services.kinesis.samples.stocktrades.writer.StockTradesWriter sendStockTrade
INFO: Putting trade: ID 10: BUY 322 shares of WMT for $90.08

Your stock trade stream is now being ingested by Kinesis Data Streams.

Next Steps
Step 5: Implement the Consumer (p. 32)

Step 5: Implement the Consumer
The consumer application in the Tutorial: Analyzing Real-Time Stock Data Using Kinesis Data
Streams (p. 23) continuously processes the stock trades stream that you created in (p. 30). It then
outputs the most popular stocks being bought and sold every minute. The application is built on top of

32

Amazon Kinesis Data Streams Developer Guide
Step 5: Implement the Consumer

the Kinesis Client Library (KCL), which does much of the heavy lifting common to consumer apps. For
more information, see Developing Consumers Using the Kinesis Client Library 1.x (p. 116).

Refer to the source code and review the following information.

StockTradesProcessor class

Main class of the consumer, provided for you, which performs the following tasks:
• Reads the application, stream, and Region names, passed in as arguments.
• Reads credentials from ~/.aws/credentials.
• Creates a RecordProcessorFactory instance that serves instances of RecordProcessor,

implemented by a StockTradeRecordProcessor instance.
• Creates a KCL worker with the RecordProcessorFactory instance and a standard configuration

including the stream name, credentials, and application name.
• The worker creates a new thread for each shard (assigned to this consumer instance),

which continuously loops to read records from Kinesis Data Streams. It then invokes the
RecordProcessor instance to process each batch of records received.

StockTradeRecordProcessor class

Implementation of the RecordProcessor instance, which in turn implements three required
methods: initialize, processRecords, and shutdown.

As the names suggest, initialize and shutdown are used by the Kinesis Client Library to let the
record processor know when it should be ready to start receiving records and when it should expect
to stop receiving records, respectively, so it can do any application-specific setup and termination
tasks. The code for these is provided for you. The main processing happens in the processRecords
method, which in turn uses processRecord for each record. This latter method is provided as
mostly empty skeleton code for you to implement in the next step, where it is explained further.

Also of note is the implementation of support methods for processRecord: reportStats, and
resetStats, which are empty in the original source code.

The processsRecords method is implemented for you, and performs the following steps:
• For each record passed in, calls processRecord on it.
• If at least 1 minute has elapsed since the last report, calls reportStats(), which prints out the

latest stats, and then resetStats() which clears the stats so that the next interval includes only
new records.

• Sets the next reporting time.
• If at least 1 minute has elapsed since the last checkpoint, calls checkpoint().
• Sets the next checkpointing time.

This method uses 60-second intervals for the reporting and checkpointing rate. For more
information about checkpointing, see Additional Information About the Consumer (p. 34).

StockStats class

This class provides data retention and statistics tracking for the most popular stocks over time. This
code is provided for you and contains the following methods:
• addStockTrade(StockTrade): Injects the given StockTrade into the running statistics.
• toString(): Returns the statistics in a formatted string.

This class keeps track of the most popular stock by keeping a running count of the total number
of trades for each stock and the maximum count. It updates these counts whenever a stock trade
arrives.

Add code to the methods of the StockTradeRecordProcessor class, as shown in the following steps.

33

Amazon Kinesis Data Streams Developer Guide
Step 5: Implement the Consumer

To implement the consumer

1. Implement the processRecord method by instantiating a correctly sized StockTrade object and
adding the record data to it, logging a warning if there's a problem.

StockTrade trade = StockTrade.fromJsonAsBytes(record.getData().array());
if (trade == null) {
 LOG.warn("Skipping record. Unable to parse record into StockTrade. Partition Key: "
 + record.getPartitionKey());
 return;
}
stockStats.addStockTrade(trade);

2. Implement a simple reportStats method. Feel free to modify the output format to your
preferences.

System.out.println("****** Shard " + kinesisShardId + " stats for last 1 minute ******
\n" +
 stockStats + "\n" +
 "**
\n");

3. Finally, implement the resetStats method, which creates a new stockStats instance.

stockStats = new StockStats();

To run the consumer

1. Run the producer that you wrote in (p. 30) to inject simulated stock trade records into your
stream.

2. Verify that the access key and secret key pair retrieved earlier (when creating the IAM user) are saved
in the file ~/.aws/credentials .

3. Run the StockTradesProcessor class with the following arguments:

StockTradesProcessor StockTradeStream us-west-2

Note that if you created your stream in a Region other than us-west-2, you have to specify that
Region here instead.

After a minute, you should see output like the following, refreshed every minute thereafter:

 ****** Shard shardId-000000000001 stats for last 1 minute ******
 Most popular stock being bought: WMT, 27 buys.
 Most popular stock being sold: PTR, 14 sells.
 **

Additional Information About the Consumer

If you are familiar with the advantages of the Kinesis Client Library, discussed in Developing Consumers
Using the Kinesis Client Library 1.x (p. 116) and elsewhere, you might wonder why you should use
it here. Although you use only a single shard stream and a single consumer instance to process it, it is
still easier to implement the consumer using the KCL. Compare the code implementation steps in the
producer section to the consumer, and you can see the comparative ease of implementing a consumer.
This is largely due to the services that the KCL provides.

34

Amazon Kinesis Data Streams Developer Guide
Step 6: (Optional) Extending the Consumer

In this application, you focus on implementing a record processor class that can process individual
records. You don’t have to worry about how the records are fetched from Kinesis Data Streams; The KCL
fetches the records and invoke the record processor whenever there are new records available. Also, you
don’t have to worry about how many shards and consumer instances there are. If the stream is scaled up,
you don’t have to rewrite your application to handle more than one shard or one consumer instance.

The term checkpointing means recording the point in the stream up to the data records that have
been consumed and processed thus far, so that if the application crashes, the stream is read from that
point and not from the beginning of the stream. The subject of checkpointing and the various design
patterns and best practices for it are outside the scope of this chapter. However, it is something you may
encounter in production environments.

As you learned in (p. 30), the put operations in the Kinesis Data Streams API take a partition key as
input. Kinesis Data Streams uses a partition key as a mechanism to split records across multiple shards
(when there is more than one shard in the stream). The same partition key always routes to the same
shard. This allows the consumer that processes a particular shard to be designed with the assumption
that records with the same partition key are only sent to that consumer, and no records with the same
partition key end up at any other consumer. Therefore, a consumer's worker can aggregate all records
with the same partition key without worrying that it might be missing needed data.

In this application, the consumer's processing of records is not intensive, so you can use one shard and
do the processing in the same thread as the KCL thread. However, in practice, consider first scaling up
the number of shards. In some cases you may want to switch processing to a different thread, or use
a thread pool if your record processing is expected to be intensive. In this way, the KCL can fetch new
records more quickly while the other threads can process the records in parallel. Multithreaded design is
not trivial and should be approached with advanced techniques, so increasing your shard count is usually
the most effective and easiest way to scale up.

Next Steps
Step 6: (Optional) Extending the Consumer (p. 35)

Step 6: (Optional) Extending the Consumer
The application in the Tutorial: Analyzing Real-Time Stock Data Using Kinesis Data Streams (p. 23)
might already be sufficient for your purposes. This optional section shows how you can extend the
consumer code for a slightly more elaborate scenario.

If you want to know about the biggest sell orders each minute, you can modify the StockStats class in
three places to accommodate this new priority.

To extend the consumer

1. Add new instance variables:

 // Ticker symbol of the stock that had the largest quantity of shares sold
 private String largestSellOrderStock;
 // Quantity of shares for the largest sell order trade
 private long largestSellOrderQuantity;

2. Add the following code to addStockTrade:

 if (type == TradeType.SELL) {
 if (largestSellOrderStock == null || trade.getQuantity() >
 largestSellOrderQuantity) {
 largestSellOrderStock = trade.getTickerSymbol();
 largestSellOrderQuantity = trade.getQuantity();
 }

35

Amazon Kinesis Data Streams Developer Guide
Step 7: Finishing Up

 }

3. Modify the toString method to print the additional information:

 public String toString() {
 return String.format(
 "Most popular stock being bought: %s, %d buys.%n" +
 "Most popular stock being sold: %s, %d sells.%n" +
 "Largest sell order: %d shares of %s.",
 getMostPopularStock(TradeType.BUY),
 getMostPopularStockCount(TradeType.BUY),
 getMostPopularStock(TradeType.SELL),
 getMostPopularStockCount(TradeType.SELL),
 largestSellOrderQuantity, largestSellOrderStock);
 }

If you run the consumer now (remember to run the producer also), you should see output similar to this:

 ****** Shard shardId-000000000001 stats for last 1 minute ******
 Most popular stock being bought: WMT, 27 buys.
 Most popular stock being sold: PTR, 14 sells.
 Largest sell order: 996 shares of BUD.
 **

Next Steps
Step 7: Finishing Up (p. 36)

Step 7: Finishing Up
Because you are paying to use the Kinesis data stream, make sure that you delete it and the
corresponding Amazon DynamoDB table when you are done with it. Nominal charges occur on an active
stream even when you aren't sending and getting records. This is because an active stream is using
resources by continuously "listening" for incoming records and requests to get records.

To delete the stream and table

1. Shut down any producers and consumers that you may still have running.
2. Open the Kinesis console at https://console.aws.amazon.com/kinesis.
3. Choose the stream that you created for this application (StockTradeStream).
4. Choose Delete Stream.
5. Open the DynamoDB console at https://console.aws.amazon.com/dynamodb/.
6. Delete the StockTradesProcessor table.

Summary
Processing a large amount of data in near-real time doesn’t require writing any magical code or
developing a huge infrastructure. It is as simple as writing logic to process a small amount of data (like
writing processRecord(Record)) but using Kinesis Data Streams to scale so that it works for a large
amount of streaming data. You don’t have to worry about how your processing would scale because
Kinesis Data Streams handles it for you. All you have to do is send your streaming records to Kinesis Data
Streams and write the logic to process each new record received.

Here are some potential enhancements for this application.

36

https://console.aws.amazon.com/kinesis
https://console.aws.amazon.com/dynamodb/

Amazon Kinesis Data Streams Developer Guide
Step 7: Finishing Up

Aggregate across all shards

Currently, you get stats resulting from aggregation of the data records received by a single worker
from a single shard. (A shard cannot be processed by more than one worker in a single application
at the same time.) Of course, when you scale and have more than one shard, you might want to
aggregate across all shards. TYou can do this by having a pipeline architecture where the output
of each worker is fed into another stream with a single shard, which is processed by a worker that
aggregates the outputs of the first stage. Because the data from the first stage is limited (one
sample per minute per shard), it would easily be handled by one shard.

Scale processing

When the stream scales up to have many shards (because many producers are sending data), the way
to scale the processing is to add more workers. You can run the workers in Amazon EC2 instances
and use Auto Scaling groups.

Use connectors to Amazon S3/DynamoDB/Amazon Redshift/Storm

As a stream is continuously processed, its output can be sent to other destinations. AWS provides
connectors to integrate Kinesis Data Streams with other AWS services and third-party tools.

Next Steps
• For more information about using Kinesis Data Streams API operations, see Developing Producers

Using the Amazon Kinesis Data Streams API with the AWS SDK for Java (p. 98), Developing
Consumers Using the Kinesis Data Streams API with the AWS SDK for Java (p. 134), and Creating and
Managing Streams (p. 38).

• For more information about the Kinesis Client Library, see Developing Consumers Using the Kinesis
Client Library 1.x (p. 116).

• For more information about how to optimize your application, see Advanced Topics (p. 157).

37

https://github.com/awslabs/amazon-kinesis-connectors

Amazon Kinesis Data Streams Developer Guide
Creating a Stream

Creating and Managing Streams

These examples discuss the Amazon Kinesis Data Streams API and use the AWS SDK for Java to create,
delete, and work with a Kinesis data stream.

The Java example code in this chapter demonstrates how to perform basic Kinesis Data Streams API
operations, and are divided up logically by operation type. These examples do not represent production-
ready code, in that they do not check for all possible exceptions, or account for all possible security
or performance considerations. Also, you can call the Kinesis Data Streams API using other different
programming languages. For more information about all available AWS SDKs, see Start Developing with
Amazon Web Services.

Topics

• Creating a Stream (p. 38)

• Listing Streams (p. 40)

• Listing Shards (p. 41)

• Retrieving Shards from a Stream (p. 42)

• Deleting a Stream (p. 42)

• Resharding a Stream (p. 42)

• Changing the Data Retention Period (p. 47)

• Tagging Your Streams in Amazon Kinesis Data Streams (p. 48)

• Monitoring Streams in Amazon Kinesis Data Streams (p. 51)

• Controlling Access to Amazon Kinesis Data Streams Resources Using IAM (p. 77)

• Using Server-Side Encryption (p. 80)

• Using Amazon Kinesis Data Streams with Interface VPC Endpoints (p. 85)

• Managing Kinesis Data Streams Using the Console (p. 86)

Creating a Stream
Use the following steps to create your Kinesis data stream.

Build the Kinesis Data Streams Client
Before you can work with Kinesis data streams, you must build a client object. The following Java code
instantiates a client builder and uses it to set the Region, credentials, and the client configuration. It then
builds a client object.

AmazonKinesisClientBuilder clientBuilder = AmazonKinesisClientBuilder.standard();

clientBuilder.setRegion(regionName);
clientBuilder.setCredentials(credentialsProvider);
clientBuilder.setClientConfiguration(config);

38

https://docs.aws.amazon.com/kinesis/latest/APIReference/
https://aws.amazon.com/sdk-for-java/
https://docs.aws.amazon.com/kinesis/latest/APIReference/
https://aws.amazon.com/developers/getting-started/
https://aws.amazon.com/developers/getting-started/

Amazon Kinesis Data Streams Developer Guide
Create the Stream

AmazonKinesis client = clientBuilder.build();

For more information, see Kinesis Data Streams Regions and Endpoints in the AWS General Reference.

Create the Stream
Now that you have created your Kinesis Data Streams client, you can create a stream to work with, which
you can accomplish with the Kinesis Data Streams console, or programmatically. To create a stream
programmatically, instantiate a CreateStreamRequest object and specify a name for the stream and
the number of shards for the stream to use.

CreateStreamRequest createStreamRequest = new CreateStreamRequest();
createStreamRequest.setStreamName(myStreamName);
createStreamRequest.setShardCount(myStreamSize);

The stream name identifies the stream. The name is scoped to the AWS account used by the application.
It is also scoped by Region. That is, two streams in two different AWS accounts can have the same name,
and two streams in the same AWS account but in two different Regions can have the same name, but not
two streams on the same account and in the same Region.

The throughput of the stream is a function of the number of shards; more shards are required for greater
provisioned throughput. More shards also increase the cost that AWS charges for the stream. For more
information about calculating an appropriate number of shards for your application, see Determining the
Initial Size of a Kinesis Data Stream (p. 5).

After the createStreamRequest object is configured, create a stream by calling the createStream
method on the client. After calling createStream, wait for the stream to reach the ACTIVE state before
performing any operations on the stream. To check the state of the stream, call the describeStream
method. However, describeStream throws an exception if the stream does not exist. Therefore,
enclose the describeStream call in a try/catch block.

client.createStream(createStreamRequest);
DescribeStreamRequest describeStreamRequest = new DescribeStreamRequest();
describeStreamRequest.setStreamName(myStreamName);

long startTime = System.currentTimeMillis();
long endTime = startTime + (10 * 60 * 1000);
while (System.currentTimeMillis() < endTime) {
 try {
 Thread.sleep(20 * 1000);
 }
 catch (Exception e) {}

 try {
 DescribeStreamResult describeStreamResponse =
 client.describeStream(describeStreamRequest);
 String streamStatus = describeStreamResponse.getStreamDescription().getStreamStatus();
 if (streamStatus.equals("ACTIVE")) {
 break;
 }
 //
 // sleep for one second
 //
 try {
 Thread.sleep(1000);
 }
 catch (Exception e) {}
 }
 catch (ResourceNotFoundException e) {}
}

39

https://docs.aws.amazon.com/general/latest/gr/rande.html#ak_region

Amazon Kinesis Data Streams Developer Guide
Listing Streams

if (System.currentTimeMillis() >= endTime) {
 throw new RuntimeException("Stream " + myStreamName + " never went active");
}

Listing Streams
As described in the previous section, streams are scoped to the AWS account associated with the AWS
credentials used to instantiate the Kinesis Data Streams client and also to the Region specified for the
client. An AWS account could have many streams active at one time. You can list your streams in the
Kinesis Data Streams console, or programmatically. The code in this section shows how to list all the
streams for your AWS account.

ListStreamsRequest listStreamsRequest = new ListStreamsRequest();
listStreamsRequest.setLimit(20);
ListStreamsResult listStreamsResult = client.listStreams(listStreamsRequest);
List<String> streamNames = listStreamsResult.getStreamNames();

This code example first creates a new instance of ListStreamsRequest and calls its setLimit method
to specify that a maximum of 20 streams should be returned for each call to listStreams. If you
do not specify a value for setLimit, Kinesis Data Streams returns a number of streams less than or
equal to the number in the account. The code then passes listStreamsRequest to the listStreams
method of the client. The return value listStreams is stored in a ListStreamsResult object. The
code calls the getStreamNames method on this object and stores the returned stream names in the
streamNames list. Note that Kinesis Data Streams might return fewer streams than specified by the
specified limit even if there are more streams than that in the account and Region. To ensure that you
retrieve all the streams, use the getHasMoreStreams method as described in the next code example.

while (listStreamsResult.getHasMoreStreams())
{
 if (streamNames.size() > 0) {
 listStreamsRequest.setExclusiveStartStreamName(streamNames.get(streamNames.size() -
 1));
 }
 listStreamsResult = client.listStreams(listStreamsRequest);
 streamNames.addAll(listStreamsResult.getStreamNames());
}

This code calls the getHasMoreStreams method on listStreamsRequest to check if there are
additional streams available beyond the ones returned in the initial call to listStreams. If so, the code
calls the setExclusiveStartStreamName method with the name of the last stream that was returned
in the previous call to listStreams. The setExclusiveStartStreamName method causes the next
call to listStreams to start after that stream. The group of stream names returned by that call is then
added to the streamNames list. This process continues until all the stream names have been collected in
the list.

The streams returned by listStreams can be in one of the following states:

• CREATING

• ACTIVE

• UPDATING

• DELETING

You can check the state of a stream using the describeStream method, as shown in the previous
section, Creating a Stream (p. 38).

40

Amazon Kinesis Data Streams Developer Guide
Listing Shards

Listing Shards
A stream can have one or more shards. The following example shows how you can get a list of the shards
in a stream. For a full description of the main operation used in this example and all of the parameters
you can set for the operation, see ListShards.

import software.amazon.awssdk.services.kinesis.KinesisAsyncClient;
import software.amazon.awssdk.services.kinesis.model.ListShardsRequest;
import software.amazon.awssdk.services.kinesis.model.ListShardsResponse;

import java.util.concurrent.TimeUnit;

public class ShardSample {

 public static void main(String[] args) {

 KinesisAsyncClient client = KinesisAsyncClient.builder().build();

 ListShardsRequest request = ListShardsRequest
 .builder().streamName("myFirstStream")
 .build();

 try {
 ListShardsResponse response = client.listShards(request).get(5000,
 TimeUnit.MILLISECONDS);
 System.out.println(response.toString());
 } catch (Exception e) {
 System.out.println(e.getMessage());
 }
 }
}

To run the previous code example you can use a POM file like the following one.

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/
maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>kinesis.data.streams.samples</groupId>
 <artifactId>shards</artifactId>
 <version>1.0-SNAPSHOT</version>
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <configuration>
 <source>8</source>
 <target>8</target>
 </configuration>
 </plugin>
 </plugins>
 </build>
 <dependencies>
 <dependency>
 <groupId>software.amazon.awssdk</groupId>
 <artifactId>kinesis</artifactId>
 <version>2.0.0</version>
 </dependency>

41

https://docs.aws.amazon.com/kinesis/latest/APIReference/API_ListShards.html

Amazon Kinesis Data Streams Developer Guide
Retrieving Shards from a Stream

 </dependencies>
</project>

Retrieving Shards from a Stream
The response object returned by the describeStream method enables you to retrieve information
about the shards that comprise the stream. To retrieve the shards, call the getShards method on this
object. This method might not return all the shards from the stream in a single call. In the following
code, we check the getHasMoreShards method on getStreamDescription to see if there are
additional shards that were not returned. If so, that is, if this method returns true, we continue to call
getShards in a loop, adding each new batch of returned shards to our list of shards. The loop exits
when getHasMoreShards returns false; that is, all shards have been returned. Note that getShards
does not return shards that are in the EXPIRED state. For more information about shard states, including
the EXPIRED state, see Data Routing, Data Persistence, and Shard State after a Reshard (p. 46).

DescribeStreamRequest describeStreamRequest = new DescribeStreamRequest();
describeStreamRequest.setStreamName(myStreamName);
List<Shard> shards = new ArrayList<>();
String exclusiveStartShardId = null;
do {
 describeStreamRequest.setExclusiveStartShardId(exclusiveStartShardId);
 DescribeStreamResult describeStreamResult =
 client.describeStream(describeStreamRequest);
 shards.addAll(describeStreamResult.getStreamDescription().getShards());
 if (describeStreamResult.getStreamDescription().getHasMoreShards() && shards.size() >
 0) {
 exclusiveStartShardId = shards.get(shards.size() - 1).getShardId();
 } else {
 exclusiveStartShardId = null;
 }
} while (exclusiveStartShardId != null);

Deleting a Stream
You can delete a stream with the Kinesis Data Streams console, or programmatically. To delete a stream
programmatically, use DeleteStreamRequest, as shown in the following code.

DeleteStreamRequest deleteStreamRequest = new DeleteStreamRequest();
deleteStreamRequest.setStreamName(myStreamName);
client.deleteStream(deleteStreamRequest);

Shut down any applications that are operating on the stream before you delete it. If an application
attempts to operate on a deleted stream, it receives ResourceNotFound exceptions. Also, if you
subsequently create a new stream that has the same name as your previous stream, and applications
that were operating on the previous stream are still running, these applications might try to interact with
the new stream as though it were the previous stream—with unpredictable results.

Resharding a Stream
Important
You can reshard your stream using the UpdateShardCount API. Otherwise, you can continue to
perform splits and merges as explained here.

42

https://docs.aws.amazon.com/kinesis/latest/APIReference/API_UpdateShardCount.html

Amazon Kinesis Data Streams Developer Guide
Strategies for Resharding

Amazon Kinesis Data Streams supports resharding, which lets you adjust the number of shards in your
stream to adapt to changes in the rate of data flow through the stream. Resharding is considered an
advanced operation. If you are new to Kinesis Data Streams, return to this subject after you are familiar
with all the other aspects of Kinesis Data Streams.

There are two types of resharding operations: shard split and shard merge. In a shard split, you divide a
single shard into two shards. In a shard merge, you combine two shards into a single shard. Resharding
is always pairwise in the sense that you cannot split into more than two shards in a single operation,
and you cannot merge more than two shards in a single operation. The shard or pair of shards that the
resharding operation acts on are referred to as parent shards. The shard or pair of shards that result from
the resharding operation are referred to as child shards.

Splitting increases the number of shards in your stream and therefore increases the data capacity of
the stream. Because you are charged on a per-shard basis, splitting increases the cost of your stream.
Similarly, merging reduces the number of shards in your stream and therefore decreases the data
capacity—and cost—of the stream.

Resharding is typically performed by an administrative application that is distinct from the producer
(put) applications and the consumer (get) applications. Such an administrative application monitors
the overall performance of the stream based on metrics provided by Amazon CloudWatch or based
on metrics collected from the producers and consumers. The administrative application also needs a
broader set of IAM permissions than the consumers or producers because the consumers and producers
usually should not need access to the APIs used for resharding. For more information about IAM
permissions for Kinesis Data Streams, see Controlling Access to Amazon Kinesis Data Streams Resources
Using IAM (p. 77).

Topics
• Strategies for Resharding (p. 43)
• Splitting a Shard (p. 44)
• Merging Two Shards (p. 45)
• After Resharding (p. 46)

Strategies for Resharding
The purpose of resharding in Amazon Kinesis Data Streams is to enable your stream to adapt to changes
in the rate of data flow. You split shards to increase the capacity (and cost) of your stream. You merge
shards to reduce the cost (and capacity) of your stream.

One approach to resharding could be to split every shard in the stream—which would double the
stream's capacity. However, this might provide more additional capacity than you actually need and
therefore create unnecessary cost.

You can also use metrics to determine which are your "hot" or "cold" shards, that is, shards that are
receiving much more data, or much less data, than expected. You could then selectively split the hot
shards to increase capacity for the hash keys that target those shards. Similarly, you could merge cold
shards to make better use of their unused capacity.

You can obtain some performance data for your stream from the Amazon CloudWatch metrics that
Kinesis Data Streams publishes. However, you can also collect some of your own metrics for your
streams. One approach would be to log the hash key values generated by the partition keys for your data
records. Recall that you specify the partition key at the time that you add the record to the stream.

putRecordRequest.setPartitionKey(String.format("myPartitionKey"));

Kinesis Data Streams uses MD5 to compute the hash key from the partition key. Because you specify the
partition key for the record, you could use MD5 to compute the hash key value for that record and log it.

43

http://en.wikipedia.org/wiki/MD5

Amazon Kinesis Data Streams Developer Guide
Splitting a Shard

You could also log the IDs of the shards that your data records are assigned to. The shard ID is available
by using the getShardId method of the putRecordResults object returned by the putRecords
method, and the putRecordResult object returned by the putRecord method.

String shardId = putRecordResult.getShardId();

With the shard IDs and the hash key values, you can determine which shards and hash keys are receiving
the most or least traffic. You can then use resharding to provide more or less capacity, as appropriate for
these keys.

Splitting a Shard
To split a shard in Amazon Kinesis Data Streams, you need to specify how hash key values from the
parent shard should be redistributed to the child shards. When you add a data record to a stream, it is
assigned to a shard based on a hash key value. The hash key value is the MD5 hash of the partition key
that you specify for the data record at the time that you add the data record to the stream. Data records
that have the same partition key also have the same hash key value.

The possible hash key values for a given shard constitute a set of ordered contiguous non-negative
integers. This range of possible hash key values is given by the following:

shard.getHashKeyRange().getStartingHashKey();
shard.getHashKeyRange().getEndingHashKey();

When you split the shard, you specify a value in this range. That hash key value and all higher hash key
values are distributed to one of the child shards. All the lower hash key values are distributed to the
other child shard.

The following code demonstrates a shard split operation that redistributes the hash keys evenly between
each of the child shards, essentially splitting the parent shard in half. This is just one possible way of
dividing the parent shard. You could, for example, split the shard so that the lower one-third of the keys
from the parent go to one child shard and the upper two-thirds of the keys go to the other child shard.
However, for many applications, splitting shards in half is an effective approach.

The code assumes that myStreamName holds the name of your stream and the object variable shard
holds the shard to split. Begin by instantiating a new splitShardRequest object and setting the
stream name and shard ID.

SplitShardRequest splitShardRequest = new SplitShardRequest();
splitShardRequest.setStreamName(myStreamName);
splitShardRequest.setShardToSplit(shard.getShardId());

Determine the hash key value that is half-way between the lowest and highest values in the shard. This is
the starting hash key value for the child shard that will contain the upper half of the hash keys from the
parent shard. Specify this value in the setNewStartingHashKey method. You need specify only this
value. Kinesis Data Streams automatically distributes the hash keys below this value to the other child
shard that is created by the split. The last step is to call the splitShard method on the Kinesis Data
Streams client.

BigInteger startingHashKey = new BigInteger(shard.getHashKeyRange().getStartingHashKey());
BigInteger endingHashKey = new BigInteger(shard.getHashKeyRange().getEndingHashKey());
String newStartingHashKey = startingHashKey.add(endingHashKey).divide(new
 BigInteger("2")).toString();

splitShardRequest.setNewStartingHashKey(newStartingHashKey);
client.splitShard(splitShardRequest);

44

http://en.wikipedia.org/wiki/MD5

Amazon Kinesis Data Streams Developer Guide
Merging Two Shards

The first step after this procedure is shown in Waiting for a Stream to Become Active Again (p. 46).

Merging Two Shards
A shard merge operation takes two specified shards and combines them into a single shard. After the
merge, the single child shard receives data for all hash key values covered by the two parent shards.

Shard Adjacency

To merge two shards, the shards must be adjacent. Two shards are considered adjacent if the union of
the hash key ranges for the two shards forms a contiguous set with no gaps. For example, suppose that
you have two shards, one with a hash key range of 276...381 and the other with a hash key range of
382...454. You could merge these two shards into a single shard that would have a hash key range of
276...454.

To take another example, suppose that you have two shards, one with a hash key range of 276..381 and
the other with a hash key range of 455...560. You could not merge these two shards because there would
be one or more shards between these two that cover the range 382..454.

The set of all OPEN shards in a stream—as a group—always spans the entire range of MD5 hash key
values. For more information about shard states—such as CLOSED—see Data Routing, Data Persistence,
and Shard State after a Reshard (p. 46).

To identify shards that are candidates for merging, you should filter out all shards that are in a CLOSED
state. Shards that are OPEN—that is, not CLOSED—have an ending sequence number of null. You can
test the ending sequence number for a shard using:

if(null == shard.getSequenceNumberRange().getEndingSequenceNumber())
{
 // Shard is OPEN, so it is a possible candidate to be merged.
}

After filtering out the closed shards, sort the remaining shards by the highest hash key value supported
by each shard. You can retrieve this value using:

shard.getHashKeyRange().getEndingHashKey();

If two shards are adjacent in this filtered, sorted list, they can be merged.

Code for the Merge Operation

The following code merges two shards. The code assumes that myStreamName holds the name of your
stream and the object variables shard1 and shard2 hold the two adjacent shards to merge.

For the merge operation, begin by instantiating a new mergeShardsRequest object. Specify the
stream name with the setStreamName method. Then specify the two shards to merge using the
setShardToMerge and setAdjacentShardToMerge methods. Finally, call the mergeShards method
on the Kinesis Data Streams client to carry out the operation.

MergeShardsRequest mergeShardsRequest = new MergeShardsRequest();
mergeShardsRequest.setStreamName(myStreamName);
mergeShardsRequest.setShardToMerge(shard1.getShardId());
mergeShardsRequest.setAdjacentShardToMerge(shard2.getShardId());
client.mergeShards(mergeShardsRequest);

The first step after this procedure is shown in Waiting for a Stream to Become Active Again (p. 46).

45

Amazon Kinesis Data Streams Developer Guide
After Resharding

After Resharding
After any kind of resharding procedure in Amazon Kinesis Data Streams, and before normal record
processing resumes, other procedures and considerations are required. The following sections describe
these.

Topics
• Waiting for a Stream to Become Active Again (p. 46)
• Data Routing, Data Persistence, and Shard State after a Reshard (p. 46)

Waiting for a Stream to Become Active Again
After you call a resharding operation, either splitShard or mergeShards, you need to wait for the
stream to become active again. The code to use is the same as when you wait for a stream to become
active after creating a stream (p. 38). That code is as follows:

DescribeStreamRequest describeStreamRequest = new DescribeStreamRequest();
describeStreamRequest.setStreamName(myStreamName);

long startTime = System.currentTimeMillis();
long endTime = startTime + (10 * 60 * 1000);
while (System.currentTimeMillis() < endTime)
{
 try {
 Thread.sleep(20 * 1000);
 }
 catch (Exception e) {}

 try {
 DescribeStreamResult describeStreamResponse =
 client.describeStream(describeStreamRequest);
 String streamStatus = describeStreamResponse.getStreamDescription().getStreamStatus();
 if (streamStatus.equals("ACTIVE")) {
 break;
 }
 //
 // sleep for one second
 //
 try {
 Thread.sleep(1000);
 }
 catch (Exception e) {}
 }
 catch (ResourceNotFoundException e) {}
}
if (System.currentTimeMillis() >= endTime)
{
 throw new RuntimeException("Stream " + myStreamName + " never went active");
}

Data Routing, Data Persistence, and Shard State after a Reshard
Kinesis Data Streams is a real-time data streaming service, which is to say that your applications should
assume that data is flowing continuously through the shards in your stream. When you reshard, data
records that were flowing to the parent shards are re-routed to flow to the child shards based on
the hash key values that the data-record partition keys map to. However, any data records that were
in the parent shards before the reshard remain in those shards. In other words, the parent shards
do not disappear when the reshard occurs. They persist along with the data they contained before

46

Amazon Kinesis Data Streams Developer Guide
Changing the Data Retention Period

the reshard. The data records in the parent shards are accessible using the getShardIterator and
getRecords (p. 134) operations in the Kinesis Data Streams API, or through the Kinesis Client Library.

Note
Data records are accessible from the time they are added to the stream to the current retention
period. This holds true regardless of any changes to the shards in the stream during that
time period. For more information about a stream’s retention period, see Changing the Data
Retention Period (p. 47).

In the process of resharding, a parent shard transitions from an OPEN state to a CLOSED state to an
EXPIRED state.

• OPEN: Before a reshard operation, a parent shard is in the OPEN state, which means that data records
can be both added to the shard and retrieved from the shard.

• CLOSED: After a reshard operation, the parent shard transitions to a CLOSED state. This means that
data records are no longer added to the shard. Data records that would have been added to this shard
are now added to a child shard instead. However, data records can still be retrieved from the shard for
a limited time.

• EXPIRED: After the stream's retention period has expired, all the data records in the parent shard
have expired and are no longer accessible. At this point, the shard itself transitions to an EXPIRED
state. Calls to getStreamDescription().getShards to enumerate the shards in the stream do not
include EXPIRED shards in the list shards returned. For more information about a stream’s retention
period, see Changing the Data Retention Period (p. 47).

After the reshard has occurred and the stream is again in an ACTIVE state, you could immediately begin
to read data from the child shards. However, the parent shards that remain after the reshard could still
contain data that you haven't read yet that was added to the stream before the reshard. If you read
data from the child shards before having read all data from the parent shards, you could read data for a
particular hash key out of the order given by the data records' sequence numbers. Therefore, assuming
that the order of the data is important, you should, after a reshard, always continue to read data from
the parent shards until it is exhausted. Only then should you begin reading data from the child shards.
When getRecordsResult.getNextShardIterator returns null, it indicates that you have read all
the data in the parent shard. If you are reading data using the Kinesis Client Library, the library ensures
that you receive the data in order even if a reshard occurs.

Changing the Data Retention Period
Amazon Kinesis Data Streams supports changes to the data record retention period of your stream. A
Kinesis data stream is an ordered sequence of data records meant to be written to and read from in real
time. Data records are therefore stored in shards in your stream temporarily. The time period from when
a record is added to when it is no longer accessible is called the retention period. A Kinesis data stream
stores records from 24 hours by default, up to 168 hours.

You can increase the retention period up to 168 hours using the IncreaseStreamRetentionPeriod
operation. You can decrease the retention period down to a minimum of 24 hours using the
DecreaseStreamRetentionPeriod operation. The request syntax for both operations includes the stream
name and the retention period in hours. Finally, you can check the current retention period of a stream
by calling the DescribeStream operation.

Both operations are easy to use. The following is an example of changing the retention period using the
AWS CLI:

aws kinesis increase-stream-retention-period --stream-name retentionPeriodDemo --retention-
period-hours 72

47

https://docs.aws.amazon.com/kinesis/latest/APIReference/API_IncreaseStreamRetentionPeriod.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_DecreaseStreamRetentionPeriod.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_DescribeStream.html

Amazon Kinesis Data Streams Developer Guide
Tagging Your Streams

Kinesis Data Streams stops making records inaccessible at the old retention period within several
minutes of increasing the retention period. For example, changing the retention period from 24 hours to
48 hours means that records added to the stream 23 hours 55 minutes prior are still available after 24
hours.

Kinesis Data Streams almost immediately makes records older than the new retention period
inaccessible upon decreasing the retention period. Therefore, take great care when calling the
DecreaseStreamRetentionPeriod operation.

Set your data retention period to ensure that your consumers are able to read data before it expires,
if problems occur. You should carefully consider all possibilities, such as an issue with your record
processing logic or a downstream dependency being down for a long period of time. Think of the
retention period as a safety net to allow more time for your data consumers to recover. The retention
period API operations allow you to set this up proactively or to respond to operational events reactively.

Additional charges apply for streams with a retention period set above 24 hours. For more information,
see Amazon Kinesis Data Streams Pricing.

Tagging Your Streams in Amazon Kinesis Data
Streams

You can assign your own metadata to streams you create in Amazon Kinesis Data Streams in the form
of tags. A tag is a key-value pair that you define for a stream. Using tags is a simple yet powerful way to
manage AWS resources and organize data, including billing data.

Contents

• Tag Basics (p. 48)

• Tracking Costs Using Tagging (p. 49)

• Tag Restrictions (p. 49)

• Tagging Streams Using the Kinesis Data Streams Console (p. 49)

• Tagging Streams Using the AWS CLI (p. 50)

• Tagging Streams Using the Kinesis Data Streams API (p. 50)

Tag Basics
You use the Kinesis Data Streams console, AWS CLI, or Kinesis Data Streams API to complete the
following tasks:

• Add tags to a stream

• List the tags for your streams

• Remove tags from a stream

You can use tags to categorize your streams. For example, you can categorize streams by purpose, owner,
or environment. Because you define the key and value for each tag, you can create a custom set of
categories to meet your specific needs. For example, you might define a set of tags that helps you track
streams by owner and associated application. Here are several examples of tags:

• Project: Project name

• Owner: Name

48

https://docs.aws.amazon.com/kinesis/latest/APIReference/API_DecreaseStreamRetentionPeriod.html
https://aws.amazon.com/kinesis/pricing/

Amazon Kinesis Data Streams Developer Guide
Tracking Costs Using Tagging

• Purpose: Load testing

• Application: Application name

• Environment: Production

Tracking Costs Using Tagging
You can use tags to categorize and track your AWS costs. When you apply tags to your AWS resources,
including streams, your AWS cost allocation report includes usage and costs aggregated by tags. You
can apply tags that represent business categories (such as cost centers, application names, or owners)
to organize your costs across multiple services. For more information, see Use Cost Allocation Tags for
Custom Billing Reports in the AWS Billing and Cost Management User Guide.

