
Artificiallntelligence
Systems

Xerox LOOPS, A Friendlv Primer

Document Number 3102242

XEROX

XEROX Loops: .
A Friendly Prlnler

March, 1~98~7 __________ _
----~----------

Copyright (c) 1986 Xerox Corporation

All rights reserved.

This publication may not be reproduced or transmitted in any
form by any means, electronic, microfilm, xerography, or
otherwise, or incorporated into any information retrieval system,
without the written permission of Xerox Corporation.

P~EFA("F

PREFACE

You are a tourist in a strange city. You would like to see the
sights but you don't know where they are. You don't even know
what they are. What do you do? You could look at a street map
but it would have too much detail. You could pick a direction
and go, hoping to run into something interesting. You could ask
people on the street. What you probably would do though is
buy a guide book. In it you would find just the kind of
information you need to start learning about an unfamiliar city:
simplified maps, descriptions of sections of the city, lists of tourist
attractions, and so on.

learning a new programming language is not unlike being lost
in a strange city. Language manuals, including the LOOPS
Reference Manual, are not meant to be used by beginners; they
are intended for programmers already familiar with the
language. Therefore, the information in reference manuals is
not organized in a way that makes a programmi ng language
easy to learn.

This primer is the equivalent of a tourist's guide book. It shows
you the "sights" but it leaves out a lot of detail. Once you are
comfortable with the basic LOOPS programming concepts and
procedures described here, you can use the LOOPS Reference
Manual as it was intended and fully exploit the capabilities of
LOOPS.

This primer was written with the beginner's viewpoint in mind.
it addresses strategic considerations, introduces basic procedures
and methods, and provides numerous examples and pictures.
The material in each chapter is presented with step-by-step
instructions.

Wh"~ this primer does not assume you have any previous
programming experience in LOOPS, it does assume you have a
Xerox 1108/9 or a Xerox 1 186 AI Workstation which is running
the Cantilever version of LOOPS, and that you have experience
with interlisp-D and its programming environment. If you are
not familiar with Interlisp-D, its recommended that you start by
working your way through Interlisp-D: A Friendly Primer. In
particular, you should know how to use DEdit and how to
interact with menus. If you have specific questions about
Interlisp-D, look in the Interlisp-D Reference Manual.

Before you sit down at the computer with this primer, glance
over the Table of Contents, read the first two chapters, and read
the introductory statements at the top of the first page in each
of the other chapters. Doing this familiarizes you with the task
that lies ahead. Then, as you read this primer, actually enter the
examples in each chapter. The chapters in the primer are meant
~o be '-'\lorked through in order.

PREFACE

II

Chapters 1 and 2 provide an introduction to LOOPS. Chapter 1
introduces the concept of object-oriented programming in
LOOPS. Chapter 2 is a glossary which provides an initial overview
of I_OOPS concepts. The glossary is also a useful reference.

Chapters 3,4 and 5 introduce the basic information necessary for
programming in LOOPS. Chapter 3 shows how to create the
objects that form the basis of LOOPS programs. Chapter 4 shows
how to make those objects interact with each other. Chapter 5
shows how to save LOOPS programs on files.

In Chapter 6, a LOOPS program is developed step-by-step using
th~ concepts covered in previous chapters. After working
through this example, you will be able to develop simple LOOPS
programs.

Chapter 7 introduces some fundamental design strategies for
organizing LOOPS programs.

The remaining chapters present more advanced topics. The
material in these chapters enables you exploit the real power of
the LOOPS language. Chapter 8 shows how to use specializatIon
to add functionality to objects. Chapters 9 and 10 introduce
other useful LOOPS tools -- active values and gauges. Chapter 11
covers more sophisticated uses of specialization to create LOOPS
objects.

Chapter 12 demonstrates how to customize browsers. Browsers
are graphical editing tools provided by LOOPS, and available for
customization in your own programs. The example in this
chapter also demonstrates further programming techniques.

Chapter 13 shows how to use Masterscope with LOOPS
rJrograms. Masterscope is an Interlisp-D utility for analyzing
programs.

Acknowledgllents
The early inspiration and model for this primer came from the
Intelligent Tutoring Systems Group of the Learning Research and
Development Center (LRDC) at the University of Pittsburgh.

Lyn Ann Mears and Ted Rees of Computer Possibilities were the
primciry authors of this primer.

Many people from the Xerox Corporation deserve mention. The
Knowledge Systems Area at the Xerox Palo Alto Research Center
has been the driving force behi nd the development and
productization of Loops since its inception. Special thanks goes
to that group in general, and Danny Bobrow, Mark Stefik, Sanjay
Mittal. and Stan Lanning in particular. At the Xerox Artificial
Intelligence Systems, John Vittal was responsible for the primer
projEct. Pablo Ghenis, Jairus Hihn and Joshua Stern were the
prt mary reviewers. Rick Marti n provided the technical interface
to th2 authors.

TABLE OF CONTENTS

1. Introduction - What is LOOPS? 1.1

2e A Glossary of Terms

3. Classes and Instances

3.1. Creating a Class

2.1

3.1

3.1

3.2. Editing a Class 3.2

3.2.1. Using the Browser Editing Menu 3.3

3.2.2. Documenti ng the Class 3.4

3.2.3. Inserting Class Variables, Values, and Properties 3.4

3.2.4. Inserting Instance Variables. Values, and Properties 3.4

3.2.5. Using the Browser Information Menu 3.5

3.3. Cteati ng Subclasses 3.6

3.4. Creati ng Instances 3.8

3.4.1. Inspecting an instance 3.9

3.4.2. Changing Instance Variable Values With the Instance
Inspector 3.9

3.5. Altering the Structure or the Class Lattice 3.10

3.5.1. Moving a Class 3.10

3.5.2. Deleting and Restoring a Class from a Browser 3.11

3.5.3. Destroying a Class 3.12

3.6. Destroying and Shrinking Browsers 3.12

3.7. A Word about Notation 3.13

4. Variables, Methods, and Messages 4.1

4.1. Variables 4.1

4.1.1. Reading Instance Variables 4.1

4.1.2. Setting Instance Variables 4.1

4.1.3. Reading Class Variables 4.2

4.1.4. Setting Class Variables 4.2

4.1.5. A Note of Caution 4.3

4.2. Methods 4.3

4.2.1. Creating a Method 4.3

4.2.2. Movi ng a Method 4.4

TABLE OF CONTENTS Tnr 1

TABLE OF CONTENTS

4.3. Messages 4.5

4.3.1. Syntax of a Message 4.6

4.3.2. Sendi ng a Message 4.6

5. Saving LOOPS Programs 5.1

5.1. Using FilES? and MAKEFllE 5.1

5.2. Using the FileBrowser 5.2

6. The Bank Account Example 6.1

6.1. Designing the Program 6.1

6.2. Creat: n9 the Classes 6.2

6.3. Editing GenericAccount 6.3

6.3.1. Adding Variables, Values, and Documentation 6.3

6.3.2. Defining Credit and Debit Methods 6.4

6.3.3. A Simple Test of GenericAccount 6.5

6.4. Editing Savings 6.6

6.4.1. Adding Variables, Values, and Documentation 6.6

6.4.2. Defining a Computelnterest Method 6.7

6.4.3. Simple Test of Savings 6.8

6.5. Defining Checking 6.8

6.5.1. Add Variables, Values, and Documentation 6.8

6.5.2. Defining a WriteCheck Method 6.9

6.5.3. Simple test of Checking 6.9

6.6. Testing NOWAccount 6.10

7. Strategies For Organizing Objects 7.1

7.1. Elision Through Inheritance 7.1

7.2. Incremental Customization 7.2

7.3. Factoring Functionality 7.3

8. Specializing Methods 8.1

8.1. ~Super and ~SuperFringe 8.1

8.2. Specializing a Method in the Bank Account 8.3

9. Active Values and Access-Oriented Programming 9.1

9.1. Defining Active Values 9.1

9.2. Using Active Values to Monitor State 9.2

9.3. Using Ac!ive Values to Guard Variables 9.4

9.4. Using Active Values to Propagate Values 9.6

9.5. Nesting Active Values 9.9

~oc 2

TABLE OF CONTENTS

9.6. A Final Note On Active Values 9.10

10. Gauges: Active Values and Object Hierarchies in Action 10.1

10.1. Object Hierarchies 10.2
--~
10.2. Examples of Gauges 10.2

10.3. Create Gauge Instances 10.4

10.4. Attaching Gauges 10.5

10.4.1. Vertical Scale 10.6

10.4.2. Dial 10.6

10.4.3. DigiScale and DigiMeter 10.7

10.4.4. BarChart and HBarChart 10.8

10.5. Detaching Gauges 10.9

11. Mixins -Inheritance with Multiple Supers 11. 1

11.1. Multiple Inheritance 11. 1

11.2. An Existing Gauge Mixin 11.3

11.3. A New Gauge Mixin 11.6

11.4. A Mixin for the Bank Account Example 11.7

12. Customizing LOOPS Tools 12.1

12.1. Existing Browsers 12.1

12.2. Creating a Browser Subclass 12.2

12.3. Creati ng a Savings Subclass 12.3

12.4. Creating an AccountUse Class 12.4

12.5. Setting Up the Budget Tree i2.4

12.6. Creating a Browser Instance 12.5

12.7. Using Your Lattice 12.5

13. Using Masterscope With LOOPS 13.1

13.1. Masterscope Verbs for use with LOOPS 13. 1

13.2. An Example of using Masterscope 13.1

14. Some Closing Words 14.1

TABLE OF CONTENT)

Procedure-oriented Programming

Object-oriented Programming

Access-oriented Programming

1. INTRODUCTION - WHAT IS
LOOPS?

Artificial intelligence (AI) programs must accomplish a widely
varying set of tasks. For this reason, LOOPS integrates several
programming styles, or paradigms, so that each part of a
program can be written in a way that is best suited to the
particular task it is supposed to accomplish.

The problem that an AI program is supposed to solve is often
poorly understood at the start of a project. The very act of
attempting to write the program leads to greater understandi ng
and, most likely, to a redesign of the program. LOOPS facilitates
this kind of exploratory programming by making it easy to
construct and modify program elements and alter the way they
interact.

The basic programming styles that LOOPS provides are described
below:

This is the style that most widely known languages provide (eg.,
FORTRAN, Pascal). A procedure-oriented program consists of a
set of procedures (functions, subroutines, main blocks, etc.).
These procedures act upon a set of data which is (at least
conceptually) separate from them. Interlisp-D is a procedural
language and LOOPS is fully integrated into Interlisp-D Any part
of a program that can most profitably be written in a procedural
style can be written in pure Lisp. No special steps need to be
taken to access or to interface with Interlisp-D.

In this form of programming, there is an integration between
functions and data. Each program element, each object, is a
package containing some some functions, which are called
methods, and some data, which are the values of its variables. In
effect, each object is a specialized processor with its own private
memory. The action in an object-oriented program is initiated
by message passing. Objects send messages to other objects.
Each message causes the receiving object to invoke the
appropriate method to perform some operation, which often
includes sending messages to other objects. Any programming
problem whose solution can be viewed as a collection of similar
objects that function by passing commands and results to each
other is a good candidate for object-oriented programming.

In this paradigm, arbitrary actions are performed whenever a
value is accessed. Access-oriented programming is very useful
when certain values must be monitored or protected in some
way. In a simulation, for example, the variation of the values of
r:~rtain variabies over time is the output of the program. These
5imulation variables tend to be accessed from many different
places in a program making it difficult to ensure that changes are

INTRODUCTION - WHAT IS LOOPS"

inheritance

, 1

noticed, or even appropriate. In access-oriented programming
the vaiue cannot be accessed without triggering an action
because the trigger, which is called an active value, effectively
surrounds the value.

inheritance is an integral part of object-oriented programming.
Inheritance simplifies the construction and modification of
LOOPS programs. It is not necessary to construct each LOOPS
object from scratch. A new object can be constructed by using an
existing object as an example. Only those par ~s of the new object
that are different from the existing object need to be specified.
Whatever is the same can be inherited.

An example of inheritance is shown in Figure 1.1. The overall
network of inheritance is called the class lattice. Classes are
objects that describe collections of things. The solid boxes in the
figure are classes. Particular members of a class are called
instances, and they are created by using a class as a template.
The dashed-line boxes in the figure are instances.

Object

~ I ~
Mineral An i rna 1 Vegetable

I
.....

"-
"-

r·-·~-·-·r

Person
jAardvarkj
I. _._._._ . .J

/
I Woman
I

/ r - -·1 r·-~-·-·r

Billy Jeff
I._._._._ . .J I._._._._ . .J

Figure 1.1. Figure illustrating lOOPS Inheritance

The classes from which a class inherits are referred to as its supers
(short for super classes). OBJECT is the most generic object and
does not have any supers. Continuing with Figure 1.1, OBJECT is
a super of MINERAL, ANIMAL and VEGETABLE; ANIMAL is a
,>uper of PERSON; and PERSON is a super of MAN and WOMAN.
Every class automatically contains (inherits) all of the variables
and methods of its supers, unless the new class is created with
variables or methods with the same name as its supers. In that
(ase, the local variables and methods override the ones that
would have been inherited.

The notion of inheritance makes it very natural to think of an
object's supers as being above it and this is the way Figure 1.1 is

INTRODUCTION - WHAT IS lOOPS"

drawn. However, as you will see, the LOOPS interface draws the
class lattice horizontally with inheritance from left to right.

The classes below a class in the lattice are called its subclasses. or
specializations. In Figure 1.1, MINERAL, ANIMAL, and
VEGETABLE are specializations of OBJECT; PERSON is a
specialization of AN IMAL; and MAN and WOMAN are
specializations of PERSON.

An instance of a class represents one specific thing. Instances are
the objects that actually perform the work in a LOOPS program.
All instances of a class have the same methods and variables as
defined by their class. In Figure 1.1, AARDVARK is an instance of
the class AN IMAL and B ILLY and JEFF are instances of the class
MAN.

Using an object-oriented language often feels unfamiliar at first.
With a little experience, however, it becomes natural to think
about problems in terms of communicating objects with shared
behavior. Once you have mastered LOOPS, you will have at your
disposal a versatile collection of modern programming tools, and
you will be ready to attack complex and difficult problems.

1 ~

access-oriented programming

active value

background menu

browser

browser editing menu

2. A GLOSSARY OF TERMS

This Glossary covers basic programming elements and concepts
that you will encounter in LOOPS. Examples for the terms are
given in Figure 1.1, Page 1.2, and Figure 2.5.

Just skim this glossary when you first read through the primer.
As you encounter new terminology in the chapters to faliow, you
wiii find this a handy reference section.

Because LOOPS concepts are interrelated, sometimES a concept is
used before it has been well explained and illustrated. This
glossary s'hould help you get over the rough spots.

A programming paradigm in which fetching or storing data
activates computations.

The mechanism that implements access-oriented progrJmming
for variables in LOOPS. Active values can be thought of as probes
placed on the variables of a LOOPS program. These probes can
activate additional computations when data are fetched or
stored.

The menu that is displayed when you click the right button and
hold it while the mouse cursor is in the gray background area of
the screen. A standard background menu is shown below.

IcHe
:3 a v e 'v' ~.!",
Sn~j.p

H3.t'dcopy
P·-II' .::. 1.11.1

TEdit f..
TE/:EC

Figure 2.1. Example background menu

A display that allows the user to examine, manipulate, and shift
attention in a data structure. LOOPS provides browsers for the
class lattice and for instances. An example of one of the
browsers for the class lattice, a ClassBrowser, is shown in Figure
2.5.

A menu accessed by pressing the middle mouse button on a class
in a LOOPS class browser. The items in this menu allow you to
create and edit classes and methods. (See Figure 2.NIL)

A GLOSSARY OF TERMS

browser information menu

browser manipulation menu

class

class inheritance

class lattice

E:o::o::t···Jode
f··.··1ethod::; (Editr··.··let~-Iod) }

.~.dd (.i!..c~dr··.··let~-Iod) i·
Delete (Deletef·· ... lethod) ;..

r·· ... lo·· ... e (r"t"lo ·· ... er·· ... l ethod To) $='

Copy (Copyr··.t·'ethoc~To) i
F: en ~3.rn e (Ren ~.rn ef··.··l etho d)~.

Ec~it (Ec~itCla::;::;':1 . J..
Figure 2.2. Browser Editing Menu

A menu accessed by pressing the left mouse button on a class in a
LOOPS class browser. The items in this menu give information
about the class lattice. (See Figure 2.NIL.)

F'rint:::urnrnary :~.
Doc (Cla.:3::;Doc) }

1,/ •• ,' here Is (', .• 1 •• ,1 ~-I e re 1:3 rt
.... ' eth 0 d)~

Delete F rorn8 ro ··.·'.,13 er
~=;ubBt"oV''''3er
T"I"pe InNarne

Figure 2.3. Browser InformatIon Menu

A menu accessed by pressing the left or middle mouse button in
the title bar of a LOOPS class browser. The items in this menu
allow you to make changes to the class lattice shown in the
browser. (See Figure 2.NIL.)

F: e C: 1:_ ,-rl r-t I_J te ;. .
. 6..dciF:oot ?-.

. ~. cj ci C ate q I] r',,·' ~·,,1 e n u
Figure 2.4. Browser ManIpulatIon Menu

A description of one or more similar objects. Classes provide a
template for the objects they specify. Classes specify variables,
values, and methods. In Figure 1.1, Page 1.2, OBJECT, MINERAL,
ANIMAL, VEGETABLE, PERSON, MAN and'WOMAN are all classes.

The means by which a class inherits variables, values, and
methods from its super class. Class inheritance allows you to
define a class as a specialization of another class. The newly
defined class is called a "subclass" or a "specialization". The
previously defined class is called a "super". A specialized class
inherits much of its structure from a super. Class inheritance
supports program modularity and facilitates the design process.

The network of inheritance relations among classes. Usually class
lattices in LOOPS are displayed left to right; that is, supers are to
the left of their subclasses, Figure 2.5 shows the contents of
Figure 1.1 as it would appear in a browser.

Class browser '. ~".• :. ~

2 2

. .

_---- MAN
ANIMAL --- PERSON =::=---__ ~IOMAr"

Figure 2.5. Standard LOOPS class lattice

class variable

inspector

instance

instance variable

Interlisp-D executive window

join

lattice

A GLOSSARY OF TERMS

The variables that store information shared by all instances of a
class. For instance, in Figure 2.5, PERSON might have tr2 class
variables LEGS, with the value 2, and EYES, also with the value 2.

An interactive display program for examining and changing the
parts of a data structure.

An actual data object with its structure defined by a particular
class. For example in Figure 1.1 BILLY is an instance of MAN.
Note that instances do not give rise to further specializations
within the lattice structure. Instances within a class share the
same methods, class variables, and class variable I/alues. All
instances of a ciass have the same instance variabies, but the
values of these instance values may differ. These differing values
",Ivi!! cause each instance to respond differently than its Siblings,
even though the instances are from the same class.

In Figure i.1, BIllY and JEFF are instances of the class MAN, and
AARDVARK is an instance of the class ANIMAl. BILLY inherits all
variables and methods from MAN, as well as all variables and
methods from PERSON, ANIMAL and OBJECT. However, BIllY
and JEFF may have different values for their instance variables.

A variable used to store information specific to an instance and,
therefore, a "local variable" for that instance. Instance variables
are defined in classes. When you specify an instance variable in ~
class, you assign to it a default value. This value is Inherited as
the default value down through the class lattice structure. For
example, in Figure 2.5, the class, PERSON, might have the
instance variable, HATSIZE, with default value 7. The class MAN
would inherit this instance variable with the default value 7 and
pass it on to BILLY. Each instance has its own copy of the
instance variables, and the instance variable values can be
changed independent of the values for other instances of the
same class. So, for example, the instance BILLY can have 7.25 as
the vaiue of {HATSiZE} whiie the instance of JEFF has a
HATSIZE of 7.75.

The window in which Interlisp-D functions are entered.

Interlisp -D Executive Window

NIL
.:.
IJl ~

Figure 2.6. Top Levellnterlisp-D executive window

Left buttoning inside the Top Levellnterlisp-D Executive \fJindow
causes the type-i n cursor to appear in the window.

A class with multiple specialization branches. See" left to right,
up to joins."

A directed graph without cycles. In LOOPS, the inheritance
network is arranged in a lattice. While a tree ai!ows each node
to have only one parent, a lattice allows multiple pare"rs (in

--

A GLOSSARY OF TERMS

24

left buttoni ng

"left to right, up to joins"

Masterscope

menu

message

method

middle buttoning

mixin

mouse

mouse cursor

object

object-oriented programming

procedure-oriented programming

LOOPS, multiple supers). A lattice does not allow a class to have
itself as a super class or ancestor class.

Pressing the left mouse button and then releasing it.

The rule for inheritance in a lattice of objects. Each branch up
the class lattice is searched, starting with the leftmost branch and
working right. A class with several specialization branches is not
searched until all the specialization branches have been
searched. A class with multiple specialization branches IS

referred to as a j oi n.

A program analysis tool. When told to analyze a program,
Masterscope creates a data base of information about the
program. In particular, Masterscope knows which functions call
other functions and which functions use which v.Jriables.
Masterscope can then answer questions about the program and
display the information with a browser.

