SERVICE MANUAL NAD MODEL 308O STEREO AMPLIFER

CONTENTS

SPECIFICATION	PAGE	2
INSIDE VIEW OF UNIT	PAGE	3
ALIGNMENT	PAGE	4,5
PCB PARTS LOCATION	PAGE	6,7
WIRING DIAGRAM	PAGE	8
CIRCUIT DIAGRAM	PAGE	9
PARTS LIST	PAGE	$10,11,12,13$

* Measurements identified by an asterisk are taken in accordance with the new IHF A-202 amplifier measurement standard.

Power Amplifier Section

Preamplifier Section

High level input

1. IDLE CURRENT ALIGNMENT

1. 5 Minutes minimum pre-heating is necessary for idle current alignment.
2. Set the volume control at minimum position.
3. Speaker switch should be set at off position.
4. Connect DC voltmeter across R638 for right channel and across R 637 for left channel. (see fig. I)
5. Record the reading of DC voltmeter and refer to the following chart to find the appropriate value resistor to connect in parallel with R622 (right channel), or R621 (left channel) on the bottom side (pattern side) of PCB.

* Important notice: The power switch must be in the off position when soldering is done.

Reading of DC Voltmeter	Parallel Resistor	Reading of DC Voltmeter	Parallel Resistor	
0.5 to 1.0 mV	820 ohm	2.5 to 3.5 mV	1 k 8 ohm	
1.0 to 1.5 mV	1 k	ohm	3.5 to 4.5 mV	2 k 2 ohm
1.5 to 2.0 mV	1 k 2 ohm	4.5 to 5.5 mV	2 k 7 ohm	
2.0 to 2.5 mV	1 k 5 ohm	5.5 to 7.0 mV	3 k 3 ohm	

6. Read the DC voltage across to R638 (right channel) and R637 (left channel) again.
7. If the DC voltage were between 6 mV and 9 mV , then the alignment is completed.
8. If the DC voltage were less than 6 mV , the value of parallel resistor should be decreased until the DC voltage is between 6 mV and 9 mV .
9. If the DC voltage were more than 9 mV , the value of parallel resistor should be increased until the DC voltage is between 6 mV and 9 mV .

2. POWER METER ALIGNMENT

1. Feed a 1 KHz sine wave approx 150 mV RMS to both channel's Aux inputs.
2. Connect an 8 ohm ($+20 \%$) dumy load and an AC voltmeter and oscilloscope to the "main speaker" terminals on the rear panel.
3. Set the volume control at maximum position and other controls are set at their normal positions.
4. Set the speaker switch to "main" position.

* 5. Adjust the input signal level till the output voltage is 25.3 V making sure that no clipping of the waveform is occurring.

6. Adjust VR201 (for right channel) and VR202 (for left channel) for a meter indication of 80 W . (or 0 dB). (sec. fig. 3)

* In cases of poor mains regulation it is possible that slight clipping occurs at 25.3 V when both channels are driven simultaneously. If this is the case, do the calibration one channel at a time.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