Tag Restrictions
The following restrictions apply to tags.

Basic restrictions

• The maximum number of tags per resource (stream) is 50.

• Tag keys and values are case-sensitive.

• You can't change or edit tags for a deleted stream.

Tag key restrictions

• Each tag key must be unique. If you add a tag with a key that's already in use, your new tag overwrites
the existing key-value pair.

• You can't start a tag key with aws: because this prefix is reserved for use by AWS. AWS creates tags
that begin with this prefix on your behalf, but you can't edit or delete them.

• Tag keys must be between 1 and 128 Unicode characters in length.

• Tag keys must consist of the following characters: Unicode letters, digits, white space, and the
following special characters: _ . / = + - @.

Tag value restrictions

• Tag values must be between 0 and 255 Unicode characters in length.

• Tag values can be blank. Otherwise, they must consist of the following characters: Unicode letters,
digits, white space, and any of the following special characters: _ . / = + - @.

Tagging Streams Using the Kinesis Data Streams
Console
You can add, list, and remove tags using the Kinesis Data Streams console.

To view the tags for a stream

1. Open the Kinesis Data Streams console. In the navigation bar, expand the region selector and select
a region.

2. On the Stream List page, select a stream.

49

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html

Amazon Kinesis Data Streams Developer Guide
Tagging Streams Using the AWS CLI

3. On the Stream Details page, click the Tags tab.

To add a tag to a stream

1. Open the Kinesis Data Streams console. In the navigation bar, expand the region selector and select
a region.

2. On the Stream List page, select a stream.
3. On the Stream Details page, click the Tags tab.
4. Specify the tag key in the Key field, optionally specify a tag value in the Value field, and then click

Add Tag.

If the Add Tag button is not enabled, either the tag key or tag value that you specified don't meet
the tag restrictions. For more information, see Tag Restrictions (p. 49).

5. To view your new tag in the list on the Tags tab, click the refresh icon.

To remove a tag from a stream

1. Open the Kinesis Data Streams console. In the navigation bar, expand the region selector and select
a region.

2. On the Stream List page, select a stream.
3. On the Stream Details page, click the Tags tab, and then click the Remove icon for the tag.
4. In the Delete Tag dialog box, click Yes, Delete.

Tagging Streams Using the AWS CLI
You can add, list, and remove tags using the AWS CLI. For examples, see the following documentation.

add-tags-to-stream

Adds or updates tags for the specified stream.
list-tags-for-stream

Lists the tags for the specified stream.
remove-tags-from-stream

Removes tags from the specified stream.

Tagging Streams Using the Kinesis Data Streams API
You can add, list, and remove tags using the Kinesis Data Streams API. For examples, see the following
documentation:

AddTagsToStream

Adds or updates tags for the specified stream.
ListTagsForStream

Lists the tags for the specified stream.
RemoveTagsFromStream

Removes tags from the specified stream.

50

https://docs.aws.amazon.com/cli/latest/reference/kinesis/add-tags-to-stream.html
https://docs.aws.amazon.com/cli/latest/reference/kinesis/list-tags-for-stream.html
https://docs.aws.amazon.com/cli/latest/reference/kinesis/remove-tags-from-stream.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_AddTagsToStream.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_ListTagsForStream.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_RemoveTagsFromStream.html

Amazon Kinesis Data Streams Developer Guide
Monitoring Streams

Monitoring Streams in Amazon Kinesis Data
Streams

You can monitor your data streams in Amazon Kinesis Data Streams using the following features:

• CloudWatch metrics (p. 51)— Kinesis Data Streams sends Amazon CloudWatch custom metrics with
detailed monitoring for each stream.

• Kinesis Agent (p. 60)— The Kinesis Agent publishes custom CloudWatch metrics to help assess if the
agent is working as expected.

• API logging (p. 61)— Kinesis Data Streams uses AWS CloudTrail to log API calls and store the data in
an Amazon S3 bucket.

• Kinesis Client Library (p. 65)— Kinesis Client Library (KCL) provides metrics per shard, worker, and
KCL application.

• Kinesis Producer Library (p. 73)— Kinesis Producer Library (KPL) provides metrics per shard, worker,
and KPL application.

Monitoring the Amazon Kinesis Data Streams Service
with Amazon CloudWatch
Amazon Kinesis Data Streams and Amazon CloudWatch are integrated so that you can collect, view, and
analyze CloudWatch metrics for your Kinesis data streams. For example, to track shard usage, you can
monitor the PutRecords.Bytes and GetRecords.Bytes metrics and compare them to the number of
shards in the stream.

The metrics that you configure for your streams are automatically collected and pushed to CloudWatch
every minute. Metrics are archived for two weeks; after that period, the data is discarded.

The following table describes basic stream-level and enhanced shard-level monitoring for Kinesis data
streams.

Type Description

Basic (stream-level) Stream-level data is sent automatically every
minute at no charge.

Enhanced (shard-level) Shard-level data is sent every minute for an
additional cost. To get this level of data, you must
specifically enable it for the stream using the
EnableEnhancedMonitoring operation.

For information about pricing, see the Amazon
CloudWatch product page.

Amazon Kinesis Data Streams Dimensions and Metrics

Kinesis Data Streams sends metrics to CloudWatch at two levels: the stream level and, optionally, the
shard level. Stream-level metrics are for most common monitoring use cases in normal conditions.
Shard-level metrics are for specific monitoring tasks, usually related to troubleshooting, and are enabled
using the EnableEnhancedMonitoring operation.

51

https://docs.aws.amazon.com/kinesis/latest/APIReference/API_EnableEnhancedMonitoring.html
https://aws.amazon.com/cloudwatch
https://aws.amazon.com/cloudwatch
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_EnableEnhancedMonitoring.html

Amazon Kinesis Data Streams Developer Guide
Monitoring the Service with CloudWatch

For an explanation of the statistics gathered from CloudWatch metrics, see CloudWatch Statistics in the
Amazon CloudWatch User Guide.

Topics
• Basic Stream-level Metrics (p. 52)
• Enhanced Shard-level Metrics (p. 57)
• Dimensions for Amazon Kinesis Data Streams Metrics (p. 59)
• Recommended Amazon Kinesis Data Streams Metrics (p. 59)

Basic Stream-level Metrics

The AWS/Kinesis namespace includes the following stream-level metrics.

Kinesis Data Streams sends these stream-level metrics to CloudWatch every minute. These metrics are
always available.

Metric Description

GetRecords.Bytes The number of bytes retrieved from the Kinesis stream,
measured over the specified time period. Minimum,
Maximum, and Average statistics represent the bytes in a
single GetRecords operation for the stream in the specified
time period.

Shard-level metric name: OutgoingBytes

Dimensions: StreamName

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Bytes

GetRecords.IteratorAge This metric is deprecated. Use
GetRecords.IteratorAgeMilliseconds.

GetRecords.IteratorAgeMillisecondsThe age of the last record in all GetRecords calls made
against an Kinesis stream, measured over the specified time
period. Age is the difference between the current time and
when the last record of the GetRecords call was written
to the stream. The Minimum and Maximum statistics can be
used to track the progress of Kinesis consumer applications.
A value of zero indicates that the records being read are
completely caught up with the stream.

Shard-level metric name: IteratorAgeMilliseconds

Dimensions: StreamName

Statistics: Minimum, Maximum, Average, Samples

Units: Milliseconds

GetRecords.Latency The time taken per GetRecords operation, measured over
the specified time period.

Dimensions: StreamName

Statistics: Minimum, Maximum, Average

52

https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/cloudwatch_concepts.html#Statistic

Amazon Kinesis Data Streams Developer Guide
Monitoring the Service with CloudWatch

Metric Description

Units: Milliseconds

GetRecords.Records The number of records retrieved from the shard, measured
over the specified time period. Minimum, Maximum,
and Average statistics represent the records in a single
GetRecords operation for the stream in the specified time
period.

Shard-level metric name: OutgoingRecords

Dimensions: StreamName

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Count

GetRecords.Success The number of successful GetRecords operations per
stream, measured over the specified time period.

Dimensions: StreamName

Statistics: Average, Sum, Samples

Units: Count

IncomingBytes The number of bytes successfully put to the Kinesis stream
over the specified time period. This metric includes bytes
from PutRecord and PutRecords operations. Minimum,
Maximum, and Average statistics represent the bytes in a
single put operation for the stream in the specified time
period.

Shard-level metric name: IncomingBytes

Dimensions: StreamName

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Bytes

IncomingRecords The number of records successfully put to the Kinesis stream
over the specified time period. This metric includes record
counts from PutRecord and PutRecords operations.
Minimum, Maximum, and Average statistics represent the
records in a single put operation for the stream in the
specified time period.

Shard-level metric name: IncomingRecords

Dimensions: StreamName

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Count

53

Amazon Kinesis Data Streams Developer Guide
Monitoring the Service with CloudWatch

Metric Description

PutRecord.Bytes The number of bytes put to the Kinesis stream using the
PutRecord operation over the specified time period.

Dimensions: StreamName

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Bytes

PutRecord.Latency The time taken per PutRecord operation, measured over
the specified time period.

Dimensions: StreamName

Statistics: Minimum, Maximum, Average

Units: Milliseconds

PutRecord.Success The number of successful PutRecord operations per Kinesis
stream, measured over the specified time period. Average
reflects the percentage of successful writes to a stream.

Dimensions: StreamName

Statistics: Average, Sum, Samples

Units: Count

PutRecords.Bytes The number of bytes put to the Kinesis stream using the
PutRecords operation over the specified time period.

Dimensions: StreamName

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Bytes

PutRecords.Latency The time taken per PutRecords operation, measured over
the specified time period.

Dimensions: StreamName

Statistics: Minimum, Maximum, Average

Units: Milliseconds

PutRecords.Records The number of successful records in a PutRecords
operation per Kinesis stream, measured over the specified
time period.

Dimensions: StreamName

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Count

54

Amazon Kinesis Data Streams Developer Guide
Monitoring the Service with CloudWatch

Metric Description

PutRecords.Success The number of PutRecords operations where at least one
record succeeded, per Kinesis stream, measured over the
specified time period.

Dimensions: StreamName

Statistics: Average, Sum, Samples

Units: Count

ReadProvisionedThroughputExceededThe number of GetRecords calls throttled for the stream
over the specified time period. The most commonly used
statistic for this metric is Average.

When the Minimum statistic has a value of 1, all records
were throttled for the stream during the specified time
period.

When the Maximum statistic has a value of 0 (zero), no
records were throttled for the stream during the specified
time period.

Shard-level metric name:
ReadProvisionedThroughputExceeded

Dimensions: StreamName

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Count

SubscribeToShard.RateExceeded This metric is emitted when a new subscription attempt fails
because there already is an active subscription by the same
consumer or if you exceed the number of calls per second
allowed for this operation.
Dimensions: StreamName, ConsumerName

SubscribeToShard.Success This metric records whether the SubscribeToShard
subscription was successfully established. The subscription
only lives for at most 5 minutes. Therefore, this metric gets
emitted at least once every 5 minutes.

Dimensions: StreamName, ConsumerName

SubscribeToShardEvent.Bytes The number of bytes received from the shard, measured over
the specified time period. Minimum, Maximum, and Average
statistics represent the bytes published in a single event for
the specified time period.

Shard-level metric name: OutgoingBytes

Dimensions: StreamName, ConsumerName

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Bytes

55

Amazon Kinesis Data Streams Developer Guide
Monitoring the Service with CloudWatch

Metric Description

SubscribeToShardEvent.MillisBehindLatestThe difference between the current time and when the last
record of the SubscribeToShard event was written to the
stream.

Dimensions: StreamName, ConsumerName

Statistics: Minimum, Maximum, Average, Samples

Units: Milliseconds

SubscribeToShardEvent.Records The number of records received from the shard, measured
over the specified time period. Minimum, Maximum, and
Average statistics represent the records in a single event for
the specified time period.

Shard-level metric name: OutgoingRecords

Dimensions: StreamName, ConsumerName

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Count

SubscribeToShardEvent.Success This metric is emitted every time an event is published
successfully. It is only emitted when there's an active
subscription.

Dimensions: StreamName, ConsumerName

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Count

WriteProvisionedThroughputExceededThe number of records rejected due to throttling for the
stream over the specified time period. This metric includes
throttling from PutRecord and PutRecords operations.
The most commonly used statistic for this metric is Average.

When the Minimum statistic has a non-zero value, records
were being throttled for the stream during the specified
time period.

When the Maximum statistic has a value of 0 (zero), no
records were being throttled for the stream during the
specified time period.

Shard-level metric name:
WriteProvisionedThroughputExceeded

Dimensions: StreamName

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Count

56

Amazon Kinesis Data Streams Developer Guide
Monitoring the Service with CloudWatch

Enhanced Shard-level Metrics

The AWS/Kinesis namespace includes the following shard-level metrics.

Kinesis sends the following shard-level metrics to CloudWatch every minute. These metrics are not
enabled by default. There is a charge for enhanced metrics emitted from Kinesis. For more information,
see Amazon CloudWatch Pricing under the heading Amazon CloudWatch Custom Metrics. The charges are
given per shard per metric per month.

Metric Description

IncomingBytes The number of bytes successfully put to the shard over
the specified time period. This metric includes bytes from
PutRecord and PutRecords operations. Minimum,
Maximum, and Average statistics represent the bytes in
a single put operation for the shard in the specified time
period.

Stream-level metric name: IncomingBytes

Dimensions: StreamName, ShardId

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Bytes

IncomingRecords The number of records successfully put to the shard over
the specified time period. This metric includes record counts
from PutRecord and PutRecords operations. Minimum,
Maximum, and Average statistics represent the records in
a single put operation for the shard in the specified time
period.

Stream-level metric name: IncomingRecords

Dimensions: StreamName, ShardId

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Count

IteratorAgeMilliseconds The age of the last record in all GetRecords calls made
against a shard, measured over the specified time period.
Age is the difference between the current time and when
the last record of the GetRecords call was written to the
stream. The Minimum and Maximum statistics can be used
to track the progress of Kinesis consumer applications. A
value of 0 (zero) indicates that the records being read are
completely caught up with the stream.

Stream-level metric name:
GetRecords.IteratorAgeMilliseconds

Dimensions: StreamName, ShardId

Statistics: Minimum, Maximum, Average, Samples

Units: Milliseconds

57

https://aws.amazon.com/cloudwatch/pricing/

Amazon Kinesis Data Streams Developer Guide
Monitoring the Service with CloudWatch

Metric Description

OutgoingBytes The number of bytes retrieved from the shard, measured
over the specified time period. Minimum, Maximum,
and Average statistics represent the bytes returned in a
single GetRecords operation or published in a single
SubscribeToShard event for the shard in the specified
time period.

Stream-level metric name: GetRecords.Bytes

Dimensions: StreamName, ShardId

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Bytes

OutgoingRecords The number of records retrieved from the shard, measured
over the specified time period. Minimum, Maximum, and
Average statistics represent the records returned in a
single GetRecords operation or published in a single
SubscribeToShard event for the shard in the specified
time period.

Stream-level metric name: GetRecords.Records

Dimensions: StreamName, ShardId

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Count

ReadProvisionedThroughputExceededThe number of GetRecords calls throttled for the shard
over the specified time period. This exception count covers
all dimensions of the following limits: 5 reads per shard per
second or 2 MB per second per shard. The most commonly
used statistic for this metric is Average.

When the Minimum statistic has a value of 1, all records
were throttled for the shard during the specified time
period.

When the Maximum statistic has a value of 0 (zero), no
records were throttled for the shard during the specified
time period.

Stream-level metric name:
ReadProvisionedThroughputExceeded

Dimensions: StreamName, ShardId

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Count

58

Amazon Kinesis Data Streams Developer Guide
Monitoring the Service with CloudWatch

Metric Description

WriteProvisionedThroughputExceededThe number of records rejected due to throttling for the
shard over the specified time period. This metric includes
throttling from PutRecord and PutRecords operations
and covers all dimensions of the following limits: 1,000
records per second per shard or 1 MB per second per shard.
The most commonly used statistic for this metric is Average.

When the Minimum statistic has a non-zero value, records
were being throttled for the shard during the specified time
period.

When the Maximum statistic has a value of 0 (zero), no
records were being throttled for the shard during the
specified time period.

Stream-level metric name:
WriteProvisionedThroughputExceeded

Dimensions: StreamName, ShardId

Statistics: Minimum, Maximum, Average, Sum, Samples

Units: Count

Dimensions for Amazon Kinesis Data Streams Metrics

You can use the following dimensions to filter the metrics for Amazon Kinesis Data Streams.

Dimension Description

StreamName The name of the Kinesis stream.

ShardId The shard ID within the Kinesis stream.

Recommended Amazon Kinesis Data Streams Metrics

Several Amazon Kinesis Data Streams metrics might be of particular interest to Kinesis Data Streams
customers. The following list provides recommended metrics and their uses.

Metric Usage Notes

GetRecords.IteratorAgeMillisecondsTracks the read position across all shards and consumers in the stream. If
an iterator's age passes 50% of the retention period (by default, 24 hours,
configurable up to 7 days), there is risk for data loss due to record expiration.
We recommend that you use CloudWatch alarms on the Maximum statistic
to alert you before this loss is a risk. For an example scenario that uses this
metric, see Consumer Record Processing Falling Behind (p. 156).

ReadProvisionedThroughputExceededWhen your consumer-side record processing is falling behind, it is sometimes
difficult to know where the bottleneck is. Use this metric to determine if
your reads are being throttled due to exceeding your read throughput limits.
The most commonly used statistic for this metric is Average.

59

Amazon Kinesis Data Streams Developer Guide
Monitoring the Agent with CloudWatch

Metric Usage Notes

WriteProvisionedThroughputExceededThis is for the same purpose as the
ReadProvisionedThroughputExceeded metric, but for the producer
(put) side of the stream. The most commonly used statistic for this metric is
Average.

PutRecord.Success,
PutRecords.Success

We recommend using CloudWatch alarms on the Average statistic to
indicate when records are failing to the stream. Choose one or both put
types depending on what your producer uses. If using the Kinesis Producer
Library (KPL), use PutRecords.Success.

GetRecords.Success We recommend using CloudWatch alarms on the Average statistic to
indicate when records are failing from the stream.

Accessing Amazon CloudWatch Metrics for Kinesis Data Streams
You can monitor metrics for Kinesis Data Streams using the CloudWatch console, the command line, or
the CloudWatch API. The following procedures show you how to access metrics using these different
methods.

To access metrics using the CloudWatch console

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.
2. On the navigation bar, choose a Region.
3. In the navigation pane, choose Metrics.
4. In the CloudWatch Metrics by Category pane, choose Kinesis Metrics.
5. Click the relevant row to view the statistics for the specified MetricName and StreamName.

Note: Most console statistic names match the corresponding CloudWatch metric names listed
above, except for Read Throughput and Write Throughput. These statistics are calculated over 5-
minute intervals: Write Throughput monitors the IncomingBytes CloudWatch metric, and Read
Throughput monitors GetRecords.Bytes.

6. (Optional) In the graph pane, select a statistic and a time period, and then create a CloudWatch
alarm using these settings.

To access metrics using the AWS CLI

Use the list-metrics and get-metric-statistics commands.

To access metrics using the CloudWatch CLI

Use the mon-list-metrics and mon-get-stats commands.

To access metrics using the CloudWatch API

Use the ListMetrics and GetMetricStatistics operations.

Monitoring Kinesis Data Streams Agent Health with
Amazon CloudWatch
The agent publishes custom CloudWatch metrics with a namespace of AWSKinesisAgent. These metrics
help you assess whether the agent is submitting data into Kinesis Data Streams as specified, and whether
it is healthy and consuming the appropriate amount of CPU and memory resources on the data producer.

60

https://console.aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/list-metrics.html
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/get-metric-statistics.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/cli/cli-mon-list-metrics.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/cli/cli-mon-get-stats.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_ListMetrics.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_GetMetricStatistics.html

Amazon Kinesis Data Streams Developer Guide
Logging Amazon Kinesis Data

Streams API Calls with AWS CloudTrail

Metrics such as number of records and bytes sent are useful to understand the rate at which the agent is
submitting data to the stream. When these metrics fall below expected thresholds by some percentage
or drop to zero, it could indicate configuration issues, network errors, or agent health issues. Metrics such
as on-host CPU and memory consumption and agent error counters indicate data producer resource
usage, and provide insights into potential configuration or host errors. Finally, the agent also logs service
exceptions to help investigate agent issues. These metrics are reported in the Region specified in the
agent configuration setting cloudwatch.endpoint. For more information about agent configuration,
see Agent Configuration Settings (p. 104).

Monitoring with CloudWatch
The Kinesis Data Streams agent sends the following metrics to CloudWatch.

Metric Description

BytesSent The number of bytes sent to Kinesis Data Streams over the specified time
period.

Units: Bytes

RecordSendAttempts The number of records attempted (either first time, or as a retry) in a call to
PutRecords over the specified time period.

Units: Count

RecordSendErrors The number of records that returned failure status in a call to PutRecords,
including retries, over the specified time period.

Units: Count

ServiceErrors The number of calls to PutRecords that resulted in a service error (other
than a throttling error) over the specified time period.

Units: Count

Logging Amazon Kinesis Data Streams API Calls with
AWS CloudTrail
Amazon Kinesis Data Streams is integrated with AWS CloudTrail, a service that provides a record of
actions taken by a user, role, or an AWS service in Kinesis Data Streams. CloudTrail captures all API
calls for Kinesis Data Streams as events. The calls captured include calls from the Kinesis Data Streams
console and code calls to the Kinesis Data Streams API operations. If you create a trail, you can enable
continuous delivery of CloudTrail events to an Amazon S3 bucket, including events for Kinesis Data
Streams. If you don't configure a trail, you can still view the most recent events in the CloudTrail console
in Event history. Using the information collected by CloudTrail, you can determine the request that was
made to Kinesis Data Streams, the IP address from which the request was made, who made the request,
when it was made, and additional details.

To learn more about CloudTrail, including how to configure and enable it, see the AWS CloudTrail User
Guide.

Kinesis Data Streams Information in CloudTrail
CloudTrail is enabled on your AWS account when you create the account. When supported event activity
occurs in Kinesis Data Streams, that activity is recorded in a CloudTrail event along with other AWS

61

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/

Amazon Kinesis Data Streams Developer Guide
Logging Amazon Kinesis Data

Streams API Calls with AWS CloudTrail

service events in Event history. You can view, search, and download recent events in your AWS account.
For more information, see Viewing Events with CloudTrail Event History.

For an ongoing record of events in your AWS account, including events for Kinesis Data Streams, create
a trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default, when you create
a trail in the console, the trail applies to all AWS Regions. The trail logs events from all Regions in the
AWS partition and delivers the log files to the Amazon S3 bucket that you specify. Additionally, you can
configure other AWS services to further analyze and act upon the event data collected in CloudTrail logs.
For more information, see the following:

• Overview for Creating a Trail

• CloudTrail Supported Services and Integrations

• Configuring Amazon SNS Notifications for CloudTrail

• Receiving CloudTrail Log Files from Multiple Regions and Receiving CloudTrail Log Files from Multiple
Accounts

Kinesis Data Streams supports logging the following actions as events in CloudTrail log files:

• AddTagsToStream

• CreateStream

• DecreaseStreamRetentionPeriod

• DeleteStream

• DeregisterStreamConsumer

• DescribeStream

• DescribeStreamConsumer

• DisableEnhancedMonitoring

• EnableEnhancedMonitoring

• IncreaseStreamRetentionPeriod

• ListStreamConsumers

• ListStreams

• ListTagsForStream

• MergeShards

• RegisterStreamConsumer

• RemoveTagsFromStream

• SplitShard

• StartStreamEncryption

• StopStreamEncryption

• UpdateShardCount

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root or AWS Identity and Access Management (IAM) user
credentials.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

For more information, see the CloudTrail userIdentity Element.

62

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_AddTagsToStream.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_CreateStream.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_DecreaseStreamRetentionPeriod.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_DeleteStream.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_DeregisterStreamConsumer.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_DescribeStream.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_DescribeStreamConsumer.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_DisableEnhancedMonitoring.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_EnableEnhancedMonitoring.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_IncreaseStreamRetentionPeriod.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_ListStreamConsumers.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_ListStreams.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_ListTagsForStream.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_MergeShards.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_RegisterStreamConsumer.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_RemoveTagsFromStream.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_SplitShard.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_StartStreamEncryption.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_StopStreamEncryption.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_UpdateShardCount.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html

Amazon Kinesis Data Streams Developer Guide
Logging Amazon Kinesis Data

Streams API Calls with AWS CloudTrail

Example: Kinesis Data Streams Log File Entries
A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that you
specify. CloudTrail log files contain one or more log entries. An event represents a single request from
any source and includes information about the requested action, the date and time of the action, request
parameters, and so on. CloudTrail log files aren't an ordered stack trace of the public API calls, so they
don't appear in any specific order.

The following example shows a CloudTrail log entry that demonstrates the CreateStream,
DescribeStream, ListStreams, DeleteStream, SplitShard, and MergeShards actions.

{
 "Records": [
 {
 "eventVersion": "1.01",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::012345678910:user/Alice",
 "accountId": "012345678910",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2014-04-19T00:16:31Z",
 "eventSource": "kinesis.amazonaws.com",
 "eventName": "CreateStream",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "127.0.0.1",
 "userAgent": "aws-sdk-java/unknown-version Linux/x.xx",
 "requestParameters": {
 "shardCount": 1,
 "streamName": "GoodStream"
 },
 "responseElements": null,
 "requestID": "db6c59f8-c757-11e3-bc3b-57923b443c1c",
 "eventID": "b7acfcd0-6ca9-4ee1-a3d7-c4e8d420d99b"
 },
 {
 "eventVersion": "1.01",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::012345678910:user/Alice",
 "accountId": "012345678910",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2014-04-19T00:17:06Z",
 "eventSource": "kinesis.amazonaws.com",
 "eventName": "DescribeStream",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "127.0.0.1",
 "userAgent": "aws-sdk-java/unknown-version Linux/x.xx",
 "requestParameters": {
 "streamName": "GoodStream"
 },
 "responseElements": null,
 "requestID": "f0944d86-c757-11e3-b4ae-25654b1d3136",
 "eventID": "0b2f1396-88af-4561-b16f-398f8eaea596"
 },
 {
 "eventVersion": "1.01",
 "userIdentity": {
 "type": "IAMUser",

63

Amazon Kinesis Data Streams Developer Guide
Logging Amazon Kinesis Data

Streams API Calls with AWS CloudTrail

 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::012345678910:user/Alice",
 "accountId": "012345678910",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2014-04-19T00:15:02Z",
 "eventSource": "kinesis.amazonaws.com",
 "eventName": "ListStreams",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "127.0.0.1",
 "userAgent": "aws-sdk-java/unknown-version Linux/x.xx",
 "requestParameters": {
 "limit": 10
 },
 "responseElements": null,
 "requestID": "a68541ca-c757-11e3-901b-cbcfe5b3677a",
 "eventID": "22a5fb8f-4e61-4bee-a8ad-3b72046b4c4d"
 },
 {
 "eventVersion": "1.01",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::012345678910:user/Alice",
 "accountId": "012345678910",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2014-04-19T00:17:07Z",
 "eventSource": "kinesis.amazonaws.com",
 "eventName": "DeleteStream",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "127.0.0.1",
 "userAgent": "aws-sdk-java/unknown-version Linux/x.xx",
 "requestParameters": {
 "streamName": "GoodStream"
 },
 "responseElements": null,
 "requestID": "f10cd97c-c757-11e3-901b-cbcfe5b3677a",
 "eventID": "607e7217-311a-4a08-a904-ec02944596dd"
 },
 {
 "eventVersion": "1.01",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::012345678910:user/Alice",
 "accountId": "012345678910",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2014-04-19T00:15:03Z",
 "eventSource": "kinesis.amazonaws.com",
 "eventName": "SplitShard",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "127.0.0.1",
 "userAgent": "aws-sdk-java/unknown-version Linux/x.xx",
 "requestParameters": {
 "shardToSplit": "shardId-000000000000",
 "streamName": "GoodStream",
 "newStartingHashKey": "11111111"
 },
 "responseElements": null,
 "requestID": "a6e6e9cd-c757-11e3-901b-cbcfe5b3677a",
 "eventID": "dcd2126f-c8d2-4186-b32a-192dd48d7e33"

64

Amazon Kinesis Data Streams Developer Guide
Monitoring the KCL with CloudWatch

 },
 {
 "eventVersion": "1.01",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::012345678910:user/Alice",
 "accountId": "012345678910",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2014-04-19T00:16:56Z",
 "eventSource": "kinesis.amazonaws.com",
 "eventName": "MergeShards",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "127.0.0.1",
 "userAgent": "aws-sdk-java/unknown-version Linux/x.xx",
 "requestParameters": {
 "streamName": "GoodStream",
 "adjacentShardToMerge": "shardId-000000000002",
 "shardToMerge": "shardId-000000000001"
 },
 "responseElements": null,
 "requestID": "e9f9c8eb-c757-11e3-bf1d-6948db3cd570",
 "eventID": "77cf0d06-ce90-42da-9576-71986fec411f"
 }
]
}

Monitoring the Kinesis Client Library with Amazon
CloudWatch
The Kinesis Client Library (KCL) for Amazon Kinesis Data Streams publishes custom Amazon CloudWatch
metrics on your behalf, using the name of your KCL application as the namespace. You can view these
metrics by navigating to the CloudWatch console and choosing Custom Metrics. For more information
about custom metrics, see Publish Custom Metrics in the Amazon CloudWatch User Guide.

There is a nominal charge for the metrics uploaded to CloudWatch by the KCL; specifically, Amazon
CloudWatch Custom Metrics and Amazon CloudWatch API Requests charges apply. For more information,
see Amazon CloudWatch Pricing.

Topics

• Metrics and Namespace (p. 65)

• Metric Levels and Dimensions (p. 65)

• Metric Configuration (p. 66)

• List of Metrics (p. 66)

Metrics and Namespace

The namespace that is used to upload metrics is the application name that you specify when you launch
the KCL.

Metric Levels and Dimensions

There are two options to control which metrics are uploaded to CloudWatch:

65

https://docs.aws.amazon.com/kinesis/latest/dev/developing-consumers-with-kcl.html
https://console.aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/publishingMetrics.html
https://aws.amazon.com/cloudwatch/pricing/

Amazon Kinesis Data Streams Developer Guide
Monitoring the KCL with CloudWatch

metric levels

Every metric is assigned an individual level. When you set a metrics reporting level, metrics
with an individual level below the reporting level are not sent to CloudWatch. The levels are:
NONE, SUMMARY, and DETAILED. The default setting is DETAILED; that is, all metrics are sent to
CloudWatch. A reporting level of NONE means that no metrics are sent at all. For information about
which levels are assigned to what metrics, see List of Metrics (p. 66).

enabled dimensions

Every KCL metric has associated dimensions that also get sent to CloudWatch. Operation
dimension is always uploaded and cannot be disabled. By default, the WorkerIdentifier
dimension is disabled, and only the Operation and ShardId dimensions are uploaded.

For more information about CloudWatch metric dimensions, see the Dimensions section in the
Amazon CloudWatch Concepts topic, in the Amazon CloudWatch User Guide.

When the WorkerIdentifier dimension is enabled, if a different value is used for the
worker ID property every time a particular KCL worker restarts, new sets of metrics with
new WorkerIdentifier dimension values are sent to CloudWatch. If you need the
WorkerIdentifier dimension value to be the same across specific KCL worker restarts, you must
explicitly specify the same worker ID value during initialization for each worker. Note that the worker
ID value for each active KCL worker must be unique across all KCL workers.

Metric Configuration
Metric levels and enabled dimensions can be configured using the KinesisClientLibConfiguration
instance, which is passed to Worker when launching the KCL application. In the MultiLangDaemon case,
the metricsLevel and metricsEnabledDimensions properties can be specified in the .properties
file used to launch the MultiLangDaemon KCL application.

Metric levels can be assigned one of three values: NONE, SUMMARY, or DETAILED. Enabled dimensions
values must be comma-separated strings with the list of dimensions that are allowed for the
CloudWatch metrics. The dimensions used by the KCL application are Operation, ShardId, and
WorkerIdentifier.

List of Metrics
The following tables list the KCL metrics, grouped by scope and operation.

Topics
• Per-KCL-Application Metrics (p. 66)
• Per-Worker Metrics (p. 69)
• Per-Shard Metrics (p. 71)

Per-KCL-Application Metrics

These metrics are aggregated across all KCL workers within the scope of the application, as defined by
the Amazon CloudWatch namespace.

Topics
• InitializeTask (p. 67)
• ShutdownTask (p. 67)
• ShardSyncTask (p. 68)
• BlockOnParentTask (p. 69)

66

https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/cloudwatch_concepts.html#Dimension

Amazon Kinesis Data Streams Developer Guide
Monitoring the KCL with CloudWatch

InitializeTask

The InitializeTask operation is responsible for initializing the record processor for the KCL
application. The logic for this operation includes getting a shard iterator from Kinesis Data Streams and
initializing the record processor.

Metric Description

KinesisDataFetcher.getIterator.SuccessNumber of successful GetShardIterator operations per KCL application.

Metric level: Detailed

Units: Count

KinesisDataFetcher.getIterator.TimeTime taken per GetShardIterator operation for the given KCL
application.

Metric level: Detailed

Units: Milliseconds

RecordProcessor.initialize.TimeTime taken by the record processor’s initialize method.

Metric level: Summary

Units: Milliseconds

Success Number of successful record processor initializations.

Metric level: Summary

Units: Count

Time Time taken by the KCL worker for the record processor initialization.

Metric level: Summary

Units: Milliseconds

ShutdownTask

The ShutdownTask operation initiates the shutdown sequence for shard processing. This can occur
because a shard is split or merged, or when the shard lease is lost from the worker. In both cases, the
record processor shutdown() function is invoked. New shards are also discovered in the case where a
shard was split or merged, resulting in the creation of one or two new shards.

Metric Description

CreateLease.Success Number of times that new child shards are successfully added into the KCL
application DynamoDB table following parent shard shutdown.

Metric level: Detailed

Units: Count

CreateLease.Time Time taken for adding new child shard information in the KCL application
DynamoDB table.

Metric level: Detailed

67

Amazon Kinesis Data Streams Developer Guide
Monitoring the KCL with CloudWatch

Metric Description

Units: Milliseconds

UpdateLease.Success Number of successful final checkpoints during the record processor
shutdown.

Metric level: Detailed

Units: Count

UpdateLease.Time Time taken by the checkpoint operation during the record processor
shutdown.

Metric level: Detailed

Units: Milliseconds

RecordProcessor.shutdown.TimeTime taken by the record processor’s shutdown method.

Metric level: Summary

Units: Milliseconds

Success Number of successful shutdown tasks.

Metric level: Summary

Units: Count

Time Time taken by the KCL worker for the shutdown task.

Metric level: Summary

Units: Milliseconds

ShardSyncTask

The ShardSyncTask operation discovers changes to shard information for the Kinesis data stream, so
new shards can be processed by the KCL application.

Metric Description

CreateLease.Success Number of successful attempts to add new shard information into the KCL
application DynamoDB table.

Metric level: Detailed

Units: Count

CreateLease.Time Time taken for adding new shard information in the KCL application
DynamoDB table.

Metric level: Detailed

Units: Milliseconds

Success Number of successful shard sync operations.

Metric level: Summary

68

Amazon Kinesis Data Streams Developer Guide
Monitoring the KCL with CloudWatch

Metric Description

Units: Count

Time Time taken for the shard sync operation.

Metric level: Summary

Units: Milliseconds

BlockOnParentTask

If the shard is split or merged with other shards, then new child shards are created. The
BlockOnParentTask operation ensures that record processing for the new shards does not start until
the parent shards are completely processed by the KCL.

Metric Description

Success Number of successful checks for parent shard completion.

Metric level: Summary

Units: Count

Time Time taken for parent shards completion.

Metric level: Summary

Unit: Milliseconds

Per-Worker Metrics

These metrics are aggregated across all record processors consuming data from a Kinesis data stream,
such as an Amazon EC2 instance.

Topics
• RenewAllLeases (p. 69)
• TakeLeases (p. 70)

RenewAllLeases

The RenewAllLeases operation periodically renews shard leases owned by a particular worker instance.

Metric Description

RenewLease.Success Number of successful lease renewals by the worker.

Metric level: Detailed

Units: Count

RenewLease.Time Time taken by the lease renewal operation.

Metric level: Detailed

Units: Milliseconds

69

Amazon Kinesis Data Streams Developer Guide
Monitoring the KCL with CloudWatch

Metric Description

CurrentLeases Number of shard leases owned by the worker after all leases are renewed.

Metric level: Summary

Units: Count

LostLeases Number of shard leases that were lost following an attempt to renew all
leases owned by the worker.

Metric level: Summary

Units: Count

Success Number of times lease renewal operation was successful for the worker.

Metric level: Summary

Units: Count

Time Time taken for renewing all leases for the worker.

Metric level: Summary

Units: Milliseconds

TakeLeases

The TakeLeases operation balances record processing between all KCL workers. If the current
KCL worker has fewer shard leases than required, it takes shard leases from another worker that is
overloaded.

Metric Description

ListLeases.Success Number of times all shard leases were successfully retrieved from the KCL
application DynamoDB table.