A way of graphically presenting a set of options. There are two
kinds of menus: pop up menus are created when needed and
disappear after an item has been selected; permanent menus
remain on the screen after use.

A command to an object to do something. A message activates a
method defined in an object's class. For example, if BILLY has a
method, BRAG, you can send a BRAG message to BILL Y and have
BILLY execute the code associated with the BRAG method.

The code stored in objects. Each method performs the actions
needed to implement a particular message. A subclass inherits
its super's methods.

Pressing the middle mouse button and then releasing it. If your
mouse does not have a middle button then press both the left
and right mouse buttons together.

A class used to add some particular functionality to many other
kinds of classes. Usually a mixin is a second super for a class.
Mixins rarely have their own instances.

The little rectangular box connected to the computer. There are
two or three buttons located on the top of the mouse. The
buttons are referred to as the left, middle and right mouse
buttons. Pressing the left and right button at the same time will
simulate the middle button if your mouse does not have one.

The small arrow on the screen that points to the northwest.

Figure 2.7. The mouse cursor

The mouse cursor moves as you move the mouse.

The main structures in object-oriented programming. They
combine aspects of procedures -- for computation, .. and data, -
to describe their state. Classes and instances are both objects.

A programming paradigm in which structures are deslgnl?d that
(ontai n both data and the methods for manipulati ng that G.J:.3.

A programming paradigm in which programs are composed of
functions and procedures. Data structures are sepclrate objects

prompt window

A GLOSSARY OF ;ERMS

that get passed to functions and procedures. This is the best
known programming paradigm and is supported in standard
programming languages like FORTRAN and Pascal.

The skinny black window at the top of the screen.

Prom t Window .'~: .. -;. ~ ... ~-~~: < ... :

Figure 2.8. Prompt window

right buttoning Pressing the right mouse button and then releasing it

self A method argument that represents the receiver of the message.
All methods contain the argument self. Self is aUlomatically
bound to the object which received the message that Invoked
the method. Methods use self in order to access the variables
and other methods of the object defini ng the method.

specialization The process of creating a subclass from a class; or, the result of
that process. In Figure 1.1, MINERAL, ANIMAL, and VEGETABLE
are specializations of OBJECT; PERSON is a specialization of
ANIMAL; and MAN and WOMAN are specializations of PERSON.

super A class from which a given class inherits. In Figure 2.5, OBJECT is
the super of MINERAL, ANIMAL, and VEGETABLE; ANIMAL is the
super of PERSON and AARDVARK; PERSON is the super of MAN
and WOMAN.

TEdit menu Refers to the menu that is displayed when you middle hold

window manipulation menu

button while pointing the mouse cursor at the title bar of a TEdit
·window.

Put f..
Get ~.

Include
Find

Looks
Substitute -

Quit
nded Menu~'

library
Find Definition

Cornpile
Consult

Figure 2.9. Example TEdit menu

A menu accessed by pressing the right mouse button in :he title
bar of a LOOPS browser. The items in this menu manipulate the
window containing the browser. Figure 2.NIL shows the
standard Window Manipulation Menu.

A GLOSSARY OF TERMS

2 fi

Close ,
·=;n~3.p

F'aint
CleaT
E:ur

Repaint
H ;.3.t"r:~ cop Y }.,

r··.··10··.··e
:::; ~-, ;.3.p e
'::; t-, t'i n k

CI05e
De :=:tt'O 'y'

Figure 2.10. Wtndow ManIpulatIon Menu

3.1 Creating a Class

3. CLASSES AND INSTANCES

This chapter introduces the steps for building a simple class
lattice. You define classes by inserting documentation, class
variables, default class variable values, instance variables and
default instance variable values. You define subclasses and
create instances of a class.

After you have become ramlliar wltn how ciasses Inherit
information from their supers, you learn how to manipulate this
inheritance structure.

The easiest way to develop LOOPS programs is by using a
browser. The browser displays the class lattice and provides
menus of commands for building and manipulating this
structure.

Begin by getting LOOPS running on your Xerox AI workstation.
LOOPS is generally installed in the form of a sysout because
loading the individual files is very time-consuming. Xerox
provides a sysout in the LOOPS software kit. If your machine is
on a network, you should consult your loca! system administrator
to find out where LOOPS is stored. If you have a stand-alone
machine, you should have LOOPS on a series of floppy disks. A
LOOPS sysout is installed using the same process used to install an
Interlisp-D sysout. If you do not know how to do this, please
refer to Interlisp-D: A Friendly Primer or the User's Guide that
came with your machine.

Once you have a LOOPS sysout running, you should see the
LOOPS icon, Figure 3.2. If you do not see this icon, you must
bring it up by using the background menu. To bring up the
background menu, hold the right mouse button while the cursor
is in the grey background area of your screen. Select the phrase
Loops Icon off the menu that pops up and release the mouse
button. If you like, you can move the icon to a different location
by selecting the Move option from the icon's right-button menu.

Before beginning to use the browser, you need to create a root
for the class lattice structure. For our exampl;2, the root is the
class An ilia 1. Create this root by typing;

(OefineC1ass 'Animal)

CREATING A CLASS

3.2 Editing a Class

•
•
•
•

1 2

Top level -- Connected to.:~{DSK}<lISPFIL

10~(DefineClass ~Animal)
0 (:j: Ani m.:! 1 ")
11~

Figure 3.1. Creating the Root Class

As in Interlisp-D, LOOPS distinguishes upper and lower case
letters. Thus, you should be sure to type things exactly as you see
them. Also, you should notice that An ilia 1 is quoted so that it is
not evaluated. Oef i neC 1 ass returns a pointer to the class it has
just created. Such pointers are printed by the system as #. (S
C 1 assNafle), as you can see in Figure 3.1.

In order to begin working in a class browser, position the mouse
cursor on the LOOPS icon, press the left mouse button, and select
Browse C1 ass as shown in Figure 3.2.

Figure 3.2. Accessing LOOPS Browser

When you see the prompt in the prompt window, type in the
root object you wish to browse. In this case you should type
An ilia 1. A ghost image of a browser window appears near the
cursor on the screen. You may position the window by moving
the mouse cursor and pressing the left mouse button when the
window is in the correct place. The result should be a browser
window as shown in Figure 3.3.

E6!iJ ·lQ,(iMm ~
.!nlmal _

Figure 3.3. Browser for the class An ilia 1

After creating a class, you need to add the foilowing to it:

do(umentati on

class variables

instance variables

methods

EDITING A CLASS

In this chapter, you learn how to add the first three. You learn
about methods in Section 4.2.

3.2.1 Using the Browser Editing Menu

n "-c::c::~c:: J\:\lr"I II\ICTI\I\'fCC

Each item in a class browser has two menus associated with it.
One, presented later, contains informational commands. The
other one, presented now, allows you to make alterations to
classes and the class hierarchy. To access this menu, move the
cursor over An ima 1 and click the middle mouse button. The
menu appears and remains visible when you release the button
(see Figure 3.4). The first word of earh ;tem in the menu
indicates the types of operations that are contained in its
submenu. The part in parentheses indicates the command that
results from selecting the main menu item. The submenu is
accessed by pressing the ieh mouse button and sliding the cursor
to the right over the grey arrow while com:inuing to hold the
button down. Items are selected from the submenu by moving
the mouse cursor until the desired item is hi-lighted and
releasing the mouse button.

EiO::<t···Jode
r··.··1ethod::; (Editr""'1ethocO)-

.i1..dd (,i!.,c~dr··."lethod) }.-
Delete (Delete~'/lethod))

r""'love (r·,.·'10 '",' er""'let~-loc~ To::' ~
Copy (Copyr· ... ·lethodTo) ,

F:enarne (Ren;.3.rnervlethoci)~
Ecfit (EcfitCh3.3:3) . J'

Figure 3.4. Browser Editing Menu

Class definitions are edited with DEdit the same way that
functions and other entities are edited in Interlisp-D. To call
DEdit, select Ed i t(Ed i tel ass). A DEdi t window opens with
the skeleton class definition as shown below in Figure 3.5.

DEdit of CLASSES #.($ Animal)-
((MetaGlass Class Edited:

(8uper's Object)
(C 1 oj S :3: V a r' i a b 1 e:~)
(InstanceVariables)
(MethodFns» .

Figure 3.5. Editing of the class An ilia 1

(* ~,j ite (j:

.'. 24- 0 ct- ;38 1:3: ::;1]"))

Our figures do not show the DEdit command menu. If this menu
does not appear to the right of the DEdit window, move the
cursor into the window and click the left button.

To preview the complete Anillal class definition, iook at Figure
3.7.

EDITING A CLASS

3.2.2 Documenting the Class

Effective documentation is just as important in LOOPS as in any
other programming language. Both the class itself and the items
within it can be documented. Each item of documentation
consists of the symbol doc followed by a standard Interlisp-D
(omment.

(Note: doc is a property name, and your documentation is the
value of the doc property.)

To document Anilla 1, add the following:

doc (- definition of root object. Animal)

in between Class and Edited. You can save yourself a couple
of keystrokes by enclosing doc and the comment in a list,
inserting the list and then removing the parentheses. If you are
unsure of how to do this operation, you should refer to
Interlisp-D: A Friendly Primer and practice using DEdit before
you continue. You will be making extensive use of DEdit
throughout this primer. The edit session should now look like
Figure 3.6.

DEdit of CLASSES #.($ Animal) ,
((MetaClass Class doc

Edit.ed:

(:3uper·s: ObJ ect.)
(. ,-. 1 - -..-. I ,- - • - I". 1 - .-. "
~..1 .~ ::; •. :;. ',I ,~t· 1 ,~ ~.I ~.::.)

(InstanceVariables)
(~1et.t"lodFns))

Figure 3.6. Adding documentatIon to An ilia 1

(* .1efitliti')M .)f r(lt)t

.)Oj~ct, .o!!..nim;:..I)

(* e,lited:
"24-0 ct- ;36 1 :3: ';;0"::')

3.2.3 Inserting Class Variables, Values, and Properties

Now you can put in the class variables. They are inserted in the
ClassVariables list. Each class variable is specified by giving
its name, its default value, and its property names and thei r
values. Doc should be the last property name:

(VariableName Value Property 1 Value 1 Property2 Value2 ...
doc (. c~nt»

In our example, we use the class variables HasEyes and
I sl i v i ng. Both of these variables should h,lVe the default
value T in the class, An ilia 1. You should add the ~ollowing after
C 1 ass Va r i ab 1 e s :

(HasEyes T doc (. all ani.als have eyes»
(Isliving T doc (. all ani.als are living»)

3,2,4 Inserting Instance Variables, Values, and Properties

34

Now put in the instance variables. Instance variables have the
same format as class variables and are i il~!?rted in the

EDITING A CLASS

Ins tanceVari ab 1 es list. For our example, we use the instance
variables OateOfBi rth and HeartRate Because the values of
these variables are known only if we know which individual
animal, that is, which instance, is referred to, we use the default
value of 0 for both. Add the foliowing after
InstanceVariables:

(OateOfBirth 0 doc (* animals do not all have
the same birthday»
(HeartRate 0 doc (* different animals have
different heartrates»

When you are finished, your edit session should look like Figure
3.7.

((MetaClass Class doc

Edit.ed:

(* ,j ~fi tllti (i tl (If 1'"1) I)t

(0 tl j ~ (: T. .,;,;.. r1 i tl"1 21.1)

(:+: .:a,jlt~l.l:

'"'24-C'(:t-;:;e; 1 :~;:57"))

(:::: u per· s I) t. j e c t.)
(ClassVariables (HasEyes T doc

(I:~:L i\"ing T doc

(* 2t.1I,2t.tlim8.1::' ~18."'''o:!
o:!'jlt?::.)}

(:~ 21.11 ~.tJ i t1'18.1::. ~.r~
t"iving»))

(InstanceVariables (OateOfBirth 0 doc

(Hear·t.F:.=.st.e ~1 doc

Figure 3.7. Editing In variables for An i lIa 1

(* ~.t1jm;:..l::' ,jl) tElt 8.11
11 ~ t? tl1 ~ ::'2t.t1'lO:!
b i rtl1,l;:" y))

(* ,j iff.:: re t1t 3.ti i ri'18.l S
11&.vt? 'lifferetlt
~1 t? 8.rtr~.t~::.)))

Exit OEd it as you normally would by selecting Ex it from the
edit command menu. If there is an error in syntax, such as
omitting a doc before a comment, OEd it gives you some
information in the prompt window. DEdit allows you to exit
only after you have corrected all syntax errors.

3.2.5 Using the Browser Information Menu

In Section 3.2.1 the middle mouse menu is used to change a class
definition. The left mouse menu contains informational
commands. Bring up this menu by moving the cursor to Anilla 1
and clicking the left mouse button. As before, the menu appears
and remains after you release the button. (See Figure 3.8.)

Print5urnrnary ~.
Doc (Cla::;:3Doc) t-

",.1',".-1 ere Is (",.I.,.lt-lere 1:3~'"lethod)t
Del eteF ro rn 6 ro ""'l3 e r

::::; t~ tr 8 ro ',.,"/3 e r
T "I" pel n I··J arn e

Figure 3.8. InformatIon Menu

EDITING A CLASS

3.3 Creating Subclasses

•
•

3 h

Selecting PrintSunlllary causes a summary of Animal to be
printed in another window, as shown in Figure 39.

Top level -- Connected to' {DSK}<LISPFI

0($ Aninlal)
Supers

Object.
IVs

Da teOfBirth HeartRa te

CVs
HasEyes IsLiving

Methods

Figure 3.9. Summary of the class An i lIa 1

P r in tSulilia ry gives a high level summary of a class defi nition.
The easiest way to see the structure in detail -- including values,
property names and property values -- is by calling the editor.
Now try bringing up the information menu again and selecting
Doc (C 1 assooc). Any documentation you added is printed out.

To continue developing our example, we specialize Anillal to
create a subclass, Pe rson. We then add two subclasses, Man and
WOllan to Pe rson.

To create the first subclass, bring up the editing menu and select
SpecializeClass from the submenu of Add(AddMethod).
Then, type Pe rson when you are prompted for the new subclass
of Anilla 1 in the prompt window. The browser is automatically
updated and looks like Figure 3.10.

Figure 3.10. Browser automatically updated to !nclude Pe rson

In order to define Pe rson, repeat the same stEPS you followed
for An ilia 1. If you are unsure of the procedure, refer back to
Section 3.2. When entering OEd it, notice that Pe rson · s super
was automatically set to An ilia 1.

Add the following class variables and values:

Legs 2

Mammal T

CREA i:NG SUBCLASSES

and the following instance variables and values:

• Hatsize 7

• HairColor Brown

Note that 2, I, 7, and Brown are merely default values. \",1 ass
variables can be changed by the actions of any instance.
Similarly, instance variables can be set to appropriate values in
each instance. Remember to add documentation to the class and
its variables. When you are finished, your edit session should
look like Figure 3.11 below.

((MetaClass Class Edited:
(-/-: ~ (:i ite'J: .
,'. 24· 0 (:t- ;:;6 1 . .l.: :YS' ':))

(::: u per' ::~ Ani ftl,3 1)
(ClassVariables (Legs 2 doc

(* pel)pl~ ~18:'.'e !'. !) I~g:::))
(rl1amma 1 T doc

(* 3. P ~ r:::o tl i::: 8. tl'18.t't1 rl'18.1)))

(InstanceVariables (Hatsize 7 doc
(* ttl i::: (: ;:t.tl t. ~
.j iffe r~ trt. fo r ~ 8.dl
P ~ r:::on))

(HairColor Brown doc

(MethodFn:5:))

Figure 3.11. Editing In variables for Pe rson

(* ttl i::: (: ;:t.t1 t. ~
.j iffe r~ tn, fp r ~ 8.(: ~,
P ~ r:::Otl)) ..'

Now bring up the browser information menu for Pe rson and
select PrintSulDllary. You should notice a difference from the
last time you printed a summary as in Figure 3.12.

Top level -- Connected to {DSK}(lISPFILE

#.($ Person)
Supers

Animal
IVs

HairColor Ha tsize
OateOfBirth HeartRate

CVs
legs Marnroal
H .3 :3; E :,.' e s I :5: L i "", i n IJ

Methods

Figure 3.12. All variables and values for Pe rson

Items which are defined in Pe rson are printed in boldface while
the items which are inherited from Animal are orinted in a
regular font.

Now create two specializations of Pe rson: . Man and Woman.
When done, your class browser should look like hgure 3.13.

CREA TING SUBCLASSES

3.4 Creating Instances

38

Glass browser . '. ',~ . :: '';'' " .

_----- Man
Anirnal ---- Person ----

---------- Wornan

Figure 3.13. Browser With the classes Man and WOfla!l added

Since all men are referred to by the pronoun, "he", give Man the
class variable Pronoun with the value He.

Because individual men mayor may not have beards and big
muscles, the instance variables ar~ Muscles and Beard, with
the default values Big and T ~espectively.

To create an instance of man, which we call Bi 11 y, type (at the
top level);

(~ ($ Man) New 'Billy)

Top level -- Connected to {DSK}<lISPFIL

17~(~ ($ Man) New ~Billy)
[ClEF I N8T Man (Billy (
JQWO.OX:.p%]7.Gc9 . 13»

]

Figure 3.14. Creating an instance

Note that a pointer to the instance is returned just as when a
class is created. What you see on your screen is somewhat
different from Figure 3.14 because LOOPS creates a unique
identifier for each instance. This identifier is the "JQWO, .,."
gibberish after Bill y. Unique identifiers ensure that different
instances are not inadvertently confused with one another.

The ($ nalle) notation is the way to reference classes and
instances. Essentially, the $ informs the system to use the LOOPS
object with the specified name. The ~ means send a message.
New is a message which tells the class Man to create an instance
named Bill y. (Sending messages is discussed In Section 4.2.)
Create a second instance of Man, with the name Jeff, by typing:

(~ ($ Man) New 'Jeff)
Instances do not appear in the class browser window as part of
the class lattice. However, the LOOPS inspector dces allow the
display of instances. The LOOPS inspector is a specialized version
of the Interlisp-D Inspector. (See the interlisp,D Reference
Manual or Interlisp~D: A Friendly Primer for more information on
the standard Inspector.)

3.4.1 Inspecting an Instance

CREATING INSTANCES

Type:

(INSPECT ($ Billy»

to get an inspector window for the instance Bill y. This
inspector window is shown in Figure 3.15.

All Values Of Man ($ Billy). ' ... - _

OateOfBir·th ~1
Hear·t.F.:at.e

I Hat.size
~ air- I~: 0 lor' I r"usc I es
e.e.:sr· d

o
"7
.'

Br·ol,·,In
Big
T

Figure 3.15. Inspecting Bill y. an Instance of Man

The inspector shows the structure of an instance. It also provides
an easy way to alter the values of instance variables. Notice that
the title bar says All Values and that the inherited instance values
from An ilia 1, Pe rson and Man are present.

Create an inspector window for the instance Je ff in the same
way. The result is an inspector window as shown in Figure 3.16.

r311'l'1ICJ--J"lt",;UWOli

OateOfBirth ~1
Heaf·tF.:ate ~1
Hatslze 7
Hair-Color Brown
Muscles Big
ee.:sr·d T

Figure 3.16. Inspecting Jeff. an Instance of Man

3.4.2 Changing Instance Variable Values With the Instance Inspector _

You can use the inspector to change instance variable values.
Begin by pressing the middle mouse button in the title bar of the
inspector window for Bill Y and holding it down. The inspector
menu is displayed as shown in Figure 3_17.

Cia::;::;
,!!...II\/alue:3
Local\lalue::;
.!!..,c~d./Delete
l\l3
:=:~J'·.·'e \l3.lue
Refetch
Edit

Figure 3.17. Inspector men u

Choose loca 1 Va 1 ues by moving the mouse' c:.;rsor over it and
releasing the mouse button. The dispiayed val~e5 are changed
as shown below in Figure 3.18.

CREATING INSTANCES

Local Values Of Man ($ Billy). _ - ~~ . --: ~,_- - '

Oat.eOfBirt.h #,Not.Set.Value
Heart-Rate #,Not.8et.Value
Hat.:~' ze
Ha i r-Co lor
~1U:3:C 1 e::;:
Be,~rd

, Not. Set. "", a 1l.J e
, Not. :::: e t. "", a 11.J e
, Not. :::: e t. "", a 1 u e
, N (I t. :::: e t. '",' a 1 u e

Figure 3.18. Local values of the Instance Bill Y

The'. NotSetVa 1 ue indicates that you have not set any local
values in the instance; all of these values are cefaults inherited
from the super classes.

To Illustrate the inspector changing values, we will alter
Bi lly' S HairColor to Blond. Begin by $electing the item to be
changed by clicking the left mouse button over HairColor. Next
bring up a command menu by holding down the middle mouse
button (with the cursor inside the inspector window) and select
PutValue from that menu_ Type 'Blond in the prompt
window. This new value will be displayed. It is necessary to
quote Blond because values which are entered with the
I nspector are eval uated.

Now choose A 11 Va 1 ues from the Inspector menu and notice
that the default values are redisplayed. However, HairColor is
now the local value, Blond, as shown in Figure 3.19.