90-1048 IVIAIN SECTION

ITEM	PARTS NO	DESCRIPTION	Q'TY	SYMBOL NO
1	16-1/2CP220J	CARBON RES. 22 OHM $1 / 2 \mathrm{~W} \pm 5 \%$	6	$\mathrm{R} 631,632,633,634,635,636$
2	16-1/2CP332J	CARBON RES. 3.3 OHM $1 / 2 \mathrm{~W} \pm 5 \%$	2	R801, 802
3	16-1/2CP680J	CARBON RES. 68 OHM $1 / 2 \mathrm{~W} \pm 5 \%$	2	R805, 806
4	16-1/4CM101J	CARBON RES. 100 OHM $1 / 4 \mathrm{~W} \pm 5 \%$	2	R515,516
5	16-1/4CM102J	CARBON RES. 1 K OHM $1 / 4 \mathrm{~W} \pm 5 \%$	12	R607, 608, 659, 660, 647, 648, $645,646,671,672,673,674$
6	16-1/4CM103J	CARBON RES. 10 K OHM $1 / 4 \mathrm{~W} \pm 5 \%$	5	R509, 510, 521, 522, 916
7	16-1/4CM104J	CARBON RES. 100K OHM $1 / 4 \mathrm{~W} \pm 5 \%$	1	R907
8	16-1/4CM123J	CARBON RES. 12 K OHM $1 / 4 \mathrm{~W} \pm 5 \%$	1	R904
9	$16-1 / 4 \mathrm{CM} 153 \mathrm{~J}$	CARBON RES. 15K OHM $1 / 4 \mathrm{~W} \pm 5 \%$	6	R539, 540, 655, 656, 657, 658
10	16-1/4CM1 81J	CARBON RES. 180 OHM $1 / 4 \mathrm{~W} \pm 5 \%$	2	R513, 514
11	16-1/4CM182J	CARBON RES. 1.8K OHM $1 / 4 \mathrm{~W} \pm 5 \%$	2	R604, 603
12	16-1/4CM184J	CARBON RES. 180K OHM $1 / 4 \mathrm{~W} \pm 5 \%$	1	R914
13	16-1/4CM221J	CARBON RES. 220 OHM $1 / 4 \mathrm{~W} \pm 5 \%$	4	R503, 504, 619, 620
14	16-1/4CM222J	CARBON RES. $2.2 \mathrm{~K} \mathrm{OHM} 1 / 4 \mathrm{~W} \pm 5 \%$	4	R517, 518, 519, 520
15	16-1/4CM223J	CARBON RES. 22 K OHM $1 / 4 \mathrm{~W} \pm 5 \%$	5	R611, 612, 669, 670, 920
16	$16-1 / 4 \mathrm{CM} 224 \mathrm{~J}$	CARBON RES. 220 K OHM $1 / 4 \mathrm{~W} \pm 5 \%$	3	R601, 602, 912
17	16-1/4CM271J	CARBON RES. 270 OHM $1 / 4 \mathrm{~W} \pm 5 \%$	1	R917
18	16-1/4CM273J	CARBON RES. 27 K OHM $1 / 4 \mathrm{~W} \pm 5 \%$	2	R609, 610
19	16-1/4CM330J	CARBON RES. 33 OHM $1 / 4 \mathrm{~W} \pm 5 \%$	2	R629, 630
20	16-1/4CM331J	CARBON RES. 330 OHM $1 / 4 \mathrm{~W} \pm 5 \%$	2	R621, 622
21	16-1/4CM332J	CARBON RE8. 3.3 K OHM $1 / 4 \mathrm{~W} \pm 5 \%$	4	R505, 506, 617, 618
22	16-1/4CM333J	CARBON RES. 33K OHM $1 / 4 \mathrm{~W} \pm 5 \%$	4	R901, 902, 905, 919
23	16-1/4CM334J	CARBON RES. 330 K OHM $1 / 4 \mathrm{~W} \pm 5 \%$	4	R501, 502, 527, 528
24	16-1/4CM392J	CARBON RES. $3.9 \mathrm{~K} \mathrm{OHM} 1 / 4 \mathrm{~W} \pm 5 \%$	8	$\begin{aligned} & \text { R507, 508, } 523,524,525,526, \\ & 531,532 \end{aligned}$
25	16-1/4CM471J	CARBON RES. 470 OHM $1 / 4 \mathrm{~W} \pm 5 \%$	2	R511,512
26	16-1/4CM472J	CARBON RES. 4.7 K OHM $1 / 4 \mathrm{~W} \pm 5 \%$	1	R918
27	16-1/4CM561 J	CARBON RES. 560 OHM $1 / 4 \mathrm{~W} \pm 5 \%$	1	R911
28	16-1/4CM564J	CARBON RES. 560 K OHM $1 / 4 \mathrm{~W} \pm 5 \%$	1	R909