Metric level: Detailed

Units: Count

ListLeases.Time Time taken to retrieve all shard leases from the KCL application DynamoDB
table.

Metric level: Detailed

Units: Milliseconds

TakeLease.Success Number of times the worker successfully took shard leases from other KCL
workers.

Metric level: Detailed

Units: Count

TakeLease.Time Time taken to update the lease table with leases taken by the worker.

Metric level: Detailed

70

Amazon Kinesis Data Streams Developer Guide
Monitoring the KCL with CloudWatch

Metric Description

Units: Milliseconds

NumWorkers Total number of workers, as identified by a specific worker.

Metric level: Summary

Units: Count

NeededLeases Number of shard leases that the current worker needs for a balanced shard-
processing load.

Metric level: Detailed

Units: Count

LeasesToTake Number of leases that the worker will attempt to take.

Metric level: Detailed

Units: Count

TakenLeases Number of leases taken successfully by the worker.

Metric level: Summary

Units: Count

TotalLeases Total number of shards that the KCL application is processing.

Metric level: Detailed

Units: Count

ExpiredLeases Total number of shards that are not being processed by any worker, as
identified by the specific worker.

Metric level: Summary

Units: Count

Success Number of times the TakeLeases operation successfully completed.

Metric level: Summary

Units: Count

Time Time taken by the TakeLeases operation for a worker.

Metric level: Summary

Units: Milliseconds

Per-Shard Metrics

These metrics are aggregated across a single record processor.

71

Amazon Kinesis Data Streams Developer Guide
Monitoring the KCL with CloudWatch

ProcessTask

The ProcessTask operation calls GetRecords with the current iterator position to retrieve records from
the stream and invokes the record processor processRecords function.

Metric Description

KinesisDataFetcher.getRecords.SuccessNumber of successful GetRecords operations per Kinesis data stream
shard.

Metric level: Detailed

Units: Count

KinesisDataFetcher.getRecords.TimeTime taken per GetRecords operation for the Kinesis data stream shard.

Metric level: Detailed

Units: Milliseconds

UpdateLease.Success Number of successful checkpoints made by the record processor for the
given shard.

Metric level: Detailed

Units: Count

UpdateLease.Time Time taken for each checkpoint operation for the given shard.

Metric level: Detailed

Units: Milliseconds

DataBytesProcessed Total size of records processed in bytes on each ProcessTask invocation.

Metric level: Summary

Units: Byte

RecordsProcessed Number of records processed on each ProcessTask invocation.

Metric level: Summary

Units: Count

ExpiredIterator Number of ExpiredIteratorException received when calling GetRecords.

Metric level: Summary

Units: Count

MillisBehindLatest Time that the current iterator is behind from the latest record (tip) in the
shard. This value is less than or equal to the difference in time between the
latest record in a response and the current time. This is a more accurate
reflection of how far a shard is from the tip than comparing time stamps in
the last response record. This value applies to the latest batch of records,
not an average of all time stamps in each record.

Metric level: Summary

Units: Milliseconds

72

https://docs.aws.amazon.com/kinesis/latest/APIReference/API_GetRecords.html

Amazon Kinesis Data Streams Developer Guide
Monitoring the KPL with CloudWatch

Metric Description

RecordProcessor.processRecords.TimeTime taken by the record processor’s processRecords method.

Metric level: Summary

Units: Milliseconds

Success Number of successful process task operations.

Metric level: Summary

Units: Count

Time Time taken for the process task operation.

Metric level: Summary

Units: Milliseconds

Monitoring the Kinesis Producer Library with Amazon
CloudWatch
The Kinesis Producer Library (KPL) for Amazon Kinesis Data Streams publishes custom Amazon
CloudWatch metrics on your behalf. You can view these metrics by navigating to the CloudWatch console
and choosing Custom Metrics. For more information about custom metrics, see Publish Custom Metrics
in the Amazon CloudWatch User Guide.

There is a nominal charge for the metrics uploaded to CloudWatch by the KPL; specifically, Amazon
CloudWatch Custom Metrics and Amazon CloudWatch API Requests charges apply. For more information,
see Amazon CloudWatch Pricing. Local metrics gathering does not incur CloudWatch charges.

Topics

• Metrics, Dimensions, and Namespaces (p. 73)

• Metric Level and Granularity (p. 73)

• Local Access and Amazon CloudWatch Upload (p. 74)

• List of Metrics (p. 75)

Metrics, Dimensions, and Namespaces
You can specify an application name when launching the KPL, which is then used as part of the
namespace when uploading metrics. This is optional; the KPL provides a default value if an application
name is not set.

You can also configure the KPL to add arbitrary additional dimensions to the metrics. This is useful
if you want finer-grained data in your CloudWatch metrics. For example, you can add the hostname
as a dimension, which then allows you to identify uneven load distributions across your fleet. All KPL
configuration settings are immutable, so you can't change these additional dimensions after the KPL
instance is initialized.

Metric Level and Granularity
There are two options to control the number of metrics uploaded to CloudWatch:

73

https://docs.aws.amazon.com/kinesis/latest/dev/developing-producers-with-kpl.html
https://console.aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/publishingMetrics.html
https://aws.amazon.com/cloudwatch/pricing/

Amazon Kinesis Data Streams Developer Guide
Monitoring the KPL with CloudWatch

metric level

This is a rough gauge of how important a metric is. Every metric is assigned a level. When you set a
level, metrics with levels below that are not sent to CloudWatch. The levels are NONE, SUMMARY, and
DETAILED. The default setting is DETAILED; that is, all metrics. NONE means no metrics at all, so no
metrics are actually assigned to that level.

granularity

This controls whether the same metric is emitted at additional levels of granularity. The levels
are GLOBAL, STREAM, and SHARD. The default setting is SHARD, which contains the most granular
metrics.

When SHARD is chosen, metrics are emitted with the stream name and shard ID as dimensions. In
addition, the same metric is also emitted with only the stream name dimension, and the metric
without the stream name. This means that, for a particular metric, two streams with two shards each
will produce seven CloudWatch metrics: one for each shard, one for each stream, and one overall;
all describing the same statistics but at different levels of granularity. For an illustration, see the
following diagram.

The different granularity levels form a hierarchy, and all the metrics in the system form trees, rooted
at the metric names:

MetricName (GLOBAL): Metric X Metric Y
 | |
 ----------------- ------------
 | | | |
StreamName (STREAM): Stream A Stream B Stream A Stream B
 | |
 -------- ---------
 | | | |
ShardID (SHARD): Shard 0 Shard 1 Shard 0 Shard 1

Not all metrics are available at the shard level; some are stream level or global by nature. These
are not produced at the shard level, even if you have enabled shard-level metrics (Metric Y in the
preceding diagram).

When you specify an additional dimension, you need to provide values for
tuple:<DimensionName, DimensionValue, Granularity>. The granularity is used to
determine where the custom dimension is inserted in the hierarchy: GLOBAL means that the
additional dimension is inserted after the metric name, STREAM means it's inserted after the stream
name, and SHARD means it's inserted after the shard ID. If multiple additional dimensions are given
per granularity level, they are inserted in the order given.

Local Access and Amazon CloudWatch Upload
Metrics for the current KPL instance are available locally in real time; you can query the KPL at any
time to get them. The KPL locally computes the sum, average, minimum, maximum, and count of every
metric, as in CloudWatch.

You can get statistics that are cumulative from the start of the program to the present point in time, or
using a rolling window over the past N seconds, where N is an integer between 1 and 60.

All metrics are available for upload to CloudWatch. This is especially useful for aggregating data across
multiple hosts, monitoring, and alarming. This functionality is not available locally.

As described previously, you can select which metrics to upload with the metric level and granularity
settings. Metrics that are not uploaded are available locally.

74

Amazon Kinesis Data Streams Developer Guide
Monitoring the KPL with CloudWatch

Uploading data points individually is untenable because it could produce millions of uploads per second,
if traffic is high. For this reason, the KPL aggregates metrics locally into 1-minute buckets and uploads a
statistics object to CloudWatch one time per minute, per enabled metric.

List of Metrics

Metric Description

User Records
Received

Count of how many logical user records were received by the KPL core for
put operations. Not available at shard level.

Metric level: Detailed

Unit: Count

User Records
Pending

Periodic sample of how many user records are currently pending. A record is
pending if it is either currently buffered and waiting for to be sent, or sent
and in-flight to the backend service. Not available at shard level.

The KPL provides a dedicated method to retrieve this metric at the global
level for customers to manage their put rate.

Metric level: Detailed

Unit: Count

User Records Put Count of how many logical user records were put successfully.

The KPL does not count failed records for this metric. This allows the
average to give the success rate, the count to give the total attempts, and
the difference between the count and sum to give the failure count.

Metric level: Summary

Unit: Count

User Records Data
Put

Bytes in the logical user records successfully put.

Metric level: Detailed

Unit: Bytes

Kinesis Records
Put

Count of how many Kinesis Data Streams records were put successfully (each
Kinesis Data Streams record can contain multiple user records).

The KPL outputs a zero for failed records. This allows the average to give
the success rate, the count to give the total attempts, and the difference
between the count and sum to give the failure count.

Metric level: Summary

Unit: Count

Kinesis Records
Data Put

Bytes in the Kinesis Data Streams records.

Metric level: Detailed

Unit: Bytes

75

Amazon Kinesis Data Streams Developer Guide
Monitoring the KPL with CloudWatch

Metric Description

Errors by Code Count of each type of error code. This introduces an additional dimension of
ErrorCode, in addition to the normal dimensions such as StreamName and
ShardId. Not every error can be traced to a shard. The errors that cannot
be traced are only emitted at stream or global levels. This metric captures
information about such things as throttling, shard map changes, internal
failures, service unavailable, timeouts, and so on.

Kinesis Data Streams API errors are counted one time per Kinesis Data
Streams record. Multiple user records within a Kinesis Data Streams record
do not generate multiple counts.

Metric level: Summary

Unit: Count

All Errors This is triggered by the same errors as Errors by Code, but does not
distinguish between types. This is useful as a general monitor of the error
rate without requiring a manual sum of the counts from all the different
types of errors.

Metric level: Summary

Unit: Count

Retries per Record Number of retries performed per user record. Zero is emitted for records
that succeed in one try.

Data is emitted at the moment a user record finishes (when it either
succeeds or can no longer be retried). If record time-to-live is a large value,
this metric may be significantly delayed.

Metric level: Detailed

Unit: Count

Buffering Time The time between a user record arriving at the KPL and leaving for the
backend. This information is transmitted back to the user on a per-record
basis, but is also available as an aggregated statistic.

Metric level: Summary

Unit: Milliseconds

Request Time The time it takes to perform PutRecordsRequests.

Metric level: Detailed

Unit: Milliseconds

User Records per
Kinesis Record

The number of logical user records aggregated into a single Kinesis Data
Streams record.

Metric level: Detailed

Unit: Count

76

Amazon Kinesis Data Streams Developer Guide
Controlling Access

Metric Description

Amazon Kinesis
Records per
PutRecordsRequest

The number of Kinesis Data Streams records aggregated into a single
PutRecordsRequest. Not available at shard level.

Metric level: Detailed

Unit: Count

User Records per
PutRecordsRequest

The total number of user records contained within a PutRecordsRequest.
This is roughly equivalent to the product of the previous two metrics. Not
available at shard level.

Metric level: Detailed

Unit: Count

Controlling Access to Amazon Kinesis Data
Streams Resources Using IAM

AWS Identity and Access Management (IAM) enables you to do the following:

• Create users and groups under your AWS account

• Assign unique security credentials to each user under your AWS account

• Control each user's permissions to perform tasks using AWS resources

• Allow the users in another AWS account to share your AWS resources

• Create roles for your AWS account and define the users or services that can assume them

• Use existing identities for your enterprise to grant permissions to perform tasks using AWS resources

By using IAM with Kinesis Data Streams, you can control whether users in your organization can perform
a task using specific Kinesis Data Streams API actions and whether they can use specific AWS resources.

If you are developing an application using the Kinesis Client Library (KCL), your policy must include
permissions for Amazon DynamoDB and Amazon CloudWatch; the KCL uses DynamoDB to track state
information for the application, and CloudWatch to send KCL metrics to CloudWatch on your behalf.
For more information about the KCL, see Developing Consumers Using the Kinesis Client Library
1.x (p. 116).

For more information about IAM, see the following:

• AWS Identity and Access Management (IAM)

• Getting Started

• IAM User Guide

For more information about IAM and Amazon DynamoDB, see Using IAM to Control Access to Amazon
DynamoDB Resources in the Amazon DynamoDB Developer Guide.

For more information about IAM and Amazon CloudWatch, see Controlling User Access to Your AWS
Account in the Amazon CloudWatch User Guide.

Contents

77

https://aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/UsingIAMWithDDB.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/UsingIAMWithDDB.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/UsingIAM.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/UsingIAM.html

Amazon Kinesis Data Streams Developer Guide
Policy Syntax

• Policy Syntax (p. 78)
• Actions for Kinesis Data Streams (p. 78)
• Amazon Resource Names (ARNs) for Kinesis Data Streams (p. 79)
• Example Policies for Kinesis Data Streams (p. 79)

Policy Syntax
An IAM policy is a JSON document that consists of one or more statements. Each statement is structured
as follows:

{
 "Statement":[{
 "Effect":"effect",
 "Action":"action",
 "Resource":"arn",
 "Condition":{
 "condition":{
 "key":"value"
 }
 }
 }
]
}

There are various elements that make up a statement:

• Effect: The effect can be Allow or Deny. By default, IAM users don't have permission to use resources
and API actions, so all requests are denied. An explicit allow overrides the default. An explicit deny
overrides any allows.

• Action: The action is the specific API action for which you are granting or denying permission.
• Resource: The resource that's affected by the action. To specify a resource in the statement, you need

to use its Amazon Resource Name (ARN).
• Condition: Conditions are optional. They can be used to control when your policy will be in effect.

As you create and manage IAM policies, you might want to use the IAM Policy Generator and the IAM
Policy Simulator.

Actions for Kinesis Data Streams
In an IAM policy statement, you can specify any API action from any service that supports IAM. For
Kinesis Data Streams, use the following prefix with the name of the API action: kinesis:. For example:
kinesis:CreateStream, kinesis:ListStreams, and kinesis:DescribeStream.

To specify multiple actions in a single statement, separate them with commas as follows:

"Action": ["kinesis:action1", "kinesis:action2"]

You can also specify multiple actions using wildcards. For example, you can specify all actions whose
name begins with the word "Get" as follows:

"Action": "kinesis:Get*"

To specify all Kinesis Data Streams operations, use the * wildcard as follows:

78

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html#access_policies_create-generator
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_testing-policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_testing-policies.html

Amazon Kinesis Data Streams Developer Guide
Amazon Resource Names (ARNs) for Kinesis Data Streams

"Action": "kinesis:*"

For the complete list of Kinesis Data Streams API actions, see the Amazon Kinesis API Reference.

Amazon Resource Names (ARNs) for Kinesis Data
Streams
Each IAM policy statement applies to the resources that you specify using their ARNs.

Use the following ARN resource format for Kinesis data streams:

arn:aws:kinesis:region:account-id:stream/stream-name

For example:

"Resource": arn:aws:kinesis:*:111122223333:stream/my-stream

Example Policies for Kinesis Data Streams
The following example policies demonstrate how you could control user access to your Kinesis data
streams.

Example 1: Allow users to get data from a stream

This policy allows a user or group to perform the DescribeStream, GetShardIterator, and
GetRecords operations on the specified stream and ListStreams on any stream. This policy could be
applied to users who should be able to get data from a specific stream.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "kinesis:Get*",
 "kinesis:DescribeStream"
],
 "Resource": [
 "arn:aws:kinesis:us-east-1:111122223333:stream/stream1"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "kinesis:ListStreams"
],
 "Resource": [
 "*"
]
 }
]
}

Example 2: Allow users to add data to any stream in the account

This policy allows a user or group to use the PutRecord operation with any of the account's streams.
This policy could be applied to users that should be able to add data records to all streams in an account.

79

https://docs.aws.amazon.com/kinesis/latest/APIReference/

Amazon Kinesis Data Streams Developer Guide
Using Server-Side Encryption

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "kinesis:PutRecord"
],
 "Resource": [
 "arn:aws:kinesis:us-east-1:111122223333:stream/*"
]
 }
]
}

Example 3: Allow any Kinesis Data Streams action on a specific stream

This policy allows a user or group to use any Kinesis Data Streams operation on the specified stream. This
policy could be applied to users that should have administrative control over a specific stream.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": [
 "arn:aws:kinesis:us-east-1:111122223333:stream/stream1"
]
 }
]
}

Example 4: Allow any Kinesis Data Streams action on any stream

This policy allows a user or group to use any Kinesis Data Streams operation on any stream in an account.
Because this policy grants full access to all your streams, you should restrict it to administrators only.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": [
 "arn:aws:kinesis:*:111122223333:stream/*"
]
 }
]
}

Using Server-Side Encryption
Server-side encryption using AWS Key Management Service (AWS KMS) keys makes it easy for you to
meet strict data management requirements by encrypting your data at rest within Amazon Kinesis Data
Streams.

Topics

80

Amazon Kinesis Data Streams Developer Guide
What Is Server-Side Encryption for Kinesis Data Streams?

• What Is Server-Side Encryption for Kinesis Data Streams? (p. 81)
• Costs, Regions, and Performance Considerations (p. 81)
• How Do I Get Started with Server-Side Encryption? (p. 82)
• Creating and Using User-Generated KMS Master Keys (p. 83)
• Permissions to Use User-Generated KMS Master Keys (p. 84)
• Verifying and Troubleshooting KMS Key Permissions (p. 85)

What Is Server-Side Encryption for Kinesis Data
Streams?
Server-side encryption is a feature in Amazon Kinesis Data Streams that automatically encrypts data
before it's at rest by using an AWS KMS customer master key (CMK) you specify. Data is encrypted before
it's written to the Kinesis stream storage layer, and decrypted after it’s retrieved from storage. As a result,
your data is encrypted at rest within the Kinesis Data Streams service. This allows you to meet strict
regulatory requirements and enhance the security of your data.

With server-side encryption, your Kinesis stream producers and consumers don't need to manage master
keys or cryptographic operations. Your data is automatically encrypted as it enters and leaves the Kinesis
Data Streams service, so your data at rest is encrypted. AWS KMS provides all the master keys that are
used by the server-side encryption feature. AWS KMS makes it easy to use a CMK for Kinesis that is
managed by AWS, a user-specified AWS KMS CMK, or a master key imported into the AWS KMS service.

Note
Server-side encryption encrypts incoming data only after encryption is enabled. Preexisting data
in an unencrypted stream is not encrypted after server-side encryption is enabled.

Costs, Regions, and Performance Considerations
When you apply server-side encryption, you are subject to AWS KMS API usage and key costs. Unlike
custom KMS master keys, the (Default) aws/kinesis customer master key (CMK) is offered free of
charge. However, you still must pay for the API usage costs that Amazon Kinesis Data Streams incurs on
your behalf.

API usage costs apply for every CMK, including custom ones. Kinesis Data Streams calls AWS KMS
approximately every five minutes when it is rotating the data key. In a 30-day month, the total cost of
AWS KMS API calls that are initiated by a Kinesis stream should be less than a few dollars. This cost scales
with the number of user credentials that you use on your data producers and consumers because each
user credential requires a unique API call to AWS KMS. When you use an IAM role for authentication,
each assume role call results in unique user credentials. To save KMS costs, you might want to cache user
credentials that are returned by the assume role call.

The following describes the costs by resource:

Keys

• The CMK for Kinesis that's managed by AWS (alias = aws/kinesis) is free.
• User-generated KMS keys are subject to KMS key costs. For more information, see AWS Key

Management Service Pricing.

KMS API Usage
For every encrypted stream, the Kinesis service calls the AWS KMS service approximately every five
minutes to create a new data encryption key. In a 30-day month, each encrypted stream generates

81

http://aws.amazon.com/kms/pricing/#Keys
http://aws.amazon.com/kms/pricing/#Keys

Amazon Kinesis Data Streams Developer Guide
How Do I Get Started with Server-Side Encryption?

approximately 8,640 KMS API requests. API requests to generate new data encryption keys are subject to
AWS KMS usage costs. For more information, see AWS Key Management Service Pricing: Usage.

Availability of Server-Side Encryption by Region
Server-side encryption of Kinesis streams is available in the following regions.

Region Name Region

US East (Ohio) us-east-2

US East (N. Virginia) us-east-1

US West (Oregon) us-west-2

US West (N. California) us-west-1

AWS GovCloud (US-West) us-gov-west-1

Canada (Central) ca-central-1

EU (Ireland) eu-west-1

EU (London) eu-west-2

EU (Frankfurt) eu-central-1

Asia Pacific (Tokyo) Region ap-northeast-1

Asia Pacific (Seoul) Region ap-northeast-2

Asia Pacific (Singapore) ap-southeast-1

Asia Pacific (Mumbai) ap-south-1

Asia Pacific (Sydney) ap-southeast-2

South America (São Paulo) sa-east-1

Performance Considerations
Due to the service overhead of applying encryption, applying server-side encryption will increase the
typical latency of PutRecord, PutRecords, and GetRecords by less than 100μs.

How Do I Get Started with Server-Side Encryption?
The easiest way to get started with server-side encryption is to use the AWS Management Console and
the Amazon Kinesis KMS Service Key, aws/kinesis.

The following procedure demonstrates how to enable server-side encryption for a Kinesis stream.

To enable server-side encryption for a Kinesis stream

1. Sign in to the AWS Management Console and open the Amazon Kinesis Data Streams console.
2. Create or select a Kinesis stream in the AWS Management Console.
3. Choose the details tab.
4. In Server-side encryption, choose edit.

82

http://aws.amazon.com/kms/pricing/#Usage
http://console.aws.amazon.com/kinesis/home?region=us-east-1#/streams/list

Amazon Kinesis Data Streams Developer Guide
Creating and Using User-Generated KMS Master Keys

5. Unless you want to use a user-generated KMS master key, ensure the (Default) aws/kinesis KMS
master key is selected. This is the KMS master key generated by the Kinesis service. Choose Enabled,
and then choose Save.

Note
The default Kinesis service master key is free, however, the API calls made by Kinesis to the
AWS KMS service are subject to KMS usage costs.

6. The stream transitions through a “pending” state. Once the stream returns to an “active” state with
encryption enabled, all incoming data written to the stream is encrypted using the KMS master key
you selected.

7. To disable server-side encryption, choose Disabled in Server-side encryption in the AWS
Management Console, and then choose Save.

Creating and Using User-Generated KMS Master Keys
This section describes how to create and use your own KMS master keys, instead of using the master key
administered by Amazon Kinesis.

Creating User-Generated KMS Master Keys

For instructions on creating your own master keys, see Creating Keys in the AWS Key Management Service
Developer Guide. After you create keys for your account, the Kinesis Data Streams service returns these
keys in the KMS master key list.

Using User-Generated KMS Master Keys

Once the correct permissions are applied to your consumers, producers, and administrators, you can use
custom KMS master keys in your own AWS account or another AWS account. All KMS master keys in your
account appear in the KMS Master Key list within the AWS Management Console.

To use custom KMS master keys located in another account, you need permissions to use those keys. You
must also specify the ARN of the KMS master key in the ARN input box in the AWS Management Console.

83

https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html

Amazon Kinesis Data Streams Developer Guide
Permissions to Use User-Generated KMS Master Keys

Permissions to Use User-Generated KMS Master Keys
Before you can use server-side encryption with a user-generated KMS master key, you must configure
AWS KMS key policies to allow encryption of streams and encryption and decryption of stream records.
For examples and more information about AWS KMS permissions, see AWS KMS API Permissions: Actions
and Resources Reference.

Note
The use of the default service key for encryption does not require application of custom IAM
permissions.

Before you use user-generated KMS master keys, ensure that your Kinesis stream producers and
consumers (IAM principals) are users in the KMS master key policy. Otherwise, writes and reads from a
stream will fail, which could ultimately result in data loss, delayed processing, or hung applications. You
can manage permissions for KMS keys using IAM policies. For more information, see Using IAM Policies
with AWS KMS.

Example Producer Permissions
Your Kinesis stream producers must have the kms:GenerateDataKey permission.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "kms:GenerateDataKey"
],
 "Resource": "arn:aws:kms:us-
west-2:123456789012:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 },
 {
 "Effect": "Allow",
 "Action": [
 "kinesis:PutRecord",
 "kinesis:PutRecords"
],
 "Resource": "arn:aws:kinesis:*:123456789012:MyStream"
 }
]
}

Example Consumer Permissions
Your Kinesis stream consumers must have the kms:Decrypt permission.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt"
],
 "Resource": "arn:aws:kms:us-
west-2:123456789012:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 },
 {

84

https://docs.aws.amazon.com/kms/latest/developerguide/kms-api-permissions-reference.html
https://docs.aws.amazon.com/kms/latest/developerguide/kms-api-permissions-reference.html
http://docs.aws.amazon.com/kms/latest/developerguide/iam-policies.html
http://docs.aws.amazon.com/kms/latest/developerguide/iam-policies.html

Amazon Kinesis Data Streams Developer Guide
Verifying and Troubleshooting KMS Key Permissions

 "Effect": "Allow",
 "Action": [
 "kinesis:GetRecords",
 "kinesis:DescribeStream"
],
 "Resource": "arn:aws:kinesis:*:123456789012:MyStream"
 }
]
}

Amazon Kinesis Data Analytics and AWS Lambda use roles to consume Kinesis streams. Make sure to add
the kms:Decrypt permission to the roles that these consumers use.

Stream Administrator Permissions
Kinesis stream administrators must have authorization to call kms:List* and kms:DescribeKey*.

Verifying and Troubleshooting KMS Key Permissions
After enabling encryption on a Kinesis stream, we recommend that you monitor the success of your
putRecord, putRecords, and getRecords calls using the following Amazon CloudWatch metrics:

• PutRecord.Success

• PutRecords.Success

• GetRecords.Success

Using Amazon Kinesis Data Streams with Interface
VPC Endpoints

Interface VPC endpoints for Kinesis Data Streams
You can use an interface VPC endpoint to keep traffic between your Amazon VPC and Kinesis Data
Streams from leaving the Amazon network. Interface VPC endpoints don't require an internet gateway,
NAT device, VPN connection, or AWS Direct Connect connection. Interface VPC endpoints are powered by
AWS PrivateLink, an AWS technology that enables private communication between AWS services using
an elastic network interface with private IPs in your Amazon VPC. For more information, see Amazon
Virtual Private Cloud.

Using interface VPC endpoints for Kinesis Data
Streams
To get started you do not need to change the settings for your streams, producers, or consumers. Simply
create an interface VPC endpoint in order for your Kinesis Data Streams traffic from and to your Amazon
VPC resources to start flowing through the interface VPC endpoint.

The Kinesis Producer Library (KPL) and Kinesis Consumer Library (KCL) call AWS services like Amazon
CloudWatch and Amazon DynamoDB using either public endpoints or private interface VPC endpoints,
whichever are in use. For example, if your KPL application is running in a VPC with DynamoDB interface
VPC endpoints enabled, calls between DynamoDB and your KCL application flow through the interface
VPC endpoint.

85

http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html

Amazon Kinesis Data Streams Developer Guide
Availability

Availability
Interface VPC endpoints are currently supported within the following Regions:

• US West (Oregon)
• EU (Paris)
• US East (N. Virginia)
• EU (Ireland)
• Asia Pacific (Mumbai)
• US East (Ohio)
• EU (Frankfurt)
• South America (São Paulo)
• Asia Pacific (Seoul)
• EU (London)
• Asia Pacific (Tokyo)
• US West (N. California)
• Asia Pacific (Singapore)
• Asia Pacific (Sydney)
• Canada (Central)

Managing Kinesis Data Streams Using the Console
The following procedures show you how to create, delete, and work with an Amazon Kinesis data stream
using the AWS Management Console.

To create a stream

1. Sign in to the AWS Management Console and open the Kinesis console at https://
console.aws.amazon.com/kinesis.

2. Choose Data Streams in the navigation bar.
3. Choose Create Kinesis stream.
4. Enter a name for the stream (for example, StockTradeStream).
5. Specify the number of shards. If you need help, expand Estimate the number of shards you'll need.
6. Choose Create Kinesis stream.

To list your streams

1. Open the Kinesis console at https://console.aws.amazon.com/kinesis.
2. Choose Data Streams in the navigation bar.
3. (Optional) To view more details for a stream, choose the name of the stream.

To edit a stream

1. Open the Kinesis console at https://console.aws.amazon.com/kinesis.
2. Choose Data Streams in the navigation bar.
3. Choose the name of the stream.
4. To scale the shard capacity, do the following:

86

https://console.aws.amazon.com/kinesis
https://console.aws.amazon.com/kinesis
https://console.aws.amazon.com/kinesis
https://console.aws.amazon.com/kinesis

Amazon Kinesis Data Streams Developer Guide
Managing Streams Using the Console

a. Under Shards, choose Edit.
b. Specify the new number of shards.
c. Choose Save.

5. To edit the data retention period, do the following:

a. Under Data retention period, choose Edit.
b. Specify a period between 24 and 168 hours. Records are stored in the stream for this period

of time. Additional charges apply for periods greater than 24 hours. For more information, see
Amazon Kinesis Data Streams pricing.

c. Choose Save.
6. To enable or disable shard-level metrics, do the following:

a. Under Shard level metrics, choose Edit.
b. Select the metrics to monitor. For more information, see Enhanced Shard-level

Metrics (p. 57).
c. Choose Save.

To delete your streams

1. Open the Kinesis console at https://console.aws.amazon.com/kinesis.
2. Choose Data Streams in the navigation bar.
3. Select the check box next to the streams to delete.
4. Choose Actions, Delete.
5. When prompted for confirmation, choose Delete.

87

https://aws.amazon.com/kinesis/streams/pricing/
https://console.aws.amazon.com/kinesis

Amazon Kinesis Data Streams Developer Guide
Using the KPL

Writing Data to Amazon Kinesis Data
Streams

A producer is an application that writes data to Amazon Kinesis Data Streams. You can build producers
for Kinesis Data Streams using the AWS SDK for Java and the Kinesis Producer Library.

If you are new to Kinesis Data Streams, start by becoming familiar with the concepts and terminology
presented in What Is Amazon Kinesis Data Streams? (p. 1) and Getting Started Using Amazon Kinesis
Data Streams (p. 10).

Contents

• Developing Producers Using the Amazon Kinesis Producer Library (p. 88)

• Developing Producers Using the Amazon Kinesis Data Streams API with the AWS SDK for
Java (p. 98)

• Writing to Amazon Kinesis Data Streams Using Kinesis Agent (p. 102)

• Troubleshooting Amazon Kinesis Data Streams Producers (p. 111)

• Advanced Topics for Kinesis Data Streams Producers (p. 112)

Developing Producers Using the Amazon Kinesis
Producer Library

An Amazon Kinesis Data Streams producer is any application that puts user data records into a
Kinesis data stream (also called data ingestion). The Kinesis Producer Library (KPL) simplifies producer
application development, allowing developers to achieve high write throughput to a Kinesis data stream.

You can monitor the KPL with Amazon CloudWatch. For more information, see Monitoring the Kinesis
Producer Library with Amazon CloudWatch (p. 73).

Contents

• Role of the KPL (p. 89)

• Advantages of Using the KPL (p. 89)

• When Not to Use the KPL (p. 90)

• Installing the KPL (p. 90)

• Transitioning to Amazon Trust Services (ATS) Certificates for the Kinesis Producer Library (p. 90)

• KPL Supported Platforms (p. 90)

• KPL Key Concepts (p. 91)

• Integrating the KPL with Producer Code (p. 92)

• Writing to your Kinesis Data Stream Using the KPL (p. 94)

• Configuring the Kinesis Producer Library (p. 95)

• Consumer De-aggregation (p. 96)

• Using the KPL with Kinesis Data Firehose (p. 98)

88

Amazon Kinesis Data Streams Developer Guide
Role of the KPL

Role of the KPL
The KPL is an easy-to-use, highly configurable library that helps you write to a Kinesis data stream.
It acts as an intermediary between your producer application code and the Kinesis Data Streams API
actions. The KPL performs the following primary tasks:

• Writes to one or more Kinesis data streams with an automatic and configurable retry mechanism
• Collects records and uses PutRecords to write multiple records to multiple shards per request
• Aggregates user records to increase payload size and improve throughput
• Integrates seamlessly with the Kinesis Client Library (KCL) to de-aggregate batched records on the

consumer
• Submits Amazon CloudWatch metrics on your behalf to provide visibility into producer performance

Note that the KPL is different from the Kinesis Data Streams API that is available in the AWS SDKs. The
Kinesis Data Streams API helps you manage many aspects of Kinesis Data Streams (including creating
streams, resharding, and putting and getting records), while the KPL provides a layer of abstraction
specifically for ingesting data. For information about the Kinesis Data Streams API, see the Amazon
Kinesis API Reference.

Advantages of Using the KPL
The following list represents some of the major advantages to using the KPL for developing Kinesis Data
Streams producers.

The KPL can be used in either synchronous or asynchronous use cases. We suggest using the higher
performance of the asynchronous interface unless there is a specific reason to use synchronous behavior.
For more information about these two use cases and example code, see Writing to your Kinesis Data
Stream Using the KPL (p. 94).

Performance Benefits

The KPL can help build high-performance producers. Consider a situation where your Amazon
EC2 instances serve as a proxy for collecting 100-byte events from hundreds or thousands of low
power devices and writing records into a Kinesis data stream. These EC2 instances must each write
thousands of events per second to your data stream. To achieve the throughput needed, producers
must implement complicated logic, such as batching or multithreading, in addition to retry logic and
record de-aggregation at the consumer side. The KPL performs all of these tasks for you.

Consumer-Side Ease of Use

For consumer-side developers using the KCL in Java, the KPL integrates without additional effort.
When the KCL retrieves an aggregated Kinesis Data Streams record consisting of multiple KPL user
records, it automatically invokes the KPL to extract the individual user records before returning them
to the user.

For consumer-side developers who do not use the KCL but instead use the API operation
GetRecords directly, a KPL Java library is available to extract the individual user records before
returning them to the user.

Producer Monitoring

You can collect, monitor, and analyze your Kinesis Data Streams producers using Amazon
CloudWatch and the KPL. The KPL emits throughput, error, and other metrics to CloudWatch on your
behalf, and is configurable to monitor at the stream, shard, or producer level.

Asynchronous Architecture

Because the KPL may buffer records before sending them to Kinesis Data Streams, it does not force
the caller application to block and wait for a confirmation that the record has arrived at the server

89

https://docs.aws.amazon.com/kinesis/latest/dev/developing-consumers-with-kcl.html
https://aws.amazon.com/tools/
https://docs.aws.amazon.com/kinesis/latest/APIReference/
https://docs.aws.amazon.com/kinesis/latest/APIReference/

Amazon Kinesis Data Streams Developer Guide
When Not to Use the KPL

before continuing execution. A call to put a record into the KPL always returns immediately and does
not wait for the record to be sent or a response to be received from the server. Instead, a Future
object is created that receives the result of sending the record to Kinesis Data Streams at a later
time. This is the same behavior as asynchronous clients in the AWS SDK.

When Not to Use the KPL
The KPL can incur an additional processing delay of up to RecordMaxBufferedTime within the library
(user-configurable). Larger values of RecordMaxBufferedTime results in higher packing efficiencies
and better performance. Applications that cannot tolerate this additional delay may need to use the AWS
SDK directly. For more information about using the AWS SDK with Kinesis Data Streams, see Developing
Producers Using the Amazon Kinesis Data Streams API with the AWS SDK for Java (p. 98). For more
information about RecordMaxBufferedTime and other user-configurable properties of the KPL, see
Configuring the Kinesis Producer Library (p. 95).

Installing the KPL
Amazon provides pre-built binaries of the C++ Kinesis Producer Library (KPL) for macOS, Windows,
and recent Linux distributions (for supported platform details, see the next section). These binaries are
packaged as part of Java .jar files and are automatically invoked and used if you are using Maven to
install the package. To locate the latest versions of the KPL and KCL, use the following Maven search
links:

• KPL
• KCL

The Linux binaries have been compiled with the GNU Compiler Collection (GCC) and statically linked
against libstdc++ on Linux. They are expected to work on any 64-bit Linux distribution that includes a
glibc version 2.5 or higher.

Users of older Linux distributions can build the KPL using the build instructions provided along with the
source on GitHub. To download the KPL from GitHub, see Kinesis Producer Library.

Transitioning to Amazon Trust Services (ATS)
Certificates for the Kinesis Producer Library
On February 9, 2018, at 9:00 AM PST, Amazon Kinesis Data Streams installed ATS certificates. To
continue to be able to write records to Kinesis Data Streams using the Kinesis Producer Library (KPL), you
must upgrade your installation of the KPL to version 0.12.6 or later. This change affects all AWS Regions.

For information about the move to ATS, please see How to Prepare for AWS’s Move to Its Own Certificate
Authority.

If you encounter problems and need technical support, create a case with the AWS Support Center.

KPL Supported Platforms
The Kinesis Producer Library (KPL) is written in C++ and runs as a child process to the main user process.
Precompiled 64-bit native binaries are bundled with the Java release and are managed by the Java
wrapper.

The Java package runs without the need to install any additional libraries on the following operating
systems:

90

https://search.maven.org/#search|ga|1|amazon-kinesis-producer
https://search.maven.org/#search|ga|1|amazon-kinesis-client
https://github.com/awslabs/amazon-kinesis-producer
http://search.maven.org/#artifactdetails|com.amazonaws|amazon-kinesis-producer|0.12.6|jar
https://aws.amazon.com/blogs/security/how-to-prepare-for-aws-move-to-its-own-certificate-authority/
https://aws.amazon.com/blogs/security/how-to-prepare-for-aws-move-to-its-own-certificate-authority/
https://console.aws.amazon.com/support/v1#/case/create

Amazon Kinesis Data Streams Developer Guide
KPL Key Concepts

• Linux distributions with kernel 2.6.18 (September 2006) and later

• Apple OS X 10.9 and later

• Windows Server 2008 and later

Note that the KPL is 64-bit only.