All Values of Man ($ Billy). -

OateOfB i r-t.h ~::t
He.:st"· tRate ~::t
H,:st.:~ i ze
H ,:s ire I) 1 I) r'
MIJ:~c 1 e::;

Beard

7
Blond
Biq
T

Figure 3.19. Inspector window of the Instance 8 i 11 Y shOWing all \lalues

3Q5 Altering the Structure or the Class Lattice

3.S.1 Moving a Class

It is possible to alter an existing class lattice by using the editing
menu of the class browser. Classes can be moved in the hierarchy
or removed completely. In order to make the browser look
simpler, a class can also be removed from a brov'Vser without
actually removing it from the lattice.

To move a class in the class lattice you must change its super. As
an example, you will move Man so that ~t is dire(tly below

ALTERING THE STRUCTURE OR THE (LASS LATTICE

An ilia 1 in the lattice. The first step is to sele(t the new super by
;;boxingH it. To do this, select Box Node from the editing menu
(middle button) on An ilia 1. Then bring up the editing menu on
the object to be moved, in this case Man. Sele<.:t MoveSupe rTo
from the submenu of Mov~ (MoveMe thodTo). A pcp up menu
appears which shows the current super, in this case, Pe rson. To
confirm the move, select this item by clicking the ieft button.
After doing this, your browser should look Figure 3.20.

Figure 3.20. New lattice with Man • s super changed to An i rna 1

Since we don't really want the lattice to look lIke Figure 3.20,
change Man's super back to Pe rson.

3.5.2 Deleting and Restoring a Class from a Browser

You may want to remov~ a class you are not work; ng with from
the browser window. To remove Man from the browser window,
bring up the information menu by clicking the left button on
Man. Selecting DeleteFromBrowser causes Man to be deleted
from the browser. The iattice in the browser window iooks like
Figure 3.21.

Figure 3.21. Browser with Man deleted

The class, Man, still exists; it simply does not appear in the
browser. Note that deleting a super class from the browser will
delete the class along with all of its subclasses.

Classes that have previously been deleted from a browser can be
brought back. To do so, move the cursor into the browser's title
bar and hold down either the left or middle mouse button.

F: e I:: 1:1 rrl F:I t.Jte }a
,i!.,dciF:oot ?-.

,~,c~d CateQOt1 "l ~",1enu

Figure 3.22. Browser Manipulation Menu

Select RemoveFrollBadl ist from the submenu of AddRoot, as
shown in Figure 3.23.

Figure 3.23. AddRoot sub-menu

A pop up menu containing the items that have oeen deleted
from the browser then appears as shown below in Figure 3.24.

AL TERING THE STRUCTURE OR THE CLASS LATTICE

3.5.3 Destroying a Class

Figure 3.24. Pop up menu for RelioveF rOIiBadL is t

Select Man an~ it reappears in the browser.

A class may also be destroyed. That is, the ciass can be
completely deleted from your LOOPS environment.

Create a subclass I nsect which is a specialization of An i ma 1 (as
explained in Section 3.3). Insect will be used to demonstrate
how to destroy a cI ass.

To destroy Insect, bring up the editing menu (middle button)
on the class Insect. Select De 1 eteC 1 ass from the
Oelete(OeleteMethod) submenu. You must confirm before
any class is actually destroyed. Confirmation is accomplished by
using the pop up menu shown in Figure 3.25.

Figure 3.25. Pop up menu to confirm destruction of I nsec t

Select Dest roy I nsect to confirm that you wish to destroy the
class. If you decide not to destroy the class, click any mouse
button with the cursor outside of the pop-up menu. The lattice
in the browser window now looks like Figure 3.21 again.

It is an error to attempt to destroy a class which has subclasses,
since a subclass can not exist if its super does not exist. Such an
attempt puts you in an Interlisp-D break window. If you type OK
inside the break window, the class and all of its subclasses are
destroyed. If you type 1" in the break window the operation is
aborted.

3.6 Destroying and Shrinking Browsers

1 12

If you are finished using a particular browser and want to get rid
of it, you can destroy it. To do so, hold the right mouse button
while in the browser window's title bar (see Figure 3.26).

3.7 A Word about Notation

Animal

($ Anillal)

11.($ Anillal)

Clear
E;ut"

Rep~}lnt
HarcJcopy}'

r··,..lo\,'e
Shape
Sht'ink.

DESTROYING AND SHR:NKI~~G BROWSERS

Figure 3.26. Window Manipulation Menu

The items in this menu are similar to those in the Interlisp-D
window manipulation menu except for the Close item.
Selecting Des t roy from the submenu of Close closes the
window and destroys the browser. If you select Close, the
window closes, but the browser still exists and take up memory
space. Since a browser whose window is closed is not easily
accessible, it is usually better to destroy it.

Browser windows can also be shrunk using the window
manipulation menu. Lattice browsers shrink to icons with the
name of the root class as their title. Bring up the window
manipulation menu on the example browser and select Sh ri nle
The resuit is an icon as shown in Figure 3.27. As with all window
icons, it can be expanded by positioning the mouse over it and
clicking the middle button. It can be moved by positioning the
mouse over it, holding down the left button, moving the icon to
the desired spot and releasing the button.

~'-._;' -<. -
Figure 3.27. Icon for Browser window of An i ma 1

LOOPS uses several different notations to refer to classes and
instances.

When we refer to a class or an instance in the text 'Ne refer to it
by its name, that is, the name it was given when it WdS created. If
there is some possibility of confusion, we also state explicitly that
we are referri ng to a class or an instance.

This is the way classes or instances are referred to in LOOPS code.
The $ causes the system to find and return a pointer to the
internal data structure which embodies the class or instance.

This is the way the system prints out a class. For example, this is
what you see if you type (S An i ma 1) .3t the top level
read-eval-print loop.

10. GAUGES: ACTIVE VALUES AND
OBJECT HIERARCHIES IN ACTION

(NOTE TO. XEROX: AS INSTRUCTED. WE HAVE NOT
UPDATED THIS CHAPTER BECAUSE OF CONTINUING WORK
ON GAUGES.)

In normai life we use gauges to track specific values. Typically,
we use g2.tuges where it is important to continually monitor a
valuE. LOOPS provides a set of tools, called Gauges, which
emulate those real life gauges we are familiar with. They are
defined as LOOPS classes with active values providing the
continuous monitoring. The class inheritance lattice for gauges,
shown in Figure 10.1, shows how all of the sub-classes of Gauge
are related. This structure is a combination of elision through
inheritance and incremental specialization. (See Chapter 6).
Notice that classes like DigiMeter and DigiScale have
multiple supers.

There are two types of gauges: analog aod digital. Analog
gauges register changes in the value in a pictorial form, without
registering the exact value. The HorizontalScale, Meter,
Dial, VertiealScale, HBarChart, and BarChart as shown
in Figure 10.2, are all examples of analog gauges. Digital gauges
do provide the precise value, as shown by LCD, Dig i Me te r, and
Dig i Sea 1 e in Figure 1.0.2.

Gauges are defined so that when they are attached to a value
within your program, that value becomes an active value which
has no effect on the program using that value. A change in the
value causes the reading on the gauge to change. When they
are detached from a value the value returns to its original state.
LOOPS provides a simple way to incorporate instances of gauges
into existing programs.

Gauges are very useful tools in their existing form, but they can
also be customized. Existing classes in the gauge class lattice can
be specialized and new classes added to the lattice.

In the following pages, we discuss basic use of LOOPS gauges.
Chapter 9 shows some examples of customizing gauges.

If you are working in a new programming environment, load the
file containing the Bank Account Example from Chapter 5 so that
you may (ontinue to work with the example in this chapter.

--'--" , i~

OBJECT HIERARCHIES

10.1 Object Hierarchies

Gauge

---------------------- "••.•

. ~ •. -...•.• -•. -
Instrurnent

/11
.... II

" I
" I

/ II
I' I
" I

" I
.... II VerticalSca.le RoundScale HorizontalScale

" I ;/ \, _~-IL_-----~l:·\:\-------l
/i _----ji------- I I
.-.-- I I ./ \.. II

DigiScale
I
I
I BarChart Meter Dial HBarChart

'\ l -----
'_-----------------I-~---

OigiMeter SSBarChart SSHBarChart

I
I

SSDigiMeter

Figure 10.1. Class Inheritance lattice for gauges

To view the class inheritance lattice for gauges, type:

(Browse SGauge)

10.2 Examples of Gauges

102

Figure 10.2 shows some of the gauges available for you to use. If
you would like to see a gauge, create an instance by typing:

(~ gaugeClass New 'MyGauge)

Then, di;plz:y the gauge by typing:

(~ 'MyGauge Update)

0AlJGES· ACTIVE VALUES AND OBJECT HIERAR(L.4I:) iN ACT!OI\J

r:1
Meter

0

al3

70

50

HorizontalScale

o 1 ~:::1 2 (1:; (~t .:+ ~1 5 €1 ti ~:::1 7 ~:::1 a L3 ~:B3 10 0
111111111111111111111

Dial ' --. ~'~ r .~. : .:, VerticalScal
-101.1

-a0

-60

o llj 2 L:1 ::; 0 4 Lj 5 €1 6 Lj 7 L~) e l:::1 ~3 01 ~10
11I1111111111I1111111

HB.jrC~1art

-100

-61.1

-40

-20 I -L1
B.3rCh.:sr t

DigiMeter- " ,"
DigiScale

Figure 10.2. Some examples of gauges

GAUGES' ACTiVE VALUES AND 08JEr- - ~. - ': ;"1 :-.r-·-,'

EXAMPLES OF GAUGES

CREATE GAUGE INSTANCES

10.3 Create Gauge Instances

You must create instances of the gauge classes to use in your
programs. To see how the gauge class, Ve rt i ea 1 seale,
hQh:::l\lQC ",,.Q:::It.o::ln ;ncT::ln onf ... h""',.I."."' .. \I"',. ... ;,...,.l<=',. .. l~ ____ .-1
..., , I ~_J "' 'Io.A""'- WI_ It 1~Il..UI I"'~ Vi "'II~ ,,"IQ~~ wG' \. • \"'0 I ,.j\.Q It:, Ildfrtt!u

MyVS by typing:

(~ $VertiealSeale New 'MyVS)

To see the gauge send it the Update message by typing:

(~ $MyVS Update)

A gauge \11/;/1 appear like the one shown in Figure 10.3.

-2~1

-0

Figure 10.3. Ve rt i ea 1 Sea 1 e gauge

Create an instance of the class 0 i a 1, MyO i a 1, by typing:

(~ $Oial New 'MyOial)

Send it the Update message to display it by typing:

(~ SMyOial Update)

it wiii iook iike Figure 10.4.

Figure 10.4. 0 i a 1 gauge

Send both gauges the Set message with the argument, 50, by
typing:

(~ $MyVS Set 50)

(~ SMyOial Set 50)

Notice that they are set as shown in Figure 10.5.

10.4 Attaching Gauges

CREATE GAUGE INSTANCES

Figure 10.5. Setting gauges to value of 50

Try to set both of the gauges to 200. They will appear as in
Figure 10.6. Notice the question marks in the upper left corners
show that the value is off of the scale. We will show you how to
change the scale below.

Figure 10.6. Gal..)ges set above their scales

Create instan(es of some of the other types of gauges and
experiment to become familiar with them.

In this :;ection, we discuss how to attach different gauges to the
: n~tdil(~ vdnabie, Baiance, from our bank account exampie

ATTACHING GAUGES

10.4.1 VerticalScale

10.4.2 Dial

106

gaugelnstance

Attach

object

varName

Fi rst, create an instance of Say i ng s, MySav i ng s by typi ng:

(~ SSavings New 'MySavings)

Now, you can attach MyVS to the Balance instance variable of
MySav i ngs. The syntax is:

(+- gauge/nstance At tac h object varName)

The name of the instance of a class of gauges you wish to use.

Message ')ent to gaugelnstance.

Object you wish the gauge to be attached to.

Variable In object that you want the gauge to display.

So type:

. (+- $MyVS Attach $MySavings 'Balance)

The Ve rt i ca 1 Sca 1 e will then appear as a ghost image
prompttng you to position it. Move the mouse cursor to a clear
space on your screen and click the left mouse button to place the
gauge there. Notice that it now has a title, Balance, which is the
j nstance variable it is attached to.

When a gauge is attached to a value, that value becomes an
active value. Inspect the instance, MySav i ~g s, by typing:

(INSPECT SMySavings)

You will see that the value of the instance variable, Balance, has
changed to an active value, as shown in Figure 10.7.

AII.Values of Savings $MySavings.
CredltHistory NIL
DebitHistory NIL
Balance #(50 NIL 8endAVMessage)
User' II L"{N"
DateOpened
TimeOpened
I n t. e r' e :3; t F: ,~ t. e

II 16 -,J u n - ::i 6 0 e : 5 ~3 : ::: 5 II

~1:3 : 5 ~3 : ::: 5
, L15

Figure 10.7. lr'1stance variable, Balance, as an active value after a gauge IS
attached to It

.A.ttach MyOial to the Balance of MySavings following the
same procedure as above.

Since you hope to have more than $100.00 in your account,
change the 5caie on each of the gauges. The SetSca 1 e message
sets the range on most gauges. Here we use it to set a scale from
o to i 0000 for MyVS and MyO i a 1. To do this, type:

(+- SMyVS SetScale 0 10000)

(+- $MyDial SetScale 0 10000)

(Note: The complete set of messages available for use with
gaug~~ ar2 iisted in the LOOPS Reference Manual.)

'.-:AII(j~~ AC' IVE 'jALUES AND 08 JECT HiE~ c\..;'(c.; !EC) d\J ACT'O!'l

10.4.3 DigiScale and DigiMeter

ATTACHING GAUGES

The gauges will appear as shown in Figure 10.8. Notice the
multiplication factor in the lower left corner of each gauge.

Balance

-80 8alance .

Figure 10.8. Result of changing scales on gauges

Send the C red it and Deb i t messages to MySav i ng s so you can
see how the Ve rt i ca 1 Sea 1 e and the 0 i a 1 behave. Do this by
typing:

(~ SMySavings Credit 500)

(~ SMySavings Credit 6000)

(~ SMySavings Debit 2500)

(~ SMySavings Debit 300)

(Once you are finished, leave the gauges where they are, and
continue on with this chapter. However, if you prefer to have a
clean screen, you may preview section 8.5, at the end of this
chapter, on detaching gauges.)

DigiScale and DigiMeter combine both digital and analog
gauges. The power of multiple inheritance is shown in these two
gauge classes. They have two supers, one an analog gauge and
the other a digital gauge, whose functions and data are
combined.

Create an instance of the class, OigiScale, with the name,
MyOS, and an instance of the class, DigiMeter, with the name,
MyOM by typIng:

(~ SOigiSeale New 'MyOS)

(~ SOigiMeter New 'MyOM)

Attach both 'dauges to the instance variable, Balance, of the
instarc€'. MySav i OgSi and set their scales to the range 0 to
; 0000, as you dId with MyVS and MyO 1 a 1 in sections 8.4.1 and
8.4.2 T:,e result will be similar to that shown in Figure 10.9.

ATTACHING GAUGES

10.4.4 BarChart and HBarChart

B
8alarice

1

7B

he --...~
I Xl~r8 59

Figure 10.9. instances of Dig i Sc ale and Dig i Me te r attached to Balance
of MySav i ngs

Send Credit and Debit messages to MySavings to see how
MyOS and MyDM behave.

BarChart and HBarChart display a number of values together
on one chart.' They are usefui when you need to compare vaiues;
for instance, a bar chart will show the balances of two accounts
so they may be compared.

Create two more instances of the class, Say i ng s. Name them
JeffsSavi ngs and Bi llysSavi ngs. Now create an instance
of the class, BarChart, named AccountBarChart. You can
use this bar chart to compare the balance of Jeff's savings
account with the balance of Billy's savings account.

Attach it by typing:

(~ $AccountBarChart Attach SJeffsSavings
'Balance)

(~ $AccountBarChart Attach SBil1ysSavings
'Balance)

You will be prompted for a label for each. When prompted for
the label for the one attached to JeffsSavi ngs, type: Jeff,
and when prompted for the label for the one attached to
Bill ysSav i ng s, type: Billy. The result will be a chart as shown
in Figure 10.1:)

10.5 Detaching Gauges

ATTACHING GAUGES

Figure 10.10. Instance of the class BarChart attached to balance of
J e f f s S a v i n gsa n d ba I a n ce 0 fBi 1 1 Y s S a v i n 9 s

Set the sca:e on AccountBarChart to the range 0 to 10000.
Now C red i t and Deb it both accounts to see how the class
Ba rCha rt behaves. The result will be similar to Figure 10.11.

eo ; 1 1 ~/ .J e f f
>::100

-4~1

Figure 10.11. AccountBarChart with balances of JeffsSavings
andBillysSavings

The option. Close, in the window manipulation menu (right
button) for gauge windows contains two sub-items: Close and
Des t roy, as shown in Figure 10.12.

DETACHING GAUGES

Cle;.3r
EiUr'\··

Rep ;'}I~-It
H ;.3TCi C C P y ;:~.

r··.··l0·· ... e
:=:: ~-I ;.3.p e
'::: t-j t'i n k.

Figure 10.12. 'J'JindOw l\J1anlpu/atlon menu for gauge window

If the Close sub-item is selected, the gauge will be detached
from the instance and instance variable it is attached to. The
gauge will still exist but it will not be attached to anything; you
can ,>ee it by sending it the Update message.

If the Des t roy sub-item is selected, the gauge will be detached
from the instance and instance variable it is attached to and the
gauge instance will be destroyed. Destroy should only be
selected if the gauge will not be used again.

Now that you are familiar with gauges, experiment with some of
the other classes in the gauge inheritance lattice.

11.1 Multiple Inheritance

VlIXI\J'S . !I'JHER:TANC: WITJ-J MU! TiP!..t C;;: ,!:jeRI)

11 ~ MIXINS -INHERITANCE WITH
MULTIPLE SUPERS

The inheritance order in a class lattice with multiple supers has
not yet been discussed. This chapter addresses ~he full
complexity of inheritance.

One very useful technique based on multiple inheritance !s the
use of "mixins." Mixins ar~ classes that are specifically designed
to be inherited along with a given class's main super. A mixin
provides a package of methods and variables that can be added
to many other classes to give them added functionality. The
examples in this chapter demonstrate multiple inheritance with
mixins.

As an example of multiple inheritance, consider the abstract class
lattice shown in Figure 11.1. The names of the classes are
indicated in bold face type and the names of the methods are
represented in normal type. For classes with mUltiple supers, the
left-most super in the figure is also the left-most super in the
Supe rs list.

8 Z c >~ ' ... '

F

Figure 11.1. Diagram to show Inherttance

MULTIPLE INHERITANCE

" .,

In this discussion, methods are referred to by their full names.
For example, the method X defined in the class 0 is referred to as
O.X. -The rule for inheritance in LOOPS is "left to right, up to jo;ns".
Each branch up the lattice is searched, starting with the leftmost
branch and working right. A class with several specialization
branches is not searched until all of the specialization branches
have been searched. A class with multiple specia!ization
branches is referred to as a join. A few examples will make this
clear.

!n Figure 11.1, F has two immediate supers: Band D. These are
the classes that appear on the supers list of F. G a!so has two
immediate supers, 0 and E. 0 and E have the same immediate
super, C. 8 and CiS immediate super is A. The order of
inheritance for F is F, 8,0, C, A.

Suppose message X is sent to F. Since F does not have d local
method with the selector X, LOOPS searches for a method with
that name in F's supers. Its immediate supers are 8 and O. B is
the left-most super, so it is checked first, then 0 is checked. In
this case, the message X will be fielded by the method o. X.

Now, suppose that the method o. X contains a call to +-Supe r. 0
has one immediate super, C, which does possess the method X.
Therefore, C. X will be invoked as well.

Now assume the message Y is sent to F. As before, LOOPS checks
8 and 0, but does not find the appropriate method. LOOPS next
checks 0 and again does not find the appropriate method. The
next class checked is C as the super of O. Note that A, which
contains a method for Y, is not checked until all of its
specializations have been checked. In this example, A is checked
only after 8 and C are checked.

In Figure 11.1, G has two supers: 0 and E. The order of
inheritance for G is 0, E, C, A.

If the message X is sent to G, it is fielded by G. X. If G. X contains a
call to +-Supe r, that message is fielded by O. X.

Now, suppose G. X contains a call to +-Supe rF ri nge. if X is sent
to G, the message is fielded by G. X. The call to +-Supe rF r i nge
then sends the message to the classes on the supers I ist of G: 0
and E. The message sent to 0 is fielded by 0 . X and the message
sent to E is fielded by C. X. In summary, the methods G . X,D. X,
and C.Xareall invoked.

For convenience, the above example focused on method
inheritance. The example also applies for inheritance of
variables.

11.2 An Existing Gauge Mixin

AN EXISTING GAUGE 'v11:-<:N

(NOTE TO XEROX: AS INSTRUCTED. THIS SECTION HAS
NOT BEEN UPDATED DUE TO CONTINUING WORK ~N
GAUGES.)