29	16-1/4CM682J	CARBON RES. 6.8 K OHM $1 / 4 \mathrm{~W} \pm 5 \%$	2	R535,536
30	16-1/4CM683J	CARBON RES. 68 K OHM $1 / 4 \mathrm{~W} \pm 5 \%$	2	R910, 915
31	$16-1 / 4 \mathrm{CM} 821 \mathrm{~J}$	CARBON RES. 820 OHM $1 / 4 \mathrm{~W} \pm 5 \%$	2	R623, 624
32	16-1/4CM822J	CARBON RES. 8.2K OHM $1 / 4 \mathrm{~W} \pm 5 \%$	5	R605, 606, 903, 913, 906
33	16-1/4CN101J	CARBON RES. $100 \mathrm{OHM} 1 / 4 \mathrm{~W} \pm 5 \%$	2	R613, 614
34	$16-1 / 4 \mathrm{CN} 221 \mathrm{~J}$	CARBON RES. 220 OHM $1 / 4 \mathrm{~W}^{+} \pm 5 \%$	4	R529, 530, 619, 620
35	$16-1 / 4 \mathrm{CN} 2 \mathrm{R} 2 \mathrm{~J}$	CARBON RES. 2.2 OHM $1 / 4 \mathrm{~W} \pm 5 \%$	4	R665, 666, 667, 668
36	$16-1 / 4 \mathrm{CN} 561 \mathrm{~J}$	CARBON RES. 560 OHM $1 / 4 \mathrm{~W} \pm 5 \%$	2	R615, 616
37	$16-1 / 4 \mathrm{CN} 820 \mathrm{~J}$	CARBON RES $82 \mathrm{OHM} 1 / 4 \mathrm{~W} \pm 5 \%$	2	R533, 534
38	16-1/4CU5R6J	CARBON RES. 5.6 OHM $1 / 4 \mathrm{~W} \pm 5 \%$	2	R651, 652
39	16-1003	RES. MPC 710.22 OHM 5W	8	$\begin{aligned} & \mathrm{R} 637,638,639,640,637 \mathrm{~A}, \\ & 638 \mathrm{~A}, 639 \mathrm{~A}, 640 \mathrm{~A} \end{aligned}$
40	16-1A102J	METAL OXIDE RES. $1 \mathrm{~K} 1 \mathrm{~W} \pm 5 \%$	2	R627, 628
41	$16-1 \mathrm{~A} 152 \mathrm{~J}$	METAL OXIDE RES. 1.5K 1W $\pm 5 \%$	2	R625, 626
42	$16-1 \mathrm{~A} 222 \mathrm{~J}$	METAL OXIDE RES. 2.2K 1W $\pm 5 \%$	4	R661, 662, 663, 664
43	16-1 A471J	METAL OXIDE RES. 470 OHM 1W $\pm 5 \%$	1	R921
44	16-2A100I	METAL OXIDE RES. 10 OHM 2W $\pm 5 \%$	4	R641, 642, 643, 644
45	17-0.63E227Y	ELEC. CAPA. $220 \mu \mathrm{~F} 6.3 \mathrm{~V} \pm 50 \%$	2	C505, 506
46	17-0.63E336Y	ELEC. CAPA. $33 \mu \mathrm{~F} \mathrm{6.3V}{ }_{-}^{+50 \%}$	2	C629, 630
47	17-1.6E226Y	ELEC. CAPA. $22 \mu \mathrm{~F} 16 \mathrm{~V}+50 \%$	2	C604, 603
48	17-1.6S227Y	ELEC. CAPA. $220 \mu \mathrm{~F} 16 \mathrm{~V} \quad+50 \%$	1	C903
49	17-1E106Y	ELEC. CAPA. $10 \mu \mathrm{~F} 10 \mathrm{~V} \quad+50 \%$	2	C525, 526
50	17-1E107Y	ELEC. CAPA. $100 \mu \mathrm{~F} 10 \mathrm{~V} \quad+50 \%$	2	C904, 905
51	17-1 E226Y	ELEC. CAPA. $23 \mu \mathrm{~F} 10 \mathrm{~V} \quad+50 \%$	2	C605, 606
52	$17-2.5 \mathrm{E} 106 \mathrm{Y}$	ELEC. CAPA. $10 \mu \mathrm{~F} 25 \mathrm{~V} \quad \begin{aligned} & +50 \% \\ & -10 \%\end{aligned}$	4	C511, 512,533,534
53	17-2.5E107Y	ELEC. CAPA. $100 \mu \mathrm{~F} 25 \mathrm{~V} \quad+50 \%$	2	C815,816
54	17-2.5E108Y	ELEC. CAPA. $100 \mu \mathrm{~F} 25 \mathrm{~V} \quad+50 \%$	2	C813, 814
55	17-2.5E475Y	ELEC. CAPA. $4.7 \mu \mathrm{~F} \mathrm{25V} \quad$$+50 \%$ 	1	C902