Source Code
If the binaries provided in the KPL installation are not sufficient for your environment, the core of the
KPL is written as a C++ module. The source code for the C++ module and the Java interface are released
under the Amazon Public License and are available on GitHub at Kinesis Producer Library. Although
the KPL can be used on any platform for which a recent standards-compliant C++ compiler and JRE are
available, Amazon doesn't officially support any platform that is not on the supported platforms list.

KPL Key Concepts
The following sections contain concepts and terminology necessary to understand and benefit from the
Kinesis Producer Library (KPL).

Topics

• Records (p. 91)

• Batching (p. 91)

• Aggregation (p. 92)

• Collection (p. 92)

Records
In this guide, we distinguish between KPL user records and Kinesis Data Streams records. When we use the
term record without a qualifier, we refer to a KPL user record. When we refer to a Kinesis Data Streams
record, we explicitly say Kinesis Data Streams record.

A KPL user record is a blob of data that has particular meaning to the user. Examples include a JSON
blob representing a UI event on a website, or a log entry from a web server.

A Kinesis Data Streams record is an instance of the Record data structure defined by the Kinesis Data
Streams service API. It contains a partition key, sequence number, and a blob of data.

Batching
Batching refers to performing a single action on multiple items instead of repeatedly performing the
action on each individual item.

In this context, the "item" is a record, and the action is sending it to Kinesis Data Streams. In a non-
batching situation, you would place each record in a separate Kinesis Data Streams record and make one
HTTP request to send it to Kinesis Data Streams. With batching, each HTTP request can carry multiple
records instead of just one.

The KPL supports two types of batching:

• Aggregation – Storing multiple records within a single Kinesis Data Streams record.

• Collection – Using the API operation PutRecords to send multiple Kinesis Data Streams records to one
or more shards in your Kinesis data stream.

91

https://github.com/awslabs/amazon-kinesis-producer

Amazon Kinesis Data Streams Developer Guide
Integrating the KPL with Producer Code

The two types of KPL batching are designed to coexist and can be turned on or off independently of one
another. By default, both are turned on.

Aggregation
Aggregation refers to the storage of multiple records in a Kinesis Data Streams record. Aggregation
allows customers to increase the number of records sent per API call, which effectively increases
producer throughput.

Kinesis Data Streams shards support up to 1,000 Kinesis Data Streams records per second, or 1 MB
throughput. The Kinesis Data Streams records per second limit binds customers with records smaller
than 1 KB. Record aggregation allows customers to combine multiple records into a single Kinesis Data
Streams record. This allows customers to improve their per shard throughput.

Consider the case of one shard in region us-east-1 that is currently running at a constant rate of 1,000
records per second, with records that are 512 bytes each. With KPL aggregation, you can pack 1,000
records into only 10 Kinesis Data Streams records, reducing the RPS to 10 (at 50 KB each).

Collection
Collection refers to batching multiple Kinesis Data Streams records and sending them in a single HTTP
request with a call to the API operation PutRecords, instead of sending each Kinesis Data Streams
record in its own HTTP request.

This increases throughput compared to using no collection because it reduces the overhead of making
many separate HTTP requests. In fact, PutRecords itself was specifically designed for this purpose.

Collection differs from aggregation in that it is working with groups of Kinesis Data Streams records.
The Kinesis Data Streams records being collected can still contain multiple records from the user. The
relationship can be visualized as such:

record 0 --|
record 1 | [Aggregation]
 ... |--> Amazon Kinesis record 0 --|
 ... | |
record A --| |
 |
 |
 |
record K --| |
record L | | [Collection]
 ... |--> Amazon Kinesis record C --|--> PutRecords Request
 ... | |
record S --| |
 |
 |
 |
record AA--| |
record BB | |
 ... |--> Amazon Kinesis record M --|
 ... |
record ZZ--|

Integrating the KPL with Producer Code
The Kinesis Producer Library (KPL) runs in a separate process, and communicates with your parent user
process using IPC. This architecture is sometimes called a microservice, and is chosen for two main
reasons:

1) Your user process will not crash even if the KPL crashes

92

http://en.wikipedia.org/wiki/Microservices

Amazon Kinesis Data Streams Developer Guide
Integrating the KPL with Producer Code

Your process could have tasks unrelated to Kinesis Data Streams, and may be able to continue operation
even if the KPL crashes. It is also possible for your parent user process to restart the KPL and recover to a
fully working state (this functionality is in the official wrappers).

An example is a web server that sends metrics to Kinesis Data Streams; the server can continue serving
pages even if the Kinesis Data Streams part has stopped working. Crashing the whole server because of a
bug in the KPL would therefore cause an unnecessary outage.

2) Arbitrary clients can be supported

There are always customers who use languages other than the ones officially supported. These
customers should also be able to use the KPL easily.

Recommended Usage Matrix
The following usage matrix enumerates the recommended settings for different users and advises
you about whether and how you should use the KPL. Keep in mind that if aggregation is enabled, de-
aggregation must also be used to extract your records on the consumer side.

Producer side
language

Consumer side
language

KCL Version Checkpoint
logic

Can you use
the KPL?

Caveats

Anything but
Java

* * * No N/A

Java Java Uses Java SDK
directly

N/A Yes If aggregation
is used, you
have to use the
provided de-
aggregation
library after
GetRecords
calls.

Java Anything but
Java

Uses SDK
directly

N/A Yes Must disable
aggregation.

Java Java 1.3.x N/A Yes Must disable
aggregation.

Java Java 1.4.x Calls
checkpoint
without any
arguments

Yes None

Java Java 1.4.x Calls
checkpoint
with an explicit
sequence
number

Yes Either disable
aggregation,
or change
the code to
use extended
sequence
numbers for
checkpointing.

Java Anything but
Java

1.3.x +
Multilanguage
daemon +
language-

N/A Yes Must disable
aggregation.

93

Amazon Kinesis Data Streams Developer Guide
Writing to your Kinesis data stream

Producer side
language

Consumer side
language

KCL Version Checkpoint
logic

Can you use
the KPL?

Caveats

specific
wrapper

Writing to your Kinesis Data Stream Using the KPL
The following sections show sample code in a progression from the simplest possible "bare-bones"
producer on through to fully asynchronous code.

Barebones Producer Code
The following code is all that is needed to write a minimal working producer. The Kinesis Producer
Library (KPL) user records are processed in the background.

// KinesisProducer gets credentials automatically like
// DefaultAWSCredentialsProviderChain.
// It also gets region automatically from the EC2 metadata service.
KinesisProducer kinesis = new KinesisProducer();
// Put some records
for (int i = 0; i < 100; ++i) {
 ByteBuffer data = ByteBuffer.wrap("myData".getBytes("UTF-8"));
 // doesn't block
 kinesis.addUserRecord("myStream", "myPartitionKey", data);
}
// Do other stuff ...

Responding to Results Synchronously
In the previous example, the code didn't check whether the KPL user records succeeded. The KPL
performs any retries needed to account for failures. But if you want to check on the results, you can
examine them using the Future objects that are returned from addUserRecord, as in the following
example (previous example shown for context):

KinesisProducer kinesis = new KinesisProducer();

// Put some records and save the Futures
List<Future<UserRecordResult>> putFutures = new LinkedList<Future<UserRecordResult>>();
for (int i = 0; i < 100; i++) {
 ByteBuffer data = ByteBuffer.wrap("myData".getBytes("UTF-8"));
 // doesn't block
 putFutures.add(
 kinesis.addUserRecord("myStream", "myPartitionKey", data));
}

// Wait for puts to finish and check the results
for (Future<UserRecordResult> f : putFutures) {
 UserRecordResult result = f.get(); // this does block
 if (result.isSuccess()) {
 System.out.println("Put record into shard " +
 result.getShardId());
 } else {
 for (Attempt attempt : result.getAttempts()) {
 // Analyze and respond to the failure
 }
 }
}

94

Amazon Kinesis Data Streams Developer Guide
Configuring the KPL

Responding to Results Asynchronously
The previous example is calling get() on a Future object, which blocks execution. If you don't want to
block execution, you can use an asynchronous callback, as shown in the following example:

KinesisProducer kinesis = new KinesisProducer();

FutureCallback<UserRecordResult> myCallback = new FutureCallback<UserRecordResult>() {
 @Override public void onFailure(Throwable t) {
 /* Analyze and respond to the failure */
 };
 @Override public void onSuccess(UserRecordResult result) {
 /* Respond to the success */
 };
};

for (int i = 0; i < 100; ++i) {
 ByteBuffer data = ByteBuffer.wrap("myData".getBytes("UTF-8"));
 ListenableFuture<UserRecordResult> f = kinesis.addUserRecord("myStream",
 "myPartitionKey", data);
 // If the Future is complete by the time we call addCallback, the callback will be
 invoked immediately.
 Futures.addCallback(f, myCallback);
}

Configuring the Kinesis Producer Library
Although the default settings should work well for most use cases, you may want to change some of
the default settings to tailor the behavior of the KinesisProducer to your needs. An instance of the
KinesisProducerConfiguration class can be passed to the KinesisProducer constructor to do
so, for example:

KinesisProducerConfiguration config = new KinesisProducerConfiguration()
 .setRecordMaxBufferedTime(3000)
 .setMaxConnections(1)
 .setRequestTimeout(60000)
 .setRegion("us-west-1");

final KinesisProducer kinesisProducer = new KinesisProducer(config);

You can also load a configuration from a properties file:

KinesisProducerConfiguration config =
 KinesisProducerConfiguration.fromPropertiesFile("default_config.properties");

You can substitute any path and file name that the user process has access to. You can additionally call
set methods on the KinesisProducerConfiguration instance created this way to customize the
config.

The properties file should specify parameters using their names in PascalCase. The names match those
used in the set methods in the KinesisProducerConfiguration class. For example:

RecordMaxBufferedTime = 100
MaxConnections = 4
RequestTimeout = 6000
Region = us-west-1

For more information about configuration parameter usage rules and value limits, see the sample
configuration properties file on GitHub.

95

https://github.com/awslabs/amazon-kinesis-producer/blob/master/java/amazon-kinesis-producer-sample/default_config.properties
https://github.com/awslabs/amazon-kinesis-producer/blob/master/java/amazon-kinesis-producer-sample/default_config.properties

Amazon Kinesis Data Streams Developer Guide
Consumer De-aggregation

Note that after KinesisProducer is initialized, changing the KinesisProducerConfiguration
instance that was used has no further effect. KinesisProducer does not currently support dynamic
reconfiguration.

Consumer De-aggregation
Beginning with release 1.4.0, the KCL supports automatic de-aggregation of KPL user records. Consumer
application code written with previous versions of the KCL will compile without any modification after
you update the KCL. However, if KPL aggregation is being used on the producer side, there is a subtlety
involving checkpointing: all subrecords within an aggregated record have the same sequence number, so
additional data has to be stored with the checkpoint if you need to distinguish between subrecords. This
additional data is referred to as the subsequence number.

Migrating from Previous Versions of the KCL
You are not required to change your existing calls to do checkpointing in conjunction with aggregation.
It is still guaranteed that you can retrieve all records successfully stored in Kinesis Data Streams. The KCL
now provides two new checkpoint operations to support particular use cases, described below.

In the event that your existing code was written for the KCL prior to KPL support, and your checkpoint
operation is called without arguments, it is equivalent to checkpointing the sequence number of the
last KPL user record in the batch. If your checkpoint operation is called with a sequence number string,
it is equivalent to checkpointing the given sequence number of the batch along with the implicit
subsequence number 0 (zero).

Calling the new KCL checkpoint operation checkpoint() without any arguments is semantically
equivalent to checkpointing the sequence number of the last Record call in the batch, along with the
implicit subsequence number 0 (zero).

Calling the new KCL checkpoint operation checkpoint(Record record) is semantically equivalent
to checkpointing the given Record’s sequence number along with the implicit subsequence number 0
(zero). If the Record call is actually a UserRecord, the UserRecord sequence number and subsequence
number are checkpointed.

Calling the new KCL checkpoint operation checkpoint(String sequenceNumber, long
subSequenceNumber) explicitly checkpoints the given sequence number along with the given
subsequence number.

In any of these cases, after the checkpoint is stored in the Amazon DynamoDB checkpoint table, the KCL
can correctly resume retrieving records even when the application crashes and restarts. If more records
are contained within the sequence, retrieval occurs starting with the next subsequence number record
within the record with the most recently checkpointed sequence number. If the most recent checkpoint
included the very last subsequence number of the previous sequence number record, retrieval occurs
starting with the record with the next sequence number.

The next section discusses details of sequence and subsequence checkpointing for consumers that need
to avoid skipping and duplication of records. If skipping (or duplication) of records when stopping and
restarting your consumer’s record processing is not important, you can run your existing code with no
modification.

KCL Extensions for KPL De-aggregation
As previously discussed, KPL de-aggregation can involve subsequence checkpointing. To facilitate using
subsequence checkpointing, a UserRecord class has been added to the KCL:

public class UserRecord extends Record {
 public long getSubSequenceNumber() {
 /* ... */
 }

96

Amazon Kinesis Data Streams Developer Guide
Consumer De-aggregation

 @Override
 public int hashCode() {
 /* contract-satisfying implementation */
 }
 @Override
 public boolean equals(Object obj) {
 /* contract-satisfying implementation */
 }
}

This class is now used instead of Record. This does not break existing code because it is a subclass
of Record. The UserRecord class represents both actual subrecords and standard, non-aggregated
records. Non-aggregated records can be thought of as aggregated records with exactly one subrecord.

In addition, two new operations are added toIRecordProcessorCheckpointer:

public void checkpoint(Record record);
public void checkpoint(String sequenceNumber, long subSequenceNumber);

To begin using subsequence number checkpointing, you can perform the following conversion. Change
the following form code:

checkpointer.checkpoint(record.getSequenceNumber());

New form code:

checkpointer.checkpoint(record);

We recommend that you use the checkpoint(Record record) form for subsequence checkpointing.
However, if you are already storing sequenceNumbers in strings to use for checkpointing, you should
now also store subSequenceNumber, as shown in the following example:

String sequenceNumber = record.getSequenceNumber();
long subSequenceNumber = ((UserRecord) record).getSubSequenceNumber(); // ... do other
 processing
checkpointer.checkpoint(sequenceNumber, subSequenceNumber);

The cast from RecordtoUserRecord always succeeds because the implementation always uses
UserRecord under the hood. Unless there is a need to perform arithmetic on the sequence numbers,
this approach is not recommended.

While processing KPL user records, the KCL writes the subsequence number into Amazon DynamoDB
as an extra field for each row. Previous versions of the KCL used AFTER_SEQUENCE_NUMBER to fetch
records when resuming checkpoints. The current KCL with KPL support uses AT_SEQUENCE_NUMBER
instead. When the record at the checkpointed sequence number is retrieved, the checkpointed
subsequence number is checked, and subrecords are dropped as appropriate (which may be all of them,
if the last subrecord is the one checkpointed). Again, non-aggregated records can be thought of as
aggregated records with a single subrecord, so the same algorithm works for both aggregated and non-
aggregated records.

Using GetRecords Directly
You can also choose not to use the KCL but instead invoke the API operation GetRecords directly to
retrieve Kinesis Data Streams records. To unpack these retrieved records into your original KPL user
records, call one of the following static operations in UserRecord.java:

public static List<Record> deaggregate(List<Record> records)

97

Amazon Kinesis Data Streams Developer Guide
Using the KPL with Kinesis Data Firehose

public static List<UserRecord> deaggregate(List<UserRecord> records, BigInteger
 startingHashKey, BigInteger endingHashKey)

The first operation uses the default value 0 (zero) for startingHashKey and the default value 2^128
-1 for endingHashKey.

Each of these operations de-aggregates the given list of Kinesis Data Streams records into a list of KPL
user records. Any KPL user records whose explicit hash key or partition key falls outside the range of the
startingHashKey (inclusive) and the endingHashKey (inclusive) are discarded from the returned list
of records.

Using the KPL with Kinesis Data Firehose
If you use the Kinesis Producer Library (KPL) to write data to a Kinesis data stream, you can use
aggregation to combine the records that you write to that Kinesis data stream. If you then use that data
stream as a source for your Kinesis Data Firehose delivery stream, Kinesis Data Firehose de-aggregates
the records before it delivers them to the destination. If you configure your delivery stream to transform
the data, Kinesis Data Firehose de-aggregates the records before it delivers them to AWS Lambda. For
more information, see Writing to Kinesis Data Firehose Using Kinesis Data Streams.

Developing Producers Using the Amazon Kinesis
Data Streams API with the AWS SDK for Java

You can develop producers using the Amazon Kinesis Data Streams API with the AWS SDK for Java. If
you are new to Kinesis Data Streams, start by becoming familiar with the concepts and terminology
presented in What Is Amazon Kinesis Data Streams? (p. 1) and Getting Started Using Amazon Kinesis
Data Streams (p. 10).

These examples discuss the Kinesis Data Streams API and use the AWS SDK for Java to add (put) data to
a stream. However, for most use cases, you should prefer the Kinesis Data Streams KPL library. For more
information, see Developing Producers Using the Amazon Kinesis Producer Library (p. 88).

The Java example code in this chapter demonstrates how to perform basic Kinesis Data Streams API
operations, and is divided up logically by operation type. These examples do not represent production-
ready code, in that they do not check for all possible exceptions, or account for all possible security or
performance considerations. Also, you can call the Kinesis Data Streams API using other programming
languages. For more information about all available AWS SDKs, see Start Developing with Amazon Web
Services.

Each task has prerequisites; for example, you cannot add data to a stream until you have created
a stream, which requires you to create a client . For more information, see Creating and Managing
Streams (p. 38).

Adding Data to a Stream
Once a stream is created, you can add data to it in the form of records. A record is a data structure that
contains the data to be processed in the form of a data blob. After you store the data in the record,
Kinesis Data Streams does not inspect, interpret, or change the data in any way. Each record also has an
associated sequence number and partition key.

There are two different operations in the Kinesis Data Streams API that add data to a stream,
PutRecords and PutRecord. The PutRecords operation sends multiple records to your stream per
HTTP request, and the singular PutRecord operation sends records to your stream one at a time (a
separate HTTP request is required for each record). You should prefer using PutRecords for most

98

https://docs.aws.amazon.com/firehose/latest/dev/writing-with-kinesis-streams.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/
https://aws.amazon.com/sdk-for-java/
https://docs.aws.amazon.com/kinesis/latest/APIReference/
https://aws.amazon.com/developers/getting-started/
https://aws.amazon.com/developers/getting-started/
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_PutRecords.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_PutRecord.html

Amazon Kinesis Data Streams Developer Guide
Adding Data to a Stream

applications because it will achieve higher throughput per data producer. For more information about
each of these operations, see the separate subsections below.

Topics
• Adding Multiple Records with PutRecords (p. 99)
• Adding a Single Record with PutRecord (p. 101)

Always keep in mind that, as your source application is adding data to the stream using the Kinesis Data
Streams API, there are most likely one or more consumer applications that are simultaneously processing
data off the stream. For information about how consumers get data using the Kinesis Data Streams API,
see Getting Data from a Stream (p. 134).

Important
Changing the Data Retention Period (p. 47)

Adding Multiple Records with PutRecords
The PutRecords operation sends multiple records to Kinesis Data Streams in a single request. By using
PutRecords, producers can achieve higher throughput when sending data to their Kinesis data stream.
Each PutRecords request can support up to 500 records. Each record in the request can be as large as 1
MB, up to a limit of 5 MB for the entire request, including partition keys. As with the single PutRecord
operation described below, PutRecords uses sequence numbers and partition keys. However, the
PutRecord parameter SequenceNumberForOrdering is not included in a PutRecords call. The
PutRecords operation attempts to process all records in the natural order of the request.

Each data record has a unique sequence number. The sequence number is assigned by Kinesis Data
Streams after you call client.putRecords to add the data records to the stream. Sequence
numbers for the same partition key generally increase over time; the longer the time period between
PutRecords requests, the larger the sequence numbers become.

Note
Sequence numbers cannot be used as indexes to sets of data within the same stream. To
logically separate sets of data, use partition keys or create a separate stream for each data set.

A PutRecords request can include records with different partition keys. The scope of the request is a
stream; each request may include any combination of partition keys and records up to the request limits.
Requests made with many different partition keys to streams with many different shards are generally
faster than requests with a small number of partition keys to a small number of shards. The number
of partition keys should be much larger than the number of shards to reduce latency and maximize
throughput.

PutRecords Example

The following code creates 100 data records with sequential partition keys and puts them in a stream
called DataStream.

 AmazonKinesisClientBuilder clientBuilder = AmazonKinesisClientBuilder.standard();

 clientBuilder.setRegion(regionName);
 clientBuilder.setCredentials(credentialsProvider);
 clientBuilder.setClientConfiguration(config);

 AmazonKinesis kinesisClient = clientBuilder.build();

 PutRecordsRequest putRecordsRequest = new PutRecordsRequest();
 putRecordsRequest.setStreamName(streamName);
 List <PutRecordsRequestEntry> putRecordsRequestEntryList = new ArrayList<>();
 for (int i = 0; i < 100; i++) {
 PutRecordsRequestEntry putRecordsRequestEntry = new PutRecordsRequestEntry();

99

https://docs.aws.amazon.com/kinesis/latest/APIReference/API_PutRecords.html

Amazon Kinesis Data Streams Developer Guide
Adding Data to a Stream

 putRecordsRequestEntry.setData(ByteBuffer.wrap(String.valueOf(i).getBytes()));
 putRecordsRequestEntry.setPartitionKey(String.format("partitionKey-%d", i));
 putRecordsRequestEntryList.add(putRecordsRequestEntry);
 }

 putRecordsRequest.setRecords(putRecordsRequestEntryList);
 PutRecordsResult putRecordsResult = kinesisClient.putRecords(putRecordsRequest);
 System.out.println("Put Result" + putRecordsResult);

The PutRecords response includes an array of response Records. Each record in the response array
directly correlates with a record in the request array using natural ordering, from the top to the bottom
of the request and response. The response Records array always includes the same number of records
as the request array.

Handling Failures When Using PutRecords

By default, failure of individual records within a request does not stop the processing of subsequent
records in a PutRecords request. This means that a response Records array includes both successfully
and unsuccessfully processed records. You must detect unsuccessfully processed records and include
them in a subsequent call.

Successful records include SequenceNumber and ShardID values, and unsuccessful records
include ErrorCode and ErrorMessage values. The ErrorCode parameter reflects the type of
error and can be one of the following values: ProvisionedThroughputExceededException
or InternalFailure. ErrorMessage provides more detailed information about the
ProvisionedThroughputExceededException exception including the account ID, stream name,
and shard ID of the record that was throttled. The example below has three records in a PutRecords
request. The second record fails and is reflected in the response.

Example PutRecords Request Syntax

{
 "Records": [
 {
 "Data": "XzxkYXRhPl8w",
 "PartitionKey": "partitionKey1"
 },
 {
 "Data": "AbceddeRFfg12asd",
 "PartitionKey": "partitionKey1"
 },
 {
 "Data": "KFpcd98*7nd1",
 "PartitionKey": "partitionKey3"
 }
],
 "StreamName": "myStream"
}

Example PutRecords Response Syntax

{
 "FailedRecordCount”: 1,
 "Records": [
 {
 "SequenceNumber": "21269319989900637946712965403778482371",
 "ShardId": "shardId-000000000001"

 },
 {
 “ErrorCode":”ProvisionedThroughputExceededException”,

100

Amazon Kinesis Data Streams Developer Guide
Adding Data to a Stream

 “ErrorMessage": "Rate exceeded for shard shardId-000000000001 in stream
 exampleStreamName under account 111111111111."

 },
 {
 "SequenceNumber": "21269319989999637946712965403778482985",
 "ShardId": "shardId-000000000002"
 }
]
}

Records that were unsuccessfully processed can be included in subsequent PutRecords requests. First,
check the FailedRecordCount parameter in the putRecordsResult to confirm if there are failed
records in the request. If so, each putRecordsEntry that has an ErrorCode that is not null should be
added to a subsequent request. For an example of this type of handler, refer to the following code.

Example PutRecords failure handler

PutRecordsRequest putRecordsRequest = new PutRecordsRequest();
putRecordsRequest.setStreamName(myStreamName);
List<PutRecordsRequestEntry> putRecordsRequestEntryList = new ArrayList<>();
for (int j = 0; j < 100; j++) {
 PutRecordsRequestEntry putRecordsRequestEntry = new PutRecordsRequestEntry();
 putRecordsRequestEntry.setData(ByteBuffer.wrap(String.valueOf(j).getBytes()));
 putRecordsRequestEntry.setPartitionKey(String.format("partitionKey-%d", j));
 putRecordsRequestEntryList.add(putRecordsRequestEntry);
}

putRecordsRequest.setRecords(putRecordsRequestEntryList);
PutRecordsResult putRecordsResult = amazonKinesisClient.putRecords(putRecordsRequest);

while (putRecordsResult.getFailedRecordCount() > 0) {
 final List<PutRecordsRequestEntry> failedRecordsList = new ArrayList<>();
 final List<PutRecordsResultEntry> putRecordsResultEntryList =
 putRecordsResult.getRecords();
 for (int i = 0; i < putRecordsResultEntryList.size(); i++) {
 final PutRecordsRequestEntry putRecordRequestEntry =
 putRecordsRequestEntryList.get(i);
 final PutRecordsResultEntry putRecordsResultEntry =
 putRecordsResultEntryList.get(i);
 if (putRecordsResultEntry.getErrorCode() != null) {
 failedRecordsList.add(putRecordRequestEntry);
 }
 }
 putRecordsRequestEntryList = failedRecordsList;
 putRecordsRequest.setRecords(putRecordsRequestEntryList);
 putRecordsResult = amazonKinesisClient.putRecords(putRecordsRequest);
}

Adding a Single Record with PutRecord
Each call to PutRecord operates on a single record. Prefer the PutRecords operation described in
Adding Multiple Records with PutRecords (p. 99) unless your application specifically needs to always
send single records per request, or some other reason PutRecords can't be used.

Each data record has a unique sequence number. The sequence number is assigned by Kinesis Data
Streams after you call client.putRecord to add the data record to the stream. Sequence numbers
for the same partition key generally increase over time; the longer the time period between PutRecord
requests, the larger the sequence numbers become.

When puts occur in quick succession, the returned sequence numbers are not guaranteed
to increase because the put operations appear essentially as simultaneous to Kinesis Data

101

https://docs.aws.amazon.com/kinesis/latest/APIReference/API_PutRecord.html

Amazon Kinesis Data Streams Developer Guide
Using the Agent

Streams. To guarantee strictly increasing sequence numbers for the same partition key, use the
SequenceNumberForOrdering parameter, as shown in the PutRecord Example (p. 102) code sample.

Whether or not you use SequenceNumberForOrdering, records that Kinesis Data Streams receives
through a GetRecords call are strictly ordered by sequence number.

Note
Sequence numbers cannot be used as indexes to sets of data within the same stream. To
logically separate sets of data, use partition keys or create a separate stream for each data set.

A partition key is used to group data within the stream. A data record is assigned to a shard within the
stream based on its partition key. Specifically, Kinesis Data Streams uses the partition key as input to a
hash function that maps the partition key (and associated data) to a specific shard.

As a result of this hashing mechanism, all data records with the same partition key map to the same
shard within the stream. However, if the number of partition keys exceeds the number of shards, some
shards necessarily contain records with different partition keys. From a design standpoint, to ensure
that all your shards are well utilized, the number of shards (specified by the setShardCount method
of CreateStreamRequest) should be substantially less than the number of unique partition keys, and
the amount of data flowing to a single partition key should be substantially less than the capacity of the
shard.

PutRecord Example

The following code creates ten data records, distributed across two partition keys, and puts them in a
stream called myStreamName.

for (int j = 0; j < 10; j++)
{
 PutRecordRequest putRecordRequest = new PutRecordRequest();
 putRecordRequest.setStreamName(myStreamName);
 putRecordRequest.setData(ByteBuffer.wrap(String.format("testData-%d",
 j).getBytes()));
 putRecordRequest.setPartitionKey(String.format("partitionKey-%d", j/5));
 putRecordRequest.setSequenceNumberForOrdering(sequenceNumberOfPreviousRecord);
 PutRecordResult putRecordResult = client.putRecord(putRecordRequest);
 sequenceNumberOfPreviousRecord = putRecordResult.getSequenceNumber();
}

The preceding code sample uses setSequenceNumberForOrdering to guarantee strictly
increasing ordering within each partition key. To use this parameter effectively, set the
SequenceNumberForOrdering of the current record (record n) to the sequence number of the
preceding record (record n-1). To get the sequence number of a record that has been added to the
stream, call getSequenceNumber on the result of putRecord.

The SequenceNumberForOrdering parameter ensures strictly increasing sequence numbers for the
same partition key, when the same client calls PutRecord. SequenceNumberForOrdering does not
provide ordering guarantees across records that are added from multiple concurrent applications, or
across multiple partition keys.

Writing to Amazon Kinesis Data Streams Using
Kinesis Agent

Kinesis Agent is a stand-alone Java software application that offers an easy way to collect and send
data to Kinesis Data Streams. The agent continuously monitors a set of files and sends new data to your
stream. The agent handles file rotation, checkpointing, and retry upon failures. It delivers all of your data

102

Amazon Kinesis Data Streams Developer Guide
Prerequisites

in a reliable, timely, and simple manner. It also emits Amazon CloudWatch metrics to help you better
monitor and troubleshoot the streaming process.

By default, records are parsed from each file based on the newline ('\n') character. However, the agent
can also be configured to parse multi-line records (see Agent Configuration Settings (p. 104)).

You can install the agent on Linux-based server environments such as web servers, log servers, and
database servers. After installing the agent, configure it by specifying the files to monitor and the stream
for the data. After the agent is configured, it durably collects data from the files and reliably sends it to
the stream.

Topics
• Prerequisites (p. 103)
• Download and Install the Agent (p. 103)
• Configure and Start the Agent (p. 104)
• Agent Configuration Settings (p. 104)
• Monitor Multiple File Directories and Write to Multiple Streams (p. 107)
• Use the Agent to Pre-process Data (p. 107)
• Agent CLI Commands (p. 110)

Prerequisites
• Your operating system must be either Amazon Linux AMI with version 2015.09 or later, or Red Hat

Enterprise Linux version 7 or later.
• If you are using Amazon EC2 to run your agent, launch your EC2 instance.
• Manage your AWS credentials using one of the following methods:

• Specify an IAM role when you launch your EC2 instance.
• Specify AWS credentials when you configure the agent (see awsAccessKeyId (p.) and

awsSecretAccessKey (p.)).
• Edit /etc/sysconfig/aws-kinesis-agent to specify your region and AWS access keys.
• If your EC2 instance is in a different AWS account, create an IAM role to provide access to

the Kinesis Data Streams service, and specify that role when you configure the agent (see
assumeRoleARN (p.) and assumeRoleExternalId (p.)). Use one of the previous methods to
specify the AWS credentials of a user in the other account who has permission to assume this role.

• The IAM role or AWS credentials that you specify must have permission to perform the Kinesis Data
Streams PutRecords operation for the agent to send data to your stream. If you enable CloudWatch
monitoring for the agent, permission to perform the CloudWatch PutMetricData operation is also
needed. For more information, see Controlling Access to Amazon Kinesis Data Streams Resources
Using IAM (p. 77), Monitoring Kinesis Data Streams Agent Health with Amazon CloudWatch (p. 60), and
CloudWatch Access Control.

Download and Install the Agent
First, connect to your instance. For more information, see Connect to Your Instance in the Amazon EC2
User Guide for Linux Instances. If you have trouble connecting, see Troubleshooting Connecting to Your
Instance in the Amazon EC2 User Guide for Linux Instances.

To set up the agent using the Amazon Linux AMI

Use the following command to download and install the agent:

sudo yum install –y aws-kinesis-agent

103

https://docs.aws.amazon.com/kinesis/latest/APIReference/API_PutRecords.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_PutMetricData.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/UsingIAM.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-connect-to-instance-linux.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/TroubleshootingInstancesConnecting.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/TroubleshootingInstancesConnecting.html

Amazon Kinesis Data Streams Developer Guide
Configure and Start the Agent

To set up the agent using Red Hat Enterprise Linux

Use the following command to download and install the agent:

sudo yum install –y https://s3.amazonaws.com/streaming-data-agent/aws-kinesis-agent-
latest.amzn1.noarch.rpm

To set up the agent using GitHub

1. Download the agent from awlabs/amazon-kinesis-agent.
2. Install the agent by navigating to the download directory and running the following command:

sudo ./setup --install

Configure and Start the Agent
To configure and start the agent

1. Open and edit the configuration file (as superuser if using default file access permissions): /etc/
aws-kinesis/agent.json

In this configuration file, specify the files ("filePattern") from which the agent collects data,
and the name of the stream ("kinesisStream") to which the agent sends data. Note that the file
name is a pattern, and the agent recognizes file rotations. You can rotate files or create new files
no more than once per second. The agent uses the file creation timestamp to determine which files
to track and tail into your stream; creating new files or rotating files more frequently than once per
second does not allow the agent to differentiate properly between them.

{
 "flows": [
 {
 "filePattern": "/tmp/app.log*",
 "kinesisStream": "yourkinesisstream"
 }
]
}

2. Start the agent manually:

sudo service aws-kinesis-agent start

3. (Optional) Configure the agent to start on system startup:

sudo chkconfig aws-kinesis-agent on

The agent is now running as a system service in the background. It continuously monitors the specified
files and sends data to the specified stream. Agent activity is logged in /var/log/aws-kinesis-
agent/aws-kinesis-agent.log.

Agent Configuration Settings
The agent supports the two mandatory configuration settings, filePattern and kinesisStream, plus
optional configuration settings for additional features. You can specify both mandatory and optional
configuration in /etc/aws-kinesis/agent.json.

104

https://github.com/awslabs/amazon-kinesis-agent

Amazon Kinesis Data Streams Developer Guide
Agent Configuration Settings

Whenever you change the configuration file, you must stop and start the agent, using the following
commands:

sudo service aws-kinesis-agent stop
sudo service aws-kinesis-agent start

Alternatively, you could use the following command:

sudo service aws-kinesis-agent restart

The following are the general configuration settings.

Configuration Setting Description

assumeRoleARN The ARN of the role to be assumed by the user. For more information, see
Delegate Access Across AWS Accounts Using IAM Roles in the IAM User Guide.

assumeRoleExternalIdAn optional identifier that determines who can assume the role. For more
information, see How to Use an External ID in the IAM User Guide.

awsAccessKeyId AWS access key ID that overrides the default credentials. This setting takes
precedence over all other credential providers.

awsSecretAccessKey AWS secret key that overrides the default credentials. This setting takes
precedence over all other credential providers.

cloudwatch.emitMetricsEnables the agent to emit metrics to CloudWatch if set (true).

Default: true

cloudwatch.endpoint The regional endpoint for CloudWatch.

Default: monitoring.us-east-1.amazonaws.com

kinesis.endpoint The regional endpoint for Kinesis Data Streams.

Default: kinesis.us-east-1.amazonaws.com

The following are the flow configuration settings.

Configuration Setting Description

dataProcessingOptionsThe list of processing options applied to each parsed record before it is sent
to the stream. The processing options are performed in the specified order.
For more information, see Use the Agent to Pre-process Data (p. 107).

kinesisStream [Required] The name of the stream.

filePattern [Required] A glob for the files that must be monitored by the agent. Any
file that matches this pattern is picked up by the agent automatically and
monitored. For all files matching this pattern, read permission must be
granted to aws-kinesis-agent-user. For the directory containing the
files, read and execute permissions must be granted to aws-kinesis-
agent-user.

initialPosition The initial position from which the file started to be parsed. Valid values are
START_OF_FILE and END_OF_FILE.

105

https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_cross-account-with-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user_externalid.html

Amazon Kinesis Data Streams Developer Guide
Agent Configuration Settings

Configuration Setting Description

Default: END_OF_FILE

maxBufferAgeMillis The maximum time, in milliseconds, for which the agent buffers data before
sending it to the stream.

Value range: 1,000 to 900,000 (1 second to 15 minutes)

Default: 60,000 (1 minute)

maxBufferSizeBytes The maximum size, in bytes, for which the agent buffers data before sending
it to the stream.

Value range: 1 to 4,194,304 (4 MB)

Default: 4,194,304 (4 MB)

maxBufferSizeRecordsThe maximum number of records for which the agent buffers data before
sending it to the stream.

Value range: 1 to 500

Default: 500

minTimeBetweenFilePollsMillisThe time interval, in milliseconds, at which the agent polls and parses the
monitored files for new data.

Value range: 1 or more

Default: 100

multiLineStartPatternThe pattern for identifying the start of a record. A record is made of a line
that matches the pattern and any following lines that don't match the
pattern. The valid values are regular expressions. By default, each new line in
the log files is parsed as one record.

partitionKeyOption The method for generating the partition key. Valid values are RANDOM
(randomonly generated integer) and DETERMINISTIC (a hash value
computed from the data).

Default: RANDOM

skipHeaderLines The number of lines for the agent to skip parsing at the beginning of
monitored files.