The class, SelfSealeMixin, is a pre-defined mixin that
automatically sets the scale on gauges. If you have a browser
containing the gauge classes, Se 1 fSea 1 eMi x i n can be added
to the lattice by selecting AddRoot from the browser
manipulation menu and typing SelfSealeMixin when
prompted for the item to be added.

The gauge classes, SSBa rCha rt, SSD i 9 i Me te r. ·;r1d
SSHBarChart, have SelfSealeMixin as a super; other than

_ this, they are the same as the classes, Ba rCha rt, 0 i 9 1 Me te r,
and HBarChart.

By itself, SelfSealeMixin is a useless class. The definition of
Se 1 fSea 1 eMi x i n is shown below in Figure 11.2.

DEllit Of CLASSES #' .($C selfscaleMixin) .

((MetaClass Class Edited:

(:::: IJ per' :~ 0 b j e c t.)
(C 1 .:, S :5: ', .• ' .:, r' i a b 1 e s)
(InstanceVariables (lowScaleFact.or

5 doc
C¥- If tl'1 ~::.::Cu rre tltfi ~ io.,j i 1"1 q
i~lrinl-:.::: :::.) that it • ,·jll fi(tl"1('r~
ttl~.n IO' ... · .. S(:~.I€!F~.(:to)r tlrt1€!S itl
i t1 P utn ;:'.1'1 ~i€!,- Pl €! 9 it.U q ~
re:::(:~.I€!S)} } }

Figure 11.2. The miXIn, Se 1 fSea 1 eMi x i n

The method, Set, for Se 1 fSea 1 eMi x i n is shown in Figure 1i .3 .

. , ~

AN EXISTING GAUGE MIXIN

114

DEdit of function SelfscaleMixin.set .. ~ .-:=:i,._ .•
(Method
((SelfScaleMixin Set)
self reading otherArgl otherArg2)

(* R S Gi t·.·1 8.rti t1
;·'11-.~.p!'-;:;e 14:41")

(PF:OG m a ::< D iff (m ,:t ::<
COND

((I GF:EA TEF:P

(* CtleeJo:. if re3.ljitll~ is t,)O
~ligt1 1)1' to,) 10)' ... ·.' .. 8.ri,j if So) see
if qZ4.uqe 1"1ee,js'to res(:8.le·,

(~ r~ading))) ,

(8ETQ ma::(D iff
(I D IFF E F: ENe E rn a :x:

(I] i n put L 0 '",1 e r')) ")
(;~ if-I F) iJ t. F: a r-I j~ e))

(+: If m;:..>:: is qre8.ter H~,;'t1
~,revi I) L~ '$ tl18.::< Ul e tl ':- tl 8.t1 ;~ ~
1'81.1"1 9 e to tl181.J.o:.e I; U rre tlt ftl Z4 .. '::
til:! 4/5 ,)f fu" :::,~ 8.1 e',

(~ self SetScale (@ inputLower
")

(IPLUS (@ inputLower)
(IQUOTIENT

((AND
(IGREATERP

(ITIMES 5 maxDiff)

(@ i n p IJ t Ran I~ e)
(I T I r.1 E Sma :x: 0 iff

(@ lowScaleFactor))
(IGREATERP (@ input~ange)

10))

(* If m 2I.~< is I ~:::::: tt18.tl I (I' .. ··,'S (: 8.1 e F8.,::t(, r ti tl'1 ~ S
rat1q~, it.tl.j t1~,/·,1~ ..• 1a::..:: ' ... ·,'Oullj tlot be I~::.s tt18.tl
1 O. ttl ~ tl G h ~.t1 g e r8.n q e tQ tl'18.1-:.e o~ U rr~ tlt ttl21.>~
tl e' 4/5 of fu II 5(: 8.1 e) .

(.:-:::uper·

(' ~
self SetScale (@ inputLower)
(IPLU8

(I] i n put L 0 1,',1 e r')
(I r,1A::o:: 1~1

(IQUOTIENT
(ITIME8 5 ma~Diff)
4)))))))

self Set reading otherArgl other~rg2))

Figure 11.3. The method. Se t. for Se 1 f Sc a 1 eM i x i n

To see how self scale gauges work, create instances of the classes.
OigiMeter and SSOigiMeter, with the names MyOig iMet~H'
and MySSO i 9 i Me te r by typing:

(~ SOigiMeter New 'MyOigiMeter)

(~ SSSOigiMeter New 'MySSOigiMeter)

AN EXISTING GAUGE r,,1IX~J

Attach both gauges to the instance variable, Balanct', of the
instance, MySav i ngs, by typing:

(~ SMyDigiMeter Attach SMySavings 'Balance) ..
(~ SMySSDigiMeter Attach SMySavings 'Balance)

This is shown in Figure 11.4.

Top level -- Connected to {DSK}·<LISPALE

g~(~ $OigiMeter New ~MyOigiMeter)

10~(~ $SSDigiMeter New 'MySSOigiMeter)

11~(~ $MvOiqiMeter Attach
·r· t11 I .:. - •• . - ' •. -. ; u - 1 - . -. - " ••• 1 S . .,;. .. ~ .,' 1 t II:.~ .::. L' .~ .~ t 11_. t:! }

12~(~ $MySSOigiMeter Attach
$MySavings 'Balance)

figure 11.4. Creating Instances of Dig i Me te rand SSD i 9 i Me te rand
attaching them to Balance

C red it and Deb it the instance, MySav i ng s, until you
understand the behavior of the two gauges. Both gauges,
MyDigiMeter and MySSDigiMeter, are shown in Figure 11.5
with a reading of 350.

SSOigi~eter Oigi~eter

B B

35 18

58

figure 11.5. Instances of Dig i Me te rand SSD i 9 i Me te r with read: ,',gs of
350

Notice that the analog meter on MyDigiMeter, does not give a
correct readi ng but the analog meter on MySSI) i 9 i Me te r dc~s.
The dial on DigiMeter went around 3 112 times, You would
need to infer that from seeing that the gauge or.ly gees 3$ high
as 100. On the other hand, SSDigiMeter, as a product of
Se 1 fSca 1 eMi x in, has included a xl 0 factor.

A NEW GAUGE MIXIN

11.3 A New Gauge Mixin

116

(NOTE TO XEROX: AS INSTRUCTED. THIS SECTION HAS
NOT BEEN UPDATED DUE TO CONTINUING WORK ~
GAUGES.)

Now we create a new mlXIn B 1 i nkMi x into use with the
gauges. B1 inkMixin causes a gauge to blink three times when
it is set. The method B 1 ink which gauges inherited from the
class Wi ndolll, can be used to do this. To see the class inheritance
lattice for Wi ndolll, type: (B rOlllse $Wi ndow). Create the
mixin, B 1 i nkMi x i n by typing:

(DefineClass 'BlinkMixin)

Add it to the gauge browser window by selecting AddRoot from
the browser manipulation menu and typing B 1 i nkM; x i nNnen
prompted for the name of the item to be added.

You need to have the Set method for B 1 i nkMi xi n do the same
thing as the Set you have been using for gauges along with
causing the gauge to blink 3 times. The new version of Set for
B 1 i nkMi x i n calls B 1 ink to make the gauge blink 3 times and
then uses t-Super to invoke the normal Set operation which
sets the gauge.

To do this, first select Add(AddMethod) from the editing menu
on the class B 1 in kM i x into create a template for the method
Set. Add reading to the argument list for the method after
self. Replace (MethodNeedsToBeSpecialized) in the
template with:

(.. self Blink 3)
("Super self Set reading)
self

The method looks like Figure 11.6 when you finish.

Edt- of--funct-ion--BlinkMixin.Set - ---- .. -- .:. :
(Method (BlinkMixin Set)

:3 elf r· e oj din 1~1)
(f': ~(Iite.j:
"·17-.JLHl-86 12:50")

(+: rl'1 etl1 cllj tl1 ~.t (: it. LEe s q ;:t.U!.l ~
fCt b lin J.:. tl1 r~ ~ ti ttl e ::: . -
'.···mene··ier it is set)

(~ :5: elf e, 1 i n ~:. 3)
; -

1._ ~:::u per·
self Set reading)

:~: elf)

Figure 11.6. The method Set for B 1 i nkMi x i n

Now, create a new class, B1 inkDigiScale, which has as supers
both B1 inkMixinand DigiScale. Type:

(DefineClass 'BlinkOigiScale '(BlinkMixin
DigiScale»

Next, create an instance of the class B 1 i nleO i 9 i Sc ale ar.d
name it MyB 1 i nkOS. Display My8l i nkDS and send it ~he Se t
message to see B 1 i nkMi xi n in action.

MIXiNS - IN!-JERITA!'KE WiTH \11\1. -: p = <.:: PE:;S

A NEW GAUGE M:X:~~

Top level -- Connected to {DSK}<lISPF~E

32~(OC "BlinkOigi8cale ~(BlinkMixin
o i I~t i ::: c .:. 1 e))
#$BlinkOiqiScale
33~(~ $Bl~nkOigiScale New ~MyBlink03)

34~(~ $MyBlink08 Update)

35~(~ $MyBlink08 Set 50)

Figure 11.7. Creating c:ass. B 1 i nleO i 9 i Sea 1 e. and testing ;t

11 e4 A Mixin for the Bank Account Example

This section explores class inheritance of methods from multiple
supers in the context of the Bank Account example .. If the Bank
Account example is not already loaded, load it now. Also, if a
browser for the Bank Account example does not currently exist,
create one by browsi ng Gene r i eAeeoun t:

Some bank accounts allow you to withdraw more money than
the account contains, The overdraft is treated as if the account
holder took out a loan. A mixin can be created which, when
combined with any of the classes of the Bank Account example,
yields an account that allows overdrafts. When there is an
overdraft, the account balance is set to 0 and the amount of the
overdraft is recorded separately.

To implement this, create the Ove rO ra ftM i x i n class by typing;

(OefineClass 'OverOraftMixin)

Add the class OverOraftMixin to the class inheritance lattice
for bank accounts. Select AddRoot from the browser
manipulation menu and type OverOraftMixin when
prompted for the name of the item to be added. The class
inheritance lattice should look somewhat like Figure 11.8. ihe
figures in this chapter do not show some classes that were
created in previous chapters.

Class browser . '. -,.: '. '. 1>

GenericAccount _--------- Savings ---------__
---------- Checking ------ - F'JOVt

OverOraftMixin
--- ..J

Figure 11.8, Class inheritance lattice for bank accounts aftEr cidClng tre Class,
OverOraftMixin

A MIXIN FOR THE BANK ACCOUNT EXAMPLE

11 8

Edit Ove rO raftM i xi n so that it looks like Figure 11.9.

DEdit of GLASSES # .($ OverDraftMi~~) '0: .,~:'
((MetaClass Class doc c+= ttl i::: tl1 b::i n q 20.11.) 1 1::: •

1:1""-0:: rlj raft::: to 'Ot. 0:: tl'18.lj e
fr(l tn tn ~ 8,1~ G I) l~ nt!

Ed i ted: (t: ~,jit~tj:
···22·No ·;:;e 1 :::;:o:~;·'»)

(:::: u per' :~ I] b j e c t)
(C 1 a ::;: :~: V a r' i oj b 1 e:5:)
(InstanceVariables (OverDraft 0 doc

(t: ttli::: i::: ttl~ ;:'.I1'FI U m
.:.f O"I"~ t'lj r;:'.ft:::)))

(r.1 e t h (I d F n:~))

Figure 11.9. MIXIn OverOraftMixin which allows overdrafts O:i hank
accounts

Ove rO raf tM i X in needs the methods C red it and Deb it. They
will be specializations of GenericAccount.Credit and
GenericAccount.Oebit. However, OverOraftMixin does
not inherit these methods: they must be added from scratch.

OverOraftMixin.Credit needs to check to see if there is an
overdraft. If there is, the amount of the credit should be applied
to Ove rO raft and any money remaining after the overdraft is
zeroed out should be added to Sa 1 ance. If there is no
overdraft, the credit amount is simply added to Sa 1 ance.

The method Credi t should look like Figure 11.10 when you
finish.

DEdit of function OverDraftMixin.Gredit
(Method
((OverOraftMixin Credit)

:3:e 1 f Amoun t) (* ~Ijito::(j:
"1 ;3·.J 8.tl- ;37 1 7: 5:::;")

(* ~ • ..1 ~ttHII::I to (: r~·j it ,:t.tl

~.(: (: (I U tlt U18.t ;:..11 (I :::
(I ~ rljt'3.ft:::)

(if (I3F:EA TEF:P Amount. (I~ O'I .. 'er·Or·aft))
then (~:::uper'

else

:5: elf C r' e d i t.
(DIFFERENCE Amount

(I~ 0 e r' [I r' aft.)))
{ ~fd
" -

{ ~Iis
'. -
O"lerOr·aft.
(DIFFERENCE (@ OverDraft)

Amount.)))
(I~ e, a 1 an c e))

Figure 11.10. The method C red i t for Ove rO raftMi X i n

OverOraftMixin.Oebit needs to check to see if the amcurl-~
of the debit is greater than the balance. If it is, Sa 1 anca shuuld
be set to zero and the difference added to Overdraft If the

MIXII\JS - INH ERIT,~j\J(= ';Vi r...., ,\1, !'

A MIXIN FOR THE BANK ACCOUNT EXA'\~PLE

debit does not exceed the balance, the amount IS simply
subtracted from the balance.

Oeb it should look like Figure 11.11 when you finish.

DEdit of function OverDraftMixin.Debit. >."::.
(Met.hod
(OverOraftMixin Debit)

(:t. ~.jit';:.l:

"'1 ;:;. J atl- ;:;7 1 7: '54"::'

(:f; r' .• 1 ~tt1(111 to (] ~ ttit ::'.tl
i'::C(tutlt ttl::'.t 3.111) $

o·· ... ~ r.l r3.ft:::. ::.

(if (LEQ Amount (19 B.:s 1 anee))
then (~Super'

else
{ .. Iii
" -

self Debit Amount)

. I) e r' D r' .j f t.
(PLUS (@ OverDraft)

(DIFFERENCE Amount
(IJ! B.9l.:snce))))

("Super'
self Debit (@ Balance))))

Figure 11.11. The method Deb i t for Ove rO raftMi X in

Notice the call to ~Supe r in both of these methods. If you look
back at Figure 11.9, you will see that the only super that
OverOraftMixin has is Object. If OverOraftMix in were
designed to be used alone, this would be an error since Obj ect
has no methods named C red it and Oeb it. However, because
it is a mixin, OverOraftMixin's calls to ~Super are not a
problem (as long as it is mixed in with a class which does havz
these methods).

Now create a class named Ove rD raftCheck i ng with mUltiple
supers, OverOraftMixin and Checking. First specialize
Check i ng. Then add the super Ove rO ra f tM i xi n to
OverOraftChecking. Be sure the mixin is first i:1
Ove rO ra f tChec king's supers I ist, because
OverOraftChecking needs to have Cred; t messages fielded
by OverOraftMixin.Credit, not by
Gene r i cAccount. C red it.

The class inheritance lattice for bank accounts should updat~
automatically to look like Figure 11.12.

Glass browser .. '~.:" '. ' ..

_------- Savings ----___ _
GenericAccount = ----

--------- Checking ----- NOW Account
----------------..

OverOra ftMixin OverOra ftChecking

Figure 11.12. Class inheritance lattice for bank accounts with the Llcse;

OverOraftChecking added

" \..)

A MIXIN FOR THE BANK ACCOUNT EXAMPLE

11 10

Now test that the methods of Ove rO raftCheclc i ng 'Nork
properly. Create an instance of Ove rO raftCheck i ng and sene
it various credit and debit messages. Use the inspector to see if
8a 1 ance and Ove rO raf t are updated correctly. ;.

!n this chapter, Credi t and Oebi t were designed to return the
resulting account balance. This is in keeping with the way that
the other versions of these methods work. The returned value is
not particularly informative when there is an overdraft because a
is always returned. It might be interesting to think about ways to
make the result more useful.

12.1 Existing Browsers

Class browser

CUSTOM!71!\JG IJIOPS TOOL')

12. CUSTOMIZING LOOPS TOOLS

This chapter explores an advanced example that incorporates
most of the techniques learned in previous chapters. Here, a
specialization of one of the LOOPS browsers is created. This new
browser is then used to display information about a budget. This
exercise illustrates how to specialize the LOOPS system tools and
provides more experience with building LOOPS programs.

If the Bank Account example from Chapter 6 is not loaded, you
should load it now.

In this project, various budget categories, also called accounts,
are represented by instances of the AccountUse class. Unlike
instances from earlier examples, these instances form a tree. For
example, the personal expense account might have
entertainment and clothing subaccounts. Similarly, the
entertainment subaccount might have restaurant and movie
subaccounts.

As you know, the ClassBrowser does not show instances and the
inspector shows only one instance at a time. In order to view an
entire budget, a new kind of browser must be created.

Browsers are LOOPS objects. Each browser is an instance of one
of the browser classes. The parent of all browsers is the
lat t i ceB rowse r class. The class inheritance lattice for the
browsers is shown below in Figure 12.1.

_------ FileBrowser
.:::~~~------ SupersOrowser

--------.---- MetaBrowser

Figure 12.1. Class inheritance lattice for lat t i ceB rowse r

Up to this point, examples have emphasized using the
ClassBrowser. The fi leBrowser was introduced in Section
5.2. The browser customized in this chapter is the
InstanceBrowser. Unlike the ClassBrowser, which
automatically depicts the inheritance relationships among
classes, the Ins tance8 rowse r requires explicit specification of

EXISTING BROWSERS

object links before it can display the lattice structure of the
related objects.

12.2 Creating a Browser Subclass

Bring up a Lattice Browser on the class lat t i ceB rowse r.
Specialize InstanceBrowser to create the subclass,
AccountB rowse r.

Ins tanceB rowse r contains an instance variable, sub IV. The
name stands for sublink instance variable. sub IV contains the
name of an instance variable in the class or classes of instances to
be displayed. The instance variable named in subIV should be
the variable whose value is used to link an instance to its
subsidiary instance(s). When the browser is displaying instances,
it looks in each one for an instance variable of this name. If
found, the browser uses the value of the variable to find the
children of each instance and displays them also.

The default value of subIV in InstanceBrowse r is simply NIl.
In order to use Ins tanceB rowse r directly, it is necessary to fi II
in this value with the name of the instance variable. In the
example, the instance variable Ch i 1 d is used to create a tree of
instances. If, for example, instances Y and Z appear in the Ch i 1 d
list of X, then X should appear higher than Y and Z in the browser
tree display. The first part of the exampie makes Ch i 1 d the
default value for the sub IV instance variable.

In order for the child default value for sub IV to appear in
AccountBrowser. subIV must be local to AccountBrowser.
It would be simple to use DEdit to add this instance variable.
However. it is useful to know how to copy variables from one
class to another. This operation is similar to the copying
operations you already know. First, box AccountBrowser.
Then, using InstanceBrowser's edit menu, select CopyIVTo
from the submenu of Copy(CopyMethodTo). Finally, select
sub IV from the menu that pops up. Select tit 1 e from the pop
up menu, as well.

Now change the value of sub IV to Ch i 1 d and the value of
title to "Account Browser". ,AccountBrowser, should
look like Figure 12.2.

(REATING A BROWSER SUBCLASS

DEdit of GLASSES #.($ ACGountBrowser)
«(MetaClass Class Edited:

(* etjito:tj:
;·'22-No\ .. ·;::e 17:05"))

(Supers InstanceBrowser) ..
(C 1 ,~ :5: :5: V a r' i a b 1 e s)
(InstanceVariables (subIV Child doc

(* Nit.me of inst3.n(;e ·· ... ;:..ri2t.ble
1.: •.• 11'1 i (: tl p rO","j Ij 0: S tl ;!t.t1'1 e s
;:e.n Ij I) r p J) j nte rs to
SUb,:.t'j@ctS))

(t i t 1 e .. Account Br'o",':ser"))
(Met h (I d F n :~:))

Figure 12.2. Accoun tB rowse r after adding Instance variable, sub IV

12.3 Creating a Savings Subclass
The money in a savings account may be earmarked for a variety
of uses, such as school, business, and personal. The money for
personal uses may be further divided into money to be spent and
money to be saved.

Below, an example budget is created and displayed in an
instance of AccountBrowser.

Create a subclass of Savings, called SpecialSavings, with
the Instance variable Ch i 1 d. When in use Ch i 1 d holds a list of
instances which represent the budget items for this account.

SpecialSavings should look like Figure 12.3.

DEdit of CLASSES #.($ SpecialSavings)
{{MetaClass Class doc eft. b l~ Ij Il e te Ij .;:;:.. i tl q::.

~.(: (: t) U tit) -
Ed i teeJ: (t: e Ij ite Ij: .

···22-HO··.···;36 17:11"»)

(:::upers 8.:Jv i nl~1s)
(C 1 assV,:;r i .:Jb 1 e:s)
(InstanceVariables (Child NIL doc

(MethodFn:5;))

(ic I~ 11 i I tj re 11 Ijf (I b j e (: t
in b rV·lse r),))

Figure 12.3. Spec i a 1 Say i ng s With instance variable, Chi 1 d, added

CREATING A.N ACCOUNTUSE CLASS

12.4 Creating an AccountUse Class

Create a class named AccountUse to be used for creating the
instances that represent the various categories in a budget.
AccountUse is not a specialization of any of the bank classes;
use Oef i neC1 ass and then use AddRoot to add it to the bank
browser.