ITEM	PARTS NO	DESCRIPTION	Q`TY	SYMBOL NO
56	17-25D223K	CER. CAPA. $0.0022 \mu \mathrm{~F} 250 \mathrm{~V} \pm 10 \%$	8	$\begin{aligned} & \mathrm{C} 801,802,803,804,805,806 \\ & 807,808 \end{aligned}$
57	17-3.5E477Y	ELEC. CAPA. $470 \mu \mathrm{~F} 35 \mathrm{~V} \quad+50 \%$	2	C811,812
58	17-5D100D	CER. CAPA. 10PF $\pm 0.5 \mathrm{P} 50 \mathrm{~V}$	2	C509, 510
59	17-5D101M	CER. CAPA. 100PF $\pm 20 \% 50 \mathrm{~V}$	4	C609, 610, 627, 628
60	17-5D103M	CER. CAPA. $0.1 \mu \mathrm{~F} \pm 20 \% \cdot 50 \mathrm{~V}$	6	C639, 640, 641, 642, 901, 906
61	17-5D104M	CER. CAPA. $0.1 \mu \mathrm{~F} \pm 20 \% 50 \mathrm{~V}$	16	$\begin{aligned} & \mathrm{C} 607,608,631,632,633,634 \text {, } \\ & 635,636,637,638,617,618,623 \text {, } \\ & 624,623 \mathrm{~A}, 624 \mathrm{~A} \end{aligned}$
62	17-5D121M	CER. CAPA. 120P $\pm 20 \%$ 50V	4	C619, 620, 645, 646
63	17-5D220M	CER. CAPA. $22 \mathrm{P} \pm 20 \% 50 \mathrm{~V}$	2	C611, 612
64	17-5D221M	CER. CAPA. 220P $\pm 20 \% 50 \mathrm{~V}$	4	C503, 504, 531, 532
65	17-5D330M	CER. CAPA. $33 \mathrm{P} \pm 20 \% 50 \mathrm{~V}$	4	C527, 528, 529, 530
66	17-5D470M	CER. CAPA. $47 \mathrm{P} \pm 20 \% 50 \mathrm{~V}$	4	C507, 508, 615, 616
67	17-5D471M	CER. CAPA. $470 \mathrm{P} \pm 20 \% 50 \mathrm{~V}$	2	C601, 602
68	17-5D680M	CER. CAPA. $68 \mathrm{P} \pm 20 \% 50 \mathrm{~V}$	2	C643, 644
69	17-5D820M	CER. CAPA. $82 \mathrm{P} \pm 20 \% 50 \mathrm{~V}$	2	C613, 614
70	17-5E476Y	$\begin{aligned} & \text { ELEC. CAPA. } 47 \mu \mathrm{~F} 50 \mathrm{~V}+50 \% \\ &-10 \% \end{aligned}$	2	C625, 626
71	17-5F104J	MYLAR CAPA. $0.1 \mu \mathrm{~F} 50 \mathrm{~V} \pm 5 \%$	8	$\begin{aligned} & \text { C517, 518, } 519,520,521,522, \\ & 523,524, \end{aligned}$
72	17-5F 122J	MYLAR CAPA. $0.0012 \mu \mathrm{~F} \pm 5 \%$	4	C513, 514, 515,516
73	17-5F224J	MYLAR CAPA $0.22 \mu \mathrm{~F} 50 \mathrm{~V} \pm 5 \%$	2	C501, 502
74	19-1048	PCB FOR MAIN AMP. TONE. POWER SUPPLY	1	
75	29-1040	INDUCTOR 0.6x6 $6 \times 15 \mathrm{~T}$	2	L601,602
76	29-4057	BASS CONTROL 20 KBx 2	1	VR503A, VR503B.
77	29-4058	TREBLE CONTROL 50 KBx 2	1	VR501A, VR501B.
78	29-4060	BALANCE CONTROL 100KMN	1	VR505,505A.
79	30-1011	ZENER DIODE 12V 0.5W	4	D611,612,613,614.
80	30-1016	ZENER DIODE 23V 0.5W	2	D801, 802
81	30-1017-2	DIODE G3D 100V	4	D803,804,805,806
82	30-1019	DIODE BAW62	24	$\begin{aligned} & \text { D501,502,503,504,505,506,507, } \\ & \text { 508,509,510,601,602,603,604, } \\ & 605,606,607,608,615,616,617 \text {, } \\ & 618,901,902 . \end{aligned}$