Value range: 0 or more

Default: 0 (zero)

truncatedRecordTerminatorThe string that the agent uses to truncate a parsed record when the record
size exceeds the Kinesis Data Streams record size limit. (1,000 KB)

Default: '\n' (newline)

106

Amazon Kinesis Data Streams Developer Guide
Monitor Multiple File Directories
and Write to Multiple Streams

Monitor Multiple File Directories and Write to
Multiple Streams
By specifying multiple flow configuration settings, you can configure the agent to monitor multiple
file directories and send data to multiple streams. In the following configuration example, the agent
monitors two file directories and sends data to an Kinesis stream and a Kinesis Data Firehose delivery
stream respectively. Note that you can specify different endpoints for Kinesis Data Streams and Kinesis
Data Firehose so that your Kinesis stream and Kinesis Data Firehose delivery stream don’t need to be in
the same region.

{
 "cloudwatch.emitMetrics": true,
 "kinesis.endpoint": "https://your/kinesis/endpoint",
 "firehose.endpoint": "https://your/firehose/endpoint",
 "flows": [
 {
 "filePattern": "/tmp/app1.log*",
 "kinesisStream": "yourkinesisstream"
 },
 {
 "filePattern": "/tmp/app2.log*",
 "deliveryStream": "yourfirehosedeliverystream"
 }
]
}

For more detailed information about using the agent with Kinesis Data Firehose, see Writing to Amazon
Kinesis Data Firehose with Kinesis Agent.

Use the Agent to Pre-process Data
The agent can pre-process the records parsed from monitored files before sending them to your stream.
You can enable this feature by adding the dataProcessingOptions configuration setting to your file
flow. One or more processing options can be added and they will be performed in the specified order.

The agent supports the following processing options listed. Because the agent is open-source, you can
further develop and extend its processing options. You can download the agent from Kinesis Agent.

Processing Options

SINGLELINE

Converts a multi-line record to a single line record by removing newline characters, leading spaces,
and trailing spaces.

{
 "optionName": "SINGLELINE"
}

CSVTOJSON

Converts a record from delimiter separated format to JSON format.

{
 "optionName": "CSVTOJSON",
 "customFieldNames": ["field1", "field2", ...],
 "delimiter": "yourdelimiter"

107

https://docs.aws.amazon.com/firehose/latest/dev/writing-with-agents.html
https://docs.aws.amazon.com/firehose/latest/dev/writing-with-agents.html
https://github.com/awslabs/amazon-kinesis-agent

Amazon Kinesis Data Streams Developer Guide
Use the Agent to Pre-process Data

}

customFieldNames

[Required] The field names used as keys in each JSON key value pair. For example, if you specify
["f1", "f2"], the record "v1, v2" will be converted to {"f1":"v1","f2":"v2"}.

delimiter

The string used as the delimiter in the record. The default is a comma (,).
LOGTOJSON

Converts a record from a log format to JSON format. The supported log formats are Apache
Common Log, Apache Combined Log, Apache Error Log, and RFC3164 Syslog.

{
 "optionName": "LOGTOJSON",
 "logFormat": "logformat",
 "matchPattern": "yourregexpattern",
 "customFieldNames": ["field1", "field2", …]
}

logFormat

[Required] The log entry format. The following are possible values:
• COMMONAPACHELOG — The Apache Common Log format. Each log entry has the

following pattern by default: "%{host} %{ident} %{authuser} [%{datetime}]
\"%{request}\" %{response} %{bytes}".

• COMBINEDAPACHELOG — The Apache Combined Log format. Each log entry has the
following pattern by default: "%{host} %{ident} %{authuser} [%{datetime}]
\"%{request}\" %{response} %{bytes} %{referrer} %{agent}".

• APACHEERRORLOG — The Apache Error Log format. Each log entry has the following pattern
by default: "[%{timestamp}] [%{module}:%{severity}] [pid %{processid}:tid
%{threadid}] [client: %{client}] %{message}".

• SYSLOG — The RFC3164 Syslog format. Each log entry has the following pattern by default:
"%{timestamp} %{hostname} %{program}[%{processid}]: %{message}".

matchPattern

The regular expression pattern used to extract values from log entries. This setting is used if
your log entry is not in one of the predefined log formats. If this setting is used, you must also
specify customFieldNames.

customFieldNames

The custom field names used as keys in each JSON key value pair. You can use this setting to
define field names for values extracted from matchPattern, or override the default field
names of predefined log formats.

Example : LOGTOJSON Configuration

Here is one example of a LOGTOJSON configuration for an Apache Common Log entry converted to JSON
format:

{
 "optionName": "LOGTOJSON",
 "logFormat": "COMMONAPACHELOG"
}

108

Amazon Kinesis Data Streams Developer Guide
Use the Agent to Pre-process Data

Before conversion:

64.242.88.10 - - [07/Mar/2004:16:10:02 -0800] "GET /mailman/listinfo/hsdivision HTTP/1.1"
 200 6291

After conversion:

{"host":"64.242.88.10","ident":null,"authuser":null,"datetime":"07/
Mar/2004:16:10:02 -0800","request":"GET /mailman/listinfo/hsdivision
 HTTP/1.1","response":"200","bytes":"6291"}

Example : LOGTOJSON Configuration With Custom Fields

Here is another example LOGTOJSON configuration:

{
 "optionName": "LOGTOJSON",
 "logFormat": "COMMONAPACHELOG",
 "customFieldNames": ["f1", "f2", "f3", "f4", "f5", "f6", "f7"]
}

With this configuration setting, the same Apache Common Log entry from the previous example is
converted to JSON format as follows:

{"f1":"64.242.88.10","f2":null,"f3":null,"f4":"07/Mar/2004:16:10:02 -0800","f5":"GET /
mailman/listinfo/hsdivision HTTP/1.1","f6":"200","f7":"6291"}

Example : Convert Apache Common Log Entry

The following flow configuration converts an Apache Common Log entry to a single line record in JSON
format:

{
 "flows": [
 {
 "filePattern": "/tmp/app.log*",
 "kinesisStream": "my-stream",
 "dataProcessingOptions": [
 {
 "optionName": "LOGTOJSON",
 "logFormat": "COMMONAPACHELOG"
 }
]
 }
]
}

Example : Convert Multi-Line Records

The following flow configuration parses multi-line records whose first line starts with "[SEQUENCE=".
Each record is first converted to a single line record. Then, values are extracted from the record based on
a tab delimiter. Extracted values are mapped to specified customFieldNames values to form a single-
line record in JSON format.

{
 "flows": [
 {
 "filePattern": "/tmp/app.log*",

109

Amazon Kinesis Data Streams Developer Guide
Agent CLI Commands

 "kinesisStream": "my-stream",
 "multiLineStartPattern": "\\[SEQUENCE=",
 "dataProcessingOptions": [
 {
 "optionName": "SINGLELINE"
 },
 {
 "optionName": "CSVTOJSON",
 "customFieldNames": ["field1", "field2", "field3"],
 "delimiter": "\\t"
 }
]
 }
]
}

Example : LOGTOJSON Configuration with Match Pattern

Here is one example of a LOGTOJSON configuration for an Apache Common Log entry converted to JSON
format, with the last field (bytes) omitted:

{
 "optionName": "LOGTOJSON",
 "logFormat": "COMMONAPACHELOG",
 "matchPattern": "^([\\d.]+) (\\S+) (\\S+) \\[([\\w:/]+\\s[+\\-]\\d{4})\\] \"(.+?)\" (\
\d{3})",
 "customFieldNames": ["host", "ident", "authuser", "datetime", "request", "response"]
}

Before conversion:

123.45.67.89 - - [27/Oct/2000:09:27:09 -0400] "GET /java/javaResources.html HTTP/1.0" 200

After conversion:

{"host":"123.45.67.89","ident":null,"authuser":null,"datetime":"27/Oct/2000:09:27:09
 -0400","request":"GET /java/javaResources.html HTTP/1.0","response":"200"}

Agent CLI Commands
Automatically start the agent on system startup:

sudo chkconfig aws-kinesis-agent on

Check the status of the agent:

sudo service aws-kinesis-agent status

Stop the agent:

sudo service aws-kinesis-agent stop

Read the agent's log file from this location:

/var/log/aws-kinesis-agent/aws-kinesis-agent.log

110

Amazon Kinesis Data Streams Developer Guide
Troubleshooting

Uninstall the agent:

sudo yum remove aws-kinesis-agent

Troubleshooting Amazon Kinesis Data Streams
Producers

The following sections offer solutions to some common problems you may find while working with
Amazon Kinesis Data Streams producers.

• Producer Application is Writing at a Slower Rate Than Expected (p. 111)
• Unauthorized KMS master key permission error (p. 112)

Producer Application is Writing at a Slower Rate Than
Expected
The most common reasons for write throughput being slower than expected are as follows.

• Service Limits Exceeded (p. 111)
• Producer Optimization (p. 112)

Service Limits Exceeded
To find out if service limits are being exceeded, check to see if your producer is throwing throughput
exceptions from the service, and validate what API operations are being throttled. Keep in mind that
there are different limits based on the call, see Kinesis Data Streams Limits (p. 8). For example, in
addition to the shard-level limits for writes and reads that are most commonly known, there are the
following stream-level limits:

• CreateStream
• DeleteStream
• ListStreams
• GetShardIterator
• MergeShards
• DescribeStream
• DescribeStreamSummary

The operations CreateStream, DeleteStream, ListStreams, GetShardIterator, and
MergeShards are limited to 5 calls per second. The DescribeStream operation is limited to 10 calls
per second. The DescribeStreamSummary operation is limited to 20 calls per second.

If these calls aren't the issue, make sure you've selected a partition key that allows you to distribute put
operations evenly across all shards, and that you don't have a particular partition key that's bumping
into the service limits when the rest are not. This requires that you measure peak throughput and take
into account the number of shards in your stream. For more information about managing streams, see
Creating and Managing Streams (p. 38).

Tip
Remember to round up to the nearest kilobyte for throughput throttling calculations when
using the single-record operation PutRecord, while the multi-record operation PutRecords

111

https://docs.aws.amazon.com/kinesis/latest/APIReference/API_CreateStream.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_DeleteStream.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_ListStreams.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_GetShardIterator.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_MergeShards.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_DescribeStream.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_DescribeStreamSummary.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_PutRecord.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_PutRecords.html

Amazon Kinesis Data Streams Developer Guide
Unauthorized KMS master key permission error

rounds on the cumulative sum of the records in each call. For example, a PutRecords request
with 600 records that are 1.1 KB in size will not get throttled.

Producer Optimization
Before you begin optimizing your producer, there are some key tasks to be completed. First, identify your
desired peak throughput in terms of record size and records per second. Next, rule out stream capacity
as the limiting factor (Service Limits Exceeded (p. 111)). If you've ruled out stream capacity, use the
following troubleshooting tips and optimization guidelines for the two common types of producers.

Large Producer

A large producer is usually running from an on-premises server or Amazon EC2 instance. Customers
who need higher throughput from a large producer typically care about per-record latency. Strategies
for dealing with latency include the following: If the customer can micro-batch/buffer records, use the
Kinesis Producer Library (which has advanced aggregation logic), the multi-record operation PutRecords,
or aggregate records into a larger file before using the single-record operation PutRecord. If you are
unable to batch/buffer, use multiple threads to write to the Kinesis Data Streams service at the same
time. The AWS SDK for Java and other SDKs include async clients that can do this with very little code.

Small Producer

A small producer is usually a mobile app, IoT device, or web client. If it’s a mobile app, we recommend
using the PutRecords operation or the Kinesis Recorder in the AWS Mobile SDKs. For more information,
see AWS Mobile SDK for Android Getting Started Guide and AWS Mobile SDK for iOS Getting Started
Guide. Mobile apps must handle intermittent connections inherently and need some sort of batch put,
such as PutRecords. If you are unable to batch for some reason, see the Large Producer information
above. If your producer is a browser, the amount of data being generated is typically very small.
However, you are putting the put operations on the critical path of the application, which we don’t
recommend.

Unauthorized KMS master key permission error
This error occurs when a producer application writes to an encrypted stream without permissions on the
KMS master key. To assign permissions to an application to access a KMS key, see Using Key Policies in
AWS KMS and Using IAM Policies with AWS KMS.

Advanced Topics for Kinesis Data Streams
Producers

This section discusses how to optimize your Amazon Kinesis Data Streams producers.

Topics
• KPL Retries and Rate Limiting (p. 112)
• Considerations When Using KPL Aggregation (p. 113)

KPL Retries and Rate Limiting
When you add Kinesis Producer Library (KPL) user records using the KPL addUserRecord() operation, a
record is given a time stamp and added to a buffer with a deadline set by the RecordMaxBufferedTime
configuration parameter. This time stamp/deadline combination sets the buffer priority. Records are
flushed from the buffer based on the following criteria:

112

https://docs.aws.amazon.com/kinesis/latest/dev/developing-producers-with-kpl.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_PutRecords.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_PutRecord.html
https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
https://docs.aws.amazon.com/kms/latest/developerguide/iam-policies.html

Amazon Kinesis Data Streams Developer Guide
Considerations When Using KPL Aggregation

• Buffer priority
• Aggregation configuration
• Collection configuration

The aggregation and collection configuration parameters affecting buffer behavior are as follows:

• AggregationMaxCount

• AggregationMaxSize

• CollectionMaxCount

• CollectionMaxSize

Records flushed are then sent to your Kinesis data stream as Amazon Kinesis Data Streams records
using a call to the Kinesis Data Streams API operation PutRecords. The PutRecords operation
sends requests to your stream that occasionally exhibit full or partial failures. Records that fail are
automatically added back to the KPL buffer. The new deadline is set based on the minimum of these two
values:

• Half the current RecordMaxBufferedTime configuration
• The record’s time-to-live value

This strategy allows retried KPL user records to be included in subsequent Kinesis Data Streams API calls,
to improve throughput and reduce complexity while enforcing the Kinesis Data Streams record’s time-
to-live value. There is no backoff algorithm, making this a relatively aggressive retry strategy. Spamming
due to excessive retries is prevented by rate limiting, discussed in the next section.

Rate Limiting
The KPL includes a rate limiting feature, which limits per-shard throughput sent from a single producer.
Rate limiting is implemented using a token bucket algorithm with separate buckets for both Kinesis
Data Streams records and bytes. Each successful write to a Kinesis data stream adds a token (or multiple
tokens) to each bucket, up to a certain threshold. This threshold is configurable but by default is set 50
percent higher than the actual shard limit, to allow shard saturation from a single producer.

You can lower this limit to reduce spamming due to excessive retries. However, the best practice is for
each producer to retry for maximum throughput aggressively and to handle any resulting throttling
determined as excessive by expanding the capacity of the stream and implementing an appropriate
partition key strategy.

Considerations When Using KPL Aggregation
While the sequence number scheme of the resulting Amazon Kinesis Data Streams records remains
the same, aggregation causes the indexing of Kinesis Producer Library (KPL) user records contained
within an aggregated Kinesis Data Streams record to start at 0 (zero); however, as long as you do not
rely on sequence numbers to uniquely identify your KPL user records, your code can ignore this, as
the aggregation (of your KPL user records into a Kinesis Data Streams record) and subsequent de-
aggregation (of a Kinesis Data Streams record into your KPL user records) automatically takes care of this
for you. This applies whether your consumer is using the KCL or the AWS SDK. To use this aggregation
functionality, you’ll need to pull the Java part of the KPL into your build if your consumer is written using
the API provided in the AWS SDK.

If you intend to use sequence numbers as unique identifiers for your KPL user records, we recommend
that you use the contract-abiding public int hashCode() and public boolean equals(Object
obj) operations provided in Record and UserRecord to enable the comparison of your KPL user

113

Amazon Kinesis Data Streams Developer Guide
Considerations When Using KPL Aggregation

records. Additionally, if you want to examine the subsequence number of your KPL user record, you can
cast it to a UserRecord instance and retrieve its subsequence number.

For more information, see Consumer De-aggregation (p. 96).

114

Amazon Kinesis Data Streams Developer Guide

Reading Data from Amazon Kinesis
Data Streams

A consumer is an application that processes all data from a Kinesis data stream. When a consumer uses
enhanced fan-out, it gets its own 2 MiB/sec allotment of read throughput, allowing multiple consumers
to read data from the same stream in parallel, without contending for read throughput with other
consumers. To use the enhanced fan-out capability of shards, see Using Consumers with Enhanced Fan-
Out (p. 138).

By default, shards in a stream provide 2 MiB/sec of read throughput per shard. This throughput gets
shared across all the consumers that are reading from a given shard. In other words, the default 2
MiB/sec of throughput per shard is fixed, even if there are multiple consumers that are reading from
the shard. To use this default throughput of shards see, Developing Amazon Kinesis Data Streams
Consumers (p. 116).

The following table compares default throughput to enhanced fan-out. Message propagation delay is
defined as the time taken in milliseconds for a payload sent using the payload-dispatching APIs (like
PutRecord and PutRecords) to reach the consumer application through the payload-consuming APIs (like
GetRecords and SubscribeToShard).

Characteristics Unregistered Consumers without
Enhanced Fan-Out

Registered Consumers with
Enhanced Fan-Out

Shard Read
Throughput

Fixed at a total of 2 MiB/sec per
shard. If there are multiple consumers
reading from the same shard, they
all share this throughput. The sum of
the throughputs they receive from the
shard doesn't exceed 2 MiB/sec.

Scales as consumers register to use
enhanced fan-out. Each consumer
registered to use enhanced fan-out
receives its own read throughput per
shard, up to 2 MiB/sec, independently
of other consumers.

Message propagation
delay

An average of around 200 ms if you
have one consumer reading from
the stream. This average goes up
to around 1000 ms if you have five
consumers.

Typically an average of 70 ms whether
you have one consumer or five
consumers.

Cost N/A There is a data retrieval cost and a
consumer-shard hour cost. For more
information, see Amazon Kinesis Data
Streams Pricing.

Record delivery
model

Pull model over HTTP using
GetRecords.

Kinesis Data Streams pushes the
records to you over HTTP/2 using
SubscribeToShard.

Topics
• Developing Amazon Kinesis Data Streams Consumers (p. 116)
• Using Consumers with Enhanced Fan-Out (p. 138)
• Migrating from Kinesis Client Library 1.x to 2.x (p. 145)
• Troubleshooting Amazon Kinesis Data Streams Consumers (p. 154)
• Advanced Topics for Amazon Kinesis Data Streams Consumers (p. 157)

115

https://aws.amazon.com/kinesis/streams/pricing
https://aws.amazon.com/kinesis/streams/pricing
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_GetRecords.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_SubscribeToShard.html

Amazon Kinesis Data Streams Developer Guide
Using Consumers

Developing Amazon Kinesis Data Streams
Consumers

If you don't need dedicated throughput when receiving data from Kinesis Data Streams, and if you don't
need read propagation delays under 200 ms, you can build consumer applications as described in the
following topics.

Topics

• Developing Consumers Using the Kinesis Client Library 1.x (p. 116)

• Developing Consumers Using the Kinesis Client Library 2.0 (p. 130)

• Developing Consumers Using the Kinesis Data Streams API with the AWS SDK for Java (p. 134)

For information about building consumers that can receive records from Kinesis data streams with
dedicated throughput, see Using Consumers with Enhanced Fan-Out (p. 138).

Developing Consumers Using the Kinesis Client
Library 1.x
You can develop a consumer application for Amazon Kinesis Data Streams using the Kinesis Client
Library (KCL). Although you can use the Kinesis Data Streams API to get data from a Kinesis data stream,
we recommend that you use the design patterns and code for consumer applications provided by the
KCL.

You can monitor the KCL using Amazon CloudWatch. For more information, see Monitoring the Kinesis
Client Library with Amazon CloudWatch (p. 65).

Contents

• Kinesis Client Library (p. 116)

• Role of the KCL (p. 117)

• Developing a Kinesis Client Library Consumer in Java (p. 117)

• Developing a Kinesis Client Library Consumer in Node.js (p. 122)

• Developing a Kinesis Client Library Consumer in .NET (p. 125)

• Developing a Kinesis Client Library Consumer in Python (p. 127)

• Developing a Kinesis Client Library Consumer in Ruby (p. 130)

Kinesis Client Library
The Kinesis Client Library (KCL) helps you consume and process data from a Kinesis data stream. This
type of application is also referred to as a consumer. The KCL takes care of many of the complex tasks
associated with distributed computing, such as load balancing across multiple instances, responding to
instance failures, checkpointing processed records, and reacting to resharding. The KCL enables you to
focus on writing record-processing logic.

The KCL is different from the Kinesis Data Streams API that is available in the AWS SDKs. The Kinesis
Data Streams API helps you manage many aspects of Kinesis Data Streams (including creating streams,
resharding, and putting and getting records). The KCL provides a layer of abstraction specifically for
processing data in a consumer role. For information about the Kinesis Data Streams API, see the Amazon
Kinesis API Reference.

116

https://docs.aws.amazon.com/kinesis/latest/APIReference/
https://docs.aws.amazon.com/kinesis/latest/APIReference/

Amazon Kinesis Data Streams Developer Guide
Using the Kinesis Client Library 1.x

The KCL is a Java library; support for languages other than Java is provided using a multi-language
interface called the MultiLangDaemon. This daemon is Java-based and runs in the background when
you are using a KCL language other than Java. For example, if you install the KCL for Python and
write your consumer app entirely in Python, you still need Java installed on your system because of
the MultiLangDaemon. Further, MultiLangDaemon has some default settings that you might need to
customize for your use case, for example, the AWS Region that it connects to. For more information
about the MultiLangDaemon on GitHub, go to the KCL MultiLangDaemon project page.

At runtime, a KCL application instantiates a worker with configuration information, and then uses a
record processor to process the data received from a Kinesis data stream. You can run a KCL application
on any number of instances. Multiple instances of the same application coordinate on failures and load
balance dynamically. You can also have multiple KCL applications working on the same stream, subject to
throughput limits.

Role of the KCL
The KCL acts as an intermediary between your record processing logic and Kinesis Data Streams.

When you start a KCL application, it calls the KCL to instantiate a worker. This call provides the KCL with
configuration information for the application, such as the stream name and AWS credentials.

The KCL performs the following tasks:

• Connects to the stream
• Enumerates the shards
• Coordinates shard associations with other workers (if any)
• Instantiates a record processor for every shard it manages
• Pulls data records from the stream
• Pushes the records to the corresponding record processor
• Checkpoints processed records
• Balances shard-worker associations when the worker instance count changes
• Balances shard-worker associations when shards are split or merged

Developing a Kinesis Client Library Consumer in Java
You can use the Kinesis Client Library (KCL) to build applications that process data from your Kinesis data
streams. The Kinesis Client Library is available in multiple languages. This topic discusses Java. To view
the Javadoc reference, see the AWS Javadoc topic for Class AmazonKinesisClient.

To download the Java KCL from GitHub, go to Kinesis Client Library (Java). To locate the Java KCL on
Apache Maven, go to the KCL search results page. To download sample code for a Java KCL consumer
application from GitHub, go to the KCL for Java sample project page on GitHub.

The sample application uses Apache Commons Logging. You can change the logging configuration in the
static configure method defined in the AmazonKinesisApplicationSample.java file. For more
information about how to use Apache Commons Logging with Log4j and AWS Java applications, see
Logging with Log4j in the AWS SDK for Java Developer Guide.

You must complete the following tasks when implementing a KCL consumer application in Java:

Tasks
• Implement the IRecordProcessor Methods (p. 118)
• Implement a Class Factory for the IRecordProcessor Interface (p. 120)
• Create a Worker (p. 120)

117

https://github.com/awslabs/amazon-kinesis-client/tree/v1.x/src/main/java/com/amazonaws/services/kinesis/multilang
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/kinesis/AmazonKinesisClient.html
https://github.com/awslabs/amazon-kinesis-client
https://search.maven.org/#search|ga|1|amazon-kinesis-client
https://github.com/aws/aws-sdk-java/tree/master/src/samples/AmazonKinesis
http://commons.apache.org/proper/commons-logging/guide.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/java-dg-logging.html

Amazon Kinesis Data Streams Developer Guide
Using the Kinesis Client Library 1.x

• Modify the Configuration Properties (p. 121)
• Migrating to Version 2 of the Record Processor Interface (p. 122)

Implement the IRecordProcessor Methods

The KCL currently supports two versions of the IRecordProcessor interface:The original interface is
available with the first version of the KCL, and version 2 is available starting with KCL version 1.5.0. Both
interfaces are fully supported. Your choice depends on your specific scenario requirements. Refer to your
locally built Javadocs or the source code to see all the differences. The following sections outline the
minimal implementation for getting started.

IRecordProcessor Versions
• Original Interface (Version 1) (p. 118)
• Updated Interface (Version 2) (p. 119)

Original Interface (Version 1)

The original IRecordProcessor interface (package
com.amazonaws.services.kinesis.clientlibrary.interfaces) exposes the following record
processor methods that your consumer must implement. The sample provides implementations that you
can use as a starting point (see AmazonKinesisApplicationSampleRecordProcessor.java).

public void initialize(String shardId)
public void processRecords(List<Record> records, IRecordProcessorCheckpointer checkpointer)
public void shutdown(IRecordProcessorCheckpointer checkpointer, ShutdownReason reason)

initialize

The KCL calls the initialize method when the record processor is instantiated, passing a specific
shard ID as a parameter. This record processor processes only this shard and typically, the reverse is also
true (this shard is processed only by this record processor). However, your consumer should account for
the possibility that a data record might be processed more than one time. Kinesis Data Streams has at
least once semantics, meaning that every data record from a shard is processed at least one time by a
worker in your consumer. For more information about cases in which a particular shard may be processed
by more than one worker, see Resharding, Scaling, and Parallel Processing (p. 159).

public void initialize(String shardId)

processRecords

The KCL calls the processRecords method, passing a list of data record from the shard specified by the
initialize(shardId) method. The record processor processes the data in these records according
to the semantics of the consumer. For example, the worker might perform a transformation on the data
and then store the result in an Amazon Simple Storage Service (Amazon S3) bucket.

public void processRecords(List<Record> records, IRecordProcessorCheckpointer
 checkpointer)

In addition to the data itself, the record also contains a sequence number and partition key. The worker
can use these values when processing the data. For example, the worker could choose the S3 bucket in
which to store the data based on the value of the partition key. The Record class exposes the following
methods that provide access to the record's data, sequence number, and partition key.

record.getData()
record.getSequenceNumber()

118

Amazon Kinesis Data Streams Developer Guide
Using the Kinesis Client Library 1.x

record.getPartitionKey()

In the sample, the private method processRecordsWithRetries has code that shows how a worker
can access the record's data, sequence number, and partition key.

Kinesis Data Streams requires the record processor to keep track of the records that have already
been processed in a shard. The KCL takes care of this tracking for you by passing a checkpointer
(IRecordProcessorCheckpointer) to processRecords. The record processor calls the checkpoint
method on this interface to inform the KCL of how far it has progressed in processing the records in the
shard. If the worker fails, the KCL uses this information to restart the processing of the shard at the last
known processed record.

For a split or merge operation, the KCL won't start processing the new shards until the processors for the
original shards have called checkpoint to signal that all processing on the original shards is complete.

If you don't pass a parameter, the KCL assumes that the call to checkpoint means that all records have
been processed, up to the last record that was passed to the record processor. Therefore, the record
processor should call checkpoint only after it has processed all the records in the list that was passed
to it. Record processors do not need to call checkpoint on each call to processRecords. A processor
could, for example, call checkpoint on every third call to processRecords. You can optionally specify
the exact sequence number of a record as a parameter to checkpoint. In this case, the KCL assumes
that all records have been processed up to that record only.

In the sample, the private method checkpoint shows how to call
IRecordProcessorCheckpointer.checkpoint using the appropriate exception handling and retry
logic.

The KCL relies on processRecords to handle any exceptions that arise from processing the data
records. If an exception is thrown from processRecords, the KCL skips over the data records that were
passed before the exception. That is, these records are not re-sent to the record processor that threw the
exception or to any other record processor in the consumer.

shutdown

The KCL calls the shutdown method either when processing ends (the shutdown reason is TERMINATE)
or the worker is no longer responding (the shutdown reason is ZOMBIE).

public void shutdown(IRecordProcessorCheckpointer checkpointer, ShutdownReason reason)

Processing ends when the record processor does not receive any further records from the shard, because
either the shard was split or merged, or the stream was deleted.

The KCL also passes a IRecordProcessorCheckpointer interface to shutdown. If the shutdown
reason is TERMINATE, the record processor should finish processing any data records, and then call the
checkpoint method on this interface.

Updated Interface (Version 2)

The updated IRecordProcessor interface (package
com.amazonaws.services.kinesis.clientlibrary.interfaces.v2) exposes the following
record processor methods that your consumer must implement:

void initialize(InitializationInput initializationInput)
void processRecords(ProcessRecordsInput processRecordsInput)
void shutdown(ShutdownInput shutdownInput)

All of the arguments from the original version of the interface are accessible through get methods on
the container objects. For example, to retrieve the list of records in processRecords(), you can use
processRecordsInput.getRecords().

119

Amazon Kinesis Data Streams Developer Guide
Using the Kinesis Client Library 1.x

As of version 2 of this interface (KCL 1.5.0 and later), the following new inputs are available in addition
to the inputs provided by the original interface:

starting sequence number

In the InitializationInput object passed to the initialize() operation, the starting
sequence number from which records would be provided to the record processor instance. This is the
sequence number that was last checkpointed by the record processor instance previously processing
the same shard. This is provided in case your application needs this information.

pending checkpoint sequence number

In the InitializationInput object passed to the initialize() operation, the pending
checkpoint sequence number (if any) that could not be committed before the previous record
processor instance stopped.

Implement a Class Factory for the IRecordProcessor Interface

You also need to implement a factory for the class that implements the record processor methods. When
your consumer instantiates the worker, it passes a reference to this factory.

The sample implements the factory class in the file
AmazonKinesisApplicationSampleRecordProcessorFactory.java using the original record
processor interface. If you want the class factory to create version 2 record processors, use the package
name com.amazonaws.services.kinesis.clientlibrary.interfaces.v2.

 public class SampleRecordProcessorFactory implements IRecordProcessorFactory {
 /**
 * Constructor.
 */
 public SampleRecordProcessorFactory() {
 super();
 }
 /**
 * {@inheritDoc}
 */
 @Override
 public IRecordProcessor createProcessor() {
 return new SampleRecordProcessor();
 }
 }

Create a Worker

As discussed in Implement the IRecordProcessor Methods (p. 118), there are two versions of the KCL
record processor interface to choose from, which affects how you would create a worker. The original
record processor interface uses the following code structure to create a worker:

final KinesisClientLibConfiguration config = new KinesisClientLibConfiguration(...)
final IRecordProcessorFactory recordProcessorFactory = new RecordProcessorFactory();
final Worker worker = new Worker(recordProcessorFactory, config);

With version 2 of the record processor interface, you can use Worker.Builder to create a worker
without needing to worry about which constructor to use and the order of the arguments. The updated
record processor interface uses the following code structure to create a worker:

final KinesisClientLibConfiguration config = new KinesisClientLibConfiguration(...)
final IRecordProcessorFactory recordProcessorFactory = new RecordProcessorFactory();
final Worker worker = new Worker.Builder()

120

Amazon Kinesis Data Streams Developer Guide
Using the Kinesis Client Library 1.x

 .recordProcessorFactory(recordProcessorFactory)
 .config(config)
 .build();

Modify the Configuration Properties

The sample provides default values for configuration properties. This configuration data for the
worker is then consolidated in a KinesisClientLibConfiguration object. This object and a
reference to the class factory for IRecordProcessor are passed in the call that instantiates the
worker. You can override any of these properties with your own values using a Java properties file (see
AmazonKinesisApplicationSample.java).

Application Name

The KCL requires an application name that is unique across your applications, and across Amazon
DynamoDB tables in the same Region. It uses the application name configuration value in the following
ways:

• All workers associated with this application name are assumed to be working together on the same
stream. These workers may be distributed on multiple instances. If you run an additional instance of
the same application code, but with a different application name, the KCL treats the second instance as
an entirely separate application that is also operating on the same stream.

• The KCL creates a DynamoDB table with the application name and uses the table to maintain state
information (such as checkpoints and worker-shard mapping) for the application. Each application
has its own DynamoDB table. For more information, see Tracking Amazon Kinesis Data Streams
Application State (p. 157).

Set Up Credentials

You must make your AWS credentials available to one of the credential providers in the default
credential providers chain. For example, if you are running your consumer on an EC2 instance, we
recommend that you launch the instance with an IAM role. AWS credentials that reflect the permissions
associated with this IAM role are made available to applications on the instance through its instance
metadata. This is the most secure way to manage credentials for a consumer running on an EC2 instance.

The sample application first attempts to retrieve IAM credentials from instance metadata:

credentialsProvider = new InstanceProfileCredentialsProvider();

If the sample application cannot obtain credentials from the instance metadata, it attempts to retrieve
credentials from a properties file:

credentialsProvider = new ClasspathPropertiesFileCredentialsProvider();

For more information about instance metadata, see Instance Metadata in the Amazon EC2 User Guide for
Linux Instances.

Use Worker ID for Multiple Instances

The sample initialization code creates an ID for the worker, workerId, using the name of the local
computer and appending a globally unique identifier as shown in the following code snippet. This
approach supports the scenario of multiple instances of the consumer application running on a single
computer.

String workerId = InetAddress.getLocalHost().getCanonicalHostName() + ":" +
 UUID.randomUUID();

121

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html

Amazon Kinesis Data Streams Developer Guide
Using the Kinesis Client Library 1.x

Migrating to Version 2 of the Record Processor Interface

If you want to migrate code that uses the original interface, in addition to the steps described previously,
the following steps are required:

1. Change your record processor class to import the version 2 record processor interface:

import com.amazonaws.services.kinesis.clientlibrary.interfaces.v2.IRecordProcessor;

2. Change the references to inputs to use get methods on the container objects. For example, in the
shutdown() operation, change "checkpointer" to "shutdownInput.getCheckpointer()".

3. Change your record processor factory class to import the version 2 record processor factory
interface:

import
 com.amazonaws.services.kinesis.clientlibrary.interfaces.v2.IRecordProcessorFactory;

4. Change the construction of the worker to use Worker.Builder. For example:

final Worker worker = new Worker.Builder()
 .recordProcessorFactory(recordProcessorFactory)
 .config(config)
 .build();

Developing a Kinesis Client Library Consumer in Node.js
You can use the Kinesis Client Library (KCL) to build applications that process data from your Kinesis data
streams. The Kinesis Client Library is available in multiple languages. This topic discusses Node.js.

The KCL is a Java library; support for languages other than Java is provided using a multi-language
interface called the MultiLangDaemon. This daemon is Java-based and runs in the background when
you are using a KCL language other than Java. Therefore, if you install the KCL for Node.js and write
your consumer app entirely in Node.js, you still need Java installed on your system because of the
MultiLangDaemon. Further, MultiLangDaemon has some default settings you may need to customize
for your use case, for example, the AWS Region that it connects to. For more information about the
MultiLangDaemon on GitHub, go to the KCL MultiLangDaemon project page.

To download the Node.js KCL from GitHub, go to Kinesis Client Library (Node.js).

Sample Code Downloads

There are two code samples available for KCL in Node.js:

• basic-sample

Used in the following sections to illustrate the fundamentals of building a KCL consumer application in
Node.js.

• click-stream-sample

Slightly more advanced and uses a real-world scenario, after you have familiarized yourself with the
basic sample code. This sample is not discussed here but has a README file with more information.

You must complete the following tasks when implementing a KCL consumer application in Node.js:

Tasks
• Implement the Record Processor (p. 123)

122

https://github.com/awslabs/amazon-kinesis-client/tree/v1.x/src/main/java/com/amazonaws/services/kinesis/multilang
https://github.com/awslabs/amazon-kinesis-client-nodejs
https://github.com/awslabs/amazon-kinesis-client-nodejs/tree/master/samples/basic_sample
https://github.com/awslabs/amazon-kinesis-client-nodejs/tree/master/samples/click_stream_sample

Amazon Kinesis Data Streams Developer Guide
Using the Kinesis Client Library 1.x

• Modify the Configuration Properties (p. 124)

Implement the Record Processor

The simplest possible consumer using the KCL for Node.js must implement a recordProcessor
function, which in turn contains the functions initialize, processRecords, and shutdown. The
sample provides an implementation that you can use as a starting point (see sample_kcl_app.js).

function recordProcessor() {
 // return an object that implements initialize, processRecords and shutdown functions.}

initialize

The KCL calls the initialize function when the record processor starts. This record processor
processes only the shard ID passed as initializeInput.shardId, and typically, the reverse is also
true (this shard is processed only by this record processor). However, your consumer should account for
the possibility that a data record might be processed more than one time. This is because Kinesis Data
Streams has at least once semantics, meaning that every data record from a shard is processed at least
one time by a worker in your consumer. For more information about cases in which a particular shard
might be processed by more than one worker, see Resharding, Scaling, and Parallel Processing (p. 159).

initialize: function(initializeInput, completeCallback)

processRecords

The KCL calls this function with input that contains a list of data records from the shard specified to the
initialize function. The record processor that you implement processes the data in these records
according to the semantics of your consumer. For example, the worker might perform a transformation
on the data and then store the result in an Amazon Simple Storage Service (Amazon S3) bucket.

processRecords : function (processRecordsInput, completeCallback)

In addition to the data itself, the record also contains a sequence number and partition key, which the
worker can use when processing the data. For example, the worker could choose the S3 bucket in which
to store the data based on the value of the partition key. The record dictionary exposes the following
key-value pairs to access the record's data, sequence number, and partition key:

record.data
record.sequenceNumber
record.partitionKey

Note that the data is Base64-encoded.

In the basic sample, the function processRecords has code that shows how a worker can access the
record's data, sequence number, and partition key.

Kinesis Data Streams requires the record processor to keep track of the records that have already been
processed in a shard. The KCL takes care of this tracking for with a checkpointer object passed as
processRecordsInput.checkpointer. Your record processor calls the checkpointer.checkpoint
function to inform the KCL how far it has progressed in processing the records in the shard. In the event
that the worker fails, the KCL uses this information when you restart the processing of the shard so that
it continues from the last known processed record.