Give AccountUse the instance variable, Ba 1 ance, with a
default value of O. Ba 1 ance holds the amount of money
budgeted for each item. Next, add the instance variable Ch i 1 d
with a default value of NIl. This holds the list of subitems to be
represented in AccountB rowse r.

When you are finished, the AccountUse class should look like
Figure 12.4.

DEdit of CLASSES #.($ AccountUse)
((MetaClass Class doc

Edit.ed:

(::: u per' :5: 0 b .j e c t) .

(* 0:: 13.5S f(J r i tl :=:t2t.tl (: I?! 5

.... ·m i (: ~l • ... · .. i II re p re :::e tlt
t. ulj gl?!t ite tl'1:::)

(* e,jite,j: ~
.. 22·I'·Jov· ;:;e 17: 1 7"))

(C 1 a :~: :5; V a r' i a b 1 e s ')
(InstanceVariab~es (Balance 0 doc

(Child NIL doc
(r.1ethoeJFn:5:))

ct. amount of tl'lOt1e'~' itl
bU,jgl?!t item») .
(* bu.jget :::ut.item5»))

Figure 12.4. The class AccountUse with Its Instance variables added

12.5 Setting Up the Budget Tree

11 <1

In this section, a set of instances are created and linked through
Ch i 1 d variables.

Fist, create an instance of Special Savings named
MySpecia1Savings. Now create a set of instances of
AccountUse to represent budget items. Name them
Bus i ness, Schoo 1, Pe rsona 1, save, and spend.

The main budget items of the account will be Bus i ness,
Schoo 1, and Pe rsona 1. Therefore, the value of Ch i 1 d for
MySpecia1Savings should be a list containing pointers to
these three instances. The browser uses these pointers to display
the instances as subinstances of MySpec i a 1 Say i ng s. The
easiest way to put them in is to use the inspector. Open an
inspector for MySpecia1Savings and select Child with the
left button. Then hold the middle button and select Pu tVa 1 ue.
When prompted, type:

(LIST ($ Business) ($ School) ($ Personal»

CUSTOMIZ'~.jG :"()OP<; TOOL C;

SETTING UP THE BUDGET TREE

the value of Child should change to:

(#.($ Business) #.($ School) #.($ Personal»

Now use the inspector on Pe rsona 1 to make save and spa..d
be subinstances of it. Its Chi 1 d should look like:

(#.($ save) #.($ spend»

12.6 Creating a Browser Instance

12.1 Using Your Lattice

An AccountBrowser instance can be created by typing:

(~ (~ ($ AccountB rowse r) New) Browse ($
MyAccount»

A browser as shown in Figure 12.5 should appear.

Account Browser

................ Business

.......... ~_---- School
MyAccount '-E:.--

-.. -.-.. _---... Personal _---- save
=::=------ spend

Figure 12.5. AccountB rowse r for Spec i a 1 Sav i ngs

Remember, this lattice shows a series of instances, not classes.
Unlike a ClassBrowser, this browser shows a lattice only if
explicitly set up using sub IV.

The instances and the browser displayed are not very useful.
They simply show the way money in MyAccount is budgeted.
However, they can become useful if the method CheckBa 1 ance
is added to the classes of the instances displayed.
CheckBa 1 ance will check the values of Ba 1 ance in each of the
objects in MyB rOllse r and make sure that the values of
Ba 1 ance in any object's subobjects add up to the object's value
of Ba 1 ance. For instance, if Pe rsona 1 has a balance of $100, its
subobjects, save and spend, should have balances that add to
$100.

Because there are instances of two different classes in the budget
tree, the CheckBa 1 ance method must belong to both
Spec i a 1 Sav i ngs and AccountUse. Each one is simply given a
copy. Think about how both might be made to inherit the same
method.

Begin by creating the method
Spec i a 1 Sav i ngs. CheckBa 1 ance as shown in Figure 12.6.

USING YOUR LAT1KE ---

1 Z Ii

DEdit of function SpecialSavings.Check8al
(Method
'((SpecialSavings Gheck~alance)

::;e 1 f) (:f! ~(ljt~lj:

{* tl'1 ettl!) ,j to (:.1 e (: J.:. if
t1uljget bB.I;!I.tl(:~:;)

(if (NULL (@ Child))
then .:: @ ~,.31 ance)

else
(if (EQUAL (I~ Sa 1 ance)

(for ::<
in (i~ Chi 1 d ")
surn (I~ ::< ~, .3 1 an c e)))

then (!~ Ba 1 ance)
else (PRINT

"ERROR IN ACCOUNT ~,ALANCE"
P R (I tr1 P T 1",1 I N D (I 1,',1))))

Figure 12.6. The method CheckBa 1 ance

Copy this method from Spec; a 1 Sav; ngs to AccountUse.

Now the CheckBa 1 ance method can be tested. Give each
budget item a balance. If an inspector is open for any of them,
use that inspector. If not, click the middle button over the
budget item names in the AccountS rowse r and select the item
Ed; t from the menu. This is a new way to alter the local values
of instances. The same menu can be used to open up inspectors.
This menu, and the others that are easily discovered, are
inherited from InstanceBrowser.

Once values have been given to the. budget items, send the
message CheckBa 1 ance to any and all of them. Try creating
balanced as well as unbalanced budgets to make sure both work
properly.

The information displayed when the budget does not balance is
not very useful. Consider altering CheckBa 1 ance to pri nt out
information about exactly what does not balance and where.
Also consider how to set up a system in which the various budget
items would actually be subaccounts. That is, credits and debits
would be sent to a specific part of the budget. The balance
would be updated at that part of the budget as well as in the
overall balance of the account.

13. USING MASTERSCOPE WITH
LOOPS

The Masterscope program, used to analyze programs in
Interlisp-D, is also used with LOOPS piograms. If you are not
familiar with Masterscope, see the Masterscope chapter in
Interlisp-D: A Friendly Primer and in the Interiisp-D Reference
Manual.

As programs become larger or more complex, it can become
difficult to keep track of which objects send messages, read the
values of variables, or put the values of variables in other objects.
Masterscope is a tool that allows you to examine the structure of
programs. It is able to analyze LOOPS programs to see how
objects interact with each other.

13.1 Masterscope Verbs for use with LOOPS

SEND

SEND SELf

SEND NOTSElF

SPECIALIZE

GET

GET CV

PUT

PUT CV

USE IV

USE CV

USEOBJECT

LOOPS adds a serie,s of verbs to Masterscope so that 'relationships
peculiar to LOOPS can be analyzed. Here is a selection of those
verbs (see The LOOPS Manual for a complete list):

sends the message

sends the message to self

sends the message to other than self

specializes the method

gets the instance variable

gets the class variable

sets the instance variable

sets the class variable

gets or sets the instance variable

gets or sets the class variable

references the named object

13.2 An Example of using Masterscope

Masterscope commands are invoked by typing a period followed
by a space followed by the command. if the banking example is

AN EXAMPLE OF USING MASTERSCOPE

stored on a file, try Masterscope on it. The first step is to have
Masterscope buiid up a data base of the reiationships in the file
by typing:

ANALYZE FUNCTIONS ON BANK

Your screen looks like Figure 13.1 after doing this.

Top level -- Connected·io·. {DSK}<lISPFILE

NIL
87~, ANALYZE FUNCTIONS ON BANK

'JQ~ I
,~.~ : ,done

I
Figure 13.1. USing Masterscope to analyze the Ba:1k.Account example

To find out where C red i t messages are sent from, type:

· WHO SENDS Credit
To find out where a Ba 1 ance variable is referenced:

· WHO GETS Balance
· WHO USES IV Balance
Figure 13.2 shows the results of some Masterscope commands.

Top level -- Connected to {DSK}<USPFILE

NIL
a~ WHO SENDS Credit
NIL
5~. WHO SENDS Debit
(Checking.WriteCheck)
6~, WHO GETS Balance
(GenericAccount,Credit

GenericAccount.Debit
Savings,ComputeInterest)

;~ WHO USES IV Balance
(GenericAccount,Credit

GenericAccount.Debit
Savings,ComputeInterest)

'-1 .
o~

Figure 13.2. USing Masterscope on tne aank ACCGunt example

The Masterscope command DESCRIBE includes information
about sending, getting, and putting. DESCRIBE can be used
with LOOPS methods. For example, to get a description of the
method Gene r i cAccount. Deb i t, type:

. DESCRIBE GenericAccount.Debit

The results of calling the Mac;terscope comrnand DESCRIBE are
shown in Figure 13.3.

AN EXA:viPl::: OF USING MASTERSCOPE ---
Top level - - Gonnected~ ttt:- {DSK } <liSP FILE

NIL
3~. DESCRIBE GenericAccount.Oebit
(GenericAccount .Debit)

calls: ~@JLET,CONS,OATE,@,
01 FFEF:ENCE

binds: self,OebitAmount
put :3: I',,' .::. (I f :3 elf : Deb i t H i :3: t (I r·~ ... ,

B.:J l':Jnce
1~1 e t :3: I',,' :::. (I f :3: elf : 0 e bit. H i :3: t (I r·~ ... ,

B.~ l.jnce

NIL

Figure 13.3. The Masterscope command DESCRIBE

SOME CJiSING '.NORDS

SOME CLOSING WORDS

This primer is designed to tell just enough about LOOPS to get
you started. Early chapters discuss the concepts of object
oriented programming and the LOOPS implementation of those
concepts. Later chapters present standard tools, design
techniques, and methods for modifying the objects provided in
the LOOPS environment.

It is now time to use this material on tasks that are more
interesting and relevant than the Bank Account example. Here
are some useful suggestions for next steps in lOOPS.

LOOPS lends itself to exploratory programming. We urge you to
take the ideas in this primer and begin to develop preliminary
versions of your system in LOOPS. There are development
projects where LOOPS was used to implement 15 to 20 different
versions of a system before it was exactly right. The LOOPS
interface provides both a programming tool and a thinki ng tool.
As you develop a new system, each preliminary version provide ..
an object for th<?ught and discussion. The preliminary versions
are a crucial part of the design process.

As you gai n some more experience with LOOPS, we suggest you
skim the entire LOOPS Reference Manual. By becoming familiar
with this manual you learn where to look when you need a
feature that is too obscure or tricky to be covered in ~his primer.

The truly adventurous LOOPS user should also consider looking
at the definitions for objects provided by the system. All the
predefined lOOPS classes exist in the class lattice and can be
inspected and browsed just like user defined classes.

For more information on how the LOOPS language was created
and defined, we recommend the article:

"Object Oriented Programming: Themes and Variations", Mark
Stefik and Daniel G. Bobrow, Artificial Intelligence Magazine,
Winter 1986, Vol. 6, No.4, pp 40 - 62.

For an interesting discussion of future trends in object oriented
programming, we recommend the article:

"CommonLoops: Merging Common LISP and Object Oriented
Programming"; Daniel G. Bobrow, Ken Kahn, Gregor Kaczales,
Larry Masinter, Mark 5tefik, and Frank Zdybel; Xerox Palo Alto
Research Center, Intelligent Systems Laboratory Series, ISC-85-8;
August 1985.

Good luck!

1ill

A WORD ABOUT NOTATION

(An i IRa 1 (NTVO. OX: • P%] 7 • %[@) . 4)) This is the way the system prints an instance. The unintelligible
string of characters after the name is called a unique :dentifier or
UID. Since instances are not required to have names, a UID is
generated for each one.

4.1 Variables

4.1.1 Reading Instance Variables

4.1.2 Setting Instance Variables

4. VARIABLES, METHODS, AND
MESSAGES

This chapter describes how to access the variables in LOOPS
objects, how to create and move a method, and how to send
messages.

By the end of this chapter you will know the basic information
necessary to implement complete LOOPS programs.

In the previous chapter, you learned how to examine and set the
values of variables using the inspector or the editor. In this
section you will learn about four basic forms for reading and
setting instance variables and class variables in a running
program. Beginning with this chapter, we use iv for instance
variable and cv for class variable.

The syntax for reading an instance variable is:

(@ object ivname)

To see how variable access works, type:

(@ ($ Billy) Haircolor)

It should return Blond. Note that the ivname (Ha i rCo lor) is not
evaluated and thus should not be quoted.

Top level -- Connected to {DSK}<LISPFI

/--_'1 •• -_-.,.... I·.·. liI_ .. ·t· Ci' 1 1 \ H . 1-' 1 \ I •. 'j:' L" ;/ ..' a , r' _, 0 (I r' ..'
e. lond

Figure 4.1. USing the @ function

To set an instance variable, the syntax is:

VARIABLES ---

4.1.3 Reading Class Variables

4.1.4 Setting Class Variables

(+-@ object ivname newvalue)

Try changi ng the value of Bill Y , s Hatsize to 8 by typing:

(+-@ ($ Billy) Hatsize 8)

If you still have your inspector window for Bi 11 Y open, you may
have noticed that the value of HatS i ze did not change.
Inspectors do not automatically update themselves when values
are changed. To see the change, select Refetch from the
inspector's title bar left button menu, and Bi lly' s Hatsize
value changes to 8 as shown in Figure 4.2.

All Values of Man ($ Billy).
D .;j tel) f e. i r' 1:. h 0
He.;jr· tR.;jte 0
H.;jt::;: i ze 7
Hair-Color'
Muscles
ee.;jr·d

e. lond
B i I~
T

Figure 4.2. Instance variables and values for Billy

The syntax for reading class variables is similar to that for
instance variables:

(@ object : : cvname)

Note the double colon (::) prefixing cvname.

Try typing:

(@ ($ Person) : :Legs)

The value 2 should be returned as shown in Figure 4.3.

Top level -- Gonnected to {DSK}<LISPFI

NIL
64~ (@ ($ Per'::;on) :: Le,~ts) .-,
L

65~

Figure 4.3. Fetching the value of a class variable

The syntax for setting class variables is also very similar:

(+-@ object : : cvname newvalue)

Change the value of Pe rson • s class variable, Legs, to 4, by
typing:

{~@ (S Person) ::Legs 4)

Now change the value of Pe rson' s Legs back to 2.

4.1.5 A Note of Caution

4.2 Methods

4.2.1 Creating a Method

\ I 1\ n I 1\ I i (" t\..., r "7 , 1, ('" I\:\.! r-'\ i\ 11 Lee" .-: :: (

VARIABLES

Much of the modularity of an object-oriented program is derived
from aiiowing only an object's methods to read or change that
object's internal variables. Typically, reading and setting is done
through particular messages that enforce constraints to maintain
consistency among an objects's variables. LOOPs does not
enforce this modularity; any object may read or set the variables
of another object. You should use this capability carefully. @ and
+-@ should be used mainly inside the methods of an object to
access that object's variables -- including any variables inherited
from its supers.

Each class has a set of methods which establish what that class
can do. Just as with variables, a class inherits all of the methods
from its supers. Because methods are defined in a class, all
instances of the class have the same methods and behave in
basically the same way. Any differences in behavior are due to
differences in the values of the instance variables in each
instance.

For the example, add the method WhoAIlI to the class,. Man.
Bring up the editing menu for Man and select Add(AddMethod)
from the editing menu. You are prompted for the name of your
method. Once you have typed in the name you are
automatically put into DEdit with a method template to edit, as
shown in Figure 4.4.

DEdit of function Man.WhoAml
((M.:] n 1",1 h (I A fI1 I)

:~: elf ,) (* o:!.jite,j;
···14·r··JO·· ... ·;:;J3 19:15")

(+: Ne ' .. 0.,' t11 etl1 (l.j te m p 18.te":l
.. .::,. L- -. 1 - .-.. -. R - .-. . -' .-. . L • 1 . t ' ,', " . I •. ,.:" U ~J 1_. ,j .:; .. :;. " e. .:;. fJ un.:;. 1 ,) 1 1 .. ~.' } }

Figure 4.4. New method template for Man's method WhoAIlI

A method is a special kind of function defined by LOOPS. Note
that the function type, instead of being LAMBDA or one of the
other Interlisp-D function types, is Method. The first argument to
a Method function is always a list containing the object in which
the method is defined and the name of the method. The second
argument is always self. Self is bound to the object that receives
the message when the method is run. Methods use self to access
the variables and other methods of the object. If a method has
other arguments, they follow self.

METHODS

4.2.2 Moving a Method

44

First, document the method by replacing (* New method
tellp 1 ate) with:

(* lIethod to print a description of an instance
of Man)

In general, comments can be added to methods just as they are
added to any other kind of function.

Replace (SubC 1 assRespons 1 b i 1 i ty) in the body of the
method with:

(PRINl -I CUI -)
(PRINT self)
(PRINl -I was born on -)
(PRINT (@ DateOfBirth»
(PRINl -My haircolor is -)
(PRINT (@ HairColor»
(PRINl -My hatsize is -)
(PRINT (@ Hatsize»

The call to the function, SubC 1 assRespons i b i 1 i ty, is more
than a place holder. If you forget to edit a method, it causes a
warning if the method is run or compiled.

When finished, your defined method, WhoAIII, should look like
Figure 4.5 below.

DEdit of function Man.WhoAml
(Method ((Man WhoAmI)

:s:e 1 f) (ie ~(Jite'l:
"·17·1'·~ov-86 17:13")

(* "' .. 1 @tl1t)tl to p ri tlt ~.
d @ s(: ri pti I) n (If an i n :::t~.tl (: @ l)f

r ... 1an)
(PRINl "I am ")
(PRINT s:elf)
(P R I N 1 II I 1:1 a :~ b 0 r n I) nil)
(PRINT (@ OateOfBirth))
(PRINl liMy haircolor i:~ ")
(PRINT (@ HairColor»)
(PRINl "M~i h':Jtsize is II)
(PRINT (@ Hatsize)))

Figure 4.5. Man' s method WhoAIl I

Did you notice something different about the variable access
expressions? There is no object argument in them. They could
have been written in this form:

(@ self OateOfBirth)

However, because variable accessing is meant to be done mainly
from inside methods, the argument object is automatically
assumed to be self if it is left out.

As a LOOPS program is developed, it is often found that a
method is in the wrong plac~ in the class lattice. !n our example,
it is clear that the method WhoAIiI applies to WOllan as well as to
Man. Therefore it should be moved up to Pe rson where it is

VARIABLES METHODS . ..).. \JD VC<;"~GE<:;

4.3 Messages

\/I\OII\DI c.: r: ""!.-"Tl_~~r'.C 1'\1\11\.1\"rC'C"/\,-rC'

METHODS

inherited by both classes. Bring up the editing menu (middle
button) on the ciass Pe rson in the browser window and select
Box Node. This puts a box around Person to show where the
method should go. Next, call the editing menu on Man and select
Move (MoveMethodTo) A pop up menu appears with Man's
methods as its items. (See Figure 4.6.) To complete the move,
select WhoAIiI from this menu.

_----- Man
A.n ••• • r. n •• a.1 -----11 Da. .. C!nn 1 =---- '" "'''''" ., -------- Wornan

Figure 4.6. Pop-up menu with Man • S methods

To check that Person has received the method WhoAm!, bring
up the information menu (left button) on Pe rson and select
P ri ntSumllary. The summary of the class Pe rson is printed as
shown in Figure 4.7. Under Methods, the method WhoAIiI is
printed in bold type to indicate it belongs to Pe rson. If you
PrintSummary for Woman, the WhoAmI method is listed, but not
in bold because Woman inherits this method from Pe rson.

Top level -- Connected to {DSK}<LISPFIL
#.($ Person)

Supers
Animal

IVs
HairColor Ha tsize
OateOfBirth HeartRate

CVs
Legs Marnrnal
H I~ S E ~II e sIs L i v ina.

I
MethOdS -

. WhoAml

Figure 4.7. Summary of Pe rson

Message passi ng -- objects sendi ng messages to other objects --is
the main activity of programs written in object oriented
languages. When an object receives a message, it runs the
appropriate method. After running the method, the object
returns some value to the sending object. Generally the method
causes some side effects to happen as well. Often these side
effects i nci ude sendi ng messages to other objects. You have, for
example, already sent the message New to cause the method New
to create instances.

MESSAGES

4.3.1 Syntax of a Message

object

selector

argument(n)

4.3.2 Sending a Message

46

The syntax of a message is:

(+- object selector argument 1 argument2 .•.)

activates, or sends, the message.

is the object to which the message is sent. This object is bound to
self in the body of the method definition. This argument is
evaluated.

is the name of the method that is to be invoked by this message.
This argument is not evaluated and should not be quoted.

are bound to the corresponding arguments in the method
function. These arguments are evaluated.

To send a message with selector WhoA1i1 to the instance Bi lly,
type:

(+- ($ Billy) WhoAIII)

The result of this message is displayed in Figure 4.8

Top level -- Connected to {DSK}<LISPFI

84~(~ ($ Billv) WhoAmI)
I a~ #:($ Bil~0) .
I ',.,ld:5: born on 0
My haircolor is Blond
M~ ... hat.:5: i ze ;:s: 7

Figure 4.8. Output when message WhoAIi I is sent to Bill Y

When an instance receives a message, it matches the selector of
the message with the names of its own methods. These methods
include those that are inherited from the supers of the instance's
class. If a match is found, the method is run. If no match is
found, an error occurs.