83	30-1040	BRIDGE DIODE W02	1	B.D801.
84	30-2082	TRANSISTOR BD1 40	2	Q802,905.
85	30-2083	TRANSISTOR BD1 39	3	Q801,901,906.
86	30-2084-3	TRANSISTOR BC549C	4	Q503,504,505,506.
87	30-2085-2	TRANSISTOR BC559B	4	Q501,502,507,508
88	30-2086	TRANSISTOR 2SB536M	2	Q609,610
89	30-2087	TRANSISTOR 2SD381M	4	Q605,606,607,608
90	30-2090-2	TRANSISTOR BC546B	13	$\begin{aligned} & \text { Q509,510,511,612,603,604,621, } \\ & 622,903,904,902,625,606 . \end{aligned}$
91	30-2096	TRANSISTOR BC556A	4	Q601,602,623,625.
92	30-3010	IC, CA3100	2	IC601,602.
93	31-1020	LEVER SW. SLC-142	4	SW5a.b. SW7a.b SW6a.b. SW8a.b.c.d.
94	35-3002	RELAY SD-2059	1	
90-1074 PHONO PREAMP. SECTION				
95	16-1/4CM102J	CARBON RES. $1 \mathrm{~K} \mathrm{OHM} 1 / 4 \mathrm{~W} \pm 5 \%$	2	R435,436.
96	16-1/4CM 124J	CARBON RES. 120 K OHM $1 / 4 \mathrm{~W} \pm 5 \%$	2	R437, 438
97	15-1/4CM 153J	CARBON RES. 15 K OHM $1 / 4 \mathrm{~W} \pm 5 \%$	2	R419, 420.
98	16-1/4CM 221 J	CARBON RES. 220 OHM $1 / 4 \mathrm{~W} \pm 5 \%$	2	R411, 412.
99	16-1/4CM 331J	CARBON RES. 330 K OHM $1 / 4 \mathrm{~W} \pm 5 \%$	2	R401, 402.
100	16-1/4CM 472J	CARBON RES. 4.7 K OHM $1 / 4 \mathrm{~W} \pm 5 \%$	2	R425, 426
101	16-1/4CM 562J	CARBON RES. 5.6 K OHM $1 / 4 \mathrm{~W} \pm 5 \%$	2	R423, 424
102	16-1/4CM 684J	CARBON RES. 680 K OHM $1 / 4 \mathrm{~W} \pm 5 \%$	2	R411, 412
103	$16-1 / 4 \mathrm{CN} 151 \mathrm{~J}$	CARBON RES. 150 OHM $1 / 4 \mathrm{~W} \pm 5 \%$	2	R417, 418
104	$16-1 / 4 \mathrm{CN} 331 \mathrm{~J}$	CARBON RES. 330 OHM $1 / 4 \mathrm{~W} \pm 5 \%$	2	R415, 416
105	$16-1 / 4 \mathrm{CN} 680 \mathrm{~J}$	CARBON RES. 68 OHM $1 / 4 \mathrm{~W} \pm 5 \%$	4	R427,428,429,430.
106	16-1/4M 222 J	METAL FILM RES. $2.2 \mathrm{~K} \mathrm{OHM} 1 / 4 \mathrm{~W} \pm 5 \%$	4	R406,405,407,408.
107	16-1/4M 272J	METAL FILM RES. 2.7 K OHM $1 / 4 \mathrm{~W} \pm 5 \%$	2	R433, 434
108	16-1/4M 333J	METAL FILM RES. 33 K OHM $1 / 4 \mathrm{~W} \pm 5 \%$	2	R431, 432.
109	16-1/4M 392J	METAL FILM RES. 3.9 K OHM $1 / 4 \mathrm{~W} \pm 5 \%$	2	R409,410.
110	16-1/4M 560J	METAL FILM RES. $56 \mathrm{OHM} 1 / 4 \mathrm{~W} \pm 5 \%$	2	R413,414.
111	16-1/4M 563J	METAL FILM RES. 56 K OHM $1 / 4 \mathrm{~W} \pm 5 \%$	2	R403,404.
112	17-0.63E 687Y	ELEC. CAPAC. $680 \mu \mathrm{~F} 6.3 \mathrm{~V} \pm 5 \%$	2	C047,408.
113	17-1E 106Y	ELEC. CAPA. $10 \mu \mathrm{~F} 10 \mathrm{~V}+50 \%-10 \%$	2	C401,402
114	17-2.5E 106Y	ELEC. CAPA. $10 \mu \mathrm{~F} 25 \mathrm{~V}+50 \%-10 \%$	2	C417,418
115	17-5D100D	CER. CAPA. 10PF $\pm 0.5 \mathrm{P} 50 \mathrm{~V}$	2	C405,406