For a split or merge operation, the KCL doesn't start processing the new shards until the processors
for the original shards have called checkpoint to signal that all processing on the original shards is
complete.

123

Amazon Kinesis Data Streams Developer Guide
Using the Kinesis Client Library 1.x

If you don't pass the sequence number to the checkpoint function, the KCL assumes that the call to
checkpoint means that all records have been processed, up to the last record that was passed to the
record processor. Therefore, the record processor should call checkpoint only after it has processed
all the records in the list that was passed to it. Record processors do not need to call checkpoint on
each call to processRecords. A processor could, for example, call checkpoint on every third call, or
some event external to your record processor, such as a custom verification/validation service you've
implemented.

You can optionally specify the exact sequence number of a record as a parameter to checkpoint. In this
case, the KCL assumes that all records have been processed up to that record only.

The basic sample application shows the simplest possible call to the checkpointer.checkpoint
function. You can add other checkpointing logic you need for your consumer at this point in the function.

shutdown

The KCL calls the shutdown function either when processing ends (shutdownInput.reason is
TERMINATE) or the worker is no longer responding (shutdownInput.reason is ZOMBIE).

shutdown: function(shutdownInput, completeCallback)

Processing ends when the record processor does not receive any further records from the shard, because
either the shard was split or merged, or the stream was deleted.

The KCL also passes a shutdownInput.checkpointer object to shutdown. If the shutdown reason is
TERMINATE, you should make sure that the record processor has finished processing any data records,
and then call the checkpoint function on this interface.

Modify the Configuration Properties

The sample provides default values for the configuration properties. You can override any of these
properties with your own values (see sample.properties in the basic sample).

Application Name

The KCL requires an application that this is unique among your applications, and among Amazon
DynamoDB tables in the same Region. It uses the application name configuration value in the following
ways:

• All workers associated with this application name are assumed to be working together on the same
stream. These workers may be distributed on multiple instances. If you run an additional instance of
the same application code, but with a different application name, the KCL treats the second instance as
an entirely separate application that is also operating on the same stream.

• The KCL creates a DynamoDB table with the application name and uses the table to maintain state
information (such as checkpoints and worker-shard mapping) for the application. Each application
has its own DynamoDB table. For more information, see Tracking Amazon Kinesis Data Streams
Application State (p. 157).

Set Up Credentials

You must make your AWS credentials available to one of the credential providers in the default
credential providers chain. You can you use the AWSCredentialsProvider property to set a
credentials provider. The sample.properties file must make your credentials available to one of
the credentials providers in the default credential providers chain. If you are running your consumer
on an Amazon EC2 instance, we recommend that you configure the instance with an IAM role. AWS
credentials that reflect the permissions associated with this IAM role are made available to applications
on the instance through its instance metadata. This is the most secure way to manage credentials for a
consumer application running on an EC2 instance.

124

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/auth/DefaultAWSCredentialsProviderChain.html

Amazon Kinesis Data Streams Developer Guide
Using the Kinesis Client Library 1.x

The following example configures KCL to process a Kinesis data stream named kclnodejssample using
the record processor supplied in sample_kcl_app.js:

The Node.js executable
script
executableName = node sample_kcl_app.js
The name of an Amazon Kinesis stream to process
streamName = kclnodejssample
Unique KCL application name
applicationName = kclnodejssample
Use default AWS credentials provider chain
AWSCredentialsProvider = DefaultAWSCredentialsProviderChain
Read from the beginning of the stream
initialPositionInStream = TRIM_HORIZON

Developing a Kinesis Client Library Consumer in .NET
You can use the Kinesis Client Library (KCL) to build applications that process data from your Kinesis data
streams. The Kinesis Client Library is available in multiple languages. This topic discusses .NET.

The KCL is a Java library; support for languages other than Java is provided using a multi-language
interface called the MultiLangDaemon. This daemon is Java-based and runs in the background when
you are using a KCL language other than Java. Therefore, if you install the KCL for .NET and write
your consumer app entirely in .NET, you still need Java installed on your system because of the
MultiLangDaemon. Further, MultiLangDaemon has some default settings you may need to customize
for your use case, for example, the AWS Region that it connects to. For more information about the
MultiLangDaemon on GitHub, go to the KCL MultiLangDaemon project page.

To download the .NET KCL from GitHub, go to Kinesis Client Library (.NET). To download sample code for
a .NET KCL consumer application, go to the KCL for .NET sample consumer project page on GitHub.

You must complete the following tasks when implementing a KCL consumer application in .NET:

Tasks
• Implement the IRecordProcessor Class Methods (p. 125)
• Modify the Configuration Properties (p. 127)

Implement the IRecordProcessor Class Methods

The consumer must implement the following methods for IRecordProcessor. The sample consumer
provides implementations that you can use as a starting point (see the SampleRecordProcessor class
in SampleConsumer/AmazonKinesisSampleConsumer.cs).

public void Initialize(InitializationInput input)
public void ProcessRecords(ProcessRecordsInput input)
public void Shutdown(ShutdownInput input)

Initialize

The KCL calls this method when the record processor is instantiated, passing a specific shard ID in the
input parameter (input.ShardId). This record processor processes only this shard, and typically,
the reverse is also true (this shard is processed only by this record processor). However, your consumer
should account for the possibility that a data record might be processed more than one time. This is
because Kinesis Data Streams has at least once semantics, meaning that every data record from a shard
is processed at least one time by a worker in your consumer. For more information about cases in which
a particular shard might be processed by more than one worker, see Resharding, Scaling, and Parallel
Processing (p. 159).

125

https://github.com/awslabs/amazon-kinesis-client/tree/v1.x/src/main/java/com/amazonaws/services/kinesis/multilang
https://github.com/awslabs/amazon-kinesis-client-net
https://github.com/awslabs/amazon-kinesis-client-net/tree/master/SampleConsumer

Amazon Kinesis Data Streams Developer Guide
Using the Kinesis Client Library 1.x

public void Initialize(InitializationInput input)

ProcessRecords

The KCL calls this method, passing a list of data records in the input parameter (input.Records) from
the shard specified by the Initialize method. The record processor that you implement processes
the data in these records according to the semantics of your consumer. For example, the worker might
perform a transformation on the data and then store the result in an Amazon Simple Storage Service
(Amazon S3) bucket.

public void ProcessRecords(ProcessRecordsInput input)

In addition to the data itself, the record also contains a sequence number and partition key. The worker
can use these values when processing the data. For example, the worker could choose the S3 bucket in
which to store the data based on the value of the partition key. The Record class exposes the following
to access the record's data, sequence number, and partition key:

byte[] Record.Data
string Record.SequenceNumber
string Record.PartitionKey

In the sample, the method ProcessRecordsWithRetries has code that shows how a worker can
access the record's data, sequence number, and partition key.

Kinesis Data Streams requires the record processor to keep track of the records that have
already been processed in a shard. The KCL takes care of this tracking for you by passing a
Checkpointer object to ProcessRecords (input.Checkpointer). The record processor calls the
Checkpointer.Checkpoint method to inform the KCL of how far it has progressed in processing the
records in the shard. If the worker fails, the KCL uses this information to restart the processing of the
shard at the last known processed record.

For a split or merge operation, the KCL doesn't start processing the new shards until the processors for
the original shards have called Checkpointer.Checkpoint to signal that all processing on the original
shards is complete.

If you don't pass a parameter, the KCL assumes that the call to Checkpointer.Checkpoint
signifies that all records have been processed, up to the last record that was passed to the record
processor. Therefore, the record processor should call Checkpointer.Checkpoint only after it
has processed all the records in the list that was passed to it. Record processors do not need to call
Checkpointer.Checkpoint on each call to ProcessRecords. A processor could, for example,
call Checkpointer.Checkpoint on every third or fourth call. You can optionally specify the exact
sequence number of a record as a parameter to Checkpointer.Checkpoint. In this case, the KCL
assumes that records have been processed only up to that record.

In the sample, the private method Checkpoint(Checkpointer checkpointer) shows how to call
the Checkpointer.Checkpoint method using appropriate exception handling and retry logic.

The KCL for .NET handles exceptions differently from other KCL language libraries in that it does not
handle any exceptions that arise from processing the data records. Any uncaught exceptions from user
code crashes the program.

Shutdown

The KCL calls the Shutdown method either when processing ends (the shutdown reason is TERMINATE)
or the worker is no longer responding (the shutdown input.Reason value is ZOMBIE).

public void Shutdown(ShutdownInput input)

126

Amazon Kinesis Data Streams Developer Guide
Using the Kinesis Client Library 1.x

Processing ends when the record processor does not receive any further records from the shard, because
the shard was split or merged, or the stream was deleted.

The KCL also passes a Checkpointer object to shutdown. If the shutdown reason is TERMINATE, the
record processor should finish processing any data records, and then call the checkpoint method on
this interface.

Modify the Configuration Properties

The sample consumer provides default values for the configuration properties. You can override any of
these properties with your own values (see SampleConsumer/kcl.properties).

Application Name

The KCL requires an application that this is unique among your applications, and among Amazon
DynamoDB tables in the same Region. It uses the application name configuration value in the following
ways:

• All workers associated with this application name are assumed to be working together on the same
stream. These workers may be distributed on multiple instances. If you run an additional instance of
the same application code, but with a different application name, the KCL treats the second instance as
an entirely separate application that is also operating on the same stream.

• The KCL creates a DynamoDB table with the application name and uses the table to maintain state
information (such as checkpoints and worker-shard mapping) for the application. Each application
has its own DynamoDB table. For more information, see Tracking Amazon Kinesis Data Streams
Application State (p. 157).

Set Up Credentials

You must make your AWS credentials available to one of the credential providers in the default
credential providers chain. You can you use the AWSCredentialsProvider property to set a
credentials provider. The sample.properties must make your credentials available to one of the
credentials providers in the default credential providers chain. If you are running your consumer
application on an EC2 instance, we recommend that you configure the instance with an IAM role. AWS
credentials that reflect the permissions associated with this IAM role are made available to applications
on the instance through its instance metadata. This is the most secure way to manage credentials for a
consumer running on an EC2 instance.

The sample's properties file configures KCL to process a Kinesis data stream called "words" using the
record processor supplied in AmazonKinesisSampleConsumer.cs.

Developing a Kinesis Client Library Consumer in Python
You can use the Kinesis Client Library (KCL) to build applications that process data from your Kinesis data
streams. The Kinesis Client Library is available in multiple languages. This topic discusses Python.

The KCL is a Java library; support for languages other than Java is provided using a multi-language
interface called the MultiLangDaemon. This daemon is Java-based and runs in the background when
you are using a KCL language other than Java. Therefore, if you install the KCL for Python and write
your consumer app entirely in Python, you still need Java installed on your system because of the
MultiLangDaemon. Further, MultiLangDaemon has some default settings you may need to customize
for your use case, for example, the AWS Region that it connects to. For more information about the
MultiLangDaemon on GitHub, go to the KCL MultiLangDaemon project page.

To download the Python KCL from GitHub, go to Kinesis Client Library (Python). To download sample
code for a Python KCL consumer application, go to the KCL for Python sample project page on GitHub.

You must complete the following tasks when implementing a KCL consumer application in Python:

127

https://github.com/awslabs/amazon-kinesis-client-python/blob/master/samples/sample.properties
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/auth/DefaultAWSCredentialsProviderChain.html
https://github.com/awslabs/amazon-kinesis-client/tree/v1.x/src/main/java/com/amazonaws/services/kinesis/multilang
https://github.com/awslabs/amazon-kinesis-client-python
https://github.com/awslabs/amazon-kinesis-client-python/tree/master/samples

Amazon Kinesis Data Streams Developer Guide
Using the Kinesis Client Library 1.x

Tasks
• Implement the RecordProcessor Class Methods (p. 128)

• Modify the Configuration Properties (p. 129)

Implement the RecordProcessor Class Methods

The RecordProcess class must extend the RecordProcessorBase to implement the following
methods. The sample provides implementations that you can use as a starting point (see
sample_kclpy_app.py).

def initialize(self, shard_id)
def process_records(self, records, checkpointer)
def shutdown(self, checkpointer, reason)

initialize

The KCL calls the initialize method when the record processor is instantiated, passing a specific
shard ID as a parameter. This record processor processes only this shard, and typically, the reverse is also
true (this shard is processed only by this record processor). However, your consumer should account for
the possibility that a data record might be processed more than one time. This is because Kinesis Data
Streams has at least once semantics, meaning that every data record from a shard is processed at least
one time by a worker in your consumer. For more information about cases in which a particular shard
may be processed by more than one worker, see Resharding, Scaling, and Parallel Processing (p. 159).

def initialize(self, shard_id)

process_records

The KCL calls this method, passing a list of data record from the shard specified by the initialize
method. The record processor that you implement processes the data in these records according to the
semantics of your consumer. For example, the worker might perform a transformation on the data and
then store the result in an Amazon Simple Storage Service (Amazon S3) bucket.

def process_records(self, records, checkpointer)

In addition to the data itself, the record also contains a sequence number and partition key. The worker
can use these values when processing the data. For example, the worker could choose the S3 bucket
in which to store the data based on the value of the partition key. The record dictionary exposes the
following key-value pairs to access the record's data, sequence number, and partition key:

record.get('data')
record.get('sequenceNumber')
record.get('partitionKey')

Note that the data is Base64-encoded.

In the sample, the method process_records has code that shows how a worker can access the record's
data, sequence number, and partition key.

Kinesis Data Streams requires the record processor to keep track of the records that have already been
processed in a shard. The KCL takes care of this tracking for you by passing a Checkpointer object to
process_records. The record processor calls the checkpoint method on this object to inform the
KCL of how far it has progressed in processing the records in the shard. If the worker fails, the KCL uses
this information to restart the processing of the shard at the last known processed record.

128

Amazon Kinesis Data Streams Developer Guide
Using the Kinesis Client Library 1.x

For a split or merge operation, the KCL doesn't start processing the new shards until the processors
for the original shards have called checkpoint to signal that all processing on the original shards is
complete.

If you don't pass a parameter, the KCL assumes that the call to checkpoint means that all records have
been processed, up to the last record that was passed to the record processor. Therefore, the record
processor should call checkpoint only after it has processed all the records in the list that was passed
to it. Record processors do not need to call checkpoint on each call to process_records. A processor
could, for example, call checkpoint on every third call. You can optionally specify the exact sequence
number of a record as a parameter to checkpoint. In this case, the KCL assumes that all records have
been processed up to that record only.

In the sample, the private method checkpoint shows how to call the Checkpointer.checkpoint
method using appropriate exception handling and retry logic.

The KCL relies on process_records to handle any exceptions that arise from processing the data
records. If an exception is thrown from process_records, the KCL skips over the data records that were
passed to process_records before the exception. That is, these records are not re-sent to the record
processor that threw the exception or to any other record processor in the consumer.

shutdown

The KCL calls the shutdown method either when processing ends (the shutdown reason is TERMINATE)
or the worker is no longer responding (the shutdown reason is ZOMBIE).

def shutdown(self, checkpointer, reason)

Processing ends when the record processor does not receive any further records from the shard, because
either the shard was split or merged, or the stream was deleted.

The KCL also passes a Checkpointer object to shutdown. If the shutdown reason is TERMINATE, the
record processor should finish processing any data records, and then call the checkpoint method on
this interface.

Modify the Configuration Properties

The sample provides default values for the configuration properties. You can override any of these
properties with your own values (see sample.properties).

Application Name

The KCL requires an application that this is unique among your applications, and among Amazon
DynamoDB tables in the same Region. It uses the application name configuration value in the following
ways:

• All workers that are associated with this application name are assumed to be working together on the
same stream. These workers can be distributed on multiple instances. If you run an additional instance
of the same application code, but with a different application name, the KCL treats the second instance
as an entirely separate application that is also operating on the same stream.

• The KCL creates a DynamoDB table with the application name and uses the table to maintain state
information (such as checkpoints and worker-shard mapping) for the application. Each application
has its own DynamoDB table. For more information, see Tracking Amazon Kinesis Data Streams
Application State (p. 157).

Set Up Credentials

You must make your AWS credentials available to one of the credential providers in the default
credential providers chain. You can you use the AWSCredentialsProvider property to set a
credentials provider. The sample.properties must make your credentials available to one of the

129

https://github.com/awslabs/amazon-kinesis-client-python/blob/master/samples/sample.properties

Amazon Kinesis Data Streams Developer Guide
Using the Kinesis Client Library 2.0

credentials providers in the default credential providers chain. If you are running your consumer
application on an Amazon EC2 instance, we recommend that you configure the instance with an IAM
role. AWS credentials that reflect the permissions associated with this IAM role are made available to
applications on the instance through its instance metadata. This is the most secure way to manage
credentials for a consumer application running on an EC2 instance.

The sample's properties file configures KCL to process a Kinesis data stream called "words" using the
record processor supplied in sample_kclpy_app.py.

Developing a Kinesis Client Library Consumer in Ruby
You can use the Kinesis Client Library (KCL) to build applications that process data from your Kinesis data
streams. The Kinesis Client Library is available in multiple languages. This topic discusses Ruby.

The KCL is a Java library; support for languages other than Java is provided using a multi-language
interface called the MultiLangDaemon. This daemon is Java-based and runs in the background when
you are using a KCL language other than Java. Therefore, if you install the KCL for Ruby and write
your consumer app entirely in Ruby, you still need Java installed on your system because of the
MultiLangDaemon. Further, MultiLangDaemon has some default settings you may need to customize
for your use case, for example, the AWS Region that it connects to. For more information about the
MultiLangDaemon on GitHub, go to the KCL MultiLangDaemon project page.

To download the Ruby KCL from GitHub, go to Kinesis Client Library (Ruby). To download sample code
for a Ruby KCL consumer application, go to the KCL for Ruby sample project page on GitHub.

For more information about the KCL Ruby support library, see KCL Ruby Gems Documentation.

Developing Consumers Using the Kinesis Client
Library 2.0
This topic shows you how to use version 2.0 of the Kinesis Client Library (KCL). For more information
about the KCL, see the overview provided in Developing Consumers Using the Kinesis Client Library 1.x.

Contents
• Developing a Kinesis Client Library Consumer in Java (p. 130)

Developing a Kinesis Client Library Consumer in Java
The following code shows an example implementation in Java of ProcessorFactory and
RecordProcessor. If you want to take advantage of the enhanced fan-out feature, see Using
Consumers with Enhanced Fan-Out .

/*
 * Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License").
 * You may not use this file except in compliance with the License.
 * A copy of the License is located at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * or in the "license" file accompanying this file. This file is distributed
 * on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
 * express or implied. See the License for the specific language governing
 * permissions and limitations under the License.
 */

import java.io.BufferedReader;

130

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/auth/DefaultAWSCredentialsProviderChain.html
https://github.com/awslabs/amazon-kinesis-client/tree/v1.x/src/main/java/com/amazonaws/services/kinesis/multilang
https://github.com/awslabs/amazon-kinesis-client-ruby
https://github.com/awslabs/amazon-kinesis-client-ruby/tree/master/samples
http://www.rubydoc.info/gems/aws-kclrb
https://docs.aws.amazon.com/streams/latest/dev/developing-consumers-with-kcl.html
https://docs.aws.amazon.com/streams/latest/dev/introduction-to-enhanced-consumers.html
https://docs.aws.amazon.com/streams/latest/dev/introduction-to-enhanced-consumers.html

Amazon Kinesis Data Streams Developer Guide
Using the Kinesis Client Library 2.0

import java.io.IOException;
import java.io.InputStreamReader;
import java.util.UUID;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;
import java.util.concurrent.ScheduledExecutorService;
import java.util.concurrent.ScheduledFuture;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

import org.apache.commons.lang3.ObjectUtils;
import org.apache.commons.lang3.RandomStringUtils;
import org.apache.commons.lang3.RandomUtils;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.slf4j.MDC;

import software.amazon.awssdk.core.SdkBytes;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.cloudwatch.CloudWatchAsyncClient;
import software.amazon.awssdk.services.dynamodb.DynamoDbAsyncClient;
import software.amazon.awssdk.services.kinesis.KinesisAsyncClient;
import software.amazon.awssdk.services.kinesis.model.PutRecordRequest;
import software.amazon.kinesis.common.ConfigsBuilder;
import software.amazon.kinesis.coordinator.Scheduler;
import software.amazon.kinesis.exceptions.InvalidStateException;
import software.amazon.kinesis.exceptions.ShutdownException;
import software.amazon.kinesis.lifecycle.events.InitializationInput;
import software.amazon.kinesis.lifecycle.events.LeaseLostInput;
import software.amazon.kinesis.lifecycle.events.ProcessRecordsInput;
import software.amazon.kinesis.lifecycle.events.ShardEndedInput;
import software.amazon.kinesis.lifecycle.events.ShutdownRequestedInput;
import software.amazon.kinesis.processor.ShardRecordProcessor;
import software.amazon.kinesis.processor.ShardRecordProcessorFactory;

public class SampleSingle {

 private static final Logger log = LoggerFactory.getLogger(SampleSingle.class);

 public static void main(String... args) {
 if (args.length < 1) {
 log.error("At a minimum stream name is required as the first argument. Region
 may be specified as the second argument");
 System.exit(1);
 }

 String streamName = args[0];
 String region = null;
 if (args.length > 1) {
 region = args[1];
 }

 new SampleSingle(streamName, region).run();
 }

 private final String streamName;
 private final Region region;
 private final KinesisAsyncClient kinesisClient;

 private SampleSingle(String streamName, String region) {
 this.streamName = streamName;
 this.region = Region.of(ObjectUtils.firstNonNull(region, "us-east-2"));
 this.kinesisClient = KinesisAsyncClient.builder().region(this.region).build();
 }

131

Amazon Kinesis Data Streams Developer Guide
Using the Kinesis Client Library 2.0

 private void run() {
 ScheduledExecutorService producerExecutor =
 Executors.newSingleThreadScheduledExecutor();
 ScheduledFuture<?> producerFuture =
 producerExecutor.scheduleAtFixedRate(this::publishRecord, 10, 1, TimeUnit.SECONDS);

 DynamoDbAsyncClient dynamoClient =
 DynamoDbAsyncClient.builder().region(region).build();
 CloudWatchAsyncClient cloudWatchClient =
 CloudWatchAsyncClient.builder().region(region).build();
 ConfigsBuilder configsBuilder = new ConfigsBuilder(streamName, streamName,
 kinesisClient, dynamoClient, cloudWatchClient, UUID.randomUUID().toString(), new
 SampleRecordProcessorFactory());

 Scheduler scheduler = new Scheduler(
 configsBuilder.checkpointConfig(),
 configsBuilder.coordinatorConfig(),
 configsBuilder.leaseManagementConfig(),
 configsBuilder.lifecycleConfig(),
 configsBuilder.metricsConfig(),
 configsBuilder.processorConfig(),
 configsBuilder.retrievalConfig().retrievalSpecificConfig(new
 PollingConfig(streamName, kinesisClient))
);

 Thread schedulerThread = new Thread(scheduler);
 schedulerThread.setDaemon(true);
 schedulerThread.start();

 System.out.println("Press enter to shutdown");
 BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
 try {
 reader.readLine();
 } catch (IOException ioex) {
 log.error("Caught exception while waiting for confirm. Shutting down", ioex);
 }

 log.info("Cancelling producer, and shutting down excecutor.");
 producerFuture.cancel(true);
 producerExecutor.shutdownNow();

 Future<Boolean> gracefulShutdownFuture = scheduler.startGracefulShutdown();
 log.info("Waiting up to 20 seconds for shutdown to complete.");
 try {
 gracefulShutdownFuture.get(20, TimeUnit.SECONDS);
 } catch (InterruptedException e) {
 log.info("Interrupted while waiting for graceful shutdown. Continuing.");
 } catch (ExecutionException e) {
 log.error("Exception while executing graceful shutdown.", e);
 } catch (TimeoutException e) {
 log.error("Timeout while waiting for shutdown. Scheduler may not have
 exited.");
 }
 log.info("Completed, shutting down now.");
 }

 private void publishRecord() {
 PutRecordRequest request = PutRecordRequest.builder()
 .partitionKey(RandomStringUtils.randomAlphabetic(5, 20))
 .streamName(streamName)
 .data(SdkBytes.fromByteArray(RandomUtils.nextBytes(10)))
 .build();
 try {
 kinesisClient.putRecord(request).get();
 } catch (InterruptedException e) {
 log.info("Interrupted, assuming shutdown.");

132

Amazon Kinesis Data Streams Developer Guide
Using the Kinesis Client Library 2.0

 } catch (ExecutionException e) {
 log.error("Exception while sending data to Kinesis will try again next cycle",
 e);
 }
 }

 private static class SampleRecordProcessorFactory implements
 ShardRecordProcessorFactory {
 public ShardRecordProcessor shardRecordProcessor() {
 return new SampleRecordProcessor();
 }
 }

 private static class SampleRecordProcessor implements ShardRecordProcessor {

 private static final String SHARD_ID_MDC_KEY = "ShardId";

 private static final Logger log =
 LoggerFactory.getLogger(software.amazon.kinesis.sample.SampleRecordProcessor.class);

 private String shardId;

 public void initialize(InitializationInput initializationInput) {
 shardId = initializationInput.shardId();
 MDC.put(SHARD_ID_MDC_KEY, shardId);
 try {
 log.info("Initializing @ Sequence: {}",
 initializationInput.extendedSequenceNumber());
 } finally {
 MDC.remove(SHARD_ID_MDC_KEY);
 }
 }

 public void processRecords(ProcessRecordsInput processRecordsInput) {
 MDC.put(SHARD_ID_MDC_KEY, shardId);
 try {
 log.info("Processing {} record(s)", processRecordsInput.records().size());
 processRecordsInput.records().forEach(r -> log.info("Processing record pk:
 {} -- Seq: {}", r.partitionKey(), r.sequenceNumber()));
 } catch (Throwable t) {
 log.error("Caught throwable while processing records. Aborting");
 Runtime.getRuntime().halt(1);
 } finally {
 MDC.remove(SHARD_ID_MDC_KEY);
 }
 }

 public void leaseLost(LeaseLostInput leaseLostInput) {
 MDC.put(SHARD_ID_MDC_KEY, shardId);
 try {
 log.info("Lost lease, so terminating.");
 } finally {
 MDC.remove(SHARD_ID_MDC_KEY);
 }
 }

 public void shardEnded(ShardEndedInput shardEndedInput) {
 MDC.put(SHARD_ID_MDC_KEY, shardId);
 try {
 log.info("Reached shard end checkpointing.");
 shardEndedInput.checkpointer().checkpoint();
 } catch (ShutdownException | InvalidStateException e) {
 log.error("Exception while checkpointing at shard end. Giving up", e);
 } finally {
 MDC.remove(SHARD_ID_MDC_KEY);

133

Amazon Kinesis Data Streams Developer Guide
Using the API

 }
 }

 public void shutdownRequested(ShutdownRequestedInput shutdownRequestedInput) {
 MDC.put(SHARD_ID_MDC_KEY, shardId);
 try {
 log.info("Scheduler is shutting down, checkpointing.");
 shutdownRequestedInput.checkpointer().checkpoint();
 } catch (ShutdownException | InvalidStateException e) {
 log.error("Exception while checkpointing at requested shutdown. Giving
 up", e);
 } finally {
 MDC.remove(SHARD_ID_MDC_KEY);
 }
 }
 }

}

Developing Consumers Using the Kinesis Data
Streams API with the AWS SDK for Java
You can develop consumers using the Amazon Kinesis Data Streams API with the AWS SDK for Java.
If you are new to Kinesis Data Streams, start by becoming familiar with the concepts and terminology
presented in What Is Amazon Kinesis Data Streams? (p. 1) and Getting Started Using Amazon Kinesis
Data Streams (p. 10).

These examples discuss the Kinesis Data Streams API and use the AWS SDK for Java to get data from a
stream. However, for most use cases, you should prefer using the Kinesis Client Library (KCL) . For more
information, see Developing Consumers Using the Kinesis Client Library 1.x (p. 116).

The Java example code in this section demonstrates how to perform basic Kinesis Data Streams API
operations, and is divided up logically by operation type. These examples don't represent production-
ready code. They don't check for all possible exceptions or account for all possible security or
performance considerations. Also, you can call the Kinesis Data Streams API using other different
programming languages. For more information about all available AWS SDKs, see Start Developing with
Amazon Web Services.

Each task has prerequisites. For example, you cannot add data to a stream until you have created
a stream, which requires you to create a client. For more information, see Creating and Managing
Streams (p. 38).

Topics
• Getting Data from a Stream (p. 134)
• Using Shard Iterators (p. 135)
• Using GetRecords (p. 136)
• Adapting to a Reshard (p. 137)

Getting Data from a Stream
The Kinesis Data Streams API provides the getShardIterator and getRecords methods to retrieve
data from a stream. This is a pull model, where your code draws data directly from the shards of the
stream.

We recommend that you use the record processor support provided by the Kinesis Client Library (KCL)
to retrieve stream data in consumer applications. This is a push model, where you implement the code
that processes the data. The KCL retrieves data records from the stream and delivers them to your

134

https://docs.aws.amazon.com/kinesis/latest/APIReference/
https://aws.amazon.com/sdk-for-java/
https://docs.aws.amazon.com/kinesis/latest/APIReference/
https://aws.amazon.com/developers/getting-started/
https://aws.amazon.com/developers/getting-started/

Amazon Kinesis Data Streams Developer Guide
Using the API

application code. In addition, the KCL provides failover, recovery, and load balancing functionality. For
more information, see Developing Consumers Using the Kinesis Client Library 1.x (p. 116).

However, in some cases you might prefer to use the Kinesis Data Streams API with the AWS SDK for Java.
For example, to implement custom tools for monitoring or debugging your streams.

Important
Kinesis Data Streams supports changes to the data record retention period of your data stream.
For more information, see Changing the Data Retention Period (p. 47).

Using Shard Iterators
You retrieve records from the stream on a per-shard basis. For each shard, and for each batch of records
that you retrieve from that shard, you must obtain a shard iterator. The shard iterator is used in the
getRecordsRequest object to specify the shard from which records are to be retrieved. The type
associated with the shard iterator determines the point in the shard from which the records should be
retrieved (see later in this section for more details). Before you can work with the shard iterator, you need
to retrieve the shard, as discussed in Retrieving Shards from a Stream (p. 42).

Obtain the initial shard iterator using the getShardIterator method. Obtain shard iterators for
additional batches of records using the getNextShardIterator method of the getRecordsResult
object returned by the getRecords method. A shard iterator is valid for 5 minutes. If you use a shard
iterator while it is valid, you get a new one. Each shard iterator remains valid for 5 minutes, even after it
is used.

To obtain the initial shard iterator, instantiate GetShardIteratorRequest and pass it to the
getShardIterator method. To configure the request, specify the stream and the shard ID. For
information about how to obtain the streams in your AWS account, see Listing Streams (p. 40). For
information about how to obtain the shards in a stream, see Retrieving Shards from a Stream (p. 42).

String shardIterator;
GetShardIteratorRequest getShardIteratorRequest = new GetShardIteratorRequest();
getShardIteratorRequest.setStreamName(myStreamName);
getShardIteratorRequest.setShardId(shard.getShardId());
getShardIteratorRequest.setShardIteratorType("TRIM_HORIZON");

GetShardIteratorResult getShardIteratorResult =
 client.getShardIterator(getShardIteratorRequest);
shardIterator = getShardIteratorResult.getShardIterator();

This sample code specifies TRIM_HORIZON as the iterator type when obtaining the initial shard iterator.
This iterator type means that records should be returned beginning with the first record added to the
shard—rather than beginning with the most recently added record, also known as the tip. The following
are possible iterator types:

• AT_SEQUENCE_NUMBER

• AFTER_SEQUENCE_NUMBER

• AT_TIMESTAMP

• TRIM_HORIZON

• LATEST

For more information, see ShardIteratorType.

Some iterator types require that you specify a sequence number in addition to the type; for example:

getShardIteratorRequest.setShardIteratorType("AT_SEQUENCE_NUMBER");
getShardIteratorRequest.setStartingSequenceNumber(specialSequenceNumber);

135

https://docs.aws.amazon.com/kinesis/latest/APIReference/API_GetShardIterator.html#Kinesis-GetShardIterator-request-ShardIteratorType

Amazon Kinesis Data Streams Developer Guide
Using the API

After you obtain a record using getRecords, you can get the sequence number for the record by calling
the record's getSequenceNumber method.

record.getSequenceNumber()

In addition, the code that adds records to the data stream can get the sequence number for an added
record by calling getSequenceNumber on the result of putRecord.

lastSequenceNumber = putRecordResult.getSequenceNumber();

You can use sequence numbers to guarantee strictly increasing ordering of records. For more
information, see the code example in PutRecord Example (p. 102).

Using GetRecords
After you obtain the shard iterator, instantiate a GetRecordsRequest object. Specify the iterator for
the request using the setShardIterator method.

Optionally, you can also set the number of records to retrieve using the setLimit method. The number
of records returned by getRecords is always equal to or less than this limit. If you do not specify this
limit, getRecords returns 10 MB of retrieved records. The sample code below sets this limit to 25
records.

If no records are returned, that means no data records are currently available from this shard at the
sequence number referenced by the shard iterator. In this situation, your application should wait for an
amount of time that's appropriate for the data sources for the stream, but at least 1 second. Then try to
get data from the shard again using the shard iterator returned by the preceding call to getRecords.
There is about a 3-second latency from the time that a record is added to the stream to the time that it is
available from getRecords.

Pass the getRecordsRequest to the getRecords method, and capture the returned value
as a getRecordsResult object. To get the data records, call the getRecords method on the
getRecordsResult object.

GetRecordsRequest getRecordsRequest = new GetRecordsRequest();
getRecordsRequest.setShardIterator(shardIterator);
getRecordsRequest.setLimit(25);

GetRecordsResult getRecordsResult = client.getRecords(getRecordsRequest);
List<Record> records = getRecordsResult.getRecords();

To prepare for another call to getRecords, obtain the next shard iterator from getRecordsResult.

shardIterator = getRecordsResult.getNextShardIterator();

For best results, sleep for at least 1 second (1,000 milliseconds) between calls to getRecords to avoid
exceeding the limit on getRecords frequency.

try {
 Thread.sleep(1000);
}
catch (InterruptedException e) {}

Typically, you should call getRecords in a loop, even when you're retrieving a single record in a test
scenario. A single call to getRecords might return an empty record list, even when the shard contains
more records at later sequence numbers. When this occurs, the NextShardIterator returned along
with the empty record list references a later sequence number in the shard, and successive getRecords
calls eventually returns the records. The following sample demonstrates the use of a loop.

136

Amazon Kinesis Data Streams Developer Guide
Using the API

Example: getRecords

The following code example reflects the getRecords tips in this section, including making calls in a
loop.

// Continuously read data records from a shard
List<Record> records;

while (true) {

 // Create a new getRecordsRequest with an existing shardIterator
 // Set the maximum records to return to 25
 GetRecordsRequest getRecordsRequest = new GetRecordsRequest();
 getRecordsRequest.setShardIterator(shardIterator);
 getRecordsRequest.setLimit(25);

 GetRecordsResult result = client.getRecords(getRecordsRequest);

 // Put the result into record list. The result can be empty.
 records = result.getRecords();

 try {
 Thread.sleep(1000);
 }
 catch (InterruptedException exception) {
 throw new RuntimeException(exception);
 }

 shardIterator = result.getNextShardIterator();
}

If you are using the Kinesis Client Library, it might make multiple calls before returning data. This
behavior is by design and does not indicate a problem with the KCL or your data.

Adapting to a Reshard
If getRecordsResult.getNextShardIterator returns null, it indicates the following: A shard split
or merge has occurred that involved this shard, this shard is now in a CLOSED state, and you have read all
available data records from this shard.

In this scenario, you should re-enumerate the shards in the stream to pick up the new shards that were
created by the split or merge.

In the case of a split, the two new shards both have parentShardId equal to the shard ID of the shard
that you were processing previously. The value of adjacentParentShardId for both of these shards is
null.

In the case of a merge, the single new shard created by the merge has parentShardId equal to shard
ID of one of the parent shards and adjacentParentShardId equal to the shard ID of the other parent
shard. Your application has already read all the data from one of these shards. This is the shard for which
getRecordsResult.getNextShardIterator returned null. If the order of the data is important to
your application, ensure that it also reads all the data from the other parent shard before reading any
new data from the child shard created by the merge.

If you are using multiple processors to retrieve data from the stream (say, one processor per shard), and
a shard split or merge occurs, adjust the number of processors up or down to adapt to the change in the
number of shards.

For more information about resharding, including a discussion of shards states—such as CLOSED—see
Resharding a Stream (p. 42).

137

Amazon Kinesis Data Streams Developer Guide
Using Consumers with Enhanced Fan-Out

Using Consumers with Enhanced Fan-Out
In Amazon Kinesis Data Streams, you can build consumers that use a feature called enhanced fan-out.
This feature enables consumers to receive records from a stream with throughput of up to 2 MiB of data
per second per shard. This throughput is dedicated, which means that consumers that use enhanced fan-
out don't have to contend with other consumers that are receiving data from the stream. Kinesis Data
Streams pushes data records from the stream to consumers that use enhanced fan-out. Therefore, these
consumers don't need to poll for data.

You can register up to five consumers per stream to use enhanced fan-out. If you need to register more
than five consumers, you can request a limit increase using the Kinesis Data Streams limits form.

The following diagram shows the enhanced fan-out architecture. If you use version 2.0 or later of the
Amazon Kinesis Client Library (KCL) to build a consumer, the KCL sets up the consumer to use enhanced
fan-out to receive data from all the shards of the stream. If you use the API to build a consumer that uses
enhanced fan-out, then you can subscribe to individual shards.