It is quite possible for different classes to have methods with the
same name, but with very different method bodies. This allows
objects to communicate with other objects in a standard way
without the sender worrying about internal differences in those
objects. For instance, there might be many different WhoA1i1
methods using different bodies. As long as they all print out a
description of the object to which they are sent, they are all the
"same" method as far as other objects are concerned.

'jARIABLES METHODS u.\j)\:1>::;SuGr=:;

5. SAVING LOOPS PROGRAMS

5.1 Using FILES? and MAKEFILE

CI\\/lI\lr: I r'lr'IDC DDr'lr.::>I\i\I1C

All of the eiements of a LOOPS program can be saved on files in
the same way that work is saved in Interlisp-D. The function
F i 1 es? is used to add newly created objects, methods and
instances to files. The function MAKEFILE is used to write a file
to a storage device.

When you type:

(FILES?)

any class definitions, methods, and instances which are not
already associated with files are listed {along with standard
Interlisp-D entities such as functions and variables}. You are then
asked if you want to specify their destination files. If you type Y
(for yes), they are listed one at a time. After each, type the name
of the file it is to go in. An example is shown in Figure 5.'.

Top level -~ Connected to {DSKl(USPFIL

91.;.(FILES?)
the methods: Person.WhoAmI
... to be dumped.
the in::;: t .j n c e :::: .J e f f ~ B ill ~... . . . to bed u m p ed,
the class definitions: Animal,Woman,

M.jn, Per'son ... to be dumped.
want to say where the above go ? Yes
(methods)
Person.WhoAmI File name: EXAMPLE
(in::: t oj nee::: ")
.Jeff NOI ... lher·'e
e, i 11~... NO'.·.lher'e
(class definitions)
An 1 riEl 1 F i 1 e n .j me: E ~< AMP L E
1,1,lom.jn E~<AMPLE

M.j n E >~ A rl1 P L E
Per' son E>~AMPLE
NIL
92.;.

Figure 5.1. U$Ii1<;; t!;e f~lnctlon FILES?

USING FILES' AND MAKE FILE

502 Using the FileBrowse·r

I) 2

Note that we chose not to save the instances Jeff and Bill y,
although they could have been saved as well. It is often just as
easy to recreate instances from their classes as it it to save them
on files. In some cases, instances may be the product of a
particular run of a LOOPS program ttnd should not be saved since
the next run will produce different instances.

Note how methods are named. Pe rson. WhoAmI is the WhoAmI
method for the class Pe rson. This naming convention is
followed outside of the actual LOOPS code and LOOPS browsers.

To write out a file, you can use MAKEFILE (or MAKEFILES) as
you would for any Interlisp-D file:

(MAKEFILE 'filename)

The file, EXAMPLE, which was created in Figure 5.1, is written to
the hard disk in Figure 5.2.

Top level·~-- Connected to {DSK}<LISPFIL

97~(MAKEFILE "EXAMPLE)
{OSK}<LISPFILES)REES)PRIM)EXAMPLE.;l
9i3~

Figure 5.2. Saving an example file

After a long session of creating and editing LOOPS code, it can
be rather tedious to have to inform the file package where each
method, class and instance should go. Also, if the system you are
developing is big enough to be stored in more than one file, it
can be difficult to decide which objects go in which files. The
convention is to store an entire sublattice in a file. Methods
should go in the same file as the classes to which they belong,
subclasses should go in the files of their supers and instances
should go in the files of their classes. If things are not stored in
this way, the files have to be loaded in a very particular order. A
method can not be defined for a class that does not exist; a class
can not be defined if its super does not exist, and so on. In the
worst case, it is possible to create files which can not be loaded in
any order.

LOOPS provides a file browser (FileBrowser) to simplify adding
classes t3nd methods to files. This browser should not be
confused with the library package, FILEBROWSER. The LOOPS
file browser is very similar to the class browser you have already
beer: using. Th~ FileBrowser can be used instead of the
ClassBrowser whenever you want to create new items and save
them in a fi Ie. it is also useful when you want to see what classes
and methods are in a given file. The class browser operations

USING THE FILEBROWSER

you have alr~ady used, such as creating and editing classes and.
methods, are performed in exactly the same way using the
FileBrowser as using the ClassBrowser.

In order to illustrate the FileBrowser, you will create a file and
put a class, a subclass and a method in it. Because the only
reason for the existence of the classes and the method is to
observe how the FileBrowser works, they will be "dummies" -
they will not do anything.

To begin, hold the middle button in the loops icon and select
Browse F i 1 e, as shown in Figure 5.3.

Figure 5.3. AcceSSing the FileBrowser

The File List appears as in Figure 5.4.

File list
- ne··.·vFile- f·

E :::(.6. r·· ... ' P L E
HRULE
Ir··.··1TEDIT
Ir··.··1TC)OLS
I ~·.··1 TF: ,6. I'·J

Figure 5.4. The menu from the Browse File selectlon_

Select *newfile* and then type a file name in the prompt
window. \Ve are using the name FBEXAMPlE, but it does not
matter what name yOU use. Do not use the name of an existing
file. A completely empty FileBrowser should appear as in Figure
5.5.

rIB?M.li.fm4i(14:yam.IC:ij~1:t:f;1~I~"

Figure 5.5. An empty FtieBrowser

To browse a file that was already loaded, you could have selected
its name from the File List menu. To load an existing file, you
could have used *1 oadf i 1 e* from the submenu of *newf i 1 e*.

Now you can create a root class for the FileBrowser. Unlike the
ClassBrowser, the FileBrowser allows you to create the root class
from a menu, so you do not have to use Oef i neC 1 ass. Click the
middle button in the FileBrowser's title bar to get the menu
shown in rigur~ 5.6. Note that the first three items are exactly
the same as those in the ClassBrowser title bar menu. Select
AddRoot and type in some class name at the prompt. In our
example, thE' name is not important. We are using the name
ACl ass- 8ecaU5e adding a root to a FileBrowser also adds it to a

-------------------_._---_._-
C/\\II1\tr:.! /1.r"\nc "nf""'\rnJ\l\JH"

USING THE FILE BROWSER

file, you are dsked to confirm this operation by click)ng the left
mouse button.

F:ecornpute }
.~.ddF:oot }.

,~, d d C ~3.te i~t 0 r':/ r·· ... l en u
C h ~.n I:t e (~i::: f:: I ;;;to '",1 rn 0 d e ?-.

- Use"3 I 'v' ,~. i-.
Ec~it File (::.:.r-r-"I::; ~.
CLE.~.t'·JUP file ;:::.

Figure 5.6. Tr~e Fdt=-Browser title bar menu

Now use the cia55 edit menu just as you have before (click the
middle mouse bu t;:on over the class name) to give your roo·t class
at least one subclass, and add at least one method to one of your
classes. (\Ne have named ours ASubC 1 ass and OneMe thod.) For
this example, it is not necessary to actually edit the classes or
methods.

As you create items with a FileBrowser, they are automatically
put into the file corns list. This is a data structure maintained by
Interlisp-D that describes the contents of a file. To see the result
of your work, bring up the title bar menu again and select Edi t
F i 1 e COliS. You should see, as in Figure 5.7, that everything
you have created with the browser is already in the file corns.

DEdit of variable F8EXAMPlECOMS
{:fc Fi Ie (: re ;:..te.j D y ")

(CLASSES AClass ASubClass)
(METHODS ASubClass.OneMethod)
(FN8)

"
· I", C, .~. ~I

I 1.1 HF-, ,_, ,

(I N:::T ANCES))

Figure 5.7. DEdit of Fde COMS varrable

Now, type (FILES?). It is still necessary to do this to make sure
that instances and any auxiliary Interlisp-D functions are properly
included in files. However, for this example, the only message
you should see is that your file needs to be dumped. As always,
the final step is to use MAKEFILE to write out any files that need
to be dumped. For our example, type (MAKEFILE
• FBEXAMPLE).

In the chapters that follow, we use the ClassBrowser in our
figures. However, if you wish to save the examples you create,
you can use the FileBrowser. Remember that while the
FileBrowser has some extra menu items for dealing with files, the
basic menu items for creating, modifying, and displaying LOOPS
objects and the LOOPS lattice are exactly the same in the
ClassBrowser and the FileBrowser.

6.1 Designing the Program

Savings Account

Checki ng Account

NOW Account

6. THE BANK ACCOUNT EXAMPLE

In this chapter you write a program that integrates all that has
been covered so far. This example is used again in Chapter 9. If
you think you might not have time to cover both chapters in one
session, use the FileBrowser (see Section 5.2) instead of the
ClassBrowser to make it easier to save this program on a file.

Your goal is to write a program that defines and keeps track of
different types of bank accounts. The types of accounts to
include are:

A savings account must contain a record of the balance as well as
a history of deposits and withdrawals. It must also store the
current interest rate and compute the interest earned.

A checking account must similarly contain a record of the
balance and a history of deposits and withdrawals. It must also
maintain a list of check numbers coupled with the amounts and
dates of the checks written.

A NOW account is a combination of a savings account and a
checking account. Checks can be written and interest is earned.

These accounts all have some operations and variables in
common. You design your class lattice structure by determining
the operations and variables common among the objects.

First, you define a class, Gene ri cAccQunt, which consists of
those variables and methods common to all of the accounts.
Figure 6.1 shows a representation of the class lattice you are to
develop. The classes are shown along with their instance
variables.

DESIGNING THE PROGRAM

6.2 Creating the Classes

62

/

GenericAccount

CreditHistory
OebitHistory

Balance

Savings
CreditHistory
OebitHistory

Balance
InterestRate

Checking

CreditHistory
OebitHistory

Balance
CheckingHistory

NOWAccount

CreditHistory
DebitHistory

Balance
InterestRate

CheckingHistory

Figure 6.1. Inheritance lattice for Bank Account example

The class Gene ri cAccount can add in deposits as credits,
subtract out withdrawals as debits, and update the balance. The
rest of the lattice structure.comes naturally from the definitions
of the accounts given above. Notice that we have given
NOWAccount two supers: Sav i ngs and Check i ng.

First, create all of the classes you need. Then you can go back
and fill in the class variables, instance variables, and methods.

To create the root node, Gene ri cAccount, type:

(OefineClass 'GenericAccount)

Next open a browser for Gene ri cAccount. Then, create two
specializations of Generi cAccount: Sav i ngs and Check i ng.
Your browser window should look like Figure 6.2.

Class browser

_--------- Savings
GenericAccount -

--------- Checking

CREATING THE CLASSES

Figure 6.2. Lattic.e wIth Say i ngs and Chec Ie; ng classes added

NOWAccount has 2 supers, so the process of creating it is a little
different. First, create it by specializing Say i ogs. Then bring up
NOWAccount's editing menu and select AddSupe r from the
'""h "'+ AAAI"AAU ~h~A\ T\I ... 'O rh rLr;nn;,.. +h"" r"' +
;)ULlIII'I;IIU VI nuu\"uur vu/. '1"'''" " " ~ "' ~II,," ""VIII""~

window. Your browser should look like Figure 6.3.

Class browser
_------ Sa. vings ----___ .

GenericAccount -- ---
--------- Checking --------. NOW Account

Figure 6.3. Browser IncludIng NOWAccou n t

Now that the entire lattice is created, you can edit each class.

6.3 Editing GenericAccount

Start your class definitions with GenericAccount. Bring up the
editing menu (middle button) on Gene ri cAccount in the
browser window and select Ed; t(Edi tC1 ass}. Document
GenericAccount by adding the following between Class and
Edited in the class definition template:

doc (. the generic type of bank account; defi~es the basic
things needed for all kinds of accounts)

6.3.1 Adding Variables. Values. and Documentation

TL .. H: Qi\1\11l' (I .. rrlllll\lT CYi\ilf1DI C

Gene ri cAccount has only one class variable since only one
variable has a value that is the same for every account. Add the
following after C 1 assVa r i ab 1 es in the template:

(FDIClnsured 100000 doc (. all accounts insured by federal
govern.ant to $100.000»

All of your accounts have a credit history, a debit history, and a
balance. Since each account has different values for these
variables, CreditHistory, DebitHistory, and Balance are all
implemented as instance variables.

CreditHistory and DebitHistory will keep lists in the form of
(CreditAliount • date) and (OebitAliount • date). To
insert these instance variables into your Gene r; cAccount class,
add the following variables, values, and documentation to the
list starting with Ins tanceVar; ab 1 es in the template:

(CreditHistory NIL doc (. a list of (CreditADount . date) to
tell the credit history»
(DebitHistory NIL doc (. a list of (Debi~unt . date) to
tell the debit history»
(Balance 0 doc (. the current balance of the account»

EDITING GENERICACCOUNT

Note that rtIl is the default value for CreditHistory and for
DebitHistory. When you are finished editing, GenericAccount
should look like Figure 6.4.

DEdit of CLASSES #.($ GenericAccount)
«MetaClass Class doc

E,j i ted:

(::: u per' :5= 0 b .j e c t)

(* tl1~ 9~t1~ri(: t:~'p~ ,)f
tl ;!I.tl K 9.1:;': I:;': I) U tit .. Ij ~fi t1 ~=
ttl >!! b asi (~ ttl i tl!J:5 tl ~ ~ Ij
fol' all Kil'l.jS of
8.C C IJ U tlts:)

(* ~ Il it€! Ij:
;"1 S-t-·J(f •.• · - ;::6 1 4: 1 S"))

(ClassVariables (FDIClnsured 100000 doc
(* all 8.CCOUtlts
rt1SUr~d b· ... ttl~ f~ll~r;:t.l
g o'",'e rml1 e-tJ! to
$1 OQ~OQO)))

(InstanceVariables (CreditHistory NIL
doc

(* ;:t. list I"lf ..
'::t'eljiw,.rl'ioLJnt . ,j8.t~)
to t~fI ttle Grellit
~li :.::tory))

(DebitHistory NIL doc

(r.1 e t ti 0 (~ F n s))

(:+< 3. list I)f ..-

(I e b itAo.rn I) U riOt , Ij c.t€!) ,0
t€! II ttl ~ Il ~ b it rl i :::to r:{:".1
(:+< tl1€! I:: u rre t1t tl 8.18.tl (: €!
(If ttl€! ~.(: (: 0 LHlt)))

Figure 6.4. Instance and class variables In Gene ri cAccount

6.3.2 Defining Credit and Debit Methods

All of the accounts need methods to credit and debit the
account. First, you define the method, C red it, which takes a
deposit, adds it to the balance and updates the credit history.
Begi n by using the browser edit menu to add the method
Credit to GenericAccount. When the DEdit window
appears, add the argument, CreditAmount, after self. Add the
appropriate documentation then type the following code in
place of (SubC 1 assRespons i b i 1 i ty) in the body of the
method:

(~ CreditHistory
(CONS

(CONS Credit~unt (DATE»
(@ CreditHistory»)

(~ Balance
(PLUS

(@ Balance)
C redi tAllOunt))

(@ Balance)

The results should be as shown in Figure 6.S. Note that the
method returns the new balance.

EDITING GENERICACCOUNT

GenericAccount Credit)
elf CreditAmount) ,

(* ~,jit~d:
"1 !5-!',Jo","-;:;6 14:213")

(+: * ,~,Ijlls (Cr~'ljW.,tl10lHlt , Ij;:'.t~) to
tr~ (1 itH i:;to r'" ~.tllj 8. lj Ij:; ere Ij it.:!..tn t) LHlt t(1
E; 8.1 it.tl (: €!) -

(f-I]

Cr'ed i t,H i :~t.or·I",1
(CONS (CONS treditAmount (DATE))
, I' lEI I t-· - -J,' t H " ,-. t - r-'" 'I ' , ' ',_ _, e t~ _' ,:;. ... u ~...,),.1

{ f- fil
'. -
Balance
(PLUS (@ Balance)
, 6reditAmou~t))

,r l-d f:::.l----'I'I "
'. _ 1 '....I .j t 11_: e" "

Figure 6.5. The' method C red it for Gene ri cAccount

Now define the method Deb i t. It is the same as C red it except
that it subtracts an amount from the balance. Overdrafts are
discussed below. Your method should look like Figure 6.6.

DEdit of function GenericAccountDebit
(tl1et,hod
((GenericAccount Debit)
se 1 f Deb i t.Amount.) (+: ~,jit~,j:

,"17-J8,tl-;:;7 15:42")

(~I~

(* :+: . .!:..Ijds (Oetl it8.tl10unt , Ilate) to
C. ~ tl itH j::to r'~ an 11 :!.U btrs,(: ts 0 ~ 0 ·it~.tl1 (I U tlt
fro t'tl E; 21.1 atl ~:: ~ ,)

Deb i tH; :~t,or'~l
(CONS (CONS DebitAmount (DATE)

(@ DebitHistory))))
(~I~
Balance
(DIFFERENCE (@ Balance)

DebitAmount.))
(I~ B a 1 an c e))

Figure 6.6. The method Deb it for Gene ri cAccount

6.3.3 A Simple Test of GenericAccount

Tt JL" n 1\ 1\11./ A rrl""'\l 11\11 LV /\ t\J1n, I."'"

Now, before defining the rest of the classes, test an instance of
GenericAccount to ensure that the methods Credi t and
Deb i t are working properly.

Create an instance of Gene ri cAccount, with the name
MyGene ri c, by sending the message New:

EDITING GENERICACCOUNT

6.4 Editing Savings

(~ ($ GenericAccount) New 'MyGeneric)

Now send a C red it message to MyGene ri c. Credit the account
with 1000 by typing:

(~ ($ MyGeneric) Credit 1000)

The new balance should be returned because we put (@
8a 1 ance) at the end of the method. To verify that the method
updated the instance variables correctly, inspect MyGene ric by
calling the function (INSPECT ($ MyGeneric». It should
appear as shown below in Figure 6.7.

All Values of GenericAccount ($ MyGeneri
Cr·editHi:5:t.or·~", ((1~11~H:1 , "15-No ... ··-e6 14:41:5
DebitHistory NIL
Balance 1000

Figure 6.7. Result of sending the message C red it

Now test Deb it in the same way. Try withdrawing 500 from
your generic account by typing (~ ($ MyGeneric) Debit
500). Remember to use Refetch in the inspector's title bar
menu to update the values shown there. It should now look like
Figure 6.8.

All Values of GenericAccount ($ MyGeneri
Cr'ed i tH i s t.or·~l
Deb i tH i stor'~1
e.a 1 anee

(" (1000 . "1S-No·· ... -a6 14: 56 : ~~1
i "Slit", "11=:_,·I",,·-·:·h 14' I=:F' , ';-'7' '. ',' ::,) _ I ,_, 4 ,_ I ,_, _ I __ I _I I '-

5~10

Figure 6.8. Result of sending the message Deb it

When Gene ri cAccount works properly, you can define
Say i ngs. Because Say i ngs inherited all of
Gene ri cAccount 's methods and variables, you only need to
add one additional instance variable which contains the interest
rate, and a method to compute the interest.

6.4.1 Adding Variables, Values, and Documentation

66

Add the variable, InterestRate, with a value of .05, to your
Say i ngs class. When you are done, your class should look like
Figure 6.9.

THE BO-NK A((OI ~;, ='(A\1P' c:

EDITING SAVINGS

DEdit of GLASSES #.($ Savings)
((MetaClass Class doc

Edited:

(Supers GenericAccount)
(C 1 oj :3: :3; V a r' i oj b 1 e:5:)

(* si t11l~ I 8.t~::: 21.
natl d s.rlj -=- 8:· ... i t1 q S
8.(:(: (lunt) .

(:f: e,jitE:(l:
....... ~ .. I.. •• .-•• -. __ . __ . __ • ". "

I ::.- ."·ott .. ' ',' .. ':·0 1::': I_II:. ..I..'

(InstanceVariables (InterestRate .05 doc
(:io; Ijef;;'.utt 8.1u~ Of
(me rE: rt rS.tei::: 5
P E: rc E: tlt")))

(r'1et~·lodFns))

Figure 6.9. Inserting Instance varlab!e !nterestRate!n Say i ng s

6.4.2 Defining a Computelnterest Method

Now you must define a method that computes the interest
earned, based on the current balance, and then adds the interest
to the balance. For simplicity, we ignore the length of time
various amounts have been in the account.

Add the method COllpute I nte res t to Say i n9 s and give it the
following body:

{~ Balance
(PLUS

(@ Balance)
(TIMES

(@ InterestRate)
(@ Balance»»

(@ Balance)

Your method should look like Figure 6.10.

DEdit of . function Savin~est
{Met.hod
t. • • •

((Savlngs ComputeInterest)
:5:e 1 f) (~ eljitE:lj:

.. ·15·No-· ... ·;:a:; 15;15")

(* ereljits ;!I.(:(:(JUtlt I ... ·.'inl
itlterert tI8.:::t!:!lj Otl Ule intere:::t
r8.te 8..n ,j ttl e (: U rrE: tlt
U 8.1 8.t1 (: e)

(~1i1
' .. -
Balance
(PLUS (@ Balance)

(TIMES (@ tnterestRate)
(I~ e,.:rlance))))

(I~ e.alance))

Figure 6.10. The method COIlPU te I n te re s t

67

EDITING SAVINGS

6.4.3 Simple Test of Savings

6.5 Defining Checking

Now you can test Say i nQS in the same way that you tested
Gene ri cAccount. Create an instance of Say i nQs called
MySav i ng s. Credit it with 1000 and debit it by 500. (Remember,
it inherits these methods from Gene ri cAccount.) Now send
MySavings the message COllputelnterest. Finally, inspect
MySav i nQs to insure that everything worked properly (Figure
6.11).