IṪEM	PARTS NO	DESCRIPTION	Q'TY	SYMBOL NO
116	17-5D 101M	CER. CAPA. 100PF $\pm 20 \% 50 \mathrm{~V}$	2	C403,404
117	17-5D 104M	CER. CAPA. $0.1 \mu \mathrm{~F} \pm 20 \% 50 \mathrm{~V}$	2	C423,424
118	17-5D 221M	CER. CPAA. $220 \mathrm{PF} \pm 20 \% 50 \mathrm{~V}$	2	C409,410
-119	17-5D 473M	CER. CAPA. $0.047 \mu \mathrm{~F} \pm 20 \% 50 \mathrm{~V}$	1	C425
120	17-5E 336Y	ELEC. CAPA. $33 \mu \mathrm{~F} 50 \mathrm{~V}+50 \%-10 \%$	2	C415,416
121	17-5F 104J	MYLAR CAPA. $0.1 \mu \mathrm{~F} 50 \mathrm{~V} \pm 5 \%$	2	C411,412
122	17-5F 222J	MYLAR CAPA. $0.0022 \mu \mathrm{~F} 50 \mathrm{~V} \pm 5 \%$	2	C419,420
123	17-5F 273J	MYLAR CAPA. $0.027 \mu \mathrm{~F} 50 \mathrm{~V} \pm 5 \%$	2	C413,414
124	19-1074	PCB FOR EQ \& FUNCTION	1	
125	30-1019	DIODE BAW62	8	$\begin{aligned} & \text { D401,402,403,404, } \\ & 405,406,407,408 \end{aligned}$
126	30-2084-3	TRANSISTOR BC549C	2	Q403,404
127	30-2085-2	TRANSISTOR BC559B	4	Q401,402,405,406
128	30-2090-2	TRANSISTOR BC546B	2	Q409,410
129	30-2096	TRANSISTOR BC556A	4	Q407,408,411,412
130	31-1024-1	SELECTOR SW. SRZV044N	1.	SW1a.b.c.d.
131	31-1043	SWITCH SRZ-V043N	1	SW4a.b.c.d.