The diagram shows the following:

• A stream with two shards.

• Two consumers that are using enhanced fan-out to receive data from the stream: Consumer X and
Consumer Y. Each of the two consumers is subscribed to all of the shards and all of the records of
the stream. If you use version 2.0 or later of the KCL to build a consumer, the KCL automatically
subscribes that consumer to all the shards of the stream. On the other hand, if you use the API to build
a consumer, you can subscribe to individual shards.

138

https://console.aws.amazon.com/support/v1?#/

Amazon Kinesis Data Streams Developer Guide
Using the Kinesis Client Library 2.0

• Arrows representing the enhanced fan-out pipes that the consumers use to receive data from the
stream. An enhanced fan-out pipe provides up to 2 MiB/sec of data per shard, independently of any
other pipes or of the total number of consumers.

Topics
• Developing Consumers with Enhanced Fan-Out Using the Kinesis Client Library 2.0 (p. 139)
• Developing Consumers with Enhanced Fan-Out Using the Kinesis Data Streams API (p. 143)
• Managing Consumers with Enhanced Fan-Out Using the AWS Management Console (p. 144)

Developing Consumers with Enhanced Fan-Out Using
the Kinesis Client Library 2.0
Consumers that use enhanced fan-out in Amazon Kinesis Data Streams can receive records from a data
stream with dedicated throughput of up to 2 MiB of data per second per shard. This type of consumer
doesn't have to contend with other consumers that are receiving data from the stream. For more
information, see Using Consumers with Enhanced Fan-Out (p. 138).

You can use version 2.0 or later of the Kinesis Client Library (KCL) to develop applications that use
enhanced fan-out to receive data from streams. The KCL automatically subscribes your application to all
the shards of a stream, and ensures that your consumer application can read with a throughput value of
2 MiB/sec per shard. If you want to use the KCL without turning on enhanced fan-out, see Developing
Consumers Using the Kinesis Client Library 2.0.

Topics
• Developing a Consumer Using the Kinesis Client Library 2.x in Java (p. 139)

Developing a Consumer Using the Kinesis Client Library 2.x in
Java
You can use version 2.0 or later of the Kinesis Client Library (KCL) to develop applications in Amazon
Kinesis Data Streams to receive data from streams using enhanced fan-out. The following code shows an
example implementation in Java of ProcessorFactory and RecordProcessor.

/*
 * Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License").
 * You may not use this file except in compliance with the License.
 * A copy of the License is located at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * or in the "license" file accompanying this file. This file is distributed
 * on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
 * express or implied. See the License for the specific language governing
 * permissions and limitations under the License.
 */

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.UUID;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.Executors;

139

https://integ-docs-aws.amazon.com/streams/latest/dev/developing-consumers-with-kcl-v2.html
https://integ-docs-aws.amazon.com/streams/latest/dev/developing-consumers-with-kcl-v2.html

Amazon Kinesis Data Streams Developer Guide
Using the Kinesis Client Library 2.0

import java.util.concurrent.Future;
import java.util.concurrent.ScheduledExecutorService;
import java.util.concurrent.ScheduledFuture;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

import org.apache.commons.lang3.ObjectUtils;
import org.apache.commons.lang3.RandomStringUtils;
import org.apache.commons.lang3.RandomUtils;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.slf4j.MDC;

import software.amazon.awssdk.core.SdkBytes;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.cloudwatch.CloudWatchAsyncClient;
import software.amazon.awssdk.services.dynamodb.DynamoDbAsyncClient;
import software.amazon.awssdk.services.kinesis.KinesisAsyncClient;
import software.amazon.awssdk.services.kinesis.model.PutRecordRequest;
import software.amazon.kinesis.common.ConfigsBuilder;
import software.amazon.kinesis.coordinator.Scheduler;
import software.amazon.kinesis.exceptions.InvalidStateException;
import software.amazon.kinesis.exceptions.ShutdownException;
import software.amazon.kinesis.lifecycle.events.InitializationInput;
import software.amazon.kinesis.lifecycle.events.LeaseLostInput;
import software.amazon.kinesis.lifecycle.events.ProcessRecordsInput;
import software.amazon.kinesis.lifecycle.events.ShardEndedInput;
import software.amazon.kinesis.lifecycle.events.ShutdownRequestedInput;
import software.amazon.kinesis.processor.ShardRecordProcessor;
import software.amazon.kinesis.processor.ShardRecordProcessorFactory;

public class SampleSingle {

 private static final Logger log = LoggerFactory.getLogger(SampleSingle.class);

 public static void main(String... args) {
 if (args.length < 1) {
 log.error("At a minimum stream name is required as the first argument. Region
 may be specified as the second argument");
 System.exit(1);
 }

 String streamName = args[0];
 String region = null;
 if (args.length > 1) {
 region = args[1];
 }

 new SampleSingle(streamName, region).run();
 }

 private final String streamName;
 private final Region region;
 private final KinesisAsyncClient kinesisClient;

 private SampleSingle(String streamName, String region) {
 this.streamName = streamName;
 this.region = Region.of(ObjectUtils.firstNonNull(region, "us-east-2"));
 this.kinesisClient = KinesisAsyncClient.builder().region(this.region).build();
 }

 private void run() {
 ScheduledExecutorService producerExecutor =
 Executors.newSingleThreadScheduledExecutor();
 ScheduledFuture<?> producerFuture =
 producerExecutor.scheduleAtFixedRate(this::publishRecord, 10, 1, TimeUnit.SECONDS);

140

Amazon Kinesis Data Streams Developer Guide
Using the Kinesis Client Library 2.0

 DynamoDbAsyncClient dynamoClient =
 DynamoDbAsyncClient.builder().region(region).build();
 CloudWatchAsyncClient cloudWatchClient =
 CloudWatchAsyncClient.builder().region(region).build();
 ConfigsBuilder configsBuilder = new ConfigsBuilder(streamName, streamName,
 kinesisClient, dynamoClient, cloudWatchClient, UUID.randomUUID().toString(), new
 SampleRecordProcessorFactory());

 Scheduler scheduler = new Scheduler(
 configsBuilder.checkpointConfig(),
 configsBuilder.coordinatorConfig(),
 configsBuilder.leaseManagementConfig(),
 configsBuilder.lifecycleConfig(),
 configsBuilder.metricsConfig(),
 configsBuilder.processorConfig(),
 configsBuilder.retrievalConfig()
);

 Thread schedulerThread = new Thread(scheduler);
 schedulerThread.setDaemon(true);
 schedulerThread.start();

 System.out.println("Press enter to shutdown");
 BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
 try {
 reader.readLine();
 } catch (IOException ioex) {
 log.error("Caught exception while waiting for confirm. Shutting down", ioex);
 }

 log.info("Cancelling producer, and shutting down excecutor.");
 producerFuture.cancel(true);
 producerExecutor.shutdownNow();

 Future<Boolean> gracefulShutdownFuture = scheduler.startGracefulShutdown();
 log.info("Waiting up to 20 seconds for shutdown to complete.");
 try {
 gracefulShutdownFuture.get(20, TimeUnit.SECONDS);
 } catch (InterruptedException e) {
 log.info("Interrupted while waiting for graceful shutdown. Continuing.");
 } catch (ExecutionException e) {
 log.error("Exception while executing graceful shutdown.", e);
 } catch (TimeoutException e) {
 log.error("Timeout while waiting for shutdown. Scheduler may not have
 exited.");
 }
 log.info("Completed, shutting down now.");
 }

 private void publishRecord() {
 PutRecordRequest request = PutRecordRequest.builder()
 .partitionKey(RandomStringUtils.randomAlphabetic(5, 20))
 .streamName(streamName)
 .data(SdkBytes.fromByteArray(RandomUtils.nextBytes(10)))
 .build();
 try {
 kinesisClient.putRecord(request).get();
 } catch (InterruptedException e) {
 log.info("Interrupted, assuming shutdown.");
 } catch (ExecutionException e) {
 log.error("Exception while sending data to Kinesis will try again next cycle",
 e);
 }
 }

141

Amazon Kinesis Data Streams Developer Guide
Using the Kinesis Client Library 2.0

 private static class SampleRecordProcessorFactory implements
 ShardRecordProcessorFactory {
 public ShardRecordProcessor shardRecordProcessor() {
 return new SampleRecordProcessor();
 }
 }

 private static class SampleRecordProcessor implements ShardRecordProcessor {

 private static final String SHARD_ID_MDC_KEY = "ShardId";

 private static final Logger log =
 LoggerFactory.getLogger(software.amazon.kinesis.sample.SampleRecordProcessor.class);

 private String shardId;

 public void initialize(InitializationInput initializationInput) {
 shardId = initializationInput.shardId();
 MDC.put(SHARD_ID_MDC_KEY, shardId);
 try {
 log.info("Initializing @ Sequence: {}",
 initializationInput.extendedSequenceNumber());
 } finally {
 MDC.remove(SHARD_ID_MDC_KEY);
 }
 }

 public void processRecords(ProcessRecordsInput processRecordsInput) {
 MDC.put(SHARD_ID_MDC_KEY, shardId);
 try {
 log.info("Processing {} record(s)", processRecordsInput.records().size());
 processRecordsInput.records().forEach(r -> log.info("Processing record pk:
 {} -- Seq: {}", r.partitionKey(), r.sequenceNumber()));
 } catch (Throwable t) {
 log.error("Caught throwable while processing records. Aborting");
 Runtime.getRuntime().halt(1);
 } finally {
 MDC.remove(SHARD_ID_MDC_KEY);
 }
 }

 public void leaseLost(LeaseLostInput leaseLostInput) {
 MDC.put(SHARD_ID_MDC_KEY, shardId);
 try {
 log.info("Lost lease, so terminating.");
 } finally {
 MDC.remove(SHARD_ID_MDC_KEY);
 }
 }

 public void shardEnded(ShardEndedInput shardEndedInput) {
 MDC.put(SHARD_ID_MDC_KEY, shardId);
 try {
 log.info("Reached shard end checkpointing.");
 shardEndedInput.checkpointer().checkpoint();
 } catch (ShutdownException | InvalidStateException e) {
 log.error("Exception while checkpointing at shard end. Giving up", e);
 } finally {
 MDC.remove(SHARD_ID_MDC_KEY);
 }
 }

 public void shutdownRequested(ShutdownRequestedInput shutdownRequestedInput) {
 MDC.put(SHARD_ID_MDC_KEY, shardId);
 try {

142

Amazon Kinesis Data Streams Developer Guide
Using the API

 log.info("Scheduler is shutting down, checkpointing.");
 shutdownRequestedInput.checkpointer().checkpoint();
 } catch (ShutdownException | InvalidStateException e) {
 log.error("Exception while checkpointing at requested shutdown. Giving
 up", e);
 } finally {
 MDC.remove(SHARD_ID_MDC_KEY);
 }
 }
 }

}

Developing Consumers with Enhanced Fan-Out Using
the Kinesis Data Streams API
Enhanced fan-out is an Amazon Kinesis Data Streams feature that enables consumers to receive records
from a data stream with dedicated throughput of up to 2 MiB of data per second per shard. A consumer
that uses enhanced fan-out doesn't have to contend with other consumers that are receiving data from
the stream. For more information, see Using Consumers with Enhanced Fan-Out (p. 138).

You can use API operations to build a consumer that uses enhanced fan-out in Kinesis Data Streams.

To register a consumer with enhanced fan-out using the Kinesis Data Streams API

1. Call RegisterStreamConsumer to register your application as a consumer that uses enhanced fan-
out. Kinesis Data Streams generates an Amazon Resource Name (ARN) for the consumer and returns
it in the response.

2. To start listening to a specific shard, pass the consumer ARN in a call to SubscribeToShard. Kinesis
Data Streams then starts pushing the records from that shard to you, in the form of events of type
SubscribeToShardEvent over an HTTP/2 connection. The connection remains open for up to 5
minutes. Call SubscribeToShard again if you want to continue receiving records from the shard after
the future that is returned by the call to SubscribeToShard completes normally or exceptionally.

3. To deregister a consumer that is using enhanced fan-out, call DeregisterStreamConsumer.

The following code is an example of how you can subscribe your consumer to a shard, renew the
subscription periodically, and handle the events.

 import software.amazon.awssdk.services.kinesis.KinesisAsyncClient;
 import software.amazon.awssdk.services.kinesis.model.ShardIteratorType;
 import software.amazon.awssdk.services.kinesis.model.SubscribeToShardEvent;
 import software.amazon.awssdk.services.kinesis.model.SubscribeToShardRequest;
 import software.amazon.awssdk.services.kinesis.model.SubscribeToShardResponseHandler;

 import java.util.concurrent.CompletableFuture;

 /**
 * See https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javav2/example_code/
kinesis/src/main/java/com/example/kinesis/KinesisStreamEx.java
 * for complete code and more examples.
 */
 public class SubscribeToShardSimpleImpl {

 private static final String CONSUMER_ARN = "arn:aws:kinesis:us-
east-1:123456789123:stream/foobar/consumer/test-consumer:1525898737";
 private static final String SHARD_ID = "shardId-000000000000";

 public static void main(String[] args) {

143

https://docs.aws.amazon.com/kinesis/latest/APIReference/API_RegisterStreamConsumer.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_SubscribeToShard.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_SubscribeToShardEvent.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_SubscribeToShard.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_SubscribeToShard.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_DeregisterStreamConsumer.html

Amazon Kinesis Data Streams Developer Guide
Using the AWS Management Console

 KinesisAsyncClient client = KinesisAsyncClient.create();

 SubscribeToShardRequest request = SubscribeToShardRequest.builder()
 .consumerARN(CONSUMER_ARN)
 .shardId(SHARD_ID)
 .startingPosition(s -> s.type(ShardIteratorType.LATEST)).build();

 // Call SubscribeToShard iteratively to renew the subscription periodically.
 while(true) {
 // Wait for the CompletableFuture to complete normally or exceptionally.
 callSubscribeToShardWithVisitor(client, request).join();
 }

 // Close the connection before exiting.
 // client.close();
 }

 /**
 * Subscribes to the stream of events by implementing the
 SubscribeToShardResponseHandler.Visitor interface.
 */
 private static CompletableFuture<Void>
 callSubscribeToShardWithVisitor(KinesisAsyncClient client, SubscribeToShardRequest
 request) {
 SubscribeToShardResponseHandler.Visitor visitor = new
 SubscribeToShardResponseHandler.Visitor() {
 @Override
 public void visit(SubscribeToShardEvent event) {
 System.out.println("Received subscribe to shard event " + event);
 }
 };
 SubscribeToShardResponseHandler responseHandler =
 SubscribeToShardResponseHandler
 .builder()
 .onError(t -> System.err.println("Error during stream - " +
 t.getMessage()))
 .subscriber(visitor)
 .build();
 return client.subscribeToShard(request, responseHandler);
 }
 }

Managing Consumers with Enhanced Fan-Out Using
the AWS Management Console
Consumers that use enhanced fan-out in Amazon Kinesis Data Streams can receive records from a data
stream with dedicated throughput of up to 2 MiB of data per second per shard. For more information,
see Using Consumers with Enhanced Fan-Out (p. 138).

You can use the AWS Management Console to see a list of all the consumers that are registered to
use enhanced fan-out with a specific stream. For each such consumer, you can see details such as
ARN, status, and creation date, in addition to the monitoring metrics and the tags associated with the
consumer.

To view consumers that are registered to use enhanced fan-out, their status, creation date,
and metrics on the console

1. Sign in to the AWS Management Console and open the Kinesis console at https://
console.aws.amazon.com/kinesis.

144

https://console.aws.amazon.com/kinesis
https://console.aws.amazon.com/kinesis

Amazon Kinesis Data Streams Developer Guide
Migrating from Kinesis Client Library 1.x to 2.x

2. Choose Data Streams in the navigation pane.
3. Choose a Kinesis data stream to view its details.
4. On the details page for the stream, choose the Enhanced fan-out tab.
5. Choose a consumer to see its name, status, and date of registration.

To deregister a consumer

1. Open the Kinesis console at https://console.aws.amazon.com/kinesis.
2. Choose Data Streams in the navigation pane.
3. Choose a Kinesis data stream to view its details.
4. On the details page for the stream, choose the Enhanced fan-out tab.
5. Select the check box to the left of the name of every consumer that you want to deregister.
6. Choose Deregister consumer.

Migrating from Kinesis Client Library 1.x to 2.x
This topic explains the differences between versions 1.x and 2.x of the Kinesis Client Library (KCL). It also
shows you how to migrate your consumer from version 1.x to version 2.x of the KCL. After you migrate
your client, it will start processing records from the last checkpointed location.

Version 2.0 of the KCL introduces the following interface changes:

KCL Interface Changes

KCL 1.x Interface KCL 2.0 Interface

com.amazonaws.services.kinesis.clientlibrary.interfaces.v2.IRecordProcessorsoftware.amazon.kinesis.processor.ShardRecordProcessor

com.amazonaws.services.kinesis.clientlibrary.interfaces.v2.IRecordProcessorFactorysoftware.amazon.kinesis.processor.ShardRecordProcessorFactory

com.amazonaws.services.kinesis.clientlibrary.interfaces.v2.IShutdownNotificationAwareFolded into
software.amazon.kinesis.processor.ShardRecordProcessor

Topics
• Migrating the Record Processor (p. 145)
• Migrating the Record Processor Factory (p. 149)
• Migrating the Worker (p. 149)
• Configuring the Amazon Kinesis Client (p. 150)
• Idle Time Removal (p. 153)
• Client Configuration Removals (p. 153)

Migrating the Record Processor
The following example shows a record processor implemented for KCL 1.x:

package com.amazonaws.kcl;

import com.amazonaws.services.kinesis.clientlibrary.exceptions.InvalidStateException;
import com.amazonaws.services.kinesis.clientlibrary.exceptions.ShutdownException;
import
 com.amazonaws.services.kinesis.clientlibrary.interfaces.IRecordProcessorCheckpointer;

145

https://console.aws.amazon.com/kinesis

Amazon Kinesis Data Streams Developer Guide
Migrating the Record Processor

import com.amazonaws.services.kinesis.clientlibrary.interfaces.v2.IRecordProcessor;
import
 com.amazonaws.services.kinesis.clientlibrary.interfaces.v2.IShutdownNotificationAware;
import com.amazonaws.services.kinesis.clientlibrary.lib.worker.ShutdownReason;
import com.amazonaws.services.kinesis.clientlibrary.types.InitializationInput;
import com.amazonaws.services.kinesis.clientlibrary.types.ProcessRecordsInput;
import com.amazonaws.services.kinesis.clientlibrary.types.ShutdownInput;

public class TestRecordProcessor implements IRecordProcessor, IShutdownNotificationAware {
 @Override
 public void initialize(InitializationInput initializationInput) {
 //
 // Setup record processor
 //
 }

 @Override
 public void processRecords(ProcessRecordsInput processRecordsInput) {
 //
 // Process records, and possibly checkpoint
 //
 }

 @Override
 public void shutdown(ShutdownInput shutdownInput) {
 if (shutdownInput.getShutdownReason() == ShutdownReason.TERMINATE) {
 try {
 shutdownInput.getCheckpointer().checkpoint();
 } catch (ShutdownException | InvalidStateException e) {
 throw new RuntimeException(e);
 }
 }
 }

 @Override
 public void shutdownRequested(IRecordProcessorCheckpointer checkpointer) {
 try {
 checkpointer.checkpoint();
 } catch (ShutdownException | InvalidStateException e) {
 //
 // Swallow exception
 //
 e.printStackTrace();
 }
 }
}

To migrate the record processor class

1. Change the interfaces from
com.amazonaws.services.kinesis.clientlibrary.interfaces.v2.IRecordProcessor
and
com.amazonaws.services.kinesis.clientlibrary.interfaces.v2.IShutdownNotificationAware
to software.amazon.kinesis.processor.ShardRecordProcessor, as follows:

// import com.amazonaws.services.kinesis.clientlibrary.interfaces.v2.IRecordProcessor;
// import
 com.amazonaws.services.kinesis.clientlibrary.interfaces.v2.IShutdownNotificationAware;
import software.amazon.kinesis.processor.ShardRecordProcessor;

// public class TestRecordProcessor implements IRecordProcessor,
 IShutdownNotificationAware {
public class TestRecordProcessor implements ShardRecordProcessor {

146

Amazon Kinesis Data Streams Developer Guide
Migrating the Record Processor

2. Update the import statements for the initialize and processRecords methods.

// import com.amazonaws.services.kinesis.clientlibrary.types.InitializationInput;
import software.amazon.kinesis.lifecycle.events.InitializationInput;

//import com.amazonaws.services.kinesis.clientlibrary.types.ProcessRecordsInput;
import software.amazon.kinesis.lifecycle.events.ProcessRecordsInput;

3. Replace the shutdown method with the following new methods: leaseLost, shardEnded, and
shutdownRequested.

// @Override
// public void shutdownRequested(IRecordProcessorCheckpointer checkpointer) {
// //
// // This is moved to shardEnded(...)
// //
// try {
// checkpointer.checkpoint();
// } catch (ShutdownException | InvalidStateException e) {
// //
// // Swallow exception
// //
// e.printStackTrace();
// }
// }

 @Override
 public void leaseLost(LeaseLostInput leaseLostInput) {

 }

 @Override
 public void shardEnded(ShardEndedInput shardEndedInput) {
 try {
 shardEndedInput.checkpointer().checkpoint();
 } catch (ShutdownException | InvalidStateException e) {
 //
 // Swallow the exception
 //
 e.printStackTrace();
 }
 }

// @Override
// public void shutdownRequested(IRecordProcessorCheckpointer checkpointer) {
// //
// // This is moved to shutdownRequested(ShutdownReauestedInput)
// //
// try {
// checkpointer.checkpoint();
// } catch (ShutdownException | InvalidStateException e) {
// //
// // Swallow exception
// //
// e.printStackTrace();
// }
// }

 @Override
 public void shutdownRequested(ShutdownRequestedInput shutdownRequestedInput) {
 try {
 shutdownRequestedInput.checkpointer().checkpoint();
 } catch (ShutdownException | InvalidStateException e) {
 //

147

Amazon Kinesis Data Streams Developer Guide
Migrating the Record Processor

 // Swallow the exception
 //
 e.printStackTrace();
 }
 }

The following is the updated version of the record processor class.

package com.amazonaws.kcl;

import software.amazon.kinesis.exceptions.InvalidStateException;
import software.amazon.kinesis.exceptions.ShutdownException;
import software.amazon.kinesis.lifecycle.events.InitializationInput;
import software.amazon.kinesis.lifecycle.events.LeaseLostInput;
import software.amazon.kinesis.lifecycle.events.ProcessRecordsInput;
import software.amazon.kinesis.lifecycle.events.ShardEndedInput;
import software.amazon.kinesis.lifecycle.events.ShutdownRequestedInput;
import software.amazon.kinesis.processor.ShardRecordProcessor;

public class TestRecordProcessor implements ShardRecordProcessor {
 @Override
 public void initialize(InitializationInput initializationInput) {

 }

 @Override
 public void processRecords(ProcessRecordsInput processRecordsInput) {

 }

 @Override
 public void leaseLost(LeaseLostInput leaseLostInput) {

 }

 @Override
 public void shardEnded(ShardEndedInput shardEndedInput) {
 try {
 shardEndedInput.checkpointer().checkpoint();
 } catch (ShutdownException | InvalidStateException e) {
 //
 // Swallow the exception
 //
 e.printStackTrace();
 }
 }

 @Override
 public void shutdownRequested(ShutdownRequestedInput shutdownRequestedInput) {
 try {
 shutdownRequestedInput.checkpointer().checkpoint();
 } catch (ShutdownException | InvalidStateException e) {
 //
 // Swallow the exception
 //
 e.printStackTrace();
 }
 }
}

148

Amazon Kinesis Data Streams Developer Guide
Migrating the Record Processor Factory

Migrating the Record Processor Factory
The record processor factory is responsible for creating record processors when a lease is acquired. The
following is an example of a KCL 1.x factory.

package com.amazonaws.kcl;

import com.amazonaws.services.kinesis.clientlibrary.interfaces.v2.IRecordProcessor;
import com.amazonaws.services.kinesis.clientlibrary.interfaces.v2.IRecordProcessorFactory;

public class TestRecordProcessorFactory implements IRecordProcessorFactory {
 @Override
 public IRecordProcessor createProcessor() {
 return new TestRecordProcessor();
 }
}

To migrate the record processor factory

1. Change the implemented interface from
com.amazonaws.services.kinesis.clientlibrary.interfaces.v2.IRecordProcessorFactory
to software.amazon.kinesis.processor.RecordProcessorFactory, as follows.

// import com.amazonaws.services.kinesis.clientlibrary.interfaces.v2.IRecordProcessor;
import software.amazon.kinesis.processor.ShardRecordProcessor;

// import
 com.amazonaws.services.kinesis.clientlibrary.interfaces.v2.IRecordProcessorFactory;
import software.amazon.kinesis.processor.ShardRecordProcessorFactory;

// public class TestRecordProcessorFactory implements IRecordProcessorFactory {
public class TestRecordProcessorFactory implements ShardRecordProcessorFactory {

2. Change the return signature for createProcessor.

// public IRecordProcessor createProcessor() {
public ShardRecordProcessor shardRecordProcessor() {

The following is an example of the record processor factory in 2.0:

package com.amazonaws.kcl;

import software.amazon.kinesis.processor.ShardRecordProcessor;
import software.amazon.kinesis.processor.ShardRecordProcessorFactory;

public class TestRecordProcessorFactory implements ShardRecordProcessorFactory {
 @Override
 public ShardRecordProcessor shardRecordProcessor() {
 return new TestRecordProcessor();
 }
}

Migrating the Worker
In version 2.0 of the KCL, a new class, called Scheduler, replaces the Worker class. The following is an
example of a KCL 1.x worker.

149

Amazon Kinesis Data Streams Developer Guide
Configuring the Amazon Kinesis Client

final KinesisClientLibConfiguration config = new KinesisClientLibConfiguration(...)
final IRecordProcessorFactory recordProcessorFactory = new RecordProcessorFactory();
final Worker worker = new Worker.Builder()
 .recordProcessorFactory(recordProcessorFactory)
 .config(config)
 .build();

To migrate the worker

1. Change the import statement for the Worker class to the import statements for the Scheduler
and ConfigsBuilder classes.

// import com.amazonaws.services.kinesis.clientlibrary.lib.worker.Worker;
import software.amazon.kinesis.coordinator.Scheduler;
import software.amazon.kinesis.common.ConfigsBuilder;

2. Create the ConfigsBuilder and a Scheduler as shown in the following example.

import java.util.UUID;

import software.amazon.awssdk.regions.*;
import software.amazon.awssdk.services.dynamodb.DynamoDbAsyncClient;
import software.amazon.awssdk.services.cloudwatch.CloudWatchAsyncClient;
import software.amazon.awssdk.services.kinesis.KinesisAsyncClient;
import software.amazon.kinesis.common.ConfigsBuilder;
import software.amazon.kinesis.coordinator.Scheduler;

...

Region region = Region.AP_NORTHEAST_2;
KinesisAsyncClient kinesisClient =
 KinesisAsyncClient.builder().region(region).build();DynamoDbAsyncClient dynamoClient =
 DynamoDbAsyncClient.builder().region(region).build();
CloudWatchAsyncClient cloudWatchClient =
 CloudWatchAsyncClient.builder().region(region).build();

ConfigsBuilder configsBuilder = new ConfigsBuilder(streamName, applicationName,
 kinesisClient, dynamoClient, cloudWatchClient, UUID.randomUUID().toString(), new
 SampleRecordProcessorFactory());

Scheduler scheduler = new Scheduler(
 configsBuilder.checkpointConfig(),
 configsBuilder.coordinatorConfig(),
 configsBuilder.leaseManagementConfig(),
 configsBuilder.lifecycleConfig(),
 configsBuilder.metricsConfig(),
 configsBuilder.processorConfig(),
 configsBuilder.retrievalConfig()
);

Configuring the Amazon Kinesis Client
With the 2.0 release of the Kinesis Client Library, the configuration of the client moved from a single
configuration class (KinesisClientLibConfiguration) to six configuration classes. The following
table describes the migration.

150

Amazon Kinesis Data Streams Developer Guide
Configuring the Amazon Kinesis Client

Configuration Fields and Their New Classes

Original Field New
Configuration
Class

Description

applicationName ConfigsBuilderThe name for this the KCL application. Used as the default
for the tableName and consumerName.

tableName ConfigsBuilderAllows overriding the table name used for the Amazon
DynamoDB lease table.

streamName ConfigsBuilderThe name of the stream that this application processes
records from.

kinesisEndpoint ConfigsBuilderThis option has been removed. See Client Configuration
Removals.

dynamoDBEndpoint ConfigsBuilderThis option has been removed. See Client Configuration
Removals.

initialPositionInStreamRetrievalConfigNone

kinesisCredentialsProviderConfigsBuilderThis option has been removed. See Client Configuration
Removals.

dynamoDBCredentialsProviderConfigsBuilderThis option has been removed. See Client Configuration
Removals.

cloudWatchCredentialsProviderConfigsBuilderThis option has been removed. See Client Configuration
Removals.

failoverTimeMillis LeaseManagementConfigThe number of milliseconds that must pass before you can
consider a lease owner to have failed.

workerIdentifier ConfigsBuilderA unique identifier that represents this instantiation of the
application processor. This must be unique.

shardSyncIntervalMillisLeaseManagementConfigThe time between shard sync calls.

maxRecords PollingConfig Allows setting the maximum number of records that Kinesis
returns.

idleTimeBetweenReadsInMillisCoordinatorConfigThis option has been removed. See Idle Time Removal.

callProcessRecordsEvenForEmptyRecordListProcessorConfigWhen set, the record processor is called even when no
records were provided from Kinesis.

parentShardPollIntervalMillisCoordinatorConfigHow often a record processor should poll to see if the
parent shard has been completed.

cleanupLeasesUponShardCompletionLeaseManagementConfigWhen set, leases are removed as soon as the child leases
have started processing.

ignoreUnexpectedChildShardsLeaseManagementConfigWhen set, child shards that have an open shard are ignored.
This is primarily for DynamoDB Streams.

kinesisClientConfigConfigsBuilderThis option has been removed. See Client Configuration
Removals.

151

Amazon Kinesis Data Streams Developer Guide
Configuring the Amazon Kinesis Client

Original Field New
Configuration
Class

Description

dynamoDBClientConfigConfigsBuilderThis option has been removed. See Client Configuration
Removals.

cloudWatchClientConfigConfigsBuilderThis option has been removed. See Client Configuration
Removals.

taskBackoffTimeMillisLifecycleConfigThe time to wait to retry failed tasks.

metricsBufferTimeMillisMetricsConfig Controls CloudWatch metric publishing.

metricsMaxQueueSizeMetricsConfig Controls CloudWatch metric publishing.

metricsLevel MetricsConfig Controls CloudWatch metric publishing.

metricsEnabledDimensionsMetricsConfig Controls CloudWatch metric publishing.

validateSequenceNumberBeforeCheckpointingCheckpointConfigThis option has been removed. See Checkpoint Sequence
Number Validation.

regionName ConfigsBuilderThis option has been removed. See Client Configuration
Removal.

maxLeasesForWorker LeaseManagementConfigThe maximum number of leases a single instance of the
application should accept.

maxLeasesToStealAtOneTimeLeaseManagementConfigThe maximum number of leases an application should
attempt to steal at one time.

initialLeaseTableReadCapacityLeaseManagementConfigThe DynamoDB read IOPs that is used if the Kinesis Client
Library needs to create a new DynamoDB lease table.

initialLeaseTableWriteCapacityLeaseManagementConfigThe DynamoDB read IOPs that is used if the Kinesis Client
Library needs to create a new DynamoDB lease table.

initialPositionInStreamExtendedConfigsBuilder The initial position in the stream that the application should
start at. This is only used during initial lease creation.

skipShardSyncAtWorkerInitializationIfLeasesExistCoordinatorConfigDisable synchronizing shard data if the lease table contains
existing leases. TODO: KinesisEco-438

shardPrioritizationCoordinatorConfigWhich shard prioritization to use.

shutdownGraceMillisN/A This option has been removed. See MultiLang Removals.

timeoutInSeconds N/A This option has been removed. See MultiLang Removals.

retryGetRecordsInSecondsPollingConfig Configures the delay between GetRecords attempts for
failures.

maxGetRecordsThreadPoolPollingConfig The thread pool size used for GetRecords.

maxLeaseRenewalThreadsLeaseManagementConfigControls the size of the lease renewer thread pool. The
more leases that your application could take, the larger this
pool should be.

recordsFetcherFactoryPollingConfig Allows replacing the factory used to create fetchers that
retrieve from streams.

152

Amazon Kinesis Data Streams Developer Guide
Idle Time Removal

Original Field New
Configuration
Class

Description

logWarningForTaskAfterMillisLifecycleConfigHow long to wait before a warning is logged if a task hasn't
completed.

listShardsBackoffTimeInMillisRetrievalConfigThe number of milliseconds to wait between calls to
ListShards when failures occur.

maxListShardsRetryAttemptsRetrievalConfigThe maximum number of times that ListShards retries
before giving up.

Idle Time Removal
In the 1.x version of the KCL, the idleTimeBetweenReadsInMillis corresponded to two quantities:

• The amount of time between task dispatching checks. You can now configure this time between tasks
by setting CoordinatorConfig#shardConsumerDispatchPollIntervalMillis.

• The amount of time to sleep when no records were returned from Kinesis Data Streams. In version 2.0,
in enhanced fan-out records are pushed from their respective retriever. Activity on the shard consumer
only occurs when a pushed request arrives.

Client Configuration Removals
In version 2.0, the KCL no longer creates clients. It depends on the user to supply a valid client. With
this change, all configuration parameters that controlled client creation have been removed. If you need
these parameters, you can set them on the clients before providing the clients to ConfigsBuilder.

Removed
Field

Equivalent Configuration

kinesisEndpointConfigure the SDK KinesisAsyncClient with preferred endpoint:
KinesisAsyncClient.builder().endpointOverride(URI.create("https://
<kinesis endpoint>")).build().

dynamoDBEndpointConfigure the SDK DynamoDbAsyncClient with preferred endpoint:
DynamoDbAsyncClient.builder().endpointOverride(URI.create("https://
<dynamodb endpoint>")).build().

kinesisClientConfigConfigure the SDK KinesisAsyncClient with the needed configuration:
KinesisAsyncClient.builder().overrideConfiguration(<your
configuration>).build().

dynamoDBClientConfigConfigure the SDK DynamoDbAsyncClient with the needed configuration:
DynamoDbAsyncClient.builder().overrideConfiguration(<your
configuration>).build().

cloudWatchClientConfigConfigure the SDK CloudWatchAsyncClient with the needed configuration:
CloudWatchAsyncClient.builder().overrideConfiguration(<your
configuration>).build().

regionName Configure the SDK with the preferred Region.
This is the same for all SDK clients. For example,
KinesisAsyncClient.builder().region(Region.US_WEST_2).build().

153

Amazon Kinesis Data Streams Developer Guide
Troubleshooting

Troubleshooting Amazon Kinesis Data Streams
Consumers

The following sections offer solutions to some common problems you may find while working with
Amazon Kinesis Data Streams consumers.

• Some Kinesis Data Streams Records are Skipped When Using the Kinesis Client Library (p. 154)
• Records Belonging to the Same Shard are Processed by Different Record Processors at the Same

Time (p. 154)
• Consumer Application is Reading at a Slower Rate Than Expected (p. 155)
• GetRecords Returns Empty Records Array Even When There is Data in the Stream (p. 155)
• Shard Iterator Expires Unexpectedly (p. 156)
• Consumer Record Processing Falling Behind (p. 156)
• Unauthorized KMS master key permission error (p. 157)

Some Kinesis Data Streams Records are Skipped
When Using the Kinesis Client Library
The most common cause of skipped records is an unhandled exception thrown from processRecords.
The Kinesis Client Library (KCL) relies on your processRecords code to handle any exceptions that
arise from processing the data records. Any exception thrown from processRecords is absorbed by
the KCL. To avoid infinite retries on a recurring failure, the KCL does not resend the batch of records
processed at the time of the exception. The KCL then calls processRecords for the next batch of
data records without restarting the record processor. This effectively results in consumer applications
observing skipped records. To prevent skipped records, handle all exceptions within processRecords
appropriately.

Records Belonging to the Same Shard are Processed
by Different Record Processors at the Same Time
For any running Kinesis Client Library (KCL) application, a shard only has one owner. However, multiple
record processors may temporarily process the same shard. In the case of a worker instance that loses
network connectivity, the KCL assumes that the unreachable worker is no longer processing records, after
the failover time expires, and directs other worker instances to take over. For a brief period, new record
processors and record processors from the unreachable worker may process data from the same shard.

You should set a failover time that is appropriate for your application. For low-latency applications, the
10-second default may represent the maximum time you want to wait. However, in cases where you
expect connectivity issues such as making calls across geographical areas where connectivity could be
lost more frequently, this number may be too low.

Your application should anticipate and handle this scenario, especially because network connectivity
is usually restored to the previously unreachable worker. If a record processor has its shards taken by
another record processor, it must handle the following two cases to perform graceful shutdown:

1. After the current call to processRecords is completed, the KCL invokes the shutdown method on
the record processor with shutdown reason 'ZOMBIE'. Your record processors are expected to clean up
any resources as appropriate and then exit.

2. When you attempt to checkpoint from a 'zombie' worker, the KCL throws ShutdownException. After
receiving this exception, your code is expected to exit the current method cleanly.

154

Amazon Kinesis Data Streams Developer Guide
Consumer Application is Reading
at a Slower Rate Than Expected

For more information, see Handling Duplicate Records (p. 160).