All Values of Savings ($ MySavings).
Cr'ed i tH i::; tt)r~.'
Oeb i tH i stor'Y
e.:, lance
I n t e r' e :~: t R .:, t. e

((1000 , "15-Nov-86 15: 23 : 5
((500 . "15-No"l-i3Ei 15: 24 : 05
525,0
, l~5

Figure 6.11. Results of Credit. Debit, and COllputelnterest on
MySavings

Next, define the class, Check i ng. Like your previously defined
class, Savings, Checking "has inherited all of
Gene r 1 cAccount 's methods and variables. You only need to
add one new instance variable and a method to write checks.

6.5.1 Add Variables, Values, and Documentation
The instance variable will contain the checking history. It will be
a list of triples. Each triple will contain the check's number, its
amount and its date. When you are finished, your class should
look like Figure 6.12.

DEdit of GLASSES #.($ Checking)
((MetaClass Class doc

Edited:

(Supers GenericAccount)
(C 1 a :~ ::;: ' ... ' ,3 r i ,3 b 1 e s ")

(* =.itfwl;:'.tes 8-
:::tatt d s.r,j .~ t1 e (: j.t:. in Q
;!t.(: (: I) U tlt) -

(=t. e,jite.j:
"'15· I'·Jov-;38 1 :3: 51"))

(InstanceVariab~es (CheckingHistory

)
(MethodFns))

Figure 6.12. The <-lass Check. I ng

NIL doc
(* Io:.eeps li:::t of
(CheckNumber .
. A.m I) u nt Oatt:!) tri pie ::.))

THE BANK ACCOIINT C:'<A:V1D !...:

DEFINING CHECKING

6.5.2 Defining a WriteCheck Method

6.5.3 Simple test of Checking

TUC: QI\!\II/ "rrr>,,!\,T CYI\I\110, C

You need a method to store check numbers, amounts, and dates
in CheckingHistory, and to update the Balance.

Add the method WriteCheck to Checking with the following
body:

(~@ CheckingHistory
(CONS

(LIST CheckNu.oer ~unt (DATE»
(@ CheckingHistory»)

(~ self Debit ~unt)

Your defined method looks like Figure 6.13. Notice the last line
of Wri teCheck. You have already created a method to debit an
account so Wri teCheck can use this method. Check i ng
inherits the method, Oebit, from Generic Account. The
debit message can be sent to self; that is, to the instance of
Check i ng which received the Wri teCheck message. This
example shows a way that methods can be built out of simpler
methods by having them send messages to self, just as functions
can be built out of calls to simpler functions. Note: when
sending a message, self cannot be omitted as it can in the @ and
~@ expressions.

DEdit of function Ghecking.WriteCheck
(Method «Checking WriteCheck)

Self CheckNumber Amount)
(* ~,jite,j:
'·'15·t-·JO··,···;38 15:45")

(~fa
I •• -

(* 3.ljds: a (Ctl~(:Io:Nutl'lD~r

.A.mount 03:te) tripl~ to
el1 ~c k.inQHistor''1 3.tllj Ij ~tl it:::
tn€! ;!I.c(:o-unt) .

Chec ~~ i nC1H i s:torv
(CONS (erST Ch~ckNumber Amount
. . (DATE))

(. -L .. H··· '"
~~ ~~eck'ng lstory}))

(~ self Debit Amount))

Figure 6.13. The method Wri teCheck for Check i ng

Now test Check i ng. Create an instance called MyCheck i ng and
credit it with 100. Write a check by sendi ng the message
Wri teCheck with the arguments 100 and 25.00. Then inspect
your instance. The result should look like the Inspector window
shown below in Figure 6.14.

All Values of Checking ($ MyChecking).
ered i tH i ::;t.Ot-'=l
Deb i tH i :~tor·~,.1
E.alance
Crleck. i n'~lH i :~:t.clr·y

((100 , "15-No·· ... -86 15: 50 :
((25 ,0 , "15-Nov-:::6 15: 50
75,0
((" 1 ~3 0 25 I 0 II 15 - N 0 "/ - ::: 6 15:

hq

DEF!NING CHECKING

6.6 Testing NOWAccount

Figure 6.14. Inspection of MyCheck i ng

Because a NOW account is a combination of checking and
savings, the class NOWAccount inherits everything it needs
except documentation. All you need to do is create an instance.
Name the instance MyNOW and test it by crediting it with 500,
debiting it by 100, writing a check for 55.55 and asking for the
interest. Then inspect it. Your results should look like Figure
6.15.

All Values of NOWAccount ($ MyNow).
Cred i tH i :3: t.or·~ .. '
Del) i t Hi::;: t. 0 r' ~ ...
Sa l,~nce
I nt.er·estF:at.e
C 1", e c k ; n 9 H i :::~ t. (I r' ~ ...

((5110 . "15-No\"-i36 15: 59 :
(I~ 55.55 . "15-Nov-e6 15: 5
361.6725
. ~15
(' (' ll11 55. 55 "15 - N (I 'y' - ::: 6 15

Figure 6.15. Inspection of MyNOW

This example is expanded in later chapters. If you are not
continuing through the primer at this time, you should save your
LOOPS program so that you can load it in again later. See Section
5.1 for instructions on how to do this.

7. STRATEGIES FOR ORGANIZING
OBJECTS

Designing the class lattice for a LOOPS program is central to the
effective use of LOOPS. A carefully designed lattice can result in
a simpler and more effective problem solution. This chapter
presents three typical strategies for organ!zing objects: elision
through inheritance, incremental customization, and factoring
functionality.

These strategies are a starting point. Qftel1 an application will
require a combination of two or even all three strategies. With
experience you will discover strategies of your own.

7.1 Elision Through Inheritance

Elision through inheritance is the most basic strategy used to
organize a lattice of objects. The word "elide" means to
eliminate or to leave out. When creating classes, it is not
necessary to specify each class completely. Instead, common
characteristics can be grouped in a super object. To use elision
through inheritance, determine which characteristics are
common to all objects that must be organized. The top-most
class in the lattice has variables and methods to implement those
characteristics. Each successive specializatIon adds only those
characteristics which make it different from its supers. Thus,
parts of the description of a given class can be elided, making the
construction of a set of classes much easier.

Elision through inheritance is useful for defini ng complex
taxonomically related networks of objects. The Animal lattice
used to introduce classes in Chapter 1 is an example. Such a
network is often called an "is-a" hierarchy, e.g. a woman is-a
person, a person is-a animal, etc.

An example of organizing objects with elision through
inheritance is shown in Figure 7.1.

7 1

ELISION THROUGH INHERITANCE

legs

Animal
Hai rColor
EyeColor

Dog
4

Brown
Brown

Person
legs 2

,
i
i

'------,---_J
\

\

Man Woman

Hairlength Short Hairlength

Figure 7.1. Organization of objects for eliSion through Inheritance

Long

In this example, the lattice is used to describe classes. The
description of each class is simplified by class inheritance. The
class, Man, inherits the instance variables, HairColor and
EyeColor, along with their default values from Anilla 1. Man
also inherits the instance variable Legs along with its default
value from Pe rson. Due to inheritance, Man has four instance
variable/default value pairs. Only one of these pairs is actually
defined in the class Man: the other three can be elided because
of LOOPS inheritance.

When objects are organized using elision through inheritance,
usually only the objects lower in the inheritance lattice are used
to create instances. Although the objects higher in the lattice do
represent real or existing things, they are primarily used for their
taxonomic or classifying function.

7.2 Incremental Customization

7 2

Incremental customization is another way to simplify the
specification of classes by using inheritance. In incremental
customization, certain more general classes are not designed to
have instances; they are meant to be combined with other
classes to create new classes that do have instances. An example
of this strategy is shown in Figure 7.2.

7.3 Factoring Functionality

CTo 1'\ rcr:lcc Ct'-..O r.or::, 1\1I711\1r: (\0 IcrTC

INCREMENTAL CUSTOMIZATION

I " ,I ,I' II I luxury MidsizeCar FourWheel

/'-r---=--'~ I """" I I J

Sedan HatchBack.

II /
i
I
I
I

I I
I BulgeTownCar BulgeAl1

TerainWagon

--,
BulgelX I BulgeHatch I I

I

Figure 7.2. lattice showing example of Incrementai (ustomlzatlon

Figure 7.2 shows a series of automobile classes. Mi ds i zeCar has
three specializations, Sedan, Wagon and HatchBack. Each of
the classes in the bottom row represents a specific model of car.
These bottom classes inherit from one of the specializations of
Mi ds izeCar. Most also inherit from either Luxu ry or
Fou rWhee 1 in the top row.

The classes Luxu ry, M ids i zeCar, and Fou rWhee 1 are not
designed to be used alone. They are not complete enough to be
instantiated. Rather, they are designed to be used together with
the classes in the middle row. Each provides a package of
features that can be combined to create a description of specific
automobile models. For instance, Luxu ry can be mixed
together with anyone of the three middle classes to produce a
specific model.

The key to using incremental customization is recognizing a
generic set of prototypes In your problem domain. It must be
possible to describe most problem situations in terms of unique
combinations of the generic prototypes.

For example, consider an expert system to diagnose assembly line
faults based on specific error reports from a set of standard tests.
With incremental customization each test is represented as a
high level class. A particular failed product is represented by an
instance of a class that inherits from each class representing each
test the product failed.

Organizing objects to factor functionality is done by grouping
related variables and methods for an object into a set of multiple
supers. When objects are defined in this way, only the class
lowest in the inheritance lattice is used to (reate instances.

FACTORING FUNCTIONALITY

74

Factoring functionality is a strategy useful for developing
programs with several distinct major componem:s. Super classes
are created to represent those major components. This allows
for a modular partitioning of distinct system components. -An
example of factoring functionality is shown in Figure 7.3.

Oisp1ayManager Statistics Simulation

Figure 7.3. Lattice shOWing example of factOring functionality

Instances of S i IIU 1 at i onMode 1 will simulate some process,
collect statistics, and produce an animation on the screen. Each
instance includes all three capabilities because all three are
inherited by Sillul at ionModel. To modify the statistics
capabilities it is only necessary to edit the Stat i st i cs class.

The three super classes, Oisp1ayManager, Statistics, and
Sillulation, each contribute their definitions to
S i IIU 1 at i onMode 1. Instances of the super classes alone are not
.instantiated. If some aspect of the functionality of
S illu 1 at i onMode 1 needs to be changed, only one of its supers
needs to be edited.

8. SPECIALIZING METHODS

Specializing methods can be more complex then specializing
variables. Class and instance variables are inherited from a class
to its specializations. Methods are also inherited in this manner.
With methods, however, there are additional concerns.

When specializing a class, you can specify variables in the new
specialization in three 'wA..Jays:

• Inherit a variable and its defaults as specified in the super. In
LOOPS, this is the default way of specifying variabies In

special i zations.

• Inherit a variable but change the default from what is specified
by the super.

• Specify variables in the specialization that are not inherited from
the super.

With methods, specialization is more complex. You might, for
example, wish a specialized method to set a few instance
variables. run the super's method, then reset the instance
variables. Such finer grained control of method inheritance is
discussed in this chapter.

Be 1 +-Super and +-SuperFringe

C::;P'"CiAI 1711\](; MFTh()[,)C::;

LOOPS provides two special versions of +- (the Send operation)
which facilitate the incremental specialization of methods. They
are +-Super, pronounced "send super" and +-SuperFringe,
pronounced "send super fringe". They allow you to make
changes to a method contained in a class that is higher in the
class hierarchy, without changing the original method.

When +-Supe r is placed in one of a specialization's method
definitions, a super's version of the same method is run.
Execution then returns to the method of the object instance
which originally received the message. In other words, +-Supe r
forwards a message up the class hierarchy and causes the next
more general version of the method to be invoked.
+-Supe rF ri nge is similar. If the receiving object has multiple
supers, it will forward the message to all of them, possibly
causing several versions of the method to be invoked. +-Supe r
stops once it finds one version of the appropriate method.

The syntax is the same for both:

(+-Super object selector arglarg2 ...)

(+-SuperFringe object selector argl arg2 ...)

+-SUPER AND +-$UPERFRINGE

Object should be se 1 f. Selector is not evaluated. It is often the
case that a specialized method has exactly the same arguments
as the more general method. In this case, the following
shorthand may be used: -

(+-Super)

Before attempting the following examples, be sure the Bank
Account example from Chapter 6 is loaded.

As a first example of specializing methods, new methods with
the selector Status can be created for the Check; ng and
Say; ng s classes. Then NOWAccount can be given two different
specializations of Status to demonstrate how +-Supe rand
+-Supe rf r1 nge behave. All of the Status methods will simply
print out a message telling something about the account.

For Check; ng, Status will print the checking history of the
account. For Say 1 ngs, Status will print out the current
interest rate. Create these methods now. The body of
Check 1 ng. Status should be:

(PRINt -THE CHECKING HISTORY OF YOUR ACCOUNT IS:
PROMPTWIN~)
(PRINT (@ CheckingHistory) PROMPTWINOOW)

and the body of Say; ngs. Status should be:

(PRINt -THE INTEREST RATE FOR YOUR ACCOUNT IS: -)
(PRINT (@ InterestRate»

The class NOWAccount inherits from both Check; ng and
Say; ngs. Each one now has a method called Status. Does
NOWAccount inherit both of them? If not, which one does it
inherit? Create an instance of NOWAccaunt named MyNa. (if
MyNo. does not still exist). Try sending the message Status to
MyNo. and see what happens. The result should be something
like Figure 8.1.

Figure 8.1. Sending Status to MyNo.

Only one of the two methods was invoked. Looking at the class
definition for NOWAccount, notice that Check; ng is first on the
list of supers. When a class has multiple supers, they are tried in
left to right order to find any inherited parts. Thus, classes can
not inherit conflicting characteristics.

Now two different specializations of Status will be created,
one using +-Super and then one using +-SuperFr;nge. First,
select Spec 1 ali zeMe thod from the submenu of
Add(AddMethod) in the editing menu on NOWAccaunt. Then
select Status from the method menu that pops up. When the

~SUPER AND ~SUPERFRINGE

editing template appears, note that +-Supe r is already present as
in Figure 8.2.

DEdit of function NOWAccount.Status
(Method (NOWAccount Status)

:self)

(~::::uper'

(t: ~ljit'::lj:
'·'1 ;:;. r··~o·' ... • ;:;r:; 1 7: 49"::'

(* ~,.,1 ~ttl (I (j to p ri t1t st;:t.tu s of
;:t.n ;:t.C (: r) U tlt, :.

:5: elf ::: tat Ij :5:))

Figure 8.2. The method Status for NOWAccount

Ordinariiy, the next step would be to add some code before
and/or after the call to +-Supe r to produce a more specialized
method. For now, simply add some documentation and exit.

Try sending the message Status to MyNo", again. The result
should be exactly the same as before (see Figure 8.1). The version
of the method that +-Supe r finds is the same one originally
inherited.

Now edit the method, NOWAccount. Status, replacing +-Supe r
with +-SuperFringe as in Figure 8.3.

DEdit of function NOWAccount.Status
(Method (NOWAccount Status)

:5:e 1 f) (* ~'lit'::(I:
'·'1 ;3'I'·Jo'",··;:;e 17;53")

(* t.}1~ttl0(l to print st;:t.tlE of
an ae C 1) unt,)

(~Super'Fr i n';'le
self Status))

FigurE 8.3. The method Status fo; NOWAccount

Send the message Status to MyNo", again. Notice that the
Status methods for both Check; ng and Say; ngs are invoked.
This is because both are supers of NOWAccount.

+-Supe rF r i nge is rarely used. This is because it is unusual to
find two methods with the same selector that are truly
complementary. Methods with the same selector often
duplicate and/or conflict with each other's actions. In most cases,
+-Supe r is used to add functional ity to the methods of the fi rst
super on a specialization's supers list.

8.2 Specializing a Method in the Bank Account

<;PECIALlZI"JG VIETHOr)"

Neither of the method specializations you have created so far
have added any functionality to the method being specialized.
This section illustrates how to augment inherited methods.

SPECIALIZING A METHOD IN ThE 3ANK ACCOUNT

811

--
First, add a specialization of the Say i ngs class, named
Min i lIumBa 1 ance as shown in Figure 8.4.

Class browser
._------- Sa vings --_____ Minirouro8alance

GenericAccount - --
---------- Checking -.-----:, NOWAccount

Figure 8.4. Class Inheritance lattice for Bank Account example

A minimum balance account is a savings account bearing a
higher interest rate than a regular savings account. A minimum
balance account carries a penalty if the balance goes below the
minimum allowed. The penalty is deducted after any debit
leaves the account's balance below the minimum balance.

The MinillumBalance class needs new variables to specify the
minimum balance and the penalty. Since these are the same for
all individual accounts, they should be class variables. Add the
class variables, Minillull and Penalty with values of 1000 and
100, respectively.

The Mi n illuliBa J ance. Deb it method needs to be specialized.
It should first execute the GenericAccount.Debit method to
actually debit the account. Then, if the balance is below
Minimum, Pena 1 ty should be deducted from Ba 1 ance.

To do this, select Spec i ali zeMe thod from the submenu of
Add{AddMethod) and then select Debit from the pop-up
menu.

Add the following Lisp code after the call to +-Supe r in the body:

(if
then

(LESSP (8 Balance) (@ self ::Mini.u_»
(~Super self Debit (@self ::Penalty»)

The Mi n i lIuliBa 1 ance . Deb it method will look like Figure 8.5.

SPECiALIZING A METHOD IN THE BANK ACCOUNT

DEdit of function Minimum8alance.Debit
(Method ((MinimumBalance Debit)

self OebitAmount)

(* :+; . .:!..(hj::: (Cr~ Ij it.:!..t1'1 0 lmt , Ij ate") to
ere d itH i:::to r'o/ ~.rllj :::L~ btr;a..I~ts: ere Ij 1"lA.tl'1 (I u tlt
ft'o tll e 8.18.tH~ e, Ttl e tl (: tl e (: J.:.S if P e t18.1t·~'
:::tHluld be ,j~bite,j.) -

(~8uper'
self Debit DebitAmount)

(if (LE88P (@ ela l,~nce) .
... ~ . _:.._..:. -_ .. -- ... ",

I,. I.!! ;; III 1 n 1 rn u m} ,I

then (~::: uper'
self Debit (@ : :Penalty)
"1 "1 "1
" " "

Figure 8.5. Method Deb it for class Mi n illuliBa 1 ance

Note that this Deb it method uses the inherited Deb it method
twice whenever the balance is low.

To tryout this new Deb it method, create an instance of
MinimuliBalance named MyMinillulI. Credit it with 5000 and
debit it by 4500. The balance returned should be 400 rather than
500.

9.1 Defining Active Values

9. ACTIVE VALUES AND
ACCESS·ORIENTED PROGRAMMING

Access-oriented programming is a programming paradigm in
which fetching or storing data activates computations. In
LOOPS, access-oriented programming is implemented using
objects called active vaiues. When an active value is read or set, a
desirable side effect happens automatically.

The following sections describe how to define LOOPS active
values and how to :.JS€: them to monitor program states, to guard
variables values, and to propagate values among objects.

This chapter continues to work with the Bank Account example.
Load that example now if it is not currently loaded.

To make the value of a variable active, the value is replaced by an
active value object. When an attempt is made to access the
value, the active value object does some computation, using its
methods. The actual value may be stored inside the active value
object or it may be computed by that object.

The process for defining and using active values can be divided
into four basic steps:

(1) Choose an Ac t i ve Va 1 ue Class. LOOPS provides a set of
classes designed to create various kinds of active values. To see
these classes, browse the class Act i veVa 1 ue. The portion of the
lattice initially concentrated on is shown in Figure 9.1.

Glass browser'- :

_-----locaIStateActiveValue
ActiveV <llue ----

-----.----- NotSetValue

Figure 9.1. A oortlon of the Ac t i veVa 1 ue lattice

Act i veVa 1 ue is an abstract class. It contains all variables and
methods common to actIve values but it is not complete enough
to function on its own. Act i veVa 1 ue is never instantiated
directly. localStateActiveValue and NotSetValue are
specializations of Ac t i veVa 1 ue.

(2) Spec i ali l'e the Ac t ~ veVa 1 ue. Some of the active val ue
classes provided by LOOPS can be used without change. Others
must be speciaiized to yieid the desired effects.

9 .

DEFINING ACTIVE VALUES

(3) Create Instances. As with other classes, the actual work is
done by instances of active vaiue ciasses. Each active value is a
separate instance of the appropriate active value class.