90-1067 FILTER MIC SECTION

132	16-1/4CM 101J	CARBON RES. 100 OHM $1 / 1 / \mathrm{W} \pm 5 \%$	1	R500
133	16-1/4CM 102J	CARBON RES. ! K OHM $1 / 4 \mathrm{~W} \pm 5 \%$	5	R717,718,729,730,301
134	16-1/4CM 105J	CARBON RES. $1 \mathrm{M} \mathrm{OHM} 1 / 4 \mathrm{~W} \pm 5 \%$	2	R709,710.
135	$16-1 / 4 \mathrm{CM} 121 \mathrm{~J}$	CARBON RES. $120 \mathrm{OHM} 1 / 4 \mathrm{~W} \pm 5 \%$	2	R725, 726
136	-16-1/4CM 124J	CARBON RES. 120 K OHM $1 / 4 \mathrm{~W} \pm 5 \%$	7	R713,714,723,724,302,309,310
137	16-1/4CM 182J	CARBON RES. $1.8 \mathrm{~K} \mathrm{OHM} 1 / 4 \mathrm{~W} \pm 5 \%$	1	R311.
138	16-1/4CM 222J	CARBON RES. $2.2 \mathrm{~K} \mathrm{OHM} 1 / 4 \mathrm{~W} \pm 5 \%$	3	R701,702,308
139	16-1/4CM 272J	CARBON RES. 2.7 K OHM $1 / 4 \mathrm{~W} \pm 5 \%$	2	R721,722
140	16-1/4CM 274J	CARBON RES. 270 K OHM $1 / 4 \mathrm{~W} \pm 5 \%$	1	R304
141	16-1/4CM 332J	CARBON RES. 3.3 K OHM $1 / 4 \mathrm{~W} \pm 5 \%$	2	R547,548
142	16-1/4CM 333J	CARBON RES. 33 K OHM $1 / 4 \mathrm{~W} \pm 5 \%$	2	R703,704
143	16-1/4CM 392J	CARBON RES. $3.9 \mathrm{~K} \mathrm{OHM} 1 / 4 \mathrm{~W} \pm 5 \%$	2	R719,720
144	16-1/4CM 393J	CARBON RES. 39 K OHM $1 / 4 \mathrm{~W} \pm 5 \%$	2	R711,712
145	$16-1 / 4 \mathrm{CM} 471 \mathrm{~J}$	CARBON RES. 470 OHM $1 / 4 \mathrm{~W} \pm 5 \%$	1	R303
146	$16^{-1 / 4} \mathrm{CM} 473 \mathrm{~J}$	CARBON RES. 47 K OHM $1 / 4 \mathrm{~W} \pm 5 \%$	3	R312,313,314
147	$16-1 / 4 \mathrm{CM} 474 \mathrm{~J}$	CARBON RES. 470 K OHM $1 / 4 \mathrm{~W} \pm 5 \%$	2	R715,716
148	$16-1 / 4 \mathrm{CM} 562 \mathrm{~J}$	CARBON RES. 5.6 K OHM $1 / 4 \mathrm{~W}+5 \%$	4	R705,706,707,707
149	$16-1 / 4 \mathrm{CM} 822 \mathrm{~J}$	CARBON RES. 8.2 K OHM $1 / 4 \mathrm{~W} \pm 5 \%$	3	R727,728,305
150	16-PCN391J	CARBON RES. 390 OHM $1 / 4 \mathrm{~W} \pm 5 \%$	1	R307
151	$16-1 / 4 \mathrm{CN} 471 \mathrm{~J}$	CARBON RES. 470 OHM $1 / 4 \mathrm{~W} \pm 5 \%$	1	R303
152	$16-1 / 4 \mathrm{CU} 153 \mathrm{~J}$	CARBON RES. 15 K OHM $1 / 4 \mathrm{~W} \pm 5 \%$	2	R553,554
153	17-0.63E 107Y	ELEC. CAPA. $100 \mu \mathrm{~F} 6.3 \mathrm{~V}+50 \%-10 \%$	1	C304
154	17-1E 106Y	ELEC. capa. $10 \mu \mathrm{~F} 10 \mathrm{~V}+50 \%-10 \%$	1	C301
155	$17-2.5 \mathrm{E} 106 \mathrm{Y}$	ELEC. CAPA. $10 \mu \mathrm{~F} 25 \mathrm{~V}+50 \%-10 \%$	4	C713,714,305,308
156	$17-2.5 \mathrm{E} 475 \mathrm{Y}$	ELEC. CAPA. $4.7 \mu \mathrm{~F} 25 \mathrm{~V}+50 \%-10 \%$	2	C709,710
157	17-2.5E 476Y	ELEC. CAPA. $47 \mu \mathrm{~F} 25 \mathrm{~V}+50 \%-10 \%$	1	C307
158	17-5D 104M	CER. CAPA. $0.1 \mu \mathrm{~F} 50 \mathrm{~V} \pm 20 \%$	2	C715,716
159	17-5D 220M	CER. CAPA. 22PF $50 \mathrm{~V} \pm 20 \%$	2	C711,712
160	17-5D 391M	CER. CAPA. 390PF $50 \mathrm{~V} \pm 20 \%$	2	C535,536
161	17-5D 470M	CER. CAPA. 47PF $50 \mathrm{~V} \pm 20 \%$	2	C303,306
162	17-5D 561M	CER. CAPA. $560 \mathrm{PF} 50 \mathrm{~V} \pm 20 \%$	1	C302
163	17-5F 124J	MYLAR CAPA. $0.12 \mu \mathrm{f} 50 \mathrm{~V} \pm 5 \%$	4	C705,706,707,708
164	17-5F 222J	MYLAR CAPA. $0.0022 \mu \mathrm{~F} 50 \mathrm{~V} \pm 5 \%$	2	C703,704
165	17-5F 224J	MYLAR CAPA. $0.22 \mu \mathrm{~F} 50 \mathrm{~V} \pm 5 \%$	2	C537,538
166	17-5F 562J	MYLAR CAPA. $0.0056 \mu \mathrm{~F} 50 \mathrm{~V} \pm 5 \%$	2	C701,702
167	19-1067	PCB FOR FILTER \& MIC \& VOLUME CONTROL	1	
168	29-4020-1	VOLUME CONTROL VMBE-VER22-5KB	1	VR301
169	29-4047	VOLUME CONTROL 50KBx 241. CLICK	1	VR507,507A
170	30-2084-3	TRANSISTOR BC549C	2	Q301,302
171	30-2090-2	TRANSISTOR BC546B	2	Q701,702
172	30-2096	TRANSISTOR BC556A	2	Q703,704
173	31-1040	PUSH SW. 5KEY 2V	1	SW10a.b. SW11, SW12a.b. SW13a.b. SW14a.b.
90-1069 METER DRIVER SECTION				
174	16-1/4CM 103J	CARBON RES. 10K OHM $1 / 4 \mathrm{~W} \pm 5 \%$	2	R203,204
175	$16-1 / 4 \mathrm{CM} \mathrm{104J}$	CARBON RES. $100 \mathrm{~K} \mathrm{OHM} 1 / 4 \mathrm{~W} \pm 5 \%$	2	R207,208
176	$16-1 / 4 \mathrm{CM} 224 \mathrm{~J}$	CARBON RES. 220 K OHM $1 / 4 \mathrm{~W} \pm 5 \%$	2	R209, 210
177	$16-1 / 4 \mathrm{CM} 392 \mathrm{~J}$	CARBON RES. $3.9 \mathrm{~K} \mathrm{OHM} 1 / 4 \mathrm{~W} \pm 5 \%$	2	R201,202
178	$16-1 / 4 \mathrm{CM} 681 \mathrm{~J}$	CARBON RES. 680 OHM $1 / 4 \mathrm{~W} \pm 5 \%$	2	R213,214
179	$16-1 / 4 \mathrm{CM} 821 \mathrm{~J}$	CARBON RES. 820 OHM $1 / 4 \mathrm{~W} \pm 5 \%$	2	R205,206
180	$16-1 / 4 \mathrm{CN} 221 \mathrm{~J}$	CARBON RES. 220 OHM 1 1/ W $\pm 5 \%$	2	R211,212