Consumer Application is Reading at a Slower Rate
Than Expected
The most common reasons for read throughput being slower than expected are as follows:

1. Multiple consumer applications have total reads exceeding the per-shard limits. For more information,
see Kinesis Data Streams Limits (p. 8). In this case, increase the number of shards in the Kinesis data
stream.

2. The limit that specifies the maximum number of GetRecords per call may have been configured with
a low value. If you are using the KCL, you may have configured the worker with a low value for the
maxRecords property. In general, we recommend using the system defaults for this property.

3. The logic inside your processRecords call may be taking longer than expected for a number of
possible reasons; the logic may be CPU intensive, I/O blocking, or bottlenecked on synchronization.
To test if this is true, test run empty record processors and compare the read throughput. For
information about how to keep up with the incoming data, see Resharding, Scaling, and Parallel
Processing (p. 159).

If you have only one consumer application, it is always possible to read at least two times faster than
the put rate. That’s because you can write up to 1,000 records per second for writes, up to a maximum
total data write rate of 1 MB per second (including partition keys). Each open shard can support up to
5 transactions per second for reads, up to a maximum total data read rate of 2 MB per second. Note
that each read (GetRecords call) gets a batch of records. The size of the data returned by GetRecords
varies depending on the utilization of the shard. The maximum size of data that GetRecords can
return is 10 MB. If a call returns that limit, subsequent calls made within the next 5 seconds throw
ProvisionedThroughputExceededException.

GetRecords Returns Empty Records Array Even When
There is Data in the Stream
Consuming, or getting records is a pull model. Developers are expected to call GetRecords in a
continuous loop with no back-offs. Every call to GetRecords also returns a ShardIterator value, which
must be used in the next iteration of the loop.

The GetRecords operation does not block. Instead, it returns immediately; with either relevant data
records or with an empty Records element. An empty Records element is returned under two
conditions:

1. There is no more data currently in the shard.
2. There is no data near the part of the shard pointed to by the ShardIterator.

The latter condition is subtle, but is a necessary design tradeoff to avoid unbounded seek time (latency)
when retrieving records. Thus, the stream-consuming application should loop and call GetRecords,
handling empty records as a matter of course.

In a production scenario, the only time the continuous loop should be exited is when the
NextShardIterator value is NULL. When NextShardIterator is NULL, it means that the current
shard has been closed and the ShardIteratorvalue would otherwise point past the last record. If the
consuming application never calls SplitShard or MergeShards, the shard remains open and the calls to
GetRecords never return a NextShardIterator value that is NULL.

If you use the Kinesis Client Library (KCL), the above consumption pattern is abstracted for you. This
includes automatic handling of a set of shards that dynamically change. With the KCL, the developer

155

https://docs.aws.amazon.com/kinesis/latest/APIReference/API_GetRecords.html#API_GetRecords_RequestSyntax
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_GetRecords.html

Amazon Kinesis Data Streams Developer Guide
Shard Iterator Expires Unexpectedly

only supplies the logic to process incoming records. This is possible because the library makes continuous
calls to GetRecords for you.

Shard Iterator Expires Unexpectedly
A new shard iterator is returned by every GetRecords request (as NextShardIterator), which you
then use in the next GetRecords request (as ShardIterator). Typically, this shard iterator does
not expire before you use it. However, you may find that shard iterators expire because you have not
called GetRecords for more than 5 minutes, or because you've performed a restart of your consumer
application.

If the shard iterator expires immediately, before you can use it, this might indicate that the DynamoDB
table used by Kinesis does not have enough capacity to store the lease data. This situation is more
likely to happen if you have a large number of shards. To solve this problem, increase the write
capacity assigned to the shard table. For more information, see Tracking Amazon Kinesis Data Streams
Application State (p. 157).

Consumer Record Processing Falling Behind
For most use cases, consumer applications are reading the latest data from the stream. In certain
circumstances, consumer reads may fall behind, which may not be desired. After you identify how far
behind your consumers are reading, look at the most common reasons why consumers fall behind.

Start with the GetRecords.IteratorAgeMilliseconds metric, which tracks the read position across
all shards and consumers in the stream. Note that if an iterator's age passes 50% of the retention period
(by default 24 hours, configurable up to 7 days), there is risk for data loss due to record expiration. A
quick stopgap solution is to increase the retention period. This stops the loss of important data while you
troubleshoot the issue further. For more information, see Monitoring the Amazon Kinesis Data Streams
Service with Amazon CloudWatch (p. 51). Next, identify how far behind your consumer application is
reading from each shard using a custom CloudWatch metric emitted by the Kinesis Client Library (KCL),
MillisBehindLatest. For more information, see Monitoring the Kinesis Client Library with Amazon
CloudWatch (p. 65).

Here are the most common reasons consumers can fall behind:

• Sudden large increases to GetRecords.IteratorAgeMilliseconds or MillisBehindLatest
usually indicate a transient problem, such as API operation failures to a downstream application. You
should investigate these sudden increases if either of the metrics consistently display this behavior.

• A gradual increase to these metrics indicates that a consumer is not keeping up with the
stream because it is not processing records fast enough. The most common root causes for this
behavior are insufficient physical resources or record processing logic that has not scaled with
an increase in stream throughput. You can verify this behavior by looking at the other custom
CloudWatch metrics that the KCL emits associated with the processTask operation, including
RecordProcessor.processRecords.Time, Success, and RecordsProcessed.

• If you see an increase in the processRecords.Time metric that correlates with increased
throughput, you should analyze your record processing logic to identify why it is not scaling with the
increased throughput.

• If you see an increase to the processRecords.Time values that are not correlated with increased
throughput, check to see if you are making any blocking calls in the critical path, which are often
the cause of slowdowns in record processing. An alternative approach is to increase your parallelism
by increasing the number of shards. Finally, confirm you have an adequate amount of physical
resources (memory, CPU utilization, etc.) on the underlying processing nodes during peak demand.

156

Amazon Kinesis Data Streams Developer Guide
Unauthorized KMS master key permission error

Unauthorized KMS master key permission error
This error occurs when a consumer application reads from an encrypted stream without permissions on
the KMS master key. To assign permissions to an application to access a KMS key, see Using Key Policies
in AWS KMS and Using IAM Policies with AWS KMS.

Advanced Topics for Amazon Kinesis Data Streams
Consumers

Learn how to optimize your Amazon Kinesis Data Streams consumer.

Contents

• Tracking Amazon Kinesis Data Streams Application State (p. 157)

• Low-Latency Processing (p. 158)

• Using AWS Lambda with the Kinesis Producer Library (p. 159)

• Resharding, Scaling, and Parallel Processing (p. 159)

• Handling Duplicate Records (p. 160)

• Recovering from Failures in Amazon Kinesis Data Streams (p. 161)

• Handling Startup, Shutdown, and Throttling (p. 162)

Tracking Amazon Kinesis Data Streams Application
State
For each Amazon Kinesis Data Streams application, the KCL uses a unique Amazon DynamoDB table to
keep track of the application's state. Because the KCL uses the name of the Amazon Kinesis Data Streams
application to create the name of the table, each application name must be unique.

You can view the table using the Amazon DynamoDB console while the application is running.

If the Amazon DynamoDB table for your Amazon Kinesis Data Streams application does not exist when
the application starts up, one of the workers creates the table and calls the describeStream method to
populate the table. For more information, see Application State Data (p. 158).

Important
Your account is charged for the costs associated with the DynamoDB table, in addition to the
costs associated with Kinesis Data Streams itself.

Throughput
If your Amazon Kinesis Data Streams application receives provisioned-throughput exceptions, you
should increase the provisioned throughput for the DynamoDB table. The KCL creates the table with
a provisioned throughput of 10 reads per second and 10 writes per second, but this might not be
sufficient for your application. For example, if your Amazon Kinesis Data Streams application does
frequent checkpointing or operates on a stream that is composed of many shards, you might need more
throughput.

For information about provisioned throughput in DynamoDB, see Provisioned Throughput in Amazon
DynamoDB and Working with Tables in the Amazon DynamoDB Developer Guide.

157

https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
https://docs.aws.amazon.com/kms/latest/developerguide/iam-policies.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ConsoleDynamoDB.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide//ProvisionedThroughputIntro.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide//ProvisionedThroughputIntro.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithDDTables.html

Amazon Kinesis Data Streams Developer Guide
Low-Latency Processing

Application State Data
Each row in the DynamoDB table represents a shard that is being processed by your application. The
hash key for the table is leaseKey, which is the shard ID.

In addition to the shard ID, each row also includes the following data:

• checkpoint: The most recent checkpoint sequence number for the shard. This value is unique across all
shards in the stream.

• checkpointSubSequenceNumber: When using the Kinesis Producer Library's aggregation feature, this
is an extension to checkpoint that tracks individual user records within the Kinesis record.

• leaseCounter: Used for lease versioning so that workers can detect that their lease has been taken by
another worker.

• leaseKey: A unique identifier for a lease. Each lease is particular to a shard in the stream and is held by
one worker at a time.

• leaseOwner: The worker that is holding this lease.

• ownerSwitchesSinceCheckpoint: How many times this lease has changed workers since the last time a
checkpoint was written.

• parentShardId: Used to ensure that the parent shard is fully processed before processing starts on the
child shards. This ensures that records are processed in the same order they were put into the stream.

Low-Latency Processing
Propagation delay is defined as the end-to-end latency from the moment a record is written to the
stream until it is read by a consumer application. This delay varies depending upon a number of factors,
but it is primarily affected by the polling interval of consumer applications.

For most applications, we recommend polling each shard one time per second per application. This
enables you to have multiple consumer applications processing a stream concurrently without hitting
Amazon Kinesis Data Streams limits of 5 GetRecords calls per second. Additionally, processing larger
batches of data tends to be more efficient at reducing network and other downstream latencies in your
application.

The KCL defaults are set to follow the best practice of polling every 1 second. This default results in
average propagation delays that are typically below 1 second.

Kinesis Data Streams records are available to be read immediately after they are written. There are some
use cases that need to take advantage of this and require consuming data from the stream as soon as it
is available. You can significantly reduce the propagation delay by overriding the KCL default settings to
poll more frequently, as shown in the following examples.

Java KCL configuration code:

kinesisClientLibConfiguration = new
 KinesisClientLibConfiguration(applicationName,
 streamName,
 credentialsProvider,

 workerId).withInitialPositionInStream(initialPositionInStream).withIdleTimeBetweenReadsInMillis(250);

Property file setting for Python and Ruby KCL:

idleTimeBetweenReadsInMillis = 250

158

Amazon Kinesis Data Streams Developer Guide
Using AWS Lambda with the Kinesis Producer Library

Note
Because Kinesis Data Streams has a limit of 5 GetRecords calls per second, per shard, setting
the idleTimeBetweenReadsInMillis property lower than 200ms may result in your
application observing the ProvisionedThroughputExceededException exception. Too
many of these exceptions can result in exponential back-offs and thereby cause significant
unexpected latencies in processing. If you set this property to be at or just above 200 ms and
have more than one processing application, you will experience similar throttling.

Using AWS Lambda with the Kinesis Producer Library
The Kinesis Producer Library (KPL) aggregates small user-formatted records into larger records up to 1
MB to make better use of Amazon Kinesis Data Streams throughput. While the KCL for Java supports
deaggregating these records, you need to use a special module to deaggregate records when using AWS
Lambda as the consumer of your streams. You can obtain the necessary project code and instructions
from GitHub at Kinesis Producer Library Deaggregation Modules for AWS Lambda. The components in
this project give you the ability to process KPL serialized data within AWS Lambda, in Java, Node.js and
Python. These components can also be used as part of a multi-lang KCL application.

Resharding, Scaling, and Parallel Processing
Resharding enables you to increase or decrease the number of shards in a stream in order to adapt
to changes in the rate of data flowing through the stream. Resharding is typically performed by an
administrative application that monitors shard data-handling metrics. Although the KCL itself doesn't
initiate resharding operations, it is designed to adapt to changes in the number of shards that result
from resharding.

As noted in Tracking Amazon Kinesis Data Streams Application State (p. 157), the KCL tracks the shards
in the stream using an Amazon DynamoDB table. When new shards are created as a result of resharding,
the KCL discovers the new shards and populates new rows in the table. The workers automatically
discover the new shards and create processors to handle the data from them. The KCL also distributes
the shards in the stream across all the available workers and record processors.

The KCL ensures that any data that existed in shards prior to the resharding is processed first. After that
data has been processed, data from the new shards is sent to record processors. In this way, the KCL
preserves the order in which data records were added to the stream for a particular partition key.

Example: Resharding, Scaling, and Parallel Processing
The following example illustrates how the KCL helps you handle scaling and resharding:

• For example, if your application is running on one EC2 instance, and is processing one Kinesis data
stream that has four shards. This one instance has one KCL worker and four record processors (one
record processor for every shard). These four record processors run in parallel within the same process.

• Next, if you scale the application to use another instance, you have two instances processing one
stream that has four shards. When the KCL worker starts up on the second instance, it load-balances
with the first instance, so that each instance now processes two shards.

• If you then decide to split the four shards into five shards. The KCL again coordinates the processing
across instances: one instance processes three shards, and the other processes two shards. A similar
coordination occurs when you merge shards.

Typically, when you use the KCL, you should ensure that the number of instances does not exceed the
number of shards (except for failure standby purposes). Each shard is processed by exactly one KCL
worker and has exactly one corresponding record processor, so you never need multiple instances to
process one shard. However, one worker can process any number of shards, so it's fine if the number of
shards exceeds the number of instances.

159

https://docs.aws.amazon.com/kinesis/latest/dev/developing-producers-with-kpl.html
https://github.com/awslabs/kinesis-deaggregation
https://github.com/awslabs/amazon-kinesis-client/blob/master/amazon-kinesis-client-multilang/src/main/java/com/amazonaws/services/kinesis/multilang/package-info.java

Amazon Kinesis Data Streams Developer Guide
Handling Duplicate Records

To scale up processing in your application, you should test a combination of these approaches:

• Increasing the instance size (because all record processors run in parallel within a process)
• Increasing the number of instances up to the maximum number of open shards (because shards can be

processed independently)
• Increasing the number of shards (which increases the level of parallelism)

Note that you can use Auto Scaling to automatically scale your instances based on appropriate metrics.
For more information, see the Amazon EC2 Auto Scaling User Guide.

When resharding increases the number of shards in the stream, the corresponding increase in the
number of record processors increases the load on the EC2 instances that are hosting them. If the
instances are part of an Auto Scaling group, and the load increases sufficiently, the Auto Scaling group
adds more instances to handle the increased load. You should configure your instances to launch your
Amazon Kinesis Data Streams application at startup, so that additional workers and record processors
become active on the new instance right away.

For more information about resharding, see Resharding a Stream (p. 42).

Handling Duplicate Records
There are two primary reasons why records may be delivered more than one time to your Amazon Kinesis
Data Streams application: producer retries and consumer retries. Your application must anticipate and
appropriately handle processing individual records multiple times.

Producer Retries
Consider a producer that experiences a network-related timeout after it makes a call to PutRecord,
but before it can receive an acknowledgement from Amazon Kinesis Data Streams. The producer cannot
be sure if the record was delivered to Kinesis Data Streams. Assuming that every record is important
to the application, the producer would have been written to retry the call with the same data. If both
PutRecord calls on that same data were successfully committed to Kinesis Data Streams, then there
will be two Kinesis Data Streams records. Although the two records have identical data, they also have
unique sequence numbers. Applications that need strict guarantees should embed a primary key within
the record to remove duplicates later when processing. Note that the number of duplicates due to
producer retries is usually low compared to the number of duplicates due to consumer retries.

Note
If you use the AWS SDK PutRecord, the default configuration retries a failed PutRecord call
up to three times.

Consumer Retries
Consumer (data processing application) retries happen when record processors restart. Record processors
for the same shard restart in the following cases:

1. A worker terminates unexpectedly
2. Worker instances are added or removed
3. Shards are merged or split
4. The application is deployed

In all these cases, the shards-to-worker-to-record-processor mapping is continuously updated to load
balance processing. Shard processors that were migrated to other instances restart processing records
from the last checkpoint. This results in duplicated record processing as shown in the example below. For
more information about load-balancing, see Resharding, Scaling, and Parallel Processing (p. 159).

160

https://docs.aws.amazon.com/autoscaling/ec2/userguide/
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/ClientConfiguration.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/ClientConfiguration.html

Amazon Kinesis Data Streams Developer Guide
Recovering from Failures

Example: Consumer Retries Resulting in Redelivered Records

In this example, you have an application that continuously reads records from a stream, aggregates
records into a local file, and uploads the file to Amazon S3. For simplicity, assume there is only 1 shard
and 1 worker processing the shard. Consider the following example sequence of events, assuming that
the last checkpoint was at record number 10000:

1. A worker reads the next batch of records from the shard, records 10001 to 20000.
2. The worker then passes the batch of records to the associated record processor.
3. The record processor aggregates the data, creates an Amazon S3 file, and uploads the file to Amazon

S3 successfully.
4. Worker terminates unexpectedly before a new checkpoint can occur.
5. Application, worker, and record processor restart.
6. Worker now begins reading from the last successful checkpoint, in this case 10001.

Thus, records 10001-20000 are consumed more than one time.

Being Resilient to Consumer Retries

Even though records may be processed more than one time, your application may want to present
the side effects as if records were processed only one time (idempotent processing). Solutions to this
problem vary in complexity and accuracy. If the destination of the final data can handle duplicates well,
we recommend relying on the final destination to achieve idempotent processing. For example, with
Elasticsearch you can use a combination of versioning and unique IDs to prevent duplicated processing.

In the example application in the previous section, it continuously reads records from a stream,
aggregates records into a local file, and uploads the file to Amazon S3. As illustrated, records 10001
-20000 are consumed more than one time resulting in multiple Amazon S3 files with the same data. One
way to mitigate duplicates from this example is to ensure that step 3 uses the following scheme:

1. Record Processor uses a fixed number of records per Amazon S3 file, such as 5000.
2. The file name uses this schema: Amazon S3 prefix, shard-id, and First-Sequence-Num. In this case,

it could be something like sample-shard000001-10001.
3. After you upload the Amazon S3 file, checkpoint by specifying Last-Sequence-Num. In this case, you

would checkpoint at record number 15000.

With this scheme, even if records are processed more than one time, the resulting Amazon S3 file has the
same name and has the same data. The retries only result in writing the same data to the same file more
than one time.

In the case of a reshard operation, the number of records left in the shard may be less than your desired
fixed number needed. In this case, your shutdown() method has to flush the file to Amazon S3 and
checkpoint on the last sequence number. The above scheme is compatible with reshard operations as
well.

Recovering from Failures in Amazon Kinesis Data
Streams
Failure can occur at the following levels when you use an Amazon Kinesis Data Streams application to
process data from a stream:

• A record processor could fail
• A worker could fail, or the instance of the application that instantiated the worker could fail

161

http://www.elasticsearch.org/

Amazon Kinesis Data Streams Developer Guide
Handling Startup, Shutdown, and Throttling

• An EC2 instance that is hosting one or more instances of the application could fail

Record Processor Failure
The worker invokes record processor methods using Java ExecutorService tasks. If a task fails, the worker
retains control of the shard that the record processor was processing. The worker starts a new record
processor task to process that shard. For more information, see Read Throttling (p. 163).

Worker or Application Failure
If a worker — or an instance of the Amazon Kinesis Data Streams application — fails, you should detect
and handle the situation. For example, if the Worker.run method throws an exception, you should
catch and handle it.

If the application itself fails, you should detect this and restart it. When the application starts up, it
instantiates a new worker, which in turn instantiates new record processors that are automatically
assigned shards to process. These could be the same shards that these record processors were processing
before the failure, or shards that are new to these processors.

If the worker or application fails but you do not detect the failure, and there are other instances of the
application running on other EC2 instances, the workers on these instances handle the failure: they
create additional record processors to process the shards that are no longer being processed by the failed
worker. The load on these other EC2 instances increases accordingly.

The scenario described here assumes that although the worker or application has failed, the hosting EC2
instance is still running and is therefore not restarted by an Auto Scaling group.

Amazon EC2 Instance Failure
We recommend that you run the EC2 instances for your application in an Auto Scaling group. This
way, if one of the EC2 instances fails, the Auto Scaling group automatically launches a new instance to
replace it. You should configure the instances to launch your Amazon Kinesis Data Streams application at
startup.

Handling Startup, Shutdown, and Throttling
Here are some additional considerations to incorporate into the design of your Amazon Kinesis Data
Streams application.

Contents
• Starting Up Data Producers and Data Consumers (p. 162)

• Shutting Down an Amazon Kinesis Data Streams Application (p. 163)

• Read Throttling (p. 163)

Starting Up Data Producers and Data Consumers
By default, the KCL begins reading records from the tip of the stream;, which is the most recently added
record. In this configuration, if a data-producing application adds records to the stream before any
receiving record processors are running, the records are not read by the record processors after they start
up.

To change the behavior of the record processors so that it always reads data from the beginning of the
stream, set the following value in the properties file for your Amazon Kinesis Data Streams application:

162

http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ExecutorService.html

Amazon Kinesis Data Streams Developer Guide
Handling Startup, Shutdown, and Throttling

initialPositionInStream = TRIM_HORIZON

Amazon Kinesis Data Streams keeps records for 24 to 168 hours. This time frame is called the retention
period. Setting the starting position to the TRIM_HORIZON will start the record processor with
the oldest data in the stream, as defined by the retention period. Even with the TRIM_HORIZON
setting, if a record processor were to start after a greater time has passed than the retention
period, then some of the records in the stream will no longer be available. For this reason, you
should always have consumer applications reading from the stream and use the CloudWatch metric
GetRecords.IteratorAgeMilliseconds to monitor that applications are keeping up with incoming
data.

In some scenarios, it may be fine for record processors to miss the first few records in the stream. For
example, you might run some initial records through the stream to test that the stream is working end-
to-end as expected. After doing this initial verification, you would then start your workers and begin to
put production data into the stream.

For more information about the TRIM_HORIZON setting, see Using Shard Iterators (p. 135).

Shutting Down an Amazon Kinesis Data Streams Application
When your Amazon Kinesis Data Streams application has completed its intended task, you should shut it
down by terminating the EC2 instances on which it is running. You can terminate the instances using the
AWS Management Console or the AWS CLI.

After shutting down your Amazon Kinesis Data Streams application, you should delete the Amazon
DynamoDB table that the KCL used to track the application's state.

Read Throttling
The throughput of a stream is provisioned at the shard level. Each shard has a read throughput of up
to 5 transactions per second for reads, up to a maximum total data read rate of 2 MB per second. If an
application (or a group of applications operating on the same stream) attempts to get data from a shard
at a faster rate, Kinesis Data Streams throttles the corresponding Get operations.

In an Amazon Kinesis Data Streams application, if a record processor is processing data faster than the
limit — such as in the case of a failover — throttling occurs. Because the Kinesis Client Library (p. 116)
manages the interactions between the application and Kinesis Data Streams, throttling exceptions occur
in the KCL code rather than in the application code. However, because the KCL logs these exceptions, you
see them in the logs.

If you find that your application is throttled consistently, you should consider increasing the number of
shards for the stream.

163

https://console.aws.amazon.com//ec2/home
https://docs.aws.amazon.com/cli/latest/reference/ec2/index.html

Amazon Kinesis Data Streams Developer Guide

Document History
The following table describes the important changes to the Amazon Kinesis Data Streams
documentation.

Change Description Date Changed

New documentation
for consumers that
use enhanced fan-
out.

For information, see the section called “Using Consumers
with Enhanced Fan-Out ” (p. 138).

August 2, 2018

Updated summary of
service limits.

Added Kinesis Data Streams Limits (p. 8). June 6, 2018

New content
for server-side
encryption.

Added Using Server-Side Encryption (p. 80). July 7, 2017

New content
for enhanced
CloudWatch metrics.

Updated Monitoring Streams in Amazon Kinesis Data
Streams (p. 51).

April 19, 2016

New content for
enhanced Kinesis
agent.

Updated Writing to Amazon Kinesis Data Streams Using
Kinesis Agent (p. 102).

April 11, 2016

New content for
using Kinesis agents.

Added Writing to Amazon Kinesis Data Streams Using
Kinesis Agent (p. 102).

October 2, 2015

Update KPL content
for release 0.10.0.

Added Developing Producers Using the Amazon Kinesis
Producer Library (p. 88).

July 15, 2015

Update KCL
metrics topic for
configurable metrics.

Added Monitoring the Kinesis Client Library with
Amazon CloudWatch (p. 65).

July 9, 2015

Re-organized
content.

Significantly re-organized content topics for more
concise tree view and more logical grouping.

July 01, 2015

New KPL developer's
guide topic.

Added Developing Producers Using the Amazon Kinesis
Producer Library (p. 88).

June 02, 2015

New KCL metrics
topic.

Added Monitoring the Kinesis Client Library with
Amazon CloudWatch (p. 65).

May 19, 2015

Support for KCL .NET Added Developing a Kinesis Client Library Consumer
in .NET (p. 125).

May 1, 2015

Support for KCL
Node.js

Added Developing a Kinesis Client Library Consumer in
Node.js (p. 122).

March 26, 2015

Support for KCL
Ruby

Added links to KCL Ruby library. January 12, 2015

164

Amazon Kinesis Data Streams Developer Guide

Change Description Date Changed

New API PutRecords Added information about new PutRecords API to
the section called “Adding Multiple Records with
PutRecords” (p. 99).

December 15, 2014

Support for tagging Added Tagging Your Streams in Amazon Kinesis Data
Streams (p. 48).

September 11,
2014

New CloudWatch
metric

Added the metric
GetRecords.IteratorAgeMilliseconds to Amazon
Kinesis Data Streams Dimensions and Metrics (p. 51).

September 3, 2014

New monitoring
chapter

Added Monitoring Streams in Amazon Kinesis Data
Streams (p. 51) and Monitoring the Amazon Kinesis Data
Streams Service with Amazon CloudWatch (p. 51).

July 30, 2014

New sample
application

Added Tutorial: Visualizing Web Traffic Using Amazon
Kinesis Data Streams (p. 11).

June 27, 2014

Default shard limit Updated the Kinesis Data Streams Limits (p. 8): the
default shard limit has been raised from 5 to 10.

February 25, 2014

Default shard limit Updated the Kinesis Data Streams Limits (p. 8): the
default shard limit has been raised from 2 to 5.

January 28, 2014

API version updates Updates for version 2013-12-02 of the Kinesis Data
Streams API.

December 12, 2013

Initial release Initial release of the Amazon Kinesis Developer Guide. November 14, 2013

165

Amazon Kinesis Data Streams Developer Guide

AWS Glossary
For the latest AWS terminology, see the AWS Glossary in the AWS General Reference.

166

https://docs.aws.amazon.com/general/latest/gr/glos-chap.html

	Amazon Kinesis Data Streams
	Table of Contents
	What Is Amazon Kinesis Data Streams?
	What Can I Do with Kinesis Data Streams?
	Benefits of Using Kinesis Data Streams
	Related Services
	Kinesis Data Streams Key Concepts
	Kinesis Data Streams High-Level Architecture
	Kinesis Data Streams Terminology
	Kinesis Data Stream
	Data Record
	Retention Period
	Producer
	Consumer
	Amazon Kinesis Data Streams Application
	Shard
	Partition Key
	Sequence Number
	Kinesis Client Library
	Application Name
	Server-Side Encryption

	Creating and Updating Data Streams
	Determining the Initial Size of a Kinesis Data Stream
	Creating a Stream
	Updating a Stream
	
	Updating a Stream Using the API
	Updating a Stream Using the AWS CLI

	Kinesis Data Streams Producers
	Kinesis Data Streams Consumers
	

	Kinesis Data Streams Limits
	API limits
	Increasing Limits

	Getting Started Using Amazon Kinesis Data Streams
	Setting Up for Amazon Kinesis Data Streams
	Sign Up for AWS
	Download Libraries and Tools
	Configure Your Development Environment

	Tutorial: Visualizing Web Traffic Using Amazon Kinesis Data Streams
	Kinesis Data Streams Data Visualization Sample Application
	Prerequisites
	Step 1: Start the Sample Application
	Step 2: View the Components of the Sample Application
	Kinesis Data Stream
	Data Producer
	Data Consumer

	Step 3: Delete Sample Application
	Step 4: Next Steps

	Tutorial: Getting Started With Amazon Kinesis Data Streams Using AWS CLI
	Install and Configure the AWS CLI
	Install AWS CLI
	Windows
	Linux, macOS, or Unix

	Configure AWS CLI

	Perform Basic Stream Operations
	Step 1: Create a Stream
	Step 2: Put a Record
	Step 3: Get the Record
	Step 4: Clean Up

	Tutorial: Analyzing Real-Time Stock Data Using Kinesis Data Streams
	Prerequisites
	Amazon Web Services Account
	System Software Requirements
	Next Steps

	Step 1: Create a Data Stream
	Additional Information About Shards
	Next Steps

	Step 2: Create an IAM Policy and User
	Next Steps

	Step 3: Download and Build the Implementation Code
	Next Steps

	Step 4: Implement the Producer
	Next Steps

	Step 5: Implement the Consumer
	Additional Information About the Consumer
	Next Steps

	Step 6: (Optional) Extending the Consumer
	Next Steps

	Step 7: Finishing Up
	Summary
	Next Steps

	Creating and Managing Streams
	Creating a Stream
	Build the Kinesis Data Streams Client
	Create the Stream

	Listing Streams
	Listing Shards
	Retrieving Shards from a Stream
	Deleting a Stream
	Resharding a Stream
	Strategies for Resharding
	Splitting a Shard
	Merging Two Shards
	After Resharding
	Waiting for a Stream to Become Active Again
	Data Routing, Data Persistence, and Shard State after a Reshard

	Changing the Data Retention Period
	Tagging Your Streams in Amazon Kinesis Data Streams
	Tag Basics
	Tracking Costs Using Tagging
	Tag Restrictions
	Tagging Streams Using the Kinesis Data Streams Console
	Tagging Streams Using the AWS CLI
	Tagging Streams Using the Kinesis Data Streams API

	Monitoring Streams in Amazon Kinesis Data Streams
	Monitoring the Amazon Kinesis Data Streams Service with Amazon CloudWatch
	Amazon Kinesis Data Streams Dimensions and Metrics
	Basic Stream-level Metrics
	Enhanced Shard-level Metrics
	Dimensions for Amazon Kinesis Data Streams Metrics
	Recommended Amazon Kinesis Data Streams Metrics

	Accessing Amazon CloudWatch Metrics for Kinesis Data Streams

	Monitoring Kinesis Data Streams Agent Health with Amazon CloudWatch
	Monitoring with CloudWatch

	Logging Amazon Kinesis Data Streams API Calls with AWS CloudTrail
	Kinesis Data Streams Information in CloudTrail
	Example: Kinesis Data Streams Log File Entries

	Monitoring the Kinesis Client Library with Amazon CloudWatch
	Metrics and Namespace
	Metric Levels and Dimensions
	Metric Configuration
	List of Metrics
	Per-KCL-Application Metrics
	InitializeTask
	ShutdownTask
	ShardSyncTask
	BlockOnParentTask

	Per-Worker Metrics
	RenewAllLeases
	TakeLeases

	Per-Shard Metrics
	ProcessTask

	Monitoring the Kinesis Producer Library with Amazon CloudWatch
	Metrics, Dimensions, and Namespaces
	Metric Level and Granularity
	Local Access and Amazon CloudWatch Upload
	List of Metrics

	Controlling Access to Amazon Kinesis Data Streams Resources Using IAM
	Policy Syntax
	Actions for Kinesis Data Streams
	Amazon Resource Names (ARNs) for Kinesis Data Streams
	Example Policies for Kinesis Data Streams

	Using Server-Side Encryption
	What Is Server-Side Encryption for Kinesis Data Streams?
	Costs, Regions, and Performance Considerations
	KMS API Usage
	Availability of Server-Side Encryption by Region
	Performance Considerations

	How Do I Get Started with Server-Side Encryption?
	Creating and Using User-Generated KMS Master Keys
	Creating User-Generated KMS Master Keys
	Using User-Generated KMS Master Keys

	Permissions to Use User-Generated KMS Master Keys
	Example Producer Permissions
	Example Consumer Permissions
	Stream Administrator Permissions

	Verifying and Troubleshooting KMS Key Permissions

	Using Amazon Kinesis Data Streams with Interface VPC Endpoints
	Interface VPC endpoints for Kinesis Data Streams
	Using interface VPC endpoints for Kinesis Data Streams
	Availability

	Managing Kinesis Data Streams Using the Console

	Writing Data to Amazon Kinesis Data Streams
	Developing Producers Using the Amazon Kinesis Producer Library
	Role of the KPL
	Advantages of Using the KPL
	When Not to Use the KPL
	Installing the KPL
	Transitioning to Amazon Trust Services (ATS) Certificates for the Kinesis Producer Library
	KPL Supported Platforms
	Source Code

	KPL Key Concepts
	Records
	Batching
	Aggregation
	Collection

	Integrating the KPL with Producer Code
	Recommended Usage Matrix

	Writing to your Kinesis Data Stream Using the KPL
	Barebones Producer Code
	Responding to Results Synchronously
	Responding to Results Asynchronously

	Configuring the Kinesis Producer Library
	Consumer De-aggregation
	Migrating from Previous Versions of the KCL
	KCL Extensions for KPL De-aggregation
	Using GetRecords Directly

	Using the KPL with Kinesis Data Firehose

	Developing Producers Using the Amazon Kinesis Data Streams API with the AWS SDK for Java
	Adding Data to a Stream
	Adding Multiple Records with PutRecords
	PutRecords Example
	Handling Failures When Using PutRecords

	Adding a Single Record with PutRecord
	PutRecord Example

	Writing to Amazon Kinesis Data Streams Using Kinesis Agent
	Prerequisites
	Download and Install the Agent
	Configure and Start the Agent
	Agent Configuration Settings
	Monitor Multiple File Directories and Write to Multiple Streams
	Use the Agent to Pre-process Data
	Agent CLI Commands

	Troubleshooting Amazon Kinesis Data Streams Producers
	Producer Application is Writing at a Slower Rate Than Expected
	Service Limits Exceeded
	Producer Optimization

	Unauthorized KMS master key permission error

	Advanced Topics for Kinesis Data Streams Producers
	KPL Retries and Rate Limiting
	Rate Limiting

	Considerations When Using KPL Aggregation

	Reading Data from Amazon Kinesis Data Streams
	Developing Amazon Kinesis Data Streams Consumers
	Developing Consumers Using the Kinesis Client Library 1.x
	Kinesis Client Library
	Role of the KCL
	Developing a Kinesis Client Library Consumer in Java
	Implement the IRecordProcessor Methods
	Original Interface (Version 1)
	Updated Interface (Version 2)

	Implement a Class Factory for the IRecordProcessor Interface
	Create a Worker
	Modify the Configuration Properties
	Application Name
	Set Up Credentials
	Use Worker ID for Multiple Instances

	Migrating to Version 2 of the Record Processor Interface

	Developing a Kinesis Client Library Consumer in Node.js
	Implement the Record Processor
	Modify the Configuration Properties
	Application Name
	Set Up Credentials

	Developing a Kinesis Client Library Consumer in .NET
	Implement the IRecordProcessor Class Methods
	Modify the Configuration Properties
	Application Name
	Set Up Credentials

	Developing a Kinesis Client Library Consumer in Python
	Implement the RecordProcessor Class Methods
	Modify the Configuration Properties
	Application Name
	Set Up Credentials

	Developing a Kinesis Client Library Consumer in Ruby

	Developing Consumers Using the Kinesis Client Library 2.0
	Developing a Kinesis Client Library Consumer in Java

	Developing Consumers Using the Kinesis Data Streams API with the AWS SDK for Java
	Getting Data from a Stream
	Using Shard Iterators
	Using GetRecords
	Adapting to a Reshard

	Using Consumers with Enhanced Fan-Out
	Developing Consumers with Enhanced Fan-Out Using the Kinesis Client Library 2.0
	Developing a Consumer Using the Kinesis Client Library 2.x in Java

	Developing Consumers with Enhanced Fan-Out Using the Kinesis Data Streams API
	Managing Consumers with Enhanced Fan-Out Using the AWS Management Console

	Migrating from Kinesis Client Library 1.x to 2.x
	Migrating the Record Processor
	Migrating the Record Processor Factory
	Migrating the Worker
	Configuring the Amazon Kinesis Client
	Idle Time Removal
	Client Configuration Removals

	Troubleshooting Amazon Kinesis Data Streams Consumers
	Some Kinesis Data Streams Records are Skipped When Using the Kinesis Client Library
	Records Belonging to the Same Shard are Processed by Different Record Processors at the Same Time
	Consumer Application is Reading at a Slower Rate Than Expected
	GetRecords Returns Empty Records Array Even When There is Data in the Stream
	Shard Iterator Expires Unexpectedly
	Consumer Record Processing Falling Behind
	Unauthorized KMS master key permission error

	Advanced Topics for Amazon Kinesis Data Streams Consumers
	Tracking Amazon Kinesis Data Streams Application State
	Throughput
	Application State Data

	Low-Latency Processing
	Using AWS Lambda with the Kinesis Producer Library
	Resharding, Scaling, and Parallel Processing
	Example: Resharding, Scaling, and Parallel Processing

	Handling Duplicate Records
	Producer Retries
	Consumer Retries
	Example: Consumer Retries Resulting in Redelivered Records
	Being Resilient to Consumer Retries

	Recovering from Failures in Amazon Kinesis Data Streams
	Record Processor Failure
	Worker or Application Failure
	Amazon EC2 Instance Failure

	Handling Startup, Shutdown, and Throttling
	Starting Up Data Producers and Data Consumers
	Shutting Down an Amazon Kinesis Data Streams Application
	Read Throttling

	Document History
	AWS Glossary