(4) Install the Active Value. Active values all inherit the
aOllny to ins{arr {nemseives. This is done with the message
AddAc t i veVa 1 uc. -:-he syntax of this message is:

(+- self AddAct i veVa 1 ue containingObj varName)

self is the active value which is installed, containingObj is the
object in which the active value is installed, and varName is the
variable on which the active value is installed. There are optional
arguments and we wiii not use them in these examples.

To illustrate how active values are typically used, we begin by
discussing hOIJ'./ NotSetVa 1 ue works.
LocalStateActiveValue and its specializations are used in
the examples presented iater in this chapter.

When an instance is created, the instance variables are each
bound to an instance of NotSetVa 1 ue. Each instance of
NotSetVa 1 ue is an object with a method for finding and setting
the default value of the variable to which it has been bound. If
an instance variable is directly bound to a local value, that value
replaces the instance of NotSetValue (which was bound to the
value of the variable instantiation). When an attempt is made to
access the value of an instance variable which has no local value,
NotSetVa 1 ue finds the default value in one of the supers and
copies it into the instance. Since default values are often
repiaced with ioeal values, this approach avoids fetching default
values unnecessarily.

We continue by demonstrating how to apply the four basic steps
to an example.

9.2 Using Active Values to Monitor State

Generally there are certain variables whose values are critical to
the running of a program. Monitoring such variables during
execution can be helpful in understanding and controlling the
program's behavior. Active values provide an easy way to do this
monitoring: to each critical variable, an active value is attached.
Each active value prints its variable's value or updates a display
each time the value is changed.

LOOPS provides Gauges, a large selection of display classes
which facilitate this technique. Gauges are explained in Chapter
10. In this section you learn how to do monitori ng by using
active values dire-:tly. Th~ value of the Ba 1 ance variable in the
Gene ri cAccoun t class is made active so that it prints itself in
the prompt window v'.Jhenever it is changed.

Step one chose an a(ti'J\~"alue class. A class is needed to keep
track of the actual vaiue and take some action whenever it is
changed. For this purpose, LOOPS provides the

.'\ (~T I './ C \ J !\: I It:, /\ 1\ I r\ !\ r r t= c C" 1'\ n I r- :'\ I T r.~ ,.""\ n, ",,,,, '-. ,1· 1'\ I -

USING ACTIVE VALUES TO MONITOR STATE

LocalStateActiveValue class. This is the most versatile of
the active values classes. LocalStateActiveValue contains
an instance variable called 1 oca 1 State. The variable's actual
value resides in LocalState. localStateActiveValue a-Iso
has methods for reading and setting this value. They are called
GetWrappedVa 1 ue and PutWrappedVa 1 ue.

Step two specialize the active value class. As is,
LocalStateActiveVallJe has no real effect; it simply sets or
returns its 1 oca 1 State. In this example,
Loca 1 StateAct i veVa 1 ue is specialized to create an active
value that prints the vdlue whenever it is set.

Create a specialization of Loca 1 StateAct i veVa 1 ue called
PrintValueAV.

Whenever an attempt is made to set a value that is active, the
message PutWrappedVa 1 ue is automatically sent to that active
value instance. The message is called PutWrappedVa 1 ue
because the active 'value can be viewed as being wrapped
around the real value.

Now specialize PutWrappedVa 1 ue. Bring up
PrintValueAV's editing menu and select
Special izeMethod from the submenu of Add(AddMethod).
Then select PutWrappedVa 1 ue from the menu that pops up.

Code to print the value needs to be added before the call to
+-Super. Unlike the methods specialized in Chapter 8,
PutWrappedVa 1 ue is part of the LOOPS system. Nevertheless,
methods provided by the LOOPS system can be specialized just as
those created by the user. As long as you know what a method
does, you can specialize it.

Add a print statement like the one shown in Figure 9.2 before
the +-Supe r and exit the editor.

DEdit of function. PrintValueAV.PutWrapp
(Method (PrintV~lueAV PutWrappedValue)

self containingObj varName
newValue propName type)

(~ e':lite,j:
"'1':;· t··h)·· ... • ;:;.:; 17: 19")

(* :+: P ri tlt tle ,/,".,.. 8.ILH! 8.t1 ,j A ~ P I at:: ~ ttl ~
·• ... 8.1 u ~ ' ... ·,'t'8.p P ~ ,1 i ti ttl ~ 8.cti·· ... e ·· ... 8.1 u e)

':: PF: I NT (CONCA T "","our' ne',..' "
'Y a r' N am e " i :5: :

ne l.·.".,.'.31 ue)
PROt,1P Ti,',' I NO 01,',') •

(~:::uper'
self PutWrappedValue
containinqObl varName newValue - . , ,
pr'opName t.~l'pe}..'

Figure 9.2. The m~thod P r i ntVa 1 ueAV. PutWrappedVa 1 ue

USING ACTIVE VALUES TO MONITOR STATE

Step three create an instance of the active value class. Create an
instance of PrintValue .. ,V. Name it PrintValueAV1. If you
were going to use PrintValueAV in a real application, you
would probably need a number of different instances in orderto
make different values active at the same time. The 1 on the
name of the instance 3ntici pates this.

Step four install the active value. If the GenericAccount
instance MyGeneric is not currently in your environment, you
should load it now or create it from the class, Gene r i cAccount.
Put P ri ntVa 1 ueAVl into MyGene ri c by typing:

{.- ($' PrintVa lueAV1) AddActiveValue
MyGeneric) 'Balance)

This sends P r i ntVa 1 ueAVl the message to AddAct i veVa 1 ue
to the Ba 1 ance Instance variable of MyGene ric. That is,
P ri ntVa 1 ueAVl installs itself as a wrapper on the value of
Ba 1 ance.

To see if everything is working, send MyGene ri c some C red it
and Deb it messages. The resulting balance should be printed in
the prompt window.

Before going on, inspect MyGeneric. Instead of simply a
number for the value of Ba 1 ance, you should see something
like:

#.($AV PrintValueAV (PrintValueAVl &)
(localState 800»

The $AV indicates that this is an active value. PrintValueAV
indicates which active value class is being used and
(PrintValueAVl &) indicates the particular instance. The&is
used by the Interlisp-D inspector to indicate additional
embedded list structure. Here the & represents the
PrintValueAVl instance. Note that localState is actually
embedded inside the P ri ntVa 1 ueAVl instance. It appears in
the Browser for corn/enience so you do not have to inspect
P ri ntVa 1 ueAVl to see the value.

9.3 Using Active Values to Guard Variables

Often it is useful to ie$trict the values of variables. An active
value can be used to restrict the value of a variable by taking
some action whenever an 3ttempt is made to set the variable to
an improper value. The action might be to cause an error break,
refuse to set the varia~le, or simply print a warning. For
simplicity, we demonstrate the latter strategy.

The goal here IS tc create an active value that prints a warning if
the balance in a NOW account goes below 100.
PrintValueAVl ;5 an ,-~ctive value class with a specialized
PutWrappedVa 1 ue method that prints the balance. This is used
as a starting point to Geate a specialization of PrintValueAV
called WarnVa 1 ueAV. Once again the PutWrappedVa 1 ue

'\rTI\/1 \J"I I Ire '\1'\11"""\ /\rrCCC_110ICl\ITCI\ DD"rD/\ ,"ro\.l1l-"I,-

USING ACTIVE VALUES TO GUARD VARIABLES

method is specialized. This time the specialized version
previously created is further specialized. As before,
PutWrappedVa 1 ue prints out the balance. In addition, it
monitors the balance cmd prints a warning when necessary. -

Create a speciaiization of P ri ntVa 1 ueAV and name it
WarnVa 1 ueAV. Bring up WarnVa 1 ueAV' s editing 'menu and
select Spec i ali zeMe thod from the submenu of
Add(AddMethod). Then select PutWrappedVa 1 ue from the
menu that pops up. Add:

(if (LESSP newValue 100) then (CLRPROMPT) (PRINT
(CONCAl ~WARNING: ~ varName " is less then 100")
PROMPTWINDOW»

before the +-Supe r cali as shown in in Figure 9.3.

DEdit of f~f;ti'on WarnValueAV.PutWrap
(Method

((WarnValueAV PutWrappedValue)
self containingObj varName newValue
pr·opN.:Hlle t~/pe) (* ~,jit~lj:

"'1 7· No··.···;:;6 1 S:i: 45")

(* * Pritlt t1~I .. ~"··.··;:'.lu~ ;Hl.j Fi~pla(:~ ttle
·· ... 8.1ue ' ... · .. r;2l.pp~lj itl ttle ~.I~ti"."~ ·· ... ~.lue)

(if (r LE88P nel .. ,II''''.:il ue 100)
then (CL'RP~:Or,'p T)

(~8uper'

(PR r NT (" CO~~CA T II ',','ARN I NG: "
··.···~r·Name

" ; s 1 ess than 100 II

PRO rl, P T '",' I NO 0 'I','))

self PutWrappedValue containingObj
varName newValue propName type))

Figure 9.3. The method Wa rnVa 1 ueAV . Pu tWrappedVa 1 ue

Create an instance of Wa rnVa 1 ueAV and add it to MyNow by
typing:

(+- (+- ($ WarnValueAv) New) AddActiveValue ($
MyNow) 'Balance)

This is a quick way to create and install a new instance of an
active value. An instance of the WarnVa 1 ueAV active value is
created and the message AddAct i veVa 1 ue is sent to it in one
expression. Note that the instance was not given a name. Unlike
classes, instances are rot required to have names. When an
instance is immediately put into some other structure the name
can be left cut.

Try sendi ng $om e C red it and Deb it messages to My Now. You
should see a warnirog in the prompt window whenever the
balance IS be:ow 100.

9 '5

USING ACTIVE VALUES TO GUARD VARIABLES

Look at Figure 9.3. To recap how the messages are passed
consider what happens when MyNaw is sent the message Oeb i t.
First an attempt is mad~ to set Ba 1 ance. This causes the
message PutWrappedValue to be sent to the instance -of
WarnVa 1 ueAV that is wrapped around the instance variable
Ba 1 ance. !f the balance is low,
WarnVa 1 ueAV. Pu tWr"appedVa 1 ue prints a warning. Using
+-Supe r, the WarnVa 1 ueAV. PutWrappedVa 1 ue method then
forwards the message to PrintValueAV.
P ri n tVa 1 ueAV . Pu tWrappedVa 1 ue prints the balance. Finally,
the PutWrappedVa 1 ue message is again forwarded with a
~Super and LocalSLateActiveValue.PutWrappedValue
actually sets localState.

9 .. 4 Using Active Values to Propagate Values

("Ie.

Sometimes the value of a variable depends upon the values of
other variables. Such a variable is referred to in mathematics as a
dependent variable and those upon which it depends are called
independent variables. The value of a dependent variable
should change whenever any of the independent variables
changes. In LOOPS, this relationship is implemented with an
active value stored in the dependent variable. Any attempt to
get the dependent variable's value results in the active value
checking the independent variable(s) upon which the dependent
variable is based. Of course, any attempt to directly set a
dependent variable should be. prohibited.

To illustrate this technique, a class that computes Ba 1 ance on
demand from C red i tH i 5 to ry and Deb i tH is to ry is created.
An active value in Sa 1 ance adds up all the credits and subtracts
all the debits whenever Ba I ance is read. In addition, Ba 1 ance
is protected from being set directly. Clearly, this is not a
particularly efficient way to keep track of an account balance.
However, this is a viable way to handle a balance that is needed
only infrequently.

Use the NoUpdatePe rm it tedAV class, one of the
specializations of loca 1 S tateAct i veVa 1 ue provided by the
LOOPS system. NoUpda tePe rm it tedAV has a specialization of
the PutWrappedVa 1 ue method that prevents 1 oca 1 State
from being changed. The method invoked when an attempt is
made to read the value of 1 oca 1 State is GetWrappedVa 1 ue.
A specialization of Ge tWrappedVa 1 ue is needed to compute
the value of ba 1 ance instead of simply accessing it.

To begin, specialize Gene ri cAccount and name the
specialization CompHa 1 Account. This new class inherits
Credit and Debit met~cds from GenericAccount. New
versions of these methods must be created. These new versions
will be very similar to tne old ones, but they will not update
ba 1 ance. To save some work, you can copy both methods from
Gene r i cAccouo t to COlipBa 1 Account. Fi rst, box

USING ACTIVE VALUES TO PROPAGATE VALUES

COllp8a 1 Account. Next select Copy (CopyMethodTo) from
GenericAccount's edit menu. When the menu of methods
pops up, select C red it and Deb i t. Now edit both methods to
remove the parts that update 8a 1 ance and change tne
documentation appropriately. COllpBa 1 Account's C red it and
Deb it method should look like Figure 9.4 and Figure 9.5.

DEdit of function CompBaIAccount.Credit-
(Metho.:J
'«CompBalAccount Credit)

::;:e 1 f Cr' ed ; t.Amou n t.) {* ~fjit'::ll:
;"1 ~1-.J 8.tl- ;37 1 5: :;;2")

(<i-11!

(* "t: .~ .1.1::: (.c:-~.j iti!..t1'l OlHlt , .j ;:..te) to
Crt!!.j itH i ::1.:. ry'

Cr' e d ; t· Hi:::: t (I r' \'
(CONS (CONS treditAmount (DATE)
. • I~,.I_-d 1- J"H' . ,,;~ _: r e (~ , t. , :::: t. 0 r'~'" } } ,.I)

Figure 9.4. VerSion of C red it that does not update 8a 1 ance

DEdit of function Gomp8aIAccount.Oebit":·
(Metho(J

«CompBalAccount Debit)
::;:e 1 f Deb; tAmourtt.,) (* ~.lit'::.l:

;"1 9- .J atl- ;:;7 1 5: :;;:3' '':I

(* 'f: .o!::. .• ld::: (Oettit':::'.tnOutlt , (j;:t.tt!!) to
[. t!! t.itH i ::to r:~) .

(<i-11!

Deb i t.H; :s:tor··
(CONS (CONS" DebitAmount. (DATE)

(@ DebitHistory))))

Figure 9.S. Verslo •• of Deb it tn-lt does not update Ba 1 anee

Both methods stili access Bill anee in order to return the new
account balance b\..:t neither one updates it.

Now, create a scecialization of the active value class,
NoUpdatePer!llitted. Call it TotalBalAV. The desired

q 7

USING ACTIVE VALUES TO PROPAGATE VALUES

behavior is to recompute Ba 1 ance whenever it is read. To
achieve this, the GetWrappedVa 1 ue method is speciajized.
GetWrappedVa 1 ue does not actually read a value in this case, so
the +-Supe r will be replaced by the body of the method. This is
shown in Figure 9.6. Note that the object argument to @ can not
be left out. This is because self refers to the instance of the active
value while containingObj refers to the instance which
contains the active value.

(Method ((TotalBalAV GetWrappedValue)
self ccntainingObj varName
p r' (t p r·J .~ in e t ~/ P e)

(=t: ~.jjt~.j:
"'19·.J8.tl·;:;7 15:47")

(* * Compute! u,~ t'8.18.tl(:e from (:re.jit 8.tlll
Ij.::tdt tlist(irl~S,)

(" D I FFEF-:ENCE
. (for Cr'ed i t. I t.ern

. in (Ig C I] n t. a 1 n i n (1 (I b .1
. CredltHisior0)

surn (CAF: Cr'e(~ i t I t.ern))
(for Deb~t.ltem ..
. in (@ c6ntalninaObi

. Deb i t. His t E, r' "/ :1
'- R 0 L' I""" surn (, c: A·: I e ~) 1 t t. em} }))

. Figure 9.6. The method TotalBalAV.GetWrappedValue

Now create an instance of CompBa 1 Account named
MyCollpBa 1. Use AddAc t i veVa 1 ue to install an instance of the
Tota 1 Sa 1 AV active value:

(+- (+- ($ TotalBalAV) New) AddActiveValue ($
MyCollpBal) 'Balance)

Test this example by sending both C red it and Deb i t messages
to see that the balance is returned correctly. Also attempt to
directly set the value of Ba 1 ance by typing something like the
following:

(+-@ ($ MyCompBal) Balance 40000000)

NoUpdatePe rm it tedAV. Pu tWrappedVa 1 ue responds to this
with an error message. If you wanted something else to happen
-- send a message to the police for instance -- you would
specialize the NoUpdatePe rlli t tedAV. PutWrappedVa 1 ue
method.

9.5 Nesting Active Values

NESTING ACTIVE VALUES

At times, more than one d(tion needs to be associated with an
active value. Instead of creating a new active value class that
combines the functions of several existing active values, the
active values can be nested. This technique is only briefly
introduced here. See the chapter ANNOTATED AND ACTIVE
VALUES in The LOOPS Reference Manual for more information.

Active values are nested by installing them one after the other
on the same value. The order in which they are nested is
controlled by a property of active values called wrapping
precedence. When AddAc t i veVa 1 ue tries to install a new
active value where ar. active value is already present, it sends the
message Wrapp i ngP recede nee to the active value that is being
installed. In the simplest case, the message is sent to self (the
active value) and either T or NIL is returned. T means wrap the
new active value around the outermost active value(s) and NIL
means put the new active value inside the innermost one.

It is also possible to exert finer control by using numerical
precedences. The method W rapp i ngP recede nee returns 100

by default. In order to control the order of nesting,
Wrapp i ngP reeedenee must be specialized to return T, NIL (as
in simple case described in the preceding paragraph) or an
appropriate number.

As an example, the value of Ba 1 anee is once again guarded.
This time Ba 1 anee is wrapped with a Pri ntVa 1 ueAV and with a
new version of the warning active value. The active value that
prints the warning will be a specialization of
loea 1 S ta teAe t i veVa 1 ue. Create it now usi ng the name
NestWarnVa 1 ueAV.

Two methods, Pu tWrappedVa 1 ue and Wrapp i ngP reeedence,
need to be specialized. PutWrappedVa 1 ue checks the value
and prints a warning if needed. This is exactly what
WarnVa 1 ueAV. PutWrappedva 1 ue does, so just copy it. To do
this, first box Nes tWa rnVa 1 ueAV. Next bring up
WarnVa 1 ueAV's editor menu and select
Copy(CopyMethodTo). Finally, select PutWrappedVa 1 ue
from the menu that pops up.

It would be best to have the warning message printed before the
balance is printed. In ordp.r for this to happen, the warning
active value should be the outermost one. This order can be
guaranteed by giving it a wrapping precedence of T. Specialize
NestWarnValueAV's WrappingPreeedenee method so that it
returns T and does nothing else. In other words, replace the
4-Supe r call with T. If thi~ were not done, Nes tWarnVa 1 ueAV
would run the Wrapp i ngPreeedenee method it inherits from
loealStateAetivaValue.
loea 1 StateAet i veVa 1 ue. Wrapp i ngP reeedenee returns
the default preceden(€ of 100.

Now recall that ~yGenc ric already has an instdriCe of
PrintValueAV installed in it. An instance of
Nes tWa rnVa 1 ueAV needs to be installed:

19

NESTING ACTIVE VALUES

(~ (~ ($ NestWarnValueAV) New) AddActiveValue ($
MyGeneric) 'Balance)

Test the results as you have before by sendi ng some c red it and
debit messages. Push the balance below 100 and note the
order in which the messages are printed out. The outer active
value is triggered first apd prints its warning. It then. passes the
new value to the inner active value which prints the value.

To see the effect on ($ MyGene ri c), inspect it. It appears that
Nes tWa rnVa 1 ueAV is the sole value of Ba 1 ance. Inspect this
value by highlighting it 'Nith the left button. Then hold down
the middle button and seiect Inspect. PrintValueAV, the
inner active val ue of MyGene r i c's Sa 1 ance variabie, appears.

9.6 A Final Note On Active Values

9 10

Active values are quite powerful, but they should be used very
judiciously in LOOPS programs.

The use of active values makes programs more difficult to follow
and debug. This is because they tend to point all over the
program and their pointers remain hidden from the outside.
Active values should only be used if there is no other way to
accomplish the same thing or if they greatly simplify the
program.

Xerox Artificial Intelligence Systems
250 North Halstead Street
P.O. Box 7018
Pasadena, California 91109-7018

	001
	002
	003
	004
	005
	006
	007
	008
	01.01
	01.02
	01.03
	02.01
	02.02
	02.03
	02.04
	02.05
	02.06
	03.01
	03.02
	03.03
	03.04
	03.05
	03.06
	03.07
	03.08
	03.09
	03.10
	03.11
	03.12
	03.13
	10.01
	10.02
	10.03
	10.04
	10.05
	10.06
	10.07
	10.08
	10.09
	10.10
	11.01
	11.02
	11.03
	11.04
	11.05
	11.06
	11.07
	11.08
	11.09
	11.10
	12.01
	12.02
	12.03
	12.04
	12.05
	12.06
	13.01
	13.02
	13.03
	14.01
	3.14
	4.01
	4.02
	4.03
	4.04
	4.05
	4.06
	5.01
	5.02
	5.03
	5.04
	6.01
	6.02
	6.03
	6.04
	6.05
	6.06
	6.07
	6.08
	6.09
	6.10
	7.01
	7.02
	7.03
	7.04
	8.01
	8.02
	8.03
	8.04
	8.05
	9.01
	9.02
	9.03
	9.04
	9.05
	9.06
	9.07
	9.08
	9.09
	9.10
	xBack