WeE Filet Electronic Industrial co．，the
 A Company si intimas Eliszsicic Grasp．Taiwan．


```
Nab seri.es Bu :
Bxidace opexations.
                    W\&も*: Juma23-78
```



```
                    アかE& % ロf 3
```

 without the addition of active coxapoasnts／cixcuitry，divine approx 300 in in 8 ohms and approx 360 ki in 4 okas，x m this mode of operation the load should bu a speaker（wo ot a is okas resistor），and

 impliaeatation．

... Tidgine offratirin series 80
Fie. 2.

$$
\begin{aligned}
& E B-003 \\
& P .3 \text { of } 3
\end{aligned}
$$

建弘奄子工業股份有限公司

ENGINEERING FIELD－BULLETIN
Date：Sept．27， 1978.
NAD SERIES 80

Ref No．：EB－804
REV： 0
Page： 1 of 1

Subject：RF interference in 7080 and 3080 phono amplifier．

Under certain condition，the 7080 and 3080 will produce audible AM program when listening to phone．This phenomenon appears only when the unit is exposed in strong RF field．The cable between turntable and the unit acts like an antenna and pick up the RF signals．The audio signal existed in RF signals will be detected by the first stage of phono amp．Then the following stages will amplify it．

A simple and effective method is recommended to solve this problem：

Put an RF chock in series prior to transistor Q401 and Q402 as shown below－－

The ehoekwil be supplied free of charge upen request．

建弘電子工業股绍有限公司

TECHNICAL BULLETIN

Date：9－14，1979
Ref．No：TB－908 Page： 1 of 1

Some early produced 3080 （before serial No 3808044 ） MIC output level will be attenuated $30 d B$ ，when function switch set to＂phono＂position．To cure this problem， the simplest way is just remove cabinet and add $2 \kappa 2$ ohm resistor，parallel with R313，R314（47k ohm） on part side of $P C B$ 19－1067．（ils refer to fig．1）

Fig． 1

NAD (USA), INC.
675 Canton Street
Norwood, Massachusetts 02062
Telephone: (617) 769-7050 Telex: 924442

SERVICE BULLETIN

SB USA 004
3080, 3060, 3045, 3030 POWER METERS

We have experienced some failures of meters on power amplifiers which can be divided into 3 groups:

1. Lamp Failure- we have replacement lamps which may be soldered in. Please do not discard the meter. Some lamps have a plastic sleeve which discolors with age. We will replace these lamps under warranty for customers who request it for two years from date of purchase.
2. Pointer sticks- usually caused by number scale being mispositioned. This may be easily remedied using a scribe by carefully removing and repositioning the scale. We also have meter scales in stock.
3. Meter movement burned out-Replace meter. Check meter amplifier input caps. for leakage and replace if any doubts.
